cliquer-1.21/0000755000175000017500000000000011326254601011233 5ustar patpatcliquer-1.21/ChangeLog0000644000175000017500000000072211326254271013011 0ustar patpatVersion 1.21: Fixed minor bug in Makefile Version 1.2: Fixed a fatal bug in the reordering function reorder_graph. Using this function on a weighted graph has corrupted the graph in earlier versions. New default for the numbering of vertices in output from cl: 1 to n instead of 0 to n-1. New parameter -0 --from-0 instead of -1 --1-to-n. Version 1.1: Fixed a few bugs in resizing sets and graphs. Version 1.0: First public "official" release. cliquer-1.21/cl.c0000644000175000017500000002443611326254207012010 0ustar patpat #include #include #include #ifdef ENABLE_LONG_OPTIONS #include #endif #include "cliquer.h" #define TRYFORHELP "Try `%s -h' for more information.\n",argv[0] void printhelp(char *prog); void read_options(int argc, char **argv); void print_search(graph_t *g); boolean record_clique_func(set_t s,graph_t *g,clique_options *opts); boolean print_clique_func(set_t s,graph_t *g,clique_options *opts); void print_clique(set_t s,graph_t *g); /* Options, changed by command-line arguments. */ static boolean find_all=FALSE; static int min_weight=0; static boolean min_weight_set=FALSE; static int max_weight=0; static boolean max_weight_set=FALSE; static boolean maximal=FALSE; static boolean unweighted=FALSE; static boolean number1=TRUE; static int quiet=0; static boolean only_weight=FALSE; static int *(*reorder)(graph_t *, boolean)=reorder_by_default; static char *file; /* Dynamically allocated storage for cliques. */ static set_t *clique_list; static int clique_count=0; static int clique_list_size=0; int main(int argc, char **argv) { FILE *fp; graph_t *g; set_t s; clique_options *opts; int i,j; if (argc<=1) printhelp(argv[0]); read_options(argc,argv); if (file[0]=='-' && file[1]==0) { fp=stdin; if (quiet<=1) fprintf(stderr,"Reading graph from stdin..."); } else { fp=fopen(file,"rb"); if (fp==NULL) { perror(file); exit(2); } if (quiet<=1) fprintf(stderr,"Reading graph from %s...",file); } g=graph_read_dimacs(fp); if (g==NULL) { fprintf(stderr,"Error in graph file.\n"); return 1; } if (quiet<=1) fprintf(stderr,"OK\n"); fclose(fp); /* Set stdout to be line-buffered even if redirected. */ setvbuf(stdout,(char *)NULL,_IOLBF,0); /* Initialize out clique_options */ opts=malloc(sizeof(clique_options)); if (quiet) opts->time_function=NULL; else opts->time_function=clique_print_time; opts->output=stderr; opts->reorder_function=reorder; opts->reorder_map=NULL; if (quiet) opts->user_function=print_clique_func; else opts->user_function=record_clique_func; opts->user_data=NULL; opts->clique_list=NULL; opts->clique_list_length=0; /* Report what we are doing. */ if (quiet<=1) print_search(g); if (only_weight) { if (unweighted) { j=clique_unweighted_max_weight(g,opts); printf("Largest clique: %d\n",j); } else { j=clique_max_weight(g,opts); printf("Heaviest clique: %d\n",j); } } else if (find_all) { if (unweighted) { clique_unweighted_find_all(g,min_weight,max_weight, maximal,opts); } else { clique_find_all(g,min_weight,max_weight,maximal,opts); } if (quiet<=0) { fprintf(stderr,"Found %d clique%s:\n", clique_count,(clique_count==1)?"":"s"); for (i=0; i\n" "\n" " is the ASCII or binary DIMACS-format file from which to read\n" "the graph. Options are the following:\n" "\n" " -h --help This help text.\n" " -a --all Find all cliques.\n" " -s --single Find only one clique (default).\n" " -w --weight Tell only maximum weight (no faster than -s).\n" " -m N --min N Search for cliques with weight at least N. If N=0,\n" " searches for maximum weight clique (default).\n" " -M N --max N Search for cliques with weight at most N. If N=0,\n" " no limit is imposed (default). N being positive is\n" " incompatible with \"--min 0\" (\"--min 1\" is assumed).\n" " -x --maximal Require cliques to be maximal.\n" " -u --unweighted Assume weight 1 for all vertices.\n" " -0 --from-0 Number vertices 0 to n-1 instead of 1 to n when writing.\n" " -r F --reorder F Reorder with function F. See below for details.\n" " -q --quiet Suppresses progress output. Specifying -q twice\n" " suppresses all output except the actual result.\n" "\n" "Available reordering functions are the following:\n" "\n" " none No ordering (same order as in the file).\n" " reverse Reverse order as in the file.\n" " default One of the two below, depending on weightedness.\n" " unweighted-coloring Coloring method efficient for unweighted graphs.\n" " weighted-coloring Coloring method efficient for weighted graphs.\n" " degree Order by ascending degree.\n" " random Random order.\n" "\n", prog); #ifndef ENABLE_LONG_OPTIONS printf("(Long options not enabled during compile.)\n\n"); #endif exit(0); } /* * Reads the command-line options and sets the global options accordingly. */ void read_options(int argc, char **argv) { int c; char *ptr; while (TRUE) { #ifdef ENABLE_LONG_OPTIONS int option_index = 0; static struct option long_options[] = { { "all", no_argument, NULL, 'a' }, { "single", no_argument, NULL, 's' }, { "weight", no_argument, NULL, 'w' }, { "min", required_argument, NULL, 'm' }, { "max", required_argument, NULL, 'M' }, { "maximal", no_argument, NULL, 'x' }, { "unweighted", no_argument, NULL, 'u' }, { "reorder", required_argument, NULL, 'r' }, { "from-0", no_argument, NULL, '0' }, { "quiet", no_argument, NULL, 'q' }, { "help", no_argument, NULL, 'h' }, { 0,0,0,0 } }; c=getopt_long(argc,argv,"aswm:M:xur:1qh", long_options,&option_index); #else /* !ENABLE_LONG_OPTIONS */ c=getopt(argc,argv,"aswm:M:xur:1qh-"); #endif /* !ENABLE_LONG_OPTIONS */ if (c==-1) break; switch (c) { case 0: break; case 'a': find_all=TRUE; break; case 's': find_all=FALSE; break; case 'w': only_weight=TRUE; break; case 'm': min_weight=strtol(optarg,&ptr,10); if ((*optarg == 0) || (*ptr != 0) || (min_weight<0)) { fprintf(stderr,"Bad argument: %s\n",optarg); fprintf(stderr,TRYFORHELP); exit(1); } if (min_weight==0 && max_weight>0) { if (max_weight_set) { fprintf(stderr,"Error: --max >0 is " "incompatible with --min 0\n"); fprintf(stderr,TRYFORHELP); exit(1); } max_weight=0; } min_weight_set=TRUE; break; case 'M': max_weight=strtol(optarg,&ptr,10); if ((*optarg == 0) || (*ptr != 0) || (max_weight<0)) { fprintf(stderr,"Bad argument: %s\n",optarg); fprintf(stderr,TRYFORHELP); exit(1); } if (max_weight>0 && min_weight==0) { if (min_weight_set) { fprintf(stderr,"Error: --max >0 is " "incompatible with --min 0\n"); fprintf(stderr,TRYFORHELP); exit(1); } min_weight=1; } max_weight_set=TRUE; break; case 'x': maximal=TRUE; break; case 'u': unweighted=TRUE; break; case 'r': if (strcasecmp(optarg,"none")==0) reorder=NULL; else if (strcasecmp(optarg,"reverse")==0) reorder=reorder_by_reverse; else if (strcasecmp(optarg,"default")==0) reorder=reorder_by_default; else if (strcasecmp(optarg,"unweighted-coloring")==0) reorder=reorder_by_unweighted_greedy_coloring; else if (strcasecmp(optarg,"weighted-coloring")==0) reorder=reorder_by_weighted_greedy_coloring; else if (strcasecmp(optarg,"degree")==0) reorder=reorder_by_degree; else if (strcasecmp(optarg,"random")==0) reorder=reorder_by_random; else { fprintf(stderr,"Bad reordering type: %s\n", optarg); fprintf(stderr,TRYFORHELP); exit(1); } break; case '0': number1=FALSE; break; case 'q': quiet++; break; case 'h': printhelp(argv[0]); break; #ifndef ENABLE_LONG_OPTIONS case '-': fprintf(stderr,"%s: Long options not enabled " "during compile.\n",argv[0]); exit(1); #endif case '?': fprintf(stderr,TRYFORHELP); exit(1); default: fprintf(stderr,"Internal bug: line %d should never " "be reached!",__LINE__); exit(-1); } } if (optind >= argc) { fprintf(stderr,"Missing filename.\n"); fprintf(stderr,TRYFORHELP); exit(1); } if (optind < argc-1) { fprintf(stderr,"Bad command line option: %s\n",argv[optind+1]); fprintf(stderr,TRYFORHELP); exit(1); } file=argv[optind]; return; } /* * Prints a line to stderr indicating what is being searched for. */ void print_search(graph_t *g) { fprintf(stderr,"Searching for %s ",find_all?"all":"a single"); if (min_weight==0) { fprintf(stderr,"maximum %s clique%s...\n", unweighted?"size":"weight",find_all?"s":""); return; } if (min_weight>0 && maximal) fprintf(stderr,"maximal "); fprintf(stderr,"clique%s with %s ",find_all?"s":"", unweighted?"size":"weight"); if (max_weight==0) { fprintf(stderr,"at least %d...",min_weight); } else if (min_weight==max_weight) { fprintf(stderr,"exactly %d...",min_weight); } else { fprintf(stderr,"within range %d-%d...",min_weight,max_weight); } fprintf(stderr,"\n"); return; } /* * Prints the clique s along with it's size and weight. */ void print_clique(set_t s,graph_t *g) { int i; printf("size=%d, weight=%d: ",set_size(s),graph_subgraph_weight(g,s)); for (i=0; iuser_function. */ boolean record_clique_func(set_t s,graph_t *g,clique_options *opts) { if (clique_count>=clique_list_size) { clique_list=realloc(clique_list,(clique_list_size+512) * sizeof(set_t)); clique_list_size+=512; } clique_list[clique_count]=set_duplicate(s); clique_count++; return TRUE; } /* * Prints a clique. Used as opts->user_function. */ boolean print_clique_func(set_t s,graph_t *g,clique_options *opts) { print_clique(s,g); return TRUE; } cliquer-1.21/cliquer.c0000644000175000017500000012736511326254207013063 0ustar patpat /* * This file contains the clique searching routines. * * Copyright (C) 2002 Sampo Niskanen, Patric stergrd. * Licensed under the GNU GPL, read the file LICENSE for details. */ #include #include #include #include #include #include #include "cliquer.h" /* Default cliquer options */ static clique_options clique_default_options_struct = { reorder_by_default, NULL, clique_print_time, NULL, NULL, NULL, NULL, 0 }; clique_options *clique_default_options=&clique_default_options_struct; /* Calculate d/q, rounding result upwards/downwards. */ #define DIV_UP(d,q) (((d)+(q)-1)/(q)) #define DIV_DOWN(d,q) ((int)((d)/(q))) /* Global variables used: */ /* These must be saved and restored in re-entrance. */ static int *clique_size; /* c[i] == max. clique size in {0,1,...,i-1} */ static set_t current_clique; /* Current clique being searched. */ static set_t best_clique; /* Largest/heaviest clique found so far. */ static struct tms cputimer; /* Timer for opts->time_function() */ static struct timeval realtimer; /* Timer for opts->time_function() */ static int clique_list_count=0; /* No. of cliques in opts->clique_list[] */ static int weight_multiplier=1; /* Weights multiplied by this when passing * to time_function(). */ /* List cache (contains memory blocks of size g->n * sizeof(int)) */ static int **temp_list=NULL; static int temp_count=0; /* * Macros for re-entrance. ENTRANCE_SAVE() must be called immediately * after variable definitions, ENTRANCE_RESTORE() restores global * variables to original values. entrance_level should be increased * and decreased accordingly. */ static int entrance_level=0; /* How many levels for entrance have occurred? */ #define ENTRANCE_SAVE() \ int *old_clique_size = clique_size; \ set_t old_current_clique = current_clique; \ set_t old_best_clique = best_clique; \ int old_clique_list_count = clique_list_count; \ int old_weight_multiplier = weight_multiplier; \ int **old_temp_list = temp_list; \ int old_temp_count = temp_count; \ struct tms old_cputimer; \ struct timeval old_realtimer; \ memcpy(&old_cputimer,&cputimer,sizeof(struct tms)); \ memcpy(&old_realtimer,&realtimer,sizeof(struct timeval)); #define ENTRANCE_RESTORE() \ clique_size = old_clique_size; \ current_clique = old_current_clique; \ best_clique = old_best_clique; \ clique_list_count = old_clique_list_count; \ weight_multiplier = old_weight_multiplier; \ temp_list = old_temp_list; \ temp_count = old_temp_count; \ memcpy(&cputimer,&old_cputimer,sizeof(struct tms)); \ memcpy(&realtimer,&old_realtimer,sizeof(struct timeval)); /* Number of clock ticks per second (as returned by sysconf(_SC_CLK_TCK)) */ static int clocks_per_sec=0; /* Recursion and helper functions */ static boolean sub_unweighted_single(int *table, int size, int min_size, graph_t *g); static int sub_unweighted_all(int *table, int size, int min_size, int max_size, boolean maximal, graph_t *g, clique_options *opts); static int sub_weighted_all(int *table, int size, int weight, int current_weight, int prune_low, int prune_high, int min_weight, int max_weight, boolean maximal, graph_t *g, clique_options *opts); static boolean store_clique(set_t clique, graph_t *g, clique_options *opts); static boolean is_maximal(set_t clique, graph_t *g); static boolean false_function(set_t clique,graph_t *g,clique_options *opts); /***** Unweighted searches *****/ /* * Unweighted searches are done separately from weighted searches because * some effective pruning methods can be used when the vertex weights * are all 1. Single and all clique finding routines are separated, * because the single clique finding routine can store the found clique * while it is returning from the recursion, thus requiring no implicit * storing of the current clique. When searching for all cliques the * current clique must be stored. */ /* * unweighted_clique_search_single() * * Searches for a single clique of size min_size. Stores maximum clique * sizes into clique_size[]. * * table - the order of the vertices in g to use * min_size - minimum size of clique to search for. If min_size==0, * searches for a maximum clique. * g - the graph * opts - time printing options * * opts->time_function is called after each base-level recursion, if * non-NULL. * * Returns the size of the clique found, or 0 if min_size>0 and a clique * of that size was not found (or if time_function aborted the search). * The largest clique found is stored in current_clique. * * Note: Does NOT use opts->user_function of opts->clique_list. */ static int unweighted_clique_search_single(int *table, int min_size, graph_t *g, clique_options *opts) { struct tms tms; struct timeval timeval; int i,j; int v,w; int *newtable; int newsize; v=table[0]; clique_size[v]=1; set_empty(current_clique); SET_ADD_ELEMENT(current_clique,v); if (min_size==1) return 1; if (temp_count) { temp_count--; newtable=temp_list[temp_count]; } else { newtable=malloc(g->n * sizeof(int)); } for (i=1; i < g->n; i++) { w=v; v=table[i]; newsize=0; for (j=0; jtime_function) { gettimeofday(&timeval,NULL); times(&tms); if (!opts->time_function(entrance_level, i+1,g->n,clique_size[v] * weight_multiplier, (double)(tms.tms_utime- cputimer.tms_utime)/ clocks_per_sec, timeval.tv_sec- realtimer.tv_sec+ (double)(timeval.tv_usec- realtimer.tv_usec)/ 1000000,opts)) { temp_list[temp_count++]=newtable; return 0; } } if (min_size) { if (clique_size[v]>=min_size) { temp_list[temp_count++]=newtable; return clique_size[v]; } if (clique_size[v]+g->n-i-1 < min_size) { temp_list[temp_count++]=newtable; return 0; } } } temp_list[temp_count++]=newtable; if (min_size) return 0; return clique_size[v]; } /* * sub_unweighted_single() * * Recursion function for searching for a single clique of size min_size. * * table - subset of the vertices in graph * size - size of table * min_size - size of clique to look for within the subgraph * (decreased with every recursion) * g - the graph * * Returns TRUE if a clique of size min_size is found, FALSE otherwise. * If a clique of size min_size is found, it is stored in current_clique. * * clique_size[] for all values in table must be defined and correct, * otherwise inaccurate results may occur. */ static boolean sub_unweighted_single(int *table, int size, int min_size, graph_t *g) { int i; int v; int *newtable; int *p1, *p2; /* Zero or one vertices needed anymore. */ if (min_size <= 1) { if (size>0 && min_size==1) { set_empty(current_clique); SET_ADD_ELEMENT(current_clique,table[0]); return TRUE; } if (min_size==0) { set_empty(current_clique); return TRUE; } return FALSE; } if (size < min_size) return FALSE; /* Dynamic memory allocation with cache */ if (temp_count) { temp_count--; newtable=temp_list[temp_count]; } else { newtable=malloc(g->n * sizeof(int)); } for (i = size-1; i >= 0; i--) { v = table[i]; if (clique_size[v] < min_size) break; /* This is faster when compiling with gcc than placing * this in the for-loop condition. */ if (i+1 < min_size) break; /* Very ugly code, but works faster than "for (i=...)" */ p1 = newtable; for (p2=table; p2 < table+i; p2++) { int w = *p2; if (GRAPH_IS_EDGE(g, v, w)) { *p1 = w; p1++; } } /* Avoid unneccessary loops (next size == p1-newtable) */ if (p1-newtable < min_size-1) continue; /* Now p1-newtable >= min_size-1 >= 2-1 == 1, so we can use * p1-newtable-1 safely. */ if (clique_size[newtable[p1-newtable-1]] < min_size-1) continue; if (sub_unweighted_single(newtable,p1-newtable, min_size-1,g)) { /* Clique found. */ SET_ADD_ELEMENT(current_clique,v); temp_list[temp_count++]=newtable; return TRUE; } } temp_list[temp_count++]=newtable; return FALSE; } /* * unweighted_clique_search_all() * * Searches for all cliques with size at least min_size and at most * max_size. Stores the cliques as opts declares. * * table - the order of the vertices in g to search * start - first index where the subgraph table[0], ..., table[start] * might include a requested kind of clique * min_size - minimum size of clique to search for. min_size > 0 ! * max_size - maximum size of clique to search for. If no upper limit * is desired, use eg. INT_MAX * maximal - requires cliques to be maximal * g - the graph * opts - time printing and clique storage options * * Cliques found are stored as defined by opts->user_function and * opts->clique_list. opts->time_function is called after each * base-level recursion, if non-NULL. * * clique_size[] must be defined and correct for all values of * table[0], ..., table[start-1]. * * Returns the number of cliques stored (not neccessarily number of cliques * in graph, if user/time_function aborts). */ static int unweighted_clique_search_all(int *table, int start, int min_size, int max_size, boolean maximal, graph_t *g, clique_options *opts) { struct timeval timeval; struct tms tms; int i,j; int v; int *newtable; int newsize; int count=0; if (temp_count) { temp_count--; newtable=temp_list[temp_count]; } else { newtable=malloc(g->n * sizeof(int)); } clique_list_count=0; set_empty(current_clique); for (i=start; i < g->n; i++) { v=table[i]; clique_size[v]=min_size; /* Do not prune here. */ newsize=0; for (j=0; jtime_function) { gettimeofday(&timeval,NULL); times(&tms); if (!opts->time_function(entrance_level, i+1,g->n,min_size * weight_multiplier, (double)(tms.tms_utime- cputimer.tms_utime)/ clocks_per_sec, timeval.tv_sec- realtimer.tv_sec+ (double)(timeval.tv_usec- realtimer.tv_usec)/ 1000000,opts)) { /* Abort. */ break; } } } temp_list[temp_count++]=newtable; return count; } /* * sub_unweighted_all() * * Recursion function for searching for all cliques of given size. * * table - subset of vertices of graph g * size - size of table * min_size - minimum size of cliques to search for (decreased with * every recursion) * max_size - maximum size of cliques to search for (decreased with * every recursion). If no upper limit is desired, use * eg. INT_MAX * maximal - require cliques to be maximal (passed through) * g - the graph * opts - storage options * * All cliques of suitable size found are stored according to opts. * * Returns the number of cliques found. If user_function returns FALSE, * then the number of cliques is returned negative. * * Uses current_clique to store the currently-being-searched clique. * clique_size[] for all values in table must be defined and correct, * otherwise inaccurate results may occur. */ static int sub_unweighted_all(int *table, int size, int min_size, int max_size, boolean maximal, graph_t *g, clique_options *opts) { int i; int v; int n; int *newtable; int *p1, *p2; int count=0; /* Amount of cliques found */ if (min_size <= 0) { if ((!maximal) || is_maximal(current_clique,g)) { /* We've found one. Store it. */ count++; if (!store_clique(current_clique,g,opts)) { return -count; } } if (max_size <= 0) { /* If we add another element, size will be too big. */ return count; } } if (size < min_size) { return count; } /* Dynamic memory allocation with cache */ if (temp_count) { temp_count--; newtable=temp_list[temp_count]; } else { newtable=malloc(g->n * sizeof(int)); } for (i=size-1; i>=0; i--) { v = table[i]; if (clique_size[v] < min_size) { break; } if (i+1 < min_size) { break; } /* Very ugly code, but works faster than "for (i=...)" */ p1 = newtable; for (p2=table; p2 < table+i; p2++) { int w = *p2; if (GRAPH_IS_EDGE(g, v, w)) { *p1 = w; p1++; } } /* Avoid unneccessary loops (next size == p1-newtable) */ if (p1-newtable < min_size-1) { continue; } SET_ADD_ELEMENT(current_clique,v); n=sub_unweighted_all(newtable,p1-newtable, min_size-1,max_size-1,maximal,g,opts); SET_DEL_ELEMENT(current_clique,v); if (n < 0) { /* Abort. */ count -= n; count = -count; break; } count+=n; } temp_list[temp_count++]=newtable; return count; } /***** Weighted clique searches *****/ /* * Weighted clique searches can use the same recursive routine, because * in both cases (single/all) they have to search through all potential * permutations searching for heavier cliques. */ /* * weighted_clique_search_single() * * Searches for a single clique of weight at least min_weight, and at * most max_weight. Stores maximum clique sizes into clique_size[] * (or min_weight-1, whichever is smaller). * * table - the order of the vertices in g to use * min_weight - minimum weight of clique to search for. If min_weight==0, * then searches for a maximum weight clique * max_weight - maximum weight of clique to search for. If no upper limit * is desired, use eg. INT_MAX * g - the graph * opts - time printing options * * opts->time_function is called after each base-level recursion, if * non-NULL. * * Returns 0 if a clique of requested weight was not found (also if * time_function requested an abort), otherwise returns >= 1. * If min_weight==0 (search for maximum-weight clique), then the return * value is the weight of the clique found. The found clique is stored * in best_clique. * * Note: Does NOT use opts->user_function of opts->clique_list. */ static int weighted_clique_search_single(int *table, int min_weight, int max_weight, graph_t *g, clique_options *opts) { struct timeval timeval; struct tms tms; int i,j; int v; int *newtable; int newsize; int newweight; int search_weight; int min_w; clique_options localopts; if (min_weight==0) min_w=INT_MAX; else min_w=min_weight; if (min_weight==1) { /* min_weight==1 may cause trouble in the routine, and * it's trivial to check as it's own case. * We write nothing to clique_size[]. */ for (i=0; i < g->n; i++) { if (g->weights[table[i]] <= max_weight) { set_empty(best_clique); SET_ADD_ELEMENT(best_clique,table[i]); return g->weights[table[i]]; } } return 0; } localopts.time_function=NULL; localopts.reorder_function=NULL; localopts.reorder_map=NULL; localopts.user_function=false_function; localopts.user_data=NULL; localopts.clique_list=&best_clique; localopts.clique_list_length=1; clique_list_count=0; v=table[0]; set_empty(best_clique); SET_ADD_ELEMENT(best_clique,v); search_weight=g->weights[v]; if (min_weight && (search_weight >= min_weight)) { if (search_weight <= max_weight) { /* Found suitable clique. */ return search_weight; } search_weight=min_weight-1; } clique_size[v]=search_weight; set_empty(current_clique); if (temp_count) { temp_count--; newtable=temp_list[temp_count]; } else { newtable=malloc(g->n * sizeof(int)); } for (i = 1; i < g->n; i++) { v=table[i]; newsize=0; newweight=0; for (j=0; jweights[table[j]]; newtable[newsize]=table[j]; newsize++; } } SET_ADD_ELEMENT(current_clique,v); search_weight=sub_weighted_all(newtable,newsize,newweight, g->weights[v],search_weight, clique_size[table[i-1]] + g->weights[v], min_w,max_weight,FALSE, g,&localopts); SET_DEL_ELEMENT(current_clique,v); if (search_weight < 0) { break; } clique_size[v]=search_weight; if (opts->time_function) { gettimeofday(&timeval,NULL); times(&tms); if (!opts->time_function(entrance_level, i+1,g->n,clique_size[v] * weight_multiplier, (double)(tms.tms_utime- cputimer.tms_utime)/ clocks_per_sec, timeval.tv_sec- realtimer.tv_sec+ (double)(timeval.tv_usec- realtimer.tv_usec)/ 1000000,opts)) { set_free(current_clique); current_clique=NULL; break; } } } temp_list[temp_count++]=newtable; if (min_weight && (search_weight > 0)) { /* Requested clique has not been found. */ return 0; } return clique_size[table[i-1]]; } /* * weighted_clique_search_all() * * Searches for all cliques with weight at least min_weight and at most * max_weight. Stores the cliques as opts declares. * * table - the order of the vertices in g to search * start - first index where the subgraph table[0], ..., table[start] * might include a requested kind of clique * min_weight - minimum weight of clique to search for. min_weight > 0 ! * max_weight - maximum weight of clique to search for. If no upper limit * is desired, use eg. INT_MAX * maximal - search only for maximal cliques * g - the graph * opts - time printing and clique storage options * * Cliques found are stored as defined by opts->user_function and * opts->clique_list. opts->time_function is called after each * base-level recursion, if non-NULL. * * clique_size[] must be defined and correct for all values of * table[0], ..., table[start-1]. * * Returns the number of cliques stored (not neccessarily number of cliques * in graph, if user/time_function aborts). */ static int weighted_clique_search_all(int *table, int start, int min_weight, int max_weight, boolean maximal, graph_t *g, clique_options *opts) { struct timeval timeval; struct tms tms; int i,j; int v; int *newtable; int newsize; int newweight; if (temp_count) { temp_count--; newtable=temp_list[temp_count]; } else { newtable=malloc(g->n * sizeof(int)); } clique_list_count=0; set_empty(current_clique); for (i=start; i < g->n; i++) { v=table[i]; clique_size[v]=min_weight; /* Do not prune here. */ newsize=0; newweight=0; for (j=0; jweights[table[j]]; newsize++; } } SET_ADD_ELEMENT(current_clique,v); j=sub_weighted_all(newtable,newsize,newweight, g->weights[v],min_weight-1,INT_MAX, min_weight,max_weight,maximal,g,opts); SET_DEL_ELEMENT(current_clique,v); if (j<0) { /* Abort. */ break; } if (opts->time_function) { gettimeofday(&timeval,NULL); times(&tms); if (!opts->time_function(entrance_level, i+1,g->n,clique_size[v] * weight_multiplier, (double)(tms.tms_utime- cputimer.tms_utime)/ clocks_per_sec, timeval.tv_sec- realtimer.tv_sec+ (double)(timeval.tv_usec- realtimer.tv_usec)/ 1000000,opts)) { set_free(current_clique); current_clique=NULL; break; } } } temp_list[temp_count++]=newtable; return clique_list_count; } /* * sub_weighted_all() * * Recursion function for searching for all cliques of given weight. * * table - subset of vertices of graph g * size - size of table * weight - total weight of vertices in table * current_weight - weight of clique found so far * prune_low - ignore all cliques with weight less or equal to this value * (often heaviest clique found so far) (passed through) * prune_high - maximum weight possible for clique in this subgraph * (passed through) * min_size - minimum weight of cliques to search for (passed through) * Must be greater than 0. * max_size - maximum weight of cliques to search for (passed through) * If no upper limit is desired, use eg. INT_MAX * maximal - search only for maximal cliques * g - the graph * opts - storage options * * All cliques of suitable weight found are stored according to opts. * * Returns weight of heaviest clique found (prune_low if a heavier clique * hasn't been found); if a clique with weight at least min_size is found * then min_size-1 is returned. If clique storage failed, -1 is returned. * * The largest clique found smaller than max_weight is stored in * best_clique, if non-NULL. * * Uses current_clique to store the currently-being-searched clique. * clique_size[] for all values in table must be defined and correct, * otherwise inaccurate results may occur. * * To search for a single maximum clique, use min_weight==max_weight==INT_MAX, * with best_clique non-NULL. To search for a single given-weight clique, * use opts->clique_list and opts->user_function=false_function. When * searching for all cliques, min_weight should be given the minimum weight * desired. */ static int sub_weighted_all(int *table, int size, int weight, int current_weight, int prune_low, int prune_high, int min_weight, int max_weight, boolean maximal, graph_t *g, clique_options *opts) { int i; int v,w; int *newtable; int *p1, *p2; int newweight; if (current_weight >= min_weight) { if ((current_weight <= max_weight) && ((!maximal) || is_maximal(current_clique,g))) { /* We've found one. Store it. */ if (!store_clique(current_clique,g,opts)) { return -1; } } if (current_weight >= max_weight) { /* Clique too heavy. */ return min_weight-1; } } if (size <= 0) { /* current_weight < min_weight, prune_low < min_weight, * so return value is always < min_weight. */ if (current_weight>prune_low) { if (best_clique) set_copy(best_clique,current_clique); if (current_weight < min_weight) return current_weight; else return min_weight-1; } else { return prune_low; } } /* Dynamic memory allocation with cache */ if (temp_count) { temp_count--; newtable=temp_list[temp_count]; } else { newtable=malloc(g->n * sizeof(int)); } for (i = size-1; i >= 0; i--) { v = table[i]; if (current_weight+clique_size[v] <= prune_low) { /* Dealing with subset without heavy enough clique. */ break; } if (current_weight+weight <= prune_low) { /* Even if all elements are added, won't do. */ break; } /* Very ugly code, but works faster than "for (i=...)" */ p1 = newtable; newweight = 0; for (p2=table; p2 < table+i; p2++) { w = *p2; if (GRAPH_IS_EDGE(g, v, w)) { *p1 = w; newweight += g->weights[w]; p1++; } } w=g->weights[v]; weight-=w; /* Avoid a few unneccessary loops */ if (current_weight+w+newweight <= prune_low) { continue; } SET_ADD_ELEMENT(current_clique,v); prune_low=sub_weighted_all(newtable,p1-newtable, newweight, current_weight+w, prune_low,prune_high, min_weight,max_weight,maximal, g,opts); SET_DEL_ELEMENT(current_clique,v); if ((prune_low<0) || (prune_low>=prune_high)) { /* Impossible to find larger clique. */ break; } } temp_list[temp_count++]=newtable; return prune_low; } /***** Helper functions *****/ /* * store_clique() * * Stores a clique according to given user options. * * clique - the clique to store * opts - storage options * * Returns FALSE if opts->user_function() returned FALSE; otherwise * returns TRUE. */ static boolean store_clique(set_t clique, graph_t *g, clique_options *opts) { clique_list_count++; /* clique_list[] */ if (opts->clique_list) { /* * This has been a major source of bugs: * Has clique_list_count been set to 0 before calling * the recursions? */ if (clique_list_count <= 0) { fprintf(stderr,"CLIQUER INTERNAL ERROR: " "clique_list_count has negative value!\n"); fprintf(stderr,"Please report as a bug.\n"); abort(); } if (clique_list_count <= opts->clique_list_length) opts->clique_list[clique_list_count-1] = set_duplicate(clique); } /* user_function() */ if (opts->user_function) { if (!opts->user_function(clique,g,opts)) { /* User function requested abort. */ return FALSE; } } return TRUE; } /* * maximalize_clique() * * Adds greedily all possible vertices in g to set s to make it a maximal * clique. * * s - clique of vertices to make maximal * g - graph * * Note: Not very optimized (uses a simple O(n^2) routine), but is called * at maximum once per clique_xxx() call, so it shouldn't matter. */ static void maximalize_clique(set_t s,graph_t *g) { int i,j; boolean add; for (i=0; i < g->n; i++) { add=TRUE; for (j=0; j < g->n; j++) { if (SET_CONTAINS_FAST(s,j) && !GRAPH_IS_EDGE(g,i,j)) { add=FALSE; break; } } if (add) { SET_ADD_ELEMENT(s,i); } } return; } /* * is_maximal() * * Check whether a clique is maximal or not. * * clique - set of vertices in clique * g - graph * * Returns TRUE is clique is a maximal clique of g, otherwise FALSE. */ static boolean is_maximal(set_t clique, graph_t *g) { int i,j; int *table; int len; boolean addable; if (temp_count) { temp_count--; table=temp_list[temp_count]; } else { table=malloc(g->n * sizeof(int)); } len=0; for (i=0; i < g->n; i++) if (SET_CONTAINS_FAST(clique,i)) table[len++]=i; for (i=0; i < g->n; i++) { addable=TRUE; for (j=0; jtime_function() requests abort). * * The returned clique is newly allocated and can be freed by set_free(). * * Note: Does NOT use opts->user_function() or opts->clique_list[]. */ set_t clique_unweighted_find_single(graph_t *g,int min_size,int max_size, boolean maximal, clique_options *opts) { int i; int *table; set_t s; ENTRANCE_SAVE(); entrance_level++; if (opts==NULL) opts=clique_default_options; ASSERT((sizeof(setelement)*8)==ELEMENTSIZE); ASSERT(g!=NULL); ASSERT(min_size>=0); ASSERT(max_size>=0); ASSERT((max_size==0) || (min_size <= max_size)); ASSERT(!((min_size==0) && (max_size>0))); ASSERT((opts->reorder_function==NULL) || (opts->reorder_map==NULL)); if ((max_size>0) && (min_size>max_size)) { /* state was not changed */ entrance_level--; return NULL; } if (clocks_per_sec==0) clocks_per_sec=sysconf(_SC_CLK_TCK); ASSERT(clocks_per_sec>0); /* Dynamic allocation */ current_clique=set_new(g->n); clique_size=malloc(g->n * sizeof(int)); /* table allocated later */ temp_list=malloc((g->n+2)*sizeof(int *)); temp_count=0; /* "start clock" */ gettimeofday(&realtimer,NULL); times(&cputimer); /* reorder */ if (opts->reorder_function) { table=opts->reorder_function(g,FALSE); } else if (opts->reorder_map) { table=reorder_duplicate(opts->reorder_map,g->n); } else { table=reorder_ident(g->n); } ASSERT(reorder_is_bijection(table,g->n)); if (unweighted_clique_search_single(table,min_size,g,opts)==0) { set_free(current_clique); current_clique=NULL; goto cleanreturn; } if (maximal && (min_size>0)) { maximalize_clique(current_clique,g); if ((max_size > 0) && (set_size(current_clique) > max_size)) { clique_options localopts; s = set_new(g->n); localopts.time_function = opts->time_function; localopts.output = opts->output; localopts.user_function = false_function; localopts.clique_list = &s; localopts.clique_list_length = 1; for (i=0; i < g->n-1; i++) if (clique_size[table[i]]>=min_size) break; if (unweighted_clique_search_all(table,i,min_size, max_size,maximal, g,&localopts)) { set_free(current_clique); current_clique=s; } else { set_free(current_clique); current_clique=NULL; } } } cleanreturn: s=current_clique; /* Free resources */ for (i=0; i < temp_count; i++) free(temp_list[i]); free(temp_list); free(table); free(clique_size); ENTRANCE_RESTORE(); entrance_level--; return s; } /* * clique_unweighted_find_all() * * Find all cliques with size at least min_size and at most max_size. * * g - the graph * min_size - minimum size of cliques to search for. If min_size==0, * searches for maximum cliques. * max_size - maximum size of cliques to search for. If max_size==0, no * upper limit is used. If min_size==0, this must also be 0. * maximal - require cliques to be maximal cliques * opts - time printing and clique storage options * * Returns the number of cliques found. This can be less than the number * of cliques in the graph iff opts->time_function() or opts->user_function() * returns FALSE (request abort). * * The cliques found are stored in opts->clique_list[] and * opts->user_function() is called with them (if non-NULL). The cliques * stored in opts->clique_list[] are newly allocated, and can be freed * by set_free(). */ int clique_unweighted_find_all(graph_t *g, int min_size, int max_size, boolean maximal, clique_options *opts) { int i; int *table; int count; ENTRANCE_SAVE(); entrance_level++; if (opts==NULL) opts=clique_default_options; ASSERT((sizeof(setelement)*8)==ELEMENTSIZE); ASSERT(g!=NULL); ASSERT(min_size>=0); ASSERT(max_size>=0); ASSERT((max_size==0) || (min_size <= max_size)); ASSERT(!((min_size==0) && (max_size>0))); ASSERT((opts->reorder_function==NULL) || (opts->reorder_map==NULL)); if ((max_size>0) && (min_size>max_size)) { /* state was not changed */ entrance_level--; return 0; } if (clocks_per_sec==0) clocks_per_sec=sysconf(_SC_CLK_TCK); ASSERT(clocks_per_sec>0); /* Dynamic allocation */ current_clique=set_new(g->n); clique_size=malloc(g->n * sizeof(int)); /* table allocated later */ temp_list=malloc((g->n+2)*sizeof(int *)); temp_count=0; clique_list_count=0; memset(clique_size,0,g->n * sizeof(int)); /* "start clock" */ gettimeofday(&realtimer,NULL); times(&cputimer); /* reorder */ if (opts->reorder_function) { table=opts->reorder_function(g,FALSE); } else if (opts->reorder_map) { table=reorder_duplicate(opts->reorder_map,g->n); } else { table=reorder_ident(g->n); } ASSERT(reorder_is_bijection(table,g->n)); /* Search as normal until there is a chance to find a suitable * clique. */ if (unweighted_clique_search_single(table,min_size,g,opts)==0) { count=0; goto cleanreturn; } if (min_size==0 && max_size==0) { min_size=max_size=clique_size[table[g->n-1]]; maximal=FALSE; /* No need to test, since we're searching * for maximum cliques. */ } if (max_size==0) { max_size=INT_MAX; } for (i=0; i < g->n-1; i++) if (clique_size[table[i]] >= min_size) break; count=unweighted_clique_search_all(table,i,min_size,max_size, maximal,g,opts); cleanreturn: /* Free resources */ for (i=0; itime_function() requests abort). * * The returned clique is newly allocated and can be freed by set_free(). * * Note: Does NOT use opts->user_function() or opts->clique_list[]. * Note: Automatically uses clique_unweighted_find_single if all vertex * weights are the same. */ set_t clique_find_single(graph_t *g,int min_weight,int max_weight, boolean maximal, clique_options *opts) { int i; int *table; set_t s; ENTRANCE_SAVE(); entrance_level++; if (opts==NULL) opts=clique_default_options; ASSERT((sizeof(setelement)*8)==ELEMENTSIZE); ASSERT(g!=NULL); ASSERT(min_weight>=0); ASSERT(max_weight>=0); ASSERT((max_weight==0) || (min_weight <= max_weight)); ASSERT(!((min_weight==0) && (max_weight>0))); ASSERT((opts->reorder_function==NULL) || (opts->reorder_map==NULL)); if ((max_weight>0) && (min_weight>max_weight)) { /* state was not changed */ entrance_level--; return NULL; } if (clocks_per_sec==0) clocks_per_sec=sysconf(_SC_CLK_TCK); ASSERT(clocks_per_sec>0); /* Check whether we can use unweighted routines. */ if (!graph_weighted(g)) { min_weight=DIV_UP(min_weight,g->weights[0]); if (max_weight) { max_weight=DIV_DOWN(max_weight,g->weights[0]); if (max_weight < min_weight) { /* state was not changed */ entrance_level--; return NULL; } } weight_multiplier = g->weights[0]; entrance_level--; s=clique_unweighted_find_single(g,min_weight,max_weight, maximal,opts); ENTRANCE_RESTORE(); return s; } /* Dynamic allocation */ current_clique=set_new(g->n); best_clique=set_new(g->n); clique_size=malloc(g->n * sizeof(int)); memset(clique_size, 0, g->n * sizeof(int)); /* table allocated later */ temp_list=malloc((g->n+2)*sizeof(int *)); temp_count=0; clique_list_count=0; /* "start clock" */ gettimeofday(&realtimer,NULL); times(&cputimer); /* reorder */ if (opts->reorder_function) { table=opts->reorder_function(g,TRUE); } else if (opts->reorder_map) { table=reorder_duplicate(opts->reorder_map,g->n); } else { table=reorder_ident(g->n); } ASSERT(reorder_is_bijection(table,g->n)); if (max_weight==0) max_weight=INT_MAX; if (weighted_clique_search_single(table,min_weight,max_weight, g,opts)==0) { /* Requested clique has not been found. */ set_free(best_clique); best_clique=NULL; goto cleanreturn; } if (maximal && (min_weight>0)) { maximalize_clique(best_clique,g); if (graph_subgraph_weight(g,best_clique) > max_weight) { clique_options localopts; localopts.time_function = opts->time_function; localopts.output = opts->output; localopts.user_function = false_function; localopts.clique_list = &best_clique; localopts.clique_list_length = 1; for (i=0; i < g->n-1; i++) if ((clique_size[table[i]] >= min_weight) || (clique_size[table[i]] == 0)) break; if (!weighted_clique_search_all(table,i,min_weight, max_weight,maximal, g,&localopts)) { set_free(best_clique); best_clique=NULL; } } } cleanreturn: s=best_clique; /* Free resources */ for (i=0; i < temp_count; i++) free(temp_list[i]); free(temp_list); temp_list=NULL; temp_count=0; free(table); set_free(current_clique); current_clique=NULL; free(clique_size); clique_size=NULL; ENTRANCE_RESTORE(); entrance_level--; return s; } /* * clique_find_all() * * Find all cliques with weight at least min_weight and at most max_weight. * * g - the graph * min_weight - minimum weight of cliques to search for. If min_weight==0, * searches for maximum weight cliques. * max_weight - maximum weight of cliques to search for. If max_weight==0, * no upper limit is used. If min_weight==0, max_weight must * also be 0. * maximal - require cliques to be maximal cliques * opts - time printing and clique storage options * * Returns the number of cliques found. This can be less than the number * of cliques in the graph iff opts->time_function() or opts->user_function() * returns FALSE (request abort). * * The cliques found are stored in opts->clique_list[] and * opts->user_function() is called with them (if non-NULL). The cliques * stored in opts->clique_list[] are newly allocated, and can be freed * by set_free(). * * Note: Automatically uses clique_unweighted_find_all if all vertex * weights are the same. */ int clique_find_all(graph_t *g, int min_weight, int max_weight, boolean maximal, clique_options *opts) { int i,n; int *table; ENTRANCE_SAVE(); entrance_level++; if (opts==NULL) opts=clique_default_options; ASSERT((sizeof(setelement)*8)==ELEMENTSIZE); ASSERT(g!=NULL); ASSERT(min_weight>=0); ASSERT(max_weight>=0); ASSERT((max_weight==0) || (min_weight <= max_weight)); ASSERT(!((min_weight==0) && (max_weight>0))); ASSERT((opts->reorder_function==NULL) || (opts->reorder_map==NULL)); if ((max_weight>0) && (min_weight>max_weight)) { /* state was not changed */ entrance_level--; return 0; } if (clocks_per_sec==0) clocks_per_sec=sysconf(_SC_CLK_TCK); ASSERT(clocks_per_sec>0); if (!graph_weighted(g)) { min_weight=DIV_UP(min_weight,g->weights[0]); if (max_weight) { max_weight=DIV_DOWN(max_weight,g->weights[0]); if (max_weight < min_weight) { /* state was not changed */ entrance_level--; return 0; } } weight_multiplier = g->weights[0]; entrance_level--; i=clique_unweighted_find_all(g,min_weight,max_weight,maximal, opts); ENTRANCE_RESTORE(); return i; } /* Dynamic allocation */ current_clique=set_new(g->n); best_clique=set_new(g->n); clique_size=malloc(g->n * sizeof(int)); memset(clique_size, 0, g->n * sizeof(int)); /* table allocated later */ temp_list=malloc((g->n+2)*sizeof(int *)); temp_count=0; /* "start clock" */ gettimeofday(&realtimer,NULL); times(&cputimer); /* reorder */ if (opts->reorder_function) { table=opts->reorder_function(g,TRUE); } else if (opts->reorder_map) { table=reorder_duplicate(opts->reorder_map,g->n); } else { table=reorder_ident(g->n); } ASSERT(reorder_is_bijection(table,g->n)); /* First phase */ n=weighted_clique_search_single(table,min_weight,INT_MAX,g,opts); if (n==0) { /* Requested clique has not been found. */ goto cleanreturn; } if (min_weight==0) { min_weight=n; max_weight=n; maximal=FALSE; /* They're maximum cliques already. */ } if (max_weight==0) max_weight=INT_MAX; for (i=0; i < g->n; i++) if ((clique_size[table[i]] >= min_weight) || (clique_size[table[i]] == 0)) break; /* Second phase */ n=weighted_clique_search_all(table,i,min_weight,max_weight,maximal, g,opts); cleanreturn: /* Free resources */ for (i=0; i < temp_count; i++) free(temp_list[i]); free(temp_list); free(table); set_free(current_clique); set_free(best_clique); free(clique_size); ENTRANCE_RESTORE(); entrance_level--; return n; } /* * clique_print_time() * * Reports current running information every 0.1 seconds or when values * change. * * level - re-entrance level * i - current recursion level * n - maximum recursion level * max - weight of heaviest clique found * cputime - CPU time used in algorithm so far * realtime - real time used in algorithm so far * opts - prints information to (FILE *)opts->output (or stdout if NULL) * * Returns always TRUE (ie. never requests abort). */ boolean clique_print_time(int level, int i, int n, int max, double cputime, double realtime, clique_options *opts) { static float prev_time=100; static int prev_i=100; static int prev_max=100; static int prev_level=0; FILE *fp=opts->output; int j; if (fp==NULL) fp=stdout; if (ABS(prev_time-realtime)>0.1 || i==n || ioutput (or stdout if NULL) * * Returns always TRUE (ie. never requests abort). */ boolean clique_print_time_always(int level, int i, int n, int max, double cputime, double realtime, clique_options *opts) { static float prev_time=100; static int prev_i=100; FILE *fp=opts->output; int j; if (fp==NULL) fp=stdout; for (j=1; j, which should work pretty well. Check functioning * with "make test". */ /* typedef unsigned long int setelement; */ /* #define ELEMENTSIZE 64 */ /* * INLINE is a command prepended to function declarations to instruct the * compiler to inline the function. If inlining is not desired, define blank. * * The default is to use "inline", which is recognized by most compilers. */ /* #define INLINE */ /* #define INLINE __inline__ */ /* * Set handling functions are defined as static functions in set.h for * performance reasons. This may cause unnecessary warnings from the * compiler. Some compilers (such as GCC) have the possibility to turn * off the warnings on a per-function basis using a flag prepended to * the function declaration. * * The default is to use the correct attribute when compiling with GCC, * or no flag otherwise. */ /* #define UNUSED_FUNCTION __attribute__((unused)) */ /* #define UNUSED_FUNCTION */ /* * Uncommenting the following will disable all assertions (checks that * function arguments and other variables are correct). This is highly * discouraged, as it allows bugs to go unnoticed easier. The assertions * are set so that they do not slow down programs notably. */ /* #define ASSERT(x) */ #endif /* !CLIQUERCONF_H */ cliquer-1.21/cliquer.h0000644000175000017500000000346211326254207013057 0ustar patpat #ifndef CLIQUER_H #define CLIQUER_H #include #include "set.h" #include "graph.h" #include "reorder.h" typedef struct _clique_options clique_options; struct _clique_options { int *(*reorder_function)(graph_t *, boolean); int *reorder_map; /* arguments: level, n, max, user_time, system_time, opts */ boolean (*time_function)(int,int,int,int,double,double, clique_options *); FILE *output; boolean (*user_function)(set_t,graph_t *,clique_options *); void *user_data; set_t *clique_list; int clique_list_length; }; extern clique_options *clique_default_options; /* Weighted clique functions */ extern int clique_max_weight(graph_t *g,clique_options *opts); extern set_t clique_find_single(graph_t *g,int min_weight,int max_weight, boolean maximal, clique_options *opts); extern int clique_find_all(graph_t *g, int req_weight, boolean exact, boolean maximal, clique_options *opts); /* Unweighted clique functions */ #define clique_unweighted_max_size clique_unweighted_max_weight extern int clique_unweighted_max_weight(graph_t *g, clique_options *opts); extern set_t clique_unweighted_find_single(graph_t *g,int min_size, int max_size,boolean maximal, clique_options *opts); extern int clique_unweighted_find_all(graph_t *g, int min_size, int max_size, boolean maximal, clique_options *opts); /* Time printing functions */ extern boolean clique_print_time(int level, int i, int n, int max, double cputime, double realtime, clique_options *opts); extern boolean clique_print_time_always(int level, int i, int n, int max, double cputime, double realtime, clique_options *opts); /* Alternate spelling (let's be a little forgiving): */ #define cliquer_options clique_options #define cliquer_default_options clique_default_options #endif /* !CLIQUER_H */ cliquer-1.21/graph.c0000644000175000017500000003774611326254207012523 0ustar patpat /* * This file contains the graph handling routines. * * Copyright (C) 2002 Sampo Niskanen, Patric stergrd. * Licensed under the GNU GPL, read the file LICENSE for details. */ #include #include #include #include "graph.h" static graph_t *graph_read_dimacs_binary(FILE *fp,char *firstline); static graph_t *graph_read_dimacs_ascii(FILE *fp,char *firstline); /* * graph_new() * * Returns a newly allocated graph with n vertices all with weight 1, * and no edges. */ graph_t *graph_new(int n) { graph_t *g; int i; ASSERT((sizeof(setelement)*8)==ELEMENTSIZE); ASSERT(n>0); g=malloc(sizeof(graph_t)); g->n=n; g->edges=malloc(g->n * sizeof(set_t)); g->weights=malloc(g->n * sizeof(int)); for (i=0; i < g->n; i++) { g->edges[i]=set_new(n); g->weights[i]=1; } return g; } /* * graph_free() * * Frees the memory associated with the graph g. */ void graph_free(graph_t *g) { int i; ASSERT((sizeof(setelement)*8)==ELEMENTSIZE); ASSERT(g!=NULL); ASSERT(g->n > 0); for (i=0; i < g->n; i++) { set_free(g->edges[i]); } free(g->weights); free(g->edges); free(g); return; } /* * graph_resize() * * Resizes graph g to given size. If size > g->n, the new vertices are * not connected to any others and their weights are set to 1. * If size < g->n, the last g->n - size vertices are removed. */ void graph_resize(graph_t *g, int size) { int i; ASSERT(g!=NULL); ASSERT(g->n > 0); ASSERT(size > 0); if (g->n == size) return; /* Free/alloc extra edge-sets */ for (i=size; i < g->n; i++) set_free(g->edges[i]); g->edges=realloc(g->edges, size * sizeof(set_t)); for (i=g->n; i < size; i++) g->edges[i]=set_new(size); /* Resize original sets */ for (i=0; i < MIN(g->n,size); i++) { g->edges[i]=set_resize(g->edges[i],size); } /* Weights */ g->weights=realloc(g->weights,size * sizeof(int)); for (i=g->n; iweights[i]=1; g->n=size; return; } /* * graph_crop() * * Resizes the graph so as to remove all highest-valued isolated vertices. */ void graph_crop(graph_t *g) { int i; for (i=g->n-1; i>=1; i--) if (set_size(g->edges[i])>0) break; graph_resize(g,i+1); return; } /* * graph_weighted() * * Returns TRUE if all vertex weights of graph g are all the same. * * Note: Does NOT require weights to be 1. */ boolean graph_weighted(graph_t *g) { int i,w; w=g->weights[0]; for (i=1; i < g->n; i++) if (g->weights[i] != w) return TRUE; return FALSE; } /* * graph_edge_count() * * Returns the number of edges in graph g. */ int graph_edge_count(graph_t *g) { int i; int count=0; for (i=0; i < g->n; i++) { count += set_size(g->edges[i]); } return count/2; } /* * graph_write_dimacs_ascii_file() * * Writes an ASCII dimacs-format file of graph g, with comment, to * given file. * * Returns TRUE if successful, FALSE if an error occurred. */ boolean graph_write_dimacs_ascii_file(graph_t *g, char *comment, char *file) { FILE *fp; ASSERT((sizeof(setelement)*8)==ELEMENTSIZE); ASSERT(file!=NULL); if ((fp=fopen(file,"wb"))==NULL) return FALSE; if (!graph_write_dimacs_ascii(g,comment,fp)) { fclose(fp); return FALSE; } fclose(fp); return TRUE; } /* * graph_write_dimacs_ascii() * * Writes an ASCII dimacs-format file of graph g, with comment, to the * file stream fp. * * Returns TRUE if successful, FALSE if an error occurred. */ boolean graph_write_dimacs_ascii(graph_t *g, char *comment, FILE *fp) { int i,j; ASSERT((sizeof(setelement)*8)==ELEMENTSIZE); ASSERT(graph_test(g,NULL)); ASSERT(fp!=NULL); if (comment) fprintf(fp,"c %s\n",comment); fprintf(fp,"p edge %d %d\n",g->n,graph_edge_count(g)); for (i=0; i < g->n; i++) if (g->weights[i]!=1) fprintf(fp,"n %d %d\n",i+1,g->weights[i]); for (i=0; i < g->n; i++) for (j=0; j= headersize) { \ headersize+=1024; \ header=realloc(header,headersize); \ } \ strncat(header,s,1000); \ headerlength+=strlen(s); boolean graph_write_dimacs_binary(graph_t *g, char *comment,FILE *fp) { char *buf; char *header=NULL; int headersize=0; int headerlength=0; int i,j; ASSERT((sizeof(setelement)*8)==ELEMENTSIZE); ASSERT(graph_test(g,NULL)); ASSERT(fp!=NULL); buf=malloc(MAX(1024,g->n/8+1)); header=malloc(1024); header[0]=0; headersize=1024; if (comment) { strcpy(buf,"c "); strncat(buf,comment,1000); strcat(buf,"\n"); STR_APPEND(buf); } sprintf(buf,"p edge %d %d\n",g->n,graph_edge_count(g)); STR_APPEND(buf); for (i=0; i < g->n; i++) { if (g->weights[i]!=1) { sprintf(buf,"n %d %d\n",i+1,g->weights[i]); STR_APPEND(buf); } } fprintf(fp,"%d\n",(int)strlen(header)); fprintf(fp,"%s",header); free(header); for (i=0; i < g->n; i++) { memset(buf,0,i/8+1); for (j=0; j=strlen(str)) /* blank line */ return TRUE; if (str[i+1]!=0 && !isspace(str[i+1])) /* not 1-char field */ return FALSE; switch (str[i]) { case 'c': return TRUE; case 'p': if (g->n != 0) return FALSE; if (sscanf(str," p %15s %d %d %2s",tmp,&(g->n),&i,tmp)!=3) return FALSE; if (g->n <= 0) return FALSE; g->edges=calloc(g->n,sizeof(set_t)); for (i=0; in; i++) g->edges[i]=set_new(g->n); g->weights=calloc(g->n,sizeof(int)); for (i=0; in; i++) g->weights[i]=1; return TRUE; case 'n': if ((g->n <= 0) || (g->weights == NULL)) return FALSE; if (sscanf(str," n %d %d %2s",&i,&w,tmp)!=2) return FALSE; if (i<1 || i>g->n) return FALSE; if (w<=0) return FALSE; g->weights[i-1]=w; return TRUE; case 'e': if ((g->n <= 0) || (g->edges == NULL)) return FALSE; if (sscanf(str," e %d %d %2s",&i,&j,tmp)!=2) return FALSE; if (i<1 || j<1 || i>g->n || j>g->n) return FALSE; if (i==j) /* We want antireflexive graphs. */ return TRUE; GRAPH_ADD_EDGE(g,i-1,j-1); return TRUE; case 'd': case 'v': case 'x': return TRUE; default: fprintf(stderr,"Warning: ignoring field '%c' in " "input.\n",str[i]); return TRUE; } } /* * graph_read_dimacs_binary() * * Reads a dimacs-format binary file from file stream fp with the first * line being firstline. * * Returns the newly-allocated graph or NULL if an error occurred. * * TODO: This function leaks memory when reading erroneous files. */ static graph_t *graph_read_dimacs_binary(FILE *fp,char *firstline) { int length=0; graph_t *g; int i,j; char *buffer; char *start; char *end; char **buf; char tmp[10]; if (sscanf(firstline," %d %2s",&length,tmp)!=1) return NULL; if (length<=0) { fprintf(stderr,"Malformed preamble: preamble size < 0.\n"); return NULL; } buffer=malloc(length+2); if (fread(buffer,1,length,fp)n <= 0) { fprintf(stderr,"Malformed preamble: number of " "vertices <= 0\n"); free(g); return NULL; } /* Binary part. */ buf=calloc(g->n,sizeof(char*)); for (i=0; i < g->n; i++) { buf[i]=calloc(g->n,1); if (fread(buf[i],1,i/8+1,fp) < (i/8+1)) { fprintf(stderr,"Unexpected end of file when " "reading graph.\n"); return NULL; } } for (i=0; i < g->n; i++) { for (j=0; jn <= 0) { free(g); fprintf(stderr,"Unexpected end of file when reading graph.\n"); return NULL; } return g; } /* * graph_print() * * Prints a representation of the graph g to stdout (along with any errors * noticed). Mainly useful for debugging purposes and trivial output. * * The output consists of a first line describing the dimensions and then * one line per vertex containing the vertex number (numbered 0,...,n-1), * the vertex weight (if the graph is weighted), "->" and then a list * of all vertices it is adjacent to. */ void graph_print(graph_t *g) { int i,j; int asymm=0; int refl=0; int nonpos=0; int extra=0; unsigned int weight=0; boolean weighted; ASSERT((sizeof(setelement)*8)==ELEMENTSIZE); if (g==NULL) { printf(" WARNING: Graph pointer is NULL!\n"); return; } if (g->n <= 0) { printf(" WARNING: Graph has %d vertices " "(should be positive)!\n",g->n); return; } weighted=graph_weighted(g); printf("%s graph has %d vertices, %d edges (density %.2f).\n", weighted?"Weighted":((g->weights[0]==1)? "Unweighted":"Semi-weighted"), g->n,graph_edge_count(g), (float)graph_edge_count(g)/((float)(g->n - 1)*(g->n)/2)); for (i=0; i < g->n; i++) { printf("%2d",i); if (weighted) { printf(" w=%d",g->weights[i]); if (g->weights[i] <= 0) { printf("*NON-POSITIVE*"); nonpos++; } } if (weight < INT_MAX) weight+=g->weights[i]; printf(" ->"); for (j=0; j < g->n; j++) { if (SET_CONTAINS_FAST(g->edges[i],j)) { printf(" %d",j); if (i==j) { printf("*REFLEXIVE*"); refl++; } if (!SET_CONTAINS_FAST(g->edges[j],i)) { printf("*ASYMMERTIC*"); asymm++; } } } for (j=g->n; j < SET_ARRAY_LENGTH(g->edges[i])*ELEMENTSIZE; j++) { if (SET_CONTAINS_FAST(g->edges[i],j)) { printf(" %d*NON-EXISTENT*",j); extra++; } } printf("\n"); } if (asymm) printf(" WARNING: Graph contained %d asymmetric edges!\n", asymm); if (refl) printf(" WARNING: Graph contained %d reflexive edges!\n", refl); if (nonpos) printf(" WARNING: Graph contained %d non-positive vertex " "weights!\n",nonpos); if (extra) printf(" WARNING: Graph contained %d edges to " "non-existent vertices!\n",extra); if (weight>=INT_MAX) printf(" WARNING: Total graph weight >= INT_MAX!\n"); return; } /* * graph_test() * * Tests graph g to be valid. Checks that g is non-NULL, the edges are * symmetric and anti-reflexive, and that all vertex weights are positive. * If output is non-NULL, prints a few lines telling the status of the graph * to file descriptor output. * * Returns TRUE if the graph is valid, FALSE otherwise. */ boolean graph_test(graph_t *g,FILE *output) { int i,j; int edges=0; int asymm=0; int nonpos=0; int refl=0; int extra=0; unsigned int weight=0; boolean weighted; ASSERT((sizeof(setelement)*8)==ELEMENTSIZE); if (g==NULL) { if (output) fprintf(output," WARNING: Graph pointer is NULL!\n"); return FALSE; } weighted=graph_weighted(g); for (i=0; i < g->n; i++) { if (g->edges[i]==NULL) { if (output) fprintf(output," WARNING: Graph edge set " "NULL!\n" " (further warning suppressed)\n"); return FALSE; } if (SET_MAX_SIZE(g->edges[i]) < g->n) { if (output) fprintf(output," WARNING: Graph edge set " "too small!\n" " (further warnings suppressed)\n"); return FALSE; } for (j=0; j < g->n; j++) { if (SET_CONTAINS_FAST(g->edges[i],j)) { edges++; if (i==j) { refl++; } if (!SET_CONTAINS_FAST(g->edges[j],i)) { asymm++; } } } for (j=g->n; j < SET_ARRAY_LENGTH(g->edges[i])*ELEMENTSIZE; j++) { if (SET_CONTAINS_FAST(g->edges[i],j)) extra++; } if (g->weights[i] <= 0) nonpos++; if (weightweights[i]; } edges/=2; /* Each is counted twice. */ if (output) { /* Semi-weighted means all weights are equal, but not 1. */ fprintf(output,"%s graph has %d vertices, %d edges " "(density %.2f).\n", weighted?"Weighted": ((g->weights[0]==1)?"Unweighted":"Semi-weighted"), g->n,edges,(float)edges/((float)(g->n - 1)*(g->n)/2)); if (asymm) fprintf(output," WARNING: Graph contained %d " "asymmetric edges!\n",asymm); if (refl) fprintf(output," WARNING: Graph contained %d " "reflexive edges!\n",refl); if (nonpos) fprintf(output," WARNING: Graph contained %d " "non-positive vertex weights!\n",nonpos); if (extra) fprintf(output," WARNING: Graph contained %d edges " "to non-existent vertices!\n",extra); if (weight>=INT_MAX) fprintf(output," WARNING: Total graph weight >= " "INT_MAX!\n"); if (asymm==0 && refl==0 && nonpos==0 && extra==0 && weight=INT_MAX) return FALSE; return TRUE; } /* * graph_test_regular() * * Returns the vertex degree for regular graphs, or -1 if the graph is * not regular. */ int graph_test_regular(graph_t *g) { int i,n; n=set_size(g->edges[0]); for (i=1; i < g->n; i++) { if (set_size(g->edges[i]) != n) return -1; } return n; } cliquer-1.21/graph.h0000644000175000017500000000375411326254207012520 0ustar patpat #ifndef CLIQUER_GRAPH_H #define CLIQUER_GRAPH_H #include "set.h" typedef struct _graph_t graph_t; struct _graph_t { int n; /* Vertices numbered 0...n-1 */ set_t *edges; /* A list of n sets (the edges). */ int *weights; /* A list of n vertex weights. */ }; #define GRAPH_IS_EDGE_FAST(g,i,j) (SET_CONTAINS_FAST((g)->edges[(i)],(j))) #define GRAPH_IS_EDGE(g,i,j) (((i)<((g)->n))?SET_CONTAINS((g)->edges[(i)], \ (j)):FALSE) #define GRAPH_ADD_EDGE(g,i,j) do { \ SET_ADD_ELEMENT((g)->edges[(i)],(j)); \ SET_ADD_ELEMENT((g)->edges[(j)],(i)); \ } while (FALSE) #define GRAPH_DEL_EDGE(g,i,j) do { \ SET_DEL_ELEMENT((g)->edges[(i)],(j)); \ SET_DEL_ELEMENT((g)->edges[(j)],(i)); \ } while (FALSE) extern graph_t *graph_new(int n); extern void graph_free(graph_t *g); extern void graph_resize(graph_t *g, int size); extern void graph_crop(graph_t *g); extern boolean graph_weighted(graph_t *g); extern int graph_edge_count(graph_t *g); extern graph_t *graph_read_dimacs(FILE *fp); extern graph_t *graph_read_dimacs_file(char *file); extern boolean graph_write_dimacs_ascii(graph_t *g, char *comment,FILE *fp); extern boolean graph_write_dimacs_ascii_file(graph_t *g,char *comment, char *file); extern boolean graph_write_dimacs_binary(graph_t *g, char *comment,FILE *fp); extern boolean graph_write_dimacs_binary_file(graph_t *g, char *comment, char *file); extern void graph_print(graph_t *g); extern boolean graph_test(graph_t *g, FILE *output); extern int graph_test_regular(graph_t *g); UNUSED_FUNCTION INLINE static int graph_subgraph_weight(graph_t *g,set_t s) { int i,j; int count=0; setelement e; for (i=0; iweights[i*ELEMENTSIZE+j]; e = e>>1; } } } return count; } UNUSED_FUNCTION INLINE static int graph_vertex_degree(graph_t *g, int v) { return set_size(g->edges[v]); } #endif /* !CLIQUER_GRAPH_H */ cliquer-1.21/LICENSE0000644000175000017500000004311011326254207012241 0ustar patpat GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. cliquer-1.21/Makefile0000644000175000017500000000213011326254561012674 0ustar patpat ##### Configurable options: ## Compiler: CC=gcc #CC=cc ## Compiler flags: # GCC: (also -march=pentium etc, for machine-dependent optimizing) CFLAGS=-Wall -O3 -fomit-frame-pointer -funroll-loops # GCC w/ debugging: #CFLAGS=-Wall -g -DINLINE= # Compaq C / Digital C: #CFLAGS=-arch=host -fast # SunOS: #CFLAGS=-fast ## Program options: # Enable long options for cl (eg. "cl --help"), comment out to disable. # Requires getopt_long(3) (a GNU extension) LONGOPTS = -DENABLE_LONG_OPTIONS ##### End of configurable options all: cl testcases: testcases.o cliquer.o graph.o reorder.o $(CC) $(LDFLAGS) -o $@ testcases.o cliquer.o graph.o reorder.o cl: cl.o cliquer.o graph.o reorder.o $(CC) $(LDFLAGS) -o $@ cl.o cliquer.o graph.o reorder.o cl.o testcases.o cliquer.o graph.o reorder.o: cliquer.h set.h graph.h misc.h reorder.h Makefile cliquerconf.h cl.o: cl.c $(CC) $(CFLAGS) $(LONGOPTS) -o $@ -c $< clean: rm -f *.o *~ cl testcases backup: mkdir "`date "+backup-%Y-%m-%d-%H-%M"`" 2>/dev/null || true cp * "`date "+backup-%Y-%m-%d-%H-%M"`" 2>/dev/null || true test: testcases ./testcases cliquer-1.21/misc.h0000644000175000017500000000244311326254207012344 0ustar patpat #ifndef CLIQUER_MISC_H #define CLIQUER_MISC_H #include "cliquerconf.h" /* * We #define boolean instead of using a typedef because nauty.h uses it * also. AFAIK, there is no way to check for an existing typedef, and * re-typedefing is illegal (even when using exactly the same datatype!). */ #ifndef boolean #define boolean int #endif /* * Default value for UNUSED_FUNCTION: use "__attribute__((unused))" for * GCC versions that support it, otherwise leave blank. */ #ifndef UNUSED_FUNCTION # if __GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ > 4) # define UNUSED_FUNCTION __attribute__((unused)) # else # define UNUSED_FUNCTION # endif #endif /* !UNUSED_FUNCTION */ /* * Default inlining directive: "inline" */ #ifndef INLINE #define INLINE inline #endif #include #include #ifndef ASSERT #define ASSERT(expr) \ if (!(expr)) { \ fprintf(stderr,"cliquer file %s: line %d: assertion failed: " \ "(%s)\n",__FILE__,__LINE__,#expr); \ abort(); \ } #endif /* !ASSERT */ #ifndef FALSE #define FALSE (0) #endif #ifndef TRUE #define TRUE (!FALSE) #endif #ifndef MIN #define MIN(a,b) (((a)<(b))?(a):(b)) #endif #ifndef MAX #define MAX(a,b) (((a)>(b))?(a):(b)) #endif #ifndef ABS #define ABS(v) (((v)<0)?(-(v)):(v)) #endif #endif /* !CLIQUER_MISC_H */ cliquer-1.21/README0000644000175000017500000000377611326254402012127 0ustar patpat Cliquer - routines for clique searching --------------------------------------- Cliquer is a set of C routines for finding cliques in an arbitrary weighted graph. It uses an exact branch-and-bound algorithm recently developed by Patric Ostergard. It is designed with the aim of being efficient while still being flexible and easy to use. Cliquer was developed on Linux, and it should compile without modification on most modern UNIX systems. Other operating systems may require minor changes to the source code. Features: * support for both weighted and unweighted graphs (faster routines for unweighted graphs) * search for maximum clique / maximum-weight clique * search for clique with size / weight within a given range * restrict search to maximal cliques * store found cliques in memory * call a user-defined function for every clique found * Cliquer is re-entrant, so you can use the clique-searching functions from within the callback function The full documentation can be obtained via the www page of Cliquer . License Cliquer is Copyright (C) 2002 Sampo Niskanen, Patric Ostergard. Cliquer is licensed under the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The full license is included in the file LICENSE. Basically, you can use Cliquer for any purpose, provided that any programs or modifications you make and distribute are also licensed under the GNU GPL. ABSOLUTELY NO GUARANTEES OR WARRANTIES are made concerning the suitability, correctness, or any other aspect of these routines. Contact Cliquer was mainly written by Sampo Niskanen . For bug-fixes, feedback, and, in particular, for putting your name on the mailing list for important information regarding Cliquer, please contact: Patric Ostergard Department of Communications and Networking Aalto University P.O. Box 13000, 00076 Aalto FINLAND cliquer-1.21/reorder.c0000644000175000017500000002141211326254207013043 0ustar patpat /* * This file contains the vertex reordering routines. * * Copyright (C) 2002 Sampo Niskanen, Patric stergrd. * Licensed under the GNU GPL, read the file LICENSE for details. */ #include "reorder.h" #include #include #include #include /* * reorder_set() * * Reorders the set s with a function i -> order[i]. * * Note: Assumes that order is the same size as SET_MAX_SIZE(s). */ void reorder_set(set_t s,int *order) { set_t tmp; int i,j; setelement e; ASSERT(reorder_is_bijection(order,SET_MAX_SIZE(s))); tmp=set_new(SET_MAX_SIZE(s)); for (i=0; i<(SET_MAX_SIZE(s)/ELEMENTSIZE); i++) { e=s[i]; if (e==0) continue; for (j=0; j>1; } } if (SET_MAX_SIZE(s)%ELEMENTSIZE) { e=s[i]; for (j=0; j<(SET_MAX_SIZE(s)%ELEMENTSIZE); j++) { if (e&1) { SET_ADD_ELEMENT(tmp,order[i*ELEMENTSIZE+j]); } e = e>>1; } } set_copy(s,tmp); set_free(tmp); return; } /* * reorder_graph() * * Reorders the vertices in the graph with function i -> order[i]. * * Note: Assumes that order is of size g->n. */ void reorder_graph(graph_t *g, int *order) { int i; set_t *tmp_e; int *tmp_w; ASSERT(reorder_is_bijection(order,g->n)); tmp_e=malloc(g->n * sizeof(set_t)); tmp_w=malloc(g->n * sizeof(int)); for (i=0; in; i++) { reorder_set(g->edges[i],order); tmp_e[order[i]]=g->edges[i]; tmp_w[order[i]]=g->weights[i]; } for (i=0; in; i++) { g->edges[i]=tmp_e[i]; g->weights[i]=tmp_w[i]; } free(tmp_e); free(tmp_w); return; } /* * reorder_duplicate() * * Returns a newly allocated duplicate of the given ordering. */ int *reorder_duplicate(int *order,int n) { int *new; new=malloc(n*sizeof(int)); memcpy(new,order,n*sizeof(int)); return new; } /* * reorder_invert() * * Inverts the given ordering so that new[old[i]]==i. * * Note: Asserts that order is a bijection. */ void reorder_invert(int *order,int n) { int *new; int i; ASSERT(reorder_is_bijection(order,n)); new=malloc(n*sizeof(int)); for (i=0; i {0,...,n-1}. * * Returns TRUE if it is a bijection, FALSE otherwise. */ boolean reorder_is_bijection(int *order,int n) { boolean *used; int i; used=calloc(n,sizeof(boolean)); for (i=0; i=n) { free(used); return FALSE; } if (used[order[i]]) { free(used); return FALSE; } used[order[i]]=TRUE; } for (i=0; in); } /* * reorder_by_reverse() * * Returns a reverse identity ordering. */ int *reorder_by_reverse(graph_t *g,boolean weighted) { int i; int *order; order=malloc(g->n * sizeof(int)); for (i=0; i < g->n; i++) order[i]=g->n-i-1; return order; } /* * reorder_by_greedy_coloring() * * Equivalent to reorder_by_weighted_greedy_coloring or * reorder_by_unweighted_greedy_coloring according to the value of weighted. */ int *reorder_by_greedy_coloring(graph_t *g,boolean weighted) { if (weighted) return reorder_by_weighted_greedy_coloring(g,weighted); else return reorder_by_unweighted_greedy_coloring(g,weighted); } /* * reorder_by_unweighted_greedy_coloring() * * Returns an ordering for the graph g by coloring the clique one * color at a time, always adding the vertex of largest degree within * the uncolored graph, and numbering these vertices 0, 1, ... * * Experimentally efficient for use with unweighted graphs. */ int *reorder_by_unweighted_greedy_coloring(graph_t *g,boolean weighted) { int i,j,v; boolean *tmp_used; int *degree; /* -1 for used vertices */ int *order; int maxdegree,maxvertex=0; boolean samecolor; tmp_used=calloc(g->n,sizeof(boolean)); degree=calloc(g->n,sizeof(int)); order=calloc(g->n,sizeof(int)); for (i=0; i < g->n; i++) { for (j=0; j < g->n; j++) { ASSERT(!((i==j) && GRAPH_IS_EDGE(g,i,j))); if (GRAPH_IS_EDGE(g,i,j)) degree[i]++; } } v=0; while (v < g->n) { /* Reset tmp_used. */ memset(tmp_used,0,g->n * sizeof(boolean)); do { /* Find vertex to be colored. */ maxdegree=0; samecolor=FALSE; for (i=0; i < g->n; i++) { if (!tmp_used[i] && degree[i] >= maxdegree) { maxvertex=i; maxdegree=degree[i]; samecolor=TRUE; } } if (samecolor) { order[v]=maxvertex; degree[maxvertex]=-1; v++; /* Mark neighbors not to color with same * color and update neighbor degrees. */ for (i=0; i < g->n; i++) { if (GRAPH_IS_EDGE(g,maxvertex,i)) { tmp_used[i]=TRUE; degree[i]--; } } } } while (samecolor); } free(tmp_used); free(degree); return order; } /* * reorder_by_weighted_greedy_coloring() * * Returns an ordering for the graph g by coloring the clique one * color at a time, always adding the vertex that (in order of importance): * 1. has the minimum weight in the remaining graph * 2. has the largest sum of weights surrounding the vertex * * Experimentally efficient for use with weighted graphs. */ int *reorder_by_weighted_greedy_coloring(graph_t *g, boolean weighted) { int i,j,p=0; int cnt; int *nwt; /* Sum of surrounding vertices' weights */ int min_wt,max_nwt; boolean *used; int *order; nwt=malloc(g->n * sizeof(int)); order=malloc(g->n * sizeof(int)); used=calloc(g->n,sizeof(boolean)); for (i=0; i < g->n; i++) { nwt[i]=0; for (j=0; j < g->n; j++) if (GRAPH_IS_EDGE(g, i, j)) nwt[i] += g->weights[j]; } for (cnt=0; cnt < g->n; cnt++) { min_wt=INT_MAX; max_nwt=-1; for (i=g->n-1; i>=0; i--) if ((!used[i]) && (g->weights[i] < min_wt)) min_wt=g->weights[i]; for (i=g->n-1; i>=0; i--) { if (used[i] || (g->weights[i] > min_wt)) continue; if (nwt[i] > max_nwt) { max_nwt=nwt[i]; p=i; } } order[cnt]=p; used[p]=TRUE; for (j=0; j < g->n; j++) if ((!used[j]) && (GRAPH_IS_EDGE(g, p, j))) nwt[j] -= g->weights[p]; } free(nwt); free(used); ASSERT(reorder_is_bijection(order,g->n)); return order; } /* * reorder_by_degree() * * Returns a reordering of the graph g so that the vertices with largest * degrees (most neighbors) are first. */ int *reorder_by_degree(graph_t *g, boolean weighted) { int i,j,v; int *degree; int *order; int maxdegree,maxvertex=0; degree=calloc(g->n,sizeof(int)); order=calloc(g->n,sizeof(int)); for (i=0; i < g->n; i++) { for (j=0; j < g->n; j++) { ASSERT(!((i==j) && GRAPH_IS_EDGE(g,i,j))); if (GRAPH_IS_EDGE(g,i,j)) degree[i]++; } } for (v=0; v < g->n; v++) { maxdegree=0; for (i=0; i < g->n; i++) { if (degree[i] >= maxdegree) { maxvertex=i; maxdegree=degree[i]; } } order[v]=maxvertex; degree[maxvertex]=-1; /* used */ /*** Max. degree withing unselected graph: for (i=0; i < g->n; i++) { if (GRAPH_IS_EDGE(g,maxvertex,i)) degree[i]--; } ***/ } free(degree); return order; } /* * reorder_by_random() * * Returns a random reordering for graph g. * Note: Used the functions rand() and srand() to generate the random * numbers. srand() is re-initialized every time reorder_by_random() * is called using the system time. */ int *reorder_by_random(graph_t *g, boolean weighted) { struct tms t; int i,r; int *new; boolean *used; srand(times(&t)+time(NULL)); new=calloc(g->n, sizeof(int)); used=calloc(g->n, sizeof(boolean)); for (i=0; i < g->n; i++) { do { r=rand() % g->n; } while (used[r]); new[i]=r; used[r]=TRUE; } free(used); return new; } cliquer-1.21/reorder.h0000644000175000017500000000172411326254207013054 0ustar patpat #ifndef CLIQUER_REORDER_H #define CLIQUER_REORDER_H #include "set.h" #include "graph.h" extern void reorder_set(set_t s,int *order); extern void reorder_graph(graph_t *g, int *order); extern int *reorder_duplicate(int *order,int n); extern void reorder_invert(int *order,int n); extern void reorder_reverse(int *order,int n); extern int *reorder_ident(int n); extern boolean reorder_is_bijection(int *order,int n); #define reorder_by_default reorder_by_greedy_coloring extern int *reorder_by_greedy_coloring(graph_t *g, boolean weighted); extern int *reorder_by_weighted_greedy_coloring(graph_t *g, boolean weighted); extern int *reorder_by_unweighted_greedy_coloring(graph_t *g,boolean weighted); extern int *reorder_by_degree(graph_t *g, boolean weighted); extern int *reorder_by_random(graph_t *g, boolean weighted); extern int *reorder_by_ident(graph_t *g, boolean weighted); extern int *reorder_by_reverse(graph_t *g, boolean weighted); #endif /* !CLIQUER_REORDER_H */ cliquer-1.21/set.h0000644000175000017500000002225111326254207012203 0ustar patpat /* * This file contains the set handling routines. * * Copyright (C) 2002 Sampo Niskanen, Patric stergrd. * Licensed under the GNU GPL, read the file LICENSE for details. */ #ifndef CLIQUER_SET_H #define CLIQUER_SET_H #include #include #include #include #include "misc.h" /* * Sets are arrays of setelement's (typically unsigned long int's) with * representative bits for each value they can contain. The values * are numbered 0,...,n-1. */ /*** Variable types and constants. ***/ /* * If setelement hasn't been declared: * - use "unsigned long int" as setelement * - try to deduce size from ULONG_MAX */ #ifndef ELEMENTSIZE typedef unsigned long int setelement; # if (ULONG_MAX == 65535) # define ELEMENTSIZE 16 # elif (ULONG_MAX == 4294967295) # define ELEMENTSIZE 32 # else # define ELEMENTSIZE 64 # endif #endif /* !ELEMENTSIZE */ typedef setelement * set_t; /*** Counting amount of 1 bits in a setelement ***/ /* Array for amount of 1 bits in a byte. */ static int set_bit_count[256] = { 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8 }; /* The following macros assume that all higher bits are 0. * They may in some cases be useful also on with other ELEMENTSIZE's, * so we define them all. */ #define SET_ELEMENT_BIT_COUNT_8(a) (set_bit_count[(a)]) #define SET_ELEMENT_BIT_COUNT_16(a) (set_bit_count[(a)>>8] + \ set_bit_count[(a)&0xFF]) #define SET_ELEMENT_BIT_COUNT_32(a) (set_bit_count[(a)>>24] + \ set_bit_count[((a)>>16)&0xFF] + \ set_bit_count[((a)>>8)&0xFF] + \ set_bit_count[(a)&0xFF]) #define SET_ELEMENT_BIT_COUNT_64(a) (set_bit_count[(a)>>56] + \ set_bit_count[((a)>>48)&0xFF] + \ set_bit_count[((a)>>40)&0xFF] + \ set_bit_count[((a)>>32)&0xFF] + \ set_bit_count[((a)>>24)&0xFF] + \ set_bit_count[((a)>>16)&0xFF] + \ set_bit_count[((a)>>8)&0xFF] + \ set_bit_count[(a)&0xFF]) #if (ELEMENTSIZE==64) # define SET_ELEMENT_BIT_COUNT(a) SET_ELEMENT_BIT_COUNT_64(a) # define FULL_ELEMENT ((setelement)0xFFFFFFFFFFFFFFFF) #elif (ELEMENTSIZE==32) # define SET_ELEMENT_BIT_COUNT(a) SET_ELEMENT_BIT_COUNT_32(a) # define FULL_ELEMENT ((setelement)0xFFFFFFFF) #elif (ELEMENTSIZE==16) # define SET_ELEMENT_BIT_COUNT(a) SET_ELEMENT_BIT_COUNT_16(a) # define FULL_ELEMENT ((setelement)0xFFFF) #else # error "SET_ELEMENT_BIT_COUNT(a) not defined for current ELEMENTSIZE" #endif /*** Macros and functions ***/ /* * Gives a value with bit x (counting from lsb up) set. * * Making this as a table might speed up things on some machines * (though on most modern machines it's faster to shift instead of * using memory). Making it a macro makes it easy to change. */ #define SET_BIT_MASK(x) ((setelement)1<<(x)) /* Set element handling macros */ #define SET_ELEMENT_INTERSECT(a,b) ((a)&(b)) #define SET_ELEMENT_UNION(a,b) ((a)|(b)) #define SET_ELEMENT_DIFFERENCE(a,b) ((a)&(~(b))) #define SET_ELEMENT_CONTAINS(e,v) ((e)&SET_BIT_MASK(v)) /* Set handling macros */ #define SET_ADD_ELEMENT(s,a) \ ((s)[(a)/ELEMENTSIZE] |= SET_BIT_MASK((a)%ELEMENTSIZE)) #define SET_DEL_ELEMENT(s,a) \ ((s)[(a)/ELEMENTSIZE] &= ~SET_BIT_MASK((a)%ELEMENTSIZE)) #define SET_CONTAINS_FAST(s,a) (SET_ELEMENT_CONTAINS((s)[(a)/ELEMENTSIZE], \ (a)%ELEMENTSIZE)) #define SET_CONTAINS(s,a) (((a)0); n=(size/ELEMENTSIZE+1)+1; s=calloc(n,sizeof(setelement)); s[0]=size; return &(s[1]); } /* * set_free() * * Free the memory associated with set s. */ UNUSED_FUNCTION INLINE static void set_free(set_t s) { ASSERT(s!=NULL); free(&(s[-1])); } /* * set_resize() * * Resizes set s to given size. If the size is less than SET_MAX_SIZE(s), * the last elements are dropped. * * Returns a pointer to the new set. */ UNUSED_FUNCTION INLINE static set_t set_resize(set_t s, int size) { int n; ASSERT(size>0); n=(size/ELEMENTSIZE+1); s=((setelement *)realloc(s-1,(n+1)*sizeof(setelement)))+1; if (n>SET_ARRAY_LENGTH(s)) memset(s+SET_ARRAY_LENGTH(s),0, (n-SET_ARRAY_LENGTH(s))*sizeof(setelement)); if (size < SET_MAX_SIZE(s)) s[(size-1)/ELEMENTSIZE] &= (FULL_ELEMENT >> (ELEMENTSIZE-size%ELEMENTSIZE)); s[-1]=size; return s; } /* * set_size() * * Returns the number of elements in set s. */ UNUSED_FUNCTION INLINE static int set_size(set_t s) { int count=0; setelement *c; for (c=s; c < s+SET_ARRAY_LENGTH(s); c++) count+=SET_ELEMENT_BIT_COUNT(*c); return count; } /* * set_duplicate() * * Returns a newly allocated duplicate of set s. */ UNUSED_FUNCTION INLINE static set_t set_duplicate(set_t s) { set_t new; new=set_new(SET_MAX_SIZE(s)); memcpy(new,s,SET_ARRAY_LENGTH(s)*sizeof(setelement)); return new; } /* * set_copy() * * Copies set src to dest. If dest is NULL, is equal to set_duplicate. * If dest smaller than src, it is freed and a new set of the same size as * src is returned. */ UNUSED_FUNCTION INLINE static set_t set_copy(set_t dest,set_t src) { if (dest==NULL) return set_duplicate(src); if (SET_MAX_SIZE(dest)=0) { * // i is in set s * } */ UNUSED_FUNCTION INLINE static int set_return_next(set_t s, int n) { if (n<0) n=0; else n++; if (n >= SET_MAX_SIZE(s)) return -1; while (n%ELEMENTSIZE) { if (SET_CONTAINS(s,n)) return n; n++; if (n >= SET_MAX_SIZE(s)) return -1; } while (s[n/ELEMENTSIZE]==0) { n+=ELEMENTSIZE; if (n >= SET_MAX_SIZE(s)) return -1; } while (!SET_CONTAINS(s,n)) { n++; if (n >= SET_MAX_SIZE(s)) return -1; } return n; } /* * set_print() * * Prints the size and contents of set s to stdout. * Mainly useful for debugging purposes and trivial output. */ UNUSED_FUNCTION static void set_print(set_t s) { int i; printf("size=%d(max %d)",set_size(s),(int)SET_MAX_SIZE(s)); for (i=0; ì!:0 JBd7Ab $(8t4T@pE(T(A!q@9@ L\8%AC3Hљ J@ @DM je&L`@!8$Wbh`@\Ah0("HH @{8-"Qd%B;q Q@JfɣS"ER8@h!(ZRlA4 @18%A#0  md @B.!"2Y@8 F4v"m!@QJ%-Jk!YAZ2.c 6`PD -UMB  5 4E($GlrBK &  HD`Eh(QAB" #DY"Zc@V@@ %!G( P Djf FA"aK i( BT"(\a.E9@d!TI  5<\̀l@U Bb!40I(;'@`24LJ0 %$ݒ8䠉N$b1s@HTD.8UF  P"g"0r`(d#@!$n0 U:`$-IEA< !g+JR8 8Q)0C@|PF(\KPl2J12%.!Hb!9D"$ ` e<Q)*!@B$ Jb%]@! ) ;R=! ( ,0 !.Yf&JasB 0 b @])@MHP`[pTTh A h P ޱ H`0.Hi9% b@" `p !@D4ȡU) (@QBА m@ɤ.PFwԮ` 8Dk hL!B"4A@0L( F:qxaY% z.4El:(8), \D*A@ ^!@2A@ Ȣ"( %,p@ K@ b4$4 Y 0 A@ABh@PqC@0B_ 24HI@u!(:BA(f # F 4 (@I/Bk!YE6 P@DH0@(LD@Cpа1 @@!!p&,&J5 +laDX0@P9& 0@P " m!t q( da TwrfW-C$ M)`)y%сA )@`  E PYA!BM (P 0@3{R !+HP@%@X( 8Ed ` < J= Yڑ`O (Pqzp0bdF@d``F& X1% P `!'AUi\@ADā41*"Dx:Jcb PCAD $AQ` G(b K PE4f$<FPqAf@VI44IQ)BqB@" AACBcaB@M%d$##@0!'c28@)@p HR"'#BI RD00 "@5HJAIB"2`CPߠ8 8{(BD"($C]@8  EE "Y RB,Bf04 B @i tI< H%19# bI`xD E%lfpQ>@P%@YpK Nh@ȠDh"5ԠjP 3 #C$)d *H8SȊ,OuS@!t@hB ќ,2 HAVAP==88sЀQ@@VE!DB0 hJD6HBJ!H R؁QI,ЁBA\@@ L%r iBY@Ą)"$$`#Ԅ`J@A | SDb_ a  K $ 2H"$BTh# h@$DB@ Z@,(PDp@` E(#"ha&JB4b# 4DD h'E(RF(/( P0!`P,` "+G2tqH 0!V`i"C `C[$ 3x( @(, FcDD.1 M) Y +!($C pT!1p@VB [` ;q|aADHhx(PBXJ@ &5H2M@* p Q(A'ӭL$4(iP r! @ t6d٠vd`B) ߜmB("00!&@!BJbAEAJAAI` `%b"Cވ"I!ہFb Ƒq XfhEbX'P 臈2 Q)  Тْ\:+P[ !F % Rm "J) `j@ T $1PB@9h"k"0B@8b  H4Z#!`B- (6@0q$k "z!A&: `[ HA@" @FEP2bXE+ " @C  Ҋ:e32PPİ$` UCVS \nl H&*X%BC(!BDzŃaDBPB*PE`A( 4$8"# P @ P-m$(,LȀH$\Q LMPb(@D 1I`f@%@"L eQDTvXMZ9vpF<"X MI;(1ء  @!$ (̠& !` A&dκ *B$G($  EpBꂁ4`dtT `02FN:b@2") EV  J` Б!Dʀ Vb @p$Q@E|^Q4Q@ȑ &&Ȕ% HJ"R8a!` 1h 4#"1("Ǎ` Յ2R@s @a 0@g@"  ( 1 LE c:PO%(P\B@/,4@L2P$@B8&H1q !`P0" B$ M&T(HEEs%!$hR``H*jE/1`.HJP8!X" $`I,q 8B&RW !1)(P@1FA#(d)( @F(c"ejEGįF,)HlpR@6$!fyv:R$Bd XQP @J FEP PbcHP( `,p1 $@r"jZ`+I$ c$@p A  T   !""TM2[iH"h1CH`pRpI@.0@ᰌFc I>`(Em!f.I 0r K(U @  C$$YL (@!  0Q0d@ $!,  "N c i0 ـ0*&(]d&  `B< ѐ1 K @AK*RBd 3IVEۦ ah"bR*" #I%AV&5 D3 d)`|"BI* $@@:aP@DBB _B2@LYE0 D9@@R'Be&1dJ " !G1ID@H@ $`c PCʐ ƈ& p@*2P @RFBER0%*[0$P$`H(FAL0@L! .  <QаX < $8 CA @1#- Do(0@@ԀA D,  -A L"!Z&hJ($-DT  z2Jq  ؋sPhh(@)@0P0"@6$Led jc ~ Luy;LQ.?-@Ҁ"$J $ˠ@P Hcy."8#` ZTA 5{Cp`$LD @8\H @ 5$ r!bP 00X Ef8sUpbZ`EA`d& @AE@P{00Q$N $X*:".HX B̜ IsL@Id 2QT`LADP !`*-` @2BWpu @RAO=*!fp ".\ Jx /s Qx 9(UU$(C@r&"H䦄x*ׁ$0)N;P"+P l'5Fi J$`8Ď>1`HCGAGc  %@0 @b% !X/"IRN(  $ ܊ r1" -  !" )Td(CE@I\E7ITvi  "c0`FCcE@J"q hH0 $`0%2"d4CF4 @*6>BIHkpmàIWK(/Fi $@9Dj ,! H p$ P %P BC  yt`'A@H p!HT@aD I P!1j"(@@H( PaB (TRSoHP%c. ㈈ $K)0+J"a-*H%eo}!3" @Pt@P 1"@FZCVH 3P 0%a$`@ jp2(8A2!4!00"PP0 DP(iad  500@*}XB@) @G'DB1Pa9c0P:@! jDqBH`ռ@ͨDYBH(qE@D0(eHR'* NJ ,Dp!#AP AH-PHZ c+APE@F 4lڭ 仑P@@tH (щR&00;PT$QB"@y$D$8( MU ڍ rD[5(`VC F$DIvH @8J*Y  -lĘR .HN ̅ , ˆjै$!! KB )A#!(@A B'yR E6 D`CM}Hhdh8@45x&, y!c%E H! & ,BS !HL%Ep`a8RB `@!@8)F PA"ޏ ߈[8 H4@FPπX@eP F!HPI @` Z(e`NR)`0)(E$+nr 1jW QQ@ D!PCb̷B Hgȭ8"x,{2p!B"bBT 5aR g$Ć a!#biJ ʱ 1$*0i' @ `H&"T24 ra!aC"!PBB ʼnXLTIR 0Ha!!q(t @R@4 %HAnA !pX FECIhDP&C`L0( BpUR40-T )!? z !I%! PĤsZ p DQ B-@EQL$=.1 ŀ(N( $chXK X @!@#$XV"!EAFB2h%uѤ  *@耀` Jc`9Z d4# HD)A@`! ,BSC bB<`8 `(  d\DK#@7"A)B(Q(èH0b0h ((p@(47'b,!IiȠR! R,"qGF8$1@ DC A&S5} 0v" ܒ>(@p@HXP!#"I+h(2W +4`0K p0rP5K(RRL @( (dhR@ @ŋA E "T G (Ha P(* a=@H D 8I  +b ܄ r&"@k6# `eD L\( DP!lG6$`a@ ЮH0 @QK @* @ B!6uX P Dx@e*%(D&p!!f hDRT`�,VA _(1EHMT ) ,!   0X@ Ij Q(LC@@X*#,$M: Ip$s1EBLLftLeE !H8Npd40(! `&A $Z1&$) iHG He %"4f  D0X;fdD)q(,JAerB,D`a,D-u 0-1@HLAJ[@4PLj'˕ @U"H 0Y1DpD`!†8"X 1`@i DL&A&Zo,"BH"70BSM$A`R` "d@T@'0WP@2 $(iB9 ExEQ 0FT=Bx H@dMbǢ, +@̈1`$fI Q@h=T(A$R=b؀6dSbftB d)$0!&&1Fp%Hft 5E `0@`i^( (*"+ HMA 0ND@$EB`$ A SD9"Į 08H+yD1P6'0@ @ T&h'$$^D!BP P4Akd1`pԜD$bDɠE@\CRW" ' @ţ@̉0x ߲ ! - 0" $MBtD@0t &X5!r"F8SADe! J#0%TK4 " $$H"E `@9dY41 D1@LB `H$&0ܞH"Ȁ 8<0(,mx,-0j HRH*@D!TB(9D0$ Beٝ!B)La  i a0$ @"#P $F R e$DXQjqHDQUqkn (A)+)EPP  &WB@#$ 9R"$2E@ESW#@P"A 9Hd&ذrH  "@H.HJpD) 100ة @uY*V8 z%#@ `` R !@Jr0d°"H @{&0A# A") !@ DA@& ZA\ L5"1D>@@o% @2OP` h@L8*l Aa`+@! $B@&XtF P(Q#O%D P%$.b 1"%GIP``0k4Ec! U0H! B@ $` [A P @ Ya¡ @ SBl c $dI Kn4:$ʙ B<$i€F:NZ iQ[ & DhLJZ I*9b[ Ű4 Rh@:F$L4!h, ' HC,@(=H8P`AT@. (BQD( HA (@>@e,@-T^NQJpH @2 HL x0)A;HEEhĀ Cv ^`(S@  ⳀE@@$4# d> AF)FU;d  `1B%@ 4$ )0C2 R@!*!Qp(<X ,$݀ L `AL !"aр&pYQO@(-A i#p) KPl1@D m8B!O, BX̡H TJ4(Z`f" dc@؀ 4(8(P CUwRQ3؆ aY" ( Vƒ A0 $)x@a!P 2&$4p DIpA`+p@ p05Pp `(,bhV0,l' $dG[A\  BHD.FD$H ,D/2 @`0)$(K@PZ EQc^B * +IYBcC( 6%7E#kD #h*$ 30 ` R Y <"@ R1PP\0R( N$*8  2!$@+PQ!@Ad$V0Ĥ0q aD4`!b r,% BIF$(E(@!(!P Ul6oB BpdN `4@V"06Pt2D ABЌ@ @8`HDDZF 0A3@9 @BPL GQ@ @XBAT` TD0 a@ @S /!H1I"C#F(J% A 0@QP @'*@#(`$QBLj"K@@ 3G BA*$mj`DAb:@]JP Q 90r@*A 0 1Rp`T@,$(0 -1A@AS"H`pdpPA@ 7lZƐQTd87LX!`#f 9F! PH*NFL )`@%E0Q4;f &03Jbac# K3E(H@4`LZ+@l RZQ@ 2bpc(@I!E <452p9$K (TBfYd%" F2Vp*QZ6ThJơ&BԀ l%Bi80Q"QA bbQE$AO@@b1)4@{K@@"i$``h~@ 8 OZ  "r[@!@"R01J@x  F1@ƤHя!(S ƂH SQRT8 1訐"$gTD%@ZKR!5@!Cd!$3 "P@Q@J0EA:NE#* D0xҀhx2SPD$"BP @#H!d2  CTHH@j+@@3be*pu()RJEi!*@/"`#2 DQgF@ @<CD(C)P1/RMII G@Q @m%@P\̀!CMFn(V T$PET H/D% V 10&1XRh `H*9F %ArB*$L"P0<(+AM@<(5$"P`b(2!Tp $ $<M@`&@&HwP(DB2pWSb `zqX”+DP,a2)gDC`{&@PTa%5DH(Dۈ4-]" ԂiQQK *e%ŀ EHtL Ă(CTD`ДA xʘ`?2R4@ 8Pp@aN9 2@ 9h L S]D(K]` ("A0pEAWfl` "L2$""KY4T`8BAES7D0@! *P@"pVPBQH:!5 0AV@$!H@@* $(`@G0DЃTFj]fSV!գ j\5!#c((B`$, AHBR23 @BC#CJ" !B<B <FƂ BIDN  HA@R4 d ًE!:Q#D @HPN0a4j@3$ @b&QWH$3m p ňHʨm0 #zEȋ1 4@b<#M@4ED(,"$&DA0 R A0Ja{A0Xt`cXbA$MHH\0TSBJ$i(b uS 0S@FVj/8 { 1bD ״g*TYE@p EDErOp:Pi `6q(]\I3!Q&UG @ l G ZJDҥQAFf() 4 tpa@HAV<@زpPH8`T A | M PQ @ 0UYf)HDN(G`HV )HFB ` 'X 8JqpD!̎j#I R!A9R2N n"PD"ID5HƠ  FBE$XB H)P@qB`\B@!0j,'A X ƀ`) Q@kQ$@ "LDЄD P. @h0@ m "h  Be0UT@ bm;i *(Rd@$@fPhQKA@ Aei!` A(#@@ QP#0@M!%(@0ER"-@/, tR`p)0 & J lD$ ` E 24" YP@C=`zs( Y ` PhZ@aY!PQҀ(D"RH^d6!$  ZT#$PGDY²L]@e jB"lPn/H%Dp""L"# @*D)QpGA@QȀt 8oAaCℾ@fD)% @THr*|>Ѱb &UP(leHf0$( ib@BIqʦ"H~ Dp" B"`! DA9"# (  JPHAa@>h D 0d YHD !J"D@ 0(7 H2Q@ BpHHPiHe$P -x K @mJP+V@P HlD8`P 5 $H@ 8&Q`@qA  0@@!@1,!JEYRb@  \[. @XF4@`A D`,PʅH*QRQ`PhhV+0F4P0C7f <   BX $ jݠ-d  *D`AXHpO` DA`Î3G(CC Hz@k!0AL@PH H:P5CV*`$  H{   J"B*5 d @+!hhHQ @QE"%c ((1)( @ 8+T#,.PDbk!`0M @t%,$i 4.E(PTp4h`W@G%0D(Y0JF1v`,DAB"(D 0pFq B f` A^FA&H 6x4R=Z`p `N0pkJeP qC 3D 1!v!H -3%%* EHR0F= +`!,%*D01~Hai@ @U` Ccbr # !hU TW&vFLN؀+lЀ&QId1L @ $J$N@@.&FA@ < 0`013dRAHCZ!D$ `G BV PHm $bIAh BȪN1@ܙL@6 萄DMA Q q,HT(yPB`L$w~P 4V j"QPH0EIDQ R U&AfZFE&"RqPdjHDP`h@a@A! [0@Xr#At -'` VIUJ `AH%lD( D)@(D VR@* RH)" 0+ &1pr&bS d 2bN5   XBFSrЂBT 3p}0Q' J(:To hH"2Ӕ(UAC C~H 2М IA$ 13Q84pI@8J.', "^TMDP0$h` HhF( ` M$8)!P8$P 8bRIw% $I@ ` ld"@C A38$ b1:+e"1J! iH`b`' )89 ASB1`(V T P('. @0 XAHx (M F A@H@(*(I@FRLT $- X H4"dphQ p FW"`'"!Р}jP 2auXD ` "8H12H.A H $S\Zp$l(F (Q0`Ab `$0Ubг B0c} 0O('0d $ x2B C;( ]nDp ])(# !d ^I2rDPZ>`0QH  PP @@@ J@蠏K@Ɗ@9b"(E$ cliquer-1.21/testcase-large-exact8.h0000644000175000017500000010373711326254207015516 0ustar patpatint large_exact_8_sized_cliques[][N] = { { 8 ,0,9,186,225,409,535,569,573 }, { 8 ,0,12,86,142,176,236,324,367 }, { 8 ,0,20,109,134,196,339,375,498 }, { 8 ,0,20,109,134,196,375,498,571 }, { 8 ,0,79,87,133,186,264,384,421 }, { 8 ,0,79,87,186,264,354,384,421 }, { 8 ,0,109,134,183,375,498,513,571 }, { 8 ,0,109,134,196,375,498,513,571 }, { 8 ,1,8,47,243,286,469,509,585 }, { 8 ,1,15,151,236,334,356,367,531 }, { 8 ,1,15,158,236,258,260,356,456 }, { 8 ,1,15,158,236,258,260,373,456 }, { 8 ,1,39,176,286,323,358,443,575 }, { 8 ,1,153,267,315,464,466,555,590 }, { 8 ,2,16,155,258,375,377,402,433 }, { 8 ,2,28,90,327,350,376,495,559 }, { 8 ,2,53,80,222,459,466,547,571 }, { 8 ,2,53,80,222,466,547,571,593 }, { 8 ,2,99,125,145,163,225,334,563 }, { 8 ,2,152,269,350,376,410,485,590 }, { 8 ,3,15,284,373,507,529,530,584 }, { 8 ,3,23,138,141,171,230,236,408 }, { 8 ,3,23,138,171,178,230,236,408 }, { 8 ,3,23,138,171,178,236,401,408 }, { 8 ,3,23,138,171,182,306,364,408 }, { 8 ,3,23,138,171,182,306,401,408 }, { 8 ,3,23,138,171,306,364,408,409 }, { 8 ,3,23,171,178,236,302,401,408 }, { 8 ,3,61,92,103,284,327,495,559 }, { 8 ,3,61,92,148,284,327,495,559 }, { 8 ,3,61,92,284,327,495,559,587 }, { 8 ,3,89,141,241,276,282,547,571 }, { 8 ,3,125,241,276,282,483,488,571 }, { 8 ,3,222,290,306,312,547,552,571 }, { 8 ,4,53,74,466,547,552,566,585 }, { 8 ,4,74,444,466,547,552,566,585 }, { 8 ,4,113,137,165,260,384,502,554 }, { 8 ,4,116,165,311,325,333,436,467 }, { 8 ,5,8,17,123,178,284,358,407 }, { 8 ,5,8,66,74,123,127,198,444 }, { 8 ,5,8,66,74,123,127,444,524 }, { 8 ,5,8,66,74,123,198,400,444 }, { 8 ,5,8,74,198,331,400,444,590 }, { 8 ,5,8,89,127,198,286,297,335 }, { 8 ,5,10,114,158,246,361,483,542 }, { 8 ,5,61,84,143,348,417,499,524 }, { 8 ,5,61,143,348,417,455,499,524 }, { 8 ,5,94,95,194,202,273,408,501 }, { 8 ,5,98,123,177,198,267,400,484 }, { 8 ,5,123,358,388,400,492,501,580 }, { 8 ,5,167,365,368,446,479,540,574 }, { 8 ,5,198,304,331,335,358,444,525 }, { 8 ,5,241,368,430,465,547,566,590 }, { 8 ,6,29,61,284,378,409,561,594 }, { 8 ,6,29,152,284,378,388,409,561 }, { 8 ,6,29,152,284,378,388,409,594 }, { 8 ,6,29,152,284,378,388,561,594 }, { 8 ,6,29,152,284,378,409,561,594 }, { 8 ,6,29,152,284,388,409,561,594 }, { 8 ,6,29,152,378,388,409,561,594 }, { 8 ,6,29,284,378,388,409,561,594 }, { 8 ,6,131,132,327,450,542,561,593 }, { 8 ,6,152,284,306,378,409,561,594 }, { 8 ,6,152,284,378,388,409,502,561 }, { 8 ,6,152,284,378,388,409,502,594 }, { 8 ,6,152,284,378,388,409,561,594 }, { 8 ,6,152,284,378,388,502,561,594 }, { 8 ,6,152,284,378,409,502,561,594 }, { 8 ,6,152,284,388,409,502,561,594 }, { 8 ,6,152,378,388,409,502,561,594 }, { 8 ,6,284,378,388,409,502,561,594 }, { 8 ,7,41,61,63,166,353,507,517 }, { 8 ,7,41,63,89,255,353,507,529 }, { 8 ,7,44,61,63,138,166,303,517 }, { 8 ,7,58,77,144,208,333,472,511 }, { 8 ,7,77,144,165,208,333,366,472 }, { 8 ,7,77,144,208,333,366,472,511 }, { 8 ,7,150,152,159,197,251,346,470 }, { 8 ,7,152,159,197,224,251,346,470 }, { 8 ,7,165,188,255,338,467,513,593 }, { 8 ,7,179,327,353,454,507,518,529 }, { 8 ,8,33,93,102,166,348,444,559 }, { 8 ,8,33,93,166,348,388,444,559 }, { 8 ,8,68,167,177,243,284,408,548 }, { 8 ,8,115,137,208,232,260,262,413 }, { 8 ,8,217,241,283,325,477,493,497 }, { 8 ,9,14,249,251,328,373,480,570 }, { 8 ,9,15,126,151,247,328,340,568 }, { 8 ,9,93,170,381,396,433,523,570 }, { 8 ,9,105,115,170,196,216,258,538 }, { 8 ,9,115,171,174,216,244,362,538 }, { 8 ,9,129,171,174,216,244,362,538 }, { 8 ,9,196,264,297,307,389,404,476 }, { 8 ,9,226,228,247,323,433,440,544 }, { 8 ,9,236,247,373,440,441,480,544 }, { 8 ,10,18,85,159,257,286,450,560 }, { 8 ,10,26,85,99,159,428,527,582 }, { 8 ,10,31,141,189,311,358,370,489 }, { 8 ,11,18,44,54,159,308,535,581 }, { 8 ,11,18,44,159,244,308,535,581 }, { 8 ,11,18,54,159,182,308,535,581 }, { 8 ,11,18,159,182,244,308,535,581 }, { 8 ,11,19,129,157,159,244,278,538 }, { 8 ,11,41,103,349,353,372,380,554 }, { 8 ,11,44,191,349,517,554,581,587 }, { 8 ,11,54,76,239,246,282,459,489 }, { 8 ,11,57,156,191,280,341,408,435 }, { 8 ,11,57,191,248,280,341,408,435 }, { 8 ,11,59,135,209,299,435,524,535 }, { 8 ,11,76,135,209,299,435,524,535 }, { 8 ,11,80,208,301,357,396,448,472 }, { 8 ,11,152,244,246,390,533,537,549 }, { 8 ,11,152,246,282,353,390,537,549 }, { 8 ,11,152,246,353,390,533,537,549 }, { 8 ,11,152,310,355,464,467,526,590 }, { 8 ,11,157,261,278,337,430,491,580 }, { 8 ,11,244,332,357,398,467,499,524 }, { 8 ,12,23,41,86,205,206,331,357 }, { 8 ,12,23,205,214,312,349,408,423 }, { 8 ,12,24,62,159,205,231,312,423 }, { 8 ,12,24,62,159,205,231,312,509 }, { 8 ,12,24,62,159,205,231,423,509 }, { 8 ,12,24,62,159,205,312,408,423 }, { 8 ,12,24,62,159,205,312,423,509 }, { 8 ,12,24,62,159,231,258,423,430 }, { 8 ,12,24,62,159,231,312,423,509 }, { 8 ,12,24,62,159,231,312,448,509 }, { 8 ,12,24,62,205,231,312,423,509 }, { 8 ,12,24,62,210,231,312,423,509 }, { 8 ,12,24,62,221,236,480,508,561 }, { 8 ,12,24,159,205,231,312,423,509 }, { 8 ,12,24,210,312,368,405,423,509 }, { 8 ,12,24,210,312,368,408,423,547 }, { 8 ,12,26,73,140,277,291,480,584 }, { 8 ,12,27,76,102,137,187,431,496 }, { 8 ,12,27,76,102,183,187,431,496 }, { 8 ,12,41,71,169,202,227,480,496 }, { 8 ,12,45,100,116,126,202,203,214 }, { 8 ,12,45,100,128,243,371,442,509 }, { 8 ,12,45,100,128,243,371,442,550 }, { 8 ,12,62,159,205,231,312,423,509 }, { 8 ,12,62,159,205,312,349,408,423 }, { 8 ,12,62,159,205,312,349,423,509 }, { 8 ,12,71,110,126,169,242,584,598 }, { 8 ,12,71,110,169,242,258,584,598 }, { 8 ,12,71,128,190,315,441,442,592 }, { 8 ,12,71,170,217,265,301,477,573 }, { 8 ,12,86,110,111,262,312,431,480 }, { 8 ,12,86,142,176,236,324,367,575 }, { 8 ,12,110,116,171,244,258,434,459 }, { 8 ,12,110,126,169,173,221,584,598 }, { 8 ,12,110,183,273,312,349,478,526 }, { 8 ,12,116,159,244,245,398,423,478 }, { 8 ,12,162,178,187,242,244,284,425 }, { 8 ,12,162,178,242,244,284,425,578 }, { 8 ,12,162,178,242,284,425,521,578 }, { 8 ,12,162,242,284,425,521,531,578 }, { 8 ,12,165,243,312,341,408,434,472 }, { 8 ,12,173,182,184,319,466,508,584 }, { 8 ,12,173,221,265,284,477,481,561 }, { 8 ,12,182,184,217,301,405,466,508 }, { 8 ,13,94,191,279,313,334,392,441 }, { 8 ,13,183,186,234,384,419,572,593 }, { 8 ,14,20,169,339,354,444,479,588 }, { 8 ,14,73,219,453,466,513,570,576 }, { 8 ,14,73,444,453,466,513,534,570 }, { 8 ,14,77,79,87,231,277,417,568 }, { 8 ,15,70,150,183,192,334,432,508 }, { 8 ,15,70,183,192,334,375,432,508 }, { 8 ,15,74,86,151,236,334,356,367 }, { 8 ,15,84,115,258,285,350,438,524 }, { 8 ,15,95,151,236,334,356,367,531 }, { 8 ,15,95,151,334,356,367,531,568 }, { 8 ,15,96,151,334,356,367,531,568 }, { 8 ,15,96,163,334,340,375,531,568 }, { 8 ,15,115,244,278,310,402,426,589 }, { 8 ,15,158,236,258,260,297,373,456 }, { 8 ,15,158,236,258,297,373,420,456 }, { 8 ,15,163,334,340,375,431,531,568 }, { 8 ,15,220,247,340,375,488,533,578 }, { 8 ,15,241,272,310,427,438,477,582 }, { 8 ,16,23,50,96,180,239,386,504 }, { 8 ,16,23,50,105,205,312,345,365 }, { 8 ,16,23,60,182,306,383,414,450 }, { 8 ,16,23,60,182,306,383,414,473 }, { 8 ,16,23,96,182,209,306,414,450 }, { 8 ,16,23,96,182,209,414,450,459 }, { 8 ,16,23,117,183,240,326,445,456 }, { 8 ,16,23,117,183,240,445,456,528 }, { 8 ,16,24,127,133,182,183,332,527 }, { 8 ,16,27,76,133,183,209,450,459 }, { 8 ,16,27,76,133,183,450,459,508 }, { 8 ,16,27,133,183,209,264,450,459 }, { 8 ,16,27,133,183,209,264,459,596 }, { 8 ,16,27,133,183,264,450,459,508 }, { 8 ,16,27,133,183,264,459,508,596 }, { 8 ,16,38,104,208,267,289,464,522 }, { 8 ,16,63,113,156,450,474,493,591 }, { 8 ,16,102,124,204,245,321,352,450 }, { 8 ,16,102,152,182,264,306,376,527 }, { 8 ,16,133,182,183,209,264,450,459 }, { 8 ,16,133,182,183,264,450,459,508 }, { 8 ,17,38,59,162,178,284,391,407 }, { 8 ,17,38,59,178,284,358,391,407 }, { 8 ,17,59,119,126,147,194,220,584 }, { 8 ,17,70,124,253,352,430,533,537 }, { 8 ,17,74,149,224,253,411,415,482 }, { 8 ,17,74,185,262,381,397,572,591 }, { 8 ,17,82,187,192,244,352,397,589 }, { 8 ,17,109,196,285,324,468,496,591 }, { 8 ,17,188,196,335,399,411,420,519 }, { 8 ,17,188,335,399,411,420,482,519 }, { 8 ,18,54,125,190,196,275,543,586 }, { 8 ,18,85,159,257,286,410,450,560 }, { 8 ,18,100,135,233,254,322,495,502 }, { 8 ,18,100,233,254,322,489,495,502 }, { 8 ,18,171,244,301,355,400,581,596 }, { 8 ,19,27,200,244,251,253,346,390 }, { 8 ,19,27,200,244,253,346,390,533 }, { 8 ,19,31,178,287,332,383,391,524 }, { 8 ,19,35,94,107,246,345,492,589 }, { 8 ,19,40,244,251,327,346,372,498 }, { 8 ,19,53,200,244,251,390,523,541 }, { 8 ,19,53,200,244,251,523,541,552 }, { 8 ,19,59,178,209,332,371,391,524 }, { 8 ,19,77,178,209,332,371,391,524 }, { 8 ,19,77,178,287,332,383,391,524 }, { 8 ,19,77,178,287,383,391,451,524 }, { 8 ,19,212,311,345,479,490,525,539 }, { 8 ,20,22,66,174,242,398,444,453 }, { 8 ,20,42,144,333,366,472,511,558 }, { 8 ,20,73,107,120,280,432,480,551 }, { 8 ,20,83,272,443,462,527,551,565 }, { 8 ,20,88,102,131,151,363,444,595 }, { 8 ,20,88,102,131,348,363,444,595 }, { 8 ,20,116,249,264,333,364,398,402 }, { 8 ,20,134,196,339,348,354,444,479 }, { 8 ,21,58,120,138,141,307,494,570 }, { 8 ,21,162,178,196,292,326,340,375 }, { 8 ,22,57,140,183,192,212,454,561 }, { 8 ,22,69,110,250,252,298,338,593 }, { 8 ,22,69,110,250,252,338,571,593 }, { 8 ,22,69,250,252,298,338,415,593 }, { 8 ,22,86,257,481,502,536,558,561 }, { 8 ,22,140,183,192,212,454,508,561 }, { 8 ,22,170,183,252,281,338,571,593 }, { 8 ,23,38,44,95,125,277,409,502 }, { 8 ,23,38,44,125,277,409,502,535 }, { 8 ,23,41,69,74,86,194,236,351 }, { 8 ,23,54,76,239,246,282,459,489 }, { 8 ,23,60,245,312,321,339,473,498 }, { 8 ,23,60,312,321,339,401,473,498 }, { 8 ,23,66,87,128,312,350,552,573 }, { 8 ,23,66,95,123,128,403,549,578 }, { 8 ,23,68,96,194,349,408,501,581 }, { 8 ,23,68,96,194,349,408,556,581 }, { 8 ,23,76,239,246,282,350,459,489 }, { 8 ,23,114,141,230,248,257,312,472 }, { 8 ,23,114,178,230,257,350,376,472 }, { 8 ,23,123,262,271,369,400,486,548 }, { 8 ,23,128,242,354,374,465,479,588 }, { 8 ,23,128,242,354,374,465,479,594 }, { 8 ,23,128,242,354,374,465,588,594 }, { 8 ,23,128,242,354,374,479,588,594 }, { 8 ,23,128,242,354,465,479,588,594 }, { 8 ,23,128,242,374,465,479,588,594 }, { 8 ,23,128,295,365,374,465,578,581 }, { 8 ,23,128,354,374,465,479,588,594 }, { 8 ,23,138,171,182,238,306,364,408 }, { 8 ,23,138,171,182,238,306,364,450 }, { 8 ,23,138,171,182,268,364,408,581 }, { 8 ,23,138,171,182,306,364,408,581 }, { 8 ,23,138,171,306,364,408,409,581 }, { 8 ,23,138,178,230,239,380,408,472 }, { 8 ,23,141,230,248,257,312,349,408 }, { 8 ,23,141,230,248,257,312,408,472 }, { 8 ,23,149,164,194,257,285,339,350 }, { 8 ,23,164,194,257,285,337,339,350 }, { 8 ,23,164,194,257,327,337,350,556 }, { 8 ,23,164,194,257,337,339,350,556 }, { 8 ,23,178,230,239,257,350,408,472 }, { 8 ,23,178,230,239,257,380,408,472 }, { 8 ,23,205,214,312,349,369,408,423 }, { 8 ,23,230,239,257,312,350,408,472 }, { 8 ,23,230,239,257,312,380,408,472 }, { 8 ,23,242,354,374,465,479,588,594 }, { 8 ,23,245,246,295,345,427,459,492 }, { 8 ,24,28,137,307,450,452,507,508 }, { 8 ,24,41,89,121,135,231,312,532 }, { 8 ,24,41,89,121,231,312,434,476 }, { 8 ,24,41,238,353,430,450,537,554 }, { 8 ,24,41,243,312,429,447,476,509 }, { 8 ,24,62,159,205,231,312,423,509 }, { 8 ,24,62,159,231,312,423,495,509 }, { 8 ,24,124,238,353,430,450,537,554 }, { 8 ,24,183,221,354,450,452,508,561 }, { 8 ,24,210,312,368,405,423,476,509 }, { 8 ,24,210,312,368,408,423,476,547 }, { 8 ,24,221,339,354,450,452,508,561 }, { 8 ,26,60,99,225,383,428,457,482 }, { 8 ,26,73,95,140,277,291,480,584 }, { 8 ,26,116,128,174,212,244,366,399 }, { 8 ,26,136,172,239,293,479,512,586 }, { 8 ,27,28,137,307,450,452,507,508 }, { 8 ,27,28,137,307,450,452,508,559 }, { 8 ,27,28,183,264,307,450,452,508 }, { 8 ,27,28,183,307,450,452,508,559 }, { 8 ,27,35,106,218,264,307,450,515 }, { 8 ,27,59,190,234,496,519,551,589 }, { 8 ,27,122,218,374,405,430,462,566 }, { 8 ,27,183,264,307,354,450,452,508 }, { 8 ,27,195,230,278,359,366,409,489 }, { 8 ,28,31,107,217,234,333,376,507 }, { 8 ,28,38,178,179,483,493,520,598 }, { 8 ,28,58,177,289,293,333,407,449 }, { 8 ,28,74,101,131,327,450,497,561 }, { 8 ,28,75,116,118,213,232,374,575 }, { 8 ,28,75,116,118,213,374,491,575 }, { 8 ,28,75,118,213,374,407,490,575 }, { 8 ,28,75,118,213,374,407,491,575 }, { 8 ,28,82,121,214,333,477,490,493 }, { 8 ,28,90,124,164,177,179,327,559 }, { 8 ,28,90,164,179,327,350,376,559 }, { 8 ,28,98,258,350,438,477,500,560 }, { 8 ,28,107,156,213,232,507,517,581 }, { 8 ,28,107,177,217,333,469,483,493 }, { 8 ,28,109,113,134,183,293,330,375 }, { 8 ,28,109,113,134,183,293,330,454 }, { 8 ,28,109,113,134,183,293,330,559 }, { 8 ,29,55,235,292,375,445,446,571 }, { 8 ,29,55,292,375,445,446,451,571 }, { 8 ,29,61,136,254,314,324,550,559 }, { 8 ,29,152,284,378,388,409,561,594 }, { 8 ,29,227,296,311,374,375,455,544 }, { 8 ,30,33,46,85,313,348,371,428 }, { 8 ,30,48,202,378,559,560,581,595 }, { 8 ,30,67,130,342,362,435,482,573 }, { 8 ,30,72,124,132,138,327,502,550 }, { 8 ,30,72,132,138,327,502,550,581 }, { 8 ,30,72,132,138,327,502,550,586 }, { 8 ,30,90,124,164,177,179,327,559 }, { 8 ,30,115,145,163,186,252,361,461 }, { 8 ,31,54,68,92,237,288,492,580 }, { 8 ,31,54,92,184,348,453,479,548 }, { 8 ,31,54,92,237,288,492,535,580 }, { 8 ,31,56,69,79,136,165,255,470 }, { 8 ,31,70,179,292,330,343,514,546 }, { 8 ,31,76,163,262,350,431,459,508 }, { 8 ,31,116,128,372,379,440,441,454 }, { 8 ,32,34,49,99,274,577,579,595 }, { 8 ,32,34,99,122,135,218,274,579 }, { 8 ,32,34,99,122,135,270,411,429 }, { 8 ,32,34,152,218,291,326,335,429 }, { 8 ,32,49,86,97,263,379,483,517 }, { 8 ,32,49,86,263,379,429,434,517 }, { 8 ,32,49,86,263,379,434,483,517 }, { 8 ,32,49,86,379,403,429,434,517 }, { 8 ,32,49,97,250,538,579,580,595 }, { 8 ,32,58,202,218,259,326,346,389 }, { 8 ,32,70,218,274,317,455,518,595 }, { 8 ,32,72,86,152,263,277,429,583 }, { 8 ,32,86,99,122,135,145,218,429 }, { 8 ,32,86,99,122,135,145,411,429 }, { 8 ,32,86,99,122,135,270,411,429 }, { 8 ,32,86,99,122,145,193,411,429 }, { 8 ,32,86,151,152,208,403,487,506 }, { 8 ,32,87,190,345,437,539,561,580 }, { 8 ,33,93,102,166,243,367,447,500 }, { 8 ,33,93,102,267,294,444,466,559 }, { 8 ,33,93,102,267,348,444,466,559 }, { 8 ,33,93,129,166,348,388,444,479 }, { 8 ,34,57,66,74,116,224,411,444 }, { 8 ,34,57,66,74,116,224,411,445 }, { 8 ,34,57,66,74,166,224,411,444 }, { 8 ,34,57,66,74,166,224,411,445 }, { 8 ,34,57,66,135,166,224,411,445 }, { 8 ,34,57,74,116,224,399,411,444 }, { 8 ,34,57,74,166,224,367,411,445 }, { 8 ,34,57,74,181,335,411,444,565 }, { 8 ,34,57,74,335,399,411,444,577 }, { 8 ,34,66,74,116,126,445,481,547 }, { 8 ,34,66,74,116,127,224,411,444 }, { 8 ,34,66,74,116,134,224,411,444 }, { 8 ,34,66,116,126,312,445,481,547 }, { 8 ,34,69,99,136,520,545,579,592 }, { 8 ,34,74,116,127,224,399,411,444 }, { 8 ,34,74,116,134,224,270,399,411 }, { 8 ,34,74,116,134,224,399,411,444 }, { 8 ,34,74,127,335,399,411,444,577 }, { 8 ,34,125,155,176,234,270,324,560 }, { 8 ,34,152,368,429,448,476,509,549 }, { 8 ,35,41,86,121,135,312,363,545 }, { 8 ,35,41,86,121,311,312,434,476 }, { 8 ,35,41,86,311,312,434,476,541 }, { 8 ,35,46,196,264,297,307,378,476 }, { 8 ,35,46,196,264,297,307,378,541 }, { 8 ,35,46,196,264,297,307,476,541 }, { 8 ,35,46,196,264,297,378,476,541 }, { 8 ,35,46,196,264,307,311,476,541 }, { 8 ,35,46,196,264,307,378,476,541 }, { 8 ,35,46,196,297,307,378,411,476 }, { 8 ,35,46,196,297,307,378,476,541 }, { 8 ,35,46,264,297,307,378,476,541 }, { 8 ,35,57,68,92,94,288,307,408 }, { 8 ,35,57,68,96,148,367,448,568 }, { 8 ,35,86,312,329,345,363,439,541 }, { 8 ,35,86,312,329,363,439,541,552 }, { 8 ,35,121,141,248,312,408,482,532 }, { 8 ,35,134,295,405,421,439,440,572 }, { 8 ,35,196,264,297,307,378,476,541 }, { 8 ,35,295,405,421,439,440,572,582 }, { 8 ,37,64,67,77,86,135,296,573 }, { 8 ,37,64,71,94,162,363,436,595 }, { 8 ,37,64,71,162,363,378,436,595 }, { 8 ,37,86,112,152,176,193,208,346 }, { 8 ,37,105,148,177,221,254,544,559 }, { 8 ,37,111,152,236,346,375,513,544 }, { 8 ,37,130,339,348,362,479,482,573 }, { 8 ,37,152,176,236,269,286,346,388 }, { 8 ,37,162,169,183,354,384,436,466 }, { 8 ,38,46,59,163,284,358,476,568 }, { 8 ,38,59,86,407,466,481,483,536 }, { 8 ,38,59,162,178,284,391,407,425 }, { 8 ,38,64,84,267,321,341,352,471 }, { 8 ,38,64,133,258,436,471,473,523 }, { 8 ,38,86,466,474,481,487,502,561 }, { 8 ,38,103,154,215,240,457,531,554 }, { 8 ,38,104,267,289,415,419,485,589 }, { 8 ,38,178,181,236,371,416,440,460 }, { 8 ,39,42,89,123,210,231,312,532 }, { 8 ,39,47,82,235,285,446,509,516 }, { 8 ,39,64,119,200,291,296,539,546 }, { 8 ,39,120,186,244,295,355,458,530 }, { 8 ,39,120,186,244,355,429,458,530 }, { 8 ,40,140,196,240,326,445,456,468 }, { 8 ,41,44,61,254,349,495,554,581 }, { 8 ,41,61,63,100,103,349,353,372 }, { 8 ,41,61,72,86,351,429,476,517 }, { 8 ,41,61,72,86,351,429,476,536 }, { 8 ,41,61,86,351,429,434,476,517 }, { 8 ,41,61,86,351,429,434,476,536 }, { 8 ,41,69,169,202,255,351,384,387 }, { 8 ,41,83,121,135,246,312,349,495 }, { 8 ,41,86,89,121,135,312,363,545 }, { 8 ,41,86,89,135,205,312,363,545 }, { 8 ,41,86,308,352,426,450,541,542 }, { 8 ,41,100,249,326,351,385,400,500 }, { 8 ,41,116,203,249,315,333,450,507 }, { 8 ,41,116,203,249,315,363,380,450 }, { 8 ,41,117,149,169,183,253,487,537 }, { 8 ,41,169,202,255,291,351,387,542 }, { 8 ,43,171,182,218,330,350,559,590 }, { 8 ,44,56,125,136,173,265,311,587 }, { 8 ,44,61,63,138,166,232,280,517 }, { 8 ,44,61,63,138,166,232,303,517 }, { 8 ,44,61,138,166,232,280,394,409 }, { 8 ,44,61,138,166,232,280,409,517 }, { 8 ,44,61,295,349,386,495,554,581 }, { 8 ,44,63,138,166,232,280,517,575 }, { 8 ,44,63,138,166,232,303,517,575 }, { 8 ,44,63,138,166,280,322,517,575 }, { 8 ,45,46,109,498,503,508,513,580 }, { 8 ,45,58,240,281,399,444,513,580 }, { 8 ,45,111,129,308,444,513,550,596 }, { 8 ,45,189,234,371,456,509,549,584 }, { 8 ,45,210,249,265,373,429,500,560 }, { 8 ,46,56,57,250,252,254,278,497 }, { 8 ,46,57,66,284,347,408,411,435 }, { 8 ,46,60,120,171,355,416,435,590 }, { 8 ,46,60,120,241,355,416,435,590 }, { 8 ,46,64,111,133,209,347,416,435 }, { 8 ,46,114,221,241,313,358,372,462 }, { 8 ,46,125,157,173,346,410,461,516 }, { 8 ,46,125,196,264,307,311,476,541 }, { 8 ,46,125,196,264,307,378,476,541 }, { 8 ,46,196,216,264,297,307,378,407 }, { 8 ,46,196,264,297,307,378,476,541 }, { 8 ,46,196,264,297,378,462,476,541 }, { 8 ,46,221,249,262,452,480,508,561 }, { 8 ,46,298,317,338,400,401,513,545 }, { 8 ,47,51,135,143,153,243,446,470 }, { 8 ,47,73,82,154,307,363,438,508 }, { 8 ,47,86,97,177,270,352,375,571 }, { 8 ,47,86,97,270,334,352,375,571 }, { 8 ,47,86,236,270,334,352,375,571 }, { 8 ,48,56,123,167,247,267,295,400 }, { 8 ,49,86,97,263,379,425,483,517 }, { 8 ,49,178,234,326,330,419,572,593 }, { 8 ,50,56,91,303,406,407,447,558 }, { 8 ,51,56,96,151,172,281,300,403 }, { 8 ,51,56,170,172,330,491,563,588 }, { 8 ,51,86,134,151,172,281,300,403 }, { 8 ,51,86,134,151,172,281,300,529 }, { 8 ,51,130,147,225,262,371,398,569 }, { 8 ,51,143,295,319,388,459,510,586 }, { 8 ,52,61,79,266,452,475,554,570 }, { 8 ,52,102,125,244,264,331,476,541 }, { 8 ,52,139,172,201,246,491,515,569 }, { 8 ,52,139,172,201,246,515,539,569 }, { 8 ,52,158,167,307,332,390,452,559 }, { 8 ,52,158,244,246,340,390,537,559 }, { 8 ,52,158,244,246,390,410,537,559 }, { 8 ,52,158,246,390,410,504,537,559 }, { 8 ,53,74,174,212,216,244,332,400 }, { 8 ,53,76,102,232,331,450,496,517 }, { 8 ,54,56,89,125,163,167,282,563 }, { 8 ,54,76,137,163,246,282,459,508 }, { 8 ,54,110,238,368,444,453,479,534 }, { 8 ,54,125,128,190,417,485,543,589 }, { 8 ,55,73,254,375,423,444,461,544 }, { 8 ,55,102,131,152,254,293,333,500 }, { 8 ,55,102,131,152,293,333,500,551 }, { 8 ,55,161,235,259,375,378,418,581 }, { 8 ,55,192,236,245,369,393,408,511 }, { 8 ,55,214,327,369,378,393,418,534 }, { 8 ,56,57,136,250,252,254,278,497 }, { 8 ,56,57,153,165,323,341,345,588 }, { 8 ,56,57,165,323,341,345,474,588 }, { 8 ,56,75,118,213,407,491,575,590 }, { 8 ,57,66,82,135,166,224,411,445 }, { 8 ,57,68,148,177,186,284,358,568 }, { 8 ,57,68,167,177,186,284,358,568 }, { 8 ,57,82,83,153,224,238,345,490 }, { 8 ,57,148,177,186,284,358,391,490 }, { 8 ,57,148,177,186,284,358,490,568 }, { 8 ,57,167,177,186,284,358,490,568 }, { 8 ,57,171,191,306,347,401,408,435 }, { 8 ,57,191,248,280,341,347,408,435 }, { 8 ,58,134,156,218,326,389,405,572 }, { 8 ,59,68,163,167,186,284,358,568 }, { 8 ,59,89,116,147,265,481,547,594 }, { 8 ,59,112,162,178,284,391,425,524 }, { 8 ,59,130,258,337,339,350,456,550 }, { 8 ,60,97,255,352,368,541,555,590 }, { 8 ,61,65,86,252,338,478,527,553 }, { 8 ,61,65,86,252,338,478,527,583 }, { 8 ,61,70,100,103,122,328,526,566 }, { 8 ,61,86,183,252,338,478,527,583 }, { 8 ,61,92,143,288,321,348,453,510 }, { 8 ,61,185,196,280,340,361,531,536 }, { 8 ,61,232,280,361,394,462,500,531 }, { 8 ,61,254,333,341,343,413,472,594 }, { 8 ,62,174,295,326,331,343,382,400 }, { 8 ,64,134,163,189,290,381,388,451 }, { 8 ,65,125,136,250,311,362,475,489 }, { 8 ,65,125,136,311,362,475,479,489 }, { 8 ,65,125,136,311,362,479,489,586 }, { 8 ,65,125,136,321,362,479,489,586 }, { 8 ,66,68,71,94,202,227,403,496 }, { 8 ,66,68,92,101,109,368,438,580 }, { 8 ,66,68,101,109,138,368,438,580 }, { 8 ,66,68,101,138,368,385,438,580 }, { 8 ,66,92,101,109,134,233,295,440 }, { 8 ,66,92,101,109,233,295,368,440 }, { 8 ,66,109,134,135,233,295,440,454 }, { 8 ,66,109,135,243,247,295,443,522 }, { 8 ,66,124,135,353,431,454,541,573 }, { 8 ,66,124,135,353,454,523,541,573 }, { 8 ,66,124,353,433,454,523,541,573 }, { 8 ,66,172,380,385,429,471,523,529 }, { 8 ,66,315,380,385,429,471,523,529 }, { 8 ,66,315,380,385,429,471,523,556 }, { 8 ,68,74,101,108,109,112,130,590 }, { 8 ,68,74,101,108,109,130,438,590 }, { 8 ,68,92,101,341,368,438,538,580 }, { 8 ,68,101,138,368,385,438,538,580 }, { 8 ,68,106,141,176,311,370,539,575 }, { 8 ,68,106,141,176,370,503,539,575 }, { 8 ,68,106,154,200,325,468,538,596 }, { 8 ,68,106,154,370,438,503,539,597 }, { 8 ,69,74,169,253,263,336,444,566 }, { 8 ,69,74,169,253,263,411,444,566 }, { 8 ,69,74,253,263,411,415,444,566 }, { 8 ,69,79,140,165,275,537,544,564 }, { 8 ,69,110,252,471,474,571,572,593 }, { 8 ,69,140,165,275,471,537,544,564 }, { 8 ,69,140,275,471,537,544,559,564 }, { 8 ,69,144,169,242,361,537,544,567 }, { 8 ,69,144,169,305,361,537,544,567 }, { 8 ,69,144,169,361,379,537,544,567 }, { 8 ,69,150,173,266,398,453,470,509 }, { 8 ,69,169,202,250,298,351,384,598 }, { 8 ,70,108,212,284,293,330,548,588 }, { 8 ,70,108,293,330,343,514,548,588 }, { 8 ,70,126,292,340,375,405,488,571 }, { 8 ,71,85,92,123,349,359,423,495 }, { 8 ,71,109,208,459,520,579,587,598 }, { 8 ,71,116,227,321,353,380,399,441 }, { 8 ,71,130,188,258,359,378,399,573 }, { 8 ,71,188,258,335,359,399,420,598 }, { 8 ,72,75,93,152,251,367,396,586 }, { 8 ,72,75,93,259,365,367,398,586 }, { 8 ,72,77,123,225,367,383,524,573 }, { 8 ,72,77,225,367,383,511,524,573 }, { 8 ,72,78,156,167,200,277,298,307 }, { 8 ,72,86,152,263,368,429,476,517 }, { 8 ,72,86,196,266,354,361,414,530 }, { 8 ,72,88,132,266,327,450,541,542 }, { 8 ,72,93,159,197,259,267,389,449 }, { 8 ,72,93,159,224,259,367,394,581 }, { 8 ,72,123,124,159,225,367,515,573 }, { 8 ,72,123,156,281,349,369,403,599 }, { 8 ,72,124,152,225,353,409,541,573 }, { 8 ,72,124,204,414,447,450,457,515 }, { 8 ,72,124,225,344,383,457,511,573 }, { 8 ,72,124,225,367,383,457,511,573 }, { 8 ,72,152,159,197,445,527,530,583 }, { 8 ,72,152,263,326,368,429,445,476 }, { 8 ,72,159,167,211,216,428,533,583 }, { 8 ,72,159,211,216,428,445,533,583 }, { 8 ,73,100,233,254,277,322,489,502 }, { 8 ,73,100,233,254,322,489,495,502 }, { 8 ,73,107,156,307,378,487,534,577 }, { 8 ,73,117,183,240,385,446,474,513 }, { 8 ,73,140,182,185,282,432,508,521 }, { 8 ,73,153,216,250,445,525,551,578 }, { 8 ,74,91,101,427,441,450,524,562 }, { 8 ,74,101,209,299,427,450,524,562 }, { 8 ,74,110,169,221,263,298,480,584 }, { 8 ,74,112,162,178,244,425,511,524 }, { 8 ,75,168,321,386,396,401,412,493 }, { 8 ,75,190,321,396,412,479,539,586 }, { 8 ,76,79,86,145,208,252,453,506 }, { 8 ,76,86,271,274,466,481,483,571 }, { 8 ,77,84,225,234,371,511,524,569 }, { 8 ,77,84,225,371,398,511,524,569 }, { 8 ,77,97,228,289,366,387,492,594 }, { 8 ,77,140,228,289,366,387,427,492 }, { 8 ,77,144,165,259,315,361,417,570 }, { 8 ,77,178,225,234,371,511,524,569 }, { 8 ,77,178,225,371,472,511,524,569 }, { 8 ,78,103,199,310,438,448,494,525 }, { 8 ,78,144,176,311,370,374,570,575 }, { 8 ,78,144,176,311,374,417,570,575 }, { 8 ,78,145,172,176,438,467,486,582 }, { 8 ,79,113,123,133,178,523,532,544 }, { 8 ,79,140,165,178,275,537,544,564 }, { 8 ,80,86,89,206,313,331,439,571 }, { 8 ,82,120,138,437,480,494,506,549 }, { 8 ,82,153,224,238,273,479,490,526 }, { 8 ,83,121,135,175,226,228,349,495 }, { 8 ,83,121,135,228,246,349,446,495 }, { 8 ,84,88,131,256,325,348,381,388 }, { 8 ,84,124,135,163,225,431,511,541 }, { 8 ,86,142,172,176,324,347,367,575 }, { 8 ,86,236,341,352,368,374,375,571 }, { 8 ,86,267,277,313,334,343,395,432 }, { 8 ,88,102,124,131,327,363,450,541 }, { 8 ,89,93,121,194,198,319,342,543 }, { 8 ,89,125,215,366,412,422,427,457 }, { 8 ,90,139,164,194,285,306,370,376 }, { 8 ,90,139,194,209,212,306,370,548 }, { 8 ,90,175,200,291,398,401,426,564 }, { 8 ,90,175,200,291,401,426,440,521 }, { 8 ,90,175,200,291,401,426,521,564 }, { 8 ,90,175,200,346,426,521,544,564 }, { 8 ,90,175,346,350,376,426,495,578 }, { 8 ,92,93,152,166,348,388,517,548 }, { 8 ,92,93,152,284,348,388,517,548 }, { 8 ,92,93,166,348,388,479,517,548 }, { 8 ,92,134,153,229,272,284,388,529 }, { 8 ,92,139,166,321,348,479,517,548 }, { 8 ,93,110,129,166,224,348,444,479 }, { 8 ,93,159,257,326,410,450,486,551 }, { 8 ,95,137,140,163,187,419,476,568 }, { 8 ,96,100,126,203,214,340,389,568 }, { 8 ,97,121,175,263,352,376,483,590 }, { 8 ,99,105,145,163,319,410,426,544 }, { 8 ,99,125,145,163,225,334,426,563 }, { 8 ,99,140,198,199,399,519,541,590 }, { 8 ,99,163,225,253,334,340,358,568 }, { 8 ,100,111,126,182,218,326,375,431 }, { 8 ,100,111,126,182,218,353,375,431 }, { 8 ,100,126,218,340,353,363,375,431 }, { 8 ,101,115,237,244,469,524,535,562 }, { 8 ,101,233,246,294,295,427,432,505 }, { 8 ,102,110,238,273,305,452,490,534 }, { 8 ,102,114,178,254,333,341,343,472 }, { 8 ,102,124,204,245,321,369,450,548 }, { 8 ,102,148,187,243,284,405,476,548 }, { 8 ,102,238,267,284,389,405,444,476 }, { 8 ,102,240,264,327,434,496,527,536 }, { 8 ,103,142,146,236,303,401,535,565 }, { 8 ,105,145,163,319,410,426,461,544 }, { 8 ,106,132,155,257,410,420,450,593 }, { 8 ,106,132,257,326,410,420,450,593 }, { 8 ,106,144,176,311,370,374,527,575 }, { 8 ,106,154,370,438,503,539,564,597 }, { 8 ,106,154,370,438,539,546,579,597 }, { 8 ,106,156,157,218,326,371,410,487 }, { 8 ,107,188,428,439,467,563,576,582 }, { 8 ,108,158,230,236,239,334,467,566 }, { 8 ,109,113,178,218,326,330,340,375 }, { 8 ,109,128,255,314,352,547,559,589 }, { 8 ,109,138,228,238,247,425,518,521 }, { 8 ,109,140,196,326,445,456,468,476 }, { 8 ,109,162,255,314,352,547,558,559 }, { 8 ,109,182,218,350,376,559,590,599 }, { 8 ,109,222,253,293,336,457,508,591 }, { 8 ,109,222,293,298,336,422,508,591 }, { 8 ,109,222,293,336,422,457,508,591 }, { 8 ,110,116,129,159,249,297,411,478 }, { 8 ,110,116,129,159,249,312,411,478 }, { 8 ,110,126,169,173,179,507,584,598 }, { 8 ,110,126,169,173,221,507,584,598 }, { 8 ,110,147,225,262,335,337,569,572 }, { 8 ,110,152,159,244,251,298,390,530 }, { 8 ,110,153,224,238,273,479,490,526 }, { 8 ,110,166,258,348,434,444,459,598 }, { 8 ,110,169,173,221,507,530,584,598 }, { 8 ,111,148,182,218,353,375,431,531 }, { 8 ,111,163,212,346,350,375,419,544 }, { 8 ,111,163,212,350,375,419,431,544 }, { 8 ,112,158,162,244,318,390,410,425 }, { 8 ,112,158,244,246,340,390,537,559 }, { 8 ,112,158,244,246,390,410,537,559 }, { 8 ,112,162,178,244,284,425,511,524 }, { 8 ,112,162,178,284,391,425,511,524 }, { 8 ,113,153,231,314,335,419,539,552 }, { 8 ,113,165,178,275,341,537,544,567 }, { 8 ,113,165,178,341,472,537,544,567 }, { 8 ,114,164,216,448,484,525,551,577 }, { 8 ,115,123,127,189,198,278,381,402 }, { 8 ,115,222,237,244,524,535,562,569 }, { 8 ,116,128,129,174,212,244,366,399 }, { 8 ,116,159,244,245,249,364,398,478 }, { 8 ,118,188,196,258,297,420,456,479 }, { 8 ,118,261,407,441,490,525,576,586 }, { 8 ,120,186,193,243,277,313,442,568 }, { 8 ,121,185,247,333,398,399,422,562 }, { 8 ,121,214,312,349,369,408,423,482 }, { 8 ,123,176,190,223,278,321,409,532 }, { 8 ,123,177,240,315,358,375,445,525 }, { 8 ,123,178,210,223,291,302,358,420 }, { 8 ,123,239,257,268,284,382,403,578 }, { 8 ,125,128,243,307,374,417,465,578 }, { 8 ,125,136,265,311,362,479,489,586 }, { 8 ,125,185,196,240,247,260,340,399 }, { 8 ,125,185,196,240,247,260,340,464 }, { 8 ,125,185,196,240,247,260,340,502 }, { 8 ,125,185,196,240,247,260,399,502 }, { 8 ,125,185,196,240,247,340,399,502 }, { 8 ,125,185,196,240,260,340,399,502 }, { 8 ,125,185,196,247,260,340,399,502 }, { 8 ,125,185,240,247,260,340,399,502 }, { 8 ,125,196,216,259,307,374,378,417 }, { 8 ,125,196,240,247,260,340,399,502 }, { 8 ,125,203,223,231,321,328,453,568 }, { 8 ,125,203,231,321,325,328,396,535 }, { 8 ,125,235,260,321,366,490,586,587 }, { 8 ,126,292,326,340,375,405,488,571 }, { 8 ,126,292,326,375,445,488,525,571 }, { 8 ,127,196,335,399,411,444,577,598 }, { 8 ,128,233,242,354,374,465,588,594 }, { 8 ,128,242,354,374,465,479,588,594 }, { 8 ,128,242,374,465,479,538,588,594 }, { 8 ,129,256,348,381,388,444,451,459 }, { 8 ,130,188,347,370,411,435,475,576 }, { 8 ,130,342,347,370,411,435,475,576 }, { 8 ,132,223,257,450,457,488,520,529 }, { 8 ,132,257,446,450,457,488,520,529 }, { 8 ,133,142,258,264,402,404,523,596 }, { 8 ,133,142,258,264,402,435,523,596 }, { 8 ,134,163,189,290,381,388,451,459 }, { 8 ,135,176,186,271,277,313,522,545 }, { 8 ,135,202,203,250,271,452,463,481 }, { 8 ,135,202,250,271,452,463,481,511 }, { 8 ,137,140,163,187,419,431,476,568 }, { 8 ,138,139,165,306,385,470,549,552 }, { 8 ,138,144,240,296,333,364,478,570 }, { 8 ,138,178,230,239,368,380,408,472 }, { 8 ,138,198,230,239,268,408,472,586 }, { 8 ,138,218,247,389,448,464,472,590 }, { 8 ,139,141,246,370,436,451,539,575 }, { 8 ,140,165,178,275,471,537,544,564 }, { 8 ,141,153,176,311,358,394,553,582 }, { 8 ,141,153,238,257,284,364,408,520 }, { 8 ,141,153,238,257,284,364,490,520 }, { 8 ,141,186,257,284,354,421,481,561 }, { 8 ,141,230,248,257,312,349,408,533 }, { 8 ,141,230,248,257,312,408,472,533 }, { 8 ,141,230,248,257,312,408,481,533 }, { 8 ,142,146,232,236,303,401,535,565 }, { 8 ,142,160,232,310,355,392,494,595 }, { 8 ,142,196,258,264,402,404,523,596 }, { 8 ,142,236,303,401,454,535,552,565 }, { 8 ,144,151,152,247,442,448,527,568 }, { 8 ,144,176,311,358,370,374,570,575 }, { 8 ,146,178,221,236,241,265,350,565 }, { 8 ,147,209,235,354,370,371,398,414 }, { 8 ,148,182,237,290,309,331,432,505 }, { 8 ,148,323,333,433,439,485,493,582 }, { 8 ,148,358,374,405,407,416,430,491 }, { 8 ,150,152,159,266,286,464,506,509 }, { 8 ,150,152,184,368,403,421,448,464 }, { 8 ,152,284,378,388,409,502,561,594 }, { 8 ,153,216,261,441,490,525,576,586 }, { 8 ,154,160,253,404,413,457,579,594 }, { 8 ,154,167,200,307,316,335,390,411 }, { 8 ,154,167,297,307,316,335,390,411 }, { 8 ,154,253,404,413,457,538,579,594 }, { 8 ,154,292,311,358,370,374,375,453 }, { 8 ,158,188,236,258,297,373,420,456 }, { 8 ,158,188,258,297,373,420,456,479 }, { 8 ,164,177,198,441,469,484,490,525 }, { 8 ,164,216,407,441,453,490,525,576 }, { 8 ,164,405,407,416,444,452,590,598 }, { 8 ,165,178,275,344,471,537,544,564 }, { 8 ,167,214,297,307,316,335,343,390 }, { 8 ,167,214,297,307,316,335,390,411 }, { 8 ,167,219,273,366,392,396,422,479 }, { 8 ,167,219,366,392,396,412,422,479 }, { 8 ,169,190,263,298,303,336,496,517 }, { 8 ,173,221,265,284,354,477,481,561 }, { 8 ,173,292,370,410,461,526,554,592 }, { 8 ,175,200,259,315,401,404,440,521 }, { 8 ,175,200,259,401,404,426,440,521 }, { 8 ,175,200,291,401,404,426,440,521 }, { 8 ,178,210,223,291,302,358,420,506 }, { 8 ,178,239,287,411,413,472,565,566 }, { 8 ,178,258,305,378,434,436,446,551 }, { 8 ,178,281,344,411,429,469,471,564 }, { 8 ,179,182,284,327,330,381,574,584 }, { 8 ,185,196,240,247,260,340,399,502 }, { 8 ,188,196,258,297,373,420,456,479 }, { 8 ,194,209,212,306,347,370,435,453 }, { 8 ,194,209,212,306,370,435,453,548 }, { 8 ,194,209,285,306,347,370,435,453 }, { 8 ,202,255,291,387,503,555,559,564 }, { 8 ,206,289,347,370,411,435,453,576 }, { 8 ,206,342,347,370,411,435,453,576 }, { 8 ,206,342,347,370,411,435,475,576 }, { 8 ,208,286,347,412,431,443,560,587 }, { 8 ,210,216,331,358,420,444,475,557 }, { 8 ,212,315,345,396,420,479,519,539 }, { 8 ,214,297,307,316,330,335,343,390 }, { 8 ,215,247,328,440,472,516,540,544 }, { 8 ,216,253,263,358,391,407,444,475 }, { 8 ,216,261,407,441,490,525,576,586 }, { 8 ,219,271,313,396,422,520,522,598 }, { 8 ,222,237,244,524,535,562,569,581 }, { 8 ,222,253,336,356,413,457,555,594 }, { 8 ,222,253,336,356,457,555,591,594 }, { 8 ,226,236,247,373,375,379,440,544 }, { 8 ,226,247,373,375,379,433,440,544 }, { 8 ,229,257,271,313,380,422,520,529 }, { 8 ,230,236,239,312,350,368,500,531 }, { 8 ,232,233,244,246,295,332,345,427 }, { 8 ,232,233,244,246,295,345,427,459 }, { 8 ,233,330,378,465,471,501,590,595 }, { 8 ,236,247,373,375,379,440,441,544 }, { 8 ,236,247,373,375,440,441,480,544 }, { 8 ,237,244,398,512,524,535,562,581 }, { 8 ,237,244,398,524,535,562,569,581 }, { 8 ,244,398,399,422,511,524,562,569 }, { 8 ,263,277,292,326,343,395,429,456 }, { 8 ,265,306,378,409,561,579,594,595 }, { 8 ,284,291,330,443,546,558,559,587 }, { 8 ,362,375,405,423,431,444,452,544 }, { 0 } }; cliquer-1.21/testcase-large-over8.h0000644000175000017500000010434211326254207015356 0ustar patpatint large_8_sized_cliques[][N] = { { 8 ,0,9,186,225,409,535,569,573 }, { 8 ,0,12,86,142,176,236,324,367 }, { 8 ,0,20,109,134,196,339,375,498 }, { 8 ,0,20,109,134,196,375,498,571 }, { 8 ,0,79,87,133,186,264,384,421 }, { 8 ,0,79,87,186,264,354,384,421 }, { 8 ,0,109,134,183,375,498,513,571 }, { 8 ,0,109,134,196,375,498,513,571 }, { 8 ,1,8,47,243,286,469,509,585 }, { 8 ,1,15,151,236,334,356,367,531 }, { 8 ,1,15,158,236,258,260,356,456 }, { 8 ,1,15,158,236,258,260,373,456 }, { 8 ,1,39,176,286,323,358,443,575 }, { 8 ,1,153,267,315,464,466,555,590 }, { 8 ,2,16,155,258,375,377,402,433 }, { 8 ,2,28,90,327,350,376,495,559 }, { 8 ,2,53,80,222,459,466,547,571 }, { 8 ,2,53,80,222,466,547,571,593 }, { 8 ,2,99,125,145,163,225,334,563 }, { 8 ,2,152,269,350,376,410,485,590 }, { 8 ,3,15,284,373,507,529,530,584 }, { 8 ,3,23,138,141,171,230,236,408 }, { 8 ,3,23,138,171,178,230,236,408 }, { 8 ,3,23,138,171,178,236,401,408 }, { 8 ,3,23,138,171,182,306,364,408 }, { 8 ,3,23,138,171,182,306,401,408 }, { 8 ,3,23,138,171,306,364,408,409 }, { 8 ,3,23,171,178,236,302,401,408 }, { 8 ,3,61,92,103,284,327,495,559 }, { 8 ,3,61,92,148,284,327,495,559 }, { 8 ,3,61,92,284,327,495,559,587 }, { 8 ,3,89,141,241,276,282,547,571 }, { 8 ,3,125,241,276,282,483,488,571 }, { 8 ,3,222,290,306,312,547,552,571 }, { 8 ,4,53,74,466,547,552,566,585 }, { 8 ,4,74,444,466,547,552,566,585 }, { 8 ,4,113,137,165,260,384,502,554 }, { 8 ,4,116,165,311,325,333,436,467 }, { 8 ,5,8,17,123,178,284,358,407 }, { 8 ,5,8,66,74,123,127,198,444 }, { 8 ,5,8,66,74,123,127,444,524 }, { 8 ,5,8,66,74,123,198,400,444 }, { 8 ,5,8,74,198,331,400,444,590 }, { 8 ,5,8,89,127,198,286,297,335 }, { 8 ,5,10,114,158,246,361,483,542 }, { 8 ,5,61,84,143,348,417,499,524 }, { 8 ,5,61,143,348,417,455,499,524 }, { 8 ,5,94,95,194,202,273,408,501 }, { 8 ,5,98,123,177,198,267,400,484 }, { 8 ,5,123,358,388,400,492,501,580 }, { 8 ,5,167,365,368,446,479,540,574 }, { 8 ,5,198,304,331,335,358,444,525 }, { 8 ,5,241,368,430,465,547,566,590 }, { 8 ,6,29,61,284,378,409,561,594 }, { 8 ,6,29,152,284,378,388,409,561 }, { 9 ,6,29,152,284,378,388,409,561,594 }, { 8 ,6,29,152,284,378,388,409,594 }, { 8 ,6,29,152,284,378,388,561,594 }, { 8 ,6,29,152,284,378,409,561,594 }, { 8 ,6,29,152,284,388,409,561,594 }, { 8 ,6,29,152,378,388,409,561,594 }, { 8 ,6,29,284,378,388,409,561,594 }, { 8 ,6,131,132,327,450,542,561,593 }, { 8 ,6,152,284,306,378,409,561,594 }, { 8 ,6,152,284,378,388,409,502,561 }, { 9 ,6,152,284,378,388,409,502,561,594 }, { 8 ,6,152,284,378,388,409,502,594 }, { 8 ,6,152,284,378,388,409,561,594 }, { 8 ,6,152,284,378,388,502,561,594 }, { 8 ,6,152,284,378,409,502,561,594 }, { 8 ,6,152,284,388,409,502,561,594 }, { 8 ,6,152,378,388,409,502,561,594 }, { 8 ,6,284,378,388,409,502,561,594 }, { 8 ,7,41,61,63,166,353,507,517 }, { 8 ,7,41,63,89,255,353,507,529 }, { 8 ,7,44,61,63,138,166,303,517 }, { 8 ,7,58,77,144,208,333,472,511 }, { 8 ,7,77,144,165,208,333,366,472 }, { 8 ,7,77,144,208,333,366,472,511 }, { 8 ,7,150,152,159,197,251,346,470 }, { 8 ,7,152,159,197,224,251,346,470 }, { 8 ,7,165,188,255,338,467,513,593 }, { 8 ,7,179,327,353,454,507,518,529 }, { 8 ,8,33,93,102,166,348,444,559 }, { 8 ,8,33,93,166,348,388,444,559 }, { 8 ,8,68,167,177,243,284,408,548 }, { 8 ,8,115,137,208,232,260,262,413 }, { 8 ,8,217,241,283,325,477,493,497 }, { 8 ,9,14,249,251,328,373,480,570 }, { 8 ,9,15,126,151,247,328,340,568 }, { 8 ,9,93,170,381,396,433,523,570 }, { 8 ,9,105,115,170,196,216,258,538 }, { 8 ,9,115,171,174,216,244,362,538 }, { 8 ,9,129,171,174,216,244,362,538 }, { 8 ,9,196,264,297,307,389,404,476 }, { 8 ,9,226,228,247,323,433,440,544 }, { 8 ,9,236,247,373,440,441,480,544 }, { 8 ,10,18,85,159,257,286,450,560 }, { 8 ,10,26,85,99,159,428,527,582 }, { 8 ,10,31,141,189,311,358,370,489 }, { 8 ,11,18,44,54,159,308,535,581 }, { 8 ,11,18,44,159,244,308,535,581 }, { 8 ,11,18,54,159,182,308,535,581 }, { 8 ,11,18,159,182,244,308,535,581 }, { 8 ,11,19,129,157,159,244,278,538 }, { 8 ,11,41,103,349,353,372,380,554 }, { 8 ,11,44,191,349,517,554,581,587 }, { 8 ,11,54,76,239,246,282,459,489 }, { 8 ,11,57,156,191,280,341,408,435 }, { 8 ,11,57,191,248,280,341,408,435 }, { 8 ,11,59,135,209,299,435,524,535 }, { 8 ,11,76,135,209,299,435,524,535 }, { 8 ,11,80,208,301,357,396,448,472 }, { 8 ,11,152,244,246,390,533,537,549 }, { 8 ,11,152,246,282,353,390,537,549 }, { 8 ,11,152,246,353,390,533,537,549 }, { 8 ,11,152,310,355,464,467,526,590 }, { 8 ,11,157,261,278,337,430,491,580 }, { 8 ,11,244,332,357,398,467,499,524 }, { 8 ,12,23,41,86,205,206,331,357 }, { 8 ,12,23,205,214,312,349,408,423 }, { 8 ,12,24,62,159,205,231,312,423 }, { 9 ,12,24,62,159,205,231,312,423,509 }, { 8 ,12,24,62,159,205,231,312,509 }, { 8 ,12,24,62,159,205,231,423,509 }, { 8 ,12,24,62,159,205,312,408,423 }, { 8 ,12,24,62,159,205,312,423,509 }, { 8 ,12,24,62,159,231,258,423,430 }, { 8 ,12,24,62,159,231,312,423,509 }, { 8 ,12,24,62,159,231,312,448,509 }, { 8 ,12,24,62,205,231,312,423,509 }, { 8 ,12,24,62,210,231,312,423,509 }, { 8 ,12,24,62,221,236,480,508,561 }, { 8 ,12,24,159,205,231,312,423,509 }, { 8 ,12,24,210,312,368,405,423,509 }, { 8 ,12,24,210,312,368,408,423,547 }, { 8 ,12,26,73,140,277,291,480,584 }, { 8 ,12,27,76,102,137,187,431,496 }, { 8 ,12,27,76,102,183,187,431,496 }, { 8 ,12,41,71,169,202,227,480,496 }, { 8 ,12,45,100,116,126,202,203,214 }, { 8 ,12,45,100,128,243,371,442,509 }, { 8 ,12,45,100,128,243,371,442,550 }, { 8 ,12,62,159,205,231,312,423,509 }, { 8 ,12,62,159,205,312,349,408,423 }, { 8 ,12,62,159,205,312,349,423,509 }, { 8 ,12,71,110,126,169,242,584,598 }, { 8 ,12,71,110,169,242,258,584,598 }, { 8 ,12,71,128,190,315,441,442,592 }, { 8 ,12,71,170,217,265,301,477,573 }, { 8 ,12,86,110,111,262,312,431,480 }, { 8 ,12,86,142,176,236,324,367,575 }, { 8 ,12,110,116,171,244,258,434,459 }, { 8 ,12,110,126,169,173,221,584,598 }, { 8 ,12,110,183,273,312,349,478,526 }, { 8 ,12,116,159,244,245,398,423,478 }, { 8 ,12,162,178,187,242,244,284,425 }, { 8 ,12,162,178,242,244,284,425,578 }, { 8 ,12,162,178,242,284,425,521,578 }, { 8 ,12,162,242,284,425,521,531,578 }, { 8 ,12,165,243,312,341,408,434,472 }, { 8 ,12,173,182,184,319,466,508,584 }, { 8 ,12,173,221,265,284,477,481,561 }, { 8 ,12,182,184,217,301,405,466,508 }, { 8 ,13,94,191,279,313,334,392,441 }, { 8 ,13,183,186,234,384,419,572,593 }, { 8 ,14,20,169,339,354,444,479,588 }, { 8 ,14,73,219,453,466,513,570,576 }, { 8 ,14,73,444,453,466,513,534,570 }, { 8 ,14,77,79,87,231,277,417,568 }, { 8 ,15,70,150,183,192,334,432,508 }, { 8 ,15,70,183,192,334,375,432,508 }, { 8 ,15,74,86,151,236,334,356,367 }, { 8 ,15,84,115,258,285,350,438,524 }, { 8 ,15,95,151,236,334,356,367,531 }, { 8 ,15,95,151,334,356,367,531,568 }, { 8 ,15,96,151,334,356,367,531,568 }, { 8 ,15,96,163,334,340,375,531,568 }, { 8 ,15,115,244,278,310,402,426,589 }, { 8 ,15,158,236,258,260,297,373,456 }, { 8 ,15,158,236,258,297,373,420,456 }, { 8 ,15,163,334,340,375,431,531,568 }, { 8 ,15,220,247,340,375,488,533,578 }, { 8 ,15,241,272,310,427,438,477,582 }, { 8 ,16,23,50,96,180,239,386,504 }, { 8 ,16,23,50,105,205,312,345,365 }, { 8 ,16,23,60,182,306,383,414,450 }, { 8 ,16,23,60,182,306,383,414,473 }, { 8 ,16,23,96,182,209,306,414,450 }, { 8 ,16,23,96,182,209,414,450,459 }, { 8 ,16,23,117,183,240,326,445,456 }, { 8 ,16,23,117,183,240,445,456,528 }, { 8 ,16,24,127,133,182,183,332,527 }, { 8 ,16,27,76,133,183,209,450,459 }, { 8 ,16,27,76,133,183,450,459,508 }, { 8 ,16,27,133,183,209,264,450,459 }, { 8 ,16,27,133,183,209,264,459,596 }, { 8 ,16,27,133,183,264,450,459,508 }, { 8 ,16,27,133,183,264,459,508,596 }, { 8 ,16,38,104,208,267,289,464,522 }, { 8 ,16,63,113,156,450,474,493,591 }, { 8 ,16,102,124,204,245,321,352,450 }, { 8 ,16,102,152,182,264,306,376,527 }, { 8 ,16,133,182,183,209,264,450,459 }, { 8 ,16,133,182,183,264,450,459,508 }, { 8 ,17,38,59,162,178,284,391,407 }, { 8 ,17,38,59,178,284,358,391,407 }, { 8 ,17,59,119,126,147,194,220,584 }, { 8 ,17,70,124,253,352,430,533,537 }, { 8 ,17,74,149,224,253,411,415,482 }, { 8 ,17,74,185,262,381,397,572,591 }, { 8 ,17,82,187,192,244,352,397,589 }, { 8 ,17,109,196,285,324,468,496,591 }, { 8 ,17,188,196,335,399,411,420,519 }, { 8 ,17,188,335,399,411,420,482,519 }, { 8 ,18,54,125,190,196,275,543,586 }, { 8 ,18,85,159,257,286,410,450,560 }, { 8 ,18,100,135,233,254,322,495,502 }, { 8 ,18,100,233,254,322,489,495,502 }, { 8 ,18,171,244,301,355,400,581,596 }, { 8 ,19,27,200,244,251,253,346,390 }, { 8 ,19,27,200,244,253,346,390,533 }, { 8 ,19,31,178,287,332,383,391,524 }, { 8 ,19,35,94,107,246,345,492,589 }, { 8 ,19,40,244,251,327,346,372,498 }, { 8 ,19,53,200,244,251,390,523,541 }, { 8 ,19,53,200,244,251,523,541,552 }, { 8 ,19,59,178,209,332,371,391,524 }, { 8 ,19,77,178,209,332,371,391,524 }, { 8 ,19,77,178,287,332,383,391,524 }, { 8 ,19,77,178,287,383,391,451,524 }, { 8 ,19,212,311,345,479,490,525,539 }, { 8 ,20,22,66,174,242,398,444,453 }, { 8 ,20,42,144,333,366,472,511,558 }, { 8 ,20,73,107,120,280,432,480,551 }, { 8 ,20,83,272,443,462,527,551,565 }, { 8 ,20,88,102,131,151,363,444,595 }, { 8 ,20,88,102,131,348,363,444,595 }, { 8 ,20,116,249,264,333,364,398,402 }, { 8 ,20,134,196,339,348,354,444,479 }, { 8 ,21,58,120,138,141,307,494,570 }, { 8 ,21,162,178,196,292,326,340,375 }, { 8 ,22,57,140,183,192,212,454,561 }, { 8 ,22,69,110,250,252,298,338,593 }, { 8 ,22,69,110,250,252,338,571,593 }, { 8 ,22,69,250,252,298,338,415,593 }, { 8 ,22,86,257,481,502,536,558,561 }, { 8 ,22,140,183,192,212,454,508,561 }, { 8 ,22,170,183,252,281,338,571,593 }, { 8 ,23,38,44,95,125,277,409,502 }, { 8 ,23,38,44,125,277,409,502,535 }, { 8 ,23,41,69,74,86,194,236,351 }, { 8 ,23,54,76,239,246,282,459,489 }, { 8 ,23,60,245,312,321,339,473,498 }, { 8 ,23,60,312,321,339,401,473,498 }, { 8 ,23,66,87,128,312,350,552,573 }, { 8 ,23,66,95,123,128,403,549,578 }, { 8 ,23,68,96,194,349,408,501,581 }, { 8 ,23,68,96,194,349,408,556,581 }, { 8 ,23,76,239,246,282,350,459,489 }, { 8 ,23,114,141,230,248,257,312,472 }, { 8 ,23,114,178,230,257,350,376,472 }, { 8 ,23,123,262,271,369,400,486,548 }, { 8 ,23,128,242,354,374,465,479,588 }, { 9 ,23,128,242,354,374,465,479,588,594 }, { 8 ,23,128,242,354,374,465,479,594 }, { 8 ,23,128,242,354,374,465,588,594 }, { 8 ,23,128,242,354,374,479,588,594 }, { 8 ,23,128,242,354,465,479,588,594 }, { 8 ,23,128,242,374,465,479,588,594 }, { 8 ,23,128,295,365,374,465,578,581 }, { 8 ,23,128,354,374,465,479,588,594 }, { 8 ,23,138,171,182,238,306,364,408 }, { 8 ,23,138,171,182,238,306,364,450 }, { 8 ,23,138,171,182,268,364,408,581 }, { 8 ,23,138,171,182,306,364,408,581 }, { 8 ,23,138,171,306,364,408,409,581 }, { 8 ,23,138,178,230,239,380,408,472 }, { 8 ,23,141,230,248,257,312,349,408 }, { 8 ,23,141,230,248,257,312,408,472 }, { 8 ,23,149,164,194,257,285,339,350 }, { 8 ,23,164,194,257,285,337,339,350 }, { 8 ,23,164,194,257,327,337,350,556 }, { 8 ,23,164,194,257,337,339,350,556 }, { 8 ,23,178,230,239,257,350,408,472 }, { 8 ,23,178,230,239,257,380,408,472 }, { 8 ,23,205,214,312,349,369,408,423 }, { 8 ,23,230,239,257,312,350,408,472 }, { 8 ,23,230,239,257,312,380,408,472 }, { 8 ,23,242,354,374,465,479,588,594 }, { 8 ,23,245,246,295,345,427,459,492 }, { 8 ,24,28,137,307,450,452,507,508 }, { 8 ,24,41,89,121,135,231,312,532 }, { 8 ,24,41,89,121,231,312,434,476 }, { 8 ,24,41,238,353,430,450,537,554 }, { 8 ,24,41,243,312,429,447,476,509 }, { 8 ,24,62,159,205,231,312,423,509 }, { 8 ,24,62,159,231,312,423,495,509 }, { 8 ,24,124,238,353,430,450,537,554 }, { 8 ,24,183,221,354,450,452,508,561 }, { 8 ,24,210,312,368,405,423,476,509 }, { 8 ,24,210,312,368,408,423,476,547 }, { 8 ,24,221,339,354,450,452,508,561 }, { 8 ,26,60,99,225,383,428,457,482 }, { 8 ,26,73,95,140,277,291,480,584 }, { 8 ,26,116,128,174,212,244,366,399 }, { 8 ,26,136,172,239,293,479,512,586 }, { 8 ,27,28,137,307,450,452,507,508 }, { 8 ,27,28,137,307,450,452,508,559 }, { 8 ,27,28,183,264,307,450,452,508 }, { 8 ,27,28,183,307,450,452,508,559 }, { 8 ,27,35,106,218,264,307,450,515 }, { 8 ,27,59,190,234,496,519,551,589 }, { 8 ,27,122,218,374,405,430,462,566 }, { 8 ,27,183,264,307,354,450,452,508 }, { 8 ,27,195,230,278,359,366,409,489 }, { 8 ,28,31,107,217,234,333,376,507 }, { 8 ,28,38,178,179,483,493,520,598 }, { 8 ,28,58,177,289,293,333,407,449 }, { 8 ,28,74,101,131,327,450,497,561 }, { 8 ,28,75,116,118,213,232,374,575 }, { 8 ,28,75,116,118,213,374,491,575 }, { 8 ,28,75,118,213,374,407,490,575 }, { 8 ,28,75,118,213,374,407,491,575 }, { 8 ,28,82,121,214,333,477,490,493 }, { 8 ,28,90,124,164,177,179,327,559 }, { 8 ,28,90,164,179,327,350,376,559 }, { 8 ,28,98,258,350,438,477,500,560 }, { 8 ,28,107,156,213,232,507,517,581 }, { 8 ,28,107,177,217,333,469,483,493 }, { 8 ,28,109,113,134,183,293,330,375 }, { 8 ,28,109,113,134,183,293,330,454 }, { 8 ,28,109,113,134,183,293,330,559 }, { 8 ,29,55,235,292,375,445,446,571 }, { 8 ,29,55,292,375,445,446,451,571 }, { 8 ,29,61,136,254,314,324,550,559 }, { 8 ,29,152,284,378,388,409,561,594 }, { 8 ,29,227,296,311,374,375,455,544 }, { 8 ,30,33,46,85,313,348,371,428 }, { 8 ,30,48,202,378,559,560,581,595 }, { 8 ,30,67,130,342,362,435,482,573 }, { 8 ,30,72,124,132,138,327,502,550 }, { 8 ,30,72,132,138,327,502,550,581 }, { 8 ,30,72,132,138,327,502,550,586 }, { 8 ,30,90,124,164,177,179,327,559 }, { 8 ,30,115,145,163,186,252,361,461 }, { 8 ,31,54,68,92,237,288,492,580 }, { 8 ,31,54,92,184,348,453,479,548 }, { 8 ,31,54,92,237,288,492,535,580 }, { 8 ,31,56,69,79,136,165,255,470 }, { 8 ,31,70,179,292,330,343,514,546 }, { 8 ,31,76,163,262,350,431,459,508 }, { 8 ,31,116,128,372,379,440,441,454 }, { 8 ,32,34,49,99,274,577,579,595 }, { 8 ,32,34,99,122,135,218,274,579 }, { 8 ,32,34,99,122,135,270,411,429 }, { 8 ,32,34,152,218,291,326,335,429 }, { 8 ,32,49,86,97,263,379,483,517 }, { 8 ,32,49,86,263,379,429,434,517 }, { 8 ,32,49,86,263,379,434,483,517 }, { 8 ,32,49,86,379,403,429,434,517 }, { 8 ,32,49,97,250,538,579,580,595 }, { 8 ,32,58,202,218,259,326,346,389 }, { 8 ,32,70,218,274,317,455,518,595 }, { 8 ,32,72,86,152,263,277,429,583 }, { 8 ,32,86,99,122,135,145,218,429 }, { 8 ,32,86,99,122,135,145,411,429 }, { 8 ,32,86,99,122,135,270,411,429 }, { 8 ,32,86,99,122,145,193,411,429 }, { 8 ,32,86,151,152,208,403,487,506 }, { 8 ,32,87,190,345,437,539,561,580 }, { 8 ,33,93,102,166,243,367,447,500 }, { 8 ,33,93,102,267,294,444,466,559 }, { 8 ,33,93,102,267,348,444,466,559 }, { 8 ,33,93,129,166,348,388,444,479 }, { 8 ,34,57,66,74,116,224,411,444 }, { 8 ,34,57,66,74,116,224,411,445 }, { 8 ,34,57,66,74,166,224,411,444 }, { 8 ,34,57,66,74,166,224,411,445 }, { 8 ,34,57,66,135,166,224,411,445 }, { 8 ,34,57,74,116,224,399,411,444 }, { 8 ,34,57,74,166,224,367,411,445 }, { 8 ,34,57,74,181,335,411,444,565 }, { 8 ,34,57,74,335,399,411,444,577 }, { 8 ,34,66,74,116,126,445,481,547 }, { 8 ,34,66,74,116,127,224,411,444 }, { 8 ,34,66,74,116,134,224,411,444 }, { 8 ,34,66,116,126,312,445,481,547 }, { 8 ,34,69,99,136,520,545,579,592 }, { 8 ,34,74,116,127,224,399,411,444 }, { 8 ,34,74,116,134,224,270,399,411 }, { 8 ,34,74,116,134,224,399,411,444 }, { 8 ,34,74,127,335,399,411,444,577 }, { 8 ,34,125,155,176,234,270,324,560 }, { 8 ,34,152,368,429,448,476,509,549 }, { 8 ,35,41,86,121,135,312,363,545 }, { 8 ,35,41,86,121,311,312,434,476 }, { 8 ,35,41,86,311,312,434,476,541 }, { 8 ,35,46,196,264,297,307,378,476 }, { 9 ,35,46,196,264,297,307,378,476,541 }, { 8 ,35,46,196,264,297,307,378,541 }, { 8 ,35,46,196,264,297,307,476,541 }, { 8 ,35,46,196,264,297,378,476,541 }, { 8 ,35,46,196,264,307,311,476,541 }, { 8 ,35,46,196,264,307,378,476,541 }, { 8 ,35,46,196,297,307,378,411,476 }, { 8 ,35,46,196,297,307,378,476,541 }, { 8 ,35,46,264,297,307,378,476,541 }, { 8 ,35,57,68,92,94,288,307,408 }, { 8 ,35,57,68,96,148,367,448,568 }, { 8 ,35,86,312,329,345,363,439,541 }, { 8 ,35,86,312,329,363,439,541,552 }, { 8 ,35,121,141,248,312,408,482,532 }, { 8 ,35,134,295,405,421,439,440,572 }, { 8 ,35,196,264,297,307,378,476,541 }, { 8 ,35,295,405,421,439,440,572,582 }, { 8 ,37,64,67,77,86,135,296,573 }, { 8 ,37,64,71,94,162,363,436,595 }, { 8 ,37,64,71,162,363,378,436,595 }, { 8 ,37,86,112,152,176,193,208,346 }, { 8 ,37,105,148,177,221,254,544,559 }, { 8 ,37,111,152,236,346,375,513,544 }, { 8 ,37,130,339,348,362,479,482,573 }, { 8 ,37,152,176,236,269,286,346,388 }, { 8 ,37,162,169,183,354,384,436,466 }, { 8 ,38,46,59,163,284,358,476,568 }, { 8 ,38,59,86,407,466,481,483,536 }, { 8 ,38,59,162,178,284,391,407,425 }, { 8 ,38,64,84,267,321,341,352,471 }, { 8 ,38,64,133,258,436,471,473,523 }, { 8 ,38,86,466,474,481,487,502,561 }, { 8 ,38,103,154,215,240,457,531,554 }, { 8 ,38,104,267,289,415,419,485,589 }, { 8 ,38,178,181,236,371,416,440,460 }, { 8 ,39,42,89,123,210,231,312,532 }, { 8 ,39,47,82,235,285,446,509,516 }, { 8 ,39,64,119,200,291,296,539,546 }, { 8 ,39,120,186,244,295,355,458,530 }, { 8 ,39,120,186,244,355,429,458,530 }, { 8 ,40,140,196,240,326,445,456,468 }, { 8 ,41,44,61,254,349,495,554,581 }, { 8 ,41,61,63,100,103,349,353,372 }, { 8 ,41,61,72,86,351,429,476,517 }, { 8 ,41,61,72,86,351,429,476,536 }, { 8 ,41,61,86,351,429,434,476,517 }, { 8 ,41,61,86,351,429,434,476,536 }, { 8 ,41,69,169,202,255,351,384,387 }, { 8 ,41,83,121,135,246,312,349,495 }, { 8 ,41,86,89,121,135,312,363,545 }, { 8 ,41,86,89,135,205,312,363,545 }, { 8 ,41,86,308,352,426,450,541,542 }, { 8 ,41,100,249,326,351,385,400,500 }, { 8 ,41,116,203,249,315,333,450,507 }, { 8 ,41,116,203,249,315,363,380,450 }, { 8 ,41,117,149,169,183,253,487,537 }, { 8 ,41,169,202,255,291,351,387,542 }, { 8 ,43,171,182,218,330,350,559,590 }, { 8 ,44,56,125,136,173,265,311,587 }, { 8 ,44,61,63,138,166,232,280,517 }, { 8 ,44,61,63,138,166,232,303,517 }, { 8 ,44,61,138,166,232,280,394,409 }, { 8 ,44,61,138,166,232,280,409,517 }, { 8 ,44,61,295,349,386,495,554,581 }, { 8 ,44,63,138,166,232,280,517,575 }, { 8 ,44,63,138,166,232,303,517,575 }, { 8 ,44,63,138,166,280,322,517,575 }, { 8 ,45,46,109,498,503,508,513,580 }, { 8 ,45,58,240,281,399,444,513,580 }, { 8 ,45,111,129,308,444,513,550,596 }, { 8 ,45,189,234,371,456,509,549,584 }, { 8 ,45,210,249,265,373,429,500,560 }, { 8 ,46,56,57,250,252,254,278,497 }, { 8 ,46,57,66,284,347,408,411,435 }, { 8 ,46,60,120,171,355,416,435,590 }, { 8 ,46,60,120,241,355,416,435,590 }, { 8 ,46,64,111,133,209,347,416,435 }, { 8 ,46,114,221,241,313,358,372,462 }, { 8 ,46,125,157,173,346,410,461,516 }, { 8 ,46,125,196,264,307,311,476,541 }, { 8 ,46,125,196,264,307,378,476,541 }, { 8 ,46,196,216,264,297,307,378,407 }, { 8 ,46,196,264,297,307,378,476,541 }, { 8 ,46,196,264,297,378,462,476,541 }, { 8 ,46,221,249,262,452,480,508,561 }, { 8 ,46,298,317,338,400,401,513,545 }, { 8 ,47,51,135,143,153,243,446,470 }, { 8 ,47,73,82,154,307,363,438,508 }, { 8 ,47,86,97,177,270,352,375,571 }, { 8 ,47,86,97,270,334,352,375,571 }, { 8 ,47,86,236,270,334,352,375,571 }, { 8 ,48,56,123,167,247,267,295,400 }, { 8 ,49,86,97,263,379,425,483,517 }, { 8 ,49,178,234,326,330,419,572,593 }, { 8 ,50,56,91,303,406,407,447,558 }, { 8 ,51,56,96,151,172,281,300,403 }, { 8 ,51,56,170,172,330,491,563,588 }, { 8 ,51,86,134,151,172,281,300,403 }, { 8 ,51,86,134,151,172,281,300,529 }, { 8 ,51,130,147,225,262,371,398,569 }, { 8 ,51,143,295,319,388,459,510,586 }, { 8 ,52,61,79,266,452,475,554,570 }, { 8 ,52,102,125,244,264,331,476,541 }, { 8 ,52,139,172,201,246,491,515,569 }, { 8 ,52,139,172,201,246,515,539,569 }, { 8 ,52,158,167,307,332,390,452,559 }, { 8 ,52,158,244,246,340,390,537,559 }, { 8 ,52,158,244,246,390,410,537,559 }, { 8 ,52,158,246,390,410,504,537,559 }, { 8 ,53,74,174,212,216,244,332,400 }, { 8 ,53,76,102,232,331,450,496,517 }, { 8 ,54,56,89,125,163,167,282,563 }, { 8 ,54,76,137,163,246,282,459,508 }, { 8 ,54,110,238,368,444,453,479,534 }, { 8 ,54,125,128,190,417,485,543,589 }, { 8 ,55,73,254,375,423,444,461,544 }, { 8 ,55,102,131,152,254,293,333,500 }, { 8 ,55,102,131,152,293,333,500,551 }, { 8 ,55,161,235,259,375,378,418,581 }, { 8 ,55,192,236,245,369,393,408,511 }, { 8 ,55,214,327,369,378,393,418,534 }, { 8 ,56,57,136,250,252,254,278,497 }, { 8 ,56,57,153,165,323,341,345,588 }, { 8 ,56,57,165,323,341,345,474,588 }, { 8 ,56,75,118,213,407,491,575,590 }, { 8 ,57,66,82,135,166,224,411,445 }, { 8 ,57,68,148,177,186,284,358,568 }, { 8 ,57,68,167,177,186,284,358,568 }, { 8 ,57,82,83,153,224,238,345,490 }, { 8 ,57,148,177,186,284,358,391,490 }, { 8 ,57,148,177,186,284,358,490,568 }, { 8 ,57,167,177,186,284,358,490,568 }, { 8 ,57,171,191,306,347,401,408,435 }, { 8 ,57,191,248,280,341,347,408,435 }, { 8 ,58,134,156,218,326,389,405,572 }, { 8 ,59,68,163,167,186,284,358,568 }, { 8 ,59,89,116,147,265,481,547,594 }, { 8 ,59,112,162,178,284,391,425,524 }, { 8 ,59,130,258,337,339,350,456,550 }, { 8 ,60,97,255,352,368,541,555,590 }, { 8 ,61,65,86,252,338,478,527,553 }, { 8 ,61,65,86,252,338,478,527,583 }, { 8 ,61,70,100,103,122,328,526,566 }, { 8 ,61,86,183,252,338,478,527,583 }, { 8 ,61,92,143,288,321,348,453,510 }, { 8 ,61,185,196,280,340,361,531,536 }, { 8 ,61,232,280,361,394,462,500,531 }, { 8 ,61,254,333,341,343,413,472,594 }, { 8 ,62,174,295,326,331,343,382,400 }, { 8 ,64,134,163,189,290,381,388,451 }, { 8 ,65,125,136,250,311,362,475,489 }, { 8 ,65,125,136,311,362,475,479,489 }, { 8 ,65,125,136,311,362,479,489,586 }, { 8 ,65,125,136,321,362,479,489,586 }, { 8 ,66,68,71,94,202,227,403,496 }, { 8 ,66,68,92,101,109,368,438,580 }, { 8 ,66,68,101,109,138,368,438,580 }, { 8 ,66,68,101,138,368,385,438,580 }, { 8 ,66,92,101,109,134,233,295,440 }, { 8 ,66,92,101,109,233,295,368,440 }, { 8 ,66,109,134,135,233,295,440,454 }, { 8 ,66,109,135,243,247,295,443,522 }, { 8 ,66,124,135,353,431,454,541,573 }, { 8 ,66,124,135,353,454,523,541,573 }, { 8 ,66,124,353,433,454,523,541,573 }, { 8 ,66,172,380,385,429,471,523,529 }, { 8 ,66,315,380,385,429,471,523,529 }, { 8 ,66,315,380,385,429,471,523,556 }, { 8 ,68,74,101,108,109,112,130,590 }, { 8 ,68,74,101,108,109,130,438,590 }, { 8 ,68,92,101,341,368,438,538,580 }, { 8 ,68,101,138,368,385,438,538,580 }, { 8 ,68,106,141,176,311,370,539,575 }, { 8 ,68,106,141,176,370,503,539,575 }, { 8 ,68,106,154,200,325,468,538,596 }, { 8 ,68,106,154,370,438,503,539,597 }, { 8 ,69,74,169,253,263,336,444,566 }, { 8 ,69,74,169,253,263,411,444,566 }, { 8 ,69,74,253,263,411,415,444,566 }, { 8 ,69,79,140,165,275,537,544,564 }, { 8 ,69,110,252,471,474,571,572,593 }, { 8 ,69,140,165,275,471,537,544,564 }, { 8 ,69,140,275,471,537,544,559,564 }, { 8 ,69,144,169,242,361,537,544,567 }, { 8 ,69,144,169,305,361,537,544,567 }, { 8 ,69,144,169,361,379,537,544,567 }, { 8 ,69,150,173,266,398,453,470,509 }, { 8 ,69,169,202,250,298,351,384,598 }, { 8 ,70,108,212,284,293,330,548,588 }, { 8 ,70,108,293,330,343,514,548,588 }, { 8 ,70,126,292,340,375,405,488,571 }, { 8 ,71,85,92,123,349,359,423,495 }, { 8 ,71,109,208,459,520,579,587,598 }, { 8 ,71,116,227,321,353,380,399,441 }, { 8 ,71,130,188,258,359,378,399,573 }, { 8 ,71,188,258,335,359,399,420,598 }, { 8 ,72,75,93,152,251,367,396,586 }, { 8 ,72,75,93,259,365,367,398,586 }, { 8 ,72,77,123,225,367,383,524,573 }, { 8 ,72,77,225,367,383,511,524,573 }, { 8 ,72,78,156,167,200,277,298,307 }, { 8 ,72,86,152,263,368,429,476,517 }, { 8 ,72,86,196,266,354,361,414,530 }, { 8 ,72,88,132,266,327,450,541,542 }, { 8 ,72,93,159,197,259,267,389,449 }, { 8 ,72,93,159,224,259,367,394,581 }, { 8 ,72,123,124,159,225,367,515,573 }, { 8 ,72,123,156,281,349,369,403,599 }, { 8 ,72,124,152,225,353,409,541,573 }, { 8 ,72,124,204,414,447,450,457,515 }, { 8 ,72,124,225,344,383,457,511,573 }, { 8 ,72,124,225,367,383,457,511,573 }, { 8 ,72,152,159,197,445,527,530,583 }, { 8 ,72,152,263,326,368,429,445,476 }, { 8 ,72,159,167,211,216,428,533,583 }, { 8 ,72,159,211,216,428,445,533,583 }, { 8 ,73,100,233,254,277,322,489,502 }, { 8 ,73,100,233,254,322,489,495,502 }, { 8 ,73,107,156,307,378,487,534,577 }, { 8 ,73,117,183,240,385,446,474,513 }, { 8 ,73,140,182,185,282,432,508,521 }, { 8 ,73,153,216,250,445,525,551,578 }, { 8 ,74,91,101,427,441,450,524,562 }, { 8 ,74,101,209,299,427,450,524,562 }, { 8 ,74,110,169,221,263,298,480,584 }, { 8 ,74,112,162,178,244,425,511,524 }, { 8 ,75,168,321,386,396,401,412,493 }, { 8 ,75,190,321,396,412,479,539,586 }, { 8 ,76,79,86,145,208,252,453,506 }, { 8 ,76,86,271,274,466,481,483,571 }, { 8 ,77,84,225,234,371,511,524,569 }, { 8 ,77,84,225,371,398,511,524,569 }, { 8 ,77,97,228,289,366,387,492,594 }, { 8 ,77,140,228,289,366,387,427,492 }, { 8 ,77,144,165,259,315,361,417,570 }, { 8 ,77,178,225,234,371,511,524,569 }, { 8 ,77,178,225,371,472,511,524,569 }, { 8 ,78,103,199,310,438,448,494,525 }, { 8 ,78,144,176,311,370,374,570,575 }, { 8 ,78,144,176,311,374,417,570,575 }, { 8 ,78,145,172,176,438,467,486,582 }, { 8 ,79,113,123,133,178,523,532,544 }, { 8 ,79,140,165,178,275,537,544,564 }, { 8 ,80,86,89,206,313,331,439,571 }, { 8 ,82,120,138,437,480,494,506,549 }, { 8 ,82,153,224,238,273,479,490,526 }, { 8 ,83,121,135,175,226,228,349,495 }, { 8 ,83,121,135,228,246,349,446,495 }, { 8 ,84,88,131,256,325,348,381,388 }, { 8 ,84,124,135,163,225,431,511,541 }, { 8 ,86,142,172,176,324,347,367,575 }, { 8 ,86,236,341,352,368,374,375,571 }, { 8 ,86,267,277,313,334,343,395,432 }, { 8 ,88,102,124,131,327,363,450,541 }, { 8 ,89,93,121,194,198,319,342,543 }, { 8 ,89,125,215,366,412,422,427,457 }, { 8 ,90,139,164,194,285,306,370,376 }, { 8 ,90,139,194,209,212,306,370,548 }, { 8 ,90,175,200,291,398,401,426,564 }, { 8 ,90,175,200,291,401,426,440,521 }, { 8 ,90,175,200,291,401,426,521,564 }, { 8 ,90,175,200,346,426,521,544,564 }, { 8 ,90,175,346,350,376,426,495,578 }, { 8 ,92,93,152,166,348,388,517,548 }, { 8 ,92,93,152,284,348,388,517,548 }, { 8 ,92,93,166,348,388,479,517,548 }, { 8 ,92,134,153,229,272,284,388,529 }, { 8 ,92,139,166,321,348,479,517,548 }, { 8 ,93,110,129,166,224,348,444,479 }, { 8 ,93,159,257,326,410,450,486,551 }, { 8 ,95,137,140,163,187,419,476,568 }, { 8 ,96,100,126,203,214,340,389,568 }, { 8 ,97,121,175,263,352,376,483,590 }, { 8 ,99,105,145,163,319,410,426,544 }, { 8 ,99,125,145,163,225,334,426,563 }, { 8 ,99,140,198,199,399,519,541,590 }, { 8 ,99,163,225,253,334,340,358,568 }, { 8 ,100,111,126,182,218,326,375,431 }, { 8 ,100,111,126,182,218,353,375,431 }, { 8 ,100,126,218,340,353,363,375,431 }, { 8 ,101,115,237,244,469,524,535,562 }, { 8 ,101,233,246,294,295,427,432,505 }, { 8 ,102,110,238,273,305,452,490,534 }, { 8 ,102,114,178,254,333,341,343,472 }, { 8 ,102,124,204,245,321,369,450,548 }, { 8 ,102,148,187,243,284,405,476,548 }, { 8 ,102,238,267,284,389,405,444,476 }, { 8 ,102,240,264,327,434,496,527,536 }, { 8 ,103,142,146,236,303,401,535,565 }, { 8 ,105,145,163,319,410,426,461,544 }, { 8 ,106,132,155,257,410,420,450,593 }, { 8 ,106,132,257,326,410,420,450,593 }, { 8 ,106,144,176,311,370,374,527,575 }, { 8 ,106,154,370,438,503,539,564,597 }, { 8 ,106,154,370,438,539,546,579,597 }, { 8 ,106,156,157,218,326,371,410,487 }, { 8 ,107,188,428,439,467,563,576,582 }, { 8 ,108,158,230,236,239,334,467,566 }, { 8 ,109,113,178,218,326,330,340,375 }, { 8 ,109,128,255,314,352,547,559,589 }, { 8 ,109,138,228,238,247,425,518,521 }, { 8 ,109,140,196,326,445,456,468,476 }, { 8 ,109,162,255,314,352,547,558,559 }, { 8 ,109,182,218,350,376,559,590,599 }, { 8 ,109,222,253,293,336,457,508,591 }, { 8 ,109,222,293,298,336,422,508,591 }, { 8 ,109,222,293,336,422,457,508,591 }, { 8 ,110,116,129,159,249,297,411,478 }, { 8 ,110,116,129,159,249,312,411,478 }, { 8 ,110,126,169,173,179,507,584,598 }, { 8 ,110,126,169,173,221,507,584,598 }, { 8 ,110,147,225,262,335,337,569,572 }, { 8 ,110,152,159,244,251,298,390,530 }, { 8 ,110,153,224,238,273,479,490,526 }, { 8 ,110,166,258,348,434,444,459,598 }, { 8 ,110,169,173,221,507,530,584,598 }, { 8 ,111,148,182,218,353,375,431,531 }, { 8 ,111,163,212,346,350,375,419,544 }, { 8 ,111,163,212,350,375,419,431,544 }, { 8 ,112,158,162,244,318,390,410,425 }, { 8 ,112,158,244,246,340,390,537,559 }, { 8 ,112,158,244,246,390,410,537,559 }, { 8 ,112,162,178,244,284,425,511,524 }, { 8 ,112,162,178,284,391,425,511,524 }, { 8 ,113,153,231,314,335,419,539,552 }, { 8 ,113,165,178,275,341,537,544,567 }, { 8 ,113,165,178,341,472,537,544,567 }, { 8 ,114,164,216,448,484,525,551,577 }, { 8 ,115,123,127,189,198,278,381,402 }, { 8 ,115,222,237,244,524,535,562,569 }, { 8 ,116,128,129,174,212,244,366,399 }, { 8 ,116,159,244,245,249,364,398,478 }, { 8 ,118,188,196,258,297,420,456,479 }, { 8 ,118,261,407,441,490,525,576,586 }, { 8 ,120,186,193,243,277,313,442,568 }, { 8 ,121,185,247,333,398,399,422,562 }, { 8 ,121,214,312,349,369,408,423,482 }, { 8 ,123,176,190,223,278,321,409,532 }, { 8 ,123,177,240,315,358,375,445,525 }, { 8 ,123,178,210,223,291,302,358,420 }, { 8 ,123,239,257,268,284,382,403,578 }, { 8 ,125,128,243,307,374,417,465,578 }, { 8 ,125,136,265,311,362,479,489,586 }, { 8 ,125,185,196,240,247,260,340,399 }, { 9 ,125,185,196,240,247,260,340,399,502 }, { 8 ,125,185,196,240,247,260,340,464 }, { 8 ,125,185,196,240,247,260,340,502 }, { 8 ,125,185,196,240,247,260,399,502 }, { 8 ,125,185,196,240,247,340,399,502 }, { 8 ,125,185,196,240,260,340,399,502 }, { 8 ,125,185,196,247,260,340,399,502 }, { 8 ,125,185,240,247,260,340,399,502 }, { 8 ,125,196,216,259,307,374,378,417 }, { 8 ,125,196,240,247,260,340,399,502 }, { 8 ,125,203,223,231,321,328,453,568 }, { 8 ,125,203,231,321,325,328,396,535 }, { 8 ,125,235,260,321,366,490,586,587 }, { 8 ,126,292,326,340,375,405,488,571 }, { 8 ,126,292,326,375,445,488,525,571 }, { 8 ,127,196,335,399,411,444,577,598 }, { 8 ,128,233,242,354,374,465,588,594 }, { 8 ,128,242,354,374,465,479,588,594 }, { 8 ,128,242,374,465,479,538,588,594 }, { 8 ,129,256,348,381,388,444,451,459 }, { 8 ,130,188,347,370,411,435,475,576 }, { 8 ,130,342,347,370,411,435,475,576 }, { 8 ,132,223,257,450,457,488,520,529 }, { 8 ,132,257,446,450,457,488,520,529 }, { 8 ,133,142,258,264,402,404,523,596 }, { 8 ,133,142,258,264,402,435,523,596 }, { 8 ,134,163,189,290,381,388,451,459 }, { 8 ,135,176,186,271,277,313,522,545 }, { 8 ,135,202,203,250,271,452,463,481 }, { 8 ,135,202,250,271,452,463,481,511 }, { 8 ,137,140,163,187,419,431,476,568 }, { 8 ,138,139,165,306,385,470,549,552 }, { 8 ,138,144,240,296,333,364,478,570 }, { 8 ,138,178,230,239,368,380,408,472 }, { 8 ,138,198,230,239,268,408,472,586 }, { 8 ,138,218,247,389,448,464,472,590 }, { 8 ,139,141,246,370,436,451,539,575 }, { 8 ,140,165,178,275,471,537,544,564 }, { 8 ,141,153,176,311,358,394,553,582 }, { 8 ,141,153,238,257,284,364,408,520 }, { 8 ,141,153,238,257,284,364,490,520 }, { 8 ,141,186,257,284,354,421,481,561 }, { 8 ,141,230,248,257,312,349,408,533 }, { 8 ,141,230,248,257,312,408,472,533 }, { 8 ,141,230,248,257,312,408,481,533 }, { 8 ,142,146,232,236,303,401,535,565 }, { 8 ,142,160,232,310,355,392,494,595 }, { 8 ,142,196,258,264,402,404,523,596 }, { 8 ,142,236,303,401,454,535,552,565 }, { 8 ,144,151,152,247,442,448,527,568 }, { 8 ,144,176,311,358,370,374,570,575 }, { 8 ,146,178,221,236,241,265,350,565 }, { 8 ,147,209,235,354,370,371,398,414 }, { 8 ,148,182,237,290,309,331,432,505 }, { 8 ,148,323,333,433,439,485,493,582 }, { 8 ,148,358,374,405,407,416,430,491 }, { 8 ,150,152,159,266,286,464,506,509 }, { 8 ,150,152,184,368,403,421,448,464 }, { 8 ,152,284,378,388,409,502,561,594 }, { 8 ,153,216,261,441,490,525,576,586 }, { 8 ,154,160,253,404,413,457,579,594 }, { 8 ,154,167,200,307,316,335,390,411 }, { 8 ,154,167,297,307,316,335,390,411 }, { 8 ,154,253,404,413,457,538,579,594 }, { 8 ,154,292,311,358,370,374,375,453 }, { 8 ,158,188,236,258,297,373,420,456 }, { 8 ,158,188,258,297,373,420,456,479 }, { 8 ,164,177,198,441,469,484,490,525 }, { 8 ,164,216,407,441,453,490,525,576 }, { 8 ,164,405,407,416,444,452,590,598 }, { 8 ,165,178,275,344,471,537,544,564 }, { 8 ,167,214,297,307,316,335,343,390 }, { 8 ,167,214,297,307,316,335,390,411 }, { 8 ,167,219,273,366,392,396,422,479 }, { 8 ,167,219,366,392,396,412,422,479 }, { 8 ,169,190,263,298,303,336,496,517 }, { 8 ,173,221,265,284,354,477,481,561 }, { 8 ,173,292,370,410,461,526,554,592 }, { 8 ,175,200,259,315,401,404,440,521 }, { 8 ,175,200,259,401,404,426,440,521 }, { 8 ,175,200,291,401,404,426,440,521 }, { 8 ,178,210,223,291,302,358,420,506 }, { 8 ,178,239,287,411,413,472,565,566 }, { 8 ,178,258,305,378,434,436,446,551 }, { 8 ,178,281,344,411,429,469,471,564 }, { 8 ,179,182,284,327,330,381,574,584 }, { 8 ,185,196,240,247,260,340,399,502 }, { 8 ,188,196,258,297,373,420,456,479 }, { 8 ,194,209,212,306,347,370,435,453 }, { 8 ,194,209,212,306,370,435,453,548 }, { 8 ,194,209,285,306,347,370,435,453 }, { 8 ,202,255,291,387,503,555,559,564 }, { 8 ,206,289,347,370,411,435,453,576 }, { 8 ,206,342,347,370,411,435,453,576 }, { 8 ,206,342,347,370,411,435,475,576 }, { 8 ,208,286,347,412,431,443,560,587 }, { 8 ,210,216,331,358,420,444,475,557 }, { 8 ,212,315,345,396,420,479,519,539 }, { 8 ,214,297,307,316,330,335,343,390 }, { 8 ,215,247,328,440,472,516,540,544 }, { 8 ,216,253,263,358,391,407,444,475 }, { 8 ,216,261,407,441,490,525,576,586 }, { 8 ,219,271,313,396,422,520,522,598 }, { 8 ,222,237,244,524,535,562,569,581 }, { 8 ,222,253,336,356,413,457,555,594 }, { 8 ,222,253,336,356,457,555,591,594 }, { 8 ,226,236,247,373,375,379,440,544 }, { 8 ,226,247,373,375,379,433,440,544 }, { 8 ,229,257,271,313,380,422,520,529 }, { 8 ,230,236,239,312,350,368,500,531 }, { 8 ,232,233,244,246,295,332,345,427 }, { 8 ,232,233,244,246,295,345,427,459 }, { 8 ,233,330,378,465,471,501,590,595 }, { 8 ,236,247,373,375,379,440,441,544 }, { 8 ,236,247,373,375,440,441,480,544 }, { 8 ,237,244,398,512,524,535,562,581 }, { 8 ,237,244,398,524,535,562,569,581 }, { 8 ,244,398,399,422,511,524,562,569 }, { 8 ,263,277,292,326,343,395,429,456 }, { 8 ,265,306,378,409,561,579,594,595 }, { 8 ,284,291,330,443,546,558,559,587 }, { 8 ,362,375,405,423,431,444,452,544 }, { 0 } }; cliquer-1.21/testcase-large-w-60-64-mxml.h0000644000175000017500000001224611326254207016207 0ustar patpat/* Maximal cliques of weight 60...64 */ int large_w_60_64_maximal_cliques[][N] = { { 7 ,52,102,120,152,244,264,348 }, /* w=63 */ { 7 ,148,239,282,304,313,356,358 }, /* w=60 */ { 7 ,5,114,124,189,194,344,365 }, /* w=63 */ { 7 ,2,96,155,172,269,330,365 }, /* w=61 */ { 8 ,20,116,249,264,333,364,398,402 }, /* w=60 */ { 7 ,0,20,116,264,270,272,402 }, /* w=60 */ { 8 ,46,196,216,264,297,307,378,407 }, /* w=62 */ { 7 ,112,178,181,217,234,419,425 }, /* w=60 */ { 7 ,84,143,293,298,348,356,432 }, /* w=60 */ { 8 ,57,171,191,306,347,401,408,435 }, /* w=62 */ { 7 ,90,175,226,291,400,401,440 }, /* w=62 */ { 7 ,9,90,272,291,389,401,440 }, /* w=61 */ { 7 ,9,90,226,291,389,401,440 }, /* w=61 */ { 7 ,102,116,124,183,264,372,450 }, /* w=60 */ { 7 ,127,198,208,213,347,447,458 }, /* w=60 */ { 7 ,20,264,306,347,358,420,458 }, /* w=60 */ { 7 ,99,198,340,358,372,416,458 }, /* w=60 */ { 7 ,127,186,226,291,313,347,458 }, /* w=61 */ { 7 ,155,269,330,365,374,398,462 }, /* w=61 */ { 7 ,99,116,183,264,358,372,462 }, /* w=61 */ { 7 ,102,116,124,183,264,372,462 }, /* w=61 */ { 7 ,0,20,116,264,270,272,462 }, /* w=60 */ { 7 ,47,52,119,266,304,425,475 }, /* w=61 */ { 8 ,12,116,159,244,245,398,423,478 }, /* w=62 */ { 8 ,116,159,244,245,249,364,398,478 }, /* w=61 */ { 8 ,20,134,196,339,348,354,444,479 }, /* w=60 */ { 7 ,20,264,306,347,458,488,494 }, /* w=60 */ { 7 ,20,199,264,347,458,488,494 }, /* w=61 */ { 7 ,102,264,269,379,458,462,497 }, /* w=62 */ { 7 ,155,251,269,304,425,462,497 }, /* w=60 */ { 7 ,5,84,348,409,428,490,499 }, /* w=63 */ { 7 ,52,102,120,152,244,348,499 }, /* w=62 */ { 7 ,5,158,188,297,446,479,503 }, /* w=62 */ { 7 ,102,152,293,344,348,499,510 }, /* w=60 */ { 7 ,72,196,266,304,361,479,512 }, /* w=60 */ { 7 ,128,239,304,356,358,479,512 }, /* w=60 */ { 7 ,304,306,313,356,358,458,512 }, /* w=61 */ { 7 ,239,304,313,356,358,458,512 }, /* w=62 */ { 7 ,239,302,304,356,358,458,512 }, /* w=62 */ { 7 ,239,304,313,338,358,458,512 }, /* w=60 */ { 7 ,20,194,264,269,347,458,515 }, /* w=62 */ { 7 ,58,181,284,291,348,425,517 }, /* w=64 */ { 7 ,20,63,79,264,283,384,520 }, /* w=60 */ { 7 ,9,170,251,297,396,401,523 }, /* w=62 */ { 7 ,9,170,208,297,301,396,523 }, /* w=60 */ { 7 ,9,133,208,297,301,396,523 }, /* w=60 */ { 7 ,9,170,251,288,297,396,523 }, /* w=60 */ { 7 ,60,122,251,291,401,497,528 }, /* w=60 */ { 7 ,155,196,265,266,302,304,530 }, /* w=60 */ { 7 ,1,127,202,226,266,468,531 }, /* w=63 */ { 7 ,1,81,127,202,226,266,531 }, /* w=60 */ { 7 ,24,59,152,219,269,533,542 }, /* w=61 */ { 7 ,137,148,219,409,453,460,542 }, /* w=63 */ { 7 ,131,148,219,409,453,460,542 }, /* w=60 */ { 7 ,9,58,133,275,370,453,542 }, /* w=60 */ { 7 ,54,120,184,348,453,479,548 }, /* w=62 */ { 8 ,31,54,92,184,348,453,479,548 }, /* w=63 */ { 7 ,152,284,291,293,330,348,548 }, /* w=61 */ { 7 ,15,70,264,347,488,533,551 }, /* w=61 */ { 7 ,15,70,206,264,347,533,551 }, /* w=60 */ { 8 ,55,102,131,152,293,333,500,551 }, /* w=62 */ { 8 ,20,73,107,120,280,432,480,551 }, /* w=63 */ { 7 ,1,9,236,290,356,468,552 }, /* w=60 */ { 7 ,1,148,229,323,531,542,555 }, /* w=64 */ { 7 ,1,202,291,330,340,533,555 }, /* w=60 */ { 7 ,155,160,236,332,420,436,556 }, /* w=62 */ { 7 ,9,90,344,382,398,401,564 }, /* w=63 */ { 7 ,9,90,344,364,382,398,564 }, /* w=60 */ { 8 ,142,236,303,401,454,535,552,565 }, /* w=64 */ { 8 ,103,142,146,236,303,401,535,565 }, /* w=64 */ { 7 ,79,99,194,264,283,520,568 }, /* w=62 */ { 7 ,63,79,99,264,283,520,568 }, /* w=62 */ { 7 ,4,96,262,283,497,561,574 }, /* w=63 */ { 7 ,152,179,284,291,330,561,574 }, /* w=62 */ { 7 ,5,167,344,365,446,479,574 }, /* w=60 */ { 8 ,28,75,118,213,374,407,490,575 }, /* w=60 */ { 7 ,15,264,347,488,533,551,578 }, /* w=61 */ { 7 ,20,280,347,480,488,551,578 }, /* w=61 */ { 7 ,127,132,235,242,354,398,578 }, /* w=62 */ { 8 ,284,291,330,443,546,558,559,587 }, /* w=62 */ { 7 ,9,284,291,330,558,559,587 }, /* w=62 */ { 7 ,9,284,291,330,548,559,587 }, /* w=62 */ { 7 ,9,291,313,330,340,559,587 }, /* w=64 */ { 7 ,133,279,313,347,425,428,587 }, /* w=64 */ { 7 ,62,133,142,173,400,416,587 }, /* w=62 */ { 7 ,9,284,291,330,548,559,588 }, /* w=61 */ { 8 ,70,108,293,330,343,514,548,588 }, /* w=62 */ { 7 ,108,284,291,293,330,548,588 }, /* w=61 */ { 8 ,70,108,212,284,293,330,548,588 }, /* w=64 */ { 7 ,0,20,116,194,264,354,594 }, /* w=61 */ { 7 ,96,173,184,208,579,587,598 }, /* w=60 */ { 7 ,46,133,208,347,416,458,599 }, /* w=60 */ { 0 } }; cliquer-1.21/testcase-large-w.b0000644000175000017500000006514111326254207014556 0ustar patpat4428 c Random graph with 600 vertices, edge density 0.3. p edge 600 53832 n 1 9 n 2 10 n 3 8 n 4 4 n 5 7 n 6 10 n 7 5 n 8 8 n 9 3 n 10 9 n 11 6 n 12 3 n 13 6 n 14 8 n 15 3 n 16 7 n 17 2 n 18 8 n 20 3 n 21 9 n 22 3 n 23 4 n 24 5 n 25 8 n 27 5 n 28 5 n 29 5 n 30 2 n 31 2 n 32 6 n 34 7 n 35 2 n 36 4 n 37 4 n 38 4 n 39 4 n 40 6 n 41 4 n 42 2 n 43 2 n 44 3 n 45 3 n 47 7 n 48 5 n 49 3 n 50 8 n 51 9 n 52 4 n 53 10 n 54 10 n 55 10 n 56 9 n 57 6 n 58 4 n 59 10 n 60 8 n 61 9 n 62 4 n 63 9 n 64 9 n 65 7 n 66 6 n 69 2 n 71 10 n 73 2 n 74 7 n 75 2 n 76 10 n 77 5 n 78 6 n 80 10 n 82 6 n 83 4 n 84 9 n 85 10 n 86 4 n 87 5 n 89 6 n 90 2 n 91 9 n 92 2 n 93 3 n 94 6 n 95 3 n 96 3 n 97 10 n 98 7 n 100 10 n 101 4 n 102 4 n 103 10 n 104 10 n 105 7 n 106 4 n 107 9 n 108 6 n 109 10 n 111 2 n 112 3 n 113 9 n 115 8 n 116 2 n 117 10 n 118 2 n 119 5 n 120 8 n 121 8 n 122 7 n 123 7 n 124 2 n 125 8 n 126 4 n 127 3 n 128 10 n 129 6 n 130 2 n 131 5 n 132 7 n 133 9 n 134 9 n 135 5 n 136 7 n 137 3 n 138 10 n 139 7 n 140 3 n 142 9 n 143 10 n 144 4 n 145 6 n 146 8 n 147 6 n 148 6 n 149 10 n 150 6 n 151 3 n 152 7 n 153 10 n 154 2 n 156 10 n 157 7 n 158 8 n 159 6 n 160 8 n 161 8 n 162 4 n 163 3 n 164 7 n 166 7 n 167 4 n 168 3 n 169 5 n 170 2 n 171 9 n 172 8 n 173 6 n 174 9 n 175 2 n 176 6 n 178 9 n 179 2 n 180 8 n 181 9 n 182 10 n 183 2 n 184 9 n 185 8 n 186 5 n 187 4 n 188 4 n 189 7 n 190 9 n 191 3 n 192 10 n 193 2 n 194 8 n 195 9 n 196 6 n 197 10 n 199 8 n 200 7 n 202 8 n 203 7 n 204 2 n 205 9 n 206 5 n 207 8 n 208 8 n 209 10 n 210 6 n 211 6 n 212 7 n 213 3 n 214 10 n 215 2 n 216 8 n 217 5 n 218 10 n 219 2 n 220 9 n 221 3 n 222 3 n 223 10 n 224 6 n 225 3 n 226 5 n 227 9 n 228 4 n 229 4 n 230 10 n 231 4 n 232 2 n 233 4 n 234 5 n 235 9 n 236 9 n 237 10 n 238 2 n 239 6 n 240 7 n 241 6 n 242 3 n 243 7 n 244 3 n 245 7 n 246 8 n 247 5 n 249 2 n 250 3 n 251 2 n 252 7 n 253 3 n 254 9 n 255 6 n 256 3 n 257 7 n 258 3 n 259 3 n 260 7 n 261 3 n 262 6 n 263 10 n 265 9 n 266 5 n 267 10 n 269 6 n 270 9 n 271 8 n 272 3 n 273 9 n 274 2 n 275 6 n 276 5 n 277 2 n 278 3 n 279 3 n 280 8 n 281 6 n 282 2 n 283 7 n 284 10 n 285 7 n 286 5 n 287 5 n 288 2 n 289 8 n 290 7 n 291 3 n 292 10 n 293 4 n 294 7 n 295 5 n 296 6 n 297 3 n 298 10 n 299 10 n 300 4 n 301 2 n 302 5 n 303 8 n 304 5 n 305 10 n 306 4 n 307 6 n 308 7 n 309 9 n 311 9 n 312 5 n 313 3 n 314 8 n 315 4 n 316 4 n 317 7 n 318 5 n 319 6 n 320 7 n 321 7 n 322 3 n 323 2 n 324 9 n 325 2 n 326 3 n 327 3 n 329 7 n 330 9 n 331 9 n 333 8 n 334 7 n 335 3 n 336 2 n 337 3 n 338 6 n 339 8 n 340 5 n 341 10 n 344 3 n 345 10 n 346 4 n 348 10 n 349 9 n 350 7 n 351 2 n 352 5 n 353 4 n 354 4 n 355 8 n 356 7 n 357 10 n 358 5 n 359 8 n 360 5 n 361 5 n 362 9 n 363 3 n 365 7 n 366 9 n 367 9 n 368 3 n 369 8 n 370 7 n 371 9 n 373 9 n 374 6 n 375 9 n 376 6 n 377 4 n 378 2 n 379 5 n 380 10 n 381 7 n 382 3 n 383 8 n 384 2 n 385 3 n 386 4 n 387 4 n 388 5 n 389 4 n 390 6 n 391 5 n 392 3 n 393 6 n 394 3 n 395 6 n 396 3 n 397 8 n 398 4 n 399 9 n 400 2 n 401 10 n 402 10 n 403 6 n 404 3 n 406 2 n 407 4 n 408 9 n 409 9 n 410 7 n 411 4 n 412 2 n 413 2 n 414 8 n 416 4 n 417 5 n 418 5 n 419 10 n 420 10 n 421 8 n 422 2 n 423 8 n 424 5 n 425 5 n 426 10 n 427 4 n 428 9 n 429 9 n 430 3 n 431 6 n 432 2 n 433 10 n 434 10 n 435 5 n 436 5 n 437 10 n 440 6 n 441 8 n 442 3 n 443 4 n 444 5 n 445 4 n 446 10 n 447 10 n 448 2 n 449 6 n 451 5 n 452 4 n 454 8 n 455 7 n 456 5 n 458 5 n 459 10 n 460 2 n 461 9 n 462 3 n 463 6 n 464 7 n 465 6 n 466 4 n 467 5 n 468 5 n 469 9 n 471 4 n 472 7 n 473 4 n 474 3 n 475 3 n 476 8 n 479 9 n 480 10 n 481 8 n 482 8 n 483 2 n 484 4 n 486 3 n 487 4 n 489 9 n 490 3 n 491 10 n 492 4 n 493 2 n 494 7 n 495 7 n 496 6 n 498 8 n 499 5 n 500 8 n 501 3 n 502 2 n 503 3 n 504 9 n 506 3 n 507 6 n 508 5 n 509 4 n 510 7 n 511 6 n 512 4 n 513 9 n 514 3 n 515 5 n 516 6 n 517 3 n 518 8 n 519 7 n 520 3 n 521 10 n 522 2 n 523 3 n 524 9 n 525 3 n 526 4 n 527 8 n 528 4 n 529 9 n 530 6 n 531 7 n 532 8 n 533 2 n 534 7 n 535 6 n 536 7 n 537 2 n 538 3 n 540 3 n 541 8 n 542 3 n 543 10 n 544 5 n 545 3 n 546 4 n 547 4 n 548 9 n 549 9 n 550 6 n 551 10 n 552 9 n 553 9 n 554 4 n 555 8 n 556 7 n 557 8 n 558 8 n 559 9 n 560 8 n 561 9 n 562 10 n 563 3 n 564 3 n 565 8 n 566 6 n 567 4 n 568 4 n 569 4 n 570 4 n 572 3 n 573 3 n 574 4 n 575 8 n 576 2 n 577 2 n 578 3 n 579 10 n 580 3 n 581 2 n 582 4 n 584 5 n 585 5 n 586 3 n 588 10 n 589 9 n 590 2 n 591 2 n 592 3 n 593 6 n 594 2 n 595 7 n 597 5 n 599 10 n 600 9 @؀,@ `PR$Ft 4@-@ 5$Cp@ `"ShR @2 i/%$DVP.@ ` \@N Հ !@+aE B^C3@B` (@@").EIn20(!aP" JrH$@HI@7@R(JTE[.7"0*"<$A *A@<I˥9upA"I@ !A(d"cJ!L၀K @ P. 6؂$$ @ҨDB)nА`d %HABPL1(bL "@A T E bBf.@aB@ (eR2B@Ĥ" R,P`r]B"X#@(P"0:"#+Pd-F`؄HPȟ$8@`S($+&a"@ X@7H`iJ%@߁B D@(0"bS B ($"I@8m00Z *$R$B:D*O:@BfE@Ly@  8*t0! I` 0 " J5@h\" 8D "# @fn HF d0d$H   D'e O 4R @0 DD@i(ՑT2@@MHDp0(Hň$*+0p @D@@ Ǫ*` $T:A(:~A 0 LFYET 5!Y ҀFΔ ! 0h0DRcK*`ANQ"dU# KD )1XD0=PNaabH3H4r:AQ% .@ 0(L@ E *fINH M"!+$( 0`" D D@k2 10(,Xd$MP`$h!%6 Fym Ȍ @ Ab %B "xWH` @$!5 p'%2 8  p%z0)   B$ !D8"@bCJp!6Ci kBAV%A R`5CD$X: D$RP @<E! @`FKA`Q D (`QDje\qI He Ġ(+Um . B`!ZSHiQgJJS!Vh@!0@0!9"@$Z,Va90B0#08B $AI!H C>̀!:0 JBd7Ab $(8t4T@pE(T(A!q@9@ L\8%AC3Hљ J@ @DM je&L`@!8$Wbh`@\Ah0("HH @{8-"Qd%B;q Q@JfɣS"ER8@h!(ZRlA4 @18%A#0  md @B.!"2Y@8 F4v"m!@QJ%-Jk!YAZ2.c 6`PD -UMB  5 4E($GlrBK &  HD`Eh(QAB" #DY"Zc@V@@ %!G( P Djf FA"aK i( BT"(\a.E9@d!TI  5<\̀l@U Bb!40I(;'@`24LJ0 %$ݒ8䠉N$b1s@HTD.8UF  P"g"0r`(d#@!$n0 U:`$-IEA< !g+JR8 8Q)0C@|PF(\KPl2J12%.!Hb!9D"$ ` e<Q)*!@B$ Jb%]@! ) ;R=! ( ,0 !.Yf&JasB 0 b @])@MHP`[pTTh A h P ޱ H`0.Hi9% b@" `p !@D4ȡU) (@QBА m@ɤ.PFwԮ` 8Dk hL!B"4A@0L( F:qxaY% z.4El:(8), \D*A@ ^!@2A@ Ȣ"( %,p@ K@ b4$4 Y 0 A@ABh@PqC@0B_ 24HI@u!(:BA(f # F 4 (@I/Bk!YE6 P@DH0@(LD@Cpа1 @@!!p&,&J5 +laDX0@P9& 0@P " m!t q( da TwrfW-C$ M)`)y%сA )@`  E PYA!BM (P 0@3{R !+HP@%@X( 8Ed ` < J= Yڑ`O (Pqzp0bdF@d``F& X1% P `!'AUi\@ADā41*"Dx:Jcb PCAD $AQ` G(b K PE4f$<FPqAf@VI44IQ)BqB@" AACBcaB@M%d$##@0!'c28@)@p HR"'#BI RD00 "@5HJAIB"2`CPߠ8 8{(BD"($C]@8  EE "Y RB,Bf04 B @i tI< H%19# bI`xD E%lfpQ>@P%@YpK Nh@ȠDh"5ԠjP 3 #C$)d *H8SȊ,OuS@!t@hB ќ,2 HAVAP==88sЀQ@@VE!DB0 hJD6HBJ!H R؁QI,ЁBA\@@ L%r iBY@Ą)"$$`#Ԅ`J@A | SDb_ a  K $ 2H"$BTh# h@$DB@ Z@,(PDp@` E(#"ha&JB4b# 4DD h'E(RF(/( P0!`P,` "+G2tqH 0!V`i"C `C[$ 3x( @(, FcDD.1 M) Y +!($C pT!1p@VB [` ;q|aADHhx(PBXJ@ &5H2M@* p Q(A'ӭL$4(iP r! @ t6d٠vd`B) ߜmB("00!&@!BJbAEAJAAI` `%b"Cވ"I!ہFb Ƒq XfhEbX'P 臈2 Q)  Тْ\:+P[ !F % Rm "J) `j@ T $1PB@9h"k"0B@8b  H4Z#!`B- (6@0q$k "z!A&: `[ HA@" @FEP2bXE+ " @C  Ҋ:e32PPİ$` UCVS \nl H&*X%BC(!BDzŃaDBPB*PE`A( 4$8"# P @ P-m$(,LȀH$\Q LMPb(@D 1I`f@%@"L eQDTvXMZ9vpF<"X MI;(1ء  @!$ (̠& !` A&dκ *B$G($  EpBꂁ4`dtT `02FN:b@2") EV  J` Б!Dʀ Vb @p$Q@E|^Q4Q@ȑ &&Ȕ% HJ"R8a!` 1h 4#"1("Ǎ` Յ2R@s @a 0@g@"  ( 1 LE c:PO%(P\B@/,4@L2P$@B8&H1q !`P0" B$ M&T(HEEs%!$hR``H*jE/1`.HJP8!X" $`I,q 8B&RW !1)(P@1FA#(d)( @F(c"ejEGįF,)HlpR@6$!fyv:R$Bd XQP @J FEP PbcHP( `,p1 $@r"jZ`+I$ c$@p A  T   !""TM2[iH"h1CH`pRpI@.0@ᰌFc I>`(Em!f.I 0r K(U @  C$$YL (@!  0Q0d@ $!,  "N c i0 ـ0*&(]d&  `B< ѐ1 K @AK*RBd 3IVEۦ ah"bR*" #I%AV&5 D3 d)`|"BI* $@@:aP@DBB _B2@LYE0 D9@@R'Be&1dJ " !G1ID@H@ $`c PCʐ ƈ& p@*2P @RFBER0%*[0$P$`H(FAL0@L! .  <QаX < $8 CA @1#- Do(0@@ԀA D,  -A L"!Z&hJ($-DT  z2Jq  ؋sPhh(@)@0P0"@6$Led jc ~ Luy;LQ.?-@Ҁ"$J $ˠ@P Hcy."8#` ZTA 5{Cp`$LD @8\H @ 5$ r!bP 00X Ef8sUpbZ`EA`d& @AE@P{00Q$N $X*:".HX B̜ IsL@Id 2QT`LADP !`*-` @2BWpu @RAO=*!fp ".\ Jx /s Qx 9(UU$(C@r&"H䦄x*ׁ$0)N;P"+P l'5Fi J$`8Ď>1`HCGAGc  %@0 @b% !X/"IRN(  $ ܊ r1" -  !" )Td(CE@I\E7ITvi  "c0`FCcE@J"q hH0 $`0%2"d4CF4 @*6>BIHkpmàIWK(/Fi $@9Dj ,! H p$ P %P BC  yt`'A@H p!HT@aD I P!1j"(@@H( PaB (TRSoHP%c. ㈈ $K)0+J"a-*H%eo}!3" @Pt@P 1"@FZCVH 3P 0%a$`@ jp2(8A2!4!00"PP0 DP(iad  500@*}XB@) @G'DB1Pa9c0P:@! jDqBH`ռ@ͨDYBH(qE@D0(eHR'* NJ ,Dp!#AP AH-PHZ c+APE@F 4lڭ 仑P@@tH (щR&00;PT$QB"@y$D$8( MU ڍ rD[5(`VC F$DIvH @8J*Y  -lĘR .HN ̅ , ˆjै$!! KB )A#!(@A B'yR E6 D`CM}Hhdh8@45x&, y!c%E H! & ,BS !HL%Ep`a8RB `@!@8)F PA"ޏ ߈[8 H4@FPπX@eP F!HPI @` Z(e`NR)`0)(E$+nr 1jW QQ@ D!PCb̷B Hgȭ8"x,{2p!B"bBT 5aR g$Ć a!#biJ ʱ 1$*0i' @ `H&"T24 ra!aC"!PBB ʼnXLTIR 0Ha!!q(t @R@4 %HAnA !pX FECIhDP&C`L0( BpUR40-T )!? z !I%! PĤsZ p DQ B-@EQL$=.1 ŀ(N( $chXK X @!@#$XV"!EAFB2h%uѤ  *@耀` Jc`9Z d4# HD)A@`! ,BSC bB<`8 `(  d\DK#@7"A)B(Q(èH0b0h ((p@(47'b,!IiȠR! R,"qGF8$1@ DC A&S5} 0v" ܒ>(@p@HXP!#"I+h(2W +4`0K p0rP5K(RRL @( (dhR@ @ŋA E "T G (Ha P(* a=@H D 8I  +b ܄ r&"@k6# `eD L\( DP!lG6$`a@ ЮH0 @QK @* @ B!6uX P Dx@e*%(D&p!!f hDRT`�,VA _(1EHMT ) ,!   0X@ Ij Q(LC@@X*#,$M: Ip$s1EBLLftLeE !H8Npd40(! `&A $Z1&$) iHG He %"4f  D0X;fdD)q(,JAerB,D`a,D-u 0-1@HLAJ[@4PLj'˕ @U"H 0Y1DpD`!†8"X 1`@i DL&A&Zo,"BH"70BSM$A`R` "d@T@'0WP@2 $(iB9 ExEQ 0FT=Bx H@dMbǢ, +@̈1`$fI Q@h=T(A$R=b؀6dSbftB d)$0!&&1Fp%Hft 5E `0@`i^( (*"+ HMA 0ND@$EB`$ A SD9"Į 08H+yD1P6'0@ @ T&h'$$^D!BP P4Akd1`pԜD$bDɠE@\CRW" ' @ţ@̉0x ߲ ! - 0" $MBtD@0t &X5!r"F8SADe! J#0%TK4 " $$H"E `@9dY41 D1@LB `H$&0ܞH"Ȁ 8<0(,mx,-0j HRH*@D!TB(9D0$ Beٝ!B)La  i a0$ @"#P $F R e$DXQjqHDQUqkn (A)+)EPP  &WB@#$ 9R"$2E@ESW#@P"A 9Hd&ذrH  "@H.HJpD) 100ة @uY*V8 z%#@ `` R !@Jr0d°"H @{&0A# A") !@ DA@& ZA\ L5"1D>@@o% @2OP` h@L8*l Aa`+@! $B@&XtF P(Q#O%D P%$.b 1"%GIP``0k4Ec! U0H! B@ $` [A P @ Ya¡ @ SBl c $dI Kn4:$ʙ B<$i€F:NZ iQ[ & DhLJZ I*9b[ Ű4 Rh@:F$L4!h, ' HC,@(=H8P`AT@. (BQD( HA (@>@e,@-T^NQJpH @2 HL x0)A;HEEhĀ Cv ^`(S@  ⳀE@@$4# d> AF)FU;d  `1B%@ 4$ )0C2 R@!*!Qp(<X ,$݀ L `AL !"aр&pYQO@(-A i#p) KPl1@D m8B!O, BX̡H TJ4(Z`f" dc@؀ 4(8(P CUwRQ3؆ aY" ( Vƒ A0 $)x@a!P 2&$4p DIpA`+p@ p05Pp `(,bhV0,l' $dG[A\  BHD.FD$H ,D/2 @`0)$(K@PZ EQc^B * +IYBcC( 6%7E#kD #h*$ 30 ` R Y <"@ R1PP\0R( N$*8  2!$@+PQ!@Ad$V0Ĥ0q aD4`!b r,% BIF$(E(@!(!P Ul6oB BpdN `4@V"06Pt2D ABЌ@ @8`HDDZF 0A3@9 @BPL GQ@ @XBAT` TD0 a@ @S /!H1I"C#F(J% A 0@QP @'*@#(`$QBLj"K@@ 3G BA*$mj`DAb:@]JP Q 90r@*A 0 1Rp`T@,$(0 -1A@AS"H`pdpPA@ 7lZƐQTd87LX!`#f 9F! PH*NFL )`@%E0Q4;f &03Jbac# K3E(H@4`LZ+@l RZQ@ 2bpc(@I!E <452p9$K (TBfYd%" F2Vp*QZ6ThJơ&BԀ l%Bi80Q"QA bbQE$AO@@b1)4@{K@@"i$``h~@ 8 OZ  "r[@!@"R01J@x  F1@ƤHя!(S ƂH SQRT8 1訐"$gTD%@ZKR!5@!Cd!$3 "P@Q@J0EA:NE#* D0xҀhx2SPD$"BP @#H!d2  CTHH@j+@@3be*pu()RJEi!*@/"`#2 DQgF@ @<CD(C)P1/RMII G@Q @m%@P\̀!CMFn(V T$PET H/D% V 10&1XRh `H*9F %ArB*$L"P0<(+AM@<(5$"P`b(2!Tp $ $<M@`&@&HwP(DB2pWSb `zqX”+DP,a2)gDC`{&@PTa%5DH(Dۈ4-]" ԂiQQK *e%ŀ EHtL Ă(CTD`ДA xʘ`?2R4@ 8Pp@aN9 2@ 9h L S]D(K]` ("A0pEAWfl` "L2$""KY4T`8BAES7D0@! *P@"pVPBQH:!5 0AV@$!H@@* $(`@G0DЃTFj]fSV!գ j\5!#c((B`$, AHBR23 @BC#CJ" !B<B <FƂ BIDN  HA@R4 d ًE!:Q#D @HPN0a4j@3$ @b&QWH$3m p ňHʨm0 #zEȋ1 4@b<#M@4ED(,"$&DA0 R A0Ja{A0Xt`cXbA$MHH\0TSBJ$i(b uS 0S@FVj/8 { 1bD ״g*TYE@p EDErOp:Pi `6q(]\I3!Q&UG @ l G ZJDҥQAFf() 4 tpa@HAV<@زpPH8`T A | M PQ @ 0UYf)HDN(G`HV )HFB ` 'X 8JqpD!̎j#I R!A9R2N n"PD"ID5HƠ  FBE$XB H)P@qB`\B@!0j,'A X ƀ`) Q@kQ$@ "LDЄD P. @h0@ m "h  Be0UT@ bm;i *(Rd@$@fPhQKA@ Aei!` A(#@@ QP#0@M!%(@0ER"-@/, tR`p)0 & J lD$ ` E 24" YP@C=`zs( Y ` PhZ@aY!PQҀ(D"RH^d6!$  ZT#$PGDY²L]@e jB"lPn/H%Dp""L"# @*D)QpGA@QȀt 8oAaCℾ@fD)% @THr*|>Ѱb &UP(leHf0$( ib@BIqʦ"H~ Dp" B"`! DA9"# (  JPHAa@>h D 0d YHD !J"D@ 0(7 H2Q@ BpHHPiHe$P -x K @mJP+V@P HlD8`P 5 $H@ 8&Q`@qA  0@@!@1,!JEYRb@  \[. @XF4@`A D`,PʅH*QRQ`PhhV+0F4P0C7f <   BX $ jݠ-d  *D`AXHpO` DA`Î3G(CC Hz@k!0AL@PH H:P5CV*`$  H{   J"B*5 d @+!hhHQ @QE"%c ((1)( @ 8+T#,.PDbk!`0M @t%,$i 4.E(PTp4h`W@G%0D(Y0JF1v`,DAB"(D 0pFq B f` A^FA&H 6x4R=Z`p `N0pkJeP qC 3D 1!v!H -3%%* EHR0F= +`!,%*D01~Hai@ @U` Ccbr # !hU TW&vFLN؀+lЀ&QId1L @ $J$N@@.&FA@ < 0`013dRAHCZ!D$ `G BV PHm $bIAh BȪN1@ܙL@6 萄DMA Q q,HT(yPB`L$w~P 4V j"QPH0EIDQ R U&AfZFE&"RqPdjHDP`h@a@A! [0@Xr#At -'` VIUJ `AH%lD( D)@(D VR@* RH)" 0+ &1pr&bS d 2bN5   XBFSrЂBT 3p}0Q' J(:To hH"2Ӕ(UAC C~H 2М IA$ 13Q84pI@8J.', "^TMDP0$h` HhF( ` M$8)!P8$P 8bRIw% $I@ ` ld"@C A38$ b1:+e"1J! iH`b`' )89 ASB1`(V T P('. @0 XAHx (M F A@H@(*(I@FRLT $- X H4"dphQ p FW"`'"!Р}jP 2auXD ` "8H12H.A H $S\Zp$l(F (Q0`Ab `$0Ubг B0c} 0O('0d $ x2B C;( ]nDp ])(# !d ^I2rDPZ>`0QH  PP @@@ J@蠏K@Ɗ@9b"(E$ cliquer-1.21/testcase-large-w-over60.h0000644000175000017500000001167311326254207015704 0ustar patpatint large_w_60_sized_cliques[][N] = { { 7 ,0,20,116,194,264,354,594 }, /* w=61 */ { 7 ,0,20,116,264,270,272,402 }, /* w=60 */ { 7 ,0,20,116,264,270,272,462 }, /* w=60 */ { 7 ,1,9,236,290,356,468,552 }, /* w=60 */ { 7 ,1,81,127,202,226,266,531 }, /* w=60 */ { 7 ,1,127,202,226,266,468,531 }, /* w=63 */ { 7 ,1,148,229,323,531,542,555 }, /* w=64 */ { 7 ,1,202,291,330,340,533,555 }, /* w=60 */ { 7 ,2,96,155,172,269,330,365 }, /* w=61 */ { 7 ,4,96,262,283,497,561,574 }, /* w=63 */ { 7 ,5,84,348,409,428,490,499 }, /* w=63 */ { 7 ,5,114,124,189,194,344,365 }, /* w=63 */ { 7 ,5,158,188,297,446,479,503 }, /* w=62 */ { 7 ,5,167,344,365,446,479,574 }, /* w=60 */ { 8 ,5,167,365,368,446,479,540,574 }, /* w=66 */ { 7 ,5,365,368,446,479,540,574 }, /* w=63 */ { 7 ,9,58,133,275,370,453,542 }, /* w=60 */ { 7 ,9,90,226,291,389,401,440 }, /* w=61 */ { 7 ,9,90,272,291,389,401,440 }, /* w=61 */ { 7 ,9,90,344,364,382,398,564 }, /* w=60 */ { 7 ,9,90,344,382,398,401,564 }, /* w=63 */ { 7 ,9,133,208,297,301,396,523 }, /* w=60 */ { 7 ,9,170,208,297,301,396,523 }, /* w=60 */ { 7 ,9,170,251,288,297,396,523 }, /* w=60 */ { 7 ,9,170,251,297,396,401,523 }, /* w=62 */ { 7 ,9,284,291,330,548,559,587 }, /* w=62 */ { 7 ,9,284,291,330,548,559,588 }, /* w=61 */ { 7 ,9,284,291,330,558,559,587 }, /* w=62 */ { 7 ,9,291,313,330,340,559,587 }, /* w=64 */ { 8 ,12,116,159,244,245,398,423,478 }, /* w=62 */ { 7 ,15,70,206,264,347,533,551 }, /* w=60 */ { 7 ,15,70,264,347,488,533,551 }, /* w=61 */ { 7 ,15,264,347,488,533,551,578 }, /* w=61 */ { 7 ,20,63,79,264,283,384,520 }, /* w=60 */ { 8 ,20,73,107,120,280,432,480,551 }, /* w=63 */ { 8 ,20,116,249,264,333,364,398,402 }, /* w=60 */ { 8 ,20,134,196,339,348,354,444,479 }, /* w=60 */ { 7 ,20,194,264,269,347,458,515 }, /* w=62 */ { 7 ,20,199,264,347,458,488,494 }, /* w=61 */ { 7 ,20,264,306,347,358,420,458 }, /* w=60 */ { 7 ,20,264,306,347,458,488,494 }, /* w=60 */ { 7 ,20,264,347,488,523,551,578 }, /* w=65 */ { 7 ,20,280,347,480,488,551,578 }, /* w=61 */ { 9 ,23,128,242,354,374,465,479,588,594 }, /* w=65 */ { 8 ,23,128,242,354,374,479,588,594 }, /* w=61 */ { 7 ,24,59,152,219,269,533,542 }, /* w=61 */ { 8 ,28,75,118,213,374,407,490,575 }, /* w=60 */ { 8 ,31,54,92,184,348,453,479,548 }, /* w=63 */ { 7 ,31,54,184,348,453,479,548 }, /* w=60 */ { 7 ,46,133,208,347,416,458,599 }, /* w=60 */ { 8 ,46,196,216,264,297,307,378,407 }, /* w=62 */ { 7 ,47,52,119,266,304,425,475 }, /* w=61 */ { 7 ,52,102,120,152,244,264,348 }, /* w=63 */ { 7 ,52,102,120,152,244,348,499 }, /* w=62 */ { 7 ,54,120,184,348,453,479,548 }, /* w=62 */ { 8 ,55,102,131,152,293,333,500,551 }, /* w=62 */ { 8 ,57,171,191,306,347,401,408,435 }, /* w=62 */ { 7 ,58,181,284,291,348,425,517 }, /* w=64 */ { 7 ,60,122,251,291,401,497,528 }, /* w=60 */ { 7 ,62,133,142,173,400,416,587 }, /* w=62 */ { 7 ,63,79,99,264,283,520,568 }, /* w=62 */ { 8 ,70,108,212,284,293,330,548,588 }, /* w=64 */ { 7 ,70,108,284,293,330,548,588 }, /* w=61 */ { 8 ,70,108,293,330,343,514,548,588 }, /* w=62 */ { 7 ,72,196,266,304,361,479,512 }, /* w=60 */ { 7 ,79,99,194,264,283,520,568 }, /* w=62 */ { 7 ,84,143,293,298,348,356,432 }, /* w=60 */ { 7 ,90,175,226,291,400,401,440 }, /* w=62 */ { 7 ,96,173,184,208,579,587,598 }, /* w=60 */ { 7 ,99,116,183,264,358,372,462 }, /* w=61 */ { 7 ,99,198,340,358,372,416,458 }, /* w=60 */ { 7 ,102,116,124,183,264,372,450 }, /* w=60 */ { 7 ,102,116,124,183,264,372,462 }, /* w=61 */ { 7 ,102,152,293,344,348,499,510 }, /* w=60 */ { 7 ,102,264,269,379,458,462,497 }, /* w=62 */ { 8 ,103,142,146,236,303,401,535,565 }, /* w=64 */ { 7 ,108,284,291,293,330,548,588 }, /* w=61 */ { 7 ,112,178,181,217,234,419,425 }, /* w=60 */ { 8 ,116,159,244,245,249,364,398,478 }, /* w=61 */ { 7 ,127,132,235,242,354,398,578 }, /* w=62 */ { 7 ,127,186,226,291,313,347,458 }, /* w=61 */ { 7 ,127,198,208,213,347,447,458 }, /* w=60 */ { 7 ,128,239,304,356,358,479,512 }, /* w=60 */ { 8 ,128,242,354,374,465,479,588,594 }, /* w=60 */ { 7 ,131,148,219,409,453,460,542 }, /* w=60 */ { 7 ,133,279,313,347,425,428,587 }, /* w=64 */ { 7 ,137,148,208,219,453,460,542 }, /* w=66 */ { 7 ,137,148,219,409,453,460,542 }, /* w=63 */ { 8 ,142,236,303,401,454,535,552,565 }, /* w=64 */ { 7 ,148,239,282,304,313,356,358 }, /* w=60 */ { 7 ,152,179,284,291,330,561,574 }, /* w=62 */ { 7 ,152,284,291,293,330,348,548 }, /* w=61 */ { 7 ,155,160,236,332,420,436,556 }, /* w=62 */ { 7 ,155,196,265,266,302,304,530 }, /* w=60 */ { 7 ,155,251,269,304,425,462,497 }, /* w=60 */ { 7 ,155,269,330,365,374,398,462 }, /* w=61 */ { 7 ,239,302,304,356,358,458,512 }, /* w=62 */ { 7 ,239,304,313,338,358,458,512 }, /* w=60 */ { 7 ,239,304,313,356,358,458,512 }, /* w=62 */ { 8 ,284,291,330,443,546,558,559,587 }, /* w=62 */ { 7 ,304,306,313,356,358,458,512 }, /* w=61 */ { 0 } }; cliquer-1.21/testcases.c0000644000175000017500000003242111326254207013401 0ustar patpat/* * Unit tests for cliquer. * * Run by "make test". */ #include #include #include "cliquer.h" #define N 16 int small_max_cliques[][N] = { { 4, 0,2,4,7 }, { 0 } }; int small_3_sized_cliques[][N] = { { 4, 0,2,4,7 }, { 3, 2,4,7 }, { 3, 0,4,7 }, { 3, 0,2,7 }, { 3, 0,2,4 }, { 3, 0,2,5 }, { 3, 2,4,6 }, { 3, 1,4,6 }, { 0 } }; int large_max_cliques[][N] = { { 9, 6,29,152,284,378,388,409,561,594 }, { 9, 6,152,284,378,388,409,502,561,594 }, { 9, 12,24,62,159,205,231,312,423,509 }, { 9, 23,128,242,354,374,465,479,588,594 }, { 9, 35,46,196,264,297,307,378,476,541 }, { 9, 125,185,196,240,247,260,340,399,502 }, { 0 } }; int large_w_max_cliques[][N] = { { 8 ,5,167,365,368,446,479,540,574 }, /* w=66 */ { 7 ,137,148,208,219,453,460,542 }, /* w=66 */ { 0 } }; int large_w_exact_62_cliques[][N] = { { 7 ,5,158,188,297,446,479,503 }, /* w=62 */ { 7 ,9,170,251,297,396,401,523 }, /* w=62 */ { 7 ,9,284,291,330,548,559,587 }, /* w=62 */ { 7 ,9,284,291,330,558,559,587 }, /* w=62 */ { 8 ,12,116,159,244,245,398,423,478 }, /* w=62 */ { 7 ,20,194,264,269,347,458,515 }, /* w=62 */ { 8 ,46,196,216,264,297,307,378,407 }, /* w=62 */ { 7 ,52,102,120,152,244,348,499 }, /* w=62 */ { 7 ,54,120,184,348,453,479,548 }, /* w=62 */ { 8 ,55,102,131,152,293,333,500,551 }, /* w=62 */ { 8 ,57,171,191,306,347,401,408,435 }, /* w=62 */ { 7 ,62,133,142,173,400,416,587 }, /* w=62 */ { 7 ,63,79,99,264,283,520,568 }, /* w=62 */ { 8 ,70,108,293,330,343,514,548,588 }, /* w=62 */ { 7 ,79,99,194,264,283,520,568 }, /* w=62 */ { 7 ,90,175,226,291,400,401,440 }, /* w=62 */ { 7 ,102,264,269,379,458,462,497 }, /* w=62 */ { 7 ,127,132,235,242,354,398,578 }, /* w=62 */ { 7 ,152,179,284,291,330,561,574 }, /* w=62 */ { 7 ,155,160,236,332,420,436,556 }, /* w=62 */ { 7 ,239,302,304,356,358,458,512 }, /* w=62 */ { 7 ,239,304,313,356,358,458,512 }, /* w=62 */ { 8 ,284,291,330,443,546,558,559,587 }, /* w=62 */ { 0 } }; #include "testcase-large-over8.h" #include "testcase-large-exact8.h" #include "testcase-large-w-over60.h" #include "testcase-large-w-60-64-mxml.h" void test_single_clique(graph_t *g, int min_size, int max_size, boolean maximal, int (*sets)[N]); void test_single_w_clique(graph_t *g,int min_size,int max_size, boolean maximal, int (*sets)[N]); void test_all_cliques(graph_t *g, int min_size, int max_size, boolean maximal, int (*sets)[N]); void test_all_w_cliques(graph_t *g, int min_size, int max_size, boolean maximal, int (*sets)[N]); void test_user_function(graph_t *g, int min_size, int (*sets)[N]); void test_too_small_array(graph_t *g,int min_size, int (*sets)[N]); void test_max_weight(graph_t *g,int size); void test_reentrance(graph_t *g1,int min1, int max1, boolean maximal1, int (*sets1)[N], graph_t *g2,int min2,int max2, boolean maximal2,int (*sets2)[N]); int main(int argc, char *argv[]) { FILE *fp; graph_t *small, *large, *wlarge; /* No buffering on stdout */ setvbuf(stdout, (char *)NULL, _IONBF, 0); printf("\n"); printf("Running testcases: ELEMENTSIZE=%d, sizeof(setelement)=%d ", ELEMENTSIZE,(int)sizeof(setelement)); if ((sizeof(setelement)*8)!=ELEMENTSIZE) { printf("ERROR!\n"); printf("Mismatch between ELEMENTSIZE and actual size of " "setelement.\n"); printf("Please reconfigure and recompile.\n"); printf("\n"); exit(1); } printf("(OK)\n\n"); if (sizeof(unsigned long int) > sizeof(setelement)) { printf("NOTICE: Size of unsigned long int is greater than " "that of setelement.\n"); printf(" You may wish to redefine setelement.\n\n"); } if ((fp=fopen("testcase-small.a","rt"))==NULL) { perror("testcase-small.a"); return 1; } small=graph_read_dimacs(fp); fclose(fp); if (!small) { return 1; } large=graph_read_dimacs_file("testcase-large.b"); if (!large) { return 1; } if ((fp=fopen("testcase-large-w.b","rb"))==NULL) { perror("testcase-large-w.b"); return 1; } wlarge=graph_read_dimacs(fp); fclose(fp); if (!wlarge) { return 1; } clique_default_options->time_function=NULL; printf("Testing small: graph_test..."); if (!graph_test(small,NULL)) { printf("ERROR\n"); graph_test(small,stdout); return 1; } printf("OK\n"); printf("Testing large: graph_test..."); if (!graph_test(large,NULL)) { printf("ERROR\n"); graph_test(large,stdout); return 1; } printf("OK\n"); printf("Testing wlarge: graph_test..."); if (!graph_test(wlarge,NULL)) { printf("ERROR\n"); graph_test(wlarge,stdout); return 1; } printf("OK\n"); printf("\n"); printf("Testing small: single maximum clique..."); test_single_clique(small,0,0,FALSE,small_max_cliques); printf("Testing large: single maximum clique..."); test_single_clique(large,0,0,TRUE,large_max_cliques); printf("Testing small: single 3-sized clique..."); test_single_clique(small,3,0,FALSE,small_3_sized_cliques); printf("Testing large: single 8-sized clique..."); test_single_clique(large,8,0,FALSE,large_8_sized_cliques); printf("\n"); printf("Testing small: all maximum cliques..."); test_all_cliques(small,0,0,FALSE,small_max_cliques); printf("Testing large: all maximum cliques..."); test_all_cliques(large,0,0,TRUE,large_max_cliques); printf("Testing small: all min 3-sized cliques..."); test_all_cliques(small,3,0,FALSE, small_3_sized_cliques); printf("Testing large: all min 8-sized cliques..."); test_all_cliques(large,8,0,FALSE, large_8_sized_cliques); printf("Testing large: all exactly 8-sized cliques..."); test_all_cliques(large,8,8,FALSE,large_exact_8_sized_cliques); printf("\n"); printf("Testing large: max clique size..."); test_max_weight(large,9); printf("Testing weighted large: max clique weight..."); test_max_weight(wlarge,66); printf("\n"); printf("Testing large: user_function w/ abort for 8-sized cliques..."); test_user_function(large,8,large_8_sized_cliques); printf("Testing large: too small array for all maximum cliques..."); test_too_small_array(large,8,large_8_sized_cliques); printf("\n"); printf("Testing weighted large: single max weighted clique..."); test_single_w_clique(wlarge,0,0,FALSE,large_w_max_cliques); printf("Testing weighted large: single min 60 weighted clique..."); test_single_w_clique(wlarge,60,0,FALSE,large_w_60_sized_cliques); printf("Testing weighted large: single exactly 62 weighted clique..."); test_single_w_clique(wlarge,62,62,FALSE,large_w_exact_62_cliques); printf("Testing weighted large: all max weighted cliques..."); test_all_w_cliques(wlarge,0,0,TRUE,large_w_max_cliques); printf("Testing weighted large: all min 60 weighted cliques..."); test_all_w_cliques(wlarge,60,0,FALSE,large_w_60_sized_cliques); printf("Testing weighted large: all 60...64 weighted maximal cliques..."); test_all_w_cliques(wlarge,60,64,TRUE,large_w_60_64_maximal_cliques); printf("\n"); printf("Testing re-entrance..."); test_reentrance(wlarge,60,64,TRUE,large_w_60_64_maximal_cliques, small,0,0,FALSE,small_max_cliques); return 0; } static boolean list_contains(int (*sets)[N],set_t s,graph_t *g) { int i,j; boolean found; found=FALSE; for (i=0; sets[i][0]; i++) { if (set_size(s)==sets[i][0]) { found=TRUE; for (j=1; j<=sets[i][0]; j++) { if (!SET_CONTAINS(s,sets[i][j])) { found=FALSE; break; } } } if (found) break; } if (!found) { printf("ERROR (returned size=%d,",set_size(s)); if (g) printf(" weight=%d,",graph_subgraph_weight(g,s)); for (i=0; i0) && (w0) && (w>max_size))) { printf("ERROR (wrong weight, w=%d)\n",w); return; } printf("OK (w=%d)\n",w); return; } void test_all_cliques(graph_t *g, int min_size, int max_size, boolean maximal, int (*sets)[N]) { int correct_n; set_t s[1024]; int n; int i; for (correct_n=0; sets[correct_n][0]; correct_n++) ; clique_default_options->clique_list=s; clique_default_options->clique_list_length=1024; n=clique_unweighted_find_all(g,min_size,max_size,maximal,NULL); clique_default_options->clique_list=NULL; if (n!=correct_n) { printf("ERROR (returned %d cliques (!=%d))\n",n,correct_n); return; } for (i=0; iclique_list=s; clique_default_options->clique_list_length=1024; n=clique_find_all(g,min_size,max_size,maximal,NULL); clique_default_options->clique_list=NULL; if (n!=correct_n) { printf("ERROR (returned %d cliques (!=%d))\n",n,correct_n); return; } for (i=0; iuser_data; if (!list_contains(sets,s,g)) return FALSE; user_fnct_cnt--; if (!user_fnct_cnt) return FALSE; return TRUE; } #define MAGIC 386 void test_user_function(graph_t *g, int min_size, int (*sets)[N]) { int n; user_fnct_cnt=MAGIC; clique_default_options->user_function=user_function_count; clique_default_options->user_data=sets; n=clique_unweighted_find_all(g,min_size,0,FALSE, clique_default_options); clique_default_options->user_function=NULL; clique_default_options->user_data=NULL; if (n!=MAGIC) { printf("ERROR (returned %d cliques (!=%d))\n",n,MAGIC); return; } printf("OK\n"); return; } #define MAGIC2 123 void test_too_small_array(graph_t *g,int min_size, int (*sets)[N]) { set_t s[MAGIC2+10]; int i,n; int correct_n; for (correct_n=0; sets[correct_n][0]; correct_n++) ; for (i=0; iuser_function=NULL; clique_default_options->clique_list=s; clique_default_options->clique_list_length=MAGIC2; n=clique_unweighted_find_all(g,min_size,0,FALSE, clique_default_options); clique_default_options->user_data=NULL; clique_default_options->clique_list=NULL; for (i=MIN(n,MAGIC2); iuser_data; clique_options localopts; int correct_n; set_t s[1024]; int n; int i; for (correct_n=0; sopt->sets[correct_n][0]; correct_n++) ; localopts.reorder_function=NULL; localopts.reorder_map=NULL; localopts.time_function=NULL; localopts.user_function=NULL; localopts.clique_list=s; localopts.clique_list_length=1024; n=clique_find_all(sopt->g,sopt->min,sopt->max,sopt->maximal, &localopts); if (n!=correct_n) { printf("ERROR (returned %d cliques (!=%d))\n",n,correct_n); return FALSE; } for (i=0; isets,s[i],sopt->g)) { printf("(inner loop)\n"); return FALSE; } } return TRUE; } void test_reentrance(graph_t *g1,int min1, int max1, boolean maximal1, int (*sets1)[N], graph_t *g2,int min2,int max2, boolean maximal2,int (*sets2)[N]) { struct searchopts sopt; int correct_n; set_t s[1024]; int n; int i; for (correct_n=0; sets1[correct_n][0]; correct_n++) ; sopt.g=g2; sopt.min=min2; sopt.max=max2; sopt.maximal=maximal2; sopt.sets=sets2; clique_default_options->user_function=reentrance_user_function; clique_default_options->user_data=&sopt; clique_default_options->clique_list=s; clique_default_options->clique_list_length=1024; n=clique_find_all(g1,min1,max1,maximal1,NULL); clique_default_options->user_function=NULL; clique_default_options->clique_list=NULL; if (n!=correct_n) { printf("ERROR (returned %d cliques (!=%d)) (outer loop)\n", n,correct_n); return; } for (i=0; i