asdf_transform_schemas-0.2.0/0000755000446400020070000000000014155735511020427 5ustar eslavichSTSCI\science00000000000000asdf_transform_schemas-0.2.0/PKG-INFO0000644000446400020070000000137514155735511021532 0ustar eslavichSTSCI\science00000000000000Metadata-Version: 2.1 Name: asdf_transform_schemas Version: 0.2.0 Summary: ASDF schemas for transforms Home-page: https://github.com/asdf-format/asdf-transform-schemas Author: The ASDF Developers Author-email: help@stsci.edu License: BSD-3-Clause Description: # asdf-transform-schemas This package provides ASDF schemas for validating transform tags. Users should not need to install this directly; instead, install an implementation package such as asdf-astropy, which includes asdf-transform-schemas as a dependency. ![CI](https://github.com/asdf-format/asdf-transform-schemas/workflows/CI/badge.svg) Platform: UNKNOWN Requires-Python: >=3.6 Description-Content-Type: text/markdown Provides-Extra: test asdf_transform_schemas-0.2.0/LICENSE0000644000446400020070000000300314046264042021423 0ustar eslavichSTSCI\science00000000000000Copyright (c) 2021 Association of Universities for Research in Astronomy. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. asdf_transform_schemas-0.2.0/resources/0000755000446400020070000000000014155735511022441 5ustar eslavichSTSCI\science00000000000000asdf_transform_schemas-0.2.0/resources/asdf-format.org/0000755000446400020070000000000014155735511025432 5ustar eslavichSTSCI\science00000000000000asdf_transform_schemas-0.2.0/resources/asdf-format.org/manifests/0000755000446400020070000000000014155735511027423 5ustar eslavichSTSCI\science00000000000000asdf_transform_schemas-0.2.0/resources/asdf-format.org/manifests/transform-1.5.0.yaml0000644000446400020070000010573314155735241032772 0ustar eslavichSTSCI\science00000000000000id: asdf://asdf-format.org/transform/manifests/transform-1.5.0 extension_uri: asdf://asdf-format.org/transform/extensions/transform-1.5.0 title: Transform extension 1.5.0 description: |- A set of tags for serializing data transforms. tags: - tag_uri: tag:stsci.edu:asdf/transform/add-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/add-1.2.0 title: Perform a list of subtransforms in parallel and then add their results together. description: |- Each of the subtransforms must have the same number of inputs and outputs. - tag_uri: tag:stsci.edu:asdf/transform/affine-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/affine-1.3.0 title: An affine transform. description: |- Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/airy-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/airy-1.2.0 title: The Airy projection. description: |- Corresponds to the `AIR` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. - tag_uri: tag:stsci.edu:asdf/transform/airy_disk2d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/airy_disk2d-1.0.0 title: Two dimensional Airy disk model. description: |- Two dimensional Airy disk model. - tag_uri: tag:stsci.edu:asdf/transform/blackbody-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/blackbody-1.0.0 title: Blackbody model. description: |- Blackbody model using the Planck function. $$B_{\\nu}(T) = A \frac{2 h \nu^{3} / c^{2}}{exp(h \nu / k T) - 1}$$ - tag_uri: tag:stsci.edu:asdf/transform/bonne_equal_area-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/bonne_equal_area-1.3.0 title: Bonne's equal area pseudoconic projection. description: |- Corresponds to the `BON` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi}{180^\circ} A_\phi R_\theta / \cos \theta \\ \theta &= Y_0 - R_\theta$$ where: $$R_\theta &= \mathrm{sign} \theta_1 \sqrt{x^2 + (Y_0 - y)^2} \\ A_\phi &= \arg\left(\frac{Y_0 - y}{R_\theta}, \frac{x}{R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= R_\theta \sin A_\phi \\ y &= -R_\theta \cos A_\phi + Y_0$$ where: $$A_\phi &= \frac{180^\circ}{\pi R_\theta} \phi \cos \theta \\ R_\theta &= Y_0 - \theta \\ Y_0 &= \frac{180^\circ}{\pi} \cot \theta_1 + \theta_1$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/box1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/box1d-1.0.0 title: One dimensional box model. description: |- One dimensional box. - tag_uri: tag:stsci.edu:asdf/transform/box2d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/box2d-1.0.0 title: Two dimensional box model. description: |- Two dimensional box. - tag_uri: tag:stsci.edu:asdf/transform/broken_power_law1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/broken_power_law1d-1.0.0 title: One dimensional power law model with a break. description: |- One dimensional power law model with a break. - tag_uri: tag:stsci.edu:asdf/transform/cobe_quad_spherical_cube-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cobe_quad_spherical_cube-1.2.0 title: COBE quadrilateralized spherical cube projection. description: |- Corresponds to the `CSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/compose-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/compose-1.2.0 title: Perform a list of subtransforms in series. description: |- The output of each subtransform is fed into the input of the next subtransform. The number of output dimensions of each subtransform must be equal to the number of input dimensions of the next subtransform in list. To reorder or add/drop axes, insert `remap_axes` transforms in the subtransform list. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, by reversing the list of transforms and applying the inverse of each. - tag_uri: tag:stsci.edu:asdf/transform/concatenate-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/concatenate-1.2.0 title: Send axes to different subtransforms. description: |- Transforms a set of separable inputs by splitting the axes apart, sending them through the given subtransforms in parallel, and finally concatenating the subtransform output axes back together. The input axes are assigned to each subtransform in order. If the number of input axes is unequal to the sum of the number of input axes of all of the subtransforms, that is considered an error case. The output axes from each subtransform are appended together to make up the resulting output axes. For example, given 5 input axes, and 3 subtransforms with the following orders: 1. transform A: 2 in -> 2 out 1. transform B: 1 in -> 2 out 1. transform C: 2 in -> 1 out The transform is performed as follows: ``` : i0 i1 i2 i3 i4 : | | | | | : +---------+ +---------+ +----------+ : | A | | B | | C | : +---------+ +---------+ +----------+ : | | | | | : o0 o1 o2 o3 o4 ``` If reordering of the input or output axes is required, use in series with the `remap_axes` transform. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_equal_area-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_equal_area-1.3.0 title: Alber's conic equal area projection. description: |- Corresponds to the `COE` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.3.0) for the definition of the full transformation. The transformation is defined as: $$C &= \gamma / 2 \\ R_\theta &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin \theta} \\ Y_0 &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin((\theta_1 + \theta_2)/2)}$$ where: $$\gamma = \sin \theta_1 + \sin \theta_2$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_equidistant-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_equidistant-1.3.0 title: Conic equidistant projection. description: |- Corresponds to the `COD` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.3.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{180^\circ}{\pi} \frac{\sin\theta_a\sin\eta}{\eta} \\ R_\theta &= \theta_a - \theta + \eta\cot\eta\cot\theta_a \\ Y_0 = \eta\cot\eta\cot\theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_orthomorphic-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_orthomorphic-1.3.0 title: Conic orthomorphic projection. description: |- Corresponds to the `COO` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.3.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{\ln \left( \frac{\cos\theta_2}{\cos\theta_1} \right)} {\ln \left[ \frac{\tan\left(\frac{90^\circ-\theta_2}{2}\right)} {\tan\left(\frac{90^\circ-\theta_1}{2}\right)} \right] } \\ R_\theta &= \psi \left[ \tan \left( \frac{90^\circ - \theta}{2} \right) \right]^C \\ Y_0 &= \psi \left[ \tan \left( \frac{90^\circ - \theta_a}{2} \right) \right]^C$$ where: $$\psi = \frac{180^\circ}{\pi} \frac{\cos \theta} {C\left[\tan\left(\frac{90^\circ-\theta}{2}\right)\right]^C}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_perspective-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_perspective-1.3.0 title: Colles' conic perspecitve projection. description: |- Corresponds to the `COP` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.3.0) for the definition of the full transformation. The transformation is defined as: $$C &= \sin \theta_a \\ R_\theta &= \frac{180^\circ}{\pi} \cos \eta [ \cot \theta_a - \tan(\theta - \theta_a)] \\ Y_0 &= \frac{180^\circ}{\pi} \cos \eta \cot \theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/constant-1.4.0 schema_uri: http://stsci.edu/schemas/asdf/transform/constant-1.4.0 title: A Constant transform. description: |- Invertibility: A transform which takes one or two inputs based on dimensionality and returns a constant value. It has no analytical inverse. - tag_uri: tag:stsci.edu:asdf/transform/cylindrical_equal_area-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cylindrical_equal_area-1.3.0 title: The cylindrical equal area projection. description: |- Corresponds to the `CEA` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^{\circ}}\lambda y\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\frac{\sin \theta}{\lambda}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/cylindrical_perspective-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cylindrical_perspective-1.3.0 title: The cylindrical perspective projection. description: |- Corresponds to the `CYP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\lambda} \\ \theta &= \arg(1, \eta) + \sin{-1}\left(\frac{\eta \mu}{\sqrt{\eta^2 + 1}}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \lambda \phi \\ y &= \frac{180^{\circ}}{\pi}\left(\frac{\mu + \lambda}{\mu + \cos \theta}\right)\sin \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/disk2d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/disk2d-1.0.0 title: Two dimensional disk model. description: |- Two dimensional radially symmetric disk. - tag_uri: tag:stsci.edu:asdf/transform/divide-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/divide-1.2.0 title: Perform a list of subtransforms in parallel and then divide their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/drude1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/drude1d-1.0.0 title: One dimensional Drude model description: |- Drude model based one the behavior of electons in materials (esp. metals). - tag_uri: tag:stsci.edu:asdf/transform/ellipse2d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/ellipse2d-1.0.0 title: Two dimensional ellipse model. description: |- Two dimensional ellipse. - tag_uri: tag:stsci.edu:asdf/transform/exponential1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/exponential1d-1.0.0 title: One dimensional exponential model. description: |- One dimensional exponential model. - tag_uri: tag:stsci.edu:asdf/transform/exponential_cutoff_power_law1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/exponential_cutoff_power_law1d-1.0.0 title: One dimensional power law model with an exponential cutoff. description: |- One dimensional power law model with an exponential cutoff. - tag_uri: tag:stsci.edu:asdf/transform/fix_inputs-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/fix_inputs-1.2.0 title: Set to a constant selected input arguments of a model. description: |- This operation takes as the right hand side a dict equivalent that consists of key:value pairs where the key identifies the input argument to be set, either by position number (0 based) or name, and the value is the floating point value that should be assigned to that input. The result is a compound model with n fewer input arguments where n is the number of input values to be set (i.e., the number of keys in the dict). - tag_uri: tag:stsci.edu:asdf/transform/gaussian1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/gaussian1d-1.0.0 title: A 1D Gaussian model. description: |- A 1D gaussian distribution. - tag_uri: tag:stsci.edu:asdf/transform/gaussian2d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/gaussian2d-1.0.0 title: A 2D Gaussian model. description: |- A 2D gaussian distribution. - tag_uri: tag:stsci.edu:asdf/transform/gnomonic-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/gnomonic-1.2.0 title: The gnomonic projection. description: |- Corresponds to the `TAN` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/hammer_aitoff-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/hammer_aitoff-1.2.0 title: Hammer-Aitoff projection. description: |- Corresponds to the `AIT` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= 2 \arg \left(2Z^2 - 1, \frac{\pi}{180^\circ} \frac{Z}{2}x\right) \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^\circ}yZ\right)$$ And the sky-to-pixel transformation is defined as: $$x &= 2 \gamma \cos \theta \sin \frac{\phi}{2} \\ y &= \gamma \sin \theta$$ where: $$\gamma = \frac{180^\circ}{\pi} \sqrt{\frac{2}{1 + \cos \theta \cos(\phi / 2)}}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/healpix-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/healpix-1.2.0 title: HEALPix projection. description: |- Corresponds to the `HPX` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/healpix_polar-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/healpix_polar-1.2.0 title: HEALPix polar, aka "butterfly", projection. description: |- Corresponds to the `XPH` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/identity-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/identity-1.2.0 title: The identity transform. description: |- Invertibility: The inverse of this transform is also the identity transform. - tag_uri: tag:stsci.edu:asdf/transform/king_projected_analytic1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/king_projected_analytic1d-1.0.0 title: Projected (surface density) analytic King Model. description: |- Projected (surface density) analytic King Model. - tag_uri: tag:stsci.edu:asdf/transform/linear1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/linear1d-1.0.0 title: A one dimensional line model description: |- A one dimensional line model - tag_uri: tag:stsci.edu:asdf/transform/log_parabola1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/log_parabola1d-1.0.0 title: One dimensional log parabola model (sometimes called curved power law). description: |- One dimensional log parabola model (sometimes called curved power law). - tag_uri: tag:stsci.edu:asdf/transform/logarithmic1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/logarithmic1d-1.0.0 title: One dimensional (natural) logarithmic model. description: |- One dimensional (natural) logarithmic model. - tag_uri: tag:stsci.edu:asdf/transform/lorentz1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/lorentz1d-1.0.0 title: One dimensional Lorentzian model. description: |- One dimensional Lorentzian model. - tag_uri: tag:stsci.edu:asdf/transform/math_functions-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/math_functions-1.0.0 title: Math functions. description: |- Commonly used math funcitons. - tag_uri: tag:stsci.edu:asdf/transform/mercator-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/mercator-1.2.0 title: The Mercator projection. description: |- Corresponds to the `MER` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= 2 \tan^{-1}\left(e^{y \pi / 180^{\circ}}\right)-90^{\circ}$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\ln \tan \left(\frac{90^{\circ} + \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/moffat1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/moffat1d-1.0.0 title: One dimensional Moffat model. description: |- One dimensional Moffat distribution. - tag_uri: tag:stsci.edu:asdf/transform/moffat2d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/moffat2d-1.0.0 title: Two dimensional Moffat model. description: |- Two dimensional Moffat distribution. - tag_uri: tag:stsci.edu:asdf/transform/molleweide-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/molleweide-1.2.0 title: Molleweide's projection. description: |- Corresponds to the `MOL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi x}{2 \sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}} \\ \theta &= \sin^{-1}\left(\frac{1}{90^\circ}\sin^{-1}\left(\frac{\pi}{180^\circ}\frac{y}{\sqrt{2}}\right) + \frac{y}{180^\circ}\sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \frac{2 \sqrt{2}}{\pi} \phi \cos \gamma \\ y &= \sqrt{2} \frac{180^\circ}{\pi} \sin \gamma$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/multiply-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/multiply-1.2.0 title: Perform a list of subtransforms in parallel and then multiply their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/multiplyscale-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/multiplyscale-1.0.0 title: A Multiply model. description: |- Multiply the input by a factor. - tag_uri: tag:stsci.edu:asdf/transform/ortho_polynomial-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/ortho_polynomial-1.0.0 title: Respresents various Orthogonal Polynomial models. description: |- A polynomial model represented by its coefficients stored in an ndarray of shape $(n+1)$ for univariate polynomials or $(n+1, n+1)$ for polynomials with 2 variables, where $n$ is the highest total degree of the polynomial. The property polynomial_type defines what kind of polynomial is defined. $$P = \sum_{i, j=0}^{i+j=n}c_{ij} * x^{i} * y^{j}$$ Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/parabolic-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/parabolic-1.2.0 title: Parabolic projection. description: |- Corresponds to the `PAR` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{180^\circ}{\pi} \frac{x}{1 - 4(y / 180^\circ)^2} \\ \theta &= 3 \sin^{-1}\left(\frac{y}{180^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \left(2\cos\frac{2\theta}{3} - 1\right) \\ y &= 180^\circ \sin \frac{\theta}{3}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/planar2d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/planar2d-1.0.0 title: Two dimensional plane model. description: |- Two dimensional plane model. - tag_uri: tag:stsci.edu:asdf/transform/plate_carree-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/plate_carree-1.2.0 title: "The plate carr\xE9e projection." description: |- Corresponds to the `CAR` projection in the FITS WCS standard. The main virtue of this transformation is its simplicity. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/plummer1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/plummer1d-1.0.0 title: Two dimensional Plummer model. description: |- One dimensional Plummer density profile model. - tag_uri: tag:stsci.edu:asdf/transform/polyconic-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/polyconic-1.2.0 title: Polyconic projection. description: |- Corresponds to the `PCO` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/polynomial-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/polynomial-1.2.0 title: A Polynomial model. description: |- A polynomial model represented by its coefficients stored in an ndarray of shape $(n+1)$ for univariate polynomials or $(n+1, n+1)$ for polynomials with 2 variables, where $n$ is the highest total degree of the polynomial. $$P = \sum_{i, j=0}^{i+j=n}c_{ij} * x^{i} * y^{j}$$ Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/power-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/power-1.2.0 title: Perform a list of subtransforms in parallel and then raise each result to the power of the next. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/power_law1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/power_law1d-1.0.0 title: One dimensional power law model. description: |- One dimensional power law model. - tag_uri: tag:stsci.edu:asdf/transform/quad_spherical_cube-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/quad_spherical_cube-1.2.0 title: Quadrilateralized spherical cube projection. description: |- Corresponds to the `QSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/redshift_scale_factor-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/redshift_scale_factor-1.0.0 title: One dimensional redshift scale factor model. description: |- One dimensional redshift scale factor model. - tag_uri: tag:stsci.edu:asdf/transform/remap_axes-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/remap_axes-1.3.0 title: Reorder, add and drop axes. description: "This transform allows the order of the input axes to be shuffled and\n\ returned as the output axes.\n\nIt is a list made up of integers. Each item\n\ in the list corresponds to an output axis. Each item is the index of\nthe input\ \ axis to send to the output axis.\n\nIf an object with `mapping` and `n_inputs`\ \ properties is provided, the\nnumber of input axes is explicitly set by the `n_inputs`\ \ value.\nIf only a list is provided, the number of input axes is\nautomatically\ \ determined from the maximum index in the list. \n\nInvertibility: This transform\ \ does not have a general analytical inverse.\nIn some well defined cases it is\ \ possible to invert automatically" - tag_uri: tag:stsci.edu:asdf/transform/ricker_wavelet1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/ricker_wavelet1d-1.0.0 title: One dimensional Ricker Wavelet model. description: |- One dimensional Ricker Wavelet model - tag_uri: tag:stsci.edu:asdf/transform/ricker_wavelet2d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/ricker_wavelet2d-1.0.0 title: Two dimensional Ricker Wavelet model. description: |- Two dimensional Ricker Wavelet model. - tag_uri: tag:stsci.edu:asdf/transform/ring2d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/ring2d-1.0.0 title: Two dimensional radially symmetric ring model. description: |- Two dimensional radially symmetric ring. - tag_uri: tag:stsci.edu:asdf/transform/rotate2d-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/rotate2d-1.3.0 title: A 2D rotation. description: |- A 2D rotation around the origin, in degrees. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/rotate3d-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/rotate3d-1.3.0 title: Rotation in 3D space. description: |- Euler angle rotation around 3 axes. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/rotate_sequence_3d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/rotate_sequence_3d-1.0.0 title: Rotation in 3D space. description: |- Rotation in 3D space by arbitrary number of angles about arbitrary order of "x", "y", "z" axes. - tag_uri: tag:stsci.edu:asdf/transform/sanson_flamsteed-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/sanson_flamsteed-1.2.0 title: The Sanson-Flamsteed projection. description: |- Corresponds to the `SFL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\cos y} \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \cos \theta \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/scale-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/scale-1.2.0 title: A Scale model. description: |- Scale the input by a dimensionless factor. - tag_uri: tag:stsci.edu:asdf/transform/sersic1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/sersic1d-1.0.0 title: One dimensional Sersic surface brightness profile. description: |- One dimensional Sersic surface brightness profile. - tag_uri: tag:stsci.edu:asdf/transform/sersic2d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/sersic2d-1.0.0 title: Two dimensional Sersic surface brightness profile. description: |- Two dimensional Sersic surface brightness profile. - tag_uri: tag:stsci.edu:asdf/transform/shift-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/shift-1.2.0 title: A Shift opeartion. description: |- Apply an offset in one direction. - tag_uri: tag:stsci.edu:asdf/transform/sine1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/sine1d-1.0.0 title: One dimensional sine model. description: |- One dimensional sine. - tag_uri: tag:stsci.edu:asdf/transform/slant_orthographic-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/slant_orthographic-1.2.0 title: The slant orthographic projection. description: |- Corresponds to the `SIN` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \cos^{-1}\left(\frac{\pi}{180^{\circ}}R_\theta\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cos \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/slant_zenithal_perspective-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/slant_zenithal_perspective-1.2.0 title: The slant zenithal perspective projection. description: |- Corresponds to the `SZP` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/smoothly_broken_power_law1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/smoothly_broken_power_law1d-1.0.0 title: One dimensional smoothly broken power law model. description: |- One dimensional smoothly broken power law model. - tag_uri: tag:stsci.edu:asdf/transform/stereographic-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/stereographic-1.2.0 title: The stereographic projection. description: |- Corresponds to the `STG` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^{\circ} - 2 \tan^{-1}\left(\frac{\pi R_\theta}{360^{\circ}}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\frac{2 \cos \theta}{1 + \sin \theta}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/subtract-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/subtract-1.2.0 title: Perform a list of subtransforms in parallel and then subtract their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/tabular-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/tabular-1.2.0 title: A Tabular model. description: |- Tabular represents a lookup table with values corresponding to some grid points. It computes the interpolated values corresponding to the given inputs. Three methods of interpolation are supported - "linear", "nearest" and "splinef2d". It supports extrapolation. - tag_uri: tag:stsci.edu:asdf/transform/tangential_spherical_cube-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/tangential_spherical_cube-1.2.0 title: Tangential spherical cube projection. description: |- Corresponds to the `TSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/trapezoid1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/trapezoid1d-1.0.0 title: One dimensional trapezoid model. description: |- One dimensional trapezoid. - tag_uri: tag:stsci.edu:asdf/transform/trapezoid_disk2d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/trapezoid_disk2d-1.0.0 title: Two dimensional circular trapezoid model. description: |- Two dimensional circular trapezoid. - tag_uri: tag:stsci.edu:asdf/transform/voigt1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/voigt1d-1.0.0 title: One dimensional model for the Voigt profile. description: |- One dimensional model for the Voigt profile. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_equal_area-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_equal_area-1.2.0 title: The zenithal equal area projection. description: |- Corresponds to the `ZEA` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - 2 \sin^{-1} \left(\frac{\pi R_\theta}{360^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta &= \frac{180^\circ}{\pi} \sqrt{2(1 - \sin\theta)} \\ &= \frac{360^\circ}{\pi} \sin\left(\frac{90^\circ - \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_equidistant-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_equidistant-1.2.0 title: The zenithal equidistant projection. description: |- Corresponds to the `ARC` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - R_\theta$$ And the sky-to-pixel transformation is defined as: $$R_\theta = 90^\circ - \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_perspective-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_perspective-1.3.0 title: The zenithal perspective projection. description: |- Corresponds to the `AZP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \arg(-y \cos \gamma, x) \\ \theta &= \left\{\genfrac{}{}{0pt}{}{\psi - \omega}{\psi + \omega + 180^{\circ}}\right.$$ where: $$\psi &= \arg(\rho, 1) \\ \omega &= \sin^{-1}\left(\frac{\rho \mu}{\sqrt{\rho^2 + 1}}\right) \\ \rho &= \frac{R}{\frac{180^{\circ}}{\pi}(\mu + 1) + y \sin \gamma} \\ R &= \sqrt{x^2 + y^2 \cos^2 \gamma}$$ And the sky-to-pixel transformation is defined as: $$x &= R \sin \phi \\ y &= -R \sec \gamma \cos \theta$$ where: $$R = \frac{180^{\circ}}{\pi} \frac{(\mu + 1) \cos \theta}{(\mu + \sin \theta) + \cos \theta \cos \phi \tan \gamma}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. asdf_transform_schemas-0.2.0/resources/asdf-format.org/manifests/transform-1.3.0.yaml0000644000446400020070000006426314155735241032772 0ustar eslavichSTSCI\science00000000000000id: asdf://asdf-format.org/transform/manifests/transform-1.3.0 extension_uri: asdf://asdf-format.org/transform/extensions/transform-1.3.0 title: Transform extension 1.3.0 description: |- A set of tags for serializing data transforms. tags: - tag_uri: tag:stsci.edu:asdf/transform/add-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/add-1.1.0 title: Perform a list of subtransforms in parallel and then add their results together. description: |- Each of the subtransforms must have the same number of inputs and outputs. - tag_uri: tag:stsci.edu:asdf/transform/affine-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/affine-1.2.0 title: An affine transform. description: |- Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/airy-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/airy-1.2.0 title: The Airy projection. description: |- Corresponds to the `AIR` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. - tag_uri: tag:stsci.edu:asdf/transform/bonne_equal_area-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/bonne_equal_area-1.2.0 title: Bonne's equal area pseudoconic projection. description: |- Corresponds to the `BON` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi}{180^\circ} A_\phi R_\theta / \cos \theta \\ \theta &= Y_0 - R_\theta$$ where: $$R_\theta &= \mathrm{sign} \theta_1 \sqrt{x^2 + (Y_0 - y)^2} \\ A_\phi &= \arg\left(\frac{Y_0 - y}{R_\theta}, \frac{x}{R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= R_\theta \sin A_\phi \\ y &= -R_\theta \cos A_\phi + Y_0$$ where: $$A_\phi &= \frac{180^\circ}{\pi R_\theta} \phi \cos \theta \\ R_\theta &= Y_0 - \theta \\ Y_0 &= \frac{180^\circ}{\pi} \cot \theta_1 + \theta_1$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/cobe_quad_spherical_cube-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cobe_quad_spherical_cube-1.1.0 title: COBE quadrilateralized spherical cube projection. description: |- Corresponds to the `CSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/compose-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/compose-1.1.0 title: Perform a list of subtransforms in series. description: |- The output of each subtransform is fed into the input of the next subtransform. The number of output dimensions of each subtransform must be equal to the number of input dimensions of the next subtransform in list. To reorder or add/drop axes, insert `remap_axes` transforms in the subtransform list. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, by reversing the list of transforms and applying the inverse of each. - tag_uri: tag:stsci.edu:asdf/transform/concatenate-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/concatenate-1.1.0 title: Send axes to different subtransforms. description: |- Transforms a set of separable inputs by splitting the axes apart, sending them through the given subtransforms in parallel, and finally concatenating the subtransform output axes back together. The input axes are assigned to each subtransform in order. If the number of input axes is unequal to the sum of the number of input axes of all of the subtransforms, that is considered an error case. The output axes from each subtransform are appended together to make up the resulting output axes. For example, given 5 input axes, and 3 subtransforms with the following orders: 1. transform A: 2 in -> 2 out 1. transform B: 1 in -> 2 out 1. transform C: 2 in -> 1 out The transform is performed as follows: ``` : i0 i1 i2 i3 i4 : | | | | | : +---------+ +---------+ +----------+ : | A | | B | | C | : +---------+ +---------+ +----------+ : | | | | | : o0 o1 o2 o3 o4 ``` If reordering of the input or output axes is required, use in series with the `remap_axes` transform. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_equal_area-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_equal_area-1.2.0 title: Alber's conic equal area projection. description: |- Corresponds to the `COE` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.2.0) for the definition of the full transformation. The transformation is defined as: $$C &= \gamma / 2 \\ R_\theta &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin \theta} \\ Y_0 &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin((\theta_1 + \theta_2)/2)}$$ where: $$\gamma = \sin \theta_1 + \sin \theta_2$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_equidistant-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_equidistant-1.2.0 title: Conic equidistant projection. description: |- Corresponds to the `COD` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.2.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{180^\circ}{\pi} \frac{\sin\theta_a\sin\eta}{\eta} \\ R_\theta &= \theta_a - \theta + \eta\cot\eta\cot\theta_a \\ Y_0 = \eta\cot\eta\cot\theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_orthomorphic-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_orthomorphic-1.2.0 title: Conic orthomorphic projection. description: |- Corresponds to the `COO` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.2.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{\ln \left( \frac{\cos\theta_2}{\cos\theta_1} \right)} {\ln \left[ \frac{\tan\left(\frac{90^\circ-\theta_2}{2}\right)} {\tan\left(\frac{90^\circ-\theta_1}{2}\right)} \right] } \\ R_\theta &= \psi \left[ \tan \left( \frac{90^\circ - \theta}{2} \right) \right]^C \\ Y_0 &= \psi \left[ \tan \left( \frac{90^\circ - \theta_a}{2} \right) \right]^C$$ where: $$\psi = \frac{180^\circ}{\pi} \frac{\cos \theta} {C\left[\tan\left(\frac{90^\circ-\theta}{2}\right)\right]^C}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_perspective-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_perspective-1.2.0 title: Colles' conic perspecitve projection. description: |- Corresponds to the `COP` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.2.0) for the definition of the full transformation. The transformation is defined as: $$C &= \sin \theta_a \\ R_\theta &= \frac{180^\circ}{\pi} \cos \eta [ \cot \theta_a - \tan(\theta - \theta_a)] \\ Y_0 &= \frac{180^\circ}{\pi} \cos \eta \cot \theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/constant-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/constant-1.2.0 title: A transform that takes no inputs and always outputs a constant value. description: |- Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, which always outputs zero values. - tag_uri: tag:stsci.edu:asdf/transform/cylindrical_equal_area-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cylindrical_equal_area-1.2.0 title: The cylindrical equal area projection. description: |- Corresponds to the `CEA` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^{\circ}}\lambda y\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\frac{\sin \theta}{\lambda}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/cylindrical_perspective-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cylindrical_perspective-1.2.0 title: The cylindrical perspective projection. description: |- Corresponds to the `CYP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\lambda} \\ \theta &= \arg(1, \eta) + \sin{-1}\left(\frac{\eta \mu}{\sqrt{\eta^2 + 1}}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \lambda \phi \\ y &= \frac{180^{\circ}}{\pi}\left(\frac{\mu + \lambda}{\mu + \cos \theta}\right)\sin \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/divide-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/divide-1.1.0 title: Perform a list of subtransforms in parallel and then divide their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/gnomonic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/gnomonic-1.1.0 title: The gnomonic projection. description: |- Corresponds to the `TAN` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/hammer_aitoff-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/hammer_aitoff-1.1.0 title: Hammer-Aitoff projection. description: |- Corresponds to the `AIT` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= 2 \arg \left(2Z^2 - 1, \frac{\pi}{180^\circ} \frac{Z}{2}x\right) \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^\circ}yZ\right)$$ And the sky-to-pixel transformation is defined as: $$x &= 2 \gamma \cos \theta \sin \frac{\phi}{2} \\ y &= \gamma \sin \theta$$ where: $$\gamma = \frac{180^\circ}{\pi} \sqrt{\frac{2}{1 + \cos \theta \cos(\phi / 2)}}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/healpix-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/healpix-1.1.0 title: HEALPix projection. description: |- Corresponds to the `HPX` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/healpix_polar-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/healpix_polar-1.1.0 title: HEALPix polar, aka "butterfly", projection. description: |- Corresponds to the `XPH` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/identity-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/identity-1.1.0 title: The identity transform. description: |- Invertibility: The inverse of this transform is also the identity transform. - tag_uri: tag:stsci.edu:asdf/transform/label_mapper-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/label_mapper-1.1.0 title: Represents a mapping from a coordinate value to a label. description: |- A label mapper instance maps inputs to a label. It is used together with [regions_selector](ref:transform/regions_selector-1.1.0). The [label_mapper](ref:transform/label_mapper-1.1.0) returns the label corresponding to given inputs. The [regions_selector](ref:transform/regions_selector-1.1.0) returns the transform corresponding to this label. This maps inputs (e.g. pixels on a detector) to transforms uniquely. - tag_uri: tag:stsci.edu:asdf/transform/mercator-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/mercator-1.1.0 title: The Mercator projection. description: |- Corresponds to the `MER` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= 2 \tan^{-1}\left(e^{y \pi / 180^{\circ}}\right)-90^{\circ}$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\ln \tan \left(\frac{90^{\circ} + \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/molleweide-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/molleweide-1.1.0 title: Molleweide's projection. description: |- Corresponds to the `MOL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi x}{2 \sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}} \\ \theta &= \sin^{-1}\left(\frac{1}{90^\circ}\sin^{-1}\left(\frac{\pi}{180^\circ}\frac{y}{\sqrt{2}}\right) + \frac{y}{180^\circ}\sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \frac{2 \sqrt{2}}{\pi} \phi \cos \gamma \\ y &= \sqrt{2} \frac{180^\circ}{\pi} \sin \gamma$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/multiply-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/multiply-1.1.0 title: Perform a list of subtransforms in parallel and then multiply their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/parabolic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/parabolic-1.1.0 title: Parabolic projection. description: |- Corresponds to the `PAR` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{180^\circ}{\pi} \frac{x}{1 - 4(y / 180^\circ)^2} \\ \theta &= 3 \sin^{-1}\left(\frac{y}{180^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \left(2\cos\frac{2\theta}{3} - 1\right) \\ y &= 180^\circ \sin \frac{\theta}{3}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/plate_carree-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/plate_carree-1.1.0 title: "The plate carr\xE9e projection." description: |- Corresponds to the `CAR` projection in the FITS WCS standard. The main virtue of this transformation is its simplicity. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/polyconic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/polyconic-1.1.0 title: Polyconic projection. description: |- Corresponds to the `PCO` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/polynomial-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/polynomial-1.2.0 title: A Polynomial model. description: |- A polynomial model represented by its coefficients stored in an ndarray of shape $(n+1)$ for univariate polynomials or $(n+1, n+1)$ for polynomials with 2 variables, where $n$ is the highest total degree of the polynomial. $$P = \sum_{i, j=0}^{i+j=n}c_{ij} * x^{i} * y^{j}$$ Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/power-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/power-1.1.0 title: Perform a list of subtransforms in parallel and then raise each result to the power of the next. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/quad_spherical_cube-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/quad_spherical_cube-1.1.0 title: Quadrilateralized spherical cube projection. description: |- Corresponds to the `QSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/regions_selector-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/regions_selector-1.1.0 title: Represents a discontinuous transform. description: |- Maps regions to transgorms and evaluates the transforms with the corresponding inputs. - tag_uri: tag:stsci.edu:asdf/transform/remap_axes-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/remap_axes-1.1.0 title: Reorder, add and drop axes. description: |- This transform allows the order of the input axes to be shuffled and returned as the output axes. It is a list made up of integers or "constant markers". Each item in the list corresponds to an output axis. For each item: - If an integer, it is the index of the input axis to send to the output axis. - If a constant, it must be a single item which is a constant value to send to the output axis. If only a list is provided, the number of input axes is automatically determined from the maximum index in the list. If an object with `mapping` and `n_inputs` properties is provided, the number of input axes is explicitly set by the `n_inputs` value. Invertibility: TBD - tag_uri: tag:stsci.edu:asdf/transform/rotate2d-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/rotate2d-1.2.0 title: A 2D rotation. description: |- A 2D rotation around the origin, in degrees. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/rotate3d-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/rotate3d-1.2.0 title: Rotation in 3D space. description: |- Euler angle rotation around 3 axes. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/sanson_flamsteed-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/sanson_flamsteed-1.1.0 title: The Sanson-Flamsteed projection. description: |- Corresponds to the `SFL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\cos y} \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \cos \theta \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/scale-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/scale-1.2.0 title: A Scale model. description: |- Scale the input by a dimensionless factor. - tag_uri: tag:stsci.edu:asdf/transform/shift-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/shift-1.2.0 title: A Shift opeartion. description: |- Apply an offset in one direction. - tag_uri: tag:stsci.edu:asdf/transform/slant_orthographic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/slant_orthographic-1.1.0 title: The slant orthographic projection. description: |- Corresponds to the `SIN` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \cos^{-1}\left(\frac{\pi}{180^{\circ}}R_\theta\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cos \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/slant_zenithal_perspective-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/slant_zenithal_perspective-1.2.0 title: The slant zenithal perspective projection. description: |- Corresponds to the `SZP` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/stereographic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/stereographic-1.1.0 title: The stereographic projection. description: |- Corresponds to the `STG` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^{\circ} - 2 \tan^{-1}\left(\frac{\pi R_\theta}{360^{\circ}}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\frac{2 \cos \theta}{1 + \sin \theta}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/subtract-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/subtract-1.1.0 title: Perform a list of subtransforms in parallel and then subtract their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/tabular-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/tabular-1.2.0 title: A Tabular model. description: |- Tabular represents a lookup table with values corresponding to some grid points. It computes the interpolated values corresponding to the given inputs. Three methods of interpolation are supported - "linear", "nearest" and "splinef2d". It supports extrapolation. - tag_uri: tag:stsci.edu:asdf/transform/tangential_spherical_cube-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/tangential_spherical_cube-1.1.0 title: Tangential spherical cube projection. description: |- Corresponds to the `TSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_equal_area-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_equal_area-1.1.0 title: The zenithal equal area projection. description: |- Corresponds to the `ZEA` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - 2 \sin^{-1} \left(\frac{\pi R_\theta}{360^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta &= \frac{180^\circ}{\pi} \sqrt{2(1 - \sin\theta)} \\ &= \frac{360^\circ}{\pi} \sin\left(\frac{90^\circ - \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_equidistant-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_equidistant-1.1.0 title: The zenithal equidistant projection. description: |- Corresponds to the `ARC` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - R_\theta$$ And the sky-to-pixel transformation is defined as: $$R_\theta = 90^\circ - \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_perspective-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_perspective-1.2.0 title: The zenithal perspective projection. description: |- Corresponds to the `AZP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \arg(-y \cos \gamma, x) \\ \theta &= \left\{\genfrac{}{}{0pt}{}{\psi - \omega}{\psi + \omega + 180^{\circ}}\right.$$ where: $$\psi &= \arg(\rho, 1) \\ \omega &= \sin^{-1}\left(\frac{\rho \mu}{\sqrt{\rho^2 + 1}}\right) \\ \rho &= \frac{R}{\frac{180^{\circ}}{\pi}(\mu + 1) + y \sin \gamma} \\ R &= \sqrt{x^2 + y^2 \cos^2 \gamma}$$ And the sky-to-pixel transformation is defined as: $$x &= R \sin \phi \\ y &= -R \sec \gamma \cos \theta$$ where: $$R = \frac{180^{\circ}}{\pi} \frac{(\mu + 1) \cos \theta}{(\mu + \sin \theta) + \cos \theta \cos \phi \tan \gamma}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. asdf_transform_schemas-0.2.0/resources/asdf-format.org/manifests/transform-1.1.0.yaml0000644000446400020070000006447614155735241032776 0ustar eslavichSTSCI\science00000000000000id: asdf://asdf-format.org/transform/manifests/transform-1.1.0 extension_uri: asdf://asdf-format.org/transform/extensions/transform-1.1.0 title: Transform extension 1.1.0 description: |- A set of tags for serializing data transforms. tags: - tag_uri: tag:stsci.edu:asdf/transform/add-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/add-1.1.0 title: Perform a list of subtransforms in parallel and then add their results together. description: |- Each of the subtransforms must have the same number of inputs and outputs. - tag_uri: tag:stsci.edu:asdf/transform/affine-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/affine-1.1.0 title: An affine transform. description: |- Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/airy-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/airy-1.1.0 title: The Airy projection. description: |- Corresponds to the `AIR` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. - tag_uri: tag:stsci.edu:asdf/transform/bonne_equal_area-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/bonne_equal_area-1.1.0 title: Bonne's equal area pseudoconic projection. description: |- Corresponds to the `BON` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi}{180^\circ} A_\phi R_\theta / \cos \theta \\ \theta &= Y_0 - R_\theta$$ where: $$R_\theta &= \mathrm{sign} \theta_1 \sqrt{x^2 + (Y_0 - y)^2} \\ A_\phi &= \arg\left(\frac{Y_0 - y}{R_\theta}, \frac{x}{R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= R_\theta \sin A_\phi \\ y &= -R_\theta \cos A_\phi + Y_0$$ where: $$A_\phi &= \frac{180^\circ}{\pi R_\theta} \phi \cos \theta \\ R_\theta &= Y_0 - \theta \\ Y_0 &= \frac{180^\circ}{\pi} \cot \theta_1 + \theta_1$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/cobe_quad_spherical_cube-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cobe_quad_spherical_cube-1.1.0 title: COBE quadrilateralized spherical cube projection. description: |- Corresponds to the `CSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/compose-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/compose-1.1.0 title: Perform a list of subtransforms in series. description: |- The output of each subtransform is fed into the input of the next subtransform. The number of output dimensions of each subtransform must be equal to the number of input dimensions of the next subtransform in list. To reorder or add/drop axes, insert `remap_axes` transforms in the subtransform list. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, by reversing the list of transforms and applying the inverse of each. - tag_uri: tag:stsci.edu:asdf/transform/concatenate-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/concatenate-1.1.0 title: Send axes to different subtransforms. description: |- Transforms a set of separable inputs by splitting the axes apart, sending them through the given subtransforms in parallel, and finally concatenating the subtransform output axes back together. The input axes are assigned to each subtransform in order. If the number of input axes is unequal to the sum of the number of input axes of all of the subtransforms, that is considered an error case. The output axes from each subtransform are appended together to make up the resulting output axes. For example, given 5 input axes, and 3 subtransforms with the following orders: 1. transform A: 2 in -> 2 out 1. transform B: 1 in -> 2 out 1. transform C: 2 in -> 1 out The transform is performed as follows: ``` : i0 i1 i2 i3 i4 : | | | | | : +---------+ +---------+ +----------+ : | A | | B | | C | : +---------+ +---------+ +----------+ : | | | | | : o0 o1 o2 o3 o4 ``` If reordering of the input or output axes is required, use in series with the `remap_axes` transform. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_equal_area-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_equal_area-1.1.0 title: Alber's conic equal area projection. description: |- Corresponds to the `COE` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.1.0) for the definition of the full transformation. The transformation is defined as: $$C &= \gamma / 2 \\ R_\theta &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin \theta} \\ Y_0 &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin((\theta_1 + \theta_2)/2)}$$ where: $$\gamma = \sin \theta_1 + \sin \theta_2$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_equidistant-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_equidistant-1.1.0 title: Conic equidistant projection. description: |- Corresponds to the `COD` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.1.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{180^\circ}{\pi} \frac{\sin\theta_a\sin\eta}{\eta} \\ R_\theta &= \theta_a - \theta + \eta\cot\eta\cot\theta_a \\ Y_0 = \eta\cot\eta\cot\theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_orthomorphic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_orthomorphic-1.1.0 title: Conic orthomorphic projection. description: |- Corresponds to the `COO` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.1.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{\ln \left( \frac{\cos\theta_2}{\cos\theta_1} \right)} {\ln \left[ \frac{\tan\left(\frac{90^\circ-\theta_2}{2}\right)} {\tan\left(\frac{90^\circ-\theta_1}{2}\right)} \right] } \\ R_\theta &= \psi \left[ \tan \left( \frac{90^\circ - \theta}{2} \right) \right]^C \\ Y_0 &= \psi \left[ \tan \left( \frac{90^\circ - \theta_a}{2} \right) \right]^C$$ where: $$\psi = \frac{180^\circ}{\pi} \frac{\cos \theta} {C\left[\tan\left(\frac{90^\circ-\theta}{2}\right)\right]^C}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_perspective-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_perspective-1.1.0 title: Colles' conic perspecitve projection. description: |- Corresponds to the `COP` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.1.0) for the definition of the full transformation. The transformation is defined as: $$C &= \sin \theta_a \\ R_\theta &= \frac{180^\circ}{\pi} \cos \eta [ \cot \theta_a - \tan(\theta - \theta_a)] \\ Y_0 &= \frac{180^\circ}{\pi} \cos \eta \cot \theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/constant-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/constant-1.1.0 title: A transform that takes no inputs and always outputs a constant value. description: |- Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, which always outputs zero values. - tag_uri: tag:stsci.edu:asdf/transform/cylindrical_equal_area-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cylindrical_equal_area-1.1.0 title: The cylindrical equal area projection. description: |- Corresponds to the `CEA` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^{\circ}}\lambda y\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\frac{\sin \theta}{\lambda}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/cylindrical_perspective-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cylindrical_perspective-1.1.0 title: The cylindrical perspective projection. description: |- Corresponds to the `CYP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\lambda} \\ \theta &= \arg(1, \eta) + \sin{-1}\left(\frac{\eta \mu}{\sqrt{\eta^2 + 1}}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \lambda \phi \\ y &= \frac{180^{\circ}}{\pi}\left(\frac{\mu + \lambda}{\mu + \cos \theta}\right)\sin \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/divide-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/divide-1.1.0 title: Perform a list of subtransforms in parallel and then divide their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/gnomonic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/gnomonic-1.1.0 title: The gnomonic projection. description: |- Corresponds to the `TAN` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/hammer_aitoff-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/hammer_aitoff-1.1.0 title: Hammer-Aitoff projection. description: |- Corresponds to the `AIT` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= 2 \arg \left(2Z^2 - 1, \frac{\pi}{180^\circ} \frac{Z}{2}x\right) \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^\circ}yZ\right)$$ And the sky-to-pixel transformation is defined as: $$x &= 2 \gamma \cos \theta \sin \frac{\phi}{2} \\ y &= \gamma \sin \theta$$ where: $$\gamma = \frac{180^\circ}{\pi} \sqrt{\frac{2}{1 + \cos \theta \cos(\phi / 2)}}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/healpix-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/healpix-1.1.0 title: HEALPix projection. description: |- Corresponds to the `HPX` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/healpix_polar-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/healpix_polar-1.1.0 title: HEALPix polar, aka "butterfly", projection. description: |- Corresponds to the `XPH` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/identity-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/identity-1.1.0 title: The identity transform. description: |- Invertibility: The inverse of this transform is also the identity transform. - tag_uri: tag:stsci.edu:asdf/transform/label_mapper-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/label_mapper-1.1.0 title: Represents a mapping from a coordinate value to a label. description: |- A label mapper instance maps inputs to a label. It is used together with [regions_selector](ref:transform/regions_selector-1.1.0). The [label_mapper](ref:transform/label_mapper-1.1.0) returns the label corresponding to given inputs. The [regions_selector](ref:transform/regions_selector-1.1.0) returns the transform corresponding to this label. This maps inputs (e.g. pixels on a detector) to transforms uniquely. - tag_uri: tag:stsci.edu:asdf/transform/mercator-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/mercator-1.1.0 title: The Mercator projection. description: |- Corresponds to the `MER` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= 2 \tan^{-1}\left(e^{y \pi / 180^{\circ}}\right)-90^{\circ}$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\ln \tan \left(\frac{90^{\circ} + \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/molleweide-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/molleweide-1.1.0 title: Molleweide's projection. description: |- Corresponds to the `MOL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi x}{2 \sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}} \\ \theta &= \sin^{-1}\left(\frac{1}{90^\circ}\sin^{-1}\left(\frac{\pi}{180^\circ}\frac{y}{\sqrt{2}}\right) + \frac{y}{180^\circ}\sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \frac{2 \sqrt{2}}{\pi} \phi \cos \gamma \\ y &= \sqrt{2} \frac{180^\circ}{\pi} \sin \gamma$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/multiply-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/multiply-1.1.0 title: Perform a list of subtransforms in parallel and then multiply their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/parabolic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/parabolic-1.1.0 title: Parabolic projection. description: |- Corresponds to the `PAR` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{180^\circ}{\pi} \frac{x}{1 - 4(y / 180^\circ)^2} \\ \theta &= 3 \sin^{-1}\left(\frac{y}{180^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \left(2\cos\frac{2\theta}{3} - 1\right) \\ y &= 180^\circ \sin \frac{\theta}{3}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/plate_carree-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/plate_carree-1.1.0 title: "The plate carr\xE9e projection." description: |- Corresponds to the `CAR` projection in the FITS WCS standard. The main virtue of this transformation is its simplicity. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/polyconic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/polyconic-1.1.0 title: Polyconic projection. description: |- Corresponds to the `PCO` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/polynomial-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/polynomial-1.1.0 title: A Polynomial model. description: |- A polynomial model represented by its coefficients stored in an ndarray of shape $(n+1)$ for univariate polynomials or $(n+1, n+1)$ for polynomials with 2 variables, where $n$ is the highest total degree of the polynomial. $$P = \sum_{i, j=0}^{i+j=n}c_{ij} * x^{i} * y^{j}$$ Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/power-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/power-1.1.0 title: Perform a list of subtransforms in parallel and then raise each result to the power of the next. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/quad_spherical_cube-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/quad_spherical_cube-1.1.0 title: Quadrilateralized spherical cube projection. description: |- Corresponds to the `QSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/regions_selector-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/regions_selector-1.1.0 title: Represents a discontinuous transform. description: |- Maps regions to transgorms and evaluates the transforms with the corresponding inputs. - tag_uri: tag:stsci.edu:asdf/transform/remap_axes-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/remap_axes-1.1.0 title: Reorder, add and drop axes. description: |- This transform allows the order of the input axes to be shuffled and returned as the output axes. It is a list made up of integers or "constant markers". Each item in the list corresponds to an output axis. For each item: - If an integer, it is the index of the input axis to send to the output axis. - If a constant, it must be a single item which is a constant value to send to the output axis. If only a list is provided, the number of input axes is automatically determined from the maximum index in the list. If an object with `mapping` and `n_inputs` properties is provided, the number of input axes is explicitly set by the `n_inputs` value. Invertibility: TBD - tag_uri: tag:stsci.edu:asdf/transform/rotate2d-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/rotate2d-1.1.0 title: A 2D rotation. description: |- A 2D rotation around the origin, in degrees. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/rotate3d-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/rotate3d-1.1.0 title: Rotation in 3D space. description: |- Euler angle rotation around 3 axes. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/sanson_flamsteed-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/sanson_flamsteed-1.1.0 title: The Sanson-Flamsteed projection. description: |- Corresponds to the `SFL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\cos y} \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \cos \theta \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/scale-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/scale-1.1.0 title: A Scale model. description: |- Multiply the input by a factor. - tag_uri: tag:stsci.edu:asdf/transform/shift-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/shift-1.1.0 title: A Shift opeartion. description: |- Apply an offset in one direction. - tag_uri: tag:stsci.edu:asdf/transform/slant_orthographic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/slant_orthographic-1.1.0 title: The slant orthographic projection. description: |- Corresponds to the `SIN` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \cos^{-1}\left(\frac{\pi}{180^{\circ}}R_\theta\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cos \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/slant_zenithal_perspective-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/slant_zenithal_perspective-1.1.0 title: The slant zenithal perspective projection. description: |- Corresponds to the `SZP` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/stereographic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/stereographic-1.1.0 title: The stereographic projection. description: |- Corresponds to the `STG` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^{\circ} - 2 \tan^{-1}\left(\frac{\pi R_\theta}{360^{\circ}}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\frac{2 \cos \theta}{1 + \sin \theta}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/subtract-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/subtract-1.1.0 title: Perform a list of subtransforms in parallel and then subtract their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/tabular-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/tabular-1.1.0 title: A Tabular model. description: |- Tabular represents a lookup table with values corresponding to some grid points. It computes the interpolated values corresponding to the given inputs. Three methods of interpolation are supported - "linear", "nearest" and "splinef2d". It supports extrapolation. - tag_uri: tag:stsci.edu:asdf/transform/tangential_spherical_cube-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/tangential_spherical_cube-1.1.0 title: Tangential spherical cube projection. description: |- Corresponds to the `TSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_equal_area-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_equal_area-1.1.0 title: The zenithal equal area projection. description: |- Corresponds to the `ZEA` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - 2 \sin^{-1} \left(\frac{\pi R_\theta}{360^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta &= \frac{180^\circ}{\pi} \sqrt{2(1 - \sin\theta)} \\ &= \frac{360^\circ}{\pi} \sin\left(\frac{90^\circ - \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_equidistant-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_equidistant-1.1.0 title: The zenithal equidistant projection. description: |- Corresponds to the `ARC` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - R_\theta$$ And the sky-to-pixel transformation is defined as: $$R_\theta = 90^\circ - \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_perspective-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_perspective-1.1.0 title: The zenithal perspective projection. description: |- Corresponds to the `AZP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \arg(-y \cos \gamma, x) \\ \theta &= \left\{\genfrac{}{}{0pt}{}{\psi - \omega}{\psi + \omega + 180^{\circ}}\right.$$ where: $$\psi &= \arg(\rho, 1) \\ \omega &= \sin^{-1}\left(\frac{\rho \mu}{\sqrt{\rho^2 + 1}}\right) \\ \rho &= \frac{R}{\frac{180^{\circ}}{\pi}(\mu + 1) + y \sin \gamma} \\ R &= \sqrt{x^2 + y^2 \cos^2 \gamma}$$ And the sky-to-pixel transformation is defined as: $$x &= R \sin \phi \\ y &= -R \sec \gamma \cos \theta$$ where: $$R = \frac{180^{\circ}}{\pi} \frac{(\mu + 1) \cos \theta}{(\mu + \sin \theta) + \cos \theta \cos \phi \tan \gamma}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. asdf_transform_schemas-0.2.0/resources/asdf-format.org/manifests/transform-1.4.0.yaml0000644000446400020070000007061114155735241032765 0ustar eslavichSTSCI\science00000000000000id: asdf://asdf-format.org/transform/manifests/transform-1.4.0 extension_uri: asdf://asdf-format.org/transform/extensions/transform-1.4.0 title: Transform extension 1.4.0 description: |- A set of tags for serializing data transforms. tags: - tag_uri: tag:stsci.edu:asdf/transform/add-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/add-1.2.0 title: Perform a list of subtransforms in parallel and then add their results together. description: |- Each of the subtransforms must have the same number of inputs and outputs. - tag_uri: tag:stsci.edu:asdf/transform/affine-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/affine-1.3.0 title: An affine transform. description: |- Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/airy-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/airy-1.2.0 title: The Airy projection. description: |- Corresponds to the `AIR` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. - tag_uri: tag:stsci.edu:asdf/transform/bonne_equal_area-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/bonne_equal_area-1.3.0 title: Bonne's equal area pseudoconic projection. description: |- Corresponds to the `BON` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi}{180^\circ} A_\phi R_\theta / \cos \theta \\ \theta &= Y_0 - R_\theta$$ where: $$R_\theta &= \mathrm{sign} \theta_1 \sqrt{x^2 + (Y_0 - y)^2} \\ A_\phi &= \arg\left(\frac{Y_0 - y}{R_\theta}, \frac{x}{R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= R_\theta \sin A_\phi \\ y &= -R_\theta \cos A_\phi + Y_0$$ where: $$A_\phi &= \frac{180^\circ}{\pi R_\theta} \phi \cos \theta \\ R_\theta &= Y_0 - \theta \\ Y_0 &= \frac{180^\circ}{\pi} \cot \theta_1 + \theta_1$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/cobe_quad_spherical_cube-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cobe_quad_spherical_cube-1.2.0 title: COBE quadrilateralized spherical cube projection. description: |- Corresponds to the `CSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/compose-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/compose-1.2.0 title: Perform a list of subtransforms in series. description: |- The output of each subtransform is fed into the input of the next subtransform. The number of output dimensions of each subtransform must be equal to the number of input dimensions of the next subtransform in list. To reorder or add/drop axes, insert `remap_axes` transforms in the subtransform list. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, by reversing the list of transforms and applying the inverse of each. - tag_uri: tag:stsci.edu:asdf/transform/concatenate-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/concatenate-1.2.0 title: Send axes to different subtransforms. description: |- Transforms a set of separable inputs by splitting the axes apart, sending them through the given subtransforms in parallel, and finally concatenating the subtransform output axes back together. The input axes are assigned to each subtransform in order. If the number of input axes is unequal to the sum of the number of input axes of all of the subtransforms, that is considered an error case. The output axes from each subtransform are appended together to make up the resulting output axes. For example, given 5 input axes, and 3 subtransforms with the following orders: 1. transform A: 2 in -> 2 out 1. transform B: 1 in -> 2 out 1. transform C: 2 in -> 1 out The transform is performed as follows: ``` : i0 i1 i2 i3 i4 : | | | | | : +---------+ +---------+ +----------+ : | A | | B | | C | : +---------+ +---------+ +----------+ : | | | | | : o0 o1 o2 o3 o4 ``` If reordering of the input or output axes is required, use in series with the `remap_axes` transform. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_equal_area-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_equal_area-1.3.0 title: Alber's conic equal area projection. description: |- Corresponds to the `COE` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.3.0) for the definition of the full transformation. The transformation is defined as: $$C &= \gamma / 2 \\ R_\theta &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin \theta} \\ Y_0 &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin((\theta_1 + \theta_2)/2)}$$ where: $$\gamma = \sin \theta_1 + \sin \theta_2$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_equidistant-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_equidistant-1.3.0 title: Conic equidistant projection. description: |- Corresponds to the `COD` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.3.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{180^\circ}{\pi} \frac{\sin\theta_a\sin\eta}{\eta} \\ R_\theta &= \theta_a - \theta + \eta\cot\eta\cot\theta_a \\ Y_0 = \eta\cot\eta\cot\theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_orthomorphic-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_orthomorphic-1.3.0 title: Conic orthomorphic projection. description: |- Corresponds to the `COO` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.3.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{\ln \left( \frac{\cos\theta_2}{\cos\theta_1} \right)} {\ln \left[ \frac{\tan\left(\frac{90^\circ-\theta_2}{2}\right)} {\tan\left(\frac{90^\circ-\theta_1}{2}\right)} \right] } \\ R_\theta &= \psi \left[ \tan \left( \frac{90^\circ - \theta}{2} \right) \right]^C \\ Y_0 &= \psi \left[ \tan \left( \frac{90^\circ - \theta_a}{2} \right) \right]^C$$ where: $$\psi = \frac{180^\circ}{\pi} \frac{\cos \theta} {C\left[\tan\left(\frac{90^\circ-\theta}{2}\right)\right]^C}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_perspective-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_perspective-1.3.0 title: Colles' conic perspecitve projection. description: |- Corresponds to the `COP` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.3.0) for the definition of the full transformation. The transformation is defined as: $$C &= \sin \theta_a \\ R_\theta &= \frac{180^\circ}{\pi} \cos \eta [ \cot \theta_a - \tan(\theta - \theta_a)] \\ Y_0 &= \frac{180^\circ}{\pi} \cos \eta \cot \theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/constant-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/constant-1.3.0 title: A transform that takes no inputs and always outputs a constant value. description: |- Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, which always outputs zero values. - tag_uri: tag:stsci.edu:asdf/transform/cylindrical_equal_area-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cylindrical_equal_area-1.3.0 title: The cylindrical equal area projection. description: |- Corresponds to the `CEA` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^{\circ}}\lambda y\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\frac{\sin \theta}{\lambda}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/cylindrical_perspective-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cylindrical_perspective-1.3.0 title: The cylindrical perspective projection. description: |- Corresponds to the `CYP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\lambda} \\ \theta &= \arg(1, \eta) + \sin{-1}\left(\frac{\eta \mu}{\sqrt{\eta^2 + 1}}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \lambda \phi \\ y &= \frac{180^{\circ}}{\pi}\left(\frac{\mu + \lambda}{\mu + \cos \theta}\right)\sin \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/divide-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/divide-1.2.0 title: Perform a list of subtransforms in parallel and then divide their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/fix_inputs-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/fix_inputs-1.2.0 title: Set to a constant selected input arguments of a model. description: |- This operation takes as the right hand side a dict equivalent that consists of key:value pairs where the key identifies the input argument to be set, either by position number (0 based) or name, and the value is the floating point value that should be assigned to that input. The result is a compound model with n fewer input arguments where n is the number of input values to be set (i.e., the number of keys in the dict). - tag_uri: tag:stsci.edu:asdf/transform/gnomonic-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/gnomonic-1.2.0 title: The gnomonic projection. description: |- Corresponds to the `TAN` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/hammer_aitoff-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/hammer_aitoff-1.2.0 title: Hammer-Aitoff projection. description: |- Corresponds to the `AIT` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= 2 \arg \left(2Z^2 - 1, \frac{\pi}{180^\circ} \frac{Z}{2}x\right) \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^\circ}yZ\right)$$ And the sky-to-pixel transformation is defined as: $$x &= 2 \gamma \cos \theta \sin \frac{\phi}{2} \\ y &= \gamma \sin \theta$$ where: $$\gamma = \frac{180^\circ}{\pi} \sqrt{\frac{2}{1 + \cos \theta \cos(\phi / 2)}}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/healpix-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/healpix-1.2.0 title: HEALPix projection. description: |- Corresponds to the `HPX` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/healpix_polar-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/healpix_polar-1.2.0 title: HEALPix polar, aka "butterfly", projection. description: |- Corresponds to the `XPH` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/identity-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/identity-1.2.0 title: The identity transform. description: |- Invertibility: The inverse of this transform is also the identity transform. - tag_uri: tag:stsci.edu:asdf/transform/label_mapper-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/label_mapper-1.2.0 title: Represents a mapping from a coordinate value to a label. description: |- A label mapper instance maps inputs to a label. It is used together with [regions_selector](ref:transform/regions_selector-1.2.0). The [label_mapper](ref:transform/label_mapper-1.2.0) returns the label corresponding to given inputs. The [regions_selector](ref:transform/regions_selector-1.2.0) returns the transform corresponding to this label. This maps inputs (e.g. pixels on a detector) to transforms uniquely. - tag_uri: tag:stsci.edu:asdf/transform/linear1d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/linear1d-1.0.0 title: A one dimensional line model description: |- A one dimensional line model - tag_uri: tag:stsci.edu:asdf/transform/math_functions-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/math_functions-1.0.0 title: Math functions. description: |- Commonly used math funcitons. - tag_uri: tag:stsci.edu:asdf/transform/mercator-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/mercator-1.2.0 title: The Mercator projection. description: |- Corresponds to the `MER` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= 2 \tan^{-1}\left(e^{y \pi / 180^{\circ}}\right)-90^{\circ}$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\ln \tan \left(\frac{90^{\circ} + \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/molleweide-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/molleweide-1.2.0 title: Molleweide's projection. description: |- Corresponds to the `MOL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi x}{2 \sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}} \\ \theta &= \sin^{-1}\left(\frac{1}{90^\circ}\sin^{-1}\left(\frac{\pi}{180^\circ}\frac{y}{\sqrt{2}}\right) + \frac{y}{180^\circ}\sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \frac{2 \sqrt{2}}{\pi} \phi \cos \gamma \\ y &= \sqrt{2} \frac{180^\circ}{\pi} \sin \gamma$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/multiply-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/multiply-1.2.0 title: Perform a list of subtransforms in parallel and then multiply their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/multiplyscale-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/multiplyscale-1.0.0 title: A Multiply model. description: |- Multiply the input by a factor. - tag_uri: tag:stsci.edu:asdf/transform/ortho_polynomial-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/ortho_polynomial-1.0.0 title: Respresents various Orthogonal Polynomial models. description: |- A polynomial model represented by its coefficients stored in an ndarray of shape $(n+1)$ for univariate polynomials or $(n+1, n+1)$ for polynomials with 2 variables, where $n$ is the highest total degree of the polynomial. The property polynomial_type defines what kind of polynomial is defined. $$P = \sum_{i, j=0}^{i+j=n}c_{ij} * x^{i} * y^{j}$$ Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/parabolic-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/parabolic-1.2.0 title: Parabolic projection. description: |- Corresponds to the `PAR` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{180^\circ}{\pi} \frac{x}{1 - 4(y / 180^\circ)^2} \\ \theta &= 3 \sin^{-1}\left(\frac{y}{180^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \left(2\cos\frac{2\theta}{3} - 1\right) \\ y &= 180^\circ \sin \frac{\theta}{3}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/plate_carree-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/plate_carree-1.2.0 title: "The plate carr\xE9e projection." description: |- Corresponds to the `CAR` projection in the FITS WCS standard. The main virtue of this transformation is its simplicity. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/polyconic-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/polyconic-1.2.0 title: Polyconic projection. description: |- Corresponds to the `PCO` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/polynomial-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/polynomial-1.2.0 title: A Polynomial model. description: |- A polynomial model represented by its coefficients stored in an ndarray of shape $(n+1)$ for univariate polynomials or $(n+1, n+1)$ for polynomials with 2 variables, where $n$ is the highest total degree of the polynomial. $$P = \sum_{i, j=0}^{i+j=n}c_{ij} * x^{i} * y^{j}$$ Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/power-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/power-1.2.0 title: Perform a list of subtransforms in parallel and then raise each result to the power of the next. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/quad_spherical_cube-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/quad_spherical_cube-1.2.0 title: Quadrilateralized spherical cube projection. description: |- Corresponds to the `QSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/regions_selector-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/regions_selector-1.2.0 title: Represents a discontinuous transform. description: |- Maps regions to transgorms and evaluates the transforms with the corresponding inputs. - tag_uri: tag:stsci.edu:asdf/transform/remap_axes-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/remap_axes-1.2.0 title: Reorder, add and drop axes. description: |- This transform allows the order of the input axes to be shuffled and returned as the output axes. It is a list made up of integers or "constant markers". Each item in the list corresponds to an output axis. For each item: - If an integer, it is the index of the input axis to send to the output axis. - If a constant, it must be a single item which is a constant value to send to the output axis. If only a list is provided, the number of input axes is automatically determined from the maximum index in the list. If an object with `mapping` and `n_inputs` properties is provided, the number of input axes is explicitly set by the `n_inputs` value. Invertibility: TBD - tag_uri: tag:stsci.edu:asdf/transform/rotate2d-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/rotate2d-1.3.0 title: A 2D rotation. description: |- A 2D rotation around the origin, in degrees. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/rotate3d-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/rotate3d-1.3.0 title: Rotation in 3D space. description: |- Euler angle rotation around 3 axes. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/rotate_sequence_3d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/rotate_sequence_3d-1.0.0 title: Rotation in 3D space. description: |- Rotation in 3D space by arbitrary number of angles about arbitrary order of "x", "y", "z" axes. - tag_uri: tag:stsci.edu:asdf/transform/sanson_flamsteed-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/sanson_flamsteed-1.2.0 title: The Sanson-Flamsteed projection. description: |- Corresponds to the `SFL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\cos y} \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \cos \theta \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/scale-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/scale-1.2.0 title: A Scale model. description: |- Scale the input by a dimensionless factor. - tag_uri: tag:stsci.edu:asdf/transform/shift-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/shift-1.2.0 title: A Shift opeartion. description: |- Apply an offset in one direction. - tag_uri: tag:stsci.edu:asdf/transform/slant_orthographic-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/slant_orthographic-1.2.0 title: The slant orthographic projection. description: |- Corresponds to the `SIN` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \cos^{-1}\left(\frac{\pi}{180^{\circ}}R_\theta\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cos \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/slant_zenithal_perspective-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/slant_zenithal_perspective-1.2.0 title: The slant zenithal perspective projection. description: |- Corresponds to the `SZP` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/stereographic-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/stereographic-1.2.0 title: The stereographic projection. description: |- Corresponds to the `STG` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^{\circ} - 2 \tan^{-1}\left(\frac{\pi R_\theta}{360^{\circ}}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\frac{2 \cos \theta}{1 + \sin \theta}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/subtract-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/subtract-1.2.0 title: Perform a list of subtransforms in parallel and then subtract their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/tabular-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/tabular-1.2.0 title: A Tabular model. description: |- Tabular represents a lookup table with values corresponding to some grid points. It computes the interpolated values corresponding to the given inputs. Three methods of interpolation are supported - "linear", "nearest" and "splinef2d". It supports extrapolation. - tag_uri: tag:stsci.edu:asdf/transform/tangential_spherical_cube-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/tangential_spherical_cube-1.2.0 title: Tangential spherical cube projection. description: |- Corresponds to the `TSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_equal_area-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_equal_area-1.2.0 title: The zenithal equal area projection. description: |- Corresponds to the `ZEA` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - 2 \sin^{-1} \left(\frac{\pi R_\theta}{360^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta &= \frac{180^\circ}{\pi} \sqrt{2(1 - \sin\theta)} \\ &= \frac{360^\circ}{\pi} \sin\left(\frac{90^\circ - \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_equidistant-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_equidistant-1.2.0 title: The zenithal equidistant projection. description: |- Corresponds to the `ARC` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - R_\theta$$ And the sky-to-pixel transformation is defined as: $$R_\theta = 90^\circ - \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_perspective-1.3.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_perspective-1.3.0 title: The zenithal perspective projection. description: |- Corresponds to the `AZP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \arg(-y \cos \gamma, x) \\ \theta &= \left\{\genfrac{}{}{0pt}{}{\psi - \omega}{\psi + \omega + 180^{\circ}}\right.$$ where: $$\psi &= \arg(\rho, 1) \\ \omega &= \sin^{-1}\left(\frac{\rho \mu}{\sqrt{\rho^2 + 1}}\right) \\ \rho &= \frac{R}{\frac{180^{\circ}}{\pi}(\mu + 1) + y \sin \gamma} \\ R &= \sqrt{x^2 + y^2 \cos^2 \gamma}$$ And the sky-to-pixel transformation is defined as: $$x &= R \sin \phi \\ y &= -R \sec \gamma \cos \theta$$ where: $$R = \frac{180^{\circ}}{\pi} \frac{(\mu + 1) \cos \theta}{(\mu + \sin \theta) + \cos \theta \cos \phi \tan \gamma}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. asdf_transform_schemas-0.2.0/resources/asdf-format.org/manifests/transform-1.2.0.yaml0000644000446400020070000006426314155735241032771 0ustar eslavichSTSCI\science00000000000000id: asdf://asdf-format.org/transform/manifests/transform-1.2.0 extension_uri: asdf://asdf-format.org/transform/extensions/transform-1.2.0 title: Transform extension 1.2.0 description: |- A set of tags for serializing data transforms. tags: - tag_uri: tag:stsci.edu:asdf/transform/add-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/add-1.1.0 title: Perform a list of subtransforms in parallel and then add their results together. description: |- Each of the subtransforms must have the same number of inputs and outputs. - tag_uri: tag:stsci.edu:asdf/transform/affine-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/affine-1.2.0 title: An affine transform. description: |- Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/airy-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/airy-1.2.0 title: The Airy projection. description: |- Corresponds to the `AIR` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. - tag_uri: tag:stsci.edu:asdf/transform/bonne_equal_area-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/bonne_equal_area-1.2.0 title: Bonne's equal area pseudoconic projection. description: |- Corresponds to the `BON` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi}{180^\circ} A_\phi R_\theta / \cos \theta \\ \theta &= Y_0 - R_\theta$$ where: $$R_\theta &= \mathrm{sign} \theta_1 \sqrt{x^2 + (Y_0 - y)^2} \\ A_\phi &= \arg\left(\frac{Y_0 - y}{R_\theta}, \frac{x}{R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= R_\theta \sin A_\phi \\ y &= -R_\theta \cos A_\phi + Y_0$$ where: $$A_\phi &= \frac{180^\circ}{\pi R_\theta} \phi \cos \theta \\ R_\theta &= Y_0 - \theta \\ Y_0 &= \frac{180^\circ}{\pi} \cot \theta_1 + \theta_1$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/cobe_quad_spherical_cube-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cobe_quad_spherical_cube-1.1.0 title: COBE quadrilateralized spherical cube projection. description: |- Corresponds to the `CSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/compose-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/compose-1.1.0 title: Perform a list of subtransforms in series. description: |- The output of each subtransform is fed into the input of the next subtransform. The number of output dimensions of each subtransform must be equal to the number of input dimensions of the next subtransform in list. To reorder or add/drop axes, insert `remap_axes` transforms in the subtransform list. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, by reversing the list of transforms and applying the inverse of each. - tag_uri: tag:stsci.edu:asdf/transform/concatenate-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/concatenate-1.1.0 title: Send axes to different subtransforms. description: |- Transforms a set of separable inputs by splitting the axes apart, sending them through the given subtransforms in parallel, and finally concatenating the subtransform output axes back together. The input axes are assigned to each subtransform in order. If the number of input axes is unequal to the sum of the number of input axes of all of the subtransforms, that is considered an error case. The output axes from each subtransform are appended together to make up the resulting output axes. For example, given 5 input axes, and 3 subtransforms with the following orders: 1. transform A: 2 in -> 2 out 1. transform B: 1 in -> 2 out 1. transform C: 2 in -> 1 out The transform is performed as follows: ``` : i0 i1 i2 i3 i4 : | | | | | : +---------+ +---------+ +----------+ : | A | | B | | C | : +---------+ +---------+ +----------+ : | | | | | : o0 o1 o2 o3 o4 ``` If reordering of the input or output axes is required, use in series with the `remap_axes` transform. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_equal_area-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_equal_area-1.2.0 title: Alber's conic equal area projection. description: |- Corresponds to the `COE` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.2.0) for the definition of the full transformation. The transformation is defined as: $$C &= \gamma / 2 \\ R_\theta &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin \theta} \\ Y_0 &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin((\theta_1 + \theta_2)/2)}$$ where: $$\gamma = \sin \theta_1 + \sin \theta_2$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_equidistant-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_equidistant-1.2.0 title: Conic equidistant projection. description: |- Corresponds to the `COD` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.2.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{180^\circ}{\pi} \frac{\sin\theta_a\sin\eta}{\eta} \\ R_\theta &= \theta_a - \theta + \eta\cot\eta\cot\theta_a \\ Y_0 = \eta\cot\eta\cot\theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_orthomorphic-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_orthomorphic-1.2.0 title: Conic orthomorphic projection. description: |- Corresponds to the `COO` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.2.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{\ln \left( \frac{\cos\theta_2}{\cos\theta_1} \right)} {\ln \left[ \frac{\tan\left(\frac{90^\circ-\theta_2}{2}\right)} {\tan\left(\frac{90^\circ-\theta_1}{2}\right)} \right] } \\ R_\theta &= \psi \left[ \tan \left( \frac{90^\circ - \theta}{2} \right) \right]^C \\ Y_0 &= \psi \left[ \tan \left( \frac{90^\circ - \theta_a}{2} \right) \right]^C$$ where: $$\psi = \frac{180^\circ}{\pi} \frac{\cos \theta} {C\left[\tan\left(\frac{90^\circ-\theta}{2}\right)\right]^C}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_perspective-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_perspective-1.2.0 title: Colles' conic perspecitve projection. description: |- Corresponds to the `COP` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.2.0) for the definition of the full transformation. The transformation is defined as: $$C &= \sin \theta_a \\ R_\theta &= \frac{180^\circ}{\pi} \cos \eta [ \cot \theta_a - \tan(\theta - \theta_a)] \\ Y_0 &= \frac{180^\circ}{\pi} \cos \eta \cot \theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/constant-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/constant-1.2.0 title: A transform that takes no inputs and always outputs a constant value. description: |- Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, which always outputs zero values. - tag_uri: tag:stsci.edu:asdf/transform/cylindrical_equal_area-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cylindrical_equal_area-1.2.0 title: The cylindrical equal area projection. description: |- Corresponds to the `CEA` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^{\circ}}\lambda y\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\frac{\sin \theta}{\lambda}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/cylindrical_perspective-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cylindrical_perspective-1.2.0 title: The cylindrical perspective projection. description: |- Corresponds to the `CYP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\lambda} \\ \theta &= \arg(1, \eta) + \sin{-1}\left(\frac{\eta \mu}{\sqrt{\eta^2 + 1}}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \lambda \phi \\ y &= \frac{180^{\circ}}{\pi}\left(\frac{\mu + \lambda}{\mu + \cos \theta}\right)\sin \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/divide-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/divide-1.1.0 title: Perform a list of subtransforms in parallel and then divide their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/gnomonic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/gnomonic-1.1.0 title: The gnomonic projection. description: |- Corresponds to the `TAN` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/hammer_aitoff-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/hammer_aitoff-1.1.0 title: Hammer-Aitoff projection. description: |- Corresponds to the `AIT` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= 2 \arg \left(2Z^2 - 1, \frac{\pi}{180^\circ} \frac{Z}{2}x\right) \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^\circ}yZ\right)$$ And the sky-to-pixel transformation is defined as: $$x &= 2 \gamma \cos \theta \sin \frac{\phi}{2} \\ y &= \gamma \sin \theta$$ where: $$\gamma = \frac{180^\circ}{\pi} \sqrt{\frac{2}{1 + \cos \theta \cos(\phi / 2)}}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/healpix-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/healpix-1.1.0 title: HEALPix projection. description: |- Corresponds to the `HPX` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/healpix_polar-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/healpix_polar-1.1.0 title: HEALPix polar, aka "butterfly", projection. description: |- Corresponds to the `XPH` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/identity-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/identity-1.1.0 title: The identity transform. description: |- Invertibility: The inverse of this transform is also the identity transform. - tag_uri: tag:stsci.edu:asdf/transform/label_mapper-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/label_mapper-1.1.0 title: Represents a mapping from a coordinate value to a label. description: |- A label mapper instance maps inputs to a label. It is used together with [regions_selector](ref:transform/regions_selector-1.1.0). The [label_mapper](ref:transform/label_mapper-1.1.0) returns the label corresponding to given inputs. The [regions_selector](ref:transform/regions_selector-1.1.0) returns the transform corresponding to this label. This maps inputs (e.g. pixels on a detector) to transforms uniquely. - tag_uri: tag:stsci.edu:asdf/transform/mercator-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/mercator-1.1.0 title: The Mercator projection. description: |- Corresponds to the `MER` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= 2 \tan^{-1}\left(e^{y \pi / 180^{\circ}}\right)-90^{\circ}$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\ln \tan \left(\frac{90^{\circ} + \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/molleweide-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/molleweide-1.1.0 title: Molleweide's projection. description: |- Corresponds to the `MOL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi x}{2 \sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}} \\ \theta &= \sin^{-1}\left(\frac{1}{90^\circ}\sin^{-1}\left(\frac{\pi}{180^\circ}\frac{y}{\sqrt{2}}\right) + \frac{y}{180^\circ}\sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \frac{2 \sqrt{2}}{\pi} \phi \cos \gamma \\ y &= \sqrt{2} \frac{180^\circ}{\pi} \sin \gamma$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/multiply-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/multiply-1.1.0 title: Perform a list of subtransforms in parallel and then multiply their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/parabolic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/parabolic-1.1.0 title: Parabolic projection. description: |- Corresponds to the `PAR` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{180^\circ}{\pi} \frac{x}{1 - 4(y / 180^\circ)^2} \\ \theta &= 3 \sin^{-1}\left(\frac{y}{180^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \left(2\cos\frac{2\theta}{3} - 1\right) \\ y &= 180^\circ \sin \frac{\theta}{3}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/plate_carree-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/plate_carree-1.1.0 title: "The plate carr\xE9e projection." description: |- Corresponds to the `CAR` projection in the FITS WCS standard. The main virtue of this transformation is its simplicity. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/polyconic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/polyconic-1.1.0 title: Polyconic projection. description: |- Corresponds to the `PCO` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/polynomial-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/polynomial-1.2.0 title: A Polynomial model. description: |- A polynomial model represented by its coefficients stored in an ndarray of shape $(n+1)$ for univariate polynomials or $(n+1, n+1)$ for polynomials with 2 variables, where $n$ is the highest total degree of the polynomial. $$P = \sum_{i, j=0}^{i+j=n}c_{ij} * x^{i} * y^{j}$$ Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/power-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/power-1.1.0 title: Perform a list of subtransforms in parallel and then raise each result to the power of the next. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/quad_spherical_cube-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/quad_spherical_cube-1.1.0 title: Quadrilateralized spherical cube projection. description: |- Corresponds to the `QSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/regions_selector-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/regions_selector-1.1.0 title: Represents a discontinuous transform. description: |- Maps regions to transgorms and evaluates the transforms with the corresponding inputs. - tag_uri: tag:stsci.edu:asdf/transform/remap_axes-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/remap_axes-1.1.0 title: Reorder, add and drop axes. description: |- This transform allows the order of the input axes to be shuffled and returned as the output axes. It is a list made up of integers or "constant markers". Each item in the list corresponds to an output axis. For each item: - If an integer, it is the index of the input axis to send to the output axis. - If a constant, it must be a single item which is a constant value to send to the output axis. If only a list is provided, the number of input axes is automatically determined from the maximum index in the list. If an object with `mapping` and `n_inputs` properties is provided, the number of input axes is explicitly set by the `n_inputs` value. Invertibility: TBD - tag_uri: tag:stsci.edu:asdf/transform/rotate2d-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/rotate2d-1.2.0 title: A 2D rotation. description: |- A 2D rotation around the origin, in degrees. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/rotate3d-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/rotate3d-1.2.0 title: Rotation in 3D space. description: |- Euler angle rotation around 3 axes. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/sanson_flamsteed-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/sanson_flamsteed-1.1.0 title: The Sanson-Flamsteed projection. description: |- Corresponds to the `SFL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\cos y} \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \cos \theta \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/scale-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/scale-1.2.0 title: A Scale model. description: |- Scale the input by a dimensionless factor. - tag_uri: tag:stsci.edu:asdf/transform/shift-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/shift-1.2.0 title: A Shift opeartion. description: |- Apply an offset in one direction. - tag_uri: tag:stsci.edu:asdf/transform/slant_orthographic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/slant_orthographic-1.1.0 title: The slant orthographic projection. description: |- Corresponds to the `SIN` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \cos^{-1}\left(\frac{\pi}{180^{\circ}}R_\theta\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cos \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/slant_zenithal_perspective-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/slant_zenithal_perspective-1.2.0 title: The slant zenithal perspective projection. description: |- Corresponds to the `SZP` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/stereographic-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/stereographic-1.1.0 title: The stereographic projection. description: |- Corresponds to the `STG` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^{\circ} - 2 \tan^{-1}\left(\frac{\pi R_\theta}{360^{\circ}}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\frac{2 \cos \theta}{1 + \sin \theta}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/subtract-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/subtract-1.1.0 title: Perform a list of subtransforms in parallel and then subtract their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/tabular-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/tabular-1.2.0 title: A Tabular model. description: |- Tabular represents a lookup table with values corresponding to some grid points. It computes the interpolated values corresponding to the given inputs. Three methods of interpolation are supported - "linear", "nearest" and "splinef2d". It supports extrapolation. - tag_uri: tag:stsci.edu:asdf/transform/tangential_spherical_cube-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/tangential_spherical_cube-1.1.0 title: Tangential spherical cube projection. description: |- Corresponds to the `TSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_equal_area-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_equal_area-1.1.0 title: The zenithal equal area projection. description: |- Corresponds to the `ZEA` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - 2 \sin^{-1} \left(\frac{\pi R_\theta}{360^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta &= \frac{180^\circ}{\pi} \sqrt{2(1 - \sin\theta)} \\ &= \frac{360^\circ}{\pi} \sin\left(\frac{90^\circ - \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_equidistant-1.1.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_equidistant-1.1.0 title: The zenithal equidistant projection. description: |- Corresponds to the `ARC` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - R_\theta$$ And the sky-to-pixel transformation is defined as: $$R_\theta = 90^\circ - \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_perspective-1.2.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_perspective-1.2.0 title: The zenithal perspective projection. description: |- Corresponds to the `AZP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \arg(-y \cos \gamma, x) \\ \theta &= \left\{\genfrac{}{}{0pt}{}{\psi - \omega}{\psi + \omega + 180^{\circ}}\right.$$ where: $$\psi &= \arg(\rho, 1) \\ \omega &= \sin^{-1}\left(\frac{\rho \mu}{\sqrt{\rho^2 + 1}}\right) \\ \rho &= \frac{R}{\frac{180^{\circ}}{\pi}(\mu + 1) + y \sin \gamma} \\ R &= \sqrt{x^2 + y^2 \cos^2 \gamma}$$ And the sky-to-pixel transformation is defined as: $$x &= R \sin \phi \\ y &= -R \sec \gamma \cos \theta$$ where: $$R = \frac{180^{\circ}}{\pi} \frac{(\mu + 1) \cos \theta}{(\mu + \sin \theta) + \cos \theta \cos \phi \tan \gamma}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. asdf_transform_schemas-0.2.0/resources/asdf-format.org/manifests/transform-1.0.0.yaml0000644000446400020070000006556514155735241032775 0ustar eslavichSTSCI\science00000000000000id: asdf://asdf-format.org/transform/manifests/transform-1.0.0 extension_uri: asdf://asdf-format.org/transform/extensions/transform-1.0.0 title: Transform extension 1.0.0 description: |- A set of tags for serializing data transforms. tags: - tag_uri: tag:stsci.edu:asdf/transform/add-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/add-1.0.0 title: Perform a list of subtransforms in parallel and then add their results together. description: |- Each of the subtransforms must have the same number of inputs and outputs. - tag_uri: tag:stsci.edu:asdf/transform/affine-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/affine-1.0.0 title: An affine transform. description: |- Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/airy-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/airy-1.0.0 title: The Airy projection. description: |- Corresponds to the `AIR` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.0.0) for the definition of the full transformation. - tag_uri: tag:stsci.edu:asdf/transform/bonne_equal_area-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/bonne_equal_area-1.0.0 title: Bonne's equal area pseudoconic projection. description: |- Corresponds to the `BON` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi}{180^\circ} A_\phi R_\theta / \cos \theta \\ \theta &= Y_0 - R_\theta$$ where: $$R_\theta &= \mathrm{sign} \theta_1 \sqrt{x^2 + (Y_0 - y)^2} \\ A_\phi &= \arg\left(\frac{Y_0 - y}{R_\theta}, \frac{x}{R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= R_\theta \sin A_\phi \\ y &= -R_\theta \cos A_\phi + Y_0$$ where: $$A_\phi &= \frac{180^\circ}{\pi R_\theta} \phi \cos \theta \\ R_\theta &= Y_0 - \theta \\ Y_0 &= \frac{180^\circ}{\pi} \cot \theta_1 + \theta_1$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/cobe_quad_spherical_cube-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cobe_quad_spherical_cube-1.0.0 title: COBE quadrilateralized spherical cube projection. description: |- Corresponds to the `CSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/compose-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/compose-1.0.0 title: Perform a list of subtransforms in series. description: |- The output of each subtransform is fed into the input of the next subtransform. The number of output dimensions of each subtransform must be equal to the number of input dimensions of the next subtransform in list. To reorder or add/drop axes, insert `remap_axes` transforms in the subtransform list. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, by reversing the list of transforms and applying the inverse of each. - tag_uri: tag:stsci.edu:asdf/transform/concatenate-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/concatenate-1.0.0 title: Send axes to different subtransforms. description: |- Transforms a set of separable inputs by splitting the axes apart, sending them through the given subtransforms in parallel, and finally concatenating the subtransform output axes back together. The input axes are assigned to each subtransform in order. If the number of input axes is unequal to the sum of the number of input axes of all of the subtransforms, that is considered an error case. The output axes from each subtransform are appended together to make up the resulting output axes. For example, given 5 input axes, and 3 subtransforms with the following orders: 1. transform A: 2 in -> 2 out 1. transform B: 1 in -> 2 out 1. transform C: 2 in -> 1 out The transform is performed as follows: ``` : i0 i1 i2 i3 i4 : | | | | | : +---------+ +---------+ +----------+ : | A | | B | | C | : +---------+ +---------+ +----------+ : | | | | | : o0 o1 o2 o3 o4 ``` If reordering of the input or output axes is required, use in series with the `remap_axes` transform. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_equal_area-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_equal_area-1.0.0 title: Alber's conic equal area projection. description: |- Corresponds to the `COE` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.0.0) for the definition of the full transformation. The transformation is defined as: $$C &= \gamma / 2 \\ R_\theta &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin \theta} \\ Y_0 &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin((\theta_1 + \theta_2)/2)}$$ where: $$\gamma = \sin \theta_1 + \sin \theta_2$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_equidistant-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_equidistant-1.0.0 title: Conic equidistant projection. description: |- Corresponds to the `COD` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.0.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{180^\circ}{\pi} \frac{\sin\theta_a\sin\eta}{\eta} \\ R_\theta &= \theta_a - \theta + \eta\cot\eta\cot\theta_a \\ Y_0 = \eta\cot\eta\cot\theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_orthomorphic-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_orthomorphic-1.0.0 title: Conic orthomorphic projection. description: |- Corresponds to the `COO` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.0.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{\ln \left( \frac{\cos\theta_2}{\cos\theta_1} \right)} {\ln \left[ \frac{\tan\left(\frac{90^\circ-\theta_2}{2}\right)} {\tan\left(\frac{90^\circ-\theta_1}{2}\right)} \right] } \\ R_\theta &= \psi \left[ \tan \left( \frac{90^\circ - \theta}{2} \right) \right]^C \\ Y_0 &= \psi \left[ \tan \left( \frac{90^\circ - \theta_a}{2} \right) \right]^C$$ where: $$\psi = \frac{180^\circ}{\pi} \frac{\cos \theta} {C\left[\tan\left(\frac{90^\circ-\theta}{2}\right)\right]^C}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/conic_perspective-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/conic_perspective-1.0.0 title: Colles' conic perspecitve projection. description: |- Corresponds to the `COP` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.0.0) for the definition of the full transformation. The transformation is defined as: $$C &= \sin \theta_a \\ R_\theta &= \frac{180^\circ}{\pi} \cos \eta [ \cot \theta_a - \tan(\theta - \theta_a)] \\ Y_0 &= \frac{180^\circ}{\pi} \cos \eta \cot \theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/constant-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/constant-1.0.0 title: A transform that takes no inputs and always outputs a constant value. description: |- Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, which always outputs zero values. - tag_uri: tag:stsci.edu:asdf/transform/cylindrical_equal_area-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cylindrical_equal_area-1.0.0 title: The cylindrical equal area projection. description: |- Corresponds to the `CEA` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^{\circ}}\lambda y\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\frac{\sin \theta}{\lambda}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/cylindrical_perspective-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/cylindrical_perspective-1.0.0 title: The cylindrical perspective projection. description: |- Corresponds to the `CYP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\lambda} \\ \theta &= \arg(1, \eta) + \sin{-1}\left(\frac{\eta \mu}{\sqrt{\eta^2 + 1}}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \lambda \phi \\ y &= \frac{180^{\circ}}{\pi}\left(\frac{\mu + \lambda}{\mu + \cos \theta}\right)\sin \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/divide-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/divide-1.0.0 title: Perform a list of subtransforms in parallel and then divide their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/domain-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/domain-1.0.0 title: Defines the domain of an input axis. (deprecated since 1.1.0) description: |- Describes the range of acceptable input values to a particular axis of a transform. - tag_uri: tag:stsci.edu:asdf/transform/gnomonic-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/gnomonic-1.0.0 title: The gnomonic projection. description: |- Corresponds to the `TAN` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.0.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/hammer_aitoff-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/hammer_aitoff-1.0.0 title: Hammer-Aitoff projection. description: |- Corresponds to the `AIT` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= 2 \arg \left(2Z^2 - 1, \frac{\pi}{180^\circ} \frac{Z}{2}x\right) \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^\circ}yZ\right)$$ And the sky-to-pixel transformation is defined as: $$x &= 2 \gamma \cos \theta \sin \frac{\phi}{2} \\ y &= \gamma \sin \theta$$ where: $$\gamma = \frac{180^\circ}{\pi} \sqrt{\frac{2}{1 + \cos \theta \cos(\phi / 2)}}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/healpix-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/healpix-1.0.0 title: HEALPix projection. description: |- Corresponds to the `HPX` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/healpix_polar-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/healpix_polar-1.0.0 title: HEALPix polar, aka "butterfly", projection. description: |- Corresponds to the `XPH` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/identity-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/identity-1.0.0 title: The identity transform. description: |- Invertibility: The inverse of this transform is also the identity transform. - tag_uri: tag:stsci.edu:asdf/transform/label_mapper-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/label_mapper-1.0.0 title: Represents a mapping from a coordinate value to a label. description: |- A label mapper instance maps inputs to a label. It is used together with [regions_selector](ref:http://stsci.edu/schemas/asdf/transform/regions_selector-1.0.0). The [label_mapper](ref:http://stsci.edu/schemas/asdf/transform/label_mapper-1.0.0) returns the label corresponding to given inputs. The [regions_selector](ref:http://stsci.edu/schemas/asdf/transform/regions_selector-1.0.0) returns the transform corresponding to this label. This maps inputs (e.g. pixels on a detector) to transforms uniquely. - tag_uri: tag:stsci.edu:asdf/transform/mercator-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/mercator-1.0.0 title: The Mercator projection. description: |- Corresponds to the `MER` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= 2 \tan^{-1}\left(e^{y \pi / 180^{\circ}}\right)-90^{\circ}$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\ln \tan \left(\frac{90^{\circ} + \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/molleweide-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/molleweide-1.0.0 title: Molleweide's projection. description: |- Corresponds to the `MOL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi x}{2 \sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}} \\ \theta &= \sin^{-1}\left(\frac{1}{90^\circ}\sin^{-1}\left(\frac{\pi}{180^\circ}\frac{y}{\sqrt{2}}\right) + \frac{y}{180^\circ}\sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \frac{2 \sqrt{2}}{\pi} \phi \cos \gamma \\ y &= \sqrt{2} \frac{180^\circ}{\pi} \sin \gamma$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/multiply-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/multiply-1.0.0 title: Perform a list of subtransforms in parallel and then multiply their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/parabolic-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/parabolic-1.0.0 title: Parabolic projection. description: |- Corresponds to the `PAR` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{180^\circ}{\pi} \frac{x}{1 - 4(y / 180^\circ)^2} \\ \theta &= 3 \sin^{-1}\left(\frac{y}{180^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \left(2\cos\frac{2\theta}{3} - 1\right) \\ y &= 180^\circ \sin \frac{\theta}{3}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/plate_carree-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/plate_carree-1.0.0 title: "The plate carr\xE9e projection." description: |- Corresponds to the `CAR` projection in the FITS WCS standard. The main virtue of this transformation is its simplicity. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/polyconic-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/polyconic-1.0.0 title: Polyconic projection. description: |- Corresponds to the `PCO` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/polynomial-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/polynomial-1.0.0 title: A Polynomial model. description: |- A polynomial model represented by its coefficients stored in an ndarray of shape $(n+1)$ for univariate polynomials or $(n+1, n+1)$ for polynomials with 2 variables, where $n$ is the highest total degree of the polynomial. $$P = \sum_{i, j=0}^{i+j=n}c_{ij} * x^{i} * y^{j}$$ Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/power-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/power-1.0.0 title: Perform a list of subtransforms in parallel and then raise each result to the power of the next. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/quad_spherical_cube-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/quad_spherical_cube-1.0.0 title: Quadrilateralized spherical cube projection. description: |- Corresponds to the `QSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/regions_selector-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/regions_selector-1.0.0 title: Represents a discontinuous transform. description: |- Maps regions to transgorms and evaluates the transforms with the corresponding inputs. - tag_uri: tag:stsci.edu:asdf/transform/remap_axes-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/remap_axes-1.0.0 title: Reorder, add and drop axes. description: |- This transform allows the order of the input axes to be shuffled and returned as the output axes. It is a list made up of integers or "constant markers". Each item in the list corresponds to an output axis. For each item: - If an integer, it is the index of the input axis to send to the output axis. - If a constant, it must be a single item which is a constant value to send to the output axis. If only a list is provided, the number of input axes is automatically determined from the maximum index in the list. If an object with `mapping` and `n_inputs` properties is provided, the number of input axes is explicitly set by the `n_inputs` value. Invertibility: TBD - tag_uri: tag:stsci.edu:asdf/transform/rotate2d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/rotate2d-1.0.0 title: A 2D rotation. description: |- A 2D rotation around the origin, in degrees. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/rotate3d-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/rotate3d-1.0.0 title: Rotation in 3D space. description: |- Euler angle rotation around 3 axes. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/sanson_flamsteed-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/sanson_flamsteed-1.0.0 title: The Sanson-Flamsteed projection. description: |- Corresponds to the `SFL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\cos y} \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \cos \theta \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/scale-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/scale-1.0.0 title: A Scale model. description: |- Multiply the input by a factor. - tag_uri: tag:stsci.edu:asdf/transform/shift-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/shift-1.0.0 title: A Shift opeartion. description: |- Apply an offset in one direction. - tag_uri: tag:stsci.edu:asdf/transform/slant_orthographic-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/slant_orthographic-1.0.0 title: The slant orthographic projection. description: |- Corresponds to the `SIN` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.0.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \cos^{-1}\left(\frac{\pi}{180^{\circ}}R_\theta\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cos \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/slant_zenithal_perspective-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/slant_zenithal_perspective-1.0.0 title: The slant zenithal perspective projection. description: |- Corresponds to the `SZP` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.0.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/stereographic-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/stereographic-1.0.0 title: The stereographic projection. description: |- Corresponds to the `STG` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.0.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^{\circ} - 2 \tan^{-1}\left(\frac{\pi R_\theta}{360^{\circ}}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\frac{2 \cos \theta}{1 + \sin \theta}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/subtract-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/subtract-1.0.0 title: Perform a list of subtransforms in parallel and then subtract their results. description: |- Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. - tag_uri: tag:stsci.edu:asdf/transform/tabular-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/tabular-1.0.0 title: A Tabular model. description: |- Tabular represents a lookup table with values corresponding to some grid points. It computes the interpolated values corresponding to the given inputs. Three methods of interpolation are supported - "linear", "nearest" and "splinef2d". It supports extrapolation. - tag_uri: tag:stsci.edu:asdf/transform/tangential_spherical_cube-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/tangential_spherical_cube-1.0.0 title: Tangential spherical cube projection. description: |- Corresponds to the `TSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_equal_area-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_equal_area-1.0.0 title: The zenithal equal area projection. description: |- Corresponds to the `ZEA` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.0.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - 2 \sin^{-1} \left(\frac{\pi R_\theta}{360^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta &= \frac{180^\circ}{\pi} \sqrt{2(1 - \sin\theta)} \\ &= \frac{360^\circ}{\pi} \sin\left(\frac{90^\circ - \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_equidistant-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_equidistant-1.0.0 title: The zenithal equidistant projection. description: |- Corresponds to the `ARC` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.0.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - R_\theta$$ And the sky-to-pixel transformation is defined as: $$R_\theta = 90^\circ - \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. - tag_uri: tag:stsci.edu:asdf/transform/zenithal_perspective-1.0.0 schema_uri: http://stsci.edu/schemas/asdf/transform/zenithal_perspective-1.0.0 title: The zenithal perspective projection. description: |- Corresponds to the `AZP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \arg(-y \cos \gamma, x) \\ \theta &= \left\{\genfrac{}{}{0pt}{}{\psi - \omega}{\psi + \omega + 180^{\circ}}\right.$$ where: $$\psi &= \arg(\rho, 1) \\ \omega &= \sin^{-1}\left(\frac{\rho \mu}{\sqrt{\rho^2 + 1}}\right) \\ \rho &= \frac{R}{\frac{180^{\circ}}{\pi}(\mu + 1) + y \sin \gamma} \\ R &= \sqrt{x^2 + y^2 \cos^2 \gamma}$$ And the sky-to-pixel transformation is defined as: $$x &= R \sin \phi \\ y &= -R \sec \gamma \cos \theta$$ where: $$R = \frac{180^{\circ}}{\pi} \frac{(\mu + 1) \cos \theta}{(\mu + \sin \theta) + \cos \theta \cos \phi \tan \gamma}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. asdf_transform_schemas-0.2.0/resources/stsci.edu/0000755000446400020070000000000014155735511024342 5ustar eslavichSTSCI\science00000000000000asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/0000755000446400020070000000000014155735511025765 5ustar eslavichSTSCI\science00000000000000asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/label_mapper-1.1.0.yaml0000644000446400020070000001065414026112647031731 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/label_mapper-1.1.0" tag: "tag:stsci.edu:asdf/transform/label_mapper-1.1.0" title: > Represents a mapping from a coordinate value to a label. description: | A label mapper instance maps inputs to a label. It is used together with [regions_selector](ref:transform/regions_selector-1.1.0). The [label_mapper](ref:transform/label_mapper-1.1.0) returns the label corresponding to given inputs. The [regions_selector](ref:transform/regions_selector-1.1.0) returns the transform corresponding to this label. This maps inputs (e.g. pixels on a detector) to transforms uniquely. examples: - - Map array indices are to labels. - | !transform/label_mapper-1.1.0 mapper: !core/ndarray-1.0.0 [[1, 0, 2], [1, 0, 2], [1, 0, 2]] - - Map numbers dictionary to transforms which return labels. - | !transform/label_mapper-1.1.0 mapper: !!omap - !!omap labels: [-1.67833272, -1.9580548, -1.118888] - !!omap models: - !transform/compose-1.1.0 forward: - !transform/remap_axes-1.1.0 mapping: [1] - !transform/shift-1.1.0 {offset: 6.0} - !transform/compose-1.1.0 forward: - !transform/remap_axes-1.1.0 mapping: [1] - !transform/shift-1.1.0 {offset: 2.0} - !transform/compose-1.1.0 forward: - !transform/remap_axes-1.1.0 mapping: [1] - !transform/shift-1.1.0 {offset: 4.0} inputs: [x, y] inputs_mapping: !transform/remap_axes-1.1.0 mapping: [0] n_inputs: 2 - - Map a number wihtin a range of numbers to transforms which return labels. - | !transform/label_mapper-1.1.0 mapper: !!omap - !!omap labels: - [3.2, 4.1] - [2.67, 2.98] - [1.95, 2.3] - !!omap models: - !transform/compose-1.1.0 forward: - !transform/remap_axes-1.1.0 mapping: [1] - !transform/shift-1.1.0 {offset: 6.0} - !transform/compose-1.1.0 forward: - !transform/remap_axes-1.1.0 mapping: [1] - !transform/shift-1.1.0 {offset: 2.0} - !transform/compose-1.1.0 forward: - !transform/remap_axes-1.1.0 mapping: [1] - !transform/shift-1.1.0 {offset: 4.0} inputs: [x, y] inputs_mapping: !transform/remap_axes-1.1.0 mapping: [0] n_inputs: 2 allOf: - $ref: "transform-1.1.0" - type: object properties: mapper: description: | A mapping of inputs to labels. In the general case this is a `astropy.modeling.core.Model`. It could be a numpy array with the shape of the detector/observation. Pixel values are of type integer or string and represent region labels. Pixels which are not within any region have value ``no_label``. It could be a dictionary which maps tuples to labels or floating point numbers to labels. anyOf: - $ref: "../core/ndarray-1.0.0" - $ref: "transform-1.1.0" - type: object properties: labels: type: array items: anyOf: - type: number - type: array items: type: number minLength: 2 maxLength: 2 models: type: array items: $ref: "transform-1.1.0" inputs: type: array items: type: string description: | Names of inputs. inputs_mapping: $ref: "transform-1.1.0" description: | [mapping](ref:transform/remap_axes-1.1.0) atol: type: number description: | absolute tolerance to compare keys in mapper. no_label: description: | Fill in value for missing output. anyOf: - type: number - type: string required: [mapper] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/healpix-1.1.0.yaml0000644000446400020070000000143514026112647030735 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/healpix-1.1.0" tag: "tag:stsci.edu:asdf/transform/healpix-1.1.0" title: | HEALPix projection. description: | Corresponds to the `HPX` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "transform-1.1.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky H: type: number description: | The number of facets in the longitude direction. default: 4.0 X: type: number description: | The number of facets in the latitude direction. default: 3.0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/moffat1d-1.0.0.yaml0000644000446400020070000000225514026112647031004 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/moffat1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/moffat1d-1.0.0" title: > One dimensional Moffat model. description: > One dimensional Moffat distribution. examples: - - $$f(x)=10.0\left(1+\frac{\left(x-0.5\right)^{2}}{1.2^{2}}\right)^{-2}$$ - | !transform/moffat1d-1.0.0 {alpha: 2.5, amplitude: 10.0, gamma: 1.2, x_0: 0.5} allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Amplitude of the model. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: x position of the maximum of the Moffat model. gamma: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Core width of the Moffat model. alpha: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Power index of the Moffat model. required: ['amplitude', 'x_0', 'gamma', 'alpha'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/concatenate-1.1.0.yaml0000644000446400020070000000365414155735241031600 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/concatenate-1.1.0" tag: "tag:stsci.edu:asdf/transform/concatenate-1.1.0" title: > Send axes to different subtransforms. description: | Transforms a set of separable inputs by splitting the axes apart, sending them through the given subtransforms in parallel, and finally concatenating the subtransform output axes back together. The input axes are assigned to each subtransform in order. If the number of input axes is unequal to the sum of the number of input axes of all of the subtransforms, that is considered an error case. The output axes from each subtransform are appended together to make up the resulting output axes. For example, given 5 input axes, and 3 subtransforms with the following orders: 1. transform A: 2 in -> 2 out 1. transform B: 1 in -> 2 out 1. transform C: 2 in -> 1 out The transform is performed as follows: ``` : i0 i1 i2 i3 i4 : | | | | | : +---------+ +---------+ +----------+ : | A | | B | | C | : +---------+ +---------+ +----------+ : | | | | | : o0 o1 o2 o3 o4 ``` If reordering of the input or output axes is required, use in series with the `remap_axes` transform. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. examples: - - The example in the description - | !transform/concatenate-1.1.0 forward: - !transform/shift-1.1.0 offset: 2.0 - !transform/shift-1.1.0 offset: 3.0 - !transform/shift-1.1.0 offset: 5.0 allOf: - $ref: "transform-1.1.0" - properties: forward: type: array items: $ref: "transform-1.1.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_orthomorphic-1.1.0.yaml0000644000446400020070000000217614026112647033176 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_orthomorphic-1.1.0" tag: "tag:stsci.edu:asdf/transform/conic_orthomorphic-1.1.0" title: | Conic orthomorphic projection. description: | Corresponds to the `COO` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.1.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{\ln \left( \frac{\cos\theta_2}{\cos\theta_1} \right)} {\ln \left[ \frac{\tan\left(\frac{90^\circ-\theta_2}{2}\right)} {\tan\left(\frac{90^\circ-\theta_1}{2}\right)} \right] } \\ R_\theta &= \psi \left[ \tan \left( \frac{90^\circ - \theta}{2} \right) \right]^C \\ Y_0 &= \psi \left[ \tan \left( \frac{90^\circ - \theta_a}{2} \right) \right]^C$$ where: $$\psi = \frac{180^\circ}{\pi} \frac{\cos \theta} {C\left[\tan\left(\frac{90^\circ-\theta}{2}\right)\right]^C}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/parabolic-1.0.0.yaml0000644000446400020070000000137114026112647031235 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/parabolic-1.0.0" tag: "tag:stsci.edu:asdf/transform/parabolic-1.0.0" title: | Parabolic projection. description: | Corresponds to the `PAR` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{180^\circ}{\pi} \frac{x}{1 - 4(y / 180^\circ)^2} \\ \theta &= 3 \sin^{-1}\left(\frac{y}{180^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \left(2\cos\frac{2\theta}{3} - 1\right) \\ y &= 180^\circ \sin \frac{\theta}{3}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "pseudocylindrical-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/healpix_polar-1.1.0.yaml0000644000446400020070000000106614026112647032132 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/healpix_polar-1.1.0" tag: "tag:stsci.edu:asdf/transform/healpix_polar-1.1.0" title: | HEALPix polar, aka "butterfly", projection. description: | Corresponds to the `XPH` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "transform-1.1.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/constant-1.2.0.yaml0000644000446400020070000000114614026112647031134 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/constant-1.2.0" tag: "tag:stsci.edu:asdf/transform/constant-1.2.0" title: > A transform that takes no inputs and always outputs a constant value. description: | Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, which always outputs zero values. allOf: - $ref: "transform-1.1.0" - type: object properties: value: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number required: [value] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/mercator-1.2.0.yaml0000644000446400020070000000131514026112647031115 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/mercator-1.2.0" tag: "tag:stsci.edu:asdf/transform/mercator-1.2.0" title: | The Mercator projection. description: | Corresponds to the `MER` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= 2 \tan^{-1}\left(e^{y \pi / 180^{\circ}}\right)-90^{\circ}$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\ln \tan \left(\frac{90^{\circ} + \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "cylindrical-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_perspective-1.1.0.yaml0000644000446400020070000000142114026112647033002 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_perspective-1.1.0" tag: "tag:stsci.edu:asdf/transform/conic_perspective-1.1.0" title: | Colles' conic perspecitve projection. description: | Corresponds to the `COP` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.1.0) for the definition of the full transformation. The transformation is defined as: $$C &= \sin \theta_a \\ R_\theta &= \frac{180^\circ}{\pi} \cos \eta [ \cot \theta_a - \tan(\theta - \theta_a)] \\ Y_0 &= \frac{180^\circ}{\pi} \cos \eta \cot \theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/subtract-1.0.0.yaml0000644000446400020070000000156314155735241031137 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/subtract-1.0.0" tag: "tag:stsci.edu:asdf/transform/subtract-1.0.0" title: > Perform a list of subtransforms in parallel and then subtract their results. description: | Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. examples: - - A list of transforms, performed in parallel, and then combined through subtraction. - | !transform/subtract-1.0.0 forward: - !transform/shift-1.0.0 offset: 2.0 - !transform/shift-1.0.0 offset: 3.0 allOf: - $ref: "transform-1.0.0" - properties: forward: type: array items: $ref: "transform-1.0.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/quad_spherical_cube-1.1.0.yaml0000644000446400020070000000071314026112647033263 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/quad_spherical_cube-1.1.0" tag: "tag:stsci.edu:asdf/transform/quad_spherical_cube-1.1.0" title: | Quadrilateralized spherical cube projection. description: | Corresponds to the `QSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "quadcube-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/cylindrical_equal_area-1.1.0.yaml0000644000446400020070000000162714026112647033762 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/cylindrical_equal_area-1.1.0" tag: "tag:stsci.edu:asdf/transform/cylindrical_equal_area-1.1.0" title: | The cylindrical equal area projection. description: | Corresponds to the `CEA` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^{\circ}}\lambda y\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\frac{\sin \theta}{\lambda}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "cylindrical-1.1.0" - type: object properties: lambda: type: number description: | Radius of the cylinder in spherical radii, default is 1. default: 1 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/scale-1.0.0.yaml0000644000446400020070000000065314026112647030372 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/scale-1.0.0" tag: "tag:stsci.edu:asdf/transform/scale-1.0.0" title: > A Scale model. description: > Multiply the input by a factor. allOf: - $ref: "transform-1.0.0" - type: object properties: factor: type: number description: Multiplication factor. required: [factor] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/power_law1d-1.0.0.yaml0000644000446400020070000000170014026112647031521 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/power_law1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/power_law1d-1.0.0" title: > One dimensional power law model. description: > One dimensional power law model. examples: - - $$f(x) = 10*(x/0.5)^{-2}$$ - | !transform/power_law1d-1.0.0 {alpha: 2.0, amplitude: 10.0, x_0: 0.5} allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Model amplitude at the reference point. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Reference point. alpha: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Power law index. required: ['amplitude', 'x_0', 'alpha'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/shift-1.2.0.yaml0000644000446400020070000000076114026112647030422 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/shift-1.2.0" tag: "tag:stsci.edu:asdf/transform/shift-1.2.0" title: > A Shift opeartion. description: > Apply an offset in one direction. allOf: - $ref: "transform-1.2.0" - type: object properties: offset: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Offset in one direction. required: [offset] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/blackbody-1.0.0.yaml0000644000446400020070000000164714026112647031241 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/blackbody-1.0.0" tag: "tag:stsci.edu:asdf/transform/blackbody-1.0.0" title: > Blackbody model. description: | Blackbody model using the Planck function. $$B_{\\nu}(T) = A \frac{2 h \nu^{3} / c^{2}}{exp(h \nu / k T) - 1}$$ examples: - - $$B_{\\nu}(T) = 10.0 \frac{2 h \nu^{3} / c^{2}}{exp(h \nu / k *6000) - 1}$$ - | !transform/blackbody-1.0.0 scale: 10.0 temperature: !unit/quantity-1.1.0 {unit: !unit/unit-1.0.0 K, value: 6000.0} allOf: - $ref: "transform-1.2.0" - type: object properties: scale: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Scale factor. temperature: $ref: "../unit/quantity-1.1.0" description: Blackbody temperature. required: ['scale', 'temperature'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/ring2d-1.0.0.yaml0000644000446400020070000000271014026112647030464 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/ring2d-1.0.0" tag: "tag:stsci.edu:asdf/transform/ring2d-1.0.0" title: > Two dimensional radially symmetric ring model. description: > Two dimensional radially symmetric ring. examples: - - A 2D disk centered at (x, y) = (0.5, 1.5), with an inner radius of 5.0, outer radius of 7.5 and amplitude 10.0. - | !transform/ring2d-1.0.0 amplitude: 10.0 bounding_box: - [-6.0, 9.0] - [-7.0, 8.0] r_in: 5.0 width: 2.5 x_0: 0.5 y_0: 1.5 allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Value of the disk function. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: x center position of the disk. y_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: y center position of the disk. r_in: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Inner radius of the ring. width: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Width of the ring. required: ['amplitude', 'x_0', 'y_0', 'r_in', 'width'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/zenithal_equidistant-1.1.0.yaml0000644000446400020070000000133014026112647033525 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/zenithal_equidistant-1.1.0" tag: "tag:stsci.edu:asdf/transform/zenithal_equidistant-1.1.0" title: | The zenithal equidistant projection. description: | Corresponds to the `ARC` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - R_\theta$$ And the sky-to-pixel transformation is defined as: $$R_\theta = 90^\circ - \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "zenithal-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/airy-1.0.0.yaml0000644000446400020070000000121714026112647030244 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/airy-1.0.0" tag: "tag:stsci.edu:asdf/transform/airy-1.0.0" title: | The Airy projection. description: | Corresponds to the `AIR` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.0.0) for the definition of the full transformation. allOf: - $ref: "zenithal-1.0.0" - type: object properties: theta_b: type: number description: | The latitude $\theta_b$ at which to minimize the error, in degrees. default: 90 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/pseudoconic-1.1.0.yaml0000644000446400020070000000064414026112647031617 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/pseudoconic-1.1.0" title: | Base class of all pseudoconic projections. description: | Pseudoconics are a subclass of conics with concentric parallels. allOf: - $ref: "transform-1.1.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/divide-1.0.0.yaml0000644000446400020070000000155014155735241030550 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/divide-1.0.0" tag: "tag:stsci.edu:asdf/transform/divide-1.0.0" title: > Perform a list of subtransforms in parallel and then divide their results. description: | Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. examples: - - A list of transforms, performed in parallel, and then combined through division. - | !transform/divide-1.0.0 forward: - !transform/shift-1.0.0 offset: 2.0 - !transform/shift-1.0.0 offset: 2.0 allOf: - $ref: "transform-1.0.0" - properties: forward: type: array items: $ref: "transform-1.0.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/add-1.0.0.yaml0000644000446400020070000000141414155735241030033 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/add-1.0.0" tag: "tag:stsci.edu:asdf/transform/add-1.0.0" title: > Perform a list of subtransforms in parallel and then add their results together. description: | Each of the subtransforms must have the same number of inputs and outputs. examples: - - A list of transforms, performed in parallel and added together - | !transform/add-1.0.0 forward: - !transform/shift-1.0.0 offset: 2.0 - !transform/shift-1.0.0 offset: 3.0 allOf: - $ref: "transform-1.0.0" - properties: forward: type: array items: $ref: "transform-1.0.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/gnomonic-1.2.0.yaml0000644000446400020070000000135014026112647031111 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/gnomonic-1.2.0" tag: "tag:stsci.edu:asdf/transform/gnomonic-1.2.0" title: | The gnomonic projection. description: | Corresponds to the `TAN` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "zenithal-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/tabular-1.2.0.yaml0000644000446400020070000000366114026112647030741 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/tabular-1.2.0" tag: "tag:stsci.edu:asdf/transform/tabular-1.2.0" title: > A Tabular model. description: | Tabular represents a lookup table with values corresponding to some grid points. It computes the interpolated values corresponding to the given inputs. Three methods of interpolation are supported - "linear", "nearest" and "splinef2d". It supports extrapolation. allOf: - $ref: "transform-1.2.0" - type: object properties: lookup_table: description: > Table values. anyOf: - type: array - $ref: ../core/ndarray-1.0.0 - $ref: ../unit/quantity-1.1.0 points: type: array items: anyOf: - type: array - $ref: ../core/ndarray-1.0.0 - $ref: ../unit/quantity-1.1.0 description: | Grid values - each row in the array corresponds to a dimension in the lookup table. The grid does not have to be regular. method: description: | Method of interpolation. Supported are "linear" and "nearest", and "splinef2d". "splinef2d" is only supported for 2-dimensional data. type: string enum: ["linear", "nearest", "splinef2d"] default: "linear" bounds_error: description: | If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then "fill_value" is used. type: boolean default: true fill_value: description: | If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Extrapolation is not supported by method "splinef2d". type: number required: [lookup_table] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/shift-1.0.0.yaml0000644000446400020070000000066314026112647030421 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/shift-1.0.0" tag: "tag:stsci.edu:asdf/transform/shift-1.0.0" title: > A Shift opeartion. description: > Apply an offset in one direction. allOf: - $ref: "transform-1.0.0" - type: object properties: offset: type: number description: Offset in one direction. required: [offset] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/scale-1.2.0.yaml0000644000446400020070000000075314026112647030375 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/scale-1.2.0" tag: "tag:stsci.edu:asdf/transform/scale-1.2.0" title: > A Scale model. description: > Scale the input by a dimensionless factor. allOf: - $ref: "transform-1.2.0" - type: object properties: factor: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Scale factor. required: [factor] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/subtract-1.2.0.yaml0000644000446400020070000000156314155735241031141 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/subtract-1.2.0" tag: "tag:stsci.edu:asdf/transform/subtract-1.2.0" title: > Perform a list of subtransforms in parallel and then subtract their results. description: | Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. examples: - - A list of transforms, performed in parallel, and then combined through subtraction. - | !transform/subtract-1.2.0 forward: - !transform/shift-1.2.0 offset: 2.0 - !transform/shift-1.2.0 offset: 3.0 allOf: - $ref: "transform-1.2.0" - properties: forward: type: array items: $ref: "transform-1.2.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/cylindrical_equal_area-1.3.0.yaml0000644000446400020070000000172514026112647033763 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/cylindrical_equal_area-1.3.0" tag: "tag:stsci.edu:asdf/transform/cylindrical_equal_area-1.3.0" title: | The cylindrical equal area projection. description: | Corresponds to the `CEA` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^{\circ}}\lambda y\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\frac{\sin \theta}{\lambda}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "cylindrical-1.2.0" - type: object properties: lambda: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | Radius of the cylinder in spherical radii, default is 1. default: 1 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/redshift_scale_factor-1.0.0.yaml0000644000446400020070000000121414026112647033612 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/redshift_scale_factor-1.0.0" tag: "tag:stsci.edu:asdf/transform/redshift_scale_factor-1.0.0" title: > One dimensional redshift scale factor model. description: > One dimensional redshift scale factor model. examples: - - $$f(x)=x(1+2.5)$$ - | !transform/redshift_scale_factor-1.0.0 {z: 2.5} allOf: - $ref: "transform-1.2.0" - type: object properties: z: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Redshift value. required: ['z'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/tabular-1.0.0.yaml0000644000446400020070000000353614026112647030740 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/tabular-1.0.0" tag: "tag:stsci.edu:asdf/transform/tabular-1.0.0" title: > A Tabular model. description: | Tabular represents a lookup table with values corresponding to some grid points. It computes the interpolated values corresponding to the given inputs. Three methods of interpolation are supported - "linear", "nearest" and "splinef2d". It supports extrapolation. allOf: - $ref: "transform-1.0.0" - type: object properties: lookup_table: description: > Table values. anyOf: - $ref: ../core/ndarray-1.0.0 - type: array points: type: array items: anyOf: - type: array - $ref: ../core/ndarray-1.0.0 description: | Grid values - each row in the array corresponds to a dimension in the lookup table. The grid does not have to be regular. method: description: | Method of interpolation. Supported are "linear" and "nearest", and "splinef2d". "splinef2d" is only supported for 2-dimensional data. type: string enum: ["linear", "nearest", "splinef2d"] default: "linear" bounds_error: description: | If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then "fill_value" is used. type: boolean default: true fill_value: description: | If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Extrapolation is not supported by method "splinef2d". type: number required: [lookup_table] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/cylindrical-1.1.0.yaml0000644000446400020070000000063114026112647031575 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/cylindrical-1.1.0" title: | Base class of all cylindrical projections. description: | The surface of cylindrical projections is a cylinder. allOf: - $ref: "transform-1.1.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/divide-1.2.0.yaml0000644000446400020070000000155014155735241030552 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/divide-1.2.0" tag: "tag:stsci.edu:asdf/transform/divide-1.2.0" title: > Perform a list of subtransforms in parallel and then divide their results. description: | Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. examples: - - A list of transforms, performed in parallel, and then combined through division. - | !transform/divide-1.2.0 forward: - !transform/shift-1.2.0 offset: 2.0 - !transform/shift-1.2.0 offset: 2.0 allOf: - $ref: "transform-1.2.0" - properties: forward: type: array items: $ref: "transform-1.2.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/gnomonic-1.0.0.yaml0000644000446400020070000000140614026112647031111 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/gnomonic-1.0.0" tag: "tag:stsci.edu:asdf/transform/gnomonic-1.0.0" title: | The gnomonic projection. description: | Corresponds to the `TAN` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.0.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "zenithal-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/add-1.2.0.yaml0000644000446400020070000000141414155735241030035 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/add-1.2.0" tag: "tag:stsci.edu:asdf/transform/add-1.2.0" title: > Perform a list of subtransforms in parallel and then add their results together. description: | Each of the subtransforms must have the same number of inputs and outputs. examples: - - A list of transforms, performed in parallel and added together - | !transform/add-1.2.0 forward: - !transform/shift-1.2.0 offset: 2.0 - !transform/shift-1.2.0 offset: 3.0 allOf: - $ref: "transform-1.2.0" - properties: forward: type: array items: $ref: "transform-1.2.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/airy-1.2.0.yaml0000644000446400020070000000125714026112647030252 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/airy-1.2.0" tag: "tag:stsci.edu:asdf/transform/airy-1.2.0" title: | The Airy projection. description: | Corresponds to the `AIR` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. allOf: - $ref: "zenithal-1.2.0" - type: object properties: theta_b: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | The latitude $\theta_b$ at which to minimize the error, in degrees. default: 90 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/stereographic-1.1.0.yaml0000644000446400020070000000144014026112647032136 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/stereographic-1.1.0" tag: "tag:stsci.edu:asdf/transform/stereographic-1.1.0" title: | The stereographic projection. description: | Corresponds to the `STG` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^{\circ} - 2 \tan^{-1}\left(\frac{\pi R_\theta}{360^{\circ}}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\frac{2 \cos \theta}{1 + \sin \theta}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "zenithal-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/trapezoid_disk2d-1.0.0.yaml0000644000446400020070000000307314026112647032543 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/trapezoid_disk2d-1.0.0" tag: "tag:stsci.edu:asdf/transform/trapezoid_disk2d-1.0.0" title: > Two dimensional circular trapezoid model. description: > Two dimensional circular trapezoid. examples: - - A 2D trapezoid disk centered at (x, y) = (0.5, 1.5), of radius (distance between constant segments) 5.0, slope of tails 1.0, and amplitude 10.0 - | !transform/trapezoid_disk2d-1.0.0 R_0: 5.0 amplitude: 10.0 bounding_box: - [-13.5, 16.5] - [-14.5, 15.5] slope: 1.0 x_0: 0.5 y_0: 1.5 allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Amplitude of the trapezoid. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: x center position of the trapezoid. y_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: y center position of the trapezoid. R_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Radius of the constant part of the trapezoid. slope: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Slope of the tails of the trapezoid in x direction. required: ['amplitude', 'x_0', 'y_0', 'R_0', 'slope'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/constant-1.0.0.yaml0000644000446400020070000000105014026112647031124 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/constant-1.0.0" tag: "tag:stsci.edu:asdf/transform/constant-1.0.0" title: > A transform that takes no inputs and always outputs a constant value. description: | Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, which always outputs zero values. allOf: - $ref: "transform-1.0.0" - type: object properties: value: type: number required: [value] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_orthomorphic-1.3.0.yaml0000644000446400020070000000214014026112647033167 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_orthomorphic-1.3.0" tag: "tag:stsci.edu:asdf/transform/conic_orthomorphic-1.3.0" title: | Conic orthomorphic projection. description: | Corresponds to the `COO` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.3.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{\ln \left( \frac{\cos\theta_2}{\cos\theta_1} \right)} {\ln \left[ \frac{\tan\left(\frac{90^\circ-\theta_2}{2}\right)} {\tan\left(\frac{90^\circ-\theta_1}{2}\right)} \right] } \\ R_\theta &= \psi \left[ \tan \left( \frac{90^\circ - \theta}{2} \right) \right]^C \\ Y_0 &= \psi \left[ \tan \left( \frac{90^\circ - \theta_a}{2} \right) \right]^C$$ where: $$\psi = \frac{180^\circ}{\pi} \frac{\cos \theta} {C\left[\tan\left(\frac{90^\circ-\theta}{2}\right)\right]^C}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.3.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/compose-1.1.0.yaml0000644000446400020070000000215114155735241030750 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/compose-1.1.0" tag: "tag:stsci.edu:asdf/transform/compose-1.1.0" title: > Perform a list of subtransforms in series. description: | The output of each subtransform is fed into the input of the next subtransform. The number of output dimensions of each subtransform must be equal to the number of input dimensions of the next subtransform in list. To reorder or add/drop axes, insert `remap_axes` transforms in the subtransform list. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, by reversing the list of transforms and applying the inverse of each. examples: - - A series of transforms - | !transform/compose-1.1.0 forward: - !transform/shift-1.1.0 offset: 2.0 - !transform/shift-1.1.0 offset: 3.0 allOf: - $ref: "transform-1.1.0" - properties: forward: type: array items: $ref: "transform-1.1.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/parabolic-1.2.0.yaml0000644000446400020070000000137114026112647031237 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/parabolic-1.2.0" tag: "tag:stsci.edu:asdf/transform/parabolic-1.2.0" title: | Parabolic projection. description: | Corresponds to the `PAR` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{180^\circ}{\pi} \frac{x}{1 - 4(y / 180^\circ)^2} \\ \theta &= 3 \sin^{-1}\left(\frac{y}{180^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \left(2\cos\frac{2\theta}{3} - 1\right) \\ y &= 180^\circ \sin \frac{\theta}{3}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "pseudocylindrical-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/voigt1d-1.0.0.yaml0000644000446400020070000000236714026112647030664 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/voigt1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/voigt1d-1.0.0" title: > One dimensional model for the Voigt profile. description: > One dimensional model for the Voigt profile. examples: - - 1D Voigt model with a Lorentzian amplitude of 10.0, Lorentzian FWHM of 0.5, Gaussian FWHM of 0.9, centered at x=0.5. - | !transform/voigt1d-1.0.0 {amplitude_L: 10.0, fwhm_G: 0.9, fwhm_L: 0.5, x_0: 0.55} allOf: - $ref: "transform-1.2.0" - type: object properties: x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Position of the peak. amplitude_L: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: The Lorentzian amplitude. fwhm_L: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: The Lorentzian full width at half maximum. fwhm_G: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: The Gaussian full width at half maximum. required: ['x_0', 'amplitude_L', 'fwhm_L', 'fwhm_G'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_perspective-1.3.0.yaml0000644000446400020070000000136314026112647033011 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_perspective-1.3.0" tag: "tag:stsci.edu:asdf/transform/conic_perspective-1.3.0" title: | Colles' conic perspecitve projection. description: | Corresponds to the `COP` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.3.0) for the definition of the full transformation. The transformation is defined as: $$C &= \sin \theta_a \\ R_\theta &= \frac{180^\circ}{\pi} \cos \eta [ \cot \theta_a - \tan(\theta - \theta_a)] \\ Y_0 &= \frac{180^\circ}{\pi} \cos \eta \cot \theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.3.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/hammer_aitoff-1.1.0.yaml0000644000446400020070000000154014026112647032101 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/hammer_aitoff-1.1.0" tag: "tag:stsci.edu:asdf/transform/hammer_aitoff-1.1.0" title: | Hammer-Aitoff projection. description: | Corresponds to the `AIT` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= 2 \arg \left(2Z^2 - 1, \frac{\pi}{180^\circ} \frac{Z}{2}x\right) \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^\circ}yZ\right)$$ And the sky-to-pixel transformation is defined as: $$x &= 2 \gamma \cos \theta \sin \frac{\phi}{2} \\ y &= \gamma \sin \theta$$ where: $$\gamma = \frac{180^\circ}{\pi} \sqrt{\frac{2}{1 + \cos \theta \cos(\phi / 2)}}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "pseudocylindrical-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/mercator-1.0.0.yaml0000644000446400020070000000131514026112647031113 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/mercator-1.0.0" tag: "tag:stsci.edu:asdf/transform/mercator-1.0.0" title: | The Mercator projection. description: | Corresponds to the `MER` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= 2 \tan^{-1}\left(e^{y \pi / 180^{\circ}}\right)-90^{\circ}$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\ln \tan \left(\frac{90^{\circ} + \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "cylindrical-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/plate_carree-1.1.0.yaml0000644000446400020070000000123214026112647031724 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/plate_carree-1.1.0" tag: "tag:stsci.edu:asdf/transform/plate_carree-1.1.0" title: | The plate carrée projection. description: | Corresponds to the `CAR` projection in the FITS WCS standard. The main virtue of this transformation is its simplicity. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "cylindrical-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/cylindrical_perspective-1.0.0.yaml0000644000446400020070000000225114026112647034205 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/cylindrical_perspective-1.0.0" tag: "tag:stsci.edu:asdf/transform/cylindrical_perspective-1.0.0" title: | The cylindrical perspective projection. description: | Corresponds to the `CYP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\lambda} \\ \theta &= \arg(1, \eta) + \sin{-1}\left(\frac{\eta \mu}{\sqrt{\eta^2 + 1}}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \lambda \phi \\ y &= \frac{180^{\circ}}{\pi}\left(\frac{\mu + \lambda}{\mu + \cos \theta}\right)\sin \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "cylindrical-1.0.0" - type: object properties: mu: type: number description: | Distance from center of sphere in the direction opposite the projected surface, in spherical radii. default: 1 lambda: type: number description: | Radius of the cylinder in spherical radii, default is 1. default: 1 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/slant_orthographic-1.2.0.yaml0000644000446400020070000000240014026112647033167 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/slant_orthographic-1.2.0" tag: "tag:stsci.edu:asdf/transform/slant_orthographic-1.2.0" title: | The slant orthographic projection. description: | Corresponds to the `SIN` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \cos^{-1}\left(\frac{\pi}{180^{\circ}}R_\theta\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cos \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "zenithal-1.2.0" - type: object properties: xi: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Obliqueness parameter, first equation of the slant orthographic projection. default: 0 eta: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Obliqueness parameter, second equation of the slant orthographic projection. default: 0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/cobe_quad_spherical_cube-1.2.0.yaml0000644000446400020070000000073214026112647034255 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/cobe_quad_spherical_cube-1.2.0" tag: "tag:stsci.edu:asdf/transform/cobe_quad_spherical_cube-1.2.0" title: | COBE quadrilateralized spherical cube projection. description: | Corresponds to the `CSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "quadcube-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/zenithal-1.1.0.yaml0000644000446400020070000000127514026112647031123 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/zenithal-1.1.0" title: | Base class of all zenithal (or azimuthal) projections. description: | Zenithal projections are completely specified by defining the radius as a function of native latitude, $R_\theta$. The pixel-to-sky transformation is defined as: $$\phi &= \arg(-y, x) \\ R_\theta &= \sqrt{x^2 + y^2}$$ and the inverse (sky-to-pixel) is defined as: $$x &= R_\theta \sin \phi \\ y &= R_\theta \cos \phi$$ allOf: - $ref: "transform-1.1.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/zenithal_equal_area-1.2.0.yaml0000644000446400020070000000157014026112647033301 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/zenithal_equal_area-1.2.0" tag: "tag:stsci.edu:asdf/transform/zenithal_equal_area-1.2.0" title: | The zenithal equal area projection. description: | Corresponds to the `ZEA` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - 2 \sin^{-1} \left(\frac{\pi R_\theta}{360^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta &= \frac{180^\circ}{\pi} \sqrt{2(1 - \sin\theta)} \\ &= \frac{360^\circ}{\pi} \sin\left(\frac{90^\circ - \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "zenithal-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/multiplyscale-1.0.0.yaml0000644000446400020070000000132514026112647032167 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/multiplyscale-1.0.0" tag: "tag:stsci.edu:asdf/transform/multiplyscale-1.0.0" title: > A Multiply model. description: > Multiply the input by a factor. examples: - - Multiply the input by a pixel scale factor. - | !transform/multiplyscale-1.0.0 factor: !unit/quantity-1.1.0 {unit: !unit/unit-1.0.0 arcsec pixel-1, value: 0.06} allOf: - $ref: "transform-1.2.0" - type: object properties: factor: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Multiplication factor. required: [factor] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/pseudocylindrical-1.1.0.yaml0000644000446400020070000000115114026112647033013 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/pseudocylindrical-1.1.0" title: | Base class of all pseudocylindrical projections. description: | Pseudocylindrical projections are like cylindrical projections except the parallels of latitude are projected at diminishing lengths toward the polar regions in order to reduce lateral distortion there. Consequently, the meridians are curved. allOf: - $ref: "transform-1.1.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/polynomial-1.1.0.yaml0000644000446400020070000000244114026112647031464 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/polynomial-1.1.0" tag: "tag:stsci.edu:asdf/transform/polynomial-1.1.0" title: > A Polynomial model. description: | A polynomial model represented by its coefficients stored in an ndarray of shape $(n+1)$ for univariate polynomials or $(n+1, n+1)$ for polynomials with 2 variables, where $n$ is the highest total degree of the polynomial. $$P = \sum_{i, j=0}^{i+j=n}c_{ij} * x^{i} * y^{j}$$ Invertibility: This transform is not automatically invertible. examples: - - $P = 1.2 + 0.3 * x + 56.1 * x^{2}$ - | !transform/polynomial-1.1.0 coefficients: !core/ndarray-1.0.0 [1.2, 0.3, 56.1] - - $P = 1.2 + 0.3 * x + 3 * x * y + 2.1 * y^{2}$ - | !transform/polynomial-1.1.0 coefficients: !core/ndarray-1.0.0 [[1.2, 0.0, 2.1], [0.3, 3.0, 0.0], [0.0, 0.0, 0.0]] allOf: - $ref: "transform-1.1.0" - type: object properties: coefficients: description: | An array with coefficients. anyOf: - $ref: "../core/ndarray-1.0.0" - type: array required: [coefficients] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/rotate3d-1.2.0.yaml0000644000446400020070000000335414026112647031033 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/rotate3d-1.2.0" tag: "tag:stsci.edu:asdf/transform/rotate3d-1.2.0" title: > Rotation in 3D space. description: | Euler angle rotation around 3 axes. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. examples: - - The three Euler angles are 12.3, 34 and -1.2 in degrees. - | !transform/rotate3d-1.2.0 phi: 12.3 theta: 34 psi: -1.2 direction: zxz allOf: - $ref: "transform-1.1.0" - type: object properties: phi: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Angle, in degrees. theta: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Angle, in degrees. psi: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Angle, in degrees. direction: description: | Sequence of rotation axes: one of 'zxz', 'xyx', 'yzy', 'zyz', 'xzx', 'yxy', 'xyz', 'yzx', 'zxy', 'xzy', 'zyx', 'yxz' or `native2celestial`, `celestial2native`. If `direction` is `native2celestial` or `celestial2native`, `phi`, `theta` are the longitude and latitude of the native pole in the celestial system and `psi` is the longitude of the celestial pole in the native system. enum: ['zxz', 'xyx', 'yzy', 'zyz', 'xzx', 'yxy', 'xyz', 'yzx', 'zxy', 'xzy', 'zyx', 'yxz', native2celestial, celestial2native] default: native2celestial required: [phi, theta, psi, direction] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/remap_axes-1.1.0.yaml0000644000446400020070000000413714155735241031435 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/remap_axes-1.1.0" tag: "tag:stsci.edu:asdf/transform/remap_axes-1.1.0" title: > Reorder, add and drop axes. description: | This transform allows the order of the input axes to be shuffled and returned as the output axes. It is a list made up of integers, each corresponding to an index of the input axis to send to the output axis. If only a list is provided, the number of input axes is automatically determined from the maximum index in the list. If an object with `mapping` and `n_inputs` properties is provided, the number of input axes is explicitly set by the `n_inputs` value. Invertibility: TBD examples: - - For 2 input axes, swap the axes - | !transform/remap_axes-1.1.0 mapping: [1, 0] - - For 2 input axes, return the second axis and drop the first - | !transform/remap_axes-1.1.0 mapping: [1] - - For 2 input axes, return the first axis twice, followed by the second - | !transform/remap_axes-1.1.0 mapping: [0, 0, 1] - - For 2 input axes, add a third axis which is a constant - | !transform/concatenate-1.1.0 forward: - !transform/remap_axes-1.1.0 mapping: [0] - !transform/remap_axes-1.1.0 mapping: [1] - !transform/constant-1.1.0 value: 42 - - Here we have 3 input axes, but we are explicitly dropping the last one - | !transform/remap_axes-1.1.0 mapping: [0, 1] n_inputs: 3 definitions: mapping: type: array items: anyOf: - type: integer - $ref: "../core/constant-1.0.0" allOf: - $ref: "transform-1.1.0" - properties: n_inputs: description: | Explicitly set the number of input axes. If not provided, it is determined from the maximum index value in the mapping list. type: integer mapping: $ref: "#/definitions/mapping" required: [mapping] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/molleweide-1.1.0.yaml0000644000446400020070000000161614026112647031432 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/molleweide-1.1.0" tag: "tag:stsci.edu:asdf/transform/molleweide-1.1.0" title: | Molleweide's projection. description: | Corresponds to the `MOL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi x}{2 \sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}} \\ \theta &= \sin^{-1}\left(\frac{1}{90^\circ}\sin^{-1}\left(\frac{\pi}{180^\circ}\frac{y}{\sqrt{2}}\right) + \frac{y}{180^\circ}\sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \frac{2 \sqrt{2}}{\pi} \phi \cos \gamma \\ y &= \sqrt{2} \frac{180^\circ}{\pi} \sin \gamma$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "pseudocylindrical-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/identity-1.0.0.yaml0000644000446400020070000000076414026112647031137 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/identity-1.0.0" tag: "tag:stsci.edu:asdf/transform/identity-1.0.0" title: > The identity transform. description: > Invertibility: The inverse of this transform is also the identity transform. allOf: - $ref: "transform-1.0.0" - type: object properties: n_dims: type: integer default: 1 description: | The number of dimensions. ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/king_projected_analytic1d-1.0.0.yaml0000644000446400020070000000221314026112647034375 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/king_projected_analytic1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/king_projected_analytic1d-1.0.0" title: > Projected (surface density) analytic King Model. description: > Projected (surface density) analytic King Model. examples: - - $$f(x)=f(x)=10.0(12.2)^2\left(\frac{1}{\sqrt{x^2+(12.2)^2}}-\frac{1}{\sqrt{(15.4)^2+(12.2)^2}}\right)^2$$ - | !transform/king_projected_analytic1d-1.0.0 amplitude: 10.0 bounding_box: [0.0, 15.4] r_core: 12.2 r_tide: 15.4 allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Amplitude or scaling factor. r_core: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Core radius. r_tide: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Tidal radius. required: ['amplitude', 'r_core', 'r_tide'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/sanson_flamsteed-1.1.0.yaml0000644000446400020070000000121514026112647032624 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/sanson_flamsteed-1.1.0" tag: "tag:stsci.edu:asdf/transform/sanson_flamsteed-1.1.0" title: | The Sanson-Flamsteed projection. description: | Corresponds to the `SFL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\cos y} \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \cos \theta \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "pseudocylindrical-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/slant_zenithal_perspective-1.1.0.yaml0000644000446400020070000000246514026112647034737 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/slant_zenithal_perspective-1.1.0" tag: "tag:stsci.edu:asdf/transform/slant_zenithal_perspective-1.1.0" title: | The slant zenithal perspective projection. description: | Corresponds to the `SZP` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "zenithal-1.1.0" - type: object properties: mu: type: number description: | Distance from point of projection to center of sphere in spherical radii. default: 0 phi0: type: number description: | The longitude $\phi_0$ of the reference point, in degrees. default: 0 theta0: type: number description: | The latitude $\theta_0$ of the reference point, in degrees. default: 90 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_equidistant-1.0.0.yaml0000644000446400020070000000137714026112647033014 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_equidistant-1.0.0" tag: "tag:stsci.edu:asdf/transform/conic_equidistant-1.0.0" title: | Conic equidistant projection. description: | Corresponds to the `COD` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.0.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{180^\circ}{\pi} \frac{\sin\theta_a\sin\eta}{\eta} \\ R_\theta &= \theta_a - \theta + \eta\cot\eta\cot\theta_a \\ Y_0 = \eta\cot\eta\cot\theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic-1.2.0.yaml0000644000446400020070000000301414026112647030372 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic-1.2.0" title: | Base class of all conic projections. description: | In conic projections, the sphere is thought to be projected onto the surface of a cone which is then opened out. In a general sense, the pixel-to-sky transformation is defined as: $$\phi &= \arg\left(\frac{Y_0 - y}{R_\theta}, \frac{x}{R_\theta}\right) / C \\ R_\theta &= \mathrm{sign} \theta_a \sqrt{x^2 + (Y_0 - y)^2}$$ and the inverse (sky-to-pixel) is defined as: $$x &= R_\theta \sin (C \phi) \\ y &= R_\theta \cos (C \phi) + Y_0$$ where $C$ is the "constant of the cone": $$C = \frac{180^\circ \cos \theta}{\pi R_\theta}$$ allOf: - $ref: "transform-1.1.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky sigma: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | $(\theta_1 + \theta_2) / 2$ where $\theta_1$ and $\theta_2$ are the latitudes of the standard parallels, in degrees. This parameter is also referred to as `theta_A`. delta: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | $(\theta_1 - \theta_2) / 2$ where $\theta_1$ and $\theta_2$ are the latitudes of the standard parallels, in degrees. This parameter is also referred to as `delta`. default: 0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/rotate2d-1.1.0.yaml0000644000446400020070000000104514026112647031024 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/rotate2d-1.1.0" tag: "tag:stsci.edu:asdf/transform/rotate2d-1.1.0" title: > A 2D rotation. description: > A 2D rotation around the origin, in degrees. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. allOf: - $ref: "transform-1.1.0" - type: object properties: angle: type: number description: Angle, in degrees. required: [angle] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/fix_inputs-1.1.0.yaml0000644000446400020070000000341714026112647031475 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/fix_inputs-1.1.0" tag: "tag:stsci.edu:asdf/transform/fix_inputs-1.1.0" title: > Set to a constant selected input arguments of a model. description: | This operation takes as the right hand side a dict equivalent that consists of key:value pairs where the key identifies the input argument to be set, either by position number (0 based) or name, and the value is the floating point value that should be assigned to that input. The result is a compound model with n fewer input arguments where n is the number of input values to be set (i.e., the number of keys in the dict). examples: - - Fix the 0-th coordinate. - | !transform/fix_inputs-1.1.0 forward: - !transform/compose-1.1.0 forward: - !transform/gnomonic-1.1.0 {direction: pix2sky} - !transform/rotate2d-1.2.0 {angle: 23.0} - keys: [0] values: [2] - - Fix the "x" coordinate. - | !transform/fix_inputs-1.1.0 forward: - !transform/compose-1.1.0 forward: - !transform/gnomonic-1.1.0 {direction: pix2sky} - !transform/rotate2d-1.2.0 {angle: 23.0} - keys: [x] values: [2] allOf: - $ref: "transform-1.1.0" - properties: forward: type: array items: - $ref: "transform-1.1.0" - type: object properties: keys: type: array items: type: [string, integer] values: type: array items: - type: number minItems: 2 maxItems: 2 required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_equal_area-1.1.0.yaml0000644000446400020070000000164214026112647032555 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_equal_area-1.1.0" tag: "tag:stsci.edu:asdf/transform/conic_equal_area-1.1.0" title: | Alber's conic equal area projection. description: | Corresponds to the `COE` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.1.0) for the definition of the full transformation. The transformation is defined as: $$C &= \gamma / 2 \\ R_\theta &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin \theta} \\ Y_0 &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin((\theta_1 + \theta_2)/2)}$$ where: $$\gamma = \sin \theta_1 + \sin \theta_2$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/affine-1.2.0.yaml0000644000446400020070000000245614026112647030540 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/affine-1.2.0" tag: "tag:stsci.edu:asdf/transform/affine-1.2.0" title: > An affine transform. description: | Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. allOf: - $ref: "transform-1.1.0" - type: object properties: matrix: description: | An array of size (*n* x *n*), where *n* is the number of axes, representing the linear transformation in an affine transform. anyOf: - $ref: "../core/ndarray-1.0.0" - $ref: "../unit/quantity-1.1.0" - type: array items: type: array items: type: number minItems: 2 maxItems: 2 minItems: 2 maxItems: 2 translation: description: | An array of size (*n*,), where *n* is the number of axes, representing the translation in an affine transform. anyOf: - $ref: "../core/ndarray-1.0.0" - $ref: "../unit/quantity-1.1.0" - type: array items: type: number minItems: 2 maxItems: 2 required: [matrix] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/disk2d-1.0.0.yaml0000644000446400020070000000236314026112647030463 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/disk2d-1.0.0" tag: "tag:stsci.edu:asdf/transform/disk2d-1.0.0" title: > Two dimensional disk model. description: > Two dimensional radially symmetric disk. examples: - - A 2D disk centered at (x, y) = (0.5, 1.5), of radius 5.0 and amplitude 10.0. - | !transform/disk2d-1.0.0 R_0: 5.0 amplitude: 10.0 bounding_box: - [-3.5, 6.5] - [-4.5, 5.5] x_0: 0.5 y_0: 1.5 allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Value of the disk function. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: x position of the center of the disk. y_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: y position of the center of the disk. R_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Radius of the disk. required: ['amplitude', 'x_0', 'y_0', 'R_0'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/power-1.1.0.yaml0000644000446400020070000000114414026112647030434 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/power-1.1.0" tag: "tag:stsci.edu:asdf/transform/power-1.1.0" title: > Perform a list of subtransforms in parallel and then raise each result to the power of the next. description: | Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. allOf: - $ref: "transform-1.1.0" - properties: forward: type: array items: $ref: "transform-1.1.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/zenithal_perspective-1.0.0.yaml0000644000446400020070000000262314026112647033531 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/zenithal_perspective-1.0.0" tag: "tag:stsci.edu:asdf/transform/zenithal_perspective-1.0.0" title: | The zenithal perspective projection. description: | Corresponds to the `AZP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \arg(-y \cos \gamma, x) \\ \theta &= \left\{\genfrac{}{}{0pt}{}{\psi - \omega}{\psi + \omega + 180^{\circ}}\right.$$ where: $$\psi &= \arg(\rho, 1) \\ \omega &= \sin^{-1}\left(\frac{\rho \mu}{\sqrt{\rho^2 + 1}}\right) \\ \rho &= \frac{R}{\frac{180^{\circ}}{\pi}(\mu + 1) + y \sin \gamma} \\ R &= \sqrt{x^2 + y^2 \cos^2 \gamma}$$ And the sky-to-pixel transformation is defined as: $$x &= R \sin \phi \\ y &= -R \sec \gamma \cos \theta$$ where: $$R = \frac{180^{\circ}}{\pi} \frac{(\mu + 1) \cos \theta}{(\mu + \sin \theta) + \cos \theta \cos \phi \tan \gamma}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "zenithal-1.0.0" - type: object properties: mu: type: number description: | Distance from point of projection to center of sphere in spherical radii. default: 0 gamma: type: number description: | Look angle, in degrees. default: 0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/ellipse2d-1.0.0.yaml0000644000446400020070000000347514026112647031173 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/ellipse2d-1.0.0" tag: "tag:stsci.edu:asdf/transform/ellipse2d-1.0.0" title: > Two dimensional ellipse model. description: > Two dimensional ellipse. examples: - - A 2D ellipse centered at (x, y) = (0.5, 1.5), with a semimajor axis of 2.0, semiminor axis of 4.0, oriented at 0.2 radians counterclockwise from the positive x-axis. - | !transform/ellipse2d-1.0.0 a: 2.0 amplitude: 10.0 b: 4.0 bounding_box: - [-2.4403509950278934, 5.440350995027893] - [-1.6150966966034175, 2.6150966966034175] theta: 0.2 x_0: 0.5 y_0: 1.5 allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Value of the ellipse. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: x position of the center of the ellipse. y_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: y position of the center of the ellipse. a: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: The length of the semimajor axis. b: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: The length of the seminor axis. theta: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: The rotation angle in radians of the semimajor axis. The rotation angle increase counterclockwise from the positive x axis. required: ['amplitude', 'x_0', 'y_0', 'a', 'b', 'theta'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/bonne_equal_area-1.0.0.yaml0000644000446400020070000000230714026112647032561 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/bonne_equal_area-1.0.0" tag: "tag:stsci.edu:asdf/transform/bonne_equal_area-1.0.0" title: | Bonne's equal area pseudoconic projection. description: | Corresponds to the `BON` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi}{180^\circ} A_\phi R_\theta / \cos \theta \\ \theta &= Y_0 - R_\theta$$ where: $$R_\theta &= \mathrm{sign} \theta_1 \sqrt{x^2 + (Y_0 - y)^2} \\ A_\phi &= \arg\left(\frac{Y_0 - y}{R_\theta}, \frac{x}{R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= R_\theta \sin A_\phi \\ y &= -R_\theta \cos A_\phi + Y_0$$ where: $$A_\phi &= \frac{180^\circ}{\pi R_\theta} \phi \cos \theta \\ R_\theta &= Y_0 - \theta \\ Y_0 &= \frac{180^\circ}{\pi} \cot \theta_1 + \theta_1$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "pseudoconic-1.0.0" - type: object properties: theta1: type: number description: | Bonne conformal latitude, in degrees. default: 0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/constant-1.4.0.yaml0000644000446400020070000000115214026112647031133 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/constant-1.4.0" tag: "tag:stsci.edu:asdf/transform/constant-1.4.0" title: > A Constant transform. description: | Invertibility: A transform which takes one or two inputs based on dimensionality and returns a constant value. It has no analytical inverse. allOf: - $ref: "transform-1.2.0" - type: object properties: value: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number dimensions: type: integer required: [value, dimensions] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/broken_power_law1d-1.0.0.yaml0000644000446400020070000000237514026112647033072 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/broken_power_law1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/broken_power_law1d-1.0.0" title: > One dimensional power law model with a break. description: > One dimensional power law model with a break. examples: - - $f(x) = A (10.0 / 5.0) ^ {-2.0}$ for x < 5.0 and $f(x) = A (10.0 / 5.0) ^ {-3.0}$ for x > 5.0 - | !transform/broken_power_law1d-1.0.0 {alpha_1: 2.0, alpha_2: 3.0, amplitude: 10.0, x_break: 5.0} allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Model amplitude at the break point. x_break: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Break point. alpha_1: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Power law index for x < x_break. alpha_2: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Power law index for x > x_break. required: ['amplitude', 'x_break', 'alpha_1', 'alpha_2'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/affine-1.0.0.yaml0000644000446400020070000000233014026112647030525 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/affine-1.0.0" tag: "tag:stsci.edu:asdf/transform/affine-1.0.0" title: > An affine transform. description: | Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. allOf: - $ref: "transform-1.0.0" - type: object properties: matrix: description: | An array of size (*n* x *n*), where *n* is the number of axes, representing the linear transformation in an affine transform. anyOf: - $ref: "../core/ndarray-1.0.0" - type: array items: type: array items: type: number minItems: 2 maxItems: 2 minItems: 2 maxItems: 2 translation: description: | An array of size (*n*,), where *n* is the number of axes, representing the translation in an affine transform. anyOf: - $ref: "../core/ndarray-1.0.0" - type: array items: type: number minItems: 2 maxItems: 2 required: [matrix] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_equal_area-1.3.0.yaml0000644000446400020070000000160414026112647032555 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_equal_area-1.3.0" tag: "tag:stsci.edu:asdf/transform/conic_equal_area-1.3.0" title: | Alber's conic equal area projection. description: | Corresponds to the `COE` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.3.0) for the definition of the full transformation. The transformation is defined as: $$C &= \gamma / 2 \\ R_\theta &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin \theta} \\ Y_0 &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin((\theta_1 + \theta_2)/2)}$$ where: $$\gamma = \sin \theta_1 + \sin \theta_2$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.3.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/log_parabola1d-1.0.0.yaml0000644000446400020070000000227714026112647032156 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/log_parabola1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/log_parabola1d-1.0.0" title: > One dimensional log parabola model (sometimes called curved power law). description: > One dimensional log parabola model (sometimes called curved power law). examples: - - $$f(x) = 10*(\frac{x}{0.5})^{-2.0-3.2\log{(\frac{x}{0.5})}}$$ - | !transform/log_parabola1d-1.0.0 {alpha: 2.0, amplitude: 10.0, beta: 3.2, x_0: 0.5} allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Model amplitude. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Reference point. alpha: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Power law index. beta: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Power law curvature. required: ['amplitude', 'x_0', 'alpha', 'beta'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/rotate2d-1.3.0.yaml0000644000446400020070000000114314026112647031025 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/rotate2d-1.3.0" tag: "tag:stsci.edu:asdf/transform/rotate2d-1.3.0" title: > A 2D rotation. description: > A 2D rotation around the origin, in degrees. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. allOf: - $ref: "transform-1.2.0" - type: object properties: angle: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Angle, in degrees. required: [angle] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic-1.0.0.yaml0000644000446400020070000000262114026112647030373 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic-1.0.0" title: | Base class of all conic projections. description: | In conic projections, the sphere is thought to be projected onto the surface of a cone which is then opened out. In a general sense, the pixel-to-sky transformation is defined as: $$\phi &= \arg\left(\frac{Y_0 - y}{R_\theta}, \frac{x}{R_\theta}\right) / C \\ R_\theta &= \mathrm{sign} \theta_a \sqrt{x^2 + (Y_0 - y)^2}$$ and the inverse (sky-to-pixel) is defined as: $$x &= R_\theta \sin (C \phi) \\ y &= R_\theta \cos (C \phi) + Y_0$$ where $C$ is the "constant of the cone": $$C = \frac{180^\circ \cos \theta}{\pi R_\theta}$$ allOf: - $ref: "transform-1.0.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky sigma: type: number description: | $(\theta_1 + \theta_2) / 2$ where $\theta_1$ and $\theta_2$ are the latitudes of the standard parallels, in degrees. This parameter is also referred to as `theta_A`. delta: type: number description: | $(\theta_1 - \theta_2) / 2$ where $\theta_1$ and $\theta_2$ are the latitudes of the standard parallels, in degrees. This parameter is also referred to as `delta`. default: 0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/polyconic-1.1.0.yaml0000644000446400020070000000064314026112647031302 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/polyconic-1.1.0" tag: "tag:stsci.edu:asdf/transform/polyconic-1.1.0" title: | Polyconic projection. description: | Corresponds to the `PCO` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "pseudoconic-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/bonne_equal_area-1.2.0.yaml0000644000446400020070000000240514026112647032562 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/bonne_equal_area-1.2.0" tag: "tag:stsci.edu:asdf/transform/bonne_equal_area-1.2.0" title: | Bonne's equal area pseudoconic projection. description: | Corresponds to the `BON` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi}{180^\circ} A_\phi R_\theta / \cos \theta \\ \theta &= Y_0 - R_\theta$$ where: $$R_\theta &= \mathrm{sign} \theta_1 \sqrt{x^2 + (Y_0 - y)^2} \\ A_\phi &= \arg\left(\frac{Y_0 - y}{R_\theta}, \frac{x}{R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= R_\theta \sin A_\phi \\ y &= -R_\theta \cos A_\phi + Y_0$$ where: $$A_\phi &= \frac{180^\circ}{\pi R_\theta} \phi \cos \theta \\ R_\theta &= Y_0 - \theta \\ Y_0 &= \frac{180^\circ}{\pi} \cot \theta_1 + \theta_1$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "pseudoconic-1.1.0" - type: object properties: theta1: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | Bonne conformal latitude, in degrees. default: 0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/transform-1.1.0.yaml0000644000446400020070000000201014026112647031304 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/transform-1.1.0" title: > A generic type used to mark where other transforms are accepted. description: > These objects are designed to be nested in arbitrary ways to build up transformation pipelines out of a number of low-level pieces. type: object properties: name: description: | A user-friendly name for the transform, to give it extra meaning. type: string domain: description: | The domain (range of valid inputs) to the transform. Each entry in the list corresponds to an input dimension. type: array items: $ref: "domain-1.0.0" inverse: description: | Explicitly sets the inverse transform of this transform. If the transform has a direct analytic inverse, this property is usually not necessary, as the ASDF-reading tool can provide it automatically. $ref: "transform-1.1.0" additionalProperties: true ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/regions_selector-1.1.0.yaml0000644000446400020070000000604114026112647032647 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/regions_selector-1.1.0" tag: "tag:stsci.edu:asdf/transform/regions_selector-1.1.0" title: > Represents a discontinuous transform. description: | Maps regions to transgorms and evaluates the transforms with the corresponding inputs. examples: - - Create a regions_selector schema for 2 regions, labeled "1" and "2". - | !transform/regions_selector-1.1.0 inputs: [x, y] label_mapper: !transform/label_mapper-1.1.0 mapper: !core/ndarray-1.0.0 datatype: int8 data: [[0, 1, 1, 0, 2, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 0, 2, 0]] outputs: [ra, dec, lam] selector: 1: !transform/compose-1.1.0 forward: - !transform/remap_axes-1.1.0 mapping: [0, 1, 1] - !transform/concatenate-1.1.0 forward: - !transform/concatenate-1.1.0 forward: - !transform/shift-1.1.0 {offset: 1.0} - !transform/shift-1.1.0 {offset: 2.0} - !transform/shift-1.1.0 {offset: 3.0} 2: !transform/compose-1.1.0 forward: - !transform/remap_axes-1.1.0 mapping: [0, 1, 1] - !transform/concatenate-1.1.0 forward: - !transform/concatenate-1.1.0 forward: - !transform/scale-1.1.0 {factor: 2.0} - !transform/scale-1.1.0 {factor: 3.0} - !transform/scale-1.1.0 {factor: 3.0} undefined_transform_value: .nan allOf: - $ref: "transform-1.1.0" - type: object properties: label_mapper: description: | An instance of [label_mapper-1.1.0](ref:transform/label_mapper-1.1.0) $ref: "./label_mapper-1.1.0" inputs: description: | Names of inputs. type: array items: type: string outputs: description: | Names of outputs. type: array items: type: string selector: description: | A mapping of regions to trransforms. type: object properties: labels: description: | An array of unique region labels. type: array items: type: - integer - string transforms: description: | A transform for each region. The order should match the order of labels. type: array items: $ref: "transform-1.1.0" undefined_transform_value: description: | Value to be returned if there's no transform defined for the inputs. type: number required: [label_mapper, inputs, outputs, selector] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/tangential_spherical_cube-1.1.0.yaml0000644000446400020070000000072014026112647034455 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/tangential_spherical_cube-1.1.0" tag: "tag:stsci.edu:asdf/transform/tangential_spherical_cube-1.1.0" title: | Tangential spherical cube projection. description: | Corresponds to the `TSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "quadcube-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/zenithal_perspective-1.2.0.yaml0000644000446400020070000000301714026112647033531 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/zenithal_perspective-1.2.0" tag: "tag:stsci.edu:asdf/transform/zenithal_perspective-1.2.0" title: | The zenithal perspective projection. description: | Corresponds to the `AZP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \arg(-y \cos \gamma, x) \\ \theta &= \left\{\genfrac{}{}{0pt}{}{\psi - \omega}{\psi + \omega + 180^{\circ}}\right.$$ where: $$\psi &= \arg(\rho, 1) \\ \omega &= \sin^{-1}\left(\frac{\rho \mu}{\sqrt{\rho^2 + 1}}\right) \\ \rho &= \frac{R}{\frac{180^{\circ}}{\pi}(\mu + 1) + y \sin \gamma} \\ R &= \sqrt{x^2 + y^2 \cos^2 \gamma}$$ And the sky-to-pixel transformation is defined as: $$x &= R \sin \phi \\ y &= -R \sec \gamma \cos \theta$$ where: $$R = \frac{180^{\circ}}{\pi} \frac{(\mu + 1) \cos \theta}{(\mu + \sin \theta) + \cos \theta \cos \phi \tan \gamma}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "zenithal-1.1.0" - type: object properties: mu: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | Distance from point of projection to center of sphere in spherical radii. default: 0 gamma: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | Look angle, in degrees. default: 0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/rotate3d-1.0.0.yaml0000644000446400020070000000306214026112647031025 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/rotate3d-1.0.0" tag: "tag:stsci.edu:asdf/transform/rotate3d-1.0.0" title: > Rotation in 3D space. description: | Euler angle rotation around 3 axes. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. examples: - - The three Euler angles are 12.3, 34 and -1.2 in degrees. - | !transform/rotate3d-1.0.0 phi: 12.3 theta: 34 psi: -1.2 direction: zxz allOf: - $ref: "transform-1.0.0" - type: object properties: phi: type: number description: Angle, in degrees. theta: type: number description: Angle, in degrees. psi: type: number description: Angle, in degrees. direction: description: | Sequence of rotation axes: one of 'zxz', 'xyx', 'yzy', 'zyz', 'xzx', 'yxy', 'xyz', 'yzx', 'zxy', 'xzy', 'zyx', 'yxz' or `native2celestial`, `celestial2native`. If `direction` is `native2celestial` or `celestial2native`, `phi`, `theta` are the longitude and latitude of the native pole in the celestial system and `psi` is the longitude of the celestial pole in the native system. enum: ['zxz', 'xyx', 'yzy', 'zyz', 'xzx', 'yxy', 'xyz', 'yzx', 'zxy', 'xzy', 'zyx', 'yxz', native2celestial, celestial2native] default: native2celestial required: [phi, theta, psi, direction] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/zenithal_equal_area-1.0.0.yaml0000644000446400020070000000162614026112647033301 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/zenithal_equal_area-1.0.0" tag: "tag:stsci.edu:asdf/transform/zenithal_equal_area-1.0.0" title: | The zenithal equal area projection. description: | Corresponds to the `ZEA` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.0.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - 2 \sin^{-1} \left(\frac{\pi R_\theta}{360^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta &= \frac{180^\circ}{\pi} \sqrt{2(1 - \sin\theta)} \\ &= \frac{360^\circ}{\pi} \sin\left(\frac{90^\circ - \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "zenithal-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/slant_orthographic-1.0.0.yaml0000644000446400020070000000224214026112647033171 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/slant_orthographic-1.0.0" tag: "tag:stsci.edu:asdf/transform/slant_orthographic-1.0.0" title: | The slant orthographic projection. description: | Corresponds to the `SIN` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.0.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \cos^{-1}\left(\frac{\pi}{180^{\circ}}R_\theta\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cos \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "zenithal-1.0.0" - type: object properties: xi: type: number description: Obliqueness parameter, first equation of the slant orthographic projection. default: 0 eta: type: number description: Obliqueness parameter, second equation of the slant orthographic projection. default: 0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/cobe_quad_spherical_cube-1.0.0.yaml0000644000446400020070000000073214026112647034253 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/cobe_quad_spherical_cube-1.0.0" tag: "tag:stsci.edu:asdf/transform/cobe_quad_spherical_cube-1.0.0" title: | COBE quadrilateralized spherical cube projection. description: | Corresponds to the `CSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "quadcube-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/quadcube-1.1.0.yaml0000644000446400020070000000124714026112647031075 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/quadcube-1.1.0" title: | Base class of all quadcube projections. description: | Quadrilateralized spherical cube (quad-cube) projections belong to the class of polyhedral projections in which the sphere is projected onto the surface of an enclosing polyhedron. The six faces of the quad-cube projections are numbered and laid out as: ``` 0 4 3 2 1 4 3 2 5 ``` allOf: - $ref: "transform-1.1.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/cylindrical_perspective-1.2.0.yaml0000644000446400020070000000244514026112647034214 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/cylindrical_perspective-1.2.0" tag: "tag:stsci.edu:asdf/transform/cylindrical_perspective-1.2.0" title: | The cylindrical perspective projection. description: | Corresponds to the `CYP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\lambda} \\ \theta &= \arg(1, \eta) + \sin{-1}\left(\frac{\eta \mu}{\sqrt{\eta^2 + 1}}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \lambda \phi \\ y &= \frac{180^{\circ}}{\pi}\left(\frac{\mu + \lambda}{\mu + \cos \theta}\right)\sin \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "cylindrical-1.1.0" - type: object properties: mu: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | Distance from center of sphere in the direction opposite the projected surface, in spherical radii. default: 1 lambda: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | Radius of the cylinder in spherical radii, default is 1. default: 1 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/math_functions-1.0.0.yaml0000644000446400020070000000103414026112647032316 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/math_functions-1.0.0" tag: "tag:stsci.edu:asdf/transform/math_functions-1.0.0" title: > Math functions. description: | Commonly used math funcitons. examples: - - Atan2 - | !transform/math_functions-1.0.0 func_name: arctan2 allOf: - $ref: "transform-1.2.0" - type: object properties: func_name: type: string description: | The name of a numpy ufunc. ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_equidistant-1.2.0.yaml0000644000446400020070000000134114026112647033005 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_equidistant-1.2.0" tag: "tag:stsci.edu:asdf/transform/conic_equidistant-1.2.0" title: | Conic equidistant projection. description: | Corresponds to the `COD` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.2.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{180^\circ}{\pi} \frac{\sin\theta_a\sin\eta}{\eta} \\ R_\theta &= \theta_a - \theta + \eta\cot\eta\cot\theta_a \\ Y_0 = \eta\cot\eta\cot\theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/remap_axes-1.3.0.yaml0000644000446400020070000000433114026112647031427 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/remap_axes-1.3.0" tag: "tag:stsci.edu:asdf/transform/remap_axes-1.3.0" title: > Reorder, add and drop axes. description: | This transform allows the order of the input axes to be shuffled and returned as the output axes. It is a list made up of integers. Each item in the list corresponds to an output axis. Each item is the index of the input axis to send to the output axis. If an object with `mapping` and `n_inputs` properties is provided, the number of input axes is explicitly set by the `n_inputs` value. If only a list is provided, the number of input axes is automatically determined from the maximum index in the list. Invertibility: This transform does not have a general analytical inverse. In some well defined cases it is possible to invert automatically examples: - - For 2 input axes, swap the axes - | !transform/remap_axes-1.3.0 mapping: [1, 0] - - For 2 input axes, return the second axis and drop the first - | !transform/remap_axes-1.3.0 mapping: [1] - - For 2 input axes, return the first axis twice, followed by the second - | !transform/remap_axes-1.3.0 mapping: [0, 0, 1] - - | The above example is equivalent to the following, and ASDF implementations are free to normalize it thusly: - | !transform/concatenate-1.2.0 forward: - !transform/remap_axes-1.3.0 mapping: [0] - !transform/remap_axes-1.3.0 mapping: [1] - - Here we have 3 input axes, but we are explicitly dropping the last one - | !transform/remap_axes-1.3.0 mapping: [0, 1] n_inputs: 3 definitions: mapping: type: array items: type: integer allOf: - $ref: "transform-1.2.0" - properties: n_inputs: description: | Explicitly set the number of input axes. If not provided, it is determined from the maximum index value in the mapping list. type: integer mapping: $ref: "#/definitions/mapping" required: [mapping] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/multiply-1.1.0.yaml0000644000446400020070000000156614155735241031173 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/multiply-1.1.0" tag: "tag:stsci.edu:asdf/transform/multiply-1.1.0" title: > Perform a list of subtransforms in parallel and then multiply their results. description: | Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. examples: - - A list of transforms, performed in parallel, and then combined through multiplication. - | !transform/multiply-1.1.0 forward: - !transform/shift-1.1.0 offset: 2.0 - !transform/shift-1.1.0 offset: 3.0 allOf: - $ref: "transform-1.1.0" - properties: forward: type: array items: $ref: "transform-1.1.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/moffat2d-1.0.0.yaml0000644000446400020070000000257014026112647031005 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/moffat2d-1.0.0" tag: "tag:stsci.edu:asdf/transform/moffat2d-1.0.0" title: > Two dimensional Moffat model. description: > Two dimensional Moffat distribution. examples: - - $$f(x)=10.0\left(1+\frac{\left(x-0.5\right)^{2}+\left(y-1.5\right)^{2}}{1.2^{2}}\right)^{-2}$$ - | !transform/moffat2d-1.0.0 {alpha: 2.5, amplitude: 10.0, gamma: 1.2, x_0: 0.5, y_0: 1.5} allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Amplitude of the model. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: x position of the maximum of the Moffat model. y_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: y position of the maximum of the Moffat model. gamma: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Core width of the Moffat model. alpha: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Power index of the Moffat model. required: ['amplitude', 'x_0', 'y_0', 'gamma', 'alpha'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/identity-1.2.0.yaml0000644000446400020070000000076414026112647031141 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/identity-1.2.0" tag: "tag:stsci.edu:asdf/transform/identity-1.2.0" title: > The identity transform. description: > Invertibility: The inverse of this transform is also the identity transform. allOf: - $ref: "transform-1.2.0" - type: object properties: n_dims: type: integer default: 1 description: | The number of dimensions. ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/add-1.1.0.yaml0000644000446400020070000000141414155735241030034 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/add-1.1.0" tag: "tag:stsci.edu:asdf/transform/add-1.1.0" title: > Perform a list of subtransforms in parallel and then add their results together. description: | Each of the subtransforms must have the same number of inputs and outputs. examples: - - A list of transforms, performed in parallel and added together - | !transform/add-1.1.0 forward: - !transform/shift-1.1.0 offset: 2.0 - !transform/shift-1.1.0 offset: 3.0 allOf: - $ref: "transform-1.1.0" - properties: forward: type: array items: $ref: "transform-1.1.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/pseudoconic-1.0.0.yaml0000644000446400020070000000064414026112647031616 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/pseudoconic-1.0.0" title: | Base class of all pseudoconic projections. description: | Pseudoconics are a subclass of conics with concentric parallels. allOf: - $ref: "transform-1.0.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/divide-1.1.0.yaml0000644000446400020070000000155014155735241030551 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/divide-1.1.0" tag: "tag:stsci.edu:asdf/transform/divide-1.1.0" title: > Perform a list of subtransforms in parallel and then divide their results. description: | Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. examples: - - A list of transforms, performed in parallel, and then combined through division. - | !transform/divide-1.1.0 forward: - !transform/shift-1.1.0 offset: 2.0 - !transform/shift-1.1.0 offset: 2.0 allOf: - $ref: "transform-1.1.0" - properties: forward: type: array items: $ref: "transform-1.1.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/airy-1.1.0.yaml0000644000446400020070000000116114026112647030243 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/airy-1.1.0" tag: "tag:stsci.edu:asdf/transform/airy-1.1.0" title: | The Airy projection. description: | Corresponds to the `AIR` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. allOf: - $ref: "zenithal-1.1.0" - type: object properties: theta_b: type: number description: | The latitude $\theta_b$ at which to minimize the error, in degrees. default: 90 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/zenithal_equidistant-1.0.0.yaml0000644000446400020070000000136614026112647033535 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/zenithal_equidistant-1.0.0" tag: "tag:stsci.edu:asdf/transform/zenithal_equidistant-1.0.0" title: | The zenithal equidistant projection. description: | Corresponds to the `ARC` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.0.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - R_\theta$$ And the sky-to-pixel transformation is defined as: $$R_\theta = 90^\circ - \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "zenithal-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/gaussian2d-1.0.0.yaml0000644000446400020070000000376614026112647031353 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/gaussian2d-1.0.0" tag: "tag:stsci.edu:asdf/transform/gaussian2d-1.0.0" title: > A 2D Gaussian model. description: > A 2D gaussian distribution. examples: - - $f(x, y) = 10.0 e^{-a\left(x - 1.5\right)^{2} -b\left(x - 1.5\right) \left(y - 2.5\right) -c\left(y - 2.5\right)^{2}}$ using the following definitions $a = \left(\frac{\cos^{2}{\left (0 \right )}}{2*0.25^{2}} +\frac{\sin^{2}{\left (0 \right )}}{2*0.375^{2}}\right)$, $b = \left(\frac{\sin{\left (2 *0 \right )}}{2 *0.25^{2}} -\frac{\sin{\left (2 *0 \right )}}{2*0.375^{2}}\right)$, $c = \left(\frac{\sin^{2}{\left (0\right )}}{2*0.25^{2}} +\frac{\cos^{2}{\left (0 \right )}}{2*0.375^{2}}\right)$ - | !transform/gaussian2d-1.0.0 amplitude: 10.0 bounding_box: - [0.4375, 4.5625] - [0.125, 2.875] theta: 0.0 x_mean: 1.5 x_stddev: 0.25 y_mean: 2.5 y_stddev: 0.375 allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Amplitude. x_mean: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Mean in x. y_mean: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Mean in y. x_stddev: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Standard deviation in x. y_stddev: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Standard deviation in y. theta: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Rotation angle in radians, increases counterclockwise. required: ['amplitude', 'x_mean', 'y_mean', 'x_stddev', 'y_stddev', 'theta'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/cylindrical-1.2.0.yaml0000644000446400020070000000063114026112647031576 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/cylindrical-1.2.0" title: | Base class of all cylindrical projections. description: | The surface of cylindrical projections is a cylinder. allOf: - $ref: "transform-1.2.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/cylindrical_equal_area-1.0.0.yaml0000644000446400020070000000162714026112647033761 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/cylindrical_equal_area-1.0.0" tag: "tag:stsci.edu:asdf/transform/cylindrical_equal_area-1.0.0" title: | The cylindrical equal area projection. description: | Corresponds to the `CEA` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^{\circ}}\lambda y\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\frac{\sin \theta}{\lambda}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "cylindrical-1.0.0" - type: object properties: lambda: type: number description: | Radius of the cylinder in spherical radii, default is 1. default: 1 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/box1d-1.0.0.yaml0000644000446400020070000000175214026112647030321 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/box1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/box1d-1.0.0" title: > One dimensional box model. description: > One dimensional box. examples: - - A 1D box of width 4.0, amplitude 10.0, centered at x=1.5. - | !transform/box1d-1.0.0 amplitude: 10.0 bounding_box: [-0.5, 3.5] width: 4.0 x_0: 1.5 allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Amplitude. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Position of the center of the box model. width: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Width of box. required: ['amplitude', 'x_0', 'width'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/subtract-1.1.0.yaml0000644000446400020070000000156314155735241031140 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/subtract-1.1.0" tag: "tag:stsci.edu:asdf/transform/subtract-1.1.0" title: > Perform a list of subtransforms in parallel and then subtract their results. description: | Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. examples: - - A list of transforms, performed in parallel, and then combined through subtraction. - | !transform/subtract-1.1.0 forward: - !transform/shift-1.1.0 offset: 2.0 - !transform/shift-1.1.0 offset: 3.0 allOf: - $ref: "transform-1.1.0" - properties: forward: type: array items: $ref: "transform-1.1.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/quad_spherical_cube-1.0.0.yaml0000644000446400020070000000071314026112647033262 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/quad_spherical_cube-1.0.0" tag: "tag:stsci.edu:asdf/transform/quad_spherical_cube-1.0.0" title: | Quadrilateralized spherical cube projection. description: | Corresponds to the `QSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "quadcube-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/rotate_sequence_3d-1.0.0.yaml0000644000446400020070000000244314026112647033056 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/rotate_sequence_3d-1.0.0" tag: "tag:stsci.edu:asdf/transform/rotate_sequence_3d-1.0.0" title: > Rotation in 3D space. description: | Rotation in 3D space by arbitrary number of angles about arbitrary order of "x", "y", "z" axes. examples: - - A sequence of rotation around 5 axes.. - | !transform/rotate_sequence_3d-1.0.0 angles: [-0.0193, -0.1432, -0.04, -65.60, 273.089] axes_order: zyxyz rotation_type: cartesian allOf: - $ref: "transform-1.2.0" - type: object properties: angles: type: array items: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | The angles of rotation in units of deg. axes_order: description: | A sequence of "x", "y" or "z" characters representing an axis of rotation. The number of characters must equal the number of angles. For the JWST V23 to sky transform the axes are zyxyz. type: string rotation_type: description: | The type of rotation class to nitialize type: str enum: [spherical, cartesian] required: [angles, axes_order, rotation_type] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/exponential1d-1.0.0.yaml0000644000446400020070000000145614026112647032060 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/exponential1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/exponential1d-1.0.0" title: > One dimensional exponential model. description: > One dimensional exponential model. examples: - - $$f(x) = 10.0e^{x/2.5}$$ - | !transform/exponential1d-1.0.0 {amplitude: 10.0, tau: 2.5} allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Amplitude or scaling factor. r_core: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Denominator in exponent. required: ['amplitude', 'tau'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/scale-1.1.0.yaml0000644000446400020070000000065314026112647030373 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/scale-1.1.0" tag: "tag:stsci.edu:asdf/transform/scale-1.1.0" title: > A Scale model. description: > Multiply the input by a factor. allOf: - $ref: "transform-1.1.0" - type: object properties: factor: type: number description: Multiplication factor. required: [factor] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/plate_carree-1.2.0.yaml0000644000446400020070000000123214026112647031725 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/plate_carree-1.2.0" tag: "tag:stsci.edu:asdf/transform/plate_carree-1.2.0" title: | The plate carrée projection. description: | Corresponds to the `CAR` projection in the FITS WCS standard. The main virtue of this transformation is its simplicity. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "cylindrical-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_perspective-1.0.0.yaml0000644000446400020070000000142114026112647033001 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_perspective-1.0.0" tag: "tag:stsci.edu:asdf/transform/conic_perspective-1.0.0" title: | Colles' conic perspecitve projection. description: | Corresponds to the `COP` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.0.0) for the definition of the full transformation. The transformation is defined as: $$C &= \sin \theta_a \\ R_\theta &= \frac{180^\circ}{\pi} \cos \eta [ \cot \theta_a - \tan(\theta - \theta_a)] \\ Y_0 &= \frac{180^\circ}{\pi} \cos \eta \cot \theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/ricker_wavelet2d-1.0.0.yaml0000644000446400020070000000232714026112647032537 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/ricker_wavelet2d-1.0.0" tag: "tag:stsci.edu:asdf/transform/ricker_wavelet2d-1.0.0" title: > Two dimensional Ricker Wavelet model. description: > Two dimensional Ricker Wavelet model. examples: - - $$f(x)={10.0\left(1-\frac{\left(x-0.5\right)^{2}-(y-1.5)^2}{2.0^{2}}\right)e^{-\frac{\left(x-0.5\right)^{2}-(y-1.5)^2)}{2*2.0^{2}}}}$$ - | !transform/ricker_wavelet2d-1.0.0 {amplitude: 10.0, sigma: 2.0, x_0: 0.5, y_0: 1.5} allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Amplitude. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: x position of the peak. y_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: y position of the peak. sigma: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Width of the Ricker wavelet. required: ['amplitude', 'x_0', 'y_0', 'sigma'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/domain-1.0.0.yaml0000644000446400020070000000203614026112647030547 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/domain-1.0.0" tag: "tag:stsci.edu:asdf/transform/domain-1.0.0" title: > Defines the domain of an input axis. (deprecated since 1.1.0) description: > Describes the range of acceptable input values to a particular axis of a transform. examples: - - The domain `[0, 1)`. - | !transform/domain-1.0.0 lower: 0 upper: 1 includes_lower: true properties: lower: description: > The lower value of the domain. If not provided, the domain has no lower limit. type: number default: -.inf upper: description: > The upper value of the domain. If not provided, the domain has no upper limit. type: number default: .inf includes_lower: description: If `true`, the domain includes `lower`. type: boolean default: false includes_upper: description: If `true`, the domain includes `upper`. type: boolean default: false ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/hammer_aitoff-1.2.0.yaml0000644000446400020070000000154014026112647032102 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/hammer_aitoff-1.2.0" tag: "tag:stsci.edu:asdf/transform/hammer_aitoff-1.2.0" title: | Hammer-Aitoff projection. description: | Corresponds to the `AIT` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= 2 \arg \left(2Z^2 - 1, \frac{\pi}{180^\circ} \frac{Z}{2}x\right) \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^\circ}yZ\right)$$ And the sky-to-pixel transformation is defined as: $$x &= 2 \gamma \cos \theta \sin \frac{\phi}{2} \\ y &= \gamma \sin \theta$$ where: $$\gamma = \frac{180^\circ}{\pi} \sqrt{\frac{2}{1 + \cos \theta \cos(\phi / 2)}}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "pseudocylindrical-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/healpix-1.0.0.yaml0000644000446400020070000000143514026112647030734 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/healpix-1.0.0" tag: "tag:stsci.edu:asdf/transform/healpix-1.0.0" title: | HEALPix projection. description: | Corresponds to the `HPX` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "transform-1.0.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky H: type: number description: | The number of facets in the longitude direction. default: 4.0 X: type: number description: | The number of facets in the latitude direction. default: 3.0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/label_mapper-1.0.0.yaml0000644000446400020070000001021214026112647031716 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/label_mapper-1.0.0" tag: "tag:stsci.edu:asdf/transform/label_mapper-1.0.0" title: > Represents a mapping from a coordinate value to a label. description: | A label mapper instance maps inputs to a label. It is used together with [regions_selector](ref:http://stsci.edu/schemas/asdf/transform/regions_selector-1.0.0). The [label_mapper](ref:http://stsci.edu/schemas/asdf/transform/label_mapper-1.0.0) returns the label corresponding to given inputs. The [regions_selector](ref:http://stsci.edu/schemas/asdf/transform/regions_selector-1.0.0) returns the transform corresponding to this label. This maps inputs (e.g. pixels on a detector) to transforms uniquely. examples: - - Map array indices are to labels. - | !transform/label_mapper-1.0.0 mapper: !core/ndarray-1.0.0 [[1, 0, 2], [1, 0, 2], [1, 0, 2]] - - Map numbers dictionary to transforms which return labels. - | !transform/label_mapper-1.0.0 mapper: !!omap - !!omap labels: [-1.67833272, -1.9580548, -1.118888] - !!omap models: - !transform/compose-1.0.0 forward: - !transform/remap_axes-1.0.0 mapping: [1] - !transform/shift-1.0.0 {offset: 6.0} - !transform/compose-1.0.0 forward: - !transform/remap_axes-1.0.0 mapping: [1] - !transform/shift-1.0.0 {offset: 2.0} - !transform/compose-1.0.0 forward: - !transform/remap_axes-1.0.0 mapping: [1] - !transform/shift-1.0.0 {offset: 4.0} inputs: [x, y] inputs_mapping: !transform/remap_axes-1.0.0 mapping: [0] n_inputs: 2 - - Map a number wihtin a range of numbers to transforms which return labels. - | !transform/label_mapper-1.0.0 mapper: !!omap - !!omap labels: - [3.2, 4.1] - [2.67, 2.98] - [1.95, 2.3] - !!omap models: - !transform/compose-1.0.0 forward: - !transform/remap_axes-1.0.0 mapping: [1] - !transform/shift-1.0.0 {offset: 6.0} - !transform/compose-1.0.0 forward: - !transform/remap_axes-1.0.0 mapping: [1] - !transform/shift-1.0.0 {offset: 2.0} - !transform/compose-1.0.0 forward: - !transform/remap_axes-1.0.0 mapping: [1] - !transform/shift-1.0.0 {offset: 4.0} inputs: [x, y] inputs_mapping: !transform/remap_axes-1.0.0 mapping: [0] n_inputs: 2 allOf: - $ref: "transform-1.0.0" - type: object properties: mapper: description: | An array with the shape of the detector/observation. Pixel values are of type integer or string and represent region labels. Pixels which are not within any region have value 0 or " ". anyOf: - $ref: "../core/ndarray-1.0.0" - type: object properties: labels: type: array items: anyOf: - type: number - type: array items: type: number minLength: 2 maxLength: 2 models: type: array items: $ref: "transform-1.0.0" inputs: type: array items: type: string description: | Names of inputs. inputs_mapping: $ref: "transform-1.0.0" description: | [mapping](ref:http://stsci.edu/schemas/asdf/transform/remap-axes-1.0.0) atol: type: number description: | absolute tolerance to compare keys in mapper. required: [mapper] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/constant-1.3.0.yaml0000644000446400020070000000114614026112647031135 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/constant-1.3.0" tag: "tag:stsci.edu:asdf/transform/constant-1.3.0" title: > A transform that takes no inputs and always outputs a constant value. description: | Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, which always outputs zero values. allOf: - $ref: "transform-1.2.0" - type: object properties: value: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number required: [value] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/healpix_polar-1.0.0.yaml0000644000446400020070000000106614026112647032131 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/healpix_polar-1.0.0" tag: "tag:stsci.edu:asdf/transform/healpix_polar-1.0.0" title: | HEALPix polar, aka "butterfly", projection. description: | Corresponds to the `XPH` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "transform-1.0.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/stereographic-1.2.0.yaml0000644000446400020070000000144014026112647032137 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/stereographic-1.2.0" tag: "tag:stsci.edu:asdf/transform/stereographic-1.2.0" title: | The stereographic projection. description: | Corresponds to the `STG` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^{\circ} - 2 \tan^{-1}\left(\frac{\pi R_\theta}{360^{\circ}}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\frac{2 \cos \theta}{1 + \sin \theta}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "zenithal-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/parabolic-1.1.0.yaml0000644000446400020070000000137114026112647031236 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/parabolic-1.1.0" tag: "tag:stsci.edu:asdf/transform/parabolic-1.1.0" title: | Parabolic projection. description: | Corresponds to the `PAR` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{180^\circ}{\pi} \frac{x}{1 - 4(y / 180^\circ)^2} \\ \theta &= 3 \sin^{-1}\left(\frac{y}{180^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \left(2\cos\frac{2\theta}{3} - 1\right) \\ y &= 180^\circ \sin \frac{\theta}{3}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "pseudocylindrical-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/concatenate-1.0.0.yaml0000644000446400020070000000365414155735241031577 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/concatenate-1.0.0" tag: "tag:stsci.edu:asdf/transform/concatenate-1.0.0" title: > Send axes to different subtransforms. description: | Transforms a set of separable inputs by splitting the axes apart, sending them through the given subtransforms in parallel, and finally concatenating the subtransform output axes back together. The input axes are assigned to each subtransform in order. If the number of input axes is unequal to the sum of the number of input axes of all of the subtransforms, that is considered an error case. The output axes from each subtransform are appended together to make up the resulting output axes. For example, given 5 input axes, and 3 subtransforms with the following orders: 1. transform A: 2 in -> 2 out 1. transform B: 1 in -> 2 out 1. transform C: 2 in -> 1 out The transform is performed as follows: ``` : i0 i1 i2 i3 i4 : | | | | | : +---------+ +---------+ +----------+ : | A | | B | | C | : +---------+ +---------+ +----------+ : | | | | | : o0 o1 o2 o3 o4 ``` If reordering of the input or output axes is required, use in series with the `remap_axes` transform. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. examples: - - The example in the description - | !transform/concatenate-1.0.0 forward: - !transform/shift-1.0.0 offset: 2.0 - !transform/shift-1.0.0 offset: 3.0 - !transform/shift-1.0.0 offset: 5.0 allOf: - $ref: "transform-1.0.0" - properties: forward: type: array items: $ref: "transform-1.0.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/compose-1.2.0.yaml0000644000446400020070000000215114155735241030751 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/compose-1.2.0" tag: "tag:stsci.edu:asdf/transform/compose-1.2.0" title: > Perform a list of subtransforms in series. description: | The output of each subtransform is fed into the input of the next subtransform. The number of output dimensions of each subtransform must be equal to the number of input dimensions of the next subtransform in list. To reorder or add/drop axes, insert `remap_axes` transforms in the subtransform list. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, by reversing the list of transforms and applying the inverse of each. examples: - - A series of transforms - | !transform/compose-1.2.0 forward: - !transform/shift-1.2.0 offset: 2.0 - !transform/shift-1.2.0 offset: 3.0 allOf: - $ref: "transform-1.2.0" - properties: forward: type: array items: $ref: "transform-1.2.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_orthomorphic-1.0.0.yaml0000644000446400020070000000217614026112647033175 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_orthomorphic-1.0.0" tag: "tag:stsci.edu:asdf/transform/conic_orthomorphic-1.0.0" title: | Conic orthomorphic projection. description: | Corresponds to the `COO` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.0.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{\ln \left( \frac{\cos\theta_2}{\cos\theta_1} \right)} {\ln \left[ \frac{\tan\left(\frac{90^\circ-\theta_2}{2}\right)} {\tan\left(\frac{90^\circ-\theta_1}{2}\right)} \right] } \\ R_\theta &= \psi \left[ \tan \left( \frac{90^\circ - \theta}{2} \right) \right]^C \\ Y_0 &= \psi \left[ \tan \left( \frac{90^\circ - \theta_a}{2} \right) \right]^C$$ where: $$\psi = \frac{180^\circ}{\pi} \frac{\cos \theta} {C\left[\tan\left(\frac{90^\circ-\theta}{2}\right)\right]^C}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/mercator-1.1.0.yaml0000644000446400020070000000131514026112647031114 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/mercator-1.1.0" tag: "tag:stsci.edu:asdf/transform/mercator-1.1.0" title: | The Mercator projection. description: | Corresponds to the `MER` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= 2 \tan^{-1}\left(e^{y \pi / 180^{\circ}}\right)-90^{\circ}$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\ln \tan \left(\frac{90^{\circ} + \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "cylindrical-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/logarithmic1d-1.0.0.yaml0000644000446400020070000000150514026112647032027 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/logarithmic1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/logarithmic1d-1.0.0" title: > One dimensional (natural) logarithmic model. description: > One dimensional (natural) logarithmic model. examples: - - $$f(x) = 10.0ln(\frac{x}{2.5})$$ - | !transform/logarithmic1d-1.0.0 {amplitude: 10.0, tau: 2.5} allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Amplitude or scaling factor. r_core: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Denominator in log. required: ['amplitude', 'tau'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/hammer_aitoff-1.0.0.yaml0000644000446400020070000000154014026112647032100 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/hammer_aitoff-1.0.0" tag: "tag:stsci.edu:asdf/transform/hammer_aitoff-1.0.0" title: | Hammer-Aitoff projection. description: | Corresponds to the `AIT` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= 2 \arg \left(2Z^2 - 1, \frac{\pi}{180^\circ} \frac{Z}{2}x\right) \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^\circ}yZ\right)$$ And the sky-to-pixel transformation is defined as: $$x &= 2 \gamma \cos \theta \sin \frac{\phi}{2} \\ y &= \gamma \sin \theta$$ where: $$\gamma = \frac{180^\circ}{\pi} \sqrt{\frac{2}{1 + \cos \theta \cos(\phi / 2)}}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "pseudocylindrical-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_perspective-1.2.0.yaml0000644000446400020070000000136314026112647033010 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_perspective-1.2.0" tag: "tag:stsci.edu:asdf/transform/conic_perspective-1.2.0" title: | Colles' conic perspecitve projection. description: | Corresponds to the `COP` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.2.0) for the definition of the full transformation. The transformation is defined as: $$C &= \sin \theta_a \\ R_\theta &= \frac{180^\circ}{\pi} \cos \eta [ \cot \theta_a - \tan(\theta - \theta_a)] \\ Y_0 &= \frac{180^\circ}{\pi} \cos \eta \cot \theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/sersic2d-1.0.0.yaml0000644000446400020070000000353014026112647031016 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/sersic2d-1.0.0" tag: "tag:stsci.edu:asdf/transform/sersic2d-1.0.0" title: > Two dimensional Sersic surface brightness profile. description: > Two dimensional Sersic surface brightness profile. examples: - - $I(x, y)=I(r)=I(x, y)=I(r)=10.0\exp\left\{-b_n\left[\left(\frac{(\sqrt{(x-0.5)^2 + (y-1.5)^2})}{1.0}\right)^{(1/4)}-1\right]\right\}$ where $b_n$ is defined such that $r_e$ contains half the total luminosity (can be solved for numerically). - | !transform/sersic2d-1.0.0 {amplitude: 10.0, ellip: 0.0, n: 4.0, r_eff: 1.0, theta: 0.0, x_0: 0.5, y_0: 1.5} allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Surface brightness at r_eff. r_eff: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Effective (half-light) radius. n: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Sersic index. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: x position of the center. y_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: y position of the center. ellip: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Ellipticity. theta: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Rotation angle in radians, increases counterclockwise from the positive x-axis. required: ['amplitude', 'r_eff', 'n', 'x_0', 'y_0', 'ellip', 'theta'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/airy_disk2d-1.0.0.yaml0000644000446400020070000000254414026112647031510 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/airy_disk2d-1.0.0" tag: "tag:stsci.edu:asdf/transform/airy_disk2d-1.0.0" title: > Two dimensional Airy disk model. description: > Two dimensional Airy disk model. examples: - - $f(r)=43.8[\frac{2J_1(\frac{\pi\sqrt{(x-0.5)^2+(y-1.5)^2}}{10.2/R_z})}{\frac{\pi\sqrt{(x-0.5)^2+(y-1.5)^2}}{10.2/R_z}}]^2$, where $J_1$ is the first order Bessel function and $R_z=1.2196698912665045$ - | !transform/airy_disk2d-1.0.0 {amplitude: 43.8, radius: 10.2, x_0: 0.5, y_0: 1.5} allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Amplitude of the Airy function. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: x position of the maximum of the Airy function. y_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: y position of the maximum of the Airy function. radius: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: The radius of the Airy disk (radius of the first zero). required: ['amplitude', 'x_0', 'y_0', 'radius'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/plate_carree-1.0.0.yaml0000644000446400020070000000123214026112647031723 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/plate_carree-1.0.0" tag: "tag:stsci.edu:asdf/transform/plate_carree-1.0.0" title: | The plate carrée projection. description: | Corresponds to the `CAR` projection in the FITS WCS standard. The main virtue of this transformation is its simplicity. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "cylindrical-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_orthomorphic-1.2.0.yaml0000644000446400020070000000214014026112647033166 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_orthomorphic-1.2.0" tag: "tag:stsci.edu:asdf/transform/conic_orthomorphic-1.2.0" title: | Conic orthomorphic projection. description: | Corresponds to the `COO` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.2.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{\ln \left( \frac{\cos\theta_2}{\cos\theta_1} \right)} {\ln \left[ \frac{\tan\left(\frac{90^\circ-\theta_2}{2}\right)} {\tan\left(\frac{90^\circ-\theta_1}{2}\right)} \right] } \\ R_\theta &= \psi \left[ \tan \left( \frac{90^\circ - \theta}{2} \right) \right]^C \\ Y_0 &= \psi \left[ \tan \left( \frac{90^\circ - \theta_a}{2} \right) \right]^C$$ where: $$\psi = \frac{180^\circ}{\pi} \frac{\cos \theta} {C\left[\tan\left(\frac{90^\circ-\theta}{2}\right)\right]^C}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/concatenate-1.2.0.yaml0000644000446400020070000000365414155735241031601 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/concatenate-1.2.0" tag: "tag:stsci.edu:asdf/transform/concatenate-1.2.0" title: > Send axes to different subtransforms. description: | Transforms a set of separable inputs by splitting the axes apart, sending them through the given subtransforms in parallel, and finally concatenating the subtransform output axes back together. The input axes are assigned to each subtransform in order. If the number of input axes is unequal to the sum of the number of input axes of all of the subtransforms, that is considered an error case. The output axes from each subtransform are appended together to make up the resulting output axes. For example, given 5 input axes, and 3 subtransforms with the following orders: 1. transform A: 2 in -> 2 out 1. transform B: 1 in -> 2 out 1. transform C: 2 in -> 1 out The transform is performed as follows: ``` : i0 i1 i2 i3 i4 : | | | | | : +---------+ +---------+ +----------+ : | A | | B | | C | : +---------+ +---------+ +----------+ : | | | | | : o0 o1 o2 o3 o4 ``` If reordering of the input or output axes is required, use in series with the `remap_axes` transform. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. examples: - - The example in the description - | !transform/concatenate-1.2.0 forward: - !transform/shift-1.2.0 offset: 2.0 - !transform/shift-1.2.0 offset: 3.0 - !transform/shift-1.2.0 offset: 5.0 allOf: - $ref: "transform-1.2.0" - properties: forward: type: array items: $ref: "transform-1.2.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/compose-1.0.0.yaml0000644000446400020070000000215114155735241030747 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/compose-1.0.0" tag: "tag:stsci.edu:asdf/transform/compose-1.0.0" title: > Perform a list of subtransforms in series. description: | The output of each subtransform is fed into the input of the next subtransform. The number of output dimensions of each subtransform must be equal to the number of input dimensions of the next subtransform in list. To reorder or add/drop axes, insert `remap_axes` transforms in the subtransform list. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, by reversing the list of transforms and applying the inverse of each. examples: - - A series of transforms - | !transform/compose-1.0.0 forward: - !transform/shift-1.0.0 offset: 2.0 - !transform/shift-1.0.0 offset: 3.0 allOf: - $ref: "transform-1.0.0" - properties: forward: type: array items: $ref: "transform-1.0.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/constant-1.1.0.yaml0000644000446400020070000000105014026112647031125 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/constant-1.1.0" tag: "tag:stsci.edu:asdf/transform/constant-1.1.0" title: > A transform that takes no inputs and always outputs a constant value. description: | Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform, which always outputs zero values. allOf: - $ref: "transform-1.1.0" - type: object properties: value: type: number required: [value] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/trapezoid1d-1.0.0.yaml0000644000446400020070000000240514026112647031526 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/trapezoid1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/trapezoid1d-1.0.0" title: > One dimensional trapezoid model. description: > One dimensional trapezoid. examples: - - A 1D trapezoid centered at x=0.5, of width 5.0, slope of tails 1.0, and amplitude 10.0 - | !transform/trapezoid1d-1.0.0 amplitude: 10.0 bounding_box: [-12.0, 13.0] slope: 1.0 width: 5.0 x_0: 0.5 allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Amplitude of the trapezoid. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Center position of the trapezoid. width: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Width of the constant part of the trapezoid. slope: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Slope of the tails of the trapezoid. required: ['amplitude', 'x_0', 'width', 'slope'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/healpix_polar-1.2.0.yaml0000644000446400020070000000106614026112647032133 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/healpix_polar-1.2.0" tag: "tag:stsci.edu:asdf/transform/healpix_polar-1.2.0" title: | HEALPix polar, aka "butterfly", projection. description: | Corresponds to the `XPH` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "transform-1.2.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/stereographic-1.0.0.yaml0000644000446400020070000000147614026112647032146 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/stereographic-1.0.0" tag: "tag:stsci.edu:asdf/transform/stereographic-1.0.0" title: | The stereographic projection. description: | Corresponds to the `STG` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.0.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^{\circ} - 2 \tan^{-1}\left(\frac{\pi R_\theta}{360^{\circ}}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\frac{2 \cos \theta}{1 + \sin \theta}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "zenithal-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/lorentz1d-1.0.0.yaml0000644000446400020070000000202014026112647031213 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/lorentz1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/lorentz1d-1.0.0" title: > One dimensional Lorentzian model. description: > One dimensional Lorentzian model. examples: - - $$f(x) = \frac{10.0 *5.0^{2}}{5.0^{2} + \left(x - 0.5\right)^{2}}$$ - | !transform/lorentz1d-1.0.0 amplitude: 10.0 bounding_box: [-124.5, 125.5] fwhm: 5.0 x_0: 0.5 allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Peak value. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Position of the peak. fwhm: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Full width at half maximum. required: ['amplitude', 'x_0', 'fwhm'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/label_mapper-1.2.0.yaml0000644000446400020070000001065414026112647031732 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/label_mapper-1.2.0" tag: "tag:stsci.edu:asdf/transform/label_mapper-1.2.0" title: > Represents a mapping from a coordinate value to a label. description: | A label mapper instance maps inputs to a label. It is used together with [regions_selector](ref:transform/regions_selector-1.2.0). The [label_mapper](ref:transform/label_mapper-1.2.0) returns the label corresponding to given inputs. The [regions_selector](ref:transform/regions_selector-1.2.0) returns the transform corresponding to this label. This maps inputs (e.g. pixels on a detector) to transforms uniquely. examples: - - Map array indices are to labels. - | !transform/label_mapper-1.2.0 mapper: !core/ndarray-1.0.0 [[1, 0, 2], [1, 0, 2], [1, 0, 2]] - - Map numbers dictionary to transforms which return labels. - | !transform/label_mapper-1.2.0 mapper: !!omap - !!omap labels: [-1.67833272, -1.9580548, -1.118888] - !!omap models: - !transform/compose-1.2.0 forward: - !transform/remap_axes-1.2.0 mapping: [1] - !transform/shift-1.2.0 {offset: 6.0} - !transform/compose-1.2.0 forward: - !transform/remap_axes-1.2.0 mapping: [1] - !transform/shift-1.2.0 {offset: 2.0} - !transform/compose-1.2.0 forward: - !transform/remap_axes-1.2.0 mapping: [1] - !transform/shift-1.2.0 {offset: 4.0} inputs: [x, y] inputs_mapping: !transform/remap_axes-1.2.0 mapping: [0] n_inputs: 2 - - Map a number wihtin a range of numbers to transforms which return labels. - | !transform/label_mapper-1.2.0 mapper: !!omap - !!omap labels: - [3.2, 4.1] - [2.67, 2.98] - [1.95, 2.3] - !!omap models: - !transform/compose-1.2.0 forward: - !transform/remap_axes-1.2.0 mapping: [1] - !transform/shift-1.2.0 {offset: 6.0} - !transform/compose-1.2.0 forward: - !transform/remap_axes-1.2.0 mapping: [1] - !transform/shift-1.2.0 {offset: 2.0} - !transform/compose-1.2.0 forward: - !transform/remap_axes-1.2.0 mapping: [1] - !transform/shift-1.2.0 {offset: 4.0} inputs: [x, y] inputs_mapping: !transform/remap_axes-1.2.0 mapping: [0] n_inputs: 2 allOf: - $ref: "transform-1.2.0" - type: object properties: mapper: description: | A mapping of inputs to labels. In the general case this is a `astropy.modeling.core.Model`. It could be a numpy array with the shape of the detector/observation. Pixel values are of type integer or string and represent region labels. Pixels which are not within any region have value ``no_label``. It could be a dictionary which maps tuples to labels or floating point numbers to labels. anyOf: - $ref: "../core/ndarray-1.0.0" - $ref: "transform-1.2.0" - type: object properties: labels: type: array items: anyOf: - type: number - type: array items: type: number minLength: 2 maxLength: 2 models: type: array items: $ref: "transform-1.2.0" inputs: type: array items: type: string description: | Names of inputs. inputs_mapping: $ref: "transform-1.2.0" description: | [mapping](ref:transform/remap_axes-1.2.0) atol: type: number description: | absolute tolerance to compare keys in mapper. no_label: description: | Fill in value for missing output. anyOf: - type: number - type: string required: [mapper] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/healpix-1.2.0.yaml0000644000446400020070000000143514026112647030736 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/healpix-1.2.0" tag: "tag:stsci.edu:asdf/transform/healpix-1.2.0" title: | HEALPix projection. description: | Corresponds to the `HPX` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "transform-1.2.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky H: type: number description: | The number of facets in the longitude direction. default: 4.0 X: type: number description: | The number of facets in the latitude direction. default: 3.0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/exponential_cutoff_power_law1d-1.0.0.yaml0000644000446400020070000000232114026112647035475 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/exponential_cutoff_power_law1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/exponential_cutoff_power_law1d-1.0.0" title: > One dimensional power law model with an exponential cutoff. description: > One dimensional power law model with an exponential cutoff. examples: - - $$f(x) = 10.0 (x / 5.0) ^ {-2.0} \exp (-x / 7.0)$$ - | !transform/exponential_cutoff_power_law1d-1.0.0 {alpha: 2.0, amplitude: 10.0, x_0: 5.0, x_cutoff: 7.0} allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Model amplitude. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Reference point. alpha: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Power law index. x_cutoff: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Cutoff point. required: ['amplitude', 'x_0', 'alpha', 'x_cutoff'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/cylindrical-1.0.0.yaml0000644000446400020070000000063114026112647031574 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/cylindrical-1.0.0" title: | Base class of all cylindrical projections. description: | The surface of cylindrical projections is a cylinder. allOf: - $ref: "transform-1.0.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/tabular-1.1.0.yaml0000644000446400020070000000353614026112647030741 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/tabular-1.1.0" tag: "tag:stsci.edu:asdf/transform/tabular-1.1.0" title: > A Tabular model. description: | Tabular represents a lookup table with values corresponding to some grid points. It computes the interpolated values corresponding to the given inputs. Three methods of interpolation are supported - "linear", "nearest" and "splinef2d". It supports extrapolation. allOf: - $ref: "transform-1.1.0" - type: object properties: lookup_table: description: > Table values. anyOf: - $ref: ../core/ndarray-1.0.0 - type: array points: type: array items: anyOf: - type: array - $ref: ../core/ndarray-1.0.0 description: | Grid values - each row in the array corresponds to a dimension in the lookup table. The grid does not have to be regular. method: description: | Method of interpolation. Supported are "linear" and "nearest", and "splinef2d". "splinef2d" is only supported for 2-dimensional data. type: string enum: ["linear", "nearest", "splinef2d"] default: "linear" bounds_error: description: | If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then "fill_value" is used. type: boolean default: true fill_value: description: | If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Extrapolation is not supported by method "splinef2d". type: number required: [lookup_table] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/smoothly_broken_power_law1d-1.0.0.yaml0000644000446400020070000000267714026112647035035 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/smoothly_broken_power_law1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/smoothly_broken_power_law1d-1.0.0" title: > One dimensional smoothly broken power law model. description: > One dimensional smoothly broken power law model. examples: - - $$f(x) = 10*(\frac{x}{5.0})^{-2.0}\{\frac{1}{2}[1+(\frac{x}{5.0})^{1/0.5}]\}^{(2.0- 3.0)0.5}$$ - | !transform/smoothly_broken_power_law1d-1.0.0 {alpha_1: 2.0, alpha_2: 2.0, amplitude: 10.0, delta: 0.5, x_break: 5.0} allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Model amplitude at the break point. x_break: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Break point. alpha_1: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Power law index for x < x_break. alpha_2: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Power law index for x > x_break. delta: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Smoothness parameter. required: ['amplitude', 'x_break', 'alpha_1', 'alpha_2', 'delta'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/plummer1d-1.0.0.yaml0000644000446400020070000000154414026112647031211 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/plummer1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/plummer1d-1.0.0" title: > Two dimensional Plummer model. description: > One dimensional Plummer density profile model. examples: - - $$\rho(r)=\frac{3*15.0}{4\pi *5.5^3}(1+\frac{r^2}{5.5^2})^{-5/2}$$ - | !transform/plummer1d-1.0.0 {mass: 15.0, r_plum: 5.5} allOf: - $ref: "transform-1.2.0" - type: object properties: mass: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Total mass of cluster. r_plum: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Scale parameter which sets the size of the cluster core. required: ['mass', 'r_plum'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/zenithal_equidistant-1.2.0.yaml0000644000446400020070000000133014026112647033526 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/zenithal_equidistant-1.2.0" tag: "tag:stsci.edu:asdf/transform/zenithal_equidistant-1.2.0" title: | The zenithal equidistant projection. description: | Corresponds to the `ARC` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - R_\theta$$ And the sky-to-pixel transformation is defined as: $$R_\theta = 90^\circ - \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "zenithal-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/gnomonic-1.1.0.yaml0000644000446400020070000000135014026112647031110 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/gnomonic-1.1.0" tag: "tag:stsci.edu:asdf/transform/gnomonic-1.1.0" title: | The gnomonic projection. description: | Corresponds to the `TAN` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "zenithal-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/pseudoconic-1.2.0.yaml0000644000446400020070000000064414026112647031620 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/pseudoconic-1.2.0" title: | Base class of all pseudoconic projections. description: | Pseudoconics are a subclass of conics with concentric parallels. allOf: - $ref: "transform-1.2.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/shift-1.1.0.yaml0000644000446400020070000000066314026112647030422 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/shift-1.1.0" tag: "tag:stsci.edu:asdf/transform/shift-1.1.0" title: > A Shift opeartion. description: > Apply an offset in one direction. allOf: - $ref: "transform-1.1.0" - type: object properties: offset: type: number description: Offset in one direction. required: [offset] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/cylindrical_equal_area-1.2.0.yaml0000644000446400020070000000172514026112647033762 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/cylindrical_equal_area-1.2.0" tag: "tag:stsci.edu:asdf/transform/cylindrical_equal_area-1.2.0" title: | The cylindrical equal area projection. description: | Corresponds to the `CEA` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= x \\ \theta &= \sin^{-1}\left(\frac{\pi}{180^{\circ}}\lambda y\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \\ y &= \frac{180^{\circ}}{\pi}\frac{\sin \theta}{\lambda}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "cylindrical-1.1.0" - type: object properties: lambda: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | Radius of the cylinder in spherical radii, default is 1. default: 1 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/quad_spherical_cube-1.2.0.yaml0000644000446400020070000000071314026112647033264 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/quad_spherical_cube-1.2.0" tag: "tag:stsci.edu:asdf/transform/quad_spherical_cube-1.2.0" title: | Quadrilateralized spherical cube projection. description: | Corresponds to the `QSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "quadcube-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/tangential_spherical_cube-1.2.0.yaml0000644000446400020070000000072014026112647034456 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/tangential_spherical_cube-1.2.0" tag: "tag:stsci.edu:asdf/transform/tangential_spherical_cube-1.2.0" title: | Tangential spherical cube projection. description: | Corresponds to the `TSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "quadcube-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/zenithal_perspective-1.1.0.yaml0000644000446400020070000000262314026112647033532 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/zenithal_perspective-1.1.0" tag: "tag:stsci.edu:asdf/transform/zenithal_perspective-1.1.0" title: | The zenithal perspective projection. description: | Corresponds to the `AZP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \arg(-y \cos \gamma, x) \\ \theta &= \left\{\genfrac{}{}{0pt}{}{\psi - \omega}{\psi + \omega + 180^{\circ}}\right.$$ where: $$\psi &= \arg(\rho, 1) \\ \omega &= \sin^{-1}\left(\frac{\rho \mu}{\sqrt{\rho^2 + 1}}\right) \\ \rho &= \frac{R}{\frac{180^{\circ}}{\pi}(\mu + 1) + y \sin \gamma} \\ R &= \sqrt{x^2 + y^2 \cos^2 \gamma}$$ And the sky-to-pixel transformation is defined as: $$x &= R \sin \phi \\ y &= -R \sec \gamma \cos \theta$$ where: $$R = \frac{180^{\circ}}{\pi} \frac{(\mu + 1) \cos \theta}{(\mu + \sin \theta) + \cos \theta \cos \phi \tan \gamma}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "zenithal-1.1.0" - type: object properties: mu: type: number description: | Distance from point of projection to center of sphere in spherical radii. default: 0 gamma: type: number description: | Look angle, in degrees. default: 0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/linear1d-1.0.0.yaml0000644000446400020070000000120014026112647030767 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/linear1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/linear1d-1.0.0" title: > A one dimensional line model description: > A one dimensional line model allOf: - $ref: "transform-1.2.0" - type: object properties: slope: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Slope of the straight line. intercept: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Intercept of the straight line. ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/bonne_equal_area-1.1.0.yaml0000644000446400020070000000230714026112647032562 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/bonne_equal_area-1.1.0" tag: "tag:stsci.edu:asdf/transform/bonne_equal_area-1.1.0" title: | Bonne's equal area pseudoconic projection. description: | Corresponds to the `BON` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi}{180^\circ} A_\phi R_\theta / \cos \theta \\ \theta &= Y_0 - R_\theta$$ where: $$R_\theta &= \mathrm{sign} \theta_1 \sqrt{x^2 + (Y_0 - y)^2} \\ A_\phi &= \arg\left(\frac{Y_0 - y}{R_\theta}, \frac{x}{R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= R_\theta \sin A_\phi \\ y &= -R_\theta \cos A_\phi + Y_0$$ where: $$A_\phi &= \frac{180^\circ}{\pi R_\theta} \phi \cos \theta \\ R_\theta &= Y_0 - \theta \\ Y_0 &= \frac{180^\circ}{\pi} \cot \theta_1 + \theta_1$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "pseudoconic-1.1.0" - type: object properties: theta1: type: number description: | Bonne conformal latitude, in degrees. default: 0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/transform-1.2.0.yaml0000644000446400020070000000147114026112647031317 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/transform-1.2.0" title: > A generic type used to mark where other transforms are accepted. description: > These objects are designed to be nested in arbitrary ways to build up transformation pipelines out of a number of low-level pieces. type: object properties: name: description: | A user-friendly name for the transform, to give it extra meaning. type: string inverse: description: | Explicitly sets the inverse transform of this transform. If the transform has a direct analytic inverse, this property is usually not necessary, as the ASDF-reading tool can provide it automatically. $ref: "transform-1.2.0" additionalProperties: true ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/regions_selector-1.2.0.yaml0000644000446400020070000000604114026112647032650 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/regions_selector-1.2.0" tag: "tag:stsci.edu:asdf/transform/regions_selector-1.2.0" title: > Represents a discontinuous transform. description: | Maps regions to transgorms and evaluates the transforms with the corresponding inputs. examples: - - Create a regions_selector schema for 2 regions, labeled "1" and "2". - | !transform/regions_selector-1.2.0 inputs: [x, y] label_mapper: !transform/label_mapper-1.2.0 mapper: !core/ndarray-1.0.0 datatype: int8 data: [[0, 1, 1, 0, 2, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 0, 2, 0]] outputs: [ra, dec, lam] selector: 1: !transform/compose-1.2.0 forward: - !transform/remap_axes-1.2.0 mapping: [0, 1, 1] - !transform/concatenate-1.2.0 forward: - !transform/concatenate-1.2.0 forward: - !transform/shift-1.2.0 {offset: 1.0} - !transform/shift-1.2.0 {offset: 2.0} - !transform/shift-1.2.0 {offset: 3.0} 2: !transform/compose-1.2.0 forward: - !transform/remap_axes-1.2.0 mapping: [0, 1, 1] - !transform/concatenate-1.2.0 forward: - !transform/concatenate-1.2.0 forward: - !transform/scale-1.2.0 {factor: 2.0} - !transform/scale-1.2.0 {factor: 3.0} - !transform/scale-1.2.0 {factor: 3.0} undefined_transform_value: .nan allOf: - $ref: "transform-1.2.0" - type: object properties: label_mapper: description: | An instance of [label_mapper-1.2.0](ref:transform/label_mapper-1.2.0) $ref: "./label_mapper-1.2.0" inputs: description: | Names of inputs. type: array items: type: string outputs: description: | Names of outputs. type: array items: type: string selector: description: | A mapping of regions to trransforms. type: object properties: labels: description: | An array of unique region labels. type: array items: type: - integer - string transforms: description: | A transform for each region. The order should match the order of labels. type: array items: $ref: "transform-1.2.0" undefined_transform_value: description: | Value to be returned if there's no transform defined for the inputs. type: number required: [label_mapper, inputs, outputs, selector] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic-1.3.0.yaml0000644000446400020070000000301414026112647030373 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic-1.3.0" title: | Base class of all conic projections. description: | In conic projections, the sphere is thought to be projected onto the surface of a cone which is then opened out. In a general sense, the pixel-to-sky transformation is defined as: $$\phi &= \arg\left(\frac{Y_0 - y}{R_\theta}, \frac{x}{R_\theta}\right) / C \\ R_\theta &= \mathrm{sign} \theta_a \sqrt{x^2 + (Y_0 - y)^2}$$ and the inverse (sky-to-pixel) is defined as: $$x &= R_\theta \sin (C \phi) \\ y &= R_\theta \cos (C \phi) + Y_0$$ where $C$ is the "constant of the cone": $$C = \frac{180^\circ \cos \theta}{\pi R_\theta}$$ allOf: - $ref: "transform-1.2.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky sigma: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | $(\theta_1 + \theta_2) / 2$ where $\theta_1$ and $\theta_2$ are the latitudes of the standard parallels, in degrees. This parameter is also referred to as `theta_A`. delta: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | $(\theta_1 - \theta_2) / 2$ where $\theta_1$ and $\theta_2$ are the latitudes of the standard parallels, in degrees. This parameter is also referred to as `delta`. default: 0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/polyconic-1.2.0.yaml0000644000446400020070000000064314026112647031303 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/polyconic-1.2.0" tag: "tag:stsci.edu:asdf/transform/polyconic-1.2.0" title: | Polyconic projection. description: | Corresponds to the `PCO` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "pseudoconic-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/rotate2d-1.0.0.yaml0000644000446400020070000000104514026112647031023 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/rotate2d-1.0.0" tag: "tag:stsci.edu:asdf/transform/rotate2d-1.0.0" title: > A 2D rotation. description: > A 2D rotation around the origin, in degrees. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. allOf: - $ref: "transform-1.0.0" - type: object properties: angle: type: number description: Angle, in degrees. required: [angle] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/power-1.0.0.yaml0000644000446400020070000000114414026112647030433 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/power-1.0.0" tag: "tag:stsci.edu:asdf/transform/power-1.0.0" title: > Perform a list of subtransforms in parallel and then raise each result to the power of the next. description: | Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. allOf: - $ref: "transform-1.0.0" - properties: forward: type: array items: $ref: "transform-1.0.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_equal_area-1.0.0.yaml0000644000446400020070000000164214026112647032554 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_equal_area-1.0.0" tag: "tag:stsci.edu:asdf/transform/conic_equal_area-1.0.0" title: | Alber's conic equal area projection. description: | Corresponds to the `COE` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.0.0) for the definition of the full transformation. The transformation is defined as: $$C &= \gamma / 2 \\ R_\theta &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin \theta} \\ Y_0 &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin((\theta_1 + \theta_2)/2)}$$ where: $$\gamma = \sin \theta_1 + \sin \theta_2$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/affine-1.3.0.yaml0000644000446400020070000000245614026112647030541 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/affine-1.3.0" tag: "tag:stsci.edu:asdf/transform/affine-1.3.0" title: > An affine transform. description: | Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. allOf: - $ref: "transform-1.2.0" - type: object properties: matrix: description: | An array of size (*n* x *n*), where *n* is the number of axes, representing the linear transformation in an affine transform. anyOf: - $ref: "../core/ndarray-1.0.0" - $ref: "../unit/quantity-1.1.0" - type: array items: type: array items: type: number minItems: 2 maxItems: 2 minItems: 2 maxItems: 2 translation: description: | An array of size (*n*,), where *n* is the number of axes, representing the translation in an affine transform. anyOf: - $ref: "../core/ndarray-1.0.0" - $ref: "../unit/quantity-1.1.0" - type: array items: type: number minItems: 2 maxItems: 2 required: [matrix] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/identity-1.1.0.yaml0000644000446400020070000000076414026112647031140 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/identity-1.1.0" tag: "tag:stsci.edu:asdf/transform/identity-1.1.0" title: > The identity transform. description: > Invertibility: The inverse of this transform is also the identity transform. allOf: - $ref: "transform-1.1.0" - type: object properties: n_dims: type: integer default: 1 description: | The number of dimensions. ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/multiply-1.2.0.yaml0000644000446400020070000000156614155735241031174 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/multiply-1.2.0" tag: "tag:stsci.edu:asdf/transform/multiply-1.2.0" title: > Perform a list of subtransforms in parallel and then multiply their results. description: | Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. examples: - - A list of transforms, performed in parallel, and then combined through multiplication. - | !transform/multiply-1.2.0 forward: - !transform/shift-1.2.0 offset: 2.0 - !transform/shift-1.2.0 offset: 3.0 allOf: - $ref: "transform-1.2.0" - properties: forward: type: array items: $ref: "transform-1.2.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/remap_axes-1.0.0.yaml0000644000446400020070000000404514155735241031432 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/remap_axes-1.0.0" tag: "tag:stsci.edu:asdf/transform/remap_axes-1.0.0" title: > Reorder, add and drop axes. description: | This transform allows the order of the input axes to be shuffled and returned as the output axes. It is a list made up of integers, each corresponding to an index of the input axis to send to the output axis. If only a list is provided, the number of input axes is automatically determined from the maximum index in the list. If an object with `mapping` and `n_inputs` properties is provided, the number of input axes is explicitly set by the `n_inputs` value. Invertibility: TBD examples: - - For 2 input axes, swap the axes - | !transform/remap_axes-1.0.0 mapping: [1, 0] - - For 2 input axes, return the second axis and drop the first - | !transform/remap_axes-1.0.0 mapping: [1] - - For 2 input axes, return the first axis twice, followed by the second - | !transform/remap_axes-1.0.0 mapping: [0, 0, 1] - - For 2 input axes, add a third axis which is a constant - | !transform/concatenate-1.0.0 forward: - !transform/remap_axes-1.0.0 mapping: [0] - !transform/remap_axes-1.0.0 mapping: [1] - !transform/constant-1.0.0 value: 42 - - Here we have 3 input axes, but we are explicitly dropping the last one - | !transform/remap_axes-1.0.0 mapping: [0, 1] n_inputs: 3 definitions: mapping: type: array items: type: integer allOf: - $ref: "transform-1.0.0" - properties: n_inputs: description: | Explicitly set the number of input axes. If not provided, it is determined from the maximum index value in the mapping list. type: integer mapping: $ref: "#/definitions/mapping" required: [mapping] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/molleweide-1.0.0.yaml0000644000446400020070000000161614026112647031431 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/molleweide-1.0.0" tag: "tag:stsci.edu:asdf/transform/molleweide-1.0.0" title: | Molleweide's projection. description: | Corresponds to the `MOL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi x}{2 \sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}} \\ \theta &= \sin^{-1}\left(\frac{1}{90^\circ}\sin^{-1}\left(\frac{\pi}{180^\circ}\frac{y}{\sqrt{2}}\right) + \frac{y}{180^\circ}\sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \frac{2 \sqrt{2}}{\pi} \phi \cos \gamma \\ y &= \sqrt{2} \frac{180^\circ}{\pi} \sin \gamma$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "pseudocylindrical-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/drude1d-1.0.0.yaml0000644000446400020070000000205714026112647030633 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/drude1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/drude1d-1.0.0" title: > One dimensional Drude model description: > Drude model based one the behavior of electons in materials (esp. metals). examples: - - $$f(x) = 10.0 \frac{(2.5/0.5)^2}{((x/0.5 - 0.5/x)^2 + (2.5/0.5)^2}$$ - | !transform/drude1d-1.0.0 amplitude: 10.0 bounding_box: [-124.5, 125.5] fwhm: 2.5 x_0: 0.5 allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Peak value. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: x position of the peak. fwhm: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Full width at half maximum required: ['amplitude', 'x_0', 'fwhm'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_equidistant-1.1.0.yaml0000644000446400020070000000137714026112647033015 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_equidistant-1.1.0" tag: "tag:stsci.edu:asdf/transform/conic_equidistant-1.1.0" title: | Conic equidistant projection. description: | Corresponds to the `COD` projection in the FITS WCS standard. See [conic](ref:http://stsci.edu/schemas/asdf/transform/conic-1.1.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{180^\circ}{\pi} \frac{\sin\theta_a\sin\eta}{\eta} \\ R_\theta &= \theta_a - \theta + \eta\cot\eta\cot\theta_a \\ Y_0 = \eta\cot\eta\cot\theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/sanson_flamsteed-1.0.0.yaml0000644000446400020070000000121514026112647032623 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/sanson_flamsteed-1.0.0" tag: "tag:stsci.edu:asdf/transform/sanson_flamsteed-1.0.0" title: | The Sanson-Flamsteed projection. description: | Corresponds to the `SFL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\cos y} \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \cos \theta \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "pseudocylindrical-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/slant_zenithal_perspective-1.0.0.yaml0000644000446400020070000000246514026112647034736 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/slant_zenithal_perspective-1.0.0" tag: "tag:stsci.edu:asdf/transform/slant_zenithal_perspective-1.0.0" title: | The slant zenithal perspective projection. description: | Corresponds to the `SZP` projection in the FITS WCS standard. See [zenithal](ref:http://stsci.edu/schemas/asdf/transform/zenithal-1.0.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "zenithal-1.0.0" - type: object properties: mu: type: number description: | Distance from point of projection to center of sphere in spherical radii. default: 0 phi0: type: number description: | The longitude $\phi_0$ of the reference point, in degrees. default: 0 theta0: type: number description: | The latitude $\theta_0$ of the reference point, in degrees. default: 90 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/zenithal-1.0.0.yaml0000644000446400020070000000127514026112647031122 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/zenithal-1.0.0" title: | Base class of all zenithal (or azimuthal) projections. description: | Zenithal projections are completely specified by defining the radius as a function of native latitude, $R_\theta$. The pixel-to-sky transformation is defined as: $$\phi &= \arg(-y, x) \\ R_\theta &= \sqrt{x^2 + y^2}$$ and the inverse (sky-to-pixel) is defined as: $$x &= R_\theta \sin \phi \\ y &= R_\theta \cos \phi$$ allOf: - $ref: "transform-1.0.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/planar2d-1.0.0.yaml0000644000446400020070000000173614026112647031011 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/planar2d-1.0.0" tag: "tag:stsci.edu:asdf/transform/planar2d-1.0.0" title: > Two dimensional plane model. description: > Two dimensional plane model. examples: - - $$f(x, y)= a=5.0x + 2.5y + 11$$ - | !transform/planar2d-1.0.0 {intercept: 11.0, slope_x: 5.0, slope_y: 2.5} allOf: - $ref: "transform-1.2.0" - type: object properties: slope_x: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Slope of the stright line in x. slope_y: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Slope of the straight lie in y. intercept: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: z-intercept of the straight line. required: ['slope_x', 'slope_y', 'intercept'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/sersic1d-1.0.0.yaml0000644000446400020070000000217314026112647031017 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/sersic1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/sersic1d-1.0.0" title: > One dimensional Sersic surface brightness profile. description: > One dimensional Sersic surface brightness profile. examples: - - $I(r)=10.0\exp\left\{-b_n\left[\left(\frac{r}{1.0}\right)^{(1/4)}-1\right]\right\}$, where $b_n$ is defined such that $r_e$ contains half the total luminosity (can be solved for numeriacally). - | !transform/sersic1d-1.0.0 {amplitude: 10.0, n: 4.0, r_eff: 1.0} allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Surface brightness at r_eff. r_eff: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Effective (half-light) radius. n: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Sersic index. required: ['amplitude', 'r_eff', 'n'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/cylindrical_perspective-1.1.0.yaml0000644000446400020070000000225114026112647034206 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/cylindrical_perspective-1.1.0" tag: "tag:stsci.edu:asdf/transform/cylindrical_perspective-1.1.0" title: | The cylindrical perspective projection. description: | Corresponds to the `CYP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\lambda} \\ \theta &= \arg(1, \eta) + \sin{-1}\left(\frac{\eta \mu}{\sqrt{\eta^2 + 1}}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \lambda \phi \\ y &= \frac{180^{\circ}}{\pi}\left(\frac{\mu + \lambda}{\mu + \cos \theta}\right)\sin \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "cylindrical-1.1.0" - type: object properties: mu: type: number description: | Distance from center of sphere in the direction opposite the projected surface, in spherical radii. default: 1 lambda: type: number description: | Radius of the cylinder in spherical radii, default is 1. default: 1 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/quadcube-1.2.0.yaml0000644000446400020070000000124714026112647031076 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/quadcube-1.2.0" title: | Base class of all quadcube projections. description: | Quadrilateralized spherical cube (quad-cube) projections belong to the class of polyhedral projections in which the sphere is projected onto the surface of an enclosing polyhedron. The six faces of the quad-cube projections are numbered and laid out as: ``` 0 4 3 2 1 4 3 2 5 ``` allOf: - $ref: "transform-1.2.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/polynomial-1.0.0.yaml0000644000446400020070000000244114026112647031463 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/polynomial-1.0.0" tag: "tag:stsci.edu:asdf/transform/polynomial-1.0.0" title: > A Polynomial model. description: | A polynomial model represented by its coefficients stored in an ndarray of shape $(n+1)$ for univariate polynomials or $(n+1, n+1)$ for polynomials with 2 variables, where $n$ is the highest total degree of the polynomial. $$P = \sum_{i, j=0}^{i+j=n}c_{ij} * x^{i} * y^{j}$$ Invertibility: This transform is not automatically invertible. examples: - - $P = 1.2 + 0.3 * x + 56.1 * x^{2}$ - | !transform/polynomial-1.0.0 coefficients: !core/ndarray-1.0.0 [1.2, 0.3, 56.1] - - $P = 1.2 + 0.3 * x + 3 * x * y + 2.1 * y^{2}$ - | !transform/polynomial-1.0.0 coefficients: !core/ndarray-1.0.0 [[1.2, 0.0, 2.1], [0.3, 3.0, 0.0], [0.0, 0.0, 0.0]] allOf: - $ref: "transform-1.0.0" - type: object properties: coefficients: description: | An array with coefficients. anyOf: - $ref: "../core/ndarray-1.0.0" - type: array required: [coefficients] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/rotate3d-1.3.0.yaml0000644000446400020070000000335314026112647031033 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/rotate3d-1.3.0" tag: "tag:stsci.edu:asdf/transform/rotate3d-1.3.0" title: > Rotation in 3D space. description: | Euler angle rotation around 3 axes. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. examples: - - The three Euler angles are 12.3, 34 and -1.2 in degrees. - | !transform/rotate3d-1.3.0 phi: 12.3 theta: 34 psi: -1.2 direction: zxz allOf: - $ref: "transform-1.2.0" - type: object properties: phi: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Angle, in degrees. theta: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Angle, in degrees. psi: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Angle, in degrees. direction: description: | Sequence of rotation axes: one of 'zxz', 'xyx', 'yzy', 'zyz', 'xzx', 'yxy', 'xyz', 'yzx', 'zxy', 'xzy', 'zyx', 'yxz' or `native2celestial`, `celestial2native`. If `direction` is `native2celestial` or `celestial2native`, `phi`, `theta` are the longitude and latitude of the native pole in the celestial system and `psi` is the longitude of the celestial pole in the native system. enum: ['zxz', 'xyx', 'yzy', 'zyz', 'xzx', 'yxy', 'xyz', 'yzx', 'zxy', 'xzy', 'zyx', 'yxz', native2celestial, celestial2native] default: native2celestial required: [phi, theta, psi, direction] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/pseudocylindrical-1.0.0.yaml0000644000446400020070000000115114026112647033012 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/pseudocylindrical-1.0.0" title: | Base class of all pseudocylindrical projections. description: | Pseudocylindrical projections are like cylindrical projections except the parallels of latitude are projected at diminishing lengths toward the polar regions in order to reduce lateral distortion there. Consequently, the meridians are curved. allOf: - $ref: "transform-1.0.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/sanson_flamsteed-1.2.0.yaml0000644000446400020070000000121514026112647032625 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/sanson_flamsteed-1.2.0" tag: "tag:stsci.edu:asdf/transform/sanson_flamsteed-1.2.0" title: | The Sanson-Flamsteed projection. description: | Corresponds to the `SFL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\cos y} \\ \theta &= y$$ And the sky-to-pixel transformation is defined as: $$x &= \phi \cos \theta \\ y &= \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "pseudocylindrical-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/slant_zenithal_perspective-1.2.0.yaml0000644000446400020070000000272114026112647034733 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/slant_zenithal_perspective-1.2.0" tag: "tag:stsci.edu:asdf/transform/slant_zenithal_perspective-1.2.0" title: | The slant zenithal perspective projection. description: | Corresponds to the `SZP` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.2.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \tan^{-1}\left(\frac{180^{\circ}}{\pi R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cot \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "zenithal-1.2.0" - type: object properties: mu: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | Distance from point of projection to center of sphere in spherical radii. default: 0 phi0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | The longitude $\phi_0$ of the reference point, in degrees. default: 0 theta0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | The latitude $\theta_0$ of the reference point, in degrees. default: 90 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_equidistant-1.3.0.yaml0000644000446400020070000000134114026112647033006 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_equidistant-1.3.0" tag: "tag:stsci.edu:asdf/transform/conic_equidistant-1.3.0" title: | Conic equidistant projection. description: | Corresponds to the `COD` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.3.0) for the definition of the full transformation. The transformation is defined as: $$C &= \frac{180^\circ}{\pi} \frac{\sin\theta_a\sin\eta}{\eta} \\ R_\theta &= \theta_a - \theta + \eta\cot\eta\cot\theta_a \\ Y_0 = \eta\cot\eta\cot\theta_a$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.3.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/molleweide-1.2.0.yaml0000644000446400020070000000161614026112647031433 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/molleweide-1.2.0" tag: "tag:stsci.edu:asdf/transform/molleweide-1.2.0" title: | Molleweide's projection. description: | Corresponds to the `MOL` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi x}{2 \sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}} \\ \theta &= \sin^{-1}\left(\frac{1}{90^\circ}\sin^{-1}\left(\frac{\pi}{180^\circ}\frac{y}{\sqrt{2}}\right) + \frac{y}{180^\circ}\sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \frac{2 \sqrt{2}}{\pi} \phi \cos \gamma \\ y &= \sqrt{2} \frac{180^\circ}{\pi} \sin \gamma$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "pseudocylindrical-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/multiply-1.0.0.yaml0000644000446400020070000000156614155735241031172 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/multiply-1.0.0" tag: "tag:stsci.edu:asdf/transform/multiply-1.0.0" title: > Perform a list of subtransforms in parallel and then multiply their results. description: | Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. examples: - - A list of transforms, performed in parallel, and then combined through multiplication. - | !transform/multiply-1.0.0 forward: - !transform/shift-1.0.0 offset: 2.0 - !transform/shift-1.0.0 offset: 3.0 allOf: - $ref: "transform-1.0.0" - properties: forward: type: array items: $ref: "transform-1.0.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/remap_axes-1.2.0.yaml0000644000446400020070000000413714155735241031436 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/remap_axes-1.2.0" tag: "tag:stsci.edu:asdf/transform/remap_axes-1.2.0" title: > Reorder, add and drop axes. description: | This transform allows the order of the input axes to be shuffled and returned as the output axes. It is a list made up of integers, each corresponding to an index of the input axis to send to the output axis. If only a list is provided, the number of input axes is automatically determined from the maximum index in the list. If an object with `mapping` and `n_inputs` properties is provided, the number of input axes is explicitly set by the `n_inputs` value. Invertibility: TBD examples: - - For 2 input axes, swap the axes - | !transform/remap_axes-1.2.0 mapping: [1, 0] - - For 2 input axes, return the second axis and drop the first - | !transform/remap_axes-1.2.0 mapping: [1] - - For 2 input axes, return the first axis twice, followed by the second - | !transform/remap_axes-1.2.0 mapping: [0, 0, 1] - - For 2 input axes, add a third axis which is a constant - | !transform/concatenate-1.2.0 forward: - !transform/remap_axes-1.2.0 mapping: [0] - !transform/remap_axes-1.2.0 mapping: [1] - !transform/constant-1.2.0 value: 42 - - Here we have 3 input axes, but we are explicitly dropping the last one - | !transform/remap_axes-1.2.0 mapping: [0, 1] n_inputs: 3 definitions: mapping: type: array items: anyOf: - type: integer - $ref: "../core/constant-1.0.0" allOf: - $ref: "transform-1.2.0" - properties: n_inputs: description: | Explicitly set the number of input axes. If not provided, it is determined from the maximum index value in the mapping list. type: integer mapping: $ref: "#/definitions/mapping" required: [mapping] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/sine1d-1.0.0.yaml0000644000446400020070000000166514026112647030472 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/sine1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/sine1d-1.0.0" title: > One dimensional sine model. description: > One dimensional sine. examples: - - $$f(x)=10.0sin(2\pi *0.5x+2\pi*1.0)$$ - | !transform/sine1d-1.0.0 {amplitude: 10.0, frequency: 0.5, phase: 1.0} allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Oscillation amplitude. frequency: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Oscillation frequency. phase: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Oscillation phase. required: ['amplitude', 'frequency', 'phase'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/ricker_wavelet1d-1.0.0.yaml0000644000446400020070000000204414026112647032532 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/ricker_wavelet1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/ricker_wavelet1d-1.0.0" title: > One dimensional Ricker Wavelet model. description: > One dimensional Ricker Wavelet model examples: - - $$f(x)={10.0\left(1-\frac{\left(x-0.5\right)^{2}}{2.0^{2}}\right)e^{-\frac{\left(x-0.5\right)^{2}}{2*2.0^{2}}}}$$ - | !transform/ricker_wavelet1d-1.0.0 {amplitude: 10.0, sigma: 2.0, x_0: 0.5} allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Peak value. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Position of the peak. sigma: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Width of the Ricker wavelet. required: ['amplitude', 'x_0', 'sigma'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/zenithal_equal_area-1.1.0.yaml0000644000446400020070000000157014026112647033300 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/zenithal_equal_area-1.1.0" tag: "tag:stsci.edu:asdf/transform/zenithal_equal_area-1.1.0" title: | The zenithal equal area projection. description: | Corresponds to the `ZEA` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = 90^\circ - 2 \sin^{-1} \left(\frac{\pi R_\theta}{360^\circ}\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta &= \frac{180^\circ}{\pi} \sqrt{2(1 - \sin\theta)} \\ &= \frac{360^\circ}{\pi} \sin\left(\frac{90^\circ - \theta}{2}\right)$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "zenithal-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/rotate3d-1.1.0.yaml0000644000446400020070000000306214026112647031026 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/rotate3d-1.1.0" tag: "tag:stsci.edu:asdf/transform/rotate3d-1.1.0" title: > Rotation in 3D space. description: | Euler angle rotation around 3 axes. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. examples: - - The three Euler angles are 12.3, 34 and -1.2 in degrees. - | !transform/rotate3d-1.1.0 phi: 12.3 theta: 34 psi: -1.2 direction: zxz allOf: - $ref: "transform-1.1.0" - type: object properties: phi: type: number description: Angle, in degrees. theta: type: number description: Angle, in degrees. psi: type: number description: Angle, in degrees. direction: description: | Sequence of rotation axes: one of 'zxz', 'xyx', 'yzy', 'zyz', 'xzx', 'yxy', 'xyz', 'yzx', 'zxy', 'xzy', 'zyx', 'yxz' or `native2celestial`, `celestial2native`. If `direction` is `native2celestial` or `celestial2native`, `phi`, `theta` are the longitude and latitude of the native pole in the celestial system and `psi` is the longitude of the celestial pole in the native system. enum: ['zxz', 'xyx', 'yzy', 'zyz', 'xzx', 'yxy', 'xyz', 'yzx', 'zxy', 'xzy', 'zyx', 'yxz', native2celestial, celestial2native] default: native2celestial required: [phi, theta, psi, direction] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/polynomial-1.2.0.yaml0000644000446400020070000000251414026112647031466 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/polynomial-1.2.0" tag: "tag:stsci.edu:asdf/transform/polynomial-1.2.0" title: > A Polynomial model. description: | A polynomial model represented by its coefficients stored in an ndarray of shape $(n+1)$ for univariate polynomials or $(n+1, n+1)$ for polynomials with 2 variables, where $n$ is the highest total degree of the polynomial. $$P = \sum_{i, j=0}^{i+j=n}c_{ij} * x^{i} * y^{j}$$ Invertibility: This transform is not automatically invertible. examples: - - $P = 1.2 + 0.3 * x + 56.1 * x^{2}$ - | !transform/polynomial-1.2.0 coefficients: !core/ndarray-1.0.0 [1.2, 0.3, 56.1] - - $P = 1.2 + 0.3 * x + 3 * x * y + 2.1 * y^{2}$ - | !transform/polynomial-1.2.0 coefficients: !core/ndarray-1.0.0 [[1.2, 0.0, 2.1], [0.3, 3.0, 0.0], [0.0, 0.0, 0.0]] allOf: - $ref: "transform-1.2.0" - type: object properties: coefficients: description: | An array with coefficients. anyOf: - $ref: "../core/ndarray-1.0.0" - $ref: "../unit/quantity-1.1.0" - type: array required: [coefficients] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/pseudocylindrical-1.2.0.yaml0000644000446400020070000000115114026112647033014 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/pseudocylindrical-1.2.0" title: | Base class of all pseudocylindrical projections. description: | Pseudocylindrical projections are like cylindrical projections except the parallels of latitude are projected at diminishing lengths toward the polar regions in order to reduce lateral distortion there. Consequently, the meridians are curved. allOf: - $ref: "transform-1.2.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/cylindrical_perspective-1.3.0.yaml0000644000446400020070000000244514026112647034215 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/cylindrical_perspective-1.3.0" tag: "tag:stsci.edu:asdf/transform/cylindrical_perspective-1.3.0" title: | The cylindrical perspective projection. description: | Corresponds to the `CYP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{x}{\lambda} \\ \theta &= \arg(1, \eta) + \sin{-1}\left(\frac{\eta \mu}{\sqrt{\eta^2 + 1}}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= \lambda \phi \\ y &= \frac{180^{\circ}}{\pi}\left(\frac{\mu + \lambda}{\mu + \cos \theta}\right)\sin \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "cylindrical-1.2.0" - type: object properties: mu: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | Distance from center of sphere in the direction opposite the projected surface, in spherical radii. default: 1 lambda: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | Radius of the cylinder in spherical radii, default is 1. default: 1 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/quadcube-1.0.0.yaml0000644000446400020070000000124714026112647031074 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/quadcube-1.0.0" title: | Base class of all quadcube projections. description: | Quadrilateralized spherical cube (quad-cube) projections belong to the class of polyhedral projections in which the sphere is projected onto the surface of an enclosing polyhedron. The six faces of the quad-cube projections are numbered and laid out as: ``` 0 4 3 2 1 4 3 2 5 ``` allOf: - $ref: "transform-1.0.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/zenithal-1.2.0.yaml0000644000446400020070000000127514026112647031124 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/zenithal-1.2.0" title: | Base class of all zenithal (or azimuthal) projections. description: | Zenithal projections are completely specified by defining the radius as a function of native latitude, $R_\theta$. The pixel-to-sky transformation is defined as: $$\phi &= \arg(-y, x) \\ R_\theta &= \sqrt{x^2 + y^2}$$ and the inverse (sky-to-pixel) is defined as: $$x &= R_\theta \sin \phi \\ y &= R_\theta \cos \phi$$ allOf: - $ref: "transform-1.2.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/ortho_polynomial-1.0.0.yaml0000644000446400020070000000324014026112647032674 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/ortho_polynomial-1.0.0" tag: "tag:stsci.edu:asdf/transform/ortho_polynomial-1.0.0" title: > Respresents various Orthogonal Polynomial models. description: | A polynomial model represented by its coefficients stored in an ndarray of shape $(n+1)$ for univariate polynomials or $(n+1, n+1)$ for polynomials with 2 variables, where $n$ is the highest total degree of the polynomial. The property polynomial_type defines what kind of polynomial is defined. $$P = \sum_{i, j=0}^{i+j=n}c_{ij} * x^{i} * y^{j}$$ Invertibility: This transform is not automatically invertible. examples: - - $P = 1.2 + 0.3 * x + 56.1 * x^{2}$ - | !transform/ortho_polynomial-1.0.0 polynomial_type: hermite coefficients: !core/ndarray-1.0.0 [1.2, 0.3, 56.1] - - $P = 1.2 + 0.3 * x + 3 * x * y + 2.1 * y^{2}$ - | !transform/ortho_polynomial-1.0.0 polynomial_type: chebyshev coefficients: !core/ndarray-1.0.0 [[1.2, 0.0, 2.1], [0.3, 3.0, 0.0], [0.0, 0.0, 0.0]] allOf: - $ref: "transform-1.2.0" - type: object properties: polynomial_type: description: | One of a selected set of polynomial types. type: string enum: [chebyshev, legendre, hermite] coefficients: description: | An array with coefficients. anyOf: - $ref: "../core/ndarray-1.0.0" - type: array required: [polynomial_type, coefficients] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/cobe_quad_spherical_cube-1.1.0.yaml0000644000446400020070000000073214026112647034254 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/cobe_quad_spherical_cube-1.1.0" tag: "tag:stsci.edu:asdf/transform/cobe_quad_spherical_cube-1.1.0" title: | COBE quadrilateralized spherical cube projection. description: | Corresponds to the `CSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "quadcube-1.1.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/slant_orthographic-1.1.0.yaml0000644000446400020070000000240014026112647033166 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/slant_orthographic-1.1.0" tag: "tag:stsci.edu:asdf/transform/slant_orthographic-1.1.0" title: | The slant orthographic projection. description: | Corresponds to the `SIN` projection in the FITS WCS standard. See [zenithal](ref:transform/zenithal-1.1.0) for the definition of the full transformation. The pixel-to-sky transformation is defined as: $$\theta = \cos^{-1}\left(\frac{\pi}{180^{\circ}}R_\theta\right)$$ And the sky-to-pixel transformation is defined as: $$R_\theta = \frac{180^{\circ}}{\pi}\cos \theta$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "zenithal-1.1.0" - type: object properties: xi: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Obliqueness parameter, first equation of the slant orthographic projection. default: 0 eta: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Obliqueness parameter, second equation of the slant orthographic projection. default: 0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/bonne_equal_area-1.3.0.yaml0000644000446400020070000000240514026112647032563 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/bonne_equal_area-1.3.0" tag: "tag:stsci.edu:asdf/transform/bonne_equal_area-1.3.0" title: | Bonne's equal area pseudoconic projection. description: | Corresponds to the `BON` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \frac{\pi}{180^\circ} A_\phi R_\theta / \cos \theta \\ \theta &= Y_0 - R_\theta$$ where: $$R_\theta &= \mathrm{sign} \theta_1 \sqrt{x^2 + (Y_0 - y)^2} \\ A_\phi &= \arg\left(\frac{Y_0 - y}{R_\theta}, \frac{x}{R_\theta}\right)$$ And the sky-to-pixel transformation is defined as: $$x &= R_\theta \sin A_\phi \\ y &= -R_\theta \cos A_\phi + Y_0$$ where: $$A_\phi &= \frac{180^\circ}{\pi R_\theta} \phi \cos \theta \\ R_\theta &= Y_0 - \theta \\ Y_0 &= \frac{180^\circ}{\pi} \cot \theta_1 + \theta_1$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "pseudoconic-1.2.0" - type: object properties: theta1: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | Bonne conformal latitude, in degrees. default: 0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/transform-1.0.0.yaml0000644000446400020070000000201014026112647031303 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/transform-1.0.0" title: > A generic type used to mark where other transforms are accepted. description: > These objects are designed to be nested in arbitrary ways to build up transformation pipelines out of a number of low-level pieces. type: object properties: name: description: | A user-friendly name for the transform, to give it extra meaning. type: string domain: description: | The domain (range of valid inputs) to the transform. Each entry in the list corresponds to an input dimension. type: array items: $ref: "domain-1.0.0" inverse: description: | Explicitly sets the inverse transform of this transform. If the transform has a direct analytic inverse, this property is usually not necessary, as the ASDF-reading tool can provide it automatically. $ref: "transform-1.0.0" additionalProperties: true ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/regions_selector-1.0.0.yaml0000644000446400020070000000607714026112647032657 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/regions_selector-1.0.0" tag: "tag:stsci.edu:asdf/transform/regions_selector-1.0.0" title: > Represents a discontinuous transform. description: | Maps regions to transgorms and evaluates the transforms with the corresponding inputs. examples: - - Create a regions_selector schema for 2 regions, labeled "1" and "2". - | !transform/regions_selector-1.0.0 inputs: [x, y] label_mapper: !transform/label_mapper-1.0.0 mapper: !core/ndarray-1.0.0 datatype: int8 data: [[0, 1, 1, 0, 2, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 0, 2, 0], [0, 1, 1, 0, 2, 0]] outputs: [ra, dec, lam] selector: 1: !transform/compose-1.0.0 forward: - !transform/remap_axes-1.0.0 mapping: [0, 1, 1] - !transform/concatenate-1.0.0 forward: - !transform/concatenate-1.0.0 forward: - !transform/shift-1.0.0 {offset: 1.0} - !transform/shift-1.0.0 {offset: 2.0} - !transform/shift-1.0.0 {offset: 3.0} 2: !transform/compose-1.0.0 forward: - !transform/remap_axes-1.0.0 mapping: [0, 1, 1] - !transform/concatenate-1.0.0 forward: - !transform/concatenate-1.0.0 forward: - !transform/scale-1.0.0 {factor: 2.0} - !transform/scale-1.0.0 {factor: 3.0} - !transform/scale-1.0.0 {factor: 3.0} undefined_transform_value: .nan allOf: - $ref: "transform-1.0.0" - type: object properties: label_mapper: description: | An instance of [label_mapper-1.0.0](ref:http://stsci.edu/schemas/asdf/transform/label_mapper-1.0.0) $ref: "./label_mapper-1.0.0" inputs: description: | Names of inputs. type: array items: type: string outputs: description: | Names of outputs. type: array items: type: string selector: description: | A mapping of regions to trransforms. type: object properties: labels: description: | An array of unique region labels. type: array items: type: - integer - string transforms: description: | A transform for each region. The order should match the order of labels. type: array items: $ref: "transform-1.0.0" undefined_transform_value: description: | Value to be returned if there's no transform defined for the inputs. type: number required: [label_mapper, inputs, outputs, selector] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/zenithal_perspective-1.3.0.yaml0000644000446400020070000000301714026112647033532 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/zenithal_perspective-1.3.0" tag: "tag:stsci.edu:asdf/transform/zenithal_perspective-1.3.0" title: | The zenithal perspective projection. description: | Corresponds to the `AZP` projection in the FITS WCS standard. The pixel-to-sky transformation is defined as: $$\phi &= \arg(-y \cos \gamma, x) \\ \theta &= \left\{\genfrac{}{}{0pt}{}{\psi - \omega}{\psi + \omega + 180^{\circ}}\right.$$ where: $$\psi &= \arg(\rho, 1) \\ \omega &= \sin^{-1}\left(\frac{\rho \mu}{\sqrt{\rho^2 + 1}}\right) \\ \rho &= \frac{R}{\frac{180^{\circ}}{\pi}(\mu + 1) + y \sin \gamma} \\ R &= \sqrt{x^2 + y^2 \cos^2 \gamma}$$ And the sky-to-pixel transformation is defined as: $$x &= R \sin \phi \\ y &= -R \sec \gamma \cos \theta$$ where: $$R = \frac{180^{\circ}}{\pi} \frac{(\mu + 1) \cos \theta}{(\mu + \sin \theta) + \cos \theta \cos \phi \tan \gamma}$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. allOf: - $ref: "zenithal-1.2.0" - type: object properties: mu: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | Distance from point of projection to center of sphere in spherical radii. default: 0 gamma: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: | Look angle, in degrees. default: 0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/box2d-1.0.0.yaml0000644000446400020070000000261514026112647030321 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/box2d-1.0.0" tag: "tag:stsci.edu:asdf/transform/box2d-1.0.0" title: > Two dimensional box model. description: > Two dimensional box. examples: - - A 2D box with (x, y) dimensions (4.0, 2.0), centered at (0.5, 1.5) with amplitude 10.0. - | !transform/box2d-1.0.0 amplitude: 10.0 bounding_box: - [0.5, 2.5] - [-1.5, 2.5] x_0: 0.5 x_width: 4.0 y_0: 1.5 y_width: 2.0 allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Amplitude. x_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: x position of the center of the box model. x_width: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: x width of box. y_0: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: y position of the center of the box model. y_width: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: y width of box. required: ['amplitude', 'x_0', 'x_width', 'y_0', 'y_width'] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/tangential_spherical_cube-1.0.0.yaml0000644000446400020070000000072014026112647034454 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/tangential_spherical_cube-1.0.0" tag: "tag:stsci.edu:asdf/transform/tangential_spherical_cube-1.0.0" title: | Tangential spherical cube projection. description: | Corresponds to the `TSC` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "quadcube-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/affine-1.1.0.yaml0000644000446400020070000000233014026112647030526 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/affine-1.1.0" tag: "tag:stsci.edu:asdf/transform/affine-1.1.0" title: > An affine transform. description: | Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. allOf: - $ref: "transform-1.1.0" - type: object properties: matrix: description: | An array of size (*n* x *n*), where *n* is the number of axes, representing the linear transformation in an affine transform. anyOf: - $ref: "../core/ndarray-1.0.0" - type: array items: type: array items: type: number minItems: 2 maxItems: 2 minItems: 2 maxItems: 2 translation: description: | An array of size (*n*,), where *n* is the number of axes, representing the translation in an affine transform. anyOf: - $ref: "../core/ndarray-1.0.0" - type: array items: type: number minItems: 2 maxItems: 2 required: [matrix] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/gaussian1d-1.0.0.yaml0000644000446400020070000000175014026112647031341 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/gaussian1d-1.0.0" tag: "tag:stsci.edu:asdf/transform/gaussian1d-1.0.0" title: > A 1D Gaussian model. description: > A 1D gaussian distribution. examples: - - $$f(x) = 10.0 e^{- \frac{\left(x - 1.5\right)^{2}}{2*0.25^{2}}}$$ - | !transform/gaussian1d-1.0.0 amplitude: 10.0 bounding_box: [0.125, 2.875] mean: 1.5 stddev: 0.25 allOf: - $ref: "transform-1.2.0" - type: object properties: amplitude: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Amplitude. mean: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Mean. stddev: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Standard deviation. required: [amplitude, mean, stddev] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic_equal_area-1.2.0.yaml0000644000446400020070000000160414026112647032554 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic_equal_area-1.2.0" tag: "tag:stsci.edu:asdf/transform/conic_equal_area-1.2.0" title: | Alber's conic equal area projection. description: | Corresponds to the `COE` projection in the FITS WCS standard. See [conic](ref:transform/conic-1.2.0) for the definition of the full transformation. The transformation is defined as: $$C &= \gamma / 2 \\ R_\theta &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin \theta} \\ Y_0 &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin((\theta_1 + \theta_2)/2)}$$ where: $$\gamma = \sin \theta_1 + \sin \theta_2$$ Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "conic-1.2.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/power-1.2.0.yaml0000644000446400020070000000114414026112647030435 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/power-1.2.0" tag: "tag:stsci.edu:asdf/transform/power-1.2.0" title: > Perform a list of subtransforms in parallel and then raise each result to the power of the next. description: | Each of the subtransforms must have the same number of inputs and outputs. Invertibility: This transform is not automatically invertible. allOf: - $ref: "transform-1.2.0" - properties: forward: type: array items: $ref: "transform-1.2.0" required: [forward] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/rotate2d-1.2.0.yaml0000644000446400020070000000114314026112647031024 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/rotate2d-1.2.0" tag: "tag:stsci.edu:asdf/transform/rotate2d-1.2.0" title: > A 2D rotation. description: > A 2D rotation around the origin, in degrees. Invertibility: All ASDF tools are required to be able to compute the analytic inverse of this transform. allOf: - $ref: "transform-1.1.0" - type: object properties: angle: anyOf: - $ref: "../unit/quantity-1.1.0" - type: number description: Angle, in degrees. required: [angle] ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/polyconic-1.0.0.yaml0000644000446400020070000000064314026112647031301 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/polyconic-1.0.0" tag: "tag:stsci.edu:asdf/transform/polyconic-1.0.0" title: | Polyconic projection. description: | Corresponds to the `PCO` projection in the FITS WCS standard. Invertibility: All ASDF tools are required to provide the inverse of this transform. $ref: "pseudoconic-1.0.0" ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/conic-1.1.0.yaml0000644000446400020070000000262014026112647030373 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/conic-1.1.0" title: | Base class of all conic projections. description: | In conic projections, the sphere is thought to be projected onto the surface of a cone which is then opened out. In a general sense, the pixel-to-sky transformation is defined as: $$\phi &= \arg\left(\frac{Y_0 - y}{R_\theta}, \frac{x}{R_\theta}\right) / C \\ R_\theta &= \mathrm{sign} \theta_a \sqrt{x^2 + (Y_0 - y)^2}$$ and the inverse (sky-to-pixel) is defined as: $$x &= R_\theta \sin (C \phi) \\ y &= R_\theta \cos (C \phi) + Y_0$$ where $C$ is the "constant of the cone": $$C = \frac{180^\circ \cos \theta}{\pi R_\theta}$$ allOf: - $ref: "transform-1.1.0" - type: object properties: direction: enum: [pix2sky, sky2pix] default: pix2sky sigma: type: number description: | $(\theta_1 + \theta_2) / 2$ where $\theta_1$ and $\theta_2$ are the latitudes of the standard parallels, in degrees. This parameter is also referred to as `theta_A`. delta: type: number description: | $(\theta_1 - \theta_2) / 2$ where $\theta_1$ and $\theta_2$ are the latitudes of the standard parallels, in degrees. This parameter is also referred to as `delta`. default: 0 ... asdf_transform_schemas-0.2.0/resources/stsci.edu/schemas/fix_inputs-1.2.0.yaml0000644000446400020070000000341714026112647031476 0ustar eslavichSTSCI\science00000000000000%YAML 1.1 --- $schema: "http://stsci.edu/schemas/yaml-schema/draft-01" id: "http://stsci.edu/schemas/asdf/transform/fix_inputs-1.2.0" tag: "tag:stsci.edu:asdf/transform/fix_inputs-1.2.0" title: > Set to a constant selected input arguments of a model. description: | This operation takes as the right hand side a dict equivalent that consists of key:value pairs where the key identifies the input argument to be set, either by position number (0 based) or name, and the value is the floating point value that should be assigned to that input. The result is a compound model with n fewer input arguments where n is the number of input values to be set (i.e., the number of keys in the dict). examples: - - Fix the 0-th coordinate. - | !transform/fix_inputs-1.2.0 forward: - !transform/compose-1.2.0 forward: - !transform/gnomonic-1.2.0 {direction: pix2sky} - !transform/rotate2d-1.3.0 {angle: 23.0} - keys: [0] values: [2] - - Fix the "x" coordinate. - | !transform/fix_inputs-1.2.0 forward: - !transform/compose-1.2.0 forward: - !transform/gnomonic-1.2.0 {direction: pix2sky} - !transform/rotate2d-1.3.0 {angle: 23.0} - keys: [x] values: [2] allOf: - $ref: "transform-1.2.0" - properties: forward: type: array items: - $ref: "transform-1.2.0" - type: object properties: keys: type: array items: type: [string, integer] values: type: array items: - type: number minItems: 2 maxItems: 2 required: [forward] ... asdf_transform_schemas-0.2.0/pyproject.toml0000644000446400020070000000015413672456207023350 0ustar eslavichSTSCI\science00000000000000[build-system] requires = ["setuptools", "wheel", "setuptools_scm"] build-backend = "setuptools.build_meta" asdf_transform_schemas-0.2.0/tests/0000755000446400020070000000000014155735511021571 5ustar eslavichSTSCI\science00000000000000asdf_transform_schemas-0.2.0/tests/.gitignore0000644000446400020070000000000013672456207023554 0ustar eslavichSTSCI\science00000000000000asdf_transform_schemas-0.2.0/tests/test_integration.py0000644000446400020070000000244214056462664025535 0ustar eslavichSTSCI\science00000000000000from pathlib import Path import asdf import yaml def test_resources(): resources_root = Path(__file__).parent.parent / "resources" resource_manager = asdf.get_config().resource_manager for resource_path in resources_root.glob("**/*.yaml"): with resource_path.open("rb") as f: resource_content = f.read() resource = yaml.safe_load(resource_content) resource_uri = resource["id"] assert resource_manager[resource_uri] == resource_content def test_manifests(): manifests_root = ( Path(__file__).parent.parent / "resources" / "asdf-format.org" / "manifests" ) resource_manager = asdf.get_config().resource_manager for manifest_path in manifests_root.glob("*.yaml"): with manifest_path.open("rb") as f: manifest_content = f.read() manifest = yaml.safe_load(manifest_content) manifest_schema = asdf.schema.load_schema( "asdf://asdf-format.org/core/schemas/extension_manifest-1.0.0" ) # The manifest must be valid against its own schema: asdf.schema.validate(manifest, schema=manifest_schema) for tag_definition in manifest["tags"]: # The tag's schema must be available: assert tag_definition["schema_uri"] in resource_manager asdf_transform_schemas-0.2.0/README.md0000644000446400020070000000053214147456440021710 0ustar eslavichSTSCI\science00000000000000# asdf-transform-schemas This package provides ASDF schemas for validating transform tags. Users should not need to install this directly; instead, install an implementation package such as asdf-astropy, which includes asdf-transform-schemas as a dependency. ![CI](https://github.com/asdf-format/asdf-transform-schemas/workflows/CI/badge.svg) asdf_transform_schemas-0.2.0/setup.py0000755000446400020070000000072114026112647022140 0ustar eslavichSTSCI\science00000000000000#!/usr/bin/env python from setuptools import setup, find_packages packages = find_packages(where="src") packages.append("asdf_transform_schemas.resources") package_dir = { "": "src", "asdf_transform_schemas.resources": "resources", } package_data = { "asdf_transform_schemas.resources": ["*.yaml", "**/*.yaml", "**/**/*.yaml"], } setup( use_scm_version=True, packages=packages, package_dir=package_dir, package_data=package_data, ) asdf_transform_schemas-0.2.0/.gitignore0000644000446400020070000000376313672456207022435 0ustar eslavichSTSCI\science00000000000000# Byte-compiled / optimized / DLL files __pycache__/ *.py[cod] *$py.class # C extensions *.so # Distribution / packaging .Python build/ develop-eggs/ dist/ downloads/ eggs/ .eggs/ lib/ lib64/ parts/ sdist/ var/ wheels/ share/python-wheels/ *.egg-info/ .installed.cfg *.egg MANIFEST # PyInstaller # Usually these files are written by a python script from a template # before PyInstaller builds the exe, so as to inject date/other infos into it. *.manifest *.spec # Installer logs pip-log.txt pip-delete-this-directory.txt # Unit test / coverage reports htmlcov/ .tox/ .nox/ .coverage .coverage.* .cache nosetests.xml coverage.xml *.cover *.py,cover .hypothesis/ .pytest_cache/ cover/ # Translations *.mo *.pot # Django stuff: *.log local_settings.py db.sqlite3 db.sqlite3-journal # Flask stuff: instance/ .webassets-cache # Scrapy stuff: .scrapy # Sphinx documentation docs/_build/ # PyBuilder .pybuilder/ target/ # Jupyter Notebook .ipynb_checkpoints # IPython profile_default/ ipython_config.py # pyenv # For a library or package, you might want to ignore these files since the code is # intended to run in multiple environments; otherwise, check them in: # .python-version # pipenv # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. # However, in case of collaboration, if having platform-specific dependencies or dependencies # having no cross-platform support, pipenv may install dependencies that don't work, or not # install all needed dependencies. #Pipfile.lock # PEP 582; used by e.g. github.com/David-OConnor/pyflow __pypackages__/ # Celery stuff celerybeat-schedule celerybeat.pid # SageMath parsed files *.sage.py # Environments .env .venv env/ venv/ ENV/ env.bak/ venv.bak/ # Spyder project settings .spyderproject .spyproject # Rope project settings .ropeproject # mkdocs documentation /site # mypy .mypy_cache/ .dmypy.json dmypy.json # Pyre type checker .pyre/ # pytype static type analyzer .pytype/ # Cython debug symbols cython_debug/ asdf_transform_schemas-0.2.0/scripts/0000755000446400020070000000000014155735511022116 5ustar eslavichSTSCI\science00000000000000asdf_transform_schemas-0.2.0/scripts/import_transforms.py0000644000446400020070000000611713672456207026272 0ustar eslavichSTSCI\science00000000000000""" Script that imports transform schemas from asdf-standard. This file can be removed once the format of the new schemas is finalized. """ import glob import os import re import argparse import pkg_resources TAG_PATTERN = re.compile(r"^tag: .*?\n", re.MULTILINE | re.DOTALL) ID_PATTERN = re.compile(r"^id: .*?/([^/-]+)-.*?\n", re.MULTILINE | re.DOTALL) METASCHEMA_PATTERN = re.compile(r"^\$schema: .*?\n", re.MULTILINE | re.DOTALL) # References to schemas outside of the transforms directory. EXTERNAL_REF_PATTERN = re.compile(r'\$ref: "?\.\./(.*?[0-9]\.[0-9]\.[0-9])"?') # Any $ref that hasn't been converted to an http URI by the # previous regex will be a reference to another transform. INTERNAL_REF_PATTERN = re.compile(r'\$ref: "?(?!http)(.*?)-[0-8]\.[0-9]\.[0-9]"?') # These (found in the examples) will be updated to absolute tags: BANG_TRANSFORM = re.compile(r"!transform/([^ \n-]*)-[^ \n]*") BANG_UNIT = re.compile(r"!unit/([^ \n]*)") BANG_CORE = re.compile(r"!core/([^ \n]*)") # URI prefix (both id and tag) of new schemas. URI_PREFIX = "http://asdf-format.org/schemas/transform" # Initial version of new schemas. VERSION = "2.0.0" # For now just leave this at draft-01, but when we remove tag # we'll need to bring in draft-02. METASCHEMA = "http://stsci.edu/schemas/yaml-schema/draft-01" def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("source_path") parser.add_argument("dest_path") return parser.parse_args() args = parse_args() paths = list(glob.glob(os.path.join(args.source_path, "*.yaml"))) paths_by_name = {} for path in paths: filename = os.path.basename(path) name = filename.split("-")[0] version = filename.split("-")[-1].rsplit(".", 1)[0] if name not in paths_by_name: paths_by_name[name] = [] paths_by_name[name].append((path, version)) latest_paths = [] for name, name_paths in paths_by_name.items(): latest_paths.append( sorted(name_paths, key=lambda p: pkg_resources.parse_version(p[-1]))[-1][0] ) for path in latest_paths: with open(path) as f: content = f.read() filename = os.path.basename(path) new_filename = filename.split("-")[0] + f"-{VERSION}.yaml" schema_name = ID_PATTERN.search(content).group(1) new_uri = f"{URI_PREFIX}/{schema_name}-{VERSION}" new_id = f"id: {new_uri}\n" content = ID_PATTERN.sub(new_id, content) new_tag = f"tag: {new_uri}\n" content = TAG_PATTERN.sub(new_tag, content) content = METASCHEMA_PATTERN.sub(f"$schema: {METASCHEMA}\n", content) content = EXTERNAL_REF_PATTERN.sub( r"$ref: http://stsci.edu/schemas/asdf/\1", content ) content = INTERNAL_REF_PATTERN.sub(rf"$ref: \1-{VERSION}", content) content = BANG_TRANSFORM.sub(rf"!<{URI_PREFIX}/\1-{VERSION}>", content) # TODO: Update these once core schemas start using http:// URIs: content = BANG_UNIT.sub(r"!", content) content = BANG_CORE.sub(r"!", content) output_path = os.path.join(args.dest_path, new_filename) with open(output_path, "w") as f: f.write(content) asdf_transform_schemas-0.2.0/scripts/generate_manifest.py0000644000446400020070000000370014147456013026146 0ustar eslavichSTSCI\science00000000000000""" Script that creates initial transform manifests from the version_map files in the asdf-standard repo. This file can be removed once the format of the manifest files has been finalized. """ import argparse import yaml import asdf def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("version_map_path") parser.add_argument("output_path") return parser.parse_args() class MultilineString(str): pass def represent_multiline_string(dumper, data): return dumper.represent_scalar("tag:yaml.org,2002:str", data, style="|") yaml.add_representer(MultilineString, represent_multiline_string) args = parse_args() asdf_standard_version = ( args.version_map_path.split("/")[-1].rsplit(".", 1)[0].split("-")[-1] ) with open(args.version_map_path) as f: version_map = yaml.safe_load(f.read()) manifest = {} manifest[ "id" ] = f"http://stsci.edu/asdf/extensions/transform/manifests/transform-{asdf_standard_version}" manifest[ "extension_uri" ] = f"http://stsci.edu/asdf/extensions/transform-{asdf_standard_version}" manifest["title"] = f"Transform extension {asdf_standard_version}" manifest["description"] = MultilineString( "A set of tags for serializing data transforms." ) manifest["tags"] = [] for tag_base, tag_version in version_map["tags"].items(): if tag_base.startswith("tag:stsci.edu:asdf/transform/"): tag_uri = f"{tag_base}-{tag_version}" schema_uri = tag_uri.replace( "tag:stsci.edu:asdf/transform/", "http://stsci.edu/schemas/asdf/transform/" ) schema = asdf.schema.load_schema(schema_uri) manifest["tags"].append( { "tag_uri": tag_uri, "schema_uri": schema_uri, "title": schema["title"].strip(), "description": MultilineString(schema["description"].strip()), } ) with open(args.output_path, "w") as f: yaml.dump(manifest, f, sort_keys=False) asdf_transform_schemas-0.2.0/.github/0000755000446400020070000000000014155735511021767 5ustar eslavichSTSCI\science00000000000000asdf_transform_schemas-0.2.0/.github/workflows/0000755000446400020070000000000014155735511024024 5ustar eslavichSTSCI\science00000000000000asdf_transform_schemas-0.2.0/.github/workflows/ci.yml0000644000446400020070000000211714027162404025134 0ustar eslavichSTSCI\science00000000000000name: CI on: push: branches: - master tags: - "*" pull_request: branches: jobs: tox: name: ${{ matrix.name }} runs-on: ${{ matrix.os }} strategy: matrix: include: - name: Schema validation tests python-version: 3.9 os: ubuntu-latest toxenv: py39 - name: Check Python files with black autoformatter python-version: 3.9 os: ubuntu-latest toxenv: black - name: Check Python files with flake8 python-version: 3.9 os: ubuntu-latest toxenv: flake8 steps: - name: Checkout code uses: actions/checkout@v2 with: fetch-depth: 0 - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v2 with: python-version: ${{ matrix.python-version }} - name: Install tox run: | python -m pip install --upgrade pip python -m pip install tox - name: Run tox run: tox -e ${{ matrix.toxenv }} asdf_transform_schemas-0.2.0/tox.ini0000644000446400020070000000035114051235744021737 0ustar eslavichSTSCI\science00000000000000[tox] envlist = py38, black, flake8 [testenv] extras = test commands = pytest [testenv:black] deps = black commands= black --check src tests scripts [testenv:flake8] deps = flake8 commands = flake8 --count asdf_transform_schemas-0.2.0/setup.cfg0000644000446400020070000000172714155735511022257 0ustar eslavichSTSCI\science00000000000000[metadata] name = asdf_transform_schemas author = The ASDF Developers author_email = help@stsci.edu license = BSD-3-Clause license_file = LICENSE description = ASDF schemas for transforms long_description = file: README.md long_description_content_type = text/markdown url = https://github.com/asdf-format/asdf-transform-schemas [options] python_requires = >=3.6 zip_safe = true setup_requires = setuptools setuptools_scm install_requires = asdf>=2.8.0 importlib_resources>=3;python_version<"3.9" [options.extras_require] test = pytest [options.entry_points] asdf.resource_mappings = asdf_transform_schemas = asdf_transform_schemas.integration:get_resource_mappings [tool:pytest] asdf_schema_root = resources/stsci.edu/schemas asdf_schema_tests_enabled = true asdf_schema_ignore_unrecognized_tag = true testpaths = tests resources [flake8] ignore = E501, E203, W503 exclude = .git, __pycache__, build, dist, eggs, *.egg, .tox [egg_info] tag_build = tag_date = 0 asdf_transform_schemas-0.2.0/CHANGES.rst0000644000446400020070000000020114155735313022222 0ustar eslavichSTSCI\science000000000000000.2.0 (2021-12-13) - Remove generic-1.x.0 schemas and examples. [#30] 0.1.0 (2021-11-24) ------------------ - Initial release asdf_transform_schemas-0.2.0/src/0000755000446400020070000000000014155735511021216 5ustar eslavichSTSCI\science00000000000000asdf_transform_schemas-0.2.0/src/asdf_transform_schemas/0000755000446400020070000000000014155735511025731 5ustar eslavichSTSCI\science00000000000000asdf_transform_schemas-0.2.0/src/asdf_transform_schemas/__init__.py0000644000446400020070000000000013672456207030035 0ustar eslavichSTSCI\science00000000000000asdf_transform_schemas-0.2.0/src/asdf_transform_schemas/integration.py0000644000446400020070000000176714056462664030647 0ustar eslavichSTSCI\science00000000000000from pathlib import Path import sys if sys.version_info < (3, 9): import importlib_resources else: import importlib.resources as importlib_resources from asdf.resource import DirectoryResourceMapping import asdf_transform_schemas def get_resource_mappings(): resources_root = importlib_resources.files(asdf_transform_schemas) / "resources" if not resources_root.is_dir(): # In an editable install, the resources directory will exist off the # repository root: resources_root = Path(__file__).parent.parent.parent / "resources" if not resources_root.is_dir(): raise RuntimeError("Missing resources directory") return [ DirectoryResourceMapping( resources_root / "stsci.edu" / "schemas", "http://stsci.edu/schemas/asdf/transform/", ), DirectoryResourceMapping( resources_root / "asdf-format.org" / "manifests", "asdf://asdf-format.org/transform/manifests/", ), ] asdf_transform_schemas-0.2.0/src/asdf_transform_schemas.egg-info/0000755000446400020070000000000014155735511027423 5ustar eslavichSTSCI\science00000000000000asdf_transform_schemas-0.2.0/src/asdf_transform_schemas.egg-info/PKG-INFO0000644000446400020070000000137514155735510030525 0ustar eslavichSTSCI\science00000000000000Metadata-Version: 2.1 Name: asdf-transform-schemas Version: 0.2.0 Summary: ASDF schemas for transforms Home-page: https://github.com/asdf-format/asdf-transform-schemas Author: The ASDF Developers Author-email: help@stsci.edu License: BSD-3-Clause Description: # asdf-transform-schemas This package provides ASDF schemas for validating transform tags. Users should not need to install this directly; instead, install an implementation package such as asdf-astropy, which includes asdf-transform-schemas as a dependency. ![CI](https://github.com/asdf-format/asdf-transform-schemas/workflows/CI/badge.svg) Platform: UNKNOWN Requires-Python: >=3.6 Description-Content-Type: text/markdown Provides-Extra: test asdf_transform_schemas-0.2.0/src/asdf_transform_schemas.egg-info/zip-safe0000644000446400020070000000000114155735510031052 0ustar eslavichSTSCI\science00000000000000 asdf_transform_schemas-0.2.0/src/asdf_transform_schemas.egg-info/SOURCES.txt0000644000446400020070000002755514155735511031325 0ustar eslavichSTSCI\science00000000000000.gitignore CHANGES.rst LICENSE README.md pyproject.toml setup.cfg setup.py tox.ini .github/workflows/ci.yml resources/asdf-format.org/manifests/transform-1.0.0.yaml resources/asdf-format.org/manifests/transform-1.1.0.yaml resources/asdf-format.org/manifests/transform-1.2.0.yaml resources/asdf-format.org/manifests/transform-1.3.0.yaml resources/asdf-format.org/manifests/transform-1.4.0.yaml resources/asdf-format.org/manifests/transform-1.5.0.yaml resources/stsci.edu/schemas/add-1.0.0.yaml resources/stsci.edu/schemas/add-1.1.0.yaml resources/stsci.edu/schemas/add-1.2.0.yaml resources/stsci.edu/schemas/affine-1.0.0.yaml resources/stsci.edu/schemas/affine-1.1.0.yaml resources/stsci.edu/schemas/affine-1.2.0.yaml resources/stsci.edu/schemas/affine-1.3.0.yaml resources/stsci.edu/schemas/airy-1.0.0.yaml resources/stsci.edu/schemas/airy-1.1.0.yaml resources/stsci.edu/schemas/airy-1.2.0.yaml resources/stsci.edu/schemas/airy_disk2d-1.0.0.yaml resources/stsci.edu/schemas/blackbody-1.0.0.yaml resources/stsci.edu/schemas/bonne_equal_area-1.0.0.yaml resources/stsci.edu/schemas/bonne_equal_area-1.1.0.yaml resources/stsci.edu/schemas/bonne_equal_area-1.2.0.yaml resources/stsci.edu/schemas/bonne_equal_area-1.3.0.yaml resources/stsci.edu/schemas/box1d-1.0.0.yaml resources/stsci.edu/schemas/box2d-1.0.0.yaml resources/stsci.edu/schemas/broken_power_law1d-1.0.0.yaml resources/stsci.edu/schemas/cobe_quad_spherical_cube-1.0.0.yaml resources/stsci.edu/schemas/cobe_quad_spherical_cube-1.1.0.yaml resources/stsci.edu/schemas/cobe_quad_spherical_cube-1.2.0.yaml resources/stsci.edu/schemas/compose-1.0.0.yaml resources/stsci.edu/schemas/compose-1.1.0.yaml resources/stsci.edu/schemas/compose-1.2.0.yaml resources/stsci.edu/schemas/concatenate-1.0.0.yaml resources/stsci.edu/schemas/concatenate-1.1.0.yaml resources/stsci.edu/schemas/concatenate-1.2.0.yaml resources/stsci.edu/schemas/conic-1.0.0.yaml resources/stsci.edu/schemas/conic-1.1.0.yaml resources/stsci.edu/schemas/conic-1.2.0.yaml resources/stsci.edu/schemas/conic-1.3.0.yaml resources/stsci.edu/schemas/conic_equal_area-1.0.0.yaml resources/stsci.edu/schemas/conic_equal_area-1.1.0.yaml resources/stsci.edu/schemas/conic_equal_area-1.2.0.yaml resources/stsci.edu/schemas/conic_equal_area-1.3.0.yaml resources/stsci.edu/schemas/conic_equidistant-1.0.0.yaml resources/stsci.edu/schemas/conic_equidistant-1.1.0.yaml resources/stsci.edu/schemas/conic_equidistant-1.2.0.yaml resources/stsci.edu/schemas/conic_equidistant-1.3.0.yaml resources/stsci.edu/schemas/conic_orthomorphic-1.0.0.yaml resources/stsci.edu/schemas/conic_orthomorphic-1.1.0.yaml resources/stsci.edu/schemas/conic_orthomorphic-1.2.0.yaml resources/stsci.edu/schemas/conic_orthomorphic-1.3.0.yaml resources/stsci.edu/schemas/conic_perspective-1.0.0.yaml resources/stsci.edu/schemas/conic_perspective-1.1.0.yaml resources/stsci.edu/schemas/conic_perspective-1.2.0.yaml resources/stsci.edu/schemas/conic_perspective-1.3.0.yaml resources/stsci.edu/schemas/constant-1.0.0.yaml resources/stsci.edu/schemas/constant-1.1.0.yaml resources/stsci.edu/schemas/constant-1.2.0.yaml resources/stsci.edu/schemas/constant-1.3.0.yaml resources/stsci.edu/schemas/constant-1.4.0.yaml resources/stsci.edu/schemas/cylindrical-1.0.0.yaml resources/stsci.edu/schemas/cylindrical-1.1.0.yaml resources/stsci.edu/schemas/cylindrical-1.2.0.yaml resources/stsci.edu/schemas/cylindrical_equal_area-1.0.0.yaml resources/stsci.edu/schemas/cylindrical_equal_area-1.1.0.yaml resources/stsci.edu/schemas/cylindrical_equal_area-1.2.0.yaml resources/stsci.edu/schemas/cylindrical_equal_area-1.3.0.yaml resources/stsci.edu/schemas/cylindrical_perspective-1.0.0.yaml resources/stsci.edu/schemas/cylindrical_perspective-1.1.0.yaml resources/stsci.edu/schemas/cylindrical_perspective-1.2.0.yaml resources/stsci.edu/schemas/cylindrical_perspective-1.3.0.yaml resources/stsci.edu/schemas/disk2d-1.0.0.yaml resources/stsci.edu/schemas/divide-1.0.0.yaml resources/stsci.edu/schemas/divide-1.1.0.yaml resources/stsci.edu/schemas/divide-1.2.0.yaml resources/stsci.edu/schemas/domain-1.0.0.yaml resources/stsci.edu/schemas/drude1d-1.0.0.yaml resources/stsci.edu/schemas/ellipse2d-1.0.0.yaml resources/stsci.edu/schemas/exponential1d-1.0.0.yaml resources/stsci.edu/schemas/exponential_cutoff_power_law1d-1.0.0.yaml resources/stsci.edu/schemas/fix_inputs-1.1.0.yaml resources/stsci.edu/schemas/fix_inputs-1.2.0.yaml resources/stsci.edu/schemas/gaussian1d-1.0.0.yaml resources/stsci.edu/schemas/gaussian2d-1.0.0.yaml resources/stsci.edu/schemas/gnomonic-1.0.0.yaml resources/stsci.edu/schemas/gnomonic-1.1.0.yaml resources/stsci.edu/schemas/gnomonic-1.2.0.yaml resources/stsci.edu/schemas/hammer_aitoff-1.0.0.yaml resources/stsci.edu/schemas/hammer_aitoff-1.1.0.yaml resources/stsci.edu/schemas/hammer_aitoff-1.2.0.yaml resources/stsci.edu/schemas/healpix-1.0.0.yaml resources/stsci.edu/schemas/healpix-1.1.0.yaml resources/stsci.edu/schemas/healpix-1.2.0.yaml resources/stsci.edu/schemas/healpix_polar-1.0.0.yaml resources/stsci.edu/schemas/healpix_polar-1.1.0.yaml resources/stsci.edu/schemas/healpix_polar-1.2.0.yaml resources/stsci.edu/schemas/identity-1.0.0.yaml resources/stsci.edu/schemas/identity-1.1.0.yaml resources/stsci.edu/schemas/identity-1.2.0.yaml resources/stsci.edu/schemas/king_projected_analytic1d-1.0.0.yaml resources/stsci.edu/schemas/label_mapper-1.0.0.yaml resources/stsci.edu/schemas/label_mapper-1.1.0.yaml resources/stsci.edu/schemas/label_mapper-1.2.0.yaml resources/stsci.edu/schemas/linear1d-1.0.0.yaml resources/stsci.edu/schemas/log_parabola1d-1.0.0.yaml resources/stsci.edu/schemas/logarithmic1d-1.0.0.yaml resources/stsci.edu/schemas/lorentz1d-1.0.0.yaml resources/stsci.edu/schemas/math_functions-1.0.0.yaml resources/stsci.edu/schemas/mercator-1.0.0.yaml resources/stsci.edu/schemas/mercator-1.1.0.yaml resources/stsci.edu/schemas/mercator-1.2.0.yaml resources/stsci.edu/schemas/moffat1d-1.0.0.yaml resources/stsci.edu/schemas/moffat2d-1.0.0.yaml resources/stsci.edu/schemas/molleweide-1.0.0.yaml resources/stsci.edu/schemas/molleweide-1.1.0.yaml resources/stsci.edu/schemas/molleweide-1.2.0.yaml resources/stsci.edu/schemas/multiply-1.0.0.yaml resources/stsci.edu/schemas/multiply-1.1.0.yaml resources/stsci.edu/schemas/multiply-1.2.0.yaml resources/stsci.edu/schemas/multiplyscale-1.0.0.yaml resources/stsci.edu/schemas/ortho_polynomial-1.0.0.yaml resources/stsci.edu/schemas/parabolic-1.0.0.yaml resources/stsci.edu/schemas/parabolic-1.1.0.yaml resources/stsci.edu/schemas/parabolic-1.2.0.yaml resources/stsci.edu/schemas/planar2d-1.0.0.yaml resources/stsci.edu/schemas/plate_carree-1.0.0.yaml resources/stsci.edu/schemas/plate_carree-1.1.0.yaml resources/stsci.edu/schemas/plate_carree-1.2.0.yaml resources/stsci.edu/schemas/plummer1d-1.0.0.yaml resources/stsci.edu/schemas/polyconic-1.0.0.yaml resources/stsci.edu/schemas/polyconic-1.1.0.yaml resources/stsci.edu/schemas/polyconic-1.2.0.yaml resources/stsci.edu/schemas/polynomial-1.0.0.yaml resources/stsci.edu/schemas/polynomial-1.1.0.yaml resources/stsci.edu/schemas/polynomial-1.2.0.yaml resources/stsci.edu/schemas/power-1.0.0.yaml resources/stsci.edu/schemas/power-1.1.0.yaml resources/stsci.edu/schemas/power-1.2.0.yaml resources/stsci.edu/schemas/power_law1d-1.0.0.yaml resources/stsci.edu/schemas/pseudoconic-1.0.0.yaml resources/stsci.edu/schemas/pseudoconic-1.1.0.yaml resources/stsci.edu/schemas/pseudoconic-1.2.0.yaml resources/stsci.edu/schemas/pseudocylindrical-1.0.0.yaml resources/stsci.edu/schemas/pseudocylindrical-1.1.0.yaml resources/stsci.edu/schemas/pseudocylindrical-1.2.0.yaml resources/stsci.edu/schemas/quad_spherical_cube-1.0.0.yaml resources/stsci.edu/schemas/quad_spherical_cube-1.1.0.yaml resources/stsci.edu/schemas/quad_spherical_cube-1.2.0.yaml resources/stsci.edu/schemas/quadcube-1.0.0.yaml resources/stsci.edu/schemas/quadcube-1.1.0.yaml resources/stsci.edu/schemas/quadcube-1.2.0.yaml resources/stsci.edu/schemas/redshift_scale_factor-1.0.0.yaml resources/stsci.edu/schemas/regions_selector-1.0.0.yaml resources/stsci.edu/schemas/regions_selector-1.1.0.yaml resources/stsci.edu/schemas/regions_selector-1.2.0.yaml resources/stsci.edu/schemas/remap_axes-1.0.0.yaml resources/stsci.edu/schemas/remap_axes-1.1.0.yaml resources/stsci.edu/schemas/remap_axes-1.2.0.yaml resources/stsci.edu/schemas/remap_axes-1.3.0.yaml resources/stsci.edu/schemas/ricker_wavelet1d-1.0.0.yaml resources/stsci.edu/schemas/ricker_wavelet2d-1.0.0.yaml resources/stsci.edu/schemas/ring2d-1.0.0.yaml resources/stsci.edu/schemas/rotate2d-1.0.0.yaml resources/stsci.edu/schemas/rotate2d-1.1.0.yaml resources/stsci.edu/schemas/rotate2d-1.2.0.yaml resources/stsci.edu/schemas/rotate2d-1.3.0.yaml resources/stsci.edu/schemas/rotate3d-1.0.0.yaml resources/stsci.edu/schemas/rotate3d-1.1.0.yaml resources/stsci.edu/schemas/rotate3d-1.2.0.yaml resources/stsci.edu/schemas/rotate3d-1.3.0.yaml resources/stsci.edu/schemas/rotate_sequence_3d-1.0.0.yaml resources/stsci.edu/schemas/sanson_flamsteed-1.0.0.yaml resources/stsci.edu/schemas/sanson_flamsteed-1.1.0.yaml resources/stsci.edu/schemas/sanson_flamsteed-1.2.0.yaml resources/stsci.edu/schemas/scale-1.0.0.yaml resources/stsci.edu/schemas/scale-1.1.0.yaml resources/stsci.edu/schemas/scale-1.2.0.yaml resources/stsci.edu/schemas/sersic1d-1.0.0.yaml resources/stsci.edu/schemas/sersic2d-1.0.0.yaml resources/stsci.edu/schemas/shift-1.0.0.yaml resources/stsci.edu/schemas/shift-1.1.0.yaml resources/stsci.edu/schemas/shift-1.2.0.yaml resources/stsci.edu/schemas/sine1d-1.0.0.yaml resources/stsci.edu/schemas/slant_orthographic-1.0.0.yaml resources/stsci.edu/schemas/slant_orthographic-1.1.0.yaml resources/stsci.edu/schemas/slant_orthographic-1.2.0.yaml resources/stsci.edu/schemas/slant_zenithal_perspective-1.0.0.yaml resources/stsci.edu/schemas/slant_zenithal_perspective-1.1.0.yaml resources/stsci.edu/schemas/slant_zenithal_perspective-1.2.0.yaml resources/stsci.edu/schemas/smoothly_broken_power_law1d-1.0.0.yaml resources/stsci.edu/schemas/stereographic-1.0.0.yaml resources/stsci.edu/schemas/stereographic-1.1.0.yaml resources/stsci.edu/schemas/stereographic-1.2.0.yaml resources/stsci.edu/schemas/subtract-1.0.0.yaml resources/stsci.edu/schemas/subtract-1.1.0.yaml resources/stsci.edu/schemas/subtract-1.2.0.yaml resources/stsci.edu/schemas/tabular-1.0.0.yaml resources/stsci.edu/schemas/tabular-1.1.0.yaml resources/stsci.edu/schemas/tabular-1.2.0.yaml resources/stsci.edu/schemas/tangential_spherical_cube-1.0.0.yaml resources/stsci.edu/schemas/tangential_spherical_cube-1.1.0.yaml resources/stsci.edu/schemas/tangential_spherical_cube-1.2.0.yaml resources/stsci.edu/schemas/transform-1.0.0.yaml resources/stsci.edu/schemas/transform-1.1.0.yaml resources/stsci.edu/schemas/transform-1.2.0.yaml resources/stsci.edu/schemas/trapezoid1d-1.0.0.yaml resources/stsci.edu/schemas/trapezoid_disk2d-1.0.0.yaml resources/stsci.edu/schemas/voigt1d-1.0.0.yaml resources/stsci.edu/schemas/zenithal-1.0.0.yaml resources/stsci.edu/schemas/zenithal-1.1.0.yaml resources/stsci.edu/schemas/zenithal-1.2.0.yaml resources/stsci.edu/schemas/zenithal_equal_area-1.0.0.yaml resources/stsci.edu/schemas/zenithal_equal_area-1.1.0.yaml resources/stsci.edu/schemas/zenithal_equal_area-1.2.0.yaml resources/stsci.edu/schemas/zenithal_equidistant-1.0.0.yaml resources/stsci.edu/schemas/zenithal_equidistant-1.1.0.yaml resources/stsci.edu/schemas/zenithal_equidistant-1.2.0.yaml resources/stsci.edu/schemas/zenithal_perspective-1.0.0.yaml resources/stsci.edu/schemas/zenithal_perspective-1.1.0.yaml resources/stsci.edu/schemas/zenithal_perspective-1.2.0.yaml resources/stsci.edu/schemas/zenithal_perspective-1.3.0.yaml scripts/generate_manifest.py scripts/import_transforms.py src/asdf_transform_schemas/__init__.py src/asdf_transform_schemas/integration.py src/asdf_transform_schemas.egg-info/PKG-INFO src/asdf_transform_schemas.egg-info/SOURCES.txt src/asdf_transform_schemas.egg-info/dependency_links.txt src/asdf_transform_schemas.egg-info/entry_points.txt src/asdf_transform_schemas.egg-info/requires.txt src/asdf_transform_schemas.egg-info/top_level.txt src/asdf_transform_schemas.egg-info/zip-safe tests/.gitignore tests/test_integration.pyasdf_transform_schemas-0.2.0/src/asdf_transform_schemas.egg-info/entry_points.txt0000644000446400020070000000015414155735510032720 0ustar eslavichSTSCI\science00000000000000[asdf.resource_mappings] asdf_transform_schemas = asdf_transform_schemas.integration:get_resource_mappings asdf_transform_schemas-0.2.0/src/asdf_transform_schemas.egg-info/requires.txt0000644000446400020070000000011514155735510032017 0ustar eslavichSTSCI\science00000000000000asdf>=2.8.0 [:python_version < "3.9"] importlib_resources>=3 [test] pytest asdf_transform_schemas-0.2.0/src/asdf_transform_schemas.egg-info/top_level.txt0000644000446400020070000000002714155735510032153 0ustar eslavichSTSCI\science00000000000000asdf_transform_schemas asdf_transform_schemas-0.2.0/src/asdf_transform_schemas.egg-info/dependency_links.txt0000644000446400020070000000000114155735510033470 0ustar eslavichSTSCI\science00000000000000