pax_global_header 0000666 0000000 0000000 00000000064 12613474024 0014515 g ustar 00root root 0000000 0000000 52 comment=62a3154bb3b7ee97c4fbc851e2eebe8a78ca6d88
depqbf-version-5.0/ 0000775 0000000 0000000 00000000000 12613474024 0014305 5 ustar 00root root 0000000 0000000 depqbf-version-5.0/COPYING 0000664 0000000 0000000 00000104513 12613474024 0015344 0 ustar 00root root 0000000 0000000 GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
Copyright (C)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
Copyright (C)
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
.
depqbf-version-5.0/DepQBF4J-0.2/ 0000775 0000000 0000000 00000000000 12613474024 0016041 5 ustar 00root root 0000000 0000000 depqbf-version-5.0/DepQBF4J-0.2/COPYING 0000664 0000000 0000000 00000104513 12613474024 0017100 0 ustar 00root root 0000000 0000000 GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
Copyright (C)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
Copyright (C)
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
.
depqbf-version-5.0/DepQBF4J-0.2/ChangeLog 0000664 0000000 0000000 00000000154 12613474024 0017613 0 ustar 00root root 0000000 0000000 2014-02-18 Version 0.2:
* Added clause group API.
2014-05-08 Version 0.1:
* Initial release of DepQBF4J.
depqbf-version-5.0/DepQBF4J-0.2/README 0000664 0000000 0000000 00000006707 12613474024 0016733 0 ustar 00root root 0000000 0000000
February 2015
-------------------
GENERAL INFORMATION
-------------------
DepQBF is a QBF solver written in C. DepQBF4J enables java applications to use
DepQBF as a library. It provides a wrapper for the API functions of DepQBF
which is implemented using the Java Native Interface (JNI).
This is in particular interesting, because now not only applications written
in C/C++ but also in Java can benefit from the advantages of DepQBF such as:
- no need to write the QBF formulas to a file. Instead, the formula can be
added to DepQBF using its API functions. This is expected to produce less
I/O overhead compared to calling DepQBF via system calls from a Java
program and reading the formula from a file.
- make use of incremental QBF solving (possibly a huge performance
increase, depending on your application domain)
- QBF solving under assumptions (for advanced users)
This version of DepQBF4J builds upon DepQBF 4.0. It is compatible with later,
modified versions of DepQBF provided that the signature of the functions in
DepQBF's API (see the header file 'qdpll.h' in the source distribution of
DepQBF) do not change compared to DepQBF 4.0. It is possible to add new
functions to DepQBF's API without the need to change the current version of
DepQBF4J.
The purpose of DepQBF4J is to make QBF solving more accessible to users who
prefer Java over C and who are interested in using QBF as a modeling language
for their applications.
The SAT solver Sat4j (http://www.sat4j.org/) is related to DepQBF4J in that it
provides SAT solving for Java applications. Sat4j, however, is written
entirely in Java whereas DepQBF4J is a Java wrapper for DepQBF, which is
written in C.
Many thanks to Florian Lonsing for his great help.
-------
LICENSE
-------
DepQBF4J is free software released under GPLv3:
https://www.gnu.org/copyleft/gpl.html
See also the file COPYING.
-------------------------------------------
COMPILING DepQBF4J AND RUNNING ITS EXAMPLES
-------------------------------------------
1) Extract the compressed DepQBF4J archive.
2) Change into the folder 'jni' and build DepQBF + DepQBF4J with the
command 'make'. In case the environment variable JAVA_HOME is not
specified on your system, edit the makefile and uncomment the line
'#JAVA_HOME=/usr/lib/jvm/java-6-sun-1.6.0.26' (if necessary, edit
according to your java setup. The header file 'jni.h' must be found
under the path given by the environment variable JAVA_HOME).
3) Change back into the directory where this readme file is located.
4) Run the examples from the current directory with the following commands:
java -ea -Djava.library.path=jni -cp src/ depqbf4j.Example_basic_api_example
java -ea -Djava.library.path=jni -cp src/ depqbf4j.Example_basic_api_example2
java -ea -Djava.library.path=jni -cp src/ depqbf4j.Example_basic_api_example3
java -ea -Djava.library.path=jni -cp src/ depqbf4j.Example_basic_manual_selectors
java -ea -Djava.library.path=jni -cp src/ depqbf4j.Example_basic_clause_groups_api_example
NOTE: add the option -ea only if you want to enable assertions.
These examples demonstrate the use of DepQBF4J in Java programs. They
replicate the C code examples which are part of the DepQBF source
distribution.
-------
CONTACT
-------
For comments, questions, bug reports etc. related to DepQBF4J, do not
hesitate to contact Martin Kronegger and/or Andreas Pfandler:
http://dbai.tuwien.ac.at/staff/kronegger/
http://dbai.tuwien.ac.at/staff/pfandler/
depqbf-version-5.0/DepQBF4J-0.2/jni/ 0000775 0000000 0000000 00000000000 12613474024 0016621 5 ustar 00root root 0000000 0000000 depqbf-version-5.0/DepQBF4J-0.2/jni/DepQBF4J.c 0000664 0000000 0000000 00000020013 12613474024 0020220 0 ustar 00root root 0000000 0000000 /*
This file is part of DepQBF4J.
DepQBF4J, a tool that enables Java applications to use DepQBF as a library.
Copyright 2014, 2015 Martin Kronegger and Andreas Pfandler
Vienna University of Technology, Vienna, Austria.
DepQBF4J is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
DepQBF4J is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with DepQBF4J. If not, see .
*/
#include "depqbf/qdpll.h"
#include "depqbf4j_DepQBF4J.h"
#include
#define FORCE_FLUSH 1
QDPLL * solver;
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_create (JNIEnv * env, jclass cls) {
solver = qdpll_create();
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_delete (JNIEnv * env, jclass cls) {
qdpll_delete(solver);
solver = 0;
}
JNIEXPORT jstring JNICALL Java_depqbf4j_DepQBF4J_configure (JNIEnv * env, jclass cls, jstring conf_str) {
const char * str = (*env)->GetStringUTFChars(env,conf_str,0);
char * result = qdpll_configure(solver,(char*)str);
(*env)->ReleaseStringUTFChars(env, conf_str, str);
return (*env)->NewStringUTF(env, result);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_adjustVars (JNIEnv * env, jclass cls, jint varID) {
qdpll_adjust_vars(solver, varID);
}
JNIEXPORT jint JNICALL Java_depqbf4j_DepQBF4J_getMaxScopeNesting (JNIEnv * env, jclass cls) {
return qdpll_get_max_scope_nesting (solver);
}
JNIEXPORT jint JNICALL Java_depqbf4j_DepQBF4J_pop (JNIEnv * env, jclass cls) {
return qdpll_pop(solver);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_gc (JNIEnv * env, jclass cls) {
qdpll_gc(solver);
}
JNIEXPORT jint JNICALL Java_depqbf4j_DepQBF4J_push (JNIEnv * env, jclass cls) {
return qdpll_push(solver);
}
JNIEXPORT jint JNICALL Java_depqbf4j_DepQBF4J_newScope (JNIEnv * env, jclass cls, jbyte qType) {
return qdpll_new_scope(solver,qType);
}
JNIEXPORT jint JNICALL Java_depqbf4j_DepQBF4J_newScopeAtNesting (JNIEnv * env, jclass cls, jbyte qType, jint nesting) {
return qdpll_new_scope_at_nesting(solver,qType,nesting);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_addVarToScope (JNIEnv * env, jclass cls, jint id, jint nesting) {
qdpll_add_var_to_scope (solver,id,nesting);
}
JNIEXPORT jboolean JNICALL Java_depqbf4j_DepQBF4J_hasVarActiveOccs (JNIEnv * env, jclass cls, jint varID) {
return qdpll_has_var_active_occs (solver, varID);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_add (JNIEnv * env, jclass cls, jint litID) {
qdpll_add(solver, litID);
}
JNIEXPORT jbyte JNICALL Java_depqbf4j_DepQBF4J_sat (JNIEnv * env, jclass cls) {
return qdpll_sat(solver);
}
JNIEXPORT jbyte JNICALL Java_depqbf4j_DepQBF4J_getValue (JNIEnv * env, jclass cls, jint varID) {
return qdpll_get_value(solver,varID);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_printToStdOut (JNIEnv * env, jclass cls) {
qdpll_print(solver,stdout);
#if FORCE_FLUSH
fflush(stdout);
#endif
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_printToFile (JNIEnv * env, jclass cls, jstring name) {
const char *str;
str = (*env)->GetStringUTFChars(env, name, NULL);
FILE *f = fopen(str, "w");
qdpll_print(solver,f);
fclose(f);
(*env)->ReleaseStringUTFChars(env, name, str);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_printQdimacsOutput (JNIEnv * env, jclass cls) {
qdpll_print_qdimacs_output(solver);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_initDeps (JNIEnv * env, jclass cls) {
qdpll_init_deps(solver);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_resetDeps (JNIEnv * env, jclass cls) {
qdpll_reset_deps (solver);
}
JNIEXPORT jboolean JNICALL Java_depqbf4j_DepQBF4J_varDepends (JNIEnv * env, jclass cls, jint varID1, jint varID2) {
return qdpll_var_depends(solver, varID1, varID2);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_printDeps (JNIEnv * env, jclass cls, jint varID) {
qdpll_print_deps(solver,varID);
}
JNIEXPORT jint JNICALL Java_depqbf4j_DepQBF4J_getMaxDeclaredVarId (JNIEnv * env, jclass cls) {
return qdpll_get_max_declared_var_id (solver);
}
JNIEXPORT jboolean JNICALL Java_depqbf4j_DepQBF4J_isVarDeclared (JNIEnv * env, jclass cls, jint varID) {
return qdpll_is_var_declared (solver, varID);
}
JNIEXPORT jint JNICALL Java_depqbf4j_DepQBF4J_getNestingOfVar (JNIEnv * env, jclass cls, jint varID) {
return qdpll_get_nesting_of_var(solver, varID);
}
JNIEXPORT jbyte JNICALL Java_depqbf4j_DepQBF4J_getScopeType (JNIEnv * env, jclass cls, jint nesting) {
return qdpll_get_scope_type (solver, nesting);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_dumpDepGraph (JNIEnv * env, jclass cls) {
qdpll_dump_dep_graph(solver);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_printStats (JNIEnv * env, jclass cls) {
qdpll_print_stats(solver);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_reset (JNIEnv * env, jclass cls) {
qdpll_reset(solver);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_resetStats (JNIEnv * evn, jclass cls) {
qdpll_reset_stats(solver);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_resetLearnedConstraints (JNIEnv *env, jclass cls) {
qdpll_reset_learned_constraints(solver);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_assume (JNIEnv * env, jclass cls, jint litID) {
qdpll_assume (solver, litID);
}
JNIEXPORT jintArray JNICALL Java_depqbf4j_DepQBF4J_getAssumptionCandidates (JNIEnv * env, jclass cls) {
jintArray result;
LitID * ac = qdpll_get_assumption_candidates(solver);
int numElem = sizeof(ac) / sizeof(LitID);
result = (*env)->NewIntArray(env, numElem);
if (result == NULL) {
return NULL; /* out of memory */
}
(*env)->SetIntArrayRegion(env,result,0,numElem,ac);
free(ac);
return result;
}
JNIEXPORT jintArray JNICALL Java_depqbf4j_DepQBF4J_getRelevantAssumptions (JNIEnv * env, jclass cls) {
jintArray result;
LitID * ra = qdpll_get_relevant_assumptions(solver);
int numElem = sizeof(ra) / sizeof(LitID);
result = (*env)->NewIntArray(env, numElem);
if (result == NULL) {
return NULL; /* out of memory */
}
(*env)->SetIntArrayRegion(env,result,0,numElem,ra);
free(ra);
return result;
}
/* ------------ START: API functions for clause groups ------------ */
JNIEXPORT jint JNICALL Java_depqbf4j_DepQBF4J_newClauseGroup (JNIEnv * env, jclass cls) {
return qdpll_new_clause_group (solver);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_deleteClauseGroup (JNIEnv * env, jclass cls, jint cgid) {
qdpll_delete_clause_group (solver, cgid);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_openClauseGroup (JNIEnv * env, jclass cls, jint cgid) {
qdpll_open_clause_group (solver, cgid);
}
JNIEXPORT jint JNICALL Java_depqbf4j_DepQBF4J_getOpenClauseGroup (JNIEnv * env, jclass cls) {
return qdpll_get_open_clause_group (solver);
}
JNIEXPORT jboolean JNICALL Java_depqbf4j_DepQBF4J_existsClauseGroup (JNIEnv * env, jclass cls, jint cgid) {
return qdpll_exists_clause_group (solver, cgid);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_closeClauseGroup (JNIEnv * env, jclass cls, jint cgid) {
qdpll_close_clause_group (solver, cgid);
}
JNIEXPORT jintArray JNICALL Java_depqbf4j_DepQBF4J_getRelevantClauseGroups (JNIEnv * env, jclass cls) {
jintArray result;
ClauseGroupID * ra = qdpll_get_relevant_clause_groups(solver);
int numElem = sizeof(ra) / sizeof(ClauseGroupID);
result = (*env)->NewIntArray(env, numElem);
if (result == NULL) {
return NULL; /* out of memory */
}
(*env)->SetIntArrayRegion(env,result,0,numElem,(const jint *)ra);
free(ra);
return result;
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_activateClauseGroup (JNIEnv * env, jclass cls, jint cgid) {
qdpll_activate_clause_group (solver, cgid);
}
JNIEXPORT void JNICALL Java_depqbf4j_DepQBF4J_deactivateClauseGroup (JNIEnv * env, jclass cls, jint cgid) {
qdpll_deactivate_clause_group (solver, cgid);
}
/* ------------ END: API functions for clause groups ------------ */
depqbf-version-5.0/DepQBF4J-0.2/jni/Makefile 0000664 0000000 0000000 00000002655 12613474024 0020271 0 ustar 00root root 0000000 0000000 LPATH=-L.
CFLAGS=-Wextra -Wall -Wno-unused -pedantic -std=c99 -DNDEBUG -O3
#JAVA_HOME=/usr/lib/jvm/java-6-sun-1.6.0.26
JAVAC=/usr/bin/javac
JAVAH=/usr/bin/javah
OBJECTS=DepQBF4J.o
DEPQBF_DIR=depqbf
LIBDEPQBF4J=libdepqbf4j.so
LIBQDPLL=$(DEPQBF_DIR)/libqdpll.a
JAVA_PACKAGE=depqbf4j
JAVA_PATH_PREFIX=../src
JAVA_INTERFACE_CLASS=$(JAVA_PATH_PREFIX)/$(JAVA_PACKAGE)/DepQBF4J.class
JAVA_INTERFACE_SOURCE=$(JAVA_PATH_PREFIX)/$(JAVA_PACKAGE)/DepQBF4J.java
DEPQBF_CFLAGS=$(shell sed -n 's/^CFLAGS=\(.*\)$$/\1/p' $(DEPQBF_DIR)/makefile) -fPIC
MAJOR=1
MINOR=0
VERSION=$(MAJOR).$(MINOR)
.PHONY: clean cleanall
$(LIBDEPQBF4J): $(LIBDEPQBF4J).$(VERSION)
ln -fs $@.$(VERSION) $@
$(JAVA_INTERFACE_CLASS): $(JAVA_INTERFACE_SOURCE)
$(MAKE) -C $(JAVA_PATH_PREFIX)/$(JAVA_PACKAGE)/
depqbf4j_DepQBF4J.h: $(JAVA_INTERFACE_CLASS)
$(JAVAH) -classpath $(JAVA_PATH_PREFIX)/ $(JAVA_PACKAGE).DepQBF4J
$(LIBQDPLL):
$(MAKE) -C $(DEPQBF_DIR)/ libqdpll.a CFLAGS="$(DEPQBF_CFLAGS)"
$(MAKE) -C $(DEPQBF_DIR)
DepQBF4J.o: DepQBF4J.c depqbf4j_DepQBF4J.h
$(CC) $(CFLAGS) -fPIC -c DepQBF4J.c -I $(JAVA_HOME)/include -I $(JAVA_HOME)/include/linux
$(LIBDEPQBF4J).$(VERSION): $(OBJECTS) $(LIBQDPLL)
$(CC) $(CFLAGS) $(OBJECTS) $(LIBQDPLL) -shared -Wl,-soname,depqbf4j.so.$(MAJOR) -o $@
clean:
rm -f DepQBF4J.o depqbf4j_DepQBF4J.h $(LIBDEPQBF4J).$(VERSION) $(LIBDEPQBF4J)
cleanall: clean
$(MAKE) -C $(JAVA_PATH_PREFIX)/$(JAVA_PACKAGE)/ clean
$(MAKE) -C $(DEPQBF_DIR)/ clean
depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/ 0000775 0000000 0000000 00000000000 12613474024 0020062 5 ustar 00root root 0000000 0000000 depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/COPYING 0000664 0000000 0000000 00000104513 12613474024 0021121 0 ustar 00root root 0000000 0000000 GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
Copyright (C)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
Copyright (C)
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
.
depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/NEWS 0000664 0000000 0000000 00000001075 12613474024 0020564 0 ustar 00root root 0000000 0000000
----
NEWS
----
October 26 2015:
release of version 5.0
- includes blocked clause elimination (QBCE)
- dynamic QBCE
- preprocessing QBCE
- inprocessing QBCE
June 9 2015:
release of version 4.01
February 18 2015:
release of version 4.0
September 30 2014:
release of version 3.04
May 8 2014:
release of version 3.03,
including DepQBF4J version 0.1
April 23 2014:
release of version 3.02
April 2014:
release of version 3.01
February 2014:
release of version 3.0
August 2013:
release of version 2.0
July 2012:
release of version 1.0
depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/README 0000664 0000000 0000000 00000031133 12613474024 0020743 0 ustar 00root root 0000000 0000000
October 2015
-------------------
GENERAL INFORMATION
-------------------
IMPORTANT: please see the guidelines on preprocessing, incremental solving and
API usage below.
This is version 5.0 of the search-based QBF solver DepQBF. Version 5.0
includes blocked clause elimination (QBCE) as a pre- and inprocessing
technique and as a novel dynamic approach (enabled by default) where QBCE is
interleaved with the search process. The QBCE variants are currently available
only in non-incremental mode. The novel dynamic QBCE approach is described in
the following paper (proceedings of LPAR 2015):
F. Lonsing, F. Bacchus, A. Biere, U. Egly, and M. Seidl: "Enhancing
Search-Based QBF Solving by Dynamic Blocked Clause Elimination". In
Proceedings of LPAR 2015, LNCS, Springer, 2015.
DepQBF provides an API for incremental solving based on clause groups. A
clause group is a set of clauses which is incrementally added to and removed
from a formula. A description of the API can be found in the following tool
paper (proceedings of SAT 2015):
F. Lonsing and U. Egly: "Incrementally Computing Minimal Unsatisfiable Cores
of QBFs via a Clause Group Solver API". In Proceedings of SAT 2015, volume
9340 of LNCS, Springer, 2015. Preprint: http://arxiv.org/abs/1502.02484
This release also includes DepQBF4J, a Java interface to DepQBF which
allows to call DepQBF as a library from Java programs. Please see the README
file in the subdirectory './DepQBF4J-0.2' for further information and usage
examples. DepQBF4J is based on the Java Native Interface (JNI) and was
implemented by Martin Kronegger and Andreas Pfandler.
PLEASE SEE the header file 'qdpll.h', the examples in the subdirectory
'examples', and the command line documentation (call './depqbf -h') for
further information on using DepQBF and its library.
The example './examples/basic-api-example2.c' demonstrates the basic use of
the API and, in particular, the 'qdpll_gc' function. The clause group API is
illustrated by './examples/basic-clause-groups-api-example.c'
Many thanks to Robert Koenighofer, Adria Gascon, Thomas Krennwallner, Martin
Kronegger, Andreas Pfandler, and Simon Cruanes for valuable feedback.
--------
FEATURES
--------
General features of DepQBF:
- Since version 5.0: pre- and inprocessing by blocked clause elimination
(QBCE) and dynamic QBCE (enabled by default). See also './depqbf -h' for
configuration options. The QBCE variants are currently available only in
non-incremental mode.
- The solver can be used as a library. The API is declared in file 'qdpll.h'
and the examples in the subdirectory 'examples' demonstrate its basic use.
- Incremental solving: Incremental solving can be beneficial in applications
where a sequence of closely related formulae must be solved. This way, the
solver does not have to solve each formula from scratch but tries to reuse
information learned from previously solved formulae. DepQBF supports
incremental solving by a push/pop API and a clause group API. The push/pop
API allows to add and remove sets of clauses in a stack-based way. The
clause group API is more general and supports addition and deletion of
arbitrary sets of clauses.
- Extraction of unsatisfiable cores: for unsatisfiable formulas, an
unsatisfiable core (i.e. subset of clauses) can be extracted via the clause
group API in a convenient way.
- Solving under assumptions: assumptions are fixed variable assignments from
the leftmost quantifier block of a QBF. Assumptions can be added through the
solver API. In forthcoming calls, the solver tries to solve the formula
under the assignments given by the added assumptions.
- Long-distance resolution for clause and cube learning: traditional
Q-resolution explicitly rules out the generation of tautological
resolvents. In contrast to that, long-distance resolution admits certain
tautological resolvents. It was first implemented in the QBF solver
'quaffle' and is now also available in DepQBF.
- Advanced clause and cube learning based on QBF Pseudo Unit Propagation as
presented in the following paper: "Florian Lonsing, Uwe Egly, Allen Van
Gelder: Efficient Clause Learning for Quantified Boolean Formulas via QBF
Pseudo Unit Propagation. In Proc. SAT 2013."
NOTE: by default, this version of DepQBF applies a lazy variant of
QPUP-based QCDCL where no resolution steps are carried out. The traditional
approach to QCDCL which was implemented in earlier versions of DepQBF is
still available by command line option '--traditional-qcdcl'. Please see
also the command line documentation by calling './depqbf -h'.
- Generation of QDIMACS output (partial certificate): if the outermost
(i.e. leftmost) quantifier block of a satisfiable QBF is existentially
quantified, then DepQBF can print an assignment to the variables of this
block (and dually for unsatisfiable QBFs and universal variables from the
outermost block, if that block is universally quantified). To enable QDIMACS
output generation, run DepQBF with parameter '--qdo'. Note that the
assignment printed by DepQBF can be partial, i.e. not all variables are
necessarily assigned. In this case, the variables for which no value was
printed can be assigned arbitrarily.
- Trace generation (contributed by Aina Niemetz): DepQBF can produce traces in
QRP format (ASCII and binary version of the QRP format are supported; see
also the command line documentation). If called with the '--trace' option,
the solver prints *every* resolution step during clause and cube learning to
. The output format is QRP ("Q-Resolution Proof"). For example, the
call './depqbf --trace input-formula.qdimacs > trace.qrp' dumps the trace
for the QBF 'input-formula.qdimacs' to the file 'trace.qrp'. The generated
trace file can be used to extract a certificate of (un)satisfiability of the
given formula using additional tools. See also the website
'http://fmv.jku.at/qbfcert/' and the related tool paper published at SAT'12.
NOTE: tracing is currently not supported in incremental solving and must be
combined with the trivial dependency scheme (i.e. the linear quantifier
prefix ordering) by option '--dep-man=simple'. Further, to enable tracing
for QPUP-based QCDCL, '--no-lazy-qpup' must be specified.
DepQBF consists of a dependency manager (file 'qdpll_dep_man_qdag.c') and a
core QDPLL solver (file 'qdpll.c'). During a run the solver queries the
dependency manager to find out if there is a dependency between two variables,
say 'x' and 'y'. Given the original quantifier prefix of a QBF, there is such
dependency if 'x' is quantified to the left of 'y' and 'x' and 'y' are
quantified differently. In contrast to that simple approach, DepQBF (in
general) is able to extract more sophisticated dependency information from the
given QBF. It computes the so-called 'standard dependency scheme' which is
represented as a compact graph by the dependency manager.
If you are interested only in the core solver based on QDPLL then it is
probably best not to look at the code of the dependency manager in file
'qdpll_dep_man_qdag.c' at all but only consider file 'qdpll.c'.
-------
LICENSE
-------
DepQBF is free software released under GPLv3:
https://www.gnu.org/copyleft/gpl.html
See also the file COPYING.
------------
INSTALLATION
------------
The latest release is available from http://lonsing.github.io/depqbf/
Unpack the sources into a directory and call 'make'. This produces optimized
code without assertions (default).
If you want to use the solver as a library in your own applications, then link
against 'libqdpll.a'.
Note: set the flag 'FULL_ASSERT' in file 'qdpll_config.h' from 0 to 1 to
switch on *expensive* assertions (recommended only for debugging). The solver
will run *substantially* slower in this case. As usual, using the compiler
flag 'DNDEBUG' removes all assertions from the code, regardless from the value
of 'FULL_ASSERT'.
-----------------------
CONFIGURATION AND USAGE
-----------------------
Call './depqbf -h' to display usage information. Further, undocumented command
line parameters can be found in function 'qdpll_configure(...)' in file
'qdpll.c'. These parameters are mostly experimental.
The solver returns exit code 10 if the given instance was found satisfiable
and exit code 20 if the instance was found unsatisfiable. Any other exit code
indicates that the instance was not solved.
Parameter '-v' enables basic verbose mode where the solver prints information
on restarts and backtracks to . More occurrences of '-v' result in
heavy verbose mode where information on individual assignments is
printed. This can slow down the solver considerably and should be used for
debugging only.
Trace generation can be enabled by parameter '--trace'. Note that printing the
tracing information causes I/O overhead and might slow down the
solver. Writing traces in binary QRP format (enabled by parameter
'--trace=bqrp') usually produces smaller traces, as far as byte size is
concerned.
Calling DepQBF without command line parameters results in default behaviour
which was tuned on instances from QBFLIB. For performance comparisons with
other solvers it is recommended not to pass any command line parameters to
DepQBF.
By default, statistical output is disabled. To enable statistics, set the flag
'COMPUTE_STATS' in file 'qdpll_config.h' from 0 to 1. Similarly, time
statistics can be enabled by setting flag 'COMPUTE_STATS'.
-------------------------------
IMPORTANT NOTE ON PREPROCESSING
-------------------------------
Version 5.0 includes blocked clause elimination (QBCE) as a pre- and inprocessing
technique and as a novel dynamic approach (enabled by default) where QBCE is
interleaved with the search process. The QBCE variants are currently available
only in non-incremental mode.
Depending on your application, preprocessors such as Bloqqer [1] and/or QxBF [2], for
example, may improve the performance of DepQBF further.
HOWEVER: depending on the given instance, preprocessing by Bloqqer may be
harmful to the performance of DepQBF version 5.0 in its default configuration
(using dynamic QBCE).
[1] http://fmv.jku.at/bloqqer/
[2] http://fmv.jku.at/qxbf/
----------------------------------------------------
IMPORTANT NOTES ON INCREMENTAL SOLVING AND API USAGE
----------------------------------------------------
Please see the header file 'qdpll.h' for some documentation of the API
functions.
When using the API of the solver (versions 3.0 or later), it is HIGHLY
RECOMMENDED to first add all the variables to the quantifier prefix and then
all the clauses of the formula rather than adding variables and clauses in
interleaved fashion. In the latter case, runtime overhead will occur for large
formulas. Many thanks to Mathias Preiner for pointing out this problem.
In applications which involve a very large number of incremental calls, the
overhead of maintaining the internal data structures in this release of DepQBF
might become non-negligible. In this case, please contact Florian Lonsing;
your feedback is highly appreciated.
Incremental solving must be enabled by calling the API function
'qdpll_configure' with the parameters '--dep-man=simple' and
'--incremental-use', respectively. Please see also the example programs in the
subdirectory 'examples'.
The push/pop API allows to add and remove clauses in a stack-based
way. Therefore, clauses which are shared between many formulas to be solved
should be pushed onto the stack first. Clauses which have to be removed soon
should be added last so that they can be popped from the stack easily.
In general, it is beneficial for the performance of the solver to avoid
needless push operations. For example, if you know that certain clauses will
never be removed from the formula then it is not necessary to call
'qdpll_push' before adding these clauses.
The clause group API generalizes the push/pop API in that it allows sets of
clauses to be added and removed arbitrarily. It is recommended to use the
push/pop API instead of the clause group API for applications which naturally
can be encoded by push and pop operations, that is, where the formulas to be
solved incrementally are modified in a rather uniform way.
If assumptions are passed to the solver using 'qdpll_assume' AND clauses are
added later to the formula, then the API function 'qdpll_configure' must be
called with the parameters '--dep-man=simple' and '--incremental-use' after
the solver object has been created by 'qdpll_create'. Otherwise, if no clauses
are added, then the aforementioned calls of the API function 'qdpll_configure'
can be omitted.
-------
CONTACT
-------
For comments, questions, bug reports etc. related to DepQBF, please do not
hesitate to contact Florian Lonsing:
http://www.kr.tuwien.ac.at/staff/lonsing/
http://lonsing.github.io/depqbf/
depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/examples/ 0000775 0000000 0000000 00000000000 12613474024 0021700 5 ustar 00root root 0000000 0000000 depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/examples/basic-api-example.c 0000664 0000000 0000000 00000006420 12613474024 0025327 0 ustar 00root root 0000000 0000000 #include
#include
#include
#include
#include "../qdpll.h"
int main (int argc, char** argv)
{
/* The header file 'qdpll.h' has some comments regarding the usage of the
API. */
/* Please see also the file 'basic-manual-selectors.c'. */
/* Create solver instance. */
QDPLL *depqbf = qdpll_create ();
/* Use the linear ordering of the quantifier prefix. */
qdpll_configure (depqbf, "--dep-man=simple");
/* Enable incremental solving. */
qdpll_configure (depqbf, "--incremental-use");
/* Add and open a new leftmost universal block at nesting level 1. */
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_FORALL, 1);
/* Add a fresh variable with 'id == 1' to the open block. */
qdpll_add (depqbf, 1);
/* Close open scope. */
qdpll_add (depqbf, 0);
/* Add a new existential block at nesting level 2. */
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_EXISTS, 2);
/* Add a fresh variable with 'id == 2' to the existential block. */
qdpll_add (depqbf, 2);
/* Close open scope. */
qdpll_add (depqbf, 0);
/* Add clause: 1 -2 0 */
qdpll_add (depqbf, 1);
qdpll_add (depqbf, -2);
qdpll_add (depqbf, 0);
/* Add clause: -1 2 0 */
qdpll_add (depqbf, -1);
qdpll_add (depqbf, 2);
qdpll_add (depqbf, 0);
/* At this point, the formula looks as follows:
p cnf 2 3
a 1 0
e 2 0
1 -2 0
-1 2 0 */
/* Print formula. */
qdpll_print (depqbf, stdout);
QDPLLResult res = qdpll_sat (depqbf);
/* Expecting that the formula is satisfiable. */
assert (res == QDPLL_RESULT_SAT);
/* res == 10 means satisfiable, res == 20 means unsatisfiable. */
printf ("result is: %d\n", res);
/* Must reset the solver before adding further clauses or variables. */
qdpll_reset (depqbf);
/* Open a new frame of clauses. Clauses added after the 'push' can be
removed later by calling 'pop'. */
qdpll_push (depqbf);
/* Add clause: 1 2 0 */
qdpll_add (depqbf, 1);
qdpll_add (depqbf, 2);
qdpll_add (depqbf, 0);
printf ("added clause '1 2 0' to a new stack frame.\n", res);
/* At this point, the formula looks as follows:
p cnf 2 3
a 1 0
e 2 0
1 -2 0
-1 2 0
1 2 0 */
qdpll_print (depqbf, stdout);
res = qdpll_sat (depqbf);
/* Expecting that the formula is unsatisfiable due to the most recently
added clause. */
assert (res == QDPLL_RESULT_UNSAT);
printf ("result is: %d\n", res);
/* Print partial countermodel as a value of the leftmost universal variable. */
QDPLLAssignment a = qdpll_get_value (depqbf, 1);
printf ("partial countermodel - value of 1: %s\n", a == QDPLL_ASSIGNMENT_UNDEF ? "undef" :
(a == QDPLL_ASSIGNMENT_FALSE ? "false" : "true"));
qdpll_reset (depqbf);
/* Discard the clause '1 2 0' by popping off the topmost frame. */
qdpll_pop (depqbf);
printf ("discarding clause '1 2 0' by a 'pop'.\n", res);
/* At this point, the formula looks as follows:
p cnf 2 3
a 1 0
e 2 0
1 -2 0
-1 2 0 */
qdpll_print (depqbf, stdout);
res = qdpll_sat (depqbf);
/* The formula is satisfiable again because we discarded the clause '1 2 0'
by a 'pop'. */
assert (res == QDPLL_RESULT_SAT);
printf ("result after pop is: %d\n", res);
/* Delete solver instance. */
qdpll_delete (depqbf);
}
depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/examples/basic-api-example2.c 0000664 0000000 0000000 00000014336 12613474024 0025416 0 ustar 00root root 0000000 0000000 #include
#include
#include
#include
#include "../qdpll.h"
int main (int argc, char** argv)
{
QDPLL *depqbf = qdpll_create ();
qdpll_configure (depqbf, "--dep-man=simple");
qdpll_configure (depqbf, "--incremental-use");
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_EXISTS, 1);
qdpll_add (depqbf, 1);
qdpll_add (depqbf, 0);
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_FORALL, 2);
qdpll_add (depqbf, 2);
qdpll_add (depqbf, 0);
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_EXISTS, 3);
qdpll_add (depqbf, 3);
qdpll_add (depqbf, 0);
qdpll_add (depqbf, 3);
qdpll_add (depqbf, 0);
qdpll_push (depqbf);
qdpll_add (depqbf, -1);
qdpll_add (depqbf, -2);
qdpll_add (depqbf, 0);
qdpll_add (depqbf, 1);
qdpll_add (depqbf, 2);
qdpll_add (depqbf, 0);
qdpll_print (depqbf, stdout);
/* Internally, variable 2 has universal-reduced from the added clauses. See
the output of the above 'qdpll_print'. However, the variable is still
present in the prefix of the formula. We can check this by calling
'qdpll_is_var_declared', passing the respective variable ID. */
assert (qdpll_is_var_declared (depqbf, 1));
assert (qdpll_is_var_declared (depqbf, 2));
assert (qdpll_is_var_declared (depqbf, 3));
/* For example, we did not declare a variable with ID 99. */
assert (!qdpll_is_var_declared (depqbf, 99));
/* Some assertions which demonstrate how to inspect the current prefix. */
assert (qdpll_get_scope_type (depqbf, 1) == QDPLL_QTYPE_EXISTS);
assert (qdpll_get_scope_type (depqbf, 2) == QDPLL_QTYPE_FORALL);
assert (qdpll_get_scope_type (depqbf, 3) == QDPLL_QTYPE_EXISTS);
assert (qdpll_get_max_declared_var_id (depqbf) == 3);
assert (qdpll_get_max_scope_nesting (depqbf) == 3);
assert (qdpll_get_nesting_of_var (depqbf, 1) == 1);
assert (qdpll_get_nesting_of_var (depqbf, 2) == 2);
assert (qdpll_get_nesting_of_var (depqbf, 3) == 3);
QDPLLResult res = qdpll_sat (depqbf);
assert (res == QDPLL_RESULT_UNSAT);
printf ("result is: %d\n", res);
qdpll_reset (depqbf);
qdpll_pop (depqbf);
/* The previous 'qdpll_pop' removed the clauses '-1 -2 0' and '-1 -2 0' and
the variables 1 and 2 do not occur in clauses any more. However, these
variables are still present in the prefix, and the prefix remains
unchanged. */
assert (qdpll_is_var_declared (depqbf, 1));
assert (qdpll_is_var_declared (depqbf, 2));
assert (qdpll_is_var_declared (depqbf, 3));
assert (qdpll_get_scope_type (depqbf, 1) == QDPLL_QTYPE_EXISTS);
assert (qdpll_get_scope_type (depqbf, 2) == QDPLL_QTYPE_FORALL);
assert (qdpll_get_scope_type (depqbf, 3) == QDPLL_QTYPE_EXISTS);
assert (qdpll_get_max_declared_var_id (depqbf) == 3);
assert (qdpll_get_max_scope_nesting (depqbf) == 3);
#if 1
/* IMPORTANT NOTE: we demonstrate the use of 'qdpll_gc' and functions to
manipulate the quantifier prefix. The function 'qdpll_gc' cleans up the
prefix and removes variables which do not occur in any clauses in the
current formula. It also removes empty quantifier blocks. DO NOT call
'qdpll_gc' unless you really want to clean up the quantifier prefix! */
/* If we call 'qdpll_gc' here then the variables 1 and 2 will be removed
from the prefix (and also their quantifier blocks because they become
empty). Before we add the clauses "1 -2 0" and "-1 2 0" below, we must
restore the original prefix. Otherwise, when adding these clauses the
solver will interpret the variables 1 and 2 (which do not occur in the
prefix at the time when the clauses are added) as free variables. Free
variables by default are put into an existential quantifier block at the
left end of the quantifier prefix. */
qdpll_gc(depqbf);
/* Variables 1 and 2 have been deleted by 'qdpll_gc', including their
quantifier blocks because these blocks became empty. */
assert (!qdpll_is_var_declared (depqbf, 1));
assert (!qdpll_is_var_declared (depqbf, 2));
/* Variable 3 still occurs in a clause and hence 'qdpll_gc' does not clean
it up. */
assert (qdpll_is_var_declared (depqbf, 3));
/* The current prefix consists of the existential block containing variable
3 only. This block is now at nesting level 1 because the other blocks
have been deleted by 'qdpll_gc'. */
assert (qdpll_get_max_scope_nesting (depqbf) == 1);
assert (qdpll_get_nesting_of_var (depqbf, 3) == 1);
assert (qdpll_get_max_declared_var_id (depqbf) == 3);
/* We have to restore the original prefix and insert variables 1 and 2 and
their respective quantifier blocks. */
/* Add new existential block at
nesting level 1 and new variable with ID 1 to this block. */
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_EXISTS, 1);
qdpll_add (depqbf, 1);
qdpll_add (depqbf, 0);
assert (qdpll_is_var_declared (depqbf, 1));
assert (qdpll_get_nesting_of_var (depqbf, 1) == 1);
/* The block of variable 3 now appears at nesting level 2 because we added a
new existential block at nesting level 1.*/
assert (qdpll_get_nesting_of_var (depqbf, 3) == 2);
/* Add new universal block at nesting level 2 and new variable with ID 2 to
this block. */
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_FORALL, 2);
qdpll_add (depqbf, 2);
qdpll_add (depqbf, 0);
assert (qdpll_is_var_declared (depqbf, 2));
assert (qdpll_get_nesting_of_var (depqbf, 1) == 1);
assert (qdpll_get_nesting_of_var (depqbf, 2) == 2);
/* The block of variable 3 now appears at nesting level 3 because we added a
new existential and universal block at nesting levels 1 and 2.*/
assert (qdpll_get_nesting_of_var (depqbf, 3) == 3);
assert (qdpll_get_scope_type (depqbf, 1) == QDPLL_QTYPE_EXISTS);
assert (qdpll_get_scope_type (depqbf, 2) == QDPLL_QTYPE_FORALL);
assert (qdpll_get_scope_type (depqbf, 3) == QDPLL_QTYPE_EXISTS);
/* Now the original prefix is restored and we can proceed with adding
further clauses containing variables 1 and 2. */
#endif
qdpll_add (depqbf, 1);
qdpll_add (depqbf, -2);
qdpll_add (depqbf, 0);
qdpll_add (depqbf, -1);
qdpll_add (depqbf, 2);
qdpll_add (depqbf, 0);
qdpll_print (depqbf, stdout);
res = qdpll_sat (depqbf);
assert (res == QDPLL_RESULT_UNSAT);
printf ("result is: %d\n", res);
qdpll_delete (depqbf);
}
depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/examples/basic-api-example3.c 0000664 0000000 0000000 00000007476 12613474024 0025426 0 ustar 00root root 0000000 0000000 #include
#include
#include
#include
#include "../qdpll.h"
int main (int argc, char** argv)
{
/* The header file 'qdpll.h' has some comments regarding the usage of the
API. */
/* Please see also the file 'basic-manual-selectors.c'. */
/* Create solver instance. */
QDPLL *depqbf = qdpll_create ();
/* Use the linear ordering of the quantifier prefix. */
qdpll_configure (depqbf, "--dep-man=simple");
/* Enable incremental solving. */
qdpll_configure (depqbf, "--incremental-use");
/* Add and open a new leftmost universal block at nesting level 1. */
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_FORALL, 1);
/* Add a fresh variable with 'id == 1' to the open block. */
qdpll_add (depqbf, 1);
qdpll_add (depqbf, 99);
/* Close open scope. */
qdpll_add (depqbf, 0);
assert(qdpll_is_var_declared (depqbf, 1));
assert(qdpll_is_var_declared (depqbf, 99));
assert(!qdpll_is_var_declared (depqbf, 50));
assert(!qdpll_is_var_declared (depqbf, 51));
assert(!qdpll_is_var_declared (depqbf, 52));
/* Add a new existential block at nesting level 2. */
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_EXISTS, 2);
/* Add a fresh variable with 'id == 2' to the existential block. */
qdpll_add (depqbf, 2);
/* Close open scope. */
qdpll_add (depqbf, 0);
/* Add clause: 1 -2 0 */
qdpll_add (depqbf, 1);
qdpll_add (depqbf, -2);
qdpll_add (depqbf, 0);
/* Add clause: -1 2 0 */
qdpll_add (depqbf, -1);
qdpll_add (depqbf, 2);
qdpll_add (depqbf, 0);
/* At this point, the formula looks as follows:
p cnf 2 3
a 1 0
e 2 0
1 -2 0
-1 2 0 */
/* Print formula. */
qdpll_print (depqbf, stdout);
QDPLLResult res = qdpll_sat (depqbf);
/* Expecting that the formula is satisfiable. */
assert (res == QDPLL_RESULT_SAT);
/* res == 10 means satisfiable, res == 20 means unsatisfiable. */
printf ("result is: %d\n", res);
/* Must reset the solver before adding further clauses or variables. */
qdpll_reset (depqbf);
/* Var 99 still is declared although no clauses were added containing literals of 99 before. */
assert(qdpll_is_var_declared (depqbf, 1));
assert(qdpll_is_var_declared (depqbf, 99));
assert(!qdpll_is_var_declared (depqbf, 50));
assert(!qdpll_is_var_declared (depqbf, 51));
assert(!qdpll_is_var_declared (depqbf, 52));
/* Open a new frame of clauses. Clauses added after the 'push' can be
removed later by calling 'pop'. */
qdpll_push (depqbf);
/* Add clause: 1 2 0 */
qdpll_add (depqbf, 1);
qdpll_add (depqbf, 2);
qdpll_add (depqbf, 0);
printf ("added clause '1 2 0' to a new stack frame.\n", res);
/* At this point, the formula looks as follows:
p cnf 2 3
a 1 0
e 2 0
1 -2 0
-1 2 0
1 2 0 */
qdpll_print (depqbf, stdout);
res = qdpll_sat (depqbf);
/* Expecting that the formula is unsatisfiable due to the most recently
added clause. */
assert (res == QDPLL_RESULT_UNSAT);
printf ("result is: %d\n", res);
/* Print partial countermodel as a value of the leftmost universal variable. */
QDPLLAssignment a = qdpll_get_value (depqbf, 1);
printf ("partial countermodel - value of 1: %s\n", a == QDPLL_ASSIGNMENT_UNDEF ? "undef" :
(a == QDPLL_ASSIGNMENT_FALSE ? "false" : "true"));
qdpll_reset (depqbf);
/* Discard the clause '1 2 0' by popping off the topmost frame. */
qdpll_pop (depqbf);
printf ("discarding clause '1 2 0' by a 'pop'.\n", res);
/* At this point, the formula looks as follows:
p cnf 2 3
a 1 0
e 2 0
1 -2 0
-1 2 0 */
res = qdpll_sat (depqbf);
/* The formula is satisfiable again because we discarded the clause '1 2 0'
by a 'pop'. */
assert (res == QDPLL_RESULT_SAT);
printf ("result after pop is: %d\n", res);
/* Delete solver instance. */
qdpll_delete (depqbf);
}
depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/examples/basic-clause-groups-api-example-assumptions.c 0000664 0000000 0000000 00000013000 12613474024 0032471 0 ustar 00root root 0000000 0000000 #include
#include
#include
#include
#include "../qdpll.h"
static void
print_relevant_assumptions (LitID *assumptions)
{
LitID *p;
for (p = assumptions; *p; p++)
printf ("%d ", *p);
printf ("0");
}
static unsigned int
count_relevant_assumptions (LitID *assumptions)
{
unsigned int cnt = 0;
LitID *p;
for (p = assumptions; *p; p++)
cnt++;
return cnt;
}
int main (int argc, char** argv)
{
QDPLL *depqbf = qdpll_create ();
qdpll_configure (depqbf, "--dep-man=simple");
qdpll_configure (depqbf, "--incremental-use");
/* This example is similar to 'basic-clause-groups-api-example.c'. However,
instead of using DepQBF's clause group API, we emulate clause groups by
augmenting the clauses of the formula with fresh selector variables.
The use of selector variables is common in incremental SAT and QBF solving.
***********************************************************************
PLEASE NOTE: the purpose of this example is to demonstrate the difference
between incremental solving by selector variables and the clause group and
push/pop APIs of DepQBF.
For incremental solving by DepQBF, it is RECOMMENDED to ALWAYS use either
the clause group API or the push/pop API. The clause group API is general
enough to implement any tasks which can be implemented by selector
variables but its use is more comfortable.
***********************************************************************
Given the following unsatisfiable formula (same as in
'basic-clause-groups-api-example.c'):
p cnf 4 3
a 1 2 0
e 3 4 0
-1 -3 0
1 2 4 0
1 -4 0
To effectively put the variables into groups, we add the variable '5' to
the first clause and the variable '6' to the last two clauses. The fresh
selector variables 5 and 6 are existentially quantified at the left end
of the quantifier prefix.
Formula with selector variables looks as follows:
p cnf 6 3
e 5 6 0
a 1 2 0
e 3 4 0
5 -1 -3 0
6 1 2 4 0
6 1 -4 0
*/
/* Add existential quantifier block with selector variables 5 and 6. */
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_EXISTS, 1);
qdpll_add (depqbf, 5);
qdpll_add (depqbf, 6);
qdpll_add (depqbf, 0);
/* Add quantifier blocks and variables of the original formula. */
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_FORALL, 2);
qdpll_add (depqbf, 1);
qdpll_add (depqbf, 2);
qdpll_add (depqbf, 0);
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_EXISTS, 3);
qdpll_add (depqbf, 3);
qdpll_add (depqbf, 4);
qdpll_add (depqbf, 0);
/* Add first clause augmented with selector variable 5. */
qdpll_add (depqbf, 5);
qdpll_add (depqbf, -1);
qdpll_add (depqbf, -3);
qdpll_add (depqbf, 0);
/* Add second and third clause augmented with selector variable 6. */
qdpll_add (depqbf, 6);
qdpll_add (depqbf, 1);
qdpll_add (depqbf, 2);
qdpll_add (depqbf, 4);
qdpll_add (depqbf, 0);
//---------------------
qdpll_add (depqbf, 6);
qdpll_add (depqbf, 1);
qdpll_add (depqbf, -4);
qdpll_add (depqbf, 0);
/* By adding the selector variables to the clauses, we have effectively
separated the clauses into two separate groups.
In the following, we must assign the selector variables MANUALLY as
assumptions through the solver API to enable/disable the desired
groups. This must be done before solving the formula by calling
'qdpll_sat'. */
qdpll_print (depqbf, stdout);
/* Enable both groups by setting both selector variables to false. */
qdpll_assume (depqbf, -5);
qdpll_assume (depqbf, -6);
/* Formula is expected to be unsatisfiable. */
QDPLLResult res = qdpll_sat (depqbf);
assert (res == QDPLL_RESULT_UNSAT);
printf ("result is %d\n", res);
/* Get a list of those selector variables which appear in clauses used by
the solver to determine unsatisfiability. */
LitID *relevant_assumptions =
qdpll_get_relevant_assumptions (depqbf);
qdpll_reset (depqbf);
assert (count_relevant_assumptions (relevant_assumptions) == 1);
printf ("printing zero-terminated relevant assumptions: ", res);
print_relevant_assumptions (relevant_assumptions);
printf ("\n", res);
/* Caller must free memory of array returned by
'qdpll_get_relevant_assumptions'. */
free (relevant_assumptions);
/* Deactivate the group which contains the last two clauses by setting the
selector variable to true. This way, these clauses will be permanently
satisfied in the fortcoming solver run after calling 'qdpll_sat' and
hence are effectively removed from the formula. Note that selector
variable 5 has to be set to false again to enable the first clause. */
printf ("deactivating group 2 with clauses 1 2 4 0 and 1 -4 0 by assumption 6\n");
qdpll_assume (depqbf, -5);
qdpll_assume (depqbf, 6);
qdpll_print (depqbf, stdout);
/* The formula where the last two clauses are disabled is expected to be
satisfiable. */
res = qdpll_sat (depqbf);
assert (res == QDPLL_RESULT_SAT);
printf ("result is %d\n", res);
qdpll_reset (depqbf);
/* By setting the selector variables 5 to true and 6 to false, respectively,
we deactivate the first clause and activate the last two, which results in
an unsatisfiable formula. */
printf ("deactivating group 1 with clause -1 -3 0\n");
qdpll_assume (depqbf, 5);
qdpll_assume (depqbf, -6);
qdpll_print (depqbf, stdout);
res = qdpll_sat (depqbf);
assert (res == QDPLL_RESULT_UNSAT);
printf ("result is %d\n", res);
qdpll_delete (depqbf);
}
depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/examples/basic-clause-groups-api-example.c 0000664 0000000 0000000 00000013600 12613474024 0030114 0 ustar 00root root 0000000 0000000 #include
#include
#include
#include
#include "../qdpll.h"
/* Helper function. */
static void
print_relevant_clause_groups (ClauseGroupID * clause_group_ids)
{
ClauseGroupID *p;
for (p = clause_group_ids; *p; p++)
printf ("%d ", *p);
printf ("0");
}
/* Helper function. */
static unsigned int
count_relevant_clause_groups (ClauseGroupID * clause_group_ids)
{
unsigned int cnt = 0;
ClauseGroupID *p;
for (p = clause_group_ids; *p; p++)
cnt++;
return cnt;
}
int
main (int argc, char **argv)
{
QDPLL *depqbf = qdpll_create ();
qdpll_configure (depqbf, "--dep-man=simple");
qdpll_configure (depqbf, "--incremental-use");
/* Given the following unsatisfiable formula:
p cnf 4 3
a 1 2 0
e 3 4 0
-1 -3 0
1 2 4 0
1 -4 0
The first clause will be put in one clause group and the last two clauses in
another group. That last two clauses are unsatisfiable, thus deleting the
first clause preserves unsatisfiability.
*/
/* Declare outermost universal block with variables 1 and 2. */
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_FORALL, 1);
qdpll_add (depqbf, 1);
qdpll_add (depqbf, 2);
qdpll_add (depqbf, 0);
/* Declare existential block with variables 3 and 4. */
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_EXISTS, 2);
qdpll_add (depqbf, 3);
qdpll_add (depqbf, 4);
qdpll_add (depqbf, 0);
/* Create a new clause group with ID 'id1'. The ID of a clause group is used
as its handle and can be passed to API functions. */
ClauseGroupID id1 = qdpll_new_clause_group (depqbf);
/* Newly created clause groups are closed. */
assert (!qdpll_get_open_clause_group (depqbf));
/* A clause group must be opened before clauses can be added to it. Only one
clause group can be open at a time. */
qdpll_open_clause_group (depqbf, id1);
assert (qdpll_get_open_clause_group (depqbf) == id1);
/* Add the clause '-1 -3 0' to the currently open clause group 'id1'. */
qdpll_add (depqbf, -1);
qdpll_add (depqbf, -3);
qdpll_add (depqbf, 0);
/* The currently open clause group must be closed before creating or opening
another clause group. */
qdpll_close_clause_group (depqbf, id1);
assert (!qdpll_get_open_clause_group (depqbf));
/* Create another clause group 'id2'. */
ClauseGroupID id2 = qdpll_new_clause_group (depqbf);
assert (!qdpll_get_open_clause_group (depqbf));
qdpll_open_clause_group (depqbf, id2);
assert (qdpll_get_open_clause_group (depqbf) == id2);
/* Add the clauses '1 2 4 0' and '1 -4 0' to the currently open clause group
'id2'. */
qdpll_add (depqbf, 1);
qdpll_add (depqbf, 2);
qdpll_add (depqbf, 4);
qdpll_add (depqbf, 0);
//---------------------
qdpll_add (depqbf, 1);
qdpll_add (depqbf, -4);
qdpll_add (depqbf, 0);
qdpll_close_clause_group (depqbf, id2);
assert (!qdpll_get_open_clause_group (depqbf));
qdpll_print (depqbf, stdout);
/* Solve the formula, which is unsatisfiable. */
QDPLLResult res = qdpll_sat (depqbf);
assert (res == QDPLL_RESULT_UNSAT);
printf ("result is %d\n", res);
/* Get a list of those clause groups which contain clauses used by solver to
determine unsatisfiability. This amounts to an unsatisfiable core of the
formula. */
ClauseGroupID *relevant_clause_groups =
qdpll_get_relevant_clause_groups (depqbf);
/* We must reset the solver AFTER retrieving the relevant groups. */
qdpll_reset (depqbf);
/* In our example, the clauses in the group 'id2' are relevant for
unsatisfiability. (The clause '-1 -3 0' in 'id1' cannot be part of a resolution
refutation found by the solver.) */
assert (count_relevant_clause_groups (relevant_clause_groups) == 1);
assert (relevant_clause_groups[0] == id2);
printf ("printing zero-terminated relevant clause group IDs: ", res);
print_relevant_clause_groups (relevant_clause_groups);
printf ("\n", res);
/* Temporarily remove the clause group 'id2' by deactivating it. */
printf ("deactivating group 2 with clauses 1 2 4 0 and 1 -4 0\n");
qdpll_deactivate_clause_group (depqbf, relevant_clause_groups[0]);
/* Calling 'qdpll_gc()' removes superfluous variables and
quantifiers from the prefix. HOWEVER, in this case, we have
deactivated -- not deleted -- group 'id2' and hence calling
'qdpll_gc()' has no effect. */
qdpll_gc (depqbf);
qdpll_print (depqbf, stdout);
/* The formula where group 'id2' has been deactivated is satisfiable. */
res = qdpll_sat (depqbf);
assert (res == QDPLL_RESULT_SAT);
printf ("result is %d\n", res);
qdpll_reset (depqbf);
/* Activate group 'id2' again, which makes the formula unsatisfiable. */
printf ("activating group 2 again\n");
qdpll_activate_clause_group (depqbf, relevant_clause_groups[0]);
/* Free memory of array returned by 'qdpll_get_relevant_clause_groups'.
This is the caller's responsibility. */
free (relevant_clause_groups);
/* Permanently remove the group 'id1'. This operation cannot be undone and
is in contrast to deactivating a group. */
printf ("deleting group 1 with clause -1 -3 0\n");
qdpll_delete_clause_group (depqbf, id1);
/* Deleting a group invalidates its ID, which can be checked by
'qdpll_exists_clause_group'. */
assert (!qdpll_exists_clause_group (depqbf, id1));
/* Different from the first call of 'qdpll_gc' above, this time variable 3
will be removed from the quantifier prefix. We deleted group 'id1' which
contains the only clause where variable 3 occurs. Hence calling 'qdpll_gc'
removes variable 3 because it does not occur any more in the formula. */
qdpll_gc (depqbf);
assert (!qdpll_is_var_declared (depqbf, 3));
qdpll_print (depqbf, stdout);
/* After deleting the group 'id1', the formula consisting only of the
clauses in group 'id2' is unsatisfiable. */
res = qdpll_sat (depqbf);
assert (res == QDPLL_RESULT_UNSAT);
printf ("result is %d\n", res);
qdpll_delete (depqbf);
}
depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/examples/basic-manual-selectors.c 0000664 0000000 0000000 00000006766 12613474024 0026420 0 ustar 00root root 0000000 0000000 #include
#include
#include
#include
#include "../qdpll.h"
int main (int argc, char** argv)
{
/* Please see also the file 'basic-api-example.c' for more comments. The
example below is similar to 'basic-api-example.c' but it does not make use
of the push/pop API functions. Instead, clauses are added to and deleted
from the formula based on selector variables. The selector variables are
existentially quantified in the leftmost quantifier block. Each added clause
gets a selector variable, which is assigned as an assumption before the
actual solving starts. This way, clauses are enabled and disabled by
selector variables. We argue that the use of the push/pop API functions is
less error-prone from the user's perspective. */
QDPLL *depqbf = qdpll_create ();
qdpll_configure (depqbf, "--dep-man=simple");
/* Enable incremental solving. */
qdpll_configure (depqbf, "--incremental-use");
/* Add and open a new leftmost existential block at nesting level 1.
Selector variables are put into this block. */
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_EXISTS, 1);
/* Add selector variables with IDs 100 and 200. */
qdpll_add (depqbf, 100);
qdpll_add (depqbf, 200);
/* Close open block. */
qdpll_add (depqbf, 0);
/* Add and open a new leftmost universal block at nesting level 2. */
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_FORALL, 2);
/* Add a variable with ID == 1, which is part of the actual encoding. */
qdpll_add (depqbf, 1);
qdpll_add (depqbf, 0);
/* Add and open a new existential block at nesting level 3. */
qdpll_new_scope_at_nesting (depqbf, QDPLL_QTYPE_EXISTS, 3);
/* Add a variable with ID == 2, which is part of the actual encoding. */
qdpll_add (depqbf, 2);
qdpll_add (depqbf, 0);
/* Add clause: 100 1 -2 0 with selector variable 100. */
qdpll_add (depqbf, 100);
qdpll_add (depqbf, 1);
qdpll_add (depqbf, -2);
qdpll_add (depqbf, 0);
/* Add clause: 200 -1 2 0 with selector variable 200. */
qdpll_add (depqbf, 200);
qdpll_add (depqbf, -1);
qdpll_add (depqbf, 2);
qdpll_add (depqbf, 0);
qdpll_print (depqbf, stdout);
/* Enable all clauses: set selector variables to false as assumptions. */
qdpll_assume (depqbf, -100);
qdpll_assume (depqbf, -200);
QDPLLResult res = qdpll_sat (depqbf);
assert (res == QDPLL_RESULT_SAT);
/* res == 10 means satisfiable, res == 20 means unsatisfiable. */
printf ("result is: %d\n", res);
qdpll_reset (depqbf);
/* Add new selector variable with ID == 300 to leftmost block. */
qdpll_add_var_to_scope (depqbf, 300, 1);
/* Add clause: 300 1 2 0 with selector variable 300. This makes the formula
unsatisfiable. */
qdpll_add (depqbf, 300);
qdpll_add (depqbf, 1);
qdpll_add (depqbf, 2);
qdpll_add (depqbf, 0);
qdpll_print (depqbf, stdout);
/* Enable all clauses: set selector variables to false as assumptions. */
qdpll_assume (depqbf, -100);
qdpll_assume (depqbf, -200);
qdpll_assume (depqbf, -300);
res = qdpll_sat (depqbf);
assert (res == QDPLL_RESULT_UNSAT);
printf ("result is: %d\n", res);
qdpll_reset (depqbf);
/* Discard the most recently added clause '300 1 2 0' by setting the
selector variable 300 to true. */
qdpll_assume (depqbf, -100);
qdpll_assume (depqbf, -200);
qdpll_assume (depqbf, 300);
qdpll_print (depqbf, stdout);
res = qdpll_sat (depqbf);
assert (res == QDPLL_RESULT_SAT);
printf ("result after disabling the clause '300 1 2 0' is: %d\n", res);
qdpll_delete (depqbf);
}
depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/examples/makefile 0000664 0000000 0000000 00000000737 12613474024 0023407 0 ustar 00root root 0000000 0000000 all:
gcc -g3 -o basic-api-example basic-api-example.c -L.. -lqdpll
gcc -g3 -o basic-api-example2 basic-api-example2.c -L.. -lqdpll
gcc -g3 -o basic-api-example3 basic-api-example3.c -L.. -lqdpll
gcc -g3 -o basic-manual-selectors basic-manual-selectors.c -L.. -lqdpll
gcc -g3 -o basic-clause-groups-api-example basic-clause-groups-api-example.c -L.. -lqdpll
gcc -g3 -o basic-clause-groups-api-example-assumptions basic-clause-groups-api-example-assumptions.c -L.. -lqdpll
depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/makefile 0000664 0000000 0000000 00000004272 12613474024 0021567 0 ustar 00root root 0000000 0000000 CFLAGS=-Wextra -Wall -Wno-unused-parameter -Wno-unused -pedantic -std=c99 -DNDEBUG -O3
#CFLAGS=-Wextra -Wall -Wno-unused -pedantic -std=c99 -g3 -DNDEBUG
#CFLAGS=-Wextra -Wall -Wno-unused-parameter -Wno-unused -pedantic -std=c99 -g3
#CFLAGS=-Wextra -Wall -Wno-unused -pedantic -std=c99 -DNDEBUG -g3 -pg -fprofile-arcs -ftest-coverage -static
OBJECTS=qdpll_main.o qdpll_app.o qdpll.o qdpll_mem.o qdpll_dep_man_qdag.o qdpll_pqueue.o
MAJOR=1
MINOR=0
VERSION=$(MAJOR).$(MINOR)
.SUFFIXES: .c .o .fpico
.c.fpico:
$(CC) $(CFLAGS) -fPIC -c $< -o $@
.c.o:
$(CC) $(CFLAGS) -c $< -o $@
depqbf: qdpll_main.o qdpll_app.o libqdpll.a libqdpll.so.$(VERSION)
$(CC) $(CFLAGS) qdpll_main.o qdpll_app.o -L. -lqdpll -o depqbf
qdpll_main.o: qdpll_main.c qdpll.h
qdpll_app.o: qdpll_app.c qdpll_internals.h qdpll.h qdpll_exit.h qdpll_config.h
qdpll.o: qdpll.c qdpll_internals.h qdpll.h qdpll_mem.h qdpll_pcnf.h qdpll_exit.h \
qdpll_stack.h qdpll_dep_man_generic.h qdpll_dep_man_qdag.h \
qdpll_config.h qdpll_dep_man_qdag_types.h qdpll_pqueue.h
qdpll.fpico: qdpll.c qdpll_internals.h qdpll.h qdpll_mem.h qdpll_pcnf.h qdpll_exit.h \
qdpll_stack.h qdpll_dep_man_generic.h qdpll_dep_man_qdag.h \
qdpll_config.h qdpll_dep_man_qdag_types.h qdpll_pqueue.h
qdpll_mem.o: qdpll_mem.c qdpll_mem.h qdpll_exit.h
qdpll_mem.fpico: qdpll_mem.c qdpll_mem.h qdpll_exit.h
qdpll_pqueue.o: qdpll_pqueue.c qdpll_pqueue.h qdpll_mem.h qdpll_exit.h
qdpll_pqueue.fpico: qdpll_pqueue.c qdpll_pqueue.h qdpll_mem.h qdpll_exit.h
qdpll_dep_man_qdag.o: qdpll_dep_man_qdag.c qdpll_pcnf.h qdpll_exit.h \
qdpll_dep_man_generic.h qdpll_dep_man_qdag.h qdpll_config.h \
qdpll.h qdpll_dep_man_qdag_types.h qdpll_stack.h \
qdpll_internals.h
qdpll_dep_man_qdag.fpico: qdpll_dep_man_qdag.c qdpll_pcnf.h qdpll_exit.h \
qdpll_dep_man_generic.h qdpll_dep_man_qdag.h qdpll_config.h \
qdpll.h qdpll_dep_man_qdag_types.h qdpll_stack.h \
qdpll_internals.h
libqdpll.a: qdpll.o qdpll_pqueue.o qdpll_mem.o qdpll_dep_man_qdag.o
ar rc $@ $^
ranlib $@
libqdpll.so.$(VERSION): qdpll.fpico qdpll_pqueue.fpico qdpll_mem.fpico qdpll_dep_man_qdag.fpico
$(CC) -shared -Wl,-soname,libqdpll.so.$(MAJOR) $^ -o $@
clean:
rm -f *.so.$(VERSION) *.fpico *.a *.o *.gcno *.gcda *.gcov *~ gmon.out depqbf
depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/qdpll.c 0000664 0000000 0000000 00002620502 12613474024 0021351 0 ustar 00root root 0000000 0000000 /*
This file is part of DepQBF.
DepQBF, a solver for quantified boolean formulae (QBF).
Copyright 2010, 2011, 2012, 2013, 2014, 2015
Florian Lonsing, Johannes Kepler University, Linz, Austria and
Vienna University of Technology, Vienna, Austria.
Copyright 2012 Aina Niemetz, Johannes Kepler University, Linz, Austria.
DepQBF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
DepQBF is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with DepQBF. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include "qdpll.h"
#include "qdpll_mem.h"
#include "qdpll_pcnf.h"
#include "qdpll_exit.h"
#include "qdpll_stack.h"
#include "qdpll_internals.h"
#include "qdpll_dep_man_generic.h"
#include "qdpll_dep_man_qdag.h"
#include "qdpll_config.h"
#define QDPLL_ABORT_QDPLL(cond,msg) \
do { \
if (cond) \
{ \
fprintf (stderr, "[QDPLL] %s at line %d: %s\n", __func__, \
__LINE__, msg); \
fflush (stderr); \
abort(); \
} \
} while (0)
/* Generic link-unlink macros */
#define LINK_LAST(anchor,element,link) \
do { \
assert (!(element)->link.prev); \
assert (!(element)->link.next); \
if ((anchor).last) \
{ \
assert (!(anchor).last->link.next); \
assert ((anchor).first); \
assert (!(anchor).first->link.prev); \
(anchor).last->link.next = (element); \
} \
else \
{ \
assert (!(anchor).first); \
(anchor).first = (element); \
} \
(element)->link.prev = (anchor).last; \
(anchor).last = (element); \
(anchor).cnt++; \
} while (0)
#define LINK_FIRST(anchor,element,link) \
do { \
assert (!(element)->link.prev); \
assert (!(element)->link.next); \
(element)->link.next = (anchor).first; \
if ((anchor).first) \
{ \
assert ((anchor).last); \
(anchor).first->link.prev = (element); \
} \
else \
{ \
assert (!(anchor).last); \
(anchor).last = (element); \
} \
(anchor).first = (element); \
(anchor).cnt++; \
} while (0)
#define UNLINK(anchor,element,link) \
do { \
assert ((anchor).cnt); \
if ((element)->link.prev) \
{ \
assert ((anchor).first); \
assert ((anchor).last); \
assert ((element)->link.prev->link.next == (element)); \
(element)->link.prev->link.next = (element)->link.next; \
} \
else \
{ \
assert ((anchor).first == (element)); \
(anchor).first = (element)->link.next; \
} \
if ((element)->link.next) \
{ \
assert ((anchor).first); \
assert ((anchor).last); \
assert ((element)->link.next->link.prev == (element)); \
(element)->link.next->link.prev = (element)->link.prev; \
} \
else \
{ \
assert ((anchor).last == (element)); \
(anchor).last = (element)->link.prev; \
} \
(element)->link.prev = (element)->link.next = 0; \
(anchor).cnt--; \
} while (0)
static int is_clause_empty (QDPLL * qdpll, Constraint * clause);
static int is_clause_satisfied (QDPLL * qdpll, Constraint * clause);
static int
has_variable_active_occs_in_clauses (QDPLL * qdpll, Var * var,
BLitsOccStack * occ_clauses,
int check_prop);
static void
push_assigned_variable (QDPLL * qdpll, Var * var, QDPLLAssignment assignment,
QDPLLVarMode mode);
/* -------------------- START: ASSERTION-ONLY CODE -------------------- */
static void
print_all_deps (QDPLL * qdpll)
{
fprintf (stdout, "all deps:\n");
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
if (p->id)
{
fprintf (stdout, "%d: ", p->id);
qdpll_print_deps (qdpll, p->id);
fprintf (stdout, "\n");
}
}
fprintf (stdout, "end deps\n");
}
static void print_constraint (QDPLL * qdpll, Constraint * c);
static void
print_lit_notify_lists (QDPLL * qdpll, BLitsOccStack * notify_list)
{
BLitsOcc *p, *e;
for (p = notify_list->start, e = notify_list->top; p < e; p++)
{
print_constraint (qdpll, BLIT_STRIP_PTR (p->constraint));
fprintf (stderr, "\n");
}
}
static void
print_lit_notify_lists_info (QDPLL * qdpll)
{
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
if (p->id)
{
fprintf (stderr, "Var %d, pos:\n", p->id);
print_lit_notify_lists (qdpll, &(p->pos_notify_lit_watchers));
fprintf (stderr, "Var %d, neg:\n", p->id);
print_lit_notify_lists (qdpll, &(p->neg_notify_lit_watchers));
}
}
}
static void
print_vars_state (QDPLL * qdpll)
{
unsigned int cnt_all, cnt_used;
cnt_all = cnt_used = 0;
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
cnt_all++;
if (p->id)
{
cnt_used++;
int val;
if (QDPLL_VAR_ASSIGNED_TRUE (p))
val = 1;
else if (QDPLL_VAR_ASSIGNED_FALSE (p))
val = -1;
else
val = 0;
fprintf (stderr, "Var %d: value=%d\n", p->id, val);
}
}
assert (cnt_all == qdpll->pcnf.size_vars);
assert (cnt_used == qdpll->pcnf.used_vars);
}
static int
check_depends (QDPLL * qdpll, VarID id1, VarID id2)
{
return qdpll->dm->depends (qdpll->dm, id1, id2);
}
static void
print_var_pqueue (QDPLL * qdpll)
{
fprintf (stderr, "var_pqueue:");
VarID *p, *e;
for (p = qdpll->var_pqueue, e = p + qdpll->cnt_var_pqueue; p < e; p++)
fprintf (stderr, " %d", *p);
fprintf (stderr, "\n");
}
static int
find_in_assigned_vars (QDPLL * qdpll, VarID id)
{
VarID *p;
for (p = qdpll->assigned_vars; p < qdpll->assigned_vars_top; p++)
if (*p == id)
return 1;
return 0;
}
static unsigned int
count_in_notify_clause_watcher_list (LitIDStack * notify_list, LitID id)
{
unsigned int cnt = 0;
LitID *p, *e;
for (p = notify_list->start, e = notify_list->top; p < e; p++)
{
assert (*p != 0);
if (*p == id)
cnt++;
}
return cnt;
}
static unsigned int
offset_in_notify_clause_watcher_list (LitIDStack * notify_list, LitID id)
{
LitID *p, *e;
for (p = notify_list->start, e = notify_list->top; p < e; p++)
{
assert (*p != 0);
if (*p == id)
return p - notify_list->start;
}
return -1;
}
static unsigned int
offset_in_clause (Constraint * clause, LitID id)
{
assert (!clause->is_cube);
LitID *p, *e;
for (p = clause->lits, e = p + clause->num_lits; p < e; p++)
{
assert (*p != 0);
if (*p == id)
return p - clause->lits;
}
return -1;
}
static unsigned int
count_in_notify_literal_watcher_list (BLitsOccStack * notify_list,
Constraint * c)
{
assert (!BLIT_MARKED_PTR (c));
unsigned int cnt = 0;
BLitsOcc *p, *e;
for (p = notify_list->start, e = notify_list->top; p < e; p++)
{
Constraint *cp = BLIT_STRIP_PTR (p->constraint);
if (cp == c)
cnt++;
}
return cnt;
}
static void
print_assigned_vars (QDPLL * qdpll)
{
Var *vars = qdpll->pcnf.vars, *v;
VarID *p, *e;
for (p = qdpll->assigned_vars, e = qdpll->assigned_vars_top; p < e; p++)
{
assert (*p > 0);
v = VARID2VARPTR (vars, *p);
fprintf (stderr,
"id=%d, type=%c(%d), dlevel=%d, value=%d, mode=%d, prop=%d\n",
v->id, QDPLL_SCOPE_FORALL (v->scope) ? 'A' : 'E',
v->scope->nesting, v->decision_level, v->assignment, v->mode,
v->mark_propagated);
}
}
static void
print_lits (QDPLL * qdpll, LitID * lits, unsigned int num,
unsigned int num_more)
{
Var *vars = qdpll->pcnf.vars;
LitID *p, *e;
for (p = lits, e = p + num; p < e; p++)
{
LitID lit = *p;
assert (*p);
Var *var = LIT2VARPTR (vars, lit);
fprintf (stderr, "%c(%d)%d",
QDPLL_SCOPE_FORALL (var->scope) ? 'A' : 'E',
var->scope->nesting, *p);
if (QDPLL_VAR_ASSIGNED (var))
{
char mode_char = 'X';
if (var->mode == QDPLL_VARMODE_UNIT)
mode_char = 'U';
else if (var->mode == QDPLL_VARMODE_PURE)
mode_char = 'P';
else if (var->mode == QDPLL_VARMODE_LBRANCH)
mode_char = 'L';
else if (var->mode == QDPLL_VARMODE_RBRANCH)
mode_char = 'R';
else if (var->mode == QDPLL_VARMODE_ASSUMED)
mode_char = 'A';
else
assert (0);
fprintf (stderr, "(%c%c)@%d",
QDPLL_VAR_ASSIGNED_TRUE (var) ? 'T' : 'F', mode_char,
var->decision_level);
}
fprintf (stderr, " ");
}
/* Print additional literals which were forall-reduced. This is only
relevant for original clauses. Do not print info on quantifier,
scope, assignment,... like above because scopes might have been
released during cleanup. */
for (p = e, e = lits + num_more; p < e; p++)
{
/* Can happen that '*p == 0' if input clause had multiple
literals that were deleted. */
if (*p)
{
fprintf (stderr, "%d", *p);
fprintf (stderr, " ");
}
}
fprintf (stderr, "\n");
}
static void
print_constraint (QDPLL * qdpll, Constraint * c)
{
print_lits (qdpll, c->lits, c->num_lits, 0);
}
static int
constraint_has_lit (Constraint * c, LitID lit)
{
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
if (*p == lit)
return 1;
}
return 0;
}
#ifndef NDEBUG
static void
assert_full_prefix_integrity_scopes (QDPLL * qdpll, Scope *s, Scope *n)
{
assert (s->is_internal);
assert (s->nesting != QDPLL_DEFAULT_SCOPE_NESTING
|| QDPLL_SCOPE_EXISTS (s));
assert (s->nesting == QDPLL_DEFAULT_SCOPE_NESTING
|| QDPLL_COUNT_STACK (s->vars) != 0);
if (n)
{
assert (s->nesting == n->nesting - 1);
assert (s->type != n->type);
}
VarIDStack *scope_vars = &s->vars;
VarID *p, *e, v;
for (p = scope_vars->start, e = scope_vars->top; p < e; p++)
{
v = *p;
assert (v < qdpll->pcnf.size_vars);
Var *var = qdpll->pcnf.vars + v;
/* If '!var->id' then 'var' was a no-occ internal variable which was cleaned up. */
assert (var->id || s == qdpll->pcnf.scopes.first);
if (!var->id)
continue;
assert (var->scope == s);
assert (var->id == v);
assert (!QDPLL_VAR_ASSIGNED (var) || var->mode == QDPLL_VARMODE_UNIT
|| var->mode == QDPLL_VARMODE_PURE || var->mode == QDPLL_VARMODE_ASSUMED);
assert (!QDPLL_VAR_MARKED (var));
assert (!QDPLL_VAR_MARKED_PROPAGATED (var));
/* Internal vars are usually expected to have occurrences, however, if
the user does 'push' but then does not add any clauses then the internal
variable allocated by that 'push' will be garbage-collected. */
assert (var->is_internal || QDPLL_VAR_HAS_OCCS (var));
BLitsOcc *bp, *be;
for (bp = var->neg_occ_clauses.start, be = var->neg_occ_clauses.top;
bp < be; bp++)
assert (constraint_has_lit (BLIT_STRIP_PTR (bp->constraint), -v));
for (bp = var->pos_occ_clauses.start, be = var->pos_occ_clauses.top;
bp < be; bp++)
assert (constraint_has_lit (BLIT_STRIP_PTR (bp->constraint), v));
}
}
static void
assert_full_prefix_integrity_user_scopes (QDPLL * qdpll)
{
assert (QDPLL_COUNT_STACK(qdpll->pcnf.user_scope_ptrs) ==
qdpll->pcnf.user_scopes.cnt);
/* User scope nestings start at 1. */
assert (qdpll->pcnf.user_scopes.cnt == (qdpll->pcnf.user_scopes.last ?
qdpll->pcnf.user_scopes.last->nesting : 0));
Scope *usn, *us = qdpll->pcnf.user_scopes.first;
Scope **se, **sp;
for (sp = qdpll->pcnf.user_scope_ptrs.start,
se = qdpll->pcnf.user_scope_ptrs.top; sp < se; sp++)
{
assert (us);
assert (us->link.prev || us->nesting == QDPLL_DEFAULT_SCOPE_NESTING + 1);
assert (!us->is_internal);
assert (us == *sp);
usn = us->link.next;
assert (!usn || usn->nesting == us->nesting + 1);
VarID *p, *e;
for (p = us->vars.start, e = us->vars.top; p < e; p++)
{
Var *var = VARID2VARPTR(qdpll->pcnf.vars, *p);
/* Bug Fix: handle user variables which have been reset because they had no occs. */
/* Another bug fix: one and the same variable ID might have pushed
multiple times on the us->vars stack, e.g. by
'qdpll_add_var_to_scope', but we will detect that only after the
user scopes have been full imported. */
assert (!var->id || !qdpll->state.no_scheduled_import_user_scopes ||
var->offset_in_user_scope_vars == (unsigned int)(p - us->vars.start));
}
us = usn;
}
assert (!us);
}
static int
assert_full_prefix_integrity_find_var (VarID id, VarID *start, VarID *end)
{
assert (start <= end);
VarID *p, *e;
for (p = start, e = end; p < e; p++)
if (*p == id)
return 1;
return 0;
}
static void
assert_full_prefix_integrity (QDPLL * qdpll)
{
assert (qdpll->pcnf.scopes.first);
assert (qdpll->pcnf.scopes.first->nesting == QDPLL_DEFAULT_SCOPE_NESTING);
assert (QDPLL_SCOPE_EXISTS (qdpll->pcnf.scopes.first));
/* Internal scope nestings start at 0. */
assert (qdpll->pcnf.scopes.cnt == qdpll->pcnf.scopes.last->nesting + 1);
Scope *s, *n;
for (s = qdpll->pcnf.scopes.first; s; s = n)
{
n = s->link.next;
assert_full_prefix_integrity_scopes (qdpll, s, n);
}
assert_full_prefix_integrity_user_scopes (qdpll);
/* Count used variables (user-vars and internal ones). */
unsigned int cnt_used = 0;
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
if (!p->id)
continue;
cnt_used++;
/* A variable is internal iff it is stored in the internal part of the
variable table. */
assert (!p->is_internal || p >= qdpll->pcnf.vars + qdpll->pcnf.size_user_vars);
assert (p < qdpll->pcnf.vars + qdpll->pcnf.size_user_vars || p->is_internal);
if (p->is_internal)
{
assert (!p->is_cur_inactive_group_selector || p->is_cur_used_internal_var);
assert (p->clause_group_id > 0);
assert (p->scope);
assert (!p->user_scope);
/* A declared (i.e. non-zero ID) internal var must appear on either
stack 'qdpll->state.cur_used_internal_vars' or stack
'qdpll->state.popped_off_internal_vars'. */
assert (p->id);
assert (!p->is_cur_used_internal_var ||
assert_full_prefix_integrity_find_var (p->id, qdpll->state.cur_used_internal_vars.start,
qdpll->state.cur_used_internal_vars.top));
assert (p->is_cur_used_internal_var ||
assert_full_prefix_integrity_find_var (p->id, qdpll->state.popped_off_internal_vars.start,
qdpll->state.popped_off_internal_vars.top));
}
else
assert (p->clause_group_id == 0);
}
assert (cnt_used == qdpll->pcnf.used_vars);
}
static int
occs_have_constraint (LitID lit, BLitsOccStack * occ_list, Constraint * c)
{
assert (!BLIT_MARKED_PTR (c));
BLitsOcc *bp, *be;
for (bp = occ_list->start, be = occ_list->top; bp < be; bp++)
{
if (BLIT_STRIP_PTR (bp->constraint) == c)
return 1;
}
return 0;
}
static unsigned int
count_occs (LitID lit, BLitsOccStack * occs)
{
unsigned int res = 0;
BLitsOcc *bp, *be;
for (bp = occs->start, be = occs->top; bp < be; bp++)
res++;
return res;
}
static LitID
find_selector_literal (QDPLL *qdpll, Constraint *c);
static unsigned int
count_selector_literals (QDPLL *qdpll, Constraint *c);
static void
assert_full_cnf_integrity_for_clauses (QDPLL * qdpll,
ConstraintList * clause_list)
{
Constraint *c, *n;
for (c = clause_list->first; c; c = n)
{
n = c->link.next;
if (qdpll->state.cnt_created_clause_groups > 0 ||
QDPLL_COUNT_STACK(qdpll->state.popped_off_internal_vars) != 0)
{
/* In incremental mode: original clauses have exactly one selector
literal (unless they are permanently added). Learned clauses also
if we use the optimized handling of selector literals based on
chronological ordering of frame indices. */
assert (clause_list != &qdpll->pcnf.clauses || count_selector_literals (qdpll, c) <= 1);
assert (clause_list != &qdpll->pcnf.learnt_clauses ||
(qdpll->state.clause_group_api_called || count_selector_literals (qdpll, c) <= 1));
}
assert (!c->is_cube);
LitID *p1, *p2, *e, lit1, lit2;
for (p1 = c->lits, e = p1 + c->num_lits; p1 < e; p1++)
{
lit1 = *p1;
assert (lit1);
Var *v1 = LIT2VARPTR (qdpll->pcnf.vars, lit1);
assert (QDPLL_VAR_HAS_OCCS(v1));
assert (QDPLL_COUNT_STACK (v1->neg_occ_clauses) ==
count_occs (-v1->id, &v1->neg_occ_clauses));
assert (QDPLL_COUNT_STACK (v1->pos_occ_clauses) ==
count_occs (v1->id, &v1->pos_occ_clauses));
/* Check only if we use full occ-lists for pure literals. */
if (QDPLL_LIT_NEG (lit1))
assert (occs_have_constraint (lit1, &v1->neg_occ_clauses, c));
else
assert (occs_have_constraint (lit1, &v1->pos_occ_clauses, c));
for (p2 = p1 + 1; p2 < e; p2++)
{
lit2 = *p2;
assert (lit2 != lit1);
assert (lit2 != -lit1);
Var *v2 = LIT2VARPTR (qdpll->pcnf.vars, lit2);
assert (v1->scope->nesting <= v2->scope->nesting);
}
}
}
}
static unsigned int
count_constraints (ConstraintList * list)
{
unsigned int res = 0;
Constraint *c;
for (c = list->first; c; c = c->link.next)
res++;
return res;
}
static void
assert_full_cnf_integrity (QDPLL * qdpll)
{
assert (qdpll->pcnf.clauses.cnt ==
count_constraints (&(qdpll->pcnf.clauses)));
assert_full_cnf_integrity_for_clauses (qdpll, &(qdpll->pcnf.clauses));
if (qdpll->options.no_spure_literals &&
!qdpll->options.no_pure_literals)
assert_full_cnf_integrity_for_clauses (qdpll,
&(qdpll->pcnf.learnt_clauses));
}
static void
assert_full_formula_integrity (QDPLL * qdpll)
{
assert_full_prefix_integrity (qdpll);
assert_full_cnf_integrity (qdpll);
}
static void
assert_notify_lists_integrity_by_watcher (QDPLL * qdpll, LitID signed_id,
Constraint * watched_constraint)
{
if (watched_constraint->qbcp_qbce_blocked)
return;
assert (watched_constraint->is_watched);
LitID *p, *e;
for (p = watched_constraint->lits, e = p + watched_constraint->num_lits;
p < e; p++)
{
assert (*p != 0);
Var *var = LIT2VARPTR (qdpll->pcnf.vars, *p);
if (LIT2VARID (*p) == LIT2VARID (signed_id))
continue;
if (*p < 0)
{
if (!watched_constraint->is_cube)
assert (count_in_notify_clause_watcher_list
(&(var->neg_notify_clause_watchers), signed_id) == 1);
else
assert (count_in_notify_clause_watcher_list
(&(var->pos_notify_clause_watchers), signed_id) == 1);
}
else
{
if (!watched_constraint->is_cube)
assert (count_in_notify_clause_watcher_list
(&(var->pos_notify_clause_watchers), signed_id) == 1);
else
assert (count_in_notify_clause_watcher_list
(&(var->neg_notify_clause_watchers), signed_id) == 1);
}
}
}
static void
assert_incremental_selector_vars (QDPLL *qdpll)
{
VarID *p, *e;
for (p = qdpll->state.popped_off_internal_vars.start,
e = qdpll->state.popped_off_internal_vars.top; p < e; p++)
{
/* Unused internal vars must be set to TRUE so that the clauses are NOT
active in the formula. */
VarID id = *p;
assert (id);
Var *var = VARID2VARPTR(qdpll->pcnf.vars, id);
assert (!var->is_cur_used_internal_var);
assert (!var->is_cur_inactive_group_selector);
/* Stack may contain former internal variables which might have been
cleaned up because they did not have occurrences. */
assert (!var->id || QDPLL_VAR_ASSIGNED_TRUE (var));
}
for (p = qdpll->state.cur_used_internal_vars.start,
e = qdpll->state.cur_used_internal_vars.top; p < e; p++)
{
/* Used internal vars which are selectors of activated (deactivated)
groups must be set to FALSE (TRUE) so that the clauses are active in
the formula. */
VarID id = *p;
if (id)
{
Var *var = VARID2VARPTR(qdpll->pcnf.vars, id);
assert (var->is_cur_used_internal_var);
/* Stack may contain former internal variables which might have been
cleaned up because they did not have occurrences. */
if (var->id)
{
assert (var->is_cur_inactive_group_selector || QDPLL_VAR_ASSIGNED_FALSE (var));
assert (!var->is_cur_inactive_group_selector || QDPLL_VAR_ASSIGNED_TRUE (var));
}
}
}
}
static int
has_variable_active_occs_in_cubes (QDPLL * qdpll, Var * var,
BLitsOccStack * occ_cubes);
/* Traverse all variables and check if:
- all pure variables have been found and pushed on assigned stack
- all clause watchers are set correctly
Check should be done EACH TIME BEFORE AND AFTER a variable has been (un)assigned.
*/
static void
assert_all_pure_literals_and_clause_watchers_integrity (QDPLL * qdpll)
{
Var *vars = qdpll->pcnf.vars;
Scope *s;
for (s = qdpll->pcnf.scopes.first; s; s = s->link.next)
{
VarIDStack *scope_vars = &s->vars;
VarID *p, *e;
for (p = scope_vars->start, e = scope_vars->top; p < e; p++)
{
assert (*p > 0 && *p < qdpll->pcnf.size_vars);
Var *var = VARID2VARPTR (vars, *p);
assert (!QDPLL_VAR_MARKED_PROPAGATED (var)
|| QDPLL_VAR_ASSIGNED (var));
assert (QDPLL_VAR_ASSIGNED (var)
|| !QDPLL_VAR_MARKED_PROPAGATED (var));
if (qdpll->options.no_pure_literals)
continue;
int has_active_neg_occs_in_clauses =
has_variable_active_occs_in_clauses (qdpll, var,
&(var->neg_occ_clauses), 0);
int has_active_pos_occs_in_clauses =
has_variable_active_occs_in_clauses (qdpll, var,
&(var->pos_occ_clauses), 0);
int has_active_neg_occs_in_cubes =
has_variable_active_occs_in_cubes (qdpll, var,
&(var->neg_occ_cubes));
int has_active_pos_occs_in_cubes =
has_variable_active_occs_in_cubes (qdpll, var,
&(var->pos_occ_cubes));
if (has_active_neg_occs_in_clauses
&& !has_active_pos_occs_in_clauses
&& !has_active_pos_occs_in_cubes)
{ /* Pure: only negative occurrences left. */
/* Variable must have been pushed, but not necessarily propagated already. */
assert (find_in_assigned_vars (qdpll, var->id));
assert (QDPLL_VAR_ASSIGNED (var));
assert (!QDPLL_VAR_EXISTS (var)
|| QDPLL_VAR_ASSIGNED_FALSE (var));
assert (!QDPLL_VAR_FORALL (var)
|| QDPLL_VAR_ASSIGNED_TRUE (var));
/* Exactly one watcher must be satisfied. */
assert (!QDPLL_VAR_HAS_NEG_OCCS (var) ||
!is_clause_satisfied (qdpll,
BLIT_STRIP_PTR (var->
neg_occ_clauses.
start[0].
constraint)));
assert (!QDPLL_VAR_HAS_POS_OCCS (var)
|| is_clause_satisfied (qdpll,
BLIT_STRIP_PTR (var->
pos_occ_clauses.
start[0].
constraint)));
}
else if (!has_active_neg_occs_in_clauses
&& !has_active_neg_occs_in_cubes
&& has_active_pos_occs_in_clauses)
{ /* Pure: only pos occurrences left. */
/* Variable must have been pushed, but not necessarily propagated already. */
assert (find_in_assigned_vars (qdpll, var->id));
assert (QDPLL_VAR_ASSIGNED (var));
assert (!QDPLL_VAR_EXISTS (var)
|| QDPLL_VAR_ASSIGNED_TRUE (var));
assert (!QDPLL_VAR_FORALL (var)
|| QDPLL_VAR_ASSIGNED_FALSE (var));
/* Exactly one watcher must be satisfied. */
assert (!QDPLL_VAR_HAS_POS_OCCS (var) ||
!is_clause_satisfied (qdpll,
BLIT_STRIP_PTR (var->
pos_occ_clauses.
start[0].
constraint)));
assert (!QDPLL_VAR_HAS_NEG_OCCS (var)
|| is_clause_satisfied (qdpll,
BLIT_STRIP_PTR (var->
neg_occ_clauses.
start[0].
constraint)));
}
else if (!has_active_neg_occs_in_clauses
&& !has_active_pos_occs_in_clauses
&& !has_active_pos_occs_in_cubes
&& !has_active_neg_occs_in_cubes)
{ /* Eliminated: no occurrences left. */
assert (!QDPLL_VAR_HAS_POS_OCCS (var)
|| (!QDPLL_VAR_MARKED_PROPAGATED (var)
|| QDPLL_VAR_ASSIGNED_FALSE (var))
|| is_clause_satisfied (qdpll,
BLIT_STRIP_PTR (var->
pos_occ_clauses.
start[0].
constraint)));
assert (!QDPLL_VAR_HAS_NEG_OCCS (var)
|| (!QDPLL_VAR_MARKED_PROPAGATED (var)
|| QDPLL_VAR_ASSIGNED_TRUE (var))
|| is_clause_satisfied (qdpll,
BLIT_STRIP_PTR (var->
neg_occ_clauses.
start[0].
constraint)));
}
else
{ /* Neither pure nor eliminated: both types of occurrences left. */
assert (!QDPLL_VAR_MARKED_PROPAGATED (var));
assert (!QDPLL_VAR_HAS_POS_OCCS (var) ||
!is_clause_satisfied (qdpll,
BLIT_STRIP_PTR (var->
pos_occ_clauses.
start[0].
constraint))
|| has_active_pos_occs_in_cubes);
assert (!QDPLL_VAR_HAS_NEG_OCCS (var)
|| !is_clause_satisfied (qdpll,
BLIT_STRIP_PTR (var->
neg_occ_clauses.
start[0].
constraint))
|| has_active_neg_occs_in_cubes);
}
/* Check notify lists wrt. watched clauses. */
if (QDPLL_VAR_HAS_NEG_OCCS (var)
&& !(QDPLL_VAR_ASSIGNED (var) && var->decision_level == 0))
{
if (!var->mark_is_neg_watching_cube)
assert_notify_lists_integrity_by_watcher (qdpll, -var->id,
BLIT_STRIP_PTR
(var->
neg_occ_clauses.
start[0].
constraint));
else
assert_notify_lists_integrity_by_watcher (qdpll, -var->id,
BLIT_STRIP_PTR
(var->neg_occ_cubes.
start[0].
constraint));
}
if (QDPLL_VAR_HAS_POS_OCCS (var)
&& !(QDPLL_VAR_ASSIGNED (var) && var->decision_level == 0))
{
if (!var->mark_is_pos_watching_cube)
assert_notify_lists_integrity_by_watcher (qdpll, var->id,
BLIT_STRIP_PTR
(var->pos_occ_clauses.
start[0].
constraint));
else
assert_notify_lists_integrity_by_watcher (qdpll, var->id,
BLIT_STRIP_PTR
(var->pos_occ_cubes.
start[0].
constraint));
}
}
}
}
static int
is_constraint_decided (QDPLL * qdpll, Constraint * c)
{
Var *vars = qdpll->pcnf.vars;
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
assert (var->id);
if (!c->is_cube)
{
if ((QDPLL_VAR_ASSIGNED_TRUE (var) && QDPLL_LIT_POS (lit)) ||
(QDPLL_VAR_ASSIGNED_FALSE (var) && QDPLL_LIT_NEG (lit)))
return 1;
}
else
{
if ((QDPLL_VAR_ASSIGNED_TRUE (var) && QDPLL_LIT_NEG (lit)) ||
(QDPLL_VAR_ASSIGNED_FALSE (var) && QDPLL_LIT_POS (lit)))
return 1;
}
}
return 0;
}
static int has_constraint_spurious_pure_lit (QDPLL * qdpll, Constraint * c);
/* Satisfied/empty clauses/cubes do not maintain lit-watcher integrity. */
static int
assert_constraint_ignore_lit_watchers (QDPLL * qdpll, Constraint * c)
{
const int is_cube = c->is_cube;
Var *vars = qdpll->pcnf.vars;
/* Search for disabling literals. */
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
if (c->is_cube)
{
if (QDPLL_LIT_NEG (lit))
{
if (QDPLL_VAR_ASSIGNED_TRUE (var))
return 1;
}
else
{
assert (QDPLL_LIT_POS (lit));
if (QDPLL_VAR_ASSIGNED_FALSE (var))
return 1;
}
}
else
{
if (QDPLL_LIT_NEG (lit))
{
if (QDPLL_VAR_ASSIGNED_FALSE (var))
return 1;
}
else
{
assert (QDPLL_LIT_POS (lit));
if (QDPLL_VAR_ASSIGNED_TRUE (var))
return 1;
}
}
}
return 0;
}
static void
assert_all_unit_literals_and_literal_watchers_integrity_for_clauses
(QDPLL * qdpll, ConstraintList * clause_list)
{
Var *vars = qdpll->pcnf.vars;
Constraint *c;
for (c = clause_list->first; c; c = c->link.next)
{
assert (!c->deleted);
const int is_cube = c->is_cube;
if (c->num_lits < 2)
continue;
/* Skip blocked clauses. They are ignored anyway during unit literal
propagation and can never be used as antecedents of unit
implications. */
if (c->qbcp_qbce_blocked)
continue;
assert ((c->rwatcher_pos == c->lwatcher_pos
&& c->rwatcher_pos == QDPLL_INVALID_WATCHER_POS)
|| (c->lwatcher_pos < c->rwatcher_pos
&& c->lwatcher_pos != QDPLL_INVALID_WATCHER_POS
&& c->rwatcher_pos != QDPLL_INVALID_WATCHER_POS));
if (c->lwatcher_pos == QDPLL_INVALID_WATCHER_POS ||
c->rwatcher_pos == QDPLL_INVALID_WATCHER_POS)
{
assert (c->rwatcher_pos == c->lwatcher_pos);
assert_constraint_ignore_lit_watchers (qdpll, c);
continue;
}
assert (c->num_lits < 2 || c->lwatcher_pos < c->rwatcher_pos);
assert (c->rwatcher_pos < c->num_lits);
assert (c->lwatcher_pos < c->num_lits);
unsigned int lwpos = c->lwatcher_pos;
unsigned int rwpos = c->rwatcher_pos;
LitID *lits = c->lits;
LitID rwlit = *(lits + rwpos);
LitID lwlit = *(lits + lwpos);
assert (rwlit != 0);
assert (lwlit != 0);
assert (c->num_lits < 2 || rwlit != lwlit);
assert (-rwlit != lwlit);
Var *rwvar = LIT2VARPTR (vars, rwlit);
Var *lwvar = LIT2VARPTR (vars, lwlit);
assert (is_cube || QDPLL_VAR_EXISTS (rwvar));
assert (!is_cube || QDPLL_VAR_FORALL (rwvar));
int ignore = 0;
if (lwvar->decision_level != QDPLL_INVALID_DECISION_LEVEL ||
rwvar->decision_level != QDPLL_INVALID_DECISION_LEVEL)
{
ignore = 1;
/* Conjecture: this assertion-function is called only if BCP
saturated. Then, if a watcher still points to assigned
literal, then the constraint must be irrelevant under the
current assignment. */
assert_constraint_ignore_lit_watchers (qdpll, c);
}
if (1 || qdpll->dm->is_init (qdpll->dm))
{
if (is_cube)
{
assert ((QDPLL_VAR_FORALL (lwvar) && QDPLL_VAR_FORALL (rwvar))
|| (QDPLL_VAR_EXISTS (lwvar) && QDPLL_VAR_FORALL (rwvar)
&& qdpll->dm->depends (qdpll->dm, lwvar->id,
rwvar->id)));
}
else
{
assert ((QDPLL_VAR_EXISTS (lwvar) && QDPLL_VAR_EXISTS (rwvar))
|| (QDPLL_VAR_FORALL (lwvar) && QDPLL_VAR_EXISTS (rwvar)
&& qdpll->dm->depends (qdpll->dm, lwvar->id,
rwvar->id)));
}
}
assert (!QDPLL_VAR_ASSIGNED (rwvar) || is_constraint_decided (qdpll, c)
|| has_constraint_spurious_pure_lit (qdpll, c));
assert (!QDPLL_VAR_ASSIGNED (lwvar) || is_constraint_decided (qdpll, c)
|| has_constraint_spurious_pure_lit (qdpll, c));
BLitsOccStack *notify_list;
if (QDPLL_LIT_NEG (rwlit))
{
if (!is_cube)
notify_list = &(rwvar->pos_notify_lit_watchers);
else
notify_list = &(rwvar->neg_notify_lit_watchers);
assert (count_in_notify_literal_watcher_list (notify_list, c) == 1);
assert (QDPLL_COUNT_STACK (*notify_list) == 0 ||
c->offset_in_notify_list[1] <
QDPLL_COUNT_STACK (*notify_list));
assert (QDPLL_COUNT_STACK (*notify_list) == 0
|| c ==
BLIT_STRIP_PTR (notify_list->
start[c->offset_in_notify_list[1]].
constraint));
}
else
{
if (!is_cube)
notify_list = &(rwvar->neg_notify_lit_watchers);
else
notify_list = &(rwvar->pos_notify_lit_watchers);
assert (count_in_notify_literal_watcher_list (notify_list, c) == 1);
assert (QDPLL_COUNT_STACK (*notify_list) == 0 ||
c->offset_in_notify_list[1] <
QDPLL_COUNT_STACK (*notify_list));
assert (QDPLL_COUNT_STACK (*notify_list) == 0
|| c ==
BLIT_STRIP_PTR (notify_list->
start[c->offset_in_notify_list[1]].
constraint));
}
if (QDPLL_LIT_NEG (lwlit))
{
if (!is_cube)
notify_list = &(lwvar->pos_notify_lit_watchers);
else
notify_list = &(lwvar->neg_notify_lit_watchers);
assert (count_in_notify_literal_watcher_list (notify_list, c) == 1);
assert (QDPLL_COUNT_STACK (*notify_list) == 0 ||
c->offset_in_notify_list[0] <
QDPLL_COUNT_STACK (*notify_list));
assert (QDPLL_COUNT_STACK (*notify_list) == 0
|| c ==
BLIT_STRIP_PTR (notify_list->
start[c->offset_in_notify_list[0]].
constraint));
}
else
{
if (!is_cube)
notify_list = &(lwvar->neg_notify_lit_watchers);
else
notify_list = &(lwvar->pos_notify_lit_watchers);
assert (count_in_notify_literal_watcher_list (notify_list, c) == 1);
assert (QDPLL_COUNT_STACK (*notify_list) == 0 ||
c->offset_in_notify_list[0] <
QDPLL_COUNT_STACK (*notify_list));
assert (QDPLL_COUNT_STACK (*notify_list) == 0
|| c ==
BLIT_STRIP_PTR (notify_list->
start[c->offset_in_notify_list[0]].
constraint));
}
LitID *ip, *ie;
for (ip = c->lits, ie = c->lits + c->num_lits; ip < ie; ip++)
{
if ((unsigned int) (ip - c->lits) != lwpos
&& (unsigned int) (ip - c->lits) != rwpos)
{
Var *other = LIT2VARPTR (vars, *ip);
/* Adapt assertions to long-distance resolution: the current
literal of variable 'other' is not watched, but the
complementary occurrence in that clause might be watched if that
clause is tautological. */
if (other->id == LIT2VARPTR(vars, c->lits[lwpos])->id ||
other->id == LIT2VARPTR(vars, c->lits[rwpos])->id)
{
assert (qdpll->options.long_dist_res);
assert (*ip == -c->lits[lwpos] || *ip == -c->lits[rwpos]);
continue;
}
assert (count_in_notify_literal_watcher_list
(&(other->pos_notify_lit_watchers), c) == 0);
assert (count_in_notify_literal_watcher_list
(&(other->neg_notify_lit_watchers), c) == 0);
}
}
}
}
static void
assert_all_unit_literals_and_literal_watchers_integrity (QDPLL * qdpll)
{
assert_all_unit_literals_and_literal_watchers_integrity_for_clauses (qdpll,
&
(qdpll->
pcnf.
clauses));
assert_all_unit_literals_and_literal_watchers_integrity_for_clauses (qdpll,
&
(qdpll->
pcnf.
learnt_clauses));
assert_all_unit_literals_and_literal_watchers_integrity_for_clauses (qdpll,
&
(qdpll->
pcnf.
learnt_cubes));
}
static void
assert_candidates_on_pqueue (QDPLL * qdpll)
{
QDPLLDepManGeneric *dm = qdpll->dm;
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
/* All variables which are candidates must be either (already)
assigned or must occur on priority queue. */
if (p->id)
assert (!dm->is_candidate (dm, p->id) || QDPLL_VAR_ASSIGNED (p)
|| p->priority_pos != QDPLL_INVALID_PQUEUE_POS);
}
}
static void
assert_learn_vars_unmarked (QDPLL * qdpll)
{
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
assert (!p->mark_learn0);
assert (!p->mark_learn1);
/* For cleaning up conflict clause, must also check that respective marks are cleared. */
assert (!QDPLL_VAR_POS_MARKED (p));
assert (!QDPLL_VAR_NEG_MARKED (p));
assert (!QDPLL_VAR_MARKED (p));
}
}
/* This is for checking asserting clauses only. */
static int
assert_is_clause_satisfied_by_univ_lit (QDPLL * qdpll, LitID implied,
Constraint * clause)
{
assert (!clause->is_cube);
int found_implied = 0;
Var *vars = qdpll->pcnf.vars;
LitID *p, *e;
for (p = clause->lits, e = p + clause->num_lits; p < e; p++)
{
LitID lit = *p;
if (lit != implied)
{
Var *var = LIT2VARPTR (vars, lit);
if ((QDPLL_LIT_NEG (lit) && QDPLL_VAR_ASSIGNED_FALSE (var)) ||
(QDPLL_LIT_POS (lit) && QDPLL_VAR_ASSIGNED_TRUE (var)))
{
if (!QDPLL_SCOPE_FORALL (var->scope))
return 0;
if (!found_implied)
return 0;
/* Clause must be satisfied by universal pure literal. */
if (!(var->mode == QDPLL_VARMODE_PURE))
return 0;
}
}
else
found_implied = 1;
}
return 1;
}
static void
assert_lits_sorted (QDPLL * qdpll, LitID * lit_start, LitID * lit_end)
{
Var *vars = qdpll->pcnf.vars;
LitID *p, *prev, *e;
for (prev = p = lit_start, e = lit_end; p < e; p++)
{
if (!*p)
continue;
Var *pvar = LIT2VARPTR (vars, *p);
Var *prev_var = LIT2VARPTR (vars, *prev);
Nesting pvar_nesting, prev_var_nesting;
/* Compare by user-scope nestings but must handle internal and free
variables properly. */
assert (pvar->user_scope || pvar->scope);
pvar_nesting = pvar->user_scope ?
pvar->user_scope->nesting : pvar->scope->nesting;
assert (prev_var->user_scope || prev_var->scope);
prev_var_nesting = prev_var->user_scope ?
prev_var->user_scope->nesting : prev_var->scope->nesting;
/* Fix: input formula might have adjacent user scopes of same type:
internally, variables from these scopes are merged into a single scope,
but will be ordered by their user scope ordering. However, they appear
in the same internal scope then. */
assert (prev_var_nesting <= pvar_nesting ||
(pvar->user_scope && prev_var->user_scope &&
pvar->user_scope->type == prev_var->user_scope->type &&
pvar->scope && prev_var->scope &&
pvar->scope == prev_var->scope));
/* Internal variables must appear to the left of non-internals. */
assert (prev_var->is_internal || !pvar->is_internal);
prev = p;
}
}
static void
assert_lits_unassigned (QDPLL * qdpll, LitID * lit_start, LitID * lit_end)
{
Var *vars = qdpll->pcnf.vars;
LitID *p, *e;
for (p = lit_start, e = lit_end; p < e; p++)
{
assert (*p);
Var *pvar = LIT2VARPTR (vars, *p);
assert (!QDPLL_VAR_ASSIGNED (pvar));
assert (pvar->decision_level == QDPLL_INVALID_DECISION_LEVEL);
}
}
static void
assert_pushed_pure_lits (QDPLL * qdpll)
{
Var *vars = qdpll->pcnf.vars;
VarID *p, *e;
for (p = qdpll->assigned_vars, e = qdpll->assigned_vars_top; p < e; p++)
{
Var *var = VARID2VARPTR (vars, *p);
if (var->mode == QDPLL_VARMODE_PURE)
{
int has_neg_occ_clauses =
has_variable_active_occs_in_clauses (qdpll, var,
&(var->neg_occ_clauses), 0);
int has_pos_occ_clauses =
has_variable_active_occs_in_clauses (qdpll, var,
&(var->pos_occ_clauses), 0);
int has_pos_occ_cubes =
has_variable_active_occs_in_cubes (qdpll, var,
&(var->pos_occ_cubes));
int has_neg_occ_cubes =
has_variable_active_occs_in_cubes (qdpll, var,
&(var->neg_occ_cubes));
assert (!(has_neg_occ_clauses && has_pos_occ_clauses));
assert (!(has_neg_occ_cubes && has_pos_occ_cubes));
assert (!(has_neg_occ_clauses && has_pos_occ_cubes));
assert (!(has_pos_occ_clauses && has_neg_occ_cubes));
if (QDPLL_SCOPE_FORALL (var->scope))
{
if (var->assignment == QDPLL_ASSIGNMENT_FALSE)
{
assert (!has_neg_occ_clauses && !has_neg_occ_cubes);
}
else
{
assert (var->assignment == QDPLL_ASSIGNMENT_TRUE);
assert (!has_pos_occ_clauses && !has_pos_occ_cubes);
}
}
else
{
assert (QDPLL_SCOPE_EXISTS (var->scope));
if (var->assignment == QDPLL_ASSIGNMENT_FALSE)
{
assert (!has_pos_occ_clauses && !has_pos_occ_cubes);
}
else
{
assert (var->assignment == QDPLL_ASSIGNMENT_TRUE);
assert (!has_neg_occ_clauses && !has_neg_occ_cubes);
}
}
}
}
}
static unsigned int
get_highest_type_lit_dec_level (QDPLL * qdpll, LitID * lit_start,
LitID * lit_end,
const QDPLLQuantifierType type);
static Var *get_type_var_at_dec_level (QDPLL * qdpll, LitID * lit_start,
LitID * lit_end, unsigned int level,
const QDPLLQuantifierType type);
static unsigned int count_type_lit_at_dec_level (QDPLL * qdpll,
LitID * lit_start,
LitID * lit_end,
unsigned int level,
const QDPLLQuantifierType
type);
static void
assert_stop_crit_data (QDPLL * qdpll, LitIDStack * lit_stack,
const QDPLLQuantifierType type)
{
assert (QDPLL_COUNT_STACK (*lit_stack) > 0);
unsigned int max_type_level =
get_highest_type_lit_dec_level (qdpll, lit_stack->start, lit_stack->top,
type);
assert (max_type_level == qdpll->hi_type_dl);
Var *type_var =
get_type_var_at_dec_level (qdpll, lit_stack->start, lit_stack->top,
max_type_level, type);
assert (type_var->decision_level == qdpll->hi_dl_type_var->decision_level);
assert (count_type_lit_at_dec_level
(qdpll, lit_stack->start, lit_stack->top, max_type_level,
type) == qdpll->cnt_hi_dl_type_lits);
}
static void
assert_is_lit_irreducible_aux (QDPLL * qdpll, LitID lit, LitID * start,
LitID * end)
{
assert (start <= end);
QDPLLDepManGeneric *dm = qdpll->dm;
Var *vars = qdpll->pcnf.vars;
Var *lit_var = LIT2VARPTR (vars, lit);
LitID *p, *e;
for (p = start, e = end; p < e; p++)
{
Var *var = LIT2VARPTR (vars, *p);
if (!(QDPLL_VAR_ASSIGNED (var) && var->decision_level == 0)
&& dm->depends (dm, lit_var->id, var->id))
break;
}
assert (p < e);
QDPLL_ABORT_QDPLL (p >= e, "reducible lit!");
}
#endif
static void
assert_peek_taut_lit_irreducible_aux (QDPLL * qdpll, Var * taut_var,
LitID * start, LitID * end)
{
assert (!qdpll->options.long_dist_res);
assert (start <= end);
QDPLLDepManGeneric *dm = qdpll->dm;
Var *vars = qdpll->pcnf.vars;
int taut_lit_found = 0;
LitID *p, *e;
for (p = start, e = end; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
if (var == taut_var)
taut_lit_found = 1;
if (!(QDPLL_VAR_ASSIGNED (var) && var->decision_level == 0)
&& dm->depends (dm, taut_var->id, var->id))
break;
}
assert (taut_lit_found);
/* Unexpected behaviour: lit-list fully traversed without finding
dependency. */
assert (p < e);
QDPLL_ABORT_QDPLL (!taut_lit_found || p >= e, "taut by reducible lits!");
}
static void
assert_peek_taut_lit_irreducible (QDPLL * qdpll, LitIDStack * lit_stack,
Var * pivot, Var * taut_var)
{
assert (!qdpll->options.long_dist_res);
assert_peek_taut_lit_irreducible_aux (qdpll, taut_var, lit_stack->start,
lit_stack->top);
Constraint *antecedent = pivot->antecedent;
assert (antecedent);
assert_peek_taut_lit_irreducible_aux (qdpll, taut_var, antecedent->lits,
antecedent->lits +
antecedent->num_lits);
}
static void
assert_internal_vars_integrity (QDPLL *qdpll)
{
#ifndef NDEBUG
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
if (p->id)
{
/* Assertion: a variable is internal iff it does NOT occur in the
user-part of the variable table. */
assert (p->is_internal || (p < qdpll->pcnf.vars + qdpll->pcnf.size_user_vars));
assert (!(p < qdpll->pcnf.vars + qdpll->pcnf.size_user_vars) || !p->is_internal);
}
}
#endif
}
/* -------------------- END: ASSERTION-ONLY CODE -------------------- */
/* -------------------- START: TRACING-ONLY CODE -------------------- */
static void
encode_num (int num, int is_literal)
{
unsigned char ch;
unsigned int x = num;
if (is_literal)
x = num < 0 ? (-x << 1) | 1 : x << 1;
while (x & ~0x7f)
{
ch = (x & 0x7f) | 0x80;
putc (ch, stdout);
x >>= 7;
}
ch = x;
putc (ch, stdout);
}
static void
print_qrp_constraint (ConstraintID id, LitID * lits, unsigned int num_lits,
ConstraintID ant1, ConstraintID ant2)
{
LitID *p;
fprintf (stdout, "%u ", id);
for (p = lits; p < lits + num_lits; p++)
if (*p) /* skip deleted */
fprintf (stdout, "%d ", *p);
fprintf (stdout, "0 ");
if (ant1)
fprintf (stdout, "%u ", ant1);
if (ant2)
fprintf (stdout, "%u ", ant2);
fprintf (stdout, "0\n");
}
static void
print_bqrp_constraint (ConstraintID id, LitID * lits, unsigned int num_lits,
ConstraintID ant1, ConstraintID ant2)
{
LitID *p;
encode_num (id, 0);
for (p = lits; p < lits + num_lits; p++)
if (*p) /* skip deleted */
encode_num (*p, 1);
encode_num (0, 0);
if (ant1)
encode_num (ant1, 0);
if (ant2)
encode_num (ant2, 0);
encode_num (0, 0);
}
static void
print_qrp_full_cover_set (QDPLL * qdpll,
ConstraintID id,
LitID * inner_lits, unsigned int num_inner_lits,
LitID * lits, unsigned int num_lits)
{
LitID *p;
fprintf (stdout, "%u ", id);
for (p = inner_lits; p < inner_lits + num_inner_lits; p++)
{
fprintf (stdout, "%d ", *p);
/* existential lits of innermost scope -> reset mark */
(LIT2VARPTR (qdpll->pcnf.vars, *p))->mark_qrp = 0;
}
for (p = lits; p < lits + num_lits; p++)
fprintf (stdout, "%d ", *p);
fprintf (stdout, "0 0\n");
}
static void
print_bqrp_full_cover_set (QDPLL * qdpll,
ConstraintID id,
LitID * inner_lits, unsigned int num_inner_lits,
LitID * lits, unsigned int num_lits)
{
LitID *p;
encode_num (id, 0);
for (p = inner_lits; p < inner_lits + num_inner_lits; p++)
{
encode_num (*p, 1);
/* existential lits of innermost scope -> reset mark */
(LIT2VARPTR (qdpll->pcnf.vars, *p))->mark_qrp = 0;
}
for (p = lits; p < lits + num_lits; p++)
encode_num (*p, 1);
encode_num (0, 0);
encode_num (0, 0);
}
static void
print_qrp_scope (Scope * scope)
{
VarID *p;
if (QDPLL_SCOPE_EXISTS (scope))
fprintf (stdout, "e");
else
fprintf (stdout, "a");
for (p = scope->vars.start; p < scope->vars.top; p++)
fprintf (stdout, " %u", *p);
fprintf (stdout, " 0\n");
}
static void
print_bqrp_scope (Scope * scope)
{
VarID *p;
encode_num (0, 0);
if (QDPLL_SCOPE_EXISTS (scope))
fprintf (stdout, "e");
else
fprintf (stdout, "a");
for (p = scope->vars.start; p < scope->vars.top; p++)
encode_num (*p, 0);
encode_num (0, 0);
}
/* --------------------- END: TRACING-ONLY CODE --------------------- */
/* Get process time. Can be used for performance statistics. */
static double
time_stamp ()
{
double result = 0;
struct rusage usage;
if (!getrusage (RUSAGE_SELF, &usage))
{
result += usage.ru_utime.tv_sec + 1e-6 * usage.ru_utime.tv_usec;
result += usage.ru_stime.tv_sec + 1e-6 * usage.ru_stime.tv_usec;
}
return result;
}
/* Compute 'literal block distance' of current constraint: partition
literals into classes accroding to their decision level. Must treat
unassigned literals separately. */
static unsigned int
compute_constraint_lbd (QDPLL * qdpll, Constraint * c)
{
const unsigned int dec_level = qdpll->state.decision_level;
assert (dec_level != QDPLL_INVALID_DECISION_LEVEL);
char level_classes[dec_level + 2];
memset (level_classes, 0, (dec_level + 2) * sizeof (char));
unsigned int result = 0;
Var *vars = qdpll->pcnf.vars;
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
unsigned int pos =
QDPLL_VAR_ASSIGNED (var) ? var->decision_level : dec_level + 1;
assert (pos < dec_level + 2);
level_classes[pos] = 1;
}
char *cp, *ce;
for (cp = level_classes, ce = cp + dec_level + 2; cp < ce; cp++)
if (*cp)
result++;
assert (result > 0);
return result;
}
/* -------------------- START: VARIABLE PRIORITY-QUEUE -------------------- */
static void
var_pqueue_adjust (QDPLL * qdpll, unsigned int size)
{
unsigned int old_size;
if ((old_size = qdpll->size_var_pqueue) < size)
{
QDPLLMemMan *mm = qdpll->mm;
qdpll->var_pqueue = qdpll_realloc (mm, qdpll->var_pqueue,
old_size * sizeof (VarID),
size * sizeof (VarID));
qdpll->size_var_pqueue = size;
}
}
static unsigned int
var_pqueue_get_left_child_pos (unsigned int cur_pos)
{
assert (cur_pos != QDPLL_INVALID_PQUEUE_POS);
return 2 * cur_pos + 1;
}
static unsigned int
var_pqueue_get_right_child_pos (unsigned int cur_pos)
{
assert (cur_pos != QDPLL_INVALID_PQUEUE_POS);
return 2 * (cur_pos + 1);
}
static unsigned int
var_pqueue_get_parent_pos (unsigned int cur_pos)
{
assert (cur_pos != QDPLL_INVALID_PQUEUE_POS);
unsigned int result;
result = (cur_pos - 1) / 2;
assert (cur_pos == var_pqueue_get_right_child_pos (result) ||
cur_pos == var_pqueue_get_left_child_pos (result));
return result;
}
static int
var_pqueue_compare (QDPLL * qdpll, unsigned int pos_a, unsigned int pos_b)
{
assert (pos_a != QDPLL_INVALID_PQUEUE_POS);
assert (pos_b != QDPLL_INVALID_PQUEUE_POS);
assert (pos_a < qdpll->cnt_var_pqueue);
assert (pos_b < qdpll->cnt_var_pqueue);
unsigned int *var_pqueue = qdpll->var_pqueue;
Var *vars = qdpll->pcnf.vars;
assert (*(var_pqueue + pos_a) > 0);
assert (*(var_pqueue + pos_b) > 0);
Var *var_a = VARID2VARPTR (vars, *(var_pqueue + pos_a));
Var *var_b = VARID2VARPTR (vars, *(var_pqueue + pos_b));
double var_a_priority = var_a->priority;
double var_b_priority = var_b->priority;
if (var_a_priority < var_b_priority)
return -1;
else if (var_a_priority == var_b_priority)
{
assert (var_a->id != var_b->id);
if (var_a->id < var_b->id)
return -1;
else
return 1;
}
else
return 1;
}
static void
var_pqueue_swap (QDPLL * qdpll, unsigned int pos_a, unsigned int pos_b)
{
assert (pos_a != pos_b);
assert (pos_a != QDPLL_INVALID_PQUEUE_POS);
assert (pos_b != QDPLL_INVALID_PQUEUE_POS);
assert (pos_a < qdpll->cnt_var_pqueue);
assert (pos_b < qdpll->cnt_var_pqueue);
VarID *var_pqueue = qdpll->var_pqueue;
unsigned int tmp, *ptr_a, *ptr_b;
ptr_a = var_pqueue + pos_a;
tmp = *ptr_a;
ptr_b = var_pqueue + pos_b;
Var *vars = qdpll->pcnf.vars;
assert (*ptr_a > 0);
assert (*ptr_b > 0);
Var *var_a = VARID2VARPTR (vars, *ptr_a);
Var *var_b = VARID2VARPTR (vars, *ptr_b);
assert (var_a->priority_pos == pos_a);
assert (var_b->priority_pos == pos_b);
*ptr_a = *ptr_b;
var_b->priority_pos = pos_a;
*ptr_b = tmp;
var_a->priority_pos = pos_b;
}
static void
var_pqueue_up_heap (QDPLL * qdpll, unsigned int cur_pos)
{
assert (cur_pos != QDPLL_INVALID_PQUEUE_POS);
assert (cur_pos < qdpll->cnt_var_pqueue);
while (cur_pos > 0)
{
unsigned int parent_pos = var_pqueue_get_parent_pos (cur_pos);
if (var_pqueue_compare (qdpll, cur_pos, parent_pos) <= 0)
break;
var_pqueue_swap (qdpll, cur_pos, parent_pos);
cur_pos = parent_pos;
}
}
static void
var_pqueue_down_heap (QDPLL * qdpll, unsigned int cur_pos)
{
assert (cur_pos != QDPLL_INVALID_PQUEUE_POS);
assert (cur_pos < qdpll->cnt_var_pqueue);
unsigned int child_pos, left_child_pos, right_child_pos;
unsigned int count = qdpll->cnt_var_pqueue;
for (;;)
{
left_child_pos = var_pqueue_get_left_child_pos (cur_pos);
if (left_child_pos >= count)
break;
right_child_pos = var_pqueue_get_right_child_pos (cur_pos);
if (right_child_pos < count &&
var_pqueue_compare (qdpll, left_child_pos, right_child_pos) < 0)
child_pos = right_child_pos;
else
child_pos = left_child_pos;
if (var_pqueue_compare (qdpll, cur_pos, child_pos) < 0)
{
var_pqueue_swap (qdpll, cur_pos, child_pos);
cur_pos = child_pos;
}
else
break;
}
}
static void
assert_var_pqueue_condition (QDPLL * qdpll)
{
unsigned int *var_pqueue = qdpll->var_pqueue;
unsigned int pos, no_children, left_child_pos, right_child_pos;
Var *vars = qdpll->pcnf.vars;
no_children = qdpll->cnt_var_pqueue / 2;
for (pos = 0; pos < qdpll->cnt_var_pqueue; pos++)
{
unsigned int *cur, *left, *right;
Var *cur_var, *left_var, *right_var;
cur = var_pqueue + pos;
assert (*cur > 0);
cur_var = VARID2VARPTR (vars, *cur);
assert (cur_var->priority_pos == pos);
left_child_pos = var_pqueue_get_left_child_pos (pos);
right_child_pos = var_pqueue_get_right_child_pos (pos);
if (pos < no_children)
{
assert (left_child_pos < qdpll->cnt_var_pqueue);
left = var_pqueue + left_child_pos;
assert (*left > 0);
left_var = VARID2VARPTR (vars, *left);
assert (left_var->priority_pos == left_child_pos);
if (right_child_pos < qdpll->cnt_var_pqueue)
{
right = var_pqueue + right_child_pos;
assert (*right > 0);
right_var = VARID2VARPTR (vars, *right);
assert (right_var->priority_pos == right_child_pos);
}
assert (cur_var->priority >= left_var->priority);
assert (right_child_pos >= qdpll->cnt_var_pqueue ||
cur_var->priority >= right_var->priority);
}
else /* has no children */
{
assert (right_child_pos >= qdpll->cnt_var_pqueue);
assert (left_child_pos >= qdpll->cnt_var_pqueue);
}
}
}
static void
var_pqueue_increase_key (QDPLL * qdpll, VarID id)
{
unsigned int cur_pos = VARID2VARPTR (qdpll->pcnf.vars, id)->priority_pos;
var_pqueue_up_heap (qdpll, cur_pos);
#ifndef NDEBUG
#if QDPLL_PQ_ASSERT_HEAP_CONDITION_INCREASE_KEY
assert_var_pqueue_condition (qdpll);
#endif
#endif
}
static void
var_pqueue_insert (QDPLL * qdpll, VarID id, double priority)
{
assert (id > 0);
unsigned int pos, cnt = qdpll->cnt_var_pqueue, size =
qdpll->size_var_pqueue;
pos = cnt;
if (cnt == size)
var_pqueue_adjust (qdpll, size ? 2 * size : 1);
qdpll->var_pqueue[pos] = id;
Var *var = VARID2VARPTR (qdpll->pcnf.vars, id);
var->priority = priority;
assert (var->priority_pos == QDPLL_INVALID_PQUEUE_POS);
var->priority_pos = pos;
cnt++;
qdpll->cnt_var_pqueue = cnt;
var_pqueue_up_heap (qdpll, pos);
#ifndef NDEBUG
#if QDPLL_PQ_ASSERT_HEAP_CONDITION_INSERT
assert_var_pqueue_condition (qdpll);
#endif
#endif
}
/* Remove first element in constant time, e.g. for clearing queue.
NOTE: destroys heap condition! */
static VarID
var_pqueue_remove_first (QDPLL * qdpll)
{
Var *vars = qdpll->pcnf.vars;
VarID *var_pqueue = qdpll->var_pqueue;
VarID last, result = 0;
unsigned int cnt = qdpll->cnt_var_pqueue;
if (cnt == 0)
return result;
result = var_pqueue[0];
assert (result > 0);
Var *last_var, *result_var = VARID2VARPTR (vars, result);
assert (result_var->priority_pos == 0);
cnt--;
last = var_pqueue[cnt];
last_var = VARID2VARPTR (vars, last);
var_pqueue[0] = last;
assert (last_var->priority_pos == cnt);
last_var->priority_pos = 0;
result_var->priority_pos = QDPLL_INVALID_PQUEUE_POS;
qdpll->cnt_var_pqueue = cnt;
return result;
}
static VarID
var_pqueue_remove_min (QDPLL * qdpll)
{
VarID result = 0;
if (qdpll->cnt_var_pqueue == 0)
return result;
result = var_pqueue_remove_first (qdpll);
if (qdpll->cnt_var_pqueue > 0)
var_pqueue_down_heap (qdpll, 0);
#ifndef NDEBUG
#if QDPLL_PQ_ASSERT_HEAP_CONDITION_REMOVE_MIN
assert_var_pqueue_condition (qdpll);
#endif
#endif
return result;
}
static VarID
var_pqueue_access_min (QDPLL * qdpll)
{
VarID *var_pqueue = qdpll->var_pqueue;
unsigned int cnt = qdpll->cnt_var_pqueue;
if (cnt == 0)
return 0;
else
{
assert (var_pqueue[0] > 0);
return var_pqueue[0];
}
}
/* Removes elem at index 'remove_pos' and maintains heap condition. */
static VarID
var_pqueue_remove_elem (QDPLL * qdpll, unsigned int remove_pos)
{
assert (remove_pos != QDPLL_INVALID_PQUEUE_POS);
assert (remove_pos < qdpll->cnt_var_pqueue);
#ifndef NDEBUG
#if QDPLL_PQ_ASSERT_HEAP_CONDITION_REMOVE_ELEM
assert_var_pqueue_condition (qdpll);
#endif
#endif
VarID last_id, remove_id;
unsigned int cnt = qdpll->cnt_var_pqueue;
Var *last_var, *remove_var, *vars = qdpll->pcnf.vars;
VarID *var_pqueue = qdpll->var_pqueue;
VarID *remove_ptr = var_pqueue + remove_pos;
remove_id = *remove_ptr;
assert (remove_id > 0);
remove_var = VARID2VARPTR (vars, remove_id);
assert (remove_var->priority_pos == remove_pos);
remove_var->priority_pos = QDPLL_INVALID_PQUEUE_POS;
cnt--;
last_id = var_pqueue[cnt];
assert (last_id > 0);
qdpll->cnt_var_pqueue = cnt;
if (remove_pos != cnt)
{
*remove_ptr = last_id;
last_var = VARID2VARPTR (vars, last_id);
assert (last_var->priority_pos == cnt);
last_var->priority_pos = remove_pos;
var_pqueue_up_heap (qdpll, remove_pos);
var_pqueue_down_heap (qdpll, remove_pos);
}
#ifndef NDEBUG
#if QDPLL_PQ_ASSERT_HEAP_CONDITION_REMOVE_ELEM
assert_var_pqueue_condition (qdpll);
#endif
#endif
return remove_id;
}
/* -------------------- END: VARIABLE PRIORITY-QUEUE -------------------- */
static size_t
size_assigned_vars (QDPLL * qdpll)
{
return qdpll->assigned_vars_end - qdpll->assigned_vars;
}
static size_t
count_assigned_vars (QDPLL * qdpll)
{
return qdpll->assigned_vars_top - qdpll->assigned_vars;
}
static void
enlarge_assigned_vars (QDPLL * qdpll)
{
size_t old_size = size_assigned_vars (qdpll);
size_t old_count = count_assigned_vars (qdpll);
assert (old_size == old_count);
size_t old_bcp_index = qdpll->bcp_ptr - qdpll->assigned_vars;
size_t old_old_bcp_index = qdpll->old_bcp_ptr - qdpll->assigned_vars;
size_t new_size = old_size ? 2 * old_size : 1;
qdpll->assigned_vars =
(VarID *) qdpll_realloc (qdpll->mm, qdpll->assigned_vars,
old_size * sizeof (VarID),
new_size * sizeof (VarID));
qdpll->assigned_vars_end = qdpll->assigned_vars + new_size;
qdpll->assigned_vars_top = qdpll->assigned_vars + old_count;
qdpll->bcp_ptr = qdpll->assigned_vars + old_bcp_index;
qdpll->old_bcp_ptr = qdpll->assigned_vars + old_old_bcp_index;
}
static void
push_assigned_vars (QDPLL * qdpll, VarID id)
{
if (qdpll->assigned_vars_top == qdpll->assigned_vars_end)
enlarge_assigned_vars (qdpll);
assert (qdpll->assigned_vars_top < qdpll->assigned_vars_end);
assert (qdpll->assigned_vars <= qdpll->assigned_vars_top);
Var *var = VARID2VARPTR (qdpll->pcnf.vars, id);
assert (var->trail_pos == QDPLL_INVALID_TRAIL_POS);
var->trail_pos = qdpll->assigned_vars_top - qdpll->assigned_vars;
*(qdpll->assigned_vars_top++) = id;
}
/* -------------------- START: INEFFICIENT STATE CHECK -------------------- */
/* Be careful to handle conflicts detected by enqueued but not yet propagated assignments. */
static int
is_clause_empty (QDPLL * qdpll, Constraint * clause)
{
assert (!clause->is_cube);
Var *vars = qdpll->pcnf.vars;
LitID *p, *e;
for (p = clause->lits, e = p + clause->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
if (!QDPLL_VAR_ASSIGNED (var))
{
if (QDPLL_VAR_EXISTS (var))
return 0;
}
else
{
if (QDPLL_LIT_NEG (lit))
{
if (QDPLL_VAR_ASSIGNED_FALSE (var))
return 0;
}
else
{
assert (QDPLL_LIT_POS (lit));
if (QDPLL_VAR_ASSIGNED_TRUE (var))
return 0;
}
}
}
return 1;
}
static void
remove_clause_from_notify_list (QDPLL * qdpll, const int is_cube,
int lit_is_rwlit, LitID lit,
Constraint * clause);
static void
add_clause_to_notify_list (QDPLL * qdpll, const int is_cube, int lit_is_rwlit,
LitID lit, Var * var, BLitsOcc blit);
static void
update_blocking_literal (QDPLL * qdpll, Var * vars, BLitsOcc * blit_ptr,
Constraint * c, LitID disabling_lit,
Var * disabling_var, const int is_cube);
static LitID
is_clause_satisfied (QDPLL * qdpll, Constraint * clause)
{
assert (clause);
assert (!clause->is_cube);
Var *vars = qdpll->pcnf.vars;
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_calls++;
#endif
int init_watchers = 0;
if (clause->num_lits > 1
&& clause->lwatcher_pos != QDPLL_INVALID_WATCHER_POS
&& clause->rwatcher_pos != QDPLL_INVALID_WATCHER_POS)
{
init_watchers = 1;
assert (clause->lwatcher_pos < clause->num_lits);
assert (clause->rwatcher_pos < clause->num_lits);
/* Check if a watcher satisfies the clause already. */
LitID wlit = *(clause->lits + clause->lwatcher_pos);
Var *wvar = LIT2VARPTR (vars, wlit);
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_lit_visits++;
#endif
if (QDPLL_LIT_NEG (wlit))
{
if (QDPLL_VAR_ASSIGNED_FALSE (wvar))
{
assert (wvar->pos_notify_lit_watchers.start +
clause->offset_in_notify_list[0] <
wvar->pos_notify_lit_watchers.top);
/* Update blocking literal in left-watcher's notify list. */
update_blocking_literal (qdpll, vars,
wvar->pos_notify_lit_watchers.start +
clause->offset_in_notify_list[0],
clause, wlit, wvar, 0);
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_by_lw++;
#endif
return wlit;
}
}
else
{
assert (QDPLL_LIT_POS (wlit));
if (QDPLL_VAR_ASSIGNED_TRUE (wvar))
{
assert (wvar->neg_notify_lit_watchers.start +
clause->offset_in_notify_list[0] <
wvar->neg_notify_lit_watchers.top);
/* Update blocking literal in left-watcher's notify list. */
update_blocking_literal (qdpll, vars,
wvar->neg_notify_lit_watchers.start +
clause->offset_in_notify_list[0],
clause, wlit, wvar, 0);
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_by_lw++;
#endif
return wlit;
}
}
wlit = *(clause->lits + clause->rwatcher_pos);
wvar = LIT2VARPTR (vars, wlit);
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_lit_visits++;
#endif
if (QDPLL_LIT_NEG (wlit))
{
if (QDPLL_VAR_ASSIGNED_FALSE (wvar))
{
assert (wvar->pos_notify_lit_watchers.start +
clause->offset_in_notify_list[1] <
wvar->pos_notify_lit_watchers.top);
/* Update blocking literal in left-watcher's notify list. */
update_blocking_literal (qdpll, vars,
wvar->pos_notify_lit_watchers.start +
clause->offset_in_notify_list[1],
clause, wlit, wvar, 0);
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_by_rw++;
#endif
return wlit;
}
}
else
{
assert (QDPLL_LIT_POS (wlit));
if (QDPLL_VAR_ASSIGNED_TRUE (wvar))
{
assert (wvar->neg_notify_lit_watchers.start +
clause->offset_in_notify_list[1] <
wvar->neg_notify_lit_watchers.top);
/* Update blocking literal in left-watcher's notify list. */
update_blocking_literal (qdpll, vars,
wvar->neg_notify_lit_watchers.start +
clause->offset_in_notify_list[1],
clause, wlit, wvar, 0);
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_by_rw++;
#endif
return wlit;
}
}
}
LitID *p, *e;
for (p = clause->lits, e = p + clause->num_lits; p < e; p++)
{
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_lit_visits++;
#endif
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
if (QDPLL_LIT_NEG (lit))
{
if (QDPLL_VAR_ASSIGNED_FALSE (var))
{
return lit;
}
}
else
{
assert (QDPLL_LIT_POS (lit));
if (QDPLL_VAR_ASSIGNED_TRUE (var))
{
return lit;
}
}
}
return 0;
}
/* Check if clause is satisfied by a propagated assignment. We use
separate code here since the 'is_clause_satisfied' funtion is a
hot-spot. */
static int
is_clause_satisfied_by_prop_var (QDPLL * qdpll, Constraint * clause)
{
assert (clause);
assert (!clause->is_cube);
Var *vars = qdpll->pcnf.vars;
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_calls++;
#endif
int init_watchers = 0;
if (clause->num_lits > 1
&& clause->lwatcher_pos != QDPLL_INVALID_WATCHER_POS
&& clause->rwatcher_pos != QDPLL_INVALID_WATCHER_POS)
{
init_watchers = 1;
assert (clause->lwatcher_pos < clause->num_lits);
assert (clause->rwatcher_pos < clause->num_lits);
/* Check if a watcher satisfies the clause already. */
LitID wlit = *(clause->lits + clause->lwatcher_pos);
Var *wvar = LIT2VARPTR (vars, wlit);
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_lit_visits++;
#endif
if (QDPLL_LIT_NEG (wlit))
{
if (QDPLL_VAR_ASSIGNED_FALSE (wvar)
&& QDPLL_VAR_MARKED_PROPAGATED (wvar))
{
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_by_lw++;
#endif
return 1;
}
}
else
{
assert (QDPLL_LIT_POS (wlit));
if (QDPLL_VAR_ASSIGNED_TRUE (wvar)
&& QDPLL_VAR_MARKED_PROPAGATED (wvar))
{
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_by_lw++;
#endif
return 1;
}
}
wlit = *(clause->lits + clause->rwatcher_pos);
wvar = LIT2VARPTR (vars, wlit);
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_lit_visits++;
#endif
if (QDPLL_LIT_NEG (wlit))
{
if (QDPLL_VAR_ASSIGNED_FALSE (wvar)
&& QDPLL_VAR_MARKED_PROPAGATED (wvar))
{
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_by_rw++;
#endif
return 1;
}
}
else
{
assert (QDPLL_LIT_POS (wlit));
if (QDPLL_VAR_ASSIGNED_TRUE (wvar)
&& QDPLL_VAR_MARKED_PROPAGATED (wvar))
{
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_by_rw++;
#endif
return 1;
}
}
}
LitID *p, *e;
for (p = clause->lits, e = p + clause->num_lits; p < e; p++)
{
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_lit_visits++;
#endif
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
if (QDPLL_LIT_NEG (lit))
{
if (QDPLL_VAR_ASSIGNED_FALSE (var)
&& QDPLL_VAR_MARKED_PROPAGATED (var))
{
return 1;
}
}
else
{
assert (QDPLL_LIT_POS (lit));
if (QDPLL_VAR_ASSIGNED_TRUE (var)
&& QDPLL_VAR_MARKED_PROPAGATED (var))
{
return 1;
}
}
}
return 0;
}
/* Dual to 'is_clause_empty' */
static int
is_cube_satisfied (QDPLL * qdpll, Constraint * cube)
{
assert (cube->is_cube);
Var *vars = qdpll->pcnf.vars;
LitID *p, *e;
for (p = cube->lits, e = p + cube->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
/* Must check if all cube literals are both assigned and
propagated. */
if (!QDPLL_VAR_ASSIGNED (var))
{
if (QDPLL_VAR_FORALL (var))
return 0;
}
else
{
if (QDPLL_LIT_NEG (lit))
{
if (QDPLL_VAR_ASSIGNED_TRUE (var))
return 0;
}
else
{
assert (QDPLL_LIT_POS (lit));
if (QDPLL_VAR_ASSIGNED_FALSE (var))
return 0;
}
}
}
return 1;
}
/* Dual to 'is_clause_satisfied' */
static LitID
is_cube_empty (QDPLL * qdpll, Constraint * cube)
{
assert (cube->is_cube);
Var *vars = qdpll->pcnf.vars;
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_calls++;
#endif
/* Check if a watcher satisfies the clause already. */
LitID wlit;
Var *wvar;
if (cube->lwatcher_pos < cube->num_lits)
{
wlit = *(cube->lits + cube->lwatcher_pos);
wvar = LIT2VARPTR (vars, wlit);
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_lit_visits++;
#endif
if (QDPLL_LIT_NEG (wlit))
{
if (QDPLL_VAR_ASSIGNED_TRUE (wvar))
{
assert (wvar->neg_notify_lit_watchers.start +
cube->offset_in_notify_list[0] <
wvar->neg_notify_lit_watchers.top);
/* Update blocking literal in left-watcher's notify list. */
update_blocking_literal (qdpll, vars,
wvar->neg_notify_lit_watchers.start +
cube->offset_in_notify_list[0],
cube, wlit, wvar, 1);
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_by_lw++;
#endif
return wlit;
}
}
else
{
assert (QDPLL_LIT_POS (wlit));
if (QDPLL_VAR_ASSIGNED_FALSE (wvar))
{
assert (wvar->pos_notify_lit_watchers.start +
cube->offset_in_notify_list[0] <
wvar->pos_notify_lit_watchers.top);
/* Update blocking literal in left-watcher's notify list. */
update_blocking_literal (qdpll, vars,
wvar->pos_notify_lit_watchers.start +
cube->offset_in_notify_list[0],
cube, wlit, wvar, 1);
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_by_lw++;
#endif
return wlit;
}
}
}
if (cube->rwatcher_pos < cube->num_lits)
{
wlit = *(cube->lits + cube->rwatcher_pos);
wvar = LIT2VARPTR (vars, wlit);
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_lit_visits++;
#endif
if (QDPLL_LIT_NEG (wlit))
{
if (QDPLL_VAR_ASSIGNED_TRUE (wvar))
{
assert (wvar->neg_notify_lit_watchers.start +
cube->offset_in_notify_list[1] <
wvar->neg_notify_lit_watchers.top);
/* Update blocking literal in left-watcher's notify list. */
update_blocking_literal (qdpll, vars,
wvar->neg_notify_lit_watchers.start +
cube->offset_in_notify_list[1],
cube, wlit, wvar, 1);
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_by_rw++;
#endif
return wlit;
}
}
else
{
assert (QDPLL_LIT_POS (wlit));
if (QDPLL_VAR_ASSIGNED_FALSE (wvar))
{
assert (wvar->pos_notify_lit_watchers.start +
cube->offset_in_notify_list[1] <
wvar->pos_notify_lit_watchers.top);
/* Update blocking literal in left-watcher's notify list. */
update_blocking_literal (qdpll, vars,
wvar->pos_notify_lit_watchers.start +
cube->offset_in_notify_list[1],
cube, wlit, wvar, 1);
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_by_rw++;
#endif
return wlit;
}
}
}
LitID *p, *e;
for (p = cube->lits, e = p + cube->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
#if COMPUTE_STATS
qdpll->stats.total_is_clause_sat_lit_visits++;
#endif
if (QDPLL_LIT_NEG (lit))
{
if (QDPLL_VAR_ASSIGNED_TRUE (var))
{
return lit;
}
}
else
{
assert (QDPLL_LIT_POS (lit));
if (QDPLL_VAR_ASSIGNED_FALSE (var))
{
return lit;
}
}
}
return 0;
}
/* Returns unit universal literal or 0 if cube is not unit. */
static LitID
is_cube_unit (QDPLL * qdpll, Constraint * cube)
{
assert (cube->is_cube);
Var *vars = qdpll->pcnf.vars;
/* Check literals from largest to smallest scope. */
LitID *p, *e;
for (e = cube->lits, p = e + cube->num_lits - 1; e <= p; p--)
{
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
if (QDPLL_VAR_ASSIGNED (var))
{
/* Must check if cube literals are both assigned and
propagated. */
/* Detect false literals. */
if (QDPLL_LIT_NEG (lit))
{
if (QDPLL_VAR_ASSIGNED_TRUE (var))
return 0;
}
else
{
assert (QDPLL_LIT_POS (lit));
if (QDPLL_VAR_ASSIGNED_FALSE (var))
return 0;
}
}
else
{
assert (!QDPLL_VAR_ASSIGNED (var));
/* Find largest unassigned universal literal... */
if (QDPLL_SCOPE_FORALL (var->scope))
{
/* ...and check smaller literals. */
LitID *p2;
for (p2 = p - 1; e <= p2; p2--)
{
LitID lit2 = *p2;
Var *var2 = LIT2VARPTR (vars, lit2);
if (QDPLL_VAR_ASSIGNED (var2))
{
/* Must check if all cube literals are both assigned and
propagated. */
/* Detect false literals. */
if (QDPLL_LIT_NEG (lit2))
{
if (QDPLL_VAR_ASSIGNED_TRUE (var2))
return 0;
}
else
{
assert (QDPLL_LIT_POS (lit2));
if (QDPLL_VAR_ASSIGNED_FALSE (var2))
return 0;
}
}
else
{
/* Found a second unassigned literal. */
assert (!QDPLL_VAR_ASSIGNED (var2));
return 0;
}
}
/* Did neither find a smaller unassigned literal nor a
false literal in the cube. */
return lit;
}
}
}
return 0;
}
static int has_formula_empty_clause (QDPLL * qdpll);
static int has_constraint_spurious_pure_lit (QDPLL * qdpll, Constraint * c);
/* Check if formula has a satisfied cube. */
static int
has_formula_satisfied_cube (QDPLL * qdpll)
{
Constraint *c;
for (c = qdpll->pcnf.learnt_cubes.first; c; c = c->link.next)
{
if (is_cube_satisfied (qdpll, c))
{
if (qdpll->options.no_spure_literals
|| !has_constraint_spurious_pure_lit (qdpll, c))
return 1;
}
}
return 0;
}
/* Check if formula has an empty clause. */
static int
has_formula_empty_clause (QDPLL * qdpll)
{
Constraint *c;
for (c = qdpll->pcnf.clauses.first; c; c = c->link.next)
{
if (c->qbcp_qbce_blocked)
continue;
if (is_clause_empty (qdpll, c))
return 1;
}
for (c = qdpll->pcnf.learnt_clauses.first; c; c = c->link.next)
{
/* We never check if learned clauses are blocked. */
assert (!c->qbcp_qbce_blocked);
if (is_clause_empty (qdpll, c))
{
if (qdpll->options.no_spure_literals
|| !has_constraint_spurious_pure_lit (qdpll, c))
return 1;
}
}
return 0;
}
/* Check if all cubes in formula are empty. */
static int
all_cubes_empty (QDPLL * qdpll)
{
Constraint *c;
for (c = qdpll->pcnf.learnt_cubes.first; c; c = c->link.next)
{
if (!is_cube_empty (qdpll, c))
return 0;
}
return 1;
}
/* Check if all clauses in formula are satisfied. */
static int
all_clauses_satisfied (QDPLL * qdpll)
{
Constraint *c;
for (c = qdpll->pcnf.clauses.first; c; c = c->link.next)
{
if (c->qbcp_qbce_blocked)
continue;
if (!is_clause_satisfied (qdpll, c))
return 0;
}
for (c = qdpll->pcnf.learnt_clauses.first; c; c = c->link.next)
{
if ((!qdpll->options.qbce_preprocessing && !qdpll->options.qbce_inprocessing &&
qdpll->options.no_qbce_dynamic) || qdpll->options.qbce_inprocessing)
{
if (!is_clause_satisfied (qdpll, c)
&& (qdpll->options.no_spure_literals
|| !has_constraint_spurious_pure_lit (qdpll, c)))
return 0;
}
else
{
if (is_clause_empty (qdpll, c) &&
(qdpll->options.no_spure_literals
|| !has_constraint_spurious_pure_lit (qdpll, c)))
return 0;
}
}
return 1;
}
/* Checks if empty clause in formula. */
static int
is_formula_false (QDPLL * qdpll)
{
int has_empty_clause = has_formula_empty_clause (qdpll);
if (qdpll->result_constraint && qdpll->result_constraint->is_cube)
{
assert (is_cube_satisfied (qdpll, qdpll->result_constraint));
/* Fix the assertion-problem described above. */
return 0;
}
if (has_empty_clause
&& (1 || qdpll->options.no_sdcl || all_cubes_empty (qdpll)))
{
return 1;
}
return 0;
}
/* Checks if all clauses are satisfied. */
static int
is_formula_true (QDPLL * qdpll)
{
if (!qdpll->options.no_sdcl)
{
if (has_formula_satisfied_cube (qdpll))
{
return 1;
}
}
if (all_clauses_satisfied (qdpll))
return 1;
return 0;
}
static QDPLLSolverState
determine_solver_state (QDPLL * qdpll)
{
if (is_formula_false (qdpll))
return QDPLL_SOLVER_STATE_UNSAT;
else if (is_formula_true (qdpll))
return QDPLL_SOLVER_STATE_SAT;
else
return QDPLL_SOLVER_STATE_UNDEF;
}
/* -------------------- END: INEFFICIENT STATE CHECK -------------------- */
/* -------------------- START: CLAUSE WATCHING -------------------- */
/* Delete signed 'id' from notify-list in constant time. Variable
'owner' owns the lists 'notify_list' and
'offset_in_watched_clause'. */
static void
remove_id_from_notify_list (Var * vars, Var * owner, LitIDStack * notify_list,
VarIDStack * offset_in_watched_clause,
VarID del_pos, LitID signed_id)
{
assert (signed_id != 0);
assert (count_in_notify_clause_watcher_list (notify_list, signed_id) == 1);
assert (QDPLL_COUNT_STACK (*notify_list) ==
QDPLL_COUNT_STACK (*offset_in_watched_clause));
assert (del_pos < QDPLL_COUNT_STACK (*notify_list));
/* Delete notify-list entry by overwriting with last element.
Must also copy entry in offset-in-watcher list. */
LitID last = QDPLL_POP_STACK (*notify_list);
VarID last_offset = QDPLL_POP_STACK (*offset_in_watched_clause);
if (QDPLL_COUNT_STACK (*notify_list) == 0)
{
/* Stacks are empty now. */
assert (del_pos == 0);
assert (QDPLL_COUNT_STACK (*offset_in_watched_clause) == 0);
assert (count_in_notify_clause_watcher_list (notify_list, signed_id) ==
0);
return;
}
notify_list->start[del_pos] = last;
offset_in_watched_clause->start[del_pos] = last_offset;
/* Finally, since the offset of 'last' in the notify-list changed,
we must also update its stored offset in 'offset_in_notify_list'. */
Var *last_var = LIT2VARPTR (vars, last);
VarIDStack *other_offset_in_notify_list = last < 0 ?
&(last_var->neg_offset_in_notify_list) : &(last_var->
pos_offset_in_notify_list);
other_offset_in_notify_list->start[last_offset] = del_pos;
assert (count_in_notify_clause_watcher_list (notify_list, signed_id) == 0);
}
static LitID
is_constraint_empty_watcher (QDPLL * qdpll, Constraint * c)
{
LitID disable_witness;
if (!c->is_cube)
disable_witness = is_clause_satisfied (qdpll, c);
else
disable_witness = is_cube_empty (qdpll, c);
return disable_witness;
}
/* Remove signed 'id' from notify-lists of variables in old watched clause.
Watched clause is watched by variable 'id' and is satisfied now.
*/
static void
remove_watching_var_from_notify_lists (QDPLL * qdpll, LitID signed_id,
Constraint * watched_clause)
{
assert (watched_clause->is_watched);
watched_clause->is_watched--;
assert (watched_clause->is_cube
|| !is_clause_empty (qdpll, watched_clause));
assert (!watched_clause->is_cube
|| !is_cube_satisfied (qdpll, watched_clause));
assert (watched_clause->qbcp_qbce_blocked ||
is_constraint_empty_watcher (qdpll, watched_clause));
assert (signed_id != 0);
Var *vars = qdpll->pcnf.vars;
VarID id = signed_id < 0 ? -signed_id : signed_id;
LitID *p, *e;
VarIDStack *offset_in_notify_list = signed_id < 0 ?
&(VARID2VARPTR (vars, id)->neg_offset_in_notify_list) :
&(VARID2VARPTR (vars, id)->pos_offset_in_notify_list);
assert (QDPLL_COUNT_STACK (*offset_in_notify_list) ==
watched_clause->num_lits);
VarID *del_pos_ptr = offset_in_notify_list->start;
for (p = watched_clause->lits, e = p + watched_clause->num_lits; p < e; p++)
{
LitID lit = *p;
assert (lit != 0);
assert (lit != -signed_id);
Var *v = LIT2VARPTR (vars, lit);
VarIDStack *offset_in_watched_clause;
LitIDStack *notify_list;
if (QDPLL_LIT_NEG (lit))
{
if (!watched_clause->is_cube)
{
offset_in_watched_clause = &(v->neg_offset_in_watched_clause);
notify_list = &(v->neg_notify_clause_watchers);
}
else
{
offset_in_watched_clause = &(v->pos_offset_in_watched_clause);
notify_list = &(v->pos_notify_clause_watchers);
}
}
else
{
assert (QDPLL_LIT_POS (lit));
if (!watched_clause->is_cube)
{
offset_in_watched_clause = &(v->pos_offset_in_watched_clause);
notify_list = &(v->pos_notify_clause_watchers);
}
else
{
offset_in_watched_clause = &(v->neg_offset_in_watched_clause);
notify_list = &(v->neg_notify_clause_watchers);
}
}
if (v->id != id)
{
assert (notify_list->start[*del_pos_ptr] == signed_id);
remove_id_from_notify_list (vars, v, notify_list,
offset_in_watched_clause,
*del_pos_ptr, signed_id);
}
del_pos_ptr++;
}
/* Must clear the offset list, since this is needed for the new watcher then. */
QDPLL_RESET_STACK (*offset_in_notify_list);
}
/* Add signed 'id' to notify-lists of variables in new watched clause.
Sign of ID indicates which watcher to update for var 'id' after notification.
Watched clause is now watched by variable 'id'.
*/
static void
add_watching_var_to_notify_lists (QDPLL * qdpll, LitID signed_id,
Constraint * watched_clause)
{
watched_clause->is_watched++;
assert (watched_clause->is_watched <= watched_clause->num_lits);
assert (signed_id != 0);
assert (constraint_has_lit (watched_clause, signed_id));
assert (!watched_clause->qbcp_qbce_blocked);
Var *vars = qdpll->pcnf.vars;
VarID id = QDPLL_LIT_NEG (signed_id) ? -signed_id : signed_id;
QDPLLMemMan *mm = qdpll->mm;
VarID offset = 0;
VarIDStack *offset_in_notify_list = QDPLL_LIT_NEG (signed_id) ?
&(VARID2VARPTR (vars, id)->neg_offset_in_notify_list) :
&(VARID2VARPTR (vars, id)->pos_offset_in_notify_list);
assert (QDPLL_COUNT_STACK (*offset_in_notify_list) == 0);
LitID *p, *e;
for (p = watched_clause->lits, e = p + watched_clause->num_lits; p < e; p++)
{
LitID lit = *p;
assert (lit != 0);
assert (lit != -signed_id);
Var *v = LIT2VARPTR (vars, lit);
if (v->id != id)
{
VarIDStack *offset_in_watched_clause;
LitIDStack *notify_list;
if (QDPLL_LIT_NEG (lit))
{
if (!watched_clause->is_cube)
{
offset_in_watched_clause =
&(v->neg_offset_in_watched_clause);
notify_list = &(v->neg_notify_clause_watchers);
}
else
{
offset_in_watched_clause =
&(v->pos_offset_in_watched_clause);
notify_list = &(v->pos_notify_clause_watchers);
}
}
else
{
assert (QDPLL_LIT_POS (lit));
if (!watched_clause->is_cube)
{
offset_in_watched_clause =
&(v->pos_offset_in_watched_clause);
notify_list = &(v->pos_notify_clause_watchers);
}
else
{
offset_in_watched_clause =
&(v->neg_offset_in_watched_clause);
notify_list = &(v->neg_notify_clause_watchers);
}
}
assert (count_in_notify_clause_watcher_list
(notify_list, signed_id) == 0);
/* Store offsets. */
QDPLL_PUSH_STACK (mm, *offset_in_notify_list,
QDPLL_COUNT_STACK (*notify_list));
QDPLL_PUSH_STACK (mm, *offset_in_watched_clause, offset);
QDPLL_PUSH_STACK (mm, *notify_list, signed_id);
assert (count_in_notify_clause_watcher_list
(notify_list, signed_id) == 1);
}
else /* Push dummy entry. */
QDPLL_PUSH_STACK (mm, *offset_in_notify_list, 0);
offset++;
}
assert (QDPLL_COUNT_STACK (*offset_in_notify_list) ==
watched_clause->num_lits);
}
static void
set_new_watcher (QDPLL * qdpll, LitID signed_id, BLitsOccStack * occ_list,
BLitsOcc * new_watcher)
{
assert (signed_id != 0);
/* Watched clause always occurs first on list. */
BLitsOcc tmp = *new_watcher;
*new_watcher = occ_list->start[0];
occ_list->start[0] = tmp;
/* Add watching variable's ID to notify-lists of variable in watched clause. */
add_watching_var_to_notify_lists (qdpll, signed_id,
BLIT_STRIP_PTR (tmp.constraint));
}
static Constraint *check_disabling_blocking_lit (QDPLL * qdpll,
BLitsOcc blit_occ,
const int
called_on_pure_lits);
/* Traverse the occurrence stack beginning from start position
and search a new, unsatisfied clause to watch.
The new watcher is then copied to the first position (invariant).
Returns new watcher if found, else null.
NOTE: we use 'init' flag to use this function both for watcher
update and watcher initialization.
NOTE: 'occ_list' is the list where we search for a new watcher,
'old_watcher_list' contains the old (now empty) watcher, which can
be equal to 'occ_list'. */
static Constraint *
find_and_set_new_watcher (QDPLL * qdpll, LitID lit, BLitsOccStack * occ_list,
BLitsOccStack * old_watcher_list, const int init)
{
#if COMPUTE_STATS
qdpll->stats.total_clause_watcher_find_calls++;
#endif
Var *vars = qdpll->pcnf.vars;
BLitsOcc *bp, *be;
bp = occ_list->start;
be = occ_list->top;
/* Start search at second element. */
if (!init && occ_list == old_watcher_list)
bp++;
for (; bp < be; bp++)
{
Constraint *c = check_disabling_blocking_lit (qdpll, *bp, 1);
if (!c)
continue;
if (c->qbcp_qbce_blocked)
continue;
#if COMPUTE_STATS
qdpll->stats.total_clause_watcher_find_clause_visits++;
if (c->learnt)
qdpll->stats.total_clause_watcher_find_learnt_clause_visits++;
#endif
LitID disabling_lit;
if (!(disabling_lit = is_constraint_empty_watcher (qdpll, c)))
{
/* We have found a new watcher. */
if (!init)
remove_watching_var_from_notify_lists (qdpll, lit,
BLIT_STRIP_PTR
(old_watcher_list->
start[0].constraint));
set_new_watcher (qdpll, lit, occ_list, bp);
return c;
}
else
update_blocking_literal (qdpll, vars, bp,
c, disabling_lit, LIT2VARPTR (vars,
disabling_lit),
c->is_cube);
}
return 0;
}
/* Toggle marks of variables to indicate occurrences in watched clause;
value == 0 means resetting of marks to 0, value == 1 means setting marks to 1. */
static void
update_empty_formula_watcher_toggle_var_marks (QDPLL *qdpll,
BLitsOcc *watched_blit,
const unsigned int value)
{
assert (value == 0 || value == 1);
if (!watched_blit)
return;
Constraint *watched_clause = watched_blit->constraint;
LitID *p, *e;
for (p = watched_clause->lits, e = p + watched_clause->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
assert (!var->empty_formula_watcher_neg_occ ||
!var->empty_formula_watcher_pos_occ);
if (QDPLL_LIT_NEG (lit))
{
assert (value || var->empty_formula_watcher_neg_occ);
assert (!value || !var->empty_formula_watcher_neg_occ);
var->empty_formula_watcher_neg_occ = value;
}
else
{
assert (QDPLL_LIT_POS (lit));
assert (value || var->empty_formula_watcher_pos_occ);
assert (!value || !var->empty_formula_watcher_pos_occ);
var->empty_formula_watcher_pos_occ = value;
}
}
}
/* Returns zero iff the formula is currently empty. */
static BLitsOcc *
update_empty_formula_watcher (QDPLL *qdpll)
{
BLitsOcc *cur_watcher_p = qdpll->empty_formula_watcher;
assert (!cur_watcher_p || cur_watcher_p->constraint->qbcp_qbce_blocked ||
!is_clause_empty (qdpll, cur_watcher_p->constraint));
#if COMPUTE_STATS
qdpll->stats.empty_formula_watcher_total_update_calls++;
#endif
if (!qdpll->state.empty_formula_watcher_scheduled_update)
{
/* If no update is scheduled, then the current watched clause is still
unsatisfied and non-blocked under the current assignment. */
assert (cur_watcher_p || qdpll->pcnf.clauses.cnt == 0);
assert (!cur_watcher_p || !cur_watcher_p->constraint->qbcp_qbce_blocked);
assert (!cur_watcher_p || !is_clause_satisfied (qdpll, cur_watcher_p->constraint));
return cur_watcher_p;
}
#if COMPUTE_STATS
qdpll->stats.empty_formula_watcher_effective_update_calls++;
#endif
qdpll->state.empty_formula_watcher_scheduled_update = 0;
if (!cur_watcher_p)
cur_watcher_p = qdpll->empty_formula_watching_blit_occs.start;
assert (qdpll->pcnf.clauses.cnt ==
(unsigned int) QDPLL_COUNT_STACK (qdpll->empty_formula_watching_blit_occs));
assert (cur_watcher_p <= qdpll->empty_formula_watching_blit_occs.top);
assert (qdpll->empty_formula_watching_blit_occs.start <= cur_watcher_p);
BLitsOcc *e = qdpll->empty_formula_watching_blit_occs.top;
for (; cur_watcher_p < e; cur_watcher_p++)
{
#if COMPUTE_STATS
if (cur_watcher_p->blit)
qdpll->stats.empty_formula_watcher_is_clause_sat_cache_accesses++;
#endif
/* This branch should save calls of 'is_clause_satisfied'. */
/* Must handle empty input clauses. */
assert (cur_watcher_p->blit || cur_watcher_p->constraint->num_lits == 0);
Constraint *cur_watcher = cur_watcher_p->blit ?
check_disabling_blocking_lit (qdpll, *cur_watcher_p, 0) : cur_watcher_p->constraint;
/* Check if clause is satisfied by cached literal. */
if (!cur_watcher)
{
#if COMPUTE_STATS
qdpll->stats.empty_formula_watcher_is_clause_sat_cache_hits++;
#endif
continue;
}
else
{
assert (cur_watcher->num_lits == 0 ||
(cur_watcher->num_lits == 1 &&
(LIT2VARPTR(qdpll->pcnf.vars, cur_watcher->lits[0])->is_internal)) ||
cur_watcher->qbcp_qbce_blocked ||
!is_clause_empty (qdpll, cur_watcher));
if (cur_watcher->qbcp_qbce_blocked)
{
#if COMPUTE_STATS
qdpll->stats.empty_formula_watcher_is_clause_sat_found_blocked++;
#endif
continue;
}
LitID satisfying_lit;
if ((satisfying_lit = is_constraint_empty_watcher (qdpll, cur_watcher)))
{
#if COMPUTE_STATS
qdpll->stats.empty_formula_watcher_is_clause_sat_found_sat++;
#endif
update_blocking_literal (qdpll, qdpll->pcnf.vars, cur_watcher_p,
cur_watcher, satisfying_lit, LIT2VARPTR (qdpll->pcnf.vars,
satisfying_lit),
cur_watcher->is_cube);
continue;
}
else
{
/* Clause is neither satisfied nor blocked. */
break;
}
}
}
/* Reset marks of variables appearing in old watched clause. */
update_empty_formula_watcher_toggle_var_marks (qdpll, qdpll->empty_formula_watcher, 0);
qdpll->empty_formula_watcher = cur_watcher_p < e ? cur_watcher_p : 0;
/* Set marks of variables appearing in new watched clause. */
update_empty_formula_watcher_toggle_var_marks (qdpll, qdpll->empty_formula_watcher, 1);
return qdpll->empty_formula_watcher;
}
static int
notify_clause_watching_variables_aux (QDPLL * qdpll, LitID signed_id, Var *v)
{
BLitsOccStack *occs, *next_occs;
QDPLLAssignment pure_value;
if (QDPLL_LIT_NEG (signed_id))
{
pure_value = QDPLL_SCOPE_EXISTS (v->scope) ?
QDPLL_ASSIGNMENT_TRUE : QDPLL_ASSIGNMENT_FALSE;
/* Must find new neg-occ watcher. */
if (v->mark_is_neg_watching_cube)
{
/* First search neg-occ cubes, then neg-occ clauses. */
assert (is_cube_empty
(qdpll,
BLIT_STRIP_PTR (v->neg_occ_cubes.start[0].
constraint)));
occs = &(v->neg_occ_cubes);
next_occs = &(v->neg_occ_clauses);
}
else
{
/* First search neg-occ clauses, then neg-occ cubes. */
assert (BLIT_STRIP_PTR (v->neg_occ_clauses.start[0].
constraint)->qbcp_qbce_blocked ||
is_clause_satisfied
(qdpll,
BLIT_STRIP_PTR (v->neg_occ_clauses.start[0].
constraint)));
occs = &(v->neg_occ_clauses);
next_occs = &(v->neg_occ_cubes);
}
}
else
{
assert (QDPLL_LIT_POS (signed_id));
pure_value = QDPLL_SCOPE_EXISTS (v->scope) ?
QDPLL_ASSIGNMENT_FALSE : QDPLL_ASSIGNMENT_TRUE;
/* Must find new pos-occ watcher. */
if (v->mark_is_pos_watching_cube)
{
/* First search pos-occ cubes, then pos-occ clauses. */
assert (is_cube_empty
(qdpll,
BLIT_STRIP_PTR (v->pos_occ_cubes.start[0].
constraint)));
occs = &(v->pos_occ_cubes);
next_occs = &(v->pos_occ_clauses);
}
else
{
/* First search pos-occ clauses, then pos-occ cubes. */
assert (BLIT_STRIP_PTR (v->pos_occ_clauses.start[0].
constraint)->qbcp_qbce_blocked ||
is_clause_satisfied
(qdpll,
BLIT_STRIP_PTR (v->pos_occ_clauses.start[0].
constraint)));
occs = &(v->pos_occ_clauses);
next_occs = &(v->pos_occ_cubes);
}
}
Constraint *new_in_occs = 0, *new_in_next_occs = 0;
if (!(new_in_occs =
find_and_set_new_watcher (qdpll, signed_id, occs, occs, 0)) &&
!(new_in_next_occs =
find_and_set_new_watcher (qdpll, signed_id, next_occs, occs, 0)))
{
assert (!new_in_occs && !new_in_next_occs);
/* Variable has no active occurrences left -> is pure. */
push_assigned_variable (qdpll, v, pure_value, QDPLL_VARMODE_PURE);
}
else
{
assert (new_in_occs || new_in_next_occs);
/* Invert flag to indicate that we found a new
watcher in the other occ-list. */
if (!new_in_occs)
{
assert (new_in_next_occs);
if (QDPLL_LIT_NEG (signed_id))
v->mark_is_neg_watching_cube = !v->mark_is_neg_watching_cube;
else
v->mark_is_pos_watching_cube = !v->mark_is_pos_watching_cube;
}
return 1;
}
return 0;
}
/* Notify clause-watching variables to find new watcher after assignment. */
static void
notify_clause_watching_variables (QDPLL * qdpll, LitIDStack * notify_list)
{
Var *vars = qdpll->pcnf.vars, *v;
LitID *p, *e;
for (p = notify_list->start, e = notify_list->top; p < e; p++)
{
assert (*p != 0);
LitID signed_id = *p;
v = LIT2VARPTR (vars, signed_id);
if (QDPLL_VAR_ASSIGNED (v))
continue;
#ifndef NDEBUG
LitID *old_top = notify_list->top;
#endif
if (notify_clause_watching_variables_aux (qdpll, signed_id, v))
{
/* New watcher was set. */
#ifndef NDEBUG
assert (old_top == notify_list->top + 1);
#endif
/* Entry has been removed from list being traversed. */
e--;
p--;
/* Must check 'new' element which was copied there. */
}
}
}
/* Find clause watchers for each variable.
This is only for initialization before solver starts. */
static void
init_clause_watchers (QDPLL * qdpll)
{
assert (qdpll->state.decision_level == 0);
Var *vars = qdpll->pcnf.vars;
Scope *s;
for (s = qdpll->pcnf.scopes.first; s; s = s->link.next)
{
VarID *p, *e;
for (p = s->vars.start, e = s->vars.top; p < e; p++)
{
assert (*p > 0 && *p < qdpll->pcnf.size_vars);
Var *v = VARID2VARPTR (vars, *p);
assert (!v->mark_is_neg_watching_cube);
assert (!v->mark_is_pos_watching_cube);
if (QDPLL_VAR_ASSIGNED (v))
{
assert (v->decision_level == 0);
continue;
}
Constraint *watcher;
if ((watcher =
find_and_set_new_watcher (qdpll, -v->id, &(v->neg_occ_clauses),
&(v->neg_occ_clauses), 1)) ||
((qdpll->options.no_spure_literals) &&
(watcher =
find_and_set_new_watcher (qdpll, -v->id, &(v->neg_occ_cubes),
&(v->neg_occ_cubes), 1))))
{
if (watcher->is_cube)
v->mark_is_neg_watching_cube = 1;
}
else
{ /* Pure literal detected: variable has no negative occurrences. */
assert (!QDPLL_VAR_ASSIGNED (v));
if (QDPLL_VAR_EXISTS (v))
{
push_assigned_variable (qdpll, v, QDPLL_ASSIGNMENT_TRUE,
QDPLL_VARMODE_PURE);
}
else
{
push_assigned_variable (qdpll, v, QDPLL_ASSIGNMENT_FALSE,
QDPLL_VARMODE_PURE);
}
/* 'continue' here because: other watcher can not be set
since now all clauses implicitly satisfied. And we must
not enqueue two assignments. */
continue;
}
if ((watcher =
find_and_set_new_watcher (qdpll, v->id, &(v->pos_occ_clauses),
&(v->pos_occ_clauses), 1)) ||
((qdpll->options.no_spure_literals) &&
(watcher =
find_and_set_new_watcher (qdpll, v->id, &(v->pos_occ_cubes),
&(v->pos_occ_cubes), 1))))
{
if (watcher->is_cube)
v->mark_is_pos_watching_cube = 1;
}
else
{ /* Pure literal detected: variable has no positive occurrences. */
assert (!QDPLL_VAR_ASSIGNED (v));
if (QDPLL_VAR_EXISTS (v))
{
push_assigned_variable (qdpll, v, QDPLL_ASSIGNMENT_FALSE,
QDPLL_VARMODE_PURE);
}
else
{
push_assigned_variable (qdpll, v, QDPLL_ASSIGNMENT_TRUE,
QDPLL_VARMODE_PURE);
}
}
}
}
}
/* -------------------- END: CLAUSE WATCHING -------------------- */
/* -------------------- START: LITERAL WATCHING -------------------- */
/* 'blit_ptr' points to a blocking-lit-object of constraint 'c'. */
static void
update_blocking_literal (QDPLL * qdpll, Var * vars, BLitsOcc * blit_ptr,
Constraint * c, LitID disabling_lit,
Var * disabling_var, const int is_cube)
{
assert (((QDPLL_LIT_NEG (disabling_lit) &&
((!is_cube && QDPLL_VAR_ASSIGNED_FALSE (disabling_var)) ||
(is_cube && QDPLL_VAR_ASSIGNED_TRUE (disabling_var)))) ||
(QDPLL_LIT_POS (disabling_lit) &&
((!is_cube && QDPLL_VAR_ASSIGNED_TRUE (disabling_var)) ||
(is_cube && QDPLL_VAR_ASSIGNED_FALSE (disabling_var))))));
assert (LIT2VARPTR (vars, disabling_lit) == disabling_var);
#if COMPUTE_STATS
qdpll->stats.blits_update_calls++;
#endif
assert (!BLIT_MARKED_PTR (c));
assert (c == BLIT_STRIP_PTR (blit_ptr->constraint));
assert (blit_ptr->blit);
assert (blit_ptr->constraint);
LitID cur_blit = blit_ptr->blit;
Var *cur_bvar = LIT2VARPTR (vars, cur_blit);
int cur_non_disabling = ((QDPLL_LIT_NEG (cur_blit) &&
((!is_cube && QDPLL_VAR_ASSIGNED_TRUE (cur_bvar))
|| (is_cube
&& QDPLL_VAR_ASSIGNED_FALSE (cur_bvar))))
|| (QDPLL_LIT_POS (cur_blit)
&&
((!is_cube
&& QDPLL_VAR_ASSIGNED_FALSE (cur_bvar))
|| (is_cube
&& QDPLL_VAR_ASSIGNED_TRUE (cur_bvar)))));
/* Set blocking literal only if cur. blocking literal is unassigned,
assigned but non-disabling or assigned disabling but at higher
level -> want to keep "good" blocking literals. */
if (!QDPLL_VAR_ASSIGNED (cur_bvar) || cur_non_disabling ||
cur_bvar->decision_level > disabling_var->decision_level)
{
#if COMPUTE_STATS
qdpll->stats.blits_update_done++;
#endif
blit_ptr->blit = disabling_lit;
}
}
/* Traverse clause's literals between 'right' and 'left' and search unassigned
literal of specified type. If a true literal is found, then value 'QDPLL_WATCHER_SAT' is returned.
*/
static unsigned int
find_watcher_pos (QDPLL * qdpll, const int is_cube, Var * vars,
Constraint * c, LitID * right, LitID * left,
const QDPLLQuantifierType qtype, BLitsOcc * blit_ptr)
{
assert (!BLIT_MARKED_PTR (c));
#if COMPUTE_STATS
qdpll->stats.total_lit_watcher_find_calls++;
#endif
Var *oldw = 0;
QDPLLQuantifierType oldw_type = QDPLL_QTYPE_UNDEF;
if (qtype == QDPLL_QTYPE_UNDEF)
{
/* Only when searching new left watcher. */
oldw = LIT2VARPTR (qdpll->pcnf.vars, *(right + 1));
oldw_type = oldw->scope->type;
assert (!is_cube || oldw_type == QDPLL_QTYPE_FORALL);
assert (is_cube || oldw_type == QDPLL_QTYPE_EXISTS);
}
for (; right >= left; right--)
{
assert (right >= c->lits);
#if COMPUTE_STATS
qdpll->stats.total_lit_watcher_find_lit_visits++;
#endif
LitID lit = *right;
assert (lit != 0);
Var *var = LIT2VARPTR (vars, lit);
if (!QDPLL_VAR_ASSIGNED (var))
{
/* Literal unassigned. */
if (qtype == QDPLL_QTYPE_UNDEF || qtype == var->scope->type)
{
#if COMPUTE_STATS
qdpll->stats.total_lwatched++;
#endif
if (qtype == QDPLL_QTYPE_UNDEF
&& oldw_type != var->scope->type
&& qdpll->dm->is_init (qdpll->dm))
{
#if COMPUTE_STATS
qdpll->stats.total_lwatched_tested++;
#endif
if (!qdpll->dm->depends (qdpll->dm, var->id, oldw->id))
{
#if COMPUTE_STATS
qdpll->stats.non_dep_lwatched_skipped++;
#endif
continue;
}
}
return right - c->lits;
}
}
else
{
/* Check if assigned literal satisfies clause / falsifies cube. */
if (QDPLL_LIT_NEG (lit))
{
if ((!is_cube && QDPLL_VAR_ASSIGNED_FALSE (var)) ||
(is_cube && QDPLL_VAR_ASSIGNED_TRUE (var)))
{
update_blocking_literal (qdpll, vars, blit_ptr, c, lit, var,
is_cube);
return QDPLL_WATCHER_SAT;
}
}
else
{
assert (QDPLL_LIT_POS (lit));
if ((!is_cube && QDPLL_VAR_ASSIGNED_TRUE (var)) ||
(is_cube && QDPLL_VAR_ASSIGNED_FALSE (var)))
{
update_blocking_literal (qdpll, vars, blit_ptr, c, lit, var,
is_cube);
return QDPLL_WATCHER_SAT;
}
}
}
}
return QDPLL_INVALID_WATCHER_POS;
}
/* Delete the 'clause' from the literal's notify-list. Parameter
'lit_is_rwlit' indicates if 'lit' is the literal of the right or left
watcher. This avoids retrieving the watcher list again from the clause. */
static void
remove_clause_from_notify_list (QDPLL * qdpll, const int is_cube,
int lit_is_rwlit, LitID lit,
Constraint * clause)
{
assert (!BLIT_MARKED_PTR (clause));
Var *vars = qdpll->pcnf.vars;
Var *var = LIT2VARPTR (vars, lit);
BLitsOccStack *notify_list;
if (QDPLL_LIT_NEG (lit))
{
if (!is_cube)
notify_list = &(var->pos_notify_lit_watchers);
else
notify_list = &(var->neg_notify_lit_watchers);
}
else
{
assert (QDPLL_LIT_POS (lit));
if (!is_cube)
notify_list = &(var->neg_notify_lit_watchers);
else
notify_list = &(var->pos_notify_lit_watchers);
}
assert (count_in_notify_literal_watcher_list (notify_list, clause) == 1);
unsigned int offset = clause->offset_in_notify_list[lit_is_rwlit];
BLitsOcc last_occ = QDPLL_POP_STACK (*notify_list);
Constraint *last_occ_constr = last_occ.constraint;
int marked = BLIT_MARKED_PTR (last_occ_constr);
last_occ_constr = BLIT_STRIP_PTR (last_occ_constr);
assert (marked || !last_occ_constr->is_cube);
assert (!marked || last_occ_constr->is_cube);
if (last_occ_constr == clause)
return;
const int same_types = (clause->is_cube == last_occ_constr->is_cube);
/* Overwrite the current position with the last entry. */
assert (BLIT_STRIP_PTR (notify_list->start[offset].constraint) == clause);
notify_list->start[offset] = last_occ;
assert (notify_list->start[offset].blit == last_occ.blit);
assert (notify_list->start[offset].constraint == last_occ.constraint);
/* Must update position information in the copied entry. */
unsigned int *other_offsetp = last_occ_constr->offset_in_notify_list;
LitID other_wlit = *(last_occ_constr->lits + last_occ_constr->lwatcher_pos);
/* Literal 'lit' must be watched in 'last_entry' as well. */
if ((same_types && other_wlit != lit)
|| ((!same_types && other_wlit != -lit)))
{
other_wlit = *(last_occ_constr->lits + last_occ_constr->rwatcher_pos);
other_offsetp++;
}
assert (!same_types || other_wlit == lit);
assert (same_types || other_wlit == -lit);
*other_offsetp = offset;
assert (count_in_notify_literal_watcher_list (notify_list, clause) == 0);
}
static void
add_clause_to_notify_list (QDPLL * qdpll, const int is_cube, int lit_is_rwlit,
LitID lit, Var * var, BLitsOcc blit)
{
Constraint *clause = BLIT_STRIP_PTR (blit.constraint);
QDPLLMemMan *mm = qdpll->mm;
/* Add clause to notification list wrt. sign of literal. */
BLitsOccStack *other_notify_list;
if (QDPLL_LIT_NEG (lit))
{
if (!is_cube)
other_notify_list = &(var->pos_notify_lit_watchers);
else
other_notify_list = &(var->neg_notify_lit_watchers);
}
else
{
assert (QDPLL_LIT_POS (lit));
if (!is_cube)
other_notify_list = &(var->neg_notify_lit_watchers);
else
other_notify_list = &(var->pos_notify_lit_watchers);
}
assert (count_in_notify_literal_watcher_list (other_notify_list, clause) ==
0);
/* Store clauses's position in notify-list. */
clause->offset_in_notify_list[lit_is_rwlit] =
QDPLL_COUNT_STACK (*other_notify_list);
QDPLL_PUSH_STACK (mm, *other_notify_list, blit);
assert (count_in_notify_literal_watcher_list (other_notify_list, clause) ==
1);
}
/* Function is called to check satisfied cubes/learnt clauses and
learnt unit constraints for spurious pure literals. */
static int
has_constraint_spurious_pure_lit (QDPLL * qdpll, Constraint * c)
{
/* Spurious pure literals can only occur in learnt constraints
because we use original clauses for detection. */
if (!c->learnt && !c->is_cube)
{
return 0;
}
assert (!qdpll->options.no_spure_literals);
Var *vars = qdpll->pcnf.vars;
const int is_cube = c->is_cube;
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
if (var->mode == QDPLL_VARMODE_PURE)
{
assert (QDPLL_VAR_ASSIGNED (var));
if (!is_cube && QDPLL_SCOPE_EXISTS (var->scope))
{
/* A false existential pure literal in a learnt clause
is always spurious. Normally, pure existential literals
always satisfy clauses. */
if ((QDPLL_LIT_NEG (lit) && QDPLL_VAR_ASSIGNED_TRUE (var)) ||
(QDPLL_LIT_POS (lit) && QDPLL_VAR_ASSIGNED_FALSE (var)))
return 1;
}
else if (is_cube && QDPLL_SCOPE_FORALL (var->scope))
{
/* A true universal pure literal in a learnt cube
is always spurious. Normally, pure universal literals
always falsify cubes. */
if ((QDPLL_LIT_NEG (lit) && QDPLL_VAR_ASSIGNED_FALSE (var)) ||
(QDPLL_LIT_POS (lit) && QDPLL_VAR_ASSIGNED_TRUE (var)))
return 1;
}
}
}
return 0;
}
static void learnt_constraint_mtf (QDPLL * qdpll, Constraint * c);
static Constraint *
handle_detected_unit_constraint (QDPLL * qdpll, LitID lit, Var * var,
Constraint * constraint)
{
assert (!QDPLL_VAR_ASSIGNED (var));
assert (!QDPLL_VAR_MARKED_PROPAGATED (var));
assert (!constraint->qbcp_qbce_blocked);
if (!qdpll->options.no_spure_literals)
{
if (has_constraint_spurious_pure_lit (qdpll, constraint))
{
#if COMPUTE_STATS
if (constraint->is_cube)
qdpll->stats.total_splits_ignored_unit_cubes++;
else
qdpll->stats.total_splits_ignored_unit_clauses++;
#endif
return constraint;
}
}
assert (!var->antecedent);
var->antecedent = constraint;
assert (!constraint->is_reason);
constraint->is_reason = 1;
if (constraint->learnt)
{
if (!qdpll->options.no_unit_mtf)
learnt_constraint_mtf (qdpll, constraint);
#if COMPUTE_STATS
if (constraint->is_cube)
{
qdpll->stats.total_unit_lcubes++;
if (constraint->is_taut)
qdpll->stats.total_unit_taut_lcubes++;
}
else
{
qdpll->stats.total_unit_lclauses++;
if (constraint->is_taut)
qdpll->stats.total_unit_taut_lclauses++;
}
#endif
}
/* Push unit. */
push_assigned_variable (qdpll, var,
QDPLL_LIT_POS (lit) ?
QDPLL_ASSIGNMENT_TRUE :
QDPLL_ASSIGNMENT_FALSE, QDPLL_VARMODE_UNIT);
return constraint;
}
/* Called after watcher became false. Try to set up watcher invariant by
finding new pair of watched literals. Returns null if conflict occurred,
otherwise sentinel for entry deletion. Detected unit literals will be pushed immediately.
*/
static Constraint *
update_literal_watchers (QDPLL * qdpll, Var * propagated_var,
BLitsOcc * blit_ptr)
{
BLitsOcc blit = *blit_ptr;
Constraint *clause = BLIT_STRIP_PTR (blit.constraint);
assert (!clause->qbcp_qbce_blocked);
#if COMPUTE_STATS
qdpll->stats.total_lit_watcher_update_calls++;
#endif
QDPLLMemMan *mm = qdpll->mm;
Var *vars = qdpll->pcnf.vars;
const int is_cube = clause->is_cube;
/* When disabling unit literals or using lazy assignments, we need
to watch original unit clauses for UNSAT-checking. */
assert (clause->num_lits > 1);
assert (QDPLL_VAR_ASSIGNED (propagated_var));
assert (QDPLL_VAR_MARKED_PROPAGATED (propagated_var));
assert (clause->num_lits == 1
|| clause->lwatcher_pos < clause->rwatcher_pos);
assert (clause->rwatcher_pos < clause->num_lits);
assert (clause->lwatcher_pos < clause->num_lits);
unsigned int oldlwpos = clause->lwatcher_pos;
unsigned int newlwpos, newrwpos;
LitID *lits = clause->lits;
LitID lwlit = *(lits + oldlwpos);
Var *lwvar = LIT2VARPTR (vars, lwlit);
/* Check if a watcher satisfies clause already. */
if (QDPLL_LIT_NEG (lwlit))
{
if ((!is_cube && QDPLL_VAR_ASSIGNED_FALSE (lwvar)) ||
(is_cube && QDPLL_VAR_ASSIGNED_TRUE (lwvar)))
{
/* True watcher must not equal blocking lit, otherwise we
should have detected that before. */
assert (lwlit != blit.blit);
update_blocking_literal (qdpll, vars, blit_ptr, clause, lwlit,
lwvar, is_cube);
#if COMPUTE_STATS
qdpll->stats.total_lit_watcher_update_sat_by_lw++;
#endif
return clause;
}
}
else
{
assert (QDPLL_LIT_POS (lwlit));
if ((!is_cube && QDPLL_VAR_ASSIGNED_TRUE (lwvar)) ||
(is_cube && QDPLL_VAR_ASSIGNED_FALSE (lwvar)))
{
/* True watcher must not equal blocking lit, otherwise we
should have detected that before. */
assert (lwlit != blit.blit);
update_blocking_literal (qdpll, vars, blit_ptr, clause, lwlit,
lwvar, is_cube);
#if COMPUTE_STATS
qdpll->stats.total_lit_watcher_update_sat_by_lw++;
#endif
return clause;
}
}
unsigned int oldrwpos = clause->rwatcher_pos;
LitID rwlit = *(lits + oldrwpos);
Var *rwvar = LIT2VARPTR (vars, rwlit);
if (QDPLL_LIT_NEG (rwlit))
{
if ((!is_cube && QDPLL_VAR_ASSIGNED_FALSE (rwvar)) ||
(is_cube && QDPLL_VAR_ASSIGNED_TRUE (rwvar)))
{
/* True watcher must not equal blocking lit, otherwise we
should have detected that before. */
assert (rwlit != blit.blit);
update_blocking_literal (qdpll, vars, blit_ptr, clause, rwlit,
rwvar, is_cube);
#if COMPUTE_STATS
qdpll->stats.total_lit_watcher_update_sat_by_rw++;
#endif
return clause;
}
}
else
{
assert (QDPLL_LIT_POS (rwlit));
if ((!is_cube && QDPLL_VAR_ASSIGNED_TRUE (rwvar)) ||
(is_cube && QDPLL_VAR_ASSIGNED_FALSE (rwvar)))
{
/* True watcher must not equal blocking lit, otherwise we
should have detected that before. */
assert (rwlit != blit.blit);
update_blocking_literal (qdpll, vars, blit_ptr, clause, rwlit,
rwvar, is_cube);
#if COMPUTE_STATS
qdpll->stats.total_lit_watcher_update_sat_by_rw++;
#endif
return clause;
}
}
assert (is_cube || QDPLL_VAR_EXISTS (rwvar));
assert (!is_cube || QDPLL_VAR_FORALL (rwvar));
assert (QDPLL_VAR_ASSIGNED (lwvar) || QDPLL_VAR_ASSIGNED (rwvar));
assert (rwlit != 0);
assert (lwlit != 0);
assert (clause->num_lits == 1 || rwlit != lwlit);
assert (clause->num_lits == 1 || -rwlit != lwlit);
if (!QDPLL_VAR_ASSIGNED (rwvar))
{
/* Left watcher assigned. Here, conflicts/solutions can NOT occur. */
assert (lwvar == propagated_var);
assert (is_cube || QDPLL_LIT_POS (lwlit)
|| QDPLL_VAR_ASSIGNED_TRUE (lwvar));
assert (is_cube || QDPLL_LIT_NEG (lwlit)
|| QDPLL_VAR_ASSIGNED_FALSE (lwvar));
assert (!is_cube || QDPLL_LIT_POS (lwlit)
|| QDPLL_VAR_ASSIGNED_FALSE (lwvar));
assert (!is_cube || QDPLL_LIT_NEG (lwlit)
|| QDPLL_VAR_ASSIGNED_TRUE (lwvar));
if ((newlwpos =
find_watcher_pos (qdpll, is_cube, vars, clause,
lits + oldrwpos - 1, lits, QDPLL_QTYPE_UNDEF,
blit_ptr)) != QDPLL_INVALID_WATCHER_POS)
{
if (newlwpos != QDPLL_WATCHER_SAT)
{ /* New watcher found -> update notify lists. */
remove_clause_from_notify_list (qdpll, is_cube, 0, lwlit,
clause);
lwlit = *(lits + newlwpos);
assert (lwlit);
lwvar = LIT2VARPTR (vars, lwlit);
add_clause_to_notify_list (qdpll, is_cube, 0, lwlit, lwvar,
blit);
clause->lwatcher_pos = newlwpos;
return clause + 1;
}
else /* Clause is satisfied. */
{
return clause;
}
}
else
{
/* Did not find new left watcher. Next, try to find new right watcher. */
newrwpos =
find_watcher_pos (qdpll, is_cube, vars, clause,
lits + clause->num_lits - 1, lits,
is_cube ? QDPLL_QTYPE_FORALL :
QDPLL_QTYPE_EXISTS, blit_ptr);
assert (newrwpos != QDPLL_INVALID_WATCHER_POS);
assert (oldrwpos <= newrwpos);
if (newrwpos != QDPLL_WATCHER_SAT)
{
if (newrwpos != oldrwpos)
{
assert (oldrwpos < newrwpos);
newlwpos =
find_watcher_pos (qdpll, is_cube, vars, clause,
lits + newrwpos - 1, lits + oldrwpos,
QDPLL_QTYPE_UNDEF, blit_ptr);
assert (newlwpos != QDPLL_INVALID_WATCHER_POS);
assert (oldrwpos <= newlwpos);
if (newlwpos != QDPLL_WATCHER_SAT)
{
if (newlwpos != oldrwpos)
{
/* Must remove entry for old watcher and add two new entries. */
assert (oldrwpos < newlwpos);
remove_clause_from_notify_list (qdpll, is_cube, 1,
rwlit, clause);
rwlit = *(lits + newrwpos);
assert (rwlit);
rwvar = LIT2VARPTR (vars, rwlit);
add_clause_to_notify_list (qdpll, is_cube, 1, rwlit,
rwvar, blit);
remove_clause_from_notify_list (qdpll, is_cube, 0,
lwlit, clause);
lwlit = *(lits + newlwpos);
assert (lwlit);
lwvar = LIT2VARPTR (vars, lwlit);
add_clause_to_notify_list (qdpll, is_cube, 0, lwlit,
lwvar, blit);
}
else
{
/* Must add entry for new right watcher. */
remove_clause_from_notify_list (qdpll, is_cube, 0,
lwlit, clause);
clause->offset_in_notify_list[0] =
clause->offset_in_notify_list[1];
rwlit = *(lits + newrwpos);
assert (rwlit);
rwvar = LIT2VARPTR (vars, rwlit);
add_clause_to_notify_list (qdpll, is_cube, 1, rwlit,
rwvar, blit);
}
clause->lwatcher_pos = newlwpos;
clause->rwatcher_pos = newrwpos;
return clause + 1;
}
else
{
/* Clause is satisfied. */
return clause;
}
}
else
{
/* Clause is unit. No unassigned literal to the left of old rwatcher. */
return handle_detected_unit_constraint (qdpll,
!is_cube ? rwlit :
-rwlit, rwvar,
clause);
}
}
else
{
/* Clause is satisfied. */
return clause;
}
}
}
else
{
/* Right watcher assigned. Here, both unit literals and conflicts can occur. */
assert (is_cube || QDPLL_LIT_POS (rwlit)
|| QDPLL_VAR_ASSIGNED_TRUE (rwvar));
assert (is_cube || QDPLL_LIT_NEG (rwlit)
|| QDPLL_VAR_ASSIGNED_FALSE (rwvar));
assert (!is_cube || QDPLL_LIT_POS (rwlit)
|| QDPLL_VAR_ASSIGNED_FALSE (rwvar));
assert (!is_cube || QDPLL_LIT_NEG (rwlit)
|| QDPLL_VAR_ASSIGNED_TRUE (rwvar));
assert (QDPLL_VAR_ASSIGNED (lwvar) || rwvar == propagated_var);
if ((newrwpos =
find_watcher_pos (qdpll, is_cube, vars, clause,
lits + clause->num_lits - 1, lits,
is_cube ? QDPLL_QTYPE_FORALL :
QDPLL_QTYPE_EXISTS,
blit_ptr)) != QDPLL_INVALID_WATCHER_POS)
{ /* Clause can not be conflicting, since existential literal found. */
if (newrwpos != QDPLL_WATCHER_SAT)
{
/* NOTE: at this point, if left watcher not false, then need not find new left watcher. */
if ((newlwpos =
find_watcher_pos (qdpll, is_cube, vars, clause,
lits + newrwpos - 1, lits,
QDPLL_QTYPE_UNDEF,
blit_ptr)) != QDPLL_INVALID_WATCHER_POS)
{
if (newlwpos != QDPLL_WATCHER_SAT)
{ /* New watcher found -> update notify lists. */
assert (newlwpos < newrwpos);
if (newlwpos != oldlwpos)
{ /* Must remove one old entry and add two new ones. */
remove_clause_from_notify_list (qdpll, is_cube, 0,
lwlit, clause);
remove_clause_from_notify_list (qdpll, is_cube, 1,
rwlit, clause);
rwlit = *(lits + newrwpos);
assert (rwlit);
rwvar = LIT2VARPTR (vars, rwlit);
add_clause_to_notify_list (qdpll, is_cube, 1, rwlit,
rwvar, blit);
lwlit = *(lits + newlwpos);
assert (lwlit);
lwvar = LIT2VARPTR (vars, lwlit);
add_clause_to_notify_list (qdpll, is_cube, 0, lwlit,
lwvar, blit);
}
else
{ /* Add new entry for new right watcher. */
assert (clause->lwatcher_pos == newlwpos);
remove_clause_from_notify_list (qdpll, is_cube, 1,
rwlit, clause);
rwlit = *(lits + newrwpos);
assert (rwlit);
rwvar = LIT2VARPTR (vars, rwlit);
add_clause_to_notify_list (qdpll, is_cube, 1, rwlit,
rwvar, blit);
}
clause->rwatcher_pos = newrwpos;
clause->lwatcher_pos = newlwpos;
return clause + 1;
}
else /* Clause is satisfied. */
{
return clause;
}
}
else
{
/* Clause is unit or sat. when watching true
lits. No unassigned literal to the left of new
rwatcher. */
rwlit = *(lits + newrwpos);
assert (rwlit != 0);
rwvar = LIT2VARPTR (vars, rwlit);
return handle_detected_unit_constraint (qdpll,
!is_cube ? rwlit
: -rwlit, rwvar,
clause);
}
}
else /* Clause is satisfied. */
{
return clause;
}
}
else /* Clause is conflicting: no free existential literal found. */
{
return 0;
}
}
}
static void
init_literal_watcher (QDPLL * qdpll, Constraint * c, unsigned int left_offset,
unsigned int right_offset)
{
assert (c->num_lits > 1);
assert (left_offset < c->num_lits);
assert (right_offset < c->num_lits);
assert (left_offset < right_offset);
assert (c->num_lits != 1 || left_offset == right_offset);
assert (c->num_lits == 1 || left_offset != right_offset);
QDPLLMemMan *mm = qdpll->mm;
Var *vars = qdpll->pcnf.vars;
LitID lit, *litp;
VarID var_id;
unsigned int num_lits = c->num_lits;
const int is_cube = c->is_cube;
Var *var;
/* Set right watcher. */
litp = c->lits + right_offset;
assert (litp >= c->lits);
assert (litp < c->lits + num_lits);
lit = *litp;
assert (lit != 0);
var_id = LIT2VARID (lit);
var = VARID2VARPTR (vars, var_id);
assert (is_cube || QDPLL_VAR_EXISTS (var));
assert (!is_cube || QDPLL_VAR_FORALL (var));
c->rwatcher_pos = right_offset;
/* Add clause to notification list wrt. sign of literal. */
BLitsOccStack *notify_list;
if (QDPLL_LIT_NEG (lit))
{
if (!is_cube)
notify_list = &(var->pos_notify_lit_watchers);
else
notify_list = &(var->neg_notify_lit_watchers);
}
else
{
assert (QDPLL_LIT_POS (lit));
if (!is_cube)
notify_list = &(var->neg_notify_lit_watchers);
else
notify_list = &(var->pos_notify_lit_watchers);
}
assert (count_in_notify_literal_watcher_list (notify_list, c) == 0);
/* For initialization, simply use watched literal as blocking literal. */
BLitsOcc occ = { lit, is_cube ? BLIT_MARK_PTR (c) : c };
/* Store clauses's position in notify-list. */
c->offset_in_notify_list[1] = QDPLL_COUNT_STACK (*notify_list);
QDPLL_PUSH_STACK (mm, *notify_list, occ);
assert (count_in_notify_literal_watcher_list (notify_list, c) == 1);
/* Set left watcher. */
litp = c->lits + left_offset;
assert (litp >= c->lits);
assert (litp < c->lits + num_lits);
lit = *litp;
assert (lit != 0);
var_id = LIT2VARID (lit);
var = VARID2VARPTR (vars, var_id);
c->lwatcher_pos = left_offset;
/* Add clause to notification list wrt. sign of literal. */
if (QDPLL_LIT_NEG (lit))
{
if (!is_cube)
notify_list = &(var->pos_notify_lit_watchers);
else
notify_list = &(var->neg_notify_lit_watchers);
}
else
{
assert (QDPLL_LIT_POS (lit));
if (!is_cube)
notify_list = &(var->neg_notify_lit_watchers);
else
notify_list = &(var->pos_notify_lit_watchers);
}
assert (num_lits == 1
|| count_in_notify_literal_watcher_list (notify_list, c) == 0);
occ.blit = lit;
assert (!is_cube || occ.constraint == BLIT_MARK_PTR (c));
assert (is_cube || occ.constraint == c);
/* Store clauses's position in notify-list. */
c->offset_in_notify_list[0] = QDPLL_COUNT_STACK (*notify_list);
QDPLL_PUSH_STACK (mm, *notify_list, occ);
assert (num_lits == 1
|| count_in_notify_literal_watcher_list (notify_list, c) == 1);
}
/* Find watched lit only wrt. deps but not wrt. assignment. */
static unsigned int
find_init_watcher_pos (QDPLL * qdpll, const int is_cube, Var * vars,
LitID * lits, LitID * right, LitID * left,
const QDPLLQuantifierType qtype)
{
assert (qdpll->dm->is_init (qdpll->dm));
#if COMPUTE_STATS
qdpll->stats.total_lit_watcher_find_calls++;
#endif
Var *oldw = 0;
QDPLLQuantifierType oldw_type = QDPLL_QTYPE_UNDEF;
if (qtype == QDPLL_QTYPE_UNDEF)
{
/* Only when searching new left watcher. */
oldw = LIT2VARPTR (qdpll->pcnf.vars, *(right + 1));
oldw_type = oldw->scope->type;
assert (!is_cube || oldw_type == QDPLL_QTYPE_FORALL);
assert (is_cube || oldw_type == QDPLL_QTYPE_EXISTS);
}
for (; right >= left; right--)
{
assert (right >= lits);
#if COMPUTE_STATS
qdpll->stats.total_lit_watcher_find_lit_visits++;
#endif
LitID lit = *right;
assert (lit != 0);
Var *var = LIT2VARPTR (vars, lit);
assert (QDPLL_VAR_HAS_OCCS (var));
if (!QDPLL_VAR_ASSIGNED (var))
{
/* Literal unassigned. */
if (qtype == QDPLL_QTYPE_UNDEF || qtype == var->scope->type)
{
#if COMPUTE_STATS
qdpll->stats.total_lwatched++;
#endif
if (qtype == QDPLL_QTYPE_UNDEF && oldw_type != var->scope->type)
{
#if COMPUTE_STATS
qdpll->stats.total_lwatched_tested++;
#endif
if (!qdpll->dm->depends (qdpll->dm, var->id, oldw->id))
{
#if COMPUTE_STATS
qdpll->stats.non_dep_lwatched_skipped++;
#endif
continue;
}
}
return right - lits;
}
}
else
{
/* Check if assigned literal satisfies clause / falsifies cube. */
if (QDPLL_LIT_NEG (lit))
{
if ((!is_cube && QDPLL_VAR_ASSIGNED_FALSE (var)) ||
(is_cube && QDPLL_VAR_ASSIGNED_TRUE (var)))
return QDPLL_WATCHER_SAT;
}
else
{
assert (QDPLL_LIT_POS (lit));
if ((!is_cube && QDPLL_VAR_ASSIGNED_TRUE (var)) ||
(is_cube && QDPLL_VAR_ASSIGNED_FALSE (var)))
return QDPLL_WATCHER_SAT;
}
}
}
return QDPLL_INVALID_WATCHER_POS;
}
static QDPLLSolverState
init_literal_watchers_for_constraint (QDPLL * qdpll, Constraint * c)
{
assert (qdpll->state.decision_level == 0);
assert (c->lwatcher_pos == QDPLL_INVALID_WATCHER_POS);
assert (c->rwatcher_pos == QDPLL_INVALID_WATCHER_POS);
assert (!c->qbcp_qbce_blocked);
Var *vars = qdpll->pcnf.vars;
const int is_cube = c->is_cube;
unsigned int right_offset, left_offset;
right_offset =
find_init_watcher_pos (qdpll, is_cube, vars, c->lits,
c->lits + c->num_lits - 1, c->lits,
is_cube ? QDPLL_QTYPE_FORALL : QDPLL_QTYPE_EXISTS);
if (right_offset == QDPLL_INVALID_WATCHER_POS)
{
/* Important to check for spurious pure literals. */
if (qdpll->options.no_spure_literals ||
!has_constraint_spurious_pure_lit (qdpll, c))
return is_cube ? QDPLL_SOLVER_STATE_SAT : QDPLL_SOLVER_STATE_UNSAT;
else
assert (c->is_cube || c->learnt);
}
else if (right_offset != QDPLL_WATCHER_SAT)
{
left_offset =
find_init_watcher_pos (qdpll, is_cube, vars, c->lits,
c->lits + right_offset - 1, c->lits,
QDPLL_QTYPE_UNDEF);
if (left_offset == QDPLL_INVALID_WATCHER_POS)
{
/* Constraint is unit. Spurious pure lits are handled. */
LitID rwlit = c->lits[right_offset];
Var *rwvar = LIT2VARPTR (vars, rwlit);
handle_detected_unit_constraint (qdpll, !is_cube ?
rwlit : -rwlit, rwvar, c);
}
else if (left_offset != QDPLL_WATCHER_SAT)
init_literal_watcher (qdpll, c, left_offset, right_offset);
}
/* If constraint disabled at top level, then do not set any watcher. */
return QDPLL_SOLVER_STATE_UNDEF;
}
static QDPLLSolverState
init_literal_watchers_aux (QDPLL * qdpll, ConstraintList * clist)
{
QDPLLSolverState result;
Constraint *c, *next;
for (c = clist->first; c; c = next)
{
/* Bug Fix: constraint-mtf for detected units modifies list! */
next = c->link.next;
if (c->qbcp_qbce_blocked)
continue;
if ((result =
init_literal_watchers_for_constraint (qdpll,
c)) !=
QDPLL_SOLVER_STATE_UNDEF)
{
assert (!qdpll->result_constraint);
qdpll->result_constraint = c;
return result;
}
}
return QDPLL_SOLVER_STATE_UNDEF;
}
/* Initialize literal watchers to two rightmost literals in clause. */
static QDPLLSolverState
init_literal_watchers (QDPLL * qdpll)
{
assert (!qdpll->result_constraint);
assert (qdpll->state.decision_level == 0);
QDPLLSolverState result;
if ((result = init_literal_watchers_aux
(qdpll, &(qdpll->pcnf.clauses))) != QDPLL_SOLVER_STATE_UNDEF)
return result;
if ((result = init_literal_watchers_aux
(qdpll, &(qdpll->pcnf.learnt_clauses))) != QDPLL_SOLVER_STATE_UNDEF)
return result;
result = init_literal_watchers_aux (qdpll, &(qdpll->pcnf.learnt_cubes));
return result;
}
/* -------------------- END: LITERAL WATCHING -------------------- */
static void
delete_scope (QDPLL * qdpll, Scope * scope)
{
QDPLLMemMan *mm = qdpll->mm;
QDPLL_DELETE_STACK (mm, scope->vars);
QDPLL_DELETE_STACK (mm, scope->cover_lits);
qdpll_free (mm, scope, sizeof (Scope));
}
static void
delete_scope_list (QDPLL *qdpll, ScopeList *scope_list)
{
Scope *s, *n;
for (s = scope_list->first; s; s = n)
{
n = s->link.next;
delete_scope (qdpll, s);
}
}
static void
update_scope_nestings_and_ptrs_on_stack (QDPLL *qdpll, const int update_user_scopes)
{
/* Update the nesting levels of the user scopes and collect pointers to the
user scopes on stack 'qdpll->pcnf.user_scope_ptrs'. */
if (update_user_scopes)
QDPLL_RESET_STACK(qdpll->pcnf.user_scope_ptrs);
/* User scope numbering starts at nesting level 1. */
Nesting nesting = update_user_scopes ?
QDPLL_DEFAULT_SCOPE_NESTING + 1 : QDPLL_DEFAULT_SCOPE_NESTING;
Scope *s;
for (s = update_user_scopes ?
qdpll->pcnf.user_scopes.first : qdpll->pcnf.scopes.first;
s; s = s->link.next)
{
assert (!update_user_scopes || !s->is_internal);
assert (update_user_scopes || s->is_internal);
s->nesting = nesting++;
if (update_user_scopes)
QDPLL_PUSH_STACK(qdpll->mm, qdpll->pcnf.user_scope_ptrs, s);
}
assert (!update_user_scopes || QDPLL_COUNT_STACK(qdpll->pcnf.user_scope_ptrs) ==
qdpll_get_max_scope_nesting (qdpll));
}
/* Remove scopes which contain no variable. Typically called after no-occ
variables have been eliminated. */
static void
cleanup_empty_scopes (QDPLL * qdpll, ScopeList *scopes)
{
assert (scopes == &qdpll->pcnf.user_scopes || scopes == &qdpll->pcnf.scopes);
unsigned int modified = 0;
Scope *s, *n;
for (s = scopes->first; s; s = n)
{
n = s->link.next;
assert (scopes != &qdpll->pcnf.user_scopes ||
s->nesting != QDPLL_DEFAULT_SCOPE_NESTING);
assert (scopes != &qdpll->pcnf.user_scopes || !s->is_internal);
assert (scopes != &qdpll->pcnf.scopes || s->is_internal);
assert (s->nesting != QDPLL_DEFAULT_SCOPE_NESTING
|| QDPLL_SCOPE_EXISTS (s));
/* Should keep one outermost existential scope as default scope. */
if (!QDPLL_COUNT_STACK (s->vars)
&& s->nesting != QDPLL_DEFAULT_SCOPE_NESTING)
{
/* Unlink and delete scope. */
UNLINK (*scopes, s, link);
delete_scope (qdpll, s);
modified = 1;
}
}
/* Must never delete default scope. */
assert (qdpll->pcnf.scopes.first &&
qdpll->pcnf.scopes.first->nesting == 0 &&
qdpll->pcnf.scopes.first->nesting == QDPLL_DEFAULT_SCOPE_NESTING);
if (modified)
update_scope_nestings_and_ptrs_on_stack (qdpll, (scopes == &qdpll->pcnf.user_scopes));
}
static void
delete_variable (QDPLL * qdpll, Var * var)
{
QDPLLMemMan *mm = qdpll->mm;
QDPLL_DELETE_STACK (mm, var->pos_notify_clause_watchers);
QDPLL_DELETE_STACK (mm, var->neg_notify_clause_watchers);
QDPLL_DELETE_STACK (mm, var->pos_offset_in_notify_list);
QDPLL_DELETE_STACK (mm, var->neg_offset_in_notify_list);
QDPLL_DELETE_STACK (mm, var->pos_offset_in_watched_clause);
QDPLL_DELETE_STACK (mm, var->neg_offset_in_watched_clause);
QDPLL_DELETE_STACK (mm, var->pos_notify_lit_watchers);
QDPLL_DELETE_STACK (mm, var->neg_notify_lit_watchers);
QDPLL_DELETE_STACK (mm, var->neg_occ_clauses);
QDPLL_DELETE_STACK (mm, var->pos_occ_clauses);
QDPLL_DELETE_STACK (mm, var->neg_occ_cubes);
QDPLL_DELETE_STACK (mm, var->pos_occ_cubes);
QDPLL_DELETE_STACK (mm, var->type_red_member_lits);
QDPLL_DELETE_STACK (mm, var->qbcp_qbce_watched_neg_occ_clauses);
QDPLL_DELETE_STACK (mm, var->qbcp_qbce_watched_pos_occ_clauses);
QDPLL_DELETE_STACK (mm, var->qbcp_qbce_offset_of_neg_lit_in_watched_occ);
QDPLL_DELETE_STACK (mm, var->qbcp_qbce_offset_of_pos_lit_in_watched_occ);
QDPLL_DELETE_STACK (mm, var->qbcp_qbce_prepro_pos_blocking_lit_clauses);
QDPLL_DELETE_STACK (mm, var->qbcp_qbce_prepro_neg_blocking_lit_clauses);
QDPLLDepManGeneric *dm = qdpll->dm;
assert (dm);
dm->notify_reset_variable (dm, var->id);
}
static void
reset_variable (QDPLL * qdpll, Var * var)
{
delete_variable (qdpll, var);
assert (qdpll->pcnf.used_vars != 0);
qdpll->pcnf.used_vars--;
memset (var, 0, sizeof (Var));
}
static VarID
find_max_declared_user_var_id (QDPLL *qdpll, Var *start)
{
assert (start >= qdpll->pcnf.vars &&
start < qdpll->pcnf.vars + qdpll->pcnf.size_vars);
VarID max = 0;
Var *p, *e;
for (e = qdpll->pcnf.vars, p = start; e <= p; p--)
{
assert (p < qdpll->pcnf.vars + qdpll->pcnf.size_user_vars ||
!p->id || p->is_internal);
assert (p >= qdpll->pcnf.vars + qdpll->pcnf.size_user_vars ||
!p->id || !p->is_internal);
if (p->id && !p->is_internal)
{
assert (!max);
max = p->id;
break;
}
}
/* Check variables in user scopes. We might have kept IDs of deleted no occ
variables there. */
Scope *s;
for (s = qdpll->pcnf.user_scopes.first; s; s = s->link.next)
{
VarID *vp, *ve;
for (vp = s->vars.start, ve = s->vars.top; vp < ve; vp++)
{
VarID id = *vp;
if (id > max)
max = id;
}
}
return max;
}
/* Remove variables without occurrences. This disturbs variable ordering in
scopes. The parameter 'cleanup_user_prefix' indicates if user-variables which
have no occurrences should be cleaned up. */
static void
cleanup_no_occ_variables (QDPLL * qdpll, const int cleanup_user_prefix)
{
Var *vars = qdpll->pcnf.vars;
unsigned int no_occ_user_var_deleted = 0;
Scope *s;
for (s = qdpll->pcnf.scopes.first; s; s = s->link.next)
{
VarIDStack *scope_vars = &s->vars;
VarID *p, *end, *last;
for (p = scope_vars->start, end = scope_vars->top, last = end - 1;
p < end; p++)
{
assert (*p > 0);
assert (*p < qdpll->pcnf.size_vars);
Var *v = VARID2VARPTR (vars, *p);
/* Bug fix: must check if 'v->id' is non-zero to handle the case
where an internal variable 'v' has been cleaned up before. Such
cleaned up internal variables are kept in the default scope since
deleting them would perhaps cause problems with frame indices and
internal variables on stack 'qdpll->state.cur_used_internal_vars'.
Actually, this policy allows for empty frames, either because the
user did not push any clauses or all pushed clauses were
tautological. */
/* Update: we never delete internal no-occ vars which are currently
used as selector variables of active frames, i.e. on stack
'cur_used_internal_vars', by checking the flag
'v->is_cur_used_internal_var'. */
if (v->id && !QDPLL_VAR_HAS_OCCS (v) && !v->is_cur_used_internal_var)
{
assert (!QDPLL_VAR_ASSIGNED(v));
/* Bug fix: in incremental mode, user variables might lose all
their occs if clauses are popped off. */
if (v->priority_pos != QDPLL_INVALID_PQUEUE_POS)
var_pqueue_remove_elem (qdpll, v->priority_pos);
*p-- = *last--;
end--;
scope_vars->top--;
if (v->user_scope && cleanup_user_prefix)
{
assert (!v->is_internal);
no_occ_user_var_deleted = 1;
/* If 'v' is a user variable then delete 'v' from user scope vars stack. */
unsigned int offset_in_user_scope = v->offset_in_user_scope_vars;
assert (!QDPLL_EMPTY_STACK(v->user_scope->vars));
assert (offset_in_user_scope < QDPLL_COUNT_STACK(v->user_scope->vars));
VarID last_id_in_user_vars = QDPLL_POP_STACK(v->user_scope->vars);
assert (last_id_in_user_vars);
v->user_scope->vars.start[offset_in_user_scope] = last_id_in_user_vars;
Var *last_var_in_user_vars = VARID2VARPTR(qdpll->pcnf.vars, last_id_in_user_vars);
last_var_in_user_vars->offset_in_user_scope_vars = offset_in_user_scope;
}
else
assert (v->user_scope || !v->offset_in_user_scope_vars);
reset_variable (qdpll, v);
}
}
}
/* Bug fix: must update 'pcnf.max_declared_user_var_id' if no-occ vars have
been deleted. */
if (no_occ_user_var_deleted)
{
assert (cleanup_user_prefix);
qdpll->pcnf.max_declared_user_var_id =
find_max_declared_user_var_id (qdpll, qdpll->pcnf.vars +
qdpll->pcnf.size_user_vars - 1);
}
}
/* Maintain prefix properties. Should be called before solving starts. This
matters mostly for the dependency manager, not for the solver
itself. Usually, 'cleanup_empty_scopes' should be called before calling
this function. */
static void
merge_adjacent_same_type_scopes (QDPLL * qdpll)
{
QDPLLMemMan *mm = qdpll->mm;
unsigned int modified = 0;
Scope *s, *n;
for (s = qdpll->pcnf.scopes.first; s; s = n)
{
n = s->link.next;
if (n && s->type == n->type)
{
/* Adjacent scopes have same type -> merge 'n' into 's'. */
VarIDStack *scope_vars = &s->vars;
VarID *p, *e, v;
for (p = n->vars.start, e = n->vars.top; p < e; p++)
{
v = *p;
QDPLL_PUSH_STACK (mm, *scope_vars, v);
assert (qdpll->pcnf.vars[v].scope == n);
qdpll->pcnf.vars[v].scope = s;
}
UNLINK (qdpll->pcnf.scopes, n, link);
delete_scope (qdpll, n);
n = s;
modified = 1;
}
}
assert (qdpll->pcnf.scopes.first->nesting == 0 &&
qdpll->pcnf.scopes.first->nesting == QDPLL_DEFAULT_SCOPE_NESTING);
if (modified)
update_scope_nestings_and_ptrs_on_stack (qdpll, 0);
}
/* Cleanup formula.
The parameter 'cleanup_user_prefix' indicates if the prefix given by the user
should be cleaned up by: removing variables which have no occurrences and
removing empty quantifier blocks.
NEW: the solver never removes user-given variables or blocks. The removal
must be triggered by the user by calling the 'qdpll_gc' function. */
void
clean_up_formula (QDPLL * qdpll, const int cleanup_user_prefix)
{
cleanup_no_occ_variables (qdpll, cleanup_user_prefix);
if (cleanup_user_prefix)
cleanup_empty_scopes (qdpll, &qdpll->pcnf.user_scopes);
cleanup_empty_scopes (qdpll, &qdpll->pcnf.scopes);
merge_adjacent_same_type_scopes (qdpll);
/* Schedule the import of user prefix next time 'import_user_scopes' is called. */
qdpll->state.no_scheduled_import_user_scopes = 0;
}
static void
reset_watchers (QDPLL * qdpll)
{
Constraint *c;
for (c = qdpll->pcnf.clauses.first; c; c = c->link.next)
{
c->is_watched = 0;
c->rwatcher_pos = c->lwatcher_pos = QDPLL_INVALID_WATCHER_POS;
c->offset_in_notify_list[0] = c->offset_in_notify_list[1] = 0;
}
for (c = qdpll->pcnf.learnt_clauses.first; c; c = c->link.next)
{
c->is_watched = 0;
c->rwatcher_pos = c->lwatcher_pos = QDPLL_INVALID_WATCHER_POS;
c->offset_in_notify_list[0] = c->offset_in_notify_list[1] = 0;
}
for (c = qdpll->pcnf.learnt_cubes.first; c; c = c->link.next)
{
c->is_watched = 0;
c->rwatcher_pos = c->lwatcher_pos = QDPLL_INVALID_WATCHER_POS;
c->offset_in_notify_list[0] = c->offset_in_notify_list[1] = 0;
}
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
if (p->id)
{
p->mark_is_neg_watching_cube = p->mark_is_pos_watching_cube = 0;
QDPLL_RESET_STACK (p->pos_notify_clause_watchers);
QDPLL_RESET_STACK (p->neg_notify_clause_watchers);
QDPLL_RESET_STACK (p->pos_offset_in_notify_list);
QDPLL_RESET_STACK (p->neg_offset_in_notify_list);
QDPLL_RESET_STACK (p->pos_offset_in_watched_clause);
QDPLL_RESET_STACK (p->neg_offset_in_watched_clause);
QDPLL_RESET_STACK (p->pos_notify_lit_watchers);
QDPLL_RESET_STACK (p->neg_notify_lit_watchers);
}
}
/* Reset data structures for empty-formula-watching. */
if (qdpll->options.empty_formula_watching)
{
/* Reset marks of variables appearing in old watched clause. */
update_empty_formula_watcher_toggle_var_marks (qdpll, qdpll->empty_formula_watcher, 0);
qdpll->empty_formula_watcher = 0;
/* Schedule watcher update. */
qdpll->state.empty_formula_watcher_scheduled_update = 1;
/* Reset stack of watchers per decision level. */
QDPLL_RESET_STACK (qdpll->empty_formula_watchers_per_dec_level);
}
}
static QDPLLSolverState
set_up_watchers (QDPLL * qdpll)
{
assert (qdpll->state.decision_level == 0);
/* Handle empty formula. */
if (qdpll->pcnf.clauses.cnt == 0)
return QDPLL_SOLVER_STATE_SAT;
if (qdpll->options.empty_formula_watching)
{
/* Check if all clauses are blocked or satisfied. */
assert (!qdpll->empty_formula_watcher);
if (!update_empty_formula_watcher (qdpll))
return QDPLL_SOLVER_STATE_SAT;
}
if (!qdpll->options.no_pure_literals)
init_clause_watchers (qdpll);
QDPLLSolverState state = init_literal_watchers (qdpll);
return state;
}
/* Set variable ID and scope and add to scope.
NOTE: 'is_var_internal' is true iff the added variable is internal. In
this case, it is added to the default internal scope and hence also
'scope->is_internal'. Free variables of the original formula are added
to this default internal scope as well, but 'is_var_internal' is false
in this case. */
static void
declare_and_init_variable (QDPLL * qdpll, Scope * scope,
VarID id, const int is_var_internal,
const int push_on_scope_vars_stack)
{
assert (scope);
assert (!is_var_internal || scope->is_internal);
assert (!scope->is_internal || scope == qdpll->pcnf.scopes.first);
assert (id > 0);
assert (id < qdpll->pcnf.size_vars);
/* Internal variables must be added to the default existential block, which
is leftmost. */
assert (!is_var_internal || (scope && scope == qdpll->pcnf.scopes.first &&
scope->nesting == QDPLL_DEFAULT_SCOPE_NESTING &&
scope->type == QDPLL_QTYPE_EXISTS));
QDPLLMemMan *mm = qdpll->mm;
Var *var = VARID2VARPTR (qdpll->pcnf.vars, id);
qdpll->pcnf.used_vars++;
/* Init variable */
assert (!var->id);
var->id = id;
assert (!var->priority_pos);
var->priority_pos = QDPLL_INVALID_PQUEUE_POS;
assert (!var->priority);
var->priority = 1;
assert (!var->decision_level);
var->decision_level = QDPLL_INVALID_DECISION_LEVEL;
assert (!var->trail_pos);
var->trail_pos = QDPLL_INVALID_TRAIL_POS;
var->is_internal = is_var_internal;
/* Set internal or user-scope for internal/user variables. Internal
variables do not have a user scope, and the internal scope of user
variables will be set when the user scopes are imported. */
assert (!var->scope);
assert (!var->user_scope);
/* Handle free variables properly: a free variable has no user
scope, i.e. '!var_is_internal && scope->is_internal' in this
case. */
if (!is_var_internal && !scope->is_internal)
var->user_scope = scope;
else
var->scope = scope;
assert (!QDPLL_VAR_HAS_POS_OCCS (var));
assert (!QDPLL_VAR_HAS_NEG_OCCS (var));
assert (!QDPLL_VAR_HAS_POS_OCC_CUBES (var));
assert (!QDPLL_VAR_HAS_NEG_OCC_CUBES (var));
/* Add to scope */
if (push_on_scope_vars_stack)
{
QDPLL_PUSH_STACK (mm, scope->vars, id);
if (!scope->is_internal)
{
assert (QDPLL_COUNT_STACK(scope->vars) > 0);
var->offset_in_user_scope_vars = (unsigned int)(QDPLL_COUNT_STACK(scope->vars) - 1);
}
}
/* Inform DepMan that new variable has been declared and initialized. */
QDPLLDepManGeneric *dm = qdpll->dm;
assert (dm);
dm->notify_init_variable (dm, id);
if (!is_var_internal && id > qdpll->pcnf.max_declared_user_var_id)
qdpll->pcnf.max_declared_user_var_id = id;
}
/* Returns zero for successful completion. */
static char *
add_id_to_scope (QDPLL *qdpll, LitID id, Scope *scope,
const int push_on_scope_vars_stack)
{
assert (!scope->is_internal);
char *result = 0;
assert (id != 0);
if (id < 0)
result = "negative variable ID in scope!";
else
{
qdpll_adjust_vars (qdpll, id);
Var *vars = qdpll->pcnf.vars;
if (vars[id].id != 0)
{
if (!vars[id].is_internal)
result = "variable already quantified!";
else
result = "attempted to import internal variable!";
/* Second case should never happen and corresponds to an
internal error. The solver is responsible to handle internal
variables. */
}
else
declare_and_init_variable (qdpll, scope, id, 0, push_on_scope_vars_stack);
}
return result;
}
static Scope *
copy_scope (QDPLL *qdpll, Scope *s)
{
Scope *result = (Scope *) qdpll_malloc (qdpll->mm, sizeof (Scope));
result->type = s->type;
result->nesting = s->nesting;
result->is_internal = s->is_internal;
VarID *p, *e;
for (p = s->vars.start, e = s->vars.top; p < e; p++)
QDPLL_PUSH_STACK(qdpll->mm, result->vars, *p);
return result;
}
static void
import_user_scopes_internal_vars_aux (QDPLL *qdpll, VarIDStack *internal_ids)
{
VarIDStack *stack = &qdpll->pcnf.scopes.first->vars;
VarID *p, *e;
for (p = internal_ids->start, e = internal_ids->top; p < e; p++)
{
VarID id = *p;
if (id)
{
assert (id < qdpll->pcnf.size_vars);
assert (id >= qdpll->pcnf.size_user_vars);
Var *var = VARID2VARPTR(qdpll->pcnf.vars, id);
/* Bug fix: do not insert IDs of cleaned up no-occ internal vars into
default scope. We keep such IDs on the stacks of current and popped off
frames, just to maintain the relation between internal IDs and
frames. */
if (var->id)
{
assert (var->is_internal);
QDPLL_PUSH_STACK(qdpll->mm, *stack, *p);
}
}
}
}
/* Make the scopes in 'qdpll->pcnf.user_scopes' internal scopes, update the
pointers to scopes in variables, delete old internal scope list in
'qdpll->pcnf.scopes'. */
static void
import_user_scopes (QDPLL *qdpll)
{
if (qdpll->state.no_scheduled_import_user_scopes)
return;
#ifndef NDEBUG
assert_full_prefix_integrity_user_scopes (qdpll);
#endif
/* Prevent redundant future calls of this function by setting flag. */
qdpll->state.no_scheduled_import_user_scopes = 1;
/* Default internal scope must always exists. */
assert (qdpll->pcnf.scopes.first);
assert (qdpll->pcnf.scopes.last);
assert (qdpll->pcnf.scopes.first->is_internal);
assert (qdpll->pcnf.scopes.first->type == QDPLL_QTYPE_EXISTS);
assert (qdpll->pcnf.scopes.first->nesting == QDPLL_DEFAULT_SCOPE_NESTING);
/* Keep free variables from input formula on variable stack of
default internal scope. */
VarIDStack free_vars;
QDPLL_INIT_STACK(free_vars);
VarID *p, *e;
for (p = qdpll->pcnf.scopes.first->vars.start,
e = qdpll->pcnf.scopes.first->vars.top; p < e; p++)
{
VarID id = *p;
Var *v = VARID2VARPTR(qdpll->pcnf.vars, id);
assert (v->id);
assert (v->scope == qdpll->pcnf.scopes.first);
if (!v->is_internal && !v->user_scope)
QDPLL_PUSH_STACK (qdpll->mm, free_vars, id);
}
/* Clean up variables in default internal scope; that scope might
contain also user-variables which were merged into that scope
during clean-up. */
QDPLL_DELETE_STACK(qdpll->mm, qdpll->pcnf.scopes.first->vars);
qdpll->pcnf.scopes.first->vars = free_vars;
/* Copy user scopes in 'qdpll->pcnf.user_scopes' to be used as new
list 'qdpll->pcnf.scopes'. */
ScopeList copy_user_scopes = {0,0,0};
Scope *us;
for (us = qdpll->pcnf.user_scopes.first; us; us = us->link.next)
{
assert (!us->is_internal);
Scope *copy = copy_scope (qdpll, us);
assert (!copy->link.next);
assert (!copy->link.prev);
LINK_LAST (copy_user_scopes, copy, link);
assert (!copy->is_internal);
/* Scope 'copy' will appear in list 'qdpll->pcnf.scopes' of internal scopes later. */
copy->is_internal = 1;
/* Check variables in user scope 'us' and update their scope pointer;
that pointer was set to a different scope previously (either through
API or 'set_up_formula'). User-scopes might have been merged during
clean-up, hence we must update the scope pointers of variables. */
VarID *p, *e;
for (p = us->vars.start, e = us->vars.top; p < e; p++)
{
VarID id = *p;
Var *var = VARID2VARPTR(qdpll->pcnf.vars, id);
assert (!var->is_internal);
/* Re-declare variables which have been cleaned up internally
because the user did not add clauses containing that
variables. This is only relevant for incremental calls of the
solver. */
if (!var->id)
{
/* Assertion: 'qdpll_adjust_vars' is called from
'add_id_to_scope' but it will not enlarge the variable table
because this has been done previously at the time when the user
added 'id' through the API. */
assert (id + 1 <= qdpll->pcnf.size_user_vars);
/* Add variable to user-scope again but do not push it onto the
stack 'us->vars' since it is already there. */
char *res = add_id_to_scope (qdpll, id, us, 0);
assert (!var->offset_in_user_scope_vars);
/* Set stack offset of previously reset variable. This is
normally done in 'add_id_to_scope' but 'var' is not pushed onto
the stack of scope vars above. */
var->offset_in_user_scope_vars = (unsigned int)(p - us->vars.start);
assert ((unsigned int)QDPLL_COUNT_STACK(us->vars) ==
(unsigned int)(e - us->vars.start));
assert (e == us->vars.top);
/* String 'res', if non-zero, is an error message and the solver will abort. */
QDPLL_ABORT_QDPLL (res, "Importing user scope failed!");
}
/* Bug Fix: a subtle problem -- user might add the same ID multiple times to a user scope. */
QDPLL_ABORT_QDPLL (var->offset_in_user_scope_vars != (unsigned int)(p - us->vars.start),
"Variable is already declared!");
assert (var->user_scope == us);
/* Set scope pointer of 'var' to 'copy'. If the old scope pointed to
is internal then it will be deleted. */
assert (!var->scope || var->scope->is_internal);
var->scope = copy;
}
}
/* Delete old internal scopes in list 'qdpll->pcnf.scopes', if any, except
the default scope. */
Scope *s, *n;
for (s = qdpll->pcnf.scopes.first->link.next; s; s = n)
{
assert (s->is_internal);
assert (s->nesting > QDPLL_DEFAULT_SCOPE_NESTING);
n = s->link.next;
UNLINK (qdpll->pcnf.scopes, s, link);
delete_scope (qdpll, s);
}
/* Must add internal variables to the default scope again. */
import_user_scopes_internal_vars_aux (qdpll, &qdpll->state.cur_used_internal_vars);
import_user_scopes_internal_vars_aux (qdpll, &qdpll->state.popped_off_internal_vars);
/* Now 'qdpll->pcnf.scopes' contains only the default scope. */
assert (qdpll->pcnf.scopes.first);
assert (qdpll->pcnf.scopes.first == qdpll->pcnf.scopes.last);
assert (qdpll->pcnf.scopes.first->is_internal);
assert (qdpll->pcnf.scopes.first->type == QDPLL_QTYPE_EXISTS);
assert (qdpll->pcnf.scopes.first->nesting == QDPLL_DEFAULT_SCOPE_NESTING);
/* The list 'copy_user_scopes' of copied user scopes becomes the new list of
internal scopes. Append 'copy_user_scopes' to 'qdpll->pcnf.scopes'. */
if (copy_user_scopes.first)
{
assert (copy_user_scopes.last);
qdpll->pcnf.scopes.last = copy_user_scopes.last;
assert (!qdpll->pcnf.scopes.first->link.next);
qdpll->pcnf.scopes.first->link.next = copy_user_scopes.first;
assert (!copy_user_scopes.first->link.prev);
copy_user_scopes.first->link.prev = qdpll->pcnf.scopes.first;
assert (qdpll->pcnf.scopes.cnt == 1);
qdpll->pcnf.scopes.cnt += copy_user_scopes.cnt;
assert (qdpll->pcnf.scopes.cnt == qdpll->pcnf.scopes.last->nesting + 1);
assert (!qdpll->pcnf.scopes.first->link.prev);
assert (!qdpll->pcnf.scopes.last->link.next);
}
#ifndef NDEBUG
assert_full_prefix_integrity_user_scopes (qdpll);
#endif
}
/* Clean up formula and do initialization tasks:
Remove no-occ variables and empty scopes,
merge scopes of same type into one scope.
*/
static void
set_up_formula (QDPLL * qdpll)
{
/* Set flag to schedule import of user prefix in 'import_user_scopes'. */
qdpll->state.no_scheduled_import_user_scopes = 0;
import_user_scopes (qdpll);
/* Reset dependencies to toggle a recomputation after the following cleanup operations. */
qdpll_reset_deps (qdpll);
/* Last parameter of 'clean_up_formula' indicates that we do not discard no
occ variables from user prefix. */
clean_up_formula (qdpll, 0);
/* Import of user prefix must be rescheduled after 'cleanup'. */
assert (!qdpll->state.no_scheduled_import_user_scopes);
#ifndef NDEBUG
assert_full_prefix_integrity_user_scopes (qdpll);
assert_full_prefix_integrity (qdpll);
#endif
}
static int
compare_lits_by_user_variable_nesting (QDPLL * qdpll, LitID lit1, LitID lit2)
{
Var *vars = qdpll->pcnf.vars;
VarID var_id1 = LIT2VARID (lit1);
VarID var_id2 = LIT2VARID (lit2);
Var *var1 = VARID2VARPTR (vars, var_id1);
Var *var2 = VARID2VARPTR (vars, var_id2);
/* Compare variables by user-scope nesting. Free variables do not
have a user scope, hence compare by default scope nesting, which is
zero. */
assert (var1->user_scope || var1->scope);
assert (var2->user_scope || var2->scope);
assert (var1->user_scope || var1->scope->nesting == QDPLL_DEFAULT_SCOPE_NESTING);
assert (var2->user_scope || var2->scope->nesting == QDPLL_DEFAULT_SCOPE_NESTING);
unsigned int nesting1;
int var1_is_internal = var1->is_internal;
unsigned int nesting2;
int var2_is_internal = var2->is_internal;;
if (var1->user_scope)
{
nesting1 = var1->user_scope->nesting;
assert (!var1_is_internal);
}
else
nesting1 = var1->scope->nesting;
if (var2->user_scope)
{
nesting2 = var2->user_scope->nesting;
assert (!var2_is_internal);
}
else
nesting2 = var2->scope->nesting;
if (nesting1 < nesting2)
return -1;
else if (nesting1 > nesting2)
return 1;
else
{
if ((!var1_is_internal && !var2_is_internal) ||
(var1_is_internal && var2_is_internal))
{
if (var_id1 < var_id2)
return -1;
else if (var_id1 > var_id2)
return 1;
else
return 0;
}
else if (var1_is_internal && !var2_is_internal)
{
return -1;
}
else
{
assert (!var1_is_internal && var2_is_internal);
return 1;
}
}
}
static void
unmark_constraint_variables (QDPLL * qdpll, Constraint * constr)
{
Var *vars = qdpll->pcnf.vars;
LitID *p, *end, lit;
for (p = constr->lits, end = p + constr->num_lits; p < end; p++)
QDPLL_VAR_UNMARK (LIT2VARPTR (vars, *p));
}
static int
qpup_res_is_var_marked (Var *var);
static void
qpup_res_reduce_by_depschemes (QDPLL *qdpll, LitIDStack *stack,
const QDPLLQuantifierType type);
/* Apply simple existential/universal reduction by user-scopes nestings. */
static void
top_level_reduce_constraint_simple (QDPLL * qdpll, Constraint * c,
const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_EXISTS || type == QDPLL_QTYPE_FORALL);
assert (type != QDPLL_QTYPE_FORALL || c->is_cube);
assert (type != QDPLL_QTYPE_EXISTS || !c->is_cube);
#ifndef NDEBUG
assert_lits_sorted (qdpll, c->lits, c->lits + c->num_lits);
#endif
Var *vars = qdpll->pcnf.vars;
LitID lit, *p, *e;
for (e = c->lits, p = e + c->num_lits - 1; p >= e; p--)
{
lit = *p;
Var *v = LIT2VARPTR (vars, lit);
assert (!(v->scope && v->user_scope) ||
v->scope->type == v->user_scope->type);
if (!v->is_internal &&
((v->user_scope && v->user_scope->type != type) ||
(v->scope && v->scope->type != type)))
c->num_lits--;
else
break;
}
#ifndef NDEBUG
Var *tmp = LIT2VARPTR (vars, c->lits[c->num_lits - 1]);
assert (c->num_lits == 0 || tmp->is_internal ||
(tmp->scope && tmp->scope->type == type) ||
(tmp->user_scope && tmp->user_scope->type == type));
#endif
}
/* Check clause for multiple, complementary literals and universal-reduction.
Returns 'NULL' if clause is not tautological,
otherwise returns pointer to tautological clause.
*/
static Constraint *
cleanup_constraint (QDPLL * qdpll, Constraint * constr)
{
assert (!constr->is_cube);
Var *vars = qdpll->pcnf.vars;
LitID *p, *end, *last, lit;
for (p = constr->lits, end = p + constr->num_lits, last = end - 1;
p < end; p++)
{
lit = *p;
assert (lit != 0);
Var *var = LIT2VARPTR (vars, lit);
if (!QDPLL_VAR_MARKED (var))
{
if (lit < 0)
QDPLL_VAR_NEG_MARK (var);
else
QDPLL_VAR_POS_MARK (var);
}
else if ((QDPLL_VAR_POS_MARKED (var) && lit < 0) ||
(QDPLL_VAR_NEG_MARKED (var) && lit > 0))
{
/* Constr is tautological */
unmark_constraint_variables (qdpll, constr);
return constr;
}
else
{
/* Constr contains multiple literals */
assert ((QDPLL_VAR_POS_MARKED (var) && lit > 0) ||
(QDPLL_VAR_NEG_MARKED (var) && lit < 0));
*p-- = *last;
/* Clean old slot of moved literal. */
*last-- = 0;
end--;
constr->num_lits--;
}
}
unmark_constraint_variables (qdpll, constr);
QDPLL_SORT (qdpll, int, compare_lits_by_user_variable_nesting, constr->lits,
constr->num_lits);
unsigned int num_lits_before_red = constr->num_lits;
/* Apply simple universal/existential reduction. */
top_level_reduce_constraint_simple (qdpll, constr, QDPLL_QTYPE_EXISTS);
/* This function is supposed to be called on original, user-given constraints only. */
assert (!constr->learnt);
if (qdpll->options.trace)
{
if (constr->num_lits < num_lits_before_red)
{
/* Constr was reduced; add and trace explicit reduction step. */
assert (constr->id == (qdpll->cur_constraint_id));
/* Trace constr before reduction. */
qdpll->trace_constraint (constr->id,
constr->lits, num_lits_before_red, 0, 0);
unsigned int old_constr_id = constr->id;
constr->id = ++qdpll->cur_constraint_id;
assert (constr->id == old_constr_id + 1);
assert (qdpll->cur_constraint_id == constr->id);
/* Trace reduction step, using new ID of reduced constr. */
qdpll->trace_constraint (constr->id,
constr->lits, constr->num_lits, old_constr_id, 0);
}
else
{
/* Constr unchanged, trace original constr as is. */
assert (constr->num_lits == num_lits_before_red);
qdpll->trace_constraint (constr->id, constr->lits, constr->num_lits, 0, 0);
}
}
return 0;
}
static void increase_var_activity (QDPLL * qdpll, Var * var, Scope *s);
static void
qbcp_qbce_setup_first_call_aux (QDPLL *qdpll, Constraint *c)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_clauses_seen++;
#endif
/* This function is supposed to be called only once and before watcher
initialization. Hence no clause must be blocked or satisfied already. */
assert (!c->qbcp_qbce_blocked);
assert (!is_clause_satisfied (qdpll, c));
assert (QDPLL_EMPTY_STACK (c->qbcp_qbce_notify_maybe_blocked_clauses));
if (qdpll->options.qbcp_qbce_max_clause_size &&
c->num_lits > qdpll->options.qbcp_qbce_max_clause_size)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_ignored_clauses_by_size_limit++;
#endif
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "QBCE: skipping maybe blocked clause -- num-lits %d > limit %d: \n",
c->num_lits, qdpll->options.qbcp_qbce_max_clause_size);
print_constraint (qdpll, c);
}
return;
}
/* Set member 'non_blocking_literal' in 'pair' to 0 to indicate that we
want to check every existential literal in 'c' if it is a blocking
literal. */
QBCENonBlockedWitness pair = {0, {c->num_lits > 0 ? c->lits[0] : 0, c},
{QDPLL_INVALID_WATCHER_POS},
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_maybe_blocked_clauses)};
QDPLL_PUSH_STACK(qdpll->mm, qdpll->qbcp_qbce_maybe_blocked_clauses, pair);
}
/* Push constraint given through API on constraint stack, update occ_lists if
needed. */
static void
import_original_constraint (QDPLL * qdpll, Constraint * constr)
{
assert (!constr->is_cube);
assert (!constr->learnt);
const unsigned int qbce_enabled =
qdpll->options.qbce_preprocessing ||
qdpll->options.qbce_inprocessing ||
!qdpll->options.no_qbce_dynamic;
assert (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses));
const unsigned int qbce_blocked_input_clauses_present =
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses.start[0]);
QDPLLMemMan *mm = qdpll->mm;
Var *vars = qdpll->pcnf.vars;
if (!constr->is_cube)
{
LINK_LAST (qdpll->pcnf.clauses, constr, link);
if (qdpll->options.empty_formula_watching)
{
/* Store pair of clause and one of its literals for better cache performance. */
BLitsOcc occ = {constr->num_lits > 0 ? constr->lits[0] : 0, constr};
QDPLL_PUSH_STACK (mm, qdpll->empty_formula_watching_blit_occs, occ);
assert (qdpll->pcnf.clauses.cnt ==
(unsigned int) QDPLL_COUNT_STACK (qdpll->empty_formula_watching_blit_occs));
}
/* Set flag to enable cube-checking before solving. */
qdpll->state.clauses_added_since_cube_check++;
qdpll->state.pending_cubes_check = 1;
/* Push pairs of clause and maybe blocking literals on QBCE working queue. */
if (qbce_enabled)
qbcp_qbce_setup_first_call_aux (qdpll, constr);
}
else
LINK_LAST (qdpll->pcnf.learnt_cubes, constr, link);
assert (qdpll->pcnf.clauses.cnt ==
count_constraints (&(qdpll->pcnf.clauses)));
LitID *p, *end;
for (p = constr->lits, end = p + constr->num_lits; p < end; p++)
{
LitID lit = *p;
assert ((VarID) LIT2VARID (lit) < qdpll->pcnf.size_vars);
Var *var = LIT2VARPTR (vars, lit);
if (qbce_enabled && qbce_blocked_input_clauses_present &&
QDPLL_VAR_EXISTS (var) && !var->is_internal)
{
/* If a variable 'v' does not have clauses where a literal of
'v' is the blocking literal, then there is no need to collect
them. */
if (QDPLL_COUNT_STACK (var->qbcp_qbce_prepro_pos_blocking_lit_clauses) != 0 ||
QDPLL_COUNT_STACK (var->qbcp_qbce_prepro_neg_blocking_lit_clauses) != 0)
{
if (!var->neg_lit_in_new_input_clause &&
!var->pos_lit_in_new_input_clause)
QDPLL_PUSH_STACK
(qdpll->mm, qdpll->qbcp_qbce_relevant_vars_in_new_input_clauses, var->id);
if (QDPLL_LIT_NEG (lit))
var->neg_lit_in_new_input_clause = 1;
else
var->pos_lit_in_new_input_clause = 1;
}
}
if (!constr->is_cube)
{
if (QDPLL_LIT_NEG (lit))
{
if (constr->num_lits > var->longest_neg_occ_size)
var->longest_neg_occ_size = constr->num_lits;
}
else
{
assert (QDPLL_LIT_POS (lit));
if (constr->num_lits > var->longest_pos_occ_size)
var->longest_pos_occ_size = constr->num_lits;
}
}
/* FIX: Increase variable priority. */
increase_var_activity (qdpll, var, var->user_scope ? var->user_scope : var->scope);
BLitsOcc blit = {lit, constr};
/* Add all literals to occurrence stacks. */
if (QDPLL_LIT_NEG (lit))
QDPLL_PUSH_STACK (mm, var->neg_occ_clauses, blit);
else
QDPLL_PUSH_STACK (mm, var->pos_occ_clauses, blit);
}
}
static Constraint *
create_constraint (QDPLL * qdpll, unsigned int num_lits, int is_cube)
{
QDPLLMemMan *mm = qdpll->mm;
Constraint *result = qdpll_malloc (mm,
sizeof (Constraint) +
num_lits * sizeof (LitID));
result->id = ++(qdpll->cur_constraint_id);
result->size_lits = num_lits;
result->is_cube = is_cube;
result->num_lits = num_lits;
result->rwatcher_pos = result->lwatcher_pos = QDPLL_INVALID_WATCHER_POS;
return result;
}
static void
delete_constraint (QDPLL * qdpll, Constraint * constraint)
{
QDPLLMemMan *mm = qdpll->mm;
QDPLL_DELETE_STACK (mm, constraint->qbcp_qbce_notify_maybe_blocked_clauses);
QDPLL_DELETE_STACK (mm, constraint->qbcp_qbce_witness_clauses);
QDPLL_DELETE_STACK (mm, constraint->qbcp_qbce_offset_of_witness_in_watched_occs);
qdpll_free (mm, constraint,
sizeof (Constraint) + constraint->size_lits * sizeof (LitID));
}
/* Add literals/variables to clause or scope */
static const char *
import_added_ids (QDPLL * qdpll)
{
LitIDStack *add_stack = &(qdpll->add_stack);
LitID id;
LitID *sp = add_stack->start, *se = add_stack->top;
/* Fix: call 'adjust_vars' once before starting to add parsed literals to
new constraint or scope. Before, we adjusted the variables on demand
while adding the literals to the constraint. This can cause problems in
incremental mode as the renaming of internal variables is not done for
the constraint that is currently being imported. Also, we avoid
unnecessary resizing operations. */
qdpll_adjust_vars (qdpll, qdpll->max_var_id_on_add_stack);
if (qdpll->state.scope_opened)
{
/* Schedule the import of user prefix next time 'import_user_scopes' is
called. */
qdpll->state.no_scheduled_import_user_scopes = 0;
/* Import scope's variables: the scope 'qdpll->state.scope_opened_ptr'
has been opened by a previous call of 'qdpll_new_scope' or
'qdpll_new_scope_at_nesting'. */
Scope *scope = qdpll->state.scope_opened_ptr;
assert (scope);
/* The opened scope must not be internal, i.e. it was added by the user
through the API. */
assert (!scope->is_internal);
while (sp < se)
{
id = *sp++;
char *res = add_id_to_scope (qdpll, id, scope, 1);
/* String 'res', if non-zero, is an error message and the solver will abort. */
if (res)
return res;
}
if (qdpll->options.trace)
qdpll->trace_scope (scope);
qdpll->state.scope_opened = 0;
qdpll->state.scope_opened_ptr = 0;
}
else
{
/* Import clause's literals */
unsigned int num_lits = QDPLL_COUNT_STACK (*add_stack);
/* For incremental solving: add space to add selector variable. */
if (qdpll->state.cur_open_group_id > 0)
num_lits++;
Constraint *constr = create_constraint (qdpll, num_lits, 0);
LitID *p = constr->lits;
/* For incremental solving: add literal of selector variable. */
if (qdpll->state.cur_open_group_id > 0)
{
assert (qdpll->state.cnt_created_clause_groups > 0);
assert (qdpll->state.cur_open_group_id <=
QDPLL_COUNT_STACK (qdpll->state.cur_used_internal_vars));
assert (qdpll->state.cnt_created_clause_groups <=
QDPLL_COUNT_STACK(qdpll->state.cur_used_internal_vars));
assert (qdpll->state.cur_used_internal_vars.start <
qdpll->state.cur_used_internal_vars.top);
VarID internal_id = *(qdpll->state.cur_used_internal_vars.start +
(qdpll->state.cur_open_group_id - 1));
assert (internal_id);
Var *internal_var = VARID2VARPTR(qdpll->pcnf.vars, internal_id);
assert (internal_var->is_internal && internal_var >=
qdpll->pcnf.vars + qdpll->pcnf.size_user_vars);
assert (internal_var->clause_group_id == qdpll->state.cur_open_group_id);
/* Always add positive literal of selector variable. */
*p++ = internal_id;
}
/* First, add lits to constraint, do NOT yet update occ-stacks.
NOTE: if clause is redundant, then might get vars which have no occs. */
while (sp < se)
{
id = *sp++;
assert (id != 0);
VarID var_id = LIT2VARID (id);
Var *var = qdpll->pcnf.vars + var_id;
if (var->id == 0)
{
/* The following error must be avoided by the solver, not by the user. */
if (var->is_internal || var >= qdpll->pcnf.vars + qdpll->pcnf.size_user_vars)
return "attempted to import internal variable!";
/* Declare var; (Q)DIMACS backward compatibility, i.e. put free
variables in an existential block which is leftmost. */
Scope *scope = qdpll->pcnf.scopes.first;
assert (scope);
assert (scope->is_internal);
assert (QDPLL_SCOPE_EXISTS (scope));
assert (scope->nesting == QDPLL_DEFAULT_SCOPE_NESTING);
declare_and_init_variable (qdpll, scope, var_id, 0, 1);
/* Reset dependency manager since the prefix was modified. */
}
assert (p < constr->lits + constr->num_lits);
/* Add lits to constraint. */
*p++ = id;
}
/* Next, sort and clean up clause, then update occ-stacks */
if (!cleanup_constraint (qdpll, constr))
{
import_original_constraint (qdpll, constr);
assert (!constr->learnt);
}
else /* Constraint is tautological -> delete */
delete_constraint (qdpll, constr);
}
qdpll->max_var_id_on_add_stack = 0;
QDPLL_RESET_STACK (*add_stack);
return 0;
}
/* ----- START: CUBE-FUNCTIONS ----- */
static int
has_variable_active_occs_in_cubes (QDPLL * qdpll, Var * var,
BLitsOccStack * occ_cubes)
{
if (QDPLL_VAR_ASSIGNED (var) /* && QDPLL_VAR_MARKED_PROPAGATED (var) */ )
return 0;
LitID lit = occ_cubes == &(var->neg_occ_cubes) ? -var->id : var->id;
BLitsOcc *bp, *be;
for (bp = occ_cubes->start, be = occ_cubes->top; bp < be; bp++)
{
assert (!is_cube_satisfied (qdpll, BLIT_STRIP_PTR (bp->constraint)));
if (!is_cube_empty (qdpll, BLIT_STRIP_PTR (bp->constraint)))
return 1;
}
return 0;
}
/* Variable 'var' was identified as pure in clauses. Check if this is
also the case in learnt cubes. */
static int
is_var_pure_in_cubes (QDPLL * qdpll, Var * var,
const QDPLLAssignment implied_value)
{
if (QDPLL_SCOPE_FORALL (var->scope))
{
if (implied_value == QDPLL_ASSIGNMENT_TRUE)
{
if (has_variable_active_occs_in_cubes
(qdpll, var, &(var->pos_occ_cubes)))
return 0;
}
else
{
if (has_variable_active_occs_in_cubes
(qdpll, var, &(var->neg_occ_cubes)))
return 0;
}
}
else
{
assert (QDPLL_SCOPE_EXISTS (var->scope));
if (implied_value == QDPLL_ASSIGNMENT_TRUE)
{
if (has_variable_active_occs_in_cubes
(qdpll, var, &(var->neg_occ_cubes)))
return 0;
}
else
{
if (has_variable_active_occs_in_cubes
(qdpll, var, &(var->pos_occ_cubes)))
return 0;
}
}
return 1;
}
/* ----- END: CUBE-FUNCTIONS ----- */
static void
qbcp_qbce_init_stack_of_stacks_of_next_dec_level (QDPLL *qdpll,
ConstraintPtrStackStack *stack)
{
ConstraintPtrStack cstack;
if (QDPLL_FULL_STACK (*stack))
QDPLL_INIT_STACK (cstack);
else
{
/* Reuse already present stack, which avoids malloc/free operations
during backtracking and decision making. */
assert (stack->top < stack->end);
cstack = *(stack->top);
}
assert (QDPLL_EMPTY_STACK (cstack));
QDPLL_PUSH_STACK (qdpll->mm, *stack, cstack);
}
static void
push_assigned_variable (QDPLL * qdpll, Var * var, QDPLLAssignment assignment,
QDPLLVarMode mode)
{
assert (var->id);
assert (mode > 0 && mode <= 5);
assert (mode != QDPLL_VARMODE_UNDEF);
assert (assignment != QDPLL_ASSIGNMENT_UNDEF);
assert (var->assignment == QDPLL_ASSIGNMENT_UNDEF);
assert (var->mode == QDPLL_VARMODE_UNDEF);
assert (!QDPLL_VAR_ASSIGNED (var));
assert (!QDPLL_VAR_MARKED_PROPAGATED (var));
assert (var->decision_level == QDPLL_INVALID_DECISION_LEVEL);
/* An internal variable must only be assigned by assumptions. */
assert (!var->is_internal || mode == QDPLL_VARMODE_ASSUMED);
/* Assumptions must be assigned at decision level 0 only. */
assert (mode != QDPLL_VARMODE_ASSUMED || qdpll->state.decision_level == 0);
#if COMPUTE_STATS
qdpll->stats.pushed_assignments++;
if (mode == QDPLL_VARMODE_UNIT)
{
qdpll->stats.pushed_unit_literals++;
if (qdpll->state.decision_level == 0)
qdpll->stats.pushed_top_unit_literals++;
if (QDPLL_SCOPE_FORALL (var->scope))
qdpll->stats.pushed_univ_unit_literals++;
}
else if (mode == QDPLL_VARMODE_PURE)
{
qdpll->stats.pushed_pure_literals++;
if (qdpll->state.decision_level == 0)
qdpll->stats.pushed_top_pure_literals++;
}
if (var->cached_assignment == -assignment)
{
qdpll->stats.assignment_flips++;
}
#endif
if ((QDPLL_SCOPE_EXISTS (var->scope) && !qdpll->options.no_exists_cache) ||
(QDPLL_SCOPE_FORALL (var->scope) && !qdpll->options.no_univ_cache))
var->cached_assignment = assignment;
var->mode = mode;
var->assignment = assignment;
if (qdpll->options.empty_formula_watching)
{
/* If the current assignment satisfies the clause being watched for empty
formula detection, then schedule a watcher update. */
if ((var->empty_formula_watcher_pos_occ && QDPLL_VAR_ASSIGNED_TRUE (var)) ||
(var->empty_formula_watcher_neg_occ && QDPLL_VAR_ASSIGNED_FALSE (var)))
qdpll->state.empty_formula_watcher_scheduled_update = 1;
}
assert (!(QDPLL_SCOPE_EXISTS (var->scope) && mode == QDPLL_VARMODE_UNIT)
|| (var->antecedent && !var->antecedent->is_cube));
assert (!(var->antecedent && !var->antecedent->is_cube)
|| (QDPLL_SCOPE_EXISTS (var->scope) && mode == QDPLL_VARMODE_UNIT));
assert (!(QDPLL_SCOPE_FORALL (var->scope) && mode == QDPLL_VARMODE_UNIT)
|| (var->antecedent && var->antecedent->is_cube));
assert (!(var->antecedent && var->antecedent->is_cube)
|| (QDPLL_SCOPE_FORALL (var->scope) && mode == QDPLL_VARMODE_UNIT));
assert (!var->antecedent || var->antecedent->is_reason);
if (mode < 3 || mode == QDPLL_VARMODE_ASSUMED)
{
assert (mode == QDPLL_VARMODE_UNIT || mode == QDPLL_VARMODE_PURE ||
mode == QDPLL_VARMODE_ASSUMED);
var->decision_level = qdpll->state.decision_level;
}
else
{
assert (mode == QDPLL_VARMODE_LBRANCH || mode == QDPLL_VARMODE_RBRANCH);
assert ((unsigned int) QDPLL_COUNT_STACK (qdpll->dec_vars) ==
qdpll->state.decision_level);
if (!qdpll->options.no_qbce_dynamic)
{
assert (!qdpll->options.empty_formula_watching ||
qdpll->empty_formula_watcher);
assert (!qdpll->options.empty_formula_watching ||
!qdpll->empty_formula_watcher->constraint->qbcp_qbce_blocked);
/* Initialize stack of blocked clauses found at next decision level. */
assert (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses) ==
qdpll->state.decision_level + 2);
qbcp_qbce_init_stack_of_stacks_of_next_dec_level
(qdpll, &qdpll->qbcp_qbce_blocked_clauses);
/* Initialize stack of marked clauses found at next decision level. */
assert (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_marked_clauses) ==
qdpll->state.decision_level + 1);
qbcp_qbce_init_stack_of_stacks_of_next_dec_level
(qdpll, &qdpll->qbcp_qbce_marked_clauses);
}
if (qdpll->options.empty_formula_watching)
{
assert (qdpll->empty_formula_watcher);
assert (!qdpll->empty_formula_watcher->constraint->qbcp_qbce_blocked);
assert (QDPLL_COUNT_STACK
(qdpll->empty_formula_watchers_per_dec_level) ==
qdpll->state.decision_level);
QDPLL_PUSH_STACK (qdpll->mm, qdpll->empty_formula_watchers_per_dec_level,
qdpll->empty_formula_watcher);
}
var->decision_level = ++qdpll->state.decision_level;
QDPLL_PUSH_STACK (qdpll->mm, qdpll->dec_vars, var->id);
assert (qdpll->dec_vars.start[qdpll->state.decision_level - 1] ==
var->id);
}
if (qdpll->options.qbce_inprocessing || !qdpll->options.no_qbce_dynamic)
{
}
#ifndef NDEBUG
#if QDPLL_ASSERT_FIND_IN_ASSIGNED_VARS
assert (!find_in_assigned_vars (qdpll, var->id));
#endif
#endif
/* Variable will be assigned in during BCP. */
push_assigned_vars (qdpll, var->id);
if (qdpll->options.verbosity > 1)
{
fprintf (stderr,
"push assigned var.: id=%d, type=%c(%d), dlevel=%d, val=%d, mode=%d\n",
var->id, QDPLL_SCOPE_EXISTS (var->scope) ? 'E' : 'A',
var->scope->nesting, var->decision_level, var->assignment,
var->mode);
}
#ifndef NDEBUG
#if QDPLL_ASSERT_PUSHED_PURE_LITS
if (mode == QDPLL_VARMODE_PURE)
assert_pushed_pure_lits (qdpll);
#endif
#endif
}
/* ------------ START: INEFFICIENT UNIT/PURE LITERAL DETECTION ------------ */
static int
has_variable_active_occs_in_clauses (QDPLL * qdpll, Var * var,
BLitsOccStack * occ_clauses,
const int check_prop)
{
assert (!check_prop);
if (QDPLL_VAR_ASSIGNED (var))
return 0;
LitID lit = occ_clauses == &(var->neg_occ_clauses) ? -var->id : var->id;
BLitsOcc *bp, *be;
for (bp = occ_clauses->start, be = occ_clauses->top; bp < be; bp++)
{
if (BLIT_STRIP_PTR (bp->constraint)->qbcp_qbce_blocked)
continue;
assert (!BLIT_STRIP_PTR (bp->constraint)->is_cube);
/* Assertion need NOT hold when bcp is NOT saturated. */
assert (qdpll->bcp_ptr != qdpll->assigned_vars_top
|| !is_clause_empty (qdpll, BLIT_STRIP_PTR (bp->constraint)));
if ((!check_prop
&& !is_clause_satisfied (qdpll, BLIT_STRIP_PTR (bp->constraint)))
|| (check_prop
&& !is_clause_satisfied_by_prop_var (qdpll,
BLIT_STRIP_PTR (bp->
constraint))))
return 1;
}
return 0;
}
/* ------------ END: INEFFICIENT UNIT/PURE LITERAL DETECTION ------------ */
/* -------------------- START: LEARNING -------------------- */
/* Returns the number of existential literals
at 'level' in the working clause. */
static unsigned int
count_type_lit_at_dec_level (QDPLL * qdpll, LitID * lit_start,
LitID * lit_end, unsigned int level,
const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
assert (lit_start < lit_end);
assert (level != QDPLL_INVALID_DECISION_LEVEL);
return qdpll->cnt_hi_dl_type_lits;
}
/* Assumes that clause is sorted. */
static unsigned int
get_reason_asserting_level (QDPLL * qdpll, LitID * lit_start, LitID * lit_end,
Var * implied_var, const QDPLLQuantifierType type)
{
assert (lit_start < lit_end);
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
assert (type == implied_var->scope->type);
Var *vars = qdpll->pcnf.vars;
unsigned int level, highest = 0, next_highest = 0;
QDPLLDepManGeneric *dm = qdpll->dm;
LitID *p, *e;
for (e = lit_start, p = lit_end - 1; e <= p; p--)
{
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
level = var->decision_level;
if (type != var->scope->type
&& !dm->depends (dm, var->id, implied_var->id))
continue;
if (level > highest)
{
assert (level != QDPLL_INVALID_DECISION_LEVEL);
next_highest = highest;
highest = level;
}
else if (level > next_highest)
{
assert (level != QDPLL_INVALID_DECISION_LEVEL);
next_highest = level;
}
}
return next_highest;
}
/* Returns the highest decision level of a
'type'-literal in the working reason. */
static unsigned int
get_highest_type_lit_dec_level (QDPLL * qdpll, LitID * lit_start,
LitID * lit_end,
const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
assert (lit_start < lit_end);
return qdpll->hi_type_dl;
}
/* Returns variable at assigned at decision level 'level'. Note that
the result is unique if, and only if function
'count_exist_lit_at_dec_level' has returned 1 on that level. */
static Var *
get_type_var_at_dec_level (QDPLL * qdpll, LitID * lit_start, LitID * lit_end,
unsigned int level, const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
assert (lit_start < lit_end);
return qdpll->hi_dl_type_var;
}
/* Re-link learnt constraint 'c' to the beginning of the set of learnt
constraints. Constraints which are heavily used should appear at the
front of that list. */
static void
learnt_constraint_mtf (QDPLL * qdpll, Constraint * c)
{
#if COMPUTE_STATS
qdpll->stats.total_learnt_mtf_calls++;
#endif
if (!c->learnt)
return;
if (c->is_cube)
{
UNLINK (qdpll->pcnf.learnt_cubes, c, link);
LINK_FIRST (qdpll->pcnf.learnt_cubes, c, link);
#if COMPUTE_STATS
qdpll->stats.total_learnt_cubes_mtfs++;
#endif
}
else
{
UNLINK (qdpll->pcnf.learnt_clauses, c, link);
LINK_FIRST (qdpll->pcnf.learnt_clauses, c, link);
#if COMPUTE_STATS
qdpll->stats.total_learnt_clauses_mtfs++;
#endif
}
}
/* We take the same magic numbers as in Minisat... */
static void
decay_var_activity (QDPLL * qdpll)
{
qdpll->state.var_act_inc *= qdpll->var_act_decay;
}
static void
increase_var_activity (QDPLL * qdpll, Var * var, Scope *s)
{
assert (var->scope || var->user_scope);
assert (var->scope == s || var->user_scope == s);
assert (!var->scope || 1 + var->scope->nesting);
assert (!var->user_scope || 1 + var->user_scope->nesting);
var->priority +=
(qdpll->state.var_act_inc *
(1 + (qdpll->options.var_act_bias * (double) s->nesting) / 10));
/* Print bump message suggested by AVG. */
if (qdpll->options.verbosity >= 3)
fprintf (stderr, "BUMP: %d to %f\n", var->id, var->priority);
if (var->priority > 1e100)
{
#if COMPUTE_STATS
qdpll->stats.total_var_act_rescales++;
#endif
/* Scale down all variable activities. The heap order is not affected by that. */
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
if (p->id)
p->priority *= 1e-100;
}
qdpll->state.var_act_inc *= 1e-100;
}
if (var->priority_pos != QDPLL_INVALID_PQUEUE_POS)
var_pqueue_increase_key (qdpll, var->id);
}
static void
reset_stop_crit_data (QDPLL * qdpll)
{
assert (QDPLL_EMPTY_STACK (qdpll->wreason_a));
assert (QDPLL_EMPTY_STACK (qdpll->wreason_e));
qdpll->cnt_hi_dl_type_lits = 0;
qdpll->hi_dl_type_var = 0;
qdpll->hi_type_dl = 0;
QDPLL_RESET_STACK (qdpll->smaller_type_lits);
}
static void
update_stop_crit_data (QDPLL * qdpll, Var * vars, LitID lit,
const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_EXISTS || type == QDPLL_QTYPE_FORALL);
QDPLLMemMan *mm = qdpll->mm;
Var *var = LIT2VARPTR (vars, lit);
const QDPLLQuantifierType var_type = var->scope->type;
if (var_type == type)
{
unsigned int cur_dl = var->decision_level;
if (cur_dl > qdpll->hi_type_dl || !qdpll->hi_dl_type_var)
{
qdpll->hi_type_dl = cur_dl;
qdpll->cnt_hi_dl_type_lits = 1;
qdpll->hi_dl_type_var = var;
}
else if (cur_dl == qdpll->hi_type_dl)
{
assert (qdpll->hi_dl_type_var);
assert (qdpll->hi_type_dl == qdpll->hi_dl_type_var->decision_level);
qdpll->cnt_hi_dl_type_lits++;
}
}
else
{
/* Collect literals of other type which potentially violate
stop-crit. in the end. */
if (!QDPLL_VAR_ASSIGNED (var)
|| var->decision_level >= qdpll->hi_type_dl
||
((type == QDPLL_QTYPE_FORALL
&& ((QDPLL_VAR_ASSIGNED_FALSE (var) && QDPLL_LIT_NEG (lit))
|| (QDPLL_VAR_ASSIGNED_TRUE (var) && QDPLL_LIT_POS (lit))))
|| (type == QDPLL_QTYPE_EXISTS
&& ((QDPLL_VAR_ASSIGNED_FALSE (var) && QDPLL_LIT_POS (lit))
|| (QDPLL_VAR_ASSIGNED_TRUE (var)
&& QDPLL_LIT_NEG (lit))))))
QDPLL_PUSH_STACK (mm, qdpll->smaller_type_lits, lit);
}
/* Note: when using simple dep-man, then need not collect data for
type-reduce. In fact, if we collect it then we must also properly
unmark variables etc., which is not done at the moment. */
if (!qdpll->options.depman_simple)
{
/* Update data for type-reduce. */
assert (qdpll->state.decision_level != 0 || var->decision_level == 0 ||
var->decision_level == QDPLL_INVALID_DECISION_LEVEL);
assert (LEARN_VAR_MARKED (var));
assert (QDPLL_LIT_POS (lit) || LEARN_VAR_NEG_MARKED (var));
assert (QDPLL_LIT_NEG (lit) || LEARN_VAR_POS_MARKED (var));
assert (!(LEARN_VAR_POS_MARKED (var) && LEARN_VAR_NEG_MARKED (var)));
if (var_type == QDPLL_QTYPE_FORALL)
{
Var *rep = VARID2VARPTR (vars,
qdpll->dm->get_class_rep (qdpll->dm,
var->id, 0));
if (!QDPLL_VAR_POS_MARKED (rep))
{
QDPLL_VAR_POS_MARK (rep);
assert (QDPLL_COUNT_STACK (rep->type_red_member_lits) == 0);
QDPLL_PUSH_STACK (mm, qdpll->wreason_a, rep);
}
/* Collect class members. */
QDPLL_PUSH_STACK (mm, rep->type_red_member_lits, lit);
}
else
{
/* NOTE: here 'type == EXISTS' means that we do CDCL and
hence must forall-reduce clauses, and 'type == FORALL'
indicates SDCL and exists-reducing cubes. Must collect
clauses accordingly. */
Var *rep = type == QDPLL_QTYPE_FORALL ? VARID2VARPTR (vars,
qdpll->dm->
get_class_rep
(qdpll->dm,
var->id,
1)) :
VARID2VARPTR (vars,
qdpll->dm->get_class_rep (qdpll->dm, var->id, 0));
if (!QDPLL_VAR_POS_MARKED (rep))
{
QDPLL_VAR_POS_MARK (rep);
assert (QDPLL_COUNT_STACK (rep->type_red_member_lits) == 0);
QDPLL_PUSH_STACK (mm, qdpll->wreason_e, rep);
}
/* Collect class members. */
QDPLL_PUSH_STACK (mm, rep->type_red_member_lits, lit);
}
}
}
static void
cover_by_clauses_collect_lit (QDPLL * qdpll, QDPLLMemMan * mm,
Var * var, LitID lit)
{
assert (var);
assert (lit);
assert (LIT2VARPTR(qdpll->pcnf.vars, lit) == var);
assert (COLLECT_FULL_COVER_SETS || !qdpll->options.no_qbce_dynamic ||
qdpll->pcnf.user_scopes.last != var->user_scope);
assert (COLLECT_FULL_COVER_SETS || !qdpll->options.no_qbce_dynamic ||
qdpll->pcnf.scopes.last != var->scope);
assert ((QDPLL_LIT_NEG (lit) && QDPLL_VAR_ASSIGNED_FALSE (var)) ||
(QDPLL_LIT_POS (lit) && QDPLL_VAR_ASSIGNED_TRUE (var)));
assert (!LEARN_VAR_MARKED (var));
if (QDPLL_LIT_POS (lit))
LEARN_VAR_POS_MARK (var);
else
LEARN_VAR_NEG_MARK (var);
if (var->is_internal)
QDPLL_PUSH_STACK (mm, qdpll->internal_cover_lits, lit);
else if (var->user_scope)
QDPLL_PUSH_STACK (mm, var->user_scope->cover_lits, lit);
else
{
assert (var->scope && var->scope == qdpll->pcnf.scopes.first);
QDPLL_PUSH_STACK (mm, var->scope->cover_lits, lit);
}
}
static void
cover_by_clauses_collect_lits_sorted_aux (QDPLL * qdpll, QDPLLMemMan * mm,
LitIDStack * lit_stack, LitIDStack * cover_lits)
{
LitID *p, *e;
for (p = cover_lits->start, e = cover_lits->top; p < e; p++)
{
LitID lit = *p;
Var *v = LIT2VARPTR (qdpll->pcnf.vars, lit);
assert (LEARN_VAR_MARKED (v));
assert ((QDPLL_VAR_ASSIGNED_TRUE (v) && LEARN_VAR_POS_MARKED (v)) ||
(QDPLL_VAR_ASSIGNED_FALSE (v) && LEARN_VAR_NEG_MARKED (v)));
assert (cover_lits == &qdpll->internal_cover_lits || !v->is_internal);
assert (cover_lits != &qdpll->internal_cover_lits || v->is_internal);
update_stop_crit_data (qdpll, qdpll->pcnf.vars, lit, QDPLL_QTYPE_FORALL);
QDPLL_PUSH_STACK (mm, *lit_stack, lit);
}
QDPLL_RESET_STACK (*cover_lits);
}
/* Collect cover-lits already in-order by traversing scopes. This
avoids possibly expensive sorting of cube-literals. */
static void
cover_by_clauses_collect_lits_sorted (QDPLL * qdpll, QDPLLMemMan * mm,
LitIDStack * lit_stack)
{
/* Data for stop-crit and type-reduce must be reset and will be
initialized here. */
assert (qdpll->cnt_hi_dl_type_lits == 0);
assert (qdpll->hi_dl_type_var == 0);
assert (qdpll->hi_type_dl == 0);
assert (QDPLL_EMPTY_STACK (qdpll->smaller_type_lits));
assert (QDPLL_EMPTY_STACK (qdpll->wreason_a));
assert (QDPLL_EMPTY_STACK (qdpll->wreason_e));
Var *vars = qdpll->pcnf.vars;
assert (QDPLL_EMPTY_STACK (*lit_stack));
/* First import internal variables collected at separate stack. Separate
collection is necessary to make internal literals appear at the left end of
constraint literal lists. */
cover_by_clauses_collect_lits_sorted_aux (qdpll, mm,
lit_stack, &qdpll->internal_cover_lits);
/* Then collect variables added to the default scope. */
cover_by_clauses_collect_lits_sorted_aux (qdpll, mm,
lit_stack, &qdpll->pcnf.scopes.first->cover_lits);
#ifndef NDEBUG
#if !COLLECT_FULL_COVER_SETS
/* NOTE: with dynamic QBCE, this function is called from
'cover-by-assignment' where we collect all literals and do not discard
innermost existential variables on the fly (i.e. on the fly existential
reduction). */
if (qdpll->options.no_qbce_dynamic)
{
/* No literal is marked in innermost scope, since that
literals would be immediately removed by type-reduce. */
assert (QDPLL_SCOPE_EXISTS (qdpll->pcnf.scopes.last));
assert (QDPLL_EMPTY_STACK (qdpll->pcnf.scopes.last->cover_lits));
do
{
VarID *p, *e;
for (p = qdpll->pcnf.scopes.last->vars.start,
e = qdpll->pcnf.scopes.last->vars.top; p < e; p++)
{
Var *v = VARID2VARPTR (vars, *p);
assert (!LEARN_VAR_MARKED (v));
}
}
while (0);
}
#endif
#endif
/* Re-collect all marked literals by traversing all scopes from
outer- to innermost. Marked literals can then be collected in scope
order, thus explicit sorting can be avoided. */
Scope *s;
for (s = qdpll->pcnf.user_scopes.first; s; s = s->link.next)
cover_by_clauses_collect_lits_sorted_aux (qdpll, mm,
lit_stack, &s->cover_lits);
#ifndef NDEBUG
assert_lits_sorted (qdpll, lit_stack->start, lit_stack->top);
#endif
}
#if QBCP_QBCE_DYNAMIC_ASSIGNMENT_ELIM_UNIV_VARS
/* Check if the original ocurrence 'c' of 'univ_var' is blocked or is
satisfied by a collected variable other than 'univ_var', which we
want to eliminate. */
static int
cover_by_assignment_is_univ_var_orig_occ_covered (QDPLL *qdpll,
Var *univ_var,
Constraint *c)
{
assert (!c->is_cube);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " cover-by-assignment: checking original occurrence ");
print_constraint (qdpll, c);
if (c->qbcp_qbce_blocked)
fprintf (stderr, " ...which is blocked\n");
}
/* Ignore blocked occurrences. */
if (c->qbcp_qbce_blocked)
return 1;
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
/* Check if a collected variable satisfies 'c'. */
if (var != univ_var && LEARN_VAR_MARKED (var) &&
((QDPLL_LIT_NEG (lit) && QDPLL_VAR_ASSIGNED_FALSE (var)) ||
(QDPLL_LIT_POS (lit) && QDPLL_VAR_ASSIGNED_TRUE (var))))
{
if (qdpll->options.verbosity >= 2)
fprintf (stderr, " ...which is satisfied by collected literal\n");
return 1;
}
}
if (qdpll->options.verbosity >= 2)
fprintf (stderr, " ...which is neither blocked no satisfied by collected literal\n");
return 0;
}
static int
cover_by_assignment_check_blocked_clauses_aux
(QDPLL *qdpll, Var *univ_var, Constraint *blocked_clause)
{
assert (QDPLL_VAR_FORALL (univ_var));
assert (blocked_clause->qbcp_qbce_blocked);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " cover-by-assignment: checking blocked clause ");
print_constraint (qdpll, blocked_clause);
}
/* Check if 'blocked_clause' is satisfied by collected variable. */
LitID *p, *e;
for (p = blocked_clause->lits,
e = p + blocked_clause->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
/* Check if a collected variable satisfies 'c'. */
if (var != univ_var && LEARN_VAR_MARKED (var) &&
((QDPLL_LIT_NEG (lit) && QDPLL_VAR_ASSIGNED_FALSE (var)) ||
(QDPLL_LIT_POS (lit) && QDPLL_VAR_ASSIGNED_TRUE (var))))
{
if (qdpll->options.verbosity >= 2)
fprintf (stderr, " ...which is satisfied by a collected literal\n");
return 1;
}
}
if (qdpll->options.verbosity >= 2)
fprintf (stderr, " ...which is not satisfied by a collected literal\n");
/* At this point, 'blocked_clause' is not satisfied by a
collected variable. Check if it is blocked with an unassigned
blocking literal. In this case, it is still blocked if we
eliminate 'univ_var' from the initial cube's assignment. */
LitID blocking_lit = blocked_clause->qbcp_qbce_blocking_lit;
assert (blocking_lit);
Var *blocking_var = LIT2VARPTR (qdpll->pcnf.vars, blocking_lit);
if (!QDPLL_VAR_ASSIGNED (blocking_var))
{
if (qdpll->options.verbosity >= 2)
fprintf (stderr, " ...which is blocked with UNassigned blocking literal %d\n", blocking_lit);
return 1;
}
else
if (qdpll->options.verbosity >= 2)
fprintf (stderr, " ...which is blocked with assigned blocking literal %d\n", blocking_lit);
return 0;
}
static void
cover_by_assignment_push_blocked_clauses_of_exists_var (QDPLL *qdpll,
Var *exists_var,
LitID exists_lit,
ConstraintPtrStack *check_clauses_stack,
ConstraintPtrStack *marked_clauses_stack)
{
assert ((VarID) LIT2VARID (exists_lit) == exists_var->id);
assert (QDPLL_VAR_EXISTS (exists_var));
BLitsOccStack *occs = QDPLL_LIT_NEG (exists_lit) ?
&exists_var->pos_occ_clauses : &exists_var->neg_occ_clauses;
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "cover-by-assignment: exists-var %d has %d original occs pushed to be checked\n",
exists_var->id, (unsigned int) QDPLL_COUNT_STACK (*occs));
BLitsOcc *op, *oe;
for (op = occs->start, oe = occs->top; op < oe; op++)
{
#if COMPUTE_STATS
qdpll->stats.elim_univ_vars_clauses_seen++;
#endif
BLitsOcc occ = *op;
Constraint *c = occ.constraint;
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " cover-by-assignment: exists-var occurrence ");
print_constraint (qdpll, c);
if (c->qbcp_qbce_blocked)
fprintf (stderr, " ...is blocked\n");
else
fprintf (stderr, " ...is not blocked\n");
if (c->qbcp_qbce_elim_univ_mark)
fprintf (stderr, " ...marked already\n");
else
fprintf (stderr, " ...not marked already\n");
}
/* Non-blocked occs must be satisfied anyway. */
if (!c->qbcp_qbce_blocked)
continue;
/* Follow chain of blocked clauses. */
else if (LIT2VARPTR(qdpll->pcnf.vars, c->qbcp_qbce_blocking_lit) != exists_var)
continue;
if (!c->qbcp_qbce_elim_univ_mark)
{
if (qdpll->options.verbosity >= 2)
fprintf (stderr, " ...which is pushed to be checked\n");
c->qbcp_qbce_elim_univ_mark = 1;
QDPLL_PUSH_STACK (qdpll->mm, *marked_clauses_stack, c);
QDPLL_PUSH_STACK (qdpll->mm, *check_clauses_stack, c);
}
}
}
static int
cover_by_assignment_check_maybe_blocked_clauses_on_exists_var (QDPLL *qdpll,
Var *univ_var,
Var *exists_var,
LitID exists_lit,
ConstraintPtrStack *check_clauses_stack,
ConstraintPtrStack *marked_clauses_stack)
{
assert (QDPLL_EMPTY_STACK (*check_clauses_stack));
assert (QDPLL_VAR_FORALL (univ_var));
assert (QDPLL_VAR_EXISTS (exists_var));
assert ((VarID) LIT2VARID (exists_lit) == exists_var->id);
/* Collect blocked occurrences of 'exists_var' to be inspected. */
cover_by_assignment_push_blocked_clauses_of_exists_var
(qdpll, exists_var, exists_lit, check_clauses_stack, marked_clauses_stack);
Constraint *c;
while (!QDPLL_EMPTY_STACK (*check_clauses_stack))
{
#if COMPUTE_STATS
qdpll->stats.elim_univ_vars_clauses_seen++;
#endif
c = QDPLL_POP_STACK (*check_clauses_stack);
assert (c->qbcp_qbce_elim_univ_mark);
assert (c->qbcp_qbce_blocked);
if (!cover_by_assignment_check_blocked_clauses_aux
(qdpll, univ_var, c))
return 0;
else
{
/* Push blocked occurrences of existential literals in 'c'. */
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
if (QDPLL_VAR_EXISTS (var))
cover_by_assignment_push_blocked_clauses_of_exists_var
(qdpll, var, lit, check_clauses_stack, marked_clauses_stack);
}
}
}
return 1;
}
/* Go over all blocked clauses and check if we can eliminate 'univ_var'. This
function may incur less overhead than if we check blocked clauses by
traversing the occurrence lists of variables. */
static int
cover_by_assignment_check_blocked_clauses (QDPLL *qdpll, Var *univ_var)
{
assert (QDPLL_VAR_FORALL (univ_var));
ConstraintPtrStack *sp, *se;
for (sp = qdpll->qbcp_qbce_blocked_clauses.start,
se = qdpll->qbcp_qbce_blocked_clauses.top; sp < se; sp++)
{
ConstraintPtrStack stack = *sp;
Constraint **cp, **ce;
for (cp = stack.start, ce = stack.top; cp < ce; cp++)
{
#if COMPUTE_STATS
qdpll->stats.elim_univ_vars_clauses_seen++;
#endif
Constraint *c = *cp;
assert (c->qbcp_qbce_blocked);
if (!cover_by_assignment_check_blocked_clauses_aux
(qdpll, univ_var, c))
return 0;
}
}
return 1;
}
/* Returns non-zero if and only if we want to keep 'univ_var' to be
included in the initial cube. */
static int
cover_by_assignment_keep_univ_var (QDPLL *qdpll, Var *univ_var,
ConstraintPtrStack *check_clauses_stack,
ConstraintPtrStack *marked_clauses_stack)
{
#if COMPUTE_STATS
qdpll->stats.elim_univ_vars_calls++;
#endif
qdpll->state.elim_univ_tried++;
assert (QDPLL_EMPTY_STACK (*check_clauses_stack));
assert (QDPLL_EMPTY_STACK (*marked_clauses_stack));
int result = 0;
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "cover-by-assignment: checking to eliminate variable %d\n", univ_var->id);
assert (QDPLL_VAR_ASSIGNED (univ_var));
assert (QDPLL_VAR_FORALL (univ_var));
assert (univ_var->mode != QDPLL_VARMODE_PURE);
BLitsOccStack *orig_occs = QDPLL_VAR_ASSIGNED_FALSE (univ_var) ?
&univ_var->neg_occ_clauses : &univ_var->pos_occ_clauses;
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "cover-by-assignment: variable %d has %d original occs to be checked\n",
univ_var->id, (unsigned int) QDPLL_COUNT_STACK (*orig_occs));
/* Check if all input clause occurrences of 'univ_var' are satisfied
by some other collected variable. If not, then we must keep
'univ_var'. */
BLitsOcc *op, *oe;
for (op = orig_occs->start, oe = orig_occs->top; !result && op < oe; op++)
{
#if COMPUTE_STATS
qdpll->stats.elim_univ_vars_clauses_seen++;
#endif
BLitsOcc occ = *op;
Constraint *c = occ.constraint;
if (!cover_by_assignment_is_univ_var_orig_occ_covered (qdpll, univ_var, c))
result = 1;
else
{
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; !result && p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
if (QDPLL_VAR_EXISTS (var) &&
!cover_by_assignment_check_maybe_blocked_clauses_on_exists_var
(qdpll, univ_var, var, lit, check_clauses_stack, marked_clauses_stack))
result = 1;
}
}
}
/* Reset clause marks. */
while (!QDPLL_EMPTY_STACK (*marked_clauses_stack))
{
#if COMPUTE_STATS
qdpll->stats.elim_univ_vars_clauses_seen++;
#endif
Constraint *c = QDPLL_POP_STACK (*marked_clauses_stack);
assert (c->qbcp_qbce_elim_univ_mark);
c->qbcp_qbce_elim_univ_mark = 0;
}
assert (QDPLL_EMPTY_STACK (*marked_clauses_stack));
QDPLL_RESET_STACK (*check_clauses_stack);
return result;
}
static void
cover_by_assignment_collect_univ_vars_from_orig_occ (QDPLL *qdpll, Constraint *c)
{
assert (!c->learnt);
assert (!c->is_cube);
assert (!c->qbcp_qbce_blocked);
Var *min_sat_univ_var = 0;
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
/* Search for satisfying literals. */
if ((QDPLL_LIT_NEG (lit) && QDPLL_VAR_ASSIGNED_FALSE (var)) ||
(QDPLL_LIT_POS (lit) && QDPLL_VAR_ASSIGNED_TRUE (var)))
{
if (LEARN_VAR_MARKED (var))
{
/* Clause is satisfied by a collected variable. Skip the rest,
no need to collect another literal from this clause. */
break;
}
else
{
/* The satisfying literal has not been collected. */
if (QDPLL_VAR_FORALL (var))
{
if (var->mode != QDPLL_VARMODE_PURE && !min_sat_univ_var)
{
/* Found a satisfying universal literal. If there are
multiple, then store only the leftmost one (note that we
traverse the literals from left to right), similar to to
our heuristics in traditional QCDCL cube learning. */
min_sat_univ_var = var;
}
}
else
{
/* NOTE: found a satisfying existential literal which has
not been collected. This case, however, should never
occur because we collect all existentials beforehand. */
assert (QDPLL_VAR_EXISTS (var));
assert (LEARN_VAR_MARKED (var));
QDPLL_ABORT_QDPLL (1, "reached unexpected branch in code!");
}
}
}
}
/* Check if we need to collect a universal variable in order to satisfy this clause. */
if (p == e)
{
assert (min_sat_univ_var);
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "cover-by-assignment: collecting univ %d\n",
QDPLL_VAR_ASSIGNED_FALSE (min_sat_univ_var) ?
-min_sat_univ_var->id : min_sat_univ_var->id);
cover_by_clauses_collect_lit (qdpll, qdpll->mm, min_sat_univ_var,
QDPLL_VAR_ASSIGNED_FALSE (min_sat_univ_var) ?
-min_sat_univ_var->id : min_sat_univ_var->id);
qdpll->state.univ_vars_cur_collected++;
}
}
/* Check if the blocked clause 'c' is a root of the CNF traversal. */
static int
cover_by_assignment_collect_univ_vars_init_blocked_clause (QDPLL *qdpll, Constraint *c)
{
assert (c->qbcp_qbce_blocked);
LitID blocking_lit = c->qbcp_qbce_blocking_lit;
assert (blocking_lit);
Var *blocking_var = LIT2VARPTR (qdpll->pcnf.vars, blocking_lit);
/* If the blocking literal of 'c' is unassigned then the clause is blocked
under the current assignment and hence no actions are required. */
if (!QDPLL_VAR_ASSIGNED (blocking_var))
return 0;
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
/* Search for literals which have been collected and which satisfy the
clause. */
if (LEARN_VAR_MARKED (var) &&
((QDPLL_LIT_NEG (lit) && QDPLL_VAR_ASSIGNED_FALSE (var)) ||
(QDPLL_LIT_POS (lit) && QDPLL_VAR_ASSIGNED_TRUE (var))))
return 0;
}
/* Clause is not satisfied by a collected variable and its blocking variable
is assigned. Traversal starts at this clause. */
return 1;
}
static void
cover_by_assignment_collect_univ_vars (QDPLL *qdpll,
VarPtrStack *univ_vars_stack,
ConstraintPtrStack *check_clauses_stack,
ConstraintPtrStack *marked_clauses_stack)
{
qdpll->state.elim_univ_tried += QDPLL_COUNT_STACK (*univ_vars_stack);
Var **vp, **ve;
for (vp = univ_vars_stack->start, ve = univ_vars_stack->top; vp < ve; vp++)
{
Var *var = *vp;
assert (QDPLL_VAR_ASSIGNED (var));
BLitsOccStack *occs = QDPLL_VAR_ASSIGNED_FALSE (var) ?
&var->neg_occ_clauses : &var->pos_occ_clauses;
BLitsOcc *op, *oe;
for (op = occs->start, oe = occs->top; op < oe; op++)
{
#if COMPUTE_STATS
qdpll->stats.elim_univ_vars_clauses_seen++;
#endif
BLitsOcc occ = *op;
Constraint *c = occ.constraint;
if (!c->qbcp_qbce_blocked && !c->qbcp_qbce_elim_univ_mark)
{
c->qbcp_qbce_elim_univ_mark = 1;
QDPLL_PUSH_STACK (qdpll->mm, *check_clauses_stack, c);
}
}
}
/* Check original occurrences of universal variables, collect universals
which are necessary to cover the occurrences. */
while (!QDPLL_EMPTY_STACK (*check_clauses_stack))
{
#if COMPUTE_STATS
qdpll->stats.elim_univ_vars_clauses_seen++;
#endif
Constraint *c = QDPLL_POP_STACK (*check_clauses_stack);
assert (!c->qbcp_qbce_blocked);
assert (c->qbcp_qbce_elim_univ_mark);
/* Clear clause marks. */
c->qbcp_qbce_elim_univ_mark = 0;
cover_by_assignment_collect_univ_vars_from_orig_occ (qdpll, c);
}
/* Collect universals reachable from blocked clauses. First collect blocked
clauses which are roots of the traversal. */
ConstraintPtrStack *sp, *se;
for (sp = qdpll->qbcp_qbce_blocked_clauses.start,
se = qdpll->qbcp_qbce_blocked_clauses.top; sp < se; sp++)
{
ConstraintPtrStack stack = *sp;
Constraint **cp, **ce;
for (cp = stack.start, ce = stack.top; cp < ce; cp++)
{
#if COMPUTE_STATS
qdpll->stats.elim_univ_vars_clauses_seen++;
#endif
Constraint *c = *cp;
assert (c->qbcp_qbce_blocked);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "seen blocked clause at level %ld:\n",
sp - qdpll->qbcp_qbce_blocked_clauses.start);
print_constraint (qdpll, c);
}
if (!c->qbcp_qbce_elim_univ_mark &&
(cover_by_assignment_collect_univ_vars_init_blocked_clause (qdpll, c)))
{
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "pushing root blocked clause:");
print_constraint (qdpll, c);
}
c->qbcp_qbce_elim_univ_mark = 1;
QDPLL_PUSH_STACK (qdpll->mm, *check_clauses_stack, c);
QDPLL_PUSH_STACK (qdpll->mm, *marked_clauses_stack, c);
}
}
}
/* Traverse clauses from collected blocked root clauses. */
while (!QDPLL_EMPTY_STACK (*check_clauses_stack))
{
#if COMPUTE_STATS
qdpll->stats.elim_univ_vars_clauses_seen++;
#endif
Constraint *c = QDPLL_POP_STACK (*check_clauses_stack);
assert (c->qbcp_qbce_elim_univ_mark);
if (c->qbcp_qbce_blocked)
{
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "processing blocked clause:");
print_constraint (qdpll, c);
fprintf (stderr, "...with blocking literal %d\n", c->qbcp_qbce_blocking_lit);
}
LitID blocking_lit = c->qbcp_qbce_blocking_lit;
assert (blocking_lit);
Var *blocking_var = LIT2VARPTR (qdpll->pcnf.vars, blocking_lit);
BLitsOccStack *occs = QDPLL_LIT_NEG (blocking_lit) ?
&blocking_var->pos_occ_clauses : &blocking_var->neg_occ_clauses;
BLitsOcc *op, *oe;
for (op = occs->start, oe = occs->top; op < oe; op++)
{
#if COMPUTE_STATS
qdpll->stats.elim_univ_vars_clauses_seen++;
#endif
BLitsOcc occ = *op;
Constraint *c = occ.constraint;
if (!c->qbcp_qbce_elim_univ_mark)
{
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "pushing clause:");
print_constraint (qdpll, c);
}
c->qbcp_qbce_elim_univ_mark = 1;
QDPLL_PUSH_STACK (qdpll->mm, *check_clauses_stack, c);
QDPLL_PUSH_STACK (qdpll->mm, *marked_clauses_stack, c);
}
}
}
else
{
/* Non-blocked clauses. */
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "processing non-blocked clause:");
print_constraint (qdpll, c);
}
/* Collect universals from non-blocked clauses and push new clauses
from existential pure literals. */
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
if ((QDPLL_LIT_NEG (lit) && QDPLL_VAR_ASSIGNED_FALSE (var)) ||
(QDPLL_LIT_POS (lit) && QDPLL_VAR_ASSIGNED_TRUE (var)))
{
if (QDPLL_VAR_FORALL (var) && !LEARN_VAR_MARKED (var) &&
var->mode != QDPLL_VARMODE_PURE)
{
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "cover-by-assignment: collecting univ %d\n",
QDPLL_VAR_ASSIGNED_FALSE (var) ?
-var->id : var->id);
cover_by_clauses_collect_lit (qdpll, qdpll->mm, var,
QDPLL_VAR_ASSIGNED_FALSE (var) ?
-var->id : var->id);
qdpll->state.univ_vars_cur_collected++;
}
else if (QDPLL_VAR_EXISTS (var) && var->mode == QDPLL_VARMODE_PURE)
{
/* Push other occurrences of pure variable. A universal
variable might have triggered that existential to become
pure, and that pure assignment in turn might have
produced further blocked clauses. Hence we might have to
collect that universal variable. */
BLitsOccStack *occs = QDPLL_VAR_ASSIGNED_FALSE (var) ?
&var->pos_occ_clauses : &var->neg_occ_clauses;
BLitsOcc *op, *oe;
for (op = occs->start, oe = occs->top; op < oe; op++)
{
#if COMPUTE_STATS
qdpll->stats.elim_univ_vars_clauses_seen++;
#endif
BLitsOcc occ = *op;
Constraint *c = occ.constraint;
if (!c->qbcp_qbce_elim_univ_mark)
{
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "pushing clause:");
print_constraint (qdpll, c);
}
c->qbcp_qbce_elim_univ_mark = 1;
QDPLL_PUSH_STACK (qdpll->mm, *check_clauses_stack, c);
QDPLL_PUSH_STACK (qdpll->mm, *marked_clauses_stack, c);
}
}
}
}
}
}
}
/* Unmark clauses. */
while (!QDPLL_EMPTY_STACK (*marked_clauses_stack))
{
#if COMPUTE_STATS
qdpll->stats.elim_univ_vars_clauses_seen++;
#endif
Constraint *c = QDPLL_POP_STACK (*marked_clauses_stack);
assert (c->qbcp_qbce_elim_univ_mark);
c->qbcp_qbce_elim_univ_mark = 0;
}
}
#endif
static void
cover_by_assignment_toggle_dynamic_elim_univs (QDPLL *qdpll)
{
/* Check whether to turn off elimination of universal variables based on
success rate, if this has not already been switched off previously. */
if (!qdpll->state.elim_univ_dynamic_disabled &&
qdpll->options.elim_univ_dynamic_switch &&
qdpll->state.elim_univ_tried >= qdpll->options.elim_univ_dynamic_switch_delay)
{
/* Do this check every 'qdpll->options.elim_univ_dynamic_switch_delay' calls. */
float success_rate = qdpll->state.elim_univ_tried ?
(qdpll->state.elim_univ_eliminated / (float) qdpll->state.elim_univ_tried) : 0;
success_rate *= 100;
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "elim-univ success rate after %d tries: %f\n",
qdpll->state.elim_univ_tried, success_rate);
if (success_rate <= qdpll->options.elim_univ_dynamic_success_threshold)
{
if (qdpll->options.verbosity >= 1)
fprintf (stderr, "elim-univ: disabled due to threshold %d and current success rate %f after %d tries\n",
qdpll->options.elim_univ_dynamic_success_threshold, success_rate, qdpll->state.elim_univ_tried);
qdpll->state.elim_univ_dynamic_disabled = 1;
}
}
}
/* Take the current assignment as initial cube. This approach is intended for
use with QBCE where some input clauses may become blocked. If QBCE is not
applied, then likely 'cover_by_clauses' will produce better (?) cubes since
we try to prefer existential literals. */
static int
cover_by_assignment (QDPLL * qdpll, LitIDStack * lit_stack)
{
#if COMPUTE_STATS
qdpll->stats.initial_cubes++;
qdpll->stats.qbcp_qbce_total_current_blocked_clauses +=
qdpll->stats.qbcp_qbce_current_blocked_clauses;
#endif
assert (!qdpll->options.no_qbce_dynamic);
#if QBCP_QBCE_DYNAMIC_ASSIGNMENT_ELIM_UNIV_VARS
/* First collect ALL assigned existential variables in the initial cube. Then
go over assigned universal variables and check if we can exclude some of
them. */
VarPtrStack univ_vars_stack;
QDPLL_INIT_STACK (univ_vars_stack);
ConstraintPtrStack check_clauses_stack;
QDPLL_INIT_STACK (check_clauses_stack);
ConstraintPtrStack marked_clauses_stack;
QDPLL_INIT_STACK (marked_clauses_stack);
#endif
assert (QDPLL_COUNT_STACK (*lit_stack) == 0);
assert (QDPLL_COUNT_STACK (qdpll->internal_cover_lits) == 0);
/* Must collect EVERY enqueued assignment, even those not yet propagated,
because we used empty formula watching to detect empty CNF under the current
assignment. */
QDPLLMemMan *mm = qdpll->mm;
VarID *p, *e;
for (p = qdpll->assigned_vars, e = qdpll->assigned_vars_top; p < e; p++)
{
VarID vid = *p;
Var *var = VARID2VARPTR (qdpll->pcnf.vars, vid);
assert (QDPLL_VAR_ASSIGNED (var));
if ((!QBCP_QBCE_DYNAMIC_ASSIGNMENT_ELIM_UNIV_VARS || QDPLL_VAR_FORALL(var)) &&
var->mode == QDPLL_VARMODE_PURE)
continue;
#if QBCP_QBCE_DYNAMIC_ASSIGNMENT_ELIM_UNIV_VARS
if (QDPLL_VAR_FORALL(var))
{
/* Collect universal variables on stack to be checked later. */
QDPLL_PUSH_STACK (qdpll->mm, univ_vars_stack, var);
continue;
}
#endif
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "cover-by-assignment: collecting %d\n",
QDPLL_VAR_ASSIGNED_FALSE (var) ? -vid : vid);
cover_by_clauses_collect_lit (qdpll, mm, var,
QDPLL_VAR_ASSIGNED_FALSE (var) ? -vid : vid);
}
#if QBCP_QBCE_DYNAMIC_ASSIGNMENT_ELIM_UNIV_VARS
#if COMPUTE_STATS
qdpll->stats.elim_univ_vars_total_univ_vars += QDPLL_COUNT_STACK (univ_vars_stack);
#endif
unsigned int cur_total_univ_vars = QDPLL_COUNT_STACK (univ_vars_stack);
qdpll->state.univ_vars_cur_collected = 0;
if (!qdpll->state.elim_univ_dynamic_disabled)
cover_by_assignment_collect_univ_vars (qdpll, &univ_vars_stack,
&check_clauses_stack,
&marked_clauses_stack);
else
{
/* Collect every universal variable on stack 'univ_vars'. */
Var **vp, **ve;
for (vp = univ_vars_stack.start, ve = univ_vars_stack.top; vp < ve; vp++)
{
Var *var = *vp;
assert (QDPLL_VAR_ASSIGNED (var));
assert (QDPLL_VAR_FORALL (var));
assert (var->mode != QDPLL_VARMODE_PURE);
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "cover-by-assignment: collecting univ %d\n",
QDPLL_VAR_ASSIGNED_FALSE (var) ? -var->id : var->id);
cover_by_clauses_collect_lit (qdpll, mm, var,
QDPLL_VAR_ASSIGNED_FALSE (var) ? -var->id : var->id);
qdpll->state.univ_vars_cur_collected++;
}
}
assert (cur_total_univ_vars >= qdpll->state.univ_vars_cur_collected);
qdpll->state.elim_univ_eliminated +=
(cur_total_univ_vars - qdpll->state.univ_vars_cur_collected);
cover_by_assignment_toggle_dynamic_elim_univs (qdpll);
#if COMPUTE_STATS
qdpll->stats.initial_cubes_univ_lits += qdpll->state.univ_vars_cur_collected;
qdpll->stats.elim_univ_vars_eliminated +=
(cur_total_univ_vars - qdpll->state.univ_vars_cur_collected);
#endif
#endif
cover_by_clauses_collect_lits_sorted (qdpll, mm, lit_stack);
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "cover-by-assignment: collected %d currently assigned variables, %d total variables.\n",
(unsigned int) QDPLL_COUNT_STACK (*lit_stack), qdpll->pcnf.used_vars);
#if QBCP_QBCE_DYNAMIC_ASSIGNMENT_ELIM_UNIV_VARS
QDPLL_DELETE_STACK (qdpll->mm, univ_vars_stack);
QDPLL_DELETE_STACK (qdpll->mm, check_clauses_stack);
QDPLL_DELETE_STACK (qdpll->mm, marked_clauses_stack);
#endif
#if COMPUTE_STATS
qdpll->stats.initial_cubes_sizes += QDPLL_COUNT_STACK (*lit_stack);
#endif
return 0;
}
/* Generate cover in linear time, i.e. traverse original clauses exactly once.
Maybe this is worse than generating covers from assigned vars. */
static int
cover_by_clauses (QDPLL * qdpll, LitIDStack * lit_stack,
LitIDStack * lit_stack_tmp)
{
/* With dynamic QBCE, construct initial cube from assignment instead. */
QDPLL_ABORT_QDPLL (!qdpll->options.no_qbce_dynamic,
"unexpected call of cover-by-clauses with dynamic QBCE!");
#if COMPUTE_STATS
qdpll->state.univ_vars_cur_collected = 0;
#endif
QDPLLMemMan *mm = qdpll->mm;
Var *vars = qdpll->pcnf.vars;
assert (QDPLL_COUNT_STACK (*lit_stack) == 0);
assert (QDPLL_COUNT_STACK (qdpll->internal_cover_lits) == 0);
#ifndef NDEBUG
do
{
Scope *s;
for (s = qdpll->pcnf.scopes.first; s; s = s->link.next)
assert (QDPLL_EMPTY_STACK (s->cover_lits));
for (s = qdpll->pcnf.user_scopes.first; s; s = s->link.next)
assert (QDPLL_EMPTY_STACK (s->cover_lits));
}
while (0);
#endif
#if COMPUTE_STATS
qdpll->stats.initial_cubes++;
qdpll->stats.qbcp_qbce_total_current_blocked_clauses +=
qdpll->stats.qbcp_qbce_current_blocked_clauses;
/* Abusing stack for stats-computation. */
assert (QDPLL_COUNT_STACK (qdpll->wreason_a) == 0);
#endif
const int collect_full_cover_set = COLLECT_FULL_COVER_SETS &&
qdpll->options.incremental_use &&
(qdpll->state.cnt_created_clause_groups > 0 ||
QDPLL_COUNT_STACK(qdpll->state.popped_off_internal_vars) != 0);
const Scope *last_scope = qdpll->pcnf.scopes.last;
assert (QDPLL_SCOPE_EXISTS (last_scope));
Constraint *c;
for (c = qdpll->pcnf.clauses.first; c; c = c->link.next)
{
assert (!c->learnt);
assert (!c->is_cube);
/* Relevant only if we do QBCE pre/inprocessing. */
if (c->qbcp_qbce_blocked)
{
assert (qdpll->options.qbce_preprocessing ||
qdpll->options.qbce_inprocessing);
continue;
}
unsigned int clause_cover_lits_cnt = 0;
unsigned int clause_covered_by_collected_lit = 0;
LitID *p, *e, lit;
Var *max_e_true_var = 0, *min_a_true_var = 0;
LitID max_e_true_lit = 0, min_a_true_lit = 0;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
lit = *p;
Var *lit_var = LIT2VARPTR (vars, lit);
if (QDPLL_SCOPE_FORALL (lit_var->scope)
&& lit_var->mode == QDPLL_VARMODE_PURE)
continue;
/* Search for positive literals. */
if ((QDPLL_LIT_NEG (lit) && QDPLL_VAR_ASSIGNED_FALSE (lit_var)) ||
(QDPLL_LIT_POS (lit) && QDPLL_VAR_ASSIGNED_TRUE (lit_var)))
{
clause_cover_lits_cnt++;
/* Skip clauses that are already covered by collected
literal or covered by innermost existential variable ->
never collect such literals since they will be reduced
anyway. */
if (LEARN_VAR_MARKED (lit_var) || lit_var->scope == last_scope)
{
clause_covered_by_collected_lit = 1;
if (lit_var->scope == last_scope)
{
if (qdpll->options.trace && !lit_var->mark_qrp)
{
lit_var->mark_qrp = 1; /* prevent duplicates */
QDPLL_PUSH_STACK (mm, *lit_stack_tmp,
QDPLL_VAR_ASSIGNED_TRUE (lit_var)
? lit_var->id : -lit_var->id);
}
#if COMPUTE_STATS
/* BUG-FIX: must not count literal multiple times! */
if (!lit_var->mark_stats_type_reduce_lits)
{
lit_var->mark_stats_type_reduce_lits = 1;
QDPLL_PUSH_STACK (mm, qdpll->wreason_a, lit_var);
}
#endif
}
if ((LEARN_VAR_MARKED (lit_var) || !collect_full_cover_set))
goto SKIP;
}
if (QDPLL_SCOPE_FORALL (lit_var->scope))
{
if (!min_a_true_var
|| lit_var->scope->nesting <
min_a_true_var->scope->nesting)
{
min_a_true_var = lit_var;
min_a_true_lit = lit;
}
}
else
{
if (!max_e_true_var
|| max_e_true_var->scope->nesting <
lit_var->scope->nesting)
{
max_e_true_var = lit_var;
max_e_true_lit = lit;
}
}
}
}
assert (max_e_true_var || min_a_true_var);
assert (!max_e_true_var || max_e_true_lit);
assert (!min_a_true_var || min_a_true_lit);
/* Prefer existential literals. */
if (max_e_true_var)
{
if (collect_full_cover_set || !clause_covered_by_collected_lit)
cover_by_clauses_collect_lit (qdpll, mm, max_e_true_var,
max_e_true_lit);
/* Clause is not covered by already collected lit (otherwise we
would have jumped to label 'SKIP' below). Collect a new variable,
set mark: refrain from trying to remove the collected var from the
cover if the current clause is satisfied exactly by that var. */
assert (clause_cover_lits_cnt > 0);
if (clause_cover_lits_cnt == 1)
{
assert (!min_a_true_var);
}
}
else
{
#if COMPUTE_STATS
qdpll->state.univ_vars_cur_collected++;
#endif
assert (min_a_true_var);
if (collect_full_cover_set || !clause_covered_by_collected_lit)
cover_by_clauses_collect_lit (qdpll, mm, min_a_true_var,
min_a_true_lit);
assert (clause_cover_lits_cnt > 0);
if (clause_cover_lits_cnt == 1)
{
assert (!max_e_true_var);
}
}
SKIP:;
}
#if COMPUTE_STATS
Var **p, **e;
for (p = qdpll->wreason_a.start, e = qdpll->wreason_a.top; p < e; p++)
{
assert ((*p)->mark_stats_type_reduce_lits);
(*p)->mark_stats_type_reduce_lits = 0;
}
qdpll->stats.total_type_reduce_lits +=
QDPLL_COUNT_STACK (qdpll->wreason_a);
QDPLL_RESET_STACK (qdpll->wreason_a);
#endif
cover_by_clauses_collect_lits_sorted (qdpll, mm, lit_stack);
#if COMPUTE_STATS
qdpll->stats.initial_cubes_sizes += QDPLL_COUNT_STACK (*lit_stack);
qdpll->stats.initial_cubes_univ_lits += qdpll->state.univ_vars_cur_collected;
#endif
/* for resolution proof extraction we need to know, if any lits from the
innermost scope where reduced */
return QDPLL_COUNT_STACK (*lit_stack_tmp);
}
static void
store_cover_set_aux (QDPLL *qdpll)
{
assert (qdpll->cover_sets.cnt ==
COLLECT_FULL_COVER_SETS_MULT_LIMIT * qdpll->state.lcubes_size);
Constraint *least_recently_added = qdpll->cover_sets.last;
UNLINK (qdpll->cover_sets, least_recently_added, link);
assert (qdpll->cover_sets.cnt <
COLLECT_FULL_COVER_SETS_MULT_LIMIT * qdpll->state.lcubes_size);
delete_constraint (qdpll, least_recently_added);
}
static void
store_cover_set (QDPLL *qdpll, LitIDStack *lit_stack)
{
Constraint *cover_set = create_constraint (qdpll, QDPLL_COUNT_STACK(*lit_stack), 1);
cover_set->learnt = 1;
assert (cover_set->is_cube);
LitID *p, *e, *dest = cover_set->lits;
for (p = lit_stack->start, e = lit_stack->top; p < e; p++, dest++)
{
assert (dest < cover_set->lits + cover_set->num_lits);
*dest = *p;
}
assert (qdpll->cover_sets.cnt <= COLLECT_FULL_COVER_SETS_MULT_LIMIT * qdpll->state.lcubes_size);
/* If the list of cover sets is full then delete the least-recently added cover set.*/
if (qdpll->cover_sets.cnt == COLLECT_FULL_COVER_SETS_MULT_LIMIT * qdpll->state.lcubes_size)
store_cover_set_aux (qdpll);
LINK_FIRST(qdpll->cover_sets, cover_set, link);
assert (qdpll->cover_sets.cnt <= COLLECT_FULL_COVER_SETS_MULT_LIMIT * qdpll->state.lcubes_size);
}
/* Initialize the literal-stack with literals of either the
conflicting clause or of a cover set / satisfied cube. This is the
working reason to start with. */
static void
get_initial_reason (QDPLL * qdpll, LitIDStack ** lit_stack,
LitIDStack ** lit_stack_tmp,
const QDPLLQuantifierType type)
{
#if COMPUTE_TIMES
const double start = time_stamp ();
#endif
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
Var *vars = qdpll->pcnf.vars;
QDPLLMemMan *mm = qdpll->mm;
LitIDStack *stack = *lit_stack;
Var *var;
LitID *p, *e, lit;
Constraint *res_cons = qdpll->result_constraint;
assert (!qdpll->options.trace || !qdpll->res_cons_id);
if ((res_cons))
{
assert (!res_cons->qbcp_qbce_blocked);
qdpll->res_cons_id = res_cons->id;
assert (type != QDPLL_QTYPE_EXISTS || (res_cons && !res_cons->is_cube));
assert (type == QDPLL_QTYPE_EXISTS || (res_cons && res_cons->is_cube));
learnt_constraint_mtf (qdpll, res_cons);
/* Push and mark literals of reason clause onto 'lit-stack',
which is the working reason. */
p = res_cons->lits;
e = p + res_cons->num_lits;
/* Can happen that input formula contains clause with universal
literals only. Initial reason will then be empty. */
assert (qdpll->state.decision_level == 0 || p < e);
for (; p < e; p++)
{
lit = *p;
var = LIT2VARPTR (vars, lit);
/* Increase activity of variable in conflicting clause. */
increase_var_activity (qdpll, var, var->scope);
assert (qdpll->options.long_dist_res || !LEARN_VAR_MARKED (var));
if (QDPLL_LIT_NEG (lit))
LEARN_VAR_NEG_MARK (var);
else
LEARN_VAR_POS_MARK (var);
QDPLL_PUSH_STACK (mm, *stack, lit);
update_stop_crit_data (qdpll, vars, lit, type);
}
/* Working reason is already sorted here. */
qdpll->dm->reduce_lits (qdpll->dm, lit_stack, lit_stack_tmp, type, 1);
}
else
{
unsigned int nlits;
LitIDStack tmp;
QDPLL_INIT_STACK (tmp);
ConstraintID cid = 0;
assert (type == QDPLL_QTYPE_FORALL && !res_cons);
if (qdpll->options.verbosity > 1)
fprintf (stderr, "SDCL: generating new cover set.\n");
/* Variable 'qdpll->res_cons_id' is needed for tracing in QPUP learning only. */
/* Find cover set. */
nlits = QDPLL_COUNT_STACK (**lit_stack);
if (nlits)
abort();
/* When using dynamic QBCE, we stop as soon as the formula is empty
under the current assignment and QBCE. We simply the the FULL
current assignment as initial cube. The soundness is explained by
the fact that the formula is satisfiable under the current
assignment and QBCE. Without QBCE or with QBCE pre/inprocessing, we
compute initial cubes as usual. */
int res;
if (qdpll->options.qbce_preprocessing || qdpll->options.qbce_inprocessing ||
qdpll->options.no_qbce_dynamic)
res = cover_by_clauses (qdpll, stack, &tmp) && qdpll->options.trace;
else
res = cover_by_assignment (qdpll, stack);
if (res)
{
qdpll->trace_full_cover_set (qdpll,
(cid = ++(qdpll->cur_constraint_id)),
tmp.start, QDPLL_COUNT_STACK (tmp),
(*lit_stack)->start,
QDPLL_COUNT_STACK (**lit_stack));
qdpll->res_cons_id = cid;
}
if (qdpll->options.trace && nlits - (QDPLL_COUNT_STACK (**lit_stack)))
{
qdpll->trace_constraint (++(qdpll->cur_constraint_id),
(*lit_stack)->start,
QDPLL_COUNT_STACK (**lit_stack), cid, 0);
qdpll->res_cons_id = qdpll->cur_constraint_id;
}
nlits = QDPLL_COUNT_STACK (**lit_stack);
#if COLLECT_FULL_COVER_SETS
if (qdpll->options.incremental_use && (qdpll->state.cnt_created_clause_groups > 0 ||
QDPLL_COUNT_STACK(qdpll->state.popped_off_internal_vars) != 0))
store_cover_set (qdpll, *lit_stack);
#else
assert (qdpll->cover_sets.cnt == 0);
#endif
qdpll->dm->reduce_lits (qdpll->dm, lit_stack, lit_stack_tmp, type, 1);
/* Working reason is now sorted. */
if (qdpll->options.trace && QDPLL_COUNT_STACK (**lit_stack)
&& (nlits - QDPLL_COUNT_STACK (**lit_stack)))
{
qdpll->trace_constraint (qdpll->cur_constraint_id + 1,
(*lit_stack)->start,
QDPLL_COUNT_STACK (**lit_stack),
qdpll->cur_constraint_id, 0);
qdpll->cur_constraint_id += 1;
qdpll->res_cons_id = qdpll->cur_constraint_id;
}
QDPLL_DELETE_STACK (mm, tmp);
}
#if COMPUTE_TIMES
qdpll->time_stats.total_ireason_time += (time_stamp () - start);
#endif
}
static int
is_var_at_type_dec_level_adv (QDPLL * qdpll, Var * var,
const QDPLLQuantifierType type)
{
assert (var->decision_level != QDPLL_INVALID_DECISION_LEVEL);
assert (var->decision_level <= qdpll->state.decision_level);
assert ((unsigned int) QDPLL_COUNT_STACK (qdpll->dec_vars) ==
qdpll->state.decision_level);
/* BUG FIX: we do NOT force to resolve out top-level literals. Just
keep them in working reason. The following two lines make sure that we
continue resolution if the working reason reason contains only literals
from top-level. */
if (var->decision_level == 0)
return 0;
Var *dec_var =
VARID2VARPTR (qdpll->pcnf.vars,
qdpll->dec_vars.start[var->decision_level - 1]);
assert (dec_var->decision_level == var->decision_level);
assert (dec_var->mode == QDPLL_VARMODE_LBRANCH
|| dec_var->mode == QDPLL_VARMODE_RBRANCH);
return dec_var->scope->type == type;
}
/* Returns true if variable is assigned at a level which has
an existential decision variable. */
static int
is_var_at_type_dec_level (QDPLL * qdpll, Var * var,
const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
return is_var_at_type_dec_level_adv (qdpll, var, type);
}
/* ---------- START: CDCL ---------- */
/* Check condition by inspecting collected lits which possibly violate
condition. This should be faster since we need not check all
literals in a constraint. */
static int
all_smaller_type_lits_have_value_adv (QDPLL * qdpll, /*LitIDStack * lit_stack,
Var * other_type_var, */
const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
Var *hi_dl_var = qdpll->hi_dl_type_var;
const VarID hi_dl_var_id = hi_dl_var->id;
const unsigned int hi_dl_var_dec_level = hi_dl_var->decision_level;
assert (hi_dl_var->scope->type != type);
assert (hi_dl_var_dec_level == qdpll->hi_type_dl);
assert (qdpll->cnt_hi_dl_type_lits == 1);
QDPLLDepManGeneric *dm = qdpll->dm;
Var *vars = qdpll->pcnf.vars;
LitID *p, *e;
for (p = qdpll->smaller_type_lits.start,
e = qdpll->smaller_type_lits.top; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
assert (var->scope->type == type);
if ((!QDPLL_VAR_ASSIGNED (var)
|| var->decision_level >= qdpll->hi_type_dl
||
((type == QDPLL_QTYPE_FORALL
&& ((QDPLL_VAR_ASSIGNED_FALSE (var) && QDPLL_LIT_NEG (lit))
|| (QDPLL_VAR_ASSIGNED_TRUE (var) && QDPLL_LIT_POS (lit))))
|| (type == QDPLL_QTYPE_EXISTS
&& ((QDPLL_VAR_ASSIGNED_FALSE (var) && QDPLL_LIT_POS (lit))
|| (QDPLL_VAR_ASSIGNED_TRUE (var)
&& QDPLL_LIT_NEG (lit))))))
&& dm->depends (dm, var->id, hi_dl_var_id))
return 0;
}
return 1;
}
/* Assumes that the clause is sorted and that 'other_type_var' is the only type-literal
at the maximal type-decision level. */
static int
all_smaller_type_lits_have_value (QDPLL * qdpll,
const QDPLLQuantifierType type)
{
return all_smaller_type_lits_have_value_adv (qdpll, type);
}
static void
check_marks_and_push (QDPLL * qdpll, Var * var, LitID lit, LitIDStack * stack,
const QDPLLQuantifierType type)
{
if (QDPLL_LIT_NEG (lit))
{
if (!LEARN_VAR_MARKED (var))
{
LEARN_VAR_NEG_MARK (var);
QDPLL_PUSH_STACK (qdpll->mm, *stack, lit);
update_stop_crit_data (qdpll, qdpll->pcnf.vars, lit, type);
if (!qdpll->options.bump_vars_once)
increase_var_activity (qdpll, var, var->scope);
}
else if (LEARN_VAR_POS_MARKED (var))
{
/* EXPECTED DEAD-CODE. Otherwise would get constraints with
complementary literals, unless when using long-distance resolution. */
QDPLL_ABORT_QDPLL(!qdpll->options.long_dist_res, "unexpected tautology!");
assert (var->scope->type != type);
if (!LEARN_VAR_NEG_MARKED (var))
{
LEARN_VAR_NEG_MARK (var);
QDPLL_PUSH_STACK (qdpll->mm, *stack, lit);
/* NOTE: we do not call update_stop_crit here since the literal
of the other phase has been collected already. */
if (!qdpll->options.bump_vars_once)
increase_var_activity (qdpll, var, var->scope);
}
}
}
else
{
assert (QDPLL_LIT_POS (lit));
if (!LEARN_VAR_MARKED (var))
{
LEARN_VAR_POS_MARK (var);
QDPLL_PUSH_STACK (qdpll->mm, *stack, lit);
update_stop_crit_data (qdpll, qdpll->pcnf.vars, lit, type);
if (!qdpll->options.bump_vars_once)
increase_var_activity (qdpll, var, var->scope);
}
else if (LEARN_VAR_NEG_MARKED (var))
{
/* EXPECTED DEAD-CODE. Otherwise would get constraints with
complementary literals, unless when using long-distance resolution. */
QDPLL_ABORT_QDPLL(!qdpll->options.long_dist_res, "unexpected tautology!");
assert (var->scope->type != type);
if (!LEARN_VAR_POS_MARKED (var))
{
LEARN_VAR_POS_MARK (var);
QDPLL_PUSH_STACK (qdpll->mm, *stack, lit);
/* NOTE: we do not call update_stop_crit here since the literal
of the other phase has been collected already. */
if (!qdpll->options.bump_vars_once)
increase_var_activity (qdpll, var, var->scope);
}
}
}
}
/* Perform q-resolution.*/
static ConstraintID
resolve_and_reduce (QDPLL * qdpll, ConstraintID ant1_id,
LitIDStack ** lit_stack, LitIDStack ** lit_stack_tmp,
Var * var, const QDPLLQuantifierType type)
{
assert (!var->antecedent->qbcp_qbce_blocked);
LitID *other_lits_start = var->antecedent->lits;
LitID *other_lits_end = other_lits_start + var->antecedent->num_lits;
ConstraintID res_id = ++(qdpll->cur_constraint_id);
assert (QDPLL_COUNT_STACK (**lit_stack) > 0);
assert (*lit_stack != *lit_stack_tmp);
assert (*lit_stack != &(qdpll->add_stack)
|| *lit_stack_tmp == &(qdpll->add_stack_tmp));
assert (*lit_stack_tmp != &(qdpll->add_stack)
|| *lit_stack == &(qdpll->add_stack_tmp));
assert (other_lits_start < other_lits_end);
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
assert (type == var->scope->type);
#if COMPUTE_STATS
if (type == QDPLL_QTYPE_EXISTS)
qdpll->stats.num_unsat_res_steps++;
else
qdpll->stats.num_sat_res_steps++;
#endif
#ifndef NDEBUG
assert_lits_sorted (qdpll, (*lit_stack)->start, (*lit_stack)->top);
assert_stop_crit_data (qdpll, *lit_stack, type);
#endif
if (qdpll->options.verbosity > 1)
{
const char prefix = type == QDPLL_QTYPE_EXISTS ? 'C' : 'S';
const char *type_str = type == QDPLL_QTYPE_EXISTS ? "clause" : "cube";
fprintf (stderr, "\n%cDCL: pivot variable: %d\n", prefix, var->id);
fprintf (stderr, "%cDCL: working %s: ", prefix, type_str);
print_lits (qdpll, (*lit_stack)->start,
QDPLL_COUNT_STACK (**lit_stack), 0);
fprintf (stderr, "%cDCL: antecedent: ", prefix);
print_lits (qdpll, other_lits_start,
other_lits_end - other_lits_start, 0);
}
QDPLLMemMan *mm = qdpll->mm;
Var *vars = qdpll->pcnf.vars;
unsigned int del = 0;
LitIDStack *tmp = *lit_stack_tmp;
assert (QDPLL_COUNT_STACK (*tmp) == 0);
assert (QDPLL_COUNT_STACK (**lit_stack) != 0);
LitID *p1, *p2;
const LitID *e1 = (*lit_stack)->top;
const LitID *e2 = other_lits_end;
LitID lit1, lit2;
Var *var1, *var2;
VarID vid1;
VarID vid2;
unsigned int nesting1;
unsigned int nesting2;
/* Reset stop-crit-data, will be set from scratch during merging. */
reset_stop_crit_data (qdpll);
p1 = (*lit_stack)->start;
p2 = other_lits_start;
assert (p1 < e1);
assert (p2 < e2);
lit1 = *p1;
lit2 = *p2;
#ifndef NDEBUG
int wreason_seen_pivot = 0;
#endif
/* Merge sorted lists */
while (1)
{
if (compare_lits_by_user_variable_nesting (qdpll, lit1, lit2) <= 0)
{
var1 = LIT2VARPTR (vars, lit1);
assert (QDPLL_LIT_NEG (lit1) || LEARN_VAR_POS_MARKED (var1));
assert (QDPLL_LIT_POS (lit1) || LEARN_VAR_NEG_MARKED (var1));
/* Must ignore pivot variable. */
if (var1 != var)
{
QDPLL_PUSH_STACK (mm, *tmp, lit1);
update_stop_crit_data (qdpll, vars, lit1, type);
}
else
{
#ifndef NDEBUG
wreason_seen_pivot = 1;
#endif
LEARN_VAR_UNMARK (var1);
}
p1++;
if (p1 >= e1)
break;
lit1 = *p1;
}
else
{
var2 = LIT2VARPTR (vars, lit2);
/* Must ignore pivot variable. */
if (var2 == var)
{
;
}
else
check_marks_and_push (qdpll, var2, lit2, tmp, type);
p2++;
if (p2 >= e2)
break;
lit2 = *p2;
}
}
assert (p1 >= e1 || p2 >= e2);
while (p1 < e1)
{
lit1 = *p1;
var1 = LIT2VARPTR (vars, lit1);
/* Must not have top-level assignments in working reason,
these were eliminated before. */
assert (QDPLL_LIT_NEG (lit1) || LEARN_VAR_POS_MARKED (var1));
assert (QDPLL_LIT_POS (lit1) || LEARN_VAR_NEG_MARKED (var1));
/* Must ignore pivot variable. */
if (var1 != var)
{
QDPLL_PUSH_STACK (mm, *tmp, lit1);
update_stop_crit_data (qdpll, vars, lit1, type);
}
else
{
#ifndef NDEBUG
wreason_seen_pivot = 1;
#endif
LEARN_VAR_UNMARK (var1);
}
p1++;
}
while (p2 < e2)
{
lit2 = *p2;
var2 = LIT2VARPTR (vars, lit2);
/* Must ignore pivot variable and top-level assignments. */
if (var2 == var)
{
;
}
else
check_marks_and_push (qdpll, var2, lit2, tmp, type);
p2++;
}
/* Swap stacks. */
LitIDStack *swap_tmp = *lit_stack;
assert (tmp == *lit_stack_tmp);
*lit_stack = tmp;
*lit_stack_tmp = swap_tmp;
QDPLL_RESET_STACK (**lit_stack_tmp);
#ifndef NDEBUG
assert_lits_sorted (qdpll, (*lit_stack)->start, (*lit_stack)->top);
#endif
qdpll->dm->reduce_lits (qdpll->dm, lit_stack, lit_stack_tmp, type, 1);
if (qdpll->options.trace)
qdpll->trace_constraint (res_id, (*lit_stack)->start,
QDPLL_COUNT_STACK (**lit_stack), ant1_id,
var->antecedent->id);
return res_id;
}
/* Checks whether the generated clause on
'lit_stack' is a suitable conflict clause. */
static int
stop_resolution (QDPLL * qdpll, LitIDStack * lit_stack,
const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
#ifndef NDEBUG
assert_stop_crit_data (qdpll, lit_stack, type);
#endif
unsigned int max_type_level =
get_highest_type_lit_dec_level (qdpll, lit_stack->start, lit_stack->top,
type);
if (count_type_lit_at_dec_level
(qdpll, lit_stack->start, lit_stack->top, max_type_level, type) != 1)
return 0;
else
if (!is_var_at_type_dec_level
(qdpll,
(get_type_var_at_dec_level (qdpll, lit_stack->start, lit_stack->top,
max_type_level, type)), type))
return 0;
else if (!all_smaller_type_lits_have_value (qdpll,
type == QDPLL_QTYPE_EXISTS ?
QDPLL_QTYPE_FORALL :
QDPLL_QTYPE_EXISTS))
return 0;
else
return 1;
}
/* Check if resolving 'lit_stack' with antecedent of 'var' would
produce a tautology. In this case resolution is blocked. */
static Var *
peek_tautology (QDPLL * qdpll, LitIDStack * lit_stack, Var * var)
{
assert (!qdpll->options.long_dist_res);
assert (var->antecedent);
Var *vars = qdpll->pcnf.vars;
Var *lit_var;
LitID *p, *e, lit;
for (p = var->antecedent->lits, e = p + var->antecedent->num_lits; p < e;
p++)
{
lit = *p;
lit_var = LIT2VARPTR (vars, lit);
/* Ignore the pivot variable. */
if (var == lit_var)
continue;
if ((QDPLL_LIT_NEG (lit) && LEARN_VAR_POS_MARKED (lit_var)) ||
(QDPLL_LIT_POS (lit) && LEARN_VAR_NEG_MARKED (lit_var)))
{
if (qdpll->options.verbosity > 1)
{
fprintf (stderr, "peek tautology: tested var is %d\n", var->id);
fprintf (stderr, "peek tautology: lit stack is\n");
print_lits (qdpll, lit_stack->start,
lit_stack->top - lit_stack->start, 0);
fprintf (stderr, "peek tautology: ante. is\n");
print_lits (qdpll, var->antecedent->lits,
var->antecedent->num_lits, 0);
fprintf (stderr, "peek tautology: true by lit %d\n", lit);
}
return lit_var;
}
}
return 0;
}
static VarID
choose_var (QDPLL * qdpll, LitIDStack * lit_stack,
const QDPLLQuantifierType type)
{
#if COMPUTE_STATS
qdpll->stats.num_learn_choose_vars++;
#endif
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
assert (QDPLL_COUNT_STACK (*lit_stack) != 0);
Var *pivot, *var, *blocking = 0, *vars = qdpll->pcnf.vars;
LitID *p, *e, lit;
/* First, get maximum trail var. */
pivot = 0;
for (p = lit_stack->start, e = lit_stack->top; p < e; p++)
{
lit = *p;
var = LIT2VARPTR (vars, lit);
if (var->mode == QDPLL_VARMODE_UNIT && var->scope->type == type)
{
assert (var->trail_pos != QDPLL_INVALID_TRAIL_POS);
assert (!pivot || pivot->trail_pos != QDPLL_INVALID_TRAIL_POS);
if (!pivot || pivot->trail_pos < var->trail_pos)
pivot = var;
}
}
if (!pivot)
QDPLL_ABORT_QDPLL (1, "Fatal error: did not find pivot by trail!");
if (!qdpll->options.long_dist_res && (blocking = peek_tautology (qdpll, lit_stack, pivot)))
{
/* If maximum trail var produces tautology, try to resolve on
literals which prevent forall reduction of literal producing tautology. */
pivot = 0;
for (p = lit_stack->start, e = lit_stack->top; p < e; p++)
{
lit = *p;
var = LIT2VARPTR (vars, lit);
if (var->mode == QDPLL_VARMODE_UNIT && var->scope->type == type)
{
if (!pivot || pivot->trail_pos < var->trail_pos)
if (qdpll->dm->depends (qdpll->dm, blocking->id, var->id) &&
!peek_tautology (qdpll, lit_stack, var))
pivot = var;
}
}
}
else
{
#if COMPUTE_STATS
qdpll->stats.num_learn_trail_pivot++;
#endif
}
if (!pivot)
QDPLL_ABORT_QDPLL (1, "Fatal error: did not find pivot by deps!");
return pivot->id;
}
static int
working_clause_is_tautologous (QDPLL * qdpll, LitIDStack * lit_stack,
const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
Var *vars = qdpll->pcnf.vars;
LitID *p, *e;
for (p = lit_stack->start, e = lit_stack->top; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
assert (LEARN_VAR_MARKED (var));
if (LEARN_VAR_POS_MARKED (var) && LEARN_VAR_NEG_MARKED (var))
{
assert (0);
assert (type != QDPLL_SCOPE_FORALL (var->scope));
return 1;
}
}
return 0;
}
static int
constraint_has_only_assumption_lits (QDPLL *qdpll, LitID *start, LitID *end);
/* Returns non-zero if a valid reason was derived
or 0 if either aborted or done. */
static int
generate_reason (QDPLL * qdpll, ConstraintID cid, LitIDStack ** lit_stack,
LitIDStack ** lit_stack_tmp, const QDPLLQuantifierType type)
{
assert (*lit_stack != *lit_stack_tmp);
assert (*lit_stack != &(qdpll->add_stack)
|| *lit_stack_tmp == &(qdpll->add_stack_tmp));
assert (*lit_stack_tmp != &(qdpll->add_stack)
|| *lit_stack == &(qdpll->add_stack_tmp));
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
QDPLLMemMan *mm = qdpll->mm;
Var *vars = qdpll->pcnf.vars;
VarID varid;
int is_init_reason_empty = QDPLL_EMPTY_STACK (**lit_stack);
AGAIN:
/* Handle solving under assumptions: if the current constraint contains only
assumptions then we are done. This is similar to an empty constraint.
NOTE: we test the flag 'assumptions_given' not to add overhead for
checking the current resolvent's literals when solving without
assumptions. */
if (QDPLL_EMPTY_STACK (**lit_stack) ||
(qdpll->state.assumptions_given &&
constraint_has_only_assumption_lits (qdpll, (*lit_stack)->start, (*lit_stack)->top)))
{
if (qdpll->options.verbosity > 1)
fprintf (stderr, "%s: derived empty %s\n",
type == QDPLL_QTYPE_EXISTS ? "CDCL" : "SDCL",
type == QDPLL_QTYPE_EXISTS ? "clause" : "cube");
/* introduce an additional explicit reduction step */
if (qdpll->options.trace && is_init_reason_empty
&& (qdpll->result_constraint == NULL ||
qdpll->result_constraint->size_lits))
qdpll->trace_constraint (++(qdpll->cur_constraint_id),
(*lit_stack)->start,
QDPLL_COUNT_STACK (**lit_stack), cid, 0);
return 0;
}
int stop = stop_resolution (qdpll, *lit_stack, type);
assert (qdpll->options.long_dist_res || !working_clause_is_tautologous (qdpll, *lit_stack, type));
if (stop)
return 1;
else
{
DO_RES:
/* Choose 'var' in rev.chron. order from trail s.t. 'var' appears in
working reason. */
varid = choose_var (qdpll, *lit_stack, type);
if (!varid)
QDPLL_ABORT_QDPLL (1, "Fatal error: did not find pivot variable!\n");
Var *var = VARID2VARPTR (vars, varid);
assert (type == QDPLL_QTYPE_FORALL
|| (var->antecedent && !var->antecedent->is_cube));
assert (type == QDPLL_QTYPE_EXISTS
|| (var->antecedent && var->antecedent->is_cube));
assert (var->antecedent);
assert (var->antecedent->is_reason);
if (!qdpll->options.bump_vars_once)
learnt_constraint_mtf (qdpll, var->antecedent);
cid =
resolve_and_reduce (qdpll, cid, lit_stack, lit_stack_tmp, var, type);
/* Stack 'lit_stack' will now hold the resolvent's literals. */
goto AGAIN;
}
}
/* Setting watchers wrt. to decision levels and dependencies. One
watcher is set to implied literal. */
static void
set_learnt_constraint_lit_watchers (QDPLL * qdpll,
Constraint * learnt_constraint,
const unsigned int asserting_level,
Var * implied,
const QDPLLQuantifierType type)
{
assert (implied->decision_level != QDPLL_INVALID_DECISION_LEVEL &&
implied->decision_level > asserting_level);
assert (learnt_constraint->is_cube || type == QDPLL_QTYPE_EXISTS);
assert (!learnt_constraint->is_cube || type == QDPLL_QTYPE_FORALL);
Var *vars = qdpll->pcnf.vars;
QDPLLDepManGeneric *dm = qdpll->dm;
const unsigned int implied_level = implied->decision_level;
const VarID implied_id = implied->id;
assert (implied_level > asserting_level &&
implied_level != QDPLL_INVALID_DECISION_LEVEL);
unsigned int hoffset = QDPLL_INVALID_WATCHER_POS,
nhoffset = QDPLL_INVALID_WATCHER_POS;
LitID *p, *e;
for (e = learnt_constraint->lits, p = e + learnt_constraint->num_lits - 1;
e <= p; p--)
{
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
const unsigned int level = var->decision_level;
assert (level != QDPLL_INVALID_DECISION_LEVEL
|| type != var->scope->type);
/* Assumes that constraint is asserting. */
assert (var->scope->type != type || level <= asserting_level ||
var == implied);
if (level == asserting_level)
{
/* Set 'nhoffset' exactly once. This maybe avoids irrelevant depends-checks. */
if (nhoffset == QDPLL_INVALID_WATCHER_POS &&
(type == var->scope->type
|| dm->depends (dm, var->id, implied_id)))
{
nhoffset = p - e;
if (hoffset != QDPLL_INVALID_WATCHER_POS)
break;
}
}
else if (level == implied_level && type == var->scope->type)
{
assert (hoffset == QDPLL_INVALID_WATCHER_POS);
hoffset = p - e;
if (nhoffset != QDPLL_INVALID_WATCHER_POS)
break;
}
}
/* Do not set watchers in units since we will backtrack to level 0. */
if (learnt_constraint->num_lits != 1)
{
QDPLL_ABORT_QDPLL ((hoffset == QDPLL_INVALID_WATCHER_POS ||
nhoffset == QDPLL_INVALID_WATCHER_POS),
"Failed to set lit-watcher in learnt constraint!");
assert (hoffset != QDPLL_INVALID_WATCHER_POS &&
nhoffset != QDPLL_INVALID_WATCHER_POS);
unsigned int right_offset, left_offset;
if (hoffset < nhoffset)
{
left_offset = hoffset;
right_offset = nhoffset;
}
else
{
left_offset = nhoffset;
right_offset = hoffset;
}
init_literal_watcher (qdpll, learnt_constraint, left_offset,
right_offset);
}
else
assert (hoffset == 0 && nhoffset == QDPLL_INVALID_WATCHER_POS);
}
/* Chronological backtracking. */
static unsigned int
chron_backtracking (QDPLL * qdpll, const QDPLLQuantifierType type)
{
/* The function relies on the following two properties for easy
flipping of assignments. */
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
assert (QDPLL_ASSIGNMENT_TRUE == -QDPLL_ASSIGNMENT_FALSE);
assert (QDPLL_ASSIGNMENT_FALSE == -QDPLL_ASSIGNMENT_TRUE);
VarID *p, *e, id;
Var *vars = qdpll->pcnf.vars;
for (p = qdpll->assigned_vars_top - 1, e = qdpll->assigned_vars; p >= e;
p--)
{
id = *p;
Var *assigned_var = VARID2VARPTR (vars, id);
assert (QDPLL_VAR_ASSIGNED (assigned_var));
assert (assigned_var->mode != QDPLL_VARMODE_UNDEF);
if (type == assigned_var->scope->type
&& assigned_var->mode == QDPLL_VARMODE_LBRANCH)
{
assert (assigned_var->decision_level !=
QDPLL_INVALID_DECISION_LEVEL);
assert (!qdpll->state.forced_assignment.antecedent);
assert (!qdpll->state.forced_assignment.var);
assert (!qdpll->state.forced_assignment.assignment);
assert (!qdpll->state.forced_assignment.mode);
/* Set forced assignment (flipping decision variable) to be enqueued afterwards. */
qdpll->state.forced_assignment.var = assigned_var;
qdpll->state.forced_assignment.assignment =
-assigned_var->assignment;
qdpll->state.forced_assignment.mode = QDPLL_VARMODE_RBRANCH;
return assigned_var->decision_level;
}
}
/* No proof obligation left. */
return QDPLL_INVALID_DECISION_LEVEL;
}
static unsigned int analyze_solution_no_sdcl (QDPLL * qdpll);
static unsigned int analyze_conflict_no_cdcl (QDPLL * qdpll);
/* START: QPUP code. */
/* Marks used for implication graph traversal. */
static int
qpup_is_var_pos_marked (Var *var)
{
return var->qpup_mark_pos;
}
static int
qpup_is_var_neg_marked (Var *var)
{
return var->qpup_mark_neg;
}
static int
qpup_is_var_marked (Var *var)
{
return qpup_is_var_neg_marked (var) || qpup_is_var_pos_marked (var);
}
static void
qpup_mark_var (Var *var, int set_pos_mark)
{
if (set_pos_mark)
var->qpup_mark_pos = 1;
else
var->qpup_mark_neg = 1;
}
static void
qpup_mark_var_by_lit (Var *var, LitID lit)
{
assert ((VarID)LIT2VARID(lit) == var->id);
if (QDPLL_LIT_NEG (lit))
qpup_mark_var (var, 0);
else
qpup_mark_var (var, 1);
}
static void
qpup_unmark_var (Var *var)
{
var->qpup_mark_pos = var->qpup_mark_neg = 0;
}
/* Marks used for resolution. */
static int
qpup_res_is_var_pos_marked (Var *var)
{
return var->qpup_res_mark_pos;
}
static int
qpup_res_is_var_neg_marked (Var *var)
{
return var->qpup_res_mark_neg;
}
static int
qpup_res_is_var_marked (Var *var)
{
return qpup_res_is_var_neg_marked (var) || qpup_res_is_var_pos_marked (var);
}
static void
qpup_res_mark_var (Var *var, int set_pos_mark)
{
if (set_pos_mark)
var->qpup_res_mark_pos = 1;
else
var->qpup_res_mark_neg = 1;
}
static void
qpup_res_mark_var_by_lit (Var *var, LitID lit)
{
assert ((VarID)LIT2VARID(lit) == var->id);
if (QDPLL_LIT_NEG (lit))
qpup_res_mark_var (var, 0);
else
qpup_res_mark_var (var, 1);
}
static void
qpup_res_unmark_var (Var *var)
{
var->qpup_res_mark_pos = var->qpup_res_mark_neg = 0;
}
static void
qpup_collect_qpup_node (QDPLL *qdpll, Var *var)
{
pqueue_insert (qdpll->mm, qdpll->qpup_nodes, var, var->trail_pos);
assert (var->decision_level != QDPLL_INVALID_DECISION_LEVEL);
if (!qdpll->qpup_var_at_max_dec_level || qdpll->qpup_var_at_max_dec_level->decision_level < var->decision_level)
{
/* Found new maximum decision level. */
qdpll->qpup_var_at_max_dec_level = var;
qdpll->qpup_cnt_at_max_dec_level = 1;
}
else if (qdpll->qpup_var_at_max_dec_level->decision_level == var->decision_level)
qdpll->qpup_cnt_at_max_dec_level++;
}
/* Variable 'implied_var' is the implied variable and literal 'lit' occurs in
the antecedent constraint of 'implied_var'. */
static void
qpup_check_marks_and_collect (QDPLL * qdpll, LitID lit, Var *implied_var, const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
QDPLLMemMan *mm = qdpll->mm;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
if (var->scope->type == type)
{
/* Can never see existential (universal) pure literals during CDCL
(SDCL). E.g. an existential pure literal can only satisfy clauses and
hence such literal cannot occur in the antecedent clause of an
existential unit. */
assert (var->mode != QDPLL_VARMODE_PURE);
if (!qpup_is_var_marked(var))
{
qpup_mark_var_by_lit (var, lit);
qpup_collect_qpup_node (qdpll, var);
}
}
else
{
/* Variable 'var' is universal in CDCL and existential in SDCL. */
if (!qpup_is_var_marked(var))
{
/* Collect universal (existential) literals in CDCL (SDCL) for dependency checking. */
qpup_mark_var_by_lit (var, lit);
QDPLL_PUSH_STACK(mm, qdpll->qpup_vars, var);
/* Collect universal (existential) decision variables. IMPORTANT: we
might see a universal literal of a decision variable in an
antecedent although that literal was implicitly reduced during QBCP. In this
case we do not collect the universal variable if it was assigned at
a larger decision level. This amount to checking if the literal was
reduced implicitly. */
if ((!implied_var || var->decision_level <= implied_var->decision_level) &&
(var->mode == QDPLL_VARMODE_LBRANCH || var->mode == QDPLL_VARMODE_RBRANCH ||
var->mode == QDPLL_VARMODE_ASSUMED))
qpup_collect_qpup_node (qdpll, var);
}
else
qpup_mark_var_by_lit (var, lit);
}
}
/* Push unmarked variables from literal set 'lits_start,lits_end' onto stack 'qdpll->qpup_nodes'. */
static void
qpup_traverse_implication_graph_push_nodes (QDPLL * qdpll, LitID *lits_start, LitID *lits_end,
Var *implied_var, const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
assert (lits_start || !lits_end);
assert (lits_start <= lits_end);
assert (!implied_var || QDPLL_VAR_ASSIGNED(implied_var));
assert (!implied_var || implied_var->scope->type == type);
assert (!implied_var || implied_var->mode == QDPLL_VARMODE_UNIT);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "QPUP graph traversal: pushing unmarked nodes from set:\n ");
print_lits(qdpll, lits_start, lits_end - lits_start, 0);
}
LitID *p;
for (p = lits_start; p < lits_end; p++)
{
Var *var = LIT2VARPTR(qdpll->pcnf.vars, *p);
if (var != implied_var)
qpup_check_marks_and_collect (qdpll, *p, implied_var, type);
}
}
/* Select the variable from stack 'qdpll->qpup_nodes' which is largest on
trail, i.e. which has been propagated most recently. This variable is goint
to be visited next during the search for a suitable UIP node. After a UIP
has been found, this function is called to check the remaining nodes on
stack 'qdpll->qpup_nodes' whether any of them prevents constraint reduction
of relevant variables. */
static Var *
qpup_select_next_node (QDPLL *qdpll)
{
Var *result;
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "\nQPUP selecting next node from set (format (id,trailpos)): ");
PriorityQueueElem *p, *e;
for (p = qdpll->qpup_nodes->queue, e = p + qdpll->qpup_nodes->cnt; p < e; p++)
{
Var *var = p->data;
fprintf (stderr, "(%d,%d) ", var->id, var->trail_pos);
}
fprintf (stderr, "\n");
}
result = pqueue_remove_min (qdpll->qpup_nodes);
if (!qdpll->qpup_uip)
{
if (qdpll->qpup_cnt_at_max_dec_level > 0)
qdpll->qpup_cnt_at_max_dec_level--;
if (qdpll->qpup_cnt_at_max_dec_level == 1)
qdpll->qpup_var_at_max_dec_level = pqueue_access_min (qdpll->qpup_nodes);
}
return result;
}
static Var *
qpup_find_unique_var_at_max_dec_level (QDPLL *qdpll)
{
assert (!qdpll->qpup_uip);
if (qdpll->qpup_recompute_var_at_max_dec_level)
{
qdpll->qpup_recompute_var_at_max_dec_level = 0;
Var *var_at_max_dec_level = 0;
unsigned int cnt_at_max_dec_level = 0;
PriorityQueueElem *p, *e;
for (p = qdpll->qpup_nodes->queue, e = p + qdpll->qpup_nodes->cnt; p < e; p++)
{
Var *var = p->data;
assert (var->decision_level != QDPLL_INVALID_DECISION_LEVEL);
if (!var_at_max_dec_level || var_at_max_dec_level->decision_level < var->decision_level)
{
/* Found new maximum decision level. */
var_at_max_dec_level = var;
cnt_at_max_dec_level = 1;
}
else if (var_at_max_dec_level->decision_level == var->decision_level)
cnt_at_max_dec_level++;
}
qdpll->qpup_var_at_max_dec_level = var_at_max_dec_level;
qdpll->qpup_cnt_at_max_dec_level = cnt_at_max_dec_level;
}
/* Explicitly handle decision level 0: if the maximum decision level is 0
then we want to continue anyway to derive the empty
constraint. This is relevant only if a trace is printed out. */
if (!qdpll->qpup_var_at_max_dec_level || qdpll->qpup_var_at_max_dec_level->decision_level == 0)
return 0;
else
{
assert (qdpll->qpup_var_at_max_dec_level);
assert (qdpll->qpup_var_at_max_dec_level->decision_level != QDPLL_INVALID_DECISION_LEVEL);
assert (qdpll->qpup_cnt_at_max_dec_level > 0);
if (qdpll->qpup_cnt_at_max_dec_level == 1)
{
/* Must reset computed maximum var if we are at UIP which is not suitable. */
assert (!qdpll->qpup_recompute_var_at_max_dec_level);
qdpll->qpup_recompute_var_at_max_dec_level = 1;
return qdpll->qpup_var_at_max_dec_level;
}
else
return 0;
}
}
/* Check if there is a variable 'u' on stack 'qdpll->qpup_vars' where variable
'var' depends on. For example, this check is carried out on UIP
candidates. Since the variable related to the UIP is part of the learnt
constraint, we have to make sure that this variable does not block
reduction of literals which would produce a tautology. Additionally, the
variable of the UIP must be asserted after backtracking. In order to
produce asserting constraints, we have to make sure that the UIP variable
does not depend on variables of the other type which are assigned at equal
or larger decision level than the decision level of the UIP. Such variables
would be unassigned after backtracking and prevent the constraint from
being asserting. */
static Var *
qpup_check_dependency (QDPLL *qdpll, Var *var, const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
assert (var->scope->type == type);
QDPLLDepManGeneric *dm = qdpll->dm;
const unsigned int long_dist_res = qdpll->options.long_dist_res;
Var **p, **e;
for (p = qdpll->qpup_vars.start, e = qdpll->qpup_vars.top; p < e; p++)
{
Var *u = *p;
assert (qpup_is_var_neg_marked (u) || qpup_is_var_pos_marked (u));
assert (u->scope->type != type);
if (!long_dist_res && qpup_is_var_neg_marked (u) && qpup_is_var_pos_marked (u))
{
/* Positive and negative literals of variable 'u' were collected:
check whether 'u' would make learnt clause a tautology. A
tautology would be produced if 'var' prevents reduction of
'u'. If so, then 'var' has to be resolved out. */
/* When using QPUP-based long-distance resolution, we never
enter this branch. */
if (dm->depends(dm, u->id, var->id))
return u;
}
else if (!qdpll->qpup_uip)
{
/* If 'qdpll->qpup_uip' is NULL then we haven't found the UIP and we
must check if the UIP candidate depends on a collected universal
variable which appeared in only one phase. If so then the candidate
is no UIP since the resulting clause would not be
asserting. Otherwise if 'qdpll->qpup_uip' is not NULL then this
function is called from function '...check_remaining_nodes...' on
open, unvisited nodes on stack 'qdpll->qpup_nodes'. No dependency
checking is required in this case since these nodes are all assigned
at smaller decision levels than the decision level of the UIP node,
since we traverse the graph in reverse trail ordering. Note that
tautology checking is handled in the if-branch above. This branch
affects only the criteria for producing asserting constraints. */
/* Either only positive or only negative literals of variable 'u'
were collected, i.e. literals of 'u' would not produce a
tautology; check whether 'u' would prevent learnt clause from
being asserting. */
if ((!(QDPLL_VAR_ASSIGNED(u) && u->decision_level < var->decision_level))
&& dm->depends(dm, u->id, var->id))
return u;
}
}
return 0;
}
/* Returns zero if no proper UIP was found and a pointer to the UIP
otherwise. The stack 'qdpll->qpup_nodes' is inspected for that purpose. A
node is a suitable UIP if (1) it is the only node assigned at the highest
decision level among all nodes on the stack, (2) if it is assigned at an
existential/universal decision level during CDCL/SDCL and (3) if it does
not prevent the reduction of tautology-producing literals or literals which
prevent asserting learnt constraints. These three conditions are checked in
this function. If a suitable UIP was found, then the traversal in function
'find_relevant_uip' will stop. */
static Var *
qpup_find_and_check_uip_candidate(QDPLL *qdpll, const QDPLLQuantifierType type)
{
/* Check whether the relevant 1-UIP node was found, which is similar
to the stop-criteria in classical CDCL. */
Var *uip_candidate = qpup_find_unique_var_at_max_dec_level (qdpll);
if (uip_candidate)
{
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "QPUP UIP search: node %d is a UIP candidate.\n", uip_candidate->id);
/* At this point, variable 'unique_var_at_max_dec_level' is a
UIP candidate. */
/* Check if 'uip_candidate' is assigned at a decision level
where the decision variable is existential (universal) in CDCL (SDCL). */
assert (uip_candidate->decision_level >= 1);
assert (uip_candidate->mode == QDPLL_VARMODE_UNIT ||
uip_candidate->mode == QDPLL_VARMODE_LBRANCH || uip_candidate->mode == QDPLL_VARMODE_RBRANCH);
Var *decision_var =
VARID2VARPTR (qdpll->pcnf.vars,
qdpll->dec_vars.start[uip_candidate->decision_level - 1]);
assert (decision_var->decision_level == uip_candidate->decision_level);
assert (decision_var->mode == QDPLL_VARMODE_LBRANCH
|| decision_var->mode == QDPLL_VARMODE_RBRANCH);
if (decision_var->scope->type == type)
{
assert (uip_candidate->scope->type == type);
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "QPUP UIP search: candidate %d passed level check.\n", uip_candidate->id);
Var *depends_on;
if (!(depends_on = qpup_check_dependency (qdpll, uip_candidate, type)))
{
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "QPUP UIP search: candidate %d passed dependency check, UIP found.\n", uip_candidate->id);
/* Relevant UIP found, abort traversal. */
assert (!qdpll->qpup_uip);
qdpll->qpup_uip = uip_candidate;
return uip_candidate;
}
else
{
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "QPUP UIP search: candidate %d depends on variable %d, continuing.\n", uip_candidate->id, depends_on->id);
return 0;
}
}
else
{
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "QPUP UIP search: candidate %d failed level check, continuing.\n", uip_candidate->id);
return 0;
}
}
else
{
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "QPUP UIP search: no suitable UIP candidate found, continuing.\n");
return 0;
}
}
static void
qpup_collect_weak_predict_lits (QDPLL *qdpll, Var *var, LitID lit, const QDPLLQuantifierType type);
static void
qpup_find_relevant_uip (QDPLL *qdpll, const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "QPUP: UIP search started.\n");
/* First phase: traverse implication graph and find the relevant UIP. The
relevant UIP is the variable which will be asserted after backtracking. */
Var *cur;
while (!qpup_find_and_check_uip_candidate(qdpll, type) && (cur = qpup_select_next_node (qdpll)))
{
assert (QDPLL_VAR_ASSIGNED(cur));
assert (cur->mode == QDPLL_VARMODE_LBRANCH || cur->mode == QDPLL_VARMODE_RBRANCH ||
cur->mode == QDPLL_VARMODE_UNIT ||
(qdpll->state.assumptions_given && cur->mode == QDPLL_VARMODE_ASSUMED));
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "\nQPUP UIP search: cur node = %d, decision level %d, trail position %d\n",
cur->id, cur->decision_level, cur->trail_pos);
if (cur->mode == QDPLL_VARMODE_LBRANCH || cur->mode == QDPLL_VARMODE_RBRANCH ||
cur->mode == QDPLL_VARMODE_ASSUMED)
{
assert (cur->mode != QDPLL_VARMODE_ASSUMED || qdpll->state.assumptions_given);
/* Variable 'cur' was assigned as decision or assumption. */
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "QPUP UIP search: cur node %d is %s.\n", cur->id,
cur->mode == QDPLL_VARMODE_ASSUMED ? "assumption" : "decision");
if (cur->mode == QDPLL_VARMODE_ASSUMED && cur->scope->type == type &&
!qdpll->options.no_lazy_qpup)
qpup_collect_weak_predict_lits (qdpll, cur, 0, type);
}
else
{
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "QPUP UIP search: cur node %d is a unit, pushing predecessors.\n", cur->id);
assert (cur->mode == QDPLL_VARMODE_UNIT);
assert (cur->scope->type == type);
assert (cur->antecedent);
assert (!cur->antecedent->qbcp_qbce_blocked);
/* Collect literals of 'cur' antecedent, ignoring 'cur' itself. */
qpup_traverse_implication_graph_push_nodes (qdpll,
cur->antecedent->lits,
cur->antecedent->lits + cur->antecedent->num_lits,
cur, type);
/* Collect traversed units on separate stack. That is used later for
the actual production of QPUP clauses. */
QDPLL_PUSH_STACK(qdpll->mm, qdpll->qpup_units, cur);
}
}
/* NOTE: if 'qdpll->qpup_uip' is NULL after the while-loop then the empty constraint will be
derived in the end. */
if (qdpll->options.verbosity >= 2)
{
if (!qdpll->qpup_uip)
fprintf (stderr, "QPUP UIP search: no proper UIP found; expecting derivation "\
"of the empty constraint or asserting initial cube.\n");
fprintf (stderr, "QPUP: UIP search completed.\n");
}
}
static void
qpup_collect_weak_predict_lits_push (QDPLL *qdpll, Var *var, LitID lit)
{
if (var->is_internal)
QDPLL_PUSH_STACK(qdpll->mm, qdpll->internal_cover_lits, lit);
else if (var->user_scope)
QDPLL_PUSH_STACK(qdpll->mm, var->user_scope->cover_lits, lit);
else
{
assert (var->scope == qdpll->pcnf.scopes.first);
QDPLL_PUSH_STACK(qdpll->mm, var->scope->cover_lits, lit);
}
}
static void
qpup_collect_weak_predict_lits (QDPLL *qdpll, Var *var, LitID lit, const QDPLLQuantifierType type)
{
assert (!qdpll->options.no_lazy_qpup);
/* Handle assumptions in lazy QPUP: we allow this function to be called
BEFORE UIP is found, but only to collect existential (universal)
assumptions in CDCL (SDCL) during UIP search. This is needed only if no
UIP is found under assumptions, i.e. an assumption-constraint will be
derived. */
assert (qdpll->qpup_uip ||
(var->mode == QDPLL_VARMODE_ASSUMED && var->scope->type == type));
assert (!lit || var == LIT2VARPTR(qdpll->pcnf.vars, lit));
if (!lit)
{
/* Workaround: need to figure out phase of literal to be collected in
certain cases. */
lit = var->id;
if (type == QDPLL_QTYPE_EXISTS)
{
if (var->assignment == QDPLL_ASSIGNMENT_TRUE)
lit = -lit;
}
else if (var->assignment == QDPLL_ASSIGNMENT_FALSE)
lit = -lit;
}
if (var->scope->type == type)
{
/* In CDCL (SDCL), 'var' is existential (universal). */
/* Here, no double pushing can occur. */
assert (!var->qpup_neg_predict_mark);
assert (!var->qpup_pos_predict_mark);
if (QDPLL_LIT_NEG (lit))
var->qpup_neg_predict_mark = 1;
else
var->qpup_pos_predict_mark = 1;
if (var->is_internal)
QDPLL_PUSH_STACK(qdpll->mm, qdpll->internal_cover_lits, lit);
else if (var->user_scope)
QDPLL_PUSH_STACK(qdpll->mm, var->user_scope->cover_lits, lit);
else
{
assert (var->scope == qdpll->pcnf.scopes.first);
QDPLL_PUSH_STACK(qdpll->mm, var->scope->cover_lits, lit);
}
}
else
{
/* In CDCL (SDCL), 'var' is universal (existential). */
/* Skip literals which would produce a tautology; they will not occur in
the learned constraint. */
if (!qdpll->options.long_dist_res &&
qpup_is_var_pos_marked(var) && qpup_is_var_neg_marked(var))
return;
/* Skip literals where the UIP variable depends on AND which are (1)
either unassigned or (2) assigned at a larger or equal decision level
than the UIP variable. Such literals would become unassigned after
backtracking to the asserting level and thus the learned constraint
would not be asserting. Hence these literals cannot occur in the
learned clause. */
if ((!(QDPLL_VAR_ASSIGNED(var) && var->decision_level < qdpll->qpup_uip->decision_level))
&& qdpll->dm->depends(qdpll->dm, var->id, qdpll->qpup_uip->id))
return;
/* Otherwise, collect literal if not already present. Must also handle
long-distance resolution by possibly collecting complementary
universal literals. Note that universal literals may be collected
here (even complementary ones when not using long-distance
resolution) although they may be universal-reduced from the clause to
be learned in the end. */
if (QDPLL_LIT_NEG (lit))
{
if (!var->qpup_neg_predict_mark)
{
var->qpup_neg_predict_mark = 1;
qpup_collect_weak_predict_lits_push (qdpll, var, lit);
}
}
else
{
assert (QDPLL_LIT_POS (lit));
if (!var->qpup_pos_predict_mark)
{
var->qpup_pos_predict_mark = 1;
qpup_collect_weak_predict_lits_push (qdpll, var, lit);
}
}
}
}
static void
qpup_collect_weak_predict_lits_aux_collect (QDPLL *qdpll, LitIDStack *cover_lits,
const QDPLLQuantifierType type)
{
LitID kept_selector_lit = 0;
Var *kept_selector_var = 0;
const unsigned int clause_group_api_called = qdpll->state.clause_group_api_called;
LitID *p, *e;
for (p = cover_lits->start, e = cover_lits->top; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
assert (cover_lits == &qdpll->internal_cover_lits || !var->is_internal);
assert (cover_lits != &qdpll->internal_cover_lits || var->is_internal);
assert (var->qpup_neg_predict_mark || var->qpup_pos_predict_mark);
if (QDPLL_LIT_NEG (lit))
{
assert (var->qpup_neg_predict_mark);
var->qpup_neg_predict_mark = 0;
}
if (QDPLL_LIT_POS (lit))
{
assert (var->qpup_pos_predict_mark);
var->qpup_pos_predict_mark = 0;
}
if (clause_group_api_called)
{
/* Cannot use "KEEP-ONE_SELECTOR-LITERAL" optimization if clause
groups are used. */
QDPLL_PUSH_STACK(qdpll->mm, qdpll->qpup_weak_predict_lits, lit);
if (!qdpll->options.bump_vars_once)
increase_var_activity (qdpll, var, var->scope);
}
else
{
if (var->is_internal && type == QDPLL_QTYPE_EXISTS)
{
assert (!var->is_internal ||
(QDPLL_LIT_NEG(lit) && QDPLL_VAR_ASSIGNED_TRUE(var)) ||
(QDPLL_LIT_POS(lit) && QDPLL_VAR_ASSIGNED_FALSE(var)));
assert (var->scope == qdpll->pcnf.scopes.first);
assert (var->clause_group_id > 0);
assert (qdpll->state.cur_used_internal_vars.start[var->clause_group_id - 1] == var->id);
if (!kept_selector_var || kept_selector_var->clause_group_id < var->clause_group_id)
{
kept_selector_var = var;
kept_selector_lit = lit;
}
}
else
{
/* Same code as in branch 'if (clause_group_api_called)' above. */
QDPLL_PUSH_STACK(qdpll->mm, qdpll->qpup_weak_predict_lits, lit);
if (!qdpll->options.bump_vars_once)
increase_var_activity (qdpll, var, var->scope);
}
}
}
if (!clause_group_api_called)
{
if (kept_selector_var)
{
assert (type == QDPLL_QTYPE_EXISTS);
assert (cover_lits == &qdpll->internal_cover_lits);
assert (kept_selector_lit);
/* Same code as in branch 'if (clause_group_api_called)' above. */
QDPLL_PUSH_STACK(qdpll->mm, qdpll->qpup_weak_predict_lits, kept_selector_lit);
if (!qdpll->options.bump_vars_once)
increase_var_activity (qdpll, kept_selector_var, kept_selector_var->scope);
kept_selector_var = 0;
kept_selector_lit = 0;
}
}
QDPLL_RESET_STACK(*cover_lits);
}
static void
qpup_collect_weak_predict_lits_aux (QDPLL *qdpll, LitIDStack *empty_constraint_lits, const QDPLLQuantifierType type)
{
assert (!qdpll->options.no_lazy_qpup);
assert (QDPLL_EMPTY_STACK(qdpll->qpup_weak_predict_lits));
Var *vars = qdpll->pcnf.vars;
/* If a UIP was found then check visited units and their antecedents to
collect relevant literals. If no UIP was found (i.e. we will derive the
empty constraint) then still we have to traverse used antecedents to unmark
the variables. */
/* A predicted literal 'lit' will be pushed on the stack
'cover_lits' in its scope 'var(lit)->scope'. This way, we can
collect all predicted literals in sorted order already, no explicit
sorting is necessary. */
if (!QDPLL_EMPTY_STACK(qdpll->qpup_units))
{
Var **vp, **ve;
for (vp = qdpll->qpup_units.top - 1, ve = qdpll->qpup_units.start; ve <= vp; vp--)
{
Var *var = *vp;
assert (var->antecedent);
assert (!var->antecedent->qbcp_qbce_blocked);
if (!qdpll->options.bump_vars_once)
learnt_constraint_mtf (qdpll, var->antecedent);
LitID *p, *e;
for (p = var->antecedent->lits, e = p + var->antecedent->num_lits; p < e; p++)
{
LitID lit = *p;
Var *v = LIT2VARPTR(vars, lit);
if (!qdpll->options.bump_vars_once)
increase_var_activity (qdpll, v, v->scope);
qpup_unmark_var (v);
/* If UIP found: collect universal (existential) variables in CDCL (SDCL). */
if (v->scope->type != type && qdpll->qpup_uip)
qpup_collect_weak_predict_lits (qdpll, v, lit, type);
}
}
}
LitID *p, *e;
for (p = empty_constraint_lits->start, e = empty_constraint_lits->top; p < e; p++)
{
LitID lit = *p;
Var *v = LIT2VARPTR(vars, lit);
if (!qdpll->options.bump_vars_once)
increase_var_activity (qdpll, v, v->scope);
qpup_unmark_var (v);
/* If UIP found: collect universal (existential) variables in CDCL (SDCL). */
if (v->scope->type != type && qdpll->qpup_uip)
qpup_collect_weak_predict_lits (qdpll, v, lit, type);
}
/* First, import internal variables collected on separate stack. */
qpup_collect_weak_predict_lits_aux_collect (qdpll, &qdpll->internal_cover_lits, type);
/* Then collect variables from default scope. */
qpup_collect_weak_predict_lits_aux_collect (qdpll, &qdpll->pcnf.scopes.first->cover_lits, type);
/* Push collected literals in order of scopes on stack
'qdpll->qpup_weak_predicted_lits'. */
Scope *s;
for (s = qdpll->pcnf.user_scopes.first; s; s = s->link.next)
qpup_collect_weak_predict_lits_aux_collect (qdpll, &s->cover_lits, type);
#ifndef NDEBUG
assert_lits_sorted (qdpll, qdpll->qpup_weak_predict_lits.start,
qdpll->qpup_weak_predict_lits.top);
#endif
}
/* Print information about a literal which will definitely occur in
the learned clause. This function considers only existential
(universal) literals in CDCL (SDCL).*/
static void
qpup_print_info_kept_literals (QDPLL *qdpll, Var * var, const QDPLLQuantifierType type)
{
const char *type_string = type == QDPLL_QTYPE_EXISTS ?
"QPUP predict exist." : "QPUP predict univ.";
LitID lit = var->id;
if (type == QDPLL_QTYPE_EXISTS)
{
if (var->assignment == QDPLL_ASSIGNMENT_TRUE)
lit = -lit;
}
else if (var->assignment == QDPLL_ASSIGNMENT_FALSE)
lit = -lit;
fprintf (stderr, "%s lit. %d: DEFINITELY IN\n", type_string, lit);
/* Here, no double pushing can occur. */
QDPLL_PUSH_STACK(qdpll->mm, qdpll->qpup_kept_lits, lit);
}
/* After the UIP has been found, check whether there are nodes on stack
'qdpll->qpup_nodes' which would prevent the production of an asserting
constraint or which would prevent the reduction of literals yielding
tautologies. */
static void
qpup_check_remaining_nodes (QDPLL *qdpll, const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "\nQPUP: node checking started on %u remaining nodes.\n", (unsigned int)qdpll->qpup_nodes->cnt);
/* Second phase: check remaining nodes on stack. */
Var *cur;
while ((cur = qpup_select_next_node (qdpll)))
{
assert (qdpll->qpup_uip);
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "QPUP node checking: cur node = %d, decision level %d, trail position %d\n",
cur->id, cur->decision_level, cur->trail_pos);
/* Ignore found UIP. */
if (cur == qdpll->qpup_uip)
{
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "QPUP node checking: cur node is found UIP, skip.\n");
qpup_print_info_kept_literals (qdpll, cur, type);
}
if (!qdpll->options.no_lazy_qpup)
qpup_collect_weak_predict_lits (qdpll, cur, 0, type);
continue;
}
assert (QDPLL_VAR_ASSIGNED(cur));
assert (QDPLL_VAR_ASSIGNED(qdpll->qpup_uip));
assert (cur->decision_level < qdpll->qpup_uip->decision_level);
if (cur->mode == QDPLL_VARMODE_LBRANCH || cur->mode == QDPLL_VARMODE_RBRANCH ||
cur->mode == QDPLL_VARMODE_ASSUMED)
{
/* Variable 'cur' was assigned as decision or assumption. */
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "QPUP node checking: cur node %d is %s.\n", cur->id, cur->mode == QDPLL_VARMODE_ASSUMED ? "assumption" : "decision");
qpup_print_info_kept_literals (qdpll, cur, type);
}
if (!qdpll->options.no_lazy_qpup)
qpup_collect_weak_predict_lits (qdpll, cur, 0, type);
}
else
{
assert (cur->mode == QDPLL_VARMODE_UNIT);
assert (cur->scope->type == type);
Var *depends_on;
if (!(depends_on = qpup_check_dependency (qdpll, cur, type)))
{
/* Variable 'cur' was assigned as unit but does not prevent constraint reduction. */
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "QPUP node checking: cur node %d does not prevent reduction.\n", cur->id);
qpup_print_info_kept_literals (qdpll, cur, type);
}
if (!qdpll->options.no_lazy_qpup)
qpup_collect_weak_predict_lits (qdpll, cur, 0, type);
}
else
{
if (qdpll->options.verbosity >= 2 && depends_on)
fprintf (stderr, "QPUP node checking: cur node %d prevents reduction of %d, pushing predecessors.\n", cur->id, depends_on->id);
/* There is a universal vars on stack 'qdpll->qpup_vars'
where 'cur' depends on. That is, 'cur' would prevent
universal reduction of that variable during QPUP. Continue
traversal until literals which block universal reduction are
resolved out. Collect literals like in first phase. See also
function 'qpup_check_dependency(...)' for additional comments. */
assert (cur->antecedent);
assert (!cur->antecedent->qbcp_qbce_blocked);
qpup_traverse_implication_graph_push_nodes (qdpll,
cur->antecedent->lits,
cur->antecedent->lits + cur->antecedent->num_lits,
cur, type);
/* Collect traversed units on separate stack. That is used later for
the actual production of QPUP clauses. */
QDPLL_PUSH_STACK(qdpll->mm, qdpll->qpup_units, cur);
}
}
}
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "QPUP: node checking completed.\n");
}
/* Called from function 'qpup_print_info_literals_aux(...)'. */
static void
qpup_print_info_literals (QDPLL *qdpll, LitID lit, LitID *ante_lits_start,
LitID *ante_lits_end, const QDPLLQuantifierType type)
{
assert (qdpll->options.verbosity >= 2);
assert (ante_lits_start <= ante_lits_end);
assert (qdpll->qpup_uip);
assert (QDPLL_VAR_ASSIGNED(qdpll->qpup_uip));
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
const char *type_string = type == QDPLL_QTYPE_EXISTS ? "QPUP predict univ." : "QPUP predict exist.";
/* This function ignores existential (universal) literals in CDCL (SDCL). */
if ((type == QDPLL_QTYPE_EXISTS && !QDPLL_VAR_FORALL(var)) ||
(type == QDPLL_QTYPE_FORALL && !QDPLL_VAR_EXISTS(var)))
return;
/* A universal literal will DEFINITELY NOT occur in the learned
clause if it would produce a tautology (i.e. its variable has
complementary marks set) or if the UIP variable depends on it and
the universal variable would become unassigned after
backtracking. */
if (qpup_is_var_pos_marked(var) && qpup_is_var_neg_marked(var))
{
/* The literal's variable would produce a tautology. */
if (!qdpll->options.long_dist_res)
fprintf (stderr, " %s lit. %d compl. occs: DEFINITELY OUT\n", type_string, lit);
else
fprintf (stderr, " %s lit. %d compl. occs: MAYBE IN\n", type_string, lit);
}
else
{
/* Check if there is a literal in the antecedent which definitely
prevents reduction of 'var'. */
LitID *p, *e;
for (p = ante_lits_start, e = ante_lits_end; p < e; p++)
{
Var *v = LIT2VARPTR(qdpll->pcnf.vars, *p);
if (v->scope->type != var->scope->type && qdpll->dm->depends (qdpll->dm, var->id, v->id))
{
/* Variable 'v' in the antecedent would prevent reduction of
'var'. Check if 'v' was collected on stack 'qpup_kept_lits' as
'DEFINITELY IN' the learned clause. In this case, both variables
'var' and 'v' will be carried over during QPUP computations to
the final learned constraint. */
LitID *p1, *e1;
for (p1 = qdpll->qpup_kept_lits.start, e1 = qdpll->qpup_kept_lits.top; p1 < e1; p1++)
{
Var *v1 = LIT2VARPTR(qdpll->pcnf.vars, *p1);
if (v == v1)
break;
}
if (p1 < e1)
{
fprintf (stderr, " %s lit. %d < %d: DEFINITELY IN\n", type_string, lit, *p1);
break;
}
}
}
/* Variables labelled as 'MAYBE IN' may or may not occur in the learned
clause: we were not able to make a definite decision at this point based
on local information in the antecedent only. However, it should never be
the case that the learned clause contains a universal which was neither
labelled 'DEFINITELY IN' nor 'MAYBE IN'. */
if (p == e)
fprintf (stderr, " %s lit. %d: MAYBE IN\n", type_string, lit);
}
}
/* Check antecedent constraints and empty constraint for literals which
definitely (not) occur or may occur in the learned constraint. */
static void
qpup_print_info_literals_aux (QDPLL *qdpll, LitIDStack *empty_constraint_lits, const QDPLLQuantifierType type)
{
if (!qdpll->qpup_uip)
return;
assert (qdpll->options.verbosity >= 2);
fprintf (stderr, "\nQPUP predicting %s literals:\n", type == QDPLL_QTYPE_EXISTS ? "universal" : "existential");
if (!QDPLL_EMPTY_STACK(qdpll->qpup_units))
{
Var **vp, **ve;
for (vp = qdpll->qpup_units.top - 1, ve = qdpll->qpup_units.start; ve <= vp; vp--)
{
Var *var = *vp;
assert (var->antecedent);
assert (!var->antecedent->qbcp_qbce_blocked);
LitID *p, *e;
for (p = var->antecedent->lits, e = p + var->antecedent->num_lits; p < e; p++)
{
LitID lit = *p;
Var *v = LIT2VARPTR(qdpll->pcnf.vars, lit);
qpup_print_info_literals (qdpll, lit, var->antecedent->lits,
var->antecedent->lits + var->antecedent->num_lits, type);
}
}
}
LitID *p, *e;
for (p = empty_constraint_lits->start, e = empty_constraint_lits->top; p < e; p++)
{
LitID lit = *p;
Var *v = LIT2VARPTR(qdpll->pcnf.vars, lit);
qpup_print_info_literals (qdpll, lit, empty_constraint_lits->start, empty_constraint_lits->top, type);
}
fprintf (stderr, "QPUP predicting %s literals completed.\n", type == QDPLL_QTYPE_EXISTS ? "universal" : "existential");
}
/* Traverse the implication graph backwards starting from the empty clause. In
CDCL, existential units and decisions are nodes to be visited. */
static void
qpup_traverse_implication_graph (QDPLL *qdpll, LitIDStack *constraint_lits, const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
/* Initialize search: collect nodes to be visited from empty constraint. */
qpup_traverse_implication_graph_push_nodes (qdpll, constraint_lits->start, constraint_lits->top, 0, type);
/* Find the relevant UIP. */
qpup_find_relevant_uip (qdpll, type);
/* Check unvisited nodes on the stack which would prevent
universal reduction during QPUP computation. */
qpup_check_remaining_nodes (qdpll, type);
if (qdpll->options.verbosity >= 2)
qpup_print_info_literals_aux (qdpll, constraint_lits, type);
}
/* For assertion checking only; Returns non-zero iff literal 'lit' is
contained in the array of literals bounded by 'start' and 'end'. */
static int
qpup_res_find_lit (LitID *start, LitID *end, LitID lit)
{
assert (start <= end);
LitID *p;
for (p = start; p < end; p++)
if (*p == lit)
return 1;
return 0;
}
/* For assertion checking only: returns non-zero if the literal set contains
duplicate literals. */
static int
qpup_has_duplicate_lits (LitID *start, LitID *end)
{
assert (start <= end);
LitID *p;
for (p = start; p < end; p++)
{
LitID lit = *p;
if (qpup_res_find_lit (p + 1, end, lit))
return 1;
}
return 0;
}
/* For assertion checking only: returns non-zero if the literal set is
a tautology. */
static int
qpup_is_tautology (LitID *start, LitID *end)
{
assert (start <= end);
LitID *p;
for (p = start; p < end; p++)
{
LitID lit = *p;
if (qpup_res_find_lit (start, end, -lit))
return 1;
}
return 0;
}
static void
qpup_res_reduce_by_depschemes_aux (QDPLL *qdpll, LitID lit, const QDPLLQuantifierType type)
{
Var *vars = qdpll->pcnf.vars;
Var *var = LIT2VARPTR(vars, lit);
const QDPLLQuantifierType var_type = var->scope->type;
QDPLLMemMan *mm = qdpll->mm;
assert (!LEARN_VAR_MARKED (var));
if (QDPLL_LIT_NEG (lit))
LEARN_VAR_NEG_MARK (var);
else
LEARN_VAR_POS_MARK (var);
assert (qdpll->state.decision_level != 0 || var->decision_level == 0 ||
var->decision_level == QDPLL_INVALID_DECISION_LEVEL);
assert (LEARN_VAR_MARKED (var));
assert (QDPLL_LIT_POS (lit) || LEARN_VAR_NEG_MARKED (var));
assert (QDPLL_LIT_NEG (lit) || LEARN_VAR_POS_MARKED (var));
assert (!(LEARN_VAR_POS_MARKED (var) && LEARN_VAR_NEG_MARKED (var)));
if (var_type == QDPLL_QTYPE_FORALL)
{
Var *rep = VARID2VARPTR (vars,
qdpll->dm->get_class_rep (qdpll->dm,
var->id, 0));
if (!QDPLL_VAR_POS_MARKED (rep))
{
QDPLL_VAR_POS_MARK (rep);
assert (QDPLL_COUNT_STACK (rep->type_red_member_lits) == 0);
QDPLL_PUSH_STACK (mm, qdpll->wreason_a, rep);
}
/* Collect class members. */
QDPLL_PUSH_STACK (mm, rep->type_red_member_lits, lit);
}
else
{
/* NOTE: here 'type == EXISTS' means that we do CDCL and
hence must forall-reduce clauses, and 'type == FORALL'
indicates SDCL and exists-reducing cubes. */
Var *rep = type == QDPLL_QTYPE_FORALL ?
VARID2VARPTR (vars, qdpll->dm->get_class_rep (qdpll->dm, var->id, 1)) :
VARID2VARPTR (vars, qdpll->dm->get_class_rep (qdpll->dm, var->id, 0));
if (!QDPLL_VAR_POS_MARKED (rep))
{
QDPLL_VAR_POS_MARK (rep);
assert (QDPLL_COUNT_STACK (rep->type_red_member_lits) == 0);
QDPLL_PUSH_STACK (mm, qdpll->wreason_e, rep);
}
/* Collect class members. */
QDPLL_PUSH_STACK (mm, rep->type_red_member_lits, lit);
}
}
static void
qpup_res_reduce_by_depschemes (QDPLL *qdpll, LitIDStack *stack, const QDPLLQuantifierType type)
{
assert (QDPLL_EMPTY_STACK (qdpll->wreason_a));
assert (QDPLL_EMPTY_STACK (qdpll->wreason_e));
LitIDStack tmp;
QDPLL_INIT_STACK(tmp);
LitIDStack *tmp_p = &tmp;
/* Collect data to be used in function 'typ_reduce'. */
LitID *p, *e;
for (p = stack->start, e = stack->top; p < e; p++)
qpup_res_reduce_by_depschemes_aux (qdpll, *p, type);
qdpll->dm->reduce_lits (qdpll->dm, &stack, &tmp_p, type, 1);
for (p = stack->start, e = stack->top; p < e; p++)
LEARN_VAR_UNMARK (LIT2VARPTR(qdpll->pcnf.vars, *p));
QDPLL_DELETE_STACK(qdpll->mm, *tmp_p);
*tmp_p = *stack;
}
/* Constraint reduction. */
static void
qpup_res_reduce (QDPLL *qdpll, LitIDStack *stack, const ConstraintID trace_id, const QDPLLQuantifierType type)
{
#ifndef NDEBUG
assert_lits_sorted (qdpll, stack->start, stack->top);
do{
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
assert (!LEARN_VAR_MARKED(p));
assert (!QDPLL_VAR_MARKED(p));
}
} while(0);
#endif
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " QPUP res-reduce: sorted constraint: ");
print_lits (qdpll, stack->start, QDPLL_COUNT_STACK(*stack), 0);
}
unsigned int num_lits_before_red = QDPLL_COUNT_STACK(*stack);
/* Cut off trailing literals of universal/existential variables, which
corresponds to reductions by the trivial dependency scheme. This is always
possible to the hierarchy of dependency schemes induced by subset relationship. */
while (QDPLL_COUNT_STACK(*stack))
{
Var *v = LIT2VARPTR(qdpll->pcnf.vars, *(stack->top - 1));
if (!v->is_internal && v->scope->type != type)
{
QDPLL_POP_STACK(*stack);
assert (!LEARN_VAR_MARKED (v));
qpup_res_unmark_var(v);
}
else
break;
}
/* Additionally, perform dependency scheme specific reductions. */
if (!qdpll->options.depman_simple)
qpup_res_reduce_by_depschemes (qdpll, stack, type);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " QPUP res-reduce: reduced constraint: ");
print_lits (qdpll, stack->start, QDPLL_COUNT_STACK(*stack), 0);
}
if (qdpll->options.trace)
{
if (QDPLL_COUNT_STACK(*stack) < num_lits_before_red)
{
/* Trace reduced constraint. */
qdpll->cur_constraint_id++;
qdpll->trace_constraint (qdpll->cur_constraint_id, stack->start,
QDPLL_COUNT_STACK (*stack), trace_id, 0);
}
else
assert (QDPLL_COUNT_STACK(*stack) == num_lits_before_red);
}
}
/* Parameter 'check_marks == false' if we collect a marked literal
which is part of the working reason already. Only push the literal on
the stack. Otherwise, a potentially unseen literal is marked and collected. */
static void
qpup_res_merge_lits_aux (QDPLL *qdpll, QDPLLMemMan *mm, Var *vars, LitIDStack *stack,
LitID lit, Var *pivot, const int check_marks)
{
Var *v = LIT2VARPTR(vars, lit);
assert (qdpll->options.long_dist_res ||
!(qpup_res_is_var_pos_marked(v) && qpup_res_is_var_neg_marked(v)));
/* Ignore literal of pivot variable. */
if (v != pivot)
{
/* Additional safeguard: must not add complementary literals. */
QDPLL_ABORT_QDPLL (!qdpll->options.long_dist_res &&
((QDPLL_LIT_NEG(lit) && qpup_res_is_var_pos_marked(v)) ||
(QDPLL_LIT_POS(lit) && qpup_res_is_var_neg_marked(v))),
"fatal error: generated tautology!");
if (check_marks)
{
if (QDPLL_LIT_NEG (lit))
{
if (!qpup_res_is_var_neg_marked(v))
{
qpup_res_mark_var (v, 0);
QDPLL_PUSH_STACK(mm, *stack, lit);
if (!qdpll->options.bump_vars_once)
increase_var_activity (qdpll, v, v->scope);
}
}
else
{
assert (QDPLL_LIT_POS (lit));
if (!qpup_res_is_var_pos_marked(v))
{
qpup_res_mark_var (v, 1);
QDPLL_PUSH_STACK(mm, *stack, lit);
if (!qdpll->options.bump_vars_once)
increase_var_activity (qdpll, v, v->scope);
}
}
}
else
{
assert (qpup_res_is_var_marked(v));
QDPLL_PUSH_STACK(mm, *stack, lit);
}
}
else
qpup_res_unmark_var(v);
}
/* Perform one step of Q-resolution without reduction. Reduction is done by
function 'qpup_res_reduce(...)'. Assumption: literals in 'start1,end1' are
already marked and will be collected without mark testing. Literals from
'start2,end2' are pushed onto the stack only if not marked already. This
way, it is possible to keep variables marked across different calls of this
function. After the final resolvent has been produced, variables are
unmarked. */
static void
qpup_res_merge_literals (QDPLL *qdpll, Var *pivot, LitIDStack *resolvent_lits,
LitID *start1, LitID *end1, Constraint *antecedent2, const QDPLLQuantifierType type)
{
#if COMPUTE_STATS
if (type == QDPLL_QTYPE_EXISTS)
qdpll->stats.num_unsat_res_steps++;
else
qdpll->stats.num_sat_res_steps++;
#endif
const unsigned int long_dist_res = qdpll->options.long_dist_res;
LitID *start2 = antecedent2->lits;
LitID *end2 = start2 + antecedent2->num_lits;
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " QPUP merge-literals: pivot %d\n", pivot->id);
fprintf (stderr, " side constraint 1: ");
print_lits(qdpll, start1, end1 - start1, 0);
fprintf (stderr, " side constraint 2: ");
print_lits(qdpll, start2, end2 - start2, 0);
}
assert (start1 < end1);
assert (start2 < end2);
#ifndef NDEBUG
assert_lits_sorted (qdpll, start1, end1);
assert_lits_sorted (qdpll, start2, end2);
#endif
QDPLLMemMan *mm = qdpll->mm;
Var *vars = qdpll->pcnf.vars;
LitIDStack tmp;
QDPLL_INIT_STACK(tmp);
LitID *p1 = start1;
LitID *p2 = start2;
while (1)
{
assert (p1 < end1);
assert (p2 < end2);
LitID lit1 = *p1;
LitID lit2 = *p2;
int compared = compare_lits_by_user_variable_nesting (qdpll, lit1, lit2);
if (compared < 0)
{
qpup_res_merge_lits_aux (qdpll, mm, vars, &tmp, lit1, pivot, 0);
p1++;
if (p1 == end1)
break;
}
else if (compared > 0)
{
qpup_res_merge_lits_aux (qdpll, mm, vars, &tmp, lit2, pivot, 1);
p2++;
if (p2 == end2)
break;
}
else
{
/* Special case: poth pointers point at literal of same
variable. Collect one literal, increase both pointers. */
assert (compared == 0);
assert (LIT2VARID(lit1) == LIT2VARID(lit2));
VarID varid1 = LIT2VARID(lit1);
/* Ignore literal of pivot variable, done inside 'qpup_res_merge_lits_aux'. */
qpup_res_merge_lits_aux (qdpll, mm, vars, &tmp, lit1, pivot, 0);
if (long_dist_res)
{
/* When using long-distance resolution, then collect also
complementary literals of variables other than the pivot. */
if (lit1 == -lit2 && varid1 != pivot->id)
qpup_res_merge_lits_aux (qdpll, mm, vars, &tmp, lit2, pivot, 1);
}
else
{
/* Additional safeguard: must avoid tautology unless we apply
long-distance resolution. */
QDPLL_ABORT_QDPLL((lit1 == -lit2 && varid1 != pivot->id),
"fatal error: generated tautology!");
}
p1++;
p2++;
if (p1 == end1 || p2 == end2)
break;
}
}
assert (p1 == end1 || p2 == end2);
for (; p1 < end1; p1++)
{
LitID lit = *p1;
qpup_res_merge_lits_aux (qdpll, mm, vars, &tmp, lit, pivot, 0);
}
for (; p2 < end2; p2++)
{
LitID lit = *p2;
qpup_res_merge_lits_aux (qdpll, mm, vars, &tmp, lit, pivot, 1);
}
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " QPUP merge-literals resolvent on %d: ", pivot->id);
print_lits(qdpll, tmp.start, tmp.top - tmp.start, 0);
}
#ifndef NDEBUG
assert (qdpll->options.long_dist_res || !qpup_is_tautology(tmp.start, tmp.top));
assert (!qpup_has_duplicate_lits(tmp.start, tmp.top));
assert_lits_sorted (qdpll, tmp.start, tmp.top);
#endif
/* Swap literal stacks: 'tmp' currently stores the literals of the
resolvent; copy to stack 'resolvent_lits'. */
LitIDStack swap = tmp;
tmp = *resolvent_lits;
*resolvent_lits = swap;
QDPLL_DELETE_STACK(mm, tmp);
}
/* Compute the QPUP constraint for variable 'pivot' and store its literals in
'resolvent_lits'. If 'pivot' is NULL then QPUP is computed for the empty
constraint. Successively resolve the original antecedent with the
previously computed QPUP constraints of unit literals. */
static ConstraintID
qpup_compute (QDPLL *qdpll, Var *pivot, LitIDStack *resolvent_lits,
LitID *orig_ante_lits_start, LitID *orig_ante_lits_end, const ConstraintID trace_id, const QDPLLQuantifierType type)
{
assert (orig_ante_lits_start <= orig_ante_lits_end);
assert (QDPLL_EMPTY_STACK(*resolvent_lits));
ConstraintID ante_trace_id = trace_id;
LitID *lp, *le;
/* Collect and mark literals of original antecedent on stack 'resolvent_lits'. */
for (lp = orig_ante_lits_start, le = orig_ante_lits_end; lp < le; lp++)
{
LitID lit = *lp;
Var *v = LIT2VARPTR(qdpll->pcnf.vars, lit);
assert (!QDPLL_LIT_NEG (lit) || !qpup_res_is_var_neg_marked (v));
assert (!QDPLL_LIT_POS (lit) || !qpup_res_is_var_pos_marked (v));
qpup_res_mark_var_by_lit(v, lit);
QDPLL_PUSH_STACK(qdpll->mm, *resolvent_lits, lit);
/* NOTE: can omit if-statement when permanently using qpup learning. */
if (!qdpll->options.bump_vars_once)
increase_var_activity (qdpll, v, v->scope);
}
/* Resolve the current resolvent given by stack 'resolvent_lits'
with precomputed qpup constraints. */
for (lp = orig_ante_lits_start, le = orig_ante_lits_end; lp < le; lp++)
{
Var *v = LIT2VARPTR(qdpll->pcnf.vars, *lp);
/* On-the-fly clearing pos/neg-marks of variables visited during
implication graph traversal. Might unmark variable multiple times. */
qpup_unmark_var (v);
assert (!v->qpup_constraint || (v != pivot && v->scope->type == type && v->mode == QDPLL_VARMODE_UNIT));
if (v->qpup_constraint)
{
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " QPUP compute: resolving on %d, using qpup(%d) with constr_id=%d: ", v->id, v->id, v->qpup_constraint->id);
print_constraint (qdpll, v->qpup_constraint);
}
/* Resolve on 'v': collect literals from 'v->qpup_constraint',
which must have been computed already since nodes are processed
in propagation order (i.e. in trail order). */
qpup_res_merge_literals (qdpll, v, resolvent_lits,
resolvent_lits->start, resolvent_lits->top,
v->qpup_constraint, type);
if (qdpll->options.trace)
{
qdpll->cur_constraint_id++;
qdpll->trace_constraint (qdpll->cur_constraint_id, resolvent_lits->start,
QDPLL_COUNT_STACK (*resolvent_lits), ante_trace_id,
v->qpup_constraint->id);
ante_trace_id = qdpll->cur_constraint_id;
}
}
}
/* Unmark variables on stack 'resolvent_lits'. */
for (lp = resolvent_lits->start, le = resolvent_lits->top; lp < le; lp++)
{
LitID lit = *lp;
Var *v = LIT2VARPTR(qdpll->pcnf.vars, lit);
assert (qpup_res_is_var_marked(v));
assert (qdpll->options.long_dist_res ||
!(qpup_res_is_var_pos_marked(v) && qpup_res_is_var_neg_marked(v)));
if (QDPLL_LIT_NEG (lit))
{
assert (v->qpup_res_mark_neg);
v->qpup_res_mark_neg = 0;
}
else
{
assert (v->qpup_res_mark_pos);
v->qpup_res_mark_pos = 0;
}
}
if (qdpll->options.trace)
{
/* Print dummy step if no resolution step occurred. This overhead can be
avoided if no explicit QPUP constraints are allocated but original
antecedents are re-used if possible. */
if (ante_trace_id == trace_id)
{
qdpll->cur_constraint_id++;
qdpll->trace_constraint (qdpll->cur_constraint_id, resolvent_lits->start,
QDPLL_COUNT_STACK (*resolvent_lits), ante_trace_id,
0);
ante_trace_id = qdpll->cur_constraint_id;
}
}
return ante_trace_id;
}
/* Produce the QPUP constraint for variable 'pivot'. The literals of the
resulting constraint are stored on stack 'resolvent_lits'. Literals of the
original antecedent constraint of 'pivot' are given by
'orig_ante_lits_start,orig_ante_lits_end'. */
static void
qpup_resolve_and_reduce (QDPLL *qdpll, Var *pivot, LitIDStack *resolvent_lits,
LitID *orig_ante_lits_start, LitID *orig_ante_lits_end, const ConstraintID trace_id, const QDPLLQuantifierType type)
{
assert (!qdpll->options.trace || trace_id);
/* For tracing only: 'qpup_constr_id' is the ID of the final constraint produced by 'qpup_compute'. */
ConstraintID qpup_constr_id = qpup_compute (qdpll, pivot, resolvent_lits,
orig_ante_lits_start, orig_ante_lits_end, trace_id, type);
/* Universal reduction on collected literals to get final resolvent. */
qpup_res_reduce (qdpll, resolvent_lits, qpup_constr_id, type);
}
/* Compute QPUP constraints for visited nodes until finally the learnt
constraint is obtained. The parameter 'empty_constraint_lits' is a stack of
literals of the conflicting clause/initial cube. The QPUP constraint of the
conflicting clause/initial cube will be learnt. */
static Constraint *
qpup_do_forward_resolutions (QDPLL *qdpll, LitIDStack *empty_constraint_lits, const QDPLLQuantifierType type)
{
assert (qdpll->qpup_nodes->cnt == 0);
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "\nQPUP: forward resolutions started.\n");
/* Consider visited nodes (i.e. variables which were assigned as units) in
propagation order. Since variables on stack 'qdpll->qpup_units' were
pushed in reverse propagation order, we go from top to bottom in that
stack to get the desired ordering. */
/* Auxiliary stack holding literals during construction of QPUP constraint. */
LitIDStack qpup_constraint_lits;
QDPLL_INIT_STACK(qpup_constraint_lits);
/* Explicit emptyness check required for SDCL: might start from the empty
initial cube. In this case, no resolutions are carried out. This case cannot
happen in CDCL. */
if (!QDPLL_EMPTY_STACK(qdpll->qpup_units))
{
Var **p, **e;
for (p = qdpll->qpup_units.top - 1, e = qdpll->qpup_units.start; e <= p; p--)
{
Var *unit = *p;
assert (unit->mode == QDPLL_VARMODE_UNIT);
assert (unit->scope->type == type);
assert (unit->antecedent);
assert (!unit->antecedent->qbcp_qbce_blocked);
assert (QDPLL_EMPTY_STACK(qpup_constraint_lits));
/* Compute the QPUP constraint for variable 'unit': check the
original constraint 'unit->antecedent' which caused 'unit' to be
assigned as unit literal; resolve over all variables which were
unit, using the previously computed QPUP constraints of that
variables. This is possible since we process variables in
propagation order. */
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "\nQPUP compute: generating qpup(%d), original antecedent (constr_id=%d): ", unit->id, unit->antecedent->id);
print_lits (qdpll, unit->antecedent->lits, unit->antecedent->num_lits, 0);
}
if (!qdpll->options.bump_vars_once)
learnt_constraint_mtf (qdpll, unit->antecedent);
qpup_resolve_and_reduce (qdpll, unit, &qpup_constraint_lits,
unit->antecedent->lits, unit->antecedent->lits + unit->antecedent->num_lits, unit->antecedent->id, type);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "QPUP compute: completed qpup(%d), constr_id=%d, reduced result: ", unit->id, qdpll->cur_constraint_id);
print_lits (qdpll, qpup_constraint_lits.start, QDPLL_COUNT_STACK(qpup_constraint_lits), 0);
}
/* ID of constraint to be constructed was printed already. Must decrease ID-field
in struct QDPLL by one since it is incremented again in function 'create_constraint'. */
if (qdpll->options.trace)
{
assert (qdpll->cur_constraint_id > 0);
qdpll->cur_constraint_id--;
}
/* Allocate QPUP constraint of variable 'unit' and copy literals. */
assert (!unit->qpup_constraint);
unit->qpup_constraint = create_constraint (qdpll, QDPLL_COUNT_STACK(qpup_constraint_lits), type == QDPLL_QTYPE_FORALL);
memcpy (unit->qpup_constraint->lits, qpup_constraint_lits.start,
QDPLL_COUNT_STACK(qpup_constraint_lits) * sizeof (LitID));
QDPLL_RESET_STACK(qpup_constraint_lits);
/* Completed QPUP computation for variable 'unit'. */
}
}
/* Finally, compute the QPUP constraint for the empty constraint. */
assert (QDPLL_EMPTY_STACK(qpup_constraint_lits));
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "\nQPUP compute: generating qpup(0) on empty constraint (constr_id=%d): ", qdpll->res_cons_id);
print_lits (qdpll, empty_constraint_lits->start, QDPLL_COUNT_STACK(*empty_constraint_lits), 0);
}
qpup_resolve_and_reduce (qdpll, 0, &qpup_constraint_lits,
empty_constraint_lits->start, empty_constraint_lits->top, qdpll->res_cons_id, type);
if (qdpll->options.trace)
{
assert (qdpll->cur_constraint_id > 0);
qdpll->cur_constraint_id--;
}
Constraint *qpup_learnt_constraint = create_constraint (qdpll, QDPLL_COUNT_STACK(qpup_constraint_lits), type == QDPLL_QTYPE_FORALL);
memcpy (qpup_learnt_constraint->lits, qpup_constraint_lits.start,
QDPLL_COUNT_STACK(qpup_constraint_lits) * sizeof (LitID));
QDPLL_DELETE_STACK(qdpll->mm, qpup_constraint_lits);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "QPUP: forward resolutions completed.\n");
fprintf (stderr, "QPUP: computed final constraint qpup(0): ");
if (qpup_learnt_constraint->num_lits == 0)
fprintf (stderr, "empty.\n");
else
print_constraint (qdpll, qpup_learnt_constraint);
}
return qpup_learnt_constraint;
}
/* Expensive assertion: check that variable marks used for QPUP have all been
reset, all data cleared. */
static void
assert_qpup_data_cleared (QDPLL *qdpll)
{
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
assert (!p->qpup_mark_pos);
assert (!p->qpup_mark_neg);
assert (!p->qpup_constraint);
assert (!p->qpup_res_mark_pos);
assert (!p->qpup_res_mark_neg);
assert (!p->qpup_neg_predict_mark);
assert (!p->qpup_pos_predict_mark);
assert (!p->mark_learn0);
assert (!p->mark_learn1);
assert (!QDPLL_VAR_POS_MARKED (p));
assert (!QDPLL_VAR_NEG_MARKED (p));
assert (!QDPLL_VAR_MARKED (p));
assert (!p->scope || QDPLL_EMPTY_STACK(p->scope->cover_lits));
}
assert (!qdpll->qpup_uip);
assert (qdpll->qpup_nodes->cnt == 0);
assert (QDPLL_EMPTY_STACK(qdpll->qpup_vars));
assert (QDPLL_EMPTY_STACK(qdpll->qpup_units));
assert (QDPLL_EMPTY_STACK(qdpll->qpup_kept_lits));
assert (QDPLL_EMPTY_STACK(qdpll->qpup_weak_predict_lits));
}
/* Given the constraint 'qpup_constraint' to be learnt, compute the decision
level where that constraint is asserting. */
static unsigned int
qpup_compute_asserting_level (QDPLL *qdpll, Var *asserted_var,
Constraint *qpup_constraint, const QDPLLQuantifierType type)
{
assert (asserted_var);
assert (qpup_constraint);
unsigned int asserting_level = QDPLL_INVALID_DECISION_LEVEL, highest = 0;
QDPLLDepManGeneric *dm = qdpll->dm;
LitID *p, *e;
for (p = qpup_constraint->lits, e = p + qpup_constraint->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
unsigned int cur_level = var->decision_level;
if (type == var->scope->type
|| dm->depends (dm, var->id, asserted_var->id))
{
if (cur_level > highest)
{
assert (cur_level != QDPLL_INVALID_DECISION_LEVEL);
asserting_level = highest;
highest = cur_level;
}
else if (cur_level > asserting_level)
{
assert (cur_level != QDPLL_INVALID_DECISION_LEVEL);
asserting_level = cur_level;
}
}
}
QDPLL_ABORT_QDPLL (asserting_level == QDPLL_INVALID_DECISION_LEVEL, "unexpected asserting level!");
assert (asserting_level != QDPLL_INVALID_DECISION_LEVEL);
return asserting_level;
}
/* For assertion checking only. Returns true iff. the literal sets of c1 and
c2 are equal or if c1 is a subset of c2. */
static int
qpup_is_subseteq (Constraint *c1, Constraint *c2)
{
assert (c1);
assert (c2);
assert (c1->is_cube == c2->is_cube);
if (c2->num_lits < c1->num_lits)
return 0;
LitID *p, *e;
for (p = c1->lits, e = p + c1->num_lits; p < e; p++)
{
/* If the literal in 'c1' pointed to by 'p' does not occur in 'c2' then
subset property does not hold. */
if (!qpup_res_find_lit (c2->lits, c2->lits + c2->num_lits, *p))
return 0;
}
return 1;
}
static int
check_invariant_has_dependency (QDPLL *qdpll, Var *var,
LitID *start, LitID *end, Var *ignore_var,
const QDPLLQuantifierType type)
{
assert (start <= end);
assert (var->scope->type != type);
assert (ignore_var->scope->type == type);
QDPLLDepManGeneric *dm = qdpll->dm;
Var *vars = qdpll->pcnf.vars;
LitID *p, *e;
for (p = start, e = end; p < e; p++)
{
Var *v = LIT2VARPTR(vars, *p);
if (v != ignore_var && dm->depends(dm, var->id, v->id))
return 1;
}
return 0;
}
/* Check invariant suggested by AVG. Must ignore the implied literal and all
reducible literals of a given QPUP constraint. */
static int
check_invariant_qpup_is_subseteq (QDPLL *qdpll, Constraint *c1, Constraint *c2,
LitID ignore_lit, const QDPLLQuantifierType type)
{
assert (c1);
assert (c2);
assert (c1->is_cube == c2->is_cube);
LitID *p, *e;
for (p = c1->lits, e = p + c1->num_lits; p < e; p++)
{
/* If the literal in 'c1' pointed to by 'p' does not occur in 'c2' then
subset property does not hold. */
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
if (lit != ignore_lit &&
(var->scope->type == type ||
check_invariant_has_dependency (qdpll, var, c1->lits, e,
LIT2VARPTR(qdpll->pcnf.vars, ignore_lit), type)) &&
!qpup_res_find_lit (c2->lits, c2->lits + c2->num_lits, lit))
return 0;
}
return 1;
}
/* Add the learnt constraint 'qpup_constraint' to list of constraint, set
literal watchers. */
static void
qpup_import_learnt_constraint (QDPLL *qdpll, Constraint *qpup_constraint,
unsigned int asserting_level, const QDPLLQuantifierType type)
{
assert (qdpll->qpup_uip);
assert (qpup_constraint->num_lits > 0);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "\nImporting QPUP constraint (id=%d): ", qpup_constraint->id);
print_constraint (qdpll, qpup_constraint);
fprintf (stderr, "\n");
}
assert (!qpup_constraint->learnt);
qpup_constraint->learnt = 1;
QDPLLMemMan *mm = qdpll->mm;
LitID *p, *e;
for (p = qpup_constraint->lits,
e = p + qpup_constraint->num_lits;
p < e;
p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
if (qdpll->options.bump_vars_once)
increase_var_activity (qdpll, var, var->scope);
if (qdpll->options.no_spure_literals &&
!qdpll->options.no_pure_literals)
{
BLitsOcc blit = {lit, qpup_constraint};
/* Add all literals to occurrence stacks.
POSSIBLE OPTIMIZATION: could factor out code. */
if (!qpup_constraint->is_cube)
{
if (QDPLL_LIT_NEG (lit))
QDPLL_PUSH_STACK(mm, var->neg_occ_clauses, blit);
else
QDPLL_PUSH_STACK(mm, var->pos_occ_clauses, blit);
}
else
{
blit.constraint = BLIT_MARK_PTR(blit.constraint);
if (QDPLL_LIT_NEG (lit))
QDPLL_PUSH_STACK(mm, var->neg_occ_cubes, blit);
else
QDPLL_PUSH_STACK(mm, var->pos_occ_cubes, blit);
}
}
}
/* Prepend to list of constraints. */
if (!qpup_constraint->is_cube)
LINK_FIRST (qdpll->pcnf.learnt_clauses, qpup_constraint, link);
else
{
assert (qpup_constraint->is_cube);
LINK_FIRST (qdpll->pcnf.learnt_cubes, qpup_constraint, link);
}
set_learnt_constraint_lit_watchers (qdpll, qpup_constraint,
asserting_level, qdpll->qpup_uip, type);
}
static void
qpup_cleanup_aux_constraints (QDPLL *qdpll, Constraint *learnt_constraint,
const QDPLLQuantifierType type)
{
/* Free computed QPUP constraints. */
Var *v;
while (!QDPLL_EMPTY_STACK(qdpll->qpup_units))
{
v = QDPLL_POP_STACK(qdpll->qpup_units);
assert (v->qpup_constraint);
/* Invariant formulated by AVG: literals of QPUP constraints except the
implied literal and reducible ones occur in QPUP constraint of empty
constraint. */
assert (!learnt_constraint ||
check_invariant_qpup_is_subseteq (qdpll, v->qpup_constraint,
learnt_constraint,
type == QDPLL_QTYPE_EXISTS ?
(v->assignment == QDPLL_ASSIGNMENT_FALSE ? -v->id : v->id) :
(v->assignment == QDPLL_ASSIGNMENT_FALSE ? v->id : -v->id), type));
delete_constraint (qdpll, v->qpup_constraint);
v->qpup_constraint = 0;
}
}
static int
constraint_has_only_assumption_lits (QDPLL *qdpll, LitID *start, LitID *end)
{
assert (start <= end);
/* NEW: traverse literals from right to left. Assumptions are from leftmost
block, hence their literals appear at the left end in a
constraint. Non-assumptions appear at the right and the loop will terminate
early. */
LitID *p, *e;
for (p = end - 1, e = start; e <= p; p--)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
if (var->mode != QDPLL_VARMODE_ASSUMED)
return 0;
}
return 1;
}
/* Stack 'constraint_lits' stores the literals of the current empty clause /
initial cube. First, find a suitable UIP node and identify all variables
'var' for which 'QPUP(var)' has to be computed. For that purpose the
implication graph is traversed exactly once in reverse propagation
order. Finally, the QPUP constraints are computed by traversing relevant
parts of the graph into the other direction, i.e. towards the empty
clause/cube. */
static Constraint *
qpup_compute_learnt_constraint (QDPLL *qdpll, LitIDStack *empty_constraint_lits, const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
assert (!qdpll->options.trace || qdpll->res_cons_id);
assert (!qdpll->options.traditional_qcdcl ||
!qdpll->options.no_qpup_cdcl || !qdpll->options.no_qpup_sdcl);
assert (!(!qdpll->options.no_lazy_qpup && qdpll->options.trace));
QDPLL_ABORT_QDPLL(!qdpll->options.no_lazy_qpup && qdpll->options.trace,
"Must combine '--no-lazy-qpup' with tracing to generate resolution steps!");
Var *vars = qdpll->pcnf.vars;
/* Reset marks which were set during 'get_initial_reason'. */
LitID *p, *e;
for (p = empty_constraint_lits->start, e = empty_constraint_lits->top; p < e; p++)
{
LitID lit = *p;
assert (LEARN_VAR_MARKED(LIT2VARPTR(vars, lit)));
if (QDPLL_LIT_NEG (lit))
{
assert (LEARN_VAR_NEG_MARKED(LIT2VARPTR(vars, lit)));
LEARN_VAR_NEG_UNMARK(LIT2VARPTR(vars, lit));
}
else
{
assert (LEARN_VAR_POS_MARKED(LIT2VARPTR(vars, lit)));
LEARN_VAR_POS_UNMARK(LIT2VARPTR(vars, lit));
}
}
#ifndef NDEBUG
/* Expensive assertion! */
assert_qpup_data_cleared (qdpll);
#endif
assert (!qdpll->qpup_uip);
assert (qdpll->qpup_nodes->cnt == 0);
assert (QDPLL_EMPTY_STACK(qdpll->qpup_vars));
assert (QDPLL_EMPTY_STACK(qdpll->qpup_units));
assert (qdpll->qpup_var_at_max_dec_level == 0);
assert (qdpll->qpup_cnt_at_max_dec_level == 0);
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "QPUP: started.\n");
assert (QDPLL_EMPTY_STACK(qdpll->internal_cover_lits));
qpup_traverse_implication_graph (qdpll, empty_constraint_lits, type);
/* Reset incrementally maintained data. */
qdpll->qpup_var_at_max_dec_level = 0;
qdpll->qpup_cnt_at_max_dec_level = 0;
Constraint *qpup_learnt_constraint;
if (qdpll->options.no_lazy_qpup)
{
/* Compute learnt constraint using explicit resolution steps. */
qpup_learnt_constraint = qpup_do_forward_resolutions (qdpll, empty_constraint_lits, type);
qpup_cleanup_aux_constraints (qdpll, qpup_learnt_constraint, type);
}
else
{
/* Build learnt constraint from predicted literals WITHOUT any resolutions. */
qpup_collect_weak_predict_lits_aux (qdpll, empty_constraint_lits, type);
/* Exactly ONE application of constraint reduction needed! */
qpup_res_reduce (qdpll, &qdpll->qpup_weak_predict_lits, 0, type);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "\nPredicted constraint: ");
LitID *p, *e;
for (p = qdpll->qpup_weak_predict_lits.start, e = qdpll->qpup_weak_predict_lits.top; p < e; p++)
fprintf (stderr, "%d ", *p);
fprintf (stderr, "\n");
}
qpup_learnt_constraint =
create_constraint (qdpll, QDPLL_COUNT_STACK(qdpll->qpup_weak_predict_lits),
type == QDPLL_QTYPE_FORALL);
memcpy (qpup_learnt_constraint->lits, qdpll->qpup_weak_predict_lits.start,
QDPLL_COUNT_STACK(qdpll->qpup_weak_predict_lits) * sizeof (LitID));
}
#ifndef NDEBUG
assert (qdpll->options.long_dist_res ||
!qpup_is_tautology(qpup_learnt_constraint->lits,
qpup_learnt_constraint->lits + qpup_learnt_constraint->num_lits));
assert (!qpup_has_duplicate_lits(qpup_learnt_constraint->lits,
qpup_learnt_constraint->lits + qpup_learnt_constraint->num_lits));
assert_lits_sorted (qdpll, qpup_learnt_constraint->lits,
qpup_learnt_constraint->lits + qpup_learnt_constraint->num_lits);
#endif
/* Empty constraint derived iff no proper UIP found or if initial cube is already asserting. */
assert (qdpll->qpup_uip || qpup_learnt_constraint->num_lits == 0 ||
constraint_has_only_assumption_lits (qdpll, qpup_learnt_constraint->lits,
qpup_learnt_constraint->lits + qpup_learnt_constraint->num_lits));
assert (!qdpll->qpup_uip || (qpup_learnt_constraint->num_lits != 0 &&
!constraint_has_only_assumption_lits (qdpll, qpup_learnt_constraint->lits,
qpup_learnt_constraint->lits + qpup_learnt_constraint->num_lits)));
/* For solving under assumption: store the final learned constraint which
contains only the relevant assumption literals, if any. */
if (!qdpll->qpup_uip && qdpll->state.assumptions_given)
{
assert (constraint_has_only_assumption_lits (qdpll, qpup_learnt_constraint->lits,
qpup_learnt_constraint->lits + qpup_learnt_constraint->num_lits));
assert (!qdpll->assumption_lits_constraint);
QDPLL_ABORT_QDPLL(qdpll->assumption_lits_constraint, "must call 'qdpll_reset' before 'qdpll_sat'!");
qdpll->assumption_lits_constraint = qpup_learnt_constraint;
}
assert (!qdpll->assumption_lits_constraint || (!qdpll->qpup_uip && qdpll->state.assumptions_given));
assert (qdpll->assumption_lits_constraint || (qdpll->qpup_uip || !qdpll->state.assumptions_given));
QDPLL_ABORT_QDPLL (qdpll->qpup_nodes->cnt != 0, "Unexpected QPUP nodes remaining.");
/* NOTE: variables have been unmarked on-the-fly during resolutions already. */
QDPLL_RESET_STACK(qdpll->qpup_vars);
QDPLL_RESET_STACK(qdpll->qpup_units);
QDPLL_RESET_STACK(qdpll->qpup_kept_lits);
QDPLL_RESET_STACK(qdpll->qpup_weak_predict_lits);
qdpll->res_cons_id = 0;
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "QPUP: completed.\n");
assert (QDPLL_EMPTY_STACK (qdpll->wreason_a));
assert (QDPLL_EMPTY_STACK (qdpll->wreason_e));
return qpup_learnt_constraint;
}
/* END: QPUP code. */
static unsigned int
generate_and_add_reason (QDPLL * qdpll, const QDPLLQuantifierType type)
{
assert (type == QDPLL_QTYPE_FORALL || type == QDPLL_QTYPE_EXISTS);
QDPLLMemMan *mm = qdpll->mm;
Var *vars = qdpll->pcnf.vars;
LitIDStack *lit_stack = &(qdpll->add_stack);
LitIDStack *lit_stack_tmp = &(qdpll->add_stack_tmp);
LitID *p;
assert (!qdpll->options.trace || !qdpll->res_cons_id);
assert (qdpll->cnt_hi_dl_type_lits == 0);
assert (qdpll->hi_dl_type_var == 0);
assert (qdpll->hi_type_dl == 0);
assert (QDPLL_EMPTY_STACK (qdpll->smaller_type_lits));
assert (QDPLL_EMPTY_STACK (qdpll->wreason_a));
assert (QDPLL_EMPTY_STACK (qdpll->wreason_e));
assert (QDPLL_COUNT_STACK (*lit_stack) == 0);
assert (QDPLL_COUNT_STACK (*lit_stack_tmp) == 0);
#ifndef NDEBUG
#if QDPLL_ASSERT_LEARN_VARS_UNMARKED
assert_learn_vars_unmarked (qdpll);
#endif
#endif
get_initial_reason (qdpll, &lit_stack, &lit_stack_tmp, type);
assert (qdpll->state.decision_level == 0 || type == QDPLL_QTYPE_FORALL ||
QDPLL_COUNT_STACK (*lit_stack) != 0);
#ifndef NDEBUG
if (QDPLL_COUNT_STACK (*lit_stack) > 0 &&
!constraint_has_only_assumption_lits (qdpll, (lit_stack)->start, (lit_stack)->top))
assert_stop_crit_data (qdpll, lit_stack, type);
#endif
if (qdpll->options.verbosity > 1)
{
if (type == QDPLL_QTYPE_EXISTS)
fprintf (stderr, "CDCL: conflicting clause (%u): ",
qdpll->result_constraint->id);
else
{
fprintf (stderr, "SDCL: initial cube");
if (qdpll->options.trace)
fprintf (stderr, " (%u)", qdpll->cur_constraint_id);
fprintf (stderr, ": ");
}
print_lits (qdpll, lit_stack->start, QDPLL_COUNT_STACK (*lit_stack),
0);
}
/* Now lit-stack contains literals of either
conflicting clause or cover-set/satisfied cube. */
/* START: compute learnt constraint by QPUP. */
Constraint *qpup_constraint = 0;
if (!qdpll->options.traditional_qcdcl || (type == QDPLL_QTYPE_EXISTS && !qdpll->options.no_qpup_cdcl) ||
(type == QDPLL_QTYPE_FORALL && !qdpll->options.no_qpup_sdcl))
{
qpup_constraint = qpup_compute_learnt_constraint (qdpll, lit_stack, type);
assert (qpup_constraint);
/* Start: reset data for classical learning. */
/* Unmark variables marked during computation of initial reason. */
#ifndef NDEBUG
LitID *p;
for (p = lit_stack->start; p < lit_stack->top; p++)
assert(!LEARN_VAR_MARKED (LIT2VARPTR (vars, *p)));
#endif
QDPLL_RESET_STACK (*lit_stack);
assert (QDPLL_COUNT_STACK (*lit_stack_tmp) == 0);
reset_stop_crit_data (qdpll);
/* END: reset data for classical learning. */
if (qdpll->qpup_uip)
{
#if COMPUTE_STATS
if (type == QDPLL_QTYPE_FORALL)
{
qdpll->stats.total_learnt_cubes++;
qdpll->stats.total_learnt_cubes_size += qpup_constraint->num_lits;
}
else
{
qdpll->stats.total_learnt_clauses++;
qdpll->stats.total_learnt_clauses_size += qpup_constraint->num_lits;
}
#endif
unsigned int asserting_level = qpup_compute_asserting_level (qdpll, qdpll->qpup_uip,
qpup_constraint, type);
qpup_import_learnt_constraint (qdpll, qpup_constraint, asserting_level, type);
assert (qpup_constraint->num_lits > 0);
/* Set assignment to be forced by learnt constraint. */
assert (!qdpll->state.forced_assignment.var);
qdpll->state.forced_assignment.var = qdpll->qpup_uip;
assert (QDPLL_VAR_ASSIGNED(qdpll->qpup_uip));
assert (!qdpll->state.forced_assignment.assignment);
qdpll->state.forced_assignment.assignment = -qdpll->qpup_uip->assignment;
assert (!qdpll->state.forced_assignment.mode);
qdpll->state.forced_assignment.mode = QDPLL_VARMODE_UNIT;
assert (!qdpll->state.forced_assignment.antecedent);
qdpll->state.forced_assignment.antecedent = qpup_constraint;
/* Reset QPUP data. */
qdpll->qpup_uip = 0;
decay_var_activity (qdpll);
return 1 + asserting_level;
}
else
{
assert (qpup_constraint->num_lits == 0 ||
constraint_has_only_assumption_lits (qdpll, qpup_constraint->lits,
qpup_constraint->lits + qpup_constraint->num_lits));
if (!qdpll->state.assumptions_given)
{
assert (!qdpll->assumption_lits_constraint);
delete_constraint (qdpll, qpup_constraint);
}
else
{
assert (constraint_has_only_assumption_lits (qdpll, qpup_constraint->lits,
qpup_constraint->lits + qpup_constraint->num_lits));
assert (qdpll->assumption_lits_constraint == qpup_constraint);
}
/* Reset QPUP data. */
qdpll->qpup_uip = 0;
return QDPLL_INVALID_DECISION_LEVEL;
}
}
/* END: compute learnt constraint by QPUP. */
qdpll->res_cons_id = 0;
#if COMPUTE_TIMES
const double start = time_stamp ();
#endif
int success = generate_reason (qdpll,
qdpll->result_constraint == NULL ?
qdpll->cur_constraint_id : qdpll->
result_constraint->id,
&lit_stack, &lit_stack_tmp, type);
#if COMPUTE_TIMES
qdpll->time_stats.total_greason_time += (time_stamp () - start);
#endif
assert (QDPLL_COUNT_STACK (*lit_stack_tmp) == 0);
unsigned int is_taut = 0;
/* Unmark variables by traversing lit-stack, i.e. final working
reason. */
Var *var;
LitID lit;
for (p = lit_stack->start; p < lit_stack->top; p++)
{
lit = *p;
var = LIT2VARPTR (vars, lit);
#if COMPUTE_STATS
if (LEARN_VAR_POS_MARKED (var) && LEARN_VAR_NEG_MARKED (var))
is_taut = 1;
#endif
if (qdpll->options.bump_vars_once)
increase_var_activity (qdpll, var, var->scope);
assert (!success || qdpll->options.long_dist_res ||
!(LEARN_VAR_POS_MARKED (var) && LEARN_VAR_NEG_MARKED (var)));
LEARN_VAR_UNMARK (var);
}
assert (!is_taut || qdpll->options.long_dist_res);
#ifndef NDEBUG
#if QDPLL_ASSERT_LEARN_VARS_UNMARKED
assert_learn_vars_unmarked (qdpll);
#endif
#endif
if (success)
{
#if COMPUTE_STATS
if (type == QDPLL_QTYPE_FORALL)
{
qdpll->stats.total_learnt_cubes++;
if (is_taut)
qdpll->stats.total_learnt_taut_cubes++;
qdpll->stats.total_learnt_cubes_size +=
QDPLL_COUNT_STACK (*lit_stack);
}
else
{
qdpll->stats.total_learnt_clauses++;
if (is_taut)
qdpll->stats.total_learnt_taut_clauses++;
qdpll->stats.total_learnt_clauses_size +=
QDPLL_COUNT_STACK (*lit_stack);
}
#endif
/* Import reason. */
qdpll->cur_constraint_id -= 1; /* we already printed this one while
resolving */
Constraint *learnt_constraint = 0;
learnt_constraint =
create_constraint (qdpll, QDPLL_COUNT_STACK (*lit_stack),
type == QDPLL_QTYPE_FORALL);
#if COMPUTE_STATS
learnt_constraint->is_taut = is_taut;
#endif
assert (type == QDPLL_QTYPE_FORALL || !learnt_constraint->is_cube);
assert (type == QDPLL_QTYPE_EXISTS || learnt_constraint->is_cube);
assert (!learnt_constraint->learnt);
assert (QDPLL_COUNT_STACK (*lit_stack) != 0);
learnt_constraint->learnt = 1;
/* Computation of asserting level is interleaved with literal copying. */
unsigned int asserting_level = 0, max_type_level =
get_highest_type_lit_dec_level (qdpll, lit_stack->start,
lit_stack->top, type);
assert (count_type_lit_at_dec_level
(qdpll, lit_stack->start, lit_stack->top, max_type_level,
type) == 1);
Var *type_var =
get_type_var_at_dec_level (qdpll, lit_stack->start, lit_stack->top,
max_type_level, type);
assert (type == type_var->scope->type);
const VarID type_var_id = type_var->id;
unsigned int get_assert_level, get_assert_highest = 0;
QDPLLDepManGeneric *dm = qdpll->dm;
unsigned int offset = 0;
LitID *stack_p, *stack_e;
p = learnt_constraint->lits;
for (stack_p = lit_stack->start, stack_e = lit_stack->top;
stack_p < stack_e; stack_p++)
{
assert (p < learnt_constraint->lits + learnt_constraint->num_lits);
lit = *stack_p;
assert (lit);
/* Copy lit from lit-stack to newly allocated constraint. */
*p++ = lit;
/* Compute asserting level. */
var = LIT2VARPTR (vars, lit);
get_assert_level = var->decision_level;
if (type == var->scope->type
|| dm->depends (dm, var->id, type_var_id))
{
if (get_assert_level > get_assert_highest)
{
assert (get_assert_level != QDPLL_INVALID_DECISION_LEVEL);
asserting_level = get_assert_highest;
get_assert_highest = get_assert_level;
}
else if (get_assert_level > asserting_level)
{
assert (get_assert_level != QDPLL_INVALID_DECISION_LEVEL);
asserting_level = get_assert_level;
}
}
if (qdpll->options.no_spure_literals &&
!qdpll->options.no_pure_literals)
{
BLitsOcc blit = { lit, learnt_constraint };
/* Add all literals to occurrence stacks.
POSSIBLE OPTIMIZATION: could factor out code. */
if (type == QDPLL_QTYPE_EXISTS)
{
if (QDPLL_LIT_NEG (lit))
QDPLL_PUSH_STACK (mm, var->neg_occ_clauses, blit);
else
QDPLL_PUSH_STACK (mm, var->pos_occ_clauses, blit);
}
else
{
blit.constraint = BLIT_MARK_PTR (blit.constraint);
if (QDPLL_LIT_NEG (lit))
QDPLL_PUSH_STACK (mm, var->neg_occ_cubes, blit);
else
QDPLL_PUSH_STACK (mm, var->pos_occ_cubes, blit);
}
}
}
if (type == QDPLL_QTYPE_EXISTS)
{
assert (!learnt_constraint->is_cube);
LINK_FIRST (qdpll->pcnf.learnt_clauses, learnt_constraint, link);
}
else
{
assert (learnt_constraint->is_cube);
LINK_FIRST (qdpll->pcnf.learnt_cubes, learnt_constraint, link);
}
assert (QDPLL_VAR_ASSIGNED (type_var));
/* Set forced assignment (by asserting reason) to be enqueued afterwards. */
assert (type == type_var->scope->type);
assert (!qdpll->state.forced_assignment.antecedent);
assert (!qdpll->state.forced_assignment.var);
assert (!qdpll->state.forced_assignment.assignment);
assert (!qdpll->state.forced_assignment.mode);
qdpll->state.forced_assignment.var = type_var;
qdpll->state.forced_assignment.assignment = -type_var->assignment;
qdpll->state.forced_assignment.mode = QDPLL_VARMODE_UNIT;
assert (asserting_level ==
get_reason_asserting_level (qdpll,
lit_stack->start, lit_stack->top,
type_var, type));
qdpll->state.forced_assignment.antecedent = learnt_constraint;
set_learnt_constraint_lit_watchers (qdpll, learnt_constraint,
asserting_level,
qdpll->hi_dl_type_var, type);
if (qdpll->options.verbosity > 1)
{
fprintf (stderr, "%cDCL: Added learnt %s (%u): ",
type == QDPLL_QTYPE_EXISTS ? 'C' : 'S',
type == QDPLL_QTYPE_EXISTS ? "clause" : "cube",
learnt_constraint->id);
print_constraint (qdpll, learnt_constraint);
}
/* As in Minisat, decay variables by increasing 'delta'. */
decay_var_activity (qdpll);
QDPLL_RESET_STACK (*lit_stack);
assert (QDPLL_COUNT_STACK (*lit_stack_tmp) == 0);
reset_stop_crit_data (qdpll);
/* Fix: we must keep assignments at asserting level, hence add 1. */
return 1 + asserting_level;
}
else
{
assert (QDPLL_EMPTY_STACK(*lit_stack) ||
(qdpll->state.assumptions_given &&
constraint_has_only_assumption_lits (qdpll, (*lit_stack).start, (*lit_stack).top)));
if (qdpll->state.assumptions_given)
{
/* Store assumption-lits-constraint, if any. */
assert (!qdpll->assumption_lits_constraint);
QDPLL_ABORT_QDPLL(qdpll->assumption_lits_constraint, "must call 'qdpll_reset' before 'qdpll_sat'!");
qdpll->assumption_lits_constraint =
create_constraint (qdpll, QDPLL_COUNT_STACK(*lit_stack),
type == QDPLL_QTYPE_FORALL);
memcpy (qdpll->assumption_lits_constraint->lits, (*lit_stack).start,
QDPLL_COUNT_STACK(*lit_stack) * sizeof (LitID));
}
QDPLL_RESET_STACK (*lit_stack);
assert (QDPLL_COUNT_STACK (*lit_stack_tmp) == 0);
reset_stop_crit_data (qdpll);
return QDPLL_INVALID_DECISION_LEVEL;
}
}
/* ---------- END: CDCL ---------- */
static unsigned int
analyze_conflict_no_cdcl (QDPLL * qdpll)
{
return chron_backtracking (qdpll, QDPLL_QTYPE_EXISTS);
}
/* Perform condflict-driven clause learning. */
static unsigned int
analyze_conflict_cdcl (QDPLL * qdpll)
{
return generate_and_add_reason (qdpll, QDPLL_QTYPE_EXISTS);
}
static unsigned int
analyze_conflict (QDPLL * qdpll)
{
#if COMPUTE_TIMES
const double start = time_stamp ();
#endif
unsigned int result;
if (qdpll->options.no_cdcl)
result = analyze_conflict_no_cdcl (qdpll);
else
result = analyze_conflict_cdcl (qdpll);
#if COMPUTE_TIMES
qdpll->time_stats.total_conf_learn_time += (time_stamp () - start);
#endif
return result;
}
static unsigned int
analyze_solution_no_sdcl (QDPLL * qdpll)
{
return chron_backtracking (qdpll, QDPLL_QTYPE_FORALL);
}
static unsigned int
analyze_solution_sdcl (QDPLL * qdpll)
{
return generate_and_add_reason (qdpll, QDPLL_QTYPE_FORALL);
}
static unsigned int
analyze_solution (QDPLL * qdpll)
{
#if COMPUTE_TIMES
const double start = time_stamp ();
#endif
unsigned int result;
if (qdpll->options.no_sdcl)
result = analyze_solution_no_sdcl (qdpll);
else
result = analyze_solution_sdcl (qdpll);
#if COMPUTE_TIMES
qdpll->time_stats.total_sol_learn_time += (time_stamp () - start);
#endif
return result;
}
/* -------------------- END: LEARNING -------------------- */
static void
qbcp_qbce_backtrack_clear_stack_of_stacks (QDPLL *qdpll, ConstraintPtrStackStack *stack,
const int called_on_blocked_clauses,
const unsigned int decision_level)
{
assert (decision_level != QDPLL_INVALID_DECISION_LEVEL);
assert (!QDPLL_EMPTY_STACK (*stack));
assert (!qdpll->state.qbcp_qbce_currently_preprocessing);
assert (!called_on_blocked_clauses ||
QDPLL_COUNT_STACK (*stack) == decision_level + 2);
ConstraintPtrStack cstack = QDPLL_POP_STACK (*stack);
#if COMPUTE_STATS
if (called_on_blocked_clauses)
qdpll->stats.qbcp_qbce_current_blocked_clauses -= QDPLL_COUNT_STACK (cstack);
#endif
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "during backtrack: starting to clear %d clauses %s at level %d\n",
(unsigned int) QDPLL_COUNT_STACK(cstack), called_on_blocked_clauses ?
"blocked" : "marked", decision_level);
Constraint **cp, **ce;
for (cp = cstack.start, ce = cstack.top; cp < ce; cp++)
{
Constraint *c = *cp;
if (called_on_blocked_clauses)
{
assert (c->qbcp_qbce_blocking_lit);
assert (c->qbcp_qbce_blocked);
c->qbcp_qbce_blocking_lit = 0;
c->qbcp_qbce_blocked = 0;
}
else
{
assert (c->qbcp_qbce_mark);
c->qbcp_qbce_mark = 0;
}
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " during backtrack: resetting %s clause pending at level %d: ",
called_on_blocked_clauses ? "blocked" : "marked", decision_level);
print_constraint (qdpll, c);
}
}
/* Do not delete 'cstack', but only reset to allow for later
reuse. This avoids malloc/free operations during decision making and
backtracking. */
assert (stack->top >= stack->start);
QDPLL_RESET_STACK (*(stack->top));
}
static void
backtrack_undo_assignment (QDPLL * qdpll, Var * var, const int notify_active)
{
assert (QDPLL_VAR_ASSIGNED (var));
assert (var->assignment != QDPLL_ASSIGNMENT_UNDEF);
assert (var->mode != QDPLL_VARMODE_UNDEF);
assert (var->decision_level > 0);
assert (var->decision_level != QDPLL_INVALID_DECISION_LEVEL);
assert (var->trail_pos != QDPLL_INVALID_TRAIL_POS);
assert (var->trail_pos <
(unsigned int) (qdpll->assigned_vars_top - qdpll->assigned_vars));
assert (qdpll->assigned_vars[var->trail_pos] == var->id);
QDPLLDepManGeneric *dm = qdpll->dm;
if (var->mode == QDPLL_VARMODE_LBRANCH
|| var->mode == QDPLL_VARMODE_RBRANCH)
{
/* Must remove decision variables from dec-stack. */
assert (!QDPLL_EMPTY_STACK (qdpll->dec_vars));
assert (*(qdpll->dec_vars.top - 1) == var->id);
QDPLL_POP_STACK (qdpll->dec_vars);
if (qdpll->options.empty_formula_watching)
{
assert (var->decision_level ==
QDPLL_COUNT_STACK (qdpll->empty_formula_watchers_per_dec_level));
assert (!QDPLL_EMPTY_STACK (qdpll->empty_formula_watchers_per_dec_level));
qdpll->empty_formula_watcher =
QDPLL_POP_STACK (qdpll->empty_formula_watchers_per_dec_level);
}
if (!qdpll->options.no_qbce_dynamic)
{
/* Remove stack of clauses blocked at decision level of 'var' and reset
blocked-flag of clauses. */
qbcp_qbce_backtrack_clear_stack_of_stacks
(qdpll, &qdpll->qbcp_qbce_blocked_clauses, 1, var->decision_level);
/* Remove stack of clauses marked at decision level of 'var' and reset
marked-flag of clauses. */
qbcp_qbce_backtrack_clear_stack_of_stacks
(qdpll, &qdpll->qbcp_qbce_marked_clauses, 0, var->decision_level);
}
}
var->mode = QDPLL_VARMODE_UNDEF;
var->assignment = QDPLL_ASSIGNMENT_UNDEF;
var->decision_level = QDPLL_INVALID_DECISION_LEVEL;
var->trail_pos = QDPLL_INVALID_TRAIL_POS;
if (var->antecedent)
{
assert (!var->antecedent->qbcp_qbce_blocked);
assert (var->antecedent->is_reason);
var->antecedent->is_reason = 0;
var->antecedent = 0;
}
if (qdpll->options.qbce_inprocessing || !qdpll->options.no_qbce_dynamic)
{
}
/* BUG FIX: must put candidate variables back on pqueue. */
if (dm->is_candidate (dm, var->id)
&& var->priority_pos == QDPLL_INVALID_PQUEUE_POS)
var_pqueue_insert (qdpll, var->id, var->priority);
if (QDPLL_VAR_MARKED_PROPAGATED (var))
{
QDPLL_VAR_UNMARK_PROPAGATED (var);
if (notify_active)
{
dm->notify_active (dm, var->id);
}
}
}
static void
qbcp_qbce_reset_offset_in_working_queue (QDPLL *qdpll, QBCENonBlockedWitness pair)
{
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "WATCHING: reset queue offset of maybe-blocked pair\n");
}
/* Reset offset-in-working-queue of 'pair' on notify list. */
Constraint *c = pair.blit_occ.constraint;
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "WATCHING: non-bl-lit %d, wo-value %d and clause: ", pair.non_blocking_lit, pair.offset.witness_in_witness_list);
print_constraint (qdpll, c);
}
assert (pair.offset.witness_in_witness_list <
QDPLL_COUNT_STACK (c->qbcp_qbce_witness_clauses));
QBCENonBlockedWitness witness_pair =
c->qbcp_qbce_witness_clauses.start[pair.offset.witness_in_witness_list];
assert (witness_pair.non_blocking_lit == pair.non_blocking_lit);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "WATCHING: witness clause with mo-offset %d: ", witness_pair.offset.maybe_blocked_clause_in_notify_list);
print_constraint (qdpll, witness_pair.blit_occ.constraint);
}
unsigned int offset_of_pair_in_notify_list =
witness_pair.offset.maybe_blocked_clause_in_notify_list;
assert (offset_of_pair_in_notify_list != QDPLL_INVALID_WATCHER_POS);
Constraint *w = witness_pair.blit_occ.constraint;
assert (offset_of_pair_in_notify_list <
QDPLL_COUNT_STACK (w->qbcp_qbce_notify_maybe_blocked_clauses));
assert (w->qbcp_qbce_notify_maybe_blocked_clauses.start
[offset_of_pair_in_notify_list].offset_in_working_queue != QDPLL_INVALID_WATCHER_POS);
w->qbcp_qbce_notify_maybe_blocked_clauses.start
[offset_of_pair_in_notify_list].offset_in_working_queue = QDPLL_INVALID_WATCHER_POS;
}
/* Undo assignments until 'backtrack_level'. */
static void
backtrack (QDPLL * qdpll, unsigned int backtrack_level)
{
/* We never backtrack to level 0, this case is handled
separately. Note that this is due to the semantics of the variable
'backtrack_level': backtracking to level 0 is indicated by value 1,
i.e. all assignments up to and including level 1 are deleted. */
assert (backtrack_level > 0);
assert (backtrack_level != QDPLL_INVALID_DECISION_LEVEL);
assert (QDPLL_ASSIGNMENT_TRUE == -QDPLL_ASSIGNMENT_FALSE);
assert (QDPLL_ASSIGNMENT_FALSE == -QDPLL_ASSIGNMENT_TRUE);
assert (qdpll->old_bcp_ptr >= qdpll->assigned_vars);
assert (qdpll->old_bcp_ptr <= qdpll->bcp_ptr);
qdpll->state.num_backtracks++;
if (qdpll->options.empty_formula_watching)
{
/* Reset marks of variables appearing in the clause currently being watched,
if any (no clause is watched if we indeed detected the empty
formula). The watched clause will be updated during backtracking with
respect to the decision level we backtrack to. */
update_empty_formula_watcher_toggle_var_marks (qdpll, qdpll->empty_formula_watcher, 0);
}
#if COMPUTE_STATS
#if COMPUTE_STATS_BTLEVELS_SIZE
unsigned int target_level = backtrack_level - 1;
unsigned int i;
if (target_level <= 0)
qdpll->stats.btlevels[0]++;
for (i = 1; i < COMPUTE_STATS_BTLEVELS_SIZE - 1; i++)
{
if (target_level <= (1U << (i - 1)))
qdpll->stats.btlevels[i]++;
}
/* Last entry sums up all backtrack cases. */
qdpll->stats.btlevels[COMPUTE_STATS_BTLEVELS_SIZE - 1]++;
assert (qdpll->state.num_backtracks ==
qdpll->stats.btlevels[COMPUTE_STATS_BTLEVELS_SIZE - 1]);
/* Linear stats partition: */
if (target_level <= 0)
qdpll->stats.btlevels_lin[0]++;
for (i = 1; i < COMPUTE_STATS_BTLEVELS_SIZE - 1; i++)
{
if (target_level <= (5 * i))
qdpll->stats.btlevels_lin[i]++;
}
/* Last entry sums up all backtrack cases. */
qdpll->stats.btlevels_lin[COMPUTE_STATS_BTLEVELS_SIZE - 1]++;
assert (qdpll->state.num_backtracks ==
qdpll->stats.btlevels_lin[COMPUTE_STATS_BTLEVELS_SIZE - 1]);
#endif
#endif
VarID *p, *e, *old_bcp_ptr;
Var *vars = qdpll->pcnf.vars;
old_bcp_ptr = qdpll->old_bcp_ptr;
for (p = qdpll->assigned_vars_top - 1, e = qdpll->assigned_vars; p >= e;
p--)
{
Var *assigned_var = VARID2VARPTR (vars, *p);
assert (QDPLL_VAR_ASSIGNED (assigned_var));
assert (assigned_var->assignment != QDPLL_ASSIGNMENT_UNDEF);
assert (assigned_var->decision_level != QDPLL_INVALID_DECISION_LEVEL);
assert (assigned_var->mode != QDPLL_VARMODE_UNDEF);
assert (assigned_var->mode != QDPLL_VARMODE_LBRANCH
|| !assigned_var->antecedent);
assert (assigned_var->mode != QDPLL_VARMODE_RBRANCH
|| !assigned_var->antecedent);
unsigned int var_decision_level = assigned_var->decision_level;
if (var_decision_level >= backtrack_level)
backtrack_undo_assignment (qdpll, assigned_var, p < old_bcp_ptr);
else
{
assert (var_decision_level < backtrack_level);
break;
}
}
qdpll->state.decision_level = backtrack_level - 1;
assert (qdpll->state.decision_level != QDPLL_INVALID_DECISION_LEVEL);
qdpll->old_bcp_ptr = qdpll->bcp_ptr = qdpll->assigned_vars_top = p + 1;
if (qdpll->options.empty_formula_watching)
{
assert (qdpll->empty_formula_watcher);
/* Set marks of variables appearing in the clause currently being
watched. The watched clause was updated during backtracking. */
update_empty_formula_watcher_toggle_var_marks (qdpll, qdpll->empty_formula_watcher, 1);
assert (!qdpll->empty_formula_watcher->constraint->qbcp_qbce_blocked);
assert (!is_clause_satisfied (qdpll, qdpll->empty_formula_watcher->constraint));
assert (QDPLL_COUNT_STACK
(qdpll->empty_formula_watchers_per_dec_level) ==
qdpll->state.decision_level);
}
/* Must reset stack of clauses pending to be checked by QBCE. For each
decision level, we apply QBCE until saturation under the current
assignment, unless there is a conflict or empty formula detected
earlier. */
/* Reset offsets on working queue. */
while (!QDPLL_EMPTY_STACK (qdpll->qbcp_qbce_maybe_blocked_clauses))
{
QBCENonBlockedWitness pair =
QDPLL_POP_STACK (qdpll->qbcp_qbce_maybe_blocked_clauses);
if (pair.offset.witness_in_witness_list != QDPLL_INVALID_WATCHER_POS)
qbcp_qbce_reset_offset_in_working_queue (qdpll, pair);
}
}
static Var *
select_decision_variable (QDPLL * qdpll)
{
QDPLLDepManGeneric *dm = qdpll->dm;
Var *decision_var = 0, *candidate_var, *vars = qdpll->pcnf.vars;
VarID candidate, decision_var_id;
/* Get candidates from dependency manager. */
while ((candidate = dm->get_candidate (dm)))
{
/* Add candidates to priority queue. */
assert (candidate > 0);
candidate_var = VARID2VARPTR (vars, candidate);
assert (dm->is_candidate (dm, candidate));
if (!QDPLL_VAR_ASSIGNED (candidate_var) &&
candidate_var->priority_pos == QDPLL_INVALID_PQUEUE_POS)
var_pqueue_insert (qdpll, candidate_var->id, candidate_var->priority);
}
#ifndef NDEBUG
#if QDPLL_ASSERT_CANDIDATES_ON_PQUEUE
assert_candidates_on_pqueue (qdpll);
#endif
#endif
do
{
decision_var_id = var_pqueue_remove_min (qdpll);
assert (decision_var_id > 0);
QDPLL_ABORT_QDPLL (!decision_var_id,
"Fatal Error: did not find decision variable!");
decision_var = VARID2VARPTR (vars, decision_var_id);
/* Candidates on queue possibly already assigned (unit or pure literals). */
assert (decision_var->priority_pos == QDPLL_INVALID_PQUEUE_POS);
}
while (QDPLL_VAR_ASSIGNED (decision_var)
|| !dm->is_candidate (dm, decision_var_id));
assert (decision_var->mode == QDPLL_VARMODE_UNDEF);
assert (!QDPLL_VAR_ASSIGNED (decision_var));
assert (decision_var->decision_level == QDPLL_INVALID_DECISION_LEVEL);
return decision_var;
}
static unsigned int
compute_sdcl_score_from_clause (QDPLL * qdpll, Var * var, Constraint * clause)
{
assert (!clause->is_cube);
Var *vars = qdpll->pcnf.vars;
LitID *p, *e;
for (p = clause->lits, e = p + clause->num_lits; p < e; p++)
{
LitID lit = *p;
Var *v = LIT2VARPTR (vars, lit);
if (v != var)
{
/* Clause is already satisfied by another literal. */
if ((QDPLL_LIT_NEG (lit) && QDPLL_VAR_ASSIGNED_FALSE (v)) ||
(QDPLL_LIT_POS (lit) && QDPLL_VAR_ASSIGNED_TRUE (v)))
return 1;
}
}
return 0;
}
static unsigned int
compute_sdcl_score (QDPLL * qdpll, Var * var, LitID lit, BLitsOccStack * occs)
{
unsigned int sum = 0;
BLitsOcc *bp, *be;
for (bp = occs->start, be = occs->top; bp < be; bp++)
{
if (bp->constraint->qbcp_qbce_blocked)
continue;
assert (!BLIT_MARKED_PTR (bp->constraint));
sum += compute_sdcl_score_from_clause (qdpll, var, bp->constraint);
}
return sum;
}
static QDPLLAssignment
sdcl_friendly_dec_heuristic (QDPLL * qdpll, Var * var)
{
unsigned int pos_score, neg_score;
neg_score =
compute_sdcl_score (qdpll, var, -var->id, &(var->neg_occ_clauses));
pos_score =
compute_sdcl_score (qdpll, var, var->id, &(var->pos_occ_clauses));
if (neg_score < pos_score)
return QDPLL_ASSIGNMENT_TRUE;
else
return QDPLL_ASSIGNMENT_FALSE;
}
static unsigned int
compute_qtype_score (QDPLL * qdpll, Var * var, LitID lit,
BLitsOccStack * occs)
{
unsigned int sum = 0;
BLitsOcc *bp, *be;
for (bp = occs->start, be = occs->top; bp < be; bp++)
{
assert (!BLIT_MARKED_PTR (bp->constraint));
assert (!bp->constraint->is_cube);
if (bp->constraint->qbcp_qbce_blocked)
continue;
if (!is_clause_satisfied (qdpll, bp->constraint))
{
assert (!is_clause_empty (qdpll, bp->constraint));
sum++;
}
}
return sum;
}
/* Select decision assignment by quantifier type: for univ./exists
vars, try to falsify/satisfy clauses. */
static QDPLLAssignment
qtype_dec_heuristic (QDPLL * qdpll, Var * var)
{
unsigned int pos_score, neg_score;
neg_score =
compute_qtype_score (qdpll, var, -var->id, &(var->neg_occ_clauses));
pos_score =
compute_qtype_score (qdpll, var, var->id, &(var->pos_occ_clauses));
/* Assuming only orig. clauses kept in occ-lists, count how many
occs are unsat for each phase. Then choose assignment wrt. that
number. */
if (neg_score < pos_score)
return var->scope->type == QDPLL_QTYPE_EXISTS ?
QDPLL_ASSIGNMENT_TRUE : QDPLL_ASSIGNMENT_FALSE;
else
return var->scope->type == QDPLL_QTYPE_EXISTS ?
QDPLL_ASSIGNMENT_FALSE : QDPLL_ASSIGNMENT_TRUE;
}
static QDPLLAssignment
falsify_dec_heuristic (QDPLL *qdpll, Var * var)
{
unsigned int pos_score, neg_score;
neg_score =
compute_qtype_score (qdpll, var, -var->id, &(var->neg_occ_clauses));
pos_score =
compute_qtype_score (qdpll, var, var->id, &(var->pos_occ_clauses));
/* Try to falsify as many unsatisfied original clauses as possible. */
if (neg_score < pos_score)
return QDPLL_ASSIGNMENT_FALSE;
else
return QDPLL_ASSIGNMENT_TRUE;
}
static QDPLLAssignment
satisfy_dec_heuristic (QDPLL *qdpll, Var * var)
{
/* Try to satisfy as many unsatisfied original clauses as possible. */
return falsify_dec_heuristic (qdpll, var) == QDPLL_ASSIGNMENT_FALSE ?
QDPLL_ASSIGNMENT_TRUE : QDPLL_ASSIGNMENT_FALSE;
}
static QDPLLAssignment
select_decision_assignment (QDPLL * qdpll, Var * decision_var)
{
if (qdpll->options.dh == QDPLL_DH_SIMPLE)
{
assert (qdpll->options.no_exists_cache);
assert (qdpll->options.no_univ_cache);
return QDPLL_ASSIGNMENT_FALSE;
}
else if (qdpll->options.dh == QDPLL_DH_RANDOM)
{
/* NOTE: ALWAYS make a random decision, do NOT consider cached
assignments. This is mainly for testing. */
return (rand () % 2) ? QDPLL_ASSIGNMENT_TRUE : QDPLL_ASSIGNMENT_FALSE;
}
else
{
if ((QDPLL_VAR_FORALL (decision_var) && !qdpll->options.no_univ_cache)
|| (QDPLL_VAR_EXISTS (decision_var)
&& !qdpll->options.no_exists_cache))
{
assert (QDPLL_ASSIGNMENT_FALSE == -QDPLL_ASSIGNMENT_TRUE);
/* Return cached assignment if any. */
QDPLLAssignment a;
if ((a = decision_var->cached_assignment))
return a;
}
if (qdpll->options.dh == QDPLL_DH_SDCL)
return sdcl_friendly_dec_heuristic (qdpll, decision_var);
else if (qdpll->options.dh == QDPLL_DH_QTYPE)
return qtype_dec_heuristic (qdpll, decision_var);
else if (qdpll->options.dh == QDPLL_DH_FALSIFY)
return falsify_dec_heuristic (qdpll, decision_var);
else
{
assert (qdpll->options.dh == QDPLL_DH_SATISFY);
return satisfy_dec_heuristic (qdpll, decision_var);
}
}
}
/* Before literal watchers are updated: check if the blocking literal
in 'blit' disables the constraint in 'blit'. If so, then need not
update watchers -> return 0. Otherwise return the stripped pointer
to the constraint. */
static Constraint *
check_disabling_blocking_lit (QDPLL * qdpll, BLitsOcc blit_occ,
const int called_on_pure_lits)
{
#if COMPUTE_STATS
if (called_on_pure_lits)
qdpll->stats.blits_pure_tested++;
else
qdpll->stats.blits_tested++;
#endif
assert (blit_occ.blit);
assert (blit_occ.constraint);
/* Blocking literal must occur in constraint. If the blocking literal is a
literal of an internal variable then we must properly rename them if the
variable is enlarged dynamically. */
assert (constraint_has_lit (BLIT_STRIP_PTR(blit_occ.constraint), blit_occ.blit));
Constraint *constraint = blit_occ.constraint;
LitID lit = blit_occ.blit;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
const int is_cube = BLIT_MARKED_PTR (constraint);
if (is_cube)
{
if ((QDPLL_LIT_NEG (lit) && QDPLL_VAR_ASSIGNED_TRUE (var)) ||
(QDPLL_LIT_POS (lit) && QDPLL_VAR_ASSIGNED_FALSE (var)))
{
#if COMPUTE_STATS
if (called_on_pure_lits)
qdpll->stats.blits_pure_disabling++;
else
qdpll->stats.blits_disabling++;
#endif
return 0;
}
}
else
{
if ((QDPLL_LIT_NEG (lit) && QDPLL_VAR_ASSIGNED_FALSE (var)) ||
(QDPLL_LIT_POS (lit) && QDPLL_VAR_ASSIGNED_TRUE (var)))
{
#if COMPUTE_STATS
if (called_on_pure_lits)
qdpll->stats.blits_pure_disabling++;
else
qdpll->stats.blits_disabling++;
#endif
return 0;
}
}
/* Blocking literal does not disable constraint, so return stripped pointer. */
return BLIT_STRIP_PTR (constraint);
}
/* Propagate the effects of setting 'var' to 'true' or 'false'. */
static QDPLLSolverState
propagate_variable_assigned (QDPLL * qdpll, Var * var,
LitIDStack * clause_notify_list,
BLitsOccStack * lit_notify_list)
{
assert (var->id);
assert (QDPLL_VAR_ASSIGNED (var));
assert (var->mode != QDPLL_VARMODE_UNDEF);
assert (!QDPLL_VAR_MARKED_PROPAGATED (var));
assert (!QDPLL_VAR_ASSIGNED_TRUE (var)
|| clause_notify_list == &(var->pos_notify_clause_watchers));
assert (!QDPLL_VAR_ASSIGNED_TRUE (var)
|| lit_notify_list == &(var->pos_notify_lit_watchers));
assert (!QDPLL_VAR_ASSIGNED_FALSE (var)
|| clause_notify_list == &(var->neg_notify_clause_watchers));
assert (!QDPLL_VAR_ASSIGNED_FALSE (var)
|| lit_notify_list == &(var->neg_notify_lit_watchers));
#if COMPUTE_STATS
qdpll->stats.total_notify_litw_list_size +=
QDPLL_SIZE_STACK (*lit_notify_list);
qdpll->stats.total_notify_litw_list_cnt +=
QDPLL_COUNT_STACK (*lit_notify_list);
qdpll->stats.total_notify_litw_list_adds++;
qdpll->stats.total_notify_clausew_list_size +=
QDPLL_SIZE_STACK (*clause_notify_list);
qdpll->stats.total_notify_clausew_list_cnt +=
QDPLL_COUNT_STACK (*clause_notify_list);
qdpll->stats.total_notify_clausew_list_adds++;
/* Sum up both occ-lists. */
qdpll->stats.total_occ_list_cnt += QDPLL_COUNT_STACK (var->neg_occ_clauses);
qdpll->stats.total_occ_list_cnt += QDPLL_COUNT_STACK (var->pos_occ_clauses);
qdpll->stats.total_occ_list_adds++;
#endif
QDPLLDepManGeneric *dm = qdpll->dm;
QDPLL_VAR_MARK_PROPAGATED (var);
if (!qdpll->options.no_pure_literals)
notify_clause_watching_variables (qdpll, clause_notify_list);
/* Check clauses for units and conflicts. */
BLitsOcc *p, *e;
Constraint *c, *sentinel;
for (p = lit_notify_list->start, e = lit_notify_list->top; p < e; p++)
{
if (!(c = check_disabling_blocking_lit (qdpll, *p, 0)))
continue;
/* A clause 'c' which appears on this list has one of its two watched
literals falsified. This clause may also be blocked in the dynamic
variant of QBCE. Then we simply ignore it. */
if (c->qbcp_qbce_blocked)
continue;
assert (c && !BLIT_MARKED_PTR (c));
if (!(sentinel = update_literal_watchers (qdpll, var, p)))
{
/* Conflict detected either by empty clause or attempted
to enqueue complementary assignments. */
if (!qdpll->options.no_spure_literals)
{
if (has_constraint_spurious_pure_lit (qdpll, c))
{
#if COMPUTE_STATS
if (c->is_cube)
qdpll->stats.total_splits_ignored_satisfied_cubes++;
else
qdpll->stats.total_splits_ignored_empty_clauses++;
#endif
continue;
}
}
assert (c->is_cube || is_clause_empty (qdpll, c));
assert (c->is_cube || !is_clause_satisfied (qdpll, c));
assert (!c->is_cube || !is_cube_empty (qdpll, c));
assert (!c->is_cube || is_cube_satisfied (qdpll, c));
assert (!qdpll->result_constraint);
if (c->learnt)
{
if (!qdpll->options.no_res_mtf)
learnt_constraint_mtf (qdpll, c);
#if COMPUTE_STATS
if (c->is_cube)
{
qdpll->stats.total_sat_lcubes++;
if (c->is_taut)
qdpll->stats.total_sat_taut_lcubes++;
}
else
{
qdpll->stats.total_empty_lclauses++;
if (c->is_taut)
qdpll->stats.total_empty_taut_lclauses++;
}
#endif
}
qdpll->result_constraint = c;
if (!c->is_cube)
return QDPLL_SOLVER_STATE_UNSAT;
else
{
#if COMPUTE_STATS
qdpll->stats.total_sat_cubes++;
#endif
return QDPLL_SOLVER_STATE_SAT;
}
}
else if (sentinel != c)
{ /* Sentinel for entry deletion: old last entry has overwritten current one. */
/* The clause's position list has been modified already. */
e--;
p--;
}
/* Othwerwise, entry has not been deleted or last entry was deleted -> exit anyway. */
}
/* At this point, state can only be undefined. */
return QDPLL_SOLVER_STATE_UNDEF;
}
/* Count assignment at top level.
NOTE: this could also be maintained incrementally.*/
static unsigned int
sizeof_top_level (QDPLL * qdpll)
{
unsigned int result = 0;
Var *vars = qdpll->pcnf.vars;
VarID *p, *e;
for (p = qdpll->assigned_vars, e = qdpll->assigned_vars_top; p < e; p++)
{
Var *var = VARID2VARPTR (vars, *p);
assert (var->decision_level != QDPLL_INVALID_DECISION_LEVEL);
if (var->decision_level == 0)
result++;
else
break;
}
return result;
}
/* Check if 'lit' could be reduced by forall-reduction under the
current partial assignment. Ignore assigned literals. */
static int
is_lit_reducible_in_clause (QDPLL * qdpll, LitID lit, Constraint * c,
VarID ignorevar)
{
assert (!c->is_cube);
assert (!c->learnt);
Var *vars = qdpll->pcnf.vars;
VarID varid = LIT2VARID (lit);
Var *var = VARID2VARPTR (vars, varid);
assert (!QDPLL_VAR_ASSIGNED (var));
if (var->scope->type == QDPLL_QTYPE_EXISTS)
return 0;
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
assert (*p);
Var *pvar = LIT2VARPTR (vars, *p);
if (pvar->id == ignorevar)
continue;
/* Any assigned literal must be false. Satisfied clauses should have
been handled outside this function. */
assert (!QDPLL_VAR_ASSIGNED (pvar) ||
(QDPLL_VAR_ASSIGNED_FALSE (pvar) && QDPLL_LIT_POS (*p)) ||
(QDPLL_VAR_ASSIGNED_TRUE (pvar) && QDPLL_LIT_NEG (*p)));
if (QDPLL_VAR_ASSIGNED (pvar))
continue;
if (qdpll->dm->depends (qdpll->dm, varid, pvar->id))
return 0;
}
return 1;
}
/* For assertion checking only. */
static int
assumptions_given (QDPLL *qdpll)
{
VarID *p, *e;
for (p = qdpll->assigned_vars, e = qdpll->assigned_vars_top; p < e; p++)
{
Var *var = VARID2VARPTR(qdpll->pcnf.vars, *p);
if (var->mode == QDPLL_VARMODE_ASSUMED)
return 1;
}
return 0;
}
/* --------------------- START: QBCP-QBCE --------------------- */
/* Returns pointer to item found in list, or zero otherwise. */
static QBCENonBlockedWitness *
qbcp_qbce_find_pair_in_list (QDPLL *qdpll, QBCENonBlockedWitnessStack *list,
QBCENonBlockedWitness pair,
const int find_clause_only,
const int find_lit_only)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_find_entry_calls++;
#endif
assert (!find_clause_only || !find_lit_only);
assert (pair.non_blocking_lit || pair.blit_occ.constraint);
QBCENonBlockedWitness *p, *e;
for (p = list->start, e = list->top; p < e; p++)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_find_entries_seen++;
#endif
QBCENonBlockedWitness w = *p;
if ((find_clause_only || w.non_blocking_lit == pair.non_blocking_lit) &&
(find_lit_only || w.blit_occ.constraint == pair.blit_occ.constraint))
return p;
}
return 0;
}
/* Returns pointer to item found in list, or zero otherwise. */
static QBCENonBlockedWitness *
qbcp_qbce_find_clause_in_list (QDPLL *qdpll, QBCENonBlockedWitnessStack *list,
Constraint *c)
{
/* Only entry 'c' matters in object 'pair', other members filled by dummy values. */
QBCENonBlockedWitness pair = {0, {0, c}, {QDPLL_INVALID_WATCHER_POS},
QDPLL_INVALID_WATCHER_POS};
return qbcp_qbce_find_pair_in_list (qdpll, list, pair, 1, 0);
}
/* Returns pointer to item found in list, or zero otherwise. */
static QBCENonBlockedWitness *
qbcp_qbce_find_lit_in_list (QDPLL *qdpll, QBCENonBlockedWitnessStack *list,
LitID lit)
{
/* Only entry 'lit' matters in object 'pair', other members filled by dummy values. */
QBCENonBlockedWitness pair = {lit, {0, 0}, {QDPLL_INVALID_WATCHER_POS},
QDPLL_INVALID_WATCHER_POS};
return qbcp_qbce_find_pair_in_list (qdpll, list, pair, 0, 1);
}
/* Delete entry at 'entry_p' from 'list' by overwriting it with last entry,
assuming that entry actually appears in 'list'. */
static void
qbcp_qbce_delete_list_entry (QDPLL *qdpll, QBCENonBlockedWitnessStack *list,
QBCENonBlockedWitness *entry_p,
const int is_witness_entry)
{
assert (entry_p);
assert (entry_p >= list->start);
assert (entry_p < list->top);
QBCENonBlockedWitness deleted = *entry_p;
QBCENonBlockedWitness last = QDPLL_POP_STACK (*list);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "WATCHING: deleting list entry, new list size %ld\n", QDPLL_COUNT_STACK (*list));
fprintf (stderr, "WATCHING: deleting %s entry -- last item:\n", is_witness_entry ? "witness" : "maybe-blocked-clause");
fprintf (stderr, "WATCHING: clause: ");
print_constraint (qdpll, last.blit_occ.constraint);
fprintf (stderr, "WATCHING: non-bl-lit: %d\n", last.non_blocking_lit);
fprintf (stderr, "WATCHING: %s-offset: %d\n", is_witness_entry ? "mo" : "wo", is_witness_entry ? last.offset.maybe_blocked_clause_in_notify_list : last.offset.witness_in_witness_list);
fprintf (stderr, "WATCHING: deleting %s entry -- deleted item:\n", is_witness_entry ? "witness" : "maybe-blocked-clause");
fprintf (stderr, "WATCHING: clause: ");
print_constraint (qdpll, entry_p->blit_occ.constraint);
fprintf (stderr, "WATCHING: non-bl-lit: %d\n", entry_p->non_blocking_lit);
fprintf (stderr, "WATCHING: %s-offset: %d\n", is_witness_entry ? "mo" : "wo", is_witness_entry ? entry_p->offset.maybe_blocked_clause_in_notify_list : entry_p->offset.witness_in_witness_list);
}
*entry_p = last;
unsigned int new_offset = entry_p - list->start;
if (is_witness_entry)
{
/* Update positions only if ordering of elements was changed by deletion. */
if (last.blit_occ.constraint != deleted.blit_occ.constraint ||
last.non_blocking_lit != deleted.non_blocking_lit)
{
QBCENonBlockedWitness *maybe_blocked_pair_p =
entry_p->blit_occ.constraint->qbcp_qbce_notify_maybe_blocked_clauses.start +
last.offset.maybe_blocked_clause_in_notify_list;
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "WATCHING: updating wo-value from %d to %d of clause (due to non-empty list after del.): ", maybe_blocked_pair_p->offset.witness_in_witness_list, new_offset);
print_constraint (qdpll, maybe_blocked_pair_p->blit_occ.constraint);
}
maybe_blocked_pair_p->offset.witness_in_witness_list = new_offset;
if (maybe_blocked_pair_p->offset_in_working_queue != QDPLL_INVALID_WATCHER_POS)
{
assert (maybe_blocked_pair_p->offset_in_working_queue <
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_maybe_blocked_clauses));
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "WATCHING: update wo-values of enqueued item with non-bl-lit %d, wo-value %d, and clause: ", qdpll->qbcp_qbce_maybe_blocked_clauses.start[maybe_blocked_pair_p->offset_in_working_queue].non_blocking_lit, qdpll->qbcp_qbce_maybe_blocked_clauses.start[maybe_blocked_pair_p->offset_in_working_queue].offset.witness_in_witness_list);
print_constraint (qdpll, qdpll->qbcp_qbce_maybe_blocked_clauses.start[maybe_blocked_pair_p->offset_in_working_queue].blit_occ.constraint);
}
/* Update witness offset for pair in working queue. */
qdpll->qbcp_qbce_maybe_blocked_clauses.start
[maybe_blocked_pair_p->offset_in_working_queue].
offset.witness_in_witness_list = new_offset;
}
}
}
else
{
/* Update positions only if ordering of elements was changed by deletion. */
if (last.blit_occ.constraint != deleted.blit_occ.constraint ||
last.non_blocking_lit != deleted.non_blocking_lit)
{
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "WATCHING: NOTE: updating mo-value from %d to %d of clause: ", entry_p->blit_occ.constraint->qbcp_qbce_witness_clauses.start
[last.offset.witness_in_witness_list].
offset.maybe_blocked_clause_in_notify_list, new_offset);
print_constraint (qdpll, entry_p->blit_occ.constraint->qbcp_qbce_witness_clauses.start
[last.offset.witness_in_witness_list].blit_occ.constraint);
}
entry_p->blit_occ.constraint->qbcp_qbce_witness_clauses.start
[last.offset.witness_in_witness_list].
offset.maybe_blocked_clause_in_notify_list = new_offset;
}
}
}
/* Returns position of 'witness' in list 'watched_occs', or zero otherwise. */
static Constraint **
qbcp_qbce_find_watched_occ (QDPLL *qdpll, ConstraintPtrStack *watched_occs,
Constraint *witness)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_watched_occ_find_entry_calls++;
#endif
Constraint **p, **e;
for (p = watched_occs->start, e = watched_occs->top; p < e; p++)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_watched_occ_find_entries_seen++;
#endif
if (*p == witness)
return p;
}
return 0;
}
/* Store 'witness' in lists of watched pos/neg occurrences. This is necessary
to trigger QBCE from clauses which are satisfied by new assignments. */
static void
qbcp_qbce_store_watched_occ (QDPLL *qdpll, Constraint *witness)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_watched_occ_add_or_remove_calls++;
#endif
/* If 'witness' has currently no clauses to be notified, then the first
clause will be inserted in 'qbcp_qbce_store_witness' later. In this case
'witness' has not been used as a witness before and hence it must be
inserted into the lists of watched occurrences of variables. Otherwise,
'witness' already appears in the watched occurrences and no work is done
here. */
if (QDPLL_EMPTY_STACK (witness->qbcp_qbce_notify_maybe_blocked_clauses))
{
LitID * const start = witness->lits;
LitID *p, *e;
for (p = start, e = p + witness->num_lits; p < e; p++)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_watched_occ_add_or_remove_lits_seen++;
#endif
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
if (QDPLL_LIT_NEG (lit))
{
assert (!qbcp_qbce_find_watched_occ
(qdpll, &var->qbcp_qbce_watched_neg_occ_clauses, witness));
assert (QDPLL_COUNT_STACK (var->qbcp_qbce_watched_neg_occ_clauses) ==
QDPLL_COUNT_STACK (var->qbcp_qbce_offset_of_neg_lit_in_watched_occ));
QDPLL_PUSH_STACK (qdpll->mm, witness->qbcp_qbce_offset_of_witness_in_watched_occs,
QDPLL_COUNT_STACK (var->qbcp_qbce_watched_neg_occ_clauses));
QDPLL_PUSH_STACK
(qdpll->mm, var->qbcp_qbce_watched_neg_occ_clauses, witness);
assert (start <= p);
QDPLL_PUSH_STACK
(qdpll->mm, var->qbcp_qbce_offset_of_neg_lit_in_watched_occ, (unsigned int)(p - start));
}
else
{
assert (QDPLL_LIT_POS (lit));
assert (!qbcp_qbce_find_watched_occ
(qdpll, &var->qbcp_qbce_watched_pos_occ_clauses, witness));
assert (QDPLL_COUNT_STACK (var->qbcp_qbce_watched_pos_occ_clauses) ==
QDPLL_COUNT_STACK (var->qbcp_qbce_offset_of_pos_lit_in_watched_occ));
QDPLL_PUSH_STACK (qdpll->mm, witness->qbcp_qbce_offset_of_witness_in_watched_occs,
QDPLL_COUNT_STACK (var->qbcp_qbce_watched_pos_occ_clauses));
QDPLL_PUSH_STACK
(qdpll->mm, var->qbcp_qbce_watched_pos_occ_clauses, witness);
assert (start <= p);
QDPLL_PUSH_STACK
(qdpll->mm, var->qbcp_qbce_offset_of_pos_lit_in_watched_occ, (unsigned int)(p - start));
}
}
}
}
static void
qbcp_qbce_delete_watched_occ_entry (ConstraintPtrStack *occ_list,
VarIDStack *offset_list,
unsigned int entry_offset)
{
Constraint ** clause_entry_p = occ_list->start + entry_offset;
assert (clause_entry_p >= occ_list->start);
assert (clause_entry_p < occ_list->top);
Constraint *del_clause = *clause_entry_p;
unsigned int * offset_entry_p = offset_list->start + entry_offset;
assert (offset_entry_p >= offset_list->start);
assert (offset_entry_p < offset_list->top);
unsigned int del_offset = *offset_entry_p;
/* Get last elements in lists to overwrite deleted ones. */
assert (QDPLL_COUNT_STACK (*occ_list) ==
QDPLL_COUNT_STACK (*offset_list));
Constraint * clause_last = QDPLL_POP_STACK (*occ_list);
unsigned int offset_last = QDPLL_POP_STACK (*offset_list);
/* Delete entries. */
*clause_entry_p = clause_last;
*offset_entry_p = offset_last;
/* If necessary, update offset entry in witness clause. */
if (del_clause != clause_last)
{
assert (clause_last->
qbcp_qbce_offset_of_witness_in_watched_occs.start
[offset_last] == QDPLL_COUNT_STACK (*occ_list));
clause_last->
qbcp_qbce_offset_of_witness_in_watched_occs.start
[offset_last] = entry_offset;
}
}
/* Remove 'witness' from lists of watched pos/neg occurrences. See also
'qbcp_qbce_store_watched_occ'. */
static void
qbcp_qbce_remove_watched_occ (QDPLL *qdpll, Constraint *old_witness)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_watched_occ_add_or_remove_calls++;
#endif
/* If 'old_witness' is no longer used as a witness for any clause being
non-blocked, then remove 'old_witness' from the lists of watched occurrences
of variables. */
if (QDPLL_EMPTY_STACK (old_witness->qbcp_qbce_notify_maybe_blocked_clauses))
{
LitID * const start = old_witness->lits;
LitID *p, *e;
for (p = start, e = p + old_witness->num_lits; p < e; p++)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_watched_occ_add_or_remove_lits_seen++;
#endif
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
assert ((unsigned int)(p - start) < QDPLL_COUNT_STACK
(old_witness->qbcp_qbce_offset_of_witness_in_watched_occs));
unsigned int offset = old_witness->
qbcp_qbce_offset_of_witness_in_watched_occs.start[p - start];
if (QDPLL_LIT_NEG (lit))
{
assert (qbcp_qbce_find_watched_occ
(qdpll, &var->qbcp_qbce_watched_neg_occ_clauses, old_witness) ==
var->qbcp_qbce_watched_neg_occ_clauses.start + offset);
qbcp_qbce_delete_watched_occ_entry
(&var->qbcp_qbce_watched_neg_occ_clauses,
&var->qbcp_qbce_offset_of_neg_lit_in_watched_occ, offset);
}
else
{
assert (QDPLL_LIT_POS (lit));
assert (qbcp_qbce_find_watched_occ
(qdpll, &var->qbcp_qbce_watched_pos_occ_clauses, old_witness) ==
var->qbcp_qbce_watched_pos_occ_clauses.start + offset);
qbcp_qbce_delete_watched_occ_entry
(&var->qbcp_qbce_watched_pos_occ_clauses,
&var->qbcp_qbce_offset_of_pos_lit_in_watched_occ, offset);
}
}
QDPLL_RESET_STACK (old_witness->qbcp_qbce_offset_of_witness_in_watched_occs);
}
}
/* Store the pair in the notify-list of the clause 'witness'. If
'witness' becomes blocked, then the clauses on its notify-list may be
blocked. */
static void
qbcp_qbce_store_witness (QDPLL *qdpll, QBCENonBlockedWitness pair,
Constraint *witness)
{
Constraint *non_blocked_clause = pair.blit_occ.constraint;
LitID non_blocking_lit = pair.non_blocking_lit;
assert (QDPLL_VAR_EXISTS (LIT2VARPTR (qdpll->pcnf.vars, non_blocking_lit)));
assert (constraint_has_lit (non_blocked_clause, non_blocking_lit));
assert (constraint_has_lit (witness, -non_blocking_lit));
assert (!non_blocked_clause->is_cube);
assert (!non_blocked_clause->qbcp_qbce_blocked);
assert (!is_clause_satisfied (qdpll, non_blocked_clause));
assert (!witness->is_cube);
assert (!witness->qbcp_qbce_blocked);
assert (!is_clause_satisfied (qdpll, witness));
/* Remove old witness of 'non_blocking_lit' from list of witnesses of
'non_blocked_clause'. Every non-blocked clause has exactly one witness for
every non-blocking literal. */
QBCENonBlockedWitness *old_witness_pair_p =
pair.offset.witness_in_witness_list != QDPLL_INVALID_WATCHER_POS ?
non_blocked_clause->qbcp_qbce_witness_clauses.start +
pair.offset.witness_in_witness_list : 0;
assert (old_witness_pair_p == qbcp_qbce_find_lit_in_list
(qdpll, &(non_blocked_clause->qbcp_qbce_witness_clauses), non_blocking_lit));
if (old_witness_pair_p)
{
/* We will always find an old witness, except during initialization. */
QBCENonBlockedWitness old_witness_pair = *old_witness_pair_p;
assert (old_witness_pair.non_blocking_lit);
assert (old_witness_pair.blit_occ.constraint);
if (witness == old_witness_pair.blit_occ.constraint)
return;
assert (old_witness_pair.non_blocking_lit == non_blocking_lit);
/* Delete entry of old witness from witness list of 'non_blocked_clause'. */
qbcp_qbce_delete_list_entry
(qdpll, &(non_blocked_clause->qbcp_qbce_witness_clauses), old_witness_pair_p, 1);
assert (!qbcp_qbce_find_lit_in_list
(qdpll, &(non_blocked_clause->qbcp_qbce_witness_clauses), non_blocking_lit));
/* Delete entry of 'non_blocked_clause' from notify-list of old witness. */
QBCENonBlockedWitness *non_blocked_clause_entry_p =
old_witness_pair.offset.maybe_blocked_clause_in_notify_list !=
QDPLL_INVALID_WATCHER_POS ?
old_witness_pair.blit_occ.constraint->qbcp_qbce_notify_maybe_blocked_clauses.start +
old_witness_pair.offset.maybe_blocked_clause_in_notify_list : 0;
assert (non_blocked_clause_entry_p == qbcp_qbce_find_clause_in_list
(qdpll, &(old_witness_pair.blit_occ.constraint->qbcp_qbce_notify_maybe_blocked_clauses),
non_blocked_clause));
assert (non_blocked_clause_entry_p);
QBCENonBlockedWitness non_blocked_clause_entry = *non_blocked_clause_entry_p;
assert (non_blocked_clause_entry.non_blocking_lit);
assert (non_blocked_clause_entry.blit_occ.constraint);
assert (non_blocked_clause_entry.non_blocking_lit == non_blocking_lit);
assert (non_blocked_clause_entry.blit_occ.constraint == non_blocked_clause);
qbcp_qbce_delete_list_entry
(qdpll, &(old_witness_pair.blit_occ.constraint->qbcp_qbce_notify_maybe_blocked_clauses),
non_blocked_clause_entry_p, 0);
assert (!qbcp_qbce_find_clause_in_list
(qdpll, &(old_witness_pair.blit_occ.constraint->qbcp_qbce_notify_maybe_blocked_clauses),
non_blocked_clause));
/* Remove 'old_witness_pair.clause' from lists of watched pos/neg occurrences
IF AND ONLY IF it is no longer used as a witness. */
qbcp_qbce_remove_watched_occ (qdpll, old_witness_pair.blit_occ.constraint);
}
/* Store 'witness' in list of watched pos/neg occurrences. This is necessary
to trigger QBCE from clauses which are satisfied by new assignments. */
qbcp_qbce_store_watched_occ (qdpll, witness);
/* Store pair of witness and non-blocking literal in witness list of clause
'non_blocked_clause', remove old entries first. */
assert (witness->num_lits > 0);
assert (witness->lits[0]);
QBCENonBlockedWitness witness_pair = {non_blocking_lit,
{witness->lits[0], witness},
{QDPLL_INVALID_WATCHER_POS},
QDPLL_INVALID_WATCHER_POS};
/* Store offset of maybe-blocked clause in list
'witness->qbcp_qbce_notify_maybe_blocked_clauses' of clauses to
be notified, where maybe-blocked clause is added to below in
terms of 'pair'. */
unsigned int offset_of_maybe_blocked_clause_in_notify_list =
QDPLL_COUNT_STACK (witness->qbcp_qbce_notify_maybe_blocked_clauses);
witness_pair.offset.maybe_blocked_clause_in_notify_list = offset_of_maybe_blocked_clause_in_notify_list;
/* Store 'non_blocking_clause' in notify list of 'witness'. */
assert (!qbcp_qbce_find_pair_in_list
(qdpll, &(witness->qbcp_qbce_notify_maybe_blocked_clauses), pair, 0, 0));
assert (!qbcp_qbce_find_clause_in_list
(qdpll, &(witness->qbcp_qbce_notify_maybe_blocked_clauses), non_blocked_clause));
/* Store offset of witness clause in list
'non_blocked_clause->qbcp_qbce_witness_clauses' of witness clauses, where
witness clause is added to below in terms of 'witness_pair'. */
unsigned int offset_of_witness_in_witness_list =
QDPLL_COUNT_STACK (non_blocked_clause->qbcp_qbce_witness_clauses);
pair.offset.witness_in_witness_list = offset_of_witness_in_witness_list;
QDPLL_PUSH_STACK
(qdpll->mm, witness->qbcp_qbce_notify_maybe_blocked_clauses, pair);
/* Store 'witness' in witness list of 'non_blocking_clause'. */
assert (!qbcp_qbce_find_pair_in_list
(qdpll, &(non_blocked_clause->qbcp_qbce_witness_clauses), witness_pair, 0, 0));
assert (!qbcp_qbce_find_lit_in_list
(qdpll, &(non_blocked_clause->qbcp_qbce_witness_clauses), non_blocking_lit));
QDPLL_PUSH_STACK
(qdpll->mm, non_blocked_clause->qbcp_qbce_witness_clauses, witness_pair);
assert (QDPLL_COUNT_STACK (non_blocked_clause->qbcp_qbce_witness_clauses) <=
non_blocked_clause->num_lits);
assert (witness_pair.offset.maybe_blocked_clause_in_notify_list < QDPLL_COUNT_STACK (witness_pair.blit_occ.constraint->qbcp_qbce_notify_maybe_blocked_clauses));
assert (witness_pair.blit_occ.constraint->qbcp_qbce_notify_maybe_blocked_clauses.start[witness_pair.offset.maybe_blocked_clause_in_notify_list].blit_occ.constraint == non_blocked_clause);
assert (pair.offset.witness_in_witness_list < QDPLL_COUNT_STACK (pair.blit_occ.constraint->qbcp_qbce_witness_clauses));
assert (pair.blit_occ.constraint->qbcp_qbce_witness_clauses.start[pair.offset.witness_in_witness_list].blit_occ.constraint == witness);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "WATCHING: stored pairs for non-blocking lit %d and non-blocked clause ", non_blocking_lit);
print_constraint (qdpll, non_blocked_clause);
fprintf (stderr, "WATCHING: witness clause ");
print_constraint (qdpll, witness);
fprintf (stderr, "WATCHING: witness pair.mo = %d\n", witness_pair.offset.maybe_blocked_clause_in_notify_list);
fprintf (stderr, "WATCHING: maybe-blocked pair.wo = %d\n", pair.offset.witness_in_witness_list);
}
}
/* Return zero if the clause 'c' is blocked with the blocking literal 'lit' in
'c'. Otherwise, return a pointer to a clause which is a witness that 'c' is
NOT blocked on the literal 'lit'. That is, resolving that clause and 'c' on
the pivot 'lit' does NOT result in a tautology over a variable from a block
smaller than the block of 'lit'. */
static Constraint *
qbcp_qbce_find_non_blocking_literal_witness (QDPLL *qdpll, LitID lit, Constraint *c)
{
Constraint *witness = 0;
assert (constraint_has_lit (c, lit));
assert (!c->is_cube);
assert (!c->qbcp_qbce_blocked);
assert (!is_clause_satisfied (qdpll, c));
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
assert (!QDPLL_VAR_ASSIGNED (var));
/* Only existential literals can be blocking literals. */
assert (QDPLL_SCOPE_EXISTS (var->scope));
const Nesting nesting = var->scope->nesting;
BLitsOccStack *occs = QDPLL_LIT_NEG(lit) ? &var->pos_occ_clauses : &var->neg_occ_clauses;
/* Traverse clauses containing '-lit' and check if resolving 'c' with any of
these clauses would result in a tautology over a variable from a block
smaller than or equal to the block of 'lit'. */
BLitsOcc *bop, *boe;
for (bop = occs->start, boe = occs->top; !witness && bop < boe; bop++)
{
assert (!BLIT_MARKED_PTR(bop->constraint));
assert (!bop->constraint->is_cube);
assert (constraint_has_lit (bop->constraint, -lit));
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_clauses_seen++;
qdpll->stats.qbcp_qbce_witness_is_clause_sat_cache_accesses++;
#endif
/* Check if potential witness is satisfied by cached literal. The cached
literals are stored on the occurrence lists and are updated during
literal and pure watcher updates. */
Constraint *o = check_disabling_blocking_lit (qdpll, *bop, 0);
if (!o)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_witness_is_clause_sat_cache_hits++;
#endif
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " skipping already satisfied potential witness of literal %d: ", lit);
print_constraint (qdpll, bop->constraint);
}
continue;
}
else
{
if (o->qbcp_qbce_blocked)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_witness_is_clause_sat_found_blocked++;
#endif
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " skipping already blocked potential witness of literal %d: ", lit);
print_constraint (qdpll, o);
}
continue;
}
LitID satisfying_lit;
if ((satisfying_lit = is_constraint_empty_watcher (qdpll, o)))
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_witness_is_clause_sat_found_sat++;
#endif
update_blocking_literal (qdpll, qdpll->pcnf.vars, bop,
o, satisfying_lit,
LIT2VARPTR (qdpll->pcnf.vars, satisfying_lit),
o->is_cube);
assert (bop->blit == satisfying_lit);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " skipping already satisfied potential witness of literal %d: ", lit);
print_constraint (qdpll, o);
}
continue;
}
}
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " checking potential non-blocking witness of literal %d: ", lit);
print_constraint (qdpll, o);
}
LitID *p, *e;
for (p = o->lits, e = p + o->num_lits; p < e; p++)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_literals_seen++;
#endif
LitID olit = *p;
Var *ovar = LIT2VARPTR(qdpll->pcnf.vars, olit);
/* Ignore assigned variables. These assignment can never satisfy
the clause, because satisfied clauses are ignored. */
assert (!QDPLL_VAR_ASSIGNED (ovar) ||
(QDPLL_LIT_NEG (olit) && QDPLL_VAR_ASSIGNED_TRUE (ovar)) ||
(QDPLL_LIT_POS (olit) && QDPLL_VAR_ASSIGNED_FALSE (ovar)));
if (QDPLL_VAR_ASSIGNED (ovar))
continue;
if (ovar->scope->nesting > nesting)
{
witness = o;
break;
}
/* Check if resolving 'c' and 'o' would result in a tautology over a
variable from a block smaller than or equal to the block of
'lit'. */
if (ovar != var &&
((QDPLL_LIT_NEG(olit) && QDPLL_VAR_POS_MARKED (ovar)) ||
(QDPLL_LIT_POS(olit) && QDPLL_VAR_NEG_MARKED (ovar))))
break;
}
if (p == e)
witness = o;
/* Move witness to second position of list so that it is found faster
next time (may occur also when checking other clauses). We cannot
move it to the first position because the first clause on the list is
watched for pure literal detection. */
if (qdpll->options.qbcp_qbce_watcher_list_mtf &&
witness && QDPLL_SIZE_STACK (*occs) >= 2 && bop != occs->start)
{
BLitsOcc tmp = occs->start[1];
occs->start[1] = *bop;
*bop = tmp;
}
}
return witness;
}
/* If 'var' is assigned, then potentially new clauses may be blocked. This way
of pushing potentially blocked clauses is done only if we do not have
watched data structures. */
static void
qbcp_qbce_push_maybe_blocked_clauses_by_assignment (QDPLL *qdpll, Var *assigned_var)
{
assert (qdpll->options.qbce_inprocessing || !qdpll->options.no_qbce_dynamic);
assert (!qdpll->options.qbce_inprocessing || qdpll->options.no_qbce_dynamic);
/* When using QBCE as inprocessing, then this function must be called at the
top-level only. */
assert (!qdpll->options.qbce_inprocessing || qdpll->state.decision_level == 0);
assert (QDPLL_VAR_ASSIGNED (assigned_var));
assert (!qdpll->options.qbce_inprocessing || assigned_var->decision_level == 0);
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "pushing clauses based on assigned var %d to be checked in QBCE\n",
assigned_var->id);
/* Check all clauses which are witnesses and satisfied by the current
assignment. Push all clauses having their witnesses satisfied to be
checked again for QBCE. */
ConstraintPtrStack *occs = QDPLL_VAR_ASSIGNED_TRUE (assigned_var) ?
&(assigned_var->qbcp_qbce_watched_pos_occ_clauses) :
&(assigned_var->qbcp_qbce_watched_neg_occ_clauses);
Constraint **p, **e;
for (p = occs->start, e = occs->top; p < e; p++)
{
Constraint *c = *p;
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "var %d has %s watched occ: ", assigned_var->id,
c->qbcp_qbce_mark ? "marked" : "unmarked");
print_constraint (qdpll, c);
fprintf (stderr, "...which has notify-list length of %d\n",
(unsigned int) QDPLL_COUNT_STACK (c->qbcp_qbce_notify_maybe_blocked_clauses));
}
/* We may see an occurrence multiple times if it is satsified by several
literals. Must avoid pushing maybe-blocked clauses multiple times. */
if (c->qbcp_qbce_mark)
continue;
c->qbcp_qbce_mark = 1;
/* Collect clauses marked at each decision level, which will be unmarked
during backtracking. */
assert (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_marked_clauses) ==
qdpll->state.decision_level + 1);
QDPLL_PUSH_STACK
(qdpll->mm, qdpll->qbcp_qbce_marked_clauses.start[qdpll->state.decision_level], c);
/* Clause 'c' is now satisfied. Push all clauses for which 'c' is a
witness. */
QBCENonBlockedWitness *qp, *qe;
for (qp = c->qbcp_qbce_notify_maybe_blocked_clauses.start,
qe = c->qbcp_qbce_notify_maybe_blocked_clauses.top; qp < qe; qp++)
{
QBCENonBlockedWitness maybe_blocked_pair = *qp;
Constraint *maybe_blocked_clause =
check_disabling_blocking_lit (qdpll, maybe_blocked_pair.blit_occ, 0);
/* Check if clause is satisfied by cached literal. */
if (!maybe_blocked_clause)
continue;
else
{
if (QDPLL_VAR_ASSIGNED
(LIT2VARPTR (qdpll->pcnf.vars,
maybe_blocked_pair.non_blocking_lit)) ||
maybe_blocked_clause->qbcp_qbce_blocked)
continue;
LitID satisfying_lit;
}
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " pushing potential blocking literal %d and clause:",
maybe_blocked_pair.non_blocking_lit);
print_constraint (qdpll, maybe_blocked_pair.blit_occ.constraint);
}
/* Set offset-on-working-queue of pair to be enqueued. */
assert (qp->offset_in_working_queue == QDPLL_INVALID_WATCHER_POS);
assert (maybe_blocked_pair.offset_in_working_queue == QDPLL_INVALID_WATCHER_POS);
qp->offset_in_working_queue = maybe_blocked_pair.offset_in_working_queue =
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_maybe_blocked_clauses);
QDPLL_PUSH_STACK(qdpll->mm, qdpll->qbcp_qbce_maybe_blocked_clauses,
maybe_blocked_pair);
}
}
}
static void
assert_qbcp_qbce_check_clause_is_blocked (QDPLL *qdpll, Constraint *blocked_clause)
{
assert (blocked_clause->qbcp_qbce_blocked);
assert (blocked_clause->qbcp_qbce_blocking_lit);
LitID blocking_lit = blocked_clause->qbcp_qbce_blocking_lit;
assert (constraint_has_lit (blocked_clause, blocking_lit));
Var *blocking_var = LIT2VARPTR (qdpll->pcnf.vars, blocking_lit);
BLitsOccStack *occs = QDPLL_LIT_NEG (blocking_lit) ?
&(blocking_var->pos_occ_clauses) : &(blocking_var->neg_occ_clauses);
BLitsOcc *p, *e;
for (p = occs->start, e = occs->top; p < e; p++)
{
Constraint *occ = p->constraint;
if (occ->qbcp_qbce_blocked || is_clause_satisfied (qdpll, occ))
continue;
assert (constraint_has_lit (occ, -blocking_lit));
unsigned int is_taut = 0;
LitID *litp, *lite;
for (litp = blocked_clause->lits,
lite = litp + blocked_clause->num_lits; !is_taut && litp < lite; litp++)
{
LitID lit = *litp;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
if (lit != blocking_lit &&
var->scope->nesting <= blocking_var->scope->nesting &&
constraint_has_lit (occ, -lit))
is_taut = 1;
}
assert (is_taut);
}
}
static int
qbcp_qbce_find_in_blocked_clauses (ConstraintPtrStack *stack, Constraint *c)
{
Constraint **p, **e;
for (p = stack->start, e = stack->top; p < e; p++)
if (*p == c)
return 1;
return 0;
}
static void
assert_qbcp_qbce_blocked_clauses_integrity (QDPLL *qdpll)
{
assert (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses) >= 1);
ConstraintPtrStack *sp, *se;
for (sp = qdpll->qbcp_qbce_blocked_clauses.start,
se = qdpll->qbcp_qbce_blocked_clauses.top; sp < se; sp++)
{
ConstraintPtrStack stack = *sp;
Constraint **p, **e;
for (p = stack.start, e = stack.top; p < e; p++)
{
Constraint *blocked_clause = *p;
assert (blocked_clause->qbcp_qbce_blocked);
assert (blocked_clause->qbcp_qbce_blocking_lit);
assert_qbcp_qbce_check_clause_is_blocked (qdpll, blocked_clause);
Var *blocking_var = LIT2VARPTR
(qdpll->pcnf.vars, blocked_clause->qbcp_qbce_blocking_lit);
if (sp == qdpll->qbcp_qbce_blocked_clauses.start)
{
/* Clause blocked by preprocessing must appear on occurrence
lists of blocked clauses. */
if (QDPLL_LIT_NEG (blocked_clause->qbcp_qbce_blocking_lit))
assert (qbcp_qbce_find_in_blocked_clauses
(&blocking_var->qbcp_qbce_prepro_neg_blocking_lit_clauses, blocked_clause));
else
assert (qbcp_qbce_find_in_blocked_clauses
(&blocking_var->qbcp_qbce_prepro_pos_blocking_lit_clauses, blocked_clause));
}
}
}
/* Clauses on occ-lists of clauses blocked by preprocessing must appear on
stack of blocked clauses. */
Var *vp, *ve;
for (vp = qdpll->pcnf.vars, ve = vp + qdpll->pcnf.size_vars; vp < ve; vp++)
{
if (vp->id)
{
Constraint **p, **e;
for (p = vp->qbcp_qbce_prepro_neg_blocking_lit_clauses.start,
e = vp->qbcp_qbce_prepro_neg_blocking_lit_clauses.top; p < e; p++)
{
Constraint *c = *p;
assert (c->qbcp_qbce_blocked);
assert (c->qbcp_qbce_blocking_lit);
assert (qbcp_qbce_find_in_blocked_clauses
(&(qdpll->qbcp_qbce_blocked_clauses.start[0]), c));
}
for (p = vp->qbcp_qbce_prepro_pos_blocking_lit_clauses.start,
e = vp->qbcp_qbce_prepro_pos_blocking_lit_clauses.top; p < e; p++)
{
Constraint *c = *p;
assert (c->qbcp_qbce_blocked);
assert (c->qbcp_qbce_blocking_lit);
assert (qbcp_qbce_find_in_blocked_clauses
(&(qdpll->qbcp_qbce_blocked_clauses.start[0]), c));
}
}
}
}
static void
assert_qbcp_qbce_witness_resolvent_no_taut
(QDPLL *qdpll, Constraint *c, LitID non_blocking_lit, Constraint * witness)
{
assert (constraint_has_lit (c, non_blocking_lit));
assert (constraint_has_lit (witness, -non_blocking_lit));
assert (!witness->qbcp_qbce_blocked);
Var *non_blocking_var = LIT2VARPTR (qdpll->pcnf.vars,
non_blocking_lit);
assert (!is_clause_satisfied (qdpll, witness) ||
((QDPLL_VAR_ASSIGNED_TRUE (non_blocking_var) && QDPLL_LIT_POS (-non_blocking_lit)) ||
(QDPLL_VAR_ASSIGNED_FALSE (non_blocking_var) && QDPLL_LIT_NEG (-non_blocking_lit))));
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
/* Resolvent must not be tautological with respect to a variable from a
block smaller or equal than 'non_blocking_var'. */
if (lit != non_blocking_lit &&
var->scope->nesting <= non_blocking_var->scope->nesting)
assert (!constraint_has_lit (witness, -lit));
}
}
static void
assert_qbcp_qbce_non_blocked_witness_integrity (QDPLL *qdpll)
{
Constraint *c;
for (c = qdpll->pcnf.clauses.first; c; c = c->link.next)
{
if (c->qbcp_qbce_blocked || is_clause_satisfied (qdpll, c))
{
}
else
{
if (qdpll->options.qbcp_qbce_max_clause_size &&
c->num_lits > qdpll->options.qbcp_qbce_max_clause_size)
continue;
/* Check that 'c' has a witness for every existential literal. */
unsigned int cnt_exists_lits = 0;
LitID *lp, *le;
for (lp = c->lits, le = lp + c->num_lits; lp < le; lp++)
{
LitID lit = *lp;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
if (qdpll->options.qbcp_qbce_find_witness_max_occs)
{
BLitsOccStack *occs = QDPLL_LIT_NEG (lit) ?
&var->pos_occ_clauses : &var->neg_occ_clauses;
if (QDPLL_COUNT_STACK (*occs) >
qdpll->options.qbcp_qbce_find_witness_max_occs)
continue;
}
if (qdpll->options.qbcp_qbce_max_clause_size)
{
if ((QDPLL_LIT_NEG (lit) && var->longest_pos_occ_size >
qdpll->options.qbcp_qbce_max_clause_size) ||
(QDPLL_LIT_POS (lit) && var->longest_neg_occ_size >
qdpll->options.qbcp_qbce_max_clause_size))
continue;
}
if (QDPLL_VAR_EXISTS (var) && !var->is_internal)
{
cnt_exists_lits++;
assert (qbcp_qbce_find_lit_in_list
(qdpll, &(c->qbcp_qbce_witness_clauses), lit));
}
}
assert (QDPLL_COUNT_STACK (c->qbcp_qbce_witness_clauses) ==
cnt_exists_lits);
QBCENonBlockedWitness *p, *e;
/* Check clauses which are witnesses that this clause 'c' is not
blocked. */
for (p = c->qbcp_qbce_witness_clauses.start,
e = c->qbcp_qbce_witness_clauses.top; p < e; p++)
{
QBCENonBlockedWitness witness_pair = *p;
assert (witness_pair.offset_in_working_queue == QDPLL_INVALID_WATCHER_POS);
assert (witness_pair.non_blocking_lit);
assert (witness_pair.blit_occ.constraint);
assert (!witness_pair.blit_occ.constraint->qbcp_qbce_blocked);
assert_qbcp_qbce_witness_resolvent_no_taut
(qdpll, c, witness_pair.non_blocking_lit, witness_pair.blit_occ.constraint);
Var *non_blocking_var =
LIT2VARPTR (qdpll->pcnf.vars, witness_pair.non_blocking_lit);
assert (!QDPLL_VAR_ASSIGNED (non_blocking_var) ||
is_clause_satisfied (qdpll, witness_pair.blit_occ.constraint));
assert (QDPLL_VAR_EXISTS (non_blocking_var));
/* Witness may be satisfied only if it is satisfied by the
blocking literal of the witness. In this case, the blocking
literal is falsified in 'c'. The clause 'c' does not need
another witness for that literal since it has in fact
disappeared from 'c'. */
assert (!is_clause_satisfied (qdpll, witness_pair.blit_occ.constraint) ||
(QDPLL_VAR_ASSIGNED_TRUE (non_blocking_var) &&
QDPLL_LIT_POS (-witness_pair.non_blocking_lit)) ||
(QDPLL_VAR_ASSIGNED_FALSE (non_blocking_var) &&
QDPLL_LIT_NEG (-witness_pair.non_blocking_lit)));
assert (constraint_has_lit (witness_pair.blit_occ.constraint,
-witness_pair.non_blocking_lit));
assert (constraint_has_lit (c, witness_pair.non_blocking_lit));
/* We must not find this entry a second time in this list. Even
more, there must not be multiple entries having the same clause
or same non-blocking literal. */
QBCENonBlockedWitness *check_p;
for (check_p = p + 1; check_p < e; check_p++)
{
QBCENonBlockedWitness check_pair = *check_p;
assert (check_pair.blit_occ.constraint != witness_pair.blit_occ.constraint);
assert (check_pair.non_blocking_lit != witness_pair.non_blocking_lit);
}
assert (c->num_lits > 0);
assert (c->lits[0]);
QBCENonBlockedWitness check_pair = {witness_pair.non_blocking_lit, {c->lits[0], c},
{QDPLL_INVALID_WATCHER_POS}, QDPLL_INVALID_WATCHER_POS};
qbcp_qbce_find_pair_in_list
(qdpll, &(witness_pair.blit_occ.constraint->qbcp_qbce_notify_maybe_blocked_clauses),
check_pair, 0, 0);
/* Check offset stored in 'witness_pair'. */
assert (witness_pair.offset.maybe_blocked_clause_in_notify_list <
QDPLL_COUNT_STACK (witness_pair.blit_occ.constraint->qbcp_qbce_notify_maybe_blocked_clauses));
assert (witness_pair.blit_occ.constraint->qbcp_qbce_notify_maybe_blocked_clauses.start
[witness_pair.offset.maybe_blocked_clause_in_notify_list].blit_occ.constraint == c);
assert (witness_pair.blit_occ.constraint->qbcp_qbce_notify_maybe_blocked_clauses.start
[witness_pair.offset.maybe_blocked_clause_in_notify_list].offset.witness_in_witness_list ==
(unsigned int)(p - c->qbcp_qbce_witness_clauses.start));
}
/* Check clauses for which this clause 'c' is a witness. */
for (p = c->qbcp_qbce_notify_maybe_blocked_clauses.start,
e = c->qbcp_qbce_notify_maybe_blocked_clauses.top; p < e; p++)
{
QBCENonBlockedWitness maybe_blocked_pair = *p;
assert (maybe_blocked_pair.offset_in_working_queue == QDPLL_INVALID_WATCHER_POS);
assert (maybe_blocked_pair.non_blocking_lit);
assert (maybe_blocked_pair.blit_occ.constraint);
assert (constraint_has_lit (maybe_blocked_pair.blit_occ.constraint,
maybe_blocked_pair.non_blocking_lit));
assert (constraint_has_lit (c, -maybe_blocked_pair.non_blocking_lit));
/* We must not find this entry a second time in this
list. However, this clause may notify different clauses to be
checked again for the same blocking literal. */
QBCENonBlockedWitness *check_p;
for (check_p = p + 1; check_p < e; check_p++)
{
QBCENonBlockedWitness check_pair = *check_p;
assert (check_pair.blit_occ.constraint != maybe_blocked_pair.blit_occ.constraint);
}
assert (c->num_lits > 0);
assert (c->lits[0]);
QBCENonBlockedWitness check_pair = {maybe_blocked_pair.non_blocking_lit, {c->lits[0], c},
{QDPLL_INVALID_WATCHER_POS}, QDPLL_INVALID_WATCHER_POS};
assert (qbcp_qbce_find_pair_in_list
(qdpll, &(maybe_blocked_pair.blit_occ.constraint->qbcp_qbce_witness_clauses),
check_pair, 0, 0));
/* Check offset stored in 'maybe_blocked_pair'. */
assert (maybe_blocked_pair.offset.witness_in_witness_list <
QDPLL_COUNT_STACK (maybe_blocked_pair.blit_occ.constraint->qbcp_qbce_witness_clauses));
assert (maybe_blocked_pair.blit_occ.constraint->qbcp_qbce_witness_clauses.start
[maybe_blocked_pair.offset.witness_in_witness_list].blit_occ.constraint == c);
assert (maybe_blocked_pair.blit_occ.constraint->qbcp_qbce_witness_clauses.start
[maybe_blocked_pair.offset.witness_in_witness_list].offset.maybe_blocked_clause_in_notify_list ==
(unsigned int)(p - c->qbcp_qbce_notify_maybe_blocked_clauses.start));
}
}
}
}
/* Add 'blocked_clause' to occurrence list
'var->qbcp_qbce_prepro_neg/pos_blocking_lit_clauses' of variable of the
blocking literal. This information is necessary to check whether blocked
clauses may become non-blocked if the user adds new input clauses. */
static void
qbcp_qbce_prepro_add_blocking_lit_occ (QDPLL *qdpll, Constraint *blocked_clause)
{
assert (qdpll->state.qbcp_qbce_currently_preprocessing);
assert (blocked_clause->qbcp_qbce_blocked);
assert (blocked_clause->qbcp_qbce_blocking_lit);
LitID blocking_lit = blocked_clause->qbcp_qbce_blocking_lit;
Var *blocking_var = LIT2VARPTR (qdpll->pcnf.vars, blocking_lit);
if (QDPLL_LIT_NEG (blocking_lit))
{
QDPLL_PUSH_STACK (qdpll->mm, blocking_var->
qbcp_qbce_prepro_neg_blocking_lit_clauses,
blocked_clause);
}
else
{
assert (QDPLL_LIT_POS (blocking_lit));
QDPLL_PUSH_STACK (qdpll->mm, blocking_var->
qbcp_qbce_prepro_pos_blocking_lit_clauses,
blocked_clause);
}
}
/* Returns non-zero if and only if new blocked clauses have been found. */
static unsigned int
qbcp_qbce_find_blocked_clauses (QDPLL *qdpll)
{
#ifndef NDEBUG
Var *dp, *de;
for (dp = qdpll->pcnf.vars, de = dp + qdpll->pcnf.size_vars; dp < de; dp++)
{
assert (!QDPLL_VAR_MARKED(dp));
}
#endif
assert (qdpll->options.qbce_preprocessing || qdpll->options.qbce_inprocessing ||
!qdpll->options.no_qbce_dynamic);
assert ((!qdpll->options.qbce_preprocessing && !qdpll->options.qbce_inprocessing) ||
qdpll->state.decision_level == 0);
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "Start of QBCE call\n");
unsigned int found_new_blocked_clauses = 0;
/* Stack of clauses found blocked in the current round. */
ConstraintPtrStack blocked_clauses;
QDPLL_INIT_STACK (blocked_clauses);
/* Stack of literals of a given clause which maybe blocking and hence are
inspected. This stack is relevant only to handle the very first call of this
function and all fortcoming incremental calls in a unifrom way. */
LitIDStack maybe_blocking_literals;
QDPLL_INIT_STACK (maybe_blocking_literals);
/* Stack of signed variable IDs which must be checked for update of their
clause watcher, which was found blocked. */
LitIDStack maybe_pure_literals;
QDPLL_INIT_STACK (maybe_pure_literals);
do
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_rounds++;
if (qdpll->state.decision_level == 0 &&
!qdpll->state.qbcp_qbce_currently_preprocessing)
qdpll->stats.qbcp_qbce_inprocessing_rounds++;
#endif
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "New round of QBCE, %d potentially blocked clauses to be checked.\n",
(unsigned int) QDPLL_COUNT_STACK (qdpll->qbcp_qbce_maybe_blocked_clauses));
#if COMPUTE_STATS
fprintf (stderr, "QBCE completed rounds: %llu\n", qdpll->stats.qbcp_qbce_rounds);
fprintf (stderr, "QBCE blocked clauses: %llu ( %f of CNF size, including satisfied ones)\n", qdpll->stats.qbcp_qbce_clauses_blocked, qdpll->stats.qbcp_qbce_clauses_blocked ? (qdpll->stats.qbcp_qbce_clauses_blocked / (float)qdpll->pcnf.clauses.cnt) : 0);
fprintf (stderr, "QBCE clauses seen: %llu ( %f of CNF size)\n", qdpll->stats.qbcp_qbce_clauses_seen, qdpll->stats.qbcp_qbce_clauses_seen ? (qdpll->stats.qbcp_qbce_clauses_seen / (float)qdpll->pcnf.clauses.cnt) : 0);
fprintf (stderr, "QBCE literals seen: %llu\n", qdpll->stats.qbcp_qbce_literals_seen);
fprintf (stderr, "QBCE seen literals per clause: %f\n", qdpll->stats.qbcp_qbce_clauses_seen ? (qdpll->stats.qbcp_qbce_literals_seen / (float)qdpll->stats.qbcp_qbce_clauses_seen) : 0);
fprintf (stderr, "QBCE find-entry calls: %llu\n", qdpll->stats.qbcp_qbce_find_entry_calls);
fprintf (stderr, "QBCE find entries seen: %llu ( %f per call)\n", qdpll->stats.qbcp_qbce_find_entries_seen, qdpll->stats.qbcp_qbce_find_entry_calls ? (qdpll->stats.qbcp_qbce_find_entries_seen / (float)qdpll->stats.qbcp_qbce_find_entry_calls) : 0);
#endif
}
QDPLL_RESET_STACK (blocked_clauses);
assert (QDPLL_EMPTY_STACK (maybe_blocking_literals));
while (!QDPLL_EMPTY_STACK(qdpll->qbcp_qbce_maybe_blocked_clauses))
{
QBCENonBlockedWitness pair =
QDPLL_POP_STACK(qdpll->qbcp_qbce_maybe_blocked_clauses);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "De-queued pair with lit %d, wo-value %d and clause: ",
pair.non_blocking_lit, pair.offset.witness_in_witness_list);
print_constraint (qdpll, pair.blit_occ.constraint);
}
#ifndef NDEBUG
do {
/* Must not push the same pair to be checked again multiple
time. This cannot happen by construction. */
QBCENonBlockedWitness *check_p, *check_e;
for (check_p = qdpll->qbcp_qbce_maybe_blocked_clauses.start,
check_e = qdpll->qbcp_qbce_maybe_blocked_clauses.top;
check_p < check_e; check_p++)
{
QBCENonBlockedWitness check_pair = *check_p;
assert (check_pair.blit_occ.constraint != pair.blit_occ.constraint ||
check_pair.non_blocking_lit != pair.non_blocking_lit);
}
} while (0);
#endif
if (pair.offset.witness_in_witness_list != QDPLL_INVALID_WATCHER_POS)
qbcp_qbce_reset_offset_in_working_queue (qdpll, pair);
LitID non_blocking_lit = pair.non_blocking_lit;
assert (!non_blocking_lit || constraint_has_lit (pair.blit_occ.constraint,
non_blocking_lit));
assert (non_blocking_lit ||
pair.offset.witness_in_witness_list == QDPLL_INVALID_WATCHER_POS);
assert (!pair.blit_occ.blit || constraint_has_lit (pair.blit_occ.constraint,
pair.blit_occ.blit));
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_clauses_seen++;
#endif
if (non_blocking_lit)
{
Var *non_blocking_var = LIT2VARPTR (qdpll->pcnf.vars, non_blocking_lit);
/* Selector variables must not be used as blocking literals. */
assert (!non_blocking_var->is_internal);
if (QDPLL_VAR_ASSIGNED (non_blocking_var))
{
/* This case may happen in dynamic QBCE when we push a
clause to be checked but later assign a variable
(i.e. the one of the blocking literal) at top-level. */
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "Skipping assigned blocking literal %d in clause: ",
non_blocking_lit);
print_constraint (qdpll, pair.blit_occ.constraint);
}
continue;
}
}
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_is_clause_sat_cache_accesses++;
#endif
/* Check if clause is satisfied by cached literal. */
Constraint *c = pair.blit_occ.blit ? check_disabling_blocking_lit
(qdpll, pair.blit_occ, 0) : pair.blit_occ.constraint;
if (!c)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_is_clause_sat_cache_hits++;
#endif
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "Skipping already satisfied clause: ");
print_constraint (qdpll, pair.blit_occ.constraint);
fprintf (stderr, " and potential blocking literal %d\n", non_blocking_lit);
}
continue;
}
else
{
if (c->qbcp_qbce_blocked)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_is_clause_sat_found_blocked++;
#endif
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "Skipping already blocked clause: ");
print_constraint (qdpll, c);
fprintf (stderr, " and potential blocking literal %d\n", non_blocking_lit);
}
continue;
}
}
/* Mark pos/neg literals in 'c' by pos/neg marks. At the same time,
check if clause is satisfied. Interleaved marking of variables and
sat-check is faster on clauses which are not satisfied. There, we
save the full traversal over the clause's literals done by
'is-clause-satisfied'. It seems that the vast majority of clauses
seen here are NOT satisfied after the blit-cache check. */
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_literals_seen++;
#endif
LitID clit = *p;
Var *cvar = LIT2VARPTR (qdpll->pcnf.vars, clit);
/* Ignore literals currently assigned false. */
if ((QDPLL_LIT_NEG (clit) && QDPLL_VAR_ASSIGNED_TRUE (cvar)) ||
(QDPLL_LIT_POS (clit) && QDPLL_VAR_ASSIGNED_FALSE (cvar)))
continue;
else if ((QDPLL_LIT_NEG (clit) && QDPLL_VAR_ASSIGNED_FALSE (cvar)) ||
(QDPLL_LIT_POS (clit) && QDPLL_VAR_ASSIGNED_TRUE (cvar)))
{
/* Found satisfying literal. */
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_is_clause_sat_found_sat++;
#endif
update_blocking_literal (qdpll, qdpll->pcnf.vars, &(pair.blit_occ),
c, clit,
LIT2VARPTR (qdpll->pcnf.vars, clit),
c->is_cube);
assert (pair.blit_occ.blit == clit);
/* Update blocking literal in maybe-blocked-pair on
notify-list. This is necessary because otherwise caching
does not work as it is never updated! */
unsigned int witness_offset = pair.offset.witness_in_witness_list;
if (witness_offset != QDPLL_INVALID_WATCHER_POS)
{
assert (witness_offset < QDPLL_COUNT_STACK (c->qbcp_qbce_witness_clauses));
QBCENonBlockedWitness witness_pair =
c->qbcp_qbce_witness_clauses.start[witness_offset];
unsigned int maybe_blocked_pair_offset =
witness_pair.offset.maybe_blocked_clause_in_notify_list;
assert (maybe_blocked_pair_offset < QDPLL_COUNT_STACK
(witness_pair.blit_occ.constraint->
qbcp_qbce_notify_maybe_blocked_clauses));
QBCENonBlockedWitness *maybe_blocked_pair_p =
witness_pair.blit_occ.constraint->
qbcp_qbce_notify_maybe_blocked_clauses.start +
maybe_blocked_pair_offset;
assert (c == maybe_blocked_pair_p->blit_occ.constraint);
assert (non_blocking_lit == maybe_blocked_pair_p->non_blocking_lit);
maybe_blocked_pair_p->blit_occ.blit = pair.blit_occ.blit;
}
break;
}
assert (!QDPLL_VAR_MARKED(cvar));
if (QDPLL_LIT_NEG (clit))
QDPLL_VAR_NEG_MARK (cvar);
else
QDPLL_VAR_POS_MARK (cvar);
}
assert (e == c->lits + c->num_lits);
assert (p >= c->lits && p <= e);
if (p != e)
{
/* Clause 'c' is satisfied and will be ignored. Unmark the
variables which have been marked already in the above loop. */
for (p--, e = c->lits; e <= p; p--)
{
LitID clit = *p;
Var *cvar = LIT2VARPTR (qdpll->pcnf.vars, clit);
if ((QDPLL_LIT_NEG (clit) && QDPLL_VAR_ASSIGNED_TRUE (cvar)) ||
(QDPLL_LIT_POS (clit) && QDPLL_VAR_ASSIGNED_FALSE (cvar)))
{
assert (!QDPLL_VAR_MARKED (cvar));
continue;
}
assert (QDPLL_VAR_MARKED (cvar));
QDPLL_VAR_UNMARK (cvar);
}
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "Skipping already satisfied clause: ");
print_constraint (qdpll, c);
fprintf (stderr, " and potential blocking literal %d\n", non_blocking_lit);
}
continue;
}
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "Checking clause: ");
print_constraint (qdpll, c);
fprintf (stderr, " and %s potential blocking literal (%d)\n",
non_blocking_lit ? "single" : "all", non_blocking_lit);
}
assert (QDPLL_EMPTY_STACK (maybe_blocking_literals));
if (!non_blocking_lit)
{
/* Collect all existential literals in the current clause to be
checked. This is relevant only if we call this function for
the first time after initialization. */
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_literals_seen++;
#endif
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
/* Pushed clauses must not be satisfied. */
assert (!QDPLL_VAR_ASSIGNED (var) ||
(QDPLL_VAR_ASSIGNED_TRUE (var) && QDPLL_LIT_NEG (lit)) ||
(QDPLL_VAR_ASSIGNED_FALSE (var) && QDPLL_LIT_POS (lit)));
if (QDPLL_VAR_ASSIGNED (var))
continue;
if (QDPLL_SCOPE_EXISTS (var->scope) && !var->is_internal)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_total_maybe_blocking_literals_seen++;
#endif
if (qdpll->options.qbcp_qbce_find_witness_max_occs)
{
/* Ignore checking literals for being
blocking which have more than
'qdpll->options.qbcp_qbce_find_witness_max_occs'
occurrences. No maybe-blocked pairs
containing such literals will be inserted in
the watched data structures. NOTE: this
code is executed only once during
initialization. Further calls of
'find-blocked-clauses' are triggered by
watched data structures, and hence no
explicit checking for number of
occurrences is needed. */
BLitsOccStack *occs = QDPLL_LIT_NEG (lit) ?
&var->pos_occ_clauses : &var->neg_occ_clauses;
if (QDPLL_COUNT_STACK (*occs) >
qdpll->options.qbcp_qbce_find_witness_max_occs)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_ignored_maybe_blocking_literals_by_occ_limit++;
#endif
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "QBCE: skipping maybe blocking literal %d -- %soccs-cnt %ld > limit %d\n",
lit, QDPLL_LIT_NEG (lit) ? "pos-" : "neg-",
QDPLL_COUNT_STACK (*occs), qdpll->options.qbcp_qbce_find_witness_max_occs);
continue;
}
}
if (qdpll->options.qbcp_qbce_max_clause_size)
{
if ((QDPLL_LIT_NEG (lit) && var->longest_pos_occ_size >
qdpll->options.qbcp_qbce_max_clause_size) ||
(QDPLL_LIT_POS (lit) && var->longest_neg_occ_size >
qdpll->options.qbcp_qbce_max_clause_size))
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_ignored_maybe_blocking_literals_by_size_limit++;
#endif
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "QBCE: skipping maybe blocking literal %d -- longest %socc-size %d > limit %d\n",
lit, QDPLL_LIT_NEG (lit) ? "pos-" : "neg-",
QDPLL_LIT_NEG (lit) ? var->longest_pos_occ_size : var->longest_neg_occ_size,
qdpll->options.qbcp_qbce_max_clause_size);
continue;
}
}
QDPLL_PUSH_STACK (qdpll->mm, maybe_blocking_literals, lit);
}
}
}
else
QDPLL_PUSH_STACK (qdpll->mm, maybe_blocking_literals, non_blocking_lit);
assert (!non_blocking_lit || QDPLL_COUNT_STACK (maybe_blocking_literals) == 1);
/* Check all potentially blocking literals in the current clause 'c'. */
Constraint *witness;
while (!QDPLL_EMPTY_STACK (maybe_blocking_literals))
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_literals_seen++;
#endif
LitID lit = QDPLL_POP_STACK (maybe_blocking_literals);
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
assert (QDPLL_SCOPE_EXISTS (var->scope));
/* Selector variables must not be used as blocking literals. */
assert (!var->is_internal);
assert (!QDPLL_VAR_ASSIGNED (var));
if (qdpll->options.verbosity >= 2)
fprintf (stderr, " checking potential blocking literal %d\n", lit);
if (!(witness = qbcp_qbce_find_non_blocking_literal_witness (qdpll, lit, c)))
{
if (qdpll->options.verbosity >= 2)
fprintf (stderr, " blocked by literal: %d\n", lit);
/* Function returns non-zero if new blocked clauses are found. */
found_new_blocked_clauses = 1;
/* Set mark bit and blocking literal. */
assert (!c->qbcp_qbce_blocked);
c->qbcp_qbce_blocked = 1;
assert (!c->qbcp_qbce_blocking_lit);
c->qbcp_qbce_blocking_lit = lit;
/* When currently preprocessing: store occurrence of blocking lit. */
if (qdpll->state.qbcp_qbce_currently_preprocessing)
qbcp_qbce_prepro_add_blocking_lit_occ (qdpll, c);
if (c->is_watched)
{
/* NOTE: this branch cannot be taken in the very first
call of this function, which happens before watcher
initialization, since the field 'is_watched' is set during
watcher initialization. */
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "Clause watched for pures is blocked:");
print_constraint (qdpll, c);
}
LitID *lp, *le;
for (lp = c->lits, le = lp + c->num_lits; lp < le; lp++)
{
LitID lit = *lp;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
if (QDPLL_VAR_FORALL (var) && !QDPLL_VAR_ASSIGNED (var))
{
/* Check if universal variable must update it's clause watcher. */
if (!LEARN_VAR_POS_MARKED (var) &&
((QDPLL_LIT_NEG (lit) && c == var->neg_occ_clauses.start[0].constraint) ||
(QDPLL_LIT_POS (lit) && c == var->pos_occ_clauses.start[0].constraint)))
{
/* Mark and collect variable. */
assert (!LEARN_VAR_NEG_MARKED (var));
LEARN_VAR_POS_MARK (var);
QDPLL_PUSH_STACK (qdpll->mm, maybe_pure_literals, lit);
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "...univ var %d needs watcher update\n", var->id);
}
}
}
}
if (qdpll->options.empty_formula_watching)
{
/* If the blocked clause is currently watched for empty
formula detection, then we must schedule a watcher
update. */
if (qdpll->empty_formula_watcher && c == qdpll->empty_formula_watcher->constraint)
qdpll->state.empty_formula_watcher_scheduled_update = 1;
}
/* Push blocked clause on local and global stack of blocked
clauses. The global stack
'qdpll->qbcp_qbce_blocked_clauses' is needed for solution
reconstruction. */
QDPLL_PUSH_STACK(qdpll->mm, blocked_clauses, c);
assert (!qdpll->state.qbcp_qbce_currently_preprocessing ||
qdpll->state.decision_level == 0);
assert (!qdpll->state.qbcp_qbce_currently_preprocessing ||
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses) <= 2);
assert (qdpll->state.qbcp_qbce_currently_preprocessing ||
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses) ==
qdpll->state.decision_level + 2);
QDPLL_PUSH_STACK
(qdpll->mm, qdpll->qbcp_qbce_blocked_clauses.start
[qdpll->state.qbcp_qbce_currently_preprocessing ?
0 : qdpll->state.decision_level + 1], c);
if (qdpll->options.verbosity >= 2)
fprintf (stderr, " currently %d blocked clauses found in this round\n",
(unsigned int) QDPLL_COUNT_STACK(blocked_clauses));
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_clauses_blocked++;
qdpll->stats.qbcp_qbce_current_blocked_clauses++;
assert (qdpll->stats.qbcp_qbce_current_blocked_clauses <=
qdpll->pcnf.clauses.cnt);
#endif
break;
}
else
{
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " literal %d has non-blocking witness: ", lit);
print_constraint (qdpll, witness);
}
assert (!witness->qbcp_qbce_blocked);
assert (!is_clause_satisfied (qdpll, witness));
assert (c == pair.blit_occ.constraint);
assert (!non_blocking_lit ||
(lit == pair.non_blocking_lit &&
non_blocking_lit == pair.non_blocking_lit));
assert (c->num_lits > 0);
assert (c->lits[0]);
assert (!pair.blit_occ.blit || constraint_has_lit (pair.blit_occ.constraint,
pair.blit_occ.blit));
QBCENonBlockedWitness non_blocked_pair = {lit, {pair.blit_occ.blit, c},
{pair.offset.witness_in_witness_list},
QDPLL_INVALID_WATCHER_POS};
/* Store clause 'c' and non-blocking literal 'lit' in
notify-list of the witness. */
qbcp_qbce_store_witness (qdpll, non_blocked_pair, witness);
}
}
QDPLL_RESET_STACK (maybe_blocking_literals);
/* Unmark literals in clause 'c'. */
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_literals_seen++;
#endif
LitID clit = *p;
Var *cvar = LIT2VARPTR (qdpll->pcnf.vars, clit);
/* Ignore assigned variables. These assignment can never satisfy
the clause, because satisfied clauses are ignored. */
if (QDPLL_VAR_ASSIGNED (cvar))
continue;
assert (QDPLL_VAR_MARKED(cvar));
QDPLL_VAR_UNMARK (cvar);
}
}
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "pushing clauses to be checked again based on %d blocked clauses:\n",
(unsigned int) QDPLL_COUNT_STACK(blocked_clauses));
/* Fill set 'maybe-blocked-clauses' based on current blocked-clauses. */
Constraint **cp, **ce;
for (cp = blocked_clauses.start, ce = blocked_clauses.top; cp < ce; cp++)
{
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_clauses_seen++;
#endif
Constraint *c = *cp;
assert (c->qbcp_qbce_blocked);
assert (!is_clause_satisfied (qdpll, c));
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " blocked clause: ");
print_constraint (qdpll, c);
fprintf (stderr, " notifies notifies %d pairs to be checked again.\n",
(unsigned int) QDPLL_COUNT_STACK(c->qbcp_qbce_notify_maybe_blocked_clauses));
}
/* Push all clauses in the notify-lists of blocked clauses on
'maybe_blocked_clauses'. */
QBCENonBlockedWitness *qp, *qe;
for (qp = c->qbcp_qbce_notify_maybe_blocked_clauses.start,
qe = c->qbcp_qbce_notify_maybe_blocked_clauses.top; qp < qe; qp++)
{
assert (qp->offset_in_working_queue == QDPLL_INVALID_WATCHER_POS);
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_clauses_seen++;
#endif
QBCENonBlockedWitness pair = *qp;
assert (pair.non_blocking_lit);
/* Check if clause is satisfied by cached literal. */
if (!check_disabling_blocking_lit (qdpll, pair.blit_occ, 0))
continue;
else
{
if (pair.blit_occ.constraint->qbcp_qbce_blocked)
{
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " skipping %s notified clause: ",
pair.blit_occ.constraint->qbcp_qbce_blocked ? "blocked" : "satisfied");
print_constraint (qdpll, pair.blit_occ.constraint);
}
continue;
}
}
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " notifying for potential blocking literal %d to be checked in clause: ",
pair.non_blocking_lit);
print_constraint (qdpll, pair.blit_occ.constraint);
}
/* Set offset-on-working-queue of pair to be enqueued. */
assert (pair.offset_in_working_queue == QDPLL_INVALID_WATCHER_POS);
qp->offset_in_working_queue = pair.offset_in_working_queue =
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_maybe_blocked_clauses);
QDPLL_PUSH_STACK
(qdpll->mm, qdpll->qbcp_qbce_maybe_blocked_clauses, pair);
}
}
} while (!QDPLL_EMPTY_STACK (blocked_clauses));
/* Notify variables which must update their clause watcher which became
blocked in this round. */
LitID *p, *e;
for (p = maybe_pure_literals.start, e = maybe_pure_literals.top; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
assert (QDPLL_VAR_FORALL (var));
assert (LEARN_VAR_POS_MARKED (var));
assert (!LEARN_VAR_NEG_MARKED (var));
LEARN_VAR_POS_UNMARK (var);
if (!QDPLL_VAR_ASSIGNED (var))
notify_clause_watching_variables_aux (qdpll, lit, var);
}
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "End of QBCE call, returns value %d\n", found_new_blocked_clauses);
QDPLL_DELETE_STACK (qdpll->mm, blocked_clauses);
QDPLL_DELETE_STACK (qdpll->mm, maybe_blocking_literals);
QDPLL_DELETE_STACK (qdpll->mm, maybe_pure_literals);
#ifndef NDEBUG
assert_qbcp_qbce_non_blocked_witness_integrity (qdpll);
assert_qbcp_qbce_blocked_clauses_integrity (qdpll);
#endif
return found_new_blocked_clauses;
}
/* --------------------- END: QBCP-QBCE --------------------- */
/* Function for propagating unit/pure literals and also
for assigning decision variables. */
static QDPLLSolverState
bcp (QDPLL * qdpll)
{
#if COMPUTE_TIMES
const double start = time_stamp ();
#endif
Var *vars = qdpll->pcnf.vars;
VarID *bcp_ptr;
QDPLLSolverState state = QDPLL_SOLVER_STATE_UNDEF;
const unsigned int qbce_inprocessing = qdpll->options.qbce_inprocessing;
const unsigned int qbce_dynamic = !qdpll->options.no_qbce_dynamic;
assert (!qbce_dynamic || !qbce_inprocessing);
const unsigned int empty_formula_watching = qdpll->options.empty_formula_watching;
/* QBCE as inprocessing: the outer do-while loop is executed as long as the
solver is at level zero, the formula is undecided, and new blocked
clauses have been identified. The inner while-loop is executed as long as
there are assignments to be propagated and the formula is still
undecided. */
/* Flag to indicate if some assignment was propagated. This is to avoid
running QBCE again if the top-level assignment has not changed since
the previous run. */
unsigned int propagated = 0;
do
{
propagated = 0;
/* Loop breaks as soon as conflict or empty formula detected. */
while (state == QDPLL_SOLVER_STATE_UNDEF &&
(bcp_ptr = qdpll->bcp_ptr) < qdpll->assigned_vars_top)
{
propagated = 1;
VarID var_id = *bcp_ptr;
Var *var = VARID2VARPTR (vars, var_id);
/* For QBCE as inprocessing on top-level: push clauses which may be blocked
after assigning a variable at top level. Can ignore universal pure
literals since they never satisfy clauses. */
if ((qbce_dynamic || (qbce_inprocessing && qdpll->state.decision_level == 0)) &&
!(var->mode == QDPLL_VARMODE_PURE && QDPLL_SCOPE_FORALL (var->scope)))
qbcp_qbce_push_maybe_blocked_clauses_by_assignment (qdpll, var);
#if COMPUTE_STATS
qdpll->stats.propagations++;
qdpll->stats.total_prop_dlevels += var->decision_level;
#endif
assert (var->mode != QDPLL_VARMODE_UNDEF);
assert (QDPLL_VAR_ASSIGNED (var));
assert (var->decision_level != QDPLL_INVALID_DECISION_LEVEL);
assert (!QDPLL_VAR_MARKED_PROPAGATED (var));
if (QDPLL_VAR_ASSIGNED_TRUE (var))
state = propagate_variable_assigned
(qdpll, var, &(var->pos_notify_clause_watchers),
&(var->pos_notify_lit_watchers));
else
{
assert (QDPLL_VAR_ASSIGNED_FALSE (var));
state = propagate_variable_assigned
(qdpll, var, &(var->neg_notify_clause_watchers),
&(var->neg_notify_lit_watchers));
}
qdpll->bcp_ptr++;
if (!empty_formula_watching)
{
/* If all variables are propagated and no conflict was found, we can
be sure that the formula is SAT. We set the state explicitly here
since this is has not been done yet. */
assert (!qdpll->options.no_sdcl || state != QDPLL_SOLVER_STATE_SAT);
if (state == QDPLL_SOLVER_STATE_UNDEF &&
qdpll->bcp_ptr == qdpll->assigned_vars_top &&
qdpll->pcnf.used_vars ==
(unsigned int) (qdpll->assigned_vars_top - qdpll->assigned_vars))
state = QDPLL_SOLVER_STATE_SAT;
}
}
if (empty_formula_watching)
{
if (state == QDPLL_SOLVER_STATE_UNDEF &&
!update_empty_formula_watcher (qdpll))
state = QDPLL_SOLVER_STATE_SAT;
}
} while ((qbce_dynamic || (qbce_inprocessing && qdpll->state.decision_level == 0)) &&
propagated &&
state == QDPLL_SOLVER_STATE_UNDEF &&
qbcp_qbce_find_blocked_clauses (qdpll));
#ifndef NDEBUG
assert (!qdpll->state.assumptions_given || assumptions_given (qdpll));
assert (qdpll->state.assumptions_given || !assumptions_given (qdpll));
#if QDPLL_ASSERT_BCP_WATCHERS_INTEGRITY
if (state == QDPLL_SOLVER_STATE_UNDEF)
{
assert_all_unit_literals_and_literal_watchers_integrity (qdpll);
if (!qbce_dynamic && !qbce_inprocessing)
assert_all_pure_literals_and_clause_watchers_integrity (qdpll);
assert_incremental_selector_vars (qdpll);
}
#endif
#endif
#if COMPUTE_TIMES
qdpll->time_stats.total_bcp_time += (time_stamp () - start);
#endif
return state;
}
static void
notify_inactive_at_decision_point (QDPLL * qdpll)
{
assert (qdpll->bcp_ptr == qdpll->assigned_vars_top);
Var *vars = qdpll->pcnf.vars;
QDPLLDepManGeneric *dm = qdpll->dm;
assert (qdpll->bcp_ptr == qdpll->assigned_vars_top);
assert (qdpll->old_bcp_ptr >= qdpll->assigned_vars);
assert (qdpll->old_bcp_ptr <= qdpll->bcp_ptr);
VarID *p, *e;
for (p = qdpll->old_bcp_ptr, e = qdpll->assigned_vars_top; p < e; p++)
{
Var *var = VARID2VARPTR (vars, *p);
dm->notify_inactive (dm, var->id);
}
qdpll->old_bcp_ptr = qdpll->assigned_vars_top;
}
static void
push_forced_assignment (QDPLL * qdpll)
{
assert (qdpll->state.forced_assignment.var);
assert (qdpll->state.forced_assignment.assignment);
assert (qdpll->state.forced_assignment.mode);
/* Setting antecedent is only relevant for learning. */
qdpll->state.forced_assignment.var->antecedent =
qdpll->state.forced_assignment.antecedent;
if (qdpll->state.forced_assignment.antecedent)
{
assert (!qdpll->state.forced_assignment.antecedent->qbcp_qbce_blocked);
assert (!qdpll->state.forced_assignment.antecedent->is_reason);
qdpll->state.forced_assignment.antecedent->is_reason = 1;
}
#ifndef NDEBUG
#if QDPLL_ASSERT_CDCL_FORCED_ANTECEDENT
Constraint *antecedent;
if ((antecedent = qdpll->state.forced_assignment.antecedent)
&& !antecedent->is_cube)
{
/* It can happen that conflict clause is satisfied by a true
universal literal which was assigned after being
forall-reduced. */
assert (!is_clause_satisfied (qdpll, antecedent) ||
assert_is_clause_satisfied_by_univ_lit (qdpll,
qdpll->state.
forced_assignment.
assignment ==
QDPLL_ASSIGNMENT_TRUE ?
qdpll->state.
forced_assignment.var->
id : -qdpll->state.
forced_assignment.var->
id, antecedent));
assert (!is_clause_empty (qdpll, antecedent));
Var *vars = qdpll->pcnf.vars, *var, *implied_var;
LitID *p, *e, lit;
for (p = antecedent->lits, e = p + antecedent->num_lits; p < e; p++)
{
/* Check that exactly one existential
literal is unassigned (i.e. implied). */
lit = *p;
var = LIT2VARPTR (vars, lit);
if (QDPLL_SCOPE_EXISTS (var->scope) && !QDPLL_VAR_ASSIGNED (var))
{
implied_var = var;
assert (implied_var == qdpll->state.forced_assignment.var);
for (p = p + 1; p < e; p++)
{
lit = *p;
var = LIT2VARPTR (vars, lit);
assert (!QDPLL_SCOPE_EXISTS (var->scope)
|| QDPLL_VAR_ASSIGNED (var));
}
break;
}
}
}
#endif
#endif
push_assigned_variable (qdpll, qdpll->state.forced_assignment.var,
qdpll->state.forced_assignment.assignment,
qdpll->state.forced_assignment.mode);
qdpll->state.forced_assignment.antecedent = 0;
qdpll->state.forced_assignment.var = 0;
qdpll->state.forced_assignment.assignment =
qdpll->state.forced_assignment.mode = 0;
}
/* Remove marked occs by explicit search. */
static void
cleanup_constraint_sweep_occs (QDPLL * qdpll, BLitsOccStack * occs)
{
BLitsOcc *p, *e;
for (p = occs->start, e = occs->top; p < e; p++)
{
assert (BLIT_STRIP_PTR (p->constraint)->is_cube ||
!BLIT_MARKED_PTR (p->constraint));
assert (!BLIT_STRIP_PTR (p->constraint)->is_cube ||
BLIT_MARKED_PTR (p->constraint));
if (BLIT_STRIP_PTR (p->constraint)->deleted)
{
/* Overwrite with last element. */
*p = QDPLL_POP_STACK (*occs);
/* Must check copied element in next iteration. */
p--;
e--;
}
}
}
/* Unlink contraint from all lists and release memory. */
static void
unlink_and_delete_constraint (QDPLL * qdpll, Constraint * c)
{
assert (qdpll->result_constraint != c);
assert (c->learnt);
assert (!c->is_reason);
assert (!c->is_watched);
const int is_cube = c->is_cube;
/* Unlink constraint from learnt-clause/cube list. */
if (is_cube)
UNLINK (qdpll->pcnf.learnt_cubes, c, link);
else
UNLINK (qdpll->pcnf.learnt_clauses, c, link);
assert ((c->lwatcher_pos == c->rwatcher_pos &&
c->lwatcher_pos == QDPLL_INVALID_WATCHER_POS) ||
(c->lwatcher_pos < c->rwatcher_pos && c->lwatcher_pos < c->num_lits
&& c->rwatcher_pos < c->num_lits));
if (c->lwatcher_pos != QDPLL_INVALID_WATCHER_POS)
{
assert (c->rwatcher_pos != QDPLL_INVALID_WATCHER_POS);
/* Delete constraint from lit-watcher notify list. */
remove_clause_from_notify_list (qdpll, is_cube, 0,
c->lits[c->lwatcher_pos], c);
remove_clause_from_notify_list (qdpll, is_cube, 1,
c->lits[c->rwatcher_pos], c);
}
delete_constraint (qdpll, c);
}
/* Delete all marked constraints, clean up occ-lists. */
static void
cleanup_constraint_sweep (QDPLL * qdpll, unsigned int del,
const QDPLLQuantifierType type)
{
assert (qdpll->options.no_spure_literals);
assert (type == QDPLL_QTYPE_EXISTS || type == QDPLL_QTYPE_FORALL);
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
if (p->id)
{
if (type == QDPLL_QTYPE_EXISTS)
{
cleanup_constraint_sweep_occs (qdpll, &(p->neg_occ_clauses));
cleanup_constraint_sweep_occs (qdpll, &(p->pos_occ_clauses));
}
else
{
cleanup_constraint_sweep_occs (qdpll, &(p->neg_occ_cubes));
cleanup_constraint_sweep_occs (qdpll, &(p->pos_occ_cubes));
}
}
}
ConstraintList *constraints;
if (type == QDPLL_QTYPE_EXISTS)
constraints = &(qdpll->pcnf.learnt_clauses);
else
constraints = &(qdpll->pcnf.learnt_cubes);
unsigned int check_del = 0;
Constraint *c, *next;
for (c = constraints->first; c; c = next)
{
assert (c->learnt);
next = c->link.next;
if (c->deleted)
{
#ifndef NDEBUG
check_del++;
#endif
unlink_and_delete_constraint (qdpll, c);
}
}
assert (del == check_del);
}
static unsigned int
check_resize_learnt_constraints_aux (QDPLL * qdpll, ConstraintList *constraints,
unsigned int try_delete, const QDPLLQuantifierType type)
{
/* Parameter 'try_delete == UINT_MAX' if this function is called to discard
all learned cubes in incremental solving. */
unsigned int del = 0;
Constraint *c;
assert (del < try_delete);
const int no_spure_literals = qdpll->options.no_spure_literals;
Constraint *prev, *result_constraint = qdpll->result_constraint;
for (c = constraints->last; c && (del < try_delete); c = prev)
{
assert (c->is_cube || c->learnt);
prev = c->link.prev;
if (!c->is_reason && !c->is_watched &&
c != result_constraint && !(c->is_cube && !c->learnt))
{
if (!no_spure_literals)
unlink_and_delete_constraint (qdpll, c);
else
{
/* Allowing: spurious pure lits: only mark as deleted,
then clean up formula, including occ-lists, in one
sweep. This should be faster than cleaning
(i.e. searching) all occ-stacks in one pass. */
assert (!c->deleted);
c->deleted = 1;
}
del++;
}
}
if (no_spure_literals)
cleanup_constraint_sweep (qdpll, del, type);
assert (try_delete == UINT_MAX || type != QDPLL_QTYPE_EXISTS ||
qdpll->state.lclauses_size == qdpll->pcnf.learnt_clauses.cnt + del);
assert (try_delete == UINT_MAX || type != QDPLL_QTYPE_FORALL ||
qdpll->state.lcubes_size == qdpll->pcnf.learnt_cubes.cnt + del);
return del;
}
static void
check_resize_learnt_constraints (QDPLL * qdpll, const QDPLLQuantifierType type)
{
QDPLL_ABORT_QDPLL (qdpll->state.lclauses_size == 0, "Size of learned clauses must be greater than zero!");
QDPLL_ABORT_QDPLL (qdpll->state.lcubes_size == 0, "Size of learned cubes must be greater than zero!");
/* Increase constraint sets only if we do not exceed soft space limit. */
const size_t cur_allocated = qdpll_cur_allocated (qdpll->mm);
const int cur_exceeded_soft_max_space =
qdpll->options.soft_max_space &&
(qdpll->options.soft_max_space * 1024 * 1024 < cur_allocated);
qdpll->state.exceeded_soft_max_space = qdpll->state.exceeded_soft_max_space
|| cur_exceeded_soft_max_space;
ConstraintList *constraints;
Constraint *c;
if (type == QDPLL_QTYPE_EXISTS)
{
if (!cur_exceeded_soft_max_space
&& qdpll->pcnf.learnt_clauses.cnt < qdpll->state.lclauses_size)
return;
constraints = &(qdpll->pcnf.learnt_clauses);
}
else
{
if (!cur_exceeded_soft_max_space
&& qdpll->pcnf.learnt_cubes.cnt < qdpll->state.lcubes_size)
return;
constraints = &(qdpll->pcnf.learnt_cubes);
}
if (type == QDPLL_QTYPE_EXISTS)
qdpll->state.clause_resizes++;
else
qdpll->state.cube_resizes++;
if (qdpll->options.verbosity > 0)
fprintf (stderr, "Reduce: %s, cur. size %u, cur cnt %u\n",
type == QDPLL_QTYPE_EXISTS ? "clauses" : "cubes",
type == QDPLL_QTYPE_EXISTS ? qdpll->state.lclauses_size :
qdpll->state.lcubes_size,
type ==
QDPLL_QTYPE_EXISTS ? qdpll->pcnf.learnt_clauses.
cnt : qdpll->pcnf.learnt_cubes.cnt);
assert (cur_exceeded_soft_max_space || (type == QDPLL_QTYPE_EXISTS &&
qdpll->pcnf.learnt_clauses.cnt ==
qdpll->state.lclauses_size)
|| (type == QDPLL_QTYPE_FORALL
&& qdpll->pcnf.learnt_cubes.cnt == qdpll->state.lcubes_size));
/* Try to delete half of learnt constraints, starting from back of
lists which is supposed to contain 'less important' constraints. */
unsigned int try_delete = type == QDPLL_QTYPE_EXISTS ?
qdpll->pcnf.learnt_clauses.cnt * qdpll->options.lclauses_delfactor :
qdpll->pcnf.learnt_cubes.cnt * qdpll->options.lcubes_delfactor;
unsigned int del =
check_resize_learnt_constraints_aux (qdpll, constraints, try_delete, type);
#if COMPUTE_STATS
qdpll->stats.total_constraint_dels += del;
if (type == QDPLL_QTYPE_EXISTS)
qdpll->stats.total_clause_dels += del;
else
qdpll->stats.total_cube_dels += del;
#endif
if (!qdpll->state.exceeded_soft_max_space)
{
if (type == QDPLL_QTYPE_EXISTS)
{
if (qdpll->options.no_lin_lclauses_inc)
qdpll->state.lclauses_size +=
(qdpll->state.clause_resizes *
qdpll->options.lclauses_resize_value);
else
qdpll->state.lclauses_size +=
qdpll->options.lclauses_resize_value;
}
else
{
if (qdpll->options.no_lin_lcubes_inc)
qdpll->state.lcubes_size +=
(qdpll->state.cube_resizes *
qdpll->options.lcubes_resize_value);
else
qdpll->state.lcubes_size += qdpll->options.lcubes_resize_value;
}
if (qdpll->options.verbosity > 0)
fprintf (stderr, "Reduce: del. %d %s, new size %u, new cnt: %u\n",
del, type == QDPLL_QTYPE_EXISTS ? "clauses" : "cubes",
type ==
QDPLL_QTYPE_EXISTS ? qdpll->state.
lclauses_size : qdpll->state.lcubes_size,
type ==
QDPLL_QTYPE_EXISTS ? qdpll->pcnf.learnt_clauses.
cnt : qdpll->pcnf.learnt_cubes.cnt);
}
else
{
if (qdpll->options.verbosity > 0)
fprintf (stderr,
"Reduce: del. %d %s, cur size %u, cur cnt %u, soft limit %u MB reached (alloc.: %f MB)\n",
del, type == QDPLL_QTYPE_EXISTS ? "clauses" : "cubes",
type ==
QDPLL_QTYPE_EXISTS ? qdpll->state.
lclauses_size : qdpll->state.lcubes_size,
type ==
QDPLL_QTYPE_EXISTS ? qdpll->pcnf.learnt_clauses.
cnt : qdpll->pcnf.learnt_cubes.cnt,
qdpll->options.soft_max_space,
cur_allocated / 1024 / (float) 1024);
}
QDPLL_ABORT_QDPLL (qdpll->pcnf.learnt_clauses.cnt > qdpll->state.lclauses_size,
"Invalid number of learned clauses!");
QDPLL_ABORT_QDPLL (qdpll->pcnf.learnt_cubes.cnt > qdpll->state.lcubes_size,
"Invalid number of learned cubes!");
}
static void
print_config (QDPLL * qdpll)
{
fprintf (stderr, "\n---------- CONFIG ----------\n");
if (qdpll->options.no_pure_literals)
fprintf (stderr, "--no-pure-literals=1\n");
else
fprintf (stderr, "--no-pure-literals=0\n");
if (qdpll->options.no_spure_literals)
fprintf (stderr, "--no-spure-literals=1\n");
else
fprintf (stderr, "--no-spure-literals=0\n");
if (qdpll->options.no_cdcl)
fprintf (stderr, "--no-cdcl=1\n");
else
fprintf (stderr, "--no-cdcl=0\n");
if (qdpll->options.no_sdcl)
fprintf (stderr, "--no-sdcl=1\n");
else
fprintf (stderr, "--no-sdcl=0\n");
if (qdpll->options.no_univ_cache)
fprintf (stderr, "--no-univ-cache=1\n");
else
fprintf (stderr, "--no-univ-cache=0\n");
if (qdpll->options.no_exists_cache)
fprintf (stderr, "--no-exists-cache=1\n");
else
fprintf (stderr, "--no-exists-cache=0\n");
fprintf (stderr, "--var-act-bias=%d\n", qdpll->options.var_act_bias);
if (qdpll->options.no_unit_mtf)
fprintf (stderr, "--no-unit-mtf=1\n");
else
fprintf (stderr, "--no-unit-mtf=0\n");
if (qdpll->options.no_res_mtf)
fprintf (stderr, "--no-res-mtf=1\n");
else
fprintf (stderr, "--no-res-mtf=0\n");
if (qdpll->options.dh == QDPLL_DH_SIMPLE)
fprintf (stderr, "--dec-heur=simple\n");
else if (qdpll->options.dh == QDPLL_DH_SDCL)
fprintf (stderr, "--dec-heur=sdcl\n");
else if (qdpll->options.dh == QDPLL_DH_QTYPE)
fprintf (stderr, "--dec-heur=qtype\n");
else if (qdpll->options.dh == QDPLL_DH_RANDOM)
fprintf (stderr, "--dec-heur=rand\n");
else if (qdpll->options.dh == QDPLL_DH_FALSIFY)
fprintf (stderr, "--dec-heur=falsify\n");
else if (qdpll->options.dh == QDPLL_DH_SATISFY)
fprintf (stderr, "--dec-heur=satisfy\n");
else
assert (0);
fprintf (stderr, "--seed=%d\n", qdpll->options.seed);
if (qdpll->options.depman_simple)
fprintf (stderr, "--dep-man=simple\n");
if (qdpll->options.depman_qdag)
fprintf (stderr, "--dep-man=qdag\n");
fprintf (stderr, "--max-dec=%d\n", qdpll->options.max_dec);
fprintf (stderr, "--max-secs=%d\n", qdpll->options.max_secs);
fprintf (stderr, "--max-btracks=%d\n", qdpll->options.max_btracks);
fprintf (stderr, "--max-space=%d\n", qdpll->options.max_space);
fprintf (stderr, "--soft-max-space=%d\n", qdpll->options.soft_max_space);
fprintf (stderr, "--lclauses-resize-value=%f\n",
qdpll->options.lclauses_resize_value);
fprintf (stderr, "--lcubes-resize-value=%f\n",
qdpll->options.lcubes_resize_value);
fprintf (stderr, "--lclauses-init-size=%f\n",
qdpll->options.lclauses_init_size);
fprintf (stderr, "--lcubes-init-size=%f\n",
qdpll->options.lcubes_init_size);
fprintf (stderr, "--lclauses-min-init-size=%d\n",
qdpll->options.lclauses_min_init_size);
fprintf (stderr, "--lclauses-max-init-size=%d\n",
qdpll->options.lclauses_max_init_size);
fprintf (stderr, "--lcubes-min-init-size=%d\n",
qdpll->options.lcubes_min_init_size);
fprintf (stderr, "--lcubes-max-init-size=%d\n",
qdpll->options.lcubes_max_init_size);
fprintf (stderr, "--lclauses-delfactor=%f\n",
qdpll->options.lclauses_delfactor);
fprintf (stderr, "--lcubes-delfactor=%f\n",
qdpll->options.lcubes_delfactor);
fprintf (stderr, "--var-act-inc=%f\n", qdpll->options.var_act_inc);
fprintf (stderr, "--var-act-dec-ifactor=%f\n",
qdpll->options.var_act_decay_ifactor);
fprintf (stderr, "--irestart-dist-init=%u\n",
qdpll->options.irestart_dist_init);
fprintf (stderr, "--irestart-dist-inc=%u\n",
qdpll->options.irestart_dist_inc);
fprintf (stderr, "--orestart-dist-init=%u\n",
qdpll->options.orestart_dist_init);
fprintf (stderr, "--orestart-dist-inc=%u\n",
qdpll->options.orestart_dist_inc);
if (qdpll->options.no_lin_irestart_inc)
fprintf (stderr, "--no-lin-irestart-inc=1\n");
else
fprintf (stderr, "--no-lin-irestart-inc=0\n");
if (qdpll->options.no_lin_orestart_inc)
fprintf (stderr, "--no-lin-orestart-inc=1\n");
else
fprintf (stderr, "--no-lin-orestart-inc=0\n");
if (qdpll->options.no_lin_lcubes_inc)
fprintf (stderr, "--no-lin-lcubes-inc=1\n");
else
fprintf (stderr, "--no-lin-lcubes-inc=0\n");
if (qdpll->options.no_lin_lclauses_inc)
fprintf (stderr, "--no-lin-lclauses-inc=1\n");
else
fprintf (stderr, "--no-lin-lclauses-inc=0\n");
if (qdpll->options.trace)
{
fprintf (stderr, "--trace=%s\n",
qdpll->options.trace == TRACE_QRP ? "qrp" : "bqrp");
}
else
fprintf (stderr, "--trace=0\n");
if (qdpll->options.no_qpup_cdcl)
fprintf (stderr, "--no-qpup-cdcl=1\n");
else
fprintf (stderr, "--no-qpup-cdcl=0\n");
if (qdpll->options.no_qpup_sdcl)
fprintf (stderr, "--no-qpup-sdcl=1\n");
else
fprintf (stderr, "--no-qpup-sdcl=0\n");
if (qdpll->options.traditional_qcdcl)
fprintf (stderr, "--traditional-qcdcl=1\n");
else
fprintf (stderr, "--traditional-qcdcl=0\n");
if (qdpll->options.no_lazy_qpup)
fprintf (stderr, "--no-lazy-qpup=1\n");
else
fprintf (stderr, "--no-lazy-qpup=0\n");
if (qdpll->options.bump_vars_once)
fprintf (stderr, "--bump-vars-once=1\n");
else
fprintf (stderr, "--bump-vars-once=0\n");
if (qdpll->options.long_dist_res)
fprintf (stderr, "--long-dist-res=1\n");
else
fprintf (stderr, "--long-dist-res=0\n");
if (qdpll->options.incremental_use)
fprintf (stderr, "--incremental-use=1\n");
else
fprintf (stderr, "--incremental-use=0\n");
#if QBCP_QBCE_DYNAMIC_ASSIGNMENT_ELIM_UNIV_VARS
if (qdpll->options.elim_univ_dynamic_switch)
fprintf (stderr, "--elim-univ-dynamic-switch=1\n");
else
fprintf (stderr, "--elim-univ-dynamic-switch=0\n");
fprintf (stderr, "--elim-univ-dynamic-switch-delay=%d\n",
qdpll->options.elim_univ_dynamic_switch_delay);
fprintf (stderr, "--elim-univ-dynamic-success-threshold=%d\n",
qdpll->options.elim_univ_dynamic_success_threshold);
#endif
if (qdpll->options.qbcp_qbce_watcher_list_mtf)
fprintf (stderr, "--qbcp-qbce-watcher-list-mtf=1\n");
else
fprintf (stderr, "--qbcp-qbce-watcher-list-mtf=0\n");
fprintf (stderr, "--qbce-witness-max-occs=%d\n",
qdpll->options.qbcp_qbce_find_witness_max_occs);
fprintf (stderr, "--qbce-max-clause-size=%d\n",
qdpll->options.qbcp_qbce_max_clause_size);
fprintf (stderr, "--qbce-preprocessing=%d\n", qdpll->options.qbce_preprocessing);
fprintf (stderr, "--qbce-inprocessing=%d\n", qdpll->options.qbce_inprocessing);
fprintf (stderr, "--no-qbce-dynamic=%d\n", qdpll->options.no_qbce_dynamic);
fprintf (stderr, "--empty-formula-watching=%d\n", qdpll->options.empty_formula_watching);
fprintf (stderr, "----------------------------\n\n");
}
static unsigned int
get_highest_univ_dec_level (QDPLL * qdpll)
{
Var *var = 0, *vars = qdpll->pcnf.vars;
VarID *p, *e;
for (p = qdpll->assigned_vars_top - 1, e = qdpll->assigned_vars; e <= p;
p--)
{
var = VARID2VARPTR (vars, *p);
/* When using SDCL, then will never have right branches on
decisions due to asserting clauses. */
if ((var->mode == QDPLL_VARMODE_LBRANCH ||
var->mode == QDPLL_VARMODE_RBRANCH)
&& QDPLL_SCOPE_FORALL (var->scope))
break;
}
/* Must handle pure existential formula. */
if (!var || var->decision_level == 0)
return 1;
else
return var->decision_level;
}
static int
check_and_restart (QDPLL * qdpll, unsigned int backtrack_level)
{
if (backtrack_level > 1 && qdpll->state.irestart_dist &&
(qdpll->state.num_backtracks -
qdpll->state.last_backtracks) >= qdpll->state.irestart_dist)
{
if (qdpll->options.no_lin_irestart_inc)
qdpll->state.irestart_dist +=
((1 +
qdpll->state.num_inner_restarts) *
qdpll->options.irestart_dist_inc);
else
qdpll->state.irestart_dist += qdpll->options.irestart_dist_inc;
qdpll->state.num_restarts++;
qdpll->state.last_backtracks = qdpll->state.num_backtracks;
qdpll->state.num_inner_restarts++;
unsigned int highest_univ = get_highest_univ_dec_level (qdpll);
unsigned int btlevel = 1;
btlevel =
backtrack_level < highest_univ ? backtrack_level : highest_univ;
#if COMPUTE_STATS
qdpll->stats.total_restart_dlevels += qdpll->state.decision_level;
qdpll->stats.total_restart_at_dlevels += btlevel - 1;
qdpll->stats.total_restart_at_dist +=
(qdpll->state.decision_level - btlevel) + 1;
#endif
backtrack (qdpll, btlevel);
if (btlevel == backtrack_level)
push_forced_assignment (qdpll);
else
{
assert (!qdpll->state.restarting);
qdpll->state.restarting = 1;
memset (&(qdpll->state.forced_assignment), 0,
sizeof (qdpll->state.forced_assignment));
}
if (qdpll->options.verbosity > 0)
fprintf (stderr, "Restart %d, bt %d, inc %d, next dist %d\n",
qdpll->state.num_inner_restarts, qdpll->state.num_backtracks,
qdpll->options.irestart_dist_inc,
qdpll->state.irestart_dist);
/* Check outer limits. */
if (qdpll->state.orestart_dist &&
qdpll->state.num_inner_restarts >= qdpll->state.orestart_dist)
{
if (qdpll->options.no_lin_orestart_inc)
qdpll->state.orestart_dist +=
((1 +
qdpll->state.num_restart_resets) *
qdpll->options.orestart_dist_inc);
else
qdpll->state.orestart_dist += qdpll->options.orestart_dist_inc;
qdpll->state.irestart_dist = qdpll->options.irestart_dist_init;
qdpll->state.num_inner_restarts = 0;
qdpll->state.num_restart_resets++;
if (qdpll->options.verbosity > 0)
fprintf (stderr, "Reset restarts, o-inc %d, next reset %d\n",
qdpll->options.orestart_dist_inc,
qdpll->state.orestart_dist);
}
return 1;
}
return 0;
}
static void
reset_occ_lists (QDPLL * qdpll)
{
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
if (p->id)
{
QDPLL_RESET_STACK (p->pos_occ_clauses);
QDPLL_RESET_STACK (p->neg_occ_clauses);
QDPLL_RESET_STACK (p->pos_occ_cubes);
QDPLL_RESET_STACK (p->neg_occ_cubes);
}
}
}
static void
setup_occ_lists_aux (QDPLL * qdpll, Constraint * c)
{
const int is_cube = c->is_cube;
Var *vars = qdpll->pcnf.vars;
QDPLLMemMan *mm = qdpll->mm;
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (vars, lit);
BLitsOcc blit = { lit, c };
if (!is_cube)
{
if (QDPLL_LIT_NEG (lit))
QDPLL_PUSH_STACK (mm, var->neg_occ_clauses, blit);
else
QDPLL_PUSH_STACK (mm, var->pos_occ_clauses, blit);
}
else
{
blit.constraint = BLIT_MARK_PTR (blit.constraint);
if (QDPLL_LIT_NEG (lit))
QDPLL_PUSH_STACK (mm, var->neg_occ_cubes, blit);
else
QDPLL_PUSH_STACK (mm, var->pos_occ_cubes, blit);
}
}
}
static void
setup_occ_lists (QDPLL * qdpll)
{
#ifndef NDEBUG
/* All occ-lists must be properly reset. */
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
assert (!p->id || (QDPLL_EMPTY_STACK (p->neg_occ_clauses) &&
QDPLL_EMPTY_STACK (p->pos_occ_clauses) &&
QDPLL_EMPTY_STACK (p->neg_occ_cubes) &&
QDPLL_EMPTY_STACK (p->pos_occ_cubes)));
#endif
Constraint *c;
ConstraintList constraints = qdpll->pcnf.clauses;
for (c = constraints.first; c; c = c->link.next)
setup_occ_lists_aux (qdpll, c);
if (qdpll->options.no_spure_literals && !qdpll->options.no_pure_literals)
{
constraints = qdpll->pcnf.learnt_clauses;
for (c = constraints.first; c; c = c->link.next)
setup_occ_lists_aux (qdpll, c);
constraints = qdpll->pcnf.learnt_cubes;
for (c = constraints.first; c; c = c->link.next)
setup_occ_lists_aux (qdpll, c);
}
}
static int
check_limits_and_abort(QDPLL *qdpll)
{
assert (!qdpll->options.limit_set || (qdpll->options.max_dec || qdpll->options.max_secs || qdpll->options.max_btracks));
assert (!(qdpll->options.max_dec || qdpll->options.max_secs || qdpll->options.max_btracks) || qdpll->options.limit_set);
if (!qdpll->options.limit_set)
return 0;
else
{
if ((qdpll->options.max_dec && qdpll->state.num_decisions > qdpll->options.max_dec) ||
(qdpll->options.max_btracks && qdpll->state.num_backtracks > qdpll->options.max_btracks) ||
(qdpll->options.max_secs &&
(time_stamp() - qdpll->state.solving_start_time) > qdpll->options.max_secs))
return 1;
else
return 0;
}
}
static void
assume_aux (QDPLL *qdpll, LitID id)
{
QDPLL_ABORT_QDPLL(qdpll->state.decision_level != 0,
"Expecting decision-level == 0!");
QDPLL_ABORT_QDPLL(id == 0,
"Expecting non-zero variable ID!");
QDPLL_ABORT_QDPLL(qdpll->assumption_lits_constraint,
"Assumption subset not cleaned up properly!");
Var *var = LIT2VARPTR(qdpll->pcnf.vars, id);
QDPLLAssignment assignment = id < 0 ?
QDPLL_ASSIGNMENT_FALSE : QDPLL_ASSIGNMENT_TRUE;
QDPLLVarMode mode = QDPLL_VARMODE_ASSUMED;
qdpll->state.assumptions_given = 1;
push_assigned_variable (qdpll, var, assignment, mode);
}
static int
clause_has_popped_off_var (QDPLL *qdpll, Constraint *c);
static void
assign_frame_selector_vars_aux (QDPLL *qdpll, VarIDStack *stack,
const int cur_used_internal_vars)
{
assert (stack == &qdpll->state.cur_used_internal_vars ||
stack == &qdpll->state.popped_off_internal_vars);
assert (!cur_used_internal_vars || stack == &qdpll->state.cur_used_internal_vars);
assert (cur_used_internal_vars || stack != &qdpll->state.cur_used_internal_vars);
VarID *p, *e;
for (p = stack->start, e = stack->top; p < e; p++)
{
VarID id = *p;
if (id)
{
assert (id >= qdpll->pcnf.size_user_vars);
assert (id < qdpll->pcnf.size_vars);
Var *var = VARID2VARPTR(qdpll->pcnf.vars, id);
if (var->id)
{
assert (var->is_internal);
/* Stack 'qdpll->state.popped_off_internal_vars' must not
contain selector variables of deactivated groups. */
assert (cur_used_internal_vars || !var->is_cur_inactive_group_selector);
assert (!cur_used_internal_vars || var->clause_group_id ==
(unsigned int)(p - qdpll->state.cur_used_internal_vars.start + 1));
/* Set internal variable to 'false' ('true') to enable (disable)
clauses where that variable occurs. */
if (cur_used_internal_vars && !var->is_cur_inactive_group_selector)
assume_aux (qdpll, -id);
else
assume_aux (qdpll, id);
}
}
}
}
/* Depending on currently and previously used internal IDs, set the respective
variables so that clauses associated to popped off frames are satisfied and
hence are actually disabled. All internal variables always appear positively
in clauses, hence we set them to true to disable the clauses. */
static void
assign_frame_selector_variables (QDPLL *qdpll)
{
assign_frame_selector_vars_aux (qdpll, &qdpll->state.cur_used_internal_vars, 1);
assign_frame_selector_vars_aux (qdpll, &qdpll->state.popped_off_internal_vars, 0);
}
static void
check_and_import_cover_sets (QDPLL *qdpll)
{
if (qdpll->options.verbosity >= 1)
fprintf (stderr, "Start: check and import %d cover sets, %d newly added clauses.\n",
qdpll->cover_sets.cnt, qdpll->state.clauses_added_since_cube_check);
QDPLL_ABORT_QDPLL (qdpll->cover_sets.cnt > qdpll->state.lcubes_size,
"Unexpected number of cover sets.");
unsigned int original_cnt = qdpll->cover_sets.cnt;
unsigned int imported = 0;
const unsigned int table_size = qdpll->pcnf.size_vars + 1;
char * assignment_by_cover_set = (char *) qdpll_malloc (qdpll->mm, table_size * sizeof(char));
/* Check all collected cover sets. */
Constraint *c, *n;
for (c = qdpll->cover_sets.first; c; c = n)
{
n = c->link.next;
/* Store assignment represented by cover set in auxiliary assignment table. */
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "Checking cover set: ");
print_constraint (qdpll, c);
}
memset (assignment_by_cover_set, 0, table_size * sizeof(char));
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
assert (QDPLL_VAR_HAS_OCCS(var));
if (QDPLL_LIT_POS(lit))
assignment_by_cover_set[var->id] = QDPLL_ASSIGNMENT_TRUE;
else
assignment_by_cover_set[var->id] = QDPLL_ASSIGNMENT_FALSE;
}
/* Check if cube assignment satisfies each newly added clause in the
current CNF. */
unsigned int cnt = qdpll->state.clauses_added_since_cube_check;
QDPLL_ABORT_QDPLL ((cnt == 0 || cnt > qdpll->pcnf.clauses.cnt),
"Unexpected value of 'clauses_added_since_cube_check'.");
Constraint *cl;
for (cl = qdpll->pcnf.clauses.last; cnt; cnt--, cl = cl->link.prev)
{
assert (cl);
/* Since we start at end of clause list and new clauses are added at
the end, we cannot see satisfied clauses (at this point clauses
could be satisfied only by selector variables of popped off
frames.) */
assert (!is_clause_satisfied (qdpll, cl));
LitID *p, *e;
for (p = cl->lits, e = p + cl->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
if ((QDPLL_LIT_POS(lit) && assignment_by_cover_set[var->id] == QDPLL_ASSIGNMENT_TRUE) ||
(QDPLL_LIT_NEG(lit) && assignment_by_cover_set[var->id] == QDPLL_ASSIGNMENT_FALSE))
break;
}
/* Here, 'p != e' iff the clause is satisfied by the cover set. If
'p == e' then the clause is not satisfied and hence the cover set
must not be imported. */
if (p == e)
break;
}
assert (!cnt || cl);
UNLINK (qdpll->cover_sets, c, link);
if (cnt)
{
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "Cover set does not cover clause: ");
print_constraint (qdpll, cl);
}
delete_constraint (qdpll, c);
}
else
{
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "Cover set covers all clauses: ");
print_constraint (qdpll, c);
}
/* Keep copy of cover set in list for upcoming. */
Constraint *cover_set_copy = create_constraint (qdpll, c->num_lits, 1);
memcpy (cover_set_copy->lits, c->lits, c->num_lits * sizeof (LitID));
assert (cover_set_copy->is_cube);
cover_set_copy->learnt = 1;
/* If the list of cover sets is full then delete the least-recently added cover set.*/
if (qdpll->cover_sets.cnt == COLLECT_FULL_COVER_SETS_MULT_LIMIT * qdpll->state.lcubes_size)
store_cover_set_aux (qdpll);
LINK_FIRST (qdpll->cover_sets, cover_set_copy, link);
assert (qdpll->cover_sets.cnt <= COLLECT_FULL_COVER_SETS_MULT_LIMIT * qdpll->state.lcubes_size);
/* Import cover set only if limit of learned cubes has not been
exceeded. */
if (qdpll->pcnf.learnt_cubes.cnt < qdpll->state.lcubes_size)
{
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "Importing cover set.\n");
assert (c->is_cube);
assert (c->learnt);
#ifndef NDEBUG
assert_lits_sorted (qdpll, c->lits, c->lits + c->num_lits);
#endif
top_level_reduce_constraint_simple (qdpll, c, QDPLL_QTYPE_FORALL);
LINK_FIRST (qdpll->pcnf.learnt_cubes, c, link);
imported++;
}
else
{
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "Discarding cover set, cube limit reached.\n");
delete_constraint (qdpll, c);
}
}
}
qdpll_free (qdpll->mm, assignment_by_cover_set, table_size * sizeof(char));
if (qdpll->options.verbosity >= 1)
fprintf (stderr, "End: check and import cover sets, %d cover sets remaining, imported %d of original %d ( %f ).\n",
qdpll->cover_sets.cnt, imported, original_cnt, original_cnt ? (imported / (float)original_cnt) : 0);
}
static void
discard_all_learned_cubes (QDPLL *qdpll)
{
if (qdpll->options.verbosity >= 1)
fprintf (stderr, "Incremental solving cube check: discarding all %d learned cubes.\n",
qdpll->pcnf.learnt_cubes.cnt);
/* Discard all learned cubes. */
check_resize_learnt_constraints_aux (qdpll, &qdpll->pcnf.learnt_cubes,
UINT_MAX, QDPLL_QTYPE_FORALL);
}
static void
discard_all_collected_cover_sets (QDPLL *qdpll)
{
if (qdpll->options.verbosity >= 1)
fprintf (stderr, "Incremental solving cube check: discarding all %d collected cover sets.\n",
qdpll->cover_sets.cnt);
Constraint *c, *n;
for (c = qdpll->cover_sets.first; c; c = n)
{
n = c->link.next;
UNLINK (qdpll->cover_sets, c, link);
delete_constraint (qdpll, c);
}
}
static void
check_and_delete_cubes_incremental (QDPLL *qdpll)
{
discard_all_learned_cubes (qdpll);
QDPLL_ABORT_QDPLL (!qdpll->state.pending_cubes_check,
"Unexpected call of cube checking.");
QDPLL_ABORT_QDPLL (qdpll->state.clauses_added_since_cube_check == 0,
"Unexpected call of cube checking.");
check_and_import_cover_sets (qdpll);
/* The flag 'qdpll->state.pending_cubes_check' is set to true
each time a new clause is added. */
qdpll->state.pending_cubes_check = 0;
qdpll->state.clauses_added_since_cube_check = 0;
}
static LitID
find_selector_literal (QDPLL *qdpll, Constraint *c)
{
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
if (var->is_internal)
return lit;
}
return 0;
}
static unsigned int
count_selector_literals (QDPLL *qdpll, Constraint *c)
{
unsigned int result = 0;
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
if (var->is_internal)
result++;
}
return result;
}
/* Delete clauses containing popped off variables. These clauses are always
satisfied by the popped off variables. */
static void
cleanup_popped_off_clauses (QDPLL *qdpll, ConstraintList *clauses, const int orig_clauses)
{
ConstraintPtrStack clauses_to_be_deleted;
QDPLL_INIT_STACK(clauses_to_be_deleted);
VarPtrStack occ_list_sweep_vars;
QDPLL_INIT_STACK(occ_list_sweep_vars);
Constraint *c, *n;
for (c = clauses->first; c; c = n)
{
n = c->link.next;
#ifndef NDEBUG
assert_lits_sorted (qdpll, c->lits, c->lits + c->num_lits);
#endif
assert (!c->is_cube);
assert (!orig_clauses || !c->learnt);
assert (orig_clauses || c->learnt);
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
if (var->mark0)
{
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "Deleting popped off clause:");
print_constraint (qdpll, c);
}
assert (var->is_internal);
if (orig_clauses)
{
assert (!c->deleted);
c->deleted = 1;
QDPLL_PUSH_STACK(qdpll->mm, clauses_to_be_deleted, c);
}
else
{
UNLINK (*clauses, c, link);
delete_constraint (qdpll, c);
}
break;
}
}
}
if (orig_clauses)
{
while (!QDPLL_EMPTY_STACK(clauses_to_be_deleted))
{
c = QDPLL_POP_STACK(clauses_to_be_deleted);
assert (c->deleted);
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
/* Remove pointer to 'c' from occ-lists. */
if (var->is_internal)
{
assert (var->mark0);
assert (!QDPLL_VAR_HAS_NEG_OCCS(var));
cleanup_constraint_sweep_occs (qdpll, &(var->pos_occ_clauses));
}
else if (QDPLL_LIT_NEG(lit))
{
if (!var->mark0)
{
/* Mark negative sweep done. */
cleanup_constraint_sweep_occs (qdpll, &(var->neg_occ_clauses));
var->mark0 = 1;
if (!var->mark1)
QDPLL_PUSH_STACK(qdpll->mm, occ_list_sweep_vars, var);
}
}
else
{
assert (QDPLL_LIT_POS(lit));
if (!var->mark1)
{
/* Mark positive sweep done. */
cleanup_constraint_sweep_occs (qdpll, &(var->pos_occ_clauses));
var->mark1 = 1;
if (!var->mark0)
QDPLL_PUSH_STACK(qdpll->mm, occ_list_sweep_vars, var);
}
}
}
UNLINK (*clauses, c, link);
delete_constraint (qdpll, c);
}
/* Unmark swept variables. */
while (!QDPLL_EMPTY_STACK(occ_list_sweep_vars))
{
Var *var = QDPLL_POP_STACK(occ_list_sweep_vars);
assert (var->mark0 || var->mark1);
var->mark0 = var->mark1 = 0;
}
}
QDPLL_DELETE_STACK(qdpll->mm, occ_list_sweep_vars);
QDPLL_DELETE_STACK(qdpll->mm, clauses_to_be_deleted);
}
static void
cleanup_popped_off_cubes_aux (QDPLL *qdpll, Constraint *cube,
LitIDStack *remaining_lits_sorted)
{
assert (QDPLL_EMPTY_STACK (*remaining_lits_sorted));
LitID *p, *e;
for (p = cube->lits, e = p + cube->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
/* If a cube was learned under deactivation of clause groups: a cube may
contain internal literals which either have been popped off or which are
still on stack 'qdpll->state.cur_used_internal_vars'. However, only
variables which were popped off must be deleted from cubes since these
variables are actually deleted. Variables on stack
'qdpll->state.cur_used_internal_vars' must be kept in the cube. */
assert (!var->mark0 || var->is_internal);
assert (!var->mark0 || !var->is_cur_used_internal_var);
assert ((var->mark0 || !var->is_internal) || var->is_cur_used_internal_var);
/* Collect the literals which remain in the cube after cleanup,
i.e. literals of variables which have not been marked to be deleted. */
if (!var->mark0 && QDPLL_VAR_HAS_OCCS(var))
QDPLL_PUSH_STACK(qdpll->mm, *remaining_lits_sorted, lit);
}
/* Avoid needless work if no literal was deleted. */
if (QDPLL_COUNT_STACK(*remaining_lits_sorted) < cube->num_lits)
{
/* Store remaining literals in 'c', in sorted order as they were collected. */
LitID *dest = cube->lits;
for (p = remaining_lits_sorted->start, e = remaining_lits_sorted->top; p < e; p++)
{
assert (dest < cube->lits + cube->num_lits);
assert (QDPLL_VAR_HAS_OCCS(LIT2VARPTR(qdpll->pcnf.vars, *p)));
*dest++ = *p;
}
cube->num_lits = QDPLL_COUNT_STACK(*remaining_lits_sorted);
}
}
/* Delete literals of popped off variables from cubes. This is sound because
we also delete clauses containing such literals. These clauses are always
satisfied by the popped off variables.
The last parameter indicates whether we do existential reduction or not. We do
it for learned cubes but NOT for collected cover sets. Otherwise, these
reduced cover sets will likely never satisfy the whole CNF any more. */
static void
cleanup_popped_off_cubes (QDPLL *qdpll, ConstraintList *cubes, const int do_exist_red)
{
LitIDStack remaining_lits_sorted;
QDPLL_INIT_STACK (remaining_lits_sorted);
Constraint *c;
for (c = cubes->first; c; c = c->link.next)
{
assert (c->is_cube);
QDPLL_RESET_STACK(remaining_lits_sorted);
cleanup_popped_off_cubes_aux (qdpll, c, &remaining_lits_sorted);
/* We might have deleted a universal variable from 'c', hence must carry
out existential reduction. */
if (do_exist_red)
top_level_reduce_constraint_simple (qdpll, c, QDPLL_QTYPE_FORALL);
}
QDPLL_DELETE_STACK (qdpll->mm, remaining_lits_sorted);
}
static void
cleanup_popped_off_vars_from_default_scope (QDPLL *qdpll)
{
VarID *p, *e;
for (p = qdpll->pcnf.scopes.first->vars.start,
e = qdpll->pcnf.scopes.first->vars.top; p < e; p++)
{
VarID id = *p;
Var *var = VARID2VARPTR(qdpll->pcnf.vars, id);
if (var->mark0)
{
*p = QDPLL_POP_STACK(qdpll->pcnf.scopes.first->vars);
p--;
e--;
}
}
}
static void
cleanup_popped_off_vars (QDPLL *qdpll)
{
#ifndef NDEBUG
do {
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
assert (!p->mark0);
assert (!p->mark1);
}
} while (0);
#endif
/* Mark popped off variables for later cleanup of learned
constraints. */
VarID *p, *e;
for (p = qdpll->state.popped_off_internal_vars.start,
e = qdpll->state.popped_off_internal_vars.top; p < e; p++)
{
VarID id = *p;
assert (id);
assert (id >= qdpll->pcnf.size_user_vars);
assert (id < qdpll->pcnf.size_vars);
Var *var = VARID2VARPTR(qdpll->pcnf.vars, id);
/* NOTE: we also mark no-occ variables with 'var->id == 0' (can be due
to empty frames added by the user.) */
assert (!var->id || var->is_internal);
assert (!var->id || !var->is_cur_used_internal_var);
assert (!var->id || !var->is_cur_inactive_group_selector);
assert (!var->mark0);
var->mark0 = 1;
}
/* Clean up clauses with occurrences of popped off variables. */
cleanup_popped_off_clauses (qdpll, &qdpll->pcnf.clauses, 1);
if (qdpll->options.empty_formula_watching)
{
/* Update BLitsOccs for empty formula watching. Original clauses may have
been deleted. */
update_empty_formula_watcher_toggle_var_marks (qdpll, qdpll->empty_formula_watcher, 0);
qdpll->empty_formula_watcher = 0;
qdpll->state.empty_formula_watcher_scheduled_update = 1;
QDPLL_RESET_STACK (qdpll->empty_formula_watching_blit_occs);
Constraint *c;
for (c = qdpll->pcnf.clauses.first; c; c = c->link.next)
{
assert (c->num_lits > 0);
assert (c->lits[0]);
BLitsOcc occ = {c->lits[0], c};
QDPLL_PUSH_STACK (qdpll->mm, qdpll->empty_formula_watching_blit_occs, occ);
}
assert (qdpll->pcnf.clauses.cnt ==
(unsigned int) QDPLL_COUNT_STACK (qdpll->empty_formula_watching_blit_occs));
}
cleanup_popped_off_clauses (qdpll, &qdpll->pcnf.learnt_clauses, 0);
/* Clean up cubes with occurrences of popped off variables. */
cleanup_popped_off_cubes (qdpll, &qdpll->pcnf.learnt_cubes, 1);
cleanup_popped_off_cubes (qdpll, &qdpll->cover_sets, 0);
/* Remove popped off variable from default scope. */
cleanup_popped_off_vars_from_default_scope (qdpll);
/* Clean up popped off variables on priority queue. */
for (p = qdpll->state.popped_off_internal_vars.start,
e = qdpll->state.popped_off_internal_vars.top; p < e; p++)
{
VarID id = *p;
assert (id);
assert (id >= qdpll->pcnf.size_user_vars);
assert (id < qdpll->pcnf.size_vars);
Var *var = VARID2VARPTR(qdpll->pcnf.vars, id);
QDPLL_RESET_STACK(var->neg_occ_clauses);
QDPLL_RESET_STACK(var->pos_occ_clauses);
assert (var->mark0);
if (var->id)
{
assert (var->is_internal);
if (var->priority_pos != QDPLL_INVALID_PQUEUE_POS)
var_pqueue_remove_elem (qdpll, var->priority_pos);
reset_variable (qdpll, var);
}
var->mark0 = 0;
}
QDPLL_RESET_STACK(qdpll->state.popped_off_internal_vars);
qdpll->state.popped_off_orig_clause_cnt = 0;
#ifndef NDEBUG
do {
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
assert (!p->mark0);
assert (!p->mark1);
}
} while (0);
#endif
}
static void
qdpll_gc_aux (QDPLL *qdpll, const int called_by_user)
{
QDPLL_ABORT_QDPLL (!qdpll->state.assumptions_given && count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
if (qdpll->options.verbosity >= 1 && qdpll->state.popped_off_orig_clause_cnt > 0)
fprintf (stderr, "Cleanup %d popped off clauses, %d original clauses.\n",
qdpll->state.popped_off_orig_clause_cnt, qdpll->pcnf.clauses.cnt);
cleanup_popped_off_vars (qdpll);
/* Fix: must import user-given variables (if necessary), because otherwise
they will not be deleted. The deletion function for no-occ-vars in
'clean_up_formula' goes over INTERNAL scopes only. Hence variables will not
be deleted if they do not appear on internal scope. */
if (called_by_user)
import_user_scopes (qdpll);
/* Deleting popped variables and clauses. Further, cleanup user variables
which have NO occurrences and remove empty user scopes. */
clean_up_formula (qdpll, called_by_user);
assert (qdpll->state.popped_off_orig_clause_cnt == 0);
assert (QDPLL_COUNT_STACK(qdpll->state.popped_off_internal_vars) == 0);
}
static void
assign_user_given_assumptions (QDPLL *qdpll)
{
LitID *p, *e;
for (p = qdpll->user_given_assumptions.start,
e = qdpll->user_given_assumptions.top;
p < e; p++)
{
LitID assumption = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, assumption);
QDPLL_ABORT_QDPLL(QDPLL_VAR_ASSIGNED(var), "must not assume variable multiple times!");
/* Assign a variable as assumption only if it does occur in clauses. */
if (QDPLL_VAR_HAS_OCCS (var))
assume_aux (qdpll, assumption);
}
QDPLL_RESET_STACK(qdpll->user_given_assumptions);
}
/* Check existential literals in 'blocked_clause' and reschedule pairs of
'blocked_clause' and existential literal for QBCE if these existential
currently do not have a witness set. This is necessary since a clause may be
blocked by QBCE preprocessing, after which QBCE aborts and witnesses for the
remaining existentials in the clause are not computed. */
static void
qbcp_qbce_reschedule_for_missing_witnesses (QDPLL *qdpll,
Constraint *blocked_clause,
LitID blocking_lit)
{
if (qdpll->options.verbosity >= 2)
fprintf (stderr, " rescheduling for missing witnesses\n");
assert (blocking_lit);
/* Mark literals which have a witness set for 'blocking_clause'. */
QBCENonBlockedWitness *wp, *we;
for (wp = blocked_clause->qbcp_qbce_witness_clauses.start,
we = blocked_clause->qbcp_qbce_witness_clauses.top;
wp < we; wp++)
{
QBCENonBlockedWitness witness_pair = *wp;
assert (witness_pair.non_blocking_lit);
Var *blocking_var = LIT2VARPTR
(qdpll->pcnf.vars, witness_pair.non_blocking_lit);
assert (!QDPLL_VAR_MARKED (blocking_var));
QDPLL_VAR_POS_MARK (blocking_var);
}
LitID *p, *e;
for (p = blocked_clause->lits, e = p + blocked_clause->num_lits;
p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
/* Check all existential literals in 'blocked_clause' but ignore
'blocking_literal'. */
if (lit != blocking_lit && !var->is_internal && QDPLL_VAR_EXISTS (var))
{
/* If 'lit' does not have a witness then reschedule. Otherwise
unmark variable on the fly. */
if (!QDPLL_VAR_POS_MARKED (var))
{
QBCENonBlockedWitness pair = {lit,
{blocked_clause->num_lits > 0 ?
blocked_clause->lits[0] : 0, blocked_clause},
{QDPLL_INVALID_WATCHER_POS},
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_maybe_blocked_clauses)};
/* Reschedule pair. Note that we push directly to
'qdpll->qbcp_qbce_maybe_blocked_clauses' to avoid pusing pairs
containing the same clause on the auxiliary stack used to track
depending blocked clauses. */
QDPLL_PUSH_STACK(qdpll->mm, qdpll->qbcp_qbce_maybe_blocked_clauses, pair);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " rescheduled blocking lit %d and clause: ", lit);
print_constraint (qdpll, blocked_clause);
}
}
else
{
/* 'lit' has a witness then reschedule if witness is blocked. */
QBCENonBlockedWitness *old_witness_pair_p = qbcp_qbce_find_lit_in_list
(qdpll, &(blocked_clause->qbcp_qbce_witness_clauses), lit);
assert (old_witness_pair_p);
unsigned int witness_offset = old_witness_pair_p -
blocked_clause->qbcp_qbce_witness_clauses.start;
QBCENonBlockedWitness witness_pair =
blocked_clause->qbcp_qbce_witness_clauses.start[witness_offset];
if (witness_pair.blit_occ.constraint->qbcp_qbce_blocked)
{
/* Must set 'offset_in_working_queue' also for entry of clause in notify list. */
witness_pair.blit_occ.constraint->qbcp_qbce_notify_maybe_blocked_clauses.start
[witness_pair.offset.maybe_blocked_clause_in_notify_list].offset_in_working_queue =
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_maybe_blocked_clauses);
QBCENonBlockedWitness pair = {lit,
{blocked_clause->num_lits > 0 ?
blocked_clause->lits[0] : 0, blocked_clause},
{witness_offset},
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_maybe_blocked_clauses)};
QDPLL_PUSH_STACK(qdpll->mm, qdpll->qbcp_qbce_maybe_blocked_clauses, pair);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, " blocked witness -- rescheduled blocking lit %d and clause: ", lit);
print_constraint (qdpll, blocked_clause);
}
}
}
}
QDPLL_VAR_POS_UNMARK (var);
}
#ifndef NDEBUG
/* Check that variables have been properly unmarked. */
for (wp = blocked_clause->qbcp_qbce_witness_clauses.start,
we = blocked_clause->qbcp_qbce_witness_clauses.top;
wp < we; wp++)
{
QBCENonBlockedWitness witness_pair = *wp;
assert (witness_pair.non_blocking_lit);
Var *blocking_var = LIT2VARPTR
(qdpll->pcnf.vars, witness_pair.non_blocking_lit);
assert (!QDPLL_VAR_MARKED (blocking_var));
}
#endif
}
static void
qbcp_qbce_collect_clauses_to_be_rescheduled (QDPLL *qdpll,
ConstraintPtrStack *clauses,
QBCENonBlockedWitnessStack *stack)
{
Constraint **cp, **ce;
for (cp = clauses->start, ce = clauses->top; cp < ce; cp++)
{
Constraint *blocked_clause = *cp;
/* Use 'qbcp_qbce_blocked' mark of clauses to prevent double pushing. */
if (blocked_clause->qbcp_qbce_blocked)
{
assert (blocked_clause->qbcp_qbce_blocking_lit);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "Collecting to reschedule blocking lit %d and clause: ",
blocked_clause->qbcp_qbce_blocking_lit);
print_constraint (qdpll, blocked_clause);
}
/* Must make sure that previously stored witness is removed later. A
witness may be stored even if the clause was found blocked because
we do not remove stored witnesses if a clause later becomes
blocked. */
QBCENonBlockedWitness *old_witness_pair_p = qbcp_qbce_find_lit_in_list
(qdpll, &(blocked_clause->qbcp_qbce_witness_clauses), blocked_clause->qbcp_qbce_blocking_lit);
unsigned int witness_offset = QDPLL_INVALID_WATCHER_POS;
if (old_witness_pair_p)
{
witness_offset = old_witness_pair_p - blocked_clause->qbcp_qbce_witness_clauses.start;
QBCENonBlockedWitness witness_pair = blocked_clause->qbcp_qbce_witness_clauses.start[witness_offset];
/* Must set 'offset_in_working_queue' also for entry of clause in notify list. */
witness_pair.blit_occ.constraint->qbcp_qbce_notify_maybe_blocked_clauses.start
[witness_pair.offset.maybe_blocked_clause_in_notify_list].offset_in_working_queue =
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_maybe_blocked_clauses);
}
QBCENonBlockedWitness pair = {blocked_clause->qbcp_qbce_blocking_lit,
{blocked_clause->num_lits > 0 ?
blocked_clause->lits[0] : 0, blocked_clause},
{witness_offset},
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_maybe_blocked_clauses)};
QDPLL_PUSH_STACK (qdpll->mm, *stack, pair);
qbcp_qbce_reschedule_for_missing_witnesses (qdpll, blocked_clause,
blocked_clause->qbcp_qbce_blocking_lit);
blocked_clause->qbcp_qbce_blocked = 0;
blocked_clause->qbcp_qbce_blocking_lit = 0;
}
else
assert (!blocked_clause->qbcp_qbce_blocking_lit);
}
}
static void
qbcp_qbce_check_blocked_clauses_after_clause_addition (QDPLL *qdpll)
{
assert (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses) == 1);
assert (qdpll->state.decision_level == 0);
QBCENonBlockedWitnessStack clauses_to_be_rescheduled;
QDPLL_INIT_STACK (clauses_to_be_rescheduled);
/* Collect clauses to be rescheduled based on all variables which appear in
newly added input clauses AND which have occurrences containing blocking literals. */
VarID *vp, *ve;
for (vp = qdpll->qbcp_qbce_relevant_vars_in_new_input_clauses.start,
ve = qdpll->qbcp_qbce_relevant_vars_in_new_input_clauses.top; vp < ve; vp++)
{
VarID vid = *vp;
Var *var_in_input_clause = VARID2VARPTR (qdpll->pcnf.vars, vid);
assert (var_in_input_clause->neg_lit_in_new_input_clause ||
var_in_input_clause->pos_lit_in_new_input_clause);
assert (QDPLL_COUNT_STACK (var_in_input_clause->
qbcp_qbce_prepro_neg_blocking_lit_clauses) != 0 ||
QDPLL_COUNT_STACK (var_in_input_clause->
qbcp_qbce_prepro_pos_blocking_lit_clauses) != 0);
ConstraintPtrStack *blocked_occs;
if (var_in_input_clause->neg_lit_in_new_input_clause)
{
qbcp_qbce_collect_clauses_to_be_rescheduled
(qdpll, &var_in_input_clause->qbcp_qbce_prepro_pos_blocking_lit_clauses,
&clauses_to_be_rescheduled);
QDPLL_RESET_STACK (var_in_input_clause->qbcp_qbce_prepro_pos_blocking_lit_clauses);
}
if (var_in_input_clause->pos_lit_in_new_input_clause)
{
qbcp_qbce_collect_clauses_to_be_rescheduled
(qdpll, &var_in_input_clause->qbcp_qbce_prepro_neg_blocking_lit_clauses,
&clauses_to_be_rescheduled);
QDPLL_RESET_STACK (var_in_input_clause->qbcp_qbce_prepro_neg_blocking_lit_clauses);
}
var_in_input_clause->neg_lit_in_new_input_clause =
var_in_input_clause->pos_lit_in_new_input_clause = 0;
}
QDPLL_RESET_STACK (qdpll->qbcp_qbce_relevant_vars_in_new_input_clauses);
/* Reschedule collected clauses and reschedule clauses which are blocked due
to one of the rescheduled clauses. */
QBCENonBlockedWitness pair;
while (!QDPLL_EMPTY_STACK (clauses_to_be_rescheduled))
{
pair = QDPLL_POP_STACK (clauses_to_be_rescheduled);
Constraint *rescheduled_clause = pair.blit_occ.constraint;
/* Marks must have been reset at the time of collecting clauses to be
rescheduled. */
assert (!rescheduled_clause->qbcp_qbce_blocked);
assert (!rescheduled_clause->qbcp_qbce_blocking_lit);
/* Reschedule pair. */
QDPLL_PUSH_STACK(qdpll->mm, qdpll->qbcp_qbce_maybe_blocked_clauses, pair);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "Rescheduled blocking lit %d and clause: ",
pair.non_blocking_lit);
print_constraint (qdpll, rescheduled_clause);
}
LitID *p, *e;
for (p = rescheduled_clause->lits, e = p + rescheduled_clause->num_lits;
p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
/* If var appeared in input clause, then it has been checked already
in loop above. */
assert (!var->neg_lit_in_new_input_clause);
assert (!var->pos_lit_in_new_input_clause);
if (QDPLL_VAR_EXISTS (var))
{
if (QDPLL_LIT_NEG (lit))
{
qbcp_qbce_collect_clauses_to_be_rescheduled
(qdpll, &var->qbcp_qbce_prepro_pos_blocking_lit_clauses,
&clauses_to_be_rescheduled);
QDPLL_RESET_STACK (var->qbcp_qbce_prepro_pos_blocking_lit_clauses);
}
else
{
assert (QDPLL_LIT_POS (lit));
qbcp_qbce_collect_clauses_to_be_rescheduled
(qdpll, &var->qbcp_qbce_prepro_neg_blocking_lit_clauses,
&clauses_to_be_rescheduled);
QDPLL_RESET_STACK (var->qbcp_qbce_prepro_neg_blocking_lit_clauses);
}
}
}
}
ConstraintPtrStack new;
QDPLL_INIT_STACK (new);
/* Traverse clauses blocked by preprocessing and remove those which were
rescheduled. */
Constraint **p, **e;
for (p = qdpll->qbcp_qbce_blocked_clauses.start[0].start,
e = qdpll->qbcp_qbce_blocked_clauses.start[0].top; p < e; p++)
{
Constraint *c = *p;
if (c->qbcp_qbce_blocked)
{
/* Clause is still blocked. */
assert (c->qbcp_qbce_blocking_lit);
QDPLL_PUSH_STACK (qdpll->mm, new, c);
}
else
assert (!c->qbcp_qbce_blocking_lit);
}
ConstraintPtrStack tmp = qdpll->qbcp_qbce_blocked_clauses.start[0];
qdpll->qbcp_qbce_blocked_clauses.start[0] = new;
QDPLL_DELETE_STACK (qdpll->mm, clauses_to_be_rescheduled);
QDPLL_DELETE_STACK (qdpll->mm, tmp);
#if COMPUTE_STATS
qdpll->stats.qbcp_qbce_current_blocked_clauses =
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses.start[0]);
#endif
}
/* Solver's core loop. */
static QDPLLResult
solve (QDPLL * qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll->state.assumptions_given && count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
/* Do not support full pure literals any more since it is much worse than
spurious pure literals in any experiments so far. */
QDPLL_ABORT_QDPLL(qdpll->options.no_spure_literals,
"Full pure literals no longer supported.");
assert (!(qdpll->options.long_dist_res && !qdpll->options.depman_simple));
QDPLL_ABORT_QDPLL(qdpll->options.long_dist_res && !qdpll->options.depman_simple,
"(temporary restriction) Must combine '--long-dist-res' with '--dep-man=simple'!");
if (qdpll->options.qbce_preprocessing ||
qdpll->options.qbce_inprocessing ||
!qdpll->options.no_qbce_dynamic)
{
if (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses.start[0]))
{
qbcp_qbce_check_blocked_clauses_after_clause_addition (qdpll);
}
/* Call QBCE here BEFORE watcher initialization to avoid watching blocked
clauses. Pairs of clauses and maybe blocking
literals have been pushed on the working queue in
'import_original_constraint'. */
assert (!qdpll->state.qbcp_qbce_currently_preprocessing);
qdpll->state.qbcp_qbce_currently_preprocessing = 1;
qbcp_qbce_find_blocked_clauses (qdpll);
qdpll->state.qbcp_qbce_currently_preprocessing = 0;
assert (qdpll->state.decision_level == 0);
assert (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses) == 1);
qbcp_qbce_init_stack_of_stacks_of_next_dec_level
(qdpll, &qdpll->qbcp_qbce_blocked_clauses);
assert (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses) == 2);
assert (!QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses.start[1]));
assert (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_marked_clauses) == 1);
/* No clause must be QBCE-marked at start of solving. */
assert (!QDPLL_COUNT_STACK (qdpll->qbcp_qbce_marked_clauses.start[0]));
}
assert (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_relevant_vars_in_new_input_clauses) == 0);
qdpll->state.solving_start_time = time_stamp();
assert (!qdpll->state.restarting);
QDPLLResult result = QDPLL_RESULT_UNKNOWN;
QDPLLSolverState state = QDPLL_SOLVER_STATE_UNDEF;
unsigned int backtrack_level;
Var *decision_var;
QDPLLAssignment assignment;
QDPLLDepManGeneric *dm = qdpll->dm;
if (qdpll->options.lclauses_init_size == 0)
{
if (qdpll->options.lclauses_min_init_size <= qdpll->pcnf.clauses.cnt &&
qdpll->pcnf.clauses.cnt <= qdpll->options.lclauses_max_init_size)
qdpll->options.lclauses_init_size = qdpll->pcnf.clauses.cnt;
else if (qdpll->pcnf.clauses.cnt <
qdpll->options.lclauses_min_init_size)
qdpll->options.lclauses_init_size =
qdpll->options.lclauses_min_init_size;
else
qdpll->options.lclauses_init_size =
qdpll->options.lclauses_max_init_size;
}
if (qdpll->options.lcubes_init_size == 0)
{
if (qdpll->options.lcubes_min_init_size <= qdpll->pcnf.clauses.cnt &&
qdpll->pcnf.clauses.cnt <= qdpll->options.lcubes_max_init_size)
qdpll->options.lcubes_init_size = qdpll->pcnf.clauses.cnt;
else if (qdpll->pcnf.clauses.cnt < qdpll->options.lcubes_min_init_size)
qdpll->options.lcubes_init_size = qdpll->options.lcubes_min_init_size;
else
qdpll->options.lcubes_init_size = qdpll->options.lcubes_max_init_size;
}
/* For incremental solving / under assumptions: just keep current sizes of
learnt clauses and cubes. */
if (qdpll->state.lclauses_size == 0)
qdpll->state.lclauses_size = qdpll->options.lclauses_init_size;
if (qdpll->pcnf.learnt_cubes.cnt == 0)
qdpll->state.lcubes_size = qdpll->options.lcubes_init_size;
QDPLL_ABORT_QDPLL(qdpll->state.lcubes_size == 0 ||
qdpll->state.lcubes_size < qdpll->pcnf.learnt_cubes.cnt,
"Unexpected value of 'lcubes_size'!");
QDPLL_ABORT_QDPLL(qdpll->state.lclauses_size == 0 ||
qdpll->state.lclauses_size < qdpll->pcnf.learnt_clauses.cnt,
"Unexpected value of 'lclauses_size'!");
assert (qdpll->state.decision_level == 0);
assert (qdpll->state.assumptions_given || sizeof_top_level (qdpll) == 0);
/* For incremental solving: must check which of the learned cubes can safely
be kept. Incrementally deleting clauses is no problem, but adding clauses
must be handled.
UPDATE: cube checking now also if no 'push' was called before. This is
necessary if the user just adds clauses but never wants to remove them
later. */
assert (qdpll->state.num_sat_calls > 0);
QDPLL_ABORT_QDPLL (qdpll->state.num_sat_calls <= 1 &&
(qdpll->pcnf.learnt_clauses.cnt > 0 || qdpll->pcnf.learnt_cubes.cnt > 0),
"Unexpected learned constraints present.");
if (qdpll->state.num_sat_calls > 1 && qdpll->state.pending_cubes_check)
check_and_delete_cubes_incremental (qdpll);
else if (qdpll->state.num_sat_calls <= 1)
{
/* No learned cubes are present in this case. */
qdpll->state.pending_cubes_check = 0;
qdpll->state.clauses_added_since_cube_check = 0;
}
if (qdpll->state.cnt_created_clause_groups > 0 ||
QDPLL_COUNT_STACK(qdpll->state.popped_off_internal_vars) != 0)
{
#if CLEANUP_POPPED_OFF_VARS
QDPLL_ABORT_QDPLL ((qdpll->options.qbce_preprocessing ||
qdpll->options.qbce_inprocessing ||
!qdpll->options.no_qbce_dynamic),
"reached unexpected branch -- incremental QBCE disabled");
/* Clean up if the number of popped off clauses exceeds 25% of the
number of original ones. */
if (qdpll->state.popped_off_orig_clause_cnt > (qdpll->pcnf.clauses.cnt >> 2))
qdpll_gc_aux (qdpll, 0);
#endif
/* For incremental solving: assign selector variables to enable/disable
clauses associated to currently and previously used frames. */
assign_frame_selector_variables (qdpll);
}
/* Assign user-given assumptions after possible cleanup of deleted clauses
and resulting no-occ-vars by calling 'qdpll_gc_aux ()' above. No-occ vars
will not be assigned as assumptions. This is necessary to handle
situations where the user adds assumptions of variables which actually
have no occurrences left after this INTERNAL cleanup step. The user does
not know when the solver triggers that cleanup step. */
assign_user_given_assumptions (qdpll);
if (!qdpll->dm->is_init (qdpll->dm))
{
if (qdpll->options.verbosity > 1)
fprintf (stderr, "Initializing dependencies.\n");
#if COMPUTE_STATS
qdpll->stats.total_dep_man_init_calls++;
#endif
qdpll->dm->init (qdpll->dm);
}
state = set_up_watchers (qdpll);
/* At this point: if the original formula was decided right away
in watcher initialization, then we must output information. Case
UNSAT: either input formula has a clause containing ONLY universal
literals; we can simply print that clause, which proves UNSAT. Or,
input clause is empty under partial assignment produced during
watcher initialization; we could then proceed to 'bcp' and derive
empty clause by Q-resolution. Case SAT: formula does not have
input clauses at all. */
if (state == QDPLL_SOLVER_STATE_SAT)
{
if (qdpll->options.verbosity > 1)
fprintf (stderr, "SDCL: formula is empty or has satisfied learned cube.\n");
generate_and_add_reason (qdpll, QDPLL_QTYPE_FORALL);
return QDPLL_RESULT_SAT;
}
else if (state == QDPLL_SOLVER_STATE_UNSAT)
{
assert (qdpll->result_constraint);
if (qdpll->options.verbosity > 1)
fprintf (stderr, "CDCL: empty original clause (%u).\n",
qdpll->result_constraint->id);
generate_and_add_reason (qdpll, QDPLL_QTYPE_EXISTS);
return QDPLL_RESULT_UNSAT;
}
while (1)
{
assert (result == QDPLL_RESULT_UNKNOWN);
if (check_limits_and_abort(qdpll))
{
fprintf (stderr, "User-given limit reached, exiting.\n");
break;
}
state = bcp (qdpll);
qdpll->state.restarting = 0;
if (state == QDPLL_SOLVER_STATE_UNSAT)
{
/* Conflict: analyze conflict and backtrack. */
assert (qdpll->result_constraint
&& !qdpll->result_constraint->is_cube);
assert (is_clause_empty (qdpll, qdpll->result_constraint));
assert (!is_clause_satisfied (qdpll, qdpll->result_constraint));
check_resize_learnt_constraints (qdpll, QDPLL_QTYPE_EXISTS);
#if QDPLL_ASSERT_SOLVE_STATE
assert (is_formula_false (qdpll));
assert (!is_formula_true (qdpll));
#endif
backtrack_level = analyze_conflict (qdpll);
#if COMPUTE_STATS
qdpll->stats.unsat_results++;
qdpll->stats.total_unsat_results_dlevels +=
qdpll->state.decision_level;
if (backtrack_level != QDPLL_INVALID_DECISION_LEVEL)
{
qdpll->stats.total_unsat_results_btlevels +=
backtrack_level - 1;
qdpll->stats.total_unsat_results_btdist +=
(qdpll->state.decision_level - backtrack_level) + 1;
}
#endif
if (backtrack_level == QDPLL_INVALID_DECISION_LEVEL)
{
/* Conflict can not be resolved -> terminate. */
result = QDPLL_RESULT_UNSAT;
break;
}
else
{
/* Check whether to restart. But only if we did not jump back to top level anyway. */
if (!check_and_restart (qdpll, backtrack_level))
{
#if COMPUTE_STATS
if (backtrack_level == 1)
qdpll->stats.qbcp_qbce_backtracks_to_toplevel++;
#endif
backtrack (qdpll, backtrack_level);
push_forced_assignment (qdpll);
}
}
/* Conflict must be fixed now. */
assert (!is_clause_empty (qdpll, qdpll->result_constraint));
qdpll->result_constraint = 0;
}
else if (state == QDPLL_SOLVER_STATE_SAT)
{
assert (!qdpll->result_constraint
|| qdpll->result_constraint->is_cube);
assert (!qdpll->result_constraint
|| is_cube_satisfied (qdpll, qdpll->result_constraint));
assert (!qdpll->result_constraint
|| !is_cube_empty (qdpll, qdpll->result_constraint));
check_resize_learnt_constraints (qdpll, QDPLL_QTYPE_FORALL);
/* Empty formula: analyze solution and backtrack. */
#if QDPLL_ASSERT_SOLVE_STATE
assert (!is_formula_false (qdpll));
assert (is_formula_true (qdpll));
#endif
backtrack_level = analyze_solution (qdpll);
#if COMPUTE_STATS
qdpll->stats.sat_results++;
qdpll->stats.total_sat_results_dlevels +=
qdpll->state.decision_level;
if (backtrack_level != QDPLL_INVALID_DECISION_LEVEL)
{
qdpll->stats.total_sat_results_btlevels += backtrack_level - 1;
qdpll->stats.total_sat_results_btdist +=
(qdpll->state.decision_level - backtrack_level) + 1;
}
qdpll->stats.avg_sat_res_assigned_vars +=
(qdpll->assigned_vars_top -
qdpll->assigned_vars) / (double) qdpll->pcnf.used_vars;
qdpll->stats.avg_sat_res_propped_vars +=
(qdpll->bcp_ptr + 1 -
qdpll->assigned_vars) / (double) qdpll->pcnf.used_vars;
qdpll->stats.avg_sat_res_propped_vars_per_assigned +=
(double) (qdpll->bcp_ptr + 1 -
qdpll->assigned_vars) / (qdpll->assigned_vars_top -
qdpll->assigned_vars);
#endif
if (backtrack_level == QDPLL_INVALID_DECISION_LEVEL)
{
/* All branches satisfied -> terminate. */
result = QDPLL_RESULT_SAT;
break;
}
else
{
if (!check_and_restart (qdpll, backtrack_level))
{
#if COMPUTE_STATS
if (backtrack_level == 1)
qdpll->stats.qbcp_qbce_backtracks_to_toplevel++;
#endif
backtrack (qdpll, backtrack_level);
push_forced_assignment (qdpll);
}
}
/* Solution must be broken now. */
assert (!qdpll->result_constraint
|| !is_cube_satisfied (qdpll, qdpll->result_constraint));
qdpll->result_constraint = 0;
}
else
{
assert (state == QDPLL_SOLVER_STATE_UNDEF);
/* Result undefined: decide next branch. */
if (qdpll->options.max_dec)
{
qdpll->state.num_decisions++;
if (qdpll->options.max_dec < qdpll->state.num_decisions)
{
if (qdpll->options.verbosity > 1)
fprintf (stderr, "Aborting after decision limit of %d.\n",
qdpll->options.max_dec);
return QDPLL_RESULT_UNKNOWN;
}
}
#if QDPLL_ASSERT_SOLVE_STATE
assert (!is_formula_false (qdpll));
#endif
assert (state == QDPLL_SOLVER_STATE_UNDEF);
assert (qdpll->bcp_ptr == qdpll->assigned_vars_top);
notify_inactive_at_decision_point (qdpll);
decision_var = select_decision_variable (qdpll);
assignment = select_decision_assignment (qdpll, decision_var);
#if COMPUTE_STATS
qdpll->stats.decisions++;
#endif
push_assigned_variable (qdpll, decision_var, assignment,
QDPLL_VARMODE_LBRANCH);
}
}
return result;
}
static int
isnumstr (char *str)
{
/* Empty string is not considered as number-string. */
if (!*str)
return 0;
char *p;
for (p = str; *p; p++)
{
char c = *p;
if (c != '.' && !isdigit (c))
return 0;
}
return 1;
}
static void
reset_clean_up_assignments (QDPLL *qdpll)
{
assert (qdpll->dm);
/* If variables are assigned, then we must notify the dependency manager
when unassigning them. */
QDPLL_ABORT_QDPLL ((qdpll->assigned_vars != qdpll->assigned_vars_top) &&
!qdpll->dm->is_init (qdpll->dm),
"dependency manager is not initialized!");
VarID *p, *e, *old_bcp_ptr = qdpll->old_bcp_ptr;
Var *vars = qdpll->pcnf.vars;
if (qdpll->assigned_vars != qdpll->assigned_vars_top)
{
/* Must handle empty assignment properly. The following for-loop is
inelegant in that the traversal of the assigned variables starts at the
end and proceeds towards the start. This way, the empty assignment is
not properly detected and the loop is entered also. However, going from
the start to the end requires some changes in the loop since we compare
the pointer to 'qdpll->bcp_ptr'. */
for (p = qdpll->assigned_vars_top - 1, e = qdpll->assigned_vars; p >= e;
p--)
{
Var *assigned_var = VARID2VARPTR (vars, *p);
assert (QDPLL_VAR_ASSIGNED (assigned_var));
assert (assigned_var->assignment != QDPLL_ASSIGNMENT_UNDEF);
assert (assigned_var->decision_level != QDPLL_INVALID_DECISION_LEVEL);
assert (assigned_var->mode != QDPLL_VARMODE_UNDEF);
assert (assigned_var->mode != QDPLL_VARMODE_LBRANCH
|| !assigned_var->antecedent);
assert (assigned_var->mode != QDPLL_VARMODE_RBRANCH
|| !assigned_var->antecedent);
/*start: like backtrack-undo */
assert (assigned_var->trail_pos != QDPLL_INVALID_TRAIL_POS);
assert (assigned_var->trail_pos <
(unsigned int) (qdpll->assigned_vars_top - qdpll->assigned_vars));
assert (qdpll->assigned_vars[assigned_var->trail_pos] == assigned_var->id);
if (assigned_var->mode == QDPLL_VARMODE_LBRANCH
|| assigned_var->mode == QDPLL_VARMODE_RBRANCH)
{
/* Must remove decision variables from dec-stack. */
assert (!QDPLL_EMPTY_STACK (qdpll->dec_vars));
assert (*(qdpll->dec_vars.top - 1) == assigned_var->id);
QDPLL_POP_STACK (qdpll->dec_vars);
if (!qdpll->options.no_qbce_dynamic)
{
/* Remove stack of clauses blocked at decision level of 'var' and reset
blocked-flag of clauses. */
qbcp_qbce_backtrack_clear_stack_of_stacks
(qdpll, &qdpll->qbcp_qbce_blocked_clauses, 1, assigned_var->decision_level);
/* Remove stack of clauses marked at decision level of 'var' and reset
marked-flag of clauses. */
qbcp_qbce_backtrack_clear_stack_of_stacks
(qdpll, &qdpll->qbcp_qbce_marked_clauses, 0, assigned_var->decision_level);
}
}
assigned_var->mode = QDPLL_VARMODE_UNDEF;
assigned_var->assignment = QDPLL_ASSIGNMENT_UNDEF;
assigned_var->decision_level = QDPLL_INVALID_DECISION_LEVEL;
assigned_var->trail_pos = QDPLL_INVALID_TRAIL_POS;
if (assigned_var->antecedent)
{
assert (!assigned_var->antecedent->qbcp_qbce_blocked);
assert (assigned_var->antecedent->is_reason);
assigned_var->antecedent->is_reason = 0;
assigned_var->antecedent = 0;
}
if (qdpll->dm->is_candidate (qdpll->dm, assigned_var->id)
&& assigned_var->priority_pos == QDPLL_INVALID_PQUEUE_POS)
var_pqueue_insert (qdpll, assigned_var->id, assigned_var->priority);
if (QDPLL_VAR_MARKED_PROPAGATED (assigned_var))
{
QDPLL_VAR_UNMARK_PROPAGATED (assigned_var);
if (p < old_bcp_ptr)
qdpll->dm->notify_active (qdpll->dm, assigned_var->id);
}
/*end: like backtrack-undo */
}
}
qdpll->state.decision_level = 0;
/* Remove stack of clauses blocked by inprocessing at decision level 0 and
reset blocked-flag of clauses. Clauses blocked by preprocessing will stay
and be handled separately. */
assert (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses) <= 2);
if (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses) == 2)
qbcp_qbce_backtrack_clear_stack_of_stacks
(qdpll, &qdpll->qbcp_qbce_blocked_clauses, 1, qdpll->state.decision_level);
assert (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses) == 1);
/* Unmark QBCE-marked clauses at decision level 0. */
assert (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_marked_clauses) == 1);
Constraint **cp, **ce;
for (cp = qdpll->qbcp_qbce_marked_clauses.start[0].start,
ce = qdpll->qbcp_qbce_marked_clauses.start[0].top; cp < ce; cp++)
{
Constraint *c = *cp;
assert (c->qbcp_qbce_mark);
c->qbcp_qbce_mark = 0;
}
QDPLL_RESET_STACK (qdpll->qbcp_qbce_marked_clauses.start[0]);
assert (qdpll->state.decision_level != QDPLL_INVALID_DECISION_LEVEL);
qdpll->old_bcp_ptr = qdpll->bcp_ptr = qdpll->assigned_vars_top = qdpll->assigned_vars;
}
static void
add_aux (QDPLL * qdpll, LitID id)
{
if (id == 0)
{
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; " \
"solver must be in reset state when adding clauses or variable!");
/* Make sure that user prefix is properly imported. This is necessary if
the user has added a variable but no clauses containing it. The
variable is present in the user prefix but deleted internally by the
solver. make sure to add it here to avoid erroneously adding a user
variable as free variable. NOTE: 'import_user_scope' uses a flag to
avoid redundant calls, so calling the function here should in most
cases not result in actual work. */
/* New: importing prefix is needed only before we add clauses. */
if (!qdpll->state.scope_opened)
import_user_scopes (qdpll);
/* '0' closes a scope or clause. */
const char *err_msg = import_added_ids (qdpll);
QDPLL_ABORT_QDPLL (err_msg, err_msg);
assert (!qdpll->state.scope_opened);
assert (QDPLL_COUNT_STACK(qdpll->add_stack) == 0);
}
else
{
VarID var_id = LIT2VARID(id);
if (var_id > qdpll->max_var_id_on_add_stack)
qdpll->max_var_id_on_add_stack = var_id;
QDPLL_PUSH_STACK (qdpll->mm, qdpll->add_stack, id);
}
}
static void
rename_internal_variable_ids_aux (QDPLL *qdpll, VarID *p,
const unsigned int add_to_offset)
{
LitID lit = *p;
/* Assuming that literals of internal variables occur only positively in the
formula. */
assert (QDPLL_LIT_POS (lit));
assert (*p + add_to_offset < qdpll->pcnf.size_vars);
assert (*p + add_to_offset >= qdpll->pcnf.size_user_vars);
*p = lit + add_to_offset;
assert (!VARID2VARPTR(qdpll->pcnf.vars, *p)->id ||
VARID2VARPTR(qdpll->pcnf.vars, *p)->is_internal);
assert ((unsigned int)*p >= qdpll->pcnf.size_user_vars);
}
static void
rename_internal_variable_ids_on_blits_stack_aux (QDPLL *qdpll, BLitsOcc *b,
const unsigned int add_to_offset)
{
assert (b->blit);
Var *blitvar = LIT2VARPTR (qdpll->pcnf.vars, b->blit);
if (blitvar->id == 0)
{
/* Assumes that internal IDs have been moved to a new index and
entry at old index has been cleared. */
/* Internal IDs occur positively in clauses. */
assert (QDPLL_LIT_POS (b->blit));
rename_internal_variable_ids_aux (qdpll, (VarID *) &(b->blit), add_to_offset);
}
}
/* Update BLitsOcc objects in QBCENonBlockedWitness objects. */
static void
rename_internal_variable_ids_on_qbce_blits_stack (QDPLL *qdpll, QBCENonBlockedWitness *start,
QBCENonBlockedWitness *end,
const unsigned int add_to_offset)
{
assert (start <= end);
QBCENonBlockedWitness *p, *e;
for (p = start, e = end; p < e; p++)
rename_internal_variable_ids_on_blits_stack_aux (qdpll, &(p->blit_occ), add_to_offset);
}
static void
rename_internal_variable_ids_in_constraints (QDPLL *qdpll, ConstraintList *clist,
const unsigned int add_to_offset)
{
Constraint *c;
for (c = clist->first; c; c = c->link.next)
{
rename_internal_variable_ids_on_qbce_blits_stack
(qdpll, c->qbcp_qbce_notify_maybe_blocked_clauses.start,
c->qbcp_qbce_notify_maybe_blocked_clauses.top,
add_to_offset);
rename_internal_variable_ids_on_qbce_blits_stack
(qdpll, c->qbcp_qbce_witness_clauses.start,
c->qbcp_qbce_witness_clauses.top,
add_to_offset);
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *v = LIT2VARPTR(qdpll->pcnf.vars, lit);
if (v->id == 0)
{
/* Assumes that internal IDs have been moved to a new index and
entry at old index has been cleared. */
/* Internal IDs occur positively in clauses. */
assert (QDPLL_LIT_POS (lit));
rename_internal_variable_ids_aux (qdpll, (VarID *) p, add_to_offset);
}
assert (*p);
}
}
}
/* Rename internal variable IDs on stacks
'qdpll->state.cur_used_internal_vars' and
'qdpll->state.popped_off_internal_vars'. NOTE: assumes that the variable
table has been enlarged before and internal variables have been moved
accordingly. */
static void
rename_internal_variable_ids_on_stack (QDPLL *qdpll, VarID *start, VarID *end,
const unsigned int add_to_offset)
{
assert (start <= end);
VarID *p, *e;
for (p = start, e = end; p < e; p++)
{
if (*p)
{
Var *var = VARID2VARPTR (qdpll->pcnf.vars, *p);
if (var->id == 0)
{
/* Assumes that internal IDs have been moved to a new index and
entry at old index has been cleared. */
rename_internal_variable_ids_aux (qdpll, p, add_to_offset);
}
}
}
}
/* Update BLitsOcc objects. */
static void
rename_internal_variable_ids_on_blits_stack (QDPLL *qdpll, BLitsOcc *start, BLitsOcc *end,
const unsigned int add_to_offset)
{
assert (start <= end);
BLitsOcc *p, *e;
for (p = start, e = end; p < e; p++)
rename_internal_variable_ids_on_blits_stack_aux (qdpll, p, add_to_offset);
}
/* After enlarging the table of user variables: traverse all clauses and
variables in blocks and rename internal IDs by adding the additional
offset. */
static void
rename_internal_variable_ids (QDPLL *qdpll, const unsigned int add_to_offset)
{
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
rename_internal_variable_ids_in_constraints (qdpll, &qdpll->pcnf.clauses, add_to_offset);
rename_internal_variable_ids_in_constraints (qdpll, &qdpll->pcnf.learnt_clauses, add_to_offset);
rename_internal_variable_ids_in_constraints (qdpll, &qdpll->pcnf.learnt_cubes, add_to_offset);
rename_internal_variable_ids_in_constraints (qdpll, &qdpll->cover_sets, add_to_offset);
rename_internal_variable_ids_on_stack (qdpll, qdpll->state.cur_used_internal_vars.start,
qdpll->state.cur_used_internal_vars.top,
add_to_offset);
rename_internal_variable_ids_on_stack (qdpll, qdpll->state.popped_off_internal_vars.start,
qdpll->state.popped_off_internal_vars.top,
add_to_offset);
rename_internal_variable_ids_on_stack (qdpll, qdpll->pcnf.scopes.first->vars.start,
qdpll->pcnf.scopes.first->vars.top,
add_to_offset);
rename_internal_variable_ids_on_stack (qdpll, qdpll->var_pqueue,
qdpll->var_pqueue + qdpll->cnt_var_pqueue,
add_to_offset);
rename_internal_variable_ids_on_blits_stack
(qdpll, qdpll->empty_formula_watching_blit_occs.start,
qdpll->empty_formula_watching_blit_occs.top, add_to_offset);
rename_internal_variable_ids_on_qbce_blits_stack
(qdpll, qdpll->qbcp_qbce_maybe_blocked_clauses.start,
qdpll->qbcp_qbce_maybe_blocked_clauses.top,
add_to_offset);
Var *vp, *ve;
for (vp = qdpll->pcnf.vars, ve = vp + qdpll->pcnf.size_vars; vp < ve; vp++)
{
rename_internal_variable_ids_on_blits_stack
(qdpll, vp->pos_occ_clauses.start, vp->pos_occ_clauses.top, add_to_offset);
rename_internal_variable_ids_on_blits_stack
(qdpll, vp->neg_occ_clauses.start, vp->neg_occ_clauses.top, add_to_offset);
rename_internal_variable_ids_on_blits_stack
(qdpll, vp->pos_occ_cubes.start, vp->pos_occ_cubes.top, add_to_offset);
rename_internal_variable_ids_on_blits_stack
(qdpll, vp->neg_occ_cubes.start, vp->neg_occ_cubes.top, add_to_offset);
rename_internal_variable_ids_on_blits_stack
(qdpll, vp->pos_notify_lit_watchers.start,
vp->pos_notify_lit_watchers.top, add_to_offset);
rename_internal_variable_ids_on_blits_stack
(qdpll, vp->neg_notify_lit_watchers.start,
vp->neg_notify_lit_watchers.top, add_to_offset);
}
}
static void
move_internal_ids (QDPLL *qdpll, const unsigned int cur_size_user_vars,
const unsigned int new_size_user_vars,
const unsigned int add_to_offset)
{
assert (cur_size_user_vars < qdpll->pcnf.size_vars);
assert (new_size_user_vars < qdpll->pcnf.size_vars);
assert (cur_size_user_vars < new_size_user_vars);
assert (qdpll->state.next_free_internal_var_id == new_size_user_vars);
Var *p, *e, *dest;
for (p = qdpll->pcnf.vars + cur_size_user_vars,
e = dest = qdpll->pcnf.vars + new_size_user_vars; p < e; p++)
{
if (p->id)
{
QDPLL_ABORT_QDPLL (dest >= qdpll->pcnf.vars + qdpll->pcnf.size_vars,
"error in move-internal-vars");
QDPLL_ABORT_QDPLL (dest->id != 0, "error in move-internal-vars");
QDPLL_ABORT_QDPLL (!p->is_internal, "error in move-internal-vars");
*dest = *p;
dest->id = dest->id + add_to_offset;
memset (p, 0, sizeof (Var));
dest++;
qdpll->state.next_free_internal_var_id++;
}
else
{
dest++;
qdpll->state.next_free_internal_var_id++;
}
}
}
/* Returns a pointer to the user scope with nesting level 'nesting'. */
static Scope *
find_user_scope_at_nesting_level (QDPLL *qdpll, Nesting nesting)
{
assert (nesting > 0);
assert (nesting <= qdpll_get_max_scope_nesting (qdpll));
assert (QDPLL_COUNT_STACK(qdpll->pcnf.user_scope_ptrs) ==
qdpll_get_max_scope_nesting (qdpll));
assert (nesting <= QDPLL_COUNT_STACK(qdpll->pcnf.user_scope_ptrs));
#ifndef NDEBUG
Scope *s;
for (s = qdpll->pcnf.user_scopes.first; s && s->nesting != nesting; s = s->link.next)
;
assert (s);
assert (s == qdpll->pcnf.user_scope_ptrs.start[nesting - 1]);
#endif
return qdpll->pcnf.user_scope_ptrs.start[nesting - 1];
}
/* Returns non-zero iff the scope 's' has at least one variable which is NOT
internal and which is free, i.e. a free user var. */
static int
has_scope_free_user_var (QDPLL *qdpll, Scope *s)
{
VarID *p, *e;
for (p = s->vars.start, e = s->vars.top; p < e; p++)
{
VarID id = *p;
assert (id);
Var *var = VARID2VARPTR(qdpll->pcnf.vars, id);
assert (var->id == id);
/* Free variables do not have a 'var->user_scope'. See also
'declare_and_init_variable'. */
if (!var->is_internal && !var->user_scope)
return 1;
}
return 0;
}
static void
qdpll_delete_constraint_list (QDPLL * qdpll, ConstraintList *clist)
{
Constraint *c, *nc;
for (c = clist->first; c; c = nc)
{
nc = c->link.next;
delete_constraint (qdpll, c);
}
}
static LitID *
remove_internals_from_lits (QDPLL *qdpll, LitID *lits)
{
/* Find last element. */
LitID *e;
for (e = lits; *e; e++)
;
e--;
QDPLL_ABORT_QDPLL (e < lits, "Empty lit-list!");
LitID *p;
for (p = lits; *p; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
if (var->is_internal)
{
assert (*e);
*p-- = *e;
*e-- = 0;
}
}
return lits;
}
static int
qdo_has_outer_scope_unassigned_vars (QDPLL *qdpll, Scope *outer, QDPLLResult result)
{
assert (result == QDPLL_RESULT_UNSAT || result == QDPLL_RESULT_SAT);
assert (outer->type == QDPLL_QTYPE_FORALL || outer->type == QDPLL_QTYPE_EXISTS);
assert (outer->nesting <= QDPLL_DEFAULT_SCOPE_NESTING + 1);
assert (outer->type != QDPLL_QTYPE_FORALL || result == QDPLL_RESULT_UNSAT);
assert (outer->type != QDPLL_QTYPE_EXISTS || result == QDPLL_RESULT_SAT);
VarID *p, *e;
for (p = outer->vars.start, e = outer->vars.top; p < e; p++)
{
Var *var = VARID2VARPTR(qdpll->pcnf.vars, *p);
if (!QDPLL_VAR_ASSIGNED(var))
return 1;
}
return 0;
}
static void
qdo_fix_outer_scope_unassigned_vars_aux (QDPLL *qdpll, Scope *outer, VarIDStack *stack, Constraint *c,
char *mark_table, char *assignment_table)
{
/* FIX: if the input formula is unsatisfiable due to an input clause with
only universal literals, which were forall-reduced to get the empty clause,
then we must consider also these reduced literals to compute a partial
countermodel. I.e. go until 'c->size_lits', not 'c->num_lits'. */
LitID *p, *e;
for (p = c->lits, e = p + c->size_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
if (var->mode == QDPLL_VARMODE_UNIT)
{
assert (QDPLL_VAR_ASSIGNED (var));
if ((!c->is_cube && var->scope->type == QDPLL_QTYPE_EXISTS) ||
(c->is_cube && var->scope->type == QDPLL_QTYPE_FORALL))
{
/* Check mark table and push. */
if (!mark_table[var->id])
{
mark_table[var->id] = 1;
QDPLL_PUSH_STACK (qdpll->mm, *stack, var->id);
}
}
}
else
{
if (!QDPLL_VAR_ASSIGNED (var))
{
/* Set the value of required unassigned variables. */
if ((var->scope == outer || var->user_scope == outer) &&
assignment_table[var->id] == QDPLL_ASSIGNMENT_UNDEF)
{
if (QDPLL_LIT_NEG (lit))
{
if (!c->is_cube)
assignment_table[var->id] = QDPLL_ASSIGNMENT_TRUE;
else
assignment_table[var->id] = QDPLL_ASSIGNMENT_FALSE;
}
else
{
assert (QDPLL_LIT_POS (lit));
if (!c->is_cube)
assignment_table[var->id] = QDPLL_ASSIGNMENT_FALSE;
else
assignment_table[var->id] = QDPLL_ASSIGNMENT_TRUE;
}
}
}
}
}
}
/* Traverse the implication graph starting from 'qdpll->result_constraint' and
search for unassigned universal (existential) literals of variables from
the leftmost quantifier block in reachable clauses (cubes). Assign values
to these variables in order NOT to satisfy clauses (falsify cubes). */
static void
qdo_fix_outer_scope_unassigned_vars (QDPLL *qdpll, Scope *outer, QDPLLResult result,
char *assignment_table)
{
assert (result == QDPLL_RESULT_UNSAT || result == QDPLL_RESULT_SAT);
assert (outer->type == QDPLL_QTYPE_FORALL || outer->type == QDPLL_QTYPE_EXISTS);
assert (outer->nesting <= QDPLL_DEFAULT_SCOPE_NESTING + 1);
assert (outer->type != QDPLL_QTYPE_FORALL || result == QDPLL_RESULT_UNSAT);
assert (outer->type != QDPLL_QTYPE_EXISTS || result == QDPLL_RESULT_SAT);
VarIDStack stack;
QDPLL_INIT_STACK(stack);
const unsigned int table_bytes = (qdpll_get_max_declared_var_id (qdpll) + 1) * sizeof (char);
char * mark_table = (char *) qdpll_malloc (qdpll->mm, table_bytes);
assert (qdpll->result_constraint);
assert (qdpll->result_constraint->is_cube || result == QDPLL_RESULT_UNSAT);
assert (!qdpll->result_constraint->is_cube || result == QDPLL_RESULT_SAT);
qdo_fix_outer_scope_unassigned_vars_aux (qdpll, outer, &stack, qdpll->result_constraint,
mark_table, assignment_table);
while (!QDPLL_EMPTY_STACK(stack))
{
VarID id = QDPLL_POP_STACK(stack);
Var *var = VARID2VARPTR(qdpll->pcnf.vars, id);
assert (mark_table[var->id]);
assert (QDPLL_VAR_ASSIGNED(var));
assert (var->mode == QDPLL_VARMODE_UNIT);
assert (var->scope->type != outer->type);
assert (var->antecedent);
assert (var->antecedent->is_cube || result == QDPLL_RESULT_UNSAT);
assert (!var->antecedent->is_cube || result == QDPLL_RESULT_SAT);
qdo_fix_outer_scope_unassigned_vars_aux (qdpll, outer, &stack, var->antecedent,
mark_table, assignment_table);
}
qdpll_free (qdpll->mm, mark_table, table_bytes);
QDPLL_DELETE_STACK(qdpll->mm, stack);
}
/* Returns non-zero if 'c' contains a selector variable of a frame which has
been popped off. In this case the clause has been effectively deleted from the
formula although it is physically present in the clause list. */
static int
clause_has_popped_off_var (QDPLL *qdpll, Constraint *c)
{
assert (!c->is_cube);
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
if (var->is_internal)
{
/* 'var' is a selector variable of a popped off frame. */
if (!var->is_cur_used_internal_var)
return 1;
}
else
return 0;
/* Can immediately return if we see a user variable because internal
ones appear at the left end of the list */
}
return 0;
}
/* Returns non-zero if 'c' contains a selector variable of a group which has
been deactivated by 'qdpll_deactivate_clause_group'. In this case the
clause has been effectively deleted from the formula although it is
physically present in the clause list. */
static int
clause_has_inactive_var (QDPLL *qdpll, Constraint *c)
{
assert (!c->is_cube);
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
if (var->is_internal)
{
assert (!var->is_cur_inactive_group_selector || var->is_cur_used_internal_var);
/* 'var' is a selector variable of a deactivated clause group. */
if (var->is_cur_inactive_group_selector)
return 1;
}
else
return 0;
/* Can immediately return if we see a user variable because internal
ones appear at the left end of the list */
}
return 0;
}
static void
qdpll_print_aux_scope (QDPLL *qdpll, Scope *s, FILE *out)
{
if (QDPLL_SCOPE_EXISTS (s))
fprintf (out, "e");
else
fprintf (out, "a");
VarID *p, *e;
for (p = s->vars.start, e = s->vars.top; p < e; p++)
{
/* For incremental use: do not print internal variables. */
VarID id = *p;
Var *var = VARID2VARPTR(qdpll->pcnf.vars, id);
/* Print all variables if 's' is a user scope. Otherwise, print only
free user variables. */
if (!s->is_internal || (!var->is_internal && !var->user_scope))
fprintf (out, " %u", id);
}
fprintf (out, " 0\n");
}
static ClauseGroupID
new_clause_group_aux (QDPLL *qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "'qdpll' is null!");
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->state.next_free_internal_var_id > qdpll->pcnf.size_vars,
"Next free internal ID must be smaller than or equal to size of vars!");
QDPLL_ABORT_QDPLL (qdpll->state.next_free_internal_var_id < qdpll->pcnf.size_user_vars,
"Next free internal ID must be greater than or equal to size of user vars!");
const VarID cur_size_vars = qdpll->pcnf.size_vars;
if (qdpll->state.next_free_internal_var_id == cur_size_vars)
{
/* Enlarge variable table to store additional internal variable IDs. */
assert ((cur_size_vars - qdpll->pcnf.size_user_vars) <= cur_size_vars);
const unsigned int new_size_vars = cur_size_vars + DEFAULT_INTERNAL_VARS_INCREASE;
qdpll->pcnf.vars = (Var *) qdpll_realloc (qdpll->mm, qdpll->pcnf.vars,
cur_size_vars * sizeof (Var),
new_size_vars * sizeof (Var));
qdpll->pcnf.size_vars = new_size_vars;
assert (qdpll->pcnf.size_user_vars <= qdpll->pcnf.size_vars);
assert_internal_vars_integrity (qdpll);
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "Push: enlarging internal variables, new internal size %d.\n",
qdpll->pcnf.size_vars - qdpll->pcnf.size_user_vars);
}
assert (qdpll->state.next_free_internal_var_id < qdpll->pcnf.size_vars);
assert (qdpll->state.next_free_internal_var_id >= qdpll->pcnf.size_user_vars);
/* We could also recycle internal IDs which are not used currently. However,
the implementation would be more complex. Now, we always allocate group
IDs in an incremental way. The user will never see ID multiple times when
calling 'qdpll_new_clause_group' and 'delete_clause_group'. However, if
push/pop API is used then frame indices are returned to the user, which
can occur mutliple times. */
VarID internal_id = qdpll->state.next_free_internal_var_id++;
QDPLL_PUSH_STACK(qdpll->mm, qdpll->state.cur_used_internal_vars, internal_id);
/* ID 'clause_group_id' will be made public to the user via the API. */
unsigned int clause_group_id = QDPLL_COUNT_STACK(qdpll->state.cur_used_internal_vars);
qdpll->state.cnt_created_clause_groups++;
assert (clause_group_id >= qdpll->state.cnt_created_clause_groups);
/* NOTE: always keep default scope as internal scope to store internal variables. */
assert (qdpll->pcnf.scopes.first->is_internal);
declare_and_init_variable (qdpll, qdpll->pcnf.scopes.first, internal_id, 1, 1);
/* Set group index of internal variable. */
assert (qdpll->pcnf.vars[internal_id].clause_group_id == 0);
qdpll->pcnf.vars[internal_id].clause_group_id = clause_group_id;
assert (qdpll->pcnf.vars[internal_id].clause_group_id > 0);
/* Set flag to indicate that internal variable appears on the stack
'qdpll->state.cur_used_internal_vars'. */
assert (!qdpll->pcnf.vars[internal_id].is_cur_used_internal_var);
qdpll->pcnf.vars[internal_id].is_cur_used_internal_var = 1;
return clause_group_id;
}
static int
exists_clause_group_aux (QDPLL *qdpll, ClauseGroupID clause_group)
{
/* Check if there is a valid entry (i.e. selector variable of group) in
table 'qdpll->state.cur_used_internal_vars' at position 'clause_group'. */
if (clause_group == 0 ||
clause_group > QDPLL_COUNT_STACK(qdpll->state.cur_used_internal_vars) ||
!qdpll->state.cur_used_internal_vars.start[clause_group - 1])
return 0;
else
return 1;
}
static void
delete_clause_group_aux (QDPLL *qdpll, ClauseGroupID clause_group)
{
QDPLL_ABORT_QDPLL (!exists_clause_group_aux (qdpll, clause_group),
"Invalid clause group ID!");
/* Get selector variable ID of clause group from table. */
unsigned int deleted_group_selector_var_id =
qdpll->state.cur_used_internal_vars.start[clause_group - 1];
assert (deleted_group_selector_var_id);
Var *deleted_group_selector_var =
VARID2VARPTR(qdpll->pcnf.vars, deleted_group_selector_var_id);
/* Decrease number of active clause groups. */
qdpll->state.cnt_created_clause_groups--;
assert (qdpll->state.cnt_created_clause_groups <
QDPLL_COUNT_STACK(qdpll->state.cur_used_internal_vars));
/* Store selector variable on other stack of deleted variables. */
QDPLL_PUSH_STACK(qdpll->mm, qdpll->state.popped_off_internal_vars,
deleted_group_selector_var_id);
/* Count the number of deleted original clauses to trigger cleanup
later. Deleted learned clauses are not counted since they are deleted
anyway according to the usual deletion schedule of learned clauses.
NOTE: this count is exact since we never cound clauses multiple times;
original clauses contain exactly one selector variable. */
assert (deleted_group_selector_var->id);
assert (deleted_group_selector_var->is_internal);
/* Reset flag of group selector variable. */
assert (deleted_group_selector_var->is_cur_used_internal_var);
deleted_group_selector_var->is_cur_used_internal_var = 0;
/* Reset entry of selector variable on stack of active variables. NOTE: in
qdpll_pop, we in fact remove this entry from the stack by a pop
operation. For clause groups in general, we just reset it to zero. */
qdpll->state.cur_used_internal_vars.start[clause_group - 1] = 0;
qdpll->state.popped_off_orig_clause_cnt +=
QDPLL_COUNT_STACK(deleted_group_selector_var->pos_occ_clauses);
QDPLL_ABORT_QDPLL(QDPLL_COUNT_STACK(deleted_group_selector_var->neg_occ_clauses) > 0,
"Unexpected neg. occurrences of internal variable!");
}
/* Returns a pointer to the selector variable of the given clause group. */
static Var *
clause_group_to_var_ptr (QDPLL *qdpll, ClauseGroupID clause_group)
{
assert (qdpll_exists_clause_group (qdpll, clause_group));
VarID vid = qdpll->state.cur_used_internal_vars.start[clause_group - 1];
assert (vid);
return VARID2VARPTR(qdpll->pcnf.vars, vid);
}
static ClauseGroupID
get_open_clause_group_aux (QDPLL *qdpll)
{
return qdpll->state.cur_open_group_id;
}
static void
recompute_var_act_scores_occs (QDPLL *qdpll, Constraint *c)
{
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
Var *var = LIT2VARPTR(qdpll->pcnf.vars, *p);
increase_var_activity (qdpll, var, var->user_scope ?
var->user_scope : var->scope);
}
}
static void
recompute_var_act_scores (QDPLL *qdpll)
{
/* Reset delta of variable activity like at initialization time. */
qdpll->state.var_act_inc = qdpll->options.var_act_inc;
/* Cleanup priority queue of variables. */
while (var_pqueue_remove_first (qdpll))
;
/* Optional: reset activity of variables to initial value. */
Var *p, *e;
for (p = qdpll->pcnf.vars, e = p + qdpll->pcnf.size_vars; p < e; p++)
{
if (p->id)
p->priority = 1;
}
/* Optional: recompute activities based on original clauses, learned clauses
and learned cubes. */
Constraint *cp, *ce;
for (cp = qdpll->pcnf.clauses.first; cp; cp = cp->link.next)
recompute_var_act_scores_occs (qdpll, cp);
for (cp = qdpll->pcnf.learnt_clauses.first; cp; cp = cp->link.next)
recompute_var_act_scores_occs (qdpll, cp);
for (cp = qdpll->pcnf.learnt_cubes.first; cp; cp = cp->link.next)
recompute_var_act_scores_occs (qdpll, cp);
}
static int
has_constraint_literal_of_scope (QDPLL *qdpll, Constraint *c, Scope *scope)
{
assert (c);
assert (scope);
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR (qdpll->pcnf.vars, lit);
if (var->scope == scope)
return 1;
}
return 0;
}
/* Reconstruct assigment to variables of outermost existential block so that
no clause containing variables of that block is falsified under the current
assignment. Clauses may be falsified if the inout formula contains blocked
clauses. Check currently blocked clauses in reverse order of discovering
that they are blocked. If a blocked clause is unsatisfied, then flip the
value of the blocking literal. Note that we do not reconstruct a full model
of the CNF. We only make sure that the input formula under the assigment
returned as QDIMACS output is satisfiable. */
static void
qdo_qbcp_qbce_reconstruct_cnf_model (QDPLL *qdpll, Scope *outer)
{
if (qdpll->state.qdo_no_schedule_model_reconstruction)
return;
qdpll->state.qdo_no_schedule_model_reconstruction = 1;
assert (outer);
if (!QDPLL_EMPTY_STACK (qdpll->qbcp_qbce_blocked_clauses))
{
/* Consider clauses currently blocked in the input formula in reverse
ordering. */
ConstraintPtrStack *sp, *se;
for (sp = qdpll->qbcp_qbce_blocked_clauses.top - 1,
se = qdpll->qbcp_qbce_blocked_clauses.start; se <= sp; sp--)
{
ConstraintPtrStack stack = *sp;
if (QDPLL_EMPTY_STACK (stack))
continue;
Constraint **p, **e;
for (p = stack.top - 1, e = stack.start; e <= p; p--)
{
/* NOTE: calling 'is_clause_satisfied' might update blocking literals. */
Constraint *c = *p;
assert (c->qbcp_qbce_blocked);
/* NOTE: we do reconstruction for clauses which are currently empty
and which contain a literal from the outer scope only. */
if (has_constraint_literal_of_scope (qdpll, c, outer) &&
is_clause_empty (qdpll, c))
{
LitID blocking_lit = c->qbcp_qbce_blocking_lit;
assert (blocking_lit);
Var *var = LIT2VARPTR (qdpll->pcnf.vars, blocking_lit);
assert (QDPLL_VAR_EXISTS (var));
assert (QDPLL_VAR_ASSIGNED (var));
assert ((QDPLL_LIT_NEG (blocking_lit) && QDPLL_VAR_ASSIGNED_TRUE (var)) ||
(QDPLL_LIT_POS (blocking_lit) && QDPLL_VAR_ASSIGNED_FALSE (var)));
/* Flip assignment of the blocking literal's variable. */
var->assignment = -var->assignment;
assert (var->decision_level != QDPLL_INVALID_DECISION_LEVEL);
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "Formerly unsatisfied blocked clause: ");
print_constraint (qdpll, c);
fprintf (stderr, " -> now satisfied by flipping literal %d\n",
blocking_lit);
}
}
else
{
if (qdpll->options.verbosity >= 2)
{
fprintf (stderr, "Satisfied blocked clause: ");
print_constraint (qdpll, c);
}
}
}
}
}
}
/* -------------------- START: PUBLIC FUNCTIONS --------------------*/
QDPLL *
qdpll_create ()
{
QDPLLMemMan *mm = qdpll_create_mem_man ();
QDPLL *qdpll = (QDPLL *) qdpll_malloc (mm, sizeof (QDPLL));
qdpll->mm = mm;
Scope *default_scope = (Scope *) qdpll_malloc (mm, sizeof (Scope));
default_scope->type = QDPLL_QTYPE_EXISTS;
assert (!default_scope->is_internal);
default_scope->is_internal = 1;
QDPLL_ABORT_QDPLL (default_scope->nesting != QDPLL_DEFAULT_SCOPE_NESTING,
"Nesting of default scope must be zero.");
LINK_LAST (qdpll->pcnf.scopes, default_scope, link);
QDPLL_ABORT_QDPLL(DEFAULT_VARS_SIZE <= 0,
"Expecting vars-size greater than zero!");
QDPLL_ABORT_QDPLL(DEFAULT_USER_VARS_SIZE <= 0,
"Expecting user-vars-size greater than zero!");
QDPLL_ABORT_QDPLL(DEFAULT_VARS_SIZE < DEFAULT_USER_VARS_SIZE,
"Expecting user-vars-size smaller than or equal to vars-size!");
QDPLL_ABORT_QDPLL(DEFAULT_INTERNAL_VARS_INCREASE <= 0,
"Default increase value of internal vars must be greater than zero!");
qdpll->pcnf.size_vars = DEFAULT_VARS_SIZE;
qdpll->pcnf.size_user_vars = DEFAULT_USER_VARS_SIZE;
qdpll->pcnf.vars =
(Var *) qdpll_malloc (mm, DEFAULT_VARS_SIZE * sizeof (Var));
qdpll->state.next_free_internal_var_id = qdpll->pcnf.size_user_vars;
PriorityQueue *pqueue = pqueue_create (mm, 1);
qdpll->qpup_nodes = pqueue;
/* Set default options. */
#if QBCP_QBCE_DYNAMIC_ASSIGNMENT_ELIM_UNIV_VARS
qdpll->options.elim_univ_dynamic_switch_delay =
ELIM_UNIV_DYNAMIC_SWITCH_DELAY_INIT_VAL;
QDPLL_ABORT_QDPLL (qdpll->options.elim_univ_dynamic_switch_delay == 0,
"expecting value greater than zero for elim-univ dynamic switch delay!");
#endif
/* Switch on dynamic QBCE by default. */
qdpll->options.no_qbce_dynamic = 0;
/* Set QBCE default cutoff values. */
qdpll->options.qbcp_qbce_max_clause_size = 50;
qdpll->options.qbcp_qbce_find_witness_max_occs = 50;
/* NEW: decision heuristics 'QTYPE' turned out to perform MUCH better than
the old default one 'SDCL'. */
qdpll->options.dh = QDPLL_DH_QTYPE;
if (DEFAULT_DEPMANTYPE == QDPLL_DEPMAN_TYPE_QDAG)
{
qdpll->options.depman_qdag = 1;
assert (!qdpll->options.depman_simple);
}
else if (DEFAULT_DEPMANTYPE == QDPLL_DEPMAN_TYPE_SIMPLE)
{
qdpll->options.depman_simple = 1;
assert (!qdpll->options.depman_qdag);
}
else
{
QDPLL_ABORT_QDPLL (1, "Unexpected value for DM!");
}
qdpll->dm = (QDPLLDepManGeneric *)
qdpll_qdag_dep_man_create (qdpll->mm,
&(qdpll->pcnf),
DEFAULT_DEPMANTYPE,
qdpll->options.
depman_qdag_print_deps_by_search, qdpll);
qdpll->trace_scope = &print_qrp_scope;
qdpll->trace_constraint = &print_qrp_constraint;
qdpll->trace_full_cover_set = &print_qrp_full_cover_set;
qdpll->options.var_act_inc = 1.0;
qdpll->state.var_act_inc = qdpll->options.var_act_inc;
qdpll->options.var_act_decay_ifactor = 0.95;
qdpll->var_act_decay = 1.0 / qdpll->options.var_act_decay_ifactor;
qdpll->options.lclauses_delfactor = 0.5;
qdpll->options.lcubes_delfactor = 0.5;
qdpll->options.lclauses_resize_value = LCLAUSES_RESIZE_VAL;
qdpll->options.lcubes_resize_value = LCUBES_RESIZE_VAL;
qdpll->options.lclauses_init_size = LCLAUSES_INIT_VAL;
qdpll->options.lcubes_init_size = LCUBES_INIT_VAL;
qdpll->options.irestart_dist_init = IRESTART_DIST_INIT_VAL;
qdpll->options.irestart_dist_inc = IRESTART_DIST_INC_INIT_VAL;
qdpll->state.irestart_dist = qdpll->options.irestart_dist_init;
qdpll->options.orestart_dist_init = ORESTART_DIST_INIT_VAL;
qdpll->options.orestart_dist_inc = ORESTART_DIST_INC_INIT_VAL;
qdpll->state.orestart_dist = qdpll->options.orestart_dist_init;
qdpll->options.lclauses_min_init_size = LCLAUSES_MIN_INIT_VAL;
qdpll->options.lclauses_max_init_size = LCLAUSES_MAX_INIT_VAL;
qdpll->options.lcubes_min_init_size = LCUBES_MIN_INIT_VAL;
qdpll->options.lcubes_max_init_size = LCUBES_MAX_INIT_VAL;
qdpll->options.var_act_bias = 1;
/* Size of learnt clauses/cubes list will be set when solving starts. */
/* Must also set seed when new seed is configured. */
srand (qdpll->options.seed);
/* Maintain blocked clauses and marked clauses found at each decision
level. */
assert (qdpll->state.decision_level == 0);
ConstraintPtrStack cstack;
QDPLL_INIT_STACK (cstack);
QDPLL_PUSH_STACK (qdpll->mm, qdpll->qbcp_qbce_blocked_clauses, cstack);
assert (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses) ==
qdpll->state.decision_level + 1);
/* Marked clauses per decision level. */
QDPLL_PUSH_STACK (qdpll->mm, qdpll->qbcp_qbce_marked_clauses, cstack);
assert (QDPLL_COUNT_STACK (qdpll->qbcp_qbce_marked_clauses) ==
qdpll->state.decision_level + 1);
return qdpll;
}
void
qdpll_delete (QDPLL * qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLLMemMan *mm = qdpll->mm;
QDPLL_DELETE_STACK (mm, qdpll->add_stack);
QDPLL_DELETE_STACK (mm, qdpll->add_stack_tmp);
QDPLL_DELETE_STACK (mm, qdpll->wreason_a);
QDPLL_DELETE_STACK (mm, qdpll->wreason_e);
QDPLL_DELETE_STACK (mm, qdpll->dec_vars);
QDPLL_DELETE_STACK (mm, qdpll->smaller_type_lits);
pqueue_delete (mm, qdpll->qpup_nodes);
QDPLL_DELETE_STACK (mm, qdpll->qpup_vars);
QDPLL_DELETE_STACK (mm, qdpll->qpup_units);
QDPLL_DELETE_STACK (mm, qdpll->qpup_kept_lits);
QDPLL_DELETE_STACK (mm, qdpll->qpup_weak_predict_lits);
QDPLL_DELETE_STACK (mm, qdpll->state.popped_off_internal_vars);
QDPLL_DELETE_STACK (mm, qdpll->state.cur_used_internal_vars);
QDPLL_DELETE_STACK (mm, qdpll->pcnf.user_scope_ptrs);
QDPLL_DELETE_STACK (mm, qdpll->internal_cover_lits);
QDPLL_DELETE_STACK (mm, qdpll->user_given_assumptions);
QDPLL_DELETE_STACK (mm, qdpll->empty_formula_watchers_per_dec_level);
QDPLL_DELETE_STACK (mm, qdpll->empty_formula_watching_blit_occs);
QDPLL_DELETE_STACK (mm, qdpll->qbcp_qbce_maybe_blocked_clauses);
QDPLL_DELETE_STACK (mm, qdpll->qbcp_qbce_relevant_vars_in_new_input_clauses);
ConstraintPtrStack *csp, *cse;
/* NOTE: must go until stack.end, not just stack.top, because we did not
free the stacks after pop. */
for (csp = qdpll->qbcp_qbce_blocked_clauses.start,
cse = qdpll->qbcp_qbce_blocked_clauses.end; csp < cse; csp++)
{
ConstraintPtrStack stack = *csp;
QDPLL_DELETE_STACK (mm, stack);
}
QDPLL_DELETE_STACK (mm, qdpll->qbcp_qbce_blocked_clauses);
/* Marked clauses per decision level. */
/* NOTE: must go until stack.end, not just stack.top, because we did not
free the stacks after pop. */
for (csp = qdpll->qbcp_qbce_marked_clauses.start,
cse = qdpll->qbcp_qbce_marked_clauses.end; csp < cse; csp++)
{
ConstraintPtrStack stack = *csp;
QDPLL_DELETE_STACK (mm, stack);
}
QDPLL_DELETE_STACK (mm, qdpll->qbcp_qbce_marked_clauses);
if (qdpll->qdo_assignment_table)
{
assert (qdpll->qdo_table_bytes);
qdpll_free (qdpll->mm, qdpll->qdo_assignment_table, qdpll->qdo_table_bytes);
qdpll->qdo_table_bytes = 0;
qdpll->qdo_assignment_table = 0;
}
if (qdpll->assumption_lits_constraint)
delete_constraint (qdpll, qdpll->assumption_lits_constraint);
/* Delete scopes. */
delete_scope_list (qdpll, &qdpll->pcnf.scopes);
delete_scope_list (qdpll, &qdpll->pcnf.user_scopes);
/* Delete variables. Can ignore variable with ID 0. */
Var *vars = qdpll->pcnf.vars;
Var *v, *ve;
for (v = vars, ve = vars + qdpll->pcnf.size_vars; v < ve; v++)
{
if (v->id)
delete_variable (qdpll, v);
}
qdpll_free (mm, vars, qdpll->pcnf.size_vars * sizeof (Var));
/* Delete clauses. */
qdpll_delete_constraint_list (qdpll, &(qdpll->pcnf.clauses));
/* Delete learnt clauses. */
qdpll_delete_constraint_list (qdpll, &(qdpll->pcnf.learnt_clauses));
/* Delete learnt cubes. */
qdpll_delete_constraint_list (qdpll, &(qdpll->pcnf.learnt_cubes));
/* Delete cover sets, if any. */
qdpll_delete_constraint_list (qdpll, &(qdpll->cover_sets));
qdpll_free (mm, qdpll->var_pqueue, qdpll->size_var_pqueue * sizeof (VarID));
qdpll_free (mm, qdpll->assigned_vars,
size_assigned_vars (qdpll) * sizeof (VarID));
assert (qdpll->dm);
assert ((qdpll->options.depman_simple && !qdpll->options.depman_qdag)
|| (!qdpll->options.depman_simple && qdpll->options.depman_qdag)
|| (!qdpll->options.depman_simple && !qdpll->options.depman_qdag));
/* Delete dependency manager.
IMPORTANT NOTE: all heap-memory managed by DepMan must already have been
deleted before! */
qdpll_qdag_dep_man_delete ((QDPLLDepManQDAG *) qdpll->dm);
qdpll_free (mm, qdpll, sizeof (QDPLL));
qdpll_delete_mem_man (mm);
}
/* Configure solver instance via configuration string.
Returns null pointer on success and error string otherwise. */
char *
qdpll_configure (QDPLL * qdpll, char *configure_str)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
char *result = 0;
if (!strncmp (configure_str, "--trace", strlen ("--trace")))
{
qdpll->options.trace = TRACE_QRP;
configure_str += strlen ("--trace");
if (!strcmp (configure_str, "=bqrp"))
{
qdpll->options.trace = TRACE_BQRP;
qdpll->trace_scope = &print_bqrp_scope;
qdpll->trace_constraint = &print_bqrp_constraint;
qdpll->trace_full_cover_set = &print_bqrp_full_cover_set;
}
else if (strlen (configure_str) != 0 && strcmp (configure_str, "=qrp"))
QDPLL_ABORT_QDPLL (1, "unknown tracing format!");
}
else if (!strcmp (configure_str, "--qbcp-qbce-watcher-list-mtf"))
{
qdpll->options.qbcp_qbce_watcher_list_mtf = 1;
}
#if QBCP_QBCE_DYNAMIC_ASSIGNMENT_ELIM_UNIV_VARS
else if (!strcmp (configure_str, "--elim-univ-dynamic-switch"))
{
qdpll->options.elim_univ_dynamic_switch = 1;
}
else if (!strncmp
(configure_str, "--elim-univ-dynamic-switch-delay=", strlen ("--elim-univ-dynamic-switch-delay=")))
{
configure_str += strlen ("--elim-univ-dynamic-switch-delay=");
if (isnumstr (configure_str))
{
qdpll->options.elim_univ_dynamic_switch_delay = atoi (configure_str);
if (qdpll->options.elim_univ_dynamic_switch_delay == 0)
result = "Expecting value greater than 0 after '--elim-univ-dynamic-switch-delay='";
}
else
result = "Expecting number after '--elim-univ-dynamic-switch-delay='";
}
else if (!strncmp
(configure_str, "--elim-univ-dynamic-success-threshold=", strlen ("--elim-univ-dynamic-success-threshold=")))
{
configure_str += strlen ("--elim-univ-dynamic-success-threshold=");
if (isnumstr (configure_str))
{
qdpll->options.elim_univ_dynamic_success_threshold = atoi (configure_str);
if (qdpll->options.elim_univ_dynamic_success_threshold > 100)
result = "Expecting value smaller than or equal to 100 after '--elim-univ-dynamic-success-threshold='";
}
else
result = "Expecting number after '--elim-univ-dynamic-success-threshold='";
}
#endif
else if (!strncmp
(configure_str, "--qbce-witness-max-occs=", strlen ("--qbce-witness-max-occs=")))
{
configure_str += strlen ("--qbce-witness-max-occs=");
if (isnumstr (configure_str))
{
qdpll->options.qbcp_qbce_find_witness_max_occs = atoi (configure_str);
}
else
result = "Expecting number after '--qbce-witness-max-occs='";
}
else if (!strncmp
(configure_str, "--qbce-max-clause-size=", strlen ("--qbce-max-clause-size=")))
{
configure_str += strlen ("--qbce-max-clause-size=");
if (isnumstr (configure_str))
{
qdpll->options.qbcp_qbce_max_clause_size = atoi (configure_str);
}
else
result = "Expecting number after '--qbce-max-clause-size='";
}
else if (!strcmp (configure_str, "--qbce-preprocessing"))
{
qdpll->options.qbce_preprocessing = 1;
if (qdpll->options.qbce_inprocessing || !qdpll->options.no_qbce_dynamic)
result = "Must enable at most one of QBCE pre/inprocessing or dynamic variant";
}
else if (!strcmp (configure_str, "--qbce-inprocessing"))
{
qdpll->options.qbce_inprocessing = 1;
if (qdpll->options.qbce_preprocessing || !qdpll->options.no_qbce_dynamic)
result = "Must enable at most one of QBCE pre/inprocessing or dynamic variant";
}
else if (!strcmp (configure_str, "--no-qbce-dynamic"))
{
qdpll->options.no_qbce_dynamic = 1;
}
else if (!strcmp (configure_str, "--empty-formula-watching"))
{
qdpll->options.empty_formula_watching = 1;
qdpll->state.empty_formula_watcher_scheduled_update = 1;
}
else if (!strcmp (configure_str, "--traditional-qcdcl"))
{
qdpll->options.traditional_qcdcl = qdpll->options.no_qpup_cdcl = qdpll->options.no_qpup_sdcl = 1;
}
else if (!strcmp (configure_str, "--no-qpup-cdcl"))
{
qdpll->options.no_qpup_cdcl = 1;
qdpll->options.traditional_qcdcl = 1;
}
else if (!strcmp (configure_str, "--no-qpup-sdcl"))
{
qdpll->options.no_qpup_sdcl = 1;
qdpll->options.traditional_qcdcl = 1;
}
else if (!strcmp (configure_str, "--incremental-use"))
{
qdpll->options.incremental_use = 1;
/* Any QBCE variant must be disabled in incremental use. */
qdpll->options.no_qbce_dynamic = 1;
}
else if (!strcmp (configure_str, "--no-lazy-qpup"))
{
qdpll->options.no_lazy_qpup = 1;
}
else if (!strcmp (configure_str, "--long-dist-res"))
{
qdpll->options.long_dist_res = 1;
}
else if (!strcmp (configure_str, "--bump-vars-once"))
{
qdpll->options.bump_vars_once = 1;
}
else if (!strcmp (configure_str, "--no-pure-literals"))
{
qdpll->options.no_pure_literals = 1;
}
else if (!strcmp (configure_str, "--no-spure-literals"))
{
qdpll->options.no_spure_literals = 1;
}
else if (!strcmp (configure_str, "--no-cdcl"))
{
qdpll->options.no_cdcl = 1;
}
else if (!strcmp (configure_str, "--no-sdcl"))
{
qdpll->options.no_sdcl = 1;
}
else if (!strcmp (configure_str, "--no-unit-mtf"))
{
qdpll->options.no_unit_mtf = 1;
}
else if (!strcmp (configure_str, "--no-res-mtf"))
{
qdpll->options.no_res_mtf = 1;
}
else
if (!strncmp
(configure_str, "--var-act-bias=", strlen ("--var-act-bias=")))
{
configure_str += strlen ("--var-act-bias=");
if (isnumstr (configure_str))
{
qdpll->options.var_act_bias = atoi (configure_str);
}
else
result = "Expecting number after '--var-act-bias='";
}
else if (!strcmp (configure_str, "--no-univ-cache"))
{
qdpll->options.no_univ_cache = 1;
}
else if (!strcmp (configure_str, "--no-exists-cache"))
{
qdpll->options.no_exists_cache = 1;
}
else
if (!strncmp
(configure_str, "--no-lin-lcubes-inc",
strlen ("--no-lin-lcubes-inc")))
{
qdpll->options.no_lin_lcubes_inc = 1;
}
else
if (!strncmp
(configure_str, "--no-lin-lclauses-inc",
strlen ("--no-lin-lclauses-inc")))
{
qdpll->options.no_lin_lclauses_inc = 1;
}
else
if (!strncmp
(configure_str, "--no-lin-orestart-inc",
strlen ("--no-lin-orestart-inc")))
{
qdpll->options.no_lin_orestart_inc = 1;
}
else
if (!strncmp
(configure_str, "--no-lin-irestart-inc",
strlen ("--no-lin-irestart-inc")))
{
qdpll->options.no_lin_irestart_inc = 1;
}
else
if (!strncmp
(configure_str, "--orestart-dist-init=",
strlen ("--orestart-dist-init=")))
{
configure_str += strlen ("--orestart-dist-init=");
if (isnumstr (configure_str))
{
qdpll->options.orestart_dist_init = atoi (configure_str);
qdpll->state.orestart_dist = qdpll->options.orestart_dist_init;
}
else
result = "Expecting number after '--orestart-dist-init='";
}
else
if (!strncmp
(configure_str, "--orestart-dist-inc=",
strlen ("--orestart-dist-inc=")))
{
configure_str += strlen ("--orestart-dist-inc=");
if (isnumstr (configure_str))
{
qdpll->options.orestart_dist_inc = atoi (configure_str);
}
else
result = "Expecting number after '--orestart-dist-inc'";
}
else
if (!strncmp
(configure_str, "--irestart-dist-init=",
strlen ("--irestart-dist-init=")))
{
configure_str += strlen ("--irestart-dist-init=");
if (isnumstr (configure_str))
{
qdpll->options.irestart_dist_init = atoi (configure_str);
qdpll->state.irestart_dist = qdpll->options.irestart_dist_init;
}
else
result = "Expecting number after '--irestart-dist-init='";
}
else
if (!strncmp
(configure_str, "--irestart-dist-inc=",
strlen ("--irestart-dist-inc=")))
{
configure_str += strlen ("--irestart-dist-inc=");
if (isnumstr (configure_str))
{
qdpll->options.irestart_dist_inc = atoi (configure_str);
}
else
result = "Expecting number after '--irestart-dist-inc'";
}
else
if (!strncmp
(configure_str, "--lclauses-init-size=",
strlen ("--lclauses-init-size=")))
{
configure_str += strlen ("--lclauses-init-size=");
if (isnumstr (configure_str))
{
qdpll->options.lclauses_init_size = atoi (configure_str);
}
else
result = "Expecting number after '--lclauses-init-size='";
}
else
if (!strncmp
(configure_str, "--lclauses-min-init-size=",
strlen ("--lclauses-min-init-size=")))
{
configure_str += strlen ("--lclauses-min-init-size=");
if (isnumstr (configure_str))
{
qdpll->options.lclauses_min_init_size = atoi (configure_str);
}
else
result = "Expecting number after '--lclauses-min-init-size='";
}
else
if (!strncmp
(configure_str, "--lclauses-max-init-size=",
strlen ("--lclauses-max-init-size=")))
{
configure_str += strlen ("--lclauses-max-init-size=");
if (isnumstr (configure_str))
{
qdpll->options.lclauses_max_init_size = atoi (configure_str);
}
else
result = "Expecting number after '--lclauses-max-init-size='";
}
else
if (!strncmp
(configure_str, "--lcubes-min-init-size=",
strlen ("--lcubes-min-init-size=")))
{
configure_str += strlen ("--lcubes-min-init-size=");
if (isnumstr (configure_str))
{
qdpll->options.lcubes_min_init_size = atoi (configure_str);
}
else
result = "Expecting number after '--lcubes-min-init-size='";
}
else
if (!strncmp
(configure_str, "--lcubes-max-init-size=",
strlen ("--lcubes-max-init-size=")))
{
configure_str += strlen ("--lcubes-max-init-size=");
if (isnumstr (configure_str))
{
qdpll->options.lcubes_max_init_size = atoi (configure_str);
}
else
result = "Expecting number after '--lcubes-max-init-size='";
}
else
if (!strncmp
(configure_str, "--lcubes-init-size=",
strlen ("--lcubes-init-size=")))
{
configure_str += strlen ("--lcubes-init-size=");
if (isnumstr (configure_str))
{
qdpll->options.lcubes_init_size = atoi (configure_str);
}
else
result = "Expecting number after '--lcubes-init-size='";
}
else
if (!strncmp
(configure_str, "--lclauses-resize-value=",
strlen ("--lclauses-resize-value=")))
{
configure_str += strlen ("--lclauses-resize-value=");
if (isnumstr (configure_str))
{
qdpll->options.lclauses_resize_value = atoi (configure_str);
}
else
result = "Expecting number after '--lclauses-resize-value='";
}
else
if (!strncmp
(configure_str, "--lcubes-resize-value=",
strlen ("--lcubes-resize-value=")))
{
configure_str += strlen ("--lcubes_resize_value=");
if (isnumstr (configure_str))
{
qdpll->options.lcubes_resize_value = atoi (configure_str);
}
else
result = "Expecting number after '--lcubes-resize-value='";
}
else
if (!strncmp (configure_str, "--var-act-inc=", strlen ("--var-act-inc=")))
{
configure_str += strlen ("--var-act-inc=");
if (isnumstr (configure_str))
{
qdpll->options.var_act_inc = strtod (configure_str, 0);
qdpll->state.var_act_inc = qdpll->options.var_act_inc;
}
else
result = "Expecting real number after '--var-act-inc='";
}
else
if (!strncmp
(configure_str, "--var-act-dec-ifactor=",
strlen ("--var-act-dec-ifactor=")))
{
configure_str += strlen ("--var-act-dec-ifactor=");
if (isnumstr (configure_str))
{
qdpll->options.var_act_decay_ifactor = strtod (configure_str, 0);
qdpll->var_act_decay = 1.0 / qdpll->options.var_act_decay_ifactor;
}
else
result = "Expecting real number after '--var-act-dec-ifactor='";
}
else
if (!strncmp
(configure_str, "--lclauses-delfactor=",
strlen ("--lclauses-delfactor=")))
{
configure_str += strlen ("--lclauses-delfactor=");
if (isnumstr (configure_str))
{
qdpll->options.lclauses_delfactor = strtod (configure_str, 0);
}
else
result = "Expecting real number after '--lclauses-delfactor='";
}
else
if (!strncmp
(configure_str, "--lcubes-delfactor=",
strlen ("--lcubes-delfactor=")))
{
configure_str += strlen ("--lcubes-delfactor=");
if (isnumstr (configure_str))
{
qdpll->options.lcubes_delfactor = strtod (configure_str, 0);
}
else
result = "Expecting real number after '--lcubes-delfactor='";
}
else if (!strncmp (configure_str, "--dec-heur=", strlen ("--dec-heur=")))
{
configure_str += strlen ("--dec-heur=");
if (!strncmp (configure_str, "simple", strlen ("simple")))
qdpll->options.dh = QDPLL_DH_SIMPLE;
else if (!strncmp (configure_str, "sdcl", strlen ("sdcl")))
qdpll->options.dh = QDPLL_DH_SDCL;
else if (!strncmp (configure_str, "qtype", strlen ("qtype")))
qdpll->options.dh = QDPLL_DH_QTYPE;
else if (!strncmp (configure_str, "rand", strlen ("rand")))
qdpll->options.dh = QDPLL_DH_RANDOM;
else if (!strncmp (configure_str, "falsify", strlen ("falsify")))
qdpll->options.dh = QDPLL_DH_FALSIFY;
else if (!strncmp (configure_str, "satisfy", strlen ("satisfy")))
qdpll->options.dh = QDPLL_DH_SATISFY;
else
result =
"Expecting one of 'simple, sdcl, qtype, rand' after '--dec-heur='";
}
else if (!strncmp (configure_str, "--max-space=", strlen ("--max-space=")))
{
configure_str += strlen ("--max-space=");
if (isnumstr (configure_str))
{
qdpll->options.max_space = atoi (configure_str);
/* Space limit takes effect immediately when set. */
qdpll_set_mem_limit (qdpll->mm, qdpll->options.max_space);
}
else
result = "Expecting number after '--max-space='";
}
else
if (!strncmp
(configure_str, "--soft-max-space=", strlen ("--soft-max-space=")))
{
configure_str += strlen ("--soft-max-space=");
if (isnumstr (configure_str))
{
qdpll->options.soft_max_space = atoi (configure_str);
}
else
result = "Expecting number after '--soft-max-space='";
}
else if (!strncmp (configure_str, "--max-dec=", strlen ("--max-dec=")))
{
configure_str += strlen ("--max-dec=");
if (isnumstr (configure_str))
{
qdpll->options.max_dec = atoi (configure_str);
if (qdpll->options.max_dec == 0)
{
if (qdpll->options.max_btracks == 0 && qdpll->options.max_secs == 0)
qdpll->options.limit_set = 0;
}
else
qdpll->options.limit_set = 1;
}
else
result = "Expecting number after '--max-dec='";
}
else if (!strncmp (configure_str, "--max-btracks=", strlen ("--max-btracks=")))
{
configure_str += strlen ("--max-btracks=");
if (isnumstr (configure_str))
{
qdpll->options.max_btracks = atoi (configure_str);
if (qdpll->options.max_btracks == 0)
{
if (qdpll->options.max_dec == 0 && qdpll->options.max_secs == 0)
qdpll->options.limit_set = 0;
}
else
qdpll->options.limit_set = 1;
}
else
result = "Expecting number after '--max-btracks='";
}
else if (!strncmp (configure_str, "--max-secs=", strlen ("--max-secs=")))
{
configure_str += strlen ("--max-secs=");
if (isnumstr (configure_str))
{
qdpll->options.max_secs = atoi (configure_str);
if (qdpll->options.max_secs == 0)
{
if (qdpll->options.max_dec == 0 && qdpll->options.max_btracks == 0)
qdpll->options.limit_set = 0;
}
else
qdpll->options.limit_set = 1;
}
else
result = "Expecting number after '--max-secs='";
}
else if (!strncmp (configure_str, "--seed=", strlen ("--seed=")))
{
configure_str += strlen ("--seed=");
if (isnumstr (configure_str))
{
qdpll->options.seed = atoi (configure_str);
srand (qdpll->options.seed);
}
else
result = "Expecting number after '--seed='";
}
else if (!strncmp (configure_str, "--dep-man=", strlen ("--dep-man=")))
{
assert (qdpll->dm);
assert ((qdpll->options.depman_simple && !qdpll->options.depman_qdag)
|| (!qdpll->options.depman_simple && qdpll->options.depman_qdag)
|| (!qdpll->options.depman_simple
&& !qdpll->options.depman_qdag));
QDPLLDepManType current;
if (qdpll->options.depman_qdag)
current = QDPLL_DEPMAN_TYPE_QDAG;
else if (qdpll->options.depman_simple)
current = QDPLL_DEPMAN_TYPE_SIMPLE;
else
{
QDPLL_ABORT_QDPLL (1, "unexpected value for DM!");
}
configure_str += strlen ("--dep-man=");
QDPLLDepManType new;
if (!strcmp (configure_str, "qdag"))
new = QDPLL_DEPMAN_TYPE_QDAG;
else if (!strcmp (configure_str, "simple"))
new = QDPLL_DEPMAN_TYPE_SIMPLE;
else
{
result = "expecting 'simple' or 'qdag' after '--dep-man='";
return result;
}
if (current != new)
{
/* Delete old, create new DepMan. */
qdpll->options.depman_qdag = qdpll->options.depman_simple = 0;
qdpll_qdag_dep_man_delete ((QDPLLDepManQDAG *) qdpll->dm);
qdpll->dm =
(QDPLLDepManGeneric *)
qdpll_qdag_dep_man_create (qdpll->mm, &(qdpll->pcnf), new,
qdpll->options.
depman_qdag_print_deps_by_search,
qdpll);
if (new == QDPLL_DEPMAN_TYPE_QDAG)
{
assert (!qdpll->options.depman_qdag);
qdpll->options.depman_qdag = 1;
}
else if (new == QDPLL_DEPMAN_TYPE_SIMPLE)
{
assert (!qdpll->options.depman_simple);
qdpll->options.depman_simple = 1;
}
}
}
else if (!strcmp (configure_str, "--qdag-print-deps-by-search"))
{
if (qdpll->options.depman_qdag)
{
assert (!qdpll->options.depman_simple);
result =
"must use '--qdag-print-deps-by-search' before configuring QDAG dependency manager";
}
else
qdpll->options.depman_qdag_print_deps_by_search = 1;
}
else if (!strcmp (configure_str, "-v"))
{
qdpll->options.verbosity++;
}
else
{
result = "unknown option";
}
return result;
}
/* Decrease the current frame index by one and cleanup all clauses associated
to old, popped off frame. Learned cubes still are valid after clauses have
been cleaned up. Returns either the old frame index which was popped off or
zero if there is no frame to be popped off. */
unsigned int
qdpll_pop (QDPLL *qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (!qdpll->options.incremental_use,
"Must configure by '--incremental-use' to enable push/pop API!");
QDPLL_ABORT_QDPLL (!qdpll, "'qdpll' is null!");
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->assigned_vars != qdpll->bcp_ptr,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->state.clause_group_api_called,
"Must not mix calls of push/pop API and clause groups API!");
qdpll->state.push_pop_api_called = 1;
if (qdpll->state.cnt_created_clause_groups == 0)
return 0;
unsigned int popped_off_index = qdpll->state.cnt_created_clause_groups;
assert (qdpll->state.cnt_created_clause_groups ==
QDPLL_COUNT_STACK(qdpll->state.cur_used_internal_vars));
delete_clause_group_aux (qdpll, popped_off_index);
QDPLL_POP_STACK(qdpll->state.cur_used_internal_vars);
assert (qdpll->state.cnt_created_clause_groups ==
QDPLL_COUNT_STACK(qdpll->state.cur_used_internal_vars));
/* Declare next frame open. */
assert (qdpll->state.cur_open_group_id == qdpll->state.cnt_created_clause_groups + 1);
qdpll->state.cur_open_group_id = qdpll->state.cnt_created_clause_groups;
return popped_off_index;
}
/* Enforce the deletion of variables which have no occurrences
left. E.g. after 'qdpll_pop', a variable might not have any clauses
left and hence can be cleaned up. This can be useful if the user
wants to re-use the indices of these variables by adding them to a
new scope. A 'qdpll_pop' usually does not delete variables and
clauses physically each time, but only logically. Physical deletion
is done heuristically. This means that the logically deleted
variables are still present and cannot be declared again in a new
scope, for example. This function 'qdpll_gc' makes sure that
physical deletion of all logically deleted clauses and variables is
carried out. */
void qdpll_gc (QDPLL *qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
qdpll_gc_aux (qdpll, 1);
}
/* Increase the current frame index by one. If necessary, then increase the
size of the table storing internal variable IDs. Every clause added to the
current frame gets a positive literal of a fresh internal variable,
attaching that clause to the current frame. Returns the new frame index
resulting from the pop operation. */
unsigned int
qdpll_push (QDPLL *qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (!qdpll->options.incremental_use,
"Must configure by '--incremental-use' to enable push/pop API!");
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->assigned_vars != qdpll->bcp_ptr,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->state.clause_group_api_called,
"Must not mix calls of push/pop API and clause groups API!");
qdpll->state.push_pop_api_called = 1;
unsigned int frame_index = new_clause_group_aux (qdpll);
assert (frame_index == QDPLL_COUNT_STACK(qdpll->state.cur_used_internal_vars));
assert (frame_index == qdpll->state.cnt_created_clause_groups);
/* Declare new frame open. */
qdpll->state.cur_open_group_id = frame_index;
return frame_index;
}
/* ------------ START: API functions for clause groups ------------ */
/* Creates a new clause group and returns its ID. The returned ID is a handle
of the created clause group and should be passed to API functions to
manipulate clause groups. Initially, the newly created clause group is
empty (i.e. it does not contain any clauses) and it is closed. To add
clauses to a group, the group must be opened by 'open_clause_group'. Only
one clause group can be open at a time. Clauses can be added to the
currently open group as usual by calling 'qdpll_add'. To add clauses to a
different group, the currently open group must be closed again by
'close_clause_group' and the other group must be opened. */
ClauseGroupID
qdpll_new_clause_group (QDPLL *qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (!qdpll->options.incremental_use,
"Must configure by '--incremental-use' to enable clause groups API!");
qdpll->state.clause_group_api_called = 1;
QDPLL_ABORT_QDPLL (qdpll->state.push_pop_api_called,
"Must not mix calls of push/pop API and clause groups API!");
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll_get_open_clause_group (qdpll),
"Must close currently open clause group before creating a new one!");
QDPLL_ABORT_QDPLL (qdpll->state.scope_opened,
"Must close currently open scope before creating new clause group!");
/* Allocate a new clause group with ID 'group_id'. New groups are closed and
have to be opened by calling 'qdpll_open_clause_group'. */
unsigned int group_id = new_clause_group_aux (qdpll);
assert (QDPLL_COUNT_STACK(qdpll->state.cur_used_internal_vars) > 0);
assert (group_id == QDPLL_COUNT_STACK(qdpll->state.cur_used_internal_vars));
assert (qdpll->state.cnt_created_clause_groups <= group_id);
return group_id;
}
/* Delete the clause group with ID 'clause_group'. The ID of the deleted group
becomes invalid and must not be passed to the API functions anymore. All
clauses in the deleted group are deleted from the formula. */
void
qdpll_delete_clause_group (QDPLL *qdpll, ClauseGroupID clause_group)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (!qdpll->options.incremental_use,
"Must configure by '--incremental-use' to enable clause groups API!");
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->assigned_vars != qdpll->bcp_ptr,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
qdpll->state.clause_group_api_called = 1;
QDPLL_ABORT_QDPLL (qdpll->state.push_pop_api_called,
"Must not mix calls of push/pop API and clause groups API!");
QDPLL_ABORT_QDPLL (!qdpll_exists_clause_group(qdpll, clause_group), "Invalid clause group ID!");
QDPLL_ABORT_QDPLL (qdpll_get_open_clause_group (qdpll) == clause_group,
"Clause group to be deleted must not be open!");
QDPLL_ABORT_QDPLL (clause_group_to_var_ptr (qdpll, clause_group)->is_cur_inactive_group_selector,
"Clause group to be deleted must not be deactivated!");
delete_clause_group_aux (qdpll, clause_group);
}
/* Open the clause group with ID 'clause_group'. That group must not be open
already. Only one group can be open at a time. Clauses can be added to the
currently open group as usual by calling 'qdpll_add'. An open group will
stay open across calls of e.g. 'qdpll_sat'. However, to add clauses to a
another group, the currently open group must be closed again by
'close_clause_group' and the other group must be opened. */
void
qdpll_open_clause_group (QDPLL *qdpll, ClauseGroupID clause_group)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (!qdpll->options.incremental_use,
"Must configure by '--incremental-use' to enable clause groups API!");
qdpll->state.clause_group_api_called = 1;
QDPLL_ABORT_QDPLL (qdpll->state.push_pop_api_called,
"Must not mix calls of push/pop API and clause groups API!");
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->assigned_vars != qdpll->bcp_ptr,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (!qdpll_exists_clause_group(qdpll, clause_group), "Invalid clause group ID!");
QDPLL_ABORT_QDPLL (qdpll_get_open_clause_group (qdpll),
"There is already an open clause group!");
QDPLL_ABORT_QDPLL (clause_group_to_var_ptr (qdpll, clause_group)->is_cur_inactive_group_selector,
"Clause group to be opened must not be deactivated!");
QDPLL_ABORT_QDPLL (qdpll->state.scope_opened,
"Must close currently open scope before opening a clause group!");
qdpll->state.cur_open_group_id = clause_group;
}
/* Returns the ID of the currently open clause group, or NULL if no group is
currently open. If there is currently no open group, then all clauses added
via 'qdpll_add' will be permanently added to the formula and cannot be
removed. */
ClauseGroupID
qdpll_get_open_clause_group (QDPLL *qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (!qdpll->options.incremental_use,
"Must configure by '--incremental-use' to enable clause groups API!");
qdpll->state.clause_group_api_called = 1;
QDPLL_ABORT_QDPLL (qdpll->state.push_pop_api_called,
"Must not mix calls of push/pop API and clause groups API!");
QDPLL_ABORT_QDPLL (qdpll->state.cur_open_group_id &&
!qdpll_exists_clause_group
(qdpll, qdpll->state.cur_open_group_id),
"Internal error: invalid clause group ID.");
QDPLL_ABORT_QDPLL (qdpll->state.cur_open_group_id &&
clause_group_to_var_ptr
(qdpll, qdpll->state.cur_open_group_id)->is_cur_inactive_group_selector,
"Internal error: current open group is deactivated!");
return get_open_clause_group_aux (qdpll);
}
/* Returns non-zero if and only if (1) a clause group with ID 'clause_group'
has been created before and (2) the ID 'clause_group' was returned by
'qdpll_new_clause_group' and (3) that clause group was not deleted by
calling 'qdpll_delete_clause_group'. */
int
qdpll_exists_clause_group (QDPLL *qdpll, ClauseGroupID clause_group)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (!qdpll->options.incremental_use,
"Must configure by '--incremental-use' to enable clause groups API!");
qdpll->state.clause_group_api_called = 1;
QDPLL_ABORT_QDPLL (qdpll->state.push_pop_api_called,
"Must not mix calls of push/pop API and clause groups API!");
return exists_clause_group_aux (qdpll, clause_group);
}
/* Close the clause group with ID 'clause_group'. That group must have been
opened by a previous call of 'open_clause_group'. */
void
qdpll_close_clause_group (QDPLL *qdpll, ClauseGroupID clause_group)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (!qdpll->options.incremental_use,
"Must configure by '--incremental-use' to enable clause groups API!");
qdpll->state.clause_group_api_called = 1;
QDPLL_ABORT_QDPLL (qdpll->state.push_pop_api_called,
"Must not mix calls of push/pop API and clause groups API!");
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->assigned_vars != qdpll->bcp_ptr,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (!qdpll_exists_clause_group(qdpll, clause_group), "Invalid clause group ID!");
QDPLL_ABORT_QDPLL (qdpll_get_open_clause_group (qdpll) != clause_group,
"Clause group to be closed is currently not open!");
QDPLL_ABORT_QDPLL (clause_group_to_var_ptr (qdpll, clause_group)->is_cur_inactive_group_selector,
"Clause group to be closed must not be deactivated!");
qdpll->state.cur_open_group_id = 0;
}
/* Returns a zero-terminated array of clause group IDs representing those
clause groups which contain clauses used by the solver to determine
UNSATISFIABILITY by the most recent call of 'qdpll_sat'. That is, this
function returns a subset of those clause groups which participiate in the
resolution refutation of the current formula. This function can be called
only if the most recent call of 'qdpll_sat' returned QDPLL_RESULT_UNSAT.
NOTE: the caller is responsible to release the memory of the array returned
by this function. */
ClauseGroupID *
qdpll_get_relevant_clause_groups (QDPLL * qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (!qdpll->options.incremental_use,
"Must configure by '--incremental-use' to enable clause groups API!");
qdpll->state.clause_group_api_called = 1;
QDPLL_ABORT_QDPLL (qdpll->state.push_pop_api_called,
"Must not mix calls of push/pop API and clause groups API!");
QDPLL_ABORT_QDPLL (qdpll->result == QDPLL_RESULT_UNKNOWN,
"Formula must be solved before calling this function!");
QDPLL_ABORT_QDPLL (qdpll->result != QDPLL_RESULT_UNSAT,
"Formula must be unsatisfiable when calling this function!");
QDPLL_ABORT_QDPLL(!qdpll->assumption_lits_constraint,
"Unexpected error: no assumption subset computed!");
QDPLL_ABORT_QDPLL(!(qdpll->assumption_lits_constraint && qdpll->state.assumptions_given),
"Unexpected error: cannot retrieve relevant assumptions.");
QDPLL_ABORT_QDPLL(qdpll->assumption_lits_constraint->is_cube,
"Unexpected error: assumption-lits constraint is a cube.");
ClauseGroupIDStack clause_group_ids;
QDPLL_INIT_STACK(clause_group_ids);
LitID *p, *e;
for (p = qdpll->assumption_lits_constraint->lits,
e = p + qdpll->assumption_lits_constraint->num_lits;
p < e; p++)
{
LitID a_lit = *p;
Var *a_var = LIT2VARPTR(qdpll->pcnf.vars, a_lit);
if (a_var->is_internal)
{
/* Watch out for literals of clause group selector variables. Here,
we will only find variables assigned to FALSE since the formula is
unsatisfiable and 'qdpll->assumption_lits_constraint' is a clause
containing literals of the relevant internal assumptions. */
assert (a_var->is_cur_used_internal_var);
assert (!a_var->is_cur_inactive_group_selector);
assert (a_var->assignment == QDPLL_ASSIGNMENT_FALSE);
ClauseGroupID group_id = a_var->clause_group_id;
assert (qdpll_exists_clause_group (qdpll, group_id));
assert (!clause_group_to_var_ptr
(qdpll, group_id)->is_cur_inactive_group_selector);
assert (qdpll->state.cur_used_internal_vars.start[group_id - 1] == a_var->id);
QDPLL_PUSH_STACK(qdpll->mm, clause_group_ids, group_id);
}
}
unsigned int size =
(QDPLL_COUNT_STACK(clause_group_ids) + 1) * sizeof (ClauseGroupID);
/* Do not use internal memory manager here because the user has to free the
memory. */
ClauseGroupID *relevant_clause_groups = malloc (size);
memset (relevant_clause_groups, 0, size);
/* Copy collected clause group ID to newly allocated array. */
ClauseGroupID *gp, *ge, *dest = relevant_clause_groups;
for (gp = clause_group_ids.start, ge = clause_group_ids.top;
gp < ge; gp++, dest++)
*dest = *gp;
assert (dest ==
relevant_clause_groups + QDPLL_COUNT_STACK(clause_group_ids));
assert (!*dest);
QDPLL_DELETE_STACK(qdpll->mm, clause_group_ids);
return relevant_clause_groups;
}
/* Activates all clauses in the group 'clause_group', which has been
deactivated before by 'qdpll_deactivate_clause_group'. Clause groups are
activated at the time they are created and can be deactivated by calling
'qdpll_deactivate_clause_group'. */
void
qdpll_activate_clause_group (QDPLL *qdpll, ClauseGroupID clause_group)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (!qdpll->options.incremental_use,
"Must configure by '--incremental-use' to enable clause groups API!");
qdpll->state.clause_group_api_called = 1;
QDPLL_ABORT_QDPLL (qdpll->state.push_pop_api_called,
"Must not mix calls of push/pop API and clause groups API!");
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->assigned_vars != qdpll->bcp_ptr,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (!qdpll_exists_clause_group(qdpll, clause_group), "Invalid clause group ID!");
QDPLL_ABORT_QDPLL (qdpll_get_open_clause_group (qdpll) == clause_group,
"Internal error: deactivated clause group to be activated must not be open!");
Var *var = clause_group_to_var_ptr (qdpll, clause_group);
assert(var->is_cur_used_internal_var);
QDPLL_ABORT_QDPLL (!var->is_cur_inactive_group_selector,
"Clause group to be activated is already activated!");
/* Set flag to indicate that the group with selector variable 'var' is
activated. */
var->is_cur_inactive_group_selector = 0;
}
/* Deactivates all clauses in the group 'clause_group'. The ID of a
deactivated group cannot be passed to any API functions except
'qdpll_activate_clause_group' and 'qdpll_exists_clause_group'. Clause
groups are activated at the time they are created. When calling
'qdpll_sat', clauses in deactivated groups are ignored. Thus deactivating a
clause group amounts to temporarily deleting these groups from the
formula. However, unlike 'qdpll_delete_clause_group' which permanently
deletes the clauses in a group, deactivated groups can be activated again
by calling 'qdpll_activate_clause_group'. This adds the formerly
deactivated clauses back to the formula. */
void
qdpll_deactivate_clause_group (QDPLL *qdpll, ClauseGroupID clause_group)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (!qdpll->options.incremental_use,
"Must configure by '--incremental-use' to enable clause groups API!");
qdpll->state.clause_group_api_called = 1;
QDPLL_ABORT_QDPLL (qdpll->state.push_pop_api_called,
"Must not mix calls of push/pop API and clause groups API!");
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->assigned_vars != qdpll->bcp_ptr,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (!qdpll_exists_clause_group(qdpll, clause_group), "Invalid clause group ID!");
QDPLL_ABORT_QDPLL (qdpll_get_open_clause_group (qdpll) == clause_group,
"Clause group to be deactivated must not be open!");
QDPLL_ABORT_QDPLL (qdpll->state.scope_opened,
"Must close currently open scope before deactivating a clause group!");
Var *var = clause_group_to_var_ptr (qdpll, clause_group);
assert(var->is_cur_used_internal_var);
QDPLL_ABORT_QDPLL (var->is_cur_inactive_group_selector,
"Clause group to be deactivated is already deactivated!");
/* Set flag to indicate that the group with selector variable 'var' is
deactivated. */
var->is_cur_inactive_group_selector = 1;
}
/* ------------ END: API functions for clause groups ------------ */
/* Make sure that at least a user-given variable with ID 'num' is
available. Enlarge variable table if necessary, rename internal variable
IDs. */
void
qdpll_adjust_vars (QDPLL * qdpll, VarID num)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
const VarID cur_size_vars = qdpll->pcnf.size_vars;
const VarID cur_size_user_vars = qdpll->pcnf.size_user_vars;
QDPLL_ABORT_QDPLL (cur_size_user_vars > cur_size_vars,
"Size of user vars must be smaller than or equal to size of vars!");
/* Index 0 is never used in variable table, hence increase 'num' */
unsigned int new_size_user_vars = num + 1;
if (cur_size_user_vars < new_size_user_vars)
{
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->assigned_vars != qdpll->bcp_ptr,
"Unexpected assignments of variables; solver must be in reset state!");
/* Make sure that old and new portion of internal vars do not overlap;
this simplifies the way of updating old IDs of internal variables by
adding a fixed offset.
POSSIBLE OPTIMIZATION: we likely have unused variable indices using this policy. */
if (new_size_user_vars < cur_size_vars)
new_size_user_vars = cur_size_vars;
const unsigned int cur_size_internal_vars = cur_size_vars - cur_size_user_vars;
assert (cur_size_internal_vars <= cur_size_vars);
const unsigned int new_size_vars = new_size_user_vars + cur_size_internal_vars;
assert (new_size_user_vars <= new_size_vars);
qdpll->pcnf.vars = (Var *) qdpll_realloc (qdpll->mm, qdpll->pcnf.vars,
cur_size_vars * sizeof (Var),
new_size_vars * sizeof (Var));
qdpll->pcnf.size_vars = new_size_vars;
qdpll->pcnf.size_user_vars = new_size_user_vars;
qdpll->state.next_free_internal_var_id = qdpll->pcnf.size_user_vars;
/* Rename internal IDs by adding additional offset. Rename only if
current frame index is greater than zero: this indicates that 'push' was
called before and that there are in fact USED internal variables. */
if (qdpll->state.cnt_created_clause_groups > 0 ||
QDPLL_COUNT_STACK(qdpll->state.popped_off_internal_vars) > 0)
{
assert (cur_size_internal_vars >= qdpll->state.cnt_created_clause_groups);
if (qdpll->options.verbosity >= 2)
fprintf (stderr, "Adjust user vars: moving and renaming internal variables, new internal size %d.\n",
qdpll->pcnf.size_vars - qdpll->pcnf.size_user_vars);
move_internal_ids (qdpll, cur_size_user_vars, new_size_user_vars, new_size_user_vars - cur_size_user_vars);
rename_internal_variable_ids (qdpll, new_size_user_vars - cur_size_user_vars);
/* Reset dependencies here to clear any old-internal candidates
maintained in dependency manager. */
qdpll_reset_deps (qdpll);
}
assert_internal_vars_integrity (qdpll);
}
assert (qdpll->pcnf.size_user_vars <= qdpll->pcnf.size_vars);
}
/* Add a new variable with ID 'id' to the scope with nesting level
'nesting'. The variable 'id' must not have been added before by either this
function or 'qdpll_add'. The scope must exist, i.e. it must have been added
by either 'qdpll_new_scope' or 'qdpll_new_scope_at_nesting'. The value of
the parameter 'nesting' of this function should be a value returned by a
previous call of 'qdpll_new_scope' or 'qdpll_new_scope_at_nesting'. In any
case, it must be smaller than or equal to the return value of
'qdpll_get_max_scope_nesting'. */
void
qdpll_add_var_to_scope (QDPLL *qdpll, VarID id, Nesting nesting)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (nesting == 0, "Parameter 'nesting' must be greater than zero!");
QDPLL_ABORT_QDPLL (qdpll_get_max_scope_nesting (qdpll) == 0,
"Empty scope list; must add scopes first by 'qdpll_new_scope' or 'qdpll_new_scope_at_nesting'!");
QDPLL_ABORT_QDPLL (qdpll->state.scope_opened,
"there is an open scope (must be closed with 'qdpll_add(qdpll, 0)')!");
QDPLL_ABORT_QDPLL (nesting > qdpll_get_max_scope_nesting (qdpll),
"'nesting' must be smaller than or equal to the return value of 'qdpll_get_max_scope_nesting'");
QDPLL_ABORT_QDPLL (QDPLL_COUNT_STACK(qdpll->add_stack) != 0,
"Started adding a variable to a scope while adding a clause!");
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->assigned_vars != qdpll->bcp_ptr,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
/* The scope used in the previous call of this function is cached in
'qdpll->state.scope_opened_ptr'. If possible, then re-use that cached
value. This way, we avoid linear-time search for the scope where 'id'
should be added to. */
if (!qdpll->state.scope_opened_ptr ||
qdpll->state.scope_opened_ptr->nesting != nesting)
qdpll->state.scope_opened_ptr = find_user_scope_at_nesting_level (qdpll, nesting);
assert (qdpll->state.scope_opened_ptr &&
!qdpll->state.scope_opened_ptr->is_internal &&
qdpll->state.scope_opened_ptr->nesting == nesting);
const char *err_msg = add_id_to_scope (qdpll, id, qdpll->state.scope_opened_ptr, 1);
/* Abort if variables are added multiple times. */
QDPLL_ABORT_QDPLL (err_msg, err_msg);
/* Schedule the import of user prefix next time 'import_user_scopes' is called. */
qdpll->state.no_scheduled_import_user_scopes = 0;
assert (!qdpll->state.scope_opened);
}
/* Returns the nesting level of the current rightmost scope or zero if there
are no scopes. */
Nesting
qdpll_get_max_scope_nesting (QDPLL *qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
assert (qdpll->pcnf.user_scopes.first || !qdpll->pcnf.user_scopes.last);
assert (!qdpll->pcnf.user_scopes.first || qdpll->pcnf.user_scopes.last);
return qdpll->pcnf.user_scopes.last ? qdpll->pcnf.user_scopes.last->nesting : 0;
}
Nesting
qdpll_new_scope (QDPLL * qdpll, QDPLLQuantifierType qtype)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL ((qtype != QDPLL_QTYPE_EXISTS &&
qtype != QDPLL_QTYPE_FORALL), "invalid 'qtype'!");
QDPLL_ABORT_QDPLL (qdpll->state.scope_opened,
"there is already a new, open scope (must be closed with 'qdpll_add(qdpll, 0)')!");
QDPLL_ABORT_QDPLL (QDPLL_COUNT_STACK(qdpll->add_stack) != 0,
"Started adding a scope while adding a clause!");
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->assigned_vars != qdpll->bcp_ptr,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
qdpll->state.scope_opened = 1;
/* Allocate a new rightmost scope. */
Scope *scope = (Scope *) qdpll_malloc (qdpll->mm, sizeof (Scope));
scope->nesting = qdpll->pcnf.user_scopes.last ?
qdpll->pcnf.user_scopes.last->nesting + 1 : QDPLL_DEFAULT_SCOPE_NESTING + 1;
assert (scope->nesting > 0);
scope->type = qtype;
LINK_LAST (qdpll->pcnf.user_scopes, scope, link);
QDPLL_PUSH_STACK(qdpll->mm, qdpll->pcnf.user_scope_ptrs, scope);
assert (QDPLL_COUNT_STACK(qdpll->pcnf.user_scope_ptrs) ==
qdpll_get_max_scope_nesting (qdpll));
qdpll->state.scope_opened_ptr = scope;
assert (!qdpll->state.scope_opened_ptr->is_internal);
return qdpll->state.scope_opened_ptr->nesting;
}
/* Open a new scope at nesting level '1 <= nesting <=
qdpll_get_max_scope_nesting () + 1' with quantifier type 'qtype'. If
'nesting == qdpll_get_max_scope_nesting () + 1' then the new scope is
appended to the list of present scopes, which has the same effect as
calling 'qdpll_new_scope'. Otherwise, the new scope is inserted at level
'nesting' and the present scopes with nesting levels equal to and greater
than 'nesting' (i.e. before inserting the new scope) are shifted right.
Variables can be added to the scope opened by the most recent call of this
function by 'qdpll_add' (similar to 'qdpll_new_scope'). The opened scope
must be closed by adding '0' via 'qdpll_add'. Adjacent scopes of the same
quantifier type can be added (but internally they will be merged into a single
scope). Returns the nesting of the added scope, which should be used as a
handle of this scope, and which can safely be passed to
'qdpll_add_var_to_scope'.
NOTE: the run time of this function is linear in the length of quantifier prefix. */
Nesting
qdpll_new_scope_at_nesting (QDPLL * qdpll, QDPLLQuantifierType qtype, Nesting nesting)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (nesting == 0, "Parameter 'nesting' must be greater than zero!");
QDPLL_ABORT_QDPLL (nesting > qdpll_get_max_scope_nesting (qdpll) + 1,
"Parameter 'nesting' must be smaller than or equal to 'qdpll_get_max_scope_nesting () + 1'!");
QDPLL_ABORT_QDPLL (qdpll->state.scope_opened,
"there is already a new, open scope (must be closed with 'qdpll_add(qdpll, 0)')!");
QDPLL_ABORT_QDPLL (QDPLL_COUNT_STACK(qdpll->add_stack) != 0,
"Started adding a scope while adding a clause!");
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->assigned_vars != qdpll->bcp_ptr,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
/* Check when to append new scope to list of existing scopes. */
if (nesting > qdpll_get_max_scope_nesting (qdpll))
return qdpll_new_scope (qdpll, qtype);
else
{
assert (nesting > QDPLL_DEFAULT_SCOPE_NESTING);
/* The list of user scopes is not empty. */
assert (qdpll_get_max_scope_nesting (qdpll) > 0);
assert (qdpll->pcnf.user_scopes.first);
assert (qdpll->pcnf.user_scopes.last);
qdpll->state.scope_opened = 1;
Scope *s = find_user_scope_at_nesting_level (qdpll, nesting);
assert (s && s->nesting == nesting);
assert (s->nesting <= qdpll_get_max_scope_nesting (qdpll));
assert (!s->is_internal);
/* Allocate a new user scope to be inserted. */
Scope *scope = (Scope *) qdpll_malloc (qdpll->mm, sizeof (Scope));
scope->type = qtype;
assert (!scope->is_internal);
qdpll->state.scope_opened_ptr = scope;
if (s == qdpll->pcnf.user_scopes.first)
LINK_FIRST (qdpll->pcnf.user_scopes, scope, link);
else
{
/* Insert new user scope into scope list. */
assert (s->link.prev);
assert (s->link.next || s == qdpll->pcnf.user_scopes.last);
assert (!scope->link.next);
assert (!scope->link.prev);
scope->link.next = s;
scope->link.prev = s->link.prev;
s->link.prev->link.next = scope;
s->link.prev = scope;
qdpll->pcnf.user_scopes.cnt++;
}
scope->nesting = nesting;
assert (scope->nesting > 0);
/* Update the nesting levels of all scopes and collect pointers to scopes. */
update_scope_nestings_and_ptrs_on_stack (qdpll, 1);
assert (QDPLL_COUNT_STACK(qdpll->pcnf.user_scope_ptrs) ==
qdpll->pcnf.user_scopes.cnt);
assert (qdpll->state.scope_opened_ptr == scope);
return qdpll->state.scope_opened_ptr->nesting;
}
}
/* This function is deprecated. */
int
qdpll_has_var_active_occs (QDPLL *qdpll, VarID id)
{
QDPLL_ABORT_QDPLL(1,"function deprecated");
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL(!id || id > qdpll->pcnf.max_declared_user_var_id,
"Invalid variable ID!");
Var *var = VARID2VARPTR(qdpll->pcnf.vars, id);
QDPLL_ABORT_QDPLL(!var->id,
"Variable is not declared!");
return has_variable_active_occs_in_clauses (qdpll, var, &(var->neg_occ_clauses), 0) ||
has_variable_active_occs_in_clauses (qdpll, var, &(var->pos_occ_clauses), 0);
}
/* NOTE: semantics of 'qdpll_add' must support DIMACS as well as QDIMACS format.
For DIMACS, all variables must be added to the default, existential scope,
which could be done e.g. before solving starts.
For QDIMACS, scopes are closed - as clauses are in (Q)DIMACS - by adding '0'. */
void
qdpll_add (QDPLL * qdpll, LitID id)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
add_aux (qdpll, id);
}
QDPLLResult
qdpll_sat (QDPLL * qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL(qdpll->options.depman_qdag && qdpll->options.trace,
"Trace mode must be combined with '--dep-man=simple'!");
QDPLL_ABORT_QDPLL (qdpll->state.scope_opened,
"there is an open scope (must be closed with 'qdpll_add(qdpll, 0)')!");
QDPLL_ABORT_QDPLL (QDPLL_COUNT_STACK(qdpll->add_stack) != 0,
"most recently added clause has not been closed!");
/* Value of 'qdpll->state.num_sat_calls' is used to trigger cube checking later in 'solve'. */
QDPLL_ABORT_QDPLL (qdpll->state.num_sat_calls == UINT_MAX,
"Number of calls of 'qdpll_sat()' has reached UINT_MAX.");
qdpll->state.num_sat_calls++;
assert (!(qdpll->options.long_dist_res && !qdpll->options.depman_simple));
QDPLL_ABORT_QDPLL(qdpll->options.long_dist_res && !qdpll->options.depman_simple,
"(temporary restriction) Must combine '--long-dist-res' with '--dep-man=simple'!");
QDPLL_ABORT_QDPLL (qdpll->state.num_sat_calls > 1 && qdpll->state.pending_cubes_check &&
!qdpll->options.incremental_use,
"Must configure by '--incremental-use' to enable incremental use!");
QDPLL_ABORT_QDPLL(((qdpll->state.num_sat_calls > 1 && qdpll->state.pending_cubes_check &&
qdpll->options.depman_qdag)),
"Must configure by '--dep-man=simple' in incremental use!");
QDPLL_ABORT_QDPLL (qdpll->options.incremental_use && qdpll->options.depman_qdag,
"Must configure by '--dep-man=simple' in incremental use!");
QDPLL_ABORT_QDPLL (qdpll->qdo_assignment_table || qdpll->qdo_table_bytes,
"Unexpected computed assignment for QDIMACS output. "\
"Must call 'qdpll_reset()' before calling 'qdpll_sat ()'.");
QDPLL_ABORT_QDPLL ((!qdpll->state.assumptions_given && count_assigned_vars(qdpll) != 0) ||
qdpll->assigned_vars != qdpll->bcp_ptr || qdpll->result_constraint ||
qdpll->state.decision_level != 0 || qdpll->result != QDPLL_RESULT_UNKNOWN,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (!qdpll->options.no_qbce_dynamic &&
(qdpll->options.qbce_preprocessing || qdpll->options.qbce_inprocessing),
"must enable at most one of dynamic, inprocessing, or preprocessing QBCE!");
QDPLL_ABORT_QDPLL (qdpll->options.qbce_preprocessing &&
(!qdpll->options.no_qbce_dynamic || qdpll->options.qbce_inprocessing),
"must enable at most one of dynamic, inprocessing, or preprocessing QBCE!");
QDPLL_ABORT_QDPLL (qdpll->options.qbce_inprocessing &&
(!qdpll->options.no_qbce_dynamic || qdpll->options.qbce_preprocessing),
"must enable at most one of dynamic, inprocessing, or preprocessing QBCE!");
QDPLL_ABORT_QDPLL (qdpll->options.incremental_use &&
(qdpll->options.qbce_preprocessing ||
qdpll->options.qbce_inprocessing ||
!qdpll->options.no_qbce_dynamic), "temporarily disabled: QBCE in incremental mode");
QDPLL_ABORT_QDPLL (qdpll->options.incremental_use &&
qdpll->options.empty_formula_watching,
"temporarily disabled: empty-formula-watching in incremental mode");
QDPLL_ABORT_QDPLL ((!qdpll->options.no_qbce_dynamic || qdpll->options.qbce_preprocessing ||
qdpll->options.qbce_inprocessing) && qdpll->options.trace,
"Trace mode must not be combined with QBCE: must disable any variant of QBCE");
QDPLL_ABORT_QDPLL (qdpll->options.incremental_use && COLLECT_FULL_COVER_SETS &&
(qdpll->options.qbce_preprocessing ||
qdpll->options.qbce_inprocessing || !qdpll->options.no_qbce_dynamic),
"temporarily disabled: collecting cover sets cannot be combined with QBCE");
QDPLL_ABORT_QDPLL((!qdpll->options.no_lazy_qpup && !qdpll->options.traditional_qcdcl) &&
qdpll->options.trace,
"Must combine either '--no-lazy-qpup' or '--traditional-qcdcl' with tracing");
#if COMPUTE_TIMES
qdpll->time_stats.sat_time_start = time_stamp ();
#endif
/* Reset any previous result. */
qdpll->result = QDPLL_RESULT_UNKNOWN;
assert ((qdpll->options.depman_simple && !qdpll->options.depman_qdag) ||
(!qdpll->options.depman_simple && qdpll->options.depman_qdag)
|| (!qdpll->options.depman_simple && !qdpll->options.depman_qdag));
QDPLLResult r = QDPLL_RESULT_UNKNOWN;
/* Decide formula. */
set_up_formula (qdpll);
#ifndef NDEBUG
#if QDPLL_ASSERT_FULL_FORMULA_INTEGRITY
assert_full_formula_integrity (qdpll);
#endif
#endif
r = solve (qdpll);
qdpll->result = r;
#if COMPUTE_TIMES
qdpll->time_stats.total_sat_time +=
(time_stamp () - qdpll->time_stats.sat_time_start);
#endif
return r;
}
/* Get assignment of variable. */
QDPLLAssignment
qdpll_get_value (QDPLL * qdpll, VarID id)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (!qdpll_is_var_declared (qdpll, id),
"Variable with given ID is not declared!");
/* Fix: we do NOT call 'import_user_scopes' here because this will copy
scopes and hence destroy the QDAG. see 'qdpll_print_qdimacs_output' for
comment. */
const QDPLLResult result = qdpll->result;
assert (id);
assert (id < qdpll->pcnf.size_vars);
Var *var = VARID2VARPTR (qdpll->pcnf.vars, id);
QDPLL_ABORT_QDPLL (var->is_internal, "Unexpected internal variable ID.");
if (!qdpll->qdo_assignment_table)
{
assert (qdpll->qdo_table_bytes == 0);
Scope *outer = 0;
assert (qdpll->pcnf.scopes.first);
if (!qdpll->pcnf.user_scopes.first)
{
/* Formula is propositional; can print model only if satisfiable. */
if (result == QDPLL_RESULT_SAT)
outer = qdpll->pcnf.scopes.first;
}
else
{
if (result == QDPLL_RESULT_UNSAT)
{
/* Formula is unsatisfiable; cannot print countermodel if the
outermost scope is existential or if the formula contains free
variables, which by default are quantified existentially and
leftmost. */
if (qdpll->pcnf.user_scopes.first->type == QDPLL_QTYPE_FORALL &&
!has_scope_free_user_var (qdpll, qdpll->pcnf.scopes.first))
outer = qdpll->pcnf.user_scopes.first;
}
else
{
assert (result == QDPLL_RESULT_SAT);
/* Formula is satisfiable; cannot print countermodel if the
outermost scope is universal AND if the formula DOES NOT contain free
variables. */
if (qdpll->pcnf.user_scopes.first->type == QDPLL_QTYPE_EXISTS ||
has_scope_free_user_var (qdpll, qdpll->pcnf.scopes.first))
{
outer = qdpll->pcnf.scopes.first;
if (QDPLL_COUNT_STACK(qdpll->pcnf.scopes.first->vars) == 0)
{
assert (outer->link.next);
assert (outer->link.next->type == outer->type);
outer = outer->link.next;
}
}
}
}
if (outer)
{
/* Bug fix: must check if 'result_constraint' is set (set
only if we have top-level conflict/solution). If it is not
set then we return 'QDPLL_ASSIGNMENT_UNDEF' below for
variables which have not been assigned a value. */
if (qdpll->result_constraint && qdo_has_outer_scope_unassigned_vars (qdpll, outer, qdpll->result))
{
qdpll->qdo_table_bytes = (qdpll_get_max_declared_var_id (qdpll) + 1) * sizeof (char);
qdpll->qdo_assignment_table = (char *) qdpll_malloc (qdpll->mm, qdpll->qdo_table_bytes);
qdo_fix_outer_scope_unassigned_vars(qdpll, outer, qdpll->result, qdpll->qdo_assignment_table);
}
if (result == QDPLL_RESULT_SAT && outer->type == QDPLL_QTYPE_EXISTS)
{
/* Reconstruct partial model if QBCE was applied. */
qdo_qbcp_qbce_reconstruct_cnf_model (qdpll, outer);
}
}
}
assert (var->assignment == QDPLL_ASSIGNMENT_TRUE ||
var->assignment == QDPLL_ASSIGNMENT_FALSE ||
var->assignment == QDPLL_ASSIGNMENT_UNDEF);
if (var->assignment != QDPLL_ASSIGNMENT_UNDEF || !qdpll->qdo_assignment_table)
return var->assignment;
else
{
assert (qdpll->qdo_assignment_table);
assert (qdpll->qdo_assignment_table[var->id] == QDPLL_ASSIGNMENT_UNDEF ||
qdpll->qdo_assignment_table[var->id] == QDPLL_ASSIGNMENT_TRUE ||
qdpll->qdo_assignment_table[var->id] == QDPLL_ASSIGNMENT_FALSE);
return qdpll->qdo_assignment_table[var->id];
}
}
void
qdpll_print (QDPLL * qdpll, FILE * out)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->assigned_vars != qdpll->bcp_ptr,
"Unexpected assignments of variables; solver must be in reset state!");
set_up_formula (qdpll);
#ifndef NDEBUG
#if QDPLL_ASSERT_FULL_FORMULA_INTEGRITY
assert_full_formula_integrity (qdpll);
#endif
#endif
assert (qdpll->pcnf.clauses.cnt ==
count_constraints (&(qdpll->pcnf.clauses)));
fprintf (out, "p cnf %d %d\n", qdpll->pcnf.max_declared_user_var_id,
qdpll->pcnf.clauses.cnt);
assert (qdpll->pcnf.scopes.first);
assert (qdpll->pcnf.scopes.first->is_internal);
assert (qdpll->pcnf.scopes.first->nesting == QDPLL_DEFAULT_SCOPE_NESTING);
assert (QDPLL_SCOPE_EXISTS (qdpll->pcnf.scopes.first));
/* Print additional scope with FREE user variables, if any. */
if (has_scope_free_user_var (qdpll, qdpll->pcnf.scopes.first))
qdpll_print_aux_scope (qdpll, qdpll->pcnf.scopes.first, out);
/* Print user scopes. This way, we also print variables which do not have
occurrences. */
Scope *s;
for (s = qdpll->pcnf.user_scopes.first; s; s = s->link.next)
{
if (QDPLL_COUNT_STACK (s->vars) > 0)
qdpll_print_aux_scope (qdpll, s, out);
}
Constraint *c;
for (c = qdpll->pcnf.clauses.first; c; c = c->link.next)
{
assert (!c->is_cube);
/* New: do not print clauses which effectively have been deleted from the
clause stack by either deleting the group/frame or deactivating the group. */
if (clause_has_popped_off_var (qdpll, c) || clause_has_inactive_var (qdpll, c))
continue;
/* For incremental use: do not print literals of internal variables. */
LitID *p, *e;
for (p = c->lits, e = p + c->num_lits; p < e; p++)
{
LitID lit = *p;
Var *var = LIT2VARPTR(qdpll->pcnf.vars, lit);
if (!var->is_internal)
fprintf (out, "%d ", lit);
}
fprintf (out, "0\n");
}
}
/* Print QDIMACS-compliant output to stdout as defined at:
http://www.qbflib.org/qdimacs.html */
void
qdpll_print_qdimacs_output (QDPLL * qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
/* NOTE: here we print the largest declared variable ID and the
number of used original clauses. This might differ from the preamble
of the original input file if that file was not strictly QDIMACS
compliant or if clauses were removed. */
const QDPLLResult result = qdpll->result;
char *res_string;
if (result == QDPLL_RESULT_UNKNOWN)
res_string = "-1";
else if (result == QDPLL_RESULT_SAT)
res_string = "1";
else if (result == QDPLL_RESULT_UNSAT)
res_string = "0";
else
QDPLL_ABORT_QDPLL (1, "invalid result!");
fprintf (stdout, "s cnf %s %d %d\n", res_string,
qdpll->pcnf.max_declared_user_var_id, qdpll->pcnf.clauses.cnt);
Scope *outer;
assert (qdpll->pcnf.scopes.first);
if (!qdpll->pcnf.user_scopes.first)
{
/* Formula is propositional; when unsatisfiable then cannot print
countermodel. */
if (result == QDPLL_RESULT_UNSAT)
return;
else
outer = qdpll->pcnf.scopes.first;
}
else
{
if (result == QDPLL_RESULT_UNSAT)
{
/* Formula is unsatisfiable; cannot print countermodel if the
outermost scope is existential or if the formula contains free
variables, which by default are quantified existentially and
leftmost. */
if (qdpll->pcnf.user_scopes.first->type == QDPLL_QTYPE_EXISTS ||
has_scope_free_user_var (qdpll, qdpll->pcnf.scopes.first))
return;
else
outer = qdpll->pcnf.user_scopes.first;
}
else
{
assert (result == QDPLL_RESULT_SAT);
/* Formula is satisfiable; cannot print countermodel if the
outermost scope is universal AND if the formula DOES NOT contain free
variables. */
if (qdpll->pcnf.user_scopes.first->type == QDPLL_QTYPE_FORALL &&
!has_scope_free_user_var (qdpll, qdpll->pcnf.scopes.first))
return;
else
{
outer = qdpll->pcnf.scopes.first;
if (QDPLL_COUNT_STACK(qdpll->pcnf.scopes.first->vars) == 0)
{
assert (outer->link.next);
assert (outer->link.next->type == outer->type);
outer = outer->link.next;
}
}
}
}
Var *vars = qdpll->pcnf.vars;
VarID *p, *e;
for (p = outer->vars.start, e = outer->vars.top; p < e; p++)
{
assert (*p);
VarID id = *p;
Var *var = VARID2VARPTR (vars, id);
assert (!var->id || var->id == id);
QDPLLAssignment a;
/* FIX: Do not print assignments of internal variables, ignore also
reset internal variables. */
if ((!var->is_internal && id <= qdpll_get_max_declared_var_id (qdpll)) &&
(a = qdpll_get_value (qdpll, id)) != QDPLL_ASSIGNMENT_UNDEF)
fprintf (stdout, "V %d 0\n",
a == QDPLL_ASSIGNMENT_FALSE ? -id : id);
}
}
void
qdpll_init_deps (QDPLL * qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->assigned_vars != qdpll->bcp_ptr,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLLDepManGeneric *dm = qdpll->dm;
assert (dm);
set_up_formula (qdpll);
if (!dm->is_init (dm))
{
if (qdpll->options.verbosity > 1)
fprintf (stderr, "Initializing dependencies.\n");
#if COMPUTE_STATS
qdpll->stats.total_dep_man_init_calls++;
#endif
dm->init (dm);
}
}
void
qdpll_reset_deps (QDPLL * qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
/* NOTE: at this point, we may have assigned assumptions which were provided
by the user. */
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->assigned_vars != qdpll->bcp_ptr,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLLDepManGeneric *dm = qdpll->dm;
assert (dm);
if (dm->is_init (dm))
dm->reset (dm);
assert (!dm->is_init (dm));
}
/* Returns non-zero if variable 'id2' depends on variable 'id1',
i.e. if id1 < id2, with respect to the current dependency scheme. */
int
qdpll_var_depends (QDPLL * qdpll, VarID x, VarID y)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (qdpll->state.decision_level != 0,
"Unexpected decision level != 0; solver must be in reset state!");
QDPLL_ABORT_QDPLL (qdpll->assigned_vars != qdpll->bcp_ptr,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLL_ABORT_QDPLL (count_assigned_vars(qdpll) != 0,
"Unexpected assignments of variables; solver must be in reset state!");
QDPLLDepManGeneric *dm = qdpll->dm;
assert (dm);
QDPLL_ABORT_QDPLL (!dm->is_init (dm),
"dependency manager is not initialized!");
QDPLL_ABORT_QDPLL (!qdpll_is_var_declared (qdpll, x), "variable is not declared!");
QDPLL_ABORT_QDPLL (!qdpll_is_var_declared (qdpll, y), "variable is not declared!");
/* New: a variable is considered to be declared if the user has added it to
the formula's prefix. However, if the variable does not occur in any
clauses, then there can not be any dependencies. */
if (!QDPLL_VAR_HAS_OCCS(VARID2VARPTR(qdpll->pcnf.vars, x)) ||
!QDPLL_VAR_HAS_OCCS(VARID2VARPTR(qdpll->pcnf.vars, y)))
return 0;
return dm->depends(dm, x, y);
}
/* Note: could also return a collection of variable IDs. */
void
qdpll_print_deps (QDPLL * qdpll, VarID id)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (qdpll->pcnf.max_declared_user_var_id >= qdpll->pcnf.size_vars,
"largest declared ID larger than size of variables!");
QDPLL_ABORT_QDPLL (!qdpll_is_var_declared (qdpll, id), "variable is not declared!");
QDPLLDepManGeneric *dm = qdpll->dm;
assert (dm);
QDPLL_ABORT_QDPLL (!dm->is_init (dm),
"dependency manager is not initialized!");
dm->print_deps (dm, id);
}
VarID
qdpll_get_max_declared_var_id (QDPLL * qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
assert (qdpll->pcnf.max_declared_user_var_id ==
find_max_declared_user_var_id (qdpll, qdpll->pcnf.vars + qdpll->pcnf.size_vars - 1));
return qdpll->pcnf.max_declared_user_var_id;
}
/* Returns non-zero if and only if (1) a variable with ID 'id' has been added
to the solver by a previous call of 'qdpll_add', 'qdpll_add_cube' or
'qdpll_add_var_to_scope' and (2) that variable has not been cleaned up by
the solver. A variable will be cleaned up if it is added to the solver but
there are no clauses where that variable occurs. This function can be
useful for incremental use of the solver: before adding a clause to the
solver, this function can be used to check if the variable of each literal
in the clause has been declared already. If not, then it can be declared by
'qdpll_add_var_to_scope' and put in the right scope.
NOTE: if a clause containing literals of undeclared variables is added by
'qdpll_add' then these literals by default will be existentially quantified
and put in the leftmost scope. */
int qdpll_is_var_declared (QDPLL * qdpll, VarID id)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (id == 0, "Zero is not a valid variable ID!");
if (id > qdpll->pcnf.max_declared_user_var_id)
return 0;
/* The solver has to ensure the following property. */
QDPLL_ABORT_QDPLL (id >= qdpll->pcnf.size_user_vars, "Unexpected internal variable ID.");
QDPLL_ABORT_QDPLL (qdpll->pcnf.size_user_vars > qdpll->pcnf.size_vars,
"Unexpected sizes of variable table.");
Var *var = VARID2VARPTR(qdpll->pcnf.vars, id);
/* The solver has to ensure the following properties. */
QDPLL_ABORT_QDPLL (var->is_internal, "Unexpected internal variable ID.");
QDPLL_ABORT_QDPLL (var->id && var->id != id, "Unexpected mismatch of variable IDs.");
if (var->id)
return var->id;
/* Import the user prefix to make sure that 'var->id' is true for a user
variable which has been deleted previously because it did not have
occurrences. Redundant calls of 'import_user_scopes' are prevented by the
flag 'qdpll->state.no_scheduled....'. */
import_user_scopes (qdpll);
return var->id;
}
/* Returns the nesting level 'level' in the range '1 <= level <=
qdpll_get_max_scope_nesting()' of the previously declared variable with ID
'id'. Returns 0 if the variable with ID 'id' is free, i.e. not explicitly
associated to a quantifier block. Fails if 'id' does not correspond to a
declared variable, which should be checked with function
'qdpll_is_var_declared()' before. */
Nesting qdpll_get_nesting_of_var (QDPLL * qdpll, VarID id)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (id == 0, "Value of 'id' must be greater than zero.");
QDPLL_ABORT_QDPLL (!qdpll_is_var_declared (qdpll, id),
"Variable with 'id' is not declared!");
/* Make sure that user prefix is properly imported. This usually is done
already in 'qdpll_is_var_declared' above and the additional call does not
incur overhead. */
import_user_scopes (qdpll);
Var *var = VARID2VARPTR(qdpll->pcnf.vars, id);
/* Return nesting level 0 if the variable is free. */
if (!var->user_scope)
{
QDPLL_ABORT_QDPLL (!var->scope, "Null pointer encountered!");
return 0;
}
QDPLL_ABORT_QDPLL(var->user_scope->nesting == 0 ||
var->user_scope->nesting > qdpll_get_max_scope_nesting(qdpll),
"Unexpected user scope nesting!");
return var->user_scope->nesting;
}
/* Returns the quantifier type (i.e. either QDPLL_QTYPE_EXISTS or
QDPLL_QTYPE_FORALL) of the scope at nesting level 'nesting'.
Returns zero if there is no scope with nesting level 'nesting'. */
QDPLLQuantifierType
qdpll_get_scope_type (QDPLL *qdpll, Nesting nesting)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (nesting == 0, "Parameter 'nesting' must be greater than zero!");
if (nesting > qdpll_get_max_scope_nesting (qdpll))
return QDPLL_QTYPE_UNDEF;
Scope *scope = find_user_scope_at_nesting_level (qdpll, nesting);
QDPLL_ABORT_QDPLL(!scope, "Unexpected null pointer to scope.");
QDPLL_ABORT_QDPLL ((scope->type != QDPLL_QTYPE_EXISTS &&
scope->type != QDPLL_QTYPE_FORALL), "Unexpected scope type.");
return scope->type;
}
/* Dump dependency graph to 'stdout' in DOT format. */
void
qdpll_dump_dep_graph (QDPLL * qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLLDepManGeneric *dm = qdpll->dm;
assert (dm);
QDPLL_ABORT_QDPLL (!dm->is_init (dm),
"dependency manager is not initialized!");
dm->dump_dep_graph (dm);
}
void
qdpll_print_stats (QDPLL * qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (!(COMPUTE_STATS || COMPUTE_TIMES),
"must enable statistics!");
#if COMPUTE_TIMES
/* Fix time stats when solver was interrupted e.g. by time-out. */
if (qdpll->result == QDPLL_RESULT_UNKNOWN)
qdpll->time_stats.total_sat_time +=
(time_stamp () - qdpll->time_stats.sat_time_start);
#endif
#if COMPUTE_STATS
assert (COMPUTE_STATS);
fprintf (stderr, "\n---------------- STATS ----------------");
fprintf (stderr, "\npushed assignments: \t%13llu\n",
qdpll->stats.pushed_assignments);
fprintf (stderr, "assignment flips: \t%13llu\n",
qdpll->stats.assignment_flips);
fprintf (stderr, "decisions: \t\t%13llu\n", qdpll->stats.decisions);
fprintf (stderr, "dec. per assignm.: \t%13f\n",
qdpll->stats.pushed_assignments ? qdpll->stats.decisions /
(float) qdpll->stats.pushed_assignments : 0);
fprintf (stderr, "backtracks: \t\t%13u\n", qdpll->state.num_backtracks);
fprintf (stderr, "sat. results: \t\t%13llu\n", qdpll->stats.sat_results);
fprintf (stderr, "unsat. results: \t%13llu\n", qdpll->stats.unsat_results);
fprintf (stderr, "propagations: \t\t%13llu\n", qdpll->stats.propagations);
fprintf (stderr, "pushed unit literals: \t%13llu ( top: %llu )\n",
qdpll->stats.pushed_unit_literals,
qdpll->stats.pushed_top_unit_literals);
fprintf (stderr, "pushed univ. unit literals: \t%llu\n",
qdpll->stats.pushed_univ_unit_literals);
fprintf (stderr, "unit per assignm.: \t%13f\n",
qdpll->stats.pushed_assignments ? qdpll->stats.
pushed_unit_literals /
(float) qdpll->stats.pushed_assignments : 0);
fprintf (stderr, "pushed pure literals: \t%13llu ( top: %llu )\n",
qdpll->stats.pushed_pure_literals,
qdpll->stats.pushed_top_pure_literals);
fprintf (stderr, "pure per assignm.: \t%13f\n",
qdpll->stats.pushed_assignments ? qdpll->stats.
pushed_pure_literals /
(float) qdpll->stats.pushed_assignments : 0);
fprintf (stderr, "deps init: \t\t%13llu\n\n",
qdpll->stats.total_dep_man_init_calls);
fprintf (stderr, "Total var.act. rescales:\t%llu\n",
qdpll->stats.total_var_act_rescales);
fprintf (stderr, "Total sat. cubes:\t\t%llu\n\n",
qdpll->stats.total_sat_cubes);
fprintf (stderr, "Total sat. result dlevels: \t%13llu\n",
qdpll->stats.total_sat_results_dlevels);
fprintf (stderr, "Avg. sat. result dlevel:\t%13f\n",
qdpll->stats.sat_results ? qdpll->stats.total_sat_results_dlevels /
(float) qdpll->stats.sat_results : 0);
fprintf (stderr, "Total sat. result btlevels: \t%13llu\n",
qdpll->stats.total_sat_results_btlevels);
fprintf (stderr, "Avg. sat. result btlevel:\t%13f\n",
qdpll->stats.sat_results ? qdpll->
stats.total_sat_results_btlevels /
(float) qdpll->stats.sat_results : 0);
fprintf (stderr, "Total sat. result btdist: \t%13llu\n",
qdpll->stats.total_sat_results_btdist);
fprintf (stderr, "Avg. sat. result btdist:\t%13f\n",
qdpll->stats.sat_results ? qdpll->stats.total_sat_results_btdist /
(float) qdpll->stats.sat_results : 0);
fprintf (stderr, "Total unsat. result dlevels: \t%13llu\n",
qdpll->stats.total_unsat_results_dlevels);
fprintf (stderr, "Avg. unsat. result dlevel:\t%13f\n",
qdpll->stats.unsat_results ? qdpll->
stats.total_unsat_results_dlevels /
(float) qdpll->stats.unsat_results : 0);
fprintf (stderr, "Total unsat. result btlevels: \t%13llu\n",
qdpll->stats.total_unsat_results_btlevels);
fprintf (stderr, "Avg. unsat. result btlevel:\t%13f\n",
qdpll->stats.unsat_results ? qdpll->
stats.total_unsat_results_btlevels /
(float) qdpll->stats.unsat_results : 0);
fprintf (stderr, "Total unsat. result btdist: \t%13llu\n",
qdpll->stats.total_unsat_results_btdist);
fprintf (stderr, "Avg. unsat. result btdist:\t%13f\n",
qdpll->stats.unsat_results ? qdpll->
stats.total_unsat_results_btdist /
(float) qdpll->stats.unsat_results : 0);
fprintf (stderr, "Total prop. dlevels: \t\t%13llu\n",
qdpll->stats.total_prop_dlevels);
fprintf (stderr, "Avg. prop. dlevel:\t\t%13f\n\n",
qdpll->stats.propagations ? qdpll->stats.total_prop_dlevels /
(float) qdpll->stats.propagations : 0);
fprintf (stderr, "Total restarts: \t%13u\n", qdpll->state.num_restarts);
fprintf (stderr, "Total restart dlevels: \t%13llu\n",
qdpll->stats.total_restart_dlevels);
fprintf (stderr, "Avg. restart dlevel:\t%13f\n",
qdpll->state.num_restarts ? qdpll->stats.total_restart_dlevels /
(float) qdpll->state.num_restarts : 0);
fprintf (stderr, "Total restart-at dlevels: %13llu\n",
qdpll->stats.total_restart_at_dlevels);
fprintf (stderr, "Avg. restart-at dlevel:\t%13f\n",
qdpll->state.num_restarts ? qdpll->stats.total_restart_at_dlevels /
(float) qdpll->state.num_restarts : 0);
fprintf (stderr, "Total restart-at dist: \t%13llu\n",
qdpll->stats.total_restart_at_dist);
fprintf (stderr, "Avg. restart-at dist:\t%13f\n\n",
qdpll->state.num_restarts ? qdpll->stats.total_restart_at_dist /
(float) qdpll->state.num_restarts : 0);
fprintf (stderr,
"NOTE: literal visits NOT including early watcher checking.\n");
fprintf (stderr, "Literal watcher total find-calls:\t%13llu\n",
qdpll->stats.total_lit_watcher_find_calls);
fprintf (stderr, "Literal watcher total literal visits:\t%13llu\n",
qdpll->stats.total_lit_watcher_find_lit_visits);
fprintf (stderr, "Literal watcher avg. literal visits:\t%13f\n\n",
qdpll->stats.total_lit_watcher_find_calls ?
qdpll->stats.total_lit_watcher_find_lit_visits /
(float) qdpll->stats.total_lit_watcher_find_calls : 0);
fprintf (stderr, "Literal watcher update calls:\t\t%13llu\n",
qdpll->stats.total_lit_watcher_update_calls);
fprintf (stderr, "Literal watcher update sat. by lw:\t%13llu\n",
qdpll->stats.total_lit_watcher_update_sat_by_lw);
fprintf (stderr, "Literal watcher update sat. by rw:\t%13llu\n",
qdpll->stats.total_lit_watcher_update_sat_by_rw);
fprintf (stderr, "Literal watcher update w-sat. ratio:\t%13f\n\n",
qdpll->stats.total_lit_watcher_update_calls ?
(qdpll->stats.total_lit_watcher_update_sat_by_lw +
qdpll->stats.total_lit_watcher_update_sat_by_rw) /
(float) qdpll->stats.total_lit_watcher_update_calls : 0);
fprintf (stderr, "Clause watcher total find-calls:\t%13llu\n",
qdpll->stats.total_clause_watcher_find_calls);
fprintf (stderr, "Clause watcher total clause visits:\t%13llu\n",
qdpll->stats.total_clause_watcher_find_clause_visits);
fprintf (stderr, "Clause watcher total l.clause visits:\t%13llu\n",
qdpll->stats.total_clause_watcher_find_learnt_clause_visits);
fprintf (stderr, "Clause watcher avg. clause visits:\t%13f\n",
qdpll->stats.total_clause_watcher_find_calls ?
qdpll->stats.total_clause_watcher_find_clause_visits /
(float) qdpll->stats.total_clause_watcher_find_calls : 0);
fprintf (stderr, "Clause watcher avg. l.clause visits:\t%13f\n\n",
qdpll->stats.total_clause_watcher_find_calls ?
qdpll->stats.total_clause_watcher_find_learnt_clause_visits /
(float) qdpll->stats.total_clause_watcher_find_calls : 0);
fprintf (stderr,
"NOTE: literal visits including early watcher checking.\n");
fprintf (stderr, "Clause sat. total calls:\t%13llu\n",
qdpll->stats.total_is_clause_sat_calls);
fprintf (stderr, "Clause sat. total lit. visits:\t%13llu\n",
qdpll->stats.total_is_clause_sat_lit_visits);
fprintf (stderr, "Clause sat. avg. lit. visits:\t%13f\n",
qdpll->stats.total_is_clause_sat_calls ?
qdpll->stats.total_is_clause_sat_lit_visits /
(float) qdpll->stats.total_is_clause_sat_calls : 0);
fprintf (stderr, "Clause sat. by lw:\t\t%13llu\n",
qdpll->stats.total_is_clause_sat_by_lw);
fprintf (stderr, "Clause sat. by rw:\t\t%13llu\n",
qdpll->stats.total_is_clause_sat_by_rw);
fprintf (stderr, "Clause sat. w-sat ratio:\t%13f\n\n",
qdpll->stats.total_is_clause_sat_calls ?
(qdpll->stats.total_is_clause_sat_by_lw +
qdpll->stats.total_is_clause_sat_by_rw) /
(float) qdpll->stats.total_is_clause_sat_calls : 0);
fprintf (stderr, "BLits tested:\t\t%13llu\n", qdpll->stats.blits_tested);
fprintf (stderr, "BLits disabe:\t\t%13llu\n", qdpll->stats.blits_disabling);
assert (qdpll->stats.blits_disabling <= qdpll->stats.blits_tested);
fprintf (stderr, "BLits disable ratio:\t%13f\n",
qdpll->stats.blits_tested ?
qdpll->stats.blits_disabling /
(float) qdpll->stats.blits_tested : 0);
fprintf (stderr, "BLits avg. tested:\t%13f\n\n",
qdpll->stats.propagations ?
qdpll->stats.blits_tested / (float) qdpll->stats.propagations : 0);
fprintf (stderr, "BLit update calls:\t%13llu\n",
qdpll->stats.blits_update_calls);
fprintf (stderr, "BLit update done:\t%13llu\n",
qdpll->stats.blits_update_done);
fprintf (stderr, "BLits update avg. done:\t%13f\n\n",
qdpll->stats.blits_update_calls ?
qdpll->stats.blits_update_done /
(float) qdpll->stats.blits_update_calls : 0);
fprintf (stderr, "BLits update visits:\t%13llu\n",
qdpll->stats.blits_update_visits);
fprintf (stderr, "BLits update avg. visits:\t%13f\n\n",
qdpll->stats.blits_update_calls ?
qdpll->stats.blits_update_visits /
(float) qdpll->stats.blits_update_calls : 0);
fprintf (stderr, "BLits pure tested:\t\t%13llu\n",
qdpll->stats.blits_pure_tested);
fprintf (stderr, "BLits pure disabe:\t\t%13llu\n",
qdpll->stats.blits_pure_disabling);
assert (qdpll->stats.blits_pure_disabling <=
qdpll->stats.blits_pure_tested);
fprintf (stderr, "BLits pure disable ratio:\t%13f\n",
qdpll->stats.blits_pure_tested ? qdpll->stats.
blits_pure_disabling / (float) qdpll->stats.blits_pure_tested : 0);
fprintf (stderr, "BLits pure avg. tested:\t%13f\n\n",
qdpll->stats.total_clause_watcher_find_calls ? qdpll->stats.
blits_pure_tested /
(float) qdpll->stats.total_clause_watcher_find_calls : 0);
fprintf (stderr, "Notify-list stats (literal and clause watching):\n");
fprintf (stderr, "Avg. litw. notify-list cnt:\t\t%f\n",
qdpll->stats.total_notify_litw_list_adds ?
qdpll->stats.total_notify_litw_list_cnt /
(float) qdpll->stats.total_notify_litw_list_adds : 0);
fprintf (stderr, "Avg. litw. notify-list size:\t\t%f ( filled: %f )\n",
qdpll->stats.total_notify_litw_list_adds ?
qdpll->stats.total_notify_litw_list_size /
(float) qdpll->stats.total_notify_litw_list_adds : 0,
(qdpll->stats.total_notify_litw_list_size ?
qdpll->stats.total_notify_litw_list_cnt /
(float) qdpll->stats.total_notify_litw_list_size : 0));
fprintf (stderr, "Avg. clausew. notify-list cnt:\t\t%f\n",
qdpll->stats.total_notify_clausew_list_adds ?
qdpll->stats.total_notify_clausew_list_cnt /
(float) qdpll->stats.total_notify_clausew_list_adds : 0);
fprintf (stderr, "Avg. clausew. notify-list size:\t\t%f ( filled: %f )\n",
qdpll->stats.total_notify_clausew_list_adds ?
qdpll->stats.total_notify_clausew_list_size /
(float) qdpll->stats.total_notify_clausew_list_adds : 0,
qdpll->stats.total_notify_clausew_list_size ?
qdpll->stats.total_notify_clausew_list_cnt /
(float) qdpll->stats.total_notify_clausew_list_size : 0);
fprintf (stderr, "Avg. occ. cnt:\t\t\t\t%f\n\n",
qdpll->stats.total_occ_list_adds ?
qdpll->stats.total_occ_list_cnt /
(float) qdpll->stats.total_occ_list_adds : 0);
fprintf (stderr, "Total covers:\t\t\t\t%llu\n",
qdpll->stats.initial_cubes);
fprintf (stderr, "Total learnt cubes mtfs:\t\t%llu\n",
qdpll->stats.total_learnt_cubes_mtfs);
fprintf (stderr, "Total learnt clause mtfs:\t\t%llu\n",
qdpll->stats.total_learnt_clauses_mtfs);
fprintf (stderr, "Total learnt constr. mtfs:\t\t%llu\n",
qdpll->stats.total_learnt_clauses_mtfs +
qdpll->stats.total_learnt_cubes_mtfs);
fprintf (stderr, "Total learnt constr.:\t\t%llu\n",
qdpll->stats.total_learnt_cubes +
qdpll->stats.total_learnt_clauses);
fprintf (stderr, "Total learnt clauses:\t\t%llu\n",
qdpll->stats.total_learnt_clauses);
fprintf (stderr, "Total learnt cubes:\t\t%llu\n",
qdpll->stats.total_learnt_cubes);
fprintf (stderr, "Total learnt constr. sizes:\t%llu\n",
qdpll->stats.total_learnt_clauses_size +
qdpll->stats.total_learnt_cubes_size);
fprintf (stderr, "Total learnt clause sizes:\t%llu\n",
qdpll->stats.total_learnt_clauses_size);
fprintf (stderr, "Total learnt cube sizes:\t%llu\n",
qdpll->stats.total_learnt_cubes_size);
fprintf (stderr, "Avg. learnt clause size:\t%f\n",
qdpll->stats.total_learnt_clauses ? qdpll->stats.
total_learnt_clauses_size /
(float) (qdpll->stats.total_learnt_clauses) : 0);
fprintf (stderr, "Avg. learnt cube size:\t\t%f\n",
qdpll->stats.total_learnt_cubes ? qdpll->stats.
total_learnt_cubes_size /
(float) (qdpll->stats.total_learnt_cubes) : 0);
fprintf (stderr, "Avg. learnt constr. size:\t%f\n\n",
(qdpll->stats.total_learnt_cubes
|| qdpll->stats.total_learnt_clauses) ? (qdpll->stats.
total_learnt_clauses_size
+
qdpll->stats.
total_learnt_cubes_size)
/ (float) (qdpll->stats.total_learnt_cubes +
qdpll->stats.total_learnt_clauses) : 0);
fprintf (stderr, "Total learnt tautologies: \t%llu ( %f of learnt constraints)\n", qdpll->stats.total_learnt_taut_cubes +
qdpll->stats.total_learnt_taut_clauses,
(qdpll->stats.total_learnt_cubes + qdpll->stats.total_learnt_clauses) ?
(qdpll->stats.total_learnt_taut_cubes + qdpll->stats.total_learnt_taut_clauses) /
(float)(qdpll->stats.total_learnt_cubes + qdpll->stats.total_learnt_clauses) : 0);
fprintf (stderr, "Total learnt taut. clauses: \t%llu ( %f of learnt clauses)\n",
qdpll->stats.total_learnt_taut_clauses, qdpll->stats.total_learnt_clauses ?
(qdpll->stats.total_learnt_taut_clauses / (float) qdpll->stats.total_learnt_clauses) : 0);
fprintf (stderr, "Total learnt taut. cubes: \t%llu ( %f of learnt cubes)\n",
qdpll->stats.total_learnt_taut_cubes, qdpll->stats.total_learnt_cubes ?
(qdpll->stats.total_learnt_taut_cubes / (float) qdpll->stats.total_learnt_cubes) : 0);
fprintf (stderr, "Last lclauses size:\t\t%d\n", qdpll->state.lclauses_size);
fprintf (stderr, "Last lclauses cnt:\t\t%d\n",
qdpll->pcnf.learnt_clauses.cnt);
fprintf (stderr, "Last lcubes size:\t\t%d\n", qdpll->state.lcubes_size);
fprintf (stderr, "Last lcubes cnt:\t\t%d\n", qdpll->pcnf.learnt_cubes.cnt);
fprintf (stderr, "Total constr. resizes:\t\t%u\n",
(qdpll->state.clause_resizes + qdpll->state.cube_resizes));
fprintf (stderr, "Total cube resizes:\t\t%u\n", qdpll->state.cube_resizes);
fprintf (stderr, "Total clause resizes:\t\t%u\n",
qdpll->state.clause_resizes);
fprintf (stderr, "Total dels. in resizes:\t\t%llu\n",
qdpll->stats.total_constraint_dels);
fprintf (stderr, "Total cube dels.:\t\t%llu\n",
qdpll->stats.total_cube_dels);
fprintf (stderr, "Total clause dels.:\t\t%llu\n",
qdpll->stats.total_clause_dels);
fprintf (stderr, "Avg. dels. per resize:\t\t%f\n\n",
(qdpll->state.clause_resizes || qdpll->state.cube_resizes) ?
qdpll->stats.total_constraint_dels /
(float) (qdpll->state.clause_resizes +
qdpll->state.cube_resizes) : 0);
fprintf (stderr, "C.resize unit cl. cnt.:\t%llu ( avg.: %f )\n",
qdpll->stats.total_del_unit_clause_cnt,
qdpll->stats.total_clause_dels ?
qdpll->stats.total_del_unit_clause_cnt /
(float) qdpll->stats.total_clause_dels : 0);
fprintf (stderr, "C.resize res cl. cnt.:\t%llu ( avg.: %f )\n",
qdpll->stats.total_del_res_clause_cnt,
qdpll->stats.total_clause_dels ?
qdpll->stats.total_del_res_clause_cnt /
(float) qdpll->stats.total_clause_dels : 0);
fprintf (stderr, "C.resize unit cu. cnt.:\t%llu ( avg.: %f )\n",
qdpll->stats.total_del_unit_cube_cnt,
qdpll->stats.total_cube_dels ?
qdpll->stats.total_del_unit_cube_cnt /
(float) qdpll->stats.total_cube_dels : 0);
fprintf (stderr, "C.resize res cu. cnt.:\t%llu ( avg.: %f )\n\n",
qdpll->stats.total_del_res_cube_cnt,
qdpll->stats.total_cube_dels ?
qdpll->stats.total_del_res_cube_cnt /
(float) qdpll->stats.total_cube_dels : 0);
fprintf (stderr, "Total splits. ig.unit clauses:\t%llu\n",
qdpll->stats.total_splits_ignored_unit_clauses);
fprintf (stderr, "Total splits. ig.unit cubes:\t%llu\n",
qdpll->stats.total_splits_ignored_unit_cubes);
fprintf (stderr, "Total splits. ig.empty clauses:\t%llu\n",
qdpll->stats.total_splits_ignored_empty_clauses);
fprintf (stderr, "Total splits. ig.sat. cubes:\t%llu\n\n",
qdpll->stats.total_splits_ignored_satisfied_cubes);
fprintf (stderr, "Total resolutions:\t\t%llu\n",
qdpll->stats.num_unsat_res_steps + qdpll->stats.num_sat_res_steps);
fprintf (stderr, "Total sat. res.:\t\t%llu\n",
qdpll->stats.num_sat_res_steps);
fprintf (stderr, "Total unsat. res.:\t\t%llu\n",
qdpll->stats.num_unsat_res_steps);
fprintf (stderr, "Avg. resolutions:\t\t%f\n",
(qdpll->stats.sat_results || qdpll->stats.unsat_results) ?
(qdpll->stats.num_unsat_res_steps +
qdpll->stats.num_sat_res_steps) /
((float) qdpll->stats.sat_results +
qdpll->stats.unsat_results) : 0);
fprintf (stderr, "Avg. res. per sat.:\t\t%f\n",
qdpll->stats.sat_results ? qdpll->stats.num_sat_res_steps /
(float) qdpll->stats.sat_results : 0);
fprintf (stderr, "Avg. res. per unsat.:\t\t%f\n\n",
qdpll->stats.unsat_results ? qdpll->stats.num_unsat_res_steps /
(float) qdpll->stats.unsat_results : 0);
fprintf (stderr, "Total type-red. calls:\t\t%llu\n",
qdpll->stats.total_type_reduce_calls);
fprintf (stderr, "Total type-red. effort:\t\t%llu\n",
qdpll->stats.total_type_reduce_effort);
fprintf (stderr, "Total type-red. costs:\t\t%llu\n",
qdpll->stats.total_type_reduce_costs);
fprintf (stderr, "Avg. type-red costs: \t\t%f\n",
qdpll->stats.total_type_reduce_calls ?
qdpll->stats.total_type_reduce_costs /
((float) qdpll->stats.total_type_reduce_calls) : 0);
fprintf (stderr, "Avg. type-red effort: \t\t%f\n",
qdpll->stats.total_type_reduce_calls ?
qdpll->stats.total_type_reduce_effort /
((float) qdpll->stats.total_type_reduce_calls) : 0);
fprintf (stderr, "Total type-red. lits:\t\t%llu\n",
qdpll->stats.total_type_reduce_lits);
fprintf (stderr, "Avg. type-red. lits per call:\t%f\n\n",
qdpll->stats.total_type_reduce_calls ?
qdpll->stats.total_type_reduce_lits /
(float) qdpll->stats.total_type_reduce_calls : 0);
fprintf (stderr, "Choose-vars: \t\t%llu\n",
qdpll->stats.num_learn_choose_vars);
fprintf (stderr, "Trail pivots:\t\t%llu ( %f )\n\n",
qdpll->stats.num_learn_trail_pivot,
qdpll->stats.num_learn_choose_vars ?
(float) qdpll->stats.num_learn_trail_pivot /
qdpll->stats.num_learn_choose_vars : 0);
fprintf (stderr, "Total l-watched:\t%llu\n", qdpll->stats.total_lwatched);
fprintf (stderr, "Total tested:\t\t%llu\n",
qdpll->stats.total_lwatched_tested);
fprintf (stderr, "Total skipped:\t\t%llu\n",
qdpll->stats.non_dep_lwatched_skipped);
fprintf (stderr, "N.dep. skipped/call:\t%f\n",
qdpll->stats.total_lit_watcher_find_calls ? (float) qdpll->
stats.non_dep_lwatched_skipped /
qdpll->stats.total_lit_watcher_find_calls : 0);
fprintf (stderr, "N.dep. skipped/lwatched:\t%f\n",
qdpll->stats.total_lwatched ? (float) qdpll->
stats.non_dep_lwatched_skipped / qdpll->stats.total_lwatched : 0);
fprintf (stderr, "N.dep. skipped/tested:\t%f\n",
qdpll->stats.total_lwatched_tested ? (float) qdpll->
stats.non_dep_lwatched_skipped /
qdpll->stats.total_lwatched_tested : 0);
fprintf (stderr, "N.dep. tested/call:\t%f\n",
qdpll->stats.total_lit_watcher_find_calls ? (float) qdpll->
stats.total_lwatched_tested /
qdpll->stats.total_lit_watcher_find_calls : 0);
fprintf (stderr, "N.dep. tested/lwatched:\t%f\n\n",
qdpll->stats.total_lwatched ? (float) qdpll->
stats.total_lwatched_tested / qdpll->stats.total_lwatched : 0);
fprintf (stderr, "Total unit lcubes: %llu\n",
qdpll->stats.total_unit_lcubes);
fprintf (stderr, "Total sat lcubes: %llu\n", qdpll->stats.total_sat_lcubes);
fprintf (stderr, "Total unit lclauses: %llu\n",
qdpll->stats.total_unit_lclauses);
fprintf (stderr, "Total empty lclauses: %llu\n\n",
qdpll->stats.total_empty_lclauses);
fprintf (stderr, "Total unit taut lcubes: %llu ( %f of unit lcubes )\n",
qdpll->stats.total_unit_taut_lcubes, qdpll->stats.total_unit_lcubes ? (qdpll->stats.total_unit_taut_lcubes / (float)qdpll->stats.total_unit_lcubes) : 0);
fprintf (stderr, "Total sat taut lcubes: %llu ( %f of sat lcubes )\n", qdpll->stats.total_sat_taut_lcubes,
qdpll->stats.total_sat_lcubes ? (qdpll->stats.total_sat_taut_lcubes / (float)qdpll->stats.total_sat_lcubes) : 0);
fprintf (stderr, "Total unit taut lclauses: %llu ( %f of unit lclauses )\n",
qdpll->stats.total_unit_taut_lclauses, qdpll->stats.total_unit_lclauses ? (qdpll->stats.total_unit_taut_lclauses / (float)qdpll->stats.total_unit_lclauses) : 0);
fprintf (stderr, "Total empty taut lclauses: %llu ( %f of empty lclauses )\n\n",
qdpll->stats.total_empty_taut_lclauses, qdpll->stats.total_empty_lclauses ? (qdpll->stats.total_empty_taut_lclauses / (float)qdpll->stats.total_empty_lclauses) : 0);
fprintf (stderr, "Total const min lits reducible: %llu\n",
qdpll->stats.constr_min_lits_reducible);
fprintf (stderr, "Avg. const min lits reducible: %f\n\n",
qdpll->stats.constr_min_lits_seen ?
qdpll->stats.constr_min_lits_reducible /
(float) qdpll->stats.constr_min_lits_seen : 0);
unsigned long long int try_remove_cube_lits_total_calls =
qdpll->stats.try_remove_cube_lits_total_exists_calls +
qdpll->stats.try_remove_cube_lits_total_univ_calls;
fprintf (stderr, "Total try remove cube lits calls: %llu\n",
try_remove_cube_lits_total_calls);
fprintf (stderr, "Total try remove cube lits univ calls: %llu\n",
qdpll->stats.try_remove_cube_lits_total_univ_calls);
fprintf (stderr, "Total try remove cube lits exists calls: %llu\n",
qdpll->stats.try_remove_cube_lits_total_exists_calls);
unsigned long long int try_remove_cube_lits_total_calls_completed =
qdpll->stats.try_remove_cube_lits_total_exists_calls_completed +
qdpll->stats.try_remove_cube_lits_total_univ_calls_completed;
fprintf (stderr, "Total try remove cube lits completed calls: %llu\n",
try_remove_cube_lits_total_calls_completed);
fprintf (stderr, "Total try remove cube lits completed univ calls: %llu\n",
qdpll->stats.try_remove_cube_lits_total_univ_calls_completed);
fprintf (stderr, "Total try remove cube lits completed exists calls: %llu\n",
qdpll->stats.try_remove_cube_lits_total_exists_calls_completed);
unsigned long long int try_remove_cube_lits_total_occs_seen =
qdpll->stats.try_remove_cube_lits_total_univ_occs_seen +
qdpll->stats.try_remove_cube_lits_total_exists_occs_seen;
fprintf (stderr, "Total try remove cube lits occs seen: %llu ( %f per call, %f per completed call)\n",
try_remove_cube_lits_total_occs_seen,
try_remove_cube_lits_total_calls ?
(try_remove_cube_lits_total_occs_seen / (float) try_remove_cube_lits_total_calls) : 0,
try_remove_cube_lits_total_calls_completed ?
(try_remove_cube_lits_total_occs_seen / (float) try_remove_cube_lits_total_calls_completed) : 0);
fprintf (stderr, "Total try remove cube lits univ occs seen: %llu ( %f per univ call, %f per completed univ call)\n",
qdpll->stats.try_remove_cube_lits_total_univ_occs_seen,
qdpll->stats.try_remove_cube_lits_total_univ_calls ?
(qdpll->stats.try_remove_cube_lits_total_univ_occs_seen / (float) qdpll->stats.try_remove_cube_lits_total_univ_calls) : 0,
qdpll->stats.try_remove_cube_lits_total_univ_calls_completed ?
(qdpll->stats.try_remove_cube_lits_total_univ_occs_seen / (float) qdpll->stats.try_remove_cube_lits_total_univ_calls_completed) : 0);
fprintf (stderr, "Total try remove cube lits exists occs seen: %llu ( %f per exists call, %f per completed exists call)\n",
qdpll->stats.try_remove_cube_lits_total_exists_occs_seen,
qdpll->stats.try_remove_cube_lits_total_exists_calls ?
(qdpll->stats.try_remove_cube_lits_total_exists_occs_seen / (float) qdpll->stats.try_remove_cube_lits_total_exists_calls) : 0,
qdpll->stats.try_remove_cube_lits_total_exists_calls_completed ?
(qdpll->stats.try_remove_cube_lits_total_exists_occs_seen / (float) qdpll->stats.try_remove_cube_lits_total_exists_calls_completed) : 0);
unsigned long long int try_remove_cube_lits_total_occ_lits_seen =
qdpll->stats.try_remove_cube_lits_total_univ_occ_lits_seen +
qdpll->stats.try_remove_cube_lits_total_exists_occ_lits_seen;
fprintf (stderr, "Total try remove cube lits occ lits seen: %llu ( %f per call, %f per completed call)\n",
try_remove_cube_lits_total_occ_lits_seen,
try_remove_cube_lits_total_calls ?
(try_remove_cube_lits_total_occ_lits_seen / (float) try_remove_cube_lits_total_calls) : 0,
try_remove_cube_lits_total_calls_completed ?
(try_remove_cube_lits_total_occ_lits_seen / (float) try_remove_cube_lits_total_calls_completed) : 0);
fprintf (stderr, "Total try remove cube lits univ occ lits seen: %llu ( %f per univ call, %f per completed univ call)\n",
qdpll->stats.try_remove_cube_lits_total_univ_occ_lits_seen,
qdpll->stats.try_remove_cube_lits_total_univ_calls ?
(qdpll->stats.try_remove_cube_lits_total_univ_occ_lits_seen / (float) qdpll->stats.try_remove_cube_lits_total_univ_calls) : 0,
qdpll->stats.try_remove_cube_lits_total_univ_calls_completed ?
(qdpll->stats.try_remove_cube_lits_total_univ_occ_lits_seen / (float) qdpll->stats.try_remove_cube_lits_total_univ_calls_completed) : 0);
fprintf (stderr, "Total try remove cube lits exists occ lits seen: %llu ( %f per exists call, %f per completed exists call)\n",
qdpll->stats.try_remove_cube_lits_total_exists_occ_lits_seen,
qdpll->stats.try_remove_cube_lits_total_exists_calls ?
(qdpll->stats.try_remove_cube_lits_total_exists_occ_lits_seen / (float) qdpll->stats.try_remove_cube_lits_total_exists_calls) : 0,
qdpll->stats.try_remove_cube_lits_total_exists_calls_completed ?
(qdpll->stats.try_remove_cube_lits_total_exists_occ_lits_seen / (float) qdpll->stats.try_remove_cube_lits_total_exists_calls_completed) : 0);
unsigned long long int try_remove_cube_lits_total_lits_removed =
qdpll->stats.try_remove_cube_lits_total_univ_lits_removed +
qdpll->stats.try_remove_cube_lits_total_exists_lits_removed;
fprintf (stderr, "Total try remove cube lits removed: %llu ( %f per call, %f per completed call)\n",
try_remove_cube_lits_total_lits_removed, try_remove_cube_lits_total_calls ?
(try_remove_cube_lits_total_lits_removed / (float) try_remove_cube_lits_total_calls) : 0,
try_remove_cube_lits_total_calls_completed ?
(try_remove_cube_lits_total_lits_removed / (float) try_remove_cube_lits_total_calls_completed) : 0);
fprintf (stderr, "Total try remove cube lits univ removed: %llu ( %f per univ call, %f per completed univ call)\n",
qdpll->stats.try_remove_cube_lits_total_univ_lits_removed, qdpll->stats.try_remove_cube_lits_total_univ_calls ?
(qdpll->stats.try_remove_cube_lits_total_univ_lits_removed / (float) qdpll->stats.try_remove_cube_lits_total_univ_calls) : 0,
qdpll->stats.try_remove_cube_lits_total_univ_calls_completed ?
(qdpll->stats.try_remove_cube_lits_total_univ_lits_removed / (float) qdpll->stats.try_remove_cube_lits_total_univ_calls_completed) : 0);
fprintf (stderr, "Total try remove cube lits exists removed: %llu ( %f per exists call, %f per completed exists call)\n",
qdpll->stats.try_remove_cube_lits_total_exists_lits_removed, qdpll->stats.try_remove_cube_lits_total_exists_calls ?
(qdpll->stats.try_remove_cube_lits_total_exists_lits_removed / (float) qdpll->stats.try_remove_cube_lits_total_exists_calls) : 0,
qdpll->stats.try_remove_cube_lits_total_exists_calls_completed ?
(qdpll->stats.try_remove_cube_lits_total_exists_lits_removed / (float) qdpll->stats.try_remove_cube_lits_total_exists_calls_completed) : 0);
fprintf (stderr, "Max try remove cube lits univ occs seen: %llu\n",
qdpll->stats.try_remove_cube_lits_max_univ_occs_seen);
fprintf (stderr, "Max try remove cube lits exists occs seen: %llu\n",
qdpll->stats.try_remove_cube_lits_max_univ_occs_seen);
fprintf (stderr, "Max try remove cube lits univ occ lits seen: %llu\n",
qdpll->stats.try_remove_cube_lits_max_univ_occ_lits_seen);
fprintf (stderr, "Max try remove cube lits exists occ lits seen: %llu\n\n",
qdpll->stats.try_remove_cube_lits_max_exists_occ_lits_seen);
fprintf (stderr, "empty-formula-watcher total update calls: %llu\n",
qdpll->stats.empty_formula_watcher_total_update_calls);
fprintf (stderr, "empty-formula-watcher effective update calls: %llu ( %f of total) \n\n",
qdpll->stats.empty_formula_watcher_effective_update_calls, qdpll->stats.empty_formula_watcher_total_update_calls ?
(qdpll->stats.empty_formula_watcher_effective_update_calls / (float) qdpll->stats.empty_formula_watcher_total_update_calls) : 0);
fprintf (stderr, "empty-formula-watcher is-clause-sat cache accesses: %llu\n", qdpll->stats.empty_formula_watcher_is_clause_sat_cache_accesses);
fprintf (stderr, "empty-formula-watcher is-clause-sat cache hits: %llu ( %f per access)\n", qdpll->stats.empty_formula_watcher_is_clause_sat_cache_hits,
qdpll->stats.empty_formula_watcher_is_clause_sat_cache_accesses ? (qdpll->stats.empty_formula_watcher_is_clause_sat_cache_hits /
(float)qdpll->stats.empty_formula_watcher_is_clause_sat_cache_accesses) : 0);
fprintf (stderr, "empty-formula-watcher is-clause-sat found blocked: %llu ( %f per access)\n", qdpll->stats.empty_formula_watcher_is_clause_sat_found_blocked,
qdpll->stats.empty_formula_watcher_is_clause_sat_cache_accesses ? (qdpll->stats.empty_formula_watcher_is_clause_sat_found_blocked /
(float)qdpll->stats.empty_formula_watcher_is_clause_sat_cache_accesses) : 0);
fprintf (stderr, "empty-formula-watcher is-clause-sat found sat: %llu ( %f per access)\n\n", qdpll->stats.empty_formula_watcher_is_clause_sat_found_sat,
qdpll->stats.empty_formula_watcher_is_clause_sat_cache_accesses ? (qdpll->stats.empty_formula_watcher_is_clause_sat_found_sat /
(float)qdpll->stats.empty_formula_watcher_is_clause_sat_cache_accesses) : 0);
fprintf (stderr, "QBCE completed rounds: %llu\n", qdpll->stats.qbcp_qbce_rounds);
fprintf (stderr, "QBCE total blocked clauses: %llu ( %f per round )\n", qdpll->stats.qbcp_qbce_clauses_blocked,
qdpll->stats.qbcp_qbce_rounds ? (qdpll->stats.qbcp_qbce_clauses_blocked / (float) qdpll->stats.qbcp_qbce_rounds) : 0);
/* Clauses blocked by preprocessing, not taking top-level assignment into account. */
fprintf (stderr, "QBCE preprocessing blocked clauses: %d\n",
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses) >= 1 ?
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses.start[0]) : 0);
fprintf (stderr, "QBCE backtracks to top level: %llu\n", qdpll->stats.qbcp_qbce_backtracks_to_toplevel);
fprintf (stderr, "QBCE inprocessing rounds: %llu\n", qdpll->stats.qbcp_qbce_inprocessing_rounds);
/* Clauses additionally blocked by inprocessing, taking top-level assignment into account.*/
fprintf (stderr, "QBCE inprocessing blocked clauses: %d\n",
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses) >= 2 ?
QDPLL_COUNT_STACK (qdpll->qbcp_qbce_blocked_clauses.start[1]) : 0);
fprintf (stderr, "QBCE initial cubes: %llu\n", qdpll->stats.initial_cubes);
float avg_initial_cube_size = qdpll->stats.initial_cubes ?
(qdpll->stats.initial_cubes_sizes / (float) qdpll->stats.initial_cubes) : 0;
fprintf (stderr, "QBCE initial cubes sizes: %llu ( %f per initial cube, which is %f of used vars %d )\n",
qdpll->stats.initial_cubes_sizes,
avg_initial_cube_size, qdpll->pcnf.used_vars ?
(avg_initial_cube_size / (float) qdpll->pcnf.used_vars) : 0, qdpll->pcnf.used_vars);
fprintf (stderr, "QBCE initial cubes univ lits: %llu ( %f of initial cube size %f )\n", qdpll->stats.initial_cubes_univ_lits,
qdpll->stats.initial_cubes_sizes ? (qdpll->stats.initial_cubes_univ_lits /
(float) qdpll->stats.initial_cubes_sizes) : 0, avg_initial_cube_size);
float avg_current_blocked_per_init_cube = qdpll->stats.initial_cubes ?
(qdpll->stats.qbcp_qbce_total_current_blocked_clauses / (float) qdpll->stats.initial_cubes) : 0;
fprintf (stderr, "QBCE total clauses blocked when learning initial cube: %llu ( %f per initial cube, which is %f of CNF size %d )\n",
qdpll->stats.qbcp_qbce_total_current_blocked_clauses, avg_current_blocked_per_init_cube,
qdpll->pcnf.clauses.cnt ? (avg_current_blocked_per_init_cube / (float) qdpll->pcnf.clauses.cnt) : 0, qdpll->pcnf.clauses.cnt);
fprintf (stderr, "QBCE clauses ignored by clause size limit: %llu ( %f of total clauses %d )\n",
qdpll->stats.qbcp_qbce_ignored_clauses_by_size_limit, qdpll->pcnf.clauses.cnt ?
(qdpll->stats.qbcp_qbce_ignored_clauses_by_size_limit / (float) qdpll->pcnf.clauses.cnt) : 0, qdpll->pcnf.clauses.cnt);
fprintf (stderr, "QBCE maybe blocking lits ignored by clause size limit: %llu ( %f of total maybe blocking lits %llu )\n",
qdpll->stats.qbcp_qbce_ignored_maybe_blocking_literals_by_size_limit,
qdpll->stats.qbcp_qbce_total_maybe_blocking_literals_seen ?
(qdpll->stats.qbcp_qbce_ignored_maybe_blocking_literals_by_size_limit /
(float) qdpll->stats.qbcp_qbce_total_maybe_blocking_literals_seen) : 0,
qdpll->stats.qbcp_qbce_total_maybe_blocking_literals_seen);
fprintf (stderr, "QBCE maybe blocking lits ignored by occ limit: %llu ( %f of total maybe blocking lits %llu )\n",
qdpll->stats.qbcp_qbce_ignored_maybe_blocking_literals_by_occ_limit,
qdpll->stats.qbcp_qbce_total_maybe_blocking_literals_seen ?
(qdpll->stats.qbcp_qbce_ignored_maybe_blocking_literals_by_occ_limit /
(float) qdpll->stats.qbcp_qbce_total_maybe_blocking_literals_seen) : 0,
qdpll->stats.qbcp_qbce_total_maybe_blocking_literals_seen);
fprintf (stderr, "QBCE clauses seen: %llu ( %f of CNF size)\n", qdpll->stats.qbcp_qbce_clauses_seen,
qdpll->stats.qbcp_qbce_clauses_seen ? (qdpll->stats.qbcp_qbce_clauses_seen / (float)qdpll->pcnf.clauses.cnt) : 0);
fprintf (stderr, "QBCE literals seen: %llu\n", qdpll->stats.qbcp_qbce_literals_seen);
fprintf (stderr, "QBCE seen literals per clause: %f\n", qdpll->stats.qbcp_qbce_clauses_seen ?
(qdpll->stats.qbcp_qbce_literals_seen / (float)qdpll->stats.qbcp_qbce_clauses_seen) : 0);
fprintf (stderr, "QBCE find-entry calls: %llu\n", qdpll->stats.qbcp_qbce_find_entry_calls);
fprintf (stderr, "QBCE find entries seen: %llu ( %f per call)\n\n", qdpll->stats.qbcp_qbce_find_entries_seen,
qdpll->stats.qbcp_qbce_find_entry_calls ? (qdpll->stats.qbcp_qbce_find_entries_seen /
(float)qdpll->stats.qbcp_qbce_find_entry_calls) : 0);
fprintf (stderr, "QBCE watched-occ find-entry calls: %llu\n", qdpll->stats.qbcp_qbce_watched_occ_find_entry_calls);
fprintf (stderr, "QBCE watched-occ find entries seen: %llu ( %f per call)\n", qdpll->stats.qbcp_qbce_watched_occ_find_entries_seen,
qdpll->stats.qbcp_qbce_watched_occ_find_entry_calls ? (qdpll->stats.qbcp_qbce_watched_occ_find_entries_seen /
(float)qdpll->stats.qbcp_qbce_watched_occ_find_entry_calls) : 0);
fprintf (stderr, "QBCE watched-occ add/remove calls: %llu\n", qdpll->stats.qbcp_qbce_watched_occ_add_or_remove_calls);
fprintf (stderr, "QBCE watched-occ ad/remove lits seen: %llu ( %f per call)\n\n", qdpll->stats.qbcp_qbce_watched_occ_add_or_remove_lits_seen,
qdpll->stats.qbcp_qbce_watched_occ_add_or_remove_calls ? (qdpll->stats.qbcp_qbce_watched_occ_add_or_remove_lits_seen /
(float)qdpll->stats.qbcp_qbce_watched_occ_add_or_remove_calls) : 0);
fprintf (stderr, "QBCE is-clause-sat cache accesses: %llu\n", qdpll->stats.qbcp_qbce_is_clause_sat_cache_accesses);
fprintf (stderr, "QBCE is-clause-sat cache hits: %llu ( %f per access)\n", qdpll->stats.qbcp_qbce_is_clause_sat_cache_hits,
qdpll->stats.qbcp_qbce_is_clause_sat_cache_accesses ? (qdpll->stats.qbcp_qbce_is_clause_sat_cache_hits /
(float)qdpll->stats.qbcp_qbce_is_clause_sat_cache_accesses) : 0);
fprintf (stderr, "QBCE is-clause-sat found blocked: %llu ( %f per access)\n", qdpll->stats.qbcp_qbce_is_clause_sat_found_blocked,
qdpll->stats.qbcp_qbce_is_clause_sat_cache_accesses ? (qdpll->stats.qbcp_qbce_is_clause_sat_found_blocked /
(float)qdpll->stats.qbcp_qbce_is_clause_sat_cache_accesses) : 0);
fprintf (stderr, "QBCE is-clause-sat found sat: %llu ( %f per access)\n\n", qdpll->stats.qbcp_qbce_is_clause_sat_found_sat,
qdpll->stats.qbcp_qbce_is_clause_sat_cache_accesses ? (qdpll->stats.qbcp_qbce_is_clause_sat_found_sat /
(float)qdpll->stats.qbcp_qbce_is_clause_sat_cache_accesses) : 0);
fprintf (stderr, "QBCE witness is-clause-sat cache accesses: %llu\n", qdpll->stats.qbcp_qbce_witness_is_clause_sat_cache_accesses);
fprintf (stderr, "QBCE witness is-clause-sat cache hits: %llu ( %f per access)\n", qdpll->stats.qbcp_qbce_witness_is_clause_sat_cache_hits,
qdpll->stats.qbcp_qbce_witness_is_clause_sat_cache_accesses ? (qdpll->stats.qbcp_qbce_witness_is_clause_sat_cache_hits /
(float)qdpll->stats.qbcp_qbce_witness_is_clause_sat_cache_accesses) : 0);
fprintf (stderr, "QBCE witness is-clause-sat found blocked: %llu ( %f per access)\n", qdpll->stats.qbcp_qbce_witness_is_clause_sat_found_blocked,
qdpll->stats.qbcp_qbce_witness_is_clause_sat_cache_accesses ? (qdpll->stats.qbcp_qbce_witness_is_clause_sat_found_blocked /
(float)qdpll->stats.qbcp_qbce_witness_is_clause_sat_cache_accesses) : 0);
fprintf (stderr, "QBCE witness is-clause-sat found sat: %llu ( %f per access)\n\n", qdpll->stats.qbcp_qbce_witness_is_clause_sat_found_sat,
qdpll->stats.qbcp_qbce_witness_is_clause_sat_cache_accesses ? (qdpll->stats.qbcp_qbce_witness_is_clause_sat_found_sat /
(float)qdpll->stats.qbcp_qbce_witness_is_clause_sat_cache_accesses) : 0);
#if QBCP_QBCE_DYNAMIC_ASSIGNMENT_ELIM_UNIV_VARS
fprintf (stderr, "Cover-by-assignment elim-univ dynamically disabled: %s\n",
qdpll->state.elim_univ_dynamic_disabled ? "yes" : "no");
unsigned long long int univ_tried = qdpll->stats.elim_univ_vars_total_univ_vars;
fprintf (stderr, "Total cover-by-assignment elim-univ tried: %llu\n",
univ_tried);
fprintf (stderr, "Total cover-by-assignment elim-univ eliminated: %llu ( %f success rate)\n",
qdpll->stats.elim_univ_vars_eliminated, univ_tried ?
(qdpll->stats.elim_univ_vars_eliminated / (float) univ_tried) : 0);
fprintf (stderr, "Total cover-by-assignment elim-univ clauses seen: %llu which is %f of input CNF size %d\n",
qdpll->stats.elim_univ_vars_clauses_seen, qdpll->pcnf.clauses.cnt ?
(qdpll->stats.elim_univ_vars_clauses_seen / (float)qdpll->pcnf.clauses.cnt) : 0, qdpll->pcnf.clauses.cnt);
float clauses_per_tried = univ_tried ?
(qdpll->stats.elim_univ_vars_clauses_seen / (float) univ_tried) : 0;
fprintf (stderr, "Total cover-by-assignment elim-univ clauses seen per tried: %f which is %f of input CNF size %d\n",
clauses_per_tried,
qdpll->pcnf.clauses.cnt ? (clauses_per_tried / qdpll->pcnf.clauses.cnt) : 0, qdpll->pcnf.clauses.cnt);
#endif
#if COMPUTE_STATS_BTLEVELS_SIZE
fprintf (stderr, "Cumulative backtrack level stats:\n");
fprintf (stderr, "<= %4d: %lld\n", 0, qdpll->stats.btlevels[0]);
unsigned int i;
for (i = 1; i < COMPUTE_STATS_BTLEVELS_SIZE - 1; i++)
fprintf (stderr, "<= %4d: %lld\n", 1 << (i - 1),
qdpll->stats.btlevels[i]);
fprintf (stderr, "total: %lld\n",
qdpll->stats.btlevels[COMPUTE_STATS_BTLEVELS_SIZE - 1]);
fprintf (stderr, "<= %4d: %lld\n", 0, qdpll->stats.btlevels_lin[0]);
for (i = 1; i < COMPUTE_STATS_BTLEVELS_SIZE - 1; i++)
fprintf (stderr, "<= %4d: %lld\n", 5 * i, qdpll->stats.btlevels_lin[i]);
fprintf (stderr, "\n");
#endif
fprintf (stderr, "---------------------------------------\n\n");
#endif
#if COMPUTE_TIMES
fprintf (stderr, "\n---------------- TIME-STATS ----------------\n");
fprintf (stderr, "Total solve time: \t%f ( %f ) \n",
qdpll->time_stats.total_sat_time,
qdpll->time_stats.total_sat_time ? (qdpll->time_stats.
total_sat_time /
qdpll->time_stats.
total_sat_time) : 0);
fprintf (stderr, "Total bcp time: \t%f ( %f )\n",
qdpll->time_stats.total_bcp_time,
qdpll->time_stats.total_sat_time ? (qdpll->time_stats.
total_bcp_time /
qdpll->time_stats.
total_sat_time) : 0);
fprintf (stderr, "Total s-learn time: \t%f ( %f )\n",
qdpll->time_stats.total_sol_learn_time,
qdpll->time_stats.total_sat_time ? (qdpll->time_stats.
total_sol_learn_time /
qdpll->time_stats.
total_sat_time) : 0);
fprintf (stderr, "Total c-learn time: \t%f ( %f )\n",
qdpll->time_stats.total_conf_learn_time,
qdpll->time_stats.total_sat_time ? (qdpll->time_stats.
total_conf_learn_time /
qdpll->time_stats.
total_sat_time) : 0);
qdpll->time_stats.total_learn_time =
qdpll->time_stats.total_sol_learn_time +
qdpll->time_stats.total_conf_learn_time;
fprintf (stderr, "Total learn time: \t%f ( %f )\n",
qdpll->time_stats.total_learn_time,
qdpll->time_stats.total_sat_time ? (qdpll->time_stats.
total_learn_time /
qdpll->time_stats.
total_sat_time) : 0);
fprintf (stderr, "Total reduce time: \t%f ( %f )\n",
qdpll->time_stats.total_reduce_time,
qdpll->time_stats.total_sat_time ? (qdpll->time_stats.
total_reduce_time /
qdpll->time_stats.
total_sat_time) : 0);
fprintf (stderr, "Total ireason time: \t%f ( %f )\n",
qdpll->time_stats.total_ireason_time,
qdpll->time_stats.total_sat_time ? (qdpll->time_stats.
total_ireason_time /
qdpll->time_stats.
total_sat_time) : 0);
fprintf (stderr, "Total greason time: \t%f ( %f )\n",
qdpll->time_stats.total_greason_time,
qdpll->time_stats.total_sat_time ? (qdpll->time_stats.
total_greason_time /
qdpll->time_stats.
total_sat_time) : 0);
fprintf (stderr, "---------------------------------------\n\n");
#endif
}
/* Reset internal solver state, unassign all variables, keep all added clauses
and learned constraints. */
void
qdpll_reset (QDPLL * qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
/* Reset limits. */
qdpll->options.max_dec = 0;
qdpll->options.max_secs = 0;
qdpll->options.max_btracks = 0;
qdpll->options.limit_set = 0;
qdpll->state.solving_start_time = 0;
if (qdpll->qdo_assignment_table)
{
assert (qdpll->qdo_table_bytes);
qdpll_free (qdpll->mm, qdpll->qdo_assignment_table, qdpll->qdo_table_bytes);
qdpll->qdo_table_bytes = 0;
qdpll->qdo_assignment_table = 0;
}
qdpll->state.qdo_no_schedule_model_reconstruction = 0;
qdpll->result = QDPLL_RESULT_UNKNOWN;
qdpll->result_constraint = 0;
if (qdpll->assumption_lits_constraint)
{
delete_constraint (qdpll, qdpll->assumption_lits_constraint);
qdpll->assumption_lits_constraint = 0;
}
reset_clean_up_assignments (qdpll);
QDPLL_RESET_STACK(qdpll->user_given_assumptions);
qdpll->state.assumptions_given = 0;
assert(sizeof_top_level (qdpll) == 0);
reset_watchers (qdpll);
/* Reset QBCE related data structures. */
/* Must reset stack of clauses pending to be checked by QBCE. For each
decision level, we apply QBCE until saturation under the current
assignment, unless there is a conflict or empty formula detected
earlier. Must also reset offsets of pairs on working queue. */
while (!QDPLL_EMPTY_STACK (qdpll->qbcp_qbce_maybe_blocked_clauses))
{
QBCENonBlockedWitness pair =
QDPLL_POP_STACK (qdpll->qbcp_qbce_maybe_blocked_clauses);
if (pair.offset.witness_in_witness_list != QDPLL_INVALID_WATCHER_POS)
qbcp_qbce_reset_offset_in_working_queue (qdpll, pair);
}
}
/* Assign a variable as assumption. A later call of 'qdpll_sat(...)' solves
the formula under the assumptions specified before. If 'id' is negative
then variable with ID '-id' will be assigned false, otherwise variable with
ID 'id' will be assigned true. */
void qdpll_assume (QDPLL * qdpll, LitID id)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL(qdpll->assumption_lits_constraint ||
qdpll->state.assumptions_given ||
count_assigned_vars(qdpll) != 0,
"Solver must be in reset state -- call 'qdpll_reset()' before 'qdpll_assume()'!");
/* Make sure to properly import previosuly added user prefix. See also
comments at function 'add_aux'. */
import_user_scopes (qdpll);
QDPLL_ABORT_QDPLL(!qdpll_is_var_declared (qdpll, LIT2VARID(id)),
"Variable is not declared!");
QDPLL_PUSH_STACK(qdpll->mm, qdpll->user_given_assumptions, id);
}
/* Returns a zero-terminated array of LitIDs of variables which can savely be
assigned as assumptions by function 'qdpll_assume'. The array may contain
both existential (positive LitIDs) and universal variables (negative
LitIDs) which are not necessarily from the leftmost quantifier set in the
prefix.
NOTE: the caller is responsible to release the memory of the array returned
by this function. */
LitID * qdpll_get_assumption_candidates (QDPLL * qdpll)
{
/* Make sure to properly import previosuly added user prefix. See also
comments at function 'add_aux'. */
import_user_scopes (qdpll);
QDPLLDepManGeneric *dmg = qdpll->dm;
if (!dmg->is_init (dmg))
{
set_up_formula (qdpll);
dmg->init (dmg);
}
LitID *cands = dmg->get_candidates (dmg);
/* In incremental mode: remove internal variables from candidate list. */
if (qdpll->state.cnt_created_clause_groups > 0 ||
QDPLL_COUNT_STACK(qdpll->state.popped_off_internal_vars) != 0)
remove_internals_from_lits (qdpll, cands);
return cands;
}
/* Returns a zero-terminated array of LitIDs representing those assumptions
(passed to the solver using 'qdpll_assume()') which were used by the solver to
determine (un)satisfiability by the most recent call of 'qdpll_sat'.
NOTE: the caller is responsible to release the memory of the array returned
by this function. */
LitID *
qdpll_get_relevant_assumptions (QDPLL * qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
QDPLL_ABORT_QDPLL (qdpll->result == QDPLL_RESULT_UNKNOWN,
"Formula is undecided!");
QDPLL_ABORT_QDPLL (!qdpll->state.assumptions_given, "No assumptions given!");
QDPLL_ABORT_QDPLL(!qdpll->assumption_lits_constraint,
"Unexpected error: no assumption subset computed!");
assert (qdpll->result == QDPLL_RESULT_SAT || qdpll->result == QDPLL_RESULT_UNSAT);
assert (qdpll->assumption_lits_constraint && qdpll->state.assumptions_given);
QDPLL_ABORT_QDPLL(!(qdpll->assumption_lits_constraint && qdpll->state.assumptions_given),
"Unexpected error: cannot retrieve relevant assumptions.");
unsigned int size = (qdpll->assumption_lits_constraint->num_lits + 1) * sizeof (LitID);
/* Do not use internal memory manager here because the user has to free the memory. */
LitID *rel_assumptions = malloc (size);
memset (rel_assumptions, 0, size);
LitID *p, *e, *t;
for (p = qdpll->assumption_lits_constraint->lits,
e = p + qdpll->assumption_lits_constraint->num_lits, t = rel_assumptions;
p < e; p++, t++)
{
LitID a_lit = *p;
/* If 'assumption_lits_constraint' is a clause: the formula was found
unsatisfiable under the assumptions; must return negated value of
literal in clause, which represents the assumed value. Otherwise, the
formula was found satisfiable under the assumptions and
'assumption_lits_constraint' is a cube; we can return the literal */
*t = qdpll->assumption_lits_constraint->is_cube ? a_lit : -a_lit;
}
assert (t == rel_assumptions + qdpll->assumption_lits_constraint->num_lits);
assert (!*t);
/* In incremental mode: remove internal variables from relevant assumptions. */
if (qdpll->assumption_lits_constraint->num_lits &&
(qdpll->state.cnt_created_clause_groups > 0 ||
QDPLL_COUNT_STACK(qdpll->state.popped_off_internal_vars) != 0))
remove_internals_from_lits (qdpll, rel_assumptions);
return rel_assumptions;
}
/* Reset collected statistics. */
void qdpll_reset_stats (QDPLL * qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
qdpll->state.num_backtracks = qdpll->state.num_restarts =
qdpll->state.num_decisions = 0;
#if COMPUTE_STATS
memset (&(qdpll->stats), 0,
sizeof (qdpll->stats));
#endif
#if COMPUTE_TIMES
memset (&(qdpll->time_stats), 0,
sizeof (qdpll->time_stats));
#endif
}
/* Discard all learned constraints and cover sets. */
void qdpll_reset_learned_constraints (QDPLL * qdpll)
{
QDPLL_ABORT_QDPLL (!qdpll, "pointer to solver object is null!");
/* Discard all learned cubes. */
check_resize_learnt_constraints_aux (qdpll, &qdpll->pcnf.learnt_cubes,
UINT_MAX, QDPLL_QTYPE_FORALL);
/* Discard all learned clauses. */
check_resize_learnt_constraints_aux (qdpll, &qdpll->pcnf.learnt_clauses,
UINT_MAX, QDPLL_QTYPE_EXISTS);
/* Discard all collected cover sets. */
discard_all_collected_cover_sets (qdpll);
}
/* -------------------- END: PUBLIC FUNCTIONS --------------------*/
depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/qdpll.h 0000664 0000000 0000000 00000037504 12613474024 0021360 0 ustar 00root root 0000000 0000000 /*
This file is part of DepQBF.
DepQBF, a solver for quantified boolean formulae (QBF).
Copyright 2010, 2011, 2012, 2013, 2014, 2015
Florian Lonsing, Johannes Kepler University, Linz, Austria and
Vienna University of Technology, Vienna, Austria.
Copyright 2012 Aina Niemetz, Johannes Kepler University, Linz, Austria.
DepQBF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
DepQBF is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with DepQBF. If not, see .
*/
#ifndef QDPLL_H_INCLUDED
#define QDPLL_H_INCLUDED
#include
typedef struct QDPLL QDPLL;
typedef int LitID;
typedef unsigned int VarID;
typedef unsigned int ConstraintID;
typedef unsigned int Nesting;
typedef unsigned int ClauseGroupID;
enum QDPLLResult
{
QDPLL_RESULT_UNKNOWN = 0,
QDPLL_RESULT_SAT = 10,
QDPLL_RESULT_UNSAT = 20
};
typedef enum QDPLLResult QDPLLResult;
enum QDPLLQuantifierType
{
QDPLL_QTYPE_EXISTS = -1,
QDPLL_QTYPE_UNDEF = 0,
QDPLL_QTYPE_FORALL = 1
};
typedef enum QDPLLQuantifierType QDPLLQuantifierType;
typedef int QDPLLAssignment;
#define QDPLL_ASSIGNMENT_FALSE -1
#define QDPLL_ASSIGNMENT_UNDEF 0
#define QDPLL_ASSIGNMENT_TRUE 1
/* Create and initialize solver instance. */
QDPLL *qdpll_create (void);
/* Delete and release all memory of solver instance. */
void qdpll_delete (QDPLL * qdpll);
/* Configure solver instance via configuration string.
Returns null pointer on success and error string otherwise.
*/
char *qdpll_configure (QDPLL * qdpll, char *configure_str);
/* Ensure var table size to be at least 'num'. */
void qdpll_adjust_vars (QDPLL * qdpll, VarID num);
/* Returns the nesting level of the current rightmost scope. */
Nesting qdpll_get_max_scope_nesting (QDPLL *qdpll);
/* Enforce the deletion of variables which have no occurrences left, and
delete empty quantifier blocks. E.g. after 'qdpll_pop',
'qdpll_delete_clause_group', a variable might not have any clauses left if
all the clauses containing that variable were removed by the pop
operation. However, the variable is still present in the prefix that was
added by the user and 'is_var_declared' returns non-zero for these
variables. The function 'qdpll_gc' cleans up the prefix and deletes
variables which do not occur in the current formula and removes empty
quantifier blocks. After 'qdpll_gc', is_var_declared' returns zero for
variables which have been removed.
NOTE: Calling 'qdpll_pop' or 'qdpll_delete_clause_group' does NOT delete
variables and quantifier blocks, but only clauses.
IMPORTANT NOTE: do NOT call 'qdpll_gc' unless you want to remove variables
and quantifier blocks which you have previously added to the formula. */
void qdpll_gc (QDPLL *qdpll);
/* ------------ START: push/pop API functions ------------ */
/* IMPORTANT NOTE: calls of the push/pop API cannot be mixed with call of the
clause group API. The solver will abort if a function of the clause group API
is called after a call of either 'push' or 'pop', or vice versa. */
/* Decrease the current frame index by one and disable all clauses associated
to the old, popped off frame. Returns either the old frame index which was
popped off or zero if there is no frame to be popped off. */
unsigned int qdpll_pop (QDPLL *qdpll);
/* Increase the current frame index by one. Every clause added by 'qdpll_add'
is attached to the current frame. The clauses attached to a frame will be
discarded if the frame is popped off by 'qdpll_pop'. Returns the current
frame index resulting from the push operation. */
unsigned int qdpll_push (QDPLL *qdpll);
/* ------------ END: push/pop API functions ------------ */
/* ------------ START: API functions for clause groups ------------ */
/* IMPORTANT NOTE: calls of the push/pop API cannot be mixed with call of the
clause group API. The solver will abort if a function of the clause group API
is called after a call of either 'push' or 'pop', or vice versa. */
/* Creates a new clause group and returns its ID. The returned ID is a handle
of the created clause group and should be passed to API functions to
manipulate clause groups. Initially, the newly created clause group is
empty (i.e. it does not contain any clauses) and it is closed. To add
clauses to a group, the group must be opened by 'open_clause_group'. Only
one clause group can be open at a time. Clauses can be added to the
currently open group as usual by calling 'qdpll_add'. To add clauses to a
different group, the currently open group must be closed again by
'close_clause_group' and the other group must be opened. Clause groups are
activated at the time they are created and can be deactivated by calling
'qdpll_deactivate_clause_group'. */
ClauseGroupID qdpll_new_clause_group (QDPLL *qdpll);
/* Delete the clause group with ID 'clause_group'. The group must be
activated. The ID of the deleted group becomes invalid and must not be
passed to the API functions anymore. All clauses in the deleted group are
deleted from the formula. */
void qdpll_delete_clause_group (QDPLL *qdpll, ClauseGroupID clause_group);
/* Open the clause group with ID 'clause_group'. That group must not be open
already and must be activated. Only one group can be open at a
time. Clauses can be added to the currently open group as usual by calling
'qdpll_add'. An open group will stay open across calls of
e.g. 'qdpll_sat'. However, to add clauses to a another group, the currently
open group must be closed again by 'close_clause_group' and the other group
must be opened. */
void qdpll_open_clause_group (QDPLL *qdpll, ClauseGroupID clause_group);
/* Returns the ID of the currently open clause group, or NULL if no group is
currently open. If there is currently no open group, then all clauses added
via 'qdpll_add' will be permanently added to the formula and cannot be
removed. */
ClauseGroupID qdpll_get_open_clause_group (QDPLL *qdpll);
/* Returns non-zero if and only if (1) a clause group with ID 'clause_group'
has been created before and (2) the ID 'clause_group' was returned by
'qdpll_new_clause_group' and (3) that clause group was not deleted by
calling 'qdpll_delete_clause_group'. */
int qdpll_exists_clause_group (QDPLL *qdpll, ClauseGroupID clause_group);
/* Close the clause group with ID 'clause_group'. That group must have been
opened by a previous call of 'open_clause_group' and must be activated. */
void qdpll_close_clause_group (QDPLL *qdpll, ClauseGroupID clause_group);
/* Returns a zero-terminated array of clause group IDs representing those
clause groups which contain clauses used by the solver to determine
UNSATISFIABILITY by the most recent call of 'qdpll_sat'. That is, this
function returns a subset of those clause groups which participiate in the
resolution refutation of the current formula. This function can be called
only if the most recent call of 'qdpll_sat' returned
QDPLL_RESULT_UNSAT. The groups returned by this function are all activated.
NOTE: the caller is responsible to release the memory of the array returned
by this function. */
ClauseGroupID * qdpll_get_relevant_clause_groups (QDPLL * qdpll);
/* Activates all clauses in the group 'clause_group', which has been
deactivated before by 'qdpll_deactivate_clause_group'. Clause groups are
activated at the time they are created and can be deactivated by calling
'qdpll_deactivate_clause_group'. */
void qdpll_activate_clause_group (QDPLL *qdpll, ClauseGroupID clause_group);
/* Deactivates all clauses in the group 'clause_group'. The ID of a
deactivated group cannot be passed to any API functions except
'qdpll_activate_clause_group' and 'qdpll_exists_clause_group'. Clause
groups are activated at the time they are created. When calling
'qdpll_sat', clauses in deactivated groups are ignored. Thus deactivating a
clause group amounts to temporarily deleting these groups from the
formula. However, unlike 'qdpll_delete_clause_group' which permanently
deletes the clauses in a group, deactivated groups can be activated again
by calling 'qdpll_activate_clause_group'. This adds the formerly
deactivated clauses back to the formula. */
void qdpll_deactivate_clause_group (QDPLL *qdpll, ClauseGroupID clause_group);
/* ------------ END: API functions for clause groups ------------ */
/* Open a new scope at the right end of the quantifier prefix, where variables
can be added by 'qdpll_add'. The opened scope must be closed by adding '0'
via 'qdpll_add'. Returns the nesting of the added scope, which should be
used as a handle of this scope, and which can safely be passed to
'qdpll_add_var_to_scope'. NOTE: will fail if there is an opened scope
already. */
Nesting qdpll_new_scope (QDPLL * qdpll, QDPLLQuantifierType qtype);
/* Open a new scope at nesting level 'nesting >= 1' with quantifier type
'qtype'. Variables can be added to the scope opened by the most recent call
of this function by 'qdpll_add' (similar to 'qdpll_new_scope'). The opened
scope must be closed by adding '0' via 'qdpll_add'. Returns the nesting of
the added scope, which should be used as a handle of this scope, and which
can safely be passed to 'qdpll_add_var_to_scope'.
NOTE: the run time of this function is linear in the length of quantifier prefix. */
Nesting qdpll_new_scope_at_nesting (QDPLL * qdpll, QDPLLQuantifierType qtype, Nesting nesting);
/* Add a new variable with ID 'id' to the scope with nesting level
'nesting'. The scope must exist, i.e. it must have been added by either
'qdpll_new_scope' or 'qdpll_new_scope_at_nesting'. The value of the parameter
'nesting' of this function should be a value returned by a previous call of
'qdpll_new_scope' or 'qdpll_new_scope_at_nesting'. In any case, it must be
smaller than or equal to the return value of 'qdpll_get_max_scope_nesting'. */
void qdpll_add_var_to_scope (QDPLL *qdpll, VarID id, Nesting nesting);
/* This function is deprecated. */
int qdpll_has_var_active_occs (QDPLL *qdpll, VarID id);
/* Add variables or literals to clause or opened scope. Scopes are opened by
either 'qdpll_new_scope' or 'qdpll_new_scope_at_nesting'. If scope is
opened, then 'id' is interpreted as a variable ID, otherwise 'id' is
interpreted as a literal. If 'id == 0' then the clause/scope is closed.
IMPORTANT NOTE: added clauses are associated to the current frame. If
'qdpll_push' has NOT been called before then the added clauses are
permanently added to the formula. Otherwise, they are added to the current
frame and can be remove from the formula by calling 'qdpll_push'.
Similarly, added clauses are associated to the clause group which has been
opened before by calling 'qdpll_open_clause_group', if any. If
'qdpll_open_clause_group' has NOT been called before then the added clauses
are permanently added to the formula.
NOTE: function will fail if a scope is opened and 'id' is negative.
NOTE: if a clause containing literals of undeclared variables is added by
'qdpll_add' then these literals by default will be existentially quantified
and put in the leftmost scope. That is, the variable of these literals is
interpreted as a free variable. See also function 'qdpll_is_var_declared'
below. */
void qdpll_add (QDPLL * qdpll, LitID id);
/* Solve the formula. */
QDPLLResult qdpll_sat (QDPLL * qdpll);
/* Get assignment of variable. */
QDPLLAssignment qdpll_get_value (QDPLL * qdpll, VarID id);
/* Print QBF to 'out' using QDIMACS format. */
void qdpll_print (QDPLL * qdpll, FILE * out);
/* Print QDIMACS-compliant output. */
void qdpll_print_qdimacs_output (QDPLL * qdpll);
/* Initialize the current dependency manager. The dependency scheme is
computed with respect to the clauses added by 'qdpll_add'. If the
dependency scheme has been computed already then calling this function has
no effect. The dependency manager can be reset and re-initialized by calling
'qdpll_reset_deps' and then 'qdpll_init_deps'.*/
void qdpll_init_deps (QDPLL * qdpll);
/* Reset the current dependency manager. Dependencies can be re-initialized by
calling 'qdpll_deps_init' or 'qdpll_sat'. */
void qdpll_reset_deps (QDPLL * qdpll);
/* Returns non-zero if variable 'id2' depends on variable 'id1',
i.e. if id1 < id2, with respect to the current dependency scheme. */
int qdpll_var_depends (QDPLL * qdpll, VarID id1, VarID id2);
/* Print zero-terminated list of dependencies for
given variable to 'stdout'. */
void qdpll_print_deps (QDPLL * qdpll, VarID id);
/* Return largest declared variable ID. */
VarID qdpll_get_max_declared_var_id (QDPLL * qdpll);
/* Returns non-zero if and only if (1) a variable with ID 'id' has been added
to the solver by a previous call of 'qdpll_add' or
'qdpll_add_var_to_scope'. For example, the function can be used to check if
the variable of each literal in a clause to be added has been declared
already. If not, then it can be declared by 'qdpll_add_var_to_scope' and
put in the right scope. NOTE: if a clause containing literals of
undeclared variables is added by 'qdpll_add' then these literals by default
will be existentially quantified and put in the leftmost scope. */
int qdpll_is_var_declared (QDPLL * qdpll, VarID id);
/* Returns the nesting level 'level' in the range '1 <= level <=
qdpll_get_max_scope_nesting()' of the previously declared variable with ID
'id'. Returns 0 if the variable with ID 'id' is free, i.e. not explicitly
associated to a quantifier block. Fails if 'id' does not correspond to a
declared variable, which should be checked with function
'qdpll_is_var_declared()' before. */
Nesting qdpll_get_nesting_of_var (QDPLL * qdpll, VarID id);
/* Returns the quantifier type (i.e. either QDPLL_QTYPE_EXISTS or
QDPLL_QTYPE_FORALL) of the scope at nesting level 'nesting'.
Returns zero if there is no scope with nesting level 'nesting'. */
QDPLLQuantifierType qdpll_get_scope_type (QDPLL *qdpll, Nesting nesting);
/* Dump dependency graph to 'stdout' in DOT format. */
void qdpll_dump_dep_graph (QDPLL * qdpll);
/* Print statistics to 'stderr'. */
void qdpll_print_stats (QDPLL * qdpll);
/* Reset internal solver state, keep clauses and variables. */
void qdpll_reset (QDPLL * qdpll);
/* Reset collected statistics. */
void qdpll_reset_stats (QDPLL * qdpll);
/* Discard all learned constraints. */
void qdpll_reset_learned_constraints (QDPLL * qdpll);
/* Assign a variable as assumption. A later call of 'qdpll_sat(...)' solves
the formula under the assumptions specified before. If 'id' is negative
then variable with ID '-id' will be assigned false, otherwise variable with
ID 'id' will be assigned true. */
void qdpll_assume (QDPLL * qdpll, LitID id);
/* Returns a zero-terminated array of LitIDs of variables which can safely be
assigned as assumptions by function 'qdpll_assume'. The array may contain
both existential (positive LitIDs) and universal variables (negative
LitIDs) which are not necessarily from the leftmost quantifier set in the
prefix.
NOTE: the caller is responsible to release the memory of the array returned
by this function. */
LitID * qdpll_get_assumption_candidates (QDPLL * qdpll);
/* Returns a zero-terminated array of LitIDs representing those assumptions
(passed to the solver using 'qdpll_assume()') which were used by the solver to
determine (un)satisfiability by the most recent call of 'qdpll_sat'.
NOTE: the caller is responsible to release the memory of the array returned
by this function. */
LitID * qdpll_get_relevant_assumptions (QDPLL * qdpll);
#endif
depqbf-version-5.0/DepQBF4J-0.2/jni/depqbf/qdpll_app.c 0000664 0000000 0000000 00000050410 12613474024 0022202 0 ustar 00root root 0000000 0000000 /*
This file is part of DepQBF.
DepQBF, a solver for quantified boolean formulae (QBF).
Copyright 2010, 2011, 2012, 2013, 2014, 2015
Florian Lonsing, Johannes Kepler University, Linz, Austria and
Vienna University of Technology, Vienna, Austria.
Copyright 2012 Aina Niemetz, Johannes Kepler University, Linz, Austria.
DepQBF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
DepQBF is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with DepQBF. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "qdpll.h"
#include "qdpll_internals.h"
#define VERSION \
"DepQBF 5.0\n" \
"Copyright 2010, 2011, 2012, 2013, 2014, 2015 Florian Lonsing,\n" \
" Johannes Kepler University, Linz, Austria and\n" \
" Vienna University of Technology, Vienna, Austria.\n" \
"Copyright 2012 Aina Niemetz, " \
"Johannes Kepler University, Linz, Austria.\n" \
"This is free software; see COPYING for copying conditions.\n" \
"There is NO WARRANTY, to the extent permitted by law.\n"
#define USAGE1 \
"usage: depqbf [