blas-1.2.orig/ 0000755 0001750 0001750 00000000000 10735461724 014127 5 ustar sylvestre sylvestre blas-1.2.orig/man/ 0000755 0001750 0001750 00000000000 10735444622 014700 5 ustar sylvestre sylvestre blas-1.2.orig/man/manl/ 0000755 0001750 0001750 00000000000 10735444622 015627 5 ustar sylvestre sylvestre blas-1.2.orig/man/manl/dgemm.l 0000755 0001750 0001750 00000007702 10735444622 017106 0 ustar sylvestre sylvestre .TH DGEMM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DGEMM - perform one of the matrix-matrix operations C := alpha*op( A )*op( B ) + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE DGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 TRANSA, TRANSB .TP 17 .ti +4 INTEGER M, N, K, LDA, LDB, LDC .TP 17 .ti +4 DOUBLE PRECISION ALPHA, BETA .TP 17 .ti +4 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE DGEMM performs one of the matrix-matrix operations where op( X ) is one of .br op( X ) = X or op( X ) = X', .br alpha and beta are scalars, and A, B and C are matrices, with op( A ) an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. .SH PARAMETERS TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n', op( A ) = A. TRANSA = 'T' or 't', op( A ) = A'. TRANSA = 'C' or 'c', op( A ) = A'. Unchanged on exit. TRANSB - CHARACTER*1. On entry, TRANSB specifies the form of op( B ) to be used in the matrix multiplication as follows: TRANSB = 'N' or 'n', op( B ) = B. TRANSB = 'T' or 't', op( B ) = B'. TRANSB = 'C' or 'c', op( B ) = B'. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix op( A ) and of the matrix C. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix op( B ) and the number of columns of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry, K specifies the number of columns of the matrix op( A ) and the number of rows of the matrix op( B ). K must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is k when TRANSA = 'N' or 'n', and is m otherwise. Before entry with TRANSA = 'N' or 'n', the leading m by k part of the array A must contain the matrix A, otherwise the leading k by m part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANSA = 'N' or 'n' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is n when TRANSB = 'N' or 'n', and is k otherwise. Before entry with TRANSB = 'N' or 'n', the leading k by n part of the array B must contain the matrix B, otherwise the leading n by k part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANSB = 'N' or 'n' then LDB must be at least max( 1, k ), otherwise LDB must be at least max( 1, n ). Unchanged on exit. .TP 7 BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. .TP 7 C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n matrix ( alpha*op( A )*op( B ) + beta*C ). .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/zher2.l 0000755 0001750 0001750 00000005655 10735444622 017054 0 ustar sylvestre sylvestre .TH ZHER2 l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZHER2 - perform the hermitian rank 2 operation A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, .SH SYNOPSIS .TP 17 SUBROUTINE ZHER2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA ) .TP 17 .ti +4 COMPLEX*16 ALPHA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), X( * ), Y( * ) .SH PURPOSE ZHER2 performs the hermitian rank 2 operation where alpha is a scalar, x and y are n element vectors and A is an n by n hermitian matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 Y - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/dsymv.l 0000755 0001750 0001750 00000005404 10735444622 017154 0 ustar sylvestre sylvestre .TH DSYMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DSYMV - perform the matrix-vector operation y := alpha*A*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE DSYMV ( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 DOUBLE PRECISION ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) .SH PURPOSE DSYMV performs the matrix-vector operation where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/zhemv.l 0000755 0001750 0001750 00000005533 10735444622 017146 0 ustar sylvestre sylvestre .TH ZHEMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZHEMV - perform the matrix-vector operation y := alpha*A*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE ZHEMV ( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 COMPLEX*16 ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), X( * ), Y( * ) .SH PURPOSE ZHEMV performs the matrix-vector operation where alpha and beta are scalars, x and y are n element vectors and A is an n by n hermitian matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 X - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - COMPLEX*16 . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/zhemm.l 0000755 0001750 0001750 00000010711 10735444622 017127 0 ustar sylvestre sylvestre .TH ZHEMM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZHEMM - perform one of the matrix-matrix operations C := alpha*A*B + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE ZHEMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 SIDE, UPLO .TP 17 .ti +4 INTEGER M, N, LDA, LDB, LDC .TP 17 .ti +4 COMPLEX*16 ALPHA, BETA .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE ZHEMM performs one of the matrix-matrix operations or .br C := alpha*B*A + beta*C, .br where alpha and beta are scalars, A is an hermitian matrix and B and C are m by n matrices. .br .SH PARAMETERS .TP 7 SIDE - CHARACTER*1. On entry, SIDE specifies whether the hermitian matrix A appears on the left or right in the operation as follows: SIDE = 'L' or 'l' C := alpha*A*B + beta*C, SIDE = 'R' or 'r' C := alpha*B*A + beta*C, Unchanged on exit. .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the hermitian matrix A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of the hermitian matrix is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of the hermitian matrix is to be referenced. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix C. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is m when SIDE = 'L' or 'l' and is n otherwise. Before entry with SIDE = 'L' or 'l', the m by m part of the array A must contain the hermitian matrix, such that when UPLO = 'U' or 'u', the leading m by m upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading m by m lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. Before entry with SIDE = 'R' or 'r', the n by n part of the array A must contain the hermitian matrix, such that when UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 B - COMPLEX*16 array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. .TP 7 BETA - COMPLEX*16 . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. .TP 7 C - COMPLEX*16 array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n updated matrix. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/strsm.l 0000755 0001750 0001750 00000007252 10735444622 017165 0 ustar sylvestre sylvestre .TH STRSM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME STRSM - solve one of the matrix equations op( A )*X = alpha*B, or X*op( A ) = alpha*B, .SH SYNOPSIS .TP 17 SUBROUTINE STRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB ) .TP 17 .ti +4 CHARACTER*1 SIDE, UPLO, TRANSA, DIAG .TP 17 .ti +4 INTEGER M, N, LDA, LDB .TP 17 .ti +4 REAL ALPHA .TP 17 .ti +4 REAL A( LDA, * ), B( LDB, * ) .SH PURPOSE STRSM solves one of the matrix equations where alpha is a scalar, X and B are m by n matrices, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A'. .br The matrix X is overwritten on B. .br .SH PARAMETERS .TP 7 SIDE - CHARACTER*1. On entry, SIDE specifies whether op( A ) appears on the left or right of X as follows: SIDE = 'L' or 'l' op( A )*X = alpha*B. SIDE = 'R' or 'r' X*op( A ) = alpha*B. Unchanged on exit. .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A'. TRANSA = 'C' or 'c' op( A ) = A'. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of B. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of B. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 B - REAL array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the right-hand side matrix B, and on exit is overwritten by the solution matrix X. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/ztpmv.l 0000755 0001750 0001750 00000005134 10735444622 017172 0 ustar sylvestre sylvestre .TH ZTPMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZTPMV - perform one of the matrix-vector operations x := A*x, or x := A'*x, or x := conjg( A' )*x, .SH SYNOPSIS .TP 17 SUBROUTINE ZTPMV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) .TP 17 .ti +4 INTEGER INCX, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 COMPLEX*16 AP( * ), X( * ) .SH PURPOSE ZTPMV performs one of the matrix-vector operations where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := conjg( A' )*x. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 AP - COMPLEX*16 array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 X - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/chpr2.l 0000755 0001750 0001750 00000005505 10735444622 017032 0 ustar sylvestre sylvestre .TH CHPR2 l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CHPR2 - perform the hermitian rank 2 operation A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, .SH SYNOPSIS .TP 17 SUBROUTINE CHPR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, AP ) .TP 17 .ti +4 COMPLEX ALPHA .TP 17 .ti +4 INTEGER INCX, INCY, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 COMPLEX AP( * ), X( * ), Y( * ) .SH PURPOSE CHPR2 performs the hermitian rank 2 operation where alpha is a scalar, x and y are n element vectors and A is an n by n hermitian matrix, supplied in packed form. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 Y - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. .TP 7 AP - COMPLEX array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/dtbsv.l 0000755 0001750 0001750 00000007660 10735444622 017142 0 ustar sylvestre sylvestre .TH DTBSV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DTBSV - solve one of the systems of equations A*x = b, or A'*x = b, .SH SYNOPSIS .TP 17 SUBROUTINE DTBSV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, K, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 DOUBLE PRECISION A( LDA, * ), X( * ) .SH PURPOSE DTBSV solves one of the systems of equations where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. .br No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' A'*x = b. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with UPLO = 'U' or 'u', K specifies the number of super-diagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/cgemm.l 0000755 0001750 0001750 00000007733 10735444622 017111 0 ustar sylvestre sylvestre .TH CGEMM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CGEMM - perform one of the matrix-matrix operations C := alpha*op( A )*op( B ) + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE CGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 TRANSA, TRANSB .TP 17 .ti +4 INTEGER M, N, K, LDA, LDB, LDC .TP 17 .ti +4 COMPLEX ALPHA, BETA .TP 17 .ti +4 COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE CGEMM performs one of the matrix-matrix operations where op( X ) is one of .br op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ), alpha and beta are scalars, and A, B and C are matrices, with op( A ) an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. .SH PARAMETERS TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n', op( A ) = A. TRANSA = 'T' or 't', op( A ) = A'. TRANSA = 'C' or 'c', op( A ) = conjg( A' ). Unchanged on exit. TRANSB - CHARACTER*1. On entry, TRANSB specifies the form of op( B ) to be used in the matrix multiplication as follows: TRANSB = 'N' or 'n', op( B ) = B. TRANSB = 'T' or 't', op( B ) = B'. TRANSB = 'C' or 'c', op( B ) = conjg( B' ). Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix op( A ) and of the matrix C. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix op( B ) and the number of columns of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry, K specifies the number of columns of the matrix op( A ) and the number of rows of the matrix op( B ). K must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is k when TRANSA = 'N' or 'n', and is m otherwise. Before entry with TRANSA = 'N' or 'n', the leading m by k part of the array A must contain the matrix A, otherwise the leading k by m part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANSA = 'N' or 'n' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is n when TRANSB = 'N' or 'n', and is k otherwise. Before entry with TRANSB = 'N' or 'n', the leading k by n part of the array B must contain the matrix B, otherwise the leading n by k part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANSB = 'N' or 'n' then LDB must be at least max( 1, k ), otherwise LDB must be at least max( 1, n ). Unchanged on exit. .TP 7 BETA - COMPLEX . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. .TP 7 C - COMPLEX array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n matrix ( alpha*op( A )*op( B ) + beta*C ). .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/dsbmv.l 0000755 0001750 0001750 00000007253 10735444622 017131 0 ustar sylvestre sylvestre .TH DSBMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DSBMV - perform the matrix-vector operation y := alpha*A*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE DSBMV ( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 DOUBLE PRECISION ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, K, LDA, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) .SH PURPOSE DSBMV performs the matrix-vector operation where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric band matrix, with k super-diagonals. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the band matrix A is being supplied as follows: UPLO = 'U' or 'u' The upper triangular part of A is being supplied. UPLO = 'L' or 'l' The lower triangular part of A is being supplied. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry, K specifies the number of super-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the symmetric matrix, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer the upper triangular part of a symmetric band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the symmetric matrix, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer the lower triangular part of a symmetric band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 Y - DOUBLE PRECISION array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/ssymv.l 0000755 0001750 0001750 00000005354 10735444622 017177 0 ustar sylvestre sylvestre .TH SSYMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME SSYMV - perform the matrix-vector operation y := alpha*A*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE SSYMV ( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 REAL ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 REAL A( LDA, * ), X( * ), Y( * ) .SH PURPOSE SSYMV performs the matrix-vector operation where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - REAL . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/sspr2.l 0000755 0001750 0001750 00000005235 10735444622 017065 0 ustar sylvestre sylvestre .TH SSPR2 l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME SSPR2 - perform the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A, .SH SYNOPSIS .TP 17 SUBROUTINE SSPR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, AP ) .TP 17 .ti +4 REAL ALPHA .TP 17 .ti +4 INTEGER INCX, INCY, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 REAL AP( * ), X( * ), Y( * ) .SH PURPOSE SSPR2 performs the symmetric rank 2 operation where alpha is a scalar, x and y are n element vectors and A is an n by n symmetric matrix, supplied in packed form. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 Y - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. .TP 7 AP - REAL array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/cgemv.l 0000755 0001750 0001750 00000005321 10735444622 017111 0 ustar sylvestre sylvestre .TH CGEMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CGEMV - perform one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or y := alpha*conjg( A' )*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE CGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 COMPLEX ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, M, N .TP 17 .ti +4 CHARACTER*1 TRANS .TP 17 .ti +4 COMPLEX A( LDA, * ), X( * ), Y( * ) .SH PURPOSE CGEMV performs one of the matrix-vector operations where alpha and beta are scalars, x and y are vectors and A is an m by n matrix. .br .SH PARAMETERS .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A'*x + beta*y. TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. .TP 7 X - COMPLEX array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - COMPLEX . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - COMPLEX array of DIMENSION at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry with BETA non-zero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/dger.l 0000755 0001750 0001750 00000004030 10735444622 016725 0 ustar sylvestre sylvestre .TH DGER l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DGER - perform the rank 1 operation A := alpha*x*y' + A, .SH SYNOPSIS .TP 16 SUBROUTINE DGER ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA ) .TP 16 .ti +4 DOUBLE PRECISION ALPHA .TP 16 .ti +4 INTEGER INCX, INCY, LDA, M, N .TP 16 .ti +4 DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) .SH PURPOSE DGER performs the rank 1 operation where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix. .br .SH PARAMETERS .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of dimension at least ( 1 + ( m - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the m element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 Y - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. On exit, A is overwritten by the updated matrix. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/csyr2k.l 0000755 0001750 0001750 00000010377 10735444622 017234 0 ustar sylvestre sylvestre .TH CSYR2K l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CSYR2K - perform one of the symmetric rank 2k operations C := alpha*A*B' + alpha*B*A' + beta*C, .SH SYNOPSIS .TP 19 SUBROUTINE CSYR2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 19 .ti +4 CHARACTER*1 UPLO, TRANS .TP 19 .ti +4 INTEGER N, K, LDA, LDB, LDC .TP 19 .ti +4 COMPLEX ALPHA, BETA .TP 19 .ti +4 COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE CSYR2K performs one of the symmetric rank 2k operations or .br C := alpha*A'*B + alpha*B'*A + beta*C, .br where alpha and beta are scalars, C is an n by n symmetric matrix and A and B are n by k matrices in the first case and k by n matrices in the second case. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + beta*C. TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + beta*C. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrices A and B, and on entry with TRANS = 'T' or 't', K specifies the number of rows of the matrices A and B. K must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array B must contain the matrix B, otherwise the leading k by n part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDB must be at least max( 1, n ), otherwise LDB must be at least max( 1, k ). Unchanged on exit. .TP 7 BETA - COMPLEX . On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 C - COMPLEX array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/zsyr2k.l 0000755 0001750 0001750 00000010405 10735444622 017253 0 ustar sylvestre sylvestre .TH ZSYR2K l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZSYR2K - perform one of the symmetric rank 2k operations C := alpha*A*B' + alpha*B*A' + beta*C, .SH SYNOPSIS .TP 19 SUBROUTINE ZSYR2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 19 .ti +4 CHARACTER*1 UPLO, TRANS .TP 19 .ti +4 INTEGER N, K, LDA, LDB, LDC .TP 19 .ti +4 COMPLEX*16 ALPHA, BETA .TP 19 .ti +4 COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE ZSYR2K performs one of the symmetric rank 2k operations or .br C := alpha*A'*B + alpha*B'*A + beta*C, .br where alpha and beta are scalars, C is an n by n symmetric matrix and A and B are n by k matrices in the first case and k by n matrices in the second case. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + beta*C. TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + beta*C. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrices A and B, and on entry with TRANS = 'T' or 't', K specifies the number of rows of the matrices A and B. K must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array B must contain the matrix B, otherwise the leading k by n part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDB must be at least max( 1, n ), otherwise LDB must be at least max( 1, k ). Unchanged on exit. .TP 7 BETA - COMPLEX*16 . On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 C - COMPLEX*16 array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/zgeru.l 0000755 0001750 0001750 00000004017 10735444622 017145 0 ustar sylvestre sylvestre .TH ZGERU l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZGERU - perform the rank 1 operation A := alpha*x*y' + A, .SH SYNOPSIS .TP 17 SUBROUTINE ZGERU ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA ) .TP 17 .ti +4 COMPLEX*16 ALPHA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, M, N .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), X( * ), Y( * ) .SH PURPOSE ZGERU performs the rank 1 operation where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix. .br .SH PARAMETERS .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - COMPLEX*16 array of dimension at least ( 1 + ( m - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the m element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 Y - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. On exit, A is overwritten by the updated matrix. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/ssyr2k.l 0000755 0001750 0001750 00000010504 10735444622 017244 0 ustar sylvestre sylvestre .TH SSYR2K l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME SSYR2K - perform one of the symmetric rank 2k operations C := alpha*A*B' + alpha*B*A' + beta*C, .SH SYNOPSIS .TP 19 SUBROUTINE SSYR2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 19 .ti +4 CHARACTER*1 UPLO, TRANS .TP 19 .ti +4 INTEGER N, K, LDA, LDB, LDC .TP 19 .ti +4 REAL ALPHA, BETA .TP 19 .ti +4 REAL A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE SSYR2K performs one of the symmetric rank 2k operations or .br C := alpha*A'*B + alpha*B'*A + beta*C, .br where alpha and beta are scalars, C is an n by n symmetric matrix and A and B are n by k matrices in the first case and k by n matrices in the second case. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + beta*C. TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + beta*C. TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A + beta*C. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrices A and B, and on entry with TRANS = 'T' or 't' or 'C' or 'c', K specifies the number of rows of the matrices A and B. K must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 B - REAL array of DIMENSION ( LDB, kb ), where kb is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array B must contain the matrix B, otherwise the leading k by n part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDB must be at least max( 1, n ), otherwise LDB must be at least max( 1, k ). Unchanged on exit. .TP 7 BETA - REAL . On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 C - REAL array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/dtrsv.l 0000755 0001750 0001750 00000005373 10735444622 017161 0 ustar sylvestre sylvestre .TH DTRSV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DTRSV - solve one of the systems of equations A*x = b, or A'*x = b, .SH SYNOPSIS .TP 17 SUBROUTINE DTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 DOUBLE PRECISION A( LDA, * ), X( * ) .SH PURPOSE DTRSV solves one of the systems of equations where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix. .br No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' A'*x = b. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/zher.l 0000755 0001750 0001750 00000005101 10735444622 016754 0 ustar sylvestre sylvestre .TH ZHER l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZHER - perform the hermitian rank 1 operation A := alpha*x*conjg( x' ) + A, .SH SYNOPSIS .TP 16 SUBROUTINE ZHER ( UPLO, N, ALPHA, X, INCX, A, LDA ) .TP 16 .ti +4 DOUBLE PRECISION ALPHA .TP 16 .ti +4 INTEGER INCX, LDA, N .TP 16 .ti +4 CHARACTER*1 UPLO .TP 16 .ti +4 COMPLEX*16 A( LDA, * ), X( * ) .SH PURPOSE ZHER performs the hermitian rank 1 operation where alpha is a real scalar, x is an n element vector and A is an n by n hermitian matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/ztrsv.l 0000755 0001750 0001750 00000005424 10735444622 017204 0 ustar sylvestre sylvestre .TH ZTRSV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZTRSV - solve one of the systems of equations A*x = b, or A'*x = b, or conjg( A' )*x = b, .SH SYNOPSIS .TP 17 SUBROUTINE ZTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), X( * ) .SH PURPOSE ZTRSV solves one of the systems of equations where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix. .br No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' conjg( A' )*x = b. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 X - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/sgbmv.l 0000755 0001750 0001750 00000007137 10735444622 017135 0 ustar sylvestre sylvestre .TH SGBMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME SGBMV - perform one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE SGBMV ( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 REAL ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, KL, KU, LDA, M, N .TP 17 .ti +4 CHARACTER*1 TRANS .TP 17 .ti +4 REAL A( LDA, * ), X( * ), Y( * ) .SH PURPOSE SGBMV performs one of the matrix-vector operations where alpha and beta are scalars, x and y are vectors and A is an m by n band matrix, with kl sub-diagonals and ku super-diagonals. .SH PARAMETERS .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A'*x + beta*y. TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 KL - INTEGER. On entry, KL specifies the number of sub-diagonals of the matrix A. KL must satisfy 0 .le. KL. Unchanged on exit. .TP 7 KU - INTEGER. On entry, KU specifies the number of super-diagonals of the matrix A. KU must satisfy 0 .le. KU. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, n ). Before entry, the leading ( kl + ku + 1 ) by n part of the array A must contain the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( ku + 1 ) of the array, the first super-diagonal starting at position 2 in row ku, the first sub-diagonal starting at position 1 in row ( ku + 2 ), and so on. Elements in the array A that do not correspond to elements in the band matrix (such as the top left ku by ku triangle) are not referenced. The following program segment will transfer a band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N K = KU + 1 - J DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) A( K + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( kl + ku + 1 ). Unchanged on exit. .TP 7 X - REAL array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - REAL . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - REAL array of DIMENSION at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/zhpmv.l 0000755 0001750 0001750 00000005453 10735444622 017162 0 ustar sylvestre sylvestre .TH ZHPMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZHPMV - perform the matrix-vector operation y := alpha*A*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE ZHPMV ( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 COMPLEX*16 ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 COMPLEX*16 AP( * ), X( * ), Y( * ) .SH PURPOSE ZHPMV performs the matrix-vector operation where alpha and beta are scalars, x and y are n element vectors and A is an n by n hermitian matrix, supplied in packed form. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 AP - COMPLEX*16 array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero. Unchanged on exit. .TP 7 X - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - COMPLEX*16 . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/zsyrk.l 0000755 0001750 0001750 00000007116 10735444622 017176 0 ustar sylvestre sylvestre .TH ZSYRK l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZSYRK - perform one of the symmetric rank k operations C := alpha*A*A' + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE ZSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 UPLO, TRANS .TP 17 .ti +4 INTEGER N, K, LDA, LDC .TP 17 .ti +4 COMPLEX*16 ALPHA, BETA .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), C( LDC, * ) .SH PURPOSE ZSYRK performs one of the symmetric rank k operations or .br C := alpha*A'*A + beta*C, .br where alpha and beta are scalars, C is an n by n symmetric matrix and A is an n by k matrix in the first case and a k by n matrix in the second case. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. TRANS = 'T' or 't' C := alpha*A'*A + beta*C. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrix A, and on entry with TRANS = 'T' or 't', K specifies the number of rows of the matrix A. K must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 BETA - COMPLEX*16 . On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 C - COMPLEX*16 array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/dgbmv.l 0000755 0001750 0001750 00000007167 10735444622 017121 0 ustar sylvestre sylvestre .TH DGBMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DGBMV - perform one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE DGBMV ( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 DOUBLE PRECISION ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, KL, KU, LDA, M, N .TP 17 .ti +4 CHARACTER*1 TRANS .TP 17 .ti +4 DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) .SH PURPOSE DGBMV performs one of the matrix-vector operations where alpha and beta are scalars, x and y are vectors and A is an m by n band matrix, with kl sub-diagonals and ku super-diagonals. .SH PARAMETERS .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A'*x + beta*y. TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 KL - INTEGER. On entry, KL specifies the number of sub-diagonals of the matrix A. KL must satisfy 0 .le. KL. Unchanged on exit. .TP 7 KU - INTEGER. On entry, KU specifies the number of super-diagonals of the matrix A. KU must satisfy 0 .le. KU. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry, the leading ( kl + ku + 1 ) by n part of the array A must contain the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( ku + 1 ) of the array, the first super-diagonal starting at position 2 in row ku, the first sub-diagonal starting at position 1 in row ( ku + 2 ), and so on. Elements in the array A that do not correspond to elements in the band matrix (such as the top left ku by ku triangle) are not referenced. The following program segment will transfer a band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N K = KU + 1 - J DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) A( K + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( kl + ku + 1 ). Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - DOUBLE PRECISION array of DIMENSION at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/ztrsm.l 0000755 0001750 0001750 00000007330 10735444622 017171 0 ustar sylvestre sylvestre .TH ZTRSM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZTRSM - solve one of the matrix equations op( A )*X = alpha*B, or X*op( A ) = alpha*B, .SH SYNOPSIS .TP 17 SUBROUTINE ZTRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB ) .TP 17 .ti +4 CHARACTER*1 SIDE, UPLO, TRANSA, DIAG .TP 17 .ti +4 INTEGER M, N, LDA, LDB .TP 17 .ti +4 COMPLEX*16 ALPHA .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), B( LDB, * ) .SH PURPOSE ZTRSM solves one of the matrix equations where alpha is a scalar, X and B are m by n matrices, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). The matrix X is overwritten on B. .br .SH PARAMETERS .TP 7 SIDE - CHARACTER*1. On entry, SIDE specifies whether op( A ) appears on the left or right of X as follows: SIDE = 'L' or 'l' op( A )*X = alpha*B. SIDE = 'R' or 'r' X*op( A ) = alpha*B. Unchanged on exit. .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A'. TRANSA = 'C' or 'c' op( A ) = conjg( A' ). Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of B. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of B. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 B - COMPLEX*16 array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the right-hand side matrix B, and on exit is overwritten by the solution matrix X. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/cher2.l 0000755 0001750 0001750 00000005647 10735444622 017026 0 ustar sylvestre sylvestre .TH CHER2 l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CHER2 - perform the hermitian rank 2 operation A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, .SH SYNOPSIS .TP 17 SUBROUTINE CHER2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA ) .TP 17 .ti +4 COMPLEX ALPHA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 COMPLEX A( LDA, * ), X( * ), Y( * ) .SH PURPOSE CHER2 performs the hermitian rank 2 operation where alpha is a scalar, x and y are n element vectors and A is an n by n hermitian matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 Y - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/ssyrk.l 0000755 0001750 0001750 00000007202 10735444622 017163 0 ustar sylvestre sylvestre .TH SSYRK l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME SSYRK - perform one of the symmetric rank k operations C := alpha*A*A' + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE SSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 UPLO, TRANS .TP 17 .ti +4 INTEGER N, K, LDA, LDC .TP 17 .ti +4 REAL ALPHA, BETA .TP 17 .ti +4 REAL A( LDA, * ), C( LDC, * ) .SH PURPOSE SSYRK performs one of the symmetric rank k operations or .br C := alpha*A'*A + beta*C, .br where alpha and beta are scalars, C is an n by n symmetric matrix and A is an n by k matrix in the first case and a k by n matrix in the second case. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. TRANS = 'T' or 't' C := alpha*A'*A + beta*C. TRANS = 'C' or 'c' C := alpha*A'*A + beta*C. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrix A, and on entry with TRANS = 'T' or 't' or 'C' or 'c', K specifies the number of rows of the matrix A. K must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 BETA - REAL . On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 C - REAL array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/ctrmv.l 0000755 0001750 0001750 00000005220 10735444622 017141 0 ustar sylvestre sylvestre .TH CTRMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CTRMV - perform one of the matrix-vector operations x := A*x, or x := A'*x, or x := conjg( A' )*x, .SH SYNOPSIS .TP 17 SUBROUTINE CTRMV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 COMPLEX A( LDA, * ), X( * ) .SH PURPOSE CTRMV performs one of the matrix-vector operations where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := conjg( A' )*x. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 X - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/zhbmv.l 0000755 0001750 0001750 00000007402 10735444622 017140 0 ustar sylvestre sylvestre .TH ZHBMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZHBMV - perform the matrix-vector operation y := alpha*A*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE ZHBMV ( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 COMPLEX*16 ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, K, LDA, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), X( * ), Y( * ) .SH PURPOSE ZHBMV performs the matrix-vector operation where alpha and beta are scalars, x and y are n element vectors and A is an n by n hermitian band matrix, with k super-diagonals. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the band matrix A is being supplied as follows: UPLO = 'U' or 'u' The upper triangular part of A is being supplied. UPLO = 'L' or 'l' The lower triangular part of A is being supplied. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry, K specifies the number of super-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the hermitian matrix, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer the upper triangular part of a hermitian band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the hermitian matrix, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer the lower triangular part of a hermitian band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. .TP 7 X - COMPLEX*16 array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - COMPLEX*16 . On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 Y - COMPLEX*16 array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/dtpmv.l 0000755 0001750 0001750 00000005102 10735444622 017137 0 ustar sylvestre sylvestre .TH DTPMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DTPMV - perform one of the matrix-vector operations x := A*x, or x := A'*x, .SH SYNOPSIS .TP 17 SUBROUTINE DTPMV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) .TP 17 .ti +4 INTEGER INCX, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 DOUBLE PRECISION AP( * ), X( * ) .SH PURPOSE DTPMV performs one of the matrix-vector operations where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := A'*x. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 AP - DOUBLE PRECISION array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/dcabs1.l 0000755 0001750 0001750 00000000443 10735444622 017145 0 ustar sylvestre sylvestre .SH NAME .SH SYNOPSIS .TP 17 double precision function dcabs1(z) .TP 17 .ti +4 double complex z,zz .TP 17 .ti +4 double precision t(2) .TP 17 .ti +4 equivalence (zz,t(1)) .TP 17 .ti +4 zz = z .TP 17 .ti +4 dcabs1 = dabs(t(1)) + dabs(t(2)) .TP 17 .ti +4 return .TP 17 .ti +4 end .SH PURPOSE blas-1.2.orig/man/manl/dtrsm.l 0000755 0001750 0001750 00000007302 10735444622 017142 0 ustar sylvestre sylvestre .TH DTRSM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DTRSM - solve one of the matrix equations op( A )*X = alpha*B, or X*op( A ) = alpha*B, .SH SYNOPSIS .TP 17 SUBROUTINE DTRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB ) .TP 17 .ti +4 CHARACTER*1 SIDE, UPLO, TRANSA, DIAG .TP 17 .ti +4 INTEGER M, N, LDA, LDB .TP 17 .ti +4 DOUBLE PRECISION ALPHA .TP 17 .ti +4 DOUBLE PRECISION A( LDA, * ), B( LDB, * ) .SH PURPOSE DTRSM solves one of the matrix equations where alpha is a scalar, X and B are m by n matrices, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A'. .br The matrix X is overwritten on B. .br .SH PARAMETERS .TP 7 SIDE - CHARACTER*1. On entry, SIDE specifies whether op( A ) appears on the left or right of X as follows: SIDE = 'L' or 'l' op( A )*X = alpha*B. SIDE = 'R' or 'r' X*op( A ) = alpha*B. Unchanged on exit. .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A'. TRANSA = 'C' or 'c' op( A ) = A'. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of B. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of B. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the right-hand side matrix B, and on exit is overwritten by the solution matrix X. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/dgemv.l 0000755 0001750 0001750 00000005262 10735444622 017116 0 ustar sylvestre sylvestre .TH DGEMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DGEMV - perform one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE DGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 DOUBLE PRECISION ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, M, N .TP 17 .ti +4 CHARACTER*1 TRANS .TP 17 .ti +4 DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) .SH PURPOSE DGEMV performs one of the matrix-vector operations where alpha and beta are scalars, x and y are vectors and A is an m by n matrix. .br .SH PARAMETERS .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A'*x + beta*y. TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - DOUBLE PRECISION array of DIMENSION at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry with BETA non-zero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/chpmv.l 0000755 0001750 0001750 00000005445 10735444622 017134 0 ustar sylvestre sylvestre .TH CHPMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CHPMV - perform the matrix-vector operation y := alpha*A*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE CHPMV ( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 COMPLEX ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 COMPLEX AP( * ), X( * ), Y( * ) .SH PURPOSE CHPMV performs the matrix-vector operation where alpha and beta are scalars, x and y are n element vectors and A is an n by n hermitian matrix, supplied in packed form. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 AP - COMPLEX array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero. Unchanged on exit. .TP 7 X - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - COMPLEX . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/lsame.l 0000755 0001750 0001750 00000002222 10735444622 017106 0 ustar sylvestre sylvestre .TH LSAME l "16 October 1992" "LAPACK version 1.0" "LAPACK auxiliary routine (version 1.0)" .TH LSAME l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME LSAME - return .TRUE .SH SYNOPSIS .TP 17 LOGICAL FUNCTION LSAME( CA, CB ) .TP 17 .ti +4 CHARACTER CA, CB .SH PURPOSE LSAME returns .TRUE. if CA is the same letter as CB regardless of case. .br .SH ARGUMENTS .TP 8 CA (input) CHARACTER*1 CB (input) CHARACTER*1 CA and CB specify the single characters to be compared. .. Intrinsic Functions .. .. .. Local Scalars .. .. .. Executable Statements .. Test if the characters are equal Now test for equivalence if both characters are alphabetic. Use 'Z' rather than 'A' so that ASCII can be detected on Prime machines, on which ICHAR returns a value with bit 8 set. ICHAR('A') on Prime machines returns 193 which is the same as ICHAR('A') on an EBCDIC machine. ASCII is assumed - ZCODE is the ASCII code of either lower or upper case 'Z'. EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or upper case 'Z'. ASCII is assumed, on Prime machines - ZCODE is the ASCII code plus 128 of either lower or upper case 'Z'. RETURN End of LSAME blas-1.2.orig/man/manl/ssyr.l 0000755 0001750 0001750 00000004637 10735444622 017021 0 ustar sylvestre sylvestre .TH SSYR l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME SSYR - perform the symmetric rank 1 operation A := alpha*x*x' + A, .SH SYNOPSIS .TP 16 SUBROUTINE SSYR ( UPLO, N, ALPHA, X, INCX, A, LDA ) .TP 16 .ti +4 REAL ALPHA .TP 16 .ti +4 INTEGER INCX, LDA, N .TP 16 .ti +4 CHARACTER*1 UPLO .TP 16 .ti +4 REAL A( LDA, * ), X( * ) .SH PURPOSE SSYR performs the symmetric rank 1 operation where alpha is a real scalar, x is an n element vector and A is an n by n symmetric matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/chpr.l 0000755 0001750 0001750 00000004721 10735444622 016747 0 ustar sylvestre sylvestre .TH CHPR l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CHPR - perform the hermitian rank 1 operation A := alpha*x*conjg( x' ) + A, .SH SYNOPSIS .TP 16 SUBROUTINE CHPR ( UPLO, N, ALPHA, X, INCX, AP ) .TP 16 .ti +4 REAL ALPHA .TP 16 .ti +4 INTEGER INCX, N .TP 16 .ti +4 CHARACTER*1 UPLO .TP 16 .ti +4 COMPLEX AP( * ), X( * ) .SH PURPOSE CHPR performs the hermitian rank 1 operation where alpha is a real scalar, x is an n element vector and A is an n by n hermitian matrix, supplied in packed form. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 AP - COMPLEX array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/ctbmv.l 0000755 0001750 0001750 00000007501 10735444622 017125 0 ustar sylvestre sylvestre .TH CTBMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CTBMV - perform one of the matrix-vector operations x := A*x, or x := A'*x, or x := conjg( A' )*x, .SH SYNOPSIS .TP 17 SUBROUTINE CTBMV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, K, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 COMPLEX A( LDA, * ), X( * ) .SH PURPOSE CTBMV performs one of the matrix-vector operations where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := conjg( A' )*x. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with UPLO = 'U' or 'u', K specifies the number of super-diagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. .TP 7 X - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/chemm.l 0000755 0001750 0001750 00000010703 10735444622 017101 0 ustar sylvestre sylvestre .TH CHEMM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CHEMM - perform one of the matrix-matrix operations C := alpha*A*B + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE CHEMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 SIDE, UPLO .TP 17 .ti +4 INTEGER M, N, LDA, LDB, LDC .TP 17 .ti +4 COMPLEX ALPHA, BETA .TP 17 .ti +4 COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE CHEMM performs one of the matrix-matrix operations or .br C := alpha*B*A + beta*C, .br where alpha and beta are scalars, A is an hermitian matrix and B and C are m by n matrices. .br .SH PARAMETERS .TP 7 SIDE - CHARACTER*1. On entry, SIDE specifies whether the hermitian matrix A appears on the left or right in the operation as follows: SIDE = 'L' or 'l' C := alpha*A*B + beta*C, SIDE = 'R' or 'r' C := alpha*B*A + beta*C, Unchanged on exit. .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the hermitian matrix A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of the hermitian matrix is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of the hermitian matrix is to be referenced. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix C. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is m when SIDE = 'L' or 'l' and is n otherwise. Before entry with SIDE = 'L' or 'l', the m by m part of the array A must contain the hermitian matrix, such that when UPLO = 'U' or 'u', the leading m by m upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading m by m lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. Before entry with SIDE = 'R' or 'r', the n by n part of the array A must contain the hermitian matrix, such that when UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 B - COMPLEX array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. .TP 7 BETA - COMPLEX . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. .TP 7 C - COMPLEX array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n updated matrix. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/stbsv.l 0000755 0001750 0001750 00000007644 10735444622 017163 0 ustar sylvestre sylvestre .TH STBSV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME STBSV - solve one of the systems of equations A*x = b, or A'*x = b, .SH SYNOPSIS .TP 17 SUBROUTINE STBSV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, K, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 REAL A( LDA, * ), X( * ) .SH PURPOSE STBSV solves one of the systems of equations where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. .br No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' A'*x = b. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with UPLO = 'U' or 'u', K specifies the number of super-diagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. .TP 7 X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/chemv.l 0000755 0001750 0001750 00000005525 10735444622 017120 0 ustar sylvestre sylvestre .TH CHEMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CHEMV - perform the matrix-vector operation y := alpha*A*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE CHEMV ( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 COMPLEX ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 COMPLEX A( LDA, * ), X( * ), Y( * ) .SH PURPOSE CHEMV performs the matrix-vector operation where alpha and beta are scalars, x and y are n element vectors and A is an n by n hermitian matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 X - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - COMPLEX . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/csymm.l 0000755 0001750 0001750 00000010535 10735444622 017143 0 ustar sylvestre sylvestre .TH CSYMM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CSYMM - perform one of the matrix-matrix operations C := alpha*A*B + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE CSYMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 SIDE, UPLO .TP 17 .ti +4 INTEGER M, N, LDA, LDB, LDC .TP 17 .ti +4 COMPLEX ALPHA, BETA .TP 17 .ti +4 COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE CSYMM performs one of the matrix-matrix operations or .br C := alpha*B*A + beta*C, .br where alpha and beta are scalars, A is a symmetric matrix and B and C are m by n matrices. .br .SH PARAMETERS .TP 7 SIDE - CHARACTER*1. On entry, SIDE specifies whether the symmetric matrix A appears on the left or right in the operation as follows: SIDE = 'L' or 'l' C := alpha*A*B + beta*C, SIDE = 'R' or 'r' C := alpha*B*A + beta*C, Unchanged on exit. .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the symmetric matrix A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of the symmetric matrix is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of the symmetric matrix is to be referenced. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix C. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is m when SIDE = 'L' or 'l' and is n otherwise. Before entry with SIDE = 'L' or 'l', the m by m part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading m by m upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading m by m lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Before entry with SIDE = 'R' or 'r', the n by n part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 B - COMPLEX array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. .TP 7 BETA - COMPLEX . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. .TP 7 C - COMPLEX array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n updated matrix. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/zherk.l 0000755 0001750 0001750 00000007410 10735444622 017134 0 ustar sylvestre sylvestre .TH ZHERK l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZHERK - perform one of the hermitian rank k operations C := alpha*A*conjg( A' ) + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE ZHERK ( UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 UPLO, TRANS .TP 17 .ti +4 INTEGER N, K, LDA, LDC .TP 17 .ti +4 DOUBLE PRECISION ALPHA, BETA .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), C( LDC, * ) .SH PURPOSE ZHERK performs one of the hermitian rank k operations or .br C := alpha*conjg( A' )*A + beta*C, .br where alpha and beta are real scalars, C is an n by n hermitian matrix and A is an n by k matrix in the first case and a k by n matrix in the second case. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C. TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrix A, and on entry with TRANS = 'C' or 'c', K specifies the number of rows of the matrix A. K must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 C - COMPLEX*16 array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/xerbla.l 0000755 0001750 0001750 00000001377 10735444622 017274 0 ustar sylvestre sylvestre .TH XERBLA l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME XERBLA - i an error handler for the LAPACK routines .SH SYNOPSIS .TP 19 SUBROUTINE XERBLA( SRNAME, INFO ) .TP 19 .ti +4 CHARACTER*6 SRNAME .TP 19 .ti +4 INTEGER INFO .SH PURPOSE XERBLA is an error handler for the LAPACK routines. It is called by an LAPACK routine if an input parameter has an invalid value. A message is printed and execution stops. Installers may consider modifying the STOP statement in order to call system-specific exception-handling facilities. .br .SH ARGUMENTS .TP 8 SRNAME (input) CHARACTER*6 The name of the routine which called XERBLA. .TP 8 INFO (input) INTEGER The position of the invalid parameter in the parameter list of the calling routine. End of XERBLA blas-1.2.orig/man/manl/zgemv.l 0000755 0001750 0001750 00000005327 10735444622 017146 0 ustar sylvestre sylvestre .TH ZGEMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZGEMV - perform one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or y := alpha*conjg( A' )*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE ZGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 COMPLEX*16 ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, M, N .TP 17 .ti +4 CHARACTER*1 TRANS .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), X( * ), Y( * ) .SH PURPOSE ZGEMV performs one of the matrix-vector operations where alpha and beta are scalars, x and y are vectors and A is an m by n matrix. .br .SH PARAMETERS .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A'*x + beta*y. TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. .TP 7 X - COMPLEX*16 array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - COMPLEX*16 . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - COMPLEX*16 array of DIMENSION at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry with BETA non-zero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/ztpsv.l 0000755 0001750 0001750 00000005335 10735444622 017203 0 ustar sylvestre sylvestre .TH ZTPSV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZTPSV - solve one of the systems of equations A*x = b, or A'*x = b, or conjg( A' )*x = b, .SH SYNOPSIS .TP 17 SUBROUTINE ZTPSV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) .TP 17 .ti +4 INTEGER INCX, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 COMPLEX*16 AP( * ), X( * ) .SH PURPOSE ZTPSV solves one of the systems of equations where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form. No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' conjg( A' )*x = b. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 AP - COMPLEX*16 array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 X - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/sger.l 0000755 0001750 0001750 00000004000 10735444622 016741 0 ustar sylvestre sylvestre .TH SGER l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME SGER - perform the rank 1 operation A := alpha*x*y' + A, .SH SYNOPSIS .TP 16 SUBROUTINE SGER ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA ) .TP 16 .ti +4 REAL ALPHA .TP 16 .ti +4 INTEGER INCX, INCY, LDA, M, N .TP 16 .ti +4 REAL A( LDA, * ), X( * ), Y( * ) .SH PURPOSE SGER performs the rank 1 operation where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix. .br .SH PARAMETERS .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - REAL array of dimension at least ( 1 + ( m - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the m element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 Y - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. On exit, A is overwritten by the updated matrix. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/cgerc.l 0000755 0001750 0001750 00000004022 10735444622 017070 0 ustar sylvestre sylvestre .TH CGERC l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CGERC - perform the rank 1 operation A := alpha*x*conjg( y' ) + A, .SH SYNOPSIS .TP 17 SUBROUTINE CGERC ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA ) .TP 17 .ti +4 COMPLEX ALPHA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, M, N .TP 17 .ti +4 COMPLEX A( LDA, * ), X( * ), Y( * ) .SH PURPOSE CGERC performs the rank 1 operation where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix. .br .SH PARAMETERS .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - COMPLEX array of dimension at least ( 1 + ( m - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the m element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 Y - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. On exit, A is overwritten by the updated matrix. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/ctrsm.l 0000755 0001750 0001750 00000007322 10735444622 017143 0 ustar sylvestre sylvestre .TH CTRSM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CTRSM - solve one of the matrix equations op( A )*X = alpha*B, or X*op( A ) = alpha*B, .SH SYNOPSIS .TP 17 SUBROUTINE CTRSM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB ) .TP 17 .ti +4 CHARACTER*1 SIDE, UPLO, TRANSA, DIAG .TP 17 .ti +4 INTEGER M, N, LDA, LDB .TP 17 .ti +4 COMPLEX ALPHA .TP 17 .ti +4 COMPLEX A( LDA, * ), B( LDB, * ) .SH PURPOSE CTRSM solves one of the matrix equations where alpha is a scalar, X and B are m by n matrices, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). The matrix X is overwritten on B. .br .SH PARAMETERS .TP 7 SIDE - CHARACTER*1. On entry, SIDE specifies whether op( A ) appears on the left or right of X as follows: SIDE = 'L' or 'l' op( A )*X = alpha*B. SIDE = 'R' or 'r' X*op( A ) = alpha*B. Unchanged on exit. .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A'. TRANSA = 'C' or 'c' op( A ) = conjg( A' ). Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of B. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of B. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 B - COMPLEX array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the right-hand side matrix B, and on exit is overwritten by the solution matrix X. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/dsyr.l 0000755 0001750 0001750 00000004667 10735444622 017005 0 ustar sylvestre sylvestre .TH DSYR l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DSYR - perform the symmetric rank 1 operation A := alpha*x*x' + A, .SH SYNOPSIS .TP 16 SUBROUTINE DSYR ( UPLO, N, ALPHA, X, INCX, A, LDA ) .TP 16 .ti +4 DOUBLE PRECISION ALPHA .TP 16 .ti +4 INTEGER INCX, LDA, N .TP 16 .ti +4 CHARACTER*1 UPLO .TP 16 .ti +4 DOUBLE PRECISION A( LDA, * ), X( * ) .SH PURPOSE DSYR performs the symmetric rank 1 operation where alpha is a real scalar, x is an n element vector and A is an n by n symmetric matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/strmm.l 0000755 0001750 0001750 00000007214 10735444622 017155 0 ustar sylvestre sylvestre .TH STRMM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME STRMM - perform one of the matrix-matrix operations B := alpha*op( A )*B, or B := alpha*B*op( A ), .SH SYNOPSIS .TP 17 SUBROUTINE STRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB ) .TP 17 .ti +4 CHARACTER*1 SIDE, UPLO, TRANSA, DIAG .TP 17 .ti +4 INTEGER M, N, LDA, LDB .TP 17 .ti +4 REAL ALPHA .TP 17 .ti +4 REAL A( LDA, * ), B( LDB, * ) .SH PURPOSE STRMM performs one of the matrix-matrix operations where alpha is a scalar, B is an m by n matrix, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A'. .br .SH PARAMETERS .TP 7 SIDE - CHARACTER*1. On entry, SIDE specifies whether op( A ) multiplies B from the left or right as follows: SIDE = 'L' or 'l' B := alpha*op( A )*B. SIDE = 'R' or 'r' B := alpha*B*op( A ). Unchanged on exit. .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A'. TRANSA = 'C' or 'c' op( A ) = A'. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of B. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of B. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 B - REAL array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B, and on exit is overwritten by the transformed matrix. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/ssbmv.l 0000755 0001750 0001750 00000007223 10735444622 017145 0 ustar sylvestre sylvestre .TH SSBMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME SSBMV - perform the matrix-vector operation y := alpha*A*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE SSBMV ( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 REAL ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, K, LDA, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 REAL A( LDA, * ), X( * ), Y( * ) .SH PURPOSE SSBMV performs the matrix-vector operation where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric band matrix, with k super-diagonals. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the band matrix A is being supplied as follows: UPLO = 'U' or 'u' The upper triangular part of A is being supplied. UPLO = 'L' or 'l' The lower triangular part of A is being supplied. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry, K specifies the number of super-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the symmetric matrix, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer the upper triangular part of a symmetric band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the symmetric matrix, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer the lower triangular part of a symmetric band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. .TP 7 X - REAL array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - REAL . On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 Y - REAL array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/ssymm.l 0000755 0001750 0001750 00000010531 10735444622 017157 0 ustar sylvestre sylvestre .TH SSYMM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME SSYMM - perform one of the matrix-matrix operations C := alpha*A*B + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE SSYMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 SIDE, UPLO .TP 17 .ti +4 INTEGER M, N, LDA, LDB, LDC .TP 17 .ti +4 REAL ALPHA, BETA .TP 17 .ti +4 REAL A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE SSYMM performs one of the matrix-matrix operations or .br C := alpha*B*A + beta*C, .br where alpha and beta are scalars, A is a symmetric matrix and B and C are m by n matrices. .br .SH PARAMETERS .TP 7 SIDE - CHARACTER*1. On entry, SIDE specifies whether the symmetric matrix A appears on the left or right in the operation as follows: SIDE = 'L' or 'l' C := alpha*A*B + beta*C, SIDE = 'R' or 'r' C := alpha*B*A + beta*C, Unchanged on exit. .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the symmetric matrix A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of the symmetric matrix is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of the symmetric matrix is to be referenced. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix C. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, ka ), where ka is m when SIDE = 'L' or 'l' and is n otherwise. Before entry with SIDE = 'L' or 'l', the m by m part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading m by m upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading m by m lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Before entry with SIDE = 'R' or 'r', the n by n part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 B - REAL array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. .TP 7 BETA - REAL . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. .TP 7 C - REAL array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n updated matrix. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/dtpsv.l 0000755 0001750 0001750 00000005304 10735444622 017151 0 ustar sylvestre sylvestre .TH DTPSV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DTPSV - solve one of the systems of equations A*x = b, or A'*x = b, .SH SYNOPSIS .TP 17 SUBROUTINE DTPSV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) .TP 17 .ti +4 INTEGER INCX, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 DOUBLE PRECISION AP( * ), X( * ) .SH PURPOSE DTPSV solves one of the systems of equations where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form. No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' A'*x = b. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 AP - DOUBLE PRECISION array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/dspmv.l 0000755 0001750 0001750 00000005324 10735444622 017144 0 ustar sylvestre sylvestre .TH DSPMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DSPMV - perform the matrix-vector operation y := alpha*A*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE DSPMV ( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 DOUBLE PRECISION ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 DOUBLE PRECISION AP( * ), X( * ), Y( * ) .SH PURPOSE DSPMV performs the matrix-vector operation where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix, supplied in packed form. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 AP - DOUBLE PRECISION array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/cher2k.l 0000755 0001750 0001750 00000011041 10735444622 017162 0 ustar sylvestre sylvestre .TH CHER2K l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CHER2K - perform one of the hermitian rank 2k operations C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C, .SH SYNOPSIS .TP 19 SUBROUTINE CHER2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 19 .ti +4 CHARACTER*1 UPLO, TRANS .TP 19 .ti +4 INTEGER N, K, LDA, LDB, LDC .TP 19 .ti +4 REAL BETA .TP 19 .ti +4 COMPLEX ALPHA .TP 19 .ti +4 COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE CHER2K performs one of the hermitian rank 2k operations or .br C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C, where alpha and beta are scalars with beta real, C is an n by n hermitian matrix and A and B are n by k matrices in the first case and k by n matrices in the second case. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C. TRANS = 'C' or 'c' C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrices A and B, and on entry with TRANS = 'C' or 'c', K specifies the number of rows of the matrices A and B. K must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array B must contain the matrix B, otherwise the leading k by n part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDB must be at least max( 1, n ), otherwise LDB must be at least max( 1, k ). Unchanged on exit. .TP 7 BETA - REAL . On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 C - COMPLEX array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/dtbmv.l 0000755 0001750 0001750 00000007452 10735444622 017133 0 ustar sylvestre sylvestre .TH DTBMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DTBMV - perform one of the matrix-vector operations x := A*x, or x := A'*x, .SH SYNOPSIS .TP 17 SUBROUTINE DTBMV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, K, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 DOUBLE PRECISION A( LDA, * ), X( * ) .SH PURPOSE DTBMV performs one of the matrix-vector operations where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := A'*x. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with UPLO = 'U' or 'u', K specifies the number of super-diagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/dtrmv.l 0000755 0001750 0001750 00000005171 10735444622 017147 0 ustar sylvestre sylvestre .TH DTRMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DTRMV - perform one of the matrix-vector operations x := A*x, or x := A'*x, .SH SYNOPSIS .TP 17 SUBROUTINE DTRMV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 DOUBLE PRECISION A( LDA, * ), X( * ) .SH PURPOSE DTRMV performs one of the matrix-vector operations where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := A'*x. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/dsymm.l 0000755 0001750 0001750 00000010561 10735444622 017143 0 ustar sylvestre sylvestre .TH DSYMM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DSYMM - perform one of the matrix-matrix operations C := alpha*A*B + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE DSYMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 SIDE, UPLO .TP 17 .ti +4 INTEGER M, N, LDA, LDB, LDC .TP 17 .ti +4 DOUBLE PRECISION ALPHA, BETA .TP 17 .ti +4 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE DSYMM performs one of the matrix-matrix operations or .br C := alpha*B*A + beta*C, .br where alpha and beta are scalars, A is a symmetric matrix and B and C are m by n matrices. .br .SH PARAMETERS .TP 7 SIDE - CHARACTER*1. On entry, SIDE specifies whether the symmetric matrix A appears on the left or right in the operation as follows: SIDE = 'L' or 'l' C := alpha*A*B + beta*C, SIDE = 'R' or 'r' C := alpha*B*A + beta*C, Unchanged on exit. .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the symmetric matrix A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of the symmetric matrix is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of the symmetric matrix is to be referenced. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix C. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is m when SIDE = 'L' or 'l' and is n otherwise. Before entry with SIDE = 'L' or 'l', the m by m part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading m by m upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading m by m lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Before entry with SIDE = 'R' or 'r', the n by n part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. .TP 7 BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. .TP 7 C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n updated matrix. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/ztrmv.l 0000755 0001750 0001750 00000005223 10735444622 017173 0 ustar sylvestre sylvestre .TH ZTRMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZTRMV - perform one of the matrix-vector operations x := A*x, or x := A'*x, or x := conjg( A' )*x, .SH SYNOPSIS .TP 17 SUBROUTINE ZTRMV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), X( * ) .SH PURPOSE ZTRMV performs one of the matrix-vector operations where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := conjg( A' )*x. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 X - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/zgbmv.l 0000755 0001750 0001750 00000007234 10735444622 017142 0 ustar sylvestre sylvestre .TH ZGBMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZGBMV - perform one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or y := alpha*conjg( A' )*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE ZGBMV ( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 COMPLEX*16 ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, KL, KU, LDA, M, N .TP 17 .ti +4 CHARACTER*1 TRANS .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), X( * ), Y( * ) .SH PURPOSE ZGBMV performs one of the matrix-vector operations where alpha and beta are scalars, x and y are vectors and A is an m by n band matrix, with kl sub-diagonals and ku super-diagonals. .SH PARAMETERS .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A'*x + beta*y. TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 KL - INTEGER. On entry, KL specifies the number of sub-diagonals of the matrix A. KL must satisfy 0 .le. KL. Unchanged on exit. .TP 7 KU - INTEGER. On entry, KU specifies the number of super-diagonals of the matrix A. KU must satisfy 0 .le. KU. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, n ). Before entry, the leading ( kl + ku + 1 ) by n part of the array A must contain the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( ku + 1 ) of the array, the first super-diagonal starting at position 2 in row ku, the first sub-diagonal starting at position 1 in row ( ku + 2 ), and so on. Elements in the array A that do not correspond to elements in the band matrix (such as the top left ku by ku triangle) are not referenced. The following program segment will transfer a band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N K = KU + 1 - J DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) A( K + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( kl + ku + 1 ). Unchanged on exit. .TP 7 X - COMPLEX*16 array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - COMPLEX*16 . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - COMPLEX*16 array of DIMENSION at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/ztrmm.l 0000755 0001750 0001750 00000007243 10735444622 017166 0 ustar sylvestre sylvestre .TH ZTRMM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZTRMM - perform one of the matrix-matrix operations B := alpha*op( A )*B, or B := alpha*B*op( A ) where alpha is a scalar, B is an m by n matrix, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ) .SH SYNOPSIS .TP 17 SUBROUTINE ZTRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB ) .TP 17 .ti +4 CHARACTER*1 SIDE, UPLO, TRANSA, DIAG .TP 17 .ti +4 INTEGER M, N, LDA, LDB .TP 17 .ti +4 COMPLEX*16 ALPHA .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), B( LDB, * ) .SH PURPOSE ZTRMM performs one of the matrix-matrix operations .SH PARAMETERS .TP 7 SIDE - CHARACTER*1. On entry, SIDE specifies whether op( A ) multiplies B from the left or right as follows: SIDE = 'L' or 'l' B := alpha*op( A )*B. SIDE = 'R' or 'r' B := alpha*B*op( A ). Unchanged on exit. .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A'. TRANSA = 'C' or 'c' op( A ) = conjg( A' ). Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of B. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of B. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 B - COMPLEX*16 array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B, and on exit is overwritten by the transformed matrix. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/stbmv.l 0000755 0001750 0001750 00000007436 10735444622 017154 0 ustar sylvestre sylvestre .TH STBMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME STBMV - perform one of the matrix-vector operations x := A*x, or x := A'*x, .SH SYNOPSIS .TP 17 SUBROUTINE STBMV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, K, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 REAL A( LDA, * ), X( * ) .SH PURPOSE STBMV performs one of the matrix-vector operations where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := A'*x. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with UPLO = 'U' or 'u', K specifies the number of super-diagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. .TP 7 X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/dsyr2k.l 0000755 0001750 0001750 00000010534 10735444622 017230 0 ustar sylvestre sylvestre .TH DSYR2K l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DSYR2K - perform one of the symmetric rank 2k operations C := alpha*A*B' + alpha*B*A' + beta*C, .SH SYNOPSIS .TP 19 SUBROUTINE DSYR2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 19 .ti +4 CHARACTER*1 UPLO, TRANS .TP 19 .ti +4 INTEGER N, K, LDA, LDB, LDC .TP 19 .ti +4 DOUBLE PRECISION ALPHA, BETA .TP 19 .ti +4 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE DSYR2K performs one of the symmetric rank 2k operations or .br C := alpha*A'*B + alpha*B'*A + beta*C, .br where alpha and beta are scalars, C is an n by n symmetric matrix and A and B are n by k matrices in the first case and k by n matrices in the second case. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + beta*C. TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + beta*C. TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A + beta*C. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrices A and B, and on entry with TRANS = 'T' or 't' or 'C' or 'c', K specifies the number of rows of the matrices A and B. K must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array B must contain the matrix B, otherwise the leading k by n part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDB must be at least max( 1, n ), otherwise LDB must be at least max( 1, k ). Unchanged on exit. .TP 7 BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/ctrmm.l 0000755 0001750 0001750 00000007235 10735444622 017140 0 ustar sylvestre sylvestre .TH CTRMM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CTRMM - perform one of the matrix-matrix operations B := alpha*op( A )*B, or B := alpha*B*op( A ) where alpha is a scalar, B is an m by n matrix, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ) .SH SYNOPSIS .TP 17 SUBROUTINE CTRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB ) .TP 17 .ti +4 CHARACTER*1 SIDE, UPLO, TRANSA, DIAG .TP 17 .ti +4 INTEGER M, N, LDA, LDB .TP 17 .ti +4 COMPLEX ALPHA .TP 17 .ti +4 COMPLEX A( LDA, * ), B( LDB, * ) .SH PURPOSE CTRMM performs one of the matrix-matrix operations .SH PARAMETERS .TP 7 SIDE - CHARACTER*1. On entry, SIDE specifies whether op( A ) multiplies B from the left or right as follows: SIDE = 'L' or 'l' B := alpha*op( A )*B. SIDE = 'R' or 'r' B := alpha*B*op( A ). Unchanged on exit. .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A'. TRANSA = 'C' or 'c' op( A ) = conjg( A' ). Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of B. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of B. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 B - COMPLEX array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B, and on exit is overwritten by the transformed matrix. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/strmv.l 0000755 0001750 0001750 00000005155 10735444622 017170 0 ustar sylvestre sylvestre .TH STRMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME STRMV - perform one of the matrix-vector operations x := A*x, or x := A'*x, .SH SYNOPSIS .TP 17 SUBROUTINE STRMV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 REAL A( LDA, * ), X( * ) .SH PURPOSE STRMV performs one of the matrix-vector operations where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := A'*x. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/zgemm.l 0000755 0001750 0001750 00000007741 10735444622 017137 0 ustar sylvestre sylvestre .TH ZGEMM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZGEMM - perform one of the matrix-matrix operations C := alpha*op( A )*op( B ) + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE ZGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 TRANSA, TRANSB .TP 17 .ti +4 INTEGER M, N, K, LDA, LDB, LDC .TP 17 .ti +4 COMPLEX*16 ALPHA, BETA .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE ZGEMM performs one of the matrix-matrix operations where op( X ) is one of .br op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ), alpha and beta are scalars, and A, B and C are matrices, with op( A ) an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. .SH PARAMETERS TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n', op( A ) = A. TRANSA = 'T' or 't', op( A ) = A'. TRANSA = 'C' or 'c', op( A ) = conjg( A' ). Unchanged on exit. TRANSB - CHARACTER*1. On entry, TRANSB specifies the form of op( B ) to be used in the matrix multiplication as follows: TRANSB = 'N' or 'n', op( B ) = B. TRANSB = 'T' or 't', op( B ) = B'. TRANSB = 'C' or 'c', op( B ) = conjg( B' ). Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix op( A ) and of the matrix C. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix op( B ) and the number of columns of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry, K specifies the number of columns of the matrix op( A ) and the number of rows of the matrix op( B ). K must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is k when TRANSA = 'N' or 'n', and is m otherwise. Before entry with TRANSA = 'N' or 'n', the leading m by k part of the array A must contain the matrix A, otherwise the leading k by m part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANSA = 'N' or 'n' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is n when TRANSB = 'N' or 'n', and is k otherwise. Before entry with TRANSB = 'N' or 'n', the leading k by n part of the array B must contain the matrix B, otherwise the leading n by k part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANSB = 'N' or 'n' then LDB must be at least max( 1, k ), otherwise LDB must be at least max( 1, n ). Unchanged on exit. .TP 7 BETA - COMPLEX*16 . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. .TP 7 C - COMPLEX*16 array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n matrix ( alpha*op( A )*op( B ) + beta*C ). .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/cgeru.l 0000755 0001750 0001750 00000004011 10735444622 017110 0 ustar sylvestre sylvestre .TH CGERU l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CGERU - perform the rank 1 operation A := alpha*x*y' + A, .SH SYNOPSIS .TP 17 SUBROUTINE CGERU ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA ) .TP 17 .ti +4 COMPLEX ALPHA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, M, N .TP 17 .ti +4 COMPLEX A( LDA, * ), X( * ), Y( * ) .SH PURPOSE CGERU performs the rank 1 operation where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix. .br .SH PARAMETERS .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - COMPLEX array of dimension at least ( 1 + ( m - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the m element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 Y - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. On exit, A is overwritten by the updated matrix. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/dspr2.l 0000755 0001750 0001750 00000005265 10735444622 017051 0 ustar sylvestre sylvestre .TH DSPR2 l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DSPR2 - perform the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A, .SH SYNOPSIS .TP 17 SUBROUTINE DSPR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, AP ) .TP 17 .ti +4 DOUBLE PRECISION ALPHA .TP 17 .ti +4 INTEGER INCX, INCY, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 DOUBLE PRECISION AP( * ), X( * ), Y( * ) .SH PURPOSE DSPR2 performs the symmetric rank 2 operation where alpha is a scalar, x and y are n element vectors and A is an n by n symmetric matrix, supplied in packed form. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 Y - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. .TP 7 AP - DOUBLE PRECISION array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/zhpr2.l 0000755 0001750 0001750 00000005513 10735444622 017060 0 ustar sylvestre sylvestre .TH ZHPR2 l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZHPR2 - perform the hermitian rank 2 operation A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, .SH SYNOPSIS .TP 17 SUBROUTINE ZHPR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, AP ) .TP 17 .ti +4 COMPLEX*16 ALPHA .TP 17 .ti +4 INTEGER INCX, INCY, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 COMPLEX*16 AP( * ), X( * ), Y( * ) .SH PURPOSE ZHPR2 performs the hermitian rank 2 operation where alpha is a scalar, x and y are n element vectors and A is an n by n hermitian matrix, supplied in packed form. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 Y - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. .TP 7 AP - COMPLEX*16 array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/zrotg.l 0000755 0001750 0001750 00000001403 10735444622 017152 0 ustar sylvestre sylvestre .SH NAME .SH SYNOPSIS .TP 28 subroutine zrotg(ca,cb,c,s) .TP 28 .ti +4 double complex ca,cb,s .TP 28 .ti +4 double precision c .TP 28 .ti +4 double precision norm,scale .TP 28 .ti +4 double complex alpha .TP 28 .ti +4 if (cdabs(ca) .ne. 0.0d0) go to 10 .TP 28 .ti +4 c = 0.0d0 .TP 28 .ti +4 s = (1.0d0,0.0d0) .TP 28 .ti +4 ca = cb .TP 28 .ti +4 go to 20 .TP 28 .ti +4 10 continue .TP 28 .ti +4 scale = cdabs(ca) + cdabs(cb) .TP 28 .ti +4 norm = scale*dsqrt((cdabs(ca/dcmplx(scale,0.0d0)))**2 + .TP 28 .ti +4 * (cdabs(cb/dcmplx(scale,0.0d0)))**2) .TP 28 .ti +4 alpha = ca /cdabs(ca) .TP 28 .ti +4 c = cdabs(ca) / norm .TP 28 .ti +4 s = alpha * dconjg(cb) / norm .TP 28 .ti +4 ca = alpha * norm .TP 28 .ti +4 20 continue .TP 28 .ti +4 return .TP 28 .ti +4 end .SH PURPOSE blas-1.2.orig/man/manl/ctpmv.l 0000755 0001750 0001750 00000005131 10735444622 017140 0 ustar sylvestre sylvestre .TH CTPMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CTPMV - perform one of the matrix-vector operations x := A*x, or x := A'*x, or x := conjg( A' )*x, .SH SYNOPSIS .TP 17 SUBROUTINE CTPMV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) .TP 17 .ti +4 INTEGER INCX, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 COMPLEX AP( * ), X( * ) .SH PURPOSE CTPMV performs one of the matrix-vector operations where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := conjg( A' )*x. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 AP - COMPLEX array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 X - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/ctrsv.l 0000755 0001750 0001750 00000005421 10735444622 017152 0 ustar sylvestre sylvestre .TH CTRSV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CTRSV - solve one of the systems of equations A*x = b, or A'*x = b, or conjg( A' )*x = b, .SH SYNOPSIS .TP 17 SUBROUTINE CTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 COMPLEX A( LDA, * ), X( * ) .SH PURPOSE CTRSV solves one of the systems of equations where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix. .br No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' conjg( A' )*x = b. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 X - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/zher2k.l 0000755 0001750 0001750 00000011063 10735444622 017215 0 ustar sylvestre sylvestre .TH ZHER2K l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZHER2K - perform one of the hermitian rank 2k operations C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C, .SH SYNOPSIS .TP 19 SUBROUTINE ZHER2K( UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 19 .ti +4 CHARACTER*1 UPLO, TRANS .TP 19 .ti +4 INTEGER N, K, LDA, LDB, LDC .TP 19 .ti +4 DOUBLE PRECISION BETA .TP 19 .ti +4 COMPLEX*16 ALPHA .TP 19 .ti +4 COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE ZHER2K performs one of the hermitian rank 2k operations or .br C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C, where alpha and beta are scalars with beta real, C is an n by n hermitian matrix and A and B are n by k matrices in the first case and k by n matrices in the second case. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*conjg( B' ) + conjg( alpha )*B*conjg( A' ) + beta*C. TRANS = 'C' or 'c' C := alpha*conjg( A' )*B + conjg( alpha )*conjg( B' )*A + beta*C. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrices A and B, and on entry with TRANS = 'C' or 'c', K specifies the number of rows of the matrices A and B. K must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array B must contain the matrix B, otherwise the leading k by n part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDB must be at least max( 1, n ), otherwise LDB must be at least max( 1, k ). Unchanged on exit. .TP 7 BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 C - COMPLEX*16 array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/zgerc.l 0000755 0001750 0001750 00000004030 10735444622 017116 0 ustar sylvestre sylvestre .TH ZGERC l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZGERC - perform the rank 1 operation A := alpha*x*conjg( y' ) + A, .SH SYNOPSIS .TP 17 SUBROUTINE ZGERC ( M, N, ALPHA, X, INCX, Y, INCY, A, LDA ) .TP 17 .ti +4 COMPLEX*16 ALPHA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, M, N .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), X( * ), Y( * ) .SH PURPOSE ZGERC performs the rank 1 operation where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix. .br .SH PARAMETERS .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - COMPLEX*16 array of dimension at least ( 1 + ( m - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the m element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 Y - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. On exit, A is overwritten by the updated matrix. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/zhpr.l 0000755 0001750 0001750 00000004740 10735444622 016777 0 ustar sylvestre sylvestre .TH ZHPR l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZHPR - perform the hermitian rank 1 operation A := alpha*x*conjg( x' ) + A, .SH SYNOPSIS .TP 16 SUBROUTINE ZHPR ( UPLO, N, ALPHA, X, INCX, AP ) .TP 16 .ti +4 DOUBLE PRECISION ALPHA .TP 16 .ti +4 INTEGER INCX, N .TP 16 .ti +4 CHARACTER*1 UPLO .TP 16 .ti +4 COMPLEX*16 AP( * ), X( * ) .SH PURPOSE ZHPR performs the hermitian rank 1 operation where alpha is a real scalar, x is an n element vector and A is an n by n hermitian matrix, supplied in packed form. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 AP - COMPLEX*16 array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/cherk.l 0000755 0001750 0001750 00000007371 10735444622 017113 0 ustar sylvestre sylvestre .TH CHERK l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CHERK - perform one of the hermitian rank k operations C := alpha*A*conjg( A' ) + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE CHERK ( UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 UPLO, TRANS .TP 17 .ti +4 INTEGER N, K, LDA, LDC .TP 17 .ti +4 REAL ALPHA, BETA .TP 17 .ti +4 COMPLEX A( LDA, * ), C( LDC, * ) .SH PURPOSE CHERK performs one of the hermitian rank k operations or .br C := alpha*conjg( A' )*A + beta*C, .br where alpha and beta are real scalars, C is an n by n hermitian matrix and A is an n by k matrix in the first case and a k by n matrix in the second case. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C. TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrix A, and on entry with TRANS = 'C' or 'c', K specifies the number of rows of the matrix A. K must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 BETA - REAL . On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 C - COMPLEX array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/cher.l 0000755 0001750 0001750 00000005062 10735444622 016733 0 ustar sylvestre sylvestre .TH CHER l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CHER - perform the hermitian rank 1 operation A := alpha*x*conjg( x' ) + A, .SH SYNOPSIS .TP 16 SUBROUTINE CHER ( UPLO, N, ALPHA, X, INCX, A, LDA ) .TP 16 .ti +4 REAL ALPHA .TP 16 .ti +4 INTEGER INCX, LDA, N .TP 16 .ti +4 CHARACTER*1 UPLO .TP 16 .ti +4 COMPLEX A( LDA, * ), X( * ) .SH PURPOSE CHER performs the hermitian rank 1 operation where alpha is a real scalar, x is an n element vector and A is an n by n hermitian matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/sgemm.l 0000755 0001750 0001750 00000007652 10735444622 017131 0 ustar sylvestre sylvestre .TH SGEMM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME SGEMM - perform one of the matrix-matrix operations C := alpha*op( A )*op( B ) + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE SGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 TRANSA, TRANSB .TP 17 .ti +4 INTEGER M, N, K, LDA, LDB, LDC .TP 17 .ti +4 REAL ALPHA, BETA .TP 17 .ti +4 REAL A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE SGEMM performs one of the matrix-matrix operations where op( X ) is one of .br op( X ) = X or op( X ) = X', .br alpha and beta are scalars, and A, B and C are matrices, with op( A ) an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. .SH PARAMETERS TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n', op( A ) = A. TRANSA = 'T' or 't', op( A ) = A'. TRANSA = 'C' or 'c', op( A ) = A'. Unchanged on exit. TRANSB - CHARACTER*1. On entry, TRANSB specifies the form of op( B ) to be used in the matrix multiplication as follows: TRANSB = 'N' or 'n', op( B ) = B. TRANSB = 'T' or 't', op( B ) = B'. TRANSB = 'C' or 'c', op( B ) = B'. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix op( A ) and of the matrix C. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix op( B ) and the number of columns of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry, K specifies the number of columns of the matrix op( A ) and the number of rows of the matrix op( B ). K must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, ka ), where ka is k when TRANSA = 'N' or 'n', and is m otherwise. Before entry with TRANSA = 'N' or 'n', the leading m by k part of the array A must contain the matrix A, otherwise the leading k by m part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANSA = 'N' or 'n' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 B - REAL array of DIMENSION ( LDB, kb ), where kb is n when TRANSB = 'N' or 'n', and is k otherwise. Before entry with TRANSB = 'N' or 'n', the leading k by n part of the array B must contain the matrix B, otherwise the leading n by k part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANSB = 'N' or 'n' then LDB must be at least max( 1, k ), otherwise LDB must be at least max( 1, n ). Unchanged on exit. .TP 7 BETA - REAL . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. .TP 7 C - REAL array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n matrix ( alpha*op( A )*op( B ) + beta*C ). .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/ztbmv.l 0000755 0001750 0001750 00000007504 10735444622 017157 0 ustar sylvestre sylvestre .TH ZTBMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZTBMV - perform one of the matrix-vector operations x := A*x, or x := A'*x, or x := conjg( A' )*x, .SH SYNOPSIS .TP 17 SUBROUTINE ZTBMV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, K, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), X( * ) .SH PURPOSE ZTBMV performs one of the matrix-vector operations where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := conjg( A' )*x. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with UPLO = 'U' or 'u', K specifies the number of super-diagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. .TP 7 X - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/zsymm.l 0000755 0001750 0001750 00000010543 10735444622 017171 0 ustar sylvestre sylvestre .TH ZSYMM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZSYMM - perform one of the matrix-matrix operations C := alpha*A*B + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE ZSYMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 SIDE, UPLO .TP 17 .ti +4 INTEGER M, N, LDA, LDB, LDC .TP 17 .ti +4 COMPLEX*16 ALPHA, BETA .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ) .SH PURPOSE ZSYMM performs one of the matrix-matrix operations or .br C := alpha*B*A + beta*C, .br where alpha and beta are scalars, A is a symmetric matrix and B and C are m by n matrices. .br .SH PARAMETERS .TP 7 SIDE - CHARACTER*1. On entry, SIDE specifies whether the symmetric matrix A appears on the left or right in the operation as follows: SIDE = 'L' or 'l' C := alpha*A*B + beta*C, SIDE = 'R' or 'r' C := alpha*B*A + beta*C, Unchanged on exit. .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the symmetric matrix A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of the symmetric matrix is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of the symmetric matrix is to be referenced. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix C. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX*16 . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is m when SIDE = 'L' or 'l' and is n otherwise. Before entry with SIDE = 'L' or 'l', the m by m part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading m by m upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading m by m lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Before entry with SIDE = 'R' or 'r', the n by n part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 B - COMPLEX*16 array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B. Unchanged on exit. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. .TP 7 BETA - COMPLEX*16 . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. .TP 7 C - COMPLEX*16 array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n updated matrix. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/strsv.l 0000755 0001750 0001750 00000005357 10735444622 017202 0 ustar sylvestre sylvestre .TH STRSV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME STRSV - solve one of the systems of equations A*x = b, or A'*x = b, .SH SYNOPSIS .TP 17 SUBROUTINE STRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 REAL A( LDA, * ), X( * ) .SH PURPOSE STRSV solves one of the systems of equations where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix. .br No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' A'*x = b. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/cscal.l 0000755 0001750 0001750 00000001450 10735444622 017074 0 ustar sylvestre sylvestre .SH NAME .SH SYNOPSIS .TP 31 subroutine cscal(n,ca,cx,incx) .TP 31 .ti +4 c scales a vector by a constant. .TP 31 .ti +4 c jack dongarra, linpack, 3/11/78. .TP 31 .ti +4 c modified to correct problem with negative increment, 8/21/90. .TP 31 .ti +4 complex ca,cx(1) .TP 31 .ti +4 integer i,incx,ix,n .TP 31 .ti +4 if(n.le.0)return .TP 31 .ti +4 if(incx.eq.1)go to 20 .TP 31 .ti +4 c code for increment not equal to 1 .TP 31 .ti +4 ix = 1 .TP 31 .ti +4 if(incx.lt.0)ix = (-n+1)*incx + 1 .TP 31 .ti +4 do 10 i = 1,n .TP 31 .ti +4 cx(ix) = ca*cx(ix) .TP 31 .ti +4 ix = ix + incx .TP 31 .ti +4 10 continue .TP 31 .ti +4 return .TP 31 .ti +4 c code for increment equal to 1 .TP 31 .ti +4 20 do 30 i = 1,n .TP 31 .ti +4 cx(i) = ca*cx(i) .TP 31 .ti +4 30 continue .TP 31 .ti +4 return .TP 31 .ti +4 end .SH PURPOSE blas-1.2.orig/man/manl/sgemv.l 0000755 0001750 0001750 00000005232 10735444622 017132 0 ustar sylvestre sylvestre .TH SGEMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME SGEMV - perform one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE SGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 REAL ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, M, N .TP 17 .ti +4 CHARACTER*1 TRANS .TP 17 .ti +4 REAL A( LDA, * ), X( * ), Y( * ) .SH PURPOSE SGEMV performs one of the matrix-vector operations where alpha and beta are scalars, x and y are vectors and A is an m by n matrix. .br .SH PARAMETERS .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A'*x + beta*y. TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. .TP 7 X - REAL array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - REAL . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - REAL array of DIMENSION at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry with BETA non-zero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/stpmv.l 0000755 0001750 0001750 00000005066 10735444622 017167 0 ustar sylvestre sylvestre .TH STPMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME STPMV - perform one of the matrix-vector operations x := A*x, or x := A'*x, .SH SYNOPSIS .TP 17 SUBROUTINE STPMV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) .TP 17 .ti +4 INTEGER INCX, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 REAL AP( * ), X( * ) .SH PURPOSE STPMV performs one of the matrix-vector operations where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := A'*x. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 AP - REAL array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/ztbsv.l 0000755 0001750 0001750 00000007711 10735444622 017165 0 ustar sylvestre sylvestre .TH ZTBSV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME ZTBSV - solve one of the systems of equations A*x = b, or A'*x = b, or conjg( A' )*x = b, .SH SYNOPSIS .TP 17 SUBROUTINE ZTBSV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, K, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 COMPLEX*16 A( LDA, * ), X( * ) .SH PURPOSE ZTBSV solves one of the systems of equations where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. .br No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' conjg( A' )*x = b. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with UPLO = 'U' or 'u', K specifies the number of super-diagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. .TP 7 A - COMPLEX*16 array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. .TP 7 X - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/sspr.l 0000755 0001750 0001750 00000004476 10735444622 017011 0 ustar sylvestre sylvestre .TH SSPR l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME SSPR - perform the symmetric rank 1 operation A := alpha*x*x' + A, .SH SYNOPSIS .TP 16 SUBROUTINE SSPR ( UPLO, N, ALPHA, X, INCX, AP ) .TP 16 .ti +4 REAL ALPHA .TP 16 .ti +4 INTEGER INCX, N .TP 16 .ti +4 CHARACTER*1 UPLO .TP 16 .ti +4 REAL AP( * ), X( * ) .SH PURPOSE SSPR performs the symmetric rank 1 operation where alpha is a real scalar, x is an n element vector and A is an n by n symmetric matrix, supplied in packed form. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 AP - REAL array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/ctbsv.l 0000755 0001750 0001750 00000007706 10735444622 017142 0 ustar sylvestre sylvestre .TH CTBSV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CTBSV - solve one of the systems of equations A*x = b, or A'*x = b, or conjg( A' )*x = b, .SH SYNOPSIS .TP 17 SUBROUTINE CTBSV ( UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX ) .TP 17 .ti +4 INTEGER INCX, K, LDA, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 COMPLEX A( LDA, * ), X( * ) .SH PURPOSE CTBSV solves one of the systems of equations where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. .br No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' conjg( A' )*x = b. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with UPLO = 'U' or 'u', K specifies the number of super-diagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. .TP 7 X - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/cgbmv.l 0000755 0001750 0001750 00000007226 10735444622 017114 0 ustar sylvestre sylvestre .TH CGBMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CGBMV - perform one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or y := alpha*conjg( A' )*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE CGBMV ( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 COMPLEX ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, KL, KU, LDA, M, N .TP 17 .ti +4 CHARACTER*1 TRANS .TP 17 .ti +4 COMPLEX A( LDA, * ), X( * ), Y( * ) .SH PURPOSE CGBMV performs one of the matrix-vector operations where alpha and beta are scalars, x and y are vectors and A is an m by n band matrix, with kl sub-diagonals and ku super-diagonals. .SH PARAMETERS .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A'*x + beta*y. TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 KL - INTEGER. On entry, KL specifies the number of sub-diagonals of the matrix A. KL must satisfy 0 .le. KL. Unchanged on exit. .TP 7 KU - INTEGER. On entry, KU specifies the number of super-diagonals of the matrix A. KU must satisfy 0 .le. KU. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, n ). Before entry, the leading ( kl + ku + 1 ) by n part of the array A must contain the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( ku + 1 ) of the array, the first super-diagonal starting at position 2 in row ku, the first sub-diagonal starting at position 1 in row ( ku + 2 ), and so on. Elements in the array A that do not correspond to elements in the band matrix (such as the top left ku by ku triangle) are not referenced. The following program segment will transfer a band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N K = KU + 1 - J DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) A( K + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( kl + ku + 1 ). Unchanged on exit. .TP 7 X - COMPLEX array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - COMPLEX . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - COMPLEX array of DIMENSION at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/ctpsv.l 0000755 0001750 0001750 00000005332 10735444622 017151 0 ustar sylvestre sylvestre .TH CTPSV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CTPSV - solve one of the systems of equations A*x = b, or A'*x = b, or conjg( A' )*x = b, .SH SYNOPSIS .TP 17 SUBROUTINE CTPSV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) .TP 17 .ti +4 INTEGER INCX, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 COMPLEX AP( * ), X( * ) .SH PURPOSE CTPSV solves one of the systems of equations where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form. No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' conjg( A' )*x = b. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 AP - COMPLEX array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 X - COMPLEX array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/dsyrk.l 0000755 0001750 0001750 00000007232 10735444622 017147 0 ustar sylvestre sylvestre .TH DSYRK l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DSYRK - perform one of the symmetric rank k operations C := alpha*A*A' + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE DSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 UPLO, TRANS .TP 17 .ti +4 INTEGER N, K, LDA, LDC .TP 17 .ti +4 DOUBLE PRECISION ALPHA, BETA .TP 17 .ti +4 DOUBLE PRECISION A( LDA, * ), C( LDC, * ) .SH PURPOSE DSYRK performs one of the symmetric rank k operations or .br C := alpha*A'*A + beta*C, .br where alpha and beta are scalars, C is an n by n symmetric matrix and A is an n by k matrix in the first case and a k by n matrix in the second case. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. TRANS = 'T' or 't' C := alpha*A'*A + beta*C. TRANS = 'C' or 'c' C := alpha*A'*A + beta*C. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrix A, and on entry with TRANS = 'T' or 't' or 'C' or 'c', K specifies the number of rows of the matrix A. K must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/stpsv.l 0000755 0001750 0001750 00000005270 10735444622 017172 0 ustar sylvestre sylvestre .TH STPSV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME STPSV - solve one of the systems of equations A*x = b, or A'*x = b, .SH SYNOPSIS .TP 17 SUBROUTINE STPSV ( UPLO, TRANS, DIAG, N, AP, X, INCX ) .TP 17 .ti +4 INTEGER INCX, N .TP 17 .ti +4 CHARACTER*1 DIAG, TRANS, UPLO .TP 17 .ti +4 REAL AP( * ), X( * ) .SH PURPOSE STPSV solves one of the systems of equations where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form. No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' A'*x = b. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 AP - REAL array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced, but are assumed to be unity. Unchanged on exit. .TP 7 X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/csyrk.l 0000755 0001750 0001750 00000007110 10735444622 017141 0 ustar sylvestre sylvestre .TH CSYRK l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CSYRK - perform one of the symmetric rank k operations C := alpha*A*A' + beta*C, .SH SYNOPSIS .TP 17 SUBROUTINE CSYRK ( UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC ) .TP 17 .ti +4 CHARACTER*1 UPLO, TRANS .TP 17 .ti +4 INTEGER N, K, LDA, LDC .TP 17 .ti +4 COMPLEX ALPHA, BETA .TP 17 .ti +4 COMPLEX A( LDA, * ), C( LDC, * ) .SH PURPOSE CSYRK performs one of the symmetric rank k operations or .br C := alpha*A'*A + beta*C, .br where alpha and beta are scalars, C is an n by n symmetric matrix and A is an n by k matrix in the first case and a k by n matrix in the second case. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. .TP 7 TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. TRANS = 'T' or 't' C := alpha*A'*A + beta*C. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrix A, and on entry with TRANS = 'T' or 't', K specifies the number of rows of the matrix A. K must be at least zero. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. .TP 7 BETA - COMPLEX . On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 C - COMPLEX array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. .TP 7 LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/chbmv.l 0000755 0001750 0001750 00000007374 10735444622 017121 0 ustar sylvestre sylvestre .TH CHBMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME CHBMV - perform the matrix-vector operation y := alpha*A*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE CHBMV ( UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 COMPLEX ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, K, LDA, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 COMPLEX A( LDA, * ), X( * ), Y( * ) .SH PURPOSE CHBMV performs the matrix-vector operation where alpha and beta are scalars, x and y are n element vectors and A is an n by n hermitian band matrix, with k super-diagonals. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the band matrix A is being supplied as follows: UPLO = 'U' or 'u' The upper triangular part of A is being supplied. UPLO = 'L' or 'l' The lower triangular part of A is being supplied. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 K - INTEGER. On entry, K specifies the number of super-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. .TP 7 ALPHA - COMPLEX . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 A - COMPLEX array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the hermitian matrix, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer the upper triangular part of a hermitian band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the hermitian matrix, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer the lower triangular part of a hermitian band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. .TP 7 X - COMPLEX array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - COMPLEX . On entry, BETA specifies the scalar beta. Unchanged on exit. .TP 7 Y - COMPLEX array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/dtrmm.l 0000755 0001750 0001750 00000007244 10735444622 017141 0 ustar sylvestre sylvestre .TH DTRMM l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DTRMM - perform one of the matrix-matrix operations B := alpha*op( A )*B, or B := alpha*B*op( A ), .SH SYNOPSIS .TP 17 SUBROUTINE DTRMM ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB ) .TP 17 .ti +4 CHARACTER*1 SIDE, UPLO, TRANSA, DIAG .TP 17 .ti +4 INTEGER M, N, LDA, LDB .TP 17 .ti +4 DOUBLE PRECISION ALPHA .TP 17 .ti +4 DOUBLE PRECISION A( LDA, * ), B( LDB, * ) .SH PURPOSE DTRMM performs one of the matrix-matrix operations where alpha is a scalar, B is an m by n matrix, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A'. .br .SH PARAMETERS .TP 7 SIDE - CHARACTER*1. On entry, SIDE specifies whether op( A ) multiplies B from the left or right as follows: SIDE = 'L' or 'l' B := alpha*op( A )*B. SIDE = 'R' or 'r' B := alpha*B*op( A ). Unchanged on exit. .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A'. TRANSA = 'C' or 'c' op( A ) = A'. Unchanged on exit. .TP 7 DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. .TP 7 M - INTEGER. On entry, M specifies the number of rows of B. M must be at least zero. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the number of columns of B. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ). Unchanged on exit. .TP 7 B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B, and on exit is overwritten by the transformed matrix. .TP 7 LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions .. .. External Subroutines .. .. Intrinsic Functions .. .. Local Scalars .. blas-1.2.orig/man/manl/sspmv.l 0000755 0001750 0001750 00000005274 10735444622 017167 0 ustar sylvestre sylvestre .TH SSPMV l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME SSPMV - perform the matrix-vector operation y := alpha*A*x + beta*y, .SH SYNOPSIS .TP 17 SUBROUTINE SSPMV ( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY ) .TP 17 .ti +4 REAL ALPHA, BETA .TP 17 .ti +4 INTEGER INCX, INCY, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 REAL AP( * ), X( * ), Y( * ) .SH PURPOSE SSPMV performs the matrix-vector operation where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix, supplied in packed form. .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 AP - REAL array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Unchanged on exit. .TP 7 X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 BETA - REAL . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. .TP 7 Y - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/ssyr2.l 0000755 0001750 0001750 00000005377 10735444622 017105 0 ustar sylvestre sylvestre .TH SSYR2 l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME SSYR2 - perform the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A, .SH SYNOPSIS .TP 17 SUBROUTINE SSYR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA ) .TP 17 .ti +4 REAL ALPHA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 REAL A( LDA, * ), X( * ), Y( * ) .SH PURPOSE SSYR2 performs the symmetric rank 2 operation where alpha is a scalar, x and y are n element vectors and A is an n by n symmetric matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 Y - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. .TP 7 A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/dspr.l 0000755 0001750 0001750 00000004526 10735444622 016766 0 ustar sylvestre sylvestre .TH DSPR l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DSPR - perform the symmetric rank 1 operation A := alpha*x*x' + A, .SH SYNOPSIS .TP 16 SUBROUTINE DSPR ( UPLO, N, ALPHA, X, INCX, AP ) .TP 16 .ti +4 DOUBLE PRECISION ALPHA .TP 16 .ti +4 INTEGER INCX, N .TP 16 .ti +4 CHARACTER*1 UPLO .TP 16 .ti +4 DOUBLE PRECISION AP( * ), X( * ) .SH PURPOSE DSPR performs the symmetric rank 1 operation where alpha is a real scalar, x is an n element vector and A is an n by n symmetric matrix, supplied in packed form. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 AP - DOUBLE PRECISION array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/dsyr2.l 0000755 0001750 0001750 00000005427 10735444622 017062 0 ustar sylvestre sylvestre .TH DSYR2 l "16 October 1992" "BLAS routine" "BLAS routine" .SH NAME DSYR2 - perform the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A, .SH SYNOPSIS .TP 17 SUBROUTINE DSYR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA ) .TP 17 .ti +4 DOUBLE PRECISION ALPHA .TP 17 .ti +4 INTEGER INCX, INCY, LDA, N .TP 17 .ti +4 CHARACTER*1 UPLO .TP 17 .ti +4 DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) .SH PURPOSE DSYR2 performs the symmetric rank 2 operation where alpha is a scalar, x and y are n element vectors and A is an n by n symmetric matrix. .br .SH PARAMETERS .TP 7 UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. .TP 7 N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. .TP 7 ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. .TP 7 X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. .TP 7 INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. .TP 7 Y - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. .TP 7 INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. .TP 7 A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. .TP 7 LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. blas-1.2.orig/man/manl/zscal.l 0000755 0001750 0001750 00000001446 10735444622 017130 0 ustar sylvestre sylvestre .SH NAME .SH SYNOPSIS .TP 31 subroutine zscal(n,za,zx,incx) .TP 31 .ti +4 c scales a vector by a constant. .TP 31 .ti +4 c jack dongarra, 3/11/78. .TP 31 .ti +4 c modified to correct problem with negative increment, 8/21/90. .TP 31 .ti +4 double complex za,zx(1) .TP 31 .ti +4 integer i,incx,ix,n .TP 31 .ti +4 if(n.le.0)return .TP 31 .ti +4 if(incx.eq.1)go to 20 .TP 31 .ti +4 c code for increment not equal to 1 .TP 31 .ti +4 ix = 1 .TP 31 .ti +4 if(incx.lt.0)ix = (-n+1)*incx + 1 .TP 31 .ti +4 do 10 i = 1,n .TP 31 .ti +4 zx(ix) = za*zx(ix) .TP 31 .ti +4 ix = ix + incx .TP 31 .ti +4 10 continue .TP 31 .ti +4 return .TP 31 .ti +4 c code for increment equal to 1 .TP 31 .ti +4 20 do 30 i = 1,n .TP 31 .ti +4 zx(i) = za*zx(i) .TP 31 .ti +4 30 continue .TP 31 .ti +4 return .TP 31 .ti +4 end .SH PURPOSE blas-1.2.orig/src/ 0000755 0001750 0001750 00000000000 11616621632 014711 5 ustar sylvestre sylvestre blas-1.2.orig/src/dsdot.f 0000640 0001750 0001750 00000005202 11616621632 016170 0 ustar sylvestre sylvestre DOUBLE PRECISION FUNCTION DSDOT(N,SX,INCX,SY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. REAL SX(*),SY(*) * .. * * AUTHORS * ======= * Lawson, C. L., (JPL), Hanson, R. J., (SNLA), * Kincaid, D. R., (U. of Texas), Krogh, F. T., (JPL) * * Purpose * ======= * Compute the inner product of two vectors with extended * precision accumulation and result. * * Returns D.P. dot product accumulated in D.P., for S.P. SX and SY * DSDOT = sum for I = 0 to N-1 of SX(LX+I*INCX) * SY(LY+I*INCY), * where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is * defined in a similar way using INCY. * * Arguments * ========= * * N (input) INTEGER * number of elements in input vector(s) * * SX (input) REAL array, dimension(N) * single precision vector with N elements * * INCX (input) INTEGER * storage spacing between elements of SX * * SY (input) REAL array, dimension(N) * single precision vector with N elements * * INCY (input) INTEGER * storage spacing between elements of SY * * DSDOT (output) DOUBLE PRECISION * DSDOT double precision dot product (zero if N.LE.0) * * Further Details * =============== * * REFERENCES * * C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. * Krogh, Basic linear algebra subprograms for Fortran * usage, Algorithm No. 539, Transactions on Mathematical * Software 5, 3 (September 1979), pp. 308-323. * * REVISION HISTORY (YYMMDD) * * 791001 DATE WRITTEN * 890831 Modified array declarations. (WRB) * 890831 REVISION DATE from Version 3.2 * 891214 Prologue converted to Version 4.0 format. (BAB) * 920310 Corrected definition of LX in DESCRIPTION. (WRB) * 920501 Reformatted the REFERENCES section. (WRB) * 070118 Reformat to LAPACK style (JL) * * ===================================================================== * * .. Local Scalars .. INTEGER I,KX,KY,NS * .. * .. Intrinsic Functions .. INTRINSIC DBLE * .. DSDOT = 0.0D0 IF (N.LE.0) RETURN IF (INCX.EQ.INCY .AND. INCX.GT.0) THEN * * Code for equal, positive, non-unit increments. * NS = N*INCX DO I = 1,NS,INCX DSDOT = DSDOT + DBLE(SX(I))*DBLE(SY(I)) END DO ELSE * * Code for unequal or nonpositive increments. * KX = 1 KY = 1 IF (INCX.LT.0) KX = 1 + (1-N)*INCX IF (INCY.LT.0) KY = 1 + (1-N)*INCY DO I = 1,N DSDOT = DSDOT + DBLE(SX(KX))*DBLE(SY(KY)) KX = KX + INCX KY = KY + INCY END DO END IF RETURN END blas-1.2.orig/src/ztpmv.f 0000640 0001750 0001750 00000025400 11616621632 016235 0 ustar sylvestre sylvestre SUBROUTINE ZTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) * .. Scalar Arguments .. INTEGER INCX,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX AP(*),X(*) * .. * * Purpose * ======= * * ZTPMV performs one of the matrix-vector operations * * x := A*x, or x := A**T*x, or x := A**H*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A**T*x. * * TRANS = 'C' or 'c' x := A**H*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * AP - COMPLEX*16 array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) * respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) * respectively, and so on. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced, but are assumed to be unity. * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX LOGICAL NOCONJ,NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (INCX.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZTPMV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of AP are * accessed sequentially with one pass through AP. * IF (LSAME(TRANS,'N')) THEN * * Form x:= A*x. * IF (LSAME(UPLO,'U')) THEN KK = 1 IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) K = KK DO 10 I = 1,J - 1 X(I) = X(I) + TEMP*AP(K) K = K + 1 10 CONTINUE IF (NOUNIT) X(J) = X(J)*AP(KK+J-1) END IF KK = KK + J 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 30 K = KK,KK + J - 2 X(IX) = X(IX) + TEMP*AP(K) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1) END IF JX = JX + INCX KK = KK + J 40 CONTINUE END IF ELSE KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) K = KK DO 50 I = N,J + 1,-1 X(I) = X(I) + TEMP*AP(K) K = K - 1 50 CONTINUE IF (NOUNIT) X(J) = X(J)*AP(KK-N+J) END IF KK = KK - (N-J+1) 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 70 K = KK,KK - (N- (J+1)),-1 X(IX) = X(IX) + TEMP*AP(K) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J) END IF JX = JX - INCX KK = KK - (N-J+1) 80 CONTINUE END IF END IF ELSE * * Form x := A**T*x or x := A**H*x. * IF (LSAME(UPLO,'U')) THEN KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 110 J = N,1,-1 TEMP = X(J) K = KK - 1 IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*AP(KK) DO 90 I = J - 1,1,-1 TEMP = TEMP + AP(K)*X(I) K = K - 1 90 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) DO 100 I = J - 1,1,-1 TEMP = TEMP + DCONJG(AP(K))*X(I) K = K - 1 100 CONTINUE END IF X(J) = TEMP KK = KK - J 110 CONTINUE ELSE JX = KX + (N-1)*INCX DO 140 J = N,1,-1 TEMP = X(JX) IX = JX IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*AP(KK) DO 120 K = KK - 1,KK - J + 1,-1 IX = IX - INCX TEMP = TEMP + AP(K)*X(IX) 120 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) DO 130 K = KK - 1,KK - J + 1,-1 IX = IX - INCX TEMP = TEMP + DCONJG(AP(K))*X(IX) 130 CONTINUE END IF X(JX) = TEMP JX = JX - INCX KK = KK - J 140 CONTINUE END IF ELSE KK = 1 IF (INCX.EQ.1) THEN DO 170 J = 1,N TEMP = X(J) K = KK + 1 IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*AP(KK) DO 150 I = J + 1,N TEMP = TEMP + AP(K)*X(I) K = K + 1 150 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) DO 160 I = J + 1,N TEMP = TEMP + DCONJG(AP(K))*X(I) K = K + 1 160 CONTINUE END IF X(J) = TEMP KK = KK + (N-J+1) 170 CONTINUE ELSE JX = KX DO 200 J = 1,N TEMP = X(JX) IX = JX IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*AP(KK) DO 180 K = KK + 1,KK + N - J IX = IX + INCX TEMP = TEMP + AP(K)*X(IX) 180 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) DO 190 K = KK + 1,KK + N - J IX = IX + INCX TEMP = TEMP + DCONJG(AP(K))*X(IX) 190 CONTINUE END IF X(JX) = TEMP JX = JX + INCX KK = KK + (N-J+1) 200 CONTINUE END IF END IF END IF * RETURN * * End of ZTPMV . * END blas-1.2.orig/src/zdotc.f 0000640 0001750 0001750 00000002416 11616621632 016202 0 ustar sylvestre sylvestre DOUBLE COMPLEX FUNCTION ZDOTC(N,ZX,INCX,ZY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. DOUBLE COMPLEX ZX(*),ZY(*) * .. * * Purpose * ======= * * ZDOTC forms the dot product of a vector. * * Further Details * =============== * * jack dongarra, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. DOUBLE COMPLEX ZTEMP INTEGER I,IX,IY * .. * .. Intrinsic Functions .. INTRINSIC DCONJG * .. ZTEMP = (0.0d0,0.0d0) ZDOTC = (0.0d0,0.0d0) IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * DO I = 1,N ZTEMP = ZTEMP + DCONJG(ZX(I))*ZY(I) END DO ELSE * * code for unequal increments or equal increments * not equal to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N ZTEMP = ZTEMP + DCONJG(ZX(IX))*ZY(IY) IX = IX + INCX IY = IY + INCY END DO END IF ZDOTC = ZTEMP RETURN END blas-1.2.orig/src/dspmv.f 0000640 0001750 0001750 00000017641 11616621632 016216 0 ustar sylvestre sylvestre SUBROUTINE DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA,BETA INTEGER INCX,INCY,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE PRECISION AP(*),X(*),Y(*) * .. * * Purpose * ======= * * DSPMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n symmetric matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the matrix A is supplied in the packed * array AP as follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * supplied in AP. * * UPLO = 'L' or 'l' The lower triangular part of A is * supplied in AP. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * AP - DOUBLE PRECISION array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) * and a( 2, 2 ) respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) * and a( 3, 1 ) respectively, and so on. * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. On exit, Y is overwritten by the updated * vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 6 ELSE IF (INCY.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSPMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set up the start points in X and Y. * IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF * * Start the operations. In this version the elements of the array AP * are accessed sequentially with one pass through AP. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN KK = 1 IF (LSAME(UPLO,'U')) THEN * * Form y when AP contains the upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO K = KK DO 50 I = 1,J - 1 Y(I) = Y(I) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(I) K = K + 1 50 CONTINUE Y(J) = Y(J) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2 KK = KK + J 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY DO 70 K = KK,KK + J - 2 Y(IY) = Y(IY) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + J 80 CONTINUE END IF ELSE * * Form y when AP contains the lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*AP(KK) K = KK + 1 DO 90 I = J + 1,N Y(I) = Y(I) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(I) K = K + 1 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 KK = KK + (N-J+1) 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*AP(KK) IX = JX IY = JY DO 110 K = KK + 1,KK + N - J IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + (N-J+1) 120 CONTINUE END IF END IF * RETURN * * End of DSPMV . * END blas-1.2.orig/src/zherk.f 0000640 0001750 0001750 00000025136 11616621632 016206 0 ustar sylvestre sylvestre SUBROUTINE ZHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA,BETA INTEGER K,LDA,LDC,N CHARACTER TRANS,UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),C(LDC,*) * .. * * Purpose * ======= * * ZHERK performs one of the hermitian rank k operations * * C := alpha*A*A**H + beta*C, * * or * * C := alpha*A**H*A + beta*C, * * where alpha and beta are real scalars, C is an n by n hermitian * matrix and A is an n by k matrix in the first case and a k by n * matrix in the second case. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*A**H + beta*C. * * TRANS = 'C' or 'c' C := alpha*A**H*A + beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrix A, and on entry with * TRANS = 'C' or 'c', K specifies the number of rows of the * matrix A. K must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - COMPLEX*16 array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the hermitian matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the hermitian matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero, and on exit they * are set to zero. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1. * Ed Anderson, Cray Research Inc. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DBLE,DCMPLX,DCONJG,MAX * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP DOUBLE PRECISION RTEMP INTEGER I,INFO,J,L,NROWA LOGICAL UPPER * .. * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * * Test the input parameters. * IF (LSAME(TRANS,'N')) THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 1 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. + (.NOT.LSAME(TRANS,'C'))) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (K.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDC.LT.MAX(1,N)) THEN INFO = 10 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHERK ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (UPPER) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,J C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,J - 1 C(I,J) = BETA*C(I,J) 30 CONTINUE C(J,J) = BETA*DBLE(C(J,J)) 40 CONTINUE END IF ELSE IF (BETA.EQ.ZERO) THEN DO 60 J = 1,N DO 50 I = J,N C(I,J) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1,N C(J,J) = BETA*DBLE(C(J,J)) DO 70 I = J + 1,N C(I,J) = BETA*C(I,J) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF (LSAME(TRANS,'N')) THEN * * Form C := alpha*A*A**H + beta*C. * IF (UPPER) THEN DO 130 J = 1,N IF (BETA.EQ.ZERO) THEN DO 90 I = 1,J C(I,J) = ZERO 90 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 100 I = 1,J - 1 C(I,J) = BETA*C(I,J) 100 CONTINUE C(J,J) = BETA*DBLE(C(J,J)) ELSE C(J,J) = DBLE(C(J,J)) END IF DO 120 L = 1,K IF (A(J,L).NE.DCMPLX(ZERO)) THEN TEMP = ALPHA*DCONJG(A(J,L)) DO 110 I = 1,J - 1 C(I,J) = C(I,J) + TEMP*A(I,L) 110 CONTINUE C(J,J) = DBLE(C(J,J)) + DBLE(TEMP*A(I,L)) END IF 120 CONTINUE 130 CONTINUE ELSE DO 180 J = 1,N IF (BETA.EQ.ZERO) THEN DO 140 I = J,N C(I,J) = ZERO 140 CONTINUE ELSE IF (BETA.NE.ONE) THEN C(J,J) = BETA*DBLE(C(J,J)) DO 150 I = J + 1,N C(I,J) = BETA*C(I,J) 150 CONTINUE ELSE C(J,J) = DBLE(C(J,J)) END IF DO 170 L = 1,K IF (A(J,L).NE.DCMPLX(ZERO)) THEN TEMP = ALPHA*DCONJG(A(J,L)) C(J,J) = DBLE(C(J,J)) + DBLE(TEMP*A(J,L)) DO 160 I = J + 1,N C(I,J) = C(I,J) + TEMP*A(I,L) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A**H*A + beta*C. * IF (UPPER) THEN DO 220 J = 1,N DO 200 I = 1,J - 1 TEMP = ZERO DO 190 L = 1,K TEMP = TEMP + DCONJG(A(L,I))*A(L,J) 190 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 200 CONTINUE RTEMP = ZERO DO 210 L = 1,K RTEMP = RTEMP + DCONJG(A(L,J))*A(L,J) 210 CONTINUE IF (BETA.EQ.ZERO) THEN C(J,J) = ALPHA*RTEMP ELSE C(J,J) = ALPHA*RTEMP + BETA*DBLE(C(J,J)) END IF 220 CONTINUE ELSE DO 260 J = 1,N RTEMP = ZERO DO 230 L = 1,K RTEMP = RTEMP + DCONJG(A(L,J))*A(L,J) 230 CONTINUE IF (BETA.EQ.ZERO) THEN C(J,J) = ALPHA*RTEMP ELSE C(J,J) = ALPHA*RTEMP + BETA*DBLE(C(J,J)) END IF DO 250 I = J + 1,N TEMP = ZERO DO 240 L = 1,K TEMP = TEMP + DCONJG(A(L,I))*A(L,J) 240 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 250 CONTINUE 260 CONTINUE END IF END IF * RETURN * * End of ZHERK . * END blas-1.2.orig/src/srotm.f 0000640 0001750 0001750 00000007623 11616621632 016230 0 ustar sylvestre sylvestre SUBROUTINE SROTM(N,SX,INCX,SY,INCY,SPARAM) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. REAL SPARAM(5),SX(*),SY(*) * .. * * Purpose * ======= * * APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX * * (SX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF SX ARE IN * (SX**T) * * SX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE * LX = (-INCX)*N, AND SIMILARLY FOR SY USING USING LY AND INCY. * WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. * * SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 * * (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) * H=( ) ( ) ( ) ( ) * (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). * SEE SROTMG FOR A DESCRIPTION OF DATA STORAGE IN SPARAM. * * * Arguments * ========= * * N (input) INTEGER * number of elements in input vector(s) * * SX (input/output) REAL array, dimension N * double precision vector with N elements * * INCX (input) INTEGER * storage spacing between elements of SX * * SY (input/output) REAL array, dimension N * double precision vector with N elements * * INCY (input) INTEGER * storage spacing between elements of SY * * SPARAM (input/output) REAL array, dimension 5 * SPARAM(1)=SFLAG * SPARAM(2)=SH11 * SPARAM(3)=SH21 * SPARAM(4)=SH12 * SPARAM(5)=SH22 * * ===================================================================== * * .. Local Scalars .. REAL SFLAG,SH11,SH12,SH21,SH22,TWO,W,Z,ZERO INTEGER I,KX,KY,NSTEPS * .. * .. Data statements .. DATA ZERO,TWO/0.E0,2.E0/ * .. * SFLAG = SPARAM(1) IF (N.LE.0 .OR. (SFLAG+TWO.EQ.ZERO)) RETURN IF (INCX.EQ.INCY.AND.INCX.GT.0) THEN * NSTEPS = N*INCX IF (SFLAG.LT.ZERO) THEN SH11 = SPARAM(2) SH12 = SPARAM(4) SH21 = SPARAM(3) SH22 = SPARAM(5) DO I = 1,NSTEPS,INCX W = SX(I) Z = SY(I) SX(I) = W*SH11 + Z*SH12 SY(I) = W*SH21 + Z*SH22 END DO ELSE IF (SFLAG.EQ.ZERO) THEN SH12 = SPARAM(4) SH21 = SPARAM(3) DO I = 1,NSTEPS,INCX W = SX(I) Z = SY(I) SX(I) = W + Z*SH12 SY(I) = W*SH21 + Z END DO ELSE SH11 = SPARAM(2) SH22 = SPARAM(5) DO I = 1,NSTEPS,INCX W = SX(I) Z = SY(I) SX(I) = W*SH11 + Z SY(I) = -W + SH22*Z END DO END IF ELSE KX = 1 KY = 1 IF (INCX.LT.0) KX = 1 + (1-N)*INCX IF (INCY.LT.0) KY = 1 + (1-N)*INCY * IF (SFLAG.LT.ZERO) THEN SH11 = SPARAM(2) SH12 = SPARAM(4) SH21 = SPARAM(3) SH22 = SPARAM(5) DO I = 1,N W = SX(KX) Z = SY(KY) SX(KX) = W*SH11 + Z*SH12 SY(KY) = W*SH21 + Z*SH22 KX = KX + INCX KY = KY + INCY END DO ELSE IF (SFLAG.EQ.ZERO) THEN SH12 = SPARAM(4) SH21 = SPARAM(3) DO I = 1,N W = SX(KX) Z = SY(KY) SX(KX) = W + Z*SH12 SY(KY) = W*SH21 + Z KX = KX + INCX KY = KY + INCY END DO ELSE SH11 = SPARAM(2) SH22 = SPARAM(5) DO I = 1,N W = SX(KX) Z = SY(KY) SX(KX) = W*SH11 + Z SY(KY) = -W + SH22*Z KX = KX + INCX KY = KY + INCY END DO END IF END IF RETURN END blas-1.2.orig/src/zdrot.f 0000640 0001750 0001750 00000005237 11616621632 016225 0 ustar sylvestre sylvestre SUBROUTINE ZDROT( N, CX, INCX, CY, INCY, C, S ) * * .. Scalar Arguments .. INTEGER INCX, INCY, N DOUBLE PRECISION C, S * .. * .. Array Arguments .. COMPLEX*16 CX( * ), CY( * ) * .. * * Purpose * ======= * * Applies a plane rotation, where the cos and sin (c and s) are real * and the vectors cx and cy are complex. * jack dongarra, linpack, 3/11/78. * * Arguments * ========== * * N (input) INTEGER * On entry, N specifies the order of the vectors cx and cy. * N must be at least zero. * Unchanged on exit. * * CX (input) COMPLEX*16 array, dimension at least * ( 1 + ( N - 1 )*abs( INCX ) ). * Before entry, the incremented array CX must contain the n * element vector cx. On exit, CX is overwritten by the updated * vector cx. * * INCX (input) INTEGER * On entry, INCX specifies the increment for the elements of * CX. INCX must not be zero. * Unchanged on exit. * * CY (input) COMPLEX*16 array, dimension at least * ( 1 + ( N - 1 )*abs( INCY ) ). * Before entry, the incremented array CY must contain the n * element vector cy. On exit, CY is overwritten by the updated * vector cy. * * INCY (input) INTEGER * On entry, INCY specifies the increment for the elements of * CY. INCY must not be zero. * Unchanged on exit. * * C (input) DOUBLE PRECISION * On entry, C specifies the cosine, cos. * Unchanged on exit. * * S (input) DOUBLE PRECISION * On entry, S specifies the sine, sin. * Unchanged on exit. * * ===================================================================== * * .. Local Scalars .. INTEGER I, IX, IY COMPLEX*16 CTEMP * .. * .. Executable Statements .. * IF( N.LE.0 ) $ RETURN IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN * * code for both increments equal to 1 * DO I = 1, N CTEMP = C*CX( I ) + S*CY( I ) CY( I ) = C*CY( I ) - S*CX( I ) CX( I ) = CTEMP END DO ELSE * * code for unequal increments or equal increments not equal * to 1 * IX = 1 IY = 1 IF( INCX.LT.0 ) $ IX = ( -N+1 )*INCX + 1 IF( INCY.LT.0 ) $ IY = ( -N+1 )*INCY + 1 DO I = 1, N CTEMP = C*CX( IX ) + S*CY( IY ) CY( IY ) = C*CY( IY ) - S*CX( IX ) CX( IX ) = CTEMP IX = IX + INCX IY = IY + INCY END DO END IF RETURN END blas-1.2.orig/src/dgemv.f 0000640 0001750 0001750 00000016530 11616621632 016163 0 ustar sylvestre sylvestre SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA,BETA INTEGER INCX,INCY,LDA,M,N CHARACTER TRANS * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * DGEMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n matrix. * * Arguments * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * X - DOUBLE PRECISION array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - DOUBLE PRECISION array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry with BETA non-zero, the incremented array Y * must contain the vector y. On exit, Y is overwritten by the * updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 1 ELSE IF (M.LT.0) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 ELSE IF (INCY.EQ.0) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('DGEMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF (LSAME(TRANS,'N')) THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (LENX-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (LENY-1)*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,LENY Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,LENY Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,LENY Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,LENY Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(TRANS,'N')) THEN * * Form y := alpha*A*x + y. * JX = KX IF (INCY.EQ.1) THEN DO 60 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) DO 50 I = 1,M Y(I) = Y(I) + TEMP*A(I,J) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IY = KY DO 70 I = 1,M Y(IY) = Y(IY) + TEMP*A(I,J) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF ELSE * * Form y := alpha*A**T*x + y. * JY = KY IF (INCX.EQ.1) THEN DO 100 J = 1,N TEMP = ZERO DO 90 I = 1,M TEMP = TEMP + A(I,J)*X(I) 90 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 100 CONTINUE ELSE DO 120 J = 1,N TEMP = ZERO IX = KX DO 110 I = 1,M TEMP = TEMP + A(I,J)*X(IX) IX = IX + INCX 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of DGEMV . * END blas-1.2.orig/src/zher.f 0000640 0001750 0001750 00000015114 11616621632 016026 0 ustar sylvestre sylvestre SUBROUTINE ZHER(UPLO,N,ALPHA,X,INCX,A,LDA) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER INCX,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*) * .. * * Purpose * ======= * * ZHER performs the hermitian rank 1 operation * * A := alpha*x*x**H + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n hermitian matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the hermitian matrix and the strictly * lower triangular part of A is not referenced. On exit, the * upper triangular part of the array A is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the hermitian matrix and the strictly * upper triangular part of A is not referenced. On exit, the * lower triangular part of the array A is overwritten by the * lower triangular part of the updated matrix. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero, and on exit they * are set to zero. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KX * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG,MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHER ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.DBLE(ZERO))) RETURN * * Set the start point in X if the increment is not unity. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF (LSAME(UPLO,'U')) THEN * * Form A when A is stored in upper triangle. * IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(J)) DO 10 I = 1,J - 1 A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE A(J,J) = DBLE(A(J,J)) + DBLE(X(J)*TEMP) ELSE A(J,J) = DBLE(A(J,J)) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(JX)) IX = KX DO 30 I = 1,J - 1 A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE A(J,J) = DBLE(A(J,J)) + DBLE(X(JX)*TEMP) ELSE A(J,J) = DBLE(A(J,J)) END IF JX = JX + INCX 40 CONTINUE END IF ELSE * * Form A when A is stored in lower triangle. * IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(J)) A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(J)) DO 50 I = J + 1,N A(I,J) = A(I,J) + X(I)*TEMP 50 CONTINUE ELSE A(J,J) = DBLE(A(J,J)) END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(JX)) A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(JX)) IX = JX DO 70 I = J + 1,N IX = IX + INCX A(I,J) = A(I,J) + X(IX)*TEMP 70 CONTINUE ELSE A(J,J) = DBLE(A(J,J)) END IF JX = JX + INCX 80 CONTINUE END IF END IF * RETURN * * End of ZHER . * END blas-1.2.orig/src/dgemm.f 0000640 0001750 0001750 00000023077 11616621632 016156 0 ustar sylvestre sylvestre SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA,BETA INTEGER K,LDA,LDB,LDC,M,N CHARACTER TRANSA,TRANSB * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * DGEMM performs one of the matrix-matrix operations * * C := alpha*op( A )*op( B ) + beta*C, * * where op( X ) is one of * * op( X ) = X or op( X ) = X**T, * * alpha and beta are scalars, and A, B and C are matrices, with op( A ) * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. * * Arguments * ========== * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n', op( A ) = A. * * TRANSA = 'T' or 't', op( A ) = A**T. * * TRANSA = 'C' or 'c', op( A ) = A**T. * * Unchanged on exit. * * TRANSB - CHARACTER*1. * On entry, TRANSB specifies the form of op( B ) to be used in * the matrix multiplication as follows: * * TRANSB = 'N' or 'n', op( B ) = B. * * TRANSB = 'T' or 't', op( B ) = B**T. * * TRANSB = 'C' or 'c', op( B ) = B**T. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix * op( A ) and of the matrix C. M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix * op( B ) and the number of columns of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry, K specifies the number of columns of the matrix * op( A ) and the number of rows of the matrix op( B ). K must * be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is * k when TRANSA = 'N' or 'n', and is m otherwise. * Before entry with TRANSA = 'N' or 'n', the leading m by k * part of the array A must contain the matrix A, otherwise * the leading k by m part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANSA = 'N' or 'n' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, k ). * Unchanged on exit. * * B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is * n when TRANSB = 'N' or 'n', and is k otherwise. * Before entry with TRANSB = 'N' or 'n', the leading k by n * part of the array B must contain the matrix B, otherwise * the leading n by k part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANSB = 'N' or 'n' then * LDB must be at least max( 1, k ), otherwise LDB must be at * least max( 1, n ). * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n matrix * ( alpha*op( A )*op( B ) + beta*C ). * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB LOGICAL NOTA,NOTB * .. * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * * Set NOTA and NOTB as true if A and B respectively are not * transposed and set NROWA, NCOLA and NROWB as the number of rows * and columns of A and the number of rows of B respectively. * NOTA = LSAME(TRANSA,'N') NOTB = LSAME(TRANSB,'N') IF (NOTA) THEN NROWA = M NCOLA = K ELSE NROWA = K NCOLA = M END IF IF (NOTB) THEN NROWB = K ELSE NROWB = N END IF * * Test the input parameters. * INFO = 0 IF ((.NOT.NOTA) .AND. (.NOT.LSAME(TRANSA,'C')) .AND. + (.NOT.LSAME(TRANSA,'T'))) THEN INFO = 1 ELSE IF ((.NOT.NOTB) .AND. (.NOT.LSAME(TRANSB,'C')) .AND. + (.NOT.LSAME(TRANSB,'T'))) THEN INFO = 2 ELSE IF (M.LT.0) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 8 ELSE IF (LDB.LT.MAX(1,NROWB)) THEN INFO = 10 ELSE IF (LDC.LT.MAX(1,M)) THEN INFO = 13 END IF IF (INFO.NE.0) THEN CALL XERBLA('DGEMM ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And if alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,M C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF (NOTB) THEN IF (NOTA) THEN * * Form C := alpha*A*B + beta*C. * DO 90 J = 1,N IF (BETA.EQ.ZERO) THEN DO 50 I = 1,M C(I,J) = ZERO 50 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 60 I = 1,M C(I,J) = BETA*C(I,J) 60 CONTINUE END IF DO 80 L = 1,K IF (B(L,J).NE.ZERO) THEN TEMP = ALPHA*B(L,J) DO 70 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 70 CONTINUE END IF 80 CONTINUE 90 CONTINUE ELSE * * Form C := alpha*A**T*B + beta*C * DO 120 J = 1,N DO 110 I = 1,M TEMP = ZERO DO 100 L = 1,K TEMP = TEMP + A(L,I)*B(L,J) 100 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 110 CONTINUE 120 CONTINUE END IF ELSE IF (NOTA) THEN * * Form C := alpha*A*B**T + beta*C * DO 170 J = 1,N IF (BETA.EQ.ZERO) THEN DO 130 I = 1,M C(I,J) = ZERO 130 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 140 I = 1,M C(I,J) = BETA*C(I,J) 140 CONTINUE END IF DO 160 L = 1,K IF (B(J,L).NE.ZERO) THEN TEMP = ALPHA*B(J,L) DO 150 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 150 CONTINUE END IF 160 CONTINUE 170 CONTINUE ELSE * * Form C := alpha*A**T*B**T + beta*C * DO 200 J = 1,N DO 190 I = 1,M TEMP = ZERO DO 180 L = 1,K TEMP = TEMP + A(L,I)*B(J,L) 180 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 190 CONTINUE 200 CONTINUE END IF END IF * RETURN * * End of DGEMM . * END blas-1.2.orig/src/cgemv.f 0000640 0001750 0001750 00000017722 11616621632 016166 0 ustar sylvestre sylvestre SUBROUTINE CGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. COMPLEX ALPHA,BETA INTEGER INCX,INCY,LDA,M,N CHARACTER TRANS * .. * .. Array Arguments .. COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * CGEMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or * * y := alpha*A**H*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n matrix. * * Arguments * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * X - COMPLEX array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - COMPLEX . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - COMPLEX array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry with BETA non-zero, the incremented array Y * must contain the vector y. On exit, Y is overwritten by the * updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ONE PARAMETER (ONE= (1.0E+0,0.0E+0)) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY LOGICAL NOCONJ * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 1 ELSE IF (M.LT.0) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 ELSE IF (INCY.EQ.0) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('CGEMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * NOCONJ = LSAME(TRANS,'T') * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF (LSAME(TRANS,'N')) THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (LENX-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (LENY-1)*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,LENY Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,LENY Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,LENY Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,LENY Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(TRANS,'N')) THEN * * Form y := alpha*A*x + y. * JX = KX IF (INCY.EQ.1) THEN DO 60 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) DO 50 I = 1,M Y(I) = Y(I) + TEMP*A(I,J) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IY = KY DO 70 I = 1,M Y(IY) = Y(IY) + TEMP*A(I,J) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF ELSE * * Form y := alpha*A**T*x + y or y := alpha*A**H*x + y. * JY = KY IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = ZERO IF (NOCONJ) THEN DO 90 I = 1,M TEMP = TEMP + A(I,J)*X(I) 90 CONTINUE ELSE DO 100 I = 1,M TEMP = TEMP + CONJG(A(I,J))*X(I) 100 CONTINUE END IF Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 110 CONTINUE ELSE DO 140 J = 1,N TEMP = ZERO IX = KX IF (NOCONJ) THEN DO 120 I = 1,M TEMP = TEMP + A(I,J)*X(IX) IX = IX + INCX 120 CONTINUE ELSE DO 130 I = 1,M TEMP = TEMP + CONJG(A(I,J))*X(IX) IX = IX + INCX 130 CONTINUE END IF Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 140 CONTINUE END IF END IF * RETURN * * End of CGEMV . * END blas-1.2.orig/src/sswap.f 0000640 0001750 0001750 00000003320 11616621632 016207 0 ustar sylvestre sylvestre SUBROUTINE SSWAP(N,SX,INCX,SY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. REAL SX(*),SY(*) * .. * * Purpose * ======= * * interchanges two vectors. * uses unrolled loops for increments equal to 1. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. REAL STEMP INTEGER I,IX,IY,M,MP1 * .. * .. Intrinsic Functions .. INTRINSIC MOD * .. IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * * * clean-up loop * M = MOD(N,3) IF (M.NE.0) THEN DO I = 1,M STEMP = SX(I) SX(I) = SY(I) SY(I) = STEMP END DO IF (N.LT.3) RETURN END IF MP1 = M + 1 DO I = MP1,N,3 STEMP = SX(I) SX(I) = SY(I) SY(I) = STEMP STEMP = SX(I+1) SX(I+1) = SY(I+1) SY(I+1) = STEMP STEMP = SX(I+2) SX(I+2) = SY(I+2) SY(I+2) = STEMP END DO ELSE * * code for unequal increments or equal increments not equal * to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N STEMP = SX(IX) SX(IX) = SY(IY) SY(IY) = STEMP IX = IX + INCX IY = IY + INCY END DO END IF RETURN END blas-1.2.orig/src/csrot.f 0000640 0001750 0001750 00000005203 11616621632 016206 0 ustar sylvestre sylvestre SUBROUTINE CSROT( N, CX, INCX, CY, INCY, C, S ) * * .. Scalar Arguments .. INTEGER INCX, INCY, N REAL C, S * .. * .. Array Arguments .. COMPLEX CX( * ), CY( * ) * .. * * Purpose * ======= * * CSROT applies a plane rotation, where the cos and sin (c and s) are real * and the vectors cx and cy are complex. * jack dongarra, linpack, 3/11/78. * * Arguments * ========== * * N (input) INTEGER * On entry, N specifies the order of the vectors cx and cy. * N must be at least zero. * Unchanged on exit. * * CX (input) COMPLEX array, dimension at least * ( 1 + ( N - 1 )*abs( INCX ) ). * Before entry, the incremented array CX must contain the n * element vector cx. On exit, CX is overwritten by the updated * vector cx. * * INCX (input) INTEGER * On entry, INCX specifies the increment for the elements of * CX. INCX must not be zero. * Unchanged on exit. * * CY (input) COMPLEX array, dimension at least * ( 1 + ( N - 1 )*abs( INCY ) ). * Before entry, the incremented array CY must contain the n * element vector cy. On exit, CY is overwritten by the updated * vector cy. * * INCY (input) INTEGER * On entry, INCY specifies the increment for the elements of * CY. INCY must not be zero. * Unchanged on exit. * * C (input) REAL * On entry, C specifies the cosine, cos. * Unchanged on exit. * * S (input) REAL * On entry, S specifies the sine, sin. * Unchanged on exit. * * ===================================================================== * * .. Local Scalars .. INTEGER I, IX, IY COMPLEX CTEMP * .. * .. Executable Statements .. * IF( N.LE.0 ) $ RETURN IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN * * code for both increments equal to 1 * DO I = 1, N CTEMP = C*CX( I ) + S*CY( I ) CY( I ) = C*CY( I ) - S*CX( I ) CX( I ) = CTEMP END DO ELSE * * code for unequal increments or equal increments not equal * to 1 * IX = 1 IY = 1 IF( INCX.LT.0 ) $ IX = ( -N+1 )*INCX + 1 IF( INCY.LT.0 ) $ IY = ( -N+1 )*INCY + 1 DO I = 1, N CTEMP = C*CX( IX ) + S*CY( IY ) CY( IY ) = C*CY( IY ) - S*CX( IX ) CX( IX ) = CTEMP IX = IX + INCX IY = IY + INCY END DO END IF RETURN END blas-1.2.orig/src/dasum.f 0000640 0001750 0001750 00000003010 11616621632 016157 0 ustar sylvestre sylvestre DOUBLE PRECISION FUNCTION DASUM(N,DX,INCX) * .. Scalar Arguments .. INTEGER INCX,N * .. * .. Array Arguments .. DOUBLE PRECISION DX(*) * .. * * Purpose * ======= * * DASUM takes the sum of the absolute values. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. DOUBLE PRECISION DTEMP INTEGER I,M,MP1,NINCX * .. * .. Intrinsic Functions .. INTRINSIC DABS,MOD * .. DASUM = 0.0d0 DTEMP = 0.0d0 IF (N.LE.0 .OR. INCX.LE.0) RETURN IF (INCX.EQ.1) THEN * code for increment equal to 1 * * * clean-up loop * M = MOD(N,6) IF (M.NE.0) THEN DO I = 1,M DTEMP = DTEMP + DABS(DX(I)) END DO IF (N.LT.6) THEN DASUM = DTEMP RETURN END IF END IF MP1 = M + 1 DO I = MP1,N,6 DTEMP = DTEMP + DABS(DX(I)) + DABS(DX(I+1)) + $ DABS(DX(I+2)) + DABS(DX(I+3)) + $ DABS(DX(I+4)) + DABS(DX(I+5)) END DO ELSE * * code for increment not equal to 1 * NINCX = N*INCX DO I = 1,NINCX,INCX DTEMP = DTEMP + DABS(DX(I)) END DO END IF DASUM = DTEMP RETURN END blas-1.2.orig/src/cdotu.f 0000640 0001750 0001750 00000002260 11616621632 016172 0 ustar sylvestre sylvestre COMPLEX FUNCTION CDOTU(N,CX,INCX,CY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. COMPLEX CX(*),CY(*) * .. * * Purpose * ======= * * CDOTU forms the dot product of two vectors. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. COMPLEX CTEMP INTEGER I,IX,IY * .. CTEMP = (0.0,0.0) CDOTU = (0.0,0.0) IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * DO I = 1,N CTEMP = CTEMP + CX(I)*CY(I) END DO ELSE * * code for unequal increments or equal increments * not equal to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N CTEMP = CTEMP + CX(IX)*CY(IY) IX = IX + INCX IY = IY + INCY END DO END IF CDOTU = CTEMP RETURN END blas-1.2.orig/src/isamax.f 0000640 0001750 0001750 00000002500 11616621632 016333 0 ustar sylvestre sylvestre INTEGER FUNCTION ISAMAX(N,SX,INCX) * .. Scalar Arguments .. INTEGER INCX,N * .. * .. Array Arguments .. REAL SX(*) * .. * * Purpose * ======= * * ISAMAX finds the index of element having max. absolute value. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. REAL SMAX INTEGER I,IX * .. * .. Intrinsic Functions .. INTRINSIC ABS * .. ISAMAX = 0 IF (N.LT.1 .OR. INCX.LE.0) RETURN ISAMAX = 1 IF (N.EQ.1) RETURN IF (INCX.EQ.1) THEN * * code for increment equal to 1 * SMAX = ABS(SX(1)) DO I = 2,N IF (ABS(SX(I)).GT.SMAX) THEN ISAMAX = I SMAX = ABS(SX(I)) END IF END DO ELSE * * code for increment not equal to 1 * IX = 1 SMAX = ABS(SX(1)) IX = IX + INCX DO I = 2,N IF (ABS(SX(IX)).GT.SMAX) THEN ISAMAX = I SMAX = ABS(SX(IX)) END IF IX = IX + INCX END DO END IF RETURN END blas-1.2.orig/src/crotg.f 0000640 0001750 0001750 00000001370 11616621632 016173 0 ustar sylvestre sylvestre SUBROUTINE CROTG(CA,CB,C,S) * .. Scalar Arguments .. COMPLEX CA,CB,S REAL C * .. * * Purpose * ======= * * CROTG determines a complex Givens rotation. * * ===================================================================== * * .. Local Scalars .. COMPLEX ALPHA REAL NORM,SCALE * .. * .. Intrinsic Functions .. INTRINSIC CABS,CONJG,SQRT * .. IF (CABS(CA).EQ.0.) THEN C = 0. S = (1.,0.) CA = CB ELSE SCALE = CABS(CA) + CABS(CB) NORM = SCALE*SQRT((CABS(CA/SCALE))**2+ (CABS(CB/SCALE))**2) ALPHA = CA/CABS(CA) C = CABS(CA)/NORM S = ALPHA*CONJG(CB)/NORM CA = ALPHA*NORM END IF RETURN END blas-1.2.orig/src/ztrsm.f 0000640 0001750 0001750 00000033136 11616621632 016241 0 ustar sylvestre sylvestre SUBROUTINE ZTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA INTEGER LDA,LDB,M,N CHARACTER DIAG,SIDE,TRANSA,UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),B(LDB,*) * .. * * Purpose * ======= * * ZTRSM solves one of the matrix equations * * op( A )*X = alpha*B, or X*op( A ) = alpha*B, * * where alpha is a scalar, X and B are m by n matrices, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A**T or op( A ) = A**H. * * The matrix X is overwritten on B. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) appears on the left * or right of X as follows: * * SIDE = 'L' or 'l' op( A )*X = alpha*B. * * SIDE = 'R' or 'r' X*op( A ) = alpha*B. * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A**T. * * TRANSA = 'C' or 'c' op( A ) = A**H. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - COMPLEX*16 array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the right-hand side matrix B, and on exit is * overwritten by the solution matrix X. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG,MAX * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,J,K,NROWA LOGICAL LSIDE,NOCONJ,NOUNIT,UPPER * .. * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * * Test the input parameters. * LSIDE = LSAME(SIDE,'L') IF (LSIDE) THEN NROWA = M ELSE NROWA = N END IF NOCONJ = LSAME(TRANSA,'T') NOUNIT = LSAME(DIAG,'N') UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. + (.NOT.LSAME(TRANSA,'T')) .AND. + (.NOT.LSAME(TRANSA,'C'))) THEN INFO = 3 ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN INFO = 4 ELSE IF (M.LT.0) THEN INFO = 5 ELSE IF (N.LT.0) THEN INFO = 6 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZTRSM ',INFO) RETURN END IF * * Quick return if possible. * IF (M.EQ.0 .OR. N.EQ.0) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M B(I,J) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF (LSIDE) THEN IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*inv( A )*B. * IF (UPPER) THEN DO 60 J = 1,N IF (ALPHA.NE.ONE) THEN DO 30 I = 1,M B(I,J) = ALPHA*B(I,J) 30 CONTINUE END IF DO 50 K = M,1,-1 IF (B(K,J).NE.ZERO) THEN IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) DO 40 I = 1,K - 1 B(I,J) = B(I,J) - B(K,J)*A(I,K) 40 CONTINUE END IF 50 CONTINUE 60 CONTINUE ELSE DO 100 J = 1,N IF (ALPHA.NE.ONE) THEN DO 70 I = 1,M B(I,J) = ALPHA*B(I,J) 70 CONTINUE END IF DO 90 K = 1,M IF (B(K,J).NE.ZERO) THEN IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) DO 80 I = K + 1,M B(I,J) = B(I,J) - B(K,J)*A(I,K) 80 CONTINUE END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form B := alpha*inv( A**T )*B * or B := alpha*inv( A**H )*B. * IF (UPPER) THEN DO 140 J = 1,N DO 130 I = 1,M TEMP = ALPHA*B(I,J) IF (NOCONJ) THEN DO 110 K = 1,I - 1 TEMP = TEMP - A(K,I)*B(K,J) 110 CONTINUE IF (NOUNIT) TEMP = TEMP/A(I,I) ELSE DO 120 K = 1,I - 1 TEMP = TEMP - DCONJG(A(K,I))*B(K,J) 120 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(I,I)) END IF B(I,J) = TEMP 130 CONTINUE 140 CONTINUE ELSE DO 180 J = 1,N DO 170 I = M,1,-1 TEMP = ALPHA*B(I,J) IF (NOCONJ) THEN DO 150 K = I + 1,M TEMP = TEMP - A(K,I)*B(K,J) 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(I,I) ELSE DO 160 K = I + 1,M TEMP = TEMP - DCONJG(A(K,I))*B(K,J) 160 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(I,I)) END IF B(I,J) = TEMP 170 CONTINUE 180 CONTINUE END IF END IF ELSE IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*B*inv( A ). * IF (UPPER) THEN DO 230 J = 1,N IF (ALPHA.NE.ONE) THEN DO 190 I = 1,M B(I,J) = ALPHA*B(I,J) 190 CONTINUE END IF DO 210 K = 1,J - 1 IF (A(K,J).NE.ZERO) THEN DO 200 I = 1,M B(I,J) = B(I,J) - A(K,J)*B(I,K) 200 CONTINUE END IF 210 CONTINUE IF (NOUNIT) THEN TEMP = ONE/A(J,J) DO 220 I = 1,M B(I,J) = TEMP*B(I,J) 220 CONTINUE END IF 230 CONTINUE ELSE DO 280 J = N,1,-1 IF (ALPHA.NE.ONE) THEN DO 240 I = 1,M B(I,J) = ALPHA*B(I,J) 240 CONTINUE END IF DO 260 K = J + 1,N IF (A(K,J).NE.ZERO) THEN DO 250 I = 1,M B(I,J) = B(I,J) - A(K,J)*B(I,K) 250 CONTINUE END IF 260 CONTINUE IF (NOUNIT) THEN TEMP = ONE/A(J,J) DO 270 I = 1,M B(I,J) = TEMP*B(I,J) 270 CONTINUE END IF 280 CONTINUE END IF ELSE * * Form B := alpha*B*inv( A**T ) * or B := alpha*B*inv( A**H ). * IF (UPPER) THEN DO 330 K = N,1,-1 IF (NOUNIT) THEN IF (NOCONJ) THEN TEMP = ONE/A(K,K) ELSE TEMP = ONE/DCONJG(A(K,K)) END IF DO 290 I = 1,M B(I,K) = TEMP*B(I,K) 290 CONTINUE END IF DO 310 J = 1,K - 1 IF (A(J,K).NE.ZERO) THEN IF (NOCONJ) THEN TEMP = A(J,K) ELSE TEMP = DCONJG(A(J,K)) END IF DO 300 I = 1,M B(I,J) = B(I,J) - TEMP*B(I,K) 300 CONTINUE END IF 310 CONTINUE IF (ALPHA.NE.ONE) THEN DO 320 I = 1,M B(I,K) = ALPHA*B(I,K) 320 CONTINUE END IF 330 CONTINUE ELSE DO 380 K = 1,N IF (NOUNIT) THEN IF (NOCONJ) THEN TEMP = ONE/A(K,K) ELSE TEMP = ONE/DCONJG(A(K,K)) END IF DO 340 I = 1,M B(I,K) = TEMP*B(I,K) 340 CONTINUE END IF DO 360 J = K + 1,N IF (A(J,K).NE.ZERO) THEN IF (NOCONJ) THEN TEMP = A(J,K) ELSE TEMP = DCONJG(A(J,K)) END IF DO 350 I = 1,M B(I,J) = B(I,J) - TEMP*B(I,K) 350 CONTINUE END IF 360 CONTINUE IF (ALPHA.NE.ONE) THEN DO 370 I = 1,M B(I,K) = ALPHA*B(I,K) 370 CONTINUE END IF 380 CONTINUE END IF END IF END IF * RETURN * * End of ZTRSM . * END blas-1.2.orig/src/ssyr.f 0000640 0001750 0001750 00000013445 11616621632 016063 0 ustar sylvestre sylvestre SUBROUTINE SSYR(UPLO,N,ALPHA,X,INCX,A,LDA) * .. Scalar Arguments .. REAL ALPHA INTEGER INCX,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. REAL A(LDA,*),X(*) * .. * * Purpose * ======= * * SSYR performs the symmetric rank 1 operation * * A := alpha*x*x**T + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n symmetric matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of A is not referenced. On exit, the * upper triangular part of the array A is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of A is not referenced. On exit, the * lower triangular part of the array A is overwritten by the * lower triangular part of the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,IX,J,JX,KX * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSYR ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set the start point in X if the increment is not unity. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF (LSAME(UPLO,'U')) THEN * * Form A when A is stored in upper triangle. * IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) DO 10 I = 1,J A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = KX DO 30 I = 1,J A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JX = JX + INCX 40 CONTINUE END IF ELSE * * Form A when A is stored in lower triangle. * IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) DO 50 I = J,N A(I,J) = A(I,J) + X(I)*TEMP 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = JX DO 70 I = J,N A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF * RETURN * * End of SSYR . * END blas-1.2.orig/src/dgbmv.f 0000640 0001750 0001750 00000022002 11616621632 016147 0 ustar sylvestre sylvestre SUBROUTINE DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA,BETA INTEGER INCX,INCY,KL,KU,LDA,M,N CHARACTER TRANS * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * DGBMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n band matrix, with kl sub-diagonals and ku super-diagonals. * * Arguments * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * KL - INTEGER. * On entry, KL specifies the number of sub-diagonals of the * matrix A. KL must satisfy 0 .le. KL. * Unchanged on exit. * * KU - INTEGER. * On entry, KU specifies the number of super-diagonals of the * matrix A. KU must satisfy 0 .le. KU. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry, the leading ( kl + ku + 1 ) by n part of the * array A must contain the matrix of coefficients, supplied * column by column, with the leading diagonal of the matrix in * row ( ku + 1 ) of the array, the first super-diagonal * starting at position 2 in row ku, the first sub-diagonal * starting at position 1 in row ( ku + 2 ), and so on. * Elements in the array A that do not correspond to elements * in the band matrix (such as the top left ku by ku triangle) * are not referenced. * The following program segment will transfer a band matrix * from conventional full matrix storage to band storage: * * DO 20, J = 1, N * K = KU + 1 - J * DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) * A( K + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( kl + ku + 1 ). * Unchanged on exit. * * X - DOUBLE PRECISION array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - DOUBLE PRECISION array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry, the incremented array Y must contain the * vector y. On exit, Y is overwritten by the updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 1 ELSE IF (M.LT.0) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (KL.LT.0) THEN INFO = 4 ELSE IF (KU.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (KL+KU+1)) THEN INFO = 8 ELSE IF (INCX.EQ.0) THEN INFO = 10 ELSE IF (INCY.EQ.0) THEN INFO = 13 END IF IF (INFO.NE.0) THEN CALL XERBLA('DGBMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF (LSAME(TRANS,'N')) THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (LENX-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (LENY-1)*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the band part of A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,LENY Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,LENY Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,LENY Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,LENY Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN KUP1 = KU + 1 IF (LSAME(TRANS,'N')) THEN * * Form y := alpha*A*x + y. * JX = KX IF (INCY.EQ.1) THEN DO 60 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) K = KUP1 - J DO 50 I = MAX(1,J-KU),MIN(M,J+KL) Y(I) = Y(I) + TEMP*A(K+I,J) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IY = KY K = KUP1 - J DO 70 I = MAX(1,J-KU),MIN(M,J+KL) Y(IY) = Y(IY) + TEMP*A(K+I,J) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX IF (J.GT.KU) KY = KY + INCY 80 CONTINUE END IF ELSE * * Form y := alpha*A**T*x + y. * JY = KY IF (INCX.EQ.1) THEN DO 100 J = 1,N TEMP = ZERO K = KUP1 - J DO 90 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + A(K+I,J)*X(I) 90 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 100 CONTINUE ELSE DO 120 J = 1,N TEMP = ZERO IX = KX K = KUP1 - J DO 110 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + A(K+I,J)*X(IX) IX = IX + INCX 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY IF (J.GT.KU) KX = KX + INCX 120 CONTINUE END IF END IF * RETURN * * End of DGBMV . * END blas-1.2.orig/src/dsymv.f 0000640 0001750 0001750 00000017476 11616621632 016235 0 ustar sylvestre sylvestre SUBROUTINE DSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA,BETA INTEGER INCX,INCY,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * DSYMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n symmetric matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of A is not referenced. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. On exit, Y is overwritten by the updated * vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 5 ELSE IF (INCX.EQ.0) THEN INFO = 7 ELSE IF (INCY.EQ.0) THEN INFO = 10 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSYMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set up the start points in X and Y. * IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(UPLO,'U')) THEN * * Form y when A is stored in upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO DO 50 I = 1,J - 1 Y(I) = Y(I) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(I) 50 CONTINUE Y(J) = Y(J) + TEMP1*A(J,J) + ALPHA*TEMP2 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY DO 70 I = 1,J - 1 Y(IY) = Y(IY) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*A(J,J) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF ELSE * * Form y when A is stored in lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*A(J,J) DO 90 I = J + 1,N Y(I) = Y(I) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(I) 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*A(J,J) IX = JX IY = JY DO 110 I = J + 1,N IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of DSYMV . * END blas-1.2.orig/src/drotm.f 0000640 0001750 0001750 00000007707 11616621632 016214 0 ustar sylvestre sylvestre SUBROUTINE DROTM(N,DX,INCX,DY,INCY,DPARAM) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. DOUBLE PRECISION DPARAM(5),DX(*),DY(*) * .. * * Purpose * ======= * * APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX * * (DX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF DX ARE IN * (DY**T) * * DX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE * LX = (-INCX)*N, AND SIMILARLY FOR SY USING LY AND INCY. * WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. * * DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 * * (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) * H=( ) ( ) ( ) ( ) * (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). * SEE DROTMG FOR A DESCRIPTION OF DATA STORAGE IN DPARAM. * * Arguments * ========= * * N (input) INTEGER * number of elements in input vector(s) * * DX (input/output) DOUBLE PRECISION array, dimension N * double precision vector with N elements * * INCX (input) INTEGER * storage spacing between elements of DX * * DY (input/output) DOUBLE PRECISION array, dimension N * double precision vector with N elements * * INCY (input) INTEGER * storage spacing between elements of DY * * DPARAM (input/output) DOUBLE PRECISION array, dimension 5 * DPARAM(1)=DFLAG * DPARAM(2)=DH11 * DPARAM(3)=DH21 * DPARAM(4)=DH12 * DPARAM(5)=DH22 * * ===================================================================== * * .. Local Scalars .. DOUBLE PRECISION DFLAG,DH11,DH12,DH21,DH22,TWO,W,Z,ZERO INTEGER I,KX,KY,NSTEPS * .. * .. Data statements .. DATA ZERO,TWO/0.D0,2.D0/ * .. * DFLAG = DPARAM(1) IF (N.LE.0 .OR. (DFLAG+TWO.EQ.ZERO)) RETURN IF (INCX.EQ.INCY.AND.INCX.GT.0) THEN * NSTEPS = N*INCX IF (DFLAG.LT.ZERO) THEN DH11 = DPARAM(2) DH12 = DPARAM(4) DH21 = DPARAM(3) DH22 = DPARAM(5) DO I = 1,NSTEPS,INCX W = DX(I) Z = DY(I) DX(I) = W*DH11 + Z*DH12 DY(I) = W*DH21 + Z*DH22 END DO ELSE IF (DFLAG.EQ.ZERO) THEN DH12 = DPARAM(4) DH21 = DPARAM(3) DO I = 1,NSTEPS,INCX W = DX(I) Z = DY(I) DX(I) = W + Z*DH12 DY(I) = W*DH21 + Z END DO ELSE DH11 = DPARAM(2) DH22 = DPARAM(5) DO I = 1,NSTEPS,INCX W = DX(I) Z = DY(I) DX(I) = W*DH11 + Z DY(I) = -W + DH22*Z END DO END IF ELSE KX = 1 KY = 1 IF (INCX.LT.0) KX = 1 + (1-N)*INCX IF (INCY.LT.0) KY = 1 + (1-N)*INCY * IF (DFLAG.LT.ZERO) THEN DH11 = DPARAM(2) DH12 = DPARAM(4) DH21 = DPARAM(3) DH22 = DPARAM(5) DO I = 1,N W = DX(KX) Z = DY(KY) DX(KX) = W*DH11 + Z*DH12 DY(KY) = W*DH21 + Z*DH22 KX = KX + INCX KY = KY + INCY END DO ELSE IF (DFLAG.EQ.ZERO) THEN DH12 = DPARAM(4) DH21 = DPARAM(3) DO I = 1,N W = DX(KX) Z = DY(KY) DX(KX) = W + Z*DH12 DY(KY) = W*DH21 + Z KX = KX + INCX KY = KY + INCY END DO ELSE DH11 = DPARAM(2) DH22 = DPARAM(5) DO I = 1,N W = DX(KX) Z = DY(KY) DX(KX) = W*DH11 + Z DY(KY) = -W + DH22*Z KX = KX + INCX KY = KY + INCY END DO END IF END IF RETURN END blas-1.2.orig/src/dspr.f 0000640 0001750 0001750 00000013620 11616621632 016026 0 ustar sylvestre sylvestre SUBROUTINE DSPR(UPLO,N,ALPHA,X,INCX,AP) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER INCX,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE PRECISION AP(*),X(*) * .. * * Purpose * ======= * * DSPR performs the symmetric rank 1 operation * * A := alpha*x*x**T + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n symmetric matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the matrix A is supplied in the packed * array AP as follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * supplied in AP. * * UPLO = 'L' or 'l' The lower triangular part of A is * supplied in AP. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * AP - DOUBLE PRECISION array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) * and a( 2, 2 ) respectively, and so on. On exit, the array * AP is overwritten by the upper triangular part of the * updated matrix. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) * and a( 3, 1 ) respectively, and so on. On exit, the array * AP is overwritten by the lower triangular part of the * updated matrix. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSPR ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set the start point in X if the increment is not unity. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of the array AP * are accessed sequentially with one pass through AP. * KK = 1 IF (LSAME(UPLO,'U')) THEN * * Form A when upper triangle is stored in AP. * IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) K = KK DO 10 I = 1,J AP(K) = AP(K) + X(I)*TEMP K = K + 1 10 CONTINUE END IF KK = KK + J 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = KX DO 30 K = KK,KK + J - 1 AP(K) = AP(K) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JX = JX + INCX KK = KK + J 40 CONTINUE END IF ELSE * * Form A when lower triangle is stored in AP. * IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) K = KK DO 50 I = J,N AP(K) = AP(K) + X(I)*TEMP K = K + 1 50 CONTINUE END IF KK = KK + N - J + 1 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = JX DO 70 K = KK,KK + N - J AP(K) = AP(K) + X(IX)*TEMP IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX KK = KK + N - J + 1 80 CONTINUE END IF END IF * RETURN * * End of DSPR . * END blas-1.2.orig/src/zsyrk.f 0000640 0001750 0001750 00000022135 11616621632 016241 0 ustar sylvestre sylvestre SUBROUTINE ZSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER K,LDA,LDC,N CHARACTER TRANS,UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),C(LDC,*) * .. * * Purpose * ======= * * ZSYRK performs one of the symmetric rank k operations * * C := alpha*A*A**T + beta*C, * * or * * C := alpha*A**T*A + beta*C, * * where alpha and beta are scalars, C is an n by n symmetric matrix * and A is an n by k matrix in the first case and a k by n matrix * in the second case. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C. * * TRANS = 'T' or 't' C := alpha*A**T*A + beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrix A, and on entry with * TRANS = 'T' or 't', K specifies the number of rows of the * matrix A. K must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * BETA - COMPLEX*16 . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - COMPLEX*16 array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,J,L,NROWA LOGICAL UPPER * .. * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * * Test the input parameters. * IF (LSAME(TRANS,'N')) THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 1 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. + (.NOT.LSAME(TRANS,'T'))) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (K.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDC.LT.MAX(1,N)) THEN INFO = 10 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZSYRK ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (UPPER) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,J C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,J C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF ELSE IF (BETA.EQ.ZERO) THEN DO 60 J = 1,N DO 50 I = J,N C(I,J) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1,N DO 70 I = J,N C(I,J) = BETA*C(I,J) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF (LSAME(TRANS,'N')) THEN * * Form C := alpha*A*A**T + beta*C. * IF (UPPER) THEN DO 130 J = 1,N IF (BETA.EQ.ZERO) THEN DO 90 I = 1,J C(I,J) = ZERO 90 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 100 I = 1,J C(I,J) = BETA*C(I,J) 100 CONTINUE END IF DO 120 L = 1,K IF (A(J,L).NE.ZERO) THEN TEMP = ALPHA*A(J,L) DO 110 I = 1,J C(I,J) = C(I,J) + TEMP*A(I,L) 110 CONTINUE END IF 120 CONTINUE 130 CONTINUE ELSE DO 180 J = 1,N IF (BETA.EQ.ZERO) THEN DO 140 I = J,N C(I,J) = ZERO 140 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 150 I = J,N C(I,J) = BETA*C(I,J) 150 CONTINUE END IF DO 170 L = 1,K IF (A(J,L).NE.ZERO) THEN TEMP = ALPHA*A(J,L) DO 160 I = J,N C(I,J) = C(I,J) + TEMP*A(I,L) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A**T*A + beta*C. * IF (UPPER) THEN DO 210 J = 1,N DO 200 I = 1,J TEMP = ZERO DO 190 L = 1,K TEMP = TEMP + A(L,I)*A(L,J) 190 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 200 CONTINUE 210 CONTINUE ELSE DO 240 J = 1,N DO 230 I = J,N TEMP = ZERO DO 220 L = 1,K TEMP = TEMP + A(L,I)*A(L,J) 220 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 230 CONTINUE 240 CONTINUE END IF END IF * RETURN * * End of ZSYRK . * END blas-1.2.orig/src/caxpy.f 0000640 0001750 0001750 00000002333 11616621632 016201 0 ustar sylvestre sylvestre SUBROUTINE CAXPY(N,CA,CX,INCX,CY,INCY) * .. Scalar Arguments .. COMPLEX CA INTEGER INCX,INCY,N * .. * .. Array Arguments .. COMPLEX CX(*),CY(*) * .. * * Purpose * ======= * * CAXPY constant times a vector plus a vector. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. INTEGER I,IX,IY * .. * .. External Functions .. REAL SCABS1 EXTERNAL SCABS1 * .. IF (N.LE.0) RETURN IF (SCABS1(CA).EQ.0.0E+0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * DO I = 1,N CY(I) = CY(I) + CA*CX(I) END DO ELSE * * code for unequal increments or equal increments * not equal to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N CY(IY) = CY(IY) + CA*CX(IX) IX = IX + INCX IY = IY + INCY END DO END IF * RETURN END blas-1.2.orig/src/ssyr2k.f 0000640 0001750 0001750 00000025316 11616621632 016320 0 ustar sylvestre sylvestre SUBROUTINE SSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. REAL ALPHA,BETA INTEGER K,LDA,LDB,LDC,N CHARACTER TRANS,UPLO * .. * .. Array Arguments .. REAL A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * SSYR2K performs one of the symmetric rank 2k operations * * C := alpha*A*B**T + alpha*B*A**T + beta*C, * * or * * C := alpha*A**T*B + alpha*B**T*A + beta*C, * * where alpha and beta are scalars, C is an n by n symmetric matrix * and A and B are n by k matrices in the first case and k by n * matrices in the second case. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*B**T + alpha*B*A**T + * beta*C. * * TRANS = 'T' or 't' C := alpha*A**T*B + alpha*B**T*A + * beta*C. * * TRANS = 'C' or 'c' C := alpha*A**T*B + alpha*B**T*A + * beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrices A and B, and on entry with * TRANS = 'T' or 't' or 'C' or 'c', K specifies the number * of rows of the matrices A and B. K must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * B - REAL array of DIMENSION ( LDB, kb ), where kb is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array B must contain the matrix B, otherwise * the leading k by n part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDB must be at least max( 1, n ), otherwise LDB must * be at least max( 1, k ). * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - REAL array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. REAL TEMP1,TEMP2 INTEGER I,INFO,J,L,NROWA LOGICAL UPPER * .. * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * * Test the input parameters. * IF (LSAME(TRANS,'N')) THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 1 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. + (.NOT.LSAME(TRANS,'T')) .AND. + (.NOT.LSAME(TRANS,'C'))) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (K.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,N)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSYR2K',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (UPPER) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,J C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,J C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF ELSE IF (BETA.EQ.ZERO) THEN DO 60 J = 1,N DO 50 I = J,N C(I,J) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1,N DO 70 I = J,N C(I,J) = BETA*C(I,J) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF (LSAME(TRANS,'N')) THEN * * Form C := alpha*A*B**T + alpha*B*A**T + C. * IF (UPPER) THEN DO 130 J = 1,N IF (BETA.EQ.ZERO) THEN DO 90 I = 1,J C(I,J) = ZERO 90 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 100 I = 1,J C(I,J) = BETA*C(I,J) 100 CONTINUE END IF DO 120 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*B(J,L) TEMP2 = ALPHA*A(J,L) DO 110 I = 1,J C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 110 CONTINUE END IF 120 CONTINUE 130 CONTINUE ELSE DO 180 J = 1,N IF (BETA.EQ.ZERO) THEN DO 140 I = J,N C(I,J) = ZERO 140 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 150 I = J,N C(I,J) = BETA*C(I,J) 150 CONTINUE END IF DO 170 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*B(J,L) TEMP2 = ALPHA*A(J,L) DO 160 I = J,N C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A**T*B + alpha*B**T*A + C. * IF (UPPER) THEN DO 210 J = 1,N DO 200 I = 1,J TEMP1 = ZERO TEMP2 = ZERO DO 190 L = 1,K TEMP1 = TEMP1 + A(L,I)*B(L,J) TEMP2 = TEMP2 + B(L,I)*A(L,J) 190 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + ALPHA*TEMP2 END IF 200 CONTINUE 210 CONTINUE ELSE DO 240 J = 1,N DO 230 I = J,N TEMP1 = ZERO TEMP2 = ZERO DO 220 L = 1,K TEMP1 = TEMP1 + A(L,I)*B(L,J) TEMP2 = TEMP2 + B(L,I)*A(L,J) 220 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + ALPHA*TEMP2 END IF 230 CONTINUE 240 CONTINUE END IF END IF * RETURN * * End of SSYR2K. * END blas-1.2.orig/src/zhemm.f 0000640 0001750 0001750 00000023337 11616621632 016204 0 ustar sylvestre sylvestre SUBROUTINE ZHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER LDA,LDB,LDC,M,N CHARACTER SIDE,UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * ZHEMM performs one of the matrix-matrix operations * * C := alpha*A*B + beta*C, * * or * * C := alpha*B*A + beta*C, * * where alpha and beta are scalars, A is an hermitian matrix and B and * C are m by n matrices. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether the hermitian matrix A * appears on the left or right in the operation as follows: * * SIDE = 'L' or 'l' C := alpha*A*B + beta*C, * * SIDE = 'R' or 'r' C := alpha*B*A + beta*C, * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the hermitian matrix A is to be * referenced as follows: * * UPLO = 'U' or 'u' Only the upper triangular part of the * hermitian matrix is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of the * hermitian matrix is to be referenced. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix C. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix C. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is * m when SIDE = 'L' or 'l' and is n otherwise. * Before entry with SIDE = 'L' or 'l', the m by m part of * the array A must contain the hermitian matrix, such that * when UPLO = 'U' or 'u', the leading m by m upper triangular * part of the array A must contain the upper triangular part * of the hermitian matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading m by m lower triangular part of the array A * must contain the lower triangular part of the hermitian * matrix and the strictly upper triangular part of A is not * referenced. * Before entry with SIDE = 'R' or 'r', the n by n part of * the array A must contain the hermitian matrix, such that * when UPLO = 'U' or 'u', the leading n by n upper triangular * part of the array A must contain the upper triangular part * of the hermitian matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading n by n lower triangular part of the array A * must contain the lower triangular part of the hermitian * matrix and the strictly upper triangular part of A is not * referenced. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, n ). * Unchanged on exit. * * B - COMPLEX*16 array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * BETA - COMPLEX*16 . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - COMPLEX*16 array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n updated * matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG,MAX * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP1,TEMP2 INTEGER I,INFO,J,K,NROWA LOGICAL UPPER * .. * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * * Set NROWA as the number of rows of A. * IF (LSAME(SIDE,'L')) THEN NROWA = M ELSE NROWA = N END IF UPPER = LSAME(UPLO,'U') * * Test the input parameters. * INFO = 0 IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF (M.LT.0) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,M)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHEMM ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,M C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF (LSAME(SIDE,'L')) THEN * * Form C := alpha*A*B + beta*C. * IF (UPPER) THEN DO 70 J = 1,N DO 60 I = 1,M TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 50 K = 1,I - 1 C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*DCONJG(A(K,I)) 50 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*DBLE(A(I,I)) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*DBLE(A(I,I)) + + ALPHA*TEMP2 END IF 60 CONTINUE 70 CONTINUE ELSE DO 100 J = 1,N DO 90 I = M,1,-1 TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 80 K = I + 1,M C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*DCONJG(A(K,I)) 80 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*DBLE(A(I,I)) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*DBLE(A(I,I)) + + ALPHA*TEMP2 END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form C := alpha*B*A + beta*C. * DO 170 J = 1,N TEMP1 = ALPHA*DBLE(A(J,J)) IF (BETA.EQ.ZERO) THEN DO 110 I = 1,M C(I,J) = TEMP1*B(I,J) 110 CONTINUE ELSE DO 120 I = 1,M C(I,J) = BETA*C(I,J) + TEMP1*B(I,J) 120 CONTINUE END IF DO 140 K = 1,J - 1 IF (UPPER) THEN TEMP1 = ALPHA*A(K,J) ELSE TEMP1 = ALPHA*DCONJG(A(J,K)) END IF DO 130 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 130 CONTINUE 140 CONTINUE DO 160 K = J + 1,N IF (UPPER) THEN TEMP1 = ALPHA*DCONJG(A(J,K)) ELSE TEMP1 = ALPHA*A(K,J) END IF DO 150 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 150 CONTINUE 160 CONTINUE 170 CONTINUE END IF * RETURN * * End of ZHEMM . * END blas-1.2.orig/src/stbmv.f 0000640 0001750 0001750 00000025627 11616621632 016223 0 ustar sylvestre sylvestre SUBROUTINE STBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,K,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. REAL A(LDA,*),X(*) * .. * * Purpose * ======= * * STBMV performs one of the matrix-vector operations * * x := A*x, or x := A**T*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular band matrix, with ( k + 1 ) diagonals. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A**T*x. * * TRANS = 'C' or 'c' x := A**T*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with UPLO = 'U' or 'u', K specifies the number of * super-diagonals of the matrix A. * On entry with UPLO = 'L' or 'l', K specifies the number of * sub-diagonals of the matrix A. * K must satisfy 0 .le. K. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) * by n part of the array A must contain the upper triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row * ( k + 1 ) of the array, the first super-diagonal starting at * position 2 in row k, and so on. The top left k by k triangle * of the array A is not referenced. * The following program segment will transfer an upper * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = K + 1 - J * DO 10, I = MAX( 1, J - K ), J * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) * by n part of the array A must contain the lower triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row 1 of * the array, the first sub-diagonal starting at position 1 in * row 2, and so on. The bottom right k by k triangle of the * array A is not referenced. * The following program segment will transfer a lower * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = 1 - J * DO 10, I = J, MIN( N, J + K ) * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Note that when DIAG = 'U' or 'u' the elements of the array A * corresponding to the diagonal elements of the matrix are not * referenced, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( k + 1 ). * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (K+1)) THEN INFO = 7 ELSE IF (INCX.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('STBMV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := A*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) L = KPLUS1 - J DO 10 I = MAX(1,J-K),J - 1 X(I) = X(I) + TEMP*A(L+I,J) 10 CONTINUE IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX L = KPLUS1 - J DO 30 I = MAX(1,J-K),J - 1 X(IX) = X(IX) + TEMP*A(L+I,J) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J) END IF JX = JX + INCX IF (J.GT.K) KX = KX + INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) L = 1 - J DO 50 I = MIN(N,J+K),J + 1,-1 X(I) = X(I) + TEMP*A(L+I,J) 50 CONTINUE IF (NOUNIT) X(J) = X(J)*A(1,J) END IF 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX L = 1 - J DO 70 I = MIN(N,J+K),J + 1,-1 X(IX) = X(IX) + TEMP*A(L+I,J) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(1,J) END IF JX = JX - INCX IF ((N-J).GE.K) KX = KX - INCX 80 CONTINUE END IF END IF ELSE * * Form x := A**T*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 100 J = N,1,-1 TEMP = X(J) L = KPLUS1 - J IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) DO 90 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + A(L+I,J)*X(I) 90 CONTINUE X(J) = TEMP 100 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 120 J = N,1,-1 TEMP = X(JX) KX = KX - INCX IX = KX L = KPLUS1 - J IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) DO 110 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + A(L+I,J)*X(IX) IX = IX - INCX 110 CONTINUE X(JX) = TEMP JX = JX - INCX 120 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 140 J = 1,N TEMP = X(J) L = 1 - J IF (NOUNIT) TEMP = TEMP*A(1,J) DO 130 I = J + 1,MIN(N,J+K) TEMP = TEMP + A(L+I,J)*X(I) 130 CONTINUE X(J) = TEMP 140 CONTINUE ELSE JX = KX DO 160 J = 1,N TEMP = X(JX) KX = KX + INCX IX = KX L = 1 - J IF (NOUNIT) TEMP = TEMP*A(1,J) DO 150 I = J + 1,MIN(N,J+K) TEMP = TEMP + A(L+I,J)*X(IX) IX = IX + INCX 150 CONTINUE X(JX) = TEMP JX = JX + INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of STBMV . * END blas-1.2.orig/src/strsv.f 0000640 0001750 0001750 00000021233 11616621632 016236 0 ustar sylvestre sylvestre SUBROUTINE STRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. REAL A(LDA,*),X(*) * .. * * Purpose * ======= * * STRSV solves one of the systems of equations * * A*x = b, or A**T*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A**T*x = b. * * TRANS = 'C' or 'c' A**T*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,IX,J,JX,KX LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 END IF IF (INFO.NE.0) THEN CALL XERBLA('STRSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/A(J,J) TEMP = X(J) DO 10 I = J - 1,1,-1 X(I) = X(I) - TEMP*A(I,J) 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX + (N-1)*INCX DO 40 J = N,1,-1 IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/A(J,J) TEMP = X(JX) IX = JX DO 30 I = J - 1,1,-1 IX = IX - INCX X(IX) = X(IX) - TEMP*A(I,J) 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/A(J,J) TEMP = X(J) DO 50 I = J + 1,N X(I) = X(I) - TEMP*A(I,J) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/A(J,J) TEMP = X(JX) IX = JX DO 70 I = J + 1,N IX = IX + INCX X(IX) = X(IX) - TEMP*A(I,J) 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T )*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 100 J = 1,N TEMP = X(J) DO 90 I = 1,J - 1 TEMP = TEMP - A(I,J)*X(I) 90 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) X(J) = TEMP 100 CONTINUE ELSE JX = KX DO 120 J = 1,N TEMP = X(JX) IX = KX DO 110 I = 1,J - 1 TEMP = TEMP - A(I,J)*X(IX) IX = IX + INCX 110 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) X(JX) = TEMP JX = JX + INCX 120 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 140 J = N,1,-1 TEMP = X(J) DO 130 I = N,J + 1,-1 TEMP = TEMP - A(I,J)*X(I) 130 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) X(J) = TEMP 140 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 160 J = N,1,-1 TEMP = X(JX) IX = KX DO 150 I = N,J + 1,-1 TEMP = TEMP - A(I,J)*X(IX) IX = IX - INCX 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) X(JX) = TEMP JX = JX - INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of STRSV . * END blas-1.2.orig/src/sgbmv.f 0000640 0001750 0001750 00000021722 11616621632 016176 0 ustar sylvestre sylvestre SUBROUTINE SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. REAL ALPHA,BETA INTEGER INCX,INCY,KL,KU,LDA,M,N CHARACTER TRANS * .. * .. Array Arguments .. REAL A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * SGBMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n band matrix, with kl sub-diagonals and ku super-diagonals. * * Arguments * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * KL - INTEGER. * On entry, KL specifies the number of sub-diagonals of the * matrix A. KL must satisfy 0 .le. KL. * Unchanged on exit. * * KU - INTEGER. * On entry, KU specifies the number of super-diagonals of the * matrix A. KU must satisfy 0 .le. KU. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry, the leading ( kl + ku + 1 ) by n part of the * array A must contain the matrix of coefficients, supplied * column by column, with the leading diagonal of the matrix in * row ( ku + 1 ) of the array, the first super-diagonal * starting at position 2 in row ku, the first sub-diagonal * starting at position 1 in row ( ku + 2 ), and so on. * Elements in the array A that do not correspond to elements * in the band matrix (such as the top left ku by ku triangle) * are not referenced. * The following program segment will transfer a band matrix * from conventional full matrix storage to band storage: * * DO 20, J = 1, N * K = KU + 1 - J * DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) * A( K + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( kl + ku + 1 ). * Unchanged on exit. * * X - REAL array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - REAL array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry, the incremented array Y must contain the * vector y. On exit, Y is overwritten by the updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 1 ELSE IF (M.LT.0) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (KL.LT.0) THEN INFO = 4 ELSE IF (KU.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (KL+KU+1)) THEN INFO = 8 ELSE IF (INCX.EQ.0) THEN INFO = 10 ELSE IF (INCY.EQ.0) THEN INFO = 13 END IF IF (INFO.NE.0) THEN CALL XERBLA('SGBMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF (LSAME(TRANS,'N')) THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (LENX-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (LENY-1)*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the band part of A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,LENY Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,LENY Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,LENY Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,LENY Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN KUP1 = KU + 1 IF (LSAME(TRANS,'N')) THEN * * Form y := alpha*A*x + y. * JX = KX IF (INCY.EQ.1) THEN DO 60 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) K = KUP1 - J DO 50 I = MAX(1,J-KU),MIN(M,J+KL) Y(I) = Y(I) + TEMP*A(K+I,J) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IY = KY K = KUP1 - J DO 70 I = MAX(1,J-KU),MIN(M,J+KL) Y(IY) = Y(IY) + TEMP*A(K+I,J) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX IF (J.GT.KU) KY = KY + INCY 80 CONTINUE END IF ELSE * * Form y := alpha*A**T*x + y. * JY = KY IF (INCX.EQ.1) THEN DO 100 J = 1,N TEMP = ZERO K = KUP1 - J DO 90 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + A(K+I,J)*X(I) 90 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 100 CONTINUE ELSE DO 120 J = 1,N TEMP = ZERO IX = KX K = KUP1 - J DO 110 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + A(K+I,J)*X(IX) IX = IX + INCX 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY IF (J.GT.KU) KX = KX + INCX 120 CONTINUE END IF END IF * RETURN * * End of SGBMV . * END blas-1.2.orig/src/cher2k.f 0000640 0001750 0001750 00000031465 11616621632 016243 0 ustar sylvestre sylvestre SUBROUTINE CHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. COMPLEX ALPHA REAL BETA INTEGER K,LDA,LDB,LDC,N CHARACTER TRANS,UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * CHER2K performs one of the hermitian rank 2k operations * * C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C, * * or * * C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C, * * where alpha and beta are scalars with beta real, C is an n by n * hermitian matrix and A and B are n by k matrices in the first case * and k by n matrices in the second case. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*B**H + * conjg( alpha )*B*A**H + * beta*C. * * TRANS = 'C' or 'c' C := alpha*A**H*B + * conjg( alpha )*B**H*A + * beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrices A and B, and on entry with * TRANS = 'C' or 'c', K specifies the number of rows of the * matrices A and B. K must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array B must contain the matrix B, otherwise * the leading k by n part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDB must be at least max( 1, n ), otherwise LDB must * be at least max( 1, k ). * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - COMPLEX array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the hermitian matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the hermitian matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero, and on exit they * are set to zero. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1. * Ed Anderson, Cray Research Inc. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX,REAL * .. * .. Local Scalars .. COMPLEX TEMP1,TEMP2 INTEGER I,INFO,J,L,NROWA LOGICAL UPPER * .. * .. Parameters .. REAL ONE PARAMETER (ONE=1.0E+0) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * * Test the input parameters. * IF (LSAME(TRANS,'N')) THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 1 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. + (.NOT.LSAME(TRANS,'C'))) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (K.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,N)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('CHER2K',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (UPPER) THEN IF (BETA.EQ.REAL(ZERO)) THEN DO 20 J = 1,N DO 10 I = 1,J C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,J - 1 C(I,J) = BETA*C(I,J) 30 CONTINUE C(J,J) = BETA*REAL(C(J,J)) 40 CONTINUE END IF ELSE IF (BETA.EQ.REAL(ZERO)) THEN DO 60 J = 1,N DO 50 I = J,N C(I,J) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1,N C(J,J) = BETA*REAL(C(J,J)) DO 70 I = J + 1,N C(I,J) = BETA*C(I,J) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF (LSAME(TRANS,'N')) THEN * * Form C := alpha*A*B**H + conjg( alpha )*B*A**H + * C. * IF (UPPER) THEN DO 130 J = 1,N IF (BETA.EQ.REAL(ZERO)) THEN DO 90 I = 1,J C(I,J) = ZERO 90 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 100 I = 1,J - 1 C(I,J) = BETA*C(I,J) 100 CONTINUE C(J,J) = BETA*REAL(C(J,J)) ELSE C(J,J) = REAL(C(J,J)) END IF DO 120 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*CONJG(B(J,L)) TEMP2 = CONJG(ALPHA*A(J,L)) DO 110 I = 1,J - 1 C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 110 CONTINUE C(J,J) = REAL(C(J,J)) + + REAL(A(J,L)*TEMP1+B(J,L)*TEMP2) END IF 120 CONTINUE 130 CONTINUE ELSE DO 180 J = 1,N IF (BETA.EQ.REAL(ZERO)) THEN DO 140 I = J,N C(I,J) = ZERO 140 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 150 I = J + 1,N C(I,J) = BETA*C(I,J) 150 CONTINUE C(J,J) = BETA*REAL(C(J,J)) ELSE C(J,J) = REAL(C(J,J)) END IF DO 170 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*CONJG(B(J,L)) TEMP2 = CONJG(ALPHA*A(J,L)) DO 160 I = J + 1,N C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 160 CONTINUE C(J,J) = REAL(C(J,J)) + + REAL(A(J,L)*TEMP1+B(J,L)*TEMP2) END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A**H*B + conjg( alpha )*B**H*A + * C. * IF (UPPER) THEN DO 210 J = 1,N DO 200 I = 1,J TEMP1 = ZERO TEMP2 = ZERO DO 190 L = 1,K TEMP1 = TEMP1 + CONJG(A(L,I))*B(L,J) TEMP2 = TEMP2 + CONJG(B(L,I))*A(L,J) 190 CONTINUE IF (I.EQ.J) THEN IF (BETA.EQ.REAL(ZERO)) THEN C(J,J) = REAL(ALPHA*TEMP1+ + CONJG(ALPHA)*TEMP2) ELSE C(J,J) = BETA*REAL(C(J,J)) + + REAL(ALPHA*TEMP1+ + CONJG(ALPHA)*TEMP2) END IF ELSE IF (BETA.EQ.REAL(ZERO)) THEN C(I,J) = ALPHA*TEMP1 + CONJG(ALPHA)*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + CONJG(ALPHA)*TEMP2 END IF END IF 200 CONTINUE 210 CONTINUE ELSE DO 240 J = 1,N DO 230 I = J,N TEMP1 = ZERO TEMP2 = ZERO DO 220 L = 1,K TEMP1 = TEMP1 + CONJG(A(L,I))*B(L,J) TEMP2 = TEMP2 + CONJG(B(L,I))*A(L,J) 220 CONTINUE IF (I.EQ.J) THEN IF (BETA.EQ.REAL(ZERO)) THEN C(J,J) = REAL(ALPHA*TEMP1+ + CONJG(ALPHA)*TEMP2) ELSE C(J,J) = BETA*REAL(C(J,J)) + + REAL(ALPHA*TEMP1+ + CONJG(ALPHA)*TEMP2) END IF ELSE IF (BETA.EQ.REAL(ZERO)) THEN C(I,J) = ALPHA*TEMP1 + CONJG(ALPHA)*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + CONJG(ALPHA)*TEMP2 END IF END IF 230 CONTINUE 240 CONTINUE END IF END IF * RETURN * * End of CHER2K. * END blas-1.2.orig/src/csyrk.f 0000640 0001750 0001750 00000022072 11616621632 016212 0 ustar sylvestre sylvestre SUBROUTINE CSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) * .. Scalar Arguments .. COMPLEX ALPHA,BETA INTEGER K,LDA,LDC,N CHARACTER TRANS,UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),C(LDC,*) * .. * * Purpose * ======= * * CSYRK performs one of the symmetric rank k operations * * C := alpha*A*A**T + beta*C, * * or * * C := alpha*A**T*A + beta*C, * * where alpha and beta are scalars, C is an n by n symmetric matrix * and A is an n by k matrix in the first case and a k by n matrix * in the second case. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C. * * TRANS = 'T' or 't' C := alpha*A**T*A + beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrix A, and on entry with * TRANS = 'T' or 't', K specifies the number of rows of the * matrix A. K must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * BETA - COMPLEX . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - COMPLEX array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,J,L,NROWA LOGICAL UPPER * .. * .. Parameters .. COMPLEX ONE PARAMETER (ONE= (1.0E+0,0.0E+0)) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * * Test the input parameters. * IF (LSAME(TRANS,'N')) THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 1 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. + (.NOT.LSAME(TRANS,'T'))) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (K.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDC.LT.MAX(1,N)) THEN INFO = 10 END IF IF (INFO.NE.0) THEN CALL XERBLA('CSYRK ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (UPPER) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,J C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,J C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF ELSE IF (BETA.EQ.ZERO) THEN DO 60 J = 1,N DO 50 I = J,N C(I,J) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1,N DO 70 I = J,N C(I,J) = BETA*C(I,J) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF (LSAME(TRANS,'N')) THEN * * Form C := alpha*A*A**T + beta*C. * IF (UPPER) THEN DO 130 J = 1,N IF (BETA.EQ.ZERO) THEN DO 90 I = 1,J C(I,J) = ZERO 90 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 100 I = 1,J C(I,J) = BETA*C(I,J) 100 CONTINUE END IF DO 120 L = 1,K IF (A(J,L).NE.ZERO) THEN TEMP = ALPHA*A(J,L) DO 110 I = 1,J C(I,J) = C(I,J) + TEMP*A(I,L) 110 CONTINUE END IF 120 CONTINUE 130 CONTINUE ELSE DO 180 J = 1,N IF (BETA.EQ.ZERO) THEN DO 140 I = J,N C(I,J) = ZERO 140 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 150 I = J,N C(I,J) = BETA*C(I,J) 150 CONTINUE END IF DO 170 L = 1,K IF (A(J,L).NE.ZERO) THEN TEMP = ALPHA*A(J,L) DO 160 I = J,N C(I,J) = C(I,J) + TEMP*A(I,L) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A**T*A + beta*C. * IF (UPPER) THEN DO 210 J = 1,N DO 200 I = 1,J TEMP = ZERO DO 190 L = 1,K TEMP = TEMP + A(L,I)*A(L,J) 190 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 200 CONTINUE 210 CONTINUE ELSE DO 240 J = 1,N DO 230 I = J,N TEMP = ZERO DO 220 L = 1,K TEMP = TEMP + A(L,I)*A(L,J) 220 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 230 CONTINUE 240 CONTINUE END IF END IF * RETURN * * End of CSYRK . * END blas-1.2.orig/src/Makefile 0000644 0001750 0001750 00000013200 11616621632 016345 0 ustar sylvestre sylvestre include make.inc ####################################################################### # This is the makefile to create a library for the BLAS. # The files are grouped as follows: # # SBLAS1 -- Single precision real BLAS routines # CBLAS1 -- Single precision complex BLAS routines # DBLAS1 -- Double precision real BLAS routines # ZBLAS1 -- Double precision complex BLAS routines # # CB1AUX -- Real BLAS routines called by complex routines # ZB1AUX -- D.P. real BLAS routines called by d.p. complex # routines # # ALLBLAS -- Auxiliary routines for Level 2 and 3 BLAS # # SBLAS2 -- Single precision real BLAS2 routines # CBLAS2 -- Single precision complex BLAS2 routines # DBLAS2 -- Double precision real BLAS2 routines # ZBLAS2 -- Double precision complex BLAS2 routines # # SBLAS3 -- Single precision real BLAS3 routines # CBLAS3 -- Single precision complex BLAS3 routines # DBLAS3 -- Double precision real BLAS3 routines # ZBLAS3 -- Double precision complex BLAS3 routines # # The library can be set up to include routines for any combination # of the four precisions. To create or add to the library, enter make # followed by one or more of the precisions desired. Some examples: # make single # make single complex # make single double complex complex16 # Note that these commands are not safe for parallel builds. # # Alternatively, the commands # make all # or # make # without any arguments creates a library of all four precisions. # The name of the library is held in BLASLIB, which is set in the # make.inc # # To remove the object files after the library is created, enter # make clean # To force the source files to be recompiled, enter, for example, # make single FRC=FRC # #--------------------------------------------------------------------- # # Edward Anderson, University of Tennessee # March 26, 1990 # Susan Ostrouchov, September 30, 1994 # Julie Langou, March 2007 # ####################################################################### all: $(BLASLIB) #--------------------------------------------------------- # Comment out the next 6 definitions if you already have # the Level 1 BLAS. #--------------------------------------------------------- SBLAS1 = isamax.o sasum.o saxpy.o scopy.o sdot.o snrm2.o \ srot.o srotg.o sscal.o sswap.o sdsdot.o srotmg.o srotm.o $(SBLAS1): $(FRC) CBLAS1 = scabs1.o scasum.o scnrm2.o icamax.o caxpy.o ccopy.o \ cdotc.o cdotu.o csscal.o crotg.o cscal.o cswap.o csrot.o $(CBLAS1): $(FRC) DBLAS1 = idamax.o dasum.o daxpy.o dcopy.o ddot.o dnrm2.o \ drot.o drotg.o dscal.o dsdot.o dswap.o drotmg.o drotm.o $(DBLAS1): $(FRC) ZBLAS1 = dcabs1.o dzasum.o dznrm2.o izamax.o zaxpy.o zcopy.o \ zdotc.o zdotu.o zdscal.o zrotg.o zscal.o zswap.o zdrot.o $(ZBLAS1): $(FRC) CB1AUX = isamax.o sasum.o saxpy.o scopy.o snrm2.o sscal.o $(CB1AUX): $(FRC) ZB1AUX = idamax.o dasum.o daxpy.o dcopy.o dnrm2.o dscal.o $(ZB1AUX): $(FRC) #--------------------------------------------------------------------- # The following line defines auxiliary routines needed by both the # Level 2 and Level 3 BLAS. Comment it out only if you already have # both the Level 2 and 3 BLAS. #--------------------------------------------------------------------- ALLBLAS = lsame.o xerbla.o $(ALLBLAS) : $(FRC) #--------------------------------------------------------- # Comment out the next 4 definitions if you already have # the Level 2 BLAS. #--------------------------------------------------------- SBLAS2 = sgemv.o sgbmv.o ssymv.o ssbmv.o sspmv.o \ strmv.o stbmv.o stpmv.o strsv.o stbsv.o stpsv.o \ sger.o ssyr.o sspr.o ssyr2.o sspr2.o $(SBLAS2): $(FRC) CBLAS2 = cgemv.o cgbmv.o chemv.o chbmv.o chpmv.o \ ctrmv.o ctbmv.o ctpmv.o ctrsv.o ctbsv.o ctpsv.o \ cgerc.o cgeru.o cher.o chpr.o cher2.o chpr2.o $(CBLAS2): $(FRC) DBLAS2 = dgemv.o dgbmv.o dsymv.o dsbmv.o dspmv.o \ dtrmv.o dtbmv.o dtpmv.o dtrsv.o dtbsv.o dtpsv.o \ dger.o dsyr.o dspr.o dsyr2.o dspr2.o $(DBLAS2): $(FRC) ZBLAS2 = zgemv.o zgbmv.o zhemv.o zhbmv.o zhpmv.o \ ztrmv.o ztbmv.o ztpmv.o ztrsv.o ztbsv.o ztpsv.o \ zgerc.o zgeru.o zher.o zhpr.o zher2.o zhpr2.o $(ZBLAS2): $(FRC) #--------------------------------------------------------- # Comment out the next 4 definitions if you already have # the Level 3 BLAS. #--------------------------------------------------------- SBLAS3 = sgemm.o ssymm.o ssyrk.o ssyr2k.o strmm.o strsm.o $(SBLAS3): $(FRC) CBLAS3 = cgemm.o csymm.o csyrk.o csyr2k.o ctrmm.o ctrsm.o \ chemm.o cherk.o cher2k.o $(CBLAS3): $(FRC) DBLAS3 = dgemm.o dsymm.o dsyrk.o dsyr2k.o dtrmm.o dtrsm.o $(DBLAS3): $(FRC) ZBLAS3 = zgemm.o zsymm.o zsyrk.o zsyr2k.o ztrmm.o ztrsm.o \ zhemm.o zherk.o zher2k.o $(ZBLAS3): $(FRC) ALLOBJ=$(SBLAS1) $(SBLAS2) $(SBLAS3) $(DBLAS1) $(DBLAS2) $(DBLAS3) \ $(CBLAS1) $(CBLAS2) $(CBLAS3) $(ZBLAS1) \ $(ZBLAS2) $(ZBLAS3) $(ALLBLAS) $(BLASLIB): $(ALLOBJ) $(ARCH) $(ARCHFLAGS) $@ $(ALLOBJ) $(RANLIB) $@ single: $(SBLAS1) $(ALLBLAS) $(SBLAS2) $(SBLAS3) $(ARCH) $(ARCHFLAGS) $(BLASLIB) $(SBLAS1) $(ALLBLAS) \ $(SBLAS2) $(SBLAS3) $(RANLIB) $(BLASLIB) double: $(DBLAS1) $(ALLBLAS) $(DBLAS2) $(DBLAS3) $(ARCH) $(ARCHFLAGS) $(BLASLIB) $(DBLAS1) $(ALLBLAS) \ $(DBLAS2) $(DBLAS3) $(RANLIB) $(BLASLIB) complex: $(CBLAS1) $(CB1AUX) $(ALLBLAS) $(CBLAS2) $(CBLAS3) $(ARCH) $(ARCHFLAGS) $(BLASLIB) $(CBLAS1) $(CB1AUX) \ $(ALLBLAS) $(CBLAS2) $(CBLAS3) $(RANLIB) $(BLASLIB) complex16: $(ZBLAS1) $(ZB1AUX) $(ALLBLAS) $(ZBLAS2) $(ZBLAS3) $(ARCH) $(ARCHFLAGS) $(BLASLIB) $(ZBLAS1) $(ZB1AUX) \ $(ALLBLAS) $(ZBLAS2) $(ZBLAS3) $(RANLIB) $(BLASLIB) FRC: @FRC=$(FRC) clean: rm -f *.o .f.o: $(FORTRAN) $(OPTS) -c $< -o $@ blas-1.2.orig/src/ctrsm.f 0000640 0001750 0001750 00000033062 11616621632 016210 0 ustar sylvestre sylvestre SUBROUTINE CTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) * .. Scalar Arguments .. COMPLEX ALPHA INTEGER LDA,LDB,M,N CHARACTER DIAG,SIDE,TRANSA,UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),B(LDB,*) * .. * * Purpose * ======= * * CTRSM solves one of the matrix equations * * op( A )*X = alpha*B, or X*op( A ) = alpha*B, * * where alpha is a scalar, X and B are m by n matrices, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A**T or op( A ) = A**H. * * The matrix X is overwritten on B. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) appears on the left * or right of X as follows: * * SIDE = 'L' or 'l' op( A )*X = alpha*B. * * SIDE = 'R' or 'r' X*op( A ) = alpha*B. * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A**T. * * TRANSA = 'C' or 'c' op( A ) = A**H. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - COMPLEX array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the right-hand side matrix B, and on exit is * overwritten by the solution matrix X. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,J,K,NROWA LOGICAL LSIDE,NOCONJ,NOUNIT,UPPER * .. * .. Parameters .. COMPLEX ONE PARAMETER (ONE= (1.0E+0,0.0E+0)) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * * Test the input parameters. * LSIDE = LSAME(SIDE,'L') IF (LSIDE) THEN NROWA = M ELSE NROWA = N END IF NOCONJ = LSAME(TRANSA,'T') NOUNIT = LSAME(DIAG,'N') UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. + (.NOT.LSAME(TRANSA,'T')) .AND. + (.NOT.LSAME(TRANSA,'C'))) THEN INFO = 3 ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN INFO = 4 ELSE IF (M.LT.0) THEN INFO = 5 ELSE IF (N.LT.0) THEN INFO = 6 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('CTRSM ',INFO) RETURN END IF * * Quick return if possible. * IF (M.EQ.0 .OR. N.EQ.0) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M B(I,J) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF (LSIDE) THEN IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*inv( A )*B. * IF (UPPER) THEN DO 60 J = 1,N IF (ALPHA.NE.ONE) THEN DO 30 I = 1,M B(I,J) = ALPHA*B(I,J) 30 CONTINUE END IF DO 50 K = M,1,-1 IF (B(K,J).NE.ZERO) THEN IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) DO 40 I = 1,K - 1 B(I,J) = B(I,J) - B(K,J)*A(I,K) 40 CONTINUE END IF 50 CONTINUE 60 CONTINUE ELSE DO 100 J = 1,N IF (ALPHA.NE.ONE) THEN DO 70 I = 1,M B(I,J) = ALPHA*B(I,J) 70 CONTINUE END IF DO 90 K = 1,M IF (B(K,J).NE.ZERO) THEN IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) DO 80 I = K + 1,M B(I,J) = B(I,J) - B(K,J)*A(I,K) 80 CONTINUE END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form B := alpha*inv( A**T )*B * or B := alpha*inv( A**H )*B. * IF (UPPER) THEN DO 140 J = 1,N DO 130 I = 1,M TEMP = ALPHA*B(I,J) IF (NOCONJ) THEN DO 110 K = 1,I - 1 TEMP = TEMP - A(K,I)*B(K,J) 110 CONTINUE IF (NOUNIT) TEMP = TEMP/A(I,I) ELSE DO 120 K = 1,I - 1 TEMP = TEMP - CONJG(A(K,I))*B(K,J) 120 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(A(I,I)) END IF B(I,J) = TEMP 130 CONTINUE 140 CONTINUE ELSE DO 180 J = 1,N DO 170 I = M,1,-1 TEMP = ALPHA*B(I,J) IF (NOCONJ) THEN DO 150 K = I + 1,M TEMP = TEMP - A(K,I)*B(K,J) 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(I,I) ELSE DO 160 K = I + 1,M TEMP = TEMP - CONJG(A(K,I))*B(K,J) 160 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(A(I,I)) END IF B(I,J) = TEMP 170 CONTINUE 180 CONTINUE END IF END IF ELSE IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*B*inv( A ). * IF (UPPER) THEN DO 230 J = 1,N IF (ALPHA.NE.ONE) THEN DO 190 I = 1,M B(I,J) = ALPHA*B(I,J) 190 CONTINUE END IF DO 210 K = 1,J - 1 IF (A(K,J).NE.ZERO) THEN DO 200 I = 1,M B(I,J) = B(I,J) - A(K,J)*B(I,K) 200 CONTINUE END IF 210 CONTINUE IF (NOUNIT) THEN TEMP = ONE/A(J,J) DO 220 I = 1,M B(I,J) = TEMP*B(I,J) 220 CONTINUE END IF 230 CONTINUE ELSE DO 280 J = N,1,-1 IF (ALPHA.NE.ONE) THEN DO 240 I = 1,M B(I,J) = ALPHA*B(I,J) 240 CONTINUE END IF DO 260 K = J + 1,N IF (A(K,J).NE.ZERO) THEN DO 250 I = 1,M B(I,J) = B(I,J) - A(K,J)*B(I,K) 250 CONTINUE END IF 260 CONTINUE IF (NOUNIT) THEN TEMP = ONE/A(J,J) DO 270 I = 1,M B(I,J) = TEMP*B(I,J) 270 CONTINUE END IF 280 CONTINUE END IF ELSE * * Form B := alpha*B*inv( A**T ) * or B := alpha*B*inv( A**H ). * IF (UPPER) THEN DO 330 K = N,1,-1 IF (NOUNIT) THEN IF (NOCONJ) THEN TEMP = ONE/A(K,K) ELSE TEMP = ONE/CONJG(A(K,K)) END IF DO 290 I = 1,M B(I,K) = TEMP*B(I,K) 290 CONTINUE END IF DO 310 J = 1,K - 1 IF (A(J,K).NE.ZERO) THEN IF (NOCONJ) THEN TEMP = A(J,K) ELSE TEMP = CONJG(A(J,K)) END IF DO 300 I = 1,M B(I,J) = B(I,J) - TEMP*B(I,K) 300 CONTINUE END IF 310 CONTINUE IF (ALPHA.NE.ONE) THEN DO 320 I = 1,M B(I,K) = ALPHA*B(I,K) 320 CONTINUE END IF 330 CONTINUE ELSE DO 380 K = 1,N IF (NOUNIT) THEN IF (NOCONJ) THEN TEMP = ONE/A(K,K) ELSE TEMP = ONE/CONJG(A(K,K)) END IF DO 340 I = 1,M B(I,K) = TEMP*B(I,K) 340 CONTINUE END IF DO 360 J = K + 1,N IF (A(J,K).NE.ZERO) THEN IF (NOCONJ) THEN TEMP = A(J,K) ELSE TEMP = CONJG(A(J,K)) END IF DO 350 I = 1,M B(I,J) = B(I,J) - TEMP*B(I,K) 350 CONTINUE END IF 360 CONTINUE IF (ALPHA.NE.ONE) THEN DO 370 I = 1,M B(I,K) = ALPHA*B(I,K) 370 CONTINUE END IF 380 CONTINUE END IF END IF END IF * RETURN * * End of CTRSM . * END blas-1.2.orig/src/zgemm.f 0000640 0001750 0001750 00000031557 11616621632 016206 0 ustar sylvestre sylvestre SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER K,LDA,LDB,LDC,M,N CHARACTER TRANSA,TRANSB * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * ZGEMM performs one of the matrix-matrix operations * * C := alpha*op( A )*op( B ) + beta*C, * * where op( X ) is one of * * op( X ) = X or op( X ) = X**T or op( X ) = X**H, * * alpha and beta are scalars, and A, B and C are matrices, with op( A ) * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. * * Arguments * ========== * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n', op( A ) = A. * * TRANSA = 'T' or 't', op( A ) = A**T. * * TRANSA = 'C' or 'c', op( A ) = A**H. * * Unchanged on exit. * * TRANSB - CHARACTER*1. * On entry, TRANSB specifies the form of op( B ) to be used in * the matrix multiplication as follows: * * TRANSB = 'N' or 'n', op( B ) = B. * * TRANSB = 'T' or 't', op( B ) = B**T. * * TRANSB = 'C' or 'c', op( B ) = B**H. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix * op( A ) and of the matrix C. M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix * op( B ) and the number of columns of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry, K specifies the number of columns of the matrix * op( A ) and the number of rows of the matrix op( B ). K must * be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is * k when TRANSA = 'N' or 'n', and is m otherwise. * Before entry with TRANSA = 'N' or 'n', the leading m by k * part of the array A must contain the matrix A, otherwise * the leading k by m part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANSA = 'N' or 'n' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, k ). * Unchanged on exit. * * B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is * n when TRANSB = 'N' or 'n', and is k otherwise. * Before entry with TRANSB = 'N' or 'n', the leading k by n * part of the array B must contain the matrix B, otherwise * the leading n by k part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANSB = 'N' or 'n' then * LDB must be at least max( 1, k ), otherwise LDB must be at * least max( 1, n ). * Unchanged on exit. * * BETA - COMPLEX*16 . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - COMPLEX*16 array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n matrix * ( alpha*op( A )*op( B ) + beta*C ). * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG,MAX * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB LOGICAL CONJA,CONJB,NOTA,NOTB * .. * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * * Set NOTA and NOTB as true if A and B respectively are not * conjugated or transposed, set CONJA and CONJB as true if A and * B respectively are to be transposed but not conjugated and set * NROWA, NCOLA and NROWB as the number of rows and columns of A * and the number of rows of B respectively. * NOTA = LSAME(TRANSA,'N') NOTB = LSAME(TRANSB,'N') CONJA = LSAME(TRANSA,'C') CONJB = LSAME(TRANSB,'C') IF (NOTA) THEN NROWA = M NCOLA = K ELSE NROWA = K NCOLA = M END IF IF (NOTB) THEN NROWB = K ELSE NROWB = N END IF * * Test the input parameters. * INFO = 0 IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND. + (.NOT.LSAME(TRANSA,'T'))) THEN INFO = 1 ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND. + (.NOT.LSAME(TRANSB,'T'))) THEN INFO = 2 ELSE IF (M.LT.0) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 8 ELSE IF (LDB.LT.MAX(1,NROWB)) THEN INFO = 10 ELSE IF (LDC.LT.MAX(1,M)) THEN INFO = 13 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZGEMM ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,M C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF (NOTB) THEN IF (NOTA) THEN * * Form C := alpha*A*B + beta*C. * DO 90 J = 1,N IF (BETA.EQ.ZERO) THEN DO 50 I = 1,M C(I,J) = ZERO 50 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 60 I = 1,M C(I,J) = BETA*C(I,J) 60 CONTINUE END IF DO 80 L = 1,K IF (B(L,J).NE.ZERO) THEN TEMP = ALPHA*B(L,J) DO 70 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 70 CONTINUE END IF 80 CONTINUE 90 CONTINUE ELSE IF (CONJA) THEN * * Form C := alpha*A**H*B + beta*C. * DO 120 J = 1,N DO 110 I = 1,M TEMP = ZERO DO 100 L = 1,K TEMP = TEMP + DCONJG(A(L,I))*B(L,J) 100 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 110 CONTINUE 120 CONTINUE ELSE * * Form C := alpha*A**T*B + beta*C * DO 150 J = 1,N DO 140 I = 1,M TEMP = ZERO DO 130 L = 1,K TEMP = TEMP + A(L,I)*B(L,J) 130 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 140 CONTINUE 150 CONTINUE END IF ELSE IF (NOTA) THEN IF (CONJB) THEN * * Form C := alpha*A*B**H + beta*C. * DO 200 J = 1,N IF (BETA.EQ.ZERO) THEN DO 160 I = 1,M C(I,J) = ZERO 160 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 170 I = 1,M C(I,J) = BETA*C(I,J) 170 CONTINUE END IF DO 190 L = 1,K IF (B(J,L).NE.ZERO) THEN TEMP = ALPHA*DCONJG(B(J,L)) DO 180 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 180 CONTINUE END IF 190 CONTINUE 200 CONTINUE ELSE * * Form C := alpha*A*B**T + beta*C * DO 250 J = 1,N IF (BETA.EQ.ZERO) THEN DO 210 I = 1,M C(I,J) = ZERO 210 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 220 I = 1,M C(I,J) = BETA*C(I,J) 220 CONTINUE END IF DO 240 L = 1,K IF (B(J,L).NE.ZERO) THEN TEMP = ALPHA*B(J,L) DO 230 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 230 CONTINUE END IF 240 CONTINUE 250 CONTINUE END IF ELSE IF (CONJA) THEN IF (CONJB) THEN * * Form C := alpha*A**H*B**H + beta*C. * DO 280 J = 1,N DO 270 I = 1,M TEMP = ZERO DO 260 L = 1,K TEMP = TEMP + DCONJG(A(L,I))*DCONJG(B(J,L)) 260 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 270 CONTINUE 280 CONTINUE ELSE * * Form C := alpha*A**H*B**T + beta*C * DO 310 J = 1,N DO 300 I = 1,M TEMP = ZERO DO 290 L = 1,K TEMP = TEMP + DCONJG(A(L,I))*B(J,L) 290 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 300 CONTINUE 310 CONTINUE END IF ELSE IF (CONJB) THEN * * Form C := alpha*A**T*B**H + beta*C * DO 340 J = 1,N DO 330 I = 1,M TEMP = ZERO DO 320 L = 1,K TEMP = TEMP + A(L,I)*DCONJG(B(J,L)) 320 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 330 CONTINUE 340 CONTINUE ELSE * * Form C := alpha*A**T*B**T + beta*C * DO 370 J = 1,N DO 360 I = 1,M TEMP = ZERO DO 350 L = 1,K TEMP = TEMP + A(L,I)*B(J,L) 350 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 360 CONTINUE 370 CONTINUE END IF END IF * RETURN * * End of ZGEMM . * END blas-1.2.orig/src/ztbsv.f 0000640 0001750 0001750 00000031016 11616621632 016225 0 ustar sylvestre sylvestre SUBROUTINE ZTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,K,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*) * .. * * Purpose * ======= * * ZTBSV solves one of the systems of equations * * A*x = b, or A**T*x = b, or A**H*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular band matrix, with ( k + 1 ) * diagonals. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A**T*x = b. * * TRANS = 'C' or 'c' A**H*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with UPLO = 'U' or 'u', K specifies the number of * super-diagonals of the matrix A. * On entry with UPLO = 'L' or 'l', K specifies the number of * sub-diagonals of the matrix A. * K must satisfy 0 .le. K. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) * by n part of the array A must contain the upper triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row * ( k + 1 ) of the array, the first super-diagonal starting at * position 2 in row k, and so on. The top left k by k triangle * of the array A is not referenced. * The following program segment will transfer an upper * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = K + 1 - J * DO 10, I = MAX( 1, J - K ), J * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) * by n part of the array A must contain the lower triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row 1 of * the array, the first sub-diagonal starting at position 1 in * row 2, and so on. The bottom right k by k triangle of the * array A is not referenced. * The following program segment will transfer a lower * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = 1 - J * DO 10, I = J, MIN( N, J + K ) * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Note that when DIAG = 'U' or 'u' the elements of the array A * corresponding to the diagonal elements of the matrix are not * referenced, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( k + 1 ). * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L LOGICAL NOCONJ,NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG,MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (K+1)) THEN INFO = 7 ELSE IF (INCX.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZTBSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed by sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN L = KPLUS1 - J IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J) TEMP = X(J) DO 10 I = J - 1,MAX(1,J-K),-1 X(I) = X(I) - TEMP*A(L+I,J) 10 CONTINUE END IF 20 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 40 J = N,1,-1 KX = KX - INCX IF (X(JX).NE.ZERO) THEN IX = KX L = KPLUS1 - J IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J) TEMP = X(JX) DO 30 I = J - 1,MAX(1,J-K),-1 X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX - INCX 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN L = 1 - J IF (NOUNIT) X(J) = X(J)/A(1,J) TEMP = X(J) DO 50 I = J + 1,MIN(N,J+K) X(I) = X(I) - TEMP*A(L+I,J) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N KX = KX + INCX IF (X(JX).NE.ZERO) THEN IX = KX L = 1 - J IF (NOUNIT) X(JX) = X(JX)/A(1,J) TEMP = X(JX) DO 70 I = J + 1,MIN(N,J+K) X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T )*x or x := inv( A**H )*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = X(J) L = KPLUS1 - J IF (NOCONJ) THEN DO 90 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(I) 90 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) ELSE DO 100 I = MAX(1,J-K),J - 1 TEMP = TEMP - DCONJG(A(L+I,J))*X(I) 100 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(KPLUS1,J)) END IF X(J) = TEMP 110 CONTINUE ELSE JX = KX DO 140 J = 1,N TEMP = X(JX) IX = KX L = KPLUS1 - J IF (NOCONJ) THEN DO 120 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX + INCX 120 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) ELSE DO 130 I = MAX(1,J-K),J - 1 TEMP = TEMP - DCONJG(A(L+I,J))*X(IX) IX = IX + INCX 130 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(KPLUS1,J)) END IF X(JX) = TEMP JX = JX + INCX IF (J.GT.K) KX = KX + INCX 140 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 170 J = N,1,-1 TEMP = X(J) L = 1 - J IF (NOCONJ) THEN DO 150 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(I) 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) ELSE DO 160 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - DCONJG(A(L+I,J))*X(I) 160 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(1,J)) END IF X(J) = TEMP 170 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 200 J = N,1,-1 TEMP = X(JX) IX = KX L = 1 - J IF (NOCONJ) THEN DO 180 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX - INCX 180 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) ELSE DO 190 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - DCONJG(A(L+I,J))*X(IX) IX = IX - INCX 190 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(1,J)) END IF X(JX) = TEMP JX = JX - INCX IF ((N-J).GE.K) KX = KX - INCX 200 CONTINUE END IF END IF END IF * RETURN * * End of ZTBSV . * END blas-1.2.orig/src/ztrmv.f 0000640 0001750 0001750 00000024056 11616621632 016245 0 ustar sylvestre sylvestre SUBROUTINE ZTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*) * .. * * Purpose * ======= * * ZTRMV performs one of the matrix-vector operations * * x := A*x, or x := A**T*x, or x := A**H*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A**T*x. * * TRANS = 'C' or 'c' x := A**H*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KX LOGICAL NOCONJ,NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG,MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZTRMV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := A*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) DO 10 I = 1,J - 1 X(I) = X(I) + TEMP*A(I,J) 10 CONTINUE IF (NOUNIT) X(J) = X(J)*A(J,J) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 30 I = 1,J - 1 X(IX) = X(IX) + TEMP*A(I,J) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(J,J) END IF JX = JX + INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) DO 50 I = N,J + 1,-1 X(I) = X(I) + TEMP*A(I,J) 50 CONTINUE IF (NOUNIT) X(J) = X(J)*A(J,J) END IF 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 70 I = N,J + 1,-1 X(IX) = X(IX) + TEMP*A(I,J) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(J,J) END IF JX = JX - INCX 80 CONTINUE END IF END IF ELSE * * Form x := A**T*x or x := A**H*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 110 J = N,1,-1 TEMP = X(J) IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(J,J) DO 90 I = J - 1,1,-1 TEMP = TEMP + A(I,J)*X(I) 90 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J)) DO 100 I = J - 1,1,-1 TEMP = TEMP + DCONJG(A(I,J))*X(I) 100 CONTINUE END IF X(J) = TEMP 110 CONTINUE ELSE JX = KX + (N-1)*INCX DO 140 J = N,1,-1 TEMP = X(JX) IX = JX IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(J,J) DO 120 I = J - 1,1,-1 IX = IX - INCX TEMP = TEMP + A(I,J)*X(IX) 120 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J)) DO 130 I = J - 1,1,-1 IX = IX - INCX TEMP = TEMP + DCONJG(A(I,J))*X(IX) 130 CONTINUE END IF X(JX) = TEMP JX = JX - INCX 140 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 170 J = 1,N TEMP = X(J) IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(J,J) DO 150 I = J + 1,N TEMP = TEMP + A(I,J)*X(I) 150 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J)) DO 160 I = J + 1,N TEMP = TEMP + DCONJG(A(I,J))*X(I) 160 CONTINUE END IF X(J) = TEMP 170 CONTINUE ELSE JX = KX DO 200 J = 1,N TEMP = X(JX) IX = JX IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(J,J) DO 180 I = J + 1,N IX = IX + INCX TEMP = TEMP + A(I,J)*X(IX) 180 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(J,J)) DO 190 I = J + 1,N IX = IX + INCX TEMP = TEMP + DCONJG(A(I,J))*X(IX) 190 CONTINUE END IF X(JX) = TEMP JX = JX + INCX 200 CONTINUE END IF END IF END IF * RETURN * * End of ZTRMV . * END blas-1.2.orig/src/ctpsv.f 0000640 0001750 0001750 00000025510 11616621632 016216 0 ustar sylvestre sylvestre SUBROUTINE CTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX) * .. Scalar Arguments .. INTEGER INCX,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. COMPLEX AP(*),X(*) * .. * * Purpose * ======= * * CTPSV solves one of the systems of equations * * A*x = b, or A**T*x = b, or A**H*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix, supplied in packed form. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A**T*x = b. * * TRANS = 'C' or 'c' A**H*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * AP - COMPLEX array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) * respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) * respectively, and so on. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced, but are assumed to be unity. * Unchanged on exit. * * X - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX LOGICAL NOCONJ,NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (INCX.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('CTPSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of AP are * accessed sequentially with one pass through AP. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/AP(KK) TEMP = X(J) K = KK - 1 DO 10 I = J - 1,1,-1 X(I) = X(I) - TEMP*AP(K) K = K - 1 10 CONTINUE END IF KK = KK - J 20 CONTINUE ELSE JX = KX + (N-1)*INCX DO 40 J = N,1,-1 IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/AP(KK) TEMP = X(JX) IX = JX DO 30 K = KK - 1,KK - J + 1,-1 IX = IX - INCX X(IX) = X(IX) - TEMP*AP(K) 30 CONTINUE END IF JX = JX - INCX KK = KK - J 40 CONTINUE END IF ELSE KK = 1 IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/AP(KK) TEMP = X(J) K = KK + 1 DO 50 I = J + 1,N X(I) = X(I) - TEMP*AP(K) K = K + 1 50 CONTINUE END IF KK = KK + (N-J+1) 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/AP(KK) TEMP = X(JX) IX = JX DO 70 K = KK + 1,KK + N - J IX = IX + INCX X(IX) = X(IX) - TEMP*AP(K) 70 CONTINUE END IF JX = JX + INCX KK = KK + (N-J+1) 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T )*x or x := inv( A**H )*x. * IF (LSAME(UPLO,'U')) THEN KK = 1 IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = X(J) K = KK IF (NOCONJ) THEN DO 90 I = 1,J - 1 TEMP = TEMP - AP(K)*X(I) K = K + 1 90 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK+J-1) ELSE DO 100 I = 1,J - 1 TEMP = TEMP - CONJG(AP(K))*X(I) K = K + 1 100 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1)) END IF X(J) = TEMP KK = KK + J 110 CONTINUE ELSE JX = KX DO 140 J = 1,N TEMP = X(JX) IX = KX IF (NOCONJ) THEN DO 120 K = KK,KK + J - 2 TEMP = TEMP - AP(K)*X(IX) IX = IX + INCX 120 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK+J-1) ELSE DO 130 K = KK,KK + J - 2 TEMP = TEMP - CONJG(AP(K))*X(IX) IX = IX + INCX 130 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1)) END IF X(JX) = TEMP JX = JX + INCX KK = KK + J 140 CONTINUE END IF ELSE KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 170 J = N,1,-1 TEMP = X(J) K = KK IF (NOCONJ) THEN DO 150 I = N,J + 1,-1 TEMP = TEMP - AP(K)*X(I) K = K - 1 150 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK-N+J) ELSE DO 160 I = N,J + 1,-1 TEMP = TEMP - CONJG(AP(K))*X(I) K = K - 1 160 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J)) END IF X(J) = TEMP KK = KK - (N-J+1) 170 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 200 J = N,1,-1 TEMP = X(JX) IX = KX IF (NOCONJ) THEN DO 180 K = KK,KK - (N- (J+1)),-1 TEMP = TEMP - AP(K)*X(IX) IX = IX - INCX 180 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK-N+J) ELSE DO 190 K = KK,KK - (N- (J+1)),-1 TEMP = TEMP - CONJG(AP(K))*X(IX) IX = IX - INCX 190 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J)) END IF X(JX) = TEMP JX = JX - INCX KK = KK - (N-J+1) 200 CONTINUE END IF END IF END IF * RETURN * * End of CTPSV . * END blas-1.2.orig/src/saxpy.f 0000640 0001750 0001750 00000003117 11616621632 016222 0 ustar sylvestre sylvestre SUBROUTINE SAXPY(N,SA,SX,INCX,SY,INCY) * .. Scalar Arguments .. REAL SA INTEGER INCX,INCY,N * .. * .. Array Arguments .. REAL SX(*),SY(*) * .. * * Purpose * ======= * * SAXPY constant times a vector plus a vector. * uses unrolled loops for increments equal to one. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. INTEGER I,IX,IY,M,MP1 * .. * .. Intrinsic Functions .. INTRINSIC MOD * .. IF (N.LE.0) RETURN IF (SA.EQ.0.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * * * clean-up loop * M = MOD(N,4) IF (M.NE.0) THEN DO I = 1,M SY(I) = SY(I) + SA*SX(I) END DO END IF IF (N.LT.4) RETURN MP1 = M + 1 DO I = MP1,N,4 SY(I) = SY(I) + SA*SX(I) SY(I+1) = SY(I+1) + SA*SX(I+1) SY(I+2) = SY(I+2) + SA*SX(I+2) SY(I+3) = SY(I+3) + SA*SX(I+3) END DO ELSE * * code for unequal increments or equal increments * not equal to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N SY(IY) = SY(IY) + SA*SX(IX) IX = IX + INCX IY = IY + INCY END DO END IF RETURN END blas-1.2.orig/src/ztrsv.f 0000640 0001750 0001750 00000024206 11616621632 016250 0 ustar sylvestre sylvestre SUBROUTINE ZTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*) * .. * * Purpose * ======= * * ZTRSV solves one of the systems of equations * * A*x = b, or A**T*x = b, or A**H*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A**T*x = b. * * TRANS = 'C' or 'c' A**H*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KX LOGICAL NOCONJ,NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG,MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZTRSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/A(J,J) TEMP = X(J) DO 10 I = J - 1,1,-1 X(I) = X(I) - TEMP*A(I,J) 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX + (N-1)*INCX DO 40 J = N,1,-1 IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/A(J,J) TEMP = X(JX) IX = JX DO 30 I = J - 1,1,-1 IX = IX - INCX X(IX) = X(IX) - TEMP*A(I,J) 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/A(J,J) TEMP = X(J) DO 50 I = J + 1,N X(I) = X(I) - TEMP*A(I,J) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/A(J,J) TEMP = X(JX) IX = JX DO 70 I = J + 1,N IX = IX + INCX X(IX) = X(IX) - TEMP*A(I,J) 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T )*x or x := inv( A**H )*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = X(J) IF (NOCONJ) THEN DO 90 I = 1,J - 1 TEMP = TEMP - A(I,J)*X(I) 90 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) ELSE DO 100 I = 1,J - 1 TEMP = TEMP - DCONJG(A(I,J))*X(I) 100 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J)) END IF X(J) = TEMP 110 CONTINUE ELSE JX = KX DO 140 J = 1,N IX = KX TEMP = X(JX) IF (NOCONJ) THEN DO 120 I = 1,J - 1 TEMP = TEMP - A(I,J)*X(IX) IX = IX + INCX 120 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) ELSE DO 130 I = 1,J - 1 TEMP = TEMP - DCONJG(A(I,J))*X(IX) IX = IX + INCX 130 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J)) END IF X(JX) = TEMP JX = JX + INCX 140 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 170 J = N,1,-1 TEMP = X(J) IF (NOCONJ) THEN DO 150 I = N,J + 1,-1 TEMP = TEMP - A(I,J)*X(I) 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) ELSE DO 160 I = N,J + 1,-1 TEMP = TEMP - DCONJG(A(I,J))*X(I) 160 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J)) END IF X(J) = TEMP 170 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 200 J = N,1,-1 IX = KX TEMP = X(JX) IF (NOCONJ) THEN DO 180 I = N,J + 1,-1 TEMP = TEMP - A(I,J)*X(IX) IX = IX - INCX 180 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) ELSE DO 190 I = N,J + 1,-1 TEMP = TEMP - DCONJG(A(I,J))*X(IX) IX = IX - INCX 190 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(A(J,J)) END IF X(JX) = TEMP JX = JX - INCX 200 CONTINUE END IF END IF END IF * RETURN * * End of ZTRSV . * END blas-1.2.orig/src/sasum.f 0000640 0001750 0001750 00000003021 11616621632 016200 0 ustar sylvestre sylvestre REAL FUNCTION SASUM(N,SX,INCX) * .. Scalar Arguments .. INTEGER INCX,N * .. * .. Array Arguments .. REAL SX(*) * .. * * Purpose * ======= * * SASUM takes the sum of the absolute values. * uses unrolled loops for increment equal to one. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. REAL STEMP INTEGER I,M,MP1,NINCX * .. * .. Intrinsic Functions .. INTRINSIC ABS,MOD * .. SASUM = 0.0e0 STEMP = 0.0e0 IF (N.LE.0 .OR. INCX.LE.0) RETURN IF (INCX.EQ.1) THEN * code for increment equal to 1 * * * clean-up loop * M = MOD(N,6) IF (M.NE.0) THEN DO I = 1,M STEMP = STEMP + ABS(SX(I)) END DO IF (N.LT.6) THEN SASUM = STEMP RETURN END IF END IF MP1 = M + 1 DO I = MP1,N,6 STEMP = STEMP + ABS(SX(I)) + ABS(SX(I+1)) + $ ABS(SX(I+2)) + ABS(SX(I+3)) + $ ABS(SX(I+4)) + ABS(SX(I+5)) END DO ELSE * * code for increment not equal to 1 * NINCX = N*INCX DO I = 1,NINCX,INCX STEMP = STEMP + ABS(SX(I)) END DO END IF SASUM = STEMP RETURN END blas-1.2.orig/src/cgerc.f 0000640 0001750 0001750 00000010423 11616621632 016137 0 ustar sylvestre sylvestre SUBROUTINE CGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. COMPLEX ALPHA INTEGER INCX,INCY,LDA,M,N * .. * .. Array Arguments .. COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * CGERC performs the rank 1 operation * * A := alpha*x*y**H + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. * * Arguments * ========== * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX array of dimension at least * ( 1 + ( m - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the m * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. On exit, A is * overwritten by the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,IX,J,JY,KX * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX * .. * * Test the input parameters. * INFO = 0 IF (M.LT.0) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('CGERC ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (INCY.GT.0) THEN JY = 1 ELSE JY = 1 - (N-1)*INCY END IF IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*CONJG(Y(JY)) DO 10 I = 1,M A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF JY = JY + INCY 20 CONTINUE ELSE IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (M-1)*INCX END IF DO 40 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*CONJG(Y(JY)) IX = KX DO 30 I = 1,M A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JY = JY + INCY 40 CONTINUE END IF * RETURN * * End of CGERC . * END blas-1.2.orig/src/scasum.f 0000640 0001750 0001750 00000002273 11616621632 016353 0 ustar sylvestre sylvestre REAL FUNCTION SCASUM(N,CX,INCX) * .. Scalar Arguments .. INTEGER INCX,N * .. * .. Array Arguments .. COMPLEX CX(*) * .. * * Purpose * ======= * * SCASUM takes the sum of the absolute values of a complex vector and * returns a single precision result. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. REAL STEMP INTEGER I,NINCX * .. * .. Intrinsic Functions .. INTRINSIC ABS,AIMAG,REAL * .. SCASUM = 0.0e0 STEMP = 0.0e0 IF (N.LE.0 .OR. INCX.LE.0) RETURN IF (INCX.EQ.1) THEN * * code for increment equal to 1 * DO I = 1,N STEMP = STEMP + ABS(REAL(CX(I))) + ABS(AIMAG(CX(I))) END DO ELSE * * code for increment not equal to 1 * NINCX = N*INCX DO I = 1,NINCX,INCX STEMP = STEMP + ABS(REAL(CX(I))) + ABS(AIMAG(CX(I))) END DO END IF SCASUM = STEMP RETURN END blas-1.2.orig/src/drotmg.f 0000640 0001750 0001750 00000012104 11616621632 016346 0 ustar sylvestre sylvestre SUBROUTINE DROTMG(DD1,DD2,DX1,DY1,DPARAM) * .. Scalar Arguments .. DOUBLE PRECISION DD1,DD2,DX1,DY1 * .. * .. Array Arguments .. DOUBLE PRECISION DPARAM(5) * .. * * Purpose * ======= * * CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS * THE SECOND COMPONENT OF THE 2-VECTOR (DSQRT(DD1)*DX1,DSQRT(DD2)* * DY2)**T. * WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. * * DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 * * (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) * H=( ) ( ) ( ) ( ) * (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). * LOCATIONS 2-4 OF DPARAM CONTAIN DH11, DH21, DH12, AND DH22 * RESPECTIVELY. (VALUES OF 1.D0, -1.D0, OR 0.D0 IMPLIED BY THE * VALUE OF DPARAM(1) ARE NOT STORED IN DPARAM.) * * THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE * INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE * OF DD1 AND DD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. * * * Arguments * ========= * * DD1 (input/output) DOUBLE PRECISION * * DD2 (input/output) DOUBLE PRECISION * * DX1 (input/output) DOUBLE PRECISION * * DY1 (input) DOUBLE PRECISION * * DPARAM (input/output) DOUBLE PRECISION array, dimension 5 * DPARAM(1)=DFLAG * DPARAM(2)=DH11 * DPARAM(3)=DH21 * DPARAM(4)=DH12 * DPARAM(5)=DH22 * * ===================================================================== * * .. Local Scalars .. DOUBLE PRECISION DFLAG,DH11,DH12,DH21,DH22,DP1,DP2,DQ1,DQ2,DTEMP, $ DU,GAM,GAMSQ,ONE,RGAMSQ,TWO,ZERO * .. * .. Intrinsic Functions .. INTRINSIC DABS * .. * .. Data statements .. * DATA ZERO,ONE,TWO/0.D0,1.D0,2.D0/ DATA GAM,GAMSQ,RGAMSQ/4096.D0,16777216.D0,5.9604645D-8/ * .. IF (DD1.LT.ZERO) THEN * GO ZERO-H-D-AND-DX1.. DFLAG = -ONE DH11 = ZERO DH12 = ZERO DH21 = ZERO DH22 = ZERO * DD1 = ZERO DD2 = ZERO DX1 = ZERO ELSE * CASE-DD1-NONNEGATIVE DP2 = DD2*DY1 IF (DP2.EQ.ZERO) THEN DFLAG = -TWO DPARAM(1) = DFLAG RETURN END IF * REGULAR-CASE.. DP1 = DD1*DX1 DQ2 = DP2*DY1 DQ1 = DP1*DX1 * IF (DABS(DQ1).GT.DABS(DQ2)) THEN DH21 = -DY1/DX1 DH12 = DP2/DP1 * DU = ONE - DH12*DH21 * IF (DU.GT.ZERO) THEN DFLAG = ZERO DD1 = DD1/DU DD2 = DD2/DU DX1 = DX1*DU END IF ELSE IF (DQ2.LT.ZERO) THEN * GO ZERO-H-D-AND-DX1.. DFLAG = -ONE DH11 = ZERO DH12 = ZERO DH21 = ZERO DH22 = ZERO * DD1 = ZERO DD2 = ZERO DX1 = ZERO ELSE DFLAG = ONE DH11 = DP1/DP2 DH22 = DX1/DY1 DU = ONE + DH11*DH22 DTEMP = DD2/DU DD2 = DD1/DU DD1 = DTEMP DX1 = DY1*DU END IF END IF * PROCEDURE..SCALE-CHECK IF (DD1.NE.ZERO) THEN DO WHILE ((DD1.LE.RGAMSQ) .OR. (DD1.GE.GAMSQ)) IF (DFLAG.EQ.ZERO) THEN DH11 = ONE DH22 = ONE DFLAG = -ONE ELSE DH21 = -ONE DH12 = ONE DFLAG = -ONE END IF IF (DD1.LE.RGAMSQ) THEN DD1 = DD1*GAM**2 DX1 = DX1/GAM DH11 = DH11/GAM DH12 = DH12/GAM ELSE DD1 = DD1/GAM**2 DX1 = DX1*GAM DH11 = DH11*GAM DH12 = DH12*GAM END IF ENDDO END IF IF (DD2.NE.ZERO) THEN DO WHILE ( (DABS(DD2).LE.RGAMSQ) .OR. (DABS(DD2).GE.GAMSQ) ) IF (DFLAG.EQ.ZERO) THEN DH11 = ONE DH22 = ONE DFLAG = -ONE ELSE DH21 = -ONE DH12 = ONE DFLAG = -ONE END IF IF (DABS(DD2).LE.RGAMSQ) THEN DD2 = DD2*GAM**2 DH21 = DH21/GAM DH22 = DH22/GAM ELSE DD2 = DD2/GAM**2 DH21 = DH21*GAM DH22 = DH22*GAM END IF END DO END IF END IF IF (DFLAG.LT.ZERO) THEN DPARAM(2) = DH11 DPARAM(3) = DH21 DPARAM(4) = DH12 DPARAM(5) = DH22 ELSE IF (DFLAG.EQ.ZERO) THEN DPARAM(3) = DH21 DPARAM(4) = DH12 ELSE DPARAM(2) = DH11 DPARAM(5) = DH22 END IF 260 CONTINUE DPARAM(1) = DFLAG RETURN END blas-1.2.orig/src/srot.f 0000640 0001750 0001750 00000002335 11616621632 016046 0 ustar sylvestre sylvestre SUBROUTINE SROT(N,SX,INCX,SY,INCY,C,S) * .. Scalar Arguments .. REAL C,S INTEGER INCX,INCY,N * .. * .. Array Arguments .. REAL SX(*),SY(*) * .. * * Purpose * ======= * * applies a plane rotation. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. REAL STEMP INTEGER I,IX,IY * .. IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * DO I = 1,N STEMP = C*SX(I) + S*SY(I) SY(I) = C*SY(I) - S*SX(I) SX(I) = STEMP END DO ELSE * * code for unequal increments or equal increments not equal * to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N STEMP = C*SX(IX) + S*SY(IY) SY(IY) = C*SY(IY) - S*SX(IX) SX(IX) = STEMP IX = IX + INCX IY = IY + INCY END DO END IF RETURN END blas-1.2.orig/src/zdotu.f 0000640 0001750 0001750 00000002304 11616621632 016220 0 ustar sylvestre sylvestre DOUBLE COMPLEX FUNCTION ZDOTU(N,ZX,INCX,ZY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. DOUBLE COMPLEX ZX(*),ZY(*) * .. * * Purpose * ======= * * ZDOTU forms the dot product of two vectors. * * Further Details * =============== * * jack dongarra, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. DOUBLE COMPLEX ZTEMP INTEGER I,IX,IY * .. ZTEMP = (0.0d0,0.0d0) ZDOTU = (0.0d0,0.0d0) IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * DO I = 1,N ZTEMP = ZTEMP + ZX(I)*ZY(I) END DO ELSE * * code for unequal increments or equal increments * not equal to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N ZTEMP = ZTEMP + ZX(IX)*ZY(IY) IX = IX + INCX IY = IY + INCY END DO END IF ZDOTU = ZTEMP RETURN END blas-1.2.orig/src/ztpsv.f 0000640 0001750 0001750 00000025546 11616621632 016256 0 ustar sylvestre sylvestre SUBROUTINE ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX) * .. Scalar Arguments .. INTEGER INCX,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX AP(*),X(*) * .. * * Purpose * ======= * * ZTPSV solves one of the systems of equations * * A*x = b, or A**T*x = b, or A**H*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix, supplied in packed form. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A**T*x = b. * * TRANS = 'C' or 'c' A**H*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * AP - COMPLEX*16 array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) * respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) * respectively, and so on. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced, but are assumed to be unity. * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX LOGICAL NOCONJ,NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (INCX.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZTPSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of AP are * accessed sequentially with one pass through AP. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/AP(KK) TEMP = X(J) K = KK - 1 DO 10 I = J - 1,1,-1 X(I) = X(I) - TEMP*AP(K) K = K - 1 10 CONTINUE END IF KK = KK - J 20 CONTINUE ELSE JX = KX + (N-1)*INCX DO 40 J = N,1,-1 IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/AP(KK) TEMP = X(JX) IX = JX DO 30 K = KK - 1,KK - J + 1,-1 IX = IX - INCX X(IX) = X(IX) - TEMP*AP(K) 30 CONTINUE END IF JX = JX - INCX KK = KK - J 40 CONTINUE END IF ELSE KK = 1 IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/AP(KK) TEMP = X(J) K = KK + 1 DO 50 I = J + 1,N X(I) = X(I) - TEMP*AP(K) K = K + 1 50 CONTINUE END IF KK = KK + (N-J+1) 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/AP(KK) TEMP = X(JX) IX = JX DO 70 K = KK + 1,KK + N - J IX = IX + INCX X(IX) = X(IX) - TEMP*AP(K) 70 CONTINUE END IF JX = JX + INCX KK = KK + (N-J+1) 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T )*x or x := inv( A**H )*x. * IF (LSAME(UPLO,'U')) THEN KK = 1 IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = X(J) K = KK IF (NOCONJ) THEN DO 90 I = 1,J - 1 TEMP = TEMP - AP(K)*X(I) K = K + 1 90 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK+J-1) ELSE DO 100 I = 1,J - 1 TEMP = TEMP - DCONJG(AP(K))*X(I) K = K + 1 100 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1)) END IF X(J) = TEMP KK = KK + J 110 CONTINUE ELSE JX = KX DO 140 J = 1,N TEMP = X(JX) IX = KX IF (NOCONJ) THEN DO 120 K = KK,KK + J - 2 TEMP = TEMP - AP(K)*X(IX) IX = IX + INCX 120 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK+J-1) ELSE DO 130 K = KK,KK + J - 2 TEMP = TEMP - DCONJG(AP(K))*X(IX) IX = IX + INCX 130 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1)) END IF X(JX) = TEMP JX = JX + INCX KK = KK + J 140 CONTINUE END IF ELSE KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 170 J = N,1,-1 TEMP = X(J) K = KK IF (NOCONJ) THEN DO 150 I = N,J + 1,-1 TEMP = TEMP - AP(K)*X(I) K = K - 1 150 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK-N+J) ELSE DO 160 I = N,J + 1,-1 TEMP = TEMP - DCONJG(AP(K))*X(I) K = K - 1 160 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J)) END IF X(J) = TEMP KK = KK - (N-J+1) 170 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 200 J = N,1,-1 TEMP = X(JX) IX = KX IF (NOCONJ) THEN DO 180 K = KK,KK - (N- (J+1)),-1 TEMP = TEMP - AP(K)*X(IX) IX = IX - INCX 180 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK-N+J) ELSE DO 190 K = KK,KK - (N- (J+1)),-1 TEMP = TEMP - DCONJG(AP(K))*X(IX) IX = IX - INCX 190 CONTINUE IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J)) END IF X(JX) = TEMP JX = JX - INCX KK = KK - (N-J+1) 200 CONTINUE END IF END IF END IF * RETURN * * End of ZTPSV . * END blas-1.2.orig/src/cgemm.f 0000640 0001750 0001750 00000031505 11616621632 016150 0 ustar sylvestre sylvestre SUBROUTINE CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. COMPLEX ALPHA,BETA INTEGER K,LDA,LDB,LDC,M,N CHARACTER TRANSA,TRANSB * .. * .. Array Arguments .. COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * CGEMM performs one of the matrix-matrix operations * * C := alpha*op( A )*op( B ) + beta*C, * * where op( X ) is one of * * op( X ) = X or op( X ) = X**T or op( X ) = X**H, * * alpha and beta are scalars, and A, B and C are matrices, with op( A ) * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. * * Arguments * ========== * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n', op( A ) = A. * * TRANSA = 'T' or 't', op( A ) = A**T. * * TRANSA = 'C' or 'c', op( A ) = A**H. * * Unchanged on exit. * * TRANSB - CHARACTER*1. * On entry, TRANSB specifies the form of op( B ) to be used in * the matrix multiplication as follows: * * TRANSB = 'N' or 'n', op( B ) = B. * * TRANSB = 'T' or 't', op( B ) = B**T. * * TRANSB = 'C' or 'c', op( B ) = B**H. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix * op( A ) and of the matrix C. M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix * op( B ) and the number of columns of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry, K specifies the number of columns of the matrix * op( A ) and the number of rows of the matrix op( B ). K must * be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is * k when TRANSA = 'N' or 'n', and is m otherwise. * Before entry with TRANSA = 'N' or 'n', the leading m by k * part of the array A must contain the matrix A, otherwise * the leading k by m part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANSA = 'N' or 'n' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, k ). * Unchanged on exit. * * B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is * n when TRANSB = 'N' or 'n', and is k otherwise. * Before entry with TRANSB = 'N' or 'n', the leading k by n * part of the array B must contain the matrix B, otherwise * the leading n by k part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANSB = 'N' or 'n' then * LDB must be at least max( 1, k ), otherwise LDB must be at * least max( 1, n ). * Unchanged on exit. * * BETA - COMPLEX . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - COMPLEX array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n matrix * ( alpha*op( A )*op( B ) + beta*C ). * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB LOGICAL CONJA,CONJB,NOTA,NOTB * .. * .. Parameters .. COMPLEX ONE PARAMETER (ONE= (1.0E+0,0.0E+0)) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * * Set NOTA and NOTB as true if A and B respectively are not * conjugated or transposed, set CONJA and CONJB as true if A and * B respectively are to be transposed but not conjugated and set * NROWA, NCOLA and NROWB as the number of rows and columns of A * and the number of rows of B respectively. * NOTA = LSAME(TRANSA,'N') NOTB = LSAME(TRANSB,'N') CONJA = LSAME(TRANSA,'C') CONJB = LSAME(TRANSB,'C') IF (NOTA) THEN NROWA = M NCOLA = K ELSE NROWA = K NCOLA = M END IF IF (NOTB) THEN NROWB = K ELSE NROWB = N END IF * * Test the input parameters. * INFO = 0 IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND. + (.NOT.LSAME(TRANSA,'T'))) THEN INFO = 1 ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND. + (.NOT.LSAME(TRANSB,'T'))) THEN INFO = 2 ELSE IF (M.LT.0) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 8 ELSE IF (LDB.LT.MAX(1,NROWB)) THEN INFO = 10 ELSE IF (LDC.LT.MAX(1,M)) THEN INFO = 13 END IF IF (INFO.NE.0) THEN CALL XERBLA('CGEMM ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,M C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF (NOTB) THEN IF (NOTA) THEN * * Form C := alpha*A*B + beta*C. * DO 90 J = 1,N IF (BETA.EQ.ZERO) THEN DO 50 I = 1,M C(I,J) = ZERO 50 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 60 I = 1,M C(I,J) = BETA*C(I,J) 60 CONTINUE END IF DO 80 L = 1,K IF (B(L,J).NE.ZERO) THEN TEMP = ALPHA*B(L,J) DO 70 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 70 CONTINUE END IF 80 CONTINUE 90 CONTINUE ELSE IF (CONJA) THEN * * Form C := alpha*A**H*B + beta*C. * DO 120 J = 1,N DO 110 I = 1,M TEMP = ZERO DO 100 L = 1,K TEMP = TEMP + CONJG(A(L,I))*B(L,J) 100 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 110 CONTINUE 120 CONTINUE ELSE * * Form C := alpha*A**T*B + beta*C * DO 150 J = 1,N DO 140 I = 1,M TEMP = ZERO DO 130 L = 1,K TEMP = TEMP + A(L,I)*B(L,J) 130 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 140 CONTINUE 150 CONTINUE END IF ELSE IF (NOTA) THEN IF (CONJB) THEN * * Form C := alpha*A*B**H + beta*C. * DO 200 J = 1,N IF (BETA.EQ.ZERO) THEN DO 160 I = 1,M C(I,J) = ZERO 160 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 170 I = 1,M C(I,J) = BETA*C(I,J) 170 CONTINUE END IF DO 190 L = 1,K IF (B(J,L).NE.ZERO) THEN TEMP = ALPHA*CONJG(B(J,L)) DO 180 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 180 CONTINUE END IF 190 CONTINUE 200 CONTINUE ELSE * * Form C := alpha*A*B**T + beta*C * DO 250 J = 1,N IF (BETA.EQ.ZERO) THEN DO 210 I = 1,M C(I,J) = ZERO 210 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 220 I = 1,M C(I,J) = BETA*C(I,J) 220 CONTINUE END IF DO 240 L = 1,K IF (B(J,L).NE.ZERO) THEN TEMP = ALPHA*B(J,L) DO 230 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 230 CONTINUE END IF 240 CONTINUE 250 CONTINUE END IF ELSE IF (CONJA) THEN IF (CONJB) THEN * * Form C := alpha*A**H*B**H + beta*C. * DO 280 J = 1,N DO 270 I = 1,M TEMP = ZERO DO 260 L = 1,K TEMP = TEMP + CONJG(A(L,I))*CONJG(B(J,L)) 260 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 270 CONTINUE 280 CONTINUE ELSE * * Form C := alpha*A**H*B**T + beta*C * DO 310 J = 1,N DO 300 I = 1,M TEMP = ZERO DO 290 L = 1,K TEMP = TEMP + CONJG(A(L,I))*B(J,L) 290 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 300 CONTINUE 310 CONTINUE END IF ELSE IF (CONJB) THEN * * Form C := alpha*A**T*B**H + beta*C * DO 340 J = 1,N DO 330 I = 1,M TEMP = ZERO DO 320 L = 1,K TEMP = TEMP + A(L,I)*CONJG(B(J,L)) 320 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 330 CONTINUE 340 CONTINUE ELSE * * Form C := alpha*A**T*B**T + beta*C * DO 370 J = 1,N DO 360 I = 1,M TEMP = ZERO DO 350 L = 1,K TEMP = TEMP + A(L,I)*B(J,L) 350 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 360 CONTINUE 370 CONTINUE END IF END IF * RETURN * * End of CGEMM . * END blas-1.2.orig/src/dsyr2.f 0000640 0001750 0001750 00000016077 11616621632 016132 0 ustar sylvestre sylvestre SUBROUTINE DSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER INCX,INCY,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * DSYR2 performs the symmetric rank 2 operation * * A := alpha*x*y**T + alpha*y*x**T + A, * * where alpha is a scalar, x and y are n element vectors and A is an n * by n symmetric matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of A is not referenced. On exit, the * upper triangular part of the array A is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of A is not referenced. On exit, the * lower triangular part of the array A is overwritten by the * lower triangular part of the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSYR2 ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set up the start points in X and Y if the increments are not both * unity. * IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF JX = KX JY = KY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF (LSAME(UPLO,'U')) THEN * * Form A when A is stored in the upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 20 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*Y(J) TEMP2 = ALPHA*X(J) DO 10 I = 1,J A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 10 CONTINUE END IF 20 CONTINUE ELSE DO 40 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*Y(JY) TEMP2 = ALPHA*X(JX) IX = KX IY = KY DO 30 I = 1,J A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 30 CONTINUE END IF JX = JX + INCX JY = JY + INCY 40 CONTINUE END IF ELSE * * Form A when A is stored in the lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*Y(J) TEMP2 = ALPHA*X(J) DO 50 I = J,N A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 50 CONTINUE END IF 60 CONTINUE ELSE DO 80 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*Y(JY) TEMP2 = ALPHA*X(JX) IX = JX IY = JY DO 70 I = J,N A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF END IF * RETURN * * End of DSYR2 . * END blas-1.2.orig/src/cswap.f 0000640 0001750 0001750 00000002242 11616621632 016171 0 ustar sylvestre sylvestre SUBROUTINE CSWAP(N,CX,INCX,CY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. COMPLEX CX(*),CY(*) * .. * * Purpose * ======= * * CSWAP interchanges two vectors. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. COMPLEX CTEMP INTEGER I,IX,IY * .. IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 DO I = 1,N CTEMP = CX(I) CX(I) = CY(I) CY(I) = CTEMP END DO ELSE * * code for unequal increments or equal increments not equal * to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N CTEMP = CX(IX) CX(IX) = CY(IY) CY(IY) = CTEMP IX = IX + INCX IY = IY + INCY END DO END IF RETURN END blas-1.2.orig/src/idamax.f 0000640 0001750 0001750 00000002537 11616621632 016326 0 ustar sylvestre sylvestre INTEGER FUNCTION IDAMAX(N,DX,INCX) * .. Scalar Arguments .. INTEGER INCX,N * .. * .. Array Arguments .. DOUBLE PRECISION DX(*) * .. * * Purpose * ======= * * IDAMAX finds the index of element having max. absolute value. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. DOUBLE PRECISION DMAX INTEGER I,IX * .. * .. Intrinsic Functions .. INTRINSIC DABS * .. IDAMAX = 0 IF (N.LT.1 .OR. INCX.LE.0) RETURN IDAMAX = 1 IF (N.EQ.1) RETURN IF (INCX.EQ.1) THEN * * code for increment equal to 1 * DMAX = DABS(DX(1)) DO I = 2,N IF (DABS(DX(I)).GT.DMAX) THEN IDAMAX = I DMAX = DABS(DX(I)) END IF END DO ELSE * * code for increment not equal to 1 * IX = 1 DMAX = DABS(DX(1)) IX = IX + INCX DO I = 2,N IF (DABS(DX(IX)).GT.DMAX) THEN IDAMAX = I DMAX = DABS(DX(IX)) END IF IX = IX + INCX END DO END IF RETURN END blas-1.2.orig/src/dger.f 0000640 0001750 0001750 00000010430 11616621632 015773 0 ustar sylvestre sylvestre SUBROUTINE DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER INCX,INCY,LDA,M,N * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * DGER performs the rank 1 operation * * A := alpha*x*y**T + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. * * Arguments * ========== * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( m - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the m * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. On exit, A is * overwritten by the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JY,KX * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (M.LT.0) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('DGER ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (INCY.GT.0) THEN JY = 1 ELSE JY = 1 - (N-1)*INCY END IF IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) DO 10 I = 1,M A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF JY = JY + INCY 20 CONTINUE ELSE IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (M-1)*INCX END IF DO 40 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) IX = KX DO 30 I = 1,M A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JY = JY + INCY 40 CONTINUE END IF * RETURN * * End of DGER . * END blas-1.2.orig/src/chpmv.f 0000640 0001750 0001750 00000020244 11616621632 016173 0 ustar sylvestre sylvestre SUBROUTINE CHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. COMPLEX ALPHA,BETA INTEGER INCX,INCY,N CHARACTER UPLO * .. * .. Array Arguments .. COMPLEX AP(*),X(*),Y(*) * .. * * Purpose * ======= * * CHPMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the matrix A is supplied in the packed * array AP as follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * supplied in AP. * * UPLO = 'L' or 'l' The lower triangular part of A is * supplied in AP. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * AP - COMPLEX array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular part of the hermitian matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) * and a( 2, 2 ) respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular part of the hermitian matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) * and a( 3, 1 ) respectively, and so on. * Note that the imaginary parts of the diagonal elements need * not be set and are assumed to be zero. * Unchanged on exit. * * X - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - COMPLEX . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. On exit, Y is overwritten by the updated * vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ONE PARAMETER (ONE= (1.0E+0,0.0E+0)) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,REAL * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 6 ELSE IF (INCY.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('CHPMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set up the start points in X and Y. * IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF * * Start the operations. In this version the elements of the array AP * are accessed sequentially with one pass through AP. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN KK = 1 IF (LSAME(UPLO,'U')) THEN * * Form y when AP contains the upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO K = KK DO 50 I = 1,J - 1 Y(I) = Y(I) + TEMP1*AP(K) TEMP2 = TEMP2 + CONJG(AP(K))*X(I) K = K + 1 50 CONTINUE Y(J) = Y(J) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2 KK = KK + J 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY DO 70 K = KK,KK + J - 2 Y(IY) = Y(IY) + TEMP1*AP(K) TEMP2 = TEMP2 + CONJG(AP(K))*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + J 80 CONTINUE END IF ELSE * * Form y when AP contains the lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*REAL(AP(KK)) K = KK + 1 DO 90 I = J + 1,N Y(I) = Y(I) + TEMP1*AP(K) TEMP2 = TEMP2 + CONJG(AP(K))*X(I) K = K + 1 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 KK = KK + (N-J+1) 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*REAL(AP(KK)) IX = JX IY = JY DO 110 K = KK + 1,KK + N - J IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*AP(K) TEMP2 = TEMP2 + CONJG(AP(K))*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + (N-J+1) 120 CONTINUE END IF END IF * RETURN * * End of CHPMV . * END blas-1.2.orig/src/dsbmv.f 0000640 0001750 0001750 00000022750 11616621632 016175 0 ustar sylvestre sylvestre SUBROUTINE DSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA,BETA INTEGER INCX,INCY,K,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * DSBMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n symmetric band matrix, with k super-diagonals. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the band matrix A is being supplied as * follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * being supplied. * * UPLO = 'L' or 'l' The lower triangular part of A is * being supplied. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * K - INTEGER. * On entry, K specifies the number of super-diagonals of the * matrix A. K must satisfy 0 .le. K. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) * by n part of the array A must contain the upper triangular * band part of the symmetric matrix, supplied column by * column, with the leading diagonal of the matrix in row * ( k + 1 ) of the array, the first super-diagonal starting at * position 2 in row k, and so on. The top left k by k triangle * of the array A is not referenced. * The following program segment will transfer the upper * triangular part of a symmetric band matrix from conventional * full matrix storage to band storage: * * DO 20, J = 1, N * M = K + 1 - J * DO 10, I = MAX( 1, J - K ), J * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) * by n part of the array A must contain the lower triangular * band part of the symmetric matrix, supplied column by * column, with the leading diagonal of the matrix in row 1 of * the array, the first sub-diagonal starting at position 1 in * row 2, and so on. The bottom right k by k triangle of the * array A is not referenced. * The following program segment will transfer the lower * triangular part of a symmetric band matrix from conventional * full matrix storage to band storage: * * DO 20, J = 1, N * M = 1 - J * DO 10, I = J, MIN( N, J + K ) * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( k + 1 ). * Unchanged on exit. * * X - DOUBLE PRECISION array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * Y - DOUBLE PRECISION array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the * vector y. On exit, Y is overwritten by the updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (K.LT.0) THEN INFO = 3 ELSE IF (LDA.LT. (K+1)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 ELSE IF (INCY.EQ.0) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSBMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set up the start points in X and Y. * IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF * * Start the operations. In this version the elements of the array A * are accessed sequentially with one pass through A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(UPLO,'U')) THEN * * Form y when upper triangle of A is stored. * KPLUS1 = K + 1 IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO L = KPLUS1 - J DO 50 I = MAX(1,J-K),J - 1 Y(I) = Y(I) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + A(L+I,J)*X(I) 50 CONTINUE Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY L = KPLUS1 - J DO 70 I = MAX(1,J-K),J - 1 Y(IY) = Y(IY) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + A(L+I,J)*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY IF (J.GT.K) THEN KX = KX + INCX KY = KY + INCY END IF 80 CONTINUE END IF ELSE * * Form y when lower triangle of A is stored. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*A(1,J) L = 1 - J DO 90 I = J + 1,MIN(N,J+K) Y(I) = Y(I) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + A(L+I,J)*X(I) 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*A(1,J) L = 1 - J IX = JX IY = JY DO 110 I = J + 1,MIN(N,J+K) IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + A(L+I,J)*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of DSBMV . * END blas-1.2.orig/src/stpsv.f 0000640 0001750 0001750 00000022315 11616621632 016236 0 ustar sylvestre sylvestre SUBROUTINE STPSV(UPLO,TRANS,DIAG,N,AP,X,INCX) * .. Scalar Arguments .. INTEGER INCX,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. REAL AP(*),X(*) * .. * * Purpose * ======= * * STPSV solves one of the systems of equations * * A*x = b, or A**T*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix, supplied in packed form. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A**T*x = b. * * TRANS = 'C' or 'c' A**T*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * AP - REAL array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) * respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) * respectively, and so on. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced, but are assumed to be unity. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (INCX.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('STPSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of AP are * accessed sequentially with one pass through AP. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/AP(KK) TEMP = X(J) K = KK - 1 DO 10 I = J - 1,1,-1 X(I) = X(I) - TEMP*AP(K) K = K - 1 10 CONTINUE END IF KK = KK - J 20 CONTINUE ELSE JX = KX + (N-1)*INCX DO 40 J = N,1,-1 IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/AP(KK) TEMP = X(JX) IX = JX DO 30 K = KK - 1,KK - J + 1,-1 IX = IX - INCX X(IX) = X(IX) - TEMP*AP(K) 30 CONTINUE END IF JX = JX - INCX KK = KK - J 40 CONTINUE END IF ELSE KK = 1 IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/AP(KK) TEMP = X(J) K = KK + 1 DO 50 I = J + 1,N X(I) = X(I) - TEMP*AP(K) K = K + 1 50 CONTINUE END IF KK = KK + (N-J+1) 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/AP(KK) TEMP = X(JX) IX = JX DO 70 K = KK + 1,KK + N - J IX = IX + INCX X(IX) = X(IX) - TEMP*AP(K) 70 CONTINUE END IF JX = JX + INCX KK = KK + (N-J+1) 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T )*x. * IF (LSAME(UPLO,'U')) THEN KK = 1 IF (INCX.EQ.1) THEN DO 100 J = 1,N TEMP = X(J) K = KK DO 90 I = 1,J - 1 TEMP = TEMP - AP(K)*X(I) K = K + 1 90 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK+J-1) X(J) = TEMP KK = KK + J 100 CONTINUE ELSE JX = KX DO 120 J = 1,N TEMP = X(JX) IX = KX DO 110 K = KK,KK + J - 2 TEMP = TEMP - AP(K)*X(IX) IX = IX + INCX 110 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK+J-1) X(JX) = TEMP JX = JX + INCX KK = KK + J 120 CONTINUE END IF ELSE KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 140 J = N,1,-1 TEMP = X(J) K = KK DO 130 I = N,J + 1,-1 TEMP = TEMP - AP(K)*X(I) K = K - 1 130 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK-N+J) X(J) = TEMP KK = KK - (N-J+1) 140 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 160 J = N,1,-1 TEMP = X(JX) IX = KX DO 150 K = KK,KK - (N- (J+1)),-1 TEMP = TEMP - AP(K)*X(IX) IX = IX - INCX 150 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK-N+J) X(JX) = TEMP JX = JX - INCX KK = KK - (N-J+1) 160 CONTINUE END IF END IF END IF * RETURN * * End of STPSV . * END blas-1.2.orig/src/dcabs1.f 0000640 0001750 0001750 00000000627 11616621632 016216 0 ustar sylvestre sylvestre DOUBLE PRECISION FUNCTION DCABS1(Z) * .. Scalar Arguments .. DOUBLE COMPLEX Z * .. * .. * Purpose * ======= * * DCABS1 computes absolute value of a double complex number * * ===================================================================== * * .. Intrinsic Functions .. INTRINSIC ABS,DBLE,DIMAG * DCABS1 = ABS(DBLE(Z)) + ABS(DIMAG(Z)) RETURN END blas-1.2.orig/src/ssymm.f 0000640 0001750 0001750 00000022666 11616621632 016240 0 ustar sylvestre sylvestre SUBROUTINE SSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. REAL ALPHA,BETA INTEGER LDA,LDB,LDC,M,N CHARACTER SIDE,UPLO * .. * .. Array Arguments .. REAL A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * SSYMM performs one of the matrix-matrix operations * * C := alpha*A*B + beta*C, * * or * * C := alpha*B*A + beta*C, * * where alpha and beta are scalars, A is a symmetric matrix and B and * C are m by n matrices. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether the symmetric matrix A * appears on the left or right in the operation as follows: * * SIDE = 'L' or 'l' C := alpha*A*B + beta*C, * * SIDE = 'R' or 'r' C := alpha*B*A + beta*C, * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the symmetric matrix A is to be * referenced as follows: * * UPLO = 'U' or 'u' Only the upper triangular part of the * symmetric matrix is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of the * symmetric matrix is to be referenced. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix C. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix C. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, ka ), where ka is * m when SIDE = 'L' or 'l' and is n otherwise. * Before entry with SIDE = 'L' or 'l', the m by m part of * the array A must contain the symmetric matrix, such that * when UPLO = 'U' or 'u', the leading m by m upper triangular * part of the array A must contain the upper triangular part * of the symmetric matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading m by m lower triangular part of the array A * must contain the lower triangular part of the symmetric * matrix and the strictly upper triangular part of A is not * referenced. * Before entry with SIDE = 'R' or 'r', the n by n part of * the array A must contain the symmetric matrix, such that * when UPLO = 'U' or 'u', the leading n by n upper triangular * part of the array A must contain the upper triangular part * of the symmetric matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading n by n lower triangular part of the array A * must contain the lower triangular part of the symmetric * matrix and the strictly upper triangular part of A is not * referenced. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, n ). * Unchanged on exit. * * B - REAL array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - REAL array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n updated * matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. REAL TEMP1,TEMP2 INTEGER I,INFO,J,K,NROWA LOGICAL UPPER * .. * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * * Set NROWA as the number of rows of A. * IF (LSAME(SIDE,'L')) THEN NROWA = M ELSE NROWA = N END IF UPPER = LSAME(UPLO,'U') * * Test the input parameters. * INFO = 0 IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF (M.LT.0) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,M)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSYMM ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,M C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF (LSAME(SIDE,'L')) THEN * * Form C := alpha*A*B + beta*C. * IF (UPPER) THEN DO 70 J = 1,N DO 60 I = 1,M TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 50 K = 1,I - 1 C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*A(K,I) 50 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + + ALPHA*TEMP2 END IF 60 CONTINUE 70 CONTINUE ELSE DO 100 J = 1,N DO 90 I = M,1,-1 TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 80 K = I + 1,M C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*A(K,I) 80 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + + ALPHA*TEMP2 END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form C := alpha*B*A + beta*C. * DO 170 J = 1,N TEMP1 = ALPHA*A(J,J) IF (BETA.EQ.ZERO) THEN DO 110 I = 1,M C(I,J) = TEMP1*B(I,J) 110 CONTINUE ELSE DO 120 I = 1,M C(I,J) = BETA*C(I,J) + TEMP1*B(I,J) 120 CONTINUE END IF DO 140 K = 1,J - 1 IF (UPPER) THEN TEMP1 = ALPHA*A(K,J) ELSE TEMP1 = ALPHA*A(J,K) END IF DO 130 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 130 CONTINUE 140 CONTINUE DO 160 K = J + 1,N IF (UPPER) THEN TEMP1 = ALPHA*A(J,K) ELSE TEMP1 = ALPHA*A(K,J) END IF DO 150 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 150 CONTINUE 160 CONTINUE 170 CONTINUE END IF * RETURN * * End of SSYMM . * END blas-1.2.orig/src/ddot.f 0000640 0001750 0001750 00000003267 11616621632 016016 0 ustar sylvestre sylvestre DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. DOUBLE PRECISION DX(*),DY(*) * .. * * Purpose * ======= * * DDOT forms the dot product of two vectors. * uses unrolled loops for increments equal to one. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. DOUBLE PRECISION DTEMP INTEGER I,IX,IY,M,MP1 * .. * .. Intrinsic Functions .. INTRINSIC MOD * .. DDOT = 0.0d0 DTEMP = 0.0d0 IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * * * clean-up loop * M = MOD(N,5) IF (M.NE.0) THEN DO I = 1,M DTEMP = DTEMP + DX(I)*DY(I) END DO IF (N.LT.5) THEN DDOT=DTEMP RETURN END IF END IF MP1 = M + 1 DO I = MP1,N,5 DTEMP = DTEMP + DX(I)*DY(I) + DX(I+1)*DY(I+1) + $ DX(I+2)*DY(I+2) + DX(I+3)*DY(I+3) + DX(I+4)*DY(I+4) END DO ELSE * * code for unequal increments or equal increments * not equal to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N DTEMP = DTEMP + DX(IX)*DY(IY) IX = IX + INCX IY = IY + INCY END DO END IF DDOT = DTEMP RETURN END blas-1.2.orig/src/scabs1.f 0000640 0001750 0001750 00000000574 11616621632 016236 0 ustar sylvestre sylvestre REAL FUNCTION SCABS1(Z) * .. Scalar Arguments .. COMPLEX Z * .. * * Purpose * ======= * * SCABS1 computes absolute value of a complex number * * ===================================================================== * * .. Intrinsic Functions .. INTRINSIC ABS,AIMAG,REAL * .. SCABS1 = ABS(REAL(Z)) + ABS(AIMAG(Z)) RETURN END blas-1.2.orig/src/zhpr2.f 0000640 0001750 0001750 00000020230 11616621632 016116 0 ustar sylvestre sylvestre SUBROUTINE ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA INTEGER INCX,INCY,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX AP(*),X(*),Y(*) * .. * * Purpose * ======= * * ZHPR2 performs the hermitian rank 2 operation * * A := alpha*x*y**H + conjg( alpha )*y*x**H + A, * * where alpha is a scalar, x and y are n element vectors and A is an * n by n hermitian matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the matrix A is supplied in the packed * array AP as follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * supplied in AP. * * UPLO = 'L' or 'l' The lower triangular part of A is * supplied in AP. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * AP - COMPLEX*16 array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular part of the hermitian matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) * and a( 2, 2 ) respectively, and so on. On exit, the array * AP is overwritten by the upper triangular part of the * updated matrix. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular part of the hermitian matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) * and a( 3, 1 ) respectively, and so on. On exit, the array * AP is overwritten by the lower triangular part of the * updated matrix. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero, and on exit they * are set to zero. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHPR2 ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set up the start points in X and Y if the increments are not both * unity. * IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF JX = KX JY = KY END IF * * Start the operations. In this version the elements of the array AP * are accessed sequentially with one pass through AP. * KK = 1 IF (LSAME(UPLO,'U')) THEN * * Form A when upper triangle is stored in AP. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 20 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(J)) TEMP2 = DCONJG(ALPHA*X(J)) K = KK DO 10 I = 1,J - 1 AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2 K = K + 1 10 CONTINUE AP(KK+J-1) = DBLE(AP(KK+J-1)) + + DBLE(X(J)*TEMP1+Y(J)*TEMP2) ELSE AP(KK+J-1) = DBLE(AP(KK+J-1)) END IF KK = KK + J 20 CONTINUE ELSE DO 40 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(JY)) TEMP2 = DCONJG(ALPHA*X(JX)) IX = KX IY = KY DO 30 K = KK,KK + J - 2 AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 30 CONTINUE AP(KK+J-1) = DBLE(AP(KK+J-1)) + + DBLE(X(JX)*TEMP1+Y(JY)*TEMP2) ELSE AP(KK+J-1) = DBLE(AP(KK+J-1)) END IF JX = JX + INCX JY = JY + INCY KK = KK + J 40 CONTINUE END IF ELSE * * Form A when lower triangle is stored in AP. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(J)) TEMP2 = DCONJG(ALPHA*X(J)) AP(KK) = DBLE(AP(KK)) + + DBLE(X(J)*TEMP1+Y(J)*TEMP2) K = KK + 1 DO 50 I = J + 1,N AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2 K = K + 1 50 CONTINUE ELSE AP(KK) = DBLE(AP(KK)) END IF KK = KK + N - J + 1 60 CONTINUE ELSE DO 80 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(JY)) TEMP2 = DCONJG(ALPHA*X(JX)) AP(KK) = DBLE(AP(KK)) + + DBLE(X(JX)*TEMP1+Y(JY)*TEMP2) IX = JX IY = JY DO 70 K = KK + 1,KK + N - J IX = IX + INCX IY = IY + INCY AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2 70 CONTINUE ELSE AP(KK) = DBLE(AP(KK)) END IF JX = JX + INCX JY = JY + INCY KK = KK + N - J + 1 80 CONTINUE END IF END IF * RETURN * * End of ZHPR2 . * END blas-1.2.orig/src/lsame.f 0000640 0001750 0001750 00000004424 11616621632 016161 0 ustar sylvestre sylvestre LOGICAL FUNCTION LSAME(CA,CB) * * -- LAPACK auxiliary routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER CA,CB * .. * * Purpose * ======= * * LSAME returns .TRUE. if CA is the same letter as CB regardless of * case. * * Arguments * ========= * * CA (input) CHARACTER*1 * * CB (input) CHARACTER*1 * CA and CB specify the single characters to be compared. * * ===================================================================== * * .. Intrinsic Functions .. INTRINSIC ICHAR * .. * .. Local Scalars .. INTEGER INTA,INTB,ZCODE * .. * * Test if the characters are equal * LSAME = CA .EQ. CB IF (LSAME) RETURN * * Now test for equivalence if both characters are alphabetic. * ZCODE = ICHAR('Z') * * Use 'Z' rather than 'A' so that ASCII can be detected on Prime * machines, on which ICHAR returns a value with bit 8 set. * ICHAR('A') on Prime machines returns 193 which is the same as * ICHAR('A') on an EBCDIC machine. * INTA = ICHAR(CA) INTB = ICHAR(CB) * IF (ZCODE.EQ.90 .OR. ZCODE.EQ.122) THEN * * ASCII is assumed - ZCODE is the ASCII code of either lower or * upper case 'Z'. * IF (INTA.GE.97 .AND. INTA.LE.122) INTA = INTA - 32 IF (INTB.GE.97 .AND. INTB.LE.122) INTB = INTB - 32 * ELSE IF (ZCODE.EQ.233 .OR. ZCODE.EQ.169) THEN * * EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or * upper case 'Z'. * IF (INTA.GE.129 .AND. INTA.LE.137 .OR. + INTA.GE.145 .AND. INTA.LE.153 .OR. + INTA.GE.162 .AND. INTA.LE.169) INTA = INTA + 64 IF (INTB.GE.129 .AND. INTB.LE.137 .OR. + INTB.GE.145 .AND. INTB.LE.153 .OR. + INTB.GE.162 .AND. INTB.LE.169) INTB = INTB + 64 * ELSE IF (ZCODE.EQ.218 .OR. ZCODE.EQ.250) THEN * * ASCII is assumed, on Prime machines - ZCODE is the ASCII code * plus 128 of either lower or upper case 'Z'. * IF (INTA.GE.225 .AND. INTA.LE.250) INTA = INTA - 32 IF (INTB.GE.225 .AND. INTB.LE.250) INTB = INTB - 32 END IF LSAME = INTA .EQ. INTB * * RETURN * * End of LSAME * END blas-1.2.orig/src/sspmv.f 0000640 0001750 0001750 00000017561 11616621632 016236 0 ustar sylvestre sylvestre SUBROUTINE SSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. REAL ALPHA,BETA INTEGER INCX,INCY,N CHARACTER UPLO * .. * .. Array Arguments .. REAL AP(*),X(*),Y(*) * .. * * Purpose * ======= * * SSPMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n symmetric matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the matrix A is supplied in the packed * array AP as follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * supplied in AP. * * UPLO = 'L' or 'l' The lower triangular part of A is * supplied in AP. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * AP - REAL array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) * and a( 2, 2 ) respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) * and a( 3, 1 ) respectively, and so on. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. On exit, Y is overwritten by the updated * vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 6 ELSE IF (INCY.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSPMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set up the start points in X and Y. * IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF * * Start the operations. In this version the elements of the array AP * are accessed sequentially with one pass through AP. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN KK = 1 IF (LSAME(UPLO,'U')) THEN * * Form y when AP contains the upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO K = KK DO 50 I = 1,J - 1 Y(I) = Y(I) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(I) K = K + 1 50 CONTINUE Y(J) = Y(J) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2 KK = KK + J 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY DO 70 K = KK,KK + J - 2 Y(IY) = Y(IY) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + J 80 CONTINUE END IF ELSE * * Form y when AP contains the lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*AP(KK) K = KK + 1 DO 90 I = J + 1,N Y(I) = Y(I) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(I) K = K + 1 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 KK = KK + (N-J+1) 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*AP(KK) IX = JX IY = JY DO 110 K = KK + 1,KK + N - J IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + (N-J+1) 120 CONTINUE END IF END IF * RETURN * * End of SSPMV . * END blas-1.2.orig/src/cscal.f 0000640 0001750 0001750 00000001645 11616621632 016147 0 ustar sylvestre sylvestre SUBROUTINE CSCAL(N,CA,CX,INCX) * .. Scalar Arguments .. COMPLEX CA INTEGER INCX,N * .. * .. Array Arguments .. COMPLEX CX(*) * .. * * Purpose * ======= * * CSCAL scales a vector by a constant. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. INTEGER I,NINCX * .. IF (N.LE.0 .OR. INCX.LE.0) RETURN IF (INCX.EQ.1) THEN * * code for increment equal to 1 * DO I = 1,N CX(I) = CA*CX(I) END DO ELSE * * code for increment not equal to 1 * NINCX = N*INCX DO I = 1,NINCX,INCX CX(I) = CA*CX(I) END DO END IF RETURN END blas-1.2.orig/src/dtbsv.f 0000640 0001750 0001750 00000026020 11616621632 016176 0 ustar sylvestre sylvestre SUBROUTINE DTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,K,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*) * .. * * Purpose * ======= * * DTBSV solves one of the systems of equations * * A*x = b, or A**T*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular band matrix, with ( k + 1 ) * diagonals. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A**T*x = b. * * TRANS = 'C' or 'c' A**T*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with UPLO = 'U' or 'u', K specifies the number of * super-diagonals of the matrix A. * On entry with UPLO = 'L' or 'l', K specifies the number of * sub-diagonals of the matrix A. * K must satisfy 0 .le. K. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) * by n part of the array A must contain the upper triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row * ( k + 1 ) of the array, the first super-diagonal starting at * position 2 in row k, and so on. The top left k by k triangle * of the array A is not referenced. * The following program segment will transfer an upper * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = K + 1 - J * DO 10, I = MAX( 1, J - K ), J * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) * by n part of the array A must contain the lower triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row 1 of * the array, the first sub-diagonal starting at position 1 in * row 2, and so on. The bottom right k by k triangle of the * array A is not referenced. * The following program segment will transfer a lower * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = 1 - J * DO 10, I = J, MIN( N, J + K ) * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Note that when DIAG = 'U' or 'u' the elements of the array A * corresponding to the diagonal elements of the matrix are not * referenced, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( k + 1 ). * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (K+1)) THEN INFO = 7 ELSE IF (INCX.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('DTBSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed by sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN L = KPLUS1 - J IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J) TEMP = X(J) DO 10 I = J - 1,MAX(1,J-K),-1 X(I) = X(I) - TEMP*A(L+I,J) 10 CONTINUE END IF 20 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 40 J = N,1,-1 KX = KX - INCX IF (X(JX).NE.ZERO) THEN IX = KX L = KPLUS1 - J IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J) TEMP = X(JX) DO 30 I = J - 1,MAX(1,J-K),-1 X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX - INCX 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN L = 1 - J IF (NOUNIT) X(J) = X(J)/A(1,J) TEMP = X(J) DO 50 I = J + 1,MIN(N,J+K) X(I) = X(I) - TEMP*A(L+I,J) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N KX = KX + INCX IF (X(JX).NE.ZERO) THEN IX = KX L = 1 - J IF (NOUNIT) X(JX) = X(JX)/A(1,J) TEMP = X(JX) DO 70 I = J + 1,MIN(N,J+K) X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T)*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 100 J = 1,N TEMP = X(J) L = KPLUS1 - J DO 90 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(I) 90 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) X(J) = TEMP 100 CONTINUE ELSE JX = KX DO 120 J = 1,N TEMP = X(JX) IX = KX L = KPLUS1 - J DO 110 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX + INCX 110 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) X(JX) = TEMP JX = JX + INCX IF (J.GT.K) KX = KX + INCX 120 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 140 J = N,1,-1 TEMP = X(J) L = 1 - J DO 130 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(I) 130 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) X(J) = TEMP 140 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 160 J = N,1,-1 TEMP = X(JX) IX = KX L = 1 - J DO 150 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX - INCX 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) X(JX) = TEMP JX = JX - INCX IF ((N-J).GE.K) KX = KX - INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of DTBSV . * END blas-1.2.orig/src/izamax.f 0000640 0001750 0001750 00000002576 11616621632 016357 0 ustar sylvestre sylvestre INTEGER FUNCTION IZAMAX(N,ZX,INCX) * .. Scalar Arguments .. INTEGER INCX,N * .. * .. Array Arguments .. DOUBLE COMPLEX ZX(*) * .. * * Purpose * ======= * * IZAMAX finds the index of element having max. absolute value. * * Further Details * =============== * * jack dongarra, 1/15/85. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. DOUBLE PRECISION DMAX INTEGER I,IX * .. * .. External Functions .. DOUBLE PRECISION DCABS1 EXTERNAL DCABS1 * .. IZAMAX = 0 IF (N.LT.1 .OR. INCX.LE.0) RETURN IZAMAX = 1 IF (N.EQ.1) RETURN IF (INCX.EQ.1) THEN * * code for increment equal to 1 * DMAX = DCABS1(ZX(1)) DO I = 2,N IF (DCABS1(ZX(I)).GT.DMAX) THEN IZAMAX = I DMAX = DCABS1(ZX(I)) END IF END DO ELSE * * code for increment not equal to 1 * IX = 1 DMAX = DCABS1(ZX(1)) IX = IX + INCX DO I = 2,N IF (DCABS1(ZX(IX)).GT.DMAX) THEN IZAMAX = I DMAX = DCABS1(ZX(IX)) END IF IX = IX + INCX END DO END IF RETURN END blas-1.2.orig/src/dswap.f 0000640 0001750 0001750 00000003347 11616621632 016201 0 ustar sylvestre sylvestre SUBROUTINE DSWAP(N,DX,INCX,DY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. DOUBLE PRECISION DX(*),DY(*) * .. * * Purpose * ======= * * interchanges two vectors. * uses unrolled loops for increments equal one. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. DOUBLE PRECISION DTEMP INTEGER I,IX,IY,M,MP1 * .. * .. Intrinsic Functions .. INTRINSIC MOD * .. IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * * * clean-up loop * M = MOD(N,3) IF (M.NE.0) THEN DO I = 1,M DTEMP = DX(I) DX(I) = DY(I) DY(I) = DTEMP END DO IF (N.LT.3) RETURN END IF MP1 = M + 1 DO I = MP1,N,3 DTEMP = DX(I) DX(I) = DY(I) DY(I) = DTEMP DTEMP = DX(I+1) DX(I+1) = DY(I+1) DY(I+1) = DTEMP DTEMP = DX(I+2) DX(I+2) = DY(I+2) DY(I+2) = DTEMP END DO ELSE * * code for unequal increments or equal increments not equal * to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N DTEMP = DX(IX) DX(IX) = DY(IY) DY(IY) = DTEMP IX = IX + INCX IY = IY + INCY END DO END IF RETURN END blas-1.2.orig/src/daxpy.f 0000640 0001750 0001750 00000003151 11616621632 016201 0 ustar sylvestre sylvestre SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY) * .. Scalar Arguments .. DOUBLE PRECISION DA INTEGER INCX,INCY,N * .. * .. Array Arguments .. DOUBLE PRECISION DX(*),DY(*) * .. * * Purpose * ======= * * DAXPY constant times a vector plus a vector. * uses unrolled loops for increments equal to one. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. INTEGER I,IX,IY,M,MP1 * .. * .. Intrinsic Functions .. INTRINSIC MOD * .. IF (N.LE.0) RETURN IF (DA.EQ.0.0d0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * * * clean-up loop * M = MOD(N,4) IF (M.NE.0) THEN DO I = 1,M DY(I) = DY(I) + DA*DX(I) END DO END IF IF (N.LT.4) RETURN MP1 = M + 1 DO I = MP1,N,4 DY(I) = DY(I) + DA*DX(I) DY(I+1) = DY(I+1) + DA*DX(I+1) DY(I+2) = DY(I+2) + DA*DX(I+2) DY(I+3) = DY(I+3) + DA*DX(I+3) END DO ELSE * * code for unequal increments or equal increments * not equal to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N DY(IY) = DY(IY) + DA*DX(IX) IX = IX + INCX IY = IY + INCY END DO END IF RETURN END blas-1.2.orig/src/chemv.f 0000640 0001750 0001750 00000020010 11616621632 016147 0 ustar sylvestre sylvestre SUBROUTINE CHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. COMPLEX ALPHA,BETA INTEGER INCX,INCY,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * CHEMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the hermitian matrix and the strictly * lower triangular part of A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the hermitian matrix and the strictly * upper triangular part of A is not referenced. * Note that the imaginary parts of the diagonal elements need * not be set and are assumed to be zero. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - COMPLEX . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. On exit, Y is overwritten by the updated * vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ONE PARAMETER (ONE= (1.0E+0,0.0E+0)) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX,REAL * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 5 ELSE IF (INCX.EQ.0) THEN INFO = 7 ELSE IF (INCY.EQ.0) THEN INFO = 10 END IF IF (INFO.NE.0) THEN CALL XERBLA('CHEMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set up the start points in X and Y. * IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(UPLO,'U')) THEN * * Form y when A is stored in upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO DO 50 I = 1,J - 1 Y(I) = Y(I) + TEMP1*A(I,J) TEMP2 = TEMP2 + CONJG(A(I,J))*X(I) 50 CONTINUE Y(J) = Y(J) + TEMP1*REAL(A(J,J)) + ALPHA*TEMP2 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY DO 70 I = 1,J - 1 Y(IY) = Y(IY) + TEMP1*A(I,J) TEMP2 = TEMP2 + CONJG(A(I,J))*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*REAL(A(J,J)) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF ELSE * * Form y when A is stored in lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*REAL(A(J,J)) DO 90 I = J + 1,N Y(I) = Y(I) + TEMP1*A(I,J) TEMP2 = TEMP2 + CONJG(A(I,J))*X(I) 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*REAL(A(J,J)) IX = JX IY = JY DO 110 I = J + 1,N IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*A(I,J) TEMP2 = TEMP2 + CONJG(A(I,J))*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of CHEMV . * END blas-1.2.orig/src/zgbmv.f 0000640 0001750 0001750 00000023321 11616621632 016202 0 ustar sylvestre sylvestre SUBROUTINE ZGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER INCX,INCY,KL,KU,LDA,M,N CHARACTER TRANS * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * ZGBMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or * * y := alpha*A**H*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n band matrix, with kl sub-diagonals and ku super-diagonals. * * Arguments * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * KL - INTEGER. * On entry, KL specifies the number of sub-diagonals of the * matrix A. KL must satisfy 0 .le. KL. * Unchanged on exit. * * KU - INTEGER. * On entry, KU specifies the number of super-diagonals of the * matrix A. KU must satisfy 0 .le. KU. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry, the leading ( kl + ku + 1 ) by n part of the * array A must contain the matrix of coefficients, supplied * column by column, with the leading diagonal of the matrix in * row ( ku + 1 ) of the array, the first super-diagonal * starting at position 2 in row ku, the first sub-diagonal * starting at position 1 in row ( ku + 2 ), and so on. * Elements in the array A that do not correspond to elements * in the band matrix (such as the top left ku by ku triangle) * are not referenced. * The following program segment will transfer a band matrix * from conventional full matrix storage to band storage: * * DO 20, J = 1, N * K = KU + 1 - J * DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) * A( K + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( kl + ku + 1 ). * Unchanged on exit. * * X - COMPLEX*16 array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - COMPLEX*16 . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - COMPLEX*16 array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry, the incremented array Y must contain the * vector y. On exit, Y is overwritten by the updated vector y. * * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY LOGICAL NOCONJ * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG,MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 1 ELSE IF (M.LT.0) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (KL.LT.0) THEN INFO = 4 ELSE IF (KU.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (KL+KU+1)) THEN INFO = 8 ELSE IF (INCX.EQ.0) THEN INFO = 10 ELSE IF (INCY.EQ.0) THEN INFO = 13 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZGBMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * NOCONJ = LSAME(TRANS,'T') * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF (LSAME(TRANS,'N')) THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (LENX-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (LENY-1)*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the band part of A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,LENY Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,LENY Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,LENY Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,LENY Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN KUP1 = KU + 1 IF (LSAME(TRANS,'N')) THEN * * Form y := alpha*A*x + y. * JX = KX IF (INCY.EQ.1) THEN DO 60 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) K = KUP1 - J DO 50 I = MAX(1,J-KU),MIN(M,J+KL) Y(I) = Y(I) + TEMP*A(K+I,J) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IY = KY K = KUP1 - J DO 70 I = MAX(1,J-KU),MIN(M,J+KL) Y(IY) = Y(IY) + TEMP*A(K+I,J) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX IF (J.GT.KU) KY = KY + INCY 80 CONTINUE END IF ELSE * * Form y := alpha*A**T*x + y or y := alpha*A**H*x + y. * JY = KY IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = ZERO K = KUP1 - J IF (NOCONJ) THEN DO 90 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + A(K+I,J)*X(I) 90 CONTINUE ELSE DO 100 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + DCONJG(A(K+I,J))*X(I) 100 CONTINUE END IF Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 110 CONTINUE ELSE DO 140 J = 1,N TEMP = ZERO IX = KX K = KUP1 - J IF (NOCONJ) THEN DO 120 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + A(K+I,J)*X(IX) IX = IX + INCX 120 CONTINUE ELSE DO 130 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + DCONJG(A(K+I,J))*X(IX) IX = IX + INCX 130 CONTINUE END IF Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY IF (J.GT.KU) KX = KX + INCX 140 CONTINUE END IF END IF * RETURN * * End of ZGBMV . * END blas-1.2.orig/src/zrotg.f 0000640 0001750 0001750 00000001560 11616621632 016223 0 ustar sylvestre sylvestre SUBROUTINE ZROTG(CA,CB,C,S) * .. Scalar Arguments .. DOUBLE COMPLEX CA,CB,S DOUBLE PRECISION C * .. * * Purpose * ======= * * ZROTG determines a double complex Givens rotation. * * ===================================================================== * * .. Local Scalars .. DOUBLE COMPLEX ALPHA DOUBLE PRECISION NORM,SCALE * .. * .. Intrinsic Functions .. INTRINSIC CDABS,DCMPLX,DCONJG,DSQRT * .. IF (CDABS(CA).EQ.0.0d0) THEN C = 0.0d0 S = (1.0d0,0.0d0) CA = CB ELSE SCALE = CDABS(CA) + CDABS(CB) NORM = SCALE*DSQRT((CDABS(CA/DCMPLX(SCALE,0.0d0)))**2+ $ (CDABS(CB/DCMPLX(SCALE,0.0d0)))**2) ALPHA = CA/CDABS(CA) C = CDABS(CA)/NORM S = ALPHA*DCONJG(CB)/NORM CA = ALPHA*NORM END IF RETURN END blas-1.2.orig/src/make.inc 0000644 0001750 0001750 00000002025 11616621632 016320 0 ustar sylvestre sylvestre #################################################################### # BLAS make include file. # # March 2007 # #################################################################### # SHELL = /bin/sh # # The machine (platform) identifier to append to the library names # PLAT = _LINUX # # Modify the FORTRAN and OPTS definitions to refer to the # compiler and desired compiler options for your machine. NOOPT # refers to the compiler options desired when NO OPTIMIZATION is # selected. Define LOADER and LOADOPTS to refer to the loader and # desired load options for your machine. # FORTRAN = gfortran OPTS = -O3 DRVOPTS = $(OPTS) NOOPT = LOADER = gfortran LOADOPTS = # # The archiver and the flag(s) to use when building archive (library) # If you system has no ranlib, set RANLIB = echo. # ARCH = ar ARCHFLAGS= cr RANLIB = ranlib # # The location and name of the Reference BLAS library. # BLASLIB = blas$(PLAT).a blas-1.2.orig/src/dtbmv.f 0000640 0001750 0001750 00000025673 11616621632 016205 0 ustar sylvestre sylvestre SUBROUTINE DTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,K,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*) * .. * * Purpose * ======= * * DTBMV performs one of the matrix-vector operations * * x := A*x, or x := A**T*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular band matrix, with ( k + 1 ) diagonals. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A**T*x. * * TRANS = 'C' or 'c' x := A**T*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with UPLO = 'U' or 'u', K specifies the number of * super-diagonals of the matrix A. * On entry with UPLO = 'L' or 'l', K specifies the number of * sub-diagonals of the matrix A. * K must satisfy 0 .le. K. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) * by n part of the array A must contain the upper triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row * ( k + 1 ) of the array, the first super-diagonal starting at * position 2 in row k, and so on. The top left k by k triangle * of the array A is not referenced. * The following program segment will transfer an upper * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = K + 1 - J * DO 10, I = MAX( 1, J - K ), J * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) * by n part of the array A must contain the lower triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row 1 of * the array, the first sub-diagonal starting at position 1 in * row 2, and so on. The bottom right k by k triangle of the * array A is not referenced. * The following program segment will transfer a lower * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = 1 - J * DO 10, I = J, MIN( N, J + K ) * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Note that when DIAG = 'U' or 'u' the elements of the array A * corresponding to the diagonal elements of the matrix are not * referenced, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( k + 1 ). * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (K+1)) THEN INFO = 7 ELSE IF (INCX.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('DTBMV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := A*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) L = KPLUS1 - J DO 10 I = MAX(1,J-K),J - 1 X(I) = X(I) + TEMP*A(L+I,J) 10 CONTINUE IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX L = KPLUS1 - J DO 30 I = MAX(1,J-K),J - 1 X(IX) = X(IX) + TEMP*A(L+I,J) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J) END IF JX = JX + INCX IF (J.GT.K) KX = KX + INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) L = 1 - J DO 50 I = MIN(N,J+K),J + 1,-1 X(I) = X(I) + TEMP*A(L+I,J) 50 CONTINUE IF (NOUNIT) X(J) = X(J)*A(1,J) END IF 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX L = 1 - J DO 70 I = MIN(N,J+K),J + 1,-1 X(IX) = X(IX) + TEMP*A(L+I,J) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(1,J) END IF JX = JX - INCX IF ((N-J).GE.K) KX = KX - INCX 80 CONTINUE END IF END IF ELSE * * Form x := A**T*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 100 J = N,1,-1 TEMP = X(J) L = KPLUS1 - J IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) DO 90 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + A(L+I,J)*X(I) 90 CONTINUE X(J) = TEMP 100 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 120 J = N,1,-1 TEMP = X(JX) KX = KX - INCX IX = KX L = KPLUS1 - J IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) DO 110 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + A(L+I,J)*X(IX) IX = IX - INCX 110 CONTINUE X(JX) = TEMP JX = JX - INCX 120 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 140 J = 1,N TEMP = X(J) L = 1 - J IF (NOUNIT) TEMP = TEMP*A(1,J) DO 130 I = J + 1,MIN(N,J+K) TEMP = TEMP + A(L+I,J)*X(I) 130 CONTINUE X(J) = TEMP 140 CONTINUE ELSE JX = KX DO 160 J = 1,N TEMP = X(JX) KX = KX + INCX IX = KX L = 1 - J IF (NOUNIT) TEMP = TEMP*A(1,J) DO 150 I = J + 1,MIN(N,J+K) TEMP = TEMP + A(L+I,J)*X(IX) IX = IX + INCX 150 CONTINUE X(JX) = TEMP JX = JX + INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of DTBMV . * END blas-1.2.orig/src/dtpsv.f 0000640 0001750 0001750 00000022361 11616621632 016220 0 ustar sylvestre sylvestre SUBROUTINE DTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX) * .. Scalar Arguments .. INTEGER INCX,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION AP(*),X(*) * .. * * Purpose * ======= * * DTPSV solves one of the systems of equations * * A*x = b, or A**T*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix, supplied in packed form. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A**T*x = b. * * TRANS = 'C' or 'c' A**T*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * AP - DOUBLE PRECISION array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) * respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) * respectively, and so on. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced, but are assumed to be unity. * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (INCX.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('DTPSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of AP are * accessed sequentially with one pass through AP. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/AP(KK) TEMP = X(J) K = KK - 1 DO 10 I = J - 1,1,-1 X(I) = X(I) - TEMP*AP(K) K = K - 1 10 CONTINUE END IF KK = KK - J 20 CONTINUE ELSE JX = KX + (N-1)*INCX DO 40 J = N,1,-1 IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/AP(KK) TEMP = X(JX) IX = JX DO 30 K = KK - 1,KK - J + 1,-1 IX = IX - INCX X(IX) = X(IX) - TEMP*AP(K) 30 CONTINUE END IF JX = JX - INCX KK = KK - J 40 CONTINUE END IF ELSE KK = 1 IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/AP(KK) TEMP = X(J) K = KK + 1 DO 50 I = J + 1,N X(I) = X(I) - TEMP*AP(K) K = K + 1 50 CONTINUE END IF KK = KK + (N-J+1) 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/AP(KK) TEMP = X(JX) IX = JX DO 70 K = KK + 1,KK + N - J IX = IX + INCX X(IX) = X(IX) - TEMP*AP(K) 70 CONTINUE END IF JX = JX + INCX KK = KK + (N-J+1) 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T )*x. * IF (LSAME(UPLO,'U')) THEN KK = 1 IF (INCX.EQ.1) THEN DO 100 J = 1,N TEMP = X(J) K = KK DO 90 I = 1,J - 1 TEMP = TEMP - AP(K)*X(I) K = K + 1 90 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK+J-1) X(J) = TEMP KK = KK + J 100 CONTINUE ELSE JX = KX DO 120 J = 1,N TEMP = X(JX) IX = KX DO 110 K = KK,KK + J - 2 TEMP = TEMP - AP(K)*X(IX) IX = IX + INCX 110 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK+J-1) X(JX) = TEMP JX = JX + INCX KK = KK + J 120 CONTINUE END IF ELSE KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 140 J = N,1,-1 TEMP = X(J) K = KK DO 130 I = N,J + 1,-1 TEMP = TEMP - AP(K)*X(I) K = K - 1 130 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK-N+J) X(J) = TEMP KK = KK - (N-J+1) 140 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 160 J = N,1,-1 TEMP = X(JX) IX = KX DO 150 K = KK,KK - (N- (J+1)),-1 TEMP = TEMP - AP(K)*X(IX) IX = IX - INCX 150 CONTINUE IF (NOUNIT) TEMP = TEMP/AP(KK-N+J) X(JX) = TEMP JX = JX - INCX KK = KK - (N-J+1) 160 CONTINUE END IF END IF END IF * RETURN * * End of DTPSV . * END blas-1.2.orig/src/zaxpy.f 0000640 0001750 0001750 00000002353 11616621632 016232 0 ustar sylvestre sylvestre SUBROUTINE ZAXPY(N,ZA,ZX,INCX,ZY,INCY) * .. Scalar Arguments .. DOUBLE COMPLEX ZA INTEGER INCX,INCY,N * .. * .. Array Arguments .. DOUBLE COMPLEX ZX(*),ZY(*) * .. * * Purpose * ======= * * ZAXPY constant times a vector plus a vector. * * Further Details * =============== * * jack dongarra, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. INTEGER I,IX,IY * .. * .. External Functions .. DOUBLE PRECISION DCABS1 EXTERNAL DCABS1 * .. IF (N.LE.0) RETURN IF (DCABS1(ZA).EQ.0.0d0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * DO I = 1,N ZY(I) = ZY(I) + ZA*ZX(I) END DO ELSE * * code for unequal increments or equal increments * not equal to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N ZY(IY) = ZY(IY) + ZA*ZX(IX) IX = IX + INCX IY = IY + INCY END DO END IF * RETURN END blas-1.2.orig/src/sscal.f 0000640 0001750 0001750 00000002560 11616621632 016164 0 ustar sylvestre sylvestre SUBROUTINE SSCAL(N,SA,SX,INCX) * .. Scalar Arguments .. REAL SA INTEGER INCX,N * .. * .. Array Arguments .. REAL SX(*) * .. * * Purpose * ======= * * scales a vector by a constant. * uses unrolled loops for increment equal to 1. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. INTEGER I,M,MP1,NINCX * .. * .. Intrinsic Functions .. INTRINSIC MOD * .. IF (N.LE.0 .OR. INCX.LE.0) RETURN IF (INCX.EQ.1) THEN * * code for increment equal to 1 * * * clean-up loop * M = MOD(N,5) IF (M.NE.0) THEN DO I = 1,M SX(I) = SA*SX(I) END DO IF (N.LT.5) RETURN END IF MP1 = M + 1 DO I = MP1,N,5 SX(I) = SA*SX(I) SX(I+1) = SA*SX(I+1) SX(I+2) = SA*SX(I+2) SX(I+3) = SA*SX(I+3) SX(I+4) = SA*SX(I+4) END DO ELSE * * code for increment not equal to 1 * NINCX = N*INCX DO I = 1,NINCX,INCX SX(I) = SA*SX(I) END DO END IF RETURN END blas-1.2.orig/src/zher2.f 0000640 0001750 0001750 00000020005 11616621632 016103 0 ustar sylvestre sylvestre SUBROUTINE ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA INTEGER INCX,INCY,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * ZHER2 performs the hermitian rank 2 operation * * A := alpha*x*y**H + conjg( alpha )*y*x**H + A, * * where alpha is a scalar, x and y are n element vectors and A is an n * by n hermitian matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the hermitian matrix and the strictly * lower triangular part of A is not referenced. On exit, the * upper triangular part of the array A is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the hermitian matrix and the strictly * upper triangular part of A is not referenced. On exit, the * lower triangular part of the array A is overwritten by the * lower triangular part of the updated matrix. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero, and on exit they * are set to zero. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG,MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHER2 ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set up the start points in X and Y if the increments are not both * unity. * IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF JX = KX JY = KY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF (LSAME(UPLO,'U')) THEN * * Form A when A is stored in the upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 20 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(J)) TEMP2 = DCONJG(ALPHA*X(J)) DO 10 I = 1,J - 1 A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 10 CONTINUE A(J,J) = DBLE(A(J,J)) + + DBLE(X(J)*TEMP1+Y(J)*TEMP2) ELSE A(J,J) = DBLE(A(J,J)) END IF 20 CONTINUE ELSE DO 40 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(JY)) TEMP2 = DCONJG(ALPHA*X(JX)) IX = KX IY = KY DO 30 I = 1,J - 1 A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 30 CONTINUE A(J,J) = DBLE(A(J,J)) + + DBLE(X(JX)*TEMP1+Y(JY)*TEMP2) ELSE A(J,J) = DBLE(A(J,J)) END IF JX = JX + INCX JY = JY + INCY 40 CONTINUE END IF ELSE * * Form A when A is stored in the lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(J)) TEMP2 = DCONJG(ALPHA*X(J)) A(J,J) = DBLE(A(J,J)) + + DBLE(X(J)*TEMP1+Y(J)*TEMP2) DO 50 I = J + 1,N A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 50 CONTINUE ELSE A(J,J) = DBLE(A(J,J)) END IF 60 CONTINUE ELSE DO 80 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(Y(JY)) TEMP2 = DCONJG(ALPHA*X(JX)) A(J,J) = DBLE(A(J,J)) + + DBLE(X(JX)*TEMP1+Y(JY)*TEMP2) IX = JX IY = JY DO 70 I = J + 1,N IX = IX + INCX IY = IY + INCY A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 70 CONTINUE ELSE A(J,J) = DBLE(A(J,J)) END IF JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF END IF * RETURN * * End of ZHER2 . * END blas-1.2.orig/src/sdot.f 0000640 0001750 0001750 00000003223 11616621632 016025 0 ustar sylvestre sylvestre REAL FUNCTION SDOT(N,SX,INCX,SY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. REAL SX(*),SY(*) * .. * * Purpose * ======= * * SDOT forms the dot product of two vectors. * uses unrolled loops for increments equal to one. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. REAL STEMP INTEGER I,IX,IY,M,MP1 * .. * .. Intrinsic Functions .. INTRINSIC MOD * .. STEMP = 0.0e0 SDOT = 0.0e0 IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * * * clean-up loop * M = MOD(N,5) IF (M.NE.0) THEN DO I = 1,M STEMP = STEMP + SX(I)*SY(I) END DO IF (N.LT.5) THEN SDOT=STEMP RETURN END IF END IF MP1 = M + 1 DO I = MP1,N,5 STEMP = STEMP + SX(I)*SY(I) + SX(I+1)*SY(I+1) + $ SX(I+2)*SY(I+2) + SX(I+3)*SY(I+3) + SX(I+4)*SY(I+4) END DO ELSE * * code for unequal increments or equal increments * not equal to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N STEMP = STEMP + SX(IX)*SY(IY) IX = IX + INCX IY = IY + INCY END DO END IF SDOT = STEMP RETURN END blas-1.2.orig/src/chpr.f 0000640 0001750 0001750 00000015272 11616621632 016017 0 ustar sylvestre sylvestre SUBROUTINE CHPR(UPLO,N,ALPHA,X,INCX,AP) * .. Scalar Arguments .. REAL ALPHA INTEGER INCX,N CHARACTER UPLO * .. * .. Array Arguments .. COMPLEX AP(*),X(*) * .. * * Purpose * ======= * * CHPR performs the hermitian rank 1 operation * * A := alpha*x*x**H + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n hermitian matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the matrix A is supplied in the packed * array AP as follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * supplied in AP. * * UPLO = 'L' or 'l' The lower triangular part of A is * supplied in AP. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * AP - COMPLEX array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular part of the hermitian matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) * and a( 2, 2 ) respectively, and so on. On exit, the array * AP is overwritten by the upper triangular part of the * updated matrix. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular part of the hermitian matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) * and a( 3, 1 ) respectively, and so on. On exit, the array * AP is overwritten by the lower triangular part of the * updated matrix. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero, and on exit they * are set to zero. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,REAL * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 END IF IF (INFO.NE.0) THEN CALL XERBLA('CHPR ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN * * Set the start point in X if the increment is not unity. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of the array AP * are accessed sequentially with one pass through AP. * KK = 1 IF (LSAME(UPLO,'U')) THEN * * Form A when upper triangle is stored in AP. * IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*CONJG(X(J)) K = KK DO 10 I = 1,J - 1 AP(K) = AP(K) + X(I)*TEMP K = K + 1 10 CONTINUE AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(J)*TEMP) ELSE AP(KK+J-1) = REAL(AP(KK+J-1)) END IF KK = KK + J 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*CONJG(X(JX)) IX = KX DO 30 K = KK,KK + J - 2 AP(K) = AP(K) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(JX)*TEMP) ELSE AP(KK+J-1) = REAL(AP(KK+J-1)) END IF JX = JX + INCX KK = KK + J 40 CONTINUE END IF ELSE * * Form A when lower triangle is stored in AP. * IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*CONJG(X(J)) AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(J)) K = KK + 1 DO 50 I = J + 1,N AP(K) = AP(K) + X(I)*TEMP K = K + 1 50 CONTINUE ELSE AP(KK) = REAL(AP(KK)) END IF KK = KK + N - J + 1 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*CONJG(X(JX)) AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(JX)) IX = JX DO 70 K = KK + 1,KK + N - J IX = IX + INCX AP(K) = AP(K) + X(IX)*TEMP 70 CONTINUE ELSE AP(KK) = REAL(AP(KK)) END IF JX = JX + INCX KK = KK + N - J + 1 80 CONTINUE END IF END IF * RETURN * * End of CHPR . * END blas-1.2.orig/src/zscal.f 0000640 0001750 0001750 00000001651 11616621632 016173 0 ustar sylvestre sylvestre SUBROUTINE ZSCAL(N,ZA,ZX,INCX) * .. Scalar Arguments .. DOUBLE COMPLEX ZA INTEGER INCX,N * .. * .. Array Arguments .. DOUBLE COMPLEX ZX(*) * .. * * Purpose * ======= * * ZSCAL scales a vector by a constant. * * Further Details * =============== * * jack dongarra, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. INTEGER I,NINCX * .. IF (N.LE.0 .OR. INCX.LE.0) RETURN IF (INCX.EQ.1) THEN * * code for increment equal to 1 * DO I = 1,N ZX(I) = ZA*ZX(I) END DO ELSE * * code for increment not equal to 1 * NINCX = N*INCX DO I = 1,NINCX,INCX ZX(I) = ZA*ZX(I) END DO END IF RETURN END blas-1.2.orig/src/ctpmv.f 0000640 0001750 0001750 00000025342 11616621632 016213 0 ustar sylvestre sylvestre SUBROUTINE CTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) * .. Scalar Arguments .. INTEGER INCX,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. COMPLEX AP(*),X(*) * .. * * Purpose * ======= * * CTPMV performs one of the matrix-vector operations * * x := A*x, or x := A**T*x, or x := A**H*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A**T*x. * * TRANS = 'C' or 'c' x := A**H*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * AP - COMPLEX array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) * respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) * respectively, and so on. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced, but are assumed to be unity. * Unchanged on exit. * * X - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX LOGICAL NOCONJ,NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (INCX.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('CTPMV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of AP are * accessed sequentially with one pass through AP. * IF (LSAME(TRANS,'N')) THEN * * Form x:= A*x. * IF (LSAME(UPLO,'U')) THEN KK = 1 IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) K = KK DO 10 I = 1,J - 1 X(I) = X(I) + TEMP*AP(K) K = K + 1 10 CONTINUE IF (NOUNIT) X(J) = X(J)*AP(KK+J-1) END IF KK = KK + J 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 30 K = KK,KK + J - 2 X(IX) = X(IX) + TEMP*AP(K) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1) END IF JX = JX + INCX KK = KK + J 40 CONTINUE END IF ELSE KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) K = KK DO 50 I = N,J + 1,-1 X(I) = X(I) + TEMP*AP(K) K = K - 1 50 CONTINUE IF (NOUNIT) X(J) = X(J)*AP(KK-N+J) END IF KK = KK - (N-J+1) 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 70 K = KK,KK - (N- (J+1)),-1 X(IX) = X(IX) + TEMP*AP(K) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J) END IF JX = JX - INCX KK = KK - (N-J+1) 80 CONTINUE END IF END IF ELSE * * Form x := A**T*x or x := A**H*x. * IF (LSAME(UPLO,'U')) THEN KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 110 J = N,1,-1 TEMP = X(J) K = KK - 1 IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*AP(KK) DO 90 I = J - 1,1,-1 TEMP = TEMP + AP(K)*X(I) K = K - 1 90 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK)) DO 100 I = J - 1,1,-1 TEMP = TEMP + CONJG(AP(K))*X(I) K = K - 1 100 CONTINUE END IF X(J) = TEMP KK = KK - J 110 CONTINUE ELSE JX = KX + (N-1)*INCX DO 140 J = N,1,-1 TEMP = X(JX) IX = JX IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*AP(KK) DO 120 K = KK - 1,KK - J + 1,-1 IX = IX - INCX TEMP = TEMP + AP(K)*X(IX) 120 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK)) DO 130 K = KK - 1,KK - J + 1,-1 IX = IX - INCX TEMP = TEMP + CONJG(AP(K))*X(IX) 130 CONTINUE END IF X(JX) = TEMP JX = JX - INCX KK = KK - J 140 CONTINUE END IF ELSE KK = 1 IF (INCX.EQ.1) THEN DO 170 J = 1,N TEMP = X(J) K = KK + 1 IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*AP(KK) DO 150 I = J + 1,N TEMP = TEMP + AP(K)*X(I) K = K + 1 150 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK)) DO 160 I = J + 1,N TEMP = TEMP + CONJG(AP(K))*X(I) K = K + 1 160 CONTINUE END IF X(J) = TEMP KK = KK + (N-J+1) 170 CONTINUE ELSE JX = KX DO 200 J = 1,N TEMP = X(JX) IX = JX IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*AP(KK) DO 180 K = KK + 1,KK + N - J IX = IX + INCX TEMP = TEMP + AP(K)*X(IX) 180 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK)) DO 190 K = KK + 1,KK + N - J IX = IX + INCX TEMP = TEMP + CONJG(AP(K))*X(IX) 190 CONTINUE END IF X(JX) = TEMP JX = JX + INCX KK = KK + (N-J+1) 200 CONTINUE END IF END IF END IF * RETURN * * End of CTPMV . * END blas-1.2.orig/src/dznrm2.f 0000640 0001750 0001750 00000003656 11616621632 016302 0 ustar sylvestre sylvestre DOUBLE PRECISION FUNCTION DZNRM2(N,X,INCX) * .. Scalar Arguments .. INTEGER INCX,N * .. * .. Array Arguments .. DOUBLE COMPLEX X(*) * .. * * Purpose * ======= * * DZNRM2 returns the euclidean norm of a vector via the function * name, so that * * DZNRM2 := sqrt( x**H*x ) * * Further Details * =============== * * -- This version written on 25-October-1982. * Modified on 14-October-1993 to inline the call to ZLASSQ. * Sven Hammarling, Nag Ltd. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION NORM,SCALE,SSQ,TEMP INTEGER IX * .. * .. Intrinsic Functions .. INTRINSIC ABS,DBLE,DIMAG,SQRT * .. IF (N.LT.1 .OR. INCX.LT.1) THEN NORM = ZERO ELSE SCALE = ZERO SSQ = ONE * The following loop is equivalent to this call to the LAPACK * auxiliary routine: * CALL ZLASSQ( N, X, INCX, SCALE, SSQ ) * DO 10 IX = 1,1 + (N-1)*INCX,INCX IF (DBLE(X(IX)).NE.ZERO) THEN TEMP = ABS(DBLE(X(IX))) IF (SCALE.LT.TEMP) THEN SSQ = ONE + SSQ* (SCALE/TEMP)**2 SCALE = TEMP ELSE SSQ = SSQ + (TEMP/SCALE)**2 END IF END IF IF (DIMAG(X(IX)).NE.ZERO) THEN TEMP = ABS(DIMAG(X(IX))) IF (SCALE.LT.TEMP) THEN SSQ = ONE + SSQ* (SCALE/TEMP)**2 SCALE = TEMP ELSE SSQ = SSQ + (TEMP/SCALE)**2 END IF END IF 10 CONTINUE NORM = SCALE*SQRT(SSQ) END IF * DZNRM2 = NORM RETURN * * End of DZNRM2. * END blas-1.2.orig/src/csymm.f 0000640 0001750 0001750 00000022764 11616621632 016217 0 ustar sylvestre sylvestre SUBROUTINE CSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. COMPLEX ALPHA,BETA INTEGER LDA,LDB,LDC,M,N CHARACTER SIDE,UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * CSYMM performs one of the matrix-matrix operations * * C := alpha*A*B + beta*C, * * or * * C := alpha*B*A + beta*C, * * where alpha and beta are scalars, A is a symmetric matrix and B and * C are m by n matrices. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether the symmetric matrix A * appears on the left or right in the operation as follows: * * SIDE = 'L' or 'l' C := alpha*A*B + beta*C, * * SIDE = 'R' or 'r' C := alpha*B*A + beta*C, * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the symmetric matrix A is to be * referenced as follows: * * UPLO = 'U' or 'u' Only the upper triangular part of the * symmetric matrix is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of the * symmetric matrix is to be referenced. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix C. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix C. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is * m when SIDE = 'L' or 'l' and is n otherwise. * Before entry with SIDE = 'L' or 'l', the m by m part of * the array A must contain the symmetric matrix, such that * when UPLO = 'U' or 'u', the leading m by m upper triangular * part of the array A must contain the upper triangular part * of the symmetric matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading m by m lower triangular part of the array A * must contain the lower triangular part of the symmetric * matrix and the strictly upper triangular part of A is not * referenced. * Before entry with SIDE = 'R' or 'r', the n by n part of * the array A must contain the symmetric matrix, such that * when UPLO = 'U' or 'u', the leading n by n upper triangular * part of the array A must contain the upper triangular part * of the symmetric matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading n by n lower triangular part of the array A * must contain the lower triangular part of the symmetric * matrix and the strictly upper triangular part of A is not * referenced. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, n ). * Unchanged on exit. * * B - COMPLEX array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * BETA - COMPLEX . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - COMPLEX array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n updated * matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. COMPLEX TEMP1,TEMP2 INTEGER I,INFO,J,K,NROWA LOGICAL UPPER * .. * .. Parameters .. COMPLEX ONE PARAMETER (ONE= (1.0E+0,0.0E+0)) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * * Set NROWA as the number of rows of A. * IF (LSAME(SIDE,'L')) THEN NROWA = M ELSE NROWA = N END IF UPPER = LSAME(UPLO,'U') * * Test the input parameters. * INFO = 0 IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF (M.LT.0) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,M)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('CSYMM ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,M C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF (LSAME(SIDE,'L')) THEN * * Form C := alpha*A*B + beta*C. * IF (UPPER) THEN DO 70 J = 1,N DO 60 I = 1,M TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 50 K = 1,I - 1 C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*A(K,I) 50 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + + ALPHA*TEMP2 END IF 60 CONTINUE 70 CONTINUE ELSE DO 100 J = 1,N DO 90 I = M,1,-1 TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 80 K = I + 1,M C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*A(K,I) 80 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + + ALPHA*TEMP2 END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form C := alpha*B*A + beta*C. * DO 170 J = 1,N TEMP1 = ALPHA*A(J,J) IF (BETA.EQ.ZERO) THEN DO 110 I = 1,M C(I,J) = TEMP1*B(I,J) 110 CONTINUE ELSE DO 120 I = 1,M C(I,J) = BETA*C(I,J) + TEMP1*B(I,J) 120 CONTINUE END IF DO 140 K = 1,J - 1 IF (UPPER) THEN TEMP1 = ALPHA*A(K,J) ELSE TEMP1 = ALPHA*A(J,K) END IF DO 130 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 130 CONTINUE 140 CONTINUE DO 160 K = J + 1,N IF (UPPER) THEN TEMP1 = ALPHA*A(J,K) ELSE TEMP1 = ALPHA*A(K,J) END IF DO 150 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 150 CONTINUE 160 CONTINUE 170 CONTINUE END IF * RETURN * * End of CSYMM . * END blas-1.2.orig/src/cdotc.f 0000640 0001750 0001750 00000002434 11616621632 016153 0 ustar sylvestre sylvestre COMPLEX FUNCTION CDOTC(N,CX,INCX,CY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. COMPLEX CX(*),CY(*) * .. * * Purpose * ======= * * forms the dot product of two vectors, conjugating the first * vector. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. COMPLEX CTEMP INTEGER I,IX,IY * .. * .. Intrinsic Functions .. INTRINSIC CONJG * .. CTEMP = (0.0,0.0) CDOTC = (0.0,0.0) IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * DO I = 1,N CTEMP = CTEMP + CONJG(CX(I))*CY(I) END DO ELSE * * code for unequal increments or equal increments * not equal to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N CTEMP = CTEMP + CONJG(CX(IX))*CY(IY) IX = IX + INCX IY = IY + INCY END DO END IF CDOTC = CTEMP RETURN END blas-1.2.orig/src/dtrmv.f 0000640 0001750 0001750 00000021155 11616621632 016214 0 ustar sylvestre sylvestre SUBROUTINE DTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*) * .. * * Purpose * ======= * * DTRMV performs one of the matrix-vector operations * * x := A*x, or x := A**T*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A**T*x. * * TRANS = 'C' or 'c' x := A**T*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JX,KX LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 END IF IF (INFO.NE.0) THEN CALL XERBLA('DTRMV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := A*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) DO 10 I = 1,J - 1 X(I) = X(I) + TEMP*A(I,J) 10 CONTINUE IF (NOUNIT) X(J) = X(J)*A(J,J) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 30 I = 1,J - 1 X(IX) = X(IX) + TEMP*A(I,J) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(J,J) END IF JX = JX + INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) DO 50 I = N,J + 1,-1 X(I) = X(I) + TEMP*A(I,J) 50 CONTINUE IF (NOUNIT) X(J) = X(J)*A(J,J) END IF 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 70 I = N,J + 1,-1 X(IX) = X(IX) + TEMP*A(I,J) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(J,J) END IF JX = JX - INCX 80 CONTINUE END IF END IF ELSE * * Form x := A**T*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 100 J = N,1,-1 TEMP = X(J) IF (NOUNIT) TEMP = TEMP*A(J,J) DO 90 I = J - 1,1,-1 TEMP = TEMP + A(I,J)*X(I) 90 CONTINUE X(J) = TEMP 100 CONTINUE ELSE JX = KX + (N-1)*INCX DO 120 J = N,1,-1 TEMP = X(JX) IX = JX IF (NOUNIT) TEMP = TEMP*A(J,J) DO 110 I = J - 1,1,-1 IX = IX - INCX TEMP = TEMP + A(I,J)*X(IX) 110 CONTINUE X(JX) = TEMP JX = JX - INCX 120 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 140 J = 1,N TEMP = X(J) IF (NOUNIT) TEMP = TEMP*A(J,J) DO 130 I = J + 1,N TEMP = TEMP + A(I,J)*X(I) 130 CONTINUE X(J) = TEMP 140 CONTINUE ELSE JX = KX DO 160 J = 1,N TEMP = X(JX) IX = JX IF (NOUNIT) TEMP = TEMP*A(J,J) DO 150 I = J + 1,N IX = IX + INCX TEMP = TEMP + A(I,J)*X(IX) 150 CONTINUE X(JX) = TEMP JX = JX + INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of DTRMV . * END blas-1.2.orig/src/ctbsv.f 0000640 0001750 0001750 00000030760 11616621632 016203 0 ustar sylvestre sylvestre SUBROUTINE CTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,K,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),X(*) * .. * * Purpose * ======= * * CTBSV solves one of the systems of equations * * A*x = b, or A**T*x = b, or A**H*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular band matrix, with ( k + 1 ) * diagonals. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A**T*x = b. * * TRANS = 'C' or 'c' A**H*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with UPLO = 'U' or 'u', K specifies the number of * super-diagonals of the matrix A. * On entry with UPLO = 'L' or 'l', K specifies the number of * sub-diagonals of the matrix A. * K must satisfy 0 .le. K. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) * by n part of the array A must contain the upper triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row * ( k + 1 ) of the array, the first super-diagonal starting at * position 2 in row k, and so on. The top left k by k triangle * of the array A is not referenced. * The following program segment will transfer an upper * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = K + 1 - J * DO 10, I = MAX( 1, J - K ), J * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) * by n part of the array A must contain the lower triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row 1 of * the array, the first sub-diagonal starting at position 1 in * row 2, and so on. The bottom right k by k triangle of the * array A is not referenced. * The following program segment will transfer a lower * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = 1 - J * DO 10, I = J, MIN( N, J + K ) * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Note that when DIAG = 'U' or 'u' the elements of the array A * corresponding to the diagonal elements of the matrix are not * referenced, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( k + 1 ). * Unchanged on exit. * * X - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L LOGICAL NOCONJ,NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (K+1)) THEN INFO = 7 ELSE IF (INCX.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('CTBSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed by sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN L = KPLUS1 - J IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J) TEMP = X(J) DO 10 I = J - 1,MAX(1,J-K),-1 X(I) = X(I) - TEMP*A(L+I,J) 10 CONTINUE END IF 20 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 40 J = N,1,-1 KX = KX - INCX IF (X(JX).NE.ZERO) THEN IX = KX L = KPLUS1 - J IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J) TEMP = X(JX) DO 30 I = J - 1,MAX(1,J-K),-1 X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX - INCX 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN L = 1 - J IF (NOUNIT) X(J) = X(J)/A(1,J) TEMP = X(J) DO 50 I = J + 1,MIN(N,J+K) X(I) = X(I) - TEMP*A(L+I,J) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N KX = KX + INCX IF (X(JX).NE.ZERO) THEN IX = KX L = 1 - J IF (NOUNIT) X(JX) = X(JX)/A(1,J) TEMP = X(JX) DO 70 I = J + 1,MIN(N,J+K) X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T )*x or x := inv( A**H )*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = X(J) L = KPLUS1 - J IF (NOCONJ) THEN DO 90 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(I) 90 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) ELSE DO 100 I = MAX(1,J-K),J - 1 TEMP = TEMP - CONJG(A(L+I,J))*X(I) 100 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(A(KPLUS1,J)) END IF X(J) = TEMP 110 CONTINUE ELSE JX = KX DO 140 J = 1,N TEMP = X(JX) IX = KX L = KPLUS1 - J IF (NOCONJ) THEN DO 120 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX + INCX 120 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) ELSE DO 130 I = MAX(1,J-K),J - 1 TEMP = TEMP - CONJG(A(L+I,J))*X(IX) IX = IX + INCX 130 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(A(KPLUS1,J)) END IF X(JX) = TEMP JX = JX + INCX IF (J.GT.K) KX = KX + INCX 140 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 170 J = N,1,-1 TEMP = X(J) L = 1 - J IF (NOCONJ) THEN DO 150 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(I) 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) ELSE DO 160 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - CONJG(A(L+I,J))*X(I) 160 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(A(1,J)) END IF X(J) = TEMP 170 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 200 J = N,1,-1 TEMP = X(JX) IX = KX L = 1 - J IF (NOCONJ) THEN DO 180 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX - INCX 180 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) ELSE DO 190 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - CONJG(A(L+I,J))*X(IX) IX = IX - INCX 190 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(A(1,J)) END IF X(JX) = TEMP JX = JX - INCX IF ((N-J).GE.K) KX = KX - INCX 200 CONTINUE END IF END IF END IF * RETURN * * End of CTBSV . * END blas-1.2.orig/src/zswap.f 0000640 0001750 0001750 00000002250 11616621632 016217 0 ustar sylvestre sylvestre SUBROUTINE ZSWAP(N,ZX,INCX,ZY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. DOUBLE COMPLEX ZX(*),ZY(*) * .. * * Purpose * ======= * * ZSWAP interchanges two vectors. * * Further Details * =============== * * jack dongarra, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. DOUBLE COMPLEX ZTEMP INTEGER I,IX,IY * .. IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 DO I = 1,N ZTEMP = ZX(I) ZX(I) = ZY(I) ZY(I) = ZTEMP END DO ELSE * * code for unequal increments or equal increments not equal * to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N ZTEMP = ZX(IX) ZX(IX) = ZY(IY) ZY(IY) = ZTEMP IX = IX + INCX IY = IY + INCY END DO END IF RETURN END blas-1.2.orig/src/zgemv.f 0000640 0001750 0001750 00000017771 11616621632 016221 0 ustar sylvestre sylvestre SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER INCX,INCY,LDA,M,N CHARACTER TRANS * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * ZGEMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or * * y := alpha*A**H*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n matrix. * * Arguments * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * X - COMPLEX*16 array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - COMPLEX*16 . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - COMPLEX*16 array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry with BETA non-zero, the incremented array Y * must contain the vector y. On exit, Y is overwritten by the * updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY LOGICAL NOCONJ * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG,MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 1 ELSE IF (M.LT.0) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 ELSE IF (INCY.EQ.0) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZGEMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * NOCONJ = LSAME(TRANS,'T') * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF (LSAME(TRANS,'N')) THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (LENX-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (LENY-1)*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,LENY Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,LENY Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,LENY Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,LENY Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(TRANS,'N')) THEN * * Form y := alpha*A*x + y. * JX = KX IF (INCY.EQ.1) THEN DO 60 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) DO 50 I = 1,M Y(I) = Y(I) + TEMP*A(I,J) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IY = KY DO 70 I = 1,M Y(IY) = Y(IY) + TEMP*A(I,J) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF ELSE * * Form y := alpha*A**T*x + y or y := alpha*A**H*x + y. * JY = KY IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = ZERO IF (NOCONJ) THEN DO 90 I = 1,M TEMP = TEMP + A(I,J)*X(I) 90 CONTINUE ELSE DO 100 I = 1,M TEMP = TEMP + DCONJG(A(I,J))*X(I) 100 CONTINUE END IF Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 110 CONTINUE ELSE DO 140 J = 1,N TEMP = ZERO IX = KX IF (NOCONJ) THEN DO 120 I = 1,M TEMP = TEMP + A(I,J)*X(IX) IX = IX + INCX 120 CONTINUE ELSE DO 130 I = 1,M TEMP = TEMP + DCONJG(A(I,J))*X(IX) IX = IX + INCX 130 CONTINUE END IF Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 140 CONTINUE END IF END IF * RETURN * * End of ZGEMV . * END blas-1.2.orig/src/zdscal.f 0000640 0001750 0001750 00000002011 11616621632 016326 0 ustar sylvestre sylvestre SUBROUTINE ZDSCAL(N,DA,ZX,INCX) * .. Scalar Arguments .. DOUBLE PRECISION DA INTEGER INCX,N * .. * .. Array Arguments .. DOUBLE COMPLEX ZX(*) * .. * * Purpose * ======= * * ZDSCAL scales a vector by a constant. * * Further Details * =============== * * jack dongarra, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. INTEGER I,NINCX * .. * .. Intrinsic Functions .. INTRINSIC DCMPLX * .. IF (N.LE.0 .OR. INCX.LE.0) RETURN IF (INCX.EQ.1) THEN * * code for increment equal to 1 * DO I = 1,N ZX(I) = DCMPLX(DA,0.0d0)*ZX(I) END DO ELSE * * code for increment not equal to 1 * NINCX = N*INCX DO I = 1,NINCX,INCX ZX(I) = DCMPLX(DA,0.0d0)*ZX(I) END DO END IF RETURN END blas-1.2.orig/src/dtrsv.f 0000640 0001750 0001750 00000021231 11616621632 016215 0 ustar sylvestre sylvestre SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*) * .. * * Purpose * ======= * * DTRSV solves one of the systems of equations * * A*x = b, or A**T*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A**T*x = b. * * TRANS = 'C' or 'c' A**T*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JX,KX LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 END IF IF (INFO.NE.0) THEN CALL XERBLA('DTRSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/A(J,J) TEMP = X(J) DO 10 I = J - 1,1,-1 X(I) = X(I) - TEMP*A(I,J) 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX + (N-1)*INCX DO 40 J = N,1,-1 IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/A(J,J) TEMP = X(JX) IX = JX DO 30 I = J - 1,1,-1 IX = IX - INCX X(IX) = X(IX) - TEMP*A(I,J) 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/A(J,J) TEMP = X(J) DO 50 I = J + 1,N X(I) = X(I) - TEMP*A(I,J) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/A(J,J) TEMP = X(JX) IX = JX DO 70 I = J + 1,N IX = IX + INCX X(IX) = X(IX) - TEMP*A(I,J) 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T )*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 100 J = 1,N TEMP = X(J) DO 90 I = 1,J - 1 TEMP = TEMP - A(I,J)*X(I) 90 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) X(J) = TEMP 100 CONTINUE ELSE JX = KX DO 120 J = 1,N TEMP = X(JX) IX = KX DO 110 I = 1,J - 1 TEMP = TEMP - A(I,J)*X(IX) IX = IX + INCX 110 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) X(JX) = TEMP JX = JX + INCX 120 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 140 J = N,1,-1 TEMP = X(J) DO 130 I = N,J + 1,-1 TEMP = TEMP - A(I,J)*X(I) 130 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) X(J) = TEMP 140 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 160 J = N,1,-1 TEMP = X(JX) IX = KX DO 150 I = N,J + 1,-1 TEMP = TEMP - A(I,J)*X(IX) IX = IX - INCX 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) X(JX) = TEMP JX = JX - INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of DTRSV . * END blas-1.2.orig/src/zsymm.f 0000640 0001750 0001750 00000023027 11616621632 016237 0 ustar sylvestre sylvestre SUBROUTINE ZSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER LDA,LDB,LDC,M,N CHARACTER SIDE,UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * ZSYMM performs one of the matrix-matrix operations * * C := alpha*A*B + beta*C, * * or * * C := alpha*B*A + beta*C, * * where alpha and beta are scalars, A is a symmetric matrix and B and * C are m by n matrices. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether the symmetric matrix A * appears on the left or right in the operation as follows: * * SIDE = 'L' or 'l' C := alpha*A*B + beta*C, * * SIDE = 'R' or 'r' C := alpha*B*A + beta*C, * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the symmetric matrix A is to be * referenced as follows: * * UPLO = 'U' or 'u' Only the upper triangular part of the * symmetric matrix is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of the * symmetric matrix is to be referenced. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix C. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix C. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is * m when SIDE = 'L' or 'l' and is n otherwise. * Before entry with SIDE = 'L' or 'l', the m by m part of * the array A must contain the symmetric matrix, such that * when UPLO = 'U' or 'u', the leading m by m upper triangular * part of the array A must contain the upper triangular part * of the symmetric matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading m by m lower triangular part of the array A * must contain the lower triangular part of the symmetric * matrix and the strictly upper triangular part of A is not * referenced. * Before entry with SIDE = 'R' or 'r', the n by n part of * the array A must contain the symmetric matrix, such that * when UPLO = 'U' or 'u', the leading n by n upper triangular * part of the array A must contain the upper triangular part * of the symmetric matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading n by n lower triangular part of the array A * must contain the lower triangular part of the symmetric * matrix and the strictly upper triangular part of A is not * referenced. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, n ). * Unchanged on exit. * * B - COMPLEX*16 array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * BETA - COMPLEX*16 . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - COMPLEX*16 array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n updated * matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP1,TEMP2 INTEGER I,INFO,J,K,NROWA LOGICAL UPPER * .. * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * * Set NROWA as the number of rows of A. * IF (LSAME(SIDE,'L')) THEN NROWA = M ELSE NROWA = N END IF UPPER = LSAME(UPLO,'U') * * Test the input parameters. * INFO = 0 IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF (M.LT.0) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,M)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZSYMM ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,M C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF (LSAME(SIDE,'L')) THEN * * Form C := alpha*A*B + beta*C. * IF (UPPER) THEN DO 70 J = 1,N DO 60 I = 1,M TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 50 K = 1,I - 1 C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*A(K,I) 50 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + + ALPHA*TEMP2 END IF 60 CONTINUE 70 CONTINUE ELSE DO 100 J = 1,N DO 90 I = M,1,-1 TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 80 K = I + 1,M C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*A(K,I) 80 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + + ALPHA*TEMP2 END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form C := alpha*B*A + beta*C. * DO 170 J = 1,N TEMP1 = ALPHA*A(J,J) IF (BETA.EQ.ZERO) THEN DO 110 I = 1,M C(I,J) = TEMP1*B(I,J) 110 CONTINUE ELSE DO 120 I = 1,M C(I,J) = BETA*C(I,J) + TEMP1*B(I,J) 120 CONTINUE END IF DO 140 K = 1,J - 1 IF (UPPER) THEN TEMP1 = ALPHA*A(K,J) ELSE TEMP1 = ALPHA*A(J,K) END IF DO 130 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 130 CONTINUE 140 CONTINUE DO 160 K = J + 1,N IF (UPPER) THEN TEMP1 = ALPHA*A(J,K) ELSE TEMP1 = ALPHA*A(K,J) END IF DO 150 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 150 CONTINUE 160 CONTINUE 170 CONTINUE END IF * RETURN * * End of ZSYMM . * END blas-1.2.orig/src/chemm.f 0000640 0001750 0001750 00000023267 11616621632 016157 0 ustar sylvestre sylvestre SUBROUTINE CHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. COMPLEX ALPHA,BETA INTEGER LDA,LDB,LDC,M,N CHARACTER SIDE,UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * CHEMM performs one of the matrix-matrix operations * * C := alpha*A*B + beta*C, * * or * * C := alpha*B*A + beta*C, * * where alpha and beta are scalars, A is an hermitian matrix and B and * C are m by n matrices. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether the hermitian matrix A * appears on the left or right in the operation as follows: * * SIDE = 'L' or 'l' C := alpha*A*B + beta*C, * * SIDE = 'R' or 'r' C := alpha*B*A + beta*C, * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the hermitian matrix A is to be * referenced as follows: * * UPLO = 'U' or 'u' Only the upper triangular part of the * hermitian matrix is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of the * hermitian matrix is to be referenced. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix C. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix C. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is * m when SIDE = 'L' or 'l' and is n otherwise. * Before entry with SIDE = 'L' or 'l', the m by m part of * the array A must contain the hermitian matrix, such that * when UPLO = 'U' or 'u', the leading m by m upper triangular * part of the array A must contain the upper triangular part * of the hermitian matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading m by m lower triangular part of the array A * must contain the lower triangular part of the hermitian * matrix and the strictly upper triangular part of A is not * referenced. * Before entry with SIDE = 'R' or 'r', the n by n part of * the array A must contain the hermitian matrix, such that * when UPLO = 'U' or 'u', the leading n by n upper triangular * part of the array A must contain the upper triangular part * of the hermitian matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading n by n lower triangular part of the array A * must contain the lower triangular part of the hermitian * matrix and the strictly upper triangular part of A is not * referenced. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, n ). * Unchanged on exit. * * B - COMPLEX array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * BETA - COMPLEX . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - COMPLEX array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n updated * matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX,REAL * .. * .. Local Scalars .. COMPLEX TEMP1,TEMP2 INTEGER I,INFO,J,K,NROWA LOGICAL UPPER * .. * .. Parameters .. COMPLEX ONE PARAMETER (ONE= (1.0E+0,0.0E+0)) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * * Set NROWA as the number of rows of A. * IF (LSAME(SIDE,'L')) THEN NROWA = M ELSE NROWA = N END IF UPPER = LSAME(UPLO,'U') * * Test the input parameters. * INFO = 0 IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF (M.LT.0) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,M)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('CHEMM ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,M C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF (LSAME(SIDE,'L')) THEN * * Form C := alpha*A*B + beta*C. * IF (UPPER) THEN DO 70 J = 1,N DO 60 I = 1,M TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 50 K = 1,I - 1 C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*CONJG(A(K,I)) 50 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*REAL(A(I,I)) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*REAL(A(I,I)) + + ALPHA*TEMP2 END IF 60 CONTINUE 70 CONTINUE ELSE DO 100 J = 1,N DO 90 I = M,1,-1 TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 80 K = I + 1,M C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*CONJG(A(K,I)) 80 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*REAL(A(I,I)) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*REAL(A(I,I)) + + ALPHA*TEMP2 END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form C := alpha*B*A + beta*C. * DO 170 J = 1,N TEMP1 = ALPHA*REAL(A(J,J)) IF (BETA.EQ.ZERO) THEN DO 110 I = 1,M C(I,J) = TEMP1*B(I,J) 110 CONTINUE ELSE DO 120 I = 1,M C(I,J) = BETA*C(I,J) + TEMP1*B(I,J) 120 CONTINUE END IF DO 140 K = 1,J - 1 IF (UPPER) THEN TEMP1 = ALPHA*A(K,J) ELSE TEMP1 = ALPHA*CONJG(A(J,K)) END IF DO 130 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 130 CONTINUE 140 CONTINUE DO 160 K = J + 1,N IF (UPPER) THEN TEMP1 = ALPHA*CONJG(A(J,K)) ELSE TEMP1 = ALPHA*A(K,J) END IF DO 150 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 150 CONTINUE 160 CONTINUE 170 CONTINUE END IF * RETURN * * End of CHEMM . * END blas-1.2.orig/src/dnrm2.f 0000640 0001750 0001750 00000003174 11616621632 016103 0 ustar sylvestre sylvestre DOUBLE PRECISION FUNCTION DNRM2(N,X,INCX) * .. Scalar Arguments .. INTEGER INCX,N * .. * .. Array Arguments .. DOUBLE PRECISION X(*) * .. * * Purpose * ======= * * DNRM2 returns the euclidean norm of a vector via the function * name, so that * * DNRM2 := sqrt( x'*x ) * * Further Details * =============== * * -- This version written on 25-October-1982. * Modified on 14-October-1993 to inline the call to DLASSQ. * Sven Hammarling, Nag Ltd. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION ABSXI,NORM,SCALE,SSQ INTEGER IX * .. * .. Intrinsic Functions .. INTRINSIC ABS,SQRT * .. IF (N.LT.1 .OR. INCX.LT.1) THEN NORM = ZERO ELSE IF (N.EQ.1) THEN NORM = ABS(X(1)) ELSE SCALE = ZERO SSQ = ONE * The following loop is equivalent to this call to the LAPACK * auxiliary routine: * CALL DLASSQ( N, X, INCX, SCALE, SSQ ) * DO 10 IX = 1,1 + (N-1)*INCX,INCX IF (X(IX).NE.ZERO) THEN ABSXI = ABS(X(IX)) IF (SCALE.LT.ABSXI) THEN SSQ = ONE + SSQ* (SCALE/ABSXI)**2 SCALE = ABSXI ELSE SSQ = SSQ + (ABSXI/SCALE)**2 END IF END IF 10 CONTINUE NORM = SCALE*SQRT(SSQ) END IF * DNRM2 = NORM RETURN * * End of DNRM2. * END blas-1.2.orig/src/dtrsm.f 0000640 0001750 0001750 00000030042 11616621632 016204 0 ustar sylvestre sylvestre SUBROUTINE DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER LDA,LDB,M,N CHARACTER DIAG,SIDE,TRANSA,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),B(LDB,*) * .. * * Purpose * ======= * * DTRSM solves one of the matrix equations * * op( A )*X = alpha*B, or X*op( A ) = alpha*B, * * where alpha is a scalar, X and B are m by n matrices, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A**T. * * The matrix X is overwritten on B. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) appears on the left * or right of X as follows: * * SIDE = 'L' or 'l' op( A )*X = alpha*B. * * SIDE = 'R' or 'r' X*op( A ) = alpha*B. * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A**T. * * TRANSA = 'C' or 'c' op( A ) = A**T. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the right-hand side matrix B, and on exit is * overwritten by the solution matrix X. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,J,K,NROWA LOGICAL LSIDE,NOUNIT,UPPER * .. * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * * Test the input parameters. * LSIDE = LSAME(SIDE,'L') IF (LSIDE) THEN NROWA = M ELSE NROWA = N END IF NOUNIT = LSAME(DIAG,'N') UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. + (.NOT.LSAME(TRANSA,'T')) .AND. + (.NOT.LSAME(TRANSA,'C'))) THEN INFO = 3 ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN INFO = 4 ELSE IF (M.LT.0) THEN INFO = 5 ELSE IF (N.LT.0) THEN INFO = 6 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('DTRSM ',INFO) RETURN END IF * * Quick return if possible. * IF (M.EQ.0 .OR. N.EQ.0) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M B(I,J) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF (LSIDE) THEN IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*inv( A )*B. * IF (UPPER) THEN DO 60 J = 1,N IF (ALPHA.NE.ONE) THEN DO 30 I = 1,M B(I,J) = ALPHA*B(I,J) 30 CONTINUE END IF DO 50 K = M,1,-1 IF (B(K,J).NE.ZERO) THEN IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) DO 40 I = 1,K - 1 B(I,J) = B(I,J) - B(K,J)*A(I,K) 40 CONTINUE END IF 50 CONTINUE 60 CONTINUE ELSE DO 100 J = 1,N IF (ALPHA.NE.ONE) THEN DO 70 I = 1,M B(I,J) = ALPHA*B(I,J) 70 CONTINUE END IF DO 90 K = 1,M IF (B(K,J).NE.ZERO) THEN IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) DO 80 I = K + 1,M B(I,J) = B(I,J) - B(K,J)*A(I,K) 80 CONTINUE END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form B := alpha*inv( A**T )*B. * IF (UPPER) THEN DO 130 J = 1,N DO 120 I = 1,M TEMP = ALPHA*B(I,J) DO 110 K = 1,I - 1 TEMP = TEMP - A(K,I)*B(K,J) 110 CONTINUE IF (NOUNIT) TEMP = TEMP/A(I,I) B(I,J) = TEMP 120 CONTINUE 130 CONTINUE ELSE DO 160 J = 1,N DO 150 I = M,1,-1 TEMP = ALPHA*B(I,J) DO 140 K = I + 1,M TEMP = TEMP - A(K,I)*B(K,J) 140 CONTINUE IF (NOUNIT) TEMP = TEMP/A(I,I) B(I,J) = TEMP 150 CONTINUE 160 CONTINUE END IF END IF ELSE IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*B*inv( A ). * IF (UPPER) THEN DO 210 J = 1,N IF (ALPHA.NE.ONE) THEN DO 170 I = 1,M B(I,J) = ALPHA*B(I,J) 170 CONTINUE END IF DO 190 K = 1,J - 1 IF (A(K,J).NE.ZERO) THEN DO 180 I = 1,M B(I,J) = B(I,J) - A(K,J)*B(I,K) 180 CONTINUE END IF 190 CONTINUE IF (NOUNIT) THEN TEMP = ONE/A(J,J) DO 200 I = 1,M B(I,J) = TEMP*B(I,J) 200 CONTINUE END IF 210 CONTINUE ELSE DO 260 J = N,1,-1 IF (ALPHA.NE.ONE) THEN DO 220 I = 1,M B(I,J) = ALPHA*B(I,J) 220 CONTINUE END IF DO 240 K = J + 1,N IF (A(K,J).NE.ZERO) THEN DO 230 I = 1,M B(I,J) = B(I,J) - A(K,J)*B(I,K) 230 CONTINUE END IF 240 CONTINUE IF (NOUNIT) THEN TEMP = ONE/A(J,J) DO 250 I = 1,M B(I,J) = TEMP*B(I,J) 250 CONTINUE END IF 260 CONTINUE END IF ELSE * * Form B := alpha*B*inv( A**T ). * IF (UPPER) THEN DO 310 K = N,1,-1 IF (NOUNIT) THEN TEMP = ONE/A(K,K) DO 270 I = 1,M B(I,K) = TEMP*B(I,K) 270 CONTINUE END IF DO 290 J = 1,K - 1 IF (A(J,K).NE.ZERO) THEN TEMP = A(J,K) DO 280 I = 1,M B(I,J) = B(I,J) - TEMP*B(I,K) 280 CONTINUE END IF 290 CONTINUE IF (ALPHA.NE.ONE) THEN DO 300 I = 1,M B(I,K) = ALPHA*B(I,K) 300 CONTINUE END IF 310 CONTINUE ELSE DO 360 K = 1,N IF (NOUNIT) THEN TEMP = ONE/A(K,K) DO 320 I = 1,M B(I,K) = TEMP*B(I,K) 320 CONTINUE END IF DO 340 J = K + 1,N IF (A(J,K).NE.ZERO) THEN TEMP = A(J,K) DO 330 I = 1,M B(I,J) = B(I,J) - TEMP*B(I,K) 330 CONTINUE END IF 340 CONTINUE IF (ALPHA.NE.ONE) THEN DO 350 I = 1,M B(I,K) = ALPHA*B(I,K) 350 CONTINUE END IF 360 CONTINUE END IF END IF END IF * RETURN * * End of DTRSM . * END blas-1.2.orig/src/strmm.f 0000640 0001750 0001750 00000026052 11616621632 016223 0 ustar sylvestre sylvestre SUBROUTINE STRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) * .. Scalar Arguments .. REAL ALPHA INTEGER LDA,LDB,M,N CHARACTER DIAG,SIDE,TRANSA,UPLO * .. * .. Array Arguments .. REAL A(LDA,*),B(LDB,*) * .. * * Purpose * ======= * * STRMM performs one of the matrix-matrix operations * * B := alpha*op( A )*B, or B := alpha*B*op( A ), * * where alpha is a scalar, B is an m by n matrix, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A**T. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) multiplies B from * the left or right as follows: * * SIDE = 'L' or 'l' B := alpha*op( A )*B. * * SIDE = 'R' or 'r' B := alpha*B*op( A ). * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A**T. * * TRANSA = 'C' or 'c' op( A ) = A**T. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - REAL array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B, and on exit is overwritten by the * transformed matrix. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,J,K,NROWA LOGICAL LSIDE,NOUNIT,UPPER * .. * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * * Test the input parameters. * LSIDE = LSAME(SIDE,'L') IF (LSIDE) THEN NROWA = M ELSE NROWA = N END IF NOUNIT = LSAME(DIAG,'N') UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. + (.NOT.LSAME(TRANSA,'T')) .AND. + (.NOT.LSAME(TRANSA,'C'))) THEN INFO = 3 ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN INFO = 4 ELSE IF (M.LT.0) THEN INFO = 5 ELSE IF (N.LT.0) THEN INFO = 6 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('STRMM ',INFO) RETURN END IF * * Quick return if possible. * IF (M.EQ.0 .OR. N.EQ.0) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M B(I,J) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF (LSIDE) THEN IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*A*B. * IF (UPPER) THEN DO 50 J = 1,N DO 40 K = 1,M IF (B(K,J).NE.ZERO) THEN TEMP = ALPHA*B(K,J) DO 30 I = 1,K - 1 B(I,J) = B(I,J) + TEMP*A(I,K) 30 CONTINUE IF (NOUNIT) TEMP = TEMP*A(K,K) B(K,J) = TEMP END IF 40 CONTINUE 50 CONTINUE ELSE DO 80 J = 1,N DO 70 K = M,1,-1 IF (B(K,J).NE.ZERO) THEN TEMP = ALPHA*B(K,J) B(K,J) = TEMP IF (NOUNIT) B(K,J) = B(K,J)*A(K,K) DO 60 I = K + 1,M B(I,J) = B(I,J) + TEMP*A(I,K) 60 CONTINUE END IF 70 CONTINUE 80 CONTINUE END IF ELSE * * Form B := alpha*A**T*B. * IF (UPPER) THEN DO 110 J = 1,N DO 100 I = M,1,-1 TEMP = B(I,J) IF (NOUNIT) TEMP = TEMP*A(I,I) DO 90 K = 1,I - 1 TEMP = TEMP + A(K,I)*B(K,J) 90 CONTINUE B(I,J) = ALPHA*TEMP 100 CONTINUE 110 CONTINUE ELSE DO 140 J = 1,N DO 130 I = 1,M TEMP = B(I,J) IF (NOUNIT) TEMP = TEMP*A(I,I) DO 120 K = I + 1,M TEMP = TEMP + A(K,I)*B(K,J) 120 CONTINUE B(I,J) = ALPHA*TEMP 130 CONTINUE 140 CONTINUE END IF END IF ELSE IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*B*A. * IF (UPPER) THEN DO 180 J = N,1,-1 TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(J,J) DO 150 I = 1,M B(I,J) = TEMP*B(I,J) 150 CONTINUE DO 170 K = 1,J - 1 IF (A(K,J).NE.ZERO) THEN TEMP = ALPHA*A(K,J) DO 160 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE ELSE DO 220 J = 1,N TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(J,J) DO 190 I = 1,M B(I,J) = TEMP*B(I,J) 190 CONTINUE DO 210 K = J + 1,N IF (A(K,J).NE.ZERO) THEN TEMP = ALPHA*A(K,J) DO 200 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 200 CONTINUE END IF 210 CONTINUE 220 CONTINUE END IF ELSE * * Form B := alpha*B*A**T. * IF (UPPER) THEN DO 260 K = 1,N DO 240 J = 1,K - 1 IF (A(J,K).NE.ZERO) THEN TEMP = ALPHA*A(J,K) DO 230 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 230 CONTINUE END IF 240 CONTINUE TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(K,K) IF (TEMP.NE.ONE) THEN DO 250 I = 1,M B(I,K) = TEMP*B(I,K) 250 CONTINUE END IF 260 CONTINUE ELSE DO 300 K = N,1,-1 DO 280 J = K + 1,N IF (A(J,K).NE.ZERO) THEN TEMP = ALPHA*A(J,K) DO 270 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 270 CONTINUE END IF 280 CONTINUE TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(K,K) IF (TEMP.NE.ONE) THEN DO 290 I = 1,M B(I,K) = TEMP*B(I,K) 290 CONTINUE END IF 300 CONTINUE END IF END IF END IF * RETURN * * End of STRMM . * END blas-1.2.orig/src/drotg.f 0000640 0001750 0001750 00000001745 11616621632 016202 0 ustar sylvestre sylvestre SUBROUTINE DROTG(DA,DB,C,S) * .. Scalar Arguments .. DOUBLE PRECISION C,DA,DB,S * .. * * Purpose * ======= * * DROTG construct givens plane rotation. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * * ===================================================================== * * .. Local Scalars .. DOUBLE PRECISION R,ROE,SCALE,Z * .. * .. Intrinsic Functions .. INTRINSIC DABS,DSIGN,DSQRT * .. ROE = DB IF (DABS(DA).GT.DABS(DB)) ROE = DA SCALE = DABS(DA) + DABS(DB) IF (SCALE.EQ.0.0d0) THEN C = 1.0d0 S = 0.0d0 R = 0.0d0 Z = 0.0d0 ELSE R = SCALE*DSQRT((DA/SCALE)**2+ (DB/SCALE)**2) R = DSIGN(1.0d0,ROE)*R C = DA/R S = DB/R Z = 1.0d0 IF (DABS(DA).GT.DABS(DB)) Z = S IF (DABS(DB).GE.DABS(DA) .AND. C.NE.0.0d0) Z = 1.0d0/C END IF DA = R DB = Z RETURN END blas-1.2.orig/src/scnrm2.f 0000640 0001750 0001750 00000003603 11616621632 016262 0 ustar sylvestre sylvestre REAL FUNCTION SCNRM2(N,X,INCX) * .. Scalar Arguments .. INTEGER INCX,N * .. * .. Array Arguments .. COMPLEX X(*) * .. * * Purpose * ======= * * SCNRM2 returns the euclidean norm of a vector via the function * name, so that * * SCNRM2 := sqrt( x**H*x ) * * Further Details * =============== * * -- This version written on 25-October-1982. * Modified on 14-October-1993 to inline the call to CLASSQ. * Sven Hammarling, Nag Ltd. * * ===================================================================== * * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * .. Local Scalars .. REAL NORM,SCALE,SSQ,TEMP INTEGER IX * .. * .. Intrinsic Functions .. INTRINSIC ABS,AIMAG,REAL,SQRT * .. IF (N.LT.1 .OR. INCX.LT.1) THEN NORM = ZERO ELSE SCALE = ZERO SSQ = ONE * The following loop is equivalent to this call to the LAPACK * auxiliary routine: * CALL CLASSQ( N, X, INCX, SCALE, SSQ ) * DO 10 IX = 1,1 + (N-1)*INCX,INCX IF (REAL(X(IX)).NE.ZERO) THEN TEMP = ABS(REAL(X(IX))) IF (SCALE.LT.TEMP) THEN SSQ = ONE + SSQ* (SCALE/TEMP)**2 SCALE = TEMP ELSE SSQ = SSQ + (TEMP/SCALE)**2 END IF END IF IF (AIMAG(X(IX)).NE.ZERO) THEN TEMP = ABS(AIMAG(X(IX))) IF (SCALE.LT.TEMP) THEN SSQ = ONE + SSQ* (SCALE/TEMP)**2 SCALE = TEMP ELSE SSQ = SSQ + (TEMP/SCALE)**2 END IF END IF 10 CONTINUE NORM = SCALE*SQRT(SSQ) END IF * SCNRM2 = NORM RETURN * * End of SCNRM2. * END blas-1.2.orig/src/csscal.f 0000640 0001750 0001750 00000002064 11616621632 016326 0 ustar sylvestre sylvestre SUBROUTINE CSSCAL(N,SA,CX,INCX) * .. Scalar Arguments .. REAL SA INTEGER INCX,N * .. * .. Array Arguments .. COMPLEX CX(*) * .. * * Purpose * ======= * * CSSCAL scales a complex vector by a real constant. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. INTEGER I,NINCX * .. * .. Intrinsic Functions .. INTRINSIC AIMAG,CMPLX,REAL * .. IF (N.LE.0 .OR. INCX.LE.0) RETURN IF (INCX.EQ.1) THEN * * code for increment equal to 1 * DO I = 1,N CX(I) = CMPLX(SA*REAL(CX(I)),SA*AIMAG(CX(I))) END DO ELSE * * code for increment not equal to 1 * NINCX = N*INCX DO I = 1,NINCX,INCX CX(I) = CMPLX(SA*REAL(CX(I)),SA*AIMAG(CX(I))) END DO END IF RETURN END blas-1.2.orig/src/chpr2.f 0000640 0001750 0001750 00000020163 11616621632 016074 0 ustar sylvestre sylvestre SUBROUTINE CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) * .. Scalar Arguments .. COMPLEX ALPHA INTEGER INCX,INCY,N CHARACTER UPLO * .. * .. Array Arguments .. COMPLEX AP(*),X(*),Y(*) * .. * * Purpose * ======= * * CHPR2 performs the hermitian rank 2 operation * * A := alpha*x*y**H + conjg( alpha )*y*x**H + A, * * where alpha is a scalar, x and y are n element vectors and A is an * n by n hermitian matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the matrix A is supplied in the packed * array AP as follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * supplied in AP. * * UPLO = 'L' or 'l' The lower triangular part of A is * supplied in AP. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * AP - COMPLEX array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular part of the hermitian matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) * and a( 2, 2 ) respectively, and so on. On exit, the array * AP is overwritten by the upper triangular part of the * updated matrix. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular part of the hermitian matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) * and a( 3, 1 ) respectively, and so on. On exit, the array * AP is overwritten by the lower triangular part of the * updated matrix. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero, and on exit they * are set to zero. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,REAL * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('CHPR2 ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set up the start points in X and Y if the increments are not both * unity. * IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF JX = KX JY = KY END IF * * Start the operations. In this version the elements of the array AP * are accessed sequentially with one pass through AP. * KK = 1 IF (LSAME(UPLO,'U')) THEN * * Form A when upper triangle is stored in AP. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 20 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*CONJG(Y(J)) TEMP2 = CONJG(ALPHA*X(J)) K = KK DO 10 I = 1,J - 1 AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2 K = K + 1 10 CONTINUE AP(KK+J-1) = REAL(AP(KK+J-1)) + + REAL(X(J)*TEMP1+Y(J)*TEMP2) ELSE AP(KK+J-1) = REAL(AP(KK+J-1)) END IF KK = KK + J 20 CONTINUE ELSE DO 40 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*CONJG(Y(JY)) TEMP2 = CONJG(ALPHA*X(JX)) IX = KX IY = KY DO 30 K = KK,KK + J - 2 AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 30 CONTINUE AP(KK+J-1) = REAL(AP(KK+J-1)) + + REAL(X(JX)*TEMP1+Y(JY)*TEMP2) ELSE AP(KK+J-1) = REAL(AP(KK+J-1)) END IF JX = JX + INCX JY = JY + INCY KK = KK + J 40 CONTINUE END IF ELSE * * Form A when lower triangle is stored in AP. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*CONJG(Y(J)) TEMP2 = CONJG(ALPHA*X(J)) AP(KK) = REAL(AP(KK)) + + REAL(X(J)*TEMP1+Y(J)*TEMP2) K = KK + 1 DO 50 I = J + 1,N AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2 K = K + 1 50 CONTINUE ELSE AP(KK) = REAL(AP(KK)) END IF KK = KK + N - J + 1 60 CONTINUE ELSE DO 80 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*CONJG(Y(JY)) TEMP2 = CONJG(ALPHA*X(JX)) AP(KK) = REAL(AP(KK)) + + REAL(X(JX)*TEMP1+Y(JY)*TEMP2) IX = JX IY = JY DO 70 K = KK + 1,KK + N - J IX = IX + INCX IY = IY + INCY AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2 70 CONTINUE ELSE AP(KK) = REAL(AP(KK)) END IF JX = JX + INCX JY = JY + INCY KK = KK + N - J + 1 80 CONTINUE END IF END IF * RETURN * * End of CHPR2 . * END blas-1.2.orig/src/stbsv.f 0000640 0001750 0001750 00000025754 11616621632 016232 0 ustar sylvestre sylvestre SUBROUTINE STBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,K,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. REAL A(LDA,*),X(*) * .. * * Purpose * ======= * * STBSV solves one of the systems of equations * * A*x = b, or A**T*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular band matrix, with ( k + 1 ) * diagonals. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A**T*x = b. * * TRANS = 'C' or 'c' A**T*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with UPLO = 'U' or 'u', K specifies the number of * super-diagonals of the matrix A. * On entry with UPLO = 'L' or 'l', K specifies the number of * sub-diagonals of the matrix A. * K must satisfy 0 .le. K. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) * by n part of the array A must contain the upper triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row * ( k + 1 ) of the array, the first super-diagonal starting at * position 2 in row k, and so on. The top left k by k triangle * of the array A is not referenced. * The following program segment will transfer an upper * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = K + 1 - J * DO 10, I = MAX( 1, J - K ), J * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) * by n part of the array A must contain the lower triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row 1 of * the array, the first sub-diagonal starting at position 1 in * row 2, and so on. The bottom right k by k triangle of the * array A is not referenced. * The following program segment will transfer a lower * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = 1 - J * DO 10, I = J, MIN( N, J + K ) * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Note that when DIAG = 'U' or 'u' the elements of the array A * corresponding to the diagonal elements of the matrix are not * referenced, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( k + 1 ). * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (K+1)) THEN INFO = 7 ELSE IF (INCX.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('STBSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed by sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN L = KPLUS1 - J IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J) TEMP = X(J) DO 10 I = J - 1,MAX(1,J-K),-1 X(I) = X(I) - TEMP*A(L+I,J) 10 CONTINUE END IF 20 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 40 J = N,1,-1 KX = KX - INCX IF (X(JX).NE.ZERO) THEN IX = KX L = KPLUS1 - J IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J) TEMP = X(JX) DO 30 I = J - 1,MAX(1,J-K),-1 X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX - INCX 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN L = 1 - J IF (NOUNIT) X(J) = X(J)/A(1,J) TEMP = X(J) DO 50 I = J + 1,MIN(N,J+K) X(I) = X(I) - TEMP*A(L+I,J) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N KX = KX + INCX IF (X(JX).NE.ZERO) THEN IX = KX L = 1 - J IF (NOUNIT) X(JX) = X(JX)/A(1,J) TEMP = X(JX) DO 70 I = J + 1,MIN(N,J+K) X(IX) = X(IX) - TEMP*A(L+I,J) IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T)*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 100 J = 1,N TEMP = X(J) L = KPLUS1 - J DO 90 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(I) 90 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) X(J) = TEMP 100 CONTINUE ELSE JX = KX DO 120 J = 1,N TEMP = X(JX) IX = KX L = KPLUS1 - J DO 110 I = MAX(1,J-K),J - 1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX + INCX 110 CONTINUE IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J) X(JX) = TEMP JX = JX + INCX IF (J.GT.K) KX = KX + INCX 120 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 140 J = N,1,-1 TEMP = X(J) L = 1 - J DO 130 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(I) 130 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) X(J) = TEMP 140 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 160 J = N,1,-1 TEMP = X(JX) IX = KX L = 1 - J DO 150 I = MIN(N,J+K),J + 1,-1 TEMP = TEMP - A(L+I,J)*X(IX) IX = IX - INCX 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(1,J) X(JX) = TEMP JX = JX - INCX IF ((N-J).GE.K) KX = KX - INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of STBSV . * END blas-1.2.orig/src/sgemm.f 0000640 0001750 0001750 00000023017 11616621632 016167 0 ustar sylvestre sylvestre SUBROUTINE SGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. REAL ALPHA,BETA INTEGER K,LDA,LDB,LDC,M,N CHARACTER TRANSA,TRANSB * .. * .. Array Arguments .. REAL A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * SGEMM performs one of the matrix-matrix operations * * C := alpha*op( A )*op( B ) + beta*C, * * where op( X ) is one of * * op( X ) = X or op( X ) = X**T, * * alpha and beta are scalars, and A, B and C are matrices, with op( A ) * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. * * Arguments * ========== * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n', op( A ) = A. * * TRANSA = 'T' or 't', op( A ) = A**T. * * TRANSA = 'C' or 'c', op( A ) = A**T. * * Unchanged on exit. * * TRANSB - CHARACTER*1. * On entry, TRANSB specifies the form of op( B ) to be used in * the matrix multiplication as follows: * * TRANSB = 'N' or 'n', op( B ) = B. * * TRANSB = 'T' or 't', op( B ) = B**T. * * TRANSB = 'C' or 'c', op( B ) = B**T. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix * op( A ) and of the matrix C. M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix * op( B ) and the number of columns of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry, K specifies the number of columns of the matrix * op( A ) and the number of rows of the matrix op( B ). K must * be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, ka ), where ka is * k when TRANSA = 'N' or 'n', and is m otherwise. * Before entry with TRANSA = 'N' or 'n', the leading m by k * part of the array A must contain the matrix A, otherwise * the leading k by m part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANSA = 'N' or 'n' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, k ). * Unchanged on exit. * * B - REAL array of DIMENSION ( LDB, kb ), where kb is * n when TRANSB = 'N' or 'n', and is k otherwise. * Before entry with TRANSB = 'N' or 'n', the leading k by n * part of the array B must contain the matrix B, otherwise * the leading n by k part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANSB = 'N' or 'n' then * LDB must be at least max( 1, k ), otherwise LDB must be at * least max( 1, n ). * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - REAL array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n matrix * ( alpha*op( A )*op( B ) + beta*C ). * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB LOGICAL NOTA,NOTB * .. * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * * Set NOTA and NOTB as true if A and B respectively are not * transposed and set NROWA, NCOLA and NROWB as the number of rows * and columns of A and the number of rows of B respectively. * NOTA = LSAME(TRANSA,'N') NOTB = LSAME(TRANSB,'N') IF (NOTA) THEN NROWA = M NCOLA = K ELSE NROWA = K NCOLA = M END IF IF (NOTB) THEN NROWB = K ELSE NROWB = N END IF * * Test the input parameters. * INFO = 0 IF ((.NOT.NOTA) .AND. (.NOT.LSAME(TRANSA,'C')) .AND. + (.NOT.LSAME(TRANSA,'T'))) THEN INFO = 1 ELSE IF ((.NOT.NOTB) .AND. (.NOT.LSAME(TRANSB,'C')) .AND. + (.NOT.LSAME(TRANSB,'T'))) THEN INFO = 2 ELSE IF (M.LT.0) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 8 ELSE IF (LDB.LT.MAX(1,NROWB)) THEN INFO = 10 ELSE IF (LDC.LT.MAX(1,M)) THEN INFO = 13 END IF IF (INFO.NE.0) THEN CALL XERBLA('SGEMM ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And if alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,M C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF (NOTB) THEN IF (NOTA) THEN * * Form C := alpha*A*B + beta*C. * DO 90 J = 1,N IF (BETA.EQ.ZERO) THEN DO 50 I = 1,M C(I,J) = ZERO 50 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 60 I = 1,M C(I,J) = BETA*C(I,J) 60 CONTINUE END IF DO 80 L = 1,K IF (B(L,J).NE.ZERO) THEN TEMP = ALPHA*B(L,J) DO 70 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 70 CONTINUE END IF 80 CONTINUE 90 CONTINUE ELSE * * Form C := alpha*A**T*B + beta*C * DO 120 J = 1,N DO 110 I = 1,M TEMP = ZERO DO 100 L = 1,K TEMP = TEMP + A(L,I)*B(L,J) 100 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 110 CONTINUE 120 CONTINUE END IF ELSE IF (NOTA) THEN * * Form C := alpha*A*B**T + beta*C * DO 170 J = 1,N IF (BETA.EQ.ZERO) THEN DO 130 I = 1,M C(I,J) = ZERO 130 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 140 I = 1,M C(I,J) = BETA*C(I,J) 140 CONTINUE END IF DO 160 L = 1,K IF (B(J,L).NE.ZERO) THEN TEMP = ALPHA*B(J,L) DO 150 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 150 CONTINUE END IF 160 CONTINUE 170 CONTINUE ELSE * * Form C := alpha*A**T*B**T + beta*C * DO 200 J = 1,N DO 190 I = 1,M TEMP = ZERO DO 180 L = 1,K TEMP = TEMP + A(L,I)*B(J,L) 180 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 190 CONTINUE 200 CONTINUE END IF END IF * RETURN * * End of SGEMM . * END blas-1.2.orig/src/ztrmm.f 0000640 0001750 0001750 00000031371 11616621632 016232 0 ustar sylvestre sylvestre SUBROUTINE ZTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA INTEGER LDA,LDB,M,N CHARACTER DIAG,SIDE,TRANSA,UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),B(LDB,*) * .. * * Purpose * ======= * * ZTRMM performs one of the matrix-matrix operations * * B := alpha*op( A )*B, or B := alpha*B*op( A ) * * where alpha is a scalar, B is an m by n matrix, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A**T or op( A ) = A**H. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) multiplies B from * the left or right as follows: * * SIDE = 'L' or 'l' B := alpha*op( A )*B. * * SIDE = 'R' or 'r' B := alpha*B*op( A ). * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A**T. * * TRANSA = 'C' or 'c' op( A ) = A**H. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - COMPLEX*16 array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B, and on exit is overwritten by the * transformed matrix. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG,MAX * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,J,K,NROWA LOGICAL LSIDE,NOCONJ,NOUNIT,UPPER * .. * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * * Test the input parameters. * LSIDE = LSAME(SIDE,'L') IF (LSIDE) THEN NROWA = M ELSE NROWA = N END IF NOCONJ = LSAME(TRANSA,'T') NOUNIT = LSAME(DIAG,'N') UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. + (.NOT.LSAME(TRANSA,'T')) .AND. + (.NOT.LSAME(TRANSA,'C'))) THEN INFO = 3 ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN INFO = 4 ELSE IF (M.LT.0) THEN INFO = 5 ELSE IF (N.LT.0) THEN INFO = 6 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZTRMM ',INFO) RETURN END IF * * Quick return if possible. * IF (M.EQ.0 .OR. N.EQ.0) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M B(I,J) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF (LSIDE) THEN IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*A*B. * IF (UPPER) THEN DO 50 J = 1,N DO 40 K = 1,M IF (B(K,J).NE.ZERO) THEN TEMP = ALPHA*B(K,J) DO 30 I = 1,K - 1 B(I,J) = B(I,J) + TEMP*A(I,K) 30 CONTINUE IF (NOUNIT) TEMP = TEMP*A(K,K) B(K,J) = TEMP END IF 40 CONTINUE 50 CONTINUE ELSE DO 80 J = 1,N DO 70 K = M,1,-1 IF (B(K,J).NE.ZERO) THEN TEMP = ALPHA*B(K,J) B(K,J) = TEMP IF (NOUNIT) B(K,J) = B(K,J)*A(K,K) DO 60 I = K + 1,M B(I,J) = B(I,J) + TEMP*A(I,K) 60 CONTINUE END IF 70 CONTINUE 80 CONTINUE END IF ELSE * * Form B := alpha*A**T*B or B := alpha*A**H*B. * IF (UPPER) THEN DO 120 J = 1,N DO 110 I = M,1,-1 TEMP = B(I,J) IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(I,I) DO 90 K = 1,I - 1 TEMP = TEMP + A(K,I)*B(K,J) 90 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(I,I)) DO 100 K = 1,I - 1 TEMP = TEMP + DCONJG(A(K,I))*B(K,J) 100 CONTINUE END IF B(I,J) = ALPHA*TEMP 110 CONTINUE 120 CONTINUE ELSE DO 160 J = 1,N DO 150 I = 1,M TEMP = B(I,J) IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(I,I) DO 130 K = I + 1,M TEMP = TEMP + A(K,I)*B(K,J) 130 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(I,I)) DO 140 K = I + 1,M TEMP = TEMP + DCONJG(A(K,I))*B(K,J) 140 CONTINUE END IF B(I,J) = ALPHA*TEMP 150 CONTINUE 160 CONTINUE END IF END IF ELSE IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*B*A. * IF (UPPER) THEN DO 200 J = N,1,-1 TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(J,J) DO 170 I = 1,M B(I,J) = TEMP*B(I,J) 170 CONTINUE DO 190 K = 1,J - 1 IF (A(K,J).NE.ZERO) THEN TEMP = ALPHA*A(K,J) DO 180 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 180 CONTINUE END IF 190 CONTINUE 200 CONTINUE ELSE DO 240 J = 1,N TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(J,J) DO 210 I = 1,M B(I,J) = TEMP*B(I,J) 210 CONTINUE DO 230 K = J + 1,N IF (A(K,J).NE.ZERO) THEN TEMP = ALPHA*A(K,J) DO 220 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 220 CONTINUE END IF 230 CONTINUE 240 CONTINUE END IF ELSE * * Form B := alpha*B*A**T or B := alpha*B*A**H. * IF (UPPER) THEN DO 280 K = 1,N DO 260 J = 1,K - 1 IF (A(J,K).NE.ZERO) THEN IF (NOCONJ) THEN TEMP = ALPHA*A(J,K) ELSE TEMP = ALPHA*DCONJG(A(J,K)) END IF DO 250 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 250 CONTINUE END IF 260 CONTINUE TEMP = ALPHA IF (NOUNIT) THEN IF (NOCONJ) THEN TEMP = TEMP*A(K,K) ELSE TEMP = TEMP*DCONJG(A(K,K)) END IF END IF IF (TEMP.NE.ONE) THEN DO 270 I = 1,M B(I,K) = TEMP*B(I,K) 270 CONTINUE END IF 280 CONTINUE ELSE DO 320 K = N,1,-1 DO 300 J = K + 1,N IF (A(J,K).NE.ZERO) THEN IF (NOCONJ) THEN TEMP = ALPHA*A(J,K) ELSE TEMP = ALPHA*DCONJG(A(J,K)) END IF DO 290 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 290 CONTINUE END IF 300 CONTINUE TEMP = ALPHA IF (NOUNIT) THEN IF (NOCONJ) THEN TEMP = TEMP*A(K,K) ELSE TEMP = TEMP*DCONJG(A(K,K)) END IF END IF IF (TEMP.NE.ONE) THEN DO 310 I = 1,M B(I,K) = TEMP*B(I,K) 310 CONTINUE END IF 320 CONTINUE END IF END IF END IF * RETURN * * End of ZTRMM . * END blas-1.2.orig/src/dtpmv.f 0000640 0001750 0001750 00000022236 11616621632 016213 0 ustar sylvestre sylvestre SUBROUTINE DTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) * .. Scalar Arguments .. INTEGER INCX,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION AP(*),X(*) * .. * * Purpose * ======= * * DTPMV performs one of the matrix-vector operations * * x := A*x, or x := A**T*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A**T*x. * * TRANS = 'C' or 'c' x := A**T*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * AP - DOUBLE PRECISION array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) * respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) * respectively, and so on. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced, but are assumed to be unity. * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (INCX.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('DTPMV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of AP are * accessed sequentially with one pass through AP. * IF (LSAME(TRANS,'N')) THEN * * Form x:= A*x. * IF (LSAME(UPLO,'U')) THEN KK = 1 IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) K = KK DO 10 I = 1,J - 1 X(I) = X(I) + TEMP*AP(K) K = K + 1 10 CONTINUE IF (NOUNIT) X(J) = X(J)*AP(KK+J-1) END IF KK = KK + J 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 30 K = KK,KK + J - 2 X(IX) = X(IX) + TEMP*AP(K) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1) END IF JX = JX + INCX KK = KK + J 40 CONTINUE END IF ELSE KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) K = KK DO 50 I = N,J + 1,-1 X(I) = X(I) + TEMP*AP(K) K = K - 1 50 CONTINUE IF (NOUNIT) X(J) = X(J)*AP(KK-N+J) END IF KK = KK - (N-J+1) 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 70 K = KK,KK - (N- (J+1)),-1 X(IX) = X(IX) + TEMP*AP(K) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J) END IF JX = JX - INCX KK = KK - (N-J+1) 80 CONTINUE END IF END IF ELSE * * Form x := A**T*x. * IF (LSAME(UPLO,'U')) THEN KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 100 J = N,1,-1 TEMP = X(J) IF (NOUNIT) TEMP = TEMP*AP(KK) K = KK - 1 DO 90 I = J - 1,1,-1 TEMP = TEMP + AP(K)*X(I) K = K - 1 90 CONTINUE X(J) = TEMP KK = KK - J 100 CONTINUE ELSE JX = KX + (N-1)*INCX DO 120 J = N,1,-1 TEMP = X(JX) IX = JX IF (NOUNIT) TEMP = TEMP*AP(KK) DO 110 K = KK - 1,KK - J + 1,-1 IX = IX - INCX TEMP = TEMP + AP(K)*X(IX) 110 CONTINUE X(JX) = TEMP JX = JX - INCX KK = KK - J 120 CONTINUE END IF ELSE KK = 1 IF (INCX.EQ.1) THEN DO 140 J = 1,N TEMP = X(J) IF (NOUNIT) TEMP = TEMP*AP(KK) K = KK + 1 DO 130 I = J + 1,N TEMP = TEMP + AP(K)*X(I) K = K + 1 130 CONTINUE X(J) = TEMP KK = KK + (N-J+1) 140 CONTINUE ELSE JX = KX DO 160 J = 1,N TEMP = X(JX) IX = JX IF (NOUNIT) TEMP = TEMP*AP(KK) DO 150 K = KK + 1,KK + N - J IX = IX + INCX TEMP = TEMP + AP(K)*X(IX) 150 CONTINUE X(JX) = TEMP JX = JX + INCX KK = KK + (N-J+1) 160 CONTINUE END IF END IF END IF * RETURN * * End of DTPMV . * END blas-1.2.orig/src/ssyrk.f 0000640 0001750 0001750 00000022171 11616621632 016232 0 ustar sylvestre sylvestre SUBROUTINE SSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) * .. Scalar Arguments .. REAL ALPHA,BETA INTEGER K,LDA,LDC,N CHARACTER TRANS,UPLO * .. * .. Array Arguments .. REAL A(LDA,*),C(LDC,*) * .. * * Purpose * ======= * * SSYRK performs one of the symmetric rank k operations * * C := alpha*A*A**T + beta*C, * * or * * C := alpha*A**T*A + beta*C, * * where alpha and beta are scalars, C is an n by n symmetric matrix * and A is an n by k matrix in the first case and a k by n matrix * in the second case. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C. * * TRANS = 'T' or 't' C := alpha*A**T*A + beta*C. * * TRANS = 'C' or 'c' C := alpha*A**T*A + beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrix A, and on entry with * TRANS = 'T' or 't' or 'C' or 'c', K specifies the number * of rows of the matrix A. K must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - REAL array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,J,L,NROWA LOGICAL UPPER * .. * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * * Test the input parameters. * IF (LSAME(TRANS,'N')) THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 1 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. + (.NOT.LSAME(TRANS,'T')) .AND. + (.NOT.LSAME(TRANS,'C'))) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (K.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDC.LT.MAX(1,N)) THEN INFO = 10 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSYRK ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (UPPER) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,J C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,J C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF ELSE IF (BETA.EQ.ZERO) THEN DO 60 J = 1,N DO 50 I = J,N C(I,J) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1,N DO 70 I = J,N C(I,J) = BETA*C(I,J) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF (LSAME(TRANS,'N')) THEN * * Form C := alpha*A*A**T + beta*C. * IF (UPPER) THEN DO 130 J = 1,N IF (BETA.EQ.ZERO) THEN DO 90 I = 1,J C(I,J) = ZERO 90 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 100 I = 1,J C(I,J) = BETA*C(I,J) 100 CONTINUE END IF DO 120 L = 1,K IF (A(J,L).NE.ZERO) THEN TEMP = ALPHA*A(J,L) DO 110 I = 1,J C(I,J) = C(I,J) + TEMP*A(I,L) 110 CONTINUE END IF 120 CONTINUE 130 CONTINUE ELSE DO 180 J = 1,N IF (BETA.EQ.ZERO) THEN DO 140 I = J,N C(I,J) = ZERO 140 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 150 I = J,N C(I,J) = BETA*C(I,J) 150 CONTINUE END IF DO 170 L = 1,K IF (A(J,L).NE.ZERO) THEN TEMP = ALPHA*A(J,L) DO 160 I = J,N C(I,J) = C(I,J) + TEMP*A(I,L) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A**T*A + beta*C. * IF (UPPER) THEN DO 210 J = 1,N DO 200 I = 1,J TEMP = ZERO DO 190 L = 1,K TEMP = TEMP + A(L,I)*A(L,J) 190 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 200 CONTINUE 210 CONTINUE ELSE DO 240 J = 1,N DO 230 I = J,N TEMP = ZERO DO 220 L = 1,K TEMP = TEMP + A(L,I)*A(L,J) 220 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 230 CONTINUE 240 CONTINUE END IF END IF * RETURN * * End of SSYRK . * END blas-1.2.orig/src/ssymv.f 0000640 0001750 0001750 00000017416 11616621632 016246 0 ustar sylvestre sylvestre SUBROUTINE SSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. REAL ALPHA,BETA INTEGER INCX,INCY,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. REAL A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * SSYMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n symmetric matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of A is not referenced. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. On exit, Y is overwritten by the updated * vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 5 ELSE IF (INCX.EQ.0) THEN INFO = 7 ELSE IF (INCY.EQ.0) THEN INFO = 10 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSYMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set up the start points in X and Y. * IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(UPLO,'U')) THEN * * Form y when A is stored in upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO DO 50 I = 1,J - 1 Y(I) = Y(I) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(I) 50 CONTINUE Y(J) = Y(J) + TEMP1*A(J,J) + ALPHA*TEMP2 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY DO 70 I = 1,J - 1 Y(IY) = Y(IY) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*A(J,J) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF ELSE * * Form y when A is stored in lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*A(J,J) DO 90 I = J + 1,N Y(I) = Y(I) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(I) 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*A(J,J) IX = JX IY = JY DO 110 I = J + 1,N IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*A(I,J) TEMP2 = TEMP2 + A(I,J)*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of SSYMV . * END blas-1.2.orig/src/sspr.f 0000640 0001750 0001750 00000013540 11616621632 016046 0 ustar sylvestre sylvestre SUBROUTINE SSPR(UPLO,N,ALPHA,X,INCX,AP) * .. Scalar Arguments .. REAL ALPHA INTEGER INCX,N CHARACTER UPLO * .. * .. Array Arguments .. REAL AP(*),X(*) * .. * * Purpose * ======= * * SSPR performs the symmetric rank 1 operation * * A := alpha*x*x**T + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n symmetric matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the matrix A is supplied in the packed * array AP as follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * supplied in AP. * * UPLO = 'L' or 'l' The lower triangular part of A is * supplied in AP. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * AP - REAL array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) * and a( 2, 2 ) respectively, and so on. On exit, the array * AP is overwritten by the upper triangular part of the * updated matrix. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) * and a( 3, 1 ) respectively, and so on. On exit, the array * AP is overwritten by the lower triangular part of the * updated matrix. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSPR ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set the start point in X if the increment is not unity. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of the array AP * are accessed sequentially with one pass through AP. * KK = 1 IF (LSAME(UPLO,'U')) THEN * * Form A when upper triangle is stored in AP. * IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) K = KK DO 10 I = 1,J AP(K) = AP(K) + X(I)*TEMP K = K + 1 10 CONTINUE END IF KK = KK + J 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = KX DO 30 K = KK,KK + J - 1 AP(K) = AP(K) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JX = JX + INCX KK = KK + J 40 CONTINUE END IF ELSE * * Form A when lower triangle is stored in AP. * IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) K = KK DO 50 I = J,N AP(K) = AP(K) + X(I)*TEMP K = K + 1 50 CONTINUE END IF KK = KK + N - J + 1 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = JX DO 70 K = KK,KK + N - J AP(K) = AP(K) + X(IX)*TEMP IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX KK = KK + N - J + 1 80 CONTINUE END IF END IF * RETURN * * End of SSPR . * END blas-1.2.orig/src/dcopy.f 0000640 0001750 0001750 00000003116 11616621632 016173 0 ustar sylvestre sylvestre SUBROUTINE DCOPY(N,DX,INCX,DY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. DOUBLE PRECISION DX(*),DY(*) * .. * * Purpose * ======= * * DCOPY copies a vector, x, to a vector, y. * uses unrolled loops for increments equal to one. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. INTEGER I,IX,IY,M,MP1 * .. * .. Intrinsic Functions .. INTRINSIC MOD * .. IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * * * clean-up loop * M = MOD(N,7) IF (M.NE.0) THEN DO I = 1,M DY(I) = DX(I) END DO IF (N.LT.7) RETURN END IF MP1 = M + 1 DO I = MP1,N,7 DY(I) = DX(I) DY(I+1) = DX(I+1) DY(I+2) = DX(I+2) DY(I+3) = DX(I+3) DY(I+4) = DX(I+4) DY(I+5) = DX(I+5) DY(I+6) = DX(I+6) END DO ELSE * * code for unequal increments or equal increments * not equal to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N DY(IY) = DX(IX) IX = IX + INCX IY = IY + INCY END DO END IF RETURN END blas-1.2.orig/src/dsyrk.f 0000640 0001750 0001750 00000022251 11616621632 016212 0 ustar sylvestre sylvestre SUBROUTINE DSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA,BETA INTEGER K,LDA,LDC,N CHARACTER TRANS,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),C(LDC,*) * .. * * Purpose * ======= * * DSYRK performs one of the symmetric rank k operations * * C := alpha*A*A**T + beta*C, * * or * * C := alpha*A**T*A + beta*C, * * where alpha and beta are scalars, C is an n by n symmetric matrix * and A is an n by k matrix in the first case and a k by n matrix * in the second case. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C. * * TRANS = 'T' or 't' C := alpha*A**T*A + beta*C. * * TRANS = 'C' or 'c' C := alpha*A**T*A + beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrix A, and on entry with * TRANS = 'T' or 't' or 'C' or 'c', K specifies the number * of rows of the matrix A. K must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,J,L,NROWA LOGICAL UPPER * .. * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * * Test the input parameters. * IF (LSAME(TRANS,'N')) THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 1 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. + (.NOT.LSAME(TRANS,'T')) .AND. + (.NOT.LSAME(TRANS,'C'))) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (K.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDC.LT.MAX(1,N)) THEN INFO = 10 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSYRK ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (UPPER) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,J C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,J C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF ELSE IF (BETA.EQ.ZERO) THEN DO 60 J = 1,N DO 50 I = J,N C(I,J) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1,N DO 70 I = J,N C(I,J) = BETA*C(I,J) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF (LSAME(TRANS,'N')) THEN * * Form C := alpha*A*A**T + beta*C. * IF (UPPER) THEN DO 130 J = 1,N IF (BETA.EQ.ZERO) THEN DO 90 I = 1,J C(I,J) = ZERO 90 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 100 I = 1,J C(I,J) = BETA*C(I,J) 100 CONTINUE END IF DO 120 L = 1,K IF (A(J,L).NE.ZERO) THEN TEMP = ALPHA*A(J,L) DO 110 I = 1,J C(I,J) = C(I,J) + TEMP*A(I,L) 110 CONTINUE END IF 120 CONTINUE 130 CONTINUE ELSE DO 180 J = 1,N IF (BETA.EQ.ZERO) THEN DO 140 I = J,N C(I,J) = ZERO 140 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 150 I = J,N C(I,J) = BETA*C(I,J) 150 CONTINUE END IF DO 170 L = 1,K IF (A(J,L).NE.ZERO) THEN TEMP = ALPHA*A(J,L) DO 160 I = J,N C(I,J) = C(I,J) + TEMP*A(I,L) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A**T*A + beta*C. * IF (UPPER) THEN DO 210 J = 1,N DO 200 I = 1,J TEMP = ZERO DO 190 L = 1,K TEMP = TEMP + A(L,I)*A(L,J) 190 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 200 CONTINUE 210 CONTINUE ELSE DO 240 J = 1,N DO 230 I = J,N TEMP = ZERO DO 220 L = 1,K TEMP = TEMP + A(L,I)*A(L,J) 220 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 230 CONTINUE 240 CONTINUE END IF END IF * RETURN * * End of DSYRK . * END blas-1.2.orig/src/drot.f 0000640 0001750 0001750 00000002406 11616621632 016026 0 ustar sylvestre sylvestre SUBROUTINE DROT(N,DX,INCX,DY,INCY,C,S) * .. Scalar Arguments .. DOUBLE PRECISION C,S INTEGER INCX,INCY,N * .. * .. Array Arguments .. DOUBLE PRECISION DX(*),DY(*) * .. * * Purpose * ======= * * DROT applies a plane rotation. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. DOUBLE PRECISION DTEMP INTEGER I,IX,IY * .. IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * DO I = 1,N DTEMP = C*DX(I) + S*DY(I) DY(I) = C*DY(I) - S*DX(I) DX(I) = DTEMP END DO ELSE * * code for unequal increments or equal increments not equal * to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N DTEMP = C*DX(IX) + S*DY(IY) DY(IY) = C*DY(IY) - S*DX(IX) DX(IX) = DTEMP IX = IX + INCX IY = IY + INCY END DO END IF RETURN END blas-1.2.orig/src/dsyr2k.f 0000640 0001750 0001750 00000025376 11616621632 016307 0 ustar sylvestre sylvestre SUBROUTINE DSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA,BETA INTEGER K,LDA,LDB,LDC,N CHARACTER TRANS,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * DSYR2K performs one of the symmetric rank 2k operations * * C := alpha*A*B**T + alpha*B*A**T + beta*C, * * or * * C := alpha*A**T*B + alpha*B**T*A + beta*C, * * where alpha and beta are scalars, C is an n by n symmetric matrix * and A and B are n by k matrices in the first case and k by n * matrices in the second case. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*B**T + alpha*B*A**T + * beta*C. * * TRANS = 'T' or 't' C := alpha*A**T*B + alpha*B**T*A + * beta*C. * * TRANS = 'C' or 'c' C := alpha*A**T*B + alpha*B**T*A + * beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrices A and B, and on entry with * TRANS = 'T' or 't' or 'C' or 'c', K specifies the number * of rows of the matrices A and B. K must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array B must contain the matrix B, otherwise * the leading k by n part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDB must be at least max( 1, n ), otherwise LDB must * be at least max( 1, k ). * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. DOUBLE PRECISION TEMP1,TEMP2 INTEGER I,INFO,J,L,NROWA LOGICAL UPPER * .. * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * * Test the input parameters. * IF (LSAME(TRANS,'N')) THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 1 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. + (.NOT.LSAME(TRANS,'T')) .AND. + (.NOT.LSAME(TRANS,'C'))) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (K.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,N)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSYR2K',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (UPPER) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,J C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,J C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF ELSE IF (BETA.EQ.ZERO) THEN DO 60 J = 1,N DO 50 I = J,N C(I,J) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1,N DO 70 I = J,N C(I,J) = BETA*C(I,J) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF (LSAME(TRANS,'N')) THEN * * Form C := alpha*A*B**T + alpha*B*A**T + C. * IF (UPPER) THEN DO 130 J = 1,N IF (BETA.EQ.ZERO) THEN DO 90 I = 1,J C(I,J) = ZERO 90 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 100 I = 1,J C(I,J) = BETA*C(I,J) 100 CONTINUE END IF DO 120 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*B(J,L) TEMP2 = ALPHA*A(J,L) DO 110 I = 1,J C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 110 CONTINUE END IF 120 CONTINUE 130 CONTINUE ELSE DO 180 J = 1,N IF (BETA.EQ.ZERO) THEN DO 140 I = J,N C(I,J) = ZERO 140 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 150 I = J,N C(I,J) = BETA*C(I,J) 150 CONTINUE END IF DO 170 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*B(J,L) TEMP2 = ALPHA*A(J,L) DO 160 I = J,N C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A**T*B + alpha*B**T*A + C. * IF (UPPER) THEN DO 210 J = 1,N DO 200 I = 1,J TEMP1 = ZERO TEMP2 = ZERO DO 190 L = 1,K TEMP1 = TEMP1 + A(L,I)*B(L,J) TEMP2 = TEMP2 + B(L,I)*A(L,J) 190 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + ALPHA*TEMP2 END IF 200 CONTINUE 210 CONTINUE ELSE DO 240 J = 1,N DO 230 I = J,N TEMP1 = ZERO TEMP2 = ZERO DO 220 L = 1,K TEMP1 = TEMP1 + A(L,I)*B(L,J) TEMP2 = TEMP2 + B(L,I)*A(L,J) 220 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + ALPHA*TEMP2 END IF 230 CONTINUE 240 CONTINUE END IF END IF * RETURN * * End of DSYR2K. * END blas-1.2.orig/src/ssbmv.f 0000640 0001750 0001750 00000022670 11616621632 016215 0 ustar sylvestre sylvestre SUBROUTINE SSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. REAL ALPHA,BETA INTEGER INCX,INCY,K,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. REAL A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * SSBMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n symmetric band matrix, with k super-diagonals. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the band matrix A is being supplied as * follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * being supplied. * * UPLO = 'L' or 'l' The lower triangular part of A is * being supplied. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * K - INTEGER. * On entry, K specifies the number of super-diagonals of the * matrix A. K must satisfy 0 .le. K. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) * by n part of the array A must contain the upper triangular * band part of the symmetric matrix, supplied column by * column, with the leading diagonal of the matrix in row * ( k + 1 ) of the array, the first super-diagonal starting at * position 2 in row k, and so on. The top left k by k triangle * of the array A is not referenced. * The following program segment will transfer the upper * triangular part of a symmetric band matrix from conventional * full matrix storage to band storage: * * DO 20, J = 1, N * M = K + 1 - J * DO 10, I = MAX( 1, J - K ), J * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) * by n part of the array A must contain the lower triangular * band part of the symmetric matrix, supplied column by * column, with the leading diagonal of the matrix in row 1 of * the array, the first sub-diagonal starting at position 1 in * row 2, and so on. The bottom right k by k triangle of the * array A is not referenced. * The following program segment will transfer the lower * triangular part of a symmetric band matrix from conventional * full matrix storage to band storage: * * DO 20, J = 1, N * M = 1 - J * DO 10, I = J, MIN( N, J + K ) * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( k + 1 ). * Unchanged on exit. * * X - REAL array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * Y - REAL array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the * vector y. On exit, Y is overwritten by the updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (K.LT.0) THEN INFO = 3 ELSE IF (LDA.LT. (K+1)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 ELSE IF (INCY.EQ.0) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSBMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set up the start points in X and Y. * IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF * * Start the operations. In this version the elements of the array A * are accessed sequentially with one pass through A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(UPLO,'U')) THEN * * Form y when upper triangle of A is stored. * KPLUS1 = K + 1 IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO L = KPLUS1 - J DO 50 I = MAX(1,J-K),J - 1 Y(I) = Y(I) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + A(L+I,J)*X(I) 50 CONTINUE Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY L = KPLUS1 - J DO 70 I = MAX(1,J-K),J - 1 Y(IY) = Y(IY) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + A(L+I,J)*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY IF (J.GT.K) THEN KX = KX + INCX KY = KY + INCY END IF 80 CONTINUE END IF ELSE * * Form y when lower triangle of A is stored. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*A(1,J) L = 1 - J DO 90 I = J + 1,MIN(N,J+K) Y(I) = Y(I) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + A(L+I,J)*X(I) 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*A(1,J) L = 1 - J IX = JX IY = JY DO 110 I = J + 1,MIN(N,J+K) IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + A(L+I,J)*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of SSBMV . * END blas-1.2.orig/src/chbmv.f 0000640 0001750 0001750 00000023262 11616621632 016160 0 ustar sylvestre sylvestre SUBROUTINE CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. COMPLEX ALPHA,BETA INTEGER INCX,INCY,K,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * CHBMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian band matrix, with k super-diagonals. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the band matrix A is being supplied as * follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * being supplied. * * UPLO = 'L' or 'l' The lower triangular part of A is * being supplied. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * K - INTEGER. * On entry, K specifies the number of super-diagonals of the * matrix A. K must satisfy 0 .le. K. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) * by n part of the array A must contain the upper triangular * band part of the hermitian matrix, supplied column by * column, with the leading diagonal of the matrix in row * ( k + 1 ) of the array, the first super-diagonal starting at * position 2 in row k, and so on. The top left k by k triangle * of the array A is not referenced. * The following program segment will transfer the upper * triangular part of a hermitian band matrix from conventional * full matrix storage to band storage: * * DO 20, J = 1, N * M = K + 1 - J * DO 10, I = MAX( 1, J - K ), J * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) * by n part of the array A must contain the lower triangular * band part of the hermitian matrix, supplied column by * column, with the leading diagonal of the matrix in row 1 of * the array, the first sub-diagonal starting at position 1 in * row 2, and so on. The bottom right k by k triangle of the * array A is not referenced. * The following program segment will transfer the lower * triangular part of a hermitian band matrix from conventional * full matrix storage to band storage: * * DO 20, J = 1, N * M = 1 - J * DO 10, I = J, MIN( N, J + K ) * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Note that the imaginary parts of the diagonal elements need * not be set and are assumed to be zero. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( k + 1 ). * Unchanged on exit. * * X - COMPLEX array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - COMPLEX . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * Y - COMPLEX array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the * vector y. On exit, Y is overwritten by the updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ONE PARAMETER (ONE= (1.0E+0,0.0E+0)) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX,MIN,REAL * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (K.LT.0) THEN INFO = 3 ELSE IF (LDA.LT. (K+1)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 ELSE IF (INCY.EQ.0) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('CHBMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set up the start points in X and Y. * IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF * * Start the operations. In this version the elements of the array A * are accessed sequentially with one pass through A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(UPLO,'U')) THEN * * Form y when upper triangle of A is stored. * KPLUS1 = K + 1 IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO L = KPLUS1 - J DO 50 I = MAX(1,J-K),J - 1 Y(I) = Y(I) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I) 50 CONTINUE Y(J) = Y(J) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY L = KPLUS1 - J DO 70 I = MAX(1,J-K),J - 1 Y(IY) = Y(IY) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY IF (J.GT.K) THEN KX = KX + INCX KY = KY + INCY END IF 80 CONTINUE END IF ELSE * * Form y when lower triangle of A is stored. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*REAL(A(1,J)) L = 1 - J DO 90 I = J + 1,MIN(N,J+K) Y(I) = Y(I) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I) 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*REAL(A(1,J)) L = 1 - J IX = JX IY = JY DO 110 I = J + 1,MIN(N,J+K) IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of CHBMV . * END blas-1.2.orig/src/zgerc.f 0000640 0001750 0001750 00000010462 11616621632 016171 0 ustar sylvestre sylvestre SUBROUTINE ZGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA INTEGER INCX,INCY,LDA,M,N * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * ZGERC performs the rank 1 operation * * A := alpha*x*y**H + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. * * Arguments * ========== * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( m - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the m * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. On exit, A is * overwritten by the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JY,KX * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG,MAX * .. * * Test the input parameters. * INFO = 0 IF (M.LT.0) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZGERC ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (INCY.GT.0) THEN JY = 1 ELSE JY = 1 - (N-1)*INCY END IF IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*DCONJG(Y(JY)) DO 10 I = 1,M A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF JY = JY + INCY 20 CONTINUE ELSE IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (M-1)*INCX END IF DO 40 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*DCONJG(Y(JY)) IX = KX DO 30 I = 1,M A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JY = JY + INCY 40 CONTINUE END IF * RETURN * * End of ZGERC . * END blas-1.2.orig/src/dscal.f 0000640 0001750 0001750 00000002620 11616621632 016142 0 ustar sylvestre sylvestre SUBROUTINE DSCAL(N,DA,DX,INCX) * .. Scalar Arguments .. DOUBLE PRECISION DA INTEGER INCX,N * .. * .. Array Arguments .. DOUBLE PRECISION DX(*) * .. * * Purpose * ======= * * DSCAL scales a vector by a constant. * uses unrolled loops for increment equal to one. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. INTEGER I,M,MP1,NINCX * .. * .. Intrinsic Functions .. INTRINSIC MOD * .. IF (N.LE.0 .OR. INCX.LE.0) RETURN IF (INCX.EQ.1) THEN * * code for increment equal to 1 * * * clean-up loop * M = MOD(N,5) IF (M.NE.0) THEN DO I = 1,M DX(I) = DA*DX(I) END DO IF (N.LT.5) RETURN END IF MP1 = M + 1 DO I = MP1,N,5 DX(I) = DA*DX(I) DX(I+1) = DA*DX(I+1) DX(I+2) = DA*DX(I+2) DX(I+3) = DA*DX(I+3) DX(I+4) = DA*DX(I+4) END DO ELSE * * code for increment not equal to 1 * NINCX = N*INCX DO I = 1,NINCX,INCX DX(I) = DA*DX(I) END DO END IF RETURN END blas-1.2.orig/src/sdsdot.f 0000640 0001750 0001750 00000005534 11616621632 016363 0 ustar sylvestre sylvestre REAL FUNCTION SDSDOT(N,SB,SX,INCX,SY,INCY) * .. Scalar Arguments .. REAL SB INTEGER INCX,INCY,N * .. * .. Array Arguments .. REAL SX(*),SY(*) * .. * * PURPOSE * ======= * * Compute the inner product of two vectors with extended * precision accumulation. * * Returns S.P. result with dot product accumulated in D.P. * SDSDOT = SB + sum for I = 0 to N-1 of SX(LX+I*INCX)*SY(LY+I*INCY), * where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is * defined in a similar way using INCY. * * AUTHOR * ====== * Lawson, C. L., (JPL), Hanson, R. J., (SNLA), * Kincaid, D. R., (U. of Texas), Krogh, F. T., (JPL) * * ARGUMENTS * ========= * * N (input) INTEGER * number of elements in input vector(s) * * SB (input) REAL * single precision scalar to be added to inner product * * SX (input) REAL array, dimension (N) * single precision vector with N elements * * INCX (input) INTEGER * storage spacing between elements of SX * * SY (input) REAL array, dimension (N) * single precision vector with N elements * * INCY (input) INTEGER * storage spacing between elements of SY * * SDSDOT (output) REAL * single precision dot product (SB if N .LE. 0) * * Further Details * =============== * * REFERENCES * * C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. * Krogh, Basic linear algebra subprograms for Fortran * usage, Algorithm No. 539, Transactions on Mathematical * Software 5, 3 (September 1979), pp. 308-323. * * REVISION HISTORY (YYMMDD) * * 791001 DATE WRITTEN * 890531 Changed all specific intrinsics to generic. (WRB) * 890831 Modified array declarations. (WRB) * 890831 REVISION DATE from Version 3.2 * 891214 Prologue converted to Version 4.0 format. (BAB) * 920310 Corrected definition of LX in DESCRIPTION. (WRB) * 920501 Reformatted the REFERENCES section. (WRB) * 070118 Reformat to LAPACK coding style * * ===================================================================== * * .. Local Scalars .. DOUBLE PRECISION DSDOT INTEGER I,KX,KY,NS * .. * .. Intrinsic Functions .. INTRINSIC DBLE * .. DSDOT = SB IF (N.LE.0) THEN SDSDOT = DSDOT RETURN END IF IF (INCX.EQ.INCY .AND. INCX.GT.0) THEN * * Code for equal and positive increments. * NS = N*INCX DO I = 1,NS,INCX DSDOT = DSDOT + DBLE(SX(I))*DBLE(SY(I)) END DO ELSE * * Code for unequal or nonpositive increments. * KX = 1 KY = 1 IF (INCX.LT.0) KX = 1 + (1-N)*INCX IF (INCY.LT.0) KY = 1 + (1-N)*INCY DO I = 1,N DSDOT = DSDOT + DBLE(SX(KX))*DBLE(SY(KY)) KX = KX + INCX KY = KY + INCY END DO END IF SDSDOT = DSDOT RETURN END blas-1.2.orig/src/ccopy.f 0000640 0001750 0001750 00000002061 11616621632 016170 0 ustar sylvestre sylvestre SUBROUTINE CCOPY(N,CX,INCX,CY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. COMPLEX CX(*),CY(*) * .. * * Purpose * ======= * * CCOPY copies a vector x to a vector y. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. INTEGER I,IX,IY * .. IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * DO I = 1,N CY(I) = CX(I) END DO ELSE * * code for unequal increments or equal increments * not equal to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N CY(IY) = CX(IX) IX = IX + INCX IY = IY + INCY END DO END IF RETURN END blas-1.2.orig/src/zcopy.f 0000640 0001750 0001750 00000002071 11616621632 016220 0 ustar sylvestre sylvestre SUBROUTINE ZCOPY(N,ZX,INCX,ZY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. DOUBLE COMPLEX ZX(*),ZY(*) * .. * * Purpose * ======= * * ZCOPY copies a vector, x, to a vector, y. * * Further Details * =============== * * jack dongarra, linpack, 4/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. INTEGER I,IX,IY * .. IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * DO I = 1,N ZY(I) = ZX(I) END DO ELSE * * code for unequal increments or equal increments * not equal to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N ZY(IY) = ZX(IX) IX = IX + INCX IY = IY + INCY END DO END IF RETURN END blas-1.2.orig/src/strmv.f 0000640 0001750 0001750 00000021111 11616621632 016223 0 ustar sylvestre sylvestre SUBROUTINE STRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. REAL A(LDA,*),X(*) * .. * * Purpose * ======= * * STRMV performs one of the matrix-vector operations * * x := A*x, or x := A**T*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A**T*x. * * TRANS = 'C' or 'c' x := A**T*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,IX,J,JX,KX LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 END IF IF (INFO.NE.0) THEN CALL XERBLA('STRMV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := A*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) DO 10 I = 1,J - 1 X(I) = X(I) + TEMP*A(I,J) 10 CONTINUE IF (NOUNIT) X(J) = X(J)*A(J,J) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 30 I = 1,J - 1 X(IX) = X(IX) + TEMP*A(I,J) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(J,J) END IF JX = JX + INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) DO 50 I = N,J + 1,-1 X(I) = X(I) + TEMP*A(I,J) 50 CONTINUE IF (NOUNIT) X(J) = X(J)*A(J,J) END IF 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 70 I = N,J + 1,-1 X(IX) = X(IX) + TEMP*A(I,J) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(J,J) END IF JX = JX - INCX 80 CONTINUE END IF END IF ELSE * * Form x := A**T*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 100 J = N,1,-1 TEMP = X(J) IF (NOUNIT) TEMP = TEMP*A(J,J) DO 90 I = J - 1,1,-1 TEMP = TEMP + A(I,J)*X(I) 90 CONTINUE X(J) = TEMP 100 CONTINUE ELSE JX = KX + (N-1)*INCX DO 120 J = N,1,-1 TEMP = X(JX) IX = JX IF (NOUNIT) TEMP = TEMP*A(J,J) DO 110 I = J - 1,1,-1 IX = IX - INCX TEMP = TEMP + A(I,J)*X(IX) 110 CONTINUE X(JX) = TEMP JX = JX - INCX 120 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 140 J = 1,N TEMP = X(J) IF (NOUNIT) TEMP = TEMP*A(J,J) DO 130 I = J + 1,N TEMP = TEMP + A(I,J)*X(I) 130 CONTINUE X(J) = TEMP 140 CONTINUE ELSE JX = KX DO 160 J = 1,N TEMP = X(JX) IX = JX IF (NOUNIT) TEMP = TEMP*A(J,J) DO 150 I = J + 1,N IX = IX + INCX TEMP = TEMP + A(I,J)*X(IX) 150 CONTINUE X(JX) = TEMP JX = JX + INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of STRMV . * END blas-1.2.orig/src/dtrmm.f 0000640 0001750 0001750 00000026132 11616621632 016203 0 ustar sylvestre sylvestre SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER LDA,LDB,M,N CHARACTER DIAG,SIDE,TRANSA,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),B(LDB,*) * .. * * Purpose * ======= * * DTRMM performs one of the matrix-matrix operations * * B := alpha*op( A )*B, or B := alpha*B*op( A ), * * where alpha is a scalar, B is an m by n matrix, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A**T. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) multiplies B from * the left or right as follows: * * SIDE = 'L' or 'l' B := alpha*op( A )*B. * * SIDE = 'R' or 'r' B := alpha*B*op( A ). * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A**T. * * TRANSA = 'C' or 'c' op( A ) = A**T. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B, and on exit is overwritten by the * transformed matrix. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,J,K,NROWA LOGICAL LSIDE,NOUNIT,UPPER * .. * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * * Test the input parameters. * LSIDE = LSAME(SIDE,'L') IF (LSIDE) THEN NROWA = M ELSE NROWA = N END IF NOUNIT = LSAME(DIAG,'N') UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. + (.NOT.LSAME(TRANSA,'T')) .AND. + (.NOT.LSAME(TRANSA,'C'))) THEN INFO = 3 ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN INFO = 4 ELSE IF (M.LT.0) THEN INFO = 5 ELSE IF (N.LT.0) THEN INFO = 6 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('DTRMM ',INFO) RETURN END IF * * Quick return if possible. * IF (M.EQ.0 .OR. N.EQ.0) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M B(I,J) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF (LSIDE) THEN IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*A*B. * IF (UPPER) THEN DO 50 J = 1,N DO 40 K = 1,M IF (B(K,J).NE.ZERO) THEN TEMP = ALPHA*B(K,J) DO 30 I = 1,K - 1 B(I,J) = B(I,J) + TEMP*A(I,K) 30 CONTINUE IF (NOUNIT) TEMP = TEMP*A(K,K) B(K,J) = TEMP END IF 40 CONTINUE 50 CONTINUE ELSE DO 80 J = 1,N DO 70 K = M,1,-1 IF (B(K,J).NE.ZERO) THEN TEMP = ALPHA*B(K,J) B(K,J) = TEMP IF (NOUNIT) B(K,J) = B(K,J)*A(K,K) DO 60 I = K + 1,M B(I,J) = B(I,J) + TEMP*A(I,K) 60 CONTINUE END IF 70 CONTINUE 80 CONTINUE END IF ELSE * * Form B := alpha*A**T*B. * IF (UPPER) THEN DO 110 J = 1,N DO 100 I = M,1,-1 TEMP = B(I,J) IF (NOUNIT) TEMP = TEMP*A(I,I) DO 90 K = 1,I - 1 TEMP = TEMP + A(K,I)*B(K,J) 90 CONTINUE B(I,J) = ALPHA*TEMP 100 CONTINUE 110 CONTINUE ELSE DO 140 J = 1,N DO 130 I = 1,M TEMP = B(I,J) IF (NOUNIT) TEMP = TEMP*A(I,I) DO 120 K = I + 1,M TEMP = TEMP + A(K,I)*B(K,J) 120 CONTINUE B(I,J) = ALPHA*TEMP 130 CONTINUE 140 CONTINUE END IF END IF ELSE IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*B*A. * IF (UPPER) THEN DO 180 J = N,1,-1 TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(J,J) DO 150 I = 1,M B(I,J) = TEMP*B(I,J) 150 CONTINUE DO 170 K = 1,J - 1 IF (A(K,J).NE.ZERO) THEN TEMP = ALPHA*A(K,J) DO 160 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE ELSE DO 220 J = 1,N TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(J,J) DO 190 I = 1,M B(I,J) = TEMP*B(I,J) 190 CONTINUE DO 210 K = J + 1,N IF (A(K,J).NE.ZERO) THEN TEMP = ALPHA*A(K,J) DO 200 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 200 CONTINUE END IF 210 CONTINUE 220 CONTINUE END IF ELSE * * Form B := alpha*B*A**T. * IF (UPPER) THEN DO 260 K = 1,N DO 240 J = 1,K - 1 IF (A(J,K).NE.ZERO) THEN TEMP = ALPHA*A(J,K) DO 230 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 230 CONTINUE END IF 240 CONTINUE TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(K,K) IF (TEMP.NE.ONE) THEN DO 250 I = 1,M B(I,K) = TEMP*B(I,K) 250 CONTINUE END IF 260 CONTINUE ELSE DO 300 K = N,1,-1 DO 280 J = K + 1,N IF (A(J,K).NE.ZERO) THEN TEMP = ALPHA*A(J,K) DO 270 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 270 CONTINUE END IF 280 CONTINUE TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(K,K) IF (TEMP.NE.ONE) THEN DO 290 I = 1,M B(I,K) = TEMP*B(I,K) 290 CONTINUE END IF 300 CONTINUE END IF END IF END IF * RETURN * * End of DTRMM . * END blas-1.2.orig/src/cher.f 0000640 0001750 0001750 00000015046 11616621632 016003 0 ustar sylvestre sylvestre SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA) * .. Scalar Arguments .. REAL ALPHA INTEGER INCX,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),X(*) * .. * * Purpose * ======= * * CHER performs the hermitian rank 1 operation * * A := alpha*x*x**H + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n hermitian matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the hermitian matrix and the strictly * lower triangular part of A is not referenced. On exit, the * upper triangular part of the array A is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the hermitian matrix and the strictly * upper triangular part of A is not referenced. On exit, the * lower triangular part of the array A is overwritten by the * lower triangular part of the updated matrix. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero, and on exit they * are set to zero. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KX * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX,REAL * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('CHER ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN * * Set the start point in X if the increment is not unity. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF (LSAME(UPLO,'U')) THEN * * Form A when A is stored in upper triangle. * IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*CONJG(X(J)) DO 10 I = 1,J - 1 A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE A(J,J) = REAL(A(J,J)) + REAL(X(J)*TEMP) ELSE A(J,J) = REAL(A(J,J)) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*CONJG(X(JX)) IX = KX DO 30 I = 1,J - 1 A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE A(J,J) = REAL(A(J,J)) + REAL(X(JX)*TEMP) ELSE A(J,J) = REAL(A(J,J)) END IF JX = JX + INCX 40 CONTINUE END IF ELSE * * Form A when A is stored in lower triangle. * IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*CONJG(X(J)) A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(J)) DO 50 I = J + 1,N A(I,J) = A(I,J) + X(I)*TEMP 50 CONTINUE ELSE A(J,J) = REAL(A(J,J)) END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*CONJG(X(JX)) A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(JX)) IX = JX DO 70 I = J + 1,N IX = IX + INCX A(I,J) = A(I,J) + X(IX)*TEMP 70 CONTINUE ELSE A(J,J) = REAL(A(J,J)) END IF JX = JX + INCX 80 CONTINUE END IF END IF * RETURN * * End of CHER . * END blas-1.2.orig/src/dzasum.f 0000640 0001750 0001750 00000002167 11616621632 016365 0 ustar sylvestre sylvestre DOUBLE PRECISION FUNCTION DZASUM(N,ZX,INCX) * .. Scalar Arguments .. INTEGER INCX,N * .. * .. Array Arguments .. DOUBLE COMPLEX ZX(*) * .. * * Purpose * ======= * * DZASUM takes the sum of the absolute values. * * Further Details * =============== * * jack dongarra, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. DOUBLE PRECISION STEMP INTEGER I,NINCX * .. * .. External Functions .. DOUBLE PRECISION DCABS1 EXTERNAL DCABS1 * .. DZASUM = 0.0d0 STEMP = 0.0d0 IF (N.LE.0 .OR. INCX.LE.0) RETURN IF (INCX.EQ.1) THEN * * code for increment equal to 1 * DO I = 1,N STEMP = STEMP + DCABS1(ZX(I)) END DO ELSE * * code for increment not equal to 1 * NINCX = N*INCX DO I = 1,NINCX,INCX STEMP = STEMP + DCABS1(ZX(I)) END DO END IF DZASUM = STEMP RETURN END blas-1.2.orig/src/zhemv.f 0000640 0001750 0001750 00000020060 11616621632 016203 0 ustar sylvestre sylvestre SUBROUTINE ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER INCX,INCY,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * ZHEMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the hermitian matrix and the strictly * lower triangular part of A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the hermitian matrix and the strictly * upper triangular part of A is not referenced. * Note that the imaginary parts of the diagonal elements need * not be set and are assumed to be zero. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - COMPLEX*16 . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. On exit, Y is overwritten by the updated * vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG,MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 5 ELSE IF (INCX.EQ.0) THEN INFO = 7 ELSE IF (INCY.EQ.0) THEN INFO = 10 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHEMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set up the start points in X and Y. * IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(UPLO,'U')) THEN * * Form y when A is stored in upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO DO 50 I = 1,J - 1 Y(I) = Y(I) + TEMP1*A(I,J) TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I) 50 CONTINUE Y(J) = Y(J) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY DO 70 I = 1,J - 1 Y(IY) = Y(IY) + TEMP1*A(I,J) TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF ELSE * * Form y when A is stored in lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*DBLE(A(J,J)) DO 90 I = J + 1,N Y(I) = Y(I) + TEMP1*A(I,J) TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I) 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J)) IX = JX IY = JY DO 110 I = J + 1,N IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*A(I,J) TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of ZHEMV . * END blas-1.2.orig/src/zsyr2k.f 0000640 0001750 0001750 00000025174 11616621632 016331 0 ustar sylvestre sylvestre SUBROUTINE ZSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER K,LDA,LDB,LDC,N CHARACTER TRANS,UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * ZSYR2K performs one of the symmetric rank 2k operations * * C := alpha*A*B**T + alpha*B*A**T + beta*C, * * or * * C := alpha*A**T*B + alpha*B**T*A + beta*C, * * where alpha and beta are scalars, C is an n by n symmetric matrix * and A and B are n by k matrices in the first case and k by n * matrices in the second case. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*B**T + alpha*B*A**T + * beta*C. * * TRANS = 'T' or 't' C := alpha*A**T*B + alpha*B**T*A + * beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrices A and B, and on entry with * TRANS = 'T' or 't', K specifies the number of rows of the * matrices A and B. K must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array B must contain the matrix B, otherwise * the leading k by n part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDB must be at least max( 1, n ), otherwise LDB must * be at least max( 1, k ). * Unchanged on exit. * * BETA - COMPLEX*16 . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - COMPLEX*16 array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP1,TEMP2 INTEGER I,INFO,J,L,NROWA LOGICAL UPPER * .. * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * * Test the input parameters. * IF (LSAME(TRANS,'N')) THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 1 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. + (.NOT.LSAME(TRANS,'T'))) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (K.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,N)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZSYR2K',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (UPPER) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,J C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,J C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF ELSE IF (BETA.EQ.ZERO) THEN DO 60 J = 1,N DO 50 I = J,N C(I,J) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1,N DO 70 I = J,N C(I,J) = BETA*C(I,J) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF (LSAME(TRANS,'N')) THEN * * Form C := alpha*A*B**T + alpha*B*A**T + C. * IF (UPPER) THEN DO 130 J = 1,N IF (BETA.EQ.ZERO) THEN DO 90 I = 1,J C(I,J) = ZERO 90 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 100 I = 1,J C(I,J) = BETA*C(I,J) 100 CONTINUE END IF DO 120 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*B(J,L) TEMP2 = ALPHA*A(J,L) DO 110 I = 1,J C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 110 CONTINUE END IF 120 CONTINUE 130 CONTINUE ELSE DO 180 J = 1,N IF (BETA.EQ.ZERO) THEN DO 140 I = J,N C(I,J) = ZERO 140 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 150 I = J,N C(I,J) = BETA*C(I,J) 150 CONTINUE END IF DO 170 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*B(J,L) TEMP2 = ALPHA*A(J,L) DO 160 I = J,N C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A**T*B + alpha*B**T*A + C. * IF (UPPER) THEN DO 210 J = 1,N DO 200 I = 1,J TEMP1 = ZERO TEMP2 = ZERO DO 190 L = 1,K TEMP1 = TEMP1 + A(L,I)*B(L,J) TEMP2 = TEMP2 + B(L,I)*A(L,J) 190 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + ALPHA*TEMP2 END IF 200 CONTINUE 210 CONTINUE ELSE DO 240 J = 1,N DO 230 I = J,N TEMP1 = ZERO TEMP2 = ZERO DO 220 L = 1,K TEMP1 = TEMP1 + A(L,I)*B(L,J) TEMP2 = TEMP2 + B(L,I)*A(L,J) 220 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + ALPHA*TEMP2 END IF 230 CONTINUE 240 CONTINUE END IF END IF * RETURN * * End of ZSYR2K. * END blas-1.2.orig/src/zgeru.f 0000640 0001750 0001750 00000010433 11616621632 016211 0 ustar sylvestre sylvestre SUBROUTINE ZGERU(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA INTEGER INCX,INCY,LDA,M,N * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * ZGERU performs the rank 1 operation * * A := alpha*x*y**T + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. * * Arguments * ========== * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( m - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the m * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. On exit, A is * overwritten by the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JY,KX * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (M.LT.0) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZGERU ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (INCY.GT.0) THEN JY = 1 ELSE JY = 1 - (N-1)*INCY END IF IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) DO 10 I = 1,M A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF JY = JY + INCY 20 CONTINUE ELSE IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (M-1)*INCX END IF DO 40 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) IX = KX DO 30 I = 1,M A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JY = JY + INCY 40 CONTINUE END IF * RETURN * * End of ZGERU . * END blas-1.2.orig/src/dsyr.f 0000640 0001750 0001750 00000013525 11616621632 016043 0 ustar sylvestre sylvestre SUBROUTINE DSYR(UPLO,N,ALPHA,X,INCX,A,LDA) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER INCX,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*) * .. * * Purpose * ======= * * DSYR performs the symmetric rank 1 operation * * A := alpha*x*x**T + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n symmetric matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of A is not referenced. On exit, the * upper triangular part of the array A is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of A is not referenced. On exit, the * lower triangular part of the array A is overwritten by the * lower triangular part of the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JX,KX * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSYR ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set the start point in X if the increment is not unity. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF (LSAME(UPLO,'U')) THEN * * Form A when A is stored in upper triangle. * IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) DO 10 I = 1,J A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = KX DO 30 I = 1,J A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JX = JX + INCX 40 CONTINUE END IF ELSE * * Form A when A is stored in lower triangle. * IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*X(J) DO 50 I = J,N A(I,J) = A(I,J) + X(I)*TEMP 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IX = JX DO 70 I = J,N A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF * RETURN * * End of DSYR . * END blas-1.2.orig/src/ctrmm.f 0000640 0001750 0001750 00000031315 11616621632 016201 0 ustar sylvestre sylvestre SUBROUTINE CTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) * .. Scalar Arguments .. COMPLEX ALPHA INTEGER LDA,LDB,M,N CHARACTER DIAG,SIDE,TRANSA,UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),B(LDB,*) * .. * * Purpose * ======= * * CTRMM performs one of the matrix-matrix operations * * B := alpha*op( A )*B, or B := alpha*B*op( A ) * * where alpha is a scalar, B is an m by n matrix, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A**T or op( A ) = A**H. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) multiplies B from * the left or right as follows: * * SIDE = 'L' or 'l' B := alpha*op( A )*B. * * SIDE = 'R' or 'r' B := alpha*B*op( A ). * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A**T. * * TRANSA = 'C' or 'c' op( A ) = A**H. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - COMPLEX array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B, and on exit is overwritten by the * transformed matrix. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,J,K,NROWA LOGICAL LSIDE,NOCONJ,NOUNIT,UPPER * .. * .. Parameters .. COMPLEX ONE PARAMETER (ONE= (1.0E+0,0.0E+0)) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * * Test the input parameters. * LSIDE = LSAME(SIDE,'L') IF (LSIDE) THEN NROWA = M ELSE NROWA = N END IF NOCONJ = LSAME(TRANSA,'T') NOUNIT = LSAME(DIAG,'N') UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. + (.NOT.LSAME(TRANSA,'T')) .AND. + (.NOT.LSAME(TRANSA,'C'))) THEN INFO = 3 ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN INFO = 4 ELSE IF (M.LT.0) THEN INFO = 5 ELSE IF (N.LT.0) THEN INFO = 6 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('CTRMM ',INFO) RETURN END IF * * Quick return if possible. * IF (M.EQ.0 .OR. N.EQ.0) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M B(I,J) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF (LSIDE) THEN IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*A*B. * IF (UPPER) THEN DO 50 J = 1,N DO 40 K = 1,M IF (B(K,J).NE.ZERO) THEN TEMP = ALPHA*B(K,J) DO 30 I = 1,K - 1 B(I,J) = B(I,J) + TEMP*A(I,K) 30 CONTINUE IF (NOUNIT) TEMP = TEMP*A(K,K) B(K,J) = TEMP END IF 40 CONTINUE 50 CONTINUE ELSE DO 80 J = 1,N DO 70 K = M,1,-1 IF (B(K,J).NE.ZERO) THEN TEMP = ALPHA*B(K,J) B(K,J) = TEMP IF (NOUNIT) B(K,J) = B(K,J)*A(K,K) DO 60 I = K + 1,M B(I,J) = B(I,J) + TEMP*A(I,K) 60 CONTINUE END IF 70 CONTINUE 80 CONTINUE END IF ELSE * * Form B := alpha*A**T*B or B := alpha*A**H*B. * IF (UPPER) THEN DO 120 J = 1,N DO 110 I = M,1,-1 TEMP = B(I,J) IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(I,I) DO 90 K = 1,I - 1 TEMP = TEMP + A(K,I)*B(K,J) 90 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(A(I,I)) DO 100 K = 1,I - 1 TEMP = TEMP + CONJG(A(K,I))*B(K,J) 100 CONTINUE END IF B(I,J) = ALPHA*TEMP 110 CONTINUE 120 CONTINUE ELSE DO 160 J = 1,N DO 150 I = 1,M TEMP = B(I,J) IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(I,I) DO 130 K = I + 1,M TEMP = TEMP + A(K,I)*B(K,J) 130 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(A(I,I)) DO 140 K = I + 1,M TEMP = TEMP + CONJG(A(K,I))*B(K,J) 140 CONTINUE END IF B(I,J) = ALPHA*TEMP 150 CONTINUE 160 CONTINUE END IF END IF ELSE IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*B*A. * IF (UPPER) THEN DO 200 J = N,1,-1 TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(J,J) DO 170 I = 1,M B(I,J) = TEMP*B(I,J) 170 CONTINUE DO 190 K = 1,J - 1 IF (A(K,J).NE.ZERO) THEN TEMP = ALPHA*A(K,J) DO 180 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 180 CONTINUE END IF 190 CONTINUE 200 CONTINUE ELSE DO 240 J = 1,N TEMP = ALPHA IF (NOUNIT) TEMP = TEMP*A(J,J) DO 210 I = 1,M B(I,J) = TEMP*B(I,J) 210 CONTINUE DO 230 K = J + 1,N IF (A(K,J).NE.ZERO) THEN TEMP = ALPHA*A(K,J) DO 220 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 220 CONTINUE END IF 230 CONTINUE 240 CONTINUE END IF ELSE * * Form B := alpha*B*A**T or B := alpha*B*A**H. * IF (UPPER) THEN DO 280 K = 1,N DO 260 J = 1,K - 1 IF (A(J,K).NE.ZERO) THEN IF (NOCONJ) THEN TEMP = ALPHA*A(J,K) ELSE TEMP = ALPHA*CONJG(A(J,K)) END IF DO 250 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 250 CONTINUE END IF 260 CONTINUE TEMP = ALPHA IF (NOUNIT) THEN IF (NOCONJ) THEN TEMP = TEMP*A(K,K) ELSE TEMP = TEMP*CONJG(A(K,K)) END IF END IF IF (TEMP.NE.ONE) THEN DO 270 I = 1,M B(I,K) = TEMP*B(I,K) 270 CONTINUE END IF 280 CONTINUE ELSE DO 320 K = N,1,-1 DO 300 J = K + 1,N IF (A(J,K).NE.ZERO) THEN IF (NOCONJ) THEN TEMP = ALPHA*A(J,K) ELSE TEMP = ALPHA*CONJG(A(J,K)) END IF DO 290 I = 1,M B(I,J) = B(I,J) + TEMP*B(I,K) 290 CONTINUE END IF 300 CONTINUE TEMP = ALPHA IF (NOUNIT) THEN IF (NOCONJ) THEN TEMP = TEMP*A(K,K) ELSE TEMP = TEMP*CONJG(A(K,K)) END IF END IF IF (TEMP.NE.ONE) THEN DO 310 I = 1,M B(I,K) = TEMP*B(I,K) 310 CONTINUE END IF 320 CONTINUE END IF END IF END IF * RETURN * * End of CTRMM . * END blas-1.2.orig/src/snrm2.f 0000640 0001750 0001750 00000003115 11616621632 016115 0 ustar sylvestre sylvestre REAL FUNCTION SNRM2(N,X,INCX) * .. Scalar Arguments .. INTEGER INCX,N * .. * .. Array Arguments .. REAL X(*) * .. * * Purpose * ======= * * SNRM2 returns the euclidean norm of a vector via the function * name, so that * * SNRM2 := sqrt( x'*x ). * * Further Details * =============== * * -- This version written on 25-October-1982. * Modified on 14-October-1993 to inline the call to SLASSQ. * Sven Hammarling, Nag Ltd. * * ===================================================================== * * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * .. Local Scalars .. REAL ABSXI,NORM,SCALE,SSQ INTEGER IX * .. * .. Intrinsic Functions .. INTRINSIC ABS,SQRT * .. IF (N.LT.1 .OR. INCX.LT.1) THEN NORM = ZERO ELSE IF (N.EQ.1) THEN NORM = ABS(X(1)) ELSE SCALE = ZERO SSQ = ONE * The following loop is equivalent to this call to the LAPACK * auxiliary routine: * CALL SLASSQ( N, X, INCX, SCALE, SSQ ) * DO 10 IX = 1,1 + (N-1)*INCX,INCX IF (X(IX).NE.ZERO) THEN ABSXI = ABS(X(IX)) IF (SCALE.LT.ABSXI) THEN SSQ = ONE + SSQ* (SCALE/ABSXI)**2 SCALE = ABSXI ELSE SSQ = SSQ + (ABSXI/SCALE)**2 END IF END IF 10 CONTINUE NORM = SCALE*SQRT(SSQ) END IF * SNRM2 = NORM RETURN * * End of SNRM2. * END blas-1.2.orig/src/ctrsv.f 0000640 0001750 0001750 00000024150 11616621632 016217 0 ustar sylvestre sylvestre SUBROUTINE CTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),X(*) * .. * * Purpose * ======= * * CTRSV solves one of the systems of equations * * A*x = b, or A**T*x = b, or A**H*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A**T*x = b. * * TRANS = 'C' or 'c' A**H*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KX LOGICAL NOCONJ,NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 END IF IF (INFO.NE.0) THEN CALL XERBLA('CTRSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/A(J,J) TEMP = X(J) DO 10 I = J - 1,1,-1 X(I) = X(I) - TEMP*A(I,J) 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX + (N-1)*INCX DO 40 J = N,1,-1 IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/A(J,J) TEMP = X(JX) IX = JX DO 30 I = J - 1,1,-1 IX = IX - INCX X(IX) = X(IX) - TEMP*A(I,J) 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/A(J,J) TEMP = X(J) DO 50 I = J + 1,N X(I) = X(I) - TEMP*A(I,J) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/A(J,J) TEMP = X(JX) IX = JX DO 70 I = J + 1,N IX = IX + INCX X(IX) = X(IX) - TEMP*A(I,J) 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T )*x or x := inv( A**H )*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = X(J) IF (NOCONJ) THEN DO 90 I = 1,J - 1 TEMP = TEMP - A(I,J)*X(I) 90 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) ELSE DO 100 I = 1,J - 1 TEMP = TEMP - CONJG(A(I,J))*X(I) 100 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J)) END IF X(J) = TEMP 110 CONTINUE ELSE JX = KX DO 140 J = 1,N IX = KX TEMP = X(JX) IF (NOCONJ) THEN DO 120 I = 1,J - 1 TEMP = TEMP - A(I,J)*X(IX) IX = IX + INCX 120 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) ELSE DO 130 I = 1,J - 1 TEMP = TEMP - CONJG(A(I,J))*X(IX) IX = IX + INCX 130 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J)) END IF X(JX) = TEMP JX = JX + INCX 140 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 170 J = N,1,-1 TEMP = X(J) IF (NOCONJ) THEN DO 150 I = N,J + 1,-1 TEMP = TEMP - A(I,J)*X(I) 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) ELSE DO 160 I = N,J + 1,-1 TEMP = TEMP - CONJG(A(I,J))*X(I) 160 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J)) END IF X(J) = TEMP 170 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 200 J = N,1,-1 IX = KX TEMP = X(JX) IF (NOCONJ) THEN DO 180 I = N,J + 1,-1 TEMP = TEMP - A(I,J)*X(IX) IX = IX - INCX 180 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) ELSE DO 190 I = N,J + 1,-1 TEMP = TEMP - CONJG(A(I,J))*X(IX) IX = IX - INCX 190 CONTINUE IF (NOUNIT) TEMP = TEMP/CONJG(A(J,J)) END IF X(JX) = TEMP JX = JX - INCX 200 CONTINUE END IF END IF END IF * RETURN * * End of CTRSV . * END blas-1.2.orig/src/ztbmv.f 0000640 0001750 0001750 00000030662 11616621632 016225 0 ustar sylvestre sylvestre SUBROUTINE ZTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,K,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*) * .. * * Purpose * ======= * * ZTBMV performs one of the matrix-vector operations * * x := A*x, or x := A**T*x, or x := A**H*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular band matrix, with ( k + 1 ) diagonals. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A**T*x. * * TRANS = 'C' or 'c' x := A**H*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with UPLO = 'U' or 'u', K specifies the number of * super-diagonals of the matrix A. * On entry with UPLO = 'L' or 'l', K specifies the number of * sub-diagonals of the matrix A. * K must satisfy 0 .le. K. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) * by n part of the array A must contain the upper triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row * ( k + 1 ) of the array, the first super-diagonal starting at * position 2 in row k, and so on. The top left k by k triangle * of the array A is not referenced. * The following program segment will transfer an upper * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = K + 1 - J * DO 10, I = MAX( 1, J - K ), J * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) * by n part of the array A must contain the lower triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row 1 of * the array, the first sub-diagonal starting at position 1 in * row 2, and so on. The bottom right k by k triangle of the * array A is not referenced. * The following program segment will transfer a lower * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = 1 - J * DO 10, I = J, MIN( N, J + K ) * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Note that when DIAG = 'U' or 'u' the elements of the array A * corresponding to the diagonal elements of the matrix are not * referenced, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( k + 1 ). * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L LOGICAL NOCONJ,NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DCONJG,MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (K+1)) THEN INFO = 7 ELSE IF (INCX.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZTBMV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := A*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) L = KPLUS1 - J DO 10 I = MAX(1,J-K),J - 1 X(I) = X(I) + TEMP*A(L+I,J) 10 CONTINUE IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX L = KPLUS1 - J DO 30 I = MAX(1,J-K),J - 1 X(IX) = X(IX) + TEMP*A(L+I,J) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J) END IF JX = JX + INCX IF (J.GT.K) KX = KX + INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) L = 1 - J DO 50 I = MIN(N,J+K),J + 1,-1 X(I) = X(I) + TEMP*A(L+I,J) 50 CONTINUE IF (NOUNIT) X(J) = X(J)*A(1,J) END IF 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX L = 1 - J DO 70 I = MIN(N,J+K),J + 1,-1 X(IX) = X(IX) + TEMP*A(L+I,J) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(1,J) END IF JX = JX - INCX IF ((N-J).GE.K) KX = KX - INCX 80 CONTINUE END IF END IF ELSE * * Form x := A**T*x or x := A**H*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 110 J = N,1,-1 TEMP = X(J) L = KPLUS1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) DO 90 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + A(L+I,J)*X(I) 90 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J)) DO 100 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + DCONJG(A(L+I,J))*X(I) 100 CONTINUE END IF X(J) = TEMP 110 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 140 J = N,1,-1 TEMP = X(JX) KX = KX - INCX IX = KX L = KPLUS1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) DO 120 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + A(L+I,J)*X(IX) IX = IX - INCX 120 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J)) DO 130 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + DCONJG(A(L+I,J))*X(IX) IX = IX - INCX 130 CONTINUE END IF X(JX) = TEMP JX = JX - INCX 140 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 170 J = 1,N TEMP = X(J) L = 1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(1,J) DO 150 I = J + 1,MIN(N,J+K) TEMP = TEMP + A(L+I,J)*X(I) 150 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J)) DO 160 I = J + 1,MIN(N,J+K) TEMP = TEMP + DCONJG(A(L+I,J))*X(I) 160 CONTINUE END IF X(J) = TEMP 170 CONTINUE ELSE JX = KX DO 200 J = 1,N TEMP = X(JX) KX = KX + INCX IX = KX L = 1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(1,J) DO 180 I = J + 1,MIN(N,J+K) TEMP = TEMP + A(L+I,J)*X(IX) IX = IX + INCX 180 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J)) DO 190 I = J + 1,MIN(N,J+K) TEMP = TEMP + DCONJG(A(L+I,J))*X(IX) IX = IX + INCX 190 CONTINUE END IF X(JX) = TEMP JX = JX + INCX 200 CONTINUE END IF END IF END IF * RETURN * * End of ZTBMV . * END blas-1.2.orig/src/sspr2.f 0000640 0001750 0001750 00000016101 11616621632 016124 0 ustar sylvestre sylvestre SUBROUTINE SSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) * .. Scalar Arguments .. REAL ALPHA INTEGER INCX,INCY,N CHARACTER UPLO * .. * .. Array Arguments .. REAL AP(*),X(*),Y(*) * .. * * Purpose * ======= * * SSPR2 performs the symmetric rank 2 operation * * A := alpha*x*y**T + alpha*y*x**T + A, * * where alpha is a scalar, x and y are n element vectors and A is an * n by n symmetric matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the matrix A is supplied in the packed * array AP as follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * supplied in AP. * * UPLO = 'L' or 'l' The lower triangular part of A is * supplied in AP. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * AP - REAL array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) * and a( 2, 2 ) respectively, and so on. On exit, the array * AP is overwritten by the upper triangular part of the * updated matrix. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) * and a( 3, 1 ) respectively, and so on. On exit, the array * AP is overwritten by the lower triangular part of the * updated matrix. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSPR2 ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set up the start points in X and Y if the increments are not both * unity. * IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF JX = KX JY = KY END IF * * Start the operations. In this version the elements of the array AP * are accessed sequentially with one pass through AP. * KK = 1 IF (LSAME(UPLO,'U')) THEN * * Form A when upper triangle is stored in AP. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 20 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*Y(J) TEMP2 = ALPHA*X(J) K = KK DO 10 I = 1,J AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2 K = K + 1 10 CONTINUE END IF KK = KK + J 20 CONTINUE ELSE DO 40 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*Y(JY) TEMP2 = ALPHA*X(JX) IX = KX IY = KY DO 30 K = KK,KK + J - 1 AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 30 CONTINUE END IF JX = JX + INCX JY = JY + INCY KK = KK + J 40 CONTINUE END IF ELSE * * Form A when lower triangle is stored in AP. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*Y(J) TEMP2 = ALPHA*X(J) K = KK DO 50 I = J,N AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2 K = K + 1 50 CONTINUE END IF KK = KK + N - J + 1 60 CONTINUE ELSE DO 80 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*Y(JY) TEMP2 = ALPHA*X(JX) IX = JX IY = JY DO 70 K = KK,KK + N - J AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX JY = JY + INCY KK = KK + N - J + 1 80 CONTINUE END IF END IF * RETURN * * End of SSPR2 . * END blas-1.2.orig/src/zhpr.f 0000640 0001750 0001750 00000015340 11616621632 016042 0 ustar sylvestre sylvestre SUBROUTINE ZHPR(UPLO,N,ALPHA,X,INCX,AP) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER INCX,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX AP(*),X(*) * .. * * Purpose * ======= * * ZHPR performs the hermitian rank 1 operation * * A := alpha*x*x**H + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n hermitian matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the matrix A is supplied in the packed * array AP as follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * supplied in AP. * * UPLO = 'L' or 'l' The lower triangular part of A is * supplied in AP. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * AP - COMPLEX*16 array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular part of the hermitian matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) * and a( 2, 2 ) respectively, and so on. On exit, the array * AP is overwritten by the upper triangular part of the * updated matrix. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular part of the hermitian matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) * and a( 3, 1 ) respectively, and so on. On exit, the array * AP is overwritten by the lower triangular part of the * updated matrix. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero, and on exit they * are set to zero. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHPR ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.DBLE(ZERO))) RETURN * * Set the start point in X if the increment is not unity. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of the array AP * are accessed sequentially with one pass through AP. * KK = 1 IF (LSAME(UPLO,'U')) THEN * * Form A when upper triangle is stored in AP. * IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(J)) K = KK DO 10 I = 1,J - 1 AP(K) = AP(K) + X(I)*TEMP K = K + 1 10 CONTINUE AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(J)*TEMP) ELSE AP(KK+J-1) = DBLE(AP(KK+J-1)) END IF KK = KK + J 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(JX)) IX = KX DO 30 K = KK,KK + J - 2 AP(K) = AP(K) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE AP(KK+J-1) = DBLE(AP(KK+J-1)) + DBLE(X(JX)*TEMP) ELSE AP(KK+J-1) = DBLE(AP(KK+J-1)) END IF JX = JX + INCX KK = KK + J 40 CONTINUE END IF ELSE * * Form A when lower triangle is stored in AP. * IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(J)) AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(J)) K = KK + 1 DO 50 I = J + 1,N AP(K) = AP(K) + X(I)*TEMP K = K + 1 50 CONTINUE ELSE AP(KK) = DBLE(AP(KK)) END IF KK = KK + N - J + 1 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*DCONJG(X(JX)) AP(KK) = DBLE(AP(KK)) + DBLE(TEMP*X(JX)) IX = JX DO 70 K = KK + 1,KK + N - J IX = IX + INCX AP(K) = AP(K) + X(IX)*TEMP 70 CONTINUE ELSE AP(KK) = DBLE(AP(KK)) END IF JX = JX + INCX KK = KK + N - J + 1 80 CONTINUE END IF END IF * RETURN * * End of ZHPR . * END blas-1.2.orig/src/srotg.f 0000640 0001750 0001750 00000001656 11616621632 016222 0 ustar sylvestre sylvestre SUBROUTINE SROTG(SA,SB,C,S) * .. Scalar Arguments .. REAL C,S,SA,SB * .. * * Purpose * ======= * * SROTG construct givens plane rotation. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * * ===================================================================== * * .. Local Scalars .. REAL R,ROE,SCALE,Z * .. * .. Intrinsic Functions .. INTRINSIC ABS,SIGN,SQRT * .. ROE = SB IF (ABS(SA).GT.ABS(SB)) ROE = SA SCALE = ABS(SA) + ABS(SB) IF (SCALE.EQ.0.0) THEN C = 1.0 S = 0.0 R = 0.0 Z = 0.0 ELSE R = SCALE*SQRT((SA/SCALE)**2+ (SB/SCALE)**2) R = SIGN(1.0,ROE)*R C = SA/R S = SB/R Z = 1.0 IF (ABS(SA).GT.ABS(SB)) Z = S IF (ABS(SB).GE.ABS(SA) .AND. C.NE.0.0) Z = 1.0/C END IF SA = R SB = Z RETURN END blas-1.2.orig/src/srotmg.f 0000640 0001750 0001750 00000011716 11616621632 016375 0 ustar sylvestre sylvestre SUBROUTINE SROTMG(SD1,SD2,SX1,SY1,SPARAM) * .. Scalar Arguments .. REAL SD1,SD2,SX1,SY1 * .. * .. Array Arguments .. REAL SPARAM(5) * .. * * Purpose * ======= * * CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS * THE SECOND COMPONENT OF THE 2-VECTOR (SQRT(SD1)*SX1,SQRT(SD2)* * SY2)**T. * WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. * * SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 * * (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) * H=( ) ( ) ( ) ( ) * (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). * LOCATIONS 2-4 OF SPARAM CONTAIN SH11,SH21,SH12, AND SH22 * RESPECTIVELY. (VALUES OF 1.E0, -1.E0, OR 0.E0 IMPLIED BY THE * VALUE OF SPARAM(1) ARE NOT STORED IN SPARAM.) * * THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE * INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE * OF SD1 AND SD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. * * * Arguments * ========= * * * SD1 (input/output) REAL * * SD2 (input/output) REAL * * SX1 (input/output) REAL * * SY1 (input) REAL * * * SPARAM (input/output) REAL array, dimension 5 * SPARAM(1)=SFLAG * SPARAM(2)=SH11 * SPARAM(3)=SH21 * SPARAM(4)=SH12 * SPARAM(5)=SH22 * * ===================================================================== * * .. Local Scalars .. REAL GAM,GAMSQ,ONE,RGAMSQ,SFLAG,SH11,SH12,SH21,SH22,SP1,SP2,SQ1, $ SQ2,STEMP,SU,TWO,ZERO * .. * .. Intrinsic Functions .. INTRINSIC ABS * .. * .. Data statements .. * DATA ZERO,ONE,TWO/0.E0,1.E0,2.E0/ DATA GAM,GAMSQ,RGAMSQ/4096.E0,1.67772E7,5.96046E-8/ * .. IF (SD1.LT.ZERO) THEN * GO ZERO-H-D-AND-SX1.. SFLAG = -ONE SH11 = ZERO SH12 = ZERO SH21 = ZERO SH22 = ZERO * SD1 = ZERO SD2 = ZERO SX1 = ZERO ELSE * CASE-SD1-NONNEGATIVE SP2 = SD2*SY1 IF (SP2.EQ.ZERO) THEN SFLAG = -TWO SPARAM(1) = SFLAG RETURN END IF * REGULAR-CASE.. SP1 = SD1*SX1 SQ2 = SP2*SY1 SQ1 = SP1*SX1 * IF (ABS(SQ1).GT.ABS(SQ2)) THEN SH21 = -SY1/SX1 SH12 = SP2/SP1 * SU = ONE - SH12*SH21 * IF (SU.GT.ZERO) THEN SFLAG = ZERO SD1 = SD1/SU SD2 = SD2/SU SX1 = SX1*SU END IF ELSE IF (SQ2.LT.ZERO) THEN * GO ZERO-H-D-AND-SX1.. SFLAG = -ONE SH11 = ZERO SH12 = ZERO SH21 = ZERO SH22 = ZERO * SD1 = ZERO SD2 = ZERO SX1 = ZERO ELSE SFLAG = ONE SH11 = SP1/SP2 SH22 = SX1/SY1 SU = ONE + SH11*SH22 STEMP = SD2/SU SD2 = SD1/SU SD1 = STEMP SX1 = SY1*SU END IF END IF * PROCESURE..SCALE-CHECK IF (SD1.NE.ZERO) THEN DO WHILE ((SD1.LE.RGAMSQ) .OR. (SD1.GE.GAMSQ)) IF (SFLAG.EQ.ZERO) THEN SH11 = ONE SH22 = ONE SFLAG = -ONE ELSE SH21 = -ONE SH12 = ONE SFLAG = -ONE END IF IF (SD1.LE.RGAMSQ) THEN SD1 = SD1*GAM**2 SX1 = SX1/GAM SH11 = SH11/GAM SH12 = SH12/GAM ELSE SD1 = SD1/GAM**2 SX1 = SX1*GAM SH11 = SH11*GAM SH12 = SH12*GAM END IF ENDDO END IF IF (SD2.NE.ZERO) THEN DO WHILE ( (ABS(SD2).LE.RGAMSQ) .OR. (ABS(SD2).GE.GAMSQ) ) IF (SFLAG.EQ.ZERO) THEN SH11 = ONE SH22 = ONE SFLAG = -ONE ELSE SH21 = -ONE SH12 = ONE SFLAG = -ONE END IF IF (ABS(SD2).LE.RGAMSQ) THEN SD2 = SD2*GAM**2 SH21 = SH21/GAM SH22 = SH22/GAM ELSE SD2 = SD2/GAM**2 SH21 = SH21*GAM SH22 = SH22*GAM END IF END DO END IF END IF IF (SFLAG.LT.ZERO) THEN SPARAM(2) = SH11 SPARAM(3) = SH21 SPARAM(4) = SH12 SPARAM(5) = SH22 ELSE IF (SFLAG.EQ.ZERO) THEN SPARAM(3) = SH21 SPARAM(4) = SH12 ELSE SPARAM(2) = SH11 SPARAM(5) = SH22 END IF 260 CONTINUE SPARAM(1) = SFLAG RETURN END blas-1.2.orig/src/cherk.f 0000640 0001750 0001750 00000025023 11616621632 016152 0 ustar sylvestre sylvestre SUBROUTINE CHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) * .. Scalar Arguments .. REAL ALPHA,BETA INTEGER K,LDA,LDC,N CHARACTER TRANS,UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),C(LDC,*) * .. * * Purpose * ======= * * CHERK performs one of the hermitian rank k operations * * C := alpha*A*A**H + beta*C, * * or * * C := alpha*A**H*A + beta*C, * * where alpha and beta are real scalars, C is an n by n hermitian * matrix and A is an n by k matrix in the first case and a k by n * matrix in the second case. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*A**H + beta*C. * * TRANS = 'C' or 'c' C := alpha*A**H*A + beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrix A, and on entry with * TRANS = 'C' or 'c', K specifies the number of rows of the * matrix A. K must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - COMPLEX array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the hermitian matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the hermitian matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero, and on exit they * are set to zero. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1. * Ed Anderson, Cray Research Inc. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CMPLX,CONJG,MAX,REAL * .. * .. Local Scalars .. COMPLEX TEMP REAL RTEMP INTEGER I,INFO,J,L,NROWA LOGICAL UPPER * .. * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * * Test the input parameters. * IF (LSAME(TRANS,'N')) THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 1 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. + (.NOT.LSAME(TRANS,'C'))) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (K.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDC.LT.MAX(1,N)) THEN INFO = 10 END IF IF (INFO.NE.0) THEN CALL XERBLA('CHERK ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (UPPER) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,J C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,J - 1 C(I,J) = BETA*C(I,J) 30 CONTINUE C(J,J) = BETA*REAL(C(J,J)) 40 CONTINUE END IF ELSE IF (BETA.EQ.ZERO) THEN DO 60 J = 1,N DO 50 I = J,N C(I,J) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1,N C(J,J) = BETA*REAL(C(J,J)) DO 70 I = J + 1,N C(I,J) = BETA*C(I,J) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF (LSAME(TRANS,'N')) THEN * * Form C := alpha*A*A**H + beta*C. * IF (UPPER) THEN DO 130 J = 1,N IF (BETA.EQ.ZERO) THEN DO 90 I = 1,J C(I,J) = ZERO 90 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 100 I = 1,J - 1 C(I,J) = BETA*C(I,J) 100 CONTINUE C(J,J) = BETA*REAL(C(J,J)) ELSE C(J,J) = REAL(C(J,J)) END IF DO 120 L = 1,K IF (A(J,L).NE.CMPLX(ZERO)) THEN TEMP = ALPHA*CONJG(A(J,L)) DO 110 I = 1,J - 1 C(I,J) = C(I,J) + TEMP*A(I,L) 110 CONTINUE C(J,J) = REAL(C(J,J)) + REAL(TEMP*A(I,L)) END IF 120 CONTINUE 130 CONTINUE ELSE DO 180 J = 1,N IF (BETA.EQ.ZERO) THEN DO 140 I = J,N C(I,J) = ZERO 140 CONTINUE ELSE IF (BETA.NE.ONE) THEN C(J,J) = BETA*REAL(C(J,J)) DO 150 I = J + 1,N C(I,J) = BETA*C(I,J) 150 CONTINUE ELSE C(J,J) = REAL(C(J,J)) END IF DO 170 L = 1,K IF (A(J,L).NE.CMPLX(ZERO)) THEN TEMP = ALPHA*CONJG(A(J,L)) C(J,J) = REAL(C(J,J)) + REAL(TEMP*A(J,L)) DO 160 I = J + 1,N C(I,J) = C(I,J) + TEMP*A(I,L) 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A**H*A + beta*C. * IF (UPPER) THEN DO 220 J = 1,N DO 200 I = 1,J - 1 TEMP = ZERO DO 190 L = 1,K TEMP = TEMP + CONJG(A(L,I))*A(L,J) 190 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 200 CONTINUE RTEMP = ZERO DO 210 L = 1,K RTEMP = RTEMP + CONJG(A(L,J))*A(L,J) 210 CONTINUE IF (BETA.EQ.ZERO) THEN C(J,J) = ALPHA*RTEMP ELSE C(J,J) = ALPHA*RTEMP + BETA*REAL(C(J,J)) END IF 220 CONTINUE ELSE DO 260 J = 1,N RTEMP = ZERO DO 230 L = 1,K RTEMP = RTEMP + CONJG(A(L,J))*A(L,J) 230 CONTINUE IF (BETA.EQ.ZERO) THEN C(J,J) = ALPHA*RTEMP ELSE C(J,J) = ALPHA*RTEMP + BETA*REAL(C(J,J)) END IF DO 250 I = J + 1,N TEMP = ZERO DO 240 L = 1,K TEMP = TEMP + CONJG(A(L,I))*A(L,J) 240 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 250 CONTINUE 260 CONTINUE END IF END IF * RETURN * * End of CHERK . * END blas-1.2.orig/src/ctrmv.f 0000640 0001750 0001750 00000024020 11616621632 016205 0 ustar sylvestre sylvestre SUBROUTINE CTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),X(*) * .. * * Purpose * ======= * * CTRMV performs one of the matrix-vector operations * * x := A*x, or x := A**T*x, or x := A**H*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A**T*x. * * TRANS = 'C' or 'c' x := A**H*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KX LOGICAL NOCONJ,NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 END IF IF (INFO.NE.0) THEN CALL XERBLA('CTRMV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := A*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) DO 10 I = 1,J - 1 X(I) = X(I) + TEMP*A(I,J) 10 CONTINUE IF (NOUNIT) X(J) = X(J)*A(J,J) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 30 I = 1,J - 1 X(IX) = X(IX) + TEMP*A(I,J) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(J,J) END IF JX = JX + INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) DO 50 I = N,J + 1,-1 X(I) = X(I) + TEMP*A(I,J) 50 CONTINUE IF (NOUNIT) X(J) = X(J)*A(J,J) END IF 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 70 I = N,J + 1,-1 X(IX) = X(IX) + TEMP*A(I,J) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(J,J) END IF JX = JX - INCX 80 CONTINUE END IF END IF ELSE * * Form x := A**T*x or x := A**H*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 110 J = N,1,-1 TEMP = X(J) IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(J,J) DO 90 I = J - 1,1,-1 TEMP = TEMP + A(I,J)*X(I) 90 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J)) DO 100 I = J - 1,1,-1 TEMP = TEMP + CONJG(A(I,J))*X(I) 100 CONTINUE END IF X(J) = TEMP 110 CONTINUE ELSE JX = KX + (N-1)*INCX DO 140 J = N,1,-1 TEMP = X(JX) IX = JX IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(J,J) DO 120 I = J - 1,1,-1 IX = IX - INCX TEMP = TEMP + A(I,J)*X(IX) 120 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J)) DO 130 I = J - 1,1,-1 IX = IX - INCX TEMP = TEMP + CONJG(A(I,J))*X(IX) 130 CONTINUE END IF X(JX) = TEMP JX = JX - INCX 140 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 170 J = 1,N TEMP = X(J) IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(J,J) DO 150 I = J + 1,N TEMP = TEMP + A(I,J)*X(I) 150 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J)) DO 160 I = J + 1,N TEMP = TEMP + CONJG(A(I,J))*X(I) 160 CONTINUE END IF X(J) = TEMP 170 CONTINUE ELSE JX = KX DO 200 J = 1,N TEMP = X(JX) IX = JX IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(J,J) DO 180 I = J + 1,N IX = IX + INCX TEMP = TEMP + A(I,J)*X(IX) 180 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(A(J,J)) DO 190 I = J + 1,N IX = IX + INCX TEMP = TEMP + CONJG(A(I,J))*X(IX) 190 CONTINUE END IF X(JX) = TEMP JX = JX + INCX 200 CONTINUE END IF END IF END IF * RETURN * * End of CTRMV . * END blas-1.2.orig/src/dsymm.f 0000640 0001750 0001750 00000022746 11616621632 016220 0 ustar sylvestre sylvestre SUBROUTINE DSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA,BETA INTEGER LDA,LDB,LDC,M,N CHARACTER SIDE,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * DSYMM performs one of the matrix-matrix operations * * C := alpha*A*B + beta*C, * * or * * C := alpha*B*A + beta*C, * * where alpha and beta are scalars, A is a symmetric matrix and B and * C are m by n matrices. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether the symmetric matrix A * appears on the left or right in the operation as follows: * * SIDE = 'L' or 'l' C := alpha*A*B + beta*C, * * SIDE = 'R' or 'r' C := alpha*B*A + beta*C, * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the symmetric matrix A is to be * referenced as follows: * * UPLO = 'U' or 'u' Only the upper triangular part of the * symmetric matrix is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of the * symmetric matrix is to be referenced. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix C. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix C. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is * m when SIDE = 'L' or 'l' and is n otherwise. * Before entry with SIDE = 'L' or 'l', the m by m part of * the array A must contain the symmetric matrix, such that * when UPLO = 'U' or 'u', the leading m by m upper triangular * part of the array A must contain the upper triangular part * of the symmetric matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading m by m lower triangular part of the array A * must contain the lower triangular part of the symmetric * matrix and the strictly upper triangular part of A is not * referenced. * Before entry with SIDE = 'R' or 'r', the n by n part of * the array A must contain the symmetric matrix, such that * when UPLO = 'U' or 'u', the leading n by n upper triangular * part of the array A must contain the upper triangular part * of the symmetric matrix and the strictly lower triangular * part of A is not referenced, and when UPLO = 'L' or 'l', * the leading n by n lower triangular part of the array A * must contain the lower triangular part of the symmetric * matrix and the strictly upper triangular part of A is not * referenced. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, n ). * Unchanged on exit. * * B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n updated * matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. DOUBLE PRECISION TEMP1,TEMP2 INTEGER I,INFO,J,K,NROWA LOGICAL UPPER * .. * .. Parameters .. DOUBLE PRECISION ONE,ZERO PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) * .. * * Set NROWA as the number of rows of A. * IF (LSAME(SIDE,'L')) THEN NROWA = M ELSE NROWA = N END IF UPPER = LSAME(UPLO,'U') * * Test the input parameters. * INFO = 0 IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF (M.LT.0) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,M)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSYMM ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,M C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF (LSAME(SIDE,'L')) THEN * * Form C := alpha*A*B + beta*C. * IF (UPPER) THEN DO 70 J = 1,N DO 60 I = 1,M TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 50 K = 1,I - 1 C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*A(K,I) 50 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + + ALPHA*TEMP2 END IF 60 CONTINUE 70 CONTINUE ELSE DO 100 J = 1,N DO 90 I = M,1,-1 TEMP1 = ALPHA*B(I,J) TEMP2 = ZERO DO 80 K = I + 1,M C(K,J) = C(K,J) + TEMP1*A(K,I) TEMP2 = TEMP2 + B(K,J)*A(K,I) 80 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + + ALPHA*TEMP2 END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form C := alpha*B*A + beta*C. * DO 170 J = 1,N TEMP1 = ALPHA*A(J,J) IF (BETA.EQ.ZERO) THEN DO 110 I = 1,M C(I,J) = TEMP1*B(I,J) 110 CONTINUE ELSE DO 120 I = 1,M C(I,J) = BETA*C(I,J) + TEMP1*B(I,J) 120 CONTINUE END IF DO 140 K = 1,J - 1 IF (UPPER) THEN TEMP1 = ALPHA*A(K,J) ELSE TEMP1 = ALPHA*A(J,K) END IF DO 130 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 130 CONTINUE 140 CONTINUE DO 160 K = J + 1,N IF (UPPER) THEN TEMP1 = ALPHA*A(J,K) ELSE TEMP1 = ALPHA*A(K,J) END IF DO 150 I = 1,M C(I,J) = C(I,J) + TEMP1*B(I,K) 150 CONTINUE 160 CONTINUE 170 CONTINUE END IF * RETURN * * End of DSYMM . * END blas-1.2.orig/src/zher2k.f 0000640 0001750 0001750 00000031614 11616621632 016266 0 ustar sylvestre sylvestre SUBROUTINE ZHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA DOUBLE PRECISION BETA INTEGER K,LDA,LDB,LDC,N CHARACTER TRANS,UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * ZHER2K performs one of the hermitian rank 2k operations * * C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C, * * or * * C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C, * * where alpha and beta are scalars with beta real, C is an n by n * hermitian matrix and A and B are n by k matrices in the first case * and k by n matrices in the second case. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*B**H + * conjg( alpha )*B*A**H + * beta*C. * * TRANS = 'C' or 'c' C := alpha*A**H*B + * conjg( alpha )*B**H*A + * beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrices A and B, and on entry with * TRANS = 'C' or 'c', K specifies the number of rows of the * matrices A and B. K must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array B must contain the matrix B, otherwise * the leading k by n part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDB must be at least max( 1, n ), otherwise LDB must * be at least max( 1, k ). * Unchanged on exit. * * BETA - DOUBLE PRECISION . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - COMPLEX*16 array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the hermitian matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the hermitian matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero, and on exit they * are set to zero. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1. * Ed Anderson, Cray Research Inc. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG,MAX * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP1,TEMP2 INTEGER I,INFO,J,L,NROWA LOGICAL UPPER * .. * .. Parameters .. DOUBLE PRECISION ONE PARAMETER (ONE=1.0D+0) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * * Test the input parameters. * IF (LSAME(TRANS,'N')) THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 1 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. + (.NOT.LSAME(TRANS,'C'))) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (K.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,N)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHER2K',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (UPPER) THEN IF (BETA.EQ.DBLE(ZERO)) THEN DO 20 J = 1,N DO 10 I = 1,J C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,J - 1 C(I,J) = BETA*C(I,J) 30 CONTINUE C(J,J) = BETA*DBLE(C(J,J)) 40 CONTINUE END IF ELSE IF (BETA.EQ.DBLE(ZERO)) THEN DO 60 J = 1,N DO 50 I = J,N C(I,J) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1,N C(J,J) = BETA*DBLE(C(J,J)) DO 70 I = J + 1,N C(I,J) = BETA*C(I,J) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF (LSAME(TRANS,'N')) THEN * * Form C := alpha*A*B**H + conjg( alpha )*B*A**H + * C. * IF (UPPER) THEN DO 130 J = 1,N IF (BETA.EQ.DBLE(ZERO)) THEN DO 90 I = 1,J C(I,J) = ZERO 90 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 100 I = 1,J - 1 C(I,J) = BETA*C(I,J) 100 CONTINUE C(J,J) = BETA*DBLE(C(J,J)) ELSE C(J,J) = DBLE(C(J,J)) END IF DO 120 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(B(J,L)) TEMP2 = DCONJG(ALPHA*A(J,L)) DO 110 I = 1,J - 1 C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 110 CONTINUE C(J,J) = DBLE(C(J,J)) + + DBLE(A(J,L)*TEMP1+B(J,L)*TEMP2) END IF 120 CONTINUE 130 CONTINUE ELSE DO 180 J = 1,N IF (BETA.EQ.DBLE(ZERO)) THEN DO 140 I = J,N C(I,J) = ZERO 140 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 150 I = J + 1,N C(I,J) = BETA*C(I,J) 150 CONTINUE C(J,J) = BETA*DBLE(C(J,J)) ELSE C(J,J) = DBLE(C(J,J)) END IF DO 170 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*DCONJG(B(J,L)) TEMP2 = DCONJG(ALPHA*A(J,L)) DO 160 I = J + 1,N C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 160 CONTINUE C(J,J) = DBLE(C(J,J)) + + DBLE(A(J,L)*TEMP1+B(J,L)*TEMP2) END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A**H*B + conjg( alpha )*B**H*A + * C. * IF (UPPER) THEN DO 210 J = 1,N DO 200 I = 1,J TEMP1 = ZERO TEMP2 = ZERO DO 190 L = 1,K TEMP1 = TEMP1 + DCONJG(A(L,I))*B(L,J) TEMP2 = TEMP2 + DCONJG(B(L,I))*A(L,J) 190 CONTINUE IF (I.EQ.J) THEN IF (BETA.EQ.DBLE(ZERO)) THEN C(J,J) = DBLE(ALPHA*TEMP1+ + DCONJG(ALPHA)*TEMP2) ELSE C(J,J) = BETA*DBLE(C(J,J)) + + DBLE(ALPHA*TEMP1+ + DCONJG(ALPHA)*TEMP2) END IF ELSE IF (BETA.EQ.DBLE(ZERO)) THEN C(I,J) = ALPHA*TEMP1 + DCONJG(ALPHA)*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + DCONJG(ALPHA)*TEMP2 END IF END IF 200 CONTINUE 210 CONTINUE ELSE DO 240 J = 1,N DO 230 I = J,N TEMP1 = ZERO TEMP2 = ZERO DO 220 L = 1,K TEMP1 = TEMP1 + DCONJG(A(L,I))*B(L,J) TEMP2 = TEMP2 + DCONJG(B(L,I))*A(L,J) 220 CONTINUE IF (I.EQ.J) THEN IF (BETA.EQ.DBLE(ZERO)) THEN C(J,J) = DBLE(ALPHA*TEMP1+ + DCONJG(ALPHA)*TEMP2) ELSE C(J,J) = BETA*DBLE(C(J,J)) + + DBLE(ALPHA*TEMP1+ + DCONJG(ALPHA)*TEMP2) END IF ELSE IF (BETA.EQ.DBLE(ZERO)) THEN C(I,J) = ALPHA*TEMP1 + DCONJG(ALPHA)*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + DCONJG(ALPHA)*TEMP2 END IF END IF 230 CONTINUE 240 CONTINUE END IF END IF * RETURN * * End of ZHER2K. * END blas-1.2.orig/src/ssyr2.f 0000640 0001750 0001750 00000016017 11616621632 016143 0 ustar sylvestre sylvestre SUBROUTINE SSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. REAL ALPHA INTEGER INCX,INCY,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. REAL A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * SSYR2 performs the symmetric rank 2 operation * * A := alpha*x*y**T + alpha*y*x**T + A, * * where alpha is a scalar, x and y are n element vectors and A is an n * by n symmetric matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of A is not referenced. On exit, the * upper triangular part of the array A is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of A is not referenced. On exit, the * lower triangular part of the array A is overwritten by the * lower triangular part of the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSYR2 ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set up the start points in X and Y if the increments are not both * unity. * IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF JX = KX JY = KY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF (LSAME(UPLO,'U')) THEN * * Form A when A is stored in the upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 20 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*Y(J) TEMP2 = ALPHA*X(J) DO 10 I = 1,J A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 10 CONTINUE END IF 20 CONTINUE ELSE DO 40 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*Y(JY) TEMP2 = ALPHA*X(JX) IX = KX IY = KY DO 30 I = 1,J A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 30 CONTINUE END IF JX = JX + INCX JY = JY + INCY 40 CONTINUE END IF ELSE * * Form A when A is stored in the lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*Y(J) TEMP2 = ALPHA*X(J) DO 50 I = J,N A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 50 CONTINUE END IF 60 CONTINUE ELSE DO 80 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*Y(JY) TEMP2 = ALPHA*X(JX) IX = JX IY = JY DO 70 I = J,N A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF END IF * RETURN * * End of SSYR2 . * END blas-1.2.orig/src/dspr2.f 0000640 0001750 0001750 00000016161 11616621632 016113 0 ustar sylvestre sylvestre SUBROUTINE DSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA INTEGER INCX,INCY,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE PRECISION AP(*),X(*),Y(*) * .. * * Purpose * ======= * * DSPR2 performs the symmetric rank 2 operation * * A := alpha*x*y**T + alpha*y*x**T + A, * * where alpha is a scalar, x and y are n element vectors and A is an * n by n symmetric matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the matrix A is supplied in the packed * array AP as follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * supplied in AP. * * UPLO = 'L' or 'l' The lower triangular part of A is * supplied in AP. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * AP - DOUBLE PRECISION array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) * and a( 2, 2 ) respectively, and so on. On exit, the array * AP is overwritten by the upper triangular part of the * updated matrix. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) * and a( 3, 1 ) respectively, and so on. On exit, the array * AP is overwritten by the lower triangular part of the * updated matrix. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('DSPR2 ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set up the start points in X and Y if the increments are not both * unity. * IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF JX = KX JY = KY END IF * * Start the operations. In this version the elements of the array AP * are accessed sequentially with one pass through AP. * KK = 1 IF (LSAME(UPLO,'U')) THEN * * Form A when upper triangle is stored in AP. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 20 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*Y(J) TEMP2 = ALPHA*X(J) K = KK DO 10 I = 1,J AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2 K = K + 1 10 CONTINUE END IF KK = KK + J 20 CONTINUE ELSE DO 40 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*Y(JY) TEMP2 = ALPHA*X(JX) IX = KX IY = KY DO 30 K = KK,KK + J - 1 AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 30 CONTINUE END IF JX = JX + INCX JY = JY + INCY KK = KK + J 40 CONTINUE END IF ELSE * * Form A when lower triangle is stored in AP. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*Y(J) TEMP2 = ALPHA*X(J) K = KK DO 50 I = J,N AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2 K = K + 1 50 CONTINUE END IF KK = KK + N - J + 1 60 CONTINUE ELSE DO 80 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*Y(JY) TEMP2 = ALPHA*X(JX) IX = JX IY = JY DO 70 K = KK,KK + N - J AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX JY = JY + INCY KK = KK + N - J + 1 80 CONTINUE END IF END IF * RETURN * * End of DSPR2 . * END blas-1.2.orig/src/zhpmv.f 0000640 0001750 0001750 00000020314 11616621632 016220 0 ustar sylvestre sylvestre SUBROUTINE ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER INCX,INCY,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX AP(*),X(*),Y(*) * .. * * Purpose * ======= * * ZHPMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the matrix A is supplied in the packed * array AP as follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * supplied in AP. * * UPLO = 'L' or 'l' The lower triangular part of A is * supplied in AP. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * AP - COMPLEX*16 array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular part of the hermitian matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) * and a( 2, 2 ) respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular part of the hermitian matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) * and a( 3, 1 ) respectively, and so on. * Note that the imaginary parts of the diagonal elements need * not be set and are assumed to be zero. * Unchanged on exit. * * X - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - COMPLEX*16 . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - COMPLEX*16 array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. On exit, Y is overwritten by the updated * vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 6 ELSE IF (INCY.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHPMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set up the start points in X and Y. * IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF * * Start the operations. In this version the elements of the array AP * are accessed sequentially with one pass through AP. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN KK = 1 IF (LSAME(UPLO,'U')) THEN * * Form y when AP contains the upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO K = KK DO 50 I = 1,J - 1 Y(I) = Y(I) + TEMP1*AP(K) TEMP2 = TEMP2 + DCONJG(AP(K))*X(I) K = K + 1 50 CONTINUE Y(J) = Y(J) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2 KK = KK + J 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY DO 70 K = KK,KK + J - 2 Y(IY) = Y(IY) + TEMP1*AP(K) TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + J 80 CONTINUE END IF ELSE * * Form y when AP contains the lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*DBLE(AP(KK)) K = KK + 1 DO 90 I = J + 1,N Y(I) = Y(I) + TEMP1*AP(K) TEMP2 = TEMP2 + DCONJG(AP(K))*X(I) K = K + 1 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 KK = KK + (N-J+1) 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK)) IX = JX IY = JY DO 110 K = KK + 1,KK + N - J IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*AP(K) TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + (N-J+1) 120 CONTINUE END IF END IF * RETURN * * End of ZHPMV . * END blas-1.2.orig/src/stpmv.f 0000640 0001750 0001750 00000022172 11616621632 016231 0 ustar sylvestre sylvestre SUBROUTINE STPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) * .. Scalar Arguments .. INTEGER INCX,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. REAL AP(*),X(*) * .. * * Purpose * ======= * * STPMV performs one of the matrix-vector operations * * x := A*x, or x := A**T*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A**T*x. * * TRANS = 'C' or 'c' x := A**T*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * AP - REAL array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) * respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) * respectively, and so on. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced, but are assumed to be unity. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,IX,J,JX,K,KK,KX LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (INCX.EQ.0) THEN INFO = 7 END IF IF (INFO.NE.0) THEN CALL XERBLA('STPMV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of AP are * accessed sequentially with one pass through AP. * IF (LSAME(TRANS,'N')) THEN * * Form x:= A*x. * IF (LSAME(UPLO,'U')) THEN KK = 1 IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) K = KK DO 10 I = 1,J - 1 X(I) = X(I) + TEMP*AP(K) K = K + 1 10 CONTINUE IF (NOUNIT) X(J) = X(J)*AP(KK+J-1) END IF KK = KK + J 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 30 K = KK,KK + J - 2 X(IX) = X(IX) + TEMP*AP(K) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1) END IF JX = JX + INCX KK = KK + J 40 CONTINUE END IF ELSE KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) K = KK DO 50 I = N,J + 1,-1 X(I) = X(I) + TEMP*AP(K) K = K - 1 50 CONTINUE IF (NOUNIT) X(J) = X(J)*AP(KK-N+J) END IF KK = KK - (N-J+1) 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX DO 70 K = KK,KK - (N- (J+1)),-1 X(IX) = X(IX) + TEMP*AP(K) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J) END IF JX = JX - INCX KK = KK - (N-J+1) 80 CONTINUE END IF END IF ELSE * * Form x := A**T*x. * IF (LSAME(UPLO,'U')) THEN KK = (N* (N+1))/2 IF (INCX.EQ.1) THEN DO 100 J = N,1,-1 TEMP = X(J) IF (NOUNIT) TEMP = TEMP*AP(KK) K = KK - 1 DO 90 I = J - 1,1,-1 TEMP = TEMP + AP(K)*X(I) K = K - 1 90 CONTINUE X(J) = TEMP KK = KK - J 100 CONTINUE ELSE JX = KX + (N-1)*INCX DO 120 J = N,1,-1 TEMP = X(JX) IX = JX IF (NOUNIT) TEMP = TEMP*AP(KK) DO 110 K = KK - 1,KK - J + 1,-1 IX = IX - INCX TEMP = TEMP + AP(K)*X(IX) 110 CONTINUE X(JX) = TEMP JX = JX - INCX KK = KK - J 120 CONTINUE END IF ELSE KK = 1 IF (INCX.EQ.1) THEN DO 140 J = 1,N TEMP = X(J) IF (NOUNIT) TEMP = TEMP*AP(KK) K = KK + 1 DO 130 I = J + 1,N TEMP = TEMP + AP(K)*X(I) K = K + 1 130 CONTINUE X(J) = TEMP KK = KK + (N-J+1) 140 CONTINUE ELSE JX = KX DO 160 J = 1,N TEMP = X(JX) IX = JX IF (NOUNIT) TEMP = TEMP*AP(KK) DO 150 K = KK + 1,KK + N - J IX = IX + INCX TEMP = TEMP + AP(K)*X(IX) 150 CONTINUE X(JX) = TEMP JX = JX + INCX KK = KK + (N-J+1) 160 CONTINUE END IF END IF END IF * RETURN * * End of STPMV . * END blas-1.2.orig/src/strsm.f 0000640 0001750 0001750 00000027762 11616621632 016242 0 ustar sylvestre sylvestre SUBROUTINE STRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) * .. Scalar Arguments .. REAL ALPHA INTEGER LDA,LDB,M,N CHARACTER DIAG,SIDE,TRANSA,UPLO * .. * .. Array Arguments .. REAL A(LDA,*),B(LDB,*) * .. * * Purpose * ======= * * STRSM solves one of the matrix equations * * op( A )*X = alpha*B, or X*op( A ) = alpha*B, * * where alpha is a scalar, X and B are m by n matrices, A is a unit, or * non-unit, upper or lower triangular matrix and op( A ) is one of * * op( A ) = A or op( A ) = A**T. * * The matrix X is overwritten on B. * * Arguments * ========== * * SIDE - CHARACTER*1. * On entry, SIDE specifies whether op( A ) appears on the left * or right of X as follows: * * SIDE = 'L' or 'l' op( A )*X = alpha*B. * * SIDE = 'R' or 'r' X*op( A ) = alpha*B. * * Unchanged on exit. * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix A is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANSA - CHARACTER*1. * On entry, TRANSA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRANSA = 'N' or 'n' op( A ) = A. * * TRANSA = 'T' or 't' op( A ) = A**T. * * TRANSA = 'C' or 'c' op( A ) = A**T. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit triangular * as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of B. M must be at * least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of B. N must be * at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. When alpha is * zero then A is not referenced and B need not be set before * entry. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, k ), where k is m * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. * Before entry with UPLO = 'U' or 'u', the leading k by k * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading k by k * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When SIDE = 'L' or 'l' then * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' * then LDA must be at least max( 1, n ). * Unchanged on exit. * * B - REAL array of DIMENSION ( LDB, n ). * Before entry, the leading m by n part of the array B must * contain the right-hand side matrix B, and on exit is * overwritten by the solution matrix X. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. LDB must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,J,K,NROWA LOGICAL LSIDE,NOUNIT,UPPER * .. * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * * Test the input parameters. * LSIDE = LSAME(SIDE,'L') IF (LSIDE) THEN NROWA = M ELSE NROWA = N END IF NOUNIT = LSAME(DIAG,'N') UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN INFO = 1 ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 2 ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. + (.NOT.LSAME(TRANSA,'T')) .AND. + (.NOT.LSAME(TRANSA,'C'))) THEN INFO = 3 ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN INFO = 4 ELSE IF (M.LT.0) THEN INFO = 5 ELSE IF (N.LT.0) THEN INFO = 6 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDB.LT.MAX(1,M)) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('STRSM ',INFO) RETURN END IF * * Quick return if possible. * IF (M.EQ.0 .OR. N.EQ.0) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M B(I,J) = ZERO 10 CONTINUE 20 CONTINUE RETURN END IF * * Start the operations. * IF (LSIDE) THEN IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*inv( A )*B. * IF (UPPER) THEN DO 60 J = 1,N IF (ALPHA.NE.ONE) THEN DO 30 I = 1,M B(I,J) = ALPHA*B(I,J) 30 CONTINUE END IF DO 50 K = M,1,-1 IF (B(K,J).NE.ZERO) THEN IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) DO 40 I = 1,K - 1 B(I,J) = B(I,J) - B(K,J)*A(I,K) 40 CONTINUE END IF 50 CONTINUE 60 CONTINUE ELSE DO 100 J = 1,N IF (ALPHA.NE.ONE) THEN DO 70 I = 1,M B(I,J) = ALPHA*B(I,J) 70 CONTINUE END IF DO 90 K = 1,M IF (B(K,J).NE.ZERO) THEN IF (NOUNIT) B(K,J) = B(K,J)/A(K,K) DO 80 I = K + 1,M B(I,J) = B(I,J) - B(K,J)*A(I,K) 80 CONTINUE END IF 90 CONTINUE 100 CONTINUE END IF ELSE * * Form B := alpha*inv( A**T )*B. * IF (UPPER) THEN DO 130 J = 1,N DO 120 I = 1,M TEMP = ALPHA*B(I,J) DO 110 K = 1,I - 1 TEMP = TEMP - A(K,I)*B(K,J) 110 CONTINUE IF (NOUNIT) TEMP = TEMP/A(I,I) B(I,J) = TEMP 120 CONTINUE 130 CONTINUE ELSE DO 160 J = 1,N DO 150 I = M,1,-1 TEMP = ALPHA*B(I,J) DO 140 K = I + 1,M TEMP = TEMP - A(K,I)*B(K,J) 140 CONTINUE IF (NOUNIT) TEMP = TEMP/A(I,I) B(I,J) = TEMP 150 CONTINUE 160 CONTINUE END IF END IF ELSE IF (LSAME(TRANSA,'N')) THEN * * Form B := alpha*B*inv( A ). * IF (UPPER) THEN DO 210 J = 1,N IF (ALPHA.NE.ONE) THEN DO 170 I = 1,M B(I,J) = ALPHA*B(I,J) 170 CONTINUE END IF DO 190 K = 1,J - 1 IF (A(K,J).NE.ZERO) THEN DO 180 I = 1,M B(I,J) = B(I,J) - A(K,J)*B(I,K) 180 CONTINUE END IF 190 CONTINUE IF (NOUNIT) THEN TEMP = ONE/A(J,J) DO 200 I = 1,M B(I,J) = TEMP*B(I,J) 200 CONTINUE END IF 210 CONTINUE ELSE DO 260 J = N,1,-1 IF (ALPHA.NE.ONE) THEN DO 220 I = 1,M B(I,J) = ALPHA*B(I,J) 220 CONTINUE END IF DO 240 K = J + 1,N IF (A(K,J).NE.ZERO) THEN DO 230 I = 1,M B(I,J) = B(I,J) - A(K,J)*B(I,K) 230 CONTINUE END IF 240 CONTINUE IF (NOUNIT) THEN TEMP = ONE/A(J,J) DO 250 I = 1,M B(I,J) = TEMP*B(I,J) 250 CONTINUE END IF 260 CONTINUE END IF ELSE * * Form B := alpha*B*inv( A**T ). * IF (UPPER) THEN DO 310 K = N,1,-1 IF (NOUNIT) THEN TEMP = ONE/A(K,K) DO 270 I = 1,M B(I,K) = TEMP*B(I,K) 270 CONTINUE END IF DO 290 J = 1,K - 1 IF (A(J,K).NE.ZERO) THEN TEMP = A(J,K) DO 280 I = 1,M B(I,J) = B(I,J) - TEMP*B(I,K) 280 CONTINUE END IF 290 CONTINUE IF (ALPHA.NE.ONE) THEN DO 300 I = 1,M B(I,K) = ALPHA*B(I,K) 300 CONTINUE END IF 310 CONTINUE ELSE DO 360 K = 1,N IF (NOUNIT) THEN TEMP = ONE/A(K,K) DO 320 I = 1,M B(I,K) = TEMP*B(I,K) 320 CONTINUE END IF DO 340 J = K + 1,N IF (A(J,K).NE.ZERO) THEN TEMP = A(J,K) DO 330 I = 1,M B(I,J) = B(I,J) - TEMP*B(I,K) 330 CONTINUE END IF 340 CONTINUE IF (ALPHA.NE.ONE) THEN DO 350 I = 1,M B(I,K) = ALPHA*B(I,K) 350 CONTINUE END IF 360 CONTINUE END IF END IF END IF * RETURN * * End of STRSM . * END blas-1.2.orig/src/cher2.f 0000640 0001750 0001750 00000017740 11616621632 016070 0 ustar sylvestre sylvestre SUBROUTINE CHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. COMPLEX ALPHA INTEGER INCX,INCY,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * CHER2 performs the hermitian rank 2 operation * * A := alpha*x*y**H + conjg( alpha )*y*x**H + A, * * where alpha is a scalar, x and y are n element vectors and A is an n * by n hermitian matrix. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array A is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of A * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of A * is to be referenced. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular part of the hermitian matrix and the strictly * lower triangular part of A is not referenced. On exit, the * upper triangular part of the array A is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular part of the hermitian matrix and the strictly * upper triangular part of A is not referenced. On exit, the * lower triangular part of the array A is overwritten by the * lower triangular part of the updated matrix. * Note that the imaginary parts of the diagonal elements need * not be set, they are assumed to be zero, and on exit they * are set to zero. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX,REAL * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('CHER2 ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Set up the start points in X and Y if the increments are not both * unity. * IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF JX = KX JY = KY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the triangular part * of A. * IF (LSAME(UPLO,'U')) THEN * * Form A when A is stored in the upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 20 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*CONJG(Y(J)) TEMP2 = CONJG(ALPHA*X(J)) DO 10 I = 1,J - 1 A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 10 CONTINUE A(J,J) = REAL(A(J,J)) + + REAL(X(J)*TEMP1+Y(J)*TEMP2) ELSE A(J,J) = REAL(A(J,J)) END IF 20 CONTINUE ELSE DO 40 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*CONJG(Y(JY)) TEMP2 = CONJG(ALPHA*X(JX)) IX = KX IY = KY DO 30 I = 1,J - 1 A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 IX = IX + INCX IY = IY + INCY 30 CONTINUE A(J,J) = REAL(A(J,J)) + + REAL(X(JX)*TEMP1+Y(JY)*TEMP2) ELSE A(J,J) = REAL(A(J,J)) END IF JX = JX + INCX JY = JY + INCY 40 CONTINUE END IF ELSE * * Form A when A is stored in the lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN TEMP1 = ALPHA*CONJG(Y(J)) TEMP2 = CONJG(ALPHA*X(J)) A(J,J) = REAL(A(J,J)) + + REAL(X(J)*TEMP1+Y(J)*TEMP2) DO 50 I = J + 1,N A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 50 CONTINUE ELSE A(J,J) = REAL(A(J,J)) END IF 60 CONTINUE ELSE DO 80 J = 1,N IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN TEMP1 = ALPHA*CONJG(Y(JY)) TEMP2 = CONJG(ALPHA*X(JX)) A(J,J) = REAL(A(J,J)) + + REAL(X(JX)*TEMP1+Y(JY)*TEMP2) IX = JX IY = JY DO 70 I = J + 1,N IX = IX + INCX IY = IY + INCY A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 70 CONTINUE ELSE A(J,J) = REAL(A(J,J)) END IF JX = JX + INCX JY = JY + INCY 80 CONTINUE END IF END IF * RETURN * * End of CHER2 . * END blas-1.2.orig/src/ctbmv.f 0000640 0001750 0001750 00000030624 11616621632 016174 0 ustar sylvestre sylvestre SUBROUTINE CTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) * .. Scalar Arguments .. INTEGER INCX,K,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),X(*) * .. * * Purpose * ======= * * CTBMV performs one of the matrix-vector operations * * x := A*x, or x := A**T*x, or x := A**H*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular band matrix, with ( k + 1 ) diagonals. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A**T*x. * * TRANS = 'C' or 'c' x := A**H*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with UPLO = 'U' or 'u', K specifies the number of * super-diagonals of the matrix A. * On entry with UPLO = 'L' or 'l', K specifies the number of * sub-diagonals of the matrix A. * K must satisfy 0 .le. K. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) * by n part of the array A must contain the upper triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row * ( k + 1 ) of the array, the first super-diagonal starting at * position 2 in row k, and so on. The top left k by k triangle * of the array A is not referenced. * The following program segment will transfer an upper * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = K + 1 - J * DO 10, I = MAX( 1, J - K ), J * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) * by n part of the array A must contain the lower triangular * band part of the matrix of coefficients, supplied column by * column, with the leading diagonal of the matrix in row 1 of * the array, the first sub-diagonal starting at position 1 in * row 2, and so on. The bottom right k by k triangle of the * array A is not referenced. * The following program segment will transfer a lower * triangular band matrix from conventional full matrix storage * to band storage: * * DO 20, J = 1, N * M = 1 - J * DO 10, I = J, MIN( N, J + K ) * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Note that when DIAG = 'U' or 'u' the elements of the array A * corresponding to the diagonal elements of the matrix are not * referenced, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( k + 1 ). * Unchanged on exit. * * X - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L LOGICAL NOCONJ,NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (K+1)) THEN INFO = 7 ELSE IF (INCX.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('CTBMV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOCONJ = LSAME(TRANS,'T') NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := A*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (X(J).NE.ZERO) THEN TEMP = X(J) L = KPLUS1 - J DO 10 I = MAX(1,J-K),J - 1 X(I) = X(I) + TEMP*A(L+I,J) 10 CONTINUE IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J) END IF 20 CONTINUE ELSE JX = KX DO 40 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX L = KPLUS1 - J DO 30 I = MAX(1,J-K),J - 1 X(IX) = X(IX) + TEMP*A(L+I,J) IX = IX + INCX 30 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J) END IF JX = JX + INCX IF (J.GT.K) KX = KX + INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = N,1,-1 IF (X(J).NE.ZERO) THEN TEMP = X(J) L = 1 - J DO 50 I = MIN(N,J+K),J + 1,-1 X(I) = X(I) + TEMP*A(L+I,J) 50 CONTINUE IF (NOUNIT) X(J) = X(J)*A(1,J) END IF 60 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 80 J = N,1,-1 IF (X(JX).NE.ZERO) THEN TEMP = X(JX) IX = KX L = 1 - J DO 70 I = MIN(N,J+K),J + 1,-1 X(IX) = X(IX) + TEMP*A(L+I,J) IX = IX - INCX 70 CONTINUE IF (NOUNIT) X(JX) = X(JX)*A(1,J) END IF JX = JX - INCX IF ((N-J).GE.K) KX = KX - INCX 80 CONTINUE END IF END IF ELSE * * Form x := A**T*x or x := A**H*x. * IF (LSAME(UPLO,'U')) THEN KPLUS1 = K + 1 IF (INCX.EQ.1) THEN DO 110 J = N,1,-1 TEMP = X(J) L = KPLUS1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) DO 90 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + A(L+I,J)*X(I) 90 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(A(KPLUS1,J)) DO 100 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + CONJG(A(L+I,J))*X(I) 100 CONTINUE END IF X(J) = TEMP 110 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 140 J = N,1,-1 TEMP = X(JX) KX = KX - INCX IX = KX L = KPLUS1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) DO 120 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + A(L+I,J)*X(IX) IX = IX - INCX 120 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(A(KPLUS1,J)) DO 130 I = J - 1,MAX(1,J-K),-1 TEMP = TEMP + CONJG(A(L+I,J))*X(IX) IX = IX - INCX 130 CONTINUE END IF X(JX) = TEMP JX = JX - INCX 140 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 170 J = 1,N TEMP = X(J) L = 1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(1,J) DO 150 I = J + 1,MIN(N,J+K) TEMP = TEMP + A(L+I,J)*X(I) 150 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(A(1,J)) DO 160 I = J + 1,MIN(N,J+K) TEMP = TEMP + CONJG(A(L+I,J))*X(I) 160 CONTINUE END IF X(J) = TEMP 170 CONTINUE ELSE JX = KX DO 200 J = 1,N TEMP = X(JX) KX = KX + INCX IX = KX L = 1 - J IF (NOCONJ) THEN IF (NOUNIT) TEMP = TEMP*A(1,J) DO 180 I = J + 1,MIN(N,J+K) TEMP = TEMP + A(L+I,J)*X(IX) IX = IX + INCX 180 CONTINUE ELSE IF (NOUNIT) TEMP = TEMP*CONJG(A(1,J)) DO 190 I = J + 1,MIN(N,J+K) TEMP = TEMP + CONJG(A(L+I,J))*X(IX) IX = IX + INCX 190 CONTINUE END IF X(JX) = TEMP JX = JX + INCX 200 CONTINUE END IF END IF END IF * RETURN * * End of CTBMV . * END blas-1.2.orig/src/csyr2k.f 0000640 0001750 0001750 00000025131 11616621632 016273 0 ustar sylvestre sylvestre SUBROUTINE CSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. COMPLEX ALPHA,BETA INTEGER K,LDA,LDB,LDC,N CHARACTER TRANS,UPLO * .. * .. Array Arguments .. COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * CSYR2K performs one of the symmetric rank 2k operations * * C := alpha*A*B**T + alpha*B*A**T + beta*C, * * or * * C := alpha*A**T*B + alpha*B**T*A + beta*C, * * where alpha and beta are scalars, C is an n by n symmetric matrix * and A and B are n by k matrices in the first case and k by n * matrices in the second case. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the array C is to be referenced as * follows: * * UPLO = 'U' or 'u' Only the upper triangular part of C * is to be referenced. * * UPLO = 'L' or 'l' Only the lower triangular part of C * is to be referenced. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' C := alpha*A*B**T + alpha*B*A**T + * beta*C. * * TRANS = 'T' or 't' C := alpha*A**T*B + alpha*B**T*A + * beta*C. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry with TRANS = 'N' or 'n', K specifies the number * of columns of the matrices A and B, and on entry with * TRANS = 'T' or 't', K specifies the number of rows of the * matrices A and B. K must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array A must contain the matrix A, otherwise * the leading k by n part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDA must be at least max( 1, n ), otherwise LDA must * be at least max( 1, k ). * Unchanged on exit. * * B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is * k when TRANS = 'N' or 'n', and is n otherwise. * Before entry with TRANS = 'N' or 'n', the leading n by k * part of the array B must contain the matrix B, otherwise * the leading k by n part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRANS = 'N' or 'n' * then LDB must be at least max( 1, n ), otherwise LDB must * be at least max( 1, k ). * Unchanged on exit. * * BETA - COMPLEX . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * C - COMPLEX array of DIMENSION ( LDC, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array C must contain the upper * triangular part of the symmetric matrix and the strictly * lower triangular part of C is not referenced. On exit, the * upper triangular part of the array C is overwritten by the * upper triangular part of the updated matrix. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array C must contain the lower * triangular part of the symmetric matrix and the strictly * upper triangular part of C is not referenced. On exit, the * lower triangular part of the array C is overwritten by the * lower triangular part of the updated matrix. * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, n ). * Unchanged on exit. * * Further Details * =============== * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * ===================================================================== * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Local Scalars .. COMPLEX TEMP1,TEMP2 INTEGER I,INFO,J,L,NROWA LOGICAL UPPER * .. * .. Parameters .. COMPLEX ONE PARAMETER (ONE= (1.0E+0,0.0E+0)) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * * Test the input parameters. * IF (LSAME(TRANS,'N')) THEN NROWA = N ELSE NROWA = K END IF UPPER = LSAME(UPLO,'U') * INFO = 0 IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN INFO = 1 ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. + (.NOT.LSAME(TRANS,'T'))) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (K.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 7 ELSE IF (LDB.LT.MAX(1,NROWA)) THEN INFO = 9 ELSE IF (LDC.LT.MAX(1,N)) THEN INFO = 12 END IF IF (INFO.NE.0) THEN CALL XERBLA('CSYR2K',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. + (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (UPPER) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,J C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,J C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF ELSE IF (BETA.EQ.ZERO) THEN DO 60 J = 1,N DO 50 I = J,N C(I,J) = ZERO 50 CONTINUE 60 CONTINUE ELSE DO 80 J = 1,N DO 70 I = J,N C(I,J) = BETA*C(I,J) 70 CONTINUE 80 CONTINUE END IF END IF RETURN END IF * * Start the operations. * IF (LSAME(TRANS,'N')) THEN * * Form C := alpha*A*B**T + alpha*B*A**T + C. * IF (UPPER) THEN DO 130 J = 1,N IF (BETA.EQ.ZERO) THEN DO 90 I = 1,J C(I,J) = ZERO 90 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 100 I = 1,J C(I,J) = BETA*C(I,J) 100 CONTINUE END IF DO 120 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*B(J,L) TEMP2 = ALPHA*A(J,L) DO 110 I = 1,J C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 110 CONTINUE END IF 120 CONTINUE 130 CONTINUE ELSE DO 180 J = 1,N IF (BETA.EQ.ZERO) THEN DO 140 I = J,N C(I,J) = ZERO 140 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 150 I = J,N C(I,J) = BETA*C(I,J) 150 CONTINUE END IF DO 170 L = 1,K IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN TEMP1 = ALPHA*B(J,L) TEMP2 = ALPHA*A(J,L) DO 160 I = J,N C(I,J) = C(I,J) + A(I,L)*TEMP1 + + B(I,L)*TEMP2 160 CONTINUE END IF 170 CONTINUE 180 CONTINUE END IF ELSE * * Form C := alpha*A**T*B + alpha*B**T*A + C. * IF (UPPER) THEN DO 210 J = 1,N DO 200 I = 1,J TEMP1 = ZERO TEMP2 = ZERO DO 190 L = 1,K TEMP1 = TEMP1 + A(L,I)*B(L,J) TEMP2 = TEMP2 + B(L,I)*A(L,J) 190 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + ALPHA*TEMP2 END IF 200 CONTINUE 210 CONTINUE ELSE DO 240 J = 1,N DO 230 I = J,N TEMP1 = ZERO TEMP2 = ZERO DO 220 L = 1,K TEMP1 = TEMP1 + A(L,I)*B(L,J) TEMP2 = TEMP2 + B(L,I)*A(L,J) 220 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2 ELSE C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 + + ALPHA*TEMP2 END IF 230 CONTINUE 240 CONTINUE END IF END IF * RETURN * * End of CSYR2K. * END blas-1.2.orig/src/icamax.f 0000640 0001750 0001750 00000002550 11616621632 016320 0 ustar sylvestre sylvestre INTEGER FUNCTION ICAMAX(N,CX,INCX) * .. Scalar Arguments .. INTEGER INCX,N * .. * .. Array Arguments .. COMPLEX CX(*) * .. * * Purpose * ======= * * ICAMAX finds the index of element having max. absolute value. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 3/93 to return if incx .le. 0. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. REAL SMAX INTEGER I,IX * .. * .. External Functions .. REAL SCABS1 EXTERNAL SCABS1 * .. ICAMAX = 0 IF (N.LT.1 .OR. INCX.LE.0) RETURN ICAMAX = 1 IF (N.EQ.1) RETURN IF (INCX.EQ.1) THEN * * code for increment equal to 1 * SMAX = SCABS1(CX(1)) DO I = 2,N IF (SCABS1(CX(I)).GT.SMAX) THEN ICAMAX = I SMAX = SCABS1(CX(I)) END IF END DO ELSE * * code for increment not equal to 1 * IX = 1 SMAX = SCABS1(CX(1)) IX = IX + INCX DO I = 2,N IF (SCABS1(CX(IX)).GT.SMAX) THEN ICAMAX = I SMAX = SCABS1(CX(IX)) END IF IX = IX + INCX END DO END IF RETURN END blas-1.2.orig/src/xerbla.f 0000640 0001750 0001750 00000002403 11616621632 016330 0 ustar sylvestre sylvestre SUBROUTINE XERBLA( SRNAME, INFO ) * * -- LAPACK auxiliary routine (preliminary version) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER*(*) SRNAME INTEGER INFO * .. * * Purpose * ======= * * XERBLA is an error handler for the LAPACK routines. * It is called by an LAPACK routine if an input parameter has an * invalid value. A message is printed and execution stops. * * Installers may consider modifying the STOP statement in order to * call system-specific exception-handling facilities. * * Arguments * ========= * * SRNAME (input) CHARACTER*(*) * The name of the routine which called XERBLA. * * INFO (input) INTEGER * The position of the invalid parameter in the parameter list * of the calling routine. * * ===================================================================== * * .. Intrinsic Functions .. INTRINSIC LEN_TRIM * .. * .. Executable Statements .. * WRITE( *, FMT = 9999 )SRNAME( 1:LEN_TRIM( SRNAME ) ), INFO * STOP * 9999 FORMAT( ' ** On entry to ', A, ' parameter number ', I2, ' had ', $ 'an illegal value' ) * * End of XERBLA * END blas-1.2.orig/src/scopy.f 0000640 0001750 0001750 00000003100 11616621632 016203 0 ustar sylvestre sylvestre SUBROUTINE SCOPY(N,SX,INCX,SY,INCY) * .. Scalar Arguments .. INTEGER INCX,INCY,N * .. * .. Array Arguments .. REAL SX(*),SY(*) * .. * * Purpose * ======= * * SCOPY copies a vector, x, to a vector, y. * uses unrolled loops for increments equal to 1. * * Further Details * =============== * * jack dongarra, linpack, 3/11/78. * modified 12/3/93, array(1) declarations changed to array(*) * * ===================================================================== * * .. Local Scalars .. INTEGER I,IX,IY,M,MP1 * .. * .. Intrinsic Functions .. INTRINSIC MOD * .. IF (N.LE.0) RETURN IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN * * code for both increments equal to 1 * * * clean-up loop * M = MOD(N,7) IF (M.NE.0) THEN DO I = 1,M SY(I) = SX(I) END DO IF (N.LT.7) RETURN END IF MP1 = M + 1 DO I = MP1,N,7 SY(I) = SX(I) SY(I+1) = SX(I+1) SY(I+2) = SX(I+2) SY(I+3) = SX(I+3) SY(I+4) = SX(I+4) SY(I+5) = SX(I+5) SY(I+6) = SX(I+6) END DO ELSE * * code for unequal increments or equal increments * not equal to 1 * IX = 1 IY = 1 IF (INCX.LT.0) IX = (-N+1)*INCX + 1 IF (INCY.LT.0) IY = (-N+1)*INCY + 1 DO I = 1,N SY(IY) = SX(IX) IX = IX + INCX IY = IY + INCY END DO END IF RETURN END blas-1.2.orig/src/sgemv.f 0000640 0001750 0001750 00000016450 11616621632 016203 0 ustar sylvestre sylvestre SUBROUTINE SGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. REAL ALPHA,BETA INTEGER INCX,INCY,LDA,M,N CHARACTER TRANS * .. * .. Array Arguments .. REAL A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * SGEMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n matrix. * * Arguments * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * X - REAL array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - REAL array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry with BETA non-zero, the incremented array Y * must contain the vector y. On exit, Y is overwritten by the * updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 1 ELSE IF (M.LT.0) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 ELSE IF (INCY.EQ.0) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('SGEMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF (LSAME(TRANS,'N')) THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (LENX-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (LENY-1)*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,LENY Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,LENY Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,LENY Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,LENY Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(TRANS,'N')) THEN * * Form y := alpha*A*x + y. * JX = KX IF (INCY.EQ.1) THEN DO 60 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) DO 50 I = 1,M Y(I) = Y(I) + TEMP*A(I,J) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IY = KY DO 70 I = 1,M Y(IY) = Y(IY) + TEMP*A(I,J) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF ELSE * * Form y := alpha*A**T*x + y. * JY = KY IF (INCX.EQ.1) THEN DO 100 J = 1,N TEMP = ZERO DO 90 I = 1,M TEMP = TEMP + A(I,J)*X(I) 90 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 100 CONTINUE ELSE DO 120 J = 1,N TEMP = ZERO IX = KX DO 110 I = 1,M TEMP = TEMP + A(I,J)*X(IX) IX = IX + INCX 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of SGEMV . * END blas-1.2.orig/src/cgbmv.f 0000640 0001750 0001750 00000023253 11616621632 016157 0 ustar sylvestre sylvestre SUBROUTINE CGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. COMPLEX ALPHA,BETA INTEGER INCX,INCY,KL,KU,LDA,M,N CHARACTER TRANS * .. * .. Array Arguments .. COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * CGBMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or * * y := alpha*A**H*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n band matrix, with kl sub-diagonals and ku super-diagonals. * * Arguments * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A**T*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * KL - INTEGER. * On entry, KL specifies the number of sub-diagonals of the * matrix A. KL must satisfy 0 .le. KL. * Unchanged on exit. * * KU - INTEGER. * On entry, KU specifies the number of super-diagonals of the * matrix A. KU must satisfy 0 .le. KU. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, n ). * Before entry, the leading ( kl + ku + 1 ) by n part of the * array A must contain the matrix of coefficients, supplied * column by column, with the leading diagonal of the matrix in * row ( ku + 1 ) of the array, the first super-diagonal * starting at position 2 in row ku, the first sub-diagonal * starting at position 1 in row ( ku + 2 ), and so on. * Elements in the array A that do not correspond to elements * in the band matrix (such as the top left ku by ku triangle) * are not referenced. * The following program segment will transfer a band matrix * from conventional full matrix storage to band storage: * * DO 20, J = 1, N * K = KU + 1 - J * DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) * A( K + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( kl + ku + 1 ). * Unchanged on exit. * * X - COMPLEX array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - COMPLEX . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - COMPLEX array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry, the incremented array Y must contain the * vector y. On exit, Y is overwritten by the updated vector y. * * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ONE PARAMETER (ONE= (1.0E+0,0.0E+0)) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY LOGICAL NOCONJ * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 1 ELSE IF (M.LT.0) THEN INFO = 2 ELSE IF (N.LT.0) THEN INFO = 3 ELSE IF (KL.LT.0) THEN INFO = 4 ELSE IF (KU.LT.0) THEN INFO = 5 ELSE IF (LDA.LT. (KL+KU+1)) THEN INFO = 8 ELSE IF (INCX.EQ.0) THEN INFO = 10 ELSE IF (INCY.EQ.0) THEN INFO = 13 END IF IF (INFO.NE.0) THEN CALL XERBLA('CGBMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * NOCONJ = LSAME(TRANS,'T') * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF (LSAME(TRANS,'N')) THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (LENX-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (LENY-1)*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through the band part of A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,LENY Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,LENY Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,LENY Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,LENY Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN KUP1 = KU + 1 IF (LSAME(TRANS,'N')) THEN * * Form y := alpha*A*x + y. * JX = KX IF (INCY.EQ.1) THEN DO 60 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) K = KUP1 - J DO 50 I = MAX(1,J-KU),MIN(M,J+KL) Y(I) = Y(I) + TEMP*A(K+I,J) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN TEMP = ALPHA*X(JX) IY = KY K = KUP1 - J DO 70 I = MAX(1,J-KU),MIN(M,J+KL) Y(IY) = Y(IY) + TEMP*A(K+I,J) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX IF (J.GT.KU) KY = KY + INCY 80 CONTINUE END IF ELSE * * Form y := alpha*A**T*x + y or y := alpha*A**H*x + y. * JY = KY IF (INCX.EQ.1) THEN DO 110 J = 1,N TEMP = ZERO K = KUP1 - J IF (NOCONJ) THEN DO 90 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + A(K+I,J)*X(I) 90 CONTINUE ELSE DO 100 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + CONJG(A(K+I,J))*X(I) 100 CONTINUE END IF Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY 110 CONTINUE ELSE DO 140 J = 1,N TEMP = ZERO IX = KX K = KUP1 - J IF (NOCONJ) THEN DO 120 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + A(K+I,J)*X(IX) IX = IX + INCX 120 CONTINUE ELSE DO 130 I = MAX(1,J-KU),MIN(M,J+KL) TEMP = TEMP + CONJG(A(K+I,J))*X(IX) IX = IX + INCX 130 CONTINUE END IF Y(JY) = Y(JY) + ALPHA*TEMP JY = JY + INCY IF (J.GT.KU) KX = KX + INCX 140 CONTINUE END IF END IF * RETURN * * End of CGBMV . * END blas-1.2.orig/src/cgeru.f 0000640 0001750 0001750 00000010377 11616621632 016171 0 ustar sylvestre sylvestre SUBROUTINE CGERU(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. COMPLEX ALPHA INTEGER INCX,INCY,LDA,M,N * .. * .. Array Arguments .. COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * CGERU performs the rank 1 operation * * A := alpha*x*y**T + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. * * Arguments * ========== * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - COMPLEX array of dimension at least * ( 1 + ( m - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the m * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - COMPLEX array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. On exit, A is * overwritten by the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,IX,J,JY,KX * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (M.LT.0) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('CGERU ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (INCY.GT.0) THEN JY = 1 ELSE JY = 1 - (N-1)*INCY END IF IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) DO 10 I = 1,M A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF JY = JY + INCY 20 CONTINUE ELSE IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (M-1)*INCX END IF DO 40 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) IX = KX DO 30 I = 1,M A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JY = JY + INCY 40 CONTINUE END IF * RETURN * * End of CGERU . * END blas-1.2.orig/src/zhbmv.f 0000640 0001750 0001750 00000023332 11616621632 016205 0 ustar sylvestre sylvestre SUBROUTINE ZHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. DOUBLE COMPLEX ALPHA,BETA INTEGER INCX,INCY,K,LDA,N CHARACTER UPLO * .. * .. Array Arguments .. DOUBLE COMPLEX A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * ZHBMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian band matrix, with k super-diagonals. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the band matrix A is being supplied as * follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * being supplied. * * UPLO = 'L' or 'l' The lower triangular part of A is * being supplied. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * K - INTEGER. * On entry, K specifies the number of super-diagonals of the * matrix A. K must satisfy 0 .le. K. * Unchanged on exit. * * ALPHA - COMPLEX*16 . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX*16 array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) * by n part of the array A must contain the upper triangular * band part of the hermitian matrix, supplied column by * column, with the leading diagonal of the matrix in row * ( k + 1 ) of the array, the first super-diagonal starting at * position 2 in row k, and so on. The top left k by k triangle * of the array A is not referenced. * The following program segment will transfer the upper * triangular part of a hermitian band matrix from conventional * full matrix storage to band storage: * * DO 20, J = 1, N * M = K + 1 - J * DO 10, I = MAX( 1, J - K ), J * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) * by n part of the array A must contain the lower triangular * band part of the hermitian matrix, supplied column by * column, with the leading diagonal of the matrix in row 1 of * the array, the first sub-diagonal starting at position 1 in * row 2, and so on. The bottom right k by k triangle of the * array A is not referenced. * The following program segment will transfer the lower * triangular part of a hermitian band matrix from conventional * full matrix storage to band storage: * * DO 20, J = 1, N * M = 1 - J * DO 10, I = J, MIN( N, J + K ) * A( M + I, J ) = matrix( I, J ) * 10 CONTINUE * 20 CONTINUE * * Note that the imaginary parts of the diagonal elements need * not be set and are assumed to be zero. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * ( k + 1 ). * Unchanged on exit. * * X - COMPLEX*16 array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - COMPLEX*16 . * On entry, BETA specifies the scalar beta. * Unchanged on exit. * * Y - COMPLEX*16 array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the * vector y. On exit, Y is overwritten by the updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * The vector and matrix arguments are not referenced when N = 0, or M = 0 * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER (ONE= (1.0D+0,0.0D+0)) DOUBLE COMPLEX ZERO PARAMETER (ZERO= (0.0D+0,0.0D+0)) * .. * .. Local Scalars .. DOUBLE COMPLEX TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DBLE,DCONJG,MAX,MIN * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (K.LT.0) THEN INFO = 3 ELSE IF (LDA.LT. (K+1)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 ELSE IF (INCY.EQ.0) THEN INFO = 11 END IF IF (INFO.NE.0) THEN CALL XERBLA('ZHBMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set up the start points in X and Y. * IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF * * Start the operations. In this version the elements of the array A * are accessed sequentially with one pass through A. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN IF (LSAME(UPLO,'U')) THEN * * Form y when upper triangle of A is stored. * KPLUS1 = K + 1 IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO L = KPLUS1 - J DO 50 I = MAX(1,J-K),J - 1 Y(I) = Y(I) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I) 50 CONTINUE Y(J) = Y(J) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY L = KPLUS1 - J DO 70 I = MAX(1,J-K),J - 1 Y(IY) = Y(IY) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY IF (J.GT.K) THEN KX = KX + INCX KY = KY + INCY END IF 80 CONTINUE END IF ELSE * * Form y when lower triangle of A is stored. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*DBLE(A(1,J)) L = 1 - J DO 90 I = J + 1,MIN(N,J+K) Y(I) = Y(I) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I) 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*DBLE(A(1,J)) L = 1 - J IX = JX IY = JY DO 110 I = J + 1,MIN(N,J+K) IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*A(L+I,J) TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of ZHBMV . * END blas-1.2.orig/src/sger.f 0000640 0001750 0001750 00000010350 11616621632 016013 0 ustar sylvestre sylvestre SUBROUTINE SGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) * .. Scalar Arguments .. REAL ALPHA INTEGER INCX,INCY,LDA,M,N * .. * .. Array Arguments .. REAL A(LDA,*),X(*),Y(*) * .. * * Purpose * ======= * * SGER performs the rank 1 operation * * A := alpha*x*y**T + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. * * Arguments * ========== * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( m - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the m * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * Y - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. * Unchanged on exit. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * A - REAL array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. On exit, A is * overwritten by the updated matrix. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER (ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP INTEGER I,INFO,IX,J,JY,KX * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (M.LT.0) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 5 ELSE IF (INCY.EQ.0) THEN INFO = 7 ELSE IF (LDA.LT.MAX(1,M)) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('SGER ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (INCY.GT.0) THEN JY = 1 ELSE JY = 1 - (N-1)*INCY END IF IF (INCX.EQ.1) THEN DO 20 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) DO 10 I = 1,M A(I,J) = A(I,J) + X(I)*TEMP 10 CONTINUE END IF JY = JY + INCY 20 CONTINUE ELSE IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (M-1)*INCX END IF DO 40 J = 1,N IF (Y(JY).NE.ZERO) THEN TEMP = ALPHA*Y(JY) IX = KX DO 30 I = 1,M A(I,J) = A(I,J) + X(IX)*TEMP IX = IX + INCX 30 CONTINUE END IF JY = JY + INCY 40 CONTINUE END IF * RETURN * * End of SGER . * END blas-1.2.orig/test/ 0000755 0001750 0001750 00000000000 10735444622 015104 5 ustar sylvestre sylvestre blas-1.2.orig/test/zblat3 0000644 0001750 0001750 00000377001 10735444622 016236 0 ustar sylvestre sylvestre PROGRAM ZBLAT3 * * Test program for the COMPLEX*16 Level 3 Blas. * * The program must be driven by a short data file. The first 14 records * of the file are read using list-directed input, the last 9 records * are read using the format ( A6, L2 ). An annotated example of a data * file can be obtained by deleting the first 3 characters from the * following 23 lines: * 'ZBLAT3.SUMM' NAME OF SUMMARY OUTPUT FILE * 6 UNIT NUMBER OF SUMMARY FILE * 'ZBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE * -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) * F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. * F LOGICAL FLAG, T TO STOP ON FAILURES. * T LOGICAL FLAG, T TO TEST ERROR EXITS. * 16.0 THRESHOLD VALUE OF TEST RATIO * 6 NUMBER OF VALUES OF N * 0 1 2 3 5 9 VALUES OF N * 3 NUMBER OF VALUES OF ALPHA * (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA * 3 NUMBER OF VALUES OF BETA * (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA * ZGEMM T PUT F FOR NO TEST. SAME COLUMNS. * ZHEMM T PUT F FOR NO TEST. SAME COLUMNS. * ZSYMM T PUT F FOR NO TEST. SAME COLUMNS. * ZTRMM T PUT F FOR NO TEST. SAME COLUMNS. * ZTRSM T PUT F FOR NO TEST. SAME COLUMNS. * ZHERK T PUT F FOR NO TEST. SAME COLUMNS. * ZSYRK T PUT F FOR NO TEST. SAME COLUMNS. * ZHER2K T PUT F FOR NO TEST. SAME COLUMNS. * ZSYR2K T PUT F FOR NO TEST. SAME COLUMNS. * * See: * * Dongarra J. J., Du Croz J. J., Duff I. S. and Hammarling S. * A Set of Level 3 Basic Linear Algebra Subprograms. * * Technical Memorandum No.88 (Revision 1), Mathematics and * Computer Science Division, Argonne National Laboratory, 9700 * South Cass Avenue, Argonne, Illinois 60439, US. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. INTEGER NIN PARAMETER ( NIN = 5 ) INTEGER NSUBS PARAMETER ( NSUBS = 9 ) COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), $ ONE = ( 1.0D0, 0.0D0 ) ) DOUBLE PRECISION RZERO, RHALF, RONE PARAMETER ( RZERO = 0.0D0, RHALF = 0.5D0, RONE = 1.0D0 ) INTEGER NMAX PARAMETER ( NMAX = 65 ) INTEGER NIDMAX, NALMAX, NBEMAX PARAMETER ( NIDMAX = 9, NALMAX = 7, NBEMAX = 7 ) * .. Local Scalars .. DOUBLE PRECISION EPS, ERR, THRESH INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NOUT, NTRA LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE, $ TSTERR CHARACTER*1 TRANSA, TRANSB CHARACTER*6 SNAMET CHARACTER*32 SNAPS, SUMMRY * .. Local Arrays .. COMPLEX*16 AA( NMAX*NMAX ), AB( NMAX, 2*NMAX ), $ ALF( NALMAX ), AS( NMAX*NMAX ), $ BB( NMAX*NMAX ), BET( NBEMAX ), $ BS( NMAX*NMAX ), C( NMAX, NMAX ), $ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ), $ W( 2*NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDMAX ) LOGICAL LTEST( NSUBS ) CHARACTER*6 SNAMES( NSUBS ) * .. External Functions .. DOUBLE PRECISION DDIFF LOGICAL LZE EXTERNAL DDIFF, LZE * .. External Subroutines .. EXTERNAL ZCHK1, ZCHK2, ZCHK3, ZCHK4, ZCHK5, ZCHKE, ZMMCH * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR COMMON /SRNAMC/SRNAMT * .. Data statements .. DATA SNAMES/'ZGEMM ', 'ZHEMM ', 'ZSYMM ', 'ZTRMM ', $ 'ZTRSM ', 'ZHERK ', 'ZSYRK ', 'ZHER2K', $ 'ZSYR2K'/ * .. Executable Statements .. * * Read name and unit number for summary output file and open file. * READ( NIN, FMT = * )SUMMRY READ( NIN, FMT = * )NOUT OPEN( NOUT, FILE = SUMMRY, STATUS = 'NEW' ) NOUTC = NOUT * * Read name and unit number for snapshot output file and open file. * READ( NIN, FMT = * )SNAPS READ( NIN, FMT = * )NTRA TRACE = NTRA.GE.0 IF( TRACE )THEN OPEN( NTRA, FILE = SNAPS, STATUS = 'NEW' ) END IF * Read the flag that directs rewinding of the snapshot file. READ( NIN, FMT = * )REWI REWI = REWI.AND.TRACE * Read the flag that directs stopping on any failure. READ( NIN, FMT = * )SFATAL * Read the flag that indicates whether error exits are to be tested. READ( NIN, FMT = * )TSTERR * Read the threshold value of the test ratio READ( NIN, FMT = * )THRESH * * Read and check the parameter values for the tests. * * Values of N READ( NIN, FMT = * )NIDIM IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN WRITE( NOUT, FMT = 9997 )'N', NIDMAX GO TO 220 END IF READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM ) DO 10 I = 1, NIDIM IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN WRITE( NOUT, FMT = 9996 )NMAX GO TO 220 END IF 10 CONTINUE * Values of ALPHA READ( NIN, FMT = * )NALF IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX GO TO 220 END IF READ( NIN, FMT = * )( ALF( I ), I = 1, NALF ) * Values of BETA READ( NIN, FMT = * )NBET IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX GO TO 220 END IF READ( NIN, FMT = * )( BET( I ), I = 1, NBET ) * * Report values of parameters. * WRITE( NOUT, FMT = 9995 ) WRITE( NOUT, FMT = 9994 )( IDIM( I ), I = 1, NIDIM ) WRITE( NOUT, FMT = 9993 )( ALF( I ), I = 1, NALF ) WRITE( NOUT, FMT = 9992 )( BET( I ), I = 1, NBET ) IF( .NOT.TSTERR )THEN WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9984 ) END IF WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9999 )THRESH WRITE( NOUT, FMT = * ) * * Read names of subroutines and flags which indicate * whether they are to be tested. * DO 20 I = 1, NSUBS LTEST( I ) = .FALSE. 20 CONTINUE 30 READ( NIN, FMT = 9988, END = 60 )SNAMET, LTESTT DO 40 I = 1, NSUBS IF( SNAMET.EQ.SNAMES( I ) ) $ GO TO 50 40 CONTINUE WRITE( NOUT, FMT = 9990 )SNAMET STOP 50 LTEST( I ) = LTESTT GO TO 30 * 60 CONTINUE CLOSE ( NIN ) * * Compute EPS (the machine precision). * EPS = RONE 70 CONTINUE IF( DDIFF( RONE + EPS, RONE ).EQ.RZERO ) $ GO TO 80 EPS = RHALF*EPS GO TO 70 80 CONTINUE EPS = EPS + EPS WRITE( NOUT, FMT = 9998 )EPS * * Check the reliability of ZMMCH using exact data. * N = MIN( 32, NMAX ) DO 100 J = 1, N DO 90 I = 1, N AB( I, J ) = MAX( I - J + 1, 0 ) 90 CONTINUE AB( J, NMAX + 1 ) = J AB( 1, NMAX + J ) = J C( J, 1 ) = ZERO 100 CONTINUE DO 110 J = 1, N CC( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3 110 CONTINUE * CC holds the exact result. On exit from ZMMCH CT holds * the result computed by ZMMCH. TRANSA = 'N' TRANSB = 'N' CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LZE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF TRANSB = 'C' CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LZE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF DO 120 J = 1, N AB( J, NMAX + 1 ) = N - J + 1 AB( 1, NMAX + J ) = N - J + 1 120 CONTINUE DO 130 J = 1, N CC( N - J + 1 ) = J*( ( J + 1 )*J )/2 - $ ( ( J + 1 )*J*( J - 1 ) )/3 130 CONTINUE TRANSA = 'C' TRANSB = 'N' CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LZE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF TRANSB = 'C' CALL ZMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LZE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF * * Test each subroutine in turn. * DO 200 ISNUM = 1, NSUBS WRITE( NOUT, FMT = * ) IF( .NOT.LTEST( ISNUM ) )THEN * Subprogram is not to be tested. WRITE( NOUT, FMT = 9987 )SNAMES( ISNUM ) ELSE SRNAMT = SNAMES( ISNUM ) * Test error exits. IF( TSTERR )THEN CALL ZCHKE( ISNUM, SNAMES( ISNUM ), NOUT ) WRITE( NOUT, FMT = * ) END IF * Test computations. INFOT = 0 OK = .TRUE. FATAL = .FALSE. GO TO ( 140, 150, 150, 160, 160, 170, 170, $ 180, 180 )ISNUM * Test ZGEMM, 01. 140 CALL ZCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test ZHEMM, 02, ZSYMM, 03. 150 CALL ZCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test ZTRMM, 04, ZTRSM, 05. 160 CALL ZCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NMAX, AB, $ AA, AS, AB( 1, NMAX + 1 ), BB, BS, CT, G, C ) GO TO 190 * Test ZHERK, 06, ZSYRK, 07. 170 CALL ZCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test ZHER2K, 08, ZSYR2K, 09. 180 CALL ZCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, BB, BS, C, CC, CS, CT, G, W ) GO TO 190 * 190 IF( FATAL.AND.SFATAL ) $ GO TO 210 END IF 200 CONTINUE WRITE( NOUT, FMT = 9986 ) GO TO 230 * 210 CONTINUE WRITE( NOUT, FMT = 9985 ) GO TO 230 * 220 CONTINUE WRITE( NOUT, FMT = 9991 ) * 230 CONTINUE IF( TRACE ) $ CLOSE ( NTRA ) CLOSE ( NOUT ) STOP * 9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES', $ 'S THAN', F8.2 ) 9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, D9.1 ) 9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ', $ 'THAN ', I2 ) 9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 ) 9995 FORMAT( ' TESTS OF THE COMPLEX*16 LEVEL 3 BLAS', //' THE F', $ 'OLLOWING PARAMETER VALUES WILL BE USED:' ) 9994 FORMAT( ' FOR N ', 9I6 ) 9993 FORMAT( ' FOR ALPHA ', $ 7( '(', F4.1, ',', F4.1, ') ', : ) ) 9992 FORMAT( ' FOR BETA ', $ 7( '(', F4.1, ',', F4.1, ') ', : ) ) 9991 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM', $ /' ******* TESTS ABANDONED *******' ) 9990 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T', $ 'ESTS ABANDONED *******' ) 9989 FORMAT( ' ERROR IN ZMMCH - IN-LINE DOT PRODUCTS ARE BEING EVALU', $ 'ATED WRONGLY.', /' ZMMCH WAS CALLED WITH TRANSA = ', A1, $ ' AND TRANSB = ', A1, /' AND RETURNED SAME = ', L1, ' AND ', $ 'ERR = ', F12.3, '.', /' THIS MAY BE DUE TO FAULTS IN THE ', $ 'ARITHMETIC OR THE COMPILER.', /' ******* TESTS ABANDONED ', $ '*******' ) 9988 FORMAT( A6, L2 ) 9987 FORMAT( 1X, A6, ' WAS NOT TESTED' ) 9986 FORMAT( /' END OF TESTS' ) 9985 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' ) 9984 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' ) * * End of ZBLAT3. * END SUBROUTINE ZCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests ZGEMM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX*16 ZERO PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) ) DOUBLE PRECISION RZERO PARAMETER ( RZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX*16 ALPHA, ALS, BETA, BLS DOUBLE PRECISION ERR, ERRMAX INTEGER I, IA, IB, ICA, ICB, IK, IM, IN, K, KS, LAA, $ LBB, LCC, LDA, LDAS, LDB, LDBS, LDC, LDCS, M, $ MA, MB, MS, N, NA, NARGS, NB, NC, NS LOGICAL NULL, RESET, SAME, TRANA, TRANB CHARACTER*1 TRANAS, TRANBS, TRANSA, TRANSB CHARACTER*3 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL ZGEMM, ZMAKE, ZMMCH * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'NTC'/ * .. Executable Statements .. * NARGS = 13 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 110 IM = 1, NIDIM M = IDIM( IM ) * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = M IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 100 LCC = LDC*N NULL = N.LE.0.OR.M.LE.0 * DO 90 IK = 1, NIDIM K = IDIM( IK ) * DO 80 ICA = 1, 3 TRANSA = ICH( ICA: ICA ) TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C' * IF( TRANA )THEN MA = K NA = M ELSE MA = M NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * * Generate the matrix A. * CALL ZMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 70 ICB = 1, 3 TRANSB = ICH( ICB: ICB ) TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C' * IF( TRANB )THEN MB = N NB = K ELSE MB = K NB = N END IF * Set LDB to 1 more than minimum value if room. LDB = MB IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 70 LBB = LDB*NB * * Generate the matrix B. * CALL ZMAKE( 'GE', ' ', ' ', MB, NB, B, NMAX, BB, $ LDB, RESET, ZERO ) * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL ZMAKE( 'GE', ' ', ' ', M, N, C, NMAX, $ CC, LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * TRANAS = TRANSA TRANBS = TRANSB MS = M NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BLS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ TRANSA, TRANSB, M, N, K, ALPHA, LDA, LDB, $ BETA, LDC IF( REWI ) $ REWIND NTRA CALL ZGEMM( TRANSA, TRANSB, M, N, K, ALPHA, $ AA, LDA, BB, LDB, BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = TRANSA.EQ.TRANAS ISAME( 2 ) = TRANSB.EQ.TRANBS ISAME( 3 ) = MS.EQ.M ISAME( 4 ) = NS.EQ.N ISAME( 5 ) = KS.EQ.K ISAME( 6 ) = ALS.EQ.ALPHA ISAME( 7 ) = LZE( AS, AA, LAA ) ISAME( 8 ) = LDAS.EQ.LDA ISAME( 9 ) = LZE( BS, BB, LBB ) ISAME( 10 ) = LDBS.EQ.LDB ISAME( 11 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 12 ) = LZE( CS, CC, LCC ) ELSE ISAME( 12 ) = LZERES( 'GE', ' ', M, N, CS, $ CC, LDC ) END IF ISAME( 13 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report * and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL ZMMCH( TRANSA, TRANSB, M, N, K, $ ALPHA, A, NMAX, B, NMAX, BETA, $ C, NMAX, CT, G, CC, LDC, EPS, $ ERR, FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 120 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANSA, TRANSB, M, N, K, $ ALPHA, LDA, LDB, BETA, LDC * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',''', A1, ''',', $ 3( I3, ',' ), '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, $ ',(', F4.1, ',', F4.1, '), C,', I3, ').' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of ZCHK1. * END SUBROUTINE ZCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests ZHEMM and ZSYMM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX*16 ZERO PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) ) DOUBLE PRECISION RZERO PARAMETER ( RZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX*16 ALPHA, ALS, BETA, BLS DOUBLE PRECISION ERR, ERRMAX INTEGER I, IA, IB, ICS, ICU, IM, IN, LAA, LBB, LCC, $ LDA, LDAS, LDB, LDBS, LDC, LDCS, M, MS, N, NA, $ NARGS, NC, NS LOGICAL CONJ, LEFT, NULL, RESET, SAME CHARACTER*1 SIDE, SIDES, UPLO, UPLOS CHARACTER*2 ICHS, ICHU * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL ZHEMM, ZMAKE, ZMMCH, ZSYMM * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHS/'LR'/, ICHU/'UL'/ * .. Executable Statements .. CONJ = SNAME( 2: 3 ).EQ.'HE' * NARGS = 12 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 100 IM = 1, NIDIM M = IDIM( IM ) * DO 90 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = M IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 90 LCC = LDC*N NULL = N.LE.0.OR.M.LE.0 * Set LDB to 1 more than minimum value if room. LDB = M IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 90 LBB = LDB*N * * Generate the matrix B. * CALL ZMAKE( 'GE', ' ', ' ', M, N, B, NMAX, BB, LDB, RESET, $ ZERO ) * DO 80 ICS = 1, 2 SIDE = ICHS( ICS: ICS ) LEFT = SIDE.EQ.'L' * IF( LEFT )THEN NA = M ELSE NA = N END IF * Set LDA to 1 more than minimum value if room. LDA = NA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * DO 70 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * * Generate the hermitian or symmetric matrix A. * CALL ZMAKE( SNAME( 2: 3 ), UPLO, ' ', NA, NA, A, NMAX, $ AA, LDA, RESET, ZERO ) * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL ZMAKE( 'GE', ' ', ' ', M, N, C, NMAX, CC, $ LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * SIDES = SIDE UPLOS = UPLO MS = M NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BLS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, SIDE, $ UPLO, M, N, ALPHA, LDA, LDB, BETA, LDC IF( REWI ) $ REWIND NTRA IF( CONJ )THEN CALL ZHEMM( SIDE, UPLO, M, N, ALPHA, AA, LDA, $ BB, LDB, BETA, CC, LDC ) ELSE CALL ZSYMM( SIDE, UPLO, M, N, ALPHA, AA, LDA, $ BB, LDB, BETA, CC, LDC ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 110 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = SIDES.EQ.SIDE ISAME( 2 ) = UPLOS.EQ.UPLO ISAME( 3 ) = MS.EQ.M ISAME( 4 ) = NS.EQ.N ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LZE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = LZE( BS, BB, LBB ) ISAME( 9 ) = LDBS.EQ.LDB ISAME( 10 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 11 ) = LZE( CS, CC, LCC ) ELSE ISAME( 11 ) = LZERES( 'GE', ' ', M, N, CS, $ CC, LDC ) END IF ISAME( 12 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 110 END IF * IF( .NOT.NULL )THEN * * Check the result. * IF( LEFT )THEN CALL ZMMCH( 'N', 'N', M, N, M, ALPHA, A, $ NMAX, B, NMAX, BETA, C, NMAX, $ CT, G, CC, LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL ZMMCH( 'N', 'N', M, N, N, ALPHA, B, $ NMAX, A, NMAX, BETA, C, NMAX, $ CT, G, CC, LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 120 * 110 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, M, N, ALPHA, LDA, $ LDB, BETA, LDC * 120 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',(', F4.1, $ ',', F4.1, '), C,', I3, ') .' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of ZCHK2. * END SUBROUTINE ZCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NMAX, A, AA, AS, $ B, BB, BS, CT, G, C ) * * Tests ZTRMM and ZTRSM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), $ ONE = ( 1.0D0, 0.0D0 ) ) DOUBLE PRECISION RZERO PARAMETER ( RZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER NALF, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CT( NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX*16 ALPHA, ALS DOUBLE PRECISION ERR, ERRMAX INTEGER I, IA, ICD, ICS, ICT, ICU, IM, IN, J, LAA, LBB, $ LDA, LDAS, LDB, LDBS, M, MS, N, NA, NARGS, NC, $ NS LOGICAL LEFT, NULL, RESET, SAME CHARACTER*1 DIAG, DIAGS, SIDE, SIDES, TRANAS, TRANSA, UPLO, $ UPLOS CHARACTER*2 ICHD, ICHS, ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL ZMAKE, ZMMCH, ZTRMM, ZTRSM * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/, ICHS/'LR'/ * .. Executable Statements .. * NARGS = 11 NC = 0 RESET = .TRUE. ERRMAX = RZERO * Set up zero matrix for ZMMCH. DO 20 J = 1, NMAX DO 10 I = 1, NMAX C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE * DO 140 IM = 1, NIDIM M = IDIM( IM ) * DO 130 IN = 1, NIDIM N = IDIM( IN ) * Set LDB to 1 more than minimum value if room. LDB = M IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 130 LBB = LDB*N NULL = M.LE.0.OR.N.LE.0 * DO 120 ICS = 1, 2 SIDE = ICHS( ICS: ICS ) LEFT = SIDE.EQ.'L' IF( LEFT )THEN NA = M ELSE NA = N END IF * Set LDA to 1 more than minimum value if room. LDA = NA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 130 LAA = LDA*NA * DO 110 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * DO 100 ICT = 1, 3 TRANSA = ICHT( ICT: ICT ) * DO 90 ICD = 1, 2 DIAG = ICHD( ICD: ICD ) * DO 80 IA = 1, NALF ALPHA = ALF( IA ) * * Generate the matrix A. * CALL ZMAKE( 'TR', UPLO, DIAG, NA, NA, A, $ NMAX, AA, LDA, RESET, ZERO ) * * Generate the matrix B. * CALL ZMAKE( 'GE', ' ', ' ', M, N, B, NMAX, $ BB, LDB, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * SIDES = SIDE UPLOS = UPLO TRANAS = TRANSA DIAGS = DIAG MS = M NS = N ALS = ALPHA DO 30 I = 1, LAA AS( I ) = AA( I ) 30 CONTINUE LDAS = LDA DO 40 I = 1, LBB BS( I ) = BB( I ) 40 CONTINUE LDBS = LDB * * Call the subroutine. * IF( SNAME( 4: 5 ).EQ.'MM' )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, $ LDA, LDB IF( REWI ) $ REWIND NTRA CALL ZTRMM( SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, AA, LDA, BB, LDB ) ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, $ LDA, LDB IF( REWI ) $ REWIND NTRA CALL ZTRSM( SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, AA, LDA, BB, LDB ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 150 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = SIDES.EQ.SIDE ISAME( 2 ) = UPLOS.EQ.UPLO ISAME( 3 ) = TRANAS.EQ.TRANSA ISAME( 4 ) = DIAGS.EQ.DIAG ISAME( 5 ) = MS.EQ.M ISAME( 6 ) = NS.EQ.N ISAME( 7 ) = ALS.EQ.ALPHA ISAME( 8 ) = LZE( AS, AA, LAA ) ISAME( 9 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 10 ) = LZE( BS, BB, LBB ) ELSE ISAME( 10 ) = LZERES( 'GE', ' ', M, N, BS, $ BB, LDB ) END IF ISAME( 11 ) = LDBS.EQ.LDB * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 50 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 50 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 150 END IF * IF( .NOT.NULL )THEN IF( SNAME( 4: 5 ).EQ.'MM' )THEN * * Check the result. * IF( LEFT )THEN CALL ZMMCH( TRANSA, 'N', M, N, M, $ ALPHA, A, NMAX, B, NMAX, $ ZERO, C, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL ZMMCH( 'N', TRANSA, M, N, N, $ ALPHA, B, NMAX, A, NMAX, $ ZERO, C, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN * * Compute approximation to original * matrix. * DO 70 J = 1, N DO 60 I = 1, M C( I, J ) = BB( I + ( J - 1 )* $ LDB ) BB( I + ( J - 1 )*LDB ) = ALPHA* $ B( I, J ) 60 CONTINUE 70 CONTINUE * IF( LEFT )THEN CALL ZMMCH( TRANSA, 'N', M, N, M, $ ONE, A, NMAX, C, NMAX, $ ZERO, B, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .FALSE. ) ELSE CALL ZMMCH( 'N', TRANSA, M, N, N, $ ONE, C, NMAX, A, NMAX, $ ZERO, B, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .FALSE. ) END IF END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 150 END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * 140 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 160 * 150 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, LDA, LDB * 160 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 4( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ') ', $ ' .' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of ZCHK3. * END SUBROUTINE ZCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests ZHERK and ZSYRK. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX*16 ZERO PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) ) DOUBLE PRECISION RONE, RZERO PARAMETER ( RONE = 1.0D0, RZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX*16 ALPHA, ALS, BETA, BETS DOUBLE PRECISION ERR, ERRMAX, RALPHA, RALS, RBETA, RBETS INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, K, KS, $ LAA, LCC, LDA, LDAS, LDC, LDCS, LJ, MA, N, NA, $ NARGS, NC, NS LOGICAL CONJ, NULL, RESET, SAME, TRAN, UPPER CHARACTER*1 TRANS, TRANSS, TRANST, UPLO, UPLOS CHARACTER*2 ICHT, ICHU * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL ZHERK, ZMAKE, ZMMCH, ZSYRK * .. Intrinsic Functions .. INTRINSIC DCMPLX, MAX, DBLE * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHT/'NC'/, ICHU/'UL'/ * .. Executable Statements .. CONJ = SNAME( 2: 3 ).EQ.'HE' * NARGS = 10 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = N IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 100 LCC = LDC*N * DO 90 IK = 1, NIDIM K = IDIM( IK ) * DO 80 ICT = 1, 2 TRANS = ICHT( ICT: ICT ) TRAN = TRANS.EQ.'C' IF( TRAN.AND..NOT.CONJ ) $ TRANS = 'T' IF( TRAN )THEN MA = K NA = N ELSE MA = N NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * * Generate the matrix A. * CALL ZMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 70 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) UPPER = UPLO.EQ.'U' * DO 60 IA = 1, NALF ALPHA = ALF( IA ) IF( CONJ )THEN RALPHA = DBLE( ALPHA ) ALPHA = DCMPLX( RALPHA, RZERO ) END IF * DO 50 IB = 1, NBET BETA = BET( IB ) IF( CONJ )THEN RBETA = DBLE( BETA ) BETA = DCMPLX( RBETA, RZERO ) END IF NULL = N.LE.0 IF( CONJ ) $ NULL = NULL.OR.( ( K.LE.0.OR.RALPHA.EQ. $ RZERO ).AND.RBETA.EQ.RONE ) * * Generate the matrix C. * CALL ZMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, C, $ NMAX, CC, LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS NS = N KS = K IF( CONJ )THEN RALS = RALPHA ELSE ALS = ALPHA END IF DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA IF( CONJ )THEN RBETS = RBETA ELSE BETS = BETA END IF DO 20 I = 1, LCC CS( I ) = CC( I ) 20 CONTINUE LDCS = LDC * * Call the subroutine. * IF( CONJ )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, $ TRANS, N, K, RALPHA, LDA, RBETA, LDC IF( REWI ) $ REWIND NTRA CALL ZHERK( UPLO, TRANS, N, K, RALPHA, AA, $ LDA, RBETA, CC, LDC ) ELSE IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, $ TRANS, N, K, ALPHA, LDA, BETA, LDC IF( REWI ) $ REWIND NTRA CALL ZSYRK( UPLO, TRANS, N, K, ALPHA, AA, $ LDA, BETA, CC, LDC ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLOS.EQ.UPLO ISAME( 2 ) = TRANSS.EQ.TRANS ISAME( 3 ) = NS.EQ.N ISAME( 4 ) = KS.EQ.K IF( CONJ )THEN ISAME( 5 ) = RALS.EQ.RALPHA ELSE ISAME( 5 ) = ALS.EQ.ALPHA END IF ISAME( 6 ) = LZE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA IF( CONJ )THEN ISAME( 8 ) = RBETS.EQ.RBETA ELSE ISAME( 8 ) = BETS.EQ.BETA END IF IF( NULL )THEN ISAME( 9 ) = LZE( CS, CC, LCC ) ELSE ISAME( 9 ) = LZERES( SNAME( 2: 3 ), UPLO, N, $ N, CS, CC, LDC ) END IF ISAME( 10 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 30 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 30 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( CONJ )THEN TRANST = 'C' ELSE TRANST = 'T' END IF JC = 1 DO 40 J = 1, N IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF IF( TRAN )THEN CALL ZMMCH( TRANST, 'N', LJ, 1, K, $ ALPHA, A( 1, JJ ), NMAX, $ A( 1, J ), NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL ZMMCH( 'N', TRANST, LJ, 1, K, $ ALPHA, A( JJ, 1 ), NMAX, $ A( J, 1 ), NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF IF( UPPER )THEN JC = JC + LDC ELSE JC = JC + LDC + 1 END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 110 40 CONTINUE END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 110 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9995 )J * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( CONJ )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, RALPHA, $ LDA, RBETA, LDC ELSE WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, N, K, ALPHA, $ LDA, BETA, LDC END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ',', F4.1, ', C,', I3, ') ', $ ' .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, ') , A,', I3, ',(', F4.1, ',', F4.1, $ '), C,', I3, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of ZCHK4. * END SUBROUTINE ZCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ AB, AA, AS, BB, BS, C, CC, CS, CT, G, W ) * * Tests ZHER2K and ZSYR2K. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), $ ONE = ( 1.0D0, 0.0D0 ) ) DOUBLE PRECISION RONE, RZERO PARAMETER ( RONE = 1.0D0, RZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX*16 AA( NMAX*NMAX ), AB( 2*NMAX*NMAX ), $ ALF( NALF ), AS( NMAX*NMAX ), BB( NMAX*NMAX ), $ BET( NBET ), BS( NMAX*NMAX ), C( NMAX, NMAX ), $ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ), $ W( 2*NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX*16 ALPHA, ALS, BETA, BETS DOUBLE PRECISION ERR, ERRMAX, RBETA, RBETS INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, JJAB, $ K, KS, LAA, LBB, LCC, LDA, LDAS, LDB, LDBS, $ LDC, LDCS, LJ, MA, N, NA, NARGS, NC, NS LOGICAL CONJ, NULL, RESET, SAME, TRAN, UPPER CHARACTER*1 TRANS, TRANSS, TRANST, UPLO, UPLOS CHARACTER*2 ICHT, ICHU * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL ZHER2K, ZMAKE, ZMMCH, ZSYR2K * .. Intrinsic Functions .. INTRINSIC DCMPLX, DCONJG, MAX, DBLE * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHT/'NC'/, ICHU/'UL'/ * .. Executable Statements .. CONJ = SNAME( 2: 3 ).EQ.'HE' * NARGS = 12 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 130 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = N IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 130 LCC = LDC*N * DO 120 IK = 1, NIDIM K = IDIM( IK ) * DO 110 ICT = 1, 2 TRANS = ICHT( ICT: ICT ) TRAN = TRANS.EQ.'C' IF( TRAN.AND..NOT.CONJ ) $ TRANS = 'T' IF( TRAN )THEN MA = K NA = N ELSE MA = N NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 110 LAA = LDA*NA * * Generate the matrix A. * IF( TRAN )THEN CALL ZMAKE( 'GE', ' ', ' ', MA, NA, AB, 2*NMAX, AA, $ LDA, RESET, ZERO ) ELSE CALL ZMAKE( 'GE', ' ', ' ', MA, NA, AB, NMAX, AA, LDA, $ RESET, ZERO ) END IF * * Generate the matrix B. * LDB = LDA LBB = LAA IF( TRAN )THEN CALL ZMAKE( 'GE', ' ', ' ', MA, NA, AB( K + 1 ), $ 2*NMAX, BB, LDB, RESET, ZERO ) ELSE CALL ZMAKE( 'GE', ' ', ' ', MA, NA, AB( K*NMAX + 1 ), $ NMAX, BB, LDB, RESET, ZERO ) END IF * DO 100 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) UPPER = UPLO.EQ.'U' * DO 90 IA = 1, NALF ALPHA = ALF( IA ) * DO 80 IB = 1, NBET BETA = BET( IB ) IF( CONJ )THEN RBETA = DBLE( BETA ) BETA = DCMPLX( RBETA, RZERO ) END IF NULL = N.LE.0 IF( CONJ ) $ NULL = NULL.OR.( ( K.LE.0.OR.ALPHA.EQ. $ ZERO ).AND.RBETA.EQ.RONE ) * * Generate the matrix C. * CALL ZMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, C, $ NMAX, CC, LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB IF( CONJ )THEN RBETS = RBETA ELSE BETS = BETA END IF DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( CONJ )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, $ TRANS, N, K, ALPHA, LDA, LDB, RBETA, LDC IF( REWI ) $ REWIND NTRA CALL ZHER2K( UPLO, TRANS, N, K, ALPHA, AA, $ LDA, BB, LDB, RBETA, CC, LDC ) ELSE IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, $ TRANS, N, K, ALPHA, LDA, LDB, BETA, LDC IF( REWI ) $ REWIND NTRA CALL ZSYR2K( UPLO, TRANS, N, K, ALPHA, AA, $ LDA, BB, LDB, BETA, CC, LDC ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 150 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLOS.EQ.UPLO ISAME( 2 ) = TRANSS.EQ.TRANS ISAME( 3 ) = NS.EQ.N ISAME( 4 ) = KS.EQ.K ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LZE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = LZE( BS, BB, LBB ) ISAME( 9 ) = LDBS.EQ.LDB IF( CONJ )THEN ISAME( 10 ) = RBETS.EQ.RBETA ELSE ISAME( 10 ) = BETS.EQ.BETA END IF IF( NULL )THEN ISAME( 11 ) = LZE( CS, CC, LCC ) ELSE ISAME( 11 ) = LZERES( 'HE', UPLO, N, N, CS, $ CC, LDC ) END IF ISAME( 12 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 150 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( CONJ )THEN TRANST = 'C' ELSE TRANST = 'T' END IF JJAB = 1 JC = 1 DO 70 J = 1, N IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF IF( TRAN )THEN DO 50 I = 1, K W( I ) = ALPHA*AB( ( J - 1 )*2* $ NMAX + K + I ) IF( CONJ )THEN W( K + I ) = DCONJG( ALPHA )* $ AB( ( J - 1 )*2* $ NMAX + I ) ELSE W( K + I ) = ALPHA* $ AB( ( J - 1 )*2* $ NMAX + I ) END IF 50 CONTINUE CALL ZMMCH( TRANST, 'N', LJ, 1, 2*K, $ ONE, AB( JJAB ), 2*NMAX, W, $ 2*NMAX, BETA, C( JJ, J ), $ NMAX, CT, G, CC( JC ), LDC, $ EPS, ERR, FATAL, NOUT, $ .TRUE. ) ELSE DO 60 I = 1, K IF( CONJ )THEN W( I ) = ALPHA*DCONJG( AB( ( K + $ I - 1 )*NMAX + J ) ) W( K + I ) = DCONJG( ALPHA* $ AB( ( I - 1 )*NMAX + $ J ) ) ELSE W( I ) = ALPHA*AB( ( K + I - 1 )* $ NMAX + J ) W( K + I ) = ALPHA* $ AB( ( I - 1 )*NMAX + $ J ) END IF 60 CONTINUE CALL ZMMCH( 'N', 'N', LJ, 1, 2*K, ONE, $ AB( JJ ), NMAX, W, 2*NMAX, $ BETA, C( JJ, J ), NMAX, CT, $ G, CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF IF( UPPER )THEN JC = JC + LDC ELSE JC = JC + LDC + 1 IF( TRAN ) $ JJAB = JJAB + 2*NMAX END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 140 70 CONTINUE END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 160 * 140 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9995 )J * 150 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( CONJ )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, ALPHA, $ LDA, LDB, RBETA, LDC ELSE WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, N, K, ALPHA, $ LDA, LDB, BETA, LDC END IF * 160 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',', F4.1, $ ', C,', I3, ') .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',(', F4.1, $ ',', F4.1, '), C,', I3, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of ZCHK5. * END SUBROUTINE ZCHKE( ISNUM, SRNAMT, NOUT ) * * Tests the error exits from the Level 3 Blas. * Requires a special version of the error-handling routine XERBLA. * ALPHA, RALPHA, BETA, RBETA, A, B and C should not need to be defined. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER ISNUM, NOUT CHARACTER*6 SRNAMT * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Local Scalars .. COMPLEX*16 ALPHA, BETA DOUBLE PRECISION RALPHA, RBETA * .. Local Arrays .. COMPLEX*16 A( 2, 1 ), B( 2, 1 ), C( 2, 1 ) * .. External Subroutines .. EXTERNAL ZGEMM, ZHEMM, ZHER2K, ZHERK, CHKXER, ZSYMM, $ ZSYR2K, ZSYRK, ZTRMM, ZTRSM * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. * OK is set to .FALSE. by the special version of XERBLA or by CHKXER * if anything is wrong. OK = .TRUE. * LERR is set to .TRUE. by the special version of XERBLA each time * it is called, and is then tested and re-set by CHKXER. LERR = .FALSE. GO TO ( 10, 20, 30, 40, 50, 60, 70, 80, $ 90 )ISNUM 10 INFOT = 1 CALL ZGEMM( '/', 'N', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 1 CALL ZGEMM( '/', 'C', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 1 CALL ZGEMM( '/', 'T', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZGEMM( 'N', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZGEMM( 'C', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZGEMM( 'T', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZGEMM( 'N', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZGEMM( 'N', 'C', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZGEMM( 'N', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZGEMM( 'C', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZGEMM( 'C', 'C', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZGEMM( 'C', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZGEMM( 'T', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZGEMM( 'T', 'C', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZGEMM( 'T', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZGEMM( 'N', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZGEMM( 'N', 'C', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZGEMM( 'N', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZGEMM( 'C', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZGEMM( 'C', 'C', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZGEMM( 'C', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZGEMM( 'T', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZGEMM( 'T', 'C', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZGEMM( 'T', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZGEMM( 'N', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZGEMM( 'N', 'C', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZGEMM( 'N', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZGEMM( 'C', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZGEMM( 'C', 'C', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZGEMM( 'C', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZGEMM( 'T', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZGEMM( 'T', 'C', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZGEMM( 'T', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZGEMM( 'N', 'C', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZGEMM( 'C', 'N', 0, 0, 2, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZGEMM( 'C', 'C', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZGEMM( 'C', 'T', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZGEMM( 'T', 'C', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZGEMM( 'T', 'T', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZGEMM( 'N', 'N', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZGEMM( 'C', 'N', 0, 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZGEMM( 'N', 'C', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZGEMM( 'C', 'C', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZGEMM( 'T', 'C', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZGEMM( 'N', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZGEMM( 'C', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZGEMM( 'T', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL ZGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL ZGEMM( 'N', 'C', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL ZGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL ZGEMM( 'C', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL ZGEMM( 'C', 'C', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL ZGEMM( 'C', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL ZGEMM( 'T', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL ZGEMM( 'T', 'C', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL ZGEMM( 'T', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 20 INFOT = 1 CALL ZHEMM( '/', 'U', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHEMM( 'L', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHEMM( 'L', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHEMM( 'R', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHEMM( 'L', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHEMM( 'R', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHEMM( 'L', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHEMM( 'R', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHEMM( 'L', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHEMM( 'R', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHEMM( 'L', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHEMM( 'R', 'U', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHEMM( 'L', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHEMM( 'R', 'L', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZHEMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZHEMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZHEMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZHEMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZHEMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZHEMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZHEMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZHEMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 30 INFOT = 1 CALL ZSYMM( '/', 'U', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSYMM( 'L', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSYMM( 'L', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSYMM( 'R', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSYMM( 'L', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSYMM( 'R', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYMM( 'L', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYMM( 'R', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYMM( 'L', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYMM( 'R', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZSYMM( 'L', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZSYMM( 'R', 'U', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZSYMM( 'L', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZSYMM( 'R', 'L', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 40 INFOT = 1 CALL ZTRMM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZTRMM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZTRMM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZTRMM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRMM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRMM( 'L', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRMM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRMM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRMM( 'R', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRMM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRMM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRMM( 'L', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRMM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRMM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRMM( 'R', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRMM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRMM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRMM( 'L', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRMM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRMM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRMM( 'R', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRMM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRMM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRMM( 'L', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRMM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRMM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRMM( 'R', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRMM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRMM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRMM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRMM( 'R', 'U', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRMM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRMM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRMM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRMM( 'R', 'L', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRMM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRMM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRMM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRMM( 'R', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRMM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRMM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRMM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRMM( 'R', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRMM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 50 INFOT = 1 CALL ZTRSM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZTRSM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZTRSM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZTRSM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRSM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRSM( 'L', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRSM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRSM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRSM( 'R', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRSM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRSM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRSM( 'L', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRSM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRSM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRSM( 'R', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTRSM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRSM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRSM( 'L', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRSM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRSM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRSM( 'R', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRSM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRSM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRSM( 'L', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRSM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRSM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRSM( 'R', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRSM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRSM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRSM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRSM( 'R', 'U', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRSM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRSM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRSM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRSM( 'R', 'L', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTRSM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRSM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRSM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRSM( 'R', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRSM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRSM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRSM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRSM( 'R', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZTRSM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 60 INFOT = 1 CALL ZHERK( '/', 'N', 0, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHERK( 'U', 'T', 0, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHERK( 'U', 'N', -1, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHERK( 'U', 'C', -1, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHERK( 'L', 'N', -1, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHERK( 'L', 'C', -1, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHERK( 'U', 'N', 0, -1, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHERK( 'U', 'C', 0, -1, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHERK( 'L', 'N', 0, -1, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHERK( 'L', 'C', 0, -1, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHERK( 'U', 'N', 2, 0, RALPHA, A, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHERK( 'U', 'C', 0, 2, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHERK( 'L', 'N', 2, 0, RALPHA, A, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHERK( 'L', 'C', 0, 2, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZHERK( 'U', 'N', 2, 0, RALPHA, A, 2, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZHERK( 'U', 'C', 2, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZHERK( 'L', 'N', 2, 0, RALPHA, A, 2, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZHERK( 'L', 'C', 2, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 70 INFOT = 1 CALL ZSYRK( '/', 'N', 0, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSYRK( 'U', 'C', 0, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSYRK( 'U', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSYRK( 'U', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSYRK( 'L', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSYRK( 'L', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYRK( 'U', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYRK( 'U', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYRK( 'L', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYRK( 'L', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZSYRK( 'U', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZSYRK( 'U', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZSYRK( 'L', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZSYRK( 'L', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZSYRK( 'U', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZSYRK( 'U', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZSYRK( 'L', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZSYRK( 'L', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 80 INFOT = 1 CALL ZHER2K( '/', 'N', 0, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHER2K( 'U', 'T', 0, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHER2K( 'U', 'N', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHER2K( 'U', 'C', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHER2K( 'L', 'N', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHER2K( 'L', 'C', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHER2K( 'U', 'N', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHER2K( 'U', 'C', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHER2K( 'L', 'N', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZHER2K( 'L', 'C', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHER2K( 'U', 'N', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHER2K( 'U', 'C', 0, 2, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHER2K( 'L', 'N', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHER2K( 'L', 'C', 0, 2, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZHER2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZHER2K( 'U', 'C', 0, 2, ALPHA, A, 2, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZHER2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZHER2K( 'L', 'C', 0, 2, ALPHA, A, 2, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZHER2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 2, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZHER2K( 'U', 'C', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZHER2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 2, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZHER2K( 'L', 'C', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 90 INFOT = 1 CALL ZSYR2K( '/', 'N', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZSYR2K( 'U', 'C', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSYR2K( 'U', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSYR2K( 'U', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSYR2K( 'L', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZSYR2K( 'L', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYR2K( 'U', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYR2K( 'U', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYR2K( 'L', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZSYR2K( 'L', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZSYR2K( 'U', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZSYR2K( 'U', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZSYR2K( 'L', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZSYR2K( 'L', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZSYR2K( 'U', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZSYR2K( 'L', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZSYR2K( 'U', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL ZSYR2K( 'L', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * 100 IF( OK )THEN WRITE( NOUT, FMT = 9999 )SRNAMT ELSE WRITE( NOUT, FMT = 9998 )SRNAMT END IF RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' ) 9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****', $ '**' ) * * End of ZCHKE. * END SUBROUTINE ZMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, RESET, $ TRANSL ) * * Generates values for an M by N matrix A. * Stores the values in the array AA in the data structure required * by the routine, with unwanted elements set to rogue value. * * TYPE is 'GE', 'HE', 'SY' or 'TR'. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), $ ONE = ( 1.0D0, 0.0D0 ) ) COMPLEX*16 ROGUE PARAMETER ( ROGUE = ( -1.0D10, 1.0D10 ) ) DOUBLE PRECISION RZERO PARAMETER ( RZERO = 0.0D0 ) DOUBLE PRECISION RROGUE PARAMETER ( RROGUE = -1.0D10 ) * .. Scalar Arguments .. COMPLEX*16 TRANSL INTEGER LDA, M, N, NMAX LOGICAL RESET CHARACTER*1 DIAG, UPLO CHARACTER*2 TYPE * .. Array Arguments .. COMPLEX*16 A( NMAX, * ), AA( * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J, JJ LOGICAL GEN, HER, LOWER, SYM, TRI, UNIT, UPPER * .. External Functions .. COMPLEX*16 ZBEG EXTERNAL ZBEG * .. Intrinsic Functions .. INTRINSIC DCMPLX, DCONJG, DBLE * .. Executable Statements .. GEN = TYPE.EQ.'GE' HER = TYPE.EQ.'HE' SYM = TYPE.EQ.'SY' TRI = TYPE.EQ.'TR' UPPER = ( HER.OR.SYM.OR.TRI ).AND.UPLO.EQ.'U' LOWER = ( HER.OR.SYM.OR.TRI ).AND.UPLO.EQ.'L' UNIT = TRI.AND.DIAG.EQ.'U' * * Generate data in array A. * DO 20 J = 1, N DO 10 I = 1, M IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) ) $ THEN A( I, J ) = ZBEG( RESET ) + TRANSL IF( I.NE.J )THEN * Set some elements to zero IF( N.GT.3.AND.J.EQ.N/2 ) $ A( I, J ) = ZERO IF( HER )THEN A( J, I ) = DCONJG( A( I, J ) ) ELSE IF( SYM )THEN A( J, I ) = A( I, J ) ELSE IF( TRI )THEN A( J, I ) = ZERO END IF END IF END IF 10 CONTINUE IF( HER ) $ A( J, J ) = DCMPLX( DBLE( A( J, J ) ), RZERO ) IF( TRI ) $ A( J, J ) = A( J, J ) + ONE IF( UNIT ) $ A( J, J ) = ONE 20 CONTINUE * * Store elements in array AS in data structure required by routine. * IF( TYPE.EQ.'GE' )THEN DO 50 J = 1, N DO 30 I = 1, M AA( I + ( J - 1 )*LDA ) = A( I, J ) 30 CONTINUE DO 40 I = M + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 40 CONTINUE 50 CONTINUE ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'SY'.OR.TYPE.EQ.'TR' )THEN DO 90 J = 1, N IF( UPPER )THEN IBEG = 1 IF( UNIT )THEN IEND = J - 1 ELSE IEND = J END IF ELSE IF( UNIT )THEN IBEG = J + 1 ELSE IBEG = J END IF IEND = N END IF DO 60 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 60 CONTINUE DO 70 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I, J ) 70 CONTINUE DO 80 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 80 CONTINUE IF( HER )THEN JJ = J + ( J - 1 )*LDA AA( JJ ) = DCMPLX( DBLE( AA( JJ ) ), RROGUE ) END IF 90 CONTINUE END IF RETURN * * End of ZMAKE. * END SUBROUTINE ZMMCH( TRANSA, TRANSB, M, N, KK, ALPHA, A, LDA, B, LDB, $ BETA, C, LDC, CT, G, CC, LDCC, EPS, ERR, FATAL, $ NOUT, MV ) * * Checks the results of the computational tests. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX*16 ZERO PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) ) DOUBLE PRECISION RZERO, RONE PARAMETER ( RZERO = 0.0D0, RONE = 1.0D0 ) * .. Scalar Arguments .. COMPLEX*16 ALPHA, BETA DOUBLE PRECISION EPS, ERR INTEGER KK, LDA, LDB, LDC, LDCC, M, N, NOUT LOGICAL FATAL, MV CHARACTER*1 TRANSA, TRANSB * .. Array Arguments .. COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ), $ CC( LDCC, * ), CT( * ) DOUBLE PRECISION G( * ) * .. Local Scalars .. COMPLEX*16 CL DOUBLE PRECISION ERRI INTEGER I, J, K LOGICAL CTRANA, CTRANB, TRANA, TRANB * .. Intrinsic Functions .. INTRINSIC ABS, DIMAG, DCONJG, MAX, DBLE, SQRT * .. Statement Functions .. DOUBLE PRECISION ABS1 * .. Statement Function definitions .. ABS1( CL ) = ABS( DBLE( CL ) ) + ABS( DIMAG( CL ) ) * .. Executable Statements .. TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C' TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C' CTRANA = TRANSA.EQ.'C' CTRANB = TRANSB.EQ.'C' * * Compute expected result, one column at a time, in CT using data * in A, B and C. * Compute gauges in G. * DO 220 J = 1, N * DO 10 I = 1, M CT( I ) = ZERO G( I ) = RZERO 10 CONTINUE IF( .NOT.TRANA.AND..NOT.TRANB )THEN DO 30 K = 1, KK DO 20 I = 1, M CT( I ) = CT( I ) + A( I, K )*B( K, J ) G( I ) = G( I ) + ABS1( A( I, K ) )*ABS1( B( K, J ) ) 20 CONTINUE 30 CONTINUE ELSE IF( TRANA.AND..NOT.TRANB )THEN IF( CTRANA )THEN DO 50 K = 1, KK DO 40 I = 1, M CT( I ) = CT( I ) + DCONJG( A( K, I ) )*B( K, J ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( K, J ) ) 40 CONTINUE 50 CONTINUE ELSE DO 70 K = 1, KK DO 60 I = 1, M CT( I ) = CT( I ) + A( K, I )*B( K, J ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( K, J ) ) 60 CONTINUE 70 CONTINUE END IF ELSE IF( .NOT.TRANA.AND.TRANB )THEN IF( CTRANB )THEN DO 90 K = 1, KK DO 80 I = 1, M CT( I ) = CT( I ) + A( I, K )*DCONJG( B( J, K ) ) G( I ) = G( I ) + ABS1( A( I, K ) )* $ ABS1( B( J, K ) ) 80 CONTINUE 90 CONTINUE ELSE DO 110 K = 1, KK DO 100 I = 1, M CT( I ) = CT( I ) + A( I, K )*B( J, K ) G( I ) = G( I ) + ABS1( A( I, K ) )* $ ABS1( B( J, K ) ) 100 CONTINUE 110 CONTINUE END IF ELSE IF( TRANA.AND.TRANB )THEN IF( CTRANA )THEN IF( CTRANB )THEN DO 130 K = 1, KK DO 120 I = 1, M CT( I ) = CT( I ) + DCONJG( A( K, I ) )* $ DCONJG( B( J, K ) ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 120 CONTINUE 130 CONTINUE ELSE DO 150 K = 1, KK DO 140 I = 1, M CT( I ) = CT( I ) + DCONJG( A( K, I ) )* $ B( J, K ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 140 CONTINUE 150 CONTINUE END IF ELSE IF( CTRANB )THEN DO 170 K = 1, KK DO 160 I = 1, M CT( I ) = CT( I ) + A( K, I )* $ DCONJG( B( J, K ) ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 160 CONTINUE 170 CONTINUE ELSE DO 190 K = 1, KK DO 180 I = 1, M CT( I ) = CT( I ) + A( K, I )*B( J, K ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 180 CONTINUE 190 CONTINUE END IF END IF END IF DO 200 I = 1, M CT( I ) = ALPHA*CT( I ) + BETA*C( I, J ) G( I ) = ABS1( ALPHA )*G( I ) + $ ABS1( BETA )*ABS1( C( I, J ) ) 200 CONTINUE * * Compute the error ratio for this result. * ERR = ZERO DO 210 I = 1, M ERRI = ABS1( CT( I ) - CC( I, J ) )/EPS IF( G( I ).NE.RZERO ) $ ERRI = ERRI/G( I ) ERR = MAX( ERR, ERRI ) IF( ERR*SQRT( EPS ).GE.RONE ) $ GO TO 230 210 CONTINUE * 220 CONTINUE * * If the loop completes, all results are at least half accurate. GO TO 250 * * Report fatal error. * 230 FATAL = .TRUE. WRITE( NOUT, FMT = 9999 ) DO 240 I = 1, M IF( MV )THEN WRITE( NOUT, FMT = 9998 )I, CT( I ), CC( I, J ) ELSE WRITE( NOUT, FMT = 9998 )I, CC( I, J ), CT( I ) END IF 240 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9997 )J * 250 CONTINUE RETURN * 9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL', $ 'F ACCURATE *******', /' EXPECTED RE', $ 'SULT COMPUTED RESULT' ) 9998 FORMAT( 1X, I7, 2( ' (', G15.6, ',', G15.6, ')' ) ) 9997 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) * * End of ZMMCH. * END LOGICAL FUNCTION LZE( RI, RJ, LR ) * * Tests if two arrays are identical. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER LR * .. Array Arguments .. COMPLEX*16 RI( * ), RJ( * ) * .. Local Scalars .. INTEGER I * .. Executable Statements .. DO 10 I = 1, LR IF( RI( I ).NE.RJ( I ) ) $ GO TO 20 10 CONTINUE LZE = .TRUE. GO TO 30 20 CONTINUE LZE = .FALSE. 30 RETURN * * End of LZE. * END LOGICAL FUNCTION LZERES( TYPE, UPLO, M, N, AA, AS, LDA ) * * Tests if selected elements in two arrays are equal. * * TYPE is 'GE' or 'HE' or 'SY'. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER LDA, M, N CHARACTER*1 UPLO CHARACTER*2 TYPE * .. Array Arguments .. COMPLEX*16 AA( LDA, * ), AS( LDA, * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J LOGICAL UPPER * .. Executable Statements .. UPPER = UPLO.EQ.'U' IF( TYPE.EQ.'GE' )THEN DO 20 J = 1, N DO 10 I = M + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 10 CONTINUE 20 CONTINUE ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'SY' )THEN DO 50 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 30 I = 1, IBEG - 1 IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 30 CONTINUE DO 40 I = IEND + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 40 CONTINUE 50 CONTINUE END IF * 60 CONTINUE LZERES = .TRUE. GO TO 80 70 CONTINUE LZERES = .FALSE. 80 RETURN * * End of LZERES. * END COMPLEX*16 FUNCTION ZBEG( RESET ) * * Generates complex numbers as pairs of random numbers uniformly * distributed between -0.5 and 0.5. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. LOGICAL RESET * .. Local Scalars .. INTEGER I, IC, J, MI, MJ * .. Save statement .. SAVE I, IC, J, MI, MJ * .. Intrinsic Functions .. INTRINSIC DCMPLX * .. Executable Statements .. IF( RESET )THEN * Initialize local variables. MI = 891 MJ = 457 I = 7 J = 7 IC = 0 RESET = .FALSE. END IF * * The sequence of values of I or J is bounded between 1 and 999. * If initial I or J = 1,2,3,6,7 or 9, the period will be 50. * If initial I or J = 4 or 8, the period will be 25. * If initial I or J = 5, the period will be 10. * IC is used to break up the period by skipping 1 value of I or J * in 6. * IC = IC + 1 10 I = I*MI J = J*MJ I = I - 1000*( I/1000 ) J = J - 1000*( J/1000 ) IF( IC.GE.5 )THEN IC = 0 GO TO 10 END IF ZBEG = DCMPLX( ( I - 500 )/1001.0D0, ( J - 500 )/1001.0D0 ) RETURN * * End of ZBEG. * END DOUBLE PRECISION FUNCTION DDIFF( X, Y ) * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. DOUBLE PRECISION X, Y * .. Executable Statements .. DDIFF = X - Y RETURN * * End of DDIFF. * END SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * * Tests whether XERBLA has detected an error when it should. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Executable Statements .. IF( .NOT.LERR )THEN WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT OK = .FALSE. END IF LERR = .FALSE. RETURN * 9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D', $ 'ETECTED BY ', A6, ' *****' ) * * End of CHKXER. * END SUBROUTINE XERBLA( SRNAME, INFO ) * * This is a special version of XERBLA to be used only as part of * the test program for testing error exits from the Level 3 BLAS * routines. * * XERBLA is an error handler for the Level 3 BLAS routines. * * It is called by the Level 3 BLAS routines if an input parameter is * invalid. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER INFO CHARACTER*6 SRNAME * .. Scalars in Common .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUT, OK, LERR COMMON /SRNAMC/SRNAMT * .. Executable Statements .. LERR = .TRUE. IF( INFO.NE.INFOT )THEN IF( INFOT.NE.0 )THEN WRITE( NOUT, FMT = 9999 )INFO, INFOT ELSE WRITE( NOUT, FMT = 9997 )INFO END IF OK = .FALSE. END IF IF( SRNAME.NE.SRNAMT )THEN WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT OK = .FALSE. END IF RETURN * 9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD', $ ' OF ', I2, ' *******' ) 9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE', $ 'AD OF ', A6, ' *******' ) 9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, $ ' *******' ) * * End of XERBLA * END blas-1.2.orig/test/cblat3d 0000644 0001750 0001750 00000002026 10735444622 016343 0 ustar sylvestre sylvestre 'CBLAT3.SUMM' NAME OF SUMMARY OUTPUT FILE 6 UNIT NUMBER OF SUMMARY FILE 'CBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. F LOGICAL FLAG, T TO STOP ON FAILURES. F LOGICAL FLAG, T TO TEST ERROR EXITS. 16.0 THRESHOLD VALUE OF TEST RATIO 6 NUMBER OF VALUES OF N 0 1 2 3 5 9 VALUES OF N 3 NUMBER OF VALUES OF ALPHA (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA 3 NUMBER OF VALUES OF BETA (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA CGEMM T PUT F FOR NO TEST. SAME COLUMNS. CHEMM T PUT F FOR NO TEST. SAME COLUMNS. CSYMM T PUT F FOR NO TEST. SAME COLUMNS. CTRMM T PUT F FOR NO TEST. SAME COLUMNS. CTRSM T PUT F FOR NO TEST. SAME COLUMNS. CHERK T PUT F FOR NO TEST. SAME COLUMNS. CSYRK T PUT F FOR NO TEST. SAME COLUMNS. CHER2K T PUT F FOR NO TEST. SAME COLUMNS. CSYR2K T PUT F FOR NO TEST. SAME COLUMNS. blas-1.2.orig/test/sblat3d 0000644 0001750 0001750 00000001562 10735444622 016367 0 ustar sylvestre sylvestre 'SBLAT3.SUMM' NAME OF SUMMARY OUTPUT FILE 6 UNIT NUMBER OF SUMMARY FILE 'SBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. F LOGICAL FLAG, T TO STOP ON FAILURES. T LOGICAL FLAG, T TO TEST ERROR EXITS. 16.0 THRESHOLD VALUE OF TEST RATIO 6 NUMBER OF VALUES OF N 0 1 2 3 5 9 VALUES OF N 3 NUMBER OF VALUES OF ALPHA 0.0 1.0 0.7 VALUES OF ALPHA 3 NUMBER OF VALUES OF BETA 0.0 1.0 1.3 VALUES OF BETA SGEMM T PUT F FOR NO TEST. SAME COLUMNS. SSYMM T PUT F FOR NO TEST. SAME COLUMNS. STRMM T PUT F FOR NO TEST. SAME COLUMNS. STRSM T PUT F FOR NO TEST. SAME COLUMNS. SSYRK T PUT F FOR NO TEST. SAME COLUMNS. SSYR2K T PUT F FOR NO TEST. SAME COLUMNS. blas-1.2.orig/test/dblat2 0000644 0001750 0001750 00000331434 10735444622 016207 0 ustar sylvestre sylvestre PROGRAM DBLAT2 * * Test program for the DOUBLE PRECISION Level 2 Blas. * * The program must be driven by a short data file. The first 18 records * of the file are read using list-directed input, the last 16 records * are read using the format ( A6, L2 ). An annotated example of a data * file can be obtained by deleting the first 3 characters from the * following 34 lines: * 'DBLAT2.SUMM' NAME OF SUMMARY OUTPUT FILE * 6 UNIT NUMBER OF SUMMARY FILE * 'DBLAT2.SNAP' NAME OF SNAPSHOT OUTPUT FILE * -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) * F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. * F LOGICAL FLAG, T TO STOP ON FAILURES. * T LOGICAL FLAG, T TO TEST ERROR EXITS. * 16.0 THRESHOLD VALUE OF TEST RATIO * 6 NUMBER OF VALUES OF N * 0 1 2 3 5 9 VALUES OF N * 4 NUMBER OF VALUES OF K * 0 1 2 4 VALUES OF K * 4 NUMBER OF VALUES OF INCX AND INCY * 1 2 -1 -2 VALUES OF INCX AND INCY * 3 NUMBER OF VALUES OF ALPHA * 0.0 1.0 0.7 VALUES OF ALPHA * 3 NUMBER OF VALUES OF BETA * 0.0 1.0 0.9 VALUES OF BETA * DGEMV T PUT F FOR NO TEST. SAME COLUMNS. * DGBMV T PUT F FOR NO TEST. SAME COLUMNS. * DSYMV T PUT F FOR NO TEST. SAME COLUMNS. * DSBMV T PUT F FOR NO TEST. SAME COLUMNS. * DSPMV T PUT F FOR NO TEST. SAME COLUMNS. * DTRMV T PUT F FOR NO TEST. SAME COLUMNS. * DTBMV T PUT F FOR NO TEST. SAME COLUMNS. * DTPMV T PUT F FOR NO TEST. SAME COLUMNS. * DTRSV T PUT F FOR NO TEST. SAME COLUMNS. * DTBSV T PUT F FOR NO TEST. SAME COLUMNS. * DTPSV T PUT F FOR NO TEST. SAME COLUMNS. * DGER T PUT F FOR NO TEST. SAME COLUMNS. * DSYR T PUT F FOR NO TEST. SAME COLUMNS. * DSPR T PUT F FOR NO TEST. SAME COLUMNS. * DSYR2 T PUT F FOR NO TEST. SAME COLUMNS. * DSPR2 T PUT F FOR NO TEST. SAME COLUMNS. * * See: * * Dongarra J. J., Du Croz J. J., Hammarling S. and Hanson R. J.. * An extended set of Fortran Basic Linear Algebra Subprograms. * * Technical Memoranda Nos. 41 (revision 3) and 81, Mathematics * and Computer Science Division, Argonne National Laboratory, * 9700 South Cass Avenue, Argonne, Illinois 60439, US. * * Or * * NAG Technical Reports TR3/87 and TR4/87, Numerical Algorithms * Group Ltd., NAG Central Office, 256 Banbury Road, Oxford * OX2 7DE, UK, and Numerical Algorithms Group Inc., 1101 31st * Street, Suite 100, Downers Grove, Illinois 60515-1263, USA. * * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. INTEGER NIN PARAMETER ( NIN = 5 ) INTEGER NSUBS PARAMETER ( NSUBS = 16 ) DOUBLE PRECISION ZERO, HALF, ONE PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 ) INTEGER NMAX, INCMAX PARAMETER ( NMAX = 65, INCMAX = 2 ) INTEGER NINMAX, NIDMAX, NKBMAX, NALMAX, NBEMAX PARAMETER ( NINMAX = 7, NIDMAX = 9, NKBMAX = 7, $ NALMAX = 7, NBEMAX = 7 ) * .. Local Scalars .. DOUBLE PRECISION EPS, ERR, THRESH INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NINC, NKB, $ NOUT, NTRA LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE, $ TSTERR CHARACTER*1 TRANS CHARACTER*6 SNAMET CHARACTER*32 SNAPS, SUMMRY * .. Local Arrays .. DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), $ ALF( NALMAX ), AS( NMAX*NMAX ), BET( NBEMAX ), $ G( NMAX ), X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( 2*NMAX ) INTEGER IDIM( NIDMAX ), INC( NINMAX ), KB( NKBMAX ) LOGICAL LTEST( NSUBS ) CHARACTER*6 SNAMES( NSUBS ) * .. External Functions .. DOUBLE PRECISION DDIFF LOGICAL LDE EXTERNAL DDIFF, LDE * .. External Subroutines .. EXTERNAL DCHK1, DCHK2, DCHK3, DCHK4, DCHK5, DCHK6, $ DCHKE, DMVCH * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR COMMON /SRNAMC/SRNAMT * .. Data statements .. DATA SNAMES/'DGEMV ', 'DGBMV ', 'DSYMV ', 'DSBMV ', $ 'DSPMV ', 'DTRMV ', 'DTBMV ', 'DTPMV ', $ 'DTRSV ', 'DTBSV ', 'DTPSV ', 'DGER ', $ 'DSYR ', 'DSPR ', 'DSYR2 ', 'DSPR2 '/ * .. Executable Statements .. * * Read name and unit number for summary output file and open file. * READ( NIN, FMT = * )SUMMRY READ( NIN, FMT = * )NOUT OPEN( NOUT, FILE = SUMMRY, STATUS = 'NEW' ) NOUTC = NOUT * * Read name and unit number for snapshot output file and open file. * READ( NIN, FMT = * )SNAPS READ( NIN, FMT = * )NTRA TRACE = NTRA.GE.0 IF( TRACE )THEN OPEN( NTRA, FILE = SNAPS, STATUS = 'NEW' ) END IF * Read the flag that directs rewinding of the snapshot file. READ( NIN, FMT = * )REWI REWI = REWI.AND.TRACE * Read the flag that directs stopping on any failure. READ( NIN, FMT = * )SFATAL * Read the flag that indicates whether error exits are to be tested. READ( NIN, FMT = * )TSTERR * Read the threshold value of the test ratio READ( NIN, FMT = * )THRESH * * Read and check the parameter values for the tests. * * Values of N READ( NIN, FMT = * )NIDIM IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN WRITE( NOUT, FMT = 9997 )'N', NIDMAX GO TO 230 END IF READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM ) DO 10 I = 1, NIDIM IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN WRITE( NOUT, FMT = 9996 )NMAX GO TO 230 END IF 10 CONTINUE * Values of K READ( NIN, FMT = * )NKB IF( NKB.LT.1.OR.NKB.GT.NKBMAX )THEN WRITE( NOUT, FMT = 9997 )'K', NKBMAX GO TO 230 END IF READ( NIN, FMT = * )( KB( I ), I = 1, NKB ) DO 20 I = 1, NKB IF( KB( I ).LT.0 )THEN WRITE( NOUT, FMT = 9995 ) GO TO 230 END IF 20 CONTINUE * Values of INCX and INCY READ( NIN, FMT = * )NINC IF( NINC.LT.1.OR.NINC.GT.NINMAX )THEN WRITE( NOUT, FMT = 9997 )'INCX AND INCY', NINMAX GO TO 230 END IF READ( NIN, FMT = * )( INC( I ), I = 1, NINC ) DO 30 I = 1, NINC IF( INC( I ).EQ.0.OR.ABS( INC( I ) ).GT.INCMAX )THEN WRITE( NOUT, FMT = 9994 )INCMAX GO TO 230 END IF 30 CONTINUE * Values of ALPHA READ( NIN, FMT = * )NALF IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX GO TO 230 END IF READ( NIN, FMT = * )( ALF( I ), I = 1, NALF ) * Values of BETA READ( NIN, FMT = * )NBET IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX GO TO 230 END IF READ( NIN, FMT = * )( BET( I ), I = 1, NBET ) * * Report values of parameters. * WRITE( NOUT, FMT = 9993 ) WRITE( NOUT, FMT = 9992 )( IDIM( I ), I = 1, NIDIM ) WRITE( NOUT, FMT = 9991 )( KB( I ), I = 1, NKB ) WRITE( NOUT, FMT = 9990 )( INC( I ), I = 1, NINC ) WRITE( NOUT, FMT = 9989 )( ALF( I ), I = 1, NALF ) WRITE( NOUT, FMT = 9988 )( BET( I ), I = 1, NBET ) IF( .NOT.TSTERR )THEN WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9980 ) END IF WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9999 )THRESH WRITE( NOUT, FMT = * ) * * Read names of subroutines and flags which indicate * whether they are to be tested. * DO 40 I = 1, NSUBS LTEST( I ) = .FALSE. 40 CONTINUE 50 READ( NIN, FMT = 9984, END = 80 )SNAMET, LTESTT DO 60 I = 1, NSUBS IF( SNAMET.EQ.SNAMES( I ) ) $ GO TO 70 60 CONTINUE WRITE( NOUT, FMT = 9986 )SNAMET STOP 70 LTEST( I ) = LTESTT GO TO 50 * 80 CONTINUE CLOSE ( NIN ) * * Compute EPS (the machine precision). * EPS = ONE 90 CONTINUE IF( DDIFF( ONE + EPS, ONE ).EQ.ZERO ) $ GO TO 100 EPS = HALF*EPS GO TO 90 100 CONTINUE EPS = EPS + EPS WRITE( NOUT, FMT = 9998 )EPS * * Check the reliability of DMVCH using exact data. * N = MIN( 32, NMAX ) DO 120 J = 1, N DO 110 I = 1, N A( I, J ) = MAX( I - J + 1, 0 ) 110 CONTINUE X( J ) = J Y( J ) = ZERO 120 CONTINUE DO 130 J = 1, N YY( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3 130 CONTINUE * YY holds the exact result. On exit from DMVCH YT holds * the result computed by DMVCH. TRANS = 'N' CALL DMVCH( TRANS, N, N, ONE, A, NMAX, X, 1, ZERO, Y, 1, YT, G, $ YY, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LDE( YY, YT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR STOP END IF TRANS = 'T' CALL DMVCH( TRANS, N, N, ONE, A, NMAX, X, -1, ZERO, Y, -1, YT, G, $ YY, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LDE( YY, YT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR STOP END IF * * Test each subroutine in turn. * DO 210 ISNUM = 1, NSUBS WRITE( NOUT, FMT = * ) IF( .NOT.LTEST( ISNUM ) )THEN * Subprogram is not to be tested. WRITE( NOUT, FMT = 9983 )SNAMES( ISNUM ) ELSE SRNAMT = SNAMES( ISNUM ) * Test error exits. IF( TSTERR )THEN CALL DCHKE( ISNUM, SNAMES( ISNUM ), NOUT ) WRITE( NOUT, FMT = * ) END IF * Test computations. INFOT = 0 OK = .TRUE. FATAL = .FALSE. GO TO ( 140, 140, 150, 150, 150, 160, 160, $ 160, 160, 160, 160, 170, 180, 180, $ 190, 190 )ISNUM * Test DGEMV, 01, and DGBMV, 02. 140 CALL DCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, $ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS, $ X, XX, XS, Y, YY, YS, YT, G ) GO TO 200 * Test DSYMV, 03, DSBMV, 04, and DSPMV, 05. 150 CALL DCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, $ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS, $ X, XX, XS, Y, YY, YS, YT, G ) GO TO 200 * Test DTRMV, 06, DTBMV, 07, DTPMV, 08, * DTRSV, 09, DTBSV, 10, and DTPSV, 11. 160 CALL DCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NKB, KB, NINC, INC, $ NMAX, INCMAX, A, AA, AS, Y, YY, YS, YT, G, Z ) GO TO 200 * Test DGER, 12. 170 CALL DCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, $ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, $ YT, G, Z ) GO TO 200 * Test DSYR, 13, and DSPR, 14. 180 CALL DCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, $ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, $ YT, G, Z ) GO TO 200 * Test DSYR2, 15, and DSPR2, 16. 190 CALL DCHK6( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, $ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, $ YT, G, Z ) * 200 IF( FATAL.AND.SFATAL ) $ GO TO 220 END IF 210 CONTINUE WRITE( NOUT, FMT = 9982 ) GO TO 240 * 220 CONTINUE WRITE( NOUT, FMT = 9981 ) GO TO 240 * 230 CONTINUE WRITE( NOUT, FMT = 9987 ) * 240 CONTINUE IF( TRACE ) $ CLOSE ( NTRA ) CLOSE ( NOUT ) STOP * 9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES', $ 'S THAN', F8.2 ) 9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, D9.1 ) 9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ', $ 'THAN ', I2 ) 9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 ) 9995 FORMAT( ' VALUE OF K IS LESS THAN 0' ) 9994 FORMAT( ' ABSOLUTE VALUE OF INCX OR INCY IS 0 OR GREATER THAN ', $ I2 ) 9993 FORMAT( ' TESTS OF THE DOUBLE PRECISION LEVEL 2 BLAS', //' THE F', $ 'OLLOWING PARAMETER VALUES WILL BE USED:' ) 9992 FORMAT( ' FOR N ', 9I6 ) 9991 FORMAT( ' FOR K ', 7I6 ) 9990 FORMAT( ' FOR INCX AND INCY ', 7I6 ) 9989 FORMAT( ' FOR ALPHA ', 7F6.1 ) 9988 FORMAT( ' FOR BETA ', 7F6.1 ) 9987 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM', $ /' ******* TESTS ABANDONED *******' ) 9986 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T', $ 'ESTS ABANDONED *******' ) 9985 FORMAT( ' ERROR IN DMVCH - IN-LINE DOT PRODUCTS ARE BEING EVALU', $ 'ATED WRONGLY.', /' DMVCH WAS CALLED WITH TRANS = ', A1, $ ' AND RETURNED SAME = ', L1, ' AND ERR = ', F12.3, '.', / $ ' THIS MAY BE DUE TO FAULTS IN THE ARITHMETIC OR THE COMPILER.' $ , /' ******* TESTS ABANDONED *******' ) 9984 FORMAT( A6, L2 ) 9983 FORMAT( 1X, A6, ' WAS NOT TESTED' ) 9982 FORMAT( /' END OF TESTS' ) 9981 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' ) 9980 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' ) * * End of DBLAT2. * END SUBROUTINE DCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET, $ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX, $ XS, Y, YY, YS, YT, G ) * * Tests DGEMV and DGBMV. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. DOUBLE PRECISION ZERO, HALF PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX, $ NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), BET( NBET ), G( NMAX ), $ X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ) INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB ) * .. Local Scalars .. DOUBLE PRECISION ALPHA, ALS, BETA, BLS, ERR, ERRMAX, TRANSL INTEGER I, IA, IB, IC, IKU, IM, IN, INCX, INCXS, INCY, $ INCYS, IX, IY, KL, KLS, KU, KUS, LAA, LDA, $ LDAS, LX, LY, M, ML, MS, N, NARGS, NC, ND, NK, $ NL, NS LOGICAL BANDED, FULL, NULL, RESET, SAME, TRAN CHARACTER*1 TRANS, TRANSS CHARACTER*3 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LDE, LDERES EXTERNAL LDE, LDERES * .. External Subroutines .. EXTERNAL DGBMV, DGEMV, DMAKE, DMVCH * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'NTC'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'E' BANDED = SNAME( 3: 3 ).EQ.'B' * Define the number of arguments. IF( FULL )THEN NARGS = 11 ELSE IF( BANDED )THEN NARGS = 13 END IF * NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 120 IN = 1, NIDIM N = IDIM( IN ) ND = N/2 + 1 * DO 110 IM = 1, 2 IF( IM.EQ.1 ) $ M = MAX( N - ND, 0 ) IF( IM.EQ.2 ) $ M = MIN( N + ND, NMAX ) * IF( BANDED )THEN NK = NKB ELSE NK = 1 END IF DO 100 IKU = 1, NK IF( BANDED )THEN KU = KB( IKU ) KL = MAX( KU - 1, 0 ) ELSE KU = N - 1 KL = M - 1 END IF * Set LDA to 1 more than minimum value if room. IF( BANDED )THEN LDA = KL + KU + 1 ELSE LDA = M END IF IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 LAA = LDA*N NULL = N.LE.0.OR.M.LE.0 * * Generate the matrix A. * TRANSL = ZERO CALL DMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX, AA, $ LDA, KL, KU, RESET, TRANSL ) * DO 90 IC = 1, 3 TRANS = ICH( IC: IC ) TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C' * IF( TRAN )THEN ML = N NL = M ELSE ML = M NL = N END IF * DO 80 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*NL * * Generate the vector X. * TRANSL = HALF CALL DMAKE( 'GE', ' ', ' ', 1, NL, X, 1, XX, $ ABS( INCX ), 0, NL - 1, RESET, TRANSL ) IF( NL.GT.1 )THEN X( NL/2 ) = ZERO XX( 1 + ABS( INCX )*( NL/2 - 1 ) ) = ZERO END IF * DO 70 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*ML * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the vector Y. * TRANSL = ZERO CALL DMAKE( 'GE', ' ', ' ', 1, ML, Y, 1, $ YY, ABS( INCY ), 0, ML - 1, $ RESET, TRANSL ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * TRANSS = TRANS MS = M NS = N KLS = KL KUS = KU ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX BLS = BETA DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ TRANS, M, N, ALPHA, LDA, INCX, BETA, $ INCY IF( REWI ) $ REWIND NTRA CALL DGEMV( TRANS, M, N, ALPHA, AA, $ LDA, XX, INCX, BETA, YY, $ INCY ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ TRANS, M, N, KL, KU, ALPHA, LDA, $ INCX, BETA, INCY IF( REWI ) $ REWIND NTRA CALL DGBMV( TRANS, M, N, KL, KU, ALPHA, $ AA, LDA, XX, INCX, BETA, $ YY, INCY ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 130 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = TRANS.EQ.TRANSS ISAME( 2 ) = MS.EQ.M ISAME( 3 ) = NS.EQ.N IF( FULL )THEN ISAME( 4 ) = ALS.EQ.ALPHA ISAME( 5 ) = LDE( AS, AA, LAA ) ISAME( 6 ) = LDAS.EQ.LDA ISAME( 7 ) = LDE( XS, XX, LX ) ISAME( 8 ) = INCXS.EQ.INCX ISAME( 9 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 10 ) = LDE( YS, YY, LY ) ELSE ISAME( 10 ) = LDERES( 'GE', ' ', 1, $ ML, YS, YY, $ ABS( INCY ) ) END IF ISAME( 11 ) = INCYS.EQ.INCY ELSE IF( BANDED )THEN ISAME( 4 ) = KLS.EQ.KL ISAME( 5 ) = KUS.EQ.KU ISAME( 6 ) = ALS.EQ.ALPHA ISAME( 7 ) = LDE( AS, AA, LAA ) ISAME( 8 ) = LDAS.EQ.LDA ISAME( 9 ) = LDE( XS, XX, LX ) ISAME( 10 ) = INCXS.EQ.INCX ISAME( 11 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 12 ) = LDE( YS, YY, LY ) ELSE ISAME( 12 ) = LDERES( 'GE', ' ', 1, $ ML, YS, YY, $ ABS( INCY ) ) END IF ISAME( 13 ) = INCYS.EQ.INCY END IF * * If data was incorrectly changed, report * and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 130 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL DMVCH( TRANS, M, N, ALPHA, A, $ NMAX, X, INCX, BETA, Y, $ INCY, YT, G, YY, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 130 ELSE * Avoid repeating tests with M.le.0 or * N.le.0. GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 140 * 130 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, TRANS, M, N, ALPHA, LDA, $ INCX, BETA, INCY ELSE IF( BANDED )THEN WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANS, M, N, KL, KU, $ ALPHA, LDA, INCX, BETA, INCY END IF * 140 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 4( I3, ',' ), F4.1, $ ', A,', I3, ', X,', I2, ',', F4.1, ', Y,', I2, ') .' ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), F4.1, $ ', A,', I3, ', X,', I2, ',', F4.1, ', Y,', I2, $ ') .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of DCHK1. * END SUBROUTINE DCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET, $ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX, $ XS, Y, YY, YS, YT, G ) * * Tests DSYMV, DSBMV and DSPMV. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. DOUBLE PRECISION ZERO, HALF PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX, $ NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), BET( NBET ), G( NMAX ), $ X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ) INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB ) * .. Local Scalars .. DOUBLE PRECISION ALPHA, ALS, BETA, BLS, ERR, ERRMAX, TRANSL INTEGER I, IA, IB, IC, IK, IN, INCX, INCXS, INCY, $ INCYS, IX, IY, K, KS, LAA, LDA, LDAS, LX, LY, $ N, NARGS, NC, NK, NS LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME CHARACTER*1 UPLO, UPLOS CHARACTER*2 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LDE, LDERES EXTERNAL LDE, LDERES * .. External Subroutines .. EXTERNAL DMAKE, DMVCH, DSBMV, DSPMV, DSYMV * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'UL'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'Y' BANDED = SNAME( 3: 3 ).EQ.'B' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 10 ELSE IF( BANDED )THEN NARGS = 11 ELSE IF( PACKED )THEN NARGS = 9 END IF * NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 110 IN = 1, NIDIM N = IDIM( IN ) * IF( BANDED )THEN NK = NKB ELSE NK = 1 END IF DO 100 IK = 1, NK IF( BANDED )THEN K = KB( IK ) ELSE K = N - 1 END IF * Set LDA to 1 more than minimum value if room. IF( BANDED )THEN LDA = K + 1 ELSE LDA = N END IF IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF NULL = N.LE.0 * DO 90 IC = 1, 2 UPLO = ICH( IC: IC ) * * Generate the matrix A. * TRANSL = ZERO CALL DMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX, AA, $ LDA, K, K, RESET, TRANSL ) * DO 80 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL DMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, $ ABS( INCX ), 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * DO 70 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*N * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the vector Y. * TRANSL = ZERO CALL DMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY, $ ABS( INCY ), 0, N - 1, RESET, $ TRANSL ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * UPLOS = UPLO NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX BLS = BETA DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, $ UPLO, N, ALPHA, LDA, INCX, BETA, INCY IF( REWI ) $ REWIND NTRA CALL DSYMV( UPLO, N, ALPHA, AA, LDA, XX, $ INCX, BETA, YY, INCY ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ UPLO, N, K, ALPHA, LDA, INCX, BETA, $ INCY IF( REWI ) $ REWIND NTRA CALL DSBMV( UPLO, N, K, ALPHA, AA, LDA, $ XX, INCX, BETA, YY, INCY ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ UPLO, N, ALPHA, INCX, BETA, INCY IF( REWI ) $ REWIND NTRA CALL DSPMV( UPLO, N, ALPHA, AA, XX, INCX, $ BETA, YY, INCY ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = NS.EQ.N IF( FULL )THEN ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LDE( AS, AA, LAA ) ISAME( 5 ) = LDAS.EQ.LDA ISAME( 6 ) = LDE( XS, XX, LX ) ISAME( 7 ) = INCXS.EQ.INCX ISAME( 8 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 9 ) = LDE( YS, YY, LY ) ELSE ISAME( 9 ) = LDERES( 'GE', ' ', 1, N, $ YS, YY, ABS( INCY ) ) END IF ISAME( 10 ) = INCYS.EQ.INCY ELSE IF( BANDED )THEN ISAME( 3 ) = KS.EQ.K ISAME( 4 ) = ALS.EQ.ALPHA ISAME( 5 ) = LDE( AS, AA, LAA ) ISAME( 6 ) = LDAS.EQ.LDA ISAME( 7 ) = LDE( XS, XX, LX ) ISAME( 8 ) = INCXS.EQ.INCX ISAME( 9 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 10 ) = LDE( YS, YY, LY ) ELSE ISAME( 10 ) = LDERES( 'GE', ' ', 1, N, $ YS, YY, ABS( INCY ) ) END IF ISAME( 11 ) = INCYS.EQ.INCY ELSE IF( PACKED )THEN ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LDE( AS, AA, LAA ) ISAME( 5 ) = LDE( XS, XX, LX ) ISAME( 6 ) = INCXS.EQ.INCX ISAME( 7 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 8 ) = LDE( YS, YY, LY ) ELSE ISAME( 8 ) = LDERES( 'GE', ' ', 1, N, $ YS, YY, ABS( INCY ) ) END IF ISAME( 9 ) = INCYS.EQ.INCY END IF * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL DMVCH( 'N', N, N, ALPHA, A, NMAX, X, $ INCX, BETA, Y, INCY, YT, G, $ YY, EPS, ERR, FATAL, NOUT, $ .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 120 ELSE * Avoid repeating tests with N.le.0 GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, LDA, INCX, $ BETA, INCY ELSE IF( BANDED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, K, ALPHA, LDA, $ INCX, BETA, INCY ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, N, ALPHA, INCX, $ BETA, INCY END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', AP', $ ', X,', I2, ',', F4.1, ', Y,', I2, ') .' ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), F4.1, $ ', A,', I3, ', X,', I2, ',', F4.1, ', Y,', I2, $ ') .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', A,', $ I3, ', X,', I2, ',', F4.1, ', Y,', I2, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of DCHK2. * END SUBROUTINE DCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NKB, KB, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, XT, G, Z ) * * Tests DTRMV, DTBMV, DTPMV, DTRSV, DTBSV and DTPSV. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. DOUBLE PRECISION ZERO, HALF, ONE PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER INCMAX, NIDIM, NINC, NKB, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), $ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ), $ XS( NMAX*INCMAX ), XT( NMAX ), $ XX( NMAX*INCMAX ), Z( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB ) * .. Local Scalars .. DOUBLE PRECISION ERR, ERRMAX, TRANSL INTEGER I, ICD, ICT, ICU, IK, IN, INCX, INCXS, IX, K, $ KS, LAA, LDA, LDAS, LX, N, NARGS, NC, NK, NS LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME CHARACTER*1 DIAG, DIAGS, TRANS, TRANSS, UPLO, UPLOS CHARACTER*2 ICHD, ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LDE, LDERES EXTERNAL LDE, LDERES * .. External Subroutines .. EXTERNAL DMAKE, DMVCH, DTBMV, DTBSV, DTPMV, DTPSV, $ DTRMV, DTRSV * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'R' BANDED = SNAME( 3: 3 ).EQ.'B' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 8 ELSE IF( BANDED )THEN NARGS = 9 ELSE IF( PACKED )THEN NARGS = 7 END IF * NC = 0 RESET = .TRUE. ERRMAX = ZERO * Set up zero vector for DMVCH. DO 10 I = 1, NMAX Z( I ) = ZERO 10 CONTINUE * DO 110 IN = 1, NIDIM N = IDIM( IN ) * IF( BANDED )THEN NK = NKB ELSE NK = 1 END IF DO 100 IK = 1, NK IF( BANDED )THEN K = KB( IK ) ELSE K = N - 1 END IF * Set LDA to 1 more than minimum value if room. IF( BANDED )THEN LDA = K + 1 ELSE LDA = N END IF IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF NULL = N.LE.0 * DO 90 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * DO 80 ICT = 1, 3 TRANS = ICHT( ICT: ICT ) * DO 70 ICD = 1, 2 DIAG = ICHD( ICD: ICD ) * * Generate the matrix A. * TRANSL = ZERO CALL DMAKE( SNAME( 2: 3 ), UPLO, DIAG, N, N, A, $ NMAX, AA, LDA, K, K, RESET, TRANSL ) * DO 60 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL DMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, $ ABS( INCX ), 0, N - 1, RESET, $ TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS DIAGS = DIAG NS = N KS = K DO 20 I = 1, LAA AS( I ) = AA( I ) 20 CONTINUE LDAS = LDA DO 30 I = 1, LX XS( I ) = XX( I ) 30 CONTINUE INCXS = INCX * * Call the subroutine. * IF( SNAME( 4: 5 ).EQ.'MV' )THEN IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, $ UPLO, TRANS, DIAG, N, LDA, INCX IF( REWI ) $ REWIND NTRA CALL DTRMV( UPLO, TRANS, DIAG, N, AA, LDA, $ XX, INCX ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ UPLO, TRANS, DIAG, N, K, LDA, INCX IF( REWI ) $ REWIND NTRA CALL DTBMV( UPLO, TRANS, DIAG, N, K, AA, $ LDA, XX, INCX ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ UPLO, TRANS, DIAG, N, INCX IF( REWI ) $ REWIND NTRA CALL DTPMV( UPLO, TRANS, DIAG, N, AA, XX, $ INCX ) END IF ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, $ UPLO, TRANS, DIAG, N, LDA, INCX IF( REWI ) $ REWIND NTRA CALL DTRSV( UPLO, TRANS, DIAG, N, AA, LDA, $ XX, INCX ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ UPLO, TRANS, DIAG, N, K, LDA, INCX IF( REWI ) $ REWIND NTRA CALL DTBSV( UPLO, TRANS, DIAG, N, K, AA, $ LDA, XX, INCX ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ UPLO, TRANS, DIAG, N, INCX IF( REWI ) $ REWIND NTRA CALL DTPSV( UPLO, TRANS, DIAG, N, AA, XX, $ INCX ) END IF END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = TRANS.EQ.TRANSS ISAME( 3 ) = DIAG.EQ.DIAGS ISAME( 4 ) = NS.EQ.N IF( FULL )THEN ISAME( 5 ) = LDE( AS, AA, LAA ) ISAME( 6 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 7 ) = LDE( XS, XX, LX ) ELSE ISAME( 7 ) = LDERES( 'GE', ' ', 1, N, XS, $ XX, ABS( INCX ) ) END IF ISAME( 8 ) = INCXS.EQ.INCX ELSE IF( BANDED )THEN ISAME( 5 ) = KS.EQ.K ISAME( 6 ) = LDE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 8 ) = LDE( XS, XX, LX ) ELSE ISAME( 8 ) = LDERES( 'GE', ' ', 1, N, XS, $ XX, ABS( INCX ) ) END IF ISAME( 9 ) = INCXS.EQ.INCX ELSE IF( PACKED )THEN ISAME( 5 ) = LDE( AS, AA, LAA ) IF( NULL )THEN ISAME( 6 ) = LDE( XS, XX, LX ) ELSE ISAME( 6 ) = LDERES( 'GE', ' ', 1, N, XS, $ XX, ABS( INCX ) ) END IF ISAME( 7 ) = INCXS.EQ.INCX END IF * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN IF( SNAME( 4: 5 ).EQ.'MV' )THEN * * Check the result. * CALL DMVCH( TRANS, N, N, ONE, A, NMAX, X, $ INCX, ZERO, Z, INCX, XT, G, $ XX, EPS, ERR, FATAL, NOUT, $ .TRUE. ) ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN * * Compute approximation to original vector. * DO 50 I = 1, N Z( I ) = XX( 1 + ( I - 1 )* $ ABS( INCX ) ) XX( 1 + ( I - 1 )*ABS( INCX ) ) $ = X( I ) 50 CONTINUE CALL DMVCH( TRANS, N, N, ONE, A, NMAX, Z, $ INCX, ZERO, X, INCX, XT, G, $ XX, EPS, ERR, FATAL, NOUT, $ .FALSE. ) END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 120 ELSE * Avoid repeating tests with N.le.0. GO TO 110 END IF * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, DIAG, N, LDA, $ INCX ELSE IF( BANDED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, DIAG, N, K, $ LDA, INCX ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, TRANS, DIAG, N, INCX END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', AP, ', $ 'X,', I2, ') .' ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), 2( I3, ',' ), $ ' A,', I3, ', X,', I2, ') .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', A,', $ I3, ', X,', I2, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of DCHK3. * END SUBROUTINE DCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G, $ Z ) * * Tests DGER. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. DOUBLE PRECISION ZERO, HALF, ONE PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ), $ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ), $ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ) * .. Local Scalars .. DOUBLE PRECISION ALPHA, ALS, ERR, ERRMAX, TRANSL INTEGER I, IA, IM, IN, INCX, INCXS, INCY, INCYS, IX, $ IY, J, LAA, LDA, LDAS, LX, LY, M, MS, N, NARGS, $ NC, ND, NS LOGICAL NULL, RESET, SAME * .. Local Arrays .. DOUBLE PRECISION W( 1 ) LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LDE, LDERES EXTERNAL LDE, LDERES * .. External Subroutines .. EXTERNAL DGER, DMAKE, DMVCH * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. * Define the number of arguments. NARGS = 9 * NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 120 IN = 1, NIDIM N = IDIM( IN ) ND = N/2 + 1 * DO 110 IM = 1, 2 IF( IM.EQ.1 ) $ M = MAX( N - ND, 0 ) IF( IM.EQ.2 ) $ M = MIN( N + ND, NMAX ) * * Set LDA to 1 more than minimum value if room. LDA = M IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 110 LAA = LDA*N NULL = N.LE.0.OR.M.LE.0 * DO 100 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*M * * Generate the vector X. * TRANSL = HALF CALL DMAKE( 'GE', ' ', ' ', 1, M, X, 1, XX, ABS( INCX ), $ 0, M - 1, RESET, TRANSL ) IF( M.GT.1 )THEN X( M/2 ) = ZERO XX( 1 + ABS( INCX )*( M/2 - 1 ) ) = ZERO END IF * DO 90 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*N * * Generate the vector Y. * TRANSL = ZERO CALL DMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY, $ ABS( INCY ), 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN Y( N/2 ) = ZERO YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO END IF * DO 80 IA = 1, NALF ALPHA = ALF( IA ) * * Generate the matrix A. * TRANSL = ZERO CALL DMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX, $ AA, LDA, M - 1, N - 1, RESET, TRANSL ) * NC = NC + 1 * * Save every datum before calling the subroutine. * MS = M NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, M, N, $ ALPHA, INCX, INCY, LDA IF( REWI ) $ REWIND NTRA CALL DGER( M, N, ALPHA, XX, INCX, YY, INCY, AA, $ LDA ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 140 END IF * * See what data changed inside subroutine. * ISAME( 1 ) = MS.EQ.M ISAME( 2 ) = NS.EQ.N ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LDE( XS, XX, LX ) ISAME( 5 ) = INCXS.EQ.INCX ISAME( 6 ) = LDE( YS, YY, LY ) ISAME( 7 ) = INCYS.EQ.INCY IF( NULL )THEN ISAME( 8 ) = LDE( AS, AA, LAA ) ELSE ISAME( 8 ) = LDERES( 'GE', ' ', M, N, AS, AA, $ LDA ) END IF ISAME( 9 ) = LDAS.EQ.LDA * * If data was incorrectly changed, report and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 140 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( INCX.GT.0 )THEN DO 50 I = 1, M Z( I ) = X( I ) 50 CONTINUE ELSE DO 60 I = 1, M Z( I ) = X( M - I + 1 ) 60 CONTINUE END IF DO 70 J = 1, N IF( INCY.GT.0 )THEN W( 1 ) = Y( J ) ELSE W( 1 ) = Y( N - J + 1 ) END IF CALL DMVCH( 'N', M, 1, ALPHA, Z, NMAX, W, 1, $ ONE, A( 1, J ), 1, YT, G, $ AA( 1 + ( J - 1 )*LDA ), EPS, $ ERR, FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 130 70 CONTINUE ELSE * Avoid repeating tests with M.le.0 or N.le.0. GO TO 110 END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 150 * 130 CONTINUE WRITE( NOUT, FMT = 9995 )J * 140 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9994 )NC, SNAME, M, N, ALPHA, INCX, INCY, LDA * 150 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( I3, ',' ), F4.1, ', X,', I2, $ ', Y,', I2, ', A,', I3, ') .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of DCHK4. * END SUBROUTINE DCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G, $ Z ) * * Tests DSYR and DSPR. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. DOUBLE PRECISION ZERO, HALF, ONE PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ), $ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ), $ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ) * .. Local Scalars .. DOUBLE PRECISION ALPHA, ALS, ERR, ERRMAX, TRANSL INTEGER I, IA, IC, IN, INCX, INCXS, IX, J, JA, JJ, LAA, $ LDA, LDAS, LJ, LX, N, NARGS, NC, NS LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER CHARACTER*1 UPLO, UPLOS CHARACTER*2 ICH * .. Local Arrays .. DOUBLE PRECISION W( 1 ) LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LDE, LDERES EXTERNAL LDE, LDERES * .. External Subroutines .. EXTERNAL DMAKE, DMVCH, DSPR, DSYR * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'UL'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'Y' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 7 ELSE IF( PACKED )THEN NARGS = 6 END IF * NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDA to 1 more than minimum value if room. LDA = N IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF * DO 90 IC = 1, 2 UPLO = ICH( IC: IC ) UPPER = UPLO.EQ.'U' * DO 80 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL DMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ), $ 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * DO 70 IA = 1, NALF ALPHA = ALF( IA ) NULL = N.LE.0.OR.ALPHA.EQ.ZERO * * Generate the matrix A. * TRANSL = ZERO CALL DMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX, $ AA, LDA, N - 1, N - 1, RESET, TRANSL ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N, $ ALPHA, INCX, LDA IF( REWI ) $ REWIND NTRA CALL DSYR( UPLO, N, ALPHA, XX, INCX, AA, LDA ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N, $ ALPHA, INCX IF( REWI ) $ REWIND NTRA CALL DSPR( UPLO, N, ALPHA, XX, INCX, AA ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = NS.EQ.N ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LDE( XS, XX, LX ) ISAME( 5 ) = INCXS.EQ.INCX IF( NULL )THEN ISAME( 6 ) = LDE( AS, AA, LAA ) ELSE ISAME( 6 ) = LDERES( SNAME( 2: 3 ), UPLO, N, N, AS, $ AA, LDA ) END IF IF( .NOT.PACKED )THEN ISAME( 7 ) = LDAS.EQ.LDA END IF * * If data was incorrectly changed, report and return. * SAME = .TRUE. DO 30 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 30 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( INCX.GT.0 )THEN DO 40 I = 1, N Z( I ) = X( I ) 40 CONTINUE ELSE DO 50 I = 1, N Z( I ) = X( N - I + 1 ) 50 CONTINUE END IF JA = 1 DO 60 J = 1, N W( 1 ) = Z( J ) IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF CALL DMVCH( 'N', LJ, 1, ALPHA, Z( JJ ), LJ, W, $ 1, ONE, A( JJ, J ), 1, YT, G, $ AA( JA ), EPS, ERR, FATAL, NOUT, $ .TRUE. ) IF( FULL )THEN IF( UPPER )THEN JA = JA + LDA ELSE JA = JA + LDA + 1 END IF ELSE JA = JA + LJ END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 110 60 CONTINUE ELSE * Avoid repeating tests if N.le.0. IF( N.LE.0 ) $ GO TO 100 END IF * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 110 CONTINUE WRITE( NOUT, FMT = 9995 )J * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, INCX, LDA ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, ALPHA, INCX END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,', $ I2, ', AP) .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,', $ I2, ', A,', I3, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of DCHK5. * END SUBROUTINE DCHK6( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G, $ Z ) * * Tests DSYR2 and DSPR2. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. DOUBLE PRECISION ZERO, HALF, ONE PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ), $ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ), $ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( NMAX, 2 ) INTEGER IDIM( NIDIM ), INC( NINC ) * .. Local Scalars .. DOUBLE PRECISION ALPHA, ALS, ERR, ERRMAX, TRANSL INTEGER I, IA, IC, IN, INCX, INCXS, INCY, INCYS, IX, $ IY, J, JA, JJ, LAA, LDA, LDAS, LJ, LX, LY, N, $ NARGS, NC, NS LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER CHARACTER*1 UPLO, UPLOS CHARACTER*2 ICH * .. Local Arrays .. DOUBLE PRECISION W( 2 ) LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LDE, LDERES EXTERNAL LDE, LDERES * .. External Subroutines .. EXTERNAL DMAKE, DMVCH, DSPR2, DSYR2 * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'UL'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'Y' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 9 ELSE IF( PACKED )THEN NARGS = 8 END IF * NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 140 IN = 1, NIDIM N = IDIM( IN ) * Set LDA to 1 more than minimum value if room. LDA = N IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 140 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF * DO 130 IC = 1, 2 UPLO = ICH( IC: IC ) UPPER = UPLO.EQ.'U' * DO 120 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL DMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ), $ 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * DO 110 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*N * * Generate the vector Y. * TRANSL = ZERO CALL DMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY, $ ABS( INCY ), 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN Y( N/2 ) = ZERO YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO END IF * DO 100 IA = 1, NALF ALPHA = ALF( IA ) NULL = N.LE.0.OR.ALPHA.EQ.ZERO * * Generate the matrix A. * TRANSL = ZERO CALL DMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, $ NMAX, AA, LDA, N - 1, N - 1, RESET, $ TRANSL ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N, $ ALPHA, INCX, INCY, LDA IF( REWI ) $ REWIND NTRA CALL DSYR2( UPLO, N, ALPHA, XX, INCX, YY, INCY, $ AA, LDA ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N, $ ALPHA, INCX, INCY IF( REWI ) $ REWIND NTRA CALL DSPR2( UPLO, N, ALPHA, XX, INCX, YY, INCY, $ AA ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 160 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = NS.EQ.N ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LDE( XS, XX, LX ) ISAME( 5 ) = INCXS.EQ.INCX ISAME( 6 ) = LDE( YS, YY, LY ) ISAME( 7 ) = INCYS.EQ.INCY IF( NULL )THEN ISAME( 8 ) = LDE( AS, AA, LAA ) ELSE ISAME( 8 ) = LDERES( SNAME( 2: 3 ), UPLO, N, N, $ AS, AA, LDA ) END IF IF( .NOT.PACKED )THEN ISAME( 9 ) = LDAS.EQ.LDA END IF * * If data was incorrectly changed, report and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 160 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( INCX.GT.0 )THEN DO 50 I = 1, N Z( I, 1 ) = X( I ) 50 CONTINUE ELSE DO 60 I = 1, N Z( I, 1 ) = X( N - I + 1 ) 60 CONTINUE END IF IF( INCY.GT.0 )THEN DO 70 I = 1, N Z( I, 2 ) = Y( I ) 70 CONTINUE ELSE DO 80 I = 1, N Z( I, 2 ) = Y( N - I + 1 ) 80 CONTINUE END IF JA = 1 DO 90 J = 1, N W( 1 ) = Z( J, 2 ) W( 2 ) = Z( J, 1 ) IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF CALL DMVCH( 'N', LJ, 2, ALPHA, Z( JJ, 1 ), $ NMAX, W, 1, ONE, A( JJ, J ), 1, $ YT, G, AA( JA ), EPS, ERR, FATAL, $ NOUT, .TRUE. ) IF( FULL )THEN IF( UPPER )THEN JA = JA + LDA ELSE JA = JA + LDA + 1 END IF ELSE JA = JA + LJ END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 150 90 CONTINUE ELSE * Avoid repeating tests with N.le.0. IF( N.LE.0 ) $ GO TO 140 END IF * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * 140 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 170 * 150 CONTINUE WRITE( NOUT, FMT = 9995 )J * 160 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, INCX, $ INCY, LDA ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, ALPHA, INCX, INCY END IF * 170 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,', $ I2, ', Y,', I2, ', AP) .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,', $ I2, ', Y,', I2, ', A,', I3, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of DCHK6. * END SUBROUTINE DCHKE( ISNUM, SRNAMT, NOUT ) * * Tests the error exits from the Level 2 Blas. * Requires a special version of the error-handling routine XERBLA. * ALPHA, BETA, A, X and Y should not need to be defined. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER ISNUM, NOUT CHARACTER*6 SRNAMT * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Local Scalars .. DOUBLE PRECISION ALPHA, BETA * .. Local Arrays .. DOUBLE PRECISION A( 1, 1 ), X( 1 ), Y( 1 ) * .. External Subroutines .. EXTERNAL CHKXER, DGBMV, DGEMV, DGER, DSBMV, DSPMV, DSPR, $ DSPR2, DSYMV, DSYR, DSYR2, DTBMV, DTBSV, DTPMV, $ DTPSV, DTRMV, DTRSV * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. * OK is set to .FALSE. by the special version of XERBLA or by CHKXER * if anything is wrong. OK = .TRUE. * LERR is set to .TRUE. by the special version of XERBLA each time * it is called, and is then tested and re-set by CHKXER. LERR = .FALSE. GO TO ( 10, 20, 30, 40, 50, 60, 70, 80, $ 90, 100, 110, 120, 130, 140, 150, $ 160 )ISNUM 10 INFOT = 1 CALL DGEMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DGEMV( 'N', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DGEMV( 'N', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DGEMV( 'N', 2, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL DGEMV( 'N', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DGEMV( 'N', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 20 INFOT = 1 CALL DGBMV( '/', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DGBMV( 'N', -1, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DGBMV( 'N', 0, -1, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DGBMV( 'N', 0, 0, -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DGBMV( 'N', 2, 0, 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL DGBMV( 'N', 0, 0, 1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL DGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL DGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 30 INFOT = 1 CALL DSYMV( '/', 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DSYMV( 'U', -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DSYMV( 'U', 2, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSYMV( 'U', 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL DSYMV( 'U', 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 40 INFOT = 1 CALL DSBMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DSBMV( 'U', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DSBMV( 'U', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DSBMV( 'U', 0, 1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL DSBMV( 'U', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DSBMV( 'U', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 50 INFOT = 1 CALL DSPMV( '/', 0, ALPHA, A, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DSPMV( 'U', -1, ALPHA, A, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DSPMV( 'U', 0, ALPHA, A, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DSPMV( 'U', 0, ALPHA, A, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 60 INFOT = 1 CALL DTRMV( '/', 'N', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DTRMV( 'U', '/', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DTRMV( 'U', 'N', '/', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DTRMV( 'U', 'N', 'N', -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRMV( 'U', 'N', 'N', 2, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL DTRMV( 'U', 'N', 'N', 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 70 INFOT = 1 CALL DTBMV( '/', 'N', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DTBMV( 'U', '/', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DTBMV( 'U', 'N', '/', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DTBMV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTBMV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DTBMV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTBMV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 80 INFOT = 1 CALL DTPMV( '/', 'N', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DTPMV( 'U', '/', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DTPMV( 'U', 'N', '/', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DTPMV( 'U', 'N', 'N', -1, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DTPMV( 'U', 'N', 'N', 0, A, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 90 INFOT = 1 CALL DTRSV( '/', 'N', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DTRSV( 'U', '/', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DTRSV( 'U', 'N', '/', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DTRSV( 'U', 'N', 'N', -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRSV( 'U', 'N', 'N', 2, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL DTRSV( 'U', 'N', 'N', 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 100 INFOT = 1 CALL DTBSV( '/', 'N', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DTBSV( 'U', '/', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DTBSV( 'U', 'N', '/', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DTBSV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTBSV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DTBSV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTBSV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 110 INFOT = 1 CALL DTPSV( '/', 'N', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DTPSV( 'U', '/', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DTPSV( 'U', 'N', '/', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DTPSV( 'U', 'N', 'N', -1, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DTPSV( 'U', 'N', 'N', 0, A, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 120 INFOT = 1 CALL DGER( -1, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DGER( 0, -1, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DGER( 0, 0, ALPHA, X, 0, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DGER( 0, 0, ALPHA, X, 1, Y, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DGER( 2, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 130 INFOT = 1 CALL DSYR( '/', 0, ALPHA, X, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DSYR( 'U', -1, ALPHA, X, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DSYR( 'U', 0, ALPHA, X, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSYR( 'U', 2, ALPHA, X, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 140 INFOT = 1 CALL DSPR( '/', 0, ALPHA, X, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DSPR( 'U', -1, ALPHA, X, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DSPR( 'U', 0, ALPHA, X, 0, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 150 INFOT = 1 CALL DSYR2( '/', 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DSYR2( 'U', -1, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DSYR2( 'U', 0, ALPHA, X, 0, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSYR2( 'U', 0, ALPHA, X, 1, Y, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DSYR2( 'U', 2, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 160 INFOT = 1 CALL DSPR2( '/', 0, ALPHA, X, 1, Y, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DSPR2( 'U', -1, ALPHA, X, 1, Y, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DSPR2( 'U', 0, ALPHA, X, 0, Y, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSPR2( 'U', 0, ALPHA, X, 1, Y, 0, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * 170 IF( OK )THEN WRITE( NOUT, FMT = 9999 )SRNAMT ELSE WRITE( NOUT, FMT = 9998 )SRNAMT END IF RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' ) 9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****', $ '**' ) * * End of DCHKE. * END SUBROUTINE DMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, KL, $ KU, RESET, TRANSL ) * * Generates values for an M by N matrix A within the bandwidth * defined by KL and KU. * Stores the values in the array AA in the data structure required * by the routine, with unwanted elements set to rogue value. * * TYPE is 'GE', 'GB', 'SY', 'SB', 'SP', 'TR', 'TB' OR 'TP'. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) DOUBLE PRECISION ROGUE PARAMETER ( ROGUE = -1.0D10 ) * .. Scalar Arguments .. DOUBLE PRECISION TRANSL INTEGER KL, KU, LDA, M, N, NMAX LOGICAL RESET CHARACTER*1 DIAG, UPLO CHARACTER*2 TYPE * .. Array Arguments .. DOUBLE PRECISION A( NMAX, * ), AA( * ) * .. Local Scalars .. INTEGER I, I1, I2, I3, IBEG, IEND, IOFF, J, KK LOGICAL GEN, LOWER, SYM, TRI, UNIT, UPPER * .. External Functions .. DOUBLE PRECISION DBEG EXTERNAL DBEG * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. Executable Statements .. GEN = TYPE( 1: 1 ).EQ.'G' SYM = TYPE( 1: 1 ).EQ.'S' TRI = TYPE( 1: 1 ).EQ.'T' UPPER = ( SYM.OR.TRI ).AND.UPLO.EQ.'U' LOWER = ( SYM.OR.TRI ).AND.UPLO.EQ.'L' UNIT = TRI.AND.DIAG.EQ.'U' * * Generate data in array A. * DO 20 J = 1, N DO 10 I = 1, M IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) ) $ THEN IF( ( I.LE.J.AND.J - I.LE.KU ).OR. $ ( I.GE.J.AND.I - J.LE.KL ) )THEN A( I, J ) = DBEG( RESET ) + TRANSL ELSE A( I, J ) = ZERO END IF IF( I.NE.J )THEN IF( SYM )THEN A( J, I ) = A( I, J ) ELSE IF( TRI )THEN A( J, I ) = ZERO END IF END IF END IF 10 CONTINUE IF( TRI ) $ A( J, J ) = A( J, J ) + ONE IF( UNIT ) $ A( J, J ) = ONE 20 CONTINUE * * Store elements in array AS in data structure required by routine. * IF( TYPE.EQ.'GE' )THEN DO 50 J = 1, N DO 30 I = 1, M AA( I + ( J - 1 )*LDA ) = A( I, J ) 30 CONTINUE DO 40 I = M + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 40 CONTINUE 50 CONTINUE ELSE IF( TYPE.EQ.'GB' )THEN DO 90 J = 1, N DO 60 I1 = 1, KU + 1 - J AA( I1 + ( J - 1 )*LDA ) = ROGUE 60 CONTINUE DO 70 I2 = I1, MIN( KL + KU + 1, KU + 1 + M - J ) AA( I2 + ( J - 1 )*LDA ) = A( I2 + J - KU - 1, J ) 70 CONTINUE DO 80 I3 = I2, LDA AA( I3 + ( J - 1 )*LDA ) = ROGUE 80 CONTINUE 90 CONTINUE ELSE IF( TYPE.EQ.'SY'.OR.TYPE.EQ.'TR' )THEN DO 130 J = 1, N IF( UPPER )THEN IBEG = 1 IF( UNIT )THEN IEND = J - 1 ELSE IEND = J END IF ELSE IF( UNIT )THEN IBEG = J + 1 ELSE IBEG = J END IF IEND = N END IF DO 100 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 100 CONTINUE DO 110 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I, J ) 110 CONTINUE DO 120 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 120 CONTINUE 130 CONTINUE ELSE IF( TYPE.EQ.'SB'.OR.TYPE.EQ.'TB' )THEN DO 170 J = 1, N IF( UPPER )THEN KK = KL + 1 IBEG = MAX( 1, KL + 2 - J ) IF( UNIT )THEN IEND = KL ELSE IEND = KL + 1 END IF ELSE KK = 1 IF( UNIT )THEN IBEG = 2 ELSE IBEG = 1 END IF IEND = MIN( KL + 1, 1 + M - J ) END IF DO 140 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 140 CONTINUE DO 150 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I + J - KK, J ) 150 CONTINUE DO 160 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 160 CONTINUE 170 CONTINUE ELSE IF( TYPE.EQ.'SP'.OR.TYPE.EQ.'TP' )THEN IOFF = 0 DO 190 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 180 I = IBEG, IEND IOFF = IOFF + 1 AA( IOFF ) = A( I, J ) IF( I.EQ.J )THEN IF( UNIT ) $ AA( IOFF ) = ROGUE END IF 180 CONTINUE 190 CONTINUE END IF RETURN * * End of DMAKE. * END SUBROUTINE DMVCH( TRANS, M, N, ALPHA, A, NMAX, X, INCX, BETA, Y, $ INCY, YT, G, YY, EPS, ERR, FATAL, NOUT, MV ) * * Checks the results of the computational tests. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA, BETA, EPS, ERR INTEGER INCX, INCY, M, N, NMAX, NOUT LOGICAL FATAL, MV CHARACTER*1 TRANS * .. Array Arguments .. DOUBLE PRECISION A( NMAX, * ), G( * ), X( * ), Y( * ), YT( * ), $ YY( * ) * .. Local Scalars .. DOUBLE PRECISION ERRI INTEGER I, INCXL, INCYL, IY, J, JX, KX, KY, ML, NL LOGICAL TRAN * .. Intrinsic Functions .. INTRINSIC ABS, MAX, SQRT * .. Executable Statements .. TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C' IF( TRAN )THEN ML = N NL = M ELSE ML = M NL = N END IF IF( INCX.LT.0 )THEN KX = NL INCXL = -1 ELSE KX = 1 INCXL = 1 END IF IF( INCY.LT.0 )THEN KY = ML INCYL = -1 ELSE KY = 1 INCYL = 1 END IF * * Compute expected result in YT using data in A, X and Y. * Compute gauges in G. * IY = KY DO 30 I = 1, ML YT( IY ) = ZERO G( IY ) = ZERO JX = KX IF( TRAN )THEN DO 10 J = 1, NL YT( IY ) = YT( IY ) + A( J, I )*X( JX ) G( IY ) = G( IY ) + ABS( A( J, I )*X( JX ) ) JX = JX + INCXL 10 CONTINUE ELSE DO 20 J = 1, NL YT( IY ) = YT( IY ) + A( I, J )*X( JX ) G( IY ) = G( IY ) + ABS( A( I, J )*X( JX ) ) JX = JX + INCXL 20 CONTINUE END IF YT( IY ) = ALPHA*YT( IY ) + BETA*Y( IY ) G( IY ) = ABS( ALPHA )*G( IY ) + ABS( BETA*Y( IY ) ) IY = IY + INCYL 30 CONTINUE * * Compute the error ratio for this result. * ERR = ZERO DO 40 I = 1, ML ERRI = ABS( YT( I ) - YY( 1 + ( I - 1 )*ABS( INCY ) ) )/EPS IF( G( I ).NE.ZERO ) $ ERRI = ERRI/G( I ) ERR = MAX( ERR, ERRI ) IF( ERR*SQRT( EPS ).GE.ONE ) $ GO TO 50 40 CONTINUE * If the loop completes, all results are at least half accurate. GO TO 70 * * Report fatal error. * 50 FATAL = .TRUE. WRITE( NOUT, FMT = 9999 ) DO 60 I = 1, ML IF( MV )THEN WRITE( NOUT, FMT = 9998 )I, YT( I ), $ YY( 1 + ( I - 1 )*ABS( INCY ) ) ELSE WRITE( NOUT, FMT = 9998 )I, $ YY( 1 + ( I - 1 )*ABS( INCY ) ), YT( I ) END IF 60 CONTINUE * 70 CONTINUE RETURN * 9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL', $ 'F ACCURATE *******', /' EXPECTED RESULT COMPU', $ 'TED RESULT' ) 9998 FORMAT( 1X, I7, 2G18.6 ) * * End of DMVCH. * END LOGICAL FUNCTION LDE( RI, RJ, LR ) * * Tests if two arrays are identical. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER LR * .. Array Arguments .. DOUBLE PRECISION RI( * ), RJ( * ) * .. Local Scalars .. INTEGER I * .. Executable Statements .. DO 10 I = 1, LR IF( RI( I ).NE.RJ( I ) ) $ GO TO 20 10 CONTINUE LDE = .TRUE. GO TO 30 20 CONTINUE LDE = .FALSE. 30 RETURN * * End of LDE. * END LOGICAL FUNCTION LDERES( TYPE, UPLO, M, N, AA, AS, LDA ) * * Tests if selected elements in two arrays are equal. * * TYPE is 'GE', 'SY' or 'SP'. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER LDA, M, N CHARACTER*1 UPLO CHARACTER*2 TYPE * .. Array Arguments .. DOUBLE PRECISION AA( LDA, * ), AS( LDA, * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J LOGICAL UPPER * .. Executable Statements .. UPPER = UPLO.EQ.'U' IF( TYPE.EQ.'GE' )THEN DO 20 J = 1, N DO 10 I = M + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 10 CONTINUE 20 CONTINUE ELSE IF( TYPE.EQ.'SY' )THEN DO 50 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 30 I = 1, IBEG - 1 IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 30 CONTINUE DO 40 I = IEND + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 40 CONTINUE 50 CONTINUE END IF * 60 CONTINUE LDERES = .TRUE. GO TO 80 70 CONTINUE LDERES = .FALSE. 80 RETURN * * End of LDERES. * END DOUBLE PRECISION FUNCTION DBEG( RESET ) * * Generates random numbers uniformly distributed between -0.5 and 0.5. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. LOGICAL RESET * .. Local Scalars .. INTEGER I, IC, MI * .. Save statement .. SAVE I, IC, MI * .. Intrinsic Functions .. INTRINSIC DBLE * .. Executable Statements .. IF( RESET )THEN * Initialize local variables. MI = 891 I = 7 IC = 0 RESET = .FALSE. END IF * * The sequence of values of I is bounded between 1 and 999. * If initial I = 1,2,3,6,7 or 9, the period will be 50. * If initial I = 4 or 8, the period will be 25. * If initial I = 5, the period will be 10. * IC is used to break up the period by skipping 1 value of I in 6. * IC = IC + 1 10 I = I*MI I = I - 1000*( I/1000 ) IF( IC.GE.5 )THEN IC = 0 GO TO 10 END IF DBEG = DBLE( I - 500 )/1001.0D0 RETURN * * End of DBEG. * END DOUBLE PRECISION FUNCTION DDIFF( X, Y ) * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * * .. Scalar Arguments .. DOUBLE PRECISION X, Y * .. Executable Statements .. DDIFF = X - Y RETURN * * End of DDIFF. * END SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * * Tests whether XERBLA has detected an error when it should. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Executable Statements .. IF( .NOT.LERR )THEN WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT OK = .FALSE. END IF LERR = .FALSE. RETURN * 9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D', $ 'ETECTED BY ', A6, ' *****' ) * * End of CHKXER. * END SUBROUTINE XERBLA( SRNAME, INFO ) * * This is a special version of XERBLA to be used only as part of * the test program for testing error exits from the Level 2 BLAS * routines. * * XERBLA is an error handler for the Level 2 BLAS routines. * * It is called by the Level 2 BLAS routines if an input parameter is * invalid. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER INFO CHARACTER*6 SRNAME * .. Scalars in Common .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUT, OK, LERR COMMON /SRNAMC/SRNAMT * .. Executable Statements .. LERR = .TRUE. IF( INFO.NE.INFOT )THEN IF( INFOT.NE.0 )THEN WRITE( NOUT, FMT = 9999 )INFO, INFOT ELSE WRITE( NOUT, FMT = 9997 )INFO END IF OK = .FALSE. END IF IF( SRNAME.NE.SRNAMT )THEN WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT OK = .FALSE. END IF RETURN * 9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD', $ ' OF ', I2, ' *******' ) 9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE', $ 'AD OF ', A6, ' *******' ) 9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, $ ' *******' ) * * End of XERBLA * END blas-1.2.orig/test/cblat1 0000644 0001750 0001750 00000074724 10735444622 016213 0 ustar sylvestre sylvestre PROGRAM CBLAT1 * Test program for the COMPLEX Level 1 BLAS. * Based upon the original BLAS test routine together with: * F06GAF Example Program Text * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. REAL SFAC INTEGER IC * .. External Subroutines .. EXTERNAL CHECK1, CHECK2, HEADER * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA SFAC/9.765625E-4/ * .. Executable Statements .. WRITE (NOUT,99999) DO 20 IC = 1, 10 ICASE = IC CALL HEADER * * Initialize PASS, INCX, INCY, and MODE for a new case. * The value 9999 for INCX, INCY or MODE will appear in the * detailed output, if any, for cases that do not involve * these parameters. * PASS = .TRUE. INCX = 9999 INCY = 9999 MODE = 9999 IF (ICASE.LE.5) THEN CALL CHECK2(SFAC) ELSE IF (ICASE.GE.6) THEN CALL CHECK1(SFAC) END IF * -- Print IF (PASS) WRITE (NOUT,99998) 20 CONTINUE STOP * 99999 FORMAT (' Complex BLAS Test Program Results',/1X) 99998 FORMAT (' ----- PASS -----') END SUBROUTINE HEADER * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Arrays .. CHARACTER*6 L(10) * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA L(1)/'CDOTC '/ DATA L(2)/'CDOTU '/ DATA L(3)/'CAXPY '/ DATA L(4)/'CCOPY '/ DATA L(5)/'CSWAP '/ DATA L(6)/'SCNRM2'/ DATA L(7)/'SCASUM'/ DATA L(8)/'CSCAL '/ DATA L(9)/'CSSCAL'/ DATA L(10)/'ICAMAX'/ * .. Executable Statements .. WRITE (NOUT,99999) ICASE, L(ICASE) RETURN * 99999 FORMAT (/' Test of subprogram number',I3,12X,A6) END SUBROUTINE CHECK1(SFAC) * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. REAL SFAC * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. COMPLEX CA REAL SA INTEGER I, J, LEN, NP1 * .. Local Arrays .. COMPLEX CTRUE5(8,5,2), CTRUE6(8,5,2), CV(8,5,2), CX(8), + MWPCS(5), MWPCT(5) REAL STRUE2(5), STRUE4(5) INTEGER ITRUE3(5) * .. External Functions .. REAL SCASUM, SCNRM2 INTEGER ICAMAX EXTERNAL SCASUM, SCNRM2, ICAMAX * .. External Subroutines .. EXTERNAL CSCAL, CSSCAL, CTEST, ITEST1, STEST1 * .. Intrinsic Functions .. INTRINSIC MAX * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA SA, CA/0.3E0, (0.4E0,-0.7E0)/ DATA ((CV(I,J,1),I=1,8),J=1,5)/(0.1E0,0.1E0), + (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0), + (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0), + (1.0E0,2.0E0), (0.3E0,-0.4E0), (3.0E0,4.0E0), + (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0), + (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0), + (0.1E0,-0.3E0), (0.5E0,-0.1E0), (5.0E0,6.0E0), + (5.0E0,6.0E0), (5.0E0,6.0E0), (5.0E0,6.0E0), + (5.0E0,6.0E0), (5.0E0,6.0E0), (0.1E0,0.1E0), + (-0.6E0,0.1E0), (0.1E0,-0.3E0), (7.0E0,8.0E0), + (7.0E0,8.0E0), (7.0E0,8.0E0), (7.0E0,8.0E0), + (7.0E0,8.0E0), (0.3E0,0.1E0), (0.1E0,0.4E0), + (0.4E0,0.1E0), (0.1E0,0.2E0), (2.0E0,3.0E0), + (2.0E0,3.0E0), (2.0E0,3.0E0), (2.0E0,3.0E0)/ DATA ((CV(I,J,2),I=1,8),J=1,5)/(0.1E0,0.1E0), + (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0), + (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0), + (4.0E0,5.0E0), (0.3E0,-0.4E0), (6.0E0,7.0E0), + (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0), + (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0), + (0.1E0,-0.3E0), (8.0E0,9.0E0), (0.5E0,-0.1E0), + (2.0E0,5.0E0), (2.0E0,5.0E0), (2.0E0,5.0E0), + (2.0E0,5.0E0), (2.0E0,5.0E0), (0.1E0,0.1E0), + (3.0E0,6.0E0), (-0.6E0,0.1E0), (4.0E0,7.0E0), + (0.1E0,-0.3E0), (7.0E0,2.0E0), (7.0E0,2.0E0), + (7.0E0,2.0E0), (0.3E0,0.1E0), (5.0E0,8.0E0), + (0.1E0,0.4E0), (6.0E0,9.0E0), (0.4E0,0.1E0), + (8.0E0,3.0E0), (0.1E0,0.2E0), (9.0E0,4.0E0)/ DATA STRUE2/0.0E0, 0.5E0, 0.6E0, 0.7E0, 0.7E0/ DATA STRUE4/0.0E0, 0.7E0, 1.0E0, 1.3E0, 1.7E0/ DATA ((CTRUE5(I,J,1),I=1,8),J=1,5)/(0.1E0,0.1E0), + (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0), + (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0), + (1.0E0,2.0E0), (-0.16E0,-0.37E0), (3.0E0,4.0E0), + (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0), + (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0), + (-0.17E0,-0.19E0), (0.13E0,-0.39E0), + (5.0E0,6.0E0), (5.0E0,6.0E0), (5.0E0,6.0E0), + (5.0E0,6.0E0), (5.0E0,6.0E0), (5.0E0,6.0E0), + (0.11E0,-0.03E0), (-0.17E0,0.46E0), + (-0.17E0,-0.19E0), (7.0E0,8.0E0), (7.0E0,8.0E0), + (7.0E0,8.0E0), (7.0E0,8.0E0), (7.0E0,8.0E0), + (0.19E0,-0.17E0), (0.32E0,0.09E0), + (0.23E0,-0.24E0), (0.18E0,0.01E0), + (2.0E0,3.0E0), (2.0E0,3.0E0), (2.0E0,3.0E0), + (2.0E0,3.0E0)/ DATA ((CTRUE5(I,J,2),I=1,8),J=1,5)/(0.1E0,0.1E0), + (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0), + (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0), + (4.0E0,5.0E0), (-0.16E0,-0.37E0), (6.0E0,7.0E0), + (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0), + (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0), + (-0.17E0,-0.19E0), (8.0E0,9.0E0), + (0.13E0,-0.39E0), (2.0E0,5.0E0), (2.0E0,5.0E0), + (2.0E0,5.0E0), (2.0E0,5.0E0), (2.0E0,5.0E0), + (0.11E0,-0.03E0), (3.0E0,6.0E0), + (-0.17E0,0.46E0), (4.0E0,7.0E0), + (-0.17E0,-0.19E0), (7.0E0,2.0E0), (7.0E0,2.0E0), + (7.0E0,2.0E0), (0.19E0,-0.17E0), (5.0E0,8.0E0), + (0.32E0,0.09E0), (6.0E0,9.0E0), + (0.23E0,-0.24E0), (8.0E0,3.0E0), + (0.18E0,0.01E0), (9.0E0,4.0E0)/ DATA ((CTRUE6(I,J,1),I=1,8),J=1,5)/(0.1E0,0.1E0), + (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0), + (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0), + (1.0E0,2.0E0), (0.09E0,-0.12E0), (3.0E0,4.0E0), + (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0), + (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0), + (0.03E0,-0.09E0), (0.15E0,-0.03E0), + (5.0E0,6.0E0), (5.0E0,6.0E0), (5.0E0,6.0E0), + (5.0E0,6.0E0), (5.0E0,6.0E0), (5.0E0,6.0E0), + (0.03E0,0.03E0), (-0.18E0,0.03E0), + (0.03E0,-0.09E0), (7.0E0,8.0E0), (7.0E0,8.0E0), + (7.0E0,8.0E0), (7.0E0,8.0E0), (7.0E0,8.0E0), + (0.09E0,0.03E0), (0.03E0,0.12E0), + (0.12E0,0.03E0), (0.03E0,0.06E0), (2.0E0,3.0E0), + (2.0E0,3.0E0), (2.0E0,3.0E0), (2.0E0,3.0E0)/ DATA ((CTRUE6(I,J,2),I=1,8),J=1,5)/(0.1E0,0.1E0), + (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0), + (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0), + (4.0E0,5.0E0), (0.09E0,-0.12E0), (6.0E0,7.0E0), + (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0), + (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0), + (0.03E0,-0.09E0), (8.0E0,9.0E0), + (0.15E0,-0.03E0), (2.0E0,5.0E0), (2.0E0,5.0E0), + (2.0E0,5.0E0), (2.0E0,5.0E0), (2.0E0,5.0E0), + (0.03E0,0.03E0), (3.0E0,6.0E0), + (-0.18E0,0.03E0), (4.0E0,7.0E0), + (0.03E0,-0.09E0), (7.0E0,2.0E0), (7.0E0,2.0E0), + (7.0E0,2.0E0), (0.09E0,0.03E0), (5.0E0,8.0E0), + (0.03E0,0.12E0), (6.0E0,9.0E0), (0.12E0,0.03E0), + (8.0E0,3.0E0), (0.03E0,0.06E0), (9.0E0,4.0E0)/ DATA ITRUE3/0, 1, 2, 2, 2/ * .. Executable Statements .. DO 60 INCX = 1, 2 DO 40 NP1 = 1, 5 N = NP1 - 1 LEN = 2*MAX(N,1) * .. Set vector arguments .. DO 20 I = 1, LEN CX(I) = CV(I,NP1,INCX) 20 CONTINUE IF (ICASE.EQ.6) THEN * .. SCNRM2 .. CALL STEST1(SCNRM2(N,CX,INCX),STRUE2(NP1),STRUE2(NP1), + SFAC) ELSE IF (ICASE.EQ.7) THEN * .. SCASUM .. CALL STEST1(SCASUM(N,CX,INCX),STRUE4(NP1),STRUE4(NP1), + SFAC) ELSE IF (ICASE.EQ.8) THEN * .. CSCAL .. CALL CSCAL(N,CA,CX,INCX) CALL CTEST(LEN,CX,CTRUE5(1,NP1,INCX),CTRUE5(1,NP1,INCX), + SFAC) ELSE IF (ICASE.EQ.9) THEN * .. CSSCAL .. CALL CSSCAL(N,SA,CX,INCX) CALL CTEST(LEN,CX,CTRUE6(1,NP1,INCX),CTRUE6(1,NP1,INCX), + SFAC) ELSE IF (ICASE.EQ.10) THEN * .. ICAMAX .. CALL ITEST1(ICAMAX(N,CX,INCX),ITRUE3(NP1)) ELSE WRITE (NOUT,*) ' Shouldn''t be here in CHECK1' STOP END IF * 40 CONTINUE 60 CONTINUE * INCX = 1 IF (ICASE.EQ.8) THEN * CSCAL * Add a test for alpha equal to zero. CA = (0.0E0,0.0E0) DO 80 I = 1, 5 MWPCT(I) = (0.0E0,0.0E0) MWPCS(I) = (1.0E0,1.0E0) 80 CONTINUE CALL CSCAL(5,CA,CX,INCX) CALL CTEST(5,CX,MWPCT,MWPCS,SFAC) ELSE IF (ICASE.EQ.9) THEN * CSSCAL * Add a test for alpha equal to zero. SA = 0.0E0 DO 100 I = 1, 5 MWPCT(I) = (0.0E0,0.0E0) MWPCS(I) = (1.0E0,1.0E0) 100 CONTINUE CALL CSSCAL(5,SA,CX,INCX) CALL CTEST(5,CX,MWPCT,MWPCS,SFAC) * Add a test for alpha equal to one. SA = 1.0E0 DO 120 I = 1, 5 MWPCT(I) = CX(I) MWPCS(I) = CX(I) 120 CONTINUE CALL CSSCAL(5,SA,CX,INCX) CALL CTEST(5,CX,MWPCT,MWPCS,SFAC) * Add a test for alpha equal to minus one. SA = -1.0E0 DO 140 I = 1, 5 MWPCT(I) = -CX(I) MWPCS(I) = -CX(I) 140 CONTINUE CALL CSSCAL(5,SA,CX,INCX) CALL CTEST(5,CX,MWPCT,MWPCS,SFAC) END IF RETURN END SUBROUTINE CHECK2(SFAC) * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. REAL SFAC * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. COMPLEX CA INTEGER I, J, KI, KN, KSIZE, LENX, LENY, MX, MY * .. Local Arrays .. COMPLEX CDOT(1), CSIZE1(4), CSIZE2(7,2), CSIZE3(14), + CT10X(7,4,4), CT10Y(7,4,4), CT6(4,4), CT7(4,4), + CT8(7,4,4), CX(7), CX1(7), CY(7), CY1(7) INTEGER INCXS(4), INCYS(4), LENS(4,2), NS(4) * .. External Functions .. COMPLEX CDOTC, CDOTU EXTERNAL CDOTC, CDOTU * .. External Subroutines .. EXTERNAL CAXPY, CCOPY, CSWAP, CTEST * .. Intrinsic Functions .. INTRINSIC ABS, MIN * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA CA/(0.4E0,-0.7E0)/ DATA INCXS/1, 2, -2, -1/ DATA INCYS/1, -2, 1, -2/ DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/ DATA NS/0, 1, 2, 4/ DATA CX1/(0.7E0,-0.8E0), (-0.4E0,-0.7E0), + (-0.1E0,-0.9E0), (0.2E0,-0.8E0), + (-0.9E0,-0.4E0), (0.1E0,0.4E0), (-0.6E0,0.6E0)/ DATA CY1/(0.6E0,-0.6E0), (-0.9E0,0.5E0), + (0.7E0,-0.6E0), (0.1E0,-0.5E0), (-0.1E0,-0.2E0), + (-0.5E0,-0.3E0), (0.8E0,-0.7E0)/ DATA ((CT8(I,J,1),I=1,7),J=1,4)/(0.6E0,-0.6E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.32E0,-1.41E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.32E0,-1.41E0), + (-1.55E0,0.5E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.32E0,-1.41E0), (-1.55E0,0.5E0), + (0.03E0,-0.89E0), (-0.38E0,-0.96E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0)/ DATA ((CT8(I,J,2),I=1,7),J=1,4)/(0.6E0,-0.6E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.32E0,-1.41E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (-0.07E0,-0.89E0), + (-0.9E0,0.5E0), (0.42E0,-1.41E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.78E0,0.06E0), (-0.9E0,0.5E0), + (0.06E0,-0.13E0), (0.1E0,-0.5E0), + (-0.77E0,-0.49E0), (-0.5E0,-0.3E0), + (0.52E0,-1.51E0)/ DATA ((CT8(I,J,3),I=1,7),J=1,4)/(0.6E0,-0.6E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.32E0,-1.41E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (-0.07E0,-0.89E0), + (-1.18E0,-0.31E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.78E0,0.06E0), (-1.54E0,0.97E0), + (0.03E0,-0.89E0), (-0.18E0,-1.31E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0)/ DATA ((CT8(I,J,4),I=1,7),J=1,4)/(0.6E0,-0.6E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.32E0,-1.41E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.32E0,-1.41E0), (-0.9E0,0.5E0), + (0.05E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.32E0,-1.41E0), + (-0.9E0,0.5E0), (0.05E0,-0.6E0), (0.1E0,-0.5E0), + (-0.77E0,-0.49E0), (-0.5E0,-0.3E0), + (0.32E0,-1.16E0)/ DATA CT7/(0.0E0,0.0E0), (-0.06E0,-0.90E0), + (0.65E0,-0.47E0), (-0.34E0,-1.22E0), + (0.0E0,0.0E0), (-0.06E0,-0.90E0), + (-0.59E0,-1.46E0), (-1.04E0,-0.04E0), + (0.0E0,0.0E0), (-0.06E0,-0.90E0), + (-0.83E0,0.59E0), (0.07E0,-0.37E0), + (0.0E0,0.0E0), (-0.06E0,-0.90E0), + (-0.76E0,-1.15E0), (-1.33E0,-1.82E0)/ DATA CT6/(0.0E0,0.0E0), (0.90E0,0.06E0), + (0.91E0,-0.77E0), (1.80E0,-0.10E0), + (0.0E0,0.0E0), (0.90E0,0.06E0), (1.45E0,0.74E0), + (0.20E0,0.90E0), (0.0E0,0.0E0), (0.90E0,0.06E0), + (-0.55E0,0.23E0), (0.83E0,-0.39E0), + (0.0E0,0.0E0), (0.90E0,0.06E0), (1.04E0,0.79E0), + (1.95E0,1.22E0)/ DATA ((CT10X(I,J,1),I=1,7),J=1,4)/(0.7E0,-0.8E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.6E0,-0.6E0), (-0.9E0,0.5E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.6E0,-0.6E0), + (-0.9E0,0.5E0), (0.7E0,-0.6E0), (0.1E0,-0.5E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0)/ DATA ((CT10X(I,J,2),I=1,7),J=1,4)/(0.7E0,-0.8E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.7E0,-0.6E0), (-0.4E0,-0.7E0), + (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.8E0,-0.7E0), + (-0.4E0,-0.7E0), (-0.1E0,-0.2E0), + (0.2E0,-0.8E0), (0.7E0,-0.6E0), (0.1E0,0.4E0), + (0.6E0,-0.6E0)/ DATA ((CT10X(I,J,3),I=1,7),J=1,4)/(0.7E0,-0.8E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (-0.9E0,0.5E0), (-0.4E0,-0.7E0), + (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.1E0,-0.5E0), + (-0.4E0,-0.7E0), (0.7E0,-0.6E0), (0.2E0,-0.8E0), + (-0.9E0,0.5E0), (0.1E0,0.4E0), (0.6E0,-0.6E0)/ DATA ((CT10X(I,J,4),I=1,7),J=1,4)/(0.7E0,-0.8E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.6E0,-0.6E0), (0.7E0,-0.6E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.6E0,-0.6E0), + (0.7E0,-0.6E0), (-0.1E0,-0.2E0), (0.8E0,-0.7E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0)/ DATA ((CT10Y(I,J,1),I=1,7),J=1,4)/(0.6E0,-0.6E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.7E0,-0.8E0), (-0.4E0,-0.7E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.7E0,-0.8E0), + (-0.4E0,-0.7E0), (-0.1E0,-0.9E0), + (0.2E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0)/ DATA ((CT10Y(I,J,2),I=1,7),J=1,4)/(0.6E0,-0.6E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (-0.1E0,-0.9E0), (-0.9E0,0.5E0), + (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (-0.6E0,0.6E0), + (-0.9E0,0.5E0), (-0.9E0,-0.4E0), (0.1E0,-0.5E0), + (-0.1E0,-0.9E0), (-0.5E0,-0.3E0), + (0.7E0,-0.8E0)/ DATA ((CT10Y(I,J,3),I=1,7),J=1,4)/(0.6E0,-0.6E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (-0.1E0,-0.9E0), (0.7E0,-0.8E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (-0.6E0,0.6E0), + (-0.9E0,-0.4E0), (-0.1E0,-0.9E0), + (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0)/ DATA ((CT10Y(I,J,4),I=1,7),J=1,4)/(0.6E0,-0.6E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.7E0,-0.8E0), (-0.9E0,0.5E0), + (-0.4E0,-0.7E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.7E0,-0.8E0), + (-0.9E0,0.5E0), (-0.4E0,-0.7E0), (0.1E0,-0.5E0), + (-0.1E0,-0.9E0), (-0.5E0,-0.3E0), + (0.2E0,-0.8E0)/ DATA CSIZE1/(0.0E0,0.0E0), (0.9E0,0.9E0), + (1.63E0,1.73E0), (2.90E0,2.78E0)/ DATA CSIZE3/(0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (1.17E0,1.17E0), + (1.17E0,1.17E0), (1.17E0,1.17E0), + (1.17E0,1.17E0), (1.17E0,1.17E0), + (1.17E0,1.17E0), (1.17E0,1.17E0)/ DATA CSIZE2/(0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0), + (0.0E0,0.0E0), (0.0E0,0.0E0), (1.54E0,1.54E0), + (1.54E0,1.54E0), (1.54E0,1.54E0), + (1.54E0,1.54E0), (1.54E0,1.54E0), + (1.54E0,1.54E0), (1.54E0,1.54E0)/ * .. Executable Statements .. DO 60 KI = 1, 4 INCX = INCXS(KI) INCY = INCYS(KI) MX = ABS(INCX) MY = ABS(INCY) * DO 40 KN = 1, 4 N = NS(KN) KSIZE = MIN(2,KN) LENX = LENS(KN,MX) LENY = LENS(KN,MY) * .. initialize all argument arrays .. DO 20 I = 1, 7 CX(I) = CX1(I) CY(I) = CY1(I) 20 CONTINUE IF (ICASE.EQ.1) THEN * .. CDOTC .. CDOT(1) = CDOTC(N,CX,INCX,CY,INCY) CALL CTEST(1,CDOT,CT6(KN,KI),CSIZE1(KN),SFAC) ELSE IF (ICASE.EQ.2) THEN * .. CDOTU .. CDOT(1) = CDOTU(N,CX,INCX,CY,INCY) CALL CTEST(1,CDOT,CT7(KN,KI),CSIZE1(KN),SFAC) ELSE IF (ICASE.EQ.3) THEN * .. CAXPY .. CALL CAXPY(N,CA,CX,INCX,CY,INCY) CALL CTEST(LENY,CY,CT8(1,KN,KI),CSIZE2(1,KSIZE),SFAC) ELSE IF (ICASE.EQ.4) THEN * .. CCOPY .. CALL CCOPY(N,CX,INCX,CY,INCY) CALL CTEST(LENY,CY,CT10Y(1,KN,KI),CSIZE3,1.0E0) ELSE IF (ICASE.EQ.5) THEN * .. CSWAP .. CALL CSWAP(N,CX,INCX,CY,INCY) CALL CTEST(LENX,CX,CT10X(1,KN,KI),CSIZE3,1.0E0) CALL CTEST(LENY,CY,CT10Y(1,KN,KI),CSIZE3,1.0E0) ELSE WRITE (NOUT,*) ' Shouldn''t be here in CHECK2' STOP END IF * 40 CONTINUE 60 CONTINUE RETURN END SUBROUTINE STEST(LEN,SCOMP,STRUE,SSIZE,SFAC) * ********************************* STEST ************************** * * THIS SUBR COMPARES ARRAYS SCOMP() AND STRUE() OF LENGTH LEN TO * SEE IF THE TERM BY TERM DIFFERENCES, MULTIPLIED BY SFAC, ARE * NEGLIGIBLE. * * C. L. LAWSON, JPL, 1974 DEC 10 * * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. REAL SFAC INTEGER LEN * .. Array Arguments .. REAL SCOMP(LEN), SSIZE(LEN), STRUE(LEN) * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. REAL SD INTEGER I * .. External Functions .. REAL SDIFF EXTERNAL SDIFF * .. Intrinsic Functions .. INTRINSIC ABS * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Executable Statements .. * DO 40 I = 1, LEN SD = SCOMP(I) - STRUE(I) IF (SDIFF(ABS(SSIZE(I))+ABS(SFAC*SD),ABS(SSIZE(I))).EQ.0.0E0) + GO TO 40 * * HERE SCOMP(I) IS NOT CLOSE TO STRUE(I). * IF ( .NOT. PASS) GO TO 20 * PRINT FAIL MESSAGE AND HEADER. PASS = .FALSE. WRITE (NOUT,99999) WRITE (NOUT,99998) 20 WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, I, SCOMP(I), + STRUE(I), SD, SSIZE(I) 40 CONTINUE RETURN * 99999 FORMAT (' FAIL') 99998 FORMAT (/' CASE N INCX INCY MODE I ', + ' COMP(I) TRUE(I) DIFFERENCE', + ' SIZE(I)',/1X) 99997 FORMAT (1X,I4,I3,3I5,I3,2E36.8,2E12.4) END SUBROUTINE STEST1(SCOMP1,STRUE1,SSIZE,SFAC) * ************************* STEST1 ***************************** * * THIS IS AN INTERFACE SUBROUTINE TO ACCOMODATE THE FORTRAN * REQUIREMENT THAT WHEN A DUMMY ARGUMENT IS AN ARRAY, THE * ACTUAL ARGUMENT MUST ALSO BE AN ARRAY OR AN ARRAY ELEMENT. * * C.L. LAWSON, JPL, 1978 DEC 6 * * .. Scalar Arguments .. REAL SCOMP1, SFAC, STRUE1 * .. Array Arguments .. REAL SSIZE(*) * .. Local Arrays .. REAL SCOMP(1), STRUE(1) * .. External Subroutines .. EXTERNAL STEST * .. Executable Statements .. * SCOMP(1) = SCOMP1 STRUE(1) = STRUE1 CALL STEST(1,SCOMP,STRUE,SSIZE,SFAC) * RETURN END REAL FUNCTION SDIFF(SA,SB) * ********************************* SDIFF ************************** * COMPUTES DIFFERENCE OF TWO NUMBERS. C. L. LAWSON, JPL 1974 FEB 15 * * .. Scalar Arguments .. REAL SA, SB * .. Executable Statements .. SDIFF = SA - SB RETURN END SUBROUTINE CTEST(LEN,CCOMP,CTRUE,CSIZE,SFAC) * **************************** CTEST ***************************** * * C.L. LAWSON, JPL, 1978 DEC 6 * * .. Scalar Arguments .. REAL SFAC INTEGER LEN * .. Array Arguments .. COMPLEX CCOMP(LEN), CSIZE(LEN), CTRUE(LEN) * .. Local Scalars .. INTEGER I * .. Local Arrays .. REAL SCOMP(20), SSIZE(20), STRUE(20) * .. External Subroutines .. EXTERNAL STEST * .. Intrinsic Functions .. INTRINSIC AIMAG, REAL * .. Executable Statements .. DO 20 I = 1, LEN SCOMP(2*I-1) = REAL(CCOMP(I)) SCOMP(2*I) = AIMAG(CCOMP(I)) STRUE(2*I-1) = REAL(CTRUE(I)) STRUE(2*I) = AIMAG(CTRUE(I)) SSIZE(2*I-1) = REAL(CSIZE(I)) SSIZE(2*I) = AIMAG(CSIZE(I)) 20 CONTINUE * CALL STEST(2*LEN,SCOMP,STRUE,SSIZE,SFAC) RETURN END SUBROUTINE ITEST1(ICOMP,ITRUE) * ********************************* ITEST1 ************************* * * THIS SUBROUTINE COMPARES THE VARIABLES ICOMP AND ITRUE FOR * EQUALITY. * C. L. LAWSON, JPL, 1974 DEC 10 * * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. INTEGER ICOMP, ITRUE * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. INTEGER ID * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Executable Statements .. IF (ICOMP.EQ.ITRUE) GO TO 40 * * HERE ICOMP IS NOT EQUAL TO ITRUE. * IF ( .NOT. PASS) GO TO 20 * PRINT FAIL MESSAGE AND HEADER. PASS = .FALSE. WRITE (NOUT,99999) WRITE (NOUT,99998) 20 ID = ICOMP - ITRUE WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, ICOMP, ITRUE, ID 40 CONTINUE RETURN * 99999 FORMAT (' FAIL') 99998 FORMAT (/' CASE N INCX INCY MODE ', + ' COMP TRUE DIFFERENCE', + /1X) 99997 FORMAT (1X,I4,I3,3I5,2I36,I12) END blas-1.2.orig/test/dblat3d 0000644 0001750 0001750 00000001562 10735444622 016350 0 ustar sylvestre sylvestre 'DBLAT3.SUMM' NAME OF SUMMARY OUTPUT FILE 6 UNIT NUMBER OF SUMMARY FILE 'DBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. F LOGICAL FLAG, T TO STOP ON FAILURES. T LOGICAL FLAG, T TO TEST ERROR EXITS. 16.0 THRESHOLD VALUE OF TEST RATIO 6 NUMBER OF VALUES OF N 0 1 2 3 5 9 VALUES OF N 3 NUMBER OF VALUES OF ALPHA 0.0 1.0 0.7 VALUES OF ALPHA 3 NUMBER OF VALUES OF BETA 0.0 1.0 1.3 VALUES OF BETA DGEMM T PUT F FOR NO TEST. SAME COLUMNS. DSYMM T PUT F FOR NO TEST. SAME COLUMNS. DTRMM T PUT F FOR NO TEST. SAME COLUMNS. DTRSM T PUT F FOR NO TEST. SAME COLUMNS. DSYRK T PUT F FOR NO TEST. SAME COLUMNS. DSYR2K T PUT F FOR NO TEST. SAME COLUMNS. blas-1.2.orig/test/zblat2d 0000644 0001750 0001750 00000003012 10735444622 016365 0 ustar sylvestre sylvestre 'ZBLAT2.SUMM' NAME OF SUMMARY OUTPUT FILE 6 UNIT NUMBER OF SUMMARY FILE 'CBLA2T.SNAP' NAME OF SNAPSHOT OUTPUT FILE -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. F LOGICAL FLAG, T TO STOP ON FAILURES. T LOGICAL FLAG, T TO TEST ERROR EXITS. 16.0 THRESHOLD VALUE OF TEST RATIO 6 NUMBER OF VALUES OF N 0 1 2 3 5 9 VALUES OF N 4 NUMBER OF VALUES OF K 0 1 2 4 VALUES OF K 4 NUMBER OF VALUES OF INCX AND INCY 1 2 -1 -2 VALUES OF INCX AND INCY 3 NUMBER OF VALUES OF ALPHA (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA 3 NUMBER OF VALUES OF BETA (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA ZGEMV T PUT F FOR NO TEST. SAME COLUMNS. ZGBMV T PUT F FOR NO TEST. SAME COLUMNS. ZHEMV T PUT F FOR NO TEST. SAME COLUMNS. ZHBMV T PUT F FOR NO TEST. SAME COLUMNS. ZHPMV T PUT F FOR NO TEST. SAME COLUMNS. ZTRMV T PUT F FOR NO TEST. SAME COLUMNS. ZTBMV T PUT F FOR NO TEST. SAME COLUMNS. ZTPMV T PUT F FOR NO TEST. SAME COLUMNS. ZTRSV T PUT F FOR NO TEST. SAME COLUMNS. ZTBSV T PUT F FOR NO TEST. SAME COLUMNS. ZTPSV T PUT F FOR NO TEST. SAME COLUMNS. ZGERC T PUT F FOR NO TEST. SAME COLUMNS. ZGERU T PUT F FOR NO TEST. SAME COLUMNS. ZHER T PUT F FOR NO TEST. SAME COLUMNS. ZHPR T PUT F FOR NO TEST. SAME COLUMNS. ZHER2 T PUT F FOR NO TEST. SAME COLUMNS. ZHPR2 T PUT F FOR NO TEST. SAME COLUMNS. blas-1.2.orig/test/cblat2d 0000644 0001750 0001750 00000003012 10735444622 016336 0 ustar sylvestre sylvestre 'CBLAT2.SUMM' NAME OF SUMMARY OUTPUT FILE 6 UNIT NUMBER OF SUMMARY FILE 'CBLA2T.SNAP' NAME OF SNAPSHOT OUTPUT FILE -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. F LOGICAL FLAG, T TO STOP ON FAILURES. T LOGICAL FLAG, T TO TEST ERROR EXITS. 16.0 THRESHOLD VALUE OF TEST RATIO 6 NUMBER OF VALUES OF N 0 1 2 3 5 9 VALUES OF N 4 NUMBER OF VALUES OF K 0 1 2 4 VALUES OF K 4 NUMBER OF VALUES OF INCX AND INCY 1 2 -1 -2 VALUES OF INCX AND INCY 3 NUMBER OF VALUES OF ALPHA (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA 3 NUMBER OF VALUES OF BETA (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA CGEMV T PUT F FOR NO TEST. SAME COLUMNS. CGBMV T PUT F FOR NO TEST. SAME COLUMNS. CHEMV T PUT F FOR NO TEST. SAME COLUMNS. CHBMV T PUT F FOR NO TEST. SAME COLUMNS. CHPMV T PUT F FOR NO TEST. SAME COLUMNS. CTRMV T PUT F FOR NO TEST. SAME COLUMNS. CTBMV T PUT F FOR NO TEST. SAME COLUMNS. CTPMV T PUT F FOR NO TEST. SAME COLUMNS. CTRSV T PUT F FOR NO TEST. SAME COLUMNS. CTBSV T PUT F FOR NO TEST. SAME COLUMNS. CTPSV T PUT F FOR NO TEST. SAME COLUMNS. CGERC T PUT F FOR NO TEST. SAME COLUMNS. CGERU T PUT F FOR NO TEST. SAME COLUMNS. CHER T PUT F FOR NO TEST. SAME COLUMNS. CHPR T PUT F FOR NO TEST. SAME COLUMNS. CHER2 T PUT F FOR NO TEST. SAME COLUMNS. CHPR2 T PUT F FOR NO TEST. SAME COLUMNS. blas-1.2.orig/test/sblat2d 0000644 0001750 0001750 00000002672 10735444622 016371 0 ustar sylvestre sylvestre 'SBLAT2.SUMM' NAME OF SUMMARY OUTPUT FILE 6 UNIT NUMBER OF SUMMARY FILE 'SBLAT2.SNAP' NAME OF SNAPSHOT OUTPUT FILE -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. F LOGICAL FLAG, T TO STOP ON FAILURES. T LOGICAL FLAG, T TO TEST ERROR EXITS. 16.0 THRESHOLD VALUE OF TEST RATIO 6 NUMBER OF VALUES OF N 0 1 2 3 5 9 VALUES OF N 4 NUMBER OF VALUES OF K 0 1 2 4 VALUES OF K 4 NUMBER OF VALUES OF INCX AND INCY 1 2 -1 -2 VALUES OF INCX AND INCY 3 NUMBER OF VALUES OF ALPHA 0.0 1.0 0.7 VALUES OF ALPHA 3 NUMBER OF VALUES OF BETA 0.0 1.0 0.9 VALUES OF BETA SGEMV T PUT F FOR NO TEST. SAME COLUMNS. SGBMV T PUT F FOR NO TEST. SAME COLUMNS. SSYMV T PUT F FOR NO TEST. SAME COLUMNS. SSBMV T PUT F FOR NO TEST. SAME COLUMNS. SSPMV T PUT F FOR NO TEST. SAME COLUMNS. STRMV T PUT F FOR NO TEST. SAME COLUMNS. STBMV T PUT F FOR NO TEST. SAME COLUMNS. STPMV T PUT F FOR NO TEST. SAME COLUMNS. STRSV T PUT F FOR NO TEST. SAME COLUMNS. STBSV T PUT F FOR NO TEST. SAME COLUMNS. STPSV T PUT F FOR NO TEST. SAME COLUMNS. SGER T PUT F FOR NO TEST. SAME COLUMNS. SSYR T PUT F FOR NO TEST. SAME COLUMNS. SSPR T PUT F FOR NO TEST. SAME COLUMNS. SSYR2 T PUT F FOR NO TEST. SAME COLUMNS. SSPR2 T PUT F FOR NO TEST. SAME COLUMNS. blas-1.2.orig/test/dblat2d 0000644 0001750 0001750 00000002672 10735444622 016352 0 ustar sylvestre sylvestre 'DBLAT2.SUMM' NAME OF SUMMARY OUTPUT FILE 6 UNIT NUMBER OF SUMMARY FILE 'DBLAT2.SNAP' NAME OF SNAPSHOT OUTPUT FILE -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. F LOGICAL FLAG, T TO STOP ON FAILURES. T LOGICAL FLAG, T TO TEST ERROR EXITS. 16.0 THRESHOLD VALUE OF TEST RATIO 6 NUMBER OF VALUES OF N 0 1 2 3 5 9 VALUES OF N 4 NUMBER OF VALUES OF K 0 1 2 4 VALUES OF K 4 NUMBER OF VALUES OF INCX AND INCY 1 2 -1 -2 VALUES OF INCX AND INCY 3 NUMBER OF VALUES OF ALPHA 0.0 1.0 0.7 VALUES OF ALPHA 3 NUMBER OF VALUES OF BETA 0.0 1.0 0.9 VALUES OF BETA DGEMV T PUT F FOR NO TEST. SAME COLUMNS. DGBMV T PUT F FOR NO TEST. SAME COLUMNS. DSYMV T PUT F FOR NO TEST. SAME COLUMNS. DSBMV T PUT F FOR NO TEST. SAME COLUMNS. DSPMV T PUT F FOR NO TEST. SAME COLUMNS. DTRMV T PUT F FOR NO TEST. SAME COLUMNS. DTBMV T PUT F FOR NO TEST. SAME COLUMNS. DTPMV T PUT F FOR NO TEST. SAME COLUMNS. DTRSV T PUT F FOR NO TEST. SAME COLUMNS. DTBSV T PUT F FOR NO TEST. SAME COLUMNS. DTPSV T PUT F FOR NO TEST. SAME COLUMNS. DGER T PUT F FOR NO TEST. SAME COLUMNS. DSYR T PUT F FOR NO TEST. SAME COLUMNS. DSPR T PUT F FOR NO TEST. SAME COLUMNS. DSYR2 T PUT F FOR NO TEST. SAME COLUMNS. DSPR2 T PUT F FOR NO TEST. SAME COLUMNS. blas-1.2.orig/test/cblat2 0000644 0001750 0001750 00000342024 10735444622 016203 0 ustar sylvestre sylvestre PROGRAM CBLAT2 * * Test program for the COMPLEX Level 2 Blas. * * The program must be driven by a short data file. The first 18 records * of the file are read using list-directed input, the last 17 records * are read using the format ( A6, L2 ). An annotated example of a data * file can be obtained by deleting the first 3 characters from the * following 35 lines: * 'CBLAT2.SUMM' NAME OF SUMMARY OUTPUT FILE * 6 UNIT NUMBER OF SUMMARY FILE * 'CBLA2T.SNAP' NAME OF SNAPSHOT OUTPUT FILE * -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) * F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. * F LOGICAL FLAG, T TO STOP ON FAILURES. * T LOGICAL FLAG, T TO TEST ERROR EXITS. * 16.0 THRESHOLD VALUE OF TEST RATIO * 6 NUMBER OF VALUES OF N * 0 1 2 3 5 9 VALUES OF N * 4 NUMBER OF VALUES OF K * 0 1 2 4 VALUES OF K * 4 NUMBER OF VALUES OF INCX AND INCY * 1 2 -1 -2 VALUES OF INCX AND INCY * 3 NUMBER OF VALUES OF ALPHA * (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA * 3 NUMBER OF VALUES OF BETA * (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA * CGEMV T PUT F FOR NO TEST. SAME COLUMNS. * CGBMV T PUT F FOR NO TEST. SAME COLUMNS. * CHEMV T PUT F FOR NO TEST. SAME COLUMNS. * CHBMV T PUT F FOR NO TEST. SAME COLUMNS. * CHPMV T PUT F FOR NO TEST. SAME COLUMNS. * CTRMV T PUT F FOR NO TEST. SAME COLUMNS. * CTBMV T PUT F FOR NO TEST. SAME COLUMNS. * CTPMV T PUT F FOR NO TEST. SAME COLUMNS. * CTRSV T PUT F FOR NO TEST. SAME COLUMNS. * CTBSV T PUT F FOR NO TEST. SAME COLUMNS. * CTPSV T PUT F FOR NO TEST. SAME COLUMNS. * CGERC T PUT F FOR NO TEST. SAME COLUMNS. * CGERU T PUT F FOR NO TEST. SAME COLUMNS. * CHER T PUT F FOR NO TEST. SAME COLUMNS. * CHPR T PUT F FOR NO TEST. SAME COLUMNS. * CHER2 T PUT F FOR NO TEST. SAME COLUMNS. * CHPR2 T PUT F FOR NO TEST. SAME COLUMNS. * * See: * * Dongarra J. J., Du Croz J. J., Hammarling S. and Hanson R. J.. * An extended set of Fortran Basic Linear Algebra Subprograms. * * Technical Memoranda Nos. 41 (revision 3) and 81, Mathematics * and Computer Science Division, Argonne National Laboratory, * 9700 South Cass Avenue, Argonne, Illinois 60439, US. * * Or * * NAG Technical Reports TR3/87 and TR4/87, Numerical Algorithms * Group Ltd., NAG Central Office, 256 Banbury Road, Oxford * OX2 7DE, UK, and Numerical Algorithms Group Inc., 1101 31st * Street, Suite 100, Downers Grove, Illinois 60515-1263, USA. * * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. INTEGER NIN PARAMETER ( NIN = 5 ) INTEGER NSUBS PARAMETER ( NSUBS = 17 ) COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) ) REAL RZERO, RHALF, RONE PARAMETER ( RZERO = 0.0, RHALF = 0.5, RONE = 1.0 ) INTEGER NMAX, INCMAX PARAMETER ( NMAX = 65, INCMAX = 2 ) INTEGER NINMAX, NIDMAX, NKBMAX, NALMAX, NBEMAX PARAMETER ( NINMAX = 7, NIDMAX = 9, NKBMAX = 7, $ NALMAX = 7, NBEMAX = 7 ) * .. Local Scalars .. REAL EPS, ERR, THRESH INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NINC, NKB, $ NOUT, NTRA LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE, $ TSTERR CHARACTER*1 TRANS CHARACTER*6 SNAMET CHARACTER*32 SNAPS, SUMMRY * .. Local Arrays .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), $ ALF( NALMAX ), AS( NMAX*NMAX ), BET( NBEMAX ), $ X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( 2*NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDMAX ), INC( NINMAX ), KB( NKBMAX ) LOGICAL LTEST( NSUBS ) CHARACTER*6 SNAMES( NSUBS ) * .. External Functions .. REAL SDIFF LOGICAL LCE EXTERNAL SDIFF, LCE * .. External Subroutines .. EXTERNAL CCHK1, CCHK2, CCHK3, CCHK4, CCHK5, CCHK6, $ CCHKE, CMVCH * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR COMMON /SRNAMC/SRNAMT * .. Data statements .. DATA SNAMES/'CGEMV ', 'CGBMV ', 'CHEMV ', 'CHBMV ', $ 'CHPMV ', 'CTRMV ', 'CTBMV ', 'CTPMV ', $ 'CTRSV ', 'CTBSV ', 'CTPSV ', 'CGERC ', $ 'CGERU ', 'CHER ', 'CHPR ', 'CHER2 ', $ 'CHPR2 '/ * .. Executable Statements .. * * Read name and unit number for summary output file and open file. * READ( NIN, FMT = * )SUMMRY READ( NIN, FMT = * )NOUT OPEN( NOUT, FILE = SUMMRY, STATUS = 'NEW' ) NOUTC = NOUT * * Read name and unit number for snapshot output file and open file. * READ( NIN, FMT = * )SNAPS READ( NIN, FMT = * )NTRA TRACE = NTRA.GE.0 IF( TRACE )THEN OPEN( NTRA, FILE = SNAPS, STATUS = 'NEW' ) END IF * Read the flag that directs rewinding of the snapshot file. READ( NIN, FMT = * )REWI REWI = REWI.AND.TRACE * Read the flag that directs stopping on any failure. READ( NIN, FMT = * )SFATAL * Read the flag that indicates whether error exits are to be tested. READ( NIN, FMT = * )TSTERR * Read the threshold value of the test ratio READ( NIN, FMT = * )THRESH * * Read and check the parameter values for the tests. * * Values of N READ( NIN, FMT = * )NIDIM IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN WRITE( NOUT, FMT = 9997 )'N', NIDMAX GO TO 230 END IF READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM ) DO 10 I = 1, NIDIM IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN WRITE( NOUT, FMT = 9996 )NMAX GO TO 230 END IF 10 CONTINUE * Values of K READ( NIN, FMT = * )NKB IF( NKB.LT.1.OR.NKB.GT.NKBMAX )THEN WRITE( NOUT, FMT = 9997 )'K', NKBMAX GO TO 230 END IF READ( NIN, FMT = * )( KB( I ), I = 1, NKB ) DO 20 I = 1, NKB IF( KB( I ).LT.0 )THEN WRITE( NOUT, FMT = 9995 ) GO TO 230 END IF 20 CONTINUE * Values of INCX and INCY READ( NIN, FMT = * )NINC IF( NINC.LT.1.OR.NINC.GT.NINMAX )THEN WRITE( NOUT, FMT = 9997 )'INCX AND INCY', NINMAX GO TO 230 END IF READ( NIN, FMT = * )( INC( I ), I = 1, NINC ) DO 30 I = 1, NINC IF( INC( I ).EQ.0.OR.ABS( INC( I ) ).GT.INCMAX )THEN WRITE( NOUT, FMT = 9994 )INCMAX GO TO 230 END IF 30 CONTINUE * Values of ALPHA READ( NIN, FMT = * )NALF IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX GO TO 230 END IF READ( NIN, FMT = * )( ALF( I ), I = 1, NALF ) * Values of BETA READ( NIN, FMT = * )NBET IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX GO TO 230 END IF READ( NIN, FMT = * )( BET( I ), I = 1, NBET ) * * Report values of parameters. * WRITE( NOUT, FMT = 9993 ) WRITE( NOUT, FMT = 9992 )( IDIM( I ), I = 1, NIDIM ) WRITE( NOUT, FMT = 9991 )( KB( I ), I = 1, NKB ) WRITE( NOUT, FMT = 9990 )( INC( I ), I = 1, NINC ) WRITE( NOUT, FMT = 9989 )( ALF( I ), I = 1, NALF ) WRITE( NOUT, FMT = 9988 )( BET( I ), I = 1, NBET ) IF( .NOT.TSTERR )THEN WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9980 ) END IF WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9999 )THRESH WRITE( NOUT, FMT = * ) * * Read names of subroutines and flags which indicate * whether they are to be tested. * DO 40 I = 1, NSUBS LTEST( I ) = .FALSE. 40 CONTINUE 50 READ( NIN, FMT = 9984, END = 80 )SNAMET, LTESTT DO 60 I = 1, NSUBS IF( SNAMET.EQ.SNAMES( I ) ) $ GO TO 70 60 CONTINUE WRITE( NOUT, FMT = 9986 )SNAMET STOP 70 LTEST( I ) = LTESTT GO TO 50 * 80 CONTINUE CLOSE ( NIN ) * * Compute EPS (the machine precision). * EPS = RONE 90 CONTINUE IF( SDIFF( RONE + EPS, RONE ).EQ.RZERO ) $ GO TO 100 EPS = RHALF*EPS GO TO 90 100 CONTINUE EPS = EPS + EPS WRITE( NOUT, FMT = 9998 )EPS * * Check the reliability of CMVCH using exact data. * N = MIN( 32, NMAX ) DO 120 J = 1, N DO 110 I = 1, N A( I, J ) = MAX( I - J + 1, 0 ) 110 CONTINUE X( J ) = J Y( J ) = ZERO 120 CONTINUE DO 130 J = 1, N YY( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3 130 CONTINUE * YY holds the exact result. On exit from CMVCH YT holds * the result computed by CMVCH. TRANS = 'N' CALL CMVCH( TRANS, N, N, ONE, A, NMAX, X, 1, ZERO, Y, 1, YT, G, $ YY, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LCE( YY, YT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR STOP END IF TRANS = 'T' CALL CMVCH( TRANS, N, N, ONE, A, NMAX, X, -1, ZERO, Y, -1, YT, G, $ YY, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LCE( YY, YT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR STOP END IF * * Test each subroutine in turn. * DO 210 ISNUM = 1, NSUBS WRITE( NOUT, FMT = * ) IF( .NOT.LTEST( ISNUM ) )THEN * Subprogram is not to be tested. WRITE( NOUT, FMT = 9983 )SNAMES( ISNUM ) ELSE SRNAMT = SNAMES( ISNUM ) * Test error exits. IF( TSTERR )THEN CALL CCHKE( ISNUM, SNAMES( ISNUM ), NOUT ) WRITE( NOUT, FMT = * ) END IF * Test computations. INFOT = 0 OK = .TRUE. FATAL = .FALSE. GO TO ( 140, 140, 150, 150, 150, 160, 160, $ 160, 160, 160, 160, 170, 170, 180, $ 180, 190, 190 )ISNUM * Test CGEMV, 01, and CGBMV, 02. 140 CALL CCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, $ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS, $ X, XX, XS, Y, YY, YS, YT, G ) GO TO 200 * Test CHEMV, 03, CHBMV, 04, and CHPMV, 05. 150 CALL CCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, $ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS, $ X, XX, XS, Y, YY, YS, YT, G ) GO TO 200 * Test CTRMV, 06, CTBMV, 07, CTPMV, 08, * CTRSV, 09, CTBSV, 10, and CTPSV, 11. 160 CALL CCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NKB, KB, NINC, INC, $ NMAX, INCMAX, A, AA, AS, Y, YY, YS, YT, G, Z ) GO TO 200 * Test CGERC, 12, CGERU, 13. 170 CALL CCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, $ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, $ YT, G, Z ) GO TO 200 * Test CHER, 14, and CHPR, 15. 180 CALL CCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, $ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, $ YT, G, Z ) GO TO 200 * Test CHER2, 16, and CHPR2, 17. 190 CALL CCHK6( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, $ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, $ YT, G, Z ) * 200 IF( FATAL.AND.SFATAL ) $ GO TO 220 END IF 210 CONTINUE WRITE( NOUT, FMT = 9982 ) GO TO 240 * 220 CONTINUE WRITE( NOUT, FMT = 9981 ) GO TO 240 * 230 CONTINUE WRITE( NOUT, FMT = 9987 ) * 240 CONTINUE IF( TRACE ) $ CLOSE ( NTRA ) CLOSE ( NOUT ) STOP * 9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES', $ 'S THAN', F8.2 ) 9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, E9.1 ) 9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ', $ 'THAN ', I2 ) 9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 ) 9995 FORMAT( ' VALUE OF K IS LESS THAN 0' ) 9994 FORMAT( ' ABSOLUTE VALUE OF INCX OR INCY IS 0 OR GREATER THAN ', $ I2 ) 9993 FORMAT( ' TESTS OF THE COMPLEX LEVEL 2 BLAS', //' THE F', $ 'OLLOWING PARAMETER VALUES WILL BE USED:' ) 9992 FORMAT( ' FOR N ', 9I6 ) 9991 FORMAT( ' FOR K ', 7I6 ) 9990 FORMAT( ' FOR INCX AND INCY ', 7I6 ) 9989 FORMAT( ' FOR ALPHA ', $ 7( '(', F4.1, ',', F4.1, ') ', : ) ) 9988 FORMAT( ' FOR BETA ', $ 7( '(', F4.1, ',', F4.1, ') ', : ) ) 9987 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM', $ /' ******* TESTS ABANDONED *******' ) 9986 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T', $ 'ESTS ABANDONED *******' ) 9985 FORMAT( ' ERROR IN CMVCH - IN-LINE DOT PRODUCTS ARE BEING EVALU', $ 'ATED WRONGLY.', /' CMVCH WAS CALLED WITH TRANS = ', A1, $ ' AND RETURNED SAME = ', L1, ' AND ERR = ', F12.3, '.', / $ ' THIS MAY BE DUE TO FAULTS IN THE ARITHMETIC OR THE COMPILER.' $ , /' ******* TESTS ABANDONED *******' ) 9984 FORMAT( A6, L2 ) 9983 FORMAT( 1X, A6, ' WAS NOT TESTED' ) 9982 FORMAT( /' END OF TESTS' ) 9981 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' ) 9980 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' ) * * End of CBLAT2. * END SUBROUTINE CCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET, $ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX, $ XS, Y, YY, YS, YT, G ) * * Tests CGEMV and CGBMV. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO, HALF PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX, $ NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), BET( NBET ), X( NMAX ), $ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ), $ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB ) * .. Local Scalars .. COMPLEX ALPHA, ALS, BETA, BLS, TRANSL REAL ERR, ERRMAX INTEGER I, IA, IB, IC, IKU, IM, IN, INCX, INCXS, INCY, $ INCYS, IX, IY, KL, KLS, KU, KUS, LAA, LDA, $ LDAS, LX, LY, M, ML, MS, N, NARGS, NC, ND, NK, $ NL, NS LOGICAL BANDED, FULL, NULL, RESET, SAME, TRAN CHARACTER*1 TRANS, TRANSS CHARACTER*3 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CGBMV, CGEMV, CMAKE, CMVCH * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'NTC'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'E' BANDED = SNAME( 3: 3 ).EQ.'B' * Define the number of arguments. IF( FULL )THEN NARGS = 11 ELSE IF( BANDED )THEN NARGS = 13 END IF * NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 120 IN = 1, NIDIM N = IDIM( IN ) ND = N/2 + 1 * DO 110 IM = 1, 2 IF( IM.EQ.1 ) $ M = MAX( N - ND, 0 ) IF( IM.EQ.2 ) $ M = MIN( N + ND, NMAX ) * IF( BANDED )THEN NK = NKB ELSE NK = 1 END IF DO 100 IKU = 1, NK IF( BANDED )THEN KU = KB( IKU ) KL = MAX( KU - 1, 0 ) ELSE KU = N - 1 KL = M - 1 END IF * Set LDA to 1 more than minimum value if room. IF( BANDED )THEN LDA = KL + KU + 1 ELSE LDA = M END IF IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 LAA = LDA*N NULL = N.LE.0.OR.M.LE.0 * * Generate the matrix A. * TRANSL = ZERO CALL CMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX, AA, $ LDA, KL, KU, RESET, TRANSL ) * DO 90 IC = 1, 3 TRANS = ICH( IC: IC ) TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C' * IF( TRAN )THEN ML = N NL = M ELSE ML = M NL = N END IF * DO 80 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*NL * * Generate the vector X. * TRANSL = HALF CALL CMAKE( 'GE', ' ', ' ', 1, NL, X, 1, XX, $ ABS( INCX ), 0, NL - 1, RESET, TRANSL ) IF( NL.GT.1 )THEN X( NL/2 ) = ZERO XX( 1 + ABS( INCX )*( NL/2 - 1 ) ) = ZERO END IF * DO 70 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*ML * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the vector Y. * TRANSL = ZERO CALL CMAKE( 'GE', ' ', ' ', 1, ML, Y, 1, $ YY, ABS( INCY ), 0, ML - 1, $ RESET, TRANSL ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * TRANSS = TRANS MS = M NS = N KLS = KL KUS = KU ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX BLS = BETA DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ TRANS, M, N, ALPHA, LDA, INCX, BETA, $ INCY IF( REWI ) $ REWIND NTRA CALL CGEMV( TRANS, M, N, ALPHA, AA, $ LDA, XX, INCX, BETA, YY, $ INCY ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ TRANS, M, N, KL, KU, ALPHA, LDA, $ INCX, BETA, INCY IF( REWI ) $ REWIND NTRA CALL CGBMV( TRANS, M, N, KL, KU, ALPHA, $ AA, LDA, XX, INCX, BETA, $ YY, INCY ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 130 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = TRANS.EQ.TRANSS ISAME( 2 ) = MS.EQ.M ISAME( 3 ) = NS.EQ.N IF( FULL )THEN ISAME( 4 ) = ALS.EQ.ALPHA ISAME( 5 ) = LCE( AS, AA, LAA ) ISAME( 6 ) = LDAS.EQ.LDA ISAME( 7 ) = LCE( XS, XX, LX ) ISAME( 8 ) = INCXS.EQ.INCX ISAME( 9 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 10 ) = LCE( YS, YY, LY ) ELSE ISAME( 10 ) = LCERES( 'GE', ' ', 1, $ ML, YS, YY, $ ABS( INCY ) ) END IF ISAME( 11 ) = INCYS.EQ.INCY ELSE IF( BANDED )THEN ISAME( 4 ) = KLS.EQ.KL ISAME( 5 ) = KUS.EQ.KU ISAME( 6 ) = ALS.EQ.ALPHA ISAME( 7 ) = LCE( AS, AA, LAA ) ISAME( 8 ) = LDAS.EQ.LDA ISAME( 9 ) = LCE( XS, XX, LX ) ISAME( 10 ) = INCXS.EQ.INCX ISAME( 11 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 12 ) = LCE( YS, YY, LY ) ELSE ISAME( 12 ) = LCERES( 'GE', ' ', 1, $ ML, YS, YY, $ ABS( INCY ) ) END IF ISAME( 13 ) = INCYS.EQ.INCY END IF * * If data was incorrectly changed, report * and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 130 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL CMVCH( TRANS, M, N, ALPHA, A, $ NMAX, X, INCX, BETA, Y, $ INCY, YT, G, YY, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 130 ELSE * Avoid repeating tests with M.le.0 or * N.le.0. GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 140 * 130 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, TRANS, M, N, ALPHA, LDA, $ INCX, BETA, INCY ELSE IF( BANDED )THEN WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANS, M, N, KL, KU, $ ALPHA, LDA, INCX, BETA, INCY END IF * 140 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 4( I3, ',' ), '(', $ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',', $ F4.1, '), Y,', I2, ') .' ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), '(', $ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',', $ F4.1, '), Y,', I2, ') .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK1. * END SUBROUTINE CCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET, $ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX, $ XS, Y, YY, YS, YT, G ) * * Tests CHEMV, CHBMV and CHPMV. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO, HALF PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX, $ NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), BET( NBET ), X( NMAX ), $ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ), $ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB ) * .. Local Scalars .. COMPLEX ALPHA, ALS, BETA, BLS, TRANSL REAL ERR, ERRMAX INTEGER I, IA, IB, IC, IK, IN, INCX, INCXS, INCY, $ INCYS, IX, IY, K, KS, LAA, LDA, LDAS, LX, LY, $ N, NARGS, NC, NK, NS LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME CHARACTER*1 UPLO, UPLOS CHARACTER*2 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CHBMV, CHEMV, CHPMV, CMAKE, CMVCH * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'UL'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'E' BANDED = SNAME( 3: 3 ).EQ.'B' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 10 ELSE IF( BANDED )THEN NARGS = 11 ELSE IF( PACKED )THEN NARGS = 9 END IF * NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 110 IN = 1, NIDIM N = IDIM( IN ) * IF( BANDED )THEN NK = NKB ELSE NK = 1 END IF DO 100 IK = 1, NK IF( BANDED )THEN K = KB( IK ) ELSE K = N - 1 END IF * Set LDA to 1 more than minimum value if room. IF( BANDED )THEN LDA = K + 1 ELSE LDA = N END IF IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF NULL = N.LE.0 * DO 90 IC = 1, 2 UPLO = ICH( IC: IC ) * * Generate the matrix A. * TRANSL = ZERO CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX, AA, $ LDA, K, K, RESET, TRANSL ) * DO 80 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, $ ABS( INCX ), 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * DO 70 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*N * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the vector Y. * TRANSL = ZERO CALL CMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY, $ ABS( INCY ), 0, N - 1, RESET, $ TRANSL ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * UPLOS = UPLO NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX BLS = BETA DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, $ UPLO, N, ALPHA, LDA, INCX, BETA, INCY IF( REWI ) $ REWIND NTRA CALL CHEMV( UPLO, N, ALPHA, AA, LDA, XX, $ INCX, BETA, YY, INCY ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ UPLO, N, K, ALPHA, LDA, INCX, BETA, $ INCY IF( REWI ) $ REWIND NTRA CALL CHBMV( UPLO, N, K, ALPHA, AA, LDA, $ XX, INCX, BETA, YY, INCY ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ UPLO, N, ALPHA, INCX, BETA, INCY IF( REWI ) $ REWIND NTRA CALL CHPMV( UPLO, N, ALPHA, AA, XX, INCX, $ BETA, YY, INCY ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = NS.EQ.N IF( FULL )THEN ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LCE( AS, AA, LAA ) ISAME( 5 ) = LDAS.EQ.LDA ISAME( 6 ) = LCE( XS, XX, LX ) ISAME( 7 ) = INCXS.EQ.INCX ISAME( 8 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 9 ) = LCE( YS, YY, LY ) ELSE ISAME( 9 ) = LCERES( 'GE', ' ', 1, N, $ YS, YY, ABS( INCY ) ) END IF ISAME( 10 ) = INCYS.EQ.INCY ELSE IF( BANDED )THEN ISAME( 3 ) = KS.EQ.K ISAME( 4 ) = ALS.EQ.ALPHA ISAME( 5 ) = LCE( AS, AA, LAA ) ISAME( 6 ) = LDAS.EQ.LDA ISAME( 7 ) = LCE( XS, XX, LX ) ISAME( 8 ) = INCXS.EQ.INCX ISAME( 9 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 10 ) = LCE( YS, YY, LY ) ELSE ISAME( 10 ) = LCERES( 'GE', ' ', 1, N, $ YS, YY, ABS( INCY ) ) END IF ISAME( 11 ) = INCYS.EQ.INCY ELSE IF( PACKED )THEN ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LCE( AS, AA, LAA ) ISAME( 5 ) = LCE( XS, XX, LX ) ISAME( 6 ) = INCXS.EQ.INCX ISAME( 7 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 8 ) = LCE( YS, YY, LY ) ELSE ISAME( 8 ) = LCERES( 'GE', ' ', 1, N, $ YS, YY, ABS( INCY ) ) END IF ISAME( 9 ) = INCYS.EQ.INCY END IF * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL CMVCH( 'N', N, N, ALPHA, A, NMAX, X, $ INCX, BETA, Y, INCY, YT, G, $ YY, EPS, ERR, FATAL, NOUT, $ .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 120 ELSE * Avoid repeating tests with N.le.0 GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, LDA, INCX, $ BETA, INCY ELSE IF( BANDED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, K, ALPHA, LDA, $ INCX, BETA, INCY ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, N, ALPHA, INCX, $ BETA, INCY END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',', $ F4.1, '), AP, X,', I2, ',(', F4.1, ',', F4.1, '), Y,', I2, $ ') .' ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), '(', $ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',', $ F4.1, '), Y,', I2, ') .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',', $ F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',', F4.1, '), ', $ 'Y,', I2, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK2. * END SUBROUTINE CCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NKB, KB, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, XT, G, Z ) * * Tests CTRMV, CTBMV, CTPMV, CTRSV, CTBSV and CTPSV. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO, HALF, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ), $ ONE = ( 1.0, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NIDIM, NINC, NKB, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), $ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ), $ XT( NMAX ), XX( NMAX*INCMAX ), Z( NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB ) * .. Local Scalars .. COMPLEX TRANSL REAL ERR, ERRMAX INTEGER I, ICD, ICT, ICU, IK, IN, INCX, INCXS, IX, K, $ KS, LAA, LDA, LDAS, LX, N, NARGS, NC, NK, NS LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME CHARACTER*1 DIAG, DIAGS, TRANS, TRANSS, UPLO, UPLOS CHARACTER*2 ICHD, ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CMAKE, CMVCH, CTBMV, CTBSV, CTPMV, CTPSV, $ CTRMV, CTRSV * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'R' BANDED = SNAME( 3: 3 ).EQ.'B' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 8 ELSE IF( BANDED )THEN NARGS = 9 ELSE IF( PACKED )THEN NARGS = 7 END IF * NC = 0 RESET = .TRUE. ERRMAX = RZERO * Set up zero vector for CMVCH. DO 10 I = 1, NMAX Z( I ) = ZERO 10 CONTINUE * DO 110 IN = 1, NIDIM N = IDIM( IN ) * IF( BANDED )THEN NK = NKB ELSE NK = 1 END IF DO 100 IK = 1, NK IF( BANDED )THEN K = KB( IK ) ELSE K = N - 1 END IF * Set LDA to 1 more than minimum value if room. IF( BANDED )THEN LDA = K + 1 ELSE LDA = N END IF IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF NULL = N.LE.0 * DO 90 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * DO 80 ICT = 1, 3 TRANS = ICHT( ICT: ICT ) * DO 70 ICD = 1, 2 DIAG = ICHD( ICD: ICD ) * * Generate the matrix A. * TRANSL = ZERO CALL CMAKE( SNAME( 2: 3 ), UPLO, DIAG, N, N, A, $ NMAX, AA, LDA, K, K, RESET, TRANSL ) * DO 60 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, $ ABS( INCX ), 0, N - 1, RESET, $ TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS DIAGS = DIAG NS = N KS = K DO 20 I = 1, LAA AS( I ) = AA( I ) 20 CONTINUE LDAS = LDA DO 30 I = 1, LX XS( I ) = XX( I ) 30 CONTINUE INCXS = INCX * * Call the subroutine. * IF( SNAME( 4: 5 ).EQ.'MV' )THEN IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, $ UPLO, TRANS, DIAG, N, LDA, INCX IF( REWI ) $ REWIND NTRA CALL CTRMV( UPLO, TRANS, DIAG, N, AA, LDA, $ XX, INCX ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ UPLO, TRANS, DIAG, N, K, LDA, INCX IF( REWI ) $ REWIND NTRA CALL CTBMV( UPLO, TRANS, DIAG, N, K, AA, $ LDA, XX, INCX ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ UPLO, TRANS, DIAG, N, INCX IF( REWI ) $ REWIND NTRA CALL CTPMV( UPLO, TRANS, DIAG, N, AA, XX, $ INCX ) END IF ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, $ UPLO, TRANS, DIAG, N, LDA, INCX IF( REWI ) $ REWIND NTRA CALL CTRSV( UPLO, TRANS, DIAG, N, AA, LDA, $ XX, INCX ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ UPLO, TRANS, DIAG, N, K, LDA, INCX IF( REWI ) $ REWIND NTRA CALL CTBSV( UPLO, TRANS, DIAG, N, K, AA, $ LDA, XX, INCX ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ UPLO, TRANS, DIAG, N, INCX IF( REWI ) $ REWIND NTRA CALL CTPSV( UPLO, TRANS, DIAG, N, AA, XX, $ INCX ) END IF END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = TRANS.EQ.TRANSS ISAME( 3 ) = DIAG.EQ.DIAGS ISAME( 4 ) = NS.EQ.N IF( FULL )THEN ISAME( 5 ) = LCE( AS, AA, LAA ) ISAME( 6 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 7 ) = LCE( XS, XX, LX ) ELSE ISAME( 7 ) = LCERES( 'GE', ' ', 1, N, XS, $ XX, ABS( INCX ) ) END IF ISAME( 8 ) = INCXS.EQ.INCX ELSE IF( BANDED )THEN ISAME( 5 ) = KS.EQ.K ISAME( 6 ) = LCE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 8 ) = LCE( XS, XX, LX ) ELSE ISAME( 8 ) = LCERES( 'GE', ' ', 1, N, XS, $ XX, ABS( INCX ) ) END IF ISAME( 9 ) = INCXS.EQ.INCX ELSE IF( PACKED )THEN ISAME( 5 ) = LCE( AS, AA, LAA ) IF( NULL )THEN ISAME( 6 ) = LCE( XS, XX, LX ) ELSE ISAME( 6 ) = LCERES( 'GE', ' ', 1, N, XS, $ XX, ABS( INCX ) ) END IF ISAME( 7 ) = INCXS.EQ.INCX END IF * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN IF( SNAME( 4: 5 ).EQ.'MV' )THEN * * Check the result. * CALL CMVCH( TRANS, N, N, ONE, A, NMAX, X, $ INCX, ZERO, Z, INCX, XT, G, $ XX, EPS, ERR, FATAL, NOUT, $ .TRUE. ) ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN * * Compute approximation to original vector. * DO 50 I = 1, N Z( I ) = XX( 1 + ( I - 1 )* $ ABS( INCX ) ) XX( 1 + ( I - 1 )*ABS( INCX ) ) $ = X( I ) 50 CONTINUE CALL CMVCH( TRANS, N, N, ONE, A, NMAX, Z, $ INCX, ZERO, X, INCX, XT, G, $ XX, EPS, ERR, FATAL, NOUT, $ .FALSE. ) END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 120 ELSE * Avoid repeating tests with N.le.0. GO TO 110 END IF * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, DIAG, N, LDA, $ INCX ELSE IF( BANDED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, DIAG, N, K, $ LDA, INCX ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, TRANS, DIAG, N, INCX END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', AP, ', $ 'X,', I2, ') .' ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), 2( I3, ',' ), $ ' A,', I3, ', X,', I2, ') .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', A,', $ I3, ', X,', I2, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK3. * END SUBROUTINE CCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G, $ Z ) * * Tests CGERC and CGERU. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO, HALF, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ), $ ONE = ( 1.0, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ) * .. Local Scalars .. COMPLEX ALPHA, ALS, TRANSL REAL ERR, ERRMAX INTEGER I, IA, IM, IN, INCX, INCXS, INCY, INCYS, IX, $ IY, J, LAA, LDA, LDAS, LX, LY, M, MS, N, NARGS, $ NC, ND, NS LOGICAL CONJ, NULL, RESET, SAME * .. Local Arrays .. COMPLEX W( 1 ) LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CGERC, CGERU, CMAKE, CMVCH * .. Intrinsic Functions .. INTRINSIC ABS, CONJG, MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. CONJ = SNAME( 5: 5 ).EQ.'C' * Define the number of arguments. NARGS = 9 * NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 120 IN = 1, NIDIM N = IDIM( IN ) ND = N/2 + 1 * DO 110 IM = 1, 2 IF( IM.EQ.1 ) $ M = MAX( N - ND, 0 ) IF( IM.EQ.2 ) $ M = MIN( N + ND, NMAX ) * * Set LDA to 1 more than minimum value if room. LDA = M IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 110 LAA = LDA*N NULL = N.LE.0.OR.M.LE.0 * DO 100 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*M * * Generate the vector X. * TRANSL = HALF CALL CMAKE( 'GE', ' ', ' ', 1, M, X, 1, XX, ABS( INCX ), $ 0, M - 1, RESET, TRANSL ) IF( M.GT.1 )THEN X( M/2 ) = ZERO XX( 1 + ABS( INCX )*( M/2 - 1 ) ) = ZERO END IF * DO 90 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*N * * Generate the vector Y. * TRANSL = ZERO CALL CMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY, $ ABS( INCY ), 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN Y( N/2 ) = ZERO YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO END IF * DO 80 IA = 1, NALF ALPHA = ALF( IA ) * * Generate the matrix A. * TRANSL = ZERO CALL CMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX, $ AA, LDA, M - 1, N - 1, RESET, TRANSL ) * NC = NC + 1 * * Save every datum before calling the subroutine. * MS = M NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, M, N, $ ALPHA, INCX, INCY, LDA IF( CONJ )THEN IF( REWI ) $ REWIND NTRA CALL CGERC( M, N, ALPHA, XX, INCX, YY, INCY, AA, $ LDA ) ELSE IF( REWI ) $ REWIND NTRA CALL CGERU( M, N, ALPHA, XX, INCX, YY, INCY, AA, $ LDA ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 140 END IF * * See what data changed inside subroutine. * ISAME( 1 ) = MS.EQ.M ISAME( 2 ) = NS.EQ.N ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LCE( XS, XX, LX ) ISAME( 5 ) = INCXS.EQ.INCX ISAME( 6 ) = LCE( YS, YY, LY ) ISAME( 7 ) = INCYS.EQ.INCY IF( NULL )THEN ISAME( 8 ) = LCE( AS, AA, LAA ) ELSE ISAME( 8 ) = LCERES( 'GE', ' ', M, N, AS, AA, $ LDA ) END IF ISAME( 9 ) = LDAS.EQ.LDA * * If data was incorrectly changed, report and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 140 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( INCX.GT.0 )THEN DO 50 I = 1, M Z( I ) = X( I ) 50 CONTINUE ELSE DO 60 I = 1, M Z( I ) = X( M - I + 1 ) 60 CONTINUE END IF DO 70 J = 1, N IF( INCY.GT.0 )THEN W( 1 ) = Y( J ) ELSE W( 1 ) = Y( N - J + 1 ) END IF IF( CONJ ) $ W( 1 ) = CONJG( W( 1 ) ) CALL CMVCH( 'N', M, 1, ALPHA, Z, NMAX, W, 1, $ ONE, A( 1, J ), 1, YT, G, $ AA( 1 + ( J - 1 )*LDA ), EPS, $ ERR, FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 130 70 CONTINUE ELSE * Avoid repeating tests with M.le.0 or N.le.0. GO TO 110 END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 150 * 130 CONTINUE WRITE( NOUT, FMT = 9995 )J * 140 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9994 )NC, SNAME, M, N, ALPHA, INCX, INCY, LDA * 150 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( I3, ',' ), '(', F4.1, ',', F4.1, $ '), X,', I2, ', Y,', I2, ', A,', I3, ') ', $ ' .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK4. * END SUBROUTINE CCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G, $ Z ) * * Tests CHER and CHPR. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO, HALF, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ), $ ONE = ( 1.0, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ) * .. Local Scalars .. COMPLEX ALPHA, TRANSL REAL ERR, ERRMAX, RALPHA, RALS INTEGER I, IA, IC, IN, INCX, INCXS, IX, J, JA, JJ, LAA, $ LDA, LDAS, LJ, LX, N, NARGS, NC, NS LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER CHARACTER*1 UPLO, UPLOS CHARACTER*2 ICH * .. Local Arrays .. COMPLEX W( 1 ) LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CHER, CHPR, CMAKE, CMVCH * .. Intrinsic Functions .. INTRINSIC ABS, CMPLX, CONJG, MAX, REAL * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'UL'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'E' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 7 ELSE IF( PACKED )THEN NARGS = 6 END IF * NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDA to 1 more than minimum value if room. LDA = N IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF * DO 90 IC = 1, 2 UPLO = ICH( IC: IC ) UPPER = UPLO.EQ.'U' * DO 80 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ), $ 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * DO 70 IA = 1, NALF RALPHA = REAL( ALF( IA ) ) ALPHA = CMPLX( RALPHA, RZERO ) NULL = N.LE.0.OR.RALPHA.EQ.RZERO * * Generate the matrix A. * TRANSL = ZERO CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX, $ AA, LDA, N - 1, N - 1, RESET, TRANSL ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO NS = N RALS = RALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N, $ RALPHA, INCX, LDA IF( REWI ) $ REWIND NTRA CALL CHER( UPLO, N, RALPHA, XX, INCX, AA, LDA ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N, $ RALPHA, INCX IF( REWI ) $ REWIND NTRA CALL CHPR( UPLO, N, RALPHA, XX, INCX, AA ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = NS.EQ.N ISAME( 3 ) = RALS.EQ.RALPHA ISAME( 4 ) = LCE( XS, XX, LX ) ISAME( 5 ) = INCXS.EQ.INCX IF( NULL )THEN ISAME( 6 ) = LCE( AS, AA, LAA ) ELSE ISAME( 6 ) = LCERES( SNAME( 2: 3 ), UPLO, N, N, AS, $ AA, LDA ) END IF IF( .NOT.PACKED )THEN ISAME( 7 ) = LDAS.EQ.LDA END IF * * If data was incorrectly changed, report and return. * SAME = .TRUE. DO 30 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 30 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( INCX.GT.0 )THEN DO 40 I = 1, N Z( I ) = X( I ) 40 CONTINUE ELSE DO 50 I = 1, N Z( I ) = X( N - I + 1 ) 50 CONTINUE END IF JA = 1 DO 60 J = 1, N W( 1 ) = CONJG( Z( J ) ) IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF CALL CMVCH( 'N', LJ, 1, ALPHA, Z( JJ ), LJ, W, $ 1, ONE, A( JJ, J ), 1, YT, G, $ AA( JA ), EPS, ERR, FATAL, NOUT, $ .TRUE. ) IF( FULL )THEN IF( UPPER )THEN JA = JA + LDA ELSE JA = JA + LDA + 1 END IF ELSE JA = JA + LJ END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 110 60 CONTINUE ELSE * Avoid repeating tests if N.le.0. IF( N.LE.0 ) $ GO TO 100 END IF * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 110 CONTINUE WRITE( NOUT, FMT = 9995 )J * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, RALPHA, INCX, LDA ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, RALPHA, INCX END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,', $ I2, ', AP) .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,', $ I2, ', A,', I3, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK5. * END SUBROUTINE CCHK6( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G, $ Z ) * * Tests CHER2 and CHPR2. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO, HALF, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ), $ ONE = ( 1.0, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( NMAX, 2 ) REAL G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ) * .. Local Scalars .. COMPLEX ALPHA, ALS, TRANSL REAL ERR, ERRMAX INTEGER I, IA, IC, IN, INCX, INCXS, INCY, INCYS, IX, $ IY, J, JA, JJ, LAA, LDA, LDAS, LJ, LX, LY, N, $ NARGS, NC, NS LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER CHARACTER*1 UPLO, UPLOS CHARACTER*2 ICH * .. Local Arrays .. COMPLEX W( 2 ) LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CHER2, CHPR2, CMAKE, CMVCH * .. Intrinsic Functions .. INTRINSIC ABS, CONJG, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'UL'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'E' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 9 ELSE IF( PACKED )THEN NARGS = 8 END IF * NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 140 IN = 1, NIDIM N = IDIM( IN ) * Set LDA to 1 more than minimum value if room. LDA = N IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 140 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF * DO 130 IC = 1, 2 UPLO = ICH( IC: IC ) UPPER = UPLO.EQ.'U' * DO 120 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ), $ 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * DO 110 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*N * * Generate the vector Y. * TRANSL = ZERO CALL CMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY, $ ABS( INCY ), 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN Y( N/2 ) = ZERO YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO END IF * DO 100 IA = 1, NALF ALPHA = ALF( IA ) NULL = N.LE.0.OR.ALPHA.EQ.ZERO * * Generate the matrix A. * TRANSL = ZERO CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, $ NMAX, AA, LDA, N - 1, N - 1, RESET, $ TRANSL ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N, $ ALPHA, INCX, INCY, LDA IF( REWI ) $ REWIND NTRA CALL CHER2( UPLO, N, ALPHA, XX, INCX, YY, INCY, $ AA, LDA ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N, $ ALPHA, INCX, INCY IF( REWI ) $ REWIND NTRA CALL CHPR2( UPLO, N, ALPHA, XX, INCX, YY, INCY, $ AA ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 160 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = NS.EQ.N ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LCE( XS, XX, LX ) ISAME( 5 ) = INCXS.EQ.INCX ISAME( 6 ) = LCE( YS, YY, LY ) ISAME( 7 ) = INCYS.EQ.INCY IF( NULL )THEN ISAME( 8 ) = LCE( AS, AA, LAA ) ELSE ISAME( 8 ) = LCERES( SNAME( 2: 3 ), UPLO, N, N, $ AS, AA, LDA ) END IF IF( .NOT.PACKED )THEN ISAME( 9 ) = LDAS.EQ.LDA END IF * * If data was incorrectly changed, report and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 160 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( INCX.GT.0 )THEN DO 50 I = 1, N Z( I, 1 ) = X( I ) 50 CONTINUE ELSE DO 60 I = 1, N Z( I, 1 ) = X( N - I + 1 ) 60 CONTINUE END IF IF( INCY.GT.0 )THEN DO 70 I = 1, N Z( I, 2 ) = Y( I ) 70 CONTINUE ELSE DO 80 I = 1, N Z( I, 2 ) = Y( N - I + 1 ) 80 CONTINUE END IF JA = 1 DO 90 J = 1, N W( 1 ) = ALPHA*CONJG( Z( J, 2 ) ) W( 2 ) = CONJG( ALPHA )*CONJG( Z( J, 1 ) ) IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF CALL CMVCH( 'N', LJ, 2, ONE, Z( JJ, 1 ), $ NMAX, W, 1, ONE, A( JJ, J ), 1, $ YT, G, AA( JA ), EPS, ERR, FATAL, $ NOUT, .TRUE. ) IF( FULL )THEN IF( UPPER )THEN JA = JA + LDA ELSE JA = JA + LDA + 1 END IF ELSE JA = JA + LJ END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 150 90 CONTINUE ELSE * Avoid repeating tests with N.le.0. IF( N.LE.0 ) $ GO TO 140 END IF * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * 140 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 170 * 150 CONTINUE WRITE( NOUT, FMT = 9995 )J * 160 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, INCX, $ INCY, LDA ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, ALPHA, INCX, INCY END IF * 170 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',', $ F4.1, '), X,', I2, ', Y,', I2, ', AP) ', $ ' .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',', $ F4.1, '), X,', I2, ', Y,', I2, ', A,', I3, ') ', $ ' .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK6. * END SUBROUTINE CCHKE( ISNUM, SRNAMT, NOUT ) * * Tests the error exits from the Level 2 Blas. * Requires a special version of the error-handling routine XERBLA. * ALPHA, RALPHA, BETA, A, X and Y should not need to be defined. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER ISNUM, NOUT CHARACTER*6 SRNAMT * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Local Scalars .. COMPLEX ALPHA, BETA REAL RALPHA * .. Local Arrays .. COMPLEX A( 1, 1 ), X( 1 ), Y( 1 ) * .. External Subroutines .. EXTERNAL CGBMV, CGEMV, CGERC, CGERU, CHBMV, CHEMV, CHER, $ CHER2, CHKXER, CHPMV, CHPR, CHPR2, CTBMV, $ CTBSV, CTPMV, CTPSV, CTRMV, CTRSV * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. * OK is set to .FALSE. by the special version of XERBLA or by CHKXER * if anything is wrong. OK = .TRUE. * LERR is set to .TRUE. by the special version of XERBLA each time * it is called, and is then tested and re-set by CHKXER. LERR = .FALSE. GO TO ( 10, 20, 30, 40, 50, 60, 70, 80, $ 90, 100, 110, 120, 130, 140, 150, 160, $ 170 )ISNUM 10 INFOT = 1 CALL CGEMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGEMV( 'N', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMV( 'N', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CGEMV( 'N', 2, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMV( 'N', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CGEMV( 'N', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 20 INFOT = 1 CALL CGBMV( '/', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGBMV( 'N', -1, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGBMV( 'N', 0, -1, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGBMV( 'N', 0, 0, -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGBMV( 'N', 2, 0, 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGBMV( 'N', 0, 0, 1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 30 INFOT = 1 CALL CHEMV( '/', 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHEMV( 'U', -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHEMV( 'U', 2, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHEMV( 'U', 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHEMV( 'U', 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 40 INFOT = 1 CALL CHBMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHBMV( 'U', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHBMV( 'U', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CHBMV( 'U', 0, 1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHBMV( 'U', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CHBMV( 'U', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 50 INFOT = 1 CALL CHPMV( '/', 0, ALPHA, A, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHPMV( 'U', -1, ALPHA, A, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CHPMV( 'U', 0, ALPHA, A, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHPMV( 'U', 0, ALPHA, A, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 60 INFOT = 1 CALL CTRMV( '/', 'N', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTRMV( 'U', '/', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTRMV( 'U', 'N', '/', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTRMV( 'U', 'N', 'N', -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMV( 'U', 'N', 'N', 2, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CTRMV( 'U', 'N', 'N', 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 70 INFOT = 1 CALL CTBMV( '/', 'N', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTBMV( 'U', '/', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTBMV( 'U', 'N', '/', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTBMV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTBMV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CTBMV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTBMV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 80 INFOT = 1 CALL CTPMV( '/', 'N', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTPMV( 'U', '/', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTPMV( 'U', 'N', '/', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTPMV( 'U', 'N', 'N', -1, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CTPMV( 'U', 'N', 'N', 0, A, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 90 INFOT = 1 CALL CTRSV( '/', 'N', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTRSV( 'U', '/', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTRSV( 'U', 'N', '/', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTRSV( 'U', 'N', 'N', -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSV( 'U', 'N', 'N', 2, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CTRSV( 'U', 'N', 'N', 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 100 INFOT = 1 CALL CTBSV( '/', 'N', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTBSV( 'U', '/', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTBSV( 'U', 'N', '/', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTBSV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTBSV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CTBSV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTBSV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 110 INFOT = 1 CALL CTPSV( '/', 'N', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTPSV( 'U', '/', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTPSV( 'U', 'N', '/', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTPSV( 'U', 'N', 'N', -1, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CTPSV( 'U', 'N', 'N', 0, A, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 120 INFOT = 1 CALL CGERC( -1, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGERC( 0, -1, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGERC( 0, 0, ALPHA, X, 0, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CGERC( 0, 0, ALPHA, X, 1, Y, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CGERC( 2, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 130 INFOT = 1 CALL CGERU( -1, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGERU( 0, -1, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGERU( 0, 0, ALPHA, X, 0, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CGERU( 0, 0, ALPHA, X, 1, Y, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CGERU( 2, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 140 INFOT = 1 CALL CHER( '/', 0, RALPHA, X, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHER( 'U', -1, RALPHA, X, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHER( 'U', 0, RALPHA, X, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHER( 'U', 2, RALPHA, X, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 150 INFOT = 1 CALL CHPR( '/', 0, RALPHA, X, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHPR( 'U', -1, RALPHA, X, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHPR( 'U', 0, RALPHA, X, 0, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 160 INFOT = 1 CALL CHER2( '/', 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHER2( 'U', -1, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHER2( 'U', 0, ALPHA, X, 0, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHER2( 'U', 0, ALPHA, X, 1, Y, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHER2( 'U', 2, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 170 INFOT = 1 CALL CHPR2( '/', 0, ALPHA, X, 1, Y, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHPR2( 'U', -1, ALPHA, X, 1, Y, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHPR2( 'U', 0, ALPHA, X, 0, Y, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHPR2( 'U', 0, ALPHA, X, 1, Y, 0, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * 180 IF( OK )THEN WRITE( NOUT, FMT = 9999 )SRNAMT ELSE WRITE( NOUT, FMT = 9998 )SRNAMT END IF RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' ) 9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****', $ '**' ) * * End of CCHKE. * END SUBROUTINE CMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, KL, $ KU, RESET, TRANSL ) * * Generates values for an M by N matrix A within the bandwidth * defined by KL and KU. * Stores the values in the array AA in the data structure required * by the routine, with unwanted elements set to rogue value. * * TYPE is 'GE', 'GB', 'HE', 'HB', 'HP', 'TR', 'TB' OR 'TP'. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) ) COMPLEX ROGUE PARAMETER ( ROGUE = ( -1.0E10, 1.0E10 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) REAL RROGUE PARAMETER ( RROGUE = -1.0E10 ) * .. Scalar Arguments .. COMPLEX TRANSL INTEGER KL, KU, LDA, M, N, NMAX LOGICAL RESET CHARACTER*1 DIAG, UPLO CHARACTER*2 TYPE * .. Array Arguments .. COMPLEX A( NMAX, * ), AA( * ) * .. Local Scalars .. INTEGER I, I1, I2, I3, IBEG, IEND, IOFF, J, JJ, KK LOGICAL GEN, LOWER, SYM, TRI, UNIT, UPPER * .. External Functions .. COMPLEX CBEG EXTERNAL CBEG * .. Intrinsic Functions .. INTRINSIC CMPLX, CONJG, MAX, MIN, REAL * .. Executable Statements .. GEN = TYPE( 1: 1 ).EQ.'G' SYM = TYPE( 1: 1 ).EQ.'H' TRI = TYPE( 1: 1 ).EQ.'T' UPPER = ( SYM.OR.TRI ).AND.UPLO.EQ.'U' LOWER = ( SYM.OR.TRI ).AND.UPLO.EQ.'L' UNIT = TRI.AND.DIAG.EQ.'U' * * Generate data in array A. * DO 20 J = 1, N DO 10 I = 1, M IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) ) $ THEN IF( ( I.LE.J.AND.J - I.LE.KU ).OR. $ ( I.GE.J.AND.I - J.LE.KL ) )THEN A( I, J ) = CBEG( RESET ) + TRANSL ELSE A( I, J ) = ZERO END IF IF( I.NE.J )THEN IF( SYM )THEN A( J, I ) = CONJG( A( I, J ) ) ELSE IF( TRI )THEN A( J, I ) = ZERO END IF END IF END IF 10 CONTINUE IF( SYM ) $ A( J, J ) = CMPLX( REAL( A( J, J ) ), RZERO ) IF( TRI ) $ A( J, J ) = A( J, J ) + ONE IF( UNIT ) $ A( J, J ) = ONE 20 CONTINUE * * Store elements in array AS in data structure required by routine. * IF( TYPE.EQ.'GE' )THEN DO 50 J = 1, N DO 30 I = 1, M AA( I + ( J - 1 )*LDA ) = A( I, J ) 30 CONTINUE DO 40 I = M + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 40 CONTINUE 50 CONTINUE ELSE IF( TYPE.EQ.'GB' )THEN DO 90 J = 1, N DO 60 I1 = 1, KU + 1 - J AA( I1 + ( J - 1 )*LDA ) = ROGUE 60 CONTINUE DO 70 I2 = I1, MIN( KL + KU + 1, KU + 1 + M - J ) AA( I2 + ( J - 1 )*LDA ) = A( I2 + J - KU - 1, J ) 70 CONTINUE DO 80 I3 = I2, LDA AA( I3 + ( J - 1 )*LDA ) = ROGUE 80 CONTINUE 90 CONTINUE ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'TR' )THEN DO 130 J = 1, N IF( UPPER )THEN IBEG = 1 IF( UNIT )THEN IEND = J - 1 ELSE IEND = J END IF ELSE IF( UNIT )THEN IBEG = J + 1 ELSE IBEG = J END IF IEND = N END IF DO 100 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 100 CONTINUE DO 110 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I, J ) 110 CONTINUE DO 120 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 120 CONTINUE IF( SYM )THEN JJ = J + ( J - 1 )*LDA AA( JJ ) = CMPLX( REAL( AA( JJ ) ), RROGUE ) END IF 130 CONTINUE ELSE IF( TYPE.EQ.'HB'.OR.TYPE.EQ.'TB' )THEN DO 170 J = 1, N IF( UPPER )THEN KK = KL + 1 IBEG = MAX( 1, KL + 2 - J ) IF( UNIT )THEN IEND = KL ELSE IEND = KL + 1 END IF ELSE KK = 1 IF( UNIT )THEN IBEG = 2 ELSE IBEG = 1 END IF IEND = MIN( KL + 1, 1 + M - J ) END IF DO 140 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 140 CONTINUE DO 150 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I + J - KK, J ) 150 CONTINUE DO 160 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 160 CONTINUE IF( SYM )THEN JJ = KK + ( J - 1 )*LDA AA( JJ ) = CMPLX( REAL( AA( JJ ) ), RROGUE ) END IF 170 CONTINUE ELSE IF( TYPE.EQ.'HP'.OR.TYPE.EQ.'TP' )THEN IOFF = 0 DO 190 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 180 I = IBEG, IEND IOFF = IOFF + 1 AA( IOFF ) = A( I, J ) IF( I.EQ.J )THEN IF( UNIT ) $ AA( IOFF ) = ROGUE IF( SYM ) $ AA( IOFF ) = CMPLX( REAL( AA( IOFF ) ), RROGUE ) END IF 180 CONTINUE 190 CONTINUE END IF RETURN * * End of CMAKE. * END SUBROUTINE CMVCH( TRANS, M, N, ALPHA, A, NMAX, X, INCX, BETA, Y, $ INCY, YT, G, YY, EPS, ERR, FATAL, NOUT, MV ) * * Checks the results of the computational tests. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO PARAMETER ( ZERO = ( 0.0, 0.0 ) ) REAL RZERO, RONE PARAMETER ( RZERO = 0.0, RONE = 1.0 ) * .. Scalar Arguments .. COMPLEX ALPHA, BETA REAL EPS, ERR INTEGER INCX, INCY, M, N, NMAX, NOUT LOGICAL FATAL, MV CHARACTER*1 TRANS * .. Array Arguments .. COMPLEX A( NMAX, * ), X( * ), Y( * ), YT( * ), YY( * ) REAL G( * ) * .. Local Scalars .. COMPLEX C REAL ERRI INTEGER I, INCXL, INCYL, IY, J, JX, KX, KY, ML, NL LOGICAL CTRAN, TRAN * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, CONJG, MAX, REAL, SQRT * .. Statement Functions .. REAL ABS1 * .. Statement Function definitions .. ABS1( C ) = ABS( REAL( C ) ) + ABS( AIMAG( C ) ) * .. Executable Statements .. TRAN = TRANS.EQ.'T' CTRAN = TRANS.EQ.'C' IF( TRAN.OR.CTRAN )THEN ML = N NL = M ELSE ML = M NL = N END IF IF( INCX.LT.0 )THEN KX = NL INCXL = -1 ELSE KX = 1 INCXL = 1 END IF IF( INCY.LT.0 )THEN KY = ML INCYL = -1 ELSE KY = 1 INCYL = 1 END IF * * Compute expected result in YT using data in A, X and Y. * Compute gauges in G. * IY = KY DO 40 I = 1, ML YT( IY ) = ZERO G( IY ) = RZERO JX = KX IF( TRAN )THEN DO 10 J = 1, NL YT( IY ) = YT( IY ) + A( J, I )*X( JX ) G( IY ) = G( IY ) + ABS1( A( J, I ) )*ABS1( X( JX ) ) JX = JX + INCXL 10 CONTINUE ELSE IF( CTRAN )THEN DO 20 J = 1, NL YT( IY ) = YT( IY ) + CONJG( A( J, I ) )*X( JX ) G( IY ) = G( IY ) + ABS1( A( J, I ) )*ABS1( X( JX ) ) JX = JX + INCXL 20 CONTINUE ELSE DO 30 J = 1, NL YT( IY ) = YT( IY ) + A( I, J )*X( JX ) G( IY ) = G( IY ) + ABS1( A( I, J ) )*ABS1( X( JX ) ) JX = JX + INCXL 30 CONTINUE END IF YT( IY ) = ALPHA*YT( IY ) + BETA*Y( IY ) G( IY ) = ABS1( ALPHA )*G( IY ) + ABS1( BETA )*ABS1( Y( IY ) ) IY = IY + INCYL 40 CONTINUE * * Compute the error ratio for this result. * ERR = ZERO DO 50 I = 1, ML ERRI = ABS( YT( I ) - YY( 1 + ( I - 1 )*ABS( INCY ) ) )/EPS IF( G( I ).NE.RZERO ) $ ERRI = ERRI/G( I ) ERR = MAX( ERR, ERRI ) IF( ERR*SQRT( EPS ).GE.RONE ) $ GO TO 60 50 CONTINUE * If the loop completes, all results are at least half accurate. GO TO 80 * * Report fatal error. * 60 FATAL = .TRUE. WRITE( NOUT, FMT = 9999 ) DO 70 I = 1, ML IF( MV )THEN WRITE( NOUT, FMT = 9998 )I, YT( I ), $ YY( 1 + ( I - 1 )*ABS( INCY ) ) ELSE WRITE( NOUT, FMT = 9998 )I, $ YY( 1 + ( I - 1 )*ABS( INCY ) ), YT( I ) END IF 70 CONTINUE * 80 CONTINUE RETURN * 9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL', $ 'F ACCURATE *******', /' EXPECTED RE', $ 'SULT COMPUTED RESULT' ) 9998 FORMAT( 1X, I7, 2( ' (', G15.6, ',', G15.6, ')' ) ) * * End of CMVCH. * END LOGICAL FUNCTION LCE( RI, RJ, LR ) * * Tests if two arrays are identical. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER LR * .. Array Arguments .. COMPLEX RI( * ), RJ( * ) * .. Local Scalars .. INTEGER I * .. Executable Statements .. DO 10 I = 1, LR IF( RI( I ).NE.RJ( I ) ) $ GO TO 20 10 CONTINUE LCE = .TRUE. GO TO 30 20 CONTINUE LCE = .FALSE. 30 RETURN * * End of LCE. * END LOGICAL FUNCTION LCERES( TYPE, UPLO, M, N, AA, AS, LDA ) * * Tests if selected elements in two arrays are equal. * * TYPE is 'GE', 'HE' or 'HP'. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER LDA, M, N CHARACTER*1 UPLO CHARACTER*2 TYPE * .. Array Arguments .. COMPLEX AA( LDA, * ), AS( LDA, * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J LOGICAL UPPER * .. Executable Statements .. UPPER = UPLO.EQ.'U' IF( TYPE.EQ.'GE' )THEN DO 20 J = 1, N DO 10 I = M + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 10 CONTINUE 20 CONTINUE ELSE IF( TYPE.EQ.'HE' )THEN DO 50 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 30 I = 1, IBEG - 1 IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 30 CONTINUE DO 40 I = IEND + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 40 CONTINUE 50 CONTINUE END IF * 60 CONTINUE LCERES = .TRUE. GO TO 80 70 CONTINUE LCERES = .FALSE. 80 RETURN * * End of LCERES. * END COMPLEX FUNCTION CBEG( RESET ) * * Generates complex numbers as pairs of random numbers uniformly * distributed between -0.5 and 0.5. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. LOGICAL RESET * .. Local Scalars .. INTEGER I, IC, J, MI, MJ * .. Save statement .. SAVE I, IC, J, MI, MJ * .. Intrinsic Functions .. INTRINSIC CMPLX * .. Executable Statements .. IF( RESET )THEN * Initialize local variables. MI = 891 MJ = 457 I = 7 J = 7 IC = 0 RESET = .FALSE. END IF * * The sequence of values of I or J is bounded between 1 and 999. * If initial I or J = 1,2,3,6,7 or 9, the period will be 50. * If initial I or J = 4 or 8, the period will be 25. * If initial I or J = 5, the period will be 10. * IC is used to break up the period by skipping 1 value of I or J * in 6. * IC = IC + 1 10 I = I*MI J = J*MJ I = I - 1000*( I/1000 ) J = J - 1000*( J/1000 ) IF( IC.GE.5 )THEN IC = 0 GO TO 10 END IF CBEG = CMPLX( ( I - 500 )/1001.0, ( J - 500 )/1001.0 ) RETURN * * End of CBEG. * END REAL FUNCTION SDIFF( X, Y ) * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * * .. Scalar Arguments .. REAL X, Y * .. Executable Statements .. SDIFF = X - Y RETURN * * End of SDIFF. * END SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * * Tests whether XERBLA has detected an error when it should. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Executable Statements .. IF( .NOT.LERR )THEN WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT OK = .FALSE. END IF LERR = .FALSE. RETURN * 9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D', $ 'ETECTED BY ', A6, ' *****' ) * * End of CHKXER. * END SUBROUTINE XERBLA( SRNAME, INFO ) * * This is a special version of XERBLA to be used only as part of * the test program for testing error exits from the Level 2 BLAS * routines. * * XERBLA is an error handler for the Level 2 BLAS routines. * * It is called by the Level 2 BLAS routines if an input parameter is * invalid. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER INFO CHARACTER*6 SRNAME * .. Scalars in Common .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUT, OK, LERR COMMON /SRNAMC/SRNAMT * .. Executable Statements .. LERR = .TRUE. IF( INFO.NE.INFOT )THEN IF( INFOT.NE.0 )THEN WRITE( NOUT, FMT = 9999 )INFO, INFOT ELSE WRITE( NOUT, FMT = 9997 )INFO END IF OK = .FALSE. END IF IF( SRNAME.NE.SRNAMT )THEN WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT OK = .FALSE. END IF RETURN * 9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD', $ ' OF ', I2, ' *******' ) 9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE', $ 'AD OF ', A6, ' *******' ) 9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, $ ' *******' ) * * End of XERBLA * END blas-1.2.orig/test/dblat3 0000644 0001750 0001750 00000311165 10735444622 016207 0 ustar sylvestre sylvestre PROGRAM DBLAT3 * * Test program for the DOUBLE PRECISION Level 3 Blas. * * The program must be driven by a short data file. The first 14 records * of the file are read using list-directed input, the last 6 records * are read using the format ( A6, L2 ). An annotated example of a data * file can be obtained by deleting the first 3 characters from the * following 20 lines: * 'DBLAT3.SUMM' NAME OF SUMMARY OUTPUT FILE * 6 UNIT NUMBER OF SUMMARY FILE * 'DBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE * -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) * F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. * F LOGICAL FLAG, T TO STOP ON FAILURES. * T LOGICAL FLAG, T TO TEST ERROR EXITS. * 16.0 THRESHOLD VALUE OF TEST RATIO * 6 NUMBER OF VALUES OF N * 0 1 2 3 5 9 VALUES OF N * 3 NUMBER OF VALUES OF ALPHA * 0.0 1.0 0.7 VALUES OF ALPHA * 3 NUMBER OF VALUES OF BETA * 0.0 1.0 1.3 VALUES OF BETA * DGEMM T PUT F FOR NO TEST. SAME COLUMNS. * DSYMM T PUT F FOR NO TEST. SAME COLUMNS. * DTRMM T PUT F FOR NO TEST. SAME COLUMNS. * DTRSM T PUT F FOR NO TEST. SAME COLUMNS. * DSYRK T PUT F FOR NO TEST. SAME COLUMNS. * DSYR2K T PUT F FOR NO TEST. SAME COLUMNS. * * See: * * Dongarra J. J., Du Croz J. J., Duff I. S. and Hammarling S. * A Set of Level 3 Basic Linear Algebra Subprograms. * * Technical Memorandum No.88 (Revision 1), Mathematics and * Computer Science Division, Argonne National Laboratory, 9700 * South Cass Avenue, Argonne, Illinois 60439, US. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. INTEGER NIN PARAMETER ( NIN = 5 ) INTEGER NSUBS PARAMETER ( NSUBS = 6 ) DOUBLE PRECISION ZERO, HALF, ONE PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 ) INTEGER NMAX PARAMETER ( NMAX = 65 ) INTEGER NIDMAX, NALMAX, NBEMAX PARAMETER ( NIDMAX = 9, NALMAX = 7, NBEMAX = 7 ) * .. Local Scalars .. DOUBLE PRECISION EPS, ERR, THRESH INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NOUT, NTRA LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE, $ TSTERR CHARACTER*1 TRANSA, TRANSB CHARACTER*6 SNAMET CHARACTER*32 SNAPS, SUMMRY * .. Local Arrays .. DOUBLE PRECISION AA( NMAX*NMAX ), AB( NMAX, 2*NMAX ), $ ALF( NALMAX ), AS( NMAX*NMAX ), $ BB( NMAX*NMAX ), BET( NBEMAX ), $ BS( NMAX*NMAX ), C( NMAX, NMAX ), $ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ), $ G( NMAX ), W( 2*NMAX ) INTEGER IDIM( NIDMAX ) LOGICAL LTEST( NSUBS ) CHARACTER*6 SNAMES( NSUBS ) * .. External Functions .. DOUBLE PRECISION DDIFF LOGICAL LDE EXTERNAL DDIFF, LDE * .. External Subroutines .. EXTERNAL DCHK1, DCHK2, DCHK3, DCHK4, DCHK5, DCHKE, DMMCH * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR COMMON /SRNAMC/SRNAMT * .. Data statements .. DATA SNAMES/'DGEMM ', 'DSYMM ', 'DTRMM ', 'DTRSM ', $ 'DSYRK ', 'DSYR2K'/ * .. Executable Statements .. * * Read name and unit number for summary output file and open file. * READ( NIN, FMT = * )SUMMRY READ( NIN, FMT = * )NOUT OPEN( NOUT, FILE = SUMMRY, STATUS = 'NEW' ) NOUTC = NOUT * * Read name and unit number for snapshot output file and open file. * READ( NIN, FMT = * )SNAPS READ( NIN, FMT = * )NTRA TRACE = NTRA.GE.0 IF( TRACE )THEN OPEN( NTRA, FILE = SNAPS, STATUS = 'NEW' ) END IF * Read the flag that directs rewinding of the snapshot file. READ( NIN, FMT = * )REWI REWI = REWI.AND.TRACE * Read the flag that directs stopping on any failure. READ( NIN, FMT = * )SFATAL * Read the flag that indicates whether error exits are to be tested. READ( NIN, FMT = * )TSTERR * Read the threshold value of the test ratio READ( NIN, FMT = * )THRESH * * Read and check the parameter values for the tests. * * Values of N READ( NIN, FMT = * )NIDIM IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN WRITE( NOUT, FMT = 9997 )'N', NIDMAX GO TO 220 END IF READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM ) DO 10 I = 1, NIDIM IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN WRITE( NOUT, FMT = 9996 )NMAX GO TO 220 END IF 10 CONTINUE * Values of ALPHA READ( NIN, FMT = * )NALF IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX GO TO 220 END IF READ( NIN, FMT = * )( ALF( I ), I = 1, NALF ) * Values of BETA READ( NIN, FMT = * )NBET IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX GO TO 220 END IF READ( NIN, FMT = * )( BET( I ), I = 1, NBET ) * * Report values of parameters. * WRITE( NOUT, FMT = 9995 ) WRITE( NOUT, FMT = 9994 )( IDIM( I ), I = 1, NIDIM ) WRITE( NOUT, FMT = 9993 )( ALF( I ), I = 1, NALF ) WRITE( NOUT, FMT = 9992 )( BET( I ), I = 1, NBET ) IF( .NOT.TSTERR )THEN WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9984 ) END IF WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9999 )THRESH WRITE( NOUT, FMT = * ) * * Read names of subroutines and flags which indicate * whether they are to be tested. * DO 20 I = 1, NSUBS LTEST( I ) = .FALSE. 20 CONTINUE 30 READ( NIN, FMT = 9988, END = 60 )SNAMET, LTESTT DO 40 I = 1, NSUBS IF( SNAMET.EQ.SNAMES( I ) ) $ GO TO 50 40 CONTINUE WRITE( NOUT, FMT = 9990 )SNAMET STOP 50 LTEST( I ) = LTESTT GO TO 30 * 60 CONTINUE CLOSE ( NIN ) * * Compute EPS (the machine precision). * EPS = ONE 70 CONTINUE IF( DDIFF( ONE + EPS, ONE ).EQ.ZERO ) $ GO TO 80 EPS = HALF*EPS GO TO 70 80 CONTINUE EPS = EPS + EPS WRITE( NOUT, FMT = 9998 )EPS * * Check the reliability of DMMCH using exact data. * N = MIN( 32, NMAX ) DO 100 J = 1, N DO 90 I = 1, N AB( I, J ) = MAX( I - J + 1, 0 ) 90 CONTINUE AB( J, NMAX + 1 ) = J AB( 1, NMAX + J ) = J C( J, 1 ) = ZERO 100 CONTINUE DO 110 J = 1, N CC( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3 110 CONTINUE * CC holds the exact result. On exit from DMMCH CT holds * the result computed by DMMCH. TRANSA = 'N' TRANSB = 'N' CALL DMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LDE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF TRANSB = 'T' CALL DMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LDE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF DO 120 J = 1, N AB( J, NMAX + 1 ) = N - J + 1 AB( 1, NMAX + J ) = N - J + 1 120 CONTINUE DO 130 J = 1, N CC( N - J + 1 ) = J*( ( J + 1 )*J )/2 - $ ( ( J + 1 )*J*( J - 1 ) )/3 130 CONTINUE TRANSA = 'T' TRANSB = 'N' CALL DMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LDE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF TRANSB = 'T' CALL DMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LDE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF * * Test each subroutine in turn. * DO 200 ISNUM = 1, NSUBS WRITE( NOUT, FMT = * ) IF( .NOT.LTEST( ISNUM ) )THEN * Subprogram is not to be tested. WRITE( NOUT, FMT = 9987 )SNAMES( ISNUM ) ELSE SRNAMT = SNAMES( ISNUM ) * Test error exits. IF( TSTERR )THEN CALL DCHKE( ISNUM, SNAMES( ISNUM ), NOUT ) WRITE( NOUT, FMT = * ) END IF * Test computations. INFOT = 0 OK = .TRUE. FATAL = .FALSE. GO TO ( 140, 150, 160, 160, 170, 180 )ISNUM * Test DGEMM, 01. 140 CALL DCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test DSYMM, 02. 150 CALL DCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test DTRMM, 03, DTRSM, 04. 160 CALL DCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NMAX, AB, $ AA, AS, AB( 1, NMAX + 1 ), BB, BS, CT, G, C ) GO TO 190 * Test DSYRK, 05. 170 CALL DCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test DSYR2K, 06. 180 CALL DCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, BB, BS, C, CC, CS, CT, G, W ) GO TO 190 * 190 IF( FATAL.AND.SFATAL ) $ GO TO 210 END IF 200 CONTINUE WRITE( NOUT, FMT = 9986 ) GO TO 230 * 210 CONTINUE WRITE( NOUT, FMT = 9985 ) GO TO 230 * 220 CONTINUE WRITE( NOUT, FMT = 9991 ) * 230 CONTINUE IF( TRACE ) $ CLOSE ( NTRA ) CLOSE ( NOUT ) STOP * 9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES', $ 'S THAN', F8.2 ) 9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, D9.1 ) 9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ', $ 'THAN ', I2 ) 9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 ) 9995 FORMAT( ' TESTS OF THE DOUBLE PRECISION LEVEL 3 BLAS', //' THE F', $ 'OLLOWING PARAMETER VALUES WILL BE USED:' ) 9994 FORMAT( ' FOR N ', 9I6 ) 9993 FORMAT( ' FOR ALPHA ', 7F6.1 ) 9992 FORMAT( ' FOR BETA ', 7F6.1 ) 9991 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM', $ /' ******* TESTS ABANDONED *******' ) 9990 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T', $ 'ESTS ABANDONED *******' ) 9989 FORMAT( ' ERROR IN DMMCH - IN-LINE DOT PRODUCTS ARE BEING EVALU', $ 'ATED WRONGLY.', /' DMMCH WAS CALLED WITH TRANSA = ', A1, $ ' AND TRANSB = ', A1, /' AND RETURNED SAME = ', L1, ' AND ', $ 'ERR = ', F12.3, '.', /' THIS MAY BE DUE TO FAULTS IN THE ', $ 'ARITHMETIC OR THE COMPILER.', /' ******* TESTS ABANDONED ', $ '*******' ) 9988 FORMAT( A6, L2 ) 9987 FORMAT( 1X, A6, ' WAS NOT TESTED' ) 9986 FORMAT( /' END OF TESTS' ) 9985 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' ) 9984 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' ) * * End of DBLAT3. * END SUBROUTINE DCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests DGEMM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ), G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. DOUBLE PRECISION ALPHA, ALS, BETA, BLS, ERR, ERRMAX INTEGER I, IA, IB, ICA, ICB, IK, IM, IN, K, KS, LAA, $ LBB, LCC, LDA, LDAS, LDB, LDBS, LDC, LDCS, M, $ MA, MB, MS, N, NA, NARGS, NB, NC, NS LOGICAL NULL, RESET, SAME, TRANA, TRANB CHARACTER*1 TRANAS, TRANBS, TRANSA, TRANSB CHARACTER*3 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LDE, LDERES EXTERNAL LDE, LDERES * .. External Subroutines .. EXTERNAL DGEMM, DMAKE, DMMCH * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'NTC'/ * .. Executable Statements .. * NARGS = 13 NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 110 IM = 1, NIDIM M = IDIM( IM ) * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = M IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 100 LCC = LDC*N NULL = N.LE.0.OR.M.LE.0 * DO 90 IK = 1, NIDIM K = IDIM( IK ) * DO 80 ICA = 1, 3 TRANSA = ICH( ICA: ICA ) TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C' * IF( TRANA )THEN MA = K NA = M ELSE MA = M NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * * Generate the matrix A. * CALL DMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 70 ICB = 1, 3 TRANSB = ICH( ICB: ICB ) TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C' * IF( TRANB )THEN MB = N NB = K ELSE MB = K NB = N END IF * Set LDB to 1 more than minimum value if room. LDB = MB IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 70 LBB = LDB*NB * * Generate the matrix B. * CALL DMAKE( 'GE', ' ', ' ', MB, NB, B, NMAX, BB, $ LDB, RESET, ZERO ) * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL DMAKE( 'GE', ' ', ' ', M, N, C, NMAX, $ CC, LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * TRANAS = TRANSA TRANBS = TRANSB MS = M NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BLS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ TRANSA, TRANSB, M, N, K, ALPHA, LDA, LDB, $ BETA, LDC IF( REWI ) $ REWIND NTRA CALL DGEMM( TRANSA, TRANSB, M, N, K, ALPHA, $ AA, LDA, BB, LDB, BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = TRANSA.EQ.TRANAS ISAME( 2 ) = TRANSB.EQ.TRANBS ISAME( 3 ) = MS.EQ.M ISAME( 4 ) = NS.EQ.N ISAME( 5 ) = KS.EQ.K ISAME( 6 ) = ALS.EQ.ALPHA ISAME( 7 ) = LDE( AS, AA, LAA ) ISAME( 8 ) = LDAS.EQ.LDA ISAME( 9 ) = LDE( BS, BB, LBB ) ISAME( 10 ) = LDBS.EQ.LDB ISAME( 11 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 12 ) = LDE( CS, CC, LCC ) ELSE ISAME( 12 ) = LDERES( 'GE', ' ', M, N, CS, $ CC, LDC ) END IF ISAME( 13 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report * and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL DMMCH( TRANSA, TRANSB, M, N, K, $ ALPHA, A, NMAX, B, NMAX, BETA, $ C, NMAX, CT, G, CC, LDC, EPS, $ ERR, FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 120 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANSA, TRANSB, M, N, K, $ ALPHA, LDA, LDB, BETA, LDC * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',''', A1, ''',', $ 3( I3, ',' ), F4.1, ', A,', I3, ', B,', I3, ',', F4.1, ', ', $ 'C,', I3, ').' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of DCHK1. * END SUBROUTINE DCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests DSYMM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ), G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. DOUBLE PRECISION ALPHA, ALS, BETA, BLS, ERR, ERRMAX INTEGER I, IA, IB, ICS, ICU, IM, IN, LAA, LBB, LCC, $ LDA, LDAS, LDB, LDBS, LDC, LDCS, M, MS, N, NA, $ NARGS, NC, NS LOGICAL LEFT, NULL, RESET, SAME CHARACTER*1 SIDE, SIDES, UPLO, UPLOS CHARACTER*2 ICHS, ICHU * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LDE, LDERES EXTERNAL LDE, LDERES * .. External Subroutines .. EXTERNAL DMAKE, DMMCH, DSYMM * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHS/'LR'/, ICHU/'UL'/ * .. Executable Statements .. * NARGS = 12 NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 100 IM = 1, NIDIM M = IDIM( IM ) * DO 90 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = M IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 90 LCC = LDC*N NULL = N.LE.0.OR.M.LE.0 * * Set LDB to 1 more than minimum value if room. LDB = M IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 90 LBB = LDB*N * * Generate the matrix B. * CALL DMAKE( 'GE', ' ', ' ', M, N, B, NMAX, BB, LDB, RESET, $ ZERO ) * DO 80 ICS = 1, 2 SIDE = ICHS( ICS: ICS ) LEFT = SIDE.EQ.'L' * IF( LEFT )THEN NA = M ELSE NA = N END IF * Set LDA to 1 more than minimum value if room. LDA = NA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * DO 70 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * * Generate the symmetric matrix A. * CALL DMAKE( 'SY', UPLO, ' ', NA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL DMAKE( 'GE', ' ', ' ', M, N, C, NMAX, CC, $ LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * SIDES = SIDE UPLOS = UPLO MS = M NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BLS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, SIDE, $ UPLO, M, N, ALPHA, LDA, LDB, BETA, LDC IF( REWI ) $ REWIND NTRA CALL DSYMM( SIDE, UPLO, M, N, ALPHA, AA, LDA, $ BB, LDB, BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 110 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = SIDES.EQ.SIDE ISAME( 2 ) = UPLOS.EQ.UPLO ISAME( 3 ) = MS.EQ.M ISAME( 4 ) = NS.EQ.N ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LDE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = LDE( BS, BB, LBB ) ISAME( 9 ) = LDBS.EQ.LDB ISAME( 10 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 11 ) = LDE( CS, CC, LCC ) ELSE ISAME( 11 ) = LDERES( 'GE', ' ', M, N, CS, $ CC, LDC ) END IF ISAME( 12 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 110 END IF * IF( .NOT.NULL )THEN * * Check the result. * IF( LEFT )THEN CALL DMMCH( 'N', 'N', M, N, M, ALPHA, A, $ NMAX, B, NMAX, BETA, C, NMAX, $ CT, G, CC, LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL DMMCH( 'N', 'N', M, N, N, ALPHA, B, $ NMAX, A, NMAX, BETA, C, NMAX, $ CT, G, CC, LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 120 * 110 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, M, N, ALPHA, LDA, $ LDB, BETA, LDC * 120 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ', B,', I3, ',', F4.1, ', C,', I3, ') ', $ ' .' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of DCHK2. * END SUBROUTINE DCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NMAX, A, AA, AS, $ B, BB, BS, CT, G, C ) * * Tests DTRMM and DTRSM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER NALF, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CT( NMAX ), G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. DOUBLE PRECISION ALPHA, ALS, ERR, ERRMAX INTEGER I, IA, ICD, ICS, ICT, ICU, IM, IN, J, LAA, LBB, $ LDA, LDAS, LDB, LDBS, M, MS, N, NA, NARGS, NC, $ NS LOGICAL LEFT, NULL, RESET, SAME CHARACTER*1 DIAG, DIAGS, SIDE, SIDES, TRANAS, TRANSA, UPLO, $ UPLOS CHARACTER*2 ICHD, ICHS, ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LDE, LDERES EXTERNAL LDE, LDERES * .. External Subroutines .. EXTERNAL DMAKE, DMMCH, DTRMM, DTRSM * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/, ICHS/'LR'/ * .. Executable Statements .. * NARGS = 11 NC = 0 RESET = .TRUE. ERRMAX = ZERO * Set up zero matrix for DMMCH. DO 20 J = 1, NMAX DO 10 I = 1, NMAX C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE * DO 140 IM = 1, NIDIM M = IDIM( IM ) * DO 130 IN = 1, NIDIM N = IDIM( IN ) * Set LDB to 1 more than minimum value if room. LDB = M IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 130 LBB = LDB*N NULL = M.LE.0.OR.N.LE.0 * DO 120 ICS = 1, 2 SIDE = ICHS( ICS: ICS ) LEFT = SIDE.EQ.'L' IF( LEFT )THEN NA = M ELSE NA = N END IF * Set LDA to 1 more than minimum value if room. LDA = NA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 130 LAA = LDA*NA * DO 110 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * DO 100 ICT = 1, 3 TRANSA = ICHT( ICT: ICT ) * DO 90 ICD = 1, 2 DIAG = ICHD( ICD: ICD ) * DO 80 IA = 1, NALF ALPHA = ALF( IA ) * * Generate the matrix A. * CALL DMAKE( 'TR', UPLO, DIAG, NA, NA, A, $ NMAX, AA, LDA, RESET, ZERO ) * * Generate the matrix B. * CALL DMAKE( 'GE', ' ', ' ', M, N, B, NMAX, $ BB, LDB, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * SIDES = SIDE UPLOS = UPLO TRANAS = TRANSA DIAGS = DIAG MS = M NS = N ALS = ALPHA DO 30 I = 1, LAA AS( I ) = AA( I ) 30 CONTINUE LDAS = LDA DO 40 I = 1, LBB BS( I ) = BB( I ) 40 CONTINUE LDBS = LDB * * Call the subroutine. * IF( SNAME( 4: 5 ).EQ.'MM' )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, $ LDA, LDB IF( REWI ) $ REWIND NTRA CALL DTRMM( SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, AA, LDA, BB, LDB ) ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, $ LDA, LDB IF( REWI ) $ REWIND NTRA CALL DTRSM( SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, AA, LDA, BB, LDB ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 150 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = SIDES.EQ.SIDE ISAME( 2 ) = UPLOS.EQ.UPLO ISAME( 3 ) = TRANAS.EQ.TRANSA ISAME( 4 ) = DIAGS.EQ.DIAG ISAME( 5 ) = MS.EQ.M ISAME( 6 ) = NS.EQ.N ISAME( 7 ) = ALS.EQ.ALPHA ISAME( 8 ) = LDE( AS, AA, LAA ) ISAME( 9 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 10 ) = LDE( BS, BB, LBB ) ELSE ISAME( 10 ) = LDERES( 'GE', ' ', M, N, BS, $ BB, LDB ) END IF ISAME( 11 ) = LDBS.EQ.LDB * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 50 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 50 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 150 END IF * IF( .NOT.NULL )THEN IF( SNAME( 4: 5 ).EQ.'MM' )THEN * * Check the result. * IF( LEFT )THEN CALL DMMCH( TRANSA, 'N', M, N, M, $ ALPHA, A, NMAX, B, NMAX, $ ZERO, C, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL DMMCH( 'N', TRANSA, M, N, N, $ ALPHA, B, NMAX, A, NMAX, $ ZERO, C, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN * * Compute approximation to original * matrix. * DO 70 J = 1, N DO 60 I = 1, M C( I, J ) = BB( I + ( J - 1 )* $ LDB ) BB( I + ( J - 1 )*LDB ) = ALPHA* $ B( I, J ) 60 CONTINUE 70 CONTINUE * IF( LEFT )THEN CALL DMMCH( TRANSA, 'N', M, N, M, $ ONE, A, NMAX, C, NMAX, $ ZERO, B, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .FALSE. ) ELSE CALL DMMCH( 'N', TRANSA, M, N, N, $ ONE, C, NMAX, A, NMAX, $ ZERO, B, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .FALSE. ) END IF END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 150 END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * 140 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 160 * 150 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, LDA, LDB * 160 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 4( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ', B,', I3, ') .' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of DCHK3. * END SUBROUTINE DCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests DSYRK. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. DOUBLE PRECISION A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ), G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. DOUBLE PRECISION ALPHA, ALS, BETA, BETS, ERR, ERRMAX INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, K, KS, $ LAA, LCC, LDA, LDAS, LDC, LDCS, LJ, MA, N, NA, $ NARGS, NC, NS LOGICAL NULL, RESET, SAME, TRAN, UPPER CHARACTER*1 TRANS, TRANSS, UPLO, UPLOS CHARACTER*2 ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LDE, LDERES EXTERNAL LDE, LDERES * .. External Subroutines .. EXTERNAL DMAKE, DMMCH, DSYRK * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHT/'NTC'/, ICHU/'UL'/ * .. Executable Statements .. * NARGS = 10 NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = N IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 100 LCC = LDC*N NULL = N.LE.0 * DO 90 IK = 1, NIDIM K = IDIM( IK ) * DO 80 ICT = 1, 3 TRANS = ICHT( ICT: ICT ) TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C' IF( TRAN )THEN MA = K NA = N ELSE MA = N NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * * Generate the matrix A. * CALL DMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 70 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) UPPER = UPLO.EQ.'U' * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL DMAKE( 'SY', UPLO, ' ', N, N, C, NMAX, CC, $ LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA BETS = BETA DO 20 I = 1, LCC CS( I ) = CC( I ) 20 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, $ TRANS, N, K, ALPHA, LDA, BETA, LDC IF( REWI ) $ REWIND NTRA CALL DSYRK( UPLO, TRANS, N, K, ALPHA, AA, LDA, $ BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLOS.EQ.UPLO ISAME( 2 ) = TRANSS.EQ.TRANS ISAME( 3 ) = NS.EQ.N ISAME( 4 ) = KS.EQ.K ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LDE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = BETS.EQ.BETA IF( NULL )THEN ISAME( 9 ) = LDE( CS, CC, LCC ) ELSE ISAME( 9 ) = LDERES( 'SY', UPLO, N, N, CS, $ CC, LDC ) END IF ISAME( 10 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 30 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 30 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * JC = 1 DO 40 J = 1, N IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF IF( TRAN )THEN CALL DMMCH( 'T', 'N', LJ, 1, K, ALPHA, $ A( 1, JJ ), NMAX, $ A( 1, J ), NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL DMMCH( 'N', 'T', LJ, 1, K, ALPHA, $ A( JJ, 1 ), NMAX, $ A( J, 1 ), NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF IF( UPPER )THEN JC = JC + LDC ELSE JC = JC + LDC + 1 END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 110 40 CONTINUE END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 110 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9995 )J * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, ALPHA, $ LDA, BETA, LDC * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ',', F4.1, ', C,', I3, ') .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of DCHK4. * END SUBROUTINE DCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ AB, AA, AS, BB, BS, C, CC, CS, CT, G, W ) * * Tests DSYR2K. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. DOUBLE PRECISION AA( NMAX*NMAX ), AB( 2*NMAX*NMAX ), $ ALF( NALF ), AS( NMAX*NMAX ), BB( NMAX*NMAX ), $ BET( NBET ), BS( NMAX*NMAX ), C( NMAX, NMAX ), $ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ), $ G( NMAX ), W( 2*NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. DOUBLE PRECISION ALPHA, ALS, BETA, BETS, ERR, ERRMAX INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, JJAB, $ K, KS, LAA, LBB, LCC, LDA, LDAS, LDB, LDBS, $ LDC, LDCS, LJ, MA, N, NA, NARGS, NC, NS LOGICAL NULL, RESET, SAME, TRAN, UPPER CHARACTER*1 TRANS, TRANSS, UPLO, UPLOS CHARACTER*2 ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LDE, LDERES EXTERNAL LDE, LDERES * .. External Subroutines .. EXTERNAL DMAKE, DMMCH, DSYR2K * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHT/'NTC'/, ICHU/'UL'/ * .. Executable Statements .. * NARGS = 12 NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 130 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = N IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 130 LCC = LDC*N NULL = N.LE.0 * DO 120 IK = 1, NIDIM K = IDIM( IK ) * DO 110 ICT = 1, 3 TRANS = ICHT( ICT: ICT ) TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C' IF( TRAN )THEN MA = K NA = N ELSE MA = N NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 110 LAA = LDA*NA * * Generate the matrix A. * IF( TRAN )THEN CALL DMAKE( 'GE', ' ', ' ', MA, NA, AB, 2*NMAX, AA, $ LDA, RESET, ZERO ) ELSE CALL DMAKE( 'GE', ' ', ' ', MA, NA, AB, NMAX, AA, LDA, $ RESET, ZERO ) END IF * * Generate the matrix B. * LDB = LDA LBB = LAA IF( TRAN )THEN CALL DMAKE( 'GE', ' ', ' ', MA, NA, AB( K + 1 ), $ 2*NMAX, BB, LDB, RESET, ZERO ) ELSE CALL DMAKE( 'GE', ' ', ' ', MA, NA, AB( K*NMAX + 1 ), $ NMAX, BB, LDB, RESET, ZERO ) END IF * DO 100 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) UPPER = UPLO.EQ.'U' * DO 90 IA = 1, NALF ALPHA = ALF( IA ) * DO 80 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL DMAKE( 'SY', UPLO, ' ', N, N, C, NMAX, CC, $ LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BETS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, $ TRANS, N, K, ALPHA, LDA, LDB, BETA, LDC IF( REWI ) $ REWIND NTRA CALL DSYR2K( UPLO, TRANS, N, K, ALPHA, AA, LDA, $ BB, LDB, BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 150 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLOS.EQ.UPLO ISAME( 2 ) = TRANSS.EQ.TRANS ISAME( 3 ) = NS.EQ.N ISAME( 4 ) = KS.EQ.K ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LDE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = LDE( BS, BB, LBB ) ISAME( 9 ) = LDBS.EQ.LDB ISAME( 10 ) = BETS.EQ.BETA IF( NULL )THEN ISAME( 11 ) = LDE( CS, CC, LCC ) ELSE ISAME( 11 ) = LDERES( 'SY', UPLO, N, N, CS, $ CC, LDC ) END IF ISAME( 12 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 150 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * JJAB = 1 JC = 1 DO 70 J = 1, N IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF IF( TRAN )THEN DO 50 I = 1, K W( I ) = AB( ( J - 1 )*2*NMAX + K + $ I ) W( K + I ) = AB( ( J - 1 )*2*NMAX + $ I ) 50 CONTINUE CALL DMMCH( 'T', 'N', LJ, 1, 2*K, $ ALPHA, AB( JJAB ), 2*NMAX, $ W, 2*NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE DO 60 I = 1, K W( I ) = AB( ( K + I - 1 )*NMAX + $ J ) W( K + I ) = AB( ( I - 1 )*NMAX + $ J ) 60 CONTINUE CALL DMMCH( 'N', 'N', LJ, 1, 2*K, $ ALPHA, AB( JJ ), NMAX, W, $ 2*NMAX, BETA, C( JJ, J ), $ NMAX, CT, G, CC( JC ), LDC, $ EPS, ERR, FATAL, NOUT, $ .TRUE. ) END IF IF( UPPER )THEN JC = JC + LDC ELSE JC = JC + LDC + 1 IF( TRAN ) $ JJAB = JJAB + 2*NMAX END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 140 70 CONTINUE END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 160 * 140 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9995 )J * 150 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, ALPHA, $ LDA, LDB, BETA, LDC * 160 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ', B,', I3, ',', F4.1, ', C,', I3, ') ', $ ' .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of DCHK5. * END SUBROUTINE DCHKE( ISNUM, SRNAMT, NOUT ) * * Tests the error exits from the Level 3 Blas. * Requires a special version of the error-handling routine XERBLA. * ALPHA, BETA, A, B and C should not need to be defined. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER ISNUM, NOUT CHARACTER*6 SRNAMT * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Local Scalars .. DOUBLE PRECISION ALPHA, BETA * .. Local Arrays .. DOUBLE PRECISION A( 2, 1 ), B( 2, 1 ), C( 2, 1 ) * .. External Subroutines .. EXTERNAL CHKXER, DGEMM, DSYMM, DSYR2K, DSYRK, DTRMM, $ DTRSM * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. * OK is set to .FALSE. by the special version of XERBLA or by CHKXER * if anything is wrong. OK = .TRUE. * LERR is set to .TRUE. by the special version of XERBLA each time * it is called, and is then tested and re-set by CHKXER. LERR = .FALSE. GO TO ( 10, 20, 30, 40, 50, 60 )ISNUM 10 INFOT = 1 CALL DGEMM( '/', 'N', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 1 CALL DGEMM( '/', 'T', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DGEMM( 'N', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DGEMM( 'T', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DGEMM( 'N', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DGEMM( 'N', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DGEMM( 'T', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DGEMM( 'T', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DGEMM( 'N', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DGEMM( 'N', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DGEMM( 'T', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DGEMM( 'T', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DGEMM( 'N', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DGEMM( 'N', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DGEMM( 'T', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DGEMM( 'T', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL DGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL DGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL DGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL DGEMM( 'T', 'T', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL DGEMM( 'N', 'N', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL DGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL DGEMM( 'N', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL DGEMM( 'T', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL DGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL DGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL DGEMM( 'T', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL DGEMM( 'T', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 70 20 INFOT = 1 CALL DSYMM( '/', 'U', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DSYMM( 'L', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DSYMM( 'L', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DSYMM( 'R', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DSYMM( 'L', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DSYMM( 'R', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DSYMM( 'L', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DSYMM( 'R', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DSYMM( 'L', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DSYMM( 'R', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSYMM( 'L', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSYMM( 'R', 'U', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSYMM( 'L', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSYMM( 'R', 'L', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL DSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL DSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL DSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL DSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 70 30 INFOT = 1 CALL DTRMM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DTRMM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DTRMM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DTRMM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRMM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRMM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRMM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRMM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRMM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRMM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRMM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRMM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRMM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRMM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRMM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRMM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRMM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRMM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRMM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRMM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRMM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRMM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRMM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRMM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRMM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRMM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRMM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRMM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 70 40 INFOT = 1 CALL DTRSM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DTRSM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DTRSM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DTRSM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRSM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRSM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRSM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRSM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRSM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRSM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRSM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL DTRSM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRSM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRSM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRSM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRSM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRSM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRSM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRSM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL DTRSM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRSM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRSM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRSM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DTRSM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRSM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRSM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRSM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL DTRSM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 70 50 INFOT = 1 CALL DSYRK( '/', 'N', 0, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DSYRK( 'U', '/', 0, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DSYRK( 'U', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DSYRK( 'U', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DSYRK( 'L', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DSYRK( 'L', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DSYRK( 'U', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DSYRK( 'U', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DSYRK( 'L', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DSYRK( 'L', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSYRK( 'U', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSYRK( 'U', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSYRK( 'L', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSYRK( 'L', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL DSYRK( 'U', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL DSYRK( 'U', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL DSYRK( 'L', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL DSYRK( 'L', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 70 60 INFOT = 1 CALL DSYR2K( '/', 'N', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL DSYR2K( 'U', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DSYR2K( 'U', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DSYR2K( 'U', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DSYR2K( 'L', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL DSYR2K( 'L', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DSYR2K( 'U', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DSYR2K( 'U', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DSYR2K( 'L', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL DSYR2K( 'L', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSYR2K( 'U', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSYR2K( 'U', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSYR2K( 'L', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL DSYR2K( 'L', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DSYR2K( 'U', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL DSYR2K( 'L', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL DSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL DSYR2K( 'U', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL DSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL DSYR2K( 'L', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * 70 IF( OK )THEN WRITE( NOUT, FMT = 9999 )SRNAMT ELSE WRITE( NOUT, FMT = 9998 )SRNAMT END IF RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' ) 9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****', $ '**' ) * * End of DCHKE. * END SUBROUTINE DMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, RESET, $ TRANSL ) * * Generates values for an M by N matrix A. * Stores the values in the array AA in the data structure required * by the routine, with unwanted elements set to rogue value. * * TYPE is 'GE', 'SY' or 'TR'. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) DOUBLE PRECISION ROGUE PARAMETER ( ROGUE = -1.0D10 ) * .. Scalar Arguments .. DOUBLE PRECISION TRANSL INTEGER LDA, M, N, NMAX LOGICAL RESET CHARACTER*1 DIAG, UPLO CHARACTER*2 TYPE * .. Array Arguments .. DOUBLE PRECISION A( NMAX, * ), AA( * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J LOGICAL GEN, LOWER, SYM, TRI, UNIT, UPPER * .. External Functions .. DOUBLE PRECISION DBEG EXTERNAL DBEG * .. Executable Statements .. GEN = TYPE.EQ.'GE' SYM = TYPE.EQ.'SY' TRI = TYPE.EQ.'TR' UPPER = ( SYM.OR.TRI ).AND.UPLO.EQ.'U' LOWER = ( SYM.OR.TRI ).AND.UPLO.EQ.'L' UNIT = TRI.AND.DIAG.EQ.'U' * * Generate data in array A. * DO 20 J = 1, N DO 10 I = 1, M IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) ) $ THEN A( I, J ) = DBEG( RESET ) + TRANSL IF( I.NE.J )THEN * Set some elements to zero IF( N.GT.3.AND.J.EQ.N/2 ) $ A( I, J ) = ZERO IF( SYM )THEN A( J, I ) = A( I, J ) ELSE IF( TRI )THEN A( J, I ) = ZERO END IF END IF END IF 10 CONTINUE IF( TRI ) $ A( J, J ) = A( J, J ) + ONE IF( UNIT ) $ A( J, J ) = ONE 20 CONTINUE * * Store elements in array AS in data structure required by routine. * IF( TYPE.EQ.'GE' )THEN DO 50 J = 1, N DO 30 I = 1, M AA( I + ( J - 1 )*LDA ) = A( I, J ) 30 CONTINUE DO 40 I = M + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 40 CONTINUE 50 CONTINUE ELSE IF( TYPE.EQ.'SY'.OR.TYPE.EQ.'TR' )THEN DO 90 J = 1, N IF( UPPER )THEN IBEG = 1 IF( UNIT )THEN IEND = J - 1 ELSE IEND = J END IF ELSE IF( UNIT )THEN IBEG = J + 1 ELSE IBEG = J END IF IEND = N END IF DO 60 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 60 CONTINUE DO 70 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I, J ) 70 CONTINUE DO 80 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 80 CONTINUE 90 CONTINUE END IF RETURN * * End of DMAKE. * END SUBROUTINE DMMCH( TRANSA, TRANSB, M, N, KK, ALPHA, A, LDA, B, LDB, $ BETA, C, LDC, CT, G, CC, LDCC, EPS, ERR, FATAL, $ NOUT, MV ) * * Checks the results of the computational tests. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA, BETA, EPS, ERR INTEGER KK, LDA, LDB, LDC, LDCC, M, N, NOUT LOGICAL FATAL, MV CHARACTER*1 TRANSA, TRANSB * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ), $ CC( LDCC, * ), CT( * ), G( * ) * .. Local Scalars .. DOUBLE PRECISION ERRI INTEGER I, J, K LOGICAL TRANA, TRANB * .. Intrinsic Functions .. INTRINSIC ABS, MAX, SQRT * .. Executable Statements .. TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C' TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C' * * Compute expected result, one column at a time, in CT using data * in A, B and C. * Compute gauges in G. * DO 120 J = 1, N * DO 10 I = 1, M CT( I ) = ZERO G( I ) = ZERO 10 CONTINUE IF( .NOT.TRANA.AND..NOT.TRANB )THEN DO 30 K = 1, KK DO 20 I = 1, M CT( I ) = CT( I ) + A( I, K )*B( K, J ) G( I ) = G( I ) + ABS( A( I, K ) )*ABS( B( K, J ) ) 20 CONTINUE 30 CONTINUE ELSE IF( TRANA.AND..NOT.TRANB )THEN DO 50 K = 1, KK DO 40 I = 1, M CT( I ) = CT( I ) + A( K, I )*B( K, J ) G( I ) = G( I ) + ABS( A( K, I ) )*ABS( B( K, J ) ) 40 CONTINUE 50 CONTINUE ELSE IF( .NOT.TRANA.AND.TRANB )THEN DO 70 K = 1, KK DO 60 I = 1, M CT( I ) = CT( I ) + A( I, K )*B( J, K ) G( I ) = G( I ) + ABS( A( I, K ) )*ABS( B( J, K ) ) 60 CONTINUE 70 CONTINUE ELSE IF( TRANA.AND.TRANB )THEN DO 90 K = 1, KK DO 80 I = 1, M CT( I ) = CT( I ) + A( K, I )*B( J, K ) G( I ) = G( I ) + ABS( A( K, I ) )*ABS( B( J, K ) ) 80 CONTINUE 90 CONTINUE END IF DO 100 I = 1, M CT( I ) = ALPHA*CT( I ) + BETA*C( I, J ) G( I ) = ABS( ALPHA )*G( I ) + ABS( BETA )*ABS( C( I, J ) ) 100 CONTINUE * * Compute the error ratio for this result. * ERR = ZERO DO 110 I = 1, M ERRI = ABS( CT( I ) - CC( I, J ) )/EPS IF( G( I ).NE.ZERO ) $ ERRI = ERRI/G( I ) ERR = MAX( ERR, ERRI ) IF( ERR*SQRT( EPS ).GE.ONE ) $ GO TO 130 110 CONTINUE * 120 CONTINUE * * If the loop completes, all results are at least half accurate. GO TO 150 * * Report fatal error. * 130 FATAL = .TRUE. WRITE( NOUT, FMT = 9999 ) DO 140 I = 1, M IF( MV )THEN WRITE( NOUT, FMT = 9998 )I, CT( I ), CC( I, J ) ELSE WRITE( NOUT, FMT = 9998 )I, CC( I, J ), CT( I ) END IF 140 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9997 )J * 150 CONTINUE RETURN * 9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL', $ 'F ACCURATE *******', /' EXPECTED RESULT COMPU', $ 'TED RESULT' ) 9998 FORMAT( 1X, I7, 2G18.6 ) 9997 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) * * End of DMMCH. * END LOGICAL FUNCTION LDE( RI, RJ, LR ) * * Tests if two arrays are identical. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER LR * .. Array Arguments .. DOUBLE PRECISION RI( * ), RJ( * ) * .. Local Scalars .. INTEGER I * .. Executable Statements .. DO 10 I = 1, LR IF( RI( I ).NE.RJ( I ) ) $ GO TO 20 10 CONTINUE LDE = .TRUE. GO TO 30 20 CONTINUE LDE = .FALSE. 30 RETURN * * End of LDE. * END LOGICAL FUNCTION LDERES( TYPE, UPLO, M, N, AA, AS, LDA ) * * Tests if selected elements in two arrays are equal. * * TYPE is 'GE' or 'SY'. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER LDA, M, N CHARACTER*1 UPLO CHARACTER*2 TYPE * .. Array Arguments .. DOUBLE PRECISION AA( LDA, * ), AS( LDA, * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J LOGICAL UPPER * .. Executable Statements .. UPPER = UPLO.EQ.'U' IF( TYPE.EQ.'GE' )THEN DO 20 J = 1, N DO 10 I = M + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 10 CONTINUE 20 CONTINUE ELSE IF( TYPE.EQ.'SY' )THEN DO 50 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 30 I = 1, IBEG - 1 IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 30 CONTINUE DO 40 I = IEND + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 40 CONTINUE 50 CONTINUE END IF * 60 CONTINUE LDERES = .TRUE. GO TO 80 70 CONTINUE LDERES = .FALSE. 80 RETURN * * End of LDERES. * END DOUBLE PRECISION FUNCTION DBEG( RESET ) * * Generates random numbers uniformly distributed between -0.5 and 0.5. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. LOGICAL RESET * .. Local Scalars .. INTEGER I, IC, MI * .. Save statement .. SAVE I, IC, MI * .. Executable Statements .. IF( RESET )THEN * Initialize local variables. MI = 891 I = 7 IC = 0 RESET = .FALSE. END IF * * The sequence of values of I is bounded between 1 and 999. * If initial I = 1,2,3,6,7 or 9, the period will be 50. * If initial I = 4 or 8, the period will be 25. * If initial I = 5, the period will be 10. * IC is used to break up the period by skipping 1 value of I in 6. * IC = IC + 1 10 I = I*MI I = I - 1000*( I/1000 ) IF( IC.GE.5 )THEN IC = 0 GO TO 10 END IF DBEG = ( I - 500 )/1001.0D0 RETURN * * End of DBEG. * END DOUBLE PRECISION FUNCTION DDIFF( X, Y ) * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. DOUBLE PRECISION X, Y * .. Executable Statements .. DDIFF = X - Y RETURN * * End of DDIFF. * END SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * * Tests whether XERBLA has detected an error when it should. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Executable Statements .. IF( .NOT.LERR )THEN WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT OK = .FALSE. END IF LERR = .FALSE. RETURN * 9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D', $ 'ETECTED BY ', A6, ' *****' ) * * End of CHKXER. * END SUBROUTINE XERBLA( SRNAME, INFO ) * * This is a special version of XERBLA to be used only as part of * the test program for testing error exits from the Level 3 BLAS * routines. * * XERBLA is an error handler for the Level 3 BLAS routines. * * It is called by the Level 3 BLAS routines if an input parameter is * invalid. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER INFO CHARACTER*6 SRNAME * .. Scalars in Common .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUT, OK, LERR COMMON /SRNAMC/SRNAMT * .. Executable Statements .. LERR = .TRUE. IF( INFO.NE.INFOT )THEN IF( INFOT.NE.0 )THEN WRITE( NOUT, FMT = 9999 )INFO, INFOT ELSE WRITE( NOUT, FMT = 9997 )INFO END IF OK = .FALSE. END IF IF( SRNAME.NE.SRNAMT )THEN WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT OK = .FALSE. END IF RETURN * 9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD', $ ' OF ', I2, ' *******' ) 9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE', $ 'AD OF ', A6, ' *******' ) 9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, $ ' *******' ) * * End of XERBLA * END blas-1.2.orig/test/zblat2 0000644 0001750 0001750 00000342560 10735444622 016237 0 ustar sylvestre sylvestre PROGRAM ZBLAT2 * * Test program for the COMPLEX*16 Level 2 Blas. * * The program must be driven by a short data file. The first 18 records * of the file are read using list-directed input, the last 17 records * are read using the format ( A6, L2 ). An annotated example of a data * file can be obtained by deleting the first 3 characters from the * following 35 lines: * 'ZBLAT2.SUMM' NAME OF SUMMARY OUTPUT FILE * 6 UNIT NUMBER OF SUMMARY FILE * 'CBLA2T.SNAP' NAME OF SNAPSHOT OUTPUT FILE * -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) * F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. * F LOGICAL FLAG, T TO STOP ON FAILURES. * T LOGICAL FLAG, T TO TEST ERROR EXITS. * 16.0 THRESHOLD VALUE OF TEST RATIO * 6 NUMBER OF VALUES OF N * 0 1 2 3 5 9 VALUES OF N * 4 NUMBER OF VALUES OF K * 0 1 2 4 VALUES OF K * 4 NUMBER OF VALUES OF INCX AND INCY * 1 2 -1 -2 VALUES OF INCX AND INCY * 3 NUMBER OF VALUES OF ALPHA * (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA * 3 NUMBER OF VALUES OF BETA * (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA * ZGEMV T PUT F FOR NO TEST. SAME COLUMNS. * ZGBMV T PUT F FOR NO TEST. SAME COLUMNS. * ZHEMV T PUT F FOR NO TEST. SAME COLUMNS. * ZHBMV T PUT F FOR NO TEST. SAME COLUMNS. * ZHPMV T PUT F FOR NO TEST. SAME COLUMNS. * ZTRMV T PUT F FOR NO TEST. SAME COLUMNS. * ZTBMV T PUT F FOR NO TEST. SAME COLUMNS. * ZTPMV T PUT F FOR NO TEST. SAME COLUMNS. * ZTRSV T PUT F FOR NO TEST. SAME COLUMNS. * ZTBSV T PUT F FOR NO TEST. SAME COLUMNS. * ZTPSV T PUT F FOR NO TEST. SAME COLUMNS. * ZGERC T PUT F FOR NO TEST. SAME COLUMNS. * ZGERU T PUT F FOR NO TEST. SAME COLUMNS. * ZHER T PUT F FOR NO TEST. SAME COLUMNS. * ZHPR T PUT F FOR NO TEST. SAME COLUMNS. * ZHER2 T PUT F FOR NO TEST. SAME COLUMNS. * ZHPR2 T PUT F FOR NO TEST. SAME COLUMNS. * * See: * * Dongarra J. J., Du Croz J. J., Hammarling S. and Hanson R. J.. * An extended set of Fortran Basic Linear Algebra Subprograms. * * Technical Memoranda Nos. 41 (revision 3) and 81, Mathematics * and Computer Science Division, Argonne National Laboratory, * 9700 South Cass Avenue, Argonne, Illinois 60439, US. * * Or * * NAG Technical Reports TR3/87 and TR4/87, Numerical Algorithms * Group Ltd., NAG Central Office, 256 Banbury Road, Oxford * OX2 7DE, UK, and Numerical Algorithms Group Inc., 1101 31st * Street, Suite 100, Downers Grove, Illinois 60515-1263, USA. * * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. INTEGER NIN PARAMETER ( NIN = 5 ) INTEGER NSUBS PARAMETER ( NSUBS = 17 ) COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), $ ONE = ( 1.0D0, 0.0D0 ) ) DOUBLE PRECISION RZERO, RHALF, RONE PARAMETER ( RZERO = 0.0D0, RHALF = 0.5D0, RONE = 1.0D0 ) INTEGER NMAX, INCMAX PARAMETER ( NMAX = 65, INCMAX = 2 ) INTEGER NINMAX, NIDMAX, NKBMAX, NALMAX, NBEMAX PARAMETER ( NINMAX = 7, NIDMAX = 9, NKBMAX = 7, $ NALMAX = 7, NBEMAX = 7 ) * .. Local Scalars .. DOUBLE PRECISION EPS, ERR, THRESH INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NINC, NKB, $ NOUT, NTRA LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE, $ TSTERR CHARACTER*1 TRANS CHARACTER*6 SNAMET CHARACTER*32 SNAPS, SUMMRY * .. Local Arrays .. COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), $ ALF( NALMAX ), AS( NMAX*NMAX ), BET( NBEMAX ), $ X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( 2*NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDMAX ), INC( NINMAX ), KB( NKBMAX ) LOGICAL LTEST( NSUBS ) CHARACTER*6 SNAMES( NSUBS ) * .. External Functions .. DOUBLE PRECISION DDIFF LOGICAL LZE EXTERNAL DDIFF, LZE * .. External Subroutines .. EXTERNAL ZCHK1, ZCHK2, ZCHK3, ZCHK4, ZCHK5, ZCHK6, $ ZCHKE, ZMVCH * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR COMMON /SRNAMC/SRNAMT * .. Data statements .. DATA SNAMES/'ZGEMV ', 'ZGBMV ', 'ZHEMV ', 'ZHBMV ', $ 'ZHPMV ', 'ZTRMV ', 'ZTBMV ', 'ZTPMV ', $ 'ZTRSV ', 'ZTBSV ', 'ZTPSV ', 'ZGERC ', $ 'ZGERU ', 'ZHER ', 'ZHPR ', 'ZHER2 ', $ 'ZHPR2 '/ * .. Executable Statements .. * * Read name and unit number for summary output file and open file. * READ( NIN, FMT = * )SUMMRY READ( NIN, FMT = * )NOUT OPEN( NOUT, FILE = SUMMRY, STATUS = 'NEW' ) NOUTC = NOUT * * Read name and unit number for snapshot output file and open file. * READ( NIN, FMT = * )SNAPS READ( NIN, FMT = * )NTRA TRACE = NTRA.GE.0 IF( TRACE )THEN OPEN( NTRA, FILE = SNAPS, STATUS = 'NEW' ) END IF * Read the flag that directs rewinding of the snapshot file. READ( NIN, FMT = * )REWI REWI = REWI.AND.TRACE * Read the flag that directs stopping on any failure. READ( NIN, FMT = * )SFATAL * Read the flag that indicates whether error exits are to be tested. READ( NIN, FMT = * )TSTERR * Read the threshold value of the test ratio READ( NIN, FMT = * )THRESH * * Read and check the parameter values for the tests. * * Values of N READ( NIN, FMT = * )NIDIM IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN WRITE( NOUT, FMT = 9997 )'N', NIDMAX GO TO 230 END IF READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM ) DO 10 I = 1, NIDIM IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN WRITE( NOUT, FMT = 9996 )NMAX GO TO 230 END IF 10 CONTINUE * Values of K READ( NIN, FMT = * )NKB IF( NKB.LT.1.OR.NKB.GT.NKBMAX )THEN WRITE( NOUT, FMT = 9997 )'K', NKBMAX GO TO 230 END IF READ( NIN, FMT = * )( KB( I ), I = 1, NKB ) DO 20 I = 1, NKB IF( KB( I ).LT.0 )THEN WRITE( NOUT, FMT = 9995 ) GO TO 230 END IF 20 CONTINUE * Values of INCX and INCY READ( NIN, FMT = * )NINC IF( NINC.LT.1.OR.NINC.GT.NINMAX )THEN WRITE( NOUT, FMT = 9997 )'INCX AND INCY', NINMAX GO TO 230 END IF READ( NIN, FMT = * )( INC( I ), I = 1, NINC ) DO 30 I = 1, NINC IF( INC( I ).EQ.0.OR.ABS( INC( I ) ).GT.INCMAX )THEN WRITE( NOUT, FMT = 9994 )INCMAX GO TO 230 END IF 30 CONTINUE * Values of ALPHA READ( NIN, FMT = * )NALF IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX GO TO 230 END IF READ( NIN, FMT = * )( ALF( I ), I = 1, NALF ) * Values of BETA READ( NIN, FMT = * )NBET IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX GO TO 230 END IF READ( NIN, FMT = * )( BET( I ), I = 1, NBET ) * * Report values of parameters. * WRITE( NOUT, FMT = 9993 ) WRITE( NOUT, FMT = 9992 )( IDIM( I ), I = 1, NIDIM ) WRITE( NOUT, FMT = 9991 )( KB( I ), I = 1, NKB ) WRITE( NOUT, FMT = 9990 )( INC( I ), I = 1, NINC ) WRITE( NOUT, FMT = 9989 )( ALF( I ), I = 1, NALF ) WRITE( NOUT, FMT = 9988 )( BET( I ), I = 1, NBET ) IF( .NOT.TSTERR )THEN WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9980 ) END IF WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9999 )THRESH WRITE( NOUT, FMT = * ) * * Read names of subroutines and flags which indicate * whether they are to be tested. * DO 40 I = 1, NSUBS LTEST( I ) = .FALSE. 40 CONTINUE 50 READ( NIN, FMT = 9984, END = 80 )SNAMET, LTESTT DO 60 I = 1, NSUBS IF( SNAMET.EQ.SNAMES( I ) ) $ GO TO 70 60 CONTINUE WRITE( NOUT, FMT = 9986 )SNAMET STOP 70 LTEST( I ) = LTESTT GO TO 50 * 80 CONTINUE CLOSE ( NIN ) * * Compute EPS (the machine precision). * EPS = RONE 90 CONTINUE IF( DDIFF( RONE + EPS, RONE ).EQ.RZERO ) $ GO TO 100 EPS = RHALF*EPS GO TO 90 100 CONTINUE EPS = EPS + EPS WRITE( NOUT, FMT = 9998 )EPS * * Check the reliability of ZMVCH using exact data. * N = MIN( 32, NMAX ) DO 120 J = 1, N DO 110 I = 1, N A( I, J ) = MAX( I - J + 1, 0 ) 110 CONTINUE X( J ) = J Y( J ) = ZERO 120 CONTINUE DO 130 J = 1, N YY( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3 130 CONTINUE * YY holds the exact result. On exit from ZMVCH YT holds * the result computed by ZMVCH. TRANS = 'N' CALL ZMVCH( TRANS, N, N, ONE, A, NMAX, X, 1, ZERO, Y, 1, YT, G, $ YY, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LZE( YY, YT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR STOP END IF TRANS = 'T' CALL ZMVCH( TRANS, N, N, ONE, A, NMAX, X, -1, ZERO, Y, -1, YT, G, $ YY, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LZE( YY, YT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR STOP END IF * * Test each subroutine in turn. * DO 210 ISNUM = 1, NSUBS WRITE( NOUT, FMT = * ) IF( .NOT.LTEST( ISNUM ) )THEN * Subprogram is not to be tested. WRITE( NOUT, FMT = 9983 )SNAMES( ISNUM ) ELSE SRNAMT = SNAMES( ISNUM ) * Test error exits. IF( TSTERR )THEN CALL ZCHKE( ISNUM, SNAMES( ISNUM ), NOUT ) WRITE( NOUT, FMT = * ) END IF * Test computations. INFOT = 0 OK = .TRUE. FATAL = .FALSE. GO TO ( 140, 140, 150, 150, 150, 160, 160, $ 160, 160, 160, 160, 170, 170, 180, $ 180, 190, 190 )ISNUM * Test ZGEMV, 01, and ZGBMV, 02. 140 CALL ZCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, $ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS, $ X, XX, XS, Y, YY, YS, YT, G ) GO TO 200 * Test ZHEMV, 03, ZHBMV, 04, and ZHPMV, 05. 150 CALL ZCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, $ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS, $ X, XX, XS, Y, YY, YS, YT, G ) GO TO 200 * Test ZTRMV, 06, ZTBMV, 07, ZTPMV, 08, * ZTRSV, 09, ZTBSV, 10, and ZTPSV, 11. 160 CALL ZCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NKB, KB, NINC, INC, $ NMAX, INCMAX, A, AA, AS, Y, YY, YS, YT, G, Z ) GO TO 200 * Test ZGERC, 12, ZGERU, 13. 170 CALL ZCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, $ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, $ YT, G, Z ) GO TO 200 * Test ZHER, 14, and ZHPR, 15. 180 CALL ZCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, $ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, $ YT, G, Z ) GO TO 200 * Test ZHER2, 16, and ZHPR2, 17. 190 CALL ZCHK6( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, $ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, $ YT, G, Z ) * 200 IF( FATAL.AND.SFATAL ) $ GO TO 220 END IF 210 CONTINUE WRITE( NOUT, FMT = 9982 ) GO TO 240 * 220 CONTINUE WRITE( NOUT, FMT = 9981 ) GO TO 240 * 230 CONTINUE WRITE( NOUT, FMT = 9987 ) * 240 CONTINUE IF( TRACE ) $ CLOSE ( NTRA ) CLOSE ( NOUT ) STOP * 9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES', $ 'S THAN', F8.2 ) 9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, D9.1 ) 9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ', $ 'THAN ', I2 ) 9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 ) 9995 FORMAT( ' VALUE OF K IS LESS THAN 0' ) 9994 FORMAT( ' ABSOLUTE VALUE OF INCX OR INCY IS 0 OR GREATER THAN ', $ I2 ) 9993 FORMAT( ' TESTS OF THE COMPLEX*16 LEVEL 2 BLAS', //' THE F', $ 'OLLOWING PARAMETER VALUES WILL BE USED:' ) 9992 FORMAT( ' FOR N ', 9I6 ) 9991 FORMAT( ' FOR K ', 7I6 ) 9990 FORMAT( ' FOR INCX AND INCY ', 7I6 ) 9989 FORMAT( ' FOR ALPHA ', $ 7( '(', F4.1, ',', F4.1, ') ', : ) ) 9988 FORMAT( ' FOR BETA ', $ 7( '(', F4.1, ',', F4.1, ') ', : ) ) 9987 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM', $ /' ******* TESTS ABANDONED *******' ) 9986 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T', $ 'ESTS ABANDONED *******' ) 9985 FORMAT( ' ERROR IN ZMVCH - IN-LINE DOT PRODUCTS ARE BEING EVALU', $ 'ATED WRONGLY.', /' ZMVCH WAS CALLED WITH TRANS = ', A1, $ ' AND RETURNED SAME = ', L1, ' AND ERR = ', F12.3, '.', / $ ' THIS MAY BE DUE TO FAULTS IN THE ARITHMETIC OR THE COMPILER.' $ , /' ******* TESTS ABANDONED *******' ) 9984 FORMAT( A6, L2 ) 9983 FORMAT( 1X, A6, ' WAS NOT TESTED' ) 9982 FORMAT( /' END OF TESTS' ) 9981 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' ) 9980 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' ) * * End of ZBLAT2. * END SUBROUTINE ZCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET, $ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX, $ XS, Y, YY, YS, YT, G ) * * Tests ZGEMV and ZGBMV. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX*16 ZERO, HALF PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), $ HALF = ( 0.5D0, 0.0D0 ) ) DOUBLE PRECISION RZERO PARAMETER ( RZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX, $ NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), BET( NBET ), X( NMAX ), $ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ), $ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB ) * .. Local Scalars .. COMPLEX*16 ALPHA, ALS, BETA, BLS, TRANSL DOUBLE PRECISION ERR, ERRMAX INTEGER I, IA, IB, IC, IKU, IM, IN, INCX, INCXS, INCY, $ INCYS, IX, IY, KL, KLS, KU, KUS, LAA, LDA, $ LDAS, LX, LY, M, ML, MS, N, NARGS, NC, ND, NK, $ NL, NS LOGICAL BANDED, FULL, NULL, RESET, SAME, TRAN CHARACTER*1 TRANS, TRANSS CHARACTER*3 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL ZGBMV, ZGEMV, ZMAKE, ZMVCH * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'NTC'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'E' BANDED = SNAME( 3: 3 ).EQ.'B' * Define the number of arguments. IF( FULL )THEN NARGS = 11 ELSE IF( BANDED )THEN NARGS = 13 END IF * NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 120 IN = 1, NIDIM N = IDIM( IN ) ND = N/2 + 1 * DO 110 IM = 1, 2 IF( IM.EQ.1 ) $ M = MAX( N - ND, 0 ) IF( IM.EQ.2 ) $ M = MIN( N + ND, NMAX ) * IF( BANDED )THEN NK = NKB ELSE NK = 1 END IF DO 100 IKU = 1, NK IF( BANDED )THEN KU = KB( IKU ) KL = MAX( KU - 1, 0 ) ELSE KU = N - 1 KL = M - 1 END IF * Set LDA to 1 more than minimum value if room. IF( BANDED )THEN LDA = KL + KU + 1 ELSE LDA = M END IF IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 LAA = LDA*N NULL = N.LE.0.OR.M.LE.0 * * Generate the matrix A. * TRANSL = ZERO CALL ZMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX, AA, $ LDA, KL, KU, RESET, TRANSL ) * DO 90 IC = 1, 3 TRANS = ICH( IC: IC ) TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C' * IF( TRAN )THEN ML = N NL = M ELSE ML = M NL = N END IF * DO 80 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*NL * * Generate the vector X. * TRANSL = HALF CALL ZMAKE( 'GE', ' ', ' ', 1, NL, X, 1, XX, $ ABS( INCX ), 0, NL - 1, RESET, TRANSL ) IF( NL.GT.1 )THEN X( NL/2 ) = ZERO XX( 1 + ABS( INCX )*( NL/2 - 1 ) ) = ZERO END IF * DO 70 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*ML * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the vector Y. * TRANSL = ZERO CALL ZMAKE( 'GE', ' ', ' ', 1, ML, Y, 1, $ YY, ABS( INCY ), 0, ML - 1, $ RESET, TRANSL ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * TRANSS = TRANS MS = M NS = N KLS = KL KUS = KU ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX BLS = BETA DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ TRANS, M, N, ALPHA, LDA, INCX, BETA, $ INCY IF( REWI ) $ REWIND NTRA CALL ZGEMV( TRANS, M, N, ALPHA, AA, $ LDA, XX, INCX, BETA, YY, $ INCY ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ TRANS, M, N, KL, KU, ALPHA, LDA, $ INCX, BETA, INCY IF( REWI ) $ REWIND NTRA CALL ZGBMV( TRANS, M, N, KL, KU, ALPHA, $ AA, LDA, XX, INCX, BETA, $ YY, INCY ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 130 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = TRANS.EQ.TRANSS ISAME( 2 ) = MS.EQ.M ISAME( 3 ) = NS.EQ.N IF( FULL )THEN ISAME( 4 ) = ALS.EQ.ALPHA ISAME( 5 ) = LZE( AS, AA, LAA ) ISAME( 6 ) = LDAS.EQ.LDA ISAME( 7 ) = LZE( XS, XX, LX ) ISAME( 8 ) = INCXS.EQ.INCX ISAME( 9 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 10 ) = LZE( YS, YY, LY ) ELSE ISAME( 10 ) = LZERES( 'GE', ' ', 1, $ ML, YS, YY, $ ABS( INCY ) ) END IF ISAME( 11 ) = INCYS.EQ.INCY ELSE IF( BANDED )THEN ISAME( 4 ) = KLS.EQ.KL ISAME( 5 ) = KUS.EQ.KU ISAME( 6 ) = ALS.EQ.ALPHA ISAME( 7 ) = LZE( AS, AA, LAA ) ISAME( 8 ) = LDAS.EQ.LDA ISAME( 9 ) = LZE( XS, XX, LX ) ISAME( 10 ) = INCXS.EQ.INCX ISAME( 11 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 12 ) = LZE( YS, YY, LY ) ELSE ISAME( 12 ) = LZERES( 'GE', ' ', 1, $ ML, YS, YY, $ ABS( INCY ) ) END IF ISAME( 13 ) = INCYS.EQ.INCY END IF * * If data was incorrectly changed, report * and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 130 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL ZMVCH( TRANS, M, N, ALPHA, A, $ NMAX, X, INCX, BETA, Y, $ INCY, YT, G, YY, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 130 ELSE * Avoid repeating tests with M.le.0 or * N.le.0. GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 140 * 130 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, TRANS, M, N, ALPHA, LDA, $ INCX, BETA, INCY ELSE IF( BANDED )THEN WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANS, M, N, KL, KU, $ ALPHA, LDA, INCX, BETA, INCY END IF * 140 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 4( I3, ',' ), '(', $ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',', $ F4.1, '), Y,', I2, ') .' ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), '(', $ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',', $ F4.1, '), Y,', I2, ') .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of ZCHK1. * END SUBROUTINE ZCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET, $ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX, $ XS, Y, YY, YS, YT, G ) * * Tests ZHEMV, ZHBMV and ZHPMV. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX*16 ZERO, HALF PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), $ HALF = ( 0.5D0, 0.0D0 ) ) DOUBLE PRECISION RZERO PARAMETER ( RZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX, $ NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), BET( NBET ), X( NMAX ), $ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ), $ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB ) * .. Local Scalars .. COMPLEX*16 ALPHA, ALS, BETA, BLS, TRANSL DOUBLE PRECISION ERR, ERRMAX INTEGER I, IA, IB, IC, IK, IN, INCX, INCXS, INCY, $ INCYS, IX, IY, K, KS, LAA, LDA, LDAS, LX, LY, $ N, NARGS, NC, NK, NS LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME CHARACTER*1 UPLO, UPLOS CHARACTER*2 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL ZHBMV, ZHEMV, ZHPMV, ZMAKE, ZMVCH * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'UL'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'E' BANDED = SNAME( 3: 3 ).EQ.'B' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 10 ELSE IF( BANDED )THEN NARGS = 11 ELSE IF( PACKED )THEN NARGS = 9 END IF * NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 110 IN = 1, NIDIM N = IDIM( IN ) * IF( BANDED )THEN NK = NKB ELSE NK = 1 END IF DO 100 IK = 1, NK IF( BANDED )THEN K = KB( IK ) ELSE K = N - 1 END IF * Set LDA to 1 more than minimum value if room. IF( BANDED )THEN LDA = K + 1 ELSE LDA = N END IF IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF NULL = N.LE.0 * DO 90 IC = 1, 2 UPLO = ICH( IC: IC ) * * Generate the matrix A. * TRANSL = ZERO CALL ZMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX, AA, $ LDA, K, K, RESET, TRANSL ) * DO 80 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL ZMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, $ ABS( INCX ), 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * DO 70 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*N * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the vector Y. * TRANSL = ZERO CALL ZMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY, $ ABS( INCY ), 0, N - 1, RESET, $ TRANSL ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * UPLOS = UPLO NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX BLS = BETA DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, $ UPLO, N, ALPHA, LDA, INCX, BETA, INCY IF( REWI ) $ REWIND NTRA CALL ZHEMV( UPLO, N, ALPHA, AA, LDA, XX, $ INCX, BETA, YY, INCY ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ UPLO, N, K, ALPHA, LDA, INCX, BETA, $ INCY IF( REWI ) $ REWIND NTRA CALL ZHBMV( UPLO, N, K, ALPHA, AA, LDA, $ XX, INCX, BETA, YY, INCY ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ UPLO, N, ALPHA, INCX, BETA, INCY IF( REWI ) $ REWIND NTRA CALL ZHPMV( UPLO, N, ALPHA, AA, XX, INCX, $ BETA, YY, INCY ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = NS.EQ.N IF( FULL )THEN ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LZE( AS, AA, LAA ) ISAME( 5 ) = LDAS.EQ.LDA ISAME( 6 ) = LZE( XS, XX, LX ) ISAME( 7 ) = INCXS.EQ.INCX ISAME( 8 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 9 ) = LZE( YS, YY, LY ) ELSE ISAME( 9 ) = LZERES( 'GE', ' ', 1, N, $ YS, YY, ABS( INCY ) ) END IF ISAME( 10 ) = INCYS.EQ.INCY ELSE IF( BANDED )THEN ISAME( 3 ) = KS.EQ.K ISAME( 4 ) = ALS.EQ.ALPHA ISAME( 5 ) = LZE( AS, AA, LAA ) ISAME( 6 ) = LDAS.EQ.LDA ISAME( 7 ) = LZE( XS, XX, LX ) ISAME( 8 ) = INCXS.EQ.INCX ISAME( 9 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 10 ) = LZE( YS, YY, LY ) ELSE ISAME( 10 ) = LZERES( 'GE', ' ', 1, N, $ YS, YY, ABS( INCY ) ) END IF ISAME( 11 ) = INCYS.EQ.INCY ELSE IF( PACKED )THEN ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LZE( AS, AA, LAA ) ISAME( 5 ) = LZE( XS, XX, LX ) ISAME( 6 ) = INCXS.EQ.INCX ISAME( 7 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 8 ) = LZE( YS, YY, LY ) ELSE ISAME( 8 ) = LZERES( 'GE', ' ', 1, N, $ YS, YY, ABS( INCY ) ) END IF ISAME( 9 ) = INCYS.EQ.INCY END IF * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL ZMVCH( 'N', N, N, ALPHA, A, NMAX, X, $ INCX, BETA, Y, INCY, YT, G, $ YY, EPS, ERR, FATAL, NOUT, $ .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 120 ELSE * Avoid repeating tests with N.le.0 GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, LDA, INCX, $ BETA, INCY ELSE IF( BANDED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, K, ALPHA, LDA, $ INCX, BETA, INCY ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, N, ALPHA, INCX, $ BETA, INCY END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',', $ F4.1, '), AP, X,', I2, ',(', F4.1, ',', F4.1, '), Y,', I2, $ ') .' ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), '(', $ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',', $ F4.1, '), Y,', I2, ') .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',', $ F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',', F4.1, '), ', $ 'Y,', I2, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of ZCHK2. * END SUBROUTINE ZCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NKB, KB, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, XT, G, Z ) * * Tests ZTRMV, ZTBMV, ZTPMV, ZTRSV, ZTBSV and ZTPSV. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX*16 ZERO, HALF, ONE PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), $ HALF = ( 0.5D0, 0.0D0 ), $ ONE = ( 1.0D0, 0.0D0 ) ) DOUBLE PRECISION RZERO PARAMETER ( RZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER INCMAX, NIDIM, NINC, NKB, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), $ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ), $ XT( NMAX ), XX( NMAX*INCMAX ), Z( NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB ) * .. Local Scalars .. COMPLEX*16 TRANSL DOUBLE PRECISION ERR, ERRMAX INTEGER I, ICD, ICT, ICU, IK, IN, INCX, INCXS, IX, K, $ KS, LAA, LDA, LDAS, LX, N, NARGS, NC, NK, NS LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME CHARACTER*1 DIAG, DIAGS, TRANS, TRANSS, UPLO, UPLOS CHARACTER*2 ICHD, ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL ZMAKE, ZMVCH, ZTBMV, ZTBSV, ZTPMV, ZTPSV, $ ZTRMV, ZTRSV * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'R' BANDED = SNAME( 3: 3 ).EQ.'B' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 8 ELSE IF( BANDED )THEN NARGS = 9 ELSE IF( PACKED )THEN NARGS = 7 END IF * NC = 0 RESET = .TRUE. ERRMAX = RZERO * Set up zero vector for ZMVCH. DO 10 I = 1, NMAX Z( I ) = ZERO 10 CONTINUE * DO 110 IN = 1, NIDIM N = IDIM( IN ) * IF( BANDED )THEN NK = NKB ELSE NK = 1 END IF DO 100 IK = 1, NK IF( BANDED )THEN K = KB( IK ) ELSE K = N - 1 END IF * Set LDA to 1 more than minimum value if room. IF( BANDED )THEN LDA = K + 1 ELSE LDA = N END IF IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF NULL = N.LE.0 * DO 90 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * DO 80 ICT = 1, 3 TRANS = ICHT( ICT: ICT ) * DO 70 ICD = 1, 2 DIAG = ICHD( ICD: ICD ) * * Generate the matrix A. * TRANSL = ZERO CALL ZMAKE( SNAME( 2: 3 ), UPLO, DIAG, N, N, A, $ NMAX, AA, LDA, K, K, RESET, TRANSL ) * DO 60 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL ZMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, $ ABS( INCX ), 0, N - 1, RESET, $ TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS DIAGS = DIAG NS = N KS = K DO 20 I = 1, LAA AS( I ) = AA( I ) 20 CONTINUE LDAS = LDA DO 30 I = 1, LX XS( I ) = XX( I ) 30 CONTINUE INCXS = INCX * * Call the subroutine. * IF( SNAME( 4: 5 ).EQ.'MV' )THEN IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, $ UPLO, TRANS, DIAG, N, LDA, INCX IF( REWI ) $ REWIND NTRA CALL ZTRMV( UPLO, TRANS, DIAG, N, AA, LDA, $ XX, INCX ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ UPLO, TRANS, DIAG, N, K, LDA, INCX IF( REWI ) $ REWIND NTRA CALL ZTBMV( UPLO, TRANS, DIAG, N, K, AA, $ LDA, XX, INCX ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ UPLO, TRANS, DIAG, N, INCX IF( REWI ) $ REWIND NTRA CALL ZTPMV( UPLO, TRANS, DIAG, N, AA, XX, $ INCX ) END IF ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, $ UPLO, TRANS, DIAG, N, LDA, INCX IF( REWI ) $ REWIND NTRA CALL ZTRSV( UPLO, TRANS, DIAG, N, AA, LDA, $ XX, INCX ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ UPLO, TRANS, DIAG, N, K, LDA, INCX IF( REWI ) $ REWIND NTRA CALL ZTBSV( UPLO, TRANS, DIAG, N, K, AA, $ LDA, XX, INCX ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ UPLO, TRANS, DIAG, N, INCX IF( REWI ) $ REWIND NTRA CALL ZTPSV( UPLO, TRANS, DIAG, N, AA, XX, $ INCX ) END IF END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = TRANS.EQ.TRANSS ISAME( 3 ) = DIAG.EQ.DIAGS ISAME( 4 ) = NS.EQ.N IF( FULL )THEN ISAME( 5 ) = LZE( AS, AA, LAA ) ISAME( 6 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 7 ) = LZE( XS, XX, LX ) ELSE ISAME( 7 ) = LZERES( 'GE', ' ', 1, N, XS, $ XX, ABS( INCX ) ) END IF ISAME( 8 ) = INCXS.EQ.INCX ELSE IF( BANDED )THEN ISAME( 5 ) = KS.EQ.K ISAME( 6 ) = LZE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 8 ) = LZE( XS, XX, LX ) ELSE ISAME( 8 ) = LZERES( 'GE', ' ', 1, N, XS, $ XX, ABS( INCX ) ) END IF ISAME( 9 ) = INCXS.EQ.INCX ELSE IF( PACKED )THEN ISAME( 5 ) = LZE( AS, AA, LAA ) IF( NULL )THEN ISAME( 6 ) = LZE( XS, XX, LX ) ELSE ISAME( 6 ) = LZERES( 'GE', ' ', 1, N, XS, $ XX, ABS( INCX ) ) END IF ISAME( 7 ) = INCXS.EQ.INCX END IF * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN IF( SNAME( 4: 5 ).EQ.'MV' )THEN * * Check the result. * CALL ZMVCH( TRANS, N, N, ONE, A, NMAX, X, $ INCX, ZERO, Z, INCX, XT, G, $ XX, EPS, ERR, FATAL, NOUT, $ .TRUE. ) ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN * * Compute approximation to original vector. * DO 50 I = 1, N Z( I ) = XX( 1 + ( I - 1 )* $ ABS( INCX ) ) XX( 1 + ( I - 1 )*ABS( INCX ) ) $ = X( I ) 50 CONTINUE CALL ZMVCH( TRANS, N, N, ONE, A, NMAX, Z, $ INCX, ZERO, X, INCX, XT, G, $ XX, EPS, ERR, FATAL, NOUT, $ .FALSE. ) END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 120 ELSE * Avoid repeating tests with N.le.0. GO TO 110 END IF * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, DIAG, N, LDA, $ INCX ELSE IF( BANDED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, DIAG, N, K, $ LDA, INCX ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, TRANS, DIAG, N, INCX END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', AP, ', $ 'X,', I2, ') .' ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), 2( I3, ',' ), $ ' A,', I3, ', X,', I2, ') .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', A,', $ I3, ', X,', I2, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of ZCHK3. * END SUBROUTINE ZCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G, $ Z ) * * Tests ZGERC and ZGERU. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX*16 ZERO, HALF, ONE PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), $ HALF = ( 0.5D0, 0.0D0 ), $ ONE = ( 1.0D0, 0.0D0 ) ) DOUBLE PRECISION RZERO PARAMETER ( RZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ) * .. Local Scalars .. COMPLEX*16 ALPHA, ALS, TRANSL DOUBLE PRECISION ERR, ERRMAX INTEGER I, IA, IM, IN, INCX, INCXS, INCY, INCYS, IX, $ IY, J, LAA, LDA, LDAS, LX, LY, M, MS, N, NARGS, $ NC, ND, NS LOGICAL CONJ, NULL, RESET, SAME * .. Local Arrays .. COMPLEX*16 W( 1 ) LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL ZGERC, ZGERU, ZMAKE, ZMVCH * .. Intrinsic Functions .. INTRINSIC ABS, DCONJG, MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. CONJ = SNAME( 5: 5 ).EQ.'C' * Define the number of arguments. NARGS = 9 * NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 120 IN = 1, NIDIM N = IDIM( IN ) ND = N/2 + 1 * DO 110 IM = 1, 2 IF( IM.EQ.1 ) $ M = MAX( N - ND, 0 ) IF( IM.EQ.2 ) $ M = MIN( N + ND, NMAX ) * * Set LDA to 1 more than minimum value if room. LDA = M IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 110 LAA = LDA*N NULL = N.LE.0.OR.M.LE.0 * DO 100 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*M * * Generate the vector X. * TRANSL = HALF CALL ZMAKE( 'GE', ' ', ' ', 1, M, X, 1, XX, ABS( INCX ), $ 0, M - 1, RESET, TRANSL ) IF( M.GT.1 )THEN X( M/2 ) = ZERO XX( 1 + ABS( INCX )*( M/2 - 1 ) ) = ZERO END IF * DO 90 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*N * * Generate the vector Y. * TRANSL = ZERO CALL ZMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY, $ ABS( INCY ), 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN Y( N/2 ) = ZERO YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO END IF * DO 80 IA = 1, NALF ALPHA = ALF( IA ) * * Generate the matrix A. * TRANSL = ZERO CALL ZMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX, $ AA, LDA, M - 1, N - 1, RESET, TRANSL ) * NC = NC + 1 * * Save every datum before calling the subroutine. * MS = M NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, M, N, $ ALPHA, INCX, INCY, LDA IF( CONJ )THEN IF( REWI ) $ REWIND NTRA CALL ZGERC( M, N, ALPHA, XX, INCX, YY, INCY, AA, $ LDA ) ELSE IF( REWI ) $ REWIND NTRA CALL ZGERU( M, N, ALPHA, XX, INCX, YY, INCY, AA, $ LDA ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 140 END IF * * See what data changed inside subroutine. * ISAME( 1 ) = MS.EQ.M ISAME( 2 ) = NS.EQ.N ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LZE( XS, XX, LX ) ISAME( 5 ) = INCXS.EQ.INCX ISAME( 6 ) = LZE( YS, YY, LY ) ISAME( 7 ) = INCYS.EQ.INCY IF( NULL )THEN ISAME( 8 ) = LZE( AS, AA, LAA ) ELSE ISAME( 8 ) = LZERES( 'GE', ' ', M, N, AS, AA, $ LDA ) END IF ISAME( 9 ) = LDAS.EQ.LDA * * If data was incorrectly changed, report and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 140 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( INCX.GT.0 )THEN DO 50 I = 1, M Z( I ) = X( I ) 50 CONTINUE ELSE DO 60 I = 1, M Z( I ) = X( M - I + 1 ) 60 CONTINUE END IF DO 70 J = 1, N IF( INCY.GT.0 )THEN W( 1 ) = Y( J ) ELSE W( 1 ) = Y( N - J + 1 ) END IF IF( CONJ ) $ W( 1 ) = DCONJG( W( 1 ) ) CALL ZMVCH( 'N', M, 1, ALPHA, Z, NMAX, W, 1, $ ONE, A( 1, J ), 1, YT, G, $ AA( 1 + ( J - 1 )*LDA ), EPS, $ ERR, FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 130 70 CONTINUE ELSE * Avoid repeating tests with M.le.0 or N.le.0. GO TO 110 END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 150 * 130 CONTINUE WRITE( NOUT, FMT = 9995 )J * 140 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9994 )NC, SNAME, M, N, ALPHA, INCX, INCY, LDA * 150 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( I3, ',' ), '(', F4.1, ',', F4.1, $ '), X,', I2, ', Y,', I2, ', A,', I3, ') ', $ ' .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of ZCHK4. * END SUBROUTINE ZCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G, $ Z ) * * Tests ZHER and ZHPR. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX*16 ZERO, HALF, ONE PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), $ HALF = ( 0.5D0, 0.0D0 ), $ ONE = ( 1.0D0, 0.0D0 ) ) DOUBLE PRECISION RZERO PARAMETER ( RZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( NMAX ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ) * .. Local Scalars .. COMPLEX*16 ALPHA, TRANSL DOUBLE PRECISION ERR, ERRMAX, RALPHA, RALS INTEGER I, IA, IC, IN, INCX, INCXS, IX, J, JA, JJ, LAA, $ LDA, LDAS, LJ, LX, N, NARGS, NC, NS LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER CHARACTER*1 UPLO, UPLOS CHARACTER*2 ICH * .. Local Arrays .. COMPLEX*16 W( 1 ) LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL ZHER, ZHPR, ZMAKE, ZMVCH * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DCMPLX, DCONJG, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'UL'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'E' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 7 ELSE IF( PACKED )THEN NARGS = 6 END IF * NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDA to 1 more than minimum value if room. LDA = N IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF * DO 90 IC = 1, 2 UPLO = ICH( IC: IC ) UPPER = UPLO.EQ.'U' * DO 80 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL ZMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ), $ 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * DO 70 IA = 1, NALF RALPHA = DBLE( ALF( IA ) ) ALPHA = DCMPLX( RALPHA, RZERO ) NULL = N.LE.0.OR.RALPHA.EQ.RZERO * * Generate the matrix A. * TRANSL = ZERO CALL ZMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX, $ AA, LDA, N - 1, N - 1, RESET, TRANSL ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO NS = N RALS = RALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N, $ RALPHA, INCX, LDA IF( REWI ) $ REWIND NTRA CALL ZHER( UPLO, N, RALPHA, XX, INCX, AA, LDA ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N, $ RALPHA, INCX IF( REWI ) $ REWIND NTRA CALL ZHPR( UPLO, N, RALPHA, XX, INCX, AA ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = NS.EQ.N ISAME( 3 ) = RALS.EQ.RALPHA ISAME( 4 ) = LZE( XS, XX, LX ) ISAME( 5 ) = INCXS.EQ.INCX IF( NULL )THEN ISAME( 6 ) = LZE( AS, AA, LAA ) ELSE ISAME( 6 ) = LZERES( SNAME( 2: 3 ), UPLO, N, N, AS, $ AA, LDA ) END IF IF( .NOT.PACKED )THEN ISAME( 7 ) = LDAS.EQ.LDA END IF * * If data was incorrectly changed, report and return. * SAME = .TRUE. DO 30 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 30 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( INCX.GT.0 )THEN DO 40 I = 1, N Z( I ) = X( I ) 40 CONTINUE ELSE DO 50 I = 1, N Z( I ) = X( N - I + 1 ) 50 CONTINUE END IF JA = 1 DO 60 J = 1, N W( 1 ) = DCONJG( Z( J ) ) IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF CALL ZMVCH( 'N', LJ, 1, ALPHA, Z( JJ ), LJ, W, $ 1, ONE, A( JJ, J ), 1, YT, G, $ AA( JA ), EPS, ERR, FATAL, NOUT, $ .TRUE. ) IF( FULL )THEN IF( UPPER )THEN JA = JA + LDA ELSE JA = JA + LDA + 1 END IF ELSE JA = JA + LJ END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 110 60 CONTINUE ELSE * Avoid repeating tests if N.le.0. IF( N.LE.0 ) $ GO TO 100 END IF * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 110 CONTINUE WRITE( NOUT, FMT = 9995 )J * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, RALPHA, INCX, LDA ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, RALPHA, INCX END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,', $ I2, ', AP) .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,', $ I2, ', A,', I3, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of ZCHK5. * END SUBROUTINE ZCHK6( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G, $ Z ) * * Tests ZHER2 and ZHPR2. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX*16 ZERO, HALF, ONE PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), $ HALF = ( 0.5D0, 0.0D0 ), $ ONE = ( 1.0D0, 0.0D0 ) ) DOUBLE PRECISION RZERO PARAMETER ( RZERO = 0.0D0 ) * .. Scalar Arguments .. DOUBLE PRECISION EPS, THRESH INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX*16 A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( NMAX, 2 ) DOUBLE PRECISION G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ) * .. Local Scalars .. COMPLEX*16 ALPHA, ALS, TRANSL DOUBLE PRECISION ERR, ERRMAX INTEGER I, IA, IC, IN, INCX, INCXS, INCY, INCYS, IX, $ IY, J, JA, JJ, LAA, LDA, LDAS, LJ, LX, LY, N, $ NARGS, NC, NS LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER CHARACTER*1 UPLO, UPLOS CHARACTER*2 ICH * .. Local Arrays .. COMPLEX*16 W( 2 ) LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LZE, LZERES EXTERNAL LZE, LZERES * .. External Subroutines .. EXTERNAL ZHER2, ZHPR2, ZMAKE, ZMVCH * .. Intrinsic Functions .. INTRINSIC ABS, DCONJG, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'UL'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'E' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 9 ELSE IF( PACKED )THEN NARGS = 8 END IF * NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 140 IN = 1, NIDIM N = IDIM( IN ) * Set LDA to 1 more than minimum value if room. LDA = N IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 140 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF * DO 130 IC = 1, 2 UPLO = ICH( IC: IC ) UPPER = UPLO.EQ.'U' * DO 120 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL ZMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ), $ 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * DO 110 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*N * * Generate the vector Y. * TRANSL = ZERO CALL ZMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY, $ ABS( INCY ), 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN Y( N/2 ) = ZERO YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO END IF * DO 100 IA = 1, NALF ALPHA = ALF( IA ) NULL = N.LE.0.OR.ALPHA.EQ.ZERO * * Generate the matrix A. * TRANSL = ZERO CALL ZMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, $ NMAX, AA, LDA, N - 1, N - 1, RESET, $ TRANSL ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N, $ ALPHA, INCX, INCY, LDA IF( REWI ) $ REWIND NTRA CALL ZHER2( UPLO, N, ALPHA, XX, INCX, YY, INCY, $ AA, LDA ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N, $ ALPHA, INCX, INCY IF( REWI ) $ REWIND NTRA CALL ZHPR2( UPLO, N, ALPHA, XX, INCX, YY, INCY, $ AA ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 160 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = NS.EQ.N ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LZE( XS, XX, LX ) ISAME( 5 ) = INCXS.EQ.INCX ISAME( 6 ) = LZE( YS, YY, LY ) ISAME( 7 ) = INCYS.EQ.INCY IF( NULL )THEN ISAME( 8 ) = LZE( AS, AA, LAA ) ELSE ISAME( 8 ) = LZERES( SNAME( 2: 3 ), UPLO, N, N, $ AS, AA, LDA ) END IF IF( .NOT.PACKED )THEN ISAME( 9 ) = LDAS.EQ.LDA END IF * * If data was incorrectly changed, report and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 160 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( INCX.GT.0 )THEN DO 50 I = 1, N Z( I, 1 ) = X( I ) 50 CONTINUE ELSE DO 60 I = 1, N Z( I, 1 ) = X( N - I + 1 ) 60 CONTINUE END IF IF( INCY.GT.0 )THEN DO 70 I = 1, N Z( I, 2 ) = Y( I ) 70 CONTINUE ELSE DO 80 I = 1, N Z( I, 2 ) = Y( N - I + 1 ) 80 CONTINUE END IF JA = 1 DO 90 J = 1, N W( 1 ) = ALPHA*DCONJG( Z( J, 2 ) ) W( 2 ) = DCONJG( ALPHA )*DCONJG( Z( J, 1 ) ) IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF CALL ZMVCH( 'N', LJ, 2, ONE, Z( JJ, 1 ), $ NMAX, W, 1, ONE, A( JJ, J ), 1, $ YT, G, AA( JA ), EPS, ERR, FATAL, $ NOUT, .TRUE. ) IF( FULL )THEN IF( UPPER )THEN JA = JA + LDA ELSE JA = JA + LDA + 1 END IF ELSE JA = JA + LJ END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 150 90 CONTINUE ELSE * Avoid repeating tests with N.le.0. IF( N.LE.0 ) $ GO TO 140 END IF * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * 140 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 170 * 150 CONTINUE WRITE( NOUT, FMT = 9995 )J * 160 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, INCX, $ INCY, LDA ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, ALPHA, INCX, INCY END IF * 170 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',', $ F4.1, '), X,', I2, ', Y,', I2, ', AP) ', $ ' .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',', $ F4.1, '), X,', I2, ', Y,', I2, ', A,', I3, ') ', $ ' .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of ZCHK6. * END SUBROUTINE ZCHKE( ISNUM, SRNAMT, NOUT ) * * Tests the error exits from the Level 2 Blas. * Requires a special version of the error-handling routine XERBLA. * ALPHA, RALPHA, BETA, A, X and Y should not need to be defined. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER ISNUM, NOUT CHARACTER*6 SRNAMT * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Local Scalars .. COMPLEX*16 ALPHA, BETA DOUBLE PRECISION RALPHA * .. Local Arrays .. COMPLEX*16 A( 1, 1 ), X( 1 ), Y( 1 ) * .. External Subroutines .. EXTERNAL CHKXER, ZGBMV, ZGEMV, ZGERC, ZGERU, ZHBMV, $ ZHEMV, ZHER, ZHER2, ZHPMV, ZHPR, ZHPR2, ZTBMV, $ ZTBSV, ZTPMV, ZTPSV, ZTRMV, ZTRSV * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. * OK is set to .FALSE. by the special version of XERBLA or by CHKXER * if anything is wrong. OK = .TRUE. * LERR is set to .TRUE. by the special version of XERBLA each time * it is called, and is then tested and re-set by CHKXER. LERR = .FALSE. GO TO ( 10, 20, 30, 40, 50, 60, 70, 80, $ 90, 100, 110, 120, 130, 140, 150, 160, $ 170 )ISNUM 10 INFOT = 1 CALL ZGEMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZGEMV( 'N', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZGEMV( 'N', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZGEMV( 'N', 2, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZGEMV( 'N', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZGEMV( 'N', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 20 INFOT = 1 CALL ZGBMV( '/', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZGBMV( 'N', -1, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZGBMV( 'N', 0, -1, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZGBMV( 'N', 0, 0, -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZGBMV( 'N', 2, 0, 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZGBMV( 'N', 0, 0, 1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL ZGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 30 INFOT = 1 CALL ZHEMV( '/', 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHEMV( 'U', -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZHEMV( 'U', 2, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHEMV( 'U', 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL ZHEMV( 'U', 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 40 INFOT = 1 CALL ZHBMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHBMV( 'U', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZHBMV( 'U', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZHBMV( 'U', 0, 1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZHBMV( 'U', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL ZHBMV( 'U', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 50 INFOT = 1 CALL ZHPMV( '/', 0, ALPHA, A, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHPMV( 'U', -1, ALPHA, A, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZHPMV( 'U', 0, ALPHA, A, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZHPMV( 'U', 0, ALPHA, A, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 60 INFOT = 1 CALL ZTRMV( '/', 'N', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZTRMV( 'U', '/', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZTRMV( 'U', 'N', '/', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZTRMV( 'U', 'N', 'N', -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRMV( 'U', 'N', 'N', 2, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZTRMV( 'U', 'N', 'N', 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 70 INFOT = 1 CALL ZTBMV( '/', 'N', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZTBMV( 'U', '/', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZTBMV( 'U', 'N', '/', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZTBMV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTBMV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZTBMV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTBMV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 80 INFOT = 1 CALL ZTPMV( '/', 'N', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZTPMV( 'U', '/', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZTPMV( 'U', 'N', '/', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZTPMV( 'U', 'N', 'N', -1, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZTPMV( 'U', 'N', 'N', 0, A, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 90 INFOT = 1 CALL ZTRSV( '/', 'N', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZTRSV( 'U', '/', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZTRSV( 'U', 'N', '/', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZTRSV( 'U', 'N', 'N', -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL ZTRSV( 'U', 'N', 'N', 2, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL ZTRSV( 'U', 'N', 'N', 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 100 INFOT = 1 CALL ZTBSV( '/', 'N', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZTBSV( 'U', '/', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZTBSV( 'U', 'N', '/', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZTBSV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZTBSV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZTBSV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZTBSV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 110 INFOT = 1 CALL ZTPSV( '/', 'N', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZTPSV( 'U', '/', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL ZTPSV( 'U', 'N', '/', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL ZTPSV( 'U', 'N', 'N', -1, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZTPSV( 'U', 'N', 'N', 0, A, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 120 INFOT = 1 CALL ZGERC( -1, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZGERC( 0, -1, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZGERC( 0, 0, ALPHA, X, 0, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZGERC( 0, 0, ALPHA, X, 1, Y, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZGERC( 2, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 130 INFOT = 1 CALL ZGERU( -1, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZGERU( 0, -1, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZGERU( 0, 0, ALPHA, X, 0, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZGERU( 0, 0, ALPHA, X, 1, Y, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZGERU( 2, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 140 INFOT = 1 CALL ZHER( '/', 0, RALPHA, X, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHER( 'U', -1, RALPHA, X, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZHER( 'U', 0, RALPHA, X, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHER( 'U', 2, RALPHA, X, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 150 INFOT = 1 CALL ZHPR( '/', 0, RALPHA, X, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHPR( 'U', -1, RALPHA, X, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZHPR( 'U', 0, RALPHA, X, 0, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 160 INFOT = 1 CALL ZHER2( '/', 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHER2( 'U', -1, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZHER2( 'U', 0, ALPHA, X, 0, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHER2( 'U', 0, ALPHA, X, 1, Y, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL ZHER2( 'U', 2, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 170 INFOT = 1 CALL ZHPR2( '/', 0, ALPHA, X, 1, Y, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL ZHPR2( 'U', -1, ALPHA, X, 1, Y, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL ZHPR2( 'U', 0, ALPHA, X, 0, Y, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL ZHPR2( 'U', 0, ALPHA, X, 1, Y, 0, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * 180 IF( OK )THEN WRITE( NOUT, FMT = 9999 )SRNAMT ELSE WRITE( NOUT, FMT = 9998 )SRNAMT END IF RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' ) 9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****', $ '**' ) * * End of ZCHKE. * END SUBROUTINE ZMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, KL, $ KU, RESET, TRANSL ) * * Generates values for an M by N matrix A within the bandwidth * defined by KL and KU. * Stores the values in the array AA in the data structure required * by the routine, with unwanted elements set to rogue value. * * TYPE is 'GE', 'GB', 'HE', 'HB', 'HP', 'TR', 'TB' OR 'TP'. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ), $ ONE = ( 1.0D0, 0.0D0 ) ) COMPLEX*16 ROGUE PARAMETER ( ROGUE = ( -1.0D10, 1.0D10 ) ) DOUBLE PRECISION RZERO PARAMETER ( RZERO = 0.0D0 ) DOUBLE PRECISION RROGUE PARAMETER ( RROGUE = -1.0D10 ) * .. Scalar Arguments .. COMPLEX*16 TRANSL INTEGER KL, KU, LDA, M, N, NMAX LOGICAL RESET CHARACTER*1 DIAG, UPLO CHARACTER*2 TYPE * .. Array Arguments .. COMPLEX*16 A( NMAX, * ), AA( * ) * .. Local Scalars .. INTEGER I, I1, I2, I3, IBEG, IEND, IOFF, J, JJ, KK LOGICAL GEN, LOWER, SYM, TRI, UNIT, UPPER * .. External Functions .. COMPLEX*16 ZBEG EXTERNAL ZBEG * .. Intrinsic Functions .. INTRINSIC DBLE, DCMPLX, DCONJG, MAX, MIN * .. Executable Statements .. GEN = TYPE( 1: 1 ).EQ.'G' SYM = TYPE( 1: 1 ).EQ.'H' TRI = TYPE( 1: 1 ).EQ.'T' UPPER = ( SYM.OR.TRI ).AND.UPLO.EQ.'U' LOWER = ( SYM.OR.TRI ).AND.UPLO.EQ.'L' UNIT = TRI.AND.DIAG.EQ.'U' * * Generate data in array A. * DO 20 J = 1, N DO 10 I = 1, M IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) ) $ THEN IF( ( I.LE.J.AND.J - I.LE.KU ).OR. $ ( I.GE.J.AND.I - J.LE.KL ) )THEN A( I, J ) = ZBEG( RESET ) + TRANSL ELSE A( I, J ) = ZERO END IF IF( I.NE.J )THEN IF( SYM )THEN A( J, I ) = DCONJG( A( I, J ) ) ELSE IF( TRI )THEN A( J, I ) = ZERO END IF END IF END IF 10 CONTINUE IF( SYM ) $ A( J, J ) = DCMPLX( DBLE( A( J, J ) ), RZERO ) IF( TRI ) $ A( J, J ) = A( J, J ) + ONE IF( UNIT ) $ A( J, J ) = ONE 20 CONTINUE * * Store elements in array AS in data structure required by routine. * IF( TYPE.EQ.'GE' )THEN DO 50 J = 1, N DO 30 I = 1, M AA( I + ( J - 1 )*LDA ) = A( I, J ) 30 CONTINUE DO 40 I = M + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 40 CONTINUE 50 CONTINUE ELSE IF( TYPE.EQ.'GB' )THEN DO 90 J = 1, N DO 60 I1 = 1, KU + 1 - J AA( I1 + ( J - 1 )*LDA ) = ROGUE 60 CONTINUE DO 70 I2 = I1, MIN( KL + KU + 1, KU + 1 + M - J ) AA( I2 + ( J - 1 )*LDA ) = A( I2 + J - KU - 1, J ) 70 CONTINUE DO 80 I3 = I2, LDA AA( I3 + ( J - 1 )*LDA ) = ROGUE 80 CONTINUE 90 CONTINUE ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'TR' )THEN DO 130 J = 1, N IF( UPPER )THEN IBEG = 1 IF( UNIT )THEN IEND = J - 1 ELSE IEND = J END IF ELSE IF( UNIT )THEN IBEG = J + 1 ELSE IBEG = J END IF IEND = N END IF DO 100 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 100 CONTINUE DO 110 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I, J ) 110 CONTINUE DO 120 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 120 CONTINUE IF( SYM )THEN JJ = J + ( J - 1 )*LDA AA( JJ ) = DCMPLX( DBLE( AA( JJ ) ), RROGUE ) END IF 130 CONTINUE ELSE IF( TYPE.EQ.'HB'.OR.TYPE.EQ.'TB' )THEN DO 170 J = 1, N IF( UPPER )THEN KK = KL + 1 IBEG = MAX( 1, KL + 2 - J ) IF( UNIT )THEN IEND = KL ELSE IEND = KL + 1 END IF ELSE KK = 1 IF( UNIT )THEN IBEG = 2 ELSE IBEG = 1 END IF IEND = MIN( KL + 1, 1 + M - J ) END IF DO 140 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 140 CONTINUE DO 150 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I + J - KK, J ) 150 CONTINUE DO 160 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 160 CONTINUE IF( SYM )THEN JJ = KK + ( J - 1 )*LDA AA( JJ ) = DCMPLX( DBLE( AA( JJ ) ), RROGUE ) END IF 170 CONTINUE ELSE IF( TYPE.EQ.'HP'.OR.TYPE.EQ.'TP' )THEN IOFF = 0 DO 190 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 180 I = IBEG, IEND IOFF = IOFF + 1 AA( IOFF ) = A( I, J ) IF( I.EQ.J )THEN IF( UNIT ) $ AA( IOFF ) = ROGUE IF( SYM ) $ AA( IOFF ) = DCMPLX( DBLE( AA( IOFF ) ), RROGUE ) END IF 180 CONTINUE 190 CONTINUE END IF RETURN * * End of ZMAKE. * END SUBROUTINE ZMVCH( TRANS, M, N, ALPHA, A, NMAX, X, INCX, BETA, Y, $ INCY, YT, G, YY, EPS, ERR, FATAL, NOUT, MV ) * * Checks the results of the computational tests. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX*16 ZERO PARAMETER ( ZERO = ( 0.0D0, 0.0D0 ) ) DOUBLE PRECISION RZERO, RONE PARAMETER ( RZERO = 0.0D0, RONE = 1.0D0 ) * .. Scalar Arguments .. COMPLEX*16 ALPHA, BETA DOUBLE PRECISION EPS, ERR INTEGER INCX, INCY, M, N, NMAX, NOUT LOGICAL FATAL, MV CHARACTER*1 TRANS * .. Array Arguments .. COMPLEX*16 A( NMAX, * ), X( * ), Y( * ), YT( * ), YY( * ) DOUBLE PRECISION G( * ) * .. Local Scalars .. COMPLEX*16 C DOUBLE PRECISION ERRI INTEGER I, INCXL, INCYL, IY, J, JX, KX, KY, ML, NL LOGICAL CTRAN, TRAN * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, SQRT * .. Statement Functions .. DOUBLE PRECISION ABS1 * .. Statement Function definitions .. ABS1( C ) = ABS( DBLE( C ) ) + ABS( DIMAG( C ) ) * .. Executable Statements .. TRAN = TRANS.EQ.'T' CTRAN = TRANS.EQ.'C' IF( TRAN.OR.CTRAN )THEN ML = N NL = M ELSE ML = M NL = N END IF IF( INCX.LT.0 )THEN KX = NL INCXL = -1 ELSE KX = 1 INCXL = 1 END IF IF( INCY.LT.0 )THEN KY = ML INCYL = -1 ELSE KY = 1 INCYL = 1 END IF * * Compute expected result in YT using data in A, X and Y. * Compute gauges in G. * IY = KY DO 40 I = 1, ML YT( IY ) = ZERO G( IY ) = RZERO JX = KX IF( TRAN )THEN DO 10 J = 1, NL YT( IY ) = YT( IY ) + A( J, I )*X( JX ) G( IY ) = G( IY ) + ABS1( A( J, I ) )*ABS1( X( JX ) ) JX = JX + INCXL 10 CONTINUE ELSE IF( CTRAN )THEN DO 20 J = 1, NL YT( IY ) = YT( IY ) + DCONJG( A( J, I ) )*X( JX ) G( IY ) = G( IY ) + ABS1( A( J, I ) )*ABS1( X( JX ) ) JX = JX + INCXL 20 CONTINUE ELSE DO 30 J = 1, NL YT( IY ) = YT( IY ) + A( I, J )*X( JX ) G( IY ) = G( IY ) + ABS1( A( I, J ) )*ABS1( X( JX ) ) JX = JX + INCXL 30 CONTINUE END IF YT( IY ) = ALPHA*YT( IY ) + BETA*Y( IY ) G( IY ) = ABS1( ALPHA )*G( IY ) + ABS1( BETA )*ABS1( Y( IY ) ) IY = IY + INCYL 40 CONTINUE * * Compute the error ratio for this result. * ERR = ZERO DO 50 I = 1, ML ERRI = ABS( YT( I ) - YY( 1 + ( I - 1 )*ABS( INCY ) ) )/EPS IF( G( I ).NE.RZERO ) $ ERRI = ERRI/G( I ) ERR = MAX( ERR, ERRI ) IF( ERR*SQRT( EPS ).GE.RONE ) $ GO TO 60 50 CONTINUE * If the loop completes, all results are at least half accurate. GO TO 80 * * Report fatal error. * 60 FATAL = .TRUE. WRITE( NOUT, FMT = 9999 ) DO 70 I = 1, ML IF( MV )THEN WRITE( NOUT, FMT = 9998 )I, YT( I ), $ YY( 1 + ( I - 1 )*ABS( INCY ) ) ELSE WRITE( NOUT, FMT = 9998 )I, $ YY( 1 + ( I - 1 )*ABS( INCY ) ), YT( I ) END IF 70 CONTINUE * 80 CONTINUE RETURN * 9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL', $ 'F ACCURATE *******', /' EXPECTED RE', $ 'SULT COMPUTED RESULT' ) 9998 FORMAT( 1X, I7, 2( ' (', G15.6, ',', G15.6, ')' ) ) * * End of ZMVCH. * END LOGICAL FUNCTION LZE( RI, RJ, LR ) * * Tests if two arrays are identical. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER LR * .. Array Arguments .. COMPLEX*16 RI( * ), RJ( * ) * .. Local Scalars .. INTEGER I * .. Executable Statements .. DO 10 I = 1, LR IF( RI( I ).NE.RJ( I ) ) $ GO TO 20 10 CONTINUE LZE = .TRUE. GO TO 30 20 CONTINUE LZE = .FALSE. 30 RETURN * * End of LZE. * END LOGICAL FUNCTION LZERES( TYPE, UPLO, M, N, AA, AS, LDA ) * * Tests if selected elements in two arrays are equal. * * TYPE is 'GE', 'HE' or 'HP'. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER LDA, M, N CHARACTER*1 UPLO CHARACTER*2 TYPE * .. Array Arguments .. COMPLEX*16 AA( LDA, * ), AS( LDA, * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J LOGICAL UPPER * .. Executable Statements .. UPPER = UPLO.EQ.'U' IF( TYPE.EQ.'GE' )THEN DO 20 J = 1, N DO 10 I = M + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 10 CONTINUE 20 CONTINUE ELSE IF( TYPE.EQ.'HE' )THEN DO 50 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 30 I = 1, IBEG - 1 IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 30 CONTINUE DO 40 I = IEND + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 40 CONTINUE 50 CONTINUE END IF * 60 CONTINUE LZERES = .TRUE. GO TO 80 70 CONTINUE LZERES = .FALSE. 80 RETURN * * End of LZERES. * END COMPLEX*16 FUNCTION ZBEG( RESET ) * * Generates complex numbers as pairs of random numbers uniformly * distributed between -0.5 and 0.5. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. LOGICAL RESET * .. Local Scalars .. INTEGER I, IC, J, MI, MJ * .. Save statement .. SAVE I, IC, J, MI, MJ * .. Intrinsic Functions .. INTRINSIC DCMPLX * .. Executable Statements .. IF( RESET )THEN * Initialize local variables. MI = 891 MJ = 457 I = 7 J = 7 IC = 0 RESET = .FALSE. END IF * * The sequence of values of I or J is bounded between 1 and 999. * If initial I or J = 1,2,3,6,7 or 9, the period will be 50. * If initial I or J = 4 or 8, the period will be 25. * If initial I or J = 5, the period will be 10. * IC is used to break up the period by skipping 1 value of I or J * in 6. * IC = IC + 1 10 I = I*MI J = J*MJ I = I - 1000*( I/1000 ) J = J - 1000*( J/1000 ) IF( IC.GE.5 )THEN IC = 0 GO TO 10 END IF ZBEG = DCMPLX( ( I - 500 )/1001.0D0, ( J - 500 )/1001.0D0 ) RETURN * * End of ZBEG. * END DOUBLE PRECISION FUNCTION DDIFF( X, Y ) * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * * .. Scalar Arguments .. DOUBLE PRECISION X, Y * .. Executable Statements .. DDIFF = X - Y RETURN * * End of DDIFF. * END SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * * Tests whether XERBLA has detected an error when it should. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Executable Statements .. IF( .NOT.LERR )THEN WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT OK = .FALSE. END IF LERR = .FALSE. RETURN * 9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D', $ 'ETECTED BY ', A6, ' *****' ) * * End of CHKXER. * END SUBROUTINE XERBLA( SRNAME, INFO ) * * This is a special version of XERBLA to be used only as part of * the test program for testing error exits from the Level 2 BLAS * routines. * * XERBLA is an error handler for the Level 2 BLAS routines. * * It is called by the Level 2 BLAS routines if an input parameter is * invalid. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER INFO CHARACTER*6 SRNAME * .. Scalars in Common .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUT, OK, LERR COMMON /SRNAMC/SRNAMT * .. Executable Statements .. LERR = .TRUE. IF( INFO.NE.INFOT )THEN IF( INFOT.NE.0 )THEN WRITE( NOUT, FMT = 9999 )INFO, INFOT ELSE WRITE( NOUT, FMT = 9997 )INFO END IF OK = .FALSE. END IF IF( SRNAME.NE.SRNAMT )THEN WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT OK = .FALSE. END IF RETURN * 9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD', $ ' OF ', I2, ' *******' ) 9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE', $ 'AD OF ', A6, ' *******' ) 9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, $ ' *******' ) * * End of XERBLA * END blas-1.2.orig/test/sblat2 0000644 0001750 0001750 00000331323 10735444622 016223 0 ustar sylvestre sylvestre PROGRAM SBLAT2 * * Test program for the REAL Level 2 Blas. * * The program must be driven by a short data file. The first 18 records * of the file are read using list-directed input, the last 16 records * are read using the format ( A6, L2 ). An annotated example of a data * file can be obtained by deleting the first 3 characters from the * following 34 lines: * 'SBLAT2.SUMM' NAME OF SUMMARY OUTPUT FILE * 6 UNIT NUMBER OF SUMMARY FILE * 'SBLAT2.SNAP' NAME OF SNAPSHOT OUTPUT FILE * -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) * F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. * F LOGICAL FLAG, T TO STOP ON FAILURES. * T LOGICAL FLAG, T TO TEST ERROR EXITS. * 16.0 THRESHOLD VALUE OF TEST RATIO * 6 NUMBER OF VALUES OF N * 0 1 2 3 5 9 VALUES OF N * 4 NUMBER OF VALUES OF K * 0 1 2 4 VALUES OF K * 4 NUMBER OF VALUES OF INCX AND INCY * 1 2 -1 -2 VALUES OF INCX AND INCY * 3 NUMBER OF VALUES OF ALPHA * 0.0 1.0 0.7 VALUES OF ALPHA * 3 NUMBER OF VALUES OF BETA * 0.0 1.0 0.9 VALUES OF BETA * SGEMV T PUT F FOR NO TEST. SAME COLUMNS. * SGBMV T PUT F FOR NO TEST. SAME COLUMNS. * SSYMV T PUT F FOR NO TEST. SAME COLUMNS. * SSBMV T PUT F FOR NO TEST. SAME COLUMNS. * SSPMV T PUT F FOR NO TEST. SAME COLUMNS. * STRMV T PUT F FOR NO TEST. SAME COLUMNS. * STBMV T PUT F FOR NO TEST. SAME COLUMNS. * STPMV T PUT F FOR NO TEST. SAME COLUMNS. * STRSV T PUT F FOR NO TEST. SAME COLUMNS. * STBSV T PUT F FOR NO TEST. SAME COLUMNS. * STPSV T PUT F FOR NO TEST. SAME COLUMNS. * SGER T PUT F FOR NO TEST. SAME COLUMNS. * SSYR T PUT F FOR NO TEST. SAME COLUMNS. * SSPR T PUT F FOR NO TEST. SAME COLUMNS. * SSYR2 T PUT F FOR NO TEST. SAME COLUMNS. * SSPR2 T PUT F FOR NO TEST. SAME COLUMNS. * * See: * * Dongarra J. J., Du Croz J. J., Hammarling S. and Hanson R. J.. * An extended set of Fortran Basic Linear Algebra Subprograms. * * Technical Memoranda Nos. 41 (revision 3) and 81, Mathematics * and Computer Science Division, Argonne National Laboratory, * 9700 South Cass Avenue, Argonne, Illinois 60439, US. * * Or * * NAG Technical Reports TR3/87 and TR4/87, Numerical Algorithms * Group Ltd., NAG Central Office, 256 Banbury Road, Oxford * OX2 7DE, UK, and Numerical Algorithms Group Inc., 1101 31st * Street, Suite 100, Downers Grove, Illinois 60515-1263, USA. * * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. INTEGER NIN PARAMETER ( NIN = 5 ) INTEGER NSUBS PARAMETER ( NSUBS = 16 ) REAL ZERO, HALF, ONE PARAMETER ( ZERO = 0.0, HALF = 0.5, ONE = 1.0 ) INTEGER NMAX, INCMAX PARAMETER ( NMAX = 65, INCMAX = 2 ) INTEGER NINMAX, NIDMAX, NKBMAX, NALMAX, NBEMAX PARAMETER ( NINMAX = 7, NIDMAX = 9, NKBMAX = 7, $ NALMAX = 7, NBEMAX = 7 ) * .. Local Scalars .. REAL EPS, ERR, THRESH INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NINC, NKB, $ NOUT, NTRA LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE, $ TSTERR CHARACTER*1 TRANS CHARACTER*6 SNAMET CHARACTER*32 SNAPS, SUMMRY * .. Local Arrays .. REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), $ ALF( NALMAX ), AS( NMAX*NMAX ), BET( NBEMAX ), $ G( NMAX ), X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( 2*NMAX ) INTEGER IDIM( NIDMAX ), INC( NINMAX ), KB( NKBMAX ) LOGICAL LTEST( NSUBS ) CHARACTER*6 SNAMES( NSUBS ) * .. External Functions .. REAL SDIFF LOGICAL LSE EXTERNAL SDIFF, LSE * .. External Subroutines .. EXTERNAL SCHK1, SCHK2, SCHK3, SCHK4, SCHK5, SCHK6, $ SCHKE, SMVCH * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR COMMON /SRNAMC/SRNAMT * .. Data statements .. DATA SNAMES/'SGEMV ', 'SGBMV ', 'SSYMV ', 'SSBMV ', $ 'SSPMV ', 'STRMV ', 'STBMV ', 'STPMV ', $ 'STRSV ', 'STBSV ', 'STPSV ', 'SGER ', $ 'SSYR ', 'SSPR ', 'SSYR2 ', 'SSPR2 '/ * .. Executable Statements .. * * Read name and unit number for summary output file and open file. * READ( NIN, FMT = * )SUMMRY READ( NIN, FMT = * )NOUT OPEN( NOUT, FILE = SUMMRY, STATUS = 'NEW' ) NOUTC = NOUT * * Read name and unit number for snapshot output file and open file. * READ( NIN, FMT = * )SNAPS READ( NIN, FMT = * )NTRA TRACE = NTRA.GE.0 IF( TRACE )THEN OPEN( NTRA, FILE = SNAPS, STATUS = 'NEW' ) END IF * Read the flag that directs rewinding of the snapshot file. READ( NIN, FMT = * )REWI REWI = REWI.AND.TRACE * Read the flag that directs stopping on any failure. READ( NIN, FMT = * )SFATAL * Read the flag that indicates whether error exits are to be tested. READ( NIN, FMT = * )TSTERR * Read the threshold value of the test ratio READ( NIN, FMT = * )THRESH * * Read and check the parameter values for the tests. * * Values of N READ( NIN, FMT = * )NIDIM IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN WRITE( NOUT, FMT = 9997 )'N', NIDMAX GO TO 230 END IF READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM ) DO 10 I = 1, NIDIM IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN WRITE( NOUT, FMT = 9996 )NMAX GO TO 230 END IF 10 CONTINUE * Values of K READ( NIN, FMT = * )NKB IF( NKB.LT.1.OR.NKB.GT.NKBMAX )THEN WRITE( NOUT, FMT = 9997 )'K', NKBMAX GO TO 230 END IF READ( NIN, FMT = * )( KB( I ), I = 1, NKB ) DO 20 I = 1, NKB IF( KB( I ).LT.0 )THEN WRITE( NOUT, FMT = 9995 ) GO TO 230 END IF 20 CONTINUE * Values of INCX and INCY READ( NIN, FMT = * )NINC IF( NINC.LT.1.OR.NINC.GT.NINMAX )THEN WRITE( NOUT, FMT = 9997 )'INCX AND INCY', NINMAX GO TO 230 END IF READ( NIN, FMT = * )( INC( I ), I = 1, NINC ) DO 30 I = 1, NINC IF( INC( I ).EQ.0.OR.ABS( INC( I ) ).GT.INCMAX )THEN WRITE( NOUT, FMT = 9994 )INCMAX GO TO 230 END IF 30 CONTINUE * Values of ALPHA READ( NIN, FMT = * )NALF IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX GO TO 230 END IF READ( NIN, FMT = * )( ALF( I ), I = 1, NALF ) * Values of BETA READ( NIN, FMT = * )NBET IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX GO TO 230 END IF READ( NIN, FMT = * )( BET( I ), I = 1, NBET ) * * Report values of parameters. * WRITE( NOUT, FMT = 9993 ) WRITE( NOUT, FMT = 9992 )( IDIM( I ), I = 1, NIDIM ) WRITE( NOUT, FMT = 9991 )( KB( I ), I = 1, NKB ) WRITE( NOUT, FMT = 9990 )( INC( I ), I = 1, NINC ) WRITE( NOUT, FMT = 9989 )( ALF( I ), I = 1, NALF ) WRITE( NOUT, FMT = 9988 )( BET( I ), I = 1, NBET ) IF( .NOT.TSTERR )THEN WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9980 ) END IF WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9999 )THRESH WRITE( NOUT, FMT = * ) * * Read names of subroutines and flags which indicate * whether they are to be tested. * DO 40 I = 1, NSUBS LTEST( I ) = .FALSE. 40 CONTINUE 50 READ( NIN, FMT = 9984, END = 80 )SNAMET, LTESTT DO 60 I = 1, NSUBS IF( SNAMET.EQ.SNAMES( I ) ) $ GO TO 70 60 CONTINUE WRITE( NOUT, FMT = 9986 )SNAMET STOP 70 LTEST( I ) = LTESTT GO TO 50 * 80 CONTINUE CLOSE ( NIN ) * * Compute EPS (the machine precision). * EPS = ONE 90 CONTINUE IF( SDIFF( ONE + EPS, ONE ).EQ.ZERO ) $ GO TO 100 EPS = HALF*EPS GO TO 90 100 CONTINUE EPS = EPS + EPS WRITE( NOUT, FMT = 9998 )EPS * * Check the reliability of SMVCH using exact data. * N = MIN( 32, NMAX ) DO 120 J = 1, N DO 110 I = 1, N A( I, J ) = MAX( I - J + 1, 0 ) 110 CONTINUE X( J ) = J Y( J ) = ZERO 120 CONTINUE DO 130 J = 1, N YY( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3 130 CONTINUE * YY holds the exact result. On exit from SMVCH YT holds * the result computed by SMVCH. TRANS = 'N' CALL SMVCH( TRANS, N, N, ONE, A, NMAX, X, 1, ZERO, Y, 1, YT, G, $ YY, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LSE( YY, YT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR STOP END IF TRANS = 'T' CALL SMVCH( TRANS, N, N, ONE, A, NMAX, X, -1, ZERO, Y, -1, YT, G, $ YY, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LSE( YY, YT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR STOP END IF * * Test each subroutine in turn. * DO 210 ISNUM = 1, NSUBS WRITE( NOUT, FMT = * ) IF( .NOT.LTEST( ISNUM ) )THEN * Subprogram is not to be tested. WRITE( NOUT, FMT = 9983 )SNAMES( ISNUM ) ELSE SRNAMT = SNAMES( ISNUM ) * Test error exits. IF( TSTERR )THEN CALL SCHKE( ISNUM, SNAMES( ISNUM ), NOUT ) WRITE( NOUT, FMT = * ) END IF * Test computations. INFOT = 0 OK = .TRUE. FATAL = .FALSE. GO TO ( 140, 140, 150, 150, 150, 160, 160, $ 160, 160, 160, 160, 170, 180, 180, $ 190, 190 )ISNUM * Test SGEMV, 01, and SGBMV, 02. 140 CALL SCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, $ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS, $ X, XX, XS, Y, YY, YS, YT, G ) GO TO 200 * Test SSYMV, 03, SSBMV, 04, and SSPMV, 05. 150 CALL SCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, $ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS, $ X, XX, XS, Y, YY, YS, YT, G ) GO TO 200 * Test STRMV, 06, STBMV, 07, STPMV, 08, * STRSV, 09, STBSV, 10, and STPSV, 11. 160 CALL SCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NKB, KB, NINC, INC, $ NMAX, INCMAX, A, AA, AS, Y, YY, YS, YT, G, Z ) GO TO 200 * Test SGER, 12. 170 CALL SCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, $ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, $ YT, G, Z ) GO TO 200 * Test SSYR, 13, and SSPR, 14. 180 CALL SCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, $ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, $ YT, G, Z ) GO TO 200 * Test SSYR2, 15, and SSPR2, 16. 190 CALL SCHK6( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, $ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, $ YT, G, Z ) * 200 IF( FATAL.AND.SFATAL ) $ GO TO 220 END IF 210 CONTINUE WRITE( NOUT, FMT = 9982 ) GO TO 240 * 220 CONTINUE WRITE( NOUT, FMT = 9981 ) GO TO 240 * 230 CONTINUE WRITE( NOUT, FMT = 9987 ) * 240 CONTINUE IF( TRACE ) $ CLOSE ( NTRA ) CLOSE ( NOUT ) STOP * 9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES', $ 'S THAN', F8.2 ) 9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, E9.1 ) 9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ', $ 'THAN ', I2 ) 9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 ) 9995 FORMAT( ' VALUE OF K IS LESS THAN 0' ) 9994 FORMAT( ' ABSOLUTE VALUE OF INCX OR INCY IS 0 OR GREATER THAN ', $ I2 ) 9993 FORMAT( ' TESTS OF THE REAL LEVEL 2 BLAS', //' THE F', $ 'OLLOWING PARAMETER VALUES WILL BE USED:' ) 9992 FORMAT( ' FOR N ', 9I6 ) 9991 FORMAT( ' FOR K ', 7I6 ) 9990 FORMAT( ' FOR INCX AND INCY ', 7I6 ) 9989 FORMAT( ' FOR ALPHA ', 7F6.1 ) 9988 FORMAT( ' FOR BETA ', 7F6.1 ) 9987 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM', $ /' ******* TESTS ABANDONED *******' ) 9986 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T', $ 'ESTS ABANDONED *******' ) 9985 FORMAT( ' ERROR IN SMVCH - IN-LINE DOT PRODUCTS ARE BEING EVALU', $ 'ATED WRONGLY.', /' SMVCH WAS CALLED WITH TRANS = ', A1, $ ' AND RETURNED SAME = ', L1, ' AND ERR = ', F12.3, '.', / $ ' THIS MAY BE DUE TO FAULTS IN THE ARITHMETIC OR THE COMPILER.' $ , /' ******* TESTS ABANDONED *******' ) 9984 FORMAT( A6, L2 ) 9983 FORMAT( 1X, A6, ' WAS NOT TESTED' ) 9982 FORMAT( /' END OF TESTS' ) 9981 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' ) 9980 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' ) * * End of SBLAT2. * END SUBROUTINE SCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET, $ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX, $ XS, Y, YY, YS, YT, G ) * * Tests SGEMV and SGBMV. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. REAL ZERO, HALF PARAMETER ( ZERO = 0.0, HALF = 0.5 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX, $ NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), BET( NBET ), G( NMAX ), $ X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ) INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB ) * .. Local Scalars .. REAL ALPHA, ALS, BETA, BLS, ERR, ERRMAX, TRANSL INTEGER I, IA, IB, IC, IKU, IM, IN, INCX, INCXS, INCY, $ INCYS, IX, IY, KL, KLS, KU, KUS, LAA, LDA, $ LDAS, LX, LY, M, ML, MS, N, NARGS, NC, ND, NK, $ NL, NS LOGICAL BANDED, FULL, NULL, RESET, SAME, TRAN CHARACTER*1 TRANS, TRANSS CHARACTER*3 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SGBMV, SGEMV, SMAKE, SMVCH * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'NTC'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'E' BANDED = SNAME( 3: 3 ).EQ.'B' * Define the number of arguments. IF( FULL )THEN NARGS = 11 ELSE IF( BANDED )THEN NARGS = 13 END IF * NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 120 IN = 1, NIDIM N = IDIM( IN ) ND = N/2 + 1 * DO 110 IM = 1, 2 IF( IM.EQ.1 ) $ M = MAX( N - ND, 0 ) IF( IM.EQ.2 ) $ M = MIN( N + ND, NMAX ) * IF( BANDED )THEN NK = NKB ELSE NK = 1 END IF DO 100 IKU = 1, NK IF( BANDED )THEN KU = KB( IKU ) KL = MAX( KU - 1, 0 ) ELSE KU = N - 1 KL = M - 1 END IF * Set LDA to 1 more than minimum value if room. IF( BANDED )THEN LDA = KL + KU + 1 ELSE LDA = M END IF IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 LAA = LDA*N NULL = N.LE.0.OR.M.LE.0 * * Generate the matrix A. * TRANSL = ZERO CALL SMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX, AA, $ LDA, KL, KU, RESET, TRANSL ) * DO 90 IC = 1, 3 TRANS = ICH( IC: IC ) TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C' * IF( TRAN )THEN ML = N NL = M ELSE ML = M NL = N END IF * DO 80 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*NL * * Generate the vector X. * TRANSL = HALF CALL SMAKE( 'GE', ' ', ' ', 1, NL, X, 1, XX, $ ABS( INCX ), 0, NL - 1, RESET, TRANSL ) IF( NL.GT.1 )THEN X( NL/2 ) = ZERO XX( 1 + ABS( INCX )*( NL/2 - 1 ) ) = ZERO END IF * DO 70 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*ML * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the vector Y. * TRANSL = ZERO CALL SMAKE( 'GE', ' ', ' ', 1, ML, Y, 1, $ YY, ABS( INCY ), 0, ML - 1, $ RESET, TRANSL ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * TRANSS = TRANS MS = M NS = N KLS = KL KUS = KU ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX BLS = BETA DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ TRANS, M, N, ALPHA, LDA, INCX, BETA, $ INCY IF( REWI ) $ REWIND NTRA CALL SGEMV( TRANS, M, N, ALPHA, AA, $ LDA, XX, INCX, BETA, YY, $ INCY ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ TRANS, M, N, KL, KU, ALPHA, LDA, $ INCX, BETA, INCY IF( REWI ) $ REWIND NTRA CALL SGBMV( TRANS, M, N, KL, KU, ALPHA, $ AA, LDA, XX, INCX, BETA, $ YY, INCY ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 130 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = TRANS.EQ.TRANSS ISAME( 2 ) = MS.EQ.M ISAME( 3 ) = NS.EQ.N IF( FULL )THEN ISAME( 4 ) = ALS.EQ.ALPHA ISAME( 5 ) = LSE( AS, AA, LAA ) ISAME( 6 ) = LDAS.EQ.LDA ISAME( 7 ) = LSE( XS, XX, LX ) ISAME( 8 ) = INCXS.EQ.INCX ISAME( 9 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 10 ) = LSE( YS, YY, LY ) ELSE ISAME( 10 ) = LSERES( 'GE', ' ', 1, $ ML, YS, YY, $ ABS( INCY ) ) END IF ISAME( 11 ) = INCYS.EQ.INCY ELSE IF( BANDED )THEN ISAME( 4 ) = KLS.EQ.KL ISAME( 5 ) = KUS.EQ.KU ISAME( 6 ) = ALS.EQ.ALPHA ISAME( 7 ) = LSE( AS, AA, LAA ) ISAME( 8 ) = LDAS.EQ.LDA ISAME( 9 ) = LSE( XS, XX, LX ) ISAME( 10 ) = INCXS.EQ.INCX ISAME( 11 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 12 ) = LSE( YS, YY, LY ) ELSE ISAME( 12 ) = LSERES( 'GE', ' ', 1, $ ML, YS, YY, $ ABS( INCY ) ) END IF ISAME( 13 ) = INCYS.EQ.INCY END IF * * If data was incorrectly changed, report * and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 130 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL SMVCH( TRANS, M, N, ALPHA, A, $ NMAX, X, INCX, BETA, Y, $ INCY, YT, G, YY, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 130 ELSE * Avoid repeating tests with M.le.0 or * N.le.0. GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 140 * 130 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, TRANS, M, N, ALPHA, LDA, $ INCX, BETA, INCY ELSE IF( BANDED )THEN WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANS, M, N, KL, KU, $ ALPHA, LDA, INCX, BETA, INCY END IF * 140 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 4( I3, ',' ), F4.1, $ ', A,', I3, ', X,', I2, ',', F4.1, ', Y,', I2, ') .' ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), F4.1, $ ', A,', I3, ', X,', I2, ',', F4.1, ', Y,', I2, $ ') .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK1. * END SUBROUTINE SCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET, $ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX, $ XS, Y, YY, YS, YT, G ) * * Tests SSYMV, SSBMV and SSPMV. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. REAL ZERO, HALF PARAMETER ( ZERO = 0.0, HALF = 0.5 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX, $ NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), BET( NBET ), G( NMAX ), $ X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ) INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB ) * .. Local Scalars .. REAL ALPHA, ALS, BETA, BLS, ERR, ERRMAX, TRANSL INTEGER I, IA, IB, IC, IK, IN, INCX, INCXS, INCY, $ INCYS, IX, IY, K, KS, LAA, LDA, LDAS, LX, LY, $ N, NARGS, NC, NK, NS LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME CHARACTER*1 UPLO, UPLOS CHARACTER*2 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SMAKE, SMVCH, SSBMV, SSPMV, SSYMV * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'UL'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'Y' BANDED = SNAME( 3: 3 ).EQ.'B' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 10 ELSE IF( BANDED )THEN NARGS = 11 ELSE IF( PACKED )THEN NARGS = 9 END IF * NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 110 IN = 1, NIDIM N = IDIM( IN ) * IF( BANDED )THEN NK = NKB ELSE NK = 1 END IF DO 100 IK = 1, NK IF( BANDED )THEN K = KB( IK ) ELSE K = N - 1 END IF * Set LDA to 1 more than minimum value if room. IF( BANDED )THEN LDA = K + 1 ELSE LDA = N END IF IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF NULL = N.LE.0 * DO 90 IC = 1, 2 UPLO = ICH( IC: IC ) * * Generate the matrix A. * TRANSL = ZERO CALL SMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX, AA, $ LDA, K, K, RESET, TRANSL ) * DO 80 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL SMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, $ ABS( INCX ), 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * DO 70 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*N * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the vector Y. * TRANSL = ZERO CALL SMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY, $ ABS( INCY ), 0, N - 1, RESET, $ TRANSL ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * UPLOS = UPLO NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX BLS = BETA DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, $ UPLO, N, ALPHA, LDA, INCX, BETA, INCY IF( REWI ) $ REWIND NTRA CALL SSYMV( UPLO, N, ALPHA, AA, LDA, XX, $ INCX, BETA, YY, INCY ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ UPLO, N, K, ALPHA, LDA, INCX, BETA, $ INCY IF( REWI ) $ REWIND NTRA CALL SSBMV( UPLO, N, K, ALPHA, AA, LDA, $ XX, INCX, BETA, YY, INCY ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ UPLO, N, ALPHA, INCX, BETA, INCY IF( REWI ) $ REWIND NTRA CALL SSPMV( UPLO, N, ALPHA, AA, XX, INCX, $ BETA, YY, INCY ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = NS.EQ.N IF( FULL )THEN ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LSE( AS, AA, LAA ) ISAME( 5 ) = LDAS.EQ.LDA ISAME( 6 ) = LSE( XS, XX, LX ) ISAME( 7 ) = INCXS.EQ.INCX ISAME( 8 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 9 ) = LSE( YS, YY, LY ) ELSE ISAME( 9 ) = LSERES( 'GE', ' ', 1, N, $ YS, YY, ABS( INCY ) ) END IF ISAME( 10 ) = INCYS.EQ.INCY ELSE IF( BANDED )THEN ISAME( 3 ) = KS.EQ.K ISAME( 4 ) = ALS.EQ.ALPHA ISAME( 5 ) = LSE( AS, AA, LAA ) ISAME( 6 ) = LDAS.EQ.LDA ISAME( 7 ) = LSE( XS, XX, LX ) ISAME( 8 ) = INCXS.EQ.INCX ISAME( 9 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 10 ) = LSE( YS, YY, LY ) ELSE ISAME( 10 ) = LSERES( 'GE', ' ', 1, N, $ YS, YY, ABS( INCY ) ) END IF ISAME( 11 ) = INCYS.EQ.INCY ELSE IF( PACKED )THEN ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LSE( AS, AA, LAA ) ISAME( 5 ) = LSE( XS, XX, LX ) ISAME( 6 ) = INCXS.EQ.INCX ISAME( 7 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 8 ) = LSE( YS, YY, LY ) ELSE ISAME( 8 ) = LSERES( 'GE', ' ', 1, N, $ YS, YY, ABS( INCY ) ) END IF ISAME( 9 ) = INCYS.EQ.INCY END IF * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL SMVCH( 'N', N, N, ALPHA, A, NMAX, X, $ INCX, BETA, Y, INCY, YT, G, $ YY, EPS, ERR, FATAL, NOUT, $ .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 120 ELSE * Avoid repeating tests with N.le.0 GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, LDA, INCX, $ BETA, INCY ELSE IF( BANDED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, K, ALPHA, LDA, $ INCX, BETA, INCY ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, N, ALPHA, INCX, $ BETA, INCY END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', AP', $ ', X,', I2, ',', F4.1, ', Y,', I2, ') .' ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), F4.1, $ ', A,', I3, ', X,', I2, ',', F4.1, ', Y,', I2, $ ') .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', A,', $ I3, ', X,', I2, ',', F4.1, ', Y,', I2, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK2. * END SUBROUTINE SCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NKB, KB, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, XT, G, Z ) * * Tests STRMV, STBMV, STPMV, STRSV, STBSV and STPSV. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. REAL ZERO, HALF, ONE PARAMETER ( ZERO = 0.0, HALF = 0.5, ONE = 1.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NIDIM, NINC, NKB, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), $ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ), $ XS( NMAX*INCMAX ), XT( NMAX ), $ XX( NMAX*INCMAX ), Z( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB ) * .. Local Scalars .. REAL ERR, ERRMAX, TRANSL INTEGER I, ICD, ICT, ICU, IK, IN, INCX, INCXS, IX, K, $ KS, LAA, LDA, LDAS, LX, N, NARGS, NC, NK, NS LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME CHARACTER*1 DIAG, DIAGS, TRANS, TRANSS, UPLO, UPLOS CHARACTER*2 ICHD, ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SMAKE, SMVCH, STBMV, STBSV, STPMV, STPSV, $ STRMV, STRSV * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'R' BANDED = SNAME( 3: 3 ).EQ.'B' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 8 ELSE IF( BANDED )THEN NARGS = 9 ELSE IF( PACKED )THEN NARGS = 7 END IF * NC = 0 RESET = .TRUE. ERRMAX = ZERO * Set up zero vector for SMVCH. DO 10 I = 1, NMAX Z( I ) = ZERO 10 CONTINUE * DO 110 IN = 1, NIDIM N = IDIM( IN ) * IF( BANDED )THEN NK = NKB ELSE NK = 1 END IF DO 100 IK = 1, NK IF( BANDED )THEN K = KB( IK ) ELSE K = N - 1 END IF * Set LDA to 1 more than minimum value if room. IF( BANDED )THEN LDA = K + 1 ELSE LDA = N END IF IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF NULL = N.LE.0 * DO 90 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * DO 80 ICT = 1, 3 TRANS = ICHT( ICT: ICT ) * DO 70 ICD = 1, 2 DIAG = ICHD( ICD: ICD ) * * Generate the matrix A. * TRANSL = ZERO CALL SMAKE( SNAME( 2: 3 ), UPLO, DIAG, N, N, A, $ NMAX, AA, LDA, K, K, RESET, TRANSL ) * DO 60 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL SMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, $ ABS( INCX ), 0, N - 1, RESET, $ TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS DIAGS = DIAG NS = N KS = K DO 20 I = 1, LAA AS( I ) = AA( I ) 20 CONTINUE LDAS = LDA DO 30 I = 1, LX XS( I ) = XX( I ) 30 CONTINUE INCXS = INCX * * Call the subroutine. * IF( SNAME( 4: 5 ).EQ.'MV' )THEN IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, $ UPLO, TRANS, DIAG, N, LDA, INCX IF( REWI ) $ REWIND NTRA CALL STRMV( UPLO, TRANS, DIAG, N, AA, LDA, $ XX, INCX ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ UPLO, TRANS, DIAG, N, K, LDA, INCX IF( REWI ) $ REWIND NTRA CALL STBMV( UPLO, TRANS, DIAG, N, K, AA, $ LDA, XX, INCX ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ UPLO, TRANS, DIAG, N, INCX IF( REWI ) $ REWIND NTRA CALL STPMV( UPLO, TRANS, DIAG, N, AA, XX, $ INCX ) END IF ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, $ UPLO, TRANS, DIAG, N, LDA, INCX IF( REWI ) $ REWIND NTRA CALL STRSV( UPLO, TRANS, DIAG, N, AA, LDA, $ XX, INCX ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ UPLO, TRANS, DIAG, N, K, LDA, INCX IF( REWI ) $ REWIND NTRA CALL STBSV( UPLO, TRANS, DIAG, N, K, AA, $ LDA, XX, INCX ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ UPLO, TRANS, DIAG, N, INCX IF( REWI ) $ REWIND NTRA CALL STPSV( UPLO, TRANS, DIAG, N, AA, XX, $ INCX ) END IF END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = TRANS.EQ.TRANSS ISAME( 3 ) = DIAG.EQ.DIAGS ISAME( 4 ) = NS.EQ.N IF( FULL )THEN ISAME( 5 ) = LSE( AS, AA, LAA ) ISAME( 6 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 7 ) = LSE( XS, XX, LX ) ELSE ISAME( 7 ) = LSERES( 'GE', ' ', 1, N, XS, $ XX, ABS( INCX ) ) END IF ISAME( 8 ) = INCXS.EQ.INCX ELSE IF( BANDED )THEN ISAME( 5 ) = KS.EQ.K ISAME( 6 ) = LSE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 8 ) = LSE( XS, XX, LX ) ELSE ISAME( 8 ) = LSERES( 'GE', ' ', 1, N, XS, $ XX, ABS( INCX ) ) END IF ISAME( 9 ) = INCXS.EQ.INCX ELSE IF( PACKED )THEN ISAME( 5 ) = LSE( AS, AA, LAA ) IF( NULL )THEN ISAME( 6 ) = LSE( XS, XX, LX ) ELSE ISAME( 6 ) = LSERES( 'GE', ' ', 1, N, XS, $ XX, ABS( INCX ) ) END IF ISAME( 7 ) = INCXS.EQ.INCX END IF * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN IF( SNAME( 4: 5 ).EQ.'MV' )THEN * * Check the result. * CALL SMVCH( TRANS, N, N, ONE, A, NMAX, X, $ INCX, ZERO, Z, INCX, XT, G, $ XX, EPS, ERR, FATAL, NOUT, $ .TRUE. ) ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN * * Compute approximation to original vector. * DO 50 I = 1, N Z( I ) = XX( 1 + ( I - 1 )* $ ABS( INCX ) ) XX( 1 + ( I - 1 )*ABS( INCX ) ) $ = X( I ) 50 CONTINUE CALL SMVCH( TRANS, N, N, ONE, A, NMAX, Z, $ INCX, ZERO, X, INCX, XT, G, $ XX, EPS, ERR, FATAL, NOUT, $ .FALSE. ) END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 120 ELSE * Avoid repeating tests with N.le.0. GO TO 110 END IF * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, DIAG, N, LDA, $ INCX ELSE IF( BANDED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, DIAG, N, K, $ LDA, INCX ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, TRANS, DIAG, N, INCX END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', AP, ', $ 'X,', I2, ') .' ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), 2( I3, ',' ), $ ' A,', I3, ', X,', I2, ') .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', A,', $ I3, ', X,', I2, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK3. * END SUBROUTINE SCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G, $ Z ) * * Tests SGER. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. REAL ZERO, HALF, ONE PARAMETER ( ZERO = 0.0, HALF = 0.5, ONE = 1.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ), $ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ), $ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ) * .. Local Scalars .. REAL ALPHA, ALS, ERR, ERRMAX, TRANSL INTEGER I, IA, IM, IN, INCX, INCXS, INCY, INCYS, IX, $ IY, J, LAA, LDA, LDAS, LX, LY, M, MS, N, NARGS, $ NC, ND, NS LOGICAL NULL, RESET, SAME * .. Local Arrays .. REAL W( 1 ) LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SGER, SMAKE, SMVCH * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. * Define the number of arguments. NARGS = 9 * NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 120 IN = 1, NIDIM N = IDIM( IN ) ND = N/2 + 1 * DO 110 IM = 1, 2 IF( IM.EQ.1 ) $ M = MAX( N - ND, 0 ) IF( IM.EQ.2 ) $ M = MIN( N + ND, NMAX ) * * Set LDA to 1 more than minimum value if room. LDA = M IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 110 LAA = LDA*N NULL = N.LE.0.OR.M.LE.0 * DO 100 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*M * * Generate the vector X. * TRANSL = HALF CALL SMAKE( 'GE', ' ', ' ', 1, M, X, 1, XX, ABS( INCX ), $ 0, M - 1, RESET, TRANSL ) IF( M.GT.1 )THEN X( M/2 ) = ZERO XX( 1 + ABS( INCX )*( M/2 - 1 ) ) = ZERO END IF * DO 90 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*N * * Generate the vector Y. * TRANSL = ZERO CALL SMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY, $ ABS( INCY ), 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN Y( N/2 ) = ZERO YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO END IF * DO 80 IA = 1, NALF ALPHA = ALF( IA ) * * Generate the matrix A. * TRANSL = ZERO CALL SMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX, $ AA, LDA, M - 1, N - 1, RESET, TRANSL ) * NC = NC + 1 * * Save every datum before calling the subroutine. * MS = M NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, M, N, $ ALPHA, INCX, INCY, LDA IF( REWI ) $ REWIND NTRA CALL SGER( M, N, ALPHA, XX, INCX, YY, INCY, AA, $ LDA ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 140 END IF * * See what data changed inside subroutine. * ISAME( 1 ) = MS.EQ.M ISAME( 2 ) = NS.EQ.N ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LSE( XS, XX, LX ) ISAME( 5 ) = INCXS.EQ.INCX ISAME( 6 ) = LSE( YS, YY, LY ) ISAME( 7 ) = INCYS.EQ.INCY IF( NULL )THEN ISAME( 8 ) = LSE( AS, AA, LAA ) ELSE ISAME( 8 ) = LSERES( 'GE', ' ', M, N, AS, AA, $ LDA ) END IF ISAME( 9 ) = LDAS.EQ.LDA * * If data was incorrectly changed, report and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 140 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( INCX.GT.0 )THEN DO 50 I = 1, M Z( I ) = X( I ) 50 CONTINUE ELSE DO 60 I = 1, M Z( I ) = X( M - I + 1 ) 60 CONTINUE END IF DO 70 J = 1, N IF( INCY.GT.0 )THEN W( 1 ) = Y( J ) ELSE W( 1 ) = Y( N - J + 1 ) END IF CALL SMVCH( 'N', M, 1, ALPHA, Z, NMAX, W, 1, $ ONE, A( 1, J ), 1, YT, G, $ AA( 1 + ( J - 1 )*LDA ), EPS, $ ERR, FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 130 70 CONTINUE ELSE * Avoid repeating tests with M.le.0 or N.le.0. GO TO 110 END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 150 * 130 CONTINUE WRITE( NOUT, FMT = 9995 )J * 140 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9994 )NC, SNAME, M, N, ALPHA, INCX, INCY, LDA * 150 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( I3, ',' ), F4.1, ', X,', I2, $ ', Y,', I2, ', A,', I3, ') .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK4. * END SUBROUTINE SCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G, $ Z ) * * Tests SSYR and SSPR. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. REAL ZERO, HALF, ONE PARAMETER ( ZERO = 0.0, HALF = 0.5, ONE = 1.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ), $ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ), $ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ) * .. Local Scalars .. REAL ALPHA, ALS, ERR, ERRMAX, TRANSL INTEGER I, IA, IC, IN, INCX, INCXS, IX, J, JA, JJ, LAA, $ LDA, LDAS, LJ, LX, N, NARGS, NC, NS LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER CHARACTER*1 UPLO, UPLOS CHARACTER*2 ICH * .. Local Arrays .. REAL W( 1 ) LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SMAKE, SMVCH, SSPR, SSYR * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'UL'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'Y' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 7 ELSE IF( PACKED )THEN NARGS = 6 END IF * NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDA to 1 more than minimum value if room. LDA = N IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF * DO 90 IC = 1, 2 UPLO = ICH( IC: IC ) UPPER = UPLO.EQ.'U' * DO 80 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL SMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ), $ 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * DO 70 IA = 1, NALF ALPHA = ALF( IA ) NULL = N.LE.0.OR.ALPHA.EQ.ZERO * * Generate the matrix A. * TRANSL = ZERO CALL SMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX, $ AA, LDA, N - 1, N - 1, RESET, TRANSL ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N, $ ALPHA, INCX, LDA IF( REWI ) $ REWIND NTRA CALL SSYR( UPLO, N, ALPHA, XX, INCX, AA, LDA ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N, $ ALPHA, INCX IF( REWI ) $ REWIND NTRA CALL SSPR( UPLO, N, ALPHA, XX, INCX, AA ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = NS.EQ.N ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LSE( XS, XX, LX ) ISAME( 5 ) = INCXS.EQ.INCX IF( NULL )THEN ISAME( 6 ) = LSE( AS, AA, LAA ) ELSE ISAME( 6 ) = LSERES( SNAME( 2: 3 ), UPLO, N, N, AS, $ AA, LDA ) END IF IF( .NOT.PACKED )THEN ISAME( 7 ) = LDAS.EQ.LDA END IF * * If data was incorrectly changed, report and return. * SAME = .TRUE. DO 30 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 30 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( INCX.GT.0 )THEN DO 40 I = 1, N Z( I ) = X( I ) 40 CONTINUE ELSE DO 50 I = 1, N Z( I ) = X( N - I + 1 ) 50 CONTINUE END IF JA = 1 DO 60 J = 1, N W( 1 ) = Z( J ) IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF CALL SMVCH( 'N', LJ, 1, ALPHA, Z( JJ ), LJ, W, $ 1, ONE, A( JJ, J ), 1, YT, G, $ AA( JA ), EPS, ERR, FATAL, NOUT, $ .TRUE. ) IF( FULL )THEN IF( UPPER )THEN JA = JA + LDA ELSE JA = JA + LDA + 1 END IF ELSE JA = JA + LJ END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 110 60 CONTINUE ELSE * Avoid repeating tests if N.le.0. IF( N.LE.0 ) $ GO TO 100 END IF * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 110 CONTINUE WRITE( NOUT, FMT = 9995 )J * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, INCX, LDA ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, ALPHA, INCX END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,', $ I2, ', AP) .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,', $ I2, ', A,', I3, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK5. * END SUBROUTINE SCHK6( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G, $ Z ) * * Tests SSYR2 and SSPR2. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. REAL ZERO, HALF, ONE PARAMETER ( ZERO = 0.0, HALF = 0.5, ONE = 1.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), G( NMAX ), X( NMAX ), $ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ), $ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( NMAX, 2 ) INTEGER IDIM( NIDIM ), INC( NINC ) * .. Local Scalars .. REAL ALPHA, ALS, ERR, ERRMAX, TRANSL INTEGER I, IA, IC, IN, INCX, INCXS, INCY, INCYS, IX, $ IY, J, JA, JJ, LAA, LDA, LDAS, LJ, LX, LY, N, $ NARGS, NC, NS LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER CHARACTER*1 UPLO, UPLOS CHARACTER*2 ICH * .. Local Arrays .. REAL W( 2 ) LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SMAKE, SMVCH, SSPR2, SSYR2 * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'UL'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'Y' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 9 ELSE IF( PACKED )THEN NARGS = 8 END IF * NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 140 IN = 1, NIDIM N = IDIM( IN ) * Set LDA to 1 more than minimum value if room. LDA = N IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 140 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF * DO 130 IC = 1, 2 UPLO = ICH( IC: IC ) UPPER = UPLO.EQ.'U' * DO 120 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL SMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ), $ 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * DO 110 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*N * * Generate the vector Y. * TRANSL = ZERO CALL SMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY, $ ABS( INCY ), 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN Y( N/2 ) = ZERO YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO END IF * DO 100 IA = 1, NALF ALPHA = ALF( IA ) NULL = N.LE.0.OR.ALPHA.EQ.ZERO * * Generate the matrix A. * TRANSL = ZERO CALL SMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, $ NMAX, AA, LDA, N - 1, N - 1, RESET, $ TRANSL ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N, $ ALPHA, INCX, INCY, LDA IF( REWI ) $ REWIND NTRA CALL SSYR2( UPLO, N, ALPHA, XX, INCX, YY, INCY, $ AA, LDA ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N, $ ALPHA, INCX, INCY IF( REWI ) $ REWIND NTRA CALL SSPR2( UPLO, N, ALPHA, XX, INCX, YY, INCY, $ AA ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 160 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = NS.EQ.N ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LSE( XS, XX, LX ) ISAME( 5 ) = INCXS.EQ.INCX ISAME( 6 ) = LSE( YS, YY, LY ) ISAME( 7 ) = INCYS.EQ.INCY IF( NULL )THEN ISAME( 8 ) = LSE( AS, AA, LAA ) ELSE ISAME( 8 ) = LSERES( SNAME( 2: 3 ), UPLO, N, N, $ AS, AA, LDA ) END IF IF( .NOT.PACKED )THEN ISAME( 9 ) = LDAS.EQ.LDA END IF * * If data was incorrectly changed, report and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 160 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( INCX.GT.0 )THEN DO 50 I = 1, N Z( I, 1 ) = X( I ) 50 CONTINUE ELSE DO 60 I = 1, N Z( I, 1 ) = X( N - I + 1 ) 60 CONTINUE END IF IF( INCY.GT.0 )THEN DO 70 I = 1, N Z( I, 2 ) = Y( I ) 70 CONTINUE ELSE DO 80 I = 1, N Z( I, 2 ) = Y( N - I + 1 ) 80 CONTINUE END IF JA = 1 DO 90 J = 1, N W( 1 ) = Z( J, 2 ) W( 2 ) = Z( J, 1 ) IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF CALL SMVCH( 'N', LJ, 2, ALPHA, Z( JJ, 1 ), $ NMAX, W, 1, ONE, A( JJ, J ), 1, $ YT, G, AA( JA ), EPS, ERR, FATAL, $ NOUT, .TRUE. ) IF( FULL )THEN IF( UPPER )THEN JA = JA + LDA ELSE JA = JA + LDA + 1 END IF ELSE JA = JA + LJ END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 150 90 CONTINUE ELSE * Avoid repeating tests with N.le.0. IF( N.LE.0 ) $ GO TO 140 END IF * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * 140 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 170 * 150 CONTINUE WRITE( NOUT, FMT = 9995 )J * 160 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, INCX, $ INCY, LDA ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, ALPHA, INCX, INCY END IF * 170 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,', $ I2, ', Y,', I2, ', AP) .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,', $ I2, ', Y,', I2, ', A,', I3, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK6. * END SUBROUTINE SCHKE( ISNUM, SRNAMT, NOUT ) * * Tests the error exits from the Level 2 Blas. * Requires a special version of the error-handling routine XERBLA. * ALPHA, BETA, A, X and Y should not need to be defined. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER ISNUM, NOUT CHARACTER*6 SRNAMT * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Local Scalars .. REAL ALPHA, BETA * .. Local Arrays .. REAL A( 1, 1 ), X( 1 ), Y( 1 ) * .. External Subroutines .. EXTERNAL CHKXER, SGBMV, SGEMV, SGER, SSBMV, SSPMV, SSPR, $ SSPR2, SSYMV, SSYR, SSYR2, STBMV, STBSV, STPMV, $ STPSV, STRMV, STRSV * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. * OK is set to .FALSE. by the special version of XERBLA or by CHKXER * if anything is wrong. OK = .TRUE. * LERR is set to .TRUE. by the special version of XERBLA each time * it is called, and is then tested and re-set by CHKXER. LERR = .FALSE. GO TO ( 10, 20, 30, 40, 50, 60, 70, 80, $ 90, 100, 110, 120, 130, 140, 150, $ 160 )ISNUM 10 INFOT = 1 CALL SGEMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SGEMV( 'N', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SGEMV( 'N', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL SGEMV( 'N', 2, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL SGEMV( 'N', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL SGEMV( 'N', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 20 INFOT = 1 CALL SGBMV( '/', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SGBMV( 'N', -1, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SGBMV( 'N', 0, -1, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SGBMV( 'N', 0, 0, -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SGBMV( 'N', 2, 0, 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL SGBMV( 'N', 0, 0, 1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL SGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 30 INFOT = 1 CALL SSYMV( '/', 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SSYMV( 'U', -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SSYMV( 'U', 2, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYMV( 'U', 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SSYMV( 'U', 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 40 INFOT = 1 CALL SSBMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SSBMV( 'U', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSBMV( 'U', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL SSBMV( 'U', 0, 1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL SSBMV( 'U', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL SSBMV( 'U', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 50 INFOT = 1 CALL SSPMV( '/', 0, ALPHA, A, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SSPMV( 'U', -1, ALPHA, A, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL SSPMV( 'U', 0, ALPHA, A, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSPMV( 'U', 0, ALPHA, A, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 60 INFOT = 1 CALL STRMV( '/', 'N', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL STRMV( 'U', '/', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL STRMV( 'U', 'N', '/', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL STRMV( 'U', 'N', 'N', -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMV( 'U', 'N', 'N', 2, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL STRMV( 'U', 'N', 'N', 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 70 INFOT = 1 CALL STBMV( '/', 'N', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL STBMV( 'U', '/', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL STBMV( 'U', 'N', '/', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL STBMV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STBMV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL STBMV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STBMV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 80 INFOT = 1 CALL STPMV( '/', 'N', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL STPMV( 'U', '/', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL STPMV( 'U', 'N', '/', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL STPMV( 'U', 'N', 'N', -1, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL STPMV( 'U', 'N', 'N', 0, A, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 90 INFOT = 1 CALL STRSV( '/', 'N', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL STRSV( 'U', '/', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL STRSV( 'U', 'N', '/', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL STRSV( 'U', 'N', 'N', -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSV( 'U', 'N', 'N', 2, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL STRSV( 'U', 'N', 'N', 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 100 INFOT = 1 CALL STBSV( '/', 'N', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL STBSV( 'U', '/', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL STBSV( 'U', 'N', '/', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL STBSV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STBSV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL STBSV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STBSV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 110 INFOT = 1 CALL STPSV( '/', 'N', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL STPSV( 'U', '/', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL STPSV( 'U', 'N', '/', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL STPSV( 'U', 'N', 'N', -1, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL STPSV( 'U', 'N', 'N', 0, A, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 120 INFOT = 1 CALL SGER( -1, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SGER( 0, -1, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SGER( 0, 0, ALPHA, X, 0, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SGER( 0, 0, ALPHA, X, 1, Y, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SGER( 2, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 130 INFOT = 1 CALL SSYR( '/', 0, ALPHA, X, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SSYR( 'U', -1, ALPHA, X, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SSYR( 'U', 0, ALPHA, X, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYR( 'U', 2, ALPHA, X, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 140 INFOT = 1 CALL SSPR( '/', 0, ALPHA, X, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SSPR( 'U', -1, ALPHA, X, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SSPR( 'U', 0, ALPHA, X, 0, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 150 INFOT = 1 CALL SSYR2( '/', 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SSYR2( 'U', -1, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SSYR2( 'U', 0, ALPHA, X, 0, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYR2( 'U', 0, ALPHA, X, 1, Y, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYR2( 'U', 2, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 170 160 INFOT = 1 CALL SSPR2( '/', 0, ALPHA, X, 1, Y, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SSPR2( 'U', -1, ALPHA, X, 1, Y, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SSPR2( 'U', 0, ALPHA, X, 0, Y, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSPR2( 'U', 0, ALPHA, X, 1, Y, 0, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * 170 IF( OK )THEN WRITE( NOUT, FMT = 9999 )SRNAMT ELSE WRITE( NOUT, FMT = 9998 )SRNAMT END IF RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' ) 9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****', $ '**' ) * * End of SCHKE. * END SUBROUTINE SMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, KL, $ KU, RESET, TRANSL ) * * Generates values for an M by N matrix A within the bandwidth * defined by KL and KU. * Stores the values in the array AA in the data structure required * by the routine, with unwanted elements set to rogue value. * * TYPE is 'GE', 'GB', 'SY', 'SB', 'SP', 'TR', 'TB' OR 'TP'. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0, ONE = 1.0 ) REAL ROGUE PARAMETER ( ROGUE = -1.0E10 ) * .. Scalar Arguments .. REAL TRANSL INTEGER KL, KU, LDA, M, N, NMAX LOGICAL RESET CHARACTER*1 DIAG, UPLO CHARACTER*2 TYPE * .. Array Arguments .. REAL A( NMAX, * ), AA( * ) * .. Local Scalars .. INTEGER I, I1, I2, I3, IBEG, IEND, IOFF, J, KK LOGICAL GEN, LOWER, SYM, TRI, UNIT, UPPER * .. External Functions .. REAL SBEG EXTERNAL SBEG * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. Executable Statements .. GEN = TYPE( 1: 1 ).EQ.'G' SYM = TYPE( 1: 1 ).EQ.'S' TRI = TYPE( 1: 1 ).EQ.'T' UPPER = ( SYM.OR.TRI ).AND.UPLO.EQ.'U' LOWER = ( SYM.OR.TRI ).AND.UPLO.EQ.'L' UNIT = TRI.AND.DIAG.EQ.'U' * * Generate data in array A. * DO 20 J = 1, N DO 10 I = 1, M IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) ) $ THEN IF( ( I.LE.J.AND.J - I.LE.KU ).OR. $ ( I.GE.J.AND.I - J.LE.KL ) )THEN A( I, J ) = SBEG( RESET ) + TRANSL ELSE A( I, J ) = ZERO END IF IF( I.NE.J )THEN IF( SYM )THEN A( J, I ) = A( I, J ) ELSE IF( TRI )THEN A( J, I ) = ZERO END IF END IF END IF 10 CONTINUE IF( TRI ) $ A( J, J ) = A( J, J ) + ONE IF( UNIT ) $ A( J, J ) = ONE 20 CONTINUE * * Store elements in array AS in data structure required by routine. * IF( TYPE.EQ.'GE' )THEN DO 50 J = 1, N DO 30 I = 1, M AA( I + ( J - 1 )*LDA ) = A( I, J ) 30 CONTINUE DO 40 I = M + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 40 CONTINUE 50 CONTINUE ELSE IF( TYPE.EQ.'GB' )THEN DO 90 J = 1, N DO 60 I1 = 1, KU + 1 - J AA( I1 + ( J - 1 )*LDA ) = ROGUE 60 CONTINUE DO 70 I2 = I1, MIN( KL + KU + 1, KU + 1 + M - J ) AA( I2 + ( J - 1 )*LDA ) = A( I2 + J - KU - 1, J ) 70 CONTINUE DO 80 I3 = I2, LDA AA( I3 + ( J - 1 )*LDA ) = ROGUE 80 CONTINUE 90 CONTINUE ELSE IF( TYPE.EQ.'SY'.OR.TYPE.EQ.'TR' )THEN DO 130 J = 1, N IF( UPPER )THEN IBEG = 1 IF( UNIT )THEN IEND = J - 1 ELSE IEND = J END IF ELSE IF( UNIT )THEN IBEG = J + 1 ELSE IBEG = J END IF IEND = N END IF DO 100 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 100 CONTINUE DO 110 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I, J ) 110 CONTINUE DO 120 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 120 CONTINUE 130 CONTINUE ELSE IF( TYPE.EQ.'SB'.OR.TYPE.EQ.'TB' )THEN DO 170 J = 1, N IF( UPPER )THEN KK = KL + 1 IBEG = MAX( 1, KL + 2 - J ) IF( UNIT )THEN IEND = KL ELSE IEND = KL + 1 END IF ELSE KK = 1 IF( UNIT )THEN IBEG = 2 ELSE IBEG = 1 END IF IEND = MIN( KL + 1, 1 + M - J ) END IF DO 140 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 140 CONTINUE DO 150 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I + J - KK, J ) 150 CONTINUE DO 160 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 160 CONTINUE 170 CONTINUE ELSE IF( TYPE.EQ.'SP'.OR.TYPE.EQ.'TP' )THEN IOFF = 0 DO 190 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 180 I = IBEG, IEND IOFF = IOFF + 1 AA( IOFF ) = A( I, J ) IF( I.EQ.J )THEN IF( UNIT ) $ AA( IOFF ) = ROGUE END IF 180 CONTINUE 190 CONTINUE END IF RETURN * * End of SMAKE. * END SUBROUTINE SMVCH( TRANS, M, N, ALPHA, A, NMAX, X, INCX, BETA, Y, $ INCY, YT, G, YY, EPS, ERR, FATAL, NOUT, MV ) * * Checks the results of the computational tests. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0, ONE = 1.0 ) * .. Scalar Arguments .. REAL ALPHA, BETA, EPS, ERR INTEGER INCX, INCY, M, N, NMAX, NOUT LOGICAL FATAL, MV CHARACTER*1 TRANS * .. Array Arguments .. REAL A( NMAX, * ), G( * ), X( * ), Y( * ), YT( * ), $ YY( * ) * .. Local Scalars .. REAL ERRI INTEGER I, INCXL, INCYL, IY, J, JX, KX, KY, ML, NL LOGICAL TRAN * .. Intrinsic Functions .. INTRINSIC ABS, MAX, SQRT * .. Executable Statements .. TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C' IF( TRAN )THEN ML = N NL = M ELSE ML = M NL = N END IF IF( INCX.LT.0 )THEN KX = NL INCXL = -1 ELSE KX = 1 INCXL = 1 END IF IF( INCY.LT.0 )THEN KY = ML INCYL = -1 ELSE KY = 1 INCYL = 1 END IF * * Compute expected result in YT using data in A, X and Y. * Compute gauges in G. * IY = KY DO 30 I = 1, ML YT( IY ) = ZERO G( IY ) = ZERO JX = KX IF( TRAN )THEN DO 10 J = 1, NL YT( IY ) = YT( IY ) + A( J, I )*X( JX ) G( IY ) = G( IY ) + ABS( A( J, I )*X( JX ) ) JX = JX + INCXL 10 CONTINUE ELSE DO 20 J = 1, NL YT( IY ) = YT( IY ) + A( I, J )*X( JX ) G( IY ) = G( IY ) + ABS( A( I, J )*X( JX ) ) JX = JX + INCXL 20 CONTINUE END IF YT( IY ) = ALPHA*YT( IY ) + BETA*Y( IY ) G( IY ) = ABS( ALPHA )*G( IY ) + ABS( BETA*Y( IY ) ) IY = IY + INCYL 30 CONTINUE * * Compute the error ratio for this result. * ERR = ZERO DO 40 I = 1, ML ERRI = ABS( YT( I ) - YY( 1 + ( I - 1 )*ABS( INCY ) ) )/EPS IF( G( I ).NE.ZERO ) $ ERRI = ERRI/G( I ) ERR = MAX( ERR, ERRI ) IF( ERR*SQRT( EPS ).GE.ONE ) $ GO TO 50 40 CONTINUE * If the loop completes, all results are at least half accurate. GO TO 70 * * Report fatal error. * 50 FATAL = .TRUE. WRITE( NOUT, FMT = 9999 ) DO 60 I = 1, ML IF( MV )THEN WRITE( NOUT, FMT = 9998 )I, YT( I ), $ YY( 1 + ( I - 1 )*ABS( INCY ) ) ELSE WRITE( NOUT, FMT = 9998 )I, $ YY( 1 + ( I - 1 )*ABS( INCY ) ), YT(I) END IF 60 CONTINUE * 70 CONTINUE RETURN * 9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL', $ 'F ACCURATE *******', /' EXPECTED RESULT COMPU', $ 'TED RESULT' ) 9998 FORMAT( 1X, I7, 2G18.6 ) * * End of SMVCH. * END LOGICAL FUNCTION LSE( RI, RJ, LR ) * * Tests if two arrays are identical. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER LR * .. Array Arguments .. REAL RI( * ), RJ( * ) * .. Local Scalars .. INTEGER I * .. Executable Statements .. DO 10 I = 1, LR IF( RI( I ).NE.RJ( I ) ) $ GO TO 20 10 CONTINUE LSE = .TRUE. GO TO 30 20 CONTINUE LSE = .FALSE. 30 RETURN * * End of LSE. * END LOGICAL FUNCTION LSERES( TYPE, UPLO, M, N, AA, AS, LDA ) * * Tests if selected elements in two arrays are equal. * * TYPE is 'GE', 'SY' or 'SP'. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER LDA, M, N CHARACTER*1 UPLO CHARACTER*2 TYPE * .. Array Arguments .. REAL AA( LDA, * ), AS( LDA, * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J LOGICAL UPPER * .. Executable Statements .. UPPER = UPLO.EQ.'U' IF( TYPE.EQ.'GE' )THEN DO 20 J = 1, N DO 10 I = M + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 10 CONTINUE 20 CONTINUE ELSE IF( TYPE.EQ.'SY' )THEN DO 50 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 30 I = 1, IBEG - 1 IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 30 CONTINUE DO 40 I = IEND + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 40 CONTINUE 50 CONTINUE END IF * 60 CONTINUE LSERES = .TRUE. GO TO 80 70 CONTINUE LSERES = .FALSE. 80 RETURN * * End of LSERES. * END REAL FUNCTION SBEG( RESET ) * * Generates random numbers uniformly distributed between -0.5 and 0.5. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. LOGICAL RESET * .. Local Scalars .. INTEGER I, IC, MI * .. Save statement .. SAVE I, IC, MI * .. Intrinsic Functions .. INTRINSIC REAL * .. Executable Statements .. IF( RESET )THEN * Initialize local variables. MI = 891 I = 7 IC = 0 RESET = .FALSE. END IF * * The sequence of values of I is bounded between 1 and 999. * If initial I = 1,2,3,6,7 or 9, the period will be 50. * If initial I = 4 or 8, the period will be 25. * If initial I = 5, the period will be 10. * IC is used to break up the period by skipping 1 value of I in 6. * IC = IC + 1 10 I = I*MI I = I - 1000*( I/1000 ) IF( IC.GE.5 )THEN IC = 0 GO TO 10 END IF SBEG = REAL( I - 500 )/1001.0 RETURN * * End of SBEG. * END REAL FUNCTION SDIFF( X, Y ) * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * * .. Scalar Arguments .. REAL X, Y * .. Executable Statements .. SDIFF = X - Y RETURN * * End of SDIFF. * END SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * * Tests whether XERBLA has detected an error when it should. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Executable Statements .. IF( .NOT.LERR )THEN WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT OK = .FALSE. END IF LERR = .FALSE. RETURN * 9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D', $ 'ETECTED BY ', A6, ' *****' ) * * End of CHKXER. * END SUBROUTINE XERBLA( SRNAME, INFO ) * * This is a special version of XERBLA to be used only as part of * the test program for testing error exits from the Level 2 BLAS * routines. * * XERBLA is an error handler for the Level 2 BLAS routines. * * It is called by the Level 2 BLAS routines if an input parameter is * invalid. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER INFO CHARACTER*6 SRNAME * .. Scalars in Common .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUT, OK, LERR COMMON /SRNAMC/SRNAMT * .. Executable Statements .. LERR = .TRUE. IF( INFO.NE.INFOT )THEN IF( INFOT.NE.0 )THEN WRITE( NOUT, FMT = 9999 )INFO, INFOT ELSE WRITE( NOUT, FMT = 9997 )INFO END IF OK = .FALSE. END IF IF( SRNAME.NE.SRNAMT )THEN WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT OK = .FALSE. END IF RETURN * 9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD', $ ' OF ', I2, ' *******' ) 9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE', $ 'AD OF ', A6, ' *******' ) 9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, $ ' *******' ) * * End of XERBLA * END blas-1.2.orig/test/sblat1 0000644 0001750 0001750 00000074743 10735444622 016234 0 ustar sylvestre sylvestre PROGRAM SBLAT1 * Test program for the REAL Level 1 BLAS. * Based upon the original BLAS test routine together with: * F06EAF Example Program Text * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. REAL SFAC INTEGER IC * .. External Subroutines .. EXTERNAL CHECK0, CHECK1, CHECK2, CHECK3, HEADER * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA SFAC/9.765625E-4/ * .. Executable Statements .. WRITE (NOUT,99999) DO 20 IC = 1, 10 ICASE = IC CALL HEADER * * .. Initialize PASS, INCX, INCY, and MODE for a new case. .. * .. the value 9999 for INCX, INCY or MODE will appear in the .. * .. detailed output, if any, for cases that do not involve .. * .. these parameters .. * PASS = .TRUE. INCX = 9999 INCY = 9999 MODE = 9999 IF (ICASE.EQ.3) THEN CALL CHECK0(SFAC) ELSE IF (ICASE.EQ.7 .OR. ICASE.EQ.8 .OR. ICASE.EQ.9 .OR. + ICASE.EQ.10) THEN CALL CHECK1(SFAC) ELSE IF (ICASE.EQ.1 .OR. ICASE.EQ.2 .OR. ICASE.EQ.5 .OR. + ICASE.EQ.6) THEN CALL CHECK2(SFAC) ELSE IF (ICASE.EQ.4) THEN CALL CHECK3(SFAC) END IF * -- Print IF (PASS) WRITE (NOUT,99998) 20 CONTINUE STOP * 99999 FORMAT (' Real BLAS Test Program Results',/1X) 99998 FORMAT (' ----- PASS -----') END SUBROUTINE HEADER * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Arrays .. CHARACTER*6 L(10) * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA L(1)/' SDOT '/ DATA L(2)/'SAXPY '/ DATA L(3)/'SROTG '/ DATA L(4)/' SROT '/ DATA L(5)/'SCOPY '/ DATA L(6)/'SSWAP '/ DATA L(7)/'SNRM2 '/ DATA L(8)/'SASUM '/ DATA L(9)/'SSCAL '/ DATA L(10)/'ISAMAX'/ * .. Executable Statements .. WRITE (NOUT,99999) ICASE, L(ICASE) RETURN * 99999 FORMAT (/' Test of subprogram number',I3,12X,A6) END SUBROUTINE CHECK0(SFAC) * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. REAL SFAC * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. REAL D12, SA, SB, SC, SS INTEGER K * .. Local Arrays .. REAL DA1(8), DATRUE(8), DB1(8), DBTRUE(8), DC1(8), + DS1(8) * .. External Subroutines .. EXTERNAL SROTG, STEST1 * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA DA1/0.3E0, 0.4E0, -0.3E0, -0.4E0, -0.3E0, 0.0E0, + 0.0E0, 1.0E0/ DATA DB1/0.4E0, 0.3E0, 0.4E0, 0.3E0, -0.4E0, 0.0E0, + 1.0E0, 0.0E0/ DATA DC1/0.6E0, 0.8E0, -0.6E0, 0.8E0, 0.6E0, 1.0E0, + 0.0E0, 1.0E0/ DATA DS1/0.8E0, 0.6E0, 0.8E0, -0.6E0, 0.8E0, 0.0E0, + 1.0E0, 0.0E0/ DATA DATRUE/0.5E0, 0.5E0, 0.5E0, -0.5E0, -0.5E0, + 0.0E0, 1.0E0, 1.0E0/ DATA DBTRUE/0.0E0, 0.6E0, 0.0E0, -0.6E0, 0.0E0, + 0.0E0, 1.0E0, 0.0E0/ DATA D12/4096.0E0/ * .. Executable Statements .. * * Compute true values which cannot be prestored * in decimal notation * DBTRUE(1) = 1.0E0/0.6E0 DBTRUE(3) = -1.0E0/0.6E0 DBTRUE(5) = 1.0E0/0.6E0 * DO 20 K = 1, 8 * .. Set N=K for identification in output if any .. N = K IF (ICASE.EQ.3) THEN * .. SROTG .. IF (K.GT.8) GO TO 40 SA = DA1(K) SB = DB1(K) CALL SROTG(SA,SB,SC,SS) CALL STEST1(SA,DATRUE(K),DATRUE(K),SFAC) CALL STEST1(SB,DBTRUE(K),DBTRUE(K),SFAC) CALL STEST1(SC,DC1(K),DC1(K),SFAC) CALL STEST1(SS,DS1(K),DS1(K),SFAC) ELSE WRITE (NOUT,*) ' Shouldn''t be here in CHECK0' STOP END IF 20 CONTINUE 40 RETURN END SUBROUTINE CHECK1(SFAC) * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. REAL SFAC * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. INTEGER I, LEN, NP1 * .. Local Arrays .. REAL DTRUE1(5), DTRUE3(5), DTRUE5(8,5,2), DV(8,5,2), + SA(10), STEMP(1), STRUE(8), SX(8) INTEGER ITRUE2(5) * .. External Functions .. REAL SASUM, SNRM2 INTEGER ISAMAX EXTERNAL SASUM, SNRM2, ISAMAX * .. External Subroutines .. EXTERNAL ITEST1, SSCAL, STEST, STEST1 * .. Intrinsic Functions .. INTRINSIC MAX * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA SA/0.3E0, -1.0E0, 0.0E0, 1.0E0, 0.3E0, 0.3E0, + 0.3E0, 0.3E0, 0.3E0, 0.3E0/ DATA DV/0.1E0, 2.0E0, 2.0E0, 2.0E0, 2.0E0, 2.0E0, + 2.0E0, 2.0E0, 0.3E0, 3.0E0, 3.0E0, 3.0E0, 3.0E0, + 3.0E0, 3.0E0, 3.0E0, 0.3E0, -0.4E0, 4.0E0, + 4.0E0, 4.0E0, 4.0E0, 4.0E0, 4.0E0, 0.2E0, + -0.6E0, 0.3E0, 5.0E0, 5.0E0, 5.0E0, 5.0E0, + 5.0E0, 0.1E0, -0.3E0, 0.5E0, -0.1E0, 6.0E0, + 6.0E0, 6.0E0, 6.0E0, 0.1E0, 8.0E0, 8.0E0, 8.0E0, + 8.0E0, 8.0E0, 8.0E0, 8.0E0, 0.3E0, 9.0E0, 9.0E0, + 9.0E0, 9.0E0, 9.0E0, 9.0E0, 9.0E0, 0.3E0, 2.0E0, + -0.4E0, 2.0E0, 2.0E0, 2.0E0, 2.0E0, 2.0E0, + 0.2E0, 3.0E0, -0.6E0, 5.0E0, 0.3E0, 2.0E0, + 2.0E0, 2.0E0, 0.1E0, 4.0E0, -0.3E0, 6.0E0, + -0.5E0, 7.0E0, -0.1E0, 3.0E0/ DATA DTRUE1/0.0E0, 0.3E0, 0.5E0, 0.7E0, 0.6E0/ DATA DTRUE3/0.0E0, 0.3E0, 0.7E0, 1.1E0, 1.0E0/ DATA DTRUE5/0.10E0, 2.0E0, 2.0E0, 2.0E0, 2.0E0, + 2.0E0, 2.0E0, 2.0E0, -0.3E0, 3.0E0, 3.0E0, + 3.0E0, 3.0E0, 3.0E0, 3.0E0, 3.0E0, 0.0E0, 0.0E0, + 4.0E0, 4.0E0, 4.0E0, 4.0E0, 4.0E0, 4.0E0, + 0.20E0, -0.60E0, 0.30E0, 5.0E0, 5.0E0, 5.0E0, + 5.0E0, 5.0E0, 0.03E0, -0.09E0, 0.15E0, -0.03E0, + 6.0E0, 6.0E0, 6.0E0, 6.0E0, 0.10E0, 8.0E0, + 8.0E0, 8.0E0, 8.0E0, 8.0E0, 8.0E0, 8.0E0, + 0.09E0, 9.0E0, 9.0E0, 9.0E0, 9.0E0, 9.0E0, + 9.0E0, 9.0E0, 0.09E0, 2.0E0, -0.12E0, 2.0E0, + 2.0E0, 2.0E0, 2.0E0, 2.0E0, 0.06E0, 3.0E0, + -0.18E0, 5.0E0, 0.09E0, 2.0E0, 2.0E0, 2.0E0, + 0.03E0, 4.0E0, -0.09E0, 6.0E0, -0.15E0, 7.0E0, + -0.03E0, 3.0E0/ DATA ITRUE2/0, 1, 2, 2, 3/ * .. Executable Statements .. DO 80 INCX = 1, 2 DO 60 NP1 = 1, 5 N = NP1 - 1 LEN = 2*MAX(N,1) * .. Set vector arguments .. DO 20 I = 1, LEN SX(I) = DV(I,NP1,INCX) 20 CONTINUE * IF (ICASE.EQ.7) THEN * .. SNRM2 .. STEMP(1) = DTRUE1(NP1) CALL STEST1(SNRM2(N,SX,INCX),STEMP,STEMP,SFAC) ELSE IF (ICASE.EQ.8) THEN * .. SASUM .. STEMP(1) = DTRUE3(NP1) CALL STEST1(SASUM(N,SX,INCX),STEMP,STEMP,SFAC) ELSE IF (ICASE.EQ.9) THEN * .. SSCAL .. CALL SSCAL(N,SA((INCX-1)*5+NP1),SX,INCX) DO 40 I = 1, LEN STRUE(I) = DTRUE5(I,NP1,INCX) 40 CONTINUE CALL STEST(LEN,SX,STRUE,STRUE,SFAC) ELSE IF (ICASE.EQ.10) THEN * .. ISAMAX .. CALL ITEST1(ISAMAX(N,SX,INCX),ITRUE2(NP1)) ELSE WRITE (NOUT,*) ' Shouldn''t be here in CHECK1' STOP END IF 60 CONTINUE 80 CONTINUE RETURN END SUBROUTINE CHECK2(SFAC) * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. REAL SFAC * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. REAL SA, SC, SS INTEGER I, J, KI, KN, KSIZE, LENX, LENY, MX, MY * .. Local Arrays .. REAL DT10X(7,4,4), DT10Y(7,4,4), DT7(4,4), + DT8(7,4,4), DT9X(7,4,4), DT9Y(7,4,4), DX1(7), + DY1(7), SSIZE1(4), SSIZE2(14,2), STX(7), STY(7), + SX(7), SY(7) INTEGER INCXS(4), INCYS(4), LENS(4,2), NS(4) * .. External Functions .. REAL SDOT EXTERNAL SDOT * .. External Subroutines .. EXTERNAL SAXPY, SCOPY, SSWAP, STEST, STEST1 * .. Intrinsic Functions .. INTRINSIC ABS, MIN * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA SA/0.3E0/ DATA INCXS/1, 2, -2, -1/ DATA INCYS/1, -2, 1, -2/ DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/ DATA NS/0, 1, 2, 4/ DATA DX1/0.6E0, 0.1E0, -0.5E0, 0.8E0, 0.9E0, -0.3E0, + -0.4E0/ DATA DY1/0.5E0, -0.9E0, 0.3E0, 0.7E0, -0.6E0, 0.2E0, + 0.8E0/ DATA SC, SS/0.8E0, 0.6E0/ DATA DT7/0.0E0, 0.30E0, 0.21E0, 0.62E0, 0.0E0, + 0.30E0, -0.07E0, 0.85E0, 0.0E0, 0.30E0, -0.79E0, + -0.74E0, 0.0E0, 0.30E0, 0.33E0, 1.27E0/ DATA DT8/0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.68E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.68E0, -0.87E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.68E0, -0.87E0, 0.15E0, + 0.94E0, 0.0E0, 0.0E0, 0.0E0, 0.5E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.68E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.35E0, -0.9E0, 0.48E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.38E0, -0.9E0, 0.57E0, 0.7E0, -0.75E0, + 0.2E0, 0.98E0, 0.5E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.68E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.35E0, -0.72E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.38E0, + -0.63E0, 0.15E0, 0.88E0, 0.0E0, 0.0E0, 0.0E0, + 0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.68E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.68E0, -0.9E0, 0.33E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.68E0, -0.9E0, 0.33E0, 0.7E0, + -0.75E0, 0.2E0, 1.04E0/ DATA DT9X/0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.78E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.78E0, -0.46E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.78E0, -0.46E0, -0.22E0, + 1.06E0, 0.0E0, 0.0E0, 0.0E0, 0.6E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.78E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.66E0, 0.1E0, -0.1E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.96E0, 0.1E0, -0.76E0, 0.8E0, 0.90E0, + -0.3E0, -0.02E0, 0.6E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.78E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, -0.06E0, 0.1E0, + -0.1E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.90E0, + 0.1E0, -0.22E0, 0.8E0, 0.18E0, -0.3E0, -0.02E0, + 0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.78E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.78E0, 0.26E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.78E0, 0.26E0, -0.76E0, 1.12E0, + 0.0E0, 0.0E0, 0.0E0/ DATA DT9Y/0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.04E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.04E0, -0.78E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.04E0, -0.78E0, 0.54E0, + 0.08E0, 0.0E0, 0.0E0, 0.0E0, 0.5E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.04E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.7E0, + -0.9E0, -0.12E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.64E0, -0.9E0, -0.30E0, 0.7E0, -0.18E0, 0.2E0, + 0.28E0, 0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.04E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.7E0, -1.08E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.64E0, -1.26E0, + 0.54E0, 0.20E0, 0.0E0, 0.0E0, 0.0E0, 0.5E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.04E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.04E0, -0.9E0, 0.18E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.04E0, -0.9E0, 0.18E0, 0.7E0, + -0.18E0, 0.2E0, 0.16E0/ DATA DT10X/0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.5E0, -0.9E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.5E0, -0.9E0, 0.3E0, 0.7E0, + 0.0E0, 0.0E0, 0.0E0, 0.6E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.5E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.3E0, 0.1E0, 0.5E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.8E0, 0.1E0, -0.6E0, + 0.8E0, 0.3E0, -0.3E0, 0.5E0, 0.6E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.5E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, -0.9E0, + 0.1E0, 0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.7E0, + 0.1E0, 0.3E0, 0.8E0, -0.9E0, -0.3E0, 0.5E0, + 0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.5E0, 0.3E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.5E0, 0.3E0, -0.6E0, 0.8E0, 0.0E0, 0.0E0, + 0.0E0/ DATA DT10Y/0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.6E0, 0.1E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.6E0, 0.1E0, -0.5E0, 0.8E0, 0.0E0, + 0.0E0, 0.0E0, 0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, -0.5E0, -0.9E0, 0.6E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, -0.4E0, -0.9E0, 0.9E0, + 0.7E0, -0.5E0, 0.2E0, 0.6E0, 0.5E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.6E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, -0.5E0, + 0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + -0.4E0, 0.9E0, -0.5E0, 0.6E0, 0.0E0, 0.0E0, + 0.0E0, 0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.6E0, -0.9E0, 0.1E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.6E0, -0.9E0, 0.1E0, 0.7E0, + -0.5E0, 0.2E0, 0.8E0/ DATA SSIZE1/0.0E0, 0.3E0, 1.6E0, 3.2E0/ DATA SSIZE2/0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0, + 1.17E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0, + 1.17E0, 1.17E0, 1.17E0/ * .. Executable Statements .. * DO 120 KI = 1, 4 INCX = INCXS(KI) INCY = INCYS(KI) MX = ABS(INCX) MY = ABS(INCY) * DO 100 KN = 1, 4 N = NS(KN) KSIZE = MIN(2,KN) LENX = LENS(KN,MX) LENY = LENS(KN,MY) * .. Initialize all argument arrays .. DO 20 I = 1, 7 SX(I) = DX1(I) SY(I) = DY1(I) 20 CONTINUE * IF (ICASE.EQ.1) THEN * .. SDOT .. CALL STEST1(SDOT(N,SX,INCX,SY,INCY),DT7(KN,KI),SSIZE1(KN) + ,SFAC) ELSE IF (ICASE.EQ.2) THEN * .. SAXPY .. CALL SAXPY(N,SA,SX,INCX,SY,INCY) DO 40 J = 1, LENY STY(J) = DT8(J,KN,KI) 40 CONTINUE CALL STEST(LENY,SY,STY,SSIZE2(1,KSIZE),SFAC) ELSE IF (ICASE.EQ.5) THEN * .. SCOPY .. DO 60 I = 1, 7 STY(I) = DT10Y(I,KN,KI) 60 CONTINUE CALL SCOPY(N,SX,INCX,SY,INCY) CALL STEST(LENY,SY,STY,SSIZE2(1,1),1.0E0) ELSE IF (ICASE.EQ.6) THEN * .. SSWAP .. CALL SSWAP(N,SX,INCX,SY,INCY) DO 80 I = 1, 7 STX(I) = DT10X(I,KN,KI) STY(I) = DT10Y(I,KN,KI) 80 CONTINUE CALL STEST(LENX,SX,STX,SSIZE2(1,1),1.0E0) CALL STEST(LENY,SY,STY,SSIZE2(1,1),1.0E0) ELSE WRITE (NOUT,*) ' Shouldn''t be here in CHECK2' STOP END IF 100 CONTINUE 120 CONTINUE RETURN END SUBROUTINE CHECK3(SFAC) * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. REAL SFAC * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. REAL SA, SC, SS INTEGER I, K, KI, KN, KSIZE, LENX, LENY, MX, MY * .. Local Arrays .. REAL COPYX(5), COPYY(5), DT9X(7,4,4), DT9Y(7,4,4), + DX1(7), DY1(7), MWPC(11), MWPS(11), MWPSTX(5), + MWPSTY(5), MWPTX(11,5), MWPTY(11,5), MWPX(5), + MWPY(5), SSIZE2(14,2), STX(7), STY(7), SX(7), + SY(7) INTEGER INCXS(4), INCYS(4), LENS(4,2), MWPINX(11), + MWPINY(11), MWPN(11), NS(4) * .. External Subroutines .. EXTERNAL SROT, STEST * .. Intrinsic Functions .. INTRINSIC ABS, MIN * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA SA/0.3E0/ DATA INCXS/1, 2, -2, -1/ DATA INCYS/1, -2, 1, -2/ DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/ DATA NS/0, 1, 2, 4/ DATA DX1/0.6E0, 0.1E0, -0.5E0, 0.8E0, 0.9E0, -0.3E0, + -0.4E0/ DATA DY1/0.5E0, -0.9E0, 0.3E0, 0.7E0, -0.6E0, 0.2E0, + 0.8E0/ DATA SC, SS/0.8E0, 0.6E0/ DATA DT9X/0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.78E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.78E0, -0.46E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.78E0, -0.46E0, -0.22E0, + 1.06E0, 0.0E0, 0.0E0, 0.0E0, 0.6E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.78E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.66E0, 0.1E0, -0.1E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.96E0, 0.1E0, -0.76E0, 0.8E0, 0.90E0, + -0.3E0, -0.02E0, 0.6E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.78E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, -0.06E0, 0.1E0, + -0.1E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.90E0, + 0.1E0, -0.22E0, 0.8E0, 0.18E0, -0.3E0, -0.02E0, + 0.6E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.78E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.78E0, 0.26E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.78E0, 0.26E0, -0.76E0, 1.12E0, + 0.0E0, 0.0E0, 0.0E0/ DATA DT9Y/0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.04E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.04E0, -0.78E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.04E0, -0.78E0, 0.54E0, + 0.08E0, 0.0E0, 0.0E0, 0.0E0, 0.5E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.04E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.7E0, + -0.9E0, -0.12E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.64E0, -0.9E0, -0.30E0, 0.7E0, -0.18E0, 0.2E0, + 0.28E0, 0.5E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.04E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.7E0, -1.08E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.64E0, -1.26E0, + 0.54E0, 0.20E0, 0.0E0, 0.0E0, 0.0E0, 0.5E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.04E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.04E0, -0.9E0, 0.18E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.04E0, -0.9E0, 0.18E0, 0.7E0, + -0.18E0, 0.2E0, 0.16E0/ DATA SSIZE2/0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, 0.0E0, + 0.0E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0, + 1.17E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0, 1.17E0, + 1.17E0, 1.17E0, 1.17E0/ * .. Executable Statements .. * DO 60 KI = 1, 4 INCX = INCXS(KI) INCY = INCYS(KI) MX = ABS(INCX) MY = ABS(INCY) * DO 40 KN = 1, 4 N = NS(KN) KSIZE = MIN(2,KN) LENX = LENS(KN,MX) LENY = LENS(KN,MY) * IF (ICASE.EQ.4) THEN * .. SROT .. DO 20 I = 1, 7 SX(I) = DX1(I) SY(I) = DY1(I) STX(I) = DT9X(I,KN,KI) STY(I) = DT9Y(I,KN,KI) 20 CONTINUE CALL SROT(N,SX,INCX,SY,INCY,SC,SS) CALL STEST(LENX,SX,STX,SSIZE2(1,KSIZE),SFAC) CALL STEST(LENY,SY,STY,SSIZE2(1,KSIZE),SFAC) ELSE WRITE (NOUT,*) ' Shouldn''t be here in CHECK3' STOP END IF 40 CONTINUE 60 CONTINUE * MWPC(1) = 1 DO 80 I = 2, 11 MWPC(I) = 0 80 CONTINUE MWPS(1) = 0 DO 100 I = 2, 6 MWPS(I) = 1 100 CONTINUE DO 120 I = 7, 11 MWPS(I) = -1 120 CONTINUE MWPINX(1) = 1 MWPINX(2) = 1 MWPINX(3) = 1 MWPINX(4) = -1 MWPINX(5) = 1 MWPINX(6) = -1 MWPINX(7) = 1 MWPINX(8) = 1 MWPINX(9) = -1 MWPINX(10) = 1 MWPINX(11) = -1 MWPINY(1) = 1 MWPINY(2) = 1 MWPINY(3) = -1 MWPINY(4) = -1 MWPINY(5) = 2 MWPINY(6) = 1 MWPINY(7) = 1 MWPINY(8) = -1 MWPINY(9) = -1 MWPINY(10) = 2 MWPINY(11) = 1 DO 140 I = 1, 11 MWPN(I) = 5 140 CONTINUE MWPN(5) = 3 MWPN(10) = 3 DO 160 I = 1, 5 MWPX(I) = I MWPY(I) = I MWPTX(1,I) = I MWPTY(1,I) = I MWPTX(2,I) = I MWPTY(2,I) = -I MWPTX(3,I) = 6 - I MWPTY(3,I) = I - 6 MWPTX(4,I) = I MWPTY(4,I) = -I MWPTX(6,I) = 6 - I MWPTY(6,I) = I - 6 MWPTX(7,I) = -I MWPTY(7,I) = I MWPTX(8,I) = I - 6 MWPTY(8,I) = 6 - I MWPTX(9,I) = -I MWPTY(9,I) = I MWPTX(11,I) = I - 6 MWPTY(11,I) = 6 - I 160 CONTINUE MWPTX(5,1) = 1 MWPTX(5,2) = 3 MWPTX(5,3) = 5 MWPTX(5,4) = 4 MWPTX(5,5) = 5 MWPTY(5,1) = -1 MWPTY(5,2) = 2 MWPTY(5,3) = -2 MWPTY(5,4) = 4 MWPTY(5,5) = -3 MWPTX(10,1) = -1 MWPTX(10,2) = -3 MWPTX(10,3) = -5 MWPTX(10,4) = 4 MWPTX(10,5) = 5 MWPTY(10,1) = 1 MWPTY(10,2) = 2 MWPTY(10,3) = 2 MWPTY(10,4) = 4 MWPTY(10,5) = 3 DO 200 I = 1, 11 INCX = MWPINX(I) INCY = MWPINY(I) DO 180 K = 1, 5 COPYX(K) = MWPX(K) COPYY(K) = MWPY(K) MWPSTX(K) = MWPTX(I,K) MWPSTY(K) = MWPTY(I,K) 180 CONTINUE CALL SROT(MWPN(I),COPYX,INCX,COPYY,INCY,MWPC(I),MWPS(I)) CALL STEST(5,COPYX,MWPSTX,MWPSTX,SFAC) CALL STEST(5,COPYY,MWPSTY,MWPSTY,SFAC) 200 CONTINUE RETURN END SUBROUTINE STEST(LEN,SCOMP,STRUE,SSIZE,SFAC) * ********************************* STEST ************************** * * THIS SUBR COMPARES ARRAYS SCOMP() AND STRUE() OF LENGTH LEN TO * SEE IF THE TERM BY TERM DIFFERENCES, MULTIPLIED BY SFAC, ARE * NEGLIGIBLE. * * C. L. LAWSON, JPL, 1974 DEC 10 * * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. REAL SFAC INTEGER LEN * .. Array Arguments .. REAL SCOMP(LEN), SSIZE(LEN), STRUE(LEN) * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. REAL SD INTEGER I * .. External Functions .. REAL SDIFF EXTERNAL SDIFF * .. Intrinsic Functions .. INTRINSIC ABS * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Executable Statements .. * DO 40 I = 1, LEN SD = SCOMP(I) - STRUE(I) IF (SDIFF(ABS(SSIZE(I))+ABS(SFAC*SD),ABS(SSIZE(I))).EQ.0.0E0) + GO TO 40 * * HERE SCOMP(I) IS NOT CLOSE TO STRUE(I). * IF ( .NOT. PASS) GO TO 20 * PRINT FAIL MESSAGE AND HEADER. PASS = .FALSE. WRITE (NOUT,99999) WRITE (NOUT,99998) 20 WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, I, SCOMP(I), + STRUE(I), SD, SSIZE(I) 40 CONTINUE RETURN * 99999 FORMAT (' FAIL') 99998 FORMAT (/' CASE N INCX INCY MODE I ', + ' COMP(I) TRUE(I) DIFFERENCE', + ' SIZE(I)',/1X) 99997 FORMAT (1X,I4,I3,3I5,I3,2E36.8,2E12.4) END SUBROUTINE STEST1(SCOMP1,STRUE1,SSIZE,SFAC) * ************************* STEST1 ***************************** * * THIS IS AN INTERFACE SUBROUTINE TO ACCOMODATE THE FORTRAN * REQUIREMENT THAT WHEN A DUMMY ARGUMENT IS AN ARRAY, THE * ACTUAL ARGUMENT MUST ALSO BE AN ARRAY OR AN ARRAY ELEMENT. * * C.L. LAWSON, JPL, 1978 DEC 6 * * .. Scalar Arguments .. REAL SCOMP1, SFAC, STRUE1 * .. Array Arguments .. REAL SSIZE(*) * .. Local Arrays .. REAL SCOMP(1), STRUE(1) * .. External Subroutines .. EXTERNAL STEST * .. Executable Statements .. * SCOMP(1) = SCOMP1 STRUE(1) = STRUE1 CALL STEST(1,SCOMP,STRUE,SSIZE,SFAC) * RETURN END REAL FUNCTION SDIFF(SA,SB) * ********************************* SDIFF ************************** * COMPUTES DIFFERENCE OF TWO NUMBERS. C. L. LAWSON, JPL 1974 FEB 15 * * .. Scalar Arguments .. REAL SA, SB * .. Executable Statements .. SDIFF = SA - SB RETURN END SUBROUTINE ITEST1(ICOMP,ITRUE) * ********************************* ITEST1 ************************* * * THIS SUBROUTINE COMPARES THE VARIABLES ICOMP AND ITRUE FOR * EQUALITY. * C. L. LAWSON, JPL, 1974 DEC 10 * * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. INTEGER ICOMP, ITRUE * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. INTEGER ID * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Executable Statements .. * IF (ICOMP.EQ.ITRUE) GO TO 40 * * HERE ICOMP IS NOT EQUAL TO ITRUE. * IF ( .NOT. PASS) GO TO 20 * PRINT FAIL MESSAGE AND HEADER. PASS = .FALSE. WRITE (NOUT,99999) WRITE (NOUT,99998) 20 ID = ICOMP - ITRUE WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, ICOMP, ITRUE, ID 40 CONTINUE RETURN * 99999 FORMAT (' FAIL') 99998 FORMAT (/' CASE N INCX INCY MODE ', + ' COMP TRUE DIFFERENCE', + /1X) 99997 FORMAT (1X,I4,I3,3I5,2I36,I12) END blas-1.2.orig/test/zblat3d 0000644 0001750 0001750 00000002026 10735444622 016372 0 ustar sylvestre sylvestre 'ZBLAT3.SUMM' NAME OF SUMMARY OUTPUT FILE 6 UNIT NUMBER OF SUMMARY FILE 'ZBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. F LOGICAL FLAG, T TO STOP ON FAILURES. F LOGICAL FLAG, T TO TEST ERROR EXITS. 16.0 THRESHOLD VALUE OF TEST RATIO 6 NUMBER OF VALUES OF N 0 1 2 3 5 9 VALUES OF N 3 NUMBER OF VALUES OF ALPHA (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA 3 NUMBER OF VALUES OF BETA (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA ZGEMM T PUT F FOR NO TEST. SAME COLUMNS. ZHEMM T PUT F FOR NO TEST. SAME COLUMNS. ZSYMM T PUT F FOR NO TEST. SAME COLUMNS. ZTRMM T PUT F FOR NO TEST. SAME COLUMNS. ZTRSM T PUT F FOR NO TEST. SAME COLUMNS. ZHERK T PUT F FOR NO TEST. SAME COLUMNS. ZSYRK T PUT F FOR NO TEST. SAME COLUMNS. ZHER2K T PUT F FOR NO TEST. SAME COLUMNS. ZSYR2K T PUT F FOR NO TEST. SAME COLUMNS. blas-1.2.orig/test/sblat3 0000644 0001750 0001750 00000311101 10735444622 016214 0 ustar sylvestre sylvestre PROGRAM SBLAT3 * * Test program for the REAL Level 3 Blas. * * The program must be driven by a short data file. The first 14 records * of the file are read using list-directed input, the last 6 records * are read using the format ( A6, L2 ). An annotated example of a data * file can be obtained by deleting the first 3 characters from the * following 20 lines: * 'SBLAT3.SUMM' NAME OF SUMMARY OUTPUT FILE * 6 UNIT NUMBER OF SUMMARY FILE * 'SBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE * -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) * F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. * F LOGICAL FLAG, T TO STOP ON FAILURES. * T LOGICAL FLAG, T TO TEST ERROR EXITS. * 16.0 THRESHOLD VALUE OF TEST RATIO * 6 NUMBER OF VALUES OF N * 0 1 2 3 5 9 VALUES OF N * 3 NUMBER OF VALUES OF ALPHA * 0.0 1.0 0.7 VALUES OF ALPHA * 3 NUMBER OF VALUES OF BETA * 0.0 1.0 1.3 VALUES OF BETA * SGEMM T PUT F FOR NO TEST. SAME COLUMNS. * SSYMM T PUT F FOR NO TEST. SAME COLUMNS. * STRMM T PUT F FOR NO TEST. SAME COLUMNS. * STRSM T PUT F FOR NO TEST. SAME COLUMNS. * SSYRK T PUT F FOR NO TEST. SAME COLUMNS. * SSYR2K T PUT F FOR NO TEST. SAME COLUMNS. * * See: * * Dongarra J. J., Du Croz J. J., Duff I. S. and Hammarling S. * A Set of Level 3 Basic Linear Algebra Subprograms. * * Technical Memorandum No.88 (Revision 1), Mathematics and * Computer Science Division, Argonne National Laboratory, 9700 * South Cass Avenue, Argonne, Illinois 60439, US. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. INTEGER NIN PARAMETER ( NIN = 5 ) INTEGER NSUBS PARAMETER ( NSUBS = 6 ) REAL ZERO, HALF, ONE PARAMETER ( ZERO = 0.0, HALF = 0.5, ONE = 1.0 ) INTEGER NMAX PARAMETER ( NMAX = 65 ) INTEGER NIDMAX, NALMAX, NBEMAX PARAMETER ( NIDMAX = 9, NALMAX = 7, NBEMAX = 7 ) * .. Local Scalars .. REAL EPS, ERR, THRESH INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NOUT, NTRA LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE, $ TSTERR CHARACTER*1 TRANSA, TRANSB CHARACTER*6 SNAMET CHARACTER*32 SNAPS, SUMMRY * .. Local Arrays .. REAL AA( NMAX*NMAX ), AB( NMAX, 2*NMAX ), $ ALF( NALMAX ), AS( NMAX*NMAX ), $ BB( NMAX*NMAX ), BET( NBEMAX ), $ BS( NMAX*NMAX ), C( NMAX, NMAX ), $ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ), $ G( NMAX ), W( 2*NMAX ) INTEGER IDIM( NIDMAX ) LOGICAL LTEST( NSUBS ) CHARACTER*6 SNAMES( NSUBS ) * .. External Functions .. REAL SDIFF LOGICAL LSE EXTERNAL SDIFF, LSE * .. External Subroutines .. EXTERNAL SCHK1, SCHK2, SCHK3, SCHK4, SCHK5, SCHKE, SMMCH * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR COMMON /SRNAMC/SRNAMT * .. Data statements .. DATA SNAMES/'SGEMM ', 'SSYMM ', 'STRMM ', 'STRSM ', $ 'SSYRK ', 'SSYR2K'/ * .. Executable Statements .. * * Read name and unit number for summary output file and open file. * READ( NIN, FMT = * )SUMMRY READ( NIN, FMT = * )NOUT OPEN( NOUT, FILE = SUMMRY, STATUS = 'NEW' ) NOUTC = NOUT * * Read name and unit number for snapshot output file and open file. * READ( NIN, FMT = * )SNAPS READ( NIN, FMT = * )NTRA TRACE = NTRA.GE.0 IF( TRACE )THEN OPEN( NTRA, FILE = SNAPS, STATUS = 'NEW' ) END IF * Read the flag that directs rewinding of the snapshot file. READ( NIN, FMT = * )REWI REWI = REWI.AND.TRACE * Read the flag that directs stopping on any failure. READ( NIN, FMT = * )SFATAL * Read the flag that indicates whether error exits are to be tested. READ( NIN, FMT = * )TSTERR * Read the threshold value of the test ratio READ( NIN, FMT = * )THRESH * * Read and check the parameter values for the tests. * * Values of N READ( NIN, FMT = * )NIDIM IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN WRITE( NOUT, FMT = 9997 )'N', NIDMAX GO TO 220 END IF READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM ) DO 10 I = 1, NIDIM IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN WRITE( NOUT, FMT = 9996 )NMAX GO TO 220 END IF 10 CONTINUE * Values of ALPHA READ( NIN, FMT = * )NALF IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX GO TO 220 END IF READ( NIN, FMT = * )( ALF( I ), I = 1, NALF ) * Values of BETA READ( NIN, FMT = * )NBET IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX GO TO 220 END IF READ( NIN, FMT = * )( BET( I ), I = 1, NBET ) * * Report values of parameters. * WRITE( NOUT, FMT = 9995 ) WRITE( NOUT, FMT = 9994 )( IDIM( I ), I = 1, NIDIM ) WRITE( NOUT, FMT = 9993 )( ALF( I ), I = 1, NALF ) WRITE( NOUT, FMT = 9992 )( BET( I ), I = 1, NBET ) IF( .NOT.TSTERR )THEN WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9984 ) END IF WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9999 )THRESH WRITE( NOUT, FMT = * ) * * Read names of subroutines and flags which indicate * whether they are to be tested. * DO 20 I = 1, NSUBS LTEST( I ) = .FALSE. 20 CONTINUE 30 READ( NIN, FMT = 9988, END = 60 )SNAMET, LTESTT DO 40 I = 1, NSUBS IF( SNAMET.EQ.SNAMES( I ) ) $ GO TO 50 40 CONTINUE WRITE( NOUT, FMT = 9990 )SNAMET STOP 50 LTEST( I ) = LTESTT GO TO 30 * 60 CONTINUE CLOSE ( NIN ) * * Compute EPS (the machine precision). * EPS = ONE 70 CONTINUE IF( SDIFF( ONE + EPS, ONE ).EQ.ZERO ) $ GO TO 80 EPS = HALF*EPS GO TO 70 80 CONTINUE EPS = EPS + EPS WRITE( NOUT, FMT = 9998 )EPS * * Check the reliability of SMMCH using exact data. * N = MIN( 32, NMAX ) DO 100 J = 1, N DO 90 I = 1, N AB( I, J ) = MAX( I - J + 1, 0 ) 90 CONTINUE AB( J, NMAX + 1 ) = J AB( 1, NMAX + J ) = J C( J, 1 ) = ZERO 100 CONTINUE DO 110 J = 1, N CC( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3 110 CONTINUE * CC holds the exact result. On exit from SMMCH CT holds * the result computed by SMMCH. TRANSA = 'N' TRANSB = 'N' CALL SMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LSE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF TRANSB = 'T' CALL SMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LSE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF DO 120 J = 1, N AB( J, NMAX + 1 ) = N - J + 1 AB( 1, NMAX + J ) = N - J + 1 120 CONTINUE DO 130 J = 1, N CC( N - J + 1 ) = J*( ( J + 1 )*J )/2 - $ ( ( J + 1 )*J*( J - 1 ) )/3 130 CONTINUE TRANSA = 'T' TRANSB = 'N' CALL SMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LSE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF TRANSB = 'T' CALL SMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LSE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.ZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF * * Test each subroutine in turn. * DO 200 ISNUM = 1, NSUBS WRITE( NOUT, FMT = * ) IF( .NOT.LTEST( ISNUM ) )THEN * Subprogram is not to be tested. WRITE( NOUT, FMT = 9987 )SNAMES( ISNUM ) ELSE SRNAMT = SNAMES( ISNUM ) * Test error exits. IF( TSTERR )THEN CALL SCHKE( ISNUM, SNAMES( ISNUM ), NOUT ) WRITE( NOUT, FMT = * ) END IF * Test computations. INFOT = 0 OK = .TRUE. FATAL = .FALSE. GO TO ( 140, 150, 160, 160, 170, 180 )ISNUM * Test SGEMM, 01. 140 CALL SCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test SSYMM, 02. 150 CALL SCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test STRMM, 03, STRSM, 04. 160 CALL SCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NMAX, AB, $ AA, AS, AB( 1, NMAX + 1 ), BB, BS, CT, G, C ) GO TO 190 * Test SSYRK, 05. 170 CALL SCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test SSYR2K, 06. 180 CALL SCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, BB, BS, C, CC, CS, CT, G, W ) GO TO 190 * 190 IF( FATAL.AND.SFATAL ) $ GO TO 210 END IF 200 CONTINUE WRITE( NOUT, FMT = 9986 ) GO TO 230 * 210 CONTINUE WRITE( NOUT, FMT = 9985 ) GO TO 230 * 220 CONTINUE WRITE( NOUT, FMT = 9991 ) * 230 CONTINUE IF( TRACE ) $ CLOSE ( NTRA ) CLOSE ( NOUT ) STOP * 9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES', $ 'S THAN', F8.2 ) 9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, E9.1 ) 9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ', $ 'THAN ', I2 ) 9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 ) 9995 FORMAT( ' TESTS OF THE REAL LEVEL 3 BLAS', //' THE F', $ 'OLLOWING PARAMETER VALUES WILL BE USED:' ) 9994 FORMAT( ' FOR N ', 9I6 ) 9993 FORMAT( ' FOR ALPHA ', 7F6.1 ) 9992 FORMAT( ' FOR BETA ', 7F6.1 ) 9991 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM', $ /' ******* TESTS ABANDONED *******' ) 9990 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T', $ 'ESTS ABANDONED *******' ) 9989 FORMAT( ' ERROR IN SMMCH - IN-LINE DOT PRODUCTS ARE BEING EVALU', $ 'ATED WRONGLY.', /' SMMCH WAS CALLED WITH TRANSA = ', A1, $ ' AND TRANSB = ', A1, /' AND RETURNED SAME = ', L1, ' AND ', $ 'ERR = ', F12.3, '.', /' THIS MAY BE DUE TO FAULTS IN THE ', $ 'ARITHMETIC OR THE COMPILER.', /' ******* TESTS ABANDONED ', $ '*******' ) 9988 FORMAT( A6, L2 ) 9987 FORMAT( 1X, A6, ' WAS NOT TESTED' ) 9986 FORMAT( /' END OF TESTS' ) 9985 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' ) 9984 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' ) * * End of SBLAT3. * END SUBROUTINE SCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests SGEMM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ), G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. REAL ALPHA, ALS, BETA, BLS, ERR, ERRMAX INTEGER I, IA, IB, ICA, ICB, IK, IM, IN, K, KS, LAA, $ LBB, LCC, LDA, LDAS, LDB, LDBS, LDC, LDCS, M, $ MA, MB, MS, N, NA, NARGS, NB, NC, NS LOGICAL NULL, RESET, SAME, TRANA, TRANB CHARACTER*1 TRANAS, TRANBS, TRANSA, TRANSB CHARACTER*3 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SGEMM, SMAKE, SMMCH * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'NTC'/ * .. Executable Statements .. * NARGS = 13 NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 110 IM = 1, NIDIM M = IDIM( IM ) * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = M IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 100 LCC = LDC*N NULL = N.LE.0.OR.M.LE.0 * DO 90 IK = 1, NIDIM K = IDIM( IK ) * DO 80 ICA = 1, 3 TRANSA = ICH( ICA: ICA ) TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C' * IF( TRANA )THEN MA = K NA = M ELSE MA = M NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * * Generate the matrix A. * CALL SMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 70 ICB = 1, 3 TRANSB = ICH( ICB: ICB ) TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C' * IF( TRANB )THEN MB = N NB = K ELSE MB = K NB = N END IF * Set LDB to 1 more than minimum value if room. LDB = MB IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 70 LBB = LDB*NB * * Generate the matrix B. * CALL SMAKE( 'GE', ' ', ' ', MB, NB, B, NMAX, BB, $ LDB, RESET, ZERO ) * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL SMAKE( 'GE', ' ', ' ', M, N, C, NMAX, $ CC, LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * TRANAS = TRANSA TRANBS = TRANSB MS = M NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BLS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ TRANSA, TRANSB, M, N, K, ALPHA, LDA, LDB, $ BETA, LDC IF( REWI ) $ REWIND NTRA CALL SGEMM( TRANSA, TRANSB, M, N, K, ALPHA, $ AA, LDA, BB, LDB, BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = TRANSA.EQ.TRANAS ISAME( 2 ) = TRANSB.EQ.TRANBS ISAME( 3 ) = MS.EQ.M ISAME( 4 ) = NS.EQ.N ISAME( 5 ) = KS.EQ.K ISAME( 6 ) = ALS.EQ.ALPHA ISAME( 7 ) = LSE( AS, AA, LAA ) ISAME( 8 ) = LDAS.EQ.LDA ISAME( 9 ) = LSE( BS, BB, LBB ) ISAME( 10 ) = LDBS.EQ.LDB ISAME( 11 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 12 ) = LSE( CS, CC, LCC ) ELSE ISAME( 12 ) = LSERES( 'GE', ' ', M, N, CS, $ CC, LDC ) END IF ISAME( 13 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report * and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL SMMCH( TRANSA, TRANSB, M, N, K, $ ALPHA, A, NMAX, B, NMAX, BETA, $ C, NMAX, CT, G, CC, LDC, EPS, $ ERR, FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 120 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANSA, TRANSB, M, N, K, $ ALPHA, LDA, LDB, BETA, LDC * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',''', A1, ''',', $ 3( I3, ',' ), F4.1, ', A,', I3, ', B,', I3, ',', F4.1, ', ', $ 'C,', I3, ').' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK1. * END SUBROUTINE SCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests SSYMM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ), G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. REAL ALPHA, ALS, BETA, BLS, ERR, ERRMAX INTEGER I, IA, IB, ICS, ICU, IM, IN, LAA, LBB, LCC, $ LDA, LDAS, LDB, LDBS, LDC, LDCS, M, MS, N, NA, $ NARGS, NC, NS LOGICAL LEFT, NULL, RESET, SAME CHARACTER*1 SIDE, SIDES, UPLO, UPLOS CHARACTER*2 ICHS, ICHU * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SMAKE, SMMCH, SSYMM * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHS/'LR'/, ICHU/'UL'/ * .. Executable Statements .. * NARGS = 12 NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 100 IM = 1, NIDIM M = IDIM( IM ) * DO 90 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = M IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 90 LCC = LDC*N NULL = N.LE.0.OR.M.LE.0 * * Set LDB to 1 more than minimum value if room. LDB = M IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 90 LBB = LDB*N * * Generate the matrix B. * CALL SMAKE( 'GE', ' ', ' ', M, N, B, NMAX, BB, LDB, RESET, $ ZERO ) * DO 80 ICS = 1, 2 SIDE = ICHS( ICS: ICS ) LEFT = SIDE.EQ.'L' * IF( LEFT )THEN NA = M ELSE NA = N END IF * Set LDA to 1 more than minimum value if room. LDA = NA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * DO 70 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * * Generate the symmetric matrix A. * CALL SMAKE( 'SY', UPLO, ' ', NA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL SMAKE( 'GE', ' ', ' ', M, N, C, NMAX, CC, $ LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * SIDES = SIDE UPLOS = UPLO MS = M NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BLS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, SIDE, $ UPLO, M, N, ALPHA, LDA, LDB, BETA, LDC IF( REWI ) $ REWIND NTRA CALL SSYMM( SIDE, UPLO, M, N, ALPHA, AA, LDA, $ BB, LDB, BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 110 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = SIDES.EQ.SIDE ISAME( 2 ) = UPLOS.EQ.UPLO ISAME( 3 ) = MS.EQ.M ISAME( 4 ) = NS.EQ.N ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LSE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = LSE( BS, BB, LBB ) ISAME( 9 ) = LDBS.EQ.LDB ISAME( 10 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 11 ) = LSE( CS, CC, LCC ) ELSE ISAME( 11 ) = LSERES( 'GE', ' ', M, N, CS, $ CC, LDC ) END IF ISAME( 12 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 110 END IF * IF( .NOT.NULL )THEN * * Check the result. * IF( LEFT )THEN CALL SMMCH( 'N', 'N', M, N, M, ALPHA, A, $ NMAX, B, NMAX, BETA, C, NMAX, $ CT, G, CC, LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL SMMCH( 'N', 'N', M, N, N, ALPHA, B, $ NMAX, A, NMAX, BETA, C, NMAX, $ CT, G, CC, LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 120 * 110 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, M, N, ALPHA, LDA, $ LDB, BETA, LDC * 120 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ', B,', I3, ',', F4.1, ', C,', I3, ') ', $ ' .' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK2. * END SUBROUTINE SCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NMAX, A, AA, AS, $ B, BB, BS, CT, G, C ) * * Tests STRMM and STRSM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0, ONE = 1.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CT( NMAX ), G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. REAL ALPHA, ALS, ERR, ERRMAX INTEGER I, IA, ICD, ICS, ICT, ICU, IM, IN, J, LAA, LBB, $ LDA, LDAS, LDB, LDBS, M, MS, N, NA, NARGS, NC, $ NS LOGICAL LEFT, NULL, RESET, SAME CHARACTER*1 DIAG, DIAGS, SIDE, SIDES, TRANAS, TRANSA, UPLO, $ UPLOS CHARACTER*2 ICHD, ICHS, ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SMAKE, SMMCH, STRMM, STRSM * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/, ICHS/'LR'/ * .. Executable Statements .. * NARGS = 11 NC = 0 RESET = .TRUE. ERRMAX = ZERO * Set up zero matrix for SMMCH. DO 20 J = 1, NMAX DO 10 I = 1, NMAX C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE * DO 140 IM = 1, NIDIM M = IDIM( IM ) * DO 130 IN = 1, NIDIM N = IDIM( IN ) * Set LDB to 1 more than minimum value if room. LDB = M IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 130 LBB = LDB*N NULL = M.LE.0.OR.N.LE.0 * DO 120 ICS = 1, 2 SIDE = ICHS( ICS: ICS ) LEFT = SIDE.EQ.'L' IF( LEFT )THEN NA = M ELSE NA = N END IF * Set LDA to 1 more than minimum value if room. LDA = NA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 130 LAA = LDA*NA * DO 110 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * DO 100 ICT = 1, 3 TRANSA = ICHT( ICT: ICT ) * DO 90 ICD = 1, 2 DIAG = ICHD( ICD: ICD ) * DO 80 IA = 1, NALF ALPHA = ALF( IA ) * * Generate the matrix A. * CALL SMAKE( 'TR', UPLO, DIAG, NA, NA, A, $ NMAX, AA, LDA, RESET, ZERO ) * * Generate the matrix B. * CALL SMAKE( 'GE', ' ', ' ', M, N, B, NMAX, $ BB, LDB, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * SIDES = SIDE UPLOS = UPLO TRANAS = TRANSA DIAGS = DIAG MS = M NS = N ALS = ALPHA DO 30 I = 1, LAA AS( I ) = AA( I ) 30 CONTINUE LDAS = LDA DO 40 I = 1, LBB BS( I ) = BB( I ) 40 CONTINUE LDBS = LDB * * Call the subroutine. * IF( SNAME( 4: 5 ).EQ.'MM' )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, $ LDA, LDB IF( REWI ) $ REWIND NTRA CALL STRMM( SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, AA, LDA, BB, LDB ) ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, $ LDA, LDB IF( REWI ) $ REWIND NTRA CALL STRSM( SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, AA, LDA, BB, LDB ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 150 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = SIDES.EQ.SIDE ISAME( 2 ) = UPLOS.EQ.UPLO ISAME( 3 ) = TRANAS.EQ.TRANSA ISAME( 4 ) = DIAGS.EQ.DIAG ISAME( 5 ) = MS.EQ.M ISAME( 6 ) = NS.EQ.N ISAME( 7 ) = ALS.EQ.ALPHA ISAME( 8 ) = LSE( AS, AA, LAA ) ISAME( 9 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 10 ) = LSE( BS, BB, LBB ) ELSE ISAME( 10 ) = LSERES( 'GE', ' ', M, N, BS, $ BB, LDB ) END IF ISAME( 11 ) = LDBS.EQ.LDB * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 50 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 50 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 150 END IF * IF( .NOT.NULL )THEN IF( SNAME( 4: 5 ).EQ.'MM' )THEN * * Check the result. * IF( LEFT )THEN CALL SMMCH( TRANSA, 'N', M, N, M, $ ALPHA, A, NMAX, B, NMAX, $ ZERO, C, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL SMMCH( 'N', TRANSA, M, N, N, $ ALPHA, B, NMAX, A, NMAX, $ ZERO, C, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN * * Compute approximation to original * matrix. * DO 70 J = 1, N DO 60 I = 1, M C( I, J ) = BB( I + ( J - 1 )* $ LDB ) BB( I + ( J - 1 )*LDB ) = ALPHA* $ B( I, J ) 60 CONTINUE 70 CONTINUE * IF( LEFT )THEN CALL SMMCH( TRANSA, 'N', M, N, M, $ ONE, A, NMAX, C, NMAX, $ ZERO, B, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .FALSE. ) ELSE CALL SMMCH( 'N', TRANSA, M, N, N, $ ONE, C, NMAX, A, NMAX, $ ZERO, B, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .FALSE. ) END IF END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 150 END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * 140 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 160 * 150 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, LDA, LDB * 160 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 4( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ', B,', I3, ') .' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK3. * END SUBROUTINE SCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests SSYRK. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ), G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. REAL ALPHA, ALS, BETA, BETS, ERR, ERRMAX INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, K, KS, $ LAA, LCC, LDA, LDAS, LDC, LDCS, LJ, MA, N, NA, $ NARGS, NC, NS LOGICAL NULL, RESET, SAME, TRAN, UPPER CHARACTER*1 TRANS, TRANSS, UPLO, UPLOS CHARACTER*2 ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SMAKE, SMMCH, SSYRK * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHT/'NTC'/, ICHU/'UL'/ * .. Executable Statements .. * NARGS = 10 NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = N IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 100 LCC = LDC*N NULL = N.LE.0 * DO 90 IK = 1, NIDIM K = IDIM( IK ) * DO 80 ICT = 1, 3 TRANS = ICHT( ICT: ICT ) TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C' IF( TRAN )THEN MA = K NA = N ELSE MA = N NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * * Generate the matrix A. * CALL SMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 70 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) UPPER = UPLO.EQ.'U' * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL SMAKE( 'SY', UPLO, ' ', N, N, C, NMAX, CC, $ LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA BETS = BETA DO 20 I = 1, LCC CS( I ) = CC( I ) 20 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, $ TRANS, N, K, ALPHA, LDA, BETA, LDC IF( REWI ) $ REWIND NTRA CALL SSYRK( UPLO, TRANS, N, K, ALPHA, AA, LDA, $ BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLOS.EQ.UPLO ISAME( 2 ) = TRANSS.EQ.TRANS ISAME( 3 ) = NS.EQ.N ISAME( 4 ) = KS.EQ.K ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LSE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = BETS.EQ.BETA IF( NULL )THEN ISAME( 9 ) = LSE( CS, CC, LCC ) ELSE ISAME( 9 ) = LSERES( 'SY', UPLO, N, N, CS, $ CC, LDC ) END IF ISAME( 10 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 30 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 30 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * JC = 1 DO 40 J = 1, N IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF IF( TRAN )THEN CALL SMMCH( 'T', 'N', LJ, 1, K, ALPHA, $ A( 1, JJ ), NMAX, $ A( 1, J ), NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL SMMCH( 'N', 'T', LJ, 1, K, ALPHA, $ A( JJ, 1 ), NMAX, $ A( J, 1 ), NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF IF( UPPER )THEN JC = JC + LDC ELSE JC = JC + LDC + 1 END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 110 40 CONTINUE END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 110 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9995 )J * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, ALPHA, $ LDA, BETA, LDC * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ',', F4.1, ', C,', I3, ') .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK4. * END SUBROUTINE SCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ AB, AA, AS, BB, BS, C, CC, CS, CT, G, W ) * * Tests SSYR2K. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. REAL AA( NMAX*NMAX ), AB( 2*NMAX*NMAX ), $ ALF( NALF ), AS( NMAX*NMAX ), BB( NMAX*NMAX ), $ BET( NBET ), BS( NMAX*NMAX ), C( NMAX, NMAX ), $ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ), $ G( NMAX ), W( 2*NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. REAL ALPHA, ALS, BETA, BETS, ERR, ERRMAX INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, JJAB, $ K, KS, LAA, LBB, LCC, LDA, LDAS, LDB, LDBS, $ LDC, LDCS, LJ, MA, N, NA, NARGS, NC, NS LOGICAL NULL, RESET, SAME, TRAN, UPPER CHARACTER*1 TRANS, TRANSS, UPLO, UPLOS CHARACTER*2 ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LSE, LSERES EXTERNAL LSE, LSERES * .. External Subroutines .. EXTERNAL SMAKE, SMMCH, SSYR2K * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHT/'NTC'/, ICHU/'UL'/ * .. Executable Statements .. * NARGS = 12 NC = 0 RESET = .TRUE. ERRMAX = ZERO * DO 130 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = N IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 130 LCC = LDC*N NULL = N.LE.0 * DO 120 IK = 1, NIDIM K = IDIM( IK ) * DO 110 ICT = 1, 3 TRANS = ICHT( ICT: ICT ) TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C' IF( TRAN )THEN MA = K NA = N ELSE MA = N NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 110 LAA = LDA*NA * * Generate the matrix A. * IF( TRAN )THEN CALL SMAKE( 'GE', ' ', ' ', MA, NA, AB, 2*NMAX, AA, $ LDA, RESET, ZERO ) ELSE CALL SMAKE( 'GE', ' ', ' ', MA, NA, AB, NMAX, AA, LDA, $ RESET, ZERO ) END IF * * Generate the matrix B. * LDB = LDA LBB = LAA IF( TRAN )THEN CALL SMAKE( 'GE', ' ', ' ', MA, NA, AB( K + 1 ), $ 2*NMAX, BB, LDB, RESET, ZERO ) ELSE CALL SMAKE( 'GE', ' ', ' ', MA, NA, AB( K*NMAX + 1 ), $ NMAX, BB, LDB, RESET, ZERO ) END IF * DO 100 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) UPPER = UPLO.EQ.'U' * DO 90 IA = 1, NALF ALPHA = ALF( IA ) * DO 80 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL SMAKE( 'SY', UPLO, ' ', N, N, C, NMAX, CC, $ LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BETS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, $ TRANS, N, K, ALPHA, LDA, LDB, BETA, LDC IF( REWI ) $ REWIND NTRA CALL SSYR2K( UPLO, TRANS, N, K, ALPHA, AA, LDA, $ BB, LDB, BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 150 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLOS.EQ.UPLO ISAME( 2 ) = TRANSS.EQ.TRANS ISAME( 3 ) = NS.EQ.N ISAME( 4 ) = KS.EQ.K ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LSE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = LSE( BS, BB, LBB ) ISAME( 9 ) = LDBS.EQ.LDB ISAME( 10 ) = BETS.EQ.BETA IF( NULL )THEN ISAME( 11 ) = LSE( CS, CC, LCC ) ELSE ISAME( 11 ) = LSERES( 'SY', UPLO, N, N, CS, $ CC, LDC ) END IF ISAME( 12 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 150 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * JJAB = 1 JC = 1 DO 70 J = 1, N IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF IF( TRAN )THEN DO 50 I = 1, K W( I ) = AB( ( J - 1 )*2*NMAX + K + $ I ) W( K + I ) = AB( ( J - 1 )*2*NMAX + $ I ) 50 CONTINUE CALL SMMCH( 'T', 'N', LJ, 1, 2*K, $ ALPHA, AB( JJAB ), 2*NMAX, $ W, 2*NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE DO 60 I = 1, K W( I ) = AB( ( K + I - 1 )*NMAX + $ J ) W( K + I ) = AB( ( I - 1 )*NMAX + $ J ) 60 CONTINUE CALL SMMCH( 'N', 'N', LJ, 1, 2*K, $ ALPHA, AB( JJ ), NMAX, W, $ 2*NMAX, BETA, C( JJ, J ), $ NMAX, CT, G, CC( JC ), LDC, $ EPS, ERR, FATAL, NOUT, $ .TRUE. ) END IF IF( UPPER )THEN JC = JC + LDC ELSE JC = JC + LDC + 1 IF( TRAN ) $ JJAB = JJAB + 2*NMAX END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 140 70 CONTINUE END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 160 * 140 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9995 )J * 150 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, ALPHA, $ LDA, LDB, BETA, LDC * 160 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ', B,', I3, ',', F4.1, ', C,', I3, ') ', $ ' .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of SCHK5. * END SUBROUTINE SCHKE( ISNUM, SRNAMT, NOUT ) * * Tests the error exits from the Level 3 Blas. * Requires a special version of the error-handling routine XERBLA. * ALPHA, BETA, A, B and C should not need to be defined. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER ISNUM, NOUT CHARACTER*6 SRNAMT * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Local Scalars .. REAL ALPHA, BETA * .. Local Arrays .. REAL A( 2, 1 ), B( 2, 1 ), C( 2, 1 ) * .. External Subroutines .. EXTERNAL CHKXER, SGEMM, SSYMM, SSYR2K, SSYRK, STRMM, $ STRSM * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. * OK is set to .FALSE. by the special version of XERBLA or by CHKXER * if anything is wrong. OK = .TRUE. * LERR is set to .TRUE. by the special version of XERBLA each time * it is called, and is then tested and re-set by CHKXER. LERR = .FALSE. GO TO ( 10, 20, 30, 40, 50, 60 )ISNUM 10 INFOT = 1 CALL SGEMM( '/', 'N', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 1 CALL SGEMM( '/', 'T', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SGEMM( 'N', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SGEMM( 'T', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SGEMM( 'N', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SGEMM( 'N', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SGEMM( 'T', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SGEMM( 'T', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SGEMM( 'N', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SGEMM( 'N', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SGEMM( 'T', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SGEMM( 'T', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SGEMM( 'N', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SGEMM( 'N', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SGEMM( 'T', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL SGEMM( 'T', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL SGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL SGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL SGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL SGEMM( 'T', 'T', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SGEMM( 'N', 'N', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SGEMM( 'N', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SGEMM( 'T', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL SGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL SGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL SGEMM( 'T', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL SGEMM( 'T', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 70 20 INFOT = 1 CALL SSYMM( '/', 'U', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SSYMM( 'L', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYMM( 'L', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYMM( 'R', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYMM( 'L', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYMM( 'R', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYMM( 'L', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYMM( 'R', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYMM( 'L', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYMM( 'R', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYMM( 'L', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYMM( 'R', 'U', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYMM( 'L', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYMM( 'R', 'L', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 70 30 INFOT = 1 CALL STRMM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL STRMM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL STRMM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL STRMM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRMM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRMM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRMM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRMM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 70 40 INFOT = 1 CALL STRSM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL STRSM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL STRSM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL STRSM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL STRSM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL STRSM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL STRSM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL STRSM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 70 50 INFOT = 1 CALL SSYRK( '/', 'N', 0, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SSYRK( 'U', '/', 0, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYRK( 'U', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYRK( 'U', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYRK( 'L', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYRK( 'L', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYRK( 'U', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYRK( 'U', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYRK( 'L', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYRK( 'L', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYRK( 'U', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYRK( 'U', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYRK( 'L', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYRK( 'L', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SSYRK( 'U', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SSYRK( 'U', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SSYRK( 'L', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL SSYRK( 'L', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 70 60 INFOT = 1 CALL SSYR2K( '/', 'N', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL SSYR2K( 'U', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYR2K( 'U', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYR2K( 'U', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYR2K( 'L', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL SSYR2K( 'L', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYR2K( 'U', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYR2K( 'U', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYR2K( 'L', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL SSYR2K( 'L', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYR2K( 'U', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYR2K( 'U', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYR2K( 'L', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL SSYR2K( 'L', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYR2K( 'U', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL SSYR2K( 'L', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYR2K( 'U', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL SSYR2K( 'L', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * 70 IF( OK )THEN WRITE( NOUT, FMT = 9999 )SRNAMT ELSE WRITE( NOUT, FMT = 9998 )SRNAMT END IF RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' ) 9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****', $ '**' ) * * End of SCHKE. * END SUBROUTINE SMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, RESET, $ TRANSL ) * * Generates values for an M by N matrix A. * Stores the values in the array AA in the data structure required * by the routine, with unwanted elements set to rogue value. * * TYPE is 'GE', 'SY' or 'TR'. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0, ONE = 1.0 ) REAL ROGUE PARAMETER ( ROGUE = -1.0E10 ) * .. Scalar Arguments .. REAL TRANSL INTEGER LDA, M, N, NMAX LOGICAL RESET CHARACTER*1 DIAG, UPLO CHARACTER*2 TYPE * .. Array Arguments .. REAL A( NMAX, * ), AA( * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J LOGICAL GEN, LOWER, SYM, TRI, UNIT, UPPER * .. External Functions .. REAL SBEG EXTERNAL SBEG * .. Executable Statements .. GEN = TYPE.EQ.'GE' SYM = TYPE.EQ.'SY' TRI = TYPE.EQ.'TR' UPPER = ( SYM.OR.TRI ).AND.UPLO.EQ.'U' LOWER = ( SYM.OR.TRI ).AND.UPLO.EQ.'L' UNIT = TRI.AND.DIAG.EQ.'U' * * Generate data in array A. * DO 20 J = 1, N DO 10 I = 1, M IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) ) $ THEN A( I, J ) = SBEG( RESET ) + TRANSL IF( I.NE.J )THEN * Set some elements to zero IF( N.GT.3.AND.J.EQ.N/2 ) $ A( I, J ) = ZERO IF( SYM )THEN A( J, I ) = A( I, J ) ELSE IF( TRI )THEN A( J, I ) = ZERO END IF END IF END IF 10 CONTINUE IF( TRI ) $ A( J, J ) = A( J, J ) + ONE IF( UNIT ) $ A( J, J ) = ONE 20 CONTINUE * * Store elements in array AS in data structure required by routine. * IF( TYPE.EQ.'GE' )THEN DO 50 J = 1, N DO 30 I = 1, M AA( I + ( J - 1 )*LDA ) = A( I, J ) 30 CONTINUE DO 40 I = M + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 40 CONTINUE 50 CONTINUE ELSE IF( TYPE.EQ.'SY'.OR.TYPE.EQ.'TR' )THEN DO 90 J = 1, N IF( UPPER )THEN IBEG = 1 IF( UNIT )THEN IEND = J - 1 ELSE IEND = J END IF ELSE IF( UNIT )THEN IBEG = J + 1 ELSE IBEG = J END IF IEND = N END IF DO 60 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 60 CONTINUE DO 70 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I, J ) 70 CONTINUE DO 80 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 80 CONTINUE 90 CONTINUE END IF RETURN * * End of SMAKE. * END SUBROUTINE SMMCH( TRANSA, TRANSB, M, N, KK, ALPHA, A, LDA, B, LDB, $ BETA, C, LDC, CT, G, CC, LDCC, EPS, ERR, FATAL, $ NOUT, MV ) * * Checks the results of the computational tests. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0, ONE = 1.0 ) * .. Scalar Arguments .. REAL ALPHA, BETA, EPS, ERR INTEGER KK, LDA, LDB, LDC, LDCC, M, N, NOUT LOGICAL FATAL, MV CHARACTER*1 TRANSA, TRANSB * .. Array Arguments .. REAL A( LDA, * ), B( LDB, * ), C( LDC, * ), $ CC( LDCC, * ), CT( * ), G( * ) * .. Local Scalars .. REAL ERRI INTEGER I, J, K LOGICAL TRANA, TRANB * .. Intrinsic Functions .. INTRINSIC ABS, MAX, SQRT * .. Executable Statements .. TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C' TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C' * * Compute expected result, one column at a time, in CT using data * in A, B and C. * Compute gauges in G. * DO 120 J = 1, N * DO 10 I = 1, M CT( I ) = ZERO G( I ) = ZERO 10 CONTINUE IF( .NOT.TRANA.AND..NOT.TRANB )THEN DO 30 K = 1, KK DO 20 I = 1, M CT( I ) = CT( I ) + A( I, K )*B( K, J ) G( I ) = G( I ) + ABS( A( I, K ) )*ABS( B( K, J ) ) 20 CONTINUE 30 CONTINUE ELSE IF( TRANA.AND..NOT.TRANB )THEN DO 50 K = 1, KK DO 40 I = 1, M CT( I ) = CT( I ) + A( K, I )*B( K, J ) G( I ) = G( I ) + ABS( A( K, I ) )*ABS( B( K, J ) ) 40 CONTINUE 50 CONTINUE ELSE IF( .NOT.TRANA.AND.TRANB )THEN DO 70 K = 1, KK DO 60 I = 1, M CT( I ) = CT( I ) + A( I, K )*B( J, K ) G( I ) = G( I ) + ABS( A( I, K ) )*ABS( B( J, K ) ) 60 CONTINUE 70 CONTINUE ELSE IF( TRANA.AND.TRANB )THEN DO 90 K = 1, KK DO 80 I = 1, M CT( I ) = CT( I ) + A( K, I )*B( J, K ) G( I ) = G( I ) + ABS( A( K, I ) )*ABS( B( J, K ) ) 80 CONTINUE 90 CONTINUE END IF DO 100 I = 1, M CT( I ) = ALPHA*CT( I ) + BETA*C( I, J ) G( I ) = ABS( ALPHA )*G( I ) + ABS( BETA )*ABS( C( I, J ) ) 100 CONTINUE * * Compute the error ratio for this result. * ERR = ZERO DO 110 I = 1, M ERRI = ABS( CT( I ) - CC( I, J ) )/EPS IF( G( I ).NE.ZERO ) $ ERRI = ERRI/G( I ) ERR = MAX( ERR, ERRI ) IF( ERR*SQRT( EPS ).GE.ONE ) $ GO TO 130 110 CONTINUE * 120 CONTINUE * * If the loop completes, all results are at least half accurate. GO TO 150 * * Report fatal error. * 130 FATAL = .TRUE. WRITE( NOUT, FMT = 9999 ) DO 140 I = 1, M IF( MV )THEN WRITE( NOUT, FMT = 9998 )I, CT( I ), CC( I, J ) ELSE WRITE( NOUT, FMT = 9998 )I, CC( I, J ), CT( I ) END IF 140 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9997 )J * 150 CONTINUE RETURN * 9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL', $ 'F ACCURATE *******', /' EXPECTED RESULT COMPU', $ 'TED RESULT' ) 9998 FORMAT( 1X, I7, 2G18.6 ) 9997 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) * * End of SMMCH. * END LOGICAL FUNCTION LSE( RI, RJ, LR ) * * Tests if two arrays are identical. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER LR * .. Array Arguments .. REAL RI( * ), RJ( * ) * .. Local Scalars .. INTEGER I * .. Executable Statements .. DO 10 I = 1, LR IF( RI( I ).NE.RJ( I ) ) $ GO TO 20 10 CONTINUE LSE = .TRUE. GO TO 30 20 CONTINUE LSE = .FALSE. 30 RETURN * * End of LSE. * END LOGICAL FUNCTION LSERES( TYPE, UPLO, M, N, AA, AS, LDA ) * * Tests if selected elements in two arrays are equal. * * TYPE is 'GE' or 'SY'. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER LDA, M, N CHARACTER*1 UPLO CHARACTER*2 TYPE * .. Array Arguments .. REAL AA( LDA, * ), AS( LDA, * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J LOGICAL UPPER * .. Executable Statements .. UPPER = UPLO.EQ.'U' IF( TYPE.EQ.'GE' )THEN DO 20 J = 1, N DO 10 I = M + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 10 CONTINUE 20 CONTINUE ELSE IF( TYPE.EQ.'SY' )THEN DO 50 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 30 I = 1, IBEG - 1 IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 30 CONTINUE DO 40 I = IEND + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 40 CONTINUE 50 CONTINUE END IF * 60 CONTINUE LSERES = .TRUE. GO TO 80 70 CONTINUE LSERES = .FALSE. 80 RETURN * * End of LSERES. * END REAL FUNCTION SBEG( RESET ) * * Generates random numbers uniformly distributed between -0.5 and 0.5. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. LOGICAL RESET * .. Local Scalars .. INTEGER I, IC, MI * .. Save statement .. SAVE I, IC, MI * .. Executable Statements .. IF( RESET )THEN * Initialize local variables. MI = 891 I = 7 IC = 0 RESET = .FALSE. END IF * * The sequence of values of I is bounded between 1 and 999. * If initial I = 1,2,3,6,7 or 9, the period will be 50. * If initial I = 4 or 8, the period will be 25. * If initial I = 5, the period will be 10. * IC is used to break up the period by skipping 1 value of I in 6. * IC = IC + 1 10 I = I*MI I = I - 1000*( I/1000 ) IF( IC.GE.5 )THEN IC = 0 GO TO 10 END IF SBEG = ( I - 500 )/1001.0 RETURN * * End of SBEG. * END REAL FUNCTION SDIFF( X, Y ) * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. REAL X, Y * .. Executable Statements .. SDIFF = X - Y RETURN * * End of SDIFF. * END SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * * Tests whether XERBLA has detected an error when it should. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Executable Statements .. IF( .NOT.LERR )THEN WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT OK = .FALSE. END IF LERR = .FALSE. RETURN * 9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D', $ 'ETECTED BY ', A6, ' *****' ) * * End of CHKXER. * END SUBROUTINE XERBLA( SRNAME, INFO ) * * This is a special version of XERBLA to be used only as part of * the test program for testing error exits from the Level 3 BLAS * routines. * * XERBLA is an error handler for the Level 3 BLAS routines. * * It is called by the Level 3 BLAS routines if an input parameter is * invalid. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER INFO CHARACTER*6 SRNAME * .. Scalars in Common .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUT, OK, LERR COMMON /SRNAMC/SRNAMT * .. Executable Statements .. LERR = .TRUE. IF( INFO.NE.INFOT )THEN IF( INFOT.NE.0 )THEN WRITE( NOUT, FMT = 9999 )INFO, INFOT ELSE WRITE( NOUT, FMT = 9997 )INFO END IF OK = .FALSE. END IF IF( SRNAME.NE.SRNAMT )THEN WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT OK = .FALSE. END IF RETURN * 9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD', $ ' OF ', I2, ' *******' ) 9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE', $ 'AD OF ', A6, ' *******' ) 9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, $ ' *******' ) * * End of XERBLA * END blas-1.2.orig/test/zblat1 0000644 0001750 0001750 00000074724 10735444622 016242 0 ustar sylvestre sylvestre PROGRAM ZBLAT1 * Test program for the COMPLEX*16 Level 1 BLAS. * Based upon the original BLAS test routine together with: * F06GAF Example Program Text * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. DOUBLE PRECISION SFAC INTEGER IC * .. External Subroutines .. EXTERNAL CHECK1, CHECK2, HEADER * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA SFAC/9.765625D-4/ * .. Executable Statements .. WRITE (NOUT,99999) DO 20 IC = 1, 10 ICASE = IC CALL HEADER * * Initialize PASS, INCX, INCY, and MODE for a new case. * The value 9999 for INCX, INCY or MODE will appear in the * detailed output, if any, for cases that do not involve * these parameters. * PASS = .TRUE. INCX = 9999 INCY = 9999 MODE = 9999 IF (ICASE.LE.5) THEN CALL CHECK2(SFAC) ELSE IF (ICASE.GE.6) THEN CALL CHECK1(SFAC) END IF * -- Print IF (PASS) WRITE (NOUT,99998) 20 CONTINUE STOP * 99999 FORMAT (' Complex BLAS Test Program Results',/1X) 99998 FORMAT (' ----- PASS -----') END SUBROUTINE HEADER * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Arrays .. CHARACTER*6 L(10) * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA L(1)/'ZDOTC '/ DATA L(2)/'ZDOTU '/ DATA L(3)/'ZAXPY '/ DATA L(4)/'ZCOPY '/ DATA L(5)/'ZSWAP '/ DATA L(6)/'DZNRM2'/ DATA L(7)/'DZASUM'/ DATA L(8)/'ZSCAL '/ DATA L(9)/'ZDSCAL'/ DATA L(10)/'IZAMAX'/ * .. Executable Statements .. WRITE (NOUT,99999) ICASE, L(ICASE) RETURN * 99999 FORMAT (/' Test of subprogram number',I3,12X,A6) END SUBROUTINE CHECK1(SFAC) * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. DOUBLE PRECISION SFAC * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. COMPLEX*16 CA DOUBLE PRECISION SA INTEGER I, J, LEN, NP1 * .. Local Arrays .. COMPLEX*16 CTRUE5(8,5,2), CTRUE6(8,5,2), CV(8,5,2), CX(8), + MWPCS(5), MWPCT(5) DOUBLE PRECISION STRUE2(5), STRUE4(5) INTEGER ITRUE3(5) * .. External Functions .. DOUBLE PRECISION DZASUM, DZNRM2 INTEGER IZAMAX EXTERNAL DZASUM, DZNRM2, IZAMAX * .. External Subroutines .. EXTERNAL ZSCAL, ZDSCAL, CTEST, ITEST1, STEST1 * .. Intrinsic Functions .. INTRINSIC MAX * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA SA, CA/0.3D0, (0.4D0,-0.7D0)/ DATA ((CV(I,J,1),I=1,8),J=1,5)/(0.1D0,0.1D0), + (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0), + (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0), + (1.0D0,2.0D0), (0.3D0,-0.4D0), (3.0D0,4.0D0), + (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0), + (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0), + (0.1D0,-0.3D0), (0.5D0,-0.1D0), (5.0D0,6.0D0), + (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0), + (5.0D0,6.0D0), (5.0D0,6.0D0), (0.1D0,0.1D0), + (-0.6D0,0.1D0), (0.1D0,-0.3D0), (7.0D0,8.0D0), + (7.0D0,8.0D0), (7.0D0,8.0D0), (7.0D0,8.0D0), + (7.0D0,8.0D0), (0.3D0,0.1D0), (0.1D0,0.4D0), + (0.4D0,0.1D0), (0.1D0,0.2D0), (2.0D0,3.0D0), + (2.0D0,3.0D0), (2.0D0,3.0D0), (2.0D0,3.0D0)/ DATA ((CV(I,J,2),I=1,8),J=1,5)/(0.1D0,0.1D0), + (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0), + (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0), + (4.0D0,5.0D0), (0.3D0,-0.4D0), (6.0D0,7.0D0), + (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0), + (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0), + (0.1D0,-0.3D0), (8.0D0,9.0D0), (0.5D0,-0.1D0), + (2.0D0,5.0D0), (2.0D0,5.0D0), (2.0D0,5.0D0), + (2.0D0,5.0D0), (2.0D0,5.0D0), (0.1D0,0.1D0), + (3.0D0,6.0D0), (-0.6D0,0.1D0), (4.0D0,7.0D0), + (0.1D0,-0.3D0), (7.0D0,2.0D0), (7.0D0,2.0D0), + (7.0D0,2.0D0), (0.3D0,0.1D0), (5.0D0,8.0D0), + (0.1D0,0.4D0), (6.0D0,9.0D0), (0.4D0,0.1D0), + (8.0D0,3.0D0), (0.1D0,0.2D0), (9.0D0,4.0D0)/ DATA STRUE2/0.0D0, 0.5D0, 0.6D0, 0.7D0, 0.7D0/ DATA STRUE4/0.0D0, 0.7D0, 1.0D0, 1.3D0, 1.7D0/ DATA ((CTRUE5(I,J,1),I=1,8),J=1,5)/(0.1D0,0.1D0), + (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0), + (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0), + (1.0D0,2.0D0), (-0.16D0,-0.37D0), (3.0D0,4.0D0), + (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0), + (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0), + (-0.17D0,-0.19D0), (0.13D0,-0.39D0), + (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0), + (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0), + (0.11D0,-0.03D0), (-0.17D0,0.46D0), + (-0.17D0,-0.19D0), (7.0D0,8.0D0), (7.0D0,8.0D0), + (7.0D0,8.0D0), (7.0D0,8.0D0), (7.0D0,8.0D0), + (0.19D0,-0.17D0), (0.32D0,0.09D0), + (0.23D0,-0.24D0), (0.18D0,0.01D0), + (2.0D0,3.0D0), (2.0D0,3.0D0), (2.0D0,3.0D0), + (2.0D0,3.0D0)/ DATA ((CTRUE5(I,J,2),I=1,8),J=1,5)/(0.1D0,0.1D0), + (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0), + (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0), + (4.0D0,5.0D0), (-0.16D0,-0.37D0), (6.0D0,7.0D0), + (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0), + (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0), + (-0.17D0,-0.19D0), (8.0D0,9.0D0), + (0.13D0,-0.39D0), (2.0D0,5.0D0), (2.0D0,5.0D0), + (2.0D0,5.0D0), (2.0D0,5.0D0), (2.0D0,5.0D0), + (0.11D0,-0.03D0), (3.0D0,6.0D0), + (-0.17D0,0.46D0), (4.0D0,7.0D0), + (-0.17D0,-0.19D0), (7.0D0,2.0D0), (7.0D0,2.0D0), + (7.0D0,2.0D0), (0.19D0,-0.17D0), (5.0D0,8.0D0), + (0.32D0,0.09D0), (6.0D0,9.0D0), + (0.23D0,-0.24D0), (8.0D0,3.0D0), + (0.18D0,0.01D0), (9.0D0,4.0D0)/ DATA ((CTRUE6(I,J,1),I=1,8),J=1,5)/(0.1D0,0.1D0), + (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0), + (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0), + (1.0D0,2.0D0), (0.09D0,-0.12D0), (3.0D0,4.0D0), + (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0), + (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0), + (0.03D0,-0.09D0), (0.15D0,-0.03D0), + (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0), + (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0), + (0.03D0,0.03D0), (-0.18D0,0.03D0), + (0.03D0,-0.09D0), (7.0D0,8.0D0), (7.0D0,8.0D0), + (7.0D0,8.0D0), (7.0D0,8.0D0), (7.0D0,8.0D0), + (0.09D0,0.03D0), (0.03D0,0.12D0), + (0.12D0,0.03D0), (0.03D0,0.06D0), (2.0D0,3.0D0), + (2.0D0,3.0D0), (2.0D0,3.0D0), (2.0D0,3.0D0)/ DATA ((CTRUE6(I,J,2),I=1,8),J=1,5)/(0.1D0,0.1D0), + (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0), + (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0), + (4.0D0,5.0D0), (0.09D0,-0.12D0), (6.0D0,7.0D0), + (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0), + (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0), + (0.03D0,-0.09D0), (8.0D0,9.0D0), + (0.15D0,-0.03D0), (2.0D0,5.0D0), (2.0D0,5.0D0), + (2.0D0,5.0D0), (2.0D0,5.0D0), (2.0D0,5.0D0), + (0.03D0,0.03D0), (3.0D0,6.0D0), + (-0.18D0,0.03D0), (4.0D0,7.0D0), + (0.03D0,-0.09D0), (7.0D0,2.0D0), (7.0D0,2.0D0), + (7.0D0,2.0D0), (0.09D0,0.03D0), (5.0D0,8.0D0), + (0.03D0,0.12D0), (6.0D0,9.0D0), (0.12D0,0.03D0), + (8.0D0,3.0D0), (0.03D0,0.06D0), (9.0D0,4.0D0)/ DATA ITRUE3/0, 1, 2, 2, 2/ * .. Executable Statements .. DO 60 INCX = 1, 2 DO 40 NP1 = 1, 5 N = NP1 - 1 LEN = 2*MAX(N,1) * .. Set vector arguments .. DO 20 I = 1, LEN CX(I) = CV(I,NP1,INCX) 20 CONTINUE IF (ICASE.EQ.6) THEN * .. DZNRM2 .. CALL STEST1(DZNRM2(N,CX,INCX),STRUE2(NP1),STRUE2(NP1), + SFAC) ELSE IF (ICASE.EQ.7) THEN * .. DZASUM .. CALL STEST1(DZASUM(N,CX,INCX),STRUE4(NP1),STRUE4(NP1), + SFAC) ELSE IF (ICASE.EQ.8) THEN * .. ZSCAL .. CALL ZSCAL(N,CA,CX,INCX) CALL CTEST(LEN,CX,CTRUE5(1,NP1,INCX),CTRUE5(1,NP1,INCX), + SFAC) ELSE IF (ICASE.EQ.9) THEN * .. ZDSCAL .. CALL ZDSCAL(N,SA,CX,INCX) CALL CTEST(LEN,CX,CTRUE6(1,NP1,INCX),CTRUE6(1,NP1,INCX), + SFAC) ELSE IF (ICASE.EQ.10) THEN * .. IZAMAX .. CALL ITEST1(IZAMAX(N,CX,INCX),ITRUE3(NP1)) ELSE WRITE (NOUT,*) ' Shouldn''t be here in CHECK1' STOP END IF * 40 CONTINUE 60 CONTINUE * INCX = 1 IF (ICASE.EQ.8) THEN * ZSCAL * Add a test for alpha equal to zero. CA = (0.0D0,0.0D0) DO 80 I = 1, 5 MWPCT(I) = (0.0D0,0.0D0) MWPCS(I) = (1.0D0,1.0D0) 80 CONTINUE CALL ZSCAL(5,CA,CX,INCX) CALL CTEST(5,CX,MWPCT,MWPCS,SFAC) ELSE IF (ICASE.EQ.9) THEN * ZDSCAL * Add a test for alpha equal to zero. SA = 0.0D0 DO 100 I = 1, 5 MWPCT(I) = (0.0D0,0.0D0) MWPCS(I) = (1.0D0,1.0D0) 100 CONTINUE CALL ZDSCAL(5,SA,CX,INCX) CALL CTEST(5,CX,MWPCT,MWPCS,SFAC) * Add a test for alpha equal to one. SA = 1.0D0 DO 120 I = 1, 5 MWPCT(I) = CX(I) MWPCS(I) = CX(I) 120 CONTINUE CALL ZDSCAL(5,SA,CX,INCX) CALL CTEST(5,CX,MWPCT,MWPCS,SFAC) * Add a test for alpha equal to minus one. SA = -1.0D0 DO 140 I = 1, 5 MWPCT(I) = -CX(I) MWPCS(I) = -CX(I) 140 CONTINUE CALL ZDSCAL(5,SA,CX,INCX) CALL CTEST(5,CX,MWPCT,MWPCS,SFAC) END IF RETURN END SUBROUTINE CHECK2(SFAC) * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. DOUBLE PRECISION SFAC * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. COMPLEX*16 CA INTEGER I, J, KI, KN, KSIZE, LENX, LENY, MX, MY * .. Local Arrays .. COMPLEX*16 CDOT(1), CSIZE1(4), CSIZE2(7,2), CSIZE3(14), + CT10X(7,4,4), CT10Y(7,4,4), CT6(4,4), CT7(4,4), + CT8(7,4,4), CX(7), CX1(7), CY(7), CY1(7) INTEGER INCXS(4), INCYS(4), LENS(4,2), NS(4) * .. External Functions .. COMPLEX*16 ZDOTC, ZDOTU EXTERNAL ZDOTC, ZDOTU * .. External Subroutines .. EXTERNAL ZAXPY, ZCOPY, ZSWAP, CTEST * .. Intrinsic Functions .. INTRINSIC ABS, MIN * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA CA/(0.4D0,-0.7D0)/ DATA INCXS/1, 2, -2, -1/ DATA INCYS/1, -2, 1, -2/ DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/ DATA NS/0, 1, 2, 4/ DATA CX1/(0.7D0,-0.8D0), (-0.4D0,-0.7D0), + (-0.1D0,-0.9D0), (0.2D0,-0.8D0), + (-0.9D0,-0.4D0), (0.1D0,0.4D0), (-0.6D0,0.6D0)/ DATA CY1/(0.6D0,-0.6D0), (-0.9D0,0.5D0), + (0.7D0,-0.6D0), (0.1D0,-0.5D0), (-0.1D0,-0.2D0), + (-0.5D0,-0.3D0), (0.8D0,-0.7D0)/ DATA ((CT8(I,J,1),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.32D0,-1.41D0), + (-1.55D0,0.5D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.32D0,-1.41D0), (-1.55D0,0.5D0), + (0.03D0,-0.89D0), (-0.38D0,-0.96D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/ DATA ((CT8(I,J,2),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (-0.07D0,-0.89D0), + (-0.9D0,0.5D0), (0.42D0,-1.41D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.78D0,0.06D0), (-0.9D0,0.5D0), + (0.06D0,-0.13D0), (0.1D0,-0.5D0), + (-0.77D0,-0.49D0), (-0.5D0,-0.3D0), + (0.52D0,-1.51D0)/ DATA ((CT8(I,J,3),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (-0.07D0,-0.89D0), + (-1.18D0,-0.31D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.78D0,0.06D0), (-1.54D0,0.97D0), + (0.03D0,-0.89D0), (-0.18D0,-1.31D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/ DATA ((CT8(I,J,4),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.32D0,-1.41D0), (-0.9D0,0.5D0), + (0.05D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.32D0,-1.41D0), + (-0.9D0,0.5D0), (0.05D0,-0.6D0), (0.1D0,-0.5D0), + (-0.77D0,-0.49D0), (-0.5D0,-0.3D0), + (0.32D0,-1.16D0)/ DATA CT7/(0.0D0,0.0D0), (-0.06D0,-0.90D0), + (0.65D0,-0.47D0), (-0.34D0,-1.22D0), + (0.0D0,0.0D0), (-0.06D0,-0.90D0), + (-0.59D0,-1.46D0), (-1.04D0,-0.04D0), + (0.0D0,0.0D0), (-0.06D0,-0.90D0), + (-0.83D0,0.59D0), (0.07D0,-0.37D0), + (0.0D0,0.0D0), (-0.06D0,-0.90D0), + (-0.76D0,-1.15D0), (-1.33D0,-1.82D0)/ DATA CT6/(0.0D0,0.0D0), (0.90D0,0.06D0), + (0.91D0,-0.77D0), (1.80D0,-0.10D0), + (0.0D0,0.0D0), (0.90D0,0.06D0), (1.45D0,0.74D0), + (0.20D0,0.90D0), (0.0D0,0.0D0), (0.90D0,0.06D0), + (-0.55D0,0.23D0), (0.83D0,-0.39D0), + (0.0D0,0.0D0), (0.90D0,0.06D0), (1.04D0,0.79D0), + (1.95D0,1.22D0)/ DATA ((CT10X(I,J,1),I=1,7),J=1,4)/(0.7D0,-0.8D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.6D0,-0.6D0), (-0.9D0,0.5D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.6D0,-0.6D0), + (-0.9D0,0.5D0), (0.7D0,-0.6D0), (0.1D0,-0.5D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/ DATA ((CT10X(I,J,2),I=1,7),J=1,4)/(0.7D0,-0.8D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.7D0,-0.6D0), (-0.4D0,-0.7D0), + (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.8D0,-0.7D0), + (-0.4D0,-0.7D0), (-0.1D0,-0.2D0), + (0.2D0,-0.8D0), (0.7D0,-0.6D0), (0.1D0,0.4D0), + (0.6D0,-0.6D0)/ DATA ((CT10X(I,J,3),I=1,7),J=1,4)/(0.7D0,-0.8D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (-0.9D0,0.5D0), (-0.4D0,-0.7D0), + (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.1D0,-0.5D0), + (-0.4D0,-0.7D0), (0.7D0,-0.6D0), (0.2D0,-0.8D0), + (-0.9D0,0.5D0), (0.1D0,0.4D0), (0.6D0,-0.6D0)/ DATA ((CT10X(I,J,4),I=1,7),J=1,4)/(0.7D0,-0.8D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.6D0,-0.6D0), (0.7D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.6D0,-0.6D0), + (0.7D0,-0.6D0), (-0.1D0,-0.2D0), (0.8D0,-0.7D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/ DATA ((CT10Y(I,J,1),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.7D0,-0.8D0), (-0.4D0,-0.7D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.7D0,-0.8D0), + (-0.4D0,-0.7D0), (-0.1D0,-0.9D0), + (0.2D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0)/ DATA ((CT10Y(I,J,2),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (-0.1D0,-0.9D0), (-0.9D0,0.5D0), + (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (-0.6D0,0.6D0), + (-0.9D0,0.5D0), (-0.9D0,-0.4D0), (0.1D0,-0.5D0), + (-0.1D0,-0.9D0), (-0.5D0,-0.3D0), + (0.7D0,-0.8D0)/ DATA ((CT10Y(I,J,3),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (-0.1D0,-0.9D0), (0.7D0,-0.8D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (-0.6D0,0.6D0), + (-0.9D0,-0.4D0), (-0.1D0,-0.9D0), + (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0)/ DATA ((CT10Y(I,J,4),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.7D0,-0.8D0), (-0.9D0,0.5D0), + (-0.4D0,-0.7D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.7D0,-0.8D0), + (-0.9D0,0.5D0), (-0.4D0,-0.7D0), (0.1D0,-0.5D0), + (-0.1D0,-0.9D0), (-0.5D0,-0.3D0), + (0.2D0,-0.8D0)/ DATA CSIZE1/(0.0D0,0.0D0), (0.9D0,0.9D0), + (1.63D0,1.73D0), (2.90D0,2.78D0)/ DATA CSIZE3/(0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (1.17D0,1.17D0), + (1.17D0,1.17D0), (1.17D0,1.17D0), + (1.17D0,1.17D0), (1.17D0,1.17D0), + (1.17D0,1.17D0), (1.17D0,1.17D0)/ DATA CSIZE2/(0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (1.54D0,1.54D0), + (1.54D0,1.54D0), (1.54D0,1.54D0), + (1.54D0,1.54D0), (1.54D0,1.54D0), + (1.54D0,1.54D0), (1.54D0,1.54D0)/ * .. Executable Statements .. DO 60 KI = 1, 4 INCX = INCXS(KI) INCY = INCYS(KI) MX = ABS(INCX) MY = ABS(INCY) * DO 40 KN = 1, 4 N = NS(KN) KSIZE = MIN(2,KN) LENX = LENS(KN,MX) LENY = LENS(KN,MY) * .. initialize all argument arrays .. DO 20 I = 1, 7 CX(I) = CX1(I) CY(I) = CY1(I) 20 CONTINUE IF (ICASE.EQ.1) THEN * .. ZDOTC .. CDOT(1) = ZDOTC(N,CX,INCX,CY,INCY) CALL CTEST(1,CDOT,CT6(KN,KI),CSIZE1(KN),SFAC) ELSE IF (ICASE.EQ.2) THEN * .. ZDOTU .. CDOT(1) = ZDOTU(N,CX,INCX,CY,INCY) CALL CTEST(1,CDOT,CT7(KN,KI),CSIZE1(KN),SFAC) ELSE IF (ICASE.EQ.3) THEN * .. ZAXPY .. CALL ZAXPY(N,CA,CX,INCX,CY,INCY) CALL CTEST(LENY,CY,CT8(1,KN,KI),CSIZE2(1,KSIZE),SFAC) ELSE IF (ICASE.EQ.4) THEN * .. ZCOPY .. CALL ZCOPY(N,CX,INCX,CY,INCY) CALL CTEST(LENY,CY,CT10Y(1,KN,KI),CSIZE3,1.0D0) ELSE IF (ICASE.EQ.5) THEN * .. ZSWAP .. CALL ZSWAP(N,CX,INCX,CY,INCY) CALL CTEST(LENX,CX,CT10X(1,KN,KI),CSIZE3,1.0D0) CALL CTEST(LENY,CY,CT10Y(1,KN,KI),CSIZE3,1.0D0) ELSE WRITE (NOUT,*) ' Shouldn''t be here in CHECK2' STOP END IF * 40 CONTINUE 60 CONTINUE RETURN END SUBROUTINE STEST(LEN,SCOMP,STRUE,SSIZE,SFAC) * ********************************* STEST ************************** * * THIS SUBR COMPARES ARRAYS SCOMP() AND STRUE() OF LENGTH LEN TO * SEE IF THE TERM BY TERM DIFFERENCES, MULTIPLIED BY SFAC, ARE * NEGLIGIBLE. * * C. L. LAWSON, JPL, 1974 DEC 10 * * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. DOUBLE PRECISION SFAC INTEGER LEN * .. Array Arguments .. DOUBLE PRECISION SCOMP(LEN), SSIZE(LEN), STRUE(LEN) * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. DOUBLE PRECISION SD INTEGER I * .. External Functions .. DOUBLE PRECISION SDIFF EXTERNAL SDIFF * .. Intrinsic Functions .. INTRINSIC ABS * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Executable Statements .. * DO 40 I = 1, LEN SD = SCOMP(I) - STRUE(I) IF (SDIFF(ABS(SSIZE(I))+ABS(SFAC*SD),ABS(SSIZE(I))).EQ.0.0D0) + GO TO 40 * * HERE SCOMP(I) IS NOT CLOSE TO STRUE(I). * IF ( .NOT. PASS) GO TO 20 * PRINT FAIL MESSAGE AND HEADER. PASS = .FALSE. WRITE (NOUT,99999) WRITE (NOUT,99998) 20 WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, I, SCOMP(I), + STRUE(I), SD, SSIZE(I) 40 CONTINUE RETURN * 99999 FORMAT (' FAIL') 99998 FORMAT (/' CASE N INCX INCY MODE I ', + ' COMP(I) TRUE(I) DIFFERENCE', + ' SIZE(I)',/1X) 99997 FORMAT (1X,I4,I3,3I5,I3,2D36.8,2D12.4) END SUBROUTINE STEST1(SCOMP1,STRUE1,SSIZE,SFAC) * ************************* STEST1 ***************************** * * THIS IS AN INTERFACE SUBROUTINE TO ACCOMODATE THE FORTRAN * REQUIREMENT THAT WHEN A DUMMY ARGUMENT IS AN ARRAY, THE * ACTUAL ARGUMENT MUST ALSO BE AN ARRAY OR AN ARRAY ELEMENT. * * C.L. LAWSON, JPL, 1978 DEC 6 * * .. Scalar Arguments .. DOUBLE PRECISION SCOMP1, SFAC, STRUE1 * .. Array Arguments .. DOUBLE PRECISION SSIZE(*) * .. Local Arrays .. DOUBLE PRECISION SCOMP(1), STRUE(1) * .. External Subroutines .. EXTERNAL STEST * .. Executable Statements .. * SCOMP(1) = SCOMP1 STRUE(1) = STRUE1 CALL STEST(1,SCOMP,STRUE,SSIZE,SFAC) * RETURN END DOUBLE PRECISION FUNCTION SDIFF(SA,SB) * ********************************* SDIFF ************************** * COMPUTES DIFFERENCE OF TWO NUMBERS. C. L. LAWSON, JPL 1974 FEB 15 * * .. Scalar Arguments .. DOUBLE PRECISION SA, SB * .. Executable Statements .. SDIFF = SA - SB RETURN END SUBROUTINE CTEST(LEN,CCOMP,CTRUE,CSIZE,SFAC) * **************************** CTEST ***************************** * * C.L. LAWSON, JPL, 1978 DEC 6 * * .. Scalar Arguments .. DOUBLE PRECISION SFAC INTEGER LEN * .. Array Arguments .. COMPLEX*16 CCOMP(LEN), CSIZE(LEN), CTRUE(LEN) * .. Local Scalars .. INTEGER I * .. Local Arrays .. DOUBLE PRECISION SCOMP(20), SSIZE(20), STRUE(20) * .. External Subroutines .. EXTERNAL STEST * .. Intrinsic Functions .. INTRINSIC DIMAG, DBLE * .. Executable Statements .. DO 20 I = 1, LEN SCOMP(2*I-1) = DBLE(CCOMP(I)) SCOMP(2*I) = DIMAG(CCOMP(I)) STRUE(2*I-1) = DBLE(CTRUE(I)) STRUE(2*I) = DIMAG(CTRUE(I)) SSIZE(2*I-1) = DBLE(CSIZE(I)) SSIZE(2*I) = DIMAG(CSIZE(I)) 20 CONTINUE * CALL STEST(2*LEN,SCOMP,STRUE,SSIZE,SFAC) RETURN END SUBROUTINE ITEST1(ICOMP,ITRUE) * ********************************* ITEST1 ************************* * * THIS SUBROUTINE COMPARES THE VARIABLES ICOMP AND ITRUE FOR * EQUALITY. * C. L. LAWSON, JPL, 1974 DEC 10 * * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. INTEGER ICOMP, ITRUE * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. INTEGER ID * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Executable Statements .. IF (ICOMP.EQ.ITRUE) GO TO 40 * * HERE ICOMP IS NOT EQUAL TO ITRUE. * IF ( .NOT. PASS) GO TO 20 * PRINT FAIL MESSAGE AND HEADER. PASS = .FALSE. WRITE (NOUT,99999) WRITE (NOUT,99998) 20 ID = ICOMP - ITRUE WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, ICOMP, ITRUE, ID 40 CONTINUE RETURN * 99999 FORMAT (' FAIL') 99998 FORMAT (/' CASE N INCX INCY MODE ', + ' COMP TRUE DIFFERENCE', + /1X) 99997 FORMAT (1X,I4,I3,3I5,2I36,I12) END blas-1.2.orig/test/dblat1 0000644 0001750 0001750 00000074743 10735444622 016215 0 ustar sylvestre sylvestre PROGRAM DBLAT1 * Test program for the DOUBLE PRECISION Level 1 BLAS. * Based upon the original BLAS test routine together with: * F06EAF Example Program Text * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. DOUBLE PRECISION SFAC INTEGER IC * .. External Subroutines .. EXTERNAL CHECK0, CHECK1, CHECK2, CHECK3, HEADER * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA SFAC/9.765625D-4/ * .. Executable Statements .. WRITE (NOUT,99999) DO 20 IC = 1, 10 ICASE = IC CALL HEADER * * .. Initialize PASS, INCX, INCY, and MODE for a new case. .. * .. the value 9999 for INCX, INCY or MODE will appear in the .. * .. detailed output, if any, for cases that do not involve .. * .. these parameters .. * PASS = .TRUE. INCX = 9999 INCY = 9999 MODE = 9999 IF (ICASE.EQ.3) THEN CALL CHECK0(SFAC) ELSE IF (ICASE.EQ.7 .OR. ICASE.EQ.8 .OR. ICASE.EQ.9 .OR. + ICASE.EQ.10) THEN CALL CHECK1(SFAC) ELSE IF (ICASE.EQ.1 .OR. ICASE.EQ.2 .OR. ICASE.EQ.5 .OR. + ICASE.EQ.6) THEN CALL CHECK2(SFAC) ELSE IF (ICASE.EQ.4) THEN CALL CHECK3(SFAC) END IF * -- Print IF (PASS) WRITE (NOUT,99998) 20 CONTINUE STOP * 99999 FORMAT (' Real BLAS Test Program Results',/1X) 99998 FORMAT (' ----- PASS -----') END SUBROUTINE HEADER * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Arrays .. CHARACTER*6 L(10) * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA L(1)/' DDOT '/ DATA L(2)/'DAXPY '/ DATA L(3)/'DROTG '/ DATA L(4)/' DROT '/ DATA L(5)/'DCOPY '/ DATA L(6)/'DSWAP '/ DATA L(7)/'DNRM2 '/ DATA L(8)/'DASUM '/ DATA L(9)/'DSCAL '/ DATA L(10)/'IDAMAX'/ * .. Executable Statements .. WRITE (NOUT,99999) ICASE, L(ICASE) RETURN * 99999 FORMAT (/' Test of subprogram number',I3,12X,A6) END SUBROUTINE CHECK0(SFAC) * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. DOUBLE PRECISION SFAC * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. DOUBLE PRECISION D12, SA, SB, SC, SS INTEGER K * .. Local Arrays .. DOUBLE PRECISION DA1(8), DATRUE(8), DB1(8), DBTRUE(8), DC1(8), + DS1(8) * .. External Subroutines .. EXTERNAL DROTG, STEST1 * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA DA1/0.3D0, 0.4D0, -0.3D0, -0.4D0, -0.3D0, 0.0D0, + 0.0D0, 1.0D0/ DATA DB1/0.4D0, 0.3D0, 0.4D0, 0.3D0, -0.4D0, 0.0D0, + 1.0D0, 0.0D0/ DATA DC1/0.6D0, 0.8D0, -0.6D0, 0.8D0, 0.6D0, 1.0D0, + 0.0D0, 1.0D0/ DATA DS1/0.8D0, 0.6D0, 0.8D0, -0.6D0, 0.8D0, 0.0D0, + 1.0D0, 0.0D0/ DATA DATRUE/0.5D0, 0.5D0, 0.5D0, -0.5D0, -0.5D0, + 0.0D0, 1.0D0, 1.0D0/ DATA DBTRUE/0.0D0, 0.6D0, 0.0D0, -0.6D0, 0.0D0, + 0.0D0, 1.0D0, 0.0D0/ DATA D12/4096.0D0/ * .. Executable Statements .. * * Compute true values which cannot be prestored * in decimal notation * DBTRUE(1) = 1.0D0/0.6D0 DBTRUE(3) = -1.0D0/0.6D0 DBTRUE(5) = 1.0D0/0.6D0 * DO 20 K = 1, 8 * .. Set N=K for identification in output if any .. N = K IF (ICASE.EQ.3) THEN * .. DROTG .. IF (K.GT.8) GO TO 40 SA = DA1(K) SB = DB1(K) CALL DROTG(SA,SB,SC,SS) CALL STEST1(SA,DATRUE(K),DATRUE(K),SFAC) CALL STEST1(SB,DBTRUE(K),DBTRUE(K),SFAC) CALL STEST1(SC,DC1(K),DC1(K),SFAC) CALL STEST1(SS,DS1(K),DS1(K),SFAC) ELSE WRITE (NOUT,*) ' Shouldn''t be here in CHECK0' STOP END IF 20 CONTINUE 40 RETURN END SUBROUTINE CHECK1(SFAC) * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. DOUBLE PRECISION SFAC * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. INTEGER I, LEN, NP1 * .. Local Arrays .. DOUBLE PRECISION DTRUE1(5), DTRUE3(5), DTRUE5(8,5,2), DV(8,5,2), + SA(10), STEMP(1), STRUE(8), SX(8) INTEGER ITRUE2(5) * .. External Functions .. DOUBLE PRECISION DASUM, DNRM2 INTEGER IDAMAX EXTERNAL DASUM, DNRM2, IDAMAX * .. External Subroutines .. EXTERNAL ITEST1, DSCAL, STEST, STEST1 * .. Intrinsic Functions .. INTRINSIC MAX * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA SA/0.3D0, -1.0D0, 0.0D0, 1.0D0, 0.3D0, 0.3D0, + 0.3D0, 0.3D0, 0.3D0, 0.3D0/ DATA DV/0.1D0, 2.0D0, 2.0D0, 2.0D0, 2.0D0, 2.0D0, + 2.0D0, 2.0D0, 0.3D0, 3.0D0, 3.0D0, 3.0D0, 3.0D0, + 3.0D0, 3.0D0, 3.0D0, 0.3D0, -0.4D0, 4.0D0, + 4.0D0, 4.0D0, 4.0D0, 4.0D0, 4.0D0, 0.2D0, + -0.6D0, 0.3D0, 5.0D0, 5.0D0, 5.0D0, 5.0D0, + 5.0D0, 0.1D0, -0.3D0, 0.5D0, -0.1D0, 6.0D0, + 6.0D0, 6.0D0, 6.0D0, 0.1D0, 8.0D0, 8.0D0, 8.0D0, + 8.0D0, 8.0D0, 8.0D0, 8.0D0, 0.3D0, 9.0D0, 9.0D0, + 9.0D0, 9.0D0, 9.0D0, 9.0D0, 9.0D0, 0.3D0, 2.0D0, + -0.4D0, 2.0D0, 2.0D0, 2.0D0, 2.0D0, 2.0D0, + 0.2D0, 3.0D0, -0.6D0, 5.0D0, 0.3D0, 2.0D0, + 2.0D0, 2.0D0, 0.1D0, 4.0D0, -0.3D0, 6.0D0, + -0.5D0, 7.0D0, -0.1D0, 3.0D0/ DATA DTRUE1/0.0D0, 0.3D0, 0.5D0, 0.7D0, 0.6D0/ DATA DTRUE3/0.0D0, 0.3D0, 0.7D0, 1.1D0, 1.0D0/ DATA DTRUE5/0.10D0, 2.0D0, 2.0D0, 2.0D0, 2.0D0, + 2.0D0, 2.0D0, 2.0D0, -0.3D0, 3.0D0, 3.0D0, + 3.0D0, 3.0D0, 3.0D0, 3.0D0, 3.0D0, 0.0D0, 0.0D0, + 4.0D0, 4.0D0, 4.0D0, 4.0D0, 4.0D0, 4.0D0, + 0.20D0, -0.60D0, 0.30D0, 5.0D0, 5.0D0, 5.0D0, + 5.0D0, 5.0D0, 0.03D0, -0.09D0, 0.15D0, -0.03D0, + 6.0D0, 6.0D0, 6.0D0, 6.0D0, 0.10D0, 8.0D0, + 8.0D0, 8.0D0, 8.0D0, 8.0D0, 8.0D0, 8.0D0, + 0.09D0, 9.0D0, 9.0D0, 9.0D0, 9.0D0, 9.0D0, + 9.0D0, 9.0D0, 0.09D0, 2.0D0, -0.12D0, 2.0D0, + 2.0D0, 2.0D0, 2.0D0, 2.0D0, 0.06D0, 3.0D0, + -0.18D0, 5.0D0, 0.09D0, 2.0D0, 2.0D0, 2.0D0, + 0.03D0, 4.0D0, -0.09D0, 6.0D0, -0.15D0, 7.0D0, + -0.03D0, 3.0D0/ DATA ITRUE2/0, 1, 2, 2, 3/ * .. Executable Statements .. DO 80 INCX = 1, 2 DO 60 NP1 = 1, 5 N = NP1 - 1 LEN = 2*MAX(N,1) * .. Set vector arguments .. DO 20 I = 1, LEN SX(I) = DV(I,NP1,INCX) 20 CONTINUE * IF (ICASE.EQ.7) THEN * .. DNRM2 .. STEMP(1) = DTRUE1(NP1) CALL STEST1(DNRM2(N,SX,INCX),STEMP,STEMP,SFAC) ELSE IF (ICASE.EQ.8) THEN * .. DASUM .. STEMP(1) = DTRUE3(NP1) CALL STEST1(DASUM(N,SX,INCX),STEMP,STEMP,SFAC) ELSE IF (ICASE.EQ.9) THEN * .. DSCAL .. CALL DSCAL(N,SA((INCX-1)*5+NP1),SX,INCX) DO 40 I = 1, LEN STRUE(I) = DTRUE5(I,NP1,INCX) 40 CONTINUE CALL STEST(LEN,SX,STRUE,STRUE,SFAC) ELSE IF (ICASE.EQ.10) THEN * .. IDAMAX .. CALL ITEST1(IDAMAX(N,SX,INCX),ITRUE2(NP1)) ELSE WRITE (NOUT,*) ' Shouldn''t be here in CHECK1' STOP END IF 60 CONTINUE 80 CONTINUE RETURN END SUBROUTINE CHECK2(SFAC) * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. DOUBLE PRECISION SFAC * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. DOUBLE PRECISION SA, SC, SS INTEGER I, J, KI, KN, KSIZE, LENX, LENY, MX, MY * .. Local Arrays .. DOUBLE PRECISION DT10X(7,4,4), DT10Y(7,4,4), DT7(4,4), + DT8(7,4,4), DT9X(7,4,4), DT9Y(7,4,4), DX1(7), + DY1(7), SSIZE1(4), SSIZE2(14,2), STX(7), STY(7), + SX(7), SY(7) INTEGER INCXS(4), INCYS(4), LENS(4,2), NS(4) * .. External Functions .. DOUBLE PRECISION DDOT EXTERNAL DDOT * .. External Subroutines .. EXTERNAL DAXPY, DCOPY, DSWAP, STEST, STEST1 * .. Intrinsic Functions .. INTRINSIC ABS, MIN * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA SA/0.3D0/ DATA INCXS/1, 2, -2, -1/ DATA INCYS/1, -2, 1, -2/ DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/ DATA NS/0, 1, 2, 4/ DATA DX1/0.6D0, 0.1D0, -0.5D0, 0.8D0, 0.9D0, -0.3D0, + -0.4D0/ DATA DY1/0.5D0, -0.9D0, 0.3D0, 0.7D0, -0.6D0, 0.2D0, + 0.8D0/ DATA SC, SS/0.8D0, 0.6D0/ DATA DT7/0.0D0, 0.30D0, 0.21D0, 0.62D0, 0.0D0, + 0.30D0, -0.07D0, 0.85D0, 0.0D0, 0.30D0, -0.79D0, + -0.74D0, 0.0D0, 0.30D0, 0.33D0, 1.27D0/ DATA DT8/0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.68D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.68D0, -0.87D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.68D0, -0.87D0, 0.15D0, + 0.94D0, 0.0D0, 0.0D0, 0.0D0, 0.5D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.68D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.35D0, -0.9D0, 0.48D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.38D0, -0.9D0, 0.57D0, 0.7D0, -0.75D0, + 0.2D0, 0.98D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.68D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.35D0, -0.72D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.38D0, + -0.63D0, 0.15D0, 0.88D0, 0.0D0, 0.0D0, 0.0D0, + 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.68D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.68D0, -0.9D0, 0.33D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.68D0, -0.9D0, 0.33D0, 0.7D0, + -0.75D0, 0.2D0, 1.04D0/ DATA DT9X/0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.78D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.78D0, -0.46D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.78D0, -0.46D0, -0.22D0, + 1.06D0, 0.0D0, 0.0D0, 0.0D0, 0.6D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.78D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.66D0, 0.1D0, -0.1D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.96D0, 0.1D0, -0.76D0, 0.8D0, 0.90D0, + -0.3D0, -0.02D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.78D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, -0.06D0, 0.1D0, + -0.1D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.90D0, + 0.1D0, -0.22D0, 0.8D0, 0.18D0, -0.3D0, -0.02D0, + 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.78D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.78D0, 0.26D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.78D0, 0.26D0, -0.76D0, 1.12D0, + 0.0D0, 0.0D0, 0.0D0/ DATA DT9Y/0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.04D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.04D0, -0.78D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.04D0, -0.78D0, 0.54D0, + 0.08D0, 0.0D0, 0.0D0, 0.0D0, 0.5D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.04D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.7D0, + -0.9D0, -0.12D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.64D0, -0.9D0, -0.30D0, 0.7D0, -0.18D0, 0.2D0, + 0.28D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.04D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.7D0, -1.08D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.64D0, -1.26D0, + 0.54D0, 0.20D0, 0.0D0, 0.0D0, 0.0D0, 0.5D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.04D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.04D0, -0.9D0, 0.18D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.04D0, -0.9D0, 0.18D0, 0.7D0, + -0.18D0, 0.2D0, 0.16D0/ DATA DT10X/0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.5D0, -0.9D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.5D0, -0.9D0, 0.3D0, 0.7D0, + 0.0D0, 0.0D0, 0.0D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.3D0, 0.1D0, 0.5D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.8D0, 0.1D0, -0.6D0, + 0.8D0, 0.3D0, -0.3D0, 0.5D0, 0.6D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.5D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, -0.9D0, + 0.1D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.7D0, + 0.1D0, 0.3D0, 0.8D0, -0.9D0, -0.3D0, 0.5D0, + 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.5D0, 0.3D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.5D0, 0.3D0, -0.6D0, 0.8D0, 0.0D0, 0.0D0, + 0.0D0/ DATA DT10Y/0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.6D0, 0.1D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.6D0, 0.1D0, -0.5D0, 0.8D0, 0.0D0, + 0.0D0, 0.0D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, -0.5D0, -0.9D0, 0.6D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, -0.4D0, -0.9D0, 0.9D0, + 0.7D0, -0.5D0, 0.2D0, 0.6D0, 0.5D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.6D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, -0.5D0, + 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + -0.4D0, 0.9D0, -0.5D0, 0.6D0, 0.0D0, 0.0D0, + 0.0D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.6D0, -0.9D0, 0.1D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.6D0, -0.9D0, 0.1D0, 0.7D0, + -0.5D0, 0.2D0, 0.8D0/ DATA SSIZE1/0.0D0, 0.3D0, 1.6D0, 3.2D0/ DATA SSIZE2/0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, + 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, + 1.17D0, 1.17D0, 1.17D0/ * .. Executable Statements .. * DO 120 KI = 1, 4 INCX = INCXS(KI) INCY = INCYS(KI) MX = ABS(INCX) MY = ABS(INCY) * DO 100 KN = 1, 4 N = NS(KN) KSIZE = MIN(2,KN) LENX = LENS(KN,MX) LENY = LENS(KN,MY) * .. Initialize all argument arrays .. DO 20 I = 1, 7 SX(I) = DX1(I) SY(I) = DY1(I) 20 CONTINUE * IF (ICASE.EQ.1) THEN * .. DDOT .. CALL STEST1(DDOT(N,SX,INCX,SY,INCY),DT7(KN,KI),SSIZE1(KN) + ,SFAC) ELSE IF (ICASE.EQ.2) THEN * .. DAXPY .. CALL DAXPY(N,SA,SX,INCX,SY,INCY) DO 40 J = 1, LENY STY(J) = DT8(J,KN,KI) 40 CONTINUE CALL STEST(LENY,SY,STY,SSIZE2(1,KSIZE),SFAC) ELSE IF (ICASE.EQ.5) THEN * .. DCOPY .. DO 60 I = 1, 7 STY(I) = DT10Y(I,KN,KI) 60 CONTINUE CALL DCOPY(N,SX,INCX,SY,INCY) CALL STEST(LENY,SY,STY,SSIZE2(1,1),1.0D0) ELSE IF (ICASE.EQ.6) THEN * .. DSWAP .. CALL DSWAP(N,SX,INCX,SY,INCY) DO 80 I = 1, 7 STX(I) = DT10X(I,KN,KI) STY(I) = DT10Y(I,KN,KI) 80 CONTINUE CALL STEST(LENX,SX,STX,SSIZE2(1,1),1.0D0) CALL STEST(LENY,SY,STY,SSIZE2(1,1),1.0D0) ELSE WRITE (NOUT,*) ' Shouldn''t be here in CHECK2' STOP END IF 100 CONTINUE 120 CONTINUE RETURN END SUBROUTINE CHECK3(SFAC) * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. DOUBLE PRECISION SFAC * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. DOUBLE PRECISION SA, SC, SS INTEGER I, K, KI, KN, KSIZE, LENX, LENY, MX, MY * .. Local Arrays .. DOUBLE PRECISION COPYX(5), COPYY(5), DT9X(7,4,4), DT9Y(7,4,4), + DX1(7), DY1(7), MWPC(11), MWPS(11), MWPSTX(5), + MWPSTY(5), MWPTX(11,5), MWPTY(11,5), MWPX(5), + MWPY(5), SSIZE2(14,2), STX(7), STY(7), SX(7), + SY(7) INTEGER INCXS(4), INCYS(4), LENS(4,2), MWPINX(11), + MWPINY(11), MWPN(11), NS(4) * .. External Subroutines .. EXTERNAL DROT, STEST * .. Intrinsic Functions .. INTRINSIC ABS, MIN * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA SA/0.3D0/ DATA INCXS/1, 2, -2, -1/ DATA INCYS/1, -2, 1, -2/ DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/ DATA NS/0, 1, 2, 4/ DATA DX1/0.6D0, 0.1D0, -0.5D0, 0.8D0, 0.9D0, -0.3D0, + -0.4D0/ DATA DY1/0.5D0, -0.9D0, 0.3D0, 0.7D0, -0.6D0, 0.2D0, + 0.8D0/ DATA SC, SS/0.8D0, 0.6D0/ DATA DT9X/0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.78D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.78D0, -0.46D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.78D0, -0.46D0, -0.22D0, + 1.06D0, 0.0D0, 0.0D0, 0.0D0, 0.6D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.78D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.66D0, 0.1D0, -0.1D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.96D0, 0.1D0, -0.76D0, 0.8D0, 0.90D0, + -0.3D0, -0.02D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.78D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, -0.06D0, 0.1D0, + -0.1D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.90D0, + 0.1D0, -0.22D0, 0.8D0, 0.18D0, -0.3D0, -0.02D0, + 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.78D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.78D0, 0.26D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.78D0, 0.26D0, -0.76D0, 1.12D0, + 0.0D0, 0.0D0, 0.0D0/ DATA DT9Y/0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.04D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.04D0, -0.78D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.04D0, -0.78D0, 0.54D0, + 0.08D0, 0.0D0, 0.0D0, 0.0D0, 0.5D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.04D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.7D0, + -0.9D0, -0.12D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.64D0, -0.9D0, -0.30D0, 0.7D0, -0.18D0, 0.2D0, + 0.28D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.04D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.7D0, -1.08D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.64D0, -1.26D0, + 0.54D0, 0.20D0, 0.0D0, 0.0D0, 0.0D0, 0.5D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.04D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.04D0, -0.9D0, 0.18D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.04D0, -0.9D0, 0.18D0, 0.7D0, + -0.18D0, 0.2D0, 0.16D0/ DATA SSIZE2/0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, + 0.0D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, + 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, + 1.17D0, 1.17D0, 1.17D0/ * .. Executable Statements .. * DO 60 KI = 1, 4 INCX = INCXS(KI) INCY = INCYS(KI) MX = ABS(INCX) MY = ABS(INCY) * DO 40 KN = 1, 4 N = NS(KN) KSIZE = MIN(2,KN) LENX = LENS(KN,MX) LENY = LENS(KN,MY) * IF (ICASE.EQ.4) THEN * .. DROT .. DO 20 I = 1, 7 SX(I) = DX1(I) SY(I) = DY1(I) STX(I) = DT9X(I,KN,KI) STY(I) = DT9Y(I,KN,KI) 20 CONTINUE CALL DROT(N,SX,INCX,SY,INCY,SC,SS) CALL STEST(LENX,SX,STX,SSIZE2(1,KSIZE),SFAC) CALL STEST(LENY,SY,STY,SSIZE2(1,KSIZE),SFAC) ELSE WRITE (NOUT,*) ' Shouldn''t be here in CHECK3' STOP END IF 40 CONTINUE 60 CONTINUE * MWPC(1) = 1 DO 80 I = 2, 11 MWPC(I) = 0 80 CONTINUE MWPS(1) = 0 DO 100 I = 2, 6 MWPS(I) = 1 100 CONTINUE DO 120 I = 7, 11 MWPS(I) = -1 120 CONTINUE MWPINX(1) = 1 MWPINX(2) = 1 MWPINX(3) = 1 MWPINX(4) = -1 MWPINX(5) = 1 MWPINX(6) = -1 MWPINX(7) = 1 MWPINX(8) = 1 MWPINX(9) = -1 MWPINX(10) = 1 MWPINX(11) = -1 MWPINY(1) = 1 MWPINY(2) = 1 MWPINY(3) = -1 MWPINY(4) = -1 MWPINY(5) = 2 MWPINY(6) = 1 MWPINY(7) = 1 MWPINY(8) = -1 MWPINY(9) = -1 MWPINY(10) = 2 MWPINY(11) = 1 DO 140 I = 1, 11 MWPN(I) = 5 140 CONTINUE MWPN(5) = 3 MWPN(10) = 3 DO 160 I = 1, 5 MWPX(I) = I MWPY(I) = I MWPTX(1,I) = I MWPTY(1,I) = I MWPTX(2,I) = I MWPTY(2,I) = -I MWPTX(3,I) = 6 - I MWPTY(3,I) = I - 6 MWPTX(4,I) = I MWPTY(4,I) = -I MWPTX(6,I) = 6 - I MWPTY(6,I) = I - 6 MWPTX(7,I) = -I MWPTY(7,I) = I MWPTX(8,I) = I - 6 MWPTY(8,I) = 6 - I MWPTX(9,I) = -I MWPTY(9,I) = I MWPTX(11,I) = I - 6 MWPTY(11,I) = 6 - I 160 CONTINUE MWPTX(5,1) = 1 MWPTX(5,2) = 3 MWPTX(5,3) = 5 MWPTX(5,4) = 4 MWPTX(5,5) = 5 MWPTY(5,1) = -1 MWPTY(5,2) = 2 MWPTY(5,3) = -2 MWPTY(5,4) = 4 MWPTY(5,5) = -3 MWPTX(10,1) = -1 MWPTX(10,2) = -3 MWPTX(10,3) = -5 MWPTX(10,4) = 4 MWPTX(10,5) = 5 MWPTY(10,1) = 1 MWPTY(10,2) = 2 MWPTY(10,3) = 2 MWPTY(10,4) = 4 MWPTY(10,5) = 3 DO 200 I = 1, 11 INCX = MWPINX(I) INCY = MWPINY(I) DO 180 K = 1, 5 COPYX(K) = MWPX(K) COPYY(K) = MWPY(K) MWPSTX(K) = MWPTX(I,K) MWPSTY(K) = MWPTY(I,K) 180 CONTINUE CALL DROT(MWPN(I),COPYX,INCX,COPYY,INCY,MWPC(I),MWPS(I)) CALL STEST(5,COPYX,MWPSTX,MWPSTX,SFAC) CALL STEST(5,COPYY,MWPSTY,MWPSTY,SFAC) 200 CONTINUE RETURN END SUBROUTINE STEST(LEN,SCOMP,STRUE,SSIZE,SFAC) * ********************************* STEST ************************** * * THIS SUBR COMPARES ARRAYS SCOMP() AND STRUE() OF LENGTH LEN TO * SEE IF THE TERM BY TERM DIFFERENCES, MULTIPLIED BY SFAC, ARE * NEGLIGIBLE. * * C. L. LAWSON, JPL, 1974 DEC 10 * * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. DOUBLE PRECISION SFAC INTEGER LEN * .. Array Arguments .. DOUBLE PRECISION SCOMP(LEN), SSIZE(LEN), STRUE(LEN) * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. DOUBLE PRECISION SD INTEGER I * .. External Functions .. DOUBLE PRECISION SDIFF EXTERNAL SDIFF * .. Intrinsic Functions .. INTRINSIC ABS * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Executable Statements .. * DO 40 I = 1, LEN SD = SCOMP(I) - STRUE(I) IF (SDIFF(ABS(SSIZE(I))+ABS(SFAC*SD),ABS(SSIZE(I))).EQ.0.0D0) + GO TO 40 * * HERE SCOMP(I) IS NOT CLOSE TO STRUE(I). * IF ( .NOT. PASS) GO TO 20 * PRINT FAIL MESSAGE AND HEADER. PASS = .FALSE. WRITE (NOUT,99999) WRITE (NOUT,99998) 20 WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, I, SCOMP(I), + STRUE(I), SD, SSIZE(I) 40 CONTINUE RETURN * 99999 FORMAT (' FAIL') 99998 FORMAT (/' CASE N INCX INCY MODE I ', + ' COMP(I) TRUE(I) DIFFERENCE', + ' SIZE(I)',/1X) 99997 FORMAT (1X,I4,I3,3I5,I3,2D36.8,2D12.4) END SUBROUTINE STEST1(SCOMP1,STRUE1,SSIZE,SFAC) * ************************* STEST1 ***************************** * * THIS IS AN INTERFACE SUBROUTINE TO ACCOMODATE THE FORTRAN * REQUIREMENT THAT WHEN A DUMMY ARGUMENT IS AN ARRAY, THE * ACTUAL ARGUMENT MUST ALSO BE AN ARRAY OR AN ARRAY ELEMENT. * * C.L. LAWSON, JPL, 1978 DEC 6 * * .. Scalar Arguments .. DOUBLE PRECISION SCOMP1, SFAC, STRUE1 * .. Array Arguments .. DOUBLE PRECISION SSIZE(*) * .. Local Arrays .. DOUBLE PRECISION SCOMP(1), STRUE(1) * .. External Subroutines .. EXTERNAL STEST * .. Executable Statements .. * SCOMP(1) = SCOMP1 STRUE(1) = STRUE1 CALL STEST(1,SCOMP,STRUE,SSIZE,SFAC) * RETURN END DOUBLE PRECISION FUNCTION SDIFF(SA,SB) * ********************************* SDIFF ************************** * COMPUTES DIFFERENCE OF TWO NUMBERS. C. L. LAWSON, JPL 1974 FEB 15 * * .. Scalar Arguments .. DOUBLE PRECISION SA, SB * .. Executable Statements .. SDIFF = SA - SB RETURN END SUBROUTINE ITEST1(ICOMP,ITRUE) * ********************************* ITEST1 ************************* * * THIS SUBROUTINE COMPARES THE VARIABLES ICOMP AND ITRUE FOR * EQUALITY. * C. L. LAWSON, JPL, 1974 DEC 10 * * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. INTEGER ICOMP, ITRUE * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. INTEGER ID * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Executable Statements .. * IF (ICOMP.EQ.ITRUE) GO TO 40 * * HERE ICOMP IS NOT EQUAL TO ITRUE. * IF ( .NOT. PASS) GO TO 20 * PRINT FAIL MESSAGE AND HEADER. PASS = .FALSE. WRITE (NOUT,99999) WRITE (NOUT,99998) 20 ID = ICOMP - ITRUE WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, ICOMP, ITRUE, ID 40 CONTINUE RETURN * 99999 FORMAT (' FAIL') 99998 FORMAT (/' CASE N INCX INCY MODE ', + ' COMP TRUE DIFFERENCE', + /1X) 99997 FORMAT (1X,I4,I3,3I5,2I36,I12) END blas-1.2.orig/test/cblat3 0000644 0001750 0001750 00000376337 10735444622 016222 0 ustar sylvestre sylvestre PROGRAM CBLAT3 * * Test program for the COMPLEX Level 3 Blas. * * The program must be driven by a short data file. The first 14 records * of the file are read using list-directed input, the last 9 records * are read using the format ( A6, L2 ). An annotated example of a data * file can be obtained by deleting the first 3 characters from the * following 23 lines: * 'CBLAT3.SUMM' NAME OF SUMMARY OUTPUT FILE * 6 UNIT NUMBER OF SUMMARY FILE * 'CBLAT3.SNAP' NAME OF SNAPSHOT OUTPUT FILE * -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) * F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. * F LOGICAL FLAG, T TO STOP ON FAILURES. * T LOGICAL FLAG, T TO TEST ERROR EXITS. * 16.0 THRESHOLD VALUE OF TEST RATIO * 6 NUMBER OF VALUES OF N * 0 1 2 3 5 9 VALUES OF N * 3 NUMBER OF VALUES OF ALPHA * (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA * 3 NUMBER OF VALUES OF BETA * (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA * CGEMM T PUT F FOR NO TEST. SAME COLUMNS. * CHEMM T PUT F FOR NO TEST. SAME COLUMNS. * CSYMM T PUT F FOR NO TEST. SAME COLUMNS. * CTRMM T PUT F FOR NO TEST. SAME COLUMNS. * CTRSM T PUT F FOR NO TEST. SAME COLUMNS. * CHERK T PUT F FOR NO TEST. SAME COLUMNS. * CSYRK T PUT F FOR NO TEST. SAME COLUMNS. * CHER2K T PUT F FOR NO TEST. SAME COLUMNS. * CSYR2K T PUT F FOR NO TEST. SAME COLUMNS. * * See: * * Dongarra J. J., Du Croz J. J., Duff I. S. and Hammarling S. * A Set of Level 3 Basic Linear Algebra Subprograms. * * Technical Memorandum No.88 (Revision 1), Mathematics and * Computer Science Division, Argonne National Laboratory, 9700 * South Cass Avenue, Argonne, Illinois 60439, US. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. INTEGER NIN PARAMETER ( NIN = 5 ) INTEGER NSUBS PARAMETER ( NSUBS = 9 ) COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) ) REAL RZERO, RHALF, RONE PARAMETER ( RZERO = 0.0, RHALF = 0.5, RONE = 1.0 ) INTEGER NMAX PARAMETER ( NMAX = 65 ) INTEGER NIDMAX, NALMAX, NBEMAX PARAMETER ( NIDMAX = 9, NALMAX = 7, NBEMAX = 7 ) * .. Local Scalars .. REAL EPS, ERR, THRESH INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NOUT, NTRA LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE, $ TSTERR CHARACTER*1 TRANSA, TRANSB CHARACTER*6 SNAMET CHARACTER*32 SNAPS, SUMMRY * .. Local Arrays .. COMPLEX AA( NMAX*NMAX ), AB( NMAX, 2*NMAX ), $ ALF( NALMAX ), AS( NMAX*NMAX ), $ BB( NMAX*NMAX ), BET( NBEMAX ), $ BS( NMAX*NMAX ), C( NMAX, NMAX ), $ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ), $ W( 2*NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDMAX ) LOGICAL LTEST( NSUBS ) CHARACTER*6 SNAMES( NSUBS ) * .. External Functions .. REAL SDIFF LOGICAL LCE EXTERNAL SDIFF, LCE * .. External Subroutines .. EXTERNAL CCHK1, CCHK2, CCHK3, CCHK4, CCHK5, CCHKE, CMMCH * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR COMMON /SRNAMC/SRNAMT * .. Data statements .. DATA SNAMES/'CGEMM ', 'CHEMM ', 'CSYMM ', 'CTRMM ', $ 'CTRSM ', 'CHERK ', 'CSYRK ', 'CHER2K', $ 'CSYR2K'/ * .. Executable Statements .. * * Read name and unit number for summary output file and open file. * READ( NIN, FMT = * )SUMMRY READ( NIN, FMT = * )NOUT OPEN( NOUT, FILE = SUMMRY, STATUS = 'NEW' ) NOUTC = NOUT * * Read name and unit number for snapshot output file and open file. * READ( NIN, FMT = * )SNAPS READ( NIN, FMT = * )NTRA TRACE = NTRA.GE.0 IF( TRACE )THEN OPEN( NTRA, FILE = SNAPS, STATUS = 'NEW' ) END IF * Read the flag that directs rewinding of the snapshot file. READ( NIN, FMT = * )REWI REWI = REWI.AND.TRACE * Read the flag that directs stopping on any failure. READ( NIN, FMT = * )SFATAL * Read the flag that indicates whether error exits are to be tested. READ( NIN, FMT = * )TSTERR * Read the threshold value of the test ratio READ( NIN, FMT = * )THRESH * * Read and check the parameter values for the tests. * * Values of N READ( NIN, FMT = * )NIDIM IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN WRITE( NOUT, FMT = 9997 )'N', NIDMAX GO TO 220 END IF READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM ) DO 10 I = 1, NIDIM IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN WRITE( NOUT, FMT = 9996 )NMAX GO TO 220 END IF 10 CONTINUE * Values of ALPHA READ( NIN, FMT = * )NALF IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX GO TO 220 END IF READ( NIN, FMT = * )( ALF( I ), I = 1, NALF ) * Values of BETA READ( NIN, FMT = * )NBET IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX GO TO 220 END IF READ( NIN, FMT = * )( BET( I ), I = 1, NBET ) * * Report values of parameters. * WRITE( NOUT, FMT = 9995 ) WRITE( NOUT, FMT = 9994 )( IDIM( I ), I = 1, NIDIM ) WRITE( NOUT, FMT = 9993 )( ALF( I ), I = 1, NALF ) WRITE( NOUT, FMT = 9992 )( BET( I ), I = 1, NBET ) IF( .NOT.TSTERR )THEN WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9984 ) END IF WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9999 )THRESH WRITE( NOUT, FMT = * ) * * Read names of subroutines and flags which indicate * whether they are to be tested. * DO 20 I = 1, NSUBS LTEST( I ) = .FALSE. 20 CONTINUE 30 READ( NIN, FMT = 9988, END = 60 )SNAMET, LTESTT DO 40 I = 1, NSUBS IF( SNAMET.EQ.SNAMES( I ) ) $ GO TO 50 40 CONTINUE WRITE( NOUT, FMT = 9990 )SNAMET STOP 50 LTEST( I ) = LTESTT GO TO 30 * 60 CONTINUE CLOSE ( NIN ) * * Compute EPS (the machine precision). * EPS = RONE 70 CONTINUE IF( SDIFF( RONE + EPS, RONE ).EQ.RZERO ) $ GO TO 80 EPS = RHALF*EPS GO TO 70 80 CONTINUE EPS = EPS + EPS WRITE( NOUT, FMT = 9998 )EPS * * Check the reliability of CMMCH using exact data. * N = MIN( 32, NMAX ) DO 100 J = 1, N DO 90 I = 1, N AB( I, J ) = MAX( I - J + 1, 0 ) 90 CONTINUE AB( J, NMAX + 1 ) = J AB( 1, NMAX + J ) = J C( J, 1 ) = ZERO 100 CONTINUE DO 110 J = 1, N CC( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3 110 CONTINUE * CC holds the exact result. On exit from CMMCH CT holds * the result computed by CMMCH. TRANSA = 'N' TRANSB = 'N' CALL CMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LCE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF TRANSB = 'C' CALL CMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LCE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF DO 120 J = 1, N AB( J, NMAX + 1 ) = N - J + 1 AB( 1, NMAX + J ) = N - J + 1 120 CONTINUE DO 130 J = 1, N CC( N - J + 1 ) = J*( ( J + 1 )*J )/2 - $ ( ( J + 1 )*J*( J - 1 ) )/3 130 CONTINUE TRANSA = 'C' TRANSB = 'N' CALL CMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LCE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF TRANSB = 'C' CALL CMMCH( TRANSA, TRANSB, N, 1, N, ONE, AB, NMAX, $ AB( 1, NMAX + 1 ), NMAX, ZERO, C, NMAX, CT, G, CC, $ NMAX, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LCE( CC, CT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9989 )TRANSA, TRANSB, SAME, ERR STOP END IF * * Test each subroutine in turn. * DO 200 ISNUM = 1, NSUBS WRITE( NOUT, FMT = * ) IF( .NOT.LTEST( ISNUM ) )THEN * Subprogram is not to be tested. WRITE( NOUT, FMT = 9987 )SNAMES( ISNUM ) ELSE SRNAMT = SNAMES( ISNUM ) * Test error exits. IF( TSTERR )THEN CALL CCHKE( ISNUM, SNAMES( ISNUM ), NOUT ) WRITE( NOUT, FMT = * ) END IF * Test computations. INFOT = 0 OK = .TRUE. FATAL = .FALSE. GO TO ( 140, 150, 150, 160, 160, 170, 170, $ 180, 180 )ISNUM * Test CGEMM, 01. 140 CALL CCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test CHEMM, 02, CSYMM, 03. 150 CALL CCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test CTRMM, 04, CTRSM, 05. 160 CALL CCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NMAX, AB, $ AA, AS, AB( 1, NMAX + 1 ), BB, BS, CT, G, C ) GO TO 190 * Test CHERK, 06, CSYRK, 07. 170 CALL CCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, AB( 1, NMAX + 1 ), BB, BS, C, $ CC, CS, CT, G ) GO TO 190 * Test CHER2K, 08, CSYR2K, 09. 180 CALL CCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, $ NMAX, AB, AA, AS, BB, BS, C, CC, CS, CT, G, W ) GO TO 190 * 190 IF( FATAL.AND.SFATAL ) $ GO TO 210 END IF 200 CONTINUE WRITE( NOUT, FMT = 9986 ) GO TO 230 * 210 CONTINUE WRITE( NOUT, FMT = 9985 ) GO TO 230 * 220 CONTINUE WRITE( NOUT, FMT = 9991 ) * 230 CONTINUE IF( TRACE ) $ CLOSE ( NTRA ) CLOSE ( NOUT ) STOP * 9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES', $ 'S THAN', F8.2 ) 9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, E9.1 ) 9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ', $ 'THAN ', I2 ) 9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 ) 9995 FORMAT( ' TESTS OF THE COMPLEX LEVEL 3 BLAS', //' THE F', $ 'OLLOWING PARAMETER VALUES WILL BE USED:' ) 9994 FORMAT( ' FOR N ', 9I6 ) 9993 FORMAT( ' FOR ALPHA ', $ 7( '(', F4.1, ',', F4.1, ') ', : ) ) 9992 FORMAT( ' FOR BETA ', $ 7( '(', F4.1, ',', F4.1, ') ', : ) ) 9991 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM', $ /' ******* TESTS ABANDONED *******' ) 9990 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T', $ 'ESTS ABANDONED *******' ) 9989 FORMAT( ' ERROR IN CMMCH - IN-LINE DOT PRODUCTS ARE BEING EVALU', $ 'ATED WRONGLY.', /' CMMCH WAS CALLED WITH TRANSA = ', A1, $ ' AND TRANSB = ', A1, /' AND RETURNED SAME = ', L1, ' AND ', $ 'ERR = ', F12.3, '.', /' THIS MAY BE DUE TO FAULTS IN THE ', $ 'ARITHMETIC OR THE COMPILER.', /' ******* TESTS ABANDONED ', $ '*******' ) 9988 FORMAT( A6, L2 ) 9987 FORMAT( 1X, A6, ' WAS NOT TESTED' ) 9986 FORMAT( /' END OF TESTS' ) 9985 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' ) 9984 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' ) * * End of CBLAT3. * END SUBROUTINE CCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests CGEMM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX ZERO PARAMETER ( ZERO = ( 0.0, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX ALPHA, ALS, BETA, BLS REAL ERR, ERRMAX INTEGER I, IA, IB, ICA, ICB, IK, IM, IN, K, KS, LAA, $ LBB, LCC, LDA, LDAS, LDB, LDBS, LDC, LDCS, M, $ MA, MB, MS, N, NA, NARGS, NB, NC, NS LOGICAL NULL, RESET, SAME, TRANA, TRANB CHARACTER*1 TRANAS, TRANBS, TRANSA, TRANSB CHARACTER*3 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CGEMM, CMAKE, CMMCH * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'NTC'/ * .. Executable Statements .. * NARGS = 13 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 110 IM = 1, NIDIM M = IDIM( IM ) * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = M IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 100 LCC = LDC*N NULL = N.LE.0.OR.M.LE.0 * DO 90 IK = 1, NIDIM K = IDIM( IK ) * DO 80 ICA = 1, 3 TRANSA = ICH( ICA: ICA ) TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C' * IF( TRANA )THEN MA = K NA = M ELSE MA = M NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * * Generate the matrix A. * CALL CMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 70 ICB = 1, 3 TRANSB = ICH( ICB: ICB ) TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C' * IF( TRANB )THEN MB = N NB = K ELSE MB = K NB = N END IF * Set LDB to 1 more than minimum value if room. LDB = MB IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 70 LBB = LDB*NB * * Generate the matrix B. * CALL CMAKE( 'GE', ' ', ' ', MB, NB, B, NMAX, BB, $ LDB, RESET, ZERO ) * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL CMAKE( 'GE', ' ', ' ', M, N, C, NMAX, $ CC, LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * TRANAS = TRANSA TRANBS = TRANSB MS = M NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BLS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ TRANSA, TRANSB, M, N, K, ALPHA, LDA, LDB, $ BETA, LDC IF( REWI ) $ REWIND NTRA CALL CGEMM( TRANSA, TRANSB, M, N, K, ALPHA, $ AA, LDA, BB, LDB, BETA, CC, LDC ) * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = TRANSA.EQ.TRANAS ISAME( 2 ) = TRANSB.EQ.TRANBS ISAME( 3 ) = MS.EQ.M ISAME( 4 ) = NS.EQ.N ISAME( 5 ) = KS.EQ.K ISAME( 6 ) = ALS.EQ.ALPHA ISAME( 7 ) = LCE( AS, AA, LAA ) ISAME( 8 ) = LDAS.EQ.LDA ISAME( 9 ) = LCE( BS, BB, LBB ) ISAME( 10 ) = LDBS.EQ.LDB ISAME( 11 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 12 ) = LCE( CS, CC, LCC ) ELSE ISAME( 12 ) = LCERES( 'GE', ' ', M, N, CS, $ CC, LDC ) END IF ISAME( 13 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report * and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL CMMCH( TRANSA, TRANSB, M, N, K, $ ALPHA, A, NMAX, B, NMAX, BETA, $ C, NMAX, CT, G, CC, LDC, EPS, $ ERR, FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 120 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANSA, TRANSB, M, N, K, $ ALPHA, LDA, LDB, BETA, LDC * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',''', A1, ''',', $ 3( I3, ',' ), '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, $ ',(', F4.1, ',', F4.1, '), C,', I3, ').' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK1. * END SUBROUTINE CCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests CHEMM and CSYMM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX ZERO PARAMETER ( ZERO = ( 0.0, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX ALPHA, ALS, BETA, BLS REAL ERR, ERRMAX INTEGER I, IA, IB, ICS, ICU, IM, IN, LAA, LBB, LCC, $ LDA, LDAS, LDB, LDBS, LDC, LDCS, M, MS, N, NA, $ NARGS, NC, NS LOGICAL CONJ, LEFT, NULL, RESET, SAME CHARACTER*1 SIDE, SIDES, UPLO, UPLOS CHARACTER*2 ICHS, ICHU * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CHEMM, CMAKE, CMMCH, CSYMM * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHS/'LR'/, ICHU/'UL'/ * .. Executable Statements .. CONJ = SNAME( 2: 3 ).EQ.'HE' * NARGS = 12 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 100 IM = 1, NIDIM M = IDIM( IM ) * DO 90 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = M IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 90 LCC = LDC*N NULL = N.LE.0.OR.M.LE.0 * Set LDB to 1 more than minimum value if room. LDB = M IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 90 LBB = LDB*N * * Generate the matrix B. * CALL CMAKE( 'GE', ' ', ' ', M, N, B, NMAX, BB, LDB, RESET, $ ZERO ) * DO 80 ICS = 1, 2 SIDE = ICHS( ICS: ICS ) LEFT = SIDE.EQ.'L' * IF( LEFT )THEN NA = M ELSE NA = N END IF * Set LDA to 1 more than minimum value if room. LDA = NA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * DO 70 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * * Generate the hermitian or symmetric matrix A. * CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', NA, NA, A, NMAX, $ AA, LDA, RESET, ZERO ) * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the matrix C. * CALL CMAKE( 'GE', ' ', ' ', M, N, C, NMAX, CC, $ LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * SIDES = SIDE UPLOS = UPLO MS = M NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB BLS = BETA DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, SIDE, $ UPLO, M, N, ALPHA, LDA, LDB, BETA, LDC IF( REWI ) $ REWIND NTRA IF( CONJ )THEN CALL CHEMM( SIDE, UPLO, M, N, ALPHA, AA, LDA, $ BB, LDB, BETA, CC, LDC ) ELSE CALL CSYMM( SIDE, UPLO, M, N, ALPHA, AA, LDA, $ BB, LDB, BETA, CC, LDC ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 110 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = SIDES.EQ.SIDE ISAME( 2 ) = UPLOS.EQ.UPLO ISAME( 3 ) = MS.EQ.M ISAME( 4 ) = NS.EQ.N ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LCE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = LCE( BS, BB, LBB ) ISAME( 9 ) = LDBS.EQ.LDB ISAME( 10 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 11 ) = LCE( CS, CC, LCC ) ELSE ISAME( 11 ) = LCERES( 'GE', ' ', M, N, CS, $ CC, LDC ) END IF ISAME( 12 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 110 END IF * IF( .NOT.NULL )THEN * * Check the result. * IF( LEFT )THEN CALL CMMCH( 'N', 'N', M, N, M, ALPHA, A, $ NMAX, B, NMAX, BETA, C, NMAX, $ CT, G, CC, LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL CMMCH( 'N', 'N', M, N, N, ALPHA, B, $ NMAX, A, NMAX, BETA, C, NMAX, $ CT, G, CC, LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 120 * 110 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, M, N, ALPHA, LDA, $ LDB, BETA, LDC * 120 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',(', F4.1, $ ',', F4.1, '), C,', I3, ') .' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK2. * END SUBROUTINE CCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NMAX, A, AA, AS, $ B, BB, BS, CT, G, C ) * * Tests CTRMM and CTRSM. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CT( NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX ALPHA, ALS REAL ERR, ERRMAX INTEGER I, IA, ICD, ICS, ICT, ICU, IM, IN, J, LAA, LBB, $ LDA, LDAS, LDB, LDBS, M, MS, N, NA, NARGS, NC, $ NS LOGICAL LEFT, NULL, RESET, SAME CHARACTER*1 DIAG, DIAGS, SIDE, SIDES, TRANAS, TRANSA, UPLO, $ UPLOS CHARACTER*2 ICHD, ICHS, ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CMAKE, CMMCH, CTRMM, CTRSM * .. Intrinsic Functions .. INTRINSIC MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/, ICHS/'LR'/ * .. Executable Statements .. * NARGS = 11 NC = 0 RESET = .TRUE. ERRMAX = RZERO * Set up zero matrix for CMMCH. DO 20 J = 1, NMAX DO 10 I = 1, NMAX C( I, J ) = ZERO 10 CONTINUE 20 CONTINUE * DO 140 IM = 1, NIDIM M = IDIM( IM ) * DO 130 IN = 1, NIDIM N = IDIM( IN ) * Set LDB to 1 more than minimum value if room. LDB = M IF( LDB.LT.NMAX ) $ LDB = LDB + 1 * Skip tests if not enough room. IF( LDB.GT.NMAX ) $ GO TO 130 LBB = LDB*N NULL = M.LE.0.OR.N.LE.0 * DO 120 ICS = 1, 2 SIDE = ICHS( ICS: ICS ) LEFT = SIDE.EQ.'L' IF( LEFT )THEN NA = M ELSE NA = N END IF * Set LDA to 1 more than minimum value if room. LDA = NA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 130 LAA = LDA*NA * DO 110 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * DO 100 ICT = 1, 3 TRANSA = ICHT( ICT: ICT ) * DO 90 ICD = 1, 2 DIAG = ICHD( ICD: ICD ) * DO 80 IA = 1, NALF ALPHA = ALF( IA ) * * Generate the matrix A. * CALL CMAKE( 'TR', UPLO, DIAG, NA, NA, A, $ NMAX, AA, LDA, RESET, ZERO ) * * Generate the matrix B. * CALL CMAKE( 'GE', ' ', ' ', M, N, B, NMAX, $ BB, LDB, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * SIDES = SIDE UPLOS = UPLO TRANAS = TRANSA DIAGS = DIAG MS = M NS = N ALS = ALPHA DO 30 I = 1, LAA AS( I ) = AA( I ) 30 CONTINUE LDAS = LDA DO 40 I = 1, LBB BS( I ) = BB( I ) 40 CONTINUE LDBS = LDB * * Call the subroutine. * IF( SNAME( 4: 5 ).EQ.'MM' )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, $ LDA, LDB IF( REWI ) $ REWIND NTRA CALL CTRMM( SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, AA, LDA, BB, LDB ) ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, $ LDA, LDB IF( REWI ) $ REWIND NTRA CALL CTRSM( SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, AA, LDA, BB, LDB ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9994 ) FATAL = .TRUE. GO TO 150 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = SIDES.EQ.SIDE ISAME( 2 ) = UPLOS.EQ.UPLO ISAME( 3 ) = TRANAS.EQ.TRANSA ISAME( 4 ) = DIAGS.EQ.DIAG ISAME( 5 ) = MS.EQ.M ISAME( 6 ) = NS.EQ.N ISAME( 7 ) = ALS.EQ.ALPHA ISAME( 8 ) = LCE( AS, AA, LAA ) ISAME( 9 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 10 ) = LCE( BS, BB, LBB ) ELSE ISAME( 10 ) = LCERES( 'GE', ' ', M, N, BS, $ BB, LDB ) END IF ISAME( 11 ) = LDBS.EQ.LDB * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 50 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 50 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 150 END IF * IF( .NOT.NULL )THEN IF( SNAME( 4: 5 ).EQ.'MM' )THEN * * Check the result. * IF( LEFT )THEN CALL CMMCH( TRANSA, 'N', M, N, M, $ ALPHA, A, NMAX, B, NMAX, $ ZERO, C, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL CMMCH( 'N', TRANSA, M, N, N, $ ALPHA, B, NMAX, A, NMAX, $ ZERO, C, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF ELSE IF( SNAME( 4: 5 ).EQ.'SM' )THEN * * Compute approximation to original * matrix. * DO 70 J = 1, N DO 60 I = 1, M C( I, J ) = BB( I + ( J - 1 )* $ LDB ) BB( I + ( J - 1 )*LDB ) = ALPHA* $ B( I, J ) 60 CONTINUE 70 CONTINUE * IF( LEFT )THEN CALL CMMCH( TRANSA, 'N', M, N, M, $ ONE, A, NMAX, C, NMAX, $ ZERO, B, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .FALSE. ) ELSE CALL CMMCH( 'N', TRANSA, M, N, N, $ ONE, C, NMAX, A, NMAX, $ ZERO, B, NMAX, CT, G, $ BB, LDB, EPS, ERR, $ FATAL, NOUT, .FALSE. ) END IF END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 150 END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * 140 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 160 * 150 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9995 )NC, SNAME, SIDE, UPLO, TRANSA, DIAG, M, $ N, ALPHA, LDA, LDB * 160 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 4( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ') ', $ ' .' ) 9994 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK3. * END SUBROUTINE CCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ A, AA, AS, B, BB, BS, C, CC, CS, CT, G ) * * Tests CHERK and CSYRK. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX ZERO PARAMETER ( ZERO = ( 0.0, 0.0 ) ) REAL RONE, RZERO PARAMETER ( RONE = 1.0, RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), B( NMAX, NMAX ), $ BB( NMAX*NMAX ), BET( NBET ), BS( NMAX*NMAX ), $ C( NMAX, NMAX ), CC( NMAX*NMAX ), $ CS( NMAX*NMAX ), CT( NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX ALPHA, ALS, BETA, BETS REAL ERR, ERRMAX, RALPHA, RALS, RBETA, RBETS INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, K, KS, $ LAA, LCC, LDA, LDAS, LDC, LDCS, LJ, MA, N, NA, $ NARGS, NC, NS LOGICAL CONJ, NULL, RESET, SAME, TRAN, UPPER CHARACTER*1 TRANS, TRANSS, TRANST, UPLO, UPLOS CHARACTER*2 ICHT, ICHU * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CHERK, CMAKE, CMMCH, CSYRK * .. Intrinsic Functions .. INTRINSIC CMPLX, MAX, REAL * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHT/'NC'/, ICHU/'UL'/ * .. Executable Statements .. CONJ = SNAME( 2: 3 ).EQ.'HE' * NARGS = 10 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = N IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 100 LCC = LDC*N * DO 90 IK = 1, NIDIM K = IDIM( IK ) * DO 80 ICT = 1, 2 TRANS = ICHT( ICT: ICT ) TRAN = TRANS.EQ.'C' IF( TRAN.AND..NOT.CONJ ) $ TRANS = 'T' IF( TRAN )THEN MA = K NA = N ELSE MA = N NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 80 LAA = LDA*NA * * Generate the matrix A. * CALL CMAKE( 'GE', ' ', ' ', MA, NA, A, NMAX, AA, LDA, $ RESET, ZERO ) * DO 70 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) UPPER = UPLO.EQ.'U' * DO 60 IA = 1, NALF ALPHA = ALF( IA ) IF( CONJ )THEN RALPHA = REAL( ALPHA ) ALPHA = CMPLX( RALPHA, RZERO ) END IF * DO 50 IB = 1, NBET BETA = BET( IB ) IF( CONJ )THEN RBETA = REAL( BETA ) BETA = CMPLX( RBETA, RZERO ) END IF NULL = N.LE.0 IF( CONJ ) $ NULL = NULL.OR.( ( K.LE.0.OR.RALPHA.EQ. $ RZERO ).AND.RBETA.EQ.RONE ) * * Generate the matrix C. * CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, C, $ NMAX, CC, LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS NS = N KS = K IF( CONJ )THEN RALS = RALPHA ELSE ALS = ALPHA END IF DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA IF( CONJ )THEN RBETS = RBETA ELSE BETS = BETA END IF DO 20 I = 1, LCC CS( I ) = CC( I ) 20 CONTINUE LDCS = LDC * * Call the subroutine. * IF( CONJ )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, $ TRANS, N, K, RALPHA, LDA, RBETA, LDC IF( REWI ) $ REWIND NTRA CALL CHERK( UPLO, TRANS, N, K, RALPHA, AA, $ LDA, RBETA, CC, LDC ) ELSE IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, $ TRANS, N, K, ALPHA, LDA, BETA, LDC IF( REWI ) $ REWIND NTRA CALL CSYRK( UPLO, TRANS, N, K, ALPHA, AA, $ LDA, BETA, CC, LDC ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLOS.EQ.UPLO ISAME( 2 ) = TRANSS.EQ.TRANS ISAME( 3 ) = NS.EQ.N ISAME( 4 ) = KS.EQ.K IF( CONJ )THEN ISAME( 5 ) = RALS.EQ.RALPHA ELSE ISAME( 5 ) = ALS.EQ.ALPHA END IF ISAME( 6 ) = LCE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA IF( CONJ )THEN ISAME( 8 ) = RBETS.EQ.RBETA ELSE ISAME( 8 ) = BETS.EQ.BETA END IF IF( NULL )THEN ISAME( 9 ) = LCE( CS, CC, LCC ) ELSE ISAME( 9 ) = LCERES( SNAME( 2: 3 ), UPLO, N, $ N, CS, CC, LDC ) END IF ISAME( 10 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 30 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 30 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( CONJ )THEN TRANST = 'C' ELSE TRANST = 'T' END IF JC = 1 DO 40 J = 1, N IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF IF( TRAN )THEN CALL CMMCH( TRANST, 'N', LJ, 1, K, $ ALPHA, A( 1, JJ ), NMAX, $ A( 1, J ), NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ELSE CALL CMMCH( 'N', TRANST, LJ, 1, K, $ ALPHA, A( JJ, 1 ), NMAX, $ A( J, 1 ), NMAX, BETA, $ C( JJ, J ), NMAX, CT, G, $ CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF IF( UPPER )THEN JC = JC + LDC ELSE JC = JC + LDC + 1 END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 110 40 CONTINUE END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 110 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9995 )J * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( CONJ )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, RALPHA, $ LDA, RBETA, LDC ELSE WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, N, K, ALPHA, $ LDA, BETA, LDC END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ F4.1, ', A,', I3, ',', F4.1, ', C,', I3, ') ', $ ' .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, ') , A,', I3, ',(', F4.1, ',', F4.1, $ '), C,', I3, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK4. * END SUBROUTINE CCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NBET, BET, NMAX, $ AB, AA, AS, BB, BS, C, CC, CS, CT, G, W ) * * Tests CHER2K and CSYR2K. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) ) REAL RONE, RZERO PARAMETER ( RONE = 1.0, RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER NALF, NBET, NIDIM, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX AA( NMAX*NMAX ), AB( 2*NMAX*NMAX ), $ ALF( NALF ), AS( NMAX*NMAX ), BB( NMAX*NMAX ), $ BET( NBET ), BS( NMAX*NMAX ), C( NMAX, NMAX ), $ CC( NMAX*NMAX ), CS( NMAX*NMAX ), CT( NMAX ), $ W( 2*NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ) * .. Local Scalars .. COMPLEX ALPHA, ALS, BETA, BETS REAL ERR, ERRMAX, RBETA, RBETS INTEGER I, IA, IB, ICT, ICU, IK, IN, J, JC, JJ, JJAB, $ K, KS, LAA, LBB, LCC, LDA, LDAS, LDB, LDBS, $ LDC, LDCS, LJ, MA, N, NA, NARGS, NC, NS LOGICAL CONJ, NULL, RESET, SAME, TRAN, UPPER CHARACTER*1 TRANS, TRANSS, TRANST, UPLO, UPLOS CHARACTER*2 ICHT, ICHU * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CHER2K, CMAKE, CMMCH, CSYR2K * .. Intrinsic Functions .. INTRINSIC CMPLX, CONJG, MAX, REAL * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHT/'NC'/, ICHU/'UL'/ * .. Executable Statements .. CONJ = SNAME( 2: 3 ).EQ.'HE' * NARGS = 12 NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 130 IN = 1, NIDIM N = IDIM( IN ) * Set LDC to 1 more than minimum value if room. LDC = N IF( LDC.LT.NMAX ) $ LDC = LDC + 1 * Skip tests if not enough room. IF( LDC.GT.NMAX ) $ GO TO 130 LCC = LDC*N * DO 120 IK = 1, NIDIM K = IDIM( IK ) * DO 110 ICT = 1, 2 TRANS = ICHT( ICT: ICT ) TRAN = TRANS.EQ.'C' IF( TRAN.AND..NOT.CONJ ) $ TRANS = 'T' IF( TRAN )THEN MA = K NA = N ELSE MA = N NA = K END IF * Set LDA to 1 more than minimum value if room. LDA = MA IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 110 LAA = LDA*NA * * Generate the matrix A. * IF( TRAN )THEN CALL CMAKE( 'GE', ' ', ' ', MA, NA, AB, 2*NMAX, AA, $ LDA, RESET, ZERO ) ELSE CALL CMAKE( 'GE', ' ', ' ', MA, NA, AB, NMAX, AA, LDA, $ RESET, ZERO ) END IF * * Generate the matrix B. * LDB = LDA LBB = LAA IF( TRAN )THEN CALL CMAKE( 'GE', ' ', ' ', MA, NA, AB( K + 1 ), $ 2*NMAX, BB, LDB, RESET, ZERO ) ELSE CALL CMAKE( 'GE', ' ', ' ', MA, NA, AB( K*NMAX + 1 ), $ NMAX, BB, LDB, RESET, ZERO ) END IF * DO 100 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) UPPER = UPLO.EQ.'U' * DO 90 IA = 1, NALF ALPHA = ALF( IA ) * DO 80 IB = 1, NBET BETA = BET( IB ) IF( CONJ )THEN RBETA = REAL( BETA ) BETA = CMPLX( RBETA, RZERO ) END IF NULL = N.LE.0 IF( CONJ ) $ NULL = NULL.OR.( ( K.LE.0.OR.ALPHA.EQ. $ ZERO ).AND.RBETA.EQ.RONE ) * * Generate the matrix C. * CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, C, $ NMAX, CC, LDC, RESET, ZERO ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LBB BS( I ) = BB( I ) 20 CONTINUE LDBS = LDB IF( CONJ )THEN RBETS = RBETA ELSE BETS = BETA END IF DO 30 I = 1, LCC CS( I ) = CC( I ) 30 CONTINUE LDCS = LDC * * Call the subroutine. * IF( CONJ )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, $ TRANS, N, K, ALPHA, LDA, LDB, RBETA, LDC IF( REWI ) $ REWIND NTRA CALL CHER2K( UPLO, TRANS, N, K, ALPHA, AA, $ LDA, BB, LDB, RBETA, CC, LDC ) ELSE IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, $ TRANS, N, K, ALPHA, LDA, LDB, BETA, LDC IF( REWI ) $ REWIND NTRA CALL CSYR2K( UPLO, TRANS, N, K, ALPHA, AA, $ LDA, BB, LDB, BETA, CC, LDC ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 150 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLOS.EQ.UPLO ISAME( 2 ) = TRANSS.EQ.TRANS ISAME( 3 ) = NS.EQ.N ISAME( 4 ) = KS.EQ.K ISAME( 5 ) = ALS.EQ.ALPHA ISAME( 6 ) = LCE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA ISAME( 8 ) = LCE( BS, BB, LBB ) ISAME( 9 ) = LDBS.EQ.LDB IF( CONJ )THEN ISAME( 10 ) = RBETS.EQ.RBETA ELSE ISAME( 10 ) = BETS.EQ.BETA END IF IF( NULL )THEN ISAME( 11 ) = LCE( CS, CC, LCC ) ELSE ISAME( 11 ) = LCERES( 'HE', UPLO, N, N, CS, $ CC, LDC ) END IF ISAME( 12 ) = LDCS.EQ.LDC * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 150 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( CONJ )THEN TRANST = 'C' ELSE TRANST = 'T' END IF JJAB = 1 JC = 1 DO 70 J = 1, N IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF IF( TRAN )THEN DO 50 I = 1, K W( I ) = ALPHA*AB( ( J - 1 )*2* $ NMAX + K + I ) IF( CONJ )THEN W( K + I ) = CONJG( ALPHA )* $ AB( ( J - 1 )*2* $ NMAX + I ) ELSE W( K + I ) = ALPHA* $ AB( ( J - 1 )*2* $ NMAX + I ) END IF 50 CONTINUE CALL CMMCH( TRANST, 'N', LJ, 1, 2*K, $ ONE, AB( JJAB ), 2*NMAX, W, $ 2*NMAX, BETA, C( JJ, J ), $ NMAX, CT, G, CC( JC ), LDC, $ EPS, ERR, FATAL, NOUT, $ .TRUE. ) ELSE DO 60 I = 1, K IF( CONJ )THEN W( I ) = ALPHA*CONJG( AB( ( K + $ I - 1 )*NMAX + J ) ) W( K + I ) = CONJG( ALPHA* $ AB( ( I - 1 )*NMAX + $ J ) ) ELSE W( I ) = ALPHA*AB( ( K + I - 1 )* $ NMAX + J ) W( K + I ) = ALPHA* $ AB( ( I - 1 )*NMAX + $ J ) END IF 60 CONTINUE CALL CMMCH( 'N', 'N', LJ, 1, 2*K, ONE, $ AB( JJ ), NMAX, W, 2*NMAX, $ BETA, C( JJ, J ), NMAX, CT, $ G, CC( JC ), LDC, EPS, ERR, $ FATAL, NOUT, .TRUE. ) END IF IF( UPPER )THEN JC = JC + LDC ELSE JC = JC + LDC + 1 IF( TRAN ) $ JJAB = JJAB + 2*NMAX END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 140 70 CONTINUE END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 160 * 140 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9995 )J * 150 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( CONJ )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, N, K, ALPHA, $ LDA, LDB, RBETA, LDC ELSE WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, N, K, ALPHA, $ LDA, LDB, BETA, LDC END IF * 160 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',', F4.1, $ ', C,', I3, ') .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(', 2( '''', A1, ''',' ), 2( I3, ',' ), $ '(', F4.1, ',', F4.1, '), A,', I3, ', B,', I3, ',(', F4.1, $ ',', F4.1, '), C,', I3, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK5. * END SUBROUTINE CCHKE( ISNUM, SRNAMT, NOUT ) * * Tests the error exits from the Level 3 Blas. * Requires a special version of the error-handling routine XERBLA. * ALPHA, RALPHA, BETA, RBETA, A, B and C should not need to be defined. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER ISNUM, NOUT CHARACTER*6 SRNAMT * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Local Scalars .. COMPLEX ALPHA, BETA REAL RALPHA, RBETA * .. Local Arrays .. COMPLEX A( 2, 1 ), B( 2, 1 ), C( 2, 1 ) * .. External Subroutines .. EXTERNAL CGEMM, CHEMM, CHER2K, CHERK, CHKXER, CSYMM, $ CSYR2K, CSYRK, CTRMM, CTRSM * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. * OK is set to .FALSE. by the special version of XERBLA or by CHKXER * if anything is wrong. OK = .TRUE. * LERR is set to .TRUE. by the special version of XERBLA each time * it is called, and is then tested and re-set by CHKXER. LERR = .FALSE. GO TO ( 10, 20, 30, 40, 50, 60, 70, 80, $ 90 )ISNUM 10 INFOT = 1 CALL CGEMM( '/', 'N', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 1 CALL CGEMM( '/', 'C', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 1 CALL CGEMM( '/', 'T', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGEMM( 'N', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGEMM( 'C', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGEMM( 'T', '/', 0, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'N', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'N', 'C', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'N', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'C', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'C', 'C', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'C', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'T', 'N', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'T', 'C', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMM( 'T', 'T', -1, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'N', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'N', 'C', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'N', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'C', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'C', 'C', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'C', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'T', 'N', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'T', 'C', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGEMM( 'T', 'T', 0, -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'N', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'N', 'C', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'N', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'C', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'C', 'C', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'C', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'T', 'N', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'T', 'C', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGEMM( 'T', 'T', 0, 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'N', 'C', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'C', 'N', 0, 0, 2, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'C', 'C', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'C', 'T', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'T', 'C', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMM( 'T', 'T', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'N', 'N', 0, 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'C', 'N', 0, 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'T', 'N', 0, 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'N', 'C', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'C', 'C', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'T', 'C', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'N', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'C', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGEMM( 'T', 'T', 0, 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'N', 'N', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'N', 'C', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'N', 'T', 2, 0, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'C', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'C', 'C', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'C', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'T', 'N', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'T', 'C', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGEMM( 'T', 'T', 2, 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 20 INFOT = 1 CALL CHEMM( '/', 'U', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHEMM( 'L', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHEMM( 'L', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHEMM( 'R', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHEMM( 'L', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHEMM( 'R', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHEMM( 'L', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHEMM( 'R', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHEMM( 'L', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHEMM( 'R', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHEMM( 'L', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHEMM( 'R', 'U', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHEMM( 'L', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHEMM( 'R', 'L', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHEMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHEMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHEMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHEMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHEMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHEMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHEMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHEMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 30 INFOT = 1 CALL CSYMM( '/', 'U', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYMM( 'L', '/', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYMM( 'L', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYMM( 'R', 'U', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYMM( 'L', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYMM( 'R', 'L', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYMM( 'L', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYMM( 'R', 'U', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYMM( 'L', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYMM( 'R', 'L', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYMM( 'L', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYMM( 'R', 'U', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYMM( 'L', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYMM( 'R', 'L', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYMM( 'L', 'U', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYMM( 'R', 'U', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYMM( 'L', 'L', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYMM( 'R', 'L', 2, 0, ALPHA, A, 1, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 40 INFOT = 1 CALL CTRMM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTRMM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTRMM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTRMM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'L', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'R', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'L', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'R', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRMM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'L', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'R', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'L', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'R', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'R', 'U', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'R', 'L', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRMM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'R', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'R', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRMM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 50 INFOT = 1 CALL CTRSM( '/', 'U', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTRSM( 'L', '/', 'N', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTRSM( 'L', 'U', '/', 'N', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTRSM( 'L', 'U', 'N', '/', 0, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'L', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'L', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'L', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'R', 'U', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'R', 'U', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'R', 'U', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'L', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'L', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'L', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'R', 'L', 'N', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'R', 'L', 'C', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTRSM( 'R', 'L', 'T', 'N', -1, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'L', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'L', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'L', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'R', 'U', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'R', 'U', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'R', 'U', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'L', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'L', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'L', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'R', 'L', 'N', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'R', 'L', 'C', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSM( 'R', 'L', 'T', 'N', 0, -1, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'R', 'U', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'R', 'U', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'R', 'U', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'R', 'L', 'N', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'R', 'L', 'C', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTRSM( 'R', 'L', 'T', 'N', 0, 2, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'L', 'U', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'L', 'U', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'L', 'U', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'R', 'U', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'R', 'U', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'R', 'U', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'L', 'L', 'N', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'L', 'L', 'C', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'L', 'L', 'T', 'N', 2, 0, ALPHA, A, 2, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'R', 'L', 'N', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'R', 'L', 'C', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CTRSM( 'R', 'L', 'T', 'N', 2, 0, ALPHA, A, 1, B, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 60 INFOT = 1 CALL CHERK( '/', 'N', 0, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHERK( 'U', 'T', 0, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHERK( 'U', 'N', -1, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHERK( 'U', 'C', -1, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHERK( 'L', 'N', -1, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHERK( 'L', 'C', -1, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHERK( 'U', 'N', 0, -1, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHERK( 'U', 'C', 0, -1, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHERK( 'L', 'N', 0, -1, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHERK( 'L', 'C', 0, -1, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHERK( 'U', 'N', 2, 0, RALPHA, A, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHERK( 'U', 'C', 0, 2, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHERK( 'L', 'N', 2, 0, RALPHA, A, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHERK( 'L', 'C', 0, 2, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHERK( 'U', 'N', 2, 0, RALPHA, A, 2, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHERK( 'U', 'C', 2, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHERK( 'L', 'N', 2, 0, RALPHA, A, 2, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHERK( 'L', 'C', 2, 0, RALPHA, A, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 70 INFOT = 1 CALL CSYRK( '/', 'N', 0, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYRK( 'U', 'C', 0, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYRK( 'U', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYRK( 'U', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYRK( 'L', 'N', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYRK( 'L', 'T', -1, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYRK( 'U', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYRK( 'U', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYRK( 'L', 'N', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYRK( 'L', 'T', 0, -1, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYRK( 'U', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYRK( 'U', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYRK( 'L', 'N', 2, 0, ALPHA, A, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYRK( 'L', 'T', 0, 2, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSYRK( 'U', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSYRK( 'U', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSYRK( 'L', 'N', 2, 0, ALPHA, A, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CSYRK( 'L', 'T', 2, 0, ALPHA, A, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 80 INFOT = 1 CALL CHER2K( '/', 'N', 0, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHER2K( 'U', 'T', 0, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHER2K( 'U', 'N', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHER2K( 'U', 'C', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHER2K( 'L', 'N', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHER2K( 'L', 'C', -1, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHER2K( 'U', 'N', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHER2K( 'U', 'C', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHER2K( 'L', 'N', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CHER2K( 'L', 'C', 0, -1, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHER2K( 'U', 'N', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHER2K( 'U', 'C', 0, 2, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHER2K( 'L', 'N', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHER2K( 'L', 'C', 0, 2, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHER2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHER2K( 'U', 'C', 0, 2, ALPHA, A, 2, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHER2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 1, RBETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHER2K( 'L', 'C', 0, 2, ALPHA, A, 2, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHER2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 2, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHER2K( 'U', 'C', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHER2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 2, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CHER2K( 'L', 'C', 2, 0, ALPHA, A, 1, B, 1, RBETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 100 90 INFOT = 1 CALL CSYR2K( '/', 'N', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CSYR2K( 'U', 'C', 0, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYR2K( 'U', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYR2K( 'U', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYR2K( 'L', 'N', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CSYR2K( 'L', 'T', -1, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYR2K( 'U', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYR2K( 'U', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYR2K( 'L', 'N', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CSYR2K( 'L', 'T', 0, -1, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYR2K( 'U', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYR2K( 'U', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYR2K( 'L', 'N', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CSYR2K( 'L', 'T', 0, 2, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYR2K( 'U', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 1, BETA, C, 2 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CSYR2K( 'L', 'T', 0, 2, ALPHA, A, 2, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYR2K( 'U', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYR2K( 'U', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYR2K( 'L', 'N', 2, 0, ALPHA, A, 2, B, 2, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 12 CALL CSYR2K( 'L', 'T', 2, 0, ALPHA, A, 1, B, 1, BETA, C, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * 100 IF( OK )THEN WRITE( NOUT, FMT = 9999 )SRNAMT ELSE WRITE( NOUT, FMT = 9998 )SRNAMT END IF RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' ) 9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****', $ '**' ) * * End of CCHKE. * END SUBROUTINE CMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, RESET, $ TRANSL ) * * Generates values for an M by N matrix A. * Stores the values in the array AA in the data structure required * by the routine, with unwanted elements set to rogue value. * * TYPE is 'GE', 'HE', 'SY' or 'TR'. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) ) COMPLEX ROGUE PARAMETER ( ROGUE = ( -1.0E10, 1.0E10 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) REAL RROGUE PARAMETER ( RROGUE = -1.0E10 ) * .. Scalar Arguments .. COMPLEX TRANSL INTEGER LDA, M, N, NMAX LOGICAL RESET CHARACTER*1 DIAG, UPLO CHARACTER*2 TYPE * .. Array Arguments .. COMPLEX A( NMAX, * ), AA( * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J, JJ LOGICAL GEN, HER, LOWER, SYM, TRI, UNIT, UPPER * .. External Functions .. COMPLEX CBEG EXTERNAL CBEG * .. Intrinsic Functions .. INTRINSIC CMPLX, CONJG, REAL * .. Executable Statements .. GEN = TYPE.EQ.'GE' HER = TYPE.EQ.'HE' SYM = TYPE.EQ.'SY' TRI = TYPE.EQ.'TR' UPPER = ( HER.OR.SYM.OR.TRI ).AND.UPLO.EQ.'U' LOWER = ( HER.OR.SYM.OR.TRI ).AND.UPLO.EQ.'L' UNIT = TRI.AND.DIAG.EQ.'U' * * Generate data in array A. * DO 20 J = 1, N DO 10 I = 1, M IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) ) $ THEN A( I, J ) = CBEG( RESET ) + TRANSL IF( I.NE.J )THEN * Set some elements to zero IF( N.GT.3.AND.J.EQ.N/2 ) $ A( I, J ) = ZERO IF( HER )THEN A( J, I ) = CONJG( A( I, J ) ) ELSE IF( SYM )THEN A( J, I ) = A( I, J ) ELSE IF( TRI )THEN A( J, I ) = ZERO END IF END IF END IF 10 CONTINUE IF( HER ) $ A( J, J ) = CMPLX( REAL( A( J, J ) ), RZERO ) IF( TRI ) $ A( J, J ) = A( J, J ) + ONE IF( UNIT ) $ A( J, J ) = ONE 20 CONTINUE * * Store elements in array AS in data structure required by routine. * IF( TYPE.EQ.'GE' )THEN DO 50 J = 1, N DO 30 I = 1, M AA( I + ( J - 1 )*LDA ) = A( I, J ) 30 CONTINUE DO 40 I = M + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 40 CONTINUE 50 CONTINUE ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'SY'.OR.TYPE.EQ.'TR' )THEN DO 90 J = 1, N IF( UPPER )THEN IBEG = 1 IF( UNIT )THEN IEND = J - 1 ELSE IEND = J END IF ELSE IF( UNIT )THEN IBEG = J + 1 ELSE IBEG = J END IF IEND = N END IF DO 60 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 60 CONTINUE DO 70 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I, J ) 70 CONTINUE DO 80 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 80 CONTINUE IF( HER )THEN JJ = J + ( J - 1 )*LDA AA( JJ ) = CMPLX( REAL( AA( JJ ) ), RROGUE ) END IF 90 CONTINUE END IF RETURN * * End of CMAKE. * END SUBROUTINE CMMCH( TRANSA, TRANSB, M, N, KK, ALPHA, A, LDA, B, LDB, $ BETA, C, LDC, CT, G, CC, LDCC, EPS, ERR, FATAL, $ NOUT, MV ) * * Checks the results of the computational tests. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Parameters .. COMPLEX ZERO PARAMETER ( ZERO = ( 0.0, 0.0 ) ) REAL RZERO, RONE PARAMETER ( RZERO = 0.0, RONE = 1.0 ) * .. Scalar Arguments .. COMPLEX ALPHA, BETA REAL EPS, ERR INTEGER KK, LDA, LDB, LDC, LDCC, M, N, NOUT LOGICAL FATAL, MV CHARACTER*1 TRANSA, TRANSB * .. Array Arguments .. COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ), $ CC( LDCC, * ), CT( * ) REAL G( * ) * .. Local Scalars .. COMPLEX CL REAL ERRI INTEGER I, J, K LOGICAL CTRANA, CTRANB, TRANA, TRANB * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, CONJG, MAX, REAL, SQRT * .. Statement Functions .. REAL ABS1 * .. Statement Function definitions .. ABS1( CL ) = ABS( REAL( CL ) ) + ABS( AIMAG( CL ) ) * .. Executable Statements .. TRANA = TRANSA.EQ.'T'.OR.TRANSA.EQ.'C' TRANB = TRANSB.EQ.'T'.OR.TRANSB.EQ.'C' CTRANA = TRANSA.EQ.'C' CTRANB = TRANSB.EQ.'C' * * Compute expected result, one column at a time, in CT using data * in A, B and C. * Compute gauges in G. * DO 220 J = 1, N * DO 10 I = 1, M CT( I ) = ZERO G( I ) = RZERO 10 CONTINUE IF( .NOT.TRANA.AND..NOT.TRANB )THEN DO 30 K = 1, KK DO 20 I = 1, M CT( I ) = CT( I ) + A( I, K )*B( K, J ) G( I ) = G( I ) + ABS1( A( I, K ) )*ABS1( B( K, J ) ) 20 CONTINUE 30 CONTINUE ELSE IF( TRANA.AND..NOT.TRANB )THEN IF( CTRANA )THEN DO 50 K = 1, KK DO 40 I = 1, M CT( I ) = CT( I ) + CONJG( A( K, I ) )*B( K, J ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( K, J ) ) 40 CONTINUE 50 CONTINUE ELSE DO 70 K = 1, KK DO 60 I = 1, M CT( I ) = CT( I ) + A( K, I )*B( K, J ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( K, J ) ) 60 CONTINUE 70 CONTINUE END IF ELSE IF( .NOT.TRANA.AND.TRANB )THEN IF( CTRANB )THEN DO 90 K = 1, KK DO 80 I = 1, M CT( I ) = CT( I ) + A( I, K )*CONJG( B( J, K ) ) G( I ) = G( I ) + ABS1( A( I, K ) )* $ ABS1( B( J, K ) ) 80 CONTINUE 90 CONTINUE ELSE DO 110 K = 1, KK DO 100 I = 1, M CT( I ) = CT( I ) + A( I, K )*B( J, K ) G( I ) = G( I ) + ABS1( A( I, K ) )* $ ABS1( B( J, K ) ) 100 CONTINUE 110 CONTINUE END IF ELSE IF( TRANA.AND.TRANB )THEN IF( CTRANA )THEN IF( CTRANB )THEN DO 130 K = 1, KK DO 120 I = 1, M CT( I ) = CT( I ) + CONJG( A( K, I ) )* $ CONJG( B( J, K ) ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 120 CONTINUE 130 CONTINUE ELSE DO 150 K = 1, KK DO 140 I = 1, M CT( I ) = CT( I ) + CONJG( A( K, I ) )*B( J, K ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 140 CONTINUE 150 CONTINUE END IF ELSE IF( CTRANB )THEN DO 170 K = 1, KK DO 160 I = 1, M CT( I ) = CT( I ) + A( K, I )*CONJG( B( J, K ) ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 160 CONTINUE 170 CONTINUE ELSE DO 190 K = 1, KK DO 180 I = 1, M CT( I ) = CT( I ) + A( K, I )*B( J, K ) G( I ) = G( I ) + ABS1( A( K, I ) )* $ ABS1( B( J, K ) ) 180 CONTINUE 190 CONTINUE END IF END IF END IF DO 200 I = 1, M CT( I ) = ALPHA*CT( I ) + BETA*C( I, J ) G( I ) = ABS1( ALPHA )*G( I ) + $ ABS1( BETA )*ABS1( C( I, J ) ) 200 CONTINUE * * Compute the error ratio for this result. * ERR = ZERO DO 210 I = 1, M ERRI = ABS1( CT( I ) - CC( I, J ) )/EPS IF( G( I ).NE.RZERO ) $ ERRI = ERRI/G( I ) ERR = MAX( ERR, ERRI ) IF( ERR*SQRT( EPS ).GE.RONE ) $ GO TO 230 210 CONTINUE * 220 CONTINUE * * If the loop completes, all results are at least half accurate. GO TO 250 * * Report fatal error. * 230 FATAL = .TRUE. WRITE( NOUT, FMT = 9999 ) DO 240 I = 1, M IF( MV )THEN WRITE( NOUT, FMT = 9998 )I, CT( I ), CC( I, J ) ELSE WRITE( NOUT, FMT = 9998 )I, CC( I, J ), CT( I ) END IF 240 CONTINUE IF( N.GT.1 ) $ WRITE( NOUT, FMT = 9997 )J * 250 CONTINUE RETURN * 9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL', $ 'F ACCURATE *******', /' EXPECTED RE', $ 'SULT COMPUTED RESULT' ) 9998 FORMAT( 1X, I7, 2( ' (', G15.6, ',', G15.6, ')' ) ) 9997 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) * * End of CMMCH. * END LOGICAL FUNCTION LCE( RI, RJ, LR ) * * Tests if two arrays are identical. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER LR * .. Array Arguments .. COMPLEX RI( * ), RJ( * ) * .. Local Scalars .. INTEGER I * .. Executable Statements .. DO 10 I = 1, LR IF( RI( I ).NE.RJ( I ) ) $ GO TO 20 10 CONTINUE LCE = .TRUE. GO TO 30 20 CONTINUE LCE = .FALSE. 30 RETURN * * End of LCE. * END LOGICAL FUNCTION LCERES( TYPE, UPLO, M, N, AA, AS, LDA ) * * Tests if selected elements in two arrays are equal. * * TYPE is 'GE' or 'HE' or 'SY'. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER LDA, M, N CHARACTER*1 UPLO CHARACTER*2 TYPE * .. Array Arguments .. COMPLEX AA( LDA, * ), AS( LDA, * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J LOGICAL UPPER * .. Executable Statements .. UPPER = UPLO.EQ.'U' IF( TYPE.EQ.'GE' )THEN DO 20 J = 1, N DO 10 I = M + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 10 CONTINUE 20 CONTINUE ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'SY' )THEN DO 50 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 30 I = 1, IBEG - 1 IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 30 CONTINUE DO 40 I = IEND + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 40 CONTINUE 50 CONTINUE END IF * 60 CONTINUE LCERES = .TRUE. GO TO 80 70 CONTINUE LCERES = .FALSE. 80 RETURN * * End of LCERES. * END COMPLEX FUNCTION CBEG( RESET ) * * Generates complex numbers as pairs of random numbers uniformly * distributed between -0.5 and 0.5. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. LOGICAL RESET * .. Local Scalars .. INTEGER I, IC, J, MI, MJ * .. Save statement .. SAVE I, IC, J, MI, MJ * .. Intrinsic Functions .. INTRINSIC CMPLX * .. Executable Statements .. IF( RESET )THEN * Initialize local variables. MI = 891 MJ = 457 I = 7 J = 7 IC = 0 RESET = .FALSE. END IF * * The sequence of values of I or J is bounded between 1 and 999. * If initial I or J = 1,2,3,6,7 or 9, the period will be 50. * If initial I or J = 4 or 8, the period will be 25. * If initial I or J = 5, the period will be 10. * IC is used to break up the period by skipping 1 value of I or J * in 6. * IC = IC + 1 10 I = I*MI J = J*MJ I = I - 1000*( I/1000 ) J = J - 1000*( J/1000 ) IF( IC.GE.5 )THEN IC = 0 GO TO 10 END IF CBEG = CMPLX( ( I - 500 )/1001.0, ( J - 500 )/1001.0 ) RETURN * * End of CBEG. * END REAL FUNCTION SDIFF( X, Y ) * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. REAL X, Y * .. Executable Statements .. SDIFF = X - Y RETURN * * End of SDIFF. * END SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * * Tests whether XERBLA has detected an error when it should. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Executable Statements .. IF( .NOT.LERR )THEN WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT OK = .FALSE. END IF LERR = .FALSE. RETURN * 9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D', $ 'ETECTED BY ', A6, ' *****' ) * * End of CHKXER. * END SUBROUTINE XERBLA( SRNAME, INFO ) * * This is a special version of XERBLA to be used only as part of * the test program for testing error exits from the Level 3 BLAS * routines. * * XERBLA is an error handler for the Level 3 BLAS routines. * * It is called by the Level 3 BLAS routines if an input parameter is * invalid. * * Auxiliary routine for test program for Level 3 Blas. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * .. Scalar Arguments .. INTEGER INFO CHARACTER*6 SRNAME * .. Scalars in Common .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUT, OK, LERR COMMON /SRNAMC/SRNAMT * .. Executable Statements .. LERR = .TRUE. IF( INFO.NE.INFOT )THEN IF( INFOT.NE.0 )THEN WRITE( NOUT, FMT = 9999 )INFO, INFOT ELSE WRITE( NOUT, FMT = 9997 )INFO END IF OK = .FALSE. END IF IF( SRNAME.NE.SRNAMT )THEN WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT OK = .FALSE. END IF RETURN * 9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD', $ ' OF ', I2, ' *******' ) 9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE', $ 'AD OF ', A6, ' *******' ) 9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, $ ' *******' ) * * End of XERBLA * END blas-1.2.orig/doc/ 0000755 0001750 0001750 00000000000 10743160574 014672 5 ustar sylvestre sylvestre blas-1.2.orig/doc/faq.html 0000644 0001750 0001750 00000021705 10735444622 016334 0 ustar sylvestre sylvestre
Many thanks to the netlib_maintainers@netlib.org from whose FAQ list I have patterned this list for the BLAS.
The BLAS (Basic Linear Algebra Subprograms) are high quality "building block" routines for performing basic vector and matrix operations. Level 1 BLAS do vector-vector operations, Level 2 BLAS do matrix-vector operations, and Level 3 BLAS do matrix-matrix operations. Because the BLAS are efficient, portable, and widely available, they're commonly used in the development of high quality linear algebra software, LINPACK and LAPACK for example.
A Fortran77 reference implementation of the BLAS is located in the blas directory of Netlib.
1.2) Publications/references for the BLAS?
1.3) Is there a Quick Reference Guide to the BLAS available?
Yes, there is a postscript version of the Quick Reference Guide to the BLAS available.
1.4) Are optimized BLAS libraries available?
YES! Machine-specific optimized BLAS libraries are available for a variety of computer architectures. These optimized BLAS libraries are provided by the computer vendor or by an independent software vendor (ISV). For further details, please contact your local vendor representative.
Alternatively, the user can download ATLA S to automatically generate an optimized BLAS library for his architecture.
If all else fails, the user can download a Fortran77 reference implementation of the BLAS from netlib. However, keep in mind that this is a reference implementation and is not optimized.
ATLAS is an approach for the automatic generation and optimization of numerical software for processors with deep memory hierarchies and pipelined functional units. The production of such software for machines ranging from desktop workstations to embedded processors can be a tedious and time consuming task. ATLAS has been designed to automate much of this process. We concentrate our efforts on the widely used linear algebra kernels called the Basic Linear Algebra Subroutines (BLAS).
For further information, refer to the ATLAS webpage.
1.6) Where can I find vendor supplied BLAS?
BLAS Vendor List
Last updated: March 14, 2001
1.7) Where can I find the Intel BLAS for Linux?
Yes, the Intel BLAS for Linux are available! Refer to the following URL: Intel BLAS for Linux.
1.8) Where can I find Java BLAS?
Yes, Java BLAS are available. Refer to the following URLs: Java LAPACK and JavaNumerics. The JavaNumerics webpage provides a focal point for information on numerical computing in Java.
1.9) Is there a C interface to the BLAS?
Yes, a C interface to the BLAS was defined in the BLAS Technical Forum Standard. The source code is also available.
1.10) Are prebuilt Fortran77 ref implementation BLAS libraries available from Netlib?
Yes. HOWEVER, it is assumed that you have a machine-specific optimized BLAS library already available on the architecture to which you are installing LAPACK. If this is not the case, you can download a prebuilt Fortran77 reference implementation BLAS library or compile the Fortran77 reference implementationsource code of the BLAS from netlib.
Although a model implementation of the BLAS in available from netlib in the blas directory, it is not expected to perform as well as a specially tuned implementation on most high-performance computers -- on some machines it may give much worse performance -- but it allows users to run LAPACK software on machines that do not offer any other implementation of the BLAS.
Alternatively, you can automatically generate an optimized BLAS library for your machine using ATLAS, http://www.netlib.org/atlas/.