effects/0000755000176200001440000000000013563623352011701 5ustar liggesuserseffects/NAMESPACE0000644000176200001440000000530413362424462013120 0ustar liggesusers# last modified 2018-10-06 by J. Fox import(carData) importFrom(lattice, barchart, current.panel.limits, densityplot, larrows, llines, lpoints, ltext, panel.abline, panel.barchart, #panel.grid, panel.polygon, panel.text, strip.custom, strip.default, trellis.par.get, trellis.par.set, xyplot) importFrom(colorspace, rainbow_hcl, sequential_hcl) importFrom(grid, grid.pretty, grid.segments, unit) importFrom(lme4, fixef) importFrom(nnet, multinom) importFrom(graphics, plot) importFrom(grDevices, gray, palette, rgb) importFrom(survey, svymean) importFrom(stats, as.formula, binomial, coef, coefficients, cov, delete.response, family, fitted, formula, glm, glm.control, lm, lm.fit, loess.smooth, mahalanobis, make.link, median, model.frame, model.matrix, model.offset, model.response, na.exclude, na.omit, nlm, predict, qf, qnorm, qt, quantile, residuals, spline, terms, update, vcov, weights, xtabs) importFrom(utils, menu, browseURL) export(effect, allEffects, Effect, effectsTheme) export(predictorEffect, predictorEffects) export(Effect.default, effect.default, allEffects.default) export(effectsHexsticker) S3method(plot, predictoreff) S3method(plot, predictorefflist) S3method(predictorEffects, default) S3method(predictorEffects, poLCA) S3method(predictorEffect, default) S3method(predictorEffect, svyglm) S3method(predictorEffect, poLCA) S3method(Effect, default) S3method(Effect, lm) S3method(Effect, merMod) S3method(Effect, lme) S3method(Effect, clm2) S3method(Effect, clm) S3method(Effect, clmm) S3method(Effect, rlmerMod) S3method(Effect, gls) S3method(Effect, multinom) S3method(Effect, polr) S3method(Effect, poLCA) S3method(Effect, mlm) S3method(Effect, svyglm) S3method(Effect, betareg) export(Effect.lm,Effect.merMod,Effect.lme,Effect.clm2,Effect.clm,Effect.clmm, Effect.rlmerMod,Effect.gls,Effect.multinom,Effect.polr,Effect.poLCA, Effect.mlm,Effect.svyglm,Effect.betareg) S3method(print, eff) S3method(print, efflist) S3method(print, mlm.efflist) S3method(print, summary.eff) S3method(print, predictoreff) S3method(print, predictorefflist) S3method(summary, eff) S3method(summary, efflist) S3method(summary, mlm.efflist) S3method(summary, predictorefflist) S3method(as.data.frame, eff) S3method(as.data.frame, efflist) S3method(as.data.frame, effpoly) S3method(as.data.frame, efflatent) S3method(plot, eff) S3method(print, plot.eff) S3method(plot, efflist) S3method(plot, mlm.efflist) S3method(print, effpoly) S3method(summary, effpoly) S3method(plot, effpoly) S3method(print, efflatent) S3method(summary, efflatent) S3method(allEffects, default) S3method(allEffects, poLCA) S3method(allEffects, mlm) S3method(effect, default) S3method(vcov, eff) S3method(`[`, efflist) effects/man/0000755000176200001440000000000013563357015012454 5ustar liggesuserseffects/man/summary.effect.Rd0000644000176200001440000000576413362424462015705 0ustar liggesusers\name{summary.eff} \alias{print.eff} \alias{print.effpoly} \alias{print.efflatent} \alias{print.efflist} \alias{print.mlm.efflist} \alias{print.summary.eff} \alias{summary.eff} \alias{summary.effpoly} \alias{summary.efflatent} \alias{summary.efflist} \alias{summary.mlm.efflist} \alias{as.data.frame.eff} \alias{as.data.frame.effpoly} \alias{as.data.frame.efflatent} \alias{as.data.frame.efflist} \alias{vcov.eff} \title{Summarizing and Printing Effects} \description{ \code{summary}, \code{print}, and \code{as.data.frame} methods for objects created using the effects package. } \usage{ \method{print}{eff}(x, type=c("response", "link"), ...) \method{print}{effpoly}(x, type=c("probability", "logits"), ...) \method{print}{efflatent}(x, ...) \method{print}{efflist}(x, ...) \method{print}{mlm.efflist}(x, ...) \method{print}{summary.eff}(x, ...) \method{summary}{eff}(object, type=c("response", "link"), ...) \method{summary}{effpoly}(object, type=c("probability", "logits"), ...) \method{summary}{efflatent}(object, ...) \method{summary}{efflist}(object, ...) \method{summary}{mlm.efflist}(object, ...) \method{as.data.frame}{eff}(x, row.names=NULL, optional=TRUE, type=c("response", "link"), ...) \method{as.data.frame}{efflist}(x, row.names=NULL, optional=TRUE, type, ...) \method{as.data.frame}{effpoly}(x, row.names=NULL, optional=TRUE, ...) \method{as.data.frame}{efflatent}(x, row.names=NULL, optional=TRUE, ...) \method{vcov}{eff}(object, ...) } \arguments{ \item{x, object}{an object consisting of fitted values and other information needed to draw effects plots that is produced by functions in the \code{effects} package.} \item{type}{fitted values are by default printed by these functions in the \code{"response"} scale. For models with a link function like a GLM, fitted values in the linear predictor scale are obtained by setting \code{type="link"}. For polytomous response models setting \code{type="logits"} returns fitted values in the logit scale.} \item{row.names, optional}{arguments to \code{as.data.frame} not used by these methods.} \item{...}{other arguments passed on} } \value{ The \code{print} methods return the fitted values in tables. The \code{summary} methods return the fitted values and 95 percent condifence intervals, also in tables. The \code{as.data.frame} method returns fitted values, standard errors, and 95 percent confidence intervals as a data frame, or as a list of data frames for the \code{efflist} method. The \code{vcov} method returns the covariance matrix of the fitted values. } \author{John Fox \email{jfox@mcmaster.ca} and Jangman Hong.} \examples{ mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) eff.cowles <- predictorEffects(mod.cowles) print(eff.cowles) print(eff.cowles[["neuroticism"]], type="link") summary(eff.cowles[["neuroticism"]], type="link") as.data.frame(eff.cowles) # covariance matrix of fitted values in linear predictor scale vcov(eff.cowles[[1]]) } \keyword{hplot} \keyword{models} effects/man/LegacyArguments.Rd0000644000176200001440000001230613362424462016035 0ustar liggesusers\name{LegacyArguments} \alias{LegacyArguments} \alias{Legacy Arguments} \title{Legacy Arguments for \code{plot} and \code{Effect} Methods} \description{ Prior to verson 4.0-0 of the \pkg{effects} package, there were many (literally dozens) of arguments to the \code{plot} methods for \code{"eff"} and \code{"effpoly"} objects. In version 4.0-0 of the package, we have consolidated these arguments into a much smaller number of arguments (e.g., \code{lines}, \code{points}, \code{axes}) that take lists of specifications. We have similarly consolidated some of the arguments to \code{Effect} methods into the \code{confint} and \code{fixed.predictors} arguments. For backwards compatibility, we have to the extent possible retained the older arguments. If specified, these legacy arguments take precedence over the newer list-style arguments } \details{ Here is the correspondence between the old and new arguments. For \code{plot} methods: \describe{ \item{\code{multiline=TRUE/FALSE}}{\code{lines=list(multiline=TRUE/FALSE)}} \item{\code{type=c("rescale", "link", "response")}}{For models with a link function, \code{"link"} plots in linear predictor scale, \code{"response"} plots in the response scale, and the default \code{"rescale"} plots in linear predictor scale but labels tick-marks in response scale.} \item{\code{z.var=which.min(levels)}}{\code{lines=list(z.var=which.min(levels))} relevant only when \code{lines=list(multiline=TRUE)}} \item{\code{colors={vector of colors}}}{\code{lines=list(col={vector of colors})}} \item{\code{lty={vector of line types}}}{\code{lines=list(lty={vector of line types})}} \item{\code{lwd={vector of line widths}}}{\code{lines=list(lwd={vector of line widths})}} \item{\code{use.splines=TRUE/FALSE}}{\code{lines=list(splines=TRUE/FALSE)}} \item{\code{cex={number}}}{\code{points=list(cex={number})}} \item{\code{rug=TRUE/FALSE}}{\code{axes=list(x=list(rug=TRUE/FALSE)}} \item{\code{xlab={"axis title"}}}{\code{axes=list(x=list(lab={"axis title"}))}} \item{\code{xlim={c(min, max)}}}{\code{axes=list(x=list(lim={c(min, max)}))}} \item{\code{rotx={degrees}}}{\code{axes=list(x=list(rot={degrees}))}} \item{\code{ticks.x=list({tick specifications})}}{\code{axes=list(x=list(ticks=list({tick specifications})))}} \item{\code{transform.x=list(link={function}, inverse={function})}}{\code{axes=list(x=list(transform=list({lists of transformations by predictors})))}} \item{\code{ylab={"axis title"}}}{\code{axes=list(y=list(lab={"axis title"}))}} \item{\code{ylim={c(min, max)}}}{\code{axes=list(y=list(lim={c(min, max)}))}} \item{\code{roty={degrees}}}{\code{axes=list(y=list(rot={degrees}))}} \item{\code{ticks=list({tick specifications})}}{\code{axes=list(y=list(ticks=list({tick specifications})))}} \item{\code{alternating=TRUE/FALSE}}{\code{axes=list(alternating=TRUE/FALSE)}} \item{\code{grid=TRUE/FALSE}}{\code{axes=list(grid=TRUE/FALSE)}} \item{\code{ci.style="bands"/"lines"/"bars"/"none"}}{\code{confint=list(style="bands"/"lines"/"bars"/"none"})} \item{\code{band.transparency={number}}}{\code{confint=list(alpha={number})}} \item{\code{band.colors={vector of colors}}}{\code{confint=list(col={vector of colors})}} \item{\code{residuals.color={color}}}{\code{partial.residuals=list(col={color})}} \item{\code{residuals.pch={plotting character}}}{\code{partial.residuals=list(pch={plotting character})}} \item{\code{residuals.cex={number}}}{\code{partial.residuals=list(cex={number})}} \item{\code{smooth.residuals=TRUE/FALSE}}{\code{partial.residuals=list(smooth=TRUE/FALSE)}} \item{\code{residuals.smooth.color={color}}}{\code{partial.residuals=list(smooth.col={color})}} \item{\code{span={number}}}{\code{partial.residuals=list(span={number})}} \item{\code{show.fitted=TRUE/FALSE}}{\code{partial.residuals=list(fitted=TRUE/FALSE)}} \item{\code{factor.names=TRUE/FALSE}}{\code{lattice=list(strip=list(factor.names=TRUE/FALSE))}} \item{\code{show.strip.values=TRUE/FALSE}}{\code{lattice=list(strip=list(values=TRUE/FALSE))}} \item{\code{layout={lattice layout}}}{\code{lattice=list(layout={lattice layout})}} \item{\code{key.args={lattice key args}}}{\code{lattice=list(key.args={lattice key args})}} \item{\code{style="lines"/"stacked"}}{for \code{plot.effpoly}, \code{axes=list(y=list(style="lines"/"stacked"))}} \item{\code{rescale.axis=TRUE/FALSE}}{\code{type="rescale"/"response"/"link"}} } For \code{Effect} methods: \describe{ \item{\code{confint=TRUE/FALSE} or a list}{may be substituted for the \code{se} argument.} \item{\code{confidence.level={number}}}{\code{se=list(level={number})}} \item{\code{given.values={named vector}}}{\code{fixed.predictors=list(given.values={named vector})}} \item{\code{typical={function}}}{\code{fixed.predictors=list(typical={function})}} \item{\code{offset={function}}}{\code{fixed.predictors=list(offset={function})}} \item{\code{partial.residuals=TRUE/FALSE}}{\code{residuals=TRUE/FALSE}} \item{\code{transformation}}{This argument to \code{Effect} is not needed to compute effects. It can now be set directly with the \code{plot} method with the argument \code{axes = list(y = list(transformation=specification))}.} }} \author{John Fox \email{jfox@mcmaster.ca}} \seealso{ \code{\link{Effect}}, \code{\link{plot.eff}}, \code{\link{plot.effpoly}} } \keyword{hplot} effects/man/effect.Rd0000644000176200001440000007443013406543731014205 0ustar liggesusers\name{effect} \alias{effect} \alias{effect.default} \alias{Effect} \alias{Effect.lm} \alias{Effect.multinom} \alias{Effect.polr} \alias{Effect.svyglm} \alias{allEffects} \alias{allEffects.default} \title{Functions For Constructing Effect Displays} \description{ \code{Effect} and \code{effect} construct an \code{"eff"} object for a term (usually a high-order term) in a linear model (fit by \code{\link{lm}} or \code{\link[nlme]{gls}}) or generalized linear model (fit by \code{\link{glm}}), or an \code{"effpoly"} object for a term in a multinomial or proportional-odds logit model (fit respectively by \code{\link[nnet]{multinom}} or \code{\link[MASS]{polr}}), absorbing the lower-order terms marginal to the term in question, and averaging over other terms in the model. For multivariate linear models (of class \code{"mlm"}, fit by \code{\link{lm}}), the function constructs a list of \code{"eff"} objects separately for the various response variables. \code{effect} builds the required object by specifying explicity a focal term like \code{"a:b"} for an \code{a} by \code{b} interaction. \code{Effect} specifies the predictors in the term, for example \code{c("a", "b")}, rather than the term itself. \code{Effect} is consequently more flexible and robust than \code{effect}, and will succeed with some models for which \code{effect} fails. The \code{effect} function works by constructing a call to \code{Effect}. The \code{Effect} and \code{effect} functions can also be used with many other models; see \code{\link{Effect.default}} and the \href{../doc/adding-Effect-methods.pdf}{Defining Effect Methods for Other Models} vignette. \code{allEffects} identifies all of the high-order terms in a model and returns a list of \code{"eff"} or \code{"effpoly"} objects (i.e., an object of type \code{"efflist"}). For information on computing and displaying \emph{predictor effects}, see \code{\link{predictorEffect}} and \code{\link{plot.predictoreff}}. For further information about plotting effects, see \code{\link{plot.eff}}. } \usage{ effect(term, mod, vcov.=vcov, ...) \method{effect}{default}(term, mod, vcov.=vcov, ...) Effect(focal.predictors, mod, ...) \method{Effect}{lm}(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov. = vcov, se=TRUE, residuals=FALSE, quantiles=seq(0.2, 0.8, by=0.2), x.var=NULL, ..., #legacy arguments: given.values, typical, offset, confint, confidence.level, partial.residuals, transformation) \method{Effect}{multinom}(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov. = vcov, se=TRUE, ..., #legacy arguments: confint, confidence.level, given.values, typical) \method{Effect}{polr}(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov.=vcov, se=TRUE, latent=FALSE, ..., #legacy arguments: confint, confidence.level, given.values, typical) \method{Effect}{svyglm}(focal.predictors, mod, fixed.predictors, ...) allEffects(mod, ...) \method{allEffects}{default}(mod, ...) } \arguments{ \item{term}{the quoted name of a term, usually, but not necessarily, a high-order term in the model. The term must be given exactly as it appears in the printed model, although either colons (\code{:}) or asterisks (\code{*}) may be used for interactions. If \code{term} is NULL, the function returns the formula for the linear predictor.} \item{focal.predictors}{a character vector of one or more predictors in the model in any order.} \item{mod}{an object of the appropriate class. If no method exists for that class, \code{Effect.default} will be called. } \item{xlevels}{this argument is used to set the number of levels for any focal predictor that is not a factor (where character and logical predictors are treated as factors). If \code{xlevels=NULL}, then each numeric predictor is represented by five values equally spaced over its range and then rounded to 'nice' numbers. If \code{xlevels=n} is an integer, then each numeric predictor is represented by \code{n} equally spaced values rounded to 'nice' numbers. More generally, \code{xlevels} can be a named list of values at which to set each numeric predictor. For example, \code{xlevels=list(x1=c(2, 4, 7), x2=5)} would use the values 2, 4 and 7 for the levels of \code{x1}, use 5 equally spaced levels for the levels of \code{x2}, and use the default for any other numeric predictors. If partial residuals are computed, then the focal predictor that is to appear on the horizontal axis of an effect plot is evaluated at 100 equally spaced values along its full range, and, by default, other numeric predictors are evaluated at the quantiles specified in the \code{quantiles} argument, unless their values are given explicitly in \code{xlevels}.} \item{fixed.predictors}{an optional list of specifications affecting the values at which fixed predictors for an effect are set, potentially including: \describe{ \item{given.values}{\code{given.values="default"} specifies averaging over levels of a non-focal factor using the default that weights levels of the factor by sample size. \code{given.values="equal"} uses unweighted averages over factor levels for non-focal factors. For finer control, the user can also provide a named numeric vector of weights for particular columns of the model matrix that correspond to regressors for the factor. Character and logical predictors are treated as factors. For example, for a factor \code{X} with three levels \code{a}, \code{b} and \code{c}, the regressors generated using the default parameterization for a factor will be named \code{Xb} and \code{Xc} as the regressor for level \code{a} is usually excluded. The specification \code{given.values=c(Xb=1/2, Xc=1/4)} would average over the levels of \code{X} with weight 1/2 for level \code{b}, 1/4 for \code{c}, and weight 1 = 1/2 - 1/4 = 1/4 for the baseline level \code{a}. Setting \code{given.values=c(Xb=1)} will fix \code{X} and level \code{b}. } \item{typical}{a function to be applied to the columns of the model matrix over which the effect is "averaged"; with the exception of the \code{"svyglm"} method, the default is \code{\link{mean}}. For\code{"svyglm"} objects, the default is to use the survey-design weighted mean.} \item{apply.typical.to.factors}{It generally doesn't make sense to apply typical values that aren't means (e.g., medians) to the columns of the model-matrix representing contrasts for factors. This value generally defaults to \code{FALSE} except for \code{"svyglm"} objects, for which the default is \code{TRUE}, using the the survey-design weighted mean.} \item{offset}{a function to be applied to the offset values (if there is an offset) in a linear or generalized linear model, or a mixed-effects model fit by \code{\link[lme4]{lmer}} or \code{\link[lme4]{glmer}}; or a numeric value, to which the offset will be set. The default is the \code{\link{mean}} function, and thus the offset will be set to its mean; in the case of \code{"svyglm"} objects, the default is to use the survey-design weighted mean. \emph{Note:} Only offsets defined by the \code{offset} argument to \code{\link{lm}}, \code{\link{glm}}, \code{\link[survey]{svyglm}}, \code{\link[lme4]{lmer}}, or \code{\link[lme4]{glmer}} will be handled correctly; use of the \code{offset} function in the model formula is not supported.} } } \item{vcov.}{A function or the name of a function that will be used to get the estimated variance-covariance matrix of the estimated coefficients. This will ordinarily be the default, \code{\link{vcov}}, which will result in the function call \code{vcov(mod)} to get the variance-covariance matrix. You can use the name of any function that takes the model object as its first argument and returns an estimated sample covariance matrix, such as the \code{\link[car]{hccm}} function in the \pkg{car} package, which returns a heteroscedasticity corrected estimate for a linear model.} \item{se}{\code{TRUE} (the default), \code{FALSE}, or a list with any or all of the following elements, controlling whether and how standard errors and confidence limits are computed for the effects: \code{compute} (default \code{TRUE}), whether or not to compute standard errors and confidence limits; \code{level} (default \code{0.95}), confidence level for confidence limits; \code{type}, one of \code{"pointwise"} (the default), \code{"Scheffe"}, or \code{"scheffe"}, whether to compute confidence limits with specified coverage at each point for an effect or to compute limits for a Scheffe-type confidence envelope. For \code{mer}, \code{merMod}, and \code{lme} objects, the normal distribution is used to get confidence limits.} \item{residuals}{if \code{TRUE}, residuals for a linear or generalized linear model will be computed and saved; if \code{FALSE} (the default), residuals are suppressed. If residuals are saved, partial residuals are computed when the effect is plotted: see \code{\link{plot.eff}} and the vignette \href{../doc/partial-residuals.pdf}{Effect Displays with Partial Residuals}. This argument may also be used for mixed-effects and some other models.} \item{quantiles}{quantiles at which to evaluate numeric focal predictors \emph{not} on the horizontal axis, used only when partial residuals are displayed; superceded if the \code{xlevels} argument gives specific values for a predictor.} \item{x.var}{the name or index of the numeric predictor to define the horizontal axis of an effect plot for a linear or generalized linear model; the default is \code{NULL}, in which case the first numeric predictor in the effect will be used \emph{if} partial residuals are to be computed. This argument is intended to be used when \code{residuals} is \code{TRUE}; otherwise, the variable on the horizontal axis can be chosen when the effect object is plotted: see \code{\link{plot.eff}}.} \item{latent}{if \code{TRUE}, effects in a proportional-odds logit model are computed on the scale of the latent response; if \code{FALSE} (the default) effects are computed as individual-level probabilities and logits.} \item{x}{an object of class \code{"eff"}, \code{"effpoly"}, or \code{"efflatent"}.} \item{...}{arguments to be passed down.} \item{confint, confidence.level, given.values, typical, offset, partial.residuals, transformation}{legacy arguments retained for backwards compatability; if present, these arguments take precedence over \code{level} element of the \code{confint} list argument and the \code{given.values}, \code{typical}, and \code{offset} elements of the \code{fixed.predictors} list argument; \code{confint} may be used in place of the \code{se} argument; \code{partial.residuals} may be used in place of the \code{residuals} argument. See \code{\link{LegacyArguments}} for details.} } \details{ Normally, the functions to be used directly are \code{allEffects}, to return a list of high-order effects, and the generic \code{plot} function to plot the effects. (see \code{\link{plot.efflist}}, \code{\link{plot.eff}}, and \code{\link{plot.effpoly}}). Alternatively, \code{Effect} can be used to vary a subset of predictors over their ranges, while other predictors are held to typical values. Plots are drawn using the \code{\link{xyplot}} (or in some cases, the \code{\link{densityplot}}) function in the \pkg{lattice} package. Effects may also be printed (implicitly or explicitly via \code{print}) or summarized (using \code{summary}) (see \code{\link{print.efflist}}, \code{\link{summary.efflist}}, \code{\link{print.eff}}, \code{\link{summary.eff}}, \code{\link{print.effpoly}}, and \code{\link{summary.effpoly}}). If asked, the \code{effect} function will compute effects for terms that have higher-order relatives in the model, averaging over those terms (which rarely makes sense), or for terms that do not appear in the model but are higher-order relatives of terms that do. For example, for the model \code{Y ~ A*B + A*C + B*C}, one could compute the effect corresponding to the absent term \code{A:B:C}, which absorbs the constant, the \code{A}, \code{B}, and \code{C} main effects, and the three two-way interactions. In either of these cases, a warning is printed. See \code{\link{predictorEffects}} for an alternative paradigm for getting effects. } \value{ For \code{lm}, \code{glm},\code{svyglm}, \code{mer} and \code{lme}, \code{effect} and \code{Effect} return an \code{"eff"} object, and for \code{multinom}, \code{polr}, \code{clm}, \code{clmm} and \code{clm2}, an \code{"effpoly"} object, with the components listed below. For an \code{"mlm"} object with one response specified, an \code{"eff"} object is returned, otherwise an \code{"efflist"} object is returned, containing one \code{"eff"} object for each \code{response}. \item{term}{the term to which the effect pertains.} \item{formula}{the complete model formula.} \item{response}{a character string giving the name of the response variable.} \item{y.levels}{(for \code{"effpoly"} objects) levels of the polytomous response variable.} \item{variables}{a list with information about each predictor, including its name, whether it is a factor, and its levels or values.} \item{fit}{(for \code{"eff"} objects) a one-column matrix of fitted values, representing the effect on the scale of the linear predictor; this is a ravelled table, representing all combinations of predictor values.} \item{prob}{(for \code{"effpoly"} objects) a matrix giving fitted probabilities for the effect for the various levels of the the response (columns) and combinations of the focal predictors (rows).} \item{logit}{(for \code{"effpoly"} objects) a matrix giving fitted logits for the effect for the various levels of the the response (columns) and combinations of the focal predictors (rows).} \item{x}{a data frame, the columns of which are the predictors in the effect, and the rows of which give all combinations of values of these predictors.} \item{model.matrix}{the model matrix from which the effect was calculated.} \item{data}{a data frame with the data on which the fitted model was based.} \item{discrepancy}{the percentage discrepancy for the `safe' predictions of the original fit; should be very close to 0. Note: except for \code{gls} models, this is now necessarily 0.} \item{offset}{value to which the offset is fixed; \code{0} if there is no offset.} \item{model}{(for \code{"effpoly"} objects) \code{"multinom"} or \code{"polr"}, as appropriate.} \item{vcov}{(for \code{"eff"} objects) a covariance matrix for the effect, on the scale of the linear predictor.} \item{se}{(for \code{"eff"} objects) a vector of standard errors for the effect, on the scale of the linear predictor.} \item{se.prob, se.logit}{(for \code{"effpoly"} objects) matrices of standard errors for the effect, on the probability and logit scales.} \item{lower, upper}{(for \code{"eff"} objects) one-column matrices of confidence limits, on the scale of the linear predictor.} \item{lower.prob, upper.prob, lower.logit, upper.logit}{(for \code{"effpoly"} objects) matrices of confidence limits for the fitted logits and probabilities; the latter are computed by transforming the former.} \item{confidence.level}{for the confidence limits.} \item{transformation}{(for \code{"eff"} objects) a two-element list, with element \code{link} giving the link function, and element \code{inverse} giving the inverse-link (mean) function.} \item{residuals}{(working) residuals for linear or generalized linear models, to be used by \code{\link{plot.eff}} to plot partial residuals.} \item{x.var}{the name of the predictor to appear on the horizontal axis of an effect plot made from the returned object; will usually be \code{NULL} if partial residuals aren't computed.} \item{family}{for a \code{"glm"} model, the name of the distributional family of the model; for an \code{"lm"} model, this is \code{"gaussian"}; otherwise \code{NULL}. The \code{family} controls how partial residuals are smoothed in plots.} \item{link}{the value returned by \code{family(mod)}. Down-stream methods may need the link, inverse link and derivative functions.} \code{allEffects} returns an \code{"efflist"} object, a list of \code{"eff"} or \code{"effpoly"} objects corresponding to the high-order terms of the model. If \code{mod} is of class \code{"poLCA"} (from the \code{poLCA} package), representing a polytomous latent class model, effects are computed for the predictors given the estimated latent classes. The result is of class \code{"eff"} if the latent class model has 2 categories and of class \code{"effpoly"} with more than 2 categories. } \section{Warnings and Limitations}{ The \code{Effect} function handles factors and covariates differently, and is likely to be confused if one is changed to the other in a model formula. Consequently, formulas that include calls to \code{as.factor}, \code{factor}, or \code{numeric} (as, e.g., in \code{y ~ as.factor(income)}) will cause errors. Instead, create the modified variables outside of the model formula (e.g., \code{fincome <- as.factor(income)}) and use these in the model formula. Factors cannot have colons in level names (e.g., \code{"level:A"}); the \code{effect} function will confuse the colons with interactions; rename levels to remove or replace the colons (e.g., \code{"level.A"}). The functions in the \pkg{effects} package work properly with predictors that are numeric variables, factors, character variables, or logical variables; consequently, e.g., convert dates to numeric. Character predictors and logical predictors are treated as factors, the latter with "levels" \code{"FALSE"} and \code{"TRUE"}. Empty cells in crossed-factors are now permitted for \code{"lm"}, \code{"glm"}, and \code{"multinom"} models. For \code{"multinom"} models with two or more crossed factors with an empty cell, stacked area plots apparently do not work because of a bug in the \code{\link[lattice]{barchart}} function in the \pkg{lattice} package. However, the default line plots do work. Offsets in linear and generalized linear models are supported, as are offsets in mixed models fit by \code{lmer} or \code{glmer}, but must be supplied through the \code{offset} argument to \code{lm}, \code{glm}, \code{lmer} or \code{glmer}; offsets supplied via calls to the \code{offset} function on the right-hand side of the model formula are not supported. Fitting ordinal mixed-models using \code{\link[ordinal]{clmm}} or \code{\link[ordinal]{clmm2}} permits many options, including a variety of link functions, scale functions, nominal regressors, and various methods for setting thresholds. Effects are currently generated only for the default values of the arguments \code{scale}, \code{nominal}, \code{link} and \code{threshold}, which is equivalent to fitting an ordinal response mixed effects model with a logit link. The effect methods can also be used with objects created using \code{\link[ordinal]{clm}} or \code{\link[ordinal]{clm2}} fitting ordinal response models with the same links permitted by polr with no random effects, with results similar to those from \code{\link[MASS]{polr}} in the \pkg{MASS} package. Calling any of these functions from within a user-written function may result in errors due to R's scoping rules. See the vignette \code{embedding.pdf} for the \pkg{car} package for a solution to this problem. } \references{ Fox, J. (1987). Effect displays for generalized linear models. \emph{Sociological Methodology} \bold{17}, 347--361. Fox, J. (2003) Effect displays in R for generalised linear models. \emph{Journal of Statistical Software} \bold{8:15}, 1--27, <\url{http://www.jstatsoft.org/v08/i15/}>. Fox, J. and R. Andersen (2006). Effect displays for multinomial and proportional-odds logit models. \emph{Sociological Methodology} \bold{36}, 225--255. Fox, J. and J. Hong (2009). Effect displays in R for multinomial and proportional-odds logit models:? Extensions to the effects package. \emph{Journal of Statistical Software} \bold{32:1}, 1--24, <\url{http://www.jstatsoft.org/v32/i01/}>. Fox, J. and S. Weisberg (2018). Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots with Partial Residuals. \emph{Journal of Statistical Software} \bold{87:9}, 1--27, <\url{http://www.jstatsoft.org/v87/i09/}> Hastie, T. J. (1992). Generalized additive models. In Chambers, J. M., and Hastie, T. J. (eds.) \emph{Statistical Models in S}, Wadsworth. Weisberg, S. (2014). \emph{Applied Linear Regression}, 4th edition, Wiley, \url{http://z.umn.edu/alr4ed}. } \author{John Fox \email{jfox@mcmaster.ca}, Sanford Weisberg \email{sandy@umn.edu} and Jangman Hong.} \seealso{\code{\link{LegacyArguments}}. For information on printing, summarizing, and plotting effects: \code{\link{print.eff}}, \code{\link{summary.eff}}, \code{\link{plot.eff}}, \code{\link{print.summary.eff}}, \code{\link{print.effpoly}}, \code{\link{summary.effpoly}}, \code{\link{plot.effpoly}}, \code{\link{print.efflist}}, \code{\link{summary.efflist}}, \code{\link{plot.efflist}}, \code{\link{xyplot}}, \code{\link{densityplot}}, and the \href{../doc/partial-residuals.pdf}{Effect Displays with Partial Residuals} and \href{../doc/adding-Effect-methods.pdf}{Defining Effect Methods for Other Models} vignettes.} \examples{ mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) eff.cowles <- allEffects(mod.cowles, xlevels=list(extraversion=seq(0, 24, 6)), fixed.predictors=list(given.values=c(sexmale=0.5))) eff.cowles as.data.frame(eff.cowles[[2]]) \donttest{ # the following are equivalent: eff.ne <- effect("neuroticism*extraversion", mod.cowles) Eff.ne <- Effect(c("neuroticism", "extraversion"), mod.cowles) all.equal(eff.ne$fit, Eff.ne$fit) plot(eff.cowles, 'sex', axes=list(y=list(lab="Prob(Volunteer)"))) plot(eff.cowles, 'neuroticism:extraversion', axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) plot(Effect(c("neuroticism", "extraversion"), mod.cowles, se=list(type="Scheffe"), xlevels=list(extraversion=seq(0, 24, 6)), fixed.predictors=list(given.values=c(sexmale=0.5))), axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) plot(eff.cowles, 'neuroticism:extraversion', lines=list(multiline=TRUE), axes=list(y=list(lab="Prob(Volunteer)"))) plot(effect('sex:neuroticism:extraversion', mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))), lines=list(multiline=TRUE)) } # a nested model: mod <- lm(log(prestige) ~ income:type + education, data=Prestige) plot(Effect(c("income", "type"), mod, transformation=list(link=log, inverse=exp)), axes=list(y=list(lab="prestige"))) if (require(nnet)){ mod.beps <- multinom(vote ~ age + gender + economic.cond.national + economic.cond.household + Blair + Hague + Kennedy + Europe*political.knowledge, data=BEPS) \donttest{ plot(effect("Europe*political.knowledge", mod.beps, xlevels=list(political.knowledge=0:3))) } plot(Effect(c("Europe", "political.knowledge"), mod.beps, xlevels=list(Europe=1:11, political.knowledge=0:3), fixed.predictors=list(given.values=c(gendermale=0.5))), lines=list(col=c("blue", "red", "orange")), axes=list(x=list(rug=FALSE), y=list(style="stacked"))) \donttest{ plot(effect("Europe*political.knowledge", mod.beps, # equivalent xlevels=list(Europe=1:11, political.knowledge=0:3), fixed.predictors=list(given.values=c(gendermale=0.5))), lines=list(col=c("blue", "red", "orange")), axes=list(x=list(rug=FALSE), y=list(style="stacked"))) } } if (require(MASS)){ mod.wvs <- polr(poverty ~ gender + religion + degree + country*poly(age,3), data=WVS) \donttest{ plot(effect("country*poly(age, 3)", mod.wvs)) } plot(Effect(c("country", "age"), mod.wvs), axes=list(y=list(style="stacked"))) \donttest{ plot(effect("country*poly(age, 3)", mod.wvs), axes=list(y=list(style="stacked"))) # equivalent plot(effect("country*poly(age, 3)", latent=TRUE, mod.wvs)) plot(effect("country*poly(age, 3)", latent=TRUE, mod.wvs, se=list(type="scheffe"))) # Scheffe-type confidence envelopes } } mod.pres <- lm(prestige ~ log(income, 10) + poly(education, 3) + poly(women, 2), data=Prestige) eff.pres <- allEffects(mod.pres, xlevels=50) plot(eff.pres) plot(eff.pres[1], axes=list(x=list(income=list( transform=list(trans=log10, inverse=function(x) 10^x), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)) )))) \donttest{ # linear model with log-response and log-predictor # to illustrate transforming axes and setting tick labels mod.pres1 <- lm(log(prestige) ~ log(income) + poly(education, 3) + poly(women, 2), data=Prestige) # effect of the log-predictor eff.log <- Effect("income", mod.pres1) # effect of the log-predictor transformed to the arithmetic scale eff.trans <- Effect("income", mod.pres1, transformation=list(link=log, inverse=exp)) #variations: # y-axis: scale is log, tick labels are log # x-axis: scale is arithmetic, tick labels are arithmetic plot(eff.log) # y-axis: scale is log, tick labels are log # x-axis: scale is log, tick labels are arithmetic plot(eff.log, axes=list(x=list(income=list( transform=list(trans=log, inverse=exp), ticks=list(at=c(5000, 10000, 20000)), lab="income, log-scale")))) # y-axis: scale is log, tick labels are arithmetic # x-axis: scale is arithmetic, tick labels are arithmetic plot(eff.trans, axes=list(y=list(lab="prestige"))) # y-axis: scale is arithmetic, tick labels are arithmetic # x-axis: scale is arithmetic, tick labels are arithmetic plot(eff.trans, axes=list(y=list(type="response", lab="prestige"))) # y-axis: scale is log, tick labels are arithmetic # x-axis: scale is log, tick labels are arithmetic plot(eff.trans, axes=list( x=list(income=list( transform=list(trans=log, inverse=exp), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)), lab="income, log-scale")), y=list(lab="prestige, log-scale")), main="Both response and X in log-scale") # y-axis: scale is arithmetic, tick labels are arithmetic # x-axis: scale is log, tick labels are arithmetic plot(eff.trans, axes=list( x=list( income=list(transform=list(trans=log, inverse=exp), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)), lab="income, log-scale")), y=list(type="response", lab="prestige"))) } if (require(nlme)){ # for gls() mod.hart <- gls(fconvict ~ mconvict + tfr + partic + degrees, data=Hartnagel, correlation=corARMA(p=2, q=0), method="ML") plot(allEffects(mod.hart)) detach(package:nlme) } if (require(lme4)){ data(cake, package="lme4") fm1 <- lmer(angle ~ recipe * temperature + (1|recipe:replicate), cake, REML = FALSE) plot(Effect(c("recipe", "temperature"), fm1)) \donttest{ plot(effect("recipe:temperature", fm1), axes=list(grid=TRUE)) # equivalent (plus grid) } if (any(grepl("pbkrtest", search()))) detach(package:pbkrtest) detach(package:lme4) } \donttest{ if (require(nlme) && length(find.package("lme4", quiet=TRUE)) > 0){ data(cake, package="lme4") cake$rep <- with(cake, paste( as.character(recipe), as.character(replicate), sep="")) fm2 <- lme(angle ~ recipe * temperature, data=cake, random = ~ 1 | rep, method="ML") plot(Effect(c("recipe", "temperature"), fm2)) plot(effect("recipe:temperature", fm2), axes=list(grid=TRUE)) # equivalent (plus grid) } detach(package:nlme) } \donttest{ if (require(poLCA)){ data(election) f2a <- cbind(MORALG,CARESG,KNOWG,LEADG,DISHONG,INTELG, MORALB,CARESB,KNOWB,LEADB,DISHONB,INTELB)~PARTY*AGE nes2a <- poLCA(f2a,election,nclass=3,nrep=5) plot(Effect(c("PARTY", "AGE"), nes2a), axes=list(y=list(style="stacked"))) } } # mlm example if (require(heplots)) { data(NLSY, package="heplots") mod <- lm(cbind(read,math) ~ income+educ, data=NLSY) eff.inc <- Effect("income", mod) plot(eff.inc) eff.edu <- Effect("educ", mod) plot(eff.edu, axes=list(x=list(rug=FALSE), grid=TRUE)) \donttest{ plot(Effect("educ", mod, response="read")) } detach(package:heplots) } # svyglm() example (adapting an example from the survey package) \donttest{ if (require(survey)){ data("api") dstrat<-svydesign(id=~1, strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) mod <- svyglm(sch.wide ~ ell + meals + mobility, design=dstrat, family=quasibinomial()) plot(allEffects(mod), axes=list(y=list(lim=log(c(0.4, 0.99)/c(0.6, 0.01)), ticks=list(at=c(0.4, 0.75, 0.9, 0.95, 0.99))))) } } # component + residual plot examples \donttest{ Prestige$type <- factor(Prestige$type, levels=c("bc", "wc", "prof")) mod.prestige.1 <- lm(prestige ~ income + education, data=Prestige) plot(allEffects(mod.prestige.1, residuals=TRUE)) # standard C+R plots plot(allEffects(mod.prestige.1, residuals=TRUE, se=list(type="scheffe"))) # with Scheffe-type confidence bands mod.prestige.2 <- lm(prestige ~ type*(income + education), data=Prestige) plot(allEffects(mod.prestige.2, residuals=TRUE)) mod.prestige.3 <- lm(prestige ~ type + income*education, data=Prestige) plot(Effect(c("income", "education"), mod.prestige.3, residuals=TRUE), partial.residuals=list(span=1)) } # artificial data set.seed(12345) x1 <- runif(500, -75, 100) x2 <- runif(500, -75, 100) y <- 10 + 5*x1 + 5*x2 + x1^2 + x2^2 + x1*x2 + rnorm(500, 0, 1e3) Data <- data.frame(y, x1, x2) mod.1 <- lm(y ~ poly(x1, x2, degree=2, raw=TRUE), data=Data) # raw=TRUE necessary for safe prediction mod.2 <- lm(y ~ x1*x2, data=Data) mod.3 <- lm(y ~ x1 + x2, data=Data) plot(Effect(c("x1", "x2"), mod.1, residuals=TRUE)) # correct model plot(Effect(c("x1", "x2"), mod.2, residuals=TRUE)) # wrong model plot(Effect(c("x1", "x2"), mod.3, residuals=TRUE)) # wrong model } \keyword{hplot} \keyword{models} effects/man/effect-methods.Rd0000644000176200001440000001460213375645000015636 0ustar liggesusers\name{EffectMethods} \alias{Effect.default} \alias{Effect.merMod} \alias{Effect.rlmerMod} \alias{Effect.lme} \alias{Effect.gls} \alias{Effect.poLCA} \alias{Effect.clm2} \alias{Effect.clm} \alias{Effect.clmm} \alias{Effect.mlm} \alias{Effect.betareg} \title{Functions For Constructing Effect Displays for Many Modeling Paradigms} \description{The \code{Effect}, \code{effect} and \code{predictorEffects} methods are used to draw effects plots to visualize a fitted regression surface. These plots can be drawn at least in principle for any model that uses a linear predictor. Methods for modeling paradigms than the basic \code{lm}, \code{glm}, \code{multinom} and \code{polr} methods are documented here. To add methods for new classes of statistical models, see the vignette \href{../doc/adding-Effect-methods.pdf}{Defining Effect Methods for Other Models}. } \usage{ \method{Effect}{default}(focal.predictors, mod, ..., sources=NULL) \method{Effect}{gls}(focal.predictors, mod, ...) \method{Effect}{clm2}(focal.predictors, mod, ...) \method{Effect}{clmm}(focal.predictors, mod, ...) \method{Effect}{clm}(focal.predictors, mod, ...) \method{Effect}{merMod}(focal.predictors, mod, ..., KR=FALSE) \method{Effect}{rlmerMod}(focal.predictors, mod, ...) \method{Effect}{lme}(focal.predictors, mod, ...) \method{Effect}{poLCA}(focal.predictors, mod, ...) \method{Effect}{mlm}(focal.predictors, mod, response, ...) \method{Effect}{betareg}(focal.predictors, mod, ...) } \arguments{ \item{focal.predictors}{a character vector of one or more predictors in the model in any order.} \item{mod}{a fitted model object of the appropriate class. } \item{...}{additional arguments passed to other \code{Effect}. See \code{\link{Effect}} for all the arguments included.} \item{response}{for an \code{"mlm"} object, a vector containing the name(s) or indices of one or more response variable(s). The default is to use all responses in the model.} \item{sources}{This argument appears only in the default method for \code{Effect}, and allows the user to draw effects plots for fitting methods for which there are not existing methods in the effects package. Seven arguments are provided: \describe{ \item{type}{the default is \code{"glm"}, which assumes the modeling method shares characteristics with a generalized linear model, including a univariate response, a linear predictor, and possibly a error family and link function.} \item{call}{For S3 objects, the default is \code{ojbect$call}, returning the call that created the object. This is used to harvest standard arguments like \code{data}, \code{subset} and \code{family}.} \item{formula}{the formula for the linear predictor, defaulting to \code{formula(object)}.} \item{family}{if the model object includes an error family, but it is not returned by \code{family(object)}, specify the family with this argument; otherwise it can be ignored.} \item{method}{For ordinal response models only, see the \code{method} argument to \code{\link{polr}}.} \item{coefficients}{The estimates of the coefficents in the linear predictor, with default \code{coef(object)}.} \item{vcov}{the estimated variance covariance materix to be used in computing errors in the effects plots; default is code{vcov(object)}.} } } \item{KR}{if \code{TRUE} and the \pkg{pbkrtest} package is installed, use the Kenward-Roger coefficient covariance matrix to compute effect standard errors for linear mixed models fit with \code{\link[lme4]{lmer}} in the \pkg{lme4} package. The default is \code{FALSE} because the computation can be very slow.} } \details{ Most of these methods simply call the \code{Effect.default} method with the appropriate values in the arguement \code{sources}. See the vignettte Effect Methods in the vignettes for the effects package. All the iteresting work is done by the methods described in \code{\link{Effect}}.} \value{See \code{\link{Effect}}} \references{ The \href{../doc/adding-Effect-methods.pdf}{Defining Effect Methods for Other Models} vignette. } \author{John Fox \email{jfox@mcmaster.ca}, Sanford Weisberg \email{sandy@umn.edu}} \seealso{\code{\link{Effect}} and the links therein.} \examples{ \dontrun{ # lme require(nlme) fm1 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1) plot(predictorEffects(fm1)) # gls library(nlme) g <- gls(Employed ~ GNP + Population, correlation=corAR1(form= ~ Year), data=longley) print(predictorEffects(g)) # lmer uses method Effect.lmerMod if("package:nlme" %in% search()) detach(package:nlme) require(lme4) data("Orthodont", package="nlme") fm2 <- lmer(distance ~ age + Sex + (1 |Subject), data = Orthodont) plot(allEffects(fm2)) # glmer uses method Effect.lmerMod require(lme4) gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) as.data.frame(predictorEffect("period", gm1)) # rlmer uses method Effect.rlmerMod require(lme4) fm3 <- robustlmm::rlmer(distance ~ age + Sex + (1 |Subject), data = Orthodont) plot(effect("age:Sex", fm3)) plot(predictorEffects(fm3, ~ age + Sex)) # betareg from the betareg package library(betareg) library(lme4) data("GasolineYield", package = "betareg") gy_logit <- betareg(yield ~ batch + temp, data = GasolineYield) summary(gy_logit) Effect("batch", gy_logit) predictorEffects(gy_logit) # clm in ordinal require(ordinal) require(MASS) mod.wvs1 <- clm(poverty ~ gender + religion + degree + country*poly(age,3), data=WVS) plot(Effect(c("country", "age"), mod.wvs1), lines=list(multiline=TRUE), layout=c(2, 2)) # clm2 require(ordinal) require(MASS) v2 <- clm2(poverty ~ gender + religion + degree + country*poly(age,3),data=WVS) plot(emod2 <- Effect(c("country", "age"), v2)) # clmm require(ordinal) require(MASS) mm1 <- clmm(SURENESS ~ PROD + (1|RESP) + (1|RESP:PROD), data = soup, link = "logit", threshold = "flexible") plot(Effect("PROD", mm1),lines=list(multiline=TRUE)) # poLCA library(poLCA) data(election) f2a <- cbind(MORALG,CARESG,KNOWG,LEADG,DISHONG,INTELG, MORALB,CARESB,KNOWB,LEADB,DISHONB,INTELB)~PARTY nes2a <- poLCA(f2a,election,nclass=3,nrep=5) # log-likelihood: -16222.32 allEffects(nes2a) # multivariate linear model data(Baumann, package="carData") b1 <- lm(cbind(post.test.1, post.test.2, post.test.3) ~ group + pretest.1 + pretest.2, data = Baumann)) plot(Effect("group", b1) } } \keyword{hplot} \keyword{models} effects/man/effects-package.Rd0000644000176200001440000000627613563356333015770 0ustar liggesusers\name{effects-package} \Rdversion{1.1} \alias{effects-package} \alias{effects} \docType{package} \title{ Effect Displays for Linear, Generalized Linear, and Other Models } \description{ Graphical and tabular effect displays, e.g., of interactions, for various statistical models with linear predictors. } \details{ \tabular{ll}{ Package: \tab effects\cr Version: \tab 4.1-4\cr Date: \tab 2019-11-14\cr Depends: \tab R (>= 3.5.0), carData\cr Suggests: \tab pbkrtest (>= 0.4-4), nlme, MASS, poLCA, heplots, splines, ordinal, car, knitr, betareg, alr4\cr Imports: \tab lme4, nnet, lattice, grid, colorspace, graphics, grDevices, stats, survey, utils, estimability\cr LazyLoad: \tab yes\cr LazyData: \tab yes\cr License: \tab GPL (>= 2)\cr URL: \tab https://www.r-project.org, http://socserv.socsci.mcmaster.ca/jfox/\cr } This package creates effect displays for various kinds of models, as partly explained in the references. Typical usage is \code{plot(allEffects(model))} or \code{plot(predictorEffects(model))}, where \code{model} is an appropriate fitted-model object. Additional arguments to \code{allEffects}, \code{predictorEffects} and \code{plot} can be used to customize the resulting displays. The function \code{effect} can be employed to produce an effect display for a particular term in the model, or to which terms in the model are marginal. The function \code{predictorEffect} can be used to construct an effect display for a particularly predictor. The function \code{Effect} may similarly be used to produce an effect display for any combination of predictors. In any of the cases, use \code{plot} to graph the resulting effect object. For linear and generalized linear models it is also possible to plot partial residuals to obtain (multidimensional) component+residual plots. See \code{?effect}, \code{?Effect}, \code{?predictorEffect}, and \code{?plot.eff} for details. } \author{ John Fox, Sanford Weisberg, Michael Friendly, Jangman Hong, Robert Anderson, David Firth, Steve Taylor, and the R Core Team. Maintainer: John Fox } \references{ Fox, J. and S. Weisberg (2019) \emph{An R Companion to Applied Regression, Third Edition} Sage Publications. Fox, J. (1987) Effect displays for generalized linear models. \emph{Sociological Methodology} \bold{17}, 347--361. Fox, J. (2003) Effect displays in R for generalised linear models. \emph{Journal of Statistical Software} \bold{8:15}, 1--27, <\url{http://www.jstatsoft.org/v08/i15/}>. Fox, J. and R. Andersen (2006) Effect displays for multinomial and proportional-odds logit models. \emph{Sociological Methodology} \bold{36}, 225--255. Fox, J. and J. Hong (2009). Effect displays in R for multinomial and proportional-odds logit models: Extensions to the effects package. \emph{Journal of Statistical Software} \bold{32:1}, 1--24, <\url{http://www.jstatsoft.org/v32/i01/}>. Fox, J. and S. Weisberg (2018). Visualizing Fit and Lack of Fit in Complex Regression Models: Effect Plots with Partial Residuals. \emph{Journal of Statistical Software} \bold{87:9}, 1--27, <\url{https://www.jstatsoft.org/v087/i09}>. } \keyword{ package } effects/man/predictorEffects.Rd0000644000176200001440000001536713454353755016260 0ustar liggesusers\name{predictorEffects} \alias{predictorEffect} \alias{predictorEffect.poLCA} \alias{predictorEffect.svyglm} \alias{predictorEffect.default} \alias{predictorEffects} \alias{predictorEffects.poLCA} \alias{predictorEffects.default} \title{ Functions For Computing Predictor Effects } \description{ Alternatives to the \code{Effect} and \code{allEffects} functions that use a different paradigm for conditioning in an effect display. The user specifies one predictor, either continuous or a factor, for the horizontal axis of a plot, and the function determines the appropriate plot to display (which is drawn by \code{plot}). See the vignette \href{../doc/predictor-effects-gallery.pdf}{Predictor Effects Graphics Gallery} for details and examples. } \usage{ predictorEffect(predictor, mod, focal.levels=50, xlevels=5, ...) \method{predictorEffect}{poLCA}(predictor, mod, focal.levels=50, xlevels=5, ...) \method{predictorEffect}{svyglm}(predictor, mod, focal.levels=50, xlevels=5, ...) \method{predictorEffect}{default}(predictor, mod, focal.levels=50, xlevels=5, ...) predictorEffects(mod, predictors, focal.levels=50, xlevels=5, ...) \method{predictorEffects}{poLCA}(mod, predictors = ~ ., focal.levels=50, xlevels=5, ...) \method{predictorEffects}{default}(mod, predictors = ~ ., focal.levels=50, xlevels=5, ...) } \arguments{ \item{mod}{ A model object. Supported models include all those described on the help page for \code{\link{Effect}}. } \item{predictor}{quoted name of the focal predictor.} \item{predictors}{ If the default \code{~ .}, a predictor effect plot is drawn for each predictor (not regressor) in a model. Otherwise, this should be a one-sided formula listing the first-order predictors for which predictor effect plots should be drawn. } \item{focal.levels}{for \code{predictorEffect}, the number of evenly-spaced values (the default is 50) for the focal predictor or a vector of values for the focal predictor. For \code{predictorEffects}, the number of evenly-spaced values (default 50) to use for each focal predictor in turn or a named list, similar to \code{xlevels}, giving the number of values or the values themselves for each predictor individually, to be used when that predictor is the focal predictor; if a focal predictor doesn't appear in the list, the default of 50 values is used.} \item{xlevels}{this argument is used to set the levels of conditioning predictors; it may either be a single number specifying the number of evenly-spaced values (the default is 5) to which each conditioning predictor is to be set, or it may be a list with elements named for the predictors giving the number of values or a vector of values to which each conditioning predictor is to be set, as explained in the help for \code{\link{Effect}}. If the focal predictor is included in the \code{xlevels} list, it is disregarded; if any conditioning predictor is omitted from the list, its number of values is set to 5. The default behavior of \code{xlevels} is different when \code{residuals=TRUE}; in that case, it behaves as in \code{\link{Effect.lm}}, and is effectively set by default to the 0.2, 0.4, 0.6, and 0.8 quantiles of conditioning predictors. The \code{xlevels} argument works similarly for \code{predictorEffect} and \code{predictorEffects}.} \item{\dots}{ Additional arguments passed to \code{\link{Effect}}. } } \details{ Effect plots view a fitted regression function E(Y|X) in (sequences of) two-dimensional plots using conditioning and slicing. The functions described here use a different method of determining the conditioning and slicing than \code{allEffects} uses. The predictor effect of a focal predictor, say \code{x1},is the usual effect for the generalized interaction of \code{x1} with all the other predictors in a model. When a predictor effect object is plotted, the focal predictor is by default plotted on the horizontal axis. For example, in the model \code{mod} with formula \code{y ~ x1 + x2 + x3}, the predictor effect \code{p1 <- predictorEffects(mod, ~ x1)} is essentially equilavent to \code{p2 <- Effect("x1", mod)}. When plotted, these objects may produce different graphs because \code{plot(p1)} will always put \code{x1} on the horizontal axis while \code{plot(p2)} uses a rule to determine the horizontal axis based on the characteristics of all the predictors, e.g., preferring continuous predictors over factors. If \code{mod} has the formula \code{y ~ x1 + x2 + x3 + x1:x2}, then \code{p1 <- predictorEffects(mod, ~ x1)} is essentially equivalent to \code{p2 <- Effect(c("x1", "x2"), mod)}. As in the last example, the plotted versions of these objects may differ because of different rules used to determine the predictor on the horizontal axis. If \code{mod} has the formula \code{y ~ x1 + x2 + x3 + x1:x2 + x1:x3}, then \code{p1 <- predictorEffects(mod, ~ x1)} is essentially equilavent to \code{p2 <- Effect(c("x1", "x2", "x3"), mod)}. Again, the plotted versions of these objects may differ because of the rules used to determine the horizontal axis. } \value{ \code{predictorEffect} returns an object of class \code{c("predictoreff", "eff")}. The components of the object are described in the help for \code{\link{Effect}}; \code{predictorEffects} returns an object of class \code{"predictorefflist"}, which is a list whose elements are of class \code{c("predictoreff", "eff")}. } \references{ See \code{\link{Effect}}. } \author{ S. Weisberg \email{sandy@umn.edu} and J. Fox } \seealso{ \code{\link{Effect}}, \code{\link{plot.predictoreff}}, the \href{../doc/predictor-effects-gallery.pdf}{Predictor Effects Graphics Gallery} vignette, and the \href{../doc/partial-residuals.pdf}{Effect Displays with Partial Residuals} vignette. } \examples{ mod <- lm(prestige ~ type*(education + income) + women, Prestige) plot(predictorEffect("income", mod)) plot(predictorEffects(mod, ~ education + income + women)) mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) plot(predictorEffects(mod.cowles, xlevels=4)) plot(predictorEffect("neuroticism", mod.cowles, xlevels=list(extraversion=seq(5, 20, by=5))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(lab="Probability of Vounteering")), lines=list(multiline=TRUE), type="response") predictorEffects(mod.cowles, focal.levels=4, xlevels=4) # svyglm() example (adapting an example from the survey package) \donttest{ if (require(survey)){ data(api) dstrat<-svydesign(id=~1, strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) mod <- svyglm(sch.wide ~ ell + meals + mobility, design=dstrat, family=quasibinomial()) plot(predictorEffects(mod), axes=list(y=list(lim=log(c(0.4, 0.99)/c(0.6, 0.01)), ticks=list(at=c(0.4, 0.75, 0.9, 0.95, 0.99))))) } } } \keyword{hplot} \keyword{models} effects/man/plot.effect.Rd0000644000176200001440000006472513375645000015165 0ustar liggesusers\name{plot.effects} \alias{plot.effect} \alias{plot.effects} \alias{plot.predictoreff} \alias{plot.predictorefflist} \alias{plot.eff} \alias{plot.effpoly} \alias{plot.efflist} \alias{plot.mlm.efflist} \alias{[.efflist} \title{Plots of Effects and Predictor Effects} \description{ \code{plot} methods for \code{predictoreff}, \code{predictorefflist}, \code{eff}, \code{efflist} and \code{effpoly} objects created by calls other methods in the \code{effects} package. The plot arguments were substantially changed in mid-2017. For more details and many examples, see the \href{../doc/predictor-effects-gallery.pdf}{Predictor Effects Graphics Gallery} vignette. } \usage{ \method{plot}{eff}(x, x.var, main=paste(effect, "effect plot"), symbols=TRUE, lines=TRUE, axes, confint, partial.residuals, id, lattice, ..., # legacy arguments: multiline, z.var, rug, xlab, ylab, colors, cex, lty, lwd, ylim, xlim, factor.names, ci.style, band.transparency, band.colors, type, ticks, alternating, rotx, roty, grid, layout, rescale.axis, transform.x, ticks.x, show.strip.values, key.args, use.splines, residuals.color, residuals.pch, residuals.cex, smooth.residuals, residuals.smooth.color, show.fitted, span) \method{plot}{efflist}(x, selection, rows, cols, ask=FALSE, graphics=TRUE, lattice, ...) \method{plot}{predictoreff}(x, x.var, main = paste(names(x$variables)[1], "predictor effect plot"), ...) \method{plot}{predictorefflist}(x, selection, rows, cols, ask = FALSE, graphics = TRUE, lattice, ...) \method{plot}{effpoly}(x, x.var=which.max(levels), main=paste(effect, "effect plot"), symbols=TRUE, lines=TRUE, axes, confint, lattice, ..., # legacy arguments: type, multiline, rug, xlab, ylab, colors, cex, lty, lwd, factor.names, show.strip.values, ci.style, band.colors, band.transparency, style, transform.x, ticks.x, xlim, ticks, ylim, rotx, roty, alternating, grid, layout, key.args, use.splines) \method{plot}{mlm.efflist}(x, ...) } \arguments{ \item{x}{an object of class \code{"predictoreff"}, \code{"predictorefflist"}, \code{"eff"}, \code{"effpoly"}, \code{"efflist"}, \code{"mlm.efflist"}, or \code{"summary.eff"}, as appropriate.} \item{x.var}{the index (number) or quoted name of the covariate or factor to place on the horizontal axis of each panel of the effect plot. The default is the predictor with the largest number of levels or values. This argument is ignored with \code{predictoreff} objects.} \item{main}{the title for the plot, printed at the top; the default title is constructed from the name of the effect.} \item{symbols}{\code{TRUE}, \code{FALSE}, or an optional list of specifications for plotting symbols; if not given, symbol properties are taken from \code{superpose.symbol} in the lattice theme. See Detailed Argument Descriptions under Details for more information.} \item{lines}{\code{TRUE}, \code{FALSE}, or an optional list of specifications for plotting lines (and possibly areas); if not given, line properties are taken from \code{superpose.line} in the lattice theme. See Detailed Argument Descriptions under Details for more information.} \item{axes}{an optional list of specifications for the x and y axes; if not given, axis properties take generally reasonable default values. See Details for more information.} \item{confint}{an optional list of specifications for plotting confidence regions and intervals; if not given, generally reasonable default values are used. See Detailed Argument Descriptions under Details for more information.} \item{partial.residuals}{an optional list of specifications for plotting partial residuals for linear and generalized linear models; if not given, generally reasonable default values are used. See Detailed Argument Descriptions under Details for more information, along with the \href{../doc/partial-residuals.pdf}{Effect Displays with Partial Residuals} vignette.} \item{id}{an optional list of specifications for identifying points when partial residuals are plotted; if not specified, no points are labelled. See Detailed Argument Descriptions under Details for more information.} \item{lattice}{an optional list of specifications for various lattice properties, such as legend placement; if not given, generally reasonable default values are used. See Detailed Argument Descriptions under Details for more information.} \item{selection}{the optional index (number) or quoted name of the effect in an efflist object to be plotted; if not supplied, a menu of high-order terms is presented or all effects are plotted.} \item{rows, cols}{Number of rows and columns in the ``meta-array'' of plots produced for an \code{efflist} object; if either argument is missing, then the meta-layout will be computed by the \code{plot} method.} \item{ask}{if \code{selection} is not supplied and \code{ask} is \code{TRUE}, a menu of high-order terms is presented; if \code{ask} is \code{FALSE} (the default), effects for all high-order terms are plotted in an array.} \item{graphics}{if \code{TRUE} (the default), then the menu of terms to plot is presented in a dialog box rather than as a text menu.} \item{...}{arguments to be passed down. For \code{"predictoreff"} or \code{"predictorefflist"} objects, the arguments passed down can include all the arguments for \code{"eff"}.} \item{multiline, z.var, rug, xlab, ylab, colors, cex, lty, lwd, ylim, xlim, factor.names, ci.style, band.transparency, band.colors, ticks, alternating, rotx, roty, grid, layout, rescale.axis, transform.x, ticks.x, show.strip.values, key.args, use.splines, type, residuals.color, residuals.pch, residuals.cex, smooth.residuals, residuals.smooth.color, show.fitted, span, style}{legacy arguments retained for backwards compatibility; if specified, these will take precedence over the newer list-style arguments described above. See \code{\link{LegacyArguments}} for details.} } \details{ Effects plots and predictor effects plots are produced by these methods. The plots are highly customizable using the optional arguments described here. For example, effects in a GLM are plotted on the scale of the linear predictor, but the vertical axis is labelled on the response scale. This preserves the linear structure of the model while permitting interpretation on what is usually a more familiar scale. This approach may also be used with linear models, for example to display effects on the scale of the response even if the data are analyzed on a transformed scale, such as log or square-root. See the \code{axes} argument details below to change the scale to response scale, or to linear predictor scale with tick marks labeled in response scale. When a factor is on the x-axis, the \code{plot} method for \code{eff} objects connects the points representing the effect by line segments, creating a response ``profile.'' If you wish to suppress these lines, add \code{lty=0} to the \code{lines} argument to the call to \code{plot} (see below and the examples). In a polytomous multinomial or proportional-odds logit model, by default effects are plotted on the probability scale; they may alternatively be plotted on the scale of the individual-level logits. All of the arguments to plot objects created by \code{Effect} or \code{allEffects} can also be used with objects created by \code{predictorEffect} or \code{predictorEffects}. \bold{Detailed Argument Descriptions} For more information about these arguments and many examples, see the \href{../doc/predictor-effects-gallery.pdf}{Predictor Effects Graphics Gallery} vignette. Maximizing the flexibility of these plot commands requires inclusion of a myriad of options. In an attempt to simplify the use of these options, they have been organized into just a few arguments that each accept a list of specifications as an argument. In a few cases the named entries in the list are themselves lists. Each of the following arguments takes an optional list of specifications; any specification absent from the list assumes its default value. Some of the list elements are themselves lists, so in complex cases, the argument can take the form of nested lists. All of these arguments can also be used on objects created with \code{\link{predictorEffects}}. \describe{ \item{\code{symbols}}{\code{TRUE}, \code{FALSE}, or a list of options that controls the plotting symbols and their sizes for use with factors; if \code{FALSE} symbols are suppressed; if \code{TRUE} default values are used: \describe{ \item{\code{pch}}{ploting symbols, a vector of plotting characters, with the default taken from \code{trellis.par.get("superpose.symbol")$pch}, typically a vector of 1s (circles).} \item{\code{cex}}{plotting character sizes, a vector of values, with the default taken from \code{trellis.par.get("superpose.symbol")$cex}, typically a vector of 0.8s.} } } \item{\code{lines}}{\code{TRUE}, \code{FALSE}, or a list that controls the characteristics of lines drawn on a plot, and also whether or not multiple lines should be drawn in the same panel in the plot; if \code{FALSE} lines are suppressed; if \code{TRUE} default values are used: \describe{ \item{\code{multiline}}{display a multiline plot in each panel; the default is \code{TRUE} if there are no standard errors in the \code{"eff"} object, \code{FALSE} otherwise. For an \code{"effpoly"} object \code{multline=TRUE} causes all of the response levels to be shown in the same panel rather than in separate panels.} \item{z.var}{for linear, generalized linear or mixed models, the index (number) or quoted name of the covariate or factor for which individual lines are to be drawn in each panel of the effect plot. The default is the predictor with the smallest number of levels or values. This argument is only used for multipline plots.} \item{\code{lty}}{vector of line types, with the default taken from \code{trellis.par.get("superpose.line")$lty}, typically a vector of 1s (solid lines).} \item{\code{lwd}}{vector of line widths, with the default taken from \code{trellis.par.get("superpose.line")$lwd}, typically a vector with 2 in the first position followed by 1s.} \item{\code{col}}{a vector of line colors, with the default taken from from \code{trellis.par.get("superpose.line")$col}, used both for lines and for areas in stacked area plots for \code{"effpoly"} objects; in the latter case, the default colors for an ordered response are instead generated by \code{\link[colorspace]{sequential_hcl}} in the \pkg{colorspace} package.} \item{\code{splines}}{use splines to smooth plotted effect lines; the default is \code{TRUE}.} } } \item{\code{axes}}{a list with elements \code{x}, \code{y}, \code{alternating}, and \code{grid} that control axis limits, ticks, and labels. The \code{x} and \code{y} elements may themselves be lists. The \code{x} entry is a list with elements named for predictors, with each predictor element itself a list with the following elements: \describe{ \item{\code{lab}}{axis label, defaults to the name of the predictor; may either be a text string or a list with the text label (optionally named \code{label}) as its first element and the named element \code{cex} as its second element.} \item{\code{lim}}{a two-element vector giving the axis limits, with the default determined from the data.} \item{\code{ticks}}{a list with either element \code{at}, a vector specifying locations for the ticks marks, or \code{n}, the number of tick marks.} \item{\code{transform}}{transformations to be applied to the horizontal axis of a numeric predictor, in the form of a list of two functions, with element names \code{trans} and \code{inverse}. The \code{trans} function is applied to the values of the predictor, and \code{inverse} is used for computing proper axis tick labels. The default is not to transform the predictor axis.} } Two additional elements may appear in the \code{x} list, and apply to all predictors: \describe{ \item{\code{rotate}}{angle in degrees to rotate tick labels; the default is 0.} \item{\code{rug}}{display a rug plot showing the marginal distribution of a numeric predictor; the default is \code{TRUE}.} } The \code{y} list contains \code{lab}, \code{lim}, \code{ticks}, and \code{rotate} elements (similar to those specified for individual predictors in the \code{x} list), along with the additional \code{type}, \code{transform}, and \code{style} elements: \describe{ \item{\code{type}}{for plotting linear or generalized linear models, \code{"rescale"} (the default) plots the vertical axis on the link scale (e.g., the logit scale for a logit model) but labels the axis on the response scale (e.g., the probability scale for a logit model); \code{"response"} plots and labels the vertical axis on the scale of the response (e.g., the probability scale for a logit model); and \code{"link"} plots and labels the vertical axis on the scale of the link (e.g., the logit scale for a logit model). For polytomous logit models, this element is either \code{"probability"} or \code{"logit"}, with the former as the default.} \item{\code{transform}}{primarily for linear or linear mixed models, this argument is used to apply an arbitrary transformation to the vertical axis. For example, if fitting a linear model with response \code{log(y)}, then setting \code{transform=exp} would plot \code{exp(log(y)) = y} on the vertical axis. If the response were \code{1/y}, then use \code{transform=function(yt) 1/yt}, since the reciprocal is its own inverse. The \code{transform} argument can also be a list of two functions. For example with a response \code{log(y)}, the specification \code{transform=list(trans=log, inverse=log), type="rescale"} will plot in log-scale, but will label tick marks in arithmetic scale; see the example below. The specification \code{transform=list(trans=log, inverse=exp), type="response"} is equivalent to \code{transform=exp}. When \code{type="response"} the \code{lab} argument will geneally be used to get a label for the axis that matches the untransformed response. If this argument is used with a generalized linear model or another model with a non-identity link function, the function is applied to the linear predictor, and will probably not be of interest.} \item{\code{style}}{for polytomous logit models, this element can take on the value \code{"lines"} (the default) or \code{"stacked"} for line plots or stacked-area plots, respectively.} } Other elements: \describe{ \item{\code{alternating}}{if \code{TRUE} (the default), the tick labels alternate by panels in multi-panel displays from left to right and top to bottom; if \code{FALSE}, tick labels appear at the bottom and on the left.} \item{\code{grid}}{if \code{TRUE} (the default is \code{FALSE}), add grid lines to the plot.} } } \item{\code{confint}}{specifications to add/remove confidence intervals or regions from a plot, and to set the nominal confidence level. \describe{ \item{\code{style}}{one of \code{"auto"}, \code{"bars"}, \code{"lines"}, \code{"bands"}, and \code{"none"}; the default is \code{"bars"} for factors, \code{"bands"} for numeric predictors, and \code{"none"} for multiline plots; \code{"auto"} also produces \code{"bars"} for factors and \code{"bands"} for numeric predictors, even in multiline plots.} \item{\code{alpha}}{transparency of confidence bands; the default is 0.15.} \item{\code{col}}{colors; the default is taken from the line colors.} } } \item{\code{partial.residuals}}{specifications concerning the addition of partial residuals to the plot. \describe{ \item{\code{plot}}{display the partial residuals; the default is \code{TRUE} if residuals are present in the \code{"eff"} object, \code{FALSE} otherwise.} \item{\code{fitted}}{show fitted values as well as residuals; the default is \code{FALSE}.} \item{\code{col}}{color for partial residuals; the default is the second line color.} \item{\code{pch}}{plotting symbols for partial residuals; the default is 1, a circle.} \item{\code{cex}}{size of symbols for partial residuals; the default is 1.} \item{\code{smooth}}{draw a loess smooth of the partial residuals; the default is \code{TRUE}.} \item{\code{span}}{span for the loess smooth; the default is 2/3.} \item{\code{smooth.col}}{color for the loess smooth; the default is the second line color.} \item{\code{lty}}{line type for the loess smooth; the default is the first line type, normally 1 (a solid line).} \item{\code{lwd}}{line width for the loess smooth; the default is the first line width, normally 2.} } } \item{\code{id}}{specifications for optional point identification when partial residuals are plotted. \describe{ \item{\code{n}}{number of points to identify; default is \code{2} if \code{id=TRUE} and \code{0} if \code{id=FALSE}. Points are selected based on the Mahalanobis distances of the pairs of x-values and partial residuals from their centroid.} \item{\code{col}}{color for the point labels; default is the same as the color of the partial residuals.} \item{\code{cex}}{relative size of text for point labels; default is \code{0.75}.} \item{\code{labels}}{vector of point labels; the default is the names of the residual vector, which is typically the row names of the data frame to which the model is fit.} } } \item{\code{lattice}}{the plots are drawn with the \pkg{\link{lattice}} package, generally by the \code{\link{xyplot}} function. These specifications are passed as arguments to the functions that actually draw the plots. \describe{ \item{\code{layout}}{the \code{layout} argument to the \pkg{lattice} function \code{\link{xyplot}} (or, in some cases \code{\link{densityplot}}), which is used to draw the effect display; if not specified, the plot will be formatted so that it appears on a single page.} \item{\code{key.args}}{a key, or legend, is added to the plot if \code{multiline=TRUE}. This argument is a list with components that determine the the placement and other characteristics of the key. The default if not set by the user is \code{key.args = list(space="top", columns=2, border=FALSE, fontfamily="serif", cex.title=.80, cex=0.75)}. If there are more than 6 groups in the plot, \code{columns} is set to 3. For stacked-area plots, the default is a one-column key. In addition to the arguments shown explicitly below, any of the arguments listed in the \code{\link[lattice]{xyplot}} documentation in the \code{key} section can be used. \describe{ \item{\code{space}}{determines the placement of the key outside the plotting area, with default \code{space="above"} for above the plot and below its title. Setting \code{space="right"} uses space to the right of the plot for the key.} \item{\code{x, y, corner}}{used to put the key on the graph itself. For example, \code{x=.05, y=.95, corner=c(0,1)} will locate the upper-left corner of the key at (.05, .95), thinking of the graph as a unit square.} \item{\code{columns}}{number of columns in the key. If \code{space="top"}, columns should be 2, 3 or 4; if \code{space="right"}, set \code{columns=1}.} \item{\code{border}}{if \code{TRUE} draw a border around the key; omit the border if \code{FALSE}.} \item{\code{fontfamily}}{the default is \code{"sans"} for the sans-serif font used in the rest of the plot; the alternative is \code{"serif"} for a serif font.} \item{\code{cex, cex.title}}{the default relative size of the font for labels and the title, respectively. To save space set these to be smaller than 1.} } } \item{\code{strip}}{a list with three elements: \code{factor.names}, which if \code{TRUE}, the default, shows conditioning variable names in the panel headers; \code{values}, which if \code{TRUE}, the default unless partial residuals are plotted, displays conditioning variable values in the panel headers, and \code{cex}, the relative size of the text displayed in the strip.} \item{\code{array}}{a list with elements \code{row}, \code{col}, \code{nrow}, \code{ncol}, and \code{more}, used to graph an effect as part of an array of plots; \code{row}, \code{col}, \code{nrow}, and \code{ncol} are used to compose the \code{split} argument and \code{more} the \code{more} argument to \code{\link{print.trellis}}. The \code{array} argument is automatically set by \code{plot.efflist} and will be ignored if used with that function.} } } } } \value{ The \code{summary} method for \code{"eff"} objects returns a \code{"summary.eff"} object with the following components (those pertaining to confidence limits need not be present): \item{header}{a character string to label the effect.} \item{effect}{an array containing the estimated effect.} \item{lower.header}{a character string to label the lower confidence limits.} \item{lower}{an array containing the lower confidence limits.} \item{upper.header}{a character string to label the upper confidence limits.} \item{upper}{an array containing the upper confidence limits.} The \code{plot} method for \code{"eff"} objects returns a \code{"plot.eff"} object (an enhanced \code{"trellis"} object); the provided \code{\link{print}} method plots the object. The \code{[} method for \code{"efflist"} objects is used to subset an \code{"efflist"} object and returns an object of the same class. } \author{John Fox \email{jfox@mcmaster.ca} and Jangman Hong.} \seealso{\code{\link{LegacyArguments}}, \code{\link{effect}}, \code{\link{allEffects}}, \code{\link{effectsTheme}}, \code{\link{xyplot}}, \code{\link{densityplot}}, \code{\link{print.trellis}}, \code{\link{loess}}, \code{\link[colorspace]{sequential_hcl}}, and the \href{../doc/predictor-effects-gallery.pdf}{Predictor Effects Graphics Gallery} and \href{../doc/partial-residuals.pdf}{Effect Displays with Partial Residuals} vignettes. } \examples{ # also see examples in ?effect # plot predictorEffects mod <- lm(prestige ~ education + log(income)*type + women, Prestige) plot(predictorEffects(mod, ~ income), axes=list(grid=TRUE)) plot(predictorEffects(mod, ~ income), lines=list(multiline=TRUE), axes=list(grid=TRUE)) plot(predictorEffects(mod, ~ type), lines=list(multiline=TRUE), axes=list(grid=TRUE), confint=list(style="bars")) mod.cowles <- glm(volunteer ~ sex + neuroticism*extraversion, data=Cowles, family=binomial) eff.cowles <- allEffects(mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))) eff.cowles as.data.frame(eff.cowles[[2]]) # neuroticism*extraversion interaction plot(eff.cowles, 'sex', axes=list(grid=TRUE, y=list(lab="Prob(Volunteer)"), x=list(rotate=90)), lines=list(lty=0)) plot(eff.cowles, 'neuroticism:extraversion', axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) plot(Effect(c("neuroticism", "extraversion"), mod.cowles, se=list(type="Scheffe"), xlevels=list(extraversion=seq(0, 24, 6))), axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9))))) \donttest{ # change color of the confidence bands to 'black' with .15 transparency plot(eff.cowles, 'neuroticism:extraversion', axes=list(y=list(lab="Prob(Volunteer)", ticks=list(at=c(.1,.25,.5,.75,.9)))), confint=list(col="red", alpha=.3)) plot(eff.cowles, 'neuroticism:extraversion', lines=list(multiline=TRUE), axes=list(y=list(lab="Prob(Volunteer)")), lattice=list(key.args = list(x = 0.65, y = 0.99, corner = c(0, 1)))) # use probability scale in place of logit scale, all lines are black. plot(eff.cowles, 'neuroticism:extraversion', lines=list(multiline=TRUE, lty=1:8, col="black"), axes=list(y=list(type="response", lab="Prob(Volunteer)")), lattice=list(key.args = list(x = 0.65, y = 0.99, corner = c(0, 1))), confint=list(style="bands")) plot(effect('sex:neuroticism:extraversion', mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))), lines=list(multiline=TRUE)) plot(effect('sex:neuroticism:extraversion', mod.cowles, xlevels=list(extraversion=seq(0, 24, 6))), lines=list(multiline=TRUE), axes=list(y=list(type="response")), confint=list(style="bands"), lattice=list(key.args = list(x=0.75, y=0.75, corner=c(0, 0)))) } if (require(nnet)){ mod.beps <- multinom(vote ~ age + gender + economic.cond.national + economic.cond.household + Blair + Hague + Kennedy + Europe*political.knowledge, data=BEPS) \donttest{ plot(effect("Europe*political.knowledge", mod.beps, xlevels=list(political.knowledge=0:3))) } plot(effect("Europe*political.knowledge", mod.beps, xlevels=list(political.knowledge=0:3), fixed.predictors=list(given.values=c(gendermale=0.5))), axes=list(y=list(style="stacked"), x=list(rug=FALSE), grid=TRUE), lines=list(col=c("blue", "red", "orange"))) } if (require(MASS)){ mod.wvs <- polr(poverty ~ gender + religion + degree + country*poly(age,3), data=WVS) plot(effect("country*poly(age, 3)", mod.wvs)) \donttest{ plot(effect("country*poly(age, 3)", mod.wvs), lines=list(multiline=TRUE)) plot(effect("country*poly(age, 3)", mod.wvs), axes=list(y=list(style="stacked")), lines=list(col=c("gray75", "gray50", "gray25"))) plot(effect("country*poly(age, 3)", latent=TRUE, mod.wvs)) } } mod.pres <- lm(prestige ~ log(income, 10) + poly(education, 3) + poly(women, 2), data=Prestige) eff.pres <- allEffects(mod.pres) \donttest{ plot(eff.pres) plot(eff.pres[1:2]) } plot(eff.pres[1], axes=list(x=list(income=list(transform=list( trans=log10, inverse=function(x) 10^x), ticks=list(at=c(1000, 2000, 5000, 10000, 20000)))))) mod <- lm(log(prestige) ~ income:type + education, data=Prestige) p1 <- predictorEffects(mod, ~ income) # log-scale for response plot(p1, lines=list(multiline=TRUE)) # log-scale, with arithmetic tick marks plot(p1, lines=list(multiline=TRUE), axes=list(y=list(transform=list(trans=log, inverse = exp), lab="prestige", type="rescale"))) # arithmetic scale and tick marks, with other arguments plot(p1, lines=list(multiline=TRUE), grid=TRUE, lattice=list(key.args=list(space="right", border=TRUE)), axes=list(y=list(transform=exp, lab="prestige"))) } \keyword{hplot} \keyword{models} effects/man/effectsTheme.Rd0000644000176200001440000000456113554374110015346 0ustar liggesusers\name{effectsTheme} \alias{effectsTheme} \title{Set the lattice Theme for Effect Plots} \description{ Set the \pkg{lattice} theme (see \code{\link[lattice]{trellis.device}}) appropriately for effect plots. This function is invoked automatically when the \pkg{effects} package is loaded \emph{if} the \pkg{lattice} package hasn't previously been loaded. A typical call is \code{lattice::trellis.par.set(effectsTheme())}. } \usage{ effectsTheme(strip.background = list(col = gray(seq(0.95, 0.5, length = 3))), strip.shingle = list(col = "black"), clip = list(strip = "off"), superpose.line = list(lwd = c(2, rep(1, 6))), col) } \arguments{ \item{strip.background}{colors for the background of conditioning strips at the top of each panel; the default uses shades of gray and makes allowance for up to three conditioning variables.} \item{strip.shingle}{when lines rather than numeric values are used to indicate the values of conditioning variables, the default sets the color of the lines to black.} \item{clip}{the default allows lines showing values of conditioning variables to extend slightly beyond the boundaries of the strips---making the lines more visible at the extremes.} \item{superpose.line}{the default sets the line width of the first (of seven) lines to 2.} \item{col}{an optional argument specifying the colors to use for lines and symbolst: if \code{col = "car"}, then the color palette for the \pkg{car} package is used (see \code{\link[car]{carPalette}}); \code{col = "R"}, then the current R palette (ignoring the first entry which is \code{"black"} in the standard R palette) is used (see \code{\link{palette}}); if \code{col = "colorblind"}, then a colorblind-friendly palette (from \url{https://jfly.uni-koeln.de/color/} but ignoring black) is used; if a vector of color specifications, then these are used. If \code{col} isn't specified then the current \pkg{lattice} colors are used.} } \value{ a list suitable as an argument for \code{\link[lattice]{trellis.par.set}}; current values of modified parameters are supplied as an attribute. } \author{John Fox \email{jfox@mcmaster.ca}} \seealso{\code{\link[lattice]{trellis.device}}, \code{\link[lattice]{trellis.par.set}}} \examples{ \dontrun{ lattice::trellis.par.set(effectsTheme()) } } \keyword{utilities} \keyword{device} effects/man/effectsHexsticker.Rd0000644000176200001440000000072313356162325016414 0ustar liggesusers\name{effectsHexsticker} \alias{effectsHexsticker} \title{ View the Official Hex Sticker for the effects Package} \description{ Open the official hex sticker for the effects package in your browser} \usage{ effectsHexsticker() } \value{ Used for its side effect of openning the hex sticker for the effects package in your browser. } \author{ John Fox \email{jfox@mcmaster.ca} } \examples{ \dontrun{ effectsHexsticker() } } \keyword{misc} effects/DESCRIPTION0000644000176200001440000000323513563623352013412 0ustar liggesusersPackage: effects Version: 4.1-4 Date: 2019-11-14 Title: Effect Displays for Linear, Generalized Linear, and Other Models Authors@R: c(person("John", "Fox", role = c("aut", "cre"), email = "jfox@mcmaster.ca"), person("Sanford", "Weisberg", role = "aut", email = "sandy@umn.edu"), person("Brad", "Price", role = "aut", email = "brad.price@mail.wvu.edu"), person("Michael", "Friendly", role = "aut", email = "friendly@yorku.ca"), person("Jangman", "Hong", role = "aut"), person("Robert", "Andersen", role = "ctb"), person("David", "Firth", role = "ctb"), person("Steve", "Taylor", role = "ctb"), person("R Core Team", role="ctb")) Depends: R (>= 3.5.0), carData Suggests: pbkrtest (>= 0.4-4), nlme, MASS, poLCA, heplots, splines, ordinal, car, knitr, betareg, alr4 Imports: lme4, nnet, lattice, grid, colorspace, graphics, grDevices, stats, survey, utils, estimability LazyLoad: yes LazyData: yes Description: Graphical and tabular effect displays, e.g., of interactions, for various statistical models with linear predictors. License: GPL (>= 2) URL: https://www.r-project.org, https://socialsciences.mcmaster.ca/jfox/ VignetteBuilder: knitr Author: John Fox [aut, cre], Sanford Weisberg [aut], Brad Price [aut], Michael Friendly [aut], Jangman Hong [aut], Robert Andersen [ctb], David Firth [ctb], Steve Taylor [ctb], R Core Team [ctb] Maintainer: John Fox Repository: CRAN Repository/R-Forge/Project: effects Repository/R-Forge/Revision: 388 Repository/R-Forge/DateTimeStamp: 2019-11-14 23:01:47 Date/Publication: 2019-11-15 22:30:02 UTC NeedsCompilation: no Packaged: 2019-11-14 23:11:18 UTC; rforge effects/build/0000755000176200001440000000000013563357426013006 5ustar liggesuserseffects/build/vignette.rds0000644000176200001440000000050513563357426015345 0ustar liggesusersRMK0M? ,""B ^_Q׃,ŃLl[H?5mzd&%4/sC~``aBd@!PM|:ނ.*uXyMDDk 纒1 xC] F bx5aVI xUQo--Uh˾ɜ{M2z_5e[ޓR{lŎ[(vogJenK.*,]sfS>= library("knitr") opts_chunk$set(fig.width=5,fig.height=5,tidy=TRUE, out.width="0.8\\textwidth",echo=TRUE) options(prompt=" ") @ <>= #options(continue="+ ", prompt="R> ", width=76) options(show.signif.stars=FALSE) options(scipen=3) @ <>= library(knitr) opts_chunk$set( tidy=FALSE,fig.width=5,fig.height=5,cache=FALSE,comment=NA, prompt=TRUE ) render_sweave() @ <>= options(continue=" ", prompt=" ", width=76) options(show.signif.stars=FALSE) options(scipen=3) @ The \code{effects} package in \R{} is designed primarily to draw graphs that visualize a fitted response surface of a fitted model in problems with a linear predictor. Many modeling paradigms that can be fit with base \R{} or contributed packages fit into this framework, including methods for linear, multivariate linear, and generalized linear models fit by the standard \code{lm} and \code{glm} functions and by the \code{svyglm} function in the \code{survey} package \citep{Lumley04}; linear models fit by generalized least squares using the \code{gls} function in the \pkg{nlme} package \citep{Pinheiro16}; multinomial regression models fit by \code{multinom} in the \pkg{nnet} package \citep{VenablesRipley02}; ordinal regression models using \code{polr} from the \pkg{MASS} package \citep{VenablesRipley02} and \code{clm} and \code{clm2} from the \pkg{ordinal} package \citep{Christensen15}; linear and generalized linear mixed models using the \code{lme} function in the \pkg{nlme} package \citep{Pinheiro16} and the \code{lmer} and \code{glmer} functions in the \pkg{lme4} package \citep{Bates15}; and latent class models fit by \code{poLCA} in the \pkg{poLCA} package \citep{Linzer11}. This is hardly an exhaustive list of fitting methods that are based on a linear predictor, and we have been asked from time to time to write functions to use \code{effects} with this other fitting methods. The mechanism for this is fairly simple. This vignette assumes you are familiar with \R{}'s S3 methods. The default \code{Effect.default} may work with some modeling functions, as would objects of the class \code{gls} that we describe below in Section~\ref{gls}, but as illustrated in later sections you may need to modify some of the arguments that are sent to \code{Effect.default}. . The \code{effect} package has five functions that create the information needed for drawing effects plots, \code{Effect}, \code{allEffects}, \code{effect} and \code{predictorEffect} and \code{predictorEffects}. To add new modeling to the package only a new \code{Effect} needs to be written; the package will take care of all the other functions. \section{Using \code{effects} with Other Modeling Methods, with Generalized Least Squares in the \pkg{nlme} package as an Example}\label{gls} Applying \code{effects} to other than \code{lm} and \code{glm} objects may require writing an method for the \code{Effect} generic function for that type of model object. For example, the \code{gls} function in the \code{nlme} package \citep{nlme} fits linear models via generalized least squares. A call to \code{gls} creates an object of class \code{gls}. The following function \code{Effect.gls} provides a method for \code{gls} objects by finding the information needed to draw effects plots from \code{gls} objects: <>= Effect.gls <- function(focal.predictors, mod, ...){ cl <- mod$call cl$weights <- NULL args <- list( type = "glm", call = cl, formula = formula(mod), family = NULL, coefficients = coef(mod), vcov = as.matrix(vcov(mod)), method=NULL) Effect.default(focal.predictors, mod, ..., sources=args) } @ The \code{Effect.gls} function has three required arguments, \code{focal.predictors} and \code{mod} that match the first two arguments of \code{Effect.default}, and \code{...} that matches any other arguments you would like to pass to \code{Effect.default}; see \code{help(Effect)} for a list of these arguments. The body of the function simply harvests the needed information from the \code{mod} object, and stores them in a list of named elements called \code{sources}. The \code{sources} list is then passed as a named argument to the default \code{Effect} method. The named elements in \code{sources} include: \begin{description} \item[\texttt{type}] The \code{effects} package has three basic modeling functions: \code{type = "glm"}, the default, is used for functions with a univariate response and a linear predictor and possibly a link function. This class includes linear models, generalized linear models, robust regression, generalized least squares fitting, linear and generalized linear mixed effects models, and many others. The \code{type = "polr"} is used for ordinal regression models, as in the \code{polr} function in the \code{MASS} package, and similar methods described below in Section~\ref{polr}. The The \code{type = "multinom"} for multinomial log-linear models as fit by the \code{multinom} function in \code{nnet}, and to polytomous latent class models created with the \code{poLCA} function in the \pkg{poLCA} package. The default is \code{type = "glm"}. \item[\code{call}] The \code{Effect.default} method may use the call to set additional arguments that it needs. For \code{type="glm"}, for example, these arguments are \code{formula}, \code{data}, \code{contrasts}, \code{subset}, \code{family}, \code{weights}, and \code{offset}, although only the \code{formula} argument is required. The \code{gls} function includes an optional \code{weights} argument that is used differently from the \code{weights} argument for a generalized linear model and is not needed for computing effects or predictor effects plots. In the function shown above the call is modified by setting \code{weights=NULL}. The default for \code{call} is \code{mod\$call} for S3 objects and \code{mod@call} for S4 objects. \item[\code{formula}] In most cases the formula for the linear predictor is returned by \code{formula(mod)}, the default, but if this is not the case the value of this argument should be the value of the formula for fixed effects. \item[\code{family}] The default is \code{family=NULL}. This argument is required for GLM-like models that include a \code{family} that specifies both an error distribution and a link function only if \code{family=family(mod)} is not appropriate. See the \code{betareg} example in Section~\ref{betareg} below for an example that includes a user-selected link function, but a fixed error distribution. \item[\code{coefficients}] In many cases the (fixed-effect) coefficient estimates are returned by \code{coef(mod)}, the default, but if this is not the case then the value of this argument should be the estimates of the coefficients in the linear predictor. The functions in the \pkg{effects} package do not use estimates of random effects. \item[\code{zeta}] Ordinal regression models return both a set of regression coefficients and also a set of \emph{threshholds}. In the \code{polr} function the regression coefficients and the threshholds are stored in separate vectors, but in other ordinal regression programs, such as \code{clm} in the \code{ordinal} package they are stored as a single vector. See Section~\ref{polr} for an example of the use of this argument for specifying the values of the threshholds. \item[\code{vcov}] In many cases the estimated covariance matrix of the (fixed-effect) coefficient estimates is returned by \code{vcov(mod)}, the default, but if this is not the case then the value of this argument should be the estimated covariance matrix of the (fixed-effect) coefficient estimates in the linear predictor. \item[method] This argument is used only for methods that use effects graphics based on the \code{polr} function, where the argument \code{method} is the name of a link function; see \code{help(polr)} for a list of the accepted links, and see Section~\ref{clm} below for an example. \end{description} The only non-default argument in \code{sources} in \code{Effect.gls} is the modification of the \code{call} to omit weights in the call to \code{gls}. Had this change not been needed, there would be no need to have written the \code{Effect.gls} method, as the default method would have worked. <>= library(effects) require(nlme) g <- gls(Employed ~ GNP + Population, correlation=corAR1(form= ~ Year), data=longley) plot(predictorEffects(g)) @ \section{Mixed Effects with \code{lme} (\pkg{nlme} package)} The \code{lme} function in the \pkg{nlme} package \citep{nlme} fits linear mixed models. The required function for fitted objects from this function is included in the \pkg{effects} package. It is given by <<>>= print(Effect.lme) @ The \code{formula}, \code{coefficients} and \code{vcov} arguments are set to non-default values. The other arguments are automatically set to default values, with \code{call} set explicitly and other arguments set implicitly. <<>>= data(Orthodont, package="nlme") m1 <- nlme::lme(distance ~ age + Sex, data=Orthodont, random= ~ 1 | Subject) as.data.frame(Effect("age", m1)) @ \section{Mixed Effects with the \code{lmer} (\code{lme4} package)} The \code{lme4} package \citep{Bates15} fits linear and generalized linear mixed effects models with the \code{lmer} and \code{glmer} functions, respectively. The same \code{Effect} function can be used for \code{lmer} and \code{glmer} models. The following method is a little more complicated because it contains an additional argument \code{KR} to determine if the Kenward-Roger coefficient covariance matrix is to be used to compute effect standard errors. The default is \code{FALSE} because the computation is very slow. If \code{KR = TRUE}, the function also checks if the \pkg{pbkrtest} package is present. <<>>= print(Effect.merMod) @ Because \code{lmer} is an S4 object, the default for \code{call} is \code{mod@call}, and this argument would have been set automatically had we not included it in the above method. The fixed-effect estimates for an object created by a call to \code{lmer} or \code{glimer} are not returned by \code{coef(mod)}, so the value of \code{coefficients} is the value returned by \code{lme4::fixef(mod)}. The \code{vcov} estimate contains its estimated variance covariance matrix of the fixed effects. The Kenward-Roger method is used to estimate the covariance matrix for linear models if the additional argument \code{KR=TRUE}. The default is \code{KR=FALSE} because The Kenward-Roger estimate requires a long computation; see \code{help(Effect)}. The \code{formula} for a mixed-effects model in the \code{lme4} package specifies linear predictors for both the mean function and the variance functions, specified by, for example \code{(1 + age | Subject)}. The \code{effects} code will automatically remove any terms like these in any formula, as the effects package only displays the mean function. <>= fm2 <- lme4::lmer(distance ~ age + Sex + (1 |Subject), data = Orthodont) plot(allEffects(fm2)) @ <<>>= data(cbpp, package="lme4") gm1 <- lme4::glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) as.data.frame(predictorEffect("period", gm1)) @ \section{Robust Linear Mixed Models (\pkg{robustlmm} package)} The \code{rlmer} function in the \code{robustlmm} package \citep{koller16} fits linear mixed models with a robust estimation method. As \code{rlmer} closely parallels the \code{lmer} function, an object created by \code{rlmer} is easily used with \code{effects}: <<>>= print(Effect.rlmerMod) @ <>= require(lme4) fm3 <- robustlmm::rlmer(distance ~ age * Sex + (1 |Subject), data = Orthodont) plot(predictorEffects(fm3)) @ \section{Beta Regression}\label{betareg} The \code{betareg} function in the \code{betareg} package \citep{betareg} fits regressions with a link function but with Beta distributed errors. <<>>= print(Effect.betareg) @ Beta regression has a response $y \in [0,1]$, with the connection between the mean $\mu$ of the Beta and a set for predictors $\x$ through a link function $\x'\bbeta = g(\mu)$. The variance function for the beta is $\mathrm{var}(y) = \mu(1-\mu)/(1+\phi)$, for a precision parameter $\phi$ estimated by \code{betareg}. The call to \code{betareg} does not have a family argument, although it does have a link stored in \code{mod\$link\$mean}. For use with \code{Effect.default}, the method above creates a family from the binomial family generator. It then adjusts this family by changing from binomial variance to the variance for the beta distribution. Since the \code{glm} function expects a variance that is a function of only one parameter, we fix the value of the precision $\phi$ at its estimator from the \code{betareg} fit. We need to replace the \code{initialize} method in the family to one appropriate for $y \in [0,1]$. %Finally, although the \code{aic} function is not used for computing effects, it is accessed by the call to \code{glm}. The \code{aic} function for the binomial depends on named parameters not present in the beta regression, and so we substitute a dummy function for binomial version. <>= require(lme4) @ <>= require(betareg) require(lme4) data("GasolineYield", package = "betareg") gy_logit <- betareg(yield ~ batch + temp, data = GasolineYield) summary(gy_logit) plot(predictorEffects(gy_logit)) @ \section{Ordinal Models (\pkg{ordinal} package)}\label{polr} Proportional odds logit and probit regression models fit with the \code{polr} function in the \code{MASS} package \citep{VenablesRipley02} are supported in the \code{effects} package. The \code{ordinal} package, \citep{Christensen15} contains three functions that are very similar to \code{polr}. The \code{clm} and \code{clm2} functions allow more link functions and a number of other generalizations. The \code{clmm} function allows including random effects. \subsection{\code{clm}}\label{clm} <<>>= print(Effect.clm) @ This method first checks that the \code{MASS} package is available. The \code{clm} function orders the parameters in the order (threshold parameters, linear predictor parameters), so the next few lines identify the elements of \code{vcov} that are needed by \code{Effects}. Since the \code{polr} function does not allow thresholds other than \code{flexible}, we don't allow them either. The \code{zeta} argument supplies the estimated threshholds, which are called \code{zeta} in \code{polr}, and \code{Alpha} in \code{clm}. The \code{polr} argument \code{method} is equivalent to the \code{clm} argument \code{link}, except that the \code{clm} link \code{"logit"} is equivalent to the \code{polr} method \code{"logistic"}. <>= require(ordinal) require(MASS) @ <>= require(ordinal) require(MASS) mod.wvs1 <- clm(poverty ~ gender + religion + degree + country*poly(age,3), data=WVS) plot(Effect(c("country", "age"), mod.wvs1), lines=list(multiline=TRUE), layout=c(2, 2)) @ \subsection{\code{clm2}} Although the fitted madels are similar, syntax for \code{clm2} is not the same as \code{clm}, so a separate method is required. <<>>= print(Effect.clm2) @ <>= v2 <- clm2(poverty ~ gender + religion + degree + country*poly(age,3),data=WVS) plot(emod2 <- Effect(c("country", "age"), v2), lines=list(multiline=TRUE), layout=c(2,2)) @ \subsection{\code{clmm}} This function allows for random effects in an ordinal model. <<>>= print(Effect.clmm) @ The first few lines of the method check for the presence of the \code{MASS} package that is needed to use \code{polr}, makes sure the link used is supported by \code{polr}, and requires that the argument \code{threshold} has its default value. The \code{polr} and \code{clmm} functions store the fixed effects estimates of regression and threshold coefficents in different orders, so the next few lines rearrange the variance matrix to match the order that \code{polr} uses. <>= require(ordinal) require(MASS) mm1 <- clmm(SURENESS ~ PROD + (1|RESP) + (1|RESP:PROD), data = soup, link = "logit", threshold = "flexible") plot(Effect("PROD", mm1),lines=list(multiline=TRUE)) @ \subsection{Others} The \code{poLCA} function in the \code{poLCA} package \citep{Linzer11} fits polytomous variable latent class models, which uses the multinomial effects plots. The \code{svyglm} function in the \code{survey} package \citep{Lumley04, Lumley16} fits generalized linear models using survey weights. The \code{lm} function can also be used to create a multivariate linear model. The \code{Effect.mlm} function, with slightly different syntax, will drow effects plots for these models, with separate plots of each response. <>= data(Baumann, package="carData") b1 <- lm(cbind(post.test.1, post.test.2, post.test.3) ~ group + pretest.1 + pretest.2, data = Baumann) plot(Effect("group", b1)) @ \bibliography{adding-Effect-methods} \end{document} effects/vignettes/partial-residuals.bib0000644000176200001440000000165713377611102020016 0ustar liggesusers@Misc{Schumann15, Author = {E. Schumann}, Title = {\emph{Generating Correlated Uniform Variates}}, Note = {\url{http://comisef.wikidot.com/ tutorial:correlateduniformvariates} [Accessed: 2015-05-21]}, year = 2009 } @book{Pearson07, Author={Karl Pearson}, Title={Mathematical Contributions to the Theory of Evolution.---XVI. On Further Methods of Determining Correlation}, Series={Drapers' Company Research Memoirs. Biometric Series. IV.}, Publisher={Cambridge University Press}, Address={London}, year=1907 } @article{FoxWeisberg18, title = {Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots and Partial Residuals}, author = {John Fox and Sanford Weisberg}, journal = {Journal of Statistical Software}, year = {2018}, volume = {87}, number = {9}, pages = {1--27}, doi = {10.18637/jss.v087.i09}, } effects/vignettes/partial-residuals.Rnw0000644000176200001440000004525313377611102020030 0ustar liggesusers%\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Effect Displays with Partial Residuals} \documentclass{article} \usepackage{amsmath,amsfonts,amssymb} \usepackage{natbib} \bibliographystyle{abbrvnat} \usepackage[margin=1in]{geometry} \newcommand{\x}{\mathbf{x}} \newcommand{\code}[1]{\normalfont\texttt{\hyphenchar\font45\relax #1}} \newcommand{\E}{\mathrm{E}} \newcommand{\tild}{\symbol{126}} \newcommand{\Rtilde}{\,\raisebox{-.5ex}{\code{\tild{}}}\,} \newcommand{\captilde}{\mbox{\protect\Rtilde}} % use in figure captions. \newcommand{\Rmod}[2]{\code{#1 \raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmoda}[2]{\code{#1} &\code{\raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmodb}[2]{\code{#1 &\raisebox{-.5ex}{\tild{}}& #2}} \newcommand{\C}{\mathbf{C}} \newcommand{\betahat}{\widehat{\beta}} \newcommand{\bbetahat}{\widehat{\boldsymbol{\beta}}} \newcommand{\bbeta}{\boldsymbol{\beta}} \newcommand{\xbf}{\x_{\backslash{}f}} \newcommand{\hbf}{h_{\backslash{}f}} \newcommand{\xtb}{\x_{2\backslash{}f}} \newcommand{\xbfi}{\x_{\backslash{}f,i}} \newcommand{\inter}[2]{\mbox{$#1$:$#2$}} \newcommand{\cross}[2]{\mbox{$#1$\code{*}$#2$}} \newcommand{\N}{\mathrm{N}} \newcommand{\fn}{\textbf} \newcommand{\R}{\proglang{R}} \newcommand{\yx}{\widehat{y}(\x)} \newcommand{\lvn}[1]{\mbox{$\log(\mbox{\texttt{#1}})$}} \begin{document} \title{Examples of Effect Displays with Partial Residuals\\ Using Contrived Regression Data} \author{John Fox and Sanford Weisberg} \date{2017-11-22} \maketitle <>= library(knitr) opts_chunk$set( tidy=FALSE,fig.width=5,fig.height=5,cache=FALSE ) @ <>= #options(continue="+ ", prompt="R> ", width=76) options(show.signif.stars=FALSE) options(scipen=3) @ The examples developed in this vignette are meant to supplement \citet{FoxWeisberg18}. \section{Basic Setup} We will analyze contrived data generated according to the following setup: \begin{itemize} \item We sample $n = 5000$ observations from a trivariate distribution for predictors $x_1$, $x_2$, and $x_3$, with uniform margins on the interval $[-2, 2]$, and with a prespecified bivariate correlation $\rho$ between each pair of predictors. The method employed, described by \citet{Schumann15} and traceable to results reported by \citet{Pearson07}, produces predictors that are nearly linearly related. Using 5000 observations allows us to focus on essentially asymptotic behavior of partial residuals in effect plots while still being able to discern individual points in the resulting graphs. \item We then generate the response $y$ according to the model \begin{equation} y = \beta_0 + h\left(\bbeta, \{x_1, x_2, x_3\}\right) + \varepsilon \end{equation} where $\varepsilon \Rtilde \N(0, 1.5^2)$. The regression function $h(\cdot)$ varies from example to example. \end{itemize} The following functions make it convenient to generate data according to this setup. These functions are more general than is strictly necessary so as to encourage further experimentation. <<>>= mvrunif <- function(n, R, min = 0, max = 1){ # method (but not code) from E. Schumann, # "Generating Correlated Uniform Variates" # URL: # # downloaded 2015-05-21 if (!is.matrix(R) || nrow(R) != ncol(R) || max(abs(R - t(R))) > sqrt(.Machine$double.eps)) stop("R must be a square symmetric matrix") if (any(eigen(R, only.values = TRUE)$values <= 0)) stop("R must be positive-definite") if (any(abs(R) - 1 > sqrt(.Machine$double.eps))) stop("R must be a correlation matrix") m <- nrow(R) R <- 2 * sin(pi * R / 6) X <- matrix(rnorm(n * m), n, m) X <- X %*% chol(R) X <- pnorm(X) min + X * (max - min) } gendata <- function(n = 5000, R, min = -2, max = 2, s = 1.5, model = expression(x1 + x2 + x3)){ data <- mvrunif(n = n, min = min, max = max, R = R) colnames(data) <- c("x1", "x2", "x3") data <- as.data.frame(data) data$error <- s * rnorm(n) data$y <- with(data, eval(model) + error) data } R <- function(offdiag = 0, m = 3){ R <- diag(1, m) R[lower.tri(R)] <- R[upper.tri(R)] <- offdiag R } @ \section{Unmodelled Interaction} We begin with uncorrelated predictors and the true regression mean function $\E(y|\x) = x_1 + x_2x_3$, but fit the incorrect additive working model $y \Rtilde x_1 + x_2 + x_3$ to the data. <<>>= set.seed(682626) Data.1 <- gendata(R = R(0), model = expression(x1 + x2 * x3)) round(cor(Data.1), 2) summary(mod.1 <- lm(y ~ x1 + x2 + x3, data = Data.1)) @ For reproducibility, we set a known seed for the pseudo-random number generator; this seed was itself generated pseudo-randomly, and we reuse it in the examples reported below. As well, in this first example, but not for those below, we show the correlation matrix of the randomly generated data along with the fit of the working model to the data. Effect plots with partial residuals corresponding to the terms in the working model are shown in Figure~\ref{fig-contrived-1a}: <>= library(effects) plot(predictorEffects(mod.1, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) @ In these graphs and, unless noted to the contrary, elsewhere in this vignette, the loess smooths are drawn with span 2/3. Because of the large number of points in the graphs, optional arguments to \code{plot} are specified to de-emphasize the partial residuals. To this end, the residuals are plotted as small points (\code{pch="."}) and in a translucent magenta color (\code{col="\#FF00FF80"}). \begin{figure}[tbp] \caption{Effect displays with partial residuals for the individual predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1 + x_2x_3$, with uncorrelated predictors.\label{fig-contrived-1a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-1a-1.pdf} \end{figure} The failure of the model is not apparent in these traditional partial residual plots, but it is clear in the term effect plot for $\{x_2, x_3\}$, corresponding to the unmodelled interaction \inter{x_2}{x_3}, and shown in the top panel of Figure~\ref{fig-contrived-1b}, generated using <>= plot(Effect(c("x2", "x3"), mod.1, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ Moreover, the effect plot in the bottom panel of the figure for $\{x_1, x_2\}$, corresponding to a term \emph{not} in the true mean function, correctly indicates lack of interaction between these two predictors: <>= plot(Effect(c("x1", "x2"), mod.1, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_2, x_3 \}$, corresponding to the missing interaction \inter{x_2}{x_3}, and for $\{x_1, x_2 \}$, corresponding to an interaction not present in the model that generated the data.\label{fig-contrived-1b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-1b-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-1c-1.pdf} \end{figure} As a partly contrasting example, we turn to a similar data set, generated with the same regression mean function but with moderately correlated predictors, where the pairwise predictor correlations are $\rho = 0.5$: <<>>= set.seed(682626) Data.2 <- gendata(R = R(0.5), model = expression(x1 + x2 * x3)) mod.2 <- lm(y ~ x1 + x2 + x3, data = Data.2) @ Graphs analogous to those from the preceding example appear in Figures~\ref{fig-contrived-2a} and \ref{fig-contrived-2b}: <>= plot(predictorEffects(mod.2, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80",fig.show='hide'), axes=list(x=list(rotate=45)), rows=1, cols=3) @ <>= plot(Effect(c("x2", "x3"), mod.2, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ <>= plot(Effect(c("x1", "x2"), mod.2, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80",fig.show='hide'), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ The predictor effect plots for $x_2$ and $x_3$, and to a much lesser extent, for $x_1$, in the incorrect model in Figure~\ref{fig-contrived-2a} show apparent nonlinearity as a consequence of the unmodelled interaction and the correlations among the predictors. A similar phenomenon was noted in our analysis of the Canadian occupational prestige data in \citet[Section~4.2]{FoxWeisberg18}, where the unmodelled interaction between \code{type} and \code{income} induced nonlinearity in the partial relationship of \code{prestige} to \code{income}. The omitted interaction is clear in the effect plot for $\{x_2, x_3\}$, but also, to a lesser extent, contaminates the effect plot for $\{x_1,x_2\}$, which corresponds to an interaction that does not enter the model generating the data. These artifacts become more prominent if we increase the predictor correlations, say to $\rho = 0.9$ (as we invite the reader to do). \begin{figure}[tbp] \caption{Predictor effect displays with partial residuals for the individual predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1 + x_2x_3$, with moderately correlated predictors.\label{fig-contrived-2a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-2a-1.pdf} \end{figure} \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_2, x_3 \}$, corresponding to the missing interaction \inter{x_2}{x_3}, and for $\{x_1, x_2 \}$, corresponding to an interaction not present in the model that generated the data.\label{fig-contrived-2b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-2b-1.pdf}\\ \includegraphics[width=1\textwidth]{figure/fig-contrived-2c-1.pdf} \end{figure} \section{Unmodelled Nonlinearity} We generate data as before, but from the true model $\E(y|\x) = x_1^2 + x_2 + x_3$, where the predictors are moderately correlated, with pairwise correlations $\rho = 0.5$, but fit the incorrect additive working model $y \Rtilde x_1 + x_2 + x_3$ to the data: <<>>= set.seed(682626) Data.3 <- gendata(R = R(0.5), model = expression(x1^2 + x2 + x3)) mod.3 <- lm(y ~ x1 + x2 + x3, data = Data.3) @ Effect plots with residuals for the predictors in the working model appear in Figure~\ref{fig-contrived-3a}. The unmodelled nonlinearity in the partial relationship of $y$ to $x_1$ is clear, but there is some contamination of the plots for $x_2$ and $x_3$. The contamination is much more dramatic if the correlations among the predictors are increased to, say, $\rho = 0.9$ (as the reader may verify). <>= plot(predictorEffects(mod.3, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) @ \begin{figure}[tbp] \caption{Predictor effect displays with partial residuals for the individual predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1^2 + x_2 + x_3$, with moderately correlated predictors.\label{fig-contrived-3a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-3a-1.pdf} \end{figure} Effect plots for $\{x_1, x_2 \}$ and $\{x_2, x_3 \}$ are shown in Figure~\ref{fig-contrived-3b}: <>= plot(Effect(c("x2", "x3"), mod.3, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ <>= plot(Effect(c("x1", "x2"), mod.3, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ Neither of these graphs corresponds to a term in the model generating the data nor in the working model, and the effect plots largely confirm the absence of \inter{x_1}{x_2} and \inter{x_2}{x_3} interactions, along with the nonlinearity of the partial effect of $x_1$, apparent in the top panel. \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_1, x_2 \}$ and for $\{x_2, x_3 \}$, neither of which corresponds to an interaction in the model generating the data.\label{fig-contrived-3b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-3c-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-3b-1.pdf} \end{figure} \section{Simultaneous Unmodelled Nonlinearity and Interaction} This last example also appears in \citet[Section~4.3]{FoxWeisberg18}. We consider a true model that combines nonlinearity and interaction, $\E(y|\x) = x_1^2 + x_2 x_3$; the predictors are moderately correlated, with $\rho = 0.5$. We then fit the incorrect working model $y \Rtilde x_1 + x_2 + x_3$ to the data, producing the predictor effect displays with partial residuals in Figure~\ref{fig-contrived-4a}, for the predictors $x_1$, $x_2$, and $x_3$, which appear additively in the working model, and the term effect displays in Figure~\ref{fig-contrived-4b} for $\{x_2, x_3 \}$ and $\{x_1, x_2 \}$, corresponding respectively to the incorrectly excluded \inter{x_2}{x_3} term and the correctly excluded \inter{x_1}{x_2} interaction. <<>>= set.seed(682626) Data.4 <- gendata(R = R(0.5), model = expression(x1^2 + x2 * x3)) mod.4 <- lm(y ~ x1 + x2 + x3, data = Data.4) @ <>= plot(predictorEffects(mod.4, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) @ <>= plot(Effect(c("x2", "x3"), mod.4, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ <>= plot(Effect(c("x1", "x2"), mod.4, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ The nonlinearity in the partial relationship of $y$ to $x_1$ shows up clearly. The nonlinearity apparent in the plots for $x_2$ and $x_3$ is partly due to contamination with $x_1$, but largely to the unmodelled interaction between $x_2$ and $x_3$, coupled with the correlation between these predictors. The plot corresponding to the missing \inter{x_2}{x_3} term (in the top panel of Figure~\ref{fig-contrived-4b}) does a good job of detecting the unmodelled interaction, and curvature in this plot is slight. The plot for the \inter{x_1}{x_2} term (in the bottom panel of Figure~\ref{fig-contrived-4b}), a term neither in the true model nor in the working model, primarily reveals the unmodelled nonlinearity in the partial relationship of $y$ to $x_1$. \begin{figure}[tbp] \caption{Effect displays with partial residuals for the predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1^2 + x_2x_3$, with moderately correlated predictors.\label{fig-contrived-4a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-4a-1.pdf} \end{figure} \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_2, x_3 \}$ (top) and for $\{x_1, x_2 \}$ (bottom), the first of which corresponds to the missing \inter{x_2}{x_3} interaction in the model generating the data.\label{fig-contrived-4b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-4b-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-4c-1.pdf} \end{figure} If we fit the correct model, $y \Rtilde{} x_1^2 + x_2*x_3$, to the data, we obtain the plots shown in Figure~\ref{fig-contrived-5}. As theory suggests, the partial residuals in these effect displays validate the model, supporting the exclusion of the \inter{x_1}{x_2} interaction, the linear-by-linear interaction between $x_1$ and $x_2$, and the quadratic partial relationship of $y$ to $x_1$. <>= mod.5 <- lm(y ~ poly(x1, 2) + x2*x3, data=Data.4) plot(Effect("x1", mod.5, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80", span=0.2)) @ <>= plot(Effect(c("x2", "x3"), mod.5, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1)), span=0.5) @ <>= plot(Effect(c("x1", "x2"), mod.5, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80", span=0.35), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ \noindent In these graphs, we adjust the span of the loess smoother to the approximately smallest value that produces a smooth fit to the partial residuals in each case. \begin{figure}[tbp] \caption{Effect displays with partial residuals for $x_1$ and $\{x_2, x_3 \}$, which correspond to terms in the model generating \emph{and} fitted to the data, $y \captilde x_1^2 + x_2 * x_3$, and for $\{x_1, x_2 \}$, which corresponds to an interaction that is not in the model.\label{fig-contrived-5}} \centering \includegraphics[width=0.45\textwidth]{figure/fig-contrived-5a-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-5b-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-5c-1.pdf} \end{figure} \bibliography{partial-residuals} \end{document} effects/vignettes/adding-Effect-methods.bib0000644000176200001440000003175613375626422020466 0ustar liggesusers@article{FW2018, author = {Jon Fox and Sanford Weisberg}, title = {Visualizing Fit and Lack of Fit in Complex Regression Models\\ with Predictor Effect Plots and Partial Residuals}, journal={Journal of Statitical Software}, pages = {xxx-xxy}, volume = {xxx}, year = 2018, url= {http://} } @INCOLLECTION{Fox87, author = {John Fox}, editor = {C. C. Clogg}, year = 1987, title = {Effect Displays for Generalized Linear Models}, booktitle = {Sociological Methodology 1987 (Volume 17)}, pages = {347--361}, publisher = {American Sociological Association}, address = {Washington, {D. C.}} } @Manual{nlme, title = {{nlme}: Linear and Nonlinear Mixed Effects Models}, author = {Jose Pinheiro and Douglas Bates and Saikat DebRoy and Deepayan Sarkar and {R Core Team}}, year = {2018}, note = {R package version 3.1-137}, url = {https://CRAN.R-project.org/package=nlme}, } @Article{betareg, title = {Extended Beta Regression in {R}: Shaken, Stirred, Mixed, and Partitioned}, author = {Bettina Gr\"un and Ioannis Kosmidis and Achim Zeileis}, journal = {Journal of Statistical Software}, year = {2012}, volume = {48}, number = {11}, pages = {1--25}, url = {http://www.jstatsoft.org/v48/i11/}, } @Article{koller16, title = {{robustlmm}: An {R} Package for Robust Estimation of Linear Mixed-Effects Models}, author = {Manuel Koller}, journal = {Journal of Statistical Software}, year = {2016}, volume = {75}, number = {6}, pages = {1--24}, doi = {10.18637/jss.v075.i06}, } @ARTICLE{FoxAndersen06, author = {John Fox and Robert Andersen}, title = {Effect Displays for Multinomial and Proportional-Odds Logit Models}, journal = {Sociological Methodology}, volume = {36}, pages = {225--255}, year = {2006} } @article{WilkinsonRogers73, title = {Symbolic Description of Factorial Models for Analysis of Variance}, author = {Wilkinson, G. N. and Rogers, C. E.}, journal = {Journal of the Royal Statistical Society. Series C (Applied Statistics)}, year = {1973}, volume = {22}, number = {3}, pages = {392--399} } @article{FoxSuschnigg89, author={John Fox and Carole Suschnigg}, title={A Note on Gender and the Prestige of Occupations}, journal = {Canadian Journal of Sociology}, volume = {14}, pages = {353--360}, year = {1989} } @article{Cook93, author = {R. Dennis Cook}, title = {Exploring Partial Residual Plots}, journal = {Technometrics}, volume = 35, pages = {351--362}, year = 1993 } @article{CookCroos98, author = {Cook, R. Dennis and Croos-{D}abrera, Rodney}, title = {Partial Residual Plots in Generalized Linear Models}, journal = {Journal of the American Statistical Association}, volume = {93}, number = {442}, pages = {730--739}, year = {1998} } @Manual{Lenth13, title = {\pkg{lsmeans}: Least-Squares Means}, author = {Russell V. Lenth}, year = {2013}, note = {\proglang{R} package version 1.06-05}, url = {http://CRAN.R-project.org/package=lsmeans} } @Manual{visreg, title = {\pkg{visreg}: Visualization of Regression Models}, author = {Patrick Breheny and Woodrow Burchett}, year = {2016}, note = {\R{} package version 2.2-2}, url = {https://CRAN.R-project.org/package=visreg}, } @Book{Wood17, title = {Generalized Additive Models: An Introduction with R}, year = {2017}, edition={2nd}, author = {S. N. Wood}, publisher = {Chapman and Hall/CRC}, } @Manual{gam, title = {\pkg{gam}: Generalized Additive Models}, author = {Trevor Hastie}, year = {2015}, note = {\R{} package version 1.12}, url = {https://CRAN.R-project.org/package=gam}, } @Article{ice15, title = {Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation}, author = {Alex Goldstein and Adam Kapelner and Justin Bleich and Emil Pitkin}, journal = {Journal of Computational and Graphical Statistics}, volume = {24}, number = {1}, pages = {44--65}, doi = {10.1080/10618600.2014.907095}, year = {2015}, } @article{becker96, title={The Visual Design and Control of Trellis Display}, author={Becker, Richard A and Cleveland, William S and Shyu, Ming-Jen}, journal={Journal of Computational and Graphical Statistics}, volume={5}, number={2}, pages={123--155}, year={1996}, publisher={Taylor \& Francis} } @article{BlishenMcRoberts76, author = {Bernard R. Blishen and Hugh A. McRoberts}, title = {A Revised Socioeconomic Index for Occupations in {C}anada}, journal = {Canadian Review of Sociology and Anthropology}, volume = {13}, pages = {71--79}, year = {1976} } @article{Fox03, author = {John Fox}, title = {Effect Displays in \R{} for Generalised Linear Models}, journal = {Journal of Statistical Software}, volume = 8, number = 15, pages={1--27}, year = 2003 } @Manual{sas12, author={{SAS Institute Inc.}}, year = {2012}, title ={LSMEANS Statement, \proglang{SAS/STAT}(R) 9.3 User's Guide}, url={http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_introcom_a0000003362.htm} } @Manual{FoxEtAl16, title = {\pkg{effects}: Effect Displays for Linear, Generalized Linear, and Other Models}, author = {John Fox and Sanford Weisberg and Michael Friendly and Jangman Hong}, year = {2017}, note = {\R{} package version 4.0-0}, url = {http://www.r-project.org, http://socserv.socsci.mcmaster.ca/jfox/}, } @incollection{ChambersHastie92, author = {J. M. Chambers and T. J. Hastie}, editor = {J. M. Chambers and T. J. Hastie}, year = 1992, title = {Statistical Models}, booktitle = {Statistical Models in {\proglang{S}}}, pages = {13--44}, publisher = {Wadsworth}, address = {Pacific Grove, {CA}} } @article{Nelder77, title = {A Reformulation of Linear Models}, author = {J. A. Nelder}, journal = {Journal of the Royal Statistical Society. Series A (General)}, volume = {140}, number = {1}, year = {1977}, pages = {48--77} } @Manual{LenthHerve15, title = {\pkg{lsmeans}: Least-Squares Means}, author = {Russell V. Lenth and Maxime Herv\'{e}}, year = {2015}, note = {\R{} package version 2.16}, url = {http://CRAN.R-project.org/package=lsmeans} } @book{Fox16, title={Applied Regression Analysis and Generalized Linear Models}, author={J. Fox}, edition={third}, publisher={Sage}, address={Thousand Oaks {CA}}, year=2016 } @book{CookWeisberg99, title={Applied Regression Including Computing and Graphics}, author = {R. D. Cook and S. Weisberg}, year = {1999}, publisher={John Wiley \& Sons}, address = {New York} } @article{CowlesDavis87, title={The Subject Matter of Psychology: Volunteers}, author={M. Cowles and C. Davis}, journal={British Journal of Social Psychology}, volume={26}, pages={97--102}, year=1987 } @article{PineoPorter67, title={Occupational Prestige in {Canada}}, author={P. C. Pineo and J. Porter}, journal={Canadian Review of Sociology and Anthropology}, volume={4}, pages={24--40}, year={1967} } @book{Scott15, title={Multivariate Density Estimation}, author={D. W. Scott}, publisher={John Wiley \& Sons}, address={Hoboken {NJ}}, edition={2nd}, year=2015 } @INPROCEEDINGS{LandwehrPregibonShoemaker80, author = {J. M. Landwehr and D. Pregibon and A. C. Shoemaker}, year = 1980, title = {Some Graphical Procedures for Studying a Logistic Regression Fit}, booktitle = {Proceedings of the Business and Economics Statistics Section, American Statistical Association}, pages = {15--20} } @Misc{Schumann15, Author = {E. Schumann}, Title = {\emph{Generating Correlated Uniform Variates}}, Note = {\url{http://comisef.wikidot.com/tutorial:correlateduniformvariates} [Accessed: 2015-05-21]}, year = 2009 } @book{Pearson07, Author={Karl Pearson}, Title={Mathematical Contributions to the Theory of Evolution.---XVI. On Further Methods of Determining Correlation}, Series={Drapers' Company Research Memoirs. Biometric Series. IV.}, Publisher={Cambridge University Press}, Address={London}, year=1907 } @book{Tukey77, author = {J. W. Tukey}, title = {Exploratory Data Analysis}, publisher = {Addison-Wesley}, address = {Reading {MA}}, year = 1977 } @article{Friedman01, author = {J. H. Friedman}, title = {Greedy Function Approximation: A Gradient Boosting Machine}, journal = {Annals of Statistics}, volume = {29}, pages = {1189--1232}, year = 2001 } @Misc{Stata15, Author = {{Stata Corp.}}, Title = {\emph{Margins}}, Note = {\url{http://www.stata.com/manuals13/rmargins.pdf} [Accessed: 2015-04-09]}, year = 2015 } @Book{FoxWeisberg11, author={John Fox and Sanford Weisberg}, title={An \R{} Companion to Applied Regression}, edition={2nd}, publisher={Sage}, address={Thousand Oaks {CA}}, year=2011 } @Article{Lenth16, title = {Least-Squares Means: The \R{} Package \pkg{lsmeans}}, author = {Russell V. Lenth}, journal = {Journal of Statistical Software}, year = {2016}, volume = {69}, number = {1}, pages = {1--33} } @Manual{Pinheiro16, title = {\pkg{nlme}: Linear and Nonlinear Mixed Effects Models}, author = {Jose Pinheiro and Douglas Bates and Saikat DebRoy and Deepayan Sarkar and {\R{} Core Team}}, year = {2016}, note = {\R{} package version 3.1-127}, url = {http://CRAN.R-project.org/package=nlme}, } @Book{VenablesRipley02, title = {Modern Applied Statistics with \proglang{S}}, author = {W. N. Venables and B. D. Ripley}, publisher = {Springer-Verlag}, edition = {4th}, address = {New York}, year = {2002}, } @Manual{Christensen15, title = {\pkg{ordinal}---Regression Models for Ordinal Data }, author = {R. H. B. Christensen}, year = {2015}, note = {\R{} package version 2015.6-28}, url={http://www.cran.r-project.org/package=ordinal/}, } @Article{Bates15, title = {Fitting Linear Mixed-Effects Models Using {lme4}}, author = {Douglas Bates and Martin M{\"a}chler and Ben Bolker and Steve Walker}, journal = {Journal of Statistical Software}, year = {2015}, volume = {67}, number = {1}, pages = {1--48} } @Article{Linzer11, title = {\pkg{poLCA}: An \R{} Package for Polytomous Variable Latent Class Analysis}, author = {Drew A. Linzer and Jeffrey B. Lewis}, journal = {Journal of Statistical Software}, year = {2011}, volume = {42}, number = {10}, pages = {1--29} } @Article{Liaw02, title = {Classification and Regression by \pkg{randomForest}}, author = {Andy Liaw and Matthew Wiener}, journal = {\R{} News}, year = {2002}, volume = {2}, number = {3}, pages = {18-22} } @Book{Weisberg14, title = {Applied Linear Regression}, edition = {4th}, author = {Sanford Weisberg}, year = {2014}, publisher = {John Wiley \& Sons}, address = {Hoboken {NJ}}, url = {http://z.umn.edu/alr4ed}, } @Manual{FoxWeisbergPrice17, title = {\pkg{carData}: Companion to Applied Regression Data Sets}, author = {John Fox and Sanford Weisberg and Brad Price}, year = {2017}, note = {\proglang{R} package version 3.0-0}, url={https://r-forge.r-project.org/projects/car/} } @incollection{ClevelandGrosseShyu92, author = {W. S. Cleveland and E. Grosse and W. M. Shyu }, title = { Local Regression Models}, booktitle = {Statistical Models in {\proglang{S}}}, publisher = {Wadsworth \& Brooks/Cole}, year = 1992, editor = {J. M. Chambers and T. J. Hastie}, chapter = 8, pages = {201--309}, address = {Pacific Grove {CA}}, } @book{Sarkar08, author={D. Sarkar}, title ={Lattice: Multivariate Data Visualization with {\proglang{R}}}, year={2008}, publisher={Springer-Verlag}, address={New York} } @Misc{Lumley16, author = {Thomas Lumley}, year = {2016}, title = {survey: analysis of complex survey samples}, note = {R package version 3.32}, } @Article{Lumley04, year = {2004}, author = {Thomas Lumley}, title = {Analysis of Complex Survey Samples}, journal = {Journal of Statistical Software}, volume = {9}, number = {1}, pages = {1-19}, note = {\proglang{R} package version 2.2}, } @Book{Fisher36, author={R. A. Fisher}, year={1936}, title={Statistical Methods for Research Workers}, edition={6th}, publisher={Oliver and Boyd}, address={Edinburgh} } @Book{Cleveland93, author={W. S. Cleveland}, title={Visualizing Data}, year={1993}, publisher={Hobart Press}, address={Summit {NJ}} } @Book{Cleveland94, author={W. S. Cleveland}, title={The Elements of Graphing Data}, year={1994}, edition={Revised}, publisher={Hobart Press}, address={Summit {NJ}} } @Book{BeckerCleveland96, author={R. A. Becker and W. S. Cleveland}, title={{\proglang{S-PLUS}} {Trellis} User's Manual}, year={1996}, publisher={MathSoft, Inc.}, address={Seattle} } effects/vignettes/predictor-effects-gallery.bib0000644000176200001440000000511313377544255021443 0ustar liggesusers @Manual{R-base, title = {R: A Language and Environment for Statistical Computing}, author = {{R Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2018}, url = {https://www.R-project.org/}, } @Manual{R-bookdown, title = {bookdown: Authoring Books and Technical Documents with R Markdown}, author = {Yihui Xie}, note = {R package version 0.7.18}, url = {https://github.com/rstudio/bookdown}, year = {2018}, } @Manual{R-knitr, title = {knitr: A General-Purpose Package for Dynamic Report Generation in R}, author = {Yihui Xie}, year = {2018}, note = {R package version 1.20}, url = {https://CRAN.R-project.org/package=knitr}, } @Manual{R-rmarkdown, title = {rmarkdown: Dynamic Documents for R}, author = {JJ Allaire and Yihui Xie and Jonathan McPherson and Javier Luraschi and Kevin Ushey and Aron Atkins and Hadley Wickham and Joe Cheng and Winston Chang}, year = {2018}, note = {R package version 1.10}, url = {https://CRAN.R-project.org/package=rmarkdown}, } @book{fw19, title={An R Companion to Applied Regression}, edition={Third}, author={Fox, John and Weisberg, Sanford}, year={2019}, publisher={Sage} } @book{sarkar08, title={Lattice: Multivariate Data Visualization With R}, author={Sarkar, Deepayan}, year={2008}, publisher={Springer Science \& Business Media} } @Manual{lenth18, title = {emmeans: Estimated Marginal Means, aka Least-Squares Means}, author = {Russell Lenth}, year = {2018}, note = {R package version 1.2.1}, url = {https://CRAN.R-project.org/package=emmeans}, } @Article{fw19b, title = {Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots and Partial Residuals}, author = {John Fox and Sanford Weisberg}, journal = {Journal of Statistical Software}, year = {2018}, volume = {87}, number = {9}, pages = {1--27}, doi = {10.18637/jss.v087.i09}, } @article{HawkinsWeisberg2017, title={Combining the {Box-Cox} Power and Generalised Log Transformations to Accommodate Negative Responses In Linear and Mixed-Effects Linear Models}, author={Hawkins, D. M. and Weisberg, S.}, journal={South African Statistics Journal}, volume={51}, pages = {pp. 317--328}, year={2017}, url={https://journals.co.za/content/journal/10520/EJC-bd05f9440} } @Manual{SarkarAndrews2016, title = {latticeExtra: Extra Graphical Utilities Based on Lattice}, author = {Deepayan Sarkar and Felix Andrews}, year = {2016}, note = {R package version 0.6-28}, url = {https://CRAN.R-project.org/package=latticeExtra}, } effects/vignettes/predictor-effects-gallery.Rnw0000644000176200001440000024406013406543731021452 0ustar liggesusers%\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Predictor Effects Graphics Gallery} %% vignette index specifications need to be *after* \documentclass{} %%\VignetteEngine{knitr::knitr} %%\VignetteIndexEntry{Effects Gallery} %%\VignettePackage{effects} \documentclass[10pt]{article} \usepackage[left=1.25in, right=1.25in, top=1in, bottom=1in]{geometry} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage[american]{babel} \newcommand{\R}{{\sf R}} \usepackage{url} \usepackage{hyperref} \usepackage{xcolor} \hypersetup{ colorlinks, linkcolor={red!50!black}, citecolor={blue!50!black}, urlcolor={blue!80!black} } \usepackage{alltt} \usepackage{fancyvrb} \usepackage{natbib} \usepackage{amsmath} \VerbatimFootnotes \bibliographystyle{chicago} \newcommand{\x}{\mathbf{x}} \newcommand{\code}[1]{\normalfont\texttt{\hyphenchar\font45\relax #1}} \newcommand{\lcode}[1]{\mbox{$\log($}\normalfont\texttt{\hyphenchar\font45\relax #1}\mbox{$)$}} \newcommand{\E}{\mathrm{E}} \newcommand{\link}[1]{#1} \newcommand{\tild}{\symbol{126}} \newcommand{\Rtilde}{\,\raisebox{-.5ex}{\code{\tild{}}}\,} \newcommand{\captilde}{\mbox{\protect\Rtilde}} % use in figure captions. \newcommand{\Rmod}[2]{\code{#1 \raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmoda}[2]{\code{#1} &\code{\raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmodb}[2]{\code{#1 &\raisebox{-.5ex}{\tild{}}& #2}} \newcommand{\aab}[2]{\code{#1}\mbox{$*$}\code{#2}} \newcommand{\acb}[2]{\code{#1}\mbox{$:$}\code{#2}} \newcommand{\C}{\mathbf{C}} \newcommand{\betahat}{\widehat{\beta}} \newcommand{\bbetahat}{\widehat{\boldsymbol{\beta}}} \newcommand{\bbeta}{\boldsymbol{\beta}} \newcommand{\xbf}{\x_{\backslash{}f}} \newcommand{\hbf}{h_{\backslash{}f}} \newcommand{\xtb}{\x_{2\backslash{}f}} \newcommand{\xbfi}{\x_{\backslash{}f,i}} \newcommand{\inter}[2]{\mbox{$#1$:$#2$}} \newcommand{\cross}[2]{\mbox{$#1$\code{*}$#2$}} \newcommand{\N}{\mathrm{N}} \newcommand{\fn}[1]{\texttt{#1()}} \newcommand{\ar}{\texttt} \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\proglang}[1]{\textsf{#1}} \newcommand{\yx}{\widehat{y}(\x)} \newcommand{\lvn}[1]{\mbox{$\log(\mbox{\texttt{#1}})$}} \newcommand{\vn}[1]{\mbox{\texttt{#1}}} \newcommand{\level}[1]{\texttt{"#1"}} \newcommand{\class}[1]{\texttt{"#1"}} \begin{document} \title{Predictor Effects Graphics Gallery} \author{John Fox and Sanford Weisberg} \date{2018-12-19} \maketitle \tableofcontents \begin{abstract} Predictor effect displays visualize the response surface of complex regression models by averaging and conditioning, producing a sequence of 2D line graphs, one graph or set of graphs for each predictor in the regression problem \citep{fw19, fw19b}. In this vignette, we give examples of effect plots produced by the \pkg{effects} package, and in the process systematically illustrate the optional arguments to functions in the package, which can be used to customize predictor effect plots. \end{abstract} \centerline{\includegraphics[width=1.25in]{../inst/doc/effects-hex.pdf}} <>= library("knitr") opts_chunk$set(fig.width=5,fig.height=5,#tidy=TRUE, out.width="0.8\\textwidth",echo=TRUE) #options(prompt=" ") options(continue="+ ", prompt="R> ", width=70) options(show.signif.stars=FALSE, scipen=3) @ <>= library(car) library(effects) render_sweave() options(width=80, digits=5, str=list(strict.width="cut")) strOptions(strict.width="cut") @ \section{Introduction}\label{sec:intro} Predictor effect plots \citep{fw19b} provide graphical summaries for fitted regression models with linear predictors, including linear models, generalized linear models, linear and generalized linear mixed models, and many others. These graphs are an alternative to tables of fitted coefficients, which can be much harder to interpret than effect plots. Predictor effect plots are implemented in \R{} in the \pkg{effects} package, documented in \citet{fw19}. This vignette provides many examples of variations on the graphical displays that can be obtained with the \pkg{effects} package. Many of the details, and more complete descriptions of the data sets used as examples, are provided in the references cited at the end of the vignette. \subsection{Effects and Predictor Effect Plots}\label{sec:intro2} We begin with an example of a multiple linear regression, using the \code{Prestige} data set in the \pkg{carData} package: <<>>= library("car") # also loads the carData package Prestige$type <- factor(Prestige$type, levels=c("bc", "wc", "prof")) lm1 <- lm(prestige ~ education + poly(women, 2) + log(income)*type, data=Prestige) @ The data, collected circa 1970, pertain to 102 Canadian occupations. The model \code{lm1} is a linear model with response \vn{prestige}, continuous predictors \vn{income}, \vn{education}, and \vn{women}, and the factor predictor \vn{type}, which has three levels. Before fitting the model, we reorder the levels of \vn{type} as \level{bc} (blue-collar), \level{wc} (white-collar), and \level{prof} (professional and managerial). The predictor \vn{education} represents itself in the linear model, and so it is both a predictor and a \emph{regressor}, as defined in \citet[Sec.~4.1]{fw19}. The predictor \vn{income} is represented by the regressor \lcode{income}. The variable \vn{women}, a percentage between 0 and 100, is represented by regressors that define a polynomial of degree 2 using \fn{poly}'s default orthogonal polynomials. The variable \vn{type} is a factor with three levels, so it is represented by two dummy regressors defined by the default contrast-generating function in \R{}, \fn{contr.treatment}. Finally, the formula includes an interaction between \vn{income} and \vn{type}, defined by multiplying the regressor for \vn{income} (\lcode{income}) by each of the regressors that represent \vn{type}. The usual numeric summary of the fit of \code{lm1} is a table of estimated coefficients, which we obtain via the \fn{S} function in the \pkg{car} package that is similar to, but somewhat more flexible than, the standard \R{} \fn{summary} function: <<>>= S(lm1) @ \begin{itemize} \item Interpretation of the regression coefficients is straightforward only for the predictor \vn{education}, where an increase of one year of \vn{education}, holding other predictors fixed, corresponds to an estimated expected increase in the response of \Sexpr{round(coef(lm1)[2], 3)} units. \item Even ignoring the interaction, the log transformation complicates the interpretation of the effect of \vn{income}. \item The predictor \vn{women} is represented by two regressors, so the effect of \vn{women} requires examining two coefficient estimates that are interpretable only by those knowledgeable about polynomial regression analysis. Even if raw rather than orthogonal polynomial regressors were used, via \code{poly(women, 2, raw=TRUE)} in place of \code{poly(women, 2)}, interpretation of the effect of \vn{women} is complicated. \item Understanding the coefficients for the main effect of \vn{type} depends on the contrasts used to define the effect. The contrasts can be changed by the user, and the default contrasts in \R{} are different from the default contrasts used by \proglang{SAS} or other programs, so the coefficients cannot be reliably interpreted without information not present in the regression summary. \item Finally, the interaction further complicates the interpretation of the effect of either \vn{income} or \vn{type}, because the interaction coefficients need to be interpreted jointly with the main effect coefficients. \end{itemize} \noindent Summarization of the effects of predictors using tables of coefficient estimates is often incomplete. Effects, and particularly plots of effects, can in many instances reveal the relationship of the response to the predictors more clearly. This conclusion is especially true for models with linear predictors that include interactions and multiple-coefficient terms such as regression splines and polynomials, as illustrated in this vignette. A predictor effect plot summarizes the role of a selected \emph{focal} predictor in a fitted regression model. The \fn{predictorEffect} function is used to compute the appropriate summary of the regression, and then the \fn{plot} function may be used to graph the resulting object, as in the following example: <>= library("effects") e1.lm1 <- predictorEffect("education", lm1) plot(e1.lm1) @ \centerline{\includegraphics[width=4in]{figure/fig11-1.pdf}} \noindent This graph visualizes the partial slope for \vn{education}, that for each year increase in \vn{education}, the fitted \vn{prestige} increases by \Sexpr{round(coef(lm1)[2], 3)} points, when the other predictors are held fixed. The intercept of the line, which is outside the range of \vn{education} on the graph, affects only the height of the line, and is determined by the choices made for averaging over the fixed predictors, but for any choice of averaging method, the slope of the line would be the same. The shaded area is a pointwise confidence band for the fitted values, based on standard errors computed from the covariance matrix of the fitted regression coefficients. The rug plot at the bottom of the graph shows the location of the \vn{education} values. The information that is needed to draw the plot is computed by the \fn{predictorEffect} function. The minimal arguments for \fn{predictorEffect} are the quoted name of a predictor in the model followed by the fitted model object. The essential purpose of this function is to compute fitted values from the model with \vn{education} varying and all other predictors fixed at typical values \citep[Sec.~4.3]{fw19}. The command below displays the values of the regressors for which fitted values are computed, including a column of 1s for the intercept: <<>>= brief(e1.lm1$model.matrix) @ The focal predictor \vn{education} was evaluated by default at 50 points covering the observed range of values of \vn{education}. We use the \fn{brief} function in the \pkg{car} package to show only a few of the 50 rows of the matrix. For each value of \vn{education} the remaining regressors have the same fixed values for each fitted value. The fixed value for \lvn{income} is the logarithm of the sample mean \vn{income}, the fixed values for the regressors for \vn{women} are computed at the mean of \vn{women} in the data, and the fixed values for the regressors for \vn{type} effectively take a weighted average of the fitted values at the three levels of \vn{type}, with weights proportional to the number of cases in each level of the factor. Differences in the fitted values are due to \vn{education} alone because all the other predictors, and their corresponding regressors, are fixed. Thus the output gives the partial effect of \vn{education} with all other predictors fixed. The computed fitted values can be viewed by printing the \class{eff} object returned by \fn{predictorEffect}, by summarizing the object, or by converting it to a data frame. To make the printouts more compact, we recompute the predictor effect of \vn{education} are fewer values of the focal predictor by specifying the \code{focal.levels} argument (see Section~\ref{sec-focal.levels-xlevels}): <<>>= e1a.lm1 <- predictorEffect("education", lm1, focal.levels=5) e1a.lm1 summary(e1a.lm1) as.data.frame(e1a.lm1) @ The values in the column \vn{education} are the values the focal predictor. The remaining columns are the fitted values, their standard errors, and lower and upper end points of 95\% confidence intervals for the fitted values. The \emph{predictor effect plot} is simply a graph of the fitted values on the vertical axis versus the focal predictor on the horizontal axis. For a continuous focal predictor such as \vn{education}, a line, in this case, a straight line, is drawn connecting the fitted values. We turn next to the predictor effect plot for \vn{income}. According to the regression model, the effect of \vn{income} may depend on \vn{type} due to the interaction between the two predictors, so simply averaging over \vn{type} would be misleading. Rather, we should allow both \vn{income} and \vn{type} to vary, fixing the other predictors at their means or other typical values. By default, this computation would require evaluating the model at $50 \times 3 = 150$ combinations of the predictors, but to save space we will only evaluate \vn{income} at five values, again using the \ar{focal.levels} argument, thus computing only $5 \times 3 = 15$ fitted values: <<>>= e2.lm1 <- predictorEffect("income", lm1, focal.levels=5) as.data.frame(e2.lm1) @ To draw the predictor effects plot we recalculate the fitted values using the default \code{focal.levels=50} to get more accurately plotted regression curves: <>= plot(predictorEffect("income", lm1), lines=list(multiline=TRUE)) @ Here we use both the \fn{predictorEffect} and \fn{plot} functions in the same command. \centerline{\includegraphics[width=4in]{figure/fig12-1.pdf}} \noindent The focal predictor \vn{income} is displayed on the horizontal axis. There is a separate line shown for the fitted values at each level of \vn{type}. The lines are curved rather than straight because \vn{income} appears in the model in log-scale but is displayed in the predictor effect plot in arithmetic (i.e., dollar) scale. The lines in the graph are not parallel because of the interaction between \lvn{income} and \vn{type}. For $\vn{type} = \level{prof}$, the fitted values of \vn{prestige} are relatively high for lower values of \vn{income}, and are relatively less affected by increasing values of \vn{income}. The predictor effect plot for \vn{type} uses essentially the same fitted values as the plot for \vn{income}, but we now get five lines, one for each of the five (not 50) values of \vn{income} selected by the \fn{predictorEffect} function in this context: <>= plot(predictorEffect("type", lm1), lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=4in]{figure/fig13-1.pdf}} \noindent Because the horizontal axis is now a factor, the fitted values are displayed explicitly as points, and the lines that join the points are merely a visual aid representing \emph{profiles} of fitted values. Fitted \vn{prestige} increases with \vn{income} for all levels of \vn{type}, but, as we found before, when $\vn{type}=\level{prof}$, fitted \vn{prestige} is relatively high for lower \vn{income}. These initial examples use only default arguments for \fn{predictorEffect} and \fn{plot}, apart from the \code{multiline} argument to \fn{plot} to put all the fitted lines in the same graph. We explain how to customize predictor effect plots in subsequent sections of this vignette. \subsection{General Outline for Constructing Predictor Effect Plots} Using the \pkg{effects} package to draw plots usually entails the following steps: \begin{enumerate} \item Fit a regression model with a linear predictor. The package supports models created by \fn{lm}, \fn{glm}, \fn{lmer} and \fn{glmer} in the \pkg{lme4} package, \fn{lme} in the \pkg{nlme} package, and many other regression-modeling functions (see \code{?Effect}). \item The regression model created in the first step is then used as input to either \fn{predictorEffect}, to get the effects for one predictor, or \vn{predictorEffects}, to get effects for one or more predictors. These functions do the averaging needed to get fitted values that will ultimately be plotted. There are many arguments for customizing the computation of the effects. The two predictor effect functions call the more basic \fn{Effect} function, and almost all of the material in this vignette applies to \fn{Effect} as well. \item Use the generic \fn{plot} function to draw a graph or graphs based on the object created in Step 2. \end{enumerate} \subsection{How \fn{predictorEffect} Chooses Conditioning Predictors}\label{sec:eff} Suppose that you select a \emph{focal predictor} for which you want to draw a predictor effect plot. The \fn{predictorEffect} function divides the predictors in a model formula into three groups: \begin{enumerate} \item The focal predictor. \item The \emph{conditioning group}, consisting of all predictors with at least one interaction in common with the focal predictor. \item The \emph{fixed group}, consisting of all other predictors, that is, those with no interactions in common with the focal predictor. \end{enumerate} \noindent For simplicity, let's assume for the moment that all of the fixed predictors are numeric. The predictors in the fixed group are all evaluated at typical values, usually their means, effectively averaging out the influence of these predictors on the fitted value. Fitted values are computed for all combinations of levels of the focal predictor and the predictors in the conditioning group, with each numeric predictor in the conditioning group replaced by a few discrete values spanning the range of the predictor, for example, replacing years of \vn{education} by a discrete variable with the values 8, 12, and 16 years. Suppose that we fit a model with \R{} formula \begin{equation} \Rmod{y}{x1 + x2 + x3 + x4 + x2:x3 + x2:x4}\label{eq1} \end{equation} or, equivalently, \begin{equation*} \Rmod{y}{x1 + x2*x3 + x2*x4} \end{equation*} There are four predictor effect plots for this model, one for each predictor selected in turn as the focal predictor: \begin{center} \begin{tabular}{ccc}\hline Focal & Conditioning & Fixed\\ Predictor & Group & Group\\ \hline \vn{x1} & none& \vn{x2}, \vn{x3}, \vn{x4} \\ \vn{x2} & \vn{x3}, \vn{x4} & \vn{x1} \\ \vn{x3} & \vn{x2} & \vn{x1}, \vn{x4} \\ \vn{x4} & \vn{x2}& \vn{x1} \vn{x3} \\ \hline \end{tabular} \end{center} \noindent The predictor \vn{x1} does not interact with any of the other predictors, so its conditioning set is empty and all the remaining predictors are averaged over; \vn{x2} interacts with both \vn{x3} and \vn{x4}; \vn{x3} interacts only with \vn{x2}; and \vn{x4} interacts with \code{x2}. \subsection{The \fn{Effect} Function}\label{sec:Effect} Until recently, the primary function in \pkg{effects} for computing and displaying effects was the \fn{Effect} function.\footnote{The \pkg{effects} package also includes the older \fn{allEffects} function, which computes effects for each high-order term in a model with a linear predictor. As we explain in \citet{fw19b}, we prefer predictor effects to high-order term effects, and so, although its use is similar to \fn{predictorEffects}, we won't describe \fn{allEffects} in this vignette. There is also an older \fn{effect} function (with a lowercase ``\code{e}''), which is a less flexible version of \fn{Effect}, and which calls \fn{Effect} to perform computations; \fn{effect} is retained only for backwards comparability.} Whereas the \fn{predictorEffect} function automatically determines the conditioning group and the fixed group of predictors, the \fn{Effect} function puts that burden on the user. The \fn{Effect} function doesn't between between a focal predictor and conditioning predictors, but rather only between varying (that is, focal \emph{and} conditioning) and fixed predictors. Each call to \fn{predictorEffect} is equivalent to a specific call to the \fn{Effect} function as follows. Suppose that \vn{m} is the fitted model produced by the formula in (\ref{eq1}); then, except for the ways in which the default levels for predictors are determined: \begin{description} \item[] \code{predictorEffect("x1", m)} is equivalent to \code{Effect("x1", m)}; \item[] \code{predictorEffect("x2", m)} is equivalent to \code{Effect(c("x2", "x3", "x4"), m)}; \item[] \code{predictorEffect("x3", m)} is equivalent to \code{Effect(c("x3", "x2"), m)}; and \item[] \code{predictorEffect("x4", m)} is equivalent to \code{Effect(c("x4", "x2"), m)}. \end{description} The \fn{predictorEffect} function determines the correct call to \fn{Effect} based on the choice of focal predictor and on the structure of main effects and interactions in the linear predictor for the model. It then uses the \fn{Effect} function to do the computing. As a result, most of the arguments to \fn{predictorEffect} are documented in \code{help("Effect")} rather than in \code{help("predictorEffect")}. \subsection{The \fn{predictorEffects} Function} This function, whose name ends with the plural ``\code{plots}", computes the values needed for one or more predictor effect plots, and by default for \emph{all} of the predictors in the model. For example, the following command produces all of the predictor effect plots for the model we fit to the \code{Prestige} data: <>= eall.lm1 <- predictorEffects(lm1) plot(eall.lm1) @ \centerline{\includegraphics[width=0.95\textwidth]{figure/fig14-1.pdf}} \noindent The predictor effect plots for this model are displayed in an array of graphs. The plots for \vn{income} and \vn{type} have a separate panel for each level of the conditioning variable because the default argument \ar{lines=list(multiline=FALSE)} was implicitly used. Confidence bounds are shown by default when \ar{multiline=FALSE}. The resulting object \code{eall.lm1} is a list with four elements, where \code{eall.lm1[[1]]} is the summary for the first predictor effect plot, \code{eall.lm1[[2]]} for the second plot, and so on. The following equivalent commands draw the same array of predictor effect plots: <>= plot(eall.lm1) plot(predictorEffects(lm1)) plot(predictorEffects(lm1, ~ income + education + women + type)) @ If you want only the predictor effect plots for \vn{type} and \vn{education}, in that order, you could enter <>= plot(predictorEffects(lm1, ~ type + education)) @ Similarly, the commands <>= plot(predictorEffects(lm1, ~ women)) plot(predictorEffects(lm1)[[3]]) plot(predictorEffect("women", lm1)) @ all produce the same graph, the predictor effect plot for \vn{women}. Predictor effect plots in an array can be a useful shortcut for drawing many graphs quickly, but can lead to problems with the displayed graphs. For example, the horizontal axis labels for the plot for \vn{income} are overprinted, and the labels at the top of the panels for \vn{type} with conditioning variable \vn{income} are larger than the available space. These problems can often be fixed using optional arguments described later in this vignette or by plotting predictor effects individually. \section{Optional Arguments for the \fn{predictorEffect} and \fn{Effect} Functions}\label{sec:peopts} This section comprises a catalog of the arguments available to modify the behavior of the \fn{predictorEffect} and \fn{Effect} functions. These arguments may also be specified to the \fn{predictorEffects} function. The information provided by \code{help("Effect")} is somewhat more comprehensive, if terser, explaining for example exceptions applying to \class{svyglm} objects or for plotting residuals. \subsection{\ar{focal.levels} and \ar{xlevels}: Options for the Values of the Focal Predictor and Predictors in the Conditioning Group}\label{sec-focal.levels-xlevels} Numeric predictors in the conditioning group need to be discretized to draw a predictor effect plot. For example the predictor effect plot for \vn{type} in model \code{lm1} consists of a separate line, or a separate panel, for each discrete value of \vn{income}: <>= e3.lm1 <- predictorEffect("type", lm1) plot(e3.lm1, lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=4in]{figure/fig21a-1.pdf}} <>= plot(e3.lm1, lines=list(multiline=FALSE)) # the default @ \centerline{\includegraphics[width=4in]{figure/fig21b-1.pdf}} \noindent The numeric conditioning predictor \vn{income} is evaluated by default at five equally spaced values, when are then rounded to ``nice" numbers. In this example, using the three values of 5000, 15000, 25000 for the conditioning predictor \vn{income} produces a simpler graph: <>= e3.lm1 <- predictorEffect("type", lm1, xlevels=list(income=c(5000, 15000, 25000))) plot(e3.lm1, lines=list(multiline=TRUE), confint=list(style="bars")) @ \centerline{\includegraphics[width=4in]{figure/fig22a-1.pdf}} <>= plot(e3.lm1, lines=list(multiline=FALSE), # the default lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=4in]{figure/fig22b-1.pdf}} \noindent The argument \ar{xlevels} is a list of sub-arguments that control how numeric predictors are discretized when used in the conditioning group. For example, \code{xlevels=list(x1=c(2, 4, 7), x2=6)} would use the values 2, 4, and 7 for the levels of the predictor \code{x1}, use 6 equally spaced values for the predictor \code{x2}, and use the default of 5 values for any other numeric conditioning predictors. Numeric predictors in the \emph{fixed} group are not affected by the \ar{xlevels} argument. We use the \ar{layout} sub-argument of the \ar{lattice} argument to arrange the panels of the second graph in 3 columns and 1 row (see Section~\ref{sec:layout}). See \code{help("plot.eff")} for information on the \ar{quantiles} argument, which provides an alternative method of setting \ar{xlevels} when partial residuals are displayed, as discussed in Section~\ref{sec:res}. The points at which a numeric focal predictor is evaluated is controlled by the \ar{focal.levels} argument. The default of \vn{focal.levels=50} is recommended for drawing graphs, but if the goal is to produce a table of fitted values a smaller value such as \code{focal.levels=5} produces more compact output. The focal predictor can also be set to a vector of particular values, as in \code{focal.levels=c(30, 50, 70)}. Used with the \code{predictorEffects} function, the \ar{focal.levels} argument can be set separately for each focal predictor, similarly to the \ar{xlevels} argument; see \code{help("predictorEffects")}. \subsection{\ar{fixed.predictors}: Options for Predictors in the Fixed Group} Predictors in the fixed group are replaced by ``typical" values of the predictors. Fitted values are then computed using these typical values for the fixed group, varying the values of predictors in the conditioning group and of the focal predictor. The user can control how the fixed values are determined by specifying the \ar{fixed.predictors} argument. This argument takes a list of sub-arguments that allow for controlling each predictor in the fixed group individually, with different rules for factors and numeric predictors. \subsubsection{Factor Predictors}\label{sec:facpred} For a fixed factor, imagine computing the fitted values evaluating the factor at each of its levels. The fitted value that is used is the weighed average of these within-level fitted values, with weights proportional to the number of observations at each level of the factor. This is the default approach, and is an appropriate notion of ``typical" if the data at hand are viewed as a random sample from a population, and so the sample fraction at each level estimates the population fraction. A second approach is to average the level-specific fitted values with equal weights at each level. This may be appropriate, for example, in designed experiments in which the levels of a factor are assigned by an investigator. The latter method is invoked by setting \code{fixed.predictors= list(given.values="equal")}. You can construct other weighting schemes for averaging over the levels of a factor, as described on the help page for the \fn{Effect} function. \subsubsection{Numeric Predictors} For numeric predictors in the fixed group, the default method of selecting a typical value is to apply the \fn{mean} function to the sample values of each predictor. The specification \code{fixed.predictors= list(typical=median)} would instead use the \fn{median} function; in general, \ar{typical} can be any function that takes a numeric vector as its argument and returns a single number. Other sub-arguments to \ar{fixed.predictors} apply to the use of offsets, and to the \pkg{survey} package; see the help page for the \fn{Effect} function. \subsection{\ar{se} and \ar{vcov.}: Standard Errors and Confidence Intervals}\label{sec:se} Standard errors and confidence intervals for fitted values are computed by default. The default corresponds to setting the argument \code{se=list(compute=TRUE, type="pointwise", level=.95)}. Setting \code{se=FALSE} omits standard errors, \ar{type="scheffe"} uses wider Scheff\'{e} intervals that adjust for simultaneous inference, and \code{level=.8}, for example, produces 80\% intervals. Standard errors are based by default on the ``usual" sample covariance matrix of the estimated regression coefficients. You can replace the default coefficient covariance matrix with some other estimate, such as one obtained from the bootstrap or a sandwich coefficient covariance matrix estimator, by setting the \ar{vcov.}~argument either to a function that returns a coefficient covariance matrix, such as \fn{hccm} in the \pkg{car} package for linear models, or to a matrix of the correct size; for example: <>= e4.lm1 <- predictorEffect("education", lm1, se=list(type="scheffe", level=.99), vcov.=hccm) plot(e4.lm1) @ \centerline{\includegraphics[width=4in]{figure/fig23-1.pdf}} \noindent This plot displays 99\% Scheff\'{e} intervals based on a robust coefficient covariance matrix computed by the sandwich method; see \code{help("hccm")}. \subsection{\ar{residuals}: Computing Residuals for Partial Residual Plots} The argument \ar{residuals=TRUE} computes and saves residuals, providing the basis for adding partial residuals to subsequent effect plots, a topic that we discuss in Section~\ref{sec:res}. \section{Arguments for Plotting Predictor Effects}\label{sec:plot} The arguments described in Section~\ref{sec:peopts} are for the \fn{predictorEffect} function or the \fn{Effect} function. Those arguments modify the computations that are performed, such as methods for averaging and fixing predictors, and for computing standard errors. Arguments to the \fn{plot} methods for the predictor effect and effect objects produced by the \fn{predictorEffect} and \fn{Effect} functions are described in this section, and these change the appearance of an effect plot or modify the quantities that are plotted. These optional arguments are described in more detail in \code{help("plot.eff")}. In 2018, we reorganized the \fn{plot} method for effect objects by combining arguments into five major groups of related sub-arguments, with the goal of simplifying the specification of effect plots. For example, the \ar{lines} argument group is a list of sub-arguments for determining line type, color, and width, whether or not multiple lines should be drawn on the same graph, and whether plotted lines should be smoothed. The defaults for these sub-arguments are the choices we generally find the most useful, but they will not be the best choices in all circumstances. The cost of reorganizing the arguments in this manner is the necessity of specifying arguments as lists, some of whose elements are themselves lists, requiring the user to make sure that parentheses specifying the possibly nested lists properly balanced. In addition to the five argument groups that we describe below, the \fn{plot} method for effect objects accepts the arguments \ar{main} for the main title of the graph and \ar{id} for identifying points in effect plots that include residuals, as discussed in Section~\ref{sec:res}. Finally, the \fn{plot} method for effect objects retains a number of ``legacy" arguments shown in \code{help("plot.eff")}. These arguments have been kept so existing scripts using the \pkg{effects} package would not break, but they are all duplicated as sub-arguments of the five argument groups. The legacy arguments work but they may not be supported forever, so we encourage you to use the newer argument groups and sub-arguments. \subsection{The \ar{axes} Group: Specify Axis Characteristics} The \ar{axes} argument group has two major sub-arguments, \ar{x} for the horizontal axis, \ar{y} for the vertical axis, and two minor sub-arguments, the \ar{grid} argument, which adds a background grid to the plot, and the \ar{alternating} argument, for changing the placement of axis-tick labels in multi-panel plots. \subsubsection{\ar{x}: Horizontal Axis Specification} We introduce another linear model fit to the \code{Prestige} data set to serve as an example: <<>>= lm2 <- lm(log(prestige) ~ log(income) + education + type, Prestige) @ The default predictor effect plot for \vn{income} is <>= plot(predictorEffects(lm2, ~ income)) @ \centerline{\includegraphics[width=4in]{figure/fig30-1.pdf}} \noindent The plot is curved because the predictor \vn{income} is represented by its logarithm in the model formula, but the default predictor effect plot uses the predictor \vn{income}, not the regressor \lvn{income}, on the horizontal axis. The \ar{x} sub-argument can be used transform the horizontal axis, for example to replace \code{income} by \lcode{income}: <>= plot(predictorEffects(lm2, ~ income), axes=list( x=list(income=list(transform=list(trans=log, inverse=exp))) )) @ \centerline{\includegraphics[width=4in]{figure/fig31-1.pdf}} \noindent The transformation changes the scale on the horizontal axis to log-scale, but leaves the tick labels in arithmetic scale, and the graph is now a straight line because of the change to log-scale. This plot has several obviously undesirable features with regard to the range of the horizontal axis and over-printing of tick marks. We show next that additional arguments to \fn{plot} can correct these defects. A more elaborate version of the graph illustrates all the sub-arguments to \ar{x} in \ar{axis} argument group: <>= plot(predictorEffects(lm2, ~ income), main="Transformed Plot", axes=list( grid=TRUE, x=list(rotate=30, rug=FALSE, income=list(transform=list(trans=log, inverse=exp), lab="income, log-scale", ticks=list(at=c(2000, 5000, 10000, 20000)), lim=c(1900, 21000)) ))) @ \centerline{\includegraphics[width=4in]{figure/fig32-1.pdf}} \noindent We use the top-level argument \code{main="Transformed Plot"} to set the title of the plot. The \ar{axes} argument is a list with two sub-arguments, \ar{grid} to turn on the background grid, and \ar{x} to modify the horizontal axis. The \ar{x} sub-argument is itself a list with three elements: The sub-arguments \code{rotate} and \ar{rug} set the rotation angle for the tick labels and suppress the rug plot, respectively. The additional sub-argument is a list called \ar{income}, the name of the focal predictor. If you were drawing many predictor effect plots you would supply one list named for each of the focal predictors. All of the sub-arguments for \ar{income} are displayed in the example code above. The sub-argument \code{transform=list(trans=log, inverse=exp)} specifies how to transform the $x$-axis. The \code{ticks} and \code{lim} sub-arguments set the tick marks and range for the horizontal axis. This is admittedly a \emph{complex command}, but it allows you to fine-tune the graph to look the way you want. In specifying nested argument lists, you may encounter problems getting the parentheses in the right places. Be careful, indent your code to clarify the structure of the command, and be patient! \subsubsection{\ar{y}: Vertical Axis Specification for Linear Models} The model \code{lm2} has a transformed response \lcode{prestige}, and ``untransforming" the response to arithmetic scale may be desirable. This can be accomplished with the \ar{y} sub-argument, which has two sub-arguments named \vn{transform} and \vn{type} that together control the scale and labeling of the vertical axis. There are three options for drawing the predictor effect plot for a numeric response like\linebreak \lvn{prestige}: <>= # default: plot(predictorEffects(lm2, ~ education), main="Default log(prestige)") # Change only tick-mark labels to arithmetic scale: plot(predictorEffects(lm2, ~ education), main="log(prestige), Arithmetic Ticks", axes=list(y=list(transform=list(trans=log, inverse=exp), lab="prestige", type="rescale"))) # Replace log(presige) by prestige: plot(predictorEffects(lm2, ~ education), main="Prestige in Arithmethic Scale", axes=list(y=list(transform=exp, lab="prestige"))) @ \includegraphics[width=.33\textwidth]{figure/fig33-1.pdf} \includegraphics[width=.33\textwidth]{figure/fig33-2.pdf} \includegraphics[width=.33\textwidth]{figure/fig33-3.pdf} \noindent The first plot is the default, with a log-response. In the second plot, the \ar{transform} sub-argument specifies the transformation of the response and its inverse, and the sub-argument \code{type="rescale"} changes the tick marks on the vertical axis to arithmetic scale. In the third version, with \code{transform=exp, lab="prestige"}, the vertical axis now is in arithmetic scale, not log scale, although that may not be completely obvious in the example because $\log(x)$ is nearly linear over the range of approximately 35 to 65 for fitted \vn{prestige} in this graph: Look closely to see that the axis ticks marks in the second graph are unequally spaced, while those in the third graph are equally spaced and the plotted line in the latter is slightly curved. The help page \code{?plot.eff} provides a somewhat more detailed explanation of these options. As a second example we will reconstruct Figure~7.10 in \citet[Sec.~7.2]{fw19}. In that section, we fit a linear mixed-effects model to data from the \code{Blackmore} data frame in the \pkg{carData} package. \code{Blackmore} includes longitudinal data on amount of exercise for girls hospitalized for eating disorders and for similar control subjects who were not hospitalized. We transformed the response variable in the model, hours of \vn{exercise}, using a transformation in a modified Box-Cox power family that allows zero or negative responses, explained briefly by \citet[Sec.~3.4]{fw19} and more thoroughly by \citet{HawkinsWeisberg2017}. The fitted model is <<>>= library("lme4") # for lmer() Blackmore$tran.exercise <- bcnPower(Blackmore$exercise, lambda=0.25, gamma=0.1) mm1 <- lmer(tran.exercise ~ I(age - 8)*group + (I(age - 8) | subject), data=Blackmore) @ This model, with numeric predictor \vn{age} and factor predictor \vn{group}, is a linear mixed model with random intercepts and slopes for \vn{age} that vary by \vn{subject}. The response variable is a transformation of \vn{exercise} similar to the fourth root with adjustment for zero values; see \code{help("bcnPower")}. The predictor effect plot for the fixed effect of \vn{age} is <>= e1.mm1 <- predictorEffect("age", mm1) plot(e1.mm1, lines=list(multiline=TRUE), confint=list(style="auto")) @ \centerline{\includegraphics[width=4in]{figure/fig33a-1.pdf}} \noindent The plot clearly shows the difference in the average \vn{age} trajectory between the \level{control} and \level{patient} groups, with the fitted response for the latter having a larger slope. The graph is hard to decode, however, because the vertical axis is approximately in the scale of the fourth-root of hours of exercise, so untransforming the response may produce a more informative plot. Because the \fn{bcnPower} transformation is complex, the \pkg{car} package includes the function \fn{bcnPowerInverse} to reverse the transformation: <>= f.trans <- function(x) bcnPower(x, lambda=0.25, gamma=0.1) f.inverse <- function(x) bcnPowerInverse(x, lambda=0.25, gamma=0.1) plot(e1.mm1, lines=list(multiline=TRUE), confint=list(style="auto"), axes=list(x=list(age=list(lab="Age (years)")), y=list(transform=list(trans=f.trans, inverse=f.inverse), type="response", lab="Exercise (hours/week)")), lattice=list(key.args=list(x=.20, y=.75, corner=c(0, 0), padding.text=1.25)), main="" ) @ \centerline{\includegraphics[width=4in]{figure/fig33b-1.pdf}}\label{corner} \noindent The response scale is now in hours per week, and we see that hours of exercise increase more quickly on average in the patient group for older subjects. We use additional arguments in this plot to match \citet[Fig.~7.10]{fw19}, including moving the key inside of the graph (see Section~\ref{sec:key}), changing the axis labels, and removing the main title to the plot.\footnote{The code shown for this graph in \cite{fw19} uses ``legacy'' arguments, and is therefore somewhat different from the code given here. Both commands produce the same plot, however.} \subsubsection{\ar{y}: Vertical Axis Specification for Generalized Linear Models} Transforming the vertical axis for generalized linear models also uses the \ar{y} sub-argument to the \ar{axes} argument. You typically do not need to specify the \ar{transform} sub-argument because \fn{plot} obtains the right functions from the regression model's \ar{family} component. The \ar{type} sub-argument has the same three possible values as for linear models, but their interpretation is somewhat different: \begin{enumerate} \item Effect plots in \code{type="link"}, in which the horizontal axis of each plot is a predictor and the vertical axis is in the scale of the linear predictor. For logistic regression, for example, the vertical axis is in log-odds (logit) scale. For Poisson regression with the log-link, the vertical axis is in log-mean (log-count) scale. \item Predictor effect plots in \code{type="response"} or mean scale are obtained by ``untransforming" the $y$ axis using the inverse of the link function. For the log-link, this corresponds to transforming the $y$ axis and plotting $\exp(y)$. For logistic regression, $y = \log[p/(1-p)]$ and, solving for $p$, $p=\exp(y)/[1+\exp(y)] = 1/[1 + \exp(-y)]$, so the plot in mean scale uses $1/[1+\exp(-y)]$ on the vertical axis. \item We also provide a third option, \code{type="rescale"}, which plots in linear predictor (e.g., logit) scale, but labels the tick marks on the vertical axis in mean (e.g., probability) scale. This third option, which retains the linear structure of the model but labels the vertical axis on the usually more familiar mean scale, is the default. \end{enumerate} We use the \code{Blowdown} data from the \pkg{alr4} package to provide examples. These data concern the probability of \emph{blowdown} \vn{y}, a tree being uprooted as the result of a major straight-line wind storm in the Boundary Waters Canoe Area Wilderness in 1999, modeled as a function of the diameter \code{d} of the tree, the local severity \code{s} of the storm, and the species \code{spp} of the tree. We fit a main-effects model and then display all three predictor effect plots: <<>>= data("Blowdown", package="alr4") gm1 <- glm(y ~ log(d) + s + spp, family=binomial, data=Blowdown) @ <>= plot(predictorEffects(gm1), axes=list(grid=TRUE, x=list(rug=FALSE, rotate=35))) @ \centerline{\includegraphics[width=.9\textwidth]{figure/fig34-1.pdf}} \noindent The \ar{rug=FALSE} sub-argument to \ar{x} suppresses the rug plot that appears by default at the bottom of graphs for numeric predictors, and the \ar{grid} sub-argument to \ar{axes} adds background grids. The \ar{rotate} sub-argument prints the horizontal tick labels at an angle to avoid overprinting. Interpretation of GLM predictor effect plots in link scale is similar to predictor effect plots for linear models, and all the modifications previously described can be used for these plots. Because the default is \code{type="rescale"}, the vertical axis is in linear predictor scale, which is the log-odds or logit for this logistic regression example, but the vertical axis labels are in mean (probability) scale, so the tick-marks are not equally spaced. The next three graphs illustrate the possible values of the argument \ar{type}: <>= e1.gm1 <- predictorEffect("spp", gm1) plot(e1.gm1, main="type='rescale'", axes=list(y=list(type="rescale", lab="logit scale, probability labels"), x=list(rotate=30), grid=TRUE)) plot(e1.gm1, main="type='link'", axes=list(y=list(type="link", lab="logit scale, logit labels"), x=list(rotate=30), grid=TRUE)) plot(e1.gm1, main="type='response'", axes=list(y=list(type="response", grid=TRUE, lab="probabilty scale, probability labels"), x=list(rotate=30), grid=TRUE)) @ \includegraphics[width=.33\textwidth]{figure/fig35-1.pdf} \includegraphics[width=.33\textwidth]{figure/fig35-2.pdf} \includegraphics[width=.33\textwidth]{figure/fig35-3.pdf} \noindent The first two graphs show the same plot, but in the first the tick-marks on the vertical axis are unequally spaced and are in probability scale, while in the second the tick-marks are equally spaced and are in log-odds scale. In the third graph, the vertical axis has been transformed to probability scale, and the corresponding tick-marks are now equally spaced. The plot for species would be easier to understand if the levels of the factor were ordered according to the estimated log-odds of blowdown. First, we need to recover the fitted values in link scale, which are log-odds of blowdown for a logistic model. The fitted log-odds are stored in \code{as.data.frame(e1.gm1)\$fit} using the \code{e1.gm1} object previously computed: <>= or <- order(as.data.frame(e1.gm1)$fit) # order smallest to largest Blowdown$spp1 <- factor(Blowdown$spp, # reorder levels of spp levels=levels(Blowdown$spp)[or]) gm2 <- update(gm1, ~ . - spp + spp1) # refit model plot(predictorEffects(gm2, ~ spp1), main="type='response', ordered", axes=list(y=list(type="response", lab="probabilty scale, probability labels"), x=list(rotate=30, spp=list(lab="Species")), grid=TRUE)) @ \centerline{\includegraphics[width=.55\textwidth]{figure/fig36-1.pdf}} \noindent The separation of species into two groups of lower and higher probability species is reasonably clear after ordering, with paper birch more susceptible to blowdown than the other species and possibly in a group by itself. \subsection{The \ar{lines} Group: Specifying Plotted Lines} The \ar{lines} argument group allows the user to specify the color, type, thickness, and smoothness of lines. This can be useful, for example, if the colors used by \pkg{effects} by default are for some reason unacceptable, such as for publications in which only black or gray-scale lines are permitted. The most common use of this argument group is to allow more than one line to be plotted on the same graph or panel via the \ar{multiline} sub-argument. \subsubsection{\ar{multiline} and \ar{z.var}: Multiple Lines in a Plot} Default predictor effect plots with conditioning predictors generate a separate plot for each level of the conditioning variable, or for each combination of levels if there is more than one conditioning variable. For an example, we add the \code{log(d):s} interaction to the model \code{gm1}, and generate the predictor effect plots for \vn{s} and for \vn{d}: <>= gm3 <- update(gm2, ~ . + s:log(d)) # add an interaction plot(predictorEffects(gm3, ~ s + d), axes=list(x=list(rug=FALSE, rotate=90), y=list(type="response", lab="Blowdown Probability")), lattice=list(layout=c(1, 5))) @ \centerline{\includegraphics[width=0.75\textwidth]{figure/fig37-1.pdf}} \noindent Setting the sub-argument \code{type="response"} for the \ar{y} axis plots the response on the probability scale. Setting \code{layout=c(1, 5)} arranges each predictor effect plot in 1 column of 5 rows. See the description of the \ar{lattice} argument in Section~\ref{sec:lattice}. The predictor effect plot for \vn{s} conditions on the level of \vn{d}, and displays the plot of the fitted values for \vn{y} versus \vn{s} in a separate panel for each value of \vn{d}. Similarly, the predictor effect plot for \vn{d} displays a separate panel for each conditioning level of \vn{s}. Confidence bands are displayed by default around each fitted line. These two graphs are based on essentially the same fitted values, with the values of the interacting predictors \vn{s} and \vn{d} varying, and fixing the factor predictor \vn{spp} to its distribution in the data, as described in Section~\ref{sec:facpred}. Concentrating on the graph at the right for the focal predictor \vn{d}, when \vn{s} is very small the probability of blowdown is estimated to be in the range of about .05 to .3 for any value of \vn{d}, but for larger values of \vn{s}, the probability of blowdown increases rapidly with \vn{d}. Similar comments can be made concerning the predictor effect plot for \vn{s}. Setting \code{multiline=TRUE} superimposes the lines for all the conditioning values in a single graph. In the example below, we reduce the number of levels of the conditioning variable for each predictor effect plot to three explicit values each to produce simpler graphs, although this is not required. The \ar{xlevels} argument changes the number of levels for the conditioning predictors, but does not affect the number of levels for the focal predictor. This latter quantity could be changed with the \ar{focal.levels} argument, but the default value of 50 evaluations is appropriate for graphing effects. <>= plot(predictorEffects(gm3, ~ s + d, xlevels=list(d=c(5, 40, 80), s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response", lab="Blowdown probability")), lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=\textwidth]{figure/fig38-1.pdf}} \noindent In each graph, we kept, more or less, the lowest, middle, and highest values of the conditional predictor for the interaction. We also added a grid to each graph. Multiline plots by default omit confidence bands or intervals, but these can be included using the \ar{confint} argument discussed in Section~\ref{sec:confint}. By default, different values of the conditioning predictor are distinguished by color, and a key is provided. The placement and appearance of the key are controlled by the \ar{key.args} sub-argument in the \ar{lattice} group discussed in Section~\ref{sec:key}. When the conditioning group includes two or more predictors, and certainly when it includes three or more predictors, multiline plots are almost always helpful because otherwise the resulting array of panels becomes too complicated. Suppose that we add the \code{spp:log(d)} interaction to the illustrative model. The predictor effect plot for \vn{d} now includes both \vn{s} and \vn{spp} in the conditioning set because \vn{d} interacts with both of these predictors: <>= gm4 <- update(gm3, ~ . + spp:log(d)) plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE)), lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=\textwidth]{figure/fig39-1.pdf}} \noindent This plot now displays the lines for all conditioning values of \vn{s} within the panel for each level of the conditioning factor \vn{spp}. Compare this graph to the much more confusing plot in which different lines are drawn for the nine levels of the conditioning factor \vn{spp}, obtained by using the \ar{z.var} sub-argument in the \ar{lines} group: <>= plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE)), lines=list(multiline=TRUE, z.var="spp", lty=1:9), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.7\textwidth]{figure/fig310-1.pdf}} \noindent The \ar{z.var} sub-argument for \ar{lines} selects the predictor that determines the lines within a panel and the remaining predictors, here just \vn{s}, distinguish the panels. The default choice of \ar{z.var} is usually, but not always, appropriate. We also use the \ar{lattice} argument to display the array of panels in 3 columns and 1 row, and differentiate the lines by line type and color using arguments discussed next. \subsubsection{\ar{col}, \ar{lty}, \ar{lwd}, \ar{spline}: Line Color, Type, Width, Smoothness}\label{sec:line.color.etc} Different lines in the same plot are differentiated by default using color. This can be modified by the sub-arguments \ar{lty}, \ar{lwd} and \ar{col} to set line types, widths, and colors, respectively. For example, in the last graph shown you can get all black lines of different line types using \code{lines=list(multiline=TRUE, col="black", lty=1:9)}, or using a gray scale, \code{lines=}\linebreak \code{list(multiline=TRUE, col=gray((1:9)/10))}. The \fn{plot} method for effect objects by default uses smoothing splines to interpolate between plotted points. Smoothing can be turned off with \code{splines=FALSE} in the \ar{lines} argument, but we rarely expect this to be a good idea. The number of values at which the focal predictor is evaluated is set with the \ar{focal.levels} argument, and it defaults to 50. In any case, more than three evaluations, and possibly many more, should be used for a reasonable spline approximation. \subsection{The \ar{confint} Group: Specifying Confidence Interval Inclusion and Style}\label{sec:confint} The \ar{confint} argument group controls the inclusion and appearance of confidence intervals and regions. This argument has three sub-arguments. The \ar{style} sub-argument is either \code{"bars"}, for confidence bars, typically around the estimated adjusted mean for a factor level; \code{"bands"}, for shaded confidence bands, typically for numeric focal predictors; \code{"auto"}, to let the program automatically choose between \code{"bars"} and \code{"bands"}; \code{"lines"}, to draw only the edges of confidence bands with no shading; or \code{"none"}, to suppress confidence intervals. The default is \code{"auto"} when \code{multiline=FALSE} and \code{"none"} when \code{multiline=TRUE}. Setting \code{confint="auto"} produces bars for factors and bands for numeric predictors. For example: <>= plot(predictorEffects(gm3, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response")), lines=list(multiline=TRUE), confint=list(style="auto")) @ \centerline{\includegraphics[width=.5\textwidth]{figure/fig311-1.pdf}} \noindent In this example the confidence bands are well separated, so including them in a multiline graph isn't problematic; in other cases, overlapping confidence bands produce an artistic but uninterpretable mess. With a factor focal predictor, we get: <>= gm5 <- update(gm2, ~ . + spp:s) plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE, rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto")) @ \centerline{\includegraphics[width=.75\textwidth]{figure/fig312-1.pdf}} \noindent The error bars for the various levels of \vn{s} are slightly staggered to reduce over-plotting. Two additional arguments, \vn{col} and \vn{alpha}, control respectively the color of confidence bars and regions and the transparency of confidence regions. Users are unlikely to need these options. Finally, the type of confidence interval shown, either pointwise or Scheff\'{e} corrected for multiple comparisons, is controlled by the \ar{se} argument to the \fn{predictorEffect} or \fn{Effect} function (see Section~\ref{sec:se}). \subsection{The \ar{lattice} Group: Specifying Standard \textbf{lattice} Package Arguments}\label{sec:lattice} The \fn{plot} methods defined in the \pkg{effects} package use functions in the \pkg{lattice} package \citep{sarkar08}, such as \fn{xyplot}, to draw effect plots, which often comprise rectangular arrays of panels. In particular, the \fn{plot} method for the \class{eff} objects returned by the \fn{Effect} function are \class{trellis} objects, which can be manipulated in the normal manner. ``Printing'' a returned effect-plot object displays the plot in the current \R{} graphics device. The \ar{lattice} group of arguments to the \fn{plot} method for effect objects may be used to specify various standard arguments for \pkg{lattice} graphics functions such as \fn{xyplot}. In particular, you can control the number of rows and columns when panels are displayed in an array, modify the key (legend) for the graph, and specify the contents of the ``strip" displayed in the shaded region of text above each panel in a \pkg{lattice} array. In addition, the \ar{array} sub-argument, for advanced users, controls the layout of multiple predictor effect plots produced by the \fn{predictorEffects} function. \subsubsection{\ar{key.args}: Modifying the Key}\label{sec:key} A user can modify the placement and appearance of the key with the \ar{key.args} sub-argument, which is itself a list. For example: <>= plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), rug=FALSE, axes=list(grid=TRUE, y=list(type="response"), x=list(rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto"), lattice=list(key.args=list(space="right", columns=1, border=TRUE, fontfamily="serif", cex=1.25, cex.title=1.5))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig314-1.pdf}} \noindent The sub-argument \code{space="right"} moves the key to the right of the graph, overriding the default \code{space="top"}. Alternatively the key can be placed inside the graph using the \ar{x}, \ar{y}, and \ar{corner} sub-arguments, as illustrated in the graph on page~\pageref{corner}. The choices for \ar{fontfamily} are \code{"sans"} and \code{"serif"}, and affect only the key; the rest of the plot uses \code{"sans"}. The sub-arguments \ar{cex} and \ar{cex.title} control the relative sizes of the key entries and the key title, respectively. Finally, any argument documented in \code{help("xyplot")} in the \code{key} section can be set with this argument. If you use the default \code{space="top"} for placement of the key, you may wish to adjust the number of columns in the key, particularly if the level names are long. \subsubsection{\ar{layout}: Controlling Panel Placement}\label{sec:layout} The \ar{layout} sub-argument to the \ar{lattice} argument allows a user to customize the layout of multiple panels in an effect plot; for example: <>= plot(predictorEffects(gm3, ~ s + d, xlevels=list(s=6, d=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2))) @ \centerline{\includegraphics[width=\textwidth]{figure/fig313-1.pdf}} \noindent Here, the \ar{layout} sub-argument specifies an array of 3 columns and 2 rows for each of the predictor effect plots. \subsubsection{\ar{array}: Multiple Predictor Effect Plots}\label{sec:array} If you create several predictor effect objects with the \fn{predictorEffects} function, the \fn{plot} method for the resulting \class{predictorefflist} object divides the \pkg{lattice} graphics device into a rectangular array of sub-plots, so that the individual predictor effect plots, each potentially with several panels, are drawn without overlapping. An alternative is for the user to generate the predictor effect plots separately, subsequently supplying the \ar{array} sub-argument to \fn{plot} directly to create a custom meta-array of predictor effect plots; this argument is ignored, however, for \class{predictorefflist} objects produced by \fn{predictorEffects}. Suppose, for example, that we want to arrange the two predictor effect plots for the previous example vertically rather than horizontally. One way to do that is to save the object produced by \fn{predictorEffects} and to plot each of its two components individually, specifying the \ar{position} or \ar{split} and \ar{more} arguments to the \fn{print} method for \class{trellis} objects: see \code{help("print.trellis")}. Another approach is to generate the plots individually using \fn{predictorEffect} and to specify the \ar{array} sub-argument to \fn{plot}, as follows: <>= plot(predictorEffect("s", gm3, xlevels=list(d=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2), array=list(row=1, col=1, nrow=2, ncol=1, more=TRUE))) plot(predictorEffect("d", gm3, xlevels=list(s=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2), array=list(row=2, col=1, nrow=2, ncol=1, more=FALSE))) @ \centerline{\includegraphics[width=.65\textwidth]{figure/fig313b-1.pdf}} \noindent In each case, the \ar{row} and \ar{col} sub-arguments indicate the position of the current graph in the meta-array; \ar{nrow} and \ar{ncol} give the dimensions of the meta-array, here 2 rows and 1 column; and \ar{more} indicates whether there are more elements of the meta-array after the current graph. \subsubsection{\ar{strip}: Modifying the Text at the Tops of Panels}\label{sec:strip} Lattice graphics with more than one panel typically provide a text label at the top of each panel in an area called the \emph{strip}. The default strip text contains the name of the conditioning predictor and the value to which it is set in the panel; if there are more than one conditioning predictor, then all of their names and corresponding values are shown. For example: <>= plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response")), lines=list(multiline=TRUE, z.var="spp", lty=1:9), lattice=list(layout=c(3, 1), strip=list(factor.names=TRUE, values=TRUE, cex=1.5))) @ \centerline{\includegraphics[width=.85\textwidth]{figure/fig316-1.pdf}} \noindent Setting \code{factor.names=FALSE} (the default is \code{TRUE}) displays only the value, and not the name, of the conditioning predictor in each strip; usually, this is desirable only if the name is too long to fit, in which case you may prefer to rename the predictor. Setting \code{values=FALSE} replaces the conditioning value with a line in the strip that represents the value: The line is at the left of the strip for the smallest conditioning value, at the right for the largest value, and in a proportional intermediate position in between the two extremes. The most generally useful sub-argument is \ar{cex}, which allows you to reduce or expand the relative size of the text in the strip, in this case increasing the size to 150\% of standard size. \subsection{\ar{symbols}: Plotting symbols} Symbols are used to represent adjusted means when the focal predictor is a factor. You can control the symbols used and their relative size: <>= gm5 <- update(gm2, ~ . + spp:s) plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), symbols=list(pch=15:17, cex=1.5), axes=list(grid=TRUE, y=list(type="response"), x=list(rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto"), lattice=list(key.args=list(cex=1.5, cex.title=1.5))) @ \centerline{\includegraphics[width=.95\textwidth]{figure/fig315-1.pdf}} \noindent We use the \ar{pch} sub-argument to set the symbol number for plotted symbols; you can enter the commands \code{plot(1:25, pch=1:25)} and \code{lines(1:25, lty=2, type="h")} to see the 25 plotting symbols in \R{}. The sub-argument \ar{pch} can also be a character vector, such as \code{letters[1:10]}. In this example, we set \code{cex=1.5} to increase the symbol size by the factor 1.5. Because only one value is given, it is recycled and used for all of the symbols. We need to change the size of the symbols in the key separately, as we do here via the \ar{key.args} sub-argument to the \ar{lattice} argument (see Section~\ref{sec:key}). \section{Displaying Residuals in Predictor Effect Plots}\label{sec:res} \citet{fw19b} introduce methodology for adding partial residuals to a predictor effect or effect plot. This can be desirable to display variation in data around a fitted partial regression surface or to diagnose possible lack of fit, as the resulting plots are similar to traditional component-plus-residual plots \citep[Sec.~8.4]{fw19}. The predictor effect plot for a numeric focal predictor that does not interact with other predictors is equivalent to a standard component-plus-residual plot; for example: <>= lm5 <- lm(prestige ~ log(income) + education + women + type, Prestige) plot(predictorEffects(lm5, residuals=TRUE), axes=list(grid=TRUE, x=list(rotate=30)), partial.residuals=list(smooth=TRUE, span=0.75, lty="dashed")) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig51-1.pdf}} \noindent The partial residuals to be plotted are computed using the \ar{residuals} argument to the \fn{predictorEffect}, \fn{predictorEffects}, or \fn{Effect} function. For the numeric predictors \vn{income}, \vn{education}, and \vn{women}, the plotted points are each equal to a point on the fitted blue line, representing the partial fit, plus the corresponding residual. For \vn{income}, the fitted partial-regression line in curved because of the log transformation of the predictor, but the partial-regression function is a straight line for the other two numeric predictors. The dashed line produced by \code{lty="dashed"} in the same magenta color as the plotted points on the graph, is a loess nonparametric-regression smooth of the points. The sub-argument \code{smooth=TRUE} is the default if residuals are present in the effect object to be plotted. The sub-argument \code{span=0.75} adjusts the span of the loess smoother from the default of \code{2/3}---an unnecessary adjustment here specified simply to illustrate how to set the span. If the model adequately represents the data, then the dashed magenta line should approximately match the solid blue partial-regression line, which represents the fitted model. For the factor \vn{type}, the points are jittered horizontally to separate them visually, because the only possible horizontal coordinates are at the three distinct factor levels. Smooths are not fit to factors and instead the conditional means of the partial residuals are plotted as solid magenta dots; in the current model, the magenta dots and the blue dots representing the fitted adjusted means of the response at the levels of \vn{name} necessarily match. The \fn{plot} method for effect objects has a \ar{partial.residuals} argument, with several sub-arguments that control how partial residuals are displayed. In the command above, we used the sub-argument \vn{smooth=TRUE} to add the smoother, which is the default when residuals are included in the effect object, and \ar{lty="dashed"} to change the line type for the smooth from the default solid line to a dashed line. All the \vn{smooth} sub-arguments are described in \code{help("plot.eff")}. For a second example, we fit a linear model with an interaction to the \code{UN} data set in the \pkg{carData} package, modelling national \vn{infantMortality} rate (infant deaths per 1000 live births) as a function of \vn{ppgdp}, per person GDP (in U.S.~dollars), and country \vn{group} (OECD nations, African nations, and other nations). The data are for roughly 200 nations of the world and are from approximately 2009 to 2011: <>= options(scipen=10) # suppress scientific notation lm6 <- lm(infantMortality ~ group*ppgdp, data=UN) plot(predictorEffects(lm6, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25), y=list(lim=c(0, 150))), id=list(n=1), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig52-1.pdf}} \noindent The predictor effect plot for \vn{ppgdp} conditions on the factor \ar{group} because of the interaction between these two predictors. Several problems are apparent in this plot: The \ar{id} argument is used to identify the most unusual point in each panel, as described in detail in \code{help("plot.eff")}. Turkey has higher than predicted infant mortality for the \level{oecd} group; Afghanistan, in the \level{other} group, has infant mortality much higher than predicted; and Equatorial Guinea is clearly unusual for the \level{africa} group. In addition, the smooths through the points do not match the fitted lines in the \level{other} and \level{africa} groups. We use the command \code{options(scipen=10)} to suppress annoying scientific notation in the tick-mark labels on the horizontal axis, and instead rotate these labels so that they fit without over-plotting. Log-transforming both the predictor \vn{ppgdp} and the response \vn{infantMortality} produces a better fit to the data: <>= lm7 <- lm(log(infantMortality) ~ group*log(ppgdp), data=UN) plot(predictorEffects(lm7, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25)), id=list(n=1), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig53-1.pdf}} \noindent Equatorial Guinea is still anomalous, however. Rescaling the vertical axis to arithmetic scale produces a slightly different, but possibly useful, picture: <>= plot(predictorEffects(lm7, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25), y=list(transform=list(trans=log, inverse=exp), type="response", lab="Infant Mortality")), id=list(n=1), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig54-1.pdf}} Partial residuals can be added to effect plots for linear or generalized linear models in the default link scale, and to effect plots for linear or generalized linear mixed models. \subsection{Using the \fn{Effect} Function With Partial Residuals} In most instances, predictor effect plots produced by \fn{predictorEffect} or \fn{predictorEffects} visualize a fitted model in the most natural manner, but sometimes in looking for lack of fit, we want to plot against arbitrary combinations of predictors. The more general \fn{Effect} function is capable of doing that. Recall, for example, the additive model \code{lm2} fit to the \code{Prestige} data: <<>>= S(lm2) @ Plotting partial residuals for the predictors \vn{income} and \vn{type} simultaneously reveals an unmodeled $\vn{income} \times \vn{type}$ interaction: <>= plot(Effect(c("income", "type"), lm2, residuals=TRUE), axes=list(x=list(rotate=30)), partial.residuals=list(span=0.9), layout=c(3, 1)) @ \centerline{\includegraphics[width=0.85\textwidth]{figure/fig55-1.pdf}} \section{Polytomous Categorical Responses} The \pkg{effects} package produces special graphs for ordered and unordered polytomous categorical response variables. In an ordinal regression, the response is an ordered categorical variable with three or more levels. For example, in a study of women's labor force participation that we introduce below, the response is not working outside the home, working part time, or working full time. The proportional-odds model \citep[Sec.~6.9]{fw19} estimates the probability of a response in each of these three categories given a linear combination of regressors defined by a set of predictors, assuming a logit link function. We illustrate the proportional-odds model with the \code{Womenlf} data set in the \pkg{carData} package, for young married Canadian women's labor-force participation, using the \fn{polr} function in the \pkg{MASS} package to fit the model: <<>>= library("MASS") # for polr() Womenlf$partic <- factor(Womenlf$partic, levels=c("not.work", "parttime", "fulltime")) # order response levels or1 <- polr(partic ~ log(hincome) + children, data=Womenlf) S(or1) @ The response variable \code{partic} initially has its levels in alphabetical order, which does not correspond to their natural ordering. We therefore start by reordering the levels to increase from \level{not.work}, to \level{parttime} work, to \level{fulltime} work. The predictors are the numeric variable \vn{hincome} (husband's income), which enters the model in log-scale, and the dichotomous factor \vn{children}, presence of children in the household. The model summary is relatively complex, and is explained in \citet[Sec.~6.9]{fw19}. Predictor effect plots greatly simplify interpretation of the fitted model: <>= plot(predictorEffects(or1), axes=list(grid=TRUE), lattice=list(key.args=list(columns=1))) @ \centerline{\includegraphics[width=.9\textwidth]{figure/fig41-1.pdf}} \noindent Unlike predictor effect plots for generalized linear models, the default scaling for the vertical axis is the probability scale, equivalent to \code{axes=list(y=list(type="response"))} for a GLM, and the alternative is \code{axes=list(y=list(type="logit"))}, which is analogous to \code{type="link"} for a GLM.\footnote{The logits plotted, however, correspond to the individual-level probabilities and are not the ordered logits in the definition of the proportional-odds model.} Confidence bands are present by default, unless turned off with the argument \code{confint=list(style="none")}. Numeric focal predictors are by default evaluated at 50 points. The plot for \vn{hincome} suggests high probability of full-time work if husband's income is low, with the probability of full-time work sharply decreasing to about \$15,000 and then nearly leveling off at about .1 to .2. The probability of not working rapidly increases with husband's income, while the probability of working part time is fairly flat. A similar pattern is apparent for children present in the home, with full-time work much less prevalent and not working much more prevalent when children are present than when they are absent. \emph{Stacked area plots} are sometimes more useful for examining polytomous response models; for example: <>= plot(predictorEffects(or1), axes=list(grid=TRUE, y=list(style="stacked")), lattice=list(key.args=list(columns=1))) @ \centerline{\includegraphics[width=.95\textwidth]{figure/fig62-1.pdf}} \noindent For each fixed value on the horizontal axis, the vertical axis ``stacks" the probabilities in the three response categories. For example, with children absent from the household and \vn{hincome} set to its mean, nearly 30\% of women did not work outside the home, about 20\% worked part time, and the remaining approximate 50\% worked full time. Some ordinal-response models produced by the functions \fn{clm}, \fn{clm2}, and \fn{clmm} in the \pkg{ordinal} package can be used with the \pkg{effects} package. To work with model objects produced by these functions, you must also load the \pkg{MASS} package. The \pkg{effects} package can also draw similar graphs for the more general multinomial logit model, in which the polytomous categorical response has unordered levels \citep[see][Sec.~6.7]{fw19}. The details of the model, its parameters, and its assumptions are different from those of the proportional-odds model and other ordered-response models, but predictor effect plots for these models are similar. As an example, we use the \code{BEPS} data set in the \pkg{carData} package, consisting of about 1,500 observations from the 1997-2001 British Election Panel Study. The response variable, \vn{vote}, is party choice, one of \level{Liberal Democrat}, \level{Labour}, or \level{Conservative}. There are numerous predictors of \vn{vote} in the data set, and we fit the model <<>>= library("nnet") # for multinom() mr1 <- multinom(vote ~ age + gender + economic.cond.national + economic.cond.household + Blair + Hague + Kennedy + Europe*political.knowledge, data=BEPS) @ There are nine predictors, seven of which are scales with values between 0 and 5 concerning respondents' attitudes; these predictors enter the model as main effects. The remaining two predictors are scales between 0 and 3 for \code{political.knowledge} and between 1 and 11 for \code{Europe} (attitude toward European integration of the UK in the European Union, with high values representing ``Euroscepticism'', a \emph{negative} attitude toward Europe); these predictors enter the model with a two-factor interaction. Drawing all nine predictor effect plots simultaneously is not a good idea because the plots won't fit reasonably in a single display. We therefore draw only a few of the plots at a time: <>= plot(predictorEffects(mr1, ~ age + Blair + Hague + Kennedy), axes=list(grid=TRUE, x=list(rug=FALSE)), lattice=list(key.args=list(columns=1)), lines=list(multiline=TRUE, col=c("blue", "red", "orange"))) @ \centerline{\includegraphics[width=.9\textwidth]{figure/fig42-1.pdf}} \noindent We use optional arguments to get a multiline plot, with a grid and no rug plot, and to modify the key. The color specification for the lines represents the traditional colors of the three parties. Interpreting these plots is challenging: For example, the probability of voting Labour decreases with age, increases with attitude toward the Labour leader Blair, strongly decreases with attitude toward the Conservative leader Hague, and is relatively unaffected by attitude toward the Liberal Democrat leader Kennedy. In general, a positive attitude toward a party leader increases the probability of voting for that leader's party, as one would expect. Of course, the causal direction of these relationships is unclear. We next turn to the interaction between \vn{Europe} and \vn{political.knowledge}, this time drawing stacked area displays: <>= plot(predictorEffects(mr1, ~ Europe + political.knowledge, xlevels=list(political.knowledge=0:3, Europe=c(1, 6, 11))), axes=list(grid=TRUE, x=list(rug=FALSE, Europe=list(ticks=list(at=c(1, 6, 11))), political.knowledge=list(ticks=list(at=0:3))), y=list(style="stacked")), lines=list(col=c("blue", "red", "orange")), lattice=list(key.args=list(columns=1), strip=list(factor.names=FALSE))) @ \centerline{\includegraphics[width=\textwidth]{figure/fig43-1.pdf}} \noindent The \ar{lines} argument is used to specify the colors for the stacked areas representing the parties. Both effect plots are of nearly the same fitted values,\footnote{Not exactly the same because in each plot the focal predictor takes on 50 values and the conditioning predictor 3 or 4 values.} in the first graph with \code{Europe} varying and conditioning on \code{political.knowledge}, and in the second with \code{political.knowledge} varying and conditioning on \code{Europe}. Setting \code{strip=} \code{list(factor.names=FALSE)} suppresses the names of the conditioning predictor in each effect plot; these names are too long for the strips at the tops of the panels. From the first graph, preference for the Conservative Party increases with \vn{Europe} for respondents with high political knowledge, but not for those with low political knowledge. More generally, voters with high political knowledge are more likely to align their votes with the positions of the parties, Eurosceptic for the Convervatives, pro-Europe for Labour and the Liberal Democrats, than are voters with low political knowledge. \section{The Lattice Theme for the effects Package} The \pkg{effects} package uses the \fn{xyplot} and \fn{barchart} functions in the standard \pkg{lattice} package \citep{sarkar08} to draw effect plots. The \pkg{lattice} package has many options for customizing the appearance of graphs that are collected into a \emph{lattice theme}. We created a custom theme for use with the \pkg{effects} package that automatically supersedes the default Lattice theme when the \pkg{effects} package is loaded, \emph{unless the} \pkg{lattice} \emph{package has been previously loaded}. You can invoke the \pkg{effects} package theme directly by the command <>= effectsTheme() @ You can also customize the \pkg{effects} package Lattice theme; see \code{help("effectsTheme")}. Finally, because \fn{plot} methods in the \pkg{effects} package return lattice objects, these objects can be edited and manipulated in the normal manner, for example by functions in the \pkg{latticeExtra} package \citep{SarkarAndrews2016}. \bibliography{predictor-effects-gallery} \end{document} effects/NEWS0000644000176200001440000003063613563356333012412 0ustar liggesusersVersion 4.1-4 o Change class(x) == "y" to inherits(x, "y") in code. Version 4.1-3 o Handle xlevels=n argument correctly in Effect() (fixing bug reported by Gerrit Eichner). o Add col argument to effectsTheme(), mostly to accommodate colorblind-friendly palette (suggestion of Sercan Kahveci). Version 4.1-2 o Effect methods for clm, clm2, and clmm models were not correctly passing the estimated theshholds to polr for computing effects (error reported by Stefan Th. Gries). o Updated "Defining Effects Methods ..." vignette to reflect revisions to Effect.clm, Effect.clm2 and Effect.clmm. o Make sure that Effect() and plot() methods work correctly with character and logical predictors (following bug report by Julian Gaviria Lopez). Version 4.1-1 o Accommodate character and logical predictors. o Make sure that lty argument to plot() is not ignored. o Change behavior of default levels argument to predictorEffect.default() and predictorEffects.default() when residuals=TRUE to match that of Effect.lm(). o Fix to Effect.default() to make fake glm fit more robust and fixed bug in .set.given.equal() in tests for model class. Version 4.1-0 o Fixed a bug in Effect.gls to ignore the 'weights' argument on the call to gls. o Added predictor effects graphics gallery vignette. o predictorEffect() and predictorEffects() have new xlevels and focal.levels arguments. o Removed the transform argument from as.data.frame.eff(), and added type argument. Made the transformation argument to Effect() a legacy argument and added transform as sub-argument to axes=list(y=list(transform=...)) in plot.eff(). o Rearanged man files. o Extend use of cex sub-args for x and y axes and lattice strips to plot.effpoly(). o Avoid warnings when testing given.values == "default" or "equal". o Modified plot.effpoly() so that multiline plots don't show confidence limits by default, and so that confidence bars for a factor are staggered. o Added effectsHexsticker(). o Fixed bug in plotting partial residuals when a factor focal predictor had empty levels. o Small fixes and improvements. Version 4.0-3 o xlevels argument now works with predictorEffects. o Added cex sub-args for x and y axes (suggestion of Charles Leger) and for lattice strips. o modified .onAttach() so that trellis device doesn't open, suggestion of Kurt Hornik. Version 4.0-2 o Fixed bug with offsets in predictorEffects and a bug with variances in Effect.default. o Support partial-residual plots when the predictor on the horizontal axis is a factor. o For nonstandard models like lme, the weights argument was obtained from the call that created the object. This argument was never used by effects, and caused an error with lme models that used weights. The weights argument is now ignored. o Fixed a bug due to new complete arg in vcov.lm() and vcov.glm(). o lty was ignored for multiplot with factor on x-axis; now fixed (reported by Krisztian Magori). o Small fixes and improvements. Version 4.0-1 o Replaced the Effect.default method so it is easier to write new methods. o Added estimability check for linear models and glims. Fixed bugs in plot with rank deficient models. o Repaired clm, clmm and clm2 methods that were broken. o Fixed a bug in predictorEffects with polym use to specify multivariate polynomials. o Replace confint and partial.residuals argument to Effect() with se and residuals; confint and partial.residuals now legacy arguments. o Small fixes/improvements. Version 4.0-0 o This is a major update of the effects package. o Moved data sets to the carData package. o Introduced predictor effects. o Reorganized complex arguments to plot() and Effect() into lists; legacy arguments retained as alternatives. o Use lattice theme for plot defaults. o Improve generation of default values for numeric predictors. o Methods for "svyglm" objects. o New vignette on partial residuals with contrived data. o Various small improvements and fixes. Version 3.1-3 o Fixed bug in using multiline=TRUE with effects with 4 or more terms o Fixed a bug in Effect.clmm, Effect.mer, and Effect.lme that caused failure with a data.frame named m o Fixed bug in Effect.clmm and Effect.clmm2 o Improved stability of handling linear and generalized linear mixed effects models from lme4 and nlme o Fixed bug in plot.eff() affecting multiline displays with four or more predictors in the effect. o Fixed warnings (new in R 3.4.0) produced by use of 1 x 1 arrays in computing SEs of effects for multinom and polr model (problem reported by Stefan Th. Gries). Version 3.1-2 o Fixed bug handling 'start' argument in glmm's. Reported by Mariano Devoto; fix by Ben Bolker o Modified internal function make.ticks() so that it doesn't fail due to floating-point inaccuracy (following error reported by Joe Clayton Ford). o Check formula for presence of factor(), etc. (suggestion of Ulrike Gromping). o Fixed bug in Effect.clm() and some other methods (reported by David Barron), which didn't pass ... argument. o A warning is now printed if partial residuals are requested in a multiline plot. o Corrected plotting of partial residuals with various scalings of the y-axis and x-axis. o Added show.strip.values argument to plot.eff() and plot.effpoly(). Version 3.1-1 o Requires R >= 3.2.0 (requested by CRAN). Version 3.1-0 o Corrected and improved computation of partial residuals, fixing bug introduced by bug fix in 3.0-7. Version 3.0-7 o Extends to logistic ordinal response models fit using 'clm' and 'clmm' in the 'ordinal package. o Fixed bug in handling of terms like polynomials in non-focal covariates (reported by Urs Kalbitzer). o Added package tests. Version 3.0-6 o Fix bug in Effect for mer objects with 'poly' in the formula (and related issues). o Allow "||" in variance formulae in lmer4 models. o Minor bug in handling class=="array" in the Effect() method. Version 3.0-5 o Fixed bug when the name of the data frame is the name of function like "sort" in mixed-effects models with lme4 (problem originally reported by Saudi Sadiq). o Fixed bug in predictor-name matching that could occur in names with periods (reported by Trevor Avery). o Fixed package imports to conform to new CRAN rules. o Added residuals.cex argument to plot.eff(). o Changes to work with pbkrtest 0.4-4. Version 3.0-4 o New default of KR=FALSE because KR=TRUE can be very slow. o KR argument now works correctly with allEffects(). o Mixed models with negative binomial did not work and now they do. o Added methods for ordinal mixed models using 'clmm2' for the ordinal package. o Moved pbkrtest to Suggests (wasn't done properly previously). o Tweak to handling key.args (suggestion of Michael Friendly). o Use non-robust loess smooth for partial residuals from non-Gaussian GLMs. o Rationalized type and rescale.axis arguments to plot.eff(); scale.axis argument is deprecated. o Added setStrip() and restoreStrip() to control colors of lattice strips and make beginning and ending conditioning lines clearer. o Added residuals.smooth.color argument to plot.eff(). o Cleaned up sources to conform to CRAN requirements. Version 3.0-3 o Made key.args argument to plot.eff() and plot.effpoly() more flexible (suggestion of Ian Kyle). o Moved pbkrtest package to Suggests and adjusted code for mixed models accordingly, to accomodate Debian (request of Dirk Eddelbuettel). o Fixed \dont-test{} examples. Version 3.0-2 o plot.eff() honors rescale.axis=FALSE when plotting partial residuals (bug reported by Alexander Wietzke). o Effect.mer() can use KR coefficient covariances to construct CIs for effects in LMMs. o Modernized package dependencies/namespace. Version 3.0-1 o Added an argument vcov. to Effect and effect (and allEffects) to select a function for computing the variance covariance matrix of the coefficient estimates. The default is the usual `vcov` fucntion. o Added a warning to the documentation for effect for using predictors of class "dates" or "times". o Fixed bug in Effect.gls() when var or cor function depends on variables in the data set (reported by Felipe Albornoz). o Small fixes/improvements. Version 3.0-0 o Added partial residuals for multidimensional component+residual plots to Effect.lm(). o Small bug fixes. Version 2.3-0 o removed stray character in a the mixed models file o ci.style="bands" is now the default for variates on the horizontal axis and can also be used with multiline=TRUE o Added ci.style='bands', band.transparency, band.colors, and lwd to plot.effpoly() for line plots to give filled confidence bands and control line width o Added Effect.mlm() for multivariate linear models o Interpolating splines are now used by default when drawing lines in effects plots unless the argument use.splines=FALSE o effect() now calls Effect(); all effect() methods are removed, but effect() will continue to work as before. o Various methods for effect objects now handle factors with a "valid" NA level (fixing bug reported by Joseph Larmarange). o Further bug fixes in effects.mer() and effects.lme() (following bug report by Felipe E. Albornoz). Version 2.2-6 o bug fixes in effects.mer and effects.lme. o added terms.gls() to make effect.gls() and Effect.gls() work again. o plot.eff() gains an lwd= option to control the width of fitted lines. o Added ci.style='bands' and alpha= to plot.eff() for non-multiline plots to give filled confidence bands. Version 2.2-5 o Added support for polytomous latent class analysis based on the poLCA package. o Modified mixed-model methods to all use in user-functions. o Changed the default method for determining number of levels for a continuous predictor; see help page for 'effect' and discussion of the 'xlevels' argument for details. Argument 'default.levels', while still included for compatibility, is depricated. o Added .merMod methods for development version of lme4. o Added support for lme4.0. o Fixed bug preventing restoration of warn option (reported by Kenneth Knoblauch). o Fixed handling of ticks.x argument to plot.eff() and plot.effpoly(), now works as advertized. o Adjusted package dependencies, imports for CRAN checks. o Changed name of Titanic dataset to TitanicSurvival to avoid name clash (request of Michael Friendly). o Minor fixes. Version 2.2-4 o Add argument 'ci.style' to plot.eff() and plot.eff() to allow confidence intervals to be displayed as lines or using error bars. Confidence bars are permitted on multiline plots (after suggestion by Steve Taylor). o Allow empty cells with crossed factors for lm, glm and multinom. o Added warning about logical predictors (suggestion of Kazuki Yoshida). Version 2.2-3 o Fixed bugs in axis scaling and xlim specification (reported by Achim Zeileis). o Small changes for compatability with R 2.16.0. Version 2.2-2 o Use asymptotic normal to get confidence limits for mer and lme objects o Correct effects.lme to work with weights o Added Effect.mer(), Effect.lme(), Effect.gls(), Effect.multinom(), and Effect.polr() methods. o Safe predictions simplified in effect.multinom() and effect.polr(). o plot() methods for eff and effpoly objects permit predictor transformations. o Added as.data.frame.eff(), as.data.frame.effpoly(), and as.data.frame.efflatent (suggestion of Steve Taylor). o Small bug fixes. Version 2.2-1 o Some examples wrapped in \donttest{} to decrease package check time. Version 2.2-0 o Introduced more flexible Effect() generic, along with Effect.lm() method for linear and generalized linear models. o Default is now ask=FALSE for plot.efflist(). o globalVariables("wt") declared for R 2.15.1 and above. o Small bug fixes. Version 2.1-2 o Offsets for linear and generalized linear (and mixed) models are now supported. o cbind(successes, failures) now supported for binomial generalized linear (and mixed) models. Version 2.1-1 o plot.effpoly() now honors ylim argument when no confidence intervals are plotted (fixing problem reported by Achim Zeileis). o safe predictions simplified in effect.lm(), producing correct results for mixed models (other methods to follow). o plot.eff() now honors type argument. o nlme and lme4 moved to Suggests. o effect() now works when options(OutDec= ',') (suggestion of Guomundur Arnkelsson). Version 2.1-0 o added support for 'mer' objects from lme4 and 'lme' objects from 'nlme'. Added 'rotx', 'roty' and 'grid' arguments to the plot methods. o See CHANGES file for changes to older versions. effects/R/0000755000176200001440000000000013563357015012102 5ustar liggesuserseffects/R/Effect.mlm.R0000644000176200001440000000302413156521636014204 0ustar liggesusers# Calculate Effects for term(s) in a Multivariate Linear Model # 2014-03-12: Introduced allEffects.mlm(). J. Fox Effect.mlm <- function(focal.predictors, mod, response, ...) { if (missing(response)) { mod.frame <- model.frame(mod) response <- colnames(model.response(mod.frame)) } else if (is.numeric(response)) { mod.frame <- model.frame(mod) response.names <- colnames(model.response(mod.frame)) response <- response.names[response] } if (length(response)==1) { mod.1 <- update(mod, as.formula(paste(response, " ~ ."))) result <- Effect(focal.predictors, mod.1, ...) } else { result <- as.list(NULL) for (resp in response) { mod.1 <- update(mod, as.formula(paste(resp, " ~ ."))) lab <- resp result[[lab]] <- Effect(focal.predictors, mod.1, ...) } class(result) <- "efflist" } result } allEffects.mlm <- function(mod, ...){ result <- NextMethod() class(result) <- "mlm.efflist" result } plot.mlm.efflist <- function(x, ...){ x <- do.call(c, x) class(x) <- "efflist" plot(x, ...) } summary.mlm.efflist <- function(object, ...){ object <- do.call(c, object) for (effect in names(object)){ cat("\n\nResponse:", object[[effect]]$response, "\n") print(summary(object[[effect]], ...)) } } print.mlm.efflist <- function(x, ...){ x <- do.call(c, x) for (effect in names(x)){ cat("\n\nResponse:", x[[effect]]$response, "\n") print(x[[effect]], ...) } invisible(x) } effects/R/effectsHexsticker.R0000644000176200001440000000017513356162325015677 0ustar liggesuserseffectsHexsticker <- function(){ browseURL(paste0("file://", system.file("doc", "effects-hex.pdf", package="effects"))) }effects/R/plot.effpoly.R0000644000176200001440000013376513356005573014664 0ustar liggesusers# Plot method for effpoly objects # modified by Michael Friendly: added ci.style="bands" & alpha.band= arg # modified by Michael Friendly: added lwd= argument for llines (was lwd=2) # 2013-11-06: fixed drop dimension when only one focal predictor. John # 2014-10-10: namespace fixes. John # 2014-12-05: made key.args more flexible. John # 2014-03-22: use wide columns by default only when x for legend not set. J. Fox # 2016-09-08: added show.strip.values argument to plot.effpoly(). J. Fox # 2017-08-16: modified plot.effpoly() to consolidate arguments and use lattice theme. J. Fox # 2017-08-20: reintroduce legacy arguments for plot.effpoly() # 2017-08-20: introduced multiline argument under lines argument and as a "legacy" argument # 2017-09-10: use replacement for grid.panel() # 2017-11-22: added a check for non-estimable factor combinations with style="stacked" # 2018-01-02, 2018-01-30: changed defaults for key.args, lines 140-141 # 2018-02-09: Use one-column key for stacked plot. # 2018-02-28: Fix handling of rug arg (error reported by Dave Armstrong). # 2018-07-08: add cex sub-args for x and y axes (suggestion of Charles Leger). # 2018-07-08: add cex sub-arg for strips. # 2018-10-05: modified plot.effpoly() so that multiline plots don't show confidence limits # by default, and so that confidence bars for a factor are staggered. plot.effpoly <- function(x, x.var=which.max(levels), main=paste(effect, "effect plot"), symbols=TRUE, lines=TRUE, axes, confint, lattice, ..., # legacy arguments: type, multiline, rug, xlab, ylab, colors, cex, lty, lwd, factor.names, show.strip.values, ci.style, band.colors, band.transparency, style, transform.x, ticks.x, xlim, ticks, ylim, rotx, roty, alternating, grid, layout, key.args, use.splines){ if (!is.logical(lines) && !is.list(lines)) lines <- list(lty=lines) lines <- applyDefaults(lines, defaults=list(lty=trellis.par.get("superpose.line")$lty, lwd=trellis.par.get("superpose.line")$lwd[1], col=NULL, splines=TRUE, multiline=FALSE), arg="lines") if (missing(multiline)) multiline <- lines$multiline if (missing(lwd)) lwd <- lines$lwd if (missing(use.splines)) use.splines <- lines$splines lines.col <- lines$col lines <- if (missing(lty)) lines$lty else lty if (!is.logical(symbols) && !is.list(symbols)) symbols <- list(pch=symbols) symbols <- applyDefaults(symbols, defaults= list( pch=trellis.par.get("superpose.symbol")$pch, cex=trellis.par.get("superpose.symbol")$cex[1]), arg="symbols") cex <- symbols$cex symbols <- symbols$pch if (missing(axes)) axes <- NULL axes <- applyDefaults(axes, defaults=list( x=list(rotate=0, cex=1, rug=TRUE), y=list(lab=NULL, lim=c(NA, NA), ticks=list(at=NULL, n=5), type="probability", rotate=0, cex=1), alternating=TRUE, grid=FALSE), arg="axes") x.args <- applyDefaults(axes$x, defaults=list(rotate=0, cex=1, rug=TRUE), arg="axes$x") if (missing(xlab)) { xlab.arg <- FALSE xlab <- list() } if (missing(xlim)) { xlim.arg <- FALSE xlim <- list() } if (missing(ticks.x)) { ticks.x.arg <- FALSE ticks.x <- list() } if (missing(transform.x)) { transform.x.arg <- FALSE transform.x <- list() } if (missing(rotx)) rotx <- x.args$rotate if (missing(rug)) rug <- x.args$rug cex.x <- x.args$cex x.args$rotate <- NULL x.args$rug <- NULL x.args$cex <- NULL x.pred.names <- names(x.args) if (length(x.pred.names) > 0){ for (pred.name in x.pred.names){ x.pred.args <- applyDefaults(x.args[[pred.name]], defaults=list(lab=NULL, lim=NULL, ticks=NULL, transform=NULL), arg=paste0("axes$x$", pred.name)) if (!xlab.arg) xlab[[pred.name]] <- x.pred.args$lab if (!xlim.arg) xlim[[pred.name]] <- x.pred.args$lim if (!ticks.x.arg) ticks.x[[pred.name]] <- x.pred.args$ticks if (!transform.x.arg) transform.x[[pred.name]] <- x.pred.args$transform } } if (length(xlab) == 0) xlab <- NULL if (length(xlim) == 0) xlim <- NULL if (length(ticks.x) == 0) ticks.x <- NULL if (length(transform.x) == 0) transform.x <- NULL y.args <- applyDefaults(axes$y, defaults=list(lab=NULL, lim=c(NA, NA), ticks=list(at=NULL, n=5), type="probability", style="lines", rotate=0, cex=1), arg="axes$y") if (missing(ylim)) ylim <- y.args$lim if (missing(ticks)) ticks <- y.args$ticks if (missing(type)) type <- y.args$type type <- match.arg(type, c("probability", "logit")) if (missing(ylab)) ylab <- y.args$lab if (is.null(ylab)) ylab <- paste0(x$response, " (", type, ")") if (missing(roty)) roty <- y.args$rotate cex.y <- y.args$cex if (missing(alternating)) alternating <- axes$alternating if (missing(grid)) grid <- axes$grid if (missing(style)) style <- match.arg(y.args$style, c("lines", "stacked")) if (missing(colors)) colors <- if (is.null(lines.col)){ if (style == "lines" || x$model == "multinom") trellis.par.get("superpose.line")$col else sequential_hcl(length(x$y.levels)) } else { lines.col } if (missing(confint)) confint <- NULL confint <- applyDefaults(confint, defaults=list(style=if (style == "lines" && !multiline && !is.null(x$se.prob)) "auto" else "none", alpha=0.15, col=colors), onFALSE=list(style="none", alpha=0, col="white"), arg="confint") if (missing(ci.style)) ci.style <- confint$style if (missing(band.transparency)) band.transparency <- confint$alpha if (missing(band.colors)) band.colors <- confint$col if(!is.null(ci.style)) ci.style <- match.arg(ci.style, c("auto", "bars", "lines", "bands", "none")) confint <- confint$style != "none" if (is.null(multiline)) multiline <- if (confint) FALSE else TRUE effect.llines <- llines has.se <- !is.null(x$confidence.level) if (confint && !has.se) stop("there are no confidence limits to plot") if (style == "stacked"){ if (type != "probability"){ type <- "probability" warning('type set to "probability" for stacked plot') } if (confint){ confint <- FALSE warning('confint set to FALSE for stacked plot') } ylim <- c(0, 1) } if (missing(lattice)) lattice <- NULL lattice <- applyDefaults(lattice, defaults=list( layout=NULL, #key.args=list(), #New default added 1/2/2017 by sw strip=list(factor.names=TRUE, values=TRUE, cex=1), array=list(row=1, col=1, nrow=1, ncol=1, more=FALSE), arg="lattice" )) lattice$key.args <- applyDefaults(lattice$key.args, defaults=list( space="top", border=FALSE, fontfamily="sans", cex=.75, cex.title=1, arg="key.args" )) if (missing(layout)) layout <- lattice$layout if (missing(key.args)) key.args <- lattice$key.args strip.args <- applyDefaults(lattice$strip, defaults=list(factor.names=TRUE, values=TRUE, cex=1), arg="lattice$strip") factor.names <- strip.args$factor.names if (missing(show.strip.values)) show.strip.values <- strip.args$values cex.strip <- strip.args$cex height.strip <- max(1, cex.strip) array.args <- applyDefaults(lattice$array, defaults=list(row=1, col=1, nrow=1, ncol=1, more=FALSE), arg="lattice$array") row <- array.args$row col <- array.args$col nrow <- array.args$nrow ncol <- array.args$ncol more <- array.args$more .mod <- function(a, b) ifelse( (d <- a %% b) == 0, b, d) .modc <- function(a) .mod(a, length(colors)) .mods <- function(a) .mod(a, length(symbols)) .modl <- function(a) .mod(a, length(lines)) effect <- paste(sapply(x$variables, "[[", "name"), collapse="*") split <- c(col, row, ncol, nrow) n.predictors <- length(names(x$x)) y.lev <- x$y.lev n.y.lev <- length(y.lev) ylevel.names <- make.names(paste("prob",y.lev)) colnames(x$prob) <- colnames(x$logit) <- ylevel.names if (has.se){ colnames(x$lower.logit) <- colnames(x$upper.logit) <- colnames(x$lower.prob) <- colnames(x$upper.prob)<- ylevel.names } x.frame <-as.data.frame(x) predictors <- names(x.frame)[1:n.predictors] levels <- if (n.predictors==1) length (x.frame[,predictors]) else sapply(apply(x.frame[, predictors, drop=FALSE], 2, unique), length) if (is.character(x.var)) { which.x <- which(x.var == predictors) if (length(which.x) == 0) stop(paste("x.var = '", x.var, "' is not in the effect.", sep="")) x.var <- which.x } x.vals <- x.frame[, names(x.frame)[x.var]] response <- matrix(0, nrow=nrow(x.frame), ncol=n.y.lev) for (i in 1:length(x$y.lev)){ level <- which(colnames(x$prob)[i] == ylevel.names) response[,i] <- rep(x$y.lev[level], length(response[,i])) } prob <- as.vector(x$prob) logit <- as.vector(x$logit) response <- as.vector(response) if (has.se){ lower.prob <- as.vector(x$lower.prob) upper.prob <- as.vector(x$upper.prob) lower.logit <- as.vector(x$lower.logit) upper.logit <- as.vector(x$upper.logit) } response <- factor(response, levels=y.lev) Data <- data.frame(prob, logit) if (has.se) Data <- cbind(Data, data.frame(lower.prob, upper.prob, lower.logit, upper.logit)) Data[[x$response]] <- response for (i in 1:length(predictors)){ Data <- cbind(Data, x.frame[predictors[i]]) } levs <- levels(x$data[[predictors[x.var]]]) n.predictor.cats <- sapply(Data[, predictors[-c(x.var)], drop=FALSE], function(x) length(unique(x))) if (length(n.predictor.cats) == 0) n.predictor.cats <- 1 ci.style <- if(is.null(ci.style) || ci.style == "auto") { if(is.factor(x$data[[predictors[x.var]]])) "bars" else "bands"} else ci.style if( ci.style=="none" ) confint <- FALSE ### no confidence intervals if confint == FALSE or ci.style=="none" if (!confint){ # plot without confidence bands if (style == "lines"){ # line plot if (!multiline){ layout <- if(is.null(layout)) c(prod(n.predictor.cats), length(levels(response)), 1) else layout ### factor if (is.factor(x$data[[predictors[x.var]]])){ # x-variable a factor range <- if (type=="probability") range(prob, na.rm=TRUE) else range(logit, na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) levs <- levels(x$data[[predictors[x.var]]]) if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ as.numeric(", predictors[x.var],") |", x$response) else paste("prob ~ as.numeric(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"), paste("*", x$response))) else parse(text=if (n.predictors==1) paste("logit ~ as.numeric(", predictors[x.var],") |", x$response) else paste("logit ~ as.numeric(", predictors[x.var],")|", paste(predictors[-x.var], collapse="*"), paste("*", x$response)))), par.strip.text=list(cex=0.8), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, x.vals, rug, ... ){ if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at) good <- !is.na(y) effect.llines(x[good], y[good], lwd=lwd, type="b", pch=19, col=colors[1], cex=cex, ...) subs <- subscripts+as.numeric(rownames(Data)[1])-1 }, ylab=ylab, ylim=if (is.null(ylim)) if (type == "probability") range(prob) else range(logit) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], main=main, x.vals=x$data[[predictors[x.var]]], rug=rug, scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } else { # x-variable numeric if(use.splines) effect.llines <- spline.llines # added 10/17/13 range <- if (type=="probability") range(prob, na.rm=TRUE) else range(logit, na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) nm <- predictors[x.var] x.vals <- x$data[[nm]] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range.adj(Data[nm]) # range(x.vals) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ trans(", predictors[x.var],") |", x$response) else paste("prob ~ trans(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"), paste("*", x$response))) else parse(text=if (n.predictors==1) paste("logit ~ trans(", predictors[x.var],") |", x$response) else paste("logit ~ trans(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"), paste("*", x$response))) ), par.strip.text=list(cex=0.8), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, x.vals, rug, ... ){ if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at) if (rug) lrug(trans(x.vals)) good <- !is.na(y) effect.llines(x[good], y[good], lwd=lwd, col=colors[1], ...) subs <- subscripts+as.numeric(rownames(Data)[1])-1 }, ylab=ylab, xlim=suppressWarnings(trans(xlm)), ylim= if (is.null(ylim)) if (type == "probability") range(prob) else range(logit) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], main=main, x.vals=x$data[[predictors[x.var]]], rug=rug, scales=list(y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), alternating=alternating), layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } } else { layout <- if (is.null(layout)){ lay <- c(prod(n.predictor.cats[-(n.predictors - 1)]), prod(n.predictor.cats[(n.predictors - 1)]), 1) if (lay[1] > 1) lay else lay[c(2, 1, 3)] } else layout if (n.y.lev > min(c(length(colors), length(lines), length(symbols)))) warning('Colors, lines and symbols may have been recycled') range <- if (type=="probability") range(prob, na.rm=TRUE) else range(logit, na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) if (is.factor(x$data[[predictors[x.var]]])){ # x-variable a factor key <- list(title=x$response, cex.title=1, border=TRUE, text=list(as.character(unique(response))), lines=list(col=colors[.modc(1:n.y.lev)], lty=lines[.modl(1:n.y.lev)], lwd=lwd), points=list(pch=symbols[.mods(1:n.y.lev)], col=colors[.modc(1:n.y.lev)]), columns = if ("x" %in% names(key.args)) 1 else find.legend.columns(length(n.y.lev), space=if("x" %in% names(key.args)) "top" else key.args$space)) for (k in names(key.args)) key[k] <- key.args[k] if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ as.numeric(", predictors[x.var], ")") else paste("prob ~ as.numeric(", predictors[x.var],") | ", paste(predictors[-x.var], collapse="*"))) else parse(text=if (n.predictors==1) paste("logit ~ as.numeric(", predictors[x.var], ")") else paste("logit ~ as.numeric(", predictors[x.var],") | ", paste(predictors[-x.var], collapse="*")))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, rug, z, x.vals, ...){ if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at) for (i in 1:n.y.lev){ sub <- z[subscripts] == y.lev[i] good <- !is.na(y[sub]) effect.llines(x[sub][good], y[sub][good], lwd=lwd, type="b", col=colors[.modc(i)], lty=lines[.modl(i)], pch=symbols[i], cex=cex, ...) } }, ylab=ylab, ylim= if (is.null(ylim)) if (type == "probability") range(prob) else range(logit) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], x.vals=x$data[[predictors[x.var]]], rug=rug, z=response, scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), main=main, key=key, layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } else { # x-variable numeric if(use.splines) effect.llines <- spline.llines # added 10/17/13 range <- if (type=="probability") range(prob, na.rm=TRUE) else range(logit, na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) nm <- predictors[x.var] x.vals <- x$data[[nm]] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range.adj(Data[nm]) # range(x.vals) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } key <- list(title=x$response, cex.title=1, border=TRUE, text=list(as.character(unique(response))), lines=list(col=colors[.modc(1:n.y.lev)], lty=lines[.modl(1:n.y.lev)], lwd=lwd), columns = if ("x" %in% names(key.args)) 1 else find.legend.columns(length(n.y.lev), space=if("x" %in% names(key.args)) "top" else key.args$space)) for (k in names(key.args)) key[k] <- key.args[k] if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ trans(", predictors[x.var], ")") else paste("prob ~ trans(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"))) else parse(text=if (n.predictors==1) paste("logit ~ trans(", predictors[x.var], ")") else paste("logit ~ trans(", predictors[x.var],") | ", paste(predictors[-x.var], collapse="*")))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, rug, z, x.vals, ...){ if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at) if (rug) lrug(trans(x.vals)) for (i in 1:n.y.lev){ sub <- z[subscripts] == y.lev[i] good <- !is.na(y[sub]) effect.llines(x[sub][good], y[sub][good], lwd=lwd, type="l", col=colors[.modc(i)], lty=lines[.modl(i)], ...) } }, ylab=ylab, xlim=suppressWarnings(trans(xlm)), ylim= if (is.null(ylim)) if (type == "probability") range(prob) else range(logit) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], x.vals=x$data[[predictors[x.var]]], rug=rug, z=response, scales=list(x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), main=main, key=key, layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } } } else { # stacked plot tickmarks <- make.ticks(c(0, 1), link=I, inverse=I, at=ticks$at, n=ticks$n) layout <- if (is.null(layout)){ lay <- c(prod(n.predictor.cats[-(n.predictors - 1)]), prod(n.predictor.cats[(n.predictors - 1)]), 1) if (lay[1] > 1) lay else lay[c(2, 1, 3)] } else layout if (n.y.lev > length(colors)) stop(paste('Not enough colors to plot', n.y.lev, 'regions')) key <- list(text=list(lab=rev(y.lev)), rectangle=list(col=rev(colors[1:n.y.lev])), columns = 1) # if ("x" %in% names(key.args)) 1 else # find.legend.columns(length(n.y.lev), # space=if("x" %in% names(key.args)) "top" else key.args$space)) for (k in names(key.args)) key[k] <- key.args[k] if (is.factor(x$data[[predictors[x.var]]])){ # x-variable a factor # 11/22/17 check for rank deficient models and if found stop if(any(is.na(Data$prob))) stop("At least one combination of factor levels is not estimable.\n Stacked plots are misleading, change to style='lines'") result <- barchart(eval(parse(text=if (n.predictors == 1) paste("prob ~ ", predictors[x.var], sep="") else paste("prob ~ ", predictors[x.var]," | ", paste(predictors[-x.var], collapse="*")))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, ...){ panel.barchart(x, y, ...) if (grid) ticksGrid(x=NA, y=tickmarks$at, col="white") }, groups = response, col=colors, horizontal=FALSE, stack=TRUE, data=Data, ylim=ylim, # if (is.null(ylim)) 0:1 else ylim, ylab=ylab, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], scales=list(x=list(rot=rotx, at=1:length(levs), labels=levs, cex=cex.x), y=list(rot=roty, at=tickmarks$at, labels=tickmarks$labels, cex=cex.y), alternating=alternating), main=main, key=key, layout=layout) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } else { # x-variable numeric if(use.splines) effect.llines <- spline.llines # added 10/17/13 nm <- predictors[x.var] x.vals <- x$data[[nm]] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range.adj(Data[nm]) # range(x.vals) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } if (show.strip.values){ for (pred in predictors[-x.var]){ x$x[[pred]] <- as.factor(x$x[[pred]]) } } result <- densityplot(eval(parse(text=if (n.predictors == 1) paste("~ trans(", predictors[x.var], ")", sep="") else paste("~ trans(", predictors[x.var], ") | ", paste(predictors[-x.var], collapse="*")))), probs=x$prob, strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel = function(x, subscripts, rug, x.vals, probs=probs, col=colors, ...){ fill <- function(x, y1, y2, col){ if (length(y2) == 1) y2 <- rep(y2, length(y1)) if (length(y1) == 1) y1 <- rep(y1, length(y2)) panel.polygon(c(x, rev(x)), c(y1, rev(y2)), col=col) } n <- ncol(probs) Y <- t(apply(probs[subscripts,], 1, cumsum)) fill(x, 0, Y[,1], col=col[1]) for (i in 2:n){ fill(x, Y[,i-1], Y[,i], col=col[i]) } if (rug) lrug(trans(x.vals)) if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at, col="white") }, rug=rug, x.vals=x$data[[predictors[x.var]]], data=x$x, xlim=suppressWarnings(trans(xlm)), ylim= c(0, 1), # if (is.null(ylim)) 0:1 else ylim, ylab=ylab, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], scales=list(x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), y=list(rot=roty, at=tickmarks$at, labels=tickmarks$labels, cex=cex.y), alternating=alternating), main=main, key=key, layout=layout, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } } } ### with confidence bands else{ # plot with confidence bands if (type == "probability"){ lower <- lower.prob upper <- upper.prob } else { lower <- lower.logit upper <- upper.logit } if (!multiline){ layout <- if(is.null(layout)) c(prod(n.predictor.cats), length(levels(response)), 1) else layout ### factor if (is.factor(x$data[[predictors[x.var]]])){ # x-variable a factor range <- range(c(lower, upper), na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) levs <- levels(x$data[[predictors[x.var]]]) if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ as.numeric(", predictors[x.var],") |", x$response) else paste("prob ~ as.numeric(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"), paste("*", x$response))) else parse(text=if (n.predictors==1) paste("logit ~ as.numeric(", predictors[x.var],") |", x$response) else paste("logit ~ as.numeric(", predictors[x.var],")|", paste(predictors[-x.var], collapse="*"), paste("*", x$response)))), par.strip.text=list(cex=0.8), strip=strip.custom(..., strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, x.vals, rug, lower, upper, ... ){ if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at) good <- !is.na(y) effect.llines(x[good], y[good], lwd=lwd, type="b", pch=19, col=colors[1], cex=cex, ...) subs <- subscripts+as.numeric(rownames(Data)[1])-1 if (ci.style == "bars"){ larrows(x0=x[good], y0=lower[subs][good], x1=x[good], y1=upper[subs][good], angle=90, code=3, col=colors[.modc(2)], length=0.125*cex/1.5) } else if(ci.style == "lines"){ effect.llines(x[good], lower[subs][good], lty=2, col=colors[.modc(2)]) effect.llines(x[good], upper[subs][good], lty=2, col=colors[.modc(2)]) } else { if(ci.style == "bands") { panel.bands(x[good], y[good], lower[subs][good], upper[subs][good], fill=band.colors[1], alpha=band.transparency) }} }, ylab=ylab, ylim= if (is.null(ylim)) c(min(lower), max(upper)) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], main=main, x.vals=x$data[[predictors[x.var]]], rug=rug, lower=lower, upper=upper, scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } else { # x-variable numeric if(use.splines) effect.llines <- spline.llines # added 10/17/13 range <- range(c(lower, upper), na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) nm <- predictors[x.var] x.vals <- x$data[[nm]] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range.adj(Data[nm]) # range(x.vals) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ trans(", predictors[x.var],") |", x$response) else paste("prob ~ trans(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"), paste("*", x$response))) else parse(text=if (n.predictors==1) paste("logit ~ trans(", predictors[x.var],") |", x$response) else paste("logit ~ trans(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"), paste("*", x$response))) ), par.strip.text=list(cex=0.8), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, x.vals, rug, lower, upper, ... ){ if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at) if (rug) lrug(trans(x.vals)) good <- !is.na(y) effect.llines(x[good], y[good], lwd=lwd, col=colors[1], ...) subs <- subscripts+as.numeric(rownames(Data)[1])-1 if (ci.style == "bars"){ larrows(x0=x[good], y0=lower[subs][good], x1=x[good], y1=upper[subs][good], angle=90, code=3, col=colors[.modc(2)], length=0.125*cex/1.5) } else if(ci.style == "lines"){ effect.llines(x[good], lower[subs][good], lty=2, col=colors[.modc(2)]) effect.llines(x[good], upper[subs][good], lty=2, col=colors[.modc(2)]) } else { if(ci.style == "bands") { panel.bands(x[good], y[good], lower[subs][good], upper[subs][good], fill=band.colors[1], alpha=band.transparency) }} }, ylab=ylab, xlim=suppressWarnings(trans(xlm)), ylim= if (is.null(ylim)) c(min(lower), max(upper)) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], main=main, x.vals=x$data[[predictors[x.var]]], rug=rug, lower=lower, upper=upper, scales=list(y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), alternating=alternating), layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } } else { layout <- if (is.null(layout)){ lay <- c(prod(n.predictor.cats[-(n.predictors - 1)]), prod(n.predictor.cats[(n.predictors - 1)]), 1) if (lay[1] > 1) lay else lay[c(2, 1, 3)] } else layout if (n.y.lev > min(c(length(colors), length(lines), length(symbols)))) warning('Colors, lines and symbols may have been recycled') if (is.factor(x$data[[predictors[x.var]]])){ # x-variable a factor range <- range(c(lower, upper), na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) key <- list(title=x$response, cex.title=1, border=TRUE, text=list(as.character(unique(response))), lines=list(col=colors[.modc(1:n.y.lev)], lty=lines[.modl(1:n.y.lev)], lwd=lwd), points=list(pch=symbols[.mods(1:n.y.lev)], col=colors[.modc(1:n.y.lev)]), columns = if ("x" %in% names(key.args)) 1 else find.legend.columns(length(n.y.lev), space=if("x" %in% names(key.args)) "top" else key.args$space)) for (k in names(key.args)) key[k] <- key.args[k] if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ as.numeric(", predictors[x.var], ")") else paste("prob ~ as.numeric(", predictors[x.var],") | ", paste(predictors[-x.var], collapse="*"))) else parse(text=if (n.predictors==1) paste("logit ~ as.numeric(", predictors[x.var], ")") else paste("logit ~ as.numeric(", predictors[x.var],") | ", paste(predictors[-x.var], collapse="*")))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, rug, z, x.vals, lower, upper, ...){ if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at) for (i in 1:n.y.lev){ os <- if (ci.style == "bars"){ (i - (n.y.lev + 1)/2) * (2/(n.y.lev-1)) * .01 * (n.y.lev - 1) } else { 0 } sub <- z[subscripts] == y.lev[i] good <- !is.na(y[sub]) effect.llines(x[sub][good] + os, y[sub][good], lwd=lwd, type="b", col=colors[.modc(i)], lty=lines[.modl(i)], pch=symbols[i], cex=cex, ...) if (ci.style == "bars"){ larrows(x0=x[sub][good] + os, y0=lower[ ][sub][good], x1=x[sub][good] + os, y1=upper[subscripts][sub][good], angle=90, code=3, col=colors[.modc(i)], length=0.125*cex/1.5) } else if(ci.style == "lines"){ effect.llines(x[sub][good], lower[subscripts][sub][good], lty=lines[.modl(i)], col=colors[.modc(i)]) effect.llines(x[sub][good], upper[subscripts][sub][good], lty=lines[.modl(i)], col=colors[.modc(i)]) } else { if(ci.style == "bands") { panel.bands(x[sub][good], y[sub][good], lower[subscripts][sub][good], upper[subscripts][sub][good], fill=colors[.modc(i)], alpha=band.transparency) }} } }, ylab=ylab, ylim= if (is.null(ylim)) c(min(lower), max(upper)) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], x.vals=x$data[[predictors[x.var]]], rug=rug, z=response, lower=lower, upper=upper, scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), main=main, key=key, layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } else { # x-variable numeric if(use.splines) effect.llines <- spline.llines # added 10/17/13 range <- range(c(lower, upper), na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) nm <- predictors[x.var] x.vals <- x$data[[nm]] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range.adj(Data[nm]) # range(x.vals) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } key <- list(title=x$response, cex.title=1, border=TRUE, text=list(as.character(unique(response))), lines=list(col=colors[.modc(1:n.y.lev)], lty=lines[.modl(1:n.y.lev)], lwd=lwd), columns = if ("x" %in% names(key.args)) 1 else find.legend.columns(length(n.y.lev), space=if("x" %in% names(key.args)) "top" else key.args$space)) for (k in names(key.args)) key[k] <- key.args[k] if (show.strip.values){ for (pred in predictors[-x.var]){ Data[[pred]] <- as.factor(Data[[pred]]) } } result <- xyplot(eval(if (type=="probability") parse(text=if (n.predictors==1) paste("prob ~ trans(", predictors[x.var], ")") else paste("prob ~ trans(", predictors[x.var],") |", paste(predictors[-x.var], collapse="*"))) else parse(text=if (n.predictors==1) paste("logit ~ trans(", predictors[x.var], ")") else paste("logit ~ trans(", predictors[x.var],") | ", paste(predictors[-x.var], collapse="*")))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip), par.strip.text=list(cex=cex.strip)), panel=function(x, y, subscripts, rug, z, x.vals, lower, upper, ...){ if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at) if (rug) lrug(trans(x.vals)) for (i in 1:n.y.lev){ sub <- z[subscripts] == y.lev[i] good <- !is.na(y[sub]) effect.llines(x[sub][good], y[sub][good], lwd=lwd, type="l", col=colors[.modc(i)], lty=lines[.modl(i)], ...) if (ci.style == "bars"){ larrows(x0=x[sub][good], y0=lower[subscripts][sub][good], x1=x[sub][good], y1=upper[subscripts][sub][good], angle=90, code=3, col=colors[.modc(i)], length=0.125*cex/1.5) } else if(ci.style == "lines"){ effect.llines(x[sub][good], lower[subscripts][sub][good], lty=lines[.modl(i)], col=colors[.modc(i)]) effect.llines(x[sub][good], upper[subscripts][sub][good], lty=lines[.modl(i)], col=colors[.modc(i)]) } else { if(ci.style == "bands") { panel.bands(x[sub][good], y[sub][good], lower[subscripts][sub][good], upper[subscripts][sub][good], fill=colors[.modc(i)], alpha=band.transparency) }} } }, ylab=ylab, xlim=suppressWarnings(trans(xlm)), ylim= if (is.null(ylim)) c(min(lower), max(upper)) else ylim, xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]], x.vals=x$data[[predictors[x.var]]], rug=rug, z=response, lower=lower, upper=upper, scales=list(x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), main=main, key=key, layout=layout, data=Data, ...) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } } } result } effects/R/effects.R0000644000176200001440000000414413221214260013630 0ustar liggesusers# effect generic and methods; allEffects # John Fox, Sanford Weisberg, and Jangman Hong # last modified 2012-12-08 by J. Fox # 10/31/2012 modifed effect.lm to use z distn for ses with mer and nlme objects # 12-21-2012 Allow for empty cells in factor interactions, S. Weisberg # 7-15-2013: S. Weisberg: deleted 'default.levels' argument. Changed and # generalized xlevels argument to include the function of default.levels. # 2013-10-15: eliminated generic effect() and all its methods. J. Fox # 2014-07-02: added vcov. argument to effect # 2014-12-10: Changed 'effect' back to a generic function. S. Weisberg # 2017-12-08: For compatibility with Effect.default, changed test for itercept i effect.default. SW # 2017-12-08: Removed unneeded allEffects.gls effect <- function(term, mod, vcov.=vcov, ...){ UseMethod("effect", mod) } effect.default <- function(term, mod, vcov.=vcov, ...){ term <- gsub(" ", "", gsub("\\*", ":", term)) terms <- term.names(mod) if ( terms[1] == "(Intercept)") terms <- terms[-1] # if (has.intercept(mod)) terms <- terms[-1] which.term <- which(term == terms) mod.aug<- list() if (length(which.term) == 0){ message("NOTE: ", term, " does not appear in the model") mod.aug <- update(formula(mod), eval(parse(text=paste(". ~ . +", term)))) } if (!is.high.order.term(term, mod, mod.aug)) message("NOTE: ", term, " is not a high-order term in the model") predictors <- all.vars(parse(text=term)) Effect(predictors, mod, vcov.=vcov., ...) } allEffects <- function(mod, ...) UseMethod("allEffects") allEffects.default <- function(mod, ...){ high.order.terms <- function(mod){ names <- term.names(mod) if (has.intercept(mod)) names<-names[-1] rel <- lapply(names, descendants, mod=mod) (1:length(names))[sapply(rel, function(x) length(x)==0)] } names <- term.names(mod) if (has.intercept(mod)) names <- names[-1] if (length(names) == 0) stop("the model contains no terms (beyond a constant)") terms <- names[high.order.terms(mod)] result <- lapply(terms, effect, mod=mod, ...) names(result) <- terms class(result) <- 'efflist' result } effects/R/predictorEffects.R0000644000176200001440000001713613454353755015536 0ustar liggesusers# 2017-08-14 fixed bug in plot.predictoreff on passing 'multiline' to lines list # 2017-08-30 for compatibility with other effect plots, default # is now multiline=FALSE # 2017-11-09 fixed bug in setting the class for multinom models, and possibly others # 2017-11-17 added methods for clm, clm2, clmm in the file effectsclmm.R # 2017-12-08 modified predictorEffect.default and predictorEffects.default for compatibility to Effect.default # 2018-01-09 fixed bug in predictorEffects.default with log() in a formula. # 2018-01-24 fixed bug with minus sign in a formula predictorEffects.default # 2018-05-14 predictorEffect.default() calls Effect() with x.var=1 # 2018-06-07 predictorEffects now works with offsets. # 2018-08-09 removed explicit 'xlevels' argument from predictorEffects, so the argument is correctly passed with ... # 2018-10-19: changed class of predictorefflist to c("predictorefflist", "efflist", "list") # 2018-11-19: added xlevels argument with default 5 to be applied to conditioning predictors and # focal.levels argument with default 50 to be applied to focal predictor. J. Fox # 2019-04-13: changed behavior of xlevels default to match Effect.lm() when residuals=TRUE. J. Fox # removed xlevels argument 8/9/18 predictorEffect <- function(predictor, mod, focal.levels=50, xlevels=5, ...){ UseMethod("predictorEffect", mod) } # removed xlevels argument 8/9/18 predictorEffect.svyglm <- function(predictor, mod, focal.levels=50, xlevels=5, ...){ mod$call <- list(mod$call, data=mod$data) NextMethod(object=mod, ...) } #simplified 12/10/17 # removed xlevels argument 8/9/18 predictorEffect.default <- function(predictor, mod, focal.levels=50, xlevels=5, ...){ dots <- list(...) which.residuals <- which(!is.na(sapply(names(dots), function(x) pmatch(x, c("residuals", "partial.residuals"))))) if (length(which.residuals) != 0){ if (isTRUE(dots[[which.residuals]]) && missing(xlevels)) xlevels <- list() } form <- Effect.default(NULL, mod) #returns the fixed-effects formula all.vars <- all.vars(parse(text=form)) # find the right effect to use terms <- attr(terms(form), "term.labels") # get the predictor names: predictors <- all.vars(parse(text=terms)) sel <- which(predictors == predictor) if(length(sel) != 1) stop("First argument must be the quoted name of one predictor in the formula") if (is.numeric(xlevels)){ if (length(xlevels) > 1 || round(xlevels != xlevels)) stop("xlevels must be a single whole number or a list") xlevs <- list() for (pred in predictors[-sel]){ xlevs[[pred]] <- xlevels } xlevels <- xlevs } xlevels[[predictor]] <- focal.levels # create correspondence table decode <- function(name) all.vars(parse(text=unlist(strsplit(name, ":")))) tab <- rep(FALSE, length(terms)) for(j in 1:length(terms)){if(predictor %in% decode(terms[j])) tab[j] <- TRUE} ans <- unlist(strsplit(paste(terms[tab], collapse=":"), ":")) ans <- unique(all.vars(parse(text=ans))) ans <- unique(c(predictor, ans)) # guarantees focal predictor is first args <- names(list(...)) result <- if ("x.var" %in% args) Effect(ans, mod, xlevels=xlevels, ...) else Effect(ans, mod, x.var=1, xlevels=xlevels, ...) class(result) <- c("predictoreff", class(result)) result } predictorEffects <- function(mod, predictors, focal.levels=50, xlevels=5, ...){ UseMethod("predictorEffects", mod) } # rewritten, simplified, 12/08/17, bug in formulas fixed 01/24/2018 predictorEffects.default <- function(mod, predictors = ~ ., focal.levels=50, xlevels=5, ...) { dots <- list(...) which.residuals <- which(!is.na(sapply(names(dots), function(x) pmatch(x, c("residuals", "partial.residuals"))))) if (length(which.residuals) != 0){ if (isTRUE(dots[[which.residuals]]) && missing(xlevels)) xlevels <- list() } # The next function removes offset(s) from a formula, used for mform and cform no.offset <- function(x, preserve = NULL) { k <- 0 proc <- function(x) { if (length(x) == 1) return(x) if (x[[1]] == as.name("offset") && !((k<<-k+1) %in% preserve)) return(x[[1]]) replace(x, -1, lapply(x[-1], proc)) } update(proc(x), . ~ . - offset)} mform <- no.offset(Effect.default(NULL, mod)) # returns the fixed-effect formula for any method cform <- if(is.character(predictors)) as.formula(paste("~", paste(predictors, collapse="+"))) else predictors cform <- update(as.formula(paste(". ~", paste(all.vars(formula(mform)[[3]]), collapse="+"))), cform) cform <- no.offset(cform) mvars <- all.vars(mform[[3]]) cvars <- all.vars(cform[[3]]) if (is.list(focal.levels)){ for(cvar in cvars){ if (!is.null(focal.levels[[cvar]])) next focal.levels[[cvar]] <- 50 } } else{ if (!is.vector(focal.levels) || !is.numeric(focal.levels) || length(focal.levels) > 1 || round(focal.levels) != focal.levels) stop("focal.levels must be a length 1 positive\nwhole-number numeric vector or a list") } if (length(xlevels) > 0){ if (is.list(xlevels)){ for(mvar in mvars){ if (!is.null(xlevels[[mvar]])) next xlevels[[mvar]] <- 5 } } else{ if (!is.vector(xlevels) || !is.numeric(xlevels) || length(xlevels) > 1 || round(xlevels) != xlevels) stop("xlevels must be a length 1 positive\nwhole-number numeric vector or a list") } } # check that 'cvars' is a subset of 'mvars'. If so apply predictorEffect if(!all(cvars %in% mvars)){ stop("argument 'predictors' not a subset of the predictors in the formula") } else { result <- list() for(p in cvars){ flevs <- if (is.numeric(focal.levels)) focal.levels else focal.levels[[p]] result[[p]] <- predictorEffect(p, mod, focal.levels=flevs, xlevels=xlevels, ...) } } class(result) <- c("predictorefflist", "efflist", "list") result } # plot methods plot.predictoreff <- function(x, x.var, main = paste(names(x$variables)[1], "predictor effect plot"), ...){ if(missing(x.var)) x.var <- names(x$variables)[1] NextMethod(x, x.var=x.var, main=main, ...) } plot.predictorefflist <- function(x, selection, rows, cols, ask=FALSE, graphics=TRUE, lattice, ...){ # Next line added 8/23/17 along with lattice, also lattice arg above lattice <- if(missing(lattice)) list() else lattice if (!missing(selection)){ if (is.character(selection)) selection <- gsub(" ", "", selection) return(plot(x[[selection]], ...)) } effects <- gsub(":", "*", names(x)) if (ask){ repeat { selection <- menu(effects, graphics=graphics, title="Select Term to Plot") if (selection == 0) break else print(plot(x[[selection]], ...)) } } else { neffects <- length(x) mfrow <- mfrow(neffects) if (missing(rows) || missing(cols)){ rows <- mfrow[1] cols <- mfrow[2] } for (i in 1:rows) { for (j in 1:cols){ if ((i-1)*cols + j > neffects) break more <- !((i-1)*cols + j == neffects) lattice[["array"]] <- list(row=i, col=j, nrow=rows, ncol=cols, more=more) print(plot(x[[(i-1)*cols + j]], lattice=lattice, ...)) } } } } # print and summary methods print.predictorefflist <- function(x, ...){ for (eff in x){ print(eff, ...) } invisible(x) } print.predictoreff <- function(x, ...){ cat("\n", names(x$variables)[1], "predictor effect\n") NextMethod() } summary.predictorefflist <- function(object, ...){ for (eff in object){ cat("\n", names(eff$variables)[1], "predictor effect\n") print(summary(eff, ...)) } } effects/R/utilities.R0000644000176200001440000006022313563356333014245 0ustar liggesusers# utilities and common functions for effects package # John Fox, Jangman Hong, and Sanford Weisberg # 7-25-2013 S. Weisberg modified analyze.model and Analyze.model to ignore # default.levels, and use xlevels to set default. Use grid.pretty by default # 11-09-2013: fixed error message in Analyze.model(), bug reported by Joris Meys. J. Fox # 2013-10-15: eliminated functions not needed after effect() methods removed. J. Fox # 2013-10-29: fixed as.data.frame.*() to handle NA levels. J. Fox # 2014-03-13: modified Fixup.model.matrix() and Analyze.model() to handle partial residuals; # added is.factor.predictor() and is.numeric.predictor(). J. Fox # 2014-03-14: error message for non-factor, non-numeric predictor # 2014-07-08: if no numeric predictor, partial residuals suppressed with warning rather than an error # 2014-10-09: namespace fixes. J. Fox # 2015-04-08: added setStrip(), restoreStrip(). J. Fox # 2015-07-07: fixed matchVarName() so that it handles periods in names properly. J. Fox # 2015-09-10: added a fix for class = 'array' in Analyze.model. S. Weisberg # 2016-02-16: fix Analyze.model(), Fixup.model.matrix() to handle non-focal terms like polynomials correctly; clean up code. J. Fox # 2016-03-01: correct and improve computation of partial residuals # 2017-07-10: fix warnings about 1 x 1 arrays produced in eff.mul() and eff.polr() in R 3.4.0 (reported by Stefan Th. Gries). J. Fox # 2017-07-14: added applyDefaults() and isFALSE(). J. Fox # 2017-07-27: added effectsTheme(); removed setStrip(), restoreStrip(). J. Fox # 2017-08-08: added .onAttach() to set lattice theme. J. Fox # 2017-08-26: added scheffe() to compute multipler for Scheffe-type confidence bounds. J. Fox # 2017-08-29: enhanced applyDefaults() with onFALSE argument. J. Fox # 2017-09-02: added nice() # 2017-09-08: small changes to accommodate Effect.svyglm() # 2017-09-10: added replacement for ticksGrid() # 2018-05-09: fix typo in startup message # 2018-05-13: modified Analyze.model() to support partial-residual plots against factors. # 2018-08-17: modified .onAttach() so that trellis device doesn't open, suggestion of Kurt Hornik. # 2018-10-06: modified as.data.frame, adding a 'type' argument and deleting the 'transformation' argument, using the mu.eta function from the defining family # 2018-10-19: added as.data.frame.efflist # 2018-10-25: as.data.frame.eff() fixed so that deletion of the transformation argument doesn't break plot.eff(). J. Fox # 2018-12-19: accommodate character and logical predictors. J. Fox # 2019-08-27: correctly handle logical or character predictor with residuals # 2019-08-30: further fixes to character and logical predictors # 2019-10-24: add color options (e.g., for colorblind palette, suggestion of ) to effectsTheme(). J. Fox # 2019-11-14: change class(x) == "y" to inherits(x, "y") has.intercept <- function(model, ...) any(names(coefficients(model))=="(Intercept)") term.names <- function (model, ...) { term.names <- gsub(" ", "", labels(terms(model))) if (has.intercept(model)) c("(Intercept)", term.names) else term.names } response.name <- function (model, ...) deparse(attr(terms(model), "variables")[[2]]) mfrow <- function(n, max.plots=0){ # number of rows and columns for array of n plots if (max.plots != 0 & n > max.plots) stop(paste("number of plots =",n," exceeds maximum =", max.plots)) rows <- round(sqrt(n)) cols <- ceiling(n/rows) c(rows, cols) } expand.model.frame <- function (model, extras, envir = environment(formula(model)), na.expand = FALSE){ # modified version of R base function f <- formula(model) data <- eval(model$call$data, envir) ff <- foo ~ bar + baz if (is.call(extras)) gg <- extras else gg <- parse(text = paste("~", paste(extras, collapse = "+")))[[1]] ff[[2]] <- f[[2]] ff[[3]][[2]] <- f[[3]] ff[[3]][[3]] <- gg[[2]] if (!na.expand) { naa <- model$call$na.action subset <- model$call$subset rval <- if (is.null(data)) eval(call("model.frame", ff, # modified subset = subset, na.action = naa), envir) # lines else eval(call("model.frame", ff, data = data, # subset = subset, na.action = naa), envir) # } else { subset <- model$call$subset rval <- eval(call("model.frame", ff, data = data, subset = subset, na.action = I), envir) oldmf <- model.frame(model) keep <- match(rownames(oldmf), rownames(rval)) rval <- rval[keep, ] class(rval) <- "data.frame" } return(rval) } is.relative <- function(term1, term2, factors) { all(!(factors[,term1]&(!factors[,term2]))) } descendants <- function(term, mod, ...){ names <- term.names(mod) if (has.intercept(mod)) names <- names[-1] if(length(names)==1) return(NULL) which.term <- which(term == names) if (length(which.term) == 0){ factors <- attr(terms(...), "factors") rownames(factors) <- gsub(" ", "", rownames(factors)) colnames(factors) <- gsub(" ", "", colnames(factors)) (1:length(names))[sapply(names, function(term2) is.relative(term, term2, factors))] } else { factors <- attr(terms(mod), "factors") rownames(factors) <- gsub(" ", "", rownames(factors)) colnames(factors) <- gsub(" ", "", colnames(factors)) (1:length(names))[-which.term][sapply(names[-which.term], function(term2) is.relative(term, term2, factors))] } } is.high.order.term <- function(term, mod,...){ 0 == length(descendants(term, mod, ...)) } subscripts <- function(index, dims){ subs <- function(dims, index){ dim <- length(dims) if (dim == 0) return(NULL) cum <- c(1,cumprod(dims))[dim] i <- index %/% cum if (index %% cum != 0) i <- i + 1 c(i, subs(dims[-dim], index - (i - 1)*cum)) } rev(subs(dims, index)) } matrix.to.df <- function(matrix, colclasses){ opt <- options(warn = -1) on.exit(options(opt)) ncol <- ncol(matrix) colnames <- colnames(matrix) colclasses[sapply(colclasses, function(x) "integer" %in% x)] <- "numeric" result <- vector(mode="list", length=ncol) names(result) <- colnames for (j in 1:ncol){ result[[j]] <- matrix[, j] class <- colclasses[[colnames[j]]] result[[colnames[j]]] <- if ("numeric" %in% class) { decChar <- getOption('OutDec') if (decChar == '.') as.numeric(result[[colnames[j]]]) else as.numeric(gsub(decChar, '.', matrix[,j])) } else if ("ordered" %in% class) ordered(result[[colnames[j]]]) else if ("factor" %in% class) factor(result[[colnames[j]]]) else result[[colnames[j]]] } as.data.frame(result) } # the following function is a modification of code contributed by Steve Taylor # as.data.frame rewritten, 2018-10-06 # fixed 2018-10-25 so that plot.eff() isn't broken by the rewrite as.data.frame.eff <- function(x, row.names=NULL, optional=TRUE, type=c("response", "link"), ...){ type <- match.arg(type) linkinv <- if (is.null(x$link$linkinv)) I else x$link$linkinv linkmu.eta <- if(is.null(x$link$mu.eta)) function(x) NA else x$link$mu.eta xx <- x$x for (var in names(xx)){ if (is.factor(xx[[var]])){ xx[[var]] <- addNA(xx[[var]]) # handle factors with "valid" NA level } } x$x <- xx result <- switch(type, response= { if (is.null(x$se)) data.frame(x$x, fit=transform(x$fit)) else data.frame(x$x, fit=linkinv(x$fit), se = linkmu.eta(x$fit) * x$se, lower=linkinv(x$lower), upper=linkinv(x$upper))}, link = { if (is.null(x$se)) data.frame(x$x, fit=x$fit) else data.frame(x$x, fit=x$fit, se=x$se, lower=x$lower, upper= x$upper)}) attr(result, "type") <- type result } as.data.frame.efflist <- function(x, row.names=NULL, optional=TRUE, type, ...){ lapply(x, as.data.frame, type) } as.data.frame.effpoly <- function(x, row.names=NULL, optional=TRUE, ...){ factors <- sapply(x$variables, function(x) x$is.factor) factor.levels <- lapply(x$variables[factors], function(x) x$levels) if (!length(factor.levels) == 0){ factor.names <- names(factor.levels) for (fac in factor.names){ x$x[[fac]] <- factor(x$x[[fac]], levels=factor.levels[[fac]], exclude=NULL) } } result <- data.frame(x$x, x$prob, x$logit) if (!is.null(x$confidence.level)) result <- cbind(result, x$se.prob, x$se.logit, x$lower.prob, x$upper.prob, x$lower.logit, x$upper.logit) result } as.data.frame.efflatent <- function(x, row.names=NULL, optional=TRUE, ...){ xx <- x$x for (var in names(xx)){ if (is.factor(xx$var)){ xx$var <- addNA(xx$var) # handle factors with "valid" NA level } } x$x <- xx if (is.null(x$se)) data.frame(x$x, fit=x$fit) else data.frame(x$x, fit=x$fit, se=x$se, lower=x$lower, upper=x$upper) } logit2p <- function(logit) 1/(1 + exp(-logit)) p2logit <- function(p) log(p/(1 - p)) lrug <- function(x) { if (length(unique(x)) < 0.8 * length(x)) x <- jitter(x) grid.segments(x, unit(0, "npc"), x, unit(0.5, "lines"), default.units="native") } ## model.response not generic model.response.gls <- function(model){ model.response(model.frame(as.formula(model$call$model), data=eval(model$call$data))) } terms.gls <- function(x, ...) terms(formula(x)) ## vcov method for eff objects vcov.eff <- function(object, ...) object$vcov ## [ method for efflist objects `[.efflist` <- function(x, ...){ y <- NextMethod("[") class(y) <- class(x) y } ### the following functions are for use by Effect() methods Analyze.model <- function(focal.predictors, mod, xlevels, default.levels=NULL, formula.rhs, partial.residuals=FALSE, quantiles, x.var=NULL, data=NULL, typical=mean){ if ((!is.null(mod$nan.action)) && inherits(mod$na.action, "exclude")) class(mod$na.action) <- "omit" all.predictors <- all.vars(formula.rhs) check.vars <- !(focal.predictors %in% all.predictors) excluded.predictors <- setdiff(all.predictors, focal.predictors) number.bad <- sum(check.vars) if (any(check.vars)) { message <- if (number.bad == 1) paste("the following predictor is not in the model:", focal.predictors[check.vars]) else paste("the following predictors are not in the model:", paste(focal.predictors[check.vars], collapse=", ")) stop(message) } X.mod <- model.matrix(mod) cnames <- colnames(X.mod) factor.cols <- rep(FALSE, length(cnames)) names(factor.cols) <- cnames for (name in all.predictors){ if (is.factor.predictor(name, mod)) { factor.cols[grep(paste("^", name, sep=""), cnames)] <- TRUE } } factor.cols[grep(":", cnames)] <- FALSE X <- na.omit(expand.model.frame(mod, all.predictors)) for (name in all.predictors){ if (is.factor.predictor(name, mod) && is.null(xlevels[[name]])) { xlevels[[name]] <- levels(X[, name]) # accomodate logical predictor } } bad <- sapply(X[, all.predictors, drop=FALSE], function(x) !(is.factor(x) || is.numeric(x))) if (any(bad)){ message <- if (sum(bad) == 1) paste("the following predictor isn't a factor, logical, character, or numeric:", all.predictors[bad]) else paste("the following predictors aren't factors, logical, character, or numeric:", paste(all.predictors[bad], collapse=", ")) stop(message) } x <- list() factor.levels <- list() if(length(xlevels)==0 & length(default.levels) == 1L) xlevels <- default.levels if(is.numeric(xlevels) & length(xlevels) == 1L){ levs <- xlevels for(name in focal.predictors) xlevels[[name]] <- levs } for (name in focal.predictors){ levels <- mod$xlevels[[name]] ## reverted levels <- levels(X[, name]) if(is.null(levels)) levels <- mod$xlevels[[paste("factor(",name,")",sep="")]] ##reverted deleted fac <- !is.null(levels) if (!fac) { levels <- if (is.null(xlevels[[name]])){ if (partial.residuals){ quantile(X[, name], quantiles) } else{ # grid.pretty(range(X[, name])) nice(seq(min(X[, name]), max(X[, name]), length.out=5)) } } else { if(length(xlevels[[name]]) == 1L) { nice(seq(min(X[, name]), max(X[,name]), length=xlevels[[name]]))} else xlevels[[name]]} } else factor.levels[[name]] <- levels # x[[name]] <- list(name=name, is.factor=fac, levels=levels) x[[name]] <- list(name=name, is.factor=is.factor(X[, name]), levels=levels) } if (partial.residuals){ numeric.predictors <- sapply(focal.predictors, function(predictor) is.numeric.predictor(predictor, mod)) if (is.null(x.var)){ x.var <- if (any(numeric.predictors)) which(numeric.predictors)[1] else 1 } x.var.name <- focal.predictors[x.var] if (is.numeric(X[, x.var.name]) && is.null(xlevels[[x.var.name]])){ x.var.range <- range(X[, focal.predictors[x.var]]) x[[x.var]][["levels"]] <- seq(from=x.var.range[1], to=x.var.range[2], length=100) } } x.excluded <- list() for (name in excluded.predictors){ levels <- mod$xlevels[[name]] ##reverted levels <- levels(X[, name]) if (is.logical(X[, name])) levels <- c("FALSE", "TRUE") fac <- !is.null(levels) level <- if (fac) levels[1] else typical(X[, name]) if (fac) factor.levels[[name]] <- levels x.excluded[[name]] <- list(name=name, is.factor=fac, level=level) } dims <- sapply(x, function(x) length(x$levels)) len <- prod(dims) n.focal <- length(focal.predictors) n.excluded <- length(excluded.predictors) n.vars <- n.focal + n.excluded predict.data <-matrix('', len, n.vars) excluded <- sapply(x.excluded, function(x) x$level) for (i in 1:len){ subs <- subscripts(i, dims) for (j in 1:n.focal){ predict.data[i,j] <- x[[j]]$levels[subs[j]] } if (n.excluded > 0) predict.data[i, (n.focal + 1):n.vars] <- excluded } colnames(predict.data) <- c(sapply(x, function(x) x$name), sapply(x.excluded, function(x) x$name)) colclasses <- lapply(X, class) colclasses[colclasses == "matrix"] <- "numeric" colclasses[colclasses == "array"] <- "numeric" predict.data <- matrix.to.df(predict.data, colclasses=colclasses) list(predict.data=predict.data, factor.levels=factor.levels, factor.cols=factor.cols, focal.predictors=focal.predictors, n.focal=n.focal, excluded.predictors=excluded.predictors, n.excluded=n.excluded, x=x, X.mod=X.mod, cnames=cnames, X=X, x.var=x.var) } Fixup.model.matrix <- function(mod, mod.matrix, mod.matrix.all, X.mod, factor.cols, cnames, focal.predictors, excluded.predictors, typical, given.values, apply.typical.to.factors=FALSE){ attr(mod.matrix, "assign") <- attr(mod.matrix.all, "assign") if (length(excluded.predictors) > 0){ strangers <- Strangers(mod, focal.predictors, excluded.predictors) stranger.cols <- apply(outer(strangers, attr(mod.matrix,'assign'), '=='), 2, any) } else stranger.cols <- rep(FALSE, ncol(mod.matrix)) if (has.intercept(mod)) stranger.cols[1] <- TRUE if (any(stranger.cols)) { facs <- factor.cols & stranger.cols covs <- (!factor.cols) & stranger.cols if (has.intercept(mod)) covs[1] <- FALSE if (any(facs)){ mod.matrix[,facs] <- matrix(apply(as.matrix(X.mod[,facs]), 2, if (apply.typical.to.factors) typical else mean), nrow=nrow(mod.matrix), ncol=sum(facs), byrow=TRUE) } if (!is.null(given.values)){ stranger.names <- cnames[stranger.cols] given <- stranger.names %in% names(given.values) if (any(given)) { mod.matrix[,stranger.names[given]] <- matrix(given.values[stranger.names[given]], nrow=nrow(mod.matrix), ncol=length(stranger.names[given]), byrow=TRUE) } } for (name in cnames){ components <- unlist(strsplit(name, ':')) components <- components[components %in% cnames] if (length(components) > 1) { mod.matrix[,name] <- apply(mod.matrix[,components], 1, prod) } } } mod.matrix } matchVarName <- function(name, expressions){ scratch <- "zAMIjw4RN3" # randomly generated string name <- gsub("\\.", scratch, name) expressions <- gsub("\\.", scratch, as.character(expressions)) a <- !grepl(paste("[.]+", name, sep=""), expressions) b <- !grepl(paste(name, "[.]+", sep=""), expressions) c <- grepl(paste("\\b", name, "\\b", sep=""), expressions) a & b & c } Strangers <- function(mod, focal.predictors, excluded.predictors){ names <- term.names(mod) if (has.intercept(mod)) names <- names[-1] sel <- apply(sapply(excluded.predictors, matchVarName, expressions=names), 1, any) (1:length(sel))[sel] } # the following is used by effect.multinom() and Effect.multinom() eff.mul <- function(x0, B, se, m, p, r, V){ mu <- exp(x0 %*% B) mu <- mu/(1 + sum(mu)) mu[m] <- 1 - sum(mu) logits <- log(mu/(1 - mu)) if (!se) return(list(p=mu, logits=logits)) d <- array(0, c(m, m - 1, p)) exp.x0.B <- as.vector(exp(x0 %*% B)) sum.exp.x0.B <- sum(exp.x0.B) for (j in 1:(m-1)){ d[m, j,] <- - exp.x0.B[j]*x0 for (jj in 1:(m-1)){ d[j, jj,] <- if (jj != j) - exp(as.vector(x0 %*% (B[,jj] + B[,j])))*x0 else exp.x0.B[j]*(1 + sum.exp.x0.B - exp.x0.B[j])*x0 } } d <- d/(1 + sum.exp.x0.B)^2 V.mu <- rep(0, m) for (j in 1:m){ dd <- as.vector(t(d[j,,])) for (s in 1:r){ for (t in 1:r){ V.mu[j] <- V.mu[j] + V[s,t]*dd[s]*dd[t] } } } V.logits <- V.mu/(mu^2 * (1 - mu)^2) list(p=mu, std.err.p=sqrt(V.mu), logits=logits, std.error.logits=sqrt(V.logits)) } # the following are used by effect.polr() and Effect.polr() eff.polr <- function(x0, b, alpha, V, m, r, se){ eta0 <- as.vector(x0 %*% b) mu <- rep(0, m) mu[1] <- 1/(1 + exp(alpha[1] + eta0)) for (j in 2:(m-1)){ mu[j] <- exp(eta0)*(exp(alpha[j - 1]) - exp(alpha[j]))/ ((1 + exp(alpha[j - 1] + eta0))*(1 + exp(alpha[j] + eta0))) } mu[m] <- 1 - sum(mu) logits <- log(mu/(1 - mu)) if (!se) return(list(p=mu, logits=logits)) d <- matrix(0, m, r) d[1, 1] <- - exp(alpha[1] + eta0)/(1 + exp(alpha[1] + eta0))^2 d[1, m:r] <- - exp(alpha[1] + eta0)*x0/(1 + exp(alpha[1] + eta0))^2 for (j in 2:(m-1)){ d[j, j-1] <- exp(alpha[j-1] + eta0)/(1 + exp(alpha[j-1] + eta0))^2 d[j, j] <- - exp(alpha[j] + eta0)/(1 + exp(alpha[j] + eta0))^2 d[j, m:r] <- exp(eta0)*(exp(alpha[j]) - exp(alpha[j-1]))* (exp(alpha[j-1] + alpha[j] + 2*eta0) - 1) * x0 / (((1 + exp(alpha[j-1] + eta0))^2)* ((1 + exp(alpha[j] + eta0))^2)) } d[m, m-1] <- exp(alpha[m-1] + eta0)/(1 + exp(alpha[m-1] + eta0))^2 d[m, m:r] <- exp(alpha[m-1] + eta0)*x0/(1 + exp(alpha[m-1] + eta0))^2 V.mu <- rep(0, m) for (j in 1:m){ dd <- d[j,] for (s in 1:r){ for (t in 1:r){ V.mu[j] <- V.mu[j] + V[s,t]*dd[s]*dd[t] } } } V.logits <- V.mu/(mu^2 * (1 - mu)^2) list(p=mu, std.err.p=sqrt(V.mu), logits=logits, std.error.logits=sqrt(V.logits)) } eff.latent <- function(X0, b, V, se){ eta <- X0 %*% b if (!se) return(list(fit=eta)) var <- diag(X0 %*% V %*% t(X0)) list(fit=eta, se=sqrt(var)) } # determine class of a predictor # is.factor.predictor <- function(predictor, model) { # !is.null(model$xlevels[[predictor]]) # } is.factor.predictor <- function(predictor, model) { predictor %in% names(attr(model.matrix(model), "contrasts")) } is.numeric.predictor <- function(predictor, model) { is.null(model$xlevels[[predictor]]) } # custom lattice theme # effectsTheme <- function(strip.background=list(col=gray(seq(0.95, 0.5, length=3))), # strip.shingle=list(col="black"), clip=list(strip="off"), # superpose.line=list(lwd=c(2, rep(1, 6)))){ # # current <- sapply(c("strip.background", "strip.shingle", "clip", "superpose.line"), # trellis.par.get) # result <- list(strip.background=strip.background, strip.shingle=strip.shingle, clip=clip, # superpose.line=superpose.line) # attr(result, "current") <- current # result # } effectsTheme <- function (strip.background = list(col = gray(seq(0.95, 0.5, length = 3))), strip.shingle = list(col = "black"), clip = list(strip = "off"), superpose.line = list(lwd = c(2, rep(1, 6))), col){ car.palette <- c("blue", "magenta", "cyan", "orange", "gray", "green3", "red") colorblind.palette <- rgb(red = c(230, 86, 0, 240, 0, 213, 204), green = c(159, 180, 158, 228, 114, 94, 121), blue = c(0, 233, 115, 66, 178, 0, 167), names = c("orange", "sky.blue", "bluish.green", "yellow", "blue", "vermillion", "reddish.purple"), maxColorValue = 255) # colorblind palette from https://jfly.uni-koeln.de/color/ (ignoring "black") current <- sapply(c("strip.background", "strip.shingle", "clip", "superpose.line"), lattice::trellis.par.get) if (!missing(col)){ superpose.line$col <- if (col[1] == "colorblind"){ colorblind.palette } else if (col[1] == "car") { car.palette } else if (col[1] == "R") { palette()[-1] } else { col } } result <- list(strip.background = strip.background, strip.shingle = strip.shingle, clip = clip, superpose.line = superpose.line) attr(result, "current") <- current result } .onAttach <- function(libname, pkgname){ if (!"package:lattice" %in% search()){ lattice::lattice.options(default.theme = effectsTheme) packageStartupMessage("lattice theme set by effectsTheme()", "\nSee ?effectsTheme for details.") } else packageStartupMessage("Use the command", "\n lattice::trellis.par.set(effectsTheme())", "\n to customize lattice options for effects plots.", "\nSee ?effectsTheme for details.") } # to handle defaults for list-style arguments applyDefaults <- function(args, defaults, onFALSE, arg=""){ if (is.null(args)) return(defaults) if (isFALSE(args)) { if (missing(onFALSE)) return(FALSE) else return(onFALSE) } names <- names(args) names <- names[names != ""] if (!isTRUE(args) && length(names) != length(args)) warning("unnamed ", arg, " arguments, will be ignored") if (isTRUE(args) || is.null(names)) defaults else defaults[names] <- args[names] as.list(defaults) } isFALSE <- function(x){ length(x) == 1 && is.logical(x) && !isTRUE(x) } # compute multiplier for Scheffe-type confidence bounds scheffe <- function(level, p, df=Inf){ sqrt(p*qf(level, p, df)) } # function to compute "nice" numbers nice <- function (x, direction = c("round", "down", "up"), lead.digits = 1) { direction <- match.arg(direction) if (length(x) > 1){ result <- sapply(x, nice, direction = direction, lead.digits = lead.digits) if (anyDuplicated(result)) result <- nice(x, direction=direction, lead.digits = lead.digits + 1) return(result) } if (x == 0) return(0) power.10 <- floor(log(abs(x), 10)) if (lead.digits > 1) power.10 <- power.10 - lead.digits + 1 lead.digit <- switch(direction, round = round(abs(x)/10^power.10), down = floor(abs(x)/10^power.10), up = ceiling(abs(x)/10^power.10)) sign(x) * lead.digit * 10^power.10 } ticksGrid <- function(x, y, col=reference.line$col){ reference.line <- trellis.par.get("reference.line") panel.abline(h=y, v=x, col=col, lty=reference.line$lty) } # for character and logical predictors is.factor <- function(x) inherits(x, "factor") || ((is.character(x) || is.logical(x)) && is.vector(x)) levels.character <- function(x) { levs <- unique(x) sort(levs[!is.na(levs)]) } levels.logical <- function(x) { c("FALSE", "TRUE") } effects/R/plot-methods.R0000644000176200001440000013552013531275265014653 0ustar liggesusers # plot.eff method for effects package, moved here from plot-summary-print-methods.R # The plot.effpoly method remains there for now. # 2013-10-17: Added use.splines keyword to plot.eff. Sandy # 2013-10-17: Made ci.style="bands" default for variates; allow "bands" if multiline=TRUE # 2013-10-29: fixed plot.eff() to handle factors with "valid" NA level. J. Fox # 2014-03-03: modified plot.eff() to handle partial residuals. J. Fox # 2014-09-20: fixed plot.eff() to work with partial residuals when rescale.axis=FALSE; # added smooth.residuals argument. J. Fox # 2014-10-10: namespace fixes. J. Fox # 2014-12-05: made key.args more flexible. J. Fox # 2015-03-22: use wide columns by default only when x for legend not set. J. Fox # 2015-03-25: use non-robust loess smooth for partial residuals for non-Gaussian families. J. Fox # 2015-03-25: rationalized type and rescale.axis args to plot.eff(); deprecated rescale.axis arg. J. Fox # 2015-05-28: added residuals.smooth.color argument. J. Fox # 2015-08-28: added residuals.cex argument. J. Fox # 2016-03-01: move computation of partial residuals to the plot.eff() method. J. Fox # 2016-05-22: modified make.ticks() to avoid possible failure due to floating-point inaccuracy. J. Fox # 2016-08-31: fixed plotting with partial residuals with various scalings of y-axis and x-axis. J. Fox # 2016-09-16: added show.strip.values argument to plot.eff(). J. Fox # 2017-06-12: fixed bug in plot.eff() for multiline displays with many conditioning variables. J. Fox # 2017-07-15: modified plot.eff() to consolidate arguments and use lattice theme. J. Fox # 2017-08-09: small bug fixes, reorganized axes=list(x=list()) argument. J. Fox # 2017-08-17: tweaked layout. J. Fox # 2017-08-23: Fixed bug with the lattice=list(array()) argument in plot.efflist --- lattice was as # an argument to the next method twice # 2017-08-23: plot.eff, in key.args, set default for between.columns=0 # 2017-08-20: reintroduce legacy arguments for plot.eff() # 2017-09-10: use replacement for grid.panel() # 2017-11-03: Added a test to assume that at least one point will be plotted in a tile, else # draw a blank tile. Needed for rank-deficient models. S. Weisberg. # 2018-01-02: Changed the default key: see lines 240-241 # 2018-01-02: Rewrote find.legend columns, lines 41-44 # 2018-01-30: enlarged text in key titles # 2018-05-14: support plotting partial residuals against a factor on the horizontal axis in plot.lm() # 2018-05-29: lty was ignored for multiplot with factor on x-axis; fixed (reported by Krisztian Magori) # 2018-05-30: don't use hard-coded pch=19 when plotting a factor on the x-axis. # 2018-06-30: add cex sub-args for x and y axes (suggestion of Charles Leger). # 2018-07-04: add cex sub-arg for strips. # 2018-10-09: moved transform arg from Effect to axes=list(y=list(transform=)) # 2018-10-15: moved z.var to lines=list(z.var) # 2018-10-25: check number of points used for spline interpolation # 2018-10-25: fixed bug in plot.eff() introduced by previous modification to as.data.frame.eff(). # 2018-11-03: fixed bug in plotting partial residuals when a factor focal predictor had empty levels. # 2019-02-13: made sure lty not ignored. # 2019-08-27: correctly handle character or logical predictor # the following functions aren't exported #find.legend.columns <- function(n, target=min(4, n)){ # rem <- n %% target # if (rem != 0 && rem < target/2) target <- target - 1 # target #} # new version 1/2/2017 by sw find.legend.columns <- function(n, space="top"){ if(space == "right") 1 else { if(n <= 2) 2 else { if(n == 3) 1 else {if (n <= 6) 2 else 3}}} } make.ticks <- function(range, link, inverse, at, n) { warn <- options(warn=-1) on.exit(options(warn)) link <- if (is.null(link)) function(x) nlm(function(y) (inverse(y) - x)^2, mean(range))$estimate else link if (is.null(n)) n <- 5 labels <- if (is.null(at)){ range.labels <- sapply(range, inverse) labels <- grid::grid.pretty(range.labels) } else at ticks <- try(sapply(labels, link), silent=TRUE) if (inherits(ticks, "try-error")){ ticks <- seq(range[1], range[2], length=n) } list(at=ticks, labels=format(labels)) } range.adj <- function(x){ range <- range(x, na.rm=TRUE) c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) } # added, modified from http://www.r-bloggers.com/confidence-bands-with-lattice-and-r/ panel.bands <- function(x, y, upper, lower, fill, col, subscripts, ..., font, fontface, use.splines=FALSE) { if(!missing(subscripts)) { upper <- upper[subscripts] lower <- lower[subscripts] } if (use.splines){ if (length(x) < 5) warning("spline interpolation may be unstable with only ", length(x), " points") up <- spline(x, upper) down <- spline(x, lower) x <- up$x upper <- up$y lower <- down$y } panel.polygon(c(x, rev(x)), c(upper, rev(lower)), col = fill, fill=fill, border = FALSE, ...) } # modified by Michael Friendly: added key.args: # modified by Michael Friendly: added ci.style="bands" # modified by Michael Friendly: added lwd= argument for llines (not used elsewhere) # modified by Michael Friendly: added alpha.band= argument for ci.style="bands" spline.llines <- function(x, y, ...) { if (length(x) < 5) warning("spline interpolation may be unstable with only ", length(x), " points") llines(spline(x, y), ...) } plot.eff <- function(x, x.var, main=paste(effect, "effect plot"), symbols=TRUE, lines=TRUE, axes, confint, partial.residuals, id, lattice, ..., # legacy arguments: multiline, z.var, rug, xlab, ylab, colors, cex, lty, lwd, ylim, xlim, factor.names, ci.style, band.transparency, band.colors, type, ticks, alternating, rotx, roty, grid, layout, rescale.axis, transform.x, ticks.x, show.strip.values, key.args, use.splines, residuals.color, residuals.pch, residuals.cex, smooth.residuals, residuals.smooth.color, show.fitted, span) { closest <- function(x, x0) apply(outer(x, x0, FUN=function(x, x0) abs(x - x0)), 1, which.min) .mod <- function(a, b) ifelse( (d <- a %% b) == 0, b, d) .modc <- function(a) .mod(a, length(colors)) .mods <- function(a) .mod(a, length(symbols)) .modl <- function(a) .mod(a, length(lines)) .modb <- function(a) .mod(a, length(band.colors)) if (!is.logical(lines) && !is.list(lines)) lines <- list(lty=lines) levels <- sapply(x$variables, function(z) length(as.vector(z[["levels"]]))) lines <- applyDefaults(lines, defaults=list(multiline=is.null(x$se), z.var=which.min(levels), lty=trellis.par.get("superpose.line")$lty, lwd=trellis.par.get("superpose.line")$lwd[1], col=trellis.par.get("superpose.line")$col, splines=TRUE), onFALSE=list(multiline=FALSE, lty=0, lwd=0, col=rgb(1, 1, 1, alpha=0), splines=FALSE), arg="lines") if (missing(multiline)) multiline <- lines$multiline if (missing(z.var)) z.var <- lines$z.var if (missing(lwd)) lwd <- lines$lwd if (missing(colors)) colors <- lines$col if (missing(use.splines)) use.splines <- lines$splines lines <- if (missing(lty)) lines$lty else lty if (!is.logical(symbols) && !is.list(symbols)) symbols <- list(pch=symbols) symbols <- applyDefaults(symbols, defaults=list(pch=trellis.par.get("superpose.symbol")$pch, cex=trellis.par.get("superpose.symbol")$cex[1]), onFALSE=list(pch=NA_integer_, cex=0), arg="symbols") cex <- symbols$cex symbols <- symbols$pch if (missing(axes)) axes <- NULL axes <- applyDefaults(axes, defaults=list( x=list(rotate=0, rug=TRUE, cex=1), y=list(lab=NA, lim=NA, cex=1, ticks=list(at=NULL, n=5), type="rescale", rotate=0, transform=NULL), alternating=TRUE, grid=FALSE), arg="axes") x.args <- applyDefaults(axes$x, defaults=list(rotate=0, rug=TRUE, cex=1), arg="axes$x") if (missing(xlab)) { xlab.arg <- FALSE xlab <- list() } if (missing(xlim)) { xlim.arg <- FALSE xlim <- list() } if (missing(ticks.x)) { ticks.x.arg <- FALSE ticks.x <- list() } if (missing(transform.x)) { transform.x.arg <- FALSE transform.x <- list() } if (missing(rotx)) rotx <- x.args$rotate if (missing(rug)) rug <- x.args$rug cex.x <- x.args$cex x.args$rotate <- NULL x.args$rug <- NULL x.args$cex <- NULL x.pred.names <- names(x.args) if (length(x.pred.names) > 0){ for (pred.name in x.pred.names){ x.pred.args <- applyDefaults(x.args[[pred.name]], defaults=list(lab=NULL, lim=NULL, ticks=NULL, transform=NULL), arg=paste0("axes$x$", pred.name)) if (!xlab.arg) xlab[[pred.name]] <- x.pred.args$lab if (!xlim.arg) xlim[[pred.name]] <- x.pred.args$lim if (!ticks.x.arg) ticks.x[[pred.name]] <- x.pred.args$ticks if (!transform.x.arg) transform.x[[pred.name]] <- x.pred.args$transform } } if (length(xlab) == 0) xlab <- NA if (length(xlim) == 0) xlim <- NA if (length(ticks.x) == 0) ticks.x <- NA if (length(transform.x) == 0) transform.x <- NA y.args <- applyDefaults(axes$y, defaults=list(lab=NA, lim=NA, cex=1, ticks=list(at=NULL, n=5), type="rescale", rotate=0, transform=NULL), arg="axes$y") if (missing(ylab)) ylab <- y.args$lab if (missing(ylim)) ylim <- y.args$lim if (missing(ticks)) ticks <- y.args$ticks if (missing(type)) type <- y.args$type if (!missing(rescale.axis)) type <- if (rescale.axis) "rescale" else "response" type <- match.arg(type, c("rescale", "response", "link")) if (missing(roty)) roty <- y.args$rotate cex.y <- y.args$cex custom <- y.args$transform if(inherits(custom, "function")){ custom <- list(trans=I, inverse=custom) type <- "response" } # if(!is.null(custom)) type="response" if (missing(alternating)) alternating <- axes$alternating if (missing(grid)) grid <- axes$grid if (missing(confint) || isTRUE(confint)) confint <- NULL confint <- applyDefaults(confint, defaults=list(style=NULL, alpha=0.15, col=colors), onFALSE=list(style="none", alpha=0, col=NA_integer_), arg="confint") if (missing(ci.style)) ci.style <- confint$style if (missing(band.transparency)) band.transparency <- confint$alpha if (missing(band.colors)) band.colors <- confint$col if(!is.null(ci.style)) ci.style <- match.arg(ci.style, c("auto", "bars", "lines", "bands", "none")) if (missing(partial.residuals)) partial.residuals <- NULL if (is.logical(partial.residuals)) partial.residuals <- list(plot=partial.residuals) partial.residuals <- applyDefaults(partial.residuals, defaults=list( plot=!is.null(x$residuals), fitted=FALSE, col=colors[2], pch=1, cex=1, smooth=TRUE, span=2/3, smooth.col=colors[2], lty=lines[1], lwd=lwd), arg="partial.residuals") if (missing(show.fitted)) show.fitted <- partial.residuals$fitted if (missing(residuals.color)) residuals.color <- partial.residuals$col if (missing(residuals.pch)) residuals.pch <- partial.residuals$pch if (missing(residuals.cex)) residuals.cex <- partial.residuals$cex if (missing(smooth.residuals)) smooth.residuals <- partial.residuals$smooth if (missing(residuals.smooth.color)) residuals.smooth.color <- partial.residuals$smooth.col residuals.lty <- partial.residuals$lty residuals.lwd <- partial.residuals$lwd if (missing(span)) span <- partial.residuals$span partial.residuals <- partial.residuals$plot if (missing(id) || isFALSE(id)) { id.n <- 0 id.cex <- 0 id.col <- NULL id.labels <- NULL } else { id <- applyDefaults(id, list( n=2, cex=0.75, col=residuals.color, labels=NULL ), arg="id") id.n <- id$n id.col <- id$col id.cex <- id$cex id.labels <- id$labels } if (missing(lattice)) lattice <- NULL lattice <- applyDefaults(lattice, defaults=list( layout=NULL, #key.args=list(), strip=list(factor.names=TRUE, values=!partial.residuals, cex=1), array=list(row=1, col=1, nrow=1, ncol=1, more=FALSE), arg="lattice" )) lattice$key.args <- applyDefaults(lattice$key.args, defaults=list( space="top", border=FALSE, fontfamily="sans", cex=.75, cex.title=1, arg="key.args" )) if("x" %in% names(lattice$key.args)) lattice$key.args[["space"]] <- NULL if (missing(layout)) layout <- lattice$layout if (missing(key.args)){ lattice$key.args[["between.columns"]] <- if(is.null(lattice$key.args[["between.columns"]])) 0 else lattice$key.args[["between.columns"]] key.args <- lattice$key.args } strip.args <- applyDefaults(lattice$strip, defaults=list(factor.names=TRUE, values=!partial.residuals, cex=1), arg="lattice$strip") if (missing(factor.names)) factor.names <- strip.args$factor.names if (missing(show.strip.values)) show.strip.values <- strip.args$values cex.strip <- strip.args$cex height.strip <- max(1, cex.strip) array.args <- applyDefaults(lattice$array, defaults=list(row=1, col=1, nrow=1, ncol=1, more=FALSE), arg="lattice$array") row <- array.args$row col <- array.args$col nrow <- array.args$nrow ncol <- array.args$ncol more <- array.args$more if (smooth.residuals && !is.null(x$family)){ loess.family <- if (x$family == "gaussian") "symmetric" else "gaussian" average.resid <- if (loess.family == "gaussian") mean else median } switch(type, rescale = { type <- "response" rescale.axis <- TRUE }, response = { type <- "response" rescale.axis <- FALSE }, link = { type <- "link" rescale.axis <- TRUE } ) # levels <- sapply(x$variables, function(z) length(as.vector(z[["levels"]]))) thresholds <- x$thresholds has.thresholds <- !is.null(thresholds) effect.llines <- llines if (length(ylab) == 1 && is.na(ylab)){ ylab <- if (has.thresholds) paste(x$response, ": ", paste(x$y.levels, collapse=", "), sep="") else x$response } if (has.thresholds){ threshold.labels <- abbreviate(x$y.levels, minlength=1) threshold.labels <- paste(" ", paste(threshold.labels[-length(threshold.labels)], threshold.labels[-1], sep=" - "), " ", sep="") } original.link <- trans.link <- if(!is.null(custom)) custom$trans else x$transformation$link original.inverse <- trans.inverse <- if(!is.null(custom)) custom$inverse else x$transformation$inverse residuals <- if (partial.residuals) x$residuals else NULL if (!is.null(residuals) && !is.null(id.labels)) names(residuals) <- id.labels partial.residuals.range <- x$partial.residuals.range if (!rescale.axis){ x$lower[!is.na(x$lower)] <- trans.inverse(x$lower[!is.na(x$lower)]) x$upper[!is.na(x$upper)] <- trans.inverse(x$upper[!is.na(x$upper)]) x$fit[!is.na(x$fit)] <- trans.inverse(x$fit)[!is.na(x$fit)] trans.link <- trans.inverse <- I } x.all <- x$x.all if (!is.null(x.all)){ for (i in 1:ncol(x.all)){ if (inherits(x.all[, i], "factor")) x.all[, i] <- droplevels(x.all[, i]) } } split <- c(col, row, ncol, nrow) if (missing(x.var)) x.var <- x$x.var if (!is.null(x.var) && is.numeric(x.var)) x.var <- colnames(x$x)[x.var] x.data <- x$data for (i in 1:ncol(x.data)){ if (inherits(x.data[, i], "factor")) x.data[, i] <- droplevels(x.data[, i]) } effect <- paste(sapply(x$variables, "[[", "name"), collapse="*") vars <- x$variables x <- as.data.frame(x, type="link") for (i in 1:length(vars)){ if (!(vars[[i]]$is.factor)) next x[, i] <- factor(x[,i], levels=vars[[i]]$levels, exclude=NULL) x[, i] <- droplevels(x[, i]) } has.se <- !is.null(x$se) n.predictors <- ncol(x) - 1 - 3*has.se if (n.predictors == 1){ predictor <- names(x)[1] if (is.list(xlab)) xlab <- xlab[[predictor]] ### factor no other predictors if (is.factor(x[,1])){ ci.style <- if(is.null(ci.style) || ci.style == "auto") "bars" else ci.style range <- if(has.se & ci.style!="none") range(c(x$lower, x$upper), na.rm=TRUE) else range(x$fit, na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) if (!is.null(partial.residuals.range)){ ylim[1] <- min(ylim[1], partial.residuals.range[1]) ylim[2] <- max(ylim[2], partial.residuals.range[2]) } tickmarks <- if (type == "response" && rescale.axis) make.ticks(ylim, link=trans.link, inverse=trans.inverse, at=ticks$at, n=ticks$n) else make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) levs <- levels(x[,1]) n.lev <- length(levs) plot <- xyplot(eval(parse( text=paste("fit ~ as.numeric(", names(x)[1], ")"))), strip=strip.custom(strip.names=c(factor.names, TRUE), par.strip.text=list(cex=cex.strip)), par.settings=list(layout.heights=list(strip=height.strip)), panel=function(x, y, lower, upper, has.se, ...){ if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at) good <- !is.na(y) if(!all(!good)){ if (has.se){ if (ci.style == "bars"){ larrows(x0=x[good], y0=lower[good], x1=x[good], y1=upper[good], angle=90, code=3, col=if (partial.residuals) band.colors[1] else colors[.modc(2)], length=0.125*cex/1.5) } else if(ci.style == "lines") { effect.llines(x[good], lower[good], lty=2, col=colors[.modc(2)]) effect.llines(x[good], upper[good], lty=2, col=colors[.modc(2)]) } else{ if(ci.style == "bands") { panel.bands(x[good], y[good], upper[good], lower[good], fill=band.colors[1], alpha=band.transparency, use.splines=FALSE) }} } if (partial.residuals){ x.fit <- as.numeric(as.factor(x.data[good, predictor])) partial.res <- y[x.fit] + residuals[good] lpoints(jitter(x.fit, factor=0.5), partial.res, col=residuals.color, pch=residuals.pch, cex=residuals.cex) if (smooth.residuals && length(partial.res) != 0) { lpoints(1:n.lev, tapply(partial.res, x.fit, average.resid), pch=16, cex=residuals.cex*1.25, col=residuals.color) } } effect.llines(x[good], y[good], lwd=lwd, col=colors[1], lty=lines, type='b', pch=symbols[1], cex=cex, ...) if (has.thresholds){ panel.abline(h=thresholds, lty=3) panel.text(rep(current.panel.limits()$xlim[1], length(thresholds)), thresholds, threshold.labels, adj=c(0,0), cex=0.75) panel.text(rep(current.panel.limits()$xlim[2], length(thresholds)), thresholds, threshold.labels, adj=c(1,0), cex=0.75) } }}, ylim=ylim, ylab=ylab, xlab=if (length(xlab) == 1 && is.na(xlab)) names(x)[1] else xlab, scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating, y=roty), main=main, lower=x$lower, upper=x$upper, has.se=has.se, data=x, ...) result <- update(plot, layout = if (is.null(layout)) c(0, prod(dim(plot))) else layout) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } ### variate, no other predictors *** else { effect.llines <- if(use.splines) spline.llines else effect.llines ci.style <- if(is.null(ci.style) || ci.style == "auto") "bands" else ci.style range <- if(has.se && ci.style!="none") range(c(x$lower, x$upper), na.rm=TRUE) else range(x$fit, na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else if (is.null(residuals)) c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) else if (rescale.axis) c(min(partial.residuals.range[1], range[1] - .025*(range[2] - range[1])), max(partial.residuals.range[2], range[2] + .025*(range[2] - range[1]))) else c(min(original.inverse(partial.residuals.range[1]), range[1] - .025*(range[2] - range[1])), max(original.inverse(partial.residuals.range[2]), range[2] + .025*(range[2] - range[1]))) tickmarks <- if (type == "response" && rescale.axis) make.ticks(ylim, link=trans.link, inverse=trans.inverse, at=ticks$at, n=ticks$n) else make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) nm <- names(x)[1] x.vals <- x.data[, nm] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range.adj(x[nm]) # range(x.vals) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } if (is.null(x.var)){ if (!is.null(residuals)){ x.var <- names(x)[1] } else x.var <- which.max(levels) } if (!is.null(residuals)) x.fit <- x.data[, predictor] if (is.numeric(x.var)) x.var <- predictor plot <- xyplot(eval(parse( text=paste("fit ~ trans(", x.var, ")"))), strip=strip.custom(strip.names=c(factor.names, TRUE), par.strip.text=list(cex=cex.strip)), par.settings=list(layout.heights=list(strip=height.strip)), panel=function(x, y, x.vals, rug, lower, upper, has.se, ...){ if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at) good <- !is.na(y) if(!all(!good)){ axis.length <- diff(range(x)) effect.llines(x[good], y[good], lwd=lwd, col=colors[1], lty=lines, ...) if (rug && is.null(residuals)) lrug(trans(x.vals)) if (has.se){ if (ci.style == "bars"){ larrows(x0=x[good], y0=lower[good], x1=x[good], y1=upper[good], angle=90, code=3, col=if (partial.residuals) band.colors[1] else colors[.modc(2)], length=.125*cex/1.5) } else if(ci.style == "lines") { effect.llines(x[good], lower[good], lty=2, col=colors[.modc(2)]) effect.llines(x[good], upper[good], lty=2, col=colors[.modc(2)]) } else{ if(ci.style == "bands") { panel.bands(x[good], y[good], upper[good], lower[good], fill=band.colors[1], alpha=band.transparency, use.splines=use.splines) }} } if (has.thresholds){ panel.abline(h=thresholds, lty=3) panel.text(rep(current.panel.limits()$xlim[1], length(thresholds)), thresholds, threshold.labels, adj=c(0,0), cex=0.75) panel.text(rep(current.panel.limits()$xlim[2], length(thresholds)), thresholds, threshold.labels, adj=c(1,0), cex=0.75) } if (!is.null(residuals)){ fitted <- y[good][closest(trans(x.fit), x[good])] partial.res <- if (!rescale.axis) original.inverse(original.link(fitted) + residuals) else fitted + residuals lpoints(trans(x.fit), partial.res, col=residuals.color, pch=residuals.pch, cex=residuals.cex) if (show.fitted) lpoints(trans(x.fit), fitted, pch=16, col=residuals.color) # REMOVE ME if (smooth.residuals){ llines(loess.smooth(trans(x.fit), partial.res, span=span, family=loess.family), lwd=residuals.lwd, lty=residuals.lty, col=residuals.smooth.color) } if (id.n > 0){ M <- cbind(trans(x.fit), partial.res) md <- mahalanobis(M, colMeans(M), cov(M)) biggest <- order(md, decreasing=TRUE)[1:id.n] pos <- ifelse(trans(x.fit[biggest]) > mean(current.panel.limits()$xlim), 2, 4) ltext(trans(x.fit[biggest]), partial.res[biggest], names(partial.res)[biggest], pos=pos, col=id.col, cex=id.cex) } } }}, ylim=ylim, xlim=suppressWarnings(trans(xlm)), ylab=ylab, xlab=if (length(xlab) == 1 && is.na(xlab)) names(x)[1] else xlab, x.vals=x.vals, rug=rug, main=main, lower=x$lower, upper=x$upper, has.se=has.se, data=x, scales=list(y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), alternating=alternating), ...) result <- update(plot, layout = if (is.null(layout)) c(0, prod(dim(plot))) else layout) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } return(result) } ### more than one predictor predictors <- names(x)[1:n.predictors] levels <- sapply(apply(x[,predictors], 2, unique), length) if (is.null(x.var)){ if (!is.null(residuals)){ x.var <- names(x)[1] } else x.var <- which.max(levels) } if (is.list(xlab)) xlab <- xlab[[x.var]] if (!is.null(residuals)) x.fit <- x.data[, x.var] if (is.character(x.var)) { which.x <- which(x.var == predictors) if (length(which.x) == 0) stop(paste("x.var = '", x.var, "' is not in the effect.", sep="")) x.var <- which.x } if (is.character(z.var)) { which.z <- which(z.var == predictors) if (length(which.z) == 0) stop(paste("z.var = '", z.var, "' is not in the effect.", sep="")) z.var <- which.z } if (x.var == z.var) z.var <- z.var + 1 ### multiline if (multiline){ if (!is.null(residuals)) warning("partial residuals are not displayed in a multiline plot") ci.style <- if(is.null(ci.style)) "none" else ci.style if(ci.style == "lines") { cat("Confidence interval style 'lines' changed to 'bars'\n") ci.style <- "bars"} range <- if (has.se && ci.style !="none") range(c(x$lower, x$upper), na.rm=TRUE) else range(x$fit, na.rm=TRUE) ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) tickmarks <- if (type == "response" && rescale.axis) make.ticks(ylim, link=trans.link, inverse=trans.inverse, at=ticks$at, n=ticks$n) else make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) zvals <- unique(x[, z.var]) ### multiline factor if (is.factor(x[,x.var])){ if (ci.style == "auto") ci.style <- "bars" levs <- levels(x[,x.var]) key <- list(title=predictors[z.var], #cex.title=1, border=TRUE, text=list(as.character(zvals)), lines=list(col=colors[.modc(1:length(zvals))], lty=lines[.modl(1:length(zvals))], lwd=lwd), points=list(col=colors[.modc(1:length(zvals))], pch=symbols[.mods(1:length(zvals))]), columns = if ("x" %in% names(key.args)) 1 else find.legend.columns(length(zvals), space=if("x" %in% names(key.args)) "top" else key.args$space)) for (k in names(key.args)) key[k] <- key.args[k] if (show.strip.values && n.predictors > 2){ for (pred in predictors[-c(x.var, z.var)]){ x[[pred]] <- as.factor(x[[pred]]) } } plot <- xyplot(eval(parse( text=paste("fit ~ as.numeric(", predictors[x.var], ")", if (n.predictors > 2) paste(" |", paste(predictors[-c(x.var, z.var)], collapse="*"))))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip)), par.settings=list(layout.heights=list(strip=height.strip)), panel=function(x, y, subscripts, z, lower, upper, show.se, ...){ if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at) for (i in 1:length(zvals)){ sub <- z[subscripts] == zvals[i] good <- !is.na(y[sub]) if(!all(!good)){ os <- if(show.se) (i - (length(zvals) + 1)/2) * (2/(length(zvals)-1)) * .01 * (length(zvals) - 1) else 0 effect.llines(x[sub][good]+os, y[sub][good], lwd=lwd, type='b', col=colors[.modc(i)], pch=symbols[.mods(i)], lty=lines[.modl(i)], cex=cex, ...) if (show.se){ larrows(x0=x[sub][good]+os, y0=lower[subscripts][sub][good], x1=x[sub][good]+os, y1=upper[subscripts][sub][good], angle=90, code=3, col=eval(colors[.modc(i)]), length=.125*cex/1.5) } }} if (has.thresholds){ panel.abline(h=thresholds, lty=3) panel.text(rep(current.panel.limits()$xlim[1], length(thresholds)), thresholds, threshold.labels, adj=c(0,0), cex=0.75) panel.text(rep(current.panel.limits()$xlim[2], length(thresholds)), thresholds, threshold.labels, adj=c(1,0), cex=0.75) } }, ylim=ylim, ylab=ylab, xlab=if (length(xlab) == 1 && is.na(xlab)) predictors[x.var] else xlab, z=x[,z.var], scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), zvals=zvals, main=main, key=key, lower=x$lower, upper=x$upper, show.se=has.se && ci.style=="bars", data=x, ...) result <- update(plot, layout = if (is.null(layout)) c(0, prod(dim(plot))) else layout) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } ### multiline variate else{ if (ci.style == "auto") ci.style <- "bands" effect.llines <- if(use.splines) spline.llines else effect.llines nm <- names(x)[x.var] x.vals <- x.data[, nm] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range.adj(x[nm]) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } key <- list(title=predictors[z.var], #cex.title=1, border=TRUE, text=list(as.character(zvals)), lines=list(col=colors[.modc(1:length(zvals))], lty=lines[.modl(1:length(zvals))], lwd=lwd), columns = if ("x" %in% names(key.args)) 1 else find.legend.columns(length(zvals), if("x" %in% names(key.args)) "top" else key.args$space)) for (k in names(key.args)) key[k] <- key.args[k] if (show.strip.values && n.predictors > 2){ for (pred in predictors[-c(x.var, z.var)]){ x[[pred]] <- as.factor(x[[pred]]) } } plot <- xyplot(eval(parse( text=paste("fit ~trans(", predictors[x.var], ")", if (n.predictors > 2) paste(" |", paste(predictors[-c(x.var, z.var)], collapse="*"))))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip)), par.settings=list(layout.heights=list(strip=height.strip)), panel=function(x, y, subscripts, x.vals, rug, z, lower, upper, show.se, ...){ if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at) if (rug && is.null(residuals)) lrug(trans(x.vals)) axis.length <- diff(range(x)) for (i in 1:length(zvals)){ sub <- z[subscripts] == zvals[i] good <- !is.na(y[sub]) if(!all(!good)){ effect.llines(x[sub][good], y[sub][good], lwd=lwd, type='l', col=colors[.modc(i)], lty=lines[.modl(i)], cex=cex, ...) if(show.se){ if(ci.style == "bars"){ os <- (i - (length(zvals) + 1)/2) * (2/(length(zvals)-1)) * .01 * axis.length larrows(x0=x[sub][good]+os, y0=lower[subscripts][sub][good], x1=x[sub][good]+os, y1=upper[subscripts][sub][good], angle=90, code=3, col=eval(colors[.modc(i)]), length=.125*cex/1.5) } if(ci.style == "bands"){ panel.bands(x[sub][good], y[sub][good], upper[subscripts][sub][good], lower[subscripts][sub][good], fill=eval(band.colors[.modb(i)]), alpha=band.transparency, use.splines=use.splines) } } }} if (has.thresholds){ panel.abline(h=thresholds, lty=3) panel.text(rep(current.panel.limits()$xlim[1], length(thresholds)), thresholds, threshold.labels, adj=c(0,0), cex=0.75) panel.text(rep(current.panel.limits()$xlim[2], length(thresholds)), thresholds, threshold.labels, adj=c(1,0), cex=0.75) } }, ylim=ylim, xlim=suppressWarnings(trans(xlm)), ylab=ylab, xlab=if (length(xlab) == 1 && is.na(xlab)) predictors[x.var] else xlab, x.vals=x.vals, rug=rug, z=x[,z.var], zvals=zvals, main=main, key=key, # lower=x$lower, upper=x$upper, show.se=has.se && ci.style %in% c("bars", "bands"), # data=x, scales=list(y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), alternating=alternating), ...) result <- update(plot, layout = if (is.null(layout)) c(0, prod(dim(plot))) else layout) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } return(result) } # multiplot ci.style <- if(is.null(ci.style) || ci.style == "auto"){ if(is.factor(x[, x.var])) "bars" else "bands"} else ci.style range <- if (has.se && ci.style !="none") range(c(x$lower, x$upper), na.rm=TRUE) else range(x$fit, na.rm=TRUE) # multiplot factor if (is.factor(x[,x.var])){ ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) if (!is.null(partial.residuals.range)){ ylim[1] <- min(ylim[1], partial.residuals.range[1]) ylim[2] <- max(ylim[2], partial.residuals.range[2]) } tickmarks <- if (type == "response" && rescale.axis) make.ticks(ylim, link=trans.link, inverse=trans.inverse, at=ticks$at, n=ticks$n) else make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) levs <- levels(x[,x.var]) if (show.strip.values){ for (pred in predictors[-x.var]){ x[[pred]] <- as.factor(x[[pred]]) } } n.lev <- length(levs) x.fit <- x.data[, predictors[x.var]] use <- rep(TRUE, length(residuals)) xx <- x[, predictors[-x.var], drop=FALSE] plot <- xyplot(eval(parse( text=paste("fit ~ as.numeric(", predictors[x.var], ") |", paste(predictors[-x.var], collapse="*")))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip)), par.settings=list(layout.heights=list(strip=height.strip)), panel=function(x, y, subscripts, lower, upper, has.se, ...){ if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at) good <- !is.na(y) no.points <- all(!good) # skip arrows and lines if no.points==TRUE if(!no.points){ if (has.se){ if (ci.style == "bars"){ larrows(x0=x[good], y0=lower[subscripts][good], x1=x[good], y1=upper[subscripts][good], angle=90, code=3, col=if (partial.residuals) band.colors[1] else colors[.modc(2)], length=0.125*cex/1.5) } else if(ci.style == "lines") { effect.llines(x[good], lower[subscripts][good], lty=2, col=colors[.modc(2)]) effect.llines(x[good], upper[subscripts][good], lty=2, col=colors[.modc(2)]) } else{ if(ci.style == "bands") { panel.bands(x[good], y[good], upper[subscripts][good], lower[subscripts][good], fill=band.colors[1], alpha=band.transparency, use.splines=FALSE) }} } if (!is.null(residuals)){ predictors <- predictors[-x.var] factors <- sapply(xx, is.factor) for (predictor in predictors){ use <- use & if(factors[predictor]) x.all[, predictor] == xx[subscripts[1], predictor] else x.all[, predictor] == xx[subscripts[1], predictor] } n.in.panel <- sum(use) if (n.in.panel > 0){ fitted <- y[good][as.numeric(as.factor(x.fit[use]))] partial.res <- if (!rescale.axis) original.inverse(original.link(fitted) + residuals[use]) else fitted + residuals[use] lpoints(jitter(as.numeric(as.factor(x.fit[use])), 0.5), partial.res, col=residuals.color, pch=residuals.pch, cex=residuals.cex) if (show.fitted) lpoints(x.fit[use], fitted, pch=16, col=residuals.color) # REMOVE ME if (smooth.residuals && n.in.panel != 0) { lpoints(1:n.lev, tapply(partial.res, x.fit[use], average.resid), pch=16, cex=1.25*residuals.cex, col=residuals.color) } if (id.n > 0){ M <- cbind(trans(x.fit[use]), partial.res) md <- mahalanobis(M, colMeans(M), cov(M)) biggest <- order(md, decreasing=TRUE)[1:id.n] pos <- ifelse(x.fit[use][biggest] > mean(current.panel.limits()$xlim), 2, 4) ltext(x.fit[use][biggest], partial.res[biggest], names(partial.res)[biggest], pos=pos, col=id.col, cex=id.cex) } } } effect.llines(x[good], y[good], lwd=lwd, lty=lines, type='b', col=colors[1], pch=symbols[1], cex=cex, ...) if (has.thresholds){ panel.abline(h=thresholds, lty=3) panel.text(rep(current.panel.limits()$xlim[1], length(thresholds)), thresholds, threshold.labels, adj=c(0,0), cex=0.75) panel.text(rep(current.panel.limits()$xlim[2], length(thresholds)), thresholds, threshold.labels, adj=c(1,0), cex=0.75) } }}, ylim=ylim, ylab=ylab, xlab=if (length(xlab) == 1 && is.na(xlab)) predictors[x.var] else xlab, scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x), y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating), main=main, lower=x$lower, upper=x$upper, has.se=has.se, data=x, ...) result <- update(plot, layout = if (is.null(layout)) c(0, prod(dim(plot))) else layout) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } ### multiplot variate *** else{ effect.llines <- if(use.splines) spline.llines else effect.llines nm <- names(x)[x.var] x.vals <- x.data[, nm] if (nm %in% names(ticks.x)){ at <- ticks.x[[nm]]$at n <- ticks.x[[nm]]$n } else{ at <- NULL n <- 5 } xlm <- if (nm %in% names(xlim)){ xlim[[nm]] } else range.adj(x[nm]) tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){ trans <- transform.x[[nm]]$trans make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n) } else { trans <- I make.ticks(xlm, link=I, inverse=I, at=at, n=n) } ylim <- if (!any(is.na(ylim))) ylim else if (is.null(residuals)) c(range[1] - .025*(range[2] - range[1]), range[2] + .025*(range[2] - range[1])) else if (rescale.axis) c(min(partial.residuals.range[1], range[1] - .025*(range[2] - range[1])), max(partial.residuals.range[2], range[2] + .025*(range[2] - range[1]))) else c(min(original.inverse(partial.residuals.range[1]), range[1] - .025*(range[2] - range[1])), max(original.inverse(partial.residuals.range[2]), range[2] + .025*(range[2] - range[1]))) tickmarks <- if (type == "response" && rescale.axis) make.ticks(ylim, link=trans.link, inverse=trans.inverse, at=ticks$at, n=ticks$n) else make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n) x.fit <- x.data[, predictors[x.var]] use <- rep(TRUE, length(residuals)) xx <- x[, predictors[-x.var], drop=FALSE] if (show.strip.values){ for (pred in predictors[-x.var]){ x[[pred]] <- as.factor(x[[pred]]) } } plot <- xyplot(eval(parse( text=paste("fit ~ trans(", predictors[x.var], ") |", paste(predictors[-x.var], collapse="*")))), strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip)), par.settings=list(layout.heights=list(strip=height.strip)), panel=function(x, y, subscripts, x.vals, rug, lower, upper, has.se, ...){ if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at) good <- !is.na(y) if(!all(!good)){ effect.llines(x[good], y[good], lwd=lwd, col=colors[1], lty=lines, ...) if (rug && is.null(residuals)) lrug(trans(x.vals)) if (has.se){ if (ci.style == "bars"){ larrows(x0=x[good], y0=lower[subscripts][good], x1=x[good], y1=upper[subscripts][good], angle=90, code=3, col=if (partial.residuals) band.colors[1] else colors[.modc(2)], length=.125*cex/1.5) } else if(ci.style == "lines") { effect.llines(x[good], lower[subscripts][good], lty=2, col=colors[.modc(2)]) effect.llines(x[good], upper[subscripts][good], lty=2, col=colors[.modc(2)]) } else if(ci.style == "bands") { panel.bands(x[good], y[good], upper[subscripts][good], lower[subscripts][good], fill=band.colors[1], alpha=band.transparency, use.splines=use.splines) } } if (!is.null(residuals)){ predictors <- predictors[-x.var] factors <- sapply(xx, is.factor) for (predictor in predictors){ use <- use & if(factors[predictor]) x.all[, predictor] == xx[subscripts[1], predictor] else x.all[, predictor] == xx[subscripts[1], predictor] } n.in.panel <- sum(use) if (n.in.panel > 0){ fitted <- y[good][closest(trans(x.fit[use]), x[good])] partial.res <- if (!rescale.axis) original.inverse(original.link(fitted) + residuals[use]) else fitted + residuals[use] lpoints(trans(x.fit[use]), partial.res, col=residuals.color, pch=residuals.pch, cex=residuals.cex) if (show.fitted) lpoints(trans(x.fit[use]), fitted, pch=16, col=residuals.color) # REMOVE ME if (smooth.residuals && n.in.panel >= 10) { llines(loess.smooth(x.fit[use], partial.res, span=span, family=loess.family), lwd=residuals.lwd, lty=residuals.lty, col=residuals.smooth.color) } if (id.n > 0){ M <- cbind(trans(x.fit[use]), partial.res) md <- mahalanobis(M, colMeans(M), cov(M)) biggest <- order(md, decreasing=TRUE)[1:id.n] pos <- ifelse(trans(x.fit[use][biggest]) > mean(current.panel.limits()$xlim), 2, 4) ltext(trans(x.fit[use][biggest]), partial.res[biggest], names(partial.res)[biggest], pos=pos, col=id.col, cex=id.cex) } } } if (has.thresholds){ panel.abline(h=thresholds, lty=3) panel.text(rep(current.panel.limits()$xlim[1], length(thresholds)), thresholds, threshold.labels, adj=c(0,0), cex=0.75) panel.text(rep(current.panel.limits()$xlim[2], length(thresholds)), thresholds, threshold.labels, adj=c(1,0), cex=0.75) } }}, ylim=ylim, xlim=suppressWarnings(trans(xlm)), ylab=ylab, xlab=if (length(xlab) == 1 && is.na(xlab)) predictors[x.var] else xlab, x.vals=x.vals, rug=rug, main=main, lower=x$lower, upper=x$upper, has.se=has.se, data=x, scales=list(y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x), alternating=alternating), ...) result <- update(plot, layout = if (is.null(layout)) c(0, prod(dim(plot))) else layout) result$split <- split result$more <- more class(result) <- c("plot.eff", class(result)) } return(result) } print.plot.eff <- function(x, ...){ NextMethod(split=x$split, more=x$more, ...) invisible(x) } plot.efflist <- function(x, selection, rows, cols, ask=FALSE, graphics=TRUE, lattice, ...){ # Next line added 8/23/17 along with lattice, also lattice arg above lattice <- if(missing(lattice)) list() else lattice if (!missing(selection)){ if (is.character(selection)) selection <- gsub(" ", "", selection) return(plot(x[[selection]], lattice=lattice, ...)) } effects <- gsub(":", "*", names(x)) if (ask){ repeat { selection <- menu(effects, graphics=graphics, title="Select Term to Plot") if (selection == 0) break else print(plot(x[[selection]], lattice=lattice, ...)) } } else { neffects <- length(x) mfrow <- mfrow(neffects) if (missing(rows) || missing(cols)){ rows <- mfrow[1] cols <- mfrow[2] } for (i in 1:rows) { for (j in 1:cols){ if ((i-1)*cols + j > neffects) break more <- !((i-1)*cols + j == neffects) lattice[["array"]] <- list(row=i, col=j, nrow=rows, ncol=cols, more=more) print(plot(x[[(i-1)*cols + j]], lattice=lattice, ...)) } } } } effects/R/Effect-methods.R0000644000176200001440000001255613507746664015105 0ustar liggesusers# 12/11/2017: S. Weisberg. This file contains all the Effect methods that call # Effect.default. Excluded are Effect.lm, Effect.polr, and Effect.multinom, # and for now Effect.svyglm. # 06/08/2018: rewrote method for betareg, removing the 'link' argument from sources # 11/28/2018: modified Effect.gls to ignore the weights argument by # deleting it from sources$call. # 11/30/2018: fixed bug in Effect.merMod() specifying fam$family explicitly. # 7/5/2019: clm clm2 and clmm were not passing the estimated threshholds to polr # new lme method Effect.lme <- function(focal.predictors, mod, ...){ args <- list( call = mod$call, formula = mod$call$fixed, coefficients = mod$coefficients$fixed, vcov = mod$varFixed) Effect.default(focal.predictors, mod, ..., sources=args) } # new gls method Effect.gls <- function(focal.predictors, mod, ...){ cl <- mod$call cl$weights <- NULL args <- list( call = cl, formula = formula(mod), coefficients = coef(mod), vcov = as.matrix(vcov(mod))) Effect.default(focal.predictors, mod, ..., sources=args) } # new merMod Effect.merMod <- function(focal.predictors, mod, ..., KR=FALSE){ if (KR && !requireNamespace("pbkrtest", quietly=TRUE)){ KR <- FALSE warning("pbkrtest is not available, KR set to FALSE")} fam <- family(mod) args <- list( call = mod@call, coefficients = lme4::fixef(mod), family=fam, vcov = if (fam$family == "gaussian" && fam$link == "identity" && KR) as.matrix(pbkrtest::vcovAdj(mod)) else as.matrix(vcov(mod))) Effect.default(focal.predictors, mod, ..., sources=args) } # rlmer in robustlmm package Effect.rlmerMod <- function(focal.predictors, mod, ...){ args <- list( coefficients = lme4::fixef(mod), family=family(mod)) Effect.default(focal.predictors, mod, ..., sources=args) } # clm in the ordinal package Effect.clm <- function(focal.predictors, mod, ...){ if (requireNamespace("MASS", quietly=TRUE)){ polr <- MASS::polr} else stop("MASS package is required") polr.methods <- c("logistic", "probit", "loglog", "cloglog", "cauchit") method <- mod$link if(method == "logit") method <- "logistic" if(!(method %in% polr.methods)) stop("'link' must be a 'method' supported by polr; see help(polr)") if(mod$threshold != "flexible") stop("Effects only supports the 'flexible' threshold") numTheta <- length(mod$Theta) numBeta <- length(mod$beta) or <- c( (numTheta+1):(numTheta + numBeta), 1:(numTheta)) args <- list( type = "polr", coefficients = mod$beta, zeta = mod$alpha, method=method, vcov = as.matrix(vcov(mod)[or, or])) Effect.default(focal.predictors, mod, ..., sources=args) } # clm2 Effect.clm2 <- function(focal.predictors, mod, ...){ if (requireNamespace("MASS", quietly=TRUE)){ polr <- MASS::polr} polr.methods <- c("logistic", "probit", "loglog", "cloglog", "cauchit") method <- mod$link if(!(method %in% polr.methods)) stop("'link' must be a 'method' supported by polr; see help(polr)") if(is.null(mod$Hessian)){ message("\nRe-fitting to get Hessian\n") mod <- update(mod, Hess=TRUE)} if(mod$threshold != "flexible") stop("Effects only supports the flexible threshold") numTheta <- length(mod$Theta) numBeta <- length(mod$beta) or <- c( (numTheta+1):(numTheta + numBeta), 1:(numTheta)) args <- list( type = "polr", formula = mod$call$location, coefficients = mod$beta, zeta = mod$Theta, method=method, vcov = as.matrix(vcov(mod)[or, or])) Effect.default(focal.predictors, mod, ..., sources=args) } #clmm in ordinal package Effect.clmm <- function(focal.predictors, mod, ...){ if (requireNamespace("MASS", quietly=TRUE)){ polr <- MASS::polr} else stop("The MASS package must be installed") polr.methods <- c("logistic", "probit", "loglog", "cloglog", "cauchit") method <- mod$link if(method == "logit") method <- "logistic" if(!(method %in% polr.methods)) stop("'link' must be a 'method' supported by polr; see help(polr)") if(is.null(mod$Hessian)){ message("\nRe-fitting to get Hessian\n") mod <- update(mod, Hess=TRUE)} if(mod$threshold != "flexible") stop("Only threshold='flexible supported by Effects") numTheta <- length(mod$Theta) numBeta <- length(mod$beta) or <- c( (numTheta+1):(numTheta + numBeta), 1:(numTheta)) Vcov <- as.matrix(vcov(mod)[or, or]) args <- list( type = "polr", formula = formula(mod), coefficients = mod$beta, zeta=mod$alpha, method=method, vcov = as.matrix(Vcov)) Effect.default(focal.predictors, mod, ..., sources=args) } # betareg from the betareg package Effect.betareg <- function(focal.predictors, mod, ...){ coef <- mod$coefficients$mean vco <- vcov(mod)[1:length(coef), 1:length(coef)] # betareg uses beta errors with mean link given in mod$link$mean. # Construct a family based on the binomial() family fam <- binomial(link=mod$link$mean) # adjust the varince function to account for beta variance fam$variance <- function(mu){ f0 <- function(mu, eta) (1-mu)*mu/(1+eta) do.call("f0", list(mu, mod$coefficient$precision))} # adjust initialize fam$initialize <- expression({mustart <- y}) args <- list( call = mod$call, formula = formula(mod), family=fam, coefficients = coef, vcov = vco) Effect.default(focal.predictors, mod, ..., sources=args) } effects/R/Effect.R0000644000176200001440000007574013534024360013426 0ustar liggesusers# Effect generic and methods # John Fox and Sanford Weisberg # 2012-12-21: Allow for empty cells in factor interactions, S. Weisberg # 2012-03-05: Added .merMod method for development version of lme4, J. Fox # 2012-04-06: Added support for lme4.0, J. Fox # 2013-07-15: Changed default xlevels and default.levels # 2013-10-15: Added Effect.default(). J. Fox # 2013-10-22: fixed bug in Effect.lm() when na.action=na.exclude. J. Fox # 2013-10-29: code to handle "valid" NAs in factors. J. Fox # 2013-11-06: fixed bug in Effect.multinom() in construction of effect object # 2014-03-13: modified Effect.lm() to compute partial residuals. J. Fox # 2014-05-06: fixed bug in Effect.gls() when cor or var structure depends on variables in the data set. J. Fox # 2014-08-02: added vcov.=vcov argument to allow other methods of estimating var(coef.estimates) # 2014-09-25: added KR argument to Effect.mer() and Effect.merMod(). J. Fox # 2014-12-07: don't assume that pbkrtest is installed. J. Fox # 2015-03-25: added "family" element to eff objects returned by Effect.lm(). J. Fox # 2016-02-16: fixed problem in handling terms like polynomials for non-focal predictors. J. Fox # 2016-03-01: recoded calculation of partial residuals. J. Fox # 2016-07-19: added checkFormula(). J. Fox # 2017-08-18: removed default.levels argument. J. Fox # 2017-08-26: introduced confint list argument, including Scheffe intervals. J. Fox # 2017-08-29: reintroduce legacy se and confidence.level arguments. # 2017-09-07: added Effect.svyglm() # 2017-09-14: no partial residuals for Effect.svyglm() # 2017-11-03: correct handling of rank deficient models, now using `estimability` package # 2017-11-22: modified checkFormula to work with clm2 models that don't have a 'formula' argument # 2017-12-10: Effect.default. Effect.mer, .merMod, .lme, gls have been replaced to use the default. # 2018-01-22: allow given.values="equal" or given.values="default" # 2018-01-25: substitute se for confint arg; make confint a legacy arg # 2018-05-06: allow for complete=FALSE arg in potential calls to vcov.lm() and vcov.glm. # 2018-05-13: allow partial residuals to be computed when the x.var is a factor. # 2018-06-05: Effect.default now makes sure family$aic is # set, for use with non-standard families. # 2018-06-05: A test has been added to Effect.default to chech if family$variance # has one parameter. If not, the function is stopped and an error is # returned. # 2018-06-12: Fixed bug with vcov in Effect.default # 2018-06-20: Added a check to Effect.default to handle family args that # are character or an unevaluated function # 2018-10-01: Avoid warnings when testing given.values == "equal" or "default". # 2018-10-08: transformation argument changed to legacy # 2018-10-08: new returned value 'link' = family(mod) # 2019-04-20: made Effect.default() more robust in fitting fake glm by setting epsilon=Inf. # 2019-04-20: fixed bug in .set.given.equal() in tests for model class. # 2019-07-05: clm, clm2 and clmm were not passing threshholds to the fake polr object, now corrected. # 2019-09-04: handle xlevels=n argument correctly ### Non-exported function added 2018-01-22 to generalize given.values to allow for "equal" weighting of factor levels for non-focal predictors. .set.given.equal <- function(m){ if(inherits(m, "lm") & !("(Intercept)" %in% names(coef(m)))) stop("Seting given.vales='equal' requires an intercept in the model formula") terms <- terms(m) classes <- attr(terms, "dataClasses") response <- attr(terms, "response") classes <- classes[-response] factors <- names(classes)[classes=="factor"] out <- NULL for (f in factors){ form <- as.formula(paste( "~", f, collapse="")) .m0 <- if(inherits(m, "glm")) {update(m, form, control=glm.control(epsilon=Inf, maxit=1))} else { if(inherits(m, "polr")) {update(m, form, control=list(maxit=1))} else { if(inherits(m, "multinom")) {update(m, form, maxit=0, trace=FALSE)} else update(m, form)}} names <- colnames(model.matrix(.m0))[-1] vals <- rep(1/(length(names)+1), length(names)) names(vals) <- names out <- c(out, vals) } out } ### end of non-exported function checkFormula <- function(object){ # clm2 does not have a formula, if(inherits(object, "clm2")) formula <- function(x) x$call$location if (!inherits(object, "formula")){ object <- formula(object) } formula <- as.character(object) rhs <- formula[length(formula)] res <- regexpr("as.factor\\(|factor\\(|as.ordered\\(|ordered\\(|as.numeric\\(|as.integer\\(", rhs) res == -1 || attr(res, "match.length") == 0 } Effect <- function(focal.predictors, mod, ...){ if (!checkFormula(mod)) stop("model formula should not contain calls to", "\n factor(), as.factor(), ordered(), as.ordered(),", " as.numeric(), or as.integer();", "\n see 'Warnings and Limitations' in ?Effect") UseMethod("Effect", mod) } # 2017-12-04 new Effect.default that actually works # 2017-12-07 added Effects.lme, .mer, gls that work Effect.default <- function(focal.predictors, mod, ..., sources=NULL){ # get formula from sources if present else from mod formula <- fixFormula( if(is.null(sources$formula)) formula(mod) else sources$formula) # the next line returns the formula if focal.predictors is null if(is.null(focal.predictors)) return(formula) # get the call cl <- if(is.null(sources$call)) {if(isS4(mod)) mod@call else mod$call} else sources$call # insert formula into the call cl$formula <- formula # set type == 'glm' unless it is set in sources type <- if(is.null(sources$type)) "glm" else sources$type # glm family from sources if set, else set fam to NULL if(!is.null(sources$family)){ fam <- sources$family fam$aic <- function(...) NULL # check to be sure the variance function in the family has one argument only, # otherwise this method won't work if(!is.null(fam$variance)){ if(length(formals(fam$variance)) > 1) stop("Effect plots are not implemented for families with more than one parameter in the variance function (e.g., negitave binomials).")} } else {fam <- NULL} # get the coefficient estimates and vcov from sources if present coefficients <- if(is.null(sources$coefficients)) coef(mod) else sources$coefficients # added 7/5/2019, next line, for models that use polr (e.g, clm, clm2) zeta <- if(is.null(sources$zeta)) NULL else sources$zeta vcov <- if(is.null(sources$vcov)) as.matrix(vcov(mod, complete=TRUE)) else sources$vcov # end reading sources # set control parameters: suggested by Nate TeGrotenhuis cl$control <- switch(type, glm = glm.control(epsilon=Inf, maxit=1), polr = list(maxit=1), multinom = c(maxit=1)) cl$method <- sources$method # NULL except for type=="polr" .m <- switch(type, glm=match(c("formula", "data", "contrasts", "subset", "control", "offset"), names(cl), 0L), polr=match(c("formula", "data", "contrasts", "subset", "control", "method"), names(cl), 0L), multinom=match(c("formula", "data", "contrasts", "subset", "family", "maxit", "offset"), names(cl), 0L)) cl <- cl[c(1L, .m)] if(!is.null(fam)) cl$family <- fam if (is.character(cl$family)) cl$family <- get(cl$family, mode = "function", envir = parent.frame()) if (is.function(cl$family)) cl$family <- family() cl[[1L]] <- as.name(type) # The following eval creates on object of class glm, polr or multinom. # These are crated to avoid writing an Effects method for every type of model. # The only information used from this "fake" object are the coefficients and # the variance-covariance matrix, and these are copied from the original # object so Effects plots the right things. mod2 <- eval(cl) mod2$coefficients <- coefficients mod2$vcov <- vcov if(!is.null(zeta)) mod2$zeta <- zeta # added 7/5/2019 if(type == "glm"){ mod2$weights <- as.vector(with(mod2, prior.weights * (family$mu.eta(linear.predictors)^2 / family$variance(fitted.values))))} class(mod2) <- c("fakeeffmod", class(mod2)) Effect(focal.predictors, mod2, ...) # call the glm/polr/multinom method } vcov.fakeeffmod <- function(object, ...) object$vcov ## This function removes terms with "|" or "||" in the formula, assumking these ## correspond to random effects. fixFormula <- function (term) { if (!("|" %in% all.names(term)) && !("||" %in% all.names(term))) return(term) if ((is.call(term) && term[[1]] == as.name("|")) || (is.call(term) && term[[1]] == as.name("||"))) return(NULL) if (length(term) == 2) { nb <- fixFormula(term[[2]]) if (is.null(nb)) return(NULL) term[[2]] <- nb return(term) } nb2 <- fixFormula(term[[2]]) nb3 <- fixFormula(term[[3]]) if (is.null(nb2)) return(nb3) if (is.null(nb3)) return(nb2) term[[2]] <- nb2 term[[3]] <- nb3 term } Effect.lm <- function(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov. = vcov, se=TRUE, residuals=FALSE, quantiles=seq(0.2, 0.8, by=0.2), x.var=NULL, ..., #legacy arguments: given.values, typical, offset, confint, confidence.level, partial.residuals, transformation){ if (is.numeric(xlevels)){ if (length(xlevels) > 1 || round(xlevels != xlevels)) stop("xlevels must be a single whole number or a list") form <- Effect.default(NULL, mod) #returns the fixed-effects formula terms <- attr(terms(form), "term.labels") predictors <- all.vars(parse(text=terms)) xlevs <- list() for (pred in predictors){ xlevs[[pred]] <- xlevels } xlevels <- xlevs } if (!missing(partial.residuals)) residuals <- partial.residuals partial.residuals <- residuals if (missing(transformation)) transformation <- list(link = family(mod)$linkfun, inverse = family(mod)$linkinv) if (missing(fixed.predictors)) fixed.predictors <- NULL fixed.predictors <- applyDefaults(fixed.predictors, list(given.values=NULL, typical=mean, apply.typical.to.factors=FALSE, offset=mean), arg="fixed.predictors") if (missing(given.values)) given.values <- fixed.predictors$given.values # new 1/22/18 to allow for automatical equal weighting of factor levels if(!is.null(given.values)){ if (given.values[1] == "default") given.values <- NULL if (given.values[1] == "equal") given.values <- .set.given.equal(mod)} # end new code if (missing(typical)) typical <- fixed.predictors$typical if (missing(offset)) offset <- fixed.predictors$offset apply.typical.to.factors <- fixed.predictors$apply.typical.to.factors if (!missing(confint)) se <- confint confint <- applyDefaults(se, list(compute=TRUE, level=.95, type="pointwise"), onFALSE=list(compute=FALSE, level=.95, type="pointwise"), arg="se") se <- confint$compute if (missing(confidence.level)) confidence.level <- confint$level confidence.type <- match.arg(confint$type, c("pointwise", "Scheffe", "scheffe")) default.levels <- NULL # just for backwards compatibility data <- if (partial.residuals){ all.vars <- all.vars(formula(mod)) expand.model.frame(mod, all.vars)[, all.vars] } else NULL if (!is.null(given.values) && !all(which <- names(given.values) %in% names(coef(mod)))) stop("given.values (", names(given.values[!which]), ") not in the model") off <- if (is.numeric(offset) && length(offset) == 1) offset else if (is.function(offset)) { mod.off <- model.offset(model.frame(mod)) if (is.null(mod.off)) 0 else offset(mod.off) } else stop("offset must be a function or a number") formula.rhs <- formula(mod)[[3]] if (!missing(x.var)){ if (!is.numeric(x.var)) { x.var.name <- x.var x.var <- which(x.var == focal.predictors) } if (length(x.var) == 0) stop("'", x.var.name, "' is not among the focal predictors") if (length(x.var) > 1) stop("x.var argument must be of length 1") } model.components <- Analyze.model(focal.predictors, mod, xlevels, default.levels, formula.rhs, partial.residuals=partial.residuals, quantiles=quantiles, x.var=x.var, data=data, typical=typical) excluded.predictors <- model.components$excluded.predictors predict.data <- model.components$predict.data predict.data.all.rounded <- predict.data.all <- if (partial.residuals) na.omit(data[, all.vars(formula(mod))]) else NULL factor.levels <- model.components$factor.levels factor.cols <- model.components$factor.cols n.focal <- model.components$n.focal x <- model.components$x X.mod <- model.components$X.mod cnames <- model.components$cnames X <- model.components$X x.var <- model.components$x.var formula.rhs <- formula(mod)[c(1, 3)] Terms <- delete.response(terms(mod)) mf <- model.frame(Terms, predict.data, xlev = factor.levels, na.action=NULL) mod.matrix <- model.matrix(formula.rhs, data = mf, contrasts.arg = mod$contrasts) if (is.null(x.var)) partial.residuals <- FALSE factors <- sapply(predict.data, is.factor) if (partial.residuals){ for (predictor in focal.predictors[-x.var]){ if (!factors[predictor]){ values <- unique(predict.data[, predictor]) predict.data.all.rounded[, predictor] <- values[apply(outer(predict.data.all[, predictor], values, function(x, y) (x - y)^2), 1, which.min)] } } } mod.matrix.all <- model.matrix(mod) wts <- weights(mod) if (is.null(wts)) wts <- rep(1, length(residuals(mod))) mod.matrix <- Fixup.model.matrix(mod, mod.matrix, mod.matrix.all, X.mod, factor.cols, cnames, focal.predictors, excluded.predictors, typical, given.values, apply.typical.to.factors) # 11/3/2017. Check to see if the model is full rank # Compute a basis for the null space, using estimibility package null.basis <- estimability::nonest.basis(mod) # returns basis for null space # check to see if each row of mod.matrix is estimable is.estimable <- estimability::is.estble(mod.matrix, null.basis) # TRUE if effect is estimable else FALSE # substitute 0 for NA in coef vector and compute effects scoef <- ifelse(is.na(mod$coefficients), 0L, mod$coefficients) effect <- off + mod.matrix %*% scoef effect[!is.estimable] <- NA # set all non-estimable effects to NA # end estimability check if (partial.residuals){ res <- na.omit(residuals(mod, type="working")) fitted <- na.omit(if (inherits(mod, "glm")) predict(mod, type="link") else predict(mod)) partial.residuals.range <- range(fitted + res) } else { res <- partial.residuals.range <- NULL } result <- list(term = paste(focal.predictors, collapse="*"), formula = formula(mod), response = response.name(mod), variables = x, fit = effect, x = predict.data[, 1:n.focal, drop=FALSE], x.all=predict.data.all.rounded[, focal.predictors, drop=FALSE], model.matrix = mod.matrix, data = X, discrepancy = 0, offset=off, residuals=res, partial.residuals.range=partial.residuals.range, x.var=x.var) if (se) { if (any(family(mod)$family == c("binomial", "poisson"))) { z <- if (confidence.type == "pointwise") { qnorm(1 - (1 - confidence.level)/2) } else { p <- length(na.omit(coef(mod))) scheffe(confidence.level, p) } } else { z <- if (confidence.type == "pointwise") { qt(1 - (1 - confidence.level)/2, df = mod$df.residual) } else { p <- length(na.omit(coef(mod))) scheffe(confidence.level, p, mod$df.residual) } } V <- vcov.(mod, complete=FALSE) mmat <- mod.matrix[, !is.na(mod$coefficients)] # remove non-cols with NA coeffs eff.vcov <- mmat %*% V %*% t(mmat) rownames(eff.vcov) <- colnames(eff.vcov) <- NULL var <- diag(eff.vcov) result$vcov <- eff.vcov result$se <- sqrt(var) result$se[!is.estimable] <- NA result$lower <- effect - z * result$se result$upper <- effect + z * result$se result$confidence.level <- confidence.level } if (is.null(transformation$link) && is.null(transformation$inverse)) { transformation$link <- I transformation$inverse <- I } result$transformation <- transformation result$family <- family(mod)$family # 2018-10-08 result$family kept to work with legacy code result$link <- family(mod) class(result) <- "eff" result } Effect.multinom <- function(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov. = vcov, se=TRUE, ..., #legacy arguments: confint, confidence.level, given.values, typical){ if (is.numeric(xlevels)){ if (length(xlevels) > 1 || round(xlevels != xlevels)) stop("xlevels must be a single whole number or a list") form <- Effect.default(NULL, mod) #returns the fixed-effects formula terms <- attr(terms(form), "term.labels") predictors <- all.vars(parse(text=terms)) xlevs <- list() for (pred in predictors){ xlevs[[pred]] <- xlevels } xlevels <- xlevs } if (missing(fixed.predictors)) fixed.predictors <- NULL fixed.predictors <- applyDefaults(fixed.predictors, list(given.values=NULL, typical=mean), arg="fixed.predictors") if (missing(given.values)) given.values <- fixed.predictors$given.values # new 1/22/18 to allow for automatical equal weighting of factor levels if(!is.null(given.values)){ if (given.values[1] == "default") given.values <- NULL if (given.values[1] == "equal") given.values <- .set.given.equal(mod)} # end new code # end new code if (missing(typical)) typical <- fixed.predictors$typical if (!missing(confint)) se <- confint confint <- applyDefaults(se, list(compute=TRUE, level=.95, type="pointwise"), onFALSE=list(compute=FALSE, level=.95, type="pointwise"), arg="se") se <- confint$compute if (missing(confidence.level)) confidence.level <- confint$level confidence.type <- match.arg(confint$type, c("pointwise", "Scheffe", "scheffe")) default.levels <- NULL # just for backwards compatibility if (length(mod$lev) < 3) stop("effects for multinomial logit model only available for response levels > 2") if (missing(given.values)) given.values <- NULL else if (!all(which <- colnames(given.values) %in% names(coef(mod)))) stop("given.values (", colnames(given.values[!which]),") not in the model") formula.rhs <- formula(mod)[c(1, 3)] model.components <- Analyze.model(focal.predictors, mod, xlevels, default.levels, formula.rhs, typical=typical) excluded.predictors <- model.components$excluded.predictors predict.data <- model.components$predict.data factor.levels <- model.components$factor.levels factor.cols <- model.components$factor.cols # n.focal <- model.components$n.focal x <- model.components$x X.mod <- model.components$X.mod cnames <- model.components$cnames X <- model.components$X formula.rhs <- formula(mod)[c(1, 3)] Terms <- delete.response(terms(mod)) mf <- model.frame(Terms, predict.data, xlev = factor.levels) mod.matrix <- model.matrix(formula.rhs, data = mf, contrasts.arg = mod$contrasts) X0 <- Fixup.model.matrix(mod, mod.matrix, model.matrix(mod), X.mod, factor.cols, cnames, focal.predictors, excluded.predictors, typical, given.values) resp.names <- make.names(mod$lev, unique=TRUE) resp.names <- c(resp.names[-1], resp.names[1]) # make the last level the reference level B <- t(coef(mod)) V <- vcov.(mod) m <- ncol(B) + 1 p <- nrow(B) r <- p*(m - 1) n <- nrow(X0) P <- Logit <- matrix(0, n, m) colnames(P) <- paste("prob.", resp.names, sep="") colnames(Logit) <- paste("logit.", resp.names, sep="") if (se){ z <- if (confidence.type == "pointwise") { qnorm(1 - (1 - confidence.level)/2) } else { scheffe(confidence.level, p) } Lower.P <- Upper.P <- Lower.logit <- Upper.logit <- SE.P <- SE.logit <- matrix(0, n, m) colnames(Lower.logit) <- paste("L.logit.", resp.names, sep="") colnames(Upper.logit) <- paste("U.logit.", resp.names, sep="") colnames(Lower.P) <- paste("L.prob.", resp.names, sep="") colnames(Upper.P) <- paste("U.prob.", resp.names, sep="") colnames(SE.P) <- paste("se.prob.", resp.names, sep="") colnames(SE.logit) <- paste("se.logit.", resp.names, sep="") } for (i in 1:n){ res <- eff.mul(X0[i,], B, se, m, p, r, V) # compute effects # P[i,] <- prob <- res$p # fitted probabilities P[i,] <- res$p # fitted probabilities Logit[i,] <- logit <- res$logits # fitted logits if (se){ # SE.P[i,] <- se.p <- res$std.err.p # std. errors of fitted probs SE.P[i,] <- res$std.err.p # std. errors of fitted probs SE.logit[i,] <- se.logit <- res$std.error.logits # std. errors of logits Lower.P[i,] <- logit2p(logit - z*se.logit) Upper.P[i,] <- logit2p(logit + z*se.logit) Lower.logit[i,] <- logit - z*se.logit Upper.logit[i,] <- logit + z*se.logit } } resp.levs <- c(m, 1:(m-1)) # restore the order of the levels P <- P[, resp.levs] Logit <- Logit[, resp.levs] if (se){ Lower.P <- Lower.P[, resp.levs] Upper.P <- Upper.P[, resp.levs] Lower.logit <- Lower.logit[, resp.levs] Upper.logit <- Upper.logit[, resp.levs] SE.P <- SE.P[, resp.levs] SE.logit <- SE.logit[, resp.levs] } result <- list(term=paste(focal.predictors, collapse="*"), formula=formula(mod), response=response.name(mod), y.levels=mod$lev, variables=x, x=predict.data[, focal.predictors, drop=FALSE], model.matrix=X0, data=X, discrepancy=0, model="multinom", prob=P, logit=Logit) if (se) result <- c(result, list(se.prob=SE.P, se.logit=SE.logit, lower.logit=Lower.logit, upper.logit=Upper.logit, lower.prob=Lower.P, upper.prob=Upper.P, confidence.level=confidence.level)) # find empty cells, if any, and correct ## 11/3/17: The code until the next comment is surely incorrect, but ## generally harmless. One must learn if the notion of estimablilty applied ## to multinomial models and figure out the right thing to do whichFact <- unlist(lapply(result$variables, function(x) x$is.factor)) zeroes <- NULL if(sum(whichFact) > 1){ nameFact <- names(whichFact)[whichFact] counts <- xtabs(as.formula( paste("~", paste(nameFact, collapse="+"))), model.frame(mod)) zeroes <- which(counts == 0) } if(length(zeroes) > 0){ levs <- expand.grid(lapply(result$variables, function(x) x$levels)) good <- rep(TRUE, dim(levs)[1]) for(z in zeroes){ good <- good & apply(levs, 1, function(x) !all(x == levs[z, whichFact])) } result$prob[!good, ] <- NA result$logit[!good, ] <- NA if (se){ result$se.prob[!good, ] <- NA result$se.logit[!good, ] <- NA result$lower.prob[!good, ] <- NA result$upper.prob[!good, ] <- NA } } ## End of unnecessary code class(result) <-'effpoly' result } Effect.polr <- function(focal.predictors, mod, xlevels=list(), fixed.predictors, vcov.=vcov, se=TRUE, latent=FALSE, ..., #legacy arguments: confint, confidence.level, given.values, typical){ if (is.numeric(xlevels)){ if (length(xlevels) > 1 || round(xlevels != xlevels)) stop("xlevels must be a single whole number or a list") form <- Effect.default(NULL, mod) #returns the fixed-effects formula terms <- attr(terms(form), "term.labels") predictors <- all.vars(parse(text=terms)) xlevs <- list() for (pred in predictors){ xlevs[[pred]] <- xlevels } xlevels <- xlevs } if (missing(fixed.predictors)) fixed.predictors <- NULL fixed.predictors <- applyDefaults(fixed.predictors, list(given.values=NULL, typical=mean), arg="fixed.predictors") if (missing(given.values)) given.values <- fixed.predictors$given.values # new 1/22/18 to allow for automatical equal weighting of factor levels # new 1/22/18 to allow for automatical equal weighting of factor levels if(!is.null(given.values)){ if (given.values[1] == "default") given.values <- NULL if (given.values[1] == "equal") given.values <- .set.given.equal(mod)} # end new code if (missing(typical)) typical <- fixed.predictors$typical if (!missing(confint)) se <- confint confint <- applyDefaults(se, list(compute=TRUE, level=.95, type="pointwise"), onFALSE=list(compute=FALSE, level=.95, type="pointwise"), arg="se") se <- confint$compute if (missing(confidence.level)) confidence.level <- confint$level confidence.type <- match.arg(confint$type, c("pointwise", "Scheffe", "scheffe")) default.levels <- NULL # just for backwards compatibility if (mod$method != "logistic") stop('method argument to polr must be "logistic"') if (missing(given.values)) given.values <- NULL else if (!all(which <- names(given.values) %in% names(coef(mod)))) stop("given.values (", names(given.values[!which]),") not in the model") formula.rhs <- formula(mod)[c(1, 3)] model.components <- Analyze.model(focal.predictors, mod, xlevels, default.levels, formula.rhs, typical=typical) excluded.predictors <- model.components$excluded.predictors predict.data <- model.components$predict.data factor.levels <- model.components$factor.levels factor.cols <- model.components$factor.cols # n.focal <- model.components$n.focal x <- model.components$x X.mod <- model.components$X.mod cnames <- model.components$cnames X <- model.components$X Terms <- delete.response(terms(mod)) mf <- model.frame(Terms, predict.data, xlev = factor.levels, na.action=NULL) mod.matrix <- model.matrix(formula.rhs, data = mf, contrasts.arg = mod$contrasts) X0 <- Fixup.model.matrix(mod, mod.matrix, model.matrix(mod), X.mod, factor.cols, cnames, focal.predictors, excluded.predictors, typical, given.values) resp.names <- make.names(mod$lev, unique=TRUE) X0 <- X0[,-1, drop=FALSE] b <- coef(mod) p <- length(b) # corresponds to p - 1 in the text alpha <- - mod$zeta # intercepts are negatives of thresholds z <- if (confidence.type == "pointwise") { qnorm(1 - (1 - confidence.level)/2) } else { scheffe(confidence.level, p + length(alpha)) } result <- list(term=paste(focal.predictors, collapse="*"), formula=formula(mod), response=response.name(mod), y.levels=mod$lev, variables=x, x=predict.data[, focal.predictors, drop=FALSE], model.matrix=X0, data=X, discrepancy=0, model="polr") if (latent){ res <- eff.latent(X0, b, vcov.(mod)[1:p, 1:p], se) result$fit <- res$fit if (se){ result$se <- res$se result$lower <- result$fit - z*result$se result$upper <- result$fit + z*result$se result$confidence.level <- confidence.level } transformation <- list() transformation$link <- I transformation$inverse <- I result$transformation <- transformation result$thresholds <- -alpha class(result) <- c("efflatent", "eff") return(result) } m <- length(alpha) + 1 r <- m + p - 1 indices <- c((p+1):r, 1:p) V <- vcov.(mod)[indices, indices] for (j in 1:(m-1)){ # fix up the signs of the covariances V[j,] <- -V[j,] # for the intercepts V[,j] <- -V[,j]} n <- nrow(X0) P <- Logit <- matrix(0, n, m) colnames(P) <- paste("prob.", resp.names, sep="") colnames(Logit) <- paste("logit.", resp.names, sep="") if (se){ Lower.logit <- Upper.logit <- Lower.P <- Upper.P <- SE.P <- SE.Logit <- matrix(0, n, m) colnames(Lower.logit) <- paste("L.logit.", resp.names, sep="") colnames(Upper.logit) <- paste("U.logit.", resp.names, sep="") colnames(Lower.P) <- paste("L.prob.", resp.names, sep="") colnames(Upper.P) <- paste("U.prob.", resp.names, sep="") colnames(SE.P) <- paste("se.prob.", resp.names, sep="") colnames(SE.Logit) <- paste("se.logit.", resp.names, sep="") } for (i in 1:n){ res <- eff.polr(X0[i,], b, alpha, V, m, r, se) # compute effects P[i,] <- res$p # fitted probabilities Logit[i,] <- logit <- res$logits # fitted logits if (se){ SE.P[i,] <- res$std.err.p # std. errors of fitted probs SE.Logit[i,] <- se.logit <- res$std.error.logits # std. errors of logits Lower.P[i,] <- logit2p(logit - z*se.logit) Upper.P[i,] <- logit2p(logit + z*se.logit) Lower.logit[i,] <- logit - z*se.logit Upper.logit[i,] <- logit + z*se.logit } } result$prob <- P result$logit <- Logit if (se) result <- c(result, list(se.prob=SE.P, se.logit=SE.Logit, lower.logit=Lower.logit, upper.logit=Upper.logit, lower.prob=Lower.P, upper.prob=Upper.P, confidence.level=confidence.level)) class(result) <-'effpoly' result } # svyglm Effect.svyglm <- function(focal.predictors, mod, fixed.predictors, ...){ Svymean <- function(x){ svymean(x, design=mod$survey.design) } ellipses.list <- list(...) if ((!is.null(ellipses.list$residuals) && !isFALSE(residuals)) || (!is.null(ellipses.list$partial.residuals) && !isFALSE(ellipses.list$partial.residuals))){ stop("partial residuals are not available for svyglm models") } if (missing(fixed.predictors)) fixed.predictors <- NULL fixed.predictors <- applyDefaults(fixed.predictors, list(given.values=NULL, typical=Svymean, apply.typical.to.factors=TRUE, offset=Svymean), arg="fixed.predictors") typical <- fixed.predictors$typical apply.typical.to.factors <- fixed.predictors$apply.typical.to.factors offset <- fixed.predictors$offset mod$call <- list(mod$call, data=mod$data) Effect.lm(focal.predictors, mod, typical=typical, apply.typical.to.factors=apply.typical.to.factors, offset=offset, ...) } effects/R/effectspoLCA.R0000644000176200001440000000453013374601263014522 0ustar liggesusers# 2013-07-31: extend effects to poLCA objects. S. Weisberg # 2013-10-15: removed effect.poLCA. J. Fox # 2018-11-19: added focal.levels argument to predictorEffect() and predictorEffects() methods. J. Fox #The next two functions should be exported to the namespace allEffects.poLCA <- function(mod, ...){ allEffects(poLCA.to.fake(mod), ...) } Effect.poLCA <- function(focal.predictors, mod, ...) { result <- Effect(focal.predictors, poLCA.to.fake(mod), ...) result$formula <- as.formula(formula(mod)) result } predictorEffects.poLCA <- function(mod, predictors = ~.,focal.levels=50, xlevels=5, ...){ predictorEffects(poLCA.to.fake(mod), predictors=predictors, focal.levels=focal.levels, xlevels=xlevels, ...) } predictorEffect.poLCA <- function(predictor, mod, focal.levels=50, xlevels=5, ...){ predictorEffect(predictor, poLCA.to.fake(mod), focal.levels=focal.levels, xlevels=xlevels, ...) } # this function makes a 'fake' multinom object or 'glm' object so # effect.multinom or effect.glm can be used. # effect.multinom requires at least 3 classes, so if classes=2 use # effect.glm poLCA.to.fake <- function(mod) { if (requireNamespace("nnet", quietly=TRUE)){ multinom <- nnet::multinom} dta <- eval(mod$call$data) form <- as.formula(eval(mod$call$formula)) # find the missing data: omit <- attr(model.frame(form, dta), "na.action") if(length(omit) == 0) dta$.class <- factor(mod$predclass) else{ dta$.class <- rep(NA, dim(dta)[1]) dta$.class[-omit] <- mod$predclass dta$.class <- factor(dta$.class) } # end of missing data correction formula1 <- update(form, .class ~ .) if(length(mod$P) == 2L){ mod1 <- glm(formula1, family=binomial, data=dta) mod1$call$data <- dta mod1$call$formula <- formula1 mod1$coef <- mod$coeff[, 1] mod1$vcov <- mod$coeff.V class(mod1) <- c("fakeglm", class(mod1)) } else { mod1 <- multinom(formula1, dta, Hess=TRUE, trace=FALSE, maxit=1) mod1$call$data <- dta mod1$call$formula <- formula1 mod1$coeff <- mod$coeff mod1$coeff.V <- mod$coeff.V class(mod1) <- c("fakemultinom", class(mod1)) } coef.fakemultinom <- function(mod){ coef <- t(mod$coeff) dimnames(coef) <- list(mod$lab[-1L], mod$vcoefnames) coef } vcov.fakemultinom <- function(mod){mod$coeff.V} mod1 } effects/R/summary-print-methods.R0000644000176200001440000002507613156521636016527 0ustar liggesusers# plot, summary, and print methods for effects package # John Fox and Jangman Hong # last modified 2012-11-30 by J. Fox # 29 June 2011 added grid, rotx and roty arguments to the two plot methods # by S. Weisberg # 21 Dec 2012 modest modification of empty cells with crossed factors # 2013-01-17: Added factor.ci.style arg to plot.eff() and plot.effpoly(). J. Fox # 2013-01-18: Added CI bars to multiline plots with factor.ci.style="bars" # 2013-01-19: Renamed 'factor.ci.style' to 'ci.style'. Added a 'none' option # extended to variate terms if multiline=TRUE, ci.style="bars" # 2013-01-30: scale arrow "heads" for error bars relative to cex # 2013-05-31: fixed symbol colors in legends in plot.eff(). J. Fox # 2013-08-14: fixed bug in restoring warn option. J. Fox # 2013-08-27: fixed symbols argument for multiline plot in plot.eff(), reported by Ulrike Gromping. J. Fox # 2013-08-31: fixed handling of ticks.x argument. John # 2013-09-25: moved plot.eff methods to plot.methods.R for easier work. Michael # 2013-10-17: added use.splines argument to plot.effpoly. Sandy summary.eff <- function(object, type=c("response", "link"), ...){ result <- list() result$header <- paste("\n", gsub(":", "*", object$term), 'effect\n') result$offset <- object$offset type <- match.arg(type) if (type == "response") { object$fit <- object$transformation$inverse(object$fit) if (!is.null(object$confidence.level)){ object$lower <- object$transformation$inverse(object$lower) object$upper <- object$transformation$inverse(object$upper) } } result$effect <- array(object$fit, dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) if (!is.null(object$se)){ result$lower.header <- paste('\n Lower', round(100*object$confidence.level, 2), 'Percent Confidence Limits\n') result$lower <- array(object$lower, dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) result$upper.header <- paste('\n Upper', round(100*object$confidence.level, 2), 'Percent Confidence Limits\n') result$upper <- array(object$upper, dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) } if (object$discrepancy > 1e-3) result$warning <- paste("\nWarning: There is an average discrepancy of", round(object$discrepancy, 3), "percent \n in the 'safe' predictions for effect", object$term, '\n') class(result) <- "summary.eff" result } print.summary.eff <- function(x, ...){ cat(x$header) if (x$offset != 0) cat("\noffset = ", x$offset, "\n\n") print(x$effect, ...) if (!is.null(x$lower)){ cat(x$lower.header) print(x$lower, ...) cat(x$upper.header) print(x$upper, ...) } if (!is.null(x$thresholds)){ cat("\nThresholds:\n") print(x$thresholds, ...) } if (!is.null(x$warning)) cat(x$warning) invisible(x) } print.eff <- function(x, type=c("response", "link"), ...){ cat(paste("\n", gsub(":", "*", x$term), 'effect\n')) if (x$offset != 0) cat("\noffset = ", x$offset, "\n\n") type <- match.arg(type) if (type == "response") x$fit <- x$transformation$inverse(x$fit) table <- array(x$fit, dim=sapply(x$variables, function(x) length(x$levels)), dimnames=lapply(x$variables, function(x) x$levels)) print(table, ...) if (x$discrepancy > 1e-3) cat(paste("\nWarning: There is an average discrepancy of", round(x$discrepancy, 3), "percent \n in the 'safe' predictions for effect", x$term, '\n')) invisible(x) } print.efflist <- function(x, ...){ cat(" model: ") form <- x[[1]]$formula attributes(form) <- NULL print(form) for (effect in names(x)){ print(x[[effect]], ...) } invisible(x) } summary.efflist <- function(object, ...){ cat(" model: ") form <- object[[1]]$formula attributes(form) <- NULL print(form) for (effect in names(object)){ print(summary(object[[effect]], ...)) } invisible(NULL) } print.effpoly <- function(x, type=c("probability", "logits"), ...){ type <- match.arg(type) x.frame <-as.data.frame(x) n.predictors <- length(names(x$x)) predictors <- names(x.frame)[1:n.predictors] y.lev <- x$y.lev ylevel.names <- make.names(paste("prob",y.lev)) colnames(x$prob) <- colnames(x$logit) <- ylevel.names y.categories <- matrix(0, nrow=length(x.frame[,predictors[1]]), ncol=length(y.lev)) for (i in 1:length(y.lev)){ level <- which(colnames(x$prob)[i] == ylevel.names) y.categories[,i] <- rep(y.lev[level], length(y.categories[,i])) } y.categories <- as.vector(y.categories) y.categories <- factor(y.categories) for (i in 1:length(y.lev)){ cat(paste("\n", gsub(":", "*", x$term), " effect (", type,") for ", y.lev[i], "\n", sep="")) table <- array(if (type == "probability") {x$prob[y.categories==y.lev[i]]} else {x$logit[y.categories==y.lev[i]]}, dim=sapply(x$variables, function(x) length(x$levels)), dimnames=lapply(x$variables, function(x) x$levels)) print(table, ...) } if (x$discrepancy > 0.1) cat(paste("\nWarning: There is an average discrepancy of", round(x$discrepancy, 2), "percent \n in the 'safe' predictions for effect", x$term, '\n')) invisible(x) } summary.effpoly <- function(object, type=c("probability", "logits"), ...){ type <- match.arg(type) x.frame <-as.data.frame(object) n.predictors <- length(names(object$x)) predictors <- names(x.frame)[1:n.predictors] y.lev <- object$y.lev ylevel.names <- make.names(paste("prob",y.lev)) colnames(object$prob) <- colnames(object$logit) <- colnames(object$lower.logit) <- colnames(object$upper.logit) <- colnames(object$lower.prob) <- colnames(object$upper.prob)<- ylevel.names y.categories <-matrix(0, nrow=length(x.frame[,predictors[1]]), ncol=length(y.lev)) for (i in 1:length(y.lev)){ level <- which(colnames(object$prob)[i] == ylevel.names) y.categories[,i] <- rep(y.lev[level], length(y.categories[,i])) } y.categories <- as.vector(y.categories) y.categories <- factor(y.categories) for (i in 1:length(y.lev)){ cat(paste("\n", gsub(":", "*", object$term), " effect (" , type, ") for ", y.lev[i], "\n", sep="")) table <- array(if (type == "probability") {object$prob[y.categories==y.lev[i]]} else {object$logit[y.categories==y.lev[i]]}, dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) print(table, ...) } if (is.null(object$confidence.level)) return(invisible(NULL)) for (i in 1:length(y.lev)){ cat(paste("\n", 'Lower', object$confidence.level*100, 'Percent Confidence Limits for' , y.lev[i],'\n')) table <- if (type == "probability") object$lower.prob else object$lower.logit table <- array(table[y.categories==y.lev[i]], dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) print(table, ...) } for (i in 1:length(y.lev)){ cat(paste("\n", 'Upper', object$confidence.level*100, 'Percent Confidence Limits for' , y.lev[i],'\n')) table <- if (type == "probability") object$upper.prob else object$upper.logit table <- array(table[y.categories==y.lev[i]], dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) print(table, ...) } if (object$discrepancy > 0.1) cat(paste("\nWarning: There is an average discrepancy of", round(object$discrepancy, 2), "percent \n in the 'safe' predictions for effect", object$term, '\n')) invisible(NULL) } print.efflatent <- function(x, ...){ cat(paste("\n", gsub(":", "*", x$term), 'effect\n')) table <- array(x$fit, dim=sapply(x$variables, function(x) length(x$levels)), dimnames=lapply(x$variables, function(x) x$levels)) print(table, ...) cat("\nThresholds:\n") print(x$thresholds, ...) if (x$discrepancy > 0.1) cat(paste("\nWarning: There is an average discrepancy of", round(x$discrepancy, 3), "percent \n in the 'safe' predictions for effect", x$term, '\n')) invisible(x) } summary.efflatent <- function(object, ...){ result <- list() result$header <- paste("\n", gsub(":", "*", object$term), 'effect\n') result$effect <- array(object$fit, dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) if (!is.null(object$se)){ result$lower.header <- paste('\n Lower', round(100*object$confidence.level, 2), 'Percent Confidence Limits\n') result$lower <- array(object$lower, dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) result$upper.header <- paste('\n Upper', round(100*object$confidence.level, 2), 'Percent Confidence Limits\n') result$upper <- array(object$upper, dim=sapply(object$variables, function(x) length(x$levels)), dimnames=lapply(object$variables, function(x) x$levels)) } result$thresholds <- object$thresholds if (object$discrepancy > 0.1) result$warning <- paste("\nWarning: There is an average discrepancy of", round(object$discrepancy, 3), "percent \n in the 'safe' predictions for effect", object$term, '\n') class(result) <- "summary.eff" result } effects/MD50000644000176200001440000000476413563623352012224 0ustar liggesusers5323764be247abc4449a39c4173e63da *DESCRIPTION ba9fd6d982c59eaf05368aa93e271e1c *NAMESPACE e09481f9358c09c1b9fcb2da649d88d2 *NEWS ea75280a247c647508339f4f4da806cb *R/Effect-methods.R c8280b66b906d6e694d34b9f1cc75e5a *R/Effect.R 4b1903a2166741e653b6c0e9744a5048 *R/Effect.mlm.R a80b00308da234c0e29eab91ae30caa3 *R/effects.R 2d8ee8f8d9f81ffc4d2d9db7f57d2a79 *R/effectsHexsticker.R 9bfd7310db1db65d9ac7f37e775db993 *R/effectspoLCA.R f077339bc22bb93aae6ab8d50d9e533d *R/plot-methods.R 4b1f21fad2c86cddc9a432726709c3c1 *R/plot.effpoly.R 0822aa92d6e997cc98c35b5cf663eeac *R/predictorEffects.R fe921e301e606d944a33cb05445029c5 *R/summary-print-methods.R 1727656739f6f798e8bb3286ea2e234a *R/utilities.R 87826f3721aabb4203316c1da727bcb2 *build/vignette.rds 809fa4f25bbbd3e6d146c26d7ae3907e *inst/CHANGES 59f7bb1ac71828127aacb1dfe29ae90a *inst/CITATION 960166d766eb73f5a664bb8a5a71e3bf *inst/doc/adding-Effect-methods.R 9c43f46e9cbf97516b8c99421f7b5c6c *inst/doc/adding-Effect-methods.Rnw 160d4db2cb74cf1fce8131891364a779 *inst/doc/adding-Effect-methods.pdf 36db2232f79c04339ac664d5ea5cb8e3 *inst/doc/effects-hex.pdf 050b8d5b725bc28fb6aa8be4314f0d31 *inst/doc/partial-residuals.R a12d0cd397ac0d93512f56f2627b638b *inst/doc/partial-residuals.Rnw fd666052713e9842efc8f0e99454ba6a *inst/doc/partial-residuals.pdf 642eeef8439c193575e2d61fa07663bd *inst/doc/predictor-effects-gallery.R af402193548b2cda4846ef8fbc0a48ba *inst/doc/predictor-effects-gallery.Rnw 04cbcc95285d6a0764a1b93e1a7a038e *inst/doc/predictor-effects-gallery.pdf 4ce50bcee0334b7b56cc6c4ecba4f054 *man/LegacyArguments.Rd 58fdd50bcf44876e51f75a07c491aa09 *man/effect-methods.Rd 3b885c722d0eb8c6d1c68b45081d4d67 *man/effect.Rd abc48b3dd08a37d4605410f89a5c413f *man/effects-package.Rd f54730485d1a6917ce4b7f2a7f2afaea *man/effectsHexsticker.Rd c8444c4913f50ee0d9608617520e3f22 *man/effectsTheme.Rd f26dc615821e6ca4a221ad15909cff65 *man/plot.effect.Rd e1478cd39d4c98967c1d6a69d57acc13 *man/predictorEffects.Rd ad3cb8d8438a77d174fee28168135f19 *man/summary.effect.Rd c0e3bc933c20142624ff79e8f5ee6928 *tests/effect-tests-1.R 140e592dfb8c95c795863201b5e480e4 *tests/effect-tests-2.R 9c43f46e9cbf97516b8c99421f7b5c6c *vignettes/adding-Effect-methods.Rnw fc4326d3203092ade003e9eefcf7a642 *vignettes/adding-Effect-methods.bib a12d0cd397ac0d93512f56f2627b638b *vignettes/partial-residuals.Rnw a6cb29f8bc79527fdb6f4099a9319f6c *vignettes/partial-residuals.bib af402193548b2cda4846ef8fbc0a48ba *vignettes/predictor-effects-gallery.Rnw 4414ba31c49a8261876883dc29ee4e8a *vignettes/predictor-effects-gallery.bib effects/inst/0000755000176200001440000000000013563357015012656 5ustar liggesuserseffects/inst/doc/0000755000176200001440000000000013563357426013431 5ustar liggesuserseffects/inst/doc/adding-Effect-methods.Rnw0000644000176200001440000004564113510655366020210 0ustar liggesusers%\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Defining Effect Methods for Other Models} %% vignette index specifications need to be *after* \documentclass{} %%\VignetteEngine{knitr::knitr} %%\VignetteIndexEntry{Computing Effects for Other Statistical Models} %%\VignettePackage{effects} \documentclass{article} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage[american]{babel} \newcommand{\R}{{\sf R}} \usepackage{url} \usepackage{hyperref} \usepackage{alltt} \usepackage{fancyvrb} \usepackage{natbib} \usepackage{amsmath} \VerbatimFootnotes \bibliographystyle{chicago} %\usepackage{amsmath,amsfonts,amssymb} %\usepackage{natbib} %\bibliographystyle{abbrvnat} %\usepackage[margin=1in]{geometry} \newcommand{\x}{\mathbf{x}} \newcommand{\code}[1]{\normalfont\texttt{\hyphenchar\font45\relax #1}} \newcommand{\E}{\mathrm{E}} \newcommand{\tild}{\symbol{126}} \newcommand{\Rtilde}{\,\raisebox{-.5ex}{\code{\tild{}}}\,} \newcommand{\captilde}{\mbox{\protect\Rtilde}} % use in figure captions. \newcommand{\Rmod}[2]{\code{#1 \raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmoda}[2]{\code{#1} &\code{\raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmodb}[2]{\code{#1 &\raisebox{-.5ex}{\tild{}}& #2}} \newcommand{\C}{\mathbf{C}} \newcommand{\betahat}{\widehat{\beta}} \newcommand{\bbetahat}{\widehat{\boldsymbol{\beta}}} \newcommand{\bbeta}{\boldsymbol{\beta}} \newcommand{\xbf}{\x_{\backslash{}f}} \newcommand{\hbf}{h_{\backslash{}f}} \newcommand{\xtb}{\x_{2\backslash{}f}} \newcommand{\xbfi}{\x_{\backslash{}f,i}} \newcommand{\inter}[2]{\mbox{$#1$:$#2$}} \newcommand{\cross}[2]{\mbox{$#1$\code{*}$#2$}} \newcommand{\N}{\mathrm{N}} \newcommand{\fn}{\textbf} \newcommand{\pkg}[1]{\code{#1}} \newcommand{\proglang}[1]{\code{#1}} \newcommand{\yx}{\widehat{y}(\x)} \newcommand{\lvn}[1]{\mbox{$\log(\mbox{\texttt{#1}})$}} \begin{document} \title{Defining Effect Methods for Other Models} \author{John Fox and Sanford Weisberg} \date{\today} \maketitle <>= library("knitr") opts_chunk$set(fig.width=5,fig.height=5,tidy=TRUE, out.width="0.8\\textwidth",echo=TRUE) options(prompt=" ") @ <>= #options(continue="+ ", prompt="R> ", width=76) options(show.signif.stars=FALSE) options(scipen=3) @ <>= library(knitr) opts_chunk$set( tidy=FALSE,fig.width=5,fig.height=5,cache=FALSE,comment=NA, prompt=TRUE ) render_sweave() @ <>= options(continue=" ", prompt=" ", width=76) options(show.signif.stars=FALSE) options(scipen=3) @ The \code{effects} package in \R{} is designed primarily to draw graphs that visualize a fitted response surface of a fitted model in problems with a linear predictor. Many modeling paradigms that can be fit with base \R{} or contributed packages fit into this framework, including methods for linear, multivariate linear, and generalized linear models fit by the standard \code{lm} and \code{glm} functions and by the \code{svyglm} function in the \code{survey} package \citep{Lumley04}; linear models fit by generalized least squares using the \code{gls} function in the \pkg{nlme} package \citep{Pinheiro16}; multinomial regression models fit by \code{multinom} in the \pkg{nnet} package \citep{VenablesRipley02}; ordinal regression models using \code{polr} from the \pkg{MASS} package \citep{VenablesRipley02} and \code{clm} and \code{clm2} from the \pkg{ordinal} package \citep{Christensen15}; linear and generalized linear mixed models using the \code{lme} function in the \pkg{nlme} package \citep{Pinheiro16} and the \code{lmer} and \code{glmer} functions in the \pkg{lme4} package \citep{Bates15}; and latent class models fit by \code{poLCA} in the \pkg{poLCA} package \citep{Linzer11}. This is hardly an exhaustive list of fitting methods that are based on a linear predictor, and we have been asked from time to time to write functions to use \code{effects} with this other fitting methods. The mechanism for this is fairly simple. This vignette assumes you are familiar with \R{}'s S3 methods. The default \code{Effect.default} may work with some modeling functions, as would objects of the class \code{gls} that we describe below in Section~\ref{gls}, but as illustrated in later sections you may need to modify some of the arguments that are sent to \code{Effect.default}. . The \code{effect} package has five functions that create the information needed for drawing effects plots, \code{Effect}, \code{allEffects}, \code{effect} and \code{predictorEffect} and \code{predictorEffects}. To add new modeling to the package only a new \code{Effect} needs to be written; the package will take care of all the other functions. \section{Using \code{effects} with Other Modeling Methods, with Generalized Least Squares in the \pkg{nlme} package as an Example}\label{gls} Applying \code{effects} to other than \code{lm} and \code{glm} objects may require writing an method for the \code{Effect} generic function for that type of model object. For example, the \code{gls} function in the \code{nlme} package \citep{nlme} fits linear models via generalized least squares. A call to \code{gls} creates an object of class \code{gls}. The following function \code{Effect.gls} provides a method for \code{gls} objects by finding the information needed to draw effects plots from \code{gls} objects: <>= Effect.gls <- function(focal.predictors, mod, ...){ cl <- mod$call cl$weights <- NULL args <- list( type = "glm", call = cl, formula = formula(mod), family = NULL, coefficients = coef(mod), vcov = as.matrix(vcov(mod)), method=NULL) Effect.default(focal.predictors, mod, ..., sources=args) } @ The \code{Effect.gls} function has three required arguments, \code{focal.predictors} and \code{mod} that match the first two arguments of \code{Effect.default}, and \code{...} that matches any other arguments you would like to pass to \code{Effect.default}; see \code{help(Effect)} for a list of these arguments. The body of the function simply harvests the needed information from the \code{mod} object, and stores them in a list of named elements called \code{sources}. The \code{sources} list is then passed as a named argument to the default \code{Effect} method. The named elements in \code{sources} include: \begin{description} \item[\texttt{type}] The \code{effects} package has three basic modeling functions: \code{type = "glm"}, the default, is used for functions with a univariate response and a linear predictor and possibly a link function. This class includes linear models, generalized linear models, robust regression, generalized least squares fitting, linear and generalized linear mixed effects models, and many others. The \code{type = "polr"} is used for ordinal regression models, as in the \code{polr} function in the \code{MASS} package, and similar methods described below in Section~\ref{polr}. The The \code{type = "multinom"} for multinomial log-linear models as fit by the \code{multinom} function in \code{nnet}, and to polytomous latent class models created with the \code{poLCA} function in the \pkg{poLCA} package. The default is \code{type = "glm"}. \item[\code{call}] The \code{Effect.default} method may use the call to set additional arguments that it needs. For \code{type="glm"}, for example, these arguments are \code{formula}, \code{data}, \code{contrasts}, \code{subset}, \code{family}, \code{weights}, and \code{offset}, although only the \code{formula} argument is required. The \code{gls} function includes an optional \code{weights} argument that is used differently from the \code{weights} argument for a generalized linear model and is not needed for computing effects or predictor effects plots. In the function shown above the call is modified by setting \code{weights=NULL}. The default for \code{call} is \code{mod\$call} for S3 objects and \code{mod@call} for S4 objects. \item[\code{formula}] In most cases the formula for the linear predictor is returned by \code{formula(mod)}, the default, but if this is not the case the value of this argument should be the value of the formula for fixed effects. \item[\code{family}] The default is \code{family=NULL}. This argument is required for GLM-like models that include a \code{family} that specifies both an error distribution and a link function only if \code{family=family(mod)} is not appropriate. See the \code{betareg} example in Section~\ref{betareg} below for an example that includes a user-selected link function, but a fixed error distribution. \item[\code{coefficients}] In many cases the (fixed-effect) coefficient estimates are returned by \code{coef(mod)}, the default, but if this is not the case then the value of this argument should be the estimates of the coefficients in the linear predictor. The functions in the \pkg{effects} package do not use estimates of random effects. \item[\code{zeta}] Ordinal regression models return both a set of regression coefficients and also a set of \emph{threshholds}. In the \code{polr} function the regression coefficients and the threshholds are stored in separate vectors, but in other ordinal regression programs, such as \code{clm} in the \code{ordinal} package they are stored as a single vector. See Section~\ref{polr} for an example of the use of this argument for specifying the values of the threshholds. \item[\code{vcov}] In many cases the estimated covariance matrix of the (fixed-effect) coefficient estimates is returned by \code{vcov(mod)}, the default, but if this is not the case then the value of this argument should be the estimated covariance matrix of the (fixed-effect) coefficient estimates in the linear predictor. \item[method] This argument is used only for methods that use effects graphics based on the \code{polr} function, where the argument \code{method} is the name of a link function; see \code{help(polr)} for a list of the accepted links, and see Section~\ref{clm} below for an example. \end{description} The only non-default argument in \code{sources} in \code{Effect.gls} is the modification of the \code{call} to omit weights in the call to \code{gls}. Had this change not been needed, there would be no need to have written the \code{Effect.gls} method, as the default method would have worked. <>= library(effects) require(nlme) g <- gls(Employed ~ GNP + Population, correlation=corAR1(form= ~ Year), data=longley) plot(predictorEffects(g)) @ \section{Mixed Effects with \code{lme} (\pkg{nlme} package)} The \code{lme} function in the \pkg{nlme} package \citep{nlme} fits linear mixed models. The required function for fitted objects from this function is included in the \pkg{effects} package. It is given by <<>>= print(Effect.lme) @ The \code{formula}, \code{coefficients} and \code{vcov} arguments are set to non-default values. The other arguments are automatically set to default values, with \code{call} set explicitly and other arguments set implicitly. <<>>= data(Orthodont, package="nlme") m1 <- nlme::lme(distance ~ age + Sex, data=Orthodont, random= ~ 1 | Subject) as.data.frame(Effect("age", m1)) @ \section{Mixed Effects with the \code{lmer} (\code{lme4} package)} The \code{lme4} package \citep{Bates15} fits linear and generalized linear mixed effects models with the \code{lmer} and \code{glmer} functions, respectively. The same \code{Effect} function can be used for \code{lmer} and \code{glmer} models. The following method is a little more complicated because it contains an additional argument \code{KR} to determine if the Kenward-Roger coefficient covariance matrix is to be used to compute effect standard errors. The default is \code{FALSE} because the computation is very slow. If \code{KR = TRUE}, the function also checks if the \pkg{pbkrtest} package is present. <<>>= print(Effect.merMod) @ Because \code{lmer} is an S4 object, the default for \code{call} is \code{mod@call}, and this argument would have been set automatically had we not included it in the above method. The fixed-effect estimates for an object created by a call to \code{lmer} or \code{glimer} are not returned by \code{coef(mod)}, so the value of \code{coefficients} is the value returned by \code{lme4::fixef(mod)}. The \code{vcov} estimate contains its estimated variance covariance matrix of the fixed effects. The Kenward-Roger method is used to estimate the covariance matrix for linear models if the additional argument \code{KR=TRUE}. The default is \code{KR=FALSE} because The Kenward-Roger estimate requires a long computation; see \code{help(Effect)}. The \code{formula} for a mixed-effects model in the \code{lme4} package specifies linear predictors for both the mean function and the variance functions, specified by, for example \code{(1 + age | Subject)}. The \code{effects} code will automatically remove any terms like these in any formula, as the effects package only displays the mean function. <>= fm2 <- lme4::lmer(distance ~ age + Sex + (1 |Subject), data = Orthodont) plot(allEffects(fm2)) @ <<>>= data(cbpp, package="lme4") gm1 <- lme4::glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) as.data.frame(predictorEffect("period", gm1)) @ \section{Robust Linear Mixed Models (\pkg{robustlmm} package)} The \code{rlmer} function in the \code{robustlmm} package \citep{koller16} fits linear mixed models with a robust estimation method. As \code{rlmer} closely parallels the \code{lmer} function, an object created by \code{rlmer} is easily used with \code{effects}: <<>>= print(Effect.rlmerMod) @ <>= require(lme4) fm3 <- robustlmm::rlmer(distance ~ age * Sex + (1 |Subject), data = Orthodont) plot(predictorEffects(fm3)) @ \section{Beta Regression}\label{betareg} The \code{betareg} function in the \code{betareg} package \citep{betareg} fits regressions with a link function but with Beta distributed errors. <<>>= print(Effect.betareg) @ Beta regression has a response $y \in [0,1]$, with the connection between the mean $\mu$ of the Beta and a set for predictors $\x$ through a link function $\x'\bbeta = g(\mu)$. The variance function for the beta is $\mathrm{var}(y) = \mu(1-\mu)/(1+\phi)$, for a precision parameter $\phi$ estimated by \code{betareg}. The call to \code{betareg} does not have a family argument, although it does have a link stored in \code{mod\$link\$mean}. For use with \code{Effect.default}, the method above creates a family from the binomial family generator. It then adjusts this family by changing from binomial variance to the variance for the beta distribution. Since the \code{glm} function expects a variance that is a function of only one parameter, we fix the value of the precision $\phi$ at its estimator from the \code{betareg} fit. We need to replace the \code{initialize} method in the family to one appropriate for $y \in [0,1]$. %Finally, although the \code{aic} function is not used for computing effects, it is accessed by the call to \code{glm}. The \code{aic} function for the binomial depends on named parameters not present in the beta regression, and so we substitute a dummy function for binomial version. <>= require(lme4) @ <>= require(betareg) require(lme4) data("GasolineYield", package = "betareg") gy_logit <- betareg(yield ~ batch + temp, data = GasolineYield) summary(gy_logit) plot(predictorEffects(gy_logit)) @ \section{Ordinal Models (\pkg{ordinal} package)}\label{polr} Proportional odds logit and probit regression models fit with the \code{polr} function in the \code{MASS} package \citep{VenablesRipley02} are supported in the \code{effects} package. The \code{ordinal} package, \citep{Christensen15} contains three functions that are very similar to \code{polr}. The \code{clm} and \code{clm2} functions allow more link functions and a number of other generalizations. The \code{clmm} function allows including random effects. \subsection{\code{clm}}\label{clm} <<>>= print(Effect.clm) @ This method first checks that the \code{MASS} package is available. The \code{clm} function orders the parameters in the order (threshold parameters, linear predictor parameters), so the next few lines identify the elements of \code{vcov} that are needed by \code{Effects}. Since the \code{polr} function does not allow thresholds other than \code{flexible}, we don't allow them either. The \code{zeta} argument supplies the estimated threshholds, which are called \code{zeta} in \code{polr}, and \code{Alpha} in \code{clm}. The \code{polr} argument \code{method} is equivalent to the \code{clm} argument \code{link}, except that the \code{clm} link \code{"logit"} is equivalent to the \code{polr} method \code{"logistic"}. <>= require(ordinal) require(MASS) @ <>= require(ordinal) require(MASS) mod.wvs1 <- clm(poverty ~ gender + religion + degree + country*poly(age,3), data=WVS) plot(Effect(c("country", "age"), mod.wvs1), lines=list(multiline=TRUE), layout=c(2, 2)) @ \subsection{\code{clm2}} Although the fitted madels are similar, syntax for \code{clm2} is not the same as \code{clm}, so a separate method is required. <<>>= print(Effect.clm2) @ <>= v2 <- clm2(poverty ~ gender + religion + degree + country*poly(age,3),data=WVS) plot(emod2 <- Effect(c("country", "age"), v2), lines=list(multiline=TRUE), layout=c(2,2)) @ \subsection{\code{clmm}} This function allows for random effects in an ordinal model. <<>>= print(Effect.clmm) @ The first few lines of the method check for the presence of the \code{MASS} package that is needed to use \code{polr}, makes sure the link used is supported by \code{polr}, and requires that the argument \code{threshold} has its default value. The \code{polr} and \code{clmm} functions store the fixed effects estimates of regression and threshold coefficents in different orders, so the next few lines rearrange the variance matrix to match the order that \code{polr} uses. <>= require(ordinal) require(MASS) mm1 <- clmm(SURENESS ~ PROD + (1|RESP) + (1|RESP:PROD), data = soup, link = "logit", threshold = "flexible") plot(Effect("PROD", mm1),lines=list(multiline=TRUE)) @ \subsection{Others} The \code{poLCA} function in the \code{poLCA} package \citep{Linzer11} fits polytomous variable latent class models, which uses the multinomial effects plots. The \code{svyglm} function in the \code{survey} package \citep{Lumley04, Lumley16} fits generalized linear models using survey weights. The \code{lm} function can also be used to create a multivariate linear model. The \code{Effect.mlm} function, with slightly different syntax, will drow effects plots for these models, with separate plots of each response. <>= data(Baumann, package="carData") b1 <- lm(cbind(post.test.1, post.test.2, post.test.3) ~ group + pretest.1 + pretest.2, data = Baumann) plot(Effect("group", b1)) @ \bibliography{adding-Effect-methods} \end{document} effects/inst/doc/predictor-effects-gallery.R0000644000176200001440000003735613563357421020632 0ustar liggesusers## ----setopts,echo=FALSE--------------------------------------------- library("knitr") opts_chunk$set(fig.width=5,fig.height=5,#tidy=TRUE, out.width="0.8\\textwidth",echo=TRUE) #options(prompt=" ") options(continue="+ ", prompt="R> ", width=70) options(show.signif.stars=FALSE, scipen=3) ## ----setup, include=FALSE, cache=FALSE, results='hide', echo=FALSE------------ library(car) library(effects) render_sweave() options(width=80, digits=5, str=list(strict.width="cut")) strOptions(strict.width="cut") ## ----------------------------------------------------------------------------- library("car") # also loads the carData package Prestige$type <- factor(Prestige$type, levels=c("bc", "wc", "prof")) lm1 <- lm(prestige ~ education + poly(women, 2) + log(income)*type, data=Prestige) ## ----------------------------------------------------------------------------- S(lm1) ## ----fig11,include=TRUE,fig.width=5,fig.height=4,fig.show='hide'-------------- library("effects") e1.lm1 <- predictorEffect("education", lm1) plot(e1.lm1) ## ----------------------------------------------------------------------------- brief(e1.lm1$model.matrix) ## ----------------------------------------------------------------------------- e1a.lm1 <- predictorEffect("education", lm1, focal.levels=5) e1a.lm1 summary(e1a.lm1) as.data.frame(e1a.lm1) ## ----------------------------------------------------------------------------- e2.lm1 <- predictorEffect("income", lm1, focal.levels=5) as.data.frame(e2.lm1) ## ----fig12,include=TRUE,fig.width=5,fig.height=5,fig.show='hide'-------------- plot(predictorEffect("income", lm1), lines=list(multiline=TRUE)) ## ----fig13,include=TRUE,fig.width=5,fig.height=5,fig.show='hide'-------------- plot(predictorEffect("type", lm1), lines=list(multiline=TRUE)) ## ----fig14,include=TRUE,fig.width=7,fig.height=8,fig.show='hide'-------------- eall.lm1 <- predictorEffects(lm1) plot(eall.lm1) ## ----eval=FALSE--------------------------------------------------------------- # plot(eall.lm1) # plot(predictorEffects(lm1)) # plot(predictorEffects(lm1, ~ income + education + women + type)) ## ----eval=FALSE--------------------------------------------------------------- # plot(predictorEffects(lm1, ~ type + education)) ## ----eval=FALSE--------------------------------------------------------------- # plot(predictorEffects(lm1, ~ women)) # plot(predictorEffects(lm1)[[3]]) # plot(predictorEffect("women", lm1)) ## ----fig21a,include=TRUE,fig.width=5,fig.height=4.5,fig.show='hide'----------- e3.lm1 <- predictorEffect("type", lm1) plot(e3.lm1, lines=list(multiline=TRUE)) ## ----fig21b,include=TRUE,fig.width=6,fig.height=5,fig.show='hide'------------- plot(e3.lm1, lines=list(multiline=FALSE)) # the default ## ----fig22a,include=TRUE,fig.width=5,fig.height=4.5,fig.show='hide'----------- e3.lm1 <- predictorEffect("type", lm1, xlevels=list(income=c(5000, 15000, 25000))) plot(e3.lm1, lines=list(multiline=TRUE), confint=list(style="bars")) ## ----fig22b,include=TRUE,fig.width=5.5,fig.height=5,fig.show='hide'----------- plot(e3.lm1, lines=list(multiline=FALSE), # the default lattice=list(layout=c(3, 1))) ## ----fig23,include=TRUE,fig.width=5,fig.height=4,fig.show='hide'-------------- e4.lm1 <- predictorEffect("education", lm1, se=list(type="scheffe", level=.99), vcov.=hccm) plot(e4.lm1) ## ----------------------------------------------------------------------------- lm2 <- lm(log(prestige) ~ log(income) + education + type, Prestige) ## ----fig30,include=TRUE,fig.width=5,fig.height=4,fig.show='hide'-------------- plot(predictorEffects(lm2, ~ income)) ## ----fig31,include=TRUE,fig.width=5,fig.height=4,fig.show='hide'-------------- plot(predictorEffects(lm2, ~ income), axes=list( x=list(income=list(transform=list(trans=log, inverse=exp))) )) ## ----fig32,include=TRUE,fig.width=5,fig.height=5,fig.show='hide'-------------- plot(predictorEffects(lm2, ~ income), main="Transformed Plot", axes=list( grid=TRUE, x=list(rotate=30, rug=FALSE, income=list(transform=list(trans=log, inverse=exp), lab="income, log-scale", ticks=list(at=c(2000, 5000, 10000, 20000)), lim=c(1900, 21000)) ))) ## ----fig33,include=TRUE,fig.width=4,fig.height=4,fig.show='hide'-------------- # default: plot(predictorEffects(lm2, ~ education), main="Default log(prestige)") # Change only tick-mark labels to arithmetic scale: plot(predictorEffects(lm2, ~ education), main="log(prestige), Arithmetic Ticks", axes=list(y=list(transform=list(trans=log, inverse=exp), lab="prestige", type="rescale"))) # Replace log(presige) by prestige: plot(predictorEffects(lm2, ~ education), main="Prestige in Arithmethic Scale", axes=list(y=list(transform=exp, lab="prestige"))) ## ----------------------------------------------------------------------------- library("lme4") # for lmer() Blackmore$tran.exercise <- bcnPower(Blackmore$exercise, lambda=0.25, gamma=0.1) mm1 <- lmer(tran.exercise ~ I(age - 8)*group + (I(age - 8) | subject), data=Blackmore) ## ----fig33a,include=TRUE,fig.width=5,fig.height=5,fig.show='hide'------------- e1.mm1 <- predictorEffect("age", mm1) plot(e1.mm1, lines=list(multiline=TRUE), confint=list(style="auto")) ## ----fig33b,include=TRUE,fig.width=5,fig.height=5,fig.show='hide'------------- f.trans <- function(x) bcnPower(x, lambda=0.25, gamma=0.1) f.inverse <- function(x) bcnPowerInverse(x, lambda=0.25, gamma=0.1) plot(e1.mm1, lines=list(multiline=TRUE), confint=list(style="auto"), axes=list(x=list(age=list(lab="Age (years)")), y=list(transform=list(trans=f.trans, inverse=f.inverse), type="response", lab="Exercise (hours/week)")), lattice=list(key.args=list(x=.20, y=.75, corner=c(0, 0), padding.text=1.25)), main="" ) ## ----------------------------------------------------------------------------- data("Blowdown", package="alr4") gm1 <- glm(y ~ log(d) + s + spp, family=binomial, data=Blowdown) ## ----fig34,include=TRUE,fig.width=6.5,fig.height=6.5,fig.show='hide'---------- plot(predictorEffects(gm1), axes=list(grid=TRUE, x=list(rug=FALSE, rotate=35))) ## ----fig35,include=TRUE,fig.width=3.5,fig.height=3.5,fig.show='hide'---------- e1.gm1 <- predictorEffect("spp", gm1) plot(e1.gm1, main="type='rescale'", axes=list(y=list(type="rescale", lab="logit scale, probability labels"), x=list(rotate=30), grid=TRUE)) plot(e1.gm1, main="type='link'", axes=list(y=list(type="link", lab="logit scale, logit labels"), x=list(rotate=30), grid=TRUE)) plot(e1.gm1, main="type='response'", axes=list(y=list(type="response", grid=TRUE, lab="probabilty scale, probability labels"), x=list(rotate=30), grid=TRUE)) ## ----fig36,include=TRUE,fig.width=5.5,fig.height=4.5,fig.show='hide'---------- or <- order(as.data.frame(e1.gm1)$fit) # order smallest to largest Blowdown$spp1 <- factor(Blowdown$spp, # reorder levels of spp levels=levels(Blowdown$spp)[or]) gm2 <- update(gm1, ~ . - spp + spp1) # refit model plot(predictorEffects(gm2, ~ spp1), main="type='response', ordered", axes=list(y=list(type="response", lab="probabilty scale, probability labels"), x=list(rotate=30, spp=list(lab="Species")), grid=TRUE)) ## ----fig37,include=TRUE,fig.width=9,fig.height=12,fig.show='hide'------------- gm3 <- update(gm2, ~ . + s:log(d)) # add an interaction plot(predictorEffects(gm3, ~ s + d), axes=list(x=list(rug=FALSE, rotate=90), y=list(type="response", lab="Blowdown Probability")), lattice=list(layout=c(1, 5))) ## ----fig38,include=TRUE,fig.width=9,fig.height=5,fig.show='hide'-------------- plot(predictorEffects(gm3, ~ s + d, xlevels=list(d=c(5, 40, 80), s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response", lab="Blowdown probability")), lines=list(multiline=TRUE)) ## ----fig39,include=TRUE,fig.width=7,fig.height=7,fig.show='hide'-------------- gm4 <- update(gm3, ~ . + spp:log(d)) plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE)), lines=list(multiline=TRUE)) ## ----fig310,include=TRUE,fig.width=7,fig.height=5,fig.show='hide'------------- plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE)), lines=list(multiline=TRUE, z.var="spp", lty=1:9), lattice=list(layout=c(3, 1))) ## ----fig311,include=TRUE,fig.width=5.5,fig.height=5.5,fig.show='hide'--------- plot(predictorEffects(gm3, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response")), lines=list(multiline=TRUE), confint=list(style="auto")) ## ----fig312,include=TRUE,fig.width=7,fig.height=6,fig.show='hide'------------- gm5 <- update(gm2, ~ . + spp:s) plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE, rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto")) ## ----fig314,include=TRUE,fig.width=8,fig.height=6,fig.show='hide'------------- plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), rug=FALSE, axes=list(grid=TRUE, y=list(type="response"), x=list(rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto"), lattice=list(key.args=list(space="right", columns=1, border=TRUE, fontfamily="serif", cex=1.25, cex.title=1.5))) ## ----fig313,include=TRUE,fig.width=13,fig.height=5.5,fig.show='hide'---------- plot(predictorEffects(gm3, ~ s + d, xlevels=list(s=6, d=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2))) ## ----fig313b,include=TRUE,fig.width=6,fig.height=10,fig.show='hide'----------- plot(predictorEffect("s", gm3, xlevels=list(d=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2), array=list(row=1, col=1, nrow=2, ncol=1, more=TRUE))) plot(predictorEffect("d", gm3, xlevels=list(s=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2), array=list(row=2, col=1, nrow=2, ncol=1, more=FALSE))) ## ----fig316,include=TRUE,fig.width=7,fig.height=5,fig.show='hide'------------- plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response")), lines=list(multiline=TRUE, z.var="spp", lty=1:9), lattice=list(layout=c(3, 1), strip=list(factor.names=TRUE, values=TRUE, cex=1.5))) ## ----fig315,include=TRUE,fig.width=7,fig.height=6,fig.show='hide'------------- gm5 <- update(gm2, ~ . + spp:s) plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), symbols=list(pch=15:17, cex=1.5), axes=list(grid=TRUE, y=list(type="response"), x=list(rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto"), lattice=list(key.args=list(cex=1.5, cex.title=1.5))) ## ----fig51,include=TRUE,fig.width=10,fig.height=9,fig.show='hide'------------- lm5 <- lm(prestige ~ log(income) + education + women + type, Prestige) plot(predictorEffects(lm5, residuals=TRUE), axes=list(grid=TRUE, x=list(rotate=30)), partial.residuals=list(smooth=TRUE, span=0.75, lty="dashed")) ## ----fig52,include=TRUE,fig.width=10,fig.height=5,fig.show='hide'------------- options(scipen=10) # suppress scientific notation lm6 <- lm(infantMortality ~ group*ppgdp, data=UN) plot(predictorEffects(lm6, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25), y=list(lim=c(0, 150))), id=list(n=1), lattice=list(layout=c(3, 1))) ## ----fig53,include=TRUE,fig.width=10,fig.height=5,fig.show='hide'------------- lm7 <- lm(log(infantMortality) ~ group*log(ppgdp), data=UN) plot(predictorEffects(lm7, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25)), id=list(n=1), lattice=list(layout=c(3, 1))) ## ----fig54,include=TRUE,fig.width=10,fig.height=5,fig.show='hide'------------- plot(predictorEffects(lm7, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25), y=list(transform=list(trans=log, inverse=exp), type="response", lab="Infant Mortality")), id=list(n=1), lattice=list(layout=c(3, 1))) ## ----------------------------------------------------------------------------- S(lm2) ## ----fig55,include=TRUE,fig.width=8,fig.height=4,fig.show='hide'-------------- plot(Effect(c("income", "type"), lm2, residuals=TRUE), axes=list(x=list(rotate=30)), partial.residuals=list(span=0.9), layout=c(3, 1)) ## ----------------------------------------------------------------------------- library("MASS") # for polr() Womenlf$partic <- factor(Womenlf$partic, levels=c("not.work", "parttime", "fulltime")) # order response levels or1 <- polr(partic ~ log(hincome) + children, data=Womenlf) S(or1) ## ----fig41,include=TRUE,fig.width=6.5,fig.height=6.5,fig.show='hide'---------- plot(predictorEffects(or1), axes=list(grid=TRUE), lattice=list(key.args=list(columns=1))) ## ----fig62,include=TRUE,fig.width=6,fig.height=4,fig.show='hide'-------------- plot(predictorEffects(or1), axes=list(grid=TRUE, y=list(style="stacked")), lattice=list(key.args=list(columns=1))) ## ----------------------------------------------------------------------------- library("nnet") # for multinom() mr1 <- multinom(vote ~ age + gender + economic.cond.national + economic.cond.household + Blair + Hague + Kennedy + Europe*political.knowledge, data=BEPS) ## ----fig42,include=TRUE,fig.width=6.5,fig.height=6.5,fig.show='hide'---------- plot(predictorEffects(mr1, ~ age + Blair + Hague + Kennedy), axes=list(grid=TRUE, x=list(rug=FALSE)), lattice=list(key.args=list(columns=1)), lines=list(multiline=TRUE, col=c("blue", "red", "orange"))) ## ----fig43,include=TRUE,fig.width=10,fig.height=5,fig.show='hide'------------- plot(predictorEffects(mr1, ~ Europe + political.knowledge, xlevels=list(political.knowledge=0:3, Europe=c(1, 6, 11))), axes=list(grid=TRUE, x=list(rug=FALSE, Europe=list(ticks=list(at=c(1, 6, 11))), political.knowledge=list(ticks=list(at=0:3))), y=list(style="stacked")), lines=list(col=c("blue", "red", "orange")), lattice=list(key.args=list(columns=1), strip=list(factor.names=FALSE))) ## ----eval=FALSE--------------------------------------------------------------- # effectsTheme() effects/inst/doc/effects-hex.pdf0000644000176200001440000005055213356162325016324 0ustar liggesusers%PDF-1.5 % 4 0 obj << /Length 5 0 R /Filter /FlateDecode >> stream x3T0B]C ahbg```daUP442)*+q*`Q~Bz1LLUP3DRAL%+ endstream endobj 5 0 obj 85 endobj 3 0 obj << /ExtGState << /a0 << /CA 1 /ca 1 >> >> /XObject << /x6 6 0 R >> >> endobj 2 0 obj << /Type /Page % 1 /Parent 1 0 R /MediaBox [ 0 0 124.320249 144.000288 ] /Contents 4 0 R /Group << /Type /Group /S /Transparency /I true /CS /DeviceRGB >> /Resources 3 0 R >> endobj 6 0 obj << /Length 8 0 R /Filter /FlateDecode /Type /XObject /Subtype /Form /BBox [ 0 0 125 144 ] /Resources 7 0 R >> stream x+ T(*24236202T0B]C=# ˥h^_aDr endstream endobj 8 0 obj 63 endobj 7 0 obj << /ExtGState << /a0 << /CA 1 /ca 1 >> >> /XObject << /x9 9 0 R >> >> endobj 10 0 obj << /Length 11 0 R /Filter /FlateDecode /Type /XObject /Subtype /Image /Width 518 /Height 600 /ColorSpace /DeviceGray /Interpolate true /BitsPerComponent 1 >> stream x흻#1 !S!0FPšg\휰̐Z࣍KNߞ_'8%q>q_.b/xRcFOJP퀟}GJ`x]PSz-^kJ'Rx ^kߘ t7jlM)]KJ[&a(z@ ) )]Z@:)j#@RhE8:T+-^Z.cF4Yh*SJb&6#PRWuIPRqJ}qJ!b 0r(Mi(#0v(LYg$PR`uH,`nɈfp4~ NuOS8gDy@ HS$$YF4,`MA \Jӌh0C6(0)΢!REQF4)t SeDS( ,&1(%iF4 @bT)))3t,))2iSdDtI)*MJ&%]FKkQI)Փ!%rHI.h,&`kQ٦ψfR06 yMJh\Ѽ,#R2)2v:|Y:|̀/OF4}mOqɈz2sZgDʈx29$h=dWߝ?\t=a3_@?ti?3RsJPǾuJk7 &OEvbWxRu5zy?aQ hJ@9)#qb ET:t)5?pAe{$)KA=bWiE( n1uHix' BQ#4CyJ}ERWOA:Eb^;{o-H,r&W02yJ<4L/@ 0(@# "S*soq?HED7i#g1KLJNEu0`R)oT+qR(",JGS|G}S~J]E襤磻rس(?X3TM)mJ֢*#t2 >Ŭ,*3qeDOIhߧΈpoZ۔Iɐigp ѼS*6;l,)2yTshd̈&y2>퀋+âjpMxWOF4=HS\'z2y2Sre?Rh endstream endobj 11 0 obj 1437 endobj 9 0 obj << /Length 12 0 R /Filter /FlateDecode /Type /XObject /Subtype /Image /Width 518 /Height 600 /ColorSpace /DeviceRGB /Interpolate true /BitsPerComponent 8 /SMask 10 0 R >> stream x |Tݿݗڽvom޾vq  a1}_DE$" "R" Y!!Y'33۝{|?O;7sϜs33ޫ"B!B!B!B!!R_B!JHBZ)B !81/B !#&)BCc !8. u^ G2Bs)BxBl =+?^ ;D{G =<^ ^!!K:^ ^Ƒ!heUwO!nBI4/BMbY@!b7B>vv^ BIh,+&)Bq !w/BHq ! ֢& I@!a)B J b&  !\ !i/!X\`g)B5xB+@!L B1%R x !\WxB)B\`!DWp= l^ X\!$qN/BL.p4xbJ,+&˦ R D\n!$!XV"C0 /!2$x@xƲ_{@ x$"%/@kbᬽpABA 8:Ų=bnp$@b4F!6.A 0taپG$C^ DKp@e`,K rp8@Hb \N)p @HJ!QŲCF{qς \). e $xpxx6 @<\/IJ]]A 'x8 qYp@/[>U מS 6> w,|K+פ x W9}` m'a!]bYi=BM[I## Y't!NRoJݻ~oHaup Qߕ=`&o~ysHaA ̕Gq(]E哗)9@ fHahpAXԃ]u<Y|{ whzǍ`KZJ5/gކ6m/:Ɋ55uu.^:G9s3VHۯyj7B-i#G+n~W@'+ve/VFEӛhMջtuNϦ\v#oA8Eغxunv[H6}ɊxOGB_%EYűWS?Ebޗr .I5I12E 1WSrD4QmYELL鷪[̾/81ٔl_=]Z 9{^Y0^J/Ⱥ7K2q^?g}gӣmF)3+;}inP|CdAQ1?1ٔ?t"?uuڷP&+V&kfilMon|b);C$/^Ie^ .PI=&ԇ>Tn?*/hߢCAۚĵsZi!؉ɦ$j\.3he!r\}{['#iêş2[tp4ƃz0:î!7bʊm4`eܝȌTWUG#+[a/H^ZnɒqK#H>%ִ@ K#fvEoq<(ڷII[o}p vLg&uh^~|BXƁ-}B!O:hp$S[ScŎz0O3)4t_n]yE\UDe > H~wpAKJ]=dv%E1ػ>ocW?#'"8oAa*shOkDpVṲs pӱe]:E#nI {m/yDؙxSk_\+?do3v.M 7=:ā/ۏ'ܵzW|;*>gA"9ɳO?%5RKizsSs˔<8F ?'O1u_G&R8'uӶJU,~\#8h8DZ"M5e~B,~vFA$'" DZ\#8h8&?f )F(+-Soej,#hﮄ6b,4;SخB>h Nj^TFבxL1B \3_{A{Y&jj^<ņlL*N4cOuo5M,Sj*VD.ⳣhF͎F-ϘIk2,,GAfꓠ*ԃež.72>77,cozOfm+lņb RxAMݺdo`b;^Brs?MϹ;bw[ږ8 ;SM;2 GGqښZ1icO.#hZX=cb577Uḻ31-8;2-noqm\պu9ޘFNcOTq4ۗmW?CW3eAuTWwf֯\ FűƦRML*3#2C}SD#{s);Zp蠽lF&DAáOT Mh_ܽfw^[S[80`kyĴ8#8h8Ο=%at#.Knro)h.2N#XCjYUg {a+Fߑ>|U#Iލv#XC$&b~+(<[) N4cMLuUm3ށm6VݙK-H]`+ջbeyew3uj Got{cS/g~^{s`uOo3^{#u,fOx 6R#8k8^uuSE:mʝ9v&$(~v#XL_Q*Rqb߇io?;v_iɭaN~pZܶ _ LR} }ioF0,篡2>cŎoXGՒqK"v99Q zΩı-qEQ8s[6#1'_~*6#隤ȯY}zUC2$ϜzSj_wfѶ"<8=KdO2BaIW7Rޣy ϯ4Iضuaח1 O%_41{N_0ryȉ;Jo'; 1n'5ym;n?Vy&k̊^nQ+Lɳ s*S2{lwcǁ42oC?619ķ#8k8zOse &Dդ_j{Bmsa/ VJwzr ,o?QFpp.<^r$q-\2&M1=΍]77E5e.A;w*L/bʊU\c goO<m{{qu]iQiӦݒ'1&'h_r"& 8U?gJ5pؙr] KcٓgSLL|]pBw$ǁx57\Lˎ-$΋ި7>#|8H>'GJ<=IB^;W|mk:N#vkZ$ϙ-oٳ˶.**NU)xb FD㇎ ^CοrH~q$$$$$$$$$$$$$$$$$$$$$$$$$#`䴷n?Qm CzQF"EEvF(FѓRw7 60`Qt Rǂ@e##0bҁ[ho6@`ap`|!<FFF#`ap`$@ F/@` Ёt^#FP `4F/ t : `#p+#1Bȇ0A)DU1)##9&c#@x1 j!т *f+@;ӄx&>#@q Ih-n&#@:81n#,#@ N| FpLwAg2"#@l`ȟ\0 Ձi81h#$Z>#@`0D)XY18 qh#X9/ ,Y?a#@8Q`GA7`O49`0Aow`i Bpw@c`0{.=f"o F4V:apL>FZ%!`"&i?LF B6O{c`.2p\`0O| Fe [F2MpZ%`0!`ҁώ`H0$+ #] ,]  0B F0?uc#@H\F q`/ pRpYuk $_H{K0$ . ( јeWN`V:/&[>#5e/$A#` 1O\?A~#5` &,#Dz7 Fˈj50V<%M0XIW #5g]7Fڛz4b&>Z`=!B{Kk`i:-`}C0h1#hoMO@ A }Z \yho xwGnV0&X F FQ^#`:J{{`@{lF+`%!FӴ\Fh3 ƀ` :w:`;P{c`H4aucMjo &j"F- D2A0M'7 F $!.p%DFQ4]1J0$tcMjo $!¾p%L# }1>0H<.`:Y{ce`0SFB, H&D.#) F\F1W> 'I# ݮ10IJFq0C"&yko 8 ȇ@{c` `0 FP| t(H{c`F`hB[BI|7@qko@#cXDH]F{ AFIC1; :PI> M``#PI6DѶ`Dw<[[|$6D0v#FQ4ç`Ť$~> s|L"D7\Fӌ@% ;o#>04`9>8h0c&#@<`8B> 5@``׀ f0_J-ÄF]Ä\F E#@ׁiB8/t0csoX6jc Fư 3j4A FBQc(.#sIЁ\(GaIЁ+\(JaIgG[hKj,0&P9208Js F@RcЁ(SjL&/Pot00] Fw@RpZj0#kpaF@ KTF@#|| F7ASЁg2cj5`pT35a L FA5 `p45M`p55!P#+ &``p%wn# FA{@;\ FPwF4!lI`0O{{lwv0`p7A!F@ `R)U H^FP#0x).0%0zeצ Q40x O!ZH0)7# eF `g0!啢엾_Ur"PbG*mؓ+uc {Ns~bw6. /P쩊մ7J MnhRnUUmmW4a8Vu)P+hoń=><'4a \E"˲F# l=!*ZeQL&imb䰱 xD5i|Kͥ']4/gqJ›Kp1xnUho}XZ>~Gz'^ؽf *)@j=7> HT-ibny'O^xo{#SF&]hLİwjopjo5$]|緾UGcL~xsk,lrC J^([#a|507uM>X=65?zϵϝ뽠}ĶSjoe|joyS:OIlzMuK',mv[38Hc㼍!W|LpA FՉ|5۴p€ P]`FP'tQH7:T_q0ȖP+q`5!,O4ɾ/;¿?b]ª;ƉG;r]J, /#jܧ39bUU F.hzsӀ&(?P]X~ Rn DSO =`53k_|;?:wj~M%-no!6pVn~7d߉y>Sj'-@t 8|T~`¤6 048@(&|7Oƚ @ˌp`Qw{g)ףnM#*3ȯD.'>4{V>'/=j\W~'݇}؇?<| _d~5SmyG䒎(e0N) jܡA/j(啲‹YCowޘ*+ϦGg e,'\O=q_n`5.Ё-o/]pؙ3x= ?C:WV[ZT*}yƒf5O.5TNq Y*?Qnhp_k5N>rZk&gM3V4w/5\RxM3zϐ#K?+xju/ xZ\`zXYIhBv_iBvņok\;}Ӽyz2.H\,[$h8@0oCϟ=_#_ Xְj*YOCi5ΉGϞ<+A hCUU ?@}@%7/ BI4bk҆1 y]fy{6î 2#kߟ f2wހOwC}dYeG+[/@c<􅇎:.yƵʷvv fr#?jY!)@0kf|}򗥒EV`w57?"!ִK/zb^0!sq؟{u\/|vr?.poѶ"yي+Z:'sWw{n \zI3̘3O:W??3nMnDbycJ7Ų~\xV*6Xa-r0ŋ^'[^Ȼ*Kp+ǸVĤ@pv(V[u{߼y ?O6Y4{G"yD47[V lK-iSZ@׶㡡*+7ISqB, WN2zČ`t ^XpEӆ{Lġ 6!$űȇ?,X0%?ϟ=+]| uuuBeO'^aሴ[߲8=H@;,o\ZT{sӍ6|mr򷖿e,ɺ7k뒭s}ɓp!xtno<7?|;?Xzc+dBڊ%n~W3^/Oē+H q9~Xx/Gv~G;|x=BX.Vyw4BbOID]mݪύnM/D\@ ^0QMFɪ>9[Gs ͎!*u{ Mm'qδӌoG]._L1%Hv-j0lY̍KLtV'#IAI< (oq{v-} M䒏. f)p7{]mYo,>ۙ-~r^!ȒqKmm7~t@}N8Y>y~O.v0ϊS+-кu \8/z%y I\ޔ⍸$(H fZ٪LEۋAs?K- ^^rG2 %bxl~Gz}}61__=: ^Gry4A^N}^uu 2j}j/}?ybY^|m6YgɅ)ק9v;SӺNK%- WyS_Ig׏iȄDv_igܕFTh<4S' qS0菃>k5zzD%^GkzsӀ]e ?%^Ⱥ7+ϓIBTX<. Rw?_J|9{4RS\? ~Kdmw7pKeoC8MG_TKOg~5S޶f]ƚ笗Rx{IW' ːû7tPQ?3. ތe{C߼hfc%)ץLh7쨼\&i^H.9vq[㇏Eo :|_-/EODB kʏd.T^Xb*>)mI>돺>,`0/ChEۊ+G}K. mbw~D\@:+ 8&Ϟtmqwˍ=n&~q! iAY8jj3,?;ZƞahD~`7yJ_ghHd\qʢ%;V77=*9⥖!M `=:L8]1݄c=yָz^PFƭ揘/P]^?%upő)#O,;" '/żn 3O.nA(NUz]rEyj>\@y `l%W>j5.Ѥk0O4N~x/K* _bzXCޣWnp˗vwK-Y &ܲ73x3xx{_0nv,v#iœBeǚ mZ~b:ՀFbbq? ޾l{ͥm6yIo^Y~qp! B2ΐw+h)хSV7~DdktMK^geoQ!Xv$ji3-?ײ@zS_^8xuuuYRsz_,8]xQ[˙'\ |y62B\\:CDž VRK', X8J~pBgf@-Kː'}8KUlx[ښڮ?ДS/n}q!^pbصZjEۊRojqQ}'/O.W *0. A N!y4Cf5lb-W2'f[B M ,O?)|AϿ~ ںO.ǸƲ* k$ִy9Ε!Whq{=o[mKY?!+|~jv[}7 op!$V"G^!灜'_wvzQ18˗3.sOM. `:VЕ-{0(yWk=nZi><%0$X(&H߻~oRLWƲV[Cϟ|_?*A~?E;G‹/vz$ygXdKN_3NZBH"b&g>#D @k5NZ\7:_ץEU~n*a! RAt Q g%Y͒u{FmvmZ兣6E)ץL͞Zq-&u|m_ܹj bu^{cƽ؜ ^W>`2U}߆~9Xn?6i] Py&.@˪%6hO឴[>a? ?G`gS#ɏmKe . X _={n,6•ۜ+~ xi.fMnhW2H!$t>L՝~Y*)ʷA/ <2AB""u>*y@pH![^}3RoJ_HW-?ײL~4SiLũ ybZw;/0hY++}qoۚ_ZTcAo|v$"<"o|)k̯eB# :9;`m & !^m[sƨģϞ|F&=?s}~LkB̊eUK{ T?buR &GWM_Bse/pC_xHXLo,Ӈ;[ &IS8pO1#Œ>3D`|+a^BeqF67ʯJ˚,If %pTQL !etz SLR_SL?Oӛ~O5^x7E߱bqBA5I?,Og<7\K)np !ӥqwF]]o|mr^<][S0}XYBl˪_"0菃d7\:σ>,\Y;d鄥Oi0. 8 ?P~[;˶w^s-+NW_LΚ !8N ƧFb^ /dסY~~BBY^xg;WewR2̯f6ּXt@qn,a߇I#\3|&74BS *`q/DPZ/VwS0ݷq߉#'?BH^!*- !VBB!B !B1!B. \@!: \@!B!B!BHiZ endstream endobj 12 0 obj 17415 endobj 1 0 obj << /Type /Pages /Kids [ 2 0 R ] /Count 1 >> endobj 13 0 obj << /Producer (cairo 1.15.12 (http://cairographics.org)) /CreationDate (D:20181006123004-04'00) >> endobj 14 0 obj << /Type /Catalog /Pages 1 0 R >> endobj xref 0 15 0000000000 65535 f 0000020220 00000 n 0000000298 00000 n 0000000198 00000 n 0000000015 00000 n 0000000177 00000 n 0000000530 00000 n 0000000772 00000 n 0000000751 00000 n 0000002549 00000 n 0000000872 00000 n 0000002525 00000 n 0000020195 00000 n 0000020285 00000 n 0000020402 00000 n trailer << /Size 15 /Root 14 0 R /Info 13 0 R >> startxref 20455 %%EOF effects/inst/doc/partial-residuals.Rnw0000644000176200001440000004525313377611102017542 0ustar liggesusers%\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Effect Displays with Partial Residuals} \documentclass{article} \usepackage{amsmath,amsfonts,amssymb} \usepackage{natbib} \bibliographystyle{abbrvnat} \usepackage[margin=1in]{geometry} \newcommand{\x}{\mathbf{x}} \newcommand{\code}[1]{\normalfont\texttt{\hyphenchar\font45\relax #1}} \newcommand{\E}{\mathrm{E}} \newcommand{\tild}{\symbol{126}} \newcommand{\Rtilde}{\,\raisebox{-.5ex}{\code{\tild{}}}\,} \newcommand{\captilde}{\mbox{\protect\Rtilde}} % use in figure captions. \newcommand{\Rmod}[2]{\code{#1 \raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmoda}[2]{\code{#1} &\code{\raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmodb}[2]{\code{#1 &\raisebox{-.5ex}{\tild{}}& #2}} \newcommand{\C}{\mathbf{C}} \newcommand{\betahat}{\widehat{\beta}} \newcommand{\bbetahat}{\widehat{\boldsymbol{\beta}}} \newcommand{\bbeta}{\boldsymbol{\beta}} \newcommand{\xbf}{\x_{\backslash{}f}} \newcommand{\hbf}{h_{\backslash{}f}} \newcommand{\xtb}{\x_{2\backslash{}f}} \newcommand{\xbfi}{\x_{\backslash{}f,i}} \newcommand{\inter}[2]{\mbox{$#1$:$#2$}} \newcommand{\cross}[2]{\mbox{$#1$\code{*}$#2$}} \newcommand{\N}{\mathrm{N}} \newcommand{\fn}{\textbf} \newcommand{\R}{\proglang{R}} \newcommand{\yx}{\widehat{y}(\x)} \newcommand{\lvn}[1]{\mbox{$\log(\mbox{\texttt{#1}})$}} \begin{document} \title{Examples of Effect Displays with Partial Residuals\\ Using Contrived Regression Data} \author{John Fox and Sanford Weisberg} \date{2017-11-22} \maketitle <>= library(knitr) opts_chunk$set( tidy=FALSE,fig.width=5,fig.height=5,cache=FALSE ) @ <>= #options(continue="+ ", prompt="R> ", width=76) options(show.signif.stars=FALSE) options(scipen=3) @ The examples developed in this vignette are meant to supplement \citet{FoxWeisberg18}. \section{Basic Setup} We will analyze contrived data generated according to the following setup: \begin{itemize} \item We sample $n = 5000$ observations from a trivariate distribution for predictors $x_1$, $x_2$, and $x_3$, with uniform margins on the interval $[-2, 2]$, and with a prespecified bivariate correlation $\rho$ between each pair of predictors. The method employed, described by \citet{Schumann15} and traceable to results reported by \citet{Pearson07}, produces predictors that are nearly linearly related. Using 5000 observations allows us to focus on essentially asymptotic behavior of partial residuals in effect plots while still being able to discern individual points in the resulting graphs. \item We then generate the response $y$ according to the model \begin{equation} y = \beta_0 + h\left(\bbeta, \{x_1, x_2, x_3\}\right) + \varepsilon \end{equation} where $\varepsilon \Rtilde \N(0, 1.5^2)$. The regression function $h(\cdot)$ varies from example to example. \end{itemize} The following functions make it convenient to generate data according to this setup. These functions are more general than is strictly necessary so as to encourage further experimentation. <<>>= mvrunif <- function(n, R, min = 0, max = 1){ # method (but not code) from E. Schumann, # "Generating Correlated Uniform Variates" # URL: # # downloaded 2015-05-21 if (!is.matrix(R) || nrow(R) != ncol(R) || max(abs(R - t(R))) > sqrt(.Machine$double.eps)) stop("R must be a square symmetric matrix") if (any(eigen(R, only.values = TRUE)$values <= 0)) stop("R must be positive-definite") if (any(abs(R) - 1 > sqrt(.Machine$double.eps))) stop("R must be a correlation matrix") m <- nrow(R) R <- 2 * sin(pi * R / 6) X <- matrix(rnorm(n * m), n, m) X <- X %*% chol(R) X <- pnorm(X) min + X * (max - min) } gendata <- function(n = 5000, R, min = -2, max = 2, s = 1.5, model = expression(x1 + x2 + x3)){ data <- mvrunif(n = n, min = min, max = max, R = R) colnames(data) <- c("x1", "x2", "x3") data <- as.data.frame(data) data$error <- s * rnorm(n) data$y <- with(data, eval(model) + error) data } R <- function(offdiag = 0, m = 3){ R <- diag(1, m) R[lower.tri(R)] <- R[upper.tri(R)] <- offdiag R } @ \section{Unmodelled Interaction} We begin with uncorrelated predictors and the true regression mean function $\E(y|\x) = x_1 + x_2x_3$, but fit the incorrect additive working model $y \Rtilde x_1 + x_2 + x_3$ to the data. <<>>= set.seed(682626) Data.1 <- gendata(R = R(0), model = expression(x1 + x2 * x3)) round(cor(Data.1), 2) summary(mod.1 <- lm(y ~ x1 + x2 + x3, data = Data.1)) @ For reproducibility, we set a known seed for the pseudo-random number generator; this seed was itself generated pseudo-randomly, and we reuse it in the examples reported below. As well, in this first example, but not for those below, we show the correlation matrix of the randomly generated data along with the fit of the working model to the data. Effect plots with partial residuals corresponding to the terms in the working model are shown in Figure~\ref{fig-contrived-1a}: <>= library(effects) plot(predictorEffects(mod.1, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) @ In these graphs and, unless noted to the contrary, elsewhere in this vignette, the loess smooths are drawn with span 2/3. Because of the large number of points in the graphs, optional arguments to \code{plot} are specified to de-emphasize the partial residuals. To this end, the residuals are plotted as small points (\code{pch="."}) and in a translucent magenta color (\code{col="\#FF00FF80"}). \begin{figure}[tbp] \caption{Effect displays with partial residuals for the individual predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1 + x_2x_3$, with uncorrelated predictors.\label{fig-contrived-1a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-1a-1.pdf} \end{figure} The failure of the model is not apparent in these traditional partial residual plots, but it is clear in the term effect plot for $\{x_2, x_3\}$, corresponding to the unmodelled interaction \inter{x_2}{x_3}, and shown in the top panel of Figure~\ref{fig-contrived-1b}, generated using <>= plot(Effect(c("x2", "x3"), mod.1, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ Moreover, the effect plot in the bottom panel of the figure for $\{x_1, x_2\}$, corresponding to a term \emph{not} in the true mean function, correctly indicates lack of interaction between these two predictors: <>= plot(Effect(c("x1", "x2"), mod.1, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_2, x_3 \}$, corresponding to the missing interaction \inter{x_2}{x_3}, and for $\{x_1, x_2 \}$, corresponding to an interaction not present in the model that generated the data.\label{fig-contrived-1b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-1b-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-1c-1.pdf} \end{figure} As a partly contrasting example, we turn to a similar data set, generated with the same regression mean function but with moderately correlated predictors, where the pairwise predictor correlations are $\rho = 0.5$: <<>>= set.seed(682626) Data.2 <- gendata(R = R(0.5), model = expression(x1 + x2 * x3)) mod.2 <- lm(y ~ x1 + x2 + x3, data = Data.2) @ Graphs analogous to those from the preceding example appear in Figures~\ref{fig-contrived-2a} and \ref{fig-contrived-2b}: <>= plot(predictorEffects(mod.2, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80",fig.show='hide'), axes=list(x=list(rotate=45)), rows=1, cols=3) @ <>= plot(Effect(c("x2", "x3"), mod.2, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ <>= plot(Effect(c("x1", "x2"), mod.2, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80",fig.show='hide'), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ The predictor effect plots for $x_2$ and $x_3$, and to a much lesser extent, for $x_1$, in the incorrect model in Figure~\ref{fig-contrived-2a} show apparent nonlinearity as a consequence of the unmodelled interaction and the correlations among the predictors. A similar phenomenon was noted in our analysis of the Canadian occupational prestige data in \citet[Section~4.2]{FoxWeisberg18}, where the unmodelled interaction between \code{type} and \code{income} induced nonlinearity in the partial relationship of \code{prestige} to \code{income}. The omitted interaction is clear in the effect plot for $\{x_2, x_3\}$, but also, to a lesser extent, contaminates the effect plot for $\{x_1,x_2\}$, which corresponds to an interaction that does not enter the model generating the data. These artifacts become more prominent if we increase the predictor correlations, say to $\rho = 0.9$ (as we invite the reader to do). \begin{figure}[tbp] \caption{Predictor effect displays with partial residuals for the individual predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1 + x_2x_3$, with moderately correlated predictors.\label{fig-contrived-2a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-2a-1.pdf} \end{figure} \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_2, x_3 \}$, corresponding to the missing interaction \inter{x_2}{x_3}, and for $\{x_1, x_2 \}$, corresponding to an interaction not present in the model that generated the data.\label{fig-contrived-2b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-2b-1.pdf}\\ \includegraphics[width=1\textwidth]{figure/fig-contrived-2c-1.pdf} \end{figure} \section{Unmodelled Nonlinearity} We generate data as before, but from the true model $\E(y|\x) = x_1^2 + x_2 + x_3$, where the predictors are moderately correlated, with pairwise correlations $\rho = 0.5$, but fit the incorrect additive working model $y \Rtilde x_1 + x_2 + x_3$ to the data: <<>>= set.seed(682626) Data.3 <- gendata(R = R(0.5), model = expression(x1^2 + x2 + x3)) mod.3 <- lm(y ~ x1 + x2 + x3, data = Data.3) @ Effect plots with residuals for the predictors in the working model appear in Figure~\ref{fig-contrived-3a}. The unmodelled nonlinearity in the partial relationship of $y$ to $x_1$ is clear, but there is some contamination of the plots for $x_2$ and $x_3$. The contamination is much more dramatic if the correlations among the predictors are increased to, say, $\rho = 0.9$ (as the reader may verify). <>= plot(predictorEffects(mod.3, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) @ \begin{figure}[tbp] \caption{Predictor effect displays with partial residuals for the individual predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1^2 + x_2 + x_3$, with moderately correlated predictors.\label{fig-contrived-3a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-3a-1.pdf} \end{figure} Effect plots for $\{x_1, x_2 \}$ and $\{x_2, x_3 \}$ are shown in Figure~\ref{fig-contrived-3b}: <>= plot(Effect(c("x2", "x3"), mod.3, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ <>= plot(Effect(c("x1", "x2"), mod.3, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ Neither of these graphs corresponds to a term in the model generating the data nor in the working model, and the effect plots largely confirm the absence of \inter{x_1}{x_2} and \inter{x_2}{x_3} interactions, along with the nonlinearity of the partial effect of $x_1$, apparent in the top panel. \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_1, x_2 \}$ and for $\{x_2, x_3 \}$, neither of which corresponds to an interaction in the model generating the data.\label{fig-contrived-3b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-3c-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-3b-1.pdf} \end{figure} \section{Simultaneous Unmodelled Nonlinearity and Interaction} This last example also appears in \citet[Section~4.3]{FoxWeisberg18}. We consider a true model that combines nonlinearity and interaction, $\E(y|\x) = x_1^2 + x_2 x_3$; the predictors are moderately correlated, with $\rho = 0.5$. We then fit the incorrect working model $y \Rtilde x_1 + x_2 + x_3$ to the data, producing the predictor effect displays with partial residuals in Figure~\ref{fig-contrived-4a}, for the predictors $x_1$, $x_2$, and $x_3$, which appear additively in the working model, and the term effect displays in Figure~\ref{fig-contrived-4b} for $\{x_2, x_3 \}$ and $\{x_1, x_2 \}$, corresponding respectively to the incorrectly excluded \inter{x_2}{x_3} term and the correctly excluded \inter{x_1}{x_2} interaction. <<>>= set.seed(682626) Data.4 <- gendata(R = R(0.5), model = expression(x1^2 + x2 * x3)) mod.4 <- lm(y ~ x1 + x2 + x3, data = Data.4) @ <>= plot(predictorEffects(mod.4, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) @ <>= plot(Effect(c("x2", "x3"), mod.4, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ <>= plot(Effect(c("x1", "x2"), mod.4, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ The nonlinearity in the partial relationship of $y$ to $x_1$ shows up clearly. The nonlinearity apparent in the plots for $x_2$ and $x_3$ is partly due to contamination with $x_1$, but largely to the unmodelled interaction between $x_2$ and $x_3$, coupled with the correlation between these predictors. The plot corresponding to the missing \inter{x_2}{x_3} term (in the top panel of Figure~\ref{fig-contrived-4b}) does a good job of detecting the unmodelled interaction, and curvature in this plot is slight. The plot for the \inter{x_1}{x_2} term (in the bottom panel of Figure~\ref{fig-contrived-4b}), a term neither in the true model nor in the working model, primarily reveals the unmodelled nonlinearity in the partial relationship of $y$ to $x_1$. \begin{figure}[tbp] \caption{Effect displays with partial residuals for the predictors $x_1$, $x_2$, and $x_3$ in the incorrect model $y \captilde x_1 + x_2 + x_3$ fit to data generated with the mean function $\E(y|\x) = x_1^2 + x_2x_3$, with moderately correlated predictors.\label{fig-contrived-4a}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-4a-1.pdf} \end{figure} \begin{figure}[tbp] \caption{Term effect displays with partial residuals for $\{x_2, x_3 \}$ (top) and for $\{x_1, x_2 \}$ (bottom), the first of which corresponds to the missing \inter{x_2}{x_3} interaction in the model generating the data.\label{fig-contrived-4b}} \centering \includegraphics[width=1\textwidth]{figure/fig-contrived-4b-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-4c-1.pdf} \end{figure} If we fit the correct model, $y \Rtilde{} x_1^2 + x_2*x_3$, to the data, we obtain the plots shown in Figure~\ref{fig-contrived-5}. As theory suggests, the partial residuals in these effect displays validate the model, supporting the exclusion of the \inter{x_1}{x_2} interaction, the linear-by-linear interaction between $x_1$ and $x_2$, and the quadratic partial relationship of $y$ to $x_1$. <>= mod.5 <- lm(y ~ poly(x1, 2) + x2*x3, data=Data.4) plot(Effect("x1", mod.5, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80", span=0.2)) @ <>= plot(Effect(c("x2", "x3"), mod.5, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1)), span=0.5) @ <>= plot(Effect(c("x1", "x2"), mod.5, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80", span=0.35), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) @ \noindent In these graphs, we adjust the span of the loess smoother to the approximately smallest value that produces a smooth fit to the partial residuals in each case. \begin{figure}[tbp] \caption{Effect displays with partial residuals for $x_1$ and $\{x_2, x_3 \}$, which correspond to terms in the model generating \emph{and} fitted to the data, $y \captilde x_1^2 + x_2 * x_3$, and for $\{x_1, x_2 \}$, which corresponds to an interaction that is not in the model.\label{fig-contrived-5}} \centering \includegraphics[width=0.45\textwidth]{figure/fig-contrived-5a-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-5b-1.pdf} \\ \includegraphics[width=1\textwidth]{figure/fig-contrived-5c-1.pdf} \end{figure} \bibliography{partial-residuals} \end{document} effects/inst/doc/predictor-effects-gallery.pdf0000644000176200001440000326332413563357425021205 0ustar liggesusers%PDF-1.5 % 168 0 obj << /Length 2422 /Filter /FlateDecode >> stream x[Iw8W(Bc%e<;=_>tVhGeQV~ EK>XlU} zNXJ8Srrq9a~ >IMX>O~UŌM?ruY悲;D(ݭy |_L['tzjE߳lɔfpɜk3Ğ W3ͧ匧;w#9iX~iglΓYSue1QH撸9< >>\&iMRX\ru8Lp̢ݯiIHϏ"#Y^)ô,çYZik1r1 .pY "YpHc6g;YZ0|83cxh6n44vW\rJfse|+/Yoa,84F0p@(R+#O17Ҿ]Q#'y\n,PKʽVٶ:h%PjlʛMc-P?YB{[۠Hf`M=3Ŀ"x*꾘'4͌Q*?G0r[X[Gw!Qᖉ =9@0]|ҍ%HS/ȣiKfe[[oND/Y .U*C0XcۃV?ӯV@̙R$I7.1kcP^Ⱥ4V_.\ u0޳}0 U"8 P󁀓fP@@*Z +#+!)PPIEN˘Di6lw$U2"[a܍_$D'D.Lw J.;(,(i6(//[p{a\Julb-xBkhwwn9Y3Ml/1NLn`Z`p7qڽZ$*F9+TeQad|0A;NMւ(,]2頺gժjp:55Q"'ƅN^|db,̺ILbFWrxe тAm|1ZɄdZ:)7@+6},o\[(y3WڼnxIJRGdMZ-y7i.iҜZԁ4NW-DSuzHԤ̦c &I&{,#>qV&+$̩XbsnOOXMkKmPZ[D >=I?Q!%ICn_(ѺM )9O_] QX;8r0u9%E]=SN.>!v〳oQfх if6mbH~qMKVI?L5t:+W{_6܊ 0{2q: T77&HűmeD#VRsYYM 'aMPu 3,>.˗帮1Z6Ӆrhx6A?i+~n1F&> omVm"ޯ}m^AH3D}Ptu>\ErYe|HO ][i{bVD=%szTcV_ v-/_|&+x7xQɏ"E~Eai<^GGA2>{O@̰g3}q<Ũ{6wͮJG#т$qĖ yc=&$@FB5c\n lU/II" UD5+t8+XZSl [FJSQNw lv4s=u(FDF'ƞ dz(!w_W9ʑK8Z(Gmo ycȐqej[XP--, v189hL],gfJoVUȘ01ޝ3WmX7N͢PV)4</MV^cAkqˇ dᅭ$ܵG?sTnڒ= aQlfOc/I1*|\> stream xڽY[oF}ׯ0FsA4]'6Qg~`$&BEV~V|!0<$5s. )`i3EIͤULg d@_'L0Qi#SЖȌk!Ƭ7L< wޒ&F`=t, Ld?X"-`X6= :ϜdR 5q0K2E`#-3-,g19'x.< ~ZfQPF#"DFHRNP0(%]8j [iIPZc9dkA:`ˉ15$i8P[(#5Fy`@X CiEBfIhj`ft0XPgA$dX (g$!/`>ch90qsaƓ)aM`X\$x[IBc %{JY 'G{:'  シRL`Mu&|%ƅ@ph#`vƅk2o@r`BNɛ7lzƦO^YST ._ロq|>{v?./hŲŜ5Uͺ촬Up狼J˺)E.Z,?Tv|7WfﮫjhyAC&7=~<' خ$kgX.fC}KmwRΪ[~d5 X״ ]|17o;m:#㽫n6~>ꦀOX{"y2_橷Sdw`Paϊ {{W rvD'cբ!e>TCٓ@?!e5XrK=:e+|z49Խqշ.` um'o}2(v!*Xl[-i>\VYGb\j1[^ԢyB'B r"SJϚML`(3Oml%|jfk/g~&4|3%i_fjP,[9%l!hI鬮_v}' b ?w ˚ZQ˹|(ArXz| Lt~(f?FVu=G iUij\5RXb_pSR\ OaGHT +y3R)Lk>B-zNUYN|#;ع'QFu1D(}cby{jiе&6.>!k}7"2 $\pM5 $\I6لgMx6لgMx6لKxûI2?7=u+~8}w.2,l~AȲA"B gDLN)nPV $4B"V(G6 hHȨ5(T^z ~\B`% <}B%, CQ<5U]|g7ʸ|-SB <@h]*'Kl}#(-Hh֕Pې+0\$ tY٨2b APHڂwl/e fԁKDQ~@(+{ .qx>> غb]y%MCی endstream endobj 190 0 obj << /Length 3778 /Filter /FlateDecode >> stream xڥZ[o~:dnA[n-CyF3yo﹒Flc,"s!fff^}f<R|ח_~SY5+g׳*k2WyX6_.~b_PlO Iq9kmRXkuQ¯[d5鞪Wf=ōW,]EcBDxKꚋ+~4{;Cio kpr2+Zӥ|X6D&kysá6{*,s_=4ýWхn -gx/k+{b !Ir(A JFZZH/S q#ZhHh?$ʕ h s#dtʯU"yU U"FXԆ+nǵ?ˆ(hX5u͢xVf ?,bޑ_ц܌wa2n_{ g`6[,ο|Qnz~'ً@s"Ⱥ0}$ILC;ȞU@E\V A]fܬl-/]lB[\xUuZ0 tNL] )DVαbWY/6#{{yaI7̕vV&0jw:aKROG*nggo?Dz˄ _Џ Uy]],u^4>G ;rzJN0A!j#Nq;rXmWܑ"x[lg-Zt밥G=(G{F"%g4e3w`D w*{<ڣ|dńz1.M<>H&`OX߷&pȕwa J`vc (#U]XpRH{P%+h$5XR7.ZN~iF5lvƜfE6, N,†=אW ϭlQڷ' Qj#[nT`6< &@&I=D4e/ Ѕ=EƗ5yuTK)KCXbXzSlyC MNYDpk,z)<U+(9`Vа9'ZİV6˛Eޟ[^pJ``#A 4̛pRhi]G >\+ Z "*v\E*2Hd۩+fҾPU!F(UKϠ'/3 #.ubՒ8` v WފHSTSl~P:BH=t~R a%ΐ,7$xI:&uu\u`Nc$ݱ;- $Ue9vtYU3"C4 ;3sEJ+W‡V L|qQ9\@f8{2J ,XHYXcla6S YjGAY2u2r̽|$ʘ,?o_Ig7?NWɜ8ǔ@ms]&R$Ytٟ@Ry^݂)TRT; =0eq(lfMe]D 0p68,h5dp ք K? !-q^VYeBv1y4duY@CJ^pk^WYQ2xyS1}B|'B_V.Bx rph<\0 y\KuNg&WYSNj1<g]YOЦC5ncHĥ,<,w>Sg hduYz[O*=iWD7"li@E_+=&Bt.az[S?:Åd6a)F:.l$c'Lկeh-O>ΡK=[dJW%tq= n&t4 ] @!K-=L?=s\Ax.b]͓`NA(Ts6fʚӁ򵚵t`|3`w ٨u$a(GQBuI r<.c1IޙyH E^W d-l6c0U^FV xQD8*MѢrC<[d-B2b ̓3 |@+I=~c )xT!P=_C'W5ki1tT^^'*) O)}AƢ>;Q&+Qp{b}`HSK Wk [3L:}"u͹tCOKp[飑rA 4B7F y7@H@|tVTˊŤjrIa:7W)(F 8~POƔT+BOӁPP$.-[^dn(}Kqv hvTWOjJ@XzӐ݇$Ԥ8o1J@Ux:SÍ@ZR]hd>/NV{;yK-LJC'ϪGAwW'l} ̼+jtaYRBN/)J]3YSUԲsx&fM6fn[,:ݧ-cc= St"rAq{+&y<5sT =Y c8@HT԰,D^pԿ+̹=dRʰ8Qjst3p )Ѵ'>IL2QC8J_4qtV)tC:U 1X!@ovu\e1H\r=CdRXx&WN&< 0`dnf*hqWT #_'umR;KHb~5w'ם袊@OO]pLf"Yۓv\.!tt !Wp/O\O|})RMozд,$.<Í"i&y{\Ofo"bS42[3-Lf٭X؀~B7h endstream endobj 181 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (../inst/doc/effects-hex.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 198 0 R /BBox [0 0 124.320249 144.000288] /Group 194 0 R /Resources << /ExtGState << /a0 << /CA 1 /ca 1 >> >>/XObject << /x6 199 0 R >>>> /Length 85 /Filter /FlateDecode >> stream x3T0B]C ahbg```daUP442)*+q*`Q~Bz1LLUP3DRAL%+ endstream endobj 199 0 obj << /Length 200 0 R /Filter /FlateDecode /Type /XObject /Subtype /Form /BBox [ 0 0 125 144] /Resources 201 0 R >> stream x+ T(*24236202T0B]C=# ˥h^_aDr endstream endobj 202 0 obj << /Length 203 0 R /Filter /FlateDecode /Type /XObject /Subtype /Image /Width 518 /Height 600 /ColorSpace /DeviceRGB /Interpolate true /BitsPerComponent 8 /SMask 204 0 R >> stream x |Tݿݗڽvom޾vq  a1}_DE$" "R" Y!!Y'33۝{|?O;7sϜs33ޫ"B!B!B!B!!R_B!JHBZ)B !81/B !#&)BCc !8. u^ G2Bs)BxBl =+?^ ;D{G =<^ ^!!K:^ ^Ƒ!heUwO!nBI4/BMbY@!b7B>vv^ BIh,+&)Bq !w/BHq ! ֢& I@!a)B J b&  !\ !i/!X\`g)B5xB+@!L B1%R x !\WxB)B\`!DWp= l^ X\!$qN/BL.p4xbJ,+&˦ R D\n!$!XV"C0 /!2$x@xƲ_{@ x$"%/@kbᬽpABA 8:Ų=bnp$@b4F!6.A 0taپG$C^ DKp@e`,K rp8@Hb \N)p @HJ!QŲCF{qς \). e $xpxx6 @<\/IJ]]A 'x8 qYp@/[>U מS 6> w,|K+פ x W9}` m'a!]bYi=BM[I## Y't!NRoJݻ~oHaup Qߕ=`&o~ysHaA ̕Gq(]E哗)9@ fHahpAXԃ]u<Y|{ whzǍ`KZJ5/gކ6m/:Ɋ55uu.^:G9s3VHۯyj7B-i#G+n~W@'+ve/VFEӛhMջtuNϦ\v#oA8Eغxunv[H6}ɊxOGB_%EYűWS?Ebޗr .I5I12E 1WSrD4QmYELL鷪[̾/81ٔl_=]Z 9{^Y0^J/Ⱥ7K2q^?g}gӣmF)3+;}inP|CdAQ1?1ٔ?t"?uuڷP&+V&kfilMon|b);C$/^Ie^ .PI=&ԇ>Tn?*/hߢCAۚĵsZi!؉ɦ$j\.3he!r\}{['#iêş2[tp4ƃz0:î!7bʊm4`eܝȌTWUG#+[a/H^ZnɒqK#H>%ִ@ K#fvEoq<(ڷII[o}p vLg&uh^~|BXƁ-}B!O:hp$S[ScŎz0O3)4t_n]yE\UDe > H~wpAKJ]=dv%E1ػ>ocW?#'"8oAa*shOkDpVṲs pӱe]:E#nI {m/yDؙxSk_\+?do3v.M 7=:ā/ۏ'ܵzW|;*>gA"9ɳO?%5RKizsSs˔<8F ?'O1u_G&R8'uӶJU,~\#8h8DZ"M5e~B,~vFA$'" DZ\#8h8&?f )F(+-Soej,#hﮄ6b,4;SخB>h Nj^TFבxL1B \3_{A{Y&jj^<ņlL*N4cOuo5M,Sj*VD.ⳣhF͎F-ϘIk2,,GAfꓠ*ԃež.72>77,cozOfm+lņb RxAMݺdo`b;^Brs?MϹ;bw[ږ8 ;SM;2 GGqښZ1icO.#hZX=cb577Uḻ31-8;2-noqm\պu9ޘFNcOTq4ۗmW?CW3eAuTWwf֯\ FűƦRML*3#2C}SD#{s);Zp蠽lF&DAáOT Mh_ܽfw^[S[80`kyĴ8#8h8Ο=%at#.Knro)h.2N#XCjYUg {a+Fߑ>|U#Iލv#XC$&b~+(<[) N4cMLuUm3ށm6VݙK-H]`+ջbeyew3uj Got{cS/g~^{s`uOo3^{#u,fOx 6R#8k8^uuSE:mʝ9v&$(~v#XL_Q*Rqb߇io?;v_iɭaN~pZܶ _ LR} }ioF0,篡2>cŎoXGՒqK"v99Q zΩı-qEQ8s[6#1'_~*6#隤ȯY}zUC2$ϜzSj_wfѶ"<8=KdO2BaIW7Rޣy ϯ4Iضuaח1 O%_41{N_0ryȉ;Jo'; 1n'5ym;n?Vy&k̊^nQ+Lɳ s*S2{lwcǁ42oC?619ķ#8k8zOse &Dդ_j{Bmsa/ VJwzr ,o?QFpp.<^r$q-\2&M1=΍]77E5e.A;w*L/bʊU\c goO<m{{qu]iQiӦݒ'1&'h_r"& 8U?gJ5pؙr] KcٓgSLL|]pBw$ǁx57\Lˎ-$΋ި7>#|8H>'GJ<=IB^;W|mk:N#vkZ$ϙ-oٳ˶.**NU)xb FD㇎ ^CοrH~q$$$$$$$$$$$$$$$$$$$$$$$$$#`䴷n?Qm CzQF"EEvF(FѓRw7 60`Qt Rǂ@e##0bҁ[ho6@`ap`|!<FFF#`ap`$@ F/@` Ёt^#FP `4F/ t : `#p+#1Bȇ0A)DU1)##9&c#@x1 j!т *f+@;ӄx&>#@q Ih-n&#@:81n#,#@ N| FpLwAg2"#@l`ȟ\0 Ձi81h#$Z>#@`0D)XY18 qh#X9/ ,Y?a#@8Q`GA7`O49`0Aow`i Bpw@c`0{.=f"o F4V:apL>FZ%!`"&i?LF B6O{c`.2p\`0O| Fe [F2MpZ%`0!`ҁώ`H0$+ #] ,]  0B F0?uc#@H\F q`/ pRpYuk $_H{K0$ . ( јeWN`V:/&[>#5e/$A#` 1O\?A~#5` &,#Dz7 Fˈj50V<%M0XIW #5g]7Fڛz4b&>Z`=!B{Kk`i:-`}C0h1#hoMO@ A }Z \yho xwGnV0&X F FQ^#`:J{{`@{lF+`%!FӴ\Fh3 ƀ` :w:`;P{c`H4aucMjo &j"F- D2A0M'7 F $!.p%DFQ4]1J0$tcMjo $!¾p%L# }1>0H<.`:Y{ce`0SFB, H&D.#) F\F1W> 'I# ݮ10IJFq0C"&yko 8 ȇ@{c` `0 FP| t(H{c`F`hB[BI|7@qko@#cXDH]F{ AFIC1; :PI> M``#PI6DѶ`Dw<[[|$6D0v#FQ4ç`Ť$~> s|L"D7\Fӌ@% ;o#>04`9>8h0c&#@<`8B> 5@``׀ f0_J-ÄF]Ä\F E#@ׁiB8/t0csoX6jc Fư 3j4A FBQc(.#sIЁ\(GaIЁ+\(JaIgG[hKj,0&P9208Js F@RcЁ(SjL&/Pot00] Fw@RpZj0#kpaF@ KTF@#|| F7ASЁg2cj5`pT35a L FA5 `p45M`p55!P#+ &``p%wn# FA{@;\ FPwF4!lI`0O{{lwv0`p7A!F@ `R)U H^FP#0x).0%0zeצ Q40x O!ZH0)7# eF `g0!啢엾_Ur"PbG*mؓ+uc {Ns~bw6. /P쩊մ7J MnhRnUUmmW4a8Vu)P+hoń=><'4a \E"˲F# l=!*ZeQL&imb䰱 xD5i|Kͥ']4/gqJ›Kp1xnUho}XZ>~Gz'^ؽf *)@j=7> HT-ibny'O^xo{#SF&]hLİwjopjo5$]|緾UGcL~xsk,lrC J^([#a|507uM>X=65?zϵϝ뽠}ĶSjoe|joyS:OIlzMuK',mv[38Hc㼍!W|LpA FՉ|5۴p€ P]`FP'tQH7:T_q0ȖP+q`5!,O4ɾ/;¿?b]ª;ƉG;r]J, /#jܧ39bUU F.hzsӀ&(?P]X~ Rn DSO =`53k_|;?:wj~M%-no!6pVn~7d߉y>Sj'-@t 8|T~`¤6 048@(&|7Oƚ @ˌp`Qw{g)ףnM#*3ȯD.'>4{V>'/=j\W~'݇}؇?<| _d~5SmyG䒎(e0N) jܡA/j(啲‹YCowޘ*+ϦGg e,'\O=q_n`5.Ё-o/]pؙ3x= ?C:WV[ZT*}yƒf5O.5TNq Y*?Qnhp_k5N>rZk&gM3V4w/5\RxM3zϐ#K?+xju/ xZ\`zXYIhBv_iBvņok\;}Ӽyz2.H\,[$h8@0oCϟ=_#_ Xְj*YOCi5ΉGϞ<+A hCUU ?@}@%7/ BI4bk҆1 y]fy{6î 2#kߟ f2wހOwC}dYeG+[/@c<􅇎:.yƵʷvv fr#?jY!)@0kf|}򗥒EV`w57?"!ִK/zb^0!sq؟{u\/|vr?.poѶ"yي+Z:'sWw{n \zI3̘3O:W??3nMnDbycJ7Ų~\xV*6Xa-r0ŋ^'[^Ȼ*Kp+ǸVĤ@pv(V[u{߼y ?O6Y4{G"yD47[V lK-iSZ@׶㡡*+7ISqB, WN2zČ`t ^XpEӆ{Lġ 6!$űȇ?,X0%?ϟ=+]| uuuBeO'^aሴ[߲8=H@;,o\ZT{sӍ6|mr򷖿e,ɺ7k뒭s}ɓp!xtno<7?|;?Xzc+dBڊ%n~W3^/Oē+H q9~Xx/Gv~G;|x=BX.Vyw4BbOID]mݪύnM/D\@ ^0QMFɪ>9[Gs ͎!*u{ Mm'qδӌoG]._L1%Hv-j0lY̍KLtV'#IAI< (oq{v-} M䒏. f)p7{]mYo,>ۙ-~r^!ȒqKmm7~t@}N8Y>y~O.v0ϊS+-кu \8/z%y I\ޔ⍸$(H fZ٪LEۋAs?K- ^^rG2 %bxl~Gz}}61__=: ^Gry4A^N}^uu 2j}j/}?ybY^|m6YgɅ)ק9v;SӺNK%- WyS_Ig׏iȄDv_igܕFTh<4S' qS0菃>k5zzD%^GkzsӀ]e ?%^Ⱥ7+ϓIBTX<. Rw?_J|9{4RS\? ~Kdmw7pKeoC8MG_TKOg~5S޶f]ƚ笗Rx{IW' ːû7tPQ?3. ތe{C߼hfc%)ץLh7쨼\&i^H.9vq[㇏Eo :|_-/EODB kʏd.T^Xb*>)mI>돺>,`0/ChEۊ+G}K. mbw~D\@:+ 8&Ϟtmqwˍ=n&~q! iAY8jj3,?;ZƞahD~`7yJ_ghHd\qʢ%;V77=*9⥖!M `=:L8]1݄c=yָz^PFƭ揘/P]^?%upő)#O,;" '/żn 3O.nA(NUz]rEyj>\@y `l%W>j5.Ѥk0O4N~x/K* _bzXCޣWnp˗vwK-Y &ܲ73x3xx{_0nv,v#iœBeǚ mZ~b:ՀFbbq? ޾l{ͥm6yIo^Y~qp! B2ΐw+h)хSV7~DdktMK^geoQ!Xv$ji3-?ײ@zS_^8xuuuYRsz_,8]xQ[˙'\ |y62B\\:CDž VRK', X8J~pBgf@-Kː'}8KUlx[ښڮ?ДS/n}q!^pbصZjEۊRojqQ}'/O.W *0. A N!y4Cf5lb-W2'f[B M ,O?)|AϿ~ ںO.ǸƲ* k$ִy9Ε!Whq{=o[mKY?!+|~jv[}7 op!$V"G^!灜'_wvzQ18˗3.sOM. `:VЕ-{0(yWk=nZi><%0$X(&H߻~oRLWƲV[Cϟ|_?*A~?E;G‹/vz$ygXdKN_3NZBH"b&g>#D @k5NZ\7:_ץEU~n*a! RAt Q g%Y͒u{FmvmZ兣6E)ץL͞Zq-&u|m_ܹj bu^{cƽ؜ ^W>`2U}߆~9Xn?6i] Py&.@˪%6hO឴[>a? ?G`gS#ɏmKe . X _={n,6•ۜ+~ xi.fMnhW2H!$t>L՝~Y*)ʷA/ <2AB""u>*y@pH![^}3RoJ_HW-?ײL~4SiLũ ybZw;/0hY++}qoۚ_ZTcAo|v$"<"o|)k̯eB# :9;`m & !^m[sƨģϞ|F&=?s}~LkB̊eUK{ T?buR &GWM_Bse/pC_xHXLo,Ӈ;[ &IS8pO1#Œ>3D`|+a^BeqF67ʯJ˚,If %pTQL !etz SLR_SL?Oӛ~O5^x7E߱bqBA5I?,Og<7\K)np !ӥqwF]]o|mr^<][S0}XYBl˪_"0菃d7\:σ>,\Y;d鄥Oi0. 8 ?P~[;˶w^s-+NW_LΚ !8N ƧFb^ /dסY~~BBY^xg;WewR2̯f6ּXt@qn,a߇I#\3|&74BS *`q/DPZ/VwS0ݷq߉#'?BH^!*- !VBB!B !B1!B. \@!: \@!B!B!BHiZ endstream endobj 204 0 obj << /Length 205 0 R /Filter /FlateDecode /Type /XObject /Subtype /Image /Width 518 /Height 600 /ColorSpace /DeviceGray /Interpolate true /BitsPerComponent 1 >> stream x흻#1 !S!0FPšg\휰̐Z࣍KNߞ_'8%q>q_.b/xRcFOJP퀟}GJ`x]PSz-^kJ'Rx ^kߘ t7jlM)]KJ[&a(z@ ) )]Z@:)j#@RhE8:T+-^Z.cF4Yh*SJb&6#PRWuIPRqJ}qJ!b 0r(Mi(#0v(LYg$PR`uH,`nɈfp4~ NuOS8gDy@ HS$$YF4,`MA \Jӌh0C6(0)΢!REQF4)t SeDS( ,&1(%iF4 @bT)))3t,))2iSdDtI)*MJ&%]FKkQI)Փ!%rHI.h,&`kQ٦ψfR06 yMJh\Ѽ,#R2)2v:|Y:|̀/OF4}mOqɈz2sZgDʈx29$h=dWߝ?\t=a3_@?ti?3RsJPǾuJk7 &OEvbWxRu5zy?aQ hJ@9)#qb ET:t)5?pAe{$)KA=bWiE( n1uHix' BQ#4CyJ}ERWOA:Eb^;{o-H,r&W02yJ<4L/@ 0(@# "S*soq?HED7i#g1KLJNEu0`R)oT+qR(",JGS|G}S~J]E襤磻rس(?X3TM)mJ֢*#t2 >Ŭ,*3qeDOIhߧΈpoZ۔Iɐigp ѼS*6;l,)2yTshd̈&y2>퀋+âjpMxWOF4=HS\'z2y2Sre?Rh endstream endobj 210 0 obj << /Length 3059 /Filter /FlateDecode >> stream xڵnc+YU\6 ˧$N/R'(eh$yEիotv;Kg"oo].|1tV4IC9Y>__-r?i=\廼6»v;ld'^o"pEb W -\@?yZt?wu"xBpVA'^V9Hk9ZBULO<2,3KX#L3| ź\"PqjQC-bGҒSC=S=<(Bl4yٓ-)vr*R?AN᫒iM1DfaHrbQij6;qDBo-2Smy}Yj#%ܛг)PRFqHB]TVS%Rl`^!,&HY/K'Wv9@+Ґͪfva3;=h2LhP(ޤխ (1'3O&`(XA;GE$nMRwX|&3qӆ*xen27f¿ȏOp9_D~& \AWSI*$:-Dԓ$59x;<J\]mnjh;IqOӠp1%<);n{ĖDu3x#}{hL'\Y.ME%]:c{\sp+>T=iT Ds3c[p nYR+] OT&g ;6= [YUlܕLB2yz$ V2EF4KB}?ܩys߲i$# [Q$7'd)X"R;D &$JLtz3` Bͺ@CJ^. Ļ: E5({1"?_,ziB.h)7|=6TȪEoGL> ҅_ޯ)ƉYVs{ EtY([  Ͳ,eY5z/IbC /{2ۥYD18(GDZafTeM2J9]|&$>J*v hu4 T mĐ"Jɻ ;Y1|3PGF2lWU\Hš$Tii͌eZl%(qH'QyRlKC=& >U(͙M&;acT]c+.HNmv(׌n(f_ijҠQ\g#Un%2կ!48Gʄ CW'DBVHO$8^ @H Pt}ِ\Z=0ۙF'\7pay\׽yu ~B Û8#fEE?c4 IZ<бؾ!]ҔdyQxqP",B&uH) J,dj8?V ?QE6۲+qLŽ#X}pX6!s!O|'dˡ'RP곥b> cRp o9LkP[ OGH"YXE!:1, %",>H"k(1PF`4HtHo[66M7*xx@ڨ_G{?[ "jV됔u y S:\l7^LpfD+8IWCd#!',AO9PpGH ٷ&8=pEuIe9P:}b4K}M3չ6]۫l7O xI12)b =y'E}dbWU[>Xb3S f[/HUzܮWa[PZ fꚞ{!z+栽~}hZ,j7m;8I?DλmGh`WM6VT?k(|n,w]Yn㲂6\z=-L:CjS67[29@T䕕堪:hjRt#aAȟ희&ۘxdBC#IXpx<BE qtXLmQ4IZȴ,|`|+7m$ޫa}=l} e9 ?xJUL-WPEIZJe.{ͧ"Pk~? A3'-2Q endstream endobj 218 0 obj << /Length 2575 /Filter /FlateDecode >> stream xڵKo_!=PyAAwT@IDJ$ѡ_5Cޤva|_3E&뛏]Ҫb}E43b]TwUMr~W~dyߝp~gYPJ %ܦ靖ኇB›'ڧ+̌폲\ ^МCDy!y {77 f P^XYf7yД?o?/*Bfֱ{Qy2&Fq_D%`1;&9^+]$xv(yI3 uX2[U+ ebכ./KxV w4{n9M9U:չ:/D"ue1uܔ<0ͽV~S0@/tڡ2P`=)IS!NCΓG2+5S&bLfI|MTbzQ,Ne2`"0ۑޟpCfnC`+FK}l8\"mP/t$/ťg'@^=͈esK "'Wl2w>H6hh\r[# M|RJXdE'7Accğ0!C9p̱܍^ r%KX1EƉ}Gϔ/lZ%ZlRZl'`uD{84h~Ƭ˵#\bG=セγ3:$qBko پLySϠdy?V~+X )rp%HR75rClI؁%x-,%B|`iNڕi^ع&|nݡ3Me/i#u9\<*NnbGA$Yrx3MT]7*g"~$uZ_ No|NKSYƆGJRJVYz:$6\5W|2E]5T)ﶧaȇ%П23[)_E#qas)VMoՄj L m i}_*n endstream endobj 213 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig11-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 221 0 R /BBox [0 0 360 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 222 0 R/F3 223 0 R>> /ExtGState << /GS1 224 0 R /GS257 225 0 R >>/ColorSpace << /sRGB 226 0 R >>>> /Length 4057 /Filter /FlateDecode >> stream xZKGbɂ{ H@[bX ǁD!؈9us"tMX\{\35<=7?/_?>{yy뺎wo{|_u|@qtQ?//?7xW:>yo韏_<~JDW"~P9(tx޿W"3~7|뿾:G;Jb=z\gLk\ɿvwbv%?_y'''k-O5>.y=}[l=-m6M fBfmLpɑf7K+h=fB/bB~\hI^whՒ w.l; n6KOpMp[Wp{Sp'NK._eO%bG)>Y'=aܨKyG[4{IBq+nGKG'] O 17OOb_pz=y\}ظwnVC}}{Oog޿1[rr6dhIe"hiY`&"*ѴȩK<-"jii1F. 1jF05>[Kظ),b 79(–и1LzBqNF!`@%H''mcrI[r/F29i ,RIX&I+Җ܌H_H O6:=IC$mcwI[ඓ7-ItMV-I[`Nڦ$6o-@#&i$-d=IT^MM$$m MMIX'mENN1E$n"iH[᤯H[P+=;i?I[r]f/'m$%-6ߤH'-Iz'mEb;iKNږ mCIږpf9i ;iK3mN;iKi[/'E(y2"m5/ҖHZ,"iEV;c^mmIu=[m$̃;i$iErDm4vҶ!$m[sRIu2I[lHa'mr6Nڒ& "qmIϛmtR~pcILrW~["mӥx-T=Z!;$m7q#uW>Y)P5aCY/뿻e<1|ʪ?z_`~ ~ޯxy ~0~ۨ,~(9j#CF?0YiԧoGtg?z~uIQ~iڱP'<0G9/y_iѼD8]yG4\y<SU.j[W4f*+brj(, ‪$xR{DtJ;Z~*,n}.cx<qϏ endstream endobj 228 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 232 0 obj << /Length 2486 /Filter /FlateDecode >> stream xˎ>_!,`̴M2pĉ@C3J$Q}lRԮf7; zwuLξլ~rV*))gEs[U<^}z=,oݭ.q:_kW{yaT 7G,89KKQU:N X)ޯd"wyb c$!Cׁ,i.i6=mޒ>i '|Λh펰 9,|"J8+U Uk9bzJ`@C/X7G`i^{d‚}~wD"AVOh݈zmO,= \B X*` &Ϥ >9wlctjCe5d21rE io(ΰ2|.f 8hĹD} -h`"cf?9\&+&tſWqVjudaU-D"4mG{ :wq-i@7I,=}R}c IM(]aKҎ]v d1x!z"X$cLӹR >YOY&At[?cLʐ:$$iAPeɚr3yf Ӗ * -_K8 xopB7~Fn4Фha?tmU@T '9[}f S ok'bЫleywkOO2]6qn@N VcqەrLFE^FwO*rBBggWFll>GV!R% o zPREٯr@9ق{zZ%L}nEn˿5{eCO rg,,Tں' B\rp;oY[4ZS`YzPTQ%1f2_[N Zۺ٪ (ߍr\Iֈr%0BgZ=g ?mɳ#B/XQ|1ҮX cEAYpSL:,zVH ĭGάdjSp}en.S=,~ĉ#ϳ| DPf*S3zDl΄"UA&QvHGNZg9\u!\N;Q.#>3"Qw ԟ #C*ɉk)|]-}nһ/+ϪߩV  5B4.jL,||E_5';. C,{#uTEC =͞k Eʬ&w5`w.wp kNE{-I#츶|`A$@OxŮ{caQۏ0+oREʺme҆AUp@rbf(| ;O&ǨE]ټ nۻkwsc0pnド8:&Ďg*Mgt'BTnvy`89m}E%qYjQ*wxiSf}kNlBQ0g_yEv(ENB`TmmAWntڍSZze}+*rm,&<\, KR8+L^ :7 8=⨉#5[uGp'Ǜ!3ʸ0Hg:ݟ$dREa+yL %x.RzZX;-hwwB,by[MkYU X4ރ{) -S-Z3m!J&rZ8?K-T/ Ԙi YЮڹ a#M'C4~r8[1> stream xXKo6W=Z7nAqd7@eX"%IEcofh Y+XÂǺhSE YŤ-a;C{ķJ>/)'7՞$gh;7tCrxC_-:>y!-X#W eUp";Ƅ_H&D{ȒTKP|@F{_<]l܂ ߹%wԜݽyn~v57nv+nTńMGSf$`v/G%@:OnjViX VJU5ʆM)xǸBTBhlwP9+o TTrb10MmwF xp9tB$L€zrΑ31-H-y;]O&!-lBZX !D{/3D&++YWMc4 +vǓHvDq?5tWsZL Bh[j]2 +yEr`qyM8s<9z.KoiKEv-&`ɞyו1X [iN!`# ' q,"p".@gChRZ8qF`)d=Dduv 4$ KO9fo]HE:o4UC̈2*1+0@XL`I3WAd4E$_'\΁TFҐd3T#&MHf$ṔF21,> H% `Hv!H5`s ͍ 38bQ;"'8MP7&779I,2'Mc2~%a.Ym> /ExtGState << >>/ColorSpace << /sRGB 244 0 R >>>> /Length 4139 /Filter /FlateDecode >> stream xˎ4/lnm$ $@"YD#˱ySuجDۋt}!uX|_ ?_<ۿۇmݶm}XpWKg[ϾZ־/_/_/޼~o{OW>_Ҷ|Ż7>fy fߛzT @|y߅a(%Xw۲5%xF^rjkO//?\ľ|=/mۗfٖo~H6??su.ɶe_gyյn{_k WH+ SbyůX^*I>5jrv Kז9aHKb/ǚ;0,oON'ߛ v7Gs:R7m͇ܶ#W<w0Òs\A6%ø5r+Ƹ/m)Fζ'X?Ζi{*pޟ+_iHKA+r2G*E.h\1Ѹb#]q%$]2ҸbqI\~Q0W,Hv>3VSMK.8g, z0rzK5p95X ϯ^]ޏ-隆He!8j ϗ KK'Ʒ ϗ vP_e S]k뗼/5ndzvC˛uqNy/}]ݗ֡;N2.ոnivJ{Xwnݹp`n`43?Hu!uQk8I{۽'Tv՜UKI森,N{ڢJE{j|Y1&=Uyns^fzu8z'r>K s˹W-6ΙKw\Ƽ2ś# ׍AhEsJLRӮ`WWan{ܴ!'Y!=cI]}.J*شg\,2OEULR9-O̒L=ޜ>Jq8}3a=2D`~V'X!Po,R2[|mffdPod'RWEKu)yoy[[9,uӪ=&C= W*0AefFf)0v1 I]9+vz=ơ5:N;: m|rTzXnm984 Uxp_: }dORI:N h8#:ᴴV(WYI8^&.-6߇@Ng<  ̛LHOخ+Sv:>Z!`ل|f ;h8P[ })u{-,a6"&\{cq 6'r`c_ ˳Dͦzv涛}wsNy+4 (7;Ŏ[ 8~q2@a!nrl;Xx|qKއmܨ~Q0?DO3p4fvlO+9)8-[0xg0=nWhnqW7{)zfЭ 6ZF^ж n\e4-v=Ul4,DJ^psvh8 ky4 4 { aaI3`Bh=foR,?pxpF|Wjg9-#U[?^+O|PnڸZag?r{"gfί3GR'tV)r$g׋6{>(MC+ 1M;W_fbM_ us;NӖ3r~;">yHwzgYMwfHef?~ͩF}aM=yaDnpT.۪r>ffO3LUiJjLn&bW8]Di9N3qQkβAmown_Ab]xY4[ɴwAՇDVoe>zD>m7.#gac!h/v9J YNVJ(Ce'&;Y` r}V}ª-yVhca,k)DX>/B7VlVaUUȮF'*$ױ X@X(aU)ª"ClUH36U5V!-xVڄ9*Iaծ4 ad:jeYXŰp sl3ޮVIeQX7lMU~aOsr:{'V%v*8ɱYwb1'" v~cS ``US'>Xu N*d/acY=-~;V&|U _c"m H҆UD]oXE  H#.êCc߱x8fV6ڸ n]~*Dpvr'[ /F: ]#V! ccvcU͵cִ^arX1Xliv`Ea1ʞ Y}ܱ a RXů~XVyvX U}*\f4j`0 2-0v*'ϋ>XGV!#UYef`[XwUyia0uXi'׎U>˝Xl sU\_XܽE*cU4/vLV!-.*){a;V P-|>ªp`1ׯw;ª|:(^Va[|=*bKX4**]VªqǪp: : :[UЖV0 zXUՖXUuLXUu XUӄUt;w*[*#b;W|{HpUVj+";+8Yъ%J fM,o[@j[-m29_T_S-C-!W_⫖o|ժQ|_^W|N|϶ ﳌ.:'(թ|:<+~ :cꪷ⫞u7 ay sb۪1|I⫾nNWHl[u+~k|e֞|zm+V,skWqb+@nq_,::_,fIWVCۊey||Ų_Qmzm-o[q[~o[A{[Fm+lVIѶBp>Vۊ֣;G޶bm5Wt߾Vhcm51V%|WYWy* n_{*wF۪G۪6Vնڝj[cl[ٯm+磫mѶ:Ѷ:Ֆ_e_A7%6h[mw6=oVIuxnնZh[ z篫m%Vj*Wض*/V[ b+h?(s_q5թ:ſNgUyU%ꃇW]m3d_A{T|&W ۈ+9^|q_AM|5xgH+W:O^|~W⡋F[lr_JѦ_,\|ռ~Dr^oZ1?mgO td~ ݿ|*h~I7x<~( }#ͫv}*F|/wu3ë3]xC^W?|++cH|?MK6 endstream endobj 246 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 250 0 obj << /Length 2754 /Filter /FlateDecode >> stream xZY~_!I,l؋e7,򰛇FRcV-ȯO]"9;JXXq"V+ 6:~H!Mw[^qDG/ ̍iUQ4ڲd!$=ynbqVȃq[a7Dn+ Ib[n9|m sMcBcZ(j/X[è3=?II8:= )87"g]Y$^t1kSK-- 28li8 Pnq Y-^Eik"z\ Zz tB|=(/D J rҞLf_J͍cٺVg_F".KϙLֽLD2 W}5.;Lʸֳr2MUi*OF:<%!r[@Rlf bs%۴JGa=c9wNEg: QGbZGIN> bLU(RHw'hJՐikSL[ .G\$gw N[_3zʊx#)L\SF Œ [ry^ΨkIXfZ4gR!)5A)~ &E/L:J:l(̄x亘>dY.U&+*Fq^bZ -u-4Q'V[$ M҂RsqVڼ( '#9~/1, A:sYhnU@dmk2yo3"具rƋhTZ|wMed?U^NoY.y{z'hj,v7ݨzAMVu&993O&eESX>ue4Mx,ygsqP>8k5ղ[ff=(-}>GGRGF ,/KJ ]eILǖޣd1CƏ#!=09; bJYΉ  h\>C 6l3@R㬄lf e! JO.O !I| PZAd8<.bF>gmBCzt]%K5(~QL\*(sz };ϼ 4m0oKi͉e&j4.eJUe>+XKM>(8ʈ d 6$jM" 1ѳRGQf@<)`[9/V- Z_O4 W27FQX vm&2WeE6I!Ԧ ^y1gi? WVctj_Y! 8Iqk4YhJ :L&/f軝dH@r㚋eaĚ!^x>7V5"ifm ^S_DH"S1סͧe ki=]j-9(cl}K:3Sޟcsp}ie Y5L+2wm!#U =O2;E}Hx6,{L/}񵞭cI1GI=֤a6$JR}[)S}yW2&=ЋD^-r>:[նI' TB񡹨7 6BP1p.\tni1u ~=fe#@| @ ]lPXv%RNws@!»n/enf7P> 8@:D$KF, ¨jL8Vݙԅ. i4e xYS0mE2uA47`I޶A6 cd{dzLղ=p<\gt"BSׄ؊ikƱCl-\`At IvQVLP0@^(OPrWnxI!}5"E )NYz8bN`_$skӔ;s^ }Bィ\3X-UjS$ s:2݅VKQi 5-Mtrb*E[8ҽD~8@5[،*-i:sC0sϾ!9Hv oq=u5rwTGDoE1Q8D4 м}| endstream endobj 247 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig13-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 255 0 R /BBox [0 0 360 360] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 256 0 R/F2 257 0 R/F3 258 0 R/F7 259 0 R>> /ExtGState << >>/ColorSpace << /sRGB 260 0 R >>>> /Length 952 /Filter /FlateDecode >> stream xXMo6W19˙!)Z{)䫎E}")҉H oFc#\ \W݇?N+5} K ШHdlX ;zqa s@ gov`u}^ƧOɆ簺9M6d?{0VЃ%E2 ia.'vw 4|.pXo eylV[02|P:uD눓,4"#lEErfiSɬ~A7}'3߭@Y*cI.sbHqYX<!o`^?υH;%PQvk]٬,f*I{=:m,fQ5qpU™0k-LT+#J51&ʈoeDMU򅄬 QB(a db&V[pv%}pVY> 6(v<},VrG3b3le <=r.bbnYI64ڭ>:W1G9'˞ QuQC^5%f= OApQ)Fyj(mC4__`!$?31g{8"3JJa) ^a?S ML W2 DT h@zorځ|;ΝFO ac0`xHN? $Li0I{ ?Gx{z9 =K$1uoY$d~us!H1u$*-I;ۅK$RT endstream endobj 262 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 269 0 obj << /Length 3643 /Filter /FlateDecode >> stream xڵr>_Ť3l->%rrl|}HHdB4AYK=oF9/^_}i={oY泻1^UF+zn0fe5?/l9^brN [o מx~5<@}|CmQwo4=?qn|/gUrrY[i$3?7Iʽ [{[*5w{᳿P}t-mfKcTe|ھ> -#e霥ct7[Fv*FǛ`:dJD +]VlaL0N\Ȓ @BY9@cn4ǥqȤchNr)(2e: kn2" a2c5?"qÝ,2{\h-Wn0$Է l${]`#3Ve2U_̸"0* S -` `g^ L@^S٭ ؽ &KU(_mNQF_3ӋPȣЬD .XBTC^ ~D^Pm/(<俠$qF-gr.E{"Ceԃ׎ &H=]"ϕ+`ZfjaPy0, :<1+dvޠ $vQ*Ϥ#Y5 Dp*JuĤl]ͳ-qךFp{$bLfCKXI۴hȇR%@IU|At_1_uH)({KqNe IŴ{ʗ/ 6BH(]Q= ]^,vwx\axmbe3/ۑ=4<,-1S*CMvoߟFi2FrE7V6XNOp@AІٔIMBB]$)=&Θ63LBlQ\Oq p9({O'٫%Syfm:1]+5"wd*{? ҳ7{uyPp[ #^p""gںO{q灷Q}`F-LOhqBY >G oH.vWSB}QL){A/TcjŮDsG}!vC(˸)u i*_pxr e5p&K2PbN0@"7{I荜G墈aٓN>eX20Bl;8ȋcB$tj67FC">Oa, >MAg4T8]H#qoMC ]8!0zD,a4[Q8b;.zզ c30m?k"PyOq;{$6v#/ܮy9b$(L$ZJ/pqBb0ioȶ^yʭ)4iáIS&mF+GB'NIB\VU{6ct`͐o"as9v(qj*\_T f}+!+;3AX>X|-uB} cb \ $D>/Uf"T1 @1pG#a ^+![_:#G^? c.se~:/oRUc ZMZge9o;$@ n`}NdPqЦR@b\a4o(YX}2Pʹ4-%c>xl:R4E}a8A ]C10!$Ќ,R8lQJs$QP#OP'u'DA}w7(z”c8I[V7?gk3MLښҴwo}Y ^)G՘kGZyXk$>*(\f8sj=IDت@dDj*a-+|]LZTZ L+cb3b_n+,.^xq7J>,[K !vrdo&p8]#:]].}ႮE4J?l9:S\`it NeU:**n}6%؂z%C|sV?(g +׳lmfÉrZ1>z LJ\F.ؐ, +^`['Qf_:C7BarSSE[vcJǃH97ۀ} ;Pp8r?R~R򼺐[I t'$*f%si|hWن/%8L!ʂMrc=^Iw,3ߺA.Ci>ӥPǢ]BBcjXZg~P^諀\V@&>8v%pPʫ\JQ%nWUjP2tN*^R5% ½W>6t"jD%njI>3S#{'2Z1zi?PAB2:]/(@R'x">-o]" ,W Kp eS}@PL!JajJ ٛòRuf_uH ]ջ4iݧp}'6$9e9G=*4c6d|o}ԿؔCW`W(]P]ef؞W }b}U׬d_)A$¼z' !F2Q L30 XD2%EJ3ITӹ M?EmFSǚ_mT.@Wה5u-WWTX'C_LCݭٯ| Sw: j dجAl&N   w's8!"ay,iΚ SKxP:"tH~kKxQs>oxanKO&`Ѽdi<)}լgŚt9ti~s~Q! ^s>$cwO7Nj",ѷ[^M9ZL:5*܅<_95#b 0-7KZ Kvco%1O68տ;o鑲kz=w1O8[I3gU(NL xf: D5TUtӞ<"ge9;U endstream endobj 286 0 obj << /Length 1762 /Filter /FlateDecode >> stream xXKoFW>H-H}Kz`$1+JI;%,;q|AwΌ\O텖W//C5T|rTzR+&WdK5o:h?W,CWΗp[܋oLg6T,':#4Lm5dî['t1?Wv'|,n"AO՛ hnk>(Y!'?#OUw׸n!n`53FU!0btn:sy$" < yV"y8t.Vgn/^M"C < 9̉l-t$4nyjyGW\Σ~ `-r n a/9*7$W9 =܏-{DcV46KFBDdr.6[D9D$a3}}ADҥ-?\ΉYCNrb`Q;GGc )r|ZL2 7rD1E$@<'Uy%bKQ& 48m@X+\qۡ6o;upJrЋLFV. əiU'z1^@!>pz]f`IINI_m#|5dXT[&iF]5Za *j^Mȶ&cr_^ `1U^uLV |@beATog>;I+9P™'!g%akPSqy"s( )п8i[%U'@Y!* +Sa a=O=֪RW"qȖ+@6d|Dbe=I^_X:4=OI|R ĭc^ 9b+JPJk+N$.>[߰4T^*K]`R`D&.Qj:P&ru*QVw+HR04(9U=7z=$tݮ},DA@튨kFROs]mB@dav,VA S>$27ڎi;61Wie]W~+q1!^7~%[tGwWN屾wMZ 4g|ʛKAL㲄ƱSΓޟ$OY@fWTo.& endstream endobj 290 0 obj << /Length 1155 /Filter /FlateDecode >> stream xWIoFWHx6nZK\襭nIDY*DI!e m#" h3omHGM~ud"ʵlUhQO>MTn#ˊ-ٸ}['ѯɟf. i4_E+E4_Fzjj:ƇKXgQڸjr4ǖ7V xYoÜȼ▉F-q,@49 ]2 xYAuv+[Qә7,F%E/[e-bLpè =E9"\*wdȐ9Ψ"Izqgm2z x06`J;Ƒȗ4B? } /h$W-BL{' ~<ʼqvG (/Odo9 wd[(B`P,a#~Lr 0Y/!U_P2g!_XDІlt8K=eiŴ'/ˮvM! d]$AӚ-1)r9,uʥs}t?ǎ{&N IK"6l<#^WIZ j"^bOk^PPU3Tnح'Fl0>U| &~'h }U:EU&뚂=Rz. m{Hkl?׮^@{.7c$ViLl7>pr>&p륐y 3?jiCH]`Ą`Pʌꓤㆊ\J|9yoWPԄJ=X**GNz.~\HrڗB?Os'ak%Y} " %/n(t ="X fNV5#=Q$N iE endstream endobj 283 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig14-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 292 0 R /BBox [0 0 504 576] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 293 0 R/F2 294 0 R/F3 295 0 R>> /ExtGState << /GS1 296 0 R /GS257 297 0 R /GS258 298 0 R >>/ColorSpace << /sRGB 299 0 R >>>> /Length 19642 /Filter /FlateDecode >> stream xͽe-6ϧ8CiphKեU*Y*7# 2x2'Te$77X ???χ}!ɫ~po9?jo>~_~ÿ?>?}ӏ?}?ϿN$v"=uBqmGo}?w-=#f_~ÿcKxKzzx㮍>ѳ~}ǿ}^LJ_?k`{k1OO] ç(ow ƻƻi}+u3#,_)<% VNOyMY朕J5"v çZ U]Kt]oyLJtϤ%?fxˀSK[[JeU6[oo LR+94 Cki]{ Pz5صWcXoS{q) YQ{_ҤZpji^-9M*ҫߪoEKWN͂S4'Qgu6:[ƷIꍼꬬԙߪ ]X޲j2l`tB~X SguGz5[ګ5tFj}9yWe)KYG~_mHJH"+S^_ҫV-ҫt ҭ[ N҅ˠ<o5?RGϿ+)5l{Usݻ?X/m^^5yj=#]㱱[k_ðDu5]?( ħ~L _ϸ֜a7I57%ݗ#vRD+sB~%5 kN͋!vo[/IGW#v޲p[Y6[ b.l~W޿{<ݏJA|W 2bhM3Bw03w Q 0˗~`tsݻ j؞_ Knr 7xf^!}BRɄ//&~ ~ZGB^o0]x2.iOߥ_>vEY\#/sDy%T<@5# )2,PTBJ#+Gyxd(%, G" y*YLp" Y/xd2+Ԧ<0䑓2K!&/ 9 '0O9M.G΁<5ySbC<ЯG^xxYڞ<2#g:G^xGΛ'1&$Gy ^<<]ʹ#o)(WG\uQGKz8(1^r=e=p'6xL絛CA0|-yV!/wo~Qc~a?Xbߠѧl~%V8EY:I-n> N!_=Ypp]+ ׃K5דŦ[ox[K /?l/1yP#E5(o[GS^- ? vzq<,ݞyr'o׶?(u)Ϸߔl$(?_6~"~hW D ~ӥ&@~駲q{?,6Wb?*:r?&^7/ C*${?+S?>0?dߓyMSKMo- ؒ σ"+9Q|{O"}2~D}S9[K,FƧ1Bߍ'>"iK,b>&Է [CK}}IKLC0 >.%DXbq.j){E oaH3C[{IB$2 1A=aN>0$&J/s1!$J7mD*LjH|L@&ێy*!aBT)Q hFUNް|ЬnV2İ%%uy2G-À1ٻ`@8YX 6k P4ۈh2chl g*% Օ:q* ;.02΂a{d7R-en0\0Ă$Pa)BAEi;ի, OCP䟎9!zl|{P7?;},_ޣʤ]/Qh"{_9U{XE ULACrɆJug6>5$6w P;Q4t0|j,)?>>u 鑰k(1ľF]v5ԀͿ"HMOD8A>G(뭛2q/@k@!w\ۃ`c?5] LS5 j.K|=7^<^|9k3xyS74+sOrw~Ҝ2n.M"LHck^Ȱ2ᄌ0!c5a-dX v^9aˊ}^'d:y&Nj)YGa% \3 2}s@ˎe=/(':_;' sfaPFPBK2zP(*8T akt [Z + V巤Pn|A hO|_ S|ߨ&o~?qI켑8BXZWTHW:ԏ/y [K1΁5i_n~3w[M#H6}ʇAn|j|E;o|jt"nj4O b׏zn|ju̳(c&ScUa+ ؽm7vcw 2$ge SiO /zy.e=hgv2^sl>ͱyHn|QO؍j vߥ+J(\6  0ؽ=6d?ǰvðGn~̋حr}o|Ϡyؓ Iɏvґ>yYݺ3 H\}ė!6v0u=:Ѯ3*1C __߇Zo| ioxGX 7nLETnvƧFOmjkUnʈtcח3B 3ƃؽfpBK =ʳč:gF}ψMpa>Dk]+=:y0|* ߿2~I!?=#8)]g7~WmVƭMKu=f0M;O]OSu=:pR׃ qF]j`HQזk DQ*H]KfP H]LȤH]D*`ȶQׂA%JuW*7u=QᠮGA*G u=xLƨQ?R׃Qף"Ѩ u-a?hE ^T:aT3kaA]ӡCxGz2,ŨIjȨɐI]Ou=yèk 2Lz2Q`<u=uCzN'B/kr.I ZEP󠮕ZFHcA]*׎9RB5b=ZCP_k*u-ԴRJEBu!ByjԵ2 !TR( /k@]8ZSE\k23hE'PJ] ^)@偺j3VTu@H-F;k:A咺Jcӑg-c}Bɶliy>yΕzvSݹ*UMg?Рq QkOD~+Ε(WZ~&jLg+WԴ~KQ|s}x-c%EF75)ϩ"!$ >|-?7A3>J_]60ɯČ~&Y ԥz~{3::+Wu\!zyҎ򺞩1%,}Ç]9 :Cc"5҈VLe2]ym ]^\MJWѶ:_wUTn8u7uD(M_8E[k>c95M%%4;URS:R=w1+O:v9))_p35ESn48I뚿G~]@gJw9QD 9%4ޝ'%]oUr\vNMU OVQ{:TLUr rgfNP.i£K~՘ёWͤ 䀦HӀ q ?h"g М&YkѭXm^aޭ+(Rr>'=ml5"bMjM9&ӛZ5IC'Eʉ.h*fӲit9v&Jt򉐏jOH1i.u3-ff.2df+N誓-vZ[]i|S;JjJL93Y3e̓'AJ1u5Md&(F[n34ED:$NIu}L}t]3ѮgTa]5VÁNR%h=%ȷ-ɷ-S?VΓ,dwŕ6ͷS:eޥ@ϳ>k$5xp)|C ;b]@*-j[=^yؙg薱g$+7ܫY)i3[έ="@D+rm{N[vw[FF@mN[Uv[ I"?5q[kDi6´ tڪ]Q(wK}. `7<>FNzp>KZǕyWkؕ>\ި4ߨ\3.U3߽J*ŧYYVpڏw$øȏ9 YkҚ %뷺 Pdv/4?ڣfIth\}OOד̹TiW%? "nYz_$j6?fWYn~vۭv)&̹$pSUWW^#o.Ix}U/ѵ[]_{wna_)WFTv $*yD%}$*'"@TATF4EATCDaD堑F$*lD%S$ATyPJ&u&QI;JL r\ *' *'(1. *'#`@TΌ7D%\HT/JF咨-#/ikFI[Fܤ-RЖGs=V<1s+$-622eddҖseleH[f4"hbe얲ez5r<&m]y22hhWXmiWm9HSmM[nڔ$ ejd lҖ}RGlWm0RL2e2Zeߤ-S̠-S4eFKLtm*h˔mҹ[EJ|Җ)21~hD feI[&sm2Ǘ]!`e*FۂLt7m/-S1ez-l'miALLd%N9 m]921hԌm*xҖF[&KN21^hK2UġG4,ӤW['oF Ws7wP-83T^Lud#0ؾWNd30Ҿw9/| Fks>+;8B㘏C6X|vECش'D2լv͎ dV(lX4fMnىP聓P'/9s҃ tRjCkѡN&#;yIiMyVGjd8tsP'/ v> ֏` 7( Đm@$& c@O1"B>1#҂Bc@w{I ;_AG4lA5A'7l1vHJPcpPO-`%596}*dý8 ) ANa z({ۙw:mγ 7ރMS v<@(VgB2*p* [xSD:xp$n['1,BRn1dwq5n=Wn^K'WG F?Obk^>Twk}MX?7}ȥ:ۗQM_X9vk]ʱgrSke儾\Á,^.T|׳Y~"Yn!,?1, {({[=O=w=+H{aV[ 'KʻʥO){®FV}ٍ\YciHi6n}e5Y-8;!?eU veyFdEju4kF5BpX4!X(?pRYZH4gwE#(J'qVmK\| â`:,+bU+{墱NvK ':i[4{siHlpjnz&f!\C{'OS6XvUEtz{Uf c͛]VUq= ƱTɚf"K.G erAWt1X"jqilx7և,Y&i~Pcrr wv#P~ɑZ/`!j {Z:l1wsp4Rj1RWU٧9_1-b2Ӳaٍj~WP{wX6@5RSˍJł>Y%7@f/|aX}=IէW># nᦿF4zl FL~G6ztȌ^̼1Wŷ+t;`|,?1}JD^)ee:1YbAc!1wLA@31c727E5c ȋ+AlQ͠`j3k\:1 :D:ޚ.QГQ͘[T3q2 `7D5ێ=j_. ~)O5qCQ҂(Qͤ7JÍQͼAF5GS3ȓojNaWx(H3!OFU}: Q kQ"l] OwA:ObUh߀\S8)<-`,=)чta=~?\0u~y|z<< rwO㻤 v4~6f};֫=k_}Bb t#=n|Kxy~J} ]KǺW;S4v? BJ ^k ]yoеW5ۧ}ze_W?K~ g3qߧ{5_}5\(/|*wX^^ׯk{4kr«^]^_S ^*_.Qg]yx>_GK8_-g~h|>'_eC OK? SX׻}O+k~Ň֧_! O]K?^33I$ru:}mrM:ؗۑUK7e}9 8b4y-Gq$90 '(XjGO1{fɧk*1=5gf6i,&#ݸj,PJ_Ϛ;’kṠ'qf]lVQi1yyTfPe4h6JnHi7$GMҢͤJIq/#D.;-"xnםJi w~V;Lec2g1iG üi217׶޴$,gᦀMsnW)p˝{yZ06Y eL @Y]bJ,=q'BF5gf~nhAJ%iP3qBŚ l EwӴ!h3YtY3@ 2(Md=,G L4}i, DRr !S3&j8 \8>p@VUʍ  )!2L2xF'!4B (5+V& /S29m4Xtqug f"><CUF`Q1#aGŠ$[4y5C9hX[n*4-&{}53 hR2f 5 W f +K :m IN͸P#wb8i&A4̓tqw/!aS-jF(ÿg`2"U֯M/&W&˾}6ɟ;8aEO|&8s&ZJ} "aw]).Q]aSIO ûƷ/,ۀ?U>倮i]ʑ+b3u)G.g)1rSp ]yMm`ڬToi5l<Pa#j5ΐZ SqjبZ3Vje=jZ3rrvk 4ZTrvkU}5Uz8dzjjvN8jvk'l$۲)nfI)nfe73 )R0;w9Lqcw2ōqLqc71ōh-SW7¤7YfҨc!tx:8ff7^)n&D2}LqcYϙ,GLq3+)n8cI#)n&ݲLq3v)nc;C7BNq3f0dLLq3;ύ#hfvFi Nm01@9w0>78d$ sʗ?+ SH5y2H O0e)xt0S+װ>42-tLkHPh)TBJ;Mfէ,GS6(LDR>@Ok {ǐR"m3RN(F MIKY!)eT .ō`fV^q'եHv3Sn&^4Rzf -D.%AܻRN.ōbFpv)nD5@<"0RGp"Aˑ{rcW=L倮</T _o+h@^WiF] ]zO푷 a`7G9H|_gi{[ ]{w{@7Fjrkp͂pgC@^y4y?@^wе^"ƿkkz_y|y>kOZS)O/iO߷߷<8~y>}Go/C}~^ ^.H/)Zd/'_~%{~?kjTg~_WR|W{dG|*|A]x%i.>e]ʑ/?Ihd~4> ~|O}% ?_f{y½|jwv/W^c|LGx=ܮa=_-ߑ=/3sdZ譥"W i}Ox>Os? __y1v0 Cv|B !C;`XCh ch/@$Ck7.e1ZN`h'S5֑ t b2v23iYJ2.edhg BBNdh'5NF#2Av2J ?11XMVī#?&CˬVd81WVCKZn -o4ZC}h!v21 1rdh&ځ0chZ&o0v28ZFC;ɔF.T!ZCIBUyCgc"}_06Շ1J&i.%emZ"3Z:V&9IXVi^$ I0򮀡UdTF%?UBEYVeh:Vg݉'άtNC,;.ZCC+1ci fZ*C,_=ZUXZMRjU *CvV0z~Jf2 FZ1igiQͨ CC--ch010v+ CvKZKvXR[2&$C;cT"ch1`f -^ ei m2vpiINZZKN6fE"C+`w)v`2`h%aah.L0`ha2Fc` ,Zb'+3 dHhga wwjx1C%C$CkYbU kIgr$!G蘄|{_$!;7L`LBnt- ,OLB.[cRx31.&$;IwF4&!́ }hIw(6ϝdIM$mv_wm&!}ƭhװXY,1i0I_0-nI~Z\p:Bpw&Ě1&!vI% N:ޠU!B7do$!<^6>e;3ǛI6lKB>-m!l;Kn=˚f?KnAd<1b2!=ԌG2]bФܝ ePfl7WiOGjbvoY6m{DwGLX]KbaR8`stfu'ˌLNw6F<lȼt3"ߜ};AOn{Mܧ\Vb:%܂U^?OSPqg2psm4n&`Cd,îu93Ǝ )4x#$f:id B/Bh| qgG4O0<_DqAтB,&E  CĤ@&*0'^bAPB̖gxׂ_ȲЬHZ@(*n3E;TFuE$::/! ҹU$R(IH4>r"g֗dd4bQg'Әwe7tt?yH"DKI]=jkGv zdrﵘW-O8MNX ]E?oӏ?}m$1<:w&{Ѿ5dԃ??|sHY e~Gq46Piwlw9+ar\y)ͳS׈5Rby~$|,«AlT y5FFy"/Gȳ}y6TykUd{-sr>G+ = "8wcᄧҸA֯ʱ>Wt_\z}.~H vc @]`׷6=% npYMz^1|=^TmgQi\Ug8+Z]: U (AxV|O'5p#ǭ9&-;%Qxg-s _N (dV @A (E3('ԀώI[NɤLLdSN çSIdTp~5:O `_^S^rWc)SvjQOB?>>xOVG >ޓIJH2佺_mкǯFcX!ெcXk\j<j@vW2ZԿW{:s"2Awxj:o[3oѩΈTdǭc5Zl۳gL{[> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 306 0 obj << /Length 2072 /Filter /FlateDecode >> stream xY5}EdƝ=$Xxi0LL1ɤhec݇7G۫D~zLFrng*iSn_n7L+[/,\haLa,a4'0f2h hF _Dk9Cyy=03ISUeGZhz.x))(a :Hz G2GdH?|i^cx;& B ][Y 13nv J[5E[XeX'>$QUV ϥrưU8Yg ҒWbaݲ) iazOq>JS +r"x9Qhw Bs μ R՞nAa,.漳tIW)5ޅgYz)-++V䕳krZ[OYX/d% I(*k{̄Y6~$07s kBвY\,hoq.hh"GԶ N87 g0wܺMVM XUH#]$btp*4[ PDY9(~i䎟HCi;^('*^ A& Kql7ηƉxfn KWMX+!V^<@S}R3t:+qf=#K!J:XGo#M-i .ˍu;;HK;0D%/]2O&\_$*Ӷ/{HVq3jq)g* o )se7-1nG5G& ]V':ሠ+Yb°*V>L|!O*gLKJJ>.!oHtJjPt z* NBU077MWw NU|FRvynٞy~M&Am8P D- DATN$z41;+xgu(tB_baiS D gVdH@U<\Bƀ(- Ӈ^d+oTmN  ZeRp5#~+PUJGܤJkY)U-C:SچTTW$^}kXRhO#љ+u슸rY؎0HH6$.EV\%ki%M7pf%8-83JZ8eʲ^! Rqq \{/jB3Q!5Qj%1(O'xټSޣŒ<4SIPL4;~o&G%ʰ쑌TzՑuDRKHB%W^DaCiS<3o( wVz=,܊7.и*lY[hO$ b REE^5PQE о7Iw' O 8TV9a'~{J!j&n nv~}G*|s/(.T[5v-5{"ʙT{o|3 ]In_<t]!M ̂܍72} heߩ2Z`{:t PnTzɴ):<Oz%NX[`[VQ|@~)> /ExtGState << >>/ColorSpace << /sRGB 313 0 R >>>> /Length 937 /Filter /FlateDecode >> stream xWMo0 Wu6l ð˲thѯe+mnvH)p /nѼ,P7Vuv6:`q ߏ6Vp^Xnnװ:??pZnvsh|~kcH`3aThP!-U H<gGTz;91kp|~5\6NSBdIWp`i!FE=Dvqf:x8SFw@d/2{wgV~U ??e'dߙ+J쯨 zL.f$NOV9&ɼE'' (zB-ɸ;sz=h O(ӻ*aB,k_%߭oK1Z4] TV"JJD1[[Q.DBNBz !%ԒXy; x=Ev.NOA:hFA=#3,wmȯJmJ96(=hJf>ފ2O!?0&*2ދ~j1(tY$uOA Y^ H[ 1cTQ OEa2ą0_2IZ^ hB( %bKk{٤/Q ~t\,o'_CIl A N;>(@/;A )1?cWȗ!P Wt.EC>-A]Ad h,sw~vc!/bkO$KDmwqQ|sQ#T;:-;u!໤h׉2BE§H>m9>?#u endstream endobj 180 0 obj << /Type /ObjStm /N 100 /First 877 /Length 2147 /Filter /FlateDecode >> stream xZKoWpxQ,8b<;W~e)"Kv>HJ $R/k5jY|hxD _/H)4Du(A:R趄VT.`PiE M"dE.d yK C25%8h)xF^'B6ϒJsl؀G!LAD" ,c+jh!!N"fWK㱲 6X.1A< `{ϟ#qJ'忿 qK U;xŎf#^[@I d8@]9N+ xu+yVoNWxWtb컿ktu8 CzNFU=N~MLa8!3,S0+)\爑/3q~;C;38t-w}'U=Ϫ$9 ~{뮿)|9*7XQ]vM;<*Z<;/"acPZٯ:5|w혘kʟzXduXʻBzdMXAXx Y+ވn4aTeebe;ף&uV.+XvgAP@A&A"$=nߵX]<c%ne&` L{ S7.I6IFejZ^ӱa1g#F ra1!l?2"Z?b(H"XHI!5HQc·F&UFʀ ?Z}Y5 wl8 q}ALJ `bM2*ej|5G3C>tH6Yt9hɯK6N6{俘x'A[%(Qb8N V m ÝoTȝ,Fz>N+'`#$>0/|_rHȒhRD VھwM7@ω8!!ӤtD G-7,Kſcy}\묢u=PwMU< /kA;/AӼs6j:ߔ$xsx  0zSi/լY늫f8?'mW XEV>Pe5jFbP]3UYaq>A!eU~%͸~}QvQr~2,GA9`<fU=QuP'j'TsnH&![a7b>$s&ǭHa瀸hwVd^ FuZ;0 paX;+=֠~O:|*a賈KRdʡO>Ozްy/)e06i=Ecrnۇ`?hю-/?z# ivgwڻSPŏ8dgrQVEvX^R#-=`+ D (\w[UawfüiW霖춑N i3|?@5Ь3'Enp`hA:IvmRRX[ 2=+n%|a8S_)Sb',aMnͻG$#$IkFYc$%<`IJ},c]t4rw|O_;.7#i}i83uYEr|0V.ο\* endstream endobj 316 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 321 0 obj << /Length 810 /Filter /FlateDecode >> stream xڵVKo@WXb݇H ZT0'M6in(gfv#"!w=oF@'g O@f*H2)"&$˲):]C;Nc ]g* yP ͊DhTGXD2Q*60N3mxd˚'hwD7;C)g”Ĥ@& ] i1=A"76}Cg"$z :REֈQ5*2}@kc0^5z"l(C'zȤ4CnXkkǻ֚xD͌SJiӱlOA>Aq%ӤLSdKȘfC8}ݯ={FhdW>20O("4B/µC)sEBoLSp6ԕkޣ]1&Yڵ&l3Luw%& 䮝rw+!|. D+ؾga.*BN[9O9ºss_ #`:'<lSaEzb(&eKjA-{k\{3Cx?Ԉ ɃidK^C>Oj}C{}6e4= w@s{능;kòF'NR'*]ű۰ @64 |}N^x3oMp}6MȵC̀gKT>3u~z bU&!R <~M8 endstream endobj 303 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig21b-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 323 0 R /BBox [0 0 432 360] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 324 0 R/F2 325 0 R/F3 326 0 R>> /ExtGState << >>/ColorSpace << /sRGB 327 0 R >>>> /Length 1924 /Filter /FlateDecode >> stream xZKo7WʐCr=-Z!ȥS$pb1wH΃RdG+m}op83ʛƛyyy_^/gsf/-}h_!;'sɼyv핹z\xg]]ޛoOGh7;g o0 g:!Gr6 ܗf!%GEen_S4wWOy_j{`WӜ͛ƙwo^Ʒo|21]-Ql$Ԏ:GڑR프LpCsTz=jw8S)(J?9& IS[8pdU19eb=,.ѽ--W O˅Cshyp =lgG{(N6u/.LpNJ*lOyFxy _Ĩ=? a~L`)Jz^o7-.˼0%hH +]M>(./줎1*BPh .?꛼ ?+duu%J:]>\ܙn` 7H{XػXblOF\jƕŘ-٢flI+@nbɏ[a쓏-Emtu/YOO޵X\ jp9>ʠXJ|yjA”i8u3cY@d LK*UFqYP4l (C?=I}i kؓSMZP )?A}f-*aa^gN,Gɩz8'ZdrI܏P )pn95AͦƢ8* ,` C ʀ94` C9<`C ["xu-Tsti#jqZ@ҵ>/qIa^߻$Μs ^k\|Ԍ-(3s蚂9$C\| F8٠rؓrA:TtF|sKbx{r!X.?HJNx@;`_~Mj+ Sݓ^~ק/ÿc}>j3>ACX{xߜ endstream endobj 329 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 317 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig22a-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 330 0 R /BBox [0 0 360 324] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 331 0 R/F2 332 0 R/F3 333 0 R/F7 334 0 R>> /ExtGState << >>/ColorSpace << /sRGB 335 0 R >>>> /Length 1175 /Filter /FlateDecode >> stream xWK7 ϯ1{"k-Ў\x]xKJ4vƉg9 _#) Ŀϻ_߉RJLۏV7UpmTɉսfF<6_nǝ\ PfOg>Ύk|}?cIz[&nDÍz@?7 #)BGb\~Yw|:|,2yQ >JB#}aƉHnk44.ВA<NU(R|[h 'r&/p"I&vQz ^$|*>^zKd8:KXk+Q] taJlW,_=hєSFiix`R3cML?H=)s"EvM6XAYnm;=c1 1L Ts3 )ƣJ*ʰr2JRB&=Xqea4"¨)"҇&?Tb=i:Ao;c8rN)2mn Rs#?>;dw 'ADH']\, J"vt   =̑ԈsVZShCu$iG~Pzuq֠ O'qdAEO؞ݢlxҾO%:[UʝjYP#gȸwRd/#j( Іh&<̵^lZ$ :ג@pRsVswZ։}ՑN j:kplcUHZ\vƑ5j#?>d -G2Q3xËv# 2ޔh=6|ыljƸ;($)H~~_| %H:Qj- C s#ԛR?! 9.IGxՉZ>18gf $D߄8۞ w48D'C&e1c=hSgWgd"qqF/%O~( endstream endobj 337 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 342 0 obj << /Length 2896 /Filter /FlateDecode >> stream xڥrۺudE $ӛLh^w邑%[SRD)vx_Õjg:m7o\Սi,-#ZH;d_7q?_Zn|{};u &nf΅8V>\jq}cUu{78xmpۿ{cq@u?NWy{;˛m i㊀Z~yJí]|#M/C$soܸ] Bmq EHb+;ٹ?9{}.aA 6pုnFZ) ]G OXBpz2O-x<tudVL& =¸="z:@X:DvBƪ4b՟dq #6wXKxWzM|?bhT\Otg;^(?4)̟, !ܩX/Y? TrDoc* ݹzbf\4kw/tS\u6cO5uvPm:wpfm6fsN k_5:|jM;-+.RmmZh5STQs< "tݓ (1$nŇ\~PF&0.|L]&Ǐ^\`G̍d5J>6rwByr I(I7Ў@As'<f~+Q/QjSIQ@5ta7KCzLN#8lsgb*>r^8iϕ }V!n Im56=aGq n.ӡgGR޾M:Jeo[`HE$>w)nGa_oYZl9{;Jv>p|]wHˉ~컔qm7Ez@A> /ExtGState << >>/ColorSpace << /sRGB 349 0 R >>>> /Length 1345 /Filter /FlateDecode >> stream xXIo\7 ϯ1>TЋh=t2.l J<{\D'Wĭg;.Or)VO %Rb|>Ŀ`d%G.FhN||Z`5 T@/? NqX%K枞oYf ^XH)+tAlOqߘa >Fo_? %>/@\v٨_KcVNjwB؈tLc`Thbt3ɇ)ߐèderiT1R1{\(6HQ~p>\lh6<@rSPYa*3R Z #GŝEM БichL3 }lhQ> T3^<vuV׭vO4:9$:/'~Su4 no=ݽG՝&9$6 b<񛪣INp Xzqň*4j"cOt?q:d ҋ) -Nb˚I7\8Uzq ÕssKn*p|pP&{!,ES0Ǟz2=x7UG`ᖬ#P4*d= ᘭb<񛪣INp;unj|&Fraښ{lTMuƆg5) 8H/u8%q_tӐ80@ىE~6;}P}vАSg ;gv4gv-ny| endstream endobj 351 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 356 0 obj << /Length 2694 /Filter /FlateDecode >> stream xZ۸Q%W^W}ehAk˻nlˑݤ}I=m"Кp'Y/O7|rcv0I,[&[,n7G?,W6sQ4Q?q3YT>mSi=3 2-GS#=<}|y3ȭ᪣=Vr?˷<tyT! .vB&H@$@ κEՙIIȺ6^wa%s[z3Itd^Mm򀄤8y;L6֢jnPJ:ۑ恅 }{4lEd$-).j*Q'FG;TgQu'RpՙVU^ʗ/DU0*lpಝ6k>ЖBKfs=/o:?p?08uA '醤}7~{~\GsuT<(쏲%~6/0+Q)+fk0c]\XTI([]5p7P$Y͑oe5(DMv1 w+]//co˩Hb| ;A{J~r^ gbWHIl Ӛan)h:2+.،/H((pc>xmQ%{+7\|pɩAҪ% TK \=6w}vlb?jAx\PncFFv9^~Ǯ̇1$r֦".]?Ѕul Wx>窟`3 E>Oc )>4sQCF@MR@@({DR4 >^ppOK3 ezo hnFZؚ<.(mBE B5㬬w-r>zwfE)m&Eُ q]VenC6-#Nn E3Rc:husdao5j\y8-ǁP{Eַ8^7bNAi$U( ]Q̀uZ ~smt3+U?We=񯼌tl Ak  A;Wx~HjGٴԨ'a@ε aB#{ lHsj鴼R$j b_9ͽx~;R\H9 pq r#G0&1q93T{'7 ØZgB(=wiĻQŎ }eVB X{.80-u}zX(k$քj'$ G=i1J*5pA+/f9cj')QZ %TE(R>^87#̈́n]M;;3m>NAYiyLgU#mQb،nZVW<+EߑuXN/v-mzvi-'U өCg&>2rܹԐe>U>1bZK0Ya|M!rE^_Zo6NT,*U5I;90ÖLFAWնt\`XDsmoԅ?!؄\q*H:]j o+Gli7NԨїDDc ,gԉKH%z/˘e};=Kg~jg2_$GJ}xj ӾqCm4D@Jʿ(" [OGwZZ8}Kf^ms kԅhC`C݌$>/z= gtyMyZWL7"+P9T9gLC>rJ&ګ4!NRGWe]:c./aV.RSTUK'OTD>gc8O巢d4s/A+ƔS&z/f/]i5́/T/R ey!GTR5?_ZTT7:11swf|+9x{@0P_AmǛy)7?LmsgVf\Eiyeҟ̝KN Z~G氶cJL3I2awwt //FX9hnp ~R꿌5=ͭp}8U=8Ft5إfOy=Kʽ}, :A5 uR~<3وC endstream endobj 352 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig23-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 358 0 R /BBox [0 0 360 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 359 0 R/F3 360 0 R>> /ExtGState << /GS1 361 0 R /GS257 362 0 R >>/ColorSpace << /sRGB 363 0 R >>>> /Length 3934 /Filter /FlateDecode >> stream xK律eXtHH&RE T=y{TcǷǿ?x|o}r|gXNk}9sw^}x?o^1^|ww}yODI&[9g3I9|tx6W'7y"3>/|_55i{Wߏ﯇9OĞ^<Wx|.}DԟH%k?ܞpH1'.^Oq=|=S9sZO\|=|.UVvyIgFx[cW^2j'nuvjO3][{gjl찾ya9a􍡟R>s]t޹3 >s ;d}tJs4_ډ< vN\en~"b~x19~΅vwN-;(R;~rngk[+['<++ ['<+=9I=*# h-+Y9={,׳fEWtYq1*N,Ĭ@04* EjH MCs`V+e}VLI&+3DZġt`tc 垔ӑ56L“ܱ1ʐ'>7vFeN"̮x(*s<nI%fYKxdBn^bFaAؘ&HXOn n䂉EɃO ȭOU<5 Oe?WqJΚ_eH.`hp +nb9rLM q(k`wr4k䩉~R J䤩VZ~iVLUF"gu 0o,vTohe'9I,kiI*IpjLIBڶjIjG]'_>'j(?WU񢫿5ݯok6?>QkqksW{*kԈ#z?qy[{A9ډvxZ__O7;nO5/UIKn?ot?j'nȢkm5+%./w|aAKo_8˄7vkUW{H74{㸵sW; Wj3 %5>mmp'v6} U>}Z#nRxmp_qJXM2|yܾ?jډ7U|_wǭ՟xϛ{+jv6v?YOmsjz@V53M5kfՎcnkfsz<׻IOlzF&]MOjZ7+*m͗ Wn/9nzǭ=_>W;e3o6f_olx[nH$Ǎ&oɈc슓'Gi i_5'eem- 閿!7m!oT/z8--6խtdx$۟_,=46h-Rݸd T-=ɚh[\h ]<m& )D[hi*RmI& D[A=0h+%Qn3VPm!A|0;F6GGm!Mހ5VP^m7V0oM-Ch[ ElmK!EblmUDpVXEmK3D[hkWEh[EmK&BKh[:E mom \-DMmUDpѶLa)ږIE[a]{mk0QD[a6mRth[#. 0Elmţ^&RZYj.ڢKVkh+4VvNE[l}&Bd&V=,V^Km)h\7Ѷ[mezmKa\Ȧh+AD[h.ѕm3E[:.hۺه |mRu"&`EDmhi,[Enp\ŲM7Ѷ%ymv-D.2EaaEۑMt3ۤ5VMg.om4QD[V&ʶR3vZLwV9?EiX.ڢEi4.B"S0wMYp|O6)X0mq'K{h 3R4fh°h R76`1O/nh`&:5$ ) im u| 2mD{0@QW4h 3N6A&l)zRzh F/L諢m¥h lmʁ0s-0L_l-K;aWχ/!-_neTo!8Ԭ~|?|^z % 2-^Z=}G Y ~>b=#zC~ɝCJ9c%kg=ՃX"~4VO2֗7WG]2{*|gqH!f;OY=,1yz:Fp`=z\hf}z]<iv^myBQ7;?QW<3Cb6;/ G3> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 371 0 obj << /Length 3406 /Filter /FlateDecode >> stream xڽZKW|V1恗+I礲7riq ZZӯy ב+9f===_?l=+f߽*W_sLkՖbVBݮf?͍+wۿ}H[J@`\?fO7el,\ο`4v뛅!A{9[7;di0zJ-8FYT)Ukle͌> i-L5>15""eP2Vg9w ?d{{Z]Bd)TfoG!ޘ&tf&:?kNPy 5p4W"%isj%$vkn>I+L +9BgNfIևw8 w#.ȯq1Y6 B2z;y# >qS --UJbvK{5^vH4|=YB~8+1y]2v,јmKPב3a tk6{IXK*r""O)4B>ZWy_#tp*2;$lwCkxsX \yfi2ي}|K\T"KX{ aeUUW"*1(T$J~BZፉ> 4rUwa:F}w|j 5VHRUT Zo gERV"xZ7ҟ*)} < b>>^@Ö5 9W5h!ňR0$a9 pt`$)c2!0'/-}&n0>>BVN7w8}l#a|PQu4Q\\>*W^߿UetJiO{\8nSu,b~IK] m>{!Sڔ_ u/-L 7aa!` %#%nR86i ܆R, U͉!~//=g#q#vi]l "mTbArAc=0>qL#նѴ3wMd#7]. q,r 3А':j 4%MaIHo"bί!J(cf<"3qu弓4 y'8'>PQpy}o4;/k[SE-*U2Iq+ @zrydeOb z ;1rH6 VʐǝL+<>(\[p&3Q/_]po eFqCwe+Q]*6!ϑ% 9z^&F*ԙQ!ͬF!(R L=Y;TrJ]b>Oq6a8P0ޯX@쎓@I/bAN7ŀބR67d1Ymy7iO;xT}ΐ\Ŝ&l)%Mlv^ˈVeV/GhȎDRPs}{BԟzK4hȻM1󥒝QD_&i1:$3E,P>aBe1Sֺ4#~:9!s74$> pg?gbG5ٺT)N B$ܜ%UUUs1*ғ .$evbaʃ"L]5Q$R VU|i.VrM@äU% =T v·͒Jic#_wKq_a\#s],R@n`UNWcbQjG猱SVW gR首;n{Hǁ;O1LxO M k5۠BIbPpv~} m+d^#$3aT `qa;|p!x|)/cP#L"\JBUvOgvH$|DPƟ]ւ=5'0@>ޡDIOD> 0zF9^1{pNa"bK5OR7 #>\ _ּPQqOhki9.VQ6KsVUI$(uPή <Б=p]`Zi]O~1ut:r]NY:UV*#S:x TquϞ|B1 ȬC+SwE;s  + X=ń.* /d"1֟'&6P=6tl˗D-T.J5EМu&cl$(,Ymr]G#>JN\ ი<2,5IhikܕL T09tI$ɏT*TJNY9 QQjF*p*ܲ^ & e+# 6Y"]Yn~,J,L d1 ?MЅ$ؕ59>ScuD|JNP|@N0<BlL6`.ѧl\C/_AkvAaɠ0yL>ʓI[o!;}.ى7&](_}ݯk2#cx4'E*o2eF#6ްк ?U54çش*8ֿ#~ǖx'E.O-}lOox#6^Ξ:v>3?$8{IrNlS%Fڦ5sMe6n&SZEEQ\X ^\Ucqulr,]f}% endstream endobj 376 0 obj << /Length 1319 /Filter /FlateDecode >> stream xڥWnF+x Af@@hZ`JtH!ߞZɦ4]KZ$C$_VҽT#"ꟕi߽hs_JE?6f3iG(RF}TfHmmw_VqO ہ?NyYzǻJZxewBjۭv!)`*Bi F.ds&-$cȓ<r;<&lOad0ɒe総t>ǰs ,N[{]QgyD-3Q*%$ecp3Z=!DĴW"2Hr36e1J A/HG{M^2ʤ˗s&# 06%B8\59Uy+1x3h1g6nfu0D-w{ P#T4[&<^Ry]}U6ӗa:.V߆SQd[\o握,̽Z"d}7%G WܔnljHf!݄a 4d8.)!>vގhDhyJɝ~rODÑI6\AH*stA-B1/1<M$*>meW8/ØnLJ\̄n zE&ځfe+|vS;I>wFgAVէ KWS1N58 HG&`U$d&s[)%ǜ DDMTe^| 3<Lc.4h gWz7}:2<0 uʛLϽ$E1w8ו︂ؕsQ!OyUS僠P.9֡++P8zwJX 8L@͂.C\és!RHS&e-'2?o|kV$8Y9@d,LdcYJ3.n endstream endobj 368 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig30-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 378 0 R /BBox [0 0 360 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 379 0 R/F3 380 0 R>> /ExtGState << /GS1 381 0 R /GS257 382 0 R >>/ColorSpace << /sRGB 383 0 R >>>> /Length 4042 /Filter /FlateDecode >> stream xZˮ߯襽vMn$ L"JX:ud@gquUb?y7Ǜ/y]ױ/_>믏Oo?½}sǟ>7?~Oo훟xן:>{~z돖  @w5k[_Ѷٻg?W~t%1CI:uㇻCWϗ?帎+|L~s?&g ǻK(,uu#^aQ3w$%=n|lV*šDŽE8yr%. m]pkoc A=!9zq~hsbR*dT܎C%18ْ 0.ye_H8k'gȭQLR-}ㅆc8 Wnw_y\k~?֯`wڃyOYW;p[Z_nlY'7(_nfVhf]Ip[=Mf. vXWZ{Ā_#jk2;ww]nt:Zc/vm߹5z0 ޣS N]p+ʖ.n4v8Z]JݭHJyh;u̙=ВjBwfg޲3%Wb).ui$Ֆ.=α9}4kuS~؝÷}H4>Im5ඳδv&>ݗ삏R׳a- oX8Ku*6~ٸ=*͖Vk㥣s:tjҩ??nE#[kh :(ɐ>>lUԖn SPp U܊ ?]OKjnIhmw%$mt sp^㑽cv$=9fၩ?<{] >*t=KxƗGIlej,w.do.{nc+=,$[.7/~\X 6)X/'` ƭ%C8x5 Z3ak]ixK,w1]wHwC w9ಿ۵vTw/]Kz}~rw~Ru_z~c}/sm$~3 ~ Wt;#ݗK><>E%廬Kϯўn2t`q"!b+; !n(q#X >7o_85Q8qXqZJ.fbdk( Z==1-,ϴCRu7WaQW˿^X endstream endobj 385 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 373 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig31-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 386 0 R /BBox [0 0 360 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 387 0 R/F3 388 0 R>> /ExtGState << /GS1 389 0 R /GS257 390 0 R >>/ColorSpace << /sRGB 391 0 R >>>> /Length 4151 /Filter /FlateDecode >> stream xZM 7_1dm_A)H+qN&$d#j= H۷<vwu<7?^~_~>u^u{gIGȧ>9O|{{ǷO?xOp}oӿx = 77;b{&[q~E'՟?Wo(LQ3T:0]Ǐo?˾_V/u%_盗`%ps;noW/13uō=!oWL|_z"s튉+~ʩX><9+4.mk\poc Pw;c=8j?GPKgg႑}wg~w[9Cӏ;bw%$92nʈ{\p{>q۸\?Ƴ7<;?b|3|?1qOf7M)>~_1ǼbRǼbqǼbǼb_qӇ_Kr=w2 GgL^F>;|1ԏo_F=s>E7 3a-0x a<[#`fu<<,{/Rv▎f_HW.FR8=ĉr-.;a8Z;y#}eM6p aW#{K[>fFk쫕/z&6+XhAG*:;}K;0{%f Y o#n\(@3{=gcoaP93*ك=0@2{ Xh {&G΅dă#f=a!( n!aH4QeXUaLRICn?>/aȉ {̴g؅npv0HF@%&ս  C@Elp"A0Lk6\ b JHm2( m4`J f@ Da_f aama1 U0̛GjYL4}1PXH}6P,F, i`0 QoB/jF,foF%_*l2mٖ/6fI@i888Q pc G8|2pie<chYD1q1qDH;∉/P^/F/P80E(f/&_ MYt_/"_G|46>x0il| 7/zǮ~im|ِ6+DZ[`[}in|*qD/8#Za s7{PF{|eت|ڽ'5!iI\X W:"l/H$81,hNLLbGV{֫ 4c|F1>NqB!Bv= c6HVqb!|1U3>]5ūP5vv8^]5րWqx,ָ/>/zy/Ƒq{z=_|5(1Z'\pxp5.gUz'֗Y]vyί7?:s=NJq Ai~wZ7?=S 9\㠣>lô'Qu߄ά*OpUmڧ}wL/j, 磼~kU:l5ތqk]>/q%f_~p5.׺_?.>a#?3?X7p[Z_X?>OUoz~zτ]up{`]>vc׸|ԟxlXme;G#>qm|Oxk簣ͻQns|}~e=p{i?]Y:#k۸i$k\p\[v^qWv >O]{6vp߳?y].mv𑝡>3<+7c;:|:֧;]Gw}= 7#>^}n{up=ʚ=篰>zGKр\jX)TtS ΋yQLX KMuyyRS|\ŲɿKt:/{꼮K:owujy(r/W:/:*,a ΋0P<Λ]:ov]pu[C[m[Nu^?:os[n:/J+Ȯ2tR]:osn]u:YM's:Na(uޚ|",R΋0:/TyrKy}]mSEJveLM]u^B~"]7΋Zl:y]祜)X:/z"̥#07\Suyyy^:/zY=u:/W.::뼣N:/B˴zH祮4n._:/Dt^*t^˴y+HG42~q7s8yFI9:enl:/J:t^t^%t^U;yfSE=u"ͮ]E}pX:o~`yyHKX:osԩ&ϗ亵H.,|} KeZ?\%_osӅCZϳxߗlZk>IJGe>M湃/igXfZ;ku퉯k7 ֻ/!x"PFu.TӊWyn<йdz=wm;Gj+7O+kk#q|[gk|'V=s:O/Vz:6g#`y%mQOLǨw:Ws/M>=niE^O7aGls2ͼ{=ZOez=EfsW\say<=!>~ʫΉ/P'r~#sLG˳_A?sHgrrQw~.zV:f?zy湤sgmi#z~h~70 w 3ƹ~7vOz?ex|ewq8hXy2ܟw~~ˤ/|? ,[޿+~pk?J._5;/~aOh?U}1ϵ?~ߑ~ˬ~EzgHw_mRH6mt,]v|%U[z³Gq~fd Q}|hR3 J|hr&EBĕ> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 397 0 obj << /Length 1824 /Filter /FlateDecode >> stream xڵXK6Ps5#R/2@ hR=4=hm׈mޙ"-wsF47^)B\x[xX1%RO Rgb:0u#n6' '^X1J–4,U*%J۫А[/oe^ Ic\RY(SCƻ ~i*lt}XmC jY@&z8f2Eok# v(TCl(ttf#PdpɚSm@'x ^ƒuPdA rI%> /ExtGState << /GS1 403 0 R /GS257 404 0 R >>/ColorSpace << /sRGB 405 0 R >>>> /Length 3463 /Filter /FlateDecode >> stream xK%WrF25-FBe[XayH>'NĽոhb2*3Dėٓ/7~q/Tw[?_Sh[e_m}6o?|r߽v?z_?xޚ޿-7o=}7܏zo~7_|_;Z˱\Ǟeﳻ'w_S?/ގKھ/K?IvQn/}{#Ƹ^Fm/Fط7~(` H{/nzy}X2oss7O䚮eoo{^B̺ɨ5C߿fp*}oGgyGyehԂg^?O!g=8?y}ja^yϑv/~=-}+c>=>89hsg]APPʶl.SjbXh72Bcr?͵JHJbaB `* J5q"P.LVh C)Tޒ٘~7p@co,p.X PcF4Ǜ0i~(CQ(S;d2-A01HXO'*!mhw-5Da$\h*?.tzWN Rʼnc'+A([ %Pl0H 6%ha=ХiaEK*a=PɌn3ݤF`c`x,Eb>tg OnɁ j:gŘDPX2PzFP3ʩ=z7-SXj BF=d77ӈb=dؗP=em, Uʔ +O֏2RfwCz=Ym ̨Q(XњN[әhkzw ښA[i t%ZN[+i )A[јh󈶦J[K4鴕-XKEmH;IdeiGXE1: °~-^D[H+@A[lb+V|~N[<H36?-|=h "sbD[lx_`s*Y;h]hxY ´晶0-/*N[Ut%ڊij~N[(ÚTvESvmaI-,CujA[uTmŶ%maL[gElOЖF[WPDCN[GUA[i BXhJ50YmM9A[v!m-k BҙV:mM:m!D[B(bXm1UV9\oN[V9tYm>ꧯ;@h6_{v:i#QDv2VS4UG'#饝+*7? Hz3-=gϿ{r: 8Sۙ7ت\qWĚvwq) a ޠy=JQRSE=K~=>SQ^e69G=>a_z[Guͧ~ۅ~'ئ~>ݳ?S?:r'+n83yw7SNG2Nx9E %0}'=ڟ96owRzC3nߞe$>y3~sB=֡%ytBmP~?,nV6sy<ۯ< [IkQc'￟gsRn~aWՅ(0ct݄,IStEF,gۗ7_v5a^6QKkL~7w?> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 419 0 obj << /Length 2969 /Filter /FlateDecode >> stream x]s]pرΤ}Ɋ$d?g (N;ә᰷߻xēob~uyTOʨt6$Wq'r1i\i|ſ/ `Ab&b(!4ھ~1KUK;YbhE1}s QpkbZ  xMu,x@Rz A&3P2Sz)Tr24i7GZ6W$ WњIEՎbZff{K dutC߭?W}RIdu)p!3#v,x~6QLVB/*w#qw(pT?A-zDRԅuF'O(5"E٨>IF\$eLqHVVxozzߠSK3 In4݂1Ryr1kq7~w'`JGer`jL-U+zrDo_Ύ,- X hs0h.6> NZ4~d+m"n?#y+4uNoN9\ld@c>6r\sxQg@5U~'}Ť≐B N^x:ljK@-ξ<o YYX%&l#G\yys>y9~c :jP*hvJ4_[⬜m^SnI> [a_%x+ȵ`v6{U/ ~9w'4Ӕ@y^*(>l6Â/KjZ*Ӊʦ 6Fn^2i1Z/yJ+%m% SqJ_UMGmW> Eu*<`Tсlk#UjVR9Z"nǜ};fDPKʌO5m6H?hYSx.5&nx\x{# b`ᩢ{&2`@= #{ #XCY5ح'"3+ ʮCs<(ˋLc*m!Oq7SvP.ҁWսv u' odiRCClj 0@VysX4‚5K ^ ^K)A45. øFYV_yWV:?ܯP*vY3'Oe {86]ՊTnx$X{k6%9Ça&S{c{w,<RXm WR ľzꙕso:8hp@R:NjGD@f%ZWw֊^ns R؞3Sr1't',1`â9 љfF78M=.1F{u?P ܺ|iootR@Yo*Vzwg cTCKU7Zₚ3cODaPB-r92™_zQuMtڿWgXؔ 記`}'Q6Cm$E*/ nau|N䴔K`~) rBuva+V?ZAGKXڂyZ%8aP1?za ԓv9wߜM~"ve̜}_&"NÂ[U9XJf^oGZMJbLNÈmR&!`Pd&M) yX:1'w[ Y_yc*ghoǵ j[~?C_ H7 OEv  ŒΓ_Cl!^ 〨LWxH]h~ENmʨH^Z.7֨lk'9,0Xx(_ݢ֮5Ͱ1ķփV'sE:Ohwݪ\~ZgsMDv,)ʇ~Fa߳cz=r&M *6u?Y/)<>B D~+9ts=nS娃a+ v=GniWV. do5[OfY8෯\%pRu~iBq9 uTN0~)@.9C}:s#(ɍ/R|F$s664^Y Z28 p8A[.o.,d/~#NzL!0C .͕MPEE;pcWg4C<ØgɄЗuňu7r-:y*hҞFyp^4C /N\=n#WQЅ^rwXsYpwLS zxW3Pa+X3vbH5M}m,َI ~}b$* !T[W)D endstream endobj 408 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig33-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 421 0 R /BBox [0 0 288 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 422 0 R/F3 423 0 R>> /ExtGState << /GS1 424 0 R /GS257 425 0 R >>/ColorSpace << /sRGB 426 0 R >>>> /Length 4044 /Filter /FlateDecode >> stream xZM&?b=B$DJvHXTuǞE8.E?3n-nnz>xx>`#!m?zzgt1fś/?/,~osI68ev=H{*[ xIb{ Ooo?\?^}vly|/q}DϏGJ{پ<W~ _b)dcZ~1eҾAC^*41{b{viOq߼SSaz2{cs9%糟>BßNQ~x Ůpݏ°;\:]p9ۈ"÷=cbgz{OXz:ν!Rօ">8$~`(S/xr?"sm?ȲNx5ogQ:N.D sQK$Ȟ?vHD'PxRj<BqJ\3en^H@e?ϭ{/ Tl4?/'+m@io``@PR|߄ (ggCzjX+zpb>0LXF0EP s<#Il0L |+L'C2qCC%-FHOi؜#>m&e` {$nĉI?8}s4&Ë9bNŃ@lPSQ,i`Y0O_:)GLx"bE |ϜvOPD@ z7j/Q< zzͿxf3@RͿGA` , 5q ,` .P1̿nc͂nz. $?P46"?2`6bgH k-1!6fh`{-3%!R1l30l |`j3b cGG\/F _ej2YM/<k#ͲlAb˳)2ZMII h68#˶ DZMɊ.eB[M"*_fb*,b|zQM "ll. A$Vc~'Yjo;9&]vz[ .vk2]p3Uތ|Gˢr2˛ziGK|.K̺s~u=. \<:\g7ڟO}vsx_+:|łk֭ 4/ ^vu4ee7gBgLpwv.8ߞִhZz=X]Vˊ~IGWB^+l^\lޜb+xQ.[nOi~ɬO.ulM߭|EGVTU 3Nft4OAXv4=l".τ^;Ch{AZO@pX{]|"J-n;|&םvܬ}MhY^+/J賾~K(z,d Mݐ"Kh$Yf<5YK&(KΔ/&lI5}tYB$^*Y4k6Ke$!&ԙVk,SH,HxJM@h).J@3h 9.Т}6]tH6p@6D$hMp6@ hu6jh@K]QZAv mx%@ l hA|\-E$JIQmyUZYh\];c@ ,\] u6a@x^mnCЕ@} 6w@%:hKpA]s$ &CK*AV-)U- .Т$.Жc^mpYhOX@{8r0@{DZq-*1Z<&AZ<ڣ-^x vCK xNhIP@[/V-Pz`- W-Ma m.ж(J-HP@a5_h1zhSh_.6f-ͫ@KARZZ2X p^ unHwVnLt-$*%7&@| ] :ZegtK tYhVk-Aۏ.MpnEg-tAZ邫 t-)ג]J5nf &M]Mj/n@K7Mw6.>snkh &U5%Qm h` t @@çX p;Ke>`+4,,6g!!@|!,ӐmRv]//xv.|><1K`ݢ_X݂|- x}sYO OJs?؅M8ֹ'fi/ܯ/خĹɷy ]hD"s/L_0 uA9.\(ɔyމF6Njt M[XG:#,|\π5;䷣.|x4'Kú)p 2fzƏB};Ǹ0| g7yG<&ǒ/<qwa͇Wt{>1S}\WǮ,T|+߫(^@>Q=keԷ^+^\9B: mS{%~WXf]Z]PW]pz0EIA` zT*׻_N^/:iІ.ȽNϣUFN}PzW2C~՟/Aq|pU?~%z~1?1 .@3) QEVrcrHS*υyGQ~0j/vv׭\(m:|jFիTkSImn\=0G-5Kuϧ߰>ӿ&RSζ~v+^oQnm%A#c$tkLKL"l; i-)iI`7~0c[( ,Lu)0`̧]1z/a)tS} uh]MJW[ُ^ũFW~?+ endstream endobj 428 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 409 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig33-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 429 0 R /BBox [0 0 288 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 430 0 R/F3 431 0 R>> /ExtGState << /GS1 432 0 R /GS257 433 0 R >>/ColorSpace << /sRGB 434 0 R >>>> /Length 4085 /Filter /FlateDecode >> stream xZM q_1G GGHHd!Xe+9*OUWsY nþj96duwqo~w/Ǘ9޼ g?ޠ%9sw?{|:~7?廷?~x͛Ϗ^G[ܚ5I?9.泷77awjsDd};j8G;j:S{ㇷeo_a~oV}p%_߷/ьח>ԏT91a?x;^7^O`!k{b7zbg퉉'!u Rꙃ#ֈgí3.t Yx+so3va9̽WLO:Oڣu޹7v>s‡pa-u.й35;iz7AxFEEF!~+~;dYϑ^φ`[[6\9+iO YqpZ#lDoz|`y10@>pQ_c-cԳЖaQzFiKki ЖaK<1Rb/Z1hpМ `:"@c(gEYGv*y mg0~n4 chgUU, (jpƀK ӌ`Ugap*L3*̊e ١gp冎0|E1dg9t] *Ȇ#7H'0k+M\#@60pcҖFa#_\Q9_S'"L,*Wc ^vxM2lش͝lhjA-?s&G I-cmmeruN˟yE1_MDi_w"'h%2Pv`Pr|6}"_,f'cAn!e؇a/sqې & a0@AW6;+XRw%e('8[6pT-f4@GHDc;hv5@Ia岽Sgrh8qalf)).tTi]iB㴒Fpm0z w[P/洋ه?‹#9})Lx}K4D[sى7voG\aHfe R5@Wm_av/I Jd ܣl ^ɰm4121nps4p}Iy1~5шn/p2FHfTef\ <>%>#òX|M+5bE"$_c,Ʀdآl_lg|ݻ"m_n,&hXF |EV"XV DEED@LYMQM l?IDհrO AK$p O z '|m!8 aMd҇ DQAnCO`lDOO%~dq`a>r*W{oW;l[û=%;w9pkX޻jϪg{ _p?U[7XT[|r[.Y3s*p/oʶ7}MX0OG np/'}m7L'v5a~=7V6~{ W;? nd_O?2X_W{~ |L_>̨:\j>?~*}5>sYnEm׸V]ܭBNL{ۜ뒦ƶDf|P ^v;Z}-U =Fb[{cLX3ۥfG˶{k鵺{zv sѧjvnh)zY{b+_?""X ?8d+vî]Xȯ]&x嫄B?DK^|TL Khtبq Rb M‘K/i&hIfzXB$Xҽ $A$7RMgR$YBSzɚg26#6#e.˦eYdV,^eQblreY|&J,Kʔ+YvLe:ex,;ο˲4eXe)ɶ&,ۏ.,pYօ[YI7Yfj,rdY Kmeilk,͊uMM1K6wYf,l,K3m\&ۻ,K3\dY [.,KwYflk,Bɺeid_ɲ46Yfwɮeav,x$V,.’e_l.),x!,Y67]~CMywׄƳkv u͗#Ep S[$7:O._~ާ~z?dux9e|xd:y7bWypU_د-tA~Γ ]}7$_+k<kXX|`cƹ<|B|`]8񋌰|Wɇ#n|xxm| Ʒ55u߯jkG{_Ukr'fxxT+ [Ϫ1%ӒS37oql}g.3>z<5q}2ce^zkg '~ \f~}=f0_#kc>| X[L_)!@~m||k}{k價/=3ߟG?3'A.χS{Xt*~-vr~xJ(>heq^Vzg^Oȟ^> stream xZn7}W1~! #cMhFuU}ϬXeK"  ΍sfHVkFĈ M:U$&ax°pc o%BHhz8y"yB+g!C[ hAe[CJ3= Y:`K6¨N$ ia xXLA0. ,Ea[UdtbԐcJ&Z5Ј6hϤ,SsAa&z6B7;6e6obLWF{ g8p.Z "Cc. #dW+т%yN^h F[LY;60Q ,M? G6-AwG0/#\V.9t#BTF8U1B)(iE=! '9#nʣþTt4F̅E8*85:̎ $&&utvy3 #@u9t)0z=߫RM>yP%ٞ|JU9RU{y]4 Ļӧ|<3bnVL~]/zTNU尬r$NBeUG"ϸiAy 7*y1̿2/m)jX/lAy1ljy6,A%yQu+Drٲ(`4/r[\4uY9]Eyz#qbIX}DBCPz<K1e~):#r۔}SxlI7},RRl}ﲘ{}nl DHy݊ z_=yB+Gx[YNΟ5Da hƒ9"۪O~5 5ˁZ=kν";r_}x3n^gT\CYTVC{k@DBc~u~P:BxHş׻],θ kavaN+Z:dV3D>Ө41AwXȗFOF3zvf3=Q'f77Lݵ|LJfjY:s BNssZvXOtwQNzẀ?M[NZuC`΁NPv/Z?_ e.tު[6g> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 410 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig33-3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 438 0 R /BBox [0 0 288 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 439 0 R/F3 440 0 R>> /ExtGState << /GS1 441 0 R /GS257 442 0 R >>/ColorSpace << /sRGB 443 0 R >>>> /Length 3994 /Filter /FlateDecode >> stream xZMﯘ#P(-8 cv(?UM,ymMUW~3Ǐǿ&?=߿x!!c݋)Ͽ;b9K?C;R7W޿^޼|ëdz߼~/lld?/yo?> 6Iѿԗ0Q9Qәʑ80'_س"W_!_ϏQ'14T9p8dzYz پֶ'_O$qè 'Cٞp|=,\:eR aZg?cDs=G7{/g˞b~ 9YEqYCNٖm˓Ϛq}zɍ3k'@OpzJ>\9DVϔ>$1d 12A CzB ))51Y12Dx5E ]#^WP4\Z/}Y-$&atI;:FPFT(# HZ2"Vg2P^9E/V5h'r4 '*8,<0hD!bRxvZ3~1Tķ† AvZf4ϒN<C$X©|fe'\v9NخmjOn ox[e柺ǟy0[{nZ'\vam>Q|˿yU͞[pGBNoeG^˿՞po+.nwpX.{m}aUpguUo-~ҍ~Yk?wtxrU}}m<ʿn3e}K/CuVC[ wlhYJiZ#$\#56;B&@k3e4q -fOM^U>i&OS-0ŪǰSi~ |-ōn|w> >7>*ϰ-;e!>a4oq6:_g9ʔovy|'/\;r+;޳.[yxv^JX4u;E=ӷe]kη`{ C1 |? '^'p:mcv ^^F »lV *#  C5Ml$$+޲$=])vGC檋xH79៳~H%_%+ҿS2ZKQ^LQhWo#2 xyӾUp7BM_{XݒwlzWKkw{˫{zau/<\*ݾ\ .fUA*Phv ~њ}k/|4:H35 *[bGm*@[[N5SM-*Pkdnp|wY\oL?.|Cu<y endstream endobj 445 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 451 0 obj << /Length 1834 /Filter /FlateDecode >> stream xK4_Qͩe7ĉZN 8dڴnӔݙ"o{9qҴӽ@#{ƫ7a7N4Rx8= l1mԟ|3u &%|y5|: + F5k!U T @#C1u|Mf^M4 S GE-|fȅ >=062SD,>23%֍ Q:*,r!<i8y*5mdؠqqQXU{D+~IKJ30nLnY$#?3pzM s1"9 Ts!>gTY%Fϸa'<:FsTAGcU EHH9;0[o52Wtn@BύR}bGS'vb.9A$#z: Aw^®'j=Tۺ"=nVlPZèrڊ:蚮ZiwȖv&v]/i¢FHr4 yπ: ÚW3tgv\}09[Op Ϳ݈1+!X+5\:6MǘK$dibLW2ZDY1gIv&Nށ]N~ x3걀Y f8 sątnhqة. b7tHXe<rIYeh!>K`,e1p+_[־m喙%itҸ`2!ia+ſ7\X@~ tK\܊^ufzCh%jt7z0xcjHy9s&#?d`eͻҏU9ȱ0qU*BhLvFizsUMb+Dj^14Mvaҧ8GlTR` 7L Vv4DSz ЄI봲ذ5Ϩr]VM@(׎ <ђoğ6AylΠ IbVn"|j/M\~H8g5MVz!$Ck! qX)U/VtKOv*e-> /ExtGState << /GS1 458 0 R /GS257 459 0 R /GS258 460 0 R >>/ColorSpace << /sRGB 461 0 R >>>> /Length 9914 /Filter /FlateDecode >> stream x]ˮ$Ǎ߯p9ޏ ۀQxa-=lIϟ yX̔#:}=QVUFFCf_=/?/_ι_|_>|z%;S|?}/=~N~|?~__~<`V>OW _tqe|"glr?~/Wo\q??|48y3G(Y#<}}XFbğ?oLJ{?~7|y+Y#[_?>>xDO!>c?>xDЦO>}=>Ŀf:xK~tﶟP?{sj?og/^ooܗ2ҳ74Ή>]֯qxux sbL9ߙO73?h@fp>{ &gO^{> s^{"ЬjE=ޙr3ٮg9NЬ3w2wގΟGitFcoln8p]%;w]sOsW?g]6Wr_4nM=F)מ*t ӵuc]?{j#E=GQB1Ь ۭfOg&&uaG7R:Y<<ѵ~]K-\6SМݛ7123/7")U&{ɥ6|Ky3ہbGo{u,S16FbO6*4rݹ˚IӪ4s*K*ݾٷ,\k]h4=M6`K]I|Yh}ai*W@*!w9V?_;l6E35fխkӊ3 laEڼOQ#]N ;[;ۺz'ڮ 9ͼ;nwO#w膹8Ѷb|=?6λ;?{&e;5Vu @cv.0Mf }힅wQKWŮShl,k:MO{S_BjJ5~ww"4wfvjy=QUykþMu317yܮj]*<ƪEݮk؞kg+_9.UslRvǬzݫdS}3]!.2n'Mز w^mwxoְ̕}jܪG-.U]a<-7J@};ϙu۝7XEA&f/xcfV v;@)\G/{>])au/]<=ltM֩iy ]z6-YYe7xڨ&,ʛ@3}ۗF6~n k"(7׾aGCNK8]!y}Uti;ƝǓy 5El2|A#Qs d1G@Y#nBF[Ęm]QZvBЍ$Jl@+$gNj9Q$q]OFFq}:'}Hp _9K=4*cor _OϘѬsd4MB\:cqxgJ5:^(8Er19zy%ƍ'33f{Cl1`>|D/.ҍ͌9Q[9}~>/?%_/"<,A;j&QL b@RE^X;mdUg"KH{pK̬؁Ԋ7͗p+)]&W9"@r^Q\P% GbaXzq,N8We_8(4Ю*~+ n "-9[A Ӆ1"'EXh-Uo%eT^VRJńWa*\|¹]"\'̴._*W̻|/"./KE&+dk,7Pg Xx'xW#wJxW/𮱬~f^,]wQ65Cw,+zI%wE]_U5&3f qk`ʻb+f}+] /UxX;bOM]1_]yGw%+yf𮤼k`vʻ:U»RoJ+!Q50-ʻhX<~e<]=)Xx-x]ޕ*xxWRޕ ʻx+uR1-ޕ= ޕ= 5Qx-xWVޕ+xW/xWN]sޤ+g.ڟZx\zw \»2xKދt< n̻rk.U6]**P|wmʻJy'LGB5M%]"M3p4i>MOw 딻ձq3;5ޑR [Rd&pY]D'Y(&0xDҐa@|5_CuvM"xN^5%c/#0ït,k٭x%@8 \<&8\8LO{A&k%޸g$QU/PBz \+P8őE0Cbd9Ѐ"fH 'fRBʜI$Ms@I{%(Loܣz5H Ġ8` f Z1D!a=xR2p{(g컇'{1+! 'k:`EH@&iȸ@#[W,s0PR2Gg{ WaM=!J>"UzB[+캩(in!|@7I =M$̈ y8ENh0g(IG '1Ʀʫd4-!Ag@|%]jl_DMXCaZ ^̒q71/i"$!!mN,)js8dJ' nEU~$-iߺcM±B@  1U~ HcSc ׍7-3K NJz~pa?e.EM6^?8VD+jJTJ:XI9+8Vzq6X mʱrp+i8V~c*"rpa~RgDXʱ6ceʱs RU"ڦ "c(lʱ ʱJG U~kVzǪ#cUX1Z9VV58J9VP'bXcX&JrV±ȫc=b8KH҆HXIyN8K ~CX][b|+h8]FXpXz 9+h8q±2g$"B8_椪29Vx] ""˫ EmLSqXrG ,9;4qvhnБh;Bv+8ighݡN!F6JKhu@)Z SsjAsҜ_iN_f9xM`+hQg;ɩ9Ћbi.}1uT#~$u),@x_Hq&]|8nSb*w'۬)e+ʈʗrF >_:[#~YJ%4RQ'|/AP>*_L"dR>Ц|tO/X6~n'(]3H*p1B#Ϗv8W\C;UNۄ|I4v~^%!Z@* UvDH]Q5Lmg Z)DVҴR 4c,|r:w]:䓚k|٪ۓui6b|t/lx|ǿ~l𮭞<5m;X}F\e 0ɖ?y. OElŷT7?y?c endstream endobj 463 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 472 0 obj << /Length 3104 /Filter /FlateDecode >> stream xڭZY~_!K(Ģ"\16l= 8GXSWMHQU_US35{{W_53flnI=5qo7oDB7~VenìT3gTݮfw\'|aJj(w{IBM ۹)'/mOqӭ\{)^/RIVTj) WxC$֟4v,~/XeYWQOPA7˹ <wB2_mR!q,ZknHK7#='.[f|,"syyrw^:YZ MEs7r>5g,_ sɮ8\lh$G jJa= ޜ O x?es> D"|fw0LީL=NTTMS Nq")Ri5+)A:вM)G~P * vXXռ>ihbzSD6+z/'?tpQ< e!DbEbq."=qAlAajV:k֊ tg>_M%:6ho(m{t]L/<- Ѳ̗3ZaF{&3%^ =6<⒚P0fY. ,#bYjLV?evA;$ė*{4 "wJ;)"GzLlE~W3΢J%d\/-Ju>^s{KgNԱ1ly8ug(#:@Dp\0X^Y_j64ؿmI5-iiH+'z3hāZfy~v#f݉Nf_rхut΍noNSPwsE27;Tj6#! 0VYyџ^ҊΊ&;uILg^VSc"[?NoDjda&"$ ;$ӠEce^Hჵb`¤e۰Q^S¥/bL#}U"BrౝOVQZq<ܜjA_1#$ iM%'%Oxe2ị؉>}!-b/luSRd nl98Fڤ;rs2)[fbcm`v4~Z;t A~KQ FS͂11d}aawvb=J4::Հ Qsh`m,\ ˱_s WAv781Bqpq P(#Qݶ9ڣf1r»^_SxgV Xͱ "_ )rz1Xڕ!9B}"̚EEݿƴ`[Y6"My䱱'D:9-  gC^x fH%ؽYYh]qO cL1IaOQltp8i цuLl nHA:r\1:xT-i:W;m݉}c!1 >Km٧HdDxMn7!$?tC/Y\Ŝ6v ]x Hሒ{~&8ʑA|îx<>,>92]P:S.uzcWDF4&w _MI,]9%Qv# .QjJZ!,#9!+(&k)O٧gi^MuQ֎uvR2?&+)gߣXD ~(%/h=;pB Ο:kAi[&KpQUwΪi G]s|_ѴE黲7%TA!0z>e)iz88Ɉɉ^M}fp9vIאWpQ)iI\#ldV0CJt#>O }]i)uTT|ڹnxȫ>bH'"͊Pak S :rN3_Vd2;8<> /ExtGState << /GS1 481 0 R /GS257 482 0 R /GS258 483 0 R >>/ColorSpace << /sRGB 484 0 R >>>> /Length 9769 /Filter /FlateDecode >> stream x}M%7r~J~F@fa{ahm%-?87yeTϢp*f2qD0=~pwo>}W?_}O?_OݧW]| ޓ=~/r7~6L1&4^dJooN[oɽ;>A Ogdtyw=Og'uA||~oSC>t:&=":W0t[{),0Nhz>>u(2/Mobk*\ZӺt\Zi]W'Kypnax;g][g.]4Ӻb֜xߩs|[åu0ǵuvMyCiB<}Wl]T욳3T\j z6Wg##쳇볧lM6^̼"撝7ҺlW|+#;g];D Bck]SLl@s`~]3=^D32ћ!4Œ+ <{H+2b'^&a12۾׾ٰLJ.4Ӻ.}L]U><\}x~N?fބ99fyoxIoה)oהOyeG.ۑ+u;[}9rjYͬ~SY=BkhFu^s7b%ۺdZ6;xOk̚0nwqmL0s;^0_w N# N"ֽvʙ"8x 1FcHqx";Vc:¿ wKvM*vv7fg{$e'C-[Zb--4Riop]$d0̓[Ec8Lhm'&˚XꝚܢ7X:ڪ&KAxkÕn#M솝#7 [zYw\g nVdpe֞4ҴοX vENMaͬ>̬; Bؐ̊ W/h|t/ܥ`8yf@Bf֊kƿĂ+-zÎlk-*b7,Z>6hkhߒ:%Nݏ+?زMy/F;F4KUNcՙz3L]eDъM=މ$7.?fuR2Rt(ޮH"-/Z[PU f`e\>8w٣|;{#9Dl4d/vHsu<1#cAluJa{sGXh7n(VB8;SVUK-;{w;snpف;Z)9x'Q'/Bxm{"0[oDbzp2ZtFv9+Gxqn i>ЌZ;Ŗͬ\k>{afYF>^h;#YY~@I^>/U܌MxSo=&᭱Wk)ajK6wSchz? xǞ,DZîŖn+fj:e:Nhz~OTp.k{yi+-#N&v@suNo\pYGxc^/ɞM@QN|ʕ?C̀w.VfR5uÄ몟pnBӳҺuY׃}{{wrU65YuU4ooM>r.mY޹g98 o]:Y/^fW:k7VԶbi^?sfh@3r}/5b"fFx]ݺV>}g.zÛ5ZFoKͬ_U̻]_ KͫEKlO},RIΊ {5wƮv]E?W|x#΋xʕ?`GK6]SB!la&nFww;Oӹ%MN3\d̯;7zWMh'՞>,xBӳ*&تYS7vGز޻MF5ˊʮJ8fjXGqȬk d T/*zV<*G-̾#BM}æBql԰aMVNDjr[ͽV۩x9{P>+?]8vSۑ٭zU,yv/]ՀfVUufT}b"7q^h[{g_cw"袩c#4Ͼyfٍ+-㶙PL}*eANMx#Z2Z{n[qBmmǦm hz~S:ٙS@xbM9eު?U5f܏q(z+Uj*{prJ"i޿PzrtOg[uV k3v.~[N07lzd&KkƗ \[q4>e4s Z(&4w_Wnąv -wwj3ynƽ3=Kx#ZE5ǵv79XI6dcǷfU x;q qxCnv!/xwW]&0MϮ^@T>Fpe{lW|]lI];fEo ͺeV1k1yۀf6(wQmMr'fj^ M3N:U䃩 ])f޸Z 92B7o@ڽcYe.a_ M6:nŪ&z͊YV o^ ufwFuY)g)Jی\mfcƷ=7Gok@6S)rlv~^*㔫HLw|杤X6o2ժU}X-uNvVZ]$f 6CǥQ&еζp@3o6:\a}(-4iW_sK_%6v|יjbmߒ9@Ҧg Y/Ch8f?N])Fimr:v޼cx>q#*J489oT]y֎o2 3$.u+;޻zޛ@hFYV]?hfݺ`frUmz7'1^L}wuì&|S xЮB}r3o6eMf_bu^v}bˋ/kX ~N%x1o(2G'B36o]Ec̃suu-k:Nx,cD\%>^kJ}ׄWWf+/oef>"Zqo 4g)F]~Q|v{moؗ}/$a񮛊!4w_f]޽z3 D;q U76mvmvnVל a=f;Y[V@o;w7}l [ ,By]q/1W5ś2Yԗ}KI{jlԹdV ChZiKe?Zm<^}rFMrl8Ќ:Gy*EݽwGY~9W_ˊ&?@hYdBꅖkZK95ZF";`rd'}bU?& ՟V7C0}Nn^ZXp6\mdł@ JҏU8զW#]Iғ+2 vNw&Uݛ+w4Ct]'}8:Dݡ+73"\Ɗgc YRcs0}'cĢ 0 IVq)YM .š'U2Ɂ)TU2v^`lzlZ֯gEUӂ3SuX $=YMA8t+ N ֡Z]LM[.V첗+g+U㚊rِib8P' ʣG0|"H׏p89A]sܑ5AtVDHCIvWЛg D#L h.k# G0'X냌#= B8_ɏ[\GnO0"i * K*MHpQ$XIs ,H0hX|"A3!q،+ 9`-II)tH}Jx<OB$8N$q:h(:!>8$E_}"~%E=jy3O"/~Joc7 <^ \ cPh9D4s,PG)4KľKfhY2-fn 1/fˢd(JsI>b x¹=aNiLJ-)dT4E%]RuiJb;'ПfPtZ]=hIÆ-&&@ze4)Q-_ޡΣD>|ut=%rpp\%6D@=Q,TqEy̧?o]K/%PK'9Je0Je%("'ىw+M { VT3 xʔԒ& \MI*D\TX8ғ6VhY/#, ܴ8a2BVC^[,:}rrUlT ء# c2ըAT((Aܩn`!?tAt#7jLyŨ&`1إ)"z- :A<>#q>1r%qG+0a7/^#D<;".*'#hͤph;B$ ArGj^@g9c q7(a|' $l_f mh\\BWT:ُ2:pwhrLDesLŖǔv>R*ś:7O˥ƨL=T57VCWuI FqD6 [4浑6]ޟTkpVKB՗NA:M>Cb^t\>;ȷ萸dL@ $朽 UpCIј1Tb”NO+ÈxHiOk  , $@c.2yCQQ1"끟8AQ"FH@MI&420+!4 ^.đR^&S"s\$YERFF$(eQQtL5lH.h$$ݎ%tevT(R>?sBOO?yﱞɟ=(S6ꊔ? C)&?gɟ"b8>S6I`>?~| wCAI2&O1$*9 4 Og'i66O*s?5j̓?5z$>#'Mrd'gO)%ș) wogD3֯Wx7|Oqy:&`诃iџ)')Gk!)Q9sN|Zr ܳ9Z`N2}7r5* 9*|G KOC!sʒKzr$sң{%s1b<ȁ#^!yʡ}gf|1cn໇xoZUcu֣4Tیz4j5F-[䃰-dF|0 QD2DI$\SR+hvo 8+F*0 5-00d5g"!RxhTB1v)W:s '%;V8Ya 2n|o*0c&>cޘ aD Z[f~gYiИ{6 ,5;9eN5ԇy(cQq 1EցüC;aCIL[>nO|rVtn7HUX׳U-2Εo endstream endobj 486 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 490 0 obj << /Length 1757 /Filter /FlateDecode >> stream xڥXKFϯ@Q őIl9rI&!΁a0Yߞz@3`ekMWWU] 8oVg/3'$L'UD8rOK/J7 `Uaga,`)Ou(ٚymNeqSnkVe΁?rLWyAAFȋoYA@ u6/2_p|c(-8@hms@~ >#<=_aY҇sCL[qɆJ8ugX @ςD~.*o <72>1SrxǷI fgP84l*xM7ya?`#"jfbx[_YQEo'>LhDܧz~ D;gE7ykb }Lj~^R\2A ƈc_h.NF]Bvp'!S3bi reLF$1lc[\d%u-Fo(U( .f&'H-}J<1*^M﫸n>l'dD yh36!1ɝG3/OY_Rc#&$lXWbmˤԥԝvA&EAW5& O>+”g 4kRHq[a1qKv}]_{wSQTѝ9>HPO'%|6O+efp@ܑO*Sxz+ IX &?MB;T:!0iȨA gbޑv–9Ǔ4Wb@אil0Lc*^o%>ܙtK .o$n!`HK+Lh7#8RyM25!-JgB \סarjʘUΕ> iY`Ed2Ugck_ Oģ7MDIp p]:JaO ιsO47Xc`[qRhA.@[B}J)k ؕŔTE* |鬃DXs}d6n=]2-%8&%l]͌mlJ޵A#ŞmA(0QrZ=7p2K}7G^˿RkRۅ vVY|4S'繟&j>LKφzf͆!POڵ)\]7_ӽYZ;yIC*$N-jQ]пZѴ0X=> /ExtGState << /GS1 497 0 R /GS257 498 0 R /GS258 499 0 R >>/ColorSpace << /sRGB 500 0 R >>>> /Length 7106 /Filter /FlateDecode >> stream xŜK%q+\U` `rp8Hx8dmޑGCxGtf#3"Ȩ._]=ݫ~?vݶr7?=%+/ȵ]SlW?^7w~ݛo7?_ןW7ϼy~rג..ݿ˫?t/{=_JԸb]v3_K]yI]޿;v?]yHR<οzSG{ZN=$U0c%.ծ^$M^⩽kmG;SH|jy)ۼ{(vRFr]_tsv|MLbYvQczJd&,XlYmLqڛ}؛Zد TCy^7Yfðٷy!&s1m/MR1jfa~uH?h(hw}1LgW;F,gغ6kL(;gC\YubǘͯQ|C}%-s=Ŗ9SbN'ӶŪS,{Cڲ_˜"42 3՘!͑F~z,N@6%uϐT1e)cڲxs=vaJ}hϱD&xEݟCg!x(_%SOjq k!w2[<_Pr R&ZwiW)?X+D/BlF2C!Z&o^#,e{Q{^ӄuL1^):C 'ޝierZ*0{;SS2[&t?52|uz6g1gy _/[׌|פuZbL̡4{^q?(0er a.\zEb!MfJ7?e&hr e&W's5^fx^s6ɟszM_)6KI_/ rghN^}N |챿c|e< .1hl/s,懫ݱ_̑ĺ< #I&gWc_8jrn̹\y1/sy<߿Ҟs zq?7l䰘1f[h_M~[vrO;_/ofHßypF c{Xo3^C>ݟwП"z l[ rbD{zq/NX^SF1>"zM?o|oLJ_ly!W.xhE}?^xJxUA«DīB ^[XU: cW[ySG2^臄W;^xձ&x-x坅W+ňW;܍*^M:/Uj^xK坅W« R^5hj :|jWA !^#^u+-̕xյ|Gī 5]xE]xc^un+j] SƁWX[-rlxxeˎxj^. WgīF^7ՎgU+~&qW)܈īHx\^y|'^'^BwHx5'p=(r|N ^W]8D^ J#ܞW/|\'raYW. B|^ }^v;J^x7']r r*gSW˸?*_=+m«I^ ׈WHxe2*mg╹d#*%^+y}gWF<ī#^L^%╹*Zx+QW&cW&#!^ۂ~mW?+W&3^DxGJ ωW&CW;丟*>^MO[1pmc: |A?}\Fx&oy#H>+1]g&g醡є~j2i;ǣ_~$cהaxk-]Q'ѿ*tEC餍t%R'J܌_13#xd"xw"x/^z</vsyɛ1D5E;nJ/3]>*[]]*1tS1NUGtW !zʿ7>!tgrp70N*GAmQ(v p9v =L?sTz:tFW(| %cj|Ei:Q>;2JZTRS ?!f,Lvꤊ-{0+LҤ˭2{৘v썻&RGyXʮO|{1PcOKaV'؋*r׹ËJhM|b#eGͺ<VO >2SҒWqP=T`䣇CA=1-yo=z,aPOO_1}b[OLeqSE/I$)N^b' 7#OqpF(+r&A\&ilSуLAAX=$z=wːmF>ɷ> TnFUK7jNv]Ż?tY%Z8\zŨbC.F=r1q=w e\O]b C °<.TG( c&Ր+2ght5 W)@b[C;ju3zc@A:8L5r *T,?CJq|DNU3E`7Ã_ψG#ag}ONr8r<J,7=N~n(OqqXN#L< {?CF< Rq@&B"zEy8>Gz8ff1#3^3;zpy8"8剆r?ed"+xX^3@8l_cC?>KGndU(,2@Գe"85" Y[Gavg푮n1;XcQH{v$-"8^v #rdƏz7cj0("t=FxYK1#K #fYԨD*9ۙB;t;+9:p3}Cӗ Yb{ӳ;ڣ:YƢ5&s|rȺzz8 Y8O/{Vڳ6h}DGVgDV4=)}LS8@vOYt],oxfpE9"8Sb?RW~ԑ%qP9b<3Mg+,b)+BOp 0be[(ͅbCGDX*b 2\B10/GX.k bB{X:Z(6BI4M/QM(і(7(& b, Z(Əm~؎l]BMlU ŴUɻvLi?ܕ ~wOScN+uRGJTΟV ?)=gF|^ٿFm6q" (  qSXL"';z<mI~\5溢#/s~ 2 |]O q5%1 KQOF[k#%q *%Y]*F=/k#xuE/axķ L}ZhqសVS==p?}N1޻k3X[Fo'5LY#x">dtYxGo> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 509 0 obj << /Length 1584 /Filter /FlateDecode >> stream xYKoFWi҈IX=V=%9eˢȥ3˥Dَ)Z cvvw"D@l(2-sGiT"F](:W:ɸv{h Qi1#I .]Z.2hCk&i"gP&2-K] ga^Hc| n`^xĄ wh-aV Xɡe?XX 9 nju@,Z3)JP$7YTAW} HCd~<‰,TJ)dF ޳"ö>,K@}ۿd`@rP`8E];ȴͳԩ,?k,/8FcOFx NGsH De4^ ig"KKnO](1iAMsv%4;P ! {tII {! lqp &j}I6-%Yrjהo1E٨K<r-J0wV(ZnErtˍgPͭհڸ(9\csD@i)€'8#j:vfK=,!1ΘrS0Av( >_Gf^M7{qM1RDJ;YK^qaO'~8tx&tm 8ΰ9Șu S%J;]aQbl)>{kαZiQFxL[X{we &loHe8wGQg\v< =GhP I6UJ̋`Q6H+R⮩e& auFū~)!hGMKBRԭ"/Q&'*F52SA`n_T[G4øNt*3̽'h,Ϙ-3uDgB|>B];BI3XX$|N[w`.GYn=ƺ> /ExtGState << >>/ColorSpace << /sRGB 515 0 R >>>> /Length 1274 /Filter /FlateDecode >> stream xXKoFW-2lvEm-R@F$rhG\F* |oD;~ͻBJ y>4~hD2GĭmJ[-f ݛn~Z?OT}>W w/耱eܜqRG&sha6f?8lvl-3tpTB!w'<8̰Qkk#Hmw4_Gv=$Hr#M2{Վ!c桤@09Gö HyV80#1GUVi'z.ٳaƒofKFkacfsO:VWM(Ϳ! endstream endobj 517 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 504 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig35-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 518 0 R /BBox [0 0 252 252] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 519 0 R/F2 520 0 R/F3 521 0 R>> /ExtGState << >>/ColorSpace << /sRGB 522 0 R >>>> /Length 1283 /Filter /FlateDecode >> stream xXMo7-6P3~.$h hv JcgR%U׀Ak?,yC ĵq/~ϻMO)y=vo4,bȏ#B'?o.Vb{\w?l=. u~ip‹p)6/^ż}.7n'.yhG8FʀK@iAx9B_p48wPqd> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 505 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig35-3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 525 0 R /BBox [0 0 252 252] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 526 0 R/F2 527 0 R/F3 528 0 R>> /ExtGState << >>/ColorSpace << /sRGB 529 0 R >>>> /Length 1279 /Filter /FlateDecode >> stream xXKoFW-2lIrI0-@ brX1E* |op Wo?}ǩss:>Vo~Q B`R Oqؿ}uOǩu gw*CS韖9vWtP.:Lͤ~㻡a`{4 ݡTY+Z[V;X2)xL~ە?OpJq5H^3jUL]pj".<$gPvpa&tpVN/9O="/~cw'Ж: : vh˓^;`{X؝c;$s<0=g2?+%@7G7G;dۖJB6fSdV5N4X}$ݧM{X}$ݧL{X}$%-3堞ev~`Sr޽n_xPЊv0u'|BbQEz?ܠdn_a5i>I3X]͔ C;wݖQ mA73?8ZYR8np?le64fs[bTZ˒ԍ&F0Ak r(ic!#rȲ=.G,#*s_sX>7W*r+%h999 e(O)ea^aU+KU,VղtXaU/ u, }xMZ;(kP'@"L;HG:o,Sɼp*vSiiN]I=C"`@\3]6x(#a\`f/x58'6x8c5|xt[  $t NCTT@Z1O-T]pFƄS R< -xi99rDL<dzxs& :xpX#4$t '!x)2+ -wfnEĀ|mj9"p&ƈ}`j%营R4Wm6XaQKZ_@sOG "Kۣsvpčhx/ךQ8Q "[,tQfq )蟘! Yg )p)O u' '+ endstream endobj 531 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 535 0 obj << /Length 1782 /Filter /FlateDecode >> stream xڕXK6ҋ )ESAhi-{ږ+yl)jlQ,| g3ߌmwWZFubSW8Y '_WZgDMƋM^wWŸ?[zHꫛo)WferIN cUif-L.֘tha~jzߜ>ݑϺ :NeVjG|<.*EƎ΋N?llXIDr{>h0_UmI឵AI}w ߢ{њn~ƥefI3tGB`t@ak'Kk-'qAlƏb[4=Pꋷy .*UW|Elf9xEt#qPٲP=;VtXΥPm#yU7+(Tּ3C)tVee lm&yJą3 [M !9`9eGt4̵"сw99`y?d2P$% ^LPj6&jI$%m.snQ٦Xѥ;#>i(wJO9ìmNw\O(.a<<@Q'IfHGXkV|N$`SH*0]zn6JdҀXH ^=xbR39$b 3(Sڅr􉜋-&)O_uא;q/mmtF{3zBy5wkմ ȥ5wyRmг@"5nYnvtؒ[^]?m{mfs톙(St#M"`hH Q^_:hC/4DAQ0.P]X mWoYZ[szj?4 \`.Bykivc`~)7ir]9K 6 bW[Q5kntUJIۑ& -1 S|㘗JWy|լ&`T"cOF~Nk)Dm#źBeom[a TNJ"ξ1T`+S\-KM54#}Z&ꣲћrեTu\`}a^Q!3a÷< ~O( D 呧>#C~X%,?EJGV{TDwrFnΟ&||Na +S_W@ 0ǽ⭐2A=q o,~B35z/Y u?5݋?k{V/bkQ>>>9i_x^_ B/@#壟 @]m@ Sf',onej endstream endobj 506 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig36-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 537 0 R /BBox [0 0 396 324] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 538 0 R/F2 539 0 R/F3 540 0 R>> /ExtGState << >>/ColorSpace << /sRGB 541 0 R >>>> /Length 1284 /Filter /FlateDecode >> stream xXMo6W-60C/ Z99h lowS!w+n8oޒ" e7nχM`wjRB}=41|eE<EpWƟ\puOLJ-<AxoyI4:~K\Z A9aaA9z 44lt6 #Bi0[mki8 _{wm> 5jo7Iо=dzL#  pŰqEbd\Ӻ \1,W #0 W pŰ%\*=N`o0,q p<*޶O0WWg_BJ } x[#vmFunWgZX;~łJeKq.' ,T<ϰSp_s0j4`dZㄴm4q,x%:&ݰWH.VJ6 eܼB-r a|X%Љ.25mj>8𹾋Ƚڠuq:mXDavX:`ona8Go$c C(l<6ݶeb18sf5gF s&Fqg_* RC/~ } /} <2ާͲ&,eMXˊ5a0k¢cVeˬ YHm(=N{/= )EƄ̸IFTpsSI "5m=d MRd̅ZDKb, V*+H $EUN|EXOq1!dH(Y Wrw+5E tsM2y$iɊŇʾⲸ-ͽ[ #n> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 548 0 obj << /Length 2176 /Filter /FlateDecode >> stream xڕYrF+s"Zյa;ṍ[>sIpքjV*TkBfV./3KzoZ~̌3[WAZkK' 5a 7|JvQMiz虭J=fͿL(Q>n%(Qt+cQ2L\;!Lsza[ ƿuh )ժj,0.&,"GE Hݞ[;c  @Xo(mD*WͿ χ]+ cX{Gsfn}`#7^>hW+sU)RN5a`2]IzWxAM9`GP~p_ॻ ;w78N%n61Һ~ǼF+`I\BA3`^A]cWOmIߕS&HϷ056MO $OܮNʍkvB$~ZOYY nA:Y%n# (}VDmS ,1fS,ҋ6qll;ə*.5bΓ! 4h>-QV_ %QUK&]X1gjIBPo?ŹA 0*-! b?T c`6Jd'séyqC.1x*uϞݎk%`LԨPCٕ/b^7W0n@qV|3b%bC-y[DwOrTv qÕ-V1yB;nm ;YkxCǷONK.KpU ~;YKA4@ޭǾGӭ~(D2Er"^mG=t%qpK~!qo $I6wω.wq\+hQ6g$0K)nmp5íELImwxֿ^ސ)=oZ^:BqC@.Hipkee\.~oJg > /ExtGState << /GS1 553 0 R /GS257 554 0 R /GS258 555 0 R >>/ColorSpace << /sRGB 556 0 R >>>> /Length 25503 /Filter /FlateDecode >> stream xͽKeq9_qB-@@7z hP⣊BRTfk-w;DPA&iy9g?|ۿ⻿?{{>=_w}/~'Oyu|Z{ǟ_~-=o?/oO?_w/~gx~n^>DcOӷ_|}~j_boeOm~O?o~*[9[OOoۿONuyw?]?ï߽Z߿MB:^֧Ua)ݯi??6=Sփ1Nϴ?] |=~?I8ưwo;Z<uj43oxy˾)fjyYg)6KďT3?oo|<(?/qWq006Gk.ʳ|Z3LFx@t#q'$IG)IGhNwRawaϿaSoXw}lUYat[UՇYSfiV4lk~ae|ߛeVYžs_#}^mu=mMnž],ߛΨ7LG_f 4e/#]ɶ/ }rٖ_j>E,m_f/uu}os#-=PRIv6grQ1Sv0=mVF*(ۜş8lnӇrF&'lL.&?_'i^~7cr׻jcrfvn]x39N3_3C۞?;1~{>cr>9lLn37>os9agnf1 ژ&?ְ1iicr8=31g9amf199+=3Ѹ͵/d7mv|vژܦ?ә76am=31Mg=&M(~V{fcrrjiؘ4.3I1燎_`>,_z6& [ܦߺg=&hξ 6a?' ^g=&t3C3þKam|vؓg=&KGm.?=3羧{=31ژݟ~3l0m.$֊m6U=BlcrqFL_aá=(,aJ_zmxݿ}{m-Hn+ٸ{1ߖM<ߙl]rg߼'fֿFHxsоd oEȱa!g[Zrl ٖ/%[HrȱuN9:>Arlutq9گrȱ־o V^[x<9rs9`K@3 rlAvqz !g[~f{䀜ma$\ L9k!x| M9 r 4 \ANEi8A~w 9 9Z 9 9k1!g4?^'r!gy9O*BΰQw!gp1"L/Z3y9x9ʅ0ŕn~!g>$@@8!g|@kPCL3@Aș+5 g 593c"lsErlYزgȱWT359r /9\9>! g@ @IrDqLș*B8rl,΍m9+lO9+slrn; gr|lc|NC}=9g䬁MA}2T㐳 rc?ȱN96$-9Ǧq1{x{}!Gg`IF;>z 1'pf gzRzD2=>{R|l6|R*}B}lO~^+q??6& gϞm;ж;÷чocsbؔ1nӧ^/B`Q|vwdsH4W#f N|W ܤzGM|chȝb} lۄ{`;X/0@gaga%a2|h#&u2hA-`Ga $JJFKaPB#``Sz1DՓQ+ >kDL??h?tY5'3^}g~|ަx۔۟M#޼g(sWV9`'Uds/sMS0y˞=`h&B `55,+u8ot/ c},Wʆ?o, MR:o҂Fr-@@*+k'\2?ڽБy.Mt2y0-7::s=SZܺĄLkmRAuR5!N@6[f\Z`EF m ug%MA4n `)83}1PżA=vN3'@lRLHn}Sesul!!/Jctb\6u缪=";YKd^LM hV(jy[, .ݽ({2q}bRkp3h/{C^0{Iޗ=qMŁ2eh%)-߃PRDI+tbB$\0P=l%A)1B!;c,gٔ뇜c6&.Š_'FJy}T^A*YAwTeAe6t\eQ3q lHPJIx(>W\3y WJQFkf#P͆f Bpli6S%\4{ѳDf%SWȏ(EQfǚ= pίTs.A5, *T\ u *f3tBٸС!T`6T]d|f*a6B AA75vëPf ϛ]Cm@7{P14Pmuié68r@I[E[]TE[ ̉.I',Zo'> ڲu&lL6yi˲=!EmDD["$5guqH[6mmӇi12 ik󒯗JEiЖfo֤>JE[=E[$A#TC[Z]D[%m5M5ڃ9Re-;A[ "mQ:ըW#֤2+bҮh2Bv甃@[Q"mwxRhk@[! VR)hki$m-FmUii苴%:m)*heԂom%zڪ|Fzmq8-R6)i+Em%[=LW/5ZB^h|E['s0塭AoF%[%]~h+'gV/!( _U"m5ϢiH[M5^BoFCXE[ gֶ[;5ymc$m @[ʡRV7yh;v@бh$fc8xmq;hk:8?b^--:-$іh0.i˖__mOؠdj*D[ɡ,Җע-͡-.2SD[=8Ij V*/~R<} |O|-%>_^=p2gu~5E,9ab曼(|yoW2˘4e=/·Yχq=^ޯeW򞩌ﺨ&AqwDUFZoTH*ϸ띩%i_^&wR/yQ҅~T|PQ=h}'/<,O!D>WR&?'o=RnjN׌SȠu~|Qך1F}ԹBz/fzI0En,yu.hgr ȻS(NVG+uSxxҜa-x8]RgH2R~]IT<_Xb;yɤNoz]Au;2=>sM^cB}:>H|r{??\Ewy:>]әރ䉁 f*Q3(R0)d^Tҫ4l_!BZE:r,Qx 5*$8|xx%$HZX"A"E#{Aɔ(d&RC "4TARF"UE76ZK"ձ3|#" "]=N)&t䋼N3}D&  ߋw_;sۂPj/lR_" ۡ9{\;s`hg80t#JGhH;tǿt_1WLW:(.Ae1,N`* `ݥ,F0E fY NbɭO¢>=,!c1,u#Q PM %=df1j"@aWo q{\4Դ _53UrZ4W_W+ VӥZ&kQ!%h4Z+Z-hhn"圭K˵}iK۵)M|zm|mRAVmЛPb&jW4Fjovu‷R-ow]oZqގ͉OȁoTj?ޚ{[$#,cV*1uoV۫yb=&qoyGF`j|޽Yg(jQ{uٽe7] 5u\ftĽ:YFo9dWVIq>PՁa6r+Vԩ& P3NTC.l憸Rף臫-fq<Ԛjx>P{@ 2ZKj%D/̆5lPl~e61]fWخCJJMAmj\Un:[2\g(+5RTf_j5ff3NGPC͆ J|AmD3\ZI֚C8_nlv j-pWAv!z6+5j!Wl\?tCA!Wm4/oTm wXs`E?&x6rEFt#\-pH}-ÜqsE s֥[ss R sUN[9) s @[0Ęg51e8I[NbN=,y Lr%mePLD6 ڭ!2AA2 UP#m֨ I[^Җ-rrA@[ed AK$m*2CI[UZ#i*3U哶ccXhkwVS&(iI'mKmQmuzb%igh+eZ#VWi4 mM֋vlt-5[A }!mm5iTaLjm^52{I[S-H[V urgH[iKD[SC[ʅmD['5DK!Z"mE[E[VD[hKH[ 'bfhk)u致*C[K--68%m1}h䒐Dۢ-i񢭢Xi;m1VvhƛUUNb C[vm1VrhMm5eڒmV# K2|iIs#D[[٥ !m)Yž/(RKVghKritvh m͐+v;m1%ZmVD[-D[m 傐PP4m\PgC[ߗjhbvqtuh\A뗶@ϗ.m!wbt|S;^WnGC+t/+CQfC_K9H/C㩩yǛh]^|׬t:9y^Z4GDi=:F\xr<<$k=R+!ꇚJU'MTWW/*]:Wg=s/0yt#O 岒;{׆'K]J}/Ʒ=Tz865~m䌯g1F.yZG ?˽ӝQ7ZRTY*m)t4b_hM}'ZU>&U:LUe*?T_ ?UKݖzGHVԫΆUIKfeŢ(':%WlF fURҟY}#ZY>HHNg:13vAG`RF'Y|⛤QP \-sE>s(Wn+,мfj9}Ri粒gwߪȹZ&^q/XGuĽdqGjq/7io.^K4狛BH" #qBbC)Wfqְfip0ֿ֔ckl糲cX[gVt{ִh _`y|MPHS&. 6Yi i5ɮ &\e/b["[[]HHז$l _[jNfrIk9ѩnDBTS4Jm&K)?dسrr&t]$܁R3K!a3Kг2)R+p9z Q8 ,=O5#q#]^.QWLfErR~`Blf9t]Btz;.3(p)5@$ %EpY!a8a|xpf9BMk~I1.piwKX #fP>b6;$^"ARPҎ`v+f Yp!y.>mV\21{I0b67$kln!a #fP+ddvL1;ِ!I]Cqcl˺e6{$f ʐz֫ udvaͽX\s ֙ ِ!)BfCR$6>0~ $MCs!&ߩr:WYOIlJ w|v`N5t I\m$dߥf"W@RZ)9؉^Bfy@v;6B=V)]}.AjEmwfEi4_2p!˄.! "@/J1Y7a@\ߩ>Ve05K郴p:5&ma;m+H[Q=N#ɵe䛞kSm-jޤ-SmY`r3yns}>n?`܇"[> />])4}$7oJ/ #=)M:H[V@ JH[irumI&mYRNH5Z!= %=ɥ4K mn *vm % ֢ I*ڝe"h U'm%cTuhK}-mimzD[C7iK頢bJgC[K0/۽"nx4u?ƹߓzV%o@ϓ]֞LL;evHދƣZ;jjx/[;|0 x'{)uoُۡ]]aBޥ|kg>z+%(i>=4_|:rUckg%0i/ ^xޛ&1H~WڷWYS+SwR;YKkTj۪:^5z^y*V, o\Fa7 &t҄'o0C #;ńufvswo4sU*;T= ;a-A=upl{{ķx\Hb;+i;-#yN^;%/0ͼwߤJv;pvN+|i]&N+5N+g0))&qIGh@;tcGA#¨3WLAOxF5nb8`$ַF :cd?F&Nt>22]El1PѰ,ېmJC(xk?j VAr7*wm0<퉡є)9S uX_hEt'Qyt% G+]2|tv~83Ff-.\r]$l<]1(uC*ڌN3Vs&:us97E1سs֗PΘQ;~NIԊp9ۉNuRn`gƤTJO nej3X%c6Qn+!mºtܣu"fsOWlkU8ژڅChڛVnںvuNmORn|w).箺kH'c)=y施K;rG5)Epm3/=_nOw^fFqwhzmU,d~sE7P 8c6BUEyo6Y^/|_SvH1;>f'm|wVmm.Hӏ:pkjfP=r܆mծ"::Z=mv6j\ہ?ˮ.m6.mpiC[qh+b۠C[m8vH -ڇrLK[!M9ؗ9K[y=Y{8=|wy)#tZ9 KCP_|׺Y8_zW|a] w=3$Ό'y#W']cYBue$G}l"ub$:_̻:zͲKMz?K-/(qV<)!uQ<=+*ϴN+nh.^-:v!""ω{(EOśJ\>/{v;DpuyaS>֛驲Nlo~jvJzwRWG /XgĘ832PȍM\!dP< li -R <C6Xbo\>%a$B)pC q/}~/}UtRLdeGo8X>qf>&S!4q&|3[&|.>$ /TvcsV/ï_xo~ӷ׿ۿ}?~_1Q/(| ?|2\+W~׷~?Le =`e,zng =nw[zЎGg{x[#`D|{  yi[Kx&>^>ʣCbp.>>[&Xov?7؈d?OR;2߿kmUw?çG>m6ŜO}z;Xe9/>~^|^|_G_Gzu}Ur R53Jc `5Y֭QOUؑ>lA[``X2 !hll2DQw?*t>f_| :wݮ,@78f W/o2 {nW:nW:طVk>&}̯P)yzFO_[J b6}b`2W圙ij o~iv2G }p? ~`n.<|U4L6#.B`pE`a*}# ީ5hěr1}X;R!TaK=6{peˆ>uqu%vk*DTjX ڲ&umuo`#Tk/_kkzp#뮫Mnj g1|/mjk-6PuH'^_kM~%Sf YxVh5J"ӻ«%596Yt[(-ހm_N-خ|rϺ o6! 6(>x~q̨g{qxnWҨr{K$W'w'>m}N-'٩e'#-2Yٲ-?|e]'[dyˮ)LiV\,n97Օ:-+1- R<ߣV]CYuZQ[Y>L%T:8![ϾዺF.eV*b T2=&_:+B`q\rZ*ְ@ʓǣ zX,aA_9Ak=SaY.0 :HB`L3b& Vz,Hc$r2m`=')Ъ= =ܓ@a^p6A OARwAk!=l%azg?G\z9NYI9 @t= v=>'(GcġG )zX= Xzzzۚz%$I=f%$=Iy},Cq1o0l@lTңu cvkk8Y (|4J&`EFr 򘒟09bPXeBf@Bfc E ,!A!b8d1xcb "q@DfD&Ld 3 wfr*JIXd6\dv `d6'cz %G+ٸ?#-#SGfLGfc|VwD2FJX$ x%Y&]AQIf,JrT_X`lIKS ^2xf14DALf{-l7@嫱٠U`|q?,m~j8gh^`/^}03&]҂7yI #HOp .?r\ ,5ءco CsG/?[`K ht8xB&?}̍t0ff8 &p1ݩhhVfcD6؍`rNv8KD9vt&D;^r~lyrW>\<$qqmܡKϕip??.\s]M~a yI9d筹NltnͼLzp/'kO:AjBbCP"zXfÄ-(0f YyUFwU3C/Ɔa^~ٌAg<O/͋5t[W;ͪO\TsFfuFt^!ɢX,$E+3 = 2Q4bzf#l@ˑš((CR@~5af3LmIl.Lmlj.(fc|A86rIِ8J݂hm6i=]2 u  K8ͰkE͜ƛ d&P7;lm 0GH0a_#>aU_PlH J(VX.-+1~PU=(6J[B5XM;bxw>(ƾņXcP젖P*(m),JuFb!Њ')f.T~PLP{BrA`:(6=(֘ )<PQLYD)-(6,(6 (6+uSbcATrb:bPlqi-NB1J9( PL^bk(=(~J&X(A[|~@1C\?PЄIb*!٣hBm#(pb ;.ŸA1;qbPl ͈blzPcbSY!}_B;U?| Mʀ$zHʶJqx2<ңG~^B̆*4gh<=Rzmx~jYއgU}zQ& G/|_!W Z5_<]G ol棧U|W0k=1ߙt2F K횮aP_@G뇕,Ϸ" Z_N!gx כGaiR{#-(Np=t~wj74[zl6GY̓4l3⼐q^13ƣ3$]T-c[y)<.38JkIY>Hsl{;J?zI06;u pN8۔&g_C]R'ٔMޞ)uK<Y.)fYR&gAIRR V_l$f~`HCWtKRA>5op"yV#*e_I';ٙa)TŬW;Nh =0&*!H ȟ~8o7ՖV)R'R)5+4S} 2[ uu*БjAZ⾶G`C.$yS :1^k8ޏ@̘NzBw܁Q|&&?=x^8@$:}Wh×$ILY.G-R>s0/tMRe;dXRh#B=v<$6TwwS)uO_NUv*Ղ_[Ts;xZ<" -#Z:-#K5Rt82|׬Ryŭ_Y3k򼋧#ŵ*טgcRIZc_փ I5+pa 1ODNЙb Ԛ^o)i;s>!/Ř02fq!jKJ:vx3FuqN_NJkhL4t1;`g'Ԙ?`H=M9䥸/Bk栄kWxg(ᾞmyplf;fb>?KW9.΋d%Ի<?Q| Xwj~\<8_F%w笞$ṗ _9G[Y0{ӻ.95cyp XGK!fùs_je+qgοx! g⁝_]\0;8Q'7xQ5@s!f ood*׃xc6: )qv@=d6NOB^9WfP)h*0њ=B0"G!cq;KhRo+{Wz)2EQ7myT/f#x!fClxj6Af|!ӢlNiof]g( jJq*lv fC 2oc0mO\<7rX{RUOq{!څ6)0;楸!6?1:L7xוTSNDt|0ՌW)']e745dqյSi~B׳|䚒zеm)kf#r%Eȵntmzd%/ť%U94u_p$ʚd@Ё*y󑴞"d'6M]GO6&>? Q@u" -BjSDV[rˏBRrUM W:)R^R,4 xb-59Ey>+2ҩaIyDCLC/I7NhzKRz1KNy['{z/y)E(GҫKU^b RlITobҾ_>=De^g4+1m÷Rh}c={9vXC&)nsqkJg>n\g!|_=̹8H.mj$ hOi7j{ZR:GmIElq} 6-\.q e9\`K Ա.~)pKz a/ lN{a?l?m/%/2 kgƝ fl)GIf+ws`6~8fnvyWuHsbv !/tC0=CF3cMpܙC0d~\=C0W[s]Bцٱ5ε=8f"]p^!/PҫA0;`9Kqǻ`v E3nڴ݂6N\1퐗b-eR̆++?n[V x6$/!naj[f qb/E]f qy*Wy6̆mqw_/Ef q;Fvbc!NC0m w(o$arhfsKUwEnE!&7ߡG!>B'm!~'ߡ6W!~6FO݆80~%NCw;v;vCl]!6 E` NڴG|?py)6b^kDmR 3 c\D(6TB3v1:(.5}S^R [J%n4}PL; B1UŲR&b3R!몇" ^V1brbT(/ u W(6y계bB'ZŘb'J%UŪ&"UD XU PLWbZ` Ŋt^ƏPQL;& Ũ_$՗ufS;b.k*(֔bLuŔw#KJK"ScbpP+%(,XjKC^C ^wq蕵=!EЈZ0bj|-:ŴPL cA]KR@beBXR8QlK5'i(6B^]/1wP{ ;ܥ n#b.B1-B1-B1-BybZzbZjbZjbZZb#j}wtRF\Y(6g#SP^(6wpD{Pl2.+ӶB-!mŔ.AS^PLby$ŀj6R~>( ^y:<\ I]yyU~=z:7-r>wFzJk>8y#w!/o\޳Nz^C_\uu{C^ʑ6|VZJN^YOGp֛H^)/FYS&׻םv^/ťۦ<%/,Kq~qo⁳yi=iK8GNy*OgS?UQ+ݬ*YySMt*!H+t->GYy8ZS/~!/B?xQkmWXIu3c =Py^x KC[,TkrI1VrP;9@cySQ+^HOj|ߤ7|P C'f|& /O= =_>}7e^g6E)/嫜f<)lf q/UVy9Bv8b{7!e$EwGG /GG>G6_K ϗ65Co26˝ѿB3@t8CG#4tZ:BCKGܡ#ah}`FI6< sV:JJ=z8gP4Ia 5I 5 ijȘ2@2Ú5K:cR 9TRyi2-X$6:^x,e@j(v4`E1Ⱥ$:Tr1='ՙS[RCرrQӆ։=41u cu .35xfNf>q R3jMC|(d1;f蛝v%4቙#;n$F( A1ޯbSŦ2[(&V(vP(&QW(IADSG#WTD1G!|~a*xT`*`3 EM(Vt;sAAzwvhuPQEŀ.f/\AwuP hrQI9;[Ebl5biRd KAbj#K/nZʐ##SPLPL}"bI,e!tb>(B]/qǃba)(BsX A`RzQ,/>(Mw(ߡX_}P KE1rH A16wIKE1e) (Fb94;p;}PA1ha`aS`ˡ_>(Fb/>(Cs/(l}Q,$EXwEbak _}Q,$X'Ő|Q EЬ%B̗>ǧwhޡ_z:z=zwhޡ+kvwz^\h'4op=x}kL Oht֯\OH o4UfI#+$̇NI/+49ߗH endstream endobj 437 0 obj << /Type /ObjStm /N 100 /First 884 /Length 1802 /Filter /FlateDecode >> stream xZYOI~}+@6 al kWcl 1 i5IfMdZ{<30kicO\;o4ox*Ţxj|XeR&,S`rLO)?VKc2t`iwPwGy1U=Wkg469~j:btԴCTgvBkzvab(2:SiN[4sIw}{ּoM'( iʄ\}-T₺Y; :<2<j95:.Ńk>Ƨټ5;mVe!>`.U~'scUAb.- `^jӍCEۧʯ&/F )^|l ڬ./>|Y3u N;6 F. N~w$II=j~ ;ݮ)7zGc0KLH> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 566 0 obj << /Length 1695 /Filter /FlateDecode >> stream xXK6W9iњыzmM@lɵlyQ,A.|3cܟ?_Ξy$Lq=FЈʑ3*9;ѐ7GYuXlatO>adlFsy),4^J^,g*Ny9S i?C= foC6`eҾhGPrd$zQބ58l|~&ݚw߄p zTO{Ƚ]GT|`S2LeF ŬRL:݉Dt91ic϶)v`B^Xj(Ix۠p&M< 'ޛ,@H0Iwו̸[0B׃퐕c;藉Z%2'ZEyL`")MϷ{e^ ֔rWylg mnٖCrH\N0hvp|/u&cmN[9 Wai}BP28$:GD ^DV>0{zF_iG(8dlv)JD' /I{1V3`8NjL ^Gfh't+0. gF2mkzr̤8 a Z, uE9J]#mp0>6AIgBsaX~Xgf W&k!Ue V)_%T?J!l6у%QٕĥWg͒0lL]a4 {baCǹ 3Cw56  P^G#\ygd޸B A?, (j|&ߴ~ |2b~'1Rd1߬ޢ<>~OqYYž]=ٿ1>Z*uBr,ȴ E ȋoH endstream endobj 560 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig38-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 569 0 R /BBox [0 0 648 360] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 570 0 R/F3 571 0 R/F7 572 0 R>> /ExtGState << >>/ColorSpace << /sRGB 573 0 R >>>> /Length 6106 /Filter /FlateDecode >> stream x\M%xG"2`F$$F~3#"Y|Rkvza*VŌ ٓn?7O{O8/[w]_Vjv{Oǯ~O?x?W_tۻ~Ϸ7?GX_zwNq/ w+Ec5Ȧp;˂uF̺N]guEK\ܮ3VuoV(c_0'ST~L`%s~ɜ~mNsP9_}!]_BEhqiZ,1RMEQS\ȷj<#ʏc*?382/_`o 7xV>JZܬOc z6O=j6OSrd UYfw UC֦8*ѼQKN zLqTie~녡 M*n:^O>e$z!;B 5@;f!t~o67kC՟2kCݟ2kCu7L!P/b682 ]GdNj4y5Ȯ۫y}q/;_I:%꽉ݯ.nvOlLf& 4W L ~qo&mBwndR8IwBR85R!S!) 1*0/*`O@7 ){C'9dpB O`,UPI[A 7p1 E6lQd{b(lp ^X`4MP4Ιl}+ )(2ٺ )$Rq213 <%xIvA(rfIEc2mG<+?hf8OL`x/(3s"؞!9=3Ƒ30 *%03#;fƹge'3||Ef{3||%fz8ָ\>g['KrZѣXLWduX̙͌qYq~k3R+!h j1#8}334Z.W5z>JϽ{Ed 9Vz{]JϮ>N)6*O#9s+z&yfcu2qQ3=2GR4=ej&'MX.g> w=]ɝYtz;h y?Ӆ y/UP =0W䲈QC=)2yVtz"”-LČL)Ƈ:ɇYW˓5$M]9B@K#A4H搐dž1m\\gcIT|RO7;'03s2":kh(hE k0Y&7b1CtOU46y8Fd;IOK\;ynS3S<}2OQ^P)1h,/]k"֕tF(kG˶Us*e9 ꑼ=gxr,%>g)ǘ2T9VrT']ϗĺXq\ND>GzХoUe0ڮH-U/UO&U5}b,_ߣO9҃e|c*{*=Ua⓹B@X_z>I|oU9Ux8]R 'iOoD]Iem=*~Xy򅁐YꗵZ=$45Iܕ rWGI}%YEUQl˚fdL&'ܕOG'ْưrƤZ7^=%$ (we(wezL+[kÇ]Y_1|U+srOr#CrWS;Xf,tMˍLy[,n\ݤ=p?WtW.II{rW9kGjj?䶨>]ergc?]N+wtRS +ewW%;#ʲ=pRӕ宪a+?ݕ5ۓZv擋0݁0US6wմ tO+{];ܕu>-vw$p+eۋrL/5mᾥN+{]pRShjj;!e)ܕg_+{sPW7ܕg_^WvHrrWcʳ9嘫ceޑ]혍]%%>t7iemR!{llVK>0ޗW˻lɍ}]lW{+u;wV>U|_*vI]w}宴߻UrW*]UWnI|*r#*rWU3U[ wU5᮴ZZŇ/>^᮪vySUծ޹ݟ-ts[Ov^|cX|_WNmxQYsUyQۗ]|||d;J}#%3xajj}?t8iZ |jF~+,غz/^^'z ket l?pZR>U*j!|h5=7ZU{ W.;Ԙ ,h!DDױ>{ 똭y[ 7G)_-gέ¯R)VZxb㋫trwtё_^/*^3$GSuM)=)j넯YGhs|uYpp 6Ye{J­ b 7k?YSX`ALӐ |TTO>],8EqOJ3xpROY8G9uMl~q8H_F`k2}G1[ߕA;g,x$_ݠ?s US;G>XwaE>'!>'vf;g2zZ:[C>ؚmyǘȍA''d{c$qj1Z&G OVXc&kwVħqkԴVħskAs+sRZVq ڪ6UQ`⣭F%|OQAloc1W tITo|Vhku)*|nè@n҃&=(=qOI 0n)>]Mz`ؤ~K ~puQ!@3xդOzPTߤEMz`yz0Pw|K Wz;/~_AA>UKgT|wAeuaqғh+KKjůmsH(]FjDFHP$)O!N 5 9|m)sS>ep*?Cڈ5Up-ONePnE ST|E3Jbϰ4ء)%kd8퐷C1+?N^itrlO>6li9,?b>"S0%k0em1!V<闌0tZm@ AC |j| Q C-^'9lF EC.Y0*ۗo?-zrW&&V%nPvbGE-fX?4c(r:;%2-ri;+w'I G>&nj'Ni%p\~iȧj%&z7N"f)z)N -Z@Z$>-Y./Y.bը&B5 $>}B-fY|&-,cPbbQP{HKD>-,"-=iȧvMqӴrLK!=h/YU(!=h=B#[zI rJ| F˱,Z XSvdzOUM\ZC1-H ;hG,~ŧI,\:G #TӹDrL-=aZU+*/=0|ר^X=W&-DŦ|}PXK./~C.'ק]wbwJXy0|իW^秕7Ye m_~W^:ΪQ :=.iZwAg66׊cj1Z֕5綹y+S1tVUiZlw>]|W]Oy@Ӈk.UW"*QKgwwy3}tռ)xKg{IJg{|/Wea<^EP:֔d.wy9|W >-UN?l@*.|cn}Oy]^յ wwEWr]Q#.`_|wJJt1}C.C_y>/> |wuZy: ;Ợ -|W UiӇQE#=p.ܪZ|UYp.>*}`[|-|WW> Uoz uŧ+w9FSv틏C_}.>)=TՅ]]U.h+mSŧn[]^|u+uŧ‹}\|/>yxq\|.>wE_ _|vu5?|"e^U&vc;h+<*?jȅ*t6{RxE +^TPXzǖ >/:' endstream endobj 575 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 579 0 obj << /Length 853 /Filter /FlateDecode >> stream xڕVKs0+<9ؑd˶2t-=5=0@Hzoj&@ҾVDx3Ox%| OzFx*"c7^~ \g2%akK"g*ޗ/d! [7g"pJ41&xHkzr1 NHq 5BSc}a- 課т,QwA> 'ݲ0cLJ%10F;0u <(53C/wXKVmRHH Tx~P[7 -=CpGeׁm|Ӹ¢$m?k<2{P\~D'7W;)J5sHm+&<9pƅsQu \,:OܬUZssV26|rt_z3oї}z]/8?Mɞd*ˣni?ضf83{NX|*( (֙ŭҎpF endstream endobj 563 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig39-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 581 0 R /BBox [0 0 504 504] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 582 0 R/F3 583 0 R/F7 584 0 R>> /ExtGState << >>/ColorSpace << /sRGB 585 0 R >>>> /Length 22311 /Filter /FlateDecode >> stream xK%u7_qx <хm@ $A•DIc֎8fWHM4^yǎ/"v}ul7?߼7LJ8^_=?|m_g?>(w~?}o:׷?|o?W~?go>W>&1ߎ_^q?|ܷ>]ptO^g}DZJS?<+7Kn۟򡎵r=S#5ߍ>^s}uo}qCׇ|طoJ] tP(͟ C8D᳑;P,'}O>~N˼gkDuKPW~MsSƇ놺Efs qCrq@<,P=做?os@|kq7TS]R3N\j'hT5pmyA]_ojU:ԍ'mVz' D+ʀ[*~߼ UA6_8Jکze{<8|>=Յ~TqFT*?Ucςk7U?5CNT'l>1qS |nvS\q`F(NO3́+?Uy:ԅ0,Pw|<TEfcCǁS'3(/\p7drD[}Q ] o򡝐ex(z +O#L_Q!;~xvT_!=(큌7眱q5C>>|!ˇ3Uΐ/q(x!m~5d)G|uΠ/N)#䅷rH /ZlLfĎCţu^g;%y9_ oؔwS"9ᔝWBO.u|g2S^qK΃LyNɟpW) !@9wg<+J>q!>')#Ag]|}B bq ㋞Qh3nln/3Ar@4H8Ý;0dg 0ġj\N2l9b9b!9C+wdJT͐RqI!j̦i^#*GOlfXB_$G*9{jšxgS·{#2Yaux=d$h4iT{Z!šjCY5*5'N!9Ԕ|HZ_!ZhҦ/JE?XgEnj {FyZ5fC8nq13Ż?[@Kr^mT՘xQJDqy/΍B6̣G(!_a2+At$yeiY2ո%ٮƓO^-xe䕡|q +}N^-xeK6O$x"H,hȂF,fAZ jAϗ^Ur ="G $rjDrn]E FxA+/1%2^& Crΐ`Et$DL F/!ޱ(2ib@s  &,A Q.AA0-dR Z@U 4 Lh^ PFH" 4"2 UWB 4TXff$$0Ad}tzHÄFf"@Ior37h?MAZ ā.ibEp; @s}h&IpmM2 @m$.vl;Jށx#^Dh6d׏BM+8^<=7v }>g6ph>Ϥh>?hDp)(F9W@' ئM fkFBF(V,WtAC}!h!e#MAHO&C(%Am'At[/$#ܦcC#h^4p}SADGм>#h>_x,+  ׋džN) 1 ;9)J|~HJXoJ;,EZ.AF^c~l:Pe WLsyLC3i߈L ƹyb9dq6!&DnB 8EMVlxH vB3 cfA',)bbl Tts\'PuBG9 p cH"skP[_Pß *n k,F*PjhPBj>!^js A ,B!Fq B͈*2"QB=BGaW rB{PSrXU<`"*b7#TqBM(jj! 8D GNPTBM"T9PŃ)B(4D "4J" ۉPEFBA4vz55BA{l#BAs"4'BMM$BSD&HU.! z-*ziPR*&&R ʥ^wh*nP$P%PK"BAPB7BBbBAPC[B(h"B#F(Cg*+BuCPD"4|P+*F!4U<'&dD GކBPKGP#ji"T 9bDZU.N8BB(h"jC#FP%tji"x-Z55X4 HEZ4xU4\O|zbןӈ1ZfP?sOC>y9_4F-L ϟXl~?)t}?ÿ~|no/~bW9k۳ԯYfܱ䶽dn\oy6?O6W۴n_YÖ>Xyk雵n;|vm;|~}a*9bJ42E=)ȉSrv֐Z"&2 m-ќRcT@Ƶ97{KF3]4'9&z)J6 PEJ*@I|o)_-;&T{e P78J(@IV(ɦ% kȁ3lR2@I P%(@h}(ɪJ)@Iv(Ɂhٖ=O%pbHsD88aL342" Mpj.I8Ēh!A8H`%xL[F© LKGq H~QNՋ,©nH85Y"H8H©[N5Hp&T> ©"X@A82pвpj}#HrHpI8+IA F8Ԫ@©J@nS~ ;p <#mpDA8A8HA8I8H}^I8p,©M,SE8UsL"_I8H9$H*vCK$S5{%ARJq@ơH8sU?S$$!oS ©]?/ ©CeN՜ԡF©qԡ> q$8N$:t5H8+ "O9^I8ȅ =N%@WN;8u#AJqɭq+i$4")CrniQkN;D8㕄ln i )C4(A6?=/©'E8UC"Ԯ62tݠS h^mb=z|6n^OL}#.bꛏ CT_=GO䣇iJcA*@(>S馢Rb9dK a]CABfޏ yHCм!L͟$iAsDD"hJ04_=BQZ#:bQm\pC0?$HK%)UzF| GH"u7|iDiP}"#EI׏S4P-'As@ٚc 4VHu%:ۀP"89YŴU$4!4)SM|IMм&h~rS^X.V]OR1mpZd0 OAO" ~CBGTrt1T 6Nid(~HpO4Z&K 4Y~_TR%T"mv"mvH"s3 T!BHF2VPiT]"\iԃi@di_)১FzI9? 5YALQD?|?~?j.O_dOndkr̟zcɵ9cKn۟+$O4=!n# 2O9$G8xcq#3S+ɞ7U+7FxUl=qCd~B#A>ΟyN'0E>p&U=tOgJL:8PJz<^tǛbǟݷ”k~_y*[Sӑ2_6h` ·3.p )L+h@\>K4ߕk4n|d]Fw)|juJ3YNik!fp;Dw;wݯqSoX JyVJjtО)%[Jz4i#SȔ8~?3I;9/4`o4G\sS3*B|]̔ah೻{4#S|NtJfƣq;9{h ǥQס%C y.(RSS+9sL}eJ}gJ3=GqJp\pǮcs+tP.%a}N-H%򩵄X(rZK8RX~\‘z];kxq\!K8s t.- %ҹC:pHhO+pPcxZN:pDws t.%ҹC:pVs t.~r x'}9Iߎw#'pH\!K8s t.H=\!K8=zx'};I?wҹcqۇ]w簠R,sףsS5%ny^C](.puRk箢tsWj|sWh镹 29t]^ Dw--2we(vOܕ횹햹풹펹툹킹2C2w)N'w)&w)&w)&w)%w)N%w)$w1+8D\5wI'wI'w㒻8K:+9)+R#6NNN,ǡK:K:K:K:È9q#NNNNNNJ=ގ5>.]]]]񒻤9*+k|]#NNNNJ=ގ%%EK:+ 6J=]'wI'wI'wI'wI'wI'woK^%%%%ܕz~ڹK:K:K:k|]#qEzquG޸zqu;.]7^Ezqد]e_]ԋwQ/6^Ezq.]Пˈ1w=.zcܥ-sWq +0r̛2c]EKƓ$;}s.],!rKs]]]=9q\v{q]]lGwQ/J8wI'wI'wI'wY%ܕz]'wk|]Z6ޕzqG]L{۸zq.voqh箏ƻ7>]wI?oqh.v]wI8sǯ8sv]-Ezoq⮏ƻwQ/^e=ގzq.]ԋwq|jqu]ԋ>wI/^e=ގzq.r.]'w}w}$cDWN/KŽ|Q 'ݷļo(o%t}Y3ݨW+U͵՚*<k;g{vv8w?}zy>{篘w%fa]4ErYH{YAzC8r}U==~~e\ۈIF,و$}97Ib97Nt9f:7bݨDŽu1CNF+)hyX:tn҉!9Y΍X1s#VC!h%,mtnjZ5F7 X$uh7c_cei㺴΍Xp.F,c8stu:7bñjv@ѹKMF`ks#/\y1@Fȶ̯YXYtn:7b%#Ktٸ΍5Ќ1dйS:7bC9s#1йΟtnf:Η΍2Du87b.:1sch~>Ai΍=tn`m|MQ@ REҖ:( } Qd[y(Nj&E=Zs'z>VŞ|RTтPQT(EW*#E*wlRTQ+&*9t<(<!IQE$UMUd'"NQ"Ѵ`EZ)* EU9DQPDQUJUQeQT5dPQT2QTeEad~_CƳ!JEUaEUUEUQQ ?M˜?U;EU)v=#E'!ZQTuIQyRT.IB#IQ?_C:4IQufPϓpR=LQЦǻ=xoQtRtRtRtRtRtRTvE(J:)J:)cQYUbJOˈhk `Oap/>Zud/I}xgk'v Jx= )Jx_{IG$6Ap=0 @' cz:n:LCӨ1f6ơicMc.|Hky;n:CW;n:73ӕxtx.c+b `ƻ.q2܅vڸ+㴸+$78z$㐋A="wsIN 9!w+NʴS.4,>JBs8EB܅9 /:+Hpe;uq߾wEsoCs+ ?~X, uxF +V|мbV-[n~m ]R& q\U|]^8`p;_v*J:5wMRnzJ+!w!V~Ôθ,**`*.'9Dz&-ZqW=q]|*_9sW__e[%+ 9EUf ?OqW{]U S]V*B@~U]HU.4gEJ^.]\]YPېP'w!kʜ)E/] qWuidqWwUwUw!My--*nƻ"Fmm !~]Uk]@qWuBܕ]H'7kqWu(qӶ&Yܕ5]U w](EN"wAjwUah6#w,B6gʤƻ"}箪eBM."wUS1wܠ|f5s(c]Ψ7wD )kqS]rJ>]N7wU0wUozsor!DsWպگ[?>;!g{rzBqz'r~Y~B,9wˏ?%O?]j!}Tb%xtj+@{,%xtk+{_XÉc%٥R61zṘd>>ۜ2?cfUW*?^0Zu!NpFa~{=p{p{p{poOV~ 'x}U9=0.-FO d5!ȩ(@6ٳ $4ݲX1&] mn@UK ݤV@6 dh] XTM.tq $4]ٴ.t dMȦ^] fԋ dم] fs2'Ȗ44i]hS.ͮr\.nr\..rt9]@xjBȥ)ȥ 4] UT.K\.Kri@66@.MȦ*v\.KU.KrCcU@.Mȥ.ȥ4] ri@.MȖUJ4] tlU=Y.Kri@Bȥ4] T.Kri@.MȦE@.Mȥq.M/;.vMȥ]ex'碌pK=rNrbT.KOU=F4UAjw{rW]UP:r.e$w5qKY]M/殦sW3T 8|]2w5gJܥ]]ՕdIr jw.W3wuW9wuW%wK_]]Ir1bsb`6K뇓\%C.$w qk].fl:ZsW?\յ@W#wu-`7wu-5wuy5w]]]K=]U}]]P56qWWssW?޹Yn殮,#sWgrkjC]]Y*殩9*7wuaCYxNn(ꧮڡk܅N~({qW?u]#ʺ1wAf]]Ys.dU}U /7sWW&sWl_.3"sW훹+UCy.6wuWwuWwuWWwu]]NsWW?/6wﻹ+MN#wue].d]]Q]].NR-7g]]~]]Y'~]q]S r4wu͎;wA⮮0sW]ݍoEk ΝC0wAsrWu?.',$Ze;hf/qt++55笠?gI q[)q.gzC]k(5]Mx|5B*qאk /rrum :Ƿfr٨wE6ޅ{Br>O˔ÜC _:oE6ϏuRwEr9)t#9ׇ9[H1g9q.r>|Yrs94PswAZ]pw-Vd>ښ;w] ]H٫Bsطz" k.$ꮼ}e$.Bm!wA3܅m695Y*N"˜&7wAy[-|]1Ϳw=3Iv[v'!]Wg=r n_O?G8Gѻ}ǂO'|K켻>ϰwC>{>a=ǪËm)*{Po{|O!a)E1BdX:FC2,MIҡ"2,ZS+ҡR2,M.Ы KEBa%*C%))Z&MvaiJ KS UzN^&%nN.vJeX4,ƖaiJdzT KSgm)ҔW[Ȱ4%{)٩N>8+Ҕ4,MIM^ʰ4%{Ӗ6,]q {K71vMٰti.MҥiXZ4n4{K74{K74{ Ka$iXZK7=4b]{M/K:~I70zKȰtףeX(vKߎcaɤCtu,nfLz8Q˰tiK62,]rHӤ5&]Nۼolaaij.MҥiXZMq{}_:I78w9(ZaZKt4,]K?u.meXtswZKw~<]nKӰtx']}xZNz8Q˰tNriXq89\(2`iST(Jq( 4[n[P,ƒHQBbY[P$kEŚ(ȶ( +X&-dnI$EW\HhR c(L $EA򬂢N-n) 2FIQ1Fא܍EAv0m,uPnEAr砨X $Ea-y%( ,BBhHQ\nt.&IQܤӦ(HV wAQe}V(,;6i% $(,) Z6AQ,Bf/R%wXX^IQXxlFQ@ۃ(,烢XP_IQ:DQc{M}Rt( _HQV͒t(iHQ*Y:!EA|4bE(;4}y}HQЕ:(AR}i(c( =AQ*>(k}fYR4?)*R:b6AQ,Bf#R43HQzAOPRH(h+!EAA0$BRHLQ|IQtEQm(h'"E!5؊D񃢠_HQu(h>_(ZIQz׏xF'EݞEݮW+fERJEA3~"B* ) Z% YfM}RTܯ(QRMxHQ>REA) lݶ9|HQ9؟.2CRZx HQlR}j)NJ)*[R. 0$(KT!4)գEJEݕWNuk(QQI6eQT_)撍S3MQRT3[AQTS&) f+%jDDQ3MQ%DQœDQQDQx+Ax%IQ?()Eu(g;.DS3MQT*4E9=v*r)զ(R) Ҥ0RTW<1EuBۢ~2)ߦRTƢBEQ-EQ]+MQc+꾙QIQ~+s; bS4)BΡIA!BcN!Euu MQkQ3~MQy+Ax;ՕIb4EDžIQ5E!IQ]>|EMAՕbQ4]\55(?.Ls3EuU3EuIzqagR[EQݽQTWa2ܿv^~9# /ϫ˹}ˊ& !d}?i~}~_W,:ۻWx=zp^c;4"e ^C~KK;U+!vWtbD;Ė=;mXfvWǿbV1+zbU{]^ަV;Ķݣ<اWlֈW +vh ^K+vl/kmءZi5fإ/K^iﵑ6MUu*Qy.MXhz+z]^h՝bw=t<WWljyy;H}ٹkh/ c.>ّp8B:6/ +X9䞋S2]]K.h+Lvw[]}9 GN/ +2Y<."Ww<) G񃻠U rfXc.̼G̋0]1N:93|]!wal3䶇3EBLj Wq sYc.hr +fB1)+VG?4=]e\'wL]1S +fZYgȩ䮘)$  U3M' Z:g]M$w"~rPpwA|]a$Wĝ5+]:~p$ǵ]м_.y'wA6 [#=`wA˳ "w9)8]7wa\Ciߍy]1A ϊy]gb/䷸ =.h n|?]&ǒABV-sӧrW3I]s]8}ΝZ.,qץv܅擜E”,u{.Nu;cLuה$w=kBg׺w]^n*ǫ][qWܼhUk'㉻kډGqj]0wU24]ȟ]qF)]Skۈljng]m#jꏘZq KrWMju"]y*cj2qWsQqWޟՆUqWs :qWSƞ e=sr׸$wCϧyw!܅\o\ƿb4fnNw=/sng.䮮 XsW߹s殮ssWe.y<o9y.+\?'w ssWFor{|PosW3rW#\'./0wu<wMv^Ջj2]=k/U.hՋg]YSX]]S.hr3]ywulw?kqWwDի]ݵ]wY9ի9ՕPg5]ݵ]5?]]-ʸ6wZI䮩^*Unn&qWWQsWiIvwu.7wudwg&'㸸橹'z˘Wה$w1XW^]O1wu1wusW>_6|g{v e_}5_~VQ=Hq3XY![k={Xo{Cۺ| OEuVX/cK=VH'Gh>=E{/x F!uޮVg]k{5{yޮG^kZ { .==T8(”4곌UiTHcN!kќUCC4V iҝǻ7C4j}8tkBsƪ7c<^a)d-jhB֢' Xuƪ2VUǡr2V*4W(9V%kƪCSl&6^4V*U*4\á%.-y9d.cեZV/\e^wMcqذƪK% _XuiYlMXuhjƪK%|_REC6V8wMcեe/2VM-cեi0K콍U 4V]ƪoǣLwҴYV0K fxYV0}ؠV0KXui% 7C6VuﻦҴYV04ħҴYV0Ǯi4Ujj.M+i$6V]V0K fiZ,M+i4`v=ގGc2V]V0K fiZ!MZ&M+i4`ҴI-cեiOƪK fiZ,]QҴYV0]F6V]V0K &U4V]ƪ׮it1J׌w{;]x2V]xG}e3Q?ix' ]*KS].a:mX/KSl]M.loKE] 2z.YT%wِ%#KC]׻.Y%wiZretcjԓz*i'|iCi'|]]K \i'|iC殥ӂO:-X(J >N >jqpq׮ӂ/]KtZ~Kx'|,t|ҧ]߹kܵtZ|i'|iOZV.iG|җx'8u_?QHH)w-sWSF)qWӔ.4w w݇]qcpWőpA8|LUv&w݇ iW]G}9Uqn/.h~? 3o*])>rfm+f!璻2Y~p܅QߝYܕp.qfH9O̙F'Ӆ]aF){qWQM.q4]J- S7rQp 6Ɔ0q#Sf궍wE 2g[q/+LڶHŎ]м>0e#[tJrWH+MN`fj^rWro]H0U۸ 'waC&דb?+Ry<:\.ETprZp哻 ~+Lж.趍w6OJ3q4+M]aba/ aƻ´lH5' }w9sV]i7syܕc.h }Pfn٧YGT8>+LQկwAPf,H],xGwOVET4 k0"wi+RzYOyrf*c ,*ǯb!&rWPRnV +-rLp4+Rt"fnZxGnwA# AΣ \rȉAJh\rWkA]O. 3Jy]x|<*`+v3A?O4wҀ< \Kwm+7n!~픓P'I/N9{}z̀_^_ۯ]N礞|/e5y4?OTmp9"/ߑjFcdž2%Ƴz{u=P!31Wp[_QOVx:W</* endstream endobj 587 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 590 0 obj << /Length 2958 /Filter /FlateDecode >> stream xڵZ[s~ׯHig8ӗ!LB` Ҳs H@v<=fzzffUͬЙj^J95֖ﺫ?wMVլVnvw?,y6[~=\y{^/daVaQ ~3ҕmJ F}ms]j~CCwٹt, #:ͼ9 ;(.4vs#vsk/ϑi^|͑g.qc+sDK-BeGlf4fr;\XFbT]|2O9¶{ϊ脸{݁h6RBگz#Pdd&R6K9wLd:Qс{'S]n}suqmK:KGt#xYQZ$?aBI<]W9$U*3ɡ!JwG?O&r ye]7G`LQpSᬧ385{t)> HEy$GE eoʔfdOmF}%P76>ҳY$;gY^[+B9˵oj,Ys[ r̨#z /~οd%|n:'N\P#Q:.(zk@V6wR)P(&; @.c1Y=yE}$ocOE./16絈(8>ȲLV<,XyQ]E:SL)-3h S؎9{dpt;a#ZeM=WkNh  .aVNzґɴG|Fփb㢞wZ29A48~mKG7ὡy?c y|OsɁbL4 (yiKL݈O,Ze9 Jn=!)`f?ԑ3rӈVL=梿z?qG e)r&O3]sR9kH ALd]B!8$eb-b#=Z -8H~i[H$Q~A>BÏ Nk6C\{oNY}L|`8EEZD,c[4e">^{w4Kz6!H]k"mͤw5VU6{W I6&WWȫgxrX i]{r 9*e1YN~,^` xhv G冔ፏUݎGST:Y6g HS mnF'Cp%T?"=tn| ⢾~kdfe d,iz^4<16'upZmHW8MŮ ?gV9d.֜&MJEh kcԍ@\߽ԎCvR=-k d+&xM d0F9yY>Ό2sFw!fa<`AܢAE/  \8OfxcYRѪdA݉OׁZs)Yqڥ6Rg%rGqSz-$(9n FwB`[9ѼSVpҪu<1q[x8$4l#^ٮŹYZ*  hZہ3/Q̺ 2xE ߜ'I72OˁӁM]*} .( עo^7Hjt ^g3[W k3k@˸X ˬź[o 2?[]݋ؤ`"lq3VfLA:e_I^ oNj㬩yfj#Ml> Fo}pV iS#TL-3]K endstream endobj 576 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig310-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 592 0 R /BBox [0 0 504 360] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 593 0 R/F3 594 0 R/F7 595 0 R>> /ExtGState << >>/ColorSpace << /sRGB 596 0 R >>>> /Length 21371 /Filter /FlateDecode >> stream xK.u;_ ɁVyx"6 !34,)Iɵ"beVsw7;^*2u?77)qos>:)|}|oo/?|_ǯ}£uS/?~_Cw{})JO>k}j~o//oo#}M__SWi>~M^7>hS;;zt)HzCU?BWsMf)ΗSKjz/Wn?eWKe_҅es>< ~|SşS_:?=u|xsֽgܷ^^ǍC^6!55YSi٥x>ܾpAkW*?t/~~|"?:3}-?uo{᳗]>99G^g~z\7>Ve>jj5S|$תּư5U?#r/ƭڧ?cUwߣ հUMԲr4;wfW{jfZc<}gjگޟͮ{;Wۿ] WS;T\UeG#l Kf0ߟl;Z6*[-;K˾ٿs?b9>Wܴc$߹ns۷dε*}ߗxت2趪6*[=f߶հ_od]װoʏr0㰖 $Sٖ%rln j#_ky߭1K e[u)q9lxϬM~=k=.(gllZ]ι?y %~d~|:.X(t#y rqo.>e_;yeQMG[B\|UۣQyܗ[Ӿ,8!\3eĖ_SԖ_~ 캯] [%N{K3rᮏ-[^]N?u_K'}[d|ղ!۲WnͿjWΖe_e0?\xs![ri˂7qwYa?`Kg,2y{:?~so?6d`{ٗ*߲ewuegOĵW+>i[pp+ϲy/1lY<5fU{.qMU&}n5m._]H󼗖^[lȚǐ͂dL="SN'&H!=dLA2Vd$c?$pfɘrp1>D2[D13q}dL9'&N#5n$cʿIƔ!1e$LҊ)' 'ɘqɘrqydL)?)?d̀''g N*GH$`<K39dL9IE2rIFQ:ɘ 1$c"#dLb$sIH`9d,.$H斛ddu$ 1̑N2&׸I O(!A2&N2G:ɘHH'G|9IƤ ̑N2dE2G:ɘ9IH2G:$c4$sI ̑N2H2G:riǪ92s(d$sdM? #;I$8ǯ[[:ɘ 92s(dL]dIfK<Ԁdn%}t:HH' !t9r(dL^$suK_A 99dN2!A2&N2G:Y9dCͺ!t9I$ir(dBdt1i}{ɸ`/k=X~8L^nÊfJ*BLI3eOhʞє,q)%t4eϟ~jJ!ajʞ! 5eϐ>kJ){J,ƃ6V,+`@$Dx8N7eOxIЎM3/XcrjN`19Ec3pX6&\Ǵ) 11> ҿcr1 1 9\ I0ICISK9 ҙcKi<}Lac%5^w1E r_lu׀HR~AkSkckPsi<\ }<\{ \_kk@LHf"g 2 HZfϢx;g`s2r +5g#חc϶#@#>9 l9! gqFr߳4p\6qOtifB;A׺CkCSȊG@NRO2XS/^#ғIKO'@6UOj*#ҏƓҎVuѠK_3!i2V,Ak#䬽]$l7yl'ft?A0t,S!l쇳le\>eOL,܏glt8&_5Y6Ée3/!,l@9+wg]?e7 ,Ó Y92d+|u$<ʒ>rpx"dd$Ʉ'v'LHx2kpBtIx2Y؃#E O&$<ѓ O&dp+TuuK!'LfȒLHx2! ,]YG“ 8dJ:BdB“ 8dd2\rLHx2dB“ O&$d$lpy QI9Kd:I2^ә'Q2 IMctC$\7Y?tzZ$d:2LFH27IFh$N$U%I2]9 *LWV搱 $ $tfLe+JV6?t؀d:n +ZD27;Is%t$.ɨV$L5L@ɰaHfI2C Dd kE2 IfpV! >d'sIf(7$3TQ 'If`F+?[hIĔ`L)1~Ɣ3D[1%ӌ)3fL-cJHSxŔ1D1&D/|:cL9) 5zUۓ1u<|.fLys)1g1WU)O2 ĔĔ٥1b cJR|UF&G𲉘_SS'1%6#WHĔSk%akvoc=/G6^^Ǹu^Mlâu5Aimmfb= i/%Wlf0 ]c9Nl6zxyƏ_FF+J c] q=FgioӰoyǸ-<c]nE"vq^T,:qeIYm/]aSǻz3b.^/&hWw=Mi\op^9'+Ǿ0.*(".Beq aUg3=21fQ8;6m9UmE { F*{6<4uMW/a·"̾A4q)>@}Z7܇4>{z*|PӞ^V{1lE,dMPːlh{W{h|5WV P˰XY}6* ͯ2#%-y(BL,kVx.tL#/ -2[GXM7BՔ1@U:ae^5V׀hUX_[ ߏ~XK5-2B2>jFK>5'|kFS,[Vdt*,Em KjF_f冾z˖ZcfEVnIԳ iKLA@$,=si24Njp@d>ii1Mv#0B^/Mpir$-Mv ,M+lQiII~f8'&MQ5(irBZ,&X"d w/@g|4x<"#s%;9mh4H2MdhjYنt* h7#!Mݑ&+yh2/84vx KK# Y40]$4EL"MZ&HA %&@O@$IC4"Lk?s c9: D:/mKq)}DWP.ѐ߅,^S*_ @aE;\"-~{@\LcrX. 2M9ςm2ڦIțX*ڦI,m_G/xQThJhJ"~>DLmN EѶTmIEv\mD F&dm>FƓlm: Gvtm3G&|m- HѶm)Hfm# ImyD[FrkJRltaMm6D]&ӥs]NkRT:=IIf75lB7M]ui8QM+/[u4te'[AÉ:Nԭmjh8QGÉ:NpLZD 'h8QGÉ:NԭKÉ:Npu4tut񼝨[n1pۑɉ:Np^1$8QGÉzi8QGÉ:Np1pus's'4kD ' 'h8QGOuD 'O9QGC{O9Q^/=_)'*4٦=4۴u4۴u4۴f+6٦o L24YFRAf F?bV YVb#˨BpȣepVbsѣgP{)FظCdH.N)[j_:,ˤ!p@fiA"<JS 3y"3J Df+2+L<$2zʾ22+K2EfbL $2"Ye+rշoU̪Ym"70dV:A$/\$Ȱ&ɬI"UT* Dfi"DiYecZ!o dVFdVxGdVu?g_fidVHdVTdf}?C2l,2l+2ӄ!YD2=;`̴iȬ.ƤHf/k˟ORLdfE2'q4dD$DoId8߈Ճ"%"'-Yⓩ,4? EfL1rY.2KEfׇLO"3s"Wd JCd3ieȌ1dAf, 2cipEf2ˊAȌAfEfeL$342cp!Ȍ!ȌffYF2c 362c 0Dfld˱ ,2=H1d 36) 2c ,OdK+k(Ef%,4Ɍ[Y5Ɋ%L1&s_d1AfY0ylxD-06(Ds,[$ -T1఩i62 ǫ%fIf9s5^u}Y {-@Uy6@^!lX`K&PJrZzDeYZ iYI e%iT83-+gZVj>e%91-+eZVfZVB*e! iYǴfZel^CXy*-eҪ+<~E+- .3DL?WZU L?kymҲrhD.+bґs!i]9rYfҲ2ìފiT~{eiU4+G.*WZWh؄жcjp"ie+ vͱzȣW]e_G(z$rr\@.szeNc& Jҕ ]aHB.O0Lw #u"tnI2*Ғ@.»4K|M2=hp"i> =I\ zٰ4X"oiȕUw'? ">Hwz/u]F%h Y&S5| C@PB)L+oʉ)LCe@хWKCZ9SAVL!* v ) !($+1]44rP/jƉHc( i ; v}' :ģ19Y$$g1_nԘ"G1`4򵜋7Eʨ$ B,D=2lS.&:ljzM0;u1wp"IͦH٤M*D8%w,+!}I9̡dv9kvu_Y];lM靐p Y5-=wb$yg=Jnh-HYCi;QjޱJbZabaL8L*Ôvpҿ0%raJJô/ hk:LpS҉Ô"sS aJ|dSf rJ:Li(Ga'D9LYW93\Epl:0eݬt 0m?s0tȂSnr[ރrt2{0aPa%)sÔUI=|#L:L%rp*BdS>8L%,8L{a©a*#Rd3\YqaRu0`.8L=(0cr 09tf;:LEt0xr$-a+4-~8Lpqs2ML+gsGx9Bp4^IPôu4-8L{Z,Wv,I*32_0UTT4vp0U6dT0աC8Luxp,߿DToNa07S#z;L lp+ä aAP/+]K7+p8~8KO)9k&e;gM,+9gMvVPOQ X9g-T,㎫ң58k{Y ଥ.hy M y%[w!}xle]H Y9 컐˾ Y]BYX*c/G|YeV ,0g?㲚)5tW9OW=M>WQLPįE'~U¯}ػ.2WO_WeOO7~UՅxBW]*~.WFjW+_ <~5Uį́_y]h~Y~zWS:-|į9N* UCį'6p_O.; /5i~=zz"~=_/t;e-c*/m#!~ukkQ~uį.s՛t0_f_ާri FFXUDBOv;ڔ)_9Uk$~u2k_CLz#~ 2Kֲkk^F~,\~ \~7~Y5X&Rَi~k k(I|\~%`~9 ~B5r_58_f)Rk2GX5¯9RI~M ~M> fQ#K/xrLi[_tZ6WN` WNUWv z_]K!zYSr#zedXO )sa=eI0jr&k{ShP\)eU5& abb>+Ӈm^ah fU\=}\]9E 1Oa,_6L֋bmS`s{7Vϯ &Zm#85zw$,mpuVWu%x3.X\k5nDg1sq5"U].g{X܆Д8dJ*Ruo<5p+n nLuUr\u uUu8Q]5M@-UeP]ՑXCjAO]/*4:[cBMnz 6956f$@˲:2sktoα5v?[6n/ZEpԹ5J* ŭ!J&+HC/#Q#!͈ cёCV&M#3\ԑCplJT]BvYQ=r(0ʫ‘؝ȐDE ؠ(dի 39d^h!q ~BБCV/:Ko|]-R$ #Tt.e+.xsTy TLW競S}kAZ^M{!h;law|Ն#.PBy^)u_t>~Wvs_r.:iݐPmCGGu5y4_|{~͵s޽ z>8[;qwos>'ޝ?{+^ox7ڮu"Xzfj~94kF3P#F*cϏ~3c|T 9i)зyDaܘ0DCbvӉޏN)h`bxI;tf98{4U )cl=m P|%[z0,ov\p1ZjS2ʧS ɷ@+[n(6f_ˏQbcM/j?mX߇s 4[A9ӷs*oHbzbNӷs3hmTLozQ/h;bVܤ%GAsFc!AƵIcebvV ǹwv}Vv MMχsqws m2oxCsִmܟiMv֢*E۹sU<^v[s[*w[=vm|6ͶsnG'۞q\Os=v#_מh;s ǏszУ휯G9h;QӍ֣mioGA}=~vν֣us3h;y`mD9_6ylbc;~Ʀ`wd YlH(f IL9Fł\bRyREa{r1E KY: VuPe◂"]f)h lp#(GPXV "RXd,!(,qIay},^5(,!)MGP[Jy?AմrIazEP3Aa@ 3JGfAa>0. ڏf*err_p6guR10+TV6"(:JRyfO!8>Ҥ6̤0G< jg7QSXV RmBgs[RmPm. S%(E9S 8VyPo#(,1ID((,1 % K),q QeuP֤$PXb(,Y.' KL(,|RqDaħQXbQX:PXbM(,IaI#),'2JEQX*N C9,ʃe),WQ(,3G92kDa),iQm3G ˏ> L/e'2wlc@ٔ[C(,sglQXfz(,)Wf ( 3(,Y(,OQ (,2NY& K eV2/mM 3fփa gEi\b 1JN(rab0Ox"S yR1P\Z%Q*sb+֘!W1AXcB\Ɯb-x,KkLL+֘ W\I=SfbGh>.#;z#;z#;:#;#;#tŎzFsdnKWnKW뻙.]WsdbGWsdbGw3]b~5ӥ+vty5G+vt{5G+vt7ӥ+v|7G+x@brŎxޮ-#C?1+v+v+9c.15#Ch xBh,^X͑_\9#\5#Ch MW{<劅zSXhb{<劅n+XOb銅^+Xhb^/]xᱣ{<劅+zSXOb銅+XOb銅^Ѽ_~_)W,4]=rB )W,|\tŤ劅+F7Vr8ɜxTd} _I>d} !3CfЇ̠:ddNчnƃ/2>d} !WA2>d} !);MfxeCf7yl {[B&;wXRZD1ZJ+Jav QX}2lٸ{–M-3lFa˧|ؚRaˮcزkwh-- –jO(JCrhF-cj|S[Nڰ [NÖK7Ö  [3-S˜뀱2^#iƒ¬1 kcIKSpXbXZ C2Ecv&e6nk2X[XV2a,k3K˜ Ʋcfk0H$a$%Ƭ Ɋvf ϋ+q7+l黟v?brXaXCC+E˜JO+*+  T2`0A0VcE+l$+Km0a7U^1c$*O0?_aK ƪYc5}$jQ`G05J1k"`eKY*'XZ|C/c*ٌ{V8a aBYʶ݂15%UyU^1zm66cm159YvcQ0VمT0VI cQX;cI`>oXeXe%aFrgd=h##rg$`v_XeX.( X0V;a0V&lM*?[jg,i1ci!:xe: Ɲ`t]ac]c]xca?-Ȫ]'%lgl+x9Y'45 Lf7DV!F4R|4FY҇DV^Aˬ}Dc+Oh&"e @c2{BJz-VXioՎ4Vi5ƼE$u'i%aƲRDdm2lo1t'5m>$$%5n$dm!Iz#5$2+DfƝDp%=4IdOaY$TM%um:$.bYo]&zS=npD4=k.k{\֘Yۤ)$ȆZ1LDfAWH"k&ER[&*l4Id(lŝ00 IdSt$ISIdJ"Ect\4f~&D鹓&{)LoD6i+lr%ٳoOO1]f2e;h̞ jK$rјicRKvJ%YVoИq-iI2>}J̜L?e%yREcު=^Ac:BO=̔4ەDf$cY)KKJ=',z~Xb1H#Y["4fu~XjJ%%IƬRAc!m$ԕK,e%%uƒh4D34TKSIi1,Yh,q6X"%(\FJiDR%q$2&FJDIoJ";IdE;2|=ˁd C,zXjʣ!O 62Ĵ/ 1{sHbU*hE5 1MP 6m}H{LE3`> zb`]U"P["=[&"diH"Bu <L]KZa)%C@!&_`6Ai{b.C,ikbiɠ!MbIDḅCLNdUj4Ī02Pb`G ՝0xmoC :DaJae5˺e%NCua)-C,9ewX)!VT4Ī bcNb3!`!@!&CBc 62 gbe`=pۺ߆X!+Sՙ0a)D!.2R? ¶2 w_!V+Ky4ĒAe%" Ƥ!&d!&!jBbƓ!j4bYEC0R]+B.b%) <}bד 1! ȫ!= HbSb܇3 JD!VyU,CNAXStXAFCkz2`!&{bMCL &X#2c6Sb;o e=ʫ!Abc]Zby{x}{pSAhP4dPcTb\9al&'YLe=JSp,75tM+q.G8grc-Y ǞG6^]c=oz4 8#iᘭڈ_fNǦ5$Muu%-ǖPck _d&%ߘ,%!Y̞`_|'U0Y,ɹdXfY){U| E<dV3XrcY!JR8V6XQ<8fUV3=J_@,>Z NJ c uX)'6*d|2<\j`\jB[(YP-؁6[(O-\?HM4Bejn!T-~c]ɣEEUU[43Y=6hj1Bq,YO6㓏⍌O>\⓼~">mo#>@GeOz'm0>)>I2⓬JRnnQYF8ՌQw  X8#qL P<8M;Y*.;:cS&c%pAؤ(gT&*&*c 58Lƣ|G?r6|3ؘ*GN`3)6< L ~Msޕ×d)'k*t .xص%Zt-5<s#b:k={\Wru^dm- ZKle+|%8c(c*c1C|L22L;X$dcRG3I(cNT w3(:^ c f"Wh~?Va~9_3 ˅Z 3c0 >fc>ncю >1Xh+X[Ǣ$c >Z+̂E|44>>(ྂu7 >` } | v1X9)XYczpn|TGUZ GC2ݯ| hc ~ >]`_ەuUǤ|b]G[j>bg GS-c.˒# UCԲd zaCi2]y|&hltZE``az\Η%g䫃`az]yށ~Yr;J`C6_ΗN_GKLUZU1V;]eNP79]  Բdr9_q~ZU1i(|?6 T0~G-pB-7j'l)W^i Æ^RZzVWj{ڨGݯFݗ-+ڨ*Q%K76뫶QhW7`￿s#¢gDo_J;?)hI7_~lw`nOʿ߿J4r~|ͿLG8'_?ӷ_ |>SNWcts +Ǯ񿿮?s~!l0|!MMչ'j-Lq/vcC߲s01GƝn`?}Iǂ6P=f?K'tBu<_n#Sة9yUNV46m~4~YӨi½>8y<NޏY endstream endobj 598 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 603 0 obj << /Length 767 /Filter /FlateDecode >> stream xVKo@WzQGlA(HiÅIEk g9ⴾ]Xg1g̽9[XY$-}:sHf&5P @  9,Ж@'/@\|}:BINPgw"H܎\ Ph%g$fAִ~ZnAO%268.32:#^u9s8Q`>a4Ex ZV%"%1}i]J-ɡlFVsX+gdKuwtWN]ҁk<"Whk Mjqn$X7V>9&Ϻ5䧐+{^]dv*U-Dxw*/ um2NҪT$IQ@|#CEr;ҕ ޶ږG|cgȑ}JU{tXP̵W:D} |2UAgtLhѬ1U mUC(G#,٭$%E zZ֋S:iI2[4V"F|x~ $QOu.o\->W{)akJC3米بiqĿ(@iFѼjX74rRzsJy3qOw5 "a8\'OLK!p endstream endobj 599 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig311-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 605 0 R /BBox [0 0 396 396] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 606 0 R/F3 607 0 R/F7 608 0 R>> /ExtGState << /GS1 609 0 R /GS257 610 0 R /GS258 611 0 R >>/ColorSpace << /sRGB 612 0 R >>>> /Length 7514 /Filter /FlateDecode >> stream xK$qWRp)I&V-@ =V-HF80ݖn*f&Y~/|_.zhc=W|7??}}?ͷ~(g|ß_㗟|ʣwG]lx|iHk?o?yَGz>pGy?}qF3?ox|V?{+q6VxhG^Cgʲ?7ozi <ߐ7LٺWCry)k>˼??v9e|Okzo5Z<>y,_>ٿ^yxi{[mozw]SޟsszaUD ӧlW?}=g>?n||l[ W|of~!f}CY߸374v-o{uZ먏ڵa{Xשi{ض׉==Dӛ(}(}(}Aۤ{j3}U߿ٿwo+ۗxqPyհ-T(]5Vbq>G|61xUMjy&7cv߽캏byƝ}[1UC(1/V㕣Ï-z\6-ddGʼ]I?BBǵ 0BqjbJPY ;E6-ü ~㖛nbRKkЍg:tuϖG\f[+;r\sf5nCOLovY:Ƴ]?t:3Rz?3mk=ɩUW]<mq<[㡧uz=[\l*?=ng&i-vtszI>[gc3եgxgq<-0tݥg =i$X-Rc~kx,~TvLc<ROj7ݤc}N79^%; ۫@Ը~b,W!mn%w0~x q?L]Kp]{б_jxg}H_q}=oapm/i(+qq|o7|Gkͧhxy!qBnM5qiG>M:=yR7c =~4O.O&9^a[ȥ_NmPq?g ݡ!%57=s|a|#^Ԙ[a-\ׁ&n]:Y;1-ٍ5Cf>ƳE]M5/:mx>&z?OnT5?6UiUC/T5.l!Ap&*J?uPPlLPjVR#`,PTuIU!Rā bg@FU`%DؿIwH"nV*x7pM3+&$+x޴rI%\YL|4dqd*͢H+\,+8?ҕę N+X:+.A2t*ʼX7ѕ_ft=teb|U|;ʦ0ycʦejҕM'ʼ)ΟtՄ+pҕhg']ٴb<)N']w&]jG2Yte!ʼ te-5 ro:VtIW+ַʭ}xWҕ[LWf;:ןʬʭqtuLOhj0"l.+ OG|te']YJz ]7]]G Jeю4htef=Zte˴sАfDW|+[Ơҕaѕ97jl:*Ҡ[ҕ9+ӕmtxOѕ;^ҕ@rxHbLcf@MWzC7hRteg~]!z MF#+#9NIW@'+q}+%ҕ;tQ?h tYt|a z"]BteT@KձDW]1 ʦ㓮 ̽.A_onIW~[2]y!^+7sHWG-?8>itњW}<_"M\Ҽ^\t-i>*aHer4W]it?Lc~x,fߕіփ3ӸG%''g7?G=lt^EjTK'NiU{G+Wni?Wwӌ`2`h/bG{Y1 F{Tv{U=3 D{g/6]Ѭ閣]^^߭#sוi&_mO ;8>Qys$גi\?gLfV95]?.\VПF*{ ϗP yp7x<+EYajuuZP~d& {Z dP>5%_֞XY*p%Ȯ\1baDUdeX0ȬU$Y[+N!%6GxǷx*v*~W}:3l6-&qE'sA o>>/*ՌGI>=|cOj[>yIgAU3cGST(&,Ui2pX2kV1遊cJՀOd61iT|@. ƭCz%nd"LNX"fr)\asTFL5*גFg]\3F`z\1b2׸_J1ցxIGL5r"])fwF!FG17rBΠ.昙Sp]S53U\#'kܐpGN5rjșF9-%\c>.R&4~3|6+\Srl][3 *b9<D 1%-AH9[ BO1T':n[i g[.O5`[-'-vt; [)>`@S#5QբT5 [UFrFJT2ak *ˋ au [Sm|ϰu [~0 'l!%lua|[]R xsl:~RH֥#ly`j I ۭ8 n2)N-(/\W-|Wjrxz l9[ۥ[/[Lu ~'% aˣN0lM[&[W> کn lM¾`NU;)2ak  [†ሁ܆X%xl~lغx\!Ҁ $ T0lM$[ `TAp-`hx,a&ak1+"RK:SLi$ [q-wր!R>1 vE_8 [KT<VUAHTsWTs~Q0#l-R{V  |-O&k -v>oj, =.obBv N [ |MU]+)"*iH[Nؐro[zs}H9&r>?tZ!åۏ<k^*-3dk۫۳G-oOZS]Ɇ{<@F큮ю|*8a~/*`*5/;xb{XWQpVپ୾ K5 V  L<*XWpYh|=Rv[L^_C޳w%0$1%o G,L> 5 <@:TcӸ׃Oȟ6{r)6FcAMɛ&`rLF)9T<;䎒Ol/ɩ^}E+ Q#^J*H%'Od*y3!eF򺅡HW&kL枌?/x{txŸoB.yd'Pis&$lQ뇊!**u_T|(X9L'dVvT` -aۘƸ$ERa O˂/r}Pm/H睵:Ya֪ͬY~knI&q_`=pU-4_a`0uoĆW˱)#[.ln)$ɆvO[Ayֽ\WaxuRؕZM=Ur]0I%Nq9k5֦]Tt.ΩcfPSDU(m$+5}BmRȊ-e< Y+*RDDWT:HRVa1[ihWCK^4·^d!yŧ\兖J%krj)I/Rե]ʚ=gł_|(J^ޛWROhPDf(>_:SRGNE1!0}k|>NmS({Dik7p-ip-E[CX/5Ň6m!M[1hK"UK蛶D㢭a Aa%}zΉ66mMƬsѕ X5Ysik䜎j{ЦM[DW6sN m "k-y{bÌhK]W=^}-yǫ9'hKZ%,ڒwmoZza^h7V5ByD[gzB{<6`XCtte3=$a37d&:VG[ԛPӽi+?:=D Xm:! Ioߴ_jݴEMGIݴE^M[mwEc֦+=+=xCdIo:Poڢnt+n}R#ܺӛr~zWʻ)|P侞R^AR/T̯}ޏhx/t^&괞#GF{ҟhtw50j?ِ_DC܏S5òKZ}!wEkh}Ƌ;W=6g w|Ӷz]/T*[!{'bu ɕʫb>&f P9'#J|X~|z>\WD&o>[˄, ^.xsϘ͏6EnSؼo>?HGZZxp@3g.#p=$#|\Z|HqKR>|PuF}c?qW?Pf|ەC䟷 endstream endobj 614 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 620 0 obj << /Length 2608 /Filter /FlateDecode >> stream xڭɎ_!D!Vp) 0AlYɸ4΁-QꎵEl%ߞU(hYmv$>9Lm&nTL]j2pF&^?fp@ͫ+_rr|l&oTgtf;|xu,a|(2;N5<5u֮ìvnmt+#DU[RkU::Q~dTj҉EOO=~vSSeL5()$^:U(y|QP `|,Cr~mָV3iH1\̉ RPVޙ()$v1Ѓ踍` Eh.R<}w N"Iw̔Y;ORi#8 6[57PXt1nۂ-wHlRv!㽪 #S0DڊϘ*2qBOxC/fzG܃T'T"8s;!Vә3&#Dshy ]>Ez㎟V&l-w!mfR;V:݁BIMftf{18u28JtѰeK&03`6Dā2DSg'vl @#sc2|<з`@xgODu!fb(/έ X4ҠB=h5pVٺсѠ*ʨF`{1'XNo)6Y9?%^G.FVu̾ s}GO۠b$Bf۲><^ yw3eyC#%\5au1H8\iM@T-n72"ܑR8Pez1lRxG9iw0@+?W0[*\XÂ׍\#nys|VXUlȝHn0y@0A tkgJUd!;I CNnxZJ=j=lynW&fF^ xNi}"JrN$4 JsעQcYHl 9 d4Ysc3- f<&5=L.km*KUW )Ӫ*mY!rvt4+a92Վٗ{6R(Ou6eG+ԙ5)nDY:SB)z]hh*s; 2VA#'`s@V %H3kO3ѵg"ɾxbЋ9D5pٿcAq&I何C^ikG#AiXB0(GF$K fBgqāÐpR4*8OK %}0 :lypV|ِf?ʰv'wap3mv)*%ںYЁ '!CʡeKbY $TaE<5x.d]02yQ\ AX;(,;Sp!ܠ$ʘX2EsXkǛTjr=ƵП{-JZgӈ?)t:ŔBSe$|͗!ː 5+\3r\߈;. yK(1MwfU>KhkM$lQ>| ($]H68މ\[ U .|aO)qCDs7&q`ucl%])UpAt9A00Y"l=(U5OKtt98u9%`  M@}+g$I&}xۓ5E(s_~cMS$V` H%/=rܦ>/z֜ԗy3:%[q__u(=X3S[Y:w0PUv4ꖱ^#ׂ:KǎIk4ıeK/zGŞ?=*!VW+hz *T]Ճ^љ +"I}AWD%az γwxclbp8ܳ Da̰*Q~s@#24ˈwA/~}~4Y`s񗾡MgW97Y?rd5.D%7@}E'އ?9_oK0S.*fSye1:+8#$~kWPMH ~*frrLtA8 -)\(yWI{uWO+II㳓ˊ_('Vw: ݄EbxJJ쁞e@^=ZU777HU endstream endobj 600 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig312-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 622 0 R /BBox [0 0 504 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 623 0 R/F2 624 0 R/F3 625 0 R/F7 626 0 R>> /ExtGState << >>/ColorSpace << /sRGB 627 0 R >>>> /Length 2450 /Filter /FlateDecode >> stream xZKoϯ>l/uI P@=kghb=i6 YSd8rqw/r֌/_1Gn*DGӛlOd?5Κ7LJ|۟ݻ^j}SY[ssxg' [ ,qDof|QaяucGǿhN߇~6|88~>\͟\4!i^̣ԃ.Kd?2HV ).K`4HVKP%8vцɆ.K2*VW1:seJWY9Ex>ώ) yrK')e0O.<;3u`so-~Row9lFԹ鿿?]OO;HszJIts9wop1 2gӗb or'/;hwSrBn ٹZ$sp bm VEB%VpP Fw:خs0X J2!¨X[,[H`XiP.2!¨wС1x_^ZGߝM }𦻛:\xh̨~K6b:,D1"BvKkśb.[_ZiLC{;{Ԭ n#@M?Cp :8rsH~>5&eJ]@sPy@C*ESNw 28 + )b ͖Rt/RPkyJѥ*LB(t3'B:gh|OqP FUOC` H40EGBW!(]K w/P'^C-"NCaUFC5SWKo0"H4G- 2!¨_][n8@])RK40E{^xrGC5SWf,Ĉwv(El3Eb`AW\e9TC8Qqg6)!IψK40 ElWaNaT_?J4hGD|s,5}NDi?2ߜo}>caYU B$%Z*/yyn KfT-1K~vkC3lT6PSeE:D(XUǯ Uևoū9< endstream endobj 629 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 636 0 obj << /Length 1734 /Filter /FlateDecode >> stream xڭXI6W9Hp-3A=%=(/x,d9ۓ0[&o}L@d./:S'n؟zD|WgiWAD58!I9gyQ Eݮ?ЩՁK6?7P 4aDO80 M7nܮnfL9s j!slqN|cߍRq}ZNZ/cih"P$r.TA q/BdjiD :]ZcTL=6 #f97ՠ$` yԐ-6oBuC!`ӈ;H2%U)¸ťIt[b2GrKVMރÅfV\ !{ %VfmrG"͉ܔ q WKgE7" [8!O(Խs$K~ "S2)XwhB2ې+Wl]^0h0/ι7 (9 "xo wX@ ͒e`4ɌP}ë(/x~zGNe^C y&p2/3NpzU+j3b5ʺCeۛ.?fvB'(;>-Oq<(LkI{M¯@q endstream endobj 631 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig314-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 638 0 R /BBox [0 0 576 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 639 0 R/F2 640 0 R/F3 641 0 R/F7 642 0 R>> /ExtGState << >>/ColorSpace << /sRGB 643 0 R >>>> /Length 2497 /Filter /FlateDecode >> stream xZMo]ݿ_mh) YH. 9CDYHO9ʪ7ʪ?N>oߩǓ~|+:v&U?>_=߫wnn߿Qno_I]91یOS_ ~ 39hˏA{J+_Vy㴳VK}>ΌO?zw |[)b*XXL d [u}< -^<[4x8{ylmҠގy] vw1ؗ`WsW]] Uw5ؕ`_wOJ*`#Hx?2ge-SOw{ Y03s{2vFݝ- qu^.q/Pwu{~c,欢C=`+>ws{1 ,[d$ʭ 9ėÓ"nq6 e`DW *`"a|X3}T J}m#jczXF +:4,;rw'Hn:&cx5 qC^ a(\At\OcWh=q J"x̸t18q" Uc1"l}7icp #&{ )E}!Nrx' n9FMv8Ԑ烎1"Fb1`ܤsL)#  YJ:ܴx`dBH/IKS7fLcGflxgtfܤsL)h$ `W2-6BaMZ:j9 ]cgp:^8e8K2|]1W&,.HP3:piwStŅv^TxyXf\&u\0~.f^A-]{"B@Ou =ESUK$aT.?TfhWzQyjS)}T.VvRtЕ"5({r搢=f:&c('.zw2Pz818qU6nbτL'X %3K4󞢫6bO&-cz Nad,T(Axs) ,4_n@# 엜$]qjěД Rk؅St?^ ]@ij+ITY&;A,e`)C*ݙMF. dE6V G5ao^Ӄ =0s)@ܜRt]`4NtLS/i*_صX @왐7YWRK,)L>J¸IKS7y(HRtǙ=E;ibh%&-cz NaddzZJÖ2|#vXl> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 649 0 obj << /Length 2052 /Filter /FlateDecode >> stream xY[۸~_aF#FvR4iwѢ>}p<[r&_sDY%-9Εt?ܥNL'͕n}יɨKSD^}zo/6ݫŤT7~rHLL^L&:rX tW4o^ʈY͡=C5L3Ne-̑EN)؛$b ?JeG^1x >HO F#~ϓyāoV8 * Ai $U'֪2X$X^ iJ7UZ(ECM% 쨦4VِJ&P|1K2N,nP5.]t蚶)3}Ӟ18kz\]([hf5@}}\u(OUQmUuTy0ȞuoVMN 沲u(d[Sk# "|7(k^9YwK"FR{0b* :FNfFeU5%!fDa=fOl3nC 2AlZ#[WT).$86(?Y2@p>ףwc&sP*U+kDG3꩗:s'i.BȣR>רG8NyPd|+4qQP+@8oHxl 2"Ķ·yBb2+l*.J4U}f_bwk1C`/R=G13O7|mpR8r,.#v$bP}r\j/*>\R:>q ၟGWjT2y`9*Y]|jX#"%jᏐ$%3o ӻlfP/.&ӂcE$UYq=֕ţEMBFE\r{+րˢv^rH,_+!a%B&gPP=5TVU D'~ 0";5kHliG(,˅LmSJӟB==4 Qȩ?[ y#5HɘgFFh$oV;7 endstream endobj 633 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig313-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 652 0 R /BBox [0 0 936 396] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 653 0 R/F3 654 0 R>> /ExtGState << /GS1 655 0 R /GS257 656 0 R /GS258 657 0 R >>/ColorSpace << /sRGB 658 0 R >>>> /Length 30532 /Filter /FlateDecode >> stream x̽K%Kr7 Ɂ#_M!5@@*@GdQFUb+ַ{Ҏ:֗>~??o<>7/O_O/|z٧]jRO =z}}_oKoR:1ݯf~o>?eWe}?8>oOgI~}˚6+_h.u/x|]?z|+/z˱UY޾ʊ])lK_Zu/߷rV~_r뷯ѿ |?U߫ߝ\w=L}{}Us5y˘5.uU=e~\FrΏZ-~؏'u>?ϯ~O޿٭O>gRo~ߟqX ds{|Fԟsq|=#5%a/S˽VXuϹ%j_Va/g]95Kʧl{%/ʊ/5rwh)-[Ҋ\C~%[vSV ??+Zv[Ⱥ[s[-Z6Ն_oSr1e-OѲx=rȺ[v[5yO wnolٙCUegdaEvlݥ)W<-c>eʗZeEʗ+ҳewͧlY9.hY~mlYar[+[VcEG6~3Vc3m#͒fČG]GѣZQ 3xEcOV# aMsf#49\G#bD#"pŌF/-u昸͑Gg4~ 3M 3E gF́qWF0sh_)6#ČF/g>1FaȜ#1|W4ȈDf4rzF yHh0d"8K`&8 SAH悳jd뙍gU f4r<f xLgՈaFndJndN8kFN&+ aލL gqsCm^X{_9p?Ș_g4r27Wp^9p&CH󺲑g2Ad8]6kʁsW~+m{H~ke#&Ζg2O-DrLOd#=Q8Eˁ3=Qܨ2og'#~ˁ[f4 ,̑D!6(Z鉢e(z鉢(zhd-8lm{W~шFX́3=Q8EG(NO=DsLOJajF9p%̯?rf +ȁs-ȁ3=Q O1aj8(4MOC=꣑S3ү~wWn!>:ou2id)Vm-*_TLI(2ii.bXC92zfX_YfT($Y&$d,mZu9,S `9LU߃eK0,sie.hy9N8%Ĕ%Ze.XRei aae,DL2"r t,,I2zfnt0X'0 Xf22 \`e,3`ɬLIeO4*DbO21AX pip,QXf&a%P5, L" W'aє||r|L,B M,kmr=?6ܦ,Yqk}?6B229 /Z6`Je*;,Syϰ SY+12!d2_i,L3]Z`/L3tV`1#,Y`2ve:>,yM2 XXf@g NYfe&$ L Xf}a32,a,& Xfs`eY0XOADۄtrDhs76ս2 CYxmՉeBlMX65Oe%C]E,sbs*8 MQX^o4#en|mWܦzXfUp[,sf4n2i| ],*b@ST <<  r^"`OOvurM{wϢޓ 8w 2 ~Nx3[oGqU8] yAwHa/k2xDmjR42oRL86,֗k%|&Xpmj9^cu.ϴ9&S&3n]r`k)_NS}E} {BC# Zb6hT`!"V4p·q59>D4pcr R=Ζ> Bqڌ.IPv A)0ޓ* .I(tw#cr*m!OsiI1?`_E{s,֙yE[ߖʧ'þm+3'ؽxq/?8Y;Zs[cku`2-tZ}½I4v6_Ie4s43@.bRd_`υ1j*]cg?_O(%Ol^sAy<^ ?loŹ rܲ+zݰ{w=ߴ>?_eVy nuK7W|ז^\|u/|]rq_cGʳ\O>g&zߥ9N+,-H1)+1Gҧ!t~%_ cVΉkET*ҕ~Ey.+_b@ Z&尅#h)\jFj%sD#'!0Wt?VaEDWW6] 3y s˽ Z.ˑ)M0G0^H!ua]Mfr$ϩV3IEHir si.g:l\7:vP R⏮B`0WFHla6]M]J93ym6]]UE%P 3JqKɌ!y.u0M]ܣ-UJs ;]r,#fh$/MuیFl*%1 oS]vE쐖gE-5b3yuxJ͑:K͡ܩ9vK}74l'(V [=&+mu( X}f [!|`g{ T{/Uދni=QŰs]jo\Mtpw}j]Sk.DT{ҊڻF-U6G-a#a'WAJ(i/v7)]ϡ~zS˱~WԴ՟ZtzS?^R46S^<ܰԛO8%R5m>ޡҧ;O=W՟?8^vC8Iždϰ՟m/]x+D՟_]ihPGOCힸԟtx@^`W['d !x\]/I#1[OF[ijݓa6x+45ޔm?E45 dej=̲4 h^ײ4)6WHr<(QKq<v\RKQA;/ t}l 8%G/UQ@$8 U Qp?u!.pT#sj@ᨦ09s(h8 (s`Q"9QGQZQ?DY!9XOnN,:y2U|8 8 GU ә.92H1G ~nsTW0Gu8-7s`9j0AQLp(Ơ9j)GhHW+ {P*G,e5K H",U` TU}T5kR K]f)bf){fY)YsYk;hPyYCaֲKݓI,d <.7KeRM1R$mO{r,5fA0KM,e_,E~ی,uO{bUXbZRK|KUf^vm6kGdo`;a2~6 >مﻘY\ۿƿ7ػ??/?8?>k|ݾD|xA,me!t>¾Qga r7G\2?x>_w% =__i= x>>fa=^{=8XX/_Vכۮk=ұW~g[;v@Ҏ- gɱ q^zzo<E0O\x5yoNټTݼu~xs~}rT1r ]#o1I``¹]A7C"9\*nL)W@ȝLs|_ '|1xOooS/(J8&%>C:?FK|>_WW`{7V#bQr$z$$V$$&xDIê$Ȓpݺ$\Ine?$|D̐Y5ٕoUs Y s#bJ.Ƞd[W K{-}y3FI2LdsԈPBh3V6tg&LHoF33"=̥}Ϝ]P#◰lTÁ;Tz>(oGz1 8LIodnmf*RaseX>*&^wF-SkD]2,0LkY) ڽ[KT!)I3Zv5ZI{R\>찙YwL;;nS~zn8b as0Ru^vzS9ul`:NKtaMJa_˞GN=zE9WQ{+S ]9VOrW.+R΀C*Ո7_92ұwWrX1Ovˀcqԣ[iӭNݪխn;yM@m]^⪵ wҷT{M}rEO;DĹzsO8wρFzohj{␵P˸Հ Ńre2KEտ{տ[a_rƠvBNEK{CP5 [{hEܺ`Oũտ#Ψ=xoC {i^{hUwֈs^SoWwȀhġտ'$ GÎJC=5*>tzѿ[R{tE[Dwĩ{jUrTx;K_Kr>0lGLR^ч4.RŽ^pKuW/j]o2Ž^|Օg{V^oq <:4.סvO[ٿ/- agzorסv7 {i_@X]&,>MX^!6"P k~&CXe֡m kya9aE\p*ta-v ,܄⨦KExׄU5 N a]f7A0V3"jLc&М =E&,ߙH4aqHb+9Ğfϛ8\0(+LC;2gUUZT/1g]|9s9>8~9|Yd#,^ogggΚܜ9uzރN{ps'Y'gYw,9k_YCAY଩ܿYqbZp5U7bTy89pٜU؜Y3mκ|κ|r4g5_ٜi9Τ9kYnBjsߟ9k4a g6$ΪhOH8jax_Aj?]߷~̦JO-s}'~M6U?߲^r{ ^WT)~R5㩢ӱ)CP~'_uyWG<' bc>*2j>\5ߕa?tOopiq~m{~߼cjRl!;jN脧^̟^w2k===z{~2]3;nqG7p/rb|waamJk5M|Vں>zg ˻&Vu cr% eلE &,7aYބ>‘DX#&,Fb"ֲ7\zJ8qV,H".ć k!,<|Jbϛ&ՄEtk"S6U%D\{i7 &5nOW9_*&J&N&RXI)D{M58s?v Ԣܟ_V?b#hKrz>?i<Njay< hM{hz7=@ 5{GvLXUw2Ep{ZtiRi=p*Ah>6]+QyGݘq²=ra^yx]8#$,bI'gPoͅAX)D^ϛmoK m>x3nh3]Be"Hy~1OU˂,8hy7s+wS~^/̋w5.a79wMG zWHX6"48|_?E,]MWrE8\{ w5#9XBB'8 Wa?;Wqʛ'bVgNGOU%V%yG,s@:*#t`:e8j؍azĠbR(vOY켞Uvmtv|9[BwPㅓ~8N0ƕ/88F E( Cn7ilz7 E:f7EP0Lg*'[NV0$PDWag:I6"DtR: 'nV/KS_Z]9ek֩z elu&PH7,\dʪ]Fz[,lԴkJ -}iԲ %:%y`JOlm"wؒb[p= ǖ nI>$r'+I$o@;nB.I/,w~m?-̌6_Jef{fFyow ߦ/^*G ?Qy [R( ?4ޚb%pXGG?#>OeFll1[;tc%혙/|[GrȈHZXҒW4B%pho,ŭ]KHg"2LcKgfYFz3lIsFG_ҝ[_xm J4Jz͸5iĭWٓsITmKj 6HF\M_ҨwBZ5nloGP)3ɠia֥@_34l% ;ۻ\EɑD%]/iیJ WmRi܈"Ņ-[Qһe^O8eh l#zLlÖp. i%-(/iⰑx[ʕq%Ru~N}*.@ei}I7-PI;]@Ϲ/`luI:z -/xnau0eYra?[zΎK;lIo)J;쌃}}ٓSt/C}d.ҍ6r1%Y|*(VEŌ/U (yo"BhZ]okŨܶQ(?UB>s(FwdhŖ T ] .rbXb[FK(v!a ]L7]KQUb⽠+tŬ*mQl:((FF1n[F=Pl UQ4(b21?kR5Q\Qv:PSQ̪F1WP2*QSQlWŦQ#dH1uN:IdFn|P[Q[t^ʌb`y%7O*a((6RzŬ ŜiqZF1zi 2ņUAH/kT܋+oRer8eQ(aCkb<]N(6O0ڨj(-iجOE:FhmylPl*h#(jFa6(tͻA&Y-WtyBEJQIFXVoEHAE((4h-N'(bk(6\ D]M c M$]/  Mb(|Uو#B8q,U$bq@* bqtVw#u8@\[XU(\[IlN>(vZ*DV}=R^ITO{_U`.UzNM]')F@ycF9TDܨ50泹B>U4]Iǫ?Fv{=П+ ߧ>5)҂lvmNWYAgFkx<lvŢ"O7Gá=3겫plWkv}k\ =uv֮XiT5%SZ8WT "UCTXzQz秊yzz=J[TC>TXPʧE= V_z>@O'eev8C?SՔY>+v 3yqYx-Wxk3O5Vu \sO,МC9О]u\5ơA״p6=ۡ$xvB eޏG.-j;:%ˡFec/Cˮг+:4a/9eCڡv1kuԷ[u?ux?1߬쭁檞l:l-\Om][lmևǛFN?Ab ?ӾоŇ'9P\xDub(Q+?[{ !C}:]&Cg:mZsJ]ǃx992@<MGx ݏo1l|k6W-+??/JƿV:U^I;ɂ+m?w(VaCEV;l?wHB+m4w}AxddG&wX'w4'?e!оW/917ɘ[:+^Z [x+m,uNѓ͑'Aon7}W Q* E)^ceY>I=L k:%lY&5/KKǤSu,+9L[Ҵ$ק|Dޒ}klIKT r@R8\&H.On.%WZ,LR^!}l<ϫKYrxSdQ 4-@09kOy{KUjz5 @4JcS[ ES}@jdxk[3d, o_d2>P+ Ҩfd&HS@eu<^ФDfeF#qɁZijJ2hbMjY+M-fFWQ-(<`T$xif4HjߵdUk-ڻPfiFj4PF4Q8)~oT~4W3H) "fkԪiACo  Ҍݣll&fY=-X=|]}iyZZ45ަcidZu@>\oؚ Ao=o@|igKs8liJ8eH8<_k>q&K9waQ*N rJxH]my>fs&4sAt@c4hBRyi9]v1iRm* J:lGҼ(4z>fvb>@L`8'}$靉10V1㭺va|x`9^-3܍j/܍wג ƃb h%Ě7Uj1P,QVݵFkF-j6W*lBa9>QlXuYMSQSQl&FI4-Ql}ᗁLVc{&4o]Fz6jl\]ʹz؅F`N!9|ZM(`s:&%,n%Ŗ vqBhibN1E"PH(hdJ$ @(v@16f6}GKQld2Qlg+bVW3uߌbFB-FX쥍&}?kE\(rF1EЮ(bBKNTpņ+PlWx⁍V(6M.#(6F1Qbe@Z!|$úmu3ߍ6bQUkVPnm_ o˹hpQl\Q?g6BjoFi4kF/Pl+dB^Jl-NXMi-JŶ:(jbN1-EbP,rzus)0}(r BSh[(\-X,Ô96SyD]/B6A\b,NMh(plibYV2i)/ ?9|߰DYQa] {ABsZ?O;Q?5.ˊ0a5D=.k2͋.ra5FjjjWY|NZ7\e=jW-rv+vx>k|41_=NkK}1 b>˱˰6/:eW^@d$n5Ukv?84`¡PC vkհ5kՌw"{k= {a=.Yzzn4ݲ4?6[Y_xO< cDo7/Z} YVS%g]7i `GZ﨩!}G%ws尟;V(d2_#H;g{Gط$$=1_I*tpifxЉb_`F#]&&yS}T0yP.vq&ɕ&YUWi]jdjl is7 +;I(vjTqi+}6wI:*ۥPӘHAE.}A.ہV:@Ħ90ȥsP@po=8M.ɑ~ D|K4xRKSxR¢Kr8r]ŮOХg< 3u'G/Ԑ' ]baL5rI#%<9$ե5n!IhK{RgK{"ܕ<<)ޥ sfʞ sg2ʕ5''ѻ"af#> sftKiyw]B쓽.Y7)IQ$+`:.  SL "C =$z4 XMM傞z@==>g {e6l)zU0 3`!S+ `>C5) =&s5w oiЃ 9C6 = =(,z85o!vid@;I =T3 g@ǫ CyCҖC$ЃgT.VI1K z&n@3QIQ gF=wErxvz Lr:3z ʁ3Mނ^3)`'^_z@L򊀞#<@D qEA'(DI12gL:AϼL99p&o@ϼ5Kzb']<@Ϥ6Y25ws|Ͱ%i =04J*A &CCOn`a&$AO=4 fb!;Ücڐ2_h C0z=3pF3h3Ѓ"<Cky0pCg4pBЃ҆C =dzP1Kz3Kzب3P%Cг@§ = iaг@鲆foC~r = 9ף\ŕOf *H ,͠_xƬW7txDx~@?Y,RAGsh4R/Vq$dŪ;`As.AMDǧX&^&T'3!` .jOѯDkϢ9H>tc2X;#uD7Hr2t)(ZfoAm\* 6իf~9D؛Xfxlj*MjqC qQBC,z $oߠ^x`'.8v#8s|Z;&m Gn8G sd^`>2DhVt&R*!IJi@sfJȃ0}d`)KhU0Gƍ2fܵ?e >$kgdIеq63"$mDK..2yz~Tj"Rrb[GR۱ Mҁt&[} e0QR͛k:!93p8d]}; A}C=*DK-pyqxui .^]tHp/Eɗ# !ąJbw#CJ3E $aۡ'Y ;S=$ČFrgH@czぞº00 =Ѓz4 =^ɀ, ==48`pг9&'8F]p'@CO1 z𼡇Wd =մ!A!гDXMzts CQA1m=gTNxyBT DЃfꉆETYu=0hvvgQ Yh= lg=꿠g!2/Ss7:г̸ZKVK~2AOܦRm⍆C C~@d *iaQTCO3?M9K=T*' @ :t#܆ċ =lz?HX0 ==1a䥡g>=.+h虦SЃf]HC z8i!gYd@I/PCg^@ =UssPgP 1Qk1po_ hh?+#p%g_ c8r+v Љ"&}y_(5td}%i{G{]ao{F?=??o=z:[̀|_1:sghx_!GMx{*|+$C=êsRVjjxT+|U+|ǣZVGVZuVpQ HkkQ~I*iɷ=jZ5L:vJ_5Rɧ0Q1ߴTAN%NRMכֿP$?tiC )V'w'y5IM:13n93BwZp3Ȏox3Ycf"}#'lZJR6Xf:f™g˿LUEt~S[;r'g\E.>V.#IsL>J5L_~+▝^rϑb~hiqpH8+#tN`F$NaaG eDma/E29%#P_FR))&ˈ;^)Sf;4%||y3O ?˔ Skagh SS#ᶰKN c=.l/4留Ivf9N s]:vͰy-})ϰ˟ [E¡a?"<%<v."S¤aK| ћ)ӰsFMڋjؚ$z$L)A­akkz~ [OIa)ذ ˆM aJ0%UljJ6l> a$?qJ87f;!)ETʒvSIg=!)߰5_J9^"poZ7+r WR a⠻ʱqfHГSjs:YkE< W(WuZdB5\ WW@:pUc\QpE=U3z s2\Qp W% W\!j^ÕC2>1EWHm:eC441AXnلU&,JlڄSL,&,JmB/a&˟M,"" ƄXLXH+o@&,iebk^QE&,&,{&,'oBlRH݄E&nBP ۄMh4Ȥل!z0AXdzn/6aqa'6a ̄Ea*?5&,t6aMMX&ic!  MXKk&7aq2q1X6a!m*ޚ &.rD6yyb}|jPC}O=('{}&f\4{ߵow8X_绿QgGTv==ݟ1qx8X<^{8g=SvD=y=^ hz9HdztPJfG|#~qD8#8b/ht#;ivĄK;BrG\#Gl#4Dt9!{"ޚ m^>$+<~ޑ?ВXle$}*upXnD>㠇Z [YJ+M =Fm8{wN"s1ӓ?H^s^W^f}r _ix:hlI;mPj~[%ț.7) >%eHϭH%q)1;R'zʊUZDg`o QdFGPÖ`#JRR{NƟuKdв:9'c@ݷdid9'?+ǒ2~#x+?w`?w Cr?B!ʮS*dw~ѓ;dsqg SS:L.- /zd9=۔ԥ–ίħc-yװտD$[\,,Y<v} Av#FֶXbzDq0-Q)|U(:B1|żźNW jsPŪ5A17b͟u!(6\ucnsP,P2*n(VhQc9H(LF@12b.`FFQ(Q [4pKaX0%(Nj+(V\QFe\(+1b,=6 b~FņPFQl~7*8(S_/9686_6k:5cb@ex:RFy ʹM%U(ŌF1d%64]*Q1Ŭicbk:Q(FFF17ٵ4.Ql:fȗ'D2s\9^hc[ b0*lʥ0i0*7Ql/XHQlV޾$(KԃVBTb}KN bVY6 kbϏŬ3ms ( b[(v!dSؖ^KbV7Y0(@Iźb|ْF33zS)F1{0Q7b(f'*Z2a_Pb@1 (϶Q b4  |^*+<õ_{Þ_>\W#خR^}@݇kN4jBeKg{T }{wkKf׊cpM=X/݂ޞl^j2~3'nMv.W^c}'=l]e׼;%gekZ9^U+̅ޝ^o_izH^OU{='.~֖k h5W'CFлy-Axkgbfjӵyi,twia.omx4báFՔrhsqms6WE 9x@hq(U%iҡO0W>߼brylw-K؟8]^tVW rXQ; wSC[rh^;t~L*5?UOs| oнyڡ߼:Q6v`r?atTI!l㏟Z_w72>Ne5ު?oLhfg~xێgxHuk%)*rp6l/ٰ%#mFz,jc(ZF1y7Q bN2!QlY^U]A1xXĭǃb:-BjňlQ}b)5WQu@1 8QlZ[?rqnA"wmmF(6ȓ1mFa9[Poba.Cl>Qeb.mk.u :(%AaŶ63(6Ybt0Q̨a Mdb5M%ŦUAisPlbafkŦUAi=|Pl(6/kkMUoةQl"k`KQ ߍb.\ej-tPlF1m3b,BmQQlY]mꐅ](F][.]-\:]*CQxGA 7mU Pl&Vb}b(kǁbFE$غ\Lm].U&[QNm5x[ yF}N q"}.`&SA-inخ9-WPl Hq(6jb.&c'QJŖTbAl\{rOyzۮ 2T|"|>ާ |m-.`t43kW~u7q~מ?}rM)veٵ03xϴM ePXXfW" G.ojLb,^O^WZb>׃rX0t9pEB1\2 >v5Jdw <}s֓f85Ѱ+z5~ \g'Y^5Mr5aR.C'HB^vYQB3?'FqeQB?.UP1o::]ӕ;tqh am]:>#puObyx_p?xyC;^՟GG9]8x[uuo} Lyk;^s9xAaNj y5{kM>xK_:ʣ(yT < *|ʣ?b/ʣſV5A 'Á ۯ;Tu*Y_JEWiI+SγGQ Knؤ+ < #GQ+Kևt$r|Z!͑JH-]!)eLnmX}Zt^uW37I\B1Rພr47r*OlNs+'utu=շ"8Gʊ2^*^yGWo\a SH"y{5=ыZ lӲ(>`fq.HѯjV h./ ɿݕp(.iBvXQpoo3=U4ߦKV,̭+.(ý5p("F,C)&F,EY)*660!"c,ƈ)Eǽ+5!#~Ƚ.EGͷ('w)Pߥ|BQ nˆc1Jn7|nv+kk-~)v6?#K,R8U.,>8q+kEi]qx.dEӆ˻OVDm8[15KVTR~_)Rg4Ru/~i>g] Tݥo)Vf)F,a)Tܔm`8X7bR[VԍXw#>#bo/ٲ".߈R4^P_(K#dx\*h܋}ϬxqGybrRYp>5ޛlEJRl UE1]gz(JaicRXRXRt)VG܈xQH;y(zG^\"xh@_ח KVswa(vim|Z#RK_XOYz>KCk{[GQ]:b=|b{oi({BXO^ρbbޥK[]+3Xu!(V U??A~O(VA5XY@obqH0wx(Vb(XeFjuP,PFaK3Xl(vqFz{Ҝ(V12UbX'(V(Vfou`'ˬ%4g%54U/buaVUwbsX]FV0cq*=*Y]﷟gYKJS1ƻ4|f}JTV6kw-z^=">9k*⦅{?4,|D<E﷈}.냻r}?gט>=|>Rf-K-,n FyYK6)6x,횔0~@hZg&{i}xhv{5&yj5lE-Jg ti7̤(U^\,MJ *d#yyLJo1oܨukL|`^:_R3o-%SMLi(]J]PZ4W ';> /"K>D磡F>ցskw|A=.:>ΧskvŴx%vNynTu y[7llMr2n= f=S;uCP^rL+l6[_tiSik 5WmmG[sheީ'5b75h^UE`M<]W]4p~y'^K?_v endstream endobj 660 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 663 0 obj << /Length 1223 /Filter /FlateDecode >> stream xڍWnF+9Ew7מA$8`dQNI=% H%ߞH${*Z@?,5@:\d:eTߋ8ϔ2$ ik8'  o߰.=߭e`c(ҨuyN59$ (W1>Xp@G7)?0=x,H@ }WeSټrw X46 U\RKIV) hk/.uqƂcB6ZfZ?Q114ST##3LUd~&kNq#Ԓ 4tG~ͼ IrxۏD@4dR%qJl 89$6&%jr E$"G&^(],nńcOg'p')(mM=9 xܿ,E_{NdķFtwچc'LَRh co<ܷ&, 3phy*QK7p'a˰gўkL-bA *EsPxI@zXQDO:>] :SNջaq 9^IEco)؜C;{&~i=̢7=;eCUȜ2qX>.: k$_A(v2y{J)?Ojsh~lj[%Z;{.մQI.Y>o^wBgPU(_pՔA,L+QY<DlHWf^^7sf|QǏ^Zav/oRϔXY鷉8~. endstream endobj 646 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig313b-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 665 0 R /BBox [0 0 432 720] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 666 0 R/F3 667 0 R>> /ExtGState << /GS1 668 0 R /GS257 669 0 R /GS258 670 0 R >>/ColorSpace << /sRGB 671 0 R >>>> /Length 30275 /Filter /FlateDecode >> stream x̽K%u7_ K': l@Ј"#tDkMuD ձw~Kۏ?o~8?_q^<>S;>Q?ǿo<>ⷿǿ˿^>is|Gi_/?~_qAz^>ZY?ǧ>r|1^8_ϿS/S?^u~8?Пk4Ϗ51ǯ9?վm>q|_8q:?=.1^O2chOeH3i݋_㋿?O˿Ƨ_o_Z?}|z~fz^O1qy^r2?ǟ~|⚟z|5y<i5n|޿^_/~-f~|O>~I=u,1':|8Qn2i^2FW񸧹F%+Z5>u|Ma2̘p lq'j|K+߯vrkv,ƫs}yٗ7rymٞ:%eOoَEu[<^?ryg Ư<^/mv̗/{xWΗ/{x-m?/_/1Fa8ޯ~Uyo z6[՜6[CD`be6[C`blsQki49lUc*cUy(U,y(U,fXlsNJllUVǕ4[țb`^cU=bU= j9 U*[բi bͿk*zaW *2تVU=lUVت$a`720V~ajz2[U%x.VF vXluyn.Xlum<7Vs5lUO [?>n^b֛.DUVV/zUnkW>z4A1_I?ob=mvݾ b7Kvhk;|eb_~7?_ |7?XAcs,)vc C,XE-|z|X/ox ^'./Q aw 5<|:/kE*ثy$6k?|vM?p}_8>'b7??#جBvwCGvnWeŷ#!tfF.ZBc.2y(w˦?kHŽc1ۭF:r:ų La-ڝ,KzN$ $fpbyIo8oD;HkCk tH4dt6?Ox${[e*D@H&N2])'.oDDr:#WkMb:YuIꘊSn'䊣5NMh꼃R6꽎$`8z=f<,o:ӭ|p#&JQdc?׏_^wsQ_/ǗU,|3fU~Q¢ozg H5=0O4O`?> ۏOޟ@ 'Dz^vfq7lG=bt.كp qȰSscqUu|:G1YUmq2weRvg,̀gƉIMƁdy瑝Rudjqԋ ຕɪ̩`GDKvHdg2<.]:ɔK̋@u~+s~ oZEV2CA3n9qi_7:r,ǩ9g8eͦ娊M-agl/+W.و;ι;5d2Xc*=rnz>~R;9~e3lߙza4s}9A [wf/ru~/ e^SѩP.ߙ76lO94>Z;v׸o%-wju~%LQxb}5ˋu~O9v`p>:^ٰclK[\WMv,ž`+KuA?U#RY̾ݱu~5W_v8./[u~*ME}:?)q9_9_a ;8~_7k|bzӻʔa:5>cL%=4?] aw2u;֛8ew B ;ewgΗ5aG\a8ZZذM,رތSiP ry;֛2kyve8ʴ}~+כqq~+כ{=d|9g/= aqŽezG{=xE ;֛x ['v7/ \ora {`z3\5zhN1b4A P+(6"@%P>(6(FH#D-pA1o@向Q,'] A5Pl@!NPt+bbT30A1BvXubCƍbC(6JŚS@)hP+n߷>9_Ѝ>|^kz6|}qׯ5woϜ]]աq=̗xϧ=Z3_~~;S{^B{(7^O\כYhɽ^Ozvxs wǽ~vq=w?FuvxcoЌ+̈́?>~q uĭ7)~)(9A^i) MF!hWM@"*i<"yвM@"x"/b8GDYan=Dtك66y~ySnjf& WXٵ ԋr9^W{NmrKHFYּ3 E hzME&eqmZHW&ͪh{/Mc5yDc8.tte(-=e;<(x70q&"$RQɥaݼIބmPGaSI5f^h {j<MP]PF&l{qc&J=2K%m#+Ӄǟ3bj<#$UfFmK%!׳*SAED#=z6E< {)bt>]{H3n{*"3t>bS(fht(k &.t}2uhYK3]_v<"^aE%O4#hy~%%чK<"zE3A?4i{)Xu>KSZEЋ<"z*} ?=aU[o RDRJ$ b#y~Fm :-Pxس.&eXFK9WzOA>lGsW!}*Þ|_c"W/g|_j.ƫz`W=4}vB]zU5E((ƽx4}mYxͮD9>k" UOn*°s1ѭa;Xt~+m 5Buh;uhzԸ{劆cv&BakT5Gj0ƫhVښ{=w_eP}gؚ{nΪP}ؚ{f/^Hk _@+g(ŮQ:WP" >eTHրb$@(֌~ڍbQ;Q (6\VbSvt׍bAdQy;(B୮QF`X#nb7\#8@aTbA1A˿kQ2PŘA17 (6>{:Y0Ϸŷ/gA)Ǯ] c\+d8] h-ZmϸKp(dX{fǞ|W"gv<0_Bݡ\f׸unv/"pq'ۮ{k_YϼT?GUzzg=X}gP1uWzޭzƤXjES<z7_YtX=~jr)Bgd7_ۼU4! PPO|E^rͻ_P?2emedCdc\cgp|kn{\{bןM(&E)j-s.H_~RYQ HaJ.)S{QQ0L'eڶu˩KyQD)R6ԗ4L_O]҃ 3'E,-uPL"T[xJ*Ua&(պH*n+棭HPvVIY+i]gYycwT-^os_#,6,j!50$c-BucەtLG^*dmXBea(STӑIڈQRN 3]jmXFkT4H))rp,YZpaZ:cM#RrakX!I)U,C.|IJ.lIJ œ4li[:Eؒ^{=K˽aKjWR}mYR~aI2ZK 06"-URm"---ft(Ra[07Rm]RaO/ۜH\ؖN6vcףH!ؖY1g[h ȰC:d#kk)ʰ-9X mFƙ[kٕf#ḭ-RmUfتg[3TgncZ6m g.)а%$жv:tINmU/Ұ-R8& za[4Pq"Ra[4^.}AmH2}Y5lKNeY 6lI"I*6lIKJl mzMJ6lKagPRY~0%%U.$$9H7} [m$O$$)HJNwk-] I}*|,exH_ia[8ԿmFf#ͯ awww2K=-)SIA}6> IIARtnHa&V>H:l11\HPzUlL0[ b~鵇{a+˶V"|ar(r2Vބ[YGI-jY=lyZqZV:nfὌf&ո[Ol21N㼱V*VFKʚͰUX Ӱ`+G` [g[F2rb+l57FEl5 mIVa-;\>6#Sbz1N9>lՐ6[5尕L6[6 f+Vޣjي=jk/lEK-jݬ4l{VVrd:[-+-ZHmbVlGت~V{`+da++o~V=lhfZfq؊+ ;eb-*iv[ی"eplu2l#l>c+_ v,jj"olh`W2[oNa|b:كj: mVgeꬴ[J[o:sk:͇vrm`~mbX3[yf+k$l7k%[q=a+4Vi*V:ar&BlU;[IVfk -)V9ZUi[OU鰛 5 \v}ϟx'ml`+1 'V,omTzD<׉zmDݦF:m9t?X_=nCewt \ہo-|tژy?h{hE*ؾE":mC Bݲqj:+/V%}Ӿ8G[+0Yvw}q͇^x1l4ڌ.z>n _Dug:_繾|mb6#b:r-}}$ h~މ\o-J|B;2޺x#^㋲z5 |b%ycr#s!L︁gw;sD<4{,j{B>X-k5&K <[]x6*wLm VhuR4px叨L5TrBco:HU<+Ŭr;R*T(VC*[Y2QlQ3a/H+CaߣPp*aTx-XP*da[%,wf&A*k[,%(FySITRE-˨=Ra *xeD?\b](a$X$܇\*s*KVPkj]xTC/vx!xm*{1X;ߜU*}X509–BU*V UB?UÖFTÒʮT ~6 *깣&=:TA THN6P!=*YG*aHE:2=rPÖT#~TgFb݋rJvfȨ~T3#*w\AA*a/T#VPq x=R UX-!T~aF|(gwo)qC (5XbbF\P qPlx#(:Pl-BAo;TQ.'(dXC`(@GdP#k#8 Ƃbx,oQlh('c<(65MKFyb8xk=}B1hX@@1G?7ԀbN6l41syF1z7bӯ6(FPl6-b{MTiqڽbčboCsbNlkQCsF1zcb2M&FxQr5g2 {F'>mKd-Q,1j(F/2P6F14~@d>0 bnQޓbba6Q ' eb'KQBЛO(v(vZ;]x z[~Ҁ (6hbCpr7q@1(F XA(F!%(V028JPJFRZP| FboP \b4hhM@ ZfwQZCȕ*Q: BCX䄅VBJX}>~,zj>8&?5_hy>9 4h=Q|g ></y?B3%toB;4\#P ]v y-Sy!6/1S%o" y xo_;(^ּ̓9;褗.C "Q.y m^4`q1b4l =C .'vIB 4# 6֛X 0_[ 0_W 0/U/" ُ2 5ߟ} ^'P ۏO ,M/zlE 7xHb 41-AT1hprb t1-'P4@O|u >qc|UEHK9A@82~&O 5оjꚘ+:@YGUodh\:гPhbUJ<luٞ+EX <+feM=WIGa;f/x٨öJC1@hECq,%ITR{+eIK/l+Y5_N*eIKEi;QI-intT IYp{; 3u eEb&YnX. kxYXl/mĕ7$EW{a[q<햭׶*(w< c2cޚ{ӛC=h2=/Uь&E:^irkLںH&ʭRx<5="59jf09w>4 i(ٶB'#: S)RV)Bbȅh)Jeny( Ř臛jV2!V::iEZt|lψE:DѠE,GZ(~*:+ҩI3VTO%TLMTYq5my<)f[pFǫjPv+_j"c/E͏8#/+"Zy>d4|lE~+)Pč詛.VHnDca"oz؛Eߌof=4ij-VCq8 eRbqxxK[m;tMB)6gHa9#:_PP''x)6Gc2Lj+Eݬ& DQ:l)Kq:K7ն=c)ZGIϿö4בZz^ aW#M~*#ޑmx*~ga , .oaYX‘m:a"ydK_ތƁHHb5QlnF150687 QFmD6Pl3/`=YSuM('(6(6 ?jnkw"R"뜿QN領8m:(65Yc [Q̠bBI(6AK<'>BYK(~AIcŮ͖P}b gF1Ib4FA_?ذ:(]h575AE2ŖU@ePlFjP>F1'7]41,{oF%FθQpظ+Qlr~F1JPf bB~'.sNXԏb[E(($4KcX&Na!BCh/%(FPFN3x g6M(6+h/(@7D(v"ncuع NN؉+c;AoPl71aXb֣(T tA1P[w@2hi57BrRBAP(V(JP\4)zX!(V"Q{~gb4Ffۨ'42ՃU'r@1rjYP(VqbD(Vh(ŪXh-jF(vڎii=>_*hm+5:Bo񞴍'}'3f8FW8I/ߏsq<ݯsr#p^\5\wmמfW)&4=;t`Z8inЃy%KXOZz=^ <>U/S*r/,TmW'ϡ'Ẁ]U8UisBc ϝ~^4̋jē͛<*7ޡJ9yw͈|tm#?AhtxƋzy &UAs,?Cwb\`4,?5hg+MBEwB_jZgO'w$hjB};^aOR=בaşߏ=N\ :'s~,Kl.^ܬש%z&5U\Ij7qj= ٩10x͜4+j/jTI%T$xU͡Ռ?c!O;6%8oz}[/3$ko_?~>ⷿǿ˿r!auFžhM?s(YmkT?F^,:1^lYwIûͻ̩F{\c\o{\=r'8òѐ. zTnţ-)ć 㺾/+ y#߾G_ _Qţr:G_I_Q\ηy攌]*,B,Z0yyw%6sgiu%\\EJNR!}}ѷL-_ힴ|V{ z9v^w%/]{1;IEۧ^_\TnD-n}miv!r MRz% J[T>.%]#XK1\37('z8Ex"|  ME Jgr8$/j)_9NE>m9\/Ȣeb"C4:.Ցpa8i,N= hxq$?}Io WQpN˳UhT$P3Jn׊<%KuTh\RbbesE+~aY2vĎN:̎ Ls$%Q;.:*p}vF Z3Pzn>luo F넔MWݏȒ,pW E\6Gj׊$GB̂f-<#GpVZˣ#Hӕ*xt$  P$LDgIV4)AM6+Tunl gV-!uZ[;̇pc)sۃYvӲ[#M9)>-Rr| ,^S|#9jHbcfHᤐټf%Sm8:aJ=3R4 H4撘T+G/1I~L?Rqio)hIե?[#NCKxU{)J7;GKa wY57~5_M1.=4Ÿ\)f(Rf)7~W8bfb&]SL1nnA0Y혢ᢘq1TR̰(&8"#)=FQLGec0ScG\M1Sתb)QLuIQc꾙 b=6x)Z(ywS̥s)ihiZL1Fifq;S -D1+SLD1'N_(QL)fb*Sp$S -L1t1 Oob|$@3?bwb&])E1420boL1t6hP!Yc9w(f-E{)QG(ƽ bAˤI Qd(fR3i$p3`*)fZC)fbb5NL1(fZ3!Hb&f(f:cAD1¢y%*)fZƦYhё3hݏA3bf[IRt)fڗ1Ű3!HcSDM3#&)I1}Y_9>6PZi8CYi%3]ea)fz)fVJھ M,ip(w%郞vBq:f:Hv4$UQ +_s^H|C|F8ݢt+K7ԽYI>Uw}nQ i}Y>[ߩ/X~awz'(-_C%F];Bo'GWّ}3e9[Mv$n%{ _ 3w:jûG,3RaMJÚpa-I@B@.߭`R?n,r;EV%vݤ瘝"DPRvI͓;)TKpG8iM^~;"ſXm%(X4J/p:0Zmp:Vl1‰6 gȹ˞gE(1#V!ITJFq^\+E a5шh%'0$y?&φ|zOEVJ|r[QU Kr6dR.K2OpHUL}859'윝0Jt:,mЉDL&j:" Ztʤ ΁iQ}، Y:-~*NDuNde:mma'jR,[=;֔4\(fzRo-a۹БM؍,Yܖ5R٪՝ )&|$S}'z0:PͲE_ -^,Eؐ.p'7@yY$kk,/wƊP 8/͙7,dFJ5:^ݭLNޏZ|HV^'N.4SʒZJ~D{K{oB@JrlJB|Vbˡ)k/%5B/@e[Ot̗x_agCzzcdžq.3NIC.m·7(HKU2@@Os(@[2=c iqCπӂtA7[kz@ςS]Cvt9$v@@n"6v(Sh'!l!rnxS{@Og z.z./zz.Zz;38yW,qx!c+I@뺡j@ apC@[Ѓ%9@ϴnNJ;@τT= hxUZV%rZzb;im"gwJŎ6;c솻c/Npuo&vˡB&F_(pPBޕF_$2'e{="(0 n8ݺ)̾cR95ڤr-_r%-}:tה?SV9dƺ6w7Yg{z=nzd{w:<{C$굮|,_w:{d [=xV{8rh4clŇ_6|^oу||"V.5tG5(K hTWGC h=HIhАY:Ec#eʱT,5`H:g,(>W"9Kiӭ*Di~Ę)v^Wlv-ώrTݛ.)ԎJj;hU|׈PIfM+YQkzߋsiGr]˔i5EWA}1>i)p@9BpEBS2ee,r/h=#m<)-Z%.2&ElHn Ri-[Z9n5z`.4VZwnud"cqpECּ$t Bs*q B!Ƿ{OZ[oMs/UK.6H)0%tR(k: ^e`HsFoBs15@\ Ej"ŰOI1l) J1u3zx(¨RÖT.հC5lO*f%'5NZ[5l R {{h|cAxy(Ԇ] `nnܰC!7=5K)6N,IU a[6˽$߰+и Ͳsz0NRxNFRlq(<+FR@Ϊ):g&3l+6H ?RXz(><*Zۊ9[] a|7if't9gv 4i&v7Jͤ#j9rdI-dvb6;YvH:TS&vf'KcnvrLeN˔0;Y#v"bvr vZzN>fuh, [DTtլ9Nb'*nNK K5Vi= Nni;lvB0tyv7;v1t؉>Zf'y6;NPf''E`'WN+v_inL)E  N~b'KRN?s&vZ֮6;-Z{$;%x<.zJ4d'?%h P $ I9'B%X\–4 *A"/Jb!7(%G%8)R.gAb)7HR)@&h@2R6 R< Ww53H]=7H! H5 H5@ zT:`cba,+A#o‹Ab+)ZRΘnhH9A w7HRx)@f78zRHR.i)RHqRHRΤl)WnB:?@t. Ɵ]: u҅ uw4 u@jB0H8J VNon+!`vevy>?Aى ݺYf0Z=r?bnv.t?|~^*[Oׂc~ҊN/NZYx>92߰1%|G=COKp2tq|Kn`=|ЕfX/׽,j9RxV$yD6h[@.I\;t-RZF.Ë%Z{kK^S`lMM X_MW? t\cdxYQhwA%z84޺#WZoL{8bf3G5A;imXM,MQX"[cgn$&dLt}qdESd~a0׻ (/#8&#ٛ(>Iq7~JPb 1^8 # {O5"E%2v4kLnz7]Hap.'gU8J?isQ)?xa.RsNR;۾3E#w7d4첻ƨ?=zv߯8kvp@jMQ1 ''IY(`$  5q?5"'s\3G]ی _"shOwڱn}-J̾cDLJR*Տ+$Y*q}ϾT{{*U) Dc/*??}BR''AW[.ؼ2D1qYe>K&Z*{\!ʨnH!1Yv;]P~ 4 zxR/ZFZ_.tOh2Nү ŔL]svTg* (L֒K2/ (!K&I%Qsڗ2L֪޲1YzkDkgRp@&\UIұiJ&-9jܑvN& ̤tm"43Bf:¢x%b>a*Kn PJ% T*u0Y圣ɉauhQRm4BL$R,.-أ¼nUBUI,EaҼnq0G{[:erVdK㪧hT[ 65 [-9R?"XTJϪrWaoq3&G,*VvHmT)qEj%tn{h\ŵRb|ˀHXwۯ/m5 ZnsT EzfK=R? [oG+4vZV2[>Y2~UYS05t$V$KX?<52x Nvn۰$WvGrhbYTzhanZs] [[$ ![5n, oS{İ@ ahmjC4P/ [_ak~inzH}#;4^ªaׇjؖMYְ(ܩazH5l+澃/L_05f6 vVSy]`+Vs [9[y+ll-l="ff^v`+7+ U`E_fU=`)U=ت"n'[UdUV-XUElUQ셭`VA6[]1[]1[yf+al`#3Λ\ ٪[꟱l`+يV1l [7Ud 5 ؊KDl `+d`u,x4[]p.4^VzfkZo\* [lm3[].V{-7[]Bluc.dV{6[]A3[][],o~lu2[s 7[[]\.ԶVVUڭj\}Bf+רmjt2[:́V\٪#[nȧx`+V[ќ }f+(Vيa+$a+ lzo.' PU+lfZmGvQxxF~χ=,9P z}~Zߦ>Gu<.)~VW  :yQ[u:}j) 6y[އ}lZfm~n |1۷^x>?/*M<|v:h>N3_Uv{>hjG_auEee-jg/ /+[!aDؾvC߾8{կZsܱkb׽׀c ٱ˰ώuXX =b1E6o8y4J!cٝ;'|C7Om}^CC;eu"',N̛h&5.^-M?pINpA\Ӆ͎Njw,t|+%E,!bbRe'FR3q;O!Wf*|G\pf'̪h *1N'?aOtf@%'}t잴ܕ+|$%HQ8Hc]p [ Xso\C"\ AG9xB Z+`8xd)K;q$xcOB;nyO䡜rFSr!%N=~.o/w)ZȺ_^-/PRDeɦaE n p`7؟ jp{[:~㋅b i_II;]܀뷶({[X(ecpĔ|BUvRiJ2;)S' $>('\ùl}ߋ僲ZڎK|(@revQ YG ~JbNI~H|URȚLVl*-NZvTb}('z>Ԥ]!v7ԢJt6UQhPBW7Kv$ik 7!_!wa]]xv%܇0qetM; lqtNJUTeE5?"lV{TZq#(iTkeThCM&C{˴VNjq9C>-\6Ƶ;WJuF})4:wak?d2 (yР7YD/C-q<ZmBh aqՆsCvy\ŚؠcQ́P$ f; Ŝh(@7XxF1o݅ZQE0ib(FiP:iޚAd{:bDA>QB!(c!dIbFF MbT bwQ9(&(fb^J7ň b"Q(6TؖH5j.4bFIF0F1*@1ΠFP\7]o2:QUŐ~bv}6Y`uXQ 5mPPb3~l(8Qgz;h(k]/b Q4XC(֐E35Vb^AVޚg%*b cX+_75XaQѩ(֬57e"wFf$PK;(֬ 5HżqXwP }P](FPlx(6ޚKR<>(6caCF(ՍbbD(FPYݍbP[ c: ź]WP'jB]B(֑6vwP( b^BXw+{PF^7 j źN@OP_P)b&FN ȠXf\P (Qz2bHXGn(]""*=Q3߂b(1YU>*v4Q_auѡvFO7h[]w1nGfˌƻՙ١<ϠC;q@w mF:4N;ٵ8bkbڮ+ҷC=\#4^狝~߯'PAZ|rCE(VfW{=|FU5FCWUAr<^~|{n{.c.\zq7xCӆ׫ {gqٮzwyGᵛ`hjOZorc=.zs:t݃bP~fMN%4Ԩ7\T./z}M.+B[7tHh :mx g^$C˼[p/SuOWvyռ^|>VsJ;*Rvi2K藖LY7ϡgv*H)#; 5Z)G{Ar*$Uǻ?ZvB[ȟ-ތkQ? ZHmt6:aaשŸn>T6'W!o8CxM8jt<zbGqwx x Ui[#S|טwC[+v[܎'UZ;t X܇O=qWU>XF6_[F6_WF6oe{EuDGQ]ွ+ cb'  ø?Gǹցp;@ OR|->qA -'Ѓ +Ps- 'Є(W.T-i_Z U|+'IWLƯ828@9HY8hW)[6IB"vDRB i$`i*Κ$vyU|S1/8;DKP)"@VU$婌Gl Qf)S竖e; 5K2+Q '׵Ǖe;7 \5I+  I Ԏ롕7hXh,=Z=)K۶kdYhuSi~:^k[]e!L] ݽY!jۮ\}-\ۮvvUu(ҕk?kDD2ԢP^W($2t?kb]`9]u` }`~l =ڐT#bu]We3O=LH-)Ц53w;JB¡PS*R(Ia3f]JBoގlm̒-Yqi?d;CYvǭJcVfhiP$Y ̰%_.=\dE(!PxHjGxHjgh]Ex$nʒtV]5b -3s}?UH3+ьa*iho ?$RKow/PxaI5l8GSі$^ölU(~ Zwա%dH!"!$u%QvH؆-S,}!akDnCR;lIlKb7lKbb'ްv [' థ*Xoo$1'IAa[8sЎr$s ۽RR"9lKVVn!^$>l$$ -:,)!آ3F/U6îI~J:lJ:짤v%KB;|^7IVŌzC2Pk=. 9nG(XnHT*,T3v<h؉,$`[EfWD(6 up:(6tņ((6D-PIӤMVQbbb(v|M> vvbAPM4KO]Dh%EsuX4xXnXxA1X\ߢX *aڢXv*yA1NM-m@ (F*T(FCe ͅb'?(69{+Mbs %QlnODuŮPnfs{ؤ&M]@I(6Q-Ql*&]Ql2wOPM}Bcu J%!%MbMb0Qljbө,Dv7~bK@r+h-s(& b'//B1@֐(tžqH[N/]&2b[N]~\(o@t+I[zb:b.XQl]b%nr]%N\u~^Pl ?y ~_h%qb-chӗ7h~ܯ躝#y}Rg徒!д@޾d=5e=5zS{<Q'A>c<%-l(!fԏ[vj+sV3>)}+(7MΒ|n7$ctmpHO:|4B>?R U8|mKvY滔6,X`h;zϷ?J/v`C #<\P?QKY=%UO-z^~%싮-Kg:ZZC*GkX "'mv,]Y-~]g2Ph~MhA%'SK߯D endstream endobj 673 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 558 0 obj << /Type /ObjStm /N 100 /First 879 /Length 1748 /Filter /FlateDecode >> stream xZmOF_1Çx*@I# A`|9lzE_B!E!B'33%I92O^(a-td-?ew(: )EJzBR+R q_Xfx+&ࡄO ЬҙXVŒ6ҁp "DOڲQ逮l!f.`+z%xzdc" 83^R Ae\&zIBJJ_"YLd MJ5a",dx ݃00XnvgI2!P ,[ wWf^GVcb7^bF(ck˽a.ĉge ~XȆ[c[M>\a!R S,lw!&CTL@(/D̘!I&$EWB[{e2mCG b.#G6܄ BQX =Nһls3W$~_E_e,Hȓŋ;7/av|lGus fF⯺jkN}rRM::BXvwո:鑜V~\u]-N'ŧJ崯DYOɸ}=U('m#'xХ(˪Ũ]݉iQu"&[ըˏi1i/Ӷ>ZםeKtɑ?{x-H )Wi@KcE$Hj[;w\MnrAPd-sPr1P7b̍wU?59D.ۿPGHowۦdFFY]t^'޾9dg $H/{<`]EOh8Enc,DADbv:c>`(^4A/$^f|9Ty`]xۓ` ]/@rR*%jGwszO&ʹ?iYM~W;r?r49s_vb1&_fuYcoե*b"TdA $ϓփf>4aU̮aee2i)sZvovvʮ/Ē[hf%77j|o{0>Xo+XUhn:g%w Q}~UUCr UOUq<_8oW^04֪`(zX;y񻀜bv~MfutqP߸ZޭX^͚WkxO'Gg[mr5Gyj9(" endstream endobj 679 0 obj << /Length 1688 /Filter /FlateDecode >> stream xڽYD=Z )Q3Q(mhx@= Iv7-&㻯9"J7D.'/^ITEjhyI$N\-Wg"3~jh-WtwOುN@vI /~v l~n ڍki'rP%2{nL\x`)4T*E 6t'(Ams׏Kr.T2j,&/-@-oEϧ r6HMNDE$6Df$l x2swg\pY,eޢaļ@a_sq<9~z h?B{K&.#8Db_ֳ9|4sf9eN]lMOn=6`=$)i=P~ZgiYaߒ2/Ss^08 f>Ѫa& :fĻs.(oJDGPPV%}6#/a2+HH,_.Ժj|WWB<[ȓD ai,ZhDq68%wYtl`>})e;XP*[qVAPO-l$Fh[&UiRLT50AhVʙ6_{ݕ%܏#4"J]AKѡ"n8R;) S sLo"O- F0t{F#quښ;TG=>.)Tb xBHy\ke#9?X`H]ow'")Te-m .HA}}-H*b!Y"Dl@@&n4u (Y%@ ł>! *-3c oQCP*):2K%}נ˜A[Qp.S90PAAhAC>M?Jq% IAK<(b 3@[۾{*UռN_5Kud%,$J<et"<I|%Ѻe+{[A.#Ta5 Xws ۊBc%b B"E_Y0Y%Ğ $NM I1Z+liF|!A_ptj\1m;+JG7Á 3?7q҈r=> Rđ^k-Œs 860"%K\J<ݭd*?íTp?1'տ3vȥf|i6\Bv[rg>8]o{‡ʝR˻Eݧv ۠'yg8|g~⹣7lhq^݋˰ qK%,צ$]:x: BLAgxba)4OOyLjRF;hvOd2xkyK@%i> r(v?L|w^n ^> /ExtGState << >>/ColorSpace << /sRGB 685 0 R >>>> /Length 21336 /Filter /FlateDecode >> stream xK&ɕ_--M$ HDZ4z&1"{Jd 3;*Vճ`ޛGxQ[_~?/?rw?'{ỗ/us_~_^?]och/~?O\S>>a>Ϗ'_}o#}Sfܧ4>!?_}ʹ#m}nzyo{!Y iM+]sQh.0x6z8Z8ys8=3aҁeSxo\_ogYGֿ.uV8~Ɠ19SKS^D!q~ZW|!-DZ?cyrPzJ[硼'">3HOHOɈOf~W _=t'H}/l[{_3sjFZ?\l#հgb1AM~eWk̦3~jcs iA΄ݲrT~iSvS\ {`m"W6ʟs+;(>;>ckfןn5ĶeUO6),ZjlϜ[7SopSj?p~~hcUO6[us5飲߭[jz5WQYJ+\nnUݕ.ڨlUA_)})|4 qe9*T˕kaǔ+I&Iek.key]>66[r`?╇ ϖOuςjrॖǖ~g=N6g-=V7W;MlPm.Q d˹(r!ڒ<|c$>s/Uclg>~RrY|$͎L\6<|:\x0y۬kC6ʴcǎT[V߲gsvQr9>A -'ߨOj'^걣b?]vjooTٴc/>'eϩ%}7OvBM&s\. -1%C0wOi_psHuFN3o.3vِmY&x'`-y_D#%}C2`mR݆l˂;lYR{8\I\>kK,&qZkp9E\*dc| Ͼ-($xqZ3]_>jg-1fO{"ն(K̾lטүy_dƾ$rv_7FL[bf9A.mvlOmӵ8[6C5۲K.#@\bR>9hꖠ-٣O<~}U2۩p.s~hd<&O !gd(%$W~dLajcN2' V> gɘsO$.y&$: g: y gwl);'S SNN2O*G%1e%1e1>D2s< 1p1y̑N2&N2&6N2$c$:1HH?Fi$c"A2G:ɘ8ɘ8$cp$sIIF @'-1Odt19?dl1\pA2G:ɘ }OA2!A2&6N2&/媗tyG #dL{dq̑CK HH? !$s_L7I$(IH'#}0y-W?$>HH'G9q(dL^$s̑>rr(dLFd2J'g>$s̑N2Đ="'#9rr(dLdt9IƤ(HH'[[>2 1HH#'I&$HƤ>HF81u qnn`B:o`>_G@3.R"3e_\ )Q(ɅyDS24e `jJ} /R ]皲^`Ms ^?x6Qq){pcr˩){f 1Ǭk I&0mAIrJ]0Ǥ;f`c/ RiuLrL|> 'CI`wLxLNxʾyL:yLcߘsPIGL`=&dq r1ǵOS`Џk<`\Ruor rrϳPIj JBkS L>/"!#P4n|B/[5i5qnٳ= €LX?0+55G#q\8r>Lӝ5i<HSNHbC #[OSkqQBs htx6]k<K;94v:05ԎO8?]NPatgnxR/sQ/K>_j<\_0;*=\ܦƓډh ե\x.]5ԎU/^Y]3hЕuENяe_YvH E1NU/,;-fYNNJT*m$P1NI0+?eߟU+'fm 1+sf%f?&`>40NC<U"feHʺ #fe6ncYYĬ,%fe*deYm1kfM4r0˒:oe\%88Y[?W4SbbbV<Yy~]/b֘YYsbVIrYY?1+!,x fXݏΈe )hQ2ZDhe}%'K-W>>*Sǽ Te)ʡ*W~  >C9N:PSL9,9Jr ep0R &C9CgT(PO z tu)S'B97rl ʡRRNLK&29.#tV:QH'^F~F#tJ H:+D: H# Jt::rhNFG:`tdp]Ѣ[[6U;ґȡ!H硐#,L}l2H#2H# V3Б@&U[t:Ȧ!t9Hg#}\2?{EGfSϑ=G6YEGvϑ;\t 1yYJG:sΑ9GvYȵ.sQ:9d#+H[[:HpԐA:ׄTsC͑UCHc*h gt9rj fBetTA.a#EI2BF3d4Z #BFE D.BFD%7K?E7BF0"92r$BF;E!##d׿SSD!q3R/ )+[aȈʐc) 1s& 1fs$ 17s" 19!#=2by!#w 1 12'.D(d[i"!;.-ѣBFs9?BF4QᏐBF2!!#Jp{!r{LEȨCFM"$VX@S讧(dԮI> +.}BFKQ{B"wZ;d!wȨCF2Ә|;dDQ}eQ}(2Q}(2T9R!#^2TȈR!ѺBF2W\4G*dT/1 FQI2E2\GiXEi/Lct$8)IQL]IU c$HNL-9IqL Ö$F)I2L dk$ɰzKa$ÀI: n$FH2d$tIa $$II2Ͻps#IݒdIQ$p1Ia$I2TddN$$v$PIFKI2\c)QE$d|4d)DM)Ԑ]LH֔BDz_z^6מ8R`D~=+gM1RẺ&~Q2||W|/O?o}YgmkGpe)`+9tA.JgHgLp!Ϩ3B3f9l7- k_Ko24o?X)iˑ!18y)?zݾuO4}Ow{x<}7=8 onWۯՐu?v=#=om2Fs}-{)j -lH~L`l ec皯PoQK[fk(35 mKf/ 8PbՊg΀8tg_cm0wP6f?|10{ /{հ3'a|A)ʧ*cP>15|16RƖĪݜ֠w_0_1]x\g7a:V]d=]l<ޯ!#Ҍ{IGRqR|a[VY[Md9#s-QM0ؙ//nfRLxN*{ ⽣4? G4u4/{T A,M֎i/{B:˞kiƩ Ou-HK*q\MA'G^Xw_CbPBm'ak!.VDq|=e| 1&6ݝI JE>&6P&wiˏSMoXۦ1w_ylE|ǚak(^~[8ls߮ 6n~xXޡ?pԴeӤtOaNbC-( a^%6=/ql,gUZ0D߫P~+Vv,tҚʦE{-4̬WB1,zq4EX B ,[_XV5 Vf[+x)cMl|Y`e) l/^Аٱ&²5uǚ؆JB@膕ٚ@- M] 2 5#֌X^3zb7GhY}]25.zͳ[3Zc ZceTkAkv-hTKkxkAk̕t'XM^kAkF5lLӸll[+Zce®2{ak^Xb]b(:pS($+ALArjRİNևΜ5ss s l˛::}uM6`/dG/ۂ$g$^^ڒ5fإ-H]#W-k-<7H'-\'%ĭQ@[ĵ5tijJIkT-!Y:@Y YXɎXOv lEFȨ#8򫪶 [ F5VC3jˎG*s/G``ќTe9T vTCX ""'jjE,#ꤩr"ajp YjpQjpIj F\FlVM!fC .#B ]AP[fM䧱MQHOmONC~@D^NN^'.xps?~4mAj26+;4i2@ɤ(i&d4#t?i /dF DTwn 64u La@J\LH/ٸe ,NY/#+C@Ȍ}UE6E4ڲ\d4+T"hV|*bIPSLHDN"uI leIJ.J@+߅sah#Yh ՀBi?Q& MA[HA[f@ vyyH 7"ݑ` Mz`&`ğɻm|S兓*g2DSۚ|`}NgcMˈ3]q؃슛/'.'T ]tq&2Kkɦ$+b$4٬B_pSdj 7ij=lнshțlbEU7M-5UHMPDPMLIEєXMFED`MAIFhM"3i 2+$UYUMd hTq ;)2kU/"WdVe*/Y|"2ӝȬrq7 3֠* 3ռEfȌk?*k^AfsU If\/dL̪jY; EfEfz"2* 3ZDAf5[$3Af.%Ȍ+Y9YSF2k'8Ȍa85G"^V^dLLWOv pHf\dƚyYdLJWѹ2v/Af̸7,txAsP 2cY.L97Af>[FG9ql0B F{9 8@Ţ$ W0I/ǥy&; Ɠ&56;c%ל+ɦ)V{- ^K9^RUi] k=YRzrZ]L̵r㥐JH0eCw9a(_eBӘJU*d2]dY*SLVdJB&+ 9_d!Ɨe&_CdaRVVwe[ d ,B&21dNf8f2n+ʐd3d 2YY5mfIfl2Vd-YLVQL-x4+dJ^e&zLVC"留qd#C&(YܖH-S𖭺y4_[LW&tr8x4erUMyo-L?-<-_څ`o][9],MzAϋ,3gR"r&yǂL +2__'G/xV 3eqϋ{$UY;1<3{eL#|2e2;4OLOep2x42;-/|x$oc߰uNcez-[9G=13IC? (N# eN-[WN|aFed@N[X'o^>:O"|7$yXC'oYƙ̎ FN^}(si]-p i>\}q@\!Lg%^J%J /LgjtVXQHgt-,"NJgeB:Y1ij09e:+t-Lgq yHgq'~ uTg:(مt|' ^HgiYT ,9FLg b:rR$NgUYrHgza:KN YJ,LgѦP:KTt&( ,+ 55T? OCuwP4n€N[4ANx98Y4d94{."mdRNL>0 D^,"pi5iitb3g!* v!) M,68itacJ;% תFWit` J:ho h  \9!kh76h $ EÁES$ ' ihLC;c%Hrǥ] AĠ(5)HNB`nuG w)iJ t*tJTc旻T‘R]*$WCV.mCwh6ݥt 7rT%[wiOnD*Kr.袻Tkşp WR UKܥ^p*7rj~UL??kş׊?W=:.w,wIfK>%UK.j ܥrTܥwzck.UZ..R$Ku.U8T RtR]ںs?o3k׊ڥKwd, "c-9?X3z/Ln'MƚMS0yS3>rZ&09c(&&cnt1bTX n!ia^l![HKU+/q [2#n bv Y^j^^ 9K{ck MnPU(EOX+x"+r,!g U e ^eɍQ__B9(/_QUusMu |U# |׸-Xnָziނu૽ (/MT|5$|kM૩Gj+j]'W*{i/kG")C/#&|=2ף4QT _OPK{~z^Q*kR/c*yK[F `VΌm _z[0ń.#|mMx|iWτQ—m|aKez\Q*c(5zD_Z ԗ]e<—$ : :s2&://9[5_#1*D,U ԾF58 d o6_d]oU>P; רr_%U%7U5X| v| V_G`_Ђ/-||ZpSuL.`)[[MJd{O/͂n8 /K¨kh'H z"I=bAO7,話 zdA/ɤjɇ/1hչa ^W,wAOʂ7;SA/+gƂ,iA6 zJV zł*q7H  zItʀY]PVzVg,e=Z `!&QsQsYL^j +0|w*꾰|rZ:ҙr2y=W2+ 꼑&K|, z~qT2y-rhQ\> zBW ={)SWGӑN]%Yɫ݂kq6.um9s":9Hm8.^2y%@,SY-ٸ@H8/H8T Hl@0 #fz7 <$#3l^ԑC6+td琭wvKG":[e$ Y9dw#n{IsCBGNٺ"N!A4HAGbo".#kߑ@=K؛uv",s$&*hL\gnN]оmNWv֑ݩ;jܞvwOhZ5 xF+n?3Bg`o xڇ_"B^}q8Ǐ!sU+vs珿v+~_t[mxnqf3|>ąUK ?!'{<SзVkm]E[y/po{y z|c=/ Fu/7k,͡-K㋽RlmL5>5{܌ ۖSdVŠM6 fV}MX#=o߷{8S^EU򊸯xy4u(3<2~CAS|Ӹ^5>>Xc_hk,X5W9kuoˮbV~]58Ύ5ý΁54>+4kRYhk+}Xʻ ]kRue$wƘC|M*cu 1fP545~P/jϖ֤2Rk5lR445xVxm-'13W|֌44Xv'718Z~f;3TmzQA65-/'зns1VmNk[)Of9txLQvOvʭ,nslrh[ns~h5ajx2jtVmV%6Z3zm.f֢ۜ'E9/-bܝm-6Wm ֺ֌xkm\-wW=mܦ5dӶ' g=kܛmOtssȗkq?mDܯm=m֣ۜ[G97iz88ztnsn6lk[ns8zts4=mzD9rۈnsg<6|ۃ1kc{ؤGj7\}ISZ Fr-o-AaZ.K a aIiyBXRiBSpBg@VCD3HMY+@G(!x0lza* 0Kw"~0OoaQ@@\ 0 npQ0*0)@ sa02~ƀ0,f7uhbgBm4 4 `\frd/7M'f240Lr a^9Yy@i@0 ,cL7ߓ^njaI/!,*K aH&%aAX(@X’$h %t [ C!maa a  dt~|C´y ,y ,qE 8@]O|@Xb:U!u2c ,3='˼> rT2k L{A&x=@5R²n aY7E̅fKK$V8eM:LFm)&MbqSH.XܴNc,is^j/s ^ʖKX4`,eecIDc*kKڿ0Xk.Ɠ0fk1c rdc cKcK!cYYEX<Ƭ cYDXmJ0ٞL05a,ecg9a,$ٞx0`,"eEcYekfzgJR6 0V]2a0 '+YY1X)z 6""6Ei`pWXQV0Eۂl ac0,3Qs12&`<ʞƶ~nStXQٌ0VؤB0V:H2`,J+]Y4  ƴ`p`2#`i`2(c  eG ; ; T0V8 { Ăf6˜`L)aLL+6 `,z0oW\ Ky c1w}?pȰ4 Rdw)^FX)̬SdQ)8ɦȦ&xȸRd^8f ٚ RG25'rƬk4Uclj/?ajʀ)X2{ T$8evcjW'+j'F+FK0l) ƪ.1lXZ!C/̐5!kZ( Y&̐! 6QC-2d7SѢSf!{Y3d2t̐=Zh vʐ=ifN~ʐaƢ2d])3d!r!ڜٮ2uW̖֐!aLQCl* 6R ,c V]e&;(C6^U!ۺ]Θu,g椉IA$emIELޕ!M[c! kVʥ&Wfm5>s1z>y./K$kc..#6`xKK[%0D-HkӬ9V8JHd{ɸV1)uc*\gѮϗe7£-&:h+fz\%9 _Ǥ": Z£S1 9 {(ccZvW R`uP ڷN<ǼG |_2ݯCQx,аXl2KQs aᱨ WNKPxTa_򨰈ca!^-7UxԒ  /㶟b(<B@JٍjR`XV:kV 5*<|k$u ct#kWʭtTxC cм`£Z]xEYxUǖV(<6Xxl7[>,> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 695 0 obj << /Length 1904 /Filter /FlateDecode >> stream xڕɒFW|#q./ ldKFrȷmjLjQo8XqaS8P㨈U`"(*Tb[nMmFßM,ɉGt}Q,.2LE:+<5.OS [Z+/^OKFDY\SaLQElWM_H7psLPJj(Mt6֩ [ YY7r$}.Ta}ޢ$x2G`W,͉1gՎVpLLri&5hp6J%yEqC%4R=ORmRq<,Yɴ⸰h(~;Wn#:E:݁^!(੊qahc,I,؁Nj`j,m(Ilřߕ`ݵYhgd'U%uM|4ٵwJ~BJ2ʻhv)԰FR_QV8?VĘܚ[IJbj(UEEU '/e9L=f ݱ{e4iuTsk~exOzէaOtn ^NFWbX*uȊ RՊ]aK;r$pjA ̴ߐSۡ7;{؏qqP*$Ky42 Hqi0&#"h VaZ6RIYVyYJ!i,iSfuKbUF1!A-@v )lLxFD$ G랳ʠSNݏ9q=`9̔@f:* WkΒdO$t6;XI dJUT^YKᬇӳpyK ҁqz~feCiG)reya|žY)Ɣi(QsDI$2IQff2Ao(ߞg%^Q;ǝ MK\Gʿ9pwceD1:uVĎI3TP` 3E,{ Ad8%p+׶lX Es[%*m 4{9xT9q`Ԭ43Sq)ꃰɩjã.!2p=;1]gH5MVHK#~ ujt%RQdCՎ2Eբ)Xr3#s1 <3g+-d=tE( xա9,A!=]9%{eYrJB.80r״~ke02 uoRAr֩˔J嶲s;Iћ㗌MB:tIZPKxyZD!vw]dȒ$ ]L'vGFHRgh y+,Ƙnt0 nU" >F| p{%~=Z^&3:3Lޜ]1%ow+~t7h* "6nL EΘۖylUt`ZNV_Pq |ohLIrai2d?[ {I'#7hEj71^p2 V4NRNl1+[\_M^ʨ{(\߿_[3]"2Bta[Qf !x'~685\= r}WCpsc`yTyϔ7>{#QP;j}E>=Us ?O$=\DZh=dKQŠ0^]g GEh "  i[SIzU2'AZawB!!s ~ T;S7IĻ_3 endstream endobj 676 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig315-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 697 0 R /BBox [0 0 504 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 698 0 R/F2 699 0 R/F3 700 0 R/F7 701 0 R>> /ExtGState << >>/ColorSpace << /sRGB 702 0 R >>>> /Length 2640 /Filter /FlateDecode >> stream xZKoϯ>l/M$H( dY팼AbU YMֳ[μ3|6>}?y毇bMpaY79vpvC"%IBJxW䇄!±IBJp.CBHR$!X% CBuq*VrjXyJY 5,ǼIN]` R#0 OΑEکwxy׋v].6.=(uvVf8w<;3[|cRN%u1) :ᘿn->J~0O_yD+鿿>>^ߛO8M!ߓ`_\?dVKhkĨϛp}ɾ0ABsBBEApݒnv7 \ ^v3x I83oPs¾H%Fg)Eb.1?KLџ$ d eLu}yϹ,9sips8l%Ѡxw8q'!w8s'Aw8u'aw8w''Q7 8pفM HxA h! GРzpQ1<:cıcgM&|T 1 FOlk^ `′Y-reGoY^0ruPgXaY^0q$t!K0 & ϙZ1ރ:[:fi!UHc!"E>*v1 F6ǡkQ%wp. Θ`Rxڮx)MY:P0DLt)Qx]fGZ.6`;h߆!\<*d8 &Q!fbp n็V/6`qL(t?r,ح~i'7C9Qp[q>b0 ; 7C9QpS[ (w [Nqi'd7C9QpN} d V%v7CCLWߚ`$"'; cqt(7W9s3CM0 l!O &B]B 0cVha&Py!:MS#5;Ȏ_xl@Ia kk[(쿆`K\{c_C9<!*HP.{fofGԍLu;:&eD菼Ҽ3Oi 7^ړ 8KYZ=p=XrqpѢol,A\1;(v1-k<޷×*xh.9A6`}:&S05"yNyc O3l2*/BX;)vi!)<; Ln0j0*vCqUSb<|&MG:`Ne=Ku4m>ӡfMFC5Skc 7:CHji n2!¨XO ~zhQgMFC5Sk=gHu$dIbYopӑ14Ska>/J@,L^6sp 9T?Þ#'s`ЛW;X؛}B{^Cva`#K"H H:tWIW&?ojCt@R&H?ԵעqSL,TeJn7ѐ &:cU H>-dޜDdhBS*+ɥL:`~]2~7_xn5ɩK.W '[$.<*7*ZWҿR[?=^G.x΄J!+Z 1}:䦿yTD@`ꩥ(\Št-[/[4/vg at-d_]aX,/K2|SPzb+aWge[B cG<$i#(֟9B endstream endobj 704 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 708 0 obj << /Length 2188 /Filter /FlateDecode >> stream xڝYK۸ϯP天`೶rnIS6ZHrILJV~ >^o!FяduX%=$/ۇwdU*7jUbݯFE^Ϗz}<{xjxx42s$v탆=^UFZYmUAeU0AJSn x?MĔfRt۲̛TWk݋'Ṭ(53/"u&Yzܘq$n7oᮻ.6Brw͛ t2y<#J^`QO.Ē*V:׎xlMhJ|d)rZ8)P<\ Ue*͊FÉd]x{xid=*kLR9TyO#=Y*ļ l*]w!x?x+W.Gw7EA6ii;xAr}{̘`(7Q?,h l9Nlz +`a1:9Jt1M;qt3dLskRe"{X3aBxc$QS$Ǵ4M#Ϡ_pZ"V0%y9q\_Ne$ޅ,mqkя#'iBW'rVy)I=f8'((:ּL1azb :o{6ooVQ@N٨,ZlND=GGF'c  %I~GV__tܮ"`KF݇0{@Է 㛌ƙǥ4&3( Ӫqz*NŤI3ddlKG퍵E"kiLk y :srFPץJ ;K}19ܽcx9Ɛr A4R$I Gב'v9*츐 XKW&Ț;yF<2 S: @B)I'ex92bP;,`o&`D-6IdE#|\:q]&Qe9Ь?o3/н=_;_GίܫpympqyLT)$T7!`AbUi݇ܮh~err;}jFsd!n wx$ĹmYKnBm$j஘^ÕKao=r]J7rc6iB0!n pYho\cRWGgD!Cw413wHei)x>sw\G4i/pKK[o\i |]PEϕV6_WN{OfМ[(*l]Bhgf''A* G{d*ZcG.^2*t~~_N"Yp!f,>)URL.!ՄqsgtC3G^x%4ge&M~ɣ_YrNs/*JPj^-p'JybDwwh?bk5MsQl6"z} Ӌ endstream endobj 705 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig51-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 710 0 R /BBox [0 0 720 648] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 711 0 R/F2 712 0 R/F3 713 0 R>> /ExtGState << /GS1 714 0 R /GS257 715 0 R /GS258 716 0 R >>/ColorSpace << /sRGB 717 0 R >>>> /Length 14174 /Filter /FlateDecode >> stream x}K%Ǒݾ]J vl`L^ faSX) y✨ʯu{7`7+VVVfĉw|xo?ݟ??o!矿ㇿ/ywXtmGmǷ?>Ww?O?O??~~7=f`tG ԚfǷ8xi{zۖD{z?}G o?o?X?)Ʒ??^9̾_><7?|6a<-Y?>o->~x|!=ࢯ)}m׈{E_#ηSJ}I[mu_]_Nr>.u> VbٱKSKo#:n.<_D~U_V^͋'a717g[,v^vN#tNo#x:l`ǸGns% Ͽ)~,~!w^C ~!8i~aC^lΛAoԈ>f>¹٠F\|P#6F#>f/HC6ϗe5~"T/~ D_'>,Wl#>Ky6dᜣ/>} ֽ?~S4KH䷜Af|粶װ孯/9d{ck9RK0>,/VrK]225EVR+"[^Zs|kVklϵGF¹/kvXf*D"os-Ѱ,k44\0W kvkVkA-op690N.V״o֮)k]p eemlMFw2F'* /z q₉mep/~7μ>`$q5%%^&NR1z}5ic Z$qmv}i9kej/-ky) ;1M15_[<KS~cx`X6ojX@w,\]!Dn_\EkŚpjh֠E /^gy1v/xھɋ.y}-d6@\m^8ԃ 4eF1=}vڈ9u`"^k.Zur5;,klts1x}qhҸ6"v6^Fs:Ag[E;k#a65z-z^)^ӚFzm]ƁAH-¶FO[T^nbRNk^8&k^ F^^x^:cZ3{ W\UO2W0i,zT6C1OZoh]/|)ѝ͇oVnN b\roZ8` I k rn\KD%B*BEwȅca+U ג \E;* ΣCup\IDȵ2!\! עm;ZvȵhBA%:'AEtU W␋vr-Zk\m{rNJsȵhk" rA~B*!W '#բOkѕ4!ע=Zvr5Al\ C&!W;$"j!ע ;Zl4T\&$Z=rN~tjܿ>>57|~|^J-lPv.Xizm}/}Oȏ{,Da)n%eOkYhaڶWȳY}ѭo!EE< L eWvw 0hnyf#3/`2?Ytb-*$/̍7~h>_2j:?]R!//~M׶7y7y˓Win( C*79P&ʻO0.yG4v2PG7H^GNcD] _O7io,IxdO1K0>Z4Vh䇎&lZr<^ /.xUxjiͅib *nB\;cHC$?qdRp<]&NחǡD :m&T;ƿAsdLӗh5}LoN &ik+93~wфO}4MnN<ߗ ;Z&&m&vꋣɞ$=Or?\.?w!d ҇#kR>݇Է-wHor)%SiŸM`MlQ|+Zh'>z1 Ek/4{ƍ*LJ%3&Q 24`0gkz6c xL=pn7`3Ɉ$qb%T?~U*n|r?1 ]Đ,Og~}]wہڄr{vJc{ P퉐*"ttCۛw: 6^9_7nYrlsB7p`Ry4F`ùsngMˢk9U40XN0-"~iKZ^{dBA{'s44x[syBP83R5P11vDX,g.Tppy! Ŏ7_ w'm̞VGnO|$ˡ`Ldps7ǃ-%tM4x#`_9yj0#\h ^NP3L!'-ѰTOTdQ/b_ZLZܠN agh#_ N8Pp L4شnn+G*&<yyp#n~r^xz$~&ޯ3 ~IL_gjۈe+9 βxY,esJ`HAU]JBSYJffp]a=h`( +Q ?*aX5S-d6!h]Ɋ"T7"-p00=2e@PŢ<6E0*.G}0|ȸa0#CY˳dT8yڑJUyz-t}*;ke| *XF/i6 @q2/m,NqÞ⊑k3wae5h-C$͸8kKmw,UOLsEftW'- =2$͸^A ,o*ұfKlk2%XNp6ʭOsKIn0Ҧ}XְOtr1 )>dlҶQ-'[\=>;i3YC ˩/Fwf)dR-ScmbL'".O`7mS3e"W'^I[w,A-mqH8C7~8@}i@Vd;$da>j HضymО;,cv1וJ`^7~WL֝ǘ?h\$my-"l3R2>Ayxu2o&Dɼ:w] 1"[I3'l@U clAM"XdxdQw 8"f^S{ Sed_mIySԒ&ARU"kIyY*b0o̼XT(*3 .{̼0%}h<(+󼩖w *ϼ5jymHa呱ƂTZUͱآWYUEVZߵzY[k+w)/CS`%kMy_F~׺;][w+qP^I~׺"']̛́ UHy.mNhJ}^(P ymbM)Z:kPl(XP PK525}:bM)lX+dŚCV~AV|A1Ou(T,ġRf |A1 $XSJC1:kn($:5 b6QPlѓL)@XߡXWJC1HB3B@b= uUq(ƀA 4#Ju(҄bZr(r(֕bPJq(h iB9:]KbC͡p(&WŔPlh[4EVA!ņC?A1xv(c/(hBA1H-u(\5kŔuA| ņϡCCbSPEPl*ءT C1TųŦXCkŦC 9SI 5k:ŔzAIb*!(Z Y'37A A1@BhEibVRP)ǡT Ŧ~OP7AXܯŢT9b^ϡMŢ\Ő/Sw~u(psRTUbqJ PlA ;ŒC1dZP,CnbcxB1/yP,]PJ)*P %fՔ?-Œ_P ^{_AWbYUjWbY%K(E(XYb J eby !PJUTΡX#(ӐA&JCU2{^j 8+C1!B3U)`b`K_y{d3G^U/}=JzI C﹎)wCP/ i~T-յLy_T";T S|YKvyDJ~+ssP?ϝ2&_j=o~mL?)Wn~j}mǖ¿T ~nWZ1nyL卙2-@SR^<3HyK gP(eP(FcGd:nZ*en!*xc4#w2t.ӒxMSyT2miM_IB7E 7\xNUa-<LīHBB}&U2]eLz>#eu<*Tb|SW%pִ?OFF_G-HS_i*Q̥?9\iLAzS j*SkU9Q߫U ^BŪdפoV:]:V%*[dzt}rr=HoRЭUv}ݫ>_\_ďP| (~T=EWfZʍiwlߣ=$E.=%[rHn]a,ţ:`B{Peئ=IF8BҲʒ>=\xxu d6:-dIrT'L35 54* 2'O]?*#`peI9nB󌓕g i  [B>9pOnӋH|:kʞ%eBߘoO>68ɗGDq$˧:(XD7IN XN4:O-AUݎd\߭O^X&96f~ؼёMRO@i1 I=4~+2٠R(5UJ0o2̃AnšNnx]p{2ݾ83 ѕxR90M%ȸt-Vy@n 'BF F?0NW(*?L) yW$6IN Ѽs12A#˰a#ۙyp0`1:ZdxIU:dd = }OʍYLj&f>`3tND3dQvmRbV:2>HxP0-î Ç9N,]'(l XePwp~vDʔ*V7 {OTƙ@BNpVv18"^\:al~ƕ+?k+DOת(j^ɥ*r%uUpȊMoc}x#fiV}Kر|^/:=SQQ^<*(TɄ^B蕰2@䕎LEky>免,TOq^ZQ(h՘ElTQÚYMQ+fa1F5OHRТXQ32jZ0DLF)( $t7۝ 05=,ϻQ[cd?-L371w EGT(IZ5 d5ZdfZ he$J m(l*~*%8P6=2Y_!%8P;пGUS]7N( a(^"35mFG2:x=B="' F8} k(f|c̤,خFv"21$~q]']gSz_(߿/r^M%9Uh[ཱི9r{jbyL/ZJ- .V5yMTLYBe(:u}]߯ܮ_Iu1UUTxƴ~Ux~ oƠn>2>^=[[nwY@3WZ殺~W p#n#g>qYpF#nNBx/ޭ~ȭDp_'"?]zĬIi?m3}S x΢jiw$SI,/^KuP8A$Y!riQl}Av&`(ilu2MU@YO*Ş@Z8m^ۚ4M@Z D @vj>o2ޭآ7e6C>ng}Ԡq :łgXևPc:s܁N[A'4^]=>|(ه݂A .[?Ѝ} zheBgЂO3}ه)o)'} A!h3bl UDy}$gt0F\}yA%<[_Q-(4뱲dlJ"UJ> WKuo}AϭOflьM(gtauniI;v4'^\4DzOOjxgԖ>-^}J#ek^>ه}PA7Qm\/k>_>և5zy^i>륤ey=؇}pd~SXc>3TVtz^%`[:h;kۆk-tGOZW]>W^>՗bJA7(kIO7qnx3= ^}AϵH+4$1haf<zd76>hKrQe>ѓէ9>ΠY_}Ag}&۞>ѠYϗ}AWi[QfjiS :{_H^c>ff.O4hffَ^H}AO1tlvts6c_}'3[&h5NЍ}m>`vg_kސkn+u%ry..!Wjʄb[ r\Me(7Z%jJzx6|FtZػ^Zs""WJ WS WSn W<ł\WItBT\Mt\,Nȵh%juՒD עX)O!kߐ\&ZVbA歧r]"^ "DC. r#uA"㐫j}re\EC.ع Wq孹rw% C.RGK%.% C!H!C.) Cb\S%r)o!:o5NՕꐫ˃含G\=:"brDkl-- r1\CHE"!WW\]]ruZw !C.()\k]$A޼D?!WW 4\9T\^g!WW \ rA9C䂈9zCyA.yr w7!!׈ZOA.  א k.CF&˄7eGd9^kfwL,^SxKx 4oթMcU&ku:~#cxN:y~/V5s< 0$fhUĐ*٪%ǻU%/VxxΔ::ɛxxv~׮J>@}vo'yU%]3 4Sq{;jE} oTD)}ʝ oUՁp}liתSM^"2WdK&*LPD"(Z_w!ȃsTrA8wEȅ!Pe\$=(Rݿ"4tߌd{ndwNJ'O(rHlI*ަ@=UzK\|+202fz Pz5 6TF$SQSLk_>()< 3<?$?=Ou;Ejq:IrsIsNl@W{<6ܓ,C)ZM<_4IrF f"ꤔK9J,A/Ct u#''H#PY ZqDϚYaNҴr@'ylmEL'|BTS:J籶<̯xps4/l']&ٓИb؏^`8MPiO'- J<ٲÒM9zuMW8`'sv&یWt;#ɚ̬ٓ~A:S,%Kg2C!U|J8{Vgɲh/Ds&}HG꤆IqX90EGp՟Vy9*7F5#?o`h DIGy`ՎlTXs<*4Y]ތ:xa4_2V!0O 6i:-&ZGGcIXN iiYns |QDOV+&5cKHLXż"gJ{BG)%45EȌ&`UujNq3W2m7z2= zԘR{Whݨ 6ךކ@{p{"[=>{m#`-<_E^BW_GJ 3d/W)^-wm&^Q|]:JU0th33\|a.E׿hh2{X2/ݪyRmz c+mz]؊llG8[7[V|V|q؊FllG8[7[|aE=|ı߭3~qKc_gR?~6Y *I±g? ֎ղNnGVI33w?y6i g o,p`.NP}jGq 4,y33QydNLģM#ձZ( E-rl4P(-ӀB (+,m|Ms g74:{@8m#|XYRGO%3!sb"Y/6qy]`~ݑxŁex"QHlp~ף2Fqd{ek9auENn_+> qa>eÓPO"8Nbl'O?Q;I6':,>4h?zzeIٺ CAa%`Y>={zp+퓅,Qv?Q?|` dʓ%L~d+x4yGѰ> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 724 0 obj << /Length 2492 /Filter /FlateDecode >> stream xr]_ڼ@8iǩrb˩8\yH,IoO_36*a0GxųbybV23aVƳ\*쮞5:g^uwyfwmp߼}*^sg'x!tdZYfYT0qzx /:fKH 6ҾbkFu Y4KǁuHxmfTu}HwS#62I 4e&yܔY~"{q4jiCFՎs*'ҍI'ĈCso&LN􃴂xs:L,I903>2AvnN~+P+ý]=|H:N9Z[1VGH۠z 3yf2P)TZd;Ιl2s R=_lž8̻"arԉɊ'h h'b8.pD,d6Rg%$8M}X{ѹj,F *rUow׹l?\SH1d\pbo\Mrh Ek!M݉0!d7_ܖF x=q~B^6(z!X jZI(bV NQy tAN`'Uc߹i:GKôq&')ģ*'֞Oن 1%ߣu@wNBkUxP=tB;*#cNڇ)1†ػ^v)Q.yBYм(G mG_?CAo՟9fG: I!+!;Y4>P&d/V8' JB1S5AO .$^T.؉݈ H{g/IFy ML uѝc`s-.K>]8&Q Ƞ$=GH`Nt]8GEpg V"cmGe8MDԕ|Ttije,&X?t.dy/NR&z]_,~:9s\p[&Yk cdO 텓.Е:?{ H"?A)x n9bI/QzJ4nz+R\90sk$+*]յGh@:J.['B ',a|ǵO%cgz@aPOOqS^'KhuIu\uW@qwk1&CD+hM4wn*Bt'\~"RN|8}t+N @4 RM6В}gX\,WTsu\u_y&Iә7'^W NQW*d r}?!ܜϠirRAMK<J-Jyr%:NcQt;;q\Gk7#r]hXVqCc0 ɗpy~Y1P*cP3Sd-մvH2 k!uP۝:y'N`VNr];PN-w<`/|?mk5յ)F@$ѩF*jb6O Ά2!X~I26P;D> rlH ]O}޹K{O'r.Tp|xv.).'6;ޖmT |]2U ˹ߖ`!ϕ4?0ZGGWVL}q׼ | HǎyƾXNh~`<kM,{v(̿DI2o nBsxHӺ~jF |^,n&nfW2vH]!&割6y ]> /ExtGState << /GS1 730 0 R /GS257 731 0 R /GS258 732 0 R >>/ColorSpace << /sRGB 733 0 R >>>> /Length 9914 /Filter /FlateDecode >> stream x}I$Ǒy$J9=@7 "%j5Y`,"?qAWPEZGFbf6t-~ϗ?{}q?}Y/nHGZ|}G}׿|wgo_||K?{{o~7zÛw/K^E}X(A~ ؠ>~ǷT#~՗o߫=Kv)Sck}߾9;sO|'_˟vn?I}^q-vgϯI_=ʺ#ǰ=>{d'}h>d:'[K5D+غoh%u\}"KI>r⦅"mߕ||hj'\Wvgoy9׬tdLٳeu܏§Ocŧ3O{6v:1{O?5k|g-]KpbADsW;.j9E"Nr<۟åP0=g㉟ۊ-쏟dö/gvg_¬Ζ0lI~56s;fNFf66ӡ/.SӄKo>B}$Fqjޏ[ъֲSVSſܨo02V fm`-+v&S)7L)V) cц1(aWMlmڍt cXkFa pw`@`jXШrŨ߰S&Gl 0t$b#1t 'ȑA @ko hHa B+ƒlGeb0dhG+FR12E&lL:E4JV-kmQ>| ȱ@{A+G}#2~#X'Lx?Vȧo?kHZȁց hL rD&J\edK0h- 5\fY#2?-IVhU3dDKN 8"Sj#&U:Z1lR@k] &8"9.GMhKQ62ЊAO lY^dRŅ9IhňIV(ThLdrD&UZ^ۡThLtrD3#ЈLt&__QrD[Ȥ 7'kHȤJA+GdReu Ԍ|r9f$GTFTgċL%@duFnrТcƜ.҈TrD&U2pGdRrD-7rbMؤ9"*#j݅IVȤJG+GdR@kŴT)h-xIV蓗c{G6,n6 ظU (`cU|ulV#/6Q6ƺ gd@͒"1 sE`PfASq[N`cTxYl\,lrYƨz ظ亀Q~y'Q`Q*fgI L`3af M IH`c#1LH d#)r lf#I#S6S;DHȃ8e3Ul1L(,WK`3C6FNb#A,dX# Nl$ lx l$qA`s6WglfѴ8I`3 9Eff8!q@`3ŝ6\8I`32`l|H؜ JQ N4`{I`;(f$1R(7!Qc'.$dl&<'M,I`3;M-;8[ƙHHHVb HN,8E N4`c$VqBp`6. D`3e  a6F&# q %qyglDA66qO0 6. NlAd.`c$O`ڀf#1=W+.6 ; %X+`c$ĵ2llxWD26F, %KDfal\lVI+`cMtߊf%.ql@fl$l$d"]H8 !YEڜprH?UE5Qk3,Ț0^< z\7rkrl+M]=kh״Z#Md:cAkFr FrQUj]d$;s9е \GtkO 2N L2<0ddöXADdv#_@AFql"# N 'bv^ 3Ts$ ̳O=@~3@.+i$aᥑ|fF!IX%z{6 sC8m$7O>5x+L5=0M7BiM@Mz=<4.VO0q\-kh8I.L~K0zxi.xi=aASwA5b= "ʹޅh*ЦkD d+Mїr.K"mCkKKKʵHpTulQhwhwZ]-|2J`w@ Yנ.LoC4`y x0 c`3 OW EG'<9BxO=mÃ+؈O?`Mw;sN\wwxU3ƔUl &ݿ}o< ?\zI+pcgW6R="乧Mcgg8tƗ'HO=;tn" qlcRt6xNsq ؋. kg5*ݹJ +6ã_ _'e> 1`8_B^h;q/DElD"@)b\GVfrDK:1'GP4q0g. .x68 !^;{FZ|!ky'8IxwfDl"46lEzExp.!<&'i dH'oFm{5|MY:FfF<Jtj:p4C8"9Mi*:23Br;ę( ӟ$L;0{vtj" &6'.Q ]Q]f^#,7Ο,B 0 $;}s6Ϗ~}*C`t.sw~E|Ȇ %}C|Y,Ӄ>KqWA_=LNz}&tLa=N×Ֆ| X__hVlIT>ijYAT>ijiKǫx6fxDڑ? 3OZ'A^g E^gȳ]{8ڃڹvgg3 |,`sgiy4Ift>8;wY<(3Pzt^iJ*gp)bg`<OAW" -myLD< hRVAc A =jnbK@P$ YSA"i|Av@Zx/A: (@N 4<} S( d3rfgM'j&$!b)@ДP hf h*{M H. A E4f)M%   DbAcP. E9@Pʙ@P@Аr h(M (J$,n w I hd%A.\2/"AЈy&rW7FDh &"rs%uO <)C/|"D W.@PDԵ +O (@PO̵A]QAF>1j/T#B M .OX[ 9A'Ԕ[.Z&=$*SZL5tL p& Y"IR #j|$@ B)Tew @PUY@PU@}2AP221Ues o& \ 6OMN0*#IAs֨4O>ir6~g[,}{ZiJ;SW5䤤$JYRu0IRGO0JN*' sR6xn]$G.b6}8we#vI_u$lzAhN2|yN㒲YYE FJQ@~y$݋O%KEPܥ7hKbK #T U Y9u]dK].=SVJV%Iתo~rI{WKS @WYDUB )Z<q4e #<Zi[XetNq`|QRPMV C#z 8U!deu JO1teBě]B]>Va6'<"FRBCEfמ}i$asOXB1m 6UN8UCUb~kvLʉr.@CTu5eJ%Zn̢LA(k473 yȥ.%w9e^rK嘲g]7i^Ң2Tmd^Z3qPq( 8FKEC8ϊs9]0' T2=UlyBuO;sx&7p [YU~~?mY)Y{d`ĶYGJb '3[y6&8|/9'/m+o' lv J񴫿 չņ&N@zKxUzKpȇcpo9t 5G|xd{zkN[QnnBr0#bʎJ+8f (%a*{EhXI G?fkajyS@CD`W*L}.1~lȨeoLͮ͟eEa'q}>Ƿ‡m YCcx7 tzaD];lcD4}1mcNZӥ=~"c=]:y.Uwf5)]U=#<#@*P9L\p q$mD€̬ʎ#ކ"#,x, &.2WDuLԒp_O-ѹg1ElG2 zbۑn]rm 9O8^n,D;h\kpZ!r>Il-hՓ 2Ȭ;*[ gf1E8#@ٜQ4M6_C탮¾fcu9Gf.ISTjS3TpB-&|e+rЛ[=T^aooUBu5q ޭ49iEg6V7غPp mcO`fvkeUpķWQYs58hto0M0^SOy e,ȲZ`T($=KIJ`ɲS,/mMb٦тe=;=l;T"Y,[u\lUnl-4)edeˊdY0,[Z(YH`Y.,[t @lL Gx6v1~*rۺȁ-sSE,lqź.8]IG4{]Dɾ^K$^Q{\,Cib{k0]LT,&^FLLTI)&,t1ԩbOijOL< kS9b[\ޓy`rn7c$8G+*MkPC^Y':C:+o#fe|vЎpN<*&nSqujDRhSJ8⯉[) <ᡫ% RuDc]_4U'J(xČ߫-kʐh]8Ԭ-d?JamYUoe`QAA+x:2^kLp?֋pV2^po =ӗ:8=UfF'鄈PӔTv'uD?]We8^uf_7in%A:ҩNt\ P}hȗ'NY>0 /^iqʶCAH2V-g^\cN$vnTTn:GBItyP!˜5C$K) B5< SW&GtMoM ]]׺z.llqԎ( בiͰOȢkm.ZN Wӳ3-|-Up!,^,\FSNeYi+*O|'w 9?.NoӷƵ_~?ung&W̄j> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 739 0 obj << /Length 1183 /Filter /FlateDecode >> stream xڭnF rЈ [P4 \@j(`JTDҵ{mCla8ۗyo >.b|@TZi"JK3$#w$~?Vs1~xʨtSH:X t'vJr~E{؉Vl٠8VjGJLSY -JJr LbA> T5JLXo>.W: y9xhngjyG~Cc/i P؄Ǘ8ar@iJ0̢F9s9űHy2\*ayzx8x~c -,N#,W&W)_sJf+$FFQ bUQj1^JlN 9 3ʊO Lyߣqys+]{\/KY;e?yDrAXUGyfj^" ޕ/qdb( !dzb*Mq/SYVV- =WTȌg7}@(KREe_,}8ێs^q&ڠt0\)HNDk|= Pf#t3,B7 LӞtФM"޹?_8A0x?z|? ͮn 8_=ZAn+䇁ힰHwg=7r"rvJU-+Dkq]sn"I'+XA+1*b%g endstream endobj 721 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig53-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 742 0 R /BBox [0 0 720 360] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 743 0 R/F2 744 0 R/F3 745 0 R>> /ExtGState << /GS1 746 0 R /GS257 747 0 R /GS258 748 0 R >>/ColorSpace << /sRGB 749 0 R >>>> /Length 11599 /Filter /FlateDecode >> stream xŝK%q)\:ߏ72<xB(YJ) 8DmM zܪ_DFF/W矽?_şߥgJ矿ӻ췏ܞ:?()?jOwͷ__|/O9=>|w_> @==`~?{9{ag/׿O~'{jofw>}5_}z(?|4m<NSӯ~OH߼ˏ_ڿxgӳ!Zzq31v{9#1;?9$ 5=[K|9> }}:.x}_/яt(eg9!f+W\[|OnI}%7_۬;n\_s? tQIQ8}}:.:C\%^ߢJɻX(yihۇ~ 鵍9h%7`g7hoAݭ[0˾ w(W[j:>x,&d?|irv{l&̰rG^ջ^_5?36EhVzvqɹ@䯅zZkr?2ki>&| \s\֬mAf{͎3KڛmS)/׷ 2џG}2w6}ud@` ׬!HA&S?̸P 2 #M ?WŞw>,2.m4[ƑdTVCoDF3DF֥"#UQkIFf؇dd/ 2[d^u oY&%ǵ"#N~"&k-2O&2+EF.HdT5l3ЋDF>2QdhbDFeqDF6c{,$#y $%0LO2']~e&I:&;o' nrCpSA) P23Dr rOc( I}.2˰ق(x&Ph?adBW>@ $2(OYPCrH`)a?T.IT|>D*x~2loB˅ԨϙGXr"fN yV>>Y9\yIW.{ =W{,xj=dW>'}2<9!eeeߧOc?f"ub=G%~\o2zѩ~vi RP#&ݟh,MԭMl/m( R*,PtojH4Dv4*sYbL W1S2uICkb{q~mk $eLVR֘^L D R[2&rЦu]% v?n mb-7 =:kpa~-&cd"r\&2Bq͠7 {d{T\ jt%`Jd㐻Fdw=`;N=V8ܯ%Z# ,i`a+%V+HY$0T')4 OV)#@ʠl*BBIvhWa ޙHz!yw Y`FE"Zd^! rfbl+RIBl]"$r>׽7|+* w@j"FU+ FW@nQG /: g;%5N91Lw+u/r253LoysIQoڇί/f:fQ|_f#ѣ%oڽ%܃OV.039é762&xnX͉o (Ճ.>/m3'֥!apq]F;OMUjb/l/}/9Girz/~ߗ)mCx?_V<<*?JE'~SeaC| _n_{?GmG6nBOV8Y!_YՍlϸh}F >#V`3f3BxO%?6Wx .UT9 o1q[3B-ޚ2 _o֜60rLIt(xeKxqu\}Z|x_\oIپ?.` K >}ՆsZy$ĠdF;L4VX|^C.LW0|/ADvs&R)|BN¥eJܗ}ﬢb=ݺ[YjYvTV8{]n e4ՑR6H=9]F"Ԏ@r'6¯N.+`sB@XOѲHw^O@O ]USp'H7`aZ+L28Qm?fhF9#8 }~ˈpւR)E]kt`_y W-2S&Y+ Ћ)ߡϞb,|ߊGdS|S?"^=Cl,}ٳpEJYӷ!ԏ7:sV/'l -z8KI> Q5v}-·s2O}^*(#^Y 9kF5PR\FZ |fH6ǁ$}Mfk 㚘p ?׉41V}.0\: EUG{qVtz׃̎#AV?WɼM# U pSt9Yo'k~LjNan9 ':}"p)3[evfTӊ'F%,bNvKa~e+5tiG)v~Ywܱ}qul$!4Ot :xqC4D{ui>!̒2Lߕm:Ȗjo$9Wd#;W47y}G4(~5Ozev aՙ Z>k:5mM)llZ":[3݂Z6x}{@Gizxqcb{Բ>0׾3*J8:YF|<0q'y9.Qn!=qhAȠqt}QW$u N:uqa$KYuEJ~P]FԥE]CԥQ#WQGNK.ʉ E]⢮t.ՔDA]-kM%%E][BPҨ55uME]#Mԥ..伩*,*=S.HM8nPWʹA]5ʋrjҨԵzQf{_ԥwQ/Zz.}ߋ2KUj*]'*>H߃Fȶ*FRuQW uA]&ʤuQՈ<ׅFrJuy+u*]Եi?.ڢ Q.._Եt}PW|._ԥ5uM门+Ϡ2RW)u2D]Y^fPWVLPoʢ.dR++ '+w& u9\P&u&@uQ+^u#u[bVR&f*/8H]aKԕ2`" 2"E"Z}ԕKP+(=+~L哤x?Q |QW֤APW Zԕ-+kiQPWNBQWVE]umRE]!kS?.Է\Ե\ԵD]IN.d+ZxËn"{$/{D/xZ!B*qja?E`M/bҋ !VZ>PlaRtz_I ^˼MRF?tϲdO7Y^vjR+.]5'߾?s{ozN [+J$ ~(VğCT{Z*n zS|uIOzw]:֚%&2;%2&[ʲ5!oS5+K^lkmVVa`%Md'u?n@me}ѽhcFa=xǖ-F9<pʻרUBI!7+hH @K6#h)$DT9$VG@ I5H "g"REo W*@ !DB!]Ҕ| _R@¤@4#G ș&d!'6)+;7$$! T&}d@h:@h@Y@ jtå}G.IT  g(ryzhDY+e3\"TyqD\Q'%\p"+.;}U kYײ+_#𯉀eRK{@reJ?2[3WlrDG ]!YEbr5D EDHv%(dP4B 5RKrDBBkhSL$e&gDRLLBRR_]]G X!!ҩxRgL-s8䉐RRbޟGN/Y:JZ\:~8VǷ]]GuA.aT ~~5{=tyNGoEDWd{im]Υ}yAlU~yIj>AO훻۵ѣ'I5zugօaO>bӵz} ,X}\rq^]r"wry2L 0L.S|d<2>iAHP`f}dgGJ )NG/\鸶ӛYOrՈý|! ;xtd!vw<~6 xHNHeyp[SN~W..09|v-:.8wӘ:!j tU-tճ\^8­:$ O ez\VЄk GJ^yyL&C+<=<Fc@~w}e@8g qLmG,Urd7K("rOkM V0zӍѽx ǜ,;LCƉR:u7Vs| ytz\&uwgp2OͅX:rP s t DM̅k];h:W4#S:-H9LeH:bΠ9c҉ՑYL:՛FMS&\7@54jKQɍS1pjY%\\S-Zej}q RWg5UFlH25LCTd/fNzjB!ޯ1,'MGÎl5+S|Yw|2Cl5l6 fqj(Gh6f-el٬~KA]#*DcSX!zǚk E]H0 ?hLx{|OiϿId?auOJjcΏI[ Ǘ?w mD ֗!_U:ן^g\}F|!gx=B6V*!oßEEj8}qxgS\%^q<8:.m~l#vk^۳}wgq=]}w#=FCGn:~^6ތ3b8zSg\{oꌗ7}3θpTg5>9EN^BkNشd!Ћg3Mzs8-3\i'oAmc:/5*9seodzWiۈa>HǼ|չYfeVhMؔ+i.{B)f/*極y|iYEzFa}TCWu43~-$6vhe2gFYgTe7NSř;y9oz.3.#Q9!rcNFXPJSf/X;Y+2<1U{F(=MTjܾv6_e$²bڥ*gVȠre}#U]7T~yLU*[IEѰJs;y̼ޘ52{ kg{gY;/9;bfڤޱ1*;,%Qfb4q <{KXOs_~E.Fߓ)hv{R7N5}~D>YFg"C;#^}b`ttT~x'Qnghbrކ;-BFVqe~Ϟϙ`76+76(Y_ a]Mv&?H|kaԠ"c791:3<8!fPD~eFւYω F1˪ nQh|{.#:7VfYc- id.#4| EϳrcP(ְ xSX| MP&B1G5#aP̣27Ba5@eB1',cvb^oljb[6Plb10(5VnQ>(eZŶNbQGb[v B͈b[kŶmzؖ*mjؒ*-ZڱQ׫b- [ ŖbҼ(T|-P, uD5҆bb+S(vҺ@1V#-(IVqb+U(U\Қ@1o[*(tBZHߚB%MeB_,> ؓX_SSoMIצ:џ[n=hڑ EaOZ~450ig&k 6aj֥MF=jaMŞ7 {ߴ5nmUxFl O7Meb7xwn^: O!d5>?ft%!fAsC[톿7BF'QG[h_USC[G;GW?=zJ?>T,7ßKS9R+0*^pOa_]񆩚4ښ:;1{LE12O/S%O?_cV٪* x1~OSs+ʤ]Q|H?xTGx\-dd9ܬy|8ߜ·Qr+^dmc$qO@o8s&69ŽRyr(˾yp>\>[-δ;}@z6tk$=$Yo7-2e&P'TzFGvElnv^PNU>DtnԭP4Y]ġc>\?﮴N.6V$,010v6X=W4aău~yaqM'c>E{J=Jdly;y H|2՝1/?\$+8r&԰,%QzRQMw!2Rfcd?S#4&=๵}ɋlOq:BY$INɛ3Wiɺ{lfh۸_Fax5̄<_]#18? 3vbDR?~INJV?}?7=uX>OΨ{p?^gq2?b]ݯ{}/~/!+= endstream endobj 751 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 736 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig54-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 752 0 R /BBox [0 0 720 360] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 753 0 R/F2 754 0 R/F3 755 0 R>> /ExtGState << /GS1 756 0 R /GS257 757 0 R /GS258 758 0 R >>/ColorSpace << /sRGB 759 0 R >>>> /Length 10786 /Filter /FlateDecode >> stream xŝK%7)RZm /܃q [fјaFR7̼#?K,(fd_G|=>]xwoyXj_S笏|oy|g?>_=>ûgApsV$?||K~7˭gm눜!WzO/_7eI_/x୶b|H?K{|__yяG?ֿ?oӻw/Zz3x|hΟ[#~;}DuĖ#jyۍnyt;Ej|..3,^ʳƫ}{(W;ū=fo5?u}#=g{n}d>9ib5Ϯo9Y/Ƃkg{{̳~pvzS1yu_pR].^휏]ٸ%vEowjLw[e\?~kXK;O 6=Kx?q)6P =CB{/ ㍿S4b_ s {0%Ÿnt軶F|]KhR{&-0i>K|K7kУm쒒?p%eu6K*6|h[}LŤnzI`ǬvbZR+hD[T mѮ7곡-f v]wc]7}IT˴5ڳdomIzkI%A[~P&3i]R4MW%31!{Kw?Zj<+Z[+ZטJhh5ւ_k(qKݬ< {L,ak8ߗ)x7Fkh<2l"^@kÔ88V_6LDǶh <ք&f%B#ĥ<Z9l//l=/؊{^ $b#lSD\ҡMĄ22=V\hV6|6$6\7pl} bfכm*Qن fvئ8mNlSmVUMUNJm6Pl'z b?MR(Z6UئjuTnb*T63٦rrqT #ئrIr6U.qTNm&ن8نn 6lub60lClCb 8یWlbbfTlÙن`Dg"fNq,F 46 l B6m:٦m(ny 6m0/_l#٦HmF Ԉ6mHlSl_lE g-m 6>m\:g-fnRd;.6[$Ȯq"Ff zg-6n6[2(m յ obqPrqC $:t{L7v:'ӀF,R~{)[tB3W e%:P\.H.ai0^]mf.|Ktt/63o'.Aeަd&zYo_=kHd 3)1)5E*,5fWִr˚R}YV1kvKmf),!UF:k!eӐς"-YLe"S"}+-@Y-OY1-^Yl-kM'×E*hʐ%U6/|9y勵L3_eB}&d_ .!d{:`n\+ wF-CNt=C(H6sg]I/w4уP"7wRщ]X{d^ey\;]v/[^sf\/ްf<7ZvwQ *"}2I/L+0qd%M&S "HK2Tl;L\x7۷s̿]1ǚ,ERVgJ&]Z#Kʒ++^pru\e9WYղdqWE h$^[/羢2<hE=""2of HFR DM߄ n`Egdӻ;~|X$x<>Rȼ<>7_L4OLOQ=>~]gb h[iR9tW~|k`p_{}7Sw2HAA'/;:^g>R'CŴ^.g,S;cNc3x=y8`Btٛ6b0rIx >La/ `$*_{Fxc{c39wuc{WuKS>3AMYuv߼Od_%D_CE?'D'Nn}Ė#Cp:b)5R#\Gu눆u!iIpɼD޼[SasE:'ޚ WoM-,xk6liX?,-q'Kk${W;nxsv]c]9wUOv[Ig2-hgي(¤mmfhkKac2,|2#(iq:EtpMCl6qi*08;'^lpwr@ ""L -CCD9 3vr@Nb`ô.˼V^މv9"B<-KL)6v% -Ϧ΋31$MH0|.2ǐYfvNr@c~e{e(ȵ]<.o ĉߐI3A\➤4qr{vDhp$tqO_fsϼs{rd=Q ~%{,%ODdqS2ټL/mqoau)Tc/:gHۘLw|wu-|Wn0l:vǴ=LMk1&olmNO/|єK B_pI˱lK_eyR.3zٴxd;BCNNd;(P`#wcE*rdR߁JN -/1>G5M9wlj;ٮ1l㌨jna{H;vы} w`ֺ82Qܝnucս]$]2d>8ɸz2=A)älq4\W^cw8:韕/C̙?zWqMsA&^3 !*mM]p_Xf ahuLڮ W{9$!D#LZ? Uc̝h.XOwZߧ;(:jv*US"Hȡ=a DJpW <)srEVwĬQUAփ$|-gKr ˭`%@'5RqugS#`Dr}pqyCP{KA"OϤ'lD:udJY$`'BǏ^=g;L<V7dݟd`T4uZF>[_/|3~6\Ft?=dΩ(- +h9~4\rY9D uNKZ\Ì<_hyiݔEуG};߷}mx1pT`&w0%spɘ}M~&rQk~+>84tXzXhgᇰb4_S3=Ꮞb+'khs[\;mzR[c~B%[ܟG#={Fڅ"a7фr='Ge>)7G׎ NG5[X%5mJv`[0G`nvmɼH}=y*(Sm^2T7rrqON?2]G7gk)E(HGhM`|CAc# lPٛ.a*x|6T-b޷E3Q1iskg9u&YSV=#`*1V\MvJ9 GKG+7?[̂ FKG9aqGgG#3zG/|*PҎ®=\e9 s43B$Wm3V.^B}m?a\}VC"1_8)?:iD]te% Xϗ-n9Et Q=3 m$m?uKgK\Úka0=K_1jfm=ia܎ L(_Zi1^W6fI8{BiJdg33NiII;ek}UĿ\ir}j-@/Jm|f2פeĆ rk2y*Llue cfRV]^LLhG ^@k=~9"aغ!AD S8XI6:f`]aMIjVikbSrKdLjM-9i(i]j&0DUNckƞKU\X ՚QyuV֥}Za& e]ƍ`MLH4mj:^JAZ0,ZJq EyĖ|V:;ukCCmx 3:ݫ퍅VW'̢ZK1jVF'5@׵lCڸ6|eܯ.$=4AE+RpkVn^HW#sˬѫf2jov#Ovl4E\%PqEu`y&XI>NCf`fCnvdC+y J:Vt|:@Nl8TcPXέQ->]z+*inʠOw sZ*0n5(opifk#ѽլuOhjUt5ۦ pԴ&U2[q* Pe"n!ahG032S[*@kS^,,;|oy~иЧ+8>O44ڇ:59Mbp >58rخѧOV}j:sN} 9aYHs?Gi[qEEa1x>]AA)k*q$et> ܪOnL!hbfJJOWY4d:*u6j|]9=XH2F #3\N67Mx󺁯Rr)dt,AnSwJhBCCj9 rWIpH@2ݕr (E# {' >58b$)䒊b`9{Ί٥U]aQ]'GYhQ}%'rwW]}}dNɹ'pןI.ab;W.8Mdrئ29ә4Lu&4ʉŚe=o]Vt׮$[X_tR/pOڥĝr+[v[X\2=qh%M- tT7ia!&.m+sx4 3Mձ4G׈nn&mgo/]pѮ<"E1_QhF2SI]i7zFcÃFrTcb;^Vrdy~ $t=z`YBOt[ .'AgypBwA2_aףG1f1ӗN‡gOOة>Aymo󭵣V}$lNѨ%)bs;okhIɒDQSQ ~=F;},3I]!XIMlY'q xpu[JhNY!}c;qV[caɈ/&d}d밾fƣb3{hc&UVz'|4&k 'E@Z 8 ^Q\1_mu4]:{!퐨,=yPawRBe^Ew|EaؚrTi>Yъל=7 0<0u4-e}1x,azOa}T=kDtƍF\Y wTčNyTtЗ%&j@,n r+؉ЧP̂h>2c-mTH;Ff xkQ85fAD;v :Y5<]dޜ$"ߣ1Qub 39,k}j@2ed- ØQ]:}Y*, ?Q-p⎐ ݩlɫ|CtXF_fSDJTeCm݊}l=??k_?>u>/_?,c endstream endobj 761 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 767 0 obj << /Length 1912 /Filter /FlateDecode >> stream xڕXYoF~R +4]@u>0DUA{咦\Mjwvcgf','䧋Dޯ.^2.3M2*O?Σj;EtLVKE-|I[㷌Wj?NJT+O9muv ̿]06s ,Mmt y͆f^l[#z/n2$NU7@$MI16upi@<eu)ҸdT\)/BDm,1JݒWx/e抇{tڀqSm^XCxnF6:Nv,ޣ ;/c$|Ɇ""bnQ+Bݓz<h{~\"?$>Rd` +σ^}6A RYs"-+FihCkBF]YsJsų=}\cy pMK>!e_ŀbIl cQI}pky~EK)s#޷"6ǡd%Ȝ/x34Lw(j`\Fۀq0aB"w -|r:UIY`.SMA哩Q9SoV|D0#j{O'qA AՄ9pǦ͢]:0F{:';,2RAjRHJ,H,c<+ݢ-:Q\v0 |*r!=UJ<gD/OOVA9#z]A]KyRΠ=\0veSybև_ElqwYR t/n.6LDivq \}g&O J^ۘṟ;tѻ-q@zb)BKYrrcH{[[DGi!VY-{ϭDn Es0[NS@@ $9zpOQt5Ȕ#ߛ/%ˮE_`VXlQhxts)l"vCX?F*5u,T蚛HDB.ǃt ׂ]pq4?뎮?TpkfKi?CP1XyW4wUp1bp"eCRfRQ17<*t |]{^*NcL-YA:va endstream endobj 762 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig55-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 769 0 R /BBox [0 0 576 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 770 0 R/F2 771 0 R/F3 772 0 R>> /ExtGState << /GS1 773 0 R /GS257 774 0 R /GS258 775 0 R >>/ColorSpace << /sRGB 776 0 R >>>> /Length 17458 /Filter /FlateDecode >> stream xŝM4qh o(؀1=E!i8Tk1C]UO|d}Qy/󳯾~R?_~_yWz?_Эַ6۶WyyEios䇼7?nGv;e~=q>2#q3#-#q|+ q> ~>{|$8;]8øiFh[wt-5h;/H/Us Lx8S}t㱶wlѣPǃ}4Ըz+oxk|nFzp;u<ޖ6 ۺߊ ݠw>F ^aCtaMhp|v9u؃~=4aB#4?  m=@ =q|&x8~naLgg5t?Ciikި8V; m8OT:b^hj >DSG|ME$ZwDSGMC4扦B4uN@DShDhj/T2N`M-GM-;DS AM-L4H ME4%hވE4Eh ?MhjџZϛTi&~OBUi&R BSk Mh*J )vO4Pt4Z,ZDBSM]SBSk eM=hj|H; zgՆ1~^z;vNFǻPYQno;w]Otÿ~Hxh~o'M)չ~rlo~Ԧ׈~V=R<5P#'GgWoBxHygQe\W*$tٛ+uL{7i\ 3O_=t^ў_[WJ^{J{Rz,Jz,z֛/\>׳.JJz\Oz \íTjik>X.w x[ U A6(@ T]D;G? -h|MUϡ6 5S ^|)J_߼JS菆n,Tk-<ە:0O MޟJU_C>Jsp>5lx*?~#TWlWii]ۦe\]&#8J潔%Jݠ]o&*}1{)M@l NaC*i*[,* J{>SƮ 𜣱^X$2"cxUk(z/^u4G(ub94E2L$yi%3yv2>Jr=!/4&&_e)i)V)q)^W)7>*+|fc1a/c߂c#>\pf B#_37=J*4`h24()Zh䣎 )\惐Rɼ]C3̇aTz7>*YI:ʢsVn`-P:Ѽ TLlFo-m˰ }҃F„FŲ#ќ(Zس tʣ.} ,~,y@!FceG[Gcd#}Qws U_ YZR԰𤒩,GKX~A;" ^*KmYV:_bʮcQhSi;XS+neSn>%, Zr+*|RX:T%YXT~P"%,6#!S񫨅Q UoνPXP.Q?3>KGt4~/m?}pn8"kx8>P5c1y?xJtcX>_㵃l[eôӗ H$<>:2ߗgZ̚WHar 7B+dxG62h=B uh=+GW+W-+wo[2/|ot^iT-Cz鳣P/mU'y]y/6UI/1K_KGX'V_{ټrz剋٩Ub 8~>̜+e<37`Ė>N` o`G#"D ךe~xe}3g5  qe%jpd*+ ,,Q[a ;@؉'1b !4 1°XMr(o'̆ &5 1}35$`bA p3l ЩrYLFZ,x*/ wJQ`4m~x Hҷ/l q_'~>#~3kmm Ğ~KbdԷW̬xwۿq0UA۱⣾4,YgS??'ϡ4[wx;||去ƎQ>ǒNyw.;ϿκNy?r|f:WkنLDdu`D$%et脨>fUtaKyX#P&&b1tĹ%-2=sVH⽩=sJ;agiNK lj{+33x}l,HX,ijc:Kde!K:JzqT_ J'LSy|ha( ϯ %SS|t M8?&Ϣ -l mhnx?G %1}*~SBI}u{y=>}o -ȹœœc-8Ѳ ,reG1INZq6W 3Oja- zy{ so[-U-x^zQ sk\Œ)x+Guha&}lhz6Zw#0sihGK6Ԏlܟll̒ӣ?̒ӚpӜB/ HS/L[iZ ӚRLBoz1ʖ|p|8RZq^L1 yMh);[ ;yj4-г?[;i-XS/,>az[_CoNh1{>[C=`{Іq?Ń_7g{  Z}ŧcXx=`P͜Zt= "h3[,?1KD]$jV-KՖQע(n}^ƀ:ۄ4]BED]㫄zg7,QWBi@]3uuAmD] uqԅi/Եw-DԵ@]󁺆B!tH5T u v u&45CEUn[1u  u   58B]B9B]])F5~D]S(@FGB]|.GB](K̅Bq@]AB]%e/QZ^ω uiPqP@]B]%eHu.#.3~_.R(e.e8HB]Shh:K;,ԥWŅPTs}uMPJ׆2z=!nI\@D]^uy%&RwPdZ uހ %M:!꺺ˉP't.ԥB]4-ԥ] uy%4-.B]A5Eu~'rGBD]D].tOS˅򉺜ㅺ4hY+BFvQ//.gPWB_д m1&n uZkZKP׼\K3B]fuJCԥPOK#<uMNJMu瓨kjZQdÂPY uMuA{F5/5ٽ%5krzPuiPu] Q4"iBc]aU$B+ B + B+T DB]sPQz-5jZꚜF'S/DI@]s1# u u L+\ik uM>B]ZkrPb*GkqUꀺ4MJk%N+I=u-7B]B=@]%ӣk1U(u@O@]>Z &nAՄހSGB]B]%ԵfVgJԵج&Ե uiPWN=q<Pj!ZLm u-ZB]Ҩ?%u-B uiړPTUELkq#E[Kӝ Q;NZ6 Ե\h k }u-B]˅%u- .MoZ?D]B]KkM>D]B]5 B]B]k]uE{KԵdK7ZiLB[u>1 u-B]7TPBQ@]K(k u-7%NԵ‰P8Q 'BD];]u~ ԵPP.Ba@][k#]xu痨kUks̸P׮Q`fM!Ե+SID] B][kGk7>D]ӑvM ks:Pז}%BD][(k um[-NԵ‰6SB]"B] umNAk3(ԵQPXω6 ]߃i6-{Ը7#A{M34K;oh^j#*SW6A{+uRX/Xj=to7e^y9^띦i=45.{TԴjcMSzijZ5MMJ7h?ij7nt3gdxQjjKߧEWcs#"s^svwm~i'f7mnKնR]jat^j?m R{jZNm;[ͶRB@?5 / :)1)^1N?W<Ztި$!K=@OAl~c6}is6y?23nxCޯx8A񤑟+n GczOī62n wM9aSJ9O+>nxXx\#ŗE\$?yA;O0ptu/Qxqs^MOLm%O1hzxLwi*h\,uDBdwȋL yJ%śL(9U6TZeR˽ C螼ė[eUJgܲWC<8HnnhJMSxq=1{;|C|yq#4TSi?y"5N+ƶ&Jk\/ŃxP<ٸx'Gk#ޫ4HWfwOWWi('o,VW!~|/c>ah1 CӒд434-MMKS>DҔ/Ѵ4SE)24M1?k|*C-:F' n| Q>jWS͖[Nݑj̇vϗ j*6ȷom r3_w07)7ء|PkC~729Z XVsUO*g<p#uFug}^65@j`8LNꆦd曻Gw姘ʧ2ݕoe_gȟ2_޹1靥ʷwMgg>P~e>kc=ê'W :7V=Bϫ5G j檏heM@!j-RZʳ>Spm>ohg`=HS)?E~֓GI|֣4[YC/ժgޥ_P=LS+ZÔSZZƍ352^PO][4LB՟r9M 덪6d=R;0dglzUz2zzV%[Ț|zDX~j#maJ4S,:5_aQ wyaD˙S/<0Tm}zCԂA?9(aC6vaCKW>aI)6^c|9_z&:_{n(Y-ʋϻMԱW~w먔̕÷vYc;362[`}GsôԑسsXVsU扱.:mo#~i7,hGf۾-?fS٧i\:ig36w0d`@TSCd؂?+;*PoMa񱫮"5tOòTȲdm" ϊxz_9g# v\W8?{ڇ?W3J6F^ssH|3+z0WP?_L4k wUS^%׼NyZQn2hlxef~(7Dĺg'Y͜ g`&$'kq P<_|9AuΙmYD؂(cMAZZÿo@%co$fRsc~]є-UBo4Inc ޘjMI7fuW w? ]I-x:vvQvQ?]I=m-l$-PP -o/^?J 7w$iB/L$("ImB/xw;eR.x?Q, ^`Q(Ztyg2 ר4IC;GڲfjNL{Ԃ$N ͤQz#b˜ڡ'ԦTzʤKظX] Iʣr 0niz# 樆-ٸR98GRERN4%d[J $1Qq4ڑ0 ޏE??=H&_Mi2W,Pv~M[2fttn1y+[\[L(dtna&ЋE^uFӡX{y`oljY$Ǣ1@7 n1&Cp=y$zoEɽhu2d-T@B6q:"1?$~ wdo0Gϓa ɦA,䡁'[2C&SlrlJ݁괜ԛM_yy ;F l`lݫբ97ДyHMcghJbehGw4%q>b艦O4%1i78zZMc×mAyXo=.[^8?Dpgռ jlhJ=4pvp|@S|gρ$`Q9o/k jO1s&Ҽ ~yX1 gLꉦ3ؓ{4/#BU5oeUH9l mqOd>Ф8y=6=RSX)]8xcGIZd-`t>H̥fOC^PSkc(ͫ;IM-^O}梽AΣhR}j`lLPƬɢF48ml\j {llMuiB=Xd-&ٔD %[gCOol2ޱєĢ M}iO`CE&F]E::tbI/FS_?+ nqІs} 8W6I;Wq8)DS_VCbo艦\b-CO4|+v[<,)E| ;[MId .M,*Ф&AشpI>t6)vkf,] B?kI1ןЎ|ޭa5&Ek-~fIE֐XM75)Iss5)]M<&f&E'֐mXMN դبդ׫<&Ō75)fb3ֱ%bnhx>;Ffb{tS"~jR]M:v>Xx tY`8D:d]-[iIE~7.q&E_Q}&G>E:i2| eO5ut}4Fkt u G]Kfu cu u ~$nB]PP}}zlW9ƀ4EkEK1"Vk_GkuE 45]h krP:uiTPWL쎺P-Q/5k.5ɽ_@4 PkOk2$5PY{P* Չ: uPkU/PB]P<;S烨kFk -uiPR*kH B]EB] ]u)Z-Ե_-Ե8^+BI>u-=_D]ku-3 u-wZF@Ե8HKP\seBQ@] QRꋨkqTP|"~ _k͏kQkPMkqPW@g@]"Եu-ZzP QG u-_D]ku- u- uM{NԥB]kmu-h{yB]Ƅ']ʀ6RD][hkW>D][K:6G um6QPVjk UumoD]Ѿuc/Ե>jކQfaPLԅ0B][蚨kkRksP|H-AԵ9Ak uiPXPQ&کksPBW@]{zumօ um/mB@][{um umC<$Ե6߄PQf?PXQB]ۉ"6>D][hkPP@5D]56Sh kPkO<ͭ6SqB]{ %uE!4Pמx6' uEԵi?"ڋ薨kk_k/B]󔄺~[hk} umoxBksޱP'B]WksPצ?FJ mŮy󔉺B =cR.Jj<@]nBh-QWPWvC]ީq=Buv{\+tWD]aO& ƴudКS Mn"47/;r?mu 4Tl}gz,uԼMYmNYFz):z8{~ ]os >YʡaV]12xAcu'mOg=VJ˞L"7BTYvw\d'd/g:ʃ>`i]Z`eϝ.9_\ofJBʷRAC[rsZ}+U5ϖy7z[̺T\[h%gk^+yvO9go#oZ3*=zK3+ɧ|>51Vui=t?O:)VCG/~G9@s]wR]UJD9?R;yuwk+&Dx9R.xMj+e<'\WUX*x*r#/d<+gx#5\R[*߀kYXSyLP( ijS?QZ~gh>4ʇX|ɕe>8/U1*0_cܿE_b/惴E|]7x;QOL,m=|qaV_C̸?iFY6q/(88OHm |VVg.39TZ|ft[)ߪLnM|JV>w^?(<y/Q/G>YoS5*|z|P>yʗǜNQa|`|||P~5TTOЗZPoЕof=Bz?"#aCzZQ_T]CLElBGg)A:yE`=I7گ(m *m ,MYxT&[X/\-iOzyiڐ:MYڡzyܬjzXOT덪潳ZTzJ[Ndzj>0륪捳2WUa)<(܅qS|zEЭjWFb"Ob_|_8y}ѵiqyaNL|zr?sxp2WČqM\Zo_NkZC _tmjKW x<)5+Wvz&r%~[/|z72_JΧk?\@g)|9i:KG%K9s}YK?!^ |۽`05BW>rb~•gAcnͅ<ʫ5( Yv%*t7:[iQX0HdC]^Upm]m݅π_::Ƴ:AG8_p1YwmA|N`O{\ԩtݯC ; ]>]nkf3u"/Wgek{ q&:Չ6:O}$<83&|_ɃQ#vKWKE+g9=aU鴢N˦<ӝH6M} ϛ]r5ҙ`t35JB sxf?\|tsDsc~G ׯ=}0Y endstream endobj 778 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 784 0 obj << /Length 2223 /Filter /FlateDecode >> stream xY[~A %YNZ@aIxD#(>޹ryt (.3\vvwVpËPݿ]>+Ta"3_ΊpPq6f?;<2As\f ʂ U{74A[zkhn0 s7 ?Ύx1IFkn o7d(Uf-uL8ZiAF{ J.h5?!G U{$@:9n:=$ V"[d;VAXE5Qq%NՑĵN-P=^W @5ZD0WS,[4yg1٬]#?/4U$G'H0[iR E,ODN4ҁS7IhJ49?md:iwi%(UD 䧉o-%3H*;"Jom )*ұ( ϱXYbxhR'ؐW*L:_mF,B1U%ic#SP^g_L'iAz5NU9'΃gŧؔ$4v(z\eq.7@̾Wyڞ8ⱉy.1C{כ:H {Y\C_$Qr.҈륵.1ߖ#?p0y.OcjP'uBt083i&^`Ϥ{ZT > +tRMS ?ZЊ?ݢ.hQvMc;J#^+oD(=k-[1 s%@Nr}#:ĝ]D˂'U|,o3ɭ(G 6W2ď?z^ne`Iyu˭@yYߡ{}rrtgF,=٥Ѳ:)ϲ\`y+P.N⮷籟Gϗgٴiؘo/rwXr %5w;5iƁɻ)+[P&f8xmc- OFp7xCvkt_Bk$Qs/6\{>Y=8Hs^'Y)v?;F 譅w}8?8һnL Gr"po85CX'g Y?/D{`8;?=݂E;’dg GѴ"kFIFsPw5G%T1>L21r%񽜵,Twa!0 TUF|Н(o >,dq.[nl\ mpG&1:!4-4-QёGGXԣ< >7p^jC EcQLI1Jp !z {(-#3YĝE RUS| j!S򋜷MS28Ƌa!m醦 #&NpXN+i<44RQbO k,,)cwKN]k#(0"8SY>_)X T-Dw >R2X:Ǹ9l@~nE̥۽q(TH趋 Zj_cD:imKݣH.˧]¼~wːo*@oT3rMځK=G;UG!ye.īY,W,NUno%M~8D&'/h endstream endobj 789 0 obj << /Length 1919 /Filter /FlateDecode >> stream xڽXYoF~ Plh $q<uTwNr%;vۇBݝ{ ց .Ό<-056pΆqY;DҒgbԞ-ٳyPE*(LlFq\.7-̣|VHg{w&ꝱY@E'VJ?ve-\slڵEPv|[;CbG{i}H%83]3jT?=e 5a$:^X$6bګJs4H%$Igvma6Lbq ${ᆤ_hvBEy\ Dy&Ek;%>~~eH,\y l.#(۔]Nt{OP.ϝp-ۆP8ݔ%ۍ1Ʒialj(R`+IpCsM0ͲS8Ȅ&pEr D3&v˂4,2ʅF amC1 +V3gae'HȰAȱwG, : ^"8 &[_~LL.byݏK&; h|}}4'5:fȘ;|d'׍ XCLegR1!"j8^ZdS>DBƋlԦeoQ@p"?Gn As,tv sb8cҀ(67<~Sڮ&8wxpìqQvnUjudsJpb>O H&gYXϻ:W,O+)}P2h;4ų~C-^!Ж:^\cDUYDz/mr#cpywnhLRMq~j͙5ArxU| I;] F!78re 7I!"E8WsX1l(4} +/+pAT 'ش;\VH*'9dOTqJ?bD"G\(S=?BIfEB)c=8xjX =j@S"ўSK* iB$Kfq͜ϴ z9|0`@8#Ĺ_aPf=FUexL8%lvL47h*;>ZhF3cNwQ) Sn<#)J^zOUi۠XaJ)W7\9j )qScI,CDc.v|t$,88+V\am_*;Ş -UyC:q(=],4M?ɻwՅﷰ-pc/c2x)=!EC;9z𚵽w{":LUOlNWk05/.XkaXEވvloLu8+Y ja3W]Z=JS,: iW ܻ_5K ]b` o*tt]Rl|U@J0/rG{,a:%]`3볗Wd.㎱t:]  fRW "­׊c8h><09Ol, oč%1*Bhl -ĶYn?%2kȯTp5l+ъN4 I,j;tR-8n6 #xؒ#⁷@I K}ܑ3d ҧmPzRHL:> /ExtGState << /GS1 796 0 R /GS257 797 0 R /GS258 798 0 R >>/ColorSpace << /sRGB 799 0 R >>>> /Length 11891 /Filter /FlateDecode >> stream x}KǕ.ɅZM؊P1#B@KP̿wWνF7!*3OW>[Koۛa۶o~~VV~=t{z廟._~݇_~??|{I>]~~_Ûw!kr9Z_=|{/hý75ڶj0?}򛺆w?~?~?~ #t.{}(e^RY"LD엏/s|@/o}ͿeMa}o^rRYPẒX+ϝ:{ t?{^ !Knf% }>ô۳O}zxu|yݧjOA=徔mGm+t5A@W72\Yg}m d! }{ ;Mx6m;>Y9B|1J:L8Us8Èbafl5N;fV/^N/z+w#pw[+Ujs[p״|*w+xJ|24RAGiþM*<|qGyIKXٷ5l}gӊg(糂{|/P EG(84AY:_$+HK[qeѹę.8Ӿ|pp<-}ay2q}8WVxP;gY'93U| _x*DO3.CSʗsBA.ƙ q"Q{̝ ?;}zϦ.t2ޟ/'=BA(wAWCK}ٛ"1@#Lj Z ?bxcS佌J,}ml19ϫly< z!1S0Xii:;fZ^kSzrŠ{ TJèSN"H>*1{ GVHV+r3#8Z^ E`05xSgX NXVX*55-|b%`59JE~1GtaEhޱjf? }Vضg }W_t!]_7\?}HB䕱%i2x!`6=X ¨wivn}O-O?7|v0o~|͹\"gu Q|}ir֌yxe?W'(ȗN 0&xTCnܺ" `nԿpkUA~zߝݰJ^Y5氢lO@h7^e3:^=?%Fq{"❐Aȭ,vw3zҜ z,c^\ָwA¬9Zo,`%})-hzYmt4^Kqχw=/~>ukA2^@i=~}i7#v|Rqzq-4,rx=逜XL߰AX,X:j=޺5E^ڮaE5|N+tYE=:F{/PYqzҬ^fR9ZL0//\WZq܊A vayh~w8A۽Rtfȿ%T-S$n3gdPntծ_=kݝ fý--8SRPPRP3v{deǍG8O&Osam@PP]&%,48hQF{aJ }"U:.><4l{'}D_=ȴPhbȂ& o$2eWTWy<&c-)*c3=V MN$)0y!u)OkOYe1OJP*cѧ:!? >2!,uOno2 ˰9#"_uEG z:%Fꦊ:..YevǼKb&'p% K&_<9y˪K$BJ&/Nߦ3**ooEk5WLXS3}rE|mD(%ZSɌry%t`L/,*?|z ?K}7WT`#}!{8Q|<93\!|6QωlJ=^yٜF{sOjſ^H;UT厦QuT;zhCCj\@t.[_A8%s \8q䛑΄5fOK4ql3Fp 6ѦPZ( R=sнaJ1a om!N ϣ~El*FmjSVIPͤB(]ǭ }>PQB ZeClB. 2\֕Z[JQ#XF+客žGmm&bhB PwCyxK~IwЄ:= ^ad >Q(f]w[_%`PZɡBO;k(5vڅq5} ]sh X%vV0f7Bw&* (MomA{ط 4QPwab_w7Q o P$3}4bPc~IøJ|s1ƕ6;B׃[GByNPSY2sB)Z=@ ͜@47hwxBW(()$guU Jɿp;J cS/xU-~h11B6]PJ\d\r3!^B8c k3Ufu~gQͷ\Q[v ]y IyGϹI%N }pMѣTb;z=zV9}5Wc cc CBxu1ðKK!n`,TC2(8d|ίZEV % CFsŘy]8 u1 P-`QJfR!g,D̛ R,1(qal?AQK H/|*~Zm JQA`(z23١ џTCt% =O,72a)0P#]:y.0=9*f-f 2!mؒa1f[Bɂ^Pr(IaS~ďa`^\,$^5|7,G ( hB,aϚA1fh)z֜QWn󈱁( a0jx!W|9J1wVR.( 8c6q9=ܕ>25rqab/i۾-sV1<#?yB;z=z~Ka_m*DI,DnX~PB40Mf0&JOHwcF< ƒF!{B)$ȷDSH/~ 0o|V!/F+$wWp\XȰ_YȐ_%WɎWͣy1f!Ca*w2frTmY8g҅YHwej0 pj:frX[1P~`NBC.R+QKsMe.,=eڙKY8١Y,Pr0 gK,M&TSI(,MKM*p옅 j )pgcnx,}',ɔYHwp\f{,$v+WfJ`FṢEK' ebW,}==3)sJx,Ig*p&7n™ i>e$$cΤUfTY8ppneMQs{,1Y87e*p*ؘsS+paTkO,2 Sea\e ,x3z:_=c Qi?CYJ S;@ 1 ufa /e$nDݻ6N2Hr2>8|Д)*IO՚ao%ha~g^]8U#2†q162FU2ΆEreɄ\02(XSzečaoe ʸYǣ77Ѧ'#,@]z~+Ak(M3I23e*5ry4β{'tyJOٛoKM(?21D0e4l4}}S}~cA ŞK{̛ͷk_:왰̷{޲f ?Ǒ-΄ KK\ Av&n*oċ#Ț+&# Gq~pyKZ $k嶱9m7ҹ!;|%?'OH1TZס5!S 9w85CfV|U~$~Fȅyr>(zF/Ot)5lgܾ/g|/5 5sG G0%3x ҀWv@G@WNrgy#V_r(_",QH{' HLz7˚_ 2ysP|E1Jum5l­9Væjs5Inֿܾ_CypGQwepGQZH2÷$^(Wrg*oq53yPj(g򨡾t<.l02YЕtָ} m'ƮFM@K>{?_iu>O O \7a=Ay$3aU,ggz@wr/%8Bb-G@ 庡+Z& CY02.An9uojcբc/MtJ/賜!O,#D&aO {Ԗeo7=lϠ{}RCSBȨ M&Ick0}kgG.AKJ?H /h=S6}'>n0S> rB > o<ʽIhzV (V?Zs3ZDFȡby#@7V =dx™1a[_',+x8Ԁ8'83O$G h7ZUV[/VFiq 5*o5}9 P!}9 Z e5{U(0]> ,1畮Yjƾ<=23"CqSç{ ޠDo ;zf[Ak#xƏA WkƵpO=`03SvŻ-xƀ58jB{Qfe1Wh#+)s3'byǙ7y^e=n|yCVV;U'n~q (p#8F}P Gϐˌs)~|iR`q @=wu YY|Vh٥oA[ܵnVo m'uMa>7['#;={#䫲PyG׍O1 ,qrø9S2eI"Қ"CY/ơ,;8eoWe{¡,ezW8eXʶDmr!Y8VcR"DвCYs!¡,X5%dRq(R,¡,Ӳ*9,\e)BPRp( .MRN $&PpCIP\vN%Ah{¡$N,XPdp(Kn" PJ吆(JVd%M!7T廃¡$(eIž$JgP:s( ]z<9 KRrC) 7CIٝ۴1r[~I8:c WP44,DؘCI߲錳PV̡$܏oWU;O8Y"o) $, ~mJ{JU%"_Wܥ=c28tR¡$ 5-5]1g_y"3 uF]W]!Jm#PΎCI8Ӏ8j_^@X8¡$\~ˋ).[Y¡,QVPT3JI%aH22}W)bUSeo*_87'% O_CIS^CIX8|¡$MPQ˫q( :#aPq( C8c'Jb¡$,"J"?P26挶L&9WLI2¡$,%}Mu&JFʫ}N8 &J1P Y{$b%b_k$ʒk¡,p( 0VJz/d lCX30˄CIX8¡d|08h.ʡd||ng,R83Ye}e~!J,֓ơ@>!E?hCIaDB$4 Yp2q<"P~PR4i'uFM|5JhOHQYLKkUy&)lWվ+E}nHiؖ;‰$gHBu96sr/oVi/䤜TЖd5oN<}XE]~~|WdцL1@N;'EF~u؏{,?!.ȧV3YV/xN m'jy5Q.Е4;rKjžF!(d} B$ӤӘ˥VfT^Kͼ$>ӿh-?E+8b5̿XӿX /V/V80b5NU>wh_U?wY||y\o>#J_{@w'Ղwktg FSb_#VCQ!U}ο?xk :kv!uk̄k)\aµp!\k5LV0ZSVÄk5NZ 8k5LV+f̮ 4{|n梞BݶK4{<׍FK ~ߙ5=޺F)h_ _3v C`y?4{ C`y?4Xg?X%G Ů?0B/6ߛ$qKsmU)lBn϶Fxȷ|$ {DMM1\9O93wO;7:9?Q~k~ܼOQ)e|7y۫mA!H":?n^|m+5 _]9k5ԍ!נR`_U㳆`_c]`W=+PuHg|'1o]Y^||PQey:OhuX.Y >qZ0Y >qZ0Y >qZ0ig|~8=q|~8=b-Q󭆅'T_Z /~qgr;YTȗ^IfЅ'Fx| }Fo1žc"gj'Gޯ8wo4urS}S)FקOR endstream endobj 674 0 obj << /Type /ObjStm /N 100 /First 885 /Length 1707 /Filter /FlateDecode >> stream xZmS7_C.a2C o3m 4 Ç|k>{ŀ!6`: NծV}v$&EFx<( CAd%'+\&<߽11O-R1FdD"'f/g alh`l9 0L04, M18,f: U딭AsO6ÒI Cdу$'Ds3s)AL"JhX4t.zco T%6d4IYx,UvCX&amY&ah ALy ICk-b8 zϟw^5V  (Ctb;N_](P)ĩʩGA|?jBz%NuҊs5v9@(ڄJհ${C5n&w~u9h#vǝUE[7íij-p6F5k7vvzT˱x7i'ZFLu2Jv:W]kW[Sۓ{NSGL=W9ԛjj詗ò.άhnȟ^4}t!{pY|*YE;~*ri Ugit/ VیըCSo[kRCrud86[ FmtuDg>7"phAQ'ea>kt(cQtJ$Sm%6y\(q̅AZ0!H.APܮi/"_gZUP/gd8Ew._r"qeKNt d2z3ߒLZMV'IzŦbK6XBKmd+_IӷA\Y:U}⓬Yk@u~5'wuAֺ ؑϭ)7m^uNyn9 z5'w秂;u"<;4_$M]2o:VWcD~;}4Fbx f!}G!C<+ ӓb\,̎ Ѳx`jjp)hµ7hKE *f]{NA{K<No |:heJ|"#QYәN'$Z8sVZC'/5c"3 ʙ)YV WZrc/]2g^& ϤWSAϕ;'} V` endstream endobj 802 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 808 0 obj << /Length 2263 /Filter /FlateDecode >> stream xڝX[~06( kF$u-$%@5l4vג\ٞC{ύ4N CxHvϿn5۴L6_x&6_:Ys<³],ScVvy OƊ6cjAx:Uy'ٿfL8+M}B/MOssKtp%Ëݶ4Jgb"~j0EX'Ţ iU QҵN m[09W7Qy/z b5I裶ɉΟp Nuq:>'8n}M,$KR!ќ#`*·5jackyeH k kxm]wqwAUACG9cS d.H5儎a%2tO2Nuߟ,K[ZlU-:&IF#RLd m>H)yö;'f]H85qxS*u: t@5?Qd#)fy;tdn/]S3QڨB(L7&%|%8h+]JI(I'Lb;e S:,]Ȟ0]2H넋{8tmXeϵ$8O? k $n ιS=|B KS$)|2KLNMKO͌wb.{> a*LvuU5uEE88j\Nr8<fH_h*JY\>&4`.WvFNs;O5"c!"(?I \}b(ggsURλts˅,48NpfBEq\+d\*S(}udХ8/ʡN&9ًahс/` jS)*|pSg _2{Y;(d8B&0>U/۝t+hg?(V[4/8A {#'L#pCL;qQ}m}wo(وR"a1<<^{[[%++Y(p/t5DNF:I %娣ɧw/V y! n*QanW̭~u̓*Jl}!e6qBSˠ<  ) "j硶~6`"^e3^.i!}z;d7 |&]ংD܇t[4w܎+a;nVhb7 endstream endobj 803 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig62-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 810 0 R /BBox [0 0 432 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 811 0 R/F3 812 0 R/F7 813 0 R>> /ExtGState << >>/ColorSpace << /sRGB 814 0 R >>>> /Length 3932 /Filter /FlateDecode >> stream x\K _1K{l@k]$YĎ8]E_r$ y8_þIcIQF7_~^}wWO|^[xqy/O;!!3ouoϟЇj Ͷ嵔>w?|hV_=_{g?<{~&YrZ[rXCZ| k__uyb(܇ }ok^~-?^+WKޖ@cr ܚzyrG)0*HUK%ānmiv$V+OTMP[Xc{b?<%|2MswJ[8wלFrڵnݷv nqm/N{(5WzڑXGMw={bli:$\Cvrղ{.>#mUMULܜʾu[Agا ϰ4 (%AYBTh!%ys4R vQ џ;w>+lꚦ +DW Ήc([Dr#| i2HoNP[<ЁZVjk ί+I oˬ<\5)H,)be>xf4X8Hue>L jF1$Ԍh S󙘥fDT9IM9YMի;uQMأ]WHcx)j kxPz (8yi1їiW9^dbpPKnNdL?|0QVey[݇e=ko B_ OO8/i׽LƮqy׬^x솒%h|XyOَc7e&sin}~W Vaph]|U T'||./gCؽ. PDK*eSK}CL' s!Mu53 6}Rצۼfne&.14ƥ0 e,2R2 0@-M9E06BOl#(U tR(`F*QX' ncbMPLm^p;a67=HkۺFL>Bz}Q*SFv~c$Ҙψg}#YppE.QrKOjRS7!Ddq"Dc3K&Hqcœ+ie^Ҙ,3\&LE$ywp{*[{u_N3Z+SQ6b0۩[ӬKq9b٥4 4,9Ȳ̰вbr6JNQdDS(7*`U"Fe TʪQ9'*jT֪Ii<{{ )G}|w Txz(ྞ / Wu}Mᝏ;_wxEGxUxg9].b"03˔]F Vvy]Z{.w%Ǚz_,؁+SIyB4>i61a@5?D鑛M[7u%r !+̋ߴ6-uiki_ ¼+(+TCLj iHX k Xg:!O#@u$V:/A9B K4cPٛ\Ce\:^;e zgB.H[7>蓈={.P$<P~H@n˺n!T-$IWΪ@;Wl9tG5Mgi2G]*jkokuR:VЛZMܴql6snެ˰Z.n8ޛ[*zgQͼ*ΫBE@zO 'Vwc.hwYYь+JLؽ3v eo2"qg]3FV1#G6LLI@:Cӝ ѳj93l{ 2jX{>Z}HVְ2)"g`-vlE07@FӺ%\7Ѫ򹁠n0C} Hv∰Z쁤ӱĺAr9j:EX13Q` ` Ymat,S@`8c*AR 1Xy@R;n$-z j=BQMv6sw%ܧgףڀ=Ma"rT鳆:yc?f@Z/ˎZ%ooǬ  Q6Q}3a|9CJ#0nm 7AgTmTP: j+ifsyW:}7`6X+o|-'v~zVmo6m򑒸s mU[@=fwh؃!g͊[W53@vv4NA.0n&!h+f!¬D{3'A]Trw ƕz {x $! bn`Ϊd2YM+ r1X_s.H'*7 gbN6<@NLN1RALNN&jncbmdEá`B^.̢y J3:jy$d6C@Y77ns&T_n>Xgr8sLnɚdɞeng:E(fdUG,xQ#fyA/jT tg-#_Wq`Zůl-?{rz~.1~/sW|l>_Ȼcp>D /&[)@с<P%ޡIuCJtK6KtJGG ߘ?2dk*oʼz|TU+ޙ괨SV<_{i?Ӕ?<ǻ3w~M[(Jn~FQrAhg DѰQ4 (%fEČYBh8h8* Bnz)Aؾ]ޮG5,:p3\J0F~FQfGK3y`pMs:ZaaxY)p{ @ zļKz̼Kz|\f?X2{:>&)g_ endstream endobj 816 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 820 0 obj << /Length 1932 /Filter /FlateDecode >> stream xڍKF"₣ňߦR)P(HU۠J&q]roYgVYg{lf~2|z&~lfZ0-׳zeZp~3`u nuxy]y72AG{y)܍Aּjpom-T݁b0Z?c6ܚ[{:_DAr[ԾA]`("Ex`. dLN `1OƆDCKEjq>EV0mxG]MM٪wt;:KɅ7NjCa{PBڀݳ7q S? r v>!2d߇aeV&Vn2Y& aH\\̳᜚ʦ~%A+% cf"}2A<m2v  Uȝ(wh9N@3 bǪ-gS32Uӂ?s\uB}{׼3!MU(( iݐ~Z{lړVJѶ? Z9 :>K`i"Y] Bw֤}$<A]pfƅdf\bK`^yvٓ&p + Yx<[B;FT&i֢(gBzC6=24#H)#К*% c4e{\R81|x d4R[=VJˏy?^gT:Nߋu?Q觡\OR@R寂*p:z7N%ji#~h׏bQZQ7~PjR>.9ɠRdշMrf[xo(ܫxg~ }H h-h!5G=놟wEv]5tvFԼT&]-7Yx[=u$Ӗ)N;7ltTzu0Zm)@ƣ-n/sWXﴥN*)pG^Jع gRZ3DEV(8awT 19˔D3m|:Wu XWhQ%btKWAH3%t81c4ҷ nis+k&s/:%:!?u XBֺ^ϋ+v> /ExtGState << >>/ColorSpace << /sRGB 826 0 R >>>> /Length 12067 /Filter /FlateDecode >> stream xŝI$Ǖ+rI,:<|ޒڨ$L^  DK/?ÍW|hV^Ü ~#=?oW?Ǘ~s<߽>#'sQjz=ſ}%_՗?>?~?rZη:, j]/>{|8ζt;Og}z/w_Ϟ}ϣ|iOgyz<驔_=`]c^?xMzf ojۇO>y:c^_Oiv@|6GXoGT##zyv#f}Jm;>UneNtoe<'yu2-|:zxgsub Ogt~|;uoߝݹ<.uw}ؾPp#zuwKGGP׿}>B]>"j姎a- 9S}oNG]ݫgndϻ[{ϻ{^>4=+GOK>⚗|6113GGܓ;\0~)a~_f8Uxɩb{'}bHD0=||fݦQ)}ΧqRȶZw,n6ez\2Q Zl풣@E =a]]lOQCj,o3TuߠA:/LOyPf\U?rkE'O/:7|I~>I9+8o?߼Y3Q(3;V$J^PZ|r |&.ƮIw4ƒ+eƃSw|SaFY5F 7opG _ŖhRw~Yh/hnP7}~ǔ=7&ۮsNΩK|yL92EĉrBVN\nBBtS{ ܴq^Sc&A]kjr%a(BJRl9SYwuQS-ԍk ۻtt-JV(41 B@}h΅Е'ki_1ke{w-"̟*ZZrȫ=4r]7jYK4VFn-n-5h5L5ZZZa.iPO~0>:'hZg0_Bx[K6B:7}\o|;Q~`5ԃZ# F195kZu5XHu5ĿΟ~'&bQRyj`)H^X X*,d yb)HvTRW, 9y y/Ry`v]$X #KuиY _A,RcRyKX =L,&dK妧d'i R'?,]i b)ʏ"KA7KARub)HX /zv2K-󉥊'`gZZBfRRJ,t;KR[5RKJ6ۛJYjioҚ?R%Yj.K-]v*~f?RKWXjiY*{q ZZ,5RIְj[ְU{rw2KaP,յ^,07j?K5ͧKU=,V3KdcTtWRb$ R3Y KQRh0KARKf QbTRQK [KQ+$Vb~$?Y,gf),4oZRL#$ĈRR8Y x$$ IZ5#,IK]rD;.E4K]2E;.uKT*>.)X rcKhT`[hkԭs4"f[n-/,ݥ`[h͝fRBRрRѾRR;KE ,8X*:nw0KEVI,-V^bTST>D{95#Ρ,4fb%X ZKabY*.X zg)M7K,%v/f)hR9LKeʎE\*F~T6D\*{mR28.?#. O?R#RqT6G\*=#.~VTv(R9XqxT}".ucoJgXj鶳^G7KA,YM,N-JRK睥u=b+NiZZ,-6KqeTY qP}X X,"fJ B\UK]qVTJWK-,RzRKk>0K0K-lZZ,uŅRA`)Lb'|Jud^{%dyh|+ƺN5r uy~w\_4Nŏ_>O_}ïO_yx_|O_}!'O~j~yвV5}ᶦc)^)"v dqDWΏ:Z_wʐTh iD:>z?Oy;Bz?d@>Bz?:##aZޏ@`܎~l̃阃JjLlb!z;s$:鷷{s_5#ʭ~q#<ү#.z)Hߣcx=mo~.=lܬ-\ޟ%ƛKJI$XJQ>5 k$G$Gܓ``qOqDLq= 1 $G$Gܓ/?+M~iey~_ZYV7M~iey~_ZYd%f{&&}0Cd4D ʇl$ "[P$@VDˠ@V]Ն :%W41. 3-q*Chԍ1 TfU g'3!+ Auslqf&*'x>E?uĄќh4E 05BYg"+j*Yzu=;ɇ64ՀdE #A`Jy'Hi< k #G je6y f"9EçF F!.ѧad&GqC bM9N٩d,}d<EGE~6Gю Ǹ!jM'p'S3ҡ:$uʠP;e(5ܔ<-,D7%1ǾD͠:w;ڿz{ عJk k֡ӓ97nAKdr 2̘ 0)od=h+tz|6'N )tJH&UG$j~N~*v':I]LmEGS:w'V9}+}2h8Y3'z$F5_'g8߬M<8QaZeN n<'JA#)o iɿ9ii]Cyy}ɿp!kH4?Mn@ɂeE׃q'g%C~On`Y]> Y핚,L|>Mo=47YdϫW~9@s, ъr_bnMZǜK:M}rhn B'}>7YM*( :u氦Xa٨~Yt(JD(U1u|A:~eDC M03 U}2'3AU/ b3.Hs%5ҦhP⮫h!pHp](Rqu8) E qsqgoFw+ :uxs2pJCp_- . 1. s?ibz.hs[ְ.h)s]FYCWjŰB q[]vjsK6t[],X<וҝof0wa~]Ƨ'w+b ??_UOGd:o=t_pywzpyyu낻wOŇ] _x밹+X6+EܕMsEx׈]Ek.q}ĻxWpĻ..s+wy]=._GWW+b+傜+U}?#Uͱr׵(uL܅aV7wb.1w!X?#IUѯbǧbs3w!sH .L<+2qQN*x ;G?W98s]XiH $>+9=+wMw4w!s1}UWkŻ\k:9ux|wணg-.wMypWw!)w^,q:]G]aN܅Iu9&pwprU5M.|-ŷ]Gw.K]i²Ż?]GRvpב̱.`w!]G w!*w^C=8َwit ".Skz"]Ӯ0SϕѳT>|,U_j#)>y*=QCUxD8E$)>u+c'ue?~1@+9&Xy;"u#.=?gR[gH%^_WWLeDu̚uWtS!ɦxBΡ|G9Mszy84cvrūReGXny;\-<}@bd~{t6Tm2BQ`$.Hjɘtly:~=~;~=&~<~z|61GGϻH`yݩ춽0C?m/L s^^~j@o/<^/w_[zV׈9ePYnYY),Eb:!R " F2LX+%Ԯ.>64`?T7dPgrJw%T哰@-ӼPer`0GHh]м&DhZb;I͛2GhÕ7BsKrF]-&0ٜx'[fP" 6H*0[UJ͎?Dh99M-|䇰ʯHdI]vd%6*c6BG$0dS}pe;?& +{Wis8"{?wmнkd~zF){+9 )V\R G0$fyZL˃%U/ F|}pSDd0תID,~\=]u9GXJߦ7r0K&H/";3p0AH7l9r7G27"r;nl_e~ >~ e)EdZڷKd(9܄@b t&b RQ v/gO] BvCIB/%Y(-`2ݎ"6C)jg0؟ED,N3I"A֍ҊEv'A1`EdB&B#B%c1;%榹9nBw:mo.Q07UHm"%AI[(N(a.\'R]J)(@qN{9>֎%hԈpZLr172A渉]7McsJ Z'Vc*]BB'4C\Exڻ9n&\fO|// "<(x1CAKTcT:\@g")h60 #"5,|TvK>~ X*±1X)aCtQjJ-#cY5kB浉A!j: 5hU5;MU ~ Oөby!')~fݪ|84ˆ]4b䉚FXK f&l yLDLUONy@PҒ/', ߍJ#~A4)p9i}k KGLI-'$H!Rwڅ ͓`W <S=Ft4:KQF"]xE\t)bѥ]PtLW&$`"4pxHCB0 B)nBx m! ;ˋS0(~F4 @Ñ'!аchIEJ$ALBv}@n>É"(G sg8N3\!~B 1ϒ2z@`H<;ƤxsM ~Ţ?!YA48:#~'D =7=chNY?B1Sq4qF rΒy-7oF} ~2܌U6؉(t"AaHP,)2#A%~q%"A6T$(< aHPqEr+#HP#A~`d UDA*l!ƌCs1K`o3 `F"~W—>fH/W,Og]j e.=VSKn2KglqKGMԲd~r/pZyE-=XԂLZsjYبI:ҫ8QK/)}R}U#X)j5*j1-xa:Nj.i6P(\0Bj~5toZzc9%wji3-I-m:d'ji^L- S %I-m%$E-X@֍ע$q o~V24(L-(iy_5% ׷7v 7JkW>]%ʚ/G״ĄUZ]%ݮeVVim5zw}{_>yeq@".|~"1.?/395lwZ^uĥ[[[~@Nl%7:>o?y!ΒzDPgȱ弽1$!zzEڿ|eHYo:;nnYw6d;1~Pޝ?(nwg3l`1=5}6q=y~ _iiz_Ͷ𭁵<^Z/퀗{ŕkC>U nnX䇭ͱJp7t*jra7lXjVT Vܩ/Uh;EŚ+'籂a4Wh \T.NsvlĸHyٜZ';n6G*Ftssy@UgGH#T=JXް4{j\]Z+_q]o,{{G(?`&{JGvUdcOG,G2W7]]<.nrm5,sT*`vKQ`vs yu;.Ʀ"XtQuuk\R]M*Tܦ\rSW 0d1u RWARW;^6H5UG]m?2ͭ*EہE,ewOourOvSFlk콌,5U3, >l5Z9 >%^j1#,>岲#>M_Si-o >%% ,7@ͺZZD, E1a,u @WV!hӜy?Ad5A|`GɌũf!j a(oNJh,3Qz׹YPDlͪZ_;Qo5wmdtGn8Wm߈ ˿CPKZ)%VG8~=r̮0$]ߔAOLY0eVBP>6f YGX %+1p)Y/^ܬkFL̴ݐ3Ae pDMܒVc'J+1U ;c %!Yւe:H@吟f]& C1[GI[(ta,u O$ŬsLǜY5CۚF9ƷhNOA #Q!al5L(ye yeLnVA\-_+LmȎ }l5\UTДWabfxz܀}lV 2V9tP]L\aҏ]DgOT-,pSm3 (@LS$L!wrW((meBYӵaTښzc+\ '%IP="O<0W{z;uOF"S"K!GS#K,7h#t["K6RQd){=ud#$kii8>`XBl&h"TN2))%lq¤ț5%-97? FB"H,7 ͰpM'pCvbnBd"y\4d,Ύ5E(B4{,(DG [# dh&:Ctk?1Q%"Jb#lDDGC'`]fc3D0Q:D)(]6b`&j``T",$&Jak&J5~BLj1(oR#%da&J3BZf#D)LDyQ.&f"W_LTlLTbf3ah&:{/&:]Lt:10l0Qm#Njѓlvw⋳48'ޕgSD_x<7u endstream endobj 828 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 835 0 obj << /Length 2686 /Filter /FlateDecode >> stream xZo_q-$v-DEP8y8GSye{gfg%n ~o2wx*Q:ϮVTfB"g'?]v\N'RM>&{hvObfA[4E3lx˻o.{\p6r]2ZJaU !'jrOi[z=cEQMVLXvg o>wĪ_ QP8?U%TYBW(ʋ tTaI|(`RrI(;FO]C@LDYq+fX&K8??^N6e,dMIy)Ρi?fK|3gddV|O\z  iVΙw,%/{?|~=XdTwˠN+&_S~ JM2W'|+yۗ=Y#@7 :5cUciQםޏ%"{"Ic/ (PF ƙK / .-yﶽp(znXP;Ɇ+C!ta57G4 :0SZQ_KT=߇j)dyqsy֔MY-+}^!|W07Wa k޶A#m׌3)r)S!'4rW"ތ%$f|Ro" u~}7]^GG]NAPnY}PvF?=PuS9DOi}}u=`,`%2kWVcG.[msDQ^sWY=@.ZxGBE|x;'|{$[d cse\E`5DŽ5E\4'2<+ E ԍ1MPbcݙL!,e941<(wW wdhnD4h% c D\x>,D^)"JI &`gs(uxܼ!PzUhF)^lg)ƃ RF0+$SRj*7!C>zXZ8HR:{j]9RGhi6*\Ec'P "[%=)%@"):QXsμ-6 FgnbCH Zƿx\k#JmzGJCdu~$:ҽ_2YRe{c,25pz=ޥDE=RIΖ,̈́o(sV_ 4.g9z/K"ނC<94GBNWj[ž3IgG}gz2`8"2{+8Ĩ ,03 aPS 2 dV:!hIB9E'o݊*EA14hV3jPyCnC@袥]և` ͜3!.dU y}Hٕٴ̖c`C@|(x$$]dkͱiaO endstream endobj 829 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig43-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 839 0 R /BBox [0 0 720 360] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 840 0 R/F3 841 0 R/F7 842 0 R>> /ExtGState << >>/ColorSpace << /sRGB 843 0 R >>>> /Length 10019 /Filter /FlateDecode >> stream x]ɲ%qWܥu(L[CBv-Fxa{AR-e>5MvD&nE7U@L [o՗ow}78_mpޥbt{Ϸ/nw߿}͏~~ſݾ͛1qf|q_.Q#{]ͣ?/_}ws'54{kYFjebҫJoV+8pDpV3V5V7hV9V;aثQOd4=–'/{k0Ւc &v{G M_4p݌cFvajU?p-kQёEe݈}Pa20ͭcT{ض@o;i64l!@UmH.mJ6ۦG/{0%ȶ>P(SGJq}k)Kr>9PI_eBu@Sa86wW 9ŰP\5Pʛ:8BmYq6oSgQ; <~s>?ݽٷ Z{{%% RZv,[8oR; {6K/I ( ,0R4s:kس"MWp6M[J'9$܌bR" w*25GPE5G@8MEǚ5˒-`Q,esKZ+A4eF y9Nc$-!X>1&e-9nNjdf$x*d_㠓/fH_*JgCb1Cp:+SSMXl7ExKte$8mt,f٘}- &XO`€gt_!KC# CgVOAhH/3=tlI+QBI}G(W7 QY63.bFꛑU:>627 ]LȪs҄5qT}]=qUk.SQUQUX䥸[1C1K1S1{cl/ٞ)f{TY1_?)fS8z}?o,@q SHq>Sܼ>gOSSX1&ק)Ň2.FAhΈIr$`>K54kI<ְGC[aVx>|ǟ/ybكɦ.◐G%^> 3?of¦Qi55_wd'04p 4ܼ]g.ħ?Ah[AzS݀s[6Z"py2S'Τ>iT?7Wf}QCRm/YS*ڟilEKȿgybU0y E/rUȪo{ 'rQ=S08 ^̇gOS'& nNg`2(4b7ك]n .y+dKh LpɃ]&\@kT8Fj+< x2`ϘLp}dydѝL/Lx>,Ւ Ԓ%TA˪`&s6/Fó|f ܌"z"{u M%j} 4cJ1iP\)*|Q+UJJ`rXTj(UJMRP媱rո؇=5"^Y>TŇ݁?4 Թ~HatNʲehi ZZS\Uat\&e hex=2VapRx [av^5NLM:T$h7f44[%u+})t%SlJC*K-xZ%Ⱕժ,l[ڭR Ve=,)u1ͪqɆs_sa5']BίSRZv"Z4g"%Z4c"DU#@CU@Q%+*3 ;i͌uPsFx(9b[s@R Lr D'csIuW%yIh}fO GuY(6|#Á9˾~On&O6J0 gGSb Uk~Pاt 07Q?*s G1a${DġP,:>3ێpfnNoaAeF\CIyyI~}s{HnKiB5gw:  .ΘsMswq6Zg<6/:dm4}f {:;:3fcufu/;Nf {(sPج_0Ǽh]i&ô.cLcSԔ\gnP "[UjL؛ 3;10<,~_s=h'O rF=P=^!Տϑ'Gg.<<<<<< <<|iqypqclV}ŝާt'*.6r Kފ;hK1sß$AqqG=h)lw50_|Ssiwg;T)SӧbkRN+H܈ Q$8c`!\~>+υh \Ȯa~>5lfQ`Vx5F_:7l@ˍx\n'fѝI/y^zOܗ2!-6t.{;ӌ&*l“y>Ow!u^t&|?{i :Ӆ\mJ$Ug Ƴug9]Jw㓻fÞ(xh/]:kr*>k7xxR4{x ӌVi{HgwXϞ욃g{ݶγwk842{O%)yT VE# Z]]}^rD8'-*gV;,H*v2J) BK#DE|b ENSC*'G(^c6u5ђ9 -LQMjr [\TɊhqҥtkǜdcaXqAs8{hBURB+)4By$38 s&:5?Bncy]DH'7xs*]ҕrrhu;9,d \Ch4;bAHA,P%*ě'.7{p tp(p7@@@^|<%"a:*8;s))8%- !7En23Q[:3~E;B?5}YrW!RF/$qX[ (Zጛ(VF/~)'S3×:hv7@?l[cٳQFh vWvM(fO.#+fF0& |)13r{jf\#)c$m='ݮŇw{SLXqrG>.>W|x@qqL>DQeH?R.Kg"嫆FGSmT[al ҙ2l‹I[k65Ơge\ֻ(^?!ܟiO ?.3l~)Z.|-yI=+9Lh1]ДNw9CSMy+z5^orpW<m=wQ\'snw14HNM92š l@<j|RS<4sYtCؠ{> 11{$sv7b K2QiEq̋2 ݖLMynF+0Ww8f.2?On.LOO.]to% '0Gwђآ-?ढ़]N^tX8`*:'|'\,ңEʶWϱGj wֺAEch$Ybf{MTAblyibi]n;2+Jf y.ao:wwC=ky7]mp]noPf'*Wa8@!<ag@]8U3؀P~krRؕiBR|BS^k7 )0Ɍdy;?U{<_ A}נ( ԁU qzFΈ n$)P"&Щ'[ S##3?ޙyYWQp0O"eeLWu"y\WA6bat rF5EVs: )g0#ᚺ4f<~^^f(_~ Y>6~"3n-\5 Jetr3}7rĝކ%U1۳bm_\bt_Y1K2,>Q\Rk%).͇ιtc[OZkbO/>pA/ pY]I L'-&1|b0I 6(h+<" È8K'1B|I /Kbd-$Fy$Ƴ͆$5WKb:YX YԠp45zJWGI''Ԉta34܁]Д7hݽy(qRg((Y/Ji/JwgHgHJp)WRp8|PåUcqq{k&bm2&_PT+[얅rKBl718 3햅2"і/ti`)'N 1mc@{S2h&}PΨ@pnUcJvC`wrX%o2n)t/_0WivR\*Ju9R]b,*e١RarX&Ua9jp&0]s_Ҧg\&-74}EIgeR)gbK*DQO1;`y QTZH\;U57u]N ƶB]Lnm249'.Z;cbt+ܣ fOU<3[NSrv956N!t3P2N7et,%t3k3fcB]B)(a0^̈oB͔hJmɁi%(CH]p~V=]@|kq  d2u:EM\l mmlmb3SsEFN@θp rrrprޅ3Ss/c`~/y^3 =2T6C_\dEd򚗍Юțw3~?+l}VUqݦ&@ym'GV{$Ojʟ:/j_ 3Phg Qy93T_՟)T?ËS> cROo(tg>|ENv|G- ucgl oQp)及_=1pnZ|t)W|Pqv*vNJG\WŇtllp¤rq)]t\ GkK6R8ZCÁ̶00l+< 4xJxϘqyt)UL/!Si_ W> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 850 0 obj << /Length 1575 /Filter /FlateDecode >> stream xڕWYoF~ Pr.[s8Ej"-ђKD9v?߹,ha\1;7ߌd۳\/g?_Pf^8]=_{n*Wx􃼙ap-l(X?B9дWEHo"7ЛXAh1+ -6y"?RϚ5b];Fk2E&pR#&B<śwB:7,tb҈Kf/l8giq?r :\B-ٝHS@}!&c=]܊{w䳊4&׎3pGmў~;FW]0E8ڀS~ga1gL{dDN1(ú#\|J6\;_GЩtϵ$sW,Q;bKC,Z4%lx'vX](BPA?LJSTb2X|*c}. .ebUX?W+WF%? f%oECT}As8lKƒP8,A]ހWnPlp" !vzFۖ ~ ]qlnT@2umbQٖciU[]B voכٿ" endstream endobj 876 0 obj << /Length1 2152 /Length2 17703 /Length3 0 /Length 18985 /Filter /FlateDecode >> stream xڌTm 6ld]ٶ4Mm۶'ۮi2zZu}}+2"e:!;#3=#7@DVXB CFbl 9 Ζ"@C3QCEY;[k E;Gn @C&bghaf?Jc*!-@hlglt nnn6NvfT7 gs 4U2@a*N(ۙ::@[[##:@YJ o̿hnm# ۿ l m=,l@ 3-/ECk'{CWC kCS7 ) ?*w}NƎNN𗛏6ٚm`Ohw_2L\Tm-\R8sft122rs9_T< :`QpvtxS00v,lax8?1~Lƿ~1a&vba%%5q_;@`bbgp|<C[)[S;׿Rv P{AKcr?hmo:7#qkRXX{[cr]?@cl:_+lgmeRΆ dkf6Z8[M,5.:WkѬ-l vNZtLG]V[X )fklgז1ܰ%cMO1Qeg0u/0!N08    >I!v.>%Ώ #X *#_ ?%焕??'?>"kp(|m?M ->T ?n(Q?xdQ?#S?CGkn0}ę>RsS؇GO> t#;g7|}Pw=2cGǏoa݁0ˋv<Bnt|sdTt^ˎ.O7Fzv( zm]if ficp*TnNE[-  Y 'B.[{@}Ń*viؗYh(y,bHg:|(j+wws(YS_Exim1<.x0;ucbkaF!>Jӫ0jg&Gi5lb_,:4.T,74Gk5)99aWYJb < W|8 P .joXLч6w|;/ e32 $+r9>bJ#N^9tޅ6: F G?._ bG~M#wrN;3hbF8/ɸfㄧ >dqF73 0y^*xrzT՝OӟH;nRqm0l0vȚ`}:,KNR&ce`:mZ9CrTD:]5B oJx|ВS({/%9wk^_mJ \󛦫r.aP*EJ!W-NJh1˰hZ[UĈs3gYVEO\ 4!6 R G?qYf^Y~5l8S2X>3u.n'Flkj`[m20qchrC"왒΍j8'IxaF3t ׼V~$R`Ȋv̸wDZS:G 9 )S_d0-Iƈl6HlI#gTPe>Н*(2xbHpCm,[Vx`>1[wed-^  W^djc"@kML~Vkv72y ,*sa[s99EmAbdpzK/5-WkSMRvmU(3JZzїmR,ۂ,E WIk]d4 VXo ` V(#q1߬ Bvjt$|O4QJСQɺ})шV`tB@IrXt;fR94Y68\>"<"E9Yk#7[lQ3q] ugb oudhLTm/SKg]cwY#$e.ڂ+>GċA0#&RŨi]=-P%ЗqVb=ֹU>&t/uCEb>Hb4[VI{i­6z??h]>CACu:5jq-:S7 MTkqNx2k 5.j$Tl2.f8aIq7'e+dVvhv?F*dG֝٘,*\p-4$HUOb"m,Y>@1D"/"$ $*H?- VF2s_q}x&"_/9}~,YgJy ~F/F-?;t䀅b], >кj`ViT F_Pa:!(Wlk,|1}K0{RkQK3~ù#W{Z)WrJ>nw:pCY n*w4$=˃fB?b %Ҧܷ]f/b Gp%L%ԃoڞoJ}9 h5[vpctˌblIuG}TR}Vr$Րe \:ӯTޟR?Vͱf*tO{_UZ+qr4[A5z]urxm(GU⡝2d6xG@vjjB[;mi_jڹ=Q!ɦ<جoѵ؊-➂G@%mmuQg̪ -lotciOMĨ;0D5(UجVfQUޕ83Lx./S G\t GM}98,r-Ό v͈f5pq7wO{Ui9X/ls L[n]q$#j6 mk:IN%^?xZ  Mm-T5`˰_"0L]^bugaݗ<߸X#nޒh9^'_U}1x d!@:/V,m!ϴ?O.OF'E)X"f!=Ufe6&E@fÿR.+3LC.NzX'!n A"Wq;JqA4VlRAc/b_T.7>m{bҳsXx7qB*}t)kK)_I.2 -ZC ΀a3A%:ȝqQrqo78WÓ-$Uq+]8aa g|h}0I% bs P5K}Ed2.WVs٠(ꭓ~,1 /zK)}}`~nQn?T$W;ZhCw@) K7fȖ<*!'9n㘆TNe|J}= ?d@6p~] 'xd܃ۤwU#_׎tyAeINH8c]?81,:D50C&롼jLg4WTENh:^82wk" _a-Mbf]=AG e1!@&rʒA>lYX䣳76=#.,c,ȴmN4RL3ϐn Q_mfE9,G rAd <?AANN{}dSё@ Jv-vcy#<=_kWsPvUmfS.A|3v=lqc"_^ $ζB*;AUY[yvW}wܥ7!{;`/DDw7 ON/E/чيfIKrJ>\^ʈxU\1a֩r>Ɯ>h^;mNb)DguP}VNI,AKI:_zI{YT"%rAARo:Q^q`xcY3YR'kN2'fZ,ąLɶ)샄0 '5&^ֲĖ&Lt)B %&&@1M^+;\<%|!:^5Z/l u3)7PYn/N1@$ꛥ`7kW'j׾%Bˢ_~)݂=,y-d \rWz=`62}2r\u=_Ϡ@? U_D&A3LYK/cf4ZZHN`!ؑ9( a`z`j'ɪ-WL<Neu,-^a?_E`ۖ~YWv&gMD9x%+l܌,@924`}YݐΣECcS'B&Yupk< qÛfBvsgPhSCQe2~J-xm4QtKtId2#H/q5?uU/u3GVk3ʭm-{T?Jqp߼@O o p+57̊J'HkDAy?ݶlWx[ǂBOЩf1;|=I RˉDM`ze8YIeJztԊ5ښ2T2 ohI@YUl2-R)1P$t .]"7 EZ+3}(}݆lƐ:QϺ# 8S8G]1﫛1fE6 yIPբ +2Fe~Ǒ?Mv.*xV% nyV7nj1GmOyGBL{ }1NRTzȇs5@\MHi0P)"/PO%õۡ9|׼H?OGEޢ~Ojf(~i~ )Qεz0*~GC7".u@Ы1Z\}~;s?[nBRQDY42D:'e'euio@b.u!'%`H/L;X/cAicni`;m6yަg(7&~>CѢ̙U@e7 ߃2(q{_*#` vr uo]MDX8D}IRytWkS~n FB~}7Uy Ȳe‰,@caQEv yuY"Q=^WTƅqsB6hBCU6H|.UK5,<,AU%,],yM :vS$DP 2*d%m䗓Jb;q>7?%$OˣYJsf**{`0FAVyq?-|YapQdJWGh]*X\!\>5 ]}(]$却&kk$1Fb7'^t.Op~ּNH_s;Mq}pB|Qti 9i]MD+R8m$1T9Q}C)WssvUmT}UsKe`"]mt 4jV1_fpnr.K\B0y A"?Aw$?c:̀0bQ{ZBv  &P-яylVHEM27 9R4e`x*1S3&P\{&י!EI87Eh/…&@!G!䚃46V3qNK';}`>|\\=gYsQD9[ySaH?XW-En/`J3&+!:˻ΠdWg{xQ>-@nnr\ {,e u/]01߸H9AR\!(n,hl͋k37bGGN-jLrAnQq  /]N*{[$Q.@?NqVwmdfoItq'"mpY?l~՚lGݿaN"$dBj󹯕MGoC;O[5ޔ!nr[q5fت ;2-g?=4x,ӺY]GHƥ86 LV;Xv&D}/)5Vkzj^wJ={n3˜nŮeP1R3R{0AxI' (R۶o>/'rM)(alodQ!3;60ZKm27 geUd0TFݞxxc rTBba\tDK}69Єs}!dATK7Q7eP +m˩kKbʚNH?@,UEN>:t{UN;h{y7"aE~UF孊1M 6B/FY@Ӽ 7q/O vm5F!Ф+E b0lQNW,dDqӅgq3I\ _⼮mk[qؖXL$7B{QW8|h3_l# $hqAUGT7\Y]m߀Yƫ8STl$bDZ&vEe/P`iwo0+#sA?O7^a-{6+W;to7~YoZsGO"p@|^|*bFOI)*WŤTkφxwaL 1kʐǑ[͹ݘHka#*,+i: [@\oeohDДEFvfVrEQu_aLc1J`ꌾEk8f!gʍvw\' tuOPb JW21 kWidڰ* 1 Y< *z#u"ևh+Z 6?;/B;U]Y<rB+Sm1_#ڜ *RR\!<;dž?#xEX/zL  PvD,߻ᚯ1n;O5P> * okԚ G%P,Hgt9ŇsDw3XM7vWX$E~ 3~ a(V$!7N+{ࡍ ?P^.zvLJ4_ \ @j&`[W*t#QNDF=z: zFkhtҎϠN(Wv\`t*c8ɝh4UIBzǴ2&NIԻ0$2cS[j'ӮDj"uO{X!ܘq~:N=7ஃv8$:`;h*p;KŐr :/j6҃os̽cVm" ~5UœÂԽmQ͘PdIᝋD#H|vF{j8G@M5f BlB̅F]ų:{[w4wftzZ >ܝ%(*T(oPa ^OnDT8/9Эa)~f{GNX p)N]Չ%[l$L58x9F;&5/X aϝ6r A 2&o,$ZC.@rQnpպ}!~^"mzdjRZ`In멨H"tйST}eEZl:3s~TU&Ƃ?yOb9DCCN g7[@AG*@W`HJc/4TW7c@$hCvє ]c)w!I4PU ޽vX0{ #lkE`)(>23Wq{(t<5"DC-nQ9>gͮ4LPkIJtQq-JW"_}{"5K85Z)iJޥmYp3&&BFE.SOfƍK`aF.֌n7# uEna)ek]/j~ ]/ Am"?3vw Nw f s9&nL"*Iݞs+H˩C3;4)J-r<Ӭz/Fe-/35yGϵQZa'axeR[%H-<}lSR;$P‚"DtB{6[fŅOH'g$`ejṀC('Ww-P3#u;y<_+FϘphc L9D_THQM&O([I^& 3n3Q~?z*+RI~AB*HUm+8 D)׵.~2J`2hY*#3qkA;FmX9N{v[p:9g snwHCQɵϦ@AH.@Gv/b뒓Nj" /ke:{X1N=}n$lJ_faYtaˌ 97qG/ՕC~nIWo᪤t`?{yGgឝ#;P@-zL\Ezs1a7j<ȖxݝHPx)ڎR9M^Î_ J(dW &WRU u|\L {1l:F9GG;<b*'uI/?, JDJ٠&_|5PErXbZ<,Ŕ$e`~$TT[6' xiU}MKY ꒕O#p3l Kob ﯈9;M "'h&,˫ױb5ڛ\\+>7Z*q+<6ъ,[eIzu /{G{-WnNd3,IFJEaT ĥ@36H?/AS fG~4O`&4}=6| 5+< m'g|sXA>҃浆$ۉV[KMI@L5(x D)g5;yJKR_ 13DmU6qT8;l QRfw|}=jGwo'up(< *.NO@^aSv~jË 1md㩖@jeCT(/smЫ&DԴe5JB )k,?5HquMd>=aKfmP)$pmҠy,qp9]O~Gx",W >7e54k_q~ʹ:}`XA{ȃm 2]\zp"KiD5iSaskV.\#m~S~O\S/$!;?V9x,(8͵,=ȱ:=]4\,dv|JĴۢ=(Zz%Jox-w VQ.6T'Z1;elmnr!] m^GAAV%!萓fZpGp *욾ɮ}&{ h?1w3 -Kf٤tիzLwtEɔ|Yv]3]!,xg*Nio@AG/v@[!/TDwzR#tCL=2纮iLO7HEhU *0ek7ƽB|S LAJF<&ܓ?d~H iWM$b;Uc&1<Qݮ2'38U/rq3|Mް,ܡjm {,$S4-d(ʅUZV^ҙ@Wcd %-8= Wf-Ġh[{0h>f6%ugP dB?EfvkOtX̘c3M[u-_2nU \$؈kUZIktځ{./P *qц7g}2C,`@9GZi-5v^" 怖1Ѿ\EAIg{e>K:\Ež:J>-4ݰ2,Cļ'B)XL;gS:"%tzԮ:@bŸkpDR 0PXDPMcjw҃5.A8*dxdH?q4L}٧>>M zPDzj>b: JA嶇I[Y>v\de ýW"dHߛN9[%$X_8cH>LH"hXJLJ=HȰ[_izP|mNɇ2i9-DQxd@tj ќ#I3j=Zby&0JMuL)EЧ:^O*  jr?;j-~|;oqР# +h OC)o(, 5TTx5{}?~>W&&lqQD}gjr 'ľj. ,wb=+j+aR dT?[6K)2: GF@tpb4-1oh*dㄝ9 Jw&^1H>TSκ?FN< ^%)n0ۛm Ekǵ^}ޞ_9EJ!)_3SSRg z# ["dbTE8 Fu<&Fg ،=!ԁ%R v?zQ&cQG"Ei$pk*9`мB\3р'Ytr Gu LB[(TD^H6eN.n2HNDΙ-NJןfaIhh9)[6ٜ[z%{7 bQxY8 ^uv8/0RށiZb3[gMfRAOYn` 7hJuCXɸfVvqfE \q$($%1df}MiNapd)\`vJ{3HȢWrsh:HFV 8`@Zq'U ؚN2U$!&؜pD,d?v 17(I\Il6{ BFNUFhh`>9jio~hPa%йQhF#=fSGp~j@lW6S)]ݶ v-f K~Og:v℉X ?$W=ДaN=B7l V O;4򞪌erJ'V.<& GU YR/'ErWw{pAmcJ`u}ȩsJEFjVCblsiv[^&dY@ǘ9Ou.G:,0Rm]3 j(Zzɜ8(wFX5O'STf 9ٕRQ>U"Kv'Z9zZ83,2*.p猄#^ujMn}f8i9`8O^l?$Yq+ں\Vr!c V &mRdV\>м47"v~Ϛ̓v,rkj~ J7xM'%rZA=L[P7Xwto4@a--_Qk#:l;\G3ܔ8KĩC]P 1l÷IBe2zbDզdpE0 ^C۟KO][.ڠ$) 'h)$A|-,f+W!ʣxn<6R0 endstream endobj 878 0 obj << /Length1 2121 /Length2 15075 /Length3 0 /Length 16343 /Filter /FlateDecode >> stream xڍP\ n!;w 4wwwn!H 8J꽢 z1m54%*H֙ */ `ffcdffETpǎ@rt#n:;d\,lN^.^ff+33yb@W <#@@)jghaf^?4ƴ.6 G c-@lyh [=' =/#ƉLflP9]A&$6KcD[8P3uv:k c{ ^*-PY_W" ۿv6@[ [35(!Lښv{-FH+ ى/Ly?fq[Q;_Y8݃ߗkekfdjakb {&u[ ؿ}Mlf g333'3U@7]=] 8;|I/B`aX;@fAha~?_?>a&vb&I %5muK/)"bb`0rXXx\ͣwbmMSߒv&m+'@`~%V:b{]0 e0A&?$_ `Xb0IAl&?$T/~ϩgQ޳A&?]^AzW_л>?"wZcvL55IH?9\]!`s{s?{Y+|c;+GSY?qۿ?hayow~~/lwfwm.\uɿG{zA+v|u5n S)5iV;]Q`ShpNC[Ju֖l2ߎ<=4]t"\?HOȠ[# [2Em@ҽ~|m"tq_S|!F=Z7d2({ ƙ#;w7:b/-؇ύ 5V< Sb O&: ;J]\+nH|jtG>3=-i sLPmp8bNcx92Tf%NP3 !k9QC_!8HhU֒ھKIh66ӒWj\)UF'd0[]hB<.,J(o 3.S"j- GiR-b=+]>+DJ-\4\L%fRaOU #6R<)Y`#. ^B0VN*Ny`eyh#][]mMFb9s¼ξ(BhNeJw]ۋF[& y\cnvFk\i\bFĦVzK|p[H{zJT>DŽc`S4IK4 FX6[W3V>&n[*qCUǖ τ \)-rmO 9â77&,EL3Rzau|) X6 /@WrdUc2) s2 )~'0wL3 _hkL }:q*yn$ؕ1̍,}uPmN=RT)?C{a {0i>Dao(HC4&٘'L/;ZuKE] N;g)6Zȫ@d?jBtGT;C2t&#M^i]E +l9A~n_Q,6ns$4lUBNaPw #v& F `(6׫y82tF5جrɚ@U-71Ix)Tv42$Ihpח%WtКY"\R2@Ȩ֨iq31aGCߙssO{No[8d)]ǒ# &_ܵoEZTs=́:DY7[]Ր/7ѦJvgQ~q0iz/O2EfOX֫̽Ʉy":F.4En/Znzfy9납̙SFz*mxZ $'5ΩjC c=*1C(aPo近AwviqC*Ж(cXw]aX\9nOH__z- vىJ;1W6Zc%.=.o~S{])iG$8 еnB<ߵa)o+n*dX"ITU/^!-[-@oH|GA_+zI֪Nj_i/Mhɨ`X! t۶cef>&&w$ɺZq&K կР"}i`EF2D^DxU؋o}Un7dKO~D3'qC$y:d!̘`v_3nc7IqθLJz' f&Ⱦ~FGN|jNr$i~$a5,բ38HR!p֋4Aj _dzh&0ٳu 5MWxfp`#ZTˊ]W[S(g o//od+Of"/#'")#&Z1ob[}j4 r08_`,J%3!_7v(7aݦp7+y ? ~g6K{ .fUʖYX~y4=ڜY!25:K՞8F>kW3B6aNLuʭCt~y 2`J΃>̆^usŤU/qI.a6x|CBiI.#\$y#tH+JKڰ㓇%/[(ܬ{Ջ`9Q%Ԭd =u^hQ wSO.Bz")5c ˝&s^Fߩ{8ʧЕF5d09zI_:T'0q) r#OyNm%/{P1EʶWu^yó完MӆؙF7ލ q*#6͜ 7;}sO&7r%uIJ[ rbtNc&Uu,F0aءe%~q-08b%"O \l`1lj.j+t3r8"}dI"H`q>qC`_[3"mPޒSk`[>_XgT׹q]OSqKc Z [ "+butp5ISrjG:8*u@5VdbH?p p`M vzL$&I rP_CئOYuW2xco֯g#GRpV<lX˥N-a&{`r Ve|i.S&nbzXBӶli\Hgq>j9E,MKJȣ6'Pwjz(/N] Bt;8 } NXO*-LԦ3dtF^k6t? wSKp[d5'E‚J;EMdb Ƴo`_Z.VANVA0BוKKv9 r A3+aC]X+i'ppM Em]8.f00[iz PDyҮ^Cӡvm> y`(dAtKdQpL/0rHn)})!v=j9uVoX)h6CO}fzQ4x˒"@9cSC^qkE]{G b`Ԍ>ʲegG%kqjt$~iO;ukHBhI"#[!ngy`f. ᶭX?+?](5?Dt!T5̄}D-䧜n{C>ڱ efvµzB&}͕D0vR\~~T2pVUsE\@kK9s3ȂvcJ},3[5Nee&Ik#V`٥|F|H'Okb+ŚtPQ#(e%pxu©hMTƾXܢ+uA`u!UeaeUim+$SBSyO}&Æ5 Ux_u@+i͊TaMѱm4=3g2ڭ.Oc 5Hd;5#fa%qb$C)I4to%<nO%~4 AޡʌrA.#vm7 2ͱyJ+YĖ^+FBbYN:{%W!޹Zfe/NwS1{ʚTߛm4XT5wjhM0 "y4辤 :_ܗ[w,štn[ L˿wS[ :o6ZU]Kknaڤv]he Wm,:>g)1 o5 j7cB2w=wB{HЛaA\^$mi('KZÉa弄g.[CH@|tNMn]]:5OY՛lm 4-0kDy*%C4=fs΋Y0;k C܊c o1]yy>b;Zw!LLD<+iu<ݱCB  t"v]v^ 5(tػak"E 9ʌX 1OJȠ.5ۚu#RUxH7S`)9X3'(=VnQEThd3kOEIZsކE;8>z خ=mTF?DArK:zp"R{7 D~f;TCۑ2d۞0ꀘ fJ`p ]KW=<~a3Wk,b%wT7pɄ}L IBu4#H/_=F6a\ʥQ&+X_*2{"Hp 8[04%nWPJlbqHwLf ͆&0VİC̯CR"6Ea4:6>UMv4|;4C,}ӎAH0C˕_a)dT y%Pv3Sd901#t7aeT@GRl]sj)i8)>q4â0^ np^|1Չ2 !ɺ;eITXjUG xi{ul9Hb$ +VҘEh| @ْcU)[<&d(=O-oټspҭH+z5z̀Ѻ{- $@]Vۙlk^TLyd&KιA 1B\ceMQ;֩\X~#ޣQr[JrSݧ7 ms >3I7#A]DhOkҞ=h4n<EDT]DcD6 =99G[Urv!oN:\O-ea}JI?f4"JEّ12vi ";XVk#U(VA-e i(+c}޸+IoL;d:әJwyq~ͧ4TqlD]+|¤!\:¹AÌ0C+!fFہ=ַ!CTr@&==F:i*_Qe@ojq׉rz˧m߫ qzM[\ rÔ, wYjp\0H@>1r':b5#-U ޢӌo2xǎ%b=w|i@ΈԴւq=֫SX5܊u}f/0̃.)~ ` k0 rBFu, Na&\2Ӧ%F^VgS!4Wq zm7 ]׫ QJ+ 1ϒ'm7'(_L{o\?uOATGF7πmZ^Bwa=\4QxIrкW/S{M~b_Ϣr=M* BH? !3 n٪CMp$I6G8)\n+4OI wF;)ȹHp ɛu飷nɮLApbzB42|`x- PrJtF܈E(8:7q\"[P[\1fEss29>%+ P{r2SZȡφK?܎Fq5}#=a c:' Tjo{H ܏W;i,%u$= m5>%I((^ܫ^WZvo[z4_Q͵΄ ~L?n Z~{勛DN0w1@o17$b877 9҉˵]CӘQW\xW|1,ħlG0 +72tg]: 1FnI DTGWDVV|@c `aqv)UJ|.^B$'9BzvoK``…p\s4$>snhyLyouq'.22lOyRu&BR&F'f77 :/ ޚxr2xN٪({f+HI@U /b_q`?pGztGd9aCJoc+ZsB܍DDyoD6#ZgZ{%ˎނk]-nk;H\*8Ia)o~i{!4APRጨ1FZd6{tYR25&ݵƭɎEZhsy}AJɭl2W8Ƙh)'}X_! 7闛8zH,ONF9vlSi)IՉ5z!d,VF0{y7JuK-yYR{ [qޜu|n܀޷y9goV`%<դ;Ю燜3 W@aڃ7=,S J@{j@ҫj(Yi2}^RKupOT#"̘ƍADߥs]u<6=^~77ckIv 7}xTt'H/W$F^r;Llj  Z#xTRdqGr 09 \ PE6uM.sơ.c䓜& G6 ɗ0iΜQ| {ǥ1e\ݭB (Yh)EV1+&w+A+"xebg$u`LvV"<(ha69jW?Yζ])c)g@☄Xn7<;Hb)4 $B{pQ.&*[/7iNk?i eR Yg9H2)g ϮDDLڭ1uG8Ew~Tw2{,wf `TͰoߵǠJgK!J[sqd"y8 Ɏxn\ &E'7%3ŎKl- >6ʥ\VM|*KI.2Go`nȨ҇<դFoY_tj{,Y1Պ&| IGd*y$G1<DT0CO (qHy_|%y"aįӧ;Bb6B.:sZ6iEF H/,8ϩ$$%噟zXZmɻ7ֆTkY~@ֶckkQ~>J[֥iӁAVQ$d"P;bzꁔ ))i_/< t\[,(A Mqi$/F#93OKp't@ɺu!` McA6Lq>v?C>`i<|ݧ.h;zS'T^֛bg7ڼW=D3<BEB\;4JFb/rs ywYVZma%LqdnǟiVQ'J7\ȵܹ;-ѕ)OL^{$ Q WgӱX]K=uĥQP?J@ٵ0!fp$DxqJ q΅qjYZ=G 橞o})UB?iS?瀣9i8XfJDT$P,V0I.! 620~d;g M]p>ih6hlF>w'{wDzRJE*}cqYy$c-l( %ӀX#Yj"p:zgHik {dSyrDKqtƖdt\ڤۓ\'Td}gU(Zu)1x_V39)[T>8}zD@7w+C`\H\.ѫfQW=(eh;k"jƺ$rgW75˨l9o^ :.Va[IHh.#6J["1HCMEfǃ6lVL{>9UD dz%Shͯq=xZpdGF bmw`&WptN} S ICt-_yBh]X]Z:\sjD!zhȪY^鑹t6ګY |#Y) Ғ.bK9axDk}Ff6O ٜ}%oX0|an'fV#5g%qtmew5j/Hun&}UJƀd½^z8F$B ;N!ڼDW+.+O n*y7O{tj>R?G*( *"1_Xմx _r*y6Y_phxwT:OYQ jHP`?*eԹh|x_ J!<+ثJ5iҾ5 6rʅ 5*`/J ЭJW!b;%6+l*x/f+m=%lpk?G7m#ʝkA1k䎗/dTOatrF~AoB?qYn|mo7SzO\4$/(Spע2T@[f%mZshF6H^Ղ {qmge0/Ȭ%@*wC-h3r{u5fQ4%vBWq+O&sɟ% )1)t fӴGȘ?@QMFbC,cY*|96'>ZRiU;"ә[9i;|HH]1Ol)T̨ы>B[1xfs${m-*Z iyqh B $Bcr8 )^4E[uSbd??+!@~3).9Ve* p[֪)ܲl?lJ1ygbŷy_B* X:j. }hF9\MJNڽ :(9"RPhYaB 1f#@{p9?pM^|'9Co!KR_c?I=5lJvEXzCn,s;&XJTsXMM=<.&pA. J9udO R08z41`|3SV@{G85rߑ+-0_ife=w)/~Aly\6W &E *,! .u_ 8S\1r0_Y`[ޱ sHYK-[`_{c(!ZH vKܪѶH4P(<0xB?Ѐܣ>tݑ$֑O2)/U۸dB`5GR*OYSs24IsFкTXt_$y DS}2Fedn,> stream xڍw4־ (EDa0{'BBD%J!zEI"Ik}ߚf}󜵆EH@!(aA@YG @"0+/7>) C@ }*`5N4\aQ@X⎰D *`o4p'>2 stB]o%mKKKNݠH=QNPE ~GHG)@:>0`". g2A| op@P =3(0ܡ?`?~௳]_``{{; ;0W(-B0 vD\烽0W5w`@M_xH;SkD_eOYQFA(O_Pcs.p/8.dyxA5T\9BQ8m$;wPz@w;p=4{C Zf젎08կP?#aht=a5 +dgdgǔh_@\""ew@>uZkBIn_ ;_U7wCj^ܿOs pMZ/Եt27 GJW4Pk(]}0O5 чp\ap>QA] &Z7RnF"W|mJ@ѿ)  z@uҀ/oK`Bпk?Lq@?L @GK^H&Sٿ( ǟB˄9ׅ(l ɍsl=E:Sh y*- G7ZgFz vo1+l\z`ѡɑ%u[?ħK]]CԆfE٘@IUHs48(F<^oh≣q̚|E -EN'*E<вZ0b}WФ/)~|b^FH-V-d42V1q srjlnj&,k`{i!Bũ9A[:=o:ql ٕӱϻMYMyu7YnLƹs##凸tqP@QA7Km6^MBhll7ND{mWIP>iVTbN)MXXs4p<Iy%|Tt\OZs'. n+'X;8ea scӧ"2QoHCHO\h!CbQ}PJ,R9SIJ4b{~,XЌ` ^m:޽{BMS:L`X}Ɓxl巖r nRWN^LL%v*~amBDNǖdG مh:F|1I/ZISbSMyY$}V}J~k@NC<;|"fA|M*dph(b:>z$.7[mbGݽ4xPb} QkҋPm(uBZNf[yNyY|`(M;16VޱT~(B لmʐ.׍#$*4 1hP$ v"0`02 ?%P#''hqB7󩝢z GuP ]xN7Eva);;H^}!q@`.U tRoj¼rA*OFL ~''o'!0-;FEj3kJ)qw?9ESއXc;0Y Rpmy ށ{MGݿ ݭq"R&*WU_G.@Cye"jVMS}bE~HQ9o4F`ph57 fMZZM4aEàhS/lQ[w,;wIm 0v앮uckpXd-%W_ŃRפWt ]dnɌuC]N'y0܂ZjޕB\a,W<Ƣ~\x>?n_4eh1ƬDf\MA^#l=2{uJ^_UX* 7ٮ­ V Y|S, $μ3\Hޫ %+{n+D0MnS_ZU_L-xO'Px 77Bś*>^I>R쎶mz1t[^ y$p+d$v/_&md[.,kvJy5vi70)k~b^rk2JE< g^$RjNd3s}[VqgIET&E@n@ 9nF i=3 6/)^N;NKp߾cкb JpMWqR ?Oa&N Ϙ3H,e~+:@3-8*]bfA,^UM6nXH7pauէ L͔i6#p͸K1NK/yit>ѹ&߳ij oU#²^я'i߶)' V3vb͂XX1zy 0lI@p2w$ gJ/`S:BK]/R,UHp{rAse$O 2=_2_s4n RoSmF(黌f_N\üx6U]6F)Ǵ.y>GAcQdf}`Qbq]MM7Itgrkp8=cm؏ 9?̷"ɞ͟JZ~a#M67X>3o/щ, o7nhI/+ޗ% j[8 Y)qnM/=`;dJR@7v_{oYayloX#Jaװ{;&Li0cil |g-mFGK"SsS惗m՞('dw0wW2ͳB[o`'HYNϧGh[~yɞjG)yar?zvVsEʮǼlI/HM~N>. ,v/ד6)D,Nfsqu|; ؟ay#3"<;PWo4/Q%k e+m ^n"[}.s0Ql`~Cjɓyw 2ݑg?3*:_E:{8ZJ^CZkMkJ0Z6kGOfIZ'0r{|ŝDL{4C_RcAkݧHG^W_#X iqw#9<,?X^P ):Bld E_J7w+kjS-s V Qfq3-u}|S؍Tسbm2Jsx'nJv!ZqeRgJ5B|z6g>0L+MR/vGzX..ө$]{,#2O9eu}֩\8qjrcȴaWS&|]:tk+@/CW'U 7:ʼn鯧Cacfഋ,O%?HXp0PȝL3HCYE<~&eGO{0 DugOfZz<xfjӃ_t4y a6]3e5G$ɁFFL#V(9SW,s=% j[fM?mNXY Z.*5ծPnw(1Z*+ ԈK}itV瞝N rFo&R2v]2ޝ.ڙƪ3utx=[\͡Jj4 (PĽtleiԮ xC?NS5.nqK.LLߚy*6qtR'2F u(gnI`k9?`: WAXTgatե̠A=N@^ZK4,cYOK׬4ldڒ=%6Clj9p~,eȭLs{Wc,tu zF-˂O^|:>f{z\ & &n <ݥQ}~Y!* #cىsdn&"vr6 g ?/edq{L;0L|e?- 3gΈ_T{y(3OW LDQz[/1o>7.wL2s&[40c>Eū>y@b߅:Kųc;Nx ]aق$H'Iɴinswcm^2FZ8ph3}2t@߭*'P Tmtʫ=ܶ::r$EvT+J3H]i1|TM$|E#~a˝!4/Cxr|3EzI|YlQXdt`mf c<]gN"vRH9ؙ$;ta؎-=i˱ܖ ?EaFP;:Y:6hRP⧥|vCU;1Buɵǯ0cdٳ.3,V)i#k`h 8ijFM6b1-DzQZd ѥS-V+*S2|kv8[G!MOhDZC}~r' i\ I*ӎU&vx ϶=~V%y+~Ye ZE%bdq<{f5fㄔ!4b5CaFq5(0>Q3EDd}Zt%O,^!F|c5D~!ulMq2=,PvXھMrF}uxO_r%;`¹-aACsgUxu<FzL]E_ >%L`LAgf1^[a8Un)u]:2.aۘ)&JoTN:6Nhܿmİ:.q|tk3(̗w Lu{ Z8ƈEc+6SѰw(}OW,/n^?MMY*ǝɯ񉜴vb{fCt][Sm]4gz#L(:w!oq2>cgDTܓ̈ #edϩ&P%~fhH~V8ԯ?ѡ4,qc~v%-CE(D% f9MsDeEMs҇օ 8IhШV;WmʌsW->| Wl,XޥSlAx?4-s4$bI'ȍVu4ޓ?-(n.N^;h``sH*Nh^9OyLe>^Mk[»ҳMk ?O=hSNY(3Ż-\x*^Wӻ+aqSX3GL8TajլM'u$]iQ~_y_QIԚ>ڡ[xoFb4JLw)]Xp+h%vc("K"#8(ڎG&=D=@ѧ¢]%w"^%M+f_O.Xnfd8rN?|N;?RBJQKUm)(y@ezT:kcvp#3}8f x)^Yju0e=ѧr"̫&ZR endstream endobj 882 0 obj << /Length1 1478 /Length2 7336 /Length3 0 /Length 8329 /Filter /FlateDecode >> stream xڍT6 Rҩ 1Cwtw Ѝ H H tJt J( %|s[sݵkvf=C>Dx $JڊfH$`g7y¡ M(4 %ykS{i# /8@@ *) & A "Qe7 h P4sr]_.nts#`Og`8zW .igOOwI LJGdy>0Og EyC!߄:`7_ F0_vC0(}ᅀ@QZ]w(`x @_] vp@~0tU=}=y`w F惽086O`>|Kozh͏S.s* DO:nuE }GhyxAՕ5cszD@ :87sq 62 pGoI@`4 DyA߈@@9xN0?oPǿ`KЭߟ?Y D s@#]-es]ۧE@ CnO: mW w-jDn9~ ?KOWR?n whL6M C{]z:Ux9tqCD~WnK^Tk~em6qE |F[<M\Z0;4<ĉ (|z|{F"g>oՈj^OYNgecdt< FA^PqŪKFl-hNG&8h| (+IЈ-qdim'{1wIXjTN1࠿ή8n<^tm!Z/jo"U1r d[R Amف|Oyֶd VDEf^<XZL<WU͚'K/鴑j` 7gΕn(d-q!1瘟16xq3D#̹bǸjh{ה|NTلݳv|b].\:>W$S4nb<~$'O`c4NFT2**{JJH%nqe.XloZO/קba}9&"N92SqOiO n}[bzB,tTmx$A'B6L}B}kWrߌla_F>MFjڐk 5xdDU2~1W #+k4,=z40t]")qvy=fZ(<3DPYJr[(iW^orK%Xd/)i4(E}S-ѻk(1@YT}0򭨵4\CwsŏM\ls*5TM {WHVq}ӘpB_T'Ra xӽ5Gpj`%"=()}1gO:ma_`8R>MfhC=13yڋ1Kn\'d"e*M5cy<Kyd[eQaŴNhȲ!T-eNj1_͐^OҜȂ{8Cx7lx.@5 -#c[J9- bqݮ X$xy %gSdh}zƖyrd٧&~TGC:էT0/ IMZ_'s)97sA>FPv;`,Β:+Jij0 km$ @~OIՂ1NyvvU-4DTgU4Gᨪ#V?Q*ddU&T3޲@zuc;jq Q:$~&pU1go1yZY~rwf77l("؝hLQAz9tϷy/7Vki x&%W!O$/s }6,܍rD|=L w.JKp5~8c lΔTHh-CD^ ̔5qF7u-w WjJ.=q:1ȧ폋GxWM6e9W;w^-~tS ny0:Ģ\=NI,</ *ߖ'!_gqmGjz' 't+G_G0GA=TYI4 I)9F5\c.2NŅ.B٧ =z61bHhoep;U;KGbT s'Ezs2G[1[ @R2Ts E@{W7 9|!F,:bҀc ˱!5ӻyb^⟍=/gx7'WioD);Z(Oh0;aqϠO%RuS\re)LEQ K"3{EC&+L^н=LxS!P%نH=]B? Rt*սvd`sc":>OKcm'iT5PAgҬ^e'ubB_W,t(^g `Mhnawkh1\ʙ\gvnP3yzD SzÑV<'m4nVN>sSy mSa9|nW5uP*}J!^sd|Ň玉$P^Fa]VKd컡[6{Hդ_ O+'p!ƁtUbQ?TK6^szKl>LO A QUK<_U0F!M?c ]͌q)ǫG^QM<}p*M4?߼FtZ|JtU4-ɏHyhsIXKT꼑c*|81L3<69|h\{Y>È/qIYy!an=Obmo0~lsMD8iWqLo>}>+kĺ/}#-׉4NCiOI-Nߑ1b76}j׼Rt [lF.TsjKv/e띲ɽCi űE빼-(œ~s\B!Ļ.)G"}.`';zJFCH-h) oc/VQ紹w"MFXWD3hm'gJ3f/HiG=KE,9 nSM0̬5&/T{xOyIsLz5:Og/ˏB fZe6=9G8v(*=-(h֝=!K7"pY@Ff$cС9&:p5t&Ll`t5dpLy76#b+˄_gܳcKyzDGJcE L΍Sz5ѻ~cYH&=p}~Meg2Y2~C8mr@XZh^.V7K2k񓓽-,uZIhEm= 8"(槨X] . /#j(0CE8!(e#Χ/B -FG1&͔"|r!m叧"7I-Rζz4$ 8_uJe`Z ~b]}=;FQF {$,ٹC=BoXfG&]/*QsK on z\wdsȃ_LPqw}Wr8Zlw5< Vs&HK$m?>Ѡ(^x&n-cp=3ʋgZV&lgJ^)(FC?8':@ON0nmZ-lШecEAK ,%5^"š]tsJ3ȥ#Z tyeg>%L>AGb2t3S|Y:GGf! 8Vʞ쿐2CM%vO &mC{,m,9 za^lM^YVY/iKC]RSxfgk[/p ޻ l{L!ʶn5b4jߞ*Ƿp.ܦ:w¾J5 șD&8s-4;YzoH~*-R#auiMX~s Sb^kYE<%96Kpb<꡴rx&p٨ iR}LxnNY]^q黗[5$-@mń3#*';Gs{NFa]D8any]4B@Idi FM]d֨)5ИxdPa4!FFΧ]3)si1x,+"^j޺ S28#ۍ"|R ]Wnد.o5Ώ{YU<Bs1-9~gWwz xz<*@lB'&$m+)9ΒY!l 9 c[:]TsYxҤR'@02_bq߆Beo̕AS;)vrRIߪOq6jW/jicO*/,I_?y)M*X~4+tÈKս7o8I{/F4 9tj@ʭ cƅ{} +q"[ظ~ʾ j ñYk{X&9huta3qH٠ l @*il4"~THeUސsc{0ϮDGk!?6`>azԬy^Z9wyI_Rmfcc!WٮUE+YDŽA6:l~-!Hfl<;C!9 ]IԘ;T:;VJADċN -xPkE7Wpɵ^em.0kN>{7fqkIi\BJUf4L.Ry7dCAijrpsK~0LKd\#X4B|=v&_ jTG/֛̈w0 ,Rޯ¨sRX0l-VlZd-g>@NNI%<5rgy -iBQ|+T1{ƚpIJWP%5a/L]>Hiح7ge"rZP+La_v|ZU(wy#%PDX=.#TWk+EىIf#<ȘA&M%{>L "ȓ(Z;[7Ŷ$?_و6d*G~c;~eqІv@촼*[7Yjg5Vzeoޗ6lӘ?*1R\f͑_hv tO{K?OPwAiɋ&ÂQ_{e>5pSp-}!뵿c2Q!-_"=#Yij0T6_0D4 n֔;9tyj%D}չP*~vDu%tt+txpT7Rob/1߳%`[WJ/ɭ-;lV6j|%O<›M8 ʁAxJJpOYL&mw|O07B.([]xcV,1g93 85)nN@:,c.cr( :bڟ2 l2F 2IMINH}O.mHx+d6u2ϱɒ]d |!>GwfWTf~ae/DzDv8))p W|r16F!@ 2B@ !L|嚣(P AMDO 2ú-o4ݟ|aZN@Dg-XƸ4 gK 7Ai؍;1LjY!aAvt܊9snj⚲yسI@e@4JoR{ɝt>9p'=K"{4:?HsSrt#jj8[m%ɱJWtpTzȝ<$j* DZ2ͩԍ7q/=úAƞzhG >*2Sѕ)U8ѵ[U52"y,4-Ci΂b\fcCr2I1-Di2zcƕ@,Æ2,_$x8^#@wEiM%dKZG5ux|svy,MG;WV")hAvm*&˯iRteu*e~VcAq/s"|ֱGf: endstream endobj 884 0 obj << /Length1 1442 /Length2 6633 /Length3 0 /Length 7615 /Filter /FlateDecode >> stream xڍwT6ҫХ^$AzJ]R)ґ*J|k}zʻg3{ '}#E{T Re]]M¤0+o=))!RPFANup#WHIHa @J tZ8Mʩ@z`N>/= E7( ` # 0B@`P?Bp8a0H)!!OOOAZrx0NC(~ A&H 0v2!0`U P8nE4uH(/_~A W 3A!post1^~n vE#`0lN PS4 A F_aǬ WFA4T`(({BGx}`p{_e?B a*0XuP @ ()!")^'_{#_jl H-sb_hA=)A0;# NX5/ `z2w7wj?P2SJJ/0@@X E%؅?pW_b=τL.o[ŀ.?23R{`X>`@Cͮ͠.0vXJ Dah5> q6M~ + @~]1X/ l)`4ha~7 ?PCOXLFޤc%1/;P  [?"hH -BhW0_0 "[GG(6&JBStsmhq" NƱH51Wuf)(7gZsq=ߕ:zoC6 G6kɾG̷(q ҔXzqPu;qRݭE[&֦U]C|CL݀>/nOBc-nkt&yVQ-R ^V`V%2}z!`{G/urOkn=N^A~ݻ>DGYP6n@YCMiNGdr~ʵj)/ EZxi|;ҵܣ^ =ZMYWt1OLk0$Mqq%?giy[l9"L{9,:lخ67(1/5fƀҘfxO M)ܱm{rBC@Lnbmk@+Cˮv:Zr^l;=y dbtNQk#}Hz#É))cÔ5|6eC*c7[d*T% gf+/EF`7= odo }Zd\BYLԃD 4M"* b^9{*(NeD+LQlCKg fyN}7+{=!\:CgO2G|`DS3nns o6WdWyӣ rA7W > zfM,IFfC[vHvIZ7X_y}kZY6z["ppE6S.od8a}F&]/윪oݶJE$5lWn2N깲ba8Y_eD'*MMdRCjoo 0f O$H3)(@XnԆlِ˝=7F2h~;t]!G3460W@}nӀ1_TO{8 f2Bo;\ /]Cer}rӃ( E" =b/Jުο-n}埀'\_;ƴnU,̰3񮀡(஋RRdߥw9Ϥy-/{G'8J*e' >,<0}y0Ѱ3Km`-yoNBGqaIza2@7Xy>~5:G)D#DFUV+kL>-Asz\)L@ Bp4mpv|s XBMZ_!Ty:c\uѹ{WQQ{w|kFV# ! 8gv!&&&,. gT/* :-2mkuj0 X  ɍ|?5|)A'vyI*#S: +׌t?v>PL˥^=\%_)YwʖF n{Zpt%NcR{4-Mִܟ 7niY'8LQO+rtZ4 {و@D>loJqwە;xYZ(UގI$] n tg ƴfT[pKӦ^RVkl"诃5Yo[_` Uu6%E큆CkRMu.żʹ|M7b7Le+}>LwOiYv4\~(DQ!&亦f/o<ldflV31'THjp홳}eߊM7bÓ0soJzCQbNyI!&+F北S1#E^){CbN̷>5aaxAT l6X4E綸/yj<=UxM_o>AUPn-s( NXjV;L Tg=ZmHSZkDqoPvi{ՒחRJ-fNaަXǮ]4PI q]qȀ?g/$}>wI^ 'K*@.lfPV/>:gOM]KqhvYJ ú'W&L֖eVr _vmzvc`ebyM瓀vޡaOI-`4vOX3HUVI|aОeL * 7c`|Q$3|173~|p?P}ópkX` vrz_(gJ\x3 Őluӧ-Dֱ`b816QxØUjƳm)9;!3էhOno1q~kխ~Jn ۚE}v˙7oBIK([HU9Gn P,`l𑚒p6:׹޲e>bA >Co!hvNPhH[wɗ.1m-N\7CE7+lSsŰg ,tV>Uwy_H 1%#^}[j7\tc\ݤtѧnf9?tG|жh;fZdtnz޲Zdg(~t1NvYM&"7ܳ'v n_yt48_Rg)L4 :5+k];k!4+8K١E3[P'!FD; 3UͱDH'𖿖HsRG!Gn5H=_n3HkFVcOk XQ!#)MpjϒoU-ib}МG"86TFrU本{oC\c|K[&)%{D?9yNP!$l 鍡feG@ՌyJcI:;ypsUyK)c5Oo)˜YKR3LI'Vsl:]z"eyڸpXNϨ?',A9ZY`)fVv0fK[j3Sʔc*l J;If{&+6Y+yՓ5ml:"%0 X!)H&! (#E&}^$B噝܀ooX01%=^EџՆ'mS;和KyHUܼ1:U Yr~wEf3~oSy v6zHh0lB^i/7H 8yk_I<v[޴@2I}cXyQVc_TZדU+j[6ɫi?Jrg.?IOj_֟?eD^E'p(mǪ8{I_7SN&i2=\ɒen꼓/k+GK1"2 {A(cwrt9>UZ"_}cI* #+#`2qCiF X70M-;P}/dɱ``V>+ςU*T I~>nWmIk/A4ŧR^٫d q{dK֔^6M^=Z('pV^]_U!xlﭒͬN] *ϓZve7 rEּڿ}"$ JC>1y J4hӃ<-!f\>ۛO4kB]̐ކ2K^d9ꣴZ@2'Fx`?L+tҖc_D PvrԌU~.<3dm+z\Bbw\GyS21HU| !C(zy;hhep7ãLy1}^Rd~*zc|>Ը9WL:%/v +,Dwn6r KK}EqK7m RfwzFn fۋ# 74[vď4_sD]xg|M# kY28Yѻr,uI/3M̮"UCɃKD _Jm~*ƞT*b #l%UIVy_YC%=d's_gc=nIA*(0x1dR?/ujo2&G7"M$s1|;d`IGm VT:|>*Z]ޟJ^,!֖I(٭1Sd盆/!> yYR}˼ThHhcʭt><>.*_J2߮Ψ]c:5%d|nfp<~h`$!?{$@U:J ԪMְ @T,:SF=5)`Fq箢o_18xݏgmY')i|^ 1jpSn0d/\r;1ͦ} QF zU'?m͸ȡ^rjZ9 tl i e<:_0EДCPL`P+N5E[oUܒ|dza%7! t~-:SIH:]PTeK"\+G[Jx3QdbPRgIa0f/1Rݝ ~Eߌ'r]#=Jp*h/]ρH#;"ld7*o`fr^Kщ6=}C|! ـ! 5nHslކeX0 endstream endobj 886 0 obj << /Length1 2726 /Length2 23577 /Length3 0 /Length 25098 /Filter /FlateDecode >> stream xڌP\ ]qww %hpK@p4s;3M2{UUkzNCI(j`rwedeb+XXؙXX()5\m(5.V|;]A2 cW=@`cca anePd9](,,]A41r3:[]-v FSc[?!h,]]=<<\-hV5 hU0@weL K+@H`ke wyٛ r@h z`eb7?޿Yllj`hleeo0\=]f m]@V& 27HAS uYLh+? +g)^O`neof37GVNn@YL@"2 +t=M-rd%U02 n@??E3+SW wth7 =V˯?_eVSӦubbF#' גq>7?i+ko;[P? @qK@%cd1b_Qߖ&$fk/Һ@tT *ͬVtEhbjj-l*.V+FhtZ6G h%RA_JI{S_'0vv6B 8>[4zf&{W TD8̢D#.o `x/Y_`XҿY7b0FfoE7rQ@(x@F vĮ5~#Įص~#3tƦWt2{z&c&Ʀ6@;_wDc/3u$$vv$Z.lme;o:1C 33vCJʸ~qrlG-_T[} &w[&NjD2j>;j@wQ9`yJ{~+_ UݫG|*b}T2Co3KHGq:s}3qD.8GgjK'.5$AμOiJg@1GdF4+h:v֝@(5A?NR]YCg2eVhL:v AjۍfuԗW Q`scp?mx׻.?>aB V:IKݨe,4rQN-4%'h0b[E,,:<=#y??U5+o̠z`臼p)tYKegIv_V l )g>ߨf("QH\9@Q!+ݳ;_=e}[tY5Pt8q!hP,$`릢BA#Rlæwhv.Ңng{MO4IP4G;?=y0JPR/* D./H`n dM )me2$ᷡ&͟/bw`=Sۤ')|lJ8z1 Tہ41Q/Qko=Dfǃ#PbYʨ߼%Zoy<5 V}^{s-V!ש N.!W)O|U (ʹ\I60:LZwpp`o?ǥTTa' eCFxECa^,.7&ZF U@93y4;'3Kt\6"5oA&řS=·5AU`l, qȿQ .U~!{m|-/t06KxH;p$Z7SEuRuNl +Yލ18U&vki/\SbJu@_89Iu oeԞ}y3gY'PWR9õY*=(cPY!Mg>uR )iҚ -[1dYL{0 nIm(M|o̡ʊS;r,n.)$؜}ȲGN肃*/#T~^U\P$(K!`B$`Aio!'p! {2ZATw=<)`mʶjN{wzq Lkib7%Hlo8o-3-*S<B7ϳekՕUԭ<QtIP}#ZVtǵ$GAJSOWቇ%`)Y=rAp%Uv0Xɶ shǍҍt{R!{~f=r%%}nCUst m`buݰ>CO폛V~хCqW,˾Y[J׵LlF)b&ZRN!&U~L%"ys,n'F 5pEo[|"1ܷWp$]S`:ۉYh,v>wzc"5G*.Nc Ǥx|FǂcafᢒnF8wS36E ьjUs4ԛHo>6UBiY̻z8cL ď˶wƅBdT:V&渓4EI%#?IFߩxrʄaz_&{I.vŹxw)G6] sǚ:qbʩt[(-*| yhAsU扥ʀ*[3$GF*Ϋ֪/}кF4ZWM̀HMضa޼vgNŒ7gQZPJ6I֌O$wTߵPȬ죎U 2-jYǪpNE3:_ CnW~vUfT@ON6\60 [xkD\;qR*/vmZ!IhFJ>PuLǯ( o̹o(`UǣF2hqƳK$ 0WeU'e6-hN ;nA IziN NSA;ެ*=!uQD Tť[ p_CvJZ(_ڞ5(Ԫ ط~}=W0o&Ij'-'Oy`Z,Y|L%(8"Oz n2`Y͸e PTі.'慊%ԇ*Î L\]GNB i(@vr \IEcZI^J!_ʬӚOHyg5 4 l˚P B%Bx0r 5.DIڶ~Nӿ5%-$ ;~O7 Mڽ 3֣2g2pCH ">]$l5|_!GX-G]U}&j=^S$ 7>Ӹ>MhiTx"E3XS -;QWjYۼ瀍:icɚ31GĠ#eHӬmǻ*7 7s?Sz./Uٜc Uy{V|2ya4Ն@C") lJ^Fi͟!aY2:zqoO:' p7zQ*il57 V;n{#x8zKd=/#d>lӬtuN8`DŽA=-:hD˝]}='FڍP: a#+s F9:*HG !?G=r ^K >p}3{i~ "VYg3Rvsumt+՝ogShD7|qKfİjŐ$QWt#x7[_ˋZnΔ©'ⅢjȗJjT݂&p)􂒥I}mFT()4m$H|;ѪKRolw/6`I0nv' UyL5yPoEpʜ5hd|i9Jf, h}D2 ؘ){B8zvH0jׯ/uL6c>C:=JNet0FP> #$`#䙼(tcȥ\~tXsϪÛJ&amkd%oۼ'/-~X|wʛ|\^9@1hq!M;T&s k"ӠkI9;ɥ?mqb1me}|.*QnCp5f6gž{O6 ˲'!^ǟ1?<.IEdI9CF'΍ҹM\Gx}fLD5(z D_ !xKY_C=2nB+Xp8m}> VKцssS} eLjqwD-#3₈5юb[|Ы&pDSBn7w~%Q8酉*~Qdm7c yM(RzϷ3ID?z2n3\}9&H/IGʭMO)]`_O5ׂv5Cr:OH1(QRcZE)v^̌^Mt k,H+"ªZemК a"%d̴E@z81RGYkBQ1V =ss6иzi#o67]b@D94.YD='!MG!Ot,~ zd> XpgoHeC,]JG?-~>4÷afM^Ri 4X" )MV:W йv +UWnj* 4/k+e?;WGdKbִ$x 7k5dKVud ވ{7f=&C~8:'ǥ)b}AЦZ[uPUdֿY/B?v j_/X"O22 N߬Յی@>B#7fA GPN<6%Նycpwo'.$îj00b-N %u==9c4yu&qMVXi\kRQj Yi RL*Aƶusj V{LS:o>՞bVky&贾\Q,j5Py7$-5]{s2tQxG~D-Ys7fx@-?D߀Ghd rf>]o62ۛlRu0G F[ܴ(=H,yod'.tBZm[kV96N\O5ۨV _l}fzŚӆv5=\}=JD[Gm~[O5bD?sBqb\4;O`4M/'E!iv5֊TJ Em2+b]u=#2 k[/LS`P\BO_e~a!'uswrz2ۿ`+DN$5>;tKvXh8 Qi[5?~'/9tB@ ̬ifDl$=]7Z3fb{0{ |Y.NpŰXofJCf[=4_wj 4  nOq[[vz6/ʬr(G)CK&4ލYM< O nG%@Ҹ> :+~q 4Sce5 .°|4ҵC'ʈo!XpGЎzdXV˪ޖXзgcp ["@)-cW SW4p ǓCw)[0J EUW}hSQayHˊDer<'fԆh~O{@#$'h.Mt)7z1LR#Ơ!Юlp CG(QQ gג5Qt,w9kWEU >+=.cOxwW[1[ݵ7/)(~렑aPZ=WH q6Fv%^G n% R|CI>li?ͪ%89 ZpbxMDa(4 YMfj΂\Y($ L2Hq?}3%B9F0۹߼§#5XFl[1KSD=;'5+]zZIk(Fcqn4|< vk{ M623820;1yAf3}YяZ6M5q`W8b܌{1BA5z3}w3WfKFwR odyK%"̨ig&BCTi-<3DNO*RY9rÇߧI1Q$фɈgO# \-9K!1Cr5$$ 1ܠ]>) ;Ibdn@02I_ $f%R%1򣉂AI "]~F5&iPAZP%F5$kDQ/$"ȒI"}vëqBoLsp< $n!Q T~b'p CWuEO <̂UR5B(CF k7e5 =.Sp*Q"@yR2@$,SnOژʘ#P[gH~VɇLζNxH;uJ M:D,0yɛLйTF}'K"|V56X$MO+LPUNKU=0vH1ۈ1fo'vQrg8׳W0T MRcXV31:93v Dɘ꥝NJ~&-4R0ڗ1T ݰvh#Ccl6@7{iz;N,. ^Kd%ā^}HuZmOjh,ZY~X\8놅Bm?8cڛ 5F(JXlձuVQ92J ;\-9ԾaKImi؍#TP䑑it|fGbJb9dFUCM2cL>lН|oaU,U'?sUq'֐:'sD~RehLuhQjV](7O4<^@ˈ0H 5sִBw"$eg􆆑挑Ic/ZT|$'ߖP""ͣ"X^5~zgvw`3fjZ<#WG]>QM}Hu4Y^Ҿ`8<L=j=z<`z(ƎӾ<"ڦ_[\!4ɾCje| 0OTk=HJ=3&o.t%79[g #k:5AcE%wE/ '.0TվEگyu$~JxA0"MфIjWOzp u;!)ޒtt1v@`i\pg WZOA=&|҄'S ᄝja[㽂4L-e!0J#+.cJR~8zlˍls -)ЁJ vg=knR0 I{-] NojCȾN p(!CbݔIstגF4qJBLa]]w^q&QW[rkRML~ 9ZsCu~;ƽ- ]W'WZ/c&՟N;x?,1"HE'âՄQ|n(<C@vΕ+~y4g-]X6ZNXL3D 3g,z\F+tY͗dPdMrxrQG4G5`[Az:ۺ*}GJ15氶00p"kQ՚"rOPv6$ךǿJASI8_! Q~ lєrNQ?*^^i nf/)w 1`SoŴ)w{)]*j_b<ˏ s8JLD>{3rjhl5>| A `|^FX/)Я+`S(ҮϑJ2aV}Jᚂ(w>v5<9#\65n?JZzp_!(p~̻eH&AegM-ocg}uzS>%ŒXEcKh[i!ëgo`́Sl^+:@Gc;\M'5^#BuTڭR8ݽP)괭6r1#Zl,cWm{q򅻽AI9ђM!z0*JTM(`c:}V$0x-%}2k!K"d?M{aGuHY`lZmKJb4uOXGTO}8ٴ4w 9&۔QC6;#u}m+ zߥ\gD/QF:CwQǹ{X|S8i$Lnٓ|8&T)K Y3ci9d1+sJ(̂6?_.B录J6]\@ =XZJ~=*{L3c'`=d h7S23B~} _mӍC-sYjQ˝e7nM@KAdrufkJ 2sY'゛Q2=}`WcV2X$o _;a_êeZi[V<·8^~8iS( H**Y\]t\֗Ȍo|9P{[>+'Iq0'qǶd gfö*0"@4ɩfwTR.E:J"Ө)_}J0Ba ޡt?h% h.0ՈʻH\]/?R<CBlWqq4/#ҵ*Vi*Df9y䭡jL-  vVz )ޮ*~T;5ohU2/y,_t1ҿR⾹F6T:G]>ZYr+$kN <%4QeH}bGN/_!_2j8$ZMVJ֕>q#,H/LxvU@}4PuI?N{I];;E6oor[19rN?c?i"VOQGXCE}s!?[uq'SGC*FIAљUBL&iFϙ#P''H<|AX%"-$Lbߊ +:F)<(l Ba(y:Qyj&K鵲5H5[h2Bdk(A^`CT]GV))7کGq :uzo yːx.`~P ;,X# ԉՃK,S&pH`n?uH]{]7~:&\Z$5=aBh?U뚖h s81d@WJys(?q.,.Ӈu9:HNKWaF5@zCrJàξCS Q>HU9C2B;ot1|Cdu/)L(N>G%N7I_AS=7S[L9$fTʜqa[㰃Ev8ōWzxL-$ps{_d^i_2/vXuqPY7JD:p'sN!r=ϳ 8[޼4(SMD}Ds0Yȶx3ld-3\`WG)Yl? }>&c8;zbDm/#JNp-nHC֔fLS14 /C;#̝uH9lٗV*ZABrM"1&?rs$U`)lOe"C%ٮL1N@[^c}}M<TBG\DՃPix‚x5-] kN aQƷlEs9>MU$^ /'8?KL{Jw+Ұm^ESd,ODUʺGZ >}Y}.!3v.%_jn6yʥ di:4Yfvv- Wlk 7QȚ4EFKI/F-ffLK7z"0Lj#=ցp ۬Żd١[~SNjajϞ4Uws(5t./9eHZPzhf9y89{GM' !'xy%`f3)ŗJF1 [TlIKAO6]mJGq Ǭ@YXTґϊ:їRsLJhLS-ZaUv4TXs\L8&dჯ"heA9a;"[7̪Z>9n:#m7O<סǚMpfOQ&Ъ$ewZTZobxS_[3|Ζ2Q8f. E$5SYoJYh;~\>@i /Y0-uwpۚR7=EH5o%!1ڤ Ui`[kUkINf|JͲդ;diX_1!Jm6]Sdc+ .q(: ~8cw6nJ^ Uik0 JY>"+חWVnxu6/g.-nPaY`!Ah&EINڌ@Ok9w: Ϧ>Ź^( i:Ґ]>cm#%n o#ɅaO?n)̸,sգi{USumkCك)-Vd&յND.cbt(zQ)&r< :YE ѵ1),b t U1\$p! P!=h>(=7TPAds_YU9_cYʳBꌺ O9WqF2"LeAF+1Bۮ;90d ' 1BŃ6ƥ6&h-2@ԉ3Z͖>i׍Z5-+$1 !tGSX$\)p 7iq#i_rrd'1Rj^ V7t}rc瀬t~ˆDQN[BдUKQ2@CWNThXUWk:f2=;dQյMQ߷{?J5#[IK'S #g_Gp"9#A+Q 6K.:҄hחcsw4&wGC2CǴw-6Sa?ym`>|wTS4ۯqY2¥Dk:`&`ǰo3juN{JC@ͧSȶ( go@.|dn !!cq.!j۴K{U]q뱹A]4fs]ֻP@֌KԙrvG#`'H٤)oh\}_;K> @sÅLʧey] VTc|a7D)RsOo})̪Xyc#B`n.3+h^<6v B-"gB1>;`$*hȧȮg$U`ЎH UB8n."C|I살Z$r|=-OWY4?;:x^V4& /Rq;kRz56,lQ/-t9܃vL:#ԢK[ꬼr`۾I1P#cbV}tb` bm]\/\ ;^~/ 'e>V#DKԈ6֪(r[}L?$V^jMV=u:=)ZvzU2x_ʞoL"`(u\v0-xJp$k{UŭG/eVi۷~f^D\'3%Ca(F(%jv8x{} ԄQ4s`]r+9N F5X 촵ڛ= aPc- + gR [37fپa¼R{6> eԢ rʞCP/z$h;H nt蟕'*ʅTccJj{goTFHL%D0u=Cxo{2BJk~G"E;_d\5-!+%/K]6e=&b#S/z KR0o= 3 vG QV6)!?0 ovtD ̯ΏC!3 Ou Zyҝ;}RG{m?}ޟJrؽfiź'tT%f?[2p3x lѳbB ~ӹp3 r ^qK1Ycls,'?̆Ri6,}zEU!2n.88c3>3DhaǝFƠ\TuF3R:yi2O/ޓXHfş ZS,ӇAp!hV`Mj0U@Λ/@ۥ{xJ MmT5l7XWhsAJRTL_lytG uqW)qp35|7-Bgh6$1l5\~ !%ѴU(2*9lm5\K1b_SKy."x\'tM=P7ǰt/ZNnDv2xbVDvcQ2W;n XK ;3 #0-"D7#kۃNa-i}bSJKҧ?MM#!zz3EG볓hjsB4u6Z}Mlae*2 Z ;~Ҭmjsv\SrϏVGX}c@<z$8,]W(λ(mH}$P)ETtz׌ -DƨPДx5P%!l mTnL7=ܽMS-~+=DFb8Q.Ŭ7LI4w*e9Ɣ"F)r:7fElpd֓7S"|Tt>>IѶqs Q lAZz`  7:f UCȶ`|.]֦jZ1 ubo*l8K|%% ء)yNN(4$Abz*Y-V~1W?ykV x +CFn@P}?b|PF2·)/Q դ)`Y=d_NzW TV6/߷XEDV]6q2AbuRaP[VO/EobQ@J i/JʉL}ι'**Bo"VA"*yIHKK/$-%xݬ5"dbT1TԨjb /eÿTS%2ZD}DlU+J P<_2"z/'5W]}U48VSجؽpJo@kF滆C OzV=$-dI\RZC^'<Uv6ؚFWpP60Eq\3Ve[BL~ҫ&AcR|vo+jK5ODi Tߎ|3Zrt*{c~O#dτh,10+mZ]Wʩ A*x=$W0Z%m8NrǓQK)5E3  ޙ+?Z hkHs4QJX 0 [X9)É`o) ŧA8yHZ=}!;'鱅A(+lb],.ѐ2+ zx|ѣK,9ן i-L[WiiCG~Jdn jh 6QyW[dWهp&.$]lx \E:$AJWb"M~G.yԤL'_[V}ڞ܄y"_?ົѢ3c h SS#`))d4Ajlw_O_FS  '|nymM8D+No)U}x`ؑXu=BcxQ'A>ehS>k9 2l"vSEKP=*~僢o}3xF3x ' ͊WC%]{jNRXIÞ|٣ SzajS3&p^T}:$!)hE5ŒD A= Ckp4{='x+5ߞ~MX./bˆZf:{'Pl -`&η b<,!p u?zvlןZ5'DTX$RT, *6#3U~_1\,#<54E4bВX=<; B*|ji>yA)W<$3h~MYWC|;I# 12MA}Pe24Tivy̅i>) p%7ضۧm&âW˰Sz+#ʢY2b~+J"BIM5X,\t:?wXO#y{FZ%0* mIb'Or ޟҠ2z$ʬJzA"~KAblL0xYַ !k(務Ɓǜ9]\p=rG{1( j j:e.4d32#=KIw:Ș67s^m1VASi;W) ȝ ߃ E;88PhY_bK.3@S-CFFLxR,ן}ܩ,GNDSz^ zI|wSAժjU  Fu ֵ߳g&3t CGenTn:]t1ZJp뿺KHn >\̎p~#XɬF`Ťde8;{`1}_{ۯv"JUnkʵv/ؓ "/pҽaS숷TĠB_N\N}`<=l4R4Tߩ&t+?nQ']󾤚՝ k MB؅hڏjf @ B+"._ZTK͖ϷO10 !N'nX~A\ t ^sh瓀 P$9T"lh^E(hiyUej5&jxpܞfޤN$t =&n/Q N_ q%jD;$z4(`6.k9U2\;rO<+V\;Ƞ`]G*U}P02NZ,eiO([aׄ $FBv_W?3:pubor$:8Z Y2W.x0_Gyy8:!vw]]01Z]D*]=N8)G%4.;oUgX~GUsQ8usx,G/HCowGF9?45#V <]ߕ>5Lbfz}̡dXVkO PQe㰇g,ӣзܴvsk݀g<0$4X>HNVX[tbD 3*MgK2vQNZ=$б:7bTЭ_B-MҮz-$ai(hIvZXWm;ESJHKYD#zXO@3ģGT@xqKZhLvln3sT>"W?1z-ő']^#np&_"$WwH lHMD뙳M'Iq1Nx[mTyn*=[$T=HnGJ=+|,!ds7 )0i1+n:Z!lmfCL+ Jm _QaI} BYTO`F`%MOyK8-Vnѝ0#kicV;GE3ڑ6*+sU6@ >%H V}\)"WF6\wÆy!}/xK΢ՃGW:;vˆ(6ɡqE>)U =nd0ƞp6\ ( A PNIa-aƌh.q9g9\]HhrݝZ\D4'XP%=<卄7 g.ƢJ-~ܻg5ğ}ledRm /X097ti_|:Hkmb|zc4)9KQGX ,,&T`pݍ0 /\[6I)x`<п uQK}9ekEKM_tka"QS;/Qp"v;玫om4=[sdd(~_k죱S>(K^,-Fu炖"B|Dە6rPPH1QΟP`Auňca^y) ^62goF}K3~aa!ӑL˿+`YcQ\Ϛ }0L72Xo\u-V~b^4Z`H/ S<J '&'XNE\5q?Ν| I۱DʂL㱽m܋3 1ڹ~p,L)Z?QcJ1볧T >%$gҕs'.%9HL|-]Җ0m{m,ew/!śxFcJ`5{Pg5GN$UH-ȟwFi;1p.F>i*|J2$I^CsWОUe_~TQEiA,\03w k4 'ȥL^3'X{\ Z=X6_zz<4z#h }''Zr%lLn)ja6/2:`Ъ SR8Dmp0yd(.|k !}j 9O豱!am/Tl{i5 KLω˼$>8Z&$@dwԺ#Dqo-9b2YH$պ 2vbi{'QvݕyOlQݲ%Dzss0(dP^7f\;8ꕈ&z^%:Roİd3bĈF_ =&D~Cx~OqHZ HdO+dؘSHlU,. endstream endobj 888 0 obj << /Length1 1700 /Length2 10132 /Length3 0 /Length 11225 /Filter /FlateDecode >> stream xڍP.S[pw!ŵKqwiqw)P@-b\gw{'3$+@!mb RpspsE< Ag`C@An`ȿ d]AVO29+';u(@p p  P?."9+O-@3Ⱥ|\Oald rXAV 秈6V _b0..///N+g7NW{ v rzl hX9vSbe < `j r<(4a j o8[ظ8ì>`= 48ݽVP߆V7'+O+0̭ /VOU+.7S塶.  p9Y'/`.ƥ)e$BGfr@Aa>%m^C[TA{*=}Yy+ssl6k=d'~+`|=n_fOec|eo7 ͢e+ ?P;>u? {5n\.OK 0@~MovR@P3 vi]?oVd p_HC!jm\?z \_7?˲qzz9ܞ6p;< \]|ЁO~:E[; ℺? ع ['px\: AH Y\up r@ç4l?<.OI9 QIr?G)?/S<'r؞ݽyxC_S)=M?w٠/λ؈96u_K{qL0dp-xRzRcJ )F?t/~ecsD=Ωܐ=f +3sFIfR.DظNd4(|y'+*gnGM`6NMA*3a!kaZ5t?yTɎ]J ▢)NnC R)"Q|nP|Y P^GSovQL;s˙%bYl-֌C2Ŏji/{#" e6wǔ䢓[g*o׌<~0yh_w8`{SJI. T 960𛏪Y+%_d2! βdCn}i*͘"]%o%Yׯ.*Bą:- h^J m5IOdVE tUdSE#Ǔ_ROڵ ~3;C96r*ӦܕYJ7iV쩵It(D6%i ox59 uSHnZ&SY$;d[o9W\V`kc-+R)XI+}]/{>Z Lv@6AY\o\HEm3{ ҭ?KU%8cj* na%cY> d~!3d2^ :*"C &  o"{ˀ)%ȇ!GxǜL)0Nm?fN7 hUŕ1o}R4Sw [p!R6wq:ձKء,rZ=I5t=A-lRqM!^"d/$ԅZ'V)8ĕRƗDf&e~G 8Jh\"~u,9IgdD!@_ =N]=덤ԡ1m d/(z)S=vcؖ@>ucm_x le2 ^0i&s+pT=f;I|h%m`&ap=Jy f}\!tR=HE*ؚ(JƭؑW)qa5 T?=> p7 CTjpel4@~Z3~̻bĪ\[a?-a,_s(B& b.>X)D6~wk֘sn\yɹ|->j,WEo$cyw_hި'zi/]PY3alBW*w" Y4^b/w)p<#͖Bok%=4&T2>l 0&aM#BB:s~MÀ$cڙ-mSt5')71~%oŮah17˺V,Qu=N~CpäpVvS[m뷷!8{uZ )ހjۃ>Y{C;'lWXE\m-o"8IuHft-e 3tk~[)VMy4D=]Ugp ,=L6'wJ1v%[dMXawYι-`N`cP4~rJ6 &Y~G<,!a%nqi' EwFEul-6kG IY@&uSL? 9XHuCXG_ANQDO||h]0 **vۨ l6? oQ.Xpgm]l1SZzbd};.~H@C^8 vƹ}rzS5+_?sWMѩ|mo9;8m p*xIjrV%i?v)$gFD PQ> #Ffb5V^r?G5u (AzkNCs3OPzv o [d3pW$SFyy`VWYËHu5DMnq4tPH/ܯaP0ń Y_o-S]xovU!D5P cc#PEz'*1=0ǹƜplIkr~AtAMܜii?A(#(XFqͤ8[N2 ~(M5,;n &RkriHWl {1#{7>.R/ hWN[]FKH2Dkߪ@;ԗ(3 C{ޕ׊8}n+yx+F'рO|e,`$&r.y?v ᰚ+QIbj&qJ'sxxLB:ZdՔɨCO㐘xy]ձ;| N%^l~uu A-Y9!vMNFDZi'kA*˺(*`V",fcXP!zw.e1lM/|=U3.?6Ez:}m"f*h&0ג [Yu gc_Ԡ(%L9*®3-斚t8'DϓY4~>J+rSZآ:tem Yuu[5vf̑!F +;x?2F\Tfw_vu_WCyK߃]#(cc>5D;yɓV:K#ԠMXh!=o mHrzD,|RC ΥLLa/T#[HUDKRG7\|+ *ϕ敔L)yl3yV֡GI:%XKMoo9V¾5{b*/I&q[EEc0jh$_ČHpVi\SALX󶾲vzI{B1oKb^; ӹC`#%؅}~ D_Hn?]|—q+]"\] 0clToSNn7f1![v2'bb_5!Jnyn 1$Rn /j&Ymn6R P/';wWt,[3 &,[lg+whfg z^e|WM>pB =?Jhs@A\˥¬bt+K1ѶEkd3\7mqu7C΂~<*M g.݋(dYyC0@Oۥ&Ck9Cj|E*kuP N4+˗uP^tC= &UɡgL'å`R,U#쑫;&&ˏ$}:!2o/Ƴߓ%VWxWO;ބr5m@}=d xI!B,Gr6wo hy7W~F棍sH!`ѰSX*`H#'ƯbO|`őh z8ڢydEi T /VE$}E`|``+3vIaxA sIL#FI1U%7 ?'Ɣ˖WbnڙPBFDj.Ԓ|K=|| v+G\^yO8Q-4.RJsb/&+O hT:%Kq5j,E\KMK.Ȉo#7Jx6qtV=믍RE9FsoHH.uLi&eK'u>7N`)!Q C_ )j|mGn_ԺkYuB!;JU qIp@s%jQ:z_F9 A|^QU#v4 Sǝ46Җ]PX;DэT(Y'T69<÷um(\aWݣ_ш2aܤ/6[6ޚ6(oNkEgϝwHc2m3C('@w-2fĭ=)Flxp|<<מjZ%R.m[5Sqβyn[&kUM\i)el}dױkGHJ˩LFE@b7|3I?NITF8@ Y 1&fX.&oIj[9OTzF.UosqoҾ+/ dEk:q~|ƩC{&˖Zgl~okirSR=D'J"T"'Q"g_gVZzXf Ul|'xl܇v%Ӌ}yn:N6]} d@elmV z@w@q}5r׻ܭ56 P{'/H1h.ic$XUE8S&ZOe2S8+<֋6tR'ftuU.SBswl Z9*Khi&\D^Fz2nW(V#jLoiui&;U2TV`K ľ@Y6E>q7I})=Y-gwK䙌5TKXaY9I3d1GmCŁfߛj@ 6eMC'LXќ5&9WK2,IY\4^c;$Z8lF5&cPbQ~o\IqHd{pGjb gx֫NUSM}9֩o/:jJ]l8V[Käbž+fpZxMH}dvN](紻 pvNݾ̟^5-̭ʿadZeoJOTRRװ;(O"pD.k?<ǥ)ndHyt{6d'^eF~Dv&FM(d+51Sg*!a:= v2;$]6"a3̍aCa﮶"ҭpƵ淶g}ghP=g0n~~ˁZLHO16lIڿg}%CN~7X Gq%fUX,VȤWUd\k8F2 `!J<! 5җoN^]-QqC9%yhf|?TfBMu;D^fK'rXir <>^&qقn}~*[]~KFf`=}$'4!* eȭaVh fUxn9 L'x/3؞ RR;blt1c-c1}쁏hGDN@$M+wwXL/]!zo#yPu}mОU\R|U%)e?E*aU xaEOagis[#{[N`BK@QAa3)aJ-֔)UQql9fo34kU~XӘ,?!aYEI ׫ԾzH 7@^&a>DT[{Z=i |LLC-]"co/ҿ$XYb֬(c: ^4v7F>,xKLJ_L]=xSO2_"3pukz/9b8|-tJ_{vH:,ǖU VK?f}O:Nm )KoejlV~GE>&L?|6#ry$9MlZ_06-K-ޯ72C1^c>$wgAjL7fDQyJ65)-1mޫ TkgΫMڀؼdt2Ljb^F$_nj痷Gn..NJJbAԧGoUQHָ_Ӆ<=S덽օ?­U,q~vZ&jz՛iC4~S P݁=6jp;9Kh8u4-<o\Rg8}HqGzGk1;6[2` yc BX$xTkr"/""Ns\6N[q>Yg< 0*Wx>=Rm`+^j}gܛ-AԎ: ɂ+ WouQx endstream endobj 890 0 obj << /Length1 1598 /Length2 8810 /Length3 0 /Length 9852 /Filter /FlateDecode >> stream xڍP\. !kiݭFq Avv';i O5@ Pi>`[;e `bpp,  w;V-_ v΂@Vvh@ kN?;cChہkAmܽ,\Ag# q{X\ϋj ȟte&CH:9[@|[ PUfsvgX@Z8A-<-TnX<7W{nV`gw767iwYb-urAP' vY=oϓu@ 0w@ Wȳ -'@Vv>Π?:C6M6?T_7 Oo#T5` CPa6lχ ?kɳG8_퓔z|Y<nY-UO ]O?_o.UhA4nnV)$mv+YW>OC@ά ^w9:`7Y7ZneX2G0uU{,+Y@σK@ֿ'`j,$N/(Z0?@]Q((FH=Y~W|Ϳݿ  \y@ 3CǍyPVBaaݷ$^"zˮ=HiuB6]%FveW(~v4#Evht==%iNw.}&*>h$C!eO7"m?z!G9}/uJh3:qes9DTdL8gޘsW׳8ySOĮG\%[o_Wks]OJ~{H[^6YS1(uIt?胯R?V 7(gM?"knf/zr"Nl6Xn=˲A1o]Pu s+Y<{l e]?H``lϊɭc!gbgI55CE/"| 0[R"bzoqP'MT g{ ~^i4QyS7.Eiۨ " =6=0cc/0>f<[3'@&Wf0Hu2`2c6ۣ3'_Gݾ 96u:YJL/MP,adX:X qBahM'ivujx/o~%Q?MŶy]aBQ>xd<$%7Fnf4SsUt]#Nx;RVɄM7="(ܨK^Ery,NH+kؘB7y d\)V_4N]'RL D9 =rP^ _ɾ6S] XH+W'cP?u9HrNj=;E9*O$2:CS7vp[Ѧ-z:!ZrW$+uW^(5݃TB5L/<ȴ Ǘ?݂vLlKHZɮi(BQ7:M~"PO_R"-c %as ?Jqeˇ#!nЯ#gl"}1%CaYj8t(%!N"&vMov2vleE@sblҼD fRQHWZWPnЉ;Iaf$&Kv>aRFXNd^h,W3K͕~Cil$vZG8xdy^zOG:f#j>iipF۩7ޕ; ?Mף& {u|7 5hzG-Tn|~WBWW~#IJK nl}2+hl|.NѸ"cy:I5_b|MԔCهp6y-b bh.iōeC˥@9oB5A]-EtvRЪZHIE-b\Y8þt){9:H4ՏuƱ}d[[م.+<\=OipELI[0D0w {kaD<)4FhmHv6xS( $w 7^}ɍ[*!VWQuG&bμ FNs\VKܟ_Yioӻl+Ōz5E:UB1+"2LFE"L Z0w$$;j01a8pʊ=){%w3[NΣCGAE?_H yTD&@0<EљE*4UgeIbj器N(|ݺ$׮rK'Z^"xLPYA 7އ[vjNwMWQM%R`'xi/s-~pw#(Z8>n>/ҳvM,W¼lc)޳w 78D]bҨCs3xd=SS#%д+[cwԶsƣ,BVQbFi?REq\y1)Vfs*.2cF̼U;$*2πXۮ}ÿ#72ctF4/|lbJ:f~ <&vwlG'Ȓp&f+%;'5Lx̡9؛P4g+8M9{W/}CïrL蚈ߦTOXʧxgx2L0 ㏕Nd݇pȵ)L WȮT;4Bo%Ffj4~g-4~B?l$G@q ۉ>pi7l NL>~SܲV9gD\s(?.s\AP8%e#%>~};oNш$2J Ʋ|j<:@zɵ7 |nJe/`yׇf z9L}mįI-LiECh8_0,Г!եyU l<^:+95n{&ki}cmp[׎`zkj_ N۪FG:)>^ŝ-mlBXsCYqPNl&oĂ2` ȧ($\BH6fry)*Yu%"@csB+hOCcNe |z6jn5w.!pܻT&nRJ̗?M 8@FU 8%g]&YAl5lBs1RpAr,풺sR[9qh5Uk=͏Ϡ zej La[cDe#lDnWBW,5D1ŭ yFz %MsO 1>UFsus~ y~~NUwSv֗7׆94m)l 2VXnD-'/A&TJDΡ3@5`k}'1i:ŴA沬٢ngtm`>0'M3㹶`k25Ր@y^ƽŏxS8H@$- :Y; 8eE&{Z.}R Kv$ uEmY8c΃}/>~)UΝjaq|<~5.bڠ5R,K2*r{@c`c*dgw2%5ӰHGYm<Ƃ)Y_ϯ~DVAlt|=|.qj%z# ^/bRf>e!.TǸ}\G%ةv arO|^ (wBҕEh'h~, _v'BmZ;FJv"q[XZpQ\NsFd4e"^{bְL} vZ:ddvȣ`q Ù.fL%qPQrOmlwsoV)Gy'7)椶^~pRF`_2:-"axWH ҔwCbn(vtG|k AC/(!3jvΓX[D􉽦]v 2w\ S4*mQzXc>X%d g9,Wsaj_O-wй^ߣ:7jE膧TP?|̂8;#0h^!]SJ)г L1?U~ z{,ެ)y hQʱW\qvyׯQb՛q1ɣh>_jUQ_bc&iD 0g]ѣ0H:j"@0O$ ^M<&-k&l8qb0LƉyK8IұLGGJo*8YnL:y~Cq^4VD)w"e@4-'=qCjd)D֤N1Z>Uò>w81iH>ϱ1;H5f5A/diՄiy^ C7j) qt#(BiHD&8u<sք_W1ȏaOduvĄT4&u: ?T4L]m,&".Wğ{t8U lJ:8MY&Yb.O%6 ]*;iFy; _2:N[d̲`KQݵcCȍyzկ/wĹnBf)¼<sBzJXJ SYfu8 2,Y%U,%r}X4$uqJ>rU*>2ҢGvG^y G} e V+xk0ÖRW6>QI.OBϣ$wsM8CMymxHq-̫Y+"őngUC{*֡]bRgsΒ>Cy|ME^Bwij0hF3J*i]ْ:V.-~"(yߓ w]۴س=Vܺ4TCrg^ii6JpMnY3Yu*և)ĩ V5?>*~ZiC;XU$ů8eg/S%6)(=hNBݮ']Qm(7;UM(Up9b+KS'4YWx&Mww_nv~4<~yf6OИh+57(XT-:qwT*A 06J_z$n}XjͰ e9%EzŒ]k`)kC* =dP> stream xڍwTl7 #F)a l86"H "Rt#%R;w}OnQÐ| )@( J 4  {:;AaNKpDy OPM-00g %$'Ewpo)u`~<^o?%bAA# 8Ca!Nɘ#hCߋg,=8n 9`iQ|Pnnu[+ .65G(H0fann"S 8@.Q/Aa'K*Ẉ4Rw]Bb0!ƌ#1kAa0@Gb\Npy (o " S1@ ao8& &ACgjyN͟s#Qd\١+,r(|bii lM5|6hb-8mXюbDL6`wj$ μ{#f 7ŴI.&MCJ> sX|nqS?aJ!؍.\J8]0g{{B9<Lp4mg4AMNu=3֏G1)Nz:\jظVE{O^荾x^+ {{vV6&FUȄKq2nRΊ~6֗/ٖ?2y5㸆2,i>u$R3o3rY5FHn(oxBLKj w K}W>u%/CT5>':WiYIz /v Pkfq DjO]WpJxd|-(-niRQuϏ:at՞,8 ZmTNg.n4 >UGf)Rz6UÍ}oa"7GJ=|82 ?y ]_b{oH20fmtDȱV+4PV1^G8Ø C,E?ϭ)ӇQ:I7XY!sΡeeCsJ^^Pt^(@VKDy+ӎ3r 5R@CjIf4s|F LnX!mc5xeU8P^1LG­-gSeA$p,PM;ظ!w)d貲⨨Ó;{H5Z~UFDs(P]FOܳ37ʽG>%K.->Nĵw>KՈVu9@)DA&n׸ r67N_q'/&VoY&QFpolJ1w\SsegEkvWX2a{\׫B*mhz#m}3i&H Pˌw_;Ezko̰SsQ/gKhj9Xg3]DL%<>YE%s_eskgJr'diwH %xgJ =2vR^YCBVz( cyDQ:K^ZKszZZX #x'X%P o㥢y̩onz㹊wUtXSЍ,ֲ*DCŵfӾ 5 rO 𶩎J}8<ٍ۱M1JMhN:~Jef\0)=UZm=jm,<\aa}Zy%YmjqEacz*xoE3`Ë,(ϓ 剅G6͍ ?BS4v0Ö(^6'Bt ~Վ瀄bۜodk#on ,pDvvtֿݮ9/{ѸTmoWfsۍ7="KTxTP~:el ժ:|>sR+伲4Jew!,Q$Y%yUa%uxwxWњHgty3#$VaC!$ EgŐ m2ӮP`M@\'~ߚ*owSpaW.YAeA!C?#ν{#sgEU6\'@TYZrwVIG_LEGX5N+$]+b#[/ڲ'w+#kgZLOTOhqr}rlƷdH~'pqG{< W_(y/K~p}u8prܪ -%OG⨺Ӻ`ی>;nݖ ewR#TCI-%`wZf$O;" Kz4A6^eLhZקgGMbI!Jjy{w,fS~ Í 'DkZmV &!դuz1B5/1Ug>PyuyTڤ?b}cUKpLxL\݌7=Y) =ō'SLҨR_}D7cˢYLIZR%DsnB4-|2ZAоJꞁxLGkɧY#q[Luѵ˫X9]B@*F{`UF;WJNUBKk_ (2!lFI+Чmcz8f{-?qTU*~59kl7Tfipl\$P!tFJU&2_ho|ڟ'IkB.!LιWFs XCQw'}%| xk σQ Aѻ*ء/w37?-jE 578ȧ},.[z( l$UR:G^D7X*yEth֋U~49V@|]xPS(WjCS&y`HRi)Ys \u#pVgqڭrX'g^L;u,zYO&ʳE' 'į{7tu3=lGHb>dMyxķd_qz٨D*doB;͵WBK%h[k^1%Mk|{$ 8? 𐚶 -5RѓHkb>+ bWҩ5A//L.1 ^ԐR'j1s3=7P!*><'v#b ݀oOl -Vs($x#kYݗ^ؓE.%_F#-u女6Te&;S dDOF뾕G\IY{m? 5*s ݘqsNy\HM>ܙcT}f`>_;\uR~,gOpT)^r?/BQf߷+R;IcJMX+u|J>1+2tYfaZp9Ew_K5(<9(+Ym4$}iW& +{ŹT=@(h$4':VՉfBnјb+;;"Z#l[ 3+cpږ^5H}o㟗 e bdzF~;xE`޽7]@zU\Ŵ=Wc%zG -<̛ {[uM0ͼg½O]ɆOqVB16vea?ol~VD6rTYvwq"n*bKHqHh7>TjdvT$%SictrX7Xw#%HqY޴Bz>囟6Y]\ſ IW+/5"VLNHfbjQ)ezme-@S<*03.)ɥBƜ3-D <Ӡh" 95}LnHOhrh=Jͬ9뫾z49/^Co]Ѷk AHz~\h[adRsq`TT (g[\̚*pu e)ie(7yZp#c2|m.Ӌ/فcV~A+ǚ&sĆa74Li>Ū4]:+8V"WDH]H͂3x7O&LVnڅi;sldvFçTvyJn]hCd>C5jFn p4]-+bԆW串StrKG덏XH JOY'oRē",:S`7R"A y H\q,f<]*?XLf јl=˃QvRҥL0]>U{GE {5yRf{TΌ@wHyѓ$+a1]%"p*BݪtR?Jzg:B ГUwϑdllSLl-J&ԅJ .fRQoƇ~3 +[,c >W7Q=@u#݇/lV%!fšTn$~XK͚VgKzanxrc`Y!v!Ibw!5J_[ILK=o_Nv,Ӟ4o @4L}o'd)])᱈bwomߪhhﱗI͵eWU&`-{d3iDp4௎}+l/6ZF692)j#NZ?E>ҁx0 \:WxBVS2j~o~#cu u~$& G_*J׃;A6I QX ?Nam? c_b9jtQ49OHQTuq )zQa,m{mcK,q*h鴉7< |ǂӯ?SR7 endstream endobj 894 0 obj << /Length1 1408 /Length2 6437 /Length3 0 /Length 7400 /Filter /FlateDecode >> stream xڍvTl7%1:I(nI 16 A)IIIABEZDJBB:y?}glwg׍DU1Np- '  Me`,7G<;p7_zu,cPx!@Ṏ,mI1*QuS8ٗW?`# /ثvw-!rkbHʪrؓOzaxRGc)9)c[);Wcm^զv)ӅӪIɖSW,\0c+:!e]͕& Z'uS^)aHjD'9.;fUi[bȷW[R!MEM6:|{E9!`B~fcZ)o/nX6:Qo&2Uq2r0qszɥ`iU>]KƺU )wh6UfߏNg3IZRtUD*O›qmeÛm/h)WaƯ s5ΐ3Oou@8hXa4*n$h &}UH/iickfsWj Fv4A8Skn:-0&<N?aȅz_({|B[ݸj{F?w/U*Qd=cJSe-R$;G쿥P0MtM  Ki,$W,mf('hTyŗsW畐knmf3'I`/Td[ N/úo*ݯ; >Ex{+!ASnD6FC7("<`~͛./D42!_Q>Z⧱/+CQ w=$xΣY$KMwڵY٬D>,1֞p]ꦱ[6*\ gtVVe`(-s6Ϊ9mb}}Jߧlo(X aU(hHɽ}Z|= ;;btw9DO#8voZ`b +-rK RKg<1&TƎ%֦s$2毿{)a3\(RF6%aiFPzٌ#uA+i|<7GI5ϭ 01f{H Oʈ[rWl5 b٪uwsO=/q[3s-ZaЋ_P׵fGmeOҷqú#Mۄ}1v]kwWϺ܁:@{[yDxFXV_p? 8_t1} ΫdVDS/~Z*W{ 0`R+_(rޕf\7&ߕf)yX$+⠶E|[у]h]}o"JZn׶ݲݑ ^+-&VKLj04~o#&ŖS1 <EM +Vd!3 >#D=45[8ˬ|if{*g'MZcsv&:4+bihjOq CmyQAzsnzKGTlYgsn)ߖJN9y1t}RrV@X"Ӭ9^"Kưm}葑 I~l,:\Z6Ӽ|GO"xѵH8J%Y~tT h^$bZ\VZ!G,B,FGoyxqϫ20'V7+7 %U٭B+Jku ݦ "%OWblFp+(oo18֜ 13̥o!b>IF~sZN] BB7n8GZgыmHHn*bӘ ޱQz KJZCx fw3Ox7C& \ec&_?6- &,p+\T#+S賸 [BW 9UT05cWb]wg$gr3MhyO 䊼%XuZ#6ʁDj" Xp#!.$v4Wy"| -U|Ǒ\uqu.+K$+siM q#BMLm~YK3i̺o2'+[1gg)#Mg\2(M~FvP"50j|NWtd5[rT3>߬{'#%j%_iLQ0vЎGye+/*:K[_X%*fa1#S8JTݿ`*ZAxj"RGIٓݮlBޫf UJ❳ǔ=hyfh5ߎ:q?$t-"(r4j>5:TSXT,wпMBo]Mp{MN,۴$BFVaPq2Vj<̧1V +DnGRPsκ,˦:(ԁaTM"!..N?SԜ-qƘ;kE3بowN3O7*p}fl]HEAzy-$=wiv25Ki-4t1GkH0uˏc`]zwTZŴoJdd6LR=?=Թ͢aQL\4bi2@KtmE~jyDy2м~)0[ϯ'Eps] ,>; 5blGp\͝H=&ێ^M\bm «oDErʐ7KrNǃu#-,2c͓V"GTFv%Ҩx:\ Et@ oܠiV›RB=8"yƚx{<]n9 : f_]eB Q#E𼔁㋨[*K1:tI|z)Ss kMQ*b9EK3m Uӄl48i9$9pFiqwKk7/v:_dD?/)BȣF|Na=k,ɥ:Z'U7Z$yї_1ݼlcgs_w }NER 9ћN6 2_1|]YkL5б[C̈́fX&♫j if_@摘!fQK 5]m~GbCq] \֡B ٖ6-ҸɌݻ[͎y1[A?q(̠Tm"l)n6GԪr oHNy2\ʼn@Ka/&,r[_?Z[(@OmzXpL>5)oJN 7ڰQ3[䅔0gb pT*UO xhGY]uש*MbQ؈ZF]4YHEo_&zߍV/$PxFO|3Sm~X̒jenv mifہr(~@d"0[g -ɔHz闘7%/YNTp!FR7V:†:8-VP\ۣ1rΩP {X:H$(ip? QYv+^ec vv(!,ML57?w\g40P2ͼTD ;,Q 9~A./2p3RHrQEτs&h+st[E>}#;_.!zkL^8 > A&e'*#M[l~nnՋ@xm4o>C Rt|.Ii5B;|!L%>y_Eg>>p |uC z^M-'m퉭UΒjOK=,Ov҃S|#"!-9sIdWA =)UVxvǛS0psֹ`&~dpuMF>CY^MDUQ.:[X ӪDtnqiSdL-z/ODiG5 V7<9Hp;Dž\rzxYPn?M+e=]l*Ü\چِ V(=e{(JW7pərP 1}/J&П=m_urAi_]йfOV`;GKX宼xڰэ=/zI|;־UtjHỲlXJaReE*VTgoytt5|mB-o+! 6z8r?[n,pz ώ %a.*)n00 0LR)!u@\t{㹓MzWYȧ*՛v= MŸwu_T!|E'rnQ3EtښES/ 0٬&YkZM5NR-dfbmРfp7\ǒD tm /Iؼi8DBHCR)ed^lVy7 D'r%RQrP# O3,Za7B/UZKB?mb3`cqJ4Ifn%)h QbĢ~O{FcxXݱ2M-*Rx)uc.(!u_BZ4ѣ|Td]<a׻ѐ~]13'ovXP*u޽ӦyNK=.o[u UY ۍI~nIX[ E37:Nە ߈6iU|2S`ǎŷW^rC8{bަ3ˉH7[eWB)f#-,0<?e]佯ǙeS2/m Tt%aH5 b|hu<>&#?I4^^eix&K|¼SŐ#fns]YPpg7WxGxC-G><~òP:,NyRn'a=~>#TP9cy.V'n r Jݵl-8/tkAi'a(J-tᨵ oBVjJ,0\S"3`eoMq*oqW/KRBӈTGջ~`G7_U7啺rlg_"+b@{q`J֩5ZIk 4&q<,`(UXE²M =̺ȵ kv&WcZue*ٜ_ZS'?x9Nسp*v;rlKm'g0oYL0{~Eoҫ)2,G3xߎI8f)4@85,鿡iU碕E0g\WiܨN.O,2G$j5Q M}yhnndsFtNۗ[\bx-ʼn1mɊM'=W{s{rcVJO_ЧT_- gJU/ rh*4'~=~?'3Y endstream endobj 896 0 obj << /Length1 2145 /Length2 14749 /Length3 0 /Length 16040 /Filter /FlateDecode >> stream xڍP۲-ww~!qwNpww $$_}ޫ h{IȉUL쌀v L<9e.+ ,95_VXru-?"@CG-@ `aab01qO#@ :{8Z;?*cj377'!-@hq5@_T͝y mneh] `N2ؙ::k cG q6@EJ`WgEdawPepvwښhhdojhamhwq!%GىYDhW}@=V+[;7[}ZؚՂ= PJ&?633tݍ"WQ=)+,33`4a ܼ;@cLKcLl=}"B"7;@`fdp~|7ſ`+ekjW*O}/5࿹>&3LL0?)ew=.{r6̫}lk]&.6+lBfIhhllQ]*9Y虙c> yX>Rba::z~\bx1 029>9uFLBF1aA\lF? svG‡\.J~v#G'_l.9~l@c%;cޯ_;j5ҨV\kG#oQ z5B'*u<{+v`M 5 ӫ y:xXH:p!*= H7 O,*pGE,e/b@:@Ӡ^#-ͣ~~'9f-ay\ܬTeq!&E>IZ*-vH]ܵIb>C..`SBɖ}!.ȉN!]`l!ˉ(bvjck3{#]tHXog ftl=Gk^I *xEFwtÓ*RNF[x˾~xފ=ɘ UB%uµC$Ԫ"(H`)TtNԴۑ6 i%HB';x(נ% Ѣ{Mv-ɪZo,p wIN-[A<>5\K%䯺抻}̄ߓdKBS`aZDIItr,OfYč_+Q ! ^Pc`n7r~X23ldߖ^tSh66{Pܫ]'>AX8otTڽ:LE ^~[@Bhgjਐ`6ѥ) HU> &z*SDŽ6Al i>rᙊţ'f,3f{S?RAZ|~Gy5|AgV*\dGՌ@';bfO ۆ u_<}QTH,7k#:x^'mMyVyO>C _rX"٭{*F8L h T`]SPmBX~R[6V-0EpNtAkj}swW÷ìw$ `f{GH-L) BÂiERR`pt[ q>qUIŔ 4(0 T$v=gnb~O hEV򯀟JVT3 T G G)\IXb+Kٕbʩ"(.JQv-U0(Ƙf&hF~ЬjfZ[V1OBKrƇ1x&hz%}̀Ybs^WՊExa3*[p &h u3 ̠ {5B_@V3ug8>`9P*? t:(c_"fڋ!u/7Y. x+,J'DvN[xqq58{H37xrkħ[pɿ`V4X#91[_OntJҍۈAV_ .$ĢQ-%:ȹAwG)s?sL|3l3kK{I"nyp.鍵s3P\]Ur'V?K]kVwY!<LHlx-q+ {ݺ'R%W%ovelcV+U\x6)k^s)=,4 Xn6‘ťyX*ofp `lw{N;Z>قI%JIDA!<"^ gwPBjA9}imIo؁6pJY;fLJa#jKP\n#"$?=zY%#HǘmneolBiJz}/!B]ٛ*hq:{;-opf9Ro]}$K3rbtlK}ާ>akћ'1d.Y^.:#/5!Ԅ9ݕ|b,%[È `H R&ɴ~h|)U ` 6h2N J @,'̄-Vء OKhhxNq*~>Y ψO\VeGz]8g5/YG P#i:,[EbۼN>>ks,p7/O}77+gj?"O\(Mj:_:\bk:@ptqT^Y3,ާd 3̭c"C0f |1W:*xSi}}BFzhe@#dlNK-TĥּWmY`~5y};y.UTM \2J`>gO)e]xFp[O hkVVI~-lRYlb \`t})wimxf( & }iz \ ,*#E3FC T"M ?Q]YbGbE'5}:&"s A՝o& a4Dbъz1ҹj>*Iƾ! ʮD} %xY+ź [9uP/k"v;Co] Xݕ k|^4P9([`mcʯڐHdLMa[nK۷RpOt*yr/T(s)"4"RqFώ`Ʃ:RDLv .370hZ d"о8;R=U%0ӆ%^֒RUN0x )' ̑VM5t8@]U +Lh،3Ņѱ%HceÐb: ͕DS7z-|@:-_&ʽ =?[hvZt$eu=9O*VBv"&\Vr%[yo=#\0Ỳ^47qߚGOx{9mbtzX@:acEVRh ,:2iG*lQ\|vEU_E]ZZw'%6@m0G q:]$~Vh5R?PUiQɝ<8*dqS'YZUï0H.n尹yGS{v 􎁣`]v8`T(0R6IbbĵŸn?96kCRu~M$ɝ>K[£*_~\0D:Ll4@|83kdUZ>b/}W,ZS*IONCU ;XQ]p;~6 (Oq-*w1S2 7McZsoIM;h er=O{AIcRUZcign,ɻFvOIf" BKV|ـDQN4 Թ[Ҧgvb򝬡K²>+|0aDs1!.y!;-9\M@#Fn0? e  坜UI#ǂ,T"Y:غ W. i;j e,PFԒꑻ~c$766Qt n$F/[ϓ⽢لLZv׾x\5%;ׄq_?\9ʀŃ/~ݶ-e&³_27/r= lj R6^xa ^B;t}eف{šlw }{];Ѣ-Z t`lT{˱fN_<@Z J[E \: YPz Rg].Ri{D1)hD`;d2շvvRJqԧt ~@tf4!W,g^\B<|lL6?;>w߅|oּ{ o#_n<3"bMZdCnJ8 Q>Mnef0j_OɞJ heXq 9&`:;="ռ <sZJ.,׾qxs0@KF=/xbCAf{0g[=rDFT48iȟ#񶁍{zbvru_SZA]F=,2B9|E`}{d@=?4ѲN䍳+B`?-}fOVcYx2 |;,`֞Mtsg\2?S2-@icZ3C74Pp<w?#9icʬN "G6^ŮdchT}r$"'BA\(ŭWoh*1!6+;zrRw .HK?U%|-Xc }3Wb,_w$3_ot䄿""JQE+3'X=|~J# y鷢 &'Oʳ`ɶUeߩiSFHRw#0[WLCkQYe&?mM?;`s )cޫNOuh}l@A1&RحecD*rfѮ4_+\c$i6li! Mj[_-9ĻxMiP,UJzhPi#[y#<ӊd".BrVs򛏢.w֩8ãfb&ȕ46ABrPЀ5z_xЩNv ]V)fbĞJ[:`cP>zp>{}XQ# AJ"s/ow3<'dy=zkFo@h<^qRi_o?]:|;8M:/3 ଅբQX/}f^pb#EJV kmck3 4pjowZUPr\`.f<Ǜ~]A{R{+5*I)Xg60YQ@f>vx(/(<` yu ₱ TUc KeJ@sČX37zC$숿dzىeЧYwme~rЉ! 0M )w^ jr*Q=cEpD*`_4 z v{/` /=z-0F$ SZqanq[!1ԅr#kxv-ω|ƜaoCda t<U43Jž,$(Ī0e2U ,-nYuЫV>,8km"O%1TN55pG_>'lDvm"Pb\P+] 9ҍ*0̨(i) 84lf8NY0_2qO8䖪iKSJOl)O55|Yj;z:A>f~mv " !y W v[[%§SNۺ+"Ղ3ŠeCWjIu}|?+ql^h\tOPǮ8y>^Cv1 `L:MQD|VM7/àI.ȻV*}?^j3!Cf\G [t>0_jěOPv8M3P-'lq~tWe/f3T6[0[ @$E|ipij oy! C](ft]:t2ajjpdD;ƈ(&[P@~K<+j{y^3N7! 9h>OCA:_ 1 ]`bkRTSr!K2L"/߻CXQЇJ3G321u߫6N_6kvNd$~G,^2roQywC}ܦάaOI05FGd-ޅR˃Hv-V+ib[E}xK߿\-'J$_up!Un$L:hO}(rBD$j ASg1?|7֐δ[¢TRg,!j'Kh~!]pzԲg}nb)Y 5L|fj 'JYz >q~Np;>qO~Ղ'~}5Adws OxyLjz/ DZ 0ia_ A ̒jgWot9lw;E-MdL`7'AqgY/46U)puwF1S&O$ ! 0ݺRk9Vi*^κ%t; "+1 DQH}|*"|O6$}[LlFsI{lG-F]dBm-# [E5ѥ)}.e gsVY)GTtx3|w3* ;˓Ed};&z< [P3DJJT>"rZUsaHujwu(kϸVH,q)yϟWNZRWUq?f8hÇr6G^j' le.Iu~t*YmEh-=xxbUG]3o8e,=%ɑxFN4T'y lfQdίiꌟ*'ݰH2N$QnG`Kt-?U;_N\V2frsv:u~bˍU72!TB|Tm&)P-xms#1O+<(?٩")L gq#JS <}oopO"昨\$D|jf& 'LG, kaEjoKe|ǟY[_C^4#͌k1{ܲu 4^pw^87 5U۔9\ 'F)K5%i(~xi@r qaiWyjp-cY_ {S|o pcW yި Y/ot&q:`yJ,`Byb.T7ynío:oIa%EbԐhlHve|4[`|4 Wڧ5J xV>!@^JIc>~ض]r'Zw-?; K~\lp!ɕJb3$"M w._ΗH$}wP~?y{@\Ԍԩ~~BM=:T|}MY[Uƛ%rp9Z!cV eі䎟ov4B Nyc4WfBNdi4&y.QمD;.:_`:Yݟ9reFO=(rWo+j\ p92ddd$,V E\d8V E@K#+C0m1Q*V>Sг*M[ Z^ʱ~ΤBJ~c;y7gz1 [vCmgSqܒɲνBs$y ,A$Pc !]SsO/a)2f %ie:zchgN' ,M%. X)Qu b+8 J A|mH-6avG&s1Ċ-^MD 6:SWsWe`-cNMÂ8߹KN{FKZbq$Ӑ_iоO ejBvLFp!GZHg^z;|ΆP9M! j$fn0bG|\MC4q>4ـ[yT >q )kxi0cńw p.߂ipEE2&Kk0stGg;SeQJ=oƪe_gwTF~>7WD]*8wZg\HE|=xCUO ~"܊MA*~ BɮfyLz.@XpІ|hᏌsGæsP[RtGh3R>7%8/qR3u. RY0*4*menh$ȳȳK^1Z8=h4:܀Och&ND@po#:%. %u VfK5-V"nEV[,GۙK_ݹcٛrq&ٟTv?kܾ6ϴ*MD/*tei )6p:9ҸSkhVaBq&$~rtU޹MBim|Ԓvgt ;cdž2lA{E̖C -=Ι5.*Eկ~H]˅b0G^E0 t 8;8 Du *ԡ}'O|DSmB}.{ ,X4VEEϢE\P+\Hbζ.cy;$pOw<_DoūE#G/HxtN 2]guL-a:H7e2a[ y? Xpm;>C_U{wtx s,pZw@%ֈ^\3wno( %^P '}1(ܝXhʅeUdSsf _KTGtB4`:ޘ Q[VAAN|xW 6a8mUԷ\e ֋Tqi+KLʯoZoJ Ģ׳A4&MpbqF=1mTLKXy Ӟ"Dp`psvLr-lm_yrQk*ڡ⬛Oo7pՉMl %x@xB FbB@ O*Pk]0 cpZiʰ h `p%s/q:n«]ݕ -K`qzu)Zxy5@l;=Z9WSBwpKd /}L=fIW*a1] "tmj z`x:5dF_\0Q^fGkb7x2OaK-$߭DkpL1$Y vd wnC4l`VȾbQ&, O[vdS ,e+Eͪ]">==.2׾․^wҳHé3}vTL9'eMc6.7'o~%MBui[sm>/t-y sZP,h| !##fyGA7_lJu0+*]xΛ̻qn)&<~իRr yN7V6 ,xu vvĐW#;ESH:%o۲M߁0xV$ C|n"n%*|!,KJNב8zvvTѷIbTn4*JN`ͦ9\x@hǩ4BY`|3rz_`-T:TpWjhFÁ@[X$ yE) MՏ=VuhhgSCQj$pꀜ_xuv5U#0n׼67SرX\979X(;Q>[E;h/5e@S-Fh83KSRfno}9 ,_Тɦ!%'>%x "T8hL^*T_ >zIoKBj!>¦-HHwvpV)?M?ݵ1k dӲ"ixA|j .6hlh#NJ,^ISa-9@T& {@}ë_[> Zѵ."[o("آ!+_1 0i='L/=E/=]^G~A0TRl=]6IBtMťYH#!͠x)@єQ#_e#VhN""`y8sԨႠ5^B}:$yxCͮg $ m[s$3O*#G/ieG5& *mᆰ4|~|]7f+|6&W`ibۈOQR^l=P2|RnFg뼋 &T!R]X3h6U ݼZKRvj0ݺ~ G צ/A./[ 䝫5{%cJlt PT֯sKSۃ'?Ǧ#.^@$F__!0;O CYL*?™4.poQ9>T&Fڈ@fVESeɤ+'U? Cr+gi yvWEH[3+⬓c5ޡx?92$}dQ2GK/$>^!@ϡi2*K{wKXp^y`wn cds.W:̆M]"F,uvaQS+"YQ>^k\*T-g+T=Ϸ 2iv"CC u:yOKrLwOIVa듹ZPD<?8\NYp_MBfAY}/dzŚ"7E Mq[$B$"]BΏJ|^& G]a9di$ĮtEO5wiE a=õ`pXPNS)*]Y ŸL}펌d%K-z1O 7w( Ht rlo?XpÏZe/ZgEdv/8Vl$mqh_w4HIG#j$ζr6HVzps񯴔鸨TH FvQ }צ#h^q]\w;$i`At:WU .nuƼf勴[g1|Y.2%A_'A+ZaQ^P69ZӃޝCJk` cmOO㫿 e%VP~WH׭:xW_S*5,v<%-(O3z'$ӆ.nuW4њ77YUn`7νͨ}D(kj4f7Wo-Q5]8T؀'顧vr3=w޻')ƽ 9}PZ4&u9dK[]1BvH^ݫNWR&ho _2 swa endstream endobj 898 0 obj << /Length1 1983 /Length2 14361 /Length3 0 /Length 15581 /Filter /FlateDecode >> stream xڍP.,h X`Kp]!%ew>W[S5>O (913rD䔹,ddd@{ 0_z{LL H;YXLL܌fFF1sD -Lri0@&u03w|?Jc*!! ghyhlh P[+%-7 =ތbhP:흁&? mG [8%V:ok c dHle2=G ПΆ` `ja (;: A&Z; - , .0|7;c{ [Gz ?2b  G}@㷮1yV gS Ll@vN@)ѿ-D̀6FFF.ft56g#-O% BNv~Y ۹׽zȏSI[A EVV-wؒgJHZ?[h 'ȰFtDyI|dY{E]ǮS"2FJR[v&3M.wo7bNhʑ'V|N)#j9 DFi,̕Lhiz(_=n6]D$˅Fӷl_^s1 Re=L6qTmSuS.B"ac(Çu7KO4P`2k=|\S߂0`K.t&xIlWăq%#`_$"VtWF.y<9]{tw` ꖉ"矙+K)T ٱ.f_W1j7ֳJQ|d 5 !F#hȈv{jSݽu\;Nf"K Wqղ\ 6&g u,A/aί[aL̞߮o:, z~ 1[ʺ_)#r 21皠%LN tj0f}b>Bi{?S(=!lړ*:s8Ax<w[~LC=di{/izǒբGn`/Fx !-2+XRs WU0Tt `&f3ǘ&||'pPy,_@"ݸ)NOWbKg#*3ҚK_3M6x"2g֟*ůϼ"'E RR|Nc *l\ %1?)k#Js~_b ҨL_;Xܓx6otTR iaߤ_TɎ#C_SoceYNTc/´P6>, ޭ'i4 t)pR}f D&PE$8gQ18RW`ɧ$뒜BiCN렮W1RWyG9XܘQ+ȧ,*Q?,LÚIp4[0aF庯+4FEe=.wS*aKđ2,T鲔A*Hpzzo"=ynWlFzSdk{V/E " 9غ 1~C#øzwtmD1œL W+F\~'JqFC"lXh D6Nj03OhZLҿ\`k O%>(.+)+.U@;ㆦ ZXl˜S7dDIlFSj V<颏+|+to=׵ ׈rRfp:g(>}./cn, q94ZῄuJ,$Qome.Vb_BjC[=]]F+W ή/,]P"c(cИtѺ$fT/ɮnz:qKiLB*D…4Fꢔ F˜͖h{Q [쒸CK[m99-j}B3K*7D% >}}Kdn 5Ay,M6];.Jy Ը=LkR$?m4:=Cz7~l7$I*wb4Gv똉2UOQz暙 5ީfҭQ<:\[_h7O]$H di(ӈ"oO(M&}{c(X҃˂Z`iܐ"D)! 'u C[K:S(mN&=J P<ݨ/^le7v주!}dsEecߊ^wnd$JWXU;q2/i3Tg5lʁzro7 ;;{Di*$H_&-" cP4CB$(46ΈYTKVh.`t45tm 0[c" n< dd[ٝK_IF5<O^>[`~Ntf lY3^r /Z6E0o֝j:z%WE}P cBr}W?>N,"$M+'Z T%D$ՎVII=>,%|7R 8yy.Vcp8pdr'ѹ\eb4H3>Y ?ZHyG?LyPuyw :FK [ӡ\`)r2;O¤rJTڬ$!l5kXo%l~x}aс=rVc[&ێh^Wy]*EMEe~fSIΟB~lM#Q,~q^6b-ƀ*;JCWwխS9Qk 5;z{r\%H/AYSvԢZ?29~,8YK_0K"A1{p0ln,ƿKWv>gvDugf)@b$h[7M;Cқ;qvx/QrgEq{ ͱ1#s= d٦#(e0gi`hX[0a2'~}"ljz _Og5|,(γZY]Ξބ2ԥ9<ꔒހcWOhM] irZ*glmv0 _]z\޹gvsIqV1MXK@戮fK=Ghܝwq?G34q>qzو-64*9ng|(ACZJ8'‹ X}: T.FVf-ȁZ鷴̗kEㅵn/蘅FUn#ϭCtv ^:JmٺB@J~BvJNk<_D2HB9l~dc1:%s ?kʹGVERd||aii؇^Y_y^fH uMR ^Z5s 1Fwbu\B,Id}>8y/<$I\9D0cZ$RƃGHO>xPI)Ұ{Fa"b`ӹ)*-l,˺jqj֔YCCAc͞$jX P/q‚+Eʱi@@vBh\wLCirŹ8^T:Ԓ/_w)PO(#ʬyNɧZtNe3^ nJ&ۥw^[\Γ8MVsogw-wqmJE>g8[$d&jw! A||ְnɤ{'PwYNB* O'1//#6>-#@)iy:hwW#lVe?2a0l(+qBUOAXnmhNDBeҽws#⬪Yjy9h_c@@ύUcc/Sy£G K c"jd*{۬q=|-MW`_$V&Ϧ!S0$ &Ks#N.eLJ>E_VK,ض~ "^RsZ1I{yQ^X~pBΦ;zwD'J4ryT@:-\efMdKC͘RȠE ?Gs˲w r]5-1#Jn0ވ,H V_vP$MDv_`vFUhT(Ԑolȑ %B -{.=* xuŞdw?dI)0$Hpba'G]}P+;̣1-׹Vƴl"iޙp@4Asp!$9#ғXxo%D|gZܿƟӾ 76U}O&۱V g,_>f 4e,l0* GꥰA'a{ 0҈atb68YVwI W{oҕZNۓ|@w'=i1/\gt03a^/o֑_| W#+Nu0ewPN_5td0GHd`m)CApZEhJJ g(ȏJ~ӎNDZp<&FU[_"JX@ڶ9j^z8 ?N{3T DgVt~ |)C =5c!\JٷpܖPUuʘB6ɢK\,AyUqyyN̫ ADe|śY?2IKǽ-3cS.+H֝=%la)wXnXl`=D'@4 pB `X7| *|_l,LA!Gma<@9bHg5JJMLrE]' ZD'fJM9FdC-OdDo?2R%ZpF+orɅ|b6R$xmQ 4!~$m1\WGl+_"% ^֒E#Nj}:!&/(^$Uk }w1]T@ x]Eah w E}S[NK͜X>ݺ[O RjBm!謒Hh C%uG3mW;* ny1>Ew ؗ)ߓ󫌶ΆfCzIn[2ڏ̛ FNJ'ʤx40UwE4ÃUE!~6``G|j2qM+bCXNU CSL++&֪\$h^I09Miӏ&ʖtFQJ)ڲo(R{b\[=;"~w &vMMe@]o4>SjLѝZO*"dtLx&U "94w AŤj_qţ$+;m4n#3ze}!~DX\ FGAXrLSc3e~~†WxXƶ/=Ā>NbBcѪ惂-S3]jӉWUNT\m]B "ϊ, zVD_z? Zc6"Vu:XNč[Yw>D 颲PVƋr;죐LH3ח޵9H]I7gtwrFC:?V^jC~˼g qײS9Cı2~x|;+s!?"SX߄\4N9, ꋇ6^/wT4mi`6s`6һ][B_J_"K֟q%qD+E4qRzp.理9/8V\Kj:S۠6r'&GE&!Sd{hqD;"wS{2^c:ii/* iM.u,J"cˣrZd ndp ۸cJЊ[V mi4zA(ş6FKze~oi7X.zFjx}8 @:U48^ͣstKlijv7SsMRsEWܘ6lz]{4JqR8ƒӮ뙬u͠;u+442iv&!ZZ҆ݹxB2f^e{&q/P| @<غ>py- qorǢ:d͈/'ȇ9 a~j}pd>jd07~!7"խ!ukhnU#IlKBYʈ.G&sʾz4S3ca{]mz2~OMAtZ2ꓠ."9=PJnaG*$bNÍcB"Ж45k,;~9"p5|l}GKㅰln&ە,҉%E2ŗBh7^]:6VJ~"V+7C8I)Ѽ32`f p%R<Ç,Q"M~Qv[ռl%åp9vWl>v6H6|D`B#Eq%#ts`R[^:Hʉ+*N'+oS~/|6Aݤ6c}" 8s}KLlF MBR <>kKdMEkӺH*~zg~ xO=+_LRdEKI <6z}jRRJ>XOJ ky_*&'6f{^ U²o+&Re-o`.X8z/ !.=n ;&_ O")Wㅴ+=g2a'ݒ _q?$Y1tGg6 Ȼ4g͆7n sP`F? dd[;Oi+5RӊF꾙I7kKpqeC1j'eI 6MSmE݉c;LgiLJ,wƸP ,"@G:4)!imr g;HTɑ}=گR,MP*^9,'DH\:3s?ں"|kq2 ![H| {]o>!/IxO8 '['Hjz% մpWTx%Γ@k.~rt$}$W),ds}.1_c55ofW¹Uzҙuױ 5LOy!uhWߌ6D`'"aD=='fp?a$ ;(O1.>Mr,_\pW-s.cH{ukGѽ5dfrY5R4C IA =.alJ3}\ܟu{ |ڕopwÅ/>=2K 2y^pi]5݈kܵ{o`ʯ <"\u.~^ WMc:%cALt>\j(I[.F܈QRkƁo!#r&8ԎQNNx/*1쭖] .;.Dzt ⻧C_\ݖ㵪a,YH Zfic4ϸ/3y H) m6ڍRAbA+*>V,r! "nşt YFG: 9WدP#)g:^u~Enճٱ0R#EwjZ ɾ.BqE[L%}cnZsYW2ʹΣ;^9͜⵫ti/ck@l/\G:Bij'C ,:c TFl byCl+;;Ir-=/\m]@о{:9+f%d{0YzdA:)c۱jz&vLf=?EZ ИYso5<٢]rmŔ@߉Lr&?xg<\lSB}#}' >jc%@eg8#DNoLl$x3{}nXc!]^ϱf^*.Mh#-/#W]<vǟn9Ų^6|ecO/oOaFJu9eG2܏&"ehJim1dx,抿7$sV!KKҪpϜd}-/$"֤s"z'3YOi+D}$jAyRt|%8·=6eb,W,+҆L6)װ7j,T{Oh.l5Wc, -h7 '5bCÎdaYT~`5ٳ!CO"0Nwo*4*`+pe.s ~"R0ܲ 5b-9ɈK}]>7~+aQnBCU "f\PW6E_E}ؽҊg%Q´\!0":> stream xڌyeP\ &N,{ڸ,x\ww/c*u? J2E!S{c  #3/@DNEVŮ@IjbAT:9[%#4rD\@rviW ?NQ#7KS#@@)bdin?Mh,<<\R,MrF.@[G#%L`hdhd.@Cpt(Nn@SFcDZX:bon6&@;g) P(8-,oz`ad9Petpٙ4qY@\H `?:8Y:83:[ΒPLEmmv.t*O`3K;Sߩ:0Y:D#"!]ܠ@ NT=b&vwRZA܀'WߌF,,SK1uho 'K3hY̿3S{;?j4(?Ix32X,\NNR4O Jٙx/P߶A 3&_,S/װ1;&qWIK?2vu=h)[,4t\)#ZٙFdKgqKſdkgciTw}j ,5k9qMX@*W1;{; 0rr2D` +@3e 0wBZNoҿ'I0A&?$b0A&? 4ȟ'A  n?AyPLȟ! +(#gKP7lLYACalG_ FN, ddb =j\{AaiY7?A.hXLlMml t:&9wt-PfT@Ye7o ?A|OD"-dj/ //j_T?s`{AAA'+-;bȵfWHsd'hMXX@:a|8vlvPՠ&?cOl9ڻMj W]Y@Qn$ z_&@ t\,_ AP/2 m ȼ_TB?,y..zb@E{/!uB {ljo6;}x7ܩ5:ra b\<' yO_0$xIUjQ L`ck:*TW+.<RS⅙e OG:@-paq@>L˹1VoD7E.+ѻeY$?r ~'.%(k_JkۍT }{%Ph^@'0 edIKt%M38prYby66sq㘑LJ:xx-YN2J#4,&OU*F`&j>{huL 05RC\l}i=C7jH,,0izɤs=u^zozvB4|V%4K!joaɥnĞaǮ iRªێHB7is M<#O|*Sl_u6&U b̟xqNQz\CHlHxT!36hsPZ 0b#n@zbJ.t*< ĞM3 DK4`BoG8!fcoHm\;UV0Yp2({f̍ro˺¯W%N#WC͹g Y"b%c1z)$(06zAժǰQ7ј%H55'>ڈEaK)@wO[diJO 8&hL,|6F1$W.R{)#*WP\?B vVw6 O(~#Br'pF&:CD!B [N|f~/>V>pϲV$t0WjHdq/4DiW2Y^S:p鸸Z*iۅ|[-.P+ HIF‰͓1y-N)Q˅p9+(UCaU.R~c1uA͚Z0ʟae)YjZ(\;}4ŋ*ŒKॏ^6(]fE#ꝛX#[CCX.'sW򘷮dv[!E2-L콭k獤JX'rJ]`#G]<^m RqZIPUP{koxD ߃3Df6$gC-MBEb47袽ܭse+l$4tT8*Cqׅ/ dO#oń2a,dI>4hܧN7s̭fmV5|rܛ>\gy *H[y, Pq66eҞm~HM W-C9s!ea!Խ&e|"H9 XП C礷x9ͅ4ۜdS~]>>Ƃ3O:nVWHꨋDBe-%Sy^u7He+Pf| 7;\m.PKd-7~̞-ރc}<&_%:'Ju^kͅlClQ CÞHq n\lTBTeUzEv߹Ly .Uˀ#5'-GMsCA #fcK&%c'F[w|@+J6-W$͘dUl8EN5wڛ ԧJbDd_FXQ_ߏDUQM!sWw>ȝǒN.[KjTnr7m/y8<=~|3I3ߞ<.گ( ZgL_ :Yq + >;L.(qr6fzIVFa7&52 2vţ ]ټ>,ajB'|B.ES)cM%B#Vi&i2vFTxs>ƯqQ"qF n:}]V+O+l0tcEvr5ypӼPsp3$~玽)DiX+UKLb=I +n~/$'hb'H_z ''_͢Gx ʖDLoj$KUN$r۶\]/F^9P၎>N]8dLn`Hc<~Y rЂ|!gu!y:g\Dc|Za$4M9A >ւG Og[X:+`7O-+S'Icȼ oQ^]\]HB0Ew%d{+|v/kLnYswLyE?B}Ct,A5jlk9ynj<ΙA2__/DYW0")d~(NI jy)+sBquA)DF_AXI/b6Ym0GPj\V!m^3J'm ӸA7G؉ ^"K<<&t آgT61x(qtWkN=|H4}y5pkGc'k*܈3 J=>ն{~H;]F(m?#fm0|+kDZ+.83 ΅ zT9c/|)~AO+"A%Ԭpd箝|_JF҇cMpK eGd szc;ʵDeZpr%=%lB\q6?pT *XB &^e'iCxwQ9TDґ<3=XfeNm!belEzX*O:C2:?ynen]Lp'37'unjؤ~/(áO7Y&Rywu/}ۋ <ۋFu8c+"?eY=7A{pD `^2ݵF-B;rM_| r,'_D쇵 J-TmJu;!nvrӈ1ˣv?:{-b4 tZ_Iw+ zƭ=lW 0`7.Ai*R"}u]l) zMĊ1ܟTZNjAwps\ޅC5fgxMO+JPk~mN"Lxe>@6KK 77+3c +(C#"DtV+ć_ܭ(G'ZlJ3&RT~I"AV[n}Pu3M[ST5C տ^t+vɴ dwޫ !UqD1.`xur9ٴ}XּϏ+~}§ A:*vw۞B73Љ+jbnH S$L[<+\42E0S 8{W:fQ_/2+f'ԥ‹c+M?du+$6ԟ $YvyB0!g+r(ZuK{(:?!^?%bp~9c-ʦK8ϕįey۽U Xd{vx7dvE\ڲ-̭h/F8Iv<>q* EQbk*= Xxthq n"mU1}ocjbc+58Γe+k12w!`VTƕx ۆrHvQN`YR.}rlh1R:C_Fo0(2SS.ųT^\$=h5@fVX9)M֧WQŅx ƣC:%iLqb6$ 6!k2@ w@yŻKvϫLŒgWFӷq|D@yg`Ġ(, 5+&rs-5,iگHbY[dO>1U[rl_:0j1º{̳ÛEK Q0حyq %a&ˢsLuȥcjM~/w|wf>pAr`_or_+frϜouO>d.r[@|p&mN^DZI~Xkdd-EpHpͽJ*F>$l{Aez^'bOr S2\%Myt&6Iql>Q ըu#q &I>T p};:t'*1xUz;sK'qQR+blTZWaWwZah@ᲄQn[1Z֕n'd!-o-n dC&Rb|b0&PGs(J0is?^.ec鲷KXd֕K;v:_oDOW,Ă l %6v=kLo Uzg#E3S"WPM3J rGg49!Փn!ID[ݦOa=2ɷ]g%/{-.îA+^Mg`[:|y?4)2y}E;>RχF5"@Z?sdi+sFvb2%(ڿn לFbw,v+T8`v5g0y\}w6sR3!174|3h⪉SD_,^ؼ~4녲%ehUo ZTLk"y:h:ai7N?'"mM?l#`l HQ2 qX1aega 8%Nj9Ŏr^w-4*!::=rbܤ)jU,H6z.Hi>=HU- (_{-Nb/mR Q7/Aɢ<"?0m)46yR" 6GZlwyTӥ|wn=~JZ>)V-`y ,iO9oHL(L"dE_ rkdD{ Fg\O9wEr;+\O0o(+ 9p§1)K r5Ci,|Z(RJY7&zd.3T5F| `-hԄ/t%NZ+ݎ,r IʤBy[μ20yl,}N a囯eo6=@Y_b޷)⻥Q[GXj ڎMDr-~lh܁fs}0ҹ&-%1+ 4d<{]g<>/hb.G,c %cBpu}8_ٻ:WJ v#zRsy@\* Baʚ'je(`\t!--5B]oI`-eZL.!-Ѷ7 p儗uu#̿tC`Ȑr&Kv3FKR8 a [ZNDfZN 0>j~RAvG9A/G:f~Նm-Fbհ{$4wNcso~:1W :mkom={qʳVqx nEu~eԥDA%+b }|sKQB(+A0Q1]+򬙑ƯⵉN1/a4yhy:#h>*T}ˆ*BbȹD0}+ V?4yVlrgVzz ȕsOhk[~wtRIEG],vV' B1.2@c0{mיW1Etw|QꍁpA=J\^Pc;ȊBUn!@pnRP1P) ^}e=jȇ$H̿gE?UVѥ#n՚jfɳ󜄒${FDNY *m0e>.K7ka< NL[fd?r`z> ҈wj~'`ϵMk-85_pJ7Fbu٘gӲZ"*cgA`7"إ;Ahu@j|*qͼƖ@@~%c|Su̳yk :uqvV-U+f_Tx8亓h(\aB0goE:Mʪ2Ii_({&^,Ҥ8M1K)\IyHZE *H!P/6k᫙/ ':rzUEmqV*OG^luk|2d:+Y =sBKҏB{Hzvy<6I)0ܵ|KXUA5<bbQ7CwB?uݧ=n?2H<8Jy ::wQ!Bo |o/й4!F+}N:|^m!=鬣b 6[E;A_l57I>/8hI/[ȗcr!qOb" ȅ@B5LW|Mœde%lbc"B):%p_Dwru{h"؈.t8']2hbdvg7YVT~e#aݬYdl*ĻB#(A_8D>?Wlr-baB>T;sVPÞIP/T3u)P&]O6d3ω2S,;(A{峚<@7c*.45T|a| EҠ^oBV9<b *g$~E͚Bab!'D"r呬-[P3=0%d/*_[z&!؆F|0 Ⳙ:! mW ]r\ S'F8wl CE 춆3B)]!c4 m?F/[_ aSגX|i ncp4nϻG$vZϛWʍF$axUNROQ?@iM/uM>o=Y63Z+c;U͒iKs՛hA~y dX],%̽@a@0Z&|넩r6d;nb:jLGkVRoQ4M_yeVf](QZfk_X&Vju\C!lz%xMRV\5gG)lЏ?@r}Ŵؙ̬| "ͨ8rXj4wX@s͎&&n1 ߄;vzo8AץhgOyx*m{G00otC=S~Y#֭jxɚD}M*%_l÷$刎KM_L^JS=F)|7}M"N a0&R闞,m!=mq?x] |M/oY4t8p3Q.oג:+g}(z/oxCI 2ه$8Ǎ@VSK3X3AaG"/~*=>ђ%ɪPpQk1#)^4o#nqnRR# $&g2-{{'~ G5ܣQbt70]>CwDDl䚮þu8a#MiyG PRraK@E2jw8~qƪY1V,&ףQ"-K4޴zD`$$g`SCehDNvpka: ?Ď;p,7a-̸spΥ՘/P}l!Re0:f~[[̅`,7xeK>d?3[5Wε/1 졐/ ;4mg5KJD&,X +.9?̯]+Rd*;?u۞0+.0 y]]6%Qۣ~EJ .]oo.j}} 5P<$.I=LanwC5 —k)P9)AilP/T(^ztܲv*޴=>oO^;jRj-)W[ ++f#@ϵw4'b!AڊvQnUts(`th(6/,1!ڤGrŵ$ x6PGh n+1i6vo4]#Ql_kb 'g\ %*$~8i_0r!0}5 RmvyW3:L'}Ls\W3paG u nb*%U_DLy`{oudEQ-׈$S9XGBIߒ;yK= |[;io18C(;UT}ޝVgaEuMX |OMpP\mZmE ~W5>] }[o,1?{Lί8{^-aåmsUxWaj`j9K1y ^vv? bpF7<9ˌD|.X@GAe,76FO|L< o1i-x4cX,>%t?0%#TfJK%&5ʣr-:3 u|It,@a6N/;.tP8'iȽěsfnTTdKk3x{Jǚȡ,h4eTy9k̊M,sD}C+"\[mڳZo⁶=%={-vF粕It&NotmjMmjzVp#GaQV%,\^qn }Ś =x(00VK@^> stream xڍwT6" % C tw03 ] JI4tHw7|{y}k֚y׮gaU┲[@0$'HQ ċȨ E:@c3B\P8L?2.0' FU0@xEyDA wdnP+@ P lF yGŒH9B\`FBo;Z-%G q[$Iݝ HrP- A@\ VU#j\،-W@ nt@[Cܦ¬ .mw@KAPs+r~'--N`'fXC 2aV`6:-nGRv?!,]NHkG_enYf%wt_B] rapwߖ5fek +W'n s@ 08K[_ = <ܷ;z;5 Pk7._ Hbab}{.PtK?'[Yabn5my C?++(- 9yN^ "" ,?R`p@ioP>XR S$UO$;uEފ@~+C )Wbuu|+)ÿz@ԡHKۿ_0:n8y@%V=l)[ vq{bn+ x 7 Mn.ؿTPm ܚn?ZZ*7-n-sb=9 n8-p\1c&dUtYܪ'Q}(dṗmø%-`6Y&EcQz3Bm'J _|Aonf7vBot9b(8 ( ZWc.FI :WH3E߿wuv$Uj+, yDFH QlG LQHJVWM\_ CDw}ԿK[M\I., gulujG+윬Hx+6Aܨ[heI',!jCJlے])0Ni|lB/ݣM5_V01drd96P3&M~![QaZ"$#ĤԸBmG`{!|ITop)Id)W׋=DFw7]}9RZ֜z8"3M;<7ƒ{#$/,ij& &A;3 3t)gpɹ{S3Zay&\+t_[λ$(Ճeլ" ?Rڬg xk=̄ٻӴl.};opMHӶT<+9{@D_va:s2m|E!6qXFKM;7[{. 9?A?}HY!~ԫ;SbY년o/9LNVuXhT6c\EPQ} S,Zzǖg ʯePo>ǢDR}gZӝ1Kr17-L(Hf"8T &A}Y9d@70'K@4w0x}7-/TFbۍ{KgCE5^ܞԟOgWfS3|x뙚dKNCRIz~1ij!.go~3 %eMG)畼5QRgƧӠE㋖@7_E|ݩxX} oTmk#/}^:\@ѵ⇡;#7!'GZw뛯E Z+i} v%>VS{#*_Ͷa1 -6cYo-gZdECd>mԚ_(_̾CW^$!yE q_JxT.ZwX6y=携 -|q;WPRld"SbYJqI"67 }HSB.%a,rLܹkX O!g35PqfB3)h  EʤYt Ҥ !U=)W~F R|sӣWm{O ;Z7'1aKdZy^E^P@KM6{ CԻ]Y~ -H5gTFR좽.U^~uLa1 M^f*-j1!EybG'< 7gK%tUgѫE +!iA/R9֊GMy c ox)~WՓ?7*ӻzuǺhLҨztAtp ۉF%#'[+P74C8ôcsOF`wWt$ceFogG@[y(VJP$6G]a.,D՘"Ǿҡ;;URa4P#*%7Wb\QQקeh& 8hhT%ħ x4Q`O} @kԅ&g"d^%Bؾ}& ^RmK|"WY8]w4'%fY6) + 0wq =퍜7›䢕ݗqHWJ6nc48p&UfN`ܿʶ~Dy';-N-&%Yl_J$B Q37b7]hYzfQAISHΟH(!lOwH+ kǖgH4Tqߡt!rW`p]p#jgr7todB<<}"UEa[,S kg`ȰUM3kV^ ]³Mf9Ӄ q\^[N8(2;. &"˸꾫ʡYẃO#{Nlx~\rڲNLT.5~b*ZlcO OK=M!oa'H=[@{v(8h2 ehReUQlXG1퇬%ޔ؝0 짠n5NAxܳQ4.,4 m JfAvB:Moƫ  ̼YHz KIrҲ&"6f_pa&ӍڒPΎr6k\^ItdžnR=nU<OITHpŘyZ}m|gsa2T#Ou ֹNC%rFVi^g%>!NFvp 77*WFP>cVVS6 NM|0Zk39SvZ!`~ƶ'5z %d|nF]XG#׾ƏL{=JcԮKF1ǖ}>$Vմ'H,\QTXZ!HZawˆNZQAvm[eQEg\f3t:dCMC;F%eFx!Xju  gcs"m;pΫQ]jzaZ JMV8C7>1-ЉL ɭViixY?u共qLfߺ5͓ քi ^MF3_䤯t౉-Ȱ+f:g=gcV(3S鸚;1^wo3ŚCBۇv)mj'lsݤWPasEL3M _2?gz$f(f<sb:$. ՗ls{Xr/˲ Y4Y6NzM~XtOFC~`;ԆgD!Hc/Z:$]ΙZxs3w9$q3M,+"4j_Bsvt>90 gu]n[9~Qr+év>c7W:_rR&t΁U5P *ޑb7gcذp1 .n}i4ܷHI5q,;}yVxPRঞ81c`s8-^Q11W{ZޖDIŠvOQgT ^Vxwv Y64FEUx&Y?|B8[ ra_tn'!Ycf{Ź@=^7DMJ\]ndbJ'@gˏ>L^$K޲0.kϺO~ vIzҽʑ\ZMn endstream endobj 904 0 obj << /Length1 1399 /Length2 6072 /Length3 0 /Length 7032 /Filter /FlateDecode >> stream xڍxXm>"R@:7nc`lFwtI tHH(HIM}?;v}Wu{;DA@I@!Bvvc'd7z`H0<`4S1D$  QI$%&"=$`/@GD@QJHw_3KPpz `@va2Bp}KvN|o`EA=_-tn? a FHG7 p@a\<P&;HCEE9_x CvC H7w0p8P#~p`{ w`O(@z*%FO`W"W06<MP ? Do %DEE@C,+;7!pĴ 9B1(+BP'105=`>+ F~ _W9 p)eTTD$@G Sj %{ן3.\(BB0oT+*Hmn0Fh 1oՁ:<۪cAQ4?_8 :Tnk0T`a ⊹0mbfyUïa=<ƬD T:@}~ (@1.LGᯃ`O/7 ]4О2(䤫z[/mgRdV&gv= 1mKj3_c6EZZaxA/53k4B}s<^P u \|3EQ}8+ =;M]ϑ{|_ê!NZt D!B;svvR^j#7QEk!m򓦃 qۻԤ,%'XLI 猵7t ,$#BH(\*}T&E&C<8qtC`/~AϷ[6GB6Z]veɰ-E#٥&A '~{i9Șjb3cG ~XMr5^՜$Ҧq*jqڂֱ\zVʇʀ;k5:!8D1_'„fXΎ̈́p9EVlZ.܏z?R3 jAoI\O hw!rN+n岓"E*GBkBkZ+ ):ʡOv$٥]&֤ikY?kc:3)䍆+]XJK{#gἎy:wrփ`֕nQd`eZzCS,_LIՐ-zL*헬AOy{heӷM}jP-:f+B)ԬJ57]A6LnlxՖ*Ӑ~W*=^f,_ZYU֪o94 2Kp HmGH;]P';74.m+r(J4\ >ߓBM5*FQD{^ƭ [3hfGݑ^L|627lR#wڰ+3!E2G#B릊 go4;E} J[#bӟI" "Ԉ/S Q8nGOؐ+;8^/^Uٙ |5rT:]Z|>\,V{NV}W=U&pHGK4]e?iwd{KckrqxFKT+GDkU㍾0 JD uhkTVƕ Q,q bb1x &;~5rZw?8?fr`H`:cu<Z\k4_I[u̎V}j[-[ߨ6}>6 ȱ>ݒ#?GӲDS~xؖnmH6g1p?'xp!zZ2s{`kY•ȗ"7 !k;~<SkӼ QP1zs* pȾsW]&W[ ۮ xˆ\gmɀ W{nXcptmT5O(Ғ{ݽs\\ܗI|bf`.z>:4'jA_qK`UM4t ߺ T@*>7`ktrZy5\,Lˑoɣv_?g(s@)W7moF}!)^ˈXIUݛ-.[NWcެͷ(Dûԯ C}Pc:ELtP[JVԭ2$cGHZ}3 6> ^{P/DpeC˛¡iq'E2.$xA_ ϣ"rCbdbR,ۏ~N,1<ϐmXӷ\~-A'ky8}LpP <٭'6 :}#f`-Kn}nL?y-+`tqj9όEƅXg "תq.@?JL+wƾLWlELjh7//Fk LߋJW|O]X{*OU,Ci1v1MGpZ=sɯ]9(.JQGS`s5 %;cߦ,0ޥ:I yBs.Hg7n_x£?bHK|.dY޸e@ ˏI~N*o]<J3rK"OדSR/P:pm,鋁 kqUаѹ n6*"sD4Qc4y"]x9 <_y~ϝJtIMHta/J:d;TŶ ̠uR\Õ[Y$壯\ Ne5 Cdt/"ot#[pɲ.l=u-@]`}Ī'){^Xu2$S:́!GQO. xRv3T&%?]Pg5xXLБ>eS-plJ/~;R]U=gp@1lPMk^߹!HѪGcv'&D Șoiʑ`@z:3=*}SY4q.А4 }U]!W" SSLI0NNi֢\RBα7I3:)JrɑdYWnE(M%-3H_ѐ+`1.~޻yfb<VS4NEVqO&)||qu:`|>`gڱrT^Z,I GulY="7XWhH4.qjު/;p:%PݔA'AH\ܬJ>UɆ]Utbr8`*#6){1(tpYD͑Eec94pU?]v>wk}"Mw{ Y~\"U# (\̳w,*}OT吴}.5ď/$J)$U Q-hrYcdg.;»Yl% J6t!rvn09ߴ+?&nߩ!C3TYiГ/fI[&F6{GFG7Wl+t* `-k|z-:Ii&Uڲ{85b]%Mv4*Y;VY\0(vcz*߸#όA - cִg>8ED_(u+k1ѽvrv,5 ڍ~f!U&\elEDwaܲt9\Hi,Ux T:#Paώ?R?Y斯lQ̺eJ&+RUgI*ڋUY8|ڎnWD;w(Y\y35+`8EvQ;1tZl~zIuzBd=>ovz+:Mv\]UsZ4|gz=QCRWpFw8mt)t{KpbiU%+P'a 4U䂷oUfyIOYZ5Ӧ} ӣ:#3@2Rj]¸ͫsj<5 ?T2hXrdAhEv3&iɔ7Xɂ K-Um.b4%gB{y![< hcB? G34\ endstream endobj 906 0 obj << /Length1 2032 /Length2 16700 /Length3 0 /Length 17930 /Filter /FlateDecode >> stream xڌt Ƕ3Q6& ';I2&m۶I29{u굺_驪mrbEz!c8։ "E GN?r8r5G -,DL >dNr@[5 C7@ ښ8‘,̝>#ʈOw-@D#k BP;9q32282NeGc% lL./ !02upq56q|P(ؙe,o?Yl`d3u5ZXeܜX;? \ , ? L .0,-0m5ؘ:9G\+[2Um-MD#33q311qpL&nFO%=vӏ2L-LM>~< \LN&ޞV/13-&fpD`1~?>}0c?^14%W), txҳYؙ,lG<+ek pG3@P7bC1K,FcT(jGCyCy?tF@fGGcq_Gʦ?ɿ?$fN ?J~e/H_QͿ_eao/Gv<y8Sdb}WO?u~$/8_-H_#1?c,x,k\'Y"n`p]DxY"E>n7Yi`1YnyFrcԷCyM=8:g56:oVvƦ_q$K\y_a~Mxʀ6 Ɋ!RFhnSJpwsTː*%[3211c.n,QQsyv,2!ڂN`W9$3 rZo#`ʩF5Y94@-ߋcl\"3ye- w)|=د>'ֿYc"KbgD_\kvtն#KX29w.赖:ca:ڲ?T RsjdqLZ3n_=ckD,XV7s%!U[_rKPwcQGBvY .7(KmE)Vd䪬9xlR''an^m~_ _1)!p'6D 9=y<<էTT|MRop ~ OP(hLZTdG .hԿ9F(BVšk|*`0 14-q 9e9ֲ0Q`' JnAּY dzNHYTޝ%;}p(bFb-~uG޼"\5Tb64r'N!H+qyZd/Z2*$/heenSr\Cqaho_aYZv0I i(%Pi9b.|1OwJB73ٟ[@98عTPHYnA@aQiu~w`~:YySAPEۉ]=@\cuX.J>,3#Jtyafuո/$ן1f,?Ƣa>;vkx&L~%!z(u+(Z{r, q qd#dLJx7*-R+Hi:W\|S3_o&o%;hfm/ItS*0eR'Bچ7MEi}uz>2ؓ!M^Ab[1bmzG$>  1_( &"W3qT0JuՄ`K{5K&08gaL41jCSQcqkW#gi&8Ht'jA2 # ^Ӎ0AƸ6-!"V&5\,䀎#9LoS!BpLij.Sf|2'\>j SLdT[0۩}>XìzTǥ<XǗ-B7i)ѩCV]!WZ,JPG9YҚ}1+=Ynt~18׭s)aY}|3N{@ءB)qkgN/F7H_OͯT3_bqS'0 e!]- B7%+ގIE>aCWnP}}6Ir ϱ8r#LKh:-g]u<`tpƛsXX7gx8]Ջe텊PRXCJŢ c{?W3g/͝c{0";hQ XD-j2RAa.~C?S.{-QkK 1 Ůlg|aG%m&l[x]f$%v1\7~Y8MC"Vm 2,Q6"IXq<>D JFy[ CGy6r&OC ѧ_rSE<#1sCu3M/ȨJyg>:`tQ[JPj NKNw\k$\ S8t^~7֊3$dyh gm+Sd0<- Uܹc>GŌN-pI B.Z|Peڢ7t 3C}tcg34<b(Z=& Utotдg-ufWn"0no_blnrc񎨔!tza`t-kcvl|֓M )/u퓟m _7i8su>Ij Wlԗ{˜{ihH+CbYfjң Ag{!dt:)ץQGM0-.l|!@JL@>c0A ]4{K}:$5G4sm wZ!tK9MK JS3#q#r+ Wa93qb>Pvcu]: @فxk]P$ ^7 ѩq]Y0$rB s Lda\x{+2Di |2 kDOj ohU".N"w=UƞDcx/tdj%3\gkZ[ 71(?;Ɣ+JXMygz)>ʂb` "SssqrKsTF\"v[bլ] 7@8Gj;=/f)(<1V#?uʴ:zd8^@5vvs =}a\\ix)YM'%0ǵ d7묺c}hkd|*Έc`QRA ;鎭 n*rMrEB#3>;84׋z*& uO!|^O ",?Ա]OG( EUvX)r▵ ^W06tti#oD%ϯD,-UGdۤ$&]5Y7Iғ\TkF]SQ#~M[U+ҘWP{~nG-G.{s L9G_iحL -v>H> 69}c3B ةvYeOF( 9^P,Y{W/j9| B K@TE-:y'2yJէVRrX l]Yr0W\vpr#hl=rmէ=j{q@$Y=Vc#kľD;;R5,R?.Do\ Aߴv1{GrTd %&\xwj:g(+&Jp wL%=Fp@1ĩGijKMn.s|Ց'mౡ70e,Z !Cx-#βӗm҉+PTe!ng?m&ƾHigRSK%;[>MtuAn8*#mIpR=+BI>IV۳(H`|?s5a(jDˤ#7 Km {lOx"TL>Q ħ% z7W,RjGI~fl2M}, ?:>m1Ce'D iQI:av t g TX4DΔ\b/3QJ4v2K[ `ό6c+}C{ԨTǗ&Ʀُչ FL=h=,U/g87K)<4Џ_ۜ1^=\xj8"xXڳMgF vN@XG'ysrJI:gØ3 ;V:y5R\|ľaDoM-V'_g k'o@$&Y%TmoPũOK\eE ߯dM')0 EF ڑJSaց "(!Ǣ Z5"2D פ,fgՂ Z_aCa'.GZ/6 Mܺ qtRi&`sJlm(7"I &Nidbź)mnB:.U1o9DSmlL9!Q]AT{EJB>~Z`"4eD@ ۬lbL1/|. 4 ^sm,M!WppiAG~>Hitnm\IG^"~0,Fq٨nyEjJLDQc)YC_kpy=HzfDƴ>`kq ۜTZJ@C2AG^w+4P"9Hp'$AE,qOF%E$MױjK#-E,[")N{L1Z Uv"ٍ]ƶyu2Ic8-{@7L}Wu.k܅VkA $jSdʇ$y?Ͳ米H~@0CBލ2 `߈֢NBHY*oOaCOߵ| ;*IJ`Bb0y] Lsٝ6d:c6AjWN-K.vv}d8 MA0cqX ᨜ԉq2v|:gIT|lѵ)F=ْKz[Ѕd9k!44CDi@ΞEaF`A\E@UMc?l VD!9nh~#K&r^}ÓDgqY?q>SwǗfkǾas|ZR*nvџeH]hL~~,ou̔KʌGGvrzdoӰQn2_6gxM\= "'Vu%6O e% rLh(Hibتs6WՊ7&7ۤNљ,Wa;BK82Hԃ *;!{9)>m9huIJھf:T ql]ruq :+<]^;NRFk,d\_xdԯ VsA'G~ϱ@40 B:E(kΥW0;v!~2'p}!Y)cI#B'R\6VCmAfԘ.Qڽ B=I t%tW?L|@粟pKfON>ħ ndވ q#uېƻһ|+{bqj maυTR{PF XbN0RfvbUa}9}f@=۴ҡ4^,|πd,/oK+0+$ 2ym )hf#͗!IDbrɱEg6)H鮇퀴bg[d۽}X<FB#ubx07lB^;@Jq!qHOKkq~D!w'^'S:nOelTS-p(| P lsr nwA)WKӐqTj`T04a:Up|9O= ϼEmOO%9P(d8/╁qmH@F 7lLK;,81bRal-ˆIȬ<a)Nٟnu*5j[Ǻ#uHRՑCR /fZn2l; [m ށY3 CJgQRlP- MXa; СC…j&齍& 墩3_hX+{1 z||X) ]j3+vI&e)r6:G]#?05p(-̘hc <Jž>yCy|a QToqU+KL`Ms[Y|X6?lkr¡Rc |XfH<_QoU|g:e\ Dzg0/YRrʄ1_ ؁7dݦq6eK@=lQTn]QY?wK8,3j]8҃sc[Oa7WDTąl)CpMXYImYVqYJI%ѱ&RO'Zny(v+w]$}}c&/) AP(#&+% }.|`(Ӄݠs6 -HDUnoBt[G#rP47-GAJJct {jUD [ژF`oQO4 n6V|]_8m;cAѕ`7 /ʸH;15hŷd}IF~j*c-9D~Ka:s,Lax={:I:%*D!jkp/ƢpTk7!tLTdD8y[YL; }ammj&XZR Ͳ>ܾI% !o@ qSc&VB̦0yq-!i=qIoEp,ؓSC`|⨗ܠkP~*;0F4nVZuy[@WҟU%2]f4>~ R3i[APJpVXo'k;Idyu q`d`l{ y9QΖdX_;iϐN#]b q\pd*J*[cGfP4L+/A3RQCT ƫ;  "5 0R!؂ft3\90L^F$]н3d&⡝ؤΟ貯:pGCF\ JL )q** @Z+(p6"SOz};gkNƆTvqKDOO5.qa M5ff"$7ڹ S?J:qƺ JyQ ,cOzH }n?HӟQdh^yգ{e_2rTnŌhxBG~`l")bfa? dx ZAM\UFLQ2RۗVЌTh"ci zxsؤ;d 5c>ժ T;؞|YPKy!o@B6cS9yQAP2ZY.(-|4dzo>C6;c)x)X9x.D;-%b-2\+"J9Dc-! رs uԍ˲BhԘrEk|lUT ]fZ*Ѿ""pdBz%iڥ`*u׫Ӟ7%TмY8nDn-1{00JXju/ xtNwg'L"5=yq[ʪ>i~< ,kK%k`4Ro?/MTYح7|]P) in)WK.R| ]箦*~xk﫻~6b.mf24H99QbU|[NjW- 9)\`sgۉ_Z!}Π-Upr;L{c#?kz05 lVhB)~9KŠUBK&4HѨ:5u} T#()T PÃpN3_̾E\_6O:zAY0V8aƋA觇"*5'^EU@Nf[3bq1ZmuԗTq$8SH&?+]Uh@1Bpv+ 2ZH2tDO8Ct Y.xV+ ,<.m4ҟFnoxXt$uTj:[C=NJnێw;ʂqʚx۩%=>3Y;"OD LA.v\;7[j /Mtչ?mIiT1-4q %Ox_rnfb6EKӔS ǃ1b*U9YAGz0;J~Oy$ݦ/גk<%"'*@g. yXz\EzKU}3V'fk_ VžI5j(4ّAgg_wX[mfCj M$!.\]M]^Sƚ%%B]H,W$IǘU=|sdz61Acs(>YL :͇C(ȇ Ű6 C2jf'EH} ){ D{ZM"2F=n;bJ1#weރPw"Z/ cC| $S ueū^=](bN.B]0yLˎ+%ZzdIJuѝHi ifǻafDm;{3mb1Ik>o4iLsd;^kM,|>AYrō'hg舙Er^GLʬ<'*=b i"FzB.wPstN'Lx-@Gۏ'^[e{86듸'eDWUN,0:GU0d6f 7 |@~{lPS'M[Yitfhb6*R&K\[W+QĨkIWoʒz {U+"K(%3a#h˥ HmY,G7nAץizyKs>KIΟ ◀h6r S^w`Vϣ|zYp)x5Fk7(Bݝj6UF\:Qm!\hE0C!9LrB+Z8+H~[p}+XʆcwY0FDvL^V? {k-!Ps`q)r]ŒӋ$ˇ۷c1"PRܭaFywwD.ܹ֯ g04a|*fk3^noo=LYAè.?&x;s?~[۫\i0˗Xa `vk1J{'ۑWe 7T- :莛QŘqHɭٗ1{LXDȺFTƒ|_I)T3 eRH,]<;v@<֫%h5< I5 b}󙘄Egp˛BY~ߥU:j9pd~Jv8N5{ܮgHK"q1:tDO* T z #r` Ol* 6(xȳ4Jr[6[u!s~#dpK<ժT!B!Gs^k3]9>j?kb/lb!'|{Ov||M`BL0/`R:߿pبvfyz?>8HɆ-$* x+tɮ0x&Xr KPy5 Bqt5mAbX9ߓBw%{J4z!o,[FP*^wYC_#{VN퍵!jS"ٗbxy[a#UҐߒiH6 T7LS`>Ham tO'r1tD^ZeDLiA'M ~I$rJ2gwd/p_SZ*qqK6W= 3Ҭi[MQ$yrU RO_n<;qtu`g+>}(AFGX?,$ʧvV V_jK l:7 P^:{&e*mx%\(klS|1QeVg=| ))Ghl| &:u4׏Hj\6K4gCZ *ﱵߣ2e2\Y~^kyb:ʡO HE)[vTp@wD@$hLɡ9ItȨ__NTR\fD5Lj VR׎Ք5;e찦OrJ z\ ST^yb+.o' uٗp^tl&9rJR'ef3xA c |)t4\L `Tm2#97E >Ƌ&W\֙&f-wɆ׼rCٓ'=BͯB!/N[ Tw5l4qYR*2X[wmk^82P mv>4#`z>?kʿ#jQ$S(^150`_{"NT۴9i( ;| 3K 8g+`ݍ5}NޝDd #XrLо54-X64+4?5bB'p^:, Oq _uDT8ʟien3F_mg*|Gqhج搡yB4^aCDP-t'%$oa EQ0և{+Mc=/ TkEX6;S4{jBv@HjP10q*bC ]b/ޣ6%9$DGĿ=r|4L/,SO%f,9 bV(xN"CW nj^wV}.Lv?k)Ьv{{`(gO,u!vq|F}+9Fl]?KwqrF`xb3{d7ICb0!C ~]µS(㜨uΥo8DXF,I'莙"So7u%Ls*G9ˬ8Ї*2GCDQ*/LCr/B}JrtLv $r]hLA+ۏ:gr=@w"+~Y })HKufzF_臵32KeabV_[H"~z a#e[ơnUgZ-E~`h{ٜ8v_8';I^i( u2njB~L's+5IgLk&PC92'+W+O0]Vja;:( 654SS%ut6!!J>!rRדF P9ǘN0|X9XO6Ehzy=?@u> stream xڌP][B;wwww'Xp'L>y￷Ꜣjպw~!!S0Z[90sL$$IvVY@2a=@``d`㤧0sڎ djHX[Im\LM@y@n@``;@hgjgs0Z2Y LٙVҞΘl`휀%d,)hbjoXA.V@;(;@A\ kԿ ip_z֖6zVV#S @VTŁgePgj2u=Wgo`gj`OkojFa@m2Z9'lj4ݕ?knel_ddjeh CG:%+S[Gl@"?2c] L~'PtK[ `*ijws+30 M @cS+?Abѿ1L]ch ,\eĿ|O(]4F&& QL/Oq+#kǿɂ_NcX 3,/3;_FғGgij ::v@ VTŕ:Z_h-i P_o=0YۛY4 GZ.saߌ"Vֆgg O$F;h .b`dmHYYtEF:? @' ?@'1AL:?Ae@dA젘r(1 PEJ(?A 2z[33F+_zv lg`=Iș{QhbE7M?$K,- : _$@7ݟ:@A5* _1~217mnЁژL fA1AØ+GjbŲҟR[9ZČŴˋT5( i?53:4Y9; W jpi&yHTR(hW:`)26nGzQwEoW ^OZa[㿶=y[حp{!e)Pڜ -}2rv˓m. 2vqu^Q;<9p0ځ\o~ ĐQ`^B\g6uj31X&r[^F2{Sά WѦC1*Fk{|;.j0U(΢D`f{YFϖ]8R*Yy_bͰM|B:G41U O!IԼzfwsS n F5]nÂxp,oc9{n#~$!417j Ѩ |3O, Vk~C.sS1U+e\}G}ue*6fWTX#v,au-P3voFfьVe22gu AÆ~sȜte־Ze28:"zy;p+AQ&1]U4}jyH [uRuCMy/6.2듻pVRGbD%ıc) K?!rEmD|2 R򬍻7PSYr,#hgjYo/ S`=|d7:|qїخ0=;2Qg+5Y?crpn1@.!0=/窄"Cib$CpC=ʼaroQOyzvo*Ƃs3SdaT l1E:iېOJӢG5w1- "S~My3y>kEh23{ m`3" (s sv4܎gp(BhR/xXu2t,,`83 D>ߏ2gkg6rF@4Z-Y?;*|*62>%}6"''s/^Cr.{UW ]1NMv{߉V.[EƞkC$fü?Yy#KBuM NW}b(Q^u͏K7"ˤ-OzTv _gT|C'CqE*dԐ`b4vq㊹A Xj>P晐(ޓe"DWm+j[%3ں`sd0x%ɐ%wxQ3Dd9Y5h.T#|oEhmMRp,JWd*l&t+*~Is0w&IFoUMT%6un};,( 2цEPT/ ј1wuחqs +Ʒ D"*Schٿ- Q)/;}V'%=u (9I+tj:!ɑeiGyE?d/:g9,WV -uҗ[Zl|!6՝z54~P͢tD㧣yC:HZX3/$N. X*BVØ'6uZj*CS4Y 2OsAtSSAc?f9 UvEjGHv R d8R%OZ'@w'xУ0|27lp0zglL nqQFڎ3IzX26z#)ҩD_#lYFU t$CDAW7uG*Udf6pW1dMb_0 $k^rW\7}&u·-~|K>_/$f"Zwy#Bcz (Hc*>"4 У6&=9qWAJ>S n;|!?LlN Kό̞~^bX_qjpƀ1dʅ@u#s s%i3~I]q@BP--8 4H~>E4y |*tXï>gRo0kFj}$~z ڢËAX=5@]ފKaX]ZѴE+].͌%ٹ(H&)*ŋ]Ϋ}B7aej]r;K QkvWõI0ZǝǨ z?IyO@X`h..fؖV"5ۜ3ᢁjۻu sMԗ2(dqW~ ^݄eՌ>=\C~.mS43H¥.}ixNwmƛfAC/@^;+  ԗ uםf]*7WaUK)JS~lJ\)_ןv3~bCC'H/ڃ{bd4=mWQ+"9EJrWaJ?Ge:1Nk2sO2f=.Y6):m(7WC.F8hl3WKsw %dٟpܱ[N[ϭ/p @To/%W|Js(VpK*S:, tqʜOeZB \R%[@ٔՊWi_h?(Y-?'[Xul13hS[VQAu+ U)L9;Y(vr :H"9J CE!x~$l_hJx^5vzŇ,N$ND0)GK;f2),& 4a?1{e1GK+* ?|"{ dezaSXϕ߲=N('}Ip4Knj_0Qe").E"">Ȏ7@0ʢLߔZNYv +/xLA_1]K[n#ߵ9W26jⰒ~!ԝsw)rrw*{1['!!qriѷ'IWrdrjm^.TkW?'ٵ3//c?v&$8U`Af1䩚 xL!Tc^--}ָD*2xT(V7> wv]ޏTw "Z <X/=]L>QR`Vaj<sR&CB˦ 0獳 _/U ur)7/v sbˊ($+,RXȜ}XG7 .pp(KNe$׫_uFvdvFmJR)GNjsІfvJXIL'q,ZA{բ{ {mN^f,__U"w#}CϖڣZX<}s1Q~jڦ'jKÐ *@ۍW=hg"h< ~"%t <*6^\ _ gxu hba|Ӱ%Y;ڭAOLnj̷* _FS$(0H25Pe0坃7[D*XT<|*Y#!T!4 %~{2F`p$qi!nu}͆/蛝雔, .'UD}W}l1~+8q88u۸qaƇQ> u?ض% vDYЮ#@XOa5,88K6(MЫs_KkgY@l/^$ r%|:-Z"]9x 4+ #M Nh+Æ\86s' b ӻSz[.`3vֻ_ԥ:]_CVuƁ%w)|edUz.XpCm^{BBB+ngp'*!xzg]G4浹 i YKb-$1~@8'M \0l4lD*\U2 WsL՗lpJ;016gQ[]?kaLwyd":%㢵f?욖颢pxΦzΩYnekKAU1 3t ,S|(Qd\Ev^ הBn%] 0⢄H~Ԗ(^_q:~opz[S!f;T-u* rGψ^&IH(KeԉkNk>X/n;X[X-Ծcfok[Ty:e1 Ǵ#Cs=3U?ʸӝN֛7s?J(Cϡ1u4ht1Wwqv7c2 ƛ@@0IO]hd0=L6XgA/Cbw+̞B@ d'[߻AtB -Aa)u?`+dc޽dƺKa˲*"sWKO,ՋGVkFxT*=oRKJ2e]L(4DۥTcZIA)9XrΡ' wjF>@©UʳaĜ>jی0oIUG hH j-dvTi/lR*_w)*o}|~N6цtBPD_(w?HqVݘ}LOD(%l +`jqְ(:>NoNvh˜gu^U|Rbً5%#2u5$m633d;B2Gnxڰ%U)%0^ZCIkb%MdK4AI: 3_أ ?O1C o{N [VDbĻӖ政vvH _>P)֋Bx 9zO17::;AX\eY yhym`c^ mTTRYeΈ;U.cx_5<8?tt[ v{Nz{z=k9vҎ29Lb;^*Nvv@,o'%B;M-Ldܕ@fKӯ`+];\_:jd⌦dCsbXj*PMĬfO-kY~zR`?}D qW],suvԥ^CB+BaTI 4_3AXy9;v]϶k jM"tnm<8?)SQʦ9J6{Jkᶚy6MҹNXQ[K_Ȅصkt$}ġ9yZ:nϱu(wf& s=ҏI'L;-7-YX$2KXjg_LOMHde:ˤUE=Z5Ym.!@ea孯V t{j݀/v9b!ɡT"@OZ)w4^[}Ke륅n4zrW3 ?sE"UO֑QB%e_H{NC[z )]MbQEO5m_|yc2;eo ,u`O!HƧW`wl:Hi.1CݝJcg٩kfFUbN4DOԕP})ǕG6B}EIL zk&BWRV& ].E3(-T,CP|cM5ҏ6S-݌ >/I|prǂ*|1GPJNS\>V [ZYgҏH>Ɍ~=c6FNOH$0t\1|]{$>Eme."75ė?f<.'^9+8!Kd|ܯ2­┤AY'c91P5\^n Iȣ']U̡2=2m/bxFGhMz&Ǚ(=_F0)e&.v,٪_is2XK]Oٚ_6ܢMa|F0 8|si:?L^)6䵼L +] nZly7͉FL!XE36qD@3W~]j)*Kw]>sIۦBmZVǢ K5A/kJm6ض,a@\} ,ZFD5] TJӦ>Ibm|gz 5ia~5K~z9 ]kqHCl0''zFmj wMl{s(O|gK(ڎyQúKc9 Owy1k'&7q5Wa^$ҿŅ;dH~ͦrf} aij"wIZmw5!qsDs\z6Y4''?m_Cd79zI*ۊ*Dۻ+BZŋ7WZ6Bp4Z.Y3ۛbZAzl3 LB0 B q^dAz| 孊8[`(9iCcGO{CAƯd:hvP2 ?!?=JTKd`x55: 1{9̃W7U@_Xmu*$!-Q;a KwT>F2Nt1T9R8.Ѿ372Ni6 Q&S0M]rp"Ƥ3ތ#sTه#(QAh_=qkvGzd^nR~vGKj)Z)bʹ ߰-rp8CG\L><ЇvugU(h[Ghѯ3 [T~,-y.5 v, qe:&]tkJ*#.n0id[G璠"kۮ[=hMxwM=>kH#i~6@98+Aq`~ui8l"sw|<0(89{DЪ{{ѼT8j\ "5T|vRQ\sA}Y F M0%R+w n?:#!l)"qsN8ad "Q?`-siI> |Y#V}%4 7yLk/sFz;QܣΞF xl)Mc9?f9)kzIָߞEls`@~=;#om M}hG3M##M빩\ %~$w?9T bdsNOzӿ]i+^D d09Ƕ:s̡$0ie:^=q"eo?'Bg.gxL^4^Q*"yET^Sg0IzQ ڿ2=:;[~h/? ]2utދ.klM6tUYuT#?'n7ͻK ;MY0~et=PB^:?L;a?e#91/ݘIERh1EUz Eq(BGFZbyDRspU mXrOjhj#m@`Q$QG! Ir QRRix"% cykoVzvaj{c+]qe}uACzsϵ ):ݗV ҭވ8FQ6r2 ~d;B2?pTz?ldngW=~I>ڐx_9eKn#$³ϰsz~_zSr S߃eC\,yF.@;O<9u^_yŊNfm\  [N fG'IbJH1&UL6z2OH3˟lߎ~瘟Ut|ct%折jw# ȿ}Oo8iuf-pcxTvSy|tXb\Un!"VM;Rj9W‚FTQi7\S)_5ebxx$Ly8cM.ߌ`o׮cvnReIy^t]>lRp\]\=Mű3G/Kq9p=ƯT/ݢ|Lcd3 {' x޼ȀEUCuS"U >r+L*?j/#:L Y-/mY IiLC1&]K#6Le^)aͩFfgF^IL ֦Eq`s}NF^N07ʲ5t# ݈tCF_+ D<~zZt9x& ˪D4cEeZ'K/т4p/yv*La|sq֖_Q>jۇvIf* 73ֽJ7%??7Ь;Bo>70]#m"AxGeY%21,mzaxxA/+0biG[<O gbuKqUo{bi@9 j5 gcb(l{ᯤ<"O}K0"eWg:n_f*s-M'f%Zr$43/~5@סɵ-`;NV߹7$L@S#?y]=E,}w'C.RdsوrFbiDb.)!6شT09Y7WӋb8Za*rF<wf* 'TK*0B2E{ͦ')ٽ) FVzQ~Dmm%{)KGJ.H |}`4fyʓdAɖe;MG#`aXEB&9 y&d+'O# Mn"H_}o">RҪm/s5Vf's$ ><'%\Rk&E!e6Jǖ=JۢBd7*Q{X7:r+:նjZpJ\㰀BC0;.-ԏ5oh!0R.&Gagn)Ǥ^*XKEѽ7!)D?FHͪT0 2|#Nmbe=2[>'z4U47ܿ_q3(N"(j8,2ܞma4"=L%qL!|잘.4ZWLvѩ,>^cb'~#?4^]^(  Vv-gž |,i\/ڪ ;'H)E5 n 7!UOybuAPVIͩ Îl\gUT`Ϩ ִA>Etnٝ>  UȇZe5Sy+v'$Jy PxO氼Iᐐ82C~!x[EfC6 +5s?𺆮_4[7] ЦDnm6گ0ӓe?5=3쿚wooqzNs%(\SU. dv~o;KxKPѵZ\;:`\"U!\4~~(Jgb$;Y;%]^$IkKjYuB;ZJ"&%sPPbY9xFQ)`0N,zɂȗ>^KLtcFÆ>38{V4!c<7_ ec\u_arХ# Uzva{ɝqOoX$VL1SS+yZ¯P]X>FFł|f2Yh+c:?5u؄N;rp҆{Tܞ_k>0 ]UYGwE`OλNH3Rե~s;9.!5# +4XQV!~f$ܢre =J*n.%H~MԒ5^S,ܮ?l0'ɍFMz^(0|/F|][C CorA7Za.?6498t6Ꮖ 6(:0D;<7}-k~2HMbnd4;w'#>h„6J]\\,; a8z:Fe*{zx?jdg8D$/ 0eO)O@fL#{.cs5.0[2Bm,ܓ7}`́oN-[D(1PHI+h:#WLK]? LNu}t' KufYpu@\Rr 5ϱg"-uNeZkƻVZR'-k#EMw ҂m=&sXN.QIA#ض ZSxoַ~UI!hzx5%|QaKLᰡ` Ol_l x-ژ F%!6J4$ haZf( }T^X Ɇodg]fh-} )ɫD}FR$}LT,<ِ#}rj2{;7]o'ᢾx#8SvZYs=x̙ cɀGF{C_(Qi|mPv뮋%@']߳qhy4{9G)HDE&7});@ʋ 2jx~oskW? ׁ W>{Iv/uat8Ǎ:&TlRGOLPN?8 %u Y;zCL2wzE NQ:#}m.LKyqrM{| xښڵaÿ iVgAGۏ:Ahّ w N0 3塣 @K&A;6Kpm?I*Ua.ٞ7p&(Yۋn0C_9°4M<' "8y^j=QP}oӳ_?ԫģ`#6ك]X}SLO71դg/$d)DPFZCcwM_YLY;M Bַ^mLZ&q?1A)s} z<|]/gBfع1UgVQD9·-d+H]})VѺvo#ضN)N&69CڲP j*r-=ͨ+6.ܰ"Wp 8> iiP40fUo12Py fqhL"!l,dՋ%>bW[~7{)6# 034o+[%P.1Ř01ּ(KbjWD痻c@ <"5/a i%6^塴HcͫaL6ǚJlE Gn>1z]fޗ^' T1 -? Bq0@>xoU {}x)y)/ ڦyǢኗKUوLh}u/5W@S6^q3Q稯d|2wG{B`l v燜\Q^|7x2B4)+rׇ 1f`4:Zt\tAKC|\i 9UL_mX1R4"Lny6mf3fȠ:SU.,Pl!31 06Մy{1Gfp ӦkBWYse9Ik Ӭ:4bRG3HZy|!Mz {i%mЅ&`(g1xk簳aA@wYuKWimaEGs@otjӾ ?9k] I:h!bAps ^~*"hxB\G?e`!T)GŻyL Pu=L;L<M<,bcglKҎNH87h}>fCr~14uMSg9иN#' 1KQ>\N>:daR$w/iHA`(舸I5dCnAF *t&~դq tmOS̎CY袖 W6*#ϑ_~F,Dmqeà@aowVAh7еOv"!e9ĺƛ+7fHlODV.0]Z*Pti%6s<[CR$yZAz?'e?RcC>:(T#`u(V,go69ۻd EN *E %Q])'k_5jkQ0IaD0z% !aXNolxx(NFK4d !Y,[eui'z~6v9H6ڏi4pz]ǔXF"6X2-~3Cuh<F2[WMYN8#+oNC 㮌rN$EOY[I(XY{ԧ͹K8%3 ˪q16[+_7 ;Y=؂Vm0Tz#ҚkU<#ȹ[[H,QI#:"#wK`ҙJdP(F6cѠ8ޞk-}+xCK]Yp&s/#Ŕh4/i " J5<:8MpbOh &>%)~kR-C<%4=.B!h5*@g-4eP:Du'33ap=.OuCʣ sN^.rg& Kg^{eҮ/.6)$JM#ϡ^Zz ٶt--RwlJ[eRRZ;M3PTw@HߏuT C:lN|t÷cra,A;'S)W7ٓ™.DږJ;alñ>b0M&\C&* endstream endobj 910 0 obj << /Length1 1714 /Length2 4342 /Length3 0 /Length 5398 /Filter /FlateDecode >> stream xڍt 8mԾh^*fdI1f~Ä13v*K-gKRJHvPmIٿ7_]s]3sssr!ݨ*]HݝEP;K&# FU<n# 1H] ;W@wLHEA2Z=@=P@y@jf?N͌q{ 53(GODX῭Yjjn%B{ 5RRe"v. EF)mwHtإa? OH?15,ݢ0،jszh.fFtWXdy]fs-0!ByD2Eumh%3fXUe$E͗Z󡨵Kz.&Os)fx;CQQ6B="_zJ}A{: 2 =O%aNLM1 )Sg'j ZvZmJyX3,&K mT2eL(}1Y+Sa.i0 dbDU줴[/kX:+`GTKZi**&>&6kɼH(<9WK1}YD1gBmQ{[O|jHyp&bk#k,It%Sh^d<5|5}bj }ycoFaݙ"NߛI{sGsΆz}ǮKMSdGh8wq8[+(hMp)TQfp]jB(\h)t)R>m\'8O,.a3y k&hNrOQ?&|8*l,c{M7K5'T bcꭡ$m "+mkZčm.+/<]Kbum88-HIѸ15D+uBP@ ^xǘP+t՜ɫKAlց [f OnR)7<דώ?#`D`TN~{fwʈj`~ ޾TU&۹m5ΗQ/l^@uK>yl.Vp }k ߴ!O*xc?q;Cj5<4t"r߈v->0ջe\qyRa#J6?u#kCl\ӌ&2D>`bs# v&v6nMΫnw c 3XskͣZX[3C(V,:hC/毬K7rha>5p#79 |1ċ-\PΒh,lR3ErRmZf7ޡg^JfX]eyUob7./n|cT۬nAF\YIgS{T.mi{5.)Qj VP̨O3hwp}i'hV@wg%1qU{BskסG9YR7֖+9Fܺp4ē}y_;Omdow|NJIaoz:-N~ABOKǐz.gE[)I$hIF4xH[nT߇d_mٮGrC)qʙ: ,B4ۜ!vc\Off<#2&uk%VYFe b՜~^"oG|bUM;} Msٟ4eOpOh;xqfSېoO6cN 0lbx"1O|wUV̭RP+6WoB@~ b'VWu9]/M=;cGٶR~<6h}Q;!:7ײF۷t^Nf.7xtLc{7i 1鵪/ ,\7j/j9=J5%ge(~n|{˃o?O+\ T _w_WДk\[6:-xL-uc.@w蛠%QnBLRiJO.:8>>trبa*]˻_gy͋Wd :VUR)?DF9.q]jt7hCig:y Te!>'hȊ5F+Z|.?۸S5Խ6&b7jf> stream xڍt 8mHiRhyl ʾز3<ar`a hMfA6 ZD-O2t A,{(jfaF0P!B]hr!f hm7!~|@C;/j!sh,0* 0DV O` Dޠ#~eA_> <|a|yQ0-}~Q.V{ K0B0M8mā(+2ZCޠׯc5T?s1_'qh2 bO Y7 @mѭ$:D AK6×?_T7pie  k!#ĶB@!. c첰b4lhM41h|" 6_.6htE E2p@0dQ 38]8@e LHO@~!-T1 b7Pop|A~lO?'"4e.W6b:jȁ,~&΢#/>Q ] ~_yT2c`ͷmX5&NL11`vR+'q߃}CoK=_ʈKwW S4uH:Ķ ;S|Go:5O=Qݠ4냥͒++?!EWnܱCKT0q֭o[+'چSZ|hz{^!ΐqMT]@D]s*SQGU٭)[4EF_w,1_*>Xڙv"37~KZe*Ju}=ssF*ʵ ^[2!yǭ/OnnȬ A*Мn[ym움 Wt K "dL#*zvbQ=IFX~r7}&dYp`o\|~N4T\>ؑ:㍏.޽i&COLW{Tץ NFH(G߶\ԖJ_ΠʃRlf.~|Y&raxmc_ZVt Gx@{m1=cyCЗox߇ȸׇ9X9kۚĹRFe{Xdozʡo.7Gw2 zY&a=+rzeiK .?1i]3u.,*"] AܣPUEGVȓ\1ԯwϗ|<~"K> 3~?דwWkzn$pH{.lE{1eS%-SsG}/^p\O'W }0|鄗_̓n$߾\(Iy2\cK u^y4 Cq=ג 75^k3]T:3_2 Oo n1E6 lնl4u%f{ ̅v=玿(% x6.#nm0V5EayMXɔgR:,e-"2.LY2]ɸβIy;+I4ԿoV%E~=W1dIblqKfc$Ozz% 5H"]i 4SqnOZf !͞=f%8KXA7&|M \,rmW_r5hv'KH{ ~S#a6Ĭ;r/b{8>Om.뢝+eL'mxl}1nw_IKc'V=.8LO?[L7|ulN1QnkHeJ,T䳺 ?7N-vDMDIz?2~;\<7p6$zyUDߡѠ͖D鱧.9>;hK״~{)^=3D6n `i7~lE`k:r^[Z dmL|gEvr(k¸NJxp\}1!:o6]re.3P?I9i486~TTK$  rj}NqOjr)I95REp>PW[q8YԭR^j_$Z~VԛN@s#Rej3\x+zJ^T% bRZz'E֧M^(ٸsm3βve [~_VL˰}VuJ '3PvPYnh},S+ؐe0a3vSl@:ٸn&XMW {(1`“eGk5iuW ~[a@|`ehkxj#l]N6G>\)Bhu%ݞ**=(t͟V;`-~L酴 .1V$($.YV[-C,'-\Ŏ4q\O@6FEJв4T؛ ^GD\CJl䎟I6i<*fu6 5G_wv)ǾsW Ϋ ɥ=;}>D5wШG߶:zR↯7:-W̊a^X 8"Wi>lZV䶗ۖAq zS1E+bXsv7{^?i{XF[ӳchq9VNz-G^".S`;g=O?vy}a^jk)}fYronvi9e˳u9)Uk.5-;ML%M=Т[l3;VW[-Kpڮ 9'm|;3Τd02-5=1-g/`W}@-;NC¼E2j; QLSmnE"<<)ݎ/=pA FaxS&^l`#oGsr9>XxXWcOQt{k=llSL Ɏ1n8z~ݮ\ uڿdi 95A޺lwkKm-:bDB^r w9/h} ʁI.Bc^f>$ga"胬 }ud.PDgt#;O?Dw1..R|tӑu<1=om(%/#8t5%nb r[> ./S`|.i\Fl2Ystk6uM 53soTNfDiێw~dFfޖ1 endstream endobj 914 0 obj << /Length1 721 /Length2 4672 /Length3 0 /Length 5264 /Filter /FlateDecode >> stream xmrg4ju :ѣ D%.E13 3ѣN"D'щ5DF^7]Zz>쳟˥A!0HDT`n `P<V2`pb 2^ `@D!c ȹ*➋`+\7"=`tBTʹ @F`N6NH@ CqA- p'0h8oM8?Ю,Z-A t4x5â>_//u'!p$ A!dM m<?wt-w p f?wrCQ t1p 0YP_z9 $N醀#VB- ]O?ڏcN;z?<50 ⯽bP? \""X7Oa#i|žc4׻9$ #d |r o Y {igKX /(lok} (V{"B-XOΞuZjuӘ'OM{$ަ,}'OίmE3;1|KyzI!TB3`eda0$3;6/3?=KqrytnEGu2rHtn%MbԈpsڧ BJ ;`e`FX(8WD"Q/]*\ұaRƨoV@~CM…bԙe3'3'>]}TJT!{QyŦr؞{ } 2%.Evpz#J, Jc9u}-*;\pf4ѫ&wϯ,3o;!@ LGl** 7$WWpYQ5Ϛ5# o9-ͰEq?sHf =R=]q'b."_{88  8ixxs=e26R>-MԜy$l$Hr*ReK\w:(_``M:ǦBԲmhR@NP >ѝU%' 13atLjgt4O ")<u@VoYA38IG 4_?)o~[u.ᅬpLw$,ttQ[ \6Qb})Ŏ72K@w>T8~5,N乁c-Tlv#$I2<-fJLZ摳lru^Pd<=.m1MMf+km(=[3/71,(m}!\.·ڔe=D{ωM^ E2 !w/3+H6= M4A'Z,Dƞi*s\F. ONޜՍ 6 ۹,W!#%Xfo߷90 )!Us*@>i}ޟ|Gv-z C-d9Du1N,tA po%ǞMݩvIeʾ&Ĵ6flVk;;v^-YlM.#&l^D3 KYOhlu9ZM:IQtf\jwwŶLaG|-;+qm@٧ N4 8$ZTcg3-KVn*?CmY;S^cyס8'"R\R.E(/^,j&Ny[뙧}x0Q;>vdJKo7f>!ʏs5hr\TesnX͈S)lY,W%!%?b:I9;D>b60*/꘤p&8y\/+5D 8ǒܚsϩRXKIHdݢxN m& V}ih6{͎Q z|yń'<3reh;Xy3E ="A`.jbZ_+2f%vI^ف7Ҥz3q|Po_-g畈 eWGߚ&PJ/$/32pDqDwu&:`O#4) =lp7X\~\m+r-]hQ"eG>xTh "#Ud5i\*!' xAE@}oU4gnş5Y,tl:/IZo8io'"v){gdXߟ;ٺE+u7{</&Uiѝ*v|0l (kN1S#k>w?{Y9Ay|'?8*Yf dW(jP ]~:e!=0iټ౱]PEf-|ѝ6%~R)'ryhz`v,z5bphѵ1[$1ʪ{Jb~Կ s;_<9|9t*ʝX|Jy~>M۩^L(ݡ ֣KHڪzԴDjt³ޘy&m=t9+r[lS3΄QDgy+3f^x_hiޠdd357hm Oڻ;=F!}7;\+9n"jqK5T灁?"(l ,A]Dn,,fhaP)Feɻ3o52i@{;H8dg%lo VUÜ{#gZ#K 2f}{UZIݴzEW1M;7I^_w󱛍^1cŐ=!m endstream endobj 916 0 obj << /Length1 737 /Length2 966 /Length3 0 /Length 1535 /Filter /FlateDecode >> stream xmR PSWHD0´*"IJ(T6! ;T0$&O*". es%JŢl"D@& u!әΛyswz2#Iqb0]Aز0>d&ښK@!☷@k!XdLK"Pvy#  T *T,*KP2U! Ġ2A|y  +E2T Q1p ;@c:I! ARb\|eA|usCr#T6+r̒ ,ј5%Ä*&JPqX7_,l=(FC!Q2YP)IHO a$L&ĨNFKrTE2|I!% P2:00X&B$%)IB T)?)} #8&K+ȟV&lI}W=wW&5^\4Wf-KQmˮΩVe[+3w$J)=d@j)܀7?˦:lǚzIzs%e6%nRuFܻǖWE~Qq}ď9eh8št{$ꎿ}'\i~Vx]p(;Cx148nH -5U4pm1t:i%Ė.+w5nnm>m:]d_&5;R@Wt_lj^il~ >i[|V .Fْ\I0M;үȆns_l`WhA`,mk[ෙ V,<^uZ>8\秪^_r;9J"'|S/v6AJv{A/rlqq2MXFϓK6>CwyMB+597f]fiÆZޫ{V4jA-8w+Ny׃ߍo`z=J)%CF+M|_/+LgOU>&MXD㦯$eE3;qM3ٚQq>\Y?|dd>18_b} endstream endobj 801 0 obj << /Type /ObjStm /N 100 /First 916 /Length 4606 /Filter /FlateDecode >> stream x\Ys9~ׯvL 1dh~`SmYL2AT2A( bjbN+74I&&XU5yw7bDNҺϦmQ%[FjNZIs#=%B%M-)ĝDt0c0qe|cL눳T xƗҨ5UrcR"Ni4U21t:Ce 8GDKĖDQHvS$)\ng=8#'hJ"$[J!!U @,H s3WL^EIW|j|4<DRà ;DGB SpT ީ*2BKl[ KY+7X$A( i| ޤ,**"ODęblu\H6&mXL"CԴ0Q;2,O@'.ŧ$u|b6^u?~MGѬy8}_\ΚG磏s;Gٸ4m Q7O_>Qe0N.ߦ#!pt14l<ڋlpt6>?,?_^|L/.b;f_чutA֭6Lga]kM fJDj>($?!Ӻdkt!ѓ^tw^=# ;Qpufq LR%/$yQ&׆$\F&"Z2|?.:t/Mk,imиxGer]N.:y*%YŽ ZW$K'Zil%LTvUncն-ݳl۲,Nʅ$rJtZg g f>c wEqje{UN^U"`fEUԬxUuj%$Bޒq]ʕMN H[JZ1(k?)HR+YH4 _ +εfrH+\Il2VS9R5v߄琉^(h"K:qEGM)|rxdVNe9K=?GgӕEPpY^&g6Or]I-[JRɥ4N{/k{J+wxy96Y̜yŸKu]BS*|;Me-VBhϯd|ր|~aJk"օ6HʣK=)>$392ng-E8zyi_lXWel͓izͭ(WV$u.?\p4N_瓩|}!_>7ZQӬqB=yh.j74fZwO;gzLa4{l>8]|:5x>N Mf;M? y3'Oޝ zӃ=^~i_z O=s~ ^>Qɫo_1>-&xmޚ^ 6a?ֲz w>N-Ы|Kه܏}+=zw1cXcsJC_w2݊3<卡U =o孧^zQKg"d{՟_t|| =B7qݘ{m=o{zO|UEu?C?Cn[~~[__=>'/NN$ۻe8N9T^C%zs-oHܓlONy}.a&#fS߾Vzxo5{|Xwzo?bsޓq`p7+zӷ/z_丕wF[_|ャ;{"5wU+/Q} ]6ǾϟBOnNA6XUk5Up .Gs6˟^vy~>/Vw̾&'-7=ly0m`X/֯Yz:}n?Sٓ}vVWWgb&3N endstream endobj 946 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref)/Producer(pdfTeX-1.40.19)/Keywords() /CreationDate (D:20191115001117+01'00') /ModDate (D:20191115001117+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) kpathsea version 6.3.1/dev) >> endobj 918 0 obj << /Type /ObjStm /N 84 /First 720 /Length 2420 /Filter /FlateDecode >> stream xڝZ]s9}GSLqU55U`q [<0ab6s%u[ݖO-_]sttDЈF:HT2Oh|c5V>0N6FJFJD2܅p+BV[DaՍhx  OztjBCW,ztalEÑdqF)I JYF+-GR-p3|P-1K8 8[ļD  ga!Af$o1Ic@Ri4I@.d6 k\CsҌ 9NybMT!GR`x6N(&cƬJs1o9 aq%3  R~k+=;Ң1D(H8 W"sr.xH/t}]Ȥo!o ^~}rcN Ϛgx:d?fx_'Rr}X"}\Ni!~Y9}O'貏NthuoO#!:(/N.]Gt-s/w>`t[[SQl{c:{9L6qswr>xrؾ. zvy}S*r'^?|Ue4؂!L`RZto86ד㷌D^J>_ꤊop˗g ~HtVP^?Gx_Ae1ys;G9J“ږ t9s+8p!rTBq_4:'4&J;D ! bR2e4'1L*6 2` K)9fƲ!w86|;FJ^tҩKRz&>Qۇva[c蒨mgC/&$&/Z~pyqz}#j夵 zcm~bhrz/6G y1aUvH*Xتj8JL ӖزDf:2tY0ʌ>Z>u0D*:PGRSIu~"tꨲҩKՑ*+]wkC,-[T*L{Wucx]9r6gޣ\馷 DF+[upR*I(Qs`8ÕvG)QRbg޾)/T92JȎ&}5{؃''r}қ,z͖_Gdk|te9vᏟq'6*s+ǾU:g|qLϐqg4YO-P;-y֤˰H6= dZCX|NWl_G6:k1η)A1]ٓD ^%wQFl~ G:/y RR yB'kCPiUJQ;:1ްDЂW_KCkJ^X[Јc{5m N;hA'J4qʔ㨇 u-:Η QTEj I񪔔4rbSpYԺJA[:-.\\;J\|jK?bAiwFgl-nE.q~xpyQk *I9A(Q b^xndߖVi""+vpv&*-mm!}3QLY Wsڞf`*vwbL%27B/JZ(Rz{g'ߦtS$Xgnju\u}'n2_d3Nȅ]}wL( ̮N 6-N;&61JutG ;/KxWom)5_BFHogFғvՕ*)r:ܩz&Q>MChވOf+ Tx~[|қ/u*.@z5|~}v(raֻ endstream endobj 947 0 obj << /Type /XRef /Index [0 948] /Size 948 /W [1 3 1] /Root 945 0 R /Info 946 0 R /ID [<7292165AED347195D8B07F1FCA89E78B> <7292165AED347195D8B07F1FCA89E78B>] /Length 2364 /Filter /FlateDecode >> stream x%YlUwھc ؀/^bmlc 6Ui+<4itQEPm(Rь4 E-R.IVm*R6ꖞߟ}p̝qEчqőEߤD~qeՒ"̀,r sar@EPNn P]9r K\m Br: "r :kbr- kre䶓JXApXIn'U`5]k\X@0䶐L֑"Dl 7Mna#Gq:r UDn=95Ѡ@j!l%XGh'wMn"rZ鵴x;-'P rIMnjЛI#9MC088c'8NIpLi0΂Ypwb,s<z%gnQJf}57!(D[%5aPo|o@Te,jQc}9ֵ),bA.c}B!Fx[@3CoƯ,g=2x,E}^=Fo*al% y M;ߖq|͢/wWl}J![R4s<>{v)Ş}wYtꋎ=:zYt5AQ(QTh* RbsK(Ue5 a>(D`EnW'={,XcbمK)2|T5.WٸϓSd,H:gS|5/RP0tBEP*Hkjh3k6Zn `SbZfv=U$̚z+vU`ΦOf?6M lf~? w6 Yl\e?+< A{^췸K5>ApG@M["788fq O0%* !0 0 ,8rN^O]`X/hNZ<[5֯8NIpLi/fY0 ΁9k!}Ȳ/jd X2 r -~;Ue2Q7>T[+ W0+JPX 4np(,ϩ~1"`D#"UJA h烀A,tXoͧWP:, ubC'`'01tnL~1c_O)."ŷ4c "C@€a?enP;$ H0^59.`]ua2Wyuje^x8)`S[,ȁ<g-U (P*BbW0)zgT,.j澖R P Jʲ?O{N=V΍*\,@eo}O6}s kZz5m,3JP:5Zxm@M@@G-@VrKԭ pJk@ν^e$زpkv[a}{}u;j* {]!p:YY8 , 'X08F('88iekdĤ5(R `?~8|u.מV*.0a+yP|ڡC +8phpUZ~ծjW:/h+-߻J!r9lra&Wέ-t7Rl3/(5W^9rx,tZշtZg/)EQoRN rRE1=5EGr(PB{)}Yu;ɝG*P; r!3C6 XwwrK@?coC`"-̡C378'j-!AJ鱶𻿧xjd& "PŸS;W ᮖTJPUVDV@LjXB!7}?YIn}'sj̕;npM6Vޮ `#jz+>zl͠4YUpwN',' wd7݀D7M d>ppxO3[zV7Ҁ~YcVޓQig* Y]* [[**XEvV1|Q1xMNXō4nt*M <)8i]&U*Ңo4e'UΧUҨ.u@wV7yݏjg晫yj^}ĺfuџt8ϘF>Yikrx endstream endobj startxref 875672 %%EOF effects/inst/doc/predictor-effects-gallery.Rnw0000644000176200001440000024406013406543731021164 0ustar liggesusers%\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Predictor Effects Graphics Gallery} %% vignette index specifications need to be *after* \documentclass{} %%\VignetteEngine{knitr::knitr} %%\VignetteIndexEntry{Effects Gallery} %%\VignettePackage{effects} \documentclass[10pt]{article} \usepackage[left=1.25in, right=1.25in, top=1in, bottom=1in]{geometry} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage[american]{babel} \newcommand{\R}{{\sf R}} \usepackage{url} \usepackage{hyperref} \usepackage{xcolor} \hypersetup{ colorlinks, linkcolor={red!50!black}, citecolor={blue!50!black}, urlcolor={blue!80!black} } \usepackage{alltt} \usepackage{fancyvrb} \usepackage{natbib} \usepackage{amsmath} \VerbatimFootnotes \bibliographystyle{chicago} \newcommand{\x}{\mathbf{x}} \newcommand{\code}[1]{\normalfont\texttt{\hyphenchar\font45\relax #1}} \newcommand{\lcode}[1]{\mbox{$\log($}\normalfont\texttt{\hyphenchar\font45\relax #1}\mbox{$)$}} \newcommand{\E}{\mathrm{E}} \newcommand{\link}[1]{#1} \newcommand{\tild}{\symbol{126}} \newcommand{\Rtilde}{\,\raisebox{-.5ex}{\code{\tild{}}}\,} \newcommand{\captilde}{\mbox{\protect\Rtilde}} % use in figure captions. \newcommand{\Rmod}[2]{\code{#1 \raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmoda}[2]{\code{#1} &\code{\raisebox{-.5ex}{\tild{}} #2}} \newcommand{\Rmodb}[2]{\code{#1 &\raisebox{-.5ex}{\tild{}}& #2}} \newcommand{\aab}[2]{\code{#1}\mbox{$*$}\code{#2}} \newcommand{\acb}[2]{\code{#1}\mbox{$:$}\code{#2}} \newcommand{\C}{\mathbf{C}} \newcommand{\betahat}{\widehat{\beta}} \newcommand{\bbetahat}{\widehat{\boldsymbol{\beta}}} \newcommand{\bbeta}{\boldsymbol{\beta}} \newcommand{\xbf}{\x_{\backslash{}f}} \newcommand{\hbf}{h_{\backslash{}f}} \newcommand{\xtb}{\x_{2\backslash{}f}} \newcommand{\xbfi}{\x_{\backslash{}f,i}} \newcommand{\inter}[2]{\mbox{$#1$:$#2$}} \newcommand{\cross}[2]{\mbox{$#1$\code{*}$#2$}} \newcommand{\N}{\mathrm{N}} \newcommand{\fn}[1]{\texttt{#1()}} \newcommand{\ar}{\texttt} \newcommand{\pkg}[1]{\textbf{#1}} \newcommand{\proglang}[1]{\textsf{#1}} \newcommand{\yx}{\widehat{y}(\x)} \newcommand{\lvn}[1]{\mbox{$\log(\mbox{\texttt{#1}})$}} \newcommand{\vn}[1]{\mbox{\texttt{#1}}} \newcommand{\level}[1]{\texttt{"#1"}} \newcommand{\class}[1]{\texttt{"#1"}} \begin{document} \title{Predictor Effects Graphics Gallery} \author{John Fox and Sanford Weisberg} \date{2018-12-19} \maketitle \tableofcontents \begin{abstract} Predictor effect displays visualize the response surface of complex regression models by averaging and conditioning, producing a sequence of 2D line graphs, one graph or set of graphs for each predictor in the regression problem \citep{fw19, fw19b}. In this vignette, we give examples of effect plots produced by the \pkg{effects} package, and in the process systematically illustrate the optional arguments to functions in the package, which can be used to customize predictor effect plots. \end{abstract} \centerline{\includegraphics[width=1.25in]{../inst/doc/effects-hex.pdf}} <>= library("knitr") opts_chunk$set(fig.width=5,fig.height=5,#tidy=TRUE, out.width="0.8\\textwidth",echo=TRUE) #options(prompt=" ") options(continue="+ ", prompt="R> ", width=70) options(show.signif.stars=FALSE, scipen=3) @ <>= library(car) library(effects) render_sweave() options(width=80, digits=5, str=list(strict.width="cut")) strOptions(strict.width="cut") @ \section{Introduction}\label{sec:intro} Predictor effect plots \citep{fw19b} provide graphical summaries for fitted regression models with linear predictors, including linear models, generalized linear models, linear and generalized linear mixed models, and many others. These graphs are an alternative to tables of fitted coefficients, which can be much harder to interpret than effect plots. Predictor effect plots are implemented in \R{} in the \pkg{effects} package, documented in \citet{fw19}. This vignette provides many examples of variations on the graphical displays that can be obtained with the \pkg{effects} package. Many of the details, and more complete descriptions of the data sets used as examples, are provided in the references cited at the end of the vignette. \subsection{Effects and Predictor Effect Plots}\label{sec:intro2} We begin with an example of a multiple linear regression, using the \code{Prestige} data set in the \pkg{carData} package: <<>>= library("car") # also loads the carData package Prestige$type <- factor(Prestige$type, levels=c("bc", "wc", "prof")) lm1 <- lm(prestige ~ education + poly(women, 2) + log(income)*type, data=Prestige) @ The data, collected circa 1970, pertain to 102 Canadian occupations. The model \code{lm1} is a linear model with response \vn{prestige}, continuous predictors \vn{income}, \vn{education}, and \vn{women}, and the factor predictor \vn{type}, which has three levels. Before fitting the model, we reorder the levels of \vn{type} as \level{bc} (blue-collar), \level{wc} (white-collar), and \level{prof} (professional and managerial). The predictor \vn{education} represents itself in the linear model, and so it is both a predictor and a \emph{regressor}, as defined in \citet[Sec.~4.1]{fw19}. The predictor \vn{income} is represented by the regressor \lcode{income}. The variable \vn{women}, a percentage between 0 and 100, is represented by regressors that define a polynomial of degree 2 using \fn{poly}'s default orthogonal polynomials. The variable \vn{type} is a factor with three levels, so it is represented by two dummy regressors defined by the default contrast-generating function in \R{}, \fn{contr.treatment}. Finally, the formula includes an interaction between \vn{income} and \vn{type}, defined by multiplying the regressor for \vn{income} (\lcode{income}) by each of the regressors that represent \vn{type}. The usual numeric summary of the fit of \code{lm1} is a table of estimated coefficients, which we obtain via the \fn{S} function in the \pkg{car} package that is similar to, but somewhat more flexible than, the standard \R{} \fn{summary} function: <<>>= S(lm1) @ \begin{itemize} \item Interpretation of the regression coefficients is straightforward only for the predictor \vn{education}, where an increase of one year of \vn{education}, holding other predictors fixed, corresponds to an estimated expected increase in the response of \Sexpr{round(coef(lm1)[2], 3)} units. \item Even ignoring the interaction, the log transformation complicates the interpretation of the effect of \vn{income}. \item The predictor \vn{women} is represented by two regressors, so the effect of \vn{women} requires examining two coefficient estimates that are interpretable only by those knowledgeable about polynomial regression analysis. Even if raw rather than orthogonal polynomial regressors were used, via \code{poly(women, 2, raw=TRUE)} in place of \code{poly(women, 2)}, interpretation of the effect of \vn{women} is complicated. \item Understanding the coefficients for the main effect of \vn{type} depends on the contrasts used to define the effect. The contrasts can be changed by the user, and the default contrasts in \R{} are different from the default contrasts used by \proglang{SAS} or other programs, so the coefficients cannot be reliably interpreted without information not present in the regression summary. \item Finally, the interaction further complicates the interpretation of the effect of either \vn{income} or \vn{type}, because the interaction coefficients need to be interpreted jointly with the main effect coefficients. \end{itemize} \noindent Summarization of the effects of predictors using tables of coefficient estimates is often incomplete. Effects, and particularly plots of effects, can in many instances reveal the relationship of the response to the predictors more clearly. This conclusion is especially true for models with linear predictors that include interactions and multiple-coefficient terms such as regression splines and polynomials, as illustrated in this vignette. A predictor effect plot summarizes the role of a selected \emph{focal} predictor in a fitted regression model. The \fn{predictorEffect} function is used to compute the appropriate summary of the regression, and then the \fn{plot} function may be used to graph the resulting object, as in the following example: <>= library("effects") e1.lm1 <- predictorEffect("education", lm1) plot(e1.lm1) @ \centerline{\includegraphics[width=4in]{figure/fig11-1.pdf}} \noindent This graph visualizes the partial slope for \vn{education}, that for each year increase in \vn{education}, the fitted \vn{prestige} increases by \Sexpr{round(coef(lm1)[2], 3)} points, when the other predictors are held fixed. The intercept of the line, which is outside the range of \vn{education} on the graph, affects only the height of the line, and is determined by the choices made for averaging over the fixed predictors, but for any choice of averaging method, the slope of the line would be the same. The shaded area is a pointwise confidence band for the fitted values, based on standard errors computed from the covariance matrix of the fitted regression coefficients. The rug plot at the bottom of the graph shows the location of the \vn{education} values. The information that is needed to draw the plot is computed by the \fn{predictorEffect} function. The minimal arguments for \fn{predictorEffect} are the quoted name of a predictor in the model followed by the fitted model object. The essential purpose of this function is to compute fitted values from the model with \vn{education} varying and all other predictors fixed at typical values \citep[Sec.~4.3]{fw19}. The command below displays the values of the regressors for which fitted values are computed, including a column of 1s for the intercept: <<>>= brief(e1.lm1$model.matrix) @ The focal predictor \vn{education} was evaluated by default at 50 points covering the observed range of values of \vn{education}. We use the \fn{brief} function in the \pkg{car} package to show only a few of the 50 rows of the matrix. For each value of \vn{education} the remaining regressors have the same fixed values for each fitted value. The fixed value for \lvn{income} is the logarithm of the sample mean \vn{income}, the fixed values for the regressors for \vn{women} are computed at the mean of \vn{women} in the data, and the fixed values for the regressors for \vn{type} effectively take a weighted average of the fitted values at the three levels of \vn{type}, with weights proportional to the number of cases in each level of the factor. Differences in the fitted values are due to \vn{education} alone because all the other predictors, and their corresponding regressors, are fixed. Thus the output gives the partial effect of \vn{education} with all other predictors fixed. The computed fitted values can be viewed by printing the \class{eff} object returned by \fn{predictorEffect}, by summarizing the object, or by converting it to a data frame. To make the printouts more compact, we recompute the predictor effect of \vn{education} are fewer values of the focal predictor by specifying the \code{focal.levels} argument (see Section~\ref{sec-focal.levels-xlevels}): <<>>= e1a.lm1 <- predictorEffect("education", lm1, focal.levels=5) e1a.lm1 summary(e1a.lm1) as.data.frame(e1a.lm1) @ The values in the column \vn{education} are the values the focal predictor. The remaining columns are the fitted values, their standard errors, and lower and upper end points of 95\% confidence intervals for the fitted values. The \emph{predictor effect plot} is simply a graph of the fitted values on the vertical axis versus the focal predictor on the horizontal axis. For a continuous focal predictor such as \vn{education}, a line, in this case, a straight line, is drawn connecting the fitted values. We turn next to the predictor effect plot for \vn{income}. According to the regression model, the effect of \vn{income} may depend on \vn{type} due to the interaction between the two predictors, so simply averaging over \vn{type} would be misleading. Rather, we should allow both \vn{income} and \vn{type} to vary, fixing the other predictors at their means or other typical values. By default, this computation would require evaluating the model at $50 \times 3 = 150$ combinations of the predictors, but to save space we will only evaluate \vn{income} at five values, again using the \ar{focal.levels} argument, thus computing only $5 \times 3 = 15$ fitted values: <<>>= e2.lm1 <- predictorEffect("income", lm1, focal.levels=5) as.data.frame(e2.lm1) @ To draw the predictor effects plot we recalculate the fitted values using the default \code{focal.levels=50} to get more accurately plotted regression curves: <>= plot(predictorEffect("income", lm1), lines=list(multiline=TRUE)) @ Here we use both the \fn{predictorEffect} and \fn{plot} functions in the same command. \centerline{\includegraphics[width=4in]{figure/fig12-1.pdf}} \noindent The focal predictor \vn{income} is displayed on the horizontal axis. There is a separate line shown for the fitted values at each level of \vn{type}. The lines are curved rather than straight because \vn{income} appears in the model in log-scale but is displayed in the predictor effect plot in arithmetic (i.e., dollar) scale. The lines in the graph are not parallel because of the interaction between \lvn{income} and \vn{type}. For $\vn{type} = \level{prof}$, the fitted values of \vn{prestige} are relatively high for lower values of \vn{income}, and are relatively less affected by increasing values of \vn{income}. The predictor effect plot for \vn{type} uses essentially the same fitted values as the plot for \vn{income}, but we now get five lines, one for each of the five (not 50) values of \vn{income} selected by the \fn{predictorEffect} function in this context: <>= plot(predictorEffect("type", lm1), lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=4in]{figure/fig13-1.pdf}} \noindent Because the horizontal axis is now a factor, the fitted values are displayed explicitly as points, and the lines that join the points are merely a visual aid representing \emph{profiles} of fitted values. Fitted \vn{prestige} increases with \vn{income} for all levels of \vn{type}, but, as we found before, when $\vn{type}=\level{prof}$, fitted \vn{prestige} is relatively high for lower \vn{income}. These initial examples use only default arguments for \fn{predictorEffect} and \fn{plot}, apart from the \code{multiline} argument to \fn{plot} to put all the fitted lines in the same graph. We explain how to customize predictor effect plots in subsequent sections of this vignette. \subsection{General Outline for Constructing Predictor Effect Plots} Using the \pkg{effects} package to draw plots usually entails the following steps: \begin{enumerate} \item Fit a regression model with a linear predictor. The package supports models created by \fn{lm}, \fn{glm}, \fn{lmer} and \fn{glmer} in the \pkg{lme4} package, \fn{lme} in the \pkg{nlme} package, and many other regression-modeling functions (see \code{?Effect}). \item The regression model created in the first step is then used as input to either \fn{predictorEffect}, to get the effects for one predictor, or \vn{predictorEffects}, to get effects for one or more predictors. These functions do the averaging needed to get fitted values that will ultimately be plotted. There are many arguments for customizing the computation of the effects. The two predictor effect functions call the more basic \fn{Effect} function, and almost all of the material in this vignette applies to \fn{Effect} as well. \item Use the generic \fn{plot} function to draw a graph or graphs based on the object created in Step 2. \end{enumerate} \subsection{How \fn{predictorEffect} Chooses Conditioning Predictors}\label{sec:eff} Suppose that you select a \emph{focal predictor} for which you want to draw a predictor effect plot. The \fn{predictorEffect} function divides the predictors in a model formula into three groups: \begin{enumerate} \item The focal predictor. \item The \emph{conditioning group}, consisting of all predictors with at least one interaction in common with the focal predictor. \item The \emph{fixed group}, consisting of all other predictors, that is, those with no interactions in common with the focal predictor. \end{enumerate} \noindent For simplicity, let's assume for the moment that all of the fixed predictors are numeric. The predictors in the fixed group are all evaluated at typical values, usually their means, effectively averaging out the influence of these predictors on the fitted value. Fitted values are computed for all combinations of levels of the focal predictor and the predictors in the conditioning group, with each numeric predictor in the conditioning group replaced by a few discrete values spanning the range of the predictor, for example, replacing years of \vn{education} by a discrete variable with the values 8, 12, and 16 years. Suppose that we fit a model with \R{} formula \begin{equation} \Rmod{y}{x1 + x2 + x3 + x4 + x2:x3 + x2:x4}\label{eq1} \end{equation} or, equivalently, \begin{equation*} \Rmod{y}{x1 + x2*x3 + x2*x4} \end{equation*} There are four predictor effect plots for this model, one for each predictor selected in turn as the focal predictor: \begin{center} \begin{tabular}{ccc}\hline Focal & Conditioning & Fixed\\ Predictor & Group & Group\\ \hline \vn{x1} & none& \vn{x2}, \vn{x3}, \vn{x4} \\ \vn{x2} & \vn{x3}, \vn{x4} & \vn{x1} \\ \vn{x3} & \vn{x2} & \vn{x1}, \vn{x4} \\ \vn{x4} & \vn{x2}& \vn{x1} \vn{x3} \\ \hline \end{tabular} \end{center} \noindent The predictor \vn{x1} does not interact with any of the other predictors, so its conditioning set is empty and all the remaining predictors are averaged over; \vn{x2} interacts with both \vn{x3} and \vn{x4}; \vn{x3} interacts only with \vn{x2}; and \vn{x4} interacts with \code{x2}. \subsection{The \fn{Effect} Function}\label{sec:Effect} Until recently, the primary function in \pkg{effects} for computing and displaying effects was the \fn{Effect} function.\footnote{The \pkg{effects} package also includes the older \fn{allEffects} function, which computes effects for each high-order term in a model with a linear predictor. As we explain in \citet{fw19b}, we prefer predictor effects to high-order term effects, and so, although its use is similar to \fn{predictorEffects}, we won't describe \fn{allEffects} in this vignette. There is also an older \fn{effect} function (with a lowercase ``\code{e}''), which is a less flexible version of \fn{Effect}, and which calls \fn{Effect} to perform computations; \fn{effect} is retained only for backwards comparability.} Whereas the \fn{predictorEffect} function automatically determines the conditioning group and the fixed group of predictors, the \fn{Effect} function puts that burden on the user. The \fn{Effect} function doesn't between between a focal predictor and conditioning predictors, but rather only between varying (that is, focal \emph{and} conditioning) and fixed predictors. Each call to \fn{predictorEffect} is equivalent to a specific call to the \fn{Effect} function as follows. Suppose that \vn{m} is the fitted model produced by the formula in (\ref{eq1}); then, except for the ways in which the default levels for predictors are determined: \begin{description} \item[] \code{predictorEffect("x1", m)} is equivalent to \code{Effect("x1", m)}; \item[] \code{predictorEffect("x2", m)} is equivalent to \code{Effect(c("x2", "x3", "x4"), m)}; \item[] \code{predictorEffect("x3", m)} is equivalent to \code{Effect(c("x3", "x2"), m)}; and \item[] \code{predictorEffect("x4", m)} is equivalent to \code{Effect(c("x4", "x2"), m)}. \end{description} The \fn{predictorEffect} function determines the correct call to \fn{Effect} based on the choice of focal predictor and on the structure of main effects and interactions in the linear predictor for the model. It then uses the \fn{Effect} function to do the computing. As a result, most of the arguments to \fn{predictorEffect} are documented in \code{help("Effect")} rather than in \code{help("predictorEffect")}. \subsection{The \fn{predictorEffects} Function} This function, whose name ends with the plural ``\code{plots}", computes the values needed for one or more predictor effect plots, and by default for \emph{all} of the predictors in the model. For example, the following command produces all of the predictor effect plots for the model we fit to the \code{Prestige} data: <>= eall.lm1 <- predictorEffects(lm1) plot(eall.lm1) @ \centerline{\includegraphics[width=0.95\textwidth]{figure/fig14-1.pdf}} \noindent The predictor effect plots for this model are displayed in an array of graphs. The plots for \vn{income} and \vn{type} have a separate panel for each level of the conditioning variable because the default argument \ar{lines=list(multiline=FALSE)} was implicitly used. Confidence bounds are shown by default when \ar{multiline=FALSE}. The resulting object \code{eall.lm1} is a list with four elements, where \code{eall.lm1[[1]]} is the summary for the first predictor effect plot, \code{eall.lm1[[2]]} for the second plot, and so on. The following equivalent commands draw the same array of predictor effect plots: <>= plot(eall.lm1) plot(predictorEffects(lm1)) plot(predictorEffects(lm1, ~ income + education + women + type)) @ If you want only the predictor effect plots for \vn{type} and \vn{education}, in that order, you could enter <>= plot(predictorEffects(lm1, ~ type + education)) @ Similarly, the commands <>= plot(predictorEffects(lm1, ~ women)) plot(predictorEffects(lm1)[[3]]) plot(predictorEffect("women", lm1)) @ all produce the same graph, the predictor effect plot for \vn{women}. Predictor effect plots in an array can be a useful shortcut for drawing many graphs quickly, but can lead to problems with the displayed graphs. For example, the horizontal axis labels for the plot for \vn{income} are overprinted, and the labels at the top of the panels for \vn{type} with conditioning variable \vn{income} are larger than the available space. These problems can often be fixed using optional arguments described later in this vignette or by plotting predictor effects individually. \section{Optional Arguments for the \fn{predictorEffect} and \fn{Effect} Functions}\label{sec:peopts} This section comprises a catalog of the arguments available to modify the behavior of the \fn{predictorEffect} and \fn{Effect} functions. These arguments may also be specified to the \fn{predictorEffects} function. The information provided by \code{help("Effect")} is somewhat more comprehensive, if terser, explaining for example exceptions applying to \class{svyglm} objects or for plotting residuals. \subsection{\ar{focal.levels} and \ar{xlevels}: Options for the Values of the Focal Predictor and Predictors in the Conditioning Group}\label{sec-focal.levels-xlevels} Numeric predictors in the conditioning group need to be discretized to draw a predictor effect plot. For example the predictor effect plot for \vn{type} in model \code{lm1} consists of a separate line, or a separate panel, for each discrete value of \vn{income}: <>= e3.lm1 <- predictorEffect("type", lm1) plot(e3.lm1, lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=4in]{figure/fig21a-1.pdf}} <>= plot(e3.lm1, lines=list(multiline=FALSE)) # the default @ \centerline{\includegraphics[width=4in]{figure/fig21b-1.pdf}} \noindent The numeric conditioning predictor \vn{income} is evaluated by default at five equally spaced values, when are then rounded to ``nice" numbers. In this example, using the three values of 5000, 15000, 25000 for the conditioning predictor \vn{income} produces a simpler graph: <>= e3.lm1 <- predictorEffect("type", lm1, xlevels=list(income=c(5000, 15000, 25000))) plot(e3.lm1, lines=list(multiline=TRUE), confint=list(style="bars")) @ \centerline{\includegraphics[width=4in]{figure/fig22a-1.pdf}} <>= plot(e3.lm1, lines=list(multiline=FALSE), # the default lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=4in]{figure/fig22b-1.pdf}} \noindent The argument \ar{xlevels} is a list of sub-arguments that control how numeric predictors are discretized when used in the conditioning group. For example, \code{xlevels=list(x1=c(2, 4, 7), x2=6)} would use the values 2, 4, and 7 for the levels of the predictor \code{x1}, use 6 equally spaced values for the predictor \code{x2}, and use the default of 5 values for any other numeric conditioning predictors. Numeric predictors in the \emph{fixed} group are not affected by the \ar{xlevels} argument. We use the \ar{layout} sub-argument of the \ar{lattice} argument to arrange the panels of the second graph in 3 columns and 1 row (see Section~\ref{sec:layout}). See \code{help("plot.eff")} for information on the \ar{quantiles} argument, which provides an alternative method of setting \ar{xlevels} when partial residuals are displayed, as discussed in Section~\ref{sec:res}. The points at which a numeric focal predictor is evaluated is controlled by the \ar{focal.levels} argument. The default of \vn{focal.levels=50} is recommended for drawing graphs, but if the goal is to produce a table of fitted values a smaller value such as \code{focal.levels=5} produces more compact output. The focal predictor can also be set to a vector of particular values, as in \code{focal.levels=c(30, 50, 70)}. Used with the \code{predictorEffects} function, the \ar{focal.levels} argument can be set separately for each focal predictor, similarly to the \ar{xlevels} argument; see \code{help("predictorEffects")}. \subsection{\ar{fixed.predictors}: Options for Predictors in the Fixed Group} Predictors in the fixed group are replaced by ``typical" values of the predictors. Fitted values are then computed using these typical values for the fixed group, varying the values of predictors in the conditioning group and of the focal predictor. The user can control how the fixed values are determined by specifying the \ar{fixed.predictors} argument. This argument takes a list of sub-arguments that allow for controlling each predictor in the fixed group individually, with different rules for factors and numeric predictors. \subsubsection{Factor Predictors}\label{sec:facpred} For a fixed factor, imagine computing the fitted values evaluating the factor at each of its levels. The fitted value that is used is the weighed average of these within-level fitted values, with weights proportional to the number of observations at each level of the factor. This is the default approach, and is an appropriate notion of ``typical" if the data at hand are viewed as a random sample from a population, and so the sample fraction at each level estimates the population fraction. A second approach is to average the level-specific fitted values with equal weights at each level. This may be appropriate, for example, in designed experiments in which the levels of a factor are assigned by an investigator. The latter method is invoked by setting \code{fixed.predictors= list(given.values="equal")}. You can construct other weighting schemes for averaging over the levels of a factor, as described on the help page for the \fn{Effect} function. \subsubsection{Numeric Predictors} For numeric predictors in the fixed group, the default method of selecting a typical value is to apply the \fn{mean} function to the sample values of each predictor. The specification \code{fixed.predictors= list(typical=median)} would instead use the \fn{median} function; in general, \ar{typical} can be any function that takes a numeric vector as its argument and returns a single number. Other sub-arguments to \ar{fixed.predictors} apply to the use of offsets, and to the \pkg{survey} package; see the help page for the \fn{Effect} function. \subsection{\ar{se} and \ar{vcov.}: Standard Errors and Confidence Intervals}\label{sec:se} Standard errors and confidence intervals for fitted values are computed by default. The default corresponds to setting the argument \code{se=list(compute=TRUE, type="pointwise", level=.95)}. Setting \code{se=FALSE} omits standard errors, \ar{type="scheffe"} uses wider Scheff\'{e} intervals that adjust for simultaneous inference, and \code{level=.8}, for example, produces 80\% intervals. Standard errors are based by default on the ``usual" sample covariance matrix of the estimated regression coefficients. You can replace the default coefficient covariance matrix with some other estimate, such as one obtained from the bootstrap or a sandwich coefficient covariance matrix estimator, by setting the \ar{vcov.}~argument either to a function that returns a coefficient covariance matrix, such as \fn{hccm} in the \pkg{car} package for linear models, or to a matrix of the correct size; for example: <>= e4.lm1 <- predictorEffect("education", lm1, se=list(type="scheffe", level=.99), vcov.=hccm) plot(e4.lm1) @ \centerline{\includegraphics[width=4in]{figure/fig23-1.pdf}} \noindent This plot displays 99\% Scheff\'{e} intervals based on a robust coefficient covariance matrix computed by the sandwich method; see \code{help("hccm")}. \subsection{\ar{residuals}: Computing Residuals for Partial Residual Plots} The argument \ar{residuals=TRUE} computes and saves residuals, providing the basis for adding partial residuals to subsequent effect plots, a topic that we discuss in Section~\ref{sec:res}. \section{Arguments for Plotting Predictor Effects}\label{sec:plot} The arguments described in Section~\ref{sec:peopts} are for the \fn{predictorEffect} function or the \fn{Effect} function. Those arguments modify the computations that are performed, such as methods for averaging and fixing predictors, and for computing standard errors. Arguments to the \fn{plot} methods for the predictor effect and effect objects produced by the \fn{predictorEffect} and \fn{Effect} functions are described in this section, and these change the appearance of an effect plot or modify the quantities that are plotted. These optional arguments are described in more detail in \code{help("plot.eff")}. In 2018, we reorganized the \fn{plot} method for effect objects by combining arguments into five major groups of related sub-arguments, with the goal of simplifying the specification of effect plots. For example, the \ar{lines} argument group is a list of sub-arguments for determining line type, color, and width, whether or not multiple lines should be drawn on the same graph, and whether plotted lines should be smoothed. The defaults for these sub-arguments are the choices we generally find the most useful, but they will not be the best choices in all circumstances. The cost of reorganizing the arguments in this manner is the necessity of specifying arguments as lists, some of whose elements are themselves lists, requiring the user to make sure that parentheses specifying the possibly nested lists properly balanced. In addition to the five argument groups that we describe below, the \fn{plot} method for effect objects accepts the arguments \ar{main} for the main title of the graph and \ar{id} for identifying points in effect plots that include residuals, as discussed in Section~\ref{sec:res}. Finally, the \fn{plot} method for effect objects retains a number of ``legacy" arguments shown in \code{help("plot.eff")}. These arguments have been kept so existing scripts using the \pkg{effects} package would not break, but they are all duplicated as sub-arguments of the five argument groups. The legacy arguments work but they may not be supported forever, so we encourage you to use the newer argument groups and sub-arguments. \subsection{The \ar{axes} Group: Specify Axis Characteristics} The \ar{axes} argument group has two major sub-arguments, \ar{x} for the horizontal axis, \ar{y} for the vertical axis, and two minor sub-arguments, the \ar{grid} argument, which adds a background grid to the plot, and the \ar{alternating} argument, for changing the placement of axis-tick labels in multi-panel plots. \subsubsection{\ar{x}: Horizontal Axis Specification} We introduce another linear model fit to the \code{Prestige} data set to serve as an example: <<>>= lm2 <- lm(log(prestige) ~ log(income) + education + type, Prestige) @ The default predictor effect plot for \vn{income} is <>= plot(predictorEffects(lm2, ~ income)) @ \centerline{\includegraphics[width=4in]{figure/fig30-1.pdf}} \noindent The plot is curved because the predictor \vn{income} is represented by its logarithm in the model formula, but the default predictor effect plot uses the predictor \vn{income}, not the regressor \lvn{income}, on the horizontal axis. The \ar{x} sub-argument can be used transform the horizontal axis, for example to replace \code{income} by \lcode{income}: <>= plot(predictorEffects(lm2, ~ income), axes=list( x=list(income=list(transform=list(trans=log, inverse=exp))) )) @ \centerline{\includegraphics[width=4in]{figure/fig31-1.pdf}} \noindent The transformation changes the scale on the horizontal axis to log-scale, but leaves the tick labels in arithmetic scale, and the graph is now a straight line because of the change to log-scale. This plot has several obviously undesirable features with regard to the range of the horizontal axis and over-printing of tick marks. We show next that additional arguments to \fn{plot} can correct these defects. A more elaborate version of the graph illustrates all the sub-arguments to \ar{x} in \ar{axis} argument group: <>= plot(predictorEffects(lm2, ~ income), main="Transformed Plot", axes=list( grid=TRUE, x=list(rotate=30, rug=FALSE, income=list(transform=list(trans=log, inverse=exp), lab="income, log-scale", ticks=list(at=c(2000, 5000, 10000, 20000)), lim=c(1900, 21000)) ))) @ \centerline{\includegraphics[width=4in]{figure/fig32-1.pdf}} \noindent We use the top-level argument \code{main="Transformed Plot"} to set the title of the plot. The \ar{axes} argument is a list with two sub-arguments, \ar{grid} to turn on the background grid, and \ar{x} to modify the horizontal axis. The \ar{x} sub-argument is itself a list with three elements: The sub-arguments \code{rotate} and \ar{rug} set the rotation angle for the tick labels and suppress the rug plot, respectively. The additional sub-argument is a list called \ar{income}, the name of the focal predictor. If you were drawing many predictor effect plots you would supply one list named for each of the focal predictors. All of the sub-arguments for \ar{income} are displayed in the example code above. The sub-argument \code{transform=list(trans=log, inverse=exp)} specifies how to transform the $x$-axis. The \code{ticks} and \code{lim} sub-arguments set the tick marks and range for the horizontal axis. This is admittedly a \emph{complex command}, but it allows you to fine-tune the graph to look the way you want. In specifying nested argument lists, you may encounter problems getting the parentheses in the right places. Be careful, indent your code to clarify the structure of the command, and be patient! \subsubsection{\ar{y}: Vertical Axis Specification for Linear Models} The model \code{lm2} has a transformed response \lcode{prestige}, and ``untransforming" the response to arithmetic scale may be desirable. This can be accomplished with the \ar{y} sub-argument, which has two sub-arguments named \vn{transform} and \vn{type} that together control the scale and labeling of the vertical axis. There are three options for drawing the predictor effect plot for a numeric response like\linebreak \lvn{prestige}: <>= # default: plot(predictorEffects(lm2, ~ education), main="Default log(prestige)") # Change only tick-mark labels to arithmetic scale: plot(predictorEffects(lm2, ~ education), main="log(prestige), Arithmetic Ticks", axes=list(y=list(transform=list(trans=log, inverse=exp), lab="prestige", type="rescale"))) # Replace log(presige) by prestige: plot(predictorEffects(lm2, ~ education), main="Prestige in Arithmethic Scale", axes=list(y=list(transform=exp, lab="prestige"))) @ \includegraphics[width=.33\textwidth]{figure/fig33-1.pdf} \includegraphics[width=.33\textwidth]{figure/fig33-2.pdf} \includegraphics[width=.33\textwidth]{figure/fig33-3.pdf} \noindent The first plot is the default, with a log-response. In the second plot, the \ar{transform} sub-argument specifies the transformation of the response and its inverse, and the sub-argument \code{type="rescale"} changes the tick marks on the vertical axis to arithmetic scale. In the third version, with \code{transform=exp, lab="prestige"}, the vertical axis now is in arithmetic scale, not log scale, although that may not be completely obvious in the example because $\log(x)$ is nearly linear over the range of approximately 35 to 65 for fitted \vn{prestige} in this graph: Look closely to see that the axis ticks marks in the second graph are unequally spaced, while those in the third graph are equally spaced and the plotted line in the latter is slightly curved. The help page \code{?plot.eff} provides a somewhat more detailed explanation of these options. As a second example we will reconstruct Figure~7.10 in \citet[Sec.~7.2]{fw19}. In that section, we fit a linear mixed-effects model to data from the \code{Blackmore} data frame in the \pkg{carData} package. \code{Blackmore} includes longitudinal data on amount of exercise for girls hospitalized for eating disorders and for similar control subjects who were not hospitalized. We transformed the response variable in the model, hours of \vn{exercise}, using a transformation in a modified Box-Cox power family that allows zero or negative responses, explained briefly by \citet[Sec.~3.4]{fw19} and more thoroughly by \citet{HawkinsWeisberg2017}. The fitted model is <<>>= library("lme4") # for lmer() Blackmore$tran.exercise <- bcnPower(Blackmore$exercise, lambda=0.25, gamma=0.1) mm1 <- lmer(tran.exercise ~ I(age - 8)*group + (I(age - 8) | subject), data=Blackmore) @ This model, with numeric predictor \vn{age} and factor predictor \vn{group}, is a linear mixed model with random intercepts and slopes for \vn{age} that vary by \vn{subject}. The response variable is a transformation of \vn{exercise} similar to the fourth root with adjustment for zero values; see \code{help("bcnPower")}. The predictor effect plot for the fixed effect of \vn{age} is <>= e1.mm1 <- predictorEffect("age", mm1) plot(e1.mm1, lines=list(multiline=TRUE), confint=list(style="auto")) @ \centerline{\includegraphics[width=4in]{figure/fig33a-1.pdf}} \noindent The plot clearly shows the difference in the average \vn{age} trajectory between the \level{control} and \level{patient} groups, with the fitted response for the latter having a larger slope. The graph is hard to decode, however, because the vertical axis is approximately in the scale of the fourth-root of hours of exercise, so untransforming the response may produce a more informative plot. Because the \fn{bcnPower} transformation is complex, the \pkg{car} package includes the function \fn{bcnPowerInverse} to reverse the transformation: <>= f.trans <- function(x) bcnPower(x, lambda=0.25, gamma=0.1) f.inverse <- function(x) bcnPowerInverse(x, lambda=0.25, gamma=0.1) plot(e1.mm1, lines=list(multiline=TRUE), confint=list(style="auto"), axes=list(x=list(age=list(lab="Age (years)")), y=list(transform=list(trans=f.trans, inverse=f.inverse), type="response", lab="Exercise (hours/week)")), lattice=list(key.args=list(x=.20, y=.75, corner=c(0, 0), padding.text=1.25)), main="" ) @ \centerline{\includegraphics[width=4in]{figure/fig33b-1.pdf}}\label{corner} \noindent The response scale is now in hours per week, and we see that hours of exercise increase more quickly on average in the patient group for older subjects. We use additional arguments in this plot to match \citet[Fig.~7.10]{fw19}, including moving the key inside of the graph (see Section~\ref{sec:key}), changing the axis labels, and removing the main title to the plot.\footnote{The code shown for this graph in \cite{fw19} uses ``legacy'' arguments, and is therefore somewhat different from the code given here. Both commands produce the same plot, however.} \subsubsection{\ar{y}: Vertical Axis Specification for Generalized Linear Models} Transforming the vertical axis for generalized linear models also uses the \ar{y} sub-argument to the \ar{axes} argument. You typically do not need to specify the \ar{transform} sub-argument because \fn{plot} obtains the right functions from the regression model's \ar{family} component. The \ar{type} sub-argument has the same three possible values as for linear models, but their interpretation is somewhat different: \begin{enumerate} \item Effect plots in \code{type="link"}, in which the horizontal axis of each plot is a predictor and the vertical axis is in the scale of the linear predictor. For logistic regression, for example, the vertical axis is in log-odds (logit) scale. For Poisson regression with the log-link, the vertical axis is in log-mean (log-count) scale. \item Predictor effect plots in \code{type="response"} or mean scale are obtained by ``untransforming" the $y$ axis using the inverse of the link function. For the log-link, this corresponds to transforming the $y$ axis and plotting $\exp(y)$. For logistic regression, $y = \log[p/(1-p)]$ and, solving for $p$, $p=\exp(y)/[1+\exp(y)] = 1/[1 + \exp(-y)]$, so the plot in mean scale uses $1/[1+\exp(-y)]$ on the vertical axis. \item We also provide a third option, \code{type="rescale"}, which plots in linear predictor (e.g., logit) scale, but labels the tick marks on the vertical axis in mean (e.g., probability) scale. This third option, which retains the linear structure of the model but labels the vertical axis on the usually more familiar mean scale, is the default. \end{enumerate} We use the \code{Blowdown} data from the \pkg{alr4} package to provide examples. These data concern the probability of \emph{blowdown} \vn{y}, a tree being uprooted as the result of a major straight-line wind storm in the Boundary Waters Canoe Area Wilderness in 1999, modeled as a function of the diameter \code{d} of the tree, the local severity \code{s} of the storm, and the species \code{spp} of the tree. We fit a main-effects model and then display all three predictor effect plots: <<>>= data("Blowdown", package="alr4") gm1 <- glm(y ~ log(d) + s + spp, family=binomial, data=Blowdown) @ <>= plot(predictorEffects(gm1), axes=list(grid=TRUE, x=list(rug=FALSE, rotate=35))) @ \centerline{\includegraphics[width=.9\textwidth]{figure/fig34-1.pdf}} \noindent The \ar{rug=FALSE} sub-argument to \ar{x} suppresses the rug plot that appears by default at the bottom of graphs for numeric predictors, and the \ar{grid} sub-argument to \ar{axes} adds background grids. The \ar{rotate} sub-argument prints the horizontal tick labels at an angle to avoid overprinting. Interpretation of GLM predictor effect plots in link scale is similar to predictor effect plots for linear models, and all the modifications previously described can be used for these plots. Because the default is \code{type="rescale"}, the vertical axis is in linear predictor scale, which is the log-odds or logit for this logistic regression example, but the vertical axis labels are in mean (probability) scale, so the tick-marks are not equally spaced. The next three graphs illustrate the possible values of the argument \ar{type}: <>= e1.gm1 <- predictorEffect("spp", gm1) plot(e1.gm1, main="type='rescale'", axes=list(y=list(type="rescale", lab="logit scale, probability labels"), x=list(rotate=30), grid=TRUE)) plot(e1.gm1, main="type='link'", axes=list(y=list(type="link", lab="logit scale, logit labels"), x=list(rotate=30), grid=TRUE)) plot(e1.gm1, main="type='response'", axes=list(y=list(type="response", grid=TRUE, lab="probabilty scale, probability labels"), x=list(rotate=30), grid=TRUE)) @ \includegraphics[width=.33\textwidth]{figure/fig35-1.pdf} \includegraphics[width=.33\textwidth]{figure/fig35-2.pdf} \includegraphics[width=.33\textwidth]{figure/fig35-3.pdf} \noindent The first two graphs show the same plot, but in the first the tick-marks on the vertical axis are unequally spaced and are in probability scale, while in the second the tick-marks are equally spaced and are in log-odds scale. In the third graph, the vertical axis has been transformed to probability scale, and the corresponding tick-marks are now equally spaced. The plot for species would be easier to understand if the levels of the factor were ordered according to the estimated log-odds of blowdown. First, we need to recover the fitted values in link scale, which are log-odds of blowdown for a logistic model. The fitted log-odds are stored in \code{as.data.frame(e1.gm1)\$fit} using the \code{e1.gm1} object previously computed: <>= or <- order(as.data.frame(e1.gm1)$fit) # order smallest to largest Blowdown$spp1 <- factor(Blowdown$spp, # reorder levels of spp levels=levels(Blowdown$spp)[or]) gm2 <- update(gm1, ~ . - spp + spp1) # refit model plot(predictorEffects(gm2, ~ spp1), main="type='response', ordered", axes=list(y=list(type="response", lab="probabilty scale, probability labels"), x=list(rotate=30, spp=list(lab="Species")), grid=TRUE)) @ \centerline{\includegraphics[width=.55\textwidth]{figure/fig36-1.pdf}} \noindent The separation of species into two groups of lower and higher probability species is reasonably clear after ordering, with paper birch more susceptible to blowdown than the other species and possibly in a group by itself. \subsection{The \ar{lines} Group: Specifying Plotted Lines} The \ar{lines} argument group allows the user to specify the color, type, thickness, and smoothness of lines. This can be useful, for example, if the colors used by \pkg{effects} by default are for some reason unacceptable, such as for publications in which only black or gray-scale lines are permitted. The most common use of this argument group is to allow more than one line to be plotted on the same graph or panel via the \ar{multiline} sub-argument. \subsubsection{\ar{multiline} and \ar{z.var}: Multiple Lines in a Plot} Default predictor effect plots with conditioning predictors generate a separate plot for each level of the conditioning variable, or for each combination of levels if there is more than one conditioning variable. For an example, we add the \code{log(d):s} interaction to the model \code{gm1}, and generate the predictor effect plots for \vn{s} and for \vn{d}: <>= gm3 <- update(gm2, ~ . + s:log(d)) # add an interaction plot(predictorEffects(gm3, ~ s + d), axes=list(x=list(rug=FALSE, rotate=90), y=list(type="response", lab="Blowdown Probability")), lattice=list(layout=c(1, 5))) @ \centerline{\includegraphics[width=0.75\textwidth]{figure/fig37-1.pdf}} \noindent Setting the sub-argument \code{type="response"} for the \ar{y} axis plots the response on the probability scale. Setting \code{layout=c(1, 5)} arranges each predictor effect plot in 1 column of 5 rows. See the description of the \ar{lattice} argument in Section~\ref{sec:lattice}. The predictor effect plot for \vn{s} conditions on the level of \vn{d}, and displays the plot of the fitted values for \vn{y} versus \vn{s} in a separate panel for each value of \vn{d}. Similarly, the predictor effect plot for \vn{d} displays a separate panel for each conditioning level of \vn{s}. Confidence bands are displayed by default around each fitted line. These two graphs are based on essentially the same fitted values, with the values of the interacting predictors \vn{s} and \vn{d} varying, and fixing the factor predictor \vn{spp} to its distribution in the data, as described in Section~\ref{sec:facpred}. Concentrating on the graph at the right for the focal predictor \vn{d}, when \vn{s} is very small the probability of blowdown is estimated to be in the range of about .05 to .3 for any value of \vn{d}, but for larger values of \vn{s}, the probability of blowdown increases rapidly with \vn{d}. Similar comments can be made concerning the predictor effect plot for \vn{s}. Setting \code{multiline=TRUE} superimposes the lines for all the conditioning values in a single graph. In the example below, we reduce the number of levels of the conditioning variable for each predictor effect plot to three explicit values each to produce simpler graphs, although this is not required. The \ar{xlevels} argument changes the number of levels for the conditioning predictors, but does not affect the number of levels for the focal predictor. This latter quantity could be changed with the \ar{focal.levels} argument, but the default value of 50 evaluations is appropriate for graphing effects. <>= plot(predictorEffects(gm3, ~ s + d, xlevels=list(d=c(5, 40, 80), s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response", lab="Blowdown probability")), lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=\textwidth]{figure/fig38-1.pdf}} \noindent In each graph, we kept, more or less, the lowest, middle, and highest values of the conditional predictor for the interaction. We also added a grid to each graph. Multiline plots by default omit confidence bands or intervals, but these can be included using the \ar{confint} argument discussed in Section~\ref{sec:confint}. By default, different values of the conditioning predictor are distinguished by color, and a key is provided. The placement and appearance of the key are controlled by the \ar{key.args} sub-argument in the \ar{lattice} group discussed in Section~\ref{sec:key}. When the conditioning group includes two or more predictors, and certainly when it includes three or more predictors, multiline plots are almost always helpful because otherwise the resulting array of panels becomes too complicated. Suppose that we add the \code{spp:log(d)} interaction to the illustrative model. The predictor effect plot for \vn{d} now includes both \vn{s} and \vn{spp} in the conditioning set because \vn{d} interacts with both of these predictors: <>= gm4 <- update(gm3, ~ . + spp:log(d)) plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE)), lines=list(multiline=TRUE)) @ \centerline{\includegraphics[width=\textwidth]{figure/fig39-1.pdf}} \noindent This plot now displays the lines for all conditioning values of \vn{s} within the panel for each level of the conditioning factor \vn{spp}. Compare this graph to the much more confusing plot in which different lines are drawn for the nine levels of the conditioning factor \vn{spp}, obtained by using the \ar{z.var} sub-argument in the \ar{lines} group: <>= plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE)), lines=list(multiline=TRUE, z.var="spp", lty=1:9), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.7\textwidth]{figure/fig310-1.pdf}} \noindent The \ar{z.var} sub-argument for \ar{lines} selects the predictor that determines the lines within a panel and the remaining predictors, here just \vn{s}, distinguish the panels. The default choice of \ar{z.var} is usually, but not always, appropriate. We also use the \ar{lattice} argument to display the array of panels in 3 columns and 1 row, and differentiate the lines by line type and color using arguments discussed next. \subsubsection{\ar{col}, \ar{lty}, \ar{lwd}, \ar{spline}: Line Color, Type, Width, Smoothness}\label{sec:line.color.etc} Different lines in the same plot are differentiated by default using color. This can be modified by the sub-arguments \ar{lty}, \ar{lwd} and \ar{col} to set line types, widths, and colors, respectively. For example, in the last graph shown you can get all black lines of different line types using \code{lines=list(multiline=TRUE, col="black", lty=1:9)}, or using a gray scale, \code{lines=}\linebreak \code{list(multiline=TRUE, col=gray((1:9)/10))}. The \fn{plot} method for effect objects by default uses smoothing splines to interpolate between plotted points. Smoothing can be turned off with \code{splines=FALSE} in the \ar{lines} argument, but we rarely expect this to be a good idea. The number of values at which the focal predictor is evaluated is set with the \ar{focal.levels} argument, and it defaults to 50. In any case, more than three evaluations, and possibly many more, should be used for a reasonable spline approximation. \subsection{The \ar{confint} Group: Specifying Confidence Interval Inclusion and Style}\label{sec:confint} The \ar{confint} argument group controls the inclusion and appearance of confidence intervals and regions. This argument has three sub-arguments. The \ar{style} sub-argument is either \code{"bars"}, for confidence bars, typically around the estimated adjusted mean for a factor level; \code{"bands"}, for shaded confidence bands, typically for numeric focal predictors; \code{"auto"}, to let the program automatically choose between \code{"bars"} and \code{"bands"}; \code{"lines"}, to draw only the edges of confidence bands with no shading; or \code{"none"}, to suppress confidence intervals. The default is \code{"auto"} when \code{multiline=FALSE} and \code{"none"} when \code{multiline=TRUE}. Setting \code{confint="auto"} produces bars for factors and bands for numeric predictors. For example: <>= plot(predictorEffects(gm3, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response")), lines=list(multiline=TRUE), confint=list(style="auto")) @ \centerline{\includegraphics[width=.5\textwidth]{figure/fig311-1.pdf}} \noindent In this example the confidence bands are well separated, so including them in a multiline graph isn't problematic; in other cases, overlapping confidence bands produce an artistic but uninterpretable mess. With a factor focal predictor, we get: <>= gm5 <- update(gm2, ~ . + spp:s) plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, y=list(type="response"), x=list(rug=FALSE, rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto")) @ \centerline{\includegraphics[width=.75\textwidth]{figure/fig312-1.pdf}} \noindent The error bars for the various levels of \vn{s} are slightly staggered to reduce over-plotting. Two additional arguments, \vn{col} and \vn{alpha}, control respectively the color of confidence bars and regions and the transparency of confidence regions. Users are unlikely to need these options. Finally, the type of confidence interval shown, either pointwise or Scheff\'{e} corrected for multiple comparisons, is controlled by the \ar{se} argument to the \fn{predictorEffect} or \fn{Effect} function (see Section~\ref{sec:se}). \subsection{The \ar{lattice} Group: Specifying Standard \textbf{lattice} Package Arguments}\label{sec:lattice} The \fn{plot} methods defined in the \pkg{effects} package use functions in the \pkg{lattice} package \citep{sarkar08}, such as \fn{xyplot}, to draw effect plots, which often comprise rectangular arrays of panels. In particular, the \fn{plot} method for the \class{eff} objects returned by the \fn{Effect} function are \class{trellis} objects, which can be manipulated in the normal manner. ``Printing'' a returned effect-plot object displays the plot in the current \R{} graphics device. The \ar{lattice} group of arguments to the \fn{plot} method for effect objects may be used to specify various standard arguments for \pkg{lattice} graphics functions such as \fn{xyplot}. In particular, you can control the number of rows and columns when panels are displayed in an array, modify the key (legend) for the graph, and specify the contents of the ``strip" displayed in the shaded region of text above each panel in a \pkg{lattice} array. In addition, the \ar{array} sub-argument, for advanced users, controls the layout of multiple predictor effect plots produced by the \fn{predictorEffects} function. \subsubsection{\ar{key.args}: Modifying the Key}\label{sec:key} A user can modify the placement and appearance of the key with the \ar{key.args} sub-argument, which is itself a list. For example: <>= plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), rug=FALSE, axes=list(grid=TRUE, y=list(type="response"), x=list(rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto"), lattice=list(key.args=list(space="right", columns=1, border=TRUE, fontfamily="serif", cex=1.25, cex.title=1.5))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig314-1.pdf}} \noindent The sub-argument \code{space="right"} moves the key to the right of the graph, overriding the default \code{space="top"}. Alternatively the key can be placed inside the graph using the \ar{x}, \ar{y}, and \ar{corner} sub-arguments, as illustrated in the graph on page~\pageref{corner}. The choices for \ar{fontfamily} are \code{"sans"} and \code{"serif"}, and affect only the key; the rest of the plot uses \code{"sans"}. The sub-arguments \ar{cex} and \ar{cex.title} control the relative sizes of the key entries and the key title, respectively. Finally, any argument documented in \code{help("xyplot")} in the \code{key} section can be set with this argument. If you use the default \code{space="top"} for placement of the key, you may wish to adjust the number of columns in the key, particularly if the level names are long. \subsubsection{\ar{layout}: Controlling Panel Placement}\label{sec:layout} The \ar{layout} sub-argument to the \ar{lattice} argument allows a user to customize the layout of multiple panels in an effect plot; for example: <>= plot(predictorEffects(gm3, ~ s + d, xlevels=list(s=6, d=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2))) @ \centerline{\includegraphics[width=\textwidth]{figure/fig313-1.pdf}} \noindent Here, the \ar{layout} sub-argument specifies an array of 3 columns and 2 rows for each of the predictor effect plots. \subsubsection{\ar{array}: Multiple Predictor Effect Plots}\label{sec:array} If you create several predictor effect objects with the \fn{predictorEffects} function, the \fn{plot} method for the resulting \class{predictorefflist} object divides the \pkg{lattice} graphics device into a rectangular array of sub-plots, so that the individual predictor effect plots, each potentially with several panels, are drawn without overlapping. An alternative is for the user to generate the predictor effect plots separately, subsequently supplying the \ar{array} sub-argument to \fn{plot} directly to create a custom meta-array of predictor effect plots; this argument is ignored, however, for \class{predictorefflist} objects produced by \fn{predictorEffects}. Suppose, for example, that we want to arrange the two predictor effect plots for the previous example vertically rather than horizontally. One way to do that is to save the object produced by \fn{predictorEffects} and to plot each of its two components individually, specifying the \ar{position} or \ar{split} and \ar{more} arguments to the \fn{print} method for \class{trellis} objects: see \code{help("print.trellis")}. Another approach is to generate the plots individually using \fn{predictorEffect} and to specify the \ar{array} sub-argument to \fn{plot}, as follows: <>= plot(predictorEffect("s", gm3, xlevels=list(d=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2), array=list(row=1, col=1, nrow=2, ncol=1, more=TRUE))) plot(predictorEffect("d", gm3, xlevels=list(s=6)), axes=list(x=list(rug=FALSE, rotate=90), y=list(ticks=list(at=c(.999, .99, .95, .8, .5, .2, .05)))), lattice=list(layout=c(3, 2), array=list(row=2, col=1, nrow=2, ncol=1, more=FALSE))) @ \centerline{\includegraphics[width=.65\textwidth]{figure/fig313b-1.pdf}} \noindent In each case, the \ar{row} and \ar{col} sub-arguments indicate the position of the current graph in the meta-array; \ar{nrow} and \ar{ncol} give the dimensions of the meta-array, here 2 rows and 1 column; and \ar{more} indicates whether there are more elements of the meta-array after the current graph. \subsubsection{\ar{strip}: Modifying the Text at the Tops of Panels}\label{sec:strip} Lattice graphics with more than one panel typically provide a text label at the top of each panel in an area called the \emph{strip}. The default strip text contains the name of the conditioning predictor and the value to which it is set in the panel; if there are more than one conditioning predictor, then all of their names and corresponding values are shown. For example: <>= plot(predictorEffects(gm4, ~ d, xlevels=list(s=c(0.1, 0.5, 0.9))), axes=list(grid=TRUE, x=list(rug=FALSE), y=list(type="response")), lines=list(multiline=TRUE, z.var="spp", lty=1:9), lattice=list(layout=c(3, 1), strip=list(factor.names=TRUE, values=TRUE, cex=1.5))) @ \centerline{\includegraphics[width=.85\textwidth]{figure/fig316-1.pdf}} \noindent Setting \code{factor.names=FALSE} (the default is \code{TRUE}) displays only the value, and not the name, of the conditioning predictor in each strip; usually, this is desirable only if the name is too long to fit, in which case you may prefer to rename the predictor. Setting \code{values=FALSE} replaces the conditioning value with a line in the strip that represents the value: The line is at the left of the strip for the smallest conditioning value, at the right for the largest value, and in a proportional intermediate position in between the two extremes. The most generally useful sub-argument is \ar{cex}, which allows you to reduce or expand the relative size of the text in the strip, in this case increasing the size to 150\% of standard size. \subsection{\ar{symbols}: Plotting symbols} Symbols are used to represent adjusted means when the focal predictor is a factor. You can control the symbols used and their relative size: <>= gm5 <- update(gm2, ~ . + spp:s) plot(predictorEffects(gm5, ~ spp, xlevels=list(s=c(0.1, 0.5, 0.9))), symbols=list(pch=15:17, cex=1.5), axes=list(grid=TRUE, y=list(type="response"), x=list(rotate=30)), lines=list(multiline=TRUE), confint=list(style="auto"), lattice=list(key.args=list(cex=1.5, cex.title=1.5))) @ \centerline{\includegraphics[width=.95\textwidth]{figure/fig315-1.pdf}} \noindent We use the \ar{pch} sub-argument to set the symbol number for plotted symbols; you can enter the commands \code{plot(1:25, pch=1:25)} and \code{lines(1:25, lty=2, type="h")} to see the 25 plotting symbols in \R{}. The sub-argument \ar{pch} can also be a character vector, such as \code{letters[1:10]}. In this example, we set \code{cex=1.5} to increase the symbol size by the factor 1.5. Because only one value is given, it is recycled and used for all of the symbols. We need to change the size of the symbols in the key separately, as we do here via the \ar{key.args} sub-argument to the \ar{lattice} argument (see Section~\ref{sec:key}). \section{Displaying Residuals in Predictor Effect Plots}\label{sec:res} \citet{fw19b} introduce methodology for adding partial residuals to a predictor effect or effect plot. This can be desirable to display variation in data around a fitted partial regression surface or to diagnose possible lack of fit, as the resulting plots are similar to traditional component-plus-residual plots \citep[Sec.~8.4]{fw19}. The predictor effect plot for a numeric focal predictor that does not interact with other predictors is equivalent to a standard component-plus-residual plot; for example: <>= lm5 <- lm(prestige ~ log(income) + education + women + type, Prestige) plot(predictorEffects(lm5, residuals=TRUE), axes=list(grid=TRUE, x=list(rotate=30)), partial.residuals=list(smooth=TRUE, span=0.75, lty="dashed")) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig51-1.pdf}} \noindent The partial residuals to be plotted are computed using the \ar{residuals} argument to the \fn{predictorEffect}, \fn{predictorEffects}, or \fn{Effect} function. For the numeric predictors \vn{income}, \vn{education}, and \vn{women}, the plotted points are each equal to a point on the fitted blue line, representing the partial fit, plus the corresponding residual. For \vn{income}, the fitted partial-regression line in curved because of the log transformation of the predictor, but the partial-regression function is a straight line for the other two numeric predictors. The dashed line produced by \code{lty="dashed"} in the same magenta color as the plotted points on the graph, is a loess nonparametric-regression smooth of the points. The sub-argument \code{smooth=TRUE} is the default if residuals are present in the effect object to be plotted. The sub-argument \code{span=0.75} adjusts the span of the loess smoother from the default of \code{2/3}---an unnecessary adjustment here specified simply to illustrate how to set the span. If the model adequately represents the data, then the dashed magenta line should approximately match the solid blue partial-regression line, which represents the fitted model. For the factor \vn{type}, the points are jittered horizontally to separate them visually, because the only possible horizontal coordinates are at the three distinct factor levels. Smooths are not fit to factors and instead the conditional means of the partial residuals are plotted as solid magenta dots; in the current model, the magenta dots and the blue dots representing the fitted adjusted means of the response at the levels of \vn{name} necessarily match. The \fn{plot} method for effect objects has a \ar{partial.residuals} argument, with several sub-arguments that control how partial residuals are displayed. In the command above, we used the sub-argument \vn{smooth=TRUE} to add the smoother, which is the default when residuals are included in the effect object, and \ar{lty="dashed"} to change the line type for the smooth from the default solid line to a dashed line. All the \vn{smooth} sub-arguments are described in \code{help("plot.eff")}. For a second example, we fit a linear model with an interaction to the \code{UN} data set in the \pkg{carData} package, modelling national \vn{infantMortality} rate (infant deaths per 1000 live births) as a function of \vn{ppgdp}, per person GDP (in U.S.~dollars), and country \vn{group} (OECD nations, African nations, and other nations). The data are for roughly 200 nations of the world and are from approximately 2009 to 2011: <>= options(scipen=10) # suppress scientific notation lm6 <- lm(infantMortality ~ group*ppgdp, data=UN) plot(predictorEffects(lm6, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25), y=list(lim=c(0, 150))), id=list(n=1), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig52-1.pdf}} \noindent The predictor effect plot for \vn{ppgdp} conditions on the factor \ar{group} because of the interaction between these two predictors. Several problems are apparent in this plot: The \ar{id} argument is used to identify the most unusual point in each panel, as described in detail in \code{help("plot.eff")}. Turkey has higher than predicted infant mortality for the \level{oecd} group; Afghanistan, in the \level{other} group, has infant mortality much higher than predicted; and Equatorial Guinea is clearly unusual for the \level{africa} group. In addition, the smooths through the points do not match the fitted lines in the \level{other} and \level{africa} groups. We use the command \code{options(scipen=10)} to suppress annoying scientific notation in the tick-mark labels on the horizontal axis, and instead rotate these labels so that they fit without over-plotting. Log-transforming both the predictor \vn{ppgdp} and the response \vn{infantMortality} produces a better fit to the data: <>= lm7 <- lm(log(infantMortality) ~ group*log(ppgdp), data=UN) plot(predictorEffects(lm7, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25)), id=list(n=1), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig53-1.pdf}} \noindent Equatorial Guinea is still anomalous, however. Rescaling the vertical axis to arithmetic scale produces a slightly different, but possibly useful, picture: <>= plot(predictorEffects(lm7, ~ ppgdp, partial.residuals=TRUE), axes=list(x=list(rotate=25), y=list(transform=list(trans=log, inverse=exp), type="response", lab="Infant Mortality")), id=list(n=1), lattice=list(layout=c(3, 1))) @ \centerline{\includegraphics[width=.99\textwidth]{figure/fig54-1.pdf}} Partial residuals can be added to effect plots for linear or generalized linear models in the default link scale, and to effect plots for linear or generalized linear mixed models. \subsection{Using the \fn{Effect} Function With Partial Residuals} In most instances, predictor effect plots produced by \fn{predictorEffect} or \fn{predictorEffects} visualize a fitted model in the most natural manner, but sometimes in looking for lack of fit, we want to plot against arbitrary combinations of predictors. The more general \fn{Effect} function is capable of doing that. Recall, for example, the additive model \code{lm2} fit to the \code{Prestige} data: <<>>= S(lm2) @ Plotting partial residuals for the predictors \vn{income} and \vn{type} simultaneously reveals an unmodeled $\vn{income} \times \vn{type}$ interaction: <>= plot(Effect(c("income", "type"), lm2, residuals=TRUE), axes=list(x=list(rotate=30)), partial.residuals=list(span=0.9), layout=c(3, 1)) @ \centerline{\includegraphics[width=0.85\textwidth]{figure/fig55-1.pdf}} \section{Polytomous Categorical Responses} The \pkg{effects} package produces special graphs for ordered and unordered polytomous categorical response variables. In an ordinal regression, the response is an ordered categorical variable with three or more levels. For example, in a study of women's labor force participation that we introduce below, the response is not working outside the home, working part time, or working full time. The proportional-odds model \citep[Sec.~6.9]{fw19} estimates the probability of a response in each of these three categories given a linear combination of regressors defined by a set of predictors, assuming a logit link function. We illustrate the proportional-odds model with the \code{Womenlf} data set in the \pkg{carData} package, for young married Canadian women's labor-force participation, using the \fn{polr} function in the \pkg{MASS} package to fit the model: <<>>= library("MASS") # for polr() Womenlf$partic <- factor(Womenlf$partic, levels=c("not.work", "parttime", "fulltime")) # order response levels or1 <- polr(partic ~ log(hincome) + children, data=Womenlf) S(or1) @ The response variable \code{partic} initially has its levels in alphabetical order, which does not correspond to their natural ordering. We therefore start by reordering the levels to increase from \level{not.work}, to \level{parttime} work, to \level{fulltime} work. The predictors are the numeric variable \vn{hincome} (husband's income), which enters the model in log-scale, and the dichotomous factor \vn{children}, presence of children in the household. The model summary is relatively complex, and is explained in \citet[Sec.~6.9]{fw19}. Predictor effect plots greatly simplify interpretation of the fitted model: <>= plot(predictorEffects(or1), axes=list(grid=TRUE), lattice=list(key.args=list(columns=1))) @ \centerline{\includegraphics[width=.9\textwidth]{figure/fig41-1.pdf}} \noindent Unlike predictor effect plots for generalized linear models, the default scaling for the vertical axis is the probability scale, equivalent to \code{axes=list(y=list(type="response"))} for a GLM, and the alternative is \code{axes=list(y=list(type="logit"))}, which is analogous to \code{type="link"} for a GLM.\footnote{The logits plotted, however, correspond to the individual-level probabilities and are not the ordered logits in the definition of the proportional-odds model.} Confidence bands are present by default, unless turned off with the argument \code{confint=list(style="none")}. Numeric focal predictors are by default evaluated at 50 points. The plot for \vn{hincome} suggests high probability of full-time work if husband's income is low, with the probability of full-time work sharply decreasing to about \$15,000 and then nearly leveling off at about .1 to .2. The probability of not working rapidly increases with husband's income, while the probability of working part time is fairly flat. A similar pattern is apparent for children present in the home, with full-time work much less prevalent and not working much more prevalent when children are present than when they are absent. \emph{Stacked area plots} are sometimes more useful for examining polytomous response models; for example: <>= plot(predictorEffects(or1), axes=list(grid=TRUE, y=list(style="stacked")), lattice=list(key.args=list(columns=1))) @ \centerline{\includegraphics[width=.95\textwidth]{figure/fig62-1.pdf}} \noindent For each fixed value on the horizontal axis, the vertical axis ``stacks" the probabilities in the three response categories. For example, with children absent from the household and \vn{hincome} set to its mean, nearly 30\% of women did not work outside the home, about 20\% worked part time, and the remaining approximate 50\% worked full time. Some ordinal-response models produced by the functions \fn{clm}, \fn{clm2}, and \fn{clmm} in the \pkg{ordinal} package can be used with the \pkg{effects} package. To work with model objects produced by these functions, you must also load the \pkg{MASS} package. The \pkg{effects} package can also draw similar graphs for the more general multinomial logit model, in which the polytomous categorical response has unordered levels \citep[see][Sec.~6.7]{fw19}. The details of the model, its parameters, and its assumptions are different from those of the proportional-odds model and other ordered-response models, but predictor effect plots for these models are similar. As an example, we use the \code{BEPS} data set in the \pkg{carData} package, consisting of about 1,500 observations from the 1997-2001 British Election Panel Study. The response variable, \vn{vote}, is party choice, one of \level{Liberal Democrat}, \level{Labour}, or \level{Conservative}. There are numerous predictors of \vn{vote} in the data set, and we fit the model <<>>= library("nnet") # for multinom() mr1 <- multinom(vote ~ age + gender + economic.cond.national + economic.cond.household + Blair + Hague + Kennedy + Europe*political.knowledge, data=BEPS) @ There are nine predictors, seven of which are scales with values between 0 and 5 concerning respondents' attitudes; these predictors enter the model as main effects. The remaining two predictors are scales between 0 and 3 for \code{political.knowledge} and between 1 and 11 for \code{Europe} (attitude toward European integration of the UK in the European Union, with high values representing ``Euroscepticism'', a \emph{negative} attitude toward Europe); these predictors enter the model with a two-factor interaction. Drawing all nine predictor effect plots simultaneously is not a good idea because the plots won't fit reasonably in a single display. We therefore draw only a few of the plots at a time: <>= plot(predictorEffects(mr1, ~ age + Blair + Hague + Kennedy), axes=list(grid=TRUE, x=list(rug=FALSE)), lattice=list(key.args=list(columns=1)), lines=list(multiline=TRUE, col=c("blue", "red", "orange"))) @ \centerline{\includegraphics[width=.9\textwidth]{figure/fig42-1.pdf}} \noindent We use optional arguments to get a multiline plot, with a grid and no rug plot, and to modify the key. The color specification for the lines represents the traditional colors of the three parties. Interpreting these plots is challenging: For example, the probability of voting Labour decreases with age, increases with attitude toward the Labour leader Blair, strongly decreases with attitude toward the Conservative leader Hague, and is relatively unaffected by attitude toward the Liberal Democrat leader Kennedy. In general, a positive attitude toward a party leader increases the probability of voting for that leader's party, as one would expect. Of course, the causal direction of these relationships is unclear. We next turn to the interaction between \vn{Europe} and \vn{political.knowledge}, this time drawing stacked area displays: <>= plot(predictorEffects(mr1, ~ Europe + political.knowledge, xlevels=list(political.knowledge=0:3, Europe=c(1, 6, 11))), axes=list(grid=TRUE, x=list(rug=FALSE, Europe=list(ticks=list(at=c(1, 6, 11))), political.knowledge=list(ticks=list(at=0:3))), y=list(style="stacked")), lines=list(col=c("blue", "red", "orange")), lattice=list(key.args=list(columns=1), strip=list(factor.names=FALSE))) @ \centerline{\includegraphics[width=\textwidth]{figure/fig43-1.pdf}} \noindent The \ar{lines} argument is used to specify the colors for the stacked areas representing the parties. Both effect plots are of nearly the same fitted values,\footnote{Not exactly the same because in each plot the focal predictor takes on 50 values and the conditioning predictor 3 or 4 values.} in the first graph with \code{Europe} varying and conditioning on \code{political.knowledge}, and in the second with \code{political.knowledge} varying and conditioning on \code{Europe}. Setting \code{strip=} \code{list(factor.names=FALSE)} suppresses the names of the conditioning predictor in each effect plot; these names are too long for the strips at the tops of the panels. From the first graph, preference for the Conservative Party increases with \vn{Europe} for respondents with high political knowledge, but not for those with low political knowledge. More generally, voters with high political knowledge are more likely to align their votes with the positions of the parties, Eurosceptic for the Convervatives, pro-Europe for Labour and the Liberal Democrats, than are voters with low political knowledge. \section{The Lattice Theme for the effects Package} The \pkg{effects} package uses the \fn{xyplot} and \fn{barchart} functions in the standard \pkg{lattice} package \citep{sarkar08} to draw effect plots. The \pkg{lattice} package has many options for customizing the appearance of graphs that are collected into a \emph{lattice theme}. We created a custom theme for use with the \pkg{effects} package that automatically supersedes the default Lattice theme when the \pkg{effects} package is loaded, \emph{unless the} \pkg{lattice} \emph{package has been previously loaded}. You can invoke the \pkg{effects} package theme directly by the command <>= effectsTheme() @ You can also customize the \pkg{effects} package Lattice theme; see \code{help("effectsTheme")}. Finally, because \fn{plot} methods in the \pkg{effects} package return lattice objects, these objects can be edited and manipulated in the normal manner, for example by functions in the \pkg{latticeExtra} package \citep{SarkarAndrews2016}. \bibliography{predictor-effects-gallery} \end{document} effects/inst/doc/adding-Effect-methods.pdf0000644000176200001440000177137613563357372020233 0ustar liggesusers%PDF-1.5 % 64 0 obj << /Length 2963 /Filter /FlateDecode >> stream xڭr-`0yNd'\R" b(ӯy{fWՙ_}3]+]δ*zW6r_n 5u&L{Z?_B[=w;pa'=m߽q5` ba0jf~FwWL=hؿelĿ8oT¼1FZekh \3@a5Mm jf@`^jFg T^D^B\G2 AM+厗 |#BOW7DJR*{V(oc*CKj# rܴ[n|$pw|B:6݄[)_ AL!Xros:R1lN"8FW>ƾEJuOX[g+ R1L!m3`+3:R&Er/[CHw4-rJhVݖ-7(tLDz^;P}D}6n%à c, =ٖYNUݞ\WS2u"SIl1v)[k]ۋz8wr0{|$+H;=Hb4"O2#bhi2Yt2#m. xCkXUnv;t1sai 36k"FYpnB>ADhf`~EnZS2eT$HΉ#mE<}GD[a\{2b?;'o?0k_;1becxR5#0BQǡd|V(ю)}NǾbmSMӊkS.G!yjTh^R4e4 P͟2.U}mEnLNm2n6"\:x~\u 5)W|KQU6%=|?&N)O7&@*%4f'a2C,-;xɛdrM$9'cT2a*]^XY0. =I WqcNACb訂(Jqwc%GRmq 7"S>/{0X? A[Zg$>뱟7-Cl!bvaYvf]uź0i2 @6C*'esYU5Yo1pvr>J/=9=V՗+\Ɓh{nH6]]]\J3E`MNkn"*贼v˯kq)~) %vaH؆/'6=sgb}k~^1V|Jˉ/)7%FVŎbIKw.PBod`%苋 n)}41~T[kj )H( 0R蛑0VMӣXl^t7[h-S;e5dF ޠ 1u}\T,R(i.5JLJ\D CSRtc8iS'4wS1Z5UÛ Np}C*z(G,r@w> stream xڽr>_AaIH&CIU*IjSmѲ3zxEyfT=lnrFw_P,w~jEi|Rڸze\G§{2^`|W÷OZYm!ʞ!GkUii_>=+*ːzqn`1%j`+]-?^9l7{ x&Ot#2݉[$uQְ'hJ{"K}_@-VUa kd5²WrHl[|/_3,Oӏ(^\-82֥Vo*oaӧ.Y{&uZ9gsw{~ 2gV»ĖSHVzyּ2֐%l` PVN*Fi]:ܝ|h-T'!fMc-}0 f=fmeu,x4tngk gƪ\H$>ñ;ڑWtpRu8=뀰E[XH:|:㻜;}Sη5U3/_Ԓ5 pVNa!ySTeN۝LdQЉ=$hgv2`RLQhBM}R8crK,? ÿɠmeÛITQ!ȷ7:qߐ(g69H!E]vhn'ƱH&jE;KA<"6Dk|X8ҕ_TI V[+җ%.r'2,>B$|6iS@VN$::A5>kT!k,W׵rzqh%Cgmސ)> w$]@FgkU7 ӏOI/cCs&ZiP}Y#]S/4v@EC5f5q~l=/iph A;J@cK70 BZV20'ZPx^c3יK&un͐oht a>v" r(`8KUUݿKW|yqe]ؿsܵ`wtʧ2zvX0@o+ tqZ'nZD7Fݟ)=U뉺" O'7`vSC+sիm!t KϒW8X6kăf!ov#ϴKT5N5ϗسծ4 ]$գmUmwUꡈ ZVש遣̟_$9B*=6F4r}0˷|Ōi%uUθ/Ʌ)޸WJzzÍ`TFHӫɯyq~Q}+Ә>xy<6: >n\N=b (:9=;nq͔U`8s酞\˲RF .T%U{@qUkv1st +#"R|^c(v*S+Nj;c[ |u2|LZ$L ğی+-չ S`$40鿒` Ǽ|@d A[#ž2 endstream endobj 94 0 obj << /Length 2896 /Filter /FlateDecode >> stream xڝZKHϯwXz$An pԶmƏƲ'_dOlW^YY_~Yry|W?=-Zӝ՝Ba}˽ZzZokt4]*|XQ|3j ܎]7=|9 p±㽮~ O{,dJHuHld# _R }WPRd׏8g ^3'YW8ma"+I-~yG-= g+?YA.UڵP2 )+Nl*qm _OM%lά锠Bkk+7b<7 VeРM{e#@eIw#P͉WT]VԹMS 7rmі8G[TNC ~ALĪt6&sqAZaOPyI;SH~6}u]!Q\pzQ_5;\U)ԬM˷ *;czڡ uРW/7\80`xf48 N-x*ȫDjN>$y *WBMcK=(d?p dl.#nXtgzd㗵htSBUU7Q]Z?h†1WXbۋNJHYcE QV A͕% pDWVFO=ob4klZ۫`Ed rv)^_:\_`U=Y#jќϳm]Ժ"wڗdb°`Aa=WMn_h8COQr*Y77[{MˋAlt?ꓨQ3@V X"{=zW8uw`"}Ҧ^컃XI& gX5*\4~“dy=Nc~ߓ $w)1K¦8km,k U&f_7v(ћnNX$$9 ?I5&%>$knb:mybOV\bKV#MIyWIL)J.AGz 6ӮqހhK Z$lyd%! D27*6A7j73u(3wvѦ@*wxY'Dq,?zC2/ Xc|xuzYWxͭw,x|G&-쭜3L a|{%&L_k/} \Ɂګ 6gThPd⿖<+NӒPT2A>wdCTutN.O/y `bˣd!(($bԷɦ.J[lV$TU?3N6w`W$rPvIHp/STȓ^mhhWN uNQ&Fv#9?k]KHB.^A],tNkjˢgt4hnꚧrAazlj]%6j.sOğM7 ,o097$x:e86zs̀vn3Y" UsǦ9{hrQȟvKU4(GƨƯ& Iu+)I_Ɛ`fqoI,eXQ*?}㬺1 B\[m>p(+Y Cl뭸N 7}xQԢb@}Or@ϾWiӣ}B>~ \D*O<\θ3ﳳ n^V!vEv;7kct7ր}{oZ؃룜锼F~?NOj endstream endobj 103 0 obj << /Length 1447 /Filter /FlateDecode >> stream xڵXYo6~}ш-)]E-zl[>(xk[YiCr(d a|3"7')4&a"'E^$Ze Lɯ턍+``,aTQXXl7RSE8gI)X 5vI8)|Hp @KG"C\Å_Ž=.ɮ yQ1F{ 3x^pqjB{ԴFc̉DK `*<Rm 鿄 *t,P_P@ ::Ė(nHI4RL;B[w;fH_"7H׃[=t .h&s1H\d}e"]pݚ%_ףR3 #BG$y"gt0 WF+p.)D5s? yud_ @/emCE@&Y{:kvH= bB5m VqiMy98/H^h9޶D):!_VI Oh`516՘yeP"[%"7CTN*:ˍ=Pe3`*4ˆFS[["'&(3+km@oq0^68C"\ωĤJ*4FMMޞxKkjM7֑G3ո=r4{ߢ~y(>\-=L@c?B嫣y]w0bΜfa'<Wxm6>2Mf9mPqO{o `V,[U:ii{sQkS9$Ѹi'MVy.tZUゑ%C%VUߋe[s@ QoB]M*O~>S} $y3 J䜊yaʾ^^S;:  *v{(:_cS SFFMà؆rCzkuo8 .e(]vFlN&,l8_4Q+5B'M+/*7dp],Pq[a^:+L#Zex=yv`7ZwXy:M;BV9qLN؏|"s>mPm͛ kAE҃95lV<6xM3jb*< kkpk0qm"9dg$#|Cp]zG2HV@?HE[\GA| 5g9"t9\tT4 @M‹z 53{8}gEAXmI@;;`5ɶm=V6wӅLKAٷRg?/࿫uR½cɔц_jO endstream endobj 98 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/unnamed-chunk-5-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 105 0 R /BBox [0 0 576 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 106 0 R/F3 107 0 R>> /ExtGState << /GS1 108 0 R /GS257 109 0 R /GS258 110 0 R >>/ColorSpace << /sRGB 111 0 R >>>> /Length 6670 /Filter /FlateDecode >> stream xK&q߯fW; Emat ȿO:uX鑎z7O쇧qqϾy_]#Շ9yjǛ|t|/_<>~㫿o>}Ûw~|O9{a_o'p_nvEL|?|m(Rxϟ5ڥqZ_|?o9߿a_G;/=t|j}|cG|t=^?}y<- .{_棌a+zr"늜mk_q LW]u.~aߒ֔ңYV^ڷ˼4w{>G-W[{e&G^ǰO\gZ Aro:#M/,OQ<^d[)?9|<1y/cD8o6nv<5eW;[;j.Ni^f}%` V\ܜ<:U}w}ѳ/yvN%տlg+t^wT?qŎ CqŎA̵.\;;M{P7yj1&zdClm|aztAb^kN3?ʄU˖vʬ0{4˧>s Nezl}e_ps>&zc`Q1&^q,{g7ox؞؟nr=۾`/̕7rmQ0}y/ +u6Te؟o0ۼ`|Q_R9y"&`W~,"eoѓŤ4_lmmZwQZwR5}W1%@e74o@?wULP=Ϧnqtblw W h[jxޠcxޤgWi:s=[c߳+sm?=1mF-Jc߁#6m4,лg |6BM{xX='=[CFgӣ:µM;ll YBbx\*=gO0y6-P!^ۦ@-0!^gp=>{<$m|uXxL-L&4;gg ,)砿yՉ!۶-p3#xx-P؋glC>(QY߳[h-kv$kwv$kW+Y)}+C۱[Fsceh2o>0w{վ38.s^>[ny2;Óۍyiv[e/n 'Dr8I9^Z )dmG86̎Ly'n\Nf:7F0=+ dn_@7Ln?pnП  A2t"z}do s⹤o`;4`]9 <6 BG !˩nDN7mJnBpi ͜wρ,Bp[Bt"x֖ Y[B xB !8BLm8?!x$  "| x@`!GM7& ͞wHp] B@%d _o!x=pBp 3m"E_O^W!c xbw@ ז~!ByFp섴2 [ 7=]p!/DHNn^m#8MN1D@p7z?SDSn!)tBp\B"Fp<֟/2E[$ &˔M>c>3R!K"àMaTG,! -_)D CNadDp BpV'RFi;AhDp 1,auڎ@Naq|Dp Ow!8%c߅@J}Dp vf'nd afD-2܆͔@n^B>9|x X|9{>aSʲ)*l~O~K^(eC|{=8Rq_o+eD}O)G|OUW))揈#mUJzw_Ń)œ.ފxӅch-L̦)axE/@2igF5q/\m#){ A?%ds-Q_\m?c;VC~ I.y5i$œ!eOHjO!)Tş'ɼH I=3~_{?(0C VB%}?%3H]A?3Wv0I!+߹@HByKW̧"|Znj?8~kg|̊O/y{ z>UAs/`.<إt9.,;3;F햧89ژt[raFn;c:`.]-G EUnDH\?c-W@[EP;)R?)-f KP~១`p-ƅ,UR`H>>{sVdC?UN[z_9p~ *EEz" *n{zu؜|w?Ƿ߼z݇5Zpu|>v?W ʙ߫¯%~b[DsW4Oka+n|}]ѪKkRڜe{[/q}Cվ h=DvT3}_._\k//Ë˥x+=d2hyk窾iڹv]+:qC-Kg^E?|Znw<,?n7nwffb{/7+x]qw_R/Vkn@TT,oYm׉ 꺜sNۋEt]ustiu 1!Rn8ݞG ~ :,wU萞 Z1^T `>uM[ /Q|gnZțuS_f3tSsHMubHI,slq]}taRw/@bLgbtb H :/,ՃA^ 'K/}Pr.[ uR:e5Xyja}z^eB ҨD:tv.JW*w,~@z Ϟ13{ߥ+Vá ;E<<9T-^#]uʚtag75+R@th#-/¼֓!TaΑ]Gl/tâR tYctYse>Vu'g`\L!y<)}\cRrN;gl^GπY@.ANxX-^!^xVæ]:Z!TOWp3H.-I\kra{W7av*ݾjyc\Yjöv) sj˝m:-n>jyÍoj sgoev,TY:Q76yσK~'O:܌6y=K^CL^quSg8x'^q$sp/8q|Ǖ7^GC^G$>/s/ב{)x}-Wn1kZ>::%?x}n'x}si=gxu+yT{ԹceL<8W^ʧ!?xsoׇKC?^Ӻx}׃M'xשUm^{a>޳I޳Suxy%^_|Uz xzSBzk?& ^o3 ^oUx;x/ס먻z7?T~"^GzSmz>^5zq=yl^/^c ^Cױ-5xבoy:u,#On6]nv!ϓk >'ȧ(r W;5S^uUudUCzMcz=Yu_z(yzQ~^T^f5y视e0 ^7#^/K׋J.Q^Z}eq#Oد|U?=:bڋuoAvfxHvruˇYH\s,]?UPi&E3Sm)mIzl%(鷭&&%"V?,g.B[ϤRR[./PVckV "w5Z"U (->FER@SiR~(TU"TKD)Lj]Xܪꐴ-}^t(½SoH! kkc\r_(ۊַP]6Q5͟P5PWڭŁwTo* oSP)c*.)B R*BT%E*UJOB 2@i>LuR"BHTg~HJ#쑪ĒLWƑ~tӅR*S[q#!-w]hGO}> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 118 0 obj << /Length 2694 /Filter /FlateDecode >> stream xڽɮPFmř{0y9er%Yc-(yIOml.zy9jvWwUEEY.xEBZ9(|Y= Ɓ ^\v}YbXI;|w-.D9@3#(^S4sGz弞nh,) z)Kﳆ ҼJB^aUW|;t,AUYlct niX:{\䤎 žh;7 %lCjβ}Kne&'Z9V% *'ܘm}˅o2)|ἸkyVEAn6s*TBCVΣ+M"/'|P;5s:+64U"/ʁNWH]sexPܡn!$өu[mꩦ&,5ٺ[^]=+U'k T/FSDCp6?t#N\ lE: }xDBۀVloÀloyp:de>>*]s Qz) )g c@.T&Ȇae˚5D]9|VE'q0""#Åu)Ҏl}|WD <RG<=3:.o0򑮈4u@US v  а0EZ21XF(B6t&0'ɨ:+׽9Lh/vkyTKjt7{x y=fx@Pt$ذ ,:~\J$=S褽 {Lk?lHYpC#T7sG3:1{78J?Xka2ނ/IL}R <.(*Q9 }_g^Sz"˧zF&+H"`JQG6!d+kI"Cy䤓uiNRrꧦ8q4Q .3a+- %"%s!Cke1pbk}1ECE0=7;#OY &pKwpxAƳ9p/MҢW@nvV!I9QcmsEEf|s|x}/AȀapH}q?0&Qkk(8X`HKyO%$㖙΋4 v> '2xoF:\TԈvdH敄ȟ7I{$ǙCѥ: 1AҰl17hMX ʜ A$50%e_I#SwZjvXtP~;$/{ߋ%|I`ؒ%fgyE0y|)=crd0rrR]waRW%$3BtUTAnHiFB"ûIε=1~:&IaI3*TTd׾gJ*3VҢJKT4r!pJl4ӵrBC%թ%xv#(J](V~%a5Njv͹!Tu^qUQbՊI]qمۇk%/ZizM0u7-Eu# q5cTek+f-ʽ7voru/QVW|\B>b@@LO bJydslxrTp~\'4..WߎaoAYr;R^m"PPVnʹ,U2~Y;ᱲʛ&.o[1Ed5]O}!4H0(e5wF,jHλЖ[:[j@3`m{e|x+*\ZU1/ \CtHfFsy~@9j$aȑH#^n~wVO{#8}s$B8p<ؘm)iSk׃U&3v( _?|xpmGqg)!lZPC[0; endstream endobj 125 0 obj << /Length 1635 /Filter /FlateDecode >> stream xڽ]4='gzVMaanKIH.~;+ieblCM%pA)U:"}FfE_!L Q1D":w{T*Luρ I|#FH4BUH#j94u dbFF:qfJ/oѐ}jv W^3qXOyZk̈m'dNܣG2ơ#Og(Oǜo{Ը!r7Nw؂HVbwhjܐckGJ{b;aj담E{ni, p)#gٿH endstream endobj 120 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/unnamed-chunk-9-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 127 0 R /BBox [0 0 576 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 128 0 R/F2 129 0 R/F3 130 0 R>> /ExtGState << /GS1 131 0 R /GS257 132 0 R /GS258 133 0 R >>/ColorSpace << /sRGB 134 0 R >>>> /Length 2054 /Filter /FlateDecode >> stream xYK]5 _̂4*w$UUiN%'N{鰘vǎ'<3޼5/oOxyup9gWO q6-wk㝹zsmoO>~x<;|}s }lonVdɆƫ~E xG)ذu$ݜ-|5?olwג/3?yF?o~Էl#oͼ3V3CL': +G"VX9hUڌr <9`+`Oq~(5XIɖltXEz:&Y зl^U*=xoStL4نfJh#:ysd=yʷ./K o ҅ӥ|Χ xx*^ڑR%Y {*Mz@4*]h'Ѥwώ7`b#`ߛzvTػ Dm(|IQ) /IXPxXHxmPׄ> 0@e mcM8fyog_261XJdɡ_ifuVr~7*k^c{j =\ 79JX{z:39)۲i9ٺ[K<;!Ү<u$[qƂtI,3FBU[57JPN:rtGtMA;UN:F ]9*T[7U;P_;Ti qR;Tzu|Z;T̀wh/q^WU@=r<8=v S: v@ԞjOnN \lǘQG[so4qKFRI u¹W.zv>Jb܆AO"p՞V(O%rq #]=RBF jSG 4#Q.J8|Wt!bu;h@qw@2|+Xw#y)1Ri+F]}.Q痨[Ivj"7\b%=2tP醌 ;`MXv'<и5-q 'h@ui9wuoXAKo݅kO"`9PG A *j]{XzKm|X͆yzޟx\rU5Uv{ݖ|ۉ0 qM=|> tOC*&:g>rQ\BBCawB}z!`2!xRBC(nָ!4ZChCh-Byv*?;BCZj7n (>/32{VQϖ o܉(xT?t-_2W~P|z)A Cm^d>N\ycoZj l7A9sCNt—O9O!ϧW><ʆT~xlrYй Kic;rF WH)K%%.}I"ŋR4_.~K-~cH הGq ԗ hⱎ:ײ~W.Kޙϯ3X6s(eti }0@ CCsH8f 9484ίyeqF N N{޲rHO|5lXdʼn5~Fg9)<V~jq  &>NgޱǤ47 +( @Vs@q4 O3IŇGms:{.j?XB endstream endobj 136 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 142 0 obj << /Length 2292 /Filter /FlateDecode >> stream xڵMs۸_ o-AfN;;әgzHr%ZFTIvv$8@-'ˉBՋWo+=iDSjru3Qm&UY ]t<<~,%q_L)є R0!sH#|~q` %tUE%UI|  RئYX* U6fmՃ)<(v7mP Q>f<.]=,ιЀ.{óUw 6Xxq|bRBO^RF| ^9o EvL+g1>u_s˶H^(;lU? ?q\ZzYCz'X ӰLJ ;=CL7S]T=7`J 4AyX!_cad ZC0谮>2-3_'uڐM7`^5'Mm:n<(Cjl7g*D zRWc M]#ǡo1mZg8uݻwʋ۽ᅠIJ&9K5Źߢ/obQQH(uY Hi K2tXl0UѢ6څ=iFt?[ŶiKI^ c uؒ: EQ Yש Uu*'Ϧb.e-(?5{vRhhjp/uF2Ȥ;D]߰\c}\m >je5ޤJU k]3&4]֕va^SJFKf@ k4J3^Qde]S+~Tq1M9}{a yr "p!0Cly>`X`Π!S>H) R[pzr:'ѷǾ6U#/( 2}?G| k_'Ϲ ֽ"\ E(_bD'O P+H>H>k􃣺fd8w=EǂK{wk}ceʓX b.VOSi~T'O+lr^WHD罧ϩhz385yLCN4e&ůjFB8Q&8;F_/kMs  ԥN۴. Iiu J]%^ A;|{5#Y(4`pA phd,] Ǿnl8m ɳvsج)9[?~1_h,$)BnK|!.鬏4Գʥ:9Ջӡ9 endstream endobj 153 0 obj << /Length 1202 /Filter /FlateDecode >> stream xXo6~_!&DIAnq+/6 i$F؋m)ē,9^` Á;~x:R$WH^ /G*2̪Jl^dJt2N,з_E.\->YvӤRfUS3wd_8yOk'Kgٟ>G z_\ Nn|CS+@K!u` Ϳpix5 V"9 E]_fUd/_sbb@vMOeR2IBپ  '}0^ &qa3GYaYYs~hjiHǩ}sa꾿,i4뮁dNJ'܉S%rU$W+;}FkGS cb/KqDN@+"2+{nalDGQb́TCŠXLQ-j$Y g:E7?Y$=;JT X7N>!|?-" =s{x^,emo'PJĜFkƤd0"noP v񱩭-WhoVA*6, Ufr;pUK?`9WKe1kf~t0 or Z `?cØfrɰt11W͘l{x6l'0["6"M-WtN7c?ފ卂5ߐ=Nhۤ=b%[cqc)9Kž~%rFU7~rߓfn)d2$jΐabYd;tߟ v@"\> stream xZr}ẈUskljd'٬V97 %QeZzɃ4ztP$BK# oIָ!3QJ & IՎZZX6|S*ws~bpA2qc{( Qxt1YPzb@bB < ,Vڒ'^Z'@X,IV(NaE0#X#, :F'2mXW @n}X!aP SF?IHt[X ̃h'YXyZ&ֲOc"+!-3X,`QY VNxp8|CV8 EX-E` l$v;HRAx ."PkxÓ7 n` 8]xK9=(C`p pA FtP A,(=p'`  3@'[}Z񮙥Gߥuߤ:EUfTtۢhS'ZC(ygsqDщ΋YvQ#w9XVUץAM;(čD7G N3 a7QiG/S_tux^ލYYi&]]jQuMT}AV_ޥ=uds)EYI鏳$X$m>) '~E;߼Kxٜ!Gu8_b[b/꺁< lɏ0^prx%܎̎ŎZōZ'+PM򏋣~x>Optjac6?dL{qg͌әDՖcox/ML>e?-UCn3FP|$PY@Fʤ42I۩,Jʇ>Meې̳J"sņjezd06fYL"u> 2\fDi)dbY韩.g=HJ[@ W@j](Ǿ"]BE7 F="e"M:CdH m>.ρPi[v,]nF9K2iS_!q1 %Hv=?SKML}@Sp(HȻ^P;>-( k>k@Swնk ZCmrJ'EUՃ1(d+QJ`__#=&[^^sk|qd!6ӏ 6CZyڽQ{݈ύyP[-s ,g;53 dq=bm+C/ah |a>sp2l`NPMYƎfq5 ߃&[eTcbZoc9K:rT-)iﵽTC88Zm16;=f| Ԁ*܍މR&MA<#r>`]an 6 loJR$"+%Iew0Q3[;+7mqvZN;~џ-a4</j/i9. nL/$UOb)2/vsN}T/}u޿ X AkxAvwK0#KhEݕW{q$hyY/\ۢS{1%5pYוI[bS>-b~\/YŴmM't VSteg`,-ΧbU/OI.U椩gug4m+M#?Jd戫E>5*XiZ#?DcftzHʦ ٱ 4Jgun{wxkJEe??/ᛢ[Qâ(49, s 2Bm..>fφN{i, L"nUv$ j8U\ClSj6JeƷyt$OXɓg_=D죢ﶚ> .5kyl5:C>cv|Ja}0TUj{Ԉ$A? ;e6c`Dvxy;+D(MAӨ[Aȍ&p3j'6glvPPqE5S_POȺ3U1s< []JXBʿkZCFᏯemYx-}ɪו+uo; endstream endobj 161 0 obj << /Length 1577 /Filter /FlateDecode >> stream xڭXY6~_,TFc#>4mR@z}I Z_vs!BE ?|sQˣUģ.8HD"Y&dew-o/Xe*3мrh[} ܫÜzOg'Thv XQR,ˋh^d*/Zw%6ʒ0YTm^q'g?=~>, T2{\z?ӬR:eHܢ.&2L l2ʹgۧ%!H <'KRnm?dmhJB[i$sc{fցUچ)SY PB$@JyD-wYDH5ޚ(Б%r'0'*E,M-v;+@R`DgZX`j y*kL!=F{TP(UPb"Tj"'ju~mLrHAý0,VdmeM+tFiS$'3ceS :"q;H"SeӚrHQ,~1u5ja`-.*o,h״KA$Sf (fʁROvC;(\q ̭Q T?FcqۯL5)خ {lNnM k4h[y!Y2h[^S:R;o3I@S[mLo& JҺjپ+lv+wc $7,[7$f S;j^msZz6)nZ-U8<%m0 6nn{-B+6$r KEK/qI{*#Wt,8.LMGf˖_a㉍`x5ڠ! (zӀGCbJ~,,_KqxZC, wjޣJ~P4?|ʦ\? X&`ſt: endstream endobj 150 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/unnamed-chunk-15-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 165 0 R /BBox [0 0 576 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 166 0 R/F2 167 0 R/F3 168 0 R>> /ExtGState << /GS1 169 0 R /GS257 170 0 R >>/ColorSpace << /sRGB 171 0 R >>>> /Length 4497 /Filter /FlateDecode >> stream x[O'7ϧcro_AH  I4Y yUL60a[mv^W%_Ww?=^xwu|O~G'?fv-?_G9~xo__7?<_g/#r2-)2t||6^G*gW_߾yjcs(\uxV{Vuw򸎯|wtEk 9#nḿ[=pôWkQ3=^=8գs=ܞ=ϸYn}">}Rh)@v3W=b\g;ͭ=&9Li1Y,3\2sCg^nvoxoo=.'^ 8գL|pCq,e^_TRNT^9}p{H$eQv5헭;qWrЗIUCl}] xcbfo=$^CQ #E@ %K5wG5ixnvU<_BcU C<\zexY}ho]9 GJho/,Tn.,޺,޺xի󉜾4CZI.x~7it:м{oCo jK1^SXf+HR[~Dx+f':knoEʎr, +Mo@HC%h+^Q5ފ,[!F ̿I ,ފ4-:i5 Vf*)OhJ[U0[ʊ!|/$܈a5ފ\,J|1[1`Ң`dVHc,obJ$WZ}}0[I <Vx1[~aczsYRfI .]T4W;P%m4g{ uS)М¶6?m(do6T[󛹍eWfn>ՎW\UZ[l_埮GOsʯ\ZJ~m$Y}o6~]oOjj[;m?3xs 7},4|O3г}|~t0ina=k|3g'G_`_bM;JS5!S!W,29&*I[MJVc]/):ivVc"CLaCήCʮ֪ Yʱ[c.:e4c#RC6qjr 41$j%cCԒc ,Ku*Jʱa۔cÂlK( UL" )DDM2-Eon5)H\K>eR0g $p"Z`eUUe qL좬{(kv(#ilQ)L(Luۦ(ˆSReEY(ck2e:Eو.ʒe.\Ƌ2(ȚlPd(L(eD,#.ʒ82.ʪ})ʚemABQ.KQ&MdQe/SSUS4Epe,O֦(."χ2eX򜢬ZMQ(]ukef(K.Rtf,(3~OQ6֗O}g"0s\$~QTRd|!^~Sg[.]D'c\SdG)ƒ<<^"tEIv/YD(f?xEf<+xx~-$~XugVOǗO6ωH^/y~"] xOy"#o.˞$?-Udn)YEE61z>_/O^ĭ[^-^G^L>C|O_,rWY$"g],JQߊL3/ 2_"$g#w(pΗѭ6>-?E2~l|;Vۼ$)\_$yEy zE~K ]/<6azD.H/xɔx*KzKꩫ~2u5' 5 %[K8˼ ~K<ũ'pTbu3#_n2p(\ztt>]qPVeW0g"o[.6rxS{ rClwE)$ZEJLxo}~aeکlvAIV,TJto*L~Oae#UF$hYzzVR?w[' endstream endobj 173 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 177 0 obj << /Length 1470 /Filter /FlateDecode >> stream xڕXKoFWTj5I2 @mHDX2mro,)G&ٙoe$z?IbrN(g&ZF\+ftdtʄb1-ZA[Q+miD'4TӲh{ZnT^c-lGݫ$uh֑,ivF״h-~b,Q95%7#gSvY>C2gtcBsډО=kvxpOZ<ׁ>x}e!]˕@C9 R 0,IƦ"s;̹psK|2h篂\jO0- dɈͬX΀ӣOsgEET.;%0Vy *%S {-inӜq*eq[ƎRgECRbU:| ݓ0V!}Vb]8N| uhI6ze"N¤fX4)A9x%sJN{~v䳿oOn^O|E~V@%ܹX4^hs;BK[~<iY' 2{ #s-5Lyŏ֢1Jb0OU60}(/-z{w US5BvKvK?ޥZ.uދ-P[g}r}kKX7ǹ1$sxB-堏m2x7#cۥ"6r~eg&Y wYV]zӘΥ^4kKi2 {|j[uy2T1R W4#=a)l:Hqm$M[Kز/F[hi#.GC~ #\Z(&2H>Lw1>xFϙЋy|aԙT, !DMO0]$:wK7m7L@tBճ ˍmp:6R,1مUE"_,Bg"3|=e.ay@U^`N|<8yw#2)/iݵGsud}> /ExtGState << >>/ColorSpace << /sRGB 183 0 R >>>> /Length 128872 /Filter /FlateDecode >> stream x%Kr7!K@g{ߦݐh6Ul4HJ^a{YcgeZ۟M?.}O)}v|-_{۷=~}OWٿom?~_׿_˷o+*늊]ioq\Пo'v[_pQgᅰ1~?__{ܫ[k^ol{o_X77=m-}?]>o_k{޿ݷ}|o۲_OGo~YOs*se)>y۾ˌ+}/[mv.c_ $~g/_G[_~9X>vo}M7տ}A省w߾}_Kjc/iN}eէ˔c_|ޏ1>/}>7]:m%Q~=/|ww_n˗|y&_nYˣ?ήϗ/|Nl]g.sAv6q}>m|,+_c K_o/i]ǃ;ⷫvW&{e;ٳ=oH|2?ߞu.K =2?Se_Ϗ>2?Wwlr]16kz/SĚ\|CL7oe~|h?o'u˒vl˔+?Uyt }2˄7e8>~Y8{>8.W}2'2fĪ;V]Y囷:¦='P(aǦ;6) yoUp_{}XUGT|G/S~^>>t=`4]VlXov=\/sTM%ϭ![zX 8$[޵|}%Wj9x/KR'=ctGne^F_;_[> ,SY/WQ2jz\ǿ[&ⵡQ)חq~,>8T,tMWMlnܩAe2?r_vuR!ڢ8gǗ)o";XOFc^7Y,u™4R2LZ&dse+]&"ܢ-f;3jX7ӺF[o2*-0"VwY D\O]ecSDQu$]eZq6}>]㗄f>nPvf[]&"R\3`~,iyy#uL=m%Z=LF6ċ|~_cez<۩ ;U}ċC|^#e~dlYebo+~êC23k{|/Ӟc)k;+,v֧Zc-.62;j}˔Xe.S=@81feEѥj.Me~~{,]-}Nf- Z<2qIY'+g>De!OgoeJm%Ģ<6FECl\ͪv`G[.^VZ;*}wP Y&"3-{`جwk). Uy[6 $.(Dveoh/籞(dTjGZ^ىyuiJ-Wye2j5˔=ձg{CLTpu˔l'vL$TY{eX-L{XDNf'֐HFG~YR4Zv ZlNyn|IS;c+ N#F\%!|WK,f=lwl2~m©} ,iy˴77z oە7^:ʗ'YќޛH.S-Lr"/O2 D˔426˔g.SD*1hVA=J]/ݪǾ], ٴ.X\zm%!L5J]nm2_`=O/qvF)^i,mx۰y y[dCT _LwZF+N{?2)5۫v-\&r.,{8+eէcSką T,U{uGRbjqm>n2aV"DZ~hNjj;v\޲ 3'dVcv׈=M=.k~{{pϨd3.KIȰjq<4n]_ŲSGl2X bXWbǩh 2e ~r^&(aY睐'ꏀkt4 =iWûCˢW__1#.SlΈ<>LrE,SI;iq/'!,e).fGy2wd˔Ar=l C|N*$b2""oUÓOZ5eZ#+«# ˂/Engݫ,@&Gߚz|AebKm5Q7)܋U;g$m\2/sZh*p݁֯9F4dJ+kEeaEsN`;9e ZX-"&I6}o!e«w =Y.ӼA 2*ÐQOfyNyp˒U/%|;Np&ff)]P]thwuX gQX /a?YYtPX%]˙r69˓D(\OQߴ >t>4ޡxaPY{!&X$BIR_CW25zFO2dldc%GN$iY]e!V|p22{+8#:w泍zh)BvX'We¿kf%5s%FQÓE ؁. 69m aě$oknr.忡cL\6/S]x/t~X#'zs]usCgkqr6:,/lY?UQoc.CnQXg߫)ʻL56t}^1nS}&kH,įE{L=pKmf R\Y7=\Dˤot dg, q?C`qw +FLħ:9LVM$`y;Jl.S=es]z ͻȡ̈Wce⹠1f"")9"V 2눊6>#5}gwqo]goZYlWlcCeabcG!®\J$2sް{n} {²5 ;2?WV/]6Yؽ,y&ʗݨen.{ze#v6 5׋5 dQ֗je":2Ջ xYМ7 FAN 2( joocбۜ6>9Z)N-ڿT2?wVΎ R4@\\M|YA~ C5T~gZ5fF w-grbf 41֗30 n6>A0O ?|҆T/+:NVmn`Jj8+Ok255H"XyŽwJ@Ly3;yvCUmIԼGzZ\]ջ(]<2ywLlFٌ-2$Fk&;:%;%/Xؕp8}:Ob"띎;F#ԷqXJeii13ٱ3K_fj#hi6g^Ύ^r+2k }vLEN̷ӻ6yVZvpj$c c^&GBD &f%Ċhi7,ؘ㖉BceWeVoV8rk뱕;/_W7k̮Qm~ݺ2\@4}҈aZ7N/aa:KC8ݏ rU]=n209݆qe=v6+Hzq Ĝ~GKk,LYLj<.w] &Ӱ[p<zt{R q.V!> &!-}at"=!=kЭљ֙HSg9Oѝ(OX򲻖lN*NF6u˜_*f"ƍS;2. (e16cV(*[MiX&<]o[%.qCsflr;&wAEwyhS0kj 3AUٝr$rr8&,nbE8@I;v׿,=äc7y'K.SD˒їɼ IV_/ ⤗IM 1;<*dv4[ce"fn9[&37Ss+قO&&'M>#_? s`(c_vtS'"|n=(IZS׻, Aܧ 3Yц֍_e<|mEYG*No3A<ݍw  B(nv,nG-یuhTիrkY.\r1cupOklXME9 Pj󼌳cmgaҸEh2o bĩ(]w"|6 {T.SjA-KNMbEFOƴZdQ+ۄATN dRYb敕;LجJAG֝lfZ&OC"Lv4 O[@a,äTl#]ĵo7xĨx‰=8 Ϯ.FLD^w\(nplsS,.S>fΙ ̎ V xcfhxfAˠ˰/^Щ#|߹%x[\Y[]&qeX&j[Er` 1nS/XeGNLًm,Tʰg#EzIovXL oZ98rLzO/`9,ܬrFfd ʹ)Nt~X/EWw"o|D;З`2ՂͧT'Ѧ)`ibg|M\t[=1:#Rܭkԝ,O`N!U֮w"5ަuD#eS!~5Ec)?O%bS[n̩ԙW4Z&|b"F߲W*c8eT֨lgbw$Ɠa>ԑ,ק2g捌5:'{OLU jqjq.woySe,mB}u*8~{`I [Q·wp  'GF!]YzW@%!%+66 fgvX[2}El77 ^gmgT+r5!e|F힍>U͓p:0S{~_2P_/DVbG2t٨#+Ѥf~!;V&ÿa@Tn /u7ȂLYMs WO݅P, Des.Sً*qC6%#%,}'m>8]fXD{hzw(GNV +"ŵPtXڰ Tsb`;"^9S< JŎ 2qnhLQ/(7S)>v1^/^B2e4f4MύZ&Gu}t$Ht:&N:mup (bSĎ! r ЪbL qv$7I-sWCeZڨ+䢢֬6 w&JәBH>~Mݢ·5<(/^y9QeTxsE֐xp\U$ۻL@e_\nG/Zg&(YؽCpzUiAޢx l|vן&OO$6,^M[-=wrvCyvP[)j?̺^h1RkԘ'r{G[&2:Q`1J?ͣg3xF2hk8F/(P7yj+7iom5_yprN%#'Zy}AkUO_K*ZK)O]&sH"!3(s.H)Dϳh[~$4 Q]6#w]Aܜ9 265B wEAt,/V_bZ͊gÍ+)IQ?)?/2uE(vq6 vnMOxBvz{:gwjaQ$%qz,U)|&rf1 ulLj Q büe2~OulVvZ7my88[*իQӨj3m ul>w>w"+_WLWi;_;=8#:99 Z.?&}Y;5v}o [:&1)wi^UOf }{oٰղ c e~] URfT/xA4P 5cjm[Zs V'jHsT@wze; tlPk&6q"X'6*FOb1a1*167 3۝W 8!+s>w}J^&N} _&3Vܺ9:8C}q]&>m Y&ilv1W wlIHJf3I/8_D_79([e=z=Q~sD6FT!Y1Re̿<<.럕]j]sOל3cEo,@Dl36 ?sҰɚ1#:v&81?=gԈ{z;/(A0TzV˲4"²pi'MʼnXl=Kl7!G#TQ蠏 (rDȐ?NӆeG 8p/jՁ4cXѐ5Y[ա0WD^,e}ԁ)OoM\zѱސ=3b\5V,Kn܌k7n7Nohl\&];›P4POO2{`Dg(w- E8Eg)?#_&VUs5ǜ `t HӞBzNL>)ێ*2c1!!?]A !Nu(ƳiZ&N!ZM4mLhʏk:TH _%v pv0鑸,.Dq_=!;콼'*#,Ry5LyɲxYmڭk+yEs-z^vh8e^#yY+(dX'2܇ ejhX |Жg=#?7p"5DjAL տeo.ȾԹ\EI{dI_&vFĉ.rT**㉍jf<^&"Eo!w&kgu`3"ucE>7\/SO 軆V_N_%F3F"yMN m(EYȫnj;>P9Tmuh~mׄ9hbT}ڤzpbz`6QDS81$)+9 7|]ڍ֍LdZ^&=;6]5E [Ϯe"~t`i**p@МqeX RL[I㝳JJ&;02bvWZfy-a,YtkLp> T/*6Bk;G4)9/{1η^̏Ih?sZ`"ښʏ24-6qGzYg0sC.7A;7<.)ͪ#3[ C$w Uj p 9c;o̳ok/9;f |Ϛgv|{xA6 X 8 ;\ 6s?۔q?geVֲW;\%#tX~C8#6ӳc ܲVxeꙭqc zYhuޱzT<^@;kj l[v>tDĄn#AR~=W#wpwg1Gyc9ޭT 9O~> t:ݺ✨j4zN$3;" $"5c)Bkt=׶W_пOI-K u op`4;/uMYy_x6/Bu;^0L3g>d3Bwqw%x5/mV3.~NeWM|ɞp#ҹe귵Z1~9v$GBqnqc*FªMFNc.Q,S11Dy>l w W{q58=#f儲teBr.Z&N.Ucl'>Ek pT(a*1y썘 N2::G9Eݛ~ hϠwg{o7G_0&E61ޜc|uvw'éeͩϮ7s`-zCwUW26K9Ksf%_/bo7^^Y.=| ^5!1M9"*"տ,|ckoϷi)6 VAj8/8F:#M~;9u ˁ,%̡-"WX*:le!nd|vwgޱǗ)u>q_2)nȄNfl}n7$.S?̓nTq#w:;e ׾LOnϓvϘYmZ_Fo, Lzl*hVVW^zCTW3M6r8%*BEUe~=00»tw/sd@۝-3!=T75NnL)} sѰL|!EQrLy)+!$~rh&*9.Sxz=q?{a Z6?Ra5fu@JTͮ{.ѕF_+/w6x;M*no?LS}$}-7w,݋;v!+j˄DO[1QǍA$kPQ1|:,:y /]PeU]YJ\/,dRXxa7&] }yX 'hW5H#մL{LԵ9s@>M/As|f%1\lG ͙.S P0n΁n3OGl)2]xlxȺ61\23C nT6rm•-o ]>tx넼}9FY1sdA- W/2ox+vqTz4nogebV91 rBϵl7Ɠ_oq߈dIaW І˔~N{m7F[Jk_ckv]H;Ozͅka0͗^&xp A-Z>!G^ju'>A0n "~*LAVTN,9wlުK;T4Wic B+m7=2G?+*" /a 5ͦkb.אӾgͳqvsVЮʴlezkXo퐱- hT;˄ϟF?Yѽ.U**A yx3d(xuѳ)rg=`F΀72QV;"4~*8lhnlOWVQihmXS&7|~*&j,$X#;)O(Yً~9%eXOX`RmjydYZJM$>=Kej̴#fbi@,P-'@o/ϗC> AtL&ӑ Լ7Ɩ9Ő][ 4)Y%/ׇ*%s-S ۤZ:QK6S]xl!l5:OyQPBNkF,Y`LăDk Ck;&6靽w,9v]"NщeoW,YVc2e@2?+n\?Y׮S'%v=pwvFoC~AE"2IT>ɑP~pw]BjdQLt!g<;=ė)cbYް,'0zLD>H}z(ٵN/G({\y/G c7M Sk˔8uO9$.Ә$˂rPt,S״ӺE5&a9γћ[k`iy򙣫:`jXRZ 2inT&k!Pq%~w_XC x91G Q2*LuSm 2`ΒOGkBnDw@L68ptMĺMrg\2 O\'t|]>@J6XELT/'WM,o:[G1tRL,,], y<<456 GjK|r,U#?פ$jRcӦ;J'ݕyg<7ǨH,[A,xH^&7|6%<31l|nu 2ґڬ/) ;Cv7O'ӲsHlBr~{/n9ܓM}sO瀠0=yR,S<'Zs1p_4$k^^ѷ$ߴQf(:Z=&% 1azsЦ 5l#LHO鹃Az4 Њ2V4Focc2a#Lp|`E\5Y&v.e3ɮv8u̬.;rPe"hSv 6@S#SF֘jYҝs'p7,3S =TvyeХCX7J=2VU!1"8xwRɻLy6-˔H䟗]yӀr2=ZͳF,(n'~EO?4ī[2[il{9k t?),'cxw7twGӶ[϶cw[ʳ|wgYM{e"&:@ǍYi7%{j  e3hJe!~P5۟ePZlHGt$n-ͨ09|r|'}1ruo ~n}gayX^w?z]8Jj!kɅ{U /sڷYSW^9ycOD'B=J0^}2ŀ;{}g<fjKeb/ZOo SjͧԂ.JAcQQVzD(hdom7,Ox`@woGa[]|;3@U: a(R[wbz:rA{2}>̷Q25T4䍝yBv@zT׊MSo<8O  $e'Ay0uW]2ē5 >|rub<OGG&g.Se"2>2kE3[fcswj>#&a5e}~#E)6뜏ydy<t*q*qgv=Ԕ>R0tfPׯXZ=,]>1LYdsM Xt%Odhcy,XjULnUN> 7Hy5uɺQBXQݬfeˊ0D ZsNJŕzk iLmƞIJmf\>_Pg}W]>Hu%1.;93̞q>n%\8|Q皻$dn~u< t+S>SEEh&*M-TVhWhc6?;bz5$^x&<ӻ< tWS7Ͳ>fe{!$`Y=9M_ⱊ{3{EtI3Γo$J~Ә+}i'bX)+4v j,5o< '}_CQ#vǭVebĞ^}QX,2ܯ>8olEo@e K|@Ռ+JZ#Vq ,ƿ: }WLUo%ⷒqC,V Fv J BjA}bg~no3'gP=}g:97A]x<9Jnj Xzs=×)oʂxpĊ!Y/ `o*|,Aޝ=!ͼLdOI/Qy7DtC&LO6MZ^1H6ȎTt͡(hfq/WlUcي6:M˽u"]#|L(15yTZ:U-n3Uӽe9vҟ͂!FL-JJ-S)."A5+v*-nCE!?o@z7xfޣcJAgݗ{YMwv;WQ3-~AU%_.S*h SxV~vNDfzFbwJwד>vioc9>n8SG2e">6%6K@_9l6簩 XOςe_Ɠh/ yJfĵg^k}V}9|1 >Z2NgZMQXT<2qzi\:˷ӯwmt|=o<']ٕZkmZ]ެh5WVt䘣wڹCxLxL4F\#d4 (sLԻrK7IfS.{ >E/>/Y ,ܷV{c.hsfDI|fh,S!Ŋ&W*XfJc>@fXY%6jUrV5YSqXM }͸&Cv>9Wwe"Xd$6W-nxB%Z}m&Q}C"uԫqx{:'6YT6Nfl>Ǻf;բղu^ܘ:jLt6s x)g3A TO)Fo]^I8q[턴3 fQQ2w,V[YX}u|*BLDRWpy3P~lV}X; jTZRRL|f~Qo˶5Viwf.͞vv`{ (3Bf(G7eG2S]e^ޕ酦ئA5~s!MqĻ~x g'H,J9;{4hwB{?d/o1ksP.SOφ/ţ?Eqy3r)Jc*LRDn@ycoo=#7gPV}^'x$pZM;2rb KԽ ˡyBr8+P^Aճ t5YT#wBe^-r1yEʽ1GTB2-%EULlN_su zuQZSv9+5]SoME"eI)r*{r4#t5lZsɸo}fyŴQJ^ɀL#7*7Oo 2%l/(A"g oݚD&dLDK=X-mX藩N‹ŋ>Rhsd6bK_*fn/Ɍ2XG6*nۍ\Ml@7xo?)T "4tad`1ƀk['zc.n'+wf[άzĵ _ kB"Wv#|D֚ Nn)쓔Xny_9]6G`d25N/ D;#m}˔ϟYO+zzቁ]2HnUjy=t]NRNn1=|baGmg+n;CDyVn3׈ R+5ͱ5@)&Q /Owz <6-v.s`nn`#1+QWQySma6^XwV0TLaU'[&W>sĘ8f)<TvC 4ڍos[G)0>]ιz׵\4.%JEOe}tLsp l n 8eU%Sy4pƀQn@ 1mjCfuu5w@#fGI,K47o/c^67?ԛ#k)v?nL|8]ÓE Fʙo*?{0x{ꃖtG@T{TEA2hJoӴ-b4F"d^ m hCv!^=wX7ڬntFYԽwD2? jGƎ#'|D1Y<6ḶlhLօsy2reCqj$2%;Mu&f|7RsHcX-z|kl 8z^zZދvlqbP^gLByojܐPbN5V1igRP݌ chyY#5wœמ{/sA@q>~zt-a08/T992YB[s֩{=&Ӄe;A^֝,o a1 vRı ]f]% $lYp\2{]RcT;CgjXĝE !3Z2$f!#໖LnX_wv-Tܝwtbwo8c(A2tk9c-{.dM Uk$ۊ}ڎ@Re}vJV>߅Q5 Xxo۪2D0VӁ9Q\x_oTȄP !c(27,=F"*6}6$ğKdQBCC;Y79Q8 f/6CNjى2Fʙxlx}X PqUC'"W7j l5Q7]A;3ƈ m:iaY9-Sb #D~V6[ϸR^y7 4'xV`S:v*8Xsu2i As$š;l?u5qyCiݔf6jog/kcOf|i`M!ˢ'jՔ@4}\0SI6[tZ(z~eax3WTHq h_o`ܗ'ΟUАM2N=N{<@|@wo7 7zfe%[eT Ṣ}s8ip˘<9)77~} >ԄcNɪo̓7c yk i724]酡88L,x=KN`8B5dS$ vǮؙ2ʶӲm3gzBc`Z^Kqr;c!k]ծSu}z7HHߐ_ubu5nj75Sg 7#["/a!#ʕZ\ug Og;㨘\Rc*X%a5Mxϻ#2i*u;BE%fE2 ~oc̗]e,{y ;c>!2Sɬ̡Mݼ0:-fbSaSxnTJ163*M"Q#Y%QiYܱaI- :(ٺ3M[K;0BiuRJE:籈ϭ#dr䞀J N7;u*N3/x\>>2VLn c~c(m+ eH*[tvF>Yh\'H4˝\q3GXr?v,p-M||dC?swM xhV*h}.^&rc'81]z#SfLo 2d+** ֊Q|v;Y]њ֙9La MτN׍9Uog^N\&9 TꗉlD պq7F9/^`2卶2 Pk&VI>v"4 |Buj?'/S}ez{ b"(R-%N$8x3Y鳞m0R-65FTx c[xFcd~I\#A4qpc33H2ut ]UR+&&¼:'O@V\D Br~]-? 7o?i8haYB`v_;/SD){h[ hoE\n瀞G}TTNU7,^SST9bH36kz `1ճnۼM"Z^&Nqx\TB`5,zV]cAql,K3ZF9de)]f5YFcbݐRr@Zl "32eqvW\& rS#WE- O㎂zHCe:j iӓM_UnYrh7$5k(EGNhlӢ׊CIItf螈՝T? cXOe[>o7ܗy*@LGlh\[Y3@]]e1$1oWʋ~ ''Av^`/;*39&YJ~o4őU/vwͪ%k8oVƾl&8N o;J՗HN2qWTW5sp]%Ũ}˴JqE7Q3˒}ZY6q=cv+zyzyspo8+TȫO(HLWhe|B_ W1ݠ) 1iZψ4O׼1=2v>370, Uƍ՝ͫ;oʏr o;lzh~wNT 'f>wLL-a59]<.O$fLݘuO Z`D̉9Tv Fa0LAuLX'^ӿVfH^8(9z3C]ejqn} ffj %VmZ}=ܲVmR #06<02{*=wU C[VY\/`ddJf/\Q(5UVG꽯/b ON$n~Y؅؜|a=֑>9Hv^ӦwW͎ }Y`kxɑ/s1;f7NgҺ˔ŻT%rƝĉn;n^LU)F B\[qۓ|2>) TpȒl?`q r@5EeI3#-}0Ұ cB]Oݔ!*jg}`x\bPL!Zz8qj &ӱ;L.ԫ/>jkͪ}Z+t7.  x Nun /!c8q?Xy'^cgRSP\ A 6゠aJ:̽(F⩼"˔یw웷UDevMj ,LO~KLh60r(bbD_QV6wJYP2"W xlDI 94Z|ҶϡdlղZ境ΐIay=jb|YR13fJ-;ܙ2h4Np$g)ϖJj*/ Poʘm^:fD|?}:XDDi0l,>SrݧV7>8ᕙ'e~ %(hZ߳JI榹0uL5GQZ(PVj^Uzђ *xMɶU&7RQ ?[3ݑYUɷJ2epuF w3 7yj^[z֡x`EƩ(OaU8m ^OAٷ_]{G-".e![uX;H ! vn4[۬,.Q\Aw v9Lwď7f;VP0ϣD7Qg I80%zzbEv"Ph z(8s5vxܩѵ4_&b'& i,^ 8+h4nArKwo?~؞™vx߁Z&7đov wC`3tU|okɛUɷY], 6w[̟_;h/v|TXh^6'9nsDc2W#W3pdz4wV:nyM%?ٙ(O15Jx!v9k$%La__x8:5"u8/(`ܛW+9ͫ9y{\YdPB\&`pDu݈W#"x]ghg LľF"`"7èkYeji|fP*TP\-mY|O4Yog =oTAfoFeMU{/lw>>WG rw^Y6ˡ;F/Sߌ˒hbgw8& $wU'm0~dϮB@d4_i7碻ęW皦eq@rJL |8엩Iy\:+&ggkY2d\VT ;)˔ojGdEƊ zng{p/CeHOd ˂Xcu$\9X<F#TN{Ō9Dt8[|ig亹tMX慥1вOnLݘȿ){nQE)t4j9j7>ŗx*z^xb-#^'k'{\JyӲw 6!0o{f>OٟpD12u-i,}ⲅ./hSAjw72ȃo/5Zj%_%׿PVk jN\ώsCrn(YnQJP77S<֧oBl(~`Kd$:_ Qb0ڬ:Z?ޥ׶8ͪ7p% I !!dBVrAп &ϵčk>`U'hb6ݕϋ^QƷBȬ~j}HƩyPbj<}(,U!ȶ| (/P4aE&{{?Ξ@=$6nkje~{ 2p+<;b ܘ H HC2B,ljv_ B&ؘwD`F'Jy(wb4i4'bd#orF=uJI"oӎ: t?>pP)褒!]E6H\wcjʀym;f(ijXsތ?+&t3ec5?%jHb Qό\P!T2wҋ* >x["X}fX:]|W' cxn}Vh˱Gq=\1W^Є/҃>G1.M9D Mդ@Ѕ6^4zW{Uzݪ^7wE]O6U#<}|]vpo2l'QJCq+&H~Mfn*H$@&;AsFtIĈ ף긨ɜ+a!3A^8*"J p+QZYeaBHXy׺u`7J 'F9jn07(oɊ N,oxIiwL8$Za[*}T&GK rޮ`z(j>Tpxb] ZU!q4QQH HNYB|L\{µ㍼kmRmRф҃ wVLfVv^fh6\;\J;W%]O2?ҥ|:6J$t'_ܣ|q6dϜ~@6$XX~Xf,''XYTDȎ̓u5k}%M睈{ۍ۵#H<9<ᮢPRɼ G'.׀.UE.k=+`e"Vמuf>Tt["k"6}r$cYddw\VՐheWM-k)wk,owvHڨĹtrȾ/^/z|92$zv 2ae6G9ǜTvi}e^I]Ⱊ_;ϴk0‰q`5bqgE}^rϢ{({a,wcz"_O3<р3,BiG#0I~$<#x#ڏ`G,,t`JARD_ Naz{{Q)A2 PMLc~?6{ͷyI([3ׯrk>uq~v?ʺ1u{_ӿ_ǿz _oO᱿kkSQ޿Z"5&`ӏ?eǿ{=l2Oonn& ~k>??Tj?Ğ?+O?_ן7+ٝ:aJ¹.?^alj,3ϡNshLg[2imbu? _PLw&o >\2*^2VBx46o'q$yn}oӭ67tMm63l% #/vtҷڛQqSI#/GMm!mS}~_ 4o/rفOo6y_~K6~]4ifD-( lܟX_ןܿ2{#VKg*&Lm_6#*#m_&ΏNOHm>>eb֌:ihm̒oӭ_pm?V@2qGrZ&O'?qm m m?FT F֛??_P٦>pnoz ||Lw &P6|| vܿW{),M/om/ȧHhThzl/2AM96A8Z&+HQlC KU=x Q< Q? ?||ߏ*&Kua- dOX0M|^|^+ mןQ]|_b|(t6?&k?蜀9L_K2foem?;pU?(Ll{DI*CuiXΏd/Ggճ_?,G~N^ߊlFNN6v;㾿LL.g]#"1q@mv_:|H|Iܱ7z~ʶb?aMۄן^_&?-E%%2~Z}(l>Tuǯ(cBMw}~&e&h߸??e2~w;j| ]~M_?o#r}~q(>?Zȟνm=l?V[?ev?|?<m2s7 Q|+$TʨMǗ]t߼c6g% Mgo"gx?cFeb2]MPB&']&ⳇwH+;-Hmm"Ɍ懾Z]z6#3 }g^`?AYq?D-,9鬯tͿ|Lg2{XCw~VY)?M2Ktm|tw1?Z; /KUR6a)'-p$B" 2>_ %ԧ*UG aGUž%F|1 O4O<|&_Z{LځY6jӏoK=0/ 7/!Z&kG|ߺ$$UtǬ6}}m?rJ>_S?V' ɯBoǟtWQX&?͟jƽe2-裸D~ ܿeOn_mbdOܿ ,DSY7'w 6}sMo# __E꛽"̧|2 m6_`|9 AMO>]OQM9E uh~nUa4ǯib~Sk,`G,&=n |LY/Gl57A/mIGk.?LGhW~L9ۄm~}N͆52]I g6pd~>{I{HT#{&/ǏC L!yLwPMk O"v`Fv: ~k cɿ3t_r&o=,įe Ooӭ?o`~/ KZ&?V6 Xu7j ,U|?~jUv`/˄D|&@j}>!Z&>g:!MW~36j|f% ?-΄2?'+4Pݦ{>z?M>·m"($mWX.R8_[&ޏ?(N߯Կ@e"e¿2CX׉'͟DG d2e"~|?x Z?b@ߠM|_mӽgn}:8*wl_ŷF~1o&NJ1oǷ]ҿbC|Mό8˦ATۦ[٦Gꃥ~|5}T?v~o{?Q|Y KR\Lִ.mUm2?{ 2G|P|gA`5A c&)#߿}XG}01~O/-mwG+~$c}ߛEBl셰IV>~1Mo фmbIrgA5bm6m:ځ_&GH}7ôoK_?:/*w<1>5}o?v$? ?4wE3Ew_& g/T??3&Pqoo56 OfTk`o_̯;?ۯO_2jz__ |o26O?aXDaX&D ?t$+=~? k rU'I>ߜTv6})=M GkMw7+ttI{㏙SďQ:do&#dYP|JW[A/^"I~1||ٍM'ߒGQ e~eϿgr_t/">[&` Aق ?m2e|YW,$ Q~կp_3DoWogF?o?C轿< >?*ħLB֯dL}?' 2|or.ė ׇ3op>E%d>-=~}.|UZ?6/) 7OA}a8޵e3CVϿ>*5tϏGcx1#KIWVBVBR0ID>~?%iWAQ,_ u>v_a:a]A|gbQJ- row쿁eT+o?gAG2~m"O(΂ۃGM6gO3pLNF8yd0oWg}EsVLc6&7cD(ZCKη\ְ}|a2?c[s-6m$u>Z._QKoժ2??OTV3a?TnRA~8{!įHؿM/)/~EAp~Կjn\#hjQIբlC{|P|鵾9|yCh#e:6|H}Z||є?o~=?Nt*?$H~+_3|H MW._ZOIS}K]FGߡM~efÙuRG}/d2G@УϙOy2|iP$~yV|ĬۄW_T^?|6Y?&_hn i8S*_[>׏g[}3q1|x]$wOOm%>;i"~ ?&sd%矎矀O&CCL6b~-C|#L|)dX&_c}kKɏ@|jZ?φ) y+ˊ&~?eD|~(ץd O.V֍FDm+-K|zT`MIwY7~#+|2~}~/$/XBϗ$?Cg 9mbECOqq|2 _&?SgYrރIވmos6$_&O: /?+ⓡJo-S波?ο(>,Οe>LAQ|X?tM|_.zU9t>}}2k#>L:e?^&Mq̿epe\p @O|0?es->W>bA`oJ|7ꋽX*[|i_=|dd9DV6|irH~iC2c_|@TgOU}s8o _L?_'ۖ?:C}|~;&ԏwY)_G>3I3p~(m>r߿Y&W +D|C&>_}D%K4~1@?_.:JXLZM6]@Gkx>_yGߙ~/6b >kU?lm28| |@>aC~M<#2?&8s{YAߗp-͆5i2t6o:Ώ3 OG_~2^Fx*@?P/E/s=пKR_Q!~~*+@~HQ|6>g|5>?l ]OM77G3`w%Jz6L*/aSYPB"+m"?2?gß}VT对[gBL|3_z [BI_@~M\?Gݥt'OP?U??F?D=.&XA3`Q)C}Η[Ca}o߰E|P+]?߬]"Q7}V{?vwdr~PηL tc~*)?%/D}T?K/<? ?Es>|B#HSh|οw{^r&~N5L/P$z|@]$L/F52Wt>o t9O"@t쇾\x=2e2?3_ZA8x~&?_O²s+n}bd8~U_6e[Ce#JW|pDmHoM"kk ϝeIA~]׿W5ߩREmjd_-s6MlD@᧼[ÍwL͟"ʿeS%+tG"?AR-{$\TJ|wU V~N94;ؿ_&/X3/ӨT?p|_} ggW{L*y3滷?!G~3o-bX!?̏[AUA}?ߡL_~O࿆[GJM_ʿfs5''aMFXm6_hmǢ)C/M>B&_&-7J9_Mt0Bp7}.Z&??6/:"Q{QIgcLƗ 3h}"cn+pO?3I~XMZķ^^~V TR?j~]_UEjPC 0$_2\ݍ+M0_M~ȏ}7|%5AxXDctzԟ5/?M+j|V֯Y &{>9ҩ:pON7kVp)ngSZB&V%sZA/gre h`e~YdݔR|$[V| p'<}Z5>mL,#*%M/+{~e"[π__74D蝿~p@} TsA?}oe2ߡ/W |6FXGL?Gךί+MBF~SBn~U2O@-~>.!G~"ѷz/]~'?OW ⋫oIrɏQ&OTp4Q/,oDҴ~o?]L_Q#B&?"MI ?ʿnum$L}/?G1 ߬&xv%ς?~OIe#CT`"|i84ǫ>ԟ~T6.=~ZfE;yk,!#}m|~0)2>}D$Gh}w{&ߊ~M|埶wIwu㷮Ay7X&?oWU}u##~ D\wBaFοS?ߖIZ@^볂?`!見ﰁ+A#kr}IWϞ/ϕ:O&_^&+}GM./2ϟo/lʟJ2A#2ye]1M<_, !U7$5Ĉoz$?wַo'M'.$?D|M9u&;_ w?h:5#,f}PG?6~)O-jALO_/MF*qӡ=XȬ>db|4Iۦ~#C91_T_{?|>\C~~ 3H?\!y~eb>K}:EF巽sꛔotA菐?G!"٣K`2?ϪnQZd`_I}LL/sчF~bR8&H|W/2_)ʯX ]m"yKStA:㧾̯π_5$~M&e~9|L'>~_&W곡2oxZ ܿق ? ~oPЯϪ1YC;Gm"~TOP<⿤~PtF__.Q]m _9|&ַ/,חgWW7Uw_R}'h~mQOQt~}OBq~|2q~N}.GWU~GW)݋>M~o7}LW|灃1 ? ^zvWIH5,7(;џotȏtwlH_~FOVe|-ϱvOw!>S^?/c3sN|As?C:WDG_鮟9}OAt>0_ɿQ?9o??Ϸ'Aja<|w"?)#~&gA&W$寨ϫ_O//g3cTf`}|EQA~Y $_I+G?6C揃סD}ä7L,׳+俭Mſ b;e_Y/k.ɃO-?xa_??M䷙|;Q?~ cM%'/>>}@}p<Ŀ='W_a[tO}("~)HS9  9&ו<>;  jGL_~Ml1h+,W x>%_z~"7usEcߏf$?K,~ӗ3$er6LGK}ebz|1bؿo s į_Ǩ7&/ M52{ӇKGmW>ozT~?~L>ʯOuO|6x矞-?UE$?uciρ9tC}?Iymr ?!gͬ?*r~Hң' G~'`?~;]fCƟﺿpۮ篏OኯgC|H;F߷oxOfg/¯můϡJ}zU+t&?GS?Tt'w*oϧ-OK98'H}BϞ7yķgog寻C&&Rr>=|$2/;+U?XkOj]u*E_t_2M@#_} Emb4 >v>7?el`_A_~tZ(||~2 ljO*\EMIM3kOJ_&OX&s_|I|qb"M2o~zO}_,3͊C]pc8צ_̟(~{Ͼ>WG]熡T/rOow>@}Yp3]Sp_ ڬ~g ?7923 Z>?~}0k-w>T_O?gYgq|x>~]?? O~;? dei8tU<*9|T8XDVf9.~]&WL%6_WW=9u>s>|z&~;+~;>>a;<_B{S!.7} A%Ԧ7~(~?V/_T_21 SٟaU?>f{o 8oM_s^G s~y?^'w&6:CY?d|rW'Ώ' 7X?su7@?ߚooU}̟>>k#/aɟ?q>|rWF&?O~;{{WWQ/EMFC5CP&_[fE_lR ^YC[&HϏo"G6?ɐHYY Q%{ e"?c z~eb;&>\SP_>?e֯eb>P?|$E﵂Qk|Hج|v~kS~a>]|2~m9}LϬ ?`s~iD}n0?[ZY,?V?NDy6ߟp>Q<,ӝ V>n8_+z? Q_}lkB_>I};b?Z&ַWY0 Mgx~.׿߬e"HZ ~3(a}E_;~~f qS%?&?MQ~ٿV~A=WUwYGgM3!?/+Ѕ ӝ1ȯ_}8Gk;>>)?뷉ϒLl1?g~f gCET~[$΀/Y^pwQ|_VœoSH*Ih r>ہoWƄe"~ۤP"Ɛ$?ğ2~Еb,=ËMP.?O0L?}4Kٿ\ҿo\MsREeI~A~pk ?.=N~Y̨mkT_𽉟'Z;k>e~.7 U _FHeo0c}ħ?%_i.뿱~޴~~΄֢g7/4_OvO^G~gQ}ʈ2|%)OxXÓGnW}Pr+s?D;DwHW7F~_UUkWW9|5L8ϬeUo񣏿E^_!k97+| ǧi 2=29*oٮYW1P| j_A^7~~)~u>/ΗI}T3>𽈿7dFOseז l {D|+?/mrWy|#+nF ٟR0MO&?`Qm]?t>@e}WQXߨZ߰x_nTe|?CȏGwg.S03-p7Zȏ?0?MUgwKMo+om~~N8ߗ'> Գ~L>e?2~6q?L0MO߄!>a 'G1 +QKt~2b|y?L|7/΁s^ #Ө%ordY +%WW+-8?#g(c<} ok)u_?Ŀ=<= &>,:_N~8׬7LJ嗴9ч]{UM~YP0QFƿQӆΧ6E~ G6~_,G?2; 8?"6ˣo˓%>OQR%Dtө/~#lg|L?gWч%O2"2w2q~2+өߘ& w|ϑ +?@yR}J}تm|߷Y&'I|>3O?ɒ/ͯ N|wSaOZC}~o^g.k3a}_|L>*_Z&>v dž様ڦ[?lӭ22'Y'Qd F6qU_>?B~"Pg%'4n>?ȏ}.Ls ?~N}.T9u>ش"eЧ r$EL׏০ ]e}~{ZCUSG?ƿa ⫲'7Fx ѯ}>C}_畟'ZTdǖmifa9*2_C\-`t7>|> ~m2~"B|vQ|6k1_k?'>)??]/R9?u~io49_?4fO g_sׯ(>%ǥoԇ~U 3͆P9o s0s;SN_I߬ >6ZOUGmQ]2|AO&?N HY?DŪU)tty |E$?UR 9i/}p>-gpherc͡L{O|jK?C}hG巊ǿ֨ZKFїQħ|_wt??9"#u>?(h~d.$le">ϡR9?WVַQ|;U?"֏9_o?2?/A_)/C·<0GΗm"zߪ#EEH6q>)*?G~(|\&Qχ3 'S%~_V_΁w]o'T?/k SP߷ ٸ?o -C~4d_L'c G1_MOu>s%玪}/3ac0}8_>o'FL5>ka߹[/D~W8ao_ME_i im$4 ւ6_->k75vAAⓧP_^'!SC_ `RcP /j|5y~ϿzOzŧ]UOcρ}fAL ]S `}E?b6|2_y6p!?^Q}%DM:k>g=Z?.-U-mq矖٪?oMMwf[,U >yt5+f>g;y6L:_L߉׳~T~t?MO޿vF}4 es-oۉO/Gޯ5߅m|>=ߦm:gωϱR,t{5SEߧ>ZԷ+_]/S_&=į (OϐAm2>jG|tgd7 dG87>~[?7~6ȿ6a>ztW'"?K:0\d<PE}z8QS|M_k|?,ӽe|ϲ!2|"s"aK~yX?BU??? Zϣ F߃Men[~>xև W>'0OԠ_M^XU;I D~|o-aLA&#] r> ,hF_II^秠6_o|DR`'E?_,R2_;/π$ c>nR} ']g#GG|D8"{}ebFW/$?\W~A=W;O_a1CW~dg/_ɟ_ゟi|CS՗=7K/'l>9T?tvOXo8uj63g]S;O>?MOm'5\'r̯Ϲӱ[E|L} ?E/>u~Vx|Ott{}l ?'|-"Y?ʯ__LEf| &R?6~맧 O~`@k{|2^9*7U7rϓsr"qog uj'/ A6 )!Cz*Q׋̯O:;nC }J|mU|m)|~ ,ZԇCc>?6>Iz_ꛓc߅Oפ7k_ W> *'K:A}_#w ޿/?OB&8C3+1|m<;>?[^#Q듃7{t)/~0tOu|NO߉Yos~W0?(A?BKMZI.\|隷VT?pp(?rΗ>rXM~=2=/2~K@_M:'Ja'k4| Mų?0>Ȝ/*?_gˤ#\Wlן'm??1PQ&;gm 9?#&W#K*U믟ǟ_M|y=z/_l5槔?3?'jmIGW& '䇍{8\_Y{*G}LaWXBK|*߿ _y˟fB񫊿a&"$w$L?L>"e'~+> xۤ7gCQt)c>nn}Rk~,Hf[?Pa~eEtG E; EC_80e>?u~$R,JV_䷢>9 a ]doYBIG{_C_'?Q/?j 6/UAax>F#ggk6?[2?‹>E_5?>-o.GKD~Mw {D|P=M&>pc?`/u'@(Y1"鶉M?vxGςcŸwߗ w?6Ǫw9x|h?꧛ Bڟu;k +|l6X|E{{TU}K}8ߒ_/sϦC? k_d~b//?p+lŢ~mOL>8u~?] )m7V%.]M+`|99[&?7~щ)eп&%#7R"wws~9#]7Wn?e2GA_P~硾'4Mm{Oo}ޑ_/ӝ&w ̟_>]U? ߍMKEeɯS5-.ʏ݉$mۦF~y_LC7|ٍpVmOUg_`(|__;kPXoZCdgOOM2j_c[YȿR6D`w'8 eba~IMB.# oeUJwZ- cCWW'm⟪&_`Gm~~=?7T7:+? &|nxK\T <_ߖ0A}a>?X&p\}z׿g4o6'r}GY3a(=*?ê^?c#K4?O7N{|3"ȟ|}}5//Q_&/뻕H} ?(?Hb<+e?om2?& +X2%󻒔_ bDҘ4]ߝD/E_ȯה_/ |U2An#CoO…U~@pXmҿD}K^ORwf@B'Od㭾U?iٟ/__8`WUo7~r{Y*?6kP՟ϗ6c~q<e~-`~vS@|}"j} ~3KȏЄav8)H~kY&r}LoMo#ק۽ʏ6q~G3mzwg?P?C ͪ=Q??!'[B" _ 6?&CG'`>~i"ˬ?otm73@|_|}B6qe'UT*sx~o!1뢟aa%?bU~A!?Sş̷,ӝ:]V0ɤ;t7S3+g__t',;?o!gO9O,\ďؿKss@a~>|~OJ}g/?1(IGe8O^/ǿt??r?=/U~>9t`ʟ+ɯO 36wϽ)4mp?>m=?E&_ vfA緇~=e|&'?.n$.Eod>274( [~>v _į%n= }|6pYF 8t}e'_g /> gw]3F~|`"V $ɣ6S߾T巠hP}mbO\g?YϟJ~J1CPנm2?2AmΟ >C!0%OGI6W\~6;T29* M)U{aXO3c4~%?g.٦{cr^oh7󵁗q᷸/&ŃCf1r4 5X.Egd|}Q_}{o##krᏜ09_Lx~&=?c$Z?W*3U3kO'ܿ@ ~{oP&B+)L7PaSt>s WG}er \ @>Fs,`DP~ osQ}F&o+wϑ(*$SUI+';ܤ|On"sG~ЈQ~E+ k`a/4g&7g'Ln/\_ϖo|, m"@| j7Ix1өc|{t}[etg?[?8J~*3MX?7|ƏyO{NY,_)?Ea6 9_G|A&\V~~#o:_?*⋅ߠޟ.Gf!"L? t]P,"&G4?Mmb}c>G 9$CiogAzem">K>_kb#+>_Z&/OOh~ mcVTV%Um篏_'`+wf ?[&7Y?GC̟7?\|9,9?5LƏQ?:~t2=;gԧl8b~+@aH} orff|o ??rѷ6Ǜ ; cvQ|b@|L>/w7t #~?$߿L@_Uߓۭ9S]GZoy_7ȟ3E%> ?ȅ3ψ6sůMe}h~},|zeT5~2BWJaQæ`O6_U;+? ʼ>Q}0M8 WGD9e~g&~}pOsiQ_#C1̏?M/__/6LbCm"UUmT~%k~D~φar={f|>Ȭ~U $◒l ~@~ c3|_|~Y|6^^%~*~ᯨ<_Z?_oI|إ8X1Bto e|}|d//̧cϏ?r-2}qLwc~{h Bώ&,]?ZT}F&-8;I}v?KM.)xZ>`R}B"3YUb|%n_`*M/ ~l_?Y2>8?[|>A~Vϙ"q}os?%6AokQV o _ g'XM|:={ ct/2qOY?GGW?6D槌l`KOnFY/,(_Z&֧,|U*|\Ѝ[K_nR>>ojߋ</aQnT7<+ز?h">7 >O֨ݺMo5ϣG> 6/? d\&PQ $DG#?LO~W&~D+nhe m|(GgU&Wc}Cۢ_6?`*mGlgODCd|K0ߵMvG/?m__`̯oY߃꯾τEL$~P(?#s|JA>TQ+e ~m|r& _>t{Nϟ~⏽銏o oeTsX'R$zw# /ٿr~a?/Cb$W*tO>_&>/SW7oRUT_78/L?w{T}>Db>wxG3|n& 82t~%go}D#77|i hH:cb~/g/WOUΧI7'Cv/q|LOLo?~C~2|a|S&sxK}_LOLwmEߜc5+o&OhϗsϾeoY@)]f@ğئ؋~_Վ}?' Oo֨O'N{]m C뗤Lo~{{ ME|č_=_0GG_'P>)ӷJ/M~i[ hKϭYx>IOe~bCCo?vgAWUηUoK/I^RƯ}de~\E6n@K~{$,?KTՃ+__ϩoktm|̯ΆǏ|x7YC 2_>`/QȬ}csceշ뜯2_s7fFHݨY59PU^?O#Ux'7͆;.J}Z6pOg?|mA{e_ o~pW~1ɿ.d{|7oN, 㫣s!s]'/I)a~}_գ* ~Y&_&ǧRRq~,xď0[@7Do-]/Ye ArߙJuYBO~)w6^MgW5/6_/C&}/o/&k:_ZK'N]K~<3{?_e|zOV O>Eo?5_!h7A ' /V0,؟OT'' p׬[?M Ko_/0*ψ˅@inr~ yGNחb uF_l[׽؁?xc:סN}03>~|ɯ_(e{6?H}Vg+l6:_lw&l >r6L߅%>̜Yz~[BOp~9l|_> g~go|Zϗ~(~Aq ?l~)~|οفJwѿ ͂߮߭Q*U7,XEZGKo4צ_ĿۤA)\&`_&!㢿> |}7M(ŸKFU}/~O>|wF>Z&?eb}a[ׯ=0ᦠQ5@~MO>,?؟|# ~=@wn3h_OOoiFI oXȟ'ԧ_Z[ymh_QO[6  "mAr>[/ ?y{Z߿̂3{'hT~Q#=H$g_22#>9nqO-Wm񷏯~!꟎oO|+'Ws٦{Um \1>GH*I0+v)2qwvֿֿR_K#sߎIf{ku~*MTF/I=>jοQ:,S~y+%_ ?O;G4ևԇϴjGey>&I'#G$%3Go|n/e"U}2FOx6T!:pwηuo8̯Vէg}j}U⳴7x=-aCoGqߝA~_Fh5>a 7\+J :o^&~?s>Yۿe*㷣?9On>m h9$n1'tǥ?W?#~ice¿a>Z+۪moMs??<WhpGs&%|?7}H~f~Jk`>TW'?n~Ic_*{!Ep}c)QgC!Qb`>}XпP}|X?I 2_b}?C} >6?K+kQ?X2Gy$<[{'U?8>MIfÊ;3߷W5O>vؿ_%6?^o)룂 _o 2q~PEX:_|kϧJzFSWdC?2_?6ίyeߨ5|?1~Ϗ6;Y|2~ׯ7yeb}?D&~/$WN7~d (oR|!)b?k t}妿u6Br_U+>fo~6C~Mħ>>X&.-vV=)[@W Tl%,D -lſgFXgŊ} ʞkѣ?Zo+~6w1/6sOFp& $Ǩu}?l%>YO|_r~k.??:T8e._&;Tk#;_Y~c~ߔon?|V|k_E藉0>WI*kkn/H9f};_ zBx"|XyꫝW5m{/X_,؟Wm M%_mև>Z>Z4ϡ堾qx"%Nߦ F[Ǫk~Ҏ ϡOMUV$Ub+;|Eq B+~5q~(|oLCg r|ok2~d3>&GRC|uSV|=8z|Sgec&./_&_G%纠ؿ>g Jk~˿?9_XO+~!xRO!7o/C_,W=E#\Os_&9_S]|ކ?Op>r>R8W>k¿ğ4w`ȟ̟9k?Oϼ&۪r|_g? +_t±?5#:}Np : 1/7 `K͏??bDK}b}x?$^|>u <6/_SHbFۗo1O_9>*X\B~5ך{%NU|'6r`I92O:!TozB>k#_3w/Sx߁/2qkwB}b}e}3wߊ|/5?6I:ڟlG~BOyɿpa\O)+_sL|"r>5?4?ֺOf?/o.o7e}?|_!c2c% _2muSS!x>k_;&Wg8YAHA)껮k.g~m~h!֟n]k)/2?6'w?p}3_#YwZşuj~>^]C/_/ԟBEc`r~>y>$~ 9_NW~D|\jOP> \744w9R> nߺſ5'oп\TS*wT~oy\?"?K?_+c'LZsV}MI#q3qe~ {.o;}.gN'|x].E,]a^W^c~/`Nfv>ȗW/}.5/sy kb喿 ^/&ǟ0'3p_v7wwOn'qsO T`?L~,~Jw8տ'L7]~a0e.{3 BkO/ď?]b~1̧~/kt? 5u/?__/=[MmFn]#·8_ >P=?iKkJ?i?l}5@?͟|~~/e.&XS&WzB7[Uϗ>ţY>k\w';p~X_>[/X1?o#/k}5#?e~`"0{_/~;c!D|i|E~%ƯA;>-'1OBC|H(yy^k|eԷ8/f߳V|a]23w}Xb}~D|O'~!Hg_Ց߳z*?͗?Z_k6#OUwS~1CQ]/ ~/s|_&:h/w_&s7_P1eb}՟.?ܿ+Xm}/g=?;^fQ<qWJ_|d_|H|OqM)o~ ֗n RFku3H~8t?u W7Ѱ|Cc ڞRY"e#;H/}o&Up ٟ [o_X!cYy_l?o~G<{BV?!~,? ׌`' ~φ_ϻX\͗vA/__7d{e|l~B? )4^[5+o.5{Mk}?}/17T9v{l?p1~b}r}N8FDq$ ͊6#^C߿>2ݪ=[j~ъ8k崾Υ??_1?_| kOb"^P* 㻇+O?r~ Fk|t()ců~Yn44oV}_&ߵ~p~{a沿NY}>꿲 hf~uAΟT'7B4񷌆=Gɟ|~2ȯ_0ܯF_7\e3넧b7lؿP~|v~iO=Ird$k~nǛ.i.TKTKlrm}^e~ NVM5뿿_g\&}/? O6R~qOOQQDž- sw$7cc_&_wH]?/習翺Nė#8_t_.L|g&IQp>x?9G}+_#Of5wr7_5\ 8NXelm_Ѫ?b(Q."J~?ߍ/b}|ﻨn}/޻Ll k~Xj|ԗ [%g__sUR}w9kƿu@Zb}iŗO=CO?>Ag?Co˿1^͚̃M\5nnֿϙcY=^>{RK+_̃[cO|.sb5>9BagNrG :4rt8Arޣv(2E|ӹԼvע|-Cze8He8|ۯe8dЯe8kDz 2R2L_%eт re8SO-5F6\H}6y!?!?W!9?!?Qky,A+~\I #ByK{b6 ~9/??k)~w_!&99ۿ?#={?~}ȯ7o߲7~oN?H?7?o|y1Uǎ?kcluhbӿo?F./oWs??_{u^/Y_|Gɳ vǿ/ ˬMRy~ݕ|ڟ/:W|ٿ^1~24~v_΁̂v}kyއV_t\GϿOs{3}ޛjwyۇI۴c4vzŴWy}`(iq ahC+YWL{yŤ\ߡwj~9/1 Bš_Wi_S;LwzN}PH0qKz%&z%ib-Klj-k9lz&o{yirk~vԉ0M<~:[l%>RL{j(-{js<%}*v}랜՗UysRw$G:m>{xmy<ڗ3 dfi[bi_]t3tz6Os&Vzm}O`~5ƘX<]hd2mzNev Ϝcux*\ >f}kte9<͕EjaE(xuVү]?bڎyo1m=S?§`L[{53Dҍ7\Qmr~6uo](RLm7UÔ3NVsʙΩj* |To0mG+gC#B~i=!Tg\/Ms{FUa'':mu\653"\pOԾ)y߾Sɿw7]O'2uǩJ#O5N[i3̌p80 pʠ;iVު 5~GY^J V֊30myWvA>3iʀO}nptw8Px~mGb>uoڇ_{s:!L[ZTN?*~ҷNɾۧpxO5'Q'*`qvp" ܻ]dƿg'M5M$:c.Dr A'K| zgd",.茭д[אxjF2'e9Ovʵճ'vV:'?ڲiT3\T /'=BI?6ZcdNB?(LsW xmF1#;~.'OiuǺkCw+6mE%vrA+C՛ّʺs{ym~=MM[%#{e5k:V:&'T|S)o'iWڊ$דw$01/&>d9mJp:V척"1|J)֦#+i:fC=nlBT>ikWQ8mLkkwwƷMdקyWMNj[|_~[QPXTcS-!'yP_>kic-RewrCn8E^˾k6W&xw^4ִ|Nvv~zmg*&B{!ݻmd&7m{%tv\/ih n+N}W&W>ׇ1M MC 8rg;,6^ՏUˇ'܈,lړyb("'),]V2W:{{D/dsLʯ-/SFma^#!kV8Ȋ@;u\=cZkV4]MVnbT F^MDC;bޮBh8cvTؠ,?yZ)MŕAߪ**oXuL Oy}x:^VWj4Wrc|}x[6>kzĪXrUS{}f6n)ir'IÓ»)>юjssyΐKrfB_[O[*qנw?'_BiN{=?iꗠ9Փpy3\ 9 ,<*}89mLUgGQO U[TRS&&m6'*gq!3Jg.* &o-T;/W[k|XExzwewO12mT零2B?v\.700HQ̅Wo3xVWXNG,Ii/r&֒4\'ii71Dk,p9Fsiㆺ-HfeE"G$}:|T]VfX?e 5d B% F ;MQs_7v^>ElldD9*5*̡&7ۋS=Tww s(W޻ 9ьO ^/Ma㏄yb>s=ꣽEki\5: *~k+ZG6XMUkWJ+X`}Immo&8k}4އ[8X?Qo \آN|O!6S;3ΜBy#GDgz)Ww2MpIlI/)~`d!o!&!v3ͬn3 'i8=[XVmP˟&nGƾO369|TN=+;]7[zysE1]*tHl}o4Mk^9[||US̗~HnٗZ4V>ŵbNSr~n"< E80nZU Іqgu%DCΩˇ]|ݼO#]`3[ߐxbt+RTu٢='ne[ՃT?*$o H}Q xƻ%& il%0j6)x+j^x%b9} 5vB΀ k+E$5meO3̡]si:Fc1er`~IW7bԌagTսj,$(Oy )+"R>Ka4SwϢ9M웦o5IFM0c6Txu\ѥ.b/fﵯn(NFN~  N!C o.'f3 XNFnc- U > +WsEU`( NŚNSGfa0zAFkc^O9":t{,k{6u.o/i+=U_R!I%NЃ3`GG%gpDX/ !k%++c^jz0o($WЂCִ}z4KNo eZ4;Or^?Ӥ39L'|2БWP8wN!v-f.QTk \?X8RXibؑkA]/[Måmc^!8a@0v$$5*l$q¯8:)ںnJw3+'^fo2<1Fӕ=N[1}-|R㵵ef-&k뗐>glxgCIwטi+;!C}/~Ss>r _ʒc>V}o3FI_mLND&PMBiWO}GxYi7eb=c)´Ԏ5m<98=78ͱhef_܄xcA/5jeSuSuW,IYrFxF8 aV"6*5 5 E[lO$S~m>yNGV9]hX i01Z|d$6c;EիeB`KBȤ24Z]zmydmDGn{ȷvw\$?c2ƀ;9Nzb_#wlqgnzU`؋AOμX3֭>Nӹ֌oϯo8|ڌ.W^BxN+)/Nc r"pڈ _vyx񹟨x4!ז_x3|Zx#x1&|LkBCX1m0E ,+Nxh%Nu]Oqzph2m&RC~e,m-ƽ׺>EnwzG,A{uE>>LdcCvYĘE4m%S[[p+Y3bͻf@s@v%Fd3Ю{psY[^-LxMk5}/Ğ,HY(UەI˒ңj"X0]*jˉj+!=c`gYIǟ6ŨZTB j =p-YRfuH/^V{ |wP띦klPj~Lۑ0A//O_ݚbE!S*mY͟Տ2EWr\94qxjrԾzҾWq5J;kD75 7{=K;dku>I4*n߁]Q.i2\iʧijww8j LD(z'.>?^;vqw0A#a X|ăٚ ,b0 S3kMD M)"ئ77cwݽ꽢8.Go=͇'nJ 6v~ ߪNwK{F}Ksi36Cj`>p}G?3ymqk) }6>np]k8>Jc'x x~*aB͒ J|mM*|V)I|b^J{+{77bJjuAi2WK.*6^87m~mYz pv qj S=gLu"K>eCh#{7 p 85w!óZ;&L`s61nν b73nb;gݘl ! NĴR(fѬe1P3/-(ݤ[~oT$If=%=M 4O"oxOM$>=lfwFdz6㾮t޲\Ft7^50+Vyפ{{&/0՜i7-}>W siҸ7w%6jP iD'{M>;ʴ#z旞]}TMomR K8TVxU,J6ZrƁnLD^^&Pvhhc>OXHEGF{qxz#ܚmmOmNMr{z:VEzF4͑ohtfs@g]ƾTRlRqBV{[teHg(T;ί9xbl-6%"\Pp.U੶LB6Jܩ9͗5=Zˀ$}"KCe̝D\5vAU E9F?P(DcN]z)0E6=tU`#DzN Xˠ-tnߎw.I^[㩺{6;]!6ӵ&I}jckcPzch\uik߲ jTXB^IМɬ>fW{d˞fLY!V~Ct#tDf`C\$I|m=MgEEIyZ{W|KNVRصZ׵SN|Ww7$&Ǥn\bm SfE%c_~m= m*-H̹PUUgUC-tf&RO pFnRnՃfD3pƦ=Iڪz51.cJȁ~ ěiSxجzB"x<:ww)xe̻N[QՇȣC##?S uZ]('a1fw00)Ks{!"ĖuOfhK)"EJ9guդڶvVI?6jaxZUq$}I2[_An["ݠ$kͭ7 UJP:Q>ީu)5+=wquS$$d^ljiZn 79?5!*<ΔWg6MR"jgc3Cs GDdƴ#ļ)?s qzi&^ q2E g+Y37M!#0tNJt5x8B%SM Q11GIGeNeniagi[YGR NZddКNqCN]t2PZ=}tKV01|K!z*gQWW-vL^k=E*%xN"&f,lN1bcThb:3:qԖU(rk&gW~.wRyr|/Ui<{SlXi>gcel5"21A9 (͊F<30YP_`}E3|֝ouӍ3t \́{hͧxlfGN}vGx_EZqV)Uh7c(o? O`>iYli;?wʇCgX1ۗjj| 2;zJؙ# Os16nS63Q)M 4B4#7Șo _g_vg+`ޖt0U9ju;L9O#x"D dfs.fW00SY*9_R-|N{恇¢Q;ZVC $c57ymx;g؟UNF&qC6oC!FC]ˋTůф6_Y&ar|ɝq]i^A>M~zfgrE&اȂ!bE^W}sO&-I͔ pE%*L{Lhe|K,`ƨ=5^s|>Y](Up,ޗ˼/}b8x_׆+u2+6nh*,+D;2$s@TwC ͇X, nu6$ ;L`޿? 4m}t yX=iP';]9x_[eҁ'!qXדfuЕ0xmœ22a9.)s]VJKA^PT/(g[vBym(`kfXXq_W=|^XKLt5nҌ;f]gY9jR:5{{~+4JNjN&[ Q'3ԼGPъY>y>~F6B,4^CecP}61 63 fJ$s |!e# B fI|Xr7G@{]4iSoHyp:ZO+sim^>dL6R6*NeҞfn5 *v1F<"fR(A3ǀ *I*oAQIEm|ZvPs/Rrf tNwN妍!ytlC3󤬼)跊X\ipM*ĮϨvM_UyOkw{J(rHE15+pAݍ>mјQr&p6 sO|7Yv4mG1er>83ypypN[ӤYWF~&XIR}jz=J_&IlI7mMa䚮짲 c0{ʣ +g!';|>R^s&?P8f QLYxuމxҏ~-mdӿy?m4Ɖ­`zɏo56nܕsk>Crd;sһ,NQj[%ǩ4 lACIUUqҤOôW+?J)'W6Vo L_[Q,9+q jAWK 6F:f6~Y6v!Ms#w~FޟDޟy'jcɀȑxH1X1GΗ++=m|OJ::VCo"H  }>mДN+jm՘ovw7chlb{>A.-hfqds( 9WFDY'|'Qo6)7Q9&i'kC7}V~ve@CǚN;Ddj22OP<5[j)Xμ6v#eByzZ6XʨxOZjUe$ah=}km)w(- oQާuCs5j*> '*%2H-Ϙ{8l=P)>mEv'DkD櫯:7 ҉ʷkྜ6}㧭Pd45 S]p =_D -2RuljIXCv7W ]CŇ덦4ysT*ܡUz%Ց' yꕿ8nA5yĮG/RC 5ݛA xXsTO@:!2i+>%oQqoqU/1]vUʋWgr9e1!C7:"#%}_`za%8+4Nk 3*NSp1](Dxӛ{^9Sn&[m&:uwB[ո/{'KA=M1'?Dr x[ wM@ G55m&~ѫ3L5rOnnkbk"@( F]nfrߩn?dqnesnimŢb!~h0]16~xv}Ru|A;ʬBֈ`FB PXTCPOmm!:{7VM:u4eݤ8VD#Y A%`^T+"sXx;n}l1v*y R"δbδy빛Pɤ'f'ӸVR{/]\Vf:Z)mk;jFz4|o NJ@)O!KܸR:jVf5g^gŵfCg2s+a-~ߘoL<n'T}Bd3г9xKt;'t_H @qj 3*ȢFeE v Dc2r]2w#rW,YpM2'þe_ŲNf`J+=ꯏT!q7ir$Ge%U{ s.6Z=8qsOGdP?qހ;-o LkJOzWwfc[7%g7ٙ)JЦA] (J!\17 6(糪;ꙇ$!5t+#Ev5=sLFlFߙ]wuY~x񘿣lgP5t[KϑDn70{~WCt;mRăD`"yigSVU|t5>(PZ;S 2%-#~/<3\m LSO7O 43MM;ϩ"] {1/3-Vg.q_+n {'v멏YC^SPüw_~z3㾯&~/Ĕd^E?>TwoCɬMXٷTAni~Xo7"$vDVʗ7o KF#C)̐~D־9 I೏h+߈x7ZϏblmU0xǥ${:\Wp%sR f*j5Nud ]oęuLS1l}OT|5n_P7XyMpw\8%Q{{ eB3Ihd4A/wSw0lo +c]F/ʹĒz&;L@yQHX̟8MBӟ\D\DdWԝtKa5^kcjlIepZ wSϦg3^YKDhF<]1z k:Z*$R$3ˈ/N9{W4 J}eTOX\N9=gsڨ.2B''::{rYkIu)R;7V]M4rLN[g.Tֵړ}I)p:l/U1Boz(/VsۻYP5Cɖ=r7B9.3eγUλ$K9M{7ijǢ>YwPxV5N{+FzmE`Y[kxYMIތSϮ;ȸ}7@?u fUq1bnd&F Kܟ.JP xiӿi*IFZj %xں ֔n!@%OĀlrڸ1QQ=Ri"0N# QE\K' 7U⪹C[şkZfq.ap-OBJb߬bj s$s sf$VJSﵱŞ=7N1Oy>U. _[Qqg5ǕCST.F]n]}mf?fgkw7J6q#HOVM[Q41Þ:>!oT+tK8#y9r(0ڌ+k?\{S8ml*爫 >s̷ BI3G!0]_V+?^; k^Wv*zӤw}q{܏HRnJVn7gCbFt(j]Y%V̙ه_*c/L[&?l|Id$gvk??tN}x^o*􀋹]%G&KyEՖu*2xtj"9OF^\ĦWC:mFE5M{qh m]s?B~VT(ASҜ(Rɒ9ZRBFI֮}̇ pXC,Gt**g3i3gGge XQ9g_fcXGVֵ>uC0C^23ħTIw; YtٓtA]9A S*}DK6VvШ&<#cDXs= UUGY:'<ޡq_讟9:(y|;<l]йқ&ŎݴwLtNɡUI0~mêsXzk7S3=U'ʺWuݫ~6x}~d\/tBР2p,!5d7Nq|YJj~\,-j#JϺz j aJb4*+G "evD4>jWꤻKiju j%y5@KhH,On=qO;+IYdI$I,Pmn~mG:D0*~QeROIn: 4MŔ@TvߊĩF>?2~3kêwjѤzƕ Ttژ3ZS# ^[y)"lDnVqن<}D%|9Gl ՀU)rVe'-jv,_d/k&(Wڱqkމ d|rQ֍U}8<ͻkl:Mvk75MqA9oaކSтb֭ $tern@:VӒӆ^0֏7 _"%e;zT"bf\8G_WlՅ WvUvuuˏV}bw{+gĶiz"ex¶ƶٔfSy'ԀvH%:JXaLZk7UI7|/xa.g,Q3.aLƿ e1?ޙNԀN~o1M'͇#Ǩz|zD~;tr mi;l' ۵gJFDGRfR=$k>8{>ߍ8 7~d}Ц2#Ĵa:kJuc=bzctS[L[98%jϬ[.dHu]v=uh k!45Y=*Hֺ}:x w]ପNJx7tds i_[JA:8sF OGȎ0+͈ҡkʚȞZ*Usvտb7œ/V.sot y)K]1fV^[g< ΐNtn^ ݼז/UefKFs$ jm"YF F~0m&/d&CxOxE5g)^wߏFxr3:֚@/U{JϘE[lS͠:ӛ8oy"8js촛qk~ٓ] 86Eu]cQxrx!yzt|н~8<LSVkhuJ훱$-:g?k=mYC eJQ3㪵w:;pbi/!lED툦*5~x}`okdX@=h+%ǫ;Ս*[/_=NfRv/!;nļe|gs|W;2oU 5N&zdLk;&#o[6S3#z>gX*%Qiq<k;s4e_H_E~qmPܻ~U'] 9Yƛ5DϠ(Oт:EJkaZUZ&?ͰTdjEE#f<$i뮣0E/Ŭ/}hՕՌ;]鑇F7^\moxeb*RVd;kɌ˯g#k !hhF}|ҭaΰb2RrxWBki"J7gV3r< z̤N1(eq{2Z7r)j}]⾞6/g LÙiӋ,QqOUj1Lũ>.^Qg[f5kQ7ދT=qrsQb 5ˠuP}1Q~uoMT zHn#q O;_ӷ{eyoȺwB wbLs]銎4RwqVTWT) '8cϯc7s!D4<4; j -/<<=jKxs~Vn58񒜡Bi!쩽eȜhcs񜨑Nys=g ʉ:Meo^۱;5x }39muu \k¡ơ*an!ז#~xC븣`+%ĒQb[ PN̚\k S~AuXs¶c#!j7GȨ.gT8$sH4ZeziK"j8W@|d|fqxQYU`(J8YU*οἥx[ 73?Vc/u* ^ ⤈.c>1n҆*t@ {Ts~B͹$qTx辯ӳ =uCK-L.l魬3*;Iu8=<n ܎z;mҘ0Rvk'Ԃ>Zv֚oquIxE}60rr0*C Ui q~b*z6263[C{J029~iO@,s>{~5%X !1]U7\24l68Py=O΀Z 45紧'KA 6Tk_͵Ei*N` Lv:bqjnïNK?J44O,2ǜSs}L:'ǧXjzIpwGZؗ)^745'rҟ}$6ZT\κ::?w;*w]Ft.fBUc&Њ':?% W?sLnZm:O[;av>iٓLHZYS; 17_O{oۜfchg#:LrfBJ S3*{-VkB_F_z`ݧt8`Fզa(S RݛY.Mz|>pP8w6wG ;OPa;nD!m2#ՑL҂l΂qc WQ陡1Nαnjm?;Lb0 v3+}8z*`X,kƕefϝf0kt=ATG2gd|mƼ1o `u9.=-1hz5-&~1ymyQrs^`jQjQϑt}Ty 乱"* VDK|GŝU|K3AYicPg6o39M2̲n U݃կ'N=k,TFhFhoiϏ'<2rh n8ڹ~6ˏÞ=0Z' k S3֎:bCj~SP/^fՊ}nk;^д#Sf+3WU׵iX_TӸ^)cmif]_sd8–X[*|^ɳ ?X`Qͻ=lRu:t~Fuk+ʬ/ XisK#Q4ǸUzQhD~'ϖI3ЃPlj%0^[ LG'uy=rhD5yŘfļϨu j qYS(d)f٩.%-SZX=ͱfߘu0 =S2=!~=b DCRaFj(JDXL;RN;rڙU_ 7AϯMX&kL6kP&jںсlݥI ;{NrgJ)nQ15)~[ط&iM<#2[wՉl,)F" "=k#WC#ⲀUx?ɉ&'(JjUuĨWLV-[ϱÊaALy9'^/nE 4x㕚fFIVQ6/Қ//O΀?u{N1/t# kËMYC Y)3,ۢISNOQIɜ˝mn_TڸdT+r}դ{p2MG] 샪8a}NؕNRz"xOP($a]891WyՉe'@@uyu$Og4o@T\|Fwɍ~G۹~?_*Zt rbþfPp~@<o5=̎b}:*^+^BC,fe{QTUc\þ8N`'cϧ1ZyNGu)ۻ%L&N̞NYUy+yFt| HdH#YH;W1—gFOoQuVY/%Ggy'UP*Vϊ>>3ToxPo84dZnp怷\O֐pQ[pSo%S8hŨvٗC*Y*դW0xyn&́;'wα{(CG1zn|,!CNi*Uro<74nd:(TF@>Id60X\q=V;NQ굇k$1Q =Z&'v*C3)ftr㇨}CR8a|MOfMձm3*)".=/jSIٔFs5oX62iURb;4ZW[Pjf^,pXA-QjVU;aRhD ^z ]V[=Z֪1.Xe4[ՋWR,U>--:m5:7ޠpp\/EseEc}ꟊ'˖yR*tS lHAa!c,QأfM2m?Zo^ۼ$6YrU*#H:ә]/( qC$Sﻺ ˔u=z7X O\1hZX3s[i>S}E  m;e2c o2٪ov_3*;?:Bqz~Sf*p?T4-\U&jϕ\)sH.R5;@1og=XE(l"XXsS%Cc Sc`h&9I'Tflz*5n}PM(ۇˇˣ /X#[7v7ftY 94 >q b_3ׇYSLKOyGxV_߉ (u:tcTG$Y;L/TӁ =(ƃYAtx*1r(=e3n PRWM8Qvy>:9)9Aӡ?ZN :AS!B dL yu Vn31|Ufm G*}ՙ1@qZ}KgYW'_(J٦{rQO%J'-|lZil6Dlr,kQWdBۍv4O~*_%_JzFAM;~`I:m2#T"VN@19]Oeӑ'롎f }Z0:7Rsr .{zqݘѺ95UUPS\_OFq}dw5wƑC3ek xN>9F{~i/<*{1m#P:mfL$:Q {nv2rd)N29O*>Ń5txh0w2z/9<Ͽ(@SJz}؉ M7]j]Ĺi\^P No@6ErbIPtnYuj=cz=DW{jN!#vÿN7zU_w=/?0Lwvb4btRxTKTNYI7N:ktq`mi0ܤO3F r,UVc}mQRy~*TP.j1ˋvڻ"M1DmpGE]o9SC:6_+5[:_TU>X"d[Siz6'~v) j_|yGV&jL8;A%?Ie&('(uNum^u7VcVd;J2cS麦2Gݚո3bXf>.uºck[<*艂qRqL!(KqƲk|̋P ^!~ 4t6Lt lb-Uj笜3NɉX0BE+s&,^wsdy2DG9Y? c[/M~e곤FUS)wpxs.C < Q@RVty o6#䱜wͻgpe-*6i`'=0E,'~BP[鉶BMRM*D1(z !;^Μ[De7x={.搰"a[ƹ DǠtLӌSc pu|w|GSe'/Iՠ2昘nuOhSl~ܒ,Kꏉh)#{*¯d[& $Ő$GĉF<)|MІgCNeX/@U=)\} SȮ0;EMyž f^;k&Z.iGyna&aWN9s+;8(. D$"t W=EK2<󊞴[YT.(]=:=fX¸{Gig(CӃhm=І,VL AazV` ^0wtFǨNS_gی{E`#F2Tk QP"Q5A63;Q&>/cX8bنqpIEq f& z67F!nǠ1Y_` SHf9ܞLXEZ<!8gkZO\mx  =#tNi #'pLT!Rj05gf3Gᦪ]d׏a85cݻ:>x%ƛS[;PÚ2N*(ؿL-S|m+&3޵IăfLfN[Pƒ%l 5ƚQ]Kg3{ n33V'8"yY3[+]FQH1j=lWyz}ҴlDE QQΪ ~'eT=ieO\gMϫ 2OY=sWmFac5>0~CSF61(8UNQM{v81MP=A=c4pM BРg09lrMGqG{佶^Zsܞ]2WӚ nYĺTnb  ˔{*N 3i: RJFFhJ3fDeb S\fƩ==jtns`!JRxPCk nDRvCP\5/\[UUW/xT|1Gm&^bNb7UjoTj?F5}DDjǐulpDĔj~)P F4^;(bP[x~'S6cW:nlCԉ7idzEqwHPm󄚝3zr>R7xhu[s$*4] P31LEeUk$Xe:8"kFژ yQUhG%#ҩX3ԅ2Յb3^7(ȶ]4F3/qr!4b\&Mtw>6^j6 wjtWC'WÉJJm+'ZN%gT8wO{멲lĀhܶZX (i >ƶTQzųYqpkecٺ_2SzS|$P2Y>Ŝz_#7sAPIaE巶 g֫\6Xwv*c *@u(L+zP}OrqrQG=BG1ic7n2(3 ܂ZxjU(պN"nxbJSho?;A.)]T0w1O+qƏB#׎q &j}R@ 갅uءڊڊjW1 /\+BWdP>p_?jƌ*ެiٰ"th(Sa*WF:{ sPӉ&&_f}J}b#e}v5%k.ADaS~t]續=ATVrOIӄQ[*zUsV_-@OZuLL%4m}p/qڥ\UI-[sy79 v]yX8ytŶu¬ѺLy# 4{b9L596C9fp@Q{XeHnr2+׶'Žy]K(h_>ף(ăNYN9;(g-qg`a.%d6#. !xWj|c:#=7^pa?ԣ%`&GKiؚ]@d_Dd?Z|:8.M:5!ԛh qhp(Ps*gRQ5ٶF"pu Ȃf'|b^WǛ͍h決MKNG/$駇my#yDp^puB$462.Xe,Z1 ΐpåBhͪhh~`~`T}%J,_oEl]sdXmE!=B2Is̪jlw"jyQzjopdVDžLxwU[{Vʼ)ܥ؏lJȐ=dt.O:C4o竦>PjAfNqt\⯗6MI)44Q^$&bɶ%m#wv7@Ձ5j'DeSUFU׿x행7P˾~}bpSg3iSz^t;g=س~>VoPLPNƓzՃyRׅ*ut>gRzMQ%2:JC1V]ըJIw-<+ ^s7_@'qy_9Ɛ|Oؿ-9ׅ?ɑa_ y'_=o7:kp;G_?5Tc^pL`ZԤKM뿧ׅE]*O`_z~" 9P3o{} uR RgP'%gP1)AU_gp͚̟G`uU|,~lF~,G~$ y+=j{]gp3H3x5ޞAk/_~Cz*=#)U8cQQ??_`z~^Gޢi:2/n_' -{s^~ͯK_?u{_B{_u~ӿ[xR_ zKmo_Ṟ<<}*'"zؿ?̦~"?ߟxm{}'T?ߟ(nDNuNWvu_ }^eڷ?䯣cTz'z~zglh*V_|?>'ҔCe(IJ?J_'gKIJ> W'f|*oSi֟<[?&?ϯhu?oX9@-m D+Sӑm"ն;dc~D@mӥOK7~ #}mG ʲWTy_)&˶?ѵmRyH6om!=mwhd:\Ǜ˷+MFl֒-Eۖ+^-Wm)ݶ߯7m*ݶ)o+蝶cY*JۖЙdC 9sݽcE͵>^+~/(g+Gd](HH&']o[Ϸ-ӴmX'UU9{o[mն=xbD殼+oD':nlgԃ35%m˻wض*ܶox^JZJmYtٶ݆l(^~z6+Y'P;蕂p˖l%0̷Jo[CUx3JJҹ|eۖ<ۖX6ֺd\̯JΨ1K?F%Hlxĸ ^ދn{SO|Z6(cNdd ɈsenWz%RRRgqF7'6%`+4:Pm# >/+hوd)zAo[XOp%+Be۲N ĖFLض%SƾEmEv ;a+=![M3a9mcG[6KK_V 6ˍ|StrmcGuBd:]J_m|Dž82l%n[ևl1$$vD'-ujۈuW'0($PHM%߶څJ&o5(Β! M(cl-ZDYv63{8`'}Cȴ*nSטu9|BA%m32IǛchll+t 1BSS, ql[V᣿lD(1ȭ$*Ŷ_.H̕-̓ W{mϨd}DzmˎRmlH''ԓQͬ.+d;PmVzl@lȤ|3Pw۬5eKۖlߔoXokSPH^3< {Օ1f'-uK˘{蓊׾9VnCbei4,F[RAmcWVJEѿF,atUPDz698nf1gc7"%d8Mg~xL2e;ǷlA)+G P*Žm0:ݾm rvdQ һ3\]l]鷐=ȁ_-ϴ k('F*y3JmybM{ hk^bۈ m&&̹IE`^;ZŽQ7{m+Hm鲑YdOs},vt-ʃ:驣C%xs֙%6C0˖{6Ĺ-gmK lYJm@˖f^)5Wd$=-ѷlb7bI ۖPm3YİaE/^jzMY~g]Om Rm˕6] Gr!,WX?Rm\،n5N~oC˲۔&eRaon KQlTXs_w۔xqV[-8)ö_2F(J ޭVX+Zp/o |':BQM\Y3~lX6FN %-)}|sDdƺsnsU"!-g۲#6nlPj9#'rHZ-w ƯHXQ&$ze\E&>k?N&5@d&dkŏ-{'MIhX-+H̶-RSlƧ>DzuڐE#,@v" d=4 $MÏKQ(|^ZQЕq2I>k~uROtqRz"o`RȾf}dRad[3Tc }B^8c5q|lNde/¹YU+%g5߁lψ Rȕ7Tlר%)f8+5:IϙObmK^3iɔ:Ld::G~AMeM6 kWH&VPQۖhFM&KվDzKA' N@R7.zip)|0D!ݨ}^6וY?Fa.3x'Xێ.OgTT?vx q!ǩrab%?rJ) Jnn+9M+S㭜ԆzXs va7W )q@rs{CyeM PB#60,72,IbCGbecgKј&ӣ+CQHV l H2ΩM`6ܸfzeݢWhA ԏF?ơTIVtqV~S3yp"?cX6}L܆DV/ Fe#}lyYefAfY<2{pTTKFI Gf&mz)PtY충 umUdHKiUqTQ翭v:#]:~6жe2I*2Nwԍ1LOV>UX'Vnse"jH#sd :**͙OlXG0$ŦZ+  @فH<\[*aɔj0= V \!OMNZX662>ή_l>;z@C!k?"7kgطM2&}s~yi֖L8GNTJe x5ȚuJRQ3*ȡ+ٱqQ76N vuw^lFIbqjAрC#e# 99sim3\z8a#RSG\ո* 2Cdުmd&yn1# BB+ð bc,5;e`mB :2W_7Z-@~0C7^e|(.xklI'{!W< U":e{NYZn! denV !?ҋd- 3O"Q%Wj~`@ˆ XCle#HS^);T!郦%*\:Ӽm\iǕYo<.?.nT`+ՊX> S|n0>'u/\3^`jA_=%6˰ATe D7\q=9eiR 99bA+˖OsgKenؕnsYP?z.fҡVXáW+eWg*şV.^^&`4XTfe`1NըBBCuW͕\E#Rj<Ȣˢ]bS;W. XdPTU$[Ku9peUCHh_1~E*g/dkUU:XxQ"^Ad④ /F.o_l2l&~qTD9v􁨽efZZP t4ey;*1Ucmc%k\h jYԲʣ_>ړVqCjn3f0< ‚R#ߜ/ 'OXnuo[<]erpm9ŐGٳC%™ɳc]{ٶ}^^3G j@g`Z4t#Nz"Ԛ4X6Ve˯d䦦mMD:mFl؜xl#@p&5%TiYE6=KyO̦iҭ)i1-GgF5&˖ud9@C۞1UI2gm-E_ jlTNuQ᱃ jT=Maͨ1o]f2fˆE/Q0JaT~ZC1[Sm9134Hm4PIVJM)ٲ ͬDgo o" !F#e#Ͼgۆ?Ƞ#1KG -lxd$`o[G+v7ݴ7SI'J<,4˖g 4T"j+l f7Y4X1_'pM76ꊞ̓TXhhc lܥ9DҨ407#gIn]@ɴ-؀gWf__$Jxn*1,g@{:cf5'SRmNrNɸXģ` 'dCEFQ -T9A>~QӏK48X{_89hy,֥ ˆ_:ݲq&VA539tצJqqdaPz\-LO σIeZ?(F<*5^?umk7XAt:%-W5+ˡҟ[6K~q%[Wa 'R~Pն|>9egXcXnun֓]9 %CfM&pt'gOd=?BTlSZiz$yIJqyesIv `xJO&L Ums}:L QQvjw#h[\Xγ#zVm{Qfm#֖Um %<1 /g-´E mi~q <AmXm#EP.P+TʪڲG$P]JmJy~L҃1Nҳh~w6/VT itC8iuf@vqS=qy1gUw 0I)j\4\DQ~lxf88Gֲq= ׏s) ]^xv/zٷBn[*TCE2ݐI-o8H֤dZC/ZNjzkB\߈,XE ӗ!*MU6o*@vmp4hx% tdjk2dx:AVDl~MŶ%bSޞm3utfFOmFxbuwSqtk0 `DJJɘY6[XEy|V&myl֚㲱>2j[ HdHȌ7K1Q ;Bg1Ex;Z|a0l6ȚbdFLGUy򁑋\/lQXm92d䄦=tpP.o ԂϘ[Ub} ,yX;[= 6L,q[ V"(({Y`Fu^"ŽxXA@ Sr>U&+/;lzr}Ɛ{+'$cXz/0H'ʬ<'j}Ѝ9$Qvhg\&:s˖Z_6Wcmyz牲8q߀lnӶyș n8Ure /5p; ̽ \^.nӶ\,̳Ut&o>̭;H|}.!8euTsl.]Uh-^ 㒟h(*ݖ$d:E:gg%?%<ރVV%|>!|rfJ5͔ 9s? QD8dY9:JN=u0> LQ 8Fd$<M@T0sTcwwTϻUϣ "zM;x>˼ԅ9"-k>l 0ލo("s]6:z:JSGe"[e"j2lق]DJMe;c:kdFlGY I{'uI][鲙{|JNڀCy˘3dmݐ d1AEn 4TMN88Ӳ_)ogH)eg߆QP @T3er ,P dѪX6x/c]Q.{kY#KQPP ЀyKݖfMMi_LG lZ/[6 0?2?-WxoL N ~Cɨ 05АIL k? Z2 ZQ V1SQϿld|_ϭ:49 DU|RFGҙmc iR'Gє˖_Ϭ%Nk#c58$lv]` 1Ox[19Sh,DuF&Xx7@tC4.[!w(ȴeZQ#kY2Д&@>ri4]PVOMd77*u $dLHuYl0w+&AM?3bi@ Sv>K >y^BQV! {dbO NN'giegz-ysFnz臱X%̜%9;jEJ:֡wtmiG|J* ' Ae}FGMP>m!UeJ3f"tDM+mheMl愈rx'.Zz~=tG-녟ʺmReضRn@Yx3Xl(]C F}<ĸz7]٠L#5yPD0fgw]S)`nƞ}T 5Aq2 LF.D*Ķ*8*^IS >ٓL6u=P ΊXG!{ةpf7;,3{Y6&#N(ѽo,m|i%rW0Uc X(k/wHe"VNouٕmcH7aAr/ȡiƖL| į/[\ ) ⱆ|1qy^م+H<6}6PjôJ.^6rԤɂWPC)\JZ\dW.OP&Zn9dژ)Qm;@v(b( Y@K1-1ݶ+~c75D`E  Ķ o\7odkqXs (ٷf/@ƼpLy=|1Ɗ.yJf̩e#'ׁ#Rcb3x^H;{IEq%2ȦYֽ?j/{k9x$껈-N*mfk_MQWcuDKeB}䜫_oQn,xꚿlS` |[(Д9rf9gq vӛuW2P{jO*Q1bdxݲטld' HY/_*ƂW1Te#r2>R}l^FՍ{@#yYtFU4chw\+/S??*& I0 yx"Tyݷc5a5d/GM sᘾ(҆1`N8xš )}V7bt\TJ2cYdvfSSvj+y'VctjO G 15-#3C2 3VgZԔ61m5Àp`P1΅QĹ c mb^7.[K93+hP0l`2oMmo([,ueR-m/llOh>!bIoD9lfW@w1ݕz 0>1,2'g :VT1{Nl|ؖh<ԎdF5dY2<,EPKgt#a&tP7 a l [c' + i8+uϹoLQ܆'lt 'se0-Nk,-!ڲeK0P]<0\ߑ)ph{ }~CYض==Q]8_ >yCBZ.ФXu ru"Ƨۖ1PU ɣxm{Lt T; mŶ[*qUbjl0+< Y\UN@qA{ґòot=w3ڑ=NjfgZ_Z_}D>`y2dJ|fH&eMDE 22qZl|xd̵Pb̹$\9!UEBEohn[! d kC?Y]Bꓷw 2p&,| g#3ѿJ&+YUw{'l|96콫Q0>%)Ǡ \Auj)ZVomyF*NR0>Q_j.Ynke:+lsF֕ AU*#o~L"%):*)xY&ɕUcگ뙅7|2,`HeGb Nd,׫Eԗ%7NN62sP>aok|P`tMO+GͶ|Abh#y1,^ƫFJ˖w mdh A[֪qcou[3eDʲ_@SfObϷ=ܝRS%m˾-K@B&nM3'okߟq6 Q G@p㙸o_@&2 '),Q ,-Cw嶑gKcliP"7^^FƇ!8:f!Y6#GthfE͊~34w̛oVa2%'WX> '2g)clRK+]6>Qн4b۶xA^8JLoL9˹ߙ c (..r3opRlgC{}za߲x!so(S:E?dDGcv6hۄNbb'1x_@=Ҳ!}p7;C|ec6@^!Q`lWzP̉J˴9mm;5c[{z̳QUxYޑ{r9M23fRmc a}1E:@Ns&7Th24M'RK@fVYʶ}ES(Hʴmy l8ʹ8md6b\AS&CSƜ yyyӸ2SaGqCCA%lʩT 3NSjwO 3)A,෬kZᄶ3X$KKۖ=> TƗ tWݝe˹_,Cɶ$[6b~ըVSRmv"E՛o*tc^sITlSlS 4ԝg~Pqyɒ|_wgG,) ~, 9.oAwKHTQɪ1O >tuY{<`&SQ.[)۲mUD[߿aaZp:<Η^ uB'lO||<'VSfaH ؖVٍGb`gc"%#s~.Fn`⼍enXL>g$\۬[=fzkNѲe}@i"Qib""H[6`l'/!>h^b7SlY0+rgیFB/YUӦ}ۧhdsn[L?:Gɲ-gAMIm lD[7bmyo*eޭ!CK֢/tKQ,l>y^Vq>(FDزc5#^'"b1s x`} sfLu ϟ15 +gWe˛M7,ۖxLq:y- >RܴNlzthX۪\6ؗM;tj08:grkm\kj 䍚 -4p|*~nokBV ''G%BeӶ]ą".^s8 ;d ݐGxI\6ZtH#Ιq>!jqPŹ.`.F罰>ٲ"w(rg8$^b:ŹmƖ@/G?mf&ܲq:Ns2s ~Ga:,]ִKlr8D9DXZn~ ML Pu˦v5$DկUbU&`ϓaKn[ܥyòqIKu,'Ё2#ΖE75}Cř3}rѓpیq{8s} UdU@N7]D ˇM1lGO7e 襢_+}JdF̠*UI-Ojls?$ײO @<6,JJ]A1DJLzŦkOh`e#C!s7—7P^c>/݌*m*mZx/<<ʁŜ0d6>g<g W><$;M̢Mى*b=ѲE 1,K aP쫪dmۤ:=E^ v'2^g@<;UUH1Oq6ל;яJ*lPrnTrFC7|q +tS{b]oIcS,&Mdg߆CQnuSO+HH**Xy1ҡ)c΂ª^mc{y sZO<"Ο݇iҌyl@Mghͽ(r1cpPVd.[_.2|Pv4PV/Nկ/"vو.ydR#JFTE4mFPepj7<%fd*$vӍ}|PΙnuR6m3NԯU8"9"&" ̽}2{Y6a'\dїm#Bym nl1e$^&xGbj>O>VjfQ|r76VgBT#f酛 j- {.Y}C6Mra{?idP}P;0=1O >A505֬D@ '8o疍D92!5[Wr ɺ 1w#}es?."8:nV%C@ 3{VWݶ%KRm2!D7cf:#蝜M'g::p xi6V |[R$f"-o 3ri=yX25X:!&B"QAF00h>2u\4%X69Qį7.A1s\@TW }2llj506mޒ0 L~t](s8*1ctyƪ"ӪiS@R0ym<ysG'm`~ҕ<~"pQ8K<917*dK(NI#Ϩf`gܓW+i ~,8ϤBt:t+u暁P%jx($`;Աc7052}oX؃c5dG7XT%?7 Si.MɁw+D,~%Aړ82 `Dt;lki׾b\r'݉{ d"H>l{9rUuhG XO֤'3L%V%rd9]l,N-n[+g o33G d`)RYcˆȨԠRԝ>=7q8#;\sf5]qXS)mg.Ș2;T\"xiDtm6޾ 2!2~yz' 829I>]6g ^J5x(i5 ,E'9xܬFn,Pb+puTU#tW~~zfC!+eK|@poUOKBLG%oz/ԋ܋g#:3f"|ҰWQ=*ƈMr1*x6qZ0p'г*$.t4ŏ-&rKf:UFd5e{5^6WUu`nӗj{R/6[}˛T,qZ8ajď-[˥Dzq/Y6ۃ|ܶ^-kBu!N\arΕ5Gwdiz_cw4@ߎ?)L8T/N\gʄHaF;M/uƌU+ !b'bTڤbU3!*'@d0Īr0ljo5J_9pTwG%o:>muH|1Dɜ5a**JV1{_m>qy bˊZo'a *"8]9E&'xz 8ǹJ;Q'Ndd'sb5W0?=rW0"&܆N[LGlj_*l[Gڲf -T+$DNLpf4w8AO BTNN;tE]oYW敓Zu9_{+]65Y:UW0C#Xecu`]`H1 GJ0it7.P+x0Dq 6{?ȢՌK8P ͢d=+ k7*mmSmP"<SҽueґgΈL(SFN~ΨܲYUOg{lz\iB\(z.A}e 9}p.MАI^l/6yVߦ$_PES_6WrJ uK@%C0J;V'v`bGF "ǺTTEGssMY5Z߅bm]Syc8CIgT2KVl~?6Yf]*ݗ `"x| sՌꈄyBҷmybZ6#6Ÿv͌/w`|b[ V3n,9@dҡivT{xZZϟ)xn?:Yɻ˳l<\Ά 7 g; n~oCjmD9rF^)e#8pYI.`%oUEض fhgh <6}Z+٧㾞z+;Gm[゚9WfW7H<L6ă#08-E<(<$*< tF -#B]A#Ż8c*tF."""$B64Cg)qk a궙%}팜yzV 3n7b.8鶑WfnP,6zܛ88iINQAu#MMծ.MLC$m3hhFTug`/'Org4Dyɮ&݄a!'ҭ~V@}ݿ^,e'/ӥ/7W r̢mѳA Io)KزysJkJ1<=Ɣ6oEk(Ff.0^QThMԺmA5헁 AVLa%zV.>ȍ})2c?ʒf]N<1NH̭U[;KՇu5εPJ^mu 9N3~yYi*hܙ{;,MKz3GÒmf6 D2 A3 |ɘlDO3lE(23ŵסҍ\Gse#P]/º؈ۚ*a*Yb *ЪXm#J;TX dW!k[wހ $ X@#Vwx kֶUYa?pzgHTY:Vx0W0Ws0Y@űu kU4JüGy֡e؞8ʩֆ9.O r-[~Tޜ1$U>XJ7dW:Y?aF^*']oTr^8 "<lA_^#|2+PcS :؝h .\)|?2+(JSR oY+tW)AaȀ ڛ@ܑ*~]t`77}ay8MOP`M9Aw$Λձx~Ftkp&ڶyd6L 7gnB1@/ 様CJ~;P';i-¹mzTw;QHb*/S9&_k[j˖UefG։m8bJfâLc1\:x29lY^Mq1槄~~Rm(@Cf\X8c tx߯ 0=gӜn@5& d7Vi':N"W+S{zZɁ3@WTX*r"/C5R3\B6rzq7yGğDձqPtc;@G>mnڤ C C8oӍskF6_J$='73lyT` vb@<gdg+SeSS.s>..gzΚ-,.ӑ\T۸Lb.=Z-8K5IU߯8aU^+P#1BiGVh4Yϻ9yZq@{\RG~љ~U^ϸ ӕWB"l{O t7GP¢X3q;zv4T3;V+F]_GVԦ\SD&43R55`;s˭d?a>s:icT՞ +:L;f 2䕞*o1-Aؓm.u%c[Jl+B+Tj¬qwNpQkT!SU~؃N`&؃P5w]w{ze&*Dӱl ~8͑) t U~cYo'2Ep}敶uӳ{Wc}p".ٸ9;bA<7*b接ҹcvUt o^gr٢3s?ܟ~9mxea,VLs1/( \51&;ԏü#B`h f[E<E3nqK>Vͭ"fǴ:!3Hl'*^қNr΍'8 \@i(>{+xQT !0qlE& 4 CɷS7rkM"}l9ň qrt7w7B_̮P\c}l#kr"ʓMP ){7Ѓjǝ :5nlt[d ^Ynnq/5Bcy ϶>]+r&нp߫(NL߲+==/_8_ =doV(-! jz`uU|zݱtzQ5ǭp:'9UVUKy?='SMP[#HgJ'&x7 Q(7_AVsBvV7N z{|*nL>B|Ϭ+NLٍ40}?89QwێF `{0I1OB൓+ptѫ%m3k~b/hc%9J빿b<}.fsҎ~!Ψג$|NŧMhN͵W,t>1/X1OT5XlFf cVp']jH~ѩ{1o gLcNq)-LIх;v@tbUL+5FY&pzNkKf?(֯5.} y^o::@:CeŨeZ# rgV41]PK'3%۷z.OWOb 8:tX֍Xy x`rudl®9JS#b;Lgq4/`.btV%5qӻ<д{EF_[C< Z[d۬%},$uezb(xfoCI&+~UAdP(cԪ`;eQgۊ Pª*:dC]Q;P1a]1}Q;Y1kuujO?jBmV.Wt1` }?:<9V'HkBgScf:3ta{̔Py{R^\Ş#lyЩoԊ3ܡ G'by^hFMM]h!QPWK q 3f|3{ŽO(O#˓2bV\ߊ4!kV1v^`u{+:5ߠZw.T]j߹ TTW"WT\H2jNRRS$m6|2) fȭz鳮u >no"f"zqUeǎ5q9 Z1h!cbߒ43{Zw{}ّ̮L`@BYy#_6SݞPiW,p/Ð:2YIؓqv:,ϟ_Yͭ=Y=(,8`:[j!م|У'w-Nz={&`x;gd1wS5brz:o@S9T+擫xr֓DB >'ɭ?]3z҉ݍ2ps)_ϬI#3(_iMN2rl~dm4p w/fvۘ%ոc/ ƄnqnVlG8ѻݍj-A11OhO5D$_APBd\ wPΊ>6^\38qNNOPi.9Wƒ2/,cs OצsrtO^1t7VLIip) V wA-ܱ'ܐNav9֪ iw[x4|rǜAEnj?ͦQ*Nꄖ mΟdjzِy6pϞ^ 5lg~X>6eEY1h6> ]j^6½~;0m6mVڂR><}}(|5ChuH=qƱ''$L 0z=Qҳm3ʙmY_TE?nhV7D 4TN嬮W{kes_@ @;y!bj{m?hdwl) 45b~K?-LM.Eu1vˍC`{¼ESPm׆J<3J&twFMƥ`5 #Ats"Mj_;V{N `/$D|0h˂eط4LޛM޷C}) GΆPmxwcd+}Z=1:놳Bݣ2P9Iß3Gz\Ci1::oyj(07TT'd#WhVӔ ]9 JѠJQ`NVTNM(p=+?#NҞ}M'"~O ]U5p詾baTf<L' ݉9?.c hf9SCEPHV2aul~0gdY$U9csr?V3J28ݞ|9];iq޾9qPd Nb#'q" *=Sw'JiZ1ʂX~i_bQRj>#/_"g\Z_T`/U]1>a3+Z<c}:&LDf6WZw,kl=ɵ;m 'qKJ%,9O]A͐ZY~#)'iB6ALVm;ӊibWTyV,oޤ^+Q6J2z[L" r/<#C٠4Y1Η+m<ۂ HXoVWqi5hɻ7:19۹:TIM;xrgwDG!a 'c}=ПP-:4e1<[}ҷz1g6ʡwn7dRȊ fЦD_Y{y(bX@ռPaJb"!Wg{?`[n]Zm e˔I9KND"7x q9IGP{Jִm+v+~Ͼ ʅk1-5#ݩO]6QJ !RKURqA#i"i"&IwaYn]w 3"bR6i!d9e5P1EX}}x o'% 0IX$ ο셇1ԟeL+-[Gdtu pp'tL: on Qyb/ڥMT[8M 20'6) l5*`  S }>O=N{Dg%]>жMm'r#ݫ z 1%*% 4Ӿe :U}K@3N ,-ܷ}sL>]F.[FQ(٦XR%pU8mؠߞt5uK1Fw,\yTyԶ6Oqo tG'cLxx c}R˨_m']ljw>T8yNW'I'+ n;]6v2m具`5<]:{v/:@e0q񭄆ezVX>6mzBvmd3Vk!u‡\b64bw>^1Vrv혥)svX;1Ȩ=v+sR~!ANsA<5tV]c+Xò7u&M#"Y!Ya{>qK;f&.rChc|fvc;Ӛ<8JӗC͢BV)zLIqK|l{ƏDŝW#f'JǭS;^w}* "WcttH*߆S ؅ 礧銱Nd@U\/Lp1w,GBCZ|ߒ;^ O~sזexgzGCW2aBo/z;ѕS}[D 7$fyx:)C;.䅎֪ѴJZqxȁUh*=^Q&=Gnb V5gI`%c% :|s itfW:ח0$VT㲩FUTIr Ji O.eEWk7\;kI3X12=#Cx_gתqW٩I8Lq+pt(zOW{*wlP'S;_^'tN xRjc5ě(H4Jtghl6҂0Bl>4__Rx(;5׾c2]12Ǎ;:IJK6};F<7;mO)zT9ǐWxaU sҁՃ!'0!Êq-2;Y1uf9#5#uȼѱduŨOLxkxox Oy2 1JȇuRKNWAFO 〟Ⴗo餹zYyǸkd&=TM.OnjԢ^)v++Y:ⱳ BdŲƶ@t]].L46^ذ6CK˵aNQWqzVu;΁k ^Cc^m^ڻO5)пv:T6y"`g $(?*9Oo;ةik 2A=_4Teds[ sW4>1za~EbXk@w?V?tpw]HyصyR5f2δ'ķƱ hN5 ,鰂5aZgY#ŵ嚞+f/rrF |ߊdʂЃAYAIt>h\~@30͌N-l0lqx5rHkt"xK~ZS suTI d'p2D>,^j5)㉣d+5Vk9}=4 ͨE`ivaŬ3=8XyֆֶDy_0aW@`cݍwǼk155̦ BAⵇ8;6x>Ĺ4 ~P"TB|Korާ:R,a5g4pl*Z{+g4C !Aff(1_-BL$'p.ۺc4w'W}^1֩ D1*{S X%kbR }Okf pw96}W#~ w_|ͳG-*պ_o3ۨV Х~56 wTޱ\l.; FMщݘ=h̒Q;:8~ւ\;5;︙BǨd3k|60B5T2_  ð sM/+/!PQG [8i|hQsr1oȜ7nLawh%~D1ּ"\ TyL</ů6; )bsNxnzw쩝;dcr-Sñc_y!w6suYdǽcyPm jeŸ 3REs]7Zݠܨx 3v/-&"kA y4g²Tq[^Gyӄv>uE\\>#'I>)zX}_oC~}}saއ~{]v"oCJ{i7_C}ȓzr}FxRhެIl}eĀ>}c}sغ>Ծ~^c/×ޘƍ9{mΗ?O|2M/ٖ-}`r[^x|xTo_?d W=GA_|}/_j~_,6)Χ'n>qgStKNdޚ˗.~X/_2㻿6}<9x뗿7|xn??~Q~_JV{%WJ8抿^gǾO@WؾWUDӯOv" endstream endobj 185 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 189 0 obj << /Length 1384 /Filter /FlateDecode >> stream xڽX[4~_*VtΥ0EڕvAHxه^LMZ̀q}8\sv`W!N^R' &ˀFY&#¢$̃\>4$QHR:$݌mKC9S !iF*7[N\uF,U3|,]HcAW)ڟim%f~qOn(E(e$x6,!8R#h"7817LX,aVPP(טU*n-i߄/JZ s3E@AyTpR/9BeN6F|6hg@_{za<'> A/ޭ,$yn>_!>Iv੭/oP=n`\2}ըR"(vUvW eve`Y$RC6HJ#<<$] -\_B]/;tB_N6U8TGQ(yEөD5A38@!$JB,2U]< #,L ʗA?U,LqVMWukGe$f#.%.Q<ح~@Yo\ `F-1(<]5•R]>!荮^ǂWvsZxXyF3n,u5.0QiK*8S4{qGjLsvw_eamʪ%>9cPЊFhHP CK=)1jf)} ܞoԍvsv'h.N( Ȫwudcdޠ J KU|آ]>dǑ} VsҭnKF r_e6Ж;a>d)В["g -[mQUOvsů@yr9L: V WZ{ -3q!B-#2>-*:)r+¹1]!ƩE{< [;ޫ#}@; :¢"@W( =*BꯝhL^0_!M;߀uaz,SM-p]F;'ulh*-cJFid:%(RW:ef`< h#4'YKs1Lmw% endstream endobj 193 0 obj << /Length 1007 /Filter /FlateDecode >> stream xڭWmo0_U Zx>0"bO}IۉݚN;>$M Un|sw9 s ` Sx_ A䷚>S+@cI5((ᗢn)4{KEF46r "rhbfu h:2kPٕX-Q" z/Ɣ΋> dbۦ֊5^]Gze OşۖEh Nh; Y;k1qzgQ5:2iԁ))óWvqa롣SD%hĻtJ_0n0¼`T> [[oLj=1D=/̶ّ/$ƑKTxv[ߢ#cXc.1_S+uV7-…2ҽ.荭&߹ҭOȆs}űuA0(#{'p8AcGHt TAJt"^BB9tU }h,H)]u7zi+%܎7$}r?AL&֭at_=Wj6ǬMIX:DP/c$IBf(0QfL* endstream endobj 186 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/unnamed-chunk-20-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 195 0 R /BBox [0 0 576 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 196 0 R/F3 197 0 R/F7 198 0 R>> /ExtGState << >>/ColorSpace << /sRGB 199 0 R >>>> /Length 132599 /Filter /FlateDecode >> stream x]-Kww|}iGbUv J"!%R\1o5{W5~/lqKլ2?~ן7Wɏ:~C?H L??7/_G߮?_ow_?(+vE#,|./_ȯ#c;o[/?o/?w_^~3˸N9~/wn_{_ǏO?ϿSnӯt?񳕅Ï>gk} }?M>^P>9.A,?[_0>3Z ϴHr?K]_g9rsYg\߮y ?~Ӕϟy?S~ c_y}|Y}?~/kSrx9ovؗ?㻱&_>/#ȏ,_nƗI/g|_ y.z?A,gxm[Sҥo3}wBn <,~?KfNȿoϏiL_3 }|mv9/t_=&~{Lr`~?/gov` ^c_P?^^~?-/(r} ~!@o1~V1 ~zzl?>v8Brw]xOb\7g|yܲԕO]w&]rs\,ʂgTXHaokk+^\< |Yl \P q}/-YHvFXPPb\] {u w{!cA=/YQc׊](y'wɻqډg?(kwA.y5߷o>XY j%:op ـUx6C!ʛ]P~f.(G>/~罨{w }-$VPVMPj~iԠ,$]= _H[҅S~L>Em ~Ɓ?sX$U{^&h {~p?aCyuA:,ճbA' >_~Z?>2qֿ~.$6+ wE9lmv1BZ a4Oϱ+~m ZNOҿ__iײZr|XL6Le,=ȂXz-(O&,}B{V̞^lmx{:j/6 '[|?.8q7Y?'wm,A|wB kw "\nՅXViJjm_h>N>3.-\l ~Bz1\瀘 {$ % __H !&v~F ~cbouQwpQ6“Oof4 hr*=J:d/TϢ5>ot䙺"uimٵEpmmS !}峯lϊg{I~mUl}a.{sK8HWã#vgHXweTr,HpȪ*\U aj(5r] SsVL=bV43ㅾg\BxZZPׄ kf;IdA/H 2;|b-3'qrwZ |d'tfu݄]vPGy^7v[{QeSP>d3;f[3 Ӑ;ZP"%[۟SCB?,U7'V.2cw Ǔ{co5^B4UL{ *SE~I#^Fy SB29OپfDf,-8AQ,A)"kjwCr c_ 4qr7U39 y>pѴI1,]0/f!究Fӭ!NoqJ[tRkgQkE$P{co 9m(OobO,(;v"<݆vAy:E+~E(i!y(~lX }d.Ms6=<^sJauO H&U[ZwZy?PZP}nQ PVFeײ%P,R Xc7JVW LApx{gi|BDeZ~0-~,s~q,d.B 5Z_Nѡ'łrJOx O>N?n&n\ǯ>imd 鐭иrW?j~k_ Oh,V'AUf7!!|N*͒yeMq,8bऋ@H5 ~p! xlsXvVXQVX5z\ZHߪхt'O/тE.}8AgAF;a=0;Y/ًϿ&^$/X1P=Bel >/ILBX`T;"~rfbZ%ѾVN6Ľ%kAyjy:ҭ6GO֟ol+B3.~zr klDw%/(D%2}(xzq U&k1}za ohj!ĽUI.}jMKE PāZWɂ|APOSa+ڊ{q"ъw\N!5̭77ĬcOy"/-/-vyDOC 3oI%- IoV?j",yU[.(YKqCyz=X+:VxĴ|[A916T"M5^Pv99ڰw]%uSΩ8$~,\C!YWi|/<Ϣ9 ҋ-oPVn1gk,<ׁyA}+4-$+ivC'^]x2y 3Yj<֏R~΂Ycd,zCBb vAQP'@7 zn\7e6nVtݑGSGs%45? (7wnFP x0qD5'N# (z nH ukC"[lAIJz!yK/(vZ"(0^`$kcA\"]|W}n3Aib:*S! ^;x X JV &YXnAW< ;NW7z=Jf>Dy{|ɪ ^TaA:͠-(\G0f˱s}kyR] ^;+,ǑjG(}̃>agAc9%_HΠ^˧;˧#_X~Me|/ {݂N`h?#TX,^Lr7_u.(OKyAAMމwqdO8Yzi'=Dmz|.g{sgֹgKykp2=.f8?Wm؂r!<4zP IDizvzvn(" "3Z7IiC еIAηܹ,yzG,(spE;:4R'vߺyo MwQsũh%Ir /[= s+JJ5rkY.ĮTʂ l9<EQaGvDG)@łreAꓫ ]dD2 797[][l*Tzm@H #`xv#"lS%ue! [A R%C}>q8%':ukR.r ~̞ɟCUk .fz!x*/U}պM]+^UrFu]t _o|sR2YM1DYධ5r_OOq7̴~>Ku=A|i܏п >f݊^B84̔Bk[B<d|V8GEKٜlym4NOI[2@Y!>\̕_֬,z<$W9-Zl]^7 i'z!2EUP3/9di=KrAsfgk.qjrCAD4.]}.gA6dw-O:ǸgG NK] ?C^ ,X?ǻ 1+;PZӕN::uuD͇L, U@x> ϩL)'#z2:\7q:?^\k$ƿ N^>⮬n*=lĤ;7!"J]_~5?^dxdV=xR(:[9q'~衲lS.9OhPsZ,E=1zik )ʶ Vbu.g؅nUßr2lOtmVy] 5ȓ?r /džѺt]A0n}o7379!6M -3_dv6jL/WU3ށ1֖$ G>J4n,F a?jS+pམ =5U |'%OS!'Vtnݷ 0QKY6Sj)!P̂牿Q6VF^SV*k.k7~ U $h^Ujf3UftkXOV!ЊR 示y t vbL0A QNh5%2rG2S)t:3LybBv 9IEy\ZX1d6:[\gݫ͌mK-ݯS+ a?j]'9ӎg㗠۳ I9N^WNTI_ing}:gWW׹*d*!֍Tg qh<3r VzU ygKVW(}&U1*j~iUꚱMNzS};9 ~WfԙnQ''mpUͺ6q& z6)ZYPl[a[O㮨ǭ GƴqŹ uUKRzdqUk۬1/\WA{ &oH?/V[*rS1y%BuM;~MUf"&}rj\"?jo3:B8$ϱ!+fy (ds#6 vsriS~:tK 孀m! :90 ɍ}׭u3xQVckG x?Y-]sMg'f9>Y&zMioH|ad9H#wIAaʔd89f ɂX׍X?_/à~X~Wzł~3Iz`_?+m28 2j"OT ) ɜPmBmzdWE\)O9f}9K9qVdY@2'+/5 baAOK>?-F9쬮X}2z`4͕U?t~f`h(""Pl+xxѳ )vÑ"ڴZKv/6J\Ane!yD\u덝utJe!tegCx_P JqSrϋIGᵖ>!_Q,?y^NeLȃ,Ss޻jA>uMYӲew+dEɵH~cޕ&Nֆ[+G8+:6zz $ix3wU7=JO}0QVQ}*J(|/o!‰_:Xdzc!گuDĹ!zFǽ Hd(.:ƌe~͍c>=-:~ϻ!+dTx$NMu>O\z>?i>Ӝ3 73ᰋԸNpu"ӂ쟻Q"]zz;cAZc=Z)ݽGhS/y5_P}01 fC2vٛYӮ>t4 2EJ8o7Ե/Fw!'876iѝٽ9" 6+woLY4"]kUO/A] ~Rk<ד*{7ĮeA1e"׿LS5ht>GEcC~7~GlXՄ\̂h&kl(׆߷{{ؾxh<6 jO[+?T2'Ҩڜn*= fg674 Q@uC>c6M^f'΄75Ϲ }͌Y Յ3#,﷨i6a574^LdlPq/]5{4 |C'.~]ӀU+GUrrt(o7/yЗ4j]9weԽ4(5LQ*lDP~6]: x=7jPA!H0G=|!=ÕUg\EUoA7(cRbZ7㑜q5WW,;|nG)uCAJp tu$^" ?w$倣)}uŪf_&|_C$f1;=y^b1jjq4r1&e2: ͲEDa3C1xd-X/l*Aփ04̸+5G F\oI&6u%(Њޙܣvr?d3"\Pl>Fqe"+!\ h?8:"J9Q{+fU6`7Ե6A&e-&M]F,zQ>䗯毛+nskCe[6 ƉZ`QMd%{3>F)mʋzW *;7ot=mwPLgWQ<\ ߆T4DNIqJfլU}Vݖ9%h`~J>ˋ[xbv|/ͭ/7ӻb?ZNUa~̻i绹M^DvzQYPl0n qwJP*lK|:[>Q,51† *'ϙF\ggDt ̪.M8|.ːиٛiQ|`~?3C+NrgKn'"X ƺmŦEbqjhڛa:՞=M$&jjQV(u׌uW1WMe靟/Ӥ2׀+0IOw=B ѠLj㳷c}JS$ 1TW- ~z|`CevZ Se1\7~BeuO7~|\LfJLT_W_BY9R`t4(6mĬi*Vutyyaχć{yO0J,ӂv{ɮybvij4 ŢB ԥ\HEaojsٹs<4B֭U^#u2|>I5iRG5Nj\5DljGӹ֢yXAnBUW|>т<_"tUص_Ie_q2*/ ʛE#`DQӮ=w/~B\RAP$uInK6̒}vstFݺ^\ Ov_d{lm+*ʚ缪Fp'tVwOv/\y%_̯uY NbU059G1SbMZMT6r&}K\ \ݡ]s[UZ`W&1ROQZ2'x1^VO/=8=sy:}fn::o{9q/Br2?;7{cNvO fk1?Eg$b#oÒ,YΘ}YVuY>b@:zrt$n j(YPXK==7:`a]SĪ'$K<[Nd)ͼJBZH+ogE5*n!z>UX{l |T蒳hg/u_V:1#i* ςx8R6ODmh^ojh@&{5u~.; " Q cyĐi3^kb y qDrQTew.9]#*Tjq] oSY^7kﳛp_!NVW{+;!Vªnnȕ׹nj6uv6syX*B?Ox$n(wN6%儵 ʨ5o EH vt+N6ɀ0! 0՟~Xm7^tڲE>ߌ=!ݧ3T+-vt!27Ċ@?s'Ѽd4jxtAvӃ$ ؛fyUf|N rz^CTǫYAƒպ vckZdGvNAL|^Y_4/qqxd2'(tl qk{A=7^Վxe8>d{Z;PQQ%Jb$9zo2&m(&.Q䄢8Tj}sCPT ::|t"߁ `x ƍ秙qZS^ ^$It/7acim΄ N.Їy!}ZRѬi ~W#HD|gZõd7},6jjraH;3= v`A}7{AApC> aTyOu2g5/V2mJWc>[svwqBal<duMGJOlݽ/߯:%S"SCI}(!lF cF(mADw{7Nس`BtTS"SfgU;OOn(uf=/_\cag5݋Z1: 洎mp߰f9]2D'MӪ  Ţ͖8fT5}6ڭ<[&dD;[dGQU=x0ϧv=nҹ[*skrkkMU2P6D:Ay QƂ sxm͠3\ 4VJᝡ4@ƛ|pWzw}8t|:| flQRlx+dw=ުkS"SN;.˖CII!7̨Sg9WV!*u(!֟Or)O+ayv)[zӔxso!cu,ŕ"4z,FRs(8sNL%'MJ>7)qŤX1:-3pUZiG$5ϱxĚ։ ߛ_H|:뇼"`69ӍTYf et =:=~*TLd!e߁wu-k`ݻN]*k]E$jE.]ϙ>ge8./kmtô"W{ÔhM@ŅGIzWQ? )r{>]"]!9LiazF_ɺt&oJd$ų=!9M+2ϥ^ 3̭]O #Ծ-{Wo$ K*: LqɫϮ.q 5 G!Q98dn84 },V;#y%s̬#^j3&6س魪YM+< .I`?x ]hf E8gȞԩ:-Cs jXHj*aiþg5~9\M eb8 8)Xg y)6h>uzɿ~_rv8 WeDVyJ!+)Htˎ46S) 7؀͑#oFoͻ1?"q16!N1]ItzE`}}_Ժ&m(rR|㘄38mhSN :tX5f5܈DP`Tug]E] at(-N;k\ [?PomAĻuz *s㤐fd>7wfũ΢鳟!\{mS,%C/(~ٵʩ1roHNdOg6abl3fG}nÔ 8#7 jZ[˦yM봟=[&%ֺGuY3DSr-}2P|o;z6ĎI1ONx*"9#-ٿ56}/r94VLU뙺{_q~ӬT^tB~#(H&;cfc+xV\{HtXRfQ97JQN'=׃DX S+n~)+GS-sZN7?Zk+ոaP×9qJf%#Fu|U p2Sq4 Th%9-+d:4iE˪eRNdlrg~ʽIH ,}l@.$B1gTfS9{_!N}ɍk+ :-&yzxǴ X>Us6M7{u%7W\{@mpAG/,j/z9qwZ0&ݪMm\s'=l!Ś{Ԣh&<_eke@e*M"% n`KLcj 1BP:ʽidbps֐iI قzRug06aqt,ߖdΙ'K-7TIWIWlgIu.27k\sCN\!As\9/g-(kNb/&$LvFWhVQhm߱%U.ᬼT;~dzu}j > :!Oǭ9?wV>O*Tws.+G^`2~yM=曽ݤOPN7r5Gu;!e eA^P-7 =! m#9o#9^~jw8ޑ^jx@}mAy]9pw#:?6|1اb:EźX tOIy!\Ye խ.9}}DmY8x5 ?3_;VIy>7:wd]=/3j ?mNL7?LPQGSrg).]{rRߏiȂqğgμi\xiO*o5zQa\H|a}OTbUb> "Z&FlSXi 2< ߏ1V\ ,g$4 , Y:;Z`Z\yDXqRԃ^|k N8)WW\Y){䡷ffE5HF3[UȜd5Ny?W Ua~ Ɩʙ:ņr*bӆt7%djf |:!1p8 X̺Z`fs:yuǨk/S9&ݦۼe`Vc=-Եn8^'Fȡ5J;g2*^*K9rķ!ֵ+ҽ0bBcr,$e&<Ӹ<ϚW]^7_aJ[*Wz*׃'Vtm gF[-9 qpK-K7fKDX1ڌϫ (Ջܷ3v׎{R ʳ=*X;IEa}YBt 2kk/&W1*Y dFWG%P8>q`C+#QpXy>QVЌܑPc!5vkt}v6BfՔ ^bvdfgPa3I/Tpߤ28B&},wX*=zWTa(&jdBS ~#} })O*j~$8UuP 0DNا)N1Ov=^qV-}a_JpeթX(7bOrR40L v]sEP=>*ye*4qux s #5GJAGMgCDTWoxfՊOrNY8= Š&=aNoȳM8|?N=~ κ6W-3IG tM|hdõÂR#vsXsf0{Y:sVCY <[d[J*xd_i6SzNu{ʺ\{ ) i\% 2H<ꆽ9 cgcd=(c 7ķO| {A9W{|lR\[yj|mJa}CyrAn(GdL+xWn+Oz˧}2Yhvp>@m}Ax]_(w3Myyrܪ.[`aaØ|zRncYKWQs^?svRc4.-<=T{Ok>ҝCؕ o%}Sݚ' )90zAj}3`r -m|rP9YWI!H ܺ>n `Y1GqF(g ʱ*p*DbzejGy[Tjn;ԺbCU-n܂8 V9s)C"ƻ1r!%_Z_VqҨ5[^| ejٲ> =8sZ{]dէ޾E'6pֆYtKZ<z1?V@>,zRc* ^3>0O*/({&ò3R`f!=q*o7rdW fRJn,癫|QvY[ey.N ULV޳FȕO-q3NIv[^[o0#WQuM1A.?ZFgKP|EwImד~8o}C}:!鞴v,A;&isOf SkKOQ lWn^Ջ;mEkgg/V8d^d|V&h3=sDwZo؁uA5pIͅ,[l]o~4؋łr(aFugfOzHy@i&7 L7g770ya4RܙTAŤqSLz| siLYdk}N(Εj}i/UnEl`ϯ|]p׃LXQ-峮d:$=%|X[۲ƻn o3<>LycX_HL@P}1U{7m%*MƓYgjY}cTl'ܲsbZxT-;DQφ%v91 ~AG够3~$o]u:36[utYt}q:5kFNuCOm("cĚ$&%Pk (|ʐqǃ,mak*ޙ":1M'z`~J:sY g3xbssB Et>r"#fZp63c'΂&ulEJtcF- M/,2YI$ӣwJAfO/}LPTt*.&>tr[5%k4dӑX <,x"B 4=}2rZ$¶ɦa63T^7.3̆ozCxo,,6}Z/uvEv纱&0v5*c;cy!Ew9Lγ}>.ā7}Ι}nk?[HRWp6@nlAYЊP82dZU z-tqejWנ7kjV4Tω"~ J 0o:g:D>=>J6ዉQczX{d&sfn4^ՙqM 1W/f?i qerNFs7eUy:uj3m(^ ׳w%J#-!gnL+DlWuLd zچLEc1Vh\qj7ɂX'9lCymsZ-m^SG_\]xBC f}7[|qނx3Z\zyo3jgc)FI=ahi'ŧO9*q=5zYNsN3t@qC{(m=~}!S|cn%+CV_AΐKn"+3 F7U9a=UUlU]1e)ٔiz6M/o3箦TiNEQJnq( 2?nL>|; I: NB6 )=O(6emuʝ]ݺ,.Kjmd^y\i iW>\oT-7 {4M7Q]{R lǂ'&>ooܙ^ p+#ruck_͂j%׋"էRn.]$!7n)W9\}=LVh)oԗPF ǠvzT\M?AÈfvCL$rP BVy7M#'"r}Qst0iCܲQl8[s(#WPxcw&}J<;BtT݆ε|΃L U w$#1Q/(3CS ,(VOpO2>檛O87?gگЫ;S67!+t?߿\$#Q)/%C9J*nڽ3K2E/c_Uz#GÎ{[n~[G싾n7'{663&2 {(^z䰮 }iѣ#s^mUe؛ N?M`nc-!Ɂ41うa6cM)z)U#o剐kzqcy \\Bb:Hנ(eE|DFZ2F52< Nt'Gն0Zw2Rt-s-xt y1Oƨd[Uc[]1e`FEK v̪Od^[v&X?MD(5\]PVdžJAv!g]S3AҬZ\9] `+IYӠ9k i(֕c2t빛}SE/?"ӿemI65i 5M3`6Qlsk4鉹|>LhT0_%~ @'(EbLlPH=,ii1sȏ O j:Ka(4rJɧTV[9'ds\n8U:w '|&9!_rƜ9aYmlgĉiܺ͘{wE#0Zvs7AS-Jժ[Phj\\l~MZdY$TYB٭Aw0Ax>=;ځ4Ϧ]!UQgwuCyϼpH d]٧ArrKQӾ2z" |SҗqIE=o?*< {7Dm͢PT@Es%Q'Y 8& ƙHg"̅^^e=1>0AaTׄ:اx7b SZ?'#M?o<ߺ;tsyk60Dz >Mu>'Q/zAX8t_e>A*J.L}; ӕ؄ )Ͳ qs:f1Aqsg]gɇ_}{~T TjVÑzmdNx)>OiD+X q"֣RWi%>]]4;ͭL瘰p\C~Y=͸ȘM˘U6cB@s~fbӾ#@P'3f`Ր?obXƹݧպO/!Ւ!ܳFj#zʹQP7ܳo}:j@ aϧDl"c.kvCyTlntf ᷕm5j]$7ņIO?@O$^13,3#;j*Dj3C+Ƌa:|vuaUfU>qw7{i8ڕ<\=PHUb<<6[{U9y gTsiٽ 5g(p;s5hgDdq{(K''xN ۩ȂmӝNcԣv;ݸqduȿHЭ+&D,;V1{X!kk_Hv:чgÕ!:) UL7]83Nt>fX(T]8Knc, B$Ysó,a@ i8k;1HލΑuu}sIl&] _nVw~BEK0, !U=UIwsA<5(t@VpC|IU=WvSXHW{C>l&i=/9! uk>r*ooL ^g/: e0'#ջsBsBqdi׹f㬗{vVƂӈ)K1}R$<24mQmJX>D_Qa3/naY^B>54ϏA-tn[PV ['yhyc%B!j_ t)&a]:ߺ Ũ qޣV7k)57CdN&t ܋Ƀk2w@ 6O M҈J+YNr\?/Qz;>fW#vdl}b'S\ґYYphZ/5jGD5֦WNq^ݦ>k䪾uSzgNV=Si5q!Ӎ y$]MO뼏yv`}3<عmSbL~[t? Ff-wUMyф!9tV'dd̉'b幃t{/o=*\V>9.'DLOal9zCD:b.0.x&y5M+êԟšI:~oT0cԧ*4T7OӢe!qnӖs8qhSupzYSGE`fT__0 Sca$y2^~wDo4/s9WH5wAǎ;Dk\`a& BS4P]AaAy7UNU+r ~@˲%O&ļj)|̈F {k'])inZ+3z׃kYcbh4|w]4W}]R>=ku`xA 2ɘ+Z(P1*sȸ'KL1d؞k7Z%G$ ; ͧzOߦO_f'*D՘QgZP0:n*?F}'ONgu;8 ~BotUht曳Ota;y;?]ߌuzī3!9?NSB[ #_tQ㒼k[քVܧk+Y]}2seE/84LrnjL&*yTCrYnF3N^kJzC*b4ʻ XZͬy%_=`mBu ^U[2<qh HWesn$.7TK,rZ%'Ջ/=TzSiΘ ޻ݵ"-AV+LdLL=ņq&`CJQrK 5k{tt9 fN%>Z@'NB:ow@̂8N{ޝk4djI0uiWi++JOg4#5C=eޞKְiFFMnI_tK)-7++N'Oh]{"X}NjwMl q:D7}DaraѐMY㴆jxua٩,&Fcf0#sbTA5ӂÑt͐Yvh`!z-\/s:I$atN|j|AI\;F#{8"AvCFYT;o%q3g52L"V;Yu}ی<'f/2$m +oA=f;]" /HAπ xR4~>p :vSvCyWwxtp5לC<[kBf^3 _gOiҷ>gmkrںω#i!觉IA^!&ǍL_Ubq% ب'ܬ1~;L u=蔇b}=V/*~a6Q 1Ip>i11)!Ns xG5 kx={zn]A=-t[FXlff^ iΚГVAlS"j5K.|!}IY_PNL/>mՕ9$ēKM|4-؋KN+6M,\_>~.H"  Uc xr 6vg~#^䜸is&f3Lpjm:5828\\iŵD9c-yvq;Nxxb'9WwVl>0===dy@|}UhSTӦjwya^7jݜd7 1~˃dbĈjfC/::i+ ,4O7j'=}ó$f,rQr;Bw=ef[f]-yB&SG,d1aCj< `pa+w JhGz]ɀAEDx:/8Ԧ Œz5&=؉MY; ϸk'C;g.;׺n7clY$Jdl]HݦD!I aM/qߞP˛wԴfvјnمkJZr@'ŰNϿ.O#aQF!Vfx6/SmCaUˮ60i؄75[#CIgA]n\ +tn`Fư+P9%\{/< F~p?XLLe6Nd$1D{ 8kg1Kxdab7APKv"';ChZwLMg+AjǙbqPNfS9]PC\r##9#N,;qA| ʊiлV0>%bG{cw~>kj)\ڶ >r|b"ΊY#qm'݅ȣ3}@,¨X!y] Y{Z\3ʨ7%V6ςʫ' Vup8O?%:$+!N oY{atQ[!^U:|IB XW /3H'r5i fa=b\"UjLUt ;7wnfd7JWWq/dz-?coȀO{sj6 ĶzuZ1h w$ޅŕ!^*Sn1;~楛*ǩ 5OnX5:ږTsc˪Pb$:j mbՐ4;YH=Iy/Iz7s׮O-z~tt.0FVF*"͠ذzrP,YI-716N%eSr3ܲj)X5ދ>^3>Ű@~C[Dty3GViJaֵè E=|ӓuIg)n6?'QI<%ps: Ը'_5t?' ~cO0nᕖ%Hh:hщ6v2o naC j30rF1C.yU7&U$&i:pv}Ԁ|jV nIVBpcwI';s_VsifC5M+00 ʹߟ ߦ]^V'yzz7ucH Q轣GWꉷ?.K܁j a($Cn(gd}#_<~곫9:C&\W# s`T,1ݴs <~%{ Wy)d8%FO!c#<ɋ'C]N8jqɵ-(~s?k=o:Z"J+zEgiߦ#6<|zWDZy]ջ.f lkBx~g>tL.1njJЂ ⟋auDFf*/0'Ԇ@6Y9qX^K7/#?ozj==mH6 ^!Vi}0uM}tByGvj=3X<rN 36 25=;(yVPmas1d#̍ec1cNAmô*Ċi5MZj$8/ҭi`͆PفYWgY21#v@X"w=Ut|F*S} =M**TY;1`~lƂjtdbv 4,=8lJ$)ML>E0Z.+vX-a iD]6 rdo6Ȼ|H8Wl>b}ݙ55v&q!HWX+ffZ+}^HX]POo т>Y0~1HCYA|j&gMz'Ojs,() a=C.Pgɪiض~=ḵ6ǺY/pZɛƗ-[֕C|lA^oUل nÔQbw9=&@sAx9yu5YFDD%a_&xݟ+xwv Eu z>QͦMBjaC'5Ou䂺֎3Q/Bn5D U˟<} Y~[,ipO{K4l(\lYjح&߬&5jnOmՋ*D EOAyW=xT*+16#im2,L_13ԝ|PNII?9 g;ln,UNgO"Q@KKMd 9a(>]vg7&22|J\;45!~]WeL_VkxƼBY?0vr޻}?p5;%|ZOiNj aF?چרnqW(qFH漖 ջh9fDAi w5| L9;fBZ*bܙ|XQM|vXK!OItaCAϻyt0 gM8hw5Q% YqXO^ۿ(Mf] *TWi`b&ufgw} ~yI%Ӕ8g'=s^%8l6kmB2rCJ3Z!zJ|NˁzǂoNd-y,RD[)چ鳅)Lәg3gڤ6jÂ~j M&KiYֳaa9s/U,Vo9ْoj%@64Ռ|hCz cׁG*S=P;EUW G Gʈn]PLy>.iLќڂk:PF_qaƮV ƞOyDfxrfxw1PPf-}蟜w= e4R)Dl**6[+sC<[ ;& u>i/*xoszwqNƾbAT][뼫~GtZc¹M4—ul(j`ư ar 'v lM@7 RA^>/anTdAOQ5Z@m%.X$XqAtGϔ9h(NI4O,ʜCmUgAnepiퟕ:"Pi@=CQD6fQzWuI4LE޲.ӻ2ezA"3d-O9e9*t-0?Z>!0,ՙa}#Uz">=Zl qh~iA\ ΂߽|\9KR/kAO:S F ZrTmNؑ q红W'1|9M,X}V2%#•tBxmPhU= Śa =Nч7"O 3XAnfŚ]טEj{df|$ٯ@{a j||^||[3{!ZOWe>iWY%" +}Cb<1QkCё́byw5C Kՙ]Ewlq^$yU|n' Ў!e]P> l.NKE\g8&}J _yu>OulË9SAo2 !cQn~ٱjOZ,aVJk$N }r98c>_ z'Nȯ͛>(3) ~RŰ|;AgAx. &mULG)Xޱ 6τ|aF 3#}x8NĠ lF%MaѥUܧ$ۥ݁ ntZ{3=hLX{][:b7ɆWU S IpCPCdO&Mz{ȝF-UcAb39W]2#2b} <@{v?~ 0w) 1f W>|tY=lj9vӊ<EpsΕ)*z'jAZ_/'YFߪyT-:Ng)kjB jCZ1IJ_hS>*IwN6I{+؇潇ZUitIcצ= ʺxfi0(^ u`4[W(A"Lo2^-9p!&.yqJt>XNmU!&ϻ3:< =JQT:(Od6z2`gG2@Oӵf;؛Ϣ1]PN)/j3NVΦ^ΈfO()<݋wHg 3Q&>Y#xhDIf'f?]=DiMdRd6Y[E)WnADTǽGz _9Ml{ECf%2٘fk Lݭ-߹P0*p&a$1dYwTG-v~yS5[-ο,]\p/(_5]>kvC'vл~f(Υ1yFL5D1O)Wzp/DZNb߁xSPF.5vSŸ W9)=njF2;ɗ'_NqNtdguNYPN 1 WfPϩkڲ ʻ9P4Dm~$]=k39/;抿7;Nw\h}^ ~]cM78d&%0fCS׭xTHW*9P=={qq،H/(w\xB.+ʪ_oU т8 T?iw~I+ZġB8 p s O֧!l]עR{5JrZ˰CJם +Q^7ˬR曶*lT>^{slj/:ܭwT(ýݓ\y++m%| i˲x2kT.la|GǹA'hA.eKv"<}B4բ,Q,$]?r R3A}b`UYiMX;3<\2 Joߦ}ǃV^;%׻}Vcx~ҙI7Lnuogr]NӢz!S wXw97OX kW=Q6 3b>Ǭڙu 1c!MiK1mV0QPg=ote(vvanԍ4s͒QdgOf&ؘb2B 3>ʎb)E(f:3J=y9qbik^ƒմ431jCyvdAgANoujJ,dX´eu *foei=zgg1!>߽Uqny&%3֝| ~lQ孹[zo:gx3sNSvx!ߡ4}uxyөbƇw'2Be }6NzVY"r+"OӬCz4W?bb<>^~j!+jdRcRN=+SeܻNy,Ǿ̴w$jiIZvۂjgdI#].=[L ZTZ+qH4g2BM⚆Szv$J>+`pIrbs2 hkU|vl2;Ù=4/Sx!FSg2nvܦQ>0EX BqZPm5 |61]a/:W6*U2S*-|ײW=qn`١iS;YV͆˷Y1ayьE!N=jgt]WTPGPV99A;dxф+/fïS/U>\KQ9*DI]10qǏmB\Sj}-nPZP.;_R\^^noUpOg&~ fC3ݕ͔CF쉸qA9*b5r a_r 5HM4-9}F#vƆ}>P?/(G2>s GAT+?O9. :>xig?fͫ'УtK"z#?~P}VrF"Ic2j7cכgj惃4OGIG!||=Ag1?z?ᾞA%gPRr3d?)" |FA3IjyS) L3ˢ~~?3{?1E7#9JQ~>uGuGy5[_7S^׽9n8(c3Gϱ۾f=_7_cHkvGϟ[7)?D-~?_?)&we̎:Z+?͟GBG~TG(???s˜ W???uLƺ?W_?_('k)?0?^aյYM$L~\4,($0/H-y9#:σu} ~}K:O( cNm593n> 0eX6.X(Ie/~?o,R~ yu5kïښ7$|jtgHp}#3[/(io?L_.y~~= e}sC|_~m67]'x~?í e mO@/ #YGEnx\bIzc߷!%wAY?`nwhCY?kA/IEq / b\Pa eA b*oK!l($ aZP'R7Vs}pH!gAY{Aja?.(]7˻[? -O8ߔ# 0¾[r<7j5Գ!Ǔ}iPϡ{Cgu  >紹z@,8ao( 6r}"!7}!֏e]v 46n,(< eg!_}<8~ou_O׆br&yGӂrBa,x}?ݦ׆Ɇ؟tِC_tK¿}Y}0V2_J_,민~/g5Q!}> BBrC쟑_=??w2vtx>yҾ}`QM'z:r~5?3nU:P6 P~ J:+?^6&Ms^N}r}\?7,?h_x>6O?'Qܮ^ݎ\ϧB?,(< a%?|JJ,=>kA9?3|OIϯ !gߌ_7;l5s~ 포9+!?ڷ CZ_jC|p>lO>\_a~Ϣ秱bC6O!doHJQ]>P @SÆxa$z7Ɇ4gׁa Ă*8.u?\o{> =_?{gBM/4 ||pe3t hC<+?fCcN?_?Si3 7@bAwX-ܸX_ui0A1Ycw >?)z>[v$d3>TCnQUϠ!C ?c10>nD e}V;OOQłvAWozH%͟x|wA!kCy,os?_.}߉r}UP?PO P/:7SP[c}0S!Gh~7N~~I~yC[]#b}h4]Hx9Cځφ/N=A?4\ /[ 낌~ ֧}VkAWUO`L07\ߝJK{C]tn(7au.(߇XߍV}L O+{Cg;Y_ }Fen=(lA%#S!mlю k&nF@( ~4OM; bXP~eɂO-ҁ糠?֗ח_ ]5fB7և:fl?}Ox! <qQ\4_dDA@ς s}&!|ِW bjg F:/>fsCeYf E_-3~A8:AE.?K )5?>P!AДoO І~M_$7߁qX}&AnCy~lHIPfEGςnHO_l8}}}(_P5_7SPy W.fSsfB^_›PoD o'Ԍ_+~4 UaIxioAпn">\Pwߑp!!yrCۆ8`|e3Z0fC btP+ Ԫ<-Ibߙ S5!w: Y ߎI:J|<-(ѿf|冲~]B\u%?? B<Տ+$07Q[P\o[T?UͿK$/tpH~ S0}OT _Iw'?pP=`z)JWۂZ_55pMvǃoG7tY~a6jK r*7y?,S똶 ӂϔjl@vx_! iAV_k o? _7djXP!Rndž¾ c_4_ bCOmAf?y~̈́og! t-("t`߶ߓP#uٴp$8 Ϗ'q}%__A̾}>yI,p}}!ߛgCxPlJ*0?C6 ޚH6R4j\>4?4_mW6}eox-T_\o@2WP sA8,S1|C _: }ReJРsr~Z\P~ oko[ ߵ.7&GC]  z~_-?z7zԡpϿ?clf/ڏ@@lO!Ɵ(navcچ4[?7ׂ4oBIO#//gA]χPח}jn" C=s^p!Zs66:CMLoZ_Xگ/qLA9+^揫?|](?fHi~_c>9dlL?k31\VƿP9"Tߣ>( q묫&!o$~>QiA9[e5(o%[W5HzZ}&%̈́/ w@}AY?7s7WCl(ǔwF&Ɔo(cC/O@ ?AӡSLVFbCOOO`˂8.o/߲yL(xbp<ƟHN_'æڅ̴䟒_H's`OĠ*]w:D̏v9>SůZ}n$$77GsA(犂n8ѐayvz-%_>|^os|žP 'ìbu¾և ֗ b}-a'>> }|?w ¿Gj}Z~8l? Nj%χz> w <>_[[nQ<̿LկXG'?{}cqT?)SsQ|v)%YPx>O[P ?3VX }$o5گfk .3?~z~"c^?wC\WÂo?6e6̲~ W |_>l(?lX}n䂌+fHg~{~$2 o#n80 ?=1\%wS0 ?_4̂& UW}ӿ>' )rA 8Wf'AI}~SIso6o]_|t}S~/n( ?sCYԷ >Ͽ?ǦäNM׏EB"aR>h~% kA|x|#W 揆叢!XoO'@sφ81o6+쏴C|<>|dq<?aЕ;[/l ӮoP>O.d []!^(7||U;Cth|~Cl8S/O@t}%Շ\;Ss ~Ȃo">{3~`醈/ \WeCW<ӽ?)?3 %|2s8?:h%+t^6ow&o%C7~¾Wfa瓼7? el(aAYߜ(H9NL%4y_Ԫ'uO (H|OdC2c3jX?&W!P>t^Vb/o%Uȟ+Ο 毯eA_͗ÔZg hxoA$>X9~!KO?_/LϿ?yd70~sm iq}p>قp O s4t*&?zX߿o ?4kk#al_I!Z^bQ= %ɏ9.( _7TUe>J 鿱UD ) ~~,C } ſV/v/6טp17/Sp^egy[~zw)H>R A#]o^ky> ޽eț,?X we}$%ci~9.wM/eF )g q}Z?Z.~O4Ώ a?FÆ\_'ח7o OG/¡" c7kD?!WLylPﳡZF}r| qlh>;KM<@} a+#40Jh?5YCx*Կ*>ȯ/ li}}߶_[6W_fg?8{H*?qllة/owA?y>Iy'}w1oCGåe}S6QY-f$U_bA `x7}Z[K K͗Zuo>rќeKA<~4L~h Z ?_!AD ~ņ8?j^P c̟P~~ON#'!K߂>R\?%!do<zϞ Q޿{PY|>/ &ϟ}N??|ߜpn!?8?Ej 1>/3`S}xCy>nlWP˾?r}Gv> BϟML;̆O귔/j7 Q?=P_?-̟Ɓ?n|J+ 2#>F.q̏WϏ A{A7O<_c>Ȱ }|I[JIOY [s} Plh?>!Gqn?߇/pfhWl / 7;+sdWt2o7ϬQdsy0|Uğ/i :_V~ǂ>?uX~_z!ףf~!{~h-}8K!iDd4?~~n7{ BrrmHG3bOewOo )_~ @n9ԏVnp>f>wb% >'%XӇGߖ C~C/?5Wdž|\MZn90Rc}>\|n󡢠o>&?~7UkA9Y;~nRݍ9F߆X S6ؿ_m%/ _Cٟ~/GGo /!'}pfS>thC?7_Ҝ_28~2p/|W3F~_5   Ofzq݆}OCk6dUv̏ÌOoʿ< /jƯߗ׿iϙER'/9)k|~ ևӗSM[7px˴$D_||.( {v㟾ͧrx|]P?]_>]u?g~Q~Ut:MvO@w~Ο^Pg})!xcуBQ@uÝCSv~K` O_^`Qw˓/o];/vUo}ϗBW~1;p\7g?n(̯ AUs96GB@G}R~݂8?_SGb L~3g~M@p9?d|髽)lA]w Aqؿ~^W `1|3.g$ fO6|?Uon(ˋ>WlTc~Ч7kׂ%!S{)Vu򟆟ﺿ]ο{yU?iẄ́;ggg*]_,S#=Y93{4?ņ?;? S̏>AWlb a?/%>d  Y ¿ʌL7_fHX'{O΄gȿ~"~iO@~g g h}rA_3$p|Ȍ?3. *PDž< oA͓y?nCȕ|n `9K2>e} ʴ7~Z|ois_R!Ca3' ϯ sZ~\?8?; ]??lCOH~O/^'\|CXg\tr>{~[HZO{Oؼ1~ ϣ>f>؟Ow~SHi0^0;7xO~X_{] gAQ߽~JεXMl / oOo*6)/?)/ʁs[fIԯzWNJ>Se}֊gl(7י2})XӆK.U74'?uACw';?8?G=? Q}H%Zk4\j}0>?7!w̆r/ ssT| տ?->t@v/wX ?~ͺ?.|vNIKF뇇=_ e?݆UY| 2VjO믌 [߃6_b|Bh8?~\g}_O, [|?_?? ´>jw| ΁w=_gK'o ko8) '}JC*pA9_w}48?6_nп~[ }o4C5?p'lW'Od}+p/2aR,+?Y\~M7=_p|^/ ;P\P?# w]ٿS}trݐvƧpI~3Qs濓?S6_Y 6Qe|`5k}2U?6?#QFͧ}áւOuO?/-nߴ~ B|T'=y|rkcA;/O}{|s ^P~. 3k_ol( cI⁋!ףjigJAuC?_osqV q>BVF O7~'g>m4!_ /( eC?q׿3]Ra+'gFWÂX?j_BPl+S?~f8utӧyw768P?976?6fkeLx+1- ?:(v)ΕL_b 0exa`~(6 {;y/ p7q ?Q߆NW J}pCr Iu} о2>]o.o:ǻ돇C>|aa|Z,><q>EsN7D|2pQ*6߄h>3?q/tA?z>5K2\Bo_j!fC7M/C j΂/R_PL}|<箜<'e}4#<߆ ';T)/'7}D=؟?BpCWsr?dVɿο~O׻o]džC{l(n77 Eg,4>_₿FAO߆S?[`0Y{?Od4`UYg5ίAs}ד@K߽?C[N/n #a|d1}I(^?)? CoIF+1K-G gߛ |D~UW͆1i_BͿBC}cp{]3Sv?4>! J&?tחԧpod͟4bCߴo eoM)t !_V_0P?]:e߼?k ] 7u`_1_nk? //(CFqQ29&թK'^8Lʿ^[7}φ??0j|د؂3>Eu6wq?Nr~vك7Fu.''k~} h|ͦO^SejЇXP~E+vv}> /?ݐa ׳Twy9|/Y;!/qAʟ`ۆX?OV?֏l A8X?aP 3}7nG72Wl('^]'OB #aEWm(T^s,(|EEhK$dhO+OytXb-6?φ6W/?q|9~Wed?AyCol$Ǒې=񆈏P~eAoL>_1Q.~LXD*|~q̀Y~A3b`wO?N߿}*0Eͫ{~) ֿw xY^Hȿn({CĿb6~w O9|~g$5?-~ B8yx~tu׏ ›d}a/@2o8?0?{C9 ȯ7gA[=;?\ϷA/]pc~WS/_VQu}p|AЯZPwA/f2oOϧjR{Cp~zۨڼS߷ G_~x1)(B~!WY76dhk8?mq>|φ/;>77M$=/XPœC?'n(˽YV0/6# Sו\EߨS~tY5~k/믝m4>pv_!? }(ِHҿ`k܂_t.(Yn*/o\ֿ1 'O ᪿ| 3_n1.e~}_}?ÿ}돞>x6k5_bς?VY_ύ·/S}ϏaY#CBpJ||SX.W,>_};ݾEABW ;/ ~CV žSO86|,l7ׂ|N꣞w}T͏MO ?m-~wo 'Ϸ?5_Ty~+KfCV8|K75ȍ[~$*?8yOpm~]j~#[~/2u6)?#3hgfC/8?_n5{o_Сa~Gw-ߞV ڐ/}V;{7c}2>'Y~Ec2ͯ,I+oNϛO?'EwDdžljG|K3N$+} q}!^<>5~o8nk\e}S\O,(ˆ_GC㘾i|d žc>цo+](Xx~10Lۆ.(Wy}| i:NO ¾4ڗ[%: r>,LNƧ 㮿Ypw }?/OO~}>MߩM_| BȟΟAXvC??>R4ie/3R0JZu,i%\,?Q0P~k_3 _mӇj7-(里olsA<__/63F~o jjGaϵK0P,0wɂU?~n;+ {/ܘoߏ+BΧ2hO.?aA篝_m>B<0 <-?0c χPo(?#_m0?5<>꿟VHGP7D|?چ?_ Qx!X!㯆[Â\>8 0}g,}/7H}hCT4P+?} ;.(χv29f懘l/7/τ>RoQp#AooQPb_s}:"~ |4~X燮67,(;w¡IX?O r6eDb{~ح|"9 k~F@ b\aCG-C7o/E ~҆~P_.(6Y"V8gC_.Pb~u"7O@ N+?L$e,R?/^A}1Gח~|T3.//]V? Ÿ?ooG_gN yBEr} ؔ}Jxى > '!h/}c|?Sπ@·ȟh? ϟk&,{qj~7D| /`?7)ӯo[~" W?ߧ>bs}hhe )ݰ.uY~m>t#9]$ E;7/Ɵ¡#?ng̏P?"-~ _`P$TcDž͂r'7~BgWo Ap}#}rRFqzN ,~yG=o{O?dfONB5O_gTW7ڧ?߼8)X0m0 e@zCU!8M2.M=㟽ߘַ/l>'/OP}^ D}?56傸g &iet1|C(e,sodBLh6h q>ca<?ˌoh^#؟м?a65|Lꓲ~S*wTٟZLͧ?P_X9D&$,3S5>,M~Z 0_jC?M7c a~,.(eǗo+_VmI뛮F} ?j5>(^?o/Fm>M ~76_F}'l(ņgANo^/7s~R(9rn< \_/V_7D7\G~zAn(Ə| a__640_X+oCepsA +׺^$~|ɜOP76<߲Q߭$4W}joQO@)yU qB,7\8lmQ7\)?hA/OOo?ߨ\!L4/y˯wOt!ȡga`4?M _/g w]PGaC<_Ϳv0r} i₲~ڿ ӝC}s\\?_w/Ƨ y>Q''!j?Q_#9 c:" Wr/$ ¾p+?n /o }g. O ҾkuxqpyR?4?w}WǁA1~it>_~g ҿ[\__V_\e#-(lRze] 1v"!֏/q~|fjxg(r}믝WT4Ώn>?[Xv _Ԍ @?}]; _ϵ 'w/DL×>Caw ,?kYXO!ا'[beǍ |.]~ϝ/P_9ߠp}hH'}vYPS~o97T>w!M_BN׋S< ɟ旬%S՛? (1?X]52gq>ii¡ 9拹~mzwX5'hV~T6K|1 wlH">4\!%!'2ooo!Pq2b_ҡ/2pGV$5>>;~O)ۆ[|ةoNKW؟ɟ>^&c]p~d͏ 'ςr_MB'2>B~hgƂ~'>~,(y2~V|06x?'ٯ_\??ׂu /?g~z~.dg9w.f qv l*$ҡo쏆ԂP֏.o%O71?/{ǠW㷰~U~+WWڌ'Z{$L^#= 9!ӯZc~B5~^ΧH/?Ώ `T(YPG ~iS=ηOeߝC2UoWA~p~MJv>A/\$41]oY0em~ڷq@@>gpb膲`ڭ~2178r>oד7οtFN:ߗY^:e`~{uAXg|Yo˿ƂRtvDB)?SaG/B燆 \| ~6?鮏Xȉ >i3Z5oD@l(_3-Ϝt} ~݆\ς.S]}\6?7 W{#??۫ ?ςu;KXccS2p+kāu+;χ~~>ħàQA=FK0sR4}P3?Agi RoXL߰Q;2\@*ݟ[}R`lx?])~.nDa$//^#q~†x,?tqeO&!FƏ º֏Nן8dmK|PYs}'˧ח?JQjV^;ädmWh/7/7ﳠ[5G/./n$7x;]-a5>_CQg&h?s焠;:GtDl2l#Z/P?)[mhnIl|a\?Qh46DiC]oCL#b)C~gA6d|$g ¿q~QY_M!Wf_ǥuKOS`5>N}nQ <ߋBW^φ!򫛟O_h?_8_|'o6毚:l/WBaOcAj| W/<&_Wǂߐ;|O'5qP 7os5zG̀#߹?.$s}M69QBYGs~΁݂؟ > ֧·X]D%_8?\?s]wB;g*UԇVwȏ iJLw|b-#p_["v~3E|Bs`]?.7ӆ?cĆ}̷$SſQW2/0tCg:'o/7!/\2}9Pd->!o[om^өoC_60o?O7ҁ_~oi| #?f,~+=ߌ__]_?s ⣤gC?}+`|Uf})[}Q}/ϯ?:3Mg& ~Q?nî__L孿m~l_ڗ7' /7~T\P븾}[bYh69PF_e$go(7QSWS͆ϚYK}odl(o'|Fa&tˆ_X$&?PX9`|xG%5>^PG|dd%|>/o_5HimA/z~>aR<~|wAY ł\?OFC BU}O mqX~ ίc]Dd5S:aaoh(id[l~ 4J|Lώ/10tzC,xbs̯0CQl>o?g؏qAw5U?6J9G5>>?-__0bПOf6[v~H.? w: )7oHW_X0. e^ʘ?!=?]s7d'vΏ*J0*@}|AGOq Wx>W8MB_?05?\;3?ySLº9p@gC9aDI}PߪϿ$:cD~-ɿ|S3~a$ <ljނlߏGWq|}w>ߡ`,(aA߃G?;>7ߨOVO9'F;]bĂ?_ =8z|*q74_Ae6n3:vnM1pgh|}qQ{? /7/{YP_o_sA_P3; /,Os+foԗSM_5$Th}I"7ՃwKς|>VͿGޯGV< <>v>}|P>J4P!}x?뜟m~q̇|>??|A}aQ#h~Golu?0s}GL۳NmW}}*!g1/4\_?m&ρv| &s9b~yV'~P>ߗm~ӊ?L_? Z?ZP/v8Jk|'G.v}\PDžp}}j q=Χ듦{R~,XeAR[noO7ߴeA?ZP J|JR$ٟk ]t_ 濩S7e翠!~_SoPp~Qe~ipϊ)-9,Ro_gA/$dU?W?>_}}c%[~&T7{_. _9?>x_1?wC_F}: ؿsRs~ =m->o^hߋHhk 8G26/?6׵[]gA}|âo$g|[Pm~p7UOf3 /֟H   *i;?|0)OaVo@wC5ߓ)MM-/u}t́]7b~ >0}Y_i^_ɕ?O >>>hۿw>S!f6b|bg07C#b2!sB~~;߂ܐ+[Pǂ>6>O{WGV;ٻ볇.o\0Aw| g}'3c__m>G*C΁fƯIxiL+ߺ'l2I"~xⷽA q!k_Ư'.ϿofcCk}7{}E? R}geYoc1__ACfBS7ʹߟu~P?&!{K >Ă+_'?%_ӟe~LީoM{M ? ޿;8lRY_Jm/:!5~!'){KwN?n9?_>_h'_' Sp^Aw[<_.feA?_Rs6w;*Z~!η{'g_C+ׯ9|~}=̿J ߲?c gAY'wo΀Y|H(}|~Z/hXSؿ >݆o1})A'qW/GyIta8_>%|  Hvs/[!] 8EP~?1߱!-8jɂr{|~%Ge$ԓtoՂ|O+ bhߓio!$>/!  ||O>MT׷(?-FDHh2~ Y/ch+['hC!1q'V?o<d~q~G=|PC ,T_h{z/ɟΟHoopAo,(qr?ΟmO5) [W}?8w|ɿ_s~ j_ =~6kEe%̀Fޟ1(/ )qCK=c\X]4 ϲh~b~foX/]=?);o|(ip477<_p PcǾΗ @_Ϗ bCz|b"o(~oχ0'|7Tף~ApU׿BoWφ16 Օ쿹ͷ8z,(Cg_4X} ϶_/§گvן̿X~6~ϗ*OT|vh~Úwb_$o|_籿B8u׉G$wo v{6g:Q^kU?#~g`$)8 7ߐ'lJ~AW^? 'cFB~sC/?dyF鮯[>[>??gM;c_q~φ~B_jC?k~dAw0ƿV'\KC;!8t|g~46~I'' >ws<ľ/(7k&1cC<_|/oz׫KgT] } ~?oMϩ?A]{sw;6{/ڡoAσ}4cϬgA/(Ad}%/4~J|} q=\9g_>4|~I}_+SCpq`3PP7YC8?~} ww^F@_Ϳ _;^# 7 3=n;/ }>Wo룡@=36?y|eVg1͆E͋Mo7wy!h|bCσ+m~ P+cA9pOoAoAc< yTM|+6*?Y5MIv>DC!S3⫷,2j/{>q`?kT46DM3~pg|կ*?6_7Yr:ɏ9f?^?L#ǜO}˗!~}jAiAY'ȦO0"惟-U=[~Ć9NorPp~vGnAy?OO>?5%y/E SkbB ៣?_ߎa%ϗYzaAZZ\X8fC? @^uޠ~0)حni0ϿO5Gl6iPdx[|tpsDž/(R;w> [_gn/m?1a@)_x; gt/F@H}h~M>dOX/^OeR?~Q5|o3_/<վ9S~ ^?` 'a]Ώ}r}}O1&aSg~>H |ϸ +OY׿׽_Q_:q!_ ~7J}0M}-7Ч0M?5䇑?U8?p ePmf>D@Y7E~>R$L?>- ,Wq k|vZp~oGϏiT߻kmۏ`CC*oz7A[}#΁ {:?&\?!(g7sAoa~t6?WƷ5>PmC/_BfqSZ ͂?/Ɵ_5i>_'_ ևط yѾ2Rɟ9>|J}:\wP?qIԛ>/(I7q~>‚O% 6D ~A:o"K~i ֪Rj|=[K^Ts e6_ ?<r|; +W̄?5Ϡ>f}?Go/1? ?`wH^ 2~Ptz36ϳO7O~aIdL=>n~{/ _4OO|_ޥזeΪ_ #2*W` c[ ψk̽ Nk9ȌG ?aWSo<3$4>os/`χO vSg4#*ѐ? ^߹|d OτbJ?)?>]?}c}ghMֿ./ nީyOOa80~_5?_p[  /'+)H#dwŧ/s3wo?~{q3ttv~~8_@/[_H+ gvKa}D}T|{quGy~'80ˢ|n }10~4fywc>w%/7Aϟ>sb?eA=i^/5E8wyn { /Y//no81 @6AV?~A~>w=!z O@_8=_OI}w|Ao?#3D~y1o_o~:veòaSpǏB}b}1J}AͿS\|>sgqK|0y?7n0 |MF¼{o~NC]+Y~&af_/%G&oϿC 4;*oy}Yp ON_ p~x~_U߁_p[ߍ&7muϿUQ>I_Ϗ߂\6M0ϟaH]bp?\g7 ?5CpyϏNgΗdϗ{4efd/5 |┿llK}b}!x@~'OfÅ?yO󙄬|~(fT>@=?y3)~iw^O3v}n!cK}Ys',̿忙П} > n_=_=??<_oG/k8 מ_?ww\hm//N^Džx3w;..^?|LC(֧CAcbu3}<?Iu_큌OnSv^{|"YO!Ư'g^_A|˪TOc +/և/ՇĮ/w_)ϾDc|_ެ?RϟV\ $_r1'o@ A_ss=~x =NM'Sk6ۊοWφ[w}Q١:?CI๟]?X?8S$1?gCkw;/_p{_/_M /'}ioQq~>?sa(nF@~Z?|_~C҇V{}$+? }/w\W\~ Uy_})(_A}.=(n?#?y ]؟c^H{~? O +kQ}zp}r|4x?2 /e}sɜʚv}DdZW> |!O8hx4__'WWMx'G+R_n_2YW1_a] /;]o.53X?Aa@f%M[xH_.ֿG@׏/W]򯚆?|_| ?Ϳb AjvFCc6ğq;eNR~>BLwjЏx ?ǚc r|u?*q4/| Ý}X>~Ih#?Edo? )_Ms~5F#?;oG} E},MYP^_<!^QX/_-~Q|B n__Ck׏Uliya만?3v]o/:eW)~}A<=>j ~}J]e~WTK +A|L@O?M8ɿl~%-|nN͂kGA;c``D(\?vg $C|p|zQEo{/YKQwh lX?-x 'e>dB}!赯!~JzjwYa)ۿAO:3o? _8 ws-sS_X_Q߾ٿm 5+඾Oݟb%?+;U ?JO<oa //0{q>gj{=x_ԇn_kb}Z+YB@>ϟ/GjOTՏF|OaxQ?~qQ½?@o|4 Lla~oϟ'y<_ {/*+~3-̞~80=/nO}ѿ_e1~C00U?}>aѪA? #`A@1Nj݄@o[;{}?_gÖTU$%Ƨm//ǿ?'}Ağ[} ne^B~@ė/r}!XN߽ffSS_ ߏ/ߓgЏNOIH/^*ok's_s?O<?{(q><X/?~W>p|C7>/~K|V?:~* #0jWWk7QoO?7~@|cևe /w֧D ·atw.C~Ao\KcǼ/3 =~y?==Qx Akoo ~ /aW|џ:qd/o8n~h͋_@WF~@j~BI+PG3G=9߃/p-c"m~Ex{{qȥ/^RO~7{? 77.Ϟg?P?{ =~~'@~%nпOUwzۦLx?>?@>J{F7 ~ b~mzk~r>r>Nϥ}s?v6OM~ONXOi?=p{8 3F&)x2 W<_3?lR_E+d7POWO7ZLA=Ο}A}~A{FS,?}4]ݠqG}d\]!\x@ܟ?J/}%ԧo{}8?=yeɓ >,9pW<X_&.|V|?cƆm/S~Q=A b: _256?pD|χ?? S7J~;_C#b1h>e}Y0ߟ]o׫hkq%$_;;ʪ/C=X_~O ]N!#6M+9zg͂^X{X{|@зXۍ?Y?IǞ|A;}n=&?6?s!B~ǧ޿?T_ym\_ח+ɟ|֛/}e')W=7s~2gf/=g zv?;|3nnf~oWQX dTqym.Qq|}R>._qA "nS|~&?+?_| d<_7Ts~hhq~>6~Aփ+?AG#/ٿ[?_??Al:%ݪ|pLej{5_["I*S+_Tw8O/1l:Xkƿ~_܍=YD隳HL9c˿&}L8_z˿硌Cz #~ òb G_1s$c80J.i{ GWpLߏaPԯ1|>O>pLߏae{ iaCؿCeg9|-OT<91毧P'CzU32#XM@/__Z/9_}M/ˌ7i?(~QL_$?-Mqj̴07~?9nȯr "sӿͿ|b5뀿 2t9Q?r<}߯ٴ n^g׿/{M_I'i]'̟[WwpAk>Xxn_?dO`A9üe^~(i߿c'?G￱f87LG B e[L7[L9(76Ði{ }hs*s>xC9l+ s4~҅2B?x#۟8~qѣ;Zs ]kw|g j轕qmc'fOEʅV.ל]τ`޸:1~zT3~G)EoemOtwԩw,'n>vRVln|j~N_? R\m/MqD>[y0>dlsbDOt>>2~'TV{;ea}<񅱾Qڱw9]''h*^+='JsOgk۟XߴPxۿǃ|c#-70jݷ0VX߄;.D;y-{=Y|Rc.HbaYVVqb,svnMhdy7*g~(|Vm$nocbø%G #8g3f)Hw[r^Xp؉븱.(7AM}҉u̓yΗ,uqu]/̡O?qy~R=,[+4kյNb|#q؃W.>dɎ KaOQx&AyaWppP)k1'Ğf6]tCuYNDw`'-ߑy.-]Pwqb"]YXk o~aq 32IK b8|[>og~d|a|B;; sNjQ<4~Zl>X`/x=2[}ANg}srV yK`` Ԑwl'3!CQB\xHGB'P_(U.p9\ѻ=bT +Akt $gr wӬ'鷵ocjýq:Q{/ ~#\PO5q|<0hva[oC1g b3๭-3QZ;qUjXP#^xuw*yǏEgt0{Vͩ&df+`=X#spϼvG5C{)$5coD'~NOkDfBØ~_maE4IU _wt=3NdSv~pwu'M0Vux8~'! ϬI"+uhMs/U$P82~o[`/%si=dؘsYx?xv5]9[jöۚrڣˑ$`e M+#g)T#nr;IhpAHd /.:x>bY%M̼q,H|y?XqRFc  h4-sҝxN;[X5'¼%e͂z8/ާ̅]ZXgf\Vi|Vغ ;FuLx;θћ^DgnN@ť 8u%L]<9V6:º'uF1[8:ToWn9]g;R"qμ}gޚm=۾Dfy)xĹfԷ&Q}2viiZbs]kd["}aGZ`6E{Dq.ħY4cDCaFrfWlMY:S7& Y}=3!C;#X[p_kI͌V/'*ǝ^͔P?Fh.luwNEbhaE /(65u`}AMnͤ)-s~a텬ݒ]'xA;a"_=ztWX :v$+qLϝp+ǤYSɒ*CwݵY' c7v`K#r29lЭYX7ΐpv(ײX)^3np^u '4`R +=*ҎAa+8^Aąƃ >QTI.2zws{S_Xg}˛lkTw St73ㄔZtTIƸ#^yVSmkm혢/9+b,j ~-'h^'+ :~Vu 9ɸ{+ ғ݉' –Q]P9]ywj6:"j^.XJRy{, b|w2-F] +A c,:̨{e yU)|TÕ{{[7ɂX;{}aWwR#^XwQ]>7YXDS- @dv/Cu|UOw\'3^uforGNKvLΡxy}ߥڀ"׎|s?3F%I怒78eɡ>XVM ıAkBh5n 3rfSjn{U@))%2'~Ga.ۘC8u8*w&pVNʹ)~mDjaW3sxgj>7p'#^rFLoEYV YV@@Lc7? M_z3Ø49έ?Otda.{ m~+.1 ; +7ND4fT'V}87Vw=]' f8CJ3;#9S0sM!:Y9x q] qVjnqD _Eeh7x &CuaeT4ǘqN[Irr}z#ZI%gzS8syo ӤYӤYB[<+^{ԯ|t\qA:ۯS5gQ=g뢛)t`'wAt |k8 yx8# W e4`WR,2؈VRؖ,+9$*>E A%L45&$ɷVJM'N'r(luQZ?Λ9 ,Xa5щꊪޝ @+N ׬Rӧ:˚ΞM@=|r;nUp''fEU|ag{VC5㘬3TWYÜɘE׮gc$jVG=&mM8]'ݓ'C<u;{*eзT%5\4(b#7C+#!CEfve~I>惕u@M$^ <=+Nzѩ3GqbCl*lIʿɟ*p.1jAc_5b5-tPYSQb >EISuGn {S&ʊNvMO}zzՉ]jԠ]XQWF"1g3Q4|:i`}zTշ.N,w"/;/oO |W_z\%+"SND(G/KZבqڥ]iР5N<a&eo*?b囵۱nR?^rTP#QH?5=rsE䙭| nyDɈ;Oe#s1`t9zk7B0(M`復\]X4"˽1M 9vT>GZTR.!|qГ1_֓)-?,or sbxn3woρ ]iTh.{ŽTt߽e0ߔ֚ZW7;_ k ;6fб(fI/хAfb&^B['vt#Ry>_c=+nKW7ǚoc?8O%dR?>L!Eb]ea Te<8tfP H eeJ*QD"jc-mwKbWAreuK ԼBz߰շ8G#:aGI)qiz;ffn }4r  uǓZXNN(Gʃ񬚔]2^$ыG#D-pPoQח4QE.l:###}pD #|o 󽟨1ŒS.)_ޕ{axGpyu~8P Un ݢwr?KIÎ]ufL@uS}cy:Pźb3]uW\~V  k'mw9TE?z0rg s!hG@ffFing㬒;T36 n, 3B ;iM Y͸7L(,aQhS9œ) 3h@3.`>X{TowI¼+~ko]53sН+ g8l=Xɡ k6nLxe ӕǛgV'ų9˨w-[z˂)i_)>($L&8*<-'^('t-))N?n?!CmIޤiiƕsH`XF >fHuu ɺRsj^(yqJWFG?ݏ- WOF 2yb۪C5Of6O͜C}k̞ ɔV ]t3*6_/땫FSCIH . R9b+rWJFb5#qBz)zW| qv³V-iΠ9zU ?xl>Xk% tz0~d.q݉6V#;1Ϝer\x7Y #H<9QkOIOXOu:Ji t!a5޺&!.0F f'atr9Y+\g*Qq Q\jRpi-|BgZpbMTxH­Xe`N쁅uJPI*j=rPv1yrdEuke!==7Ӗ@oK#]x4LKIaEl 3rG6Oӕ fVa4!7ndn_X 7f~f8ogV9<_2kXN+J\Rd4}y3GM^ rG,ta< *?xȂ::GUÃJ[zk:tR?Q؃Ã]0waW9ssUW7ʋ.r/_tCd=V).^QM^N~Qm`D : (͊4+n:věAr&EyQ҂xZQf(ǙjaE#s9Gճ̱G{9x69z7?Wy0Wei ?ȥ7rsSzirucvcNGtMY-OU>$D 'NK5e$xI)lqxJG"' +f{haU!.tfdRoRo3ߧŧUBP][SE<x*HcQxYw{h*g`y&WMG@K!hb>=)<&p-D΃D/_zc`uok|2>\+cjpJ|Z2@C|䒜\gki|*QR(: BvB6da]s^YY++T/xX9rcʚqBkaw{cAgL\SK#\={ w^\Q~j#({ǂ'Ȉܿ,,`TsA\sP^%)a WݟTtF{7cѧ*b;jvJ5YZYZ3w-qzm7W NJoξJu'ϡk_]G=~V~w:rG{'{G IWr5%҉YCJGTD,̐tgڗE ~SψQY=3૵dOq#[+5[=[8nEOv3J&)z .\ ȘJq_fw07ιF?C-iѾ'8A88#`D{{ d^ŠSP> cطoV12-)^OdQ%<Ey:A45R%?uc}Nv죅oҖ<-yӲcSVTjRuB355jS5 Uy#V߈7C;DX )}#T4x9HHU?{܍*8)$?cb[ӛqَ줄dt4UbQYUyBu~B p׀^gh]7]ߤ$dbѝ^VWV7峦uC){G-أZeD4f.:X5qw xgF>>=x ,Ԯ~|c.ޜw:Jt;J̪֮KkvdW8M;׵6<c:p/:{x[]]}U+#Ζ~wGQ-Cj`#uź:XX8{Ci7Ǘ8j-D8Y/ĢWVs˪XUԨMp?dT V5,9!~>09 S|#T4Qh ԂX9r ZKEQ`q8Z ކtMИBM;Ӻk,ޡb(͙1OYlq6rZl\<ƫf r)n?TtjbuaFoO4'+͒=`E#;MuШx)]b]0=/̳l8HyV(kg?+ԯI_L8~!͸-D#J]wfߎ 宮y̅˕ѥAr8?yǘ=V1jL<[;o9`vTJVJSqpi]k0Zf+*U W~OTERA[M c==9rO$ԈхHN= MY~$p%OjS6ʢ6v0C7+{0gVT/7W;yBPS@ϕČg]Rk,rRt[UO[3wU LYӓ'q?ƹY9|0Nȃz9Y,=>޳L )KQQ,@VYPgVєE61 x|V2A<-(cJ_Y_vȠi&E /5dv NGjG9G4{aŃ8T|e,QdazX^r[ԽgO"XX+g1\,+߼.&#YU>fq W7ُuLntjU]5 Q]SDAi*WciJ0-Jo.9XP'f eA~wQSmn7\y=-HWS3maP|ۻ9~{:U*p*.H31xn\3YSݪ}CU8ypx]dxyϲqFj!΂m^2똳"v>GכO޳[JC5á1kFjwטSI76Yx_T~i!ԃPM[|XQ%~<8wg 2̂:5:5Y ,wYz#2S*2kMO(驢BEo2)v~^28g7}N76)f0;0&531[kDXJ j)^=/J+vwj\xcΩ0ܡ=E*{`|aһLֻ [=}ڧJ1Z1B`00ꪡR|1# !SJ>4el1ͨ ?+3YX磐Yyݼ(v;gUHC:<}ajT/OvhjP____#s=,XM>cWkL'^tKRp. ʂu5ʟn;GqXS}06̈QE\دPeEcZnT5pkOs`H)EMW[e PB{fwFGdXZr\zdr _w\:-{2 N,=l=a׉j כE} _獂ʻ힎vߴi^ֶy'Ѻg}|Hwib03yͼa{̾ߓĚRPk7<޿EqViYb4ar4uÚQ~?؆臜 jw]dY C5SQv9K5*KfbK2-ʹφ  ޵}}W PKty0V x؃; vNͅM.cJNiu~O^ԉÊXziY'ҘIp.5r(ʕZ&M=?A>yn.̘bL.&߻ߧ7(? Ȋ %k[Pl>]!Jڅnq-5?;8WժjCTo+**~:1jƧP;OTY)oPxяϐϗ"ˑnulsԀƒ]SzZߊ5wzo]MkaRd+ OŦ'̻ȉ{vA.bzܳN3Bb+oQD}*)wՌۜ]-Q"c`0j1н*^gn0}2^.Tgr5"#Z78cV ݨ▓4DL~~`(Ѹѐ({{{ /dǖ 1fϦui;(*δFl /YLgX;io8 ! أcG 3Z݋;>!׽Ub>JcC:GБЬ_ ~6hE7?ϷCܽ8x uNy.3 ַNl7u}<+GOϊhsEt0!/dqYb:^ wYpr48 ]GXXT]IT㴔*)Ԭ?haP?Ϥ,z6S2*QTyDoꃕiA'5`}0|je1cppo?jyi% *AlZ5]]妧XLA;_Ҩg\#gCUǴss)8ۑ5o$j`>X'cgj=Zz!? H+㎳NC'ZmQ)M=ƸOĄ{aw_V9GjLWq>q'0$dBgbgY FbW?7ٌ:Eg*6>'|19a[jZO( 2.nDvۉlyQ?gTgYh?C Nn9ǮʝJa'>)z awoS&xdLe0uWOUNWj|=aE`Kٟ}T$AO)Jwiiϛ:wyOy8Rp~ucGy8xY|{7)a6];[vI;O0_W8Ey)^Gz)p89rSQn#u8MEځar-*k,K^-xe qT~U Smû]\j.ƅbYsgO>xQ}FkmXD;w޼BL厎 a;{]o;:,ڥ77=zSB b.clWqN\3{gAݾ?UotrvQZoد.goHNSFLS$+R|P83~2D 띁#GF˫fǫyih`b{[JkR[ u:WhW`^N?(5U!Fp2#xD2蛡t{G"]7WCafyQ@܏~ڷ$ir`:ƅ)ȇYYݓ+xa& v 7waWnpcB(:.C#nGuqеzae{ `?gձsci c^XFݥ;ߠ,(e`=KK$*}zcoh\ '0Rf wYUϥìjw:)2oΛߴaM>{,YjTcj7l.0, rT'=#Co9rcXna91G3]YPZPxջ['A S3.CN8GT݅! 6G.l* vg Q,Xd5=婊Q:5y,UW&; }5R΃d786;\MҔ<ʃw5N@o"b%L]+#cKI%]f^5d^ʃIĘ|#P;Tal+Qlԅy6-X44^y Ybs\ʇ/io7_/UOUpAw2׃irE'-M>:u6QѽM<#Vo4A4 W~p2=?Qbu_.O9)no/*.9T\8O%A9M 1(?3fǡ% y'*sՠʩ<޾T+P)ĭB?tZoGQ҃⻞zoo_`B{1noϑ7;_B7ϨϨZ MNۺP;qMP ԪY]=ݤϺ#)gq9M찅qbwg.z| ,HOXOw SϠHS\;Ew5w )oJV5V,lSv R.rhV.WocЁ@U5x *; F|rz㠌q$-L/M=wv׆+d vyr}{5aˏ7w*?ˆ,W3T ̀,U=: =֡zQX+v^=8ؠ 3{(ٍ.NWXt#Yg-];T;ӑW[ȏ^Ckt vyG}#;R2څsZ"eלýɊGAŽTb hft^ w0IBgWdzNأ%Ypv4rӾ{0k{Œ;*#g 9sE-- łgqjqx =&aSo3|߸0d>{n'>1 ywW=wq&sϏ͈%>Ċ{3Y~̼VW;^#˽"+VsRTtQt~1["ڽ7y:w[ n @98^`=(32Ԍm 3C)pd)y3"k`yp^y0sacT4O\szh_η^WoU'i֠ϿW1<ǰkj NߞFv,άS\^[sw){ǥu, 4pծ;'{?I~OXjJ:X<⳸,ȁD6fF9fF]Ie;̏O>Xz[ Qkw`yphyf~pUì\89U"'.6~>ا c93l?:P4;Pt'=a5"L=\.`P¤4 wU U}<_0_p*:fA^tI6+!k ݧVNQSXqjj蘂ӕ>d fG8<VfϢ(k4hA5Pji/zIUu N\^P/x9Of$yQT^jlhmSHEhsTJz?ȥ]5w c}Epe]](P?ݟ,6Vaݨi[fV7; 8iѣk[PYaf{yvP<8bbEȥsiYFGzV|SiZ'T]E:N)Vb83c[r9.8&ҤJ[]-/Y%]arzp[!z_R :@X[Si5cAJhJd,F4"F oىk"7Mq;V]UT4*7+|=nQjIU LQӟnyq^ƨx0T3[k'Xԅ֧Lg2xՊ9H0o7=+7C;ԚeUUrP$Lne&wՓ9vX6QC!Ͱ:U8ڪ$ߚ$[G_RY' +0z?}mEw8ȸBlU }SdRDkЯSĕ1{XX>CںF\)y0wh=kV78g|sկrI-#cpVq*`k{櫱\bSOm'~aUG監0Vng ba}NT:X#[XgAY|0=QHl^ި{߬{?;lvԑ8śkHH?{9`}|;M=8698='Cz<{'PQ>FEOϚ!yCfHcq"ՅK+Byp0x"fw\{{{W\׵0DaPcl \x|W<1v6~0DywĔ;U׿F)k0>MZgT0;ίV|qke8oRXՅ 3N kgO(P9zޫaHx04fNqAՀӄI|,zj뻊88`%t+5UB]ECCI{-.e%T'Ebq\Hs!7eU2#Tճz [tƒ9JgQyB(a]*9o>Xg[1PCUՁ3 *##ߧ//mpDzc}7WmjhZbpݺ1ut46AS)_ۋ#IiSJ'ʥ+?ugL&WVg/)'2 3 sxgaD]nݬH;y?Վ"UMu)p8.g_^:R+rD40kOR,~X|7M#z,tH>7 YlH=ʊ6t?[HYqp)Ի~C?ow<;>C&iU'$N|Ӛz/9) S[?ϞM9M8b #s¸3QQ3Ry'vٔݛ0Ot[`yϒ9©ɱ&* AgVk6Ņ5ą*!9o~JMuYy(!XTsQZX7셕s`rZ7 w*;+ h.}69cW \X+Ok0;Ͼz6Œ;J ֹXU!݊; u*PvyF(F8)8}ޘ]86)wmَW&ٰG 6`njQtC8aQ92reZk|G7TѓIi00S/XhB n(ZPA 3n17[z=fp)ʪol3OuV;tPiӛq+ʎэ0mMhC'U?XOwhֵN<7'hW=2vs>{b6F.1.Be:rLi%_[!^]V5my}J#?z&yoȆ|ussWA8`WF87"zwζgPoB>ެWǁ8 [XS`yG*6Գ]xېSm&]W'{܌+Yu~6MT~ dJPFuќR]ŨByYt@:4WHӃTRo䕙 Rety^UsJ)Ci x k3 IJ_]j/t^eI +XTQ9N]S0Pca+jRn8Ut+;˱;Ncbi߂nFq ӊ<"o I҉Թz-Y N=qC9|4{CF;/=bnN 6EQ5D{2=\Zg`Uwl;3"9u64ɛM3(j'?"jBiKsςnzSevSpt`*ԩd)C7S}oz70MRjhnie2 D*1wsUFŞd)㢤QzD=i 4vԙ܂1>Q`Ϭ}j;`(Yzc~ (0Q8Q>/r/ҨuS f]ZUoR+az?qz?:R*7E+.b7r]].قk~2D~>XNmFF׍|>WlXJ}D*YӍu]UC=TdcPc+˴;izz{9EBRvyi \jsZؚv;U%Ֆe NeoLg4A 傰6\Om2&l(O_3/nUS. }pf|q=&N+v9Fqn{ݞB X̚oTIEsYT,j[pXUuro3n !Ms\p^v$$T5W1 YonE'UAdQ="D=MXS[u:hGjsUnTOs?5O=9 6"9/KvE:fy6z61̅ͺ1~ԅ3][~{> Zo;IdVTe!".( 2e.q(B_7$B_+:}~Z"?nInZNCՍM xie;-O[LWHp,JαV4~PUWRC%p-,dRr`qt3";+!V ̖!Fh 3۲QwҴO'Ēv+zqLHQRKEdTM-SM8ݠG8]u`$_Tp WxQE08Ev2]֝KrWR;t ~tSzWMSFӁ*gqܴh 2$˺.<7s]-JdMMgl_HOU,XTA_Paڅv^ti6֌K]s$e떑z`)H!V8ثЙ:[IOAA$ t1ue&NdMJ0ڭڕ0:A='^q )~&:oODWt}zn9;PUd) UZTC]mPӝѝ]诣=\OlVl^-.ˑ. +;.*ѱ=9 7}j~j|,MJ*DDWfm'o5̉O)0x9ɩcMч uKv((*wq;dlJmNZ6o_Oy=_[AfCYк<2i;%6ҝv*wn:d~!P}Dw*ҭ.iQX N NeճGZ+X Ť>zwmPXz'P;#9HޒZEz+ixeݠšҗYsܼXͱ6#\r#]rf7R$ὓML*b2s=\7n֕nC 3;2ήPyCF,FʸNl]', /zC @M=V-z)5e҅bK?~|7yjC9ޙ/^~=KTNF%ֲ8_"*QmKᙳ @tmj}ɫi }`,7V@;k+d n+Z̸yU%s1"O/ӍJkT|>TvY P|U䪔&M;ǸenHju7tg?U)Q`Dk:;ΟF4sJϨ~FXMV[(io:uD'W :CTq{q{3WVc[tUp(u.lg%uԕj`,S㘃g!b* u$nJS"r"xt#QE\˾ X, &90(;[AX |#plFwn{%ҍW,*0t =̦k9gjqDA\%Ƀ NĂIFiQ #ꇸӵX5YZ.XUV[MIQcP_>Pas>bGy@ zP 쐍P%G\ZH;#+b6Z;B#G+SG''0ŲOԻGtGXTx^rgn`>ȶ~~WN5k'upk׌6s `n ⦃9; pƷY0,,wTF`dL՛]EMF]%𢇞**`?N.1OTgyyfn^'Kr@;uP;b3d]Om*+(H+4WI7,/+ l~Yt23 lD7a:`$2mB\z6CYt%WlR}y:rm03 )s׍svHMx8} ^n%/k`7i֙;1Ce.t2YV'7FlgsմPеYz/ 5r~\cu5WRXvLw4nn*ۺKRIe)9ōd-tMֹ:l9̅5Yzd(=wyǛNPsB{Y'`Q|̼_p 7zwŽzUzD\A.RzjKl8oV_*SY฽֝fuu4dvUa4mIF6="v#u!iF?Obwﵓ2p>bFs~ZZdF EE pi9Io WoF_U鼹)QzbM?I? k)?lൕזq%1}]INg!o8"RnF8Xfiotdvux>}PՍ%*'Xw=؉Xn 4ꮕ׶TY3l>;BB[]gK⥉Y廰^׵\~쳟*ƺK9 :^eG󍙀F֛CkNܡ;NDMS2SݫЩTH~W{fwBW,kHvH\E2Ӳ1^*9cJlѵEh\6׹ǃc-)LWQpεYo["c-*sA J_sXr^xoxjΎv$΍3hІzʿN=5 =9SF;ƫ[&qަp&KiO8uC-c7k(Rt6ͲI6| -.W[n~76O27|9%[ّ5:BKS2 q40':uheIن~`DdsCI,C7qq4thp(A"9e#崲7z .o,E%ӈzwڔDYE`fd23"dã nZ[k:$N].{ ]5&}Ʀs\a@n-~\e[r3BNлp8magd/nM5"E3:źs>4W֪?k|\|܊=4"x_.tA's?ԑ[ ;n >6D.tOjM 5mX;.Ё)NGYR&hk_70j,v3*Eoy~qsJtnk8r\\pHA1}%]VVT0&;12*NL!Cƞܳ/i8VXwalz(rHퟛD溜@UFQoMժouoîaW3Vg̜ ~gtsw$ʚϐ2Jƒ>C!zh.zr t&n p` 7CgtčW*VvlNl1)2YͩdRĪ)PXJbhMͳptWeoIʎ5/M!o 7ťO z ,e(dWb4(޺? Fǘ`¢xy쿞x-o{\tB?<v) >wg{r0N";|90~;W5mSQp:UDUSoĿ`Q&R~HJo=w]I:s0nQ(TVK9LѻjE[U^r}`g9UolN[=adYlljCBbXdKkF*8:#$׳(h7ri5L5N|8>\HQ}I;'M^FF܃juad#"4L4`-??J)d<ꫣƄ#9L|=!WfTfnNIoXnd?'y˜c$8$':$/wܓ)noCZ]lӯd ssvt5˯FmLHczLOYok{ נՈD2R̹g\t;gPūUmTc1^D>cgobC]6i6FD>fpGr*P.= Y;EGUC'C'Cv#Gd܁u*EeX~nnXculq*Ed=Vn ^Mxu꜊^*JUK-/]]hN[ I9a9,|@=-S=֐Vt73232h"`͏RNl]Dpc#)p3`ʚ'> :Y#z.▬T<-LUNUUkкC&ө=jǻ2Mc&*1Y t':U_;&2zc]YݱÀ]黫қ:hMn`Ƙm"*Y5Ex?C:WƳ3ecijIʨܤqWKmcdbʕu_T`=qv;Ij)j*B (o4T#{pGtG[UTQos|֕k՝s4V߇N/V5RXݹu61ECL: WVsf |]IםkjTW9hBNsJ120!эnE9Cst0Ԝ&kvcr |ʬw`7(מJ+ܻ;9&fgl=2PcM|F3&쳛؇4W?3hF \]=TB`:ml>պ 5ՓF qE6:8xmfl;`tkcPX㉢o1olM3P:_K+:IvPNQ Oy)$jI~XS)^oB%fFͦ}/_׿_WH0q5X}f;*^\?6)! Bz@Saб_=fv+iyE*I{a?%ҳ,[Imx9[yYvC=dyy$?~}Kχʚ!*~뿇=C0>ybRY!UZx"!ej<Xy!cA~aI~![ !<8V~aU#>xa) }<5Cy?Bh{e1^ iu?B^>Y?׿x*ߞJ{_||+H{ r)?#/Gsb)6/O>9~e]Zyݱo?ۏݿK7ƯqʷE_\wn.kD칥+QMn?^azşVIMWV+ҵxşۏ߯6S?^~ ߰\F⡺v _9fO~.qOX?VK'?]O~l;~ƽ?~zA߿يuuUl}b+J7r+6~-Wl~Xl%+vScv~lYϏsXVw.ŜZ'J2&0U=T~"*`C9^a$twHl~wT.w1`w`$Yp|/ZɮciۻzEmg~|Cv[S?ɥ?Ww,C~3 ~˧ŷ_*#_ի`Yj^z/" |"e}v 1_Qd7m}k,k}w{0^1B HUBKwĦCKkU(}sH`Xz;T`Yz.XGfND(Y+̼qZegOp6Fu:Sdƈ UoMC N܌%3B)Esƒq&ƭ;,7,kL 3PMsӂ\>YM7+ԼK:y0#J(׋[Bx>?&W k]Ui~pISaà ʮ'rm,JN *5eCjeI̳ōS[ۏr:XDeʒsq08o,O|nRVpӎ}փ/ G&JDcv 9>Z,P%RLkLz\Xz,C )%{ֶv||7F!ƲTz?zTð"; &~lIw0N3=Xv@3-v0vtpV\,qoBDfk?{EAfs}LTX]4g[?.?"7ow~vk_9\De`FIl.ؕWȀ%n˄X[`e϶/KU9M=p#Wݞrm,O ާ8 e,wx rp$tī)}ٔ[7*>! ϭũ u䉭 sL* ź|`yΎfP婫TR`RSJ 엍%2PLV5t۴LGm(GJK2T`%Aq YYVwؕot{npt-C1;Fc(˄wC=$NF]ud7l)pciePd;,F :P>\%5jl%%9@tziccܕAh9)DQF;;XHQ n_n3ucH&9yꑽ}䃑Ii9t`~s֘e/T␚UUu) ccdߘ't'QkuZ+w#gagrP烱N%XKU7hg'[_\Bjc$'fzXQwN`U""H)C<;UEZ8'?:#ϊ>:>Xީ:>uN\C <8Fq'<9.1ɥ8;4GKyztrIlo,:1WTITbpK_Ϟ%oQ< VEQWqF]v;#-Rt\UAe_l rųT`ʶ5u,}cav%MHq¦lƟX]C99aF:RΪg>18nT\׾=eka'AmOġ 9`O7wl>17މ󴔓ޒ4W?kLqHQ>)ΎI^yQ̣3ZttV}Cg)i6T#a{t:Y{r@|@9˺+9I. ,(9mU?g "k#S̿Ճ_& VDU2&1 N [&!ӵg麂6ƞ}x[-Uq4dZ))N%>Mchr{DύP DQQ5\YGFt{tg`Z1:4"ىgMI1boko.\\4sjޙNeB"X7ߐ03HPqJ%Rɝ%b$h 3E*iv8xuӅCB@1u֠]&ڛX>Ns=biw`h|sI5!{ccJTPslұX|5V=X9>-f#Q*l8Rc X<`pl2q6ei[(\?_r# FeBfZquR`>yJucc9OU8:B ē{ 3tcyQ3nu&m닎&Xa#~ʊʹ5ݑx7-=-kV|e-$OkKUW+?;bGU``~Z}omfEV'E 3ӠOvXas4ZsYh&}#WTg`YAy};%(9[r9w]1~L n̻r45Vl-L6DQzTN3GLc|OB\r&yVgqΦӤ#^=]fb>7oNMFt!F#Ӂ6k+ 3iĶ1N\UrWVo,ƾYm|l,+(@_*2q+;}_q,l E5ʁO[oc1NZxAm5؉~2_Z.2XDqY5DI%xe*l,Vc[3L1E19E_tÝtI Kd:z0nB9 WSզj `o7 Tp?vCVϺP77f%3g []r3GpGSq&Ko~c+]ƸM4f,D쀚#4@jY~<Ӧr7 x,uG쨥z';ȴ$߭Ud@|tʵs7za1ީt$6FА74{ U K\6=1nBKP[Ka]޻`b2i-i* /Ӎq{Z#k(݀9 1Zc4=gw6=Z,Zcۘ :تhZ5]3-5N"4ik7hn!|nR,z~dwggp+掽h ? NAkIƈdtcʊ]YdC@~j+FX#WqP^7j|bamx]"LvXKr.WS9`g1L+T+괱ӎ L,Ԕ6/(-TDcW+2!=ύEˉ[uY+*lV&t?L.%bDm+V^i1jcCCban;2TR+d-t$:+V-fhf{0G/1Hp"5=,:6'6 XUaQ#rqi M dI)"*זӠt_[lcD}ReX^Vxt]99-{Bim5l¥T{6F-8-{Bd8NAU|QA41ֺ纲n6w9Us|d?7 `|:ZM;#?nX/ir:@ +(q5Ėr5O"b29/f:* JHN)acdܘ]TNr5`2C9,Կ֙X>Hʼn{Z3ԇ>1;%v.v0Px΋8 Cٕf7* .^/x8ʛF^UTwQ]㿸%hgިnj?;0EZ7(X,yĖ˞/me:=".3KvQNGȱaW6+ zZ=.Oq]h0(FOUԋNsoVS7Y}V-ƈ`s0m,8r{`3-|+ 3泝~PU}"T`sHڦ$2(I'KgLQ_{)AUx q~H̟]{gR'AheEzP K i$,Y,;J}FxQz̊V{x`9_݉MZEd|n. n:5uz5sl`"4DP_}1mݴ񊝄UpUН [sCmΪTq,Gx RY7:Xnۃ5Z u>X^8k~w2t  fUQDrA]uG7o?a09!Uz>4jP,R;P)XU'M#GƧmX54֡*A"jVpbh|c+p`t`7/< {$"vz`N80Xdufsw<19T_FK7c]9Sc;QwvE8T=hG`9`yb ~ w3>s|4C8:/vb} NUmϠJw`<+" b 5b+ȁˁVV| 3):,ecd2ga!NI'Q?]+]U 8wO|c>ӌgt%EWac|s3:c_XveFfQ='7(@4Q,֬T5r WqWVWFoc2-ަKtsc\`gY/gUuژY WE'Tq7tjt7aN";WEoԥ"""i# <ӂء0vXU;ԦXB2ЄKd?۲D9?2k(A=)5qJyu4Z<-V@W[xj1js056cS|AjNRg1d'f3_]hj=yc wCuumLdNZj.|~uԹFE@f6f<fW]OwxTeݔW4Qk?JM?ARn*G~iI nc׾r%#X{=:P_s۳F<1g_܂+*i)H矲7/qr/quTZSŊw%;eFgT֨~F{& >n9 }0֘Nz za~nȳ3:s1zv~2Ѿ1J1ƖUzĕw| 09>LlU&/:;WGc`F_}L-*tb4|Si/(Kp,W ##;&5sz$vcBq7UJXKD;`9? c} k`ٕW׽EYj, D: @y{|ב<#^Vp1daN[B\A +HTO "qm~5Tjm3rUY~0t6fl)Hj5F(VM Lp\9W9lES#J;-V88O;OMLYf!PsqDkެ9·7 <܂&Mͷ ^zredVu)N\WD[< F(kMA)]Ŧi4j5UTΓhgڜTڃ#Kjc0ֳ{6t J ՓUW&T֒4ߠڨúxkPqM~= VEeq;],U;ڻWhQIu Z7PM ȵF:ҽn;{MwLu9X^qs-L)n2&Ļec;xO>vTzp{6t&=5tטanRLLK":f+"bܫEˆN0 ʕtkqkRʃeF!xt#'1SVʛ$"jc^хvf YX˧ 7ޕM|]ȧu}|qOu,%"h]{cP'-7ƧՕ{0>׵u:b6l(m:TX;5im,TRO7~05ɀdHȚOjYhğbcܷ+HWgŰ+;p\8%ߋ_;oWegMo)t~Wfees"Z_l~c196ƙ,UIhZYr>U~|S?$"wN̓*xw﫮S0R9;=WLPރO|Ew y 2.2X>G;ǥ+(փL~/#WOӷ:(;lcBՓL;++%-5jW:%v^(c͌Xo@W'^eE|>UUF<=>Ǫ(A+^ L]U6FuQ|N3y/77zϧrc솋6j`GEĩ5^7~;1-Qvc?P2ylh7rc95u:w _ɟȁ9ro5=ΌCX^5yLȨgW-N8~1s#eQ38S@#M;VcdTsz0>mZ9YAEV<ŶBŶe+3#kuJV ,10nSU/bY8[x[xn}yBQU6P%^NѪU5V5X+ SMQXJUV#gB;uzi-0#.afZoAO]]w"{矲7ς?Q_gԷ4T~\rKT>m垳]T0'}0"zstϧS'BekPQGWIu^%522W&''cJwec|sU'*\UHE;G% :U8F,Bˎ3$Elﵾ1vvf E c dcE.Mm hc+p?AfX"][ 伎1tUF{@+eC ',v0"LjʷW[~a*j zьԳ`|/_kTFqsqY恚ݘxYu7aPƃD9n,~S`D}]xMF&BHFDʷ?ԩ?w$~{ϳo _|̓Woȴ.JmFpy6h6jyQNEo@ [(\hՏgZN;YVw "sK6Ė]tS:XⱤލq_XЦI%]lƽO-6I=y0n‚eq?&7;à++i@} ?H U|NA8c BF YuS5o8V#<3.8Ъ(`2v\ښT`1?[q94>gDҍޕ@]ݳ¥]+G>\) ~~ʧ-+ހBjD"fh`eE rs ;:D}U{TMr7ֲ[km]^`{j`e5/8hlY&Tͧ%OXbm{x[<&h'_m`,wUWc c Nʹm0T䔚tYeweM:~1!XB>6M'6AwtGᦖYP(/BFMu}TGVG韟ݰ] еDΚ/,edA`8'Ց<b}rKv-+OvPq$0O.d>סםoQJ֯l5|tm@]0A],Q]l:JrG#,U+HN} qg ~cFl2m$ή} ѱVMHN6Ffn.:5&'n ߕ<7+|3CQQiVLRY:!2Q|sPJTJF;6MrVOfxO*J]I]Ygq(rcR.񵻲fQ}0Nm:m,72»9˭Xu2&xj3s1tCQ&B~ ,N\XqzTfv/VO* 5D焮Wr]/Puۯg:L0uz'.ٻ(<]OCvrfFdc ;x=CNôL\ 9MXwI5DŽnwS=urY ˙ܕ nP L.JUمcx;{(ǜτXQ ru3]t {}w$b訟jyQxk^]n al,4Aϑ;K}OPWO]M7T`DRΛAQL|} l~ E͉,\ VK9hEg7FVё#!&ސzCкYIgd|=zRb}bBś_7"_1vTϋחB+ezd'4ɶT08 .f#WWIa|jlpt~Օ1hxeQVdS}솻c3VUwgt 8q+'4MFMvuG*,1HuccٕU嗀wD 7P78T`otrGfeBTy&`=ꪣS;4KS1NK7,DWc:˽d}fD7;/ '0ñjt KΗxY11Qoڟ;6⎂O@O:/cKҎENudڋtlڑ8Xܱs5fѵ'?帍qJE$P%&?kkcZw`Gb;;Db[vmsA\2fhF/ut !%yӦQsn{U =ObR3 )|#*E^ncy;J.IwRݝRA=fu1Dc:m9;+ίO73b5YG|:p8phtW]0gT3֋}&[lcbչo`D麢S;<>`t8Z=:vH2;{d X 5kIvs'˪vI7!R3ggl8.H7rc,E#W JwEsXF=WܞxT瑝9ˌrN+F}:{0iE|Jά`wyr|/nY>|x52xrsՑKZj^?19u8'7]> sӧ[Lp]كvGrc@H 6}ѿuy;k])h1@iVz>X9a=X\ZƌO3}跏\1V]rO(Tq7 B "[2Q+Ս l1PbrooՃvTpLQMXXW8~*#Zƈ % >gu: o̝͋hvN!:xq0~fV<f+uiAŤ3XsnG3K^$.PNɷC; fFu gn}xkZZ+p"2-Ce3[::5gP ׺|.쌬,TkZ} C ]Qi5*; qAvcy+Dn:]XYM^c J)>煜cck%/J^RǍY$L,X%~TA^Y\^{`c<ӊgUA`c%Sn I:ͺ_eߺJMFلVgV7|Zj\A\͋dǪCCu: ջ+uPCќG9 su!u0fI=SoAa?̌ȞE%q}ax$tɝtwq'c>Y;qj'c,ũu܃sB% Y_QN[?kMic?b0O<9?Bc9bW29Uw]`Y+ՖIx|C`ꍼ1l:r FRD̀FL'#bSjcB (9X[XH@JXح3cj1yS7'kdQʧ;Ơ[}~Lin2:PoBn])JOSE|F'5]`Zup^yq̮ܕ SUŔ4[0ɱIUV"3CrUη@08`ֹιƮWY/^r[sQOh.ڇShsl9 +7YmƚSmiYMbג2+pt1w/JypTY}UX|NSZ4FDcJecT7*0+/#J^Q7tjG!idK"/p(WO Ot:#q0n0NK%r42:g$hB&XK=ߥoRb]1wrbN;;Jz+(=*=[-|eeM,{} ^Nu~moWPCq.`9*jP*^xwT-#cK{s`;8UN5K9O g4CtnVaVL?UUy\]g۷tzkL"'P LX2+b89~;|;P]( (c Tp}l,'u. :l&M{==wYQ N:rjCpm\Y'tؽhjYJ[om'K.`4Xwl}s@-1?'A9h3'زFA{C .t};>+1{Wn̵ %&B26FBj㕵*" 7'>9Y]Zvˎ,Nn8y"&O  Ž)\;P@&0l4ZyY$mIk=Y}Dp :xuII/. P{H^w:S7sqF';֍u!ޅh"n1̮<*2`:KbrD!dcFXb1p2ӡcp z=\C+kwW*vq_+yGEP};Q>p=RqAO=1c?{ncpφwv^%Wo  W@*iv,#*wcdB3#[8q;}!%Wߜ:MvxT9=q8J(BCԵ+\T5cC^Fǖu*ԁS ÝSs㛓vcFlrr:n9JIYy<6*TG#{)` @zkctѫB{D +/FuB+??::V5s|P)3(NϠ-Ιqdhaħ>[5|Zw7{`nSwe048vYl0-E>х2]N9+j(pRjzaN<9ˌ'ozl.2M?%Tέip4 ?碫F}sG},Rۘ7л1Nw|@^|m&dPQkWƬha^pItY l[.eg0̊_.'ꍈ#>#>lg:ЍDUçӧh96Zw8+Ynq7"F"ƊP Fe\vg>uvh+JT:1nSQ?G#쟍}\r:mpZR 3V3V6 byN/HruJu766Հc#I~T='ɿ֧3)m,봩VƸ$25\Y6F #Ʋќ" rBL6ɻzPe>X)t&&u&/UIDŽ{Z p.QlEyxCW;]VN,$rPo;,\s7jvAq,U3[\xl5U `2u4c+7ާz҈mcEw#[(nټւ 8Lbwn=N0MssǹDąŅ]jMmJu1s"õÊ[Wb}0F ,iLH>cʌ;Ox0NS*[%6 7^eiXTbX/;+)`2]Mi ~;2 ft$Hpz%&ϴ8yi٬_VVhX5JA0kv-'`]Y+?y6]jTudT] Ct$$~2oX1(7c엮wƈ۳]ʓPjN`F xgI0î+mJėb.tKtW+K:>O7Fw7ltl]Trx(p{mwLQ>>+hbm)䃱%X쨓1t6ly>Gىcy7}ʄ 3VƟʙ˽1>Kg(?-N4;Ns*jM7ݠ.N/zPsS7KgP7WD gcy+ K3Șy.OD,,0#uL3qFnMqdŅƽ\>I)`eerzcsZ:eFƩ4L2?1Mc¿s?Y4itwT@g5jIRBˑz3Rc -Ԥ;F~lδ;6I5lHFUL|8O^ƩڥYnr`DWpiZ>gl̘ ;-|:;W %J%Q*)ݦrN\P]:h;|cΓQ;QTo|c܄:a Kl8=V]L?(sLq(*.- zisMʬ0+k@:GQ8z8Be"ʄqy::k0o bYRBU!BD*y ~e"Qrh}ʔd}AIe@"oiNUyzu][+ͳǤַ1$шHN3C3WDȝW:bywyF&YtpYƸǸS+ 󾱼 1u&y=wlhNw`d8%8m&W5 702iUYɮf?;\EQllI ,شy^NïK9mܦRIuh6'77Uh ]P)V*`,^ Zܟ ;Na׍_JҦ-7P#O76!sJ3%vL^h. nڲIiw`˞>QAlyC3hLns^f˖sj`j`tAuÙ"0.2. EATVV=榃UX0 %gMsqUWj]tb+ޡSWlYi˚WpYFߩs8˖ޡ;Iu:CTpҗQOV;]D]W :3ʉ^QYRϱ(2cوonnC4響ȲI]jڸ+36g7g^4VT(L9{\):i]$u0qh]Qüb~F~tr'o8v72]џ>rz!Z=ssF9FБhVClfEw2"Zn,_S-iïKe^ h9$H,kzWf'P@w`z!zK{!ܫʛ ITPyN[n1EY1F˖oκ{_);y8/FSZ2eA-٢֓iғ bȡ,O[T 7&OifU0[XiO@@?{`^=Aw@Z˖++n y`DE$2A?~XCэ (1ۢ:+*ƌg>жwlnS/,J1-f#D M E;˖g٩TjT@wt;;s'l :6*UkSF˖ߡ:ƭ. te=Qه$g.UVdItӆP>iG.oX6V!vWeM1wRl$: mBl})wre= JFJF ՘mF&kLt\eɽ9mdI =l= *7 l`Tv?~i)RŴ7%xiwHP/MDCY-G#& .tXOYVl榍5UV2>V(US:P&Wwڈu)7ᴑ{(z@"b3^C V@q1QmV##' _PI)%֔**y+y1ΌSkˆ?Wt>Ļ=1VB6vrA6oLkxށif-qж>TiXSeLIeßĐدbدID|:zirgS aJh)VCfk/Ջoo޿ɚT?;_' vh-˖oSv 0"P?<ɥK;Ӗo \>xGOe<*2c5mOlʥ7Ijoc2GjlQ""o:tDQ=wF?=sk,9R3m<@ELnz(SPVh`idXsB؊*/熹֚nd*Dֶ|Nӿ"(O[~Qi.TekW /tyF$7>j^] ݕݦ*~5جId1~>p'gg"bEsnbqWn?uªSl-Fp둡>]}0%NNaURzȑQI~QSxL! n:l r`^.D[~܄6}6#1..Ƥx:::%TMewNGFnJ܄{6Ϧv˖mמ[0c$OK6/0ILϢ+qZ[un<+Xl 4Cu> Si 5f5:4`d̊ৣNQ~+&Xi3~Eeg@ g !gjALoNѴ7lo7Q9ᤡgU`_66&0D${"woGS\δqW*d-ພ(ܩ:yu D&"=zZq,6%5Cvcc)#辡n RqRB.Ȓ7tF>Pl~A ަkMMzC+@,x$N֭>F6$U*ǝ6vrB|JޥY?(V^DeE Gn9"CM պ  <0}P4Iv[Ė[U8h!ӠL#,`k`/u}O7m9 ;Nm앧FFްQbMoHoxA_Vcs5ƔZ!)V!i|LW'S6SϨ&UVX|-0f0ǞE[6ށP߮&ߵ7miAM yTWҲo **_[ɉJȉ:]JfŤNI|kθp!@㞉bK*_p.f8{64w1mxY؁NL>rzltd}ܯYaS3Am^]g5[ַώwCu:ٙ 3 /%X ;q^w2mɣTUvU=sz!r'VjJCLi]PP1*{.UicտfY"_0p Zs$YҲÀ& 0ю*m*m,9O| Elp jS4^6h[:1O"ŲV2LNCd`8?X{ٌq%.4pD~dӖN)4wkS:Cs؝S1G&6 V!OL4Fd.1jI֖-?q ?Dmv-t%)Z6JgOyi?mDą7~`ys坑>eq.aT~琝`&xx\MQ Y,>P:̴m vŢ"!JԠe`^)5*8q05o ۳Fv-[|rQȴ!rQ7{y:U">f\jPEk@0Ltyq$0-V." ig:ل='C`fey 1a`*9T C{LN"`Q<˹́"Og.JřFEӦ/* 3XE,pCufƻ%"SUe-AViqXI.M(K{Qk`nQ FCPw$JoGﵛ+,ɰ,PC*4堢l_ꥦ? 4Awe^D3cO1gt1( /sW&W[vhi#ʑ^e:gݦYɷ50VUf=^O{-ڝ]6YXRe7-P)hnJW "#aL32mDʫ`eDWEmm(`b k\6#opsyKx]*57z{☬>Y,_Ve˛mź+ 'z-[iҪDXFuXn1ȬȌ0N[~Ƕrŵ`ոD(D^)PHQH\X"\{7]7=.=Q~+b-: ޖ}xX(f| |}N,[KnBf턚I5*xjxz1Hb$3EjeԻlbr s{Z >9R i9>Qh@ˑed7KN9qh]ݘQ@4mƖXs5NKE*mֺ2Twk:>m˦Qf7V= >G|Ι3ƪ 9wʓ7´qO~ Mj~.uȃu^kLk<: q &1繝*u5U@ @1£)=ݘBf󦷪1N5b@@H0QDytKGED dOUьcl|;SXY-6:zd<3Q)0]rކ!t'?'?+*(ߟh!2+E4v0q_N%ղSN]i~%}/[JNg*e~۴`L7 Ћqsf!bvtyJl(5яYHsdgg[bћ{e#G틝J7c.Z1#2\EtXQ"2#1$:[Tρ lHz8z838fBcu4P)A{!BƧd@gCogc:Pn#{ǮJ֘ v)βq6,E1qJZϦ3%'^=N{T+2q>''plZ3̻a(gZ:T<X{ڲ*='"˽&]1{_kI/[>eWǍN 礼qZ,Ƕ׋zV̘6lo.4 O*b+qaS[}'Sͥ>lݕMgs.(V*MbdmBUD2z^^ƮPgB?jNŔA,EI紖O?]ݚJw()ϞN&rbE"B)݈Pz$iC@970C"D0 >ukrni-m;>tU%ʬc %7+XEq!Uם**⥈>UXsp24v!%Ȍ)&3.?8ҕhr*/}sˆ|"eUs5/l؍: nl@T5"C B(@CbWլqڲi˚nk}-˘%fx]YTt*m87T2؅"NtR8l A4CQA2UA%w]xhZNLlCC7DuL[0k;$Vϟ/I{/ʭoDJ$/XĹldGyhpŦ<w@ĎKxZ:PQ#A~];˖Ҵ3m/np#D6c1dO1i8}C7S7aTf0HeC;Ɖ/8)t?vM Cޕ@4CS5~ uQpP/% T{ "s<N/b5mxi=ljb Yqw۔=0'!٪*=v1:2'ns8/PHD T7/t/vͣ.eT"`#9PѣD*}$D_ s3$d7U[3Fݡ7kϲڡѩ1R;L6Urr~=H$O*U?5mD[p9dzd#_C n #+ 7CƳ ^?8Xq]ĖTneVG ݈Fַ_nOq;o zqŦ_f-oVaotnvj:7}wAެFRrLN X"fQn[&W N$W_6} co $>M@va*8qRp,^N1Ν8_PآB+w`D$skĖE\iclng;.q]Â^#{ʁ'w2bX{`7Op{Qkz^ lxTPCL*B$yY6<]s+aN8ʘK>vIN8my/I ƭ^ߧ-8q5GCv*F@K Xk7ț0YOES1FdYeI[M}{Ĵȁ0۔R;j}Mr<[zO-3mctQoL~iphT<vh`ܹ;z;;mh13mUCY>3b9ꖣ(w)B㰘`l6F@ٲ6%sq\bnoƴ "N'{و /ą@{{8Pn s|}xiAQj/u'vD2=="DjJ;mDJnM*,CYMyLM[<[T\)*'YΪFٯ8V_6GO'r z>Fʦ{+uEeV_M7=@\PM3iIp`~mRSq+1 t߲!fT0N.pP=Ξ }.?y觍hOOU4岑TTNy.6op̝XF'}84k kG[\".N`XO`XdPLʹAR}A< v{%1?c?JnSß|20?irP^]tUec' Ǥ~:m1l/[~Dž;QxϧFq[ࠆQu'w;oaC3mysze_6ξNb`<aIlq F&S.K]E#CDNv,)뛛6< v7?4إ28f-)X3]K`v^#oȽ_GBEREdpC 9rH&^\8\GZoSʻ0mI+WӆЮhbW4S5A-1:ld󂧛6z.#F/=Qd=r:lfIj n&Mc68cs;&Ho<2w[]ZH U.D2Eu l>=8X,[~G ǾVޣ)ǝ$i Dj˶/Lޡ;L@LNyQ-BJlW `'n ν.YABVhGU:z:Jw[T-id::8"[ģ+ugc'nSNӑiL[ Ŕi^5 n[( 8j&zX =-YYӖd7^U(U1:0VyjK_j'1ߣp0;[N_\ mYx\ 8N!9Wln]E1}!t]_FdZM8'-qPA@dCT0WSa\#b\g8̓e$0Ǵuּ]ZUzMXY-8ЋFG"5!9kB gٲUOԴeڑ6N`܆&w5?m챊z?Qf/I{|˖oZ YټBShl#P&i0u[??5K<\mD[Y3i#([ԨU&O*6`./[bЦ-&j'7NSȢeA}]6bˍ b#b/ X\9ʀldk~S;YܕGf}6>.b\R3QgiV0m٧; ,*"+ͮD|[xC͵k0 6=و׳,-jMN-N쏓/pTŮ崊D'DCXآP!0wٜ&&31ޭ1C3N/`r:-)yPhV}}zoi*˘ (vNwi"Y1W˖Dzq*cdGUS ,'YVC*0|[7av՞\ʪ<FWG_,DllનU1&]'[xZMI3Gf%O_2&qvRԨS"M* :%mQQ,JlvD*-Ŕ&Bw6ؒ:b&No8O9/'#0QTc2`:l2p9~:a~2 Q wѭ7`sj) oȬΑy W?jA{CAd͔>-%ʙ6J>г|s8˖!+{ôtT:9mlfȣWxV2sJw{!kΎ|p=կ.:gX+f4h:_g4bغi@@4Ewš{4Qy IЄX4FFeBӖgQ~e? x<٨9O^L*܅HitT8F@5-+B|&'z%yEUjcqO4q#@M<˴ܭ\ڳlc]U2(XndYATU0/7w+tٲ;PƄ `k@4ιƊʦ2=^BgheBe1-%cIгG`ڈ?vuXxdjn UBIvVc5fE1:܂q6=?f݄7nB|8v*-'(fܕʪ˖F=2#~+Qc140Mce# P@&E~;UJOLP$ueni[{=p? ~t֩ggb څ~lAE@=xdWiemkV0In݅O*YҴ &]9 }ӖoTc؅_$ܦ?V4bĉ9_~}=b-72o3o/9yJ,6-|fVxbEi6=cl&>kK{,&/fY=h)MȜV12(weíEǛ# `50)ic4sؖ-k>Vbr`'\'s1fST,Dzk[8">jx>?R؃XT4x夆61ϩ3sjAm2?ߢ oT6rˑ}{%z1|??r=1m!>our}g+z߳կ57,}a6~>Z|}3uPp^GS}|_>uQ}@@aB!u|}z:1} k5>C>_!~]y5C>Ck:%X0.u!LJuC:6Ϟ48fY7]ehjo?~Vz}~_Y__FW?~|S$~o)?濦'lx޾o?nt>7?6UR*?|`e}.~x{g}X糿}^>?OfuWL|>9V7'?ui;賵]~9_?wkCLJ}nO1iX@ endstream endobj 201 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 207 0 obj << /Length 1286 /Filter /FlateDecode >> stream xڕXYoF~ׯ >Ȩ.%iZ$)Ri*yIPÍs-$Ć1pvC"G?MGb*yX$ILYaTKIb%l'-`R@5mV@ v-4,J8hD" L}kAr=nn*DxZTH bEGR_s\UͅVŕ7bîs;O"&TYfN#5>Z6zQd+J4 Iw{?L8/=_W`/ͼX^0tr.=)qVϼ0usMeD J`7X[߲NeYf^J =sJ !ձY)+땀v̸otjabR,d'1]o3R+咊 `_؏@ aƑ& ĎEIp"ɺ%x*2+ְFP5B[6DG*ImC j(d! sۀX?ds6gi Q7}kؤ3">(3$ _ds֛Cx_P39\x3v)cm\z̆ĹJ&HE[y!Jy6cS[)|pڨ$OutbӂNIRD* ?r/v 5JHd4t#lՌY5~U- [zك`4?B~c"|AH6X4<7yZy3Vw TQy]}SmHf!zzj9ݶ+ ꖇoYs k7e_ J'7X> /ExtGState << >>/ColorSpace << /sRGB 215 0 R >>>> /Length 944 /Filter /FlateDecode >> stream xWKo8W>3|H] @$}$whH Lp7x^Ջ?_CP)Zk I4pM-wpb `ﰽ^~{\:k'csLڣI8>UlNڼ8{so>~r57x ,#qP6Ec~ k8j3Z[ >WTu655pQdQ[Mơ~A,/ F"D')@D7hTR%PNbG*WbUb?;(!{p+rP{y1Emmlmf[KiJv'9YLZ 1b弐طuY^옰5Z).3R'rJQ UnTI!]uI.K.҂"zyE{yENϾ"_^$@] ufŋ0?Swp endstream endobj 217 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 224 0 obj << /Length 1392 /Filter /FlateDecode >> stream xڝWKoFW>Q>I͡NAhS*q_6dnrgvdɏ\~Oǃ37JV#M2Je|x5ԩfZ~uw'ge2R`ϓLʖOf6z|&W>/ؖX)lլf>G9dԽbBNy=yZQoh͚afB6hkBd(aAd U ŃH6!30 tBVȢ 0x11(qH Ȅ& .ȶyjp1"dj[Pvjܮρ )C?I,gh < /-lV» R=/ps6b.(]A@d1@]UC|Ո_gE@*PSKL#aJ42~"zv|kK%JUfKf)lLcLh BSSag20sC(!s|/oԕD=/Qsqdp3릗V.ISM%sTd6VԊgA\Rm{{So9p}N~<$EtuB%ʀlh{=bBսZ% g(~1: ج mĚbAT^$Lr [W w; |BN/?pRQْ%#ۊ=sESvJC ]y]BXǁNےZ5 }3)]kk (Le0  &Бoz!e|Y.vPן t`Š;*mq^i/7*d 0^=;6\^80v%Zb* 8=.@pPP#z_{͡v{+>S[zFV{kdz.99}7ݺM\QqRU|)mhx_}Q9 ;:lH@+*M Eq^=8>tm endstream endobj 221 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/unnamed-chunk-23-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 227 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 228 0 R/F2 229 0 R/F3 230 0 R>> /ExtGState << >>/ColorSpace << /sRGB 231 0 R >>>> /Length 1480 /Filter /FlateDecode >> stream xYKO$79wǰyHH;#DB 2 =#ʍ]ULYu>fxSu0mQ/keFCh8:] 6:?~Q'ܩ땲.qImΆ7/^no [u ʹ\ò+y]LNRtw >lReT.e킲>ikجG ˽_?r1Oʨ?fӋ6ĢS>']U[% psAa 2/#zJuffid;rlox``gOI V3ѕ)Iס%J5K=$Oy7<9xJs.3S k[_ d7eKNDZn&0Ffafƛ>r!^<\l_8? AluF#7KkN}}m"ik"%&AEI JbPYCTĐ|yG\ y6Njmզt.};mN0CPPҧ3N cc;Xk~b䈄.J ,=Y_ K,`9,ցܫSiD]kxGn{[|rB=>厩S z,E8mH (z_, rOzysPC%3Fp ]*$wEyowQvc ^X Җ@z< 2Igc43.w{FmKc4Tٍ2qjXޘ3V39IΐIYT*bfcB32[5L|Z=Ԣv^Ϩ`\SX8ʼn8AI )NbPqCTĐa$)H/Rgn$ԯEw=/z͈O0{PLXr uoڮ{0U5HQ"vloP {"vѾ1C ѝ ک.EvB$teH CbH!*+El\`|c?=`tyLCB4:Dg"S,PӀq{Cby11x`LH6+Х0!AbS@ xa SCSz~<85nD8m:奇jiae63 endstream endobj 233 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 237 0 obj << /Length 1516 /Filter /FlateDecode >> stream xڝWMs6WHT f'NXtڦڦmM$Q#*׻I'DoyrɇW>)JTOqT&&&"NL giiy?i >Z2]z`nh fB#NXߙ!B[8? ௏/rm,9O7¦ '6>vcy^=Q/DDmgP.Y6E-N6oހ"װt2#]VV48h 5 ΫPjt$`0gbF*\Xz/plOL*#$9(h[oXZsBUcE1Z,Ce GZb7wGc[n\e3bIA:Ύƨ~Q@ !U?DA1Ukz~ȾCyDF`!!/[+:>A"G;JVSj^VDK^AH\V1 oy"(09#Ll62ǟ>=J#pe Wu+XBkgr>VF8(Wlz)lvc fgl Xb6GW`hn(/,ZTZѻq$CAIark-L\t6Al$wX/`|^VÄ|Dmd16TcuTlٛu6?͵ endstream endobj 255 0 obj << /Length1 1460 /Length2 8943 /Length3 0 /Length 9926 /Filter /FlateDecode >> stream xڍP. $kp !3` ,8 \>9{kY~z1jpH[C- P(U1@^N QQ sBD! O:9 TܝܼnnA  @uN v`xmOyu0[rH;aV @;?e9tV``]D<==9AnP ;na`k g?qb0t6@m pCܞ\!`);@GY  79'?CrYYA]@o{- x @?@wY>*P:?7+ ܍O\<]l!6ڰvw҃ػ<0@ PP@v$ve~yjgo~qyp;? -apsK=џ`'q~s2}b5o_#0e1@>~ [ t8 _e  wO=? X'& h_.,J]_v;sO[}^])AO ukwS[kíz?dkB<-n ٞp{_&wJyϖ1  o)_Ul=_zj__XZ8ԅt\HSxrl0np,>&T| N[ޔgZy9hm@}A<^{j$Dt}?:%Ԏ~V.Ww!EѰmjUih⯌t(p*4V^_/.g'~Өija̾Yq&c 3"zvA0:#bާ(zU|>K0bH_¬>&),C<#P;*o5`zISXh~<>恞J'њgc.V߄"1?Ɲ/ 7:3oPASjI65^Lk4,pxηl]Kf®8a I|M՜tl3!v%Ww.J6ũP?S㊦f>0Ӱ|G l⎖S5VL?AYz.|Fԁj%Ӿ\"~{ፔc0SMyQ}hF-+U.[2hSxJҋstY/ÞSN] 2[ܡ:ԴH<(_,(D ڂΜQ[B%=ˑ7FЙ~XMfw~rV+$iauŞ ҵ*Z+{h; gHnE5MB Q'^8uN[g=Kptҧܰ-_?b'aS֒5̾r/Kn,L bXkI8':6r[>77ߏRȦ0 upx*^@*L,LBEvq6VZ{ @K0gӎ\%&ȍق#Zs_2cOqݯUo\K]}Y\4$P'e%9<1ТTnn)ɑ`8!c*K5lOlRkB/ hwVݸD*n8~®s;k>9aUnCЯ8z]xT'؀ߊ 7Z{n OR/n᧫YEu/V=$]ޮƁ-1pS˃L:/`ϕUwcE`akxyVtvC׎NgW+q)INyE~89*?/dPiJU7I tD(|:r{/%v3;zj,[{$)¦ji'noڱgĬJN&*5[?U)x< 1AZ64rlck簅 d'mkJ9}/XamMӱيsHyό3d`Dq>ǖm_FC7 +hodFǼ =mx\۬Y}x lEǻp+>H|S|pwsR NxwsG\jXqԏ݋ ۯ(d}]gέ6įɃ“%p}Yi;ZhjSG4(HiONXQ"4ɵ<޴r@X2W-MP1n_|\`'%t%/2p~OG5I\;N0vJ,=_i(`6UBK]̫a#%{j4;BD[] 4 %Z&I E nϜvzr aHY& ϮΛvQP;ek]! pUH,sL rzʵ2mrE@f>kfU->t$N7&Sǡ*!}kē'װ Y%붳3Ld`1W)R(pu{.MSCt% { ص(AI)V t̞bf36.%?;ϩ%1Q›jyR5v2 :1~u֣رK `e@yUx=:?G?艒=Fei8J DmGc MHGNaQXھ5s:]UWXoXKx26dyf*X8I9"3ӤSj6h/zBE 꺐r.g6755%D ,h. (7m0-:-g=iwE|AE-2\MvCb~2u 鰧Q~?S(Q 9 3miTGxT_JGֻaG|r۪Lb,gq)_^ c?#MGĿ{ ZN?(`cӑz7xƱ'6,LH`xp f[PuqD9˽|ة.1n5n]LXDފ]/ NR3nK. &0a5#j5٭q%!Dɔ7Q^ LoJLa4##/Tl)2Ev$IKG g9c ,n? [T 㾏[T cR{;k>9\_Ncu}%#cq w,Cm 4 WSH?2īy=qoW:SHGj6)tZKx?[<Ǒ_*_Ġ qDbIrrяF*Ǎ'xc^q1?Zq(NQǎ285qNbd<'B]Eg'vcK-)uΖJs"$;N ldʶގbLA 3Zcwz_Lhǹzu]Qp(Vn0F%}T/DQ1w^w/c!АJcjʾ0S+38)`|-x͢EGK RBP] IH#I2Ox\r,7|Ź+L\.=IT ;؈)"Ѥ.XD7=~\>@NҔMZX)췗o眾~,P% ^sN- X!fnxaML b)D=?4kkWQ {DwQLL~d5_!5/MNk["U® [fH9?rR)-' g3"&*h#rdgB8&cש(QDTvlEL=g|GD;\ t<7Zvt.WZ&?`߈^!4d**ԥV1PAeZ9F=d/+Pb+hayoYʞ-4Щyml jf6l$xKNR8w[enzh[yrk beCLͫo܀=4-~aDWE b@ cS>$Lqc1KLsDQ2qңT/%I_aC7"_V.iBbRqSyZy2߽eLB?άs$ZƦwAgC4heFESrlaN#چO$vʰu͓\ Ѩ;nSp5&H aƹ8-SоQ(9 q׏T+h:gU(>_3oƑrfL*b*"y)xD6[z9:"s MӽcC7٣NjY6;YoY kS\yLRۖƺ ¥@,}9*4Ͽs nϩ6a%]#ŷ2QkK21" E]OtfKmn ɷ_kb&\}K yĕ ЉuE9s??P]ֶj82,d&h}2xxˆ=_Dgyqc.BQCX 6|8v(e6}:W hPOQ?28?R?<&fxK@ZLew3CFRp?[wD 70F=#Q` CmZ(_2ҠJkx:AMjs*|Iqi5`V,-%:0J ֍LH;ΛՖ+dQb_%fOd0h`ZN6Teh8@ Œ\Ɵ],Qfӡ nGa캀W2T/m~tuԣӠv}K|&lu \E-eoq=P"~%lzlLX;VX9dgb֭4x{V7^Q Iy{k$Nyr[?WtsL_JrN0^YWu\>L]c괵鬨nŰ#RߖG$5:XyA<Qi`<~ŪCKzݶpo6fC,?OYmMIIߪK<׈w Oy·P'^p `$U[uBudL/ѲZ߂(XH~ @G i<= tzΩ+>)e9vh榍9Ȫ}7l h6 0SyUX۸bgYFuH4:E5ry덓J% IIJ.Rf|gt:#p(I-i-,W5wܥig͗P1 2ϗ){ Z>Ҽ{ȟOěߏ(+Ae\} pB<(d-T8ڶ87qԋDrh]+YϚՅ!tC©oH3>F̫zop,pjx*ʤs]AiX NIh/m>`25@GKEBwCKݩ객?5&ӐE22w~F̹__Phv#JDlY;{y?VQeO ]W?/mv3/ c644YPZ٠gF775 a$ ˹d^5U:_wCqN}nqpׄ++Jh*'W\ABǚ-к78R˪*I?A$ñENRf@NbiM x肥 PJِKc/v$I oc kLɵ=rBi]ZJ(xpszDyAfmxJix_AeK67TzFy|λ𹃣m #Z}*wC GJw_j`Xζ7*.ge3 eXxy1Pdߡ<_Uc9q%d))m4p%Xt׶%.ٸl*|Ē/XC7Q2eVqcs9WAu]L_REnV^|mHHQ*:n1/8QQU' '+ܮGik\g A$!1 :PY@G@f܃̡Z0kBGþ2G %k0Z?"m` t:$ j+{zc }E):G_%iL&CZ%$$ GIܽNB5?CeW ʺ)DB',w^.#'Ya&l `GS1fz–Hoo"Lz 0K3XiVąݣ川,${#N4Q86E]Bz`0N/,ܪQm;P#A>Z\$=#8wBϴF4?LV%3wC5|+ JR1QneQ>wi*Ty 3}4.|2 4rR;4$9K&AW T:?lS.sU&:zv.(k~bdHЮ##\ZcG+3g]_G3>6 QKgໍ|y??>3=|}Or!P[BL:a jis=3QT]/w 'Uz:>QC%QkUap_!Jv_ ^ُlEPU; 鞢]הpB?U]xrU(ͺ-*H sZtim>S2`;hRDɇQWvۭqIm>^#++6j@`8cGX6Etp@KTvRb-tm""N~*?7ڢ"x-Fԣ3cRRwG]葺\lݝp~޷g ?(,w"@UZ vvs*!Y` RR_5yHb^UuoU@cO_`MʌEw=E {[ܢ9D!Kk"2,_3aY]@jD'%111? b7cR)AνxOm TWӜoff׊̞xR*UR7pJZ5a4ݧY'fǗ5J)mT#[͜`gyr%q"ɳ HO4Nj j\R\hg;{' /U]d?(Vr5v$g=Ī%X ţ8߷wn)%Jem䧦IFKP7n^OTu>,NCvϐ,?yO`K#{`/ y0Rr: :OʫY]:%(vG*\、֒kΤU軨6HUQҒ֤$n:(jQ%FmOBój x6эl"06EyM֧0}]RZ4-0y -KhwFͲY8rTf@sEGj,S*dB-dL ߻#O?pYsX7$KMly"eo9*4.+T)QXrtz\-qD)u8#^`qZEE\& /&T&7 =$dTm!]MzKq[_t\N+QNX-aKaD?aq1x1eAnI,=VB+ 1\XF"jKũ;GKo^ ‹G|S+N6C1EI:nŰ@{d^>hJlŵ\(~T-/6c0R#`Ӂ甙=M njv #1JEȠ?Dܦ-W=u;Nq qq&}Bjf>A7 ޯhѪClBƋGU.R$R#Լi^QH2,Qq̃GG΂h.P^wD|~QԏQM9UE-To(eЍVq(0׮gwԳ0EʋypݼAƾ)vCГr"Ag N8gV?6 w$' &'sapa KD HEHCnZZ3 ,tg)hμJ_aWoklTx͠wL'w0w0IQlͅhIW-'ĴGf[[&ֲI3nF^ *8撿A9-C#+C){l9C~<wƩ} {*hH( endstream endobj 257 0 obj << /Length1 1876 /Length2 11834 /Length3 0 /Length 13006 /Filter /FlateDecode >> stream xڍT-w`];]NPܥ@PX)P(VCǑ{zFH2ךkSkIZ: nl\Bi)}.n'';''7*=?vTz]0 "/4 r{ɀܞ*N/% Ȁ;?#-`3m X:jrn^n"9u?l'{>W +3re!N`+BCNNN~ {YpQ@ ~N1~VT_Wu `ik0[BPg6r>ˏ  t8xy,SJ `pq|Σ߱ +'v?-{ƿ ߹T 0' SYBߎ3EA3*Nϻ_Օrr_y$!R/ecl!`u'W?'p}.wIY[A oTg)q|'p~+'(78dA>H=3A߈>ǁ~#Ao\si>˛7;_A^ͿsӶ}:sgN@)BVnϧ,xMÿ:zNW9|ϻfknN x>z>=Cg_KQg^` ԅ9' Pж*I2O1imT&6h/LdUdMYKE:$ֻ74'[Q'?K~@!gӖyF7S>]S=ƳWޫkmJ~%):FA3Y4/(qOf.qǟ߱)5X㎻Y.v"#1 |+Hͷsbxg+ Fv, o5uH0 x zZĸ9S\>13>{CuDKF{{)I$sv0;nN! /_iO҂l_~}%+~; d7Rԣq"D|DdVn훋{e!x2.NH0tM˭We~k9H lSh@e)%*)ZBhnx*eeIW&*X`ZcR(NEvBo3"$*4bPbF2~)!bvW6y,:Out [=FzSFǪ;;9_xp0g$L]UK:⼭:pF{̀q}W U9&eQwܖnB?&*Į-1^ ;s#ߞ }]-"P 8W@Aw6qn;G9C>؋h`AƂ)4:!h0X1\&!U Ƀ2za~!-Hyqy0. ^6qaq*CUu=Gއ"Aؐ_}FXE-cxy St'xI4KXM_qR1˾8X0mc=[fg|2l)i3zJ)GyM 'sj\ʨoA/x?"X*2\+Gdj_+́) V]Ir*(}>JcS$0n4Rhւ`.AN{lZ.OUiZyǨڣE73(`8dEC[{t1W&:b8+L@l6|PomwnDz`_ JFVF7 `^:e/&Ӌ"[޽~2gNWIEbY͉ QǟKgT+h61'nIȸ_p`n!zM^&F<(pܤrW?o_ڿ,2ӨG/55+~?j\L1$ /#Yܾ|E} 0 N)Ɣb]r> k;bf:6oi?/0^ӀN&Gz3W]ァyg[[YzCdM:{xC^_^gMl(AE Sĝ$GC[S஡KFc!2{֜4;N5A˒﬒(l4,t+bS͟REi+JzpmQnl)# ,Om"Rjb{żTV7]?g5+.؈gO;)"YT>Qd1rD"W$'bO7y06l?{JbYTxe`H"O1GqJ墜:maMڷ8lO nGm3\SJHof[XL([y]~OP#,:cM.OM+jmcGˊ( "|h>u~f)*%4:w[϶—1gg x1Q~a '']IVK&CIkԤL-dMk>E%|hF*>xBt-cR|5m6 ju!_hroLA`z`PiKҜVB*2_gIa9čC7h{3ICɗiAt&LORՉs y!6 %dS-29lpkC&z"y%+5n加5LNB%[{掮Ym@(°Vp}8ν˝ߡrGOkD፶ C!21Xq(՛*UD#es+Bq|Nc#Q% nƗ>FDe+59Ҡ U~d| 81tR:}Z)> SNb`':nASt#W Kː0ʙcahB\ \TQNqUL k⋄rԮx]KBuu* +^*d&;7ssJi^eWb`JǤtF[)3&-֯r4f`PZ}̹+WTXCXi8x{+R8Ev5w )R '~I_l5Us y/SOV/l:I.UvtC#7<_i )5Fn609" !/W:Bꤥ#OSQZXfUס{ /T[CE"i[]T?e+fiY2au$ލvmz Ӓu>ϣE#7i b8V;khԯ7g鮠L Iq"NxR:?*s765i@ .5K /.2TdєX6W[ʶW[r -| S޴Op_ñ]V3Q7ƌqNjBg OxKKa9ۛs%jr~}u-tȷLF[^(.u(5ű] ӢA^wB`p왁P;FgjsO7%~sRJx ,b{js]P)ݓ[s%'9NKiHH}"nϨ*rZ1Xqޜ4y"hV:~fڕw,/ Wik>= V[-lL `%elFPwKSkfI2ӎ(T'94 KՌ*Y/oLh1o'}Kw7*<.u(:P f pfhMkZ&! zrj0*i3.ŋT yaAt3BJߕ0]Pfºd;nGNü[TK lc}lF=gS1`' BAd8TI]{tz\f_b% zn^~ViF. /I ÚԔא>+Bv? A] =pkxة2byo]f~tx#j2nbڤkxlVJJO S7 }LSJ9_(37^xto< v0G풉NTkr!nyZ zup^.oC|iS[X\3ﳝӗǾ,ъy.M,hǛU;#Z:L1u JLgXȬ@R@:_t'CV~KR8Zfe3p9}υQUpj~)IkdR6 jfƸMo`1}+9ScVZO4 bwfWRRɔG q~0ՙaa;`=Vӽlb<NEAr" <3i+/L<LjCbz|3^ʖ ً~KU7*)HF]̨R**t;7Цy~-;ڣj4nB[_Uﻦ,F-n#?vP70zdX"(qX 4dӇ8Cak dy'ʙfR/0SxVu91H?,q[%/9)6r06Tj$ rH:1޽s]ъ%LjTB"Yh~Hɷ,%^<76~0VƜ)ҽz@s,?v.|^=2*V_4- ~h ,iءȇOѣ), {n{TiO5,' t)>/|A m.,/ cL2E|E:0?l,S |Os}/z_:>ȮqKyĨ̞_Ϗ_|A](w0 2RL%{-ByT}/z'>Vf}#v>O #7ZElhڷ c(WTX,&estCİaՋ^?DH4RQ~hy^i$i;U ~(A9jP T ab@x) 8N?>E%*܈#8V3. ݪ%P&: qGO\ LJ1T'S^mħ׷ݡ'$5بm|f<\bΫr;K'i/:  %;_ n3DbaC=',lRxb[RH 딆4Dv@}5`WG^xXf߾9}ǝ|l2 J GS XU[)n"i+:\\Fz+GR܏x.nʾ&r!y"v1.k1Hm¡ʒĜHVmAVdL\rIzݩ׋NL5t cZ^'w!@ZKBT|OCw,Uj⛜6z5D7uEڱ[*|F)aCGCi!/'/om䵽û=:d@WT/F%SљPgVV2MTԕG;(%NA j¹hJ0%R̖_/`wWM39zSCG6h`s{dxA>9Ԉ ̐5+R7Z)+/|8ăRjyL^i=ф9F;n֏7x{nOG$s&H+%N t\uaD:6x}HM APY0@Xl$%vw'.8U*F[ͅ7S 57QfZbiQB܈o\N-(GT2{Uz6zI?ӁI/EOp&'Y Tu.߳8M>4F6= T9SGX~.ApBZդb0?ɑ*8Iw3rߟZUBʸx;$sWJ^+nVp〈?=39T2*bʙ]L%?NN%Sv>|>HӾ=#7EHa~˅bY⇯⩰n.!؈P48G3Cˡ!jR-nKS%}ÒmTs e/@pXDyoN8S%AjC^πt!b3|Vڷc"7=nm0HzTǸZLTRLU|Dh,7p7תxMrX1%5(?JM>"ĵy(cڴph\J[c MÏ'ڎbJyiF jV-(ƀKfZFϧORRتm2BOOyN^x8_ pWM^#^GA ,|2p@7r",陱;+_}\d$~1zVl\R5]֮L=pqB=O2FB#RnQnLqҿ `i\|Do;2m7xv8KtYD*J4\Vn`KWd!N',=l{bAfuCբqY憁yaC!&f\6f:c|B%2ɡci ]?[uo4a>m*y`ѺGZZlF㐼$GL>v<p_4􆮏%12\ߗo(MQ=u,V~ݪHٗ"(QuQ#L{ -KSJ;}[d F4VG-'/؈W;:;4z(C^\Kc|g= Z+(/TfS!HzRk|! .x3<< =yb4e$i+ 'Kn4TO h6 .iL~hyLԕJ'5z𪩘V@E[I-;Y$7rޱ|♸r`́Y$Wc.KV#ϗܑNBzWG?2s PQ<_^MN) 8`M|~3yjW{BJ!eT9d}6ՑMgaxcw0e$*a\~>bbO,up_/YYNie7^@w#뺷R$@u楍U,~/$+Z?^~#>rx1@eE2ݽqA ]r= X#,Fg?hqvN&jqsp&K =KoMsWieە%Zyg҅VFWbb߽U1.#E oq-hI,$wHE&hG{b,o+ 6)_XjT4*Z ;A,֬Al~-Y:ٰ1V:Am-_9tҁR1N8h:egW>*s{ uV.mwCM!-2B ;Iׇ]d#KFƨm۟\M!4Xt-p]Vŗ tk+ixv9^`$OB0)ƝB zHѫvQJMWrC JvRۖթF},) *Q c9~ę~Ȝ^J>؄ґt?NOVCOX'HJ>,Rws`!'@hDKY> ı'Qaڍi X%:GJ`eP'֍KУOx4 b oTpV>9+W> =Sf w :~dL1/h7r%?YCOF1XWr/MEۅ|C% !t具`Jn6`oMlE]&-r`.qVH8dWi)\(\)z^HCv`Tc5Y ]Wf|tR~Yժӧɦdae-)6- W04/r'StKY67v cJE5IfRT?E- geV%7U!#u_+]4l'2Ef@07^`u{?oDz[T!=DݳlJLCnvAPf=o?H RM%8I?1xXi=^!V1П! IbwPwrT8d~Tboq ἡ1r{7n-E9P?OD$+ͩLb!w+4mKDmsO<~'Rv=wJdU 4aRh .8QB'3Z*ma\OMU„}sk'l0`b߃K۳%R*ZΉxɀάG]A8vb.ysG+F$8(d@<1qQ]"&~=An@!5r#6N(FDjuz@@-6>[" W!V5A kbs#˷KBc]{ `TvT9Kt-w{A71 (ٖRhOC _y&py߽3TR) 2c[:.j<V-DchU#dDȑqijΥETִSwޛTIJ ` Obp-:clP-Xs#zCon/ݒ&{ŧv迃)Ej*.=$qn(4q<.UT~ 2pjF-oV ?7[E эO7!cS~b0_u#&l8 o0;&&.1#HծRT.O* [Gn~-cM b>ԛ;rLp؟":eH\śׅ[?${f FQ"_aA%;[kJPiYwF|ȹpo/~H^]u!NbcnZtK/SЛ o;N9i5P!~ .{ɻEE-CY{`)סu+D ^hҥe/Qk=Q x4V姧5@>Mo|OUc) QCrapBt;HfKpgH6(]K;+;ZEVbQPx&fM^^4RD)\,ѐxy=CF)ԔaQ6lŖYzsĥbDLQ=);dη =!3.o~6cƪa)$+ptjF AYΙo['>4 endstream endobj 259 0 obj << /Length1 1476 /Length2 6862 /Length3 0 /Length 7865 /Filter /FlateDecode >> stream xڍwT[.Ҥ* ґP;"5@@HBzQz. RUJ"G|]ޕwf=YG[n V|<@1* D4DA0GAhO50+'{,@ѿp@h00UDBИu~pDE?u#!6 @v;cVAph4Bݝ#8!hFmFhF!b8@Pvhw 80 Iqق}U 6 x)'W!w2Lm јff_I렅D ;~{^L~~?pc xQP?o_ڸ"Q~S 3K }ۈ;wһsoLH>( @*NYgeΫ+}Sp֒s9^zw)xͤed;w}|c&V'Q*=V -Ԡb5If=b!tH0󋠵h]gD5d+ã# QjnYB# 7ko)qMV#k;X̑|Zﰾk̞*.#9bR.[i1; eX*eԟQ[9??U=EP0#xɫ/M1nvk29v|XY !3"R OH Նx>,29?cwPD{4,jIrw^=X5vVyu8 }]yG<.`. i_qm ^%v-VVna!x[i@.v:@WsWh^x8[ãR)jβK=6N.|u Qumw>?'  ڎ!rؖ1]G?󕤣T2Gs==A-&.Kkkr FCc73}^o[oß*8 Ylܣ^VMH)}'7htkc [|]mj .g&A{6l@O{Iuo g{Kڱ.,顂^F[0nFLM'Or\1EtpZ\e/rYD[ǧk#ZX8㚜'qqS=(pY!5jNܔ@1]o$ҏx}jJYz?Ra6:Ymfn/0(AHڹ s\^o|]CE.ԝ^v Y oŨMHΞIص5K|wT|ũzjybN&=A{FpjFm:JXnlyok;O_s#4v{zFd|kZ3h~M=}zU(^mw0}k-0]+v="zO<)$2QIAd=$/ CVfbxs+k JLMzEj$DYC>P^QlI;oY c@ {2zջ6pNrJiR xX-ţ^3̳F-ݞmL{ i kJ0nZONsԎV[J`GY5YKyu6;^Sh{ٻjD* H&F]g4RBN_hN$uS @/Q%t\(|,dot^*Л g)lEOg3(E.G^mk$[>#MVSeinO7aOCu@͔&n GQrp'jKi?w2Gx|/dg=k7ޠ_2R|EC[,3Iuk@)Q X۞{>y7v6bH}3>2ީ{FxY||AuIFSB>^Sk)}7 lC$>̩ulw5] X]^!` CM#cwL[i۵U^Y?₋ˆ$|MЁE雑X9XTYOf,dѤE6B_^˯DȆ=4^w˦F6?*f|GЈi7ɯ8˭Y)3Y"DPs@Ѵѭj;+S,ErؼZ娎sK鳧&\($:*rN/۲V/^߫vZY,}it#=0)NULO o{b' "β^>gvi_O/B,wmW.埠68@7a哙a+.G1^blj / Y9υ4m&IlD p{!\%HuZLv@awԖI{co>YZE~ٽ4^" QBox`$ R"kͥOwMm jM_tK_'?I_+Hǔ%,*p8dAENePԧi^&9o]p8ɳ.cNƀE鳭w^7c,:~* 5[eퟷ}&')rt. Kgps!R|k O߉P1uupIo(RiTB7ZSXE6l_u|y,sJ:}zёA` YhONߋ.ݕ^UE᠒"xs$ Ǘj EEaiW;)D6mzN+87ݡ>Otfr:ٷ&w:k9sېa)Ս[f3vYKJJhINaEce_@L(|Tφʍ$V󫍰^;`tUe&ԥ|;M Ll`"]2K>Al.5⵴٦:}F[ADҌ]4B ka^K^'U.Pv"K\`(24<DHHN%20]qqhXv|;^noW72zP!BPrʞR NT=ڎ(Q* Rv,΀$ϼCvڝl&6*"ֽ"1\O+%q 뜷!?}+Z g"/jdw: /֡PC`:9AAG^KPݬyqSZ=IU92>jׇ*f $8ǒ 3. %_ii[0yoVK˖gV &OmKI+a!{%BX` gp:Z-FTK|0ZH=t/&2YL y3ӥ}cR0Y;@ң}/j}u%WJ͔F8MGѽx/_, k9ͯHHP{`S!CMgbQdwrUU4Q2@aJi:?'{=IGAtp5NyO婮! Jۿ-FGY'duANƈ.zSV=%3q*5ie6sXhnR#=y>rBv7}V6VϘDB복.BYD'LEuF12L_TsԒ ܵ6d9߼Fɱ35BU)s=ˑ[ޑl%d0x\!,,AP74On3S`gEKqo.C>c̵':Tbm٫m|0jwǪJfj8 & Y7npKqNN~ wkQr)8 Q;ܼ`MREIRp r <@HJf)JD26 Khmea[W] S "VFf~ƻ+DwTO]\Mxf|pC%iۼ6q6}\S_k#.fy0I VEʁ}Dp92|R#\ϖ\,lo؃K ZGM15f-q\C7yڬ5W{^>bJ6nrސ?tloh̏V.[?t3l'w NYA ?ʭv8 pjV<s9Ӆ:j{mQD04C UڋZkQ.; h^DݕUe4s:m͝ʕFaXd KϦ~ug[Q3\AJ\!)`Z!EV{Ib}I'&]LO,p ϓn8m|^ 2NB]Fpk EϔVͿBځ_аs%i?/蝎&ۇꘋ^6`@ 3>oiCTǞ |9v,wI=yEs~ !4ZG]0p% ewM&fSWp.'@tD>dumQ{0+Ŕ<şV$3S4=T ):{"QBȬ"`T"M#Ӫt$&}Yn,ҩݍyylGq?nX$8P7r]uzv?^lg- +)zƵ?w5'J[^6jᙱ_V}n̜ u\e,nW Q\lͻABiF H#Ϩ`RY|>DŻz* 7NҠ`>EB ?XMJ]]0 Ec:ׂ{Z|9 ;ƱFqOr(&ƅ PI$!Xop'ǧg@'M1G ,ϢBn aNQVOmew.Wڐ (D-pVſMU#Jn^6 NT2rB&woH"/b^?Y C JAYոƮ~V8 ٦-[Oz]oLp~QL+܊^}2us[L+#n*DmĆg&v|%{]^z{uw:q endstream endobj 261 0 obj << /Length1 1346 /Length2 6029 /Length3 0 /Length 6947 /Filter /FlateDecode >> stream xڍwuTTm>]* ApaA )$F@JB)nAѧu:{_}?2 = Y@UOO[ @ 1aH鉂m1c=@Tp'N!0h `IY,@21XY@ ⍄zm Aq"Wo< 8/4 pm] @v0pz Dv@W7vH0 h/ C!H];P6 lEyz{ Qwh*U .O1>hE Cj&rtk ©(9= (wP'_)L࿍_j\n7kDq 7zo `H'wD)S8 `5@0}ő AͿz۪%)!߁ !? _m4HQ/O$ccp$^3+N.I  Hߟ}\t_Zה/?.s%L0AZZ2AxrVskco=jHX.G.3ol\q9Px.ɤswԮpzoR1yG0Fǰ~] IR=%7ntKŜh[~ Z ~)-CSsE< ue<;u;vt(ďk ^2Do0v'*H/ }vm~-j`v A vbIg{?E}T*4(L("̋T@r@H"۰Bit;JD,M:;޳gIk竴v6C&zO>Jk `{)Z˔^W`b. \qKLfuȬw< `ZMuF!%^>{d]v?kU9JDi' ! )6*2ω%za+xw.P6uiW y5k7j%h!iߙ~z;^Nn`$Fg&Ċnl7w-kA+Ɯt%oI_'؉W.K  5 SGV<ƾ=upgCuO=҈֓WW9=j0D!;GvlDL>Qn &sؚ@t QO(&A\]L曭3,/OidlnZc_L'7:nPkJ }7ƏƏדU&YVVj/͌-eg)lm;`+ ͮ0.r$bYbgGVYswYVNUoAŚy #t?2%gV5ڻ&B͌vo$8yv}aE(/`H;UZ 4?6o4v8љ~Nd6V^}i^'Ǖ0HR4vs!BL3RQe׫DDQk _FD[HŠ&rmsX뷭cW)ϰ&7ZV\SjM+B5A8ZuXcc)Q+,62EE||i|6A)e|hdAY'pǏ )I3zClN,:݃?H|O݌4Y;ؓqݦ%ᥤS_pk|γ:aa1Ij- y婄 =9"y@'d7TX+~DyۜnоQg;}]Ř" K-ȴvF/MhLVβˉ)'zmHzC.VP/wpfrvO=pb!ym$]D$[-L?mV zmж?I},II4)ܻX-6vDŽǘ/x:F-JrSlߧ|5&xjDW\A$u:m՘(Pf_:%YLbؽG%.i:~qC56_+CP6{3-O($|2}]|u=Bf`8> [Uiev-9e x;uBޒa}uc ͝Ypeܰpeprn *X`|z\8ei~sӠ'^h)hke1 yg^8(!Mi2B#ZX䍈[Iׯ?y1\ (aSuw]9`4 3w j1]sغ [^zͧԧ|2|kPFgS"=~G3 n?gh`jzg^%БS7w#YAҘb 'VBJpa ^ V5eW̫lZhң Ύyxq&UP:&DTϺa`=o=l3 |Ć5}|<۟4+f-XeYSW E[iXpOFUmwfSYy)::7R X-d>kW[oV}v=ƺ^32ֹ>ik~|nLc5.' ݹ1j>'!6,AGYj\.AZ3%w\^w$^<̢9ޠܽrq5Q3/:Qf/4Sn5LD[ KMs+n=c:ѕ:g48.9T% v~ӨWGBm~X叜Ea\s`9z|Ӎ^=fijiUTNSA7zÙ6s HG^ f1̛j?xnMI+Xņ-fh)\ *ڴ, :X֮9%ܛlZ%1ٚʮq0<ؤdP)b:(fwCdAŌGnngş9p/0/6/ x\]d9$ 1Ym('Z6 90~)y- ~VS6j)OVm<7a"$RJRI497 J9:? Jȧhחj[b3I oߡP#wae\]1.z/&;vhRŜ>iOjjkηd ߵn[ o^3Q/IfP;y()נlndƺFX=kbәx7gG ?+f7'ԿFPBe9/Gi8흎PͧNrGR{*r:%.ObCwW9wJbsȸ\1EՇ Rt1u_Q'ܴ/(h4#61)zqT\dGx#:L8MZ]woxdfaJ5bmC[[S-JF #o&cV>^Ω:2zEa Rsmb6 [b ;G?P;d*J2̘ljü1[.U~QjvY)?&bCx5iH5Wy^֊8"nSUI&uYp>YّyBc@) <(Ta핽2Z|`5!L%W~fO8g)xZ KC^g$JU;ج\mQl-o>ҏג ީ\9z[|96=9<,hiDŽF@{k,\5 muVZUN:' H2u(͂gd")O_Zr8U|rs[%Qlylnwk@ٞK,b9QjhasOLXV9Rt؋f qeIK@]dÚj›:SzO$`bƱ&3ȓH@C^"p";V5']ÂQfT?P6>M1*AQN$;QHm, |.L#T\#;Ӊ.ɁWZD/߹mD%T9QsP{'tG!*;'oNntx UijE[镟2+N Wf>Pq,~$=7ȑX36Da)y;*Vkx;ù\icJFo۷K5'FT(KJϘ4K7>PVtP^U%*>:fl(u67KcI82F'@{ΌKm|91)&^u@S)x^p3*aLXQ 5s~_22p9f_9Rc;z#ݜj~QȐk[Fu6/^H؁ ^|BsM+4zT j˕R02s"ٚX\kVQl=[t&Os8lea}/|6@ZkTHV?%-:;&N+#/G_w7h_R%=6F>1ִagyh170ZB7up45ܔKbsTU8g*u'-QH󵇞JJ&i8Ȁ2rX\TZ//W@/ :Y FV-ZYPhm…~@, n{OCwQow H]W|aq5ō !rnj8Iϫw(Dk& LBc7Dgyg5|9z<ԽuͯD'+U3_cZ'f_/Ze;IȻ3f6:D"L?m\}aZ31OBYTՑGښeoDo`Zl=!ri@]hJ CE[5nN4Gq⍋1Q‹}JFdѴ[1,z VU*-ߔt?^%%gUק;Oy ?6"c*nk9lAp.#kS@5d' N,s$|G' U 0#yv/)Qbd׍Yg0_H a I6[džbйa^D6NUŪhdͱizkk)9ekԳw _f5bUfw2-L;vS6v3NԎv>qnrHsQ/:% *Wʬ#GAq÷n,>t畊ۚz! endstream endobj 263 0 obj << /Length1 2601 /Length2 22187 /Length3 0 /Length 23670 /Filter /FlateDecode >> stream xڌt6v&mfmAqcmcI65k6V 7508@jcnP2u:<4m>EA+hlj%Lq݀@ ʦ2cFhZ۸#pt2u@{s脇rАS81VǀؘCӿlu `icH+2{3L-~ڻ9Λz؛ )@ZL ` J鹙81N7 RN@Gw7IڸAeavN^~6pfrqI$B#XYYy8@ܚ73_JbP~NKPK pwo1wl@06VX4^N>_ 1 -2N\ `bb2CӨ;9Z:T@7hj?Cnjb,!I{KM/Gm`coz@ T*-l<VbV)7BiG{mNn65KZ-s;oRNW`jj2q@hXAGN;`-qX  `,RA<? "Xd  `@(AX P,J(?/(?]y@5 ??Oyy@(2?T 3WSs; bG?ȑ4#-qpаXp,l@7 /(Uec,Lݬ 2<.5C 2 r6qzo_  O8q:e_T *_J tA: tԠdAdΠwM'ۿ=Aӟr lWSA=X\9@]<@Www wO]_z!l{~=*3 CWEn ݽ:*_ Ͽ (t/g z о b.KsWP: 9KNmo#bڛLBWz+2ҋ#E{#LwRٚl>׆83X1<vd xUiuSC`OS..z"321gڨ86}_dK!MRބeJ]fH|i)~ciF`Y8emdt."~it'@Td@ʋ^ zu?8 }[(Ƹ m.z)H]ʪ >Ntƕ1Bss} ][YWE5IVm~Tχx5ٰ jfrRm!bN9hPB3jO\jd'1L !a|۷F?.G>niЩ.#Qr3oFq)I)3]X!'IES4S0ݢdq~](·`*`HYhkW );F/_ 54 (|7~L쐍MPWr7b!v37hc_-׵ꗉd7Nǡ)`;8X'OdE4Y XoI9۾٢B5n_ױn+ )7$ESrx9UfDR'-L#(~1@SDGk g~#8G55>RSC*=t)1yZf``}~<0 PhOMu&]ǰH/XyKs%{]jDQ׾8 NL!"N6 få t8ozXZX{Q3.SdD'x< [UmZ,2*wzKsO - 0h zY3>x$$T.*dwrujcX7+rX=7 .#Bwٚ?WFzqeFL$er:H}VhQh"UXgjT))~>V53%nt'Fb٩j}#=|="g3Kz+&6D qƾm^XWS|Fث#i2BP9hrYvh7! ŏB]6maq!/OX{|(OGַ9Umj_DP=ΤapPS-ʇ}Be4˙gjsd|iwi_垭vU0( =mJɕNEt"VͨX>C?d'm$XewPJhi+ VqaVHne u#R.B;J$ŀ}{맾蔈ӯKksa&滑h9?JЁ쳫t\Ũ=NT8%L4Ç"}UIiaJf@eҡ{t <}C%yp jQ[<^G(@Ԫ >cyz:N3NqGtdEj6a"t=T v:/ZdMշϰ(c2Akucs& ~pw@OƢӾZuXl$CqJ Cf~k!j8Q3(5**96$a'}VBBқ fO:C>[d/[#k>K3zy0TcíTmh7݌N ,>f:&V)~Q]\P,$G)hJ$hEh)/p%w:QQL o3")h}AýB=$^uwk;fYAPl\.8Aw;GuE6wfBEv3ds{yљ2ϚHry:Ina7>޶ Ta6QjKL`Z1$&36U^k%ka ߑi*ڍ7 (|J=z#oʘ]>Pb;6ITK=WXRܕM)G(ԁv&هH? .*_G ln[V>'V=oзG  `Ǭt.lG2 Y`1O4)]ѿ=DY|NoD?΍/duY_9dmf(T2 )ˈXg- qr]Z [JI.N4ƻ5X/Q#Ɇj)68qFʀ[ B% *oʭ

YO:f#}G3bۨwI4h)G* ol*AOAac.l(D܊iV>xˀsj~g/ϔAbogn)XWmBwn7NXf~ >pd1~p:A'$fVn-( ok'g30Q1[3yGS,'|}* 45ۓ)Z:9im\j *^՛3X6<V^`Ed MC!L=[d9=_0;|u Ytrol5Fwamމ$~RuJwXQ>5t6 ў#?m{oubōM-eR*?[:V@Tb[9On|v,IC<\;B #Qz:.WT4<ǼGt)]隊fq5Sy]LI15&Mx8| +!0g0^ ΄nLAs|mmwe~Z 区+':]iL&9s0Q YT73(#/fHt( kj12sB PJX,86R3JveSѫh,ܦagIuu^ogl'd;cTdF&>?4F~ JؖoGnr uFZ$+] qX]ϥhR5^6|iU}0VXytO{'z%ګxWR)G=?{OV9/d{73'~0Rυ&MCU M2wy=|V)]R׮S<,]z|^e?wh1Vw^uUB~KkwLWyn3Gm]gRkz.v OmP+kn77ro;`'0p#Y]b=ŮY8œ&xȁfBcWm|' If^[Z.cL%'TwY͸ M_ت$a-+)߉+=,hQ઄):nڕsu9+ C ]>?X?>nقVr $掎tTnմhz;lB"{~MrS]]/F0mBB(9Էv[4. nkn_mL⦅:^' du]5- M{EmtL2as}9|R|ՑՄOy}>kUSVo"z?qfLd.\eL(f}:D+NL>,NuZV-CO2B]Ei`׃^IDi/O K%R'hG[dS}+<(z$pD+?*Z01nR(=jhXQL{,=;Ns{r$k-8p]%Zi\R5r n;ZOR^]{(*lK'cm%P0<ՖOkmE .p>D{\ M>Ӯp;C1ׄ"}hx@rg4IL(4E~SxL1l&MTc t]>Ex4_,U{=]] L0ynOû`H.N4)i4Fe2Lh/j=rWHE4OEqa5t{XVѵYoÄtpZHK6Yǯ0/~ӄ3Ҁf" w xaDWnžU{ l흽haи~e+hC0^FUk[ѐ43Ĉ\ kL!"69ֲǮt%RQF(ԧ(^gG/ +1lYM [U(kX!v7'dDHjH=xh@a\ft1eŜC{iy"{~¼7Ťg,o8$DW8'x0clӃb55򞽌 WS?}B`u]PG*tyEĜj r۪_}X7oV?vu`VhSb`鰣cv\|#q],$MXBlܾcW/Y ! L k:{15b24a8ߦ~K/Nɪ֒0}RJXx1,a;%;Zv>񓺠!!?g`66GNp|IZ~cﮅTwNqB>4h4Պ JT^tT+- DŌjpkV%WX5uz 1Hvf32R+Hӡ~Hcwڵp\hPsCeG6Fo}w!rha'f+`)-Kd4k4`JF^O|rҭ?R@,@.7~cQ(+ri e$N%SmV9tQ-E= Xԁ3(T,~JH6v@uoU§x,qo[r!OO,RSֻUj:%zbX斠Y[Kkm˨?I:MgӊW5pi)Oygq!rKz)΁r#-,Q5wJMcR~j_nݠg sc&00 ert%A1ī^`˟W }蚺y&a!B (CQDg9wK\p/7y>q% $А'5:Wׁ%6Wth&+[C}MTJ*0}՚0CeL͎`N?wD'GjsngGO6!k2YD;F>IP^v~̬FL2CދJRX嗣nC[ΦVhJq3~>uM#C'.ӲNk :m^YW0Aԭd:L LRnS*!HhkTuB/A+\`#*Kb03>ì` pT9mLI'Iw+b+1xMfU6H1Wf9K!e}sȗ ҋhy1t~8!\ETNq[_7qІ~Zm$d5찤~4DSn9Ehm";(J~hUY2/19lDSˆP?=2kN7V]sBYz+6۸ٵ Ҭ7԰ʦYG{CppxW5l;*)TB-bI7,3|O RvMh&Ӄ*Zl8[Eǜ9sOR7 X)o=OMŸ_V 1p"\)&r$ I-g Zo6{ ֆsi'͟.)EwUA3*+{IkEd=¡Rֿ.rf_!ki0^ߖ:?2$C]%B@Ek#ܔ < V(mRbǷ`⯑Μ" ?\iwvbLI(!%%3phwWHۉqq(0ɞOBϽm"?`~$nvgYD]dxoU3,|X+l/CGbENޑW]ybcO,Jb>hf@oj(A .F8>CF4&}'W%h# /93G9ō&wM6r>MeG;fIu<0Hx:P8vr600#V?j1V};[ z:2H=K]6b/ Kbp =󧠔|$m(F^^Ra7W#)iL٤6o#k`C³WK/7Kqf$w?zsNQ.fv=~%Oūx;hGT&C[*‡WHXLRm9 -i/?V.V$x(J5MQI,qT)4eE:ȿD)''SMݼT0+ĦȲexI6SyŌ[u>q{#o+mosd臉;fz vxũc-@gx*E;p8, ښ7cgKĭImsȪ^u| Olj{ߗ*|DL( v8" 4qJ) f!13k~ TDUaa_0]0GaEUy@*91j)>V^sѶ%%V"9ö l :3; \hN#`>JK6oxrY#$֊)2fs6Lr6߬n;|x[(@{9+wsz( Coo [!nu~1~뾇r˜&:۪GRhc&-.B%@JZ?'Vy kt©PnPCFч,V%uCno&j[2Dޠu| nй}<8RRDC٬MӟKe`͡!yV~~ Mm Re_#_'8"y-r-Z≺LoI)+ jxP k|?}M=TS,5q}o Ȫ`1v6eP 'NpJI07jw k+9&*7{4L&)*NrT"c[u*wfX.ƒΟmp|xlX h]1tuc`X֠ `Jgv-X{^ٶRebTDqyy{Mՙ2Rc$p~ἢ;Zv7Ƣ X~#cUc.e>Lc'FCaip4-vaǼ%b_ܷ8بxcQت93&'<*5¯6 N[>~W4/j0& f v2F.16@Wρ}ab,* kGeQET\>0;}L/Y1 hg|O)K.s&6o gyt Ҋ;f=G'iߥ.i[K뵽~ӑV1As}s3fSDWI3|ux}j͂Df@+ A qܐcQOkgS,q€v Ԣ",rO|iAǶg5`X4Jw%J6B nlZ}NrW CIӎ,wXҢÕ-$' b#tɷ( Z؇m~pj%!,R"5͙q[nWc)oq7?%8܆85d #M 6.i"_Y 'ry@c6۞3~~W3f=-&%-u].?s7Hkob0s*.Cj~$lm'}WXD6 'jL~bdGQ! U\VSAy2ݑ,RR&n^>5|ᨯo1dbuY&4ƎD~D֧FNjrvt;:.&I6\2p˯!7wi=b0`cfHO&GLqV:-(a6CnB_%bVR(ʟC1B#dĄVp팅*}||MK򜈡9B9HEJ{.jHӳQ&AA+v}BVmp; ;{iAU 1U24f(rn&57_2~G& TOFB@fOП@J 9ZKh~4KUۙ7cn .5+0uSkeO…r,#PdmGGlc(g¬uL;r?GՊ!Yu`ztwp ӽ{- L3~~kso* $!"a{Yx@.jMwo<"#i 8`5vΧxL 9ՅQkڽqct!ޞ.5_\x<9Dd/a+ɜ}c]w#*^uA?ٯCf66KycHp(fQBMp}Y S;$}9;j9*Ql XGͦPMkԹ$X[Sm :ߺH:\">td;,2cXvk|h%N:@)L`uGT 1Ӻ9CNB >:O@vDU}'fH Uu:5|0A dm Iv;. z^z)VA륂 1'vQKލLbRZ_jUy":켌=[CksM)5?}wJa0n{D/fģg&kst0ٳ%Y6[@u}i!nf7Ο*ޯnG(l ,LJ=O5-'vPu_4&F)C ֒H7o-sG X/0C `^.ۯuQ{ +Uw !2 g|<4s^s5CG5 ә5 ]ɬ}˴+sGWuó#IY/+{϶:}+WH`A9k*]Di;Z}|`lL>?ZBחɸ{4Z9 LҘ]iݶ۠i$KYRA}FS$8$W<\ό~o_H5>rU=?d)_0mU僽]ss5"Jb"8S1-Y"}.UWto6h[v߲*7Sy>bTVZH31Si’r5*_vCL 6S4!FFh]IF&%{?٫)d4IKFNU;Vcby[=KlilSX U_yQm֡EKe*ÖD+tL$b ͫfpCf)~dϱR}v|)2h;m%:W]T]$>H trִ,gȳ 6f5ۮyentR6)XM+sw˱2BG$w[huq19rrAKۘXIPQooLk!p f8"ER!#ٷV}#_70N2fi~ a/TQ8SDRwZ+B]AQC5Fuy Uut/iձD=*̆ +[q>d=cnzs*]+e7($(G e ?DF3rvE㑖'P KeA Z"+$&F8Uo#@U=2h>]؅ǒ+V, M+ehy 31&L-ϮyXC:ɰҒ=Bןڝz[3 l|c&r(YCӧ>Szw5AI1l&\>Kjne*K-ڧ~ cZ.8՛R#٘-]d\ `I+x'Ŝ(U?or\U#lF=ʷ8ǤWwMz&FhCglﻢ#&ΨsOee>JTWgpe#TC%2߿3{;#ת=7l|oP#"rUmza39$5W7~]\zZcޝ~Z(KR"ZJRN-C>\^da*_P+UgmK: tw%pjRoq_D(ZڞU<0ziQ$4}ښIMt&So "6':v8eHoqX:j-_Uһa-BCjEf] rHӡ? / 6*gGd!Ek^ V  SJPK ߸玫B&34ed+MEsJ)ٲ]~Lg2~BSC&Њo/!\kTK$\l]FwW(Cq{Ys:h .J%R|yO=:A-t?^d| $ZXrݛ}V8Ot݅Χ QӔ $mkuk 9uQO{ʪ֡^;[lkPDr`5 ڗ&`bs-.Fwb6ޥ T ;,cd/V Y*F,+1Fd#a%6th`bEzg2Ee}qsg7Nln&vަp^o(ɅYYqc9(FvEtS0}{(֕YmU3|Bj)@RH0;tAZVLn_ԇ[RcDa}O^Q..o^w66rzSL%FBIKŬlyU /8 xFj[q*RY6,1 zV]RmAXhaK{}Kih4(XRK~n x< LW:=3 #5&Rn2[ܐ vߋHҨ~wyJR41(:Nf 5ɐewܪ uKz^(J+)Ϛ)߆Ɇ ˦0u?^1)g2`Ǒ_7DI}4' ^#o%/>*DC_yNagP1ͩ c/lU 3̖N68.1"/SN]}p"#9tC`1B`['FHqR0xjXuL-*꾋ͪ˱TBLMULέɤI~3ڟƮSCf2^"» B]_7"Pb_U9(Ϻ=rI(p-Cm 7P3K%Jo`I2'|yD+=ι$ʿ;XԵCJ&y|-.5#BmUz\ƺ,-n^!~r!x,tǎ,Y-˂C 9N@"use r̙9l}>P5W!nVHPƂ[ VXy!;f Ȋ (wͼTA-03U ^)E %]iZIfﺤԐʳgz׸ew!1f]G+1n;CoN=@ZF]j"ο@ƵCOǨ?RJs1snN1f|{Ħ6pBS ϳMAXXE\:-X!dt2I+K*Ta-J\3iG, /$ VBPRfVJڍ%īd]7t"^_gnYFr- M@EgȆJiLV>HwI;>B;5!jKyy$e`!1)f8ɭajX_|kGБN"(T܂K f闒ʜؚrF|wDVKyJG&$$2Xmu a\B5)UI8꼦緀#-Ina:HrO k3=Gfʅ- lx@ߠ:@>WwoL/·Y3).Z 4ܳl ωU~*~Xa:?怒 3"b-^վE3e 8nɭO5\Lnkj^שwg>CP؝[ϲpgWáD|>.5ZϬ_KtrQ12a6DSV/0œ |>:ܰ)T$+5S!qayd8c+cJ1]}Tk(T7eZ,9 cټAjoDՋYwY7h_C`ɤ"T$$5A8tV.['('/~dsss:c $O LMv/biJ1k.ܔǣjBgXx .;϶>LЦacVv{ "󓒬bG)pa״)ݦ.Ds3">78;,C},սm\>: v٩R]:YAɋ2lY`zNUfeX:2v3;"}}S޿,NUth-2}4lâ>YAo,bgu4) ϹP,Kc!ND.n\ !l4@X }.4s7yH)ܑ&.-5[4F3Q_˱O}wQ>VFc])^q2@6bGjrN|q3ڮtWƤATɘKYEk_^a"Eܐ7:X|&*lT웘f>^x_؞z7{/o[tڱֿ8X] -ꦊ̌RYET|`epRdn*:槚5vQ"qZn $&PP,O+~ CҸ@_l$#hl] "'HTӊDF}N+$MOG]aj1#e&=T>άFoif0iu¿|r Y3է*od%c FfWyZL(ZSU=0h=|Z_Mᦱ7>  hR48 Bĕ-5+yBNWsݒ-!{/ 龓ŏV!GN9^,C5|u1fXVVC3|A4˗۰bhV%@yŊ\O{ޥ7_Bj#( n~0KC/t䆫؋lX&҇⤍QOWG 7 /~K呉msyКvz P=rӼ|aƗ7O$JkVNܵ!'C蛶 Wyq]<tңWA4V yT@Op)\@r&yQZ{(x*Q&+W ݇u:smk>.le8b%4~u7LUC-xZ5i8Nu;A@ItrV,I hxOhHSfΧ*_z=^%ԖXMDڿBYG_;Mcᣓqc'rnğg`q?ȋDl.carDQd!h7ϴH;'mSl!%)ȶ*gB®`ᕶpW -Si TȤA]5%ʈcf`SJlxU_HJyw+ǨU l~ ;X%ǝオR P7$=Գ՛ƌ@nĈ[t&Yp|WTHOY X/2pfPҹ5NLVȾO,98ͅjEVYeձj9Vؿ95\{4z Th9^/PXlW6$m&~nPR zEItZ[VW6Or+h{=KT܈=%\iO 5%d8eC#]U{i x)ݼ57-{>+H;Q5 e+]bAERɹ72Ϟ^9Mh>ϣ_~C$gMV٪n؞vʕ\y5!f@;֘nPgj!XgU pZѵٔMw_8I;mf{$fSsDV:w<} rbyqkðKYa63DIVm&4-nI$a5H}k'E9lgY"5(Yl|Kҳ{sӧ:_,lءŦJQn"a/2{=>$i%>Y"ٿ\%5]i B-!a0M$) ,HJ聡FtIJķegcU-X|RS(éh*#5! 1}YQV"3j sȺzt{thW'CXdMnVo|}0Mgj([PAlbtRLM(f\`Ɉ G%eڬ8*A7(ɳ0Cyȋ4"!;(DXEK&z-M\YޢxՐ]$AY/,AppI4]?ݔte(2;A3FD~9TǢ],f9#G(M mxb 6:b8Y_C9yK^N􀘊vV\8emTW~RWG'߰X8 GP%P$s/}Ln%9 jU(rۃ|q*+18NzLɞ\p}4` n;װr͑z4ndS)_L'꼥r oIavM ifi{H7U(vv Uh#`x6 .új'VEGU:))ul7?E7r zJX\t`k R絾Cyq!eW|%f\oBee^C&_7g3Paȹc'}#b5@9Eu` $iO U7_+YSaPI3j9c4"WJVhv\2 Aw֤.́HkoBi#*q1C@o+!]0 Q~m (bDZ:WvVb(M\]oa,S]>7׿TYk 0~܋*vtL1؛ _48S+cv|XͻP+c;S7/i9fB͐_ Gaq-Lh,t['jHRcqT>[.I+>fV <"w\^𮺗DE&ʣzQy///x.}|uBWG4Rf23(M,e7p:¨L ]=>MLq:дV`2-]f k 6GVÐYٗw 8t~Js" l~&Ϡ>{O4̚5zWjZuSӡ.T u8hm^k;@61n9kD81\)e'Q.|XN;iǖ]A4{pPXeVtdOfޭs5#Hd)oM*qrSZ1S)^+/=}*ى9[Rx449O}lYJvFH+qK(W endstream endobj 265 0 obj << /Length1 2010 /Length2 13630 /Length3 0 /Length 14853 /Filter /FlateDecode >> stream xڍPڶ4݂{Ӹ[pw K?{z1u\P)1@Ll̬|qU6v+fVVv**uKgT@G'K;߿F6 #8;@ `ge@;G>)@ g:!P{8Z[8Z://7Q[`l}hbdP3:{|,,nnnFNvBt7Kg * 4%hd G3@#n43\@@G{s<@'XFr%d#;[{#%`fi(I3;;3@8ٽY %0zyN&NN6Id)KLlm g'IX:Mޏ݃埛ٹ,Af0ugY:e%nBc3:8YYYy9@ĂlxE},̀_^NF@ ߎ&c%Ow3~]c/2x ~Y4$dQ_; d*Fa'Udf)a?vk)ڽ-@gX9YMS _UfrMmdkiuq~-P-?;4t^Yg=-,݁ʖ& ?vTsU0fXN 8$ c9:y ;''}M0dx0sDFx,Fܬ? "qX . `Qx,{"?=O뿈AU*&E\?;w ;쿐󝄙q#{wOĻ_;ww ;?8SAw/;w?ߓ]{1d4sce_](;>,nvrw|/Ndv|{'kM\E8@;`unLTZtL^ˎ.()tف)v%iDVH_Nۛ`:T: T;~ M}9m$'bR9~q lwpAQ.6 8X:rPb)F#Z/t8gƙu~#oT.ġb/-؇y*uv^|J|M!TB-ʓ8GP Ѱ;|Vp-jEfhRu\IzbQJR% ]m>w}Q`P2wZ90"ܥ xj&[Rbrr%;n5;قjg4K+b)NEت+za̲\,m eG 4o*8Y:sti_"lUh0yda xi$!IY2NLŎSfK[FۓB&QIތtw4mtPt'::x9Xt/Կ+(G;^;YI/qym|٦z 3>&i+3eYMԝ~rl͜TO_ _OLc0MIr49*3VwcTp;d8f~1;9*ddiޒ/[Ys$_L&j6 PFlf,2uٗ7œljft){Si^v,Vc`Rw!V;7$f@{-x{p 4厥q[" IgO#xi4Šx.BzK@y>M$b?LXW2Nh6GK/|@ K \0OOqe $ɏle-rf0O*n3̸J H&m^6;M!1wSv/W?{X%#MuEk?¾F3"ZPt0$fU} ^]2jhxAJ?_TBSupǎ.!uD@.ZT*<ķn̉_Mal'_4o\zv?ѨFX̀-+T|_.^Y car6U!!EPV~2M3gőUIƿI{r8ゝ^qqŭ%ѾuM;akRNUԇƐUopk}CÚ5:R mM~n?*ndOQ9N|@z“q$h׊I&h&W̫BHagTz¨ SkO=A(=eufZL)/A\v V6:$΄q؋= 2H/P:fQʷ3EYAƉ5®'҆vk1)f= z`PأZ1 ݅QWyHۅϑƭ~WECyѢYh[v !qO{ȏ>w_]T*YLɉgd6v }.u͛'un3UH ,J%<0Ru' y6%VEO lʇ =U0Ŵ^'H4{Լc LؐQ w-fTj*ߞB)l$ B~ UT:[p7SRυgm%kn꡽ ]F_빸&_y6$!i,\`XZBxXvd>QL2=Iuϟ}19L*(|dNLϗ.0PTQ88: %!*Q8bƜztXVzji9M$ \nnIh@0?Ni/9tJ0Nۦ ?ߵd_06l"n1Ú;_YIv81M.3yVp $,im^WpBC݀cO ͦ BM640X%uG^0,!~%m^26@쀩cW)R.cҌȵ>RKBw*g UFMǫh"FcB:=lbuSr{ ͗7Wm,I9 :FE)fleDsV4<|,Ѳy+0`c\PaA  KVÛj;y{=eA 8{E#R9`4Ib`WԌc-¡`sN3LM n1ACY$6d8L U[ {B|B4=TåM6`N2 MrC .Ǧّ*5lǎ+Y^O4܇ A/ZTBDgiju+0[PX iP 3~{!s93W1c:ij(&Hp#OI GQ|[לSL8-{@JI]ߊ3.blXprbzDOef1iY@<(?xV`o²:&|7F8çd$f;GНjZ^ `50o([,iZ&lIKy <,H 0˥9h|H) b`/|S l}.\4/`h>FaG/x`Rfwl9rntZ*g,DxIJ.Rg})bOZ+﵌VZ8+5.M?;[ Ff~#[uL >%?F3t!k$h4*{xVY-CmCm*9B72LjFε%2\SpL E[KU:~im"+H$?f!N*>uJhT骪8QǦgGPSy16ZAj=WVo#q!bKh""ѧXj7|\p,"*t(:z_6Ri;ڝ#fO^ouU' X ?i yMq E>zwE☖eJ"KhĪ`Fൔ$>)&HMd#Qzxzqgd%ȿ,[},*Z &~@ɔuC1erXD| !(p erN2+.Ņ?ܤj Y ʉ@ZzP4qX ҆v!|eZ]< M3 9G=FQ!-;X>~.3&+;)!3;b"br qSNn|g dE9}b]OnF@Ȓk80fp(22Hg!|KnJ@F/ȭ8"t}o+!?݋X<Zdw\dPi~7^jjU`Gis3;oX|~{LdѮEu9-r8=s.F+~-O@kAE?%c^*HXN.K?(UySyw_ L*N9/}ƬKvCht!/dԧE$`a F arѿ.3zቡr4 \,H_xX߄?`:# >h졹f_+W+Mm&B9cn LQ͠cIA|cgFot+7?Jsgѷ9B)4[ʦ"oyѡ+FJۓ g;(OXngT[ j}}T\u-dHtKjm[f5]iԶv!*̕Fl'1fWV#GoZjI0RT `=$gQAf| "zVeûPN*umYWvaRT;OXg=dbb-H,Y75ʮ:hE,P;yZh!ԒigS\GkE\62*,e"0- |PrPNirFM" J3GkD.MK4Srz+e 3(:/Ɔ|>@H^^w ꬗x=dXRÖ:! ~:!ۚ]4Kh(s素zq*os+$0c1eS3dKrd 5,j # y}uWU?l?3(︂IqK%^0L(*J~;$Î.&Ÿx(9Iq{V64c^ {:''Ҷ;*b&g蔈䄫R&;UMG.xSJt_n5@3Z*fCkd$Cܣ8۾9 T=am(A.}sSrWb nY4[%́}E L\jicBōbelsD.uP,D R=쑸#U 1O4(=#fBH/[qVVWݚH t&O*#:s\G7&|B bK/Gp|r/3Bк)Jqk,-^m#I'ƒp4S˗-_ -,W HXzO(ϛV \_`{\8B K&2$lgy_fFW/EFKQfW[X/}rU& BHj}H%xUFg2qc' .>bn< !ڋ,SA.bFSXI)F(uB .a|+I]j']v:Ψ47[)}K6"QxSc=3' wßA%ap?S H^fϺ"2|F(%7g=IHtJXXM!(Bfy믏SOK;I 9(Į0֙ I2 8A}_]*!ty,UTiO ~QU.}Ya'Ǥ^4dt5 -ΰ(lDpRYC5 $FٜHS() ƨv39Ս@;ОKMN2"&\Ý7@Rx*>Q!VJh?!G-dkzc#Ez_h\i/Sf2ien:Z4P\ʽb8yGE Q7bl}"+@ ?>ã+7X ItQ^1>@ `xVmOܪ7/>]hY<׆`q_ 7`mK–UבxcMZ]yW͵VTȶY7+niRaߎ9u]c7Jf"_7 X"<{_O%ω360[I?Qc68*U^|gl- Tu{Sf w=1=hL΀4sZX} }1qr fOIn!N ge4KJE'U#n 7Y"6A5!~z?z~bCNh|.lbXS/YZ*wAh d$]wKҍN{"[l=G$̛%Fu-0Df,|>W;#mOayƮqZ3\nkwxg-poTuEᏪpҶ,AC1*ې ~NF9?1|Fik`ɠצpo\ۏ:ߎʟc~\ {YP }B qW$>%wz$BB5,BFcF[>R|Y"Y*箸Pªsv1SpGe$91j`MRFxKWŶ8SKf 2ܣA,X~Ĩ0 k.|L ¡nQB3JOk(QJM1] 0lUܤ%cΩ> \Jg,I}&JHn[ח5`{v]Ǻvi-HndWikO߮o?ϥI!͹MJ:2ԯ;]€ɺ\;0U#lGNCYC!2vY [jKH%M>"&" CON9 qp4}Г3&)aiS=S8R#.@lxDY;ƫ?΍&,] xz+%|e>aTq|;8By5: AfPXnK::=ĤLPC-ZTz0q|o1H8[Ì:JITh'+ tw'Yu}"fk~< yN4\'E#) LBAA +̬8;"G./B2#_CJsDCs`XDEFQ;S/ɼj2aݞDIQ@GD#ɐ [iA~ {Gz*W k\K%?T=_*r"hl.n7wUT"z#:TZO`"g'ޞ'NC8k>;[Xf1AZH4=D~r } t#˅tD]+5*7M>!iߪb?q}5iea;zB<3{ӢAB^5b>X_g̐')Q"Nx]ư*h4/٘)$Тuv ^7TԹ6?Ufhl6ǭ":7FáSℑ34{.B4_z,ć1  ZOè3&DɘG٥c^IJEW}c0^!T]I ?}9aԋKgAdiJ1ƪ GM%ٙjnQ4#PM-/27O_e=MB'8[U.5{8˱ҧ N ?C5iU]%YkE\zZ2ւ~Zպ?yź[Id ojG$m&M"}unY ³Y U(F ~2l uzoO-e=9Qj*! >Ctx*dNF)#kÖFyz2u:驺=%{g7yxJ1ihxHqʌrmBPX*DkWZl!m[D Gvj߰RڈxMEZhyT*o~xb?C{.7P3eHS(H2nc?xV[K%2Ǫ3+׭[-4|Ţz \[mWq4X;0x7-pߨ27 P9zQ?sɻJ_M\a6=Y'{h13F!>-M0Uγ?p RdtXUi usg,gpW>e_~" <9'903ZKhjF|cFjf0Z/m)O8yI߃L&I$6iFBFu :eB}c!ln%`l'5HDtĩј]nYxeIlUw {n"HwbYx97s18|?8 x @ԡXIFXtVFjӜWT6q!BU[4m/^O \˽7Īn7avX#X,LG/Gm ~u c [moKytTԟr˥=ӖC1s,?x=TvK|,}7{k7v0æk:hD&Ғ6qt# #OX, M)xO} f{טcOQAC $t'de)R5_MMLD :^*\,q NϷ0ZWm}P$*͑c-Ńh){EnEN˥#% Q3!S bcaK4\#968+eؤ.YtD8`Jlz*55&eb~B&1^M5T-\#EbJLs^-"I$Ś@:5a-Bk\\1_В<' 1Q_"Q2'":}ap&NIϲ7$*Whc+V q읶c)>x/l?3E[F<1; !&BT͔M6dA,>hhhqQ9ZYؼ575FGLgUU$/LԷe%S/Xhh-,ÛO}r>p#3>yu8%PDg&e8֥ UĝAasƱ`٥Suy*oZK bnss 7jp𢁖pH,,Aݗ n}4|{$>zEny%YQl5{of`_"2--e`5&8ΕH~$8IR,3<"4^o3yknJȕ RJ`uQ?& cŽZ#!J7wtqQ5ʼnp ]p5; 6j@ R["|P M!yGr,ьqMDz9]rՃ2Ȗ):FļsƶHUls頚Kiy[~}K嚳%!NM;\B|#- 5* q.$5(ϳ%P5]W_IcW?+2BĊfOs/ua6uD)SiAfʷ# V:~h*^z{ATիdFW+TM;)9&Uda@/pOV߿.[mUXPjJ4ėA*|1dķw~ Fׯq_wc*1liIlvƤfKIz'ѿwv_oI،[rT$/zG #͏:Hm;sBBo.d5 V;,H|k58O(ԧzEuIqRT#S qQһ'] b %'3_2+ Zxqy(Ll;B[Ld{V4N]:w Ur1*;\};Y@8saDga[ET΢a\xFIڸ/OPSF١;%7b}xt0#'iMY?7apHзsجZ,[Scum)Zlԅ+5n77,yB غB>{mW]&yz0b&'Bp F!<,lԲ\1QL 7S NdfW|p"`Jm>\.nW䋇  ! Kt7l.1 p}K$")7[[ԏ(QȠsR1s/&?%GHU5}UFdx^~3ɼq!Q*7@sh#Mo$ W[8pqV<7i HcI;]542|"Von 7eUS\tjL0x-V9PoJGȔ?B>ί:=6}$a n]5|S+(2KWF*l 5A0^ SQ9i#K`(.P"9$;+9 q*WI|\gqyYs¨AIުL2J=_,?[6>7qr[Z-^DVլQKe}< (fJ@Ѯcr8BԮ _46{CVӥ1kZ_kan> "/c2.Z /wz h&GLYd?erc4gDž(9)ʧyIQͳtLk. ;cpZ^7BPH}85/_u`سniD*, XP\kUHH{Jx}&}}{5Wʷp~SD G #D@N>4w4!RyxIh$G-ԯA7&2'%E595^<ƚ#sau[1vf>?7ZR.KDXE{|F!{pzuEt{:Vv3cӌWMl^ݢF<%I)\r*y0Nz> stream x[Ys7~c\[}lRWNxMenhRKR){~I2eǩDl4)/;L·0; p8A G ZoDTfELI~hK5 6BYK:4D*@E%TB@`#rAJA;T'4`obzK,-ㅑ&AhI; l0^@@K pc"&RYiȐpAOYa5 ȆH(2o1 Q`5Hur@UkR$CMcNc@QZg7--TƵ@+LO`Jk)tD {Jk?o0 Uy}h[ 0@E( b7}4ĮEj}PO0I4HEKGz"( ^E!(^{RJXSC6D'ZLPzRY/^u<ݛ.ƛl}5^.D.gnҽ k ],|GGˮW/&v9uh>p0e8۳1Xmk<^sݎ`Óp |y9=/_Mvv>vcDoq1ubaˮwv6?}>n~tJn4Z(qeFF"٠ =qhEpt&Ch_9$p4to#GaA C43 n kCQ B'kM򱺡ǃ?knϡ8Q\ٿ~8O5t7a\l{!ip9Nv(_>ROItBYK +*2,>I~WHYNGds{o(+(%> &^`⟕`ޟ4t X3Ft_R W~Y9ZftrY fmGǑ熁C$I%5B?E@9pV~i)ι!:s쮫$pv6J.48ZqyJDoL7܀Uœ?}50VWFF.7o$6&[zt#q$)4鑙o&@\wIbj| kVe+9X166\+XDϲЀ.ޮaHY֭Y25$3bfOV-½l 26uX{"[8T="ڬp #3duh惊Xu[}jY#D8%X!{ոY'8@Od]\_dcvJl-8mt:8;Ƿ,C6Q\i=tZܼZo7)ҾUW0gx[( U8zGGOF+1RdȀF =$C$ΣQhIND &| !:yOH_s4HF̌Q]mѴ' eU Ў 0 RUlu }^qiofqv}BjZ5NK Z֎Eg"˃5MډTE٢B6%SCFkR!3WV!h\PJ.LOƊl' Oa^|mb-VwٚE58լ|[n6WF;ju-WKsԓ|~Q\Te`jv*>pQ1l s[ht\mQP 4J]C'L'xnbD.^]-VgFU"`bEUCt74*6v0)+j4o s->th| 1㎦ A-QY} k.͐@tASu))(l8>J35+BK<ˬ噅6ל]&,z_J4voЅz:r=3`zGU殱J |f,r&һx 6Wj%̧U i-FHVY>'aV4ynpQ<_m-e/&W,o*Nw'fkȁJ. ۂitU(ҡ*.H N=I^m[<Ԓگ!r^ݯ5[ȆuU4g|[h>X1?Ovd f}L뼸J L Q7>ZZ*|Nƣ ^B}V&! \}n;:?3zWXԤýL7wr <%{쥍\]y?}O7aGſrzү"wʿJ |.\_ۈm<>~~/?>yyaȓl)ƏúiJ^ endstream endobj 267 0 obj << /Length1 1628 /Length2 9184 /Length3 0 /Length 10234 /Filter /FlateDecode >> stream xڍP-w]6 3%'Hιޫbfu{.h)U5X!@ؙC fB96j@IGM]lW.!)W9@ h%! K+c`e:L%g+Ӊf& _)L ",7@tt~5 P6-@ ]bf<lAf@S x:!P"+E`='?lbf7{ -"0":AM\M@&Oߕd&O ݞ#ى dE_i, 6Nh9͞ڀ!n`ln s{v-0('7Ʉ @w3+_5=쁿OxCOM}@/4/'W ''d 0Zhf2-OrpM?} #s)CD 07<fO8;O࿲4ɸv3&v [ Ouq~ҿi KJ@szM@liAN2 w*/ed 0PX998Yf6O/ӓ"OGJ 6IH\<</ΧU40 q~ <8W|v_?] `W=TAOrv? '[ _Ndn%`TNR9R9_؝{=݁fhK3`:qR7֝q4FV%.[,ڬ5KO}8[ bPmaIjwoԧv:' &$C})`-O‡Z6`ŗϡ;j+YcfQ!90᝸c^\N,.EN, #$pTgDS^C p~^M1z򣳃/F.P:z^FSinBLInz{aCuWi4fFꕏ,&A…WWuzͳw}t[:s/.7;^5ɹIʑ?&s8U Gvr\ j0Tof_خ!:EGUM $W /aĄ+ шNodε4Q% ؽf{18 2{4 ƣ#N_,k;q=>4bmEM"@^_.ӨwFnӧ~8OY\W.:DToHarCj9۳7CI ^F"o]XE>a?x+֊en8f(OF4(-t t@.YzEfr!mnqYD='3a,y6[k,iu l4o2oF-viRtje C&Io^NE;QN$0+LSJG_ n0ZOEH@ߓ~vse]^+k<+/ 2*K5zPv[PJ0p(f PĦ V뽷yQ>mOcJ.b\/pJUZ3OżeCI_L:>$u5!Mah]QϪ?n]RSTFELްh(į>v7*axvBa񧎔2R=;ա-#g޳VL,SغV<~fܴŸV,*3a-i. jj)>grZ0qe)C퐎K R;p܁NXyA#"ltp#cfh҈? yHt\Qm ƕ:/dJX&Q˻Ч;@>szW/=lKR޽\]JP gxՓqQ? .s\tDž!gƥ_WkoHiEAg>s1T+kUn DAC9+US -m5V`n>uf%$ڪz0=0\;LEx_SE7]_Iku;B9sc:q\NB _!  V@:;J ]3>(j%dro}mU: Uܢ)O[ɇg}nFVry7PEqc!\6mW0K1$M t/Ѡ_=~v@5r8wZ#P+՘?}G[;W0hӲ;.rfI0M .窖Z`3IjVQUr˩A!j3Fnɤ/QT?P_H/՞iwNf]H;ƒh0*5$osD\|6ro(F$zȚ}kcܸZ#ͯ44$Q铁~dN|̀0D\X#L910UAeԛl;p8$څs$H뜥hK: x^hs4bTL*qв^l5RP\K=ѥJψ]YFriVRdTQFmTc4=~eHΈ Mjxh<͡g=7f:$Pf %TDi(3!M=^,?Wrl = &](i:z ,vCM=)9`<>,c`D]ɕ"!}vE@lC}Ƨ{̗e[Q]1\E&1H3勒gkqnUD?.Y~PL-|+捙nx3Ȓ5Q=pT;R8$ͦZQL%#(=0־ži*}83|0”FYb5_i`f7u~с)pÕ: vj.JZ4O ПZG/ ֏yB=t_ ?z3(s(H~.Gl)ǽ.86Ӡkxɥaf5H("sh 2|B%5:z/Ce>"yڼ9';oT7@-ܛͩWp\ <H).Eff7 ?QږPB&]k0)ߊZGV(? jyHTjH A~\:-؟odmoHFٌQ_tI0 ,09snRW OQ|!v>?w犯$rVE3)vf )[=YhT f/f8!ǹrVhSۺ/F4YTАRޅw':ˈNYV`@dLV٫ڕגyɼjm,Jah䄸8 MiϜ(Wa16{>#/HrDި".'{ iUH8jB@.{B}>^Rft|;nߟ羶^c=n}XE2cIhi4Կ+Ⲭ4c`+/ "ܫ`+~mw`Ky;>M6*SLo5TM 5 AsZZ8Q #]LF`O \dKR l]d#ӸK7:Yٿ뒩zSA #F3'|$ANi|xX1@bWqm~)U7ý̬؉ҠƚjA.}/Ў$ghq[`+Fܧm#p?ʛњܛ']X!}c4{P2$=OF0*wM_#X*Jz%L4:2rYB!Bk>mCw{BYyS#̙&~kU=.z#Ej!LAKmxELXNW@;B$,}DE j:revMfL=y_UOyNV%B8sn]*Wnn'V+..蚒tyѡ ߛҷ;4tPE=8J.S2Zg hj6wG޾?u.gN) 2:P=?vv Tq9E_ۯML݃L+f##b2g`k' D^l*/) DٹtReZϾ$s,àvcxZ#[yflv=ק3_#{C#aku>+AE)(#Zg g{( *V׹@z:s\ C_}w, '7.a6~*T̞8j`E@h^6Ws !) _ؐyw8`_k\L3dJ,2JHWc֤W|DF4q9YgU~vg31 *YΒ {"4ـc\ّ^̘4#&/lh;DCXq#b:S ,cvY%:0 7/mIħgʻᢈnB &1 FE? FӞh#%R4Bm#Zv T'r')ܓPB|c04 Y޺9^&nlr~ݧX Օ}2(,-ʐL(qDQػĪ£FM\2+Dh/{k7tq"[/> 5fF$V>YxbDy$S g[FeX}&-lrGpك©icP뉒tV_wC?w gka̢v-8I"Ȝ /'l*i.`Q%klFYqq=pqÏG J?'p}&dʼ^x{ø/.$=m:'-ЌP Yb]JMpQUلakDGt`Jʥ "4#iuʟHZѢ[HhzS,b28?ϛM@Zf?Ec N{dlt@M{ nӊ)d:~{gt9JPDQfg7g>jڣ/j8~K%R*6I6ԫQZujeͩZnV3*e.+!lByfwƠ_xNٖ;/)zh9QdSeL"]I* %[H@og"']Jj˸tٔݼ 9>o Fҙ,꾚Il  v|j4"?nD&RygWͶ^*t7][ԭVt5nh=D0qV2'|Mc O'<}qAv#qM-J ŢgtaH0mp>g9ʇѠ6f?6GKMK?KDO=ߢcUg94xl|~~BمCIa;Zk>~jʎeDťqQNݓG~Kz*m0)ZDӢ(tnucd7Ueê횣)$XBɜ(Z)bvD#ܜo":?lH2 :ܖ(ˮrƉDAgB`]}d~VgX ߜ>r`$fs"$Υz)uZ,-o>혋U"qiOb\bERݖN/L'0`awM;ܵۙ`U)D Aԋů\w,RՈ1 KZ#|4@xd DHDH;uNb{e>dð Lo^=+(_IТUO:¢Klr&ɋvUȗcSw/7}/(O[Zb3< lnRJF!LwN}X1TIG#mz_ۧ㩓LM1'@X i1HQS*?Fe`lpf\ ]^vG sөXr.BMi35\n *vhvƧVg2ʣ͊e0wI c\&edtFc˸ЈI2{0c9eqOZۥ,!ZWҶ/Z~ZGCrcے~0bN pSn{{ ^Y&a(TLidfD4{\Q9ZnhM!9?tE)ÞF)16 B0_}7 fy.[jui;y8\Ѳg;>vYL\;B' Z jY+W+!it*U>Uj&Mi5*iBxhn(|p-! Eq[䦻2bsP,WsFxJ'2'L꒯k vv[0uVĚ%tL}^' rBg)=~x?&Pu@ʬUBLh&z{0`(˙Ө'9)&9ESq IcN=Q*՚{vm&|s{Kc 0ey"q^-S| 2S|WLQM endstream endobj 270 0 obj << /Length1 2410 /Length2 15632 /Length3 0 /Length 17047 /Filter /FlateDecode >> stream xڌvctZnlqvl۶mgǶ6M5h6hhl}yӾ߽?;s=sMI(jdrrtgdeb++hhXXؙXX()5l큿5Z@W7'G?l] ;T a`errXXxɕ aicPd99(ŝ}\mA+Ɯ;@jcnP4u:2ԝm>FݙˋJen P]=(:m amJ ḿn 'G +.Pv:c?2?q `ic(K)0{3L-24wsz؛ . % 0]mݘl0AK:Z;98OhGlXՊ3PV?V o:X mnW gJֿĠ>V6@??7SO ++`qD$ZA,p賀H `o Y896%U%m_7bpr; U OAO͞!߱@h~݀]_d+wMR[ea`c=AZ m g6[+n Z QG+y8۸Ix-Tlͭ?bͿfU`dea_:Юہ7;VAY%͝,96N. Tl?VrZ3utrEh8̢A\f߈,/f0KF ?߈(F("o`VY7UkFڿ(3Mm@+`K oWPf13uC*htC? o4PY"NPls'{-/łl/dndog w\!j65f;_"HfeMw1\vbo=h&!.c#dv] 5[ u=tuYt>NŁ~fMhaxYA? Ο@i~']֮-6<~3AS@A>@|u{p@s'spjQ/ ^.7L=Jv%7<ə*B $?r{u0b`F`@0 (!L]d ȜR cG:a(W+,zpnI2!BЕ[='HBjtF]8R-Wq̯8,`Yl.1]l8Q'e"D[Nnw⍌u7P5O Юݳ&S4 XR<-IK|}3z{>uӬ%:'AĞ송xm hSxsyďr.R4l膭^ 3YnR1v(JDrz὇(j*E},|/1h:a)<&,:%,Ӗ\֏qOW r'qQpaf0}4I˽ RI: I WwxѺQPUb0\XbrD^3>S xfʄKg{˳b^ FFc); 6uNAk]g1"}w,w%Ɲᗧ9%;l^Q}1o}?zFy?SS5zCm\La25cq;+e3ӛGl6 痿s'atRʗt_O Qs[):ڇ48g}Pj4fE/_jdGܐ FHX;Nv~S;,H˸q^3D?({J|4H)}mϜm*ظ`ď 1{؇L+U~|`K.q".VCB)X_C*Ochf fzkX|/C yF(`mn6.>APR1;*l~@~){j óB 賶rta°һC1t Q#Y3H7#F\4QD˟1uc=U2@9ND|Ea0U';H(E낙bb"XD=o9C7Yo4oMdֿ<ӈ*B x1t M#պh"IV.穝8=-\V?R\ĉqoePݝsdCrVV#YrYD4M Qb;sLyv&)-/C OiZqdK5s05qR3a#C̔JVCy@<x8ŘyֺsB c1^9X`K0-iAڬKTO;Ó`I]KvTJnB3˺39HrGgdƵ+SqDzYT1WtGLɁ"`fFfHev|c1+(i\&4;`s%еK^R-FhӾw3Ĺ&Mڦ;{Eɸy7I ]._D^F+f!S7wH}akJqNV wxmCDTb >Bq5EN'e$kug@˳'o2NvP|a?"Xmu`}7y:Vulb4VB JPo }0J;KsDF 7{!DkEf:  |ϫ+&{Ƀ&,ne\u5& :"7 DZ{ٸ~6%M(,\@?2]1Yl^n}Jݠ@_c|W3~m^Ⱥoz°/y2&+1i緟's(N^? #xΌh漛/9B =8~+\>NMQ{oU 6Fd%ҏu*d]aaܰnZܗfՓS'W+ܜ$wAR C3ӹuR:"wAd3PF@f{ܭ,Ml"4s}˵tWlå֙p4gr>7*ΨWsrHOx )AJ#t=ᣫ j'!`G0j}|ln1BBTy .Oޖ*:\aciPPѧuzMD67uryq1L">N;pTog)Q9凇o5N ,|I m|LpEʻ Sy('ݴw]|`2n6L;xxOPl}ɝ;90++l9U5A;uQ k5s&hҷkD}U0u7,Jxd0[1R}zqȧw <5vhi~6hk Z eJ2&?L 2oquЯ558EFf-1Z(d3vLY V+ʜS2 _y4dW 3A jgb4Vy@Rh*͌׎ \UPfM_}3A\vL"`!ZXV4NyT%Wjf8q߱zz\rwV@ (Kڪ[*\iǥl&0eމ=W*"!ꭆ`cL>x 'XR'6~܉ J8$Q2VTtL;DhS4V]Dվ $uʇM pr=ʋ,wwRI6Dfˆn2 c aaHkm/U^#YkLnaZ?O뗘/)Q P]=LMt^nxdN>̥qO$(N ~A1^n^U0W ?7:̈鏸c}f!tdu6M<\ q(\>9^㤝F2#!8߃ݷO.c+gĊ"4B(7I"xH-/IJ*Rv^(^?O?)XC9c<BL\4Dz@.T3 U+0qc`;Myh_N9PY yao2@vT\/kMCJYKG*!:uX S%?H+JU<^.!:P^7,L Z*j$۪;fE{sP((kg¾8uS,~܌v©hݹ-q:k?VJorZ*8Gm03N E+8cEMZV2 0؝Js]Q@0l92kvLzfotw'IhELި5]!2׆Od)F [6Osy,|v"PxHG aB)辖/ω[8qn6BA*AmN ջc/ҥwgiN<x+ 2hX3] ۥBC/6KI_`/- 89E} ? DRAI8gSMdz2Tp 60T"~W|9 "7d9x'J\|Uu\WPsU{>I|Sq;aHNSǝ8j"6̚5\'V=Sڲ26&Tma>f i[[![ɕz?`۠u!WS,nC/mTGWbҒHJueSP3aoCVyG% #&NiZm+h`}my&tu}>/T-Gd9bgGa37@mZbZC5@V8غ+u9R4!4R},&,n J7UAw1%!75ЫW\'0Hڲu ']`jwl\t Fr/IxbpYqt}-.:1{XD29s&eN%f,S˚g|󀴴DSkpũC SFqhg#y7Nȳ&{3uBbΌG tFϔJmMS`J`+B"'Bҏji-$MǜCk $7s= ڣDɲ򹟉+P<^  X>ZXPUDua:ful\qCbkOpړ-[m4y0`vhɞ~[" Qk{^mNxp#G%&J5 ջ" D˜HM.=~&GJR K *MIhC&H0[koIXecREHJ-4ݬ1_S wW{4qqI; 6$\(pWFy|yp‚v{hAQ{2pj׻oIБeЪM:M`mͰۢu#i-$DK<]hvY0ty1Իo}e *=vCXS&:˼Dg >-93c++ zVSF/H47h_KdXihI~|1=Kܣ6|Nb:fFXqȹr_hZmLM#8rt¾Yۀd޺+G<iFq0/ sk٢hiqP1n7Vd8+#PY58a1)FI_c IsGD es+mʉH5 -N)?Ԏf>EHj,&@l/EhQ ̈=Af pFZIO6s_6e:dXxJm/ S!%F:G\%K{]ߤ,' f)j<+ozDFsOW6{[V;9~~E!yjWsaS<_wH<¨T:?mb Ok38*d0)잾C4R8a԰cS{ptfDEƆγQtό"DI@.o0Gil=<֪в' ׼βt*Yv$^#(>= ?da'HN]M_ ysB/$^LXy.φI/@tV1l Mn0%r:(' qS6?hIG5/$Z-P2J'rd3 |Q!l\֥'ۏY2b:ćtO9@e#u4+ZQh˹=Pk0´\I9d'ۄ޳9t  iבK> }zk*5!kb|>@3w}3,<,?UH8 F [@-".{4fY]*ڗ+W]v K7AU;a.X1nxq8x1ŗdQC>ᄧ!9+ѥG2R(vFި]8 _.!sBڃ%sgs hJkiML`?#{R$O,(TfO$]|ś9Hz=TQFZˡq0kʢd/UOA.1#t"Q~I/7.WdtԌ_E _!ishUZ>RQ>XNɡ*z{nre=m=؟GĄ[EJ{h^ q7[ee^^D7cljW )k d<,o2'm¸ƞy +*پ ;Hp: Iq/ ğiqk3.X8_5݂CG Oܑ_ڇ*[{.=5>b-FOpf3W0^S ԴπEK;8%[[{2.O7 ѱ4 /ݒ;͚KWm B|tcZQ/<]()fNTW$nV58mQQf "DBR?nT57ᥚy NE**dX,yǁs5,}pf!uBkĒRשGQ.j*vB5Or=|[vM (|ӔXGұwRsD<'SXL6rbw ֆOy{`k.ƻu_іءؽ˳qܰN7xLcR|,觇E(*\LZ ;OD)F/\11#5 |q c<"fkpjBQqJLu.$_}&.;3 ŮVf?4!0 0+uF7AU+u9VREH @FSGbKz#QMƎE8ÝV' g !nPz5H(;m #= 9,(N+0f=kk7B[ENF~0 $:V3#{4檤Y/5Cw*X8k0OROLʨ,PaEuVpM [>fu{CS6BnM8Ȋxh~py~ Fg3[)D%JQ1TDlePmo$.Ʃ H x 0Ynj |?TXT!030SObt'}}nX9z%T.8τ7z+48h8ݖ'[ 8>D+TӟmU("6wjVDFf1c6j4tej9ckPh&>;Ot7wA׻E1x+jQ%]ijF{,ҝ? 9*P,@/?5?&7Dhncc! p]X܉~8>+U+`ai"(J3P Q+ e.p< KCt?St&^vWQ9݅ZIÔb &J]'IQ^8-ϟ]|sgۘ3D}elޞ =o;MÞvMVΞE`uK%TzkM2#h)gU|hkͰ,L?ߞ)8j%5-xkSF|o4SmS MGSG.n+Ž7^ynyhZ8'Uɘ<$C\TeQ[\GZr!'P@<^[0rAᇃfvwZ[H?B W-#uf4 7% I3N#l' GG֞BBR&䟎e"J8']?bHOx=6FH=kW!3-:V5_jh`@ {JŜ9PfdSTvwd͋+c0*{De{~PV EbE2HzG Px"!`{j2jNHm}b}K3}— ʮ2VhNe(a}SPf[M!j>:.eو~P3:A\ ~W1fc؎*{\R(s'${W,r#W95e˞!)҆&1.2t#Gk X LdkngDɁX8L;<qtdw{spU{x,aIc7|RԖZx5-v({x 0lPB?m TIakw8ljH fX" tDi = wQ&ډ!X唿ͬūœU܍$=f2ՄVBo8t4w4xFUTuaqi&IVm#iU Y[.mE\/{zxkǢ\Gmp:2>{J&cd]C}ZW;m"{ T2NcI*3oN{o&!šlj6GR0j`2uůnLX%,:]3{Lŝ")Lj9uC0},B袓dg]+PE9/yk nQ ᾐ$%+܇nU/`P ?ۨڐ e&?u;Moc*ӹSNCU<"X"mDXdNWYO$XVHN:DM# kX/ⅪM#WRއW}ΣtOPQʎzֶvӓ!­΃H*EFx;6ZD;jGI8 ORǨ:K C_Tt5|AhU͹ +~K bҗ?$q92و -X[wS 4scd=qӚw8Jz8Pfcwjm~JP4q(}`ʻ,'Adv@b޴=q3R3'A5+Vמ"q6Ln\]"dlz U}A=PpfIeYfp1`< = vAg5BUiςX~_lNhܼh+S33g&j,b#U6'SvkHlvV4"Z}vs<@G`^k |3cO4~`f !Enl~0ʊt}ABN fHG.++ 4qo+"nO|nX* ,|z]+†E2C7O(ݣAEry4VRg-zZHƘn69hQnVqV Dx<3-j?x("#thnqkX2G$ lBl#|K7!vǬV (H3w4z&;{69>Z#GXCٵq%2%f6ұsz -WOwޥ|7j]ߘWl6}3o`9;o d0@!NNZދ!MzWmC%`-P%Z^ݕSΟϪw&^JQݖOc +A I'ԧێr (ψ3heZv2A,9 O=O4ŭ lS22uL 7ܙA[EOa?>PH2=J5MIg$CDU'` a葵3Sz7Llùݕ]v2踙C߶ mM--r|Bn~y`}wH+l-w>k'E'1ϴft#PC6P2@[9`$?KJ(S(۟',ь! ̊*n7״<P.>aBkQj{bj,?IBR }P Ѭz,C׭3n! Վ$ka$Ss)kj*MO(AK)z&`꯷+aU~` U2"KQ#7I<%L--:L3s37׍HZOYe,xCjZ??a \-?g_t+3ˈ]0*K4ītR= ]99\  Kr躰OyKt5yR:Zs0Hg*eNI G.t q=F?LQ-3H[vRY)z-mGc9ڰtکX9+XlXv)&4otr4N'r%!ݷSC򖢌`Q*r1ڧД>bw<Z{};<2+$Vq&Mߪ᜴QYGmd\6up29ùnDIޫ׮"fXlGE1@ ǎrρ\"Eu+"KFS3%=wk ݙn~U9(PcTQstuJGW6׌{1r?#à88i}prXݺN9.)&F`G;S6WF$ Y.!oztbE _HZ@u4q̇ qX%8lc`SIE &861ÏY#XYnT;T-$CϮP?;Í$gP.,II@i(B0WtKر>Q} KV7_7f4AoZYYqɜa.s ˵YȪW1~Osg9z8У\.FjZqɡk)4W#0C0_FXh}-(l_aieaLk@;S3dâ NFЛHg qG:S&Ԗ~|D[kJ"?؜ra}7c,Ԓaj3ypRN@gG 1'mL{89/hq.S9+<:V}fM*WޅVH Pɢ >i+} !6W߷XG]ĔA.d_W:n.|^V~88{,hB7#կI6d | st!9̥Eb(EuΙsѯ|llj,{B4p/C1"*l,hH#gU]{CE½Kǰ^NԍKgvĒNTӻQd>eԵF 4Pa,͙v>j0Zb ?m>:W?b!xD?0R+7\QS6nۗxla 2}*R,NLϨYFp;'ǺTIX*vdfu`.;+k(nM)uypNG?̑jpRm<]H.$0 X.d?6%Uh8;LR3ȿpښ(3,ͳ|T?rE0ԁvR endstream endobj 272 0 obj << /Length1 1370 /Length2 5960 /Length3 0 /Length 6892 /Filter /FlateDecode >> stream xڍwT6R HK7 tw03 ] !-4()%!ݍ}[us]ZD%m(aH.^n @ ~nItma҇!p d `Ma @$7&ȁ=67 A8Lpo7=ߏ5+**;vA0@ 8V;:pk(H'7 wd؀R AC$w񃝡NuGފ@ ~+C )W buwo|+iӿ E(@ 6P_|ˮKiNPDz\ nex@ܒ rYm~ɌOPq@\|yohMcGކp7_w*h2#ۭ~_mͿϿ xAq&ա-gUT\˟0[z"_s}U?q)'Hќ, b92 KVA,qvAhlvS&hQ[$L\ wV\"VE7g脀. +ݺmDǸhdJGfꮫ5w*Cqd۷ޞ|Jp" be(H2(2'c](1G[iuiexE}gmF_CE)"W`|d}hF/jN~0(.5IҪSPbE,f촗oC!vv5!}Yw_,a!o.oqهW؁G[U,JLقdOhBS+B>1| 3^iAK c݇'EB/=${&Q%:(wDq"F4g]L21~by*WH 4:t8|-0B ja)-9'Vuj:0 @{<=- mE ݖJ6rJeCޖ7FcsC;۫MAU-gi@1 ELCӳВe # '%EIP?I{pC2bo7j9>B ]MbeFtsWc ?mO9uJКoD^):4$Fչݣ 9x)&UTǾi1 טmJrHƑH)z!%_B 2~Xrz]Z^|.̣8*oX!YI:4DF:ɢ85鵣v]E+ %r$s۱s(e3C$vol6 Gkч AI9*4Gv;?+$GvoK-$Y-^ayr+!@Yg)ǡ%,gAt\ZM~™ԴzgvQI0l72ʎ_9 LQ`gYS7޴Fwt~n0#7W&DX%/KRTH#P71v,3V\hj$\ۺd`8 XdM:$w*@^EWk'銳#], jL|1܋3iwcݹ7^݈n/Hn>}0Xy'A `?->P*t.WtPD:xX-dL.Z{|J Dr^x@ݻ@Pg ]h9sēSIa/ Id?A9[IP >=~fMk0#(3uVHw BGfo`3ZHڼ)͝۝R*c9kG{?LFOokw-qaKP_з fVd=џoK#3df½̭ eԜC ۂ.pjRUpY˻LXkP~+h;+ӱð<wE&\ǫ8{X͍pNX]ꛃW .s Ke6@FqO 5YH aQCs;N)v x8aN˕SdCЭuop,a2jL@GR+=_v7e2t=3h18P .Q̛dݲ:#cAN([ߦVV=>EN]ZyZL.dk*ƭٗ d:ep9xBr;֋p3V? O&-& |ga0$_/cY##Loz#< a~ɠ?IUD|GֱrwE "Y[7@f|,Lz2͜ߪP dΞ^hBOhggs$t8@6\AubTWj<,Ue_޴ͻ#p_ɂjͥ־3N*C&F:9Տދ:D-XW`/q.R.+DWzJR̾i}.zv:~P/F !-rMN *,P~ ߞ jV_ Yçb4%7h|}Z^O/=+ʊ٫O9XӕnegM^Э2KYTruÛ`T;e U"o6o)cSh4&l&"7%"a wã:mL*yloIkew͚XU@fù))o,].` gmc;uM) _0v! KҜ%G Z\ݯ7GJL|pu+!y]>KR,IyCUrUMӐm3[˲cV-CRJ V>Ԋ Dy>mtU >CH:\wX}s-#5{(^c+)RE;}two$P$$Zڶ膔E0Zq? 2⦓L8uRI1mg21oL)˴R|îrC+`2?,KDIlK-9.hq,ܩ}fjs˨{sS<*{۟:#AZ؏DrZ+nt$% 0Pe+4M+?qbdJѦhi#IXԹ> &CP8vI!Cu3\CVݷ.У&%B]ϓ'>‚^ &sFt':z\͵srKO̺o(J|m=I!Jt.e6 n"V'Gq*OR{8O`̚AYrVD0EW1lL'KVT,IJDlεQNx3etr 8z ;I9kyW++mC\+iy63b6 = ]졯{xlPǽ l+Kz|,G^c ԟ2.j8$hF$\8! d)/de[ o r! mp Ű\2PfŸ4,*8F|Y_WmdL|;+fVll]Wcb$*F/jdZ%̄j,*eHFoTl֙.6ƃ<@;zB~tPV A>/zMY@i.[>wW/ҳ+QȾ: 3𨟿$r bj`Dz0Tq_~0=T$r ޳7 }?@Li eb % :{&22JG{j:&_Q:>/` 5uP]̰q>`}ì֊*Hm#PjV;?M2/&~N6fXHJctFCMʻ,n(ZRD^H3_hI(NY3sa^=nq0FphOLZIL&5Rpv]3S+7a/~Mg%S?Q]);"J^(SJȺT0V HH}<ϗ4Mg@Z/:.{,n5ܘU ?4\0Pb{2# G::6 >[dbAN;zv#&]zU>ص> '^ HDJ~F`7 Ҫ!gC?ʏ׺B7ǭFLZ Go`2*NZ[*&O4J_3֢pؖp]cF+ ajƼcuXameđMAl]5v]2I?T6WTa!+kY7lH "|~1-fv֫̀.b9(&#> stream xڍxTT6"t H  2CH ! JJ(H("7sk}ߚ羯ڜlFT@ e"@(&qrpv"N  DB Bclj 4Dt1 "dj /A"("NU- Pz @vz`*Ap) Gy^. _`EA| ф8f0_S3` p@aBS`0"ȿ  ? pC =!ZB@~Ap ' w 1|(Bf*@~1/pH_D+gk 9v1Eā"}*'3Cp' sbQ ( O?WD"" 8A]`gǘ11}ugaM,t/ ((* DDD$1g$@v1w>8G 2@b @0"e_ix<?0Q>C-IW y{W ¨Aa]!ݿ0 1//aDÈ y0b4Ϻ0Klȟs֘8 PJ7B$ pFz:XL^a(KPm mG5V^9-!n/#;.j}?ᯬv&YLjdiNWqTӍ<5Z( b;:'l9]+޿r$X0 dp|NqlLhk˝j9wPGl.Ԧ.PrFΖΈ~׵Țc=l}<6L|,\#mBorHTGQaINiFaq%{Dq-8J.)hOnt1P e`ɻ)>'׳|䰑mM%%U) g l8F ߋKZ?,-;~O B$݅dQ4y*FpgwWri*N*#m6U;B_*XS[-o:{aIVY};go),%unļę<\.MY%ID 13y3M 2CgIʙ_}&"& |4ytCx/nq7<$'#aQB{.WRn$XnՖtؑrOyxo\c}=|f )^o'wڦVӰ {d1)QMuH㴅ЫgԹݍ0OFCUd ֫Cqc,BHJQ&EBXMDpEw4Z(/5=z>P1 q5(le(_]w`w>Z~+~ݕғBB+##ku[խH@"ZiC;AHKKVf,'%3ا߹gY5~ ѣ6qyz"?Nza()^!dqEF;O|1!&U*<6J#u+ شoſy} lf藌Ao%;hR[rֿ~5}(uHV1MS,zdY,O QmaӖSUIN{ȁʮ{ߚҲhL|LTqs\IgiFr:)i;97/+3}J CZ'l Z/q(fjEDR-q'<Y Ih`w5/WOs>I\tby;0zҞBFa`fJ\嫁<3ZJv`:}7tcT3 |0B?Z6T>;6񅭙{pyfO'vRčfT+Wdkᤵ5{,6O} ժUNSĭ+o{,X"eL yBR:aufbDér*;a1!tGLY0`и'bhial`Ay8֡+'[Qu~ՠ&|SŻnPy1J.0Ƨǡd{^:`cfy~uyykz iwbFOYu@HΤ̑I]ՇlMUEv b_1#&F[[e~vLPU (DFK%!8z1~=-+B=RW#'ۋUqzZotߟ4f|%?Ok/ϾAD?(TOf>͙<+G A?YQRDXG<;w7l~ \^Kbnv^t|uَ?N @μ+Ko:?*(5+!|'/qRv煫Ϙiv qYQF >%{$yv"ʴImlZ~Y,K:3ZXwؗ]qw$JPMכVuH i1`Z&25V]Ao@}Ϧ8˖*˜7 -OZ_w]uZXfa~qBF| Ϡ.,_wt,Z"e0Ǔ@a nJ؀MbO7a/uQO>I>\xՖuC:YrpA[rF^)otĬ[[AM ~'ڹ_{jz68baMFiq'ܤu >TpOD4>_2,O]SH"dBzj.l1|ϑmX3xnqo U#u}]><" ٭#ֳ}pՅm8hĎ{cR{ fSÆ竳aT UD" / J "qnB*  ̫cwAۜ3t:/[ {B3wbmS1GQYWYn9p2D*qaܳڵ0ؑ%7=W: &H;N9ťVo'J{ɢ;`dTMĭY'IKz+:jkے#\/ͣ/u2۹o|~5$3> G0Ȩ %%!xS*3r@k JQq աp쯳)5OC5ZGhն8l!v&_(+}7Q3ƜN4An-=юtX1v #i6$7yGvʭ@_2qb*[{e_NZH]4y șͪ9|cd΄PpA'e'42k벒_;`5jQZ\|@nT5xṂ4aq8 Oi U\xr9$';eB%hKwemh^Z &? 3gJXdktW\CAr+EOϻXk),V?V6_Sɋ[{#ǁ5n2~Qc}$sՕObXMz6z_3#dTGDQ#~GO4_GEWvL[wA%Y8{ek΅XnNñNie`̲|rco2)|XgYE܌-J2ZՖUg3+jF᜙mHq:EU\W>Z_&o=I=I'Q٫t_vurB^nDQ*$M} rcfo^zi=>#GW_U+vD hK 6ODهg*wþ#:vlW兢wGB) -F(_]1K՛³^̕o~K%0ˏWrY3#H~TG fƂT|}O+*`n~E!.U$ƦbB8xMTöcB{qay'U w29җKRzHjT[bވvҝoX38^8 JS ү).ڙmB纁cWt}z}aGTnb,}|SQk;SCSPS?Y;|y]Ҹ5{Ui}XBz(s]szpy3|T T"7AQ-^k>v5%u=R\ҝzG{XU~A~V.FؾkVIXS68:t͵e} >փ2+F86evOS\9zv ekgUGvn~H9LXꙒزR-A{#[q[YTN O[h2|o~*a~ѲE=rC=Ua,*I;3}a8;]9JH#߬78K3{js'׆Qv V/UɻtY _G;g(9Xd<؍bO,Susp0gI1Q'NwβofOrBEgşBLy*&[*tl(\&l+}jzIB 80H_IvT0PR齱sg 3{F9p5’w`cގ/f 6&]4%d1'> stream xڍtT.(1( ! CtH0 0 Cw7%R*t7H)!sw]5k}{?{y8شdP%k88a(0C%@ 10 @j$* <(`V ~u!G8y"a6(6zpA.:B0l!`<тKr.4}; e Ѕ@nP+/M#3~"-O\ar#t]p+(r wտ࿋ m0(@KI偺í~.t= s['du`4\ Hʅ"W)+­P8ʅ| 0$>vO#0/VN'p+TU/"O<@P-W{}O'$W F¬?"oBB}w+"`P?a50Z{ ߿ߞe;x~zjZ;''xD|D@ !&.gm0U[#L>MW\ g/MZPDn& "A?@R]S./@J\Gs @6mC L:wVFAn3H_@OZiP?j08TmAW W/=m ~LPDF"Dh9 AhCZA=~+#P/$uh04}t!H$b_~B=Ia]eHE,;!xKo[u 1ggVet_ބN0_ {e.0V.Ol,VULqL%Nkx^eP-+Ӽmƾ76#@> ;k\5KJ:~hY%=[@b=uBZ 77w 8+'@LLqb&YXf"RHuC g$/ORCZ`,p Yܟм|\uq*m8`l̞sH7%`|rKS*ji-=ީA 6U睈¨Ɍެz%<4ɺqe'KH?,H$뚳]- 5;NșɧaSvaFm|CS.MXς54E}"vAffZςd)y2n"3;fC* v˛Y~Yg8^$ms/B<|5*zrvfS naGw.!8n:73BWMg>©KgM$7oCpŦ?Eld[{yD=g$b0QCZ^Ĭ󟀬Z?f'Qɑ(WOk"e\2vUV_ch,}0{V""9#K .Nu O.J3tCӵrI{|tčsK1mCCr>0q! LQII`Hgz1k&JZJ.nX׃l\Q>w"(ø=n7"bKv+c/}Va2֣[/@k hXe&VnՈ|PGt ~ 忆Qkd-YRarB@dQً b?Igbx \rs/bc,g~p;o/.f-,AVg.ۤQ{[,qjdCz4lBջ{CJrqGBR R:{Rf2oI1=aLzЪ|G)߯gfm}z˕*/?H|"=0~Xv7u%oòYq#’8;gb{ |_jϞKQǕ¿'b;lNFel *"[r ~&D$&UcFe#qTý=Ufڪy!)s͗Aiq4e.8lLI+T0dZl"s]I6y wJ)=4Ox#ob@fjx}jz(va4LR9'*8;tes :$Dĭ$F*aA]"%zh_b7S O MgVO 'H0$;ޅ+hQfa7~-7Q Eqr2\3" Vb8~=}t17U?#hM9I$ɒQ<*Z`},d-;peCC7oK83u=o;x<7k,UFˤd=˟$'vِ8&lKm.xi;5ʈ;yo#J0Fm<,-mLjtA7|\ROҒvO %N'aRN"s-n鿁GT8 7s& ~c2*bPL_.w=oL~pB^IkOa.K _UǤ{ֳ;"8]JR{z$`Dׇ<s%ML_f=plc;}OڲJV4,Vo$Fpp$oӹ"}tf2\I)M?ՠWftH;̲yןҔ7B8{7)"vj"9>~D |G. dP3N`<įYQ}dcz}FWAJ#*mmP] mb!o HXS`=*CAoO YE!f `Mk`|[Th9hds4B. |cjMpq"dp) hnwxp}I@gAy&<;00] :[r+ULF$X$8atWzn1$)I\%Og)Ua"&TaZm&X՘MOb2+)jSDp%KˋmWJktzaЗv4(%? joWާg_<8ƄV|ZYOeamvu:]WQ75Cb$5Q6;c"1N~QTǂZ%BtF>h-.~KP*, {]E=Tió)&HDe5v,~zIS϶}9-2̧a2j&`bgƗF?*UG+ 2 EZIv8\ lNi [T%=N18غ'1kԬԶS3g;BT^ambCJu>]YGl-5{n8OI~dnBdiux" a+;@srE-y5͒IcU]g,1?gcy$|3*]z9yƽg[^Ho;eEsCb\6c4|y..+L:GH#"1Ӟ +`Ư@gC5L !ovx{T=¯&%F6pi,cɆ oglf~T~.aVqGuĎj)cF)^݌s m ^M:ԵcbRII1sjP-!SbQ?opcxYd}o~T%3Q U0ts|h2xưjq$5Qӫ'eZHͯ|Q|PD9n灆غ2b:_ō&Ը *hf 0i[It;>n Aolq7x;]r{T>Kɚ"w(HzԉUèy/VI7R";(@$y3衛 ;HJq,Ch~ #V6l7͓-]&ckٮ. Y, {eCAۯ_^k[<'U.96l ,}M5R5Sk"iuOH 3ڡR,f%L:hߛrYpm=+.@]'ԥ/J÷[z\D1Zd6C]m[ՄL$,rYmin]%쉰Pe":Mf%=“)m7xVUiۭ7{=c&nQ?u=; AUYoaw=!~Aw5h/$phMcٽ zDzT#ɧ KwA_.z+[wp*THkHvUΡ}{\ :l?`]壸 ,U LIb?0)U<$SG!QjZ<KV%(5ދW}QL$$)"̄QSԪ U_&OՉf˝*JG|*lkɖ.pF| ə)ԡL]-zApN")RG/$lr ׸S>UjbF.ƼTq\2I66{roV[A6~Gǫy/ 4e`RPH[Kdu cb6pf$ /S6"@U%k+"app4iˮFv$A:+ZUE#Xv.^R endstream endobj 278 0 obj << /Length1 1899 /Length2 14198 /Length3 0 /Length 15386 /Filter /FlateDecode >> stream xڍP}wwwwఀ[pNp܂wl9gWuoQ=zYP|TVc17J۹002eXl̬ @'gbN@cw;Q j`app23XyCw Y{;3>Ԧ4.?"@'@h^fo xO j~K^&&wwwFc[gF{' Az; t: P4#@C x7؀Lv!vf@'{u<@hY/=07$lljjo`l l%IyFzDcgxc7c;OI{lrpqft#iޏYLh>q=\k;{w; sm:0i؁]2sM,.fffnVn0dO'|m}A?n@+ߎE,,3 hC'h~'xCTDnNQQ{7z<Ơu+Vsdgo.Et=ff_,ϐSGA$]mlSEۂlzMMkD&Xّ/#v%UD~E=l~8f-ykf6I^nh67١ x,KK׈E, |?eK],UoF$(X\nn6$̎*ZٹNrKቓD"ÇQVe࠭4#d#ԃ^N|9),nSuu{gj15!2,ݩKUMȁH8Mxo&T|]%# 8z˥0$%1~CN0PwNΚM+hRV^d6 rыveZ-NjJ#R|Dx">& , <b=1S1t V{7gcr5د5e(޿]k&O` 7b)mK2tJg&(B!g%}d>ҺC8\\&\+-Hv<>w21>D";~lC(RV<TOJ~QNMsY%^l첼̵dtC_~];6qNWZqXsF?wېgK~Ν##'[YX&MO\%g_ .5ἶ>Vs̱2]~!1 B׾ bjUQPNV:¼eeUѓ /pvs^DU'? Gakgj@-RŃԔ?:熟ee$0ʽMXӋvH|Lڍ9% `uj@lgQiHȩ9Q|TNc>cyL.*8S6 q:R ,6]S$|CJȗe8Ή!ټ1c (϶:z;TįAh7E*A9n/_`URyJraryX 8tSZՈ|@drh,%BZC?8B:myʒ,' V}r22 J^ "k [ފQiRzLvN Fx&0cM}{3P8 F\}.|$"g{[7sEeK7 %~Z+L(*^yt. uub' #{v4-+,Lm>]W^zU\>DLn4m(MU  x ҤMb0k9,Shs7}<'q˧C]9 ^e&e}6e|G %@Q7Te0uVzd2k)x@֫E:k.V@Z}4, H!^M%7$'ɭy>KpӬF {Trp}nļoM Z `K^hX2K]^+'|H$j}EetV1WQ:\ɥw\ىu.؃e#{rvz''pF1{F`ĩ/wm#r9? \я2b^%Q1Y^* M =htPa#Aw*<&Q"P@ gLD1OBJD2YV8Z/ݫ*VeY*̍CM1%mk)^ ]úDuAr/źRPݢXxԋG̠a󹖚"vzaޏg@Se1J"Όily_BMQ_vgV)FZ^Յ1Yܛ@ơ!ҕ寇wdb1 F8Uk4uROa8 W {!I Yg/ (trξ]vcvp'Z[3L ø OmN{Q}l|JWҨYfklŞ6y󓷢3|f=C8;I$@':)(Eyyv$K*~4 À?;4ѱBmMv9 Ooʲ6x3(t~lѽ18x IgxĶ]WJ-G )Ov8ZR8 :;lo}Ti3ҲZG,y6ĸۄ_=/M;^s0xwk@9 t֒o˻[u`]Ti w)JB΢!L^alGGy^ZXbL!ŋx^p|G% *LwTWenY8̽Oq&WrL5~$=jwcӾcS b9: Vrsst`#h(RLyE{P*}D Z-$㺒-"$TSV<J #VRC]k~F8[Q:*>!zL<'Jiz~2mTzԇh_E, rjCH\'IƪN,%;N5baԈY.M[oEQr.μP-DH7?nnD%,"@>_$Rw+Bqv#OI.WF a:ǭY@3#iI:"IDR?',A?]hFݹ\r׻9o5e^?g7'wpk ^C7ƻFF8_oQ&6?H/Kd2QiiL3H7DG#15Uv/XOUȗ3`a›]v1ܛl!۷Ef{a/NEC{5SEyT#RbN!ɝ͏K\`~O@y3KQ XT!j|Bt'-.=B[5nlhgs&cU"be@ ?/6Bf#8$?8CUܥ#m=+ƺF먼1V=at *Q*='}&?8iޑ`~zt݈^׾Lʗ͋og|Tm㺢n!hp rU'X@{/fpjJMnP-tmg&2a;zO^BqbŌ, 9mcVGXHWw%@WF]X6`P{zu+O}si>EOih52R73р $<"o#$O5$1NJD4ڝd. Ĥݬ7c5ˎ]YcF5nѤI3h8mzf+Y V4lv/T6N,9j[UL5 n2t/vbs"pC=50sD0Rm =WUCvE2WO)/}I_zVmV?٬QfcP.1:NN]G_ cOt(:h3ZgC9eFLno /tk/5lʶz tWrGzj!N)[LU&^'Iǔ|-taPU*rw:dZxͶ"c[;/:+JEw*4`CTbJ5PSx($o"v`Cyp -0~9@#XrX$4 HP aGZV-9+ݏqJ &n}e UO:T)هi}: 8tj5QRs1Av_Tnj}!L~yhzTyjl@vN Q2ގ7FTNƙF'areè*6. + (8dM"AK-T! Bz5<}|ʋBBFTI㫾[E1yaCcb]LCcQ u -ɂ:t:X5D%Ăd݆g@[nG$;rI"7qX=N<0)b`\pER:QJlVrhXp[Oՙ3|5 0{|%2tXu7$QM.BbE8ŷ'_>.meHz/[QL i$\fĬeұva|pS!2A"Uj~3-#=:Nkjdo#M|C~Y`l7]EzHӴ89q|').bZgR%W[;)친۝C6]W"&C.*,̷N܌W2w}AgaI}&sY޻^S9_ x9pM ;HVnnLޠ".ش~u@= ^J䠘 x5c~ʆ ɞp :?-}n{|#TH+&^w9MlF$˰OFchқ#ejp$ظ^ J0J `TM f=p5|>Ne~Պ,0qVai;1Avtk+`/Us3 [$$G!]|}^v77eZ/4u7F~W#C,╋w#"8[qld^Ϥ6 -zR]`-fnzId:/<grPN cJ#73/d4҂,?{lre׍)g0 ^mJc=l Y+eefFE9q] 6}j9_)5xHo9q* B|'B2 "Lk.,ǀ9ᎂI^~+Q86N"f1 s!.bl{Z@\wHb>%➏Lksiw;C ]GY0nmB(#"̮9T[Yn)OF7D4A_4KXz@2WD T=&?H-ى_ >LWxԐbRG#2"pP"fݠd8rd#~f.څ6}vavD^ܶ-UY[d>ȳ1{`*~HP)2⃝Y+C9܁Rndq[Z *\gO[©koʁ:rD d|[8 x8oLm`ʐ }sG+>MiH}ێAQNRy0[J`b㽱3\+z;MnO(_ë2 {Zmf LhAuX.B s%y no [ 2rjX| @Qv]Lܢo_NkΜNmFG7RDnN3{=ˤc먃Q^&v\ ĥVsZ[٠q_綧IsqC Wrc>Vx-!X;i/t?M.K5cyO#{F^zx={J50ȟt6rYcLT'B̬N :*hǜv&&l{>JwHtʻ`{=xnHѨ̡dx|5([G^vZ{U6t6z*s_+L#o e`x[\LwX }>gc,Zl҉担]4P\A tm(&R֏ύzC֡G? ZYLC *ugPmhcqA> ‘@NwRg)zW hG^o>5*AKպVYNQ#S}^{;^eE3LJUG:oLB1ȷ ·Ֆx˔A/lmpNTwc)M!魎!F،Hi(8Qwf,X͑-@C GT=]Ǖ?#أǫyXAID?v>y4r U%z ,;W,H!Ntuʶ7 Ƙw2tZʼ(7QaY0RA (C?̣-03}DLk?o$*NiC$J.wfKToN>OU'[boPuoN`Si]qMD4V _/o@ԛfmIAiQ*B.9 )9s>)Tb\bu)⥿8MXY}VޖO8C=soO@O1jL,,څsĨ$K@qm /zG>΂.q濝{=J)$|한P9o N=qcNط$Y$a[B?|5ZJ㣚rXT$E3h[hh3"_G +ޕ'P vmu8t Bg0H2j'Y-ޕon7 8%8Pǧ* :y -{H,ZOG}Ԍ 㖢 .-I&:b>hb3& 8MKϻh^NHbߡC)ӛbr(}ʺhqC"FSX`B$hHoZݣكU+3W.Nbiǰ7uvwG +!fhF~FY&n þE3[P=$O % t3+:Nr |@$%܄#+dJ@,B KMO&gaY$*lG4c8yivRo@X1 E1M,wD"3#}j9]E`j[\)m7ә8tVHǿôధ[SV$(dzs6q$Иh5iZi)I<$]yJ'RlvOcw]? 0lהxe!⒕7A}  ;Ja8#l9"; A6iS"r7 ĔJ_TV}WuM 5 *,{We9#91i'mӋZ.9 x{@=fwxUHs1 ԙ2 ^WAH.pc>=`Hu#!8Q.b;SWfZdwNсk)MK?#RtNqC :SZ/1iu/ZsQGt|0ԓ^`3}s&j +sSWy3fAG!YL[&b*a.&L"obV1ۓlA_5Ns"ܑ|ЪtooFu6gv,Nk*b|0>A*(e:+7b\ۊ_YztRXzwiguHsvU#%Zj!!)M۟Ekkyݦ.Oj{V&U6ܦ9 jXw9j]4Xʢ=(Y%hgCn75TT@H3*eGPe64b]j|_~ܑu+}(̩b{ѷe!wz$v.tom]%i3إ-@ gyiSSNȺW?PXL#\ +ŤK쉍>ǖܜe\fEpٲgɽw>pFMaEБgIzsI<}W|r 70ҭ >5!jwq.߲uuʏ.4coCDRPpfVYXz^6Q d}/ +ˮa5ST`vUGycBt,I oaOc;,ǩC.ce!1"@q ,l+Ne/x_! k(:t}"5!NbP$2ڶ[}&?ڛ?KG@ ˅V6L83}xiX̹oݕ.@&_zd]{CtlCC̎+NRӢ0?ϥ -ô3&q]7y!}њ1{XSu+& X$+uG9 J:e,˴ vNR/?VYʨ%;k eLClE.{4a};T{;-Y9yw6\8DRޡj5 ^@IBT1ҤZ>)> }j=SDI RIXS{ ~Wa6NDdc_X{5Vd h==}ۼܹ/id-@JܐR}0tU L4Ͼkf ئH`?e&מiET5WmuFGF--F`d:>t;yH(v@b(Dص݅^}M`ҬXbZkdZ# rmHI1lG1|V R1=n_>pY> Ǜӂ/7[k?2nl1@FK4W_,(%0MoR{l "puڤҾk&g mb3 UR+ UO˛o(K z0/pzhVPTI˸Ȇ`~kĭb@91r-Muz`p3L7'lfdƷBo:)L(c::J] uL,;$  w坴 ԋH hpzUAƀ?,tev'JT=P#̅MeM`=i35G`R1y-~ YQńw{'US\μNr,p<i~)/Q:mg>D|-01 B? Dugm7+%9*_!IEm'>ă)+`lޣ)JK$Er_vKnA|Erb*MdCm6dQꟲCP yjEvB='MIvlorGfr[GG)y8%:׈}< ƑcN&mF\h,l:?3c\f~D)Vwc+lrZ-)|J wzT7> (^eN%/R 4$gy}+ *_ΡqGBN~Ԍ_YFH;(Osmz[H2ɑN5"rvC;޲tn:6*YpZmr\4z6vow"2#mQ=f~S-hCV/1]#x=}6ǥʦ yIMp24 UXpTΘw&&>SX0FJxi` ;KLtg|&TLDysg%Wg(b[t fKw*|Gi:377 mn 6ѷ@a~ɷi>b#t1r no˓!H7_>@&as ZIjlltoߞw3qa+UhlM?Ň]ꅦ$ץ)sq}>4\q=U*7g)ɒ8`Ŀ@,!q;[_BYTB䏽bsYߪ4#̈5ƅcPwiև͉].cr/V,5Tnܑ`jN|.SaYT\ a% :%" juJNy-)v/q7퉔E}y)jue/| t+BXaIֱ6sZ0_ul3c+JGqV']hZgm !0P;9fi endstream endobj 280 0 obj << /Length1 2767 /Length2 19986 /Length3 0 /Length 21563 /Filter /FlateDecode >> stream xڌPXb!@` iqwww; NpC@7U[TA-kDQA(nk SUea03123"RP#R|:8lmxu:e r6ig+ ?C[^{C @ mktDsw;#ژE;@26: * (͝x\]] m\ANe#hU2@OiUs [S'WC ,m.6&@8:@EJ`Xoz?0K/"_Άƶv6 3) Petrsژ24r nV+>Gc##WLhm189"=h ;?kicj?d 11U ( `fffc@7cs_T)Y~5x{LeA@DOGC `2v@6b| 763xX̿~ 0[+1?%ux2Xl\NNY Ad񇧔-d]_.L?A/-xncl yr7X_f$leo5 :;w@ 6TM@W+da3 rMANb_{f*:~,f/%p_* xwQגrp  do !01:]$K70F\&߈7ۿ$$~#Vo`e~#pt]7GE芿8oF&oo/gf/bgfhmމ_,`CGclLYrLp"NF~_b?ڌ V@S?YY[c8[`/hlk c%ݘ_#lZY3Fc3|-ﺄl}AM% v/q"Ry*짲\.;hvfcHɴ gSW{YN3G>D5d _Een?ӮB! D3yHr/hbʼfχNLq`+޼o,tC7I+KT͂$fr6l\ b>ڌѧ۸V$'B(~8,xuzʂ2IhY\oX{ؙssZغ*vtj<zϲф73n]|s Фj)=7b\]4@]bcAe4nnOQ#@!{pA^Vk@$QE$^ǣy&h(F83ځΏm]Ǻvw㍈,m_@R<~;(Kh @GnC¸Ā(ZB#,lG{%ef)h{ȸN)nVhM"cWFx4IOųPp# wp]ʔq|u_>׳o!mɁR  }s-3t7O~5䱆نGb^(85iyE_p80CoZ~~\LVO%/;vfP8b⚄"!Ԝy(IեE,7U];6YϵY#k [`imᓨ7fZv^5ymxvw[x]L>Gn;cU2My*{4.GDL%Ğ]l{pDd--e=xL̞!*(;>ʍ̓'v![kzwʥvj|;WA j"z&m%*X}ctrY3,kv.HwԳ}ϛ((}=Uc; }I^Z"BZ~][B@{FqH!_F4{Ͽe.4XYQ)~,]#HmۇjnǂV1N[u}I?"yS[%$ t+HmreL3yx38L⺡uN?`pIo.^-6dRk=1j,3T4XFdW<避+5WE\N>G_DPzʔ{(QxO) [6$vyʞ:@*4l.jE_6gxohmߴv |V8cT5jB_hIGg /]4nb6D:%FK]>xFRaTh?tD`,^=20 f '΅T(hiǂG^JUGkĈDFX5f 6TXO#U$8oCY!cTx Vs?IT? }$UOrJ\0`磺)yՠWlC/DRM?pJ X$ΪBԓYA v~nܿO2{g woUқtRÁYuܖxoLl,zqM>?cmOFx@7SҫJ%Sh3fnd}uM}.`*H>bX ^DS -v7jaTX@XN4)VƼYNqF>SK+"fqRmn|E"xYʒ -r2L(Ngh\M\"n~hM_zg|K*)y7i4c1'sutMyó3;e3I<0KS^I;<7oPWI 4Ը)lni>hO$kI"4m"JYMFoMj{vIC qJXK$c:#N&v!yyڝA_\z1_h"HIo!붺޲y {okP[V!K.>y,1FWQv l($V[ Ecq(s$LV Nc+ aoEsÅg$쟓HVc^ ʀxz! ,J F>eB[8gL8a/\2H$"c1VkP7D؍ a.2A*ZWrzٶbPۋI(a&@=f?:Ԯ-~kVhw3fw% D,Gg:UJ&dGQ)樅y+ac1rWQ bvWA)> c0rkP:<,3Mm@UcvEG=0)'*z^t!1cJEzJ? C1 y-l҆:ûg$o,&d<(Ӥb>b6iE!JmLB伧5ӌ\,9ll1~6 <{7x2F[kf9 %Y:5g0L++iI{@h׋OxBЁswA%HC42BGiA遁HyɼndQƫanځnY b9CO#[ }Y |3+ޅhx.{BA *RtUF"7O-B 8 kJ]_˅QщD!FA̕n'aMk"[#~F_9nղ#/`LP}2Z},*74>U>ɡޑ5(g+0eEOheS@s!5L|xohA-oU[%c~q)ӏ8c&^٧ϯ.k-סHGf !x&`7pI3Rݏf>t?-~W ~KX(ЬNK%::}p\`0c*+<~~{7EJ:֓e5D8"uSk+\5B<<[T ]b̎|.ǦuDT}(({uG.rSF. !p!hMgXe=n- Ri/' )ހtw0 yRV.+O&QsDNm_f!x>i pbxfţ.diVJ[b9^P;e8 ٴUPGٕJ7=~21&vu-؏^.$T0ݘlno_+`ĭ9y%6c@MpϮ:񯪓ԫ;~A`KCѝ9s3(c2;;f?F1 p|Boy$לۚmV] Z2m1CTXzi 7O5Ԧ)$fzNIZWzҗ>lvu_|]/h@J5*LD{Hl8qUTu`k^tq00MHԬ:g@[6@fڭX XJ ;v jz15^N BVK!9  [q(_)~4_i>gR|(,c+a/]oͯ,Lr<"pM*pj 5>kV{!)EfmkuBoO! ֮3-؏ܡX;ЦD(<@mnPſ뢖Ffh 46imtZ (icDx]iWX/tO9`?!X*b*.?.*n{Q6JrZOҎMz \,.Zi҅P g0DyR *%d'_elpSKMvC"w:kW!|\V* Ekb4$6mPU(f41ඐiʘhl<-=IB5. Ikq|&ي_mgPkO6̈́ʰa%M#β96-Xfw}X?+hz;%쭊zt` ߺt;ΖF@V] mn^̷LPRo*_d*=.9}%f`ra#x=d=[=i̭ cF|cR8T72O;5fb2&Mum=|o3 i=hxߣyo613AzdFh*-2!r&W+-Hz b X~nuV?eNfVcϫJ-}q 39:_[ Y=`D g?-g3(%{')F㧇]ӦN5ޗ's 9Kc 0x/y3uߔ4;?d O<*ĹSŬ dS#֪隀[~JVДVҽ0„سwk#\Vm뫘%V<ҩҫt=X66L.Ӯt  vdSDX^cf ljRƪ5͟4ٺ 7O ԡ?|㾸7_eFDkKeq]%{-ϦMl܏bT@Eֹ튢D']hU:$6cN+ꡯUٮQV<36t.1/H=ޜGU-Wxэ7{yԳ.Y٧e8CV=i<@PZ &^)' D^@Nc- w=S՚ Apٙ2[GSjxqCRuX7n}T Hgڥ`H7 o@Azt=yRi,+Evύ 켹cζ!aO[LߢU~DW_F]x׆`J:8dI cjQvuBl>W2̕%哿o`yaq6{BtA!_}K"%m~_ٸlO+o*O3lsrsoeȪK]½`)J>l9[ ݑqCNqĈNa6ޭTp?SL2r6kż釯]/4,q/V޷걯rE_ Um~"kSRnt,qh@kSl];eWTƑ%#pհDl!d$ qՀv U|%hr5HHlyR5RdQ]WAʝs)':>n2zN Z'_|]v:Qv+4Dk\qX5uvqڸ.@_g _:b1X*dG~B8^YTv_?IzCb׹XΎI!؇ɑcbqϟ` !,OJ`Dw ~Ha͠5|TBip y/9IyQ+ay9&gGr9kVDZN"Ů<@l'2JArl5;R@$v+fQC<+D6{&ΑѣJ-6)RGmUQB$Bms_-fV(2ʼ"}F :~T(sb\ԁ ՅZ"p}UetqȭT]r"Ue_L7072P[]{ rƇ1-;]t$H͐"EXv`ʓ&,>Im=lEӨGˋ?ʞb}XY򤏺@!l=vԸލaKgFzFĻ脞UNhr8(g\ύ}} !wí*'#Y!}Zs=rZR:̈愖.ǚmAGfi뗂``C 0hGM }%LyHC,y}E/p>)6m0ɂ2 |(:lH֧HP ~_&U$@5e!'¦x0r )ĞO1澪EoΕ>4Xz35'v,7ZBv1 sh-ʁL5s,oӷ o+ts^~zz{RTINcY:'喃/ CxSTk cPK`^- Yw B.82G-QeBvn3DH;_ww u)8We2N|J>eb蓹LބqmC8cghI Ä} kJۂٷ$oЌ4k$M4lfj`79Ȕ^- (J0B=+u븶p6T3n{JT(rA+ O\VLE'؂ #ަ&ihMBSWg! #X ē˧~G *pɐ+ѬK7~9 ? vδ+"sR6n#/ՄcnNꯞr}6H}.?|yU3KƐւNnEv3뒄Byul?6Jkd_6 AHYG!{eF{dq+2xhm>G%}7!W/΍;-+]UdO(FB؜4;+?O버kɱGKl"Fy5` Fnķ`{kDrboozm {Yo,(Y16^ݙj1奲s $ D>I>MI Q괅v}gٟG:ጄ[b t)w>5Hc9 *.&;V-=y4ryY].ZW4o^;v:U[&3ZfȒٌ{?}JN]*tf;ZB?lP]0Szqgbg?4|ԅݦshP.ؕPlO聡R{ȖBⶭ{'V gjIXGGH dܓy[}rh[m+ ?s!;rr)z?púHv$A6Πvm嗢ʉs zLt v$5GQd8I51s ?wm"3~ҿoEaaz=R_`{VLIWԤd*身mMJ̅s?Ih)"EZ*=b6cKB8 U9UEOϛ 2 GĹHqFdڧeP$Fo Gnv{rFBiR}Ÿ:(I3KtuѼ"WEvYuD}VN7 } n!_% H5h9A_H 6i7s8QjdztZʏy[g Ӓ/1;+nO8p}7g|ͿҪZ $*±9΁f XL]?v=jBA 𬞪E(+Is^}@2k׈LMKc|3-m*\ȳJV2=Oqj.M0Lw936u~I̓u؁Fokw1.b1(,Zo%*zS>QܶCҺ+ fCl ÿoDƒO:䰵)I=5Zם wιo ') yƱ(˰ Fآ29l+ nIB#T-wW6<̶DJF$Ւ3[QnY8rJWV4ȽpRT)pUDF&hܜȓ|n%;ahl]0l67;gI.WLBvфVm5Qe)u,2;C+9&`+y!QVąel#qP-e/$׽;~Τ ncI];i%EI-gѥP|ds 8 ԻUaZkaBIu$zmM<3 /U8mVn[f2tJ;+8ML@kd8靲7wtTH"Wpnt)I߼7'N~ <1[7Jc[qCj|آкX"ו[)I_q/Yx.?-v$L6iI'AU7P s(X/' 4X؃a|Doa}ԍ+egLP#7Z|G%\N,p ^gp2 a`f✄eNKnZ )%e'gd` ٖGgJ,o$'$º߻Fq4lNX( =?\0R 2O1h8i[_X{Av1#TLߩ R? hX R?sYL~%DG]Z.y|xkv$Kc"txlmӈlƽ1J!VjwnWBvZ4{ix kZ-ʣ,jfQ)` m?DN%x0@E1̻{aB(`vxl1Y0Qk1ۚ%k#8HHzj7}|;o-ı/ Yn^a' U?`ӽn\xu}˶y/WIb zi8[oԱϵO*u$G`ˊͮf =/2JM~{ek7{~ y0ArQ%8MX =ecyk+p93臚yNOïa d xǨ3Oh RB|< e3hRIL}}!jƿl̯|U3QgߦN j{[]~K45Y4 s1I23}5\'/o@P*Is># =:A ! .tAo"(Zpv6 e^~221Ow9w Zo-;k *DL쳹~R$C6 Lg\"Qʢ.M xaP՘ ͇{IY'G˻C Ed2f}Wָu7D\m:?G Rtji'pE*ZQ:3OTׂt?aNVmJ'm6^|~CR ,8XH-m|^ɼǣz{2Y߮i M i?c >Ho ࡥPXa9gGR:G&#L]{]UZ4R͙8Y-@[TQ'eԆIQd\Aq\94ZCnƗiE\_]Jlev; J ? \J![]ӬJWNfiN+a:@ok#;{^e kKdk/*I"?S+v~ K#O;MǷ<Hx}h{ߜJNH̏2!isOk>7S#R\*R@=6iWNU:ױ1dM+Y[zރ=ޚ|<;1e=ѐezm\Hx? nqbDo0e GF }"Ssf+.ŧ$_q n7428pM(ZZ5-|e 9iұ5.k0H]wghN<^77~:ٷ9 FYeVHq3{/ݍ^цt}V#MJ+6rUsɭRϵny13W/n_"#3tkԝMiS>j+m pKoj"T S~#Ք$Z{i#QtΣxKsURXpGgXl\; U{<ޓf_*ǴJ $Ϩ Ӡ,ږIs }_'4kޮ#}pӒ/_,eZX)*Hv?yE&LfW pӲ?Kr)ast3ok|RnZE z~R.o[l,y<]J(GSR}'TAsl͸'F9ͦ Q5Ome!{-j8d)c#-kk|-Zb+QF n<r٫XrGs[44c+ѫjJo%@Y@;GA]WE?#]lQ+5^r޿bz/ZeH_Nlxuu]WwPi֢ċZ܋) =A wZt ŋ[o*\I.N8uh^p-ǣX=xAVH,n E/L8 Qs Zɀ`):~,'Ji a-Č>]C|K)4(%^بoD"6iA_ _#wq*1}>< іc+͍NnGB}7 iwbKkԪ]=ǢrRCێkr5LżtJ݆oV{ H_9o r? {2(/:6Sv]&_CYKT,Af.%D6\niXD۫ kpv^711{Hь] i~rަ_&0]P5H SSt~%nXw"Sߒ#5 3GItN~3WE{iHgo b } Zym8"Okd=c:~4w>%dö%>BplbO;r~6]~tĮ?~Wݴ-? ~U`g䩦pUWUKyS|\]-Tq,&%J(}~Wpl>Auhݸ_ewƬA΋vF lej΋  x^ovExd?u+l zD~$=7({2㬩!Ljl18fÞ6( _g4jxOj6jPRr_=ɀ.ur)k=#[M58R\F8ūi Lbp[N2D)\)zP8[\GM?X.O`e2V_!TMdt5c٬U՛QL1u'p}59)9dJ@iaI2;g հ7:+苟 OHQJr:5P?,94d|L:߱D~=:NؤJ Z%q`R?Q}ĩ1d&{( \k$aYnHR|+(1{m ΝksFwLMDP0$%`OhuTf&PM]"t%|^?cX{:tBL|j10|PQԪ 009!t9+<^;+3VΓ%c%@7/K\P8#bpJ= ` }L|,z$'}—ɳ|8bo ȥ"w$L@ 28eeVOMRSpm ,];E1ׇv^]_ZU"`[P#Ptb4r)7.} wra #ع-O j"DžwC)TKz{ΠPƉƨ(X)W HYd+tdotpոLI:%? REc;WjxZk4d= A].>)kFe,eb dq87d=9Muh!(ˎCQY3t8wb9 'w KnOB+#:#v~g'<,\`%h) Y L0B(vx.'{\JVd؄ *9qZ ( ^ V9 '<+Ąn@*-8Qn5z3$\v!ܦZֳWi6k!sz0WԤQ~ qckX܁InCVw 1 'ϕXYR~'-O] CJډۏ9tXa_l-l ҳ+2k/ZG.Y!L>Rm$ѓ䨕^1˝!/39uVL&ZW͉ίKڌ1%.$i^(qp~5EIhO%]6Md(3պ'؃ #Ic-dNR'hˆ{.J# x8u#K1Њ,v98Νk$L ^5yc q+^;ASԀYw)_S&ڹFI4ONՈXyBgc~`߬jFqpʗdgZדDv r  :ͪ{b{@Beߛk.`4qaH+9&٭\ gwﻰ5V鳯+#fQ7JS\JC\!ħ`5(#O8gʨk[Q HMBhG)dz|ZYUga~oSԵ;^1nQ)D_jA+;{_%֞ؿ \R^ijtCLŨ8`G=i_? &ݏOD S,[I`~j#Ŗ~+ 4s-JFQM-iG\%8pSyrPjAtS!3 lg2*7Ue>~Ǟy05JM"=b!S6 y7b<cϘt~fl|I_ġP:ف|Txrx&<\BċE'/+ѣ!IۯDB&o5*>k*,> 7[m{hg驤W?aM eMG0;=H<5_"0LrF7_짻0%ˢqIixJ@,<á>OZu z_']> stream xڍt 4Tؿ% )In4N}ߩИǎaeP т(K} I٣EDYC?}=y~/x.6") pLзtp+0SX KCX^/ }Aa %WՄi`" ː@ ~X` x4'HXw 3ϯ_@) 547]o4 DK̈D{BF˃B!jBT*&C$òKd46Z蟭A@`K'`(T 08,'3]|(4 `fM-k"⇁چk-/(ݍխ{3<(0Q!()JSm#ۈ|KIN(wJf*CSvhW򸱖Te|٭SQ[w+&v5=@阾.f4Ц2w_;$:1K4g$ONTKL7ܽzE&(&F~ns%Syab2Z"F.Sy}`7.~(Bo[A0I|GZ' #^s/h_<"ys4/ed4Ai.x9LzGDJoNqiH+s%Zny?v"u$W4uϱTy:NISC} HrThWB;!3nAD rN^nP e\*/u+ygRZ>qclk5x Sl6b}Ŏ[_~s1㌏g`کR}6W#1Bw`e! ܩ" 7D鱙I0۰R·cnp #k|tZ0ZkcQm{,4N|EdbH!4Fߡ`AJs3&cXf$~q&&O;@5UwP.Q`9t0|vJiT!=jS1R4-T2Ʀk*N߰# Ui}E%BZ4ޟ*6l+Kإř~+n_ h=g&QB~_؏(IQ$= GDh8=jSQKy$W$wTU#hծ]iK* dR7N{SM'B%ٹ"% ;Ъ[xX Fr7xpi/o+8$&+_de.~+VY{5KKHy{(U!t꧑ΉH؆J*a@;6W>#gBR:oηMr:òքBuM-e*/g\xH HfTj>)BϬ %~yN Au +xPh1u#XZ{.5[M 5s{uZ%Y[OU0Kkb4l9=ˑ[^C@qEp]sE篿]3TZm=oPg}nI1VIW+ʎDЭbmrm;#,kLW,^hyg9%# lCS*Y !lߓו5>{6>22 nƮfs2 )Kⵚ)C"rh?;6Li!ŪȘ0G-TSN^͟tqbh 7N c*ʖ }l׶İ|y/v"mFK|Ih΁ j8{Y [%{Mۡ#n/IeC֖ l(EQO7LR߷" qXP점~7"G͔go]4SMWᒼd]vnWu\c^gfXjEJ7㊰z s+zx&-RŸf=9\ڂkz3CNٍ|4ߖK`d*|ͪBJ1):N.+ X @UJ`t{37O$xmZ)0{rW~M[uxlY7ٻAs\׏_:]5SNXRI+K=.jFb(ܙ'sr}d2(֝3 ϗ?j}>S-:.5bz~.A\eaynI |%Ñv8G8*{G89Bt'9?X9f'7XvDzMJ͓aM8 :{27ik}Ѽ䖩®ftSU&UH~ؾť#p;P.㡺Q!45vlG9/!ڍWb'[mvg8sF WtP `Si}>$C%LU&.i~S 9H\{J#O> G/{CZyu(*z]wCZnμf OW&py^ۋV D7醸`5W,-oz1A䐝3Ӻ׍3j5_m^M1w5 *Q'}xp{M*C,MMPujAI{\RoZ%xgE\~۪ɕ+I8UBM)ebN~VQpƇDhB0%`r[_znL〴 ];44d[XsnoFE&gEZ}+ȭN0캗}a RLj3kOC/W.}3T9%I#̓ϣ$&Y\eNPޜB̶NJ8u˼. _֧3V)4k7+j|v,CiJE"O+{FEx2f/&j_z9̭CŁY Ji>g6~~35mig{#jԞ8^8wNf;&T)4X/}'|WnL[1 }H!y endstream endobj 284 0 obj << /Length1 725 /Length2 15948 /Length3 0 /Length 16495 /Filter /FlateDecode >> stream xmctn6vضm۶gNVl۶mZ콿~=zUWWWw9&=#7@E\UHCF&lfj`/jj 039̌L0dG/g+ KW տu[#S+;+g%]ōٍN*ffWK3@DAQKJ^@)!07s6(ZdL]̨4&VBofή3wvȉ +ȫDTEFYۻpmfh#d?X=#01LL\fV0 MMrfxٙ(E\͜rfql濮FvV^C2-?*+q+O3SE+vuv3Z?s#gfjffpϬ:z 1(ȫ+i O,fo`jeoPqO#gQ۬hd /f\<:J=73#' d_pMܜ]M?d2343Y_q0 Nm -+1TYa^A458¹Wß 4ۻܕo&63;& [y-&~W׿SǶ3sMXRb9v*C`6,Gډ_[|ң@3;F )6x_ wCm`YPx_e-8%s-J^;$tŲ!r0Y~ë p )SɫZq77K:C# F .{=jϝ!*)=9B_nu2`A\gvLX9 uTl47/i(i[t"\9;#!E>#}@ٌA4Wg A2ĘKFS젷ПUsU02 _5d xϳ${zf6yi^5U^A S!}w)!h %SF;rB90.3=ltf_<9Ka(:y,op#E}r#丂Y |/xISؙAXgbER^9 s-'p'w٫Y5(ӕ|3uVARb$!.D 1@0]I2 g#^pTNYh߽Y~tl2 W*TXQj*zl}t-f:nVMoPX"*Z_n[7*JSkU{uFs'Ldjig&kh֎ wA3tݽJnKn9筼6[o/[x ]V wAeDH~3 }Mg⺈w;k}b21%:woQPK"F\H1^g pHUcf Uovey1-غ aWڠxCL|JRzV>= ;JHA[;`ك;֣'-A!W^ aehīO1]eV O \ =V' }]^Qc(%OOznu<ĜQ؋TIʪ+eA%8d$ d>#gشgAnK}W;2(G5}3.}ysA4Ξ=pdZaQe͆փ$NLjJ)?ɅLo/IKcR!q1hHSEzsu3Mp[HR9"Wq;ED-ˉA0Qkrl(RDRT2;]b׷}7C輀썩$ s4|ɏE]Txp8TQ*}XWױZs۫ozMZǛst!G{~V7N]j[vjxa{L뽱dKc݉Z]`a2&+Wk Mv^a&nhkS/S#7R-nKv՝fŧϴLBCr=m8p cM7=۩ej H 6y'{H@$_MWӦ{_^gf2  B*|Xv-@!G9L5fI";1uCD(T>'p}ua$cc }bu~땺W"tFB@ ]ӶVc+U?0|7$:NW6U 0Oτ: T|w^)3)2ʿLXUܞ~c]'JP2^Yn9g%:N_1P8-vЍ'~{"瘲dzr~a7kTU(jߎyw\t}ƠD񪉸abR3|g$#A^!M{/pU#_§Em? 0i HGam4pqh@!#Eb. .lXp(#\u8"*57ҕ:S):e%eOÆfpgq| gy%CHNmݺm^˭Ƽ]IߕXx0J*_s~.%#]VBoKd-OSmf=mu\> :b( Xs'Jcr-t#wN%TAx @"t-'3<0zCVm*O_> 3Y%rqC{nf \a /E #!8&ѩE(g{`^ay 0"0ۯE&ymC#@;ܝ`(F[.gEq`Sn\^A=.#x腾*/\{9ؾ %:;vv_=}~ZA\7x- ؈#u))I*hof1ZOe43R"=)g*̱$D'Džs3c11զЂ$`LV@L$ 芋R? 9:X<O@WrqAcZդa,̮17yBt1f gtǵ'&"e mڮ 2y ]E&͊bc:xjt:F!3.\:8nty}\y?Z~*gG:{2 HBHU,-0I6v!rQ\WW0qaXx-ؕF(ngm( 9FbGzG YЬ /uV_l!Iar#?Ol\7"2 xϝdwP"/B`pϷ(-jК)j(rgydLlJ^l% ie9,b EU]#'s @{ܜ辧Mv%Rq A>tZ Zjj7?ݨMy+mI\3z'F`rACDiV-!vy}]!h^ UI!Qʉ`Nf?_ E'B_wZzl-ZB _O#R7|pX5J)(P~$hlOq֗߉UI};uA*8qp)/ sna5;]<7@ "{RL+.HlQn5q-&\<2htԹ2z.Ab·uTA??eSC[@0C6T3n&, bTU_!|Jy(9ExףV6e 4'>qR̭n$𨪼S4?ή0LzLQb]{& }qe&U2 ,N2J!F 7؎zotwq1hu{*nղ|Tk Z {hۜխ#4! 42>9N}p$X-o`kkc@&Ds6j,z}tƟ"*BflUbQktw3|$͹GŪ@U#dƀ6oZ9CPQΏG:j% (0knb>f7`*%FXō("یGJ84P~ e9Ϛf*NMW(s &Q ;H膿 *כ>p*,}KUhHJ{寜BZ=p"꫚(0#%)XI|C%[ݖ@45QJR$AU%>"|{e-A; <]brYZpl0C#bѨ cH-'{ -A e%WN" ih5ј*=(VA8;x_jD]|K~= H"ܞqV_Q6O0!ve~Rmܪ}:;3$qJ;*MR*N±):O'ah9 Zsپ|.nЬ#]Y=J{V_DeQ|x\/sr$7]5NFp(mLB7S.4f`=F|D, *l>ELa rC 1",/hR;Mr B4*Y9r)`ߍ!fD@MvHw>X=:rϿKܻ}&Ր;[&~Fiz)v$5BQac!788\.\kV*tXҷp,qX79bVziO('UU Bڎ ,keX*ck4 3ǫE6-3I"#~ϕ&y"`6(eGP{:kiEc [PP,=cVCM=jph6izoOxSvAb7`KidTi[EԛUSx^~Pk*<g>tT͗*υ "`ew9i-(pL~w5JY)l͟-Pe]R,ŝ%FL&F4=' qD?q )3q뽽ob5y%+ Ҳw_ᶟTl/nH9/@JD|#HCp-b3oDǗN3l$̾.yFH:D£Dv"]O@?OSyqd^D?E$d0P?|||Ղނ@7$" WPHԠ=_>qĦ6! _ˋ&s7'VD9!Kf+>U.Ө I.<ՙ@"g}#HkhmA,r3ϛUUUi>ěGgrz鼥 #,dx{kHn*xȧ1zWI=C0{_wmsHs2ء#Β-cwF5K/eI<*~߁_q*.),+w |(-b{2Q%xLaA,;reJ-JusȫxK8RdWS퍙} ^ `ŰFK$s,%ǔ"C%S;5 `AGE"q\UXx=6~^g9o_sd XW Tߴ:gسFlp9ҕyO}4 s~L;Nn Q-zquk#esmFҊ͔?U7drў"kwc)%;Ñw{=LnjҖIxL {޳lیUv`GH$5wtN$ J8f> Tԉ̿sb~^v7V߱Qb}+H1PǤYb1<:,4^4/#o@ъu524Qx13bˉN&%5%=Q$f5d" {^ lBc8I)ni+Hf= ZLtjl֪ĕ;Q P|LȰP~a90y3M8e U>F@?OYxm$G#̲F;i_3@8@HOeC%Pɕv]Y[}`5(qz;^yWmY1`ڨeO9;za0{VS͞V% WkC aBMݼ-VWҋClUZIY$(M IAbrm휹V1l_aAjKC]P \zb=& <&T WōG*nG]("50]QL%W䲋us 8 X #mdǢxgt%WR +t4 0:JV!sjZ,Tv> "[`X 2.6u0V~)ظdp.nRn"X%\A"8]e|X -~O'78vIQkN\G,^wbnQd" ER>-d 8҅AzyXnkfP3AP('NalҮ%Bj_5 F/"I;!(-'U # 懏rΑ8 ?5X:\tL} "o,CVo=Ymc4-r ƕx\oN;.H R@\/ |sN[fv)GF=9G׏~4KMpv]?m?B <SQonW/ʮy. 'Vv"3R0” g/1| ,MK<.j5_(7;=ANʯ`„q2Tu&"RMX1 >rY[P~rnsF'gB]! $i*21Hy .oJyܕ|}vhvax;yY4Ĥ tx #ݟu3籍Z_FgI}] BTllC1 KK߅@HTY>ٴ̺{n#IKɡ(AMդcqɾ)D]Owfen;E~clp 5 G}V7_%%,x%Op}zP+)5`7·9{5Q H2p!Qh߭1N9>^cDL>ezgIrNpՇ;p،V ̬Y}`C|vuES`qc:~X I7Յ79QH:ס\B/i/V&>DuɬLujŒiMwcEJ7=~A=q'QP*G-_ {5Iz]O+N>ӋKN3 %~0qzPieA G>3/3y]M' ˓pEd8щHT5N~ Av7 Z i '6yTt'T f2=4ynS׶61nwGu%m.\SHP K7Zkږ? EpW @x@W#3? d(bAg^r> (6ohpp.@=Sw>h@-Zw* G-:Ƚf3E^@:=ٹCt %A[vr1b wb /Ζj-p |=,aT\.qXĉ.s>mqN;z)k+㊸aT?/۾3tSl3VES46o<`Z*=Acppw=hWciJc8]֨}EM-ȋD詝%فoW-zm"<$7Ԑ @`"Li -3qVnn_DFc )QƲ3$ji@@IP['RފvtBJ.)U1diGRԛIךl[78uw%ϲjK2 pysv@$G™26dpMH*7Ҿ-de QL2;zxTsMv5tVE# KFmAI+hwN/0@M<'-cXH;@҄7J  9ʗG/{*[ӪR@A j(5,!R0H9]c5٪9"$;}O(:a"N)F;.YږKȟ94}NEb錖1 sOվVsУ=4g܆l"`E$1D1}tĔ*MÐr"&vޛq:v{$ ʓт!]c򙬷᭱ݍCs>嫦ByeDli>-eTa;F;far2лcS(ceX~ubO}tr\JE]Æ\KFiK-?R;Jk\fkyWsHFʧrg,3l0B}$(\ޒؿE4 Mg[7aҵ¹/IɁ1iWK fQ7"oF !B)u4f[nۃYK2@(ÿ!+7gn=VZ :kM9쭿bpbiR5Wܓ5-4gʿ"Y $3l ~Ja`m +^%+"G~G=e}QAR&2$Td+3mB&223 ojvς /});;aŧwKaD\mMU|.hըݾ,ߥ4~[_P)+ӻ ed 6.HY sj^?FuC"i?A/;&ăd&L|Nmm3\! J5{ KK6V3Y?sު{hRkG_A V0iC/mCZDA3CČALx"tj\[eJSX мƇӏ$+WU+=׳됰6%;U'R⍜ 4dmj#$i.}ʦz*6̋cA u=ZuNw9?ȣfWW!&NLOlh5FUn9c I'Q W^o!#n@c?%/4}ӈQ6]ݠm&M)Kokq ~#$DfR;ҩ]_ҪۿV]zv@=ǹ19{9fZ"qxlV% 6& dG3@bLzD vÊBmĚL8qՅzΦggh4O͗ [.*(KϢ̃$l~%n"15ܨBKsb_+g-}m\:$m[f݉'Rz&]hDF5T|s<~™`$(ܔ)3ix4 RBPl^ <D uMKEٌ9* U2Ē5KM`0 HlpR((pujh+v9FwGkz%s%}?}A$w^!:3Zj\@{Ed*UKl`vHf4$ PҚ#>a4+ Bd1rqA9_^qZn,њ~\*1oNHg3u <4_0*gL5NpH86]|Aou}Ai2GE"_a?NW֨ dMLxVO'(G5Skz㽷Y3}l8~x1e.v%z:c^|;PZܧdΜF #۵"~VGحnAŌ&9cm 5P&eHxʨ>-%Ps_ɒ5S)p3%A_zꌰ_ UIl7]@5~D p 9$R`7CVDnSC^=ܧ?bk&uY7 3,.cwHCq<`iq,* ['^P @o fx%r˧gmU8 0((˸R\c$ Gp3_p˧ (B`>ч |Ug{Hv$Y j =&M|ˮ5J8]eh1\}hN Zu_v|wغ)4 |8Z0Rʪ 5\B;U7_fi !R܋~=)[Qde]g v$ߨJ-ݖEjiZq2)0;N0z1R*GI{['gM0皈$ 3 Jb_[@XCw]L'Ӂ['qSpL..IS !U]h9 ^^EE<2XRdljog< VE#SQ x{{w5`(,:x,ْ}^᳢/xk 86y00B6ZVb@p$gƅ\x;~(o[_'a,S-w_$Gi)aԟ ~L(O~Jzc}]~ґ»{cE-Yч8~8hmVЋ>5KNs K讁sRnpR4Ò;zkxРjP *L ڇ4\a].܅TW$/ &1ųf GRil4X$0@kN͇ +{咀1j5~ nTmkr!#<`*O#e]IX^\ch ' 7~x$W7>DpHz0զoc@?1NtJMS_\Fd[Ӛ>,䄤=^,]ƹb"F݁_{3ưJf-ceU܄ϯ냚 d\ "ՏT*$ !JAb+%(Jh1 3}L{4P\/D~+I{ubA-FQ >%)q6 0kp(;@PP_;2sb*ˊ_.|.#]<KIVthK+q)OF |?qIFpܖA0:_PCXX\̹4IrOlefB<2YR,cVp9ώn1^|.o>K&Rf}bF]ЛVΜVbֻD$M&)0)l`("̣c H O{'dA&ΊA?W`d gCm)5NƁ r<@Bl4dW+[gBtiּ;LF(TEpl \,jm$ uM/~[6w],}WiB2[#Ni'ȶ[?%FJ`I"Bl,j۝W(cx;V*TRЏ@9[+M10jJ}'fDPP@Y75B6 rbQ1EOQ0N_9h6k,=ƚY^hlCC  7 ?:7$xa] ֺm|O*&ȪľC}_;ɧJZ0D@)m_3Z9F007YA"dZθi| lN0\lsL8= S]s&"AHT\Eq2D 1!菨 fA6& YrOx;AH/=f_GV_00x_C&uò)GgNjyy-{5 2.SPJqݶR8zwu7r|T+Kz6nAYt*QՊU?:>GsO,\1TeyhRSsQf k? nQm%\5lk~U};lSQ69wםqZd>u-vr+ oP$FM]ySA&Ŝ Y؈ ZʭDcb1;KJ2C!࡟p_Lv^)pIN:|hݝ)1z. endstream endobj 300 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref)/Producer(pdfTeX-1.40.19)/Keywords() /CreationDate (D:20191115001049+01'00') /ModDate (D:20191115001049+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) kpathsea version 6.3.1/dev) >> endobj 269 0 obj << /Type /ObjStm /N 52 /First 437 /Length 1732 /Filter /FlateDecode >> stream xڭYr9}+1AHUT/k!0V_aܰqIu\`4D`U6@9+54 0PpE P!.,A@($uΘ A[\ h.Mv -4h+]|-C Z= x+Ή,M/P̂0%_N01lIF- D\pj ;qfHR]zJiaS,jnqC@qu  ,1V 4 e;QY%!ж%ւFf[?:_O!tx/\S<_ ܼ=Ād 2*޶:8Ŵ>4pwtF8V:Gh4  |h)ADC80֧Orp=J4LV{ ]7g9/o}m}ӧtۆ~{k̤ ]ד^6H|Gq(%4s6D5@MyS"F/Yrg GEbtl`!q6/=~x$Pi D_ikLlo~㦕U,{Ŗ5[mp8<:Lq&ݵUO]5SjǞ^]|8Yai-ܦ0kgkg٫>M(pGgp ߅NѪǩwKU؛?_^\Tnzj@'Gu׬ ЃG^n2K ϮiQ x{, my-*^liQ hLZh,yʟ R,T+t'?5$=hܓ~r<묄X9F1US2E~JH2"Zlܻ*G"o~~ѺbF\dN8z2y4{܅K/*2zr$86뻐@e?)̈́ͦ!.DVeNPPJa2EAұi](')QQh/!Z?iȺvYq ;'>|Y)u 36 endstream endobj 301 0 obj << /Type /XRef /Index [0 302] /Size 302 /W [1 3 1] /Root 299 0 R /Info 300 0 R /ID [ ] /Length 762 /Filter /FlateDecode >> stream x%;OTA\݋*".:#A氉f%hKZ4'{KҢ Y(E$y3N/DnܶT$EDֿZ%U| h a_ڢ!B X q`O=M A hvnmtHu?BP endstream endobj startxref 519940 %%EOF effects/inst/doc/adding-Effect-methods.R0000644000176200001440000001102013563357366017632 0ustar liggesusers## ----setopts,echo=FALSE------------------------------------------------------- library("knitr") opts_chunk$set(fig.width=5,fig.height=5,tidy=TRUE, out.width="0.8\\textwidth",echo=TRUE) options(prompt=" ") ## ----echo=FALSE, results='hide', include=FALSE-------------------------------- #options(continue="+ ", prompt="R> ", width=76) options(show.signif.stars=FALSE) options(scipen=3) ## ----include=FALSE------------------------------------------------------------ library(knitr) opts_chunk$set( tidy=FALSE,fig.width=5,fig.height=5,cache=FALSE,comment=NA, prompt=TRUE ) render_sweave() ## ----echo=FALSE, results='hide', include=FALSE---------------------------- options(continue=" ", prompt=" ", width=76) options(show.signif.stars=FALSE) options(scipen=3) ## ----eval=FALSE----------------------------------------------------------- # Effect.gls <- function(focal.predictors, mod, ...){ # cl <- mod$call # cl$weights <- NULL # args <- list( # type = "glm", # call = cl, # formula = formula(mod), # family = NULL, # coefficients = coef(mod), # vcov = as.matrix(vcov(mod)), # method=NULL) # Effect.default(focal.predictors, mod, ..., sources=args) # } ## ----fig.height=4,fig.width=8--------------------------------------------- library(effects) require(nlme) g <- gls(Employed ~ GNP + Population, correlation=corAR1(form= ~ Year), data=longley) plot(predictorEffects(g)) ## ------------------------------------------------------------------------- print(Effect.lme) ## ------------------------------------------------------------------------- data(Orthodont, package="nlme") m1 <- nlme::lme(distance ~ age + Sex, data=Orthodont, random= ~ 1 | Subject) as.data.frame(Effect("age", m1)) ## ------------------------------------------------------------------------- print(Effect.merMod) ## ----fig.height=4,fig.width=8--------------------------------------------- fm2 <- lme4::lmer(distance ~ age + Sex + (1 |Subject), data = Orthodont) plot(allEffects(fm2)) ## ------------------------------------------------------------------------- data(cbpp, package="lme4") gm1 <- lme4::glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) as.data.frame(predictorEffect("period", gm1)) ## ------------------------------------------------------------------------- print(Effect.rlmerMod) ## ----eval=FALSE,fig.height=4, fig.width=8--------------------------------- # require(lme4) # fm3 <- robustlmm::rlmer(distance ~ age * Sex + (1 |Subject), # data = Orthodont) # plot(predictorEffects(fm3)) ## ------------------------------------------------------------------------- print(Effect.betareg) ## ----echo=FALSE,results='hide', include=FALSE----------------------------- require(lme4) ## ----fig.height=4,fig.width=8,cache=FALSE--------------------------------- require(betareg) require(lme4) data("GasolineYield", package = "betareg") gy_logit <- betareg(yield ~ batch + temp, data = GasolineYield) summary(gy_logit) plot(predictorEffects(gy_logit)) ## ------------------------------------------------------------------------- print(Effect.clm) ## ----echo=FALSE,results='hide', include=FALSE----------------------------- require(ordinal) require(MASS) ## ----fig.height=6,fig.width=6--------------------------------------------- require(ordinal) require(MASS) mod.wvs1 <- clm(poverty ~ gender + religion + degree + country*poly(age,3), data=WVS) plot(Effect(c("country", "age"), mod.wvs1), lines=list(multiline=TRUE), layout=c(2, 2)) ## ------------------------------------------------------------------------- print(Effect.clm2) ## ----fig.height=6,fig.width=8--------------------------------------------- v2 <- clm2(poverty ~ gender + religion + degree + country*poly(age,3),data=WVS) plot(emod2 <- Effect(c("country", "age"), v2), lines=list(multiline=TRUE), layout=c(2,2)) ## ------------------------------------------------------------------------- print(Effect.clmm) ## ----fig.height=4,fig.width=4,cache=FALSE--------------------------------- require(ordinal) require(MASS) mm1 <- clmm(SURENESS ~ PROD + (1|RESP) + (1|RESP:PROD), data = soup, link = "logit", threshold = "flexible") plot(Effect("PROD", mm1),lines=list(multiline=TRUE)) ## ----fig.height=6,fig.width=6--------------------------------------------- data(Baumann, package="carData") b1 <- lm(cbind(post.test.1, post.test.2, post.test.3) ~ group + pretest.1 + pretest.2, data = Baumann) plot(Effect("group", b1)) effects/inst/doc/partial-residuals.R0000644000176200001440000001442513563357400017177 0ustar liggesusers## ----include=FALSE-------------------------------------------------------- library(knitr) opts_chunk$set( tidy=FALSE,fig.width=5,fig.height=5,cache=FALSE ) ## ----echo=FALSE, results='hide', include=FALSE---------------------------- #options(continue="+ ", prompt="R> ", width=76) options(show.signif.stars=FALSE) options(scipen=3) ## ------------------------------------------------------------------------- mvrunif <- function(n, R, min = 0, max = 1){ # method (but not code) from E. Schumann, # "Generating Correlated Uniform Variates" # URL: # # downloaded 2015-05-21 if (!is.matrix(R) || nrow(R) != ncol(R) || max(abs(R - t(R))) > sqrt(.Machine$double.eps)) stop("R must be a square symmetric matrix") if (any(eigen(R, only.values = TRUE)$values <= 0)) stop("R must be positive-definite") if (any(abs(R) - 1 > sqrt(.Machine$double.eps))) stop("R must be a correlation matrix") m <- nrow(R) R <- 2 * sin(pi * R / 6) X <- matrix(rnorm(n * m), n, m) X <- X %*% chol(R) X <- pnorm(X) min + X * (max - min) } gendata <- function(n = 5000, R, min = -2, max = 2, s = 1.5, model = expression(x1 + x2 + x3)){ data <- mvrunif(n = n, min = min, max = max, R = R) colnames(data) <- c("x1", "x2", "x3") data <- as.data.frame(data) data$error <- s * rnorm(n) data$y <- with(data, eval(model) + error) data } R <- function(offdiag = 0, m = 3){ R <- diag(1, m) R[lower.tri(R)] <- R[upper.tri(R)] <- offdiag R } ## ------------------------------------------------------------------------- set.seed(682626) Data.1 <- gendata(R = R(0), model = expression(x1 + x2 * x3)) round(cor(Data.1), 2) summary(mod.1 <- lm(y ~ x1 + x2 + x3, data = Data.1)) ## ----fig-contrived-1a,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- library(effects) plot(predictorEffects(mod.1, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) ## ----fig-contrived-1b,include=TRUE, fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x2", "x3"), mod.1, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ----fig-contrived-1c,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x1", "x2"), mod.1, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ------------------------------------------------------------------------- set.seed(682626) Data.2 <- gendata(R = R(0.5), model = expression(x1 + x2 * x3)) mod.2 <- lm(y ~ x1 + x2 + x3, data = Data.2) ## ----fig-contrived-2a,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(predictorEffects(mod.2, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80",fig.show='hide'), axes=list(x=list(rotate=45)), rows=1, cols=3) ## ----fig-contrived-2b,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x2", "x3"), mod.2, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ----fig-contrived-2c,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x1", "x2"), mod.2, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80",fig.show='hide'), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ------------------------------------------------------------------------- set.seed(682626) Data.3 <- gendata(R = R(0.5), model = expression(x1^2 + x2 + x3)) mod.3 <- lm(y ~ x1 + x2 + x3, data = Data.3) ## ----fig-contrived-3a,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(predictorEffects(mod.3, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) ## ----fig-contrived-3b,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x2", "x3"), mod.3, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ----fig-contrived-3c,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x1", "x2"), mod.3, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ------------------------------------------------------------------------- set.seed(682626) Data.4 <- gendata(R = R(0.5), model = expression(x1^2 + x2 * x3)) mod.4 <- lm(y ~ x1 + x2 + x3, data = Data.4) ## ----fig-contrived-4a,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(predictorEffects(mod.4, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), rows=1, cols=3) ## ----fig-contrived-4b,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x2", "x3"), mod.4, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ----fig-contrived-4c,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x1", "x2"), mod.4, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) ## ----fig-contrived-5a,include=TRUE,fig.width=5,fig.height=4,fig.show='hide'---- mod.5 <- lm(y ~ poly(x1, 2) + x2*x3, data=Data.4) plot(Effect("x1", mod.5, partial.residuals=TRUE), partial.residual=list(pch=".", col="#FF00FF80", span=0.2)) ## ----fig-contrived-5b,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x2", "x3"), mod.5, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80"), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1)), span=0.5) ## ----fig-contrived-5c,include=TRUE,fig.width=12,fig.height=4,fig.show='hide'---- plot(Effect(c("x1", "x2"), mod.5, partial.residuals = TRUE), partial.residual=list(pch=".", col="#FF00FF80", span=0.35), axes=list(x=list(rotate=45)), lattice=list(layout=c(4, 1))) effects/inst/doc/partial-residuals.pdf0000644000176200001440000443022413563357403017555 0ustar liggesusers%PDF-1.5 % 3 0 obj << /Length 2584 /Filter /FlateDecode >> stream xێ}q@ryH14E^?p4E*$"ȷ9CRWbax99H'#B&9G^AD Kc:/2U G.bB_pUZG]-d(p$V t= e0HZ'-JIV ?6H оt>%߯K}O5n@`G$u#Pߗȟ2X 4Ġ@&i!4x䓢#p|y  p$HJ"&rb2@RF",7`7g @zƣʊ Hsz3m!/4WumOIJ;$Gj _гZ.\@ Z xHnnxd7#]'^ IHŕ,.(@cBJpDިzؖ7⌤'W:?OR"k)k9 TLf#IS+J.ӢYVIW+JK0 yP`m^w`Ark4;mqz]OAehჹqJ-CeXWxs:Ty9ART:)9@@` V5,_,kv浢E:!YF1 !@B'`qF)+ Qf bWxI~J=A8/8MHxrXpo5(t'vS*`#\4-)v4hcn"elB0[١ xC$o{9+_# -U6ScڿĔV?/UfOi\2,E/XQh`m5*'*Iqn]$$Xvf)D0P5] jƴ tC!-U;D0R$i7? $5Q.AYf&8ܗY]bHE1]W$pUЖi>x/b] sxRqd$7i2 r8/L731Vc'aUN4GM VϜP`]  Qzd UU)r1(z MT7E]&!f ^j /V%LUd*1|++j t5F}0jJk$7jQ_S)@OU| ^X5G*j}}f_qMtvǿa `=1yc]Z ۽$5= `Y,E!Fis=AǟPFm2 endstream endobj 18 0 obj << /Length 1834 /Filter /FlateDecode >> stream xko6{~F )݀M(zՒSuJrEٲ㸱Htˆ8_+}$xh[C< v%„8 %MT/"tH()g|jkWs/@~vp|0G!ʝ##0AX,v^IGU4x{\P$W+mOhNTU(Ah@W4ƳlTy)th031ehh-_v{ȡ꠶cܶFZVd )[ ZSCUoF?4RF?F([8!HIyLWG)jHruQ$eQtE?B WcA_ANKM9ϼnh-^>;&. t** {,ؚIS۽E^}m9Qdy1b$d`S]~J]y֣NV.Iu]w].Kش[=r :2$7>W>itޛ~lO{r"?N.YþK=HŒ䟒UEڅ!}pŃrvSN'-յ癏OY9 #R6i>qa6:Ib(} Jh+SBj&B&mwnrf.~^$4xwQ$q:4Qf_T-%H&>Mg<`bYX4kҞQ~ ou&W\a`J| R0å4IP ^x) )%RwBn x0}w &~e _q8sScP#(*(3T9/Ksl מZ'#"W d)7IoyG$NhW*e_Ӯ*]%bŒܨ*< KǀD(]ӥw=|*Y2Pvs5zs[7g}Rퟪg*[avPtSR0ߑ&` Hcޖ]%ui˶H=376{L`x,@XƮזOT endstream endobj 25 0 obj << /Length 2646 /Filter /FlateDecode >> stream x\KsW X1ǘ^![RҞ69$H!-9c$[ T%Σgz{gwoSmyOU>"'qz =-{mUXjwD{7Otp:yP۬qIdIUZgC\)+.onR.ɊuHb_lՔU]I9F(,hwL:C!/8K)L3d|03 y;*WbhMGXbﳌ!Ϭ'UYUJh, ߇n}fW.uO3n |=]ig4O 83 z6 37H9Z ECN = ,w4 wi4+Vԭ!KSCj ]ޔX(?R4_(0(ё,L'+e'ÑPJ~޵2~0RS½޲z5xGhSȈ(o޲ $@yzWPqV^ A&/;+=4j;\ Q;".{"Z>vLeS*YC'Ҡb.TLGtӆ3"~.Jlr[pNiOAj,a].+ draGh8mdiYg@'Y}%8k4߰JT:Fǒw6N"`P^&3Q|XvzH>Ok ÄBhc^bǷ&D!<{lh֪E3bI2ф?(m]*^[sV=w)X9gGm7[H(%Mqx ϐJ_:l'&KnQV3 j4SLh[hvg|fTljN(U9,\0K4q8*lz%jg뀘tBsEnr8-'툔۳ hXU4nE`db~~V3]a 5 mȩRgCqCzt:!fJ%1dtqnP*g$bbJxxf;S=t{7)\..YӮ\ i4?h*fڣBW7<ObDpoq!3 tQ>RG:O]=boY}6;ݯnS2Xx2?bqwFyĚewWWwuyo^ ;$wi=[3Xw&DUvVz߉k9_*) EOq޸͔9KE,%o_EC'&UA'[-=yZLQ䚤veמ[JrZ7nkyޤul3l[MZz_%[޵u͍-INUb}zֺXwd쓂SFg ܟUBl,F)Z#$6~twk>ERsaVuljG0=zOsvij:BGZ_xރC٬+%U1^Nnٿґzٛ н&mY(?ExInq:wInZrI {Xr$3tƺ}.M"j-17XTPhMpѫ:ݓ[*@@7- <ɘbHz;3;J0ICpp8I$(,NCtO"R)WFQ̂ƏANGqz]NS,jІo.|6"4.VxYRT Wg1*AavUڰ)h#'-@ >%HO4q xgc1 ǐP31 N !O313rq`1fcČc8Ƽ]fc1fq _a81[_}ңGQrGK"Cay/ș\P¦(>!n]Sdg8md*]';-<&<ֿj2\j#XTG 8|'=갎DIVf`~&a(5`t|AܓVS_eGQȝ1#|?&B6 OrukJӥEEGvyy}ǹ' endstream endobj 20 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig-contrived-1a-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 27 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 28 0 R/F3 29 0 R>> /ExtGState << /GS1 30 0 R /GS257 31 0 R /GS258 32 0 R /GS259 33 0 R >>/ColorSpace << /sRGB 34 0 R >>>> /Length 103862 /Filter /FlateDecode >> stream xˎurOQMyt%X؀}u( u! ~{ψoI/]332b#_~寿/?[Roor?XF*3o?_O7g_9}??}Ogǿ?K|zy{XVӟ?z(1y?WM_}k쯼޿O_|Ǻ?ٿ_}[wǯҿJ+vs/wLW'^ׯK?x]9_i~fϧksi?W?~<.˯|~]_9d]_ev9~φz.ׯbT,&+/.aTkUvs!d\U{|Nnr_f_n|AnlrnrM'BM[sflvy/Nrzy /9j/.nrMak*:^fi7쓶tNZ~O:bo>kuЮwnO*?$ zٮz۞Ml Zs=_WݯqzU~s\w7?sO~sgQOU_}p~bg/~5_/!b]_e?\}sصͶhJ~_z>1vs~xd[٧.v~_?v᳑Mc~ϾXï|PۉO)~_wgazRi~ZuշrĥVz;^~Od7='4zOJ?_O'8|>&?ɶs]~gٮR(۟mOvTz?1NZv]}>R?zi/[<}ZT?k=mc~O˯l>wǖ~es]~xes=ٵ?;m>9/.PMau\:f-_Ok+|^c)~}̱kzJ~?ל~xe~yq”޺lY/%g|goin~O\^xesISڟyU~gzyRgY^ڏī6RMyZϿ |aN݊%۟{yϕt<9}[>uڵy\_`/bsT۵/ʳ"?wfudZ|W\z=V:;V:R6s2~2~2HNδtrD,HeNY#ӲIYdZ9Ni刔' dZw9OU"2L(22ʴjdB'Ӫq|gZ: N_V;WdZd^Lk.qL+"ߏL#+ӊiE#RiN5;֌δy'Z"ZyߙwdZ;ɴvs{9@"^~Sd},l?eux^ϵ\*Wf"sΏ0uˈ|ӈtPeZN<(gG(>+7U^'dxc}xYJĻÃd|W"Z|n?#sr>ÉK܏[9/f Q";Fy72wxwy|)Ry7%JʷcZH7& o+ؓ/7;!ȞƓ@N:)F/dR=ox'}#ʗN>ȷW姧^zF>Y^)z&dYC9S/@k勧ފvȫKoZzΐv]޳zRת[??cNׁ쯸S.)WO!وԝ\LQN=O=Oޕ I{Qf7fNT<ևouM S> `ۙ ݳcJp]忔rW/ZU"ȃk?ČkG'ϙ,n_|]/ 5 PFvCtE{/8*Ą&J_s]/tCP;Ba 95pXVuH [\JE9U)ʦI nl+imKgU GB(t$J 8 -kZ&',i%w`|~7jf€B:$!+Wk ч6 ^փ7Fr1â?K0z3l86J\'KJ_z~f ߅3t@#d}KͶJ؇ xM *hBQnUӖO۵j.)C[Έ~> RQWTG&\"cVlxz r߂Gث˃dwlQK 90N/Bi:aKgbGb܀*4!Aj68J@ȫ@|jbn90&q KÓETBNze [@|miE{:" \;=!Y\wdf 3o[T eҒ5*U 隫QaTofobJAd#س[f=96#/=j`Q nJ 7^vnbh&F#Rhe=O'Iv%u "I}ˆB. %S9&,pJjC"oJp|HA%kڴ?"Ђ5 @vݏH +;BL{?[D]PuW3z%cԾ.(Գ1gWN *G~-&pwŪO{OL==e}7K5!:bk_kt_T։&TO C_#yC[[)] < %I ?-4ޘv<7r.q4t<P.E7@>JYB?̢iMUxɇ G¾^JP :Koxeqoψ#H.gjeAK1`T7 :nt,TKl-><$l;ht/l'; zz*׸:o[HFJmῲ%?i(l j%7H~s*.$鐮7J2o֪m9#ۆ\u(+tκHr&W+ӭZ6rw,sIN|t4#juznSJ_-A]l'D3d }8Z;(E"6?ڎRh;} z}ԧS !a&Rwo8"̾4.*U~z.3&dg%ES&QE݈4NК: 3EAaM.iF}_Ve!n1TU gwGR-YROqčifB󁽅;ڵhNQR e7PlڡS__ 8C= ~Hz v}d>j?F-UX&4,™؊u`q (r~"s:Q@d;V2:~9.Bo W*4U`IM&Sy27J.JB8Z0Rn2yC:jj3]EoS2 $b%ւJOC~\k."PbtWF%UU ډ9-X$ Q-CNĺ<9FL AFa4mP=v \#}>&<2i+ +\(tx z;1Bp$6m"L:(s^z^&|*ߦ6l"*e=&n)<&IХ5$n^˲LSomA0-9m$ؐf#;`i=![6k"?Yja%iea;f+z%T?qn6Z n歭WM-eMH.B)8AeYԟ]a /CdOL_O}h/$1յ9<%wc-R'E8MڝKhhqQ؇-5{"0А0i4 eK)CӺ4K 8*`'WY4Sj^( ߛSnx>66)6m \kIqMg .䒯rDwYZtK6?*.1LD X܄fMGHᝠrP?Em.أc/ܟ֎4g}5@6b{o=/&(E0Т33-,p/ŜNً%0pqD/zkh8f[BV3ZY>k\8ʾ (8@8КԨZ a>RJ(h N \D|ka깱'׈7-Uw,VE'cΔK)Ƕ68܊4Kp#~Z7w؈WȂ}xC,M:-lY2hznFh㴯$k.8B%j.X ebg{Փwg WYԂ\^uDPw*XhGo$xTe9lC3N-M~M.imQdtph"`qҨW:=*v1X] ]Z O* 1ɋ]tb=̥5+A;5ʌ 蠙Xy5NI`=^@vԛT udg9ݶQPӏ)1lQ#\l_&Q{du w uFLV'K/ɦUI|{&ߩwhWLUI@|1(3})ڿ%ٍ'euVk!N.$T| ̫b.5&t";D %Jr ;~njQvL0Ni]! AR PYu (1be_\}4 @({6 T#cn.<~,r|IHͰ(}Sw+u *A@==_}H&n٢firBLk@-*\M+RS˫U|csY=Rw\Y^4x@kĆ:Pc7Ұz 'MWS]?RutIm*(SN-n;A  CAab[s{!l\yQxV9d@I %s9 O@*w2=@ Qˌv*| `Un'.0/DqlY/ț 1U嶛 0n9-+t6ft4h>~ɢ%y R?5;Yڂ*KGRx+2wOgQYrө ڦ+=g+μ6nR26n3XvF P$8'f) PK]  Ë-S2'+ԦJWe[WG7W, @~jD&lξy K`42NqCWkyi{ 4$ c34I_ԛ1SRe Л)@~m.G, zX _5̰4O4L0Eomq;IU3m !/VIcxE}NGg0 }$zT';Řlsؓn2-jTw[?_KE!o ~*R3̈T@^bњT'[`CARo<HfUAT*tQOLVxy:Ef܆}XgBZה`/lIyc0'\C%ℭt99GtѩԧuFxY[["j;ؒ9ՇmC.MKu&yB و26ڞ {{؋S r u&m*k!-A_3,]TD43jJ %5fQiY$çQiۜd eGD*"(j`\0puU=cTPZφiuSޑ)kR`?cр:6Pڔâ$wJ7 ޒ%ȴg'L7TS{a XqE7;"|%(p2EslmP Ml^e45Z18/ B-r4GIgtQCS5_(I3Б5e45}"&Bt=. qYhz?F&bY)l#bɠ߂SU 9wNčހC[yUK Z1{Q3vOM$[6!Bg@[fcgy xҝ;%mA|2 {y`S#ړo.k^jDp4ݠDliY"]P&|c(4ϒgk}aenefTGf(Oגa%Y"O"kQgh`%iDKPc_AB62aE}xB&R KV};9ekX:6m9M9ԜIザjɅdY#W̗D uh 6+%%A-.Qݲ8Eo}`NA*eBХL6u9: ?+"Tߞl,[G#yYF8)d$N kswh HYM\>MT56@coGGOY ys? A-v߿i(w̷ K]2b*dY(gh Amd fQX%wd'7)l{ʓZ7WLW1wNhXhnw0*&5ʭctdS*{'G?Ѫ:sJJNJOik`hP_e]UD K!$smw4~%Iʎ [)SUch:a/L%r9;MD>v@GoSa=ծP+j.&ِ"cv@9ѕ|ːgbuf[FE;@TpBH 堙}83rid=Cn^Na}A75:dІEhD*NPp KRszX7(xPxx/Ӳ)j Ӿv|G؅n7%l% 4My BV򓛺*^hPȢ|Q-얏AV%odgBMuM"{WU`Q…@ ԦʉQ7bj aa관 #Z"p\ UKNlWYZϝ?8}0wEOW_$={ 4al-(S`. B3;+2Ȱ.`[s`oWzk G.N@\tGa!V?Cι.RBR{{B0R|wN:}BPB:&yʖpCsʖ段R t 5))'汑3"V! M2 {}*T-Z֥MbL6p33}ɤ.84e֑٪AbaIH &lCрEŘEXԹ89J;(e(~@UJ,&MAs?cVg[;KSIR5ޝԈL2 oҔ#|~:~ii[jt5,MAq;;x8n%DS O6ؐD$/@~\n_aK+JAnI]hya4I|WJDv Ơ%{f$1e%OΝA<\o v>vנ \+MU1aSv@Hn?Dq+P/)M$(cpӑ 1Z=q^["RrIhrw^]*rldNgt'ȱp@; p"|GtW(H za[Lq;0X:o1K^ŬQLH_aiy,g?^TzGwBVA B$сlT 7wBiD7%5YM $}oTj5S?:ƒ-JIg/{?j N+NqqO륂r2) bhdWeB3I0ÜUD'9ܬXxr \@`BITmg+DXEUL$x@ܠi9ʦBE6)\*,O[G1Yi?:>%3 =ԁ{u*+/|sB=Q$ F=76uT vk>S&I\T,#C O&ʫ o'A:1\);tf\2aI]@uh~;0$*݀]88y6d6/Eyld'h)=MDγ*ޑ#Z%8Si ڈGQ5h1c<]m=v'K1a)ʐ.YQ |ȯI+*@`U# 믘PJdghR2r71DZ; [k"eR|vU 5eu`7![u%=](lb|jtC֨2(yAeol((x $9ian\3өzS;봬T;G3@L+AiTƌwyhdТ:,CmXXB*Z ꏝ2]U$^B9D:|fSxP֝k"ۙ/SDtJ6ÔzT)={R,6u**6b8[?I-D'Hwd,,Z 'AgE@NI]EĆ}r'WjafTU D:Nپ0AGR" lR؊n^g}S[.+ r1QQ:R78D˗<ʃ÷?ZXCō=R.LR ECHf7=eT3#'sU_O\}#l4\,4uZrA=q>THєܩIwշ*߈+`-ݚp9\nwl@n)١w9oD&1]nAS'$a&Uu|Uϴ!"5x:ksXxSsvX#T0:y1P99_?}}e)䓓x ;I_fOPL&R-b"!Z!وx,GfY BK˜JBqiߤ"5<p:)+gP-]6Gv~d9"ġ YDum J 9SY&SuX0%'V+zbNI)OU]3 욚ns`c+JLqWv&cT>6%߶9K4`\c=z!S3F-Ҕ咅xm'XNc68 ) #a*[_}x`bw? ~Ap gu $Uiߢi6h;x}k:蕆}d暨b !1|!e2SnNSy?屸 `W7&[/r[cR"ͻ7ܭFL.bQsu50>X#1zsPAm:m֋4又[cz.Է/JVĹGj۲-TT-$ G.嗕,4BJP?85=ץy+oٖ2Da/l}&S|5MS/:0zUEn3W;uMf5av j=2LAb72mWwFFoϮ*Yh"7oyʧY-RgOM`a361̻&ՆWY مNkF[~V^޶<4oQc~ CL`i *w҂'ӭm npzˠ?캍sXYbՀKYInH$r,Kr{JEy…vi1!i4mѐqbpC ̓e?\8gЇ oI|Z59{S뗼SYldž~2}; lbPl|hF`𒾴o\g"@JB>$ >vB;А3IS(4"fV"f'j@`p@23F!Z;ur*;'iWE!Lr5Ш7$Cs9V@)5^af_R15B-Bv;SіvF!jyLcƔ؜,[ƒ&E9:l`:oeTtFx=l.ad=0N{yD?OjR"hwa `o3'Y$u87Ue%LpI&KLT"~m'?<;%8 DI7Z5t`i$syyܜ?Xx% th.2e1%*i mt3,ٲD qa8nF{ i/vA{G|Z{<6apΨ ms0dU?+Z}.y<%}ԗH3ᒿtSV2\+2xZ;^Б>_vla5f3j/"$8ۇم Q$DYɰlun:x@oQ3V] -BO!#L@ , nţ ;.i6 ok^Ӛh3<ugtLRţ'Yhܫ=+ut!T=#3^I"88&t+dg$XW8@rӟ">,!;e-d<ҏC 12CڦwSlt,ҍ455jR],UC+FK P&_`U锢"޵3 SN2<4hRqtbm+WE^^3v{f4ۜí+m!oДJn:\-ipc.ɖ$Kp-ؚtFAzO(5>5̛E/ H7Z S'~wxOjB* e'ޙ#Q|VmD"ä[AA1h}gG:F g?#5`TAQ>/ A$Dc;\ڦ UIfM22MZ1H-V]UbDvlptIr oЙH&SmieKP=/!KiCgDNFL{>Ά|[ms5o'I܆Z"Adh4($lƎ; X7[JR TZ̀.r{25c 8ϲ6K8۠4װ[5b%8/+-m  E2t n\R6 =]ITQP2g=PJxKP}{aB'^0"e?S@= ;!nvZ7(b 5T3~Ө)uh]DHTOdVj‘K "ulGA%7YOqۗD?wS[Dobڟ*@P4b@kO*j [lb @^/ hKO&*zqwT7ur\_B;pN6 gZ'hPVę!wJGKVtFC5OQOR'N#X$%ʒ&RGyKg K i00ztfDq4jrerx[Kqn Z\u51 Ho~,`/He:٠G.oI,١ 9,hF_3,/x̵iL~1öC Ti$ J`߬O#$9T^-Kf0DP>f36]\c5SMu:KtKQ> >-1j&' 6fo! t(nYj7ݯ~p} oiBW vfEӥplit)sQE94?t{@Q#fE WuY^KȐف8zh;'#{#@7%Cݨ7#%>! 6EDߠ.Y^kS8<<*Tͳ3>xepCIUר2u 4 E.1(5dpB0 6W@ "3rV*O"v rSzG wJ|8BVZuVLj7837$T- & NVk}׃C{Gفb-V_ ulp%ML"UuJ`8oSERJFc<@qjR~Ap-@$P B uȓSቐY};VOKExp+RnӅUs-,:7=LDpblnq‾˗ᖥ0 B65x~ RjTǹY@P.o,^`@^<C$gȵ 656R-  iiE)h=[6Qu/<YV䜎]I)k6~ɍ0b3B"{V x@Uʵ"%qM>NM"fޏCVeujC!DI酓OkG:_Flc)ƪ `JSdFkǥb)~iK98%feb+Wjz <[0o'6wB>~sДdk;QMauDrTkoE;ǑyQ3~=v=Axi9'i+$^ЪF$va-O1x33.V#ˇC?XO=w+{ٮRr8ȫp1Syl⧰p34'McP;x_85e49׽A,h:1ֻ^g@fYN86En -  f¡&5f:G`CL`[X-~ Ҟ@.հ&Ò}Sdh3<%>(((:j tfSg;){c!e/ it\QOΟ+4QZ] S0p] YQ]-}İ-2S)t"f\LoCT~_wghitO&S /6TLyzl5@Bh}a>~˸󉪹']> V }c,|]R4ST28kv4>g͑f )}iA"n,a9Z2^^qh@tMqrx,6o\S^s=3L $gIkD*&n$HN`%t={csÄ04u[cal{E;2e8Me3/Ls=W*JV JI)[Ff!:ck>CakC*da7b|a H6Ƨ-?bG׃9)ؼX> .\=Khs/yc@/LSbWMjjeLNHC@O[h>iXpʲƵ:ӝE.VhL hWp\sp24 E>Y&@M$F_wQW2/ua!WՋS,?nYuk3Ϻd#pXn/j9m[夷l,[[F#@[|<ԭ)nGM #3y!Ejokvϭi@Lڊ-M 5A-4@Q@{W;}?P.{шt\y|&[Jf8_7&3'"`4U^fHHp,Wg)%Pt̍*NsBV4O~R88} LQK2Uhl 2yF蹏3JH>k8W @7 g$tU#rڦnɒD!yVIkK֙̈́fE'ɏ[ B<-5edLDt3YyqC3LD"_cI%?V*Br2ܹ!ZC%"ȚTW"akꋏ~e\u.^[q>Ò"U8ֶt<籕?1-\,3*eDQ.Xveh3S&'!RMy X *7āvQ 'M:Z! W5<m{ķ!AT 類 ozԟL]S/W ${QYaب-$Q,'&+Ƥ%PR*M"* Zg1]it#zw19t/8C.(+ld(Lb|fp7dSB4Jeé9/6ijaΆ2?{tlP e>& mbz[mEg&-*;w;zoe]+7G:۱"tvIxjP!kD Irw79 Z_WkS70x䶪 ԖD)N!+&.>ǃF>jNFo" 5 8+B$SRA>hZ֖-a'tt=KRp851}.4wIz>]ߎ9UoT(d/ŭ)^.f1XFӢ`e|٧5(sLy*=j\"XE4v8U|Yl}&p8]Eþi8Rȵ͉U|tmduQs,s}jq(EtHsDwA [~@yaZCc2d&/~lno7;#ZQ.Ҁt" XG ."% g~(<WK Ks| 4m)')e p7,T 6ޔrFFPK>MUG#X9Ƞ;wHTŘbHxi) _g4U?(@1Q?QlY ֔.Eӝl9b[hԾ0߰gUh@,Nr-#: @6,f2>SUi+$ҟv/:pXwMNԲm]XdAҽzNMMuzpyR*T?d eS{9Kt8ɊxH2IldJLu^t &'N%|NzCboA,,UJ?y:!? dЏ: ` AfLrOӐ#ӎߒI`@ԡߝ>Q'YxƧ?UI,l!/0&҉xޞJCMR:Ͷy 08s"Hɖ7q,: @-cʲ |LbV ymbљ1TJR!u2c_Pʢ FNO?yl.`4G1፵OxgMJv CqOvX4<߹8b-MAmNk;C [SCjFr;Vp:i689K?ݪoX_Qe:Psi z%ʹB'9%2m\ BD?=,_͑hqLQ>$cB@Y&7o[ZiYK7X2←~xh6?E4::z'eN!emSqxAV¥k^!_!NP]S)-+1/D>8)$LqD-]J+FAxM:h`y`w`VI.tH5#$- |4P;3y2I+raJBwʮ0BMIՓ&9g4z咕|ˎ37;6y4Ljsv-jQDVԂRb옂Mw@NI5gI ufV i.#P$6Ƥ2ak馑 9 ߎA,~ X յ~ m`O;< 셬% [xLmEAD*@#0I{)\X >Z3 \$ULVW2qL6d*hD59(> AgϥT 6wb;V!@1[A+(,΅Kԫ5eU(t'^v 1`+pt (֐Ruѩ<:جidE̜\7i,&Q7}@tj=jhoҮm|H3$zɿiMl!tPqfJʹ7tm&&Fg-J_J)Qvq@8ԫJ{"r&9<4t|3 lb2r+u܎t3EصX[+5lA$OSrl-[{?]. ]:Jqɟ$uc^NF<&:!ؤ0KJBC:*u#mZ"JEo34~VX?~Lk+lxјJ2=4$NMDk,]E]YFadu,lo(6].>掆ˀ=R,F>LB (fg.eG?9|[8fU#u 67WMẑ)IIcdYBHXˌqVYVЫ6HxgFL>!-0 :UsE[ԜY蘉YbIUdwj|%ylO&F#^4۠Mf ⤐Dw(f郑CWlL}d?_vI9E!EGi5DJgs7d:F4~bz/&Q~_L)gA] ݐ]L&`ԟZBם(H ";@TyANwRI)O ][Nmˍ~<3ePZb¦MRٴ-Q}Q@tNq-אKy`s+An(vQbǻ2ZWY y4oyFv'SҎOs3MOq8 *6\&Mj|>E\'-5vz>o+4蔌3~3 :L<Z3FEXL-ͨ<}g©^%\m&]JL)9I?8G$"RљNt`[z`rGJ:F)s ڇUńZ <4=aL:,;4%o !ᛋ' ^g4۲=KItO 8lҨ-jWO |"nZp*a ZH}F}$+I)J,ln!Fj }Zֈhe z'ՓΓ&d_65?u>8Qeo0] qH|yy]񐦡J5Q05 k4mNT[claAuj/y+^ @Fi *DrM rj1<Jrȯ|fdծHWj}7deO&?Cbܛ$q!W@<%hcq%#Ct~ND/d]•xTdBm?4 !!q d}O3po'+19v;bs89K#p /2O4ޘS RC!\ygyN=^(b$QDcɎêív?%:?a:htG-m"Ot& ZxW #LEH4:fP@-d7ŰkTUNyWבA55澓w{M;ac+Hw =N ~㉝# tf/ùQ4 4\>sύ{ 6-$0H]n)逷Fjީ~YuxQp}@UpfrXS"N~Hm P =ӛl y<ŶFm_Q^1{G%(s{qjrzGU] Vw*?DZs*ŠB[_cɨ EiMZK5Ut'-ϞT)u,2: hT])Y^he͸a8.i_FH/ hZnd l:V: QXq`h D0WIQȷU@Wdx[qCٖVYjH^)Eo f h0쌆z쬱 4ʧqEq dI:W6ʥ9F3%آC]Op[L )qvAySR?ۖŔuQyg741TuA%~x!gwԱ(gH0܎"}j<~g 7 Lj xe<*Bfu Ԇ8 ; )\ ny|0"mظLWa:n~sA`j[e .(a,ι iX5 '*9SSXUNbj$i~nDYhŜmk YY^^^ 5O?M%N"М #(hk*{߈fMLƑ1itC`$ TɟDCJȹ :ާT@h}y탬~h\׌9Ė[ɴ8t)Apvll%Y ,r}7EĭKDxuBn:u[*Z u+(I\3= 6Ӧ“bO)f-ȶHQtds_# z.WL2yCLm{o Κ˟F91 N:Tii*|bOYcB˴-0s{T˿ꆌn6kyL_SvZ@dLŠH&Jr^L=xTbI7eb0>َiBݨ&t M^4*箨KZ`oTNWcUrVt]ZuU8E䡉x melao4 Eϧ(MٚC2r2l[w'&t"f~$X#iv!v><(7!&4by8s;y/ܑ_,\U( 5xV6>BYĿ$AҖL4ICv aIӺvKzΚŇ{ $\W?xeĒt4SMB5&* B ?Y=w|RX!*N]Z{|T yy4&;ØG(7ӈdI uY{Coц8IBn"^Ƶpt˱->닡it0P&rXˀF!p("1PFC>aOşYP"l#,q1]]8 WlRF;RxX_:ޏ<$v$wVo㤻kH2+PikڝKN>D)+/!{KcC&8L^|d\ѓbܰW`}x&WZǎ#vLD6D/*Ăh^&᳭H[,]Vl}FKoU Xx*MilGUEZ'T]@kxF]UztP{U-.nL8Ǔt 5NCybzAQYb~*!uQxڵM$ll"N ai]@b6[[h/VT 7!35dAFg.-0#Binԅ#v v:=)'Gd I߰27L_!ۺt4`P77 ҇MD92`QSQW#IKN˧ldAW?uo|Z`uKM>:1?ln2lԃ7yO ȑ?k{" ` j$ xqT4ʼm-&w/,]Ɋ&5Y|d윞,wi@>I5kZ}JiLȈ}8tr '\Ia=S2l&4>&Z<׍\6aZ4A/Wh㬆"H Q_S"\LBֹKU'CE K'i^ӛ81LUt9{VĐ{Y3%EpVfj$F4J7CBLZ pu@,~PoPՄ9e'we"? 3՝H*X% OUo+$LkKeԅL.yyw%M$ g(KAz+C j ZT(3"rV7_YceԸe F=4A[rЌ+-ٙtXqOҠ!bsGNa_Dܢs fE-h8ag"Rp* $ִ+v֠A(Wm826AvM[1>l px lV]JC`}Z0Pwh j mj&RO g4Wi";P.d ,/RJ yIwQO.L.CR`?QB7 SuXxןw|g+Řuw"qϔv&;nU&nXu%$^E1ؖgE3b 'wb#FAV|pVyHK ͑;*ͿB+3N)hS|pR07kKS!cCN,@>P1,WV;B%XG(hf}X" ڨ&S^mH~AǨF4K(f5Gk8# :3Z*A.0 ݂'oUwN8P2VpPs ]o41Ir ETaۚ)gw Dc*~D l~fU>LnS_sRW_xg1хY[}Ck 2nsiR(s'*Al}9ŗa;HRA9-qS>M[2 (l=zC ˤHU8谡Aұ! JYW}0Ps0@OD84n50iV G.»5nF[ &;C Ru5`ћ4bI)$+|B"07O"Q|<>kz,NlyORP>4gڢh2apj/Fe:X; ԆHT6EvIzwH8?tkS!8bv??2kB\}aQg@JN5Aip!CXCͰ9ԣ6hi% LL}RFV‡v `n>(F>ܝv# eAhfAoM1GAlHk7T;Ƭ Cͳ 4R[nwx uiAЙqu DaV8mCfzvҘ.Y\+[Etr\#v" [t69IbOhR[1}naT32)[kC+#wE7-_U&rhfM"{B\g ddsubt1%*P:&of0&F_P0/5|[60X5Ѥл<ۤCZ|FSDtpIM$Tp"'FΙȌj#"OKCZjE#{n/s?d?+,,2%Nh{$],MtAzWX%$S^c=TV.rW" 5 WABLq'8Oy' 4e)L͔oSs&;&ҕc6(صMIPp_ȗxuB4:s y#P`u :|woks9*ٽYǧ M@Õf@8WX%alC ^ l- XKQj]u8e8ʵ|!7#dN젨1803r}C"M|yDY>FC9Og~P5.b0KhT"'{ dA$C8Md @ (<ѦFv rp YH&`I+{Z<$x`+S[yS6pDUS C8lN,_1\E`6[ghg-;{\jKGI E]cLu a;\(.zn@Qj Ȧg(4Y>p=s 4!ꠜ\rOtbݣJ1d5ew:c.q9ͪt.zWGrQ>9G\*jVKFqN7ڪ!_Gw:htyrP'1"; Ajr}Ðp-#`Y?dyfG{gi &Sz)6e:y%a8E+ KZC,E-I &8H wMLE?~;=: xa[0c7nPqiԅ R'FX9Ksgm} #} 679yz}Qfw^Ń>u5!+ 54t%2pI:XӡeO6c*,Jv5T׉=b%_\L=N60K& SKhL _ФƄYCnC d(TwK]\(2#d@lRz(lXhuVxQ:cl vGGr7+w9nrڍ9Z-S؎bjC_X )ggAڲ+%@^kȑ˓04Ag:YC+EULī<Y6sq'1I?@{*nCu|D2NNg(%ASa67ZaDΗˤp{Ґ=Oė* BʡI.1%e:iIr22I& 3B|Q~'euYkf]@X535h퍲s a|{M[USܫy>?uɂ}XlbtE#a{e)]#okg ҇`BEzM=qOGG7t@gD55!׀B!cmˡxۊSd̞4D'bLzpWaYBgjEÄe&Q` {$G{&o!;qn. `.%$kҟqj:G.kU!{S5_56c͘'nhNR-]Q FNE'"f8Y .4FFp8u WX#_ǧFŝ*MJ>(3Yzy"ަo'FMy#2$?0 PC]Z;gےH!rk)ֆ @3;߷懣r^tv-@ҏx* @FqHd8Y a=?ɺJ.@7NXܚ1 *PEϯcff nGE6X[ɪ^>RE5Jn2TtmBIaAf%J@fdK嘝'RiFɟ.$}%!% =Y@ܕ׊e$7_Vݼ]E uz=.Ay&ڶjzu~]s/L+旒TcYpx1/gz6~9?_ 񗯫-RW*T֥~痳b.'o(=]nwOw /n֯ہ\{-Ẕ׵qӯߎgpñ_K2;s~y)\r,Ʉ_";gE-׳q_“U50qfjH쟿[wo|6K>YBggQor^j פ_zpIR_O#ua|7yӯҏ].g+}o_?=_=^S^k~Oowo/^K$$/#_?'|׿˿O_WG7GR⅔͌s<^eoZS9?Uο/k67~/:4>;vqњsq<&o[]ůp=ێbxM_aҫUE<XaۯW `+YBkO?L!Y_}c.FX},XtsY돿ZRQfV??۬z^}^ˋ?]l?{oيˎ{+l_|o/VVWr:VO+9<'d(=z=KggW?k<,gt#"KĿŨϡ~>I}ngJ~|;ש0YdYP`sK:߿-⹞-]}>O|ojmˊm~9guϡV~Q ~<¾Eϒ}?׻?stYOO=g9go??\|E,}?| ~qE^~¶sDxw깞xVTsSO=]YYwÏrp>Tg#??<ԳOysSϑ~ྟݟz^wYyI\sS [?㹟>01pV{g9}Ds;3ٟ|x^x|g<05s~g83} -O wf-|Rw?J"bE-Ŋ[bE-Ŋ[G)R裸XּXQwKb%JSRD)yJn).?J1?q~bnfsKXG)VR4~bE-Ŝ sXwK1~bE`-+a~blQҏR>G)VlG(Ŋ}?J1bE`-Ŋ[(Ŋ[9G)v+Cb+o)v+o)vG)v+o)vO)VcQzgJ|XLn)vO)vo)R,o)Ϸ[-bz.b|KxX?R>G)v)?O)v)sbgRSxJ|JO)v)i}/i}ߗIZ_XO$X_Hb}3:wu|_)>c{鬇z뮗tWVb=X_gX_g='ՇwXog?XogXog?XogXog?&ճwXg?Xg'{${^${İ7IGIWIgIw8;m>q_ }zٟs>v>?9s;3/ QG=sٟ}z>׳?㹜QSug<ϳ?zO=x^xg;y>}g9}z|^OSoSu<}v.^ް6)g}/K>xJo 2cxM'ω=Q\<(~pRoJ{ 8xURř+Ysq|NfvadiٟR[]B$kR:#Ȏ.^Op d4Ysؖ>y USԑȑp{xO^ے8/Y!` 7iH5tCDxjm9lzXAK8y[X+fd[o{QvWOoI1lSQH qOhbKd}qg*by\)+%t6SUz۱I@6) Vj6dC֪hOͶ1{%E dO՜9ϯ,#QTdmDeZ\CKFΝ>^">}ٮ`NIxd:2+VӉl<goeK"±PN_ :+{d4v!D2OZ#B*$o?)>'e q٫ {б.WroY@`ժUNjDM5&VWItgU@eU_$Lryn^Ҋ $5A(@zVٷ\IߕTYE2+!L}mx+Ug|'܂-Z/%!4ִy3a|U؟Y溫P#K+!HNb{|rgk&<k=b{g%`-āXo3ēxL:i0$440ڐ>@ߎ]UT‘d=*ѾJܐS B[fE=}|A\&+ klZwfâFF iQ4uo+ U'>`ڷ&5дiGv''vUaYU$Jul}@/Isy|CQ.N~קN>أMZedivːnuIߧ}M 8ꟴk{Ҥʧc&8Qk$O[Ԟ:&L:5,VXf8 s[ƥć+S#,% ῌ5L+5tvcii3 7&Y v-@M"\7q#w繆$(mP-?;L[`1xz[?)Atٷ6~hst!^7oy-٘\'Ԅ:l "7kPIT)ܳmۇ;Z[VC* @m$dmfseu[lKub1Rm;,E}&Ck[4iG`NF[?f+n$q6TPv L梘"N}6)ߙ3Zύ gdxE 6,J`Q;ɳK,ͦ۾ ĮCQK")Q0Yk3L ,JaͲ#$ Q;vWw oS`K[=t.:=O+sd$~6~DmC#gkJ@u 1E] RWh>#_'CAm*cR:z7*A5tEֳߍ#KTDS[X $9M2y3#nޢƕ'hk 緒VHAZ>9cV В3\_0V˄FÌ1Oӈvo!%n.0 M@;yڵb`GsXxʺbTY&o}κviR^6B`VʚF?}.\ ;{9*,f*c`ۺ#8-eǢbLwr0'єt wgE-N~~hV pIVKy Ehf,f ؤ_iQ4h3f%k:.M;q;dWV} *VfH@܀*veSTVMPVY8ޖ%Al`Vp<~2݁*9$ &E_Ye$|E6Ԁ$M/9NxG)֍%x|ka 6@Q ]KTU3C!ea s Ʊj1(jsTB}fUNJh6=q޵y{mߛ\ 1Ȋ-+&>|!9; ~b6L>9=!9, m3`0TZTr/S0&;tf%`ݗU'J0R'ל! # Rԝ}eֳܞ_Y˪2uU~smf)C'zh?'~ϢNl$vY'~3u1@1Y6z{T>γy P6\6CfhFR*AVBЎJjSdZfhy.^<ԃ /c^|#Kbv mu&6+R J5T֭`$ڂHO$ȬAƉ-{]b>hch `,|)/s~SnwNɖdM+켦PaF2&#$rci:VhQ[5Z^ %~W^/& 6 rH}uk3L"vyC8J\&YIXqW+Hvh˚x)CdBP }S@gۀTc[3"qA9Se,]X#á${1a?v-TlL Fi=% 5z`ـs9;5tM b&$ Ь;a%Hr!فߦF,:('Woij:a11ez]WrN:x [Pz'gZJϡxjD nQ`*~NjKiZ&5WC2v`bF{g [ǿ _˂:x]t$\iSIx+[dg~!a.Ab-s%v4X!V5g'ezćG̈+@&3@x#PrRoOQ`04mH_Mvok_) ґG0MĪ[³ED }Bˑ9KGO kڢӲ`8IYO@lqzP%TnM vBFJLN`UچW;;!gI%س쳸- '0$ m<\{quvTqDRҚ\UፈXJ Yn-oA*)P Tx U[+afDDGS(Mu-~jVmG3R|&Wmz*\#&ttuXIvr84zAQ1n5^+^KoU@-lAT%H<}l. 'MnwpBj:m[+0δ?wГqDDMdE$_?t6p;]6L:}>-S W>|eCܼ^#ur Xo;QQoz][n"ya[~R4h(aUuTiDP=P8]S6xGneNW&N*P3#ml Zt.'7TU`֪˪ ߨĉ6{cwˇf[iHHb ɉ$A(qFvPaNu&@̥S[8b>^-Uę0vD| !q)܊e +>%Φ0ifH1A+jǎ[sh#gNtxb5xC [оKh<ݧEįC&J{lL_C0io0 l /r*kN$Ps۱`tDzh1oPW qT\p[ vQ7|B[]ف :^81{sBFy%D |Ast@S77ǡKohX RWԉ3b_YbͤܖzZBx F0KSN 4~_ \ZI^"P6A]&k&9 ͪV:pYM7D^g, sdSZY6A!W76.U S|)C ACbb:pm]-8d FۂdqR)xgo%l:TW֐åe#1iP@ 5XWB*x^V2mXNh[^ q\38zQ0PXø&}eF$=V1ioz9JC; ۖ9Vp~+H]ʀ6/Yi Ppa] FKѓm;Ӕ> [$/Mȯշ*[IQ4284"lB5PSD_fӭ M"&UA~OĆX,K 4 sQ~4WRzJțfrQ"iS1{ۿ9죊q+TGJ,) \mc|Rvj h/HBXލAvV V4pwˆYs6^Z=wV=(O zO f%W<-BP7a\Cvv}O 8RrA{",ڼn9d)֭@K3il` TǑuF5ES_+`9(lGC0wl^[yXn8 +MnǍnl0rWZC{";dž}+KwvA6P`߼ wk }!K]*CC6}R: V8>$y]ƸT_5}`o_H_!lyH0CPinI\E\P bX!PA]}N*k7Fdl@&9cv`œ&OF3fgffӣ_X 4Y+Pz5u:йYۼ >uJ;+8zWlo'"EnąVֺEt0v#ctW(w2UزjTºύhp]%_:KGg,diH>toI9 ##˘$WYbtFݕB'z0Ϥ$Hϓ<[6+[-dcS 4djӆtL4J78Ѣ>LA0sMH/)C #aT8$bJIDM$G "v4t4 wF-I‹A*?[eS`S]\.8'IVNq罹riyju1"9p:*팓5؂ۡi{=՛4>Z]vG0tMW[H9FèRL=rcowD\`NAO23FϢѼW% j! Kz$R`+1ﷃhѐ5MWDiQT.ʆEVSKQsQn8~;@cô@8tt6 w ݒܲABI4QeeþU:qжX"=f.4^:: K%rQVX+&>t3"`n?; 0u1; !]+Yŏ*`T05CgL2 Ӵ-Eևiᶗa%* Q(xJ9 ®ĜġL3ʯ}ݐ23)' 3ǶtZJLO(Ъ8k5ؑ!P 2tH`y qC{k ?C4 bKM[D~mow*FqaPt% HUNE,uHxxRQ.HhIAMN#iJ"ǰ}ZyZ}:${mt}|ˬI@5k5e>q8:`&E!&(V1!U (a#& Ƴ~GEn;\#s~&dqhmJ̨.fLIm>}^k'YNx*a힀-r dK<ڸ_u` O1~v ~5wgi9vH5<ޖ&N&4U7Rg%jW3){~b[՛Ŷ,q? M(xK>O-sNs-ۭQLe#}H\rNlyԡk PQ22W'GѳUp45 s|5 5dǭsoga#U}P 53IVɃ)P"O0m,'&sKq72Ph0Ӊ/~nVmH)z Xd`p XzCJw"?9Rx vЇZn^|i-*jmt6~#m(,lkh R-d5mb%ENJfۯSxH4rUO&aH5v@:!l2rR˜өi_Y2=samOm*fҰà!?Tߊ}ޔTע$[sfCjN &5F :A)]/>7dd)ܮt/o r#lfLM|f+`o-V:f',[u7S8&).u 01X˴s!SDR -XR@wI!]b "M*\&/0oBCKI%bsrUb4<5o盤zAuDiGSk~ TRO|x1(0dxIe]49*:%VkvQ Fdah?t*GItvut[&P%́Yf8N2B 1:ټ w. C<l8z)j0kJ~eSPP5T1Y{W'hQ`ŎZjH-%/A-ʶFx[9SqZz` ji4m܂>q^fIDU4RAUIH"W^ =4؂QQQRi5Yؼ.%cqJ6(>` G!gky}d-I[G*"$%MvH7";m 6I|UL%^P ނ}ޡo'쭅„ʬq ;cVMRqImwYo$B|a4VxjoV lHHv#K،ͩ^I騣]mTf9ڄIVUNr.;rQLIYC=dUj}R܎:EN2rm(05HoiLlSF$<0t-! FTeL.w^A7>~S=N R+y6e!g?ٵ&^KsN2'?|yժv-43)Ä8BAd򡄭A ܉]싸d!J)'M6UjFǩ(Ӆ>ήR4|pw٫O\mL ɤc;hs, "y\"4.x f 9vC{)+2IQ:>$ +CKI/h!M Td&'d~t)|XgoQ ;Kc @MdNj9QE(rz$wv;t^'^ٚz+zRmU18񭠥[$QDo } 4jID"nqj UDIF;?FZuAs>*l, *Xweۃ[b*Vt6ch􉕷Vi FL& y;:Mp2i\^%%H1=9nmA %,r0Fwp>OrYt0:nDufRG<^I&5?쌚C[ֵ1{Co(DQ=1\*( ؀Ƹ)TU*AgB0n\Vnt&"& hmsVB]cCR MҙQ3` 4Zh;f2O#W+y p)KTar< .j"LXI^[(.SYk )dשQS0"ji^dخ,:0ZбJk- 0uSPU$^fͿAcN!*C`sǢf9d-ډ*3n%ʅC^PǓWb";zov5v&`\ s@Sq]*BY 5LJB[+ؙS?p\zGah00)zYŅd(JL2?2iz SFdM$ݝ\X*PN3C3~a2=EњxU݅tԤyOn],Twa 3p9f&&?j,ZMBξ%i-1J$BĠ*DTk6o >jokkhU&N~sCJ' ?22dqbm66' &KYEY d .&;c6KCYvkJ̗D`MuQ6ȭkm㥟eÅpc."|saܕ(3'HVLv^E(QkZuq:-&vj* %$2E N"6DǖU#6l􂴚T1nf80uuJTa5ŠT\L)g$ט6nֆ8uo)47*u`XP}N ЫUL0 ZmuBB?Ӷ)\[t9.TR0wN)bK*'{izڐu 35k1E!ǛjMT9]$ o'VoOLU魌.b+ p=Gz>)WȈB<TB8JƜ"-d4i*g2Z 5T܂I%w O+j2Jg"Lȱ5 S2mЁqs kmZe,i~bg"W@ɠiz&>S*&,_PP5<$:5UAS;@1ZXL HDބKP u}> ۬a$AO"K]Phe](s!F =3 _NNcK5 l8C%5}d 5،D4Y",I3Y՗*UPcW#I,Z[ ہodE{%&v& ^S7Dh3j '{0y0ulQE1&:ѻ~ >Dlzq99w W85DN-rV@dc-}|u9dIftxUgnt8ΩhECTB0i'a~O1g~Zn}yPijGIx.8JQ N\р}UEO2. &\V@RQlN;LZэ=A"3p'Y̵{%Q͇s;!m0PkuRϒ6Ei y?1 2^}BxBX4x))"2qj&7K%!6RBhikeVSdQ"x*RVTn >ˆmX ڎ惄|e"?!?v@f@4bkYQ6!sdZJ"F~hapgOS>&B!Dt6uh'Qx/s'_2l_e"ۦJ>FB5Xx/].ΐ)S~Hb+-wfIJJFí*nZCa\43FQ(Ԓ)wtIXXtH.A^%2/Uw*[80JkIт)r\PuSC&TC@j/ ` 2XQqz)Kr*J,awYʊ@T7Ŋ\%|#yM<~25I Ɍ+L2/ySѨϏ/I,924}:34SD2< $U6+w+ҳhr\ =0Ir:zv;|&T>D:VD*_s%LaGFb.\Lhtgwct5'Db >75QǽЁt#N-VT1eFbY|1 \E.%&>TA;CB ;Y+ԇ{%zW;Ȩ@ ^xU lj&^/ i<_`tXo1C,KpR~gCc1z&y@oܭ&[HGHacU7pnͿYdv(0,ZZOPnt+X c@:H lY=`X5YxNw Is|JXk ASvJE$3ίmg~ΐZrc$SsP{ل B g'HEIM;2 BZAz`fGaw2r.ӹiȉbajQϢlh;㌢aIk8wz>ФC=}D?FP\Bh^ޡtig@2:4a, ְ՜D4|;KF5F2ꭐ*j7MO#J\]#=ۜy`G}]c,nolhWd=}``nTā_tݚ;Fb`{"V4hTYP50ep'1J_l',E Z`6l"ǀ m>rudko idЛ q|l?+usp2j,TNv&g<C# 2$tڛ{䤧 +^7JoCZC mȵBq0Lس,}|X,D Frꁇ O OgN&>0e!Dj` 3&Edcp5!fvf8ٻ{'A[p0r&mJ+1Mk6aOS}_t э*%Yt9 IU#J;xA"-|Gdc5Ƚɉ* |݂vȪ/^B썅H]4:yB<41$+D8/SS$V\ˍR`Ai@7.c SFtD7\1:ɬ ozu) aNR}:Ɨ&2u4eSޏ%Ya 7줌DkgM/UsF.&52vuAU~!MI+*Z*5[h1`襉XCqwFQD!v` YqbivEb8j>Q;۲{Cٲ_C!|1AUZoJ*?xAM"ic6R4b*͔4`U'"kѐ"#Q1UsASJ55#}y7%+ԚyOE U@ϻ%Lfc{xiRݪ"_ibI CAF0ƾcR⡒Z䶐uª`J^Pn/8&p& #it6[$LE-r4ɅKA?[^h"@ Ԭ)"psӑ s ˌ,vۍGv;PyjP"8+Ʃꆪ? cϒE,MAb,#:=GkwO"XNNyVK;XlЩj\oa@K2! 33'ٍ鲊E5+vۣ h+'P̓qpi=6 ڵur52zۍF2<@rQުӜF74ޖ[aB ->-j+5LXM㘂cܼW2)-TaqW޼C6qs eOY[Eqh[dp&XM|Q1kKʀSL .0`g\cg֝ =RotN'T4/ lh(;j?<lXkT6O6 fPeFj|T7"g_aonU,a' -Y&.}u*:6g)JQX ]Rb$_L/oN54:: ؟4ZH@TnX9 U sږ꾸'`L~E#$3izC)"jNVMri<){91 EIj(l!ei[ N7gp4Hl$܂![nh]zWHx1[ XOѠ\Sn3ÁSظPbb~$+S_X[N:--{KivˊzQBVHq-o_JI|K4L:zpPC+ApMj+& M F4RbϞG%F klL"IYJS 31)1@i֨<{(GencOf&'yyNgjMA/)lIpd{`e&E*)Y8^¡hmAC!5`Kn"QIv:P#1:Ƭ*10[kTGs(vI|h1_= qu ȰchD"{^\B6V]QUyev'gT hPBs{ۼ;LJ&K/J`.5#PǏ}_P8tΰ*'_s*A}^0cIm2cOh /$S4|f>d:c$ Wavb|H"( Z`v>0"BQ?XhXE|}P{ +w7Ȗ~ri3AWd6>:h]=0r SWK%UkK6e-uDAy63; `6VNMڞ˖*,} I`|v$NGC䢬eB] (- 5vm>[ vi7ɳBIj::jlSe/J"bPԟˡ E9 &"~b8tH;EH=\cDׁ@Jk<)`|,1D#i/~N_!x1e"]KgJYA{JU83 1]UDUvKξVSWYADBq G2d. 5Zihg$ipBda]i,oyf $FFS3F,= ZR|#͋1V~ĵ Щ %NNkc45wft[þ{$МV̆{mF` d= /õƕPUdPh6Ƣ,z}FU/P۶",$m{]x*;5g8>(P8B<#JXyM_M'9y䈳&f2k+-(ϫ#R62,*KϦ~Ԕ$dSY`e`1䪢8itF'U[n0W1U &aF$qHixͩ5v#-`#+p|P~d M0 YGlSzuބN-x$_}Sxt١ L$bE4 5,;Lp|4 3Bq8۬}20H OҗyfV<ڴK?5"y_2a"M>TMVwetSyZ06f -Tʳ(?chdN©,¡ʵt95۬{(eu59/@uxz_6dySWQ%q9x6ʲ ѐQа+Au'~BW_vjoOHhbD%H7BlN* p_k=H=m6\{ⳓX\}>O0>Ooh mc0:K8FSWk/Nx)r oѿPzj)Zug} enY\z k,25hd)]MB/ȄVāCTTȖ*!8F8U/X]=E(Bamj.&Ʈ$t#/$D`*DɰLgP>>mIc7h8.-t /ۈ8)D*E^d:U@94&ї>su+E(/F}YI#wA@ht %"R,V^(G.1,0.]%!gaU%-bQ&C`pT㌁zIY>H@XaZ䌡xs$DQg>oXBeƦ5c^O~3c{ N6M\[dA_6 ~ k2h>`kbQr ??0(a(F~&'e\ZJIEJ-)z }j`"k!ɿy0Ǘ'ų{,o/pEY?;ꟕQLҫd+C&}8JBDXXKAĥʫkSS-("MCuΦlB Y(RX-I MEk-kٙLtZ:n^pɤyH'2)x5n eIdu]C^7a"ЛV5><=,Qg2 m35[&φ'䄴 fJnftZ +Ą.1 hHT I46.ݓYKmR5*;A=R 38 'rߊ($/+gi SD$Y&1 saNX(6k&ɊofV΄He]ŚJ SrcWIq~Ąx?uȜ(ƺ(y]NT.b(FI[6_HTNZU0"fpgB~|]W#΀ֹ?zp˝jZ f=oˬ-VW'+%e` M?"WVšߧ9YI1=4m%738E c!Q1aþY4aިdg9)/^-|WG!+kv@;'!Ϧp.h5{Uv"dJ)ݤY,IPɾI"KWKBFWFd *#1TS;\rr4LmJAZ.{t"|B8XzV3n0#h- I hw%uGp1(d 01h#5hdȆV ߡ+CRJ"ْ #}ĵfx;m!l2uvT5kxhDUs+1v5fiU!ڃX4;QC%Lx4>>fd k(@C^1nЈڝ#T!ڻض4y)vSj{dv%؀MnjQmPE1"g$JfyjWժ1b\r0q&}`5G&Hs={ PRqFke!%I)d Z&l-쯤VfAE- hPe] OpBMz$RCCSB7Os lL Nbw~j`uedr??F q3aJ -E d^ 5tN?t4U0I Sy/IBԊ[+PLh n$$DW PMzmL.ƜiuIiaLLھ(A%jV"G*B9]FUeN`VcwUuwAKV3P3t@6Zuslt0hIC튌!E}Wt > X̡;;Հ5uCL4:[gNw5qwPAܼ0|d\)6Gvt/#P$B쾙hSٰ#hxDL\$36˨UvM0v"cJ J»UdQȝ&G y^Hm*Б;{_&=|Ɇ7rS'M%eذܘ]P. u^\^¶^T~Dg8uq.B79A@k1׼>E*rL bA5 :Z8TvGɇ(}H|4I(iXYV]PW,M`k' ;pra4t,oHiL), #1fv֩V0މE5DD*-PMeh)Җj?4"ߢ!` 3UEN(u;GLۊno[μy6 62;~> `]mp[(mIAoe~RyLmh=Ös `Hgs`$<&jn±T/KbAKgE-Sk7" Pod>p")gUCUQĠhʁtzTNgBGB\BHvmi9p(ҶS`C8R$Av 嚆p\w5qT-cp֭x6 .ttC?䜉~!q-~v&U&"G4ߑޢ~}8M%,@o# }A&xK[$*]A|4{[pq)8z I,E h) ijעfK65xc%ln<3B׭Q PX8 }|`\\X&[rԵP1,s1֦ (94\r?% =[*c9~}r o aK?;dD8ަ$G&AN0ja=Ò':rM(Yu)j,LA~k6}=><S N!Ĕ7p(TƑ:i c^#.%BM~A*50Os$IJxR8Md@$EChA˜d0jO\@lj eڹw !01B"8}@a ON`S. !ictr3zk>0+^e G^~HT]2uX B!37`Nֈ? 9ʣ;7"w'~*f"`ǢF2Y1τQ6iW1ob`NE4P30جZ&x&Ue;G"к+WRn닭!T72qT%r27w`^Ve~$i4uEg0S峲hhgBX(Z hg+G+A!0L9l \P$AY1WCOd& A-:rĜISHF3&M0DLNTme%n7E;O#wxPsa=Tj-j69oLoʾ5pH- V4p{ C/hS>Q5Yt ^/6HȔ)GK)!͟qH:CTfKCT,=,F0[sh0E` E=ՓcUe- @(zd^=#Axd޻N @Jr[u9(|2k6_]Q0PZe }9_Б0E6ySk0yrs&JNhM{+6w!K|FbFJș`'XޟzAaˎ[]vنh}V= E64D=9@,츮J 3Ov1grP2vWs!p.|PFi&c%n]ޯ4(Sy7yӟb>fފjJ!(4k('}vuCg: BSO=>[/TDyA2$5'j&^Imd#-F饓kHws&B'] y&Qg1i!/گ ne2"/@{`jNHl7#뾠\YS4S-!6+:Ye^>>z.UʍPY=&=~.˩BwGX%"_IS1j3# ~ b3X?m]{‰ʏD+bo8]` f:ZYȝl}Ծ> ݫF{hʂ(\R ~RK{) Ayġth,sLAHbBS%QtO#oo4Y2w0pcp\mQ;;2"PBO#N9cTJ J^ٍ%akn9MT.q.!bDg:#hC$&jZ>cq)xhhDFK}'`ІbNՏ>DשiQZ>&8N܇pi!:%aU2jY׼IP8E)W c&[MVd ק+WUPy~Tч どXS%O ~#J';h*y]V#ylJ ́CyEqlupv[9-{PVD3x}]:K P>ֻj3aVݍUB)'/:"*AhtE&2EP,Hh-fߋ4Zfe^vЦG~G鶰nRբF-׸s6N}ҊS$"ō)( T\ نԤDW6v2Iн* mr{"lko4MMzU-Y5p-\3X "!S^?M*9g,;oW ˹kŦgʓ#ڭ#xo5r_ez)QNa ij(U]Lj*xLI4!9+)"7rIo&= Tdtb2oW L/N>nE 늆^>#ՙY [XtN 1Zd= ]DWi%:`fQ<;æE_FzZ1OvHK.+|b%Lt!P/v}vdo4Zo1q#W[ ne }-]W^#F8ׇr4mդgc~Vuh;Ld?PboƉ|xjNsA?؋EQkay^Vo,ǃbN}dWߒ(cr/k7mj&)8i|_ a˳#v4Ua(iAC{9:)ًK'"r ҫ^|å~;dCc^r`[4:.~iCq4 ;l ,H&rpePD광NSUĦ&$dD"LqRȵxel :!S<"F"mٗ&GCizMTFӠ>lE !Jd1-Kn?v)r ?EUQ 6Fn>mJ "Qݷ}O/cGH>T5-bq(lу/;Q'#@*H1%voX*$YCU;-(RjaS;%P L.~>2d; Tt\< /t5D&ÎxASWI6LEfa'%(2|($#oWgu99Tӡ\-[ϹHcfFGtM.QɡUZld.nL,)lHA5OU#00rf?_%Omv!>AM/"`NTCf?I &ݵ(K'$Ox7l Y_BHI*)LϪ 6@-mij h@@wqjBxAhgo >ޘu#y'ut7i"6lE4#bAW#"oB 2ДP&%8+ͽ(jhE]Sro,|eqR" K=PA =u2JQ L| '+/`RXqT-l712׽e(;%R[qdroM5+~JF`1U/ v)-thІ`ҫT"_/`\H0DE!:;7+xd?EYH38RhEGMVh%l <}}ٹ6GPܒN2ǟo'=,x^sUhB%<42w(#3:4 f9VS_{,fȷCߩ7uRl\?"~ <4r{Lop:F]2RF}MCtm褆&HYS_UĴJj)B5QLvY:".&ՙQQ b#ۗ95?Bt*w+^W_>4S+U~/&e}u[>9 V`= Qnϼg4iߨʒtDoNraSUmQ73EFCX?hg["QK8U.x>BE?!0. %hEEt+1.ՔNBdud'nQ& rKNI!SRՎzGW_7!RsB".*[KO*` s JQeGNYZ#A&̞Bd$.QOD6o#91_:*[*auƝWl9 ZjW_#3E>#[k(j䣱Y?zyϤW;k(1Ҧi8uQ$$JIDBF7ѯN*@ DBjBcS4P~,Uv<|Ib$EvHAvǼotuGNK625v3ý)aэ.#y0 >'Tٍ,{7Io"qj4y|F2&mSNam' G`&[gVݟzn8OR!ح@ ;.$Rk}S'F PCbO:e3ʘ^GlAr[lWx[Eoa37ݦuPk]%t" S ƼngGiU^P~j)G6?Rh~x󓒵+*SʹTY̯80tM&5 h,zB*ϹԸSYg";;)tl?y-)"Y%,I}h0X`͞/e |heq&X歚SrIɾhh|ɩN;_py 1$kʛxtjn6R𼁥+ Iߊ9C]at̮LvSϾ<0S7WO$>(MB~R: 9Ic:d1_+Q̤w^y9wwh$QJ:ppjwANf rʧp9ڱ9J!Vza)\p2 2h.ݟ'(Gd:1Z.ZFUJӆJЋ;னC{#S!iHo1ЮF4ŧXL']Mȸ+پYdU@e|<^ ,*;xQݷ_ u"Ud#ywWQmā@zpjG:hI{iNY-i:%yi;7C܁, ʅ7n<{ȣpzNu,٥3|'^!?}xq2q)f De<]0&W]-e  X(TZd.%?y 4ir2k:CFjGv'GR`.;XVQ C#2c=M]$/ƻvHYCܐM~]vsS+Tb//: xz"m 9dUIa!dFEAh! Od¤&8ohelWsո}I=T`Wr+!R7qT.TsL\`ĵŨ\PX* |ڠAӃtTs\\B߰^Aj {@GUdnGnĺUO2scI(yPrYF:A- yWhDKvKrd*qX `ܲQs \@"a·-)piT`'LЈ0:c0KR(A -qE0Pk֤ZP~C]lDY0ѐwtOm:j Y#8aۇ1N|ٲE* [1?SGf8.Y# e'lpAdrQϛf. pvoL9*C36>nbx4r} 򌅱:^KLϗ*XMMavn]"ptL-w.Vwlʒ~iUv~Cn462a7˫־Bj,^qr! T<ɀh Y&h9<43DS1u˾I_9[agw$0P8ևߡF+!<2f} e!U|B rSl)'⒯rAA}Mpƺ~lk`ͮA]`ir2?T8z->fߟ`)պpP~~#^ϱ}Hh-gy^oRףKUk5s??x=] 뾞g_o<*kU~?_jo? ÃQC^~m_ݾog{W ehyo_?__?wWO_w/x!lM0^Mί3|RXok5/|:ۯzW󷿞)Zk//Ar/qla9jjv m_8|E>G\>Bľb%b14U_h||1řm)>_׵잯\t_t JOqZ q ?^ o[\߾{w$xvVn/bg+m+Ï׏+y_+9I~=%BWhY\lwc35w|GpPkH-v籶Yf/[sϩd.*ؗ%/*T?f,VY eY? Qg Wt_KD*wz׻ԏga+U;+R׍?oQYsD?MTp.&D:-@k%^-Y>Ń~=rM\i'j?zxJx[-)sK2xʟp%:z`{-kޓ)II]Mk#6 SB>OI׊0[B[ ?h|?OEQ[əNV4:ZAz,ς*ooiyڊg+`]~J5-Ռ sU??-j $W\aʖŚ ʕR\~[c<-miz/~-un e]rgeXܖ-܈ۥ)-zsG!oy[h̓}zGae=x\R+Y+y9m9m% sR>wxw=F@@[%hy͹hA J*![us3 L;^ͻ?RBzmߖo.Uϸl?㾳ݯk>"g{m3;yVwv2/꾳S}ggkzuݮϸvMH4sB:ϳ|Oy6wiFd,__7,Ŀ 5/ğR,ުJ|Ry^WqKYzz\QbRy^W)tK{T*v,E{yݣKzK,z^>{sG}>g){SSSt.]SX>?X>?X>?X>?^w)R,R,R,R,R,Rl(R,+))ŶJ*RLߥVb>)bV~RLߥQbGSS^O)vTz=XbG)vTz=QoMQ镥XO)GSQby>XO):tx^]?o(\s焾<~x׍Os^??ݗw?@ni>yyyy>}U99\}n%[/o=]v%[n=_^~z%/#O?Q=F#Eӯ?O?S5>NQCE/_O?UT=VQcEӯAO?WT>^E/ݟO?YM?fQ}EӯʿG ֿGGGG풣шFٯ;{X?OLyr4x<9JIOs Pnc%49xUD9m3:gNy\g 2fKCe׈(Vi{7!Kq.{V2OZiM!V7] 6SF)pFN0z:\+jrRE1W=-e(l7)V QB"Eݔ浔@g:HGVc&ϡ;VB)m:o4jO2B7^}LNz|-ÛU?>2W|:_&}A7)kmu;u˯ *2mD7ao9|5A+a*ɱS.k}92;зtt}.{udLUM |5 l,-9~Svc%IˀdπV7mގ&1i( (d7ҖK}u\ʏ-ߡ3n}uڑ&pH'8D}˞ 'W’xWB)oR`U&kAV }En8[Aॺ+cJ"mB rRVJ՘wpHxtߵܰ ,8ꥀF̼x:j切12􉂨Q[V3Ž-ukAHs/Spj:&E{?!E;IAO!qSrmj@Ztk O  dP5۵F+ao; D275 #PXRoqcCķL cK]S¡"m`nJ2ʮ[bptQ ]b><ǂ-P[]Ǹ_ P"A/1 [.th{V wLd޼MN }:;JWRS,o9ˈIx tşyWp<R}etz)(eL_.P?T⽲UJ8m5CKûq\.S)sGy&hEmoẊa}aY,8vҩMs!K&B0Q&֐M~Ț2/a>yoBDk|Q-gܷt%O z>ydR6|>_Co/<:}PM᥎Q("wK`'@ܛ<[ҧRӱ|R= >p Wqt< ANȔƋn㫰TMtEs#h;6~ԜvxQB_CzCIlq| U@GY!b;}s)ᾯڼEs.Kr{#c̔z#JJkE=o{w8E ڊe|yw{O#@DAXLKc()|I_e]v@D uL\)I~8w _»Zm^D~9șHMWKSNY@:6ڼ4+;8) =HUn9?&>4LNB>v? 5D;npjJM:;V22Rw_dSPiC!oܫ+}G?k]p9#w73Z?FA43UEי V.i>$*,i5FQC%w>><"(ueZltT1M]Ж>RI{#N5Ҵ 84q9 ]Jz qWw蕨.,ƓX CofL;C(b{4)G6 l'.Ș-CW3y|H|MpYs3!۞9oSU/T`Ǽ:5m$}Elo 8V}خGeLZ Ñ*uM&v.H9m)ߵAuM 7ž'sn_fDnX8 NVD R4,!͛] 3HU3\C0ؠ4Kߞ~.GKS.\p鯷&.a*~]-tah NEBOWhW+f)`tTBCA> PSsKVh\3eO)k`8 m)>lA]PJ<=~.EJ 8mfJHOŽ$z}(·sܴh$F:51'Vv>Ζb]M+~K#0:{.1U5íc#a~_eɍ)/6Cy*FŠ`\96HUHWF֨#%nJ𾑼(%|{C;Q|ǁљSd|ĥS 1MgȨ3df_ɽo9ҁ%ߟ{|Sd־2t5fZ6@c8\ 3\Ao?B3AA@*+~ Ϝ>޴ߢC@&7g՜1237o_R}^#c8$ǏX )էb.yȹҌWZJ!.~|EԦ#a}7㵴[!Բ!DqU,lb9&@uTI~mb; 58VG ܾoA^NDz[jݯ XY^O E_$c&MsWY gO: `~~g~MKtq]v!}'qݤ2 z0RP`*FVM: z؜obR%X ;6[4<"VZp"@ۖbg{T =<oC#\!V/ _hTĕC`B`VSsE_¨LfQ^ٙ&@T$J1 I [J7׋NpyB/t;|-H]ػ/lt`(9bѽoc~jeVY o1LIbYov=PAmP+@oʞN lZ`D !+N]Ж@҃ N?cG JWNJ2&ŤExGޯ9Թ@L`YcF>!ϛT1ky#-diZcE˲ID@Xi?2:YKB߂pƫZ;HB΍2arZ} .dIL 0(2&n^6|_ `4};5!YRIuZ9LA"12PEI~'W6E!`M?ҎwT5Ufwr{;#: 38}@+NZ$C\~'V-ݠP b0a=?ZΜܼS vű(h+}<(GcUzwLDx=N^Fc^dNdmXէ$%,TC-r&R a{9`2{C֧KW$[o9-MpJ`)=ZT~آ ߾1ig[$ N1e$+%>4 D58Zݏk+Y=@LSXgFTsTQ5O<f @N:Co&!ũN[hLT睝Nf5]̙AaarabfʬwBb7MovId ȂMyn*C&`̳~L=/t)j͏#3F ^J7*F#Urw./bU8h5(@[7bɣUIh(B&,"CJ؂}r!aX8x:RhR$-l*uH@*)#j!oBMv7A(Dnʻ muq`QA_WGiΡ- Y蜋zĽIk v6&y2XmH|Ei(AQQK}*B$]>H[KE\$yFb*S-vҷ bu0KOΘb! B[9!PM}'1-akQ]ӛI[F R[ +^ʣ|;HvX*- a7ӋĖi'KX4҈xֹ 9\/řLYrS5 \݇?B]|f' *˽?dC#S#?0엙\B4MWS[$H9D84zfUR]z/#cm3ȿ=uJ`ft6U~ptk I^yn k8?#3RAڕRd>ԴT0EZVo=;;޸bToLeo4{Ro::&By4Az0K;h2gs2٪Dcnlwį#Yd{& "n<0x;,14y$6pOY5θRyU2Tו=3E}ӴvIk(:TmMZzK;+>57F=bb߂9*2 (&ɻ*^BnbioBd +C0l+ngA o&,O!oa/eCE1w ZAo:?Lcʬm `-W͢+]e3Ex1SQSf8RzSN,}Bh3A#"qR $NaD]gѨ(lyۇEP0l ^$q*:ID<}dFS`(]-J94L#ޡNv^=l0!Fua>b(AH9My鉋x5h(^R^MrYImݛyA柊7P_+qL,? L 5ܠXrKk /% !Ω4Ccg~qk2)N-XXF8 *=I̥ދT("ocڽFb ƩNA>~`rSgd j|J&r5`!'q)J*Ρf&! <}`l)K[k7cF&. +tIWp| ^Fr[G]B&Fd&`R6)݁"a>,z`wyuPW# %SC~nA{--NAJo  _;)Ϫ8*:Rv p̮~,y[D%+z;u`zu ?`ꅐG:Ͼ 8dx Y)9*-MƎk9׫lSiuMC!i{+0)ҾfL޲^;k8 w6j/sPh1ϼ aRb,RHk?_~hKe듰|“Low5> x|D ]XE֨jB5DX"YWݼm4("I6h2kRd[po(~7m;~#E'?7<0N}fW@ˆ7/NHT8-,6%i0_55:Ǧ. NĐd sC{^Ji2^hmR}K~h(QT%}hz-86!pi0& 5 |$UGm>t۴L t_XD*㯍1FMY#Y̭R 3ΧT(.%Õ$~`>LJgJڞ7t-zx/wr.\D/Hyk+2[MصgúB^2UaΏߏ=4 qȔqyQ1U~C/YQу&&#ʮa8Ƒ\Cz}H5P mc4_9եwX$eUr \UNUhN-< ~<]橛T gUC@^Al 376,Œ^|p ׮bnیEJf-6JX0N637d@:*Tv$9~;,}Y d=Ԕ \}ŖW*o%2 Dя~,B`A"Y^߷O]yȰ,Z}ߟ;P6HɔS-WQ>lphi˰kUd i{C e( LآBk OpC$h>,e]̉4rU VH,/)=@ٰI6OjCF+TLcr;C=8FQ[{_-! ndoŒspH %xI4hd6<5< ê8K GU=dI5`wlA38F $P =$du#Cl<]j2iݴ?JOq\A6I<8/inD߭#kqㅈxct(F"4/Dn=* i>,:!~%TOyb*MhKw'@ffCr‚#2de) V!CG^R[8ʁ7YP")Bf;(L+\dr{@d%mVZM@%c=oHJ9η*c[I OL|tgdi'^0cj00Qb1%+V 2I$PwC>PoᲁtM{ k/Z8wQѐWW}px>jgGhDw%C%] gm:l,UċT&gWjjL5ϰ16z=?'dP:>:{teNs;&k %7WRi 'ELgƟB#){&T:N;P a ^7!\Wc_`N)ma4>@`)Cj 2t)C|8̜'WT9kM jӺ%%,f1@\@{Sݦ crˣSN2=弚LXVonbGBo><xAY×]IaS+~Me S}~aM&B_7R G z-4K-x<ޤpsQmѳkL ?h]ؑ*~79xVUirT~&+, nLkIIf4bLj,[xbrՠtַ5؟_%HF (+b{!{ؽp }L*AVGfYb 2Jй9VB:Yu`2G3 {{UJ-_itctMДD,-.NEu<ywh*Dҽ=/ N ǸIh&'N|z`:7CX$Vr[ϢM4<c.7K8:[>@2Q~)C>5Cd]>ٽ[48t(:<Ҍ^nuuv{ӠɈL[Q’pkZj lrITUCQ3"0QM8zQ쫎8Pb#К3:w^ERt$Ds $*wQlwԞ` [oD jsLpstjB֎7t[ S}؎EY7;4`!iq]{xCwR[ #;)hǛ f S}`sD R mn =##_H,451cqit] rxL cv1) _Szp̾at-LS󪾁aHr0f1Qlu:y8Z"뢃Z*wDSeaE]S#/(%E6I<j jH2ybNI'bTDHׄl+#[^e9)GsVԄd . Ċ/$+ߩ~:jM{Rڦ*fblܭyԫS;7$ cOߺҘ8r,^Q}Ǒ!EARsz}4W1U"Ic li7یcIBa) E_~ } >(/Kx6{(lO~~\*kx#p TSnEUC)xqGI|OjpwwN8Mi0\d'j0ع'9m{KDѼ(B @bi<ȂctPtD5)ے'LDԻ5 z',@i#Xo5n(+91T *΋Ѫ쳣u%U8UMjM^Ɓ6R9שG5*^shFu٢"S `,V"MW җcbeCk>J8`iDL2@rZ8/Ւ'hҸqgS_<EFMCP.2x Lwx;񽑚GAzJvPh^0ڃ 8[K5Ol!Gzq(0%n\bs 1PJ)-iQ^Dq*D %zuMwо˿u5 !G& * TǯW ̎dI'>&|)p Mf$+W!QDTN;5 R{+z 񆘩3U.q)`Kd"̉q {#( QJS? 嫭T,-y&|8e0sgXƓ@(4>&T5E=X:c"UATB#&]:n)}3ftG4_ir+ [PN=q0'Ezilj|f9 Mq\ʝßa_dөX9RStj <|Iˀ'uWW&f9~ 9#Vgzz!2@,!}&h:"]3X }/=*MUeH0 C2|`/GX*0߷Uh!֧\ < ʔ> yC1tF!guh *M7Ez4 MSjjy'yE)+JȫbQN]P]^W[[ 5G%ݢ9T$9_&b ʧެ5r}n'ND‹_~BO]eD-÷a#́Vo,} QE!4Ģ%|ڭE6A[1)dڕHS.pHϱ4X$&BHIpyKsk -yu~bPV1A6l>2 P s!^^h,Ev <<,Eg[SJB'ZT*%RiwJA}"KJ-J9@~ebinHE{mtu 2"l"Ț߾B`o֚T1ȕDL8Ř=øYc{XKh@Hjs[.Էk'յJFFhQ ȯChSrxNj|l%48A<0Qv_6_}[75d Z, &N%Җ[i@VPNxބ/!~/`5OַC1L'}wX1mu ]- Ԛ붋>?r bK'Zn0(z0Ci~kZQ(,*z7xHjH+Skdes(L{b,(bW4 r5*. S(jؑa$ 7 bC¯Ȩ'9uBI|xU×N Ap E )܇ޯ2A8(⫺Å9Ry 8o+Zt$`\cq:hYv='6mMw1eOL@KJi000i:C(<g,kEHg4Kp2LyȯWoӧ/(41:?[AFva@FG4J7AFT ݃&{WщtG, G1iDj(Lӄ-T?I[pe5 R^^}Yz4 ,j1۬s^85ld,\>$ H.fD´e30%q1ZucaQstYԾֻI:)C%@'%0r/NaMVJ;֗I?Ź앢JSbeS/UEs2'$/8u(1 )9I Cua>fI] XL<"( *]NSd9tfKM@\u.,KVퟯ?{j&2rh"{MpQw:M2R>R#%!ѼɫL\m EKۥ7͏+7g\gM~MlyDf:U} 2K߈y2$:*d.gRe6P6Jqn2/qz-蒯|?`%r>]6Hz =0JwU{Gdn\J%ftB6oi*n/.L(|EDsSH˯6CYPRGU3]QGEC!ƃPjrr$/3R~t-`.U c`d13On^)`*J|^Y"{.⠩2$Yy$.rjIJMv؟OYE?mŲ^ Z6W X,믶_tHv"^jǤ6';Ku80*cai2eStYz{p}i%Ə Ƒ=FԡK]1xHPş'ђܵI9vLpe".sLB5m,J`bX:ExisQSRF M7&$qF>aR 97 -#@Ւ#N6TC^؋ Ll:`JrZm"CG$C^1lb ]85kI*Q]3ý2U8 slJ[(9T6s#I{UH{L;\W5o& ÜGLbK:@JR,fH~$nI1ME8oQh5 96 S Fp+-A~HF~BԷ8;8ÊBwѾ[0VoY: u]0@ {Ё#i!o-ΉweLD_6D$0@0KvR!&_Œ$Ü:2 3*w iZiRᗮCjM.-͘j2xԄ¸qT deP J4^C0=x']G@ԥG3F eE?nӽ;sh3be "$dR$xGg](NɴO"H]Lu%DTQDB:CTܡ葆bn/宑̞_r "a"%bETx*FEAm WSG¾q 77=NNb2s'i5@."s/q:پ#',^y! t)LPHjfDB@D+5P_F$+9Re ҪjwGtwH]P[;-&PL[C'u\j)@s x!iܼCG2.v =b&|؃T5ئ-ʏ#(v~0M'7E/{3E@N$s 1^XH^PFnN|4mfsoux㢆8ݙ 24d"gI)Ѵ};m/l֍D0HRj0::N ]"t\haE.9G1I/PN l#ȹ\Z!ƾODÉgŬGDY. ڟHsk#0ps<%4 uuG%#iKMAFY륜2rS3Qu4|EH&ÀT;_VJ Li 4QCPc/KG ;v׀g\1i˴j9YQ_ tԊPƜfzp]'JaBӽEB9 kfIO/ ƝNDRFQYm<ߟƣfmX"tk(|MKG3y];:~"C^Gu3cΩ2unF*|(̯X)*Ɗe۱p WA1X%߹X5=hx]քt7m&AVʴh04$g%QNXF:~$44獃eyo,v3{apM,_`TARќA~Ba -i-{Y/]doaOSRFe13וަg=?fxΨ ( %E}vœzXEh1{s2s䔋5CB<-+M c^$Y:ѯ~v`iR)vكһ4YYA!9丫RO=u5R>p0nM=d#>9)(u)d1q`N&ZQMM[t@A3?4QHPBVx>IT&5mGE~7 UX?,'-o<ݒƛQW!Tw`4\Lph N~{/{9>9y;y9VLDGH!3 ѐP+P-k% j;`"ǔh5bsT_-Mbl=2.OP'(ibV\&2J lAy2yuu;z%N^0+"eڵٰ &K L0pivJS WD6'p~Szۜ"ɝ,ţ֜T˨%IwE J0t{Ep7i,Z2(_Uf#ǵ;]9lsXEU$w:|-^8ܙ*ū+ց\26RU[imhl0'QLvǺ`AD^@ * l0144^Y+A˕Vs{Pǣ Is@ MxЏ!""# qhy;E7F9Bdny]> tccԼKYLïG2IMG`:~ 5Tr bU/) S)pZ ml3e?vP';˸uj1 艞GV'ы A"A-#W_瞷foo%9+B7"Vbi5ξ%Iz{~V>B_ NRWUV%6LQ3B L$r3%ow ҍ5u_ӧMRvkbH~l$W02dтU0r-w6<]V.e@S`M ӠrēZғ",>S _tG ͍'IiМsY(@|oP>qTD`SiNAџ9F̬XPqE+ݸHWG&fM 2Jb 42iV{ap ɗSC2~Uv; B}=K&`% ߈oص|eP2aaPpv]&!U>=8E44"xQݷ@6N)#Ys (OQÉ>bh5^c<QB~WfBҧZ !#,ͥPV{kWtˊMjrmf*snr(U*DCz@j&&A^]+{]Ѭc\? Hn2ωE]:pH&^NFƜق8R:t\/S܉QlUB U; MQTfyYP;]P54$ԙ&aYl0RȔ ٌ6)F5:& K|Q?zmPQ2g!`L!Egg ^_T{%jH <>S[uc2J5&|LbE“AjZ)q$?$4 h$ooe~GG7&4DDS6s gԐqHQ1v)VܬR=z.6!8ifXmU mvwL^Kg7"-5bLQĀ<5wMsv+Z II^ "`rr,>ژ6%マВC!_BYUt'l{S0QI5V`uo\zE/GQ.gG%bєǍP$/,drQ(❔Qt!סJ4m\/{M,g)f7 cfis+K8B[WAx% L@JB44buY9 #7B.t:j{]LhZ7 lP,&ԥ˔tx+3ї{#圛Hg.=<$ Fjc{ pwj@PsdTYB]WP; dHY Nf 1y^]6hX<׎jz:"ΏehqWM:|"Hjk+°ygn8KAP[/kcN?!6C2úyZ~> 7ǴHn1+Zg(Ŕ~0+=-;j&]kh:2TG.86]ԉ`ML!z V´D; k|Relt.Ňn+C bӑy!dehX $9dmW KC٥(LT[UczjhJDOl"JDEI2A8~l3҆jEE?Wy+;obk%XeuYJD !hi51vE\ܢG(;dJ4-XIb~}Tꃲ+REdOwkN /TęlٲF W;[R<[~$B0C㲮1Ӳ^v\ ¾a*qŊ?xgwݼ_bUC!݋BqekĎbN ҈&b]~+ qX֡cF Ì7\7é-+I,T/bw;KCL]5?޼q/^M'.,9˓beCXr21O$=2:&g(1={3ʪ\iolgv0h75e4w+d/C#[$LơM0hz帧7: ZO,MHXݩ` KʎK)bKNsPٕ=jW¬Pi1`6#8z 9^+n\[ `x?aȖ GRcy``$_vo@߷n?ApV xh#:L ^[Ml4Y{j'N[C(7s^fGD բY RHf큚X5PVP_h"Ӊ3QlI XH NEjHg4u/jASB3.u 5&IJH$R/%TR&- + @#[CN@@A`P]a4OtiqͷIz!LG!WpIb: 񰻡cq וОq_j)VHBNKJ1AlYC@=KOHCr ~ȂIM':K-y4"< jXQ6i%6Rvʆuڕd/"@[ [a0%Bor) =H )X6r!|N J8`(|\`xg1G g`5k:?^Yg+s"cww?cwi8Z`<3\u^! Z3XTZC8֛hc^:F ތZZ*x[ sFP:@vr <z#ɇ)#35X*QIMUe{ ffRʌ%jČGu@/P.-tcJaDgvIcU2-lP7+KxJGDfs؟|epHmyQ:OQwsZAsޮژ7c#5W4Y753TFgb*o>Pٖ_6;]F>%Tєq *4D;kJ}2]F1FIEFRxJD=֜~vŠI!ur)iam ?r4}O쭠7zo5 ׌ aa#|(֐S7W]ₐ,WW?-꡵));15 v"2<\*0F}[u^T5C,8M8hMg|,tɯ2`4it7NRF䒶 ;oaƑAڷC9QٖN+wG.7Z!Jg> ۸7#cѭrG'Z?c@y,\(! 53WVpuĎIA%\clFŌYZԓlNCFq'e&VW鞢c 3!6Q[X** 4Y{/|p}ыjdM6s-2Ya 2:W•Yh9:x :mQ0*fT'M Zܣ\~tbސZ(H9%{"<`Ti)&d>GW>>GMCN60icFKIQNEq!U߻Lb|knaf떒O1Uqn:;ϘtX<4|Qb6:Rld7`<Zi T__\U8R1^ʫX "}0ա>v !y)dTD/ÚXndRhAק=ҼwWqRW*򦢦볔{ Gf*øeX'9 0"t0:4C <9m? :@uq;Tw;f/0ze2hͩ҄xwO a*lj3nq xd/!OgrD& 7OTDChi@I$#W@u^ajZvNI4W@8ZZ9^LH@3l06p9Ic|Pޑ;q2Ҿ6t"A'\?PJXBq 2\B.EgxN*>wJ% O4΋^ws^d50ON(y-hא 僇c,6/+7XWzBD>у_nA`SI-Am|qJ0@h*z{8gZ$8 )q ? Lv$;n"-ޭM4IB X4}oY #]*pl:dn(]skMƦR rDe8F7Ѣ(xO?llYr ^,ۆ;:[JM\JϾ{9imbNȳ ·c5[fvHXoNrPjFx'ƠI7 $1dAuo@NX,@̰Qha?_ 'u -]Ռ \c-1}ӃuKB ]\H(")n ~YxVM3V &T03ؖ7 0`{6- XQ5zNjkdUs#9]5E; 7лa0mY3uaw@M2]^9 p y}F(uĚH74%#Ё,cΛ2md|ld8j0%Z@Vq|zeVFEDN7HG @L)>붬Pxc lJڂ#3Vc,׿*ҫ}(a_7"/Ltmc}+鎓`UEbҵԣYDNf.ƽCU>!]D:(b`b^atT ZM'(Q#0kȏS){tpV&[r1VIɆ½Y8fo}Ljuu{ip%8{-*VBД:t;4L"v-H2:q^qc |ZP9Ylٖ5Or8cAL^XG8eB<׀'T] &y[d 'jt B!$2zPi6fSn՟wqR5`HJ.Dkр]ܢY '0zdc8vE-eR(^=wW@ :$pl9p0d \xqu02dU5%IlXK@p 'شms5@_V>po$~p( O:o5SE䇚^[̚ڵVIΜWݟs&pV.h=N\鼝oRܟ^Թ&.}^Ye<6v])<6Qa?z08zAǂkem{$MIL }VBRkJQP$Z G.:,,ij/C|伙 ũnnJ \WlZ`ߔFL>ُ& rꖣ8LU eMMrFri\řdf+ +$ >$#y5AO4c*K[DZxO-hiT0=(0NGC`al>6ԂF#A}7wSYO ~~^2 ɷ"vsn֠ʐuM: A|b-085gŒ" %f4z45rKp4P>ZxtE8l$sR*#5T,\>D(lῼq ENRe,N.\Ig=M64 Gp:Sh$Z zI&I&Rꄨ*N@lh)[k')`bTeXEx-CÓpiб("#_i`{"QQ3t ٚF } ԯ εIH&`8@\\' 5DRM7j*еils[ ZW)nXvms!(wգ_ &28dк)56RCQQkfweD=bvtq9J0TíܘNa*gy*vW"^4MgtGw w'&^2sC'P죍P*QP/ffIcC ʷL%_OHY%KG7d+?\0`:oC("1FX['!.Wno!xǥHM>,e1%aMd&4xgӍsʣu1re ́E5CPK\W-*8k"Fм|`0+dSKF;Ĺb5\COB)-GP "NMȗ# -)%ẸIl[~AaEQDGfd:%%kI2C}{ \~4c~!vFaP p[ڈD䘊dY{]FH}bRic{u63W"R\\Y7r0CAMr l.Ks9]\c0T&&շg hhtET]X=/"#/GH~ami4BOշhR4.|IUMwc7Tue C(OzI ]+7S~HQZN!ur5tj1E!9@(1Q|4`dI8ؤ0ƣ ҋ2U#lz #?43e e[Bb }_m|[F]^m#۵2E_nU i v]a$x>:&B"!ӱ']6&*gA ]+ vKC}uFL7q~MҚޱԯ@%&[PDcYA#V1K5ECsmL=7K "tE49unrHtꭈuX5@^nr"waeAg_WJ0[z#kLI45d\W⋏EmЦ_Zds`rU>6LJ&ًhP(Zq//f( һAC|D{[ds%_u_G#&F&Lu_o*CrMU-cPnרFb&GE2|+ͅ:O37j [u-Up G7P)e@F(ҽic&̅Y9FV="9`{&4CNb#Fc:0Cyl"#o$2%BkX;M$ƞ %ƛמkT3:W,5'bHP~ipEn,CN,_7ґ&)7Z;<soGGMlD,~k ;-L(-0a(4 "p[+u Rt?4d ]]@DiEAρ: `ǭ(\bRgR+Tn 6|Ji4n{iq;,>, 5v[q Bmul2|c5UE%e8Hci'fyMaԄGSi 3JV|V_t:r>l޸"BYVz??H\1[PV}(|y0v"+]P6tҰlTcr"7ʋ(&[g4\2} h)g9~_(\< b״S9wh;>JFh{͗?m(_sECx¥dv2>T%YIyw!?!LHX#qg12BMJ)G*6>94c|_4Z}V\N,a]LO ɏ3#cgfچhQLq'x|W97mr@EλEK"6xϺ2y;NE~>V@0i;W: - j1RljGnOv{A3SyFӔJk_ʯ0?M~zTs>u#9LySk^@[ [&EVzqȩWHu]x7>.G7<+MD-μ * ӄoNЭ޶#EtuRjވe 6v*孫ԙ[l+r&^=etSd*ȈJ-RFREy l9sqCڃcaSe qǤ"/G[a;#NAvi+#e+3.4~%XE,]}MpURzܐ'jf-ۄ)vo򓋚`7FU '|SjȺZM7Lk`Z"@ 8'ҳ*'kP0nD=hLTL=PbC.mQJ0~v .R/8@~_#IGI@:߉`PlFYohzsUMo[j|* gw6$gR60 ӗ[n2~y&#w~s]g;g*y }{y&ﳒ`i[ S~g>-{ߩ!+J&}&+Ru} B'<$y)&ړ>2GFz%̲u;ğYN̥ϻwnyO-)`mx?AGqO~T/ŦpE.t8 J[RGB[ ?,y?_~_mgCe=o~b OYQJ!X-IȆYߩ endstream endobj 36 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 39 0 obj << /Length 516 /Filter /FlateDecode >> stream xڝTM0+|8޽TnVpRxw-`{fs!"+q9"R֫ˣV#b {1$%ŒpGʇ%)dnT2urTT&,Cwaw1:w{QK~_7[*f0a0'Zُ:l4 C >/2 # 0IJUG -J@̜ u:t*޵(sJRPm)>Wxuu>?f&{;_ʀ)Fq/%xr^nܬd8SYVoyl߈g#Έy7]u,{q>cq8 8blO2 8\@<‡i¾n*;%vDb#sDW ?5\LѯK vHM_͗m ~TJ%ml|bS(eHgqj`RO 0l hf endstream endobj 21 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig-contrived-1b-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 40 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 41 0 R/F3 42 0 R>> /ExtGState << /GS1 43 0 R /GS257 44 0 R /GS258 45 0 R /GS259 46 0 R >>/ColorSpace << /sRGB 47 0 R >>>> /Length 49792 /Filter /FlateDecode >> stream xˮ-q%8_RcJB" @LFXRj w-3;QeuKLr9qlow7eW~7?wy㟾)?|_+ W?{}篜^?_׏?~o/[Ln}eKꟿ~_7ߨ{Z*9ϫ5uȻc~뿽%~?Oo+[~e4wYR<_|j+G~7^ߐO_0߿9_VtM}TC"?ͭ}#~l^P~{׵8yU!i^վOdʾǮ<˹?dž|)~n0~n0~_yjyVV>*u_h_iE)_Ο׵gR>g^_\+4\1ևM?.78 #}7|/W=`Mnv8u\M7x{}dz3>>)xvy:t^p^7>pNU{|y}qXnr/g}npKMu~7Lp\Og{>{}vxv'Q/'<^WB?E }MuQw_?]Sw__&^|sy{ooŎ!)&ځW(d2o/[ \p7ݞlp˿R<]p{"s ye_x__mw|_]pw{"<s\ɿ콴xq>n/{;^z\_=]nOz\_=\_jo' wO77}U=ՁݞaO(vg' 簏 \ݞN9*΂:'nOՁG=r}vepT258ZQ!߱QnO:86{B/'>W#8*Q UD}GQnO6}VpTsu݂ <ܞ718zQnO;Ge.kpTs87pT=Gu`'[xQ:>X$CpT2"89:8%`t}:o78DsNy+ ݞhQ yk \ܞhj&}DZj}b[jׁ+}dϗ}.?p~v~ Bdk`gyv?y l}`1p <;>cc=w`ov9*g }xzާv_}5l j);Ё֣T`_ l܁=|`'8ϻx:3O6y?`6}n8|`ly|Clp{pw}.=a>\o|..~ߺۇDzNz:8=|c+/v>5pw}yzOog' '͞|ur>/OCc' \ݞ\s 9 2\NSy# {x=qr>]>p{8>oixG<}x]ݞn! \C ~SM74kpp5n=0=갻!vgдx=\- rZϟ+<Ul _lK_m /"SdYm~ \Ae#b\< XB1VNê&$M|z^-cfx|.|J0oK ܒ8؏7"[^Qu?ݒc&S_/"sוǹ$ʷ!9 fvLZ%Gv/Qm?e ʾAo~qֳ^= #<"Fk6i!?@ 1X[rsH5xй4bFJxuz t%yI4@v\ϫ!8)i^v"R5j%0.Twڼ'/.^^c\Ysצݏ^ZX.Y>;\gym8ɞŋY';NRk2R*y'].s}$ -^y!ePtLTT.05\vF7G/y V"Q:@"[Oj6lϥ8Oߋ ;jR+{LQם% oi!/>>^r^ 5&'vdWF ep>jKS\y0wu# Dc* .mnZʐ|¬g>ȑP>0Z,{{$4Xmʷ\x|l!<+2/SA&|B )y.g-Ȕ( /,X^)W%27KPMϏSrmxY',k=J"{eT!aFC7Zϻ`bgI|n<ѧނyPYW~Q5,X1M~s!=t_qLAmE^+?_I?uL>>&BH>OQ]I[eWSޱԍ3=/rM|q9~2I,C=~IX>V{^X!;uI>U[2@nЦ]OYwsQ0z7r1,qj '7Wֺ\rM?{u$̐Գ8IO'`2!r! !D$ J˖xYYoKh&I?ﳁH22|š'V2{e"yKHb T΢ԫlQIK<x/qD?+>X?D_Hpf%gY2*J8̜ $5uYjt&[f߄ ;z6 <^oi-F"S# D+۳Cѣ$Q C3$ {vbH(*XguHeXˍڻ\G3r<D6xĴ53?”;>$XT$mxlaEvm7:96JI IZbF טP KȩIYTdw@41 R+a!CM6T<վiV# ӁJzS6KV"Jl=k(K]v >Qb OD)`=s{[[hhZ匫KЯ݃DϳDN-qQ$JI *(\cJ\o9a,G,GBsh5bD4׾$ shֈ"@@>P5'/6 Ϳ "zoܜ+BU5%fva3vtG󍉓-8 a<ϣy $iq&W8%MwTLCDV55 _(VIL0]Za4u4&'2N&Bv"AnOY2hXW5d uv]=ZI+6ES_ʋďOep] G6F>' ǙƠekR+_RMtTy꠬D 'W`6dkҼ$;HM\%|E,xflJ'jFռ,]M;i5=h7"˨hwT,L#c{<]躚LJdU~ig3idX eU%[m!nb7[(G-PG!`P/ViuB3oDl;6Vb4pIPɉXVZ{uK4Ӻs?7u_X&(&`Gsȷ+RD4wϳ))m4~]Z)T)[fyͦ,>,d4lar0eaPI3bfkbF)Ua&x+#IEds+ +izFui#)Boz‚NH󶃇"eeu.BAהD>BbГG`sCr\eV:/#6a6!⮝̫@ԁ^lnM\H뙱AmQF2 ҄>$S gD (L֟KG4/oiEOeDqhz D.oZu*ܟ'3q4K"HfǺ>@"#t6drw̒Хm,+ 7ehq7"FXO!e^JKU"pڰ@=KDxͼu+$;1Lz&\/;kS4e>TLM bD&ԔBHO>GŻ(`$LFg0 {j"$wԌ6VX}R\_\DWgsRƅ]kᚭfHx2)ՕiiþWFC}-;$ѥF㵄$RWFF)y^9mI֚ݼ#g ]6Y;*E`d%gxlUF_me$CŢ۟YGtXfHe\(ݓjZRR&kA:9!L`ameWĒ\oL>mGiOI汰@}n=GY`H*rů =5EJoXL/xlXR}Ԋ Cc OVϨHx:Z)V:kLHb%HKz reYV|oͦ6Uh5X1zv OۅV]/nfD j$k<[kiCb74tZ$Bfr5gNJ C:,3ʽ2FZʊFﺰ k|NrQP8-wV v$#[d5uY BP /Rl͂]xf行D#?Hs}ՙW^2k w-+.wi Hz!l@5 oD?(f|+9הZ} "Ԑk$f;4K9gAV#)3Yȡl MKb]~* LSACֽ[ Ӯ jcaS}n& 5RYڏqz̬$}C ɄTƀD;PTK0,ڰ$`Ɗ(`'#f{sd pN$U<>ALѼ֕u^f"e,[deW  ͙=ESB,vɐB u&ʶ!]G-1JI]t-f',fTulL=]6]Q"Վ !a؜.n՝XyRPo$oȯOܑhM6;Z8@k;ݖXF Gƺ4efnMT6JujfxӆY.NH_D6 F$g@ŤR_B-$,B1aǠӕ Lwc\5#'uta@ɠVpь#ᩈ>dWx[WVo1鰮ܯ'aB/)t2["q묗D2mg]-:Œ2 iY=M L):2}jZ" as,HEy 4jwDE/0m7ID+5v :YX<ׅE?Xm0޳Si:%rmԹwMN©GS>dyk<`o6,>R;\צ^›uӋ sZ{^3Pن\ɍD{ꜮX Q ?"lu˦|r><9ysb=5.IDXҙ5E*{щ=ic3DZf.:l:&2./ŹhEb=JB/t2[lҮ'RTf LClb&"jZ;ۯ5,mڝ/:fʦb *hׅ!PүyE5Q|cR-eLmֱjgVTŢ4n YS iAD]؃ɻ-qX^QD-pY̓wLD3+MC++yt[ M.ژbk"a<=-o1d3#.0ײ>,[v!uѬa$eGY҇3cv6UBZ\ e3C־Ui ZP'B$1UZJ>EJhgMĊ^-Rԍ,-4% πG-vQ a?|ƸVTD|Z "NƧ!3F1ƒl+Jh!u(3P qy|@°pv9yA**M>(( ~f"j7W4Xhy}ꚍIc3b4#pF|fCJ{fr{:/b}WX~O;1D(GZAA]Q[hB82{CF;]%L;,blK~`LƨFiVJ$.Ayfs\$ DOTa<8hD!-L(-n\SԐ*nǁ # ܳuEB[k'x& BQG*DŽioղCa CzVt`ocȬSlІ? fl1 ?4ъ!TH41BYDz 0iak)5} f%Vҟˎ`ÞxӮ+d@vNop:$-kyd3!Ym؜^C0qN6WQ(=Q1GmXj:|l{v*\#S;͐ނxWMS«ziBXDXЯ3,ߪvϓ<_ȁkMBnYG3^!_Z4DC<@,m,>m4u6c$+Ӭhz`2~?dMy ZWZƚ8XY7ZVPG k6.WI~H_YX^CWD3)#4?:;m:V,h >}' NwUY4Ueu DYW:hX]e1i%~`G3qw>iLcX XGo,9aFWR^)r5%"͈З7cw6J2(D3YZ-EOJ_tPgiLL(|`ȢGÑN䶜Pv+.fO,&,gYH nw:-AH #X)k-ja#im4mp0afoNsaZ/ѓwh0XAv@ר%f5+ЈV2F0t31 $@4Qz(Kl^v:ABdt謎ZtOʚ[Tc0Q)`;fV͓5;NN6h]Qw_YaP碳ra^FMm:Ȟ(4HS6e!@)p,2szɶo|Vkil,O,̍CC2Mݠ3:kvgnLA@+ }i-Jsd iv,LmrީEgZar6H" 5q3Ha],%_O俤Wۿp_插~kaÞpȯ C=BJjE.734"JX@_CX7 S5(H!i c˧9[#kΏuf"*~ڻʻ yWC];?Mn(տ/]zbAj_GH}:LDI`nC5D@k4bK&s*ߚ!`$C_1z߳OZ0*j>^RT#cC,yEz4r{0|*eJ?4MNwDڹE"t*[.'9|rҿW-#B:Ś߾U?~OqR"-PooW?5꯿aO/Q[+כ oB?㿰kgV>ogk"u87?_^^?LlΡ8V"Ϋ (śod*(qׇ+[p޿aivT7xo4Vp yl]}ɝGU44hv>bWo·txp 8&*~n0~nslm /?o_.G7ˑE]˱U^ T u9Nl$< Ol( ϐ:)`5?8 ~<&1'N?]T|oS.繞O3ýcN w|ٝx]B/kY'7 |o~`;OnϣW߆-`x{{x {y( =1wlI`PxxJUNh/.捋s O<.6' w熇繞u~_nOzDu̝ϷDyG+nODuGnOO'  yφ]ܞ0Cy>vߛs  D<] g:7ݞ0<\˟nO6}nx=ax>|]$Ý&ߚq2|w}nx=xx=xlJg'qO\oDu}.=x'ws79=Qݞ.5 =9?žg+9{±K<߱sc']~iaO8z07ϰ's=Pws7w9 M~aO]{x~ȟaO:)&„| K-0J:بԓQ].hwP]!àեةH^P]ir+Q]zCTׁ=-^ب.+Q]˯7+Q]"eNu9v#Tׁ=TW`{P]ҪrTWG9|Fu(ƒ:u}:7lTG*:u} Biz;umz;8|˞v+Q]QxNu"6zبGTׁ73ببFuwFuw6#2TW`_ uby5 Cccب.Muxx󠞌 lTׁ>tFu؆6멑uNlTW`Ǜ lTׁ]>Q]+Q]WwT,xS]alp p{"ݩ o'>v+pv{"s yܞlpw{p}. >/' o> CyoW' xݞ '? 7\ܞlp z?8uu7Nus ]t˱S]lDQ]6Fun!^q+p{ʩ3;6{ }ݩ>WT_|Nuw+p nO8=۩LP]fx=]=TcgZP]rW'ʍ2{2ڧAuxϐ =ax>W9=wP]M}TׁMTWAunO +t{ި :˗ +pv}\P]s \ݞ0B|TW\ՠ<8=sP]wuP]2=;?pS]ۍ+p~B˩|]/l\'렺;e|NP]*&ԩS];?ߠ'S]6{z9|ʫS?#W_B~?׻O!K>~lpsw+=k:U̔ ]ag**K \o: SԪ lcta6{0 uؓ<ˇ=kjon`a/琿^=unW9ևx|`\N6ʶ>6.[N?3;߬ 4[w\nϛ?eWtӁswӉs`\Wȿ6}o|ÁM!=<]~v{"s `s]7x=7' Wyk.nO!q=\;wrNs|Wr>·8q~u|y>>s fO~r>OC~6z 8O<ܞX[]~xȁө<-v}ž@i>w$Njϰ'W Ɂ._Ձ^G;pu}>눗.nO[iɁ͞"`'fO +LGo#!pWjwl*="pv{"sWҨ3 䇌L*6}ޑ_ӂOב/?q˷9ȯIO8v^x>|l=_~3ՏҾI~϶Χ ݞPyG_{*%ZW.GϞ?-('xI0!)| `fbŠIu&fTEH+` 3<;,Wiҏ? e%IBWgC" S Zdp&##inٰ-t0K&W.ga{wk*;zݠ:Wn{ "pB): -Dy1-6]<Ʉ66fB ƚ  ;т٪F{~O4mژY7ye:ua ۚ'ۚ3{g[q guaٴJf%(:*8~6% TbɌ_`s+ }ġ@ ;CCQr:RҎ6Br0mB7-<5"#m%g'b lTxyvɔ=dQUrPi5} (ٚ[/)[`e:=Q::+{e:k,{h/& dL :56Z.rZ33KڧMraudmʼn)G0as-F&zV:&ǬqyWU{6ϕnBz #J^v|xQ|~ώaMkЀeA^b67x˓9Fws&8 TDrŽl0Ɇo?lr>Mj>!e,.:Iq&?7uދDt,^#oEv n=VtQyp5Yq,:ʳ{u3r$-T kIc ?^NaS|5i!m/t0^=ҙi 8Pʔ$6GbhA<6.P6M9KRk(,I,qheˬ9A†銩q?d`JhTyIxrBE\  *;#/rI%ֲjbgeOzgME; V٦` XٌCl9+XVT n] 8S'dB):̭S;2tq ;[XWrd'dր_ЯB̏϶d.π*^ WAVD;3ŒlyB#N`=)R ,RM::Q8=YdiE!v4,h2@Rl؞m"MKE~~^Lڿ?$<7d@&hgeIw1l&t̔xBmR}+!R+xCbNNlbD |JߊO=˞֛ U&$\UFPdb퍬P@: /RExK3j:H76U3A0;ŵA;ruvb3LsDTdEN^t R&($Dy$ǡ/63Njl23g+Lxc;k#^5filFnL4@ ge_sSEh.*z1JF&t?A&iM`H}s-!bdrSr()/2Ǣxnml^I;="6ٔ,(ڈc}^&,7wTtfJWL[#7;l0Rc3as5/ªd!0h_ ˝`-w߄Fb+GS-7Zrs B 5FMXP]sBilґ&:b CVH^Xq ܷr wY@,F<.lMX'YYsWT+ƯYvJ>S%kgv#2Cq, 1QpYB&@e@^>9FHdI y±ŠZZ$ O85 ݇">o:$x}ARDE"Y"9:̄rS=Xoz? qɾ sUgR=JKAI¨ΧB%Yh"8'JxEw`Ó%٣DqWشxMF6U;ʌ|+,fKFldFh^=el:M<>+1Xr7 KLhĞȱHyN;hH u M4{ {wBIꌅJ&줘<:vn\ 4dN졁Wƌ-LTm%? $NxaBD-BYTGbp GJb̋2+jt& 7ҙ:rɴ/y='jY"I`<)2R<2` Oe0Xl0K;#,ڙ|zaSH8tN"k _ `iƳQVR7SyNNTB,Y/#zņ|%yVԴy>Q"]=)Y-y[ފ,B0 >-ؘ}HIP¨3 H(*|na՚,F'ȰV|KL,zVxEL^ IIe<0)&Me|ޚ+ؒQqq:Srk<(bVR oiH`oE⟚fgW WYH Q u,L;rۮ%S #q> 'Ua676W졲ZJ,"bn"95ƅ qus&i}7.Zm_Y B@ov.>Ш4,ޕ;;N"/l"2av W,a3fxz2y>eUq,5ʈ&ܫ9mE- o7bԪlD lQZ\>T7r5aEeU|$S;mgLo#4ѥO,M XM1"2|T676zĜѼ[=:2.UL{9N7Mzc9B [:џSiZ$50=kl+k"+l#MP2:ٷZ& uEh/(Dqk刊Z)c 0adk0^ Mu\[?D<9A( '*Jv)B oYT2Iy0b4K8\~߲,=my wRV}@BEH R㭔T"mV8 c0:a HWMR BcZR ښ~ +p#UeE*~A,d PST\DK4{^S;fvlJrт6]iJc K> ÌBRZ>^ojk=dX"+& nDZ[+Y]d-Y\d)pvfITbtx,i2Y{I3Uڱ(6'_\(),*yhA@{X"I*e1rfTZ_feU; ꧬl2N =e d~``*,NrЬ#Ѩq|.<CJѽa6ʉuF}&&1B}̞X)Y'V:eY )R0Y^h)zEK~Ul<s*Zb.B"Ỵ-u/eOD#fk]gmXq1g+H.Twoj8mBtv3NCCb$WgP48oM*O4KK"AD1Q^5(~uױ2ufrTFIEXF]< ޏqMMVNɅ_ bk%uEZoJ-CswF'X[c|(;κ%WO=+7Kc;aˣ:QL!*+>kT ͋Hљ}W~V+Mr [̾QS(?f@:1~U7 +@7q <򵑴:X"9iH<4B3=ֿOgpu1wgO8$}x]$g\5Yr-N:Tn_uTY^5Cz/RӢY뽦RE؆\П eZP[&hbHKq4FH2+F야:kֈ'kw!c2ɓ8kX `HS\3$I hnΐ1(B jc]-n$ >H';KFK2(gDJ M&hN;ȬEd ,&b܌S-JÉ+kJMFI=XT#U8$FB"AZjDN9t2Bc6 r*5,FȺ_i[t"?#[V\9ᄓ3+0V{+Ղi$FgmYʘ mKB-L̬tR"^8-9B,isZz|_!ۿkSt tفS8-وՁf%=وȉ]ODI׆)`*tqXw6n:&k6WY4 R#Ks]GFG %m$5pFnvN tuHj=RTF[bd֑>p[XAoڈl#ζ>zyg ud{;j*udz iV BV:1"Z+p+Fց5`*K~O߼~ӷtJſ}x?}˯÷_+WVzn]{$\-^-MoiJ>OV2xY4}~* oQyI{W)-N|[?럿~÷} jM}/^{GkIU޸|9ZopmkGo~FGnR7ތ0 4~7];Fo|`ܾssss]-ׯG%U|'?il8Uɳ˟]jrjl8ۿ}Ǻc=}/v>km{|QC{]Ol1Y*=. lje>]>z[F8=Y#yo|~d)h֎aoܼHqew4ltn` =H7[I7|oGnOoxޞ72ٰ+yckؚ.!=QoܼL'1?Jcxck7vO> :8cdk8-s=oى}G6Ɩ.y|4 8]{1|5N|<:TxߞLC>:ƽpp <ˉׇ|t{ޘXz68|`+95q!o/$.ߢQ Zz&`fb}`L ==|!*S<,C>x>W\ݞxY]~-aO8z}'s=?Wu=b ]>p{|| }xߞoaO= 8v{x}_aO=ρ]~/aO8zxۇyGaOW׹}=غ+&ߚq }xܞK!=aO8v}B>p x=9žpx=xoW{>c'ks7{s}.=>䯰'#f ]NaOÞ.ρk׹}aO8z xiSjx=xwGJGaOtîρK5u{=C;Gsw3 =C+.?']~aO.?װ'ۇqNC {:3'M$;zp }&'{s}.=B;ws5p}xߞ/χ=B>JANJA0 Һ09ةAu^?4TׁMS]7xP]<بYP]CINu!5Tׁ=TW렺եuD ̩|bڜ:5~캞Nuޞ렺;x +p%렺eѠu=:6[`ϩO{Fu!Mש/Q]:࠺;ulNu6#PTW`m=u lTׁM~TW`ll (kب.\Mux~Qto|˞W̩gTVJS]rT"xS]sȿQ]J9u=NB>Q]Au6+Y؎yZhgةy-Au6 p.=;PM+Q]+;޷s`lpwKo+pu{"s-Hqݴw o':MS]]S]7=anO` <ݞ7TWD}ow'|8ϩ|:u`熷/:7ݞ0\\}Tׁy9b =QoTׁ͞7S]q+pq{ʩu;=7x|/Nux=Tׁ]>pv{B퓠' Wj=TP]6{p}YP]WȿQ]s':s͞0\\Tׁa/=AuAu^nOTW⠺+pv{B':<:w͞P,:Auޮտ fOTׁ͞P7嫿TW9u`gȿQ]^Tc+p~b+p ~Bϩ|S ]+TW\O'4TTW7֩TWwj*>l&^:-W>վ&sb߾OվG`[j36>>\}{~lEͱ~ ]*~ lYc;q^Σ!qyk^ْg^Ǵ[HP%bP4c^A'2wFe/*q]b}G]m]6l+q_maaд'ao޷KEA͟U4>3;a+_? 5*?>N;JW)>(}%(m34>Joa[i(ݥu;n_V J魴4>JatY4;JfGi4ͯ# ;JfGU9ҬQ JIkvöq*-簭4mv(mo4בOnv[>l+~}RjAF=0; YQAqQ+a5n#A ۨ#f$t{}PSJa%öR[ njA Jq/6ԠhvP¶RAM2;Ka[)>Ԩ*l+՚,meQjYط/jEmof5.z~.t{}P^V}Q /=zZv:EM4;a>Ȱ}}A ;E4;aj_O좎Ұy_^Tܧu5lWߨZo rQw.W58lfd {QAf:l?{aX՛-_zt1wޛ\/l_uv:򟨧mo)a[=m|/ ,? a!;>;l!, Dg_>F#_;> |D'>|KࣄoDYFa r|qOLma>xN|_*O U|+94CyP*ΠaɓPQÑO'5{%\/TȾPp!nЯPda6:T`Lb$> 2DCnz>ᬕ͝X.cQ-|j<ǰИbhXi6N5q- (tSgh+}JJ8.V~W&"1"uO]E? y L%F9e%n.J< 435~H V6 C(?v`ј3тtjWaRQ蠰i C{%*Zv,,Qp>rmĪ@V1JT+$@2dw6yC1 6\TgJ6CXKFߟ[5 zӹ`A`@256qV(eC m|~g$7*/MV:UDt\β tL~$aGA5lIܗ~<P%EGrv&"~|=FmZig3m{*j9D~΍M+Zv y|M[َ"XE`&SXSPN ^2ul7 LlM%^5=xz^5Xl2ܘ|'y>+EBzA^D@!ħ͆'/*֋8W)jrq3ZI, g/o/ozq6lXwM^{&.!YiY  ~-PNL(y4I,N65/[`?< *6h\*ak':Kzkrxi sv&xK \+In|8ڔ9) 5'ۧ< MۓX 'Iցsv6#To Fn:DaғoE,;u/x-f$#r4 l L@ǵ߻3GpL>PUrl[m}'ظp6+Jb9ARY"83J[شɸ3=(Ѝ* ,@;K*x×M>JTG$VrVTDf+J-euP}^EN&ZIT#DŌ)G'`8 :MoD_fV &@UL+3^,}oF,4% bD\,N(ݢ#2bמRNnM . 6)lUc"wρIU5>[iy*^<[ }K8HYh aA85lMo#b$aVYYX$QjazE&6R1;B7ح `;CHmy*3RO6 uJH m ?L|flr1NI)91,Y*8{d;5_'oI:JeA&AXl3rKGo)a"s팂 ;0QGHјs]:*M‹ H8٤qaBVf>k]pJA Nac]%l }yD! E}(8t91uPvL.@2}hJe}Fz$/ 'ӂ%j"Vs'&=g ,^Zӹ5űg@+vsˌ619IQ_wH\V uw, Jr(R&mCi>}]ٰ])Y]ABg,QCCrI hT˜!e¨J17&|e31(~Gl`L`@f L5CDꕑgs5 K17Jlg+-T.~HޑE8A`ap"HІ6:BfEtwbnc,gfUH"w!9;8.^3u+ezzKftDW o y} HlXdaAfa|0LlƴJtO(J}\oKgשUCB;p ۇ{?_"Ҝd$d{mg]{".JOdΊȑHQ,@˽ g^z֡( \&JpR)|sX}N)IXPugL$V}~ 4In=4X>~׾NJdQiErI;G%ZhOpn c(Z>\#ѢyiO|F[@u+7nXߚ+m${/>e &rAzt Օ>:`$O,:6Lj@tU lp?fhrJ|X7\3VJ^Q$Mmz F7N xM6XFq1eڼK k^V>v 'k(v;+U|~hLV*h}A5 &P/SHomL"U=RI;Tt2:F#H0N[ Dz~^a@Z_$km<$*J6Be!W / cV\f$ ,@^P;F:*  "- gnCe wʕZBfžӐDdtVjWf8WqT!8;Չ@ Z&O?K ݒC#r)d >G%c#&F)Pn텵ۄ5 &m`&hW/f$ . a*$Q5Bx5yz$E Z/644z3XbaJgHJ( TeSRP(zS)1Y_A Aac5U f: ݯ"ƫW&$ V\\aj2#J(-f({!@Vڀi 6`0uiF`!@&:YCE%?Iq* }6MYNvg,릿ZA(!Dm& DUjq!/ 5Ϧu޾]FPv $ yxbNGIyTVC|Nݷm䕵&K%rʴ%UYҀ{&[A eWt(:Z/gY)?#9ۦNH'nSg:6g,Msu)Oc &D"LOtjeuT}x?YHTDpkKVFQMTlnSer"CeqRZZQ0IΪ$l}TAx. valp,J%'{"iqvd05i#b BR}o}lǯ~hA FF-ש 'XpJcк`HK,A(B y$8ufܾY&EӇp !.bmuxZV:/FD#D@uxƤ_lF$0h%gq ֺѭ2;k-( :`~e*k\B'3r1UM4~c F8엒u4Xi $Xi8 7Z>VcHB@1*}iN*ie$!($%(5&ܷ~t;5ڿơJjuSo_7"7Z5ZQҶ&u"5\&*qmbR}:Ys]Ч#d+hf}3I ˝|٦?DAf+T 11lgLa3"F͚a ֩L_ܲa“R*1Ԍ6 BɅ%eYN_I62`0N--_4*#iHaš>K+ھ+5@G%9dY,XZ2U!%n36ë"/ mR pI2c1ar5\wLV$1^BA2E@$ŗ .b6503ȦPHVF'kQNc),!`K|ʜ t\6?j\!.v*r(֕A}Dǘ<+ $ꦦ Bhv}4sz + $E~_ RFÅ\nL?Ja0:OgEe2ꍣB'~KbtF]i1:  J,% I?Fܷ)@$Je6球XdVim㈤b! @$]u"_oxa|2\RrF&~/q'-4NF.b:z#u$ԅ|m 6S}^覞6 +Cgl #>E 67NtGAkT8ד#te"YOB45w|ŻU3FU, X!٭{4v(gf7tt@w"5ƵӤmiMuB!FYdhun rǣ㹲JgA̔Y_1bnbM[w?g>c:M 8iM[;*uha9]ɩM¨tm( D 5lQF{'{>JYu_lt3l+Y"Y-FS[;ʨ6 E"Fg6h+YttU1͏o/|kmn6zaԱ wIQb^_N*ѻrL42ct*l~67M<ˆ-u9Ӕvh:JmtOJUߡ6FrFFt~VIjJ>lTV'Wtj}Zo~?HǁJqtRJ_#!b^M  (^قbCuWFwwVlF5 O^7ǻy~M𧢒ѽw㧿{˿\W?%r"_~Ï/}x /kNe߯E7ܮ \_L/>R_}%l~ !'ۼt#?sRA|S{?w gx69^c? 8Upk[͌&߻y[(~of6:`kT=D`W:`/R:ƙȻxy?l͋mF |(ުaCG}['G3Fin}}|^fXiO`6nN{ޱ|5_{.0Ӟ!zhv[8:ǘ.}f6rӾotþ?3lO@e6S󲡛yf~ -^>"q>Ϲַ]:}>O' mӤ 6ao퇽ao4c]6$N}]6i{A `f#MG?>nτ2e1#p{swnyD<>ǬOnݾ#=Ÿ=nݾ"Xjn{lt^umPWuY< :mCO6}}Paqu~sA]8wkPWu]b}ui_umPa}=ֿA]}A]aA]=n7K't~_PumPaumP}_PWu۠G~F gG9뻽a;vvIئdv޷A]y&{۠Þ :N{ :ۡ :umPWA A]a {?xxC]ag'žt-PW㉰-0as;uu=9ΏC]aga|:uͮOܟp+y<}{xC]ҡs:l'̮nONPW㉰2PW+ֿA]m|IOß.O?+-g<PWyOhPa{<{yPa[񁀺nԯ > {>ѿ+>_ }u۠s@]7+뀺6Kþ ۠.c4u^ϡ :y:nWW[^m>}'>a|^O<ϰk׿AM|߇m rض.~ a{}=s=oyag{}?[%wyö^m/;oM}7v_=b}w 7;Ja[UZ0;Ja[iUJ>J#a7aG%l+tn4̎R?>l+MVJoV(5;Jwa[i(wöҡQZ4;J|ZQ̷x~(y^aG6l__kvöұQZκsV6;JaJOVz4ovöҾQ7;au@;djA=ۨ fu!l6ԇFm ZavP/®u#l[f5$l_vPKInK Xu֘ԛfvPwNm>A= Jfu)l+E_Ԩ<.jA E ;~԰~PZƅ]_:zv=E Jf.v=E]fE A ArQ7}uQ?jh~f5젮o+f6t{}Ps_.n?7p~5.vP>A'ju;l簃A ׇ_|v>⻃Ƈ]ևi5|f5 l'̎!5! !FqNa??j0;Z7Z;̎s%$d$VE?l|| 0~Ċa_!vw|Ηo||mGd'6|)e;>,'v|W {>6| Η9l[ 8>>yG+Xr|bB ' {9>JaGpS Z6||[Ѐ(@GKrL] Д>Y-Tc7%V,Ⱥ*QM{v"'xlVddSCq$2 `mIuQ&2~!_"Ƀ z M D SdB䳙$}aߧHh@Ae/¢xBwQa@F) ^'2UI( o5x>cJf7'&=mi=k#&8WnUM•$q@%BU")ʖn"%XLQ`G!j۲x6D `y+1Y\3fF,4I֜6eNrk<+>!͒ nҔ\dǣʞ&ȠnPHGz%:Ooq:lVvh 4JމIY_)+,Qրsl 6 w#Aj4Z4I(4}nj:EJ(e,S|~HzL]:[ ܞt́1A=̞hqtA2|>ySO[ rshZ]Aqf6-g٤&UƒH+ۘӘ"7q[|^RNZ`Z2IPwdfVzzގN:~5HۤeQ}&)ܚoTyMyPTebVz}xN ߕ~Lbn:Zy*g<+Hij?qU6JП®r'(G; 6 3 Ut&|]rDa6}Sc<\*:qX}MϹANyu|gkJi:<1@th`ԕÈ!’]7Ҹ5aSO%w`@ d,L+Ucs֓ c, Ql6ViP30_QBdު$0שr`!6Bjc ri6\`Ddf[.N9d2l#( Rω;Nl!jJwbSm&q>I 5??,qiP;ɟeB4b٤O(wKeK}Era +\^40Cf8졄:TH{ea|ݱ S78;s2+N @4I`V敡ԒשWŘ/xEXZeܐ<[)ie$Kp|V.ԟ76N veÅ1>ml(7\OLEɟ*ѼFvs^3^4@'c>kTO,ެ*ʿ1KH@O3{IIRjlCI諳=="|^ ފV^IpHϱ,ܨq8vBHH@;VnGP2f÷RWf!3V; /xP Uȳbդv0a%̑|e-Q 91oN ,JwFHvv&{fA (l|\CөJ,8Y(,9k[M§Vh'peX2\mIiz{SgaK0:{`fFq>ϊ: ٴ!wϧpꟵFM*M U*X1HuQK5;v4?w3]\#,{m2579Ilba)Æ :%eg\1dR6]7FG(<mZ&)~ 3@r>>Nz&c' xh;)JM12z,ڊj+g%[Ȓ2B{RAIa-3&l" S1VĢi+8!]4$X,Y9H["<ۤ0w.E9@6{ qԠUf`, nt2Pfimrэ7~H ,'2.ޙW8H#vHf?('OHV9-Hr`>h&+$oEJ,U: N64ZM[QgԌ {ޚV+4##5zDX/+)^E!uNè:eb#g[{J<k4 Ng$K~vQXLŰU\|&YI0rXZ76~ 4ɶGM֭'yBC6##5o30nfi:9 5E^Ƥ.V쑃Ja@%5B"X )dhI`13Qz(ᗒbև0*gpLZ$HNy<Պ&q+C >[fZ9eJ,dW&ѐLDsH$%7ؤ,FKu@2Ac' NZg BIB_#ڿ0&w_AW$OCdל ?˞ly#޾[de):+tTYzo ~Y_ΊRٱo '2Ͳ=tkX _]:NL*1KE`!NxfHJo(`GxfeJR^iC'a~ih|Y  5J3y8 ЈIraV*J91,Mzϭ)3 : &܎F/cU_1Lהm"99H5sgU M,$'g!l,x? WQަ<@CN2EϘTgVjaIb7وf!! D4)LbGO"a$ek^Cxt,R>JTy2tB1\ x2ߚ y;}|BIR 7N VZO,?#)^J{:p~6d+C׬cSFWEpsq:-ɊB C'nEe%S9ȋ=z mO&0I&$Hq_J'o2,UHx*I/^L b@+Q/,`VDѶJ\[lFI(!6}Chha?KaE|1$_]X彪F5ܭ Z?Vb!3pWn8(, 7mgﴬ|!ƻIy HZ7 5 kN8d\$׼Ch|-֤m&7( KT'6J 1mgz?~ }2.D>+Z~4SAZ[M11{% $ Q5qӗfxHsH0H{Q&;Hb%FD*,mտC !Dh` O ҝl[P`RZ(2]kԨ_e0 YkW` ǃGn4 9B6kM>s-^ȩC63}Se,dMt,laPb,Nɻ5 m\ 33d*kwe6k;YqJ$psB 8:riV֔dc8T}v*g|NpY@F!Ɗ8EWPjbWiRs0ndLM,]hgf2ݶt0RR>IAYĤkcAi֕R6R5rS=N(:\Y>D j4t6IR@u 5SU*}!,6J]CҦb DgƠucv!BCY/ +7$%iA8og'YSS\L7T!GN/B~E\Xv0<r`ֆ^4kAODz]m۟ 4›!,QyuciΪR,4Y!Dje"蓭 P'I[W*+=jSOTNJ^8줘]UƦX  tHHBboHK''\oEɦ  1K29(9d9%)Mj;2(ezTɧdaEIjsgPEuXzj=P*=1ϱM yGu\‚R Qox&\ e`%UaRȩ|;yɕRʉ0" (eP<u&!XCz-caZ( ΍I, m/!9)P3=3jonڱ0@;%t*eKٯ9wV_os^VMRSL!3a>RjsYvY'npIS2SیN`.>$&ORGȍQgTI%Gj)@O*1q+ ʕ:@]& vf-*O>/re<H:X$7ʸ2)Um--V̏5}Tlcpu,, = ,(dM3X`2kn4?֡JHoX%7%>fǕ\'z hG4-mo.7\ Fٞpr fJ`5< :N.Bd$YaQo??5&m?+Ur =0)ŦȺcqJBXg}lJĚ -_Ȼ&J,н#Idʦ1uIv%mwih-&;@3dW.F-zX Ȥ@lTzt 1d\XcMZm()d׈&@9mӌ0NB&bĢ X.B<`R YLHm$Mw=cd2HqK2AAO>#2{I[FعX2PdeO/m э!~O#FCjLAa'eZz c<1oe}bu4YAzH*`txٷ&:hoFa)}kg+Ρ#MZy& M!5iu-x5/8*(!ռ30qi@_ؘn&T QH0ށiwtX&z^d!aX뢴b#OA'~RsؾGp;JR! R$=imkhu#AA98 :~CJJcsX{Oh!<;Y H[zxCv!~n풽Ӂ$&{XQZ ĹNtbAIq q@Zt"{¦t_"Jjo;& nR}0ET$gc@݋}i감Zvah%IutV$n1Yl܃,.t !7DBpʢK4X[ZFiv ۇ Bv 8#ǾCr=h!LV{-腆Ofdf ltnMv.*:.9ukpmh-hSlF]۩eH:)G>C&xt%aTUe18QbH=ftnT=z4“LV دPYmzQJRVJ&MkER6˪D}л13yhEMk|RaYWo(P)R0?nY2h a!R6ed6GzKڀTT6YReҮRPش n}&rȵ鄓 .oD6[e!kt1%bNL(cS~ˆN] QN%rĝQ_}U^y'.ϖàC DPJDA RB* BGƒB&B6IR"# pLT6 -N5W%UPQ%]_Rg,q\b+*)FԬR ڷӓ:iFMUSԒU:!b*02tրTA3%/R»5a%*mZޢm\H!F UNDDsO'Y ade]lDd#i,9I2o(( MM6~3@A@ڠYTh6|3nY*;d$Dq͔EҘ/ P"%tx{B&atp818Ş\MT¡Y9r/kTCJ$6*h0aꂥP~#xgFoMNUNh RXJ(&!DjŽ`jհx(Ce0sZ0)6ρ;ɕN]T:p#5tT[*[nڛ6=/t0$-9@^cTWxQ1Q/;oIteATmA#D(F:4[,hVحhxj-i~͆WPƯC 0B UM(WLA#^e)46ce젾Ԫ\@٥sm|"8D LFhLI'Ha7hpc(bTz1X0u?~!?I_IB*qk?> 8KS}zM·;a m.Bo%v) 7=$ݴCބGQX[ N V}a1>Cma a;Holst4ӷV:U B)74Ԧ6Dyeh}iSZFun@a^}EOxLV,hlZBЊHwڂD?X ut$T~aUutZP|7lͦτiNV%i kVy-J6Æ/wԮo*,3d~ v%FgȔcYL~O_sӯ|8P)jϏׯo?߿RtN_cTv4z-f K"cbdP,Szg9so?Ug(ˏ/u?5Jք?~ֿ?1ܿ~?3_ endstream endobj 49 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 22 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig-contrived-1c-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 50 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 51 0 R/F3 52 0 R>> /ExtGState << /GS1 53 0 R /GS257 54 0 R /GS258 55 0 R /GS259 56 0 R >>/ColorSpace << /sRGB 57 0 R >>>> /Length 54572 /Filter /FlateDecode >> stream xˮ,Kr8?_duߏi h@pD$N[]sKnjP;##lY?<ݯ~?}KSJo_w~`]^G_/?_׏?|wͯ}}2϶Ϯ?|/ͧ7{Z?5}m!}??>;_7?ǷO=÷wG){ಖ}}_O_|kE_c&+־q>y9o+ppMٰ\O~^#/_|K忂ACQ峈DZ|}:st>|Nacy>_xo{o^s?5Vnu4ŗGx] lӵ.`-o?\00Gp?~{߾|Ƿ>;|([>,0|9-krf_nWI K;$ϲT[f;nd_6媾|YV;mgLrU,'U.ib-˖/1m vEg\;mJ[ĵ۾j&(԰}gbhye,f۱_4}X\\|dӖocOe_4,u?˅ku?^C=ku?1_Jg=mv_^],GhKݫbߌ(҄ku?ˁkuvf1o^nmY{=^lY\{'{u,7=G%Kݻg9/uo׽xrZݏ(˗M!ص5~þÖľ YKɗ۝pfK9%lmq޾~~=7n'w_+wS/=' |=}U^3i3z[>'m[s3ck^~g W_z_ :.\u\+|_7srpΏAqIybQvYo {}q%aEyx />kCy~])z6_CJ54s\l y(gg`My0K-mg y0`{`CLgV_Cl~L{zã9g595Y`C _C l yʃ N5^|5^5֐{p`?Okȃm!<+|Jyx+ 4?kȃyh\z~6-b=@rYCYhP}7Cw\/\?~?zC/n5Y`>\5YЛxj*Y/\?p?l yx!1A <͞wW?S.zó6{!Wp=Y= :֐gmY7嫸8yfϟ5Y\yx!yNB?>}jbgk?<<^g=p=̞Jyx־?=Ot|6Y7CIO01111111*ÐY2 )0+bD0\s#FjxaT>2|Qe$Qe$Qe "u0*bXĨJ`XĨJ`XĨJ`X=0"bXĨJ`XĨJ`X¨oF2׎QUQUQU*G`T#0¨>^G`T#0UZ`T"0 ZFĈp><Qu:G`T#0!j:\ôF5j<Հx0A 0A}¨^U`T*0I}դ<F5)QMC`Tդ<0*<^f#j~Fh? }UB_0*FE &f&f զ<F"F:QAQDy$Few8ճnQԹ ZYڸbTF{`TFŘ`TFŘ`TQ0U/s0g`T;0ЏQ~ ^0*ثj`6Ĩ*c`T10UUy Os`T90*bF"ft0"ft0^A`T>f#Qf51"Fձ:?Հ>:ՈQ 裃Q؟1Q؟̌ՈQQjrF5`TF5`TFE`T+#0Z8'FQ`TFbbTF`TF`TF0Q1jH?0b`T#F lFQD#Fef 2L1ʔ2*s2*s2JO9ƃQ؟U`BQ؟U?ÃQ؟U}aRQUU}aRQQQԋoI~=K{xsy1g}'sy'> Üޗo>Mۧ7r!|P^@F{ɓIOI:*9Rs%`dX̖9.b.b :1);9B> }1R0?f}4}5==xG|'t5sˆZpO 1h;r)rI3^iIE<Әx1)gG9C/g`џNb NY@ƛ38G'3IxvR>#ޝgt@>#g"o"3^3gqZ7K= =ԟ$cKB?F>% {A{A{{Fo|W"ȗ8ϑϑ"9.rvN>pę/;<'|^>|_lב/l?-8SqeHf2N&'"ZwI+\H=)Vk#K=-ԂڥoL ˤq)-/#Mw1F*;cHti}#I$LGy Q|~.MarYH3)}Oܗr"2/V$ m1>zU$$͡OD![ cC|-U-!U4(=bJ7 AG(j8OQ4oM * AT.X$}CG/2>C5}kZĜqj u * t! B%F,` "R RSǾAqPG-GO/V?&O뵧ZURg&B|hf;;,&\ǟ?\G3zK 'ۖfbLxQLFpvᣝ: '`u'q;.Xf?L_! {nvBn{zv'>4A^[T]v>q z.\> ' CPrވIqs!w=Vm*bmyfJҵ!=DJõrr0a:y QޮU3/uFa#otArC à (|&O| ‹*Ӝ11E.hl^[+-v>yއNa螳 քYM-}ũ,N 0_gż X1C3@P/ڕd܅~d.! 䮺 4=ĉω`~ܯN3;>r2'#Q2gp)nFԁ srkUM1 y*qR=.,311'4!#w}PR#Rf*!u8GG vŽᷡuFa |~! Ʒgn ؈hummQCG_o-?3vj~aS{nK–-3>JOŸ8#U:#׷z eCQY}ۧ I9E!D@ldּ:]Z3|.EOmvaT?,%p1?u\4Ygė y~WKo{\R3bxXiBt<9~I/o񰴬diι;{(ܑ~]ENw ' gHڈy#f(#xB," h1nC}hok%zuyuHwZBcgdA2C/JD OWX(n;2D$VRnەTh0H2(oQqfܯ g]$\Hqz'oo̪cX$"psS?]\&n r\^_Ht"t_ ѲKRР/ă|KB MGz4f+fSSQbOl+g׫t o@=p`f8QT@0G Xfq_QOjަ'x4hBͲbW8j*?^t6I;ln[^epPJgρB ƭLsB*\LjzK+teUlDNFn}, ݙ^xdx\Y`V)i¶p ;"Ԗ0V}`-%IHG!og(N G%P,/ 0p֖N| D7Ud_];* ! 3`(ړ{̩emP-V`BCT,2GzUd.1ڈ!aAyH  'Du R+`v*@S&*NYLT +Wzk*-t% uw+ECe4Z-t*8r9yk"53(##\9+[ yDЕ yXܽ@&}\0} Lp6.SV̆2![N(@SԬ r՛zU4ݜ"sprGא+܊#bN/X!.*Η^3xT$e^O1;gDnNF,;:{*֕9bx#(eya44cQ@yM Ȅ[-dacl,$p(pB v@ )U<,#D`vƜ@^NZ :LNv\Q,$!*a : ߐdkZْZSx:*`Wgr`aP<ŀ5©Ȑ.n Z*[ B5^G h v`:;Z6u7Ln&%N/G3IK8 n*v^)m;_/)Zg-sӥ$HTzFWde2[)I(дΝ,~tҒ>gqwjoޢK,dbu?oD.BЃ|4R88$;S2z]n/Q neD"&?|^wE{4eE!bu]*`K+`Vmŀg:+y& ut!;E@*dt;3WK*Y| jOyοlּFfJԴ#Z&ÇDfCTj\gx!܃s  Zd%iKtu=n2x8}RDLmm{,!S&UfViddP'sތ`zvI u87C- BZNT{.4YVO]7$ :zgw͹  @ %.nD5Ŏ!^Q+ MCUz˳ztB*b \ԇ;_-(9ʊ*eYT4u$۫~?I]h]G e'Ɵx v}*k#S=8RnuA:CH­~W ΤΊn)pUr._CC) L!=Pdb~,OuDu)IÂذ/eؿtTA:ּOϼ? #(zG*accU+)1+ 5[:#Ua;ư!oWQmcd!}S wVUy870PY I_֯^gSDT7M突v(Hȼw{*!VdFrJu-X$ `C32ŪH DA+.LQ)6cB](\v*ҍ!UVf (Qu]GPۊȹoJy%eHE$)E@_'ѶP| > >@u(wtڌ: CĝmFS.J['ohO`.K(Kr$Rej9ki8莂*[I%"(iUE)/NndT-bQ4 7pF7#Yŵ@K[X=FZ4UGQVX 75jDA,ۇ&ZR:R* >Ca褥6egJgI),Ԕ`WM@O3sb@z)KUt}Z^Z ,UMBJ/*gֳ` <[ ϟ *csь"37"s|z"MePU\b/=PEW7zLEu[D-$6`f:,±Qc| x7ye*{$AZ4d#~dyC6`^>[ePEw9s*%,sC'S]RL1MΪR1*%k Q6X%9 UbNm8L]@Jx8]PmW 5/+%W k`L*> _ -ѳ<څ-,{S*oFy,:umGsB7\H.Jk0d%*V׬.69A,2"H{ahr,mb.ِLTUzI?_=|xڢZr\Ya9RVS*(B$.;B 5WJjz\[2 u W,~X==ȉ[' Sl E%> L${Fv&;l4Ձa4es/D甮3p&Y- GՆ F-OM7N1J5|ۖpMڒǻJAUg+ AadMUY/M31E PRAMHI05Ai5`ޔJxm)<|Lo0Fr6ܦJ\ wF<6μSJ^4k:@ ]0nU u'.+e[V}Ar \e9p"{meUzгO Qը Qdr&mN}CTlKT6 ^QE9MAjG$f%|xC/DǰZ =6I \dG^s~=eAe tC8:X6ҼW k6'7ꂷU=&`S&CVHn5jIl^f.:(Y !,O*(5 a)Ξ_Dc1%=;:\=k2xa++Ƅ*umW!) NXwxu*j}>Ea/!cPңТ}I2}<{Y—j$[n:nfw9,ڻJ1{lU e9 ˤ)W + rY}rO]$4Ega֥|H9"wQ'БʲvJ~/ߓ0ڕ^;~J[Wv`d Ki+E|"i@ZpP ȃ-m`CN 1yVͅst.RCw9{fG5TєHV jQ"m2=o-!ߐoRȤ˿]~D7/Q- 72Xqƶzh7.;( jNK&܂Sdl*EDdUpr` !G HvwȾ2 tk&oveŕbn#t IsʚȨAKS- 5-l7󤪚†io1LI/ڎ 974P"lH/SeSRZ)Grqںb>E)S1vBN[L=,eiIzvV [ּao*G_UiU+'W#(y+h}7Ubҳ \đEyZggh*bw?茖qx'gJ8AH'![+rkjP@ Av'S$̋DS~o[\.符Dk1JH:7;&.EK_/)`(T0m59iy̡I®(n!M|'dP[ʜF:wYt/Kv!+ܺ, TA fr2DYxR=sݐP*G9uYC";ltC pQbǙBrI+JSekTN[v;&NEЖF-~ ^ۈYkUb61tvZ`IQ+|[fٯ^Qk~< 8P U^֦| QUo'$WĹ!YL 'j38ݧs yT/`Q" t54 $T$H_&ȟ6{:`Lt&Ht/ ſtH̂,1,dF~E&˪ھ g _Nth 6->i2ɞMZ<ѺF打1&5T4e_"˲В? ŕ({A6A(HP+e|M듋3XS FmJ %߆8]w]BG{sA]u~ IL@JU*h_Ug C+窬+F}+3FH9AIF'ڷfՉtdMH_xm"w٫M3ʙ&4xA 5m;g}l뒉>LC6J<%g*Wr Σ)ŝAr'tsUqCز(GdI%f^h&ڻdղGĨTgV brz!nd5g~8E?QvSPα#KjLsWaRE/Wa_ Ror􅀑!BqʲnS1ĴW:ZĘCW/5))5T1{Yɽ i~2LՂ=ku_0a8%OpVv(,#0>z$ Z5BW!ݰBO"K ($EMʇJVQ(XAl`NUAYuvà7J<1II>5eWvELSi}T-G'Q+Z4Z'${1O*n w >r*QE묒D-/&9ja^_ZSTaanT܉Nq}r/Pytܪ:mR?m"l.ƽ˚z[VZ66&DHJS7 aE#L͊:a+ ß_ipp-]TS3"T.bN|2 (퐜JvŷFcނ}cdeX0ȶcҁI!NmS{ 9GӒYvEE.(M8rI ɪ#jKWUsf_NSe6YVAN4d*!CxKQ#:)sh߆d Ԕ)"!xA UUkl^"'`UYc v nHF cydRUuQryKNϰ(N*<ЩI-XzzbRc+ ~H@ VɒbTEl#;aX58#r#.yEC]b׽>o/#7|t%)'#?̋|)Ӗ7Y~ad'|~K/mp {!PKT;oce?&c/vBQFf%AZtY`l |<@_P6g:;-_9ϋ4^|zfoOo7|KQ:ȕ>[fǿֽ[vd/W^ܯ7yqM87y.H5Ɵ/D`A\u?9(>s9(>/?o_> ñ?8>5&Ac@ =sXozjkFʀ;Q:,_ uRjX/?[hBuQ&\'[3<}fzPH wݝo )N58#p'>+ޟhQlX\q?Azg@ol޸=2~?wtF>cv萇ք0G0QaM!:偍kd$[a΃!ۢ< )ڢ<dhJO?YBa: xCH\j't7 6xdIG?qA`M~aJRN{ YWk䡥dCӟ.-dgpߏe[]l=POC#OC˄Oܰ?I[O\}ln_[?,љf&wyhKoՊCN.)A43nCL۔Rb7䡔y0C :3u߷{ci @rCAiHVd+ho>OzzCEE2͞Q12塂!D6V0OANC"k߿P,oŞ%|CE 18|7||}aˋ*>A]4'~.( ~yQ;PׂkAԵޠu7+.>A] @]j"u&B]jjmԵ;PfhPfhxA]5!PWU)uU~@]PWMZuuퟠ ;PW+Cԕ"ԕ_z@M5>~6PW@OuPW@Ouk@]Ā 2*'J'.?|*2bhu.Vbh 46PWc3tttPW (@]F_Po@]@]tE@]tu(B]>A]8/ u55<"S5UkO<uM<uEPu?P h@]{U&Ե퀚ڡE6Pk4v.<5ׄ6P]uѕ8P]uѕ8P]OPB5ߠuPAS.4Vq,%菀gkE }~@]_@]P@9K E} kB]w5&Ե5*/+u!zA]^PBԅ+".B P݁>+.B".B" xA]x/ u}>"P.OP xA]8/ # (? (uA]yxA]+zkTw.Bu"Tw@]P.^buҁu-.}/ڔǀ61My kSڄ^PP "5.-zZՙu7kA]'@S2E@]MT@]̶OP(\/kPy**<uuu&?P?PA@]}@]5'}@]5?PA]u퀾x ?j?_P?P?P'cB] &u-@O5?P(P(P" ùuP "@]3? Pu1?Pu-u-P?Pׁ uPW@OumuQkCk  Pu 꿀u R= @]#A5rOၺo+ ++;PQb@]j*j /*U`Uޠu7K>A]E@]5p35/Sbxq?97I'M`pSy2~w@>zA@7OS!?@yCL! Gߐr#G_TO tp>r?t_?6G/G~z6?tꗰLU{T7Lu{{JݔuH^HОH ޶W-Y ڂJ}16ی7*G*W*g*Wj+x*{[?ckusAy6O`PO^Q<'j8f4y*=<Ÿ|n}Kp)u"c5G)|zO/D?ś_ģԧ'^>=,wgĿт*BjȉIA5!$O@>3N8:C|PkcA <#w0}G^ԠF*oԢF=}>AA xQuQ xHU"ПwxXP#^԰FoԲF=~x|x|x/uA^Ի5/+gf;I>x(/%uՐR&L|xmb|xn{C_2Dy|Q'Oxs<_L#ij+ws <4>QE=2@yPi/ 5PkKH%Psg>c;B?F>$cKf|y|Qq_cɰW?=b|Ѡ~|RP _'R~g1]=A=g3i^rG/j:絠3w|&'6#H}zOjoz>F>Eig>23ZOĞ>>{ |0+OTO&U?~* 5"c3s|yO@sJO_?)? >/pJqf@G 4'}3A>Dw_ؿ"ȷ(̇Tҏ(]Zai+Oӂ?QNTi*6Ga}*3)T5>̌ɗ!it-6Q|u g?|A~EF)|A~MHE<|%D𝂯|KuO U_яmݑ8Z3L^ _V8pEGs̈)GVC4rb՗°a@o+jtsӵg?lջlE1wדI֊0>?ȵh3bhI{ݐWVwoftbC 4;1Y5C]O5oeh}'ͻ# %v<8lnRñYNtK,{Z4}h,4gh`OaX'ў1yr0#꾡8!v~է û8RU+,i-p*b1hmñ՚O!}CzXUSÝIG<mj!aJKIm`U%2|"p}X8Sx ׃iލf4Pȴ~'€ՃOcݯ '#(MȪ;-[A0w+N@[*`Ȉy$4ڄ}7gio})d=[ N^ x?H517l,b"l~Uf L-6+ԕ2aAwF7@wUAǺTf2/6x,#G$χH+W<[o/0=)t"o c>IIh˻4ae$ĕ~§[^{$6 /g~ρ5ohBgsL|lLt<;5QdTM`՛x@,:xxGjsc|IB yW2ԕEbDW2ĸ.Z]ہ ͔(j&FC)7V,/p/M s Rw"pk6#`¤k$5nPgkv;D(c3~a1ba!-!%7? ; -P",?تGQY T&F(3NZ'S9b ~T DuQ2Ŷ!7Y0/y& ]Ê8Yݐfmh/i ȴ 4$/C}VIݬнyN`HKe5 \oKcFrcjՅy}Wf>BfV5 H">tHt C5툩NYb`bhH?' z Tjn}HD (S^[X+$ӘwX,Kxf: l! &#T9)geZ}ߥ5{{Y8-"nIXj^sTN0[Ik0JLax̦&Z䘊81#/<1CgZzB1 B 32ra @'ԟO2t, {iKW` eQ$EN$/:vb>VSqi`7~}̃X̔ 7b\j#\Yl7m6 Z%Zso7BSu$GY 0͆-<Il!$LaH;s'-2'.@BnhnBmO/ Cz8"0M gla$ uK-t 8 _v"6 rM[ϙ,7 b3hEyB"ld/|j2M0$1\fjKV|.PG6Ԡr+QY1=Kޏ}YسC`zS%-w`0=TB4@9W''Y_V_3KWہN-y mu=CQ.-GBa2lYH[jTsZԊ(+H }m0AڰBD(@ *nvZEoϛYяfI*봕5%K֫ze9,N^]/|o1>:N+2);:<EO%A02).$_\Z'.3'w4՛w_ )6a6# g=Drσ?"K>[iOQ#PR-˟-I,<`UuvV&XJSok2OmϾ䀎SDHu`6P$#bۤpч[tǵ0[C4̵_rQy>Fwճ|CY:F֖oV7AJdtjLg* oΈeA^͈B.=+2A2Ja* d8H]gD~A  P0dzpY< kv*O< ?FJ yMɲ"+J,}So2?OYԁa vĸEOCQ |C^,¾"z+Z o+Ҡ% *A\"pg*N H5]u'lWdԢHv2HvՁbgg&,"(슌nsdKSlԕDhX2ɗhfŷE 2E,Y cg*1ZکWcr'7fS9C'$_;S}e`wZܨ w)e3EV"f8% :bҢP zp-o띧֐Pҍ8Z쎢jԅʖ[noo-K.`bVMc%.<SoE7V]xgNի s[Ucp& :B1p>8C뺡1WPA-Drt?D-Z z[,61)]Xl*yeDb!>zFcʺ2BIYF,s':k v2d)WAF\WԏO`&U`xBR(^@XUgwߗQ? R;"]A@FB GjYN gߤ{g=lӪfgLEچݽ*85 (.玦Y"fl"6) 6|h[h+/h. f_R"0YywB'QsҔxѰRD}&h{Wm4ִép"\=(BơFjH7 !*mS!%]2Jr5['?Y̍ltWwI½H"ѻVsT=[&z|A8>UO"hG#`NmsNP?!$ʊF%Zh.6(X^,݄ j!ꡬDF[ZCQ}MJJOWtnv)؆ ia~Dee:X^4v9^9>f -*\%/vV{(Z^=Ld-U]6900}p0Sm<])m]Y*vHS!1WM5Ev*|N1`OI8- !8",᪍ڲ!}|uS^xܐ۔q{T8 3{Z CfuP͊z6uuPgʌa8kfQ0Mp\N[DAI["/_[&y$ [סE =ۣ&0kRv\I7P|WT8L{{l1YU:lV1:\s5 dZYQh" 7y* 2vr/cyIN&Fͪl+WUĨym f7&E5C\L汔uS1voB-p t/U _Ta -2;<+)H<'$ LH:8xxt g ^Z|:PMW<  (5Wu*Q2TvB&8DN,E uIn|c^+&&^$y ,* [:xm ?/\MϢ#E$LPlUɅ:<+* Is i34 o H&Ң ގBE&($T F1%A )ZDjT@D!Oa'MbiGafH=Ie?KKw,~d=N\*ȸp%ZɢL9Iؖܰ(60 zTp*t:&3 NMdv;KI{FwFLZ:89wdbN>$hBjh+I, L8B D`vIܘN5{h`?NS{9(a $ph]Suɠ=qѤ'z1|uk}G9y>J| :p.9}`RQk9WH)Yc|}Q}Bt> ݒ9;cl >oOo7|KT:ʇo㟾叿{oFݷQGݣSڌ>?雍*kWŝ_|g%9g}w T=bod/UJ?Xd_K_}~zA8/^[k })qkxnm?_/zsJX\bT?/bRϯG%ԧ>|Ο9~9f| :򰄴/o^okTol#Ovy_۫;ٻvG˯EO6}?QR:9Ș2fSq|;n-ڎ 56T.s[T207Pebn{371W+Ǹa[/s)1|_qųqq%oFƶ0W^fY fB f&8P5;}/}*l]{Lkˑak4~>Tzz/5J| 5[o\ Nv1ΒW 5c Q8If)7aB-VGTʃQ@z%׵Qok<,4ax֎4mt5 (Vyr]cj2a%?1<]zzzFvF'){H oXl!h.=&*lN3Ah'%Lȃ7߇"bk{]ٚ$)t~ba*Ղ@;@qQk[S0³uڃ&AWl=P'=4R:ae봇 7F=O*[O°@1m8cl x֛@sBc27>{/}a<٩=O0a[0rL=:X|@%xl(= 9l'`e 0ď~[CDݱ҂dDO9S\;~hhZ=LD{,(%ì{Yc<'*d`rwc`=ɏ7Q03aM0'm!{0h=ʹ_VaeP aAE} xl=,':ɾ@ܷN5b2a+aAѦW x =,:;ɾS̛ݕ aͶs1z-F{gɑOiaA3Ɠ*nCIcꦭ9O OƓ9Oz2PLVQ| ; I[SQPП0O =TlOB=TaBk =kf0tw{y.A]4uoP7MA]u-ځL@]Ե>M@]bu-uPS@]5U7˕ߠ>>>.g=PD UiuU~@]PWM ,vz2L@]w@_5"ԕQX=PWFa "t.BO[@M%A]N8zuk@]O@]u^r=7ˁ7սߠ.Vbju.V( A] ׁ6E;7pPWk:PW (lh4@]ؿԵ:Áj"Es U?Pua>P4EkyS k ky5<zoP PG@]T@]E@]E@]ߠY&Ե= m@]m@]m@]+1B] @] kB]{.u18PCu18PׁJ@MEh@]ZPמ\jJuPWKu4$oPB"4t[ 7?=P遺2J oPkԵ 5e| )Ҹ&1u3wk|.u>+Hԫ" RB@]xԅ@]xu?PW n.G@]> ぺ> x@]E(@]x@]. >}@]{@M#/B]V@_~'jq}B]u@]ԅ?PPWÀUH(PW uu>ԅP׈qxPOk"@]ߠ&@/u?Pׄkꚰu͸>?PV\P?P׊Z:S$u-7S /5umu퀾u~b_oP׎kz5Hkցy@]5U@]#!^k0>PWs @]ρj uPW@Mu*Up|@]U@=PW{.R;x@]Uq5K߳qɹ^dco=MR)5_ǟkk?oׇy?qt8oz.x(mQ8yי_yؘy٘yژyۢt<[<?J_)"xoDɉW*g*񂧴|)!x0ߊxDi]NJx1)Ou%͠DS'>G#HB3OT|򙯜R?C`PNTC P_ L/A=Xij"_[Ļ"[#c=P#d ԏTRCNLH {>>p|}|9@=l :x>j 3G$Ww!QA:T>Ez~&E>6}Ԁ>SZ?W7jVPϪS|Pu~P,FM;!vԏxaPG\!6Am 3/fKI~b>ƒzH|PMKG//P'oxs=>^hij o\{c*ʺ>PG=Rz PSᯃz _z~zڲpZ[@-χ3gzzIǨ|؏&ߨ#=7z E#z҈j5C5 YAuzzXO묟?r955R->QzbzW>:zhz*5+ւ?ӚsK&h gzrL*[Z3x}ֳ{ݙ׏zxf4׏zz;?'z}{{L)F}6)OO%Z{g>Big(_ C<% _)ʎV!- _1 [kѺVڴ_ֳ֧hZq}N-˧*6z|5+ֺ5LેF×T÷FַӚsk I4ȯ "D#Du3>MHU<|&R)Zg|K!Tx[u uJqhYLVP7fT5wp5[RZ㠰OSc,Ialge.#=+ɑ9 $\4"8d\9㓔-LӹE>>w ege 5хe!. \;-g) 6⒩4 TM݄!N׽J|p 8 tG܅ a!dB*Nm`V5 gݟ[MԶ`\/@|KvYIh:s+ؙ4(j%%> 8Cpat]?}j XCmBSe g(b3 tjBEoK ޺H0xr?1ND-vY!jv Y6Ma[eRP60=ۼ[2 Bx]Jryb_3+ʍ{)JiЭd{WJP## ݲq .KLuζߐ:t:{I<x:4g{R򔥣[ 2 lPZٻ$5[ަێƏ!$x>|Ph:n19zK6YbejZ"e;u$E&eԝ}s!RtfKoU:"aV#e׳=0XI-YKV3'5PSDDFݢJG5+T ^=3s9Dl앤b0 \*x[6'T5ҪT&tjcb y'nn`2ql;N^t`f]M138oMUK,\k*Ef`ux`L1AނVAȑ;]F:q,7dRK*̓;J57Qf}mD120$`V-@lEꢱ;Dĸ6W $\MI9#pag6$*'>$Ekj9 @}jv5V d`] R?*f/ 5)ʰpeBLfm](' ,޳81@g.{ւ%fwd]q0sExpi~)xK D+P&'C{+/*a7^ef{A瀚6TQEhAUc~ou-5bʂ '4XN~EMZQCx;GbU+<$Yr'39dUPW5Kq֘![㥞-k!"kl[✳G#dsBD] R0H;'NN!!TK>PV1(,3R2̷/&L,jWԡvM*)DN涄1 M:wf]WƒM^jV.u*8i8dU{e RY|bۑ}%ى 3,W6ІJ^!H;cڼ^@69#Sl#m̤bqE؇FT %>2k0Njz"y %h+W& .9B{wh\_%\fU5ir0 TEBtFl^z$%>ǫ[eACd(M,ЦmIz02OT}CIC9 S/3ci*072-kL=G;BrQq<ͼqS%eeFIyIVU@ ︾v&qO(4mUY umgvV%19}պkNYK \j yC8W졉HtUZp(<$7u@Ka3)M6aZEe"r,A(P 7ԜlHLBݟ*[adַ~:_> DXd`;P` x!ÿV:e^!w:(鉯zXhۡ#yl$QBwE6|>  9'p :"LW@%A* V ԨtuZx&"!&6O᫠=Dӥ|$Mm8AVd1hGL}$zD7P(jzTt!Rio~1IcΫJ;Cۣ r $z&e ']Owx찘7") v^jb85:ER1=Yf"lGxR^9ß>($!׊CK%БyYdA[5, t&Š[P( ʹ6!)ЈӇ5l2(r_r-MWN^A|K:&xeϴ-KP}\L9T-XlSnfY/C5^[ zr^:j*trĄ!+9s-yN$ܼ V4(REL J#ꭊ@,݀p~e.础&D$*e Q4y˫Rdz.KGY1L02| &*u/d3>}Q耒֏z5ɩT$DXdoAhBS+(- hMD,U'^-:ӡS ,z(7n_# `A֪7L,ٕځAV_ЬHdƓt: 9Ti (+Agi'Tڄ׺m+<[zJLΠ<ۺ( bgʐm'FQFg*wsuj:"dg&Sd.(zA: J~/ Mgl.|FH f?fA,I~` v=_WpHt*T@wUv>L~ /,#E UՀWK5 1%A%$D9y [%ĽXН)#cOZvřp"$e"b'}UE ;y+EK2(EQ~]޾ߺ&m6 *UuXgV%bD]XLF^O8ڂ=vYRw (qd]4vX2׉2GQ k "LOt[B-um`rxelZH%*PC]]Z)Qs%Tw{F*?P]j8H ! :4? ȾU 2!kY~ zQr /Rνhy)٫C]k^p-sU1-fէie+$RpC9(v#0TTgO5I_b{9GE'RtgGq+C!.u؋0;߭wHP􀚬Cs HCYN"(BH`DX&4l^ˆkۥx: +Əu{4)-]>ʌv"2,e?ճ&"cDUdNtHDu/!_[fI^[%nS=KUdMǚcTzgJG[gEv|d#A'.rgS̆CQ- [)QgiJ&P*C ]]C}4(q Ǟʍs'WŌfUCyG=O4*$]sc;WP̣L.WŊ;Kc*^ ԞmKʀ ,j6zB%¬Z@hjhRw9:*vOSxjK}]Z r[Z )*AVs5d࿛GTeì 5rT)"+kN%fǕX_Ji#JMC=.OS6d@s$jue+岾"Ped~W:$4U=HHJ*ڑF,Z S&hj(.DgTbT"V14Uupϐ1pK}`%K%1F VhA>22LAaѿr[r;$D<e_<֤V[/um4eB h˫򆨑6=h\?d/"zxYF1֔-FXBPJ${"(]I`hH'D!f T ZZ/D L#.+P83E}&`yvj?984^7ĝTKeT>SIJX cA, &[*^K, <.An`̉m Ƨn@aE.8Q/sV _Y\0WSUWOn^?\j0.(εuFh[A0=&E<sP /[V%J2ҠHN vTimA9֕KbI`tY12ޤ$NkDlF坤 ⭌xeJJJp(k֍0CEU1=N@UZ4+C)f:٭G# W{UeV|U̘,TAvclUEkmkgԘ$3!aȠ(9{6lNNȓ7[%0EWt)J f&-rsr Ϫ@57 ;$׎@y)TfB7(-s\j s\HJ3Q]I?NEч.EHMnJ(+RiSY,q֮QK-V'T5(hPdb񉈑G\AJ00 =y;HqI|AYS T!@ݢ} ZE`&KA=3@OJ'S2a.UpR z:!I0@zs,98;ZD ec"|('TNx6Ցu 8xʢCՆPf~ 4N]<y9l~6YEy91,\ 3'Z )W+֤[$;LXzm[陘ޱ1'|7Nn@Zݣ9A'D1sbA}ʼnuܶ9{ mNd5OΜx{kt|;~ ]|dB3N<;U}#csK7kk$9`2~_?~ Άr߿J_W_Cn~Xvyt?^/X^t.OemªwY4y?v7~ T\!mŷC?ןj__7R:@샺ׯʿ?~x Qqe?_[I%VWW\_770\?bV'6 <"ϿWMe~H,a脜\ ٖkԂcj ObYKU>QRz :1ER33k@xٶ%z}x.&{4qd(֖ׄm NsS7'FšhrM=chEzJAO=X15A߷W  aWϴhfcy؃QDA=ׇ=YFB-NR8k[*kjab2ϤiQ4c'0J{*a=vm]Xi :t(V v>aA%6F\aQ?ۺ06 6F{X F{az+i\oXx2X=@p =l-N{VN{N{-x'"x(Zbנ=l&=X$mk ,W5=lh&I{ؘ{S=5/(~ښb``ko['a&sA!OsszZ;ɒ 0-Y[j&uh=̄`3,Lh֨`kO 0mcۃ'>0_sfFn؃>}M`z3HfnK[{(֙M[``HI[J~?ekLjPL{( UL{(dfC1ƴ $易 -mVKTMWf܅= aCpG4bMSS =UCEis<졂*!Ԧ*|I4VdF{i@x|rB`|hP@1Buc{=PuC#i ::B8:|_ Ck1 z4`FkR C {h`5Ɠҍ1Œ'm38d l xMC6i {0 ް9-`\؃C}@@֠Bkx-C8.j{X(MC9{X9a{=,twƓwʆ Oz|{Xmz{=0+avaOεz|xvwƓscco`=P=l괇 )xr <ɹ'm=yfO 5FN{dF=lP;SO 1xw{X) ׬FX|a%\[/4(=gg<`vƓ|QiJ>a 0J g<^񤭽 xr05l2 Icj=z2 -;LҾQ1^G&؃8n*;up=yee33<䨨 G=UD=O0gq=[`YaiUHLša29O.2]I[` ƓU|wJ =P7JA]κx&*H0uMցL@]끶5"ԵhԵX k@KD@KDkbx.~6큺6S6S6SyB]IꂘuUz@]PWePWePW .C}*G@]Pp@]uU>*G@]րJԁJ y<j|u5>y<}E #PWx.G@]%. :S=:Px.엀&K@]>q uM&K@]#I@]u~R@MP.uy?uџ@]oPJU@]ZU@]w@]ˁ6Η7kEku5v6W}.W >PBـ2Cـr@ar@a3&Bar@ar@ar@aB@]*8UptrPW7 ぺ>|uU*G@]#PWx.@QE@Q%&쏀G@]ぺ? ぺ? (* (*.G#NPW~@]?P ,|@]0u8PSPOk u͸>j\a="B]?PKb@]jPk u~c^ 'Ե@];Pu?Pu Bu Buꂛ}. x.u5r\PW;PWZ@_D'R偺D@K ρ Pu1><'3ufyJݟ8x<[[8z|+]x9/zxt!^sΣϫ γ%λ&CI缌}Qڏ6Jq5 P/o;DxF)HR835Sx(⽈7xx䉷Wx,JE)4(>QLFO)$o=hfj8l8nx+"x߉SnjSόS%tG|UD *T'#-PWZPϴR1iAzJ9'RPj KoZxPOjbb<bPJP%H@$^&;tN>:Z|u j*졆0=̷3A|'A'A|(A x¡LZ >"?|tP>oi|)!b=NaGjC"ua#e7W%~xY%Pǀ<Բܦbɀ+W U_=:cG3W;gCwK{S2jazk_2 8x[j%|^!^ 3>xv݁G^w-zC-A5%E*xVPWqF"zP_}?=[W0}Az`z#녍٨'6^? >V3D=UT=ꧻՇZ:? /볞[ȷzoL*OӺ8ͅZ/pWg^?ٙ׏zw|>9z{^ϧu&YӚug֞G`=1 e3v`?ȇ(;Dq})ʎq^|Fl]Zq}6>[?ZAZ?ZW׉֬e>B>̌/3̸>6&>Ό듯rV >Q ^?H/L/P/8V[@ޡT0Q~ ̊;ihj{<ܚ2ٿv'>BqlrPF=9f$!|5*yM-BqTn#rVɵFM*jbX'kR/*]"so G vp!5,Gp̘Cʽ:F 9jEJ;{f5hYDyP[1naR1,oC$zHVHKA8&Rw}'+ b ak[5iQI-^,3WfvF -vV3nBQP= {2'iGs7L Rjjડ݃l SHBprZ/* IC ؟lF(Ϩ۽2U 8!/5~S?""0yzf+*0)oUtd\H*y@TbЕj=xmGUL P4(l IjB׊}CiGZpfQ({0K8k@ASMsø%BK-7C]ܼR)~L1DIO..5P*G oefX6PUyL2x37wD~{6XPS3hbP*(nĜ ;0ۛ8vE ]bwujM hNh.r c(9H a);Os;v9>Y=@E17WM"C\L(NrMlS Tn*d_-ލƴ6D )]˄7DL\wPlohB4!804ƾvNaQ'-J WW3WC+ U .M ,jW+٨/bYK`(BH,gV7;t8F\ eXvnu>N|= xYDm%Xmr̸B c3Lc%%$,fB.zzf4pc)Ω%w_eja?Nε x9TxL*L@YFnbY edU6$ em:V8q484_jU=RH*8-Jz;#PWc*NfY!̲:6,K+⓳FArHlgIyjĐ46_HߥLvnGS =$jI:ݔه'ngʑҎۼc2Υ10} Ȭpb$<[eM6'n|ڤfYv"!@!j[wkg02waYlk?WAӔ %tLIm!^jz}Y`JO %(,L]0wrlś ׻֚ հ%EK֡@ 3-``y!1=V;F6gijt1.6-93Bݺ `EfŤA M\8R^ +g#ɞ"HV4SkD>9:ޱ!6::pȘ*1B~&z7Z;,Y9]UlQ K5kb&5Ġ~'h?o!`mexAAOLl+jE@^m5!yP,A5;́ͬ0*SRy2OtJd]dA̷z)ᴒQ,UnZD)$ micp]KNSgg R Jܣv;ys |Hv<9$Ey}!{XU5}`POl P{s@ʠݣ'$-^*d9Ab` `CI6Iwѽ%"s$OA($ b,Lϲݣ;N9DHh7 +ЉRcd]e2V"ݲjP^K@M%2FKN1[ s+NAܖVxHWS_ [kV?-T!*&BZpqn\FQ }+1aBXŒxq$0Ѭ^2.GK-7} jKn݂@ ݧMMB3a T[!Gi,Wf !Z7*g mSW!wumtY|k`-]&~ZBJқ vzHJwHޣIBV0OgE݅ï%|$$eI=*;Ksg(wQgZzYR'ޱm_zfܤ-vƾiP['RWw;q[A>C- r°\H!* FL]&(wRXfZay{( Д((ǍzPz|Nꦦ bG-*+IT-BujsY ڒڎ\E= MHj2hXGL66emF8$^66%ΆX1=!qXB-HiM/Oep$FOHi62P{&يc%BpEEƂm+26YU0͋X;"\%+f:;SQ&?[3&* kWZ칑>zڒ$UA6A 4QfːiDL+b7yDwU=AȲ aksQf[RD .uqFnӢGc N9=l!8(Ɛ I?((gm_ "B.W" ua.ݪʀ'ʠ~NN b#ہSWm̉ Bqq]YZj vlHVz1̛$s1¨XЂ`tj$cU.9( wfYcJ?txTq 0X[BZ5@ݯKu(wE"#8wuG "T*f`Ć|^*`̢ lN3ZÜ.u<۪}g>p&2j7J7(Z-F)Otv*SH8b$IZX~>>m >t=!B_y:_(!jOٺfRoOPQa}e+'UZf! ^vf RQEYhZ0\Uh2؎q\sŏZUbC73oE~/պ(]l -~mL\ ޻D΄BA8 h7B ^^v=SB-R[ ʦ]:VDx@jlhNU76BB8Mzp eABAPШ,Z]U=2e>MBW")&'cF|]MzSWyW Q벫pꍹ ܕzٕehI WD4[{cCB+3s&ZegeJGYFp[^j`V{ԒuDRbp,h#5E,{2e!gk:T'l) p 6BIIr MRRİ8qPL*Zhv Kd2S' Gkmo`;b8D(bxumEYWV%lT HLEsF$ؕʐo'K!@TD䬁%TGOMa{ G-C( W~݄݀8S./凪p[pbVCgDծQk"`]ARF>-dZT<:|-9Ed#.j7 î̀? |+ ګUe ᐂI@(V1`N%zY0bvծX-+*P{.ӫxM=Z$\.e4p4gt!a zExYMs6*`T.%6_^/6ԥ0z>@h=~eAVmOL]T"=`,f癛"vYYBd5[l6I}K1% 3 ͈]׎'i*/DjxiQC8XPBa Ƌzo}lLk p`sŽ\񷩤CEJ kpʍ֥Dmf?7(9L+K@;y?qzBRhq@-)Mu*޲R yē?ŒEJI)`},ݳ'[0=r>[+F;Ȫ,q!b h̜c=(,4JJ#-aEO ɀ r9f P#tjErT5"'hRv"IU+Rw"\d[FZ.iD"S0]Eu.gH' "Ijv'0i)K } ٨}K"jv:DD#_}8%C`>A8;;<βSJ KkVZM6rRwKC)Y]^eu R]gq8 TwG[vR/2ty- B&F5@R#̦eQYE 1{ K?7.6k&J&u̕&Vq(  ?$)yj;,+ *J=kD OHhY2>YrKh?/6dUKU+2/]rᖏó_tZ'H. s!딟ބqfz1BX$ƑviKQ1<:(l 1tL@٥&e?EOvS~AFKR`kI/v8)`% QFgOR҉$)35%`3Js9$?8M1!H%A"4EbNYr!BR)6z+߄Ȁdٱst Ȉ8W Ʀ "/OJˈ uC!X%!z昋 xӡ]/gf|6RPBkvgnYyӰ)J@kݐ&ewԡ^HrpM+_:xsDuJKjQ/M|vz5$( >K3X"4%-378Ԩ|xCm]~lg66 +_Mu6YnP<>~eGP{QаRQEӫs[n1GOQ:ޫz7ډO&UVS!EW'dmka5 3{TRt$ef5Ug)"!h uʞ b%e2YTkDP٦ jV`kaDH XNM7SD[WpCºe;b؆'XGXt*q! oEO(&%E3p,%SQbM\p ^ fً" #EN@[kS C2&9h {mU&*srTU ):9lyTc"#`],7 nHL=?/Nd?B&z2bd%5Ya #&* Tt3L ;>-+ Oh&rvTt3,sλR^<ߥ>"@O+4Ic.7zK%~ߐYUrfk)hU _,z6%J@V)h:61 /f; JtvPj2 8X-~ǾC(ê"O=-L=CQ 0.+ICUUIqa^ܠB$%aA bȉ#TkGDFQ w+02A ((7/czrM#Fu..WPu amAn^F1Ipg?9drK/5%5!G-(u:WQ VRTALY\'~fH}0G)CgNu0@Cts *`K)qjo/#4,+YOo ۑE-Fز"C)bHf!L%PX*wl[pB\东^rl{̆ivZ.[VYwLRC]N cx'Ot3$燜7"$58xc?^_' `1Q^'u qЉX T.mqK]&*BPsST6]UW␊Lb(pf!{4V"e(dVj,ʿX$(+gUuSӢ&0EDsLHH*S`[@)jrsOhB귩32rs<#U<%Ν*^de;K6X*Ihǯ,]D#XIG͞k)%8A,K_L$J[G_(1Jʮ2U HT bLȥ!J"?E-T"ixM ƶWLkQW 5XLlxd*R >,MpF+>"^'d۶Lu:'l^ SBŷ4_x RUAu&!qfJ Izg"5?D]$> 9V.Y ǒ{u$9'?m+aлI3y)=+_- $!21VgVE=젢 T2HHDgf'GMJrF3D7$L: iDžss=}}VEQ7:j- Ϛ<:Gf?0';\2E'h=jJad|?ȇM9w}r%i fô$cE1H-L)v]r:Z eS|j`0]yD, =3t@aX>TbsU {В3eCC~lPI]4 >?ӊ[H$m꓃$㡂 3w&=W3f/YPPĵ=4(5d:VJFM)DY_l <@7s2;̬dchc4`chѸa~"FʧAZ,+HCEޘJP>n*{5R^5Ώ3lY1MՎM6K!x5&W. [sS &jEB !DJjD ,7kkeE~OQ-a. l4e% a;{?vd/GIwcs=q{2ު@֢pĆYZ+ ۢD҉Rq,02>q~T^QW۠4,9ēSjQ5SU2g2Ƣ5%v2O$2PKЁW4| ~{+PP#w$"962$߻śT>ddhxTQ](!K{oLf9EBv[ˠn~ +,'ND5@< 8t@D* Rr]4 onYzᆪuZ02CU;(xr"|$c|p+Pj]+kʛxcyS ][Ͱ$S+ )oZ;5~>'ZMlZ[#OسMD&QԬҦ9N0v:n bgɔo2]-li Ïͭ)Rj|$;TWo?߿/??]/-/kv~=^ƈL^0qηGLއɽ񢿽9ܟ}aճoDRt0M`Ν^8}«^`vkHBqbeqTھƨbA.^A| ff2hC yp[÷Ek<+ Q⸟7|W~r@мaX͙Lv~asg hg}/A?u kTz%z^&'{0ӥo]sPJpГƐvw5D"Avv74P ~Ϫ)>ǯboJo* ׯ~թkTu4mNthY %o//wV2oÅםn~,η ?ןj__/?X[%;n~S_׿c?T18 endstream endobj 59 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 65 0 obj << /Length 2730 /Filter /FlateDecode >> stream x]w۸K/t7$9]{_{kSa,%XHe%Re//&>3EyARwǫ.绫o8bw7$d w7~oEG< }z$T,m6:mlm>!QoəIhV6#2ޱX<۾EbȟXTGQc ^s{A#gAnc#nlAQr`8^ϭ`}cw > <"daRx+ jDxZLx?Wt]zP6?z3M0OQH8cltc&LyzǤ\b7qdir( QK&zv *&,QZ78i]ӶAcD * +m71"ŀpB;Fl@dEx [xW} S3Ac쫣nt흫AElīYʻKP>}d2.xKQc l<(w ),לO2etp/Sǯ[D|)󓸲D{ΓKG<)n7;@,% fX%imI}0Ua2GLZ*gs TV2sm$uRd*HvrG\xs|]+iR+NXl(d@qؗ*O&9tƐ0GfOhw~# :OY=coY\BfNS4fP,e>yuĚe U?I=-^@4fcr%R׃9$q&&iI,VU>S x勂yFDR֓kex(Tk)K$=[&=.ٙAcWK4Ƕ*.4m_ApҷCvHߞK0CpĐ,|Շ%ջ( RvQ 6j ;mn{$9%,DUQ#5obXH4m*l*[z%?-m5eQXCm3ɉP_,^-=K+a+PjmNt1e1e]PcWc h44S # Mn[ݠmܡ-U,7`WG㮮]+IXQN:k4X*816e{}V:Yr90.arFR׉(WB+A[1]oG(Mi#vx@Kنon-\o!u.x vP˨>b+ "A$ab sOr奠q A k%r56,u1QHbaאzB,T Wj++? J" `30fezpa ?/e-J WwNAqQ +ht:D 򿐢߈Ž(IV=dh}ڄS!hE1Ej^~k"b_k۝s]C: MY}tF[džϾdBpv.bp -Ŀ'G@`V:v > /ExtGState << /GS1 69 0 R /GS257 70 0 R /GS258 71 0 R /GS259 72 0 R >>/ColorSpace << /sRGB 73 0 R >>>> /Length 104149 /Filter /FlateDecode >> stream xˎ4r9OQCq/S -u-Zf<_JTK^]fZ+|/_o;__㟾rz߻?~?_O?}/GzO/o^q|ǿ?YMk_y޿zF?o/߲>K*|Υ~_Eǟx]7^׿u/ܬ?A}>Q>B?ͭ~q\yI{~߭~ֆ=r)/_^r_Yc~s_?ׂz<._?t~~.\|⽭۶mڿkk+W__r];/m??wޯU"Ə ?~l/^{,۟o_ 6?ϒ゙m;dj#}/?=re^wsپK/>7\~9|.W$l~{iKg e_~9}{']rz._>`e+}g;u_6|n0翲ien/_v99_n>yv2eo/,'v.`zZJd[ =u׵<;teKLuٲuYIs]upD(_]o]|u\w]K<݊g9l>MxQA1|Eֵg]z/β9#^x7:cCsu)mkg/ʳ"S_y֑iUWU#Feȴ,=m [5':NU OUNU1N dZOUNU4NU9<>T=T<;T8Rvq2X'ZZK'JO#rLkeZ;2ȴL!2$L6l'qL+ϋL+"L+2ȴJ|ɴJ|ɴJ|ɴj|ɴj|ɴj߯L+jy'jz?2-e'qLI~2sRʴtL++ʴ2ȴ"+Ӛ'zeZl~eZ ^֊dZ+2_Wd>֎W/2- PV\+Si}ʴO#S>V+R|2ɴJdʿ2-?^VʴNWU#iL;V+Rq2ɴzd2-=ix~'~O5Nʴ2dZ32_2דidZ<~dZZ'OyLkG8!2Zsi)=VLdZY'LK'ɴzeZ)2iUWU2i5ULEp2ɴ[Uپ2(_VdүLk_ֈdZ#dZ3dZ3dZ3dZK+Z4^VL)E#;Vix'ӚO5*iYϋL+R|eZY+:ɴ2WU2iՓEU#S~!w~'ߜ?|4ίȠώx~'N>< L! o@ !Oޢ8|yY:@ 5ߩ'jB;CG>`E`&ȿ:rtIH'ÁPR3$Օ<{gIVy;vt;V -{oN\@uu7uޜ^ ןU-/BP;~h}?y|+LY_{ {M;Bi6[vj~fm|aaV|)}sҧSX|Isw9l>Qzl L:~j7U~Cj:lQ|b9Y$A[=O٭E]ܪvϳ9ZO?wyv0RE_Vo:-=qދ9 xݰ$}[׮侍gYHBeg-K ˖⧈/ϖg{ᕮjw{ϳ*T,,={N o2Oe:(xn}'ݰ^}[;mW*zV]tӹk;h+doNVBD+ueCw2TZ[i']V)ºe便İuJ@Os'%7+@hM[d?3nG4Rp4ڵ :/10ٛF/m7d'@ݟx`z֍t}[zak|ɒ6 ΂ 4S5{U'zRpGuKȰ p` )j%y̻rb,]/) kwUaxpr"*$^{fP9&7UWljE ȩeS3zݥE jʾ7}X"Pw| 쭺}!IhlVyM\8XA[7w=d-]:m9U,ɚ^p^P@? zťYEX6,3I#D/[3E0-t/8v~K ,s()l`ݫr;͖7=٬]M|dr$*+jSA Y*E ;Lx[s.n w#4s-J#\>t')b3}Wu'Tw8?[S}nP{M>;7jC Kpe5$wN^ wϑ+%6:S[I6UGvyidyY:~֮EJ8uκAQgԲw4[H= (|R!&c{oB>![pCX<%j< ;:a_RAP>Jt9dz qi|ZVʼnA?Ѕ-gZf zY{"vjBw PT n{ `iglN8m͇ g٦7/EhrТ6}(zXK=A dU<mV/@te}R%dES`XbEks>qॴ@D>GEqg1}beUA5w%U_eJÝtg\~:E㱻W;%Frwʮ0Jrű X{e^a X~b܏6JVO~ IX;f!!x*M6TMV1'#X׉} _*;}^1‘^Vy]2[?*]^ |W;a&a܀ha^kV_BޠGj]C(xC@kha7`J{{BgK?Kn}Q$Em [އxQEh\wҵɊt+9=[$$Wlz<>+(]@F /XJw Z\ZԊ;<%8w֩.5ʩqb8 0B:AwJHIK6r bQ]Pk>JpQ[GN y'Nk Z6G>oYxJSpSlmZEJ:2XIW`!I-]E gdǾtPrYL0 *Ý{Z{wЦ@ Q7DXtd 22e]w#8bF'?b//#>e{hmՄNJX:(S} 4 ^ub< {4%6ыn! )^4\Ok>-M= \̐La*>ۯ_sk {L!OKj:NE-8cPi mSD?"agQkqxj@KGoIiDB؈bwvkHC=ٱUh.)vtp6fz@|:;^sΠ$`Z'cݛ'@q$o(FTPGDEF4?SzA Xӯ<Ǒ~xb wjް>w$~&kwLp }epNqKRe'P5mmEl۰"ώ~XgYQްx*J3$:S4rxΔ5?Gkt4D~i҅Alk2>kAIf&Ժ + K e'SF8Z\ +g7D (ieVhB!T䀛8=lN]7l\#8-v -` UIrTxMTe9lĐ0ivI@/v'-Tu.3oOG4Դ)!׾ύK'It-gaM*̽]@{JwuvC;ٳPi?k 2b&oU5[2i!|0>"$7S9Ìf5 }ki76gnNvvN+MߘT+put:Y=)#ݭDo)yZwBDSנwH`Gll X[w^ؒ7B#)B@!j!U @'%en# !k""M9{6gҏAPʋq(pWnQDf{hSzG߈n򡮃~V?쀏V<6?=6p)*2(U*$3+$lxva,Y\!+a%~~g;vi쀸$P2AfHqgүOn<=}hz)L[+O@IO+>=%VρRT8| &> m5zT.qcu7uLRjyluȜm yUܶߟs\)H>*q/Lj+`[JiN(dr9bB7KMBNzotqmP-o}f"]d02sA,L-p$["fhq̿ǭ;r|f(F$-%_JW'csb؀( e!lNrѩxESb"ԫO]H&%"Ito, GM([sz6(%#[gIPݖpaZIߨ20&LhT;omLATr(de meƋl}wI &l*CObg&yskwm}R=@$\+-)I ]Am흻񩜙b Oe H-fk;.U#!DBC`oF3|7k/XfoGDXv0+6ߺϐMA] GDB'Qh! $8!͊Wyw@mrv1Tg?YjqngҁF,uK݈ny*v<-| %**nF`$* PÃS7=uLWO7 HKNcQbWC$N &-$qlUW7:w|[{ۚk:Zzx\ϰ;\tT6RijZ8Lؙ* YZc &qaԡ窝mG ˧Y7;*RԸi86QΠDzCUtD@~ɡ 򩤯I] ;!(mn╒^$EXk[[?V%IP3*vQzXypr})h4Eupܨ0P21oӌ2ƴPoryd} W fI1;V 6P<6PocX? ?d\Ba@Pڨ}g ob,/^BPBX뤶Ԋ 1s9/pՃ-9?6I}FہmFuL%pb 熤joW,YThbO}XJxԊdLan$D|6z4el}E-􃙘뚒>u OeD 7|X*k@jNo73Ӧh,F?2eTN/,Ni4|^V\!}_^RfOԫ*N3V' fy\noڄgt}˲t. %Xdy$'2 *3m,khq<*mT :d+:\2Ya# FkvC`<;[^xZ;#ЬsTpފ`ࢷxCujSQ3}ꢂ8)ʓn>e7޷AILP&RNM:ـx[Zg^I$t=`1+9,UD0ȂNY$={sNVR F1v׿!э,lhQ+ҒUwoơVYFɆ[xF"g%0$p'pDCw[B:w d35! @t:JX},A-(Ic:ɩD?Y6b5o"=F1SjHw85%Pytݐ$u ˾j6Pi h&!EĔId硩'F\͏ke̶;J39? y 'YH~¸ X.^ȗ} nOg5;vV Y2fZ|(CC׸[mP[Bq $bWƁYcd!~P/I'ddlV$g0t -yJ;H8ՆbQ٤T4 Eĭ?*[n}WXQ(m¤u$џMDI-1c-!f0>8*i{ZE5go?sAo$<)VB0ى-a_QR\D֮3~)1 l ?oG[ƒ>Mq7pH΍ϷچêLA2 ]:ihSev9u";HtlT b[ 4C;I?kڒT.HP:!a/^xEaI̤ʍ[doh3ǕɟvAGXCB[kPu`paZW'ndG Fd4E &[Φ9 gzՀ:P԰F1'(xNHx+yk"FXE>7N" Y4]Q!Ť]g?CDiB4Xil @aٓDžh:mZlm^-}=[dJ˓5޺Zׇ)aqL)@w3dR`I~J%eWPm._8!g D1t 蓕]:DQaƙ\rWB|XKFrjk}+zOzX] ƷTyJprɨ[7ii@gf"!AN9R1 Wkœy8EsGkPOV >9Xx(ߪIC>pq[6< hpG"7U`lVqKdx"1@ HC=~[,B ,OC\na]\ ]7xM{{[PAmxQc+4;M r,Y44(f|MlG}!_RtQ]v p0ޟJRNdOV 8M+Ł<_Pn-Dۈt889L,b!7j0o&xg*[쮞%_]:^;N5-uV M/![dun J'{ Fczk6*BܘK`1ݹ)aÙET~*J> D ߤ(uIRlRAŽ[:4 \ApJCJZpaC-5>Oe|y6 Rpib"4Ii4y[__fiU\]@ |0`#M3.TPGǡFI R*Kg7h`|Pe)R &Qvw5Aecux r:))ءA4͇~[6Z a춷-x([HBEXaΎJlf^|#vgJ\C5t\YuPz@PZ9&mu 9aZ%dFB'X7T9D5ka#6}'IʖS Sl.&RA6BxbiLV djhFEYj.Kҩ&rtbUbR'}p pf?~4`@Gbޯ#41K!Rf%ϸCkbY4oli7#ߚ2>`#Ƒx\$dD]5?0=휱٦@X͹L 3'!F/'BW!Ms]LYze|ȗ̎Lzwv@F鸶HxHmpeִÄ'ujbdbD!&VW-n?R6,Scc 8H՟xFݨ]5" D 䌘)44J$86\x9hr7'f!]z1X:INBazCH&^e0؃+ 8[_Z)Ħz3$QPХK7R',nH}@ڠ0o¨REA4\7yj7`ꇬ.d!lЛɷ ם b`y ԝJ qs^NގV25NY$5S:Tjx$ޥy4Ow M;ܲN^$hNI V@ђ'ODi7 tJN%dNdRss(l@vԽA/o~s@1 } --A N Y#2.7:ۆ%Ýȃ`V wBdfc/'# %T-]ټlSY|ݼ>D4; M;hE7 ^;%IK( Ьbb5Dy3ՄA"g! qYLy:.MgƔsym[Ť Özq`dL4i#HC˶gP}xe|/H.okwʫf&!fFa8P+D)Uޯ _*:\.$?~d :KIj>N&14f5{%VV]> eC3#L:o!RDR""$xɌ)_ѣ )L2?V'RoL`[5*oQ :"jpGn]-.gIMڮƷ͍ZzSCR?jޔci= [{2+:ݫ+l~-\]L!wADFof(1+R;.ۤkIaZcWү #}cEfY=Nv*>@Atl/3*(~פ&iBtiN{4`ٽ#78ʺv!NS'[WiP"b\!ݐmTql$JpPvJ^qbOOUVX Nrm  1$'oHB<c $pKӬY^*R\6cP 6ʌ)+YD;v 9,-m!N% ^]ȴEqjyuԛ'~dqn'`-ҙ׬Lk8@-ZFZJ(PS̺g\(}"A(r:M)1Kl`n݁CDi]lrIAPef驇yP64]}vqpzr[tȸӬtf7GgY0&LŽOҜF8 qcTamL!!+YKh^9ݕn6lΜ}UVO3Qni%!԰7\fp-Y]BrXm} Amhe 㹧'ܹ:fq;/YCA^s "J2`$&E21+zx~/DjZ](IKu"f BG;;DXQ~/,B&ڝ[ Ydvѿ-hkbp"[2LE}ҘcFdMhњE$qlA93eqNiz~S ͺT-VwӮdcz7 +..6SיFge\^6$k4J8L[4nԥ$p΍ppq''1b%W%pϙ jy:{ $[(;s>]~.& ZYmJvKsbu,qǀIr$BVnT@GY^4[$)PO:ffջ,b"!(5~!;wv5ɋ!UOɰD}P)Z=h߂3Q4ɶ4uB.>q[}*2=І'i㘰ew-VµGR bw")@zllX0+4ۋis˚=mVK>Lvu]dxi7Ž΋,v&sIb4ƯT>|̅ %%zV$ݑ*gAKUPJnd ̻9M #v Y v67|F=[cٗH[*%Aa.XP2^切NOy9X$]Ck1V)Ґ 5>pg4f0Cیӈ,} <—[$"P3bS{z3ltN XxДQ*9y'ɐQRyԐ$W:=tW\],gpBCρ EdmNP "ܖŵ/he<l^WԼ6ᅶv4htrxWo@ Y]U`T: uFY6zW-^?YXˍ(%y1*p|pppX2Zv") r5wW6[hq4.g,:nC$ JKlm^25X S"V:# 0 ~鎅؍B$b#;ͫ5@\Ϫ:^$a R  p\v,$dPSIt5Y|q"H$r0ɭZrwG{j`|)M88Jxs},A)-$j1fOD͓lli^o`H0P`AoVx['-mWPpar*>RY`6So'(k zMr q//O !"r~ 5=vRvxա[ _ӑL6nf6dYy ZS4]'OQaʆNqp51xbkmL<9 P U'PL:bP?<㫦P(]iuUR0xb`z^e''A4ss,ZƄ(t -d$!$3Jmnz%=bYI]XxFꓭ"8%r]8[E=IUb"ͳM6@Mt!Gah^'$g!ීOסvi7dȈDWffDFյUzS55g.~Y65~/:I'` :%Du25F gT<&85f89Ie{;KBp|eg*8een!7ft(r+41BSb\(W"ik"Z=O "EIRl`B;⿹C+ͬv?> Hh#d5V3]ߧ~'BY?~0U$y8$`S~f Ax@,[$d3]XI2F8sXg$~'3!I355{79)>զתg,ΕK:܌r&̰b}q{,PgN뢿b[9l4wuDqAIR&MB Uqj,&Y'1uS%YFXS\FƝ-?We1P}0 l͈DΒD19p< 35V[PHwo= |C15蹣gdNC9s,ɦCO;+j84`|[fY-vH=ѾnڜvRGPdJ^G[C#_}|rtj4fybg~g)}WOba֡Yʼnw1XBwB4 :\U-Qx0LK¨qlXC&q1v}[4Iۈ{(jE>Nev[y+j+B6 xeQse"Y )M|Ƭ wAUڨs(Y^nz=LID11ݓp!͊)Y 'PW7e!ڇ-ROGv<$MfCu1aKͽ,Z;׃ uXg"ӉBQ u]Gi8BL[r`L$ }WSADg1S0 %{ R z/1r#gZwG= QvZ]t5S㝁 \5jر*4!3yʒ,:JL|&$%a]Nҽ t|>G$TDkEmVǠieQgMɤ~Xԃhru@q&qhUQyܠ!ȷ#8*7qOk qe Yp*R44x,.7V/mqp0ITffSJ2pd'_1\Z .I4kl 99aG^T.x(Lrͩ$g.i@V#^(Pq0CD];NZtN`*4GPk$d%;W jx0'DߴmaMBgꝒ*ҍC凎⁃AsPc1dnIZVA qK[z#&gf4ԎӐ;`I-@;-G mX^mY <$XNvY[ Yo3pnҞN#>O ?Dz6U9,Lz6fu`WĎ99`HRQa: RkV@/Bq\T6O8ЀyniӉoߨ{6;eyRWԪ#qSX΀P")' u N"F & p8{ %V;:V鰇^"=ABVP,)UCQuXAx[q>]|ЭэXn[ /TD2k6 H2ZCt[Wt)#C:R;k}l *% ˄,88b_چ`\V0ZdǓeti [Ѥ dўT>Ňz9Ppj> s);oľG"g.گpDc'{/ڮY[q8I-u_v\ڶ?7pszJlM^8* !gE$xJ?&TCVQBF~(j2$4lm  N3%j.rt%'4L1TӥcqnQGFsb Ҩ,궚 "dI#v̭zlο|5%:AA> 5a P7ӔF8&H4lJGv`/T|xI^ңSHS|UqwQw݉Z3#kqv*̷JƦ3h%m$Q}'XCit$"c!>QMGu"z_Yk۽Zf$Ǥ6C}kLUijvkYDkتyזH"Uw [FXWVz:!uLL':V !uIJFOPMD<NoXg.$B<ױ@wy;Vu aI $ '?cVQg/%e1Q[uP׾.xDPclH>ڇ!֥$ &τi I %QCCF#I>}DR' YWx]#hD*6e:: LgIeAPhUJ fP F%MmTx-^buCr* жA^#BhV3Μj "v:@ 8-;R$~#i$2طVcMTjV4¾O9' exPb+ Eʺ-!X @- -԰N_UY,tqe9Jy\utPCVڒ- BMh7rF적C}L9S_pj bV>DwCG[άцXzX뼧 (%;kL4]34||l^k-C+4^?PQ뇜_aPQq*ymCp<VghVS:j8ZPr䔪,MaԆBc=0_FLm Cɿi$jj0[(u4 PsϻE¡ CUKFĹ#̅IףUG Qz:4xU߶Nmk>0OVܑ {9a'uHS8 Z џ f6Ua[5.4jt⤰ U[7f ?^޲dh:bF=0aNFn_?cDWw:Vm%Jt4S_5_%( "^GvMHlb.M.rֵ{^MA6*b~4EESW05ԃ~ \_%(,¤\O P;`@sƉ;S[I\KrqC|aTsLWr3{)uՀ^'es?-@H f!݉rH%O+]ˁ 2Vb1H6bIӧnjX,XPdHwmxP '?ρAwөtGSoIze&abVi kT`v[G^|!ǗNv N#&}5eggej*-4+xuV,jסԱHJ pnP/7^aޙ쐖G|7X(|5.4V.0KS۾ӨJ֓(wie**'7蜑$Q!`>C~.eq{gxplBpKG=5dtW.X+/Ss>9֢ -+I,;p1eTo~T& U;UZ-(dI(45S'DgYL":mܺ687H;`fz@NKH+"LƊvhQQzU𭑅:NC0Vttf+mKNc!&H\ >etdT@R5'Q. UQŢZ!x x^luIN.* IZ;(o.1l~iNq)XlrW35F6ud) g`YV޷5f^SۣIЄh8n73YS Q{1VEsmGN`"NY>8ҍҢlRFB1َr;oc ;-x`xA2.q?n46-|{%,zUVf"BäFj'l'mC֑ XzJb5#;tILrv)޻dL>k˻Hl|,/Z)- IT:O˄sHypC0:y8XjK v^K + p@|Љ=.3,v6JYbzhG~^ ,͎hvЬi!:a#8M4KJΨ4.dt5a)[6uhLd)U_4_,N44u\ 5'_F gC, (OU/k~>,?N})-?6>i}J#ɳ=jB+"o TF#aףwڂ FTn0NsiTyw`|s*JmZ❼H^NKѷ; Gɟ @Qxd~"h(_g1hU,n]I匕WKۋGuy_oz oC ~-PG;Cn8iQ Pqlhɖ:4^p#yڊ$~$qQO#Fr꣕4JƲ"S `dx_Xu^4) pw-Q 닊<U$L.ճCY`Dg y"M)3{~`,XT-FNgP;SjLEo >%HbAi2*Q#{cJ98&A e"uT|,QJ,X=xPm./V-ԋ4"Ct#GBSSh«gР;컵W-fi&9< Zdu»M~QeTʀ<;Q T3TLE&ɗ`OE÷7Zc#ŨьV`AtYb7z#3ޣ9'/;]XKw"hT61:6_CGiTd͑l}r B Rό3h 1_bД%1o)aGryr/=\4L \^$~ӂ&;TNnXdf$>jMs8I|J^ еR*uwmIݥT4 bOWh,"IZ%{ѱ+:v3E7Ts]l|:rф/;s%[`)JB(+\jdxo}ɉ32-"d{'2XmMtũS:%3Yȡ5+zOӖSg9P/ջe1)hyDgd7 dbPD^v%<Fd;*" +o*b[Ê" Q dnc@0]pR}c(IjTjFhch [nMIΑc9oay-5J>s X4waȢYQIDsAJ{K*B͎xdwR>}[.LXHpJvJq]u{&JV+hsiZ ]i|B }oBk4ȥnA=ϧ!e:g pDE#Qs+P`8OZ4&MC /lDOG݀N?Ʃ%e%D.Mk+ѧ-46[E2𹕔 ndL~?b(F }{TJ#7bk;򟂈c}heY2IAE P_UɩYV۱VEwb۩sVd'.B=!ndNfQSlNA8oJvG;pCR€c}mnH~Sf:vgt?p _6MtFa@顺ЦL~X]g}GvQF{^p!dR8ӘZ ؞Hbv"/;,h$8~ vVfXh0өw I Dvfy,ST BJ.gҬ5r{u˨?iP>-r'G ^ #ZL͍9lC8B |7ڦ<{'+4C[ +c'%:>_Œ`pxMy,wn:cOd(TIpk?xpb .ca˰K̹4pĥ@ tֺSK O6*JLoy6.W wy/lQd0@ U2HedB$A5 iJ3d4EpbY{E;~ lodtnټ} A DĤلHw.z]JBD!?z+D0BIp־c*6it3,ːՊSȶm ԰Cڀ ) dZ6~\ĵV@Xeu 0n>lKB)gF"6U>I! b IYZ \zXg\*ڧFxPu|-t|p#vp3Y޿2E$ӪC;pDL޿8=Ph]?ٱ ,[#l 궷@0ȹGDvXx=@̌, թD@#/\<ŵgm7UQ4Yd U⢞uI 4[I+dgwZ&*ڠ bQg^t5 $i{ZlR;0R{]M[x?WjАRB-ISp\ARՎc  CWScIJwFO^ūJ9d[ɚq¯ 84‡pF dBahC#>d^p+/`&wŒy87a\IL,syeQ#gH}\ig[F?Ħ(Ll0)G:$似Fwi&wPTlPf@P]^ME˲M lf"U&.5Na>q ~|o揌S (m9oQ&z'Q|4&uRT6| `pP"Z1<-۹ݢw1*Z!D)1{7& GsbIPh֌܉M2c6 hj, 8kP9j'VȨ $\Q&hE[*Pbzm>,~/40(8ޠ"&'q৾L>3z^pK[m5=?pW C\w$cN }#p7.J)WHḱ|=7+Djrq"&Lb~BCTi u B!jIǚ*F ;9Q.iHCE81S$AIMg7-n`#5s[Fr^Aۮ8RLN6:N+zOڕ{g$`8fA!?6#m?**`k"j]O#:kVN˳fL*xz7` EZ&NiR6 9wgzCYmʅƚԅ&[]_5g%\;[DZ{A6(6(qMTNÐ5o62ASʅ6jXTHǚoj -n5tCj'`h0U0T +a#M@xo:4^U F镘f(\]btRE>Vq3`Zo "!8kԃfbw";UKW#u~4o-AapSe VnsCNe: >NЅ!9ރSQ`>9[8 R^B>?!04'x mu ZtW7k T_gt$[L8W \'cwe j4ȸrh(ۙa" /9ĵbb*ιk 6k+ߖb<шu2>b~՗YRq A95|P+$҂ {aP*EK1 K;x s< _fUw(-ŧ |%2w7>! 0vwڢF4uX)a% 6,7djnŖ'o>ereܖ ȲB6e4mFK(8IW$cDX=[Kg7m#ހrv'cL+=sEĞ_ZH` ͂ȍmn\*rʇx`64FQpͬQI)'t(͑|$YUog4 5;nNfi~ SPu=brT;ʡ4>9  oM#guGbV2#6}fiR+xUsQX_>Բ%,- kdH%־ Fv :}8Nx/&~S"O۾ C+NLN4+h|5W:T-4jO ߄.3m cs5;;j,QjaBֱ 5 4@qΝ)>X]v`o_maxJ,RX E5'%(jU͇-0QUݗeE2ZM5˽RfLUĨ/݃޼EQL*9:!W_O&+j9C%e%HnXMM aA'Niyw %y0mz^,O?PhpOJְR^yv.tZ OL[s=wA 3NIE. WUv<ty]l `bElj\XDE!v&pA){SFl}O9ĒИF4p3ځV9}QQz~6So+Mm(=nv/8'kVwԟA_ D4f[rTP`(ܰ 8ږ(g_*,Z/17ᣔPP30Q>7٦b0>lBMU̯v",Z\[$׹pqXj֔j׬~*y1'Ko>?HҠޢ& k%2UV/$ޏB}YSUh8_ 9f /4b٨a]Y7I-)<" WTW1f3@iH`^DfɊ}dфM71 (Qط깈QЯnD ti`P YTib_H}QY%p:Zc|fܮtPjkhb*0!&)_;&IW!n54pbfK#^Bh?!Pp6oΆӢް%FDAqjh7Yxч{&)0`6ط_FbawGd)OV$yZJSnDBssroHYQ$LN_CkEJ&;0y uqK 2 c0+cyVTE"Win`)ȚwSG"y[Ag;ޙ׵&m[1&iP'jU:IF%O4d\FZd0Kjۊ -,N+o|@EPYj5*r/RGj;=R6OY}Ҏ4{U 4u@ϛEOYSޤ 8,цwS"WNza̋dxN!JsM/dX)4wM$ȣf"]PPƑ&|dxlꢣú/s\ig 0wG?MjtܤvPĔ2elƽW&iG2S-z<8C.N:%+Ak5&Ur?FF7ͷGx ibBoE@qA "tꙘ1O_Oxrk*'*7֣#N_|y@@%gHW`N>΅MѸr􇖩DJGKbSz@!zknVa-kx!U Sdy5-([xUL>*rXί=-A.+%?&P4f"HR {׾e3HjԿe'D;)o*8gܛBʊof$?bNB Hc6cңaX q2 N)ULޔ&:(9 - CUsf\ lmv,7{(ϦZH/`Px=r:Dk>qT237t}LrJJ LL`D-h&3$C#zDM@3#(1/ava, (9k}n[%@e0{_9I7Ү؂F^Pre_?k^88 `CvF,יFZTnU r6v=$<̃c2E}T`9} fsVX }T'M|E`%~ӝ^#k5hl I \{L k'lR{II)اob/+U?SC| ΜW:푫qK.pdV 2<,eAz7TSdxyG&kk+2>c :6tl#hV_-lEO^.CANf$Xr5 $Ldָ4(/(4}*DiE̒:/'#![lZ"${#q!Jwj,에yU6B]m܁WeERToʷ\#@^4wh 5Qs>[Ls>KY9f7L܊IZZٚI?Xq(-QhjC.zF!Wa Ȑd4=\EW29tG4A`g$[^?.سBtfE[  ̨e syTvZ!37ȻI&\p%Cv[w- t5Lu{bq4mXjt'`Ԓf['e}><9*Я 5t*9;*SG~Dܻl"V{b8 u"nm^iի.b@U1*N:I_u֐Mdn*ǟBP;_l UEG\,.lŘu?So/_ʯW7&lr#djq~ R,zv0G_^%ⷿF9/%KjӃՅfw85|lĵZI-2z.ʳ(ꈝ<6\Ԉ\ߑ86?B;*YA,1xS"Dߡ5-עB07l.ٙ>_2B;pߢĎ$DFڍDモFwӷ;z)ۊjq-wtK}jOa]tP/Vsxj<+7)򬢨_jԵ_,^,<>BGwnk~֟/ݾQW }{͍_s_C?QcO/qV//LϿxc.e>SISd?b_d~Q5v}ϏHW'm|?E.|~Oy<{ .wv1=jl}JR}~wwWTuk#0M:u?a?agccˡ9f[/]fkYdX4Z7*V a1kY[~-E_#k [ ~-UOĢbO5VU\ $_"ӯ~nau-pȓܤB cԯ`Y<%u*ɧU}H^o1;apk9XԄ~=-/nfG"N#qUO&U=QVU|F5ך"݋ xEͯ姭8Vk׊U`Q*G6(}T3|_ˏbYU%ukEqYLZ@7>U\[|]zߵz#w}xa[x(kEBXЂhF~?",zvgu+Q~}qzg;ڵLJjFNM ,t^?P̌!Ҫ_Vzgͦ _]-9,B~-k8XU8f}b3vg4c*jW~7jG9~_>SW(~]rXY~g#ٟ&y@~,׾_B->ɯvg^>K=.Uo18]%w}x\suVZPe2&iE篵<_Lcӄ \ uYk]"+:o^+lĊ_v%itoT/,ÿ 5/ßR,b][SumO)ֵ>XVb][SumuO)ֵ=XVb][SumEO)ֵXzJ-ZkYzReyKz)*o)ֲ4Xb-K[[e)nXQ,n)n)XSbMS5BO)8S52O)T8:G߽|k~oLqt^˯8:=TQ[EDz|z}US>Y/fkԓuR}轾s.tBKquuI^ usU\g?\g\׻>ۏ:{o\׻>~cukS=u3Gϼ~O +qקw!u%Kzܿ%ysFޓ&<)oī]to0đ*Ӌ7<2ՂCDw";ݑgDryeV[:RPh2뤷ߩfq%ᇾ%zc]'m߬n hUʸ`^vW봴;d%|M|Nxo8/ݽZ{Z T_*^ x7}}eo&2Mf^ZYE H~؅lſ"mPӻ}{x _d ?}hϐU9ou%u#??0(ț*+.wV|e prL1=&} - Dw~C1YsvQ(Ͼ: vMh6ꑲN8XG3nS#ځQ}bZ3q0(AQ ex~Xյ_5g:i_I{BϓH0J;IUPI{9&|.@(kc:` #5A/'0@CQpieJ'8ةI2}!L̏=tSJݮ @4z/<&y8!ɔk%3rmYBLN7@[eHKBo5a@$$ e&om5:=&)f+gnZHJ>qIc'RdQ2KwA5eb{geEّ'DЃw8@1tڻ{5"V ~Π}뽶K!gwېDv7#kFGM6ws!#IB)n#s]WSPR]4[< GlŠlȺ=G-U& ֮oE0* *F)#ﳦ;4 ţIrTRG _B("z7#0fhyԃ74DA(m]u-o7I:A@ frCc6?nkrC oHRo]Uov ΅yE`׌~α}<k t{rTޚ#pzIfo{:&N"ϣ#zV)*pBDMз>[M? Ƣ;4`E7PY1(~[&]95t>k25PsCaJJ;78? ԰ﳴKl'MlXII#2tD"ENyedM0X oI; kB`Mi6}BZ7#rjׄRSӡu(΍O}[wEwPU~kŴW0'kotA,\9,Ud{?E᪘7Ap܀&MЀ]n*K`KmR[ᇂ-ZzL}kOS7zx<^UVf?+u9"5 m6, `3\dޑ]9E4:}^R5*M5]s݄Do;wPk}fěJqD|7++0 r[C)biT9Eq~굂'Җͫ]">&IN8(T>>XN;ݗʪplu, nՄ=x*Y5nMx 4(V !oBƠ@T5D-091alcPbL ]E~ا'/΅/$JoA71j( I؝ZQiQ|fR5s+ Ơ+yS λtj -)!c0Y.@Z^*]iRǜȵ=s*Mxds+E0]jt(*& M f5sBaS2.[I)znCqAh̉vaN@ysU].!"a7Tǹ?}KٻvsiOTIi0~+Z@0=&sC pP ]ȷY2\8mvqGVa)NGJEsQMuMvao{!QM`vP:l:T&3(Hƪl(J`SCtV<C55V^D0}syc}œSVQa6M4dE7 _tr)HcW-j~$vpL H@ʾ՜l`m* Y:W\j1-#ȆbJ OlW}U]Gс`X϶#H15 I>\Of .)+mOL]`,]tD *e'jQ'غĩJiw.Y;̍4r-oBAf^HxޅhA. P6Ǘ-xLQrLOoƠ{#[zhv y >{y<a! y(Eidx62(=j2ZH3Aj&sӢ#FΟyubz+;2 D[JnLƪANa~>dlj-,#袑U }/w l%ۗ:A(FM*o5Yw̨LKn Du2 J ~eF㴮xߜܤa֣;NF`|[ " -P\@@6wh=B EG3зe$/Dۍ؆,c-H|"T gM/!?Id_CW&1 uS2^ ιO$]<ruiEB7RSʡZ>xY+,ԥI~?8RU'iA׊ސo#7Z@3,rU@D/"i2&41QBTlON![8 QU|-6at*[I(SeҼ C+pqH.<LU Fߊ?G"IZ'kв_>]AJ _הȣѮP6]ZPˌ[@a7i7@[0ۭ ,Y'AO״ngEyؒC 6Ӕ4i7%QģF>-DޟlUUl:o#pBR  eE3k$ ̭hpЖXڑO=!5Ɓ,7v~$ydZBV(cRigjpT,azl܅eOFxh+ "Ol#L |Z=,h[f"U-r> 2dR mƑ_ ԥRqfp̖U@SitUXjG^N (HY…*49%")x%۞!:LZVfD(2=`

ڻ+?6}C6XeQjNޭεO,(xC\ 7t4&\b{m8Ihj#AG"9e'cM$P?PREj,7s OgtY8G"'T;o)+<`Y|VrH(Pb84>#`O;s˦WWfX=nPWi 61-"~&'ߔW R\AwGer"BP@74h4$I*#ҽXe-R6:9Ju4]5fsu! 䞦`vrFFY0#떉;{S8)_UDAkrt]aOj߿yDGwQ$|tfh'-5D -֐'(Ɋ3?ߐ]#}/ rPڿtd6DqA;W,ĉNT^NA eCYic,MG< E1M+:%^+&~*[4ZWaς$P6jC$KM-Q/RP^)dl [^jeVєQ>V[[*r N>"mbDD%NGqXq'_A4+-JaM sT0*"KqCl #S BE*3 Sm|I>Q->ו(3D k)+Ҳ Kg(Q*)LBxG;Z ]Ɍ 4 }! e3iӎ[)D#h[we:B AGUu|b14HF҄f NۯR{ 鏰J2IKvF=ԑΔ^>[-'r?Z%o AW^(K3/MO~2DV-&i?5 '=%N"U#9X:LiH:s T}p ZIxe5H%Yߊ1G'&š>8)s(Ŀ!;p(y<5~.I\|yy)B&GMP¦̡"UC8+{ 3{6ؓk..ˁӅv[9?BVi\.Jd!"&Z#)OaZBVsI\d@Oj\Q7 BD0A6~M2 [׊ͩbphI1"qUt耊i9C:` Wm&Lľs[E8D(r`'$_b1ncKfބCɓv!YINgѲJ)^,Ԓc b{Bajr-gk+'G(NT_ ;' 6t"Roq[ѷ0$24>8_,F#92CGUMqAϡwpp7 92DEɔ'V$}`0Caku+ Ϲ 'h lne[;F_ 5{tTZ(Y"s&4U^1.>XHUvNuu>!韬ϻ?g1MQCB9D~{G)p_mC5s4>X~qִQ)ْ@dCO)0ZtI|bCRa7mWJߧ4yR( ׍K>J2G3QXI8AH*|ΥVmF-5@U $ZwjR0 >gh)ӁB5LW;zWgX>?F~,.As r1Гdp-nx10S7 ш`765}ad8u^k_[RUě,Q@/$m R@ aHz,wMIM&]ϐh鲻>iP/2չO+ڊK(EV+&S5#8Uk1e]6{>Ca|lQSIBkR쾖 d ]&A9`}Bqb*Z 53U' R:U.m#\=Y ꠝ >覼׊FṓɈ7K k*l]5Pt,6joZ6єW~%KCjy̾"8xVɅo_w sȴn#8P s` !cAUaWɡ<~SsJ$7cnf;5ԩ6!P٩L>&&".[ojϕc"R:jb"®ٕ6hpDImeHMHEFΆ4!vMRje$i?0 1R}R X$v]08c=}L;!\4>-żuЄEPo)*=;J{Bo@0fkIC9:t%8a7ֱT / W~,u|!4 'ಊd4WBIÇK`bغ"s^BRSRXc׬ 3mwfC!;^>].qI,!U Dؗ(<-Hr^QEHT!lO`]czCH1)aE]s߾#ѯxvtjIlf#ɤ}0pb j ^JJV%Z$NVQC3ZESl=hWȖA t'tqy/QUFB%Dw"Lz?C"!l>>ưuE^ ߢ`q!p6@~+6j2ƯC%d |%Y5].atQ5Tx6dmknE2 [оw=&OA1SK&-a}ɡh [`<`e:،%XIb$91!1ltG֟06!mg)W~PXvLwLE:hij<38:9tQb8RFo$hWhv,ƷP`?u+e[Fm0Zfc" \NF1q"XP:ߊ nmÚ"}OJuX<@?ژCK,o6[\(N^n&(BgCcڇ>=]F,Ni&}#SYC(`If* -Z -MN}I \dr\͘`~׵k mug#颐h#C5I]߬rq Ȇޑx3`L(I#[ozC |QCCjN)}W|z[oo_:H+&^')I:hVUbeRon y{l[9&AKGc寮ס@аvY3'MŁIUF%l+Hq}T'԰w 25zHhH#ԝؾ&qoHr`1?'\ӝ۔9^&C+oC!aCqE͕BE@ól ;4VOȢz gBA8^c02'Ҋ6MIAf%e_P[SGJ)A$@ܴ`5Dȡi{kZ^~縌fiK"wI|*:&&^ G:2ׁ`R00V9C xIsAϬD0a4n{"g69KՑhߵ; 8~I? s: ~ۺYL*<?6ƑF`swBxeg.*%v.`М])#k?~VG3EA*mM/TCb!1*RK9Z92mBFLljNWf§ҩ|t7#$vQ8ghBvEWr*>qf,"cyCԮ,r&ql,:RG=xA݁%W/+ :rX"[R9U=;wR_?F#g:y~^(:臆O] k޽_3y<9[|B2_y |g .mSGy!Hn8oKBMON=|L a#FeĊ,`C+DBuQy[Mr9$  \ 4ai@BQlh/ũl0seHt }SSͻÃOHQ-D'I? EsJ[w[u|£YDd2rƾI)l!`P) ;>;IuJ1*9mӻ8* :zFJȪJhi:^_{\(Ԩs2>7@솱!f$W"kal"!n&aBf~HfŠTzIj!P |6Az3Y-+uM,x~< ,=VfDZ߾2SIzoo]a֯'>l"(v0p5շzؤ BPdurṕaE]GRMUv-53!S]Pin;~OAL1 `g0@M8WdIx轎"_/j2N! Xc(卬vG bkę]~DV0y:?#6US?~AM( X ~!aNcup-g5gadax' Fvßo7JnGS;İԑjC.^,$PsU‚m r7JlԢ6Q ȆjRSҪyU!# *TmAǹ:((q.oAx{'rwW Ɲ7)&LzWV06*!+WIn3Pҽĕmhc8jp$۞nWGVv0?[(ѱ?KCu I& Yܰ5 S_Y_q\Lfl)M1)8 !գS]NvNK{AgaV}ɈBNb3F[oa@;.d\̪j!h>N^rnGH@"`KHS7䶢%L;FPno^6_O>&hѳ}G72+F .G2h˅KW5غ<Ĉ[״.k*HC rEUgïR2AX qZR(snN^@L mɈ3 g!4| EΖvS:ZIH&XijlɖYpyiNI([GM|4]UN#.SГh[Uq]}3QոȞzsxMf[znmQ頫NvDsMT]!FMv1d3 ujt I^BE&NbOZA沣־R5drp=YbϻDدL}tt2tiQ=4 t]0l˾`ngBB u~\)`ᛆQ"HUl'7T'菟4LF :RЄpa՛֞C@LN&#ccEc֥m2"9)$ ӿ_;!1󳩰ݘ0dx((4BΖdR }Z4 V.àP3Shk2}$:H&'BC՞ޠbl#DTIL]H |#kwBRQ ֕S@p\T`h=z1_sߑ*5}`n TXZ!,ՒW;M9x|"ģy7!q>pxt!~[mZ#4kX5;&dcv3S [DUmQ:|5krŮ@tfFy r$6N.W`0 ^c˿}SsS;,\=}nAOM6AzzlzzUC'%EؔU2 ?P !EGbqYtr]|KC:Н{S |Wj*J>K>!hK6Ŷ`rhL)Q9j\Ea`RnQDHSk>P-Ȗf MzUEt\M@]^Þ,)nFoC?.7' xfJz[ɸ(,Տ*)[Ph[|F)2~6r3o5#Ƕ2o"=5LJSkĵk(k:ٯjEntFV5a$y5택` V(gi&mKL?>J#K*IAzL ?J!.鯁p޵S㇮P)Qfqv&dFnFkw|c2eX^BA1_2 BCj 5rCKSҭw_C] Pt}SNaI#Rzv9Y{!m-qplV(+`ybK;D?]M gKzPoڄ6aJD+wF)lgD*tC'8M+{rcU*(,D')ߌ^ i`o DxЄGHtC@>: bܾIU&&rimOӉJ.1)b$&qhR)7Rl?Sbf+ skM<>[> ~HŽ!'FE-T#}'utG= mȣÈfcar Jg [4pe3zOAGCEuWYtNO5ݲbV\ H* Th]Az |2"~axd|d_IԲ(7z6 ֗xv*Ib©?KF* z}g|1I-[ݮH(<ݦ/)~8 MX$RrSc؋WJ3Elj] S~$lyGQp\|/%(Sx>*} QJ[ +8x `ixLT<ʑF"W)ުt-=?:G}Rq?m F@LgN KIw_Y],E,4Y?yQXEzWRG/TN#m:#X_˨}#I(T&I$~:D fL}Nsaf?&IN}I]o?0_wVR]G+8ݒ^ nW!ӓN[ NTmܼ"GӠn|z4RrRn;ƩPt^>O )$If6]47iR1C =5vM`Na1?.­ՇxVA- (@37$VoÐ]cf\zO'de!'t;ȃT4@U#ŋzZ1VR^F 쐜ýM@-&I48Bncs.Bˡlb!J93+I3 /\$rv%ľ'>c,?CM=!`퍜h75 WH* 5o"FY =m&M6j-^L6AٴƼ8 dNU;>w_ v) g9xL?!uhQТv<38<3ŵgJ$51A\& #T-f@s>Q.O_Iw{kDi0(|.ӆ hGEt9\!k $Qo@2ELԧlSlʷbK"OsW`D3ޭў4󁞰'S='h*+(@2]8虂Ł^f'wH*`YJ cSm0uD*pgR~' ;ܲ&=d4\ Xj)^7u.X+}щ=ą^)d!,+Í_l·ףIASD _&i(J6^"BoUƊa^MW}tڭا>Ik/%kH\HBHN)^?_崯A,I+IjFgM$q,>ՃeYi4b5+[u2Tq‘C;4 _rFA8WmVC }1QPni~~haCkC#'zHx].,=lSgA mC ))ȑۡ}OqwI%|TXYq\U;5!CIIt!~&־I3w5%Ɲ [FNJl?EDz;$ߵ)=M9}i_c-xbС:E.T_7!Ґm`RcudʖFpx-!@Y~Mr^&y'L2v6*5Zwx1HWk!v)kl [Ҹn[w@SPޠpIzQɭ`#RCHN;a;(O%!8.`0J!RV!2;Yl?zHσXq:)RRxHdZasvReteaEoNC6y >PtzDK5ĨiخtcȂY|uY|/>b}РTLI݉NfEFN]- 6Hڏ\b52nvV=r@0$);4Czwt.A'(~H.cd/rUWB"l+dYRDu"zƽnf෣"{K3:i!94&uoӊg"sD@)\b{wPe@#%:F@ڣj RHFȦ0QSIu|9ӹ * 9(3{Xzf;jPo^Z=Ք}U/;eOلFJWY޷?ը/@K9ޯ-4ߞh'%YsgBh(]MErkC~h23}%cQtYb$KQ`/ GL!Ywe]zdy6` `6@Ј"m ,+[+lQ2M)O}UDXt6RPjru]88Fa` fH5KuwTdvʖMooIڋdGp@M&<"8ԡg0dibx^=OEdG!~rkX K=]g%OO_(T #a!Iک@&aQBcʉ2}}#eNr@T9axu~ik,.Fl _AA6 .Ie׾Q&UxV `/uC):fo;vNguS,ﱐym"D JWBa~3T}bUhYQeЊdGz;&>nz1* F3dF t:UWIuqצ1j ;9E3m j]-$7I{vkj]5#aTߔmq,~g@Jd, ?`M6)~UȻPy#'߼}~a.vnǛCΈ>[U8.X4Ynߏg/mDm)D޶L8*$Xmmex~>q-l*~}:4T MtFhPZvU}7T*#ëp\S ވjfE! )l+2„R ?uNB!LI:?fTj!U#I==( 172F # xr'N,]M2p P|v%'9 Pbo !}\Oщ7DE anunTܨbuyr.HS\cd[rEnORقE2fhut}/pp 5* /H$[_#/3slSBn3ZaDr@9å6+{WB7 iU<VA݅) ǩ. OF*n1g⢗ꭲ_V4 ֭&Ok:ߍ@TYbrWxA5h52vAB0 qм^Sڊ#yA.kc<ԧKY.C*=T[Bt> zdz-ꡒ$Z'|DxaHr b8R3I{TV@!ebWcxI.]#g9Մ6n5^c!06Zv|b`$HسPG=L8SgqzM#2r&To(隸@7Yz (^9&F61GuلOT9ʛ"-tƐvo@t4q=:׏@@ ~ @jŬDk|qʴ6zLQVPk5؇n.t >~`R+PVtm*q&LA%C[fY(?R|G<޳({H8j3L&In?ͬ'j%&F^vaeݴ0Vg SkgPG r?`Cȷktq 1ߏ'u`FKYZo">U.ߚ-۸P+ iTnռuR /)zT3"lyI:1?irw Rr]FSy_n ue;rHd,rVH4cAZCi[B#k$ hG Whxea梥 J*( lAivѐ-ܵ5!"T|q`*o&:`Ȋ|(]S|dx¨*<Yat 7_qW$jl$J;*1) Ҧ<,:HL1`"7&5Y'TݐPDL7D!\x]\NJڑ< ))]7R'U >iF-Mm1؈CciS&JnO؂WpT4Vt^`~td r{pj|qg1Meݗ)t fA:HC=B%K&-90Yj.b{C'ݪ(4\^2GGr/R9:t-$m>NM8a 0X'y摄1m*N *uT'&PpBMf{6%K@?G%kX b,eYr+7b %-M$iDDh7(BAiԃ1ևWEn%>l #GТUGGVL"U+SקQH4S=2ן-( 9"5e]7vt}Kc2bJu~ ϚZLN~ecz@fr=4uB}dcuI?<ݚH Fq6]DX,~F^RW=xx|.u?67@9&?_8z㳣1Zo7N4?[b*#?z6Mq·#OޏE/si8|"/y(6|@GW6p|Is G@Q@|qGX؊b{Y fBOB?@"DO [#; vrsldy+NTjiE`ODeXmo'M_Qb~K;sCv̐hE6 4dj34=PV|Ŷ?Ug5i<odS?!6 f#xh 21TOlm7`\WGrYi~2.$eIEoH#qw zYVVR\yy&B/oq4aۢ. (Ra4L8u| :0 lpkOopl5G*.}tE;Ѣ7R+'$9\}M}ois[X[ƻOS@t!ILDBE-qxM˔*t#y8ap<_ "h8,;$ [:(bH [U!BN(R9iun{G:&W\ sCF*z*-ܺxUF+P|Cp gʑZMĩV`n;4R͐[٘S zwPAdRt\`Z&lz0ntC^ I ~VQؓZW}c8*M4߁ M)eSHoYƒ -vU<+}i]՚%"%w4j؍BikBO@o@2>>9 uJohKgAbN|!ƍ6COX/4̏8G慀I19Ǣwr+9Ant!ʖλr D-j>\mINj5dDǺkiM?>gOdKL nW;Gw^Tʛ҇$OIUn.? ̪oQ+sČ,ޗf*0aR֥B4v4))Ҽѐhh vZ"۹68ٮzoNQ 1$JsؙM(H;*a?{5G\4 c$G&n"\RLuE696 heZ !%> sQANJf`@*'ؘ .%G%IfaqD"Y8( e@9oÖႥ?vKrPg/Ni :.ⴘì#}F_ڴ5:ףġՊ\_#P Jv-O/b:vAF&]䱨o oMJ"ɟe󔙘VJ(MTCZDu jElvc΁GExy_%N-ީILSF0΋V)'ynx=qNU_5]Orh5X漾HV*bTvN:ʹz<*MTKj[a!TဆOh)L<5Dg3|,L ͑ b?p/PS(ܠ*'El&s!4 ~hHtB@פ G {=i񠓝1鈶AS򮆢[-I;EmdLZr/Pەc-+fvj7wH]U gţHLKg]xG#A6&7 Am}9'鋛L,%UKѴck$ )Nvc.tJ琰b 6AG1"RЖ\^&F}C.W#Dj w_>**}_&.֪I]` j'8{t!Hb B6G^/_H!4E,9I2? ^L7n+" $a ,b`H(ew 9ldzE.IFJA9 ]4M!؊r;5b>Z5;~NIɯlG=!g0`C盡Qnb5W¸V͆'2Ȗ8<ΔRA. ?%gcD)7qERgGk@"t+^Tii46xjIE*֡59 G ӶZdPfpu27Tp'3(_ @*T0ޫ*#n+Ob}}tԸ Jv\}$,J4Ansfx|RZ|W'*Jp#qE .L!yj`%&>J[Ze1n)$90z&MDN*8s&ŠA1reA֡ڼu42s.rYD]-IO0M1n/Ħ8K uġ*VN ,YWr @m<-s&>Cg V4D;%+ဣDNEBSK8hM%V߹xґQ$R`UA}Kr&tF/H3^ +N9:'`6@HiiJO~ `gΡ!P+T'&(dnY !|*ZϣZgf'ʃ#,Mϝ-AY3ADŽelӱŃFp_;LZ'$:I\$sE~cFD˪WI>:O9dˆLM@y^NЊ7bA94_9F X/ή4r /?dy\rUikp/F mU'hB$hQaҔE9B٤q`,QW!@,Y)Ak.w柝!A%i&f]귔jfGj0ǫ?7MLG JjG)J-t0]ͤaδzQ"&Ɏ53c ~_M;>p:a,ص&=MZA<+:/[(".,cF:RGʽ&|S+5߯+G>eTl즍Fmm^61,:&~Cc _6޵yQK!Boў['.]]/Wٺrf0N=A] #f:}5$O8._Ⱥp@ewb9lqC K"W;THZԢ3 P7_R`EԽ \*>ZΉWr?Ȧ,3t ʑ/Y) 뉇M3)ڣa yy'1;T0Y΀I_;Eë*_ T}Sh_/p)H ZdL>:-$4{ $s#4~i aޔ_!σy`,P,\m&P@p߉5G폗2& #t*6+,c/E3Fňތ &Dw&CR~&,=  ޽SHf /0aD?eA<[GGf6Tc"W9ZQDMIVv3liÄpN.g(jH(.HI3ydzh[>~u}cj4nZCDNTJtkrUtaG6 ܅wAMQTNDmBK&L? O%N |96!5#6 DJMFBvru 8?buwr(sJ#V/Cl#YK*9CnxaJaod[%IӲ8@aaq.<.?6{rmuN_iPԙ*1vdZ ! M3k5$y+S+.ia1cB,)ei%nmZd5k%1j+zGSh:qB. Ht,R2\v:L ^,C /&b`FW9RUw{̮I4CºƔ$oWI6Z+q97"ѱ(]Xz'l;>'C+&-t#&R߇ґ@՟87KQP'2}؜p&$vZpGD$&WOh'4Wޑ M2h:c"_Ƹm_<ʪzq@ǻa9śDž5aS;FC8.1 35oP "ЉTɉx NԶ7e-+X1RcC*-iXY:2Df2n1_K"")11d1Noܔab `@{Yy3/?yRFpI 5zih.!|V4%p|QӨw+*gcYh<&ˍ6SEDG"JSM=l MTn_?Ckhbac3qjrcoO;A`LAY]ޗ Ԥ$1QޛٛCʪ(ON+*6*846zX?W@i'uJ!oHu A@'Ybڠ &CNu_X rJ}T6|5'{l@4tM%)W>b Zs*9??BggҠGmZ9,$2& +ч"#Gđ+τ~|eM$ I‘\bg㾩;42|DF"ܬ[Ԑhr(b{d{H Rroa"~wH[Q hHJF"=RN}vnB DcGQ直OZ9XCc-h1Yìv*t0g3i8tL"2 1)'%O(XDꗫ4-cBtuBpSolğCs^:!Ic!Nk( 't gv,Mp[NPC:ҝRF,E&X@>e>qpFy裪 |үgL"**QQ𒧒F#ْ!"@̓ǁf>." 9IKg5K&:rvw< 0hxUm,giO!c=<=Td"86&K>Tm80z !V$V|'K+Z/0l`ÚM)–\Ÿ x=WX盆Oe)4}50Z=ٵn!bm!e^Zs|ьCO\8R0Oxsg0~TE,Fqߏ[S7h쨦͙c}xv Y=t5(p|aAB U`*-}+@hX #r^=drGx2nK% ,|݆Ca/{#zwM,l vcW$j^M|[·iiQ] 0ϊQG6McdRt~ rRt?o3ޭ$a%UA]YQyZ(:o *vJ[,o<4ei$X*/ŦGxx]&;L29La6@Qz54hɨhDkkWK 1h%jX4.(WC=R|*aU%CpF9>fd@9|7t/-vh[)Jid4:虝qM'9KļZ(tCuxte$J(r O2h-C'0bkFvWCk}99ok,utX%.41zAt o4&-jo *%O? ,nOFn'k`pH }+O98+,Lَc* /`7"ޛ d[2$I"83l67[tSpdf>9@! 72;U-w2wq7tG&Oiی߭9u+4Ru" V=[Quy6;j.1zNJ&bzi PҝX)y[eC0ͻd̄Cl&ڈ2xNzO?N2bF,$mJ%"M[X$#VSuBvMRt@!k8k8 Wg:Aߪh"s9>tb\o. r&.zgHֹEU ڟ@X1)W)_%@}}dS!NcM6~i,z%ՅHGw5#N_ʌHKCft_" K8=#BDk~bϤs0r"Ul}=Y*8,迢> 0떴RX8wyW_Kx=7p Ҡ_p]uEo+*d-_!2~)@TKj<Ə_NM-05Ŀ,z~Gɫ [ߟ~M#Կ8G.'^0R [)R7V8~I o_qę&&^_o<*~׿C7?ԘOm/V!fY^o|?ݗt??z=er_/o?q/o?O;H7~xd>^o/~_[Gx-*omOaj_0whV/*x^~3{9_fed*}B=~Ε,D||=W}uz_NNJ4}*ŽF{Wx߻ge݇°{ן}o0g>HlP8:ʹk$hZ0;f78 pZU;S ,Y;m}QT.jy'Qk ZP|jiʪ6ϻT#QT̡joD޷ZnqySN#$:eA[2LEPQTmNv#{Q56Sqソ5bZ6YkF4%ZV!ZozK] `*zQA[Gڜ[܄|'=.!hyO_EtD-5V%~^F#dmOgfmO3RkpFkThY*ec^ZQ?V3_%~آ_\߳xJ(-^Ky-^+fdlq~e P~ jE^ @Zb:[nwq#Z&M@kA#^Wܛ[XKy=I+UnRm1,7< 4@xD~0O?-~ 8vuze^W5ædIhOv>Zzta}3dK7ĵMITzK?o=2y[>B< 2|a]y~K1mߥ=n)zޣ^Bb߯sYݣb߯ʥRyKfrKuG},=%׹j6{^,hJuGJ[=˫)ŞPRbyU<}}KzKv|Q[)Ş׹-=ck=}}K-jzJݣ˫)-=G}\mO)VX^uO)V4:K RfxKRj?ؽ*o)Vu<ؽ:o)Vu4Xb9{J)źΧYRgrK)źJ:?R}J)rpbb)L)LSSJ3A1O)f^Y?=}~~~֭:sx^Z|^?<:?lj}?y=o}kuZz}^zy|_׹.tp3_{_fBO=Z jIֳ =?nBO=\rBݿAOݿhz ^hVh-?Woh8WE3qg/zF1Ƿukvn?gG{v.t~Ў$Dzߴ]WTߕw?,~YQZwԯVw?nZ캫W$c/ J.Z"U^<ö݋wk%HjxmOg-sqGc;?;:y؞@"w4xo'qG;;:ܪQA\`\iIL /nUbVSbD{#/J–R z u2pBaiw9=b /G.E]tOZϿEpß*y1fd6?ڕfzkV?C)V2[A,27l]|-dd-* o]Kb2$}[[G{p*.ڒqXq7t|C~`~[]Ѯ^o/Mn{qn`Ŕ*n4y}V_MQmz[ȳIo+L"3yoT/Xd=!/*IӔ0~LUuC]Io]SHN[{;)Pl P CX"8Bo[Rw$o=KP&$y@+YOF)"9{% ,wY6*zCk;Ji}ngՈm[.ರRI13k 6W&`3~Bf'}Q{egnGM`,#}_OAp~zWFEZps8Fe‘2}`.Y`%ʉ}*p gge TeH d~+WաLoIܔ+Ͻt418i>l/ %29X+WE[kpC:l}gNY8~tBf2~!A_ 5:\hf#*n'780twQ~@"D si{-aI@谱T$G)xQR;uw=8v)>y=Ġqu)xg-g?%%)# C%u` 5H/Hm}J#^a;8wyC~R;N$x|WOMܟ*ۑ(E(bۆ}!4x[8jǚT>(jTƿ[u5{ F[T..>=hÜ"t:U'76wmލ 3Qg_8ҟK"WǒT!~UJ=\44::By~~ދqӢvX%>Rkw1U!utH_^- ]{國9c^knA5ҩ ;Q(c9xC1Vo z<ѽaf0y`Q%U!2˖ /Gy N ]'Q*4^S6F~~F^++ex nR_C5 P[0<>sJ`L$06~PyLy{/bz,B9͵>k9/ht:}×&CK{|~eվq5l||}y'i]{J =Eۗ3xPռ#`M0Y2 ^FˡqM@t% :^DGB4KJTQM~i)L.e+-"WtIt0y2q^ګ>hZ=Lp)c*Yu߃qw.bL,O΄* yݲ[-0`2^cH:Gag˦8>֢KG4I]e6=6xBaX` tk\EMp5:}%8o0:?oK~fynYL:hZLHbɻcdB NX &YM*W~6 UچIrM.SNGNWSz_ !?''^K?^:`DM˜^=OES⹿5wLR!1|1X@+G颡_Gv@AoD%cl }E7go2K9}QW?θ 5b{9%w0o`؁e=۸".O>{Cr>rƿsOwH,:bC AʼgkPr+ t|=B4%}XSD5; Ι١|w?]2\jc7};]4 삋ZJw'Fu\ /YkC},{)ёP2_tȪ0X&_`aO$QA+ 2NIyڕ@茸a1>f`vn ÙS }K:Y4otq[8f,BڱԜCGj7W1ä9rRD3* 0A`.]zw[Om;ȟEMd@#SgOQh=׻Dަ Μ$FBQvU1ȳIc7C_t*?.k nJlUPE)?[M]6H0[P!.*[>pщ@;4 vd+eC34w;= ry fq,Pw!E'jCSzMBQ&ct +aG=l^W!MS^-4od_t^u}?]}R`V2Jqw[DUp[p` ?*M|;C5KHTl5%"3fp8 Kq4/1&B) ZWF2QO۠P`QpF5 `V\E}6^tl|={;3YGp~|nwNendo1MV+;F$|>pj54],`&|C1E>vJ.!SPi<Ω ,fx.fc!V:ŗ1d,&4=x(`MF3v8q N uRB ,tHBCiB3#N}!"b&vuPI Q!JWMTCd.<#W>b-B]m¹{lx n%4.Jy#AEcSXKѩ6_5pyfZtnK'RVh$kYY j !|AWA^!ɞj;Gyݺ6Rٲ@gpՅ1蟊CQe=t,47'/`Qc/>.Q6KNyOJhMs")+ .}y'?>"yGl5*4޽JTwoPX])(tbklǢ]v)V2)7gɑkM"SY&S]"$ sNa+j\lwR ̘.ONooH`S~)[;0 3igC CJb<3 XxG x}==Q./HYTx̑ЀmBk2Wœ;LN<ƖKRf}`3n37 LͽAbX27N, I,1l$Uh LR}),P>086^b!NR$~_`P)dISjkbijvO*^@Ef:/AKEsz"@j\8U)Df7f*D:q*FƌꔯOSJ$}'` Rn`;qC&.KikꛇƩ@U{{P: DtsF螫GvFZ6FtRc"@aNHI=qB́78 ZTCya쭀z+THÄ\ !l "^oXmnѢJ*jv0p aSJ?)M{d8UGmH( TMP.~i#:EI`jW{eGj\(hW\`mivȵ!r \#B:͉ u"Þ5/hb*,4~l"o L u['KVgoѕ6Ҳf1jD?2dpUvrv r; !\sj2 iA8 f}Јӻ!+ ژs"NƳ9fBgVJuBll̡6"1HB$QuЩ)("߾!x,4# >CEX[Pp'gVFs00% ffQ8 b] ybC])oxi$-'_ \ :4[xꫝC1!uBqp^i95" G;!u\ "3{p|ZujֈpgTT$ ]ޔQT%Cd復7+V&6#XH@'bY"%ɴ\q`*4#A?]Cpr;@sgpa UX#3p|5 é?Pd&ځ;݉겮ҩoh2QAa~W͡nR2*[D>}7zb UMeG0lީr A)`)B+7W0өϛسd ] Mr[4xC0 "d`aOrLAZhEMp5ܲZ$^9=~E8zk9d%FVV66P$]PģO%HѷUp6RH[o(7o"Q#H.9tY6э$&N2֡~eA<_3K\vhXh QJ"%A@([JA>) 9/l[O6q4&{,!o9uosCHΟKSg'w N0qHl/rfQAl[p WZƼc.[SwaFMP#7Ő3߮TDKm_;u.'֞pV߮">`!NLE OȱWYܐ* ^JHh]dY'  "r@hZZ4m4w>]>rS !9r-=7AKnkd/P'u_FgdUxI4QTIIioErRj),1"߂F Q9@a{(y%b:qV$:DĊI"='/[U"zMCBod$v MvJǒmp?BSX&{i4%q}og^t޾G>.k .7TvNfڀ⍴% ܼSgO3]sЫ*ۢ2~Z\GֆG )>\}M8}O7l`G^8)_r;Ml'j}I:ߩUQXDq9܂ GcYZEGbr!8Ujhx@K(28c*rFˊ 'UILQ^!qyoe 6X褆6)[: :9,Evdi29b6*yx\-IѤ?e)0KHߝ::6L97ElW;  aOMm˱ɐi4QQ-P&$ڪtG~TIm:W ӄɌc ˽tY,>t|@Î"b}p !eFFFϗ@kTmծ쀶D{PX8gqSop#?Rx@l/]ڴw%82'bC`)id DcGC]bN.a32&&,Дn0I}}|`_!A)_MlӤɥ&nDWܪ٩&M]"" "DPn_%3$2+`t!L`PxFpzdi),pLu/ĩFUM Ρo&gK%[W4voP?&o,)j7MNtM?R:@v Lٴ Pt_KP6*ԷNIAe+>D.B"|rzTkCKkRfV?׹mDUt _bkN+F>yCۡ26*mi=0:g[RS)}ir@P ִwwS,*GTe$˥py÷ YMNp*tq[X|F&cLYB<Xu4pwIE mZn <xtI56M5;2ɼ;T)ڂࣆ@Y3?(a^nK"gt$dz8EZ')Na CYHIwI'{ŒA$CmYc'{9J9nZ!Ҝ2hhԓ0]>(jl,2>Ҥh&!;āNI2HvHY"Lm=5y"?񉀩8PEd_&%_Ґ/Y3+:0{?3`x,p*yǒ&~R x+m{_-%41DKfE#xoJ|0="M:=ARȡZ)ʡ4O3/x)[ZS4~>}0k}2 ݪl`[XD3E?7Zh!=5>p߹E7fa2%%?4\[0n2CmK50!*@}vd2\f,۬~)f F6{@Ue `F.j(lg,-ڝ) 6Дw}*GFv~sGfV|KǁEj׮q}g?<ԧ%DӚ7 @#Aqxs -+p#N_`{XGKuh[E4~@fekо~nj ZS VД=5`ǻT$5q{u-d&ߤ{.Kվ ܫy"/navI,w ~kh)a~~BC؂=[J-P];0!4TY3/f!,tN e2.HUU>bSK>13YNgzH^``R.^Pze lp+MhS4Zj&:+줎`?0H.-I?ױN9%QȎB?x|TBsGg\Ρԉ#r;c tovrBtə_O2҃Φ^XۇYTQ0طV̓b\n8`Mkz'&@q7!!_S!LꄖLFAЃHAd& w=0'Z2m~XItU5i^F=ĩO6訙zBnyiUe;m`cW9~:WWW:B:"#iU78MM"۾URaC[?Һ)DyFݩ):O:McS+)}\')eF|Ey\i ø,2+JU+?ڳfϿEQVُ`@Iٽv '#%&`nRx2~EUjt' mQDܨ$Yl&C!Pp мoj lD >T&NjlAir*1t>ЁCP`{K);VmO`ztr[O̾id:;'.A$|`:H1{;˾LXJMj'uTNL?}4*%n ڃhouǝLJNwۣ?ŝl;^WSc{AH}:+܂QB 8ԡ%<3ʰvIf>G:zusn-Hf jTeMLT |43t(zYVYDM o!ͻȡN0o$cow7'v-H,"Fiw,$91SOMW\T@eg78hG/+/IHer0zi{VzEߟ<CͅSK s5ɵ%rHf:iaTPa7Sѕ3ypy .s=}Tв1n6PٹJ%KH}JIಙCcIQ,y P[K*8/䶲Z3J7@jz, xxDElb|Jq`b8;vnqU'9`ΘOzB.t+S rBny"g5w2)eSD4ZeN(CǮ~OqcZEڻps$'MI> Qomn*FD;$l;S!Vސ8ѱҷi(|PmEW[CX1%^&qͦvm%NЍԞl*I킫oY3P3a DETI`Gnjĥ9ZM7coRN}kRlJWhבBr|@U棕+UZ0L N%ꂃ6ʼnGVrljFp"X ooD#-$Kpaeb\UsiZӷB|IEh ~oP`MΡz)B f&+H2>t,*݇ j*Ch @'*0(RiK#ckd*VC۽`C5W?-F[t!U5=Z!1d.,M&aN 29߿L:UBvu:BjַÝJjyb0F(Dτ;@. (i1uy% 0;=n-(E,C"ϑCҟZ$oJĬC*f1]AW:xe]&sCPu}3M53EصzmK~cߙbg 26ދZE*maQ_u$y'/y Ѥub>CrgwCgR迴>YAGe(xmBSU žç|D{ ˪ك ĬUs8xYKqU0!i2b1W3م&K"Kdмu9ad$HNuT&L̷sSu-ێӊ$ﴛj)uľI8U翬ʪS![Dz8-9 :D~k" OϳxBpeO%/M2}F67@)gIm~*˺#P̦h| q12u8T.]]8pڻ(DR LTU=U"sO0r'AaI0x5}'37]eGͿbHQM)ƭ:x$O\cfW˜^TP;/(011MeԌY0JAeF&WSԳMaSO^fb$ fP/{ ͙/;;M T^MU`ptAYd1 "-HW#zA-j_EpY1R;yǍvkvJiXUT̴ LP:#H2I[7zZ"DQAlʳ)dM_18e'aFeSA<'@}3Tqh>?K9TH^t34SRBƠGpH L ͘CLW?W3 A&ϭ,FV:s TVL޽S"5 ;I-Y G x9E 4YKt+ P.iuFS+T:H5,Elj-ң!{mc DBb#gM&FAth"qU+-& Ǜ7 ̫amDȏ45??''Gg!M„SZ4$ UNM;&2N?( +N\|KiyzXU+Fy4."sGM6|5 j^Œe0Eb[uCЁ.[WojjM J>§bwN!B!A!?m]^ 5%w}?X`$7tK%):mޏJ9;s^ Zj1j:~4+Jִ46qZ[H`s5Nm2{k(5s赛IJؙRÜ" t]v*!_&("$q]9>II`pRS^8N@lydό:C-7m?ʦa J6Ȇ!6ڡc 2|]Vƀ<"Q6p%}t>#J!N"g*T֕^00<aGV'lt\hb!^h s45JRFZϖSu6N}t9U{Hdi}B~ʝ=P3*#uHJ^4Qh,+ ѩI H@8tŠpdkIC*HKXhv!{"QȈьO'n uB :7Ja]4J[H>^ AJZCeAPx@;WO5!nRvJ\D؃6Ly[:կ0[9v3jl~G>m# QL!C@ku+ߚ.k SiQVIhJ]>J2 Cl [B\ⷼm:*en;HЉ:.%VU.A7ʺL.R̖e4ă );^c j4-0 .ұJn%WAǡ,8N)!q̠͹&("OeGYIE;Mս%RT,oSs5`[[쒑1FKn !)zPd*zn FF^} #bDÝ=ۘA;d^;GՋ:.1EpA cÐcLwCWX-uĥ4#Nu m8JtM N5~v &Y%XBGQrA4pMpr4:V2RMaɪw82esS`gyqoh(=yteN;=U?i3P"-PalvD-ѐNM6Bvf,SqHg%dyRjjHx!?!7J 6iN ^H/UR°H`YiZ(-kyT S_u A)vQP׋kl_5+]9K"zCa/Fӻ{fZ"<]rXI |c%/U:Zwx=*bf8\C=*h ?tqnQ3b:|1C 4>UGѴl&m4['8(J$Hwt#$5khY$txݒp[|;9;.tÁNEaCn=ssZT{ }X(lj #Ch]."KP1;J7Gªt;B"5)in&i)0 D8r2=v&Z('SrU(aFT Oh̴qVMU5>C 503t KH+ '>@yʖ3=ua7/ʹT>Bl~H1nԳyM lԛz]úPƒ6\B#qhPf:IĎt" :Zn`%2ˆ}tĠl>0GY. iD^:xlz?L3Mǟ0-N)NATĕj6uIZkC7h=EHt  ,]ۈsޭt$,<a}<fʢg;ދTG2,6ƀuc(s`pEGD E1(@4ge03hۧP=7zӮ4C}O<kA|+Uq5'[dC!ne/:L@otr}iGd 1:>_`AEYJ8GME o?f$ ,NVuE[ v~ mYp%gbæѨs)RmMM~PwU8@. ["⌏Fn. d]1gR5xUx׍3.)bx NR,N$ᗑ5pDf+nv#:Re)̫A04ZXߺRFm RsnO@X?QJm Y?Z>#iym_7sTIͤ011F0:rOSdpsSh,c^Rj:FbˈBڝF"uU8y_j1$SK=W1? +4 :tNT5.!/|a}rYRCdVuL2` 2 u|NqvA" zV~=.nU\Ćɔ4d)ɤ=%0³"$C]y92?t(y]`&hηZ,zOQX2Ax`oE6}2}jS!T4M'b ZETETN*z;e~;HP31 [BRNiV_@!Z'KnOVLOg6boxhf%!KhQd|.&%2wBK`d1ٚ(3 ;;;?gusH_a8;M(H]腡㪒'WaFrKɟ [~GQUnSr'ESְYgcx cyEA8B#U F>܋; JS¤WDd2k=_1d72hIJI;UvdiI:EhY^t2J'D+Tа!1Ͷ;[(٢ 4RF"nf4ūuiWC(c#RW] V@mq `.U66t~N'ǣdA+>XE2#6CC +a+cb%)O D>sU(EWs8[h>Bѳ7АL*-5ՖKW>Bv_8 C#3c#ͬ'qG~jKb5'[ +zcfVГ}DX,5- k$t=-+c 2I[ y駃qȿ"RVG`\PgHh NEXtm7~%s7PU`8̶G40nRأ;pI`Vi~ewmC.L/ c[.*|irRGDbl oRS*X(4C각N\ȱa7BGY $I#U>QHב1i]h}T^ 50;+&4C N@42v%k8_zO$hWF u+7 ♠.a@&rlIN`TClm: \b?VU'y>/=sz..B$:H1/ʮi1J&mNk([ŝuiO HO3Q*T~#M!g \ 5?`e76,4bPM<"Է0i ݏ*c1JM2AIn[F]uk(QцXȖI MF6-9LJFrv!E>+63NP_y@<7|v\P ^5 5@#{T@@7Z.u>wKj%)c:M c >K\ϣ)e^Ȗoټ90)r)j( Y:Ꮧ۵a|@ZQ'V }NJi]֤!$}[Z}H8UdQ0BSWt}l ),Qj䛙!kH lV:M)Ʀ0׳Bl-C`#LIyv0u,,.`F U,[pb&ԟA sߺSqS䪑ۊOFB PS Dͷ`8(ciJkvDZ#J NSpDi:2VI2o;Tn[: ۞iC50OT@~ڎ̛̞Ԟr-5gji*57ͲSd0g&8C"IeMl]SJN>^&TyNtf8Y'΃/bOV Lbpe(;6mړ|Kw ~ndh>^G-d C^.4z0̕÷Hԇ -aRaWAmd"UQEܦ,;S\̓-'X(8U>P A[Q(S#f$Aacxx)@,G:GC^s"҂0.'y{b岄oJq$HZiߘ.m6B5IXY׍[ a`nR`i[ji1ӚdjtF{r^݉8s8^`@Q9^Xe=a"-HgInj*#t=IK{c7X]72)k=NҀ9TIÕ C]9/C |LT`s5t&r(rPwE =\#pu]G!;zCn raK 1+IGM~u;3kW^K|ڣ2ʎAǡȠȌ@D7]60~~.՚+kQ=@V/3~syНcgZEa!d:* ImגҺc[z))lLBKK(aPx {(Aj[3;Sɟ GwvhHЬibwwE9ˡnGݐ4=RnySgL|ΤtAV\l( zvl7_ftPxl^\klƀ\n14^O"tEЪ}AȽ vJI`I2|pae[*<׈4^M]n1vhTd9TF$=8|kxKRBtmՄ7>#O @nଘNS6 RlTgVyJIJnQ?ˢDO.d N wuZ ksgAQ 3I{#8q 2Y`S; 7 DCp$LWVhh"P`m5Б.S78E^Ad^-M'ݙlj.SgJGa @8 c>Q1lqiE 4UE1qTseetÝØHr5]dIbNC̉]fYF(*B1ڃ͸#Ni ˵#Q l ]`ҵwC0Aq/|ar= "CxOL^$bD~I`Sӄ44FkQ6Z!>1tK+`VGRNإzYأ>*.텆&?J_ hbTA?ɼP/[ ӦK[*<QWYەU $L VD'U s61C ru%͙5Q+\gJ4ϿS; &}OF ."8j)aއJ8=tkFzT>8 }Gw7AЄ!ZBޖQȨرg )~&:~kzsoܗjTځ/~1-D6e {FLK54[1ªKFDrcDb^MJ,/!9)"q"]@T;S /]R &59(w8LIc?S h%mK˳)DGZoHi~{T>[t+JʄLBh*کnEvF)n[̈N! PDБTPWxBHU\uC#S L%#/>e\{I%9!&=s /ڧglhWtt2 ykD}TdPfW}_z} B*2LD'svQRrĤ#Ub:X[Uh2bOGG_j⋗Ktt$*n)zR/ILZs^xO}këSӴ44yKj)4:y]% ɧ^h9F oOMG2YF=퉁}?@Z@erXSH]O~fDN9͙>2!Peb[SPDϦ }8=숹J#ӦmvlEc)(j,Pm<~\4rܶPYv6$Еɭ/4a/G\?d 9xQS!>PņWM6ʄ>gxS+. Op/վ ).jػoX? 1$MI'aE8%qiY]If5_b𲂩6 ;AM\TN4 PZj;u%S9us`&EOMR(2ps(k-~1M"ABNcZU@YuRݓ<諌}д oj> eh$TMj#‚DDRekF>d޷z} [sʇ?H xm`+x[MQAYptԴ@ zW=bVg=UvҺ8b IJNϛjFdKj]9 ]FR I0!4ᖡpsh2XߚE~H~hiP.J1JNt@xiE.VºP,-UO8<&- Ѩ89Q5:W/:GM˲pgGsb175t~:OϧtGSM{bF1EHP+~.z:)Ht2[tgLB@0,޴֬r#ˏHФ,aˤf4"1KU@K=.6$S[HZN?yn h$߳ F ˫-kJMFnCÉfKE^ڥ4#cSQX3Z# k;:*7}ÉΐM:\AVAf᳸ղA ܆SɨZ>w(9|t{ w{`;q\Ql`e鰴aߓ%;%x:mfl4BVYnɫ Rt˖]lp"HyX"u kr_\ *D82cy\hYS/4c 2 q 2rЙ#ZUg[Kāj#䒋JNCjgIWzG ҤG#Jo\# .M{PB̌Fb0 7llhO2*ԲD:Ti:1&F–$Iwgz!2N;TaM`LlLM'mN)a%ŢCeMkɈT1B^|q4 4jt哶] VU7iNDEEBp(qqQ`~E@ %GTH. P%2ĹZHC cǦөbU(E'+ugݜ2[Px'Wg}?0 KM+444<`3Sa'?:V/ ALʌnQ^%Y =1G JR#/xbNGp~)*z.Mg`Lx&C\Et7i")О Y0+; 74m@t $^Nދl gFUMpr0zXIy0T '9 &,єA6\Ut*%Xe`UhƋ|yxѓZ+R++ [F~ Yl#f{'8,qnϗ_yGۖNGk$c_sT%VVHUUd;>^&cJhQx#AN#_ ys#{;H"W0BTBR{o,aV-hŐThwCG#)8DTz'#%  =NEO}1;Ze{oF<*SuB fW*J{X˯G.? \\^QI:gS)|[Vĩ*7 눙a/F ́dC8cL7z5i~WųQxWCb?h +~r$9$ Upd*&09NM_?h!+B"Z5 5U">M9ZH= AC6ųVuDFe7lmE8ZkDE> A_DTUd9IBXQ4bwK#TV!:[\ :S7L#^΋Gš55=>H!AnZC*l kgK';ucU;l!ew0fa_dբ!MB`с\K (TȔuGw=N"7UQwً,#< >4 5%~߲w<6FP.ڼ"h FSMf$gU@˜077dm\I%deFУ 1pzg#Ťxbc_}"qGYR^ gOBN ޼ clnd]B:N0k5S]u(2!?^vkIk׻Z=vpoĎ97MW ң9j 5N$1E;ț*J3)=J hvIp]!ϛf+Ź!:]rM6"d; 'RnMLkdق.Q/Z)'tJ򣠨lg>˓W#x5hRIr[")7.^h87Ȟ~[e;~L<[;m%MN׈@P>CڭQ?Q3ݤhYHIl^|=4pբ5 oTl@[ɷ]%L G0WJ A w;k߾ +fjm N`spw$<+ 3hy"QVu/& G4Nf #XX_y+f(`K"fr0]M)U6@n+ e pD0˱̂ Z~$߁8Z%7E#g|YVd툇_:#^&)0D&_1[ܾ{Ov niT"x'O2EfM=''9w^tD22ʥXt&xLux#~(VP$VZ{@u_@WH!Qn-Rd\ آrQL W_+hRyԗ{d;˧|2lɶ\5F(|Bs+Ԓ+!MG N1oO.+ndU\|t78عwӧt`.WJیELVg g#+rnHbt,q}(YR]k'IH%H eA *șRhBMQ3AZW :1.C>ҡ "O R̤|=,>4U@T~L)Y^~(Kc :ӢE ^r''X6,-_~L\B~;#Jd qJZb,-8Xim3*|/ !0N@Ӷo+uak+?nTBsԁXh1L5-KP=G~*0N8Hx'tBU * P@1IO#;~Z6 d%а:s{XtӞ 4ssЮ;mI)X9T6PIFLbdÿbێ3שI܅ΡfP.q6Qp?.c;%s5Gφ.G_W' CE7s7](VOLY':8$Fe|GJ;X9f#;$E3-Jv}Qlao5w1f*}~Z]/$Lm ;dD3o&aU`K7hC蛦NpL=2 fR I<ܩ^)us7@0K~4\C!1JΑ}̡#F!0;ax@KYQ&?Ai-6L Cݎ O9Qw_S3qGH?AKZLGOh*"[Șۿq nqk*S?l ,G'ۜ*T%j(@+ptqiORⱼ7Wo_;v+%t*}DC%`?dO([r dZHJAc(1ܵkNUPcmMl /?VJcu۹:h0wi#.+^4GQ!HUu}w3~n& S{5 4m&4S6@3>tBRȴFFЖρ%A @*hJ*k$oBX_+aĽ?p 0$CVx4IzRSW茶^%l_|3#jLh"d ҐljT STtXW.MJTإTQ1Y]ZS>G5EI2})N%[w(@s.?R˰hfjR="vk E,*cc}^1 "ƋP[6j9$P51dwn8NWLM7̈́E (NF|,Fԫe=~ZE,p_DU\j#8RCFѸ;Bҽ orD} 4"5"sz4W"Z/9՘") CqZ{jXxޱBklneF#ksah˜ZZo #:U[dY-(ѺRY0o7x-iwyHd=RK(o_`/?)_ͅi./pt$Ezv׌"(zQ Ʀ-~7v5apɕԗs}P"n[+zoԋA+5Eih~NI{ j@LD |gO8!i"ˑ2O> [@כMy!%y . |7좉.]Ev8Qd.l̢KMi._Nj#aUs!uOA7(rfhbn{}Ct/_`aSR/ lҁwi\2=J?2H²{~_va5)<Ю{]m_G%"|iNr (!P?)1<jfniQ'ca[}*7fgQgKl6ýdή jJbqlQ:q>00 &3bvNIcSz<| o}#hi)CD pk2/WzzTh3r'8w@NVV#MCɈ ձovgo2!nߧ>Uck,Xa:10 #t+F #B޷.'T3 - I&ˤH ׌z.+ExiQh(hIK3јtdl& +%oDt^CBPMTnu8T=i<ijΚ)ZWM^G2VфlwAՒ~Xկw{?PzS2זie<8ߣ^g!v'_Aon)ldc ?TMLDiAeE:h6-m2a<4)Bq;w,"0>K[I,mMݰ~}}21KllR]iXݴlf EG8L*AA5{`H()0ɫ*: <ԄO)Iz?]E7V ;{] ̗0rw| :($$Pte,c`~XAC~ B|3)8+}n _ ]&+>/-;t?IEFJ?i" ˤil9v)38书QA N!KB!nץ&̹]G[; §>H^+5lFyȠ5r5,s@RO`H=Z0Vk˖'=\w2 ^(G3)ey'f(F]IV4QHf|?QzF;#JSf@lG<r])Ffh'1ϯRo$IطDY⨦XEKQHR^^5U*][/`Hb2~mlmlkULJ s*&$͢/R;Wkø[f!O ȉ3XMf0R0J]!}cCL;HssMѤ6-zRyRT@%FI!Jeir1Ɛ8ρt8nU S}\Z]5T̏4cB, +3A'P@kY'"WCakRt8KN-qW eJ ]YPA^9:|dۦǡcĕw`'i޽벺#ŭ3,P$ +A=ݢF~[ss^UC/Ӻi sRY{PD_W[&\]#@UW{='pI塲 sv5_D*;6SMwgp|iR'cm^R%;mc"'MM= 'V]阮u};S].[*k(SG;+X~cGPxYYSz[p< XVu@Nߪ0> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 78 0 obj << /Length 516 /Filter /FlateDecode >> stream xڝTM0+|8޽TnVpRxw-`{fs!"+q9"R֫ˣV#b {1$%ŒpGʇ%)d,nT2urTT&,Cwaw1:w{QK~_7[*f0a0'Zُ:l4 C >/2 # 0IJUG -J@̜ u:t*޵(sJRPm)>Wxuu>?f&{;_ʀ)Fq/%xr^nܬd8SYVoyl߈g#Έy7]u,{q>cq8 8blO2 8\@<‡i¾n*;%vDb#sDW ?5\LѯK vHM_͗Zm ~TJ%mljbS(eHgqj`RO 0|hp endstream endobj 61 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig-contrived-2b-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 79 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 80 0 R/F3 81 0 R>> /ExtGState << /GS1 82 0 R /GS257 83 0 R /GS258 84 0 R /GS259 85 0 R >>/ColorSpace << /sRGB 86 0 R >>>> /Length 51064 /Filter /FlateDecode >> stream xMmKR%8"Ri %$=UJݤΒ}oefO U7 '}-[f?#_-}O)}?˷_e}~~׹Qf?{?r?/~[|ZWqeU?ձsyZ ??>w?ǿ/'~<:ǿ}H-?|m[p(e~kǏ+z7^8~Fi_p[EZ>!Y?e%~lGP~{[Wg=/E??׋[6L/8-o}5/X}v |ź}V|7\/nݒ򜎾ex nݒRkp>k/e=׻J<\o®vD`#UQ܀.s8 $ m)9z;sus}z[8sP7Ps358Pc78pd ;YLsvGx~7ã}*rx}^W~x saSWI5O U/x~v}^>q?X8cqw}^w?o:q?{7?׿N\?gog=sjw8zb6O^n,+} ٽϧ7Ӂ}}B+}}.e$%~2l~;y U㿙xl~`s>Dž3mvxq~` 77U㹙،wr>t!qly=͈=T}^gf<\ٰ݁܅0ݖdE~ن͏0ܞ6Oz;s%lD݉2 ?a͟(?D`Efϋ>3"s;xxO6{n8?Qy=N>pu$f 7' wy '>ٳ?ax=Ӱox?^CxG58G5@8Ge08asT8 G5p*p8asTI8G5sp*qT8G5Spjgc稆qQ6jGՁ}^9-OG=qTb~G5,w>8Q ᝣrհ9Q ٝ:DՁ}^sT:DLU`㨆Q61sTs;G8Q lՁ}}pbQ68a1sTQ ɝ lc lՁg>q=NlU`G9tblGu`_8tB.8lN^o_nowGuu~9asT6m盛n}f OOw6ql~_97{0\܌~[9U<8DӞGu`%O8v{ΩQx'=5ß^a&͟0ݞ86ps{9u'|qT_Gx?sf g'_*pu"sN=<Ӊ9+熧>8sT6B'q~O>jǯ~|~T^׷o~=˞WYb?Tć_*Og췊x5cE<"|su/xOzo}|@|ABCTELF'G7HGIWPKγ &λvV8q^V;qV?qVEqWpIq^WPMqWSqWVa*h$Xؓ ,́} {VυV{a/+Ta &1q5u`8l8oq/TݟٻQwo %3 l; mC nK oS Lq[ Drc_kßkk`l _lßl`f|ǓS??x;<nƗyf|:7_|AЌ_t|B`G4?sೝo:8;_Ռ/w>C|؁>~o|\xp?t>1.Є:_fS;L|i`SL|l`kij=p'6>f'6&hW^~5\lj?pσ7>=p<:O\ba8XkcNb}`ˇDd?a=7'=T' }}?;r{F\mۛ{ Ս6`u 9UapXr4opB{7\pQpX6w$ar.'yt|֥(f=\pe ͲC u40EL8p zt_b5M.brP?>~yyT> (_(}cC*iIsMiO?9ӗ5}`59F?}0cx<MYLBʑG}[Ust}r0BOq&(R{SO>{E85+=1@-/~OW M^}x J\1OZ=aG)޽Zge;"sʗifHk^v}_jW>( c>ݙDSot[{]rH_F=t}ƌ=燡Gl{׈Iƕٰ3ZywRO$K="7@EeauMf.z@|2_}N}yHMKY?멜u8n yw5eyީt9a*{A*efW|qžwUF!䏦Ag?J֕!DtKV|Ǟgh,sʱPj;[Ϛ b?*>/mt~oI?bkץ@aO.r,-vJ=:yw:<Ȋx߹B-r61翚`6;̶ 0:dt8n]|Uvꔎ`(::|~&wYe#yj}];ʳi̻'lܷviΎǡp1!OC){mre.o-G8}(M͙՗g.y$/B ʪ—.gf }|ɝIbpwSp# Xq?_7]LJ%.l~ y[%d_-I,’`*-2sdA>хC-s^Axnױ@ |ގ>(}[nlV7֓B)pH |a)#1cܸ9`f^h$@8B'}$s{4cVW`jZװxa[nRb%*0zT+Z_*ze!0Og6*ٴLTRѕXn7'`;Yf,Q.5-'^Uּ} $j` u_ϛg,BxyX>!ݻ0T_ jê" Nb٢8"VcfWty'v,}"/m ;˅d8񔌗Dq P_Ṽ,;eZ۝PrwSk_s0?gf1svF%Hz } Mc397Bޘ_jnoMS3<徕Er*Y{N㞩 |c8HJT |t Mm~qIO։x kn)G\JхXҚ ȐQIRތ[H7c< qs*?7vtlK5 DxyrE!줠d\`.#7:J/Ur"% tc3MmKiNFziup79׀l XV&omoy(GK;+/=B+[3+Jv?oYZi;"|YuKɋ%3^)}(/-T>yЊ n8V*EX8`l%R et׶L#uGs6:.Eҕy&.)Y< #gbD4[–I1= VdΤkZƞb"5b4xBK-5ىxI8  ,TrL&4=k vK_Li?E ` -J+VU C<ٕxzKM H> %>aἹO?d|FjTN- 2Wjq~aɒs&(VM!P\+G)WbB4cϡehyhձ; -[OC'9u4V'`A{''С@fz7'c =k$ߦaS5k-Vza'}N$$`C>3g}j?r Dϥ1ys ?p+?BgG+b8Ϫ9'էMD]gFvag?(y e, lFTYU4[79ks|+TNވszfbZd ]n*nmWqwT+1l5*RV3G.oiL8tB޹EN;7q䞛ȊhTERyrDLa8i}مќs=$a9?wOkLdLx ^jF%6:ip#Ű Uo͞UݐzV!s5L88nuҿF#MΗܰP^@Ddżכ-d?_HDJ#'tRKt#.joȚG/%3UJT:GTŁ]- V&dtv˻)^'G Q;|qԷR*:~4Y%5ի)<5$"Jp_^zMcN ϲVn!(C}vLtKZqK)2} 3e;J>9mF,"=BfdAaWC`%->* *YJF)gTz|}sz ~qPa/T ܗ8[<.0UZXa_qݛxqאַM&Eo'gnBzF>jM U# }4iTrsK+2Edk '^<LE"o*s'Wm ݪ7;<1FR !$IÃX&6uWe Sn*ƞ(iUtP6F示tdoT< JR *I:*:},J#6ƨ8ҁբ$;Z]dB1"hNC.HF\P"(vlҚt &VP_}-SiDB:4w +(M3 縝"$9ss1Śxx:}*lZ7?ރh'agjD_/F$ч[f#k1#y]aUyLu&1Rh{T'wc*5ȹߎ3RZDfo$,MHQV|Q*`#ybW7)61.'#|%٬(˙2YfV8 DFťy2fK( BaW7f0Ro/y/:S*"%c66I(ˢ*eaaJ 'zvN$Rm#گ&5YWrQ`DA&%*3 dNK' ~ZM{"ul&dbq$!N bzUHKdc!!OSKkh,1!t׬V-iѱI)L`StL7 3#&Zj7T$fP%W,1[{yӖK5- cFğ6+ nֵR>ȑ-X_3@^-TV5E:Q"kc ?~6\r Wpv radMqZ"֥V 3}{ ]0PkS >HF[cCLVQAuul`J1adF3l bTF޺`N=yW"2lRb`w< / Mhx++y]BI-'|Jo3uu +f ˼,#0f"1!VRFVdK8/zT++fG%LP^[JÐJY oj[6TՐ^>8Zc>H4IG3L݆;O-M CHEc~s5uvLƷ)X@ށjLJMMS |:X <N}-8jW_I.y2D5Ou8+ M%Wa;P˕ɨ,LbI K*_2iq9&+pH$Ԭ2>=ܽ,|WY:-8knV#Iڨeeͣa33fP=븏2Tͤ<QsS[|}g킭6bQG'1Мq2#=L:6@:G\׼`Vhari 29|CaZYHFOU1*,W?uV簐ʬSD3#xF%RN.4yצ*qǖU-&UٸC ZxZ=oHR(eOOѺWYEpErmtEt,zWb@-$[f-bL-9p PO5(1t`LF uj,S$$TusR{cG1JXJQ$+;Sfv]*_xW56IW.,qK[+<;J]\hC^![_8sIPG x z(ISK>Ip6<7bTjfzek롛!л.4Q}槧F胑йYLR "w:ĺ61u A|aκmX^WM-K*v"d0/q8H-4V!|G{YJX0km.JP Q:%'xkfS/ Dzbwi1CXyhܨrt4RfixcA2ghkM0щb݅;->Zѹhv)C9ʹ4]c츾KڭHef2񁆫7H7Vy2^t53$TѷE|Q 5!}A[gþlV$0qA}2\bS!ʤ$9^\~ilڔ{ed Jt<+V|b-ڼńJ|HuXdmT$%4.QB@| jFr?n2a@OƊu\{*}ÉtJY-[M/F1t7ÉvzPDodҴ|n.g{m5R:xzj- Rݽ1*"@vTf:h#Y'uQ~AzAF6b̠DNB3M')ZPUj \J a_K|)^3y3R&I>yLla7:m20A1?:7ء'㗳U<6v5fO!;g`P_bbmI/Jf4+t$RGv;S ~K4aZ;|l')FESg㵽$i&Aq%R$TV`vۤ4@P&ڤ> 2IuY*nyH9f\&V$]ÄߣFH`VQ7-*ٍCi'?lRhsMk̄L6Q AZh*憆mzf7S$lfw#K7=`%9{I80S-jI:ѐ;NhIʒiU LZ u*Vt ڱNW!/ݠ DC=+#Q -i=1O^0&!%1i kZ 4Q ɏL~L Ku&qvFIRLc}+p/:ZȁLGGMjL]+<0Q$8m`&z > f-!l>b%uj I71!uPK;?B"V]DxU2ה%>պV'V@%'6\\&!f6 yü^WLË5v`'IP)a$%UTBF" A DNy\'L =ckבYi?f@#hNbUѻN¦TmZ r׷~"p 1Jp[Mcu2(1f}le\vldmߐ$"6W'_ ۴$9 _{7Xc7Ct*k'+#RT'CWI;e(w#Iݯ6ϐʲ|˚DYh*_V,P"jȇ:.[,"QRQ=$=_M%}$/~7Z&YGoU lSNxP3yo:YgwPvTi\\*~b/E >O~yc4Lj(E,klo2ddF72E,RV_B7k'D~|tVc?ykUeWS}?49!m!C-r.W=O'~.C 0l&κ}T ξd468YST(U9w7EHDB燆Az4t$|FF*lx?Z+a+H1Z0a!:O_O|oxRDo㟾叿zoYe[퍜MW7y?_kzr?¾__LN웩yo/s_=xAӿۯYdRXٞ!e.'?o&='>?f~~qU=_Q_*_!\kkWt>LU~">?1RGޟ/_5%F[bcaǾz*~n0~nslm /߾݂3-Oo<lỹN<lj!bCovxCQ5K,4 X{ (:8G6հ8w2xa>8'(~;yFkFy|֩x{x^yLqbHij^'̈^'>0PYX>b}`d8OZ sb Leu ״^y}^nXZp=ѪW>/q_;^ўO<Ӊ[_ ~b(^ϪT"*'>sbnVY^m}Y4/öaNlkxQٽ0{'^Φ}+Ļؤ0;^x:0Ƣx~梸Me{;# ?'1#ʘtr1NlʁL.7}TIZ:1C` 潿y$X^x'Ƥo>/9wSp()='F{k [݂R?!-d1^0zʝF:j'>pDj_^~5<ʉ7}}}^ }xy<>1U异[gw:Oϥ|x/sP ~`zfQ~|YNk fx#çXjB>V/9CpO>Y1Y`[zN|zO<<:hw?JWVxb}b$7k])زZkـUW> <|,}}`kw=?c8 a}}/}}ub A=?yY 7_?Vx8>i C);/ܤ=})ή<~TrO\c8ut1UU'4l=0FYY/a;w5$uZNb}>?nj`#w/>/k¨:TJ͞w}^Vtb' X_;6{n?y<<ݟh۰s 5?yO.nϕW' 76pw{Ug w/3{ސPuRE Tv9"!W?W;W7W3.ˤ5j55j5*5ՃAuMlՠ&bP][-TV +Q][%iTS]Ө>QyNuMNŭX?Tt*ͨTQ]Ө1S_SWFuM7r3ɨRAuMF95qkT4ƩiTS]F85ZqkT4ĩiTS]Y kkkAuMP Aux}w+555e &B5jReZꚖukZ֩P6դAum|x6oP]Q]-_TBՅEu!{Q]^TBe8.n/ ًZZ.R/ ҋB(ՅEu!yQ]Bh.&/pP]E^TBe8./ Ë2TBՅEu6 ꂫEuk8eOTDuOTDu5Q]5a ե_TTW` ب)FuuPOAuKAu3Auޞ: lj)Sg-uA-O Zj: l+Sgu`_xz[L냚J:3c}ǖ:렦[pY>=uexxꬽQ]_*ǖ:3 {|߆>!m~4q C~"Gϫ߈nKb?4)_O |L&c~o}h}i}j}k}l}m}n}oF}yЌI3jϛfԮGͨ`?Q~5kFey، is*T~=ٱ>Ad/+URJT٣WSA׷ԑٻfffS{q{|q{,w{,w{ߌp+743_i?ӌqP3f|S;6\3f'SO6lw?f3wki~L:t3Ny|HM7*E677;x`KC JCJJCzJCJ>PzI^ҁIZؤ CiKiK:a8ڽ꽤-=I; |I?Ґ&)bԏ#tE!m14& 0!)˰ 4ON`K7>ÞҠ~$- lJ4~.fw)*k7lT!f*WH t+b+c! zI ,4teÖ6ҷn?C:gxx*< XR7\=UGK] ؤ_.ɖ_#py|uF`_|xq;6R`\W8}~p)L`o. lRե:Mc|Z?(p>k{>o{>O <\ m}Wn. \s?x>-pv{8}>=or#_x=7O.>pv"p9Λ:|}}DO<ݟ. y`'G|}}D{˷9\zt`w\znρk??Dw=Fw=F c_z\N<ßpO%p±s*5ӟ =;9oi'O/͟DGG2.J6ps{nг^*p g'|mޑA5Z1gϤZ:}h_EzVMV{ K!RlD4rJڈCݸڤ'mDd`EǍuK- .Yg#W|v҃4T'NF,%@6ˬrRh{/,[BT "6dM'sn 5{! -m*LPhʚShRwwp7q ؆fo(t铭)gdᬍ2!R{%f!o6Z>M!ʤxZޟl-PXmc(Aa٤琼HQ$6cZ† ע\s1r2j7e%!6G72me LaلFP7nR !V~&L#U2*N-+zi3|Y`S1mH6roӱYNoBm|qΕSa8}{5S+490,2uEfbI-T: ~HhC[&)D6! tv $>"N{ʳU^R!6"YK s;iVgQg֛|=OɩɁT!t Z%Cīс8Kz2WXej%YD_軲fP77dߧzbcض.->!89]ExI4ᔘ,:cEaUt zȗ :5Ar:j 3HCxw㽦abLױt#%O2Ht5VC'2z B;',{tMlRʗT2E؃=NWa.y2o U%ɻd,J>*?k-rY4|uedac|U:GxS5,%wC]1sګmr8nFmhF~8ԽͫcE22va"xiAQظ M %;ޡz)lfKJ*^Ʀbj)9i4,,Aν{Uj.ub}o;--,h Aݘ{kzgG9elmsF<09r^S?Jz)#r+=MyAzA,HV!r MZz_y6jBtœ69Mr6(r%6Φ~%;s MI'cI~,.t%Q n"W i[U6E_{Pr"d6YN[>KrBBbmy?zƂ5~ADAI>Kgh{X}Q,'|fsڨ`#Ml~B`s;%t9ԕ}NF*jReSWv ! X[,*M~⠹M-LŞhKkY*cdI]H4Gd ETӐc(#(ac3Fn%%#]#npI!,jm q:<-ȕJy MKlrsLls?ZnihFsidžñ0T߆45Xo2Azc/U.1dWՐÓ/k?pd79/#j+fo(^r"Pg߉0kS~bxH_66nP>9'nsB'}%8|ŁEu- L.*F s1ka uN^zQpNz-E-V3MGp8YU.5oľC GQw.;^.Lz&D.fyId|>G3GxoMZWqU0ь`eי0F&_6B]_y򮈟:\J֦3m,)Ș[Pl*;EWDFesjuEq`AB#WY>U^2:%T_}xg(U.SLm O|2f*@mk616!6NE_ [PP~gjXm if$}YAKwUjܗ6t@Α-27M2vb[\ ؾ̂h!*6~(GRJIi RUm=LKEb;쮁1ep'FUMV&|99w8"#Կ6SõwMV!iUhKmD ;WMtAbfFH$2_60^ bp>f6rJ;SP~Cy[M-!ADA!d .i6[*&׃ +˦MZ!Vp/Ħ|gD@B|uv 6iHAr,=PfPdJrIjgf35 fay0kU:*k s NR&x$\E,drIB@'v049*.zڦ6^-نb7ZvZqQ+\QeG%VO'DbxGuc$BMсj&e:֜ro'4ٹVFx8LsTS1gLŶB}&U{$ǟ-Ɠg*(̓$8UT7M_YҠZf}!ց3yۗF:c&r͝Fdj@w{O8ar0UI(L ) ֛K up/"ʲ5v󣴡(z,-,'QdF;#}2C"Z! #㓉2L7Q{,*[J12*Q Cwg4X贠D2hzkGK9$<5M&`Qj 4J[{1nvBi5(0VP /uXۓf™B5G4{Ze^Xf"EIީX>iJO ȥ ԲL >1ϫ*q>=b)McTuHE"Ryc)ԣ}oH&bOg$&П-MF T{I _=( biK%`c~Dc1'9&/:s9:t&6-=T兦e\֌JuB,|il&ɍreHٲb%=4e# qSR1Fg!}Z,>+eu& W"e>T²Vw"j+JRcQǘy;!ހ1ٶkބ0R[sje$ I${_'b[%Ux#.JhxuQȷ5;EMo?uy$yQN|Jڵ 'O0 -6 'eѝI1ЙE%}AY2OJ6y0ߢ::S>C:יU{NQ6WKTzR/-xRRF('3h$#"2&5%d)fhdU%&&"%;;L(7HT {ݽILhk7LtsC 1 -\&6(& *'tEZuN81iFEj)\pUuw"YfQu3]*Lu_Th;mqSBbM9L֎VhҗX˲ߴnWSJ” BΛȆ uSb"eV6G4m ݡ}e{jX8XCB#kDnBY^{ĤQTm HZÂd=Z; ۬|61rGk+Èz"*SJz26x sE7{P1CTfֲ}#7˚WI{gRdNIBwpq(CL| hס./1*-+qv5u̫3~A<1o/iq"m {x(" ծ$%E;.هd5E0"2"#Mv!Bҁv rGm66^ZLEYvk=ymBۀu.ix?[erM D%aM ;;x6-$^ARQ'"yL> Vl8&V#3u*$(4jJߕ 'V*M|0kT+폥tfe'j mXBl$cIqb F]\XҸl8ΰ-a6S;%3[؞4&fL[4NUؐ.5+PK}|!$,R:&iZ@DlTn:v]cRfQld>r-A QWD`fD[xbYw@&_z\dE:@ щ닎j oWfM`%R8M] m 򧂶51&e Lmj:nݱD6-AD/9"15Ha$$Z=֝!9IAx҅[^ԅXCUX臑Xw#EQaʫoTP:1f61T4-vf*t֘GRQva?CJڵzw&D0!bDVYq@/B+ LCgjI&"AF_ bwVQJhgfMqK`Yx*y1vF+LS];Nyބ&`e'R6]}JN"cvn_vВoJdCTXѦx- UjlQyIF4Ng]eaFhqKT${y"q՛Mȋ}tQGl'|7;@nZV@zb!LARnShs@>^i;ց?Ke $CnhghaoYBU$/B)TDҎk89'fZ^)gF(;g WDe#~aDmζ,}%&C٦p 9ꤍ~OFvBI Z180X@_~N^&h(F#S#",a@EUj[^`Rzg@C^+ͻ@W6TuJlO>uЮĦ(K6MoMB̫*B݄ fڹ@} z4Ck'\mEai YB[̈ay >:cTL(Q vI=1 [R d5.Nb7Wڙ\Jޡe&nж_"Ex> ?ڀ S;xIJUZ28dFZ fťS 9n+Y-SIOI/;!wѬbl޹eO% (m+;G;gنb}yt†gA&Z?!O"\ۢs*4wH߻ M_Vk9i)u7D<)M-wB/FgPɷ|1v1Q.L,i E/)\Na9iVh1U_])nOV+2˙bTSi h# mNZb&iyw?e>?v*^2; S9 RY=V( mi7YmI3QX U4pic e)[s惛aAƯ2.(0Zu-E,owD ) W1h|ĎU j[ˣB78ﭷ~wg,2fZmKZ,6pbpxK*T XO8)1 ~`b")L{Zbi ;(gu,$z? *ڛG +P!#RC; &uj臢mŊ|>z֠hWt܂凖xȪ<0@~o?~o>~ӷtP)^(o>?}uN6,]lZ|גo pA}_͊)Pi~s|/䲿-ۿۯY`Caݟ+?o6=}WkM[j˵Jo~FG.~P~7F}_7]}q]vsBvss썥/vMp~Ә+{W._^U\g?/q|;m-_}Ǻ~cjM=f֖cj%ftl#N7Ӻ = \|C`__W(Qrb_?+Nľ>qGwN o_?HK.'_'fb~1NcnxCH7a@^>G?:@Ḵ>0FN/̉}}}^>>zkmN 07rm~9.Q vb$Ol >ݢ60 4xGt]kt_Z9Øpbo2i8bG`_:vܒޱy}^WAĻlRcMpr\ً^0cxn'nρ+:FU}̀͞ξD[͞O6{I͞k4'n[7/'=ov؍Zvp?lAoy`_?y?ax=WD`' /_nOnρ{rB%f g__٘ދ͞Oaw'j7lpt{^a_x?yշRޱkd' ͟Fu{nOT}^͟0<ܞ+[?lWllm}Oα>YܟlpuBFf X?`熇_/Xx?y5+ `__O6{o_ y`[?Z y`'Mk=lOd}^k͟0ݞg}^;͟0cn ݳ[ݟP6[s eG=7pv"seG*Oni)nOn?<<ݟHCr{ #X߱s ?a=W6;6pD`熇)6)6{nx?\wNlٔo>R-.0xyY! CvbV)?lx҉}}}>V¦b;󲡜k>}qO\|;CZ[  2.յ`zZ0-Au-K8յ`Z8Z8Z8ʃZ8Z8Z8jZ8JZ8*Z8 Z8Zrk kh k kh kkhkYb˩W=.Kյյ*յ5*55*5-T4jөiԥS]ӨIQNuMF:5tkT4ϩiTS]Ө:QqNuMںoTQ]ө2[Jȁ|rjH >`V-hFOf=qŠӋ.4H8IƀVH>"Ե~@]U@]+)B]+B uZO(P (P"4P"P"P u-B3u-@/ u-@+ u-VZ,Ե$Եu$Եe$ԕv"cݠ!h!  ( T?T>ZHZHZLZLZLZLً4Ek1 k1u k15 k1 k1 +mB]$$Ե:ԵԵԵu7'RSS&ԵԵjԵJԵ*ԕ6('&ZL]ZLMJPb*PbPWڄSS>RS^!QT P?}y^B] 1<ԕ6PWڄiB] 4 u-ׄ&Եoٱ?npPWu-焺&Եs턺ΡMvB]oPWڄhw+mB]uN 7umB]ꢝP 5N+mB]:JP턺h' ꢝPWڄh'J;4P턺&u~@]u~@]J{}>+ uN+`C]iqPWڄh'ԕ^wX? 5N+mB]׏J{ߟ7+vB]J{}>. u>P7E;. u>Po+u?P7E;. uMvB]'-B]'UvB]iǤX uN 7E;.@PWګ턺5|C]ꢝPW u&u~@](ꢝPWڄh'J{PWڌ'簯'Ҏxvxx"mE<uV{g<vs' jx". u2}e<=I+mB]7;7f uPW'u1~K+@'hu>I,Ͽߑoבz{~>oGہyu<;|$67}u>;|I|%KruB;د=Mg hGq:8/Eyz<#7qh{G@/F@Ow77~lp}7qb}ϗȯ>ȿ>N@>@` L1?W W$?ccG:`>f7~~`~x0=?   ~i7<뭴6wD<2D2D<3D3D<6A&)6>d5D<6E6E4HU|f7<P"g3K{0{3K>-߼\Q3i7/̇޹fFf>3ٕG 6Km[;kh(O#C}%7F+JR!Qjܝ6K{*i_Qx"[BfvRSԚvDmziiץ=rMf5f3ox.oufӟ<4DWiӟӞ{i'h_~_E<69<O{?O>~iO?o}ݟgn6 W]"H쨇#H|GewwkbG=fzPW󴯷Ϸ'p^vxbճnv}>aiF=-ڴGiy{;å+ׇ"H;95 ߍaG~ҟ룾>3=ҟoDҾ2R*y|i׌'`\?'%QfJ#~砀m]B+=`G<y<1A~)986!iq5]{2uZmv4hI[{>VCͨ6`ػmuv Œȕmm;ӧQX]l ťIE:D.%lFxQdb56EI] ADπ3dz̫MH庺[Sj%MFff x} EK:]\8Xv1ZTzM %̓uD`O==Eߞl T R^BxEOK̵*qI+袚dgBKܶq<)pA:nP,lj=!`[xWW킊oWC5>Ԩ5ۚ$08`b=4ŗKa1mAYi}䀳ߚUah%u5 nr%0&l ƣ0[c9<9cL\*;9WKBiI@ѸڎJ7Y2/;@;${ '6yIhFfP gT"8䥸ҞOĎ8Vx{)@ot^*ECkjOыx.l#E'D+@R@Tbdknz>vܸ1z}RrX/OdH&MVTsSE}>ME(T-ؖic73gA\w@(U)-䞉{CAG4ӊ1Ԑ PsCKd.1y22C 7:PÊ9]aC}TF^ӿ[\\Zn =Un$h겵T%LIϭ&'#duS񈙋,` `!OxV¹6ȒC, ؚVu ZccU ? }*p!#W1]7jQDj*6Im]jT)/`b ŊO!6 oxLdpiIL# \#U",u~PWsNS{Z$i~VP&gSx|[_ ]5<" B27$b`h"~ ^vS .axH< u+;%W  V6-O^ I6FtC v(ׂ~n9Bt)e?jh씗93^uid1F5Ma{tU{ʘ m;oV`vDY7f!@+:^,_ːЖ"ʢEe^6^=*ߢSB_^gbW 3RAсл ƥ0JP+]Ӝb9 C)bgGVT$nCrjPB"`뒔$?mwTiOPS@_2ۛ„ xHw~~!{M]{EX!mV'~qTQV2+t LZ˟(QY<._Zh;UMREi"̞j4To9+S}%c4VhuI.O ژxDQW =MD̵+8s6b|`T+Q`EYJM!2S[?.EK9ZiBii(JMRBV٩~5AxNJIEq(5{QaFYrPDDV4Nާ_Ʋr6ۿƝnJ~Ŝ !%GK>SN*J0R5Rхbl>N6TՕrȐDL#,jDe@,?N%Zu?ȾX;١&b)| 0Q}GͧyIRʗm)KQ!p)Nv|=/)Ӊ+YRՍtkJyGK`k"7'Qq`PZ7ZͭUxD@+UͿ@fl(ΉDR(y8PõVbS=z~d5pE)2^!"4h_\>>N?,8dWL^uO=OCa롔BMV4 |?+GbObت@HN/qOT n(nJ3$A1EP UT2޵{߀o`P# E,`ڔf(~Qx1D؟Ȫj+Ph* ҚXU7*~L 1Opݪ!vڥ΀| Eee>qmADO/zń6vh5Nį8(PXz׭I1o+ԇn a|!*ukaCh]sTE LX9x[Ѯbhxu@ MAjA,4(P"˶熸Xa[mn~۩#8 aLK՘AG8]K u+t,DցklCԣ-DՊZ늮*?.h`YuHUpy^*5ȚH0YM(qCtHDqJ9X[חzP?H]Y8jp袷8:^O=8ptHjWNc';K0{@n@ ƁM@3vto Xd(lN-8IǀlΣc@"o"Sp9Hɿǝ7<07\x7#^NwILP0@߾|qM}gO~\}O yD1 kz&TBoo{0  =9mo Rw79?͆f@__??㟿/@Ι^){r>_ 8p~V4Ϲ y@ݧW_}˃;G>-Wsyk31D!wy߼3n2p-ٻF-Xm+08&,оr6iJc#<To{ao~MEy)aش_vL}CMɇwm"}M?7=r}_w{ r٨X6pk1'w{Qm7󻮋vn\}nsW-&oXߏuڞwԛ}P*vC͠jMK=Vh~=czh}WЫhf=>~ڇJj=lN{yzJa_AH{y6Vƨ<.7A8{lN.Uqc}ؐqU!pu6|y6קo{e^nJchvO?iSF].;ְW-6& m˸nr=]mE<69j'≴a[jc}hC6a&7in 3_$36{av{G ڻ^BvE<|Gau}u* ~J70jxC{(%}72kfs`n~9w&[Ґw;և=BWrh mt_0ٱ>lwڻYbj_-&\iw4{=r}ؐy1ОnSMfmsJ^+o ݖf!y5o6w-,F5KWWǻޤ5cv&ǒv+S*#{_huG0llw{!aҵwOm"w{y:̻'mTzvPJ;y`Cr4]i6f6%ovĮI`vƷKwo6vJ/ ݾK^nX?ϏY[8xo8|tmVwyzhךn6vIӎ/GiӟӞO _u?O;և#lpmId6Ўa׈'h^2+zi=OOОi\fYPW5JWi[f PC@]i(]Q:=t6Kg*ٱ>3'JWiJoPBPflA]i\?lh\Y,]^Q:K3'Jgit;k~[?#{~_DU+JWitFD*u|B]i׷J?O{} NPW# 39c>On;}ݮ>D{+ ?O{]w{D<1ߠg׍~OL@k'yv%uuŸuҾŸ~#yڌ'&|A]i\ i;o6[7?ȷc{\>|/.ly>|_hρ|5@~!/p|9@>q :~N{@ #;| |"⍴ #=suw󡈇f4OE<5E6-⵴  `dڌ7ՈGوWf<;G6|:]yob}] i3"_TFGWҞ;i3G"_ul=o;<]<[>v7 CԊlR#J䷤nMjEyˇ'ojHy˧NjIyo6)RSZC;7i|6KqC;A CZD;GiI;K#M6KZJUڱ>nR0~NjX\7}]\Ka^x7T8ʴg6KGi(R?+ׇ݂*65mRv7T ;i*A{xͮxx=i$[PI~ lR]p}?D"]>?S%7w[nvy| *T# K'LiT4ǻMTyf=jU׭ޕT篠]nA%+o].AU›z#GJG{a׷Ϗꕷ}aq[P iנ_޴KV/aBW{2GQ??ݎZKnvs- k% Nuӟ^O&Tqi8o|]nЮO|K |"m'''&>@{gh'hȷ~oV{k- sjiK/?DiҎa' >&>A{>~Pn6 WoD{Ca-%t2<`). ,}Z@Ŏܝ9[C/0ehK\ iux25|zH>PJs/<1q?q_L B+ʠa{ɣmy+28ls#BvϊǷu ]y<T >f2ȈSW9þvُ"[Cv0Y`LKG2Sl>_jm?T,ʨDSt)Kgߖs矲tڕ0ԜB}o)mer%d-( eHQ >nOld|+B+v|ž}!sev #b-DZ5sձ (}kse<`娱[k6`~Pad>A*va\Swv#ZیOCCeK˙o41y+^5 O|*|Ͼϧym+yMz~vEY摑3U5bP #\ń~1Vr4K: YӐZ8w).M6l~R]v_2yMz|zIr ^PbVn҄J2 `٫.L?|Z /y#뮆m_J' msc&"VaG`{}>5-O5}`Sw4SE`pQqQ\SU%ꝼUeL~P)slK|>AL|-XB@6i:? FG.iɋ`]ls8 0F,Xx&FgmYXj:F2>wIҷo#cT\;!f*$ܭodĥsrZ#Cڈ41!Ȟw@it {]HN6:U 6JTFҔΧ+Ҕ5Q#Ըi)7!ҁ&/3WjnH2Մ:[ӣ,M}~gV5̶;B'>uK%{KpZ)%bmW|S6_ sVqM}KlQUSý1(Y`xmĉGKmQ=ɾnU5ӂŬ QGTNhb@ݦkEJ`75ǃO/v+/VX`Hp8%'L-v-RZQaiʼn)`gQyαrH &xAWQu"`m*Xu8U8Xl1p #~^BUe5*?|t)jP0Qh߫jbf34 9Z- zm->9T&xFd+|OrIlM{(ˈcqlqSoS "o!S@,@$euCm.EE %CMbӱ)qQ2!"j\t|@Nps`,y=ۣ?Y >"drX8c``ʆ\H&a! rN¼hDSa$̅Is|8@ noBJ8<TZ0o64stwQCk¶V֌\鬌~p><6m(2JY6Qra_Xdb~_c +2٦^EZoNL=IPLn0DPRP&qڐyfGA0jXA 'nLO*6~v/u g9 1:^hC0M?9+ F2TDx0}͟WM])r-6dP:)x"hh^];_Lo{gu_46S_y!sxf"-eD~.5/*s ۭF pZTnNً ;R!@+\BME5~kRE1])xKID(Ê ]ØQ(kG*e3Q1\1z1 0t,Ξݔnm45GpaTpr]c5E8bVVbM6tm/XL_`i"K7PE$֩5PtYFӪȦ+0}m(uЍ\$RqHkDT,_i >,kдOYW>@ZMB⥉"ub\ Wŋ46P3 m@NDYRuQ"x98`z(vYP˸qjPDLXHaUEaRDP4G=d*g\] Ɛ *[4]]m $t3n 0vH &Eܧ? VWD?dP-mCbUηCFQZw-U-ൗVqZPKՈոTb UbLۢ^цR(xݏWUDl4uNCY%Eg,R|(iKQ)|Y݊C$h<[:fK"% nR6< =1>z 萬*#% _bP]v.g7T q ^GjuuBgs+[1u. PTȍw5drU^?tihG̷P@PJEG *K*'Z ll,ѣj:/_JVcTRkEHhVg=yWE1Q#UVtUL1)9GY$ƀ>d! R?6t]:`A{2dY܀syFxҁň94 wϝ5_}~s͐-uLԖ,(J 5AW + hKg "pשPO[HD4^ Vv948)zqF%9? q^UT:NO9V`# ۨ [H=/!G)GP\}쵥6|uKVZm_ (Z.RD ]J @^Ue`]R2c ^;5Q"V-\ȻR SPS^B)`BVTVRݹJKi"WZP/*77ܛ+ Jn1AK[!&VUl"z3{1 y UG8b zuڗ-h5D}1)P4MWɵi%C-3LɴQTHxpOm%6 +dXW(1_s1jDxj]PiSL&EK '.=|皛ȄHhc|B:MD :$+6KbbT|aeBm$ 8\*ЁKXĥOأv 7JaPSLjVH AU>JF/@}Z v%Y"Pci/OnEʺL}Xi ٔMIkA* JDWb3s.YEء^ Zfev`[J@M u75-N+^+ZE.(e9)PHS M!/}2o6]-xy=K&œм}aɻ ֞AczWGuη*j\EQ , d VE%1L6"ч ,A etKh`f "b¾b`*ٶ8GeyG+*!:8J{|Ko)7Qs{H"(DLF!**L6/K F3 )-{(A i6N*0m{}˰T2ӥi8 Vݬ[ _?Ezrۤ@v4Y7Z 6,,flwkQNz)>`,M`jW-T,kGRPè8 >|JtD&j"&񂍨//|vSc#q'R*SI6+]jڞ,.I۷N}X/"3]JK@.|r`ÔsR_!*Mx9>}NC/x+#-t[K|8Qj/4!M)d%h_! *:_zf%~ܚlw1C76rX ԟ/,NM4E!PlJӂ GCl ĤzRߠU㠉Pg/3Tq@E|*OMlD=qJjCO՘B)nm29!3;RĿSVY"F\B'Tϊ&ێJ>[JddՕjp qyk٭Owc_MTT;ަ H-ǜ}yApSF&C!*RӊyC&ɌNU]RX0Nr("|ԥez2QNB-C @VWS؏jD7%!Mp%ʒxאZԚ|%8D@ ӔRi* C]Ux NJi!gl%%9 3eӱ/`HpGc$D9ڎ&"Jl+TdTמ NV>]9%$QU+p8}UL=.5 ޳VgqVlA* bcƨh;`(M|`k2Z".$3դ ]Uֈ8/ @;6pnlu:ҥpEѵTu:Tчe(SA)`8AxrՐd %ºQ9?R$,Tn3h~PYK6_Psw5ѩV[gE?TxW)T|>Qc.źi$/$6<-YR yϺgyt]> Jiߤ6 =vv-Ǥ.F[56 tm{y"^QK1nɶ ؊|02MNfZRG~iJ3(xlB,ؤmE UľrB\<_P kJqjH*.I7~%)7YA␹M rI,{ 3$pu+ڠhϱ;mMlZ.yWNz9 C#2M4hTU:ϙAj-. q3BoeTʱѺe4Dt+KIJ_tUg@U*1|ɸH_*3Ŷ1zkNT%P5:T}b%/rK.BMY`!Uo: M q Jvn\~dե$43-ʆlKޜ4HD"(b0ЬwAmaGҐ ;/U"MUrQ6|aɼLW)Ք,.vS+\Y%kM -Fؐ*|? Zp} #tZ%.yPLJEz8("b.Y`׎))kcxV-N5 IJZ2DyWNˏv%!\58ҡύ`uI*.7T deʖc6RfmWqiSlp#H`h d%Ljxý&X.L  4WOBJj-3T*mp/%A?4H&[=%y͏ 5Q,R27/oLRۿ <.Y*©pQj9%Ex4N4jnai%lz(M%+9g8|g$CJ1.5(֕STTbLo]הpYL'ԓvH+RkVEֵG@ne ÉϮ U V-@F?H+ۊwp9A2r &Ax)Mo)E8,#%#yq)~> Z1CMdἢ"9/,i5 !KjE~,AXS^K&.XM97ңdXJ@ lCRbp1()mF` ^ YNCF`uvM EJ1 YoXB{~krݮ޻%eJZv$́wsw2]b%[ԃl. ί{ j<٭!:>viuuA)EGٵ%W=0:9Ѯ\1|A7QɢHdQp:zS" C%ٛkCN$ p# uk֜ K}g* Ho&B!(hChjzyޗ;RGع͉S57Ug_~Ԝ]ԕ&2T2,;MH.4jt[B__hMyg? Z:UNFE ہ8ϤS 0*DNKnlU3, ~55T{ hnvCz{ڋw]rY,Ɯh5m RP ZZg׾MdR"6FNsI G`׉a̕ݲJȹhPHK|+fPE.eUZ3$爜̠PE6,k@lyT*l{SE0'尧}`}hǰ A#ԣ7k{" nS! nV1I@ +&&b]2hQlJX *BJ'*i k<금W"gVCNGOn$ҽj`KLlcjEע UP(UV+ 9扎<<2 @oê|+,MPMzDpZOb61tAJr%Oņo8'#< ^ѳdp /U/慡k|I?o6Pt1aV`1R-׻d/@Mɫ(pO>?___W7Y_iKs ] x{?7F#g_7@6 #ۘQݛꪴ˜csw>:X}| >eh>;t>r~Y?"QO&TK.e{Jv[C R &xg\^tpAbZ4^a8U~qߎWyn/wo[t|m VB/nc}+O17!i݄Ѩhv  _??㟿/@> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 62 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig-contrived-2c-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 89 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 90 0 R/F3 91 0 R>> /ExtGState << /GS1 92 0 R /GS257 93 0 R /GS258 94 0 R /GS259 95 0 R >>/ColorSpace << /sRGB 96 0 R >>>> /Length 54222 /Filter /FlateDecode >> stream xM%Kr_q]&$$@zЂ"%49#Iw3s]iZ#'3#<|?~o~?ǿ[R??}}uu>/9\>/?rwͷop6[W/?~4s{Z?>z^GsY>1~_"~/|ۿH[oQǟ>8j?>~y|1m/_p/O/J{"Ư׹Y+o除rdS\^~|Nis ߋ {pKw=ֆ}}K?Y] UȰc=KyK,>s,9ϱϹ6?j^+^[QO^^j?u4Kx ]^k.`-okn'g1g//>ǟo[lh>$e>0|X m5֊6lώ6mƵӮ.;kw真 +ݘw496Cws^_6+my.vWy>yK~+6ۆsly+mlCn\;$9a ]D{%y҆>l7F>ļن}`q> 1ļٖ.ngbm_if׮y1ܸ}΅}/J9k+歘w5gք=qT΋ =50o~"p }y} _oaCw'gƵ>c:v~wpg %ϭdf{aގyY矗1ok>ļN^vXng>ysJgxj;q><71yNO3?]|\ǣqy>^ǜ`ib\'_6'1n?L}~gX2|\g Wa67̿m1q;<Wkilqa5o~3~Sl~cofׯ|ggor}=q9n59Kq.cο1Tc~1\?g맿co Zj?_6m1wgmspZmO_gb=1al3cˉc;q8>=onj~}/~L[9~BcrExY9w'w\?Kkaxzw43BcǩK~e͟h?c'yvw'Zic;ϟ1̏sp~6՘z33g7op;?1͔_|׻'g{31cy3oOw?ϟq+O\`~\9.lƱ?bDpCKJ'y-O<+柘O o<?9?Zz?ܟhhy?;ϟ1_O bF]UEUEUQU8́QUQ5V]`T .0_)0W%0FlUj?cTĊ"VU!UUBFa OQ {`T=0Հij R j P q 0)0*FIQM QMQMQMȁQMQM/ >r`T>j`T>b`T>Z`T>Z`T>Z`T>Z`T> ܈Qv`D#>v`VĨfT#"ft0*`6Ĩ^0f&b&Ĩ 3/\̄U }¨0*`QebQebQeQebQeQe/ 1 BUaUaUaUaUaUa¨0*́QUƬQUƬQU*C`T1s`T!0_bcZ#BUQ5ZOq?0*OĨ:s:s:sF?011?1__F59`Ta\QM&_`TL}¨:1f ̊ ̊zaV3;13bT]`T?0M20&fզ j0*bTϲfK#FjaQ̉Q̉Qbt0*HʴQ1F:U*3gUf&0'0'0`TFUxFŤ<ӂ (0Q7rF.0UػFE`T=0F{UyU`Q57QFU`Q5:[`T-0I`T93GUg(0U`TF`TL*rQQQĈQ &w`T;0QѾ`TF5a_FEv0}0}0}0r080<0M 0M "0*FŜD`@)0"bPĨFe0`T=! 05`^ GU'U'a@} [ 8OFE`T`T`TG`T*0 #yFU|ށQU>Hu81Q>UyFE`T bFj|ށQ5>hFE{v0*ڳQQQQ؈Q1=UtQp0*b"}0q{(|:>=勵ϛϣ9ϫ7w L#0x_pϓ;ӎz z|H\:둼^zf!y~I؏m~~m;0`#~o;0l؃c_i/O{ޘ}앹=೽c9փ3{0GNU SOarFNb3$9Iy͌ϣSo9wy8/ry:9zyyO)8BD'F'FHkt't5/5与?f\"q?ߢW???xBf`ZxN 884/3ri\PRmD<P x]mN#9WH<39C30x*1~xc'^<h?#5}J &9Gx$"g8x dCZoeqx-pe%?E=/N#8#'} 9cљ^ϦynϜ'x{ǧx}秘F3bi'#Pv̟;>sjg>Ϝ\ |{8x {ఇ&'pW߂|9|Pp_S>i8'{ğ"_E?||ؤt_||۠(y[| 6'aE1_#i"]I k$3pTgiƼ( ?R ? v?ҳ nY$oe'DZB$FJD$OD:E$(?0 ^Q@;+R4l`]{>"a$o/ wdg/TDBԊ(ĢeZ4TQE;%^4SQpJGy؂ e qlCτ %BQ&vhP\"})5 @'& ??PXQؿ ;`o-G0<>bڮ ++0oSVǮ#}ex#-%\W8 v JlWXiZ0gޅE. sk?Yj1YQqF&e LX y =kuogsľ2p9q 5A &`cˆ9r-]obC >yr rS3LC~D>2 R+zMUCEvn߷`=O'5:ZeL3xn=pqz ~w!܎6aHze#mgw,R p;Ĥ|Af3-x?e<8dʞ\l//߿%- xFcDӋحO5wiSt6wNN@~kNyf\8ZOpϙkmW ԵTdj7Gֳp.GC.ۻltxǰO y-ӓ'tNzY^ekcUdԍtM&N-`ļdr+ǧ-ܟmaSd_U$e6+WL* 4g( nn#`mMTzKAWHT~Yp ]c[ dC l>|V 0Y `5B&ཽ \\=]؞4 k[Fu}1 If,IE&[:_XE ^ Nss1R\bO5{rTo*eED/`1J}=aK,ށ4}%8ŞC jPUW|+x,[(Ҹ>Dn{ SK e@Hc1slD#lF͖Ӕm}L3HE+ 2*4ĕG9J~"euQ+3&m5{C.噱ݕ(Y jRb}i\&6@0UV{Pί'wrs uane;'OS^-틼'0e)ўuʻwFKpk6ȝn:B%?gE8X7|=IgyH?p3s5t+Z QH3I$i e X$?sd ^EB)r83`&2BPtmUPYYf#^T^W.+H@YK0U~^j3@'* _YHE*ьe<.\E1lgZkw<J&TTQ42D`2/-@L5v9qvu唡6-eBSh?[4=ײ[nlYͳ *)t^) )>Ȍepfqy-@Bz[!p$ުvp5K>,Q~6C/%Yx`*hMiIl &o^*\ v;:@S~9" jYs]pJkKfY$@nZ(SKNqC@V<(LB[-<9|EarwŲl\b(8OnI`,/ڊAS,b-L!ۊꊆ"'kJb:T h,Qb @Զ\XZ~?Kmq bOaoUX4hS+Mk5 ~Jh9+NQw,)&01UmYY"0b6 ڐXuc{LHJ$R1$; 9b9D61 -JJ\{30\G^ȔpMQ:O5'Yc]r+YT$»م1K[ H\@B:i0q,%|G}"nFEqNgr ccI|ʥ2 ۄY7zQca:G:7uێ>CM8kdp2bIR@ۦkEU:H*]Y!uvEbfXDȊ^ŠsUD5= <(mVk^*(K!cpK/hP07d~(giw۪te`en,PH2+΄Ef5` t1z0EF4|YF($܆rF9iK΃ΥQ@2HRIFDW!h}Pz[~ES K Q{>CRN kzSy@ř>yPUݮEua&LEEf"Qo*EF3e[ K4Ɵ6s !…DQf)AH*+*~+ʼnj ;!(N4f~GPH<CU!nt>vH@%pd_wVNʴ C/~8'u":ԞKQ~U} FBU?Ŏb/ UCF^"^ KXjRφN,xrwn@SAn y!0;<vx,,u^)':%F%]_ 8Q~ÙUqE*luQJp-|'})۱!u)s Nle(.XT1Pg8@vK2W f0}8kzMy}AlXDRRTգeJ&|:D@y,u(ݿQԤ2!հکY [N&B< dBێ8?+GZp,O3TtEM9\g o那)7cP+C]T*1Y"7W;?"x8@jh=pk%W%8NoG9XϘt2T4Ӑ%n jYĆB< _3!EV:O5O:1R%МckpENKH]Go @\)J=aPNސ _Q&i!;eJ 'p!؄s~{I]e,g@K*܀ZG|?Bl>%AC5/ݢB^8^Pa'ܔaР@k7MP'Y*w5kg!ⲍz$w0oMxG^AMU)) 9ęfn$/kS"cy=!uMSڙl&%MJ9 NI-Y۞TIVMPT'q "{WUn$K& 8$\e8"K,6ۨfY Oc돢 YC!+z7!PD8P'Q֕5I៣ɀpsٟa+P3d=+jXa η^Ecё%֖GZyw.;d(4FխLȁY_<1KU)K?@nnM8Ov3!ʍ{r=F{/* mA;G;G34{Pq*$+i F*x؅܃f:9]dm&$rTLkSX ;)pbW~%[LBt' vY;JIOM3T-=  /h"s'COXן'یm/UaFmk4پ7J,t jQ՟pb;ukPqW lKY5^}r @N(f$ gMeQ}gk&Q oMCTUŧ="$-#j𩊲;Myb}[*5n˝ȟt 7P"Q` ӓ_w}һLνy( J*] P5޾BUF׈8z}G/;S:|o)7~jM0 (];R>H(Zc13$"@ tѝY%L@jxRc DChg$J ϟ*`w,Y R0ȤN:~#%XT*UR!A  eCC^G7P⮄_O7pJ}S1J'[VY;/Ib=5BFX̡_Wjf3*wPѥIcUX_PՋ0X{D#*AB`W;8C[|)H)4+-{!ZȳB l.N+TZ2I87'P>\JDG%o 4j26n`I>#'AN6wR٢f&4kf>{a"=%}9ȄWU| 7Q<*$Sϸ 2-qNȿ, XU ,Nj2g!{hR%pH)cY{WvںTa9ͧbd,I)~;ڬd{B~W=˽6TETΞ#t>dHd܍tFL 5:o8r+ WT׹I atHҿX"h+hxbOtD5.2a^JT$wȽ#d2Fw&m4L4Wb 2J׌;=!ڶt2 h6{\ E;mUv:U걻Xqv$H TS(;nE'EҜJL8K*yu5*Ɂ~Rݰw-enWo*D֤AMU a*\O7%缀-`aW#UCu6cǓQ1Kró)e]VA)Jѩ~'KRK#eҴx)W)^e,KdG? WUj™&.R7e ~_Md>ibgUix-Q9FZ%bmTTt@la݄Ye`iRW^۔hi?2&7ם( /du+OMY@@+2H%̦K9Ua8,[ 2d]BH /"n/.}a7XqM@Кz/k@^ 4|8Tj2AJ+Y h iV\: GpX;7.2Aq*%jњ궎",ozۣ_,K-0IrNPÑ4YԯVGbHm APڸ`Y H*ءnAaO[27W891`%",SlE.:a81D;)P5pVRޮM! +,)ĝC} ^_!(\x/*,cJ2+JL-,RUy+t "a-:Rj>JIJ7peWȤDgb6P:a^S]3NܪԨgbifH `w&dA`#*An4fղ׷B-]MɽyXe.V%ߛ2XU.9y "I}a2Oi @[U#EՂK2J֎h(%%j誉wPk2_VGnPIL]h#c ~x ;05 60$zt HƍgsƏ$/RG(w=H.Hɲ15eQ[ĉ’ ԑjoe}[ -AETW)ߊO}1enE@A3k6*, raز @/[ev貉aBGg(1JtA])6Ci-R&51Y1+ͪh|b=YBQV#+PT/I S*÷;Phds*{t8*9*olUӨv9 oU&ɿ\ӏ?+jP`u"eLH zaV N吹YCCF_XH(L)Oɮp%Z.RUKDY6~ jBk.kU@EߠW#D'~/k YCYWդv H|uFрP1"o.h*Z!e1~ ũgWRW@*@֔;@,<@h0V(D}zm6x]!<\aMuYӵ{>>٤{FЇrKcl ˵J$^&AݱE_DY ;QaBe$UPdxkz a98e8g^pINJ(I~o~rRK*9TJϰIA(>d5LUC(Loeџm]^n&m70NKg〪}` TT} qYEI٢8d0Ȕi8nUxzO7Vk5JUˣbZ<W 0{hIWpMUH PP)\w.A-➱ ZxH0jWT#vtHJ}jC'F4=nO4"qV*YaV q[kF" PH[=(Y8h4D) 6ERDIHMv;APi6ң;\]aE CsTd:,[3xZ&oM9MBqE;u4e5ٓdNY:8ufBH58U=:JDs@7UeM كc(L2g'Ug+m$,l*ܦPhhr6A' 2n5v ~ME ji"^1b[sEwEYVH gtUm}_7oQu'KdNʙ?~AGUXV8p/ ,ngz9ch_PxSr1ѳh~Xrj`gp*Q6+kl`Lb㇃`߅y8:O'{sc]L#|,'p% ׮_sJo7x#8⿧~zW(>^3tP?@$Emx8?G# }>R<f-ZOoX՜w3}L]g@A-TWmVTCgLT6` <W[@$O9X{~>/˷i9ow?P#uG:&ngӜL>q|{ 4|M??~}ן~&Eg_Źź-wؿ/ǯo~vx?o?}ӿ/+vo>?z?W%_Thؾ^/Zu*^Zr{w[y :ߝyȋkr\_l/̭狯caauqڽ9Q|XBs\@y }}8:z</?Ys6gY9,2b#q=2Ęp>Q*j!>M%mc(Tmlǐ>*Ws[bnh]:1Y; VUxԞpAxzΏe6LZ`B&н8j~=Y1'7hc@! 2zDx{l xPףzVcӘhLh-`T/jxHm\pQ1^q--`ojE =T-  NW/h{]YNY g\Ҽr~{x~ kjq=QՋ0]\BE/Z}Uπ? b~4ڮ 0L1- ɯg& 8IЇ)h% 0_10fiGyKx"{,1i^=qzgS:S{AsVV@ .m@6^'P ׻?XC Am<p,o\OI(-m@#u T79?Z0 RU`ek9`?ZGp \u> G@]#ȴUUޠ5#J%J#PW´bk[@]Zj|uE/W@] \u5Bu5Bu5B/ [@]=PӁV=S@]@]@]Եh;̴5`j@] 5zk A] $&؀&Ѐ&Ѐf@qf@aZE(Pׁu-B1u-B1u-B!u-Bu-B/ P B(Pf(Pf(Pf(Pf(PWbuE( ."/k\P d]qB]5&Qꪉ +>^PG@]99B]91B]9Pݺ ԁf@[ 倚UEfɁ 5ޠuLuUuUuU/ ua=.CӀCӀCÀCԅu!4{A]+/B] ,PWfuu/ Bh.fu PWfu P~xA]@]@]+/B]P׌ u͘P׌w@M-/B]uaԅ_P@]ԵZ?PA]x/kA]'kEfҁ?u w@]d"k0P`*0."?A]$ PWطkҾ5 }5?A].R1E@]Եk|?PB@]Ե_kjkj kA] ڄuDP^PWPWOxuuuuR/E&聺2w@];.ڳuў@]g=;Pׁr:$j:5yU"@];.R-Eh@]Eꁺ*ίu;PWE|u΁Ɂ@I%&BYZ@YZ@i::Ā:̀:ԀȄ>Pꢿv}<+ W>?~Qޠ7h1xtkt:qޝ@fY/9<zcY_zO|O)y~Ko1^|ٿA{as|'7dأFj\ث~_|/>< vR #R#R#$tTs #8?ԧķ?@ =;PJ?#FO."? Lj?wR9RxE?H|OI|_J|S60Ͽ/OHߎuD?mgdR橋[*gWL#?E+uj+JψV(G<:DۋP##ыbOxԋ>xExQ;H8EA Y?ӇvPU"*K+6EmA<`1WO_ooz;=?9R@ a ?TCm9@5<'P_|Da9Qqe :egG>-Ho RFPS OuڻOߡ#?|r#;'#?z<}Qo|i>Ԇ}-9Jo|mc~>򹍥:҆S7'_\#|2y'|J9>WG(AUCÉ|9ޓO/Qڂ~'|=ϏWiK_`қ/'w#:||Q|[A%?|;[0z;#|8 Td&$t!&yy77*;~Y2SڵRS wў1ڳSZ~@UO(m\Qb>4q~>Ӡ= Ç'o"jОߊ"q*.AT?>Mv&sԬ%D@}B,1in<@.tΫKHVTivLQ' A>dS:Y8L,lYH9WzB]ӿ[ƖFV9}Q?[*PJ G8wx5</!NVF} WL@^LJώֵAiNRC=5c.f^I2Mf/;xO4z Km.Zį5C9\ 5m0,hX TMlZD[WvgK}܅  -8();YK{ `oUk7&~SH-6O'%, `[?|X ;d4(xz %ųm, 睊lD$w3orWq}#ݿv"Qζ([DyWL7پ(-g4!{TOj%aP%9Y~U6:xULtu|ZlLmqқe7U3@[xU؂Nga@(Hw{?ݰ{Tf#VL,-TSG]7nUCVHCŻ6N?"2J[B9*FόIEBN8nkF_죲#U+Zdf>YHZ iv+nFJ>;ZDnK+Ȝtۨ+8wύܽCOs#`-dRM>_nUݭ)*DXX!@[Ypam0V߳tRwA8pKĉ-۟8!7Mu5 ނ qOX}dqKSܧ"T䛼L@4^,MㅛКe+M"`{cFyZ[ mL:Y]KT"Ξ֤FxTb0~mEK݂/]AyFU\ye)Wr"Un-Z@'kׇ5.>vPOt=M>jIK_ˁ]tG0}/ 6;9#?v/2TN}mfͧ@!WIv*!M;Y\ra'cW6£vXyswȍ8^獑)Gk+MDǀ5rSx@Q2B=ԾTe4@*p_辕hfҀ\b%wUhG ^Yb Ӹ2>zե *-ŶYАX3488f/ ΄WTOJ4uݛeTIV/bU)GWzUY _9*އ Edwi(/fPům]B|Ѱn${tY*6\IDEܘ jUAqC@JhUUe@~3½ Btݧ:I >1ܕ5Q.j_[q4FG]y- m =,_UQ|VaϪ#yL$s} _) /X47 I̵; E7hp~OB;G? ΢m.LmY8Vs3pmꨶQ[pVL6CfHoWU[Mƒ* o'cڝsG;J@ɒrW¶cm_۠"\[5U bReo+0wH=)kkA8 qZj UySY=׵ c VT][eNT;>4{H$6Qj""+/ , ~{)'9) 6: @0\iXXj.r <|v}-2e]/NύĜ҉t)nN'mzz _`0>Tg +ep7ka&Yw2ܑ"U hNϿI6'kis=V L'4N }-%sDL.*h5G<GӝtV0D܁#;x*5@r6pjᕴkyK"r0u)4mٶ %XhP@Eq@u2|XBvqZ BTĮT.ާmQ7+Xi)ӈ!{)nIyΞN`vC% vϓ3rY1W\qeS C1dOUԭ8^E]B"=5T&i-emLrff xYˡ 9u4һQ *cQ*N9؝&SK{$K(tpmHner *SVםN c[>/夂x@, u풝6ZFlVE^dw 4,T1YQdo&̰f > kjH)pVHTP$+f~?r$}m/t+}f03PVo@x(k*-z%ސWfEB*IU0>sfvcO<>2,CdE6^dRevwi`Iu`T^;UⰁjWxϣM({M72KaQ̃--6eBC" A EۄK 韾-h-; CT;N4 rYaV쬩 rM-$OI3muɻ~-ol">N)3ST0 * :d$z;% Δ"zu)w-h,+. T*53^vƔrm=?@.w$Mn,FxT$ 3E@rѹV8n]s̄ut s-Ba-~*+ D.gLJߠMqg&g\?pWrW(jIѧLuHTZW觇%frYP |q A,+ R,Sd$Pd|֐TgH$^R[F RCT*I^EUN%S,nEȳJ"$ I+KHog#Jb.v c@qJCH]PK=z5Z^W(R;H{?x|APKM}qp)fNO*TIJVq 63NM{Lx Q]~ p Ϭ=a*A 0]Ľ'Ry<) RB6#JV[ې ;8Շ$mKk,Mm嬤JhU}%\%C"%`.&aQ(}ԨX$6@{qe ŸkVJ9ElOUQAbIU\Xm6uBv2 ;#KSD 0): dpBfN2hB= y "x)ޡ4.|ʶEagk},g@ \r k}[0 'j˻))5=Q}JD2l-! "a ?ʾ@ ߐU=u C_0x,"~bPnS9]Q}q8V]hO:r4\Bԯtmy%u( &BV &OQrinI2(䛙iqmW Vp>7*/ @SC,}I'^]9qrR쬦?JeV^$-FMA g# :P]̐6+wCu {Up&<,2$ئ t鬅haKtt4A)EyXF#+Y->Aw?":VW+a 6(Ry[ǷTM~ImEp u"޸DCqB&d⍡Y*rQBi"@&刯wfӓFx۠ (/d1'@t[CVȽ5EPT0N;!ZUE!@5Td֑9iJ0v%TBsR_;[x}DÇOM9mL4io,gI_rguNJ>x -B&_$eoϒTj.Zo_= d+;=ܕ࿝E0-bW.t]ʮQ&XVyuo۷ Djj)qJ(NgUE,66jh*7$ek)?*7n bU\ 5PUcr( UV KXE "o)$ Qd-^Yxsҩ|f߂zՒ-V_LR;#KykU-T! ,AQ P˂a1=2OȲ ,C5B\ks|%בR$P&C0$d:ՐpeIu#^W(tHI_2+g KR aۢWF<ҽPUj9$`4r߉ԃ̦R塸éW \ ]pJM\r}!eRGT1BUp4iʐ`VfnC7Ƣ t,iHh-u(*%{f/eo f6Y$Y9"o 3[Gr4%gJ49 b o453B%M);oӆJgCyz|ۿH[Foyv=5',}?n|5E~/+d4Woy~>?T\ͥǷ?^0Cۿ 1>A>_50Gǵ᯿E?r_p1~U}xs>9o5>s9o3>ڱrjw!>^ok VH?}rwӵ7_۫jՅ3ڏۯlkڗklsZݿ >ğ f} 'd'Z޷kcFۯ'8{;/xOS/hq G[דbN1u+/De\1ސsg1޸~mC$o yO㉼*5+$ GUCb\] ocL$}3Tq>} c@0<˯7E*kWxw&J1?qS.zXf~848%=Wo=)󃆂$Wp׆.c ydyQ9xPv̏CڎK56 ϻ?h1xhmsО쎈w)./u+GO?82X=(GI Pmܟc;F(Wu6x(Dw#VeomwJh/ EBԇe?:, T7xUl(e5^?8 4U_o&cJQ ϻ?8jA+;A?70I`y.':PbPbPʁxT@]Ku:P׆| @][@]hC@]%u f@MuIuA,⁺Jz*|t$ueG@]<:b(u+s=\2#p=*\J@kmZ @K)&?*\*#rţt.u1:PCuE/q=j\΀ƀ#u7A]j"չuuG@]@]@]@]@]PCu1:P@qA;A9A5A3Aq_ꚄꚄ}:@]Ẃ&Եkkk!>PbPbPW^uE@]7P6]H8PצPצPצP׆"w.BalŔ u(B]ˠT(PWMB Pu퀶*    E  u! +B C ] u}|u~ 4w.BsZm"4F+Z@C4E@S4@] 4PW'4PW'4PW'4PW'4PW~xua?   u!4.u^kr?5܏uMڇ}Bh@]+/B] Z M"@]Եx ?PBԅ1?]DŽ8? 8 )ZZР'5ޠuT偺2@]LU@S#&4@]3-B]uv@M?yPZ?.܏ԅ@]8uU**်*O@]?P}@]Bj D@] xh Bj聺`L E 9PS?."FkG(nԄPWػH3_9ߧ[`ozg ogy[P3Wz̄}gBݱ2_2#O#9<%>>)!^8-q=xz}?sqqh}ms=hOi@)S~#}RI 05{RLݞz<=OBqLڿ/fGOf*xH WLl?8ݠa3q_?rσ*}P A ,\8D? =~O??X;ob!Z[+9oH[j2%*+YqJ;M','u <&B&>PoŸjNA l>|d2G#HxR% ?}cNxOxPfă2jC]1$UfLJړ~C| s {*x &{KB>&O<<^c~ITz_U" /x6wox8?iaj֘xa<1 <<쿇PH$Z*")X&wI]{7#/fa3͙?&CLA ']:"o <#EwD>)7^Sj6C|,|IF>9m caj:=;{[>P/Ag>GȯF>j~c>EUCё/%S9ֆc[_OiBtt(򽕥=wŕ'W#L*G3^Ql#Ҋȇ3u入 O/,|{?NTϏZ~P;|󉇏@Bz!qi KȗHo|D[О>Y52Y9rJ77 Գ $ 7үQ 5Uҭv-(Z\( [\([ai)}c|+M'QS6Ӣ$Ḃ>Q o4&J,>|&k4> 'R u9HqhObŠ8hBìQ;A*֞ާT Ch?4[40sݻh2J(F5ml,"[ &a(sJڂMJBLoh6) %& 6/4Vb̵]z1e LՋ:!֡V1t@(B u}Z*bzkU!d dخiyo}tRmͱ5IEpsZwMV9 Pzq]u>ӑpI n݀TrloLC -i.")b @} YkfoN"݉MӼ *K [ٮUH[Zuq=poS *ySwYU`:.Vǖ̽mk1߲ÖX`"k|˷pJkĦ}@N{:"WflWtv5*Ԧ [&Y}NVeKd-~|VlRU~J#݆".]Qrۚ -yYp=췜:ۗHfR}G.ԉ_SK Tn-kgta]+,Bv֦-%1fw\ ny ANV6^V? Y-@0iZG3xzCv~LB o2<qN֭i覡#} 55qѝ˔9]ZLKtQ@4]8_²ם[M]ѱVr~v8|9ӃHt!z؅qQ`l4 Z܀r&egG6 Q w_oVqfՅpE2爹D._OfdK:Ѷ,:䐀 /BA~o*HZ?E۶eY"h>~*5-՝jw%Ҫ^akC3n-(,;檼PVQ'Ѹ vg1AY-41p$BdS/(|ߎFrgԜPM CFVKw!c'h@_6?'r*BJ.'af׆[$q|{Tbh^ϑLFƾP~LbqTUD^Q(cl۶D+قvj4Iד YW%o8TR):d돰Pc ;xtN`vnf> U5x3vBF*|ۺ" ucF{lÚ'{KWJ#]f ۹ǍfduwV4ziC]g:+&~/yG~q4vJNpAL7^AF8YrDҽ2 vz zf_ٔ!JQ/@2!$DWΎ~F|D= saqD]uCOHt9+Bh)h=D(W#=kD.&_IJHj:lty08SHgow{SY{Jجq;8"{\Иp79YtR3g?6%>fUX읧s]A9Qkfe dq㔨IO5E -r. ђ_W=UuTxUobpˡgtwkX{nHcBoWo)h=׶g7;yNV-n-j((UUك/pH:Ql0;#.υ_męcؼgQstTPd_$M"Q5EsD+r ?Q(.4LI>$Ivy^Jv'jFk! ˾dT,nj1̩ʁ7iWg ܈ׇxVu>]F1%>̙Ido[(mudx$r&dKx)# 2a-mMAul ~)} u#ǩ/[\81"%7@0XCʸGSIfYPT_63~kj"UΗبnR76Q[1"&@5n<ܝC ̐=!K'dEja)2q[C$۳&տ MsWArH4+dsl]t*LH А~ RYv/]"(SE }"{zܫǰ&!d ewF!HS Ae@a!+D]mۃzq5ؙEkAW% kV8txaoe::vCrͳ`զL%T}7kHyW'q v6 Q3c T)$pdr/u:LRLPgC g65+yCbiY4Nn2tUdNCYy.I.( ΞQ/Ŋb*UuU!r* ecg2qM(rhCLYѾJf9*%ًZ[EntbSS}m6Iȑ SC[⎯@ &H 6A)VtO!` ^sfE/\E^󼧭6O5'Xy溹djyЛ|اOE$-/ej:NHm IGS\H.3tQCXP*}*^zyz4c5 az;ۥTdBPqV_:fv݅#z13$}ma0b5**D;QV \||Q],ˌ Z\ZiR^;?.*3JVuRЭ-6&8ZkӁ3Mdqx>'T>PNx׭BI>y_Pl麑cR\2j@h] Csw tyVlT64dWQ1 ~懆B2tTxwѫ˅sd{}rƂ (ÂƖ |aU4dFeCյdT$ fOV.qG!h*Bld5p T $/b4T0yW,3E@1[!K_RP2#`ikL^߳3BWUM"]Hͯw TMqbk<֊m1eb֜iO'rM[r☢ܝ.])<7DtPP?o*gbzw (2X"UQLڂܤ7c+bNBE+!! XQp]l4Sp‹*y鯏uTst 1WBx>fK< O)~)H"1v/X:ɵ*r3Eɠ+1u0+TE2؜V=($ rC(Q*JCg!s)*.pA%u#첂jh`(Py<gIn0Yj%yLw^_jS-*؎E^_ k ,94]?=wū3Է]A(}&E]we#R9!zL'^%)ǩ/aYǀX2n+]/p1q~@ptKy@4x#>V&{SZ<%ZU֐_8edP,sh0¾j%ӧ e5$Qۺ:D jt(+ya*F;w) n_cɲzN@mIzG)ϒ"S-)L|4T}<4O!kk w-;cSsm+Ԛ(zH",!0tž,GD~8iN&wWUr"ԛ @vDs±ղ'5cTLj TRwG'@.eM dϪ[K)+wP rEp+4]d<_,B`B E?W%b=@&mz#TC3Z Y*8{@Uګ rLrtߠGUsnt@kOCJUR*7.Kё\ŞnͿOUDFERYfɂ&n_bci!*mh}#S+ !/WtȘ)2M\!I?GVf +IpSޜ{zCpj0g ϶ ;N6 JƮf AFI-ГuyFj-䈻$&|EpU `H~׆H )QCWdfwYɄF* ;(F`Oj}G6>ŹdN>zU̒Vh*_({S"M#hnQ n +JW;/QXU7Ⱦ_ʉBϼQtS]c *IV 4rVyY2'F^{*Cw@:] Uxu @3k( "IԶ$4b+2?Ir, ,p}: <%>@Rng$aY#` I/RI) +ވJ%[ )cRiuE+aW7U mWe_C j?-Jmjuڥd+V7Nn'++B@w_ d*u1wGiHV+7KT$ɚWt @z p]fjQB PmR(PI:`"˦|Yl^u?u??ɋr짴4/'BG2RfPơz焾䶼w5!*}\;tv*Ugt:}}ӌ> l_4 }Z)K84>n/&JW ZN9c Z[Zo^*Do7:Oe=8ާvh}r-6||P#zw~?~OWq9Psϯ_WWkw7'3',/x2'U|wB6~5_7os_Bmᧃ9|O5_WvO*)V=ׯ˿?yA5}x TŔ❃w߯/7@;{Ͽ="?rb/8~Be1~Oy徉v~CDsS!yf w١kG9ܬapU17MPv݃k ϛw σNƠ;F\˲1"ژ ο\[|:٘r mfbv H6Q_nh󈊊{X6"bh7?KOrOkW0c~ri2ݨuuڕ|tw[L!؂Am12 xćRfg <9HNq~cNu134:ĘF&Ο)8Q: VI=R9?vN諞1djπ1&d1(.51^f=/K0-6_N3)xP?" 3^\=1{5ת0K1m`<*!aY8֍W!BaB+ޙ m\CpW 6$xyg?/'Y-xP&s~r߇#w"ş79c[U>6-'Y#|-7wb ǘh6.4c~8ϲ/a1? *AW6g d/Jp "jg'hq~n>^xӡ >?ّr;mGm<<燆oGm<_aypA{U] ȖΑI(st-q9@]oMmL&-#Z؛t¿-o9@n9Y;Oc?œV8G+G'[56vM'hՆ,'*3h=]cr<$jGCŊ;D̿@P3?h1BrkGm<_ѹ@ C5ŒѲ4!L_;ѹsO;ѹV9q~8n'J47`6Nvio4kRrWGc6HBGFׂ6c~^'Rm+΍ڴb~a-lWB%Y[%dYc<*>C/ 6+A!-̿n*Op9?rm1\iD FF *oiᏮQb~t 21)T0(4> ,H?菛2$WJ1Gb=b! s~H teamPAM-[@[õ#uA@]5F+A] :PL'L%L#.u~Ey.u G@]#PWZԅPuEPuz?P'tttj8j>j^j>jjjj _@][@]|= z*5z"uuz"5uuA%A#A!Aၺ}E{y.uMuMuMuMuM~ kq?Ե"@]1;7ԵԵzԵiڴOumڧ6C@]ၺj }.h%uZGB] py @]Eԁ2+s2.PW uPWG@MPW u@]%?P?.\*0u1 u1y."S@]큾(PW@Ou~BO)&B_:@]?PW}PWy.@u ڟ׀5x/. =>ꚄꚄꚴuMuM^ O@]k k k1PWb|}5oP݁E{w.ڻP@]`@]=ހ:逺а:uuB"~vv@]Ɂ2u{.*U8PSb@]-U"UZ5#x@];.2Ev.ڷuUhEv.Bj|u5ؗu1>>PW}9PWs@]dD#>?PW>Xe|^!X~2-s^?׃^Lݜy_}ex!>~Jc(P1󁒹@蜗>8'5d>bEɹヸSq_`8=?>-/ß1/3Oß5o7ßj""-_ /#1'k'~GOwT6g*I5HM3~xRsfz& L1}?B&#LIO6[j>x&_x'q?F<Ċ/%Lj2$㱺Mŧ&`e>%|Kēu?{8"WyFA65x鉧W%x|iO7j/57]Pw9_@P?j$21Mk&[s:F>(JQ"_4|d~w D>l0_fH]:G>zPsPI%g/dEv"OE~H{'_Ivo'Iɇ'ˏ|sS+}o|liD>2}Y}Ť|r|4ͧVx K"]"_|8//̯F>=#?vR}N>>G~CD>8_'H |>Bb>; \gH<_w~I!T|SD>EO| lO0~ ;1|GA,|!$|RSz("yJhNi)=;a3:,=;eg,J4-Y=Ҷhp/4'b<{F|44D>TT1OEOh@;*ѲlP^~ ~y4ӭqcP7T*yK5C X[edeB\oTfp6Mh S$-bYY™o|[) EZBPa^S  ^ͥdl Y0cl!dõhal~6jIhj ]حeNv-BF@ { {bTPB,BŀbX !94n}Kǻ[/o֭^sgin  B\}"3p돐 EMv1S6g:4~.Xpks?i &#+s ڔM0pǝ`r Q\hi!8*º9`e|( lCn2פ~Wn#,i5j wx߷>Aj$8.[s7pXtNXP]W-8yvvIX9Dgo4Ѻ挶NX̂CT,@,gwEAl^Y~X z=o- f/P')ew&[YNBW@v|ޘvx\!0ux) YJNvD(M`w 붋g+(Q&z b2]z;⧘7r}QFX;%P>,jW˿;m_UF;dvjR=4(]jسO5]4ŭ1;}Tz/u.YԯqJ { ZZR˰bW.W/c>PFb])J6i< >i;W47C{^탑ynW=jdRSkueyRSyrw'fT\qN6noH* #̉<]IysVil!(]½۶AAwPgzzu&1|elt^LKW0wZh!m{v5Mn֗YY4V|(v3|i?3JܧrNa2S[ܣEJO4N]EqWNݎd$䍭5m'tjj5)>j8:<ᶳi^srqDcy)aIgB\DBPhnS֝Y lG(@Hg ZpB9}1#YA5=MQ$K87ͪkr+.>`F X 9UX7ڑp[?dUG zXt}@B͗{E|=Z^.7 zcg-`]+pLI,:Db2S鮼%)X' Vp؈b7jXyÝ1TW+F$*$\ E=%dk4;Gmj푽eŕD1] 5%*yJ!2%F%T<'rT8$<|@ncҘ0=; ͂@;u8# !>[ e%[ϴ!Be{W5:jl9:;TCFSjrSQBy$)Aɛ/@`o\qή,-r/l쐴N=SAg8(iʀMg8،0g-' w~99PԕRxkz?0#<%pI׷S\+ Q/Υ v9,@4'q%|U dtB:T)wئ32,ߊNȥ]#ANJUL*4""toh"و:M! ak z @#YALDz.>+݀҄ Ino`B`s 5="ʆB,J,T|ہZ3jm{8\GزJKnv{L+"Sw,#s n\h(blڿF$U Ywj>EqMѰBPg=OS=9۹炊 Am RE]AJ LfVh{*wnH.J +S%Bړ깽m=o3*6Hy%le$ ^:>YT%ɾCxPyFn~mV7E*vKǬhbShFWBw*-.+ik2oKML^?m3 TZbr)oh(Ãሑ( A#仹SSP'r{##lFE8d]@A<|zj?2 YtM д&>6UUBT;Y̹Pm iC0HlI+JOݙ%Ȯ߻osw/4-?pDDv(c&--[1 t-^?,2$X@ 2مr?CTY ]t.8|[CIB i(n(2Y'ߚ XAWQ>RѪRh*BVCI5**N5ɴSVqT:y-"8x}Q FB:[UdV3Nxs)Xa 䭰 S`ﶁ ~`[ЃA .Mg KޭJz5Ԏ.FGnP4,C SYW [L6T {TE, JGe SUf>#! (g",kH:MAWvf*x-)G`PT!L wݵO-'Wrm^.7R.mGErEd sHr*U bՔvFKVM)lvq hu;E ݧOj3>%gL#} ;y{쩸bS|@n/;RB,CfW6FHT&tFb}+f^\S*%mdUzh@PVzzʜם(ӕЄ zl$thIh· ,>VG.GJPtP둠@X!" GmCmj@E`A󶗖wys8qc']wҁ+: !i Ğ!yWH Fn.cVY]9Xլ·%%ܲڶ-p; F=pd"ITL[lA_+CvR 7!׷Rz-UӞhinܪG*>f2KY4TW}CɌ&L*DJfDFqT3b@/:SqW*N$j(Odv4 yQQTݞST@!OP}W{gg%FNMw!#ZUNl+ZZ0-!X0*8*dqGы<,<#0RXha#oAX[(^-]HLvupzq`ѹJfHJA3ǶP7&!-M;:ȍn-C~rw(r4RG)LJgQGU>к+%蚄ImH*P{mqA  !{#>ۭlءR#qBⵠf0:y_WY$qFVx@q\翿NF!RiK*O$6ENTNB|%Nڑxk3$O n,֬(EԉLK)$ L%m[J=U/ @S2S&<ba;J9тT_@KdZҐcė. A~z6Y_pruQN9B-o-Q]JI]E|T8FsV.ej[rY\TeaE1{3(KA M=cmLT[gK` lReAљC4fǝꎭP% Qpq)"F]zӏX d6Pk!G"KKTԪ]&q(XW|CC1T5ܨJ1 oFT/(9 DER-  G:aAlJۋ:G"Q|ΊҢ"\R% }tD͘*.A_M ]E&\Uj2J l ,L2':i*J7K~AWQ6K!Ӈ؍cPvL[*KT&*~H( ?jKNIdӺ4H" +L "+EcWRWX&X]%YT%Sd=)FK}WഢCj%!``P*' ]HG54]p.xp*܌e贀ejBGCh6DIJ fAba 'Vͻe~ 梈FMK 9BUщFOcgRׇ=v"uѤ)8pQpIXN ZήS͎^ME: .+pr@Ŧ i߂K$:mܧr0m~q5#zdCg~puUWWJRƸl ~NT5dIW)!Z/=%Q6ș|߶ǙeT\wCA˒"}oݝ" I^A2DWq[~Rq!T)Z(;d鉥y@֘E& S4K]_TjCiDRcMmQU=Le%t9O)j\']Yj˜UϠ$U &tQw%&BafR|>O7j}&O:)jEC_?eIWiI*}-?M f)e+#dɌ6EvsNLA5KDo{V56BEP~-N;A0*wK"d%>[_ HfՐzp mAcUzxYɬ jw۔ )ުBP״N($} 5 TKvbEd!|?lΎAu9@9H_?SZ6`Rq[eǽgEMw02۝q5Q\ƶImb "!Vq0)xY~3"LU)Q]Id ee"xBejdƅw4V; #]. & (FS\Sk#C 6(eU^}"YZ#E#h58i;"e@Cwts~hl ^5ح #Bɼ{ewUMpuEeWL!fRvၔSnS=%ul`S7%2%xk]Օw4 t^>Xjg)I5r֝j:*KW`nDe[q&NmWZ_'A ]Y\mR{IR|- WumꎺQЩ !ɕT-K*.$ %7+fgEH{^ p&@ZfT7UZrbQR^ "4u5DJ0" իd]Wr+bRF*7v[jGVWoԿ|)L͎¼fH8M!%&dKF"*Ō"LMJ7jΈjnbOeR%{?A⚜R Dע0GR>;e%}j *G`XE5g- @Velm.3n̸52U )/,".ӭO]!5V${וv}'So\+UL6ұHxӓliPE H6tYoObOmIppoEҴh#>P^&VOD6̨dQ++k M{*0<β]%k,=m@R\SS&jJگu||G}NW"&-DbI5rQԦDmwv9eH*^jWU99Np2+Y[d|URSur;l"$µZELx?!’_aW"8N79 Eۤ<Q"~{ln`vۤSɘD%l@pT1޿O~(U5%$Y/@khaZ /9:)2UnY^B-lKaÈ ޟTRo#VWf*@q@M ]|M1qbZ";;ڇ6dESPWvU-_x CFq2 A O'MϘ*A,FtfE5av&t9ŝR@ۢ[W&۫GF%E8Ňt_J.ʥ)nkmB P&EPE}=g~&TɊ%L!9C5QW{ kKޔߛ? ٳ0fXwY3j ,fK,xV ;+>4\>䌩ɉ*LjT,PUv=&mBU&EuMb] DdYІzŻ Oҕ `㴱Mztp_rKL95}@'PK>4̷nݏW'5K**aMP*UL):=j੆ޏDlu\ytY*#C6r|oJ$ђuO_@PЌ,HB t`_'ּ__W?_5(~/v|:1%v0bL۩IWhecLŜ|]I~@q7*ٸ6{vGםLc ȷOq b+ǬDuoFԷ}r% W)oxSt}y>53߾so?*|-QY\wI|^'Qso9tGS;5ܻ#nzcߎ=c(S} fefǨNNn]_g mWp3q?~* ׯ~kTvݏL )oLo߿R߬dtWKܿЫ Fg/^}e3`-yߖ׿_ۿ ~rx endstream endobj 98 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 104 0 obj << /Length 2467 /Filter /FlateDecode >> stream x]KF f/(<Te;?" u@ ȣo4ݬZ&:B@VRY*}l<}{>ys'=THCofO]r)ɔL "WyaϘx^٫ERhBXj ?&Ճm[GED%q,6QZڶՃd7bֵr7wD00)3e^`Rs(TܛU`ejO#.Q!b=I=FД؏ED “DCaL2*CXM9Q }q31Wd ]O{, $h9Q̛RD{"^\BG-z_jE/@J(ETETErgqU90melUgg>τi*Lx%@7o p_]ub޴8 P]RV m>a RC0R.ؓ~J I(TY(P1t@eMu_J|!R\pHwus;!0^#*7_^4շ8›oV:n !d0!)(d@Xi.c a4?m@M99|Q {2st`}`e\2Rxdڟ o8m2g!$ Am}J `¥S:t=Lmzc}IѬoPB3~8{D+3OFy Cgv+cUӫqx [[l{Vz6+n7_eh!etlC_Ϫǧ-2F<Ȣ;ԭ`ggN.A8Rnt_y!fx3\.'73[(L߸-1@w*$ٽ%4Hj9#wEMҠ:gI@dRURn;gy&H*k 964;tw6` l~ʇdm)h ~+K`UE\*IN"IJ;y ȕ`6{h"n5_e{>PU,r UΜ̦(Z>07=Z'?ǣLs$(Iv n̵*%7JEஹ'KKvڦh8 B˟3؉M/E^+Uڢe8{8Š0gk-ETN raG[鍇c:3\ą=_ ߴ "Y>čܧpZi aL!6z4i/ʄ^:],r~}.6C|dlݾ♧An!"u@BjXib+M2mAlN #i9$+?H6˶_0=/嘱.$cmGK\%o O ZEɵ/b_aFA\`L[0f PU>#%ozC:PuH`cGi^A}1 |TyPe~N$'W{K,r ~e͓ 8߾ @"UX^hkb'q-P Ы-%ߡRL ;~g/MMkĦGlzĦ kQU%x 4z7Ջ7~/sxF2T Iabq`\03`\:¸#qašbqGwqG0ha1\FwqG_•?q~'.H@MI *L2"Z?l0JI-U֜%跄T$M'o[`TD0ĚE3VP]OE6TnLeUPSh]-˒UY] ʛw+ ?ʹJlmCS| "p}PD8UzALVfUq$s?`W75 '*ë_oʈTxv]K`83pC' #&|J`]"CWhzTpM6Vmu8KK IAמvI,Fu V.sKn_*mVnU_̯UG[LIl'UǮ@n&SAC cKR&hdUqiZ.Hy4}U0=ߋS I}~';%b!lS]Bj{bRuTTv5Vj]v)l2 B$?gPH@ endstream endobj 99 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig-contrived-3a-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 106 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 107 0 R/F3 108 0 R>> /ExtGState << /GS1 109 0 R /GS257 110 0 R /GS258 111 0 R /GS259 112 0 R >>/ColorSpace << /sRGB 113 0 R >>>> /Length 103637 /Filter /FlateDecode >> stream xKtsܷ?,ŅFul%؀M^ZQm`dFVO~Mߞ>*+32"2W_?/WGN)}ǿ|/z߻7__}͟}_~??K|zEa}ϧ?g_?>*i~WX_|Wϟd6}|UZ?|K׿g^?EO_EIϏ~?o_>qeWsk^˷Wgz]?K~,_s}KvOW޻xݗ+?k^Vuqzw_m^ߵֽ|kG5?k9?;wV gG?~nϺ߯[ _7{xm/?:8_K?+t~kK:=GM}ɤ\dn~er|a뻤L+s3e^%];~./s=Ov||~enϩ\o郞?vsDvY䲇\{?/ie/{4ޯ_u 2iï/ȟeYegݍ~Z 8?7}_?x{~Γv]t6?"(Iz]WK߮wٯ o?ޮl~yvuflϯ.onugn~O0=(y_zy=Fou>qz؎qݾz۵?' Ŏud\oۛ?uѮ|]Wmڟrz߭_Onڮ~BSق_zu|]w;ڟR^ڟ?{ujvvݵ?_㻶瀉 T)]?={B^Muݵ?F\/K<߮?N߯wٯ%MoMu=?-ul#\?Yu96ڟsA~Nv]hvFvzj8:2u=9뺟ldZ}"O.gu=1َ='z]zlIݿLK?OׯLK'ӊWiidZɴ~2-ןLK'ɴ?~2~eZ_?Oii?dZW5I2-&oǚLC[-@iy|˴"9zϸW^O]|uBL WqB| cqB~~!oz?\\;dOAuj Z?ȣ7dr |V!/d*!Ook!/ -RD{C=>!?ߐLgW/:z!Y Ϊ_xV=B{q!B~y!k?Ƚd_H1OqSV%OBiO\z"*3;%vUv Ui)ޫSW%B',PrР*C=BS*=pD.Q5:LeT%PoT$R8KUp*@7UEvjT4dTU@@:pSU|ePU~k T|V=xҌ?}ѓ?gD.;=6s_][4NWI_Iz*ye < _\[MOL3׋δ}[^\[4/ynݵ1z+Uz^~"%|Yp?i;}C]y8[ύk;2\a}o'AϺDsZ e&^Oת A/8WG_5Y`zmxܶ4[dWx=bv3U&>,Gv^~%+xryׂ->^<--Ozҩ{omY[_JX;~git߃gڎαUpߠg @O']%yvFW-+VBr9:3ֵm2&R=)#%]/G x~ۓړ`YvYŲ{ۘ}ZUYSS'pw!ݙX#;罶үZ3Jg;=yq\݃(letJS> 2-L@~\}G/nOV2Ngry^|qA>ZpV57H;>\; 4?Bf0U|k}ې8<.%O+.b::AӋȀ^d4 uxʆ:%-WOs#Dv<6wxT\=.U0kn̺ǩ:,K2t6tdי:a;Ssί{U>?3<68;J_R!5/,uduUJJ(ܟ9֑x?25 te׽h;q+8`ePw6rd8\D?`i~(JÝyXbo퓬Zl6J֝2+w6Ұ*!6΍nHJؼ}W-ت4W;|-ӹXP##'tdBsZT =@Kk*k WιVRAʀ<t۝:`Q=ˍ`IkN5~nA';ZSIɆM*:sP4-e w (ϳ, ϰ-'?XV]c~% 99z(+ 0c";e^YQ,wE:(:v|tz9}2-cL]cq72K ?;^ƾ toz(  + gq{^֦[2+ϓJ>jGhkNbAm+c)ԓwo9M ߠ @""cwoedz&񊏪 '$7TXF  zt2~PA814@RS QuH(Fl/dڬ)QKMQv=>HVu_L_c;.CqoT]7ϭk2qjL;_ ϶ cWms![Pq ϱw?Twz[l? :l]abJCPH|Pؐ?\6`࡛Y=+FPA߇!y$wiG8 {TyQjǁq8[ޖTt;w{dmT]k%#^Г`M]uE p 2Ax cDMT琁R)5TٶJePʡ{o"IJԨ:"=8HT ZUr_Drh5q>u>ިx>fc7*Q%4UaFu MޓOiqz%¶sLHM!UUjg %EstX~Բv͇mg͡vV)~!Ћ*&wjVDjT"+LVfKװHN Ϻ(I^B\tLd&vRXlc r-v< H{ec竈_ ;Vu-s{J|z\lD ܌.ŲgfmBY;KPD3pPcY ` jJ| RxI؄ө&.o).52p=:M,*+ *I@,THoBqRiyGt0^Aq`yE$kKv&ƾlL|"XM ZEoAҩog+Ya&o0Kr]);fS[6$O]"pWAcO Y21D&=b"tfH^:q(#,.w<ZLAK`X*^1+VsJXI>}'?ho@\SU T,0^~@v(+Q'fcQ@.gz@ޮ@$M':P\Cy- D\9WlU:ĉ%IS%B$~1CI B p!|87?l4'0Wq97v!jՐ&*ESd`lt-;GbkM)Oe3 iLcE.Z@I ;NAbL߷v4H3E_I )j/*R\843SF69Aww4;I|͚" ȋ$e(l< UT׊I:) @fCed_ITERQ/J(BR!Z'8A$& n:*%$}վ:l"#DΓ>Y&D'< boG@ @y$A4QI9@q[$IYkg;s򐁟X,>; U@d*JP勒LD/D3ZKy"qbQX꘠S&H `ERoL)ty@a3,n"9CuS.߲ r*cPd2qtz5h^{-+Z⒡cSl|j_d̪@6J48iTsŪ/)>LV][ڳ ` ߃EI뿳 yv7D3wiZ^F̱P:IX}o{25sRI## XóKE_wjRk{>dȢHіp༩Y"Q } WND^&Aopz/Y ҳ:֕|y _RUvJ.:FMZuqL/Rw&62i8!CS:b<!IURNzS5HP\DDIܔ2ُA;ܻ2s-Y5p&ZiQ Ƥįd'%BG|呮RB^H@LgFкA[ VW:8AIc17uEÎH_糎vK3~>e'Q$fUۀPw~H:-dJWhΕ̉FCyQ??6proFfA*/"PQJr?r]$&$#.5G';cD^[[D'QΙȬJ;f[2Eu'f69C(XjDUv5k^%Acbͫ;jCp*OU{g"(uAJaDg ED S V-| NN p3k 7{F]#gJ)̣fp&zS>1[J)y*}z 8 WBELi䖃%LJ+yQqiv"w{cdk [ *Ց?K;_]7 9cs\N,Ӿ BԌAV.g> +rR9tbՅj9PA) #'X cפ{f ކ{UWQ^i5Դ0L!͏^QDh},_HφLC|)٣F?"(VSqcmA f1K $0d=ĆcC^IaR2Yxȫu5ZСr썪VNoP&u-#is׵CF'%+]rLH| I\ ğNgg!] $sq ETa*U-x>'Fd Yn`>C !H+X*z_UzMj&,Oir|xPD9Ws⦖ӂ)oU[I>Q1UKLnNayZ˜Tw#D'u&>#o-⡟{yfDd©ݭסlAoIGCuO 1qyBNaV:xҗw9_dBE{ԔJ[Ǥ׃?j=[ ƃTm)4Lʸ ҅ϕDd3r$cekTYxEF0ab Ӣ_50{PIpqNexT'GƾhC:䩷BpǁTHПwUp3!|СMVf1;zAOU miޙi *pヤ](N ]C (%B7Zd˖ᄙ:`K∆3-EB |USmAIww$G FMAa_8⍤o<JŦjX짖.B_&AidwWcXpbԢ麫1k .r^<-y 0z&}\`5R8Vb}و=\5#cP+zniW&Uk\N<,#%~m,&$ukJl v8g4m80a%݅a2q=fz{RXإ}9, ߠJP5߿oBj&@'A<FUZJÀG07D {; I@:ODqfv|GnRYl4=cb- )?4TtvTd:c7H&`ņC=חRޣxbQcʚ rH2e9I)4 ĖdYh!p8)Rݿ؅XwLl1P+ KP}T"ϭ~|h8,7y\huNYgI RttIx3_~fIiNi,i:NC*Y[y%$Jcj-uj-fd4X|{"w'TQdH#_"Z3,N$.aP |R_r@9Y+cD,u@ıXݱ@?5@_n2zk9 @%KU jhf7+-a0Rn G @hX1lքc,* qI$rE(_dчObb7k*IɀC,O ȁUA`" RD\cCo/:h(U6:qZ@s\c E1䔎N+V5wϭ#ӊ@GBlt)TeME[WZCc|Bv|wEAŕYiq.#hѐI$sA["Ie"ibH O.W;coA4沄$Y)OP(v ` p#c – ;&nyN TLTdք3(((o1ަb2DS7"3Kd_v\#щI$IJuo3^(<: 7npykEh(IJwCQB .H.{sZR+|o$SQyo*gĆT[.ёt_7v)ks&+p}>Æh Tyd&nMEJ NJLk:騉FأYl]3N㎥@4oM(- +'XwDby|&& 3-boJu{Hh6s9EtK4`0:nO4I&r7m:3dA˝`&ޯ.7$;IeObOQOz!lɌ&Ϸq|As,\%B# XFLI"kӰO12 =7mP/T1ς3Pϸ$6r=y"G*Gz< IYl]ӹ ;X`f*z4|= w;? $ 슌F[S?U2qSHnwzI*'j=x55e99 䝘Fu͖cC~F?PaMN2V05$Jprw#DO g3"aXe(.S* 8k7$5U$"=VlzR 4CZ.LDİmY:-:l3ƛgue͡ Y6c#c}A rlC&J5QubSOZ6 oUݫ+ I7I43邶&ʶ$ƙ,DD tnRTM̸AKi-+tiun?j>{IEM 1ٲm<|jrsND_̼gv;d0nH$@+-RatZΥ*ن | /<9VGpSS< s˔&ͪm#QNj YzB:>+ gUe*]" oeZga%+Sѩ(B 9; ꬬT6q3&MiOƤ4 77}jBx 5 [ 7pgڡCnʈ Xb>%,j|e4KaчlsDGz}~ElYY崂-u]OJ9'B?j**/#Mau}`%)*')fe^fۚg 7 e+#_oٌ,=Nrm(Jdo=n o1xfTN^`|9whL:= FZM8wEa`L-bѕi<o6B+oYܹ E* D*k$CaSڮ 4sxF=u] 0[N2q•|ޝd G$#7QZiN]MvrvB@ŤtieH~`)o7ܪ&5-D%҂^>YpkyO},O% d<)-.54am[ q}**m\!HU1|be_L̟\1NXb!fJb` '͍`' U`|#o+DROͨO6WC?GzT a΢Oxc#SM2'%ttXF[ ͨ8Y՗UvPFNє wcCYdLIYrXÿFkZ#05:c.cW d!{.Ȥ#Ȑ+%xut_![1*&HohρoU)Q-a4h Щj(ҞtQny 5*/i]0 ]:Na_MF|"ҰFZw mrLC%N%{å1Q|gCM7 nZ4JͲJn> #f[0ei2IaCpzP~e*ٚl;1[mK!^M"&%qrJ؀ءk*.Y]X ˋh"S#/D- -إfdp.N3Shz-onJ! P2h8)4jGei BbδD|cSWN!59j#FWQO}K Ug^֩Ycľ-w%X#QޜJ\3 k>S$Ntw H=aU_Gyny} .Ȓ_z[fiPI&q&Ɋ}d$]+DqT5"q<<$HF-* Er(!%qa-nqī|2(hz^$-âUeWKRR!AB%jԉѶ:u↑7;jʌ>Cp@l*s(bkGceSHP*|NX %j#պ`Haq5HrFد``џ}W("RD"~v*w'yH;)lsyĎxyomuY`|=mD_##e6is09^Uӏ : *)(ʘF_.$g%pdϋ $"e鴨螒%I==-*$&1 h̪G`HArÑK"w<.qW1i kh)3lr#?AG@>B,Y//2htRJ.:;O|>զ]AȆn׽|G'l&T!3pBAP"4)ı(ux=oc{Jw(PWQ;4'te޼ I~ac7/V'w;P/ͬ*讜%k4+0kiLuRw穕DxKzd.rЉ4rȪrN U@mxͶN|e 㐚3`)@!zc-¢PCr荳ETa%LgBM|AB_ӔZ7k)+hkYC]FY͸\sʊ -!PbT:aI )G D&Y!M.椨T"&:ʈ3K NjCl4N&sFX,%\ |P<|'l._8 ktU-)hTݙKq}2.EA&(]vn}  ;vbglX[fϳlpz"XJ vMXnYiZ%í>@֘Hn-t|, Rvi#Y[PCMpH+Vt;:>o'}YSq_+Φv)hC,mU<fvPn[=,KFBDkgr4=G 0iCŶ;7r6qr vOy=w!nL! }+jR'eU'H0 6ph9,i1Y-bȻ^*7ºry/E5ij;Hewm 0MRcpj*Wi)E-(9mO.N^"%kpV=k (|6m!ZQX{!JStu aXe 0Ym m:dR0}&94ֲkJDfVDckt&QD˚ u F̘/~jS~JK$̧Jj$Z=܂&n#Y2ID5G)^$ vqnoFG/.)IMxg :ˮE4R6"KCٿpwxq='2<)4ٽC$^Ԏ=Oe7FuE,2%,0p$qFAT9YI*lvїM!SF6h,tQ:3knWRԡJXUPqsg` ;n٪1ϔ/x^m~oQk"ؖ k~,4Bxh&VS$s@>-S9S柺!1S(#2&"oa"SJ3φ$=a{: {KB֨EXv;s,IE Vt*d)GD.dPNN.VF-eATBHg XtQb*=Y_DL׋gKtD5>J)WNPTN*Yyps0 ifpB%GS@j?wRG8Q 3t1Vft1>+Ve7A2(H H/4G@Vg|twR^a$#+Ǻ+5콆,op0eֆ9D.Aס_"֢;NMjL2ޖ`VEQ\gӋp1vfC7 WۆW igQb<[3'7 Q6rtt M*ȓ;Iϒ!K[0b릦wXb{JB "jB r$NR(4B g/diT ""BI QUǦFw1b6_' jE̊&YճT4`0zUWI;?BY@Bv;lx )&Єuf:3&! I3 Mk7:ˆ=2N|S#MPJ%pɟ )AS |3T.xeZ˱ʢ~&:+%!~8rb^c)]6gZXnVVAT? т6ĿbEQ/ӓ8n\24P] -KADDOx6*abd2-}>djSzh:=&=ǹܠy3S rH'?g` Ws[h)]3.s[KM}#Cv'WhA)D`IJzxJ;N~L!r- r˄(=u;%CDMU~!8+ Y5Į|M{5:)Κ{l)!J"?ID;S4!* !(d=+A8wnnIR+z%F@\5:(,:!*J yNު!͠|9咆urOCi.]VʟC4Bsɽ !y0H. ƿBUܐZ85&lGтnjDnњ,>ll!EwL:;e&Z7tr._9BChyː>i4zbe!#FM1۾ %P>Qoj㩄iT$t !bT15jt)iO#ԃ.HՁZ<Sf2(b$t4{-jYWk֗1n(bI+:fGw/(4pŎk3 xn$4ΌQ"i/ygْq.gH\lA߷ ke%gT(8sٿ)9K$¬>F$k񯖲1n wp2xxZu  1Y|RK٢@MQAaA83,QT`_NySP1R> ɧiπ%)?ah"cyB+ˡV堨6ʙmF;S`ZTM-åf)ϋٸ$xͣA[|a/jqacTTU9]KDCo9y=ÌT8qsY HF Il 哑^h!$$UЄ|zջ'+(Cc"(mt$ZYݝ1L !bZ#C .-~q+cLk)m2Aj:a {k6pP d(LSybcGFA 7ACbL&"U[1(1cBJ#9i}!^OCGX @ڏ30‡dac=έ-JdMUqH6c ou[~&㘯yЎI8YͳC2ig&UWc:9pE-'FYz'Ѯ7P4ڨ2V(H+fS(g u/,J{2)D(1ۣ##: |BELQDf SUMrnJ%PיdCNCdh\?i)_DOFY/LtfKp;g<̾' VϜJǭޝuŮuL;\FN{a.ܫ0<4Jds8|Gfm5)FAym&pnlT>uRBv LV-e j&Ufm<Hp."/$M1 uy(^}Z[3~3e/m6xĻun1ƞ^qrdi!-hs73˵N  H(턖vn$*TJp 6*T VpIج"x#Hgw ^:1kW?UyÀ_RI:pYQt[0of/nե m]8 vZtEoaTSՎ212R42ͽ d',eiuEq84)gzhR`ok3CQvɠ:Sٺs!mԇi_Y}"BF(ʇ(Γ`LTm]~GPSY2\TE./[ seIF8֐`s\JƧy>ewl6K'A%N+D!1qʼRVSxISc'.qL)]I=diP0KF!\1֓*MP"!B%:)i "!4\0NCF k+88T1>ǰB  g0I3 a{}B[>N rlEOh712N@'IxdmBin+ȹ %6's3duX/[0!8Y7 ;>YcS,L 'L>uԕ|0N B 4-] D6ndG;08_6{TId|EX䄃'Y;J"p CMSGBB1-I-10sy m І)WR, Fh3 u3͐e.x;Κ)_c@0 'SN7!)<8V'-{Hie[Mȼ9FOTN[rsԛ{ܐ[-d3 B-g}Xʰ 5YBs18{JrG}lN8 V`uJrQFĨ4SxJc$L[S\/uPBXh'!11W%+r3+7\տ?I _ͰGBe_=0V<(DŽ0ߪVq &"HԾi]l7>DG!V_J3hw'7%H8NK,g4H,hBbɐ_4xېOJv3FlaU^!ŬF#$~]t΅wƚTo2Keډ-a.JQa,C{g 젽Q3T̽$ mI0BŴN'y_CSVZ`5U8 Ы"i{ɼOiJ8PjkLbWO9'JuhAK- ˓;݉ Ui12TG_7ԧ7=:iHxW8V=Y*[,wR4鉉nu~]xV|N "'>Ubʕ  HAuSk ĚnPf8CVV6ZDŽf)G}fMj- dI#FӇJ`w6"@KQ6kK <+n %n>nlh[@f*{K'q44UÓEG/4SHp s6`23W}&3\U(*.uX3% yУg2Җx~tlN'Y9 :LMm;N> n.'uL(@,˫R+?f Z-|4%<E.~[!2cMRb!w-;n:gѓ󯺧GoAA TL+41Ρ"}b|:}p&4!̫D h6VwhoHi M.Xޱt 'm$SxՐ-YAj;Tڇ"n*;R7'P9*it@} :[jT$V<3:iBz .W{=ϯӚ}t*g/o& pw9I{Z8jNE UH(^:6>&GHW5ϐQlA6( RVr; tt)Y&ZjHq6$LEvO3ZcޫE8$*3v|c;>5lX+~plw~Cq"E@,tg9;L(Ad8OY|l!7[Yp2v-l;mJ:Ô~-C c&l%MyΩ |TWzo=4#c'" gdE}(.]E ޔa%=%6$A0EeA&ԔYg'2뛦ܻ2,WNb2qNF9#Lgl̯Ç" tϠgM _ԺHj[7Ix|ҩ;3<X RYj8HL2NRx{cn9iA#3&LR4E2.WNS ǭ[L2An"JHyx't]50 &ResжʭhzL#whF TFU!eZ!ӎ%Yz7AޕSb$ )t(M~0kH q !˿hAjܩ KĹٜVfGrg c$)/#14,kcN;i!\~\Ҧh'9ESlte}^A;.b2yX Բ4Y݅ m5"3$:Bǚ--cãg ܰ\}δ]RH"郑>T8&X*xDz)IB'#EEƬc Aoqc.&nz?83yN8Z+6co'zwuR;:aFotcTdC%yn\ .4.BkDǟL!S&bO5 q*ֺX{Y&;o$}0$$$@ & ߫̎y'9_[fpb>c植g^.u8Jg9yIu!VϲLۨlPWUlEld/Q?@ۉ{޳:v4^֣2yZ9$ 4;mt( t# T;2C8MFb`RuC5k4vC1~T$t y$CR5+ śm|y)f`ϓf 0ЯI`v_I~Z$iAM7|W$~xO߷Kn|?Lrlv%75>꿷SZĦ=dD1ˠשvx,Ot}'$[f 45MjAeIT(,`[^װ~fҩϹEb3ǀExab\tf.A,ǂ-5=KxOZtWuhؽI~K05ݲ։NߴMMu bG&QeÊje7hǚ"Nv(e[ӝ$=?m*Վ>]hw]-eLa0ZəEZAa'eR(G,82hm QiJ ͜;Ⱥb4 e 3e4%{&Ua?t!"*W;^Q~@_!lGCRE2yeZ ")|t#hHaJх?0\\[׍~Sh "r#6t"Jic9k!!UȀw9u ӅHRG؝S5eu@l={¢]P!)(Rr'): =^8\A HMHp| ^ֱ(2db EHoUFP;pؔ>:bi+ hqB~̩ݢk-mb4%l Uui{bLb5ݗ9&p]ؓL?DF1u!А`Lza fjR ± *&?WHR<{q ^̀JL:U6p2'SfE{&m1 Ŭ]MDؔ4f;ڇ1ķݨ2cunTaFOMJ;i= ;#Dɡq ;`A|iUX0 ad3@ojϕ kc/C#yUx #"~H7X&tNL1qEVM]73WWBL-v&ܺSxCQ>/ ǎoL-&b YJ0R!n`mQyWC.MYmwru$i)U1@2\wĢ gp)Ut49B;ԭ7@!!,9;~ 6H󝹹h|IM_AdY6)UGX}]w^VܹH1\ġ6j+KdX"X' m.eh. T \l?¹zJ,41ܼpX5Jcz]s9eU:1RRy%Ml-n[?Vs-D>h>JՓc^ԝ/2 s9 P{9X1)w{l`%߭aY녜YM$ Kt/dpC)nD#b 1D)z/-? FèkhHdJ7pjWMkDvo&D%Xz*ߕ2fӈX `YX׵#^eD17?Q6`@oꧩxA_7 }4Zgن3NQ=6)9yO#Yi"Oe]hgpr+i$D2]g OO˕Beױ$HoIV6>8_i:NP⶜mRG}]}83}H2$4EѭFZ>P2(sWnI 3G"H :%+ $2)GQCI|ۆ?f15.WEZ?C3j 0>Z0_kGF,쥾:%jc:Q\X>xB;*뺣u"҇NG.݃|Mjr:#JYu(RR=}u}|9eb"Z1d5LQ~R!{q63/=H: d,8[ &5z'Y6jR~dѰv:Ѵ+GIY 98Ծ\Tm)!ĵ]4)ԩb?C`?MHr?-ĖpL1Ctu|, u{: ;n 4(5G%. ދ=-vh!.3/A }+ѳg 9B̬#>l?px@RAh"Ir`OQ`W46CibF^[nFNj&$m|?~vn9l&Inj32DS4ٻ\F IJ-|:>78ݣN6 ]69y+Gآe&P,Min봎 IW;AkNftLLI|bJw d.swDO&Hi'j]y]$uϦ+Gk>mAckܘK9^>jOP/`Rw)p@U~n+N q q] ]4~j "T `4VG6d%dଧ(Ȉm33Hj}' P$4fv ht\*nעF-xK홙.:TKIhiEV&}} 4p@V=N |4Oix R=݉Hu50X%"ڒKu=x,HsM 1|>#a.lȻUA2r)D;K;9N5C$ *uj*$AA u| ߮q+ɦ5[qr6ƹ`O|fLzwp3ur7U K*OdFcG B $+2Y*\ l)Iw?$8M& ۛGj]0[o&qnrp]hXk"\RI,P,rEI魜Mwy%H#'h#:>4x϶m`/ ]&jk=$8h2=-⋲RR=B*0 5T YԴ㡩ʉ(ES 2sux㳷7 #dI>2#1!,!J`$"N+lU ޕҬ㿆 Kc`!22$ !g= sѰ5UrJoDBILK8]0'E֢ѷ?\ _܁Jbm3P5uΌ:>AqٸEU,e>D֊";<[5*}U56L(ůyLg_eEnh PQ7;`\Jɞi0U/h¢Aӻ^!gDðۯ` dx4Cob$вC2H`X@l*,|0E[TX@i~{[lKxE)yڶv&Ko[ ʝ7BG:g')aRKa}ܿnFN^fpĖ3Q`NHjR]W4r1k\%/՘%4UU K>%<==4(Kw-QGuaK#ʮfPafՠ/jl]* xhԸAa"PtN&X#OQ>2>.:|=U__%o!IgT6a~$kJֿO/#l/p;?i|54 z~{7Y~va;|ӄM/ˑ1k&"njȒZ-{[p~Ǻ d'fJPQZLw#Oj|b)!Brޔ-cڦzlGH+\}nLO|GlOM;jᮙſRh%-Nih_G6N6۞:cn*N6Wg8Ύr]yZ10I1bqan[[؍~.c<:/}xST(/*_/Ga`Wz@n_o_kKs#/?/_~ヴ օLNj17?x^@[_wnB"~_7r'~i_{_}!_<wu\zz_Z?U!z?E`t_kp]']a._VւevMJtW5}Or$Apa`zkQ}Ъ;`~>1ײVΤNP-V9|OKVmOFUiS͗|<+rK崕qۉu-6s|=܈Xu he2J_V#L_+20kVY/Z| -Ҋ֋5X=u遀k"k^YzCMr-ޯ׫v2Ț9Ks XW{e]oYkY R]'P&4C_K*g1'V|_" n,ӊervFK5O e+YEOd- m-y%ԮY⭖@jm Dz,ȶүkEc͓1#_߆G%P)ngmI5י?_Ԏ\cDſR Lj?e:zKf5wĶ<-h:Ol {:^-ߑx Ȟ@\rQXܹ+K-ZkO)ֲXSibRg)zKb=KR,3-ŧK),KRRl|JRld)]QbfYRbSGXn)f>K1RLbfYߥ-ŲzJ-Ŧη?J8Rl~J-ŖѿRlgirK)v;zR,;:Rd)VbR*T:e)VbUSRbU)ŚS,n)ֲXb]S,]o)ժУ['T%ohSP7x?y^'7}םy7AF^YY~e%t - CY<ҭWm3zDz:W?z\_Owߗ'^7ΧzсFw[n.짫ӧ߮_~f|ϗM~<|}GGv #GS2{m]dxs13kI9zyr\h{|ޔA#-;&Q[zҒDHvη1[7o^G2zf56%{J0q[NbS]B_t"-[G=8}Ht@ݔmf2XޢG?#X-}Jf p$$h T}o^,CkX8Qp }ߗ0^9_xKgO:AA+!wةM/g^7R]-ʁSПS@ uQ6VHo}h΋ȼsg+^X(#ִEvޯtPq~`%T=$..5Bo)7 <,/ grXj:Rdbݫ%|PhITo>}uν/9ilvtј#\;2]952 }-C!YVL\(2l:sdO6٘2~o55 *dm+!)0SqcDԋ.'~x[,އ]'|8a'Ɵ+]҆=?sD]5a3qWRJzz{4j|tσ&h=_+EIcCS,'ԕ٠WP]5m9FPl{P+Dy۞zhQ8cN[$w9aǽwq5, ź_.GE'ǨH,uX@9Ե[6r4^OU _ϊ`|2meA?,&8_ Ҝ~ :iJI`TxB1REߓ,׫„ɡR?ö%VK5٪ޝLCr0Ip۴I}5:[yPCEWB{e9aEAfMn,1+`Bv(|-Z `J0 +s~vyD<~90fVt~v 5dbChgH?=w-`a|ߢq[/Xt-n UsFN;Rn^O)7sGͲM AJmC-{E+ 7 VF;HDkH len4 m8'S vv y^E/ywdį(ka"8M T5T)[Ʀ'tSiW\23W5O4SQ$=5 ߏ}4"0 J'ٮ$-7|QzM-+٧{ Vۨ:u{+KEmj"T~ޣzh) : Iv}Gdu}pxy>5Tnf{_@DYxYSpZNJcǤD؀W1X٭8hǵ\͸"A1^ /jI*dͩ!7xSf v3L2QztmƘ6 Dǜ*=Qzo29 ܔꟶH%j'E;sȖtFaDז"1w ~}>R}ՙm9lMS$/02-͸tY /Y >s(Tjfމԏڤmh P5"]2 g"C[<12_KhO~,AI4@ٓ30*U^țVT*xZ`8획=#\SdPN4Po%:obRlhOe_s2$s|?/¹ď⍗okl0G%|xF٢^^&% ó6_&E/iL9Ex8Z'R EtZ(@l|pȰ l/iqyBF"j> I ըU~~PdBѾcE)ט3ZWM$`kiM4+Ѧyl7J)(q~݁""xag} 1:vfLz>筵X8ѪK!Җ}kRexl Aa n!{8I[)tX y0I3hUl(*j>+t(8YI6þ)|"vQ)1NB^nL1C+)!Ā'A%d?J[ Ԇ8l {77AWńn_T!u?ESS&4Mҋs 0]ѕ +[uWC9oDFZQ!1#i !( -I"ʑ~lyވU/q`kMZi n{ 4UjJ]d'~1BT _{lRMCs:H3] hIt.h}@R7\IY`8අK|M kQ$,jEO%}?644m}tx B>&k9TkH,ى#'b]uP(bA־3Fq+C4@g #X%]t[FG0t3$ŏMvwMϧ$e.H 擅>Qc8j~}Mut3|t:yP *Zo{J'‚>x,ƭJUcCJiÌ3 T <Xuph Qs0w0r칐 L2eT |}Z ZCKIz?0j< cDjw&'wIS8V>MuJݡ2=HFg [/Ьg-jT杺!z;F6S#g-Zp-A5,ڇp\)%zLVe5TvqajTEJώwٿ+uV O736xtl&Rd$I͈}4b& ^9""~ف%l1i=sqfS4R,0dQ)Aç)V"L+H`Xtp3fhڝe)HR)rASljMI~e|ϴ;WV%J^=6ɘ)BD"6M R=D@w6eB#r ꡕPu!€JqƗO@Ȫ*q'"=I}oeZ۠M,+wf㧦`'!2 DڲCݷ1 +{a[{M iF.X*> wJFD.4NmDTS &ϠqN|!@/f^6cR@t2#Y$ J77MkMdotחQm 6)lmZŹh= O:9X X]_"mdb5|zgrIBIeQ85(2P%ԄUFDZizyxP} otp!@Q7MU6)AS,\j)DF8םJWCү UéYCoiQ_e5'zeJuK`K/P)(d? !}=Z޷lZS|dZv;c<>:yGmlr0f^h,^<1&3E$ME܎Q9D2r횃,ID,Ҏעa j'ihteIܣ5T$*6_FPl0MK1J*yXF1a/i#ձf9142A*UY/ԠĴMWS9F9UɅ#j'aOYHp0( "W:t l~O9ھS !+ۭFV+foR>HwGXwg=`Pe7%5" OЦ $K}uk?v윿Z!WC~:_<ҩuĝL ȟ,jCsS:RME0eq9$c 6&H8ף"H7+$U9izw3G|Q"d 4n"'B3b6U*47ݪꩇtt1~RI`Qŝ8saYt#&p+Mߋ F:O%nMmv4i42E6FVdo/9'.ʕCuq.4SͨNgĀux}};|(Hq&7/ D. Ѽ CkcnZ)?OA֧'{/:[f2DyXy r(e81< tɌp'|t\fZ ❊̃qXzj`ěBV9d׿% }CQʹH-*|W~DSސ;udp`ڑR:4CDxccn߳USV}Љ#Z.@⒴Sιqؠe5$L׬hBmCIo]sGCg b]1BlP'b/v=E&Ic8E'u:SPOfHRߚ} F#P%3-,s?w0qxGz5sOVDb&벂ĎĎ>6 .|a,w X N۔T}MeΦ[ʀYc/.+AWFImޕN (!+02:36>5gQk@~!iݑf\B|Mg%Npx,MI(!Xm+|XS |2 .XXCdXT1Hr"K\/N0)_g2}@;/:>(c&كAo\aX(N~]MH+j7yBbAvC"'H:wɋGI7ĎjҺn$S&Gx([ꕍEBJ4YAS (Us\I㠣 hL6?sGY2-C]+ -cJ`H!2K)( ^B]YЎVQB'ܧzfu7VPB݈pAd7iڑjsvIӀD@8Yd4wIv&;F^pasW&`[o h^`n Iݚ{s s;ƻ'a*qg>4JC|@<"4lL9Sʇ'!ݐDEOE'wKP MB# Y3APtP&zU$6htUxZ7̼.I@i4 r6'R?>q,lxD!'t5h䖯/DE u/~̠o:Ú(>h3+֨c<Ȇr4ӥ"jzA:arTUsuTVIpYlߋϟݭq<'$d=nû VaXꜢvp*Uu$/J Mʵz'7Yi֩ t>\TA-V6:f->597sR7/ƺu\vİfeu1ˮ? QY= ){ ۑzqp"S%4kL(G{jxH 1IПWHpsh#|]=iǽ@On6|ZS ,ԸVu G UMr9 0$>[O\pj2L&8dl_+AWw/nL[wp>ˠuG/Эꃸ"Gtd#Vt]t)#==p_3O'܂LN̑m1M`Ǟó6Z/@M+( @QPug|]n9om8zIoe3OBTwtb0 ~?8t1→fl"eh(7hɇ_1 k݀un'H)QNiwPp }c`5Ŭku/. ]2f@J1*c. [I@7OE80MW֭WggbJ!T%81(ۦ.tf+Jw{)!59%SP#֚7VfƨG˰P4(锸uI(ҢѐI GDL@ᯢW, :,ylKx&.#9#<_jT ] ("F^lC.r[X ԇtsrA{V=ޣ&Hɖ&`dܭKAF=qeW4NKA|EZe<%1߃HX@LgI L.76t 5V6BS ØJ)v;ot!׉8`/3!lj?#F/Q9( i^+'au.YiDg:Ru%z& $i)ND>X5$ӇzzPA4gr%#sAH~*|1Q d-k }LrUF&4'k7Jܟ\@VVRj$!*3' .uҴ|-!hR )U,"ץ&*HNJY0FZtZ&#}^4O`V+SMRR:q6jݎ} "WyRB)U^s*%s=. RwV%PK_7H:0 ,dlb{ҹOh,l9h&Ug } 9G4 o Es& +ȣ>G6ɒpXu{9m>5s!|n9.)8纄lbSDMQעԴ\D/<!U<ixu$͕;9@EEIbb)'gW)=..ڪ}[w:֒s H=CJ$;V)BYC$(|=qq[|Y?gKF0?1ͿJ攆ÕS?ҥ4[s(p`lE*OH eH>FN' YBݢþēFVp):Wps0Py+IݤW+T"TJY7_ lY05I9 \ aHȦ)Y*Nmm&i(U `%*##1 o@` \qb3fK*~.jToYD.ԻI+|E:J8OCIlSaD#؄pbt:Lf1|va!"ggN؆; )0=;4gb=*I6}`v or{k9u{}VHǸxQk=v9x@z+i0 ~6=Q Wfoq5){GdbzF-\՚V רZTEt<-,bzGSo|}Ѽu`n<52D W߲݁4HZW;42ˢцF !wBC hfdBoi$)/l%XK1)8N P4;ҬC&-¨d*WbWl܄ RA u`n@+j]>Prph?! Xc%WY0%zg8ԭݏHx.ѻa'yօKNj4^X5#YKկT|P@(nc GiRQDh\HaLYU|g P`'K9֪ 0[jy(Oo2~}/<䅤SRoRSHtRTLPOCcid 0iEإWH㌮pƇw<l#HrJ}bsE8~+CG?ҩN+UG^A?RD8{.kaK[M/ϕj5O^dHm; ώMDUC_!nBv6d$C`]%7,K`8Sՠ-aP9Iu-bQ`\atsmHȑ[9QOB%ޟ6 2myGUv_R9j+yaOeT͑(&x&&IZ5:%/6@㫘E6Y:08,]Pg~u#uWY"L0oS⹌WvòSCơzCi:V&Zi$1H^_%*;쟚$p>FFprO@k^vgX>NYNdܐq95c%˓RFШmiP ]5d haYD EͨM3`[z\N 7G>B-U-JSBMʼFcy Kj^\FAxU 0$ClblQUA1q:'$^wZoVd'p@/ wIh8k CI #,?%dA5BUN*:JL-40p g{ eXKtI W{p &MY˙!`|F挶PᘜtaC_fOl"3E?אa%(۾ꤣ7''i>4uNE4D޺5Ƈ2J[Gg.ّ&P4*ø8zCćذ/v+}?K>P|w #vԧ#$ ie].Kh\!i#'J[┟@-ձۜP !^"Sg]8rX'|QЙވqel+?LT GSډI>-hǕʚ~r.SY̮A4jZ/|mk\[jN=BD偦>i93 ׎:4=[iQI4f9~Z=n%$<3RbHfPa=p?"Q'6m;AߢKZ=&7ҵ ڊD ٫-N)YL!z9>q?aܲHSLK# Y\^KzR}̎YK"AWh52~ipم`# Pkx9\IuᡁJt>h.*dg>EtT-=e",>$YELxAVĖ4^ dop:HOd8?R3Yۑs:=0_Eh8?%.)Fʒ.głȨ0sƯO7po3|Dqq3+lZp;f''+ϜJ+&ڟnF5+%ĠnNxx*/ qjIffP&(Pj޾ި#PͅH͐$A)=IJQ T.({@ Rh)[m.¡iGfEdGS&B;y&dӶws}x8YbV"[!C2ec;N󎙬Q˜>nK/@μ;+|[%*|2YF ~)XzQz轸]hmn{D=/.3~hx9f+Iw:7+)2޷!g_ 0Y$CmssU2PE[z53;uMU&QoC羥A&x<MBĜpz) l4!lQ@p6P,#YVGC,ӖujPގ-Z25I݂ȏۢƅ4P> ƒTdC!fbA3R ⢬'ޖoAORnZ+ egOMrPeʦҳ(Coߓwl][\juv'BY&"GΪ"Œ0wN&yq0u&8v?Q'4kXvˬez+] >qq$h;=uOj<ej4Y8s).oh WCB1rZ:b]<Ta{cz7B&z>4eQfuZXx"F6Ġy27KJ.DHNN"2%$0t H{߷fr~?Uv-:Ԣ4e4Qh:(T1|Ig8 # W`hfWғ.Bt]I{-3tƶvqᮬsI7+iLJ":ܡdN¸ q%ENTIH-~ϴ\FupJ;g. g ;0V>s-E\3OE6]ŔP(+t] j#o}Mp»RP.SwC qS&. ֋^b"2bYU7h@H*RD&4 R=~t۸sH>دZ4%?Ѕ9 4ia-FP.+~"e48koMVE`8ZȑU>z/nlL>I@fej][ۡNJ=3E&ɦUƸ[-$<,qSv;X&[~`IAYU;H ;c^ XISROT#2 &~tev}RG=*օ kMKFm=LJ~=JV+m4[w8=e bT@6Sh4PcӇTy_f-yUc;vYLtC8jz>:2{<tf`QZq\r`5 x/T G`Eƫ#Ɔ=chtI,ǍAiՓhWυE5=L22{KS>vJ{6*ۚotlimCYZQ ?j1n,l`Al.` lB|2hyo&5RFa'A@kY2RnޡU/!_l.V?ݡѻqhq>_ ׶+:eE`'2RwV<7rC0 ",[kB f8UZΨMyc9G!uMmabA|G@ăXWU&=V*^ 7ljJB.W6PϑLCќב٦ÚPTH^6dtw⮏&vhv#C'$j%^є2R9JevwloKS a>"(h YPdXy u_tdqo;uNHE*chߘ4 5T~f#UD|Bʼntsj k!s^ c'4b.iy<!I¬7̆"ݒRhclRQdݥƹ [Y$FR#MV3qpA[VE{Am>(t (NITμq ,g?znY^6g ҐF* uL0#t~E^k^SDל3) =NTi=-,D 1G4`ԟ:wv>2\Lp\eN-X}֫M~p\ldnCr&!lc- K`.cXHh<-j"?t,sX YšGbċX-j0Yx$S`?k6ĆV_p`ZB0:7oI܇P]=㐡k2\;@샃-n%U4XBS? ME*q_ࡡqS1^ӚzMO`aĐ\Mypj.  lK8AW+ gPNڂi3r5{)gYDp@4Q`5S~tZjH- pFAcl7=A Bn?%\[}>hj6 -qٵCIfde_%E|@?2c{YG6Ne~-E`SUo&A08qq^.lfdJ[uSf3010-!]')z?AO6S 8#$GUZ_(}CJ?Jߊ iQ߳ofX&g@@1@v˗ftT>qGzU-IVDv6ޗNGGk>@<IDb1C ݌Lfh^kG z(EމD][4 OVGZˏKRȯ x E8+T2VTW]ʬT6Ju$ 6=i6ns Be;{FBQ={12cb߈͸ Z DmeTkZ1&Qg;Q4F|.2 aG4A"=-(,~>M|C;=4S1]:Z<0-27-p}utąrAzn]Fɒ^L g+e*E=hݓIki{l<7ΞF&,M. (Ǝ\aH΋B}h]*)\O&u 晤n@z8BK^ WA`>06$-phzCzjl*׼C!zwӄ.zA@ΓTEl#0IxI$tliDO붓µT%.h4AJLدϏlDj(Dphi33AP8k̃ 0ɨ&CCZ%V0ayL.B_Ǧ^E(q)*KmT~ 7;+mzkHԋ~Y>, 3%O1k7)"o!(ZKK9аn@UwX؏x,̆U$ё"$S$IS.1T|O @}U,OEINeCVHrۃAХ.ۓ,b07} h{]gWGi¢O؀H T]adSĖZ(pc@KE A+m+e2hc4 ^p)\d@|W'g)G#sј;uV?$DyGSJ~Eq`Ŧ/ćfFԖבC $Bd`f׼&PGX4V<y7 6c–TYPr deZ19e Aۓ==@5 :]!jq+!t ^tniެD@_|*hV3<=G 9rs2Ur;i{9ZY!`=YRI ^Jɑ-יMy_ԙ ~;Z7W[hh?XIyQDvG;BKG$ͦ"1L`EVДNґ'(syao$\WC Y ˩"8:6(y۸1EEF1N^ͼ+ /y›ocl+#3ݠ S#FL"!KrEW4s5|@e<)6Dk@8`uӠ,ir ACe $S>wUNc;!DLF{B-ѹK(Mvt$uaHg _-Gt -D[vA<)j\}v%Bώcm@Gc wKEs$JPXJp[_4$tn(7 G]Sk2|b$1ZMdBՐyHv:B&#6gM(t~JbKꮤL!w&ק\#5΃Sf.sOABwO'gSKb~t-E<5b, tȑ[ }NXb++RNQP.-MLA&u/X;6j3=mI"Cäx)߅NUv "!dAW\Uk_Κc#*g~ IE ݑ*fNlՇ x{F}=14 J/i[cQUs\5i<+[za&'ZaYgZCdw+ a4b f3J˄ͦY}V}-ߓ^ ٝ iTY*@R/;Y Vu-̃?eN|-B0MM`r6B%}5eWC[RGqL)(`t?XJZ2㠢|(@DO.7".^<eO%qG#'"mJPAXh~pKHd=8t2{IVHlKAdbvgV>h8wx 4#AEhM:q}T|gFQr 2/"ߦYE7]B! d]bN3(~E7 |6:ptd=:G g`>i~25l kd/b榜<\WkaeEl`_}U)k-AgYE,swg?a~_LV0}G^6p!mY7Eh>g4m8,'"9IP 8ܞ5!PLs厹K+wTxpp1\|"T96Dԋ0hst #l~x TcvX5ԤuYQշPKg?xfg5g!ߢӘ\BÑ"JiT &Om&i3! uH&/!.8s #o'\zko#[\_qP~FfN%؀ x hDCI YݷS%sp)ۧΝb}4MtNHȾ q8떁n)ՉuơH~3dJ͝|៏CPo (bJ4)YGJn~/92EyV PV7'X0rl:Ӛ|,Yk Il 0}o&8f ȞFRv<$9^*0t4{!A)TF.#-4M$QųTr=bd^T-!z_r |0gŸ.l~E1䓚~ mkW잂'= 9s( aR pO%q6Cy ڨ?+a:j[T 7RhA^"JӰ"yănTH>dͤb՞zQ?_ %mO/mq|d5AFJȑYC倽b5fϛ"¨4=5u6jwL+ aMuӎW&4Ψ1BUl^F:qf`Ye˾mgJJ5:Gm  7}ȏSڢX ˦2@545Ja{|>Rd8 .- S~MP独2e3(ŋ ꐖqa%y:>@px&TlIE03=F H3v-UL$pFDW+fA\Nh3ShC,ro^'`īWy"cࡻ|ؚ]{+hOaY1z}Wfk!l2dyZo M} >|&mƍq(A0D Ð86=ٯ5'osJj JE5kv>p=c9u%&X"ԩg!]!HẂI.5Q&v0T\D`uޞW'Џç""EqjN7QH)H}J)6M-A&$P`,ڃGa3UXZ#\d䃴O;$CHjh•$X5u0ӯʐX$QBK|Aօ~yW {O%eQ= $La$I*r]a|x{2lC0l㠰\@:;6L@1M[!rj(X+A ]@>B!U̜$~ !--O,ȇ]y M QpAr;5G$j#f#Fij"4ؠWҲI$F@O[͊aAXYkwK/STJM*xO4 S`\ T2HqJ.+ -,5'e{GQP$2bS5:e,ñogF<)X:sm}  R^ml#x0(RPP,itloME?\ Iw_1 uZ҃7EY G֗fX.3\y`[USwCrhvD,5{iW%% DDmB,2qK$4F[e SHUElfd F; F"̻qfXi 8٤ʁJɿJE!ӑbQy3AQI F=JNo?1y^E(H@3^ñkff;xޠQҵ 4u ĉnXT†=(@H(|TP 4h )u);|"zC7u vS>]2췽 4|[44FҨp7ɜB#"sDxRl5Ua(#}0QLo4 ^øUR<< Y]T B4ed 7 :SUIA'Hb& #Y5 FS|%C$wAUC%0h?N@-xw+wsgzW;zxۋ:sgDlV IXtΡ'3F!AX2MYNR@>iPT5]LC 39+D^EVM }MAR 뻼-q#v#5¨.ۭ^#IG㽳kbu; L劉~|$[WOa3!XTermvX[9)+ { :q;ju0%'DNqu%wC׶* {ʄgLG=HF8S'lCrXd6b-`3?q+uS fi=P,RH/X)od hdfp>t(PS#Zå:i@dQb?eUὅI~]dp"V\u=1L8At2} RŽ*+{Nt9 $0v}$>sd7*,(%`Kh+a&Y* sp?UFRGUp!_߇bhdU<.q֞7%ΎN[*56aѩ>Ksdw,PL4ph'9 ~=$JHAT; P L=Bd DOB^QJNj 2H`:sP@J;4ڪe:(H-˴s #3$#>* +&釽qM?&ג+H pj<^H Uy0o䠨/"gP1GL ׺ up=|O횓R=o:T5T|OmRw$*s YL|n Z&dY, %C(gлmR29MFg֔䒫mQfq/;2\wI$Z^"*@~:7CL)lxhii ay[T4|hSeA9䥫0uR˖)Q8 l, enJNsI;CQKviŹSLlW£],O89pښ 5jEJF <~v#p1 ' NÁ\R7"#@X/%eݞdO1,98w |t* h2hq&S_שeI)?9KGHɢ3l4Lԙ)A{SzJiL*q}'A^Kڦrx~"z2'I$'S+2Q҈{wdivi.+2"<,fk='&ji6/[ȮP uiܓ!F??廉jdHSEL:EjQbRB(g 1>~m*r m/0i:048i8eKxA-efYiMxY Ym%5\\Nή4ǖIVJs7 뽈H }\nQ[ļb2]]HP/yCEty\v݆)d\R8<]4Vrz"v_%"GR @HpC[Wb0f0Ҏ}G7Gu}M0cPz׿w:^׸Қ Ov%^gkͮ]8&|p;K̂Fa3Q^ h/i<eڶ쳵x֜@&] 8J^t}"]?;YN/pzYs?Mc?<9A*|欆q^Dt6 ^+,./,Uy&P818!x19<ޚse4k @v82 |غU yleIƃHDZX+TFl+ehB iHB܊4_'bQYH#2B#Jőjq,ԊTD63}t9Di$N l iӇ#L}hj,@mS\S>N7;"N&.,^Rg|khOi"¶>oC4mjDD \>,hM:hvR^dK\C+ѱ#AW1[Y}%Hy^5 bR,$87Z"=?{!iyf kj5|.~!amS`VLjT @R\:e ꜛNޡ46i;B# bDBĿNqpwDdV:-~7ĩr)bDiѸP(pS_uS7ssS6nkH:%!+u/8z\Uz:0ne:"GQY\ A=d/ĸ_[D€zhTm;L2[&i|U@)!ʶè+鹱^B* xnK3o5W2oN!#D@֦7 3]&괇uWF^<%' `q-p@h% gP$gرY`9 'L.q}cEǫqlpNLq5̄D8Ј考DI%紑B%!Wv>"Ԃݦ>o S g*]׶\?;΋qyώl2erĂ*ƬjN F[BNeXt" #C#`_|&srХDSl  nW )[%75w݄m 'DxFz4 (V%Axkdaj˯'!J fQdF_Ɵwu]~ΜY*zYU Hֈf}60+ 2 ;+>9;=_evAS"HcܢfIvi f*>-p˲q']%T&]1WCA!4ޯT@jf͉TamuZFi_L\ѳI8D'–{N|˪pg:X܋0y]$ EX~*0͍ oT¡ w=v0\PnDS$Ftx3.P?b޻WiɿEzYH<H@qaĚ ܙD)+Fېb9/qdd=aiыh#R84p :!O"@ľ. 45>m:֍Ny#`"$_Nȇ88 j[SxNLZ! oJ|J0KH@*)Yv۴ b"gRǩ4q"dlpQ1~'@8F#feQ47P4k>7JY;$t[dQڙVz6%Y59 T%@`)q`gXG.WCיK]) a)8sSq0uA<;.euB+tJ&EC'}#$_Q.uK[kMWAVv{8eˆ,fü9B RێrNa K, fP0{tJCAh]+EwtbpWmՒ e=W|٧F}0 ``Ɇ=^$V*qE[͹4jPbOTda8bi v@ cQGmbzbfʿo䙍NK bw!&*I2`fO%坏OXPnw*PM1%V옕Oq16 ۋ}~?z3Ͻ&;̡/S͑3 !&P hBiV{'eO땟+K AUl@ />Q-+)r+FJ|>%ήԅ#*%:om$Zԏي02x+4lasK\$v-ɓblW1桩ɧ>hST~oepaTEvSFvj6dR/eS=$k\I*Kn #umq?.r78XC4DOh|(;*ezȗ ~)+ݚ7; ;@) %];䂎"s,]lQb.DŽ|bMyPL.'6\/jTTlw kO6<& ;WexQرZ#GM" CcWvOzbXGN5hsPevʒ!w0R4-Mp7Ф[8KA'3G`L'[22LD0n\2 ܣ*C#{hlKȟki2 c;-~YP];cLJyPe@F' DVu.L(ϤQ̻sHr1iOf6`T,~6Πm!+ jiĤ24.p%v!;(v@~~ t؛16Es+ڢ`*w^onJdF͗O{p~s+UO3C,L:˨xtE#ځ9{=`|_$yREGMa ;׃0N0M1ЭSnb$NS}0I6"M,ל[C9^ [(Q-bS NDH#)NŐ\^(dlE;5bEo%äk$]2v9&>Ll+ڹ*83ě|x[V& Q_jE*<u{O(#[N30V^Wb;/d{ _ dE 2nKr!#♠l$u[/ M8_@JA$zKxv{Fk|Àf8jω+LpyհXm&3 QAkK昗-3ٍ4DO`)g GïyKȟ݊iOzGHT٩\~L8>퓺 6ࡣ1BI#`88W% k ?tFG$MI0 ϝ- B*0Ҥ^4-^5K F =F?WUh|Q]Bםc?P5@N։N_wtoSWZ| ;Nt?~G9;wHp ׾nTA-/F!C?J?b%Ar~+\LoY +.[' d?4?Gq=h󷄧&Wgj*>wHB%˼TQuۀ巌JGݣfm3tF;U-ԇ-PEnc4s]#*"dw^iܳ,^3sW׿?ʷPw_G +.϶y+ڴv43}߿Z^?g%Oy69\A_?Ͽ__o~ӿiAڏjx}_ҷ_~!SfgmkR{U=nQ]{O6ZٶUHhzYEs<>oc>9X"sUokIzJ^Lp%{&X<2M|QM}zLzzlzN^,IZ6A+J%[^d3Zo^v|%4G~Ʒ.w}z|&GL\/lgZڪw=|+>cRz}!^GMo[&pc5W^#*Y?dyx}s^GjBljOM]U -^KZ܏U\PtVXG뵪7 ~e)yLk ?F1zuc__Y?Յі=Y33ge>L9 ^awH%Kw-u^C9#5r1| 卬L - SΤ._O'D~kfw3ێtQQ*er|5)^{z C]meO_ oFrΞ=WKysZb;*#oi_x:g3kk*UжkykzCg 5\hDc8utΠk9-f~[K[)UJe)v-n~K1U?+ŖZw)XRlk~b[G۹o)ջ;Y RdisKV[)vTj{K1bVtK5KR]X4.Ų|b?K]5AR,GR<{b=K[ AIR,G_Rl~K.ŦQٻ],MQݠ|e^~+[}ߥsޏrs~]3˻^$V}[λ5؂uy|u}u)d-GѲjʟV"{>`fպ}??f~PWVg=[ɻ~y7ho8zyCvލ4B;{lmyFz | }^74# ޸ 9t4*̅'/hJKzԅ&/_И׭גj.494w[/>ߟC M߾AǿG=[%}^z%~V>.N 7nU?ƺG# k-?w,oе/o~lyo?7..H U|~2ӻ| ޣ%dr4s٦6=?F9 ~QI5oo?^zw_?\<=/p '8L! d{GC;;:ډRBoS#opAYI#śzQ#ū!^{ƕp /4NqO*2U9߽(:|L#k.?.腓[ulsKF^6!O"]䓢K6$@f%yGݚN>Yߔz;U2>_#N9>I(MϟFw}Il^Z{)^4n2]S{_=ag*֕  T)=ͧ*p"D}9)Cu<#'_~ K5?/Ts-h.`c $-mAS}F9C^)-gaxwz(=E(S[i,y[9em:7 jHމZAf*]J/f2=$iy*OyTehԴXt~Z#YS'g6\~F>U"y^.x[Mӯ};'z1Rh7x:UoЎ[$dN_i6R :;aO-ugޅy\h]]|;Oߕavd%l&c t?̦͑V|YU:췎\﹍mU͔HyV(IQ@?؍(+s7ZzbAQ Yz֚+?f'w4txh]VBN:Pꭽq'dzkl)62 &asv}uPxR -k#O7MNTM2e*gthdA?utOsPDT5V*t?G W}|ڥ?=n,9'շ6#S*R3eςH6c ʳ/h<7\##is#Zr ^ytAOu,keЍ*].ϷTm<RO9A"|5)tlP<<1}wC+w K+J#4Y:;ttE! fj76W325PM\4p;O@y*)8:j,M,,#ڦmFq˴gN}mp&t>r4?32cDdB^0BQ)G]=޿g$vQߖO‰dE<眐KRI4)Q᭜EPΪY(]!Ed6Μ{"v_&&sc*hVr %ǛbkgVNCYmܭff}8y%忯nbi&yjb+ԚBwUSk:sڌSjRRJ0u^SPb蝫ϽpߵєܯG8XS sV &vUIxxMd&m SL2[D'|!xiz Tר+)kMq[4).0{{8"R Qԩ6@XkR d ~l>\N] IG);lax(+h!<6H8:Ad^ẃiwM,w|h\b=70 x&}rp_eˍ5q,L%M5r \qgk*y0Ρbrqx=s7BH AJK C.L5/ˆʢNͷa3Xd N_³4Cu&X/ I<֤^^dϿI2B;۩kpx<H0)uP; IʢjjiK"LY۴̮Ǟ,j}n%§]88LG(hd껭_6gmK*7k ']TaPnμ02B&$A& >;FLAy`Y<(;Fݒ`)Աa@IGLQ }pȻK$)]]c4%$A׃uB#C%$\>7Uv Nތ-sHo*tR4w{`v8 SGh&qz60QظA9s Y?芤QGlf+|RLFA;_>V埴ϑRr̶BM0~0(Sׅ_g *7@ 35nI68i|UgBiITEcn{ADtˠa?GZM7 q?;"}B]J:Z.Q ȷ׎z@u9DoRGl"+zUy^X +R/-"N;`.U 'IvJC(ax;AC}&2=) *.\ 3?WfܕqLxn&u]}]fK-ަ}O*'Sltͦ֓y!#Cm[G=SFW´,ZliT Ar#Vj!2jRNұQYJ'd4'Q2'YBXZ,lA83%X9ܴM|DF_`UUۢ]#}kWi݈ %w{ us;FlIlhnmNMo]xq=DM ehB~@YY[K & Q|xF] C}3mXm+ "lmԉl߾/Relv!t:`-3 3ӠqUƤrׂo07ho5U͊2Ƚ+^2ZuH2ff-slۤl)Jtl{I}EQOn>]!(fZeb/ȁ-T0O57&}%U0+ҳIygףl Fs!%0 V*5T$u7kSb)OA!͓pNEĬuyu"-|S% w$6kBb/4^iҮ*;ez<ݨ N.j"& Bo1Ȑnz{< _pP#ʑ~L)CPdz8$e5B#HPoHa*! .B4X=CV T欈͋U45RfKݖ_i] /0&5N/D݈P< 5W+1lQTH%ۻ+;ùvE'yd8ctiF +S_ׁ [8I}D+JCk*k6LkrP7ػ(ƉnWKϥiNW Ëԍ 8B@lU5NAM2r_6>(;#)QW +~zhKO`7iDa'0ҠGp8LMuRDSJڼAn Do˒6iڋ@.]Fp p{"dE?PU#M􁌚} QƎN$]iaTk4@J-j\ajG5@>҈ѫ]M|UP疣F3|?ߩ?\ g\~eO L:RMOCx9IL`)!AH'lސfQU,ϩHLB x8"aΙ탈#\b6B>K,jlZKVϊ:x]&}SPAc9P͏*MT8!X 8++>~ :znV}e@}[n$q[h(!Ӣ"4=i\s{Dl7"*O{9zE,}:+]HVXq%y¡+kt #;@R1"Aw95Em_&QF r=@s`Jn)!&)5T{*RLOqbt'e̯FX4S0: ٺt Dl1=YA$Zl,o~kO61ӈV3Mq)h3CHf`R# h"_A4G]4R2Un /Cƣ "h%t8V$/Yj#@CA0gֹqc.rBr!MRf|}7YI7vl1in 0iQ ڠNȇ7!?1/w-WK`ar@K0طP@ wE&ᒽIsI*~CCu q/=n|)eLfL.*?'j# h;nRi` c2kd%O$$a ? iXǾR9ԃwbCTrLkC&d97j?^CVZQV7q@'#aqG!InJ[\D6}L1\H WAeQأ6uRDщl[u)1mX6I͕Lr 3+'=~/l1Kh1oCca~ fN$ձL`WaGGgM >[}3ɁڕD/wvNIR %<'T䲅ٗkB'GiO6HE8wЬw7е=t }3 !~=psT[֒92y4P(T"-Hf9?Ċ q<SӇ_o#yN:*޽ 䎜 FrM,ac4y+bY' <.7l>4-ly8&c2p[IsW;T/i"'Be^nMl%#*DQa-z [`d0|!tB͗ir:X;.A1E^)][GN]h.ܪ -vA/xVV`cM)+Ѯ/ ,4HQɯ4y͈9u5Ad)l7ԁc\1pR ˖|SvҵT*$B>H+%eDPxݻ2&ٰηJ.1|jB;^ 9CGWbpU62kvů3?a(,}O.}=n1jfwe░Nqst,"ɺ>Ll8dzHP CT9D>RA$4{2 K!N/LmE˲ ZdXQg748)+(hpC W0: "ٺ6"ufqO;EqHϳO!> ztDRW[sKHFG{.[ }}(Dqќ³0HtTg\0(Q=ytl-6&&6:ُ=P+]TA4KSHX)74Ai+>Mb:.;ؔSsbhd,(O]!+mR䜭!Vڳ{Ē iOf7юO?i-JFw~}}Pvw$(Y6jHDM0m~:.'p:8[殇:~OBөLOfWolڛٍZ~%vHXvJ@tњJ"/-wLE@輰TLRclJG#(VPb/KЍ fl}!Qj Ay 5xWODCne"Yz>w`м'l rvQNnΣ|[:%)i+އ"$D$F21 A/>ox&f=gʋY4VWAF:6Q*vZ&E#ߓ>f`Bwک wB̕8;;K/#6C7Re8eӰjXMRѼ&$QY)"ٰ,`y]yr!CӁ=!~>*I'DRC2?ϿTϚ4}V~+WKh'<4?me+htHanraqՏIuئ9ɚT &/-p Ӈgb l-ڇ$SNǑйSB`lL[e5;֮ 6ދl9j:ԾD&5U$3RhV-m- :M K3>/*ju4fb1k/"T)輖4 =:醴ш(RN8ᚗ򁈞Oh^( Fy`_R`t7S&W}KAiu;L%wX;6T]Hd@^iK~mWn~({ȟ[ 2dt 1^oU!s,o*δo =S']}1sKbS-t^"1'؟C6́9M ]yX̉ZE-4I ҩh |N9>fD[Q;:b~wӤl8Ui1fȎ"na\HcI6>M9 ԕIwR d~> kRSi%D[}R}nR*.BTEꕉ'rX2c9ʵ.WfQ@Xi񄹮"/xy;h98>R&鰗SlH7;]0SE$2bvk1F4yUYJh<1"rD CྨDMZg0l*E8@6}6"L~)5(H3vXw}ʌ4bPϴB[5Mb`3Vflh E.D:wt99 ;v(EW9c*U4œk0I,vD%9F#є/nB__R6?|G?&y̭dž"H4HxroFUhnVZMz`HNGNH0{fNs^MvNpW5+ @3 }-r \[Èr+Ϥ M: yqj-9 kʠz'a>@atk C%lAtŘ^LSzEC!AVI54eQLr1s EFm;/M /nUQn|li iyk{Û~N2,G&ݠHWUY@R?je ,AH"bh*IVT8f2&Uv. ߎ+Ҳt )KT~N l?Gs?p_%=B W%o"W(z-+Ӣt-yYEݤ̹g%vAɩ(;ZQbx[_4FYv+*} C Aҟ.$lCR1y0uţިB $t]29{gZr8%p"iZi5%YFu?25rV  x7*!<֢L6j"vƁ Qyׯ?e-hCv-sঘ=@,jD Ya4F is ]>]ZcۊbB.4 6P[ᖉ)k4B!GqF;ע wV:Qi{.RxGTD;"ꝓuMѼh*1Ȋ!|eiBEz\fU* ": iZ']zי C[3~"zw㈰5U??3ȦxaHА׳Ĵ)OŶ5z¿OćYu*,]>7 v40sΆf[Ҕ N1\fͪa?㮨̪w^. GS{Xee Bd $K i_\(dsEe998F1 OaP5A":QCӇw˹+gC+qBH!jy\;r4:\ q}H}&}fSFzx @m (om 78@>r^/PBC5+uӆ~]g''4vinRO4Ҿ>$Iie:^P"TF7$;tMC6Dd~&ٔGdUOKȮ93]cq_j0r>0MwR0؋SsBT(Ć&u_ѓ ozSreXCr]itIˎ)oa UjcÜ 9>'Y*{$4_:JlD򜨔<<`[0UVr[koP.⣮47>匎90Qhf2USq/Hn4a~*?JE`mȇ b"$[UYc  9$P>jN0yҴ:@ "=J=mG 0n.6JiH;6^o-5!nɢ1V.NY?.,tׇ|\65L۰km*S8~Ȁ Df.lV >1d_ĈKȿkwG+pV=d #GFV0sVQ1/\J44yw`C31:,S[(-z,%ً8鎅IPgv3WFE1ؾ2btL:*#kdg>C@R]SC `3vB=29KިU[NݜE]ĵhw)%?% 5ĉ@uu|ǁ-WG1 K7,Fn!`}Vԩ/$EMe6)7&_a4:?K(E#f*~{I-'C- kݒ* Τ:!14۴*S4"uY_r!' qI;n6jbLL-njd%$Ώ><Zv<-Zh5r Cf4]1†%o6lrzOnx࿶i6b%InJM§)jN2Vf<7x$pQghJj*ta$PވjE5d|gȐr6 (zjX 'mR/s`ϯ97cbŸT0ggTJxiExDeUi0 Q'39Thy>qgITɚrmA2A'U3#ƠLtorHo o3;ymЫ4wdҧLjQ)ۢ&'W_)JЇ_+86~ވ/J$OIm |iHYI8~Ѻ!t+"C1;|.TDh5 xCű+2~)~mly/jouu**wBCs}4 of?tf`b#b!2BNu7F '[5@m 7뗾 ϧiFh3vLjJh(o=At7i\F@vFc;TW>mN\MRG.@B:0,}.8f}#@]"lw ÚN^_#$JZ7ﴷn DG~Ks{.jF̎'T5TǾa}pOs=ۣȖΕF'ح5ٻٞGۚ 7q䣹 '{fHFE^,4ɕ.Ta4BU/?l |T!β#5+=HE/O"˸vPUQ1E_Œr'%* ǤJ"d"r-[CK9R =|+qÄ*71GuJ(5| Ao WЭvZH@0 /=w 1})g{ŷEl'WeqSɈyGRb8< UUp k,̤HxD6>̇ҹޑhf8А3DGG uz 4[|iaf=IyKq2tp%NK`XN;~hhS?,cU Ei|ȇw-Pl&`tZ[$8"&"*^=| ydCitvpMQZE= L*5h]czZdiR[L*YyUc44]8ob ,"Dy4,\8b(Ƚ+1YBc&#[4MJDɄЃW$ rrudg]7nv׼ҩS 1򬖤4"x#w\vk[O7FfvFIH i"zHH4 ^1">x}]KĈqфJq`*,_`M&]0$w}EM r(ÉBl;9h 땊Hs]'8޲+rK.NUZ¨7ݺ z$- mRioVI>C'vUØPqH(:Eܩ\}IQ&W?Tv0޺2^9vhvaEsSlXQ-Ï1Q+jG^}K+-<$MXyT6VЁd^Y̽q|}q6Ja"`ڔݘGЈ;oAES.I9>ڻ/Y`ԆTH)A@8!"̍/E5!  5MsWSj=wHe &]1.NU;0> 'Kt5~}ceTW\ (#>o?t ":%(("L,7:Kvֆ6\SUf:c x#(C u9|9#Kd!ʡѥ5qsYfFnL2V^(,ʝ5%,%/fP+⠝IjCn'!ZAsm_*q3P.HߗNJQ4*C?R#p.y`z+\I9E0dm  6YN<ɜk><:v28YySAXOF+J$ o͟y\S\Al&MVnAXѭ@"a-\Z>_ӈ2AĦכ-`Im ,kT/ziehG!uE#FD02i+. [A+̰&(hN1|\[Ɇ3:=swK`@|`8ԁFt𕵑7مԊ/߉3s3(ӄh*ߗJI1.^*&e8Oŏ4?8CUur NNT^q_]7dr]6*|B[NzV/Kd\ fJ`!0*Ͼ.J^+u1d<*ұ؂pš;Rx s,+&B )Cɦ&2Fa}%>G,puޑ3P+x?|V&>VD`),ix\o.Tki ?DUz'̺)`F* ^9[܂ kI@8bX.K;auv4 `G!Uh"|RCg*I _=SzHsi- #QuA{p Z6z&e^EiNr6MގVaRDJN]^>7OW X(YvqThW0ЛXlg[h6c";˫5iI! +tWaLfPy+1 ۩45l)[x|4pJ _72)+{Ρy+cnV8psw=Y#+890UFΥ.'qMK'|kx.Niq ?}Ahx}clzҍPt0hZϿȔ@?% Ŗ^{Ҡ#S#/@/&?QP cRE2%l&*:~qEk kU2&ŘM$OKM!-95jDj:]퉞(&q` ;*D A=$!fLW;3ŀl2|~Jj H?Eye+C"o0g| (<ѶILajNϣF;=#vLFS! :Lay!=| q^ApU٧]5>yn Da ?~I(ȠQX&3l4=ڞYͣՅyE:/\&M.:$0CÑ\f?Aqg;+ytwNE.*r91AYHdm$p WVzP  I}坋9%}1CoJx3ۅF%TB$_#|T F.z] E- \nӵ|DKph+A˄DIS1:"z|ZQ P!ظ((! Zp0G!P&^.A4չ~U}]}"CGyOB uI Le11U$ZPя??.WP|a*a#o#xzQ #xQ@kT\PYXO;[_ɷ;a!aNGT(KdEi Se8l[#+כ6ܼs NE߁y~6P7uκr5Oz!Asmv4IۀEZ_ZDz [e.au;\2:~ 7 zh7o7Ot0ߔCg’ @.J)w!po$7TBHiSUu1JJ#_Ђ֩HK8pa fNL-(PiqLoc,9h2IyTI0akF rWS( 'b&ED}u]5,8 ~?5I,'Ru5&EͨIU|&MMHTGdUPD*#bnb|/%7}nWœ7 GaV JIՔ̭5cR7^ l5!RBS3UbEƐq?)l只@1LlJ1a]>qrwf%;c^vEasÈ9E/⓯>?dJXx%xW+gMz1MH}ӡi&Glrq'g j,"jɸ,"Lk(g" ͐SP${ H$5H08jh~5زlIz!La yԥQiG~ 5Ϻd:N`hT'ɗxu6z.'NrE=hf#ԶM&jyڻ B я--H|09hLih|! M5h1uu A*:ɼ#}v[rU~"DyEeg9)0zLjڅIG E՟)<{H2 01Єn\(@kh)3Y?0)ONPX1G?gpqbԎK P_!a[D\CL ?7K9L09[#_ǜB@Zv48@]ٔv!F*^$Wiz%lW IRΨ&y9(5mN(94Q]/Hv3>}s؝MQ$AJ8`7sAc>C@=t 2(&\|3e$Ȱޓl΍!F͌T2@ş) R84 a h,n{𺮢SM{48+k> )-JŋԱa>dw&siձЬ품GyG| =D0)>H~Pae?dx#ْcd@= ,u]wncP,:pqʧ5 ܁Sfx Pf~:85@9tRdzU_hu3UdOg'~aQ(WCJ?1^; t;k#=eXgAvh|whvfÔֵJ[hY5Rܹ5NsdRסޞ\k%.?"LkNBoAވBd*ev?>lMhAI XPK\wأnfw!S")#%Åt f#qc'9V 0Y[tAG38"H7_os)"ʢSJ!+@.O;*WRUP^ԓ$sc9ڝS~E3q`76ݚ_vMXkMR+ u΅e|! DdC\$vȪs%s L:b4⠡'921dC9[ u.ha~Ei,F׭e3@=AiHr4f~J:)/-{v0gag *Ga}%%V,?bcFGOy^4pV(JJָ\rbck룂`#iaT;g vlM~4?ݲO8X::2FJ;–ɶ$PιA0’{zd֣lDrTPV|sxďtCBʱPUh2 mZmU餇3pkz[OKu$Jt<)Nɜ1(qT%~FJClDT[lLfNg/ęьm(kQtQ ejtyMW졁; T9j$ء`YܖoŤ DRcwuY>GH#M젷Kx|re]CU 0y<΄f#xc:Υ\AXC ӰcgP1᙮ 0N(*o YxkM2l)g&62u 3[*rz=JuNG',FnƲL0hKjt'6G@U46QNtյ~SJ8C/y\vriK=9tiDb)[ dhd6N`DMȥ511 PȆX 2ԃhNkӒ`hſSV"gƓf^ڽMsB=H]A;0H(FP<`Po)UcsCI!v* 8hQIGyT+s,HYktՔ$ξ)ȩ[QvAq'3')WP[ B}ն zo8p-2U yށ|mC:݀e`E]@usaQ ]jܦuB  xtExhk>%i~%lLe^!ԭVn\1=p`mIUu2zOHt s-ҊrP.EwDY3]yt 5=GbV[k}޹z6emrC_QGqվ6` n(ݺ^}~tmuCjQ1V ,ހ P:t*Klaffp^ޛfG)oo0+eJM5on'imptGׂ⹎1eTETm\!8H<"oM^)#b2op‹R!9zl SBhyI+TuIm⥰# V5fOaؖĨ4:p9>Dw`z=xx|塚[4(nsc>@n\-[䟓n.,Q:ּ \ O묅vւfF1H E C'˓45:WJڢ8؎ ̵t1f @ uْsJwJ "h]td/ěE>W::,q:oAԔ8[$7".{7-lXӦA`Â:`g==Ё%}7HϷpRKkVL^ BjW'T) RxnUVHp  >΁\Y7<-LT fP,:*Nf*Mc>(?E*Ò\E~~aWmQ(}7ZJ~9uv_^ [Cwt҄[׭foeie·*ӐyW '&V6:R7]х;0be+(M92iR@# 1Kh5ygאD|=tFMRfDnI*N.~{b15NW#6/P,56":ĮO@pz)aQc JC_ 'V43~+[!2fBWSeHHa!]vEeFFvآ t;>CXE"v)0cō[9>?R#JߗG',[݂1r\CA=^ f8ΡVb z#`U*>zo8UOx@i4 ›``7PH-z-`^i3Pž-Rjn[Jb Vā-!#S+}NEƃJxrs]&zZQ@y𤉻1U%C}0wbO\YF rPɶm# ÒF?֓ٷMVڨj7 `n9:FzzHUB= 2o8Xg{ew usb fnHMiExϞr;Zgp."3C9Y'!ڹφDM,ؕ&FV|kՈ2KзѤ&fڟ[Lm Fv! "XM<᭓bVxu.̷M>0)4#G1Q3݁nEÔg5c' CFޞPLhw`X?'6k%CM?DWz:SV Z킌z9Ĕ0];#,j:zdhO8٥?XF?Q #7T5ĨYI"-l?ĭ砗ْWrI8PL9.nV|bQni)%[sP F_&@zـty ڪ0v&mL jRBLmW-$XIx_ܨpYF," f{)(hR~k[3$V+a:Ґ&v)ޚ,YCIƒT| u0WlȗcEId3CDr+k)oL̳iֵ3]Dkfbo.`fʏ( J-!;ȵsSlsTsW+qL h,TjV%Jw-&*\1 IKd:32*NBEWl*T)"tԣyh,^dM_8[ s\RXX<[7($ k,J^'$}|?U* WҰǥX@suS;3ϛxaߟ&ΑaP7P,&S[9MYxv q /oFK-`jThB;k;k"B!U52X:I.Ic\3ԥ#kTs%RS <"/qvTR.)/x 1OU#b$LC(Zg3tJ M@ʧ V D%U'Ve^2V8 uQ]WvEVd&!12Ɓ~gD, n`= tIHݴ&jM #5ؘPM$֛HϔJEG&wh"_&&\JF\|ep9hƸ6f2#kM:' @h-sV`&=4: ׀3!XmcPH3;zVICYfcFFc) Z9(gzR}"}6{ .ihW7$rVLm3i R0Q+2' z*} gk|(#-SN1M.ۓ~#B<Do'9im&IT^v(wb)5In /y(fòJAH5{u fGּNz5/Ў,R dx=!\2ߊ1~"v`~Gf@".Q+_BבHr+)pIKҊ (R}7 69O:0`1R*vnY+$儛*l&y峕n  [IOr>X4]룑l6" 8N"@+O#: ,j'tQ?ϡ!Y(~At>1GIs2X, +QPM@ts5hڭYc#gQ85Wq *vp\.(#4"hXz#\EÀ:X"1OřL 8MuHL|R,}󾿯rӭL~kb.7:Ø[eg"A&GJ#JMn0?Wr\sZ@f*pYĒd2`b̠Dsjw8]  x蹃+oqE>g'jHjkhJ 'ZS+DٚJKDieoq%up&/JvْP56J" t(u,A‹Iy߹9r7yT !ad/Ĩ59Uom2`R4=~]̣3DʠMsl;N \|tq<,m975M8WXTlz2c:}SDcz4Lڅg]f ׯ%<4G*t D^=Tg@4w&4 XF'#hb-PbjwH?"\,wqK*UMUg^..X2R_Ȃw%9a~d nF"O ? v >H#ξ.Yԏ4 a)6>sEh,A~(Yv+Yc-Hsy'B4ꄋdL G<*J 'l mN#1UQF,&޲M048@dEX1Qr1Db  U*F7]gbV՚o` eRj|2IR'vC{N$ecpEQPEq5YZg+?o7 <( 7'Ag rgeRG嵥a#;jI."sD䀅MHJjV:"y4T5zk|8miOQxHIgQr0bC ž&̈4^8r)8M6?X8LiD<kr9FmkYPEegՐg4)S% `%Sgld+IA C9DgDqRa NWU!oR ::*5ù2yof"4! Y- [v8݆ o*npe]"Y6 '(K7)TS;1#^8To[St64&i8z^´N(>:ɎGithmOvЁ  VQoj4Xt$\S再kפc#3"ƬT9IeIKkR0-I@4p[ѫ @2h% _Z."-`^xbKV]@FL!Gl}ڥ6veaĘ(yg $G 7;ߠ"2} h!I1O$@)}G1#!,[N ' $)I#[ID ];bm$UG}"@j :biOru$`gbY ʋ`AƆEI[.9q}si K!&4|:nr+`1F 1Q5SUߛНMwA+΃nVQSu^P5ocI0ܵX;fiȖ6 l2ı~>E=[**+%E _#ᚡr ЮHp@UtZ9DD}Z o^'_`(V?5HkV4A2M4̫kC1p,h%mct8Kf,g(@c XTTtkQToiC1"H4io ~XETGDž4H'X qȈv~U:1WCK_/*uͻ8d)5KKʎ? ,B{Aow:4??J*-(.i6- `Ukdȯ, y@eJU|+wRy`&cxى j9MLkܲ(A!6{v ;3|x w\B,ʀerGUހo@lrz }XBce &uazc}!.HB(+{ι]BŁbW(Xq3dF@ +IŽ<19H'uхVd$TIڟpҶp;?:DR23QVrM!|Z3+3*Nd64@ϑ/$.Ю ɧkș0>*0:u.kʀK13ܚn9^occxPw]s@ʷѩ1_C˝|)W,YEf:u$J6NĂKGIUhl%NDpO'Ug0,f]݊W"dѾm,\EǓ8˲^KE_h(\GLT ?S2Unk&`lFdž"ۉ5y] [=B~1kz& ";ۼ*` Ĵ.13[S͈pErL22^{N^\_TA6.0ʱ<>;*Cž z.Dr8Tᖀ`k6m)Edt"o_EʊP4 k;cg7 ("x;~Cn^Iҗ>cb8,NȅGh4UϘWfG$J0 $uMQCi]bH-Ԇ "^_CKM4BTxq[؃WS i~WS#Ogл^3ڲ^4trΪ9˫XXuLЫ,GYyI4:;LS[GwB9?7ԉ7XVh%z1ykpd&%"|[2ad"Y khh>(G1hYyh)etW_ WNB-E|N#Tx]qZVHK1rsx0SČNq^G5)poSvG{t8*,ơdɖh$^n}룚K+ķ'*,Z&(kxʖrp[0:Oݻ .n4I-Y+ ES m 02Zݐ!;7R៿S.QFF3cc@w If s)2󵆠pkO Z]]=LnP #ҨVhvq7gOd?tlyrCC\Zun-I/2zҦv#W|7Ȱngu.VKWJ!ɔa 0veRС> 4w U&2SL޵S~M?׿/J*_1]M3 (!}gy]@)ϫjeW^߿qwL3SEj~gGCW:_~Q~+AKה;`XI{tV@<:oϿf_"~)hp#HfI֜ba+2t9}Gz+Vh2|C# k[P+ͧnO]~7 _V\j}O 1U 3cIۙYfa(V|>?XjunZwXfk k"̂o__wo?~?mP__~կq[/kr3l)`!Oym߿߯ɠN endstream endobj 115 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 118 0 obj << /Length 444 /Filter /FlateDecode >> stream xڝTn0>)xlc7٪U怀%vaeZl0sN>%>noeV MQ |{׾ M ?ZEj6)69`SqVX_8:c /qF!}* LjNb3 Y gD3 }Ŵ$&}@"srO3pVbC-a1+0bQ^vߌ@?mAl۠;|+Fa͸aJAf9JϮ њTOO I܄JEֱE6* e5M7W:w{#1ۦG׵+<ҺKT$EB ? g9Nɏ)-WélvO|쓯@`مX ^ {\ȑ)n @Dotʟ7} endstream endobj 100 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig-contrived-3c-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 119 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 120 0 R/F3 121 0 R>> /ExtGState << /GS1 122 0 R /GS257 123 0 R /GS258 124 0 R /GS259 125 0 R >>/ColorSpace << /sRGB 126 0 R >>>> /Length 49902 /Filter /FlateDecode >> stream x,KR%:OCRi!( $8GbTJ ef鑱>u`"=#l2W~/o~?o?~KSJ뿨WnW?[y~^O^Ϗ߿~o/ظc\ŭ+FϿ?Kuu޸i^=շ<}]^^EE?__:_߿_^毾۫=^k}// [/?fkֿjH9oq󑾏yIsY<}nܑ\{ƸQC/~}|GF:^OX'>u29c1[s1WsTa|x{ϯoY?_Syiŗkqwwf vgyǵ|RL1Wc2tIL|2k^__vR;u {78^Fm7kGq\5UĴpt8e_^nUxyuqq^;X}vvep^;8c\z-wp+Ÿw=u\ǽ 6yu'qr=~;ɾy}\{m v_G 7ŸyQڣgkp^eџp7)]_\N|s9O\ctvnxxʅ7>uE ]?_xq;^#n/Iu:uy}r3gɆg=u}|owŁu^pf w.//wlpw!o#6mC`wc3↳{Uęl@޷뛻6~vE1c# /Ű9s݉O1}=/f x?D`U/f g' D͞nOn 3wlDyf rOݞ.Oi 5wlpw"s#_͟0<ݞ^O6{nx//;6{n8?QaK\ݟlpspw{oIp"s yu~?|{6~ˆ͟0ݞkxݮon[Qݟl;޷sf[Uc|ŗgD`熳͞.1>pu5f 7' wD`熧+^n 3{x׷ƒ Ӊ2U`),oppTͧ3U`) Ge882Uo*Qj}pT냣Z Gxݮ?8*Q*o*:/Q*<監 GxQ*}OixsToppT G?8ppT ~Χ7G=o Q^U`<7-8o^ߟsT:o/ l9Q6|]}?Q9v U` RQ6 U` wQଌ <}|GU *qTrRQxt lՁ'r@Qx< lUsTrQ6X9Q)8Gx8Gu9Q؝ lU1N9Q㰝*1;G8bsTv>qppTipTfpT* \}| lUUUQ68eUGU28㨊q,Q.>>8޿sTsTE܄:8*Qy,GUdՁm~㨊,: Q(pwzQ٦0t稊Ճ: c|_<<ޯsT6a;G<8,t88*U` 僣 lUԍ98̯*^{sT8a?OxNI؏~| ẏ6_OS8󜯁m>\zl՞>ہ>qa|=~^~q`t`߯s?Lf_|YɤM2{um2{8p =?phr)8o87%3 48y4_O6>_K?x`S8`ß=p'1do8.8gxyxoGdZ`\-~s4G:p9w*|Wy~cDz>O|bDr>O+/o; yr?a=\o>Oܞ6+w\?ax=7c|/\ݟlpa' 8?N|G2x?Þ;jO8v{\ßIx7Ux>+ x=ݟaρ{_ y;N%Oݟ1>prBGtt|p龄Ξ&u8ܓPOSoX?ӳohVA'~ժ`r' z:%OV;\<Գ u͓'67k(S1WK,`vAAXb+ƕB7_  )\|᰺ 7ͧarϢ>$ojMrpmVne,[fe]pfY.qX(k…9oh.0\ԓp=˅м;t_&SJ<1&wG-G壀RgsObd]EڽC]>?\ٓqaEpU~ )u ^\?Y 2b]/Zφ-s/'||u dNU":ۣJ--O1 VqMu9=ֱ<ȯf &L~}%?kPti,{e4}p ȵ9ׇ͚e Ot\u_Mt_Qܕ%ry |Z!~y[߽cyn`/˟Vhz8lޮs0M2K7v>+tʫkS6 ,$j>crF]:I5ur7t#=yؽl}2ʟ4Wxi!lV,IK*rSľ[XƋx2¤O篱&% JqT)J6@ ݲ6z Olh,+_z>k˔vm_$_(7d{aZo웕ݣHL}rp6٪V/iR1UT*Ip$ecUAA'|v>dߦs*NuC^cGB.#; N /|N%&y)䈳6m^qMH0 M#n$,BwKeV'Hc'yJ%šJYtXG p?!%,6O!cG[`/ .E %n@,@l ͳN d&-G@O'pjP7%5Vu f;eHɛ*'צC& y#CBHOܮk$,ě?A=K M$* !M n/J %{A[̍pv*T^?ٶ+Ωoi?/A3\[:\'.//M-$4(+ sg SgqMJ yǭ.&?F@SN*%TGLX^t;x rCR6K ȿL0Wc( 8Nt>CSKcy ՘k{mN^fTwŬ 1~ltB%>Ind&섑- 0Y2(m-1u,N6|F"V|I>gH[ ^?}Z+s",jYM{Ye-3-] $>?`ZX@7@1T?~ɦLRw]ڧ'J>:Ü$Z >+/+|YcK 8\)$&K&ZW$&FM̨YFCiĂK&.e)Fϧ9 U"UEWֱ@"3y2!_ N==b3)ѽPX ,(;SlT0 ; ,Lu Op6Hpt:[q#*bk2C/.uY̭%DWOy5%j=rdت]qTRb5=Z~Z0;;ꋼDI~sK DOie.ѵ)VjfV"1]x^q Ue+qJ4B#Jls~0R='> 1rHcc3ǷJnrZ@<jYSy#Ƃe jg,nRC&K<{&N Ģ&f[n{JQ3&_4t@g2W1QiHtiI.$DFni3Y&T,xE6U!&&l5Ŕ"LbWv}܌$24_M[U$Zeb'4]R̴4X-u-ޝb1j2-zb:նIA Mސ| {X͔oKrBq?>SPbnV>Ke{cZ驊7?)L,1'1QD֘ DdlږDr; PTK RFI`IΞIc?'!$D#D9>nϙ R7Fyj'~**Ɋ'j GJ "6Ag] U3ZBЄEY"א3s6~^"'ƑxFT.B07.5ٱ|?"ĘIm`N"mUӄ6'+UכDӽ21/@EtѼpYɚ0Y,sGƒp͠'"-1+hvH"T ^j|%[@Vo 0}QƑ4&*IE^`ɲ }CJ狦Q/h2;J3R%LM(L^u{YN4] {Y]D^̼. }dh JmЉ&C/t5$E'3Mbwd&D A}2*lfGԧ?zIWf>.+\6.6\V!Gx+V4Tub/:}y&rv&֟ hM/*ܭe,:]ĭϨ6'h#%ڔr*`4%8qcĢWAҫݻ铌Fb!ROϦy_GZ&S&1]{g=i\bP]^:+ά8؋*q@먌{|ͨX;>X}ڰoy:s#B,'c%a#ꄯ^\LնR)]sj@%T3cPjQę;e\&{W%_9Iwtڬsg_Ug Z5IYwDN2AH_U1Q@A_Ѫ0X$kJ@yWvjxh譝PJٔXcnu5!e;+\3%Fױ* N|]鴋ύe~xX'DfC]Z%@SDBy9$D?&a)"L{h'<7 {LJqlp6Yd8g{JU9P*Ď PGe'҇0&ZP(4?7+촯䢴8nCZdb9ڷM 8+K;k5`(Y6Q8kvEXil=nvKl02Zv Vv""3NC,3a-쁌T8t+']EVL/+H%ޙ:fj +J ֘@jq,l-; C| UC&[p5kBi!p앆di=TY tzNTɶt3[{ewVE &QC_|cWX\v@bN01N%37S<(R8np,v VV53Mi4C](=մ0Inxjspo2NՎHt#zdL؈葬ǢFAy&gFmTb5څ폹鼱ZLU2=ĂJ?IMs((}L(MVƞ/> ʃݴ%m&UNPz&%#vͽYh=GLX EfT_sH?>$ j<2^Vbs?VlыV_7k534J]Sk|QbJlfSt %e!BsOl0F cSc _QJ*2;vGPA_ie~7 t+=>ٺmb hb݇E+,5?pYKx;YZ י1?3KH٣Y_ՌoH!}B>!"o94ÌIfʂitDkeubg ^cxΏ\+k5أ8rM$9ő\̼&8HQQ>#DRx>5=`SjJSq`@.BY1$%v,6pάB¨*k;=<;=kk`jXwZ0!(`W0> 5pJƈZoV6P Bj(t)uwTƱүD~~:_ G|o-%l`j~sOh;(-̪R|aI,Qr=w4ea2VXh]KSg Np٬IEkj</l D,Fd8)|㋎޺~b{{'D=ikm.}b1+;i娜űF%e YxGn7ݏ;Ǟ^A!_7KүXS%i;EMJ?xғD~񃡵i;zp)huffsO>N*NKZXTqz҃,Yw9++'#5]4*޳E'o6oC̘tx9=O kZ_ښVI"}-w|)] jb3m,r1 i AYI$so}iYMGR3Vl(m3v(lwaM+%+XK@i[YUar ZtT~d3 m W" P3|mbEB*6HMu'P5ZWi]e޷0 IU*/ M1vl#']}d#y~'1XDb__+g-xCkw-?H"SIF-!\~??dZtXPNU{Гב1r킈hb}ez~~s]?OٗCq wHSؘiI_]Axɿ?}o!Ϋ4u3xtu1Z~\ڼv_ԦM4/u1/ZU^_d3~Kמvz^ⵟ^\2_ƍů/ꘝ[nŏ_10c^uimߟc s@/GCa~|ҋ沈nģ+[xЎ _I+#}^~v="b Gx{xܮxjDob|va49>8+5N W?*'n>~} 6fѬv<\|`#v}0, q8=cx]oWX9w뷅AWx@M076zx8LzkJ1>0$4'^D8P}wz+o<ˮ_ X'FZqN #Q{1Ob|vջI.9xOSqbTxynjI1>W<׉Exc >ps"s }|;뼾''c|O.n -wl59 <ܟlēQNK]ډQWƐƞxޮGnj:,=?y'K<'4v}|`-wnC[ā=O]st%`Žq^+ɀ>1N=n'1>p?qO]ԡtj]~. 8V޲exw<։!E?]_On1c%Xx8'1}~F-8ß8';9)F}:#xqio<F&05N+6gӕ>>0:Bq#w>psTAu6״+TW;6v0MC ߱6pkjkhxk\S3Pϩkhxk\vgwMknTWiK}|i`kjxkxޮ^/wM ow zNu.n WwM=7;=7<ܟ:u`?x۩9֗S]W w+v+pyWNu NuxS]:u`g ?ax=7TWsk砺 ?Aul9pP]Űs࠺~TW`_ϛ 8.7+MuK2TWe8.+:Ã2Te8Q ?a8,k|P]T͞Kぃx⠺ եAu59f5>:.+:ⷃ2Tl͟0TJk: pP]2T6lᠺ4U~P]AuiTKSe8.MTᠺ45zP]<.Aui~ݨ.AukP]uTTpP] :.MTᠺ4rP]8.Aui"TBP]6a}gT5Tׁ՟ؠ҃ڠ:%PEFumPAu1ޯS]kP] ԩmTS]F=:յ,Fu~QyTׁ71յZ*1>Q]TSP][ lTnեf렺O_Au?O>^j<Ru O5o?N`T%χ3| <WO%.j8-]nձ e{+o~}'8=ͤ7 .%0\\jPֹ.U(܏':~f/Rԛ({xT#I)j9U;6H= \\Qo4p^{~`T+. lR dT'Iy_ &2\]JdԨO.U lR&Ŀ9v6~ؤXK?pwW.. lR'[zZ~ MxpKzydRvg*"~x,p6=;p9x0'jK= ߱IEM1I=o'&]9Ie oiL`Қf 4pHw=7! |?E͞i[6[NiU|4pH}_iY|>iooZr-p]9!zyK 4pH=7?4pH 0p>4-] \1s!4Jof&pH?ftpHK|-mmWӷ4pHg -5\on?xK ?vB[\oi>vH tZCZ8!6mGi~e7r˷8!M/_7i{q)^7itpHKyݤC_ ~`x( 0(-l<# ҅<^҆|s>6{_~{7[{^d䏣4#{)s#QQ|Q:b8JK9JO-_]Qb8J_9Jc9Jg GiMg *ߥ9t'סwৎҟ^6 lz>,Y5cX%=ЃXz/&~]2/%] vL` 🡷6ΰ +}qO` +qа 1~1\zLtdCdzac:1u=<[plޑA4ZO1sltդ֐M2;fHGqJ:hh,G#~BO@C UKF=uA z¬vAc݀5 XvCx6' " ~ê~HnxTx.ZsG JNj^=h/?N7 q$agA,;9EV`n4+;^'H#oq4b^|wEyB9Ag 97+_Hnx.z )$cH(Z%Aj*9B/*;Ud O!3"a#)5{5*R:$v,o5VYzR3!+¹V4ڃ7;K:3q,Z۾sMWBSۗ g,Gzީw7@jdew–>T f*DV͓- meԢ^*yORgPlvSFLv|^ƅn^}0Tg . c{\K$Q~kf Yek`vFz,gjM=Vqd`i'&&JS!~*2ާ c뜰d;;!R"-LԉK1UEw%BbW#A¹8Z싪Сb$reWeNәrS pq%.*`ѮfWƊ ~Lq;Moh%\&olt^/FQ!1_vr $'d4¾.5~3oH5+3H$í ܄:lZiv8lδ2 5QP +ChIyPu8H*UO?yֻ:I[}#Y$lEmfz?M# dpkcYkX7XbqG&ftIf05v~*øu$(^8S$a\?cwp*SbjHXN_3̾7Xٱ뚭LJ_'Q4V%ˏv5$1 ,d&[nQez r=93Q&i<2U%J7BTkiVٜZ&b$14l 3+D)Vj93+zF+a@Z$Yug(Iщ$S vq1ʲFQ! m2.q6B6u In%#HPC&IN5!BNJ&N pZ^ȤC'b+%ZJK'\J eCd!M;ؓSFw-"fwKL|- Y7*V{no}dSy$LŽBβɶ vP"Us+ EM$zw&%9XCU1AB`>_6skXϴ€*kY.xє oG/A>' ˻ y ahafS¦.VuӲG%MlvBtI2H=;Jʷ ">pJ]GZkPs)]¹͌m:+^"5_7[!2Z/ DU}C[D tzadMƜ,_KR2%Q/ !BM 뀬W~/8(輾I{F\adm5*-S(k?&1]74<.%?hZ\eޅ MkWt saEak;\!%keMU3| XܶiOX+=&ht'M3&3"]Jw<ͳ|`[Rm;E~ 5X['lBDB,oq#$ n\=7f7X5$,U%ЪHӠVG6/mAAȷN<0#;~j4o/ ujDכּXq`%y.(NzƖfq4P$?I\↯H82)~hq He\h&VB,W7%u74c?Z]tZ.Kwbm%=  U (/Եn t&\Gdik 2%O}eZfUD&g% u*TYB2saZlVݭXB-m_Qmdmlq Msip_d 6e-!LLPIrzvi/nEAl&tI%3 ?dYKfu@7  L%V0Teڱsk+1)~Fpc]bucrȜ#QIzHb&:6PaoqL~"GQ+CE k3JˏX/4Oo`$spDRgVkX~ZKa%bV,j w$Pg%l~UUIuh .'4YX-9JXhi&n,4O9< %XR+fQl@lNCm8KeTi ȈT4cfRPBdA z D215/ s"XxG)=fj?*zQk!&W(I_g'r`Iw+zfdBVJ;=NS#yu "`4mmq\KT0|]Ŏh#l=ITׯ4: BHˣL)LFnPzFL?г'W,V?:+Tat M%=o4?̊ V2v$f mvYψQ_N.@j*4  {x)ScIL*W_ %xٴ5ռ0^'h -^s ]p,Ie#~mJ5M0ꮉ[|Bw,s^a_iZI;pJood՟u[[XtށiLmD8mx@hQidӄ3xt⍂#Ncg]Qiӝuyvcxר5h3jx=;i?l4]=Ke2zl:NG?h$׃.+yeUЀh5@òzyGΨ$; } XN֮,~W NVl{?4 g-PWnhCI聸~Ӿ4f1^ݬpM8\Xu-8M]#ר`~H=_U]U%W6Tf`FMOۖXJɗe_2k)S)~i?}׿|߼oXP)&+[~˺KշҔrete,ь!ߤBz}/e%Ch?M)\7ǯy#S~.ݿwokϿ{eM`PN?򧯟/yA_< z_ܟ֚씢wr?׶_~Eop||/ b{_?sUsh|n0>2يgmM]ՐOb+_>Ϳ.Uň\JZn<絟k,/XT.Vsl.<e:pGWo֪[Csbc0X&3}|`7olݻnף ߱՛h>.'F[7.1y#^yV=wQu㫷2XiŁw:q{3}[́}|`Qx߮6Uzr+u 8_ewy5D2Hpqb$`޸܁G=q/^CK1Nlш[rmxxӄvU>q9rlp'R$E׿e' y5N"pգR J0Toc|vpIan{Nc|`73zV>'n1>pUO IYUo\ԌΉ}|.' .ptbT'x߮o^bӰGjx=7s`9 hܱs9.O({#D`[H`熇U>ݞ͞O'u? y`' WOn ߱Wxݮnϕ뗿gD`' ?D`Uw'=7< cgܟP6Ns ܞ+?G~ vp{WvT~' ߱w))wlO.n W'?afϛ*f x?aqVf ' WD늻On y`'Pݞ;6pOOn1>pw"sO1Rܟlv$y}O6{l?' W}|<]?ܞkhX7O^n9pM>~`'zVݞ6pq{n  2.[TׁU:v[hTWUJ58u`_u`_+UTW`?ԚQ]: \|' lTh]ߩFuu$n b|ҍrT*u+pH\بFuiՃ >յFupP]?.7\ )Au6t pP]H=.Au6tyS] l \íMu6pP]TQP]54TNe8Au GMu յS]55Tᠺ0lᠺk‚2TW`sM եB lᠺk>Auk}P]K]7\CAu6Te8pP]*8.Au~S]m̛2TW`sM x߮pP]*9.Au+ o5?K+\CAu6pP] lᠺ >~P]54T |Mu.Tכ xޮpP]>TW`sM1T < ب&7xMu MupP]}|PqAu^~T7e8.Aua}S] յ>Ok}P]}zS]iT5TW`'  }_opեAuvBǛ2TGe8.+Mu6{AuKɃ2TUTWi:6Fu6e|P]or≠eIP]^GTW`,^ +Q]oeZP]/FuYTşAu6נepP]?ب.:Zq#UTW`:RAuxzMՑ* îw#TW :TXoTׁ( +5TWG*( Mu`_S-AuuB \EP]7'4TWUTW@uo7+r~@꠺:䠺;Սu5TׁTW7ө?jXّɑC)j)-mHpV#H"Yayы;fx<3IF{ޱsyc\vU_86epy~86eg^_v|ۯN }>{μ۱>N >6ϋμ>o+ǾϳN< >m.{ǗiP>ݢ6ɱK ḇ.;~c~؅׏k~f6|&f~;]B~vȇ"8v9뇝m3_96f1}և|F~|ȷ|׎|smfx3߼sh|֏|}ȧ|׏׏|-9. 99ı9xgǦ?={߁Eڊs/Slzk_Q.Oի+SϾl_:#몗{Esn|c׈' %Ep%]|Q| )=cTR_= ^ߣ# x"I*:7lsuR >e'ȿɯYOmֳie?g+]x]6&D]6 ]To >e3Y_|cϳ} i}XKqhYL>O826(JdQiT<2O4Kj\h (W#W0 WSC[iB '~jX)eS`ϲ3csh(- ?CO*dkE=e"-n8AIYcSh.G񁰳bSbʀ]B^5RM碖Ki-(Ms2+3ob8IM15ŜҁaX5ʤOM蜶Q ʧa>2-(Oٚ3< /g{ٛUvOU~'{]!eqy)-&,oI!FMIw8c̡Sggj򠅤9T;7ۧ4$zOWPoYoYKO3fJ_Jv3go/Y/*ni(xe%oيkmq$X)(Bph P@*CCN!xfONbESMp3ŤdاmYN2Țiyܾ]OGYOjCR|;&֩vf챦@u*]U5ުw wqϷ8Quu ~ [E8&+3,j9{WBڢɄ3JC8R+4za?/m5=olզЕ5 U+s:ФTH]QN H|YxxF~풤YUϧb?trw.ۊ?ŏ°1K,CJ$C5hcߗ}VRQ8Y&+%\EH a 0#,SDRݷ ~y4ayyG =M9d4TN0ǾS̉@9.䱉z_E˲?d{MRGr%0.PUiVo#)ŧ(3?宎7+{UU焵ꯃXp8eڷ!&o% xs$:¡φDM5H*aM1z!/jv w؇PL(JpK:}]͹&hb~FAo9iFWDhx8:XnjbgVBx*E،/-G4ꊁbF hgqé)OVڌ*YͰqRQ#768ϴc`05X0ED$3CRiMO{)*/jƔWP?O$ ajmm7 S!80~ =_m/O~**\6#B;#>DEl`hrR`.AyɃ,vH6ŀ #"n] hUs[>M,gI}[mc9A]>Zswxϛ`1Gܝt2xd&ݕ@Dn?L}7cC$,m Ƣ@~wzv)҃\cs!9Ό(82'K˞?M] C-O"ݲM9R7^UMZ&0FL]"$ΖI#৷ձxB{_lh]1gXe1sh褟&SewZ* g&4PG!]Kͮj$S؆xFɢW*GITy]==k՘7;L|UY}d H\$gP8>K˷Dq<'J]!ISOQ8 45jr4?L`T ωx5 sǧojQr7>bsmirbS`VC*w{ݨo?V j{&PEЇu5Ǥ.2Ktq|bTT f0_ o?,( F ^֘WJ ^(@UG@Q*@GI-&謊҆tkd[kfu* z!;4ɄRHC(fv5ݸ(vYWyoG0|> 7=l; 쌯^#b]Pϧfa穰W`}@F Py"EJ-TIgE.6h@V,y'&`$ j&߻XD Qsi2?f"WIV{; ߪH\e O(vUl~@ƽ x:Y_C m zIC Lg=mGWtTI¨''UY5=*b%魩w׶FITwVcH4&D{ I=J}N68 o7UD!% <Q?ۋ$PsU|R>ϙ?7;TjğZ;/TBbDV1`W$% M'$T\rz戈߾Jm.d,SBz^IUP<-mFoQ 6$y3 KP)1DQc}7MklΖ}JqϾCOp97yH`^h5+/F;#۷p]%ncM!nwO׎rlnQSm~j4t{d'I&+W& (TCM\pط˚yIA!NfRTSs5榢ɄDwv` Y-GWD +#AxYQ,7]ov=Rv. qqߕ1>4@uW/R >"8 %⼍()D/BUTiS0DHlLunp Y: ^b*de${dfA+cY߾m ZϽj:\:!Q)蝪2ٮ>dVڇLI\Wn'N#15@K +h^0.x^hLAoKU]}ߧew-}%tUqp)=L:ںad aTBmȭQL1dbKҮLI, 92" Q{4L!d.jk= ] Q[&d-y-Et=d&9r2Q0382heγ^zdXf=tDDC#%t(TFLFȴ?;'JNba4 VF*p"n1>@<N jW-Ͷoޝ]Eʌ ^KDW0cTU)Y"yfVhJ]` Rx0);&y|+|6'Ya?_{ķVZh)χ$ԚY2g!x>Zx^Qne£,*H@ vSYޜf a=&ar5%d+ {}GBI+Xdhg(AOlÙ([M5gICjJI5x} mGC mH< Z@M=Qhk+JyoLN.R)=@BR(5Ƌ#5A*6K20-vq*gR~FƊ@GJRm_JfWu{,[ jn,kNFkJS>'ϯ'mrGYMzQ_Z#)od"R(v|J.! ֡\LPby'3KdWvݬ] "$ -PEHJ7c_SP-rR`hs$A8 ɷ*n]<+M:xg~JR2A=ԓ>([!D-lU &$u!bY>AFgٻ'RX)T-xa|` U="@{}xSJrB쌯h|::ڇ Y6'FӼ/1.p=ěTyg_Ta1N\+JQTZ/"3۩u(Cv&D? :%t]RJʢ>[N0(ԱĎr,.b ($Sv?5TM ,E{v"j&wsQT8JKO \kÓ%22@BKbRSRS·}Oχ< dm9d\?UmߢxMS>UG߶Q2ATQ:qRHsx+71⵩Ք6bBJpV>p.ZEJw,l*8+*m+072 +]  ';#9Zp*b])Ү>vB*n-YkNuԘlB7[U|&e+"e ,ۂF!HPV 5ջj(Iri f(_ )$?%Ɍr[/_]uu ` Z NN̐m} }qz)G5iE185_W #vi^3&!;tЂiRxtOف2Ok55娢a3si+WӪK鼞`4 w671|#4􁿗cziA"-ɳ? ;eW&W:1zѲ]6~]:7(߸LwiV a1lΟOLun␶^~küOl Vbo2A~Aqrmĕ<i/ޣ??㟿/BB?J_W_Zxa#N(~Y_q}OΒ_&tU~JF:?ߌO 6.Ą?o_ǿpרva?_ߏ6-ŕvu7C{oLk4o~ƪrv~#oTWx~+8:ž95x6gV_bYo+/Lj/~}|UwV4Ϲa~-t~N(~sc,ϛ0S77 ^ho~qs~כwJ'-k~(lR6r_ؿٝdž?v=/QOX/t^ }ir({݃J{^osxk;?lNqEL, TdKn{g}؀]Wchysz1o{OC#[fCc}ڱY?v}7m(LgWmH_ c>wڻ^e3naPzۃŖf~և=P o_ :i1wl_6j=7ܙ]aqۨ~q)76Fg跽a?9>!0{.>m(6G?nsyo-}cq3'^{v= Ie/Æfl^ Fe~z{}{˦˦tev6_/v?iψ'ڠMN{a'M'hǎ%cӟӮOnϏޮ?KYf*mks|o׏y|6 {Gu]LbG+_u~hVmB]&ԕY ؄.#؄.z5?PWDoPWPe0sX?]/;c .c3L3˞ uPW&4Pױw q?ulB]iʄl75uPױY?l.-:6Y]PuPeOO؄.{&ul'-*ulB]=m:6.?ccuuPW@]&uæ>xPK ~A]&uq{]O+ϛ(ccyu{.~^6˦? u]69ıiru]69쀺ß{u :v ~{ v ~Ww[ N;G+.:v?D@_o{| XO@]j>PWue@ʀnuܡu?4Pe3PW&PױGs@u]6 @yuvǦ?4Pnpo;^NӞ_e[N~ٜpٱ~g\.O/{)mێ7tY?oKuru/mq/v~.gkwm86.yEezw1O4??vzAݤWsP]Xx3 PoXϸm[&k1/?w=A%c=(z>ִWYug69묇3V u^vxY/ge稏S^xی'PgGyQgOznO~zjݬOzی'Pfe'HON>;≷z^O^yGLjx 껬vYe=e'Pe= 6 S7=#DbfD˃/qی' 5w?/Ir{086ydE<=Gyߗ|iwy= ~N pi^vx"|0y9y>t/T}8'z+yjc}f3Ulzsh{Cw<:HB~DrI'&W} WV~fSQ|wecm0Ё4 :g+ rJ[gTc֫S}Ňlu^_4 F&}?Χ*E ojd'~ Yු7dY?݊UI{1M]0cXpHvVC aW獓( 5¡V!u )Ȣ) î\Ƴ*#+V"( D)7f)Pefl΁ ?Ƌ մtjC!΄ ۶=M_+]huxSY DZ}"^(|T5m9XDjoȬ]Iܚsqkž^tvXS/o>9pV1^Aj8ԴL.w \Ht_ d'5KÌɩHr vt -(sERa+* JMYTEَRl*#um8cYw1̉,[su`{8N?+)FM(k 24mFƎ80&v+8a\ }7tEx"n Pb$ #vAO+rSS uSl,QV"CUn9%U妝ūfe9i"FYG_{>F 2^cA< IFRV,+^{ Oj G#ADS B;dY`*F@fS8bIG Z10ta?2~KqS';ixMHCz>{*!nԬxDjWb%"3f&|?>ܠ}/|?3Ay ~O>S)K (ס|; |xj N ,T{F60\Q% ƄŪTRC-Qm iMlAGG}PwR)2oolMy7!%T}@Y_.B#jJC ZN4>67|DJtzC]8C 4N9S vR'G1wj @uO<ȮƯL'u¡WiOX\*);Ca4qN9?N N(0+}D&fCQx4;V!_^wm{PqnS9ʜ88Ji)f-=%@Do9 c'1O|4=^T1hj>OI>`߾%r$;59_mғF{v0&#K8-OjچAHneAqj.M0tvܯp`<,py/ьP=_^@Mq`DF10^ c*zogU/5Kξ`,b UUSGH8W|VIUr< qcJG"B"FOS-W+;2q`.I6btc$rQ^jf2;j nQ#)_fewBS!/۲4?몄RBu =:$rY]9 P}LPu^8&ƻ*33&]ܬ"SnZE6u)tP4¤IT.*mN+[5 ,4Tqd pGP]bp>:`:bX%hdĶ Ƥm>78vU%{y\q-(HI5&G)dRQwQf :<-8DAvZ$7p*  lSQ݆4Q0Y"Q7.[Tʊr95tǮ&sS'craQ.kN|9DuM~|RHGJ`GC&?%{ +rM~l+:_, yA?6Gli0-7Aٌ]=;8^IYTHfjjM]N* 쳋`8C+YFRĚ AdÙe̩!lϩZKjj&=ߕ pW3bW.t7NIx]]sNqXA쵉XӸcl <@]lӊݐRZ6l5/?Z(A"kP]!h"75b"1# _._>RT.*qR)%Vܐ)_e>xAٺA)B ~YQJ>XsQS!kχmGE!Q?'VBd[Z[Hl&r%PyEЖ*$ؖ-?oBR3.6^^I#OE8$*q%cKJ0sHP69R(|&jcD?jK-TDP]PIj{2oٌ@Y.Ed73`[5&~$k L*LضdaK=zc*-Bx)i'Z S쌒^*$9*}o"WY`Xͪ6"=dFNd3mC[-rsiDÿ́ G]Mv*Nu&HX3aх߳%$E5եqL:iڪ`,,APJ*PCqKu1dR0{jbgY #(_zʧT4*[R O0B}J`ѤG$O)ڃ&d :K=+x̀[] h;C;Xp ξUԴh(.bTb{Q}!6&)D ̵sYQ( !/9Ĉ> JV`O"s.1o"A8D5} H Thv!%ʍ9S 4O y=y0j4FR~"ԖjlT$2cx`%\Ac>;2*R sTDvWDvKcTWދB)#S+[6*m"߾-k6|,u'=+Fi#z15U^AMQE56tqzU_h>uCy5+4;jP ɬP0'/[6@!M uy!ʪK,FljؚdgXPve>>&`Ug)7R/RakoW U P^zlK»"r*ݳKsAd'Dt(xTdBbdUؚ 2])nV_ϵ'fF#o`61Wd1~IՑ,wXv7JDo VM*5Ec1/ϒu. Rդ38Ϊq`ghGq2ؐ,˹fI#@UPgp*ڠS{mKP48 ):Ra~CѪl_T]T>fHע||s?4x.BD=A|L Qx,gcXDg!54D_"CsB/Q">c3C*+LBp7d˔2ҒIhG,iDc6^a )l9,B.ח^$yV\C^9I PT$c!AaJ'A!@,C;1WIM{6^<_A xS90-K^NLW28ELv%=$M;GoáKzׇN2O=( hB2T\$^+=Uyy_EVL*ږP=xG].!*/BHv%^JbC* N(Ka,;?t9flYUBb]-DX0sUVx'UelbNC'7@GSI^2$2@@68c#U{fTySx(] ni+Rclj\% *(f "Yς2eIF/Cq|vT-\dFmiHBAL7UFP7gUpRB\ޤdʁVz[j|'P I]IMh(֤(yzh`%cY[=ɻpPY8ox壨"(vP4Nݯ,T{ =v5QE_Eh2]--VB3NϢK(䐿T#U V(}B )i.δ#ٴ&*W3*<~gn(O=ˊ s]J67ba"}G- 6쬺d34`-]*hzɔ:uxUmC4)=Y *~Urpi-8Q,Mwt5Ɵ zrEA\YE ]h|atjF,n7wjeP[L&nM݂ ZEU _dȑ 5&(B u0.ɪYVI -u"1]=H9 ]!:h>, .Jwv-AI2^=ֶlwse9cs%:@iV1?ׄcLUH(gfc-aDonWy>5h${Y(.Jh  lɚZSa vuX%UYRgzy4}[˙mIm.Gu4Tՠb*.< . ϫ)N&9ZT80Ea vj>? ,pa3B5uoGϼC]\RDAӰ1YeWmirфr@J9Y, %)3"TE p鐑L@gC1J8eDYB/s(SvrHEM- [g ~^9t`>BW);Қ y+J d}YIt$kT$C cBz(-(45?9/^Xh""d[SIU9t󭩿PdΊ:ooYF'F)e5e@J\B)'l-LsmZ.T-C37Td'gtY􆣊,};P9UEo A@87JD. )R D6>f(`]J) H(I6R9FwE@M<[) .:&)%6bj!ޒU2`HΒ]NQQЖ +P΢ƨEv`#oo\vYX2횪ޑl)}T=1ԥv*G"s-4DT1BuپȲjS ʋ s]P)P=tZJ1AȤD]VL%)::o,&36CG  [~5(-OEh18#KyCs2bw3nB %ᘥP'jW*pE&MJ%Fjt: ?,wˠKE/(6phM+*>̕3uA`RQUH!:45seز2CW1o^ c(Bp4eUMrsWDƝj&`Cv 74ёD LT +iQIMS9zjI%8)!(Z}3=LQE[ !:pR#eR0 ~rb4\`dyO\'PQL"^$%¯ khŦʹZ̿ $ޗ)0\+?TW!XM50h 3~kBA8p'γT)@^æ vjV4$O0h?og.@Onͪ s@4H*]Q2]R8!7%ZT[Td|8%e}YC爢 .wLUQ\85 ↞SfI%̈́@aFKe_? zUm3\==xQS~Kٸ1APG;a#~{ 4w:Rm;M~ DzoWK/߮% 7H\o ;jTHF#t{j}!U~{Sj U1$> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 101 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig-contrived-3b-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 129 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 130 0 R/F3 131 0 R>> /ExtGState << /GS1 132 0 R /GS257 133 0 R /GS258 134 0 R /GS259 135 0 R >>/ColorSpace << /sRGB 136 0 R >>>> /Length 54092 /Filter /FlateDecode >> stream xˮm[N-X_RG5B#Q@Wdq%ȿa>枣-! {pvs?#_ۯ=?׿w}uu>O^?wӏ>}_/Ͽ-ou}e mϿ_^u޸E?>z^GuY>c!޿/~h^e|/cXvOo^c\os=?>׊3w_/X'}2Cj=S?\{==R{ziŗk|YE_^-u}VfzYL4UҾo׊E^o/db&^0\,.ię]엹vkōkm|W56L ?4'+;nb3 ~k6!^kno48IFz_v~O Ns8yoqV6{︶X싚8:ąk¬v^a8]ֲf]G?ypu4'K\v+\:k]G8p ].EѺwX'ĕ\tnh]k]G8phu?.uAlyDB{u/u-;Łk]G;5ut2 ׺vevu.v}3tt׺. P#g]Gסӫ=㾮Kvm]GzGwuS dծ|j'.r{ݺdWɣ\ _/>]ve.|Kzw\݄]ap+_xmbߠ3_4eWz\ Lvg.CzWryBnzםy2CB^e^ 3ӳU\o͟d\3yz_*!/'c;ev_rl?Cbd;]&y~r3W̱?< ?q b^rg߿@r Kq_nI C٣1?;xNy؅k.C%e W 7?3~lDmԟ2gc a _d6;"&Cl%CX&200#FM7F5njiucTÌQ pUCĨ9.7F5ܻ1afvbՄb4|cTojڟ1*n^1Q-; ogT`T@V~_PQ9 tcT܂Z 82|cT/v|cTĊ"V7FX͍Qms^1*WٍQms`EaQeĨ2 bT1*Ê(\;JU\*1#F* *CeQX *qcT<PY`T.a`T* *9Q-Ĩ|FU*eQFU@1*GQ71*wojHoqcTՎ5?oC?oycT\WjB>jQG G *b"am*bV, F50Q0U {F^Qu~!1 ̊ϤQxjEjEj`eOcTĴFELFDLCI7F5j"F5F5"F5: _FELkF Zf>ohjLj!)Q: Qz`DĴQmSQіjEju021*bZQQQ0FUR`Z C7FEL`TĴFa FH1U6ycT/0wcT Zo*\OQ*f>op=FUn ƨ16bT1FUi8gFfƨm8FU5?_1)Q5;u>o1UžFQ`T0ڙ21#FQ1nƨ:Qu/Qu"u0*bXĨ"UVFQxbT#gF!FƨO`TմmycTӖQM<o o`T # j̃yQxbT+F<7F jy<|6'0 jy<Ĩv<1x`T5O`T`T`TQ1g{0*lFUaFUaFUaFUyF`D|bTFP`T`T `TUFE|01vcR"FjmܟUyq0`Tz< Ĩ= Fq~:UFEC`>Ĩ j<=yz0`TŃQQM8F5qj7FŜ=sZjF};"c9?cl7esYC;999E!ȹ#rrC9xrJc_k7?7aߎxE3r27';gx%*Yyrx2So9g''M|0sʈß33^(PEGJp{~ɧF}FԨψV>#k `ֈOE<ׂSxEv8 x؉7#x;8#ۍ.σt90>㇣x pB<'x&x'x ޾919d!\wKSfpREޒoP~aT= A+"SObu&cJ^7 \"f^Og erpn9dusRi Epނhg.8W#WB&^KGٿ%;_wO<8847y9OՃwG(7愒y8\*HE> 8T/UhݜY7͹E>$8d/OS"?F<-1O9 <4Ea#=M)Q)UޜC+ޛÝv?pO|[͑ <:uWG>/}sLN;'#I<>ҕ#I4?R#J[~SQ3p(`5 M3"=mQ؀<0S H҇pBx6Gu=„ɨ#He:Tv"AD01xf{DGLGuQ@B+%4Q|B) 2)m1Oa» D5hH &NH0zc!<dqu >INT #d1l2AEx K'}$ LcA1>C%5QOY?F1HaJޢ  HKin~~|=1;g18^YZbΨk*y6-WԹe=ȈmȞ6:#՛OhK4 &nߟ0՟-fjsbMxEi-5HuP!5dӯ/յ[BxEFeZ[ ,<)q 0~|`ھϡ6yɬ}F &[k"XETx!+:QOtf}qG q_|5P,45:yU9!zӿ8k9-{z%j„2ѡ+&~\̙߾iB43aO~;ť;Nش u?,F.|0d[>yC'EyUic$nvwRpDvBY7XרJDQ;|6H*G&AdA4dPLXƧa 4 quG K* lbCȿivhǻsUN; fp&hGIc9J$PղAO kV am/=e4?n!sޟFӨ e(csE f,<\DhmEvs(tyiޤ } Ğ'xGƼim!Wd;F 婂zFH+4;1n+k$ "|vprg=5e3T< XFF;ݟ>-⍼{>O3z5%V\U0Waf[R\g Wfow{q!*x'@Qo/JUB5?lc ~ŌH,$V?֖{R {WmOx!CVi .Ż3&н#$y6oF XW48k7%®崙JLHq2>"G*WzDF~2S#X4„U4yZ!b; {M/ tWnʜ $ L^I˻F]fb֭>L&١ZM _Dj=a)T8*neb!y:2YgR4|j?.?ëLϵt-X]06{UVQ-$j4ъBy⛊!i Nk sOLA \Ei`;r+Zx]$T,oDY@k>NEcq#.ExҖ9hz:63nCe6vuZ#Ru*@v#z~G~^樢۱[%TҺ*kSzgvrV'0RS?=lp -iK=:t C+":`'ܲxHP8FI)6sYlNAًj*J&)Ի" 5@NU'@ޮQ-B=z\3 ק3fs&[%;-Am9,sx:lT6Ft4<[PsYr 2޻IjKF%iVi ;ݒIU1Q婋m,JЗǞ;^uQΙ3 *?fۏB|V$RV7A[4}?RO3TS 2#.Yx boxŸx#1vCǢ480p'պ<>ʊ%w}Ԍ\.%6;N?/ZJyYE~:_pف6_틔 )X /{o3[+`pgIacw ^TebW] ~fG-#z:O:mZ͠ ,Q.I<4V8P\ 걲ӏ}Q.D9-:Q'u֦ɚg('] ]&[YY҂f3u%)F-ٳ { G vMIsp:VgY v⤀;G62̊0r r_hʈvY=OHp= FzNFh\ /c,=ELmWlx-EA  z(8;E&Ńަ] <&EXF]!Me}j%b`/ږ/׳Ch8U52HҞc 4ˁ:U1p>gȖ7U$"i)_?j0æNT@S׆:hf-MV6a;[VWbICBw! P D\eoDJCrX+5ZҊICUTZF oBB$B+>Mť {[+zPFTo7DRc8b:ťͣ.dIW߭|{d@aLQ`/3Tr\TՏ pAw=vvzB-F̘,cy0?w6ԉ_t12VЄEf%<_MMEMUwY}tS1Z'+YAZSHDC4ǔ0ógX.Rdi {Mt6ȪȭzL3)ϽhDQTBK9̹-oUYV(yzWIWFUk:S hENZJD C1Hom*2f\ӹd{F]`AG֢K^;,v\&hIqYHKj]5FfKU sł55\[%,zG"x*$6d6*y[GK8O\{S= {ǜLVݙ'LBE+&6Hg>y۷i3,@0!Ϫ]-77 R3ŠZT:9V~quM5Ex@ܩ7)۞Q:rĹ ꧦz+{k, JsRU4G輽"nm`T_$DكȔ/L¨VU-|jc".AG=_sʙAyŜbHͪ S\ uI5@ PbT:etiIqLgLudwܣ6%a\լH= ^[1Xxy1 CleD+j[v(Ϊm5wl>7%W4j* Qrn"j-@^kQca0aPS%8QW\TfVI͒! ))#8[ʨhA=󺁸b|!  !u6\跷 5$q%=੮dWj=#6I,˼*k!'JRV\G#& 9[-d!vY+ŎF@?VP~_1I(vI$wTZj:hNfEJMOChSDU$[z*pjIdMuWr27oYjäJ':$iZRbm:U+·ҵ!VF)K})csJJr˕8‡l.|e(C=K[q5뼿 }I|׉5Wd5::X*]Mgԗ hDؖWָ)>B9}?t7솦S5Ɨ4XDs"/ZUu'ՠv zi*22UI#lܷ DpY4?3;]*X,6\,01VҴ5RsQ~bJ3n`9acXa@~dCK(]aQ{\`cJ' ގ`R8R˜&YEὕέ$_YluGHkvq* ȟ{DYc-~&YHWH=~2v<꿞^xi3TPP:5Ⱥd׸Uۓh k,XTn_OSd['I-g@>}lG- 6%}|u$>RSMRz!|Lc]w tn74Ue=\@"@4B9rsc"ӵEMT#Y$9BBN.=VF,w} ˕jdQPb@YjLRDTw%5LحzM.h=TO:!32}zn^Tz?@ju:lVT6Y'Θ$Yh,Y[ 1 ԉjJЈ!(ٷh$`vhGt&`AO""%c9~䙪M삳U3MO&(zo版2{ hȖȗ~R|>?Jc{$DCVѧ./Ȱ9yO1r^mYgFjֵ:Ӎ@|> ;zum&);5QUɲJ4}! pv {d`pЎ3#Ϋ%+Q+ؐBz4Vţ\@͹)+׾xҭ3 ig4LvVC:򉽰5y@Y44HkĀhtbZ*ÊK[5p'RGڱ4EWrFlm gUTB,+Ř`9Vy0cz3LKY1=͔cF l!&tߜC5sڜ[e/fr GZ xb,' qfWv#L|WU OudkX\ ?jSO4d㦫#KV'/~[$6fq:PeWQòUI.8'I}.R;=<%UwŪR:= g0r@9fLP!;:#*w7ے4RMR}E:*\as'*}~>mx qNYV8ABM}U gVK/i@KՀSS'12>QD&$ɞXk Z8Aя01qxm/>naNvR/ *mWJ3Y2p#V U/ٕsQ){ʒ'Un_\:bmVX;wK܌"gMrcdMS/8=C+~&{jl˓tVV+z?=]eǥὧ_Ac#1L'-,54Q+`>;MѫdTcR؏XcfYATW]$YTm(\؉v,4J/pbÙq3@]`gUO !oFQFhVcamZO5iLwGc8uĩ LHdiPRճۻ!#] $40Ѳ^ HeH[N}K6 41f,ՠؿ}&Ib8QeQD㷬o^SC5cCJ-U[7 .ЛTon|ݕ&_|qj zXH!fLccXlq ӮS%k~q#K;yࢍiו}A0v7k;5Uwxi_MJ#hLzUc'6Iu#!tHL&Zb9B?Ś ,N|I)Hc\8rR[nט{{_5j'U=Ka+񬠺1v$y;T5jUdIFG(K(h@i,poLex)7(oCl9?Ϗ<"COWu7to+]^ilVT̢S֌JF1x8p̘e|(p~2IvÞx9Qp2kےj"P{(CQI}G ELgҙ#>ML-x*;,PEJp@ \BQl= eKߋGT}:ˊlp^fRx‡k`$sl8FIbߗi<&gzc9c|H]%['\gqĴNE^["N,*:U[߾7f<ics)yudJ9)G3Oܢl=۫:P jUX,nPS'Kn`ARiS!Ϣ2{4gG2`3Q}Β3]0_1P>Z;i7_Gek_}> c0fw?Lpt^$vJ4v{do>mFSvL>1sџxg5cpv >OE]gs\î${ؠf>%%8i1ek >SaG?a~ ~:+fq:ЧC >|y'V] P} *ǿ~D3sH:fghPtg߼iէ;Gwy`"4Wji,}~|__o7[zDl"Yo>?}yeWߺ?-cl o~^_?*?zK,|2_y3oZxA2~}d'm\/Q>~ov?h4/B/OV{?|\z=_h!AxaT+Wл7_K^5>MjU .yqMz8/ܚc߱Ϻn_(~KNx~sx9P^bڐÉȁq[ ې_T܂J?:=" e8 ϩmAe:Z2&eO/^HByqq9ؐ1Oo]>G\y8nnj&cKGdБr;bGd oBlx0k o\MOo9Sl/2WctWȣF/'ilk߈ P# z4/MƱHvBQ\j #W9Kae9#CR[*z4/҈4lDo)/\Ut?j_~:%za_r6 U9Px 2Yrb(r."^._a/P{\/P~ }?@]톾V Ր:P7]|2ijX ).g*@]um@m0uy j/PCuudՙ (u7kLP.oLuz@MB&!6x?@]3d u# hPw{|  P@] UPZoPE#k1P^P hlE!-PP uaPy[[@]-Ey\!:PvC]Xo7ԅL uaP.#l̏*);@]%tj"$d*Y>_@]V4(PWI%TF+T6jj!!k:;P PvC]y@]_@]P؁nkA>PW@]@]+!uC]сFȄ&u{P3B]+YففfȄ.Áz8PS/P"tv.Bg"tv.BgV@g#&BgV@ge+B&E@] u-@I}@]Lum0Ե:P7/P uPuЗ 2 c?UΟj (@] oP|V@[E)Ȁj.uyuL{pC]7yC]X7ԅ}C]Xu4PWp@]d~>P u>P um@K"0OPW!Uyuxuuy9PV7~P熺<7ԅ繡.PWyz./PI*OR@] urꪈU/A]⁺ ܬꪈGZ@oZ@o#jj ͘w !>:r/jzS9yxy{'sfǟ97 3#^:N8_zHg$ڻXOg~y s?p/\)/{z_2~Tw@ovJ| k%~gu}=;Eatڋ xہމhɁOZ|<7Ǟqrȼ?T͎ OI{bry2!%I0rR7) U=z^8OC!cy}Ra'uCfj pr js$tWǟ;N 9_@[ kJ%U/>bwxƝZM!OjIҟ%~]&>:o),-d hZ!3ѝψ7N>Ljx(GD62V/ƃgojC](!M}>#^B'3;MA^7u{#|k&W9+3bs"_S^7 M"UPH:xW]#Xq?Uᦖ:3R5G~ <0#ĠjTzGܡJw{jxxiPQO J-x0xmc<{S[Ȥ6B7F>xr=ڹee#J{xv=7M xSGnj)_LvG~5`BoFo[ࡑ|J3"D>$D$~aZ㼹"௞|OA1_5~'=o5M&PIF+T|Y#wr:s˛^@?}ywRu5~4'|cK#I}/}>ϡy|iD>5*[#:yr>y)mܥx47>OW+"=yB/p>C#$-JwȇhBR H=<|JEMh_J/9Y>)#唖՘S~Pe> ÷)8/|ht |d+DP&$DewDj+>|&/}s*|)[1??яzlݑ9ZMe){G>دZ{ jޔV6;H%Ϯ\Ѵ_ǜrb &`e3ުV!4rbǎGuY+Zo?۽κ~s[!yJ$3a$a0tbtqVZI?;јin>`ܷ1sQRY[lǶ=koш֮͐ϖ HjLM,0|WhGi怷E8g1T0}d➟3xdD(m(xif!Ӎ"Ǐ ˛zd\>'M} =WȠHƍO>`Q'3HIcNeknoCNT,gJ|7C0#ۻ{@pzM!=妧9@{$ўhvdN1{͑ ncDvt}HEn< *~>$V<@'$՞n8~eka{bB>|/T'v$ BmtF 2fҶ27,:t72Keo lm|eM9R)gb33"YO|!fޒڞ1V =4>>_Bmax(2Hɡ!ĜZS'σ24ɧ=w?.TmXJA* c*>_+e&10<<"xJ#)grL@~@P±Qe@zB0^HW|bǸ jfl;=o*XCAƝA=C) _ge͙l¿LG꟧ gwo^beQOʇ`fN loCxƽ TRF, (yJŶvd Lᳬ/f0B!CkWDĺ9Z`qä`ؓ2+QPX{ ;Ef-, J`?1t*"JzmiHlbVT3q-<)EAKRj(`*tȆNONA_q2T9&! ʰSGfԉ?]: YiZ[A$ɴL.PgS) QvuL*tb݀Mc,{ J#*esoAoE܍Lha&Z+@UBWy*!'i pgĞ'ytCۏcLd [h|N[@jTSZ4K Ҏf1yphdTE \ R I v)"FFRPܚA|S` _Y5$jty,{H}_2mW9i^Caϳ: 4υ̥^QigX&Ǟ[>ХrADrU ˁi(e4|Zi$ Yi5Um*d_Jr{.3-fc<m'{\ @^a?^wP+NyF-Ez}_2Eg*QwTJY//u!TE9wX:xKvWWֽN)K(IDN%7@}:3YPocyE*ǀeՆ`ܪP^ɰ;r"PXWd UkQl "mx z͉Zʀ7`9+7jd^ALUoI 4b8I[TM*)(7,*>{Yoln5B1}BGr8ч̢S%Y1NoU&oD"HC?-"ɜmZN#nT d[%ˍ9jHu;%N([,NyĥmSnf>#)DE,/¾;O6{ؙb/_$4=fQ|ݢ[xe4U5X@ #XjK!P0 :x{,ia}M] :*2Z&ܒS:A|>R'i -ExmIIKV Vkj ,.ilcYR=šW/@2ͼhKPh(KQ^Q)L殪ҬGmS^i[Tg[}XH D+U9T*VY\8S.h9MV||__(ȪӛLpKbE${2%iԮ|4[4*SG60x=z<-hs  Ir̳k[Q-_v`**ċgkV䤐 ̴^wCca"Kh< މlͱAF l,F-I021۬=)*X3"d =\ܳo@, Wu$=yOp6{FpQ A dN4c vVY0:Y1nv/+-KAUkFglQS ?c"KŪ~4l /0VB kx4i<QZdWLNXYTecu,D"XdUDtd)G fxEF U PnO*3Pu`r-^%m0f.qmT0g,-7ʟචqg[ Y>c8g0dYGT9HjU3yv-孂ʘ&zs^Q-ARąWI)|Dl|퓬pٶb0(.?"$)+e$~$vt}lMxm`O :sV`"Ȫz&Vt+:fWU+"ᅡ1Ra'/\AD|=#$dq^@IuY¥k8t7 TCjsDS*|ZJ+V+^39;2ޭ}Q&xd/Z%wwQSWV2dY%'*mo7QU}t._. ,sU4^TXCms)lp7ՇjD&gVti.pdRvleYQԒ*u`@JazLMDkW ՂP4|[!;_2zʔDx=ɜ$V?Vi0NmOϬu'o=Q7Y8$CR'xE5b?g(&YUǯ5z oJg3ޑvp)*XԩAzwE&PɪJYA j1O]|g#To0}yV^$8UǙdn֢$v |(ddI}8,j[-91~:ِC7H#{-Aq2kmCZ )F~6Ԯi"qAX`(fDD\dAXhTw;v =RDw/& V,ގJxa6R"kbjQzL}cE%8[E[Asscs bxB}LoɔoU%/8MXD'vͅWC,H@] 'Mqb4-'uL1MBW@ez0}VJ R]c;/5E]2s AK-Kg;4uZb!wUyJ9)%y)lM@V 0맧"`КK|ON0VTqiXI"^g aBRN.@,ϔ)AէMdNyŇ/8EPRyuSūGKF k˲M"nDVrjAgN/Ym?CӼa,;z#=ctX&ުMD s˙ WW HeyfƆv[pW]m{yH00DQa.{SpІչ&J\gVЃUJdaPȟzO,`:],PMh h(e$b"J@eYuzy[r[hiWt;zͭȾ%@\UqyPJdپn1e ,BW5S̴*E{.t]Pxfx=={{MQ.T:|'"68Us~hĞT|nTǑpK&]lHI{E##%M:{[-F eQ%h7Gb6vjiaonA$m٨w"dE UUWm% qFeRGa2 =9NEn6^G椱d0 TNNSr<\|ݕNƺ@޿;,fh]t he(ꤰbgY݋ %i"Etj0Aƒl4FHБvojE8y$F5I6i&J\UN Gnxu"翣I%5,YAe0 ,B_hފ߀Kv:bp$Hx\9JX 7?tly/l4ڊ=<=$NޫM] ZFRC eK-m[^C=UmKKd'>@jw$g\BHE Y}i6:APl bCعyo4@O{w>W%TexSNaU ZdU;7QǞ;i~-uef7> -ܹkj JWbU;6zLu0]5;,۴lF5U9 0v uPug [֐|S^ [|70x|w$ћye9zj`HbDZ'}l(BfϻN7AQ==_}ERCC.&utהP[8ã\{q[TdcH2 ʊMPef &83֙JpCo|\Fsy'r>o>/ѯ-lt679o㟾叿uL+Trmfe[Y1xO+'+Ѽdyy{>*ſ%z~} E@v[ݯM- 3 }֜P7G;|^lQyћ/B~ /F.!uW>y˟){x;;_3~nXXYb{RWmK Ub}VM/_|mT?ڏ˯]!^F ܯז ڗk3?\c 8(dz7 S]d'-Lo$Gp o [ʂw::m֢d#ӑ]d"7N/35yĄqG K9 IF*rFg ]Пɓk{ۚ$)t~"0@?jAKH W FP v7X찼Aėgg߱n1m>"kʂ/e'M e(, 뜤SmzQs/ !ʹaN!XAXo7z63gn֞ nدb]63_ʦ 2!`wXZf=SWҙ;^;`^k~ hu%d4k+(~ ~mǘvدRW;ׁ6Nuv uگY;A똕]!_a)VQ(AQگsX۠~+ دC|&$?iN(! (?INol\'7E 4>ZѡE 1`E[ZO4EMh^M jo]77MT]77R77Y77{ԃ&[^kfh z9~Öh1-~ ]}-~ th>hZ\K߂)2Z/uBF#:WSrzBɵeڏia˴BUX/xd|Pg[6wʒBmPwL~͟~4N\/~|~MKoh3h{m~zTi~kx{ k ) _eVl Ftx$ yh ~8|kg Q"oa:gk1;a~l=yhkDmmDФiP56`7778 ]_H ۤ2(|ӉS &WXMAkW'W0Mگԣظh@$2 m>qQ#2(s׈ 67/5L|؏Ǎ`mڏ˨Pl_lyد6DZP'> )!3@]ѽA]Jumv-NoP׆@]L=Ե ԵQ:P8灺J**w T 4*N}Fa3z%B]"7˱7IoP+SA]Qx ȁ+yԵj h+fJ@_J@_}PWa!-.Gp~Px{ޡҌu;PS!*A]uh747j&Eh@];q j(<ū@]Q\1b=pkڡPW@OuPW@Ouu:C@]5cM ၺv 5 ʁhu (dW5cͿOh@]5ouMuPS_\"uEkc}DS7 PUB~źGOD>PhPڿA]~ \ԵUwPفPفXg Ăj=:u{>P@]{ԕq+ӞuNu9Buu5"5?h T&T4He*-cMk:P@]kqMkcMrUoU|_ԅ@]x_5cM 끺v 5:#՘ÁXzxǚPuX:kIPWPWG@]=yfV uuE@]ԅv'*@KXz8PKففV u:#&Pפ "tv.kB] с6Pi@] ⁺u-7 p 遺oPSuuv@M5Ϸ5(@]Pց ? uDI%oB]4j"4u.7hぺ&@]krM )LPWŸԕo+=P灺<ԅy.O@]@]xy.>ρ<#.uC+k༿A]s~uy?<=VzA] PϳԄOk!=PBr.u?@Mt.BM5f%@g6umڸ/Եk:Pu zPWg)8Rp@]:퀺C'u$A_x?->o@g+>_ޚ[ޠ|@s̟t@{̿/o}2;;[ci=g؋;~C~qڍoA9osyF7牥s79@7#;Dz@_? ?<:XߦO"OO!99!9[i>Gi$V:'qT️*CW13vߑVA<?ϡX7>|2S:k xN SZCRYQxwx(KA%x*&OiSz,.S3_3?xO(}2LQ=kfKķonb|P o͠>ZP";e|>45C(Xjz,|W'|_/:PKjI=z)x_O>O Tx T fjM57j4cMxB!/iēO?x Koԣ^uTCm"PoxQ *(xUPCPr~/Bx|Pۀ<7#5CGf3Wf7gf;3C#PI}3X_c=u<ϩ^׃jރ:O*:}=9x>ϡyXolϧ٢5`Fo?⨏G=9OkO[+X.zzv ֻ '©ǯR0k=)SD=?#=x2Q' '|h zZwRz;$p_D}q)ZȷH #:|x9֦7dR?OI Io7YJ oN[vZ:i-[Db}?Z0Ѻ/ֶm-Zr'rDMS4'ҌV8fʑ4>|Q _$T[?!P^U3Gb:"&uJgI۳[:=@s] NZDkMnz8<|[8; ~hߨ7R]R? MAQW(2UNߐ~56bjЊz״P=Ara|W`vd${pڿc@er\h # [A%h^`礣vԯXw?J9Q Ÿ n4!LfP9S[l/tmOC0+6C9Y%1^1/)FŋDfc߿O,BP;p/nO?yA{z.F8t}Lzp3ɍmlbޅ pʱ3/޳g[T39((ÃxN^Sc>Ye!R ܅,aU!b^`8󓶒!ƂsՃobɝ [Z@QOw蜮f_uUD4F1?R-"R2㕑*怯E19ⴹg,@&}~쁢!XwV©"ޯŤS# `"j5E~BEeVCO@J V=bRi)vYsV߳Q ʡT@:%v_oNNKM f"$i/{/!‰ץ׉MQ"-v48d ,0h bfHxyY@H5"7bA '&ΌjCz 2 -jWnqFÛ)=jaZr}y&8Hɵzy-/H=1QBN)Uޤ9caiBv%RB*8Hi GmDrȬtPV[~%}%֔h8/>),YiVecg/=!s!uP%Fⲯݪf xq!|(!bqLhFkaQ`PxU[ȍAm͍ޔs]Kr0iooU]`U^4o忠( J# ކXl}_=Y{<|A͐t&5- yQ#3d䧰Ix ݃;Kj cc7l5-]qjb(xb\dAܞM Qg mKVy)YJV |{h0#﹣Ѝ,Hϫ*:m~: ;M!06*yNrl[ M ĺ/ y<9cz!$1Ič O|V{Vw8D)qykq3KO:z#~g'^*2q&a8P'{?$\q:6)qKǠ9R'%Fޛ5~iL9ϝDV6Vޚ +bԌFDf](zU+ -؄7TPq=[?)bS\E..+BoQ`fҔ3*[V="P?sO*h/gmϾ \WtΛ¬Q(Vw4Ti5In۞N=_zBg4YC9 $FD֛ s"pMI@w %5s|VlcڳNkD!͊aQdh*^ ޿ P 1P T|}ځ_[8Ͼ׾YEQ8ƵJ.w_\XS/:jNV}VVa!Aؚ[<[Ci iTvtmԝ0R!m ;Cވ fջUNI$;Y 6ޕϤx17*g_ZTg-& W ڞՎw g"S^[6,(Ы>IHn#i8ގi(y^q +T"pR6+vU[& 6 VymT:Kjq+Lت1OU"%c,:2TW8)$d$sK/5c8TB ,mgB)Hl=%'CwhT Ŭ1^^`kj(#=wpDHC]LM׵;r6 49mLK fD~oܿv<]LNM=97+>޹Iz$4H-զF 3_ٛoQۥP_5c 9Ug8H7$ⷱݟJ&N.ްs32 oWC,wq?FקBTWptq?l9S!= )PAܷBq vѝ]M+.4%_Y*(BP^*n!t:?Hݬ.!zYk9B|QIC M+|4*7eQ!GZzAPNQ[W$ '9MaN Y(ꏤMJ0&i6]%@w%6 ؼ*R4[ XBLDYV>#%*'6lR #YUdJde2Uy!ރ:T#qdDLe],L\57Atv JZڒt QRBs`Gūhly\Ct6DO"j|gVꐡ-ɡ%*pR=^V iPSO[ek:6ww+ ߯}-!"XmѸ9RnԯȊj&fRI`tC^<υ"O /-&imWYv Tvn˻+O }W=xx}m:t3C+cDC|!]qFxE{H>jKǣa l{ܬ+T$s٣(UԔBx,P\+GTֈožTPjYMу) =C@u3Z}v"o>7̡,jb~ d ]4sfT6ixY{uHhs"pe;˄dKhS7bf3Oxp* &"[/\`Fk=W0V)IWMuORG7%hC9)nmi_ 0鬹*n<x>I:dLu_,(u%6硲Tdt,B>Z76ы=f$"-PY]U$cI6t@k ,զ2Lb4,$H? ru@@arEJS-#oRIm`#ԢAM]BiØXi}3F0i!ZjQo ;X"`$ Ge>ՅmǴ}*UiY|2r@vTQMZy@2H;lf;(:=-w.~3 I!KДv5.mIiD譙KM2I֏F6P>d*}5S+j0pz]"}pZQ~7BJAQ@lMD7W"l>Е3I4叺ݓFcVMmkFob{Vj bTk͢, _Pn%AgSL$S/rl-Eytu; )F!=?+[h%_ ߪ;@HSeWctj3ZѤ .bI<5Udt@ZBY.{CkXEHQTkn{-bb`Nks kHծzh%iVeŦT/'yFyM<+nq1[۬ɗ08D$[+'il$C5xIL7x '(v-iurRADn o뾕*8EZ&@uU\bշ_ǖw}n!b*~{WSSAixM~3X%l@o o/0aِ7ٯ1~$u+ R΀ u84U2MH}EHS4LE+.jIKC ʪU ZP8(t&t|G….@-쟥|R|U 7p:-^ƛ {S6D^&ۦJB3;ΪRVka (PbP Ϭ QrzV2hnMKR!#eT:9kAvEuL'nJ…Vʞ)q6E9$2!CIM yͲ䝪J>a (5W&ySD#ÌJPK5W4GۘH ǂI wai۸L:BBi[4[Q{4$wB~@+}pDPhK2C[ r: E1f[Р*Xh C򝩅/v^(-eEZ U)Kb$UdH.Q†W$D `oi9ڮ>epzjEfǙn>W6FґCP5C9_p׳(8STؒL D`Qo. *YV(؊XAja赿FD"/Lf4e!9 g4{ fٲ4Yp>CESiBEolR(MSP- +RpBt"/Jd=*”2%O.R0ZVc.jBiZuxqKeI^1,Rzpi+FZ TDC)Q]:7o \Duv4qYG!I`V0UAiHjRN(ָ:4*0;>I2 !)nX1[sY5cf ^ 56L Cu:pAV=GT!V 57t- gkUEIvPEX(CBQ%}L55Dh¼ELas@3jqk)w%c9gqARf̿&?t_(r^}a*|LR+-wPK Fy˃h@z{1'ny :|C[jYv_|[Wʂ"Ӿ,$r̘} 3%P6-0*>>qœUձFcDۘ;8>'sp>?~OWz;P(_~+/c :nޙ}:y޸P~W(s?)>dfv7%km6lN{W?;_^^Xg_u߶9DX>?_XscsqL畼~\˷{1.G EVs;NF `W?4$'@5JG 0P>3@ 㣱zy6v\Ah RAoke !GQF!X];޿_֜Gÿ_ɝk׹tYf[C<[g6]Pqu[祸X֋I?vE &9~pDYhD~|ujoSu|˦e~˦ƽA}zp^lFNlM uhuA&Tk,dMkf;a)~Bkj~]M\A&5~7^ \oPUa0f/L-dů5g<:oz#,c_Ho B-4@3A~kE<|?ȫ[`~a_>~Ziݵ"uV+k$6GJ6Zi=b~'6 ~+` %h `yL)xhn]~3APm=~Rsa?[>Af8a(|pmYLL:7@5wzz~9eu~3Xųof֣> j z9¿_ƨ:aAT0qC~ľ:i U>z~6TX/A))UϸL jW&55`?f 0C~tM*Ibze"<9rnگ@nگhv& =[gtS&گbW1 BX |[n_4MqȺzWA-°_qLX/|k[_P2Jk'ZRZ[-B5  S`v}~ ~Qmk;&X/7_G ƙ:Z h|~lM]yدCUگ{ӄ:6(~ (+bX/G,^;֋nZp%o2:702uo`G@%uoibX7z}π7Z^6۠ڠƊ߀hc@ o of>I`uʁobߤ&jX茳5fۤ&˥hh{{>`~"ۦ''77 - [ŀ^k'y3|[P~m[>4ksͱW iiš[-MMjL5.oQ۴Za5iŀh ZOF1'oY̨hN |⿎~ ->{B~xi?SyZkk1X/| v&XO| {VBό5:?1lro%HwOlv^`?[O|~#P5x]~ dik0z&{lMoq 85 1orhk{Vg |oߢ4yl `?[;S~:~S NeȠt/~1_lyدզYN g։~͌ckد@ڳY`* k,syدY rmy_HN@SBfQߠ.'mA]5\q  rͼ7Ł&Sf@k A]1A]~x˧A]3z7yoPߠ. |: +: 5u-PԵP3=PׂԵQPbq. ʬԕ*ouԈU>uyoPW~ pU*ouUZ rR@]-PW~ gA]큺b*r."jou5PW ѿ@_L:[@]QcqN|fuupuum@K58)5aMk^灺yHMkM $HMꚰ灺&y.rD$5a7ka}Ե #Եp>Ե #Ե`uu-u>8P7kJ:PƚPu9Dk~=:= uXjJuA`@]-aeր } uh@]3 PՁv 5}J@]J@]|_5?. W@]+PW }U*|_5?.}qBW@]+.WP~PW}~ u!{.y u5~ "B]-PSFSu(-V@M ꪈ@]>PW!UyƁ<jPKꢿ>PO@]P׌!5yuxB]3P׌!5yu.3Z|X5;:{Z鈿@yy_t/OZ@g h0h5oA O o b]p~5M#n|]94y.yh=/4ORS?ThWt{>~u껿p)KfsO::ӞωGOx% ]>!vx(#R},Ei]a씆rY:}| '}n}6gO BیϞKuR)X{iY[gDo1xi1xj1ވxkE|tJNi2E)3(Jċ+ɠDԜGfG65(#^?iNC_D>5ⷧ '?F|++q'!^VG~Ppȷcc1TsB{ xQ#= {i䣕k䫕m5wkP5W/WuTC-!UPO#_?| * x>x7_9X'h{~xIfxJf~xKfxL&P>% sA/xR )z¿?ԭAԯN VI=x\%u9Jjsyus?; u+}z5oo ޡ 3A~xbP?AR1׆?<7yན;Ix1o|P+:ӉW>xvw(&^ԥGC=y 3~ <SQo`ϋz[1N!w#?\zi*D=5QoMWcS)z0^ʩ'w\vQ.zu|ֳB*[ 益QOjSo7B^_ѺBDM֜9la"$ZkzOk΄?<;0?χ/A|χo|cxQl "c|E _ddGV|QW!YN8h"೐Ozxoֵ/ >Pcz9pD 5򃂏D<|ߩ|xH;|*RߊJDyPDGbr;u"XPX](w bL]9%*j3齅-̬^O8\wRkU~ 貃(.JJ!%s<:(W:`H1R;YY^]F/gոMek&4^?ź;-jZ3hBB{rTg )%G&X @ݷ-vFFw !0`;4m=֓]`8d:"v&v]n( 55`̂NgsnIKh o-U퇥))FCMb~ZKCp'+֜Oxq.khv,NxTvޞƼ3+ёL]j@d\<䮦pU /n H&T4f`Ķ:xw(hG\f0?N9Jxq7V3Q3 Raֽ~gtl0jwV8c(uiw,IIhڱߧI0`/&"lD߭9l3ۛR[~#oRpuL9m{^ahU>H %ܠ|x)CkU:'*?0kQ27b")9~;wk2oM~N(sJ趓:PrH @oH+ٚE\W D'^,^ܿ6܊}+Z hJ_Uݼ>BMpz!p!z_{O++"w=JvHm||F/LV>gRAzBz'tH.qe;8 R hK M$& -ȅw"vBvԕﭹaȊ7D8n S,*ltkUyc^½oa9^/qdT pkM@S!'kܑd @߻`m`WjzՌ& P VTD;H őz>o4g,х"U)[Xރ*7g1H1+u%l,堑u>z񹝩cek*ә-Op@9{ 7RE{k>U0BDVKd:1k;55Rt\֕ʻ\qIO8YT6 0o78`Jgjx9{cfC ôTTC:$0)^%.QjʌH| BvGXsa{Ag=n{;{TR )N?'* *e2^=)4mP%ϧ=YMMf CuB@wÚq7) FO-!c HCOx̖r5bLNLR{Qb3b>z/)c8XMM1G伸?_A\ mwh—ٌO0-Pܜӓ Vr"|G./=ȾI\ "quQ Ź:ҵ'7IdShr"X897JAx?SΡIl0+X3ƒuѪbnR(q By.$z]҂ #<wW,zU}ύ]"=,fLVe 1;ՠɤ"`e5ypa:x2Z3;DقSה!Y@@TVfY.W rh-Q-2ǫ(Ɍ|YX$ɉDBuu  -xb҂Qu*sڔQdNڬ?d' {J.tfv8d*݀1v5ir@ 0 *Gr"*5:Z9C#-p~dyA\8FcfSiz|fAomqs,_K(% 0 PT\!1$Ե9B JyHb [_7.ddfn"̬fUO:뜪UO/FޒO2~#ӱ70jJL=#o{j{hٍލ\=@wv^2eзrڀl5B%3v]1fpunlmCJ@|[ "^Hv$l0Ga3FTo>>OI1w5֨.E-2th*rUR0Er4v4-Mecq*WcFs,-Ғ9u[ g74`D %!KBgM}'V>&Y;JchJ@ YxJ74O50~2iKFo([>Rr+&R 6E-& ڕZ7܈;APOn ;aki,UW8\ۚ" !8K#h'bSDsb¦.j矸tNK YI*ڽѴ а,| z0"C=낼^uEThg\ۍ&)=ԫG#gDw`-=rfgyYyoW(+wv]7R$ "ɐ@y{&0|~UhHm||}XCB@>ȾSOU yV ۃKiWM%m coj (dQc \~xD[08ufvl:о7dM)|SCF3xAT=ekuO ׆,@YYi4D,dI3\DoY%RXH2/ĖHDp6@362Q2w[CR6:zUШQ_e~$oCqЬa˻[0[O24({Ux1^e*XآmM =xI3ؤfW 2;J> Ǩ9K,(ֶW8؂J"*&|)9YU#%0]$34у%Mib;BbW9h0(xv^q&Q&벩߄85E$E )]`!wX e: KWa_!/B2~+*@\,XD^ *6"pSIq:YK t:kua!E .S*@e 5%nBe.P]($/$]9C].ۜVÔN&Ujsjp}SK&$$|($4&lkәl("Հ&,GUQOMLug:O@{Mu-glX+TE8>Llś"pp)2/T/XBIY,|Ӡ&R"] 6} )7WAʳ;,h:ke@rm]hS?T__ PpGHWF6H.::zWPjjA{UmO׷?$_ĄЭ>W:RiG@QP3Ľ@!A8R-EO#F׉2oFfP8eAx j)EH>>&}vug$Kt}'rU){nL~_[ f Ei˼wLpGc([UYٞບ2]ِ3Ja#DF'&c2^_p'd gkoyTvx砾`'NS)]~mBEdnv])y'H$\H*v%=dU)ZGW B+J\nR-(2կeH(U(Pnb[VVp[ RFٕ΍=EK6ы MEl 3#RCٹ(dvBTEvU/(veMJ=.8Ul7C7j b:QXSU$ UD< yr_ 8Dy@\ j=3ڶ 9P '7O_U: ߊlZC 묀1 0Lj5]fB ݋p^csȆ^c |}dբI0T֢a_FkErHuڦX|C B1}l]E"WuN"xfuËu*5Q-Ct[0#P-K~Z`Q[2XZZ̪|9v]5,(a+%IE+ g]ա? ԌCQʏ"e=(1 Dx S<aTf"G,gθBrsIm$<mRfO/g}5|JeII[ꐱ 5{应>!F_UE]PP)$L.nޡ6_Wr)1eYŚRpKv@׈&j$$Lc=DdG[ !RAbQlYC`QzALJLL}r!TM'ƒEB*Syq;J?I,Lgrc"Fo tQ_ڐB0bEžu@~j*>P#d'腛#WH, cUʸ(KUUűfUCP~\D Cp$6Q1ܶfo k* (5Zlw[@lQoHI$3GH%+Si9Hbb/ݯo|6%'hx%3LIJzrKE5=~ĤQw!$&<~tT@ڌ°!~ba)tނca>ήPG< Nh'%(^Z .JL l<-i)Iўᤊ jD+l [՘0g +4Fᝬ(q3DȳxTKjcS,YȚP͐b?6 |<o)H*UyE&aM݇CP jݔn>>֗!;.ao U|J;qJ`YRVb?mDYq8L՝ݒ!*|BRW8"|OD` O-=l:o:qRZj~j1CBY( 5)ߔZP}6`fa e,z.ٚsIlϱx ;:ElXxjX|+֣=ꇚ>=u]K6K:+&X TiȺVAa|7ŗP <:䩐dPE+X3~Pv (q P"J07SLRpR%*9zR܅IdB 6{-Q J"mrgǧURYcp5 uv!`Zw>S_Beaڼj.9у۶IFyJRBnUMqєނ=$Jb;эD}a]!٦U l5-OmC*T6zrQ\]gSV!mrYʵÛdh|6SK@3U$]K wt&-~*EIJWkUF:s0u*h+˩@hn遃[j̡RUXhpc^r ҡU8ٲT(0a+1]*I݅A(${[0:m?0UPc 7DKئ*=1OpI4i&=R.PVt *i??'ʪb,}T=SEƃ>*%Z|8W%G턪[$t '$̧lU&mxoY͊TTԑ.a[d,դPV >]sMnk&*IJIl'$Ubw%alzrō$ YP]tcLf:QKTDRKi*JRϵn))_`KTpЪv)qy[Pq'QέpRw 96#P/jl'C!7J2S_ $YZ/Wh{x.%^lB)(jl]fUnL܊ vJ&H39DoQxVsW%=Y#KF8%6 t2wB!9N$ fdUSgL7*ճV*~;ˉp UtʉwE-)^ %>IrW/!+ȅ. m*e dK6Y?#ąr֚ߟ*M$M=́l` r{ub. Ȍ2E†d@֕$|. ƨg((5y#"8Kz*GR, |!mP~O 3U6;6X Vb%4%Ta)keŬRqx-h嘅6K9kaL|Ɂ9I4e7AR ZuJgEгeF+= մ+#:!4T('j"d&c·:CS 47PD DnqT@Wn7V> =U*)rh!XdG[vT (`>**!PÐN^&%}CϏץoCY#zJ;1ߤJ'P;"Un ɬOh ״<'+]N* $*5ݍ8 Vďv@+e2Qxz6NP/72iF4}|>z0![q8CEq?ZH,jdq3^xj S)dW.嚻 S[J&ߜOnDXᝆR{DSl^kV+_&"a{e}YՑh5ѕ)D*$xIURRVLT*x`.;L|O"j  tQp܅ Qua` EVlzHvP@o}CÇtH| z*8BY9U.f$OYc!d5OyîS ġjwx&ՠy"_(-5 IJ !I229L@Wթ.y!Ԑq]G%@uƴV.G[Et aV4rrRƐ)k.uBE69唔nmjccZvy~93d8@ >D" 7 y 'Bjz0z0)GJ~sB͏4 _#>E_‚J|Cה|73IQ#^WC5ŀ80ޭ(h`8x~]eIH(])LJu4g9x5f_SAˎojff=S,gMJ`"Մnnj`}좖v'p8*PʃO%B̓D:+|FOhAa]sۦd P(b0҂nȂUnr**IOtrR0\W5aᆫK9*(&%\g5UKK3WUU!nnJ(j궓@'$ၱVtJs\' CrFjFz(>:Z[1@Ofw+'"%:p<8sb,D69NbG`j6h"{NMs${a&ya'1ڹ LjH26zUʖOPKvRJ@H$l79li$T5b`pԢ'(j:~O.^'[oo𽆪HfmLJ? !&*Ajz=xXSS=nWͩ4-#.J5@ 7TJ VK*[iPl2|NS PAҲ"NڞDUKAG=dQDDJn|bd><g ;͸aG_}(WԡfL^V, 60-Lڻ҇S]+uG3ON7ށ >HD>rj_YTBCӈ7"ĕЪQ X5Eʸz;~Eڞsvr"/,^8coSv# [( P #/tʠsEktAvh);obM?'{#ߘ`kp-lsV oLN4ָd1"ou&&֨TlMVj~zg` ds[m:27&dW> DsfQsߘR GK(^}6#̩N-Ѩ:U_>3jG\j7Al>oYJ oǂRG 1BdeWşoC2uuw!zt0g0Ao-$o囯+DMs?+tT~ۯ_Ͽgר::}l$/;,/+l?/d~AC9z?=B 0_wF`%D_o__/"5n ! T endstream endobj 138 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 144 0 obj << /Length 2783 /Filter /FlateDecode >> stream x]KsW0ky8!6C6I†"\I@er ozxA7xwiK*441\Ml'&GcED2)]i#ÇKXys,Γ"yOʛy2M'e_%cqT zu":PjaDDi#b(JlВyӖ&OjXjƋi \SjGui LN;:,3f`׶|]F`*ydD$u>#}*ē:(".fxQeLm붰#]Ubl AВiC~[R/FkuDКCַTG8خ&C(qL0YXq#=j9Y"" !*ugM.Z!t;^#b.[<ʝ`\eFPJm2 A5Ac {MK~_#\KRw7RZ\zNJtoNo[{N;iüㅒZHx8kqWҵ5Wu( m ?zt^z߮UL#v0&py\(}zx)N6an~RA႑WR$%)۽:ȶ$ ^m(Vf! Qa$m.q,M62?(ػE_{-V̒OyIRpƧׇc(9?جBn*p&(\vv<d ǰe6cxKG-{q,!.\~o\:޵AIlc9՛;w_hFdF~9ʓw_/B>^_'8Ƙ"~á۫Ox26߰o(4uߚEy)4u,K" ys&uKJ// }sVLU>):ĺ4q"ȳ2.WvɣdZU̕gw?&f粺~U}Qgvxd Ӽ'c3;|9drusOt^iV?3~!Br~o!WGC]҅CpĐ.>O2#&Y8u aSUҸƷ"F.rw۳tV՟BT;քW%vj糤uFŚux]as:^ެ V6*FMoR5I=#Ɵo FقV/=t|K,QaL%159IORXR$x&*GV;e?[SW5ա (=ډ0*x67>5#ަ&sQ%jvրl%xk`'gO5/c<̐8r,5ܮQ;![6CIZjXvHnEERMFUEQ8%Y{RQm=^bn|c҄,M5O!jLjSB@WClUbTPeVIՖ*=pc9Pfw&Bso+n޼s0 >%n}$9Iۡ:c;«n8|CLoMq[2<@ p?OyUm[o|3=YT0򻦁o_7G/_L&'PƄFg?];ri]4:\'x3Gu}>:bUp)T[M~TVj}|yxPyJO,@T<gE?:j5 lZ45eyV,(m,j6Kp_SuKd*W?W]}W y:u9C_ҴEC*9XuDpό+pH[js#R*mG* endstream endobj 139 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig-contrived-4a-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 145 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 146 0 R/F3 147 0 R>> /ExtGState << /GS1 148 0 R /GS257 149 0 R /GS258 150 0 R /GS259 151 0 R >>/ColorSpace << /sRGB 152 0 R >>>> /Length 104300 /Filter /FlateDecode >> stream xKtr7~EŁZyL%؀x hD bQ"T>%<~뫮3#WD"_O_?#}~տ7_} ]=W{?O_O_7_9}?7_WzO/o^q|볞9LzﺿJcU{O}o/_ٿ?J_?>K*|Υ?3O_EIϏ7^?E~}~|Hߣƕ}^%z9.>=ygyڱ?_y++ljOo}wX'g={^>?k^VuqzwmwZ y|i~k5?k9?;w/|oIɞ?~n{-y_7_gg_|-Z+K:?Ѱ?>K/~.G._>,kl%re^S.wI.w/L߫,Y_u.җl.?]V|sw/Y2|~`|l;_>/=ׯ֗vsֶOїvsjvsv s9lݜ=.?1)>uu]g|Oi}_W *.~\?ne,:6u\9}:/9y~ߓߛ~TIy<<<<k$[Sek%֣L$Z,`¯0~JVߒ@k?z~k?'!~OOx&+^:P|~뺟K/<N'3{Y_Tڟuus}w_ׁ_ׁ_TFڟU6_ׁ:x\<:y'x]?U~8ztN>tɗz=T~˷z?ع>'Q>O',8zO)#|}D$S$Px{~K;8O&sy%'>I)) ʼnwJFq ~)7|JUJUWcBe!ɎO=Njgomk⟿`1;=UzgEksd}"Ahm |10G&OQ,`*X>{oVdy-ݯx~R_^C;@uw ZD- D}5Έ-3bPxkY9/z1?A7_9,t[.U/ Q?h<ټO\sN4Xy~{-yNYI+ryT޿5R5<"}ֳ,#iW?xbO"y"СZqTG,n-7 pKS 6Q?;DXMٖFxł mn'ج[0ũ~vߋxÎ{;ZjS'rRYoKR|َQ:;怃kzRuy)zBOaCGWLח^`/:j_i7قyh!v7S .6Is2[bSY[pv-/J{<(È Xpg=%ߵp=wA H-*2^:Pq"Ə=(u'iQ 윰RK,y^"5$?zqDнڝBs%8-92lmZ>[U;[մ}3u3-i7@ɧLJl P+*Nt[` G8PR954N%#JMlHx-Rido1|X/5W)s}h@Q̒Rܭ{ǵb*:H-v5WyX?ObvAl5ؒ*8/Ŗ1mFNGM4[3Ȕ}jkaUéfƉǾYwL ȠI`#6_^twhx$ j&_h+ |n~$s7<6B mXMJ8zRT&V?KI f/8%PwTωp^KWdWwK\>QY#?b62]#!iIWl+*JX՟⠀Uј-6h|Zhٓ {ԇK]J;megl[9aNܹP^nIn+Xfp$aIn?E,dcn^w?@pVm!%Q/Qۄ(&ʍ拔ۆaqmE6gsv}KPPs>ӄ;E1\hCR-xpU <|o!۠(AH a.xxs*D:Ӛ;[~(Zn.&882Eyn}&zke]e^蘩"[~u7>V'REJ:cJJ|.'#x;m>ƋNhk/ ?(J DgD;T41 I%TUp%@l/ZԱZ*%PIuʚQ-gQZ07m}iЀY=({*ʮ2h/eux::L>eN =0CD,;[i~!֟hJ?kC$f mK Έ'(+t `94!S$‘#YCSWb"/Z!!Z -Q-B_H*XfqQQovUOyb2џ/,e >}Gj:Aq=2R cp2U\>AJLsL8˄?׋SIpC$FaE4[P\bHL$o_9hY"lG}O: * a,BCb[Inն{'${%dTЦT~(fgyý镑A^@/c!"CyVz'bYIbW gW(u k ;R.:G՜1[sgu%~͞ÞUBzbu+AHzc<HTJ]j;AB읒Gԍ|[6vJP ֆZZt'{ׄ@PJ.PPżІ`1z߼~VNϴZu*Ҭjt G AQ}՜!voQnmBuN-(p9K>\ttTՎƸt<ݶFVP"DMa'U06eca^,pwQ!;\0(2G.~ƒFkyH Cɽ ߲c@{eY6=wH~?'VtV&c١~ 2t[:CGH,ͺfۯtTJOϫ9$L&i>k[`KV@U΋bߘgCCV%xRRl-(w65 IQNż9 QFĿdf 8v,A-霁sAީ_DJ؛jK<\O>r+fm]&HvE]̙40T;P7*Ⱥj]m?Y_,'5t դbw*ɔ \*LsuĸPh5RUwwZ k;u(ՕHT#1y/Η 6d?7o$UH5ebrlDq]gAFqOR8#ζDߠxrH)UfDZϕLddʒfkáTڡm>P 51m'2bVgcySCmÝHP2b AJY;ZTI ݦTHifJiPyBgT;t6T* YˬJ)ݰ)_CawNu[^V݊Nt] LuAA2ooȩoϽkL3q+˸D'{Ѻ$,YEYD^nwT=.AK, .! ÷*nùu"1xY" c>S6hApDS=,)/\\b$eL@ST4EsLɌt Bt-U3DPU"/#K"-.GR7$?Q ;݁jQ/}*lH=.HQBʴňr2$x΁t0]9nlslH}(_2%1aKL61›XZoj"7(yGZ#m]S(B,R*IU!I1t&exCB"4鼰sr/O-s24Q裸;,rsXը a#^ @\J̱ɔryenMsxAcA$BRT'/8IpZ) I;=dn*Z\xaE'9U^+o3iBg\>bu[f!ݒI ᆻlO-)rg9y#]|5NtZRP :6%kZylMC*DNTVrM+0n>,t"p]D>bjV_qs s$5!`'Z^ [Ho/WyfUGI_Έ)hq Toq-I}ϖWA*-d&,Ri*hb]ǟY~^X@7Sv ^&p2w 1SQJd6IC^͙k5_64˞z4~1 1ҾsҐ½ʙAVbt%*zÐP1>MFtLg& `X?+{ m-;cuR*;[Z&5Ƣ&.*b+*~P ɤVEld;冈gS(g8GiIq /NI>ol&}f籵RXT;4RY׋7fɪQtr=< VkW[,q3پd6RzV[C[n7K Lsoh#֧lh@1@e\:dTfGsq<7|!,KA_@Q9TXbJx{}Q%yH!䰡ψtPW}&P@zo8.,o \'~!eA6 Ɏ)p{bm=Ҳ͸mL٪YXI 'mMw7l }E1K3-RS%Ϫ*q3R-Uol ٪d )ä"Fʺ ,ldFOLw#z,B yp3^ihg;+$"JTgAeLB 2Nx `sEcMCc-sΊZ(q)uspl^t&_FB]^6xrH%"poʧA$YB5QlҽLF%7ts1>/i:8v`{[y+E:%MA Gk!;YI* Әssiv Km٘z])R}#>89t""Ce 'q=k4t@,V4*56D4/&5Fɕ|_H޵}WrzO&7L>{G8ƙ~[&s)e%7]N pA~u\hOMVޠ nTϽFfu;nBX ^twi˧iɑ@l0uQ|vc g גn~Rhh$iLJOgD-Ҧ C!e08ZRжE IG'f P'7DUf,K@쀖lCK˄ ܭZ챒iYI֘Xqi5*,TUm t=R vkI䍀E+9csřUDCUznekpJ% mίkkC F%wx%bȠ祡6P'kŔmB$"Y8eQP45/=uAE?zs{OlSRM.#Tݐx vK#h[ F+YaA.ըm-g}Q_ EFtBC|jVA&>퉔|siҤƶ};LiU Hn8mvvǰ. 倃fwQ񃴍 T賑EE= \jh`ہUo/m@Kv y{* b,o{l3z֎ ~+پB_%$,T:1!VlꪹF;TL`HN1D]I8B!ۢ =̉%sQ|N Y~iH%ZYm"+ᩢiMIڸUyi'9[lK $ G@@אHBְԝې] >5!HU jʲT/zq9sƦq.Y# &T!r9[xjEghuQQi\k5F uGEn ̵n˜8 ~TՂɨ x[m EⲏMχ!a6K 4.!l,O҇/9·M5]nOt1T_RsXe5F]ugLܘs3_R!3cGWѧ,7weqmD]Եad)h7I]6U5(Ȥ=9H+v~8[>-m_\Dih'\#x$NY%b!N{Э;OQO9==euF.'E>>.{)K7VtE~pҨdT^Tz!}JbIrkk?\QZtav=ꖏ~rr^q̔S˽p2 d@kUUY;&+A1(ͤP&#3ShDgSbv-Ȥ]J CkSp}UPjn!Ru X`1a}poh>'U˕NA0.jQ'*&Y.$ɿ,ɓ)adr;9i[g1';\S > Tq`rW8!m}Az qfoyuPaJܾҀxQAiW'B,BT$WʲItlns^[W#AyOh{lhhۢjAѸAӎlS)#KiZܒa kafc y8Cs'il4UzHXYSܐ/쿡QC8`yHQ_+/528?7+jBCmj6q+V$:nTVEI0ƃf!xN8 1ZA þ2rhed~X$5s"G vl5I՘y \]EJQ##7qL)6$}1lUn\$H4浩@gEOVEtŁ g^=14=Lp!$rOn FC=mW1(go&y[{|<ZVbp_}d۠ 0 TJ\5FTܯN-y|#7)N 0$$kWd}b4#$Wg͹k@ {:`۶o8m v9e [fL VzQ& 8KV-pf W հpedK |2uҭXIj;j4C_qtЈarl n ]j.. d=hxI̫K+i@T[AcP.>Z|ݲZo,5/IΝ !RkI)H|<{u+sA9n+wlIBj[bS- Dp L3}}.l!0k& O'o'cZN# ?8As* %OLۆƊc MhPoы(PIV6.kk&AU脲eY:J":Ub 31 N4`ǬB,nZ %oR9&J!;҉oyQP3qO?R-ΖV_ht#rlT°G2IYƴ[ >hr4$ЈlauՋDpȇTP!SVp$niFGÚ$;BM \eDl1mlXH@6eA>G͝I,&OѫuLql*`oܐO_5%qAޝ讙j($thl-fHXt2˳PD +Č,qn32XAȋ>>[J`@ pI =ۧ9O8ӊ\֪L,/≧%,Mméhפ0}̾%uL.(mD=k#&@鰵fn"glNXi"fҐ9E)UPύ&ME8z%3i4z0Mn-4V;"xEc'o0[MJ̆,TRG c| a&{V%cvdbLXf;ȀBѱRb< .fL:':͚opq7CAo!U69Q9H~Ư%f6}XiqP$.!~S>s}Mpk 5t OJ2NnaE}(؂,0((C净#\QyY*IMhoXVKV:ȼ{h)muo:MM1׺ 0w4BǷMzbaA;cXYq[1$5T Wq;.X<#5n/1ԣ3%(^X*6P1c"iwDT^`:IoHL ,[Tʳvq߼-Vq{B+̳;T(Z`z#3.] 캻ɬ$"iҀY}[yv}&nǙ#:CH|;v5(NbYPͨt=_JdW>.^ jmD {Xr'at쨨aA0d RwCub3pEYq?] I,atBLq(g:|BskÊe3aZF}rӠrS3e!)T;:kpBS܎HCna( Gw0EcQB2]1twH,8c/TIꕐdWd]ܜi@ʎ(ͽV6g2 BUJhj@!ٚ @?J&WӃ|jXp J9:rC|9yfe#o3~rؚd*ENyz.~&s4{2T3%=oPMrguIiESmMu:5l IqS{^Z%@Qx]#3+ѡh>[U!a'WBQz@m+5^} 2Լiѥl6ߚ}ӆ FY}{ ߦb `R@jJՃ+3fgmaT_{5=$L& ҵZIMq"s7,$,qG z[dл%fUEݷh{H>M-oQ1w*VEPQt[D6g#hQix$_S14-֣xDuG1~(4=h"Q2gICN*7.K_ƴ6hԠBEVoPe 簰_P}nŁò[nEVr-8 s]iMMը$>Fx NAmAAċN־[^|~"{AŎ"u}pD^w&@Wkn!=-TDžCIƤ>V8Α ,;1qǧXSybOu#K``+$wQe zL+ŞJ+^كLngeT )*<Xz=@C!&w|/r<IShWk1d'5@ES**(a(}0pFT,b&mTv5(^lnf@66#Y۾q)IoE@ɤc!6dk T8=BխqQn:BrMc[^d>Q(_ $' &msJD3 FvNB>䋒A]N)^wP|V=@c&(8}b#z!X4]gkIr?"%'{8Q΃t`m_{{K3?OBWδF/E;%qSfM k,Fd].b;;TT,ؾ,rQFX`G6;C qgeVdO˓(|^]_$匋e7*xLe{c›:~cI RKdLyPn}Nq" f3UF.CDĮ*.Hnt Qؗ:6xJ)SIٮ] @^ N85K siQiˮ,fm9"n't2NtJO=ѤOm}W,ӣ:w"|pI_Gi jgl;i&F!a ,H8%IʆWUQjB2Lk@j)j42xJ5DLHP\b2DSy x8T`T!(4 _)t`E$mZoC$QPʼn%dmRRHSYU#$SM )9prfLJQ1 "SN_;ʪ(rrUNI"۱>y|kuYjgL!)ڱsF./ ǶZF~AԳBrIؓpF#Etyv^$ʕh~şLxإ3+Û̡,GϜFWm3c ;uzh©nclYFqUe!ogS SnxƜфYBn)>:2F]R:o* lՉ[hH;(}ǔnk'GSƮ e6:IS$WUVԄ,RG`QjH[&&9[#L 2ۮ5>w׽wWx&E [|Q)CT#[&|Y5ˆ$:# E5H mO*jN?,:)c[ l鄃- 'B{\MݳLD Dx^lOiа 줌ڹZ$UIc*֋΂ɷȠa59Ƚ)Pqi0{v\XyC9?~TTʢFr&fzƙ}4?D S 얎F/`eS ߅%oLK.(tEҰG+A$X@KDU%Ѳ,jєACJeqWn|-5REPoAӰTsR {M咉^d1-h74|GT=~IsZrXLGRΔ L }Fsa<4b+ZM/9~yNTEO)n=Q?pD%QVaDFFP2tA? 6Cm4P226|GL[ynLE/,'Nκq_RbZuh8c ˊ1}|Z,CսJ}v \A|儎B6,E|(Jq&SLﱖ]N [e1 sB:oLF>QDzBSyBthEWng 0br rG4ҙHMt`.Ľ.>N12iv0KJf襉8:Oj ,CU̙s+=˩LUd?y59WɈ x*mP1hta 1/n3d $~!w@|h+I?sEϤR*zfjUAIxڧFPsWV%'Q"eS}n0ϔԒs%sG 8:xy\ 'Re~X+铄V/HK(5jYJ]o $}t`3a;C:m^l*Urʤ4tZK/tabݾkf=O!kߨjmkd-#T kpoPwҜ0+gB#b|q_1P >!Lu|]&XU*:5ib4!)6V<%Uh\Dy 5#':T~$ 7fBd} #0q?5ЌAw­Pe6i1*/ԎCk:FMʴOy3 eP}5,3\&м!Ä5">*%47E%8k^҈!wb]4ah߰ݻ gP*"|qMDF-hv!baGkH [\v3-&ڊ3WIJ8jVjȋMmԱIߞCKĆ,3H36 JM52@G 9Th}Qd/`uȴ5*`tRXiچAS}"a؝m ^D*6jGH K>#)Z t{t&N4s4yBdj7HÏY )l!K 4 hn ;s\ Q)b-2n"NvՃhH/ay NZ X9;+clCyH06ܑtE"'K[dVMgaLM-KS:)PXL|Ey@?D,E"&YZ 0Xw]0`+gEW4AY &v,Mg2yX0?Lt" %#}ZySaY?V1~BoIW cfފE$?]F U"C]0 o8Ч!6u&U]EpJ*T,14rHOz[f"Gzv\CEIcT7\]UNƎasU)[nSTIK=s30XUi@g_P3+ÈW{`X<5r۸+˂ En6 ВUrFP> ć:t2kl'Bo1E&{ [vE!E<&%< 4%[Ytn·dNʏҲ)nJ42,RexZ_,4*o.̀c( us'k`mA&fMOFNի@A9iT\Vam8x^TXTYE XcGS1$r Aõ:{!߰ *hJ`cb_ɲ8\ΓBp@e Mɪ3PQN*' \TRƫ+ jrݞBz85m3 ☆|hƅx372jssh1%nÎHS`+3qtdJ%q줁i-1S7d-M̡{t:NRMG[K_NZr*hB[Z:XGa@'7kĀN^5ؠDmP߂APN&E|l R4lW&4$ 8k`I^#XQ'"L*fg)iOЄ3 Fp"@KAF}NiY~pǑ> N;P@p,gpc}U)œD\T^(7kwK4 m냓_^%nX_"i . WZ~ŦNr"c@Cc#3oM=MkCYUhVxWxNR1Bj^F`+DMN]e۔ ^^=̪@Ɋ"DI{\jlBvI]7{ʳ,)pҵ1614RmVi4 \ramȖP߬od:?LsѢbjM,ٴ%F2+0.|f9t-n&J(Nh 5E z{'~O4ߟVxCpL rA&:8 2}V6*T$~|a+TALGG e;lѰ6vaxX)JY;Y4@׫Sp$CD|>D۩ߊ"P?ly[d/53} T21䷼0Ĝ5|¦3e }*!E#zECr]TL52G`I> vgw?x 2ǓC_>w4=nⅱYPx4*7:uƠ/frB ҨUi ! S٢LաhG9ua89c% S5fmg'fAykP gnPD|ȕC^m/qT-u |*L抹ThLTU >z]bʰhl㒯Ƥ;t6=Aֵc"*fiD=19Qi훼f_si]8R邬ሇAc OgՅM@x)}`U$xo"(gyW-N%^r>|!4 pW]TSB6+hSi(g`-IƊOJ-':J8麫>cϦ Hb=2I)-K҈ gd^xrIu]1YaF$-B:}a6rYO T߅ʮ}> WcjftUS IL:UMDyR=Lͫ6ˉ8Z$ٸ$:CLoLT12{ő0weF\WFj(og^[.Z*ZԻPW)Hp)z4|pD3O̝iirЩ1|搆j4d$\u^C3%kL~H̝I!IؚJ '؃2$n$tLʳ^D.X=6[Fա4a33SͬC̩ HKlNv| (k -Qy.,=T;_fJ+1 i;L(Ab|auǻd%0YvK2eIX!B$I1 }%믪O.rŰ9a7Q0XQC,UY!g>EWiF-/j(F;n% =_+t=CEL/'ݟ؄2u, NZMRolO8j}hkA|l"*Q58V SҪu\]\Z&q҂I;eה3V{ar1}@a@jzH) C򌓛dV%v%"g2: "DDW8Vj#PQkbUf&ڰ$jk'<,9|Fi[6NCmK4֌֍Ť>\WUkId=VLzr0½c¨MBS-KH+錕Z+7A AKT0we[$*>xz3דQ:T(M:z,y';,zgHhǫ,5J5ōb>i%#?h VƢ!*El'cqԯE'J*J<&9P }@ehux4`_`PEWCW φ[gřG䤰|*aF]ѳ+Ax37>)K]ǻcTxH)kidRZ)yV~L_h5  fYР KUV2dǗMm$ީyw$N?ƉCʘMdNOuZAyJI*羒 sp`B{24z~PYËjcBOg MZl-RۦfgB|M<hAR LTN ϨR~/1 {~ѬhHؑ, ) JJA[!@iY$#,\CHhdPZhXPbjW<0["䁠CrP]9-6 {tWmƌCVNF{ʕI2KH| B3mLxy^&ԭ>ID5Y"=(_+s\viI7ʚw,ܚpuRQ (1~ď o0DS>PD3 ?&){UbgM Ŧl%gqXϙ^6܃f<`iEٍU'V/0!:=Nzv䅱8go @] '̴5;teI4kBTWܾ9GR<}7e zqa 2χzOcOI.`lךHRׄ |=qzXrB8Fe  SF } 5:F.p~ˊyکz%$uğDŽ"MWpn貦K;B7ATMCã~ JJIlLl3 )φ`l$X~OveZаS&7kU(݀#6طX ˡhS;,8L3@E*x o ;{kv#PC8a y#w@W>Z(?3CNK^U,fjF`cD`h?xuM*/;h\C]=1$;\!KS6i@o˖6쇨ǮWU,8XJ>1.0R3Mg>KHe㮼Aԏ^Y+ ^A"CTq) $P? nx $N!iB MnB%|wAF`) jQ lW3mBk!MG6gCsY/ӈ2'w~n/\+Xg"J2,5 XkMA8Ĥʒ?SOݽFm5DD)F>i4Kgm,)94l遟Q:aWYUK՗c}6zF!'81ShJ. :"'ANMZ`Yt· +e |]V"G' _x,cЭy=f,۶'y6WѮ3:TK)8{;LrSlkzyP!Tec=[eQ)u9Nt*rJ'c(J8@"f݂-L K_`eH0%jY s]7%I}Š![tk,@֣9傌nNzh^PJWL*,BA&w=6Fl,~tCy{0r[{S!)}ha$-"o57^:&QlA:jGg1mP;?;<*+bTE)Md!aX$uwG&+)cI..ԤJ1zFGb {}Q #TPcQTڿO@hcJ5ISg `G_ JC"1 kgN4HG<1&%FӰݡ>ʟTokvT\p\R?v+F,i7`>?*i0J:I,a*쳟q(k#UsH@EJ&]x V`E-=(_g)Svq`lPߗ$7!r?Z  ^dVp Lߪ3DGXקBx-ǶH<Ğ)^r6F@iI2BFvQ߹r=LzX}끯@W{vĐD*em/S&~_hGO(lT2l&)VWhob ѡƨJ?L60nW60ꢳs"<' )]zdGi*-'G/ًfdVD $H~ շ|$%)4ly4/OF- $ߵW[3/݃юJN1@+56q>q 4&?7.W얙fƹ'm`]#)XuCc.*S_ىWuot<&%CE.9\ 1E`E$WP<!ѻw-%aDßi%Aq| ,I53f1Qv3_EH)Xg8(m< :6MSj Qg. 3<䒉f2K$甂 n&9E(&AyO[cJyYИ  нkGEizt8PQM;aZЪu &]szQPfD`GFg e)\o<$嘑w]dxF),N+MWH>*M\?IFO-Coh5kj[jSLnTSԏי8D|lx*}ɲ=BIҴLF>u(!*>~0YYq+rLs"YFV l=l+O*g^)Mʕe,4O{t JgMz8*Wˤ_5KZ7X3ϣ[$%g@'F~N,CދvJN0lSSOiҨQ\{nNE 䈁֖'I#4HR|J 0/M-&a%/Y=D xŐgm:r_wXDYXdΆdQ/sQ Y* , )tOߍ`2FݼQ{عO) 6'4I@v;Pj\$) 6.x.vʊaɐ+krf۔>` [%^_[>.jbpKdfy:4E fbUQ(V@)S'P!i AvׁԂ+M-(SC3[k57vRa5%ص<i=VvTQg"uoX8{3ifJͶ3xSBa^Q:P7-kG&0RIȏSz ha)$Yr\ճwIAYz'< a?D2$*9tMi(U8>4q`+{f7@yý9Aeh|c3:cDӮ2oT6j8P [I1.-< +5aQݛoD*?D)5ܝBF~&uЏHOe~(ȢUF`[ѦO?@陸-[JųZHjMK z1Ŝ?0rYK]-?4_z#K҄r)7~} IPGY?ȋ_2\蛆IۚYW3&m_Z&UÔ9ih sVՓi5}oJNErlkH,2`a(z(!+hֈZ &͕X[5XxNK@YH.x,ob8{:r퐃"Dw6J1i.$eYa.n)w]2pM0UQ~>/GȖQd@L/n <2'Ȋs(rڒG 8(zU9^Uɋ'oaܙR:^2FQLEy cv75|+=]2[# m"%z!2&|^ IhO`g&EaYM&VݽܪV`JTt/|\5%xEG׉!cvϦ#Ub I-q߰VzL2-K;ʡBYޖySȻœ'A;GGu.Rrڈz&g64 @;sn hܖ|]~!.i8Fs@I|EbEv~2d™&䎶ws ])޽]:)(pC!z)Af}Yޯ3:&)ei$ -B!-9& M[)>]Pܠbѐ> ŇUh~3C l2;՚s|m´UIE{h[4a+lW/n]1R.AInflE6`L!m kkw 'd7{yN|XknuSNa>gaXA!#j%_t'1l2꽼05\Hk!W%W'%|: K7H837ar6IqXFΐ#'o!M:o0(vCo!ə׎"#΂6MZLI|run/C#u$^؟+@_y_AvJ/NcMծWJ{}7vVWY$-+goja!!]w&F[CN߈Nk@8r9“D0$p VlXU{oh7nOcml]@wBuO Z8ң+UbהWQ>D9]hڤ1YSL; ָfݒ$y%E恸>'^LI|+y]0_Yֻ ('"ɛ"OcJYY)4M[( RpyC-h~39{KA΍_J! 2H[Sr1- O :[D0RfCJq,B!y^H"! HȰ%\e줠)e]D-3poQ/҅$c&㛚~Q,?픠AD_ڞ8_Q*jEBC)lDo*&q鼨:")T :F1piHf["T3CK]#b{dDh#d\zj %E?*>Ѡ#&U*ͻJ1b9:ZWT&C=h]b 01I` 6495Fse˜(!VTqap֍|ڥAzC`b-2jň曘Eq}7568D,N73 >^S\D['FV6h!Xau?ۮ JK(Vկ-'ˣñR1DNmq;^3ѓ=vЗϕ^xbML%ZfDRNS;ζՔvM,${6s*)2K!sK;M= -ZS<[?p|FKۨUqS8m4֟B;a7M㓘˕?"|r[{hy͡Ul_9#yx'}GXU8W߈WЭ,MVkrQ;?oʌzt"$އ,7vQk wT4,H>Ȭ6espQKVC)-аADA$OQP5uk[/-&ѢD4PJ:gT)` 9fV t]S>hc1bmmi ?d4fB2s2߾|U<.=`:X&䈼!3pT6/,b&umy-FRG^r̴' DВ{"o/Nn QWpTkaa@$ ؒDqzXSNb;7S/^C 0k_.uD.܎6;/PThAr-7=h)GA|݄Qҽ`!.<:h Hϕ՟ҡ.q$d´kIþ׃] ʁIè"b @ }l^)Z]g&-[hi1fz<7u7Цy j2 #|kT1%҈Q2vc7D̅,uLۚ>VUB-˯:|=jbA>l*V&ѵmuPf8dХ\px)'J3㞵%PDln}cHN %Zl$?2_dqR Ƥs}+.nb)BN찅oQ٩r^}WݤZUksv^И8iwdA EGP;qm[NL\Bט>Tƚj$ Zh6IJ*J)yݠIcpD$ۼdwHoH' ,z6 95 8'!`!;_);C,#4*)gA_j.d@/q"kg̔AKI_6F:t\;uL$o)^(MK}A5ϿUrX-L%C #n妐,TIP`& W6PaTH w`Hq3);Iץ|ͧA~?wJ!@BBv+:4"Rjo2ıVH{9('2k6tk*bD [~hRe8\> MBn_ܾ }i:#yKavmSDWJJsGG Xy VLsk?uV!Bޯ1)kPdJ~!*B"Ǧ`ߒ#l䩓Y?t0dWd107 =ُ3#B6s!/U8Ȭ 멡M ~/};45s so'spbĉhm`dmW'bg^!WS8gdS`,tAE%Dtk,c߬f7o*H!,i&Q8N+o^ d ,qztd]gXl}`cBRP3${ Ib MaiXpDhz|!|#,LtzƳߕR߭ٿ}1(l?~ÉYc:ϟ?<^/uu|G[?iɯe#w}F|%_/ޟ#ʯ5Q聍3ڧ]yݮUxۥ6x9x>*׋M\~ l7ݞA!x_}]h{Itb;%POߗ_/iDSãsO+$7IUnPw~]/{<З{tZ>}ך*{uߥ8R~^^uʎk9z?(b/dZP=ጾ֫ N^#ne:z˙wTbG7ΟgzJ_RT>Kky\OS>Y/fԓ?sǬWu~^~ۅN^hE׷^ׅnz\h'x_x녎\hiU?\gr?gqWн_z]y]kh~-ϧ{]n?\gOo% }!?s]^q*ǟs=|ǧ(4I 'TA\?P^ǃgT\?P (5.}gWxu5=xN=_>xPE>xs=(4a}9k<8@dKC~CVn4yK,Y?_s UFF(2zjW$r=_AsWV~#AKDPS[Uge)|K3etYM=à/8ޡ(i?Md**ϻٽf/Hy!= ' }7< =`$z2=[^ &^31dEcK{;5N\;V?^)%#kKEd{Y4[($ a*y6qY:^G5'!W"-'sʍ] yixtTeU9η +$ b`[߄RP#ZHdSUA75ϮsIo=?CIMTIH؎L 2+ա=3\MHΒH|\lol$EYgu2 qE6)>dt"]roZu:Iw5K}?y{?\u`/6ٳ;aZ8i0ym 0r7tiȤۤh ܧ˿TbiЛ-*5VKF<2rRŽ~O* &uX|mQevow+;hT}|CPnוN!qr3Dφ}UTd>P([UwϝZpZeބDL@"S ~96, ~ #-Hco5eu"ՙRzꬂ`y4fNH_ޭ1s'oGv`oz=| Psʃq8m(M+2z[ZV/_YF=&f&4'xA;a4W7=_g= r3!96Av~0t9d*!JGhױ Sqsծf-)-b6faM7 OB1 ٲx*҆ݥ)G}{7p 7.vxڏۯwoP'z_G6SWY(>AL9&-ZUiffe/~:yFTcz{&ŴK iZI_u+NTd)ɦR셗9|{\t~͑vdY爉 +[1پ`9Q`,@w)M$({CW(NVgmfNc]d ҐyCaEצ7v evc~;޹VH<jT 7mT+WTY[do|؄ 'gar\=MÊ36[gvbԕ>s2iC7J䎗D3=qAVڎlYX$btß$Rhhi 1)8Fq~d-@F:=7[sà9 =* !O8ɺmR;;d2TZkQvE)9nB qYeOF5ԀV$*TJm+ȝܜWstZ*AQcV+zեPZ=Qp?Bw0!SʘͨߧyQt;%H崻dAhw'ob(PY[|v@^S NgvV|ㄜjga, PZgp"|ſ?Ϛc %SoP´C"2%dECQ36yO_Bm|J`cNm P5}}8}EW>stQq&)?anZ`[zjR <-ْ.w>JB[eQg= w?rtjUOyStO:Twfyf0 $3'tZcFI䣨6 #j9KxmHߵoQP!ۓMz͑$j|urMhVތʾJ|t8InM;W;Ϫ] {DIprw|¼ ]J쓍¡cVŋLRlR`? ӑYdwj%Xh襯 Q)Ob jdNwM  ';'Ro3ۍ3t܌28:~0M>Yо~9TM7<⠃M8Mةȝ[1|˞7CԐW')a)#otG`0/:EOT<'l%{DT[Դ_Jt]9l=t^Rr\Z T!] ?<+L`8j*]~goآ3@]mW:d q<4V٨sPPm+уKy ܾ@$ ⱨ3XAvR )ΠX ۃXh;[cJuQ O/nx  B8" ;|+So((o|Z \fоȈ8єA%oڦ=1c`O-2^"-J}5}.2/OECT*h5`F\֮o 3 c\SE[e_ ̱華dR\1xOGy] uQx$zR\#ӫuSh1b5£}Gh#5&>P# P hAK #  5D0b_w",63d :WӞG+,z!B󊹈mԢïIa6) ؿ>Ȓ=S*F,2c?E;Y|_dтB@.UP:s~FBTO! EIk-V#ScN<pIuF=^ ʮ lTֈߧ?FL b3h`g>M˜+ut ҤYLf^7*.bJcaT2$݃?Y|ue{g 9RxxoL"j|o0#8=VO@Jd !rEO,qU;ZSgX؞b}z6VO":^~TPkھ!>Q$~i^iNHWCŬ b612EAkYPgBa )K'~~cҊU9rY5¬[d(la0Uck+>.c6n_!U#hR94+E뵐7MwF!MDG=I'{AK(ૌ@a-djJGp)Qdjj֔9BVՃՐh"^7dFub *#ʠ3x:^&u 퇩˒4${7btC؉W+1] 莪fЋ{{ ͷP=2:w;T.kDdIb$9__ԌҠa \Qs[I@ C;{Pv6QTkNQMCX1a|MՐs 7 yv<S zp4(./ՒB*8w0@0V*PH_p4Dը'Jt"Xe.$S_~cR2paaMfXGhTx$,*7g&dH)X7Vj 3TK^e=;:p$L?o_ҍ/hgcIV9Ѫ Bq-AeϚ$*` к+O,Ngx,wP?'ِTғ WGa_1Һ|n FgLqFek\(-M;ffԑUIUD?EGnŁ硑9Qi9דJ́!FzC=LKF*hؼ9pv7KG= #w1wmVݤϐp{;[yURVm\nfW?;1y\88#eYD./ y@M'M~(S( 5sfhsTSB:b: $QbyZT5i|ozH?:bL-q=AbwT&ڒϕZ`7[etbg] gr98rB cV S $fm_S;ӧZd=^0h85S?#wrR5{I6clTmޭnO ,POBA$J]PIoxe_^៌2*n"8j`gD,S $5l0(26Zk%!üTm:S|*0uؚ+#5R,h:gzJNz ri-WZFCe:4Onh(~)1ED`Ae=\mV@J_eƮv1όH7@?qfZZ;MZ9_efd\V#՜&ZIqS.#5'*(  sM&Hx% G19(ApFs Vm\]PWR9+jϸ/E9F?yC9T jUщZY:h ; N|_L)fJ4 8NT7Z'XQ]6H: S3ꤡBqW v':f̄P 0PO4^A]Èuw)B,f[n(?_rV0ֳ澞qT9Os0{O&[#8H@w.@sMH*ۦGhc,ջo&04 B#ӀV`WL'`D%W"_ϴNQ ~"Kj";>ƒLx/27WRGqhЮĖBWM/Fu<>GGY4o`0.Jok؆z)!I6o$L¶|™[_Qc埳D:c)i~#CL.ZI`M‚Oƛ7c& vRXe/&+vaؗ?]_y!PMhRYOOl(Tj$x/O??bs~HXj񎾲'.zȗ]QO1uP 7R@9ԣ2]fgl0o\)5XˇH7N\Դ$H)4$`,oUa4Erꈯ €M{Q0B2}:: I+3ͱU{:U$ۚhGK$(LE5Yp^K͌Q#GU8a vFnGv*&C;_h J]A;@07]Xp^l#W!Y$Nww#7pn"7hP\R5 zeJPD %1P:q$e eGL(l,+m |̉ nqE3 S#Zu_ a.Y?QU_\i\;qZ/ECJ-!/Igb8}PDڃ\'f*m S^ꠊħ8OL m6X2qov~z/745tN\ڄA?w4$-DK1G{'|a4*``re}Hm͓Ki(p&gi!oUIfB6/RBEr ނ~+\z?-U;8MXo%&jlI\Fp&#zD ۿTF Y9_*qakd#¤ HNZf"#³̥&]CG= EF&#>7QTW̪S-E)N4}qL'V|ʤN[DadU$ J3_A&.H$NR OV%C:EՆSըI^ZaM~㦻CU஫] ksrG&8/J0ebߤv`eqҟ%[׳"74A IHZ#; ׈3avCؕL2 ݨͰRA7 *lݽfsm_]8b[t#ҶgcU$l+D<#^̱bXMr: K/M=׻#o*6u` Ѹִ$_Ymeg#â;Y %?C?!d|=3K@D6֦{$A(X)#?]thn\4IՐ6jr˄I_PUuO}VF^_a!q Z>E)#Iu tuJ;*002BnFn2!AB|c>̬659`jv; YAE 'yhzTK:W&cUC}NGK).B@o4] تg&ҥ^twl9BfBES65w= ](USC?2$jΓ,/2E zozH#QJV"ZR _x0vAZm(ulH"!h'[kh !=CWo4^Y""ӔT)@7)C@v~P(|(^GKy 1H cLj ~Es2Leaa7-l#9 ġ~kK+GY@L$9FvQ6(-'UnCm)9E~8x7(&=™)\̔<7~tH'dreݲWj[H~Ӓ'*~j0Z0t+' B|$"kzn\m$;w=epeH0_*CEFꊍC6ic `t LViROt^~0U@47|whN Ck]}OF>MdZJN)|,'3+B(t,˻(Yl ZI"$JO8dy1(|ujʮ]tE̖\.i<_KUYF" 9#u15lbh6DI~z $qQ@`$3stS'FWjH&E./HeNaa:O!DzϢZ#Pc⣦GިYj:^QF,L}z#C- .:BaUB|rm M wC[lÙ!߇eN6Ob*N|ܞlBV4VnV*dF-ұN]GN ZNU^(EG}%butvvJ<`o,#+ayk=c)8Q@P>xWŒ-$YA6"}0l+ Ϩ?djY8"4q-Cg)Ne/oPgHNL"? ]qܷ\4c {rk:o,} >*d탿P&k홛;9b/]rMrhkBQ_I f8A #wmi֭]Е1b7Hz !Jiߐf?R`Kj(ޖvʑ!?Tm0qa;D6iw=&1cwy[Qވjq/ d?NM+qc*Pv@$u XzF'qq!7=VhyF"%{N!M1Q[Ax"6?PyU:y.tH (&XĀ5 ۷t鋬xptɡe)j x7,T#FPߢ\Frɂ>%ҽWl4K)HTX,?5,<Sv|!6$W>lz*0a[O>:^i!c}V dSn^Oo8vq iK#c GUlӺFT$a#FƑ㋆)SVJ A|'u$dPzWa>QP*-ZS Fc;oG]jw;?r2<<4h #~u sd5w9}c-ΣE'k2T:6Q:q^ =ZK(ħݔD!5N0ϻWq _cb\`J5/qqޜA!mQW@Yikai.Hԟ>)w^w K]D4q>(6; "'lfg' tHjҫ@?dg'RdQў|Ml՜A0Vn+ eIHS >\=5z7 h2 U"MaFq=Uv30> d3xZzښ0ا miÈ;J81IuhIˡ ty7y.M+$Cɶcs_`Zś7A2Xr*?bMܯAFN0 @q`_%A’ɈXrY!\`Ya1%ф(.zD5 zuہrkJ̸jNr%v?)d_$hDxEYVRE5-9~q*z-8e7|;!aXxz'n\G҈RA+jƄ)7IEWbJ|)"L7[lDU-RӪd|o>I.CW0PJ9p Z3R9 |0EkeW ~95SS}ٍU  񮸟P`烣iC #MhxqзH-{ DpL]QDU"u*U ЖU99% Md3^n#kPg bԅV?z y .Au=ȁ0tOt9Y#>P=}V'5ac3#RւVN(~z`"i:*ۈH: |7Eavd,9 2JH<{6fnL%GaG~>%MNNoctUFY~Q(i*sKi07Z}3ոN 2A6M1Sӡ2"xNL&LxJFU)1j@!_e[YO]ǐN~j]& 54!N_tp3dP#gi+UB8j'?茶B{cw37""r$hcyd6eS0oLtطg 80BP'4RS{8CS7C.6Ed=()wc-@Z }1M@Au#eɶ&$㘓CE G:Tȡ4C&R)ĕ4 ש.x0-7eHDKQ:.na~s6A#|3@Jav;hU*@(Fad}+"<8Ppe%+]B$Yw8*ܟp?XPݍS3~=It`GJ+zU͍u%!4 Pp}d2!C"ߘBK7޷<ٚHZ}cfhIZg1D7N#&t5%[4ԈSo U6 (ܾ\g59 v O bӇ\,F) $~SA(cHMWo{ɝ"&;xViG?:3?ELNތH "Eio 9Ѯ:~k(r2R 40fei=b"хvƥMI@~}y٤gkcL "x(h0]KáBQg'CXO2d$ [o6r6%D+%hR590T+pk.=%#LJ7J>Z\ y{vɛ^7S` D UTCq{D*_GSA"c{qAOC2`#Vđ|$ MzDkyg %9yYV"LA$MFшoWSdoVڊWiZN~~ UlW=c+}6Ƙǔ*B&&jKpN ZѴ7JW>B-L3”6Q;rnӔbT/4/\[3:ٷP6-C\qLKyV9c݇ԗEVp"[>iN.á1 DsH 4'i*RQnU.pc  oag<'P%53}߷f2B'#iEI =_6 @ݐBp'~>1)]X;;F%&On9'FcʪmP|-~go@n}Òw}9/3T$q0/{Kΰ%IUA;F]53ޭRߠh $$55yml>f#LJW\ f@SduOANJQ~BVxP4"]:3zo6aW~nseS"FȺͰÎatҹtD, Ԃ5M$^qoHnN@D2rb].tzyAQϭTuR0Hw9]iNLr5:y&S!Z`; }Obes$4%F%Kh˟7A]A8g)5gL =J:Z͌;dfڕ(3&{7uTtD ⦕)Z^ΓZqP1*#f#Ɖ(4콷E>ȡb r+!q̷ MOe)kom}`Eϐ{.J}h_#%i?TxJ1$ȨYL H7'NU Vc)ՃIx_ wz3ȳN"*~W5٤T-qM))Z"9 VE&trypHa*]dG9n~xȑ9"}Ђ~Jb!N|NpП)c$Bʮ#=QHVO&Q#ـ>5یJm֞HYrz ZHW2 HySUCOI kko[8Hյ&GNo5lr^tXIOm 6w9ttFuE] >' (mmڇ =v۲o$jfCXSYO#0jURL|&k^-C7zRuJA{E&~S6`{__%gXmrơR"|)BabQltte4`EL f)@&dڥ{fך CU`ߑaiIv$Eϳ`PCfz#TJ G'3Qn]ue>o)xP?["ԡt11:V͊AkYħ}N-$:˸,a0Ϡ)#TYإkSyhG3&x<}6ݺUQݠ33P6KHjOص#޿ko >o!,%8t([MQq-Y S5]/{[ba2zC-ʠIA!TMIܼ9˽C$hqbbU EB|i-l?:lanR=V5n <_Uxtڊi=j٤9  ^1RG5Igd!CljV +rG^틜F7B '}aSc.ȡH> m(̛R ≟\J'hן5bxFlANbCvS k*NbLpO 8ur0|LFNU f,AC#Y$#†OJK` p \ľ:C`f.PwMc ~{R:&G5i("<34tU6J7}'9X+u-/"A<͂0Z^&GR*NQ( g-#LƔ f#ܘ`MBu0T\1*xczTVK ҢJr5JTU<QAUKsE뽈:Av(>1n(=[4DL0 r^iה !$akȱltf/pQZh$}k\ NtrFȌ5%7[Dՙx* (hdN0s]bi6/Za ]E,x5L*E ;ѡ'H\{cg+d*$(r_32uȽl w4D W⌞gS؃?#Hzhfdi =:hj̎E=o`f5$Y0J>>XO`%sp*\8=M<,gF!P4 Ek<& SPM {Ԭ7 ں2Ԍ'GQw\WpȰKɢ8?e#BbIuQGyQ~rCа:s㑻[S)OQ^iϣ#Kuzur"o@>jCXxw %,p9б[fO&[ǦKA!>_YNGe B2g` S7 -> KLM$+羶Ь-`on5~/2ZdrkM@k9Zyr؍Uuډ⸜&+]$i 0(_Ryu#)[c;kEsS@Z9C佥H!jGPPqʛ'ܼ]JuQיRv eND64ۻ4܎)q?e7)kDN#}tAGg!cO&"Y7nkR;4 TPvܧOvsKLp@v^go' Dp7I1PU.=<8®CآFMG1%k&Ȱzhen@Q7Av_|\f0)/J\3C \!I$֍ yp8 6%wCjIȪ( e*xG}FZVd0E2숁hDtp#4R1h8[JVMYWL[tJ<4H}񠓬a@{-jEG"<*\}d&Gm IeB`vv?^7v#A6``7)ȯPM/k2eDnV(9){hD)72BcUs3n !Quxܯ#eR*(;;Vge\]ԃ9qTLQPtI  A[b)٭< !feeq ,T__ַCh>8r<;ΦY$v¡ULW$nw-dRy4ya]hO'.s}qW8j q楀;S͙Ec(]ȑ8&S)+Ra5{?Lr鱜h1Eq4v(tO :r&ri A%DI~q9O )DͲ-l{DQF-wҔ0j%&!"uΝDN>\;eP m"H1)!]q6//'vq2((rh&`mb|XJ.3IjRgϚYdq:Fs=ٌH}N"* ~O[ThϟgnkE2 :[LUs 2>]TW4Thj 9u+ǼoXrTW>M΂&:'Ӧ]=S!ٽX64+fBa.\0.VQE87n<RߗR(nӬnjCF'ðP`@)Y7PȭU45"IJeE y'[r~lm2"ZKecu9kbhh#BnGq;h&f\~^wX#J,тz5Sf;m_:0mRP[1lϠ@IٌXCb=s"_CMʚvo6|??jwGhh+p#Ilz]11~eȠ7F)hZC4rAgGBAAxfVe`]#<`#.$?m(Q V/nw'X )TS&d [9OUKȺ%:!{ٛ:&|򉴪)TۭpFQZ#OϮ5\$&P,[e[ )i%@|8xqX RFq<0G\D NAXK$(r_"CNFFi0ghQJhļY^XP..mԕ&l#k:쑁Xn#!Xr"S{'߭9ՌCƭ/5 &t- -E5KbkL86&#U.Z47c]vn[~Y"3#UdK6GrQ:mlGDs)}Nm>gFh \ָ\iQdpcK=Yj( ']=T= 7rm@@[b%ΔlOf'Qȇx/4R&RPMw*Һ9YldD&5|~oEj(iatޘ*{r˙lnYS I6|w^K~6MQH 5| =`kҒ;L[#=Y5p4x8xjLrwt&]u*Un>A7Q ^9p- u=cX含/TȺѪ^8§лlsmt3EtY8T{kƇCg` lɢIj+ Lq5{Ӏd?CgK7Ț) A9Lq8II7Ѫ0gH3S o=6~gVjֿM3"};(@ϠAbsՆq=$x>́1k܉ d&N2+gF|'Bׅ#-zB:zM}Š1G f$nRq }1ч;l<j,v%*+8jm`AFd!ܐhCc"QLAߪ2kTEGӏ* L-bæjTaY|.}DK6[LJr߻>?( a,{u%yO0S~ǔwIa-w܎^B[,Y萗$%G;d`O޼9V5`%r;UUd%Ż$^TQaxD:<`: )J18D 8Ȏ*dP q&&fk`Ne-3"[8pryבjqW@Ou^޶ApJ 3F3s\0rL(l 42tޡڅ:1C!Չj (!@z5ƂɽO͒l0%gAM7)^e QMJ01l`9(/7A ʷ_NU+ bj^?~,W)=Lѥaeo e f8%!ѱ]Ѩld 3q{*G,L}a ElJ)҇68~!0X? ,JfvH ؗt!pHbrSG&'׮e笝_Cq6UgA uͣM:%J84hFbiKF`ɢ!ߡ-4PES$M4LTE97.]/;x-HAP5f b4Ux5E (ۗbMzT79"y,t4>"JB"n60#¦i_[+cĀ uSSFYɢU''fO}GFrڀ vRi/MCLm zToqq{si3(ӷC@s:!d1,'GD3̢|;GR#8}՗РqIh' SU'WW4SďMn^YqKڗȍϯDU (>Hwl4i?߉K-hR$ ʮtQVE !FKyWtTȔ'YZjMSQj!hOMNv"chgjjG)AV}tM?8I@e Yodm eGHn |ppvs!7 }[ wjEzIX_ Zݤ9Z.ȏEYG_fu FqMtEV@ǻY6V1/s8k22s/Öc|*>?}F8F4'7$;3WI?t >+o"n\Srhs ^ BUnj_[/wfPo2*A̺^z}2r 6QLAU7SqC3w &$^y%9oMZ*01γUF<\o|ESy`"]3 ZlI3emS>g$xeUzFcq)g6z47X461F㡴-b$E1TLGPz\Nz<Ԃ5p7anLP+([,/JS"ACadc^*JQ.#)G&ޔf@$I]}qO>]ylhi)DQnOr|?f.# k*j6dnhv݇ sE@H$}o{vXL'[mUaTvTL& 6+r{8s7=-)Fq%E>̭԰.gGH 5*feY3WFեe9_M!EZeҘ(Ĺ' Xک4KկE| Nwp2 4h]Z&tDܾ3#e[(^R5CXyN"eCIǎ` ,qа*^>MwؤQk3*k L>J:1lFܾS)eg7D&3n`PE)hjbVқ}.ѫ3_oN -!:V]:hSM~\P.e6C["34}!BfToVnN$,d0 M^RFD{_ŕ߄&Nڐ}7g=Eצ`0W52[F/q< e2`)=#qP17@!:I f2(QaC;F[$ųyuŦb ,IFX[-S-GgN>vMM{3 3W?6&BC3bkS?G5S[dRE}!'r44YӶ$o~TXG :ܔ9= KNIx&S(<MeL{5zd₨M@r΄B; sFeEh9EVtB;NK5ۤ 9m_Oi }狁R:?[W@얜Ic&NYXjT҇l`ħRs)&syY6DoW%oe4i]ȝ&CkӉFXf]Cn&yOJaCY~~ZC20@p!/ѝ" T 9grY.FOQe꾗N(&gPTYUD,;B4K6tmQo:*qB%p/vP*br9wN1IPfR&T ˎ=†@yI~Ӭ4HF% z'#kv HR 1FcL#N[ɣ5UQR1n@)dcAAlt%C] *FV,C_%ywP:BE`wǷrTAyC!Sgv(YFbߴns6bE4r$ _ M,?l4 ߮v$+ŠK:pAJNtR{.L>uB@ hDkU2.[G,JpB l:P!G'B^bEw)\Ҵdn6EsYw6pD(i<ҺS`'v)ڱT9Tɕ ̊,D uv[jޠ!-6 JIDT:!)+eJ9Ux?ye"v5`Eu8X}R)eY žG|c]lJklS0qdNG+o@뭶s;B}R]9Zxeȟ!eӡFh# r%cPZ3@L?OԎrn%΢֐Cyi) ,iI@+2m['tDT$eZp^<ƧP mr5~h{xU>|%Sc╫i~3Y JTTVJH_g(PbŅI)ٖP UC~ }4o4* & qc|~ KdO~B Ut;Cqi&ֵH *#nik_^Mt}rMs**8; *PExy٥BQZ;QOfNJ;oH\W\4VlhpK@ɰ+cֈ(oWNgdQKxN=HꡦkOyOz)^nlMQvrd8H,欨#"Hu0ysv-,) ǝzz v`iG\ #oIE/?B5 k#?$A|*c @7DތilBdAM %X̥0܊떛 xu4}'d_4/iKQu{G99aM;Яu;]YJJRis JSu!VsK/(L Gku!Kjkh#zE(|L67V:$<]I7a.Z߱tU]C;Ԭ-pR~ ŴK~6( |Q=\̀(MnfmWK[*]z :SЪoUU+^PafcӦ6N5.u&| T|6CGyyʆw0S'7>G!BCVATCpG5V. ӭʉu >%zAcPYCoI G) 1WIA dU(INI>+:)~gQWP>( 4gkyk ST QEh.`X 20+oG+Fi,٬ȁeq_&iges#  ھ`EKaP. UaD&OTIYc @ \Csȳ lK1_Zȝ"091#az~;:I0}Pﲚ 8b@!s`jDsurHI]2#h/r|Iim&#ty:Ck ^ב=Z3޻{TI|$Jr'3V 6]m(FѤΫ;I.7r* ..eV-HIzTb~4[ wF{74iyDxۣ0=}Ȉ\CYX""7i-@=4 W*1f Z%UCn?PNTK.אQx;:ܨ_]A1jsn%e50Pr_(Y]nJ[Tm꫹Q9'26\U( 7G敀yn;H0s+C 7Eн Q CSFhEí.f|(Cg)ӊ-jӈw(f'F,1R^@fN* 2}0/ئÓ2nj||,ܐ<*tMsFĮ M7wQ@YKS=Ţ5UuGXhAY$C~=BWȆGvs#[& ץ=?_x n@Tm|/V[`&bJ0S*jJ2cihrEڭa5mh$AcMLX^NCTUFUqpt!gP˘N mwPT5 zdʪr'w.!ub(^.=\Y&bΑ<'_dUJfqgM!smJ*{22ib |x9E@槞q C9|ۊ3'sdL3yp_^J]jD{EܦA'luD#TYل7- ;MO Bc;r}.l!nKTo捥Hg1<X=1=;ZE#TdҴ6,M6`|><3^tu5|ݹdD'"9 z9)«Ort*3X)vLw~a;Iz?H/."3"}p_Ums+bfC+DmQ `"fIGJ$ƶjjHHl,Q61ACfq )zz6@.hrtd"}k*_⒢*#&I`/dR{% қ(Jdꎔ%8$[_LJ_I훤G-ciF6pYoViOȴ4qc;MmhgT1g.ul,l;4Āj8e$i:lFgF8+&|S1ДV%ŸY d= ez>9_BύӁ .2AՙO%.)(4c7KWj\WyC 'ȣCSͽɡS.n[d%TNȘJ[AX Pz&#O PAdWq~nBѿTIEAan8%XBR…?9c&jDǣ!m6эoZA'够U]@aC.h..ԽSØ`Krvt'yl|\WpoĮ)qR'TN?`@-Er2Ug:}YYUk׀ZbG?UV +e/݌L\@#yTQ+DeadO\%sZGջK*rqP,aK0uТȜ{M=KZ'B=yT}~A_ + &tԓU>Kk]t@u*N6=@E.+KU>02z7J;<_zz]e"?E-y6A*y8B80@I*(.Z쵔25㕴Nst矟)-qV vkVQ7& MfOCjy⼕tb#ϭ$dA GGM$b_ɷ4SwKz5*m#gH>; inݍ 4͎tdn~@lk\$,Gk \A΢h]㾓^'a/K7ɆOt5w(lL7սc\GFojv:zRgeHPH R]-NcSjX ⥲Sk,]`E{GBd, *iDZ=}`[9]٦LUr_ c[opڍa@SJt:gX)DV'dK}(J}a@LLuT ظ4ٛ,ZB>},vAQHMl,Dbuc|Nl42=^KN i,|lncz紊2-xuˀ cWW%;fnC _- qp&WIocSA*Ţ-"FLTdaLFg &FD]FnaRnEBI҄~[1 /%MPTK|*nahgWc uKg(f'V,:x4>$XhZ?~0톄d{Db3K@/"|'L -dzjwWl`!,EYz`^ M!R&AX022иi0v]QL`0%?f; C$\.9q9v;e:&9tGw/-NG;Y<4e^2I=4NۿHv]C,(SERl# j4O2tNO# {ӹ_%mڽ23iOV1:2~mscDh R~_jJFUhIe&8xtk,MFΡ_r8P|!ݞ0 зh2(QTh}` e`*C7 k6rSu4`E%Po޾C/oVvSEQbl Weil3.zNL> 2 (` }0ť*h 5FԧR}ݷGџDh6rQY@w>x-%ѰB!̕Z|=?NK@-?&nߟ^?Dl4z-?4W2{NB9GT! eRD0^ǢC"ɖi+g!##]s笽uG=hZ~e" )Y7Ȑ?zL(HdZ|wwN$ȝ#Nvۏb 3nњkSgHDaĈeɏO?=Py/*__E_Lln3q"7L<؟}^?_ok74>]O9Yӿد???_w?¯/?wwٯᅴ|! Vy_O鯎;JRoSl?o0-r|lb:,wPw{|Ƕ}~]y.M~}v!{#;;.Y촹޸+e(_cUz?_l-ZZ~>=Wg (i?_빪kM?_빢hbNS8nZ >Yq:gW‚}Ϯ`gΟ~y[5}η?9os~>;~?s|oGVzxO==n}d^M{iz^^zЃ|0#-M6z{&GX_ДN2$Eɯ]D6_]_WջsE~-dW՗sdPkFZfyD:{hIZ)XYg*Ư5x=3U{H!?׫gf(cڮ]ƌ׳Dנӯ@kizU;~>[WIx}[9=~"Eknעa#Mï~Ii~f@ůjqSLã:{Zn~H?XZ~DE==cZ,eZuQuq=oU ȀzVǁ2MiZE~|6_ !Mjv'%>=,Z= Zv=Z=?זM[7ev-jܯ~볇-~Vf~-s&lBU`Mꩻy_Kc豭|usK\=1æ~94^zl:^WFh;= ~"9@I.~\/הG_/x}sް~i_Sz~WC5k)g?27k)7k._+}7k7kKjKڲMy6k;T~v5kW7+i_GބwSJOCwθ3:>gE2~.vwiE9:~z3]}>c5v"7|~4A/]c?KBwSJ1b)L[S=׹LGS5O)t{{_bu~J~J))ŖJ*R,RlzJ~JR)bRlzJR)ŶJ*RlM\Vb*b*b*b*S4]XO)SY,uo)fYR̲e){K1b-,K[Y,=o)fYjR̲e)yK1Rb|F* o)fY R̲eiwK1RbvK,fYُR̲R+K1Tb~CF,n)f*uRTRzJb9|JV)źSu:O)ֵޞRk=XWb]Suj%RUxJ)źJZOO)ֵRTJRjŞQ{T=_zޞ{jݞUY|>ϣ{>~EzH(Y/uOyW߳{sCB\%4 >޿๞Z~uBZ.-c{煎F~\~\~[oZ/tO~\~sh{{}둻>nrӭgqW]^Sy}~n=SsO=S/ԓ=f_O=SԳ>nz5ХЦЧhz&4Z?WAYA"hvo~O~d|gJ)~dzJ*~-r\>P d?Yrp͒ۏ]~%G%-9jpKvn?]r4tB=xE(Z^P>xC4EW(ZQ/߃Z7Q+@Ӹ,H*5~uz8EI*]HKoV:zF2$/P6şv(:&UK8Fm<;x1CSd6ƙΟպeVsS?j@5\m(m%U8B^ww;r LJO9y7 Wtg*F]z^Ydv'Sמ%%c~A*%;7xKgfr]\6(A,j*9z;|xqwq0cʆ-9LކЄ={\:<}249޶yˎׯ lz]"Gss]戴om^Vy1`{f3+ԋ_xN-J&;$B=}iUPvؐ,-\E/h5W^.W[6+agX%_$fƼ[` IPƾ\;)|QVGz;;I5J슬_VUV{S435:*@ESPR6o&_w&u9Ci.1ɥRr%?2|jZOnnڒӾlb"wdzoU);&.BRdG2(lf{Pcà:AZ_x˄^ApzpsFa7ix']`d\P _\t/P F͓w2U {J,X5muSe3s5M%̳GY4!,Rq+w&3LWi[KYKOrX{F _2_b\?[,w:5j Q-pIS)aJiwYz!mVCr,?U'41=1>eΐ7t{YOA?5_`׵T~vepH 0Ö;7`no#c ?py Xȶ<,:4h Az6܇7Py?M&bV }SY-ʞa!ot %3}UȻLхd,5.}OK%| Ird#WڂFẅ=qhl\=Q䜍HԠiJRN)!==?q5>*9θ~S';&nT8pN8Q=!SDd=Ͽ4c_Ӛ`OTHy kS S~@T fHUZs`q館`i{ßιZJ8f}Qm^tmdj(>-rȟˀ 9J1L/E,fbrgWfq7mpۢϲS!:fn خL "jޗfۣx&j&@5@IpQh"lkcsNN5Hаd-t`=1lՙ02P=Ҥaq!Ho"TSWqopo}{b8DmDp<88lخUFE49<&;XEFp KTE d@"Țr@Ji,<sNGݓIa9i[ ׉C&&r^3FK@ZchE4՝ S O,w' "ޭ@g>J ]蛾~n$ ~e &yO@ymm Lh8ʙk4ZcZ̠ZtIN%GY?'|\ mCdc=ES~:M S nONwfAqj4丷}h^Jj4ӳj w#XRH̻g/d6Ndۨ})zw%W+MȉSpi^ 49D\` x#1qt֛Ow2B> {,%-N5|BƠgy`*=S}1^@;~<3i}֔B o0 =Qp!.3}هN">~b2Z _A/(S!PFlB 6o_䑜Nc`Z+]u-CCfߘ[_>#v 4[;"uQ]6 I(}c권VwU }EF)%|k9b%qE6ǼctIJbgx0HW/ sRxeRLE#8%9 9*{GHXgN*J9Tt1J&[hj`1?쉚O?7v746I D%P6ZAR.Pe.%#qQa`0Ԯ[%#hԥGEԮ\eY 3{::?܃⇮"Ó$9o#7z}Qޓ;gPuƆ'; Hf>diV̀`Mm[M> rKFSO 9ԈF >7kJt_(w-t$PA=qoInKA޿VCV kE-k's{|Xl }>f+KJ]$p  aɑZCZčOFoPC=CȗciVs߃.a(KzF9ߪ&`z]+PEKt.2?-!Iʽ n:i~HC(&k[ %~pE(UƏ AGz\J?wrT( /`g Q&g,oZ'wkTZr)J'SWcq8S#F6 ة.^Rl+:uAC +y813Jѽ"GMI!л 66.j=l㈚SΜ 2O 1Ze܌7R7QzuڇզvĐ4 PE ",MM l҈XkQT`ꐀ8<)? VP Pd8V-#5K@"s煼C‘VT$Y=k֐ P_[lpuC=*')hVb̼|RM>DVd[5j֑[DZ~ *!;*[zbomSNߢN}>\t&j.ӭT*_TCĩ-ȩ"+]֡r&/C|QT~cDF_r *95oռҰ+]IVV"^҄!̠HI>S}6۱ 'l-) ކxp:: ;8bP}Kx>/)KQF"_ڠPrW檤iG"NIXl7"< ^WRGwJӛ/4dtP$d[5npP UJz9Q3$O! K! `YE *wr aBEᅝ}1l2IVQ \ڭ, zj0xA63$y=jf/;n@>j<~=^KP}L7IUL*tkIhLfF vpo2˳1caMwЌTj/Ҝ%X@,^qz.9JH$3[IaV"!IXjZb2C_ŭ똘!xmtPUa{}uJ27@0L|'6Gwd6CtL!:T*/[Ơɸ ;,)Gr1ѳLn)\|3 Фuh 9;?Evo˴b 'e[͈qg9Z7 I./HCQQ4Ԧ3n|'}џĿ՟m 0P>&DSQ h.XKeZߣ9L{rgط-SO _PClG{#G8B`%24 .8,Cqtd쐭L>{>KS\Tx>H0Hz ggvSإ|2 7TBd2f5ꬺ7j#| U[\e{;u١ijjY1x!pl7bSΔ6{oqP{k͌f΍ʼ=ֺfڤm8BUDTzIYA4b@5>2VUyd i7ߤHFf+"SH]}-U`c2`yp%[F^푈n M?Ad*{ 6pbv)$5)m;l7:fOiJ~;z Zldz;_iK&I2~~qKAjcW4 jI47i$ x> K[u]":ЪNԋ&ۉ[̻yt@:# r  Qz  M/#&Y]6Ȣ.لmȵo"5 Y+΄{' ؞/[ 2n/NLK,UY+/) 9,mZ#0OL 6dZojubGd0)W@Vy4S)ŶɁ¦ oZƒl)|"iQ\l-G@1=#&DKZA2ѕ!Xlbc9]+wy/; &`֔(8cm  2HGS $O |/SJ`@#'h*!gU)r'ØHL&EY5*NH&If}E6MT76 v5lx:й#W$k1|YkYG(7,&57S1:f.K~ϿOK7*Ԅc-$ qatLQbߟX/(2?m%vAa8/d=<1`!3ǣSN?Ӵo<)OrtŦi-4JdX P;TΏܰcPA,d@!a !i)o`Ld<=Jk(l%p7vS)+8yB nAl2idM2[/󦞖ĕ6\d>?Sw#>)̱M[fO%Jvr ʾ%WS*g9o_"zBbz өH$) Rz?Xmq,ano"⸴&l2kR4[K˖uy%u%P<3Ŗn>Zdvit@ G,b#)[ddo^qe#w }|Wۤ~he"VJ6UfdVN)*,t_Ud"-{kݘ>xJE!v[2_l+3{)[x}[(cjL&ћ1 زOgLIH4HcoG2l^,% G .<*x-XCL|foWM=M*V_<:PK 5Wvz~pvRB23`! !^ 4vHEtSF__9v/ H`Ө3c B(ah8V`>8yRLE'Z{(3"o -A.[ p!J z7]:ka<̳).tA$|”[IuUۡޑ%' ޡqEՕWQuL8b;Q5E+ҧX$D&t۸1.-ZGhH1 [aP$YDT\3C0ºNq(ٝ13d>"?Һ.! }V>eU$5}!ȯ/hy!W19YcFCtN",yF=}=|[NVa8[l ~8󥃌t)+И3@ ICrj3C&!Ġ}{]t1GK1Jθv yU&44UM2 % b3>1ۧ,C<9Tݐ0faĵ AMOek~H ̏Aa9v+z+0֝EQ }z5z‡=H4Rl('%kK" L]Zz2Xpsx}KY*PEOoHO}8ݻ d}IAHL6l8\}B[AM^5ҮUS?B.v"̇Tm'.i(:pZIiP8 7;~k]&,F(3F;ΊIg SXxu>ЄA/tSDtcvr2zM]##'(ϨuL AI~ox@$y wʼvP/NgFЎ:dZ}ˀˣUNNgCԑ_\Uq_H9g -5s =LǫvFd>~]qQ.'yb[̙s Z=5i(qH)]$8Ș߱tR H3v4 =4JU)DW%X܉GO(u9#h"- 4M2rP5b&h'*05ఁ<+BTÄrWs#d(s@JdR 5{ZUZ4MƷd0k=$$ s-a ''qKm s͖^dJbN63)@G#q*m`]%p*KH]v?oLN:Q ~(nUBJ ]q4'5 & n!*ACֿ!%aBah=a=\Zwʉ NQ+!?TEJp:l}ml}^(#Ɨ)(-.חaU74P7knm5U<0Ċ(}bU{yYmtVĊJz3S ]ZPFwVs+@> rؔnEAϊϱPDKe- Sm$ GRĘTFp .ti8DR6-!jqO_zip&aS<ɒ7qWb?7(+N;p/o:~ԔE!̿?F\m(v}\ҊiF}^۹+^’q/Xl8Ov#>X8a$(z I j+X ,,[= <][lt,X;CwѮ2pj3HV".zoYNmWʣ7!Ka8J65P 2 Uҹ6*d3j; "<2B:VQB{-82Nd5ꪎ@ ΉuSO2\%+)vb"oNjÞ=3As[dm+q74TLv]eB[ռ04{?e'"EH4J.=4à8k3] XMTX*&Uq䀂0J ]P8b&u9hVbc֐ *-"&zLךԑmYWe,ӆ#ŽIGSNƒ`M #~mDM{aB֚?R%};1e_Gqb6ٙbC,qEW"ePcYt\(:F&'CeR2$ҿf>(Cx)FPwizb+%8h["X°2V菍GѶ$#/>2sa{nб +?FЌH `Sĩo_PڶEL` MZ5\Ү׹pi׌;h2 H{f=1Z˫?6|?KDW9%n!;K0sڸc]J %kMb:IJh͡gr@x{d$bPse12>L;|nVR}9<Tbs,1%MbV: [,C[3#afb,wu#ᓜp2<%9zh`&@c$vڰٽQ^ŔVX8TvRB_e Ml)a(irDbO<`O˱V)^E*P]kTձbuY(_y"8Vg_0Y}C(ZlXo%7 {;Uja/z@;,=Z(6H0iTQG;җ;Qv'*u|* 89&Sy)пwiXm:2M.5sש.^U)ʹlUb2-=5C-f%IBm(hR־$. ͊m>Vߑl 5jx ֥tEF{=6rOMS'W/)Cg{K&Um :G;پ nS7!U PL.}LGA'oo#htl a!aMtև,3<(y[v"[ ND y$OTKS} ;94VU!,L495z5S| fKqizJ `uE]O ԾS3ȁ+sDYH&&PJȸ92hjދ虔1l!!R} 7,`O;Ѹ!;YMBm͌PA#k$ЉFZ)%>RA@ZhX4gH@|}dʪv!wIm)sm4bx+aϠOrg|V> `tF虹ko])4;6Mj0w`DP%!tHx]S?rtd͌ gtBx!́0גSu`߀O7Juo&k`Ѝ]mҨ0fڥڈT[t@14k=b_QD"0ہ!&ʝzVR̤Uo%N5pj*ie0se$*W4;x`oi ?;G0!KntA0kJ?'yfhdgq`T*L\*M$H;ҍtfB/4]RACt7 Takd:BLl̮/qtai Eh\kҪut8P)A֣]Lpэ/w4 Y`y#3/q6Oq+k/d7?[71JCJ]<&(5; LOK 7`:/pg͈(h yC!?i! i:M^>[^{r^(!a/Qai_Uj܁9DԺ,k?;(E5I3[V{%dF')Y[: |A`+Oq* I5"g *6[zAr5Zq$R4A'en /_V_1t, /T9YᙝƧ݈絅W,I;=0n)$βr;c&ETRީ$&F!ҍ)aAoM-KFG=4=G>:>^oe7M "R1BB)`$AGl$%" Qa 7h"g%\:*@B\-MONݫ 2l~<9pS-2ghVzGQ?q u&S̕N㜘 l ʡKmA0=;Wd@ ;G˞&Gq{P ]rUjR$]B~/? *С4-/M#?px l>Ug9%s6h[d*;oFbv^GES> r4 pI]q!`Pq$Uy$J8o>R 8lY,>TAh[A 7␇fgnj;DOHc'9I.=EJͿK>B!FlkEN06*~yU-؉|.5 l*-O_ߡSwgv]*@j[(UP6O#P$iSex:0ظ뱐;_2秢J:h7YS(6Q I)lmMaT$w8|9Eš6:dM_l}V[ZG<몂kك1L܋6F bm$tc0`˪ֈI8$Z00GP)+&TFT$E&3t{ Q5ȕbxU(t#H(EBd(ӵ79P1 Z*a!VI;BΫR䦊[#yOeEb:6] "4>u.B!b?a&t9Cn4=vW1j(_o&9pN䮋U>(JM2J@2_P;%XxS{ɱJEr`q Э1nk:R7߆ݒ?Moasxp$MqI G٬t"S?Y,j' [yJ&1Y@Tm$bvJ"ju9Jp ž%8DV -E6ToiNC D9A& nt$$꣣lÀn籋>tbTG%;6"sIc$)RZh.N0q:m יȚ%Yo0g_T0 [$ @\  s?*ѕYYmD[DʐI\9P]Ѓ:3jf%3vyҀ:l[zơ4\sB脶N .V:i^L1(ky[]aF[tvkIꐙo Ώ]Z&-1ϷsgAd&>(dEoX=鹁ٟخզP``.BKSpzHE=HF0Jgl5gn6[trKē"y^YȠII$^jeFn.^FsvyK5~SR,PhMcA~Rd9p#|_4# i_3(< ¯>MЦ[:n'Fa0XiYyn{06H%5E,WvaHXk}ll9dn fL؏#LURó5dԉpէ*BBS9J#Cw [qrSpxF=HXfӝ-Z_?v"NC'^@xOLu,}_˄fIO,7xihs!|fN|-XW4$\V2Heg[ݴ YZÐl.$fqtI 2Î}Ǡ jMFPe28HPO̓Hi/-bf#f'Bpf̜Ef+8'PffgZ|AGc0ͦ,O  oAV,$U[O}#@ Υv63f 83Rb.ykUP:$rT0ȷ%["`kk&G]P0|_|D܅J /cƪt(nCj!OEGǖQT WpDuXn?Nv\p̤,5Jܹ܁/l _{}| MdU!<3qA<#;Kw;ec~ Da%'\626C8ƣL ^,8>7fi^id*Bt_uɫI[& wu|U{tH,ħIPE93"͙xYOAP;?cC7~939Zt+1Wҩ# Jئ~1 yVNyk~,4ݏCqG0圾7.OLCNU]c΂1Wai*$UMW 4]Q=\m wr+|UQ0}-[T$a$k60Z!g?,LʫPGQ*d^J`}N#|Uc-{X^۰8>7dڲcD4BWX9S/f=^l@{iCGaQe`eFsc\8UnVB$ДH|KD\.mzg?~VEZ6ֵ݁R"KCʮ;v#̙E΂W*!%n˶E*:(h@c}'>hv@eDNKLrfX({Np^&N8PlG\oZiJɫj*΂^Hq.JmfC2(XfлTPEaF~DƓ,=[X}]O$MhvgC:q.7O){L2tk%ܵvM7.jʡҤ[Ĺ~/P~*lM=gMV1% ((4ǤZQ,cCy KQt HdvJ,M2Mi_$;>frgL abbfCåH=zD5u[եN'Bm1 ƩNmˮZq8ӖIomPUsP4ا`4U .%&񫻂ql6T11+p&z'PUBTYmkueawY#ƁqYb9AauƔB%Bаb O$8VWo Ǜ}欛Dx1Юgb֥yPz ܼjJKH$ǜ8<\(_oP[z-ܻWsY(l]$S{hT{&㗎Fj1u;4 q@ ,O͋/j+D1acq.=jx%r{6e -۞ `d{PZlku 1F+90tM{,+׊)kzƝꕟ,µ=ͮvgofOސV6NP%^+v$EՍj%p4lIm|@}^D`Fz^nWn2fg%۴m."0vIC5NKZo#A^̜${ųL@eBr n[#L =c^-K]}}"V$䛏(}~E)b%XVLyKH [3\.ڎxv&gl0k*\I.)H؝ Z pѕ j0\{#hMP72$nU­W14tȀڂ$joިܮ.&CIdznS\( DZVcèc$ ō:|U_"Yh9#"S EiowN[Z9)14<^nuiR4SFdmWs7]NVhvsouJ,>Q:4abbt_IC,,bVM,w.Q$rH.!R>/Q?+-ƒvJ$_ne@wgv(>:d@,h4Wq +7yC`&SߎEROH4~/|lͬX@t\s|ք-^Eq W5O$i%#ZV[M2uXf$ .>]Y=5"uo ОN&*ׂo2d!ۤmo'JF77 e45)9,5!M`ZaDxsD!~ 현9"۠lݿ~WIAypAA)R>|qbw.6V̧j *BT]b_P k_mg LB"8 "BQ%MGk ّj-x:'6:PUc+ߩ0|/ Îoϝ$f%)7:@Bx oʑZ,l7:VyՎF# :o9.p$tR@!`= (U&{7_cER4 GtMH4RW O&#mS@Mť5}M+H) v 2ޒ%V[?^BXƒ5cnnJ{vJYNU uz%w2~ qp""*;q?yl1ǗQrPC~y4){g)]-2QJL#߇n~I5z㰣FÉMhȔfBá3,uZEG}im4C@QP-CXxI8KYxӾhYdc#5(I,D q*Ht*ԾTPwÅcOJ o Zs>~d j–f 60O>KdMC95n徿BDd ;=DBK}= Џv$YɋN33+kkRJkKc9oX¼=9,Y8`Sc$ r*a|z>}ru|1O=ڛ5 s/\4K+#rǐm >2ɵkF&lnrZ.Oqzy}1i0YԎmVzMgsۥw SBH' 1LSgB ?.*<%755s~V?Pļ&?7Q˚]yA6gm G##u%p\ڄ DXvnoxbc̏3]6;mXɢ  3$Ig T,`~[E? ڹHJg[%_HQ-~~.Z;8ԁ)yY 9JNL3\Л14Q ՟1Qkw57Xhv9S mKS.E# lZ[FN .LXQ:(ǩ}'Q?E.Q&@ ]F'j'l4S6ac,{/zy9{N 4"ϕ.kvDoS3{ĊOR;FZ= ܌{0SJ3QᵉӮeFq7e¢&a!s N/9 ȊBR+ #[ K& j9vHb7oTJ=y>BҲ_W7o$ah1F1՜vi:NQNYnkP`Ԥmbe2׎@}{ ~Y΍C\A,¯% )U}ӫa]6ٴ?Seϥiæq١]/f%#*.Ȫt <ܜ'p<\4;pVt+Օ<1h@.  BP5(!lV-T@HHik-~@(iJ9Mʛ.ҍ陻>8<3 #.x\S;~[ru@qA,:qcUwo_͡t!SU;SĭɉJI?(̨<:Z4ɸ1|،śn[^gh5dhm92bRS[͑~pv07 by8i;?MfR?lBӲ꒵I|˯5@`,F%QXxx:ַm>&8?Ͱ q؝ n:Q-Jl+&f㸯 vՋ(Rhmd.{Avgh^1-I12D< IGy$ 彋((,Y0C^mIc|bV7B>)n>K>xRpLKmȡ5PDxLE~+ 6@AG`%NFlYy?/ՑP+UTM*Pڮةs̓|#I.C;\̰ 163WJމPBՉ c(=DĻVO+\khYqR#OjqtW"r=V&P2BU{nf3\~4zۊz2Y|hE~XP Q뤱<'M_o MJiV6[hz>hT"fR0yIN%)s0ymv ]Ԭ dn{m_)b@l-MgCa*̖' vQ#9'6k{Ick*D7B@,fT%5Fu'$8J EJ) Z 6FO d8J''d b cFsԷ=P:}$e1:$^M9Si 2sP+"66¬eTHHj (*:VT[$dAnjCieq"RVXLv'j@y-jXmU iP5!Dj(.-._{(.rdpBsVf5 4yƮ=} a9MY#l#kޯrEj a>%O&ݶ1G`~㤷lzZ ]^F2,ѝ!N-E udwqWku7"դ!? LFj)'W$!aǽ͓6N%-kТHW1}'YT#*=k Yݸh,9dIg;G*~r϶u0b θ6|;[OvSJZR~ìbhʚFR]Q' [iܒಛ;666U&_״/Rf;Ǚ,݂MGj&IԫU?]Gnc38iΓDV6i73P3]*Qd{KO%:L*efƋU˳SerlTR(~t İZI -դ2ux@Pm3jm;bZ 8{ƀu)(1Q5srXS.WR5NIԎqi25g Q @$5VSPC[ ?&wpAVd%? s#iҢwգg[$&ػfh+Xv8t3rB\?!=s ִHڠčVNz|h J}l(%މc4N/FhCucN|h L lubƟGv1I9(mK̊JsXm^=| Z x-vGNMQt`a$&ss]6d΃ =x2sAuۜc8P۠t^%9UQ\\uyscwFBꫣ"ئEP50ӤStU:kbaCa)E*#됾8Ct8ɐƮ=(B]#{)1T3ۺbIЎ+M}Rf/l{}Jh.\"ۣet@ΆKgxs#lr σd0e7nE|M~8k]\)Cb[C xƒi!8W~AdxhBNF4's:Dfr k=Prx4Dr*Q ͼ lle0]%BX6}V'߱ i9$?M纭(9$tTŠd\og鱄ePaTSiuK|EA3b\ɆR]V;v"1@hTV\{>L%XhF52f2=+hɢ,e; [ &LBBIM2Fb57@o83O mT&Kdir" g3Sb'M@\%>keOUȲLՙCݮD7ߣR|R4$+!S|;'Ot y0) PǦia9<{ -\!`P Ng=J3<-C | ~;}^mza23y<ɈGdbYȈCBh_Ń=ïA!Ӂh[P'ѐ(o>7RJf#:j[*݌_h47jAF}v7lݲVг1*,~ zVݿ:迧~B.CaMǾP>1i;ia!qJ{W) S+`!pm} }d}4Ra<}$A$C*2rINKK bZ#~viu_dL^S(iz*ԹvR4DK:m0o f7伹8ۿM .7ܰ ,d:~ҎX|@#!cDekIқXAؓ#?/x# ۈE=v"aTVbڑf` |j?rtd(~/6$ EQ30ب[(%.罠~r?#=[`'F"oğa'S+aXafǒbtapkx !.6fon/vC؍;I;I9i'[ݽc07_[D'= I}7 􎆠VC|1vT=ǟ~㝍?Bϓnu+ iW&pb'uͩUv"z 8Kj#9ܹ7H_P'٪S⳶`(02ZLƖbFKN挖|+wiXtU%ŌJ-VY{wISAPKD))+4432l'aX\ .?NQj%\}/p_xi6ShƟ7ɯwK͈sĂQc+ b^C%B0uϟ_q  ;C'Y6BՕ%tG՜QZ]^z:wؕE=NCXJJKE T}QEZf}_`GR-e1u޴;1Dt=۠ҞvF^ Z;O/;-hsSzH"o-AxFs! .MI@PL`UV *5AR.%$43X('b}t6w$bEگ[|#jD]::i3 P&3Bo#hcqBUۜR2g.5h~kH:F&V;T=A.6^Bo1fd쪴or%J2L`Uaj%'^in#ٰՈ4h0yQNUPl^z?0X6X5[Ls4Jvqk=o.(T -OIfj]d^sS/GB@OD ۮR|ͫlt~. qo=4ns]W3eEQ CL YɰSO+D2j$% cINnj6݇4~f*,➻d5P5`u^#@Gf K kT4lD02"24vbZM{Ý꩓UIn7nlJCܶ,?l2&M @ȋ UrjGpjFV NBtQnach-|"J!9߰z}B KJn0Vd$@0=h-=h2q }=R,_ؠZXOǷ QD - Ia>O]'͹%lmrP^ZovRu{<좗]Z&QJ'9)_9PB{mՋ6WrvYF J"j X;] Ol#sQyM0:Xi)|Q_ N7 ?⛝ kNsZ]W5r.09"Vm^x\:RI?_2 7[zC;݃aRcy O1k=!G w蠼rJq{&0*y)k]GY &]ʯ3 S0S\Bes{HkY`-}}8jGB9cP(&eD 7/  4 Ft&GGiqd#jh۱eK4%bnϓPM㩟ıdNAWV Ԟ"='#htqUd+kG~eѯdEp l*P)$wL ]yB?~m8N.*qɼ6g1|lت"yڳݨ;o֓ojl+`avS 0lZ\>/ݝ6t D~̯5M\_hv,4%e˃QH f,3? Aix"χT?yqXT/B+x  z73lv4x aˠ\J-+5Q&oo`/l]- &2 ~xõ☏ e&y.2"]겛q>һ=Oi%;\۔y~w\ۉ6{ov(Ѕ DJbM:O!ZS&L^\cG9W*09drPZ,\7-2}s`80 YF`91²+ %s&Jsr2r[h4Lg(.HLpE!IS+h:sApӰP#9&~ˁ)΂ɂxpLhg{i6 mCd4Q<ʁ#~YħBdar|~.tOHICd0< y4nү ϱ  er~qf{t-Ew1,R \ >v +Pd5 rn:-e )Lp/XVٓpT.dUg/ ϓl\|-:4AXCR>Ƃ + >-kv< 8J-T$MUGߎw9AT x/?LkPvM#Ԕ \|(SƾzM'heЬv.n\ ̦ȩ|@Gx a"/ .ήQn;Ӫ]SUB/jV_~qǤVE[x#Pf`ISpxΑd|%,j6/U*1|v4MTKOe4fr+}QA{Я฿C|K,Ҍ+BNhbQ[ݼHȼ{</$tꞩPH1#Si~B^At! FT_U|.7TAU1fg7]H Ӽ4dL8pW5x$2#`9{eY#zn pƬO\8Eeݮ:K2x+n:MӬjo^4K<(S mhq0Dhu4#Y40Mnl_"ԍ)XŲqv`e6ɤka MMܹm$!HV^I}PԲnF±}Du' *gsAΚv5z'-n{ JNn;r5' 8,SZu~0rGw1wf,>1ڪѓ)eg݋z"ED I?:έ$QȈ*6؛2UM|gi ϤhbV?~phٓ<ҊG@D"د{-Myw Rb= ʈ6s vui tOD+T(Gvd>!>nY9}d5sm'UbfH,OċXaÉ (ӯ_L2N:#~">E෋gq=&:MMV SO5D;#n:lwv=}?ہxኒK|4]4MCyαAOqHŊB =cx AY/*c0r4-{v t UYy72ҢI.b~W 5 7wG bOj/d uW .2Ѯ~ۃl2"g>mu8Ls`&ߡ/aĨbLN 9`P`l6Q2iY*@]jtϫB>^=H *1 nN1!xHUi^p& ˽Z9:\|!}%lԊy Y3_a!,[%]G7|ݲ?l*VaQ: J/hF@͐y&_ՓCȿB>`oMh;y|#w:yX |s/k?I󱆢o"ך6R SxxX(y[tdUs IqbV19&!B+ tYEjwNw! K' v u@w#RҨߟa_!5.e(BM2a J:~(x"&k#$jDlqZn7@3mE+"̤قwi'Mn'&ylTHA]F\8=ZǦD+,˿R~_ J+Fg5;p›~;nK3p /do!Xc90~:O͉>{W]dZFXw]وXǵ͈>J!7}Uyr}bw}1zg*Zh dhU99~;8~[2Ĝ4^3og?x+MvR{#0dWA9棎[poV5cدG_ 8*ϱy#brm1tS~Gӯ/7TK*~?VhF̣ԭ6o5 endstream endobj 14 0 obj << /Type /ObjStm /N 100 /First 815 /Length 1275 /Filter /FlateDecode >> stream xYMSGc8ٞIQ2`Ⱜ%ʅ}^V,AEЎ棧~3BSIL Ğhuxr6#(@)SղId,%8J fC&du,Xkl*d"&Otڀg:؉I+I3GrLZcJ|5p-|,pOĕvp$! 1/@= ]@cEt~pjUL5 TZbD N&Fo$KmbK @Q BF>9ˆ1 f )xg.ѐ! r1.JcY*ЪA(olp@jwAz0{LVAZpĈ4@ ,(A۲`$e0ZΠ1B4$T VYV!C HV32{bgPǟ/3E.^; udT1D5%ji# ^Z>5!u~+#DhfMd֬%(ȓyJ5%gm'p6a{aG@? u::{3%~-ԋ-Zrl,~ &Ť0r5p2.9A7P`8vt}Qu~]N)ޤ#5~[OjkЄBMκWBZ dLj) fXfx!g;X4+-{bUrqQ: S'ޞxI-.Οϵfz8n7ї49Ѭp2q]s䅵"q.FէzeU7z28+5^VCu6ʘ%U]#TfmjUlΏE5 դSE;_Vu>]J)-7qQlrk\ny-!MxBq#B\eQhs 1f=tט˧?^f%^:7_*^[݈V}TR=$~WZ$^ת^S1lD>c|fgnILd3m&1SK_*{Vd"תȸKnwAyМ ѭc~6PJi-5?C5ڧF+pU~ξ4MrӼh-"y&.\Y\/g endstream endobj 155 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 158 0 obj << /Length 503 /Filter /FlateDecode >> stream xڝA ~ T(54nVdԩD[gfޏ5}Ѿˣ^!Mt2d(M0߫W7P 8Iy6Ix]0R|*b1<{ b8Pz*Nnbh]S@Y+p~Dђ+?L DlEdDo]f2J GcDkdJ-?ҔH&s'ų]h` l7 F|WR}q``{ӕF덐JB@t)c&1t~px]5Qn8٠&W(-(8Fȋ4Қ "~"Tէoέɴ*lAч> /ExtGState << /GS1 162 0 R /GS257 163 0 R /GS258 164 0 R /GS259 165 0 R >>/ColorSpace << /sRGB 166 0 R >>>> /Length 51603 /Filter /FlateDecode >> stream xMmIR%8|DH!1JtSYm.T B}l߾cWˏ7?ۯ?[R8oϿ1QF?[O?rן_|Zp}fϲϪ_k='_=M[=5}Wz^'~~#}?շ|q(e|k>Ǐ+|A/^X~EiϷ_~ږ.YR4޾|シ>"S9Îίz͵s/\YYįd8G?='7>uzs?ym_zQZ yz~^9Ӫi׮}_nk˧a}4;[=|{) N/܂p}O~m%}~m\r5Xìu¦儱A; e>gESs Cs V8-o051&@/8^µ]y>/pX_vݔB\倲5h`u >~+2Xc]YʠnzWX|[u:V7e(¦Fpڦho}k9XxWws;ؿ ׽:s~}s,ύw<>s~}q}-; ?^&DZ>puu9rbᆧo,c?p)1|c_ox7.0'lc/LoaOmS,{}{bmK;=qi{˸~.CNaOl\χi`_q=1Ty{b}>T{bZP7]q=q˰u}n6 {9?^x`?ΰ'J+Oy{$xB8Պc}{"c('b_q=q͹V<ۉ{]{/wN<]?^~߭X։3c}% T? sTjUM{ fsT.³BpQ9*z"R9*csT {]Q0=9UՂjA1GZPQ-hfpT :28Ղ jAGZPOQ-hMpT %8ՂjAGӯՂjAG ZQ-HnpT 48U@epT 18Ղ jAG Ղ jA(G sZ1Q-H:G ?ZQ-H^:GG@GH.3:G*sj979/\m(Qജڸa9G^;G>qTG^Tn8rN)8)9Gu`_9$VpFQxZ Xc~:ZGu׃ssjc稖s:QjQx:~ ˯ jc稖s6Qm,{}pfQ8gՁLpTZGsT;G jc냣 jc稖s2Qm#GQx̜ Ձg;sT9<^9^rٱsTv '8:g3 ]C *ppTsXKc}pH5 c}&zvQOQO+L<냣ڸm}6n6vXb}F vwÞx^|#Ʈ387Ձ];aOe\Þ89pqQ'6Gu`{'|c_qTnlnO8Ρ͞% u 6Gq{bO,{qpT卣rrsTQTÞx'e}Ʈ+8|c_[aOGu`'olj;!wsֱ^w;~Oo-遼5A\~uP2{?;~|~^~~>>/>O>o^kGϫ$Y. `"$&g(}> ~jqB\?<!ou# JB~<3'䥸< y*./Bފ!ks1@ }!~>[|W~a3Pgl})?>%[ ~fs?_9Xw0On#㰗4붧,춷|t`!gDwcl_?[1cᯉǨßq'zyɇ)T< Ug\AXi1TuGZu<˱P=Gl{ s$b{9k=b[>5k}17p1n \/o|戜¹~c௃/X"F;[O>C>>O8Eƞ9+r Ͻ~w9Gxl9Oqo\#G%88{}9,590{ X=DZD9Kcg^_*et-CׅUFu 9uBT(fP矚Gfekݗ#`ktsK\M ܬ:}ݩ<%(bK9Ql:y|G9'~νbA5D|l.Ep>P]ߩVpgfv˲g~"G!Z$;ݟ{LV{{??`1ݫ7 {^_=C-5&/yuVzzm>.lxsa1˵a4>Kf;{=|2Třfd]67}} Y34;Ī %S-C~SOop>FUws~|4A-X_coO%[Vcvv xtϞ㨿qCQ~6 Hv] .&]d<|&*MԊs͙nFɜB+_[U!C{ 3M<WfZNݮT J ||޺f--&眜Q< V% 9t%=m]Ag=DeEHV}Չf*RsŢwޜQW,[~Lwz}<ȯy4"A^ܼ|Q6dk) ~*5hζ}D5yur5ny,x|~F׍Lԓ5[GA;b͆g ;r}!h[v0U"/qbk^7"Wa:Z5t]8@|/>ܬrb oL5ʺi@ЬiXlSa6 T:VH#y*gYy_+=X?`vq>n?gG2;REm"BxϧMModAzU緯TMdR),c`_ô̝pDwEr0uqoN|ݚØl[?4 .% 'gâ|:-?vc7/J*)Zܪ9[צ.Pu Ax4l,bØf7ߪqoC#0b vFjTޢ8k" "q=3=Ւ0{kufU"`yln8m៝sL85͑]7{)jBT8~TZ$lډ9WBMSs979X68Ͳ[ts#')"C`S)"ӜѪH{܇tjn~.3 xLOiZ!cƫ G{ta1AXtL˄:j064K),Jc k|3$f䏕NZ;s<5'vN-#vZ[xu1ڵ"ͤh},_Ɓܿ%-r *Vh?D%ϫzb})gf/d8J؀EX#wG%E>}:,i,9[o|,유 x-pkOUljhHcPX d;oO v Cw1UOy!SS ɯߪ<นuɊJ4oYCqx"gd{.HzCvM 3ܜDGq<>ֳrR EQ\-$({~k|x~C]V~y$Do M֬?׽yIj D쟞c;k cx#(IJȫE@ A+F(d{6 Ġ(, KHԛS{p2'XZh8S,Ϣ0 B? q%sHBܤ 29"7n"D4*L?6eըb~NAs)P}`w2=:yPeUۘ?"T%xo¯[q I FF};Tr-'i4+9jzC+f`ъn#/ӏ6Nzn&qv:"4p0e nb 45IbWV8?P8u*b8a^gKfV)ىWuG ڵrx 5:Y k{{Ú8"n8vQ$3z{yr&S9dڠm[6:q##ާ\+-EYq>&b7 yV7lՎlkJ|L: c/3j{ +Ѳ$wVj*bX{Lbu'˘^P+BD:3Vrsa~jg;-r270]i@&ڰ({<sm9jU&8WԲ {72&)0 ׿Ȧx 4 86vzƧgt0j0'ԒI#m&XJ;˘#,gzRU! K,neeAc{~5i/3-;bđ6]^qY̑s"AdǑ0W;-.XD=Rb"xsmE\D"<#ͺ]I~NB[CI /ش,U.ZčHJԨQEz T1.aʒ"h +EhJ&;htoVV\C; )Vd*i%$eՁ/[ց,-hğWL dH/HR8WVJ 6BRȃ|%_dbk@EwvKǠhI,Qʲ{t$}PםEUn]%9c-zbcrܿfF)əT&doJ@sFQiZ'KDބ3ӹ.AUdoT *3yǷt"'5GGILM*Fۄs'>hZ΅pSrL'M簜aU&dǘʭҖFwhs4s8휉ъ:y%B ®fJL@=OhDWǥI;$ep}z5}P0K:PWûfua2LYicvM<}T`Y|z W`[MHfvT¤tN Z7Zr}-~ukL"D $[+aI;~Rݳ|\Xћ:V*fbGNUp-ki]YBBm+u+BD2Z~$ӃzT[AQ=;M@rzlXĻm䉱 }zƦzjS잵v^A3y%lg&;7C^AN; bCf}2MH EWzM3'hQ刲xP7jP󋒰PwOӲnJ[mNm CGY!|W?b. tF$-6ϋ> Psh$Dv4pIԻ2 ~?+D ]m i.WrwEnNc@Ro,utFy3YnNT>`, xe: -/3HΌ b~-' mi#Qab.EnऐlH 2Z%>a&<{mb]ԐgXΧ{B 3r)Tszc^4R' bywZן{\bG/w}{4@>&{3Z(%&kaƬ9'~tZqi4ځ +x ]hB6|RB2{L99-fjO1/ȌZzoQPJ;x:g4F ,.3`4! V REG:v,::5-3,wkL h56zdwxG/,_Ц$FPPYsv \+Hv}b84UW+eWl8ԏѲ 6 .vcwd fo/f`աo ĭzl-փ=MhU#\s6֭S0t OV?܂c&:m=&ݼ% IABUc$h.p w의4<ː($(9\-AKeNs?W3(\4{ #&grK E1_;U&Ga*h;ۉ"N6z4,A87˺@\0Ϧ3 Oo(H*:}O G6 ѯ^}fH0/dY1k72ah6xL;!V%e4 9"p}H駟QlMXcEL ( >Hd謡HqPI;Z'F',j kj'J\vdY9U$Ki% Ī WXѐ%ޫ**U%%/L-:a#Gm}>uPʴh`Jff|F JVV+Ps,Ѓip&{M cļֳeNDP{g= |<ۖX;ׁI/Dz7m @$7ۘ(䁚*i,u%z ޲Fƺ],._NZ5Jcş5*hi%)\Q%*]ϛNQz!LYK%:S;~;tGd$TZegL4<' [9`ޮ ~1ͯHEA(+WM\sc 6 + |.;"Ѿjr%CV%NZz}^۰N]fF4!#.7Ӑ W0v0}_Y`6KQuNv,+##S4FB))x%*"jb9% VF\cx# f{LGRs'\Bk_B%ωl-M"b e1/ tsrh RhkE򡕰.:񠢰;G ;v DK2X6Y$cωFJX:9Q$d?;AQiLEae5Y*1<Kk:c;ʅi]@ŀs0(UCeEY;o`aX07Kayc \`1S|.8R1/V7c+]>5Vz>EOSiAPZ^ܙo1OKB{scM#+Ki1HۛX[rdHh !91Sr-,1Sud3;]FE`-!.Ѿ4{mERᖕRMZЎ'5}jd͢]9?H;Qjá+ m j  >|㬧NgRHm&{<6buLvBx,RpTy&dVY1jo) U 5XOb!E($lɬ_ iFXS˚f>܂쉴JAx'X0!mU\`6EyA'j(W&UThLFc}aX&Yr兊a%ͷTe!OlhBE4a+Mh($,mTq j[*( U&7'ލAiy0C/"dd3-ڌ ac`YvͤJN*9bW(f֪z Qa3EBm bBCT>ƫض A,"bz6Ag5|HaԜBgVâ(Ư'зےX1.,Carc결DŽQgq慙BVGb9f8ZmH9 aZX)dS5h/Ơ lڰ[췑 2 v-02x IYC8 45%XF7:2⬏5LK%GRnC޶}:j e#cF-}aS~&?]:+CX)lx? .lZ&f:!^Z06:t*1ɬ}VU~GF_]4]Ume'PsA9v͋-d|QUһ`rA;RM<eo p&bhAbӠ]}!Ct*r|sZH$|0m8ҊeVSidAobd0_;HnE m&ɋuZaQYޑRj(%x*:Kza)pZxrv9eצ$nj!}@l5&/Id3(Hix sDm7&y 5/^AoR c32J@pfN;Xl2D ڔOubՋ+.s^5,1k&7P.F:½{ ޼Ao*@NM@͍}2GlnVf(%>$ebg JX6h`ҬNc_.CCMB$;"!J gkѡ;9\ޕ>}'ݒ23Pbȇ@ ˒v4}fYJ/9^HR19ef2H=>_MOHoOV6`U͏?&nMC03!Q+,"HIȁxY#T?4;"AV8CO@pӯRTc~ 6-V;;U3~ZU@25ePZK 8w"'0}Q?vۑb߂,UY zuViy?Gm(`4qd,//3DkU{2vX]t? ~C]eN0/;=fk0g|G on_􋊽NR=Q \=H%0}hGeؚgZ6џEO2KbYo?}J w>[6uN{!JM=k-_~obޞGiV<œoJ7#k2~b ǯh}N.=5ܭiW,e1}*CC/΋/c?/x}|֌;/.9窛?Q|9P|p߷/?Ĺ;\CU)6UaAxTOG=#ELPN^' ^ArtB޲~71g5ǣ/ձ#!LXvct||ώ݀v4[Z^KqrpIcM<} >FXd=p̺vGc}`XF,!BxWu(FF({cjd>7Vz =oq}n}]Q_tĮϛ]aOl܈^8=fJkV-쉍'aO8=0;G^?9v{ }^c_XsXNM nO8aO8n{}q<=Q9g=x>ߞkxbÞyvĮ׽'6v}^l=XBoaOl*3 +ƱHaO8{ %ƱaO8n{ =c {nO8{ 3Q{;Yml^a>w\ž0jSs5϶߳=s=l?%Ʊ܍O6v}x=m }qoR^?^SmlzsQ׊ݞpw<Þ0|X߰3p}xS,ˀ?2:{x/,X^fxf'~wFT UD揷Ā?(n:6]ޱ G?Wm.eo>G4\S9F: Ř?p~8^(XFVGx+=?}ouO9!:("”| ZBe KqxQ]5&Au .ܿʃR j 7j 4: 1ڂRlǩ )zBUTIP]5AuUTCP]5AU=TWMAu)UDoP]ARl'&*'9USNuTeP]6 k9Tr0.nk9Tr/.nk9T nNͭԛS]˩SiAu-΂ZA9յ sk}'kub}ZN5յJ k9uTrj(TQg P=Au-P7Zj6յ@lkzT*eS] TɦMu-PZ:6uw^Muy~S] æS Au-ZNյkTrW?|P]]AumTrw<ÞpBo~P]qAux#k)|>OoTׁ<:8OAumž9pP]'6|GP]׽>p {bc{%yz6aOl { }y2w ~R^?-.n{nO8UCoj+w;:gs+쉍ݞȠ~R8=s%\>knaOlơρg㠺յq\>kyX:poT#:pc>k9 { T9쉒?knO7kƮ ɱ>87ž٣:p)=Q㠺6aOa/ok̏ڸ>x6{nOXo#^O#K~Ծ_Cs{?o?y }>/w'?ϛ_QO*y >> > > -ǖ~d區_Hly%g<7[ -ϖ~hS8uX y-N<CދSӡĩTxq=8UH}%}&J}[.B_>BJB>q}U[Cn0žq{b}dO)t7"ΈPC߰aO =U#^zu{nDv /8{r8_p>#Gثg)a[τ< {z8p>(|Q[o {׷p>+|WGe Ÿο3 h8p~/sL[p0bs/_<.s`?|Կ6vax`SظE w O} >d߸]_Co~ {%m)j︖Ͻ~v}o\҉^=q'aÖ=s|ǣWc=qZ'aOx<[Bo\{[s'SiT:2"^Co8v|c'Gݞpc}-q7v{q'=qsĈ'|۞|۞rtk ԭeɡ7{)nҵQڶ }ҹe#viށS>q }(;K(-t?Ћټh |z+ T}tK!s񮍵:Q;@/I] RMwvzz*遥ͱLoe6gՇW6HO@BO22qxbaAޜ1n/*k5ɅHyǴʴ|p@A[h|LH 1=uܭI-Ց* ZZ"x4V?^,`a O*ޅEQ>vE'ӡq jAب>eر푚ƶ 5t˸6ڬ"0ؼL[xuS٦o3F`}.Ygre;l !uSWI{.Ś&) MQW@_ڊT*~ ^xҤG˪7pKjiGz#MarLɅtHqEB|IOE`>ڝMhasO$7m}WH94%t6L苝2J6[F0&_QZ]TIO6?IjyMVn>3.Q&.P$)}ADT A¸=6ԦDµ{Dm65*6:߿v:;9&zP'r}tdu lB0}D#'"j]8p]ƫ@zcN:]am<5΋tGf3'߭L+fgAz*QZ'6UYLbmQnY}$ҙfyGj`*9U#"[1}b^&(R\7 @"fta49s3{Tz\{=U.gA#ݾXLك(NafƴqOSj985 `y קo$Mcob H4MĮWbUЎvT5*Cr0(G,zҍIlXfn`C4 y u6RKUo\zgX7j--uCa2:9`faivRJX8HL(QQ,X|Dx6[̅*1M6&*|vc}ONIt6suKim1)SXӹhMÓ9ׇMKQx0ӌO`uQ#oUP$3K74SyQjfJ"Q;P}CXC-/ʉy3"D+lęk>jDLÉXk9 3)"IQͶOі4ͯ5l<)PS':f&vxBcP.*k-Jc!Ą&k{woS<|O΂gZW ϑP9&F5Qr#RSnNZJ [ >"x.nKud6ǵ06.\ ЉC6Ge V`Pw5roa;g3'ҡu6/@Ԇ4kb Ah&\32Q iKYmJ{SPPz:&,=<"$D '4f O"Pf+m7M2[_1jeʳJK-k–H >S>k0' 0DpHU!muHdD#$6β=?uڙ!1S<:UfDtɦ( ZˎL|& |\i-TZÙEK} [)J)4CԫlDW@Gt(=xO 1mm;썦,Tb ~(,ԓͨrIL2?mـ{@{"V+9W ]VO$J~B+4%7ɻ{0lNU|(Jsu5Ȓ3df7y55 `wtJx`a 4{n.l#{`…|& .qb#DP]g!CIIiV̀_MXf}׹VW%>05ʛB0oNgZtNڌWj oQԉEatmy Ut|1s_{iY ը?8%/fZIO^yʀF3;R{؉ex):NEzKfU[8|d d v/%,9{Mb'[D" )bV䁆m%[}hMilʥyK <[,(a'eߔEvډ(9^}&a8ZU<|E4&VK+j5;{V}ZbN jxiֻOBaje1w6 uO H!g1صƬ5j=TBBjE)l/{^ﱲHeCYj-J j, zE=Xl7}'UҾ 0%^`x?2˘LhٚK"p4o]Ar74H,-$יGڲb f2eʠ+rH fܪ?X,+M]PMb.L#/ yAј9qwvgQ)Xdd/(Lc@ hC`ỈD=lALBMh0z1SnEʲJf&+miw"ˏB(*{e$"vFByw]iĒ4)"* Ï-m^1~\W&$9+"(w?x=s"i5MŭR rjçj`HLhtJ^JtH*D[㠅 bbآ\'!lf$0!bb|QеlwHpF~w), AC,\Qdo=y=ZJ֗RM@4ɓp([4!ƨBe5YE"4cʸR+`Ć1M$O&ȇƁښDX/kY yxlܽD$`f;ҙE&:>?Z$C3/&i<Htգ. Va(S K[5{#1E6< FMfJEl֌{ޔgۑ7ehI6qgߝYZ=:5V^:-_勜KAx**f:[mJM0 񺠈23+q8ڢ^W tiT[Ǫߖt6jUKMInDo{- Y#c҄*^o(L,Ӣܡ~d3y𧒗^>]R@kѺ*UrװVJj;T*یyb?w 0Hh4##/ Dc-NTz%hS"JsgjAKBZ 賕Yf7aa\'Dg۷h|¢U}Z2K _fCdm2[sX?JKO_Gib%T $]6r7ƛ֘9z֑/)L#J SЋH(%xZ%6v4~^ZR;Ai(ݩE4;dBNDhҤҙ%GWԴe*K;InAĔQc*QEN̄[Z5ٹ@VFPNp# %=@òcWE?xz/nö-P3m &By$㍬au{gky^\S.c?u&0r4bI]fKǹ/r8jǰqcX;'hb)֣ VHZ63|Y$l9[2򇂈Oj\8jQ5c^2WnѢ2byw8:kBwD%%dTTN Lky6L E,pC9%=i'oXL"dcy+2P%#!_G N;- ]e1lFe,ZNҸj=kw;[5`=zМgdbu|9 kfҖfp?MÎ) DAvHLsk& q#yb3/떽 ,u{ FKˢ2,'kXSwv7\JuK w~ r,9eFx9`TawL`9Bh͞;IR CkشxNڙo'TFߓ] 1=l-IA1BPs1C=T/ {քSH-f\E Iߚ!a+jvMܿ[%Je=gKcI_R1h\L|駝%g6&# iɌSM\X{io9m Z+i,kR8X{&Y4ksU<=tô$!z*Ҕ DbGxbHK;2ZeK(NԶijLEn Bפԯn â]IiYiS:ue(iV³Vf!4HQ(V mӊoHV+FgVԪ:aiPT.g. y Ҁc źI[+*˅56<>dVUܒH R9YSw!3e3k"adeB7ܶi%s$y|mZ7P1eQߤFХRw;h&>؅Y`!>$͘G}x"!L>NDnH1DSA3/x(ff1$5dT3̒4=eE`Jsr8"Mye*?b߉$Oz]HJnȞFr7OĄO)3JhKͩieX!̬JTF@dA/ >&"**6]2m qO|Lbzb+r >owtR3 XX"VX2Y2ʢyx.dArax- sy|+"Q E0w݇z@2'(3eE2h.56( -FD6֦oozˮ_kgm#;+}Q b\1#W}qI>xnfMa;P2cdno^[>.F'|pmy_7\ޕh>1RzD#L# |JO& &@0DluKUL>@F{?挑Gw\DCUa:}GKc?5VaM񑱚!Q 4[Ïndv?MI`kFlruU;_mСexj#5Y z )?lV$aP ܠps\S6ox~L&뷿_>ڝշor[G򼬯|GN?~%_Vj?j_}+l˿GݿۯY}`.C6Yݟ-?|ɿ?6=}OkzbZϏk˚/z3q"H{_H}_%/S}}~yf|pen!Mׯ^ٚ%TazU⬟o vZi#kmq/_W4}{זO/xվs>pO;ӯstOw\'@^~}6A/'F#ϽLXG9tasNb:Ŋ=qF#x{;^r׷Θ&qYO2]Љc}e\t%Lexa_q:[GƉ{mnY#űϽ~Ө#5|zbg>qcu~`'b'n{}`E)޽N,'& ;A {%+fwރ8ا ۤ_oݐxXprcN{FھG%)v~E/a&?3@{@@<4:f?GeuZY<sOudeFӟ7ߓvx9"86y=Yx玶#RVhsǦ?wt%ڱ>nڌ'h.{F>J ~ljͦ?}f{>>;X7F،'<tc}+Ox>>~xv~lZŸӮf3b}9% l@]5!T &uՄ2. Q8!T &ruՄ/UBjB(PWM2&NuՄP).syA]jbPWMMUBjBhPWM PWMpuWPWMpuݾ^PWM, 6. j /&_/&jb!PWMp5uWP/^PWM8yuDPWMV uTJ&Bj"I  ꪉP%Eꪉ#-ꪉP"o@]5$ԅQ/&B}j"G&Bwj hPWM‰j P}u"Ե"Եz"Եj"Եjj9tt h@]PЁ6um@;ڀnԵk9P&P&P&P&TP&4P&P&P&Pڄ&ڄ"ڄڄڄڄ ڄ ;M( T?>=T=T<;:T:cLLLL}Lm ;65T5T4cLEL5L-L:U{6SÀb}el6~umzulEʁn6KWHL:zDjPf Y@]W@]7# ftT+*Q:]6KgkZu36mh(]@o3Jgfz[w;JWOٱ33:v;Q:s~c(ўQ:vnE,]Q:P͎%(.Q:6Kgk>ߢtFfQ=atVޠ>ßf~uQvٱio'MN{Dv@v@>w@w~~y y yyg?}@~|@|@~}@>~@~@>Dއ ?<(=(]X.|,dx2 =?OL/LOn#q+s3v;xCzK|S[@cAkBs7;GE'''7'G'W'g'w'񚈇b};OO?oOCOGOKϳQf>0_E0oE>1E1E>rl+xZ3x[;x\Cf4E>5E5E>v7$ޱN⏑/NⓑONR"߼ٱW|v$5.c(h|Լȷo6@|=ߑ~17e oى+MԺcTjC;6KˡoP MCMLkuؤB>GڇyC<65nm37?m55UvwޟNjZ{Cͥ}.b?&Շ;LP]E}F߯ؤj>l/c}}'5=nvw7;C?6nؤ}37jA}ZŸӞO;iM8vx[FkıYvxb^;G=e7;և4ƷufS1^>qǮO,J&>A;>JgO?5G=_wH3ˇJqhYN󧖛$8bOSv]{7(yMԌh쌮Kz; !FX_Zf|S lPjc2,Rܩ 9 {ov ]A|Y=Za֎&j}O=OzdqAhSv\w˲yiZjCŜT KqL" C~2/} ?vK(v9Uhz 1 dG!|!k;!eǺ(;4xN5h1hJBRӀe $O$՞5PKBnq H g8>q6JT%_e򃖄xmK (ܞEbC[YDO;=Vd#l%֡ϵy3;}B{kl .cɜm-2uE%Lm ~C,7b]U0l?eTwVC0,û.dnEZ2Y lص-+kE$)ɣkmJs1`=UYD[[+|OHk5ZDtYH zdݻ쑉\l#yoTڡ7^2G9ʦN4 YdʏDC zTx L4 N[g͢,q-j@)TGmGك߯᚝">Җ^{g96A-r Aj$".j!<쨔3jˎ<.ߟ.qBJ!tT֓$t]MaH0PRGd  !s/am1O1I'?S ؒMM1jj[b9CX{}OzyNs:mFv,vMy|7SD?㫵|*Fscp,!ʽĜd$ѼQ6|Qc_(gۄy 95= oj Lya^wvV ϐæ[¶=Uq<)oCudPltT8'O֞PSP4y']P#A |MvIA"PϲJ\KeAԋqŊߔT5w{ XzO_ĉx!вg/ tQ{>Grz~Ґ$; dX:0(_&b?,хę~q&~p }\p$+cI)f$yAnṦ%<,O|-LY}3P"&d h񦃭fۻQW--+u2byjK^DoO(2=`1qTe%QiH5 Η&뜫[ nNG _J29ؗ rp "g$uL@m0Xex.8/Gh h‘tyaZoWvIg+I/kYEDc(2 6L]LSØְes6%>FYST Jꔾv)bcVՔ8'OL5o .*lH*a!nSrX@F@~!نpt7wU]{킞юw=S[5b?c]`ԪPW7 w:iw+ڲ-YP+a]jiT'Dְ|~g)h881HQBA3:NZrc3yI0J;V(h1U'np˵y!]v fns'#w-=$o \eo!UTZ,& b֖5T1g=+JPY^ fUؽ-Xȳ?Y,QDOlX\VTy/cu R  dž 0 4ÝxYkI`TNr*q(n45*RbofA]<[vSV"Ev. S\o4sr 4/tU)9 ?%2z}zmPE&m0g;[l)lP`H%--4Mj*<ץ(Aݣϡb6kQkղDey89Kƒ)Os'rE8DYbe(wq3A <ዳj^#5/bhYAu :-n<ìz':Tlzi[ہwKHÎVU,douX&} eOH `>~Zwg7 v;́P=z?$k7C0ME > >pr'jq[*kMeRrT_s2 YFPԚbGy=ZQ&%ӠFQ;?4YrpI*˪J'JEM9HĆwY>!񃄪Z:J(թ+z IyuBDH~U޽t1O vY,S@=/E,c-;.{"򿺆M8E2c8O V[;{Hٓ]Bv+[yb{i3k6|ISVKL2: Pӆ9(%Y&*ۅ>ME4`*IqED֜R:H PTtL$Q^j.a/k!pN9D2.3> +Dsup XHXc e  [xx}NRQT]Q=h1D^\@[nB;KpD|bf)҈`^8K Ua{Ac*Aђc@7UI4WEE ĥqEZK`jh_ghuL*p j%VjS2'D/9Pl՚j@%[22# %M 6iv$>4 ZEzGaR 7D b9 ]Hgn=|#!ʇHyp)8 ɉ:U-我oJ6k'F,*\^ㄎ[DJV–l̲ı.Y"7L]xMδNI)g4P5Z%RBB\[ZOTҤ^4hLi4Fe6fD;W#^@'5"'"3[fh((,mĻ& $.-C5 ĘȘ☞xUkЖS!> iMvx5?$ה_ =)©EiYF!Ɏ+ع6m쯊cτS4[bmjUW)qk[@ D+&c𧂤N~4{ R܌6~qMh5U"Or]&f4֥^w/jV+BʤXzF|7(EAtM }ohu.C p`Bk] VmBQ#}nU˪=lSQ::* - wh-n{.rRܪIՒ]kmE#D?ݭHܥ1NQc#zr[0vPICAM/M]8INiʂetY)Rn :*a@Ta;ՕDPnU̞BhI,2Ehrq[O@ Tٿ/ qʫ]nU@F-j?c0E:1;T{bKMi )eR t"l1HFۆZpSϲD)MVナҨazſ@< ao!D֑15_N/$l JuC@)9gx3anR4"g64sP/9 4eAHaA:y\ &/ Td8Ckϖ;R]l a+J^Rqf e$jFGMLwtE݊YSbl/YjwH#ZA8rvP27JN{^1IQ{ 8%'jypj+L+v6rf'l` =xU+c<@lq,vLfh7Xλ8y".> kbuYh]8~#&ߣ&=~?ϛ1g`b d10 K#Phk]A_y&x$7g-3w^.E{q~CjhX)w{~9,eg$7{~؛]js2vϓkw$MN{Fdcs 8foۀu[p]}|6׻Mcˆdq^lLi|4͑auK@ٻm=n+OĜ=p?o*h]:;:! ~MΩ۱jvE<< ~c}i^6d6IК\d}PTۓd7 —c1i~7?&wafvx:æEs 6 Q ۱>lL1;<{,~ &wӆbc~?J>mv؟7{vWb[Y?7A-ۋni~ؓ/n~؛nЄ=a/:FgdYͦ?}usO|lshr}-/GTF&Bcv(D@_,]ѮQ:{7k7kt5tv-]ͳ6KgRE(jQ:]b}BM%Jgk-(3@Ku{D PR@]ǞQ:P&TPױwΎ39JWYv+5Jg\P@]Q:6Kg\P@]ޱY:#4tE;fPQ9+@Eulhn6KWgΎtvl%(Q:vD,]zQ:ݢtuXv+BS#Jg_cPuoPuoPfv9뇽>_tEfv?:;fٱY:wΎ쀺tv,]ѮQ:ݢtu{h(]{}~F(Q:}@]o%JW^o?h+6KgYٱmfuYPXٱW5Jg[cϷ'MN{D<Án6ק"ß{?Pϳu;G<1ߠ>_ßnguß<ׯuuև#8u{ ~;~ ;Dxg"<;3;ϞA_yy^yy/Ooُٯ~Ia"_:D>uާ|oy'Nw}>`"믯[>ql3JGnv$U`f7̇|i2|5Gͮ# taGx3+iӞ1ԕԑyև|v|̇|y_|̷]b};L;ͻM< f%ŸӞ1~،'h"'MNa'^sıi>ıi'5O;#xnvy|xv9ر>a72#=a|~ƻMNa'MN;G˞O߈־cY?lz7ߡQg(u"e1})@)hwSkmj=,o =,$6Yۋq 1CvDK:T|ɧ6!9'Pr!jjn˕աOfCƲ9?md?ygq?R$~:ShwbG N4>gel[Ȃ>03{6 9 j{JH._lxmx4웸LJWדĚɿLC3g3`/svthox9X32SHb@Sa1{:|Zr]DҖE>N$RexQS[CoI 5XV0s>p^\gɻjSĴ=ĕYsqm䓚hyf2:hJR{̲Þ@8RW 4bޖu)ؐ,N)iɷU4liy}M&C}/x\whH/ZQOOf[v >lWjEAş589jwRHեYmɷޜUSqK}*Ȼ Q쵊 38U^s̮nSs&6L 'jU'BZR9)Q[Z{ `)V0詡N3ᬼ<iR6| I X;7L/*Ub{ɪg7ļe5b|ޱ2h{WmD\7qc,wI-(p;VNOP}65mJr?ՉtJ]0oF~{RVsF+ n56͠ xȵ({8$hQ?6qP`p)^HwW|rT1VM?ؔyt|UT8TjZqB 95iJIT3' Y;3RRڠ(qNXg4- @Y8ĿRǀ[Lp 9DjaYW3-5k-h-ECTcBj75kWU*n8^9rXQ80:ҐFE!dWǠT}TnM6 :;8xf }F@cM8/< ga0A:dZ߀T s@^*y*g ZL_=Eg^ o[96̮50*n|J|uAO_o!uouNLkcqӏFrUI}j1DB/˷ߑU%: P`B61*bswO1l@DmWj߽?+JpFEżLd 'Q0Ꝥ:. s,ft;:)1[$dO8Q4I1 ODdIA ?l}ĤORE^g/{Rk# D1ư@R$a<--U)2tՉ&|Xv'OB$sd:uZUgqLFUe!XgnXcaI˶A_*.ΝSZM:vU[lU Xe_Զnu&/, $5fGk! k H&,!XuR3U`P1ďM\-wadfEXv Vх5y(";@:j ^-E= 4$ձEro;u}.x$[d(¯ m.oCIK$v wQ1a ҲzyX(PdEܾ$-ݍ)jO pLϼz-lxΠp$M&!q=Y r Uu4Z.  ^( |;ӪDyUX*TAOؕ^K ^u!SF{=C$_Vѧ}jJLh@5/2nKFAKQ*[Q,R}SV&P^[^Й;HR9{3܇}5;6" +"dg*5 D--X@Ӟň߿ aۙ+[IxRdŰoQ-i'2u.dN,!pqnDLzTA-}r,:_ NaG:*兦>UhQ@4I X|LacYmK[gPuy1NAe42U[WܤQVCi`[I͕o&K=%ϏE`˘.拡6,)^yy YrXGWTorϩIF@Ye>hTTT `rSCG 4YdbRΊ;="$?`!/ 'ⓕUrdN+"ʜ4EYuٹo wؚY"(KpU&tX4:bG^g7G~|,aV֦qb.^tQ^^71ءʇdߔwD iqAo\*ybnaT%taOW@4l3q 5VQʒ_mX\ vTb`nqZTh\'Э;ulXjIeI9YU\2G36`"+U$N뒲qHxz=# een0}UwH ܅z1G=72"<3̦BWN_PwT gJK꺶FC+Y=UǻəIJ=MIm8%=U,ϯOzt8]lIIZjmB M*ƽ_l,1q3|ֆ8&`Q:T&ԕ9HYN) Unɇ]8)f)g [!?,k?~8^>iXְ%|0hGʙ/hXsK7$#HOBrӓdr,l5jU1vf@6 <}fR Td3lV^gZft[\dMnx:$[P06*z1M꽖خ3"J};F teXkz9hIvF*.S2a,x.)D]B*9y9?ˊ#_q gRxe(0(ANgKkmIeʕUŧ[ڣ5L-=%MojVT\>}~XgS Y(!騄?HYSѷh,ZBsFiH$oTqQ<]YʌϸmdeQ׳rLQT<5, T7"-d&%?ߐl5TydvvJt#Ȝ9K)*CCytt%Oy\;.HJ<ɜb' M=_vFUkM_E uOvm[VQAfr.5=13o94T{ߓ$7bTpD/N凗h Τr !=Cb,!]$tYeT I5flgJ:I8X2PT4dԽW*i堁 B𕧈5Y~֜<"|* JDB:Wf~=8}`ǨcT|!5 fк#pZ54"*ilX LX0_ PNbhKc8h*6F*{Hf47x; (pU pw7T|@2K jhjк4UD(n+96@P[uI,HJem(`tL8?n8ֲBA'F!nMӪT-rh;<3z;do 뒹@kYq~3cU_g{Z.7O*+m.IHTqAɨJvƠ5LOj @f)9AN h@,a3u^78" $M]09.9L0TfhI,Ç -{ efL>®ˠ^U{DTVa2PbC5#@vy :iTvSf'L3fD qiMA6Zۜg >,wmPk[AulYe %d 'G쭎~*Fv6 ?UZD%+{RU$aSP;x{n]y(զ࿍3dxB_OgeB_2&~elC9IQhk-QsJǒJN5#J^iPؗȴsz 20gd'.O |PDv)\c&M1}N/@LgD)Ve&u(:Zaꀪ 2U·Z#"sp:Qm14S",cHWMw'T$%jGJolg*Ge8@90qOץ nbuxìCW#05~;U NE$ޫ*lW/R;U%ږ \M#(ѥ+U>L9+@2?;EZ9cC2H:Lrт\yM MJ 4kĀ" YeOq@ްO5J *1>! o{[bwm#('`EarbB弈yGi֟٣HA: '匊).C=`Բ4 U3]!rPZN\VE j7r.FS簗3٧**Uۼ|cC"INe3y95м2+̔UgטPܱLC%جY~X#V/" dTC8Ӥإ }x Pjƻ+/ QBeRj^hz~McaɄ |uVSyזPPE61YpؓDN>uWoZm)ՀQ'&RW'f"<MHYjt;AK Ht90A LТ_# S9j;Tykedӧ@%eɌ@lA]D@pUUt3ÕAϖե@bT*LC2hќPZ*w*f?*ؙ'н=fQ_Q9aPW1d@:~+Gq=݀oO04zPLWipj ۆW1$RL"/YaKJ)tT)h@|R3o#q02eޢ>nB"} avzV}Ba()X}~MVfT؊B"ڻ|Y\)UW`C'OthM2WNRV %!rQW8 8)~ hP0&(p gpvk|?1кR` ,9\Uy17}s0!OTTe"K0+<Ħd=} d*s\BzD ^yk=k#2K_< jlp6@eCk=dB3)fo1RᶔՉgU\#z!) NE҉8r }5C;^I/4J"P@|?"6frlS5NHR|C1Gw=; n:o92ENKĜ]!8kkJO{)p_쵄N %0Q a>5QL9*hY!:T,e\ x(nzԤoOfy1ChB2CFXJ-d%2zb6 QԞ N¼Ok'ģ`2u+Ȟ՜↤\ HnH9egOYAEJ'c1.hakA4); >Q fjM^UF6Z| EFD|joB*) x9CLI6I쐲xbZ7@~hB)A%=*וSە hèS#7> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 141 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig-contrived-4c-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 169 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 170 0 R/F3 171 0 R>> /ExtGState << /GS1 172 0 R /GS257 173 0 R /GS258 174 0 R /GS259 175 0 R >>/ColorSpace << /sRGB 176 0 R >>>> /Length 51019 /Filter /FlateDecode >> stream xM4IR%E.JlAKH A4 ^Go3 ό0\XTu'3"̎3ϯ|_o~_o?[Rz?_E߽rn_uuwɿ~?}~O_~-*nu|_55ꟾ~_c~OK?yWuYzz?Og}_^-߲֯/nR<_xj+Gm/ _ȯ_[ϹY}c~!iY~l;ݟs@,C~ʸԩsGsyJ{7.mW~Oͯڿ׊w^ؓO_[Ƶ ߙ-ڝqK]2Yk\o'14e[2 R;)L[~3pﵽk}\"pViQm\@' =N@Wu78kuxty ,r+'\.Ÿ>`s}^{ݯ=&pƸW>u78 y'\*AWaW#tmNf1B5'q^{^{ݯ=8 w}>~kw7)0mxo>`qk1y^{/n?Ɍ78 sJ1N+L7'ax_߱|x!^|~ /1{x$;n)w[U^ .pÁW:u~_[x/8;}ypyO=.0u~_^]np!w:/׮'^v˿G;>p?qNO,幾cxt~_̟lpv"||D`熛Q f O' /g<8?#T_$ oKC㨮~:L#GU JzG%P)pT+8򂍣^Q k@y:QǕl M-pT6n;8*Q *>܂qT7G%0 J܂qT@Q qkGU7 }Gum*J=ਪn;2J|GUU!8upTQ l}GU,8*rGQ=8@Guk5&QpصrQp۵rQ8NVn8WpT5sۮV8}GW9<Q8:rT7G%!\ n Jp6<ljQdqT'6 Q6ppT\n*qTPnppTGrsTqsT >qTA8G8<߮_4 ߮ߞ6GՁ-ae8{pU`1v}y@2<>Ɵ'UɫE2c|Qx;Gx*)Qu*p4ᙬ|IwjpT::wsTܒ;o7O/ U驭c2<زLXQ9vh2=ex sT'\Gxx[ sT~Q^ Oy^8Gi =x9*wQrN9)ym,dx lՍs:ݟ0ݟ0*n<Ÿ1~3ms|f|lo9is# L/l#^w>)pr{(W^1~7lOn 6p \ܟlm''=o|x!5}Cg84-ǎa`b`_y4q5Cs4Kh6ph>kv}hJ`Ӑjz1>pr K`Ӹ{1b|1<\c'5@M#dpqQk 'P.^<]8]?\ec15d_+1cӠ1>pr [rorr+sh;<]^pCWasCSV&U ga\78/0%7Lz1 un{{$67kP+%Kk0& W"yY ^+3o^0pŸgN/q8S(!"^>䰄`t0ar5wʔ:*4@]!/rc񺋸67+Pt:par@B/Z3%mNzr74Wpĸ*S+AD[Ȭ.`jQv6g<$.#M +b%o ,Xm_zͲ{^wt !Vp`4} ^EU~+TJ̅}zNg=~J㇚ɏ_]>z|x &Z1MaP9ocBqaلVtOPy^ஸ=~,8pHFLqwmu_#cvt_rdv$|w.Ϲ.ܾlp>> wd@)Lp7oB'ߪ6ٔ -U=cH[U??|( ]J⑦|:0k#}d_>l TA)]K5+czx8~qGxHԝ=>x{gC5s#U\*/WXSMùr%9aօPT"V.J櫴K14O pV!\GS23{9aBTϰ'UUVH~kl^u/iXr-F&Cx-{Lƾ 6=fre&#m#&qS>#+"{ |]Y"O:7l |n-PcyW+1I^ {!zYY#|U BvkdOG> L1"pqȈ:ls+H(|LfG}ಝJdT;du.ʰN˴jhCz|94g4ز.ZCb{Wz"V$p*s^X|75 Y Uc!|dx՗zĒ#\veP)ozȒN U-xP~fVɓǢ`/ID hLVySmp? y_'_|pd6.p[ry0U'[ 殽z!|zʷ&}ןkfa'x:$] I64%dpbɉt-m#QGBa@!>5I7kɘ\ff9*2ǹ~,Apy2}|<'U9&s'yUI=6:d2Vr y˗ghV3|qV_%)NfdY\S'ac%Q@=Ou#غj:W4"+ 镡r!Ytp* Y'$™dIU,sNn1yK$xVK#|&FNb6 &[זj/lس9p`+}@DLK:y~պ75C>1-B ȿZ&F`@J M?*rm +<M$ϓMvݧynj T ]L$"~DJL؍sf 5ROtk421_V  r˓0Ye #vb$mˌˋ>by֍(Mhwĥ#i&Daa"lNLzΰH[ rbqOpWݒBIz.p$ K춉Y#"F O;jgh]5&9`^DE?1&1i͇IO2Uo/Ɖd~.`2Z|S]Pw6,̃Ei (gKPz46fk+_Y VBa[wRP|i!gq}nڈu陈M&L(|gk̪z暎OSˆ "y3"뇮Lc?჋>^ 5A]L!B篱fΈUlfOc\q H_8Jw :M 21_S3'{%.DiPWOI6-W3pZ.b#FˇRH& pe'yz ~r&sj{.ԎAZAKr=1 W'3m($$ )sd=wke2%d[IL9!'\ >RM] :AVqf@Y=!EIq 9;,Hm?c:c)3BkCg0Eϟ1791Ϫk*QW%2r) 3bڈI} X4|m:PEnOi.Glĕb$SNcѤXU1|Nf0 W64kcL=W `Lǔ IX*-m&DŽ#+ FY~#/37,{?m{חC s_1`˞"͠~"1cIJ 1v%~;WY}!Tb,o]tiD1pG3[',1='귥I )SXo QI9r^&xp[Cy|ɽ'q"qB74vO5~s2)9]A5sP/HŬFiQıaXVZTR؆&q+kgnJݧ_,I/[XߦɊ>썇I^U$%% ]fu~wcTL"E YcG G4*cc+$٨VVyH-DHB3LLk9c6tmHnwK*UـHjZ/(dzE#j=A6=V:nYVv(I&-'pB]B6Ε!R"NhբV$9xr FNqwrDlKvqfwz[b5zskJāC6+'Dı =-Hm%˜X<*#16.:71I &ku-X_<"jW7$~nT7lN3LVXb2ykFB >idY`Td:QA0NZRu+y.0׬!EWHA<7ټU2$E~iGjfl f#EX7y31fT @fXu&J16jU @{Nb=2؄ ? [т7X}j ;$Z:!q_b_̹\.8*\Ċ*!q3r%:nN*b 0V!7)^J+C5'lvxƥBs`]'ԝ"e Y5b[ɬIv_^dcDPo7iIW4捉De5i3q)>Gj) =zg+dP), iL{Ϸ {І&̺D,K1S3'b p~bӭ}~M\P* <d:z13-jf|6X6++mv+?3Gn81){2ŧX\J9u6X,)V ZLe3wp#I *# eϬh<@3~s͟cGS7!zja': 1b^hݽ ɹͺZ/d}*zD(ۍ LEe }Sb`P){TPY%+NPRPdOX1I@!DX>rh叓JԉsYp*FXaL-:d;  ?M>Fast,nsh5-_Z1%h #+j~èPd',gT{dj0vLtG ߿S麨|nȖ.3ר+j>ϩD5mȅZL$o0h2-gXWfuw%G@i0,.Od]3ϓgb;ؓF[Ӂu3ވ6S_ j';\ V[U LNQpȞ:I)V6ok\XJX=r$ چ{M9oIR21B_IJ$&3l[lvnCO#BeUDZ4ZN ~m\,9z8 h\pv{wJ,L15΁$Ϊy?@;4!Q5ur^x'e>; EE-kK~m,l ǝ!U4HSf^-ltsAvb#3}Nq6$P캝Rrc5cVH}Q鄼le1TӃM;kas QИy@7&K=$ϬrǛ*jx SaF'a\Ma:ޙoCPb 1~VYp}:3Ge8hpGs5(#hfsQ6XM*mytuҾ4~-d2ӕ.U;חbb 2$8UiU0}#+Cl3dA K^/b䰜3*[!!.0]X{w#b U/NĖܺfW}JFCHy5aIG;\j>GsY /U>=XJr!Ks$[4XzhGgNUڢ?%brt0q&Qcvڬ8 &!`,3mq;< DRON6,bnE*3D'ؼ IN"ITxnb*fҢHK TڜOMF7Lڸd3_ ] !.4ӐI):lT3lkhkctVO-PX;\{dE0-F#IeCA\%Ʀ%iY0׉.,kh2TX٦#vdA;qZ `#A# *k/,y0a"_8Z鐓Gτ{N6Ln:bPJj*훁JS L:j6G+5hN/!TG&`"Dևc@(XHPO3,֚ %!'1YEGm_:":h uˈ"QY;ZhNanU:W.0<3ӄ]*yUMshϴcn1XqHgi=-X N(=Ϛp4x)7aC~(84č,7UeFq(0YMQ>܎#YQ}s"WZ}6mz۲ *Ic+#Kҡ"ECz =ܫb' i4a'jɭ}N@CGRСg YD&V2Y v Y[a^vv~Ns?&=\eq X%4P.K"ewQpg.tT\JXkVPN9!%|6\nQlB̊(`_̛Lh)#GNdYKe| ӧTCg:km]E;O!Ll ]몤b|!\8Vïx3E$m`:>WEȾXsƏϒnp@UV8lL-L~jbYfT_k/[U]^6~b:ksllHX GOaږrWư"}ѷuC%BKn_~>0qI.3:X١DBL3h_wYJ{e;%oYq2Ph$ $84zJA+?{3eZ7G&V4%~J͠LI'p#åmYdT)0'SlYmB䨣9FYlYUaB#{sՠgftu6V2%b&t[xNKO#LQi8c>w"մlB3 [0хyd촏y[+ŒS)Džl@k)1 #r0']6-H'ӷ;"=`/sr80)F!1oƑiV$GD; z}Gû h䩏a.ƦnSLF V$,Z#H stvbNvy!Q7P*%D+1)ȕ9xd$:Xercc(v̜rs2-9:5ю&瓲YBX+;K4@WN6Mwx`Mί:K1-'du6#,&Tf~9ZdzK9 c'?UW=/oۨk}!*8pHԉOO9`b6=BV0:JT،E#~m,7o+ﴺ#w3O{j:BXVDI]ж8} 2|sx- bdơƮ ^+K,(*e*׬؉PDuKfE޿M?`_%d]X)5Vf&i_NlgBڙ\J96BvkdqhW0̢ { G *A.fQ9-Dya' ZD"G=ab=SBKA[b"r I;oX?v+$c.PZւt1Դ埫 X8@w\AO/]y}-Ou-$$6&LG&mC((JV<Wuha!ImDTV5;]ci,nVP]R(oS@#2Q94uvbleYVtQ==jR"%ZY"8prn(H>+:$Cx҅|aMw.dadᄲc6N0J-qJthSH CC ;=dĜk-W޵83}N)T@׏a:6>"{YW:z:kցD2a[`YHW>,4+K ֕V% N^K%=ngk_4󛈴-bj5Zs>H/NhưWVQ2 (gΓu]zVT7WܬW- ovn1a-Fg|8*H;Mi) '.uWcv!utt:ĂYmG$VT/5$u8̿*F>,&Qc#2Eh(c[q}{m0q`/"7 ک\}W&^ROx5)r_ XPM acj=D?;J"ǥIis{*w1X߉fsRlg8SB}fu;kae5c"8b][p\O;)ت N>hC4Ր]+7'ͽz?{5)T1ATPԐ; , ]Ԍ@e9TMf:GMmSC{{߼XT{:L?PRD:Ť!}>I$MۊǑc#^TpW|wł+#sCb;003'6 g)`xG-=R hFQo׃_)zb^P738zղ~b|3'%^;^9'>pAy`hJc 7 O!h@x=*W> ^1vvIýjV8yku\XckfW<<xxA|aϣ)Fw>0Criϣ*F`<}{mJPx'"tZp9O\ܞF̉͞n>͟0ݞO6{nxCw]O6{nx?9pK1oiVP߱s y`_wkO6{n?ax=n +wl<[9wl<JTkw;6pw{nx?1ag Ȇ͞g'=7\ܟPzEs5nO6{n?u~_6D`熗]n3?a8͟:gq{On1c'ޫ'O6&R\x?9J1>pvBAf '=7\c|D͞On6{nx?ax=-7Z O}|O[ :oW'^wlp"J'; D`'o8?D`JTc|D`熻sf /' oJ <8yk}|;ow*1c' z~=oEv"V$}D`JϷRܟl7'=oIqwp{O6{鑆s<lNl y`?a=״`' w}|O^nuR&„|u }oKFuUTWsn M nKNدꪚ彩,ojMuUt9U5!vS]2[NuUTWM:Յ)n񦺪onK>NRAumPAumP AumPAumAuzz6B6B堺O^6Bנ6BϠ6BǠ յ-tk[(T׶P̩Fum 9յ-q+Q]BNu6k[T6ߩmS]v=NuxzNumsm:Tׁ7T׆Tׁ'g6}|FumvAumfAukoTW`6\յ u`ԒQ]y8ب #FumAux|:T׆kTׁQ]/ ~vr{nx?xөfu`kܟlpwѩNup\_Nu1~39x=}s˱S]s ?a=u+pu٩?a=TׁG4FqS]r© 2&=7\ܟP(5W*ǩ? +p{ߨ>_x?Am}|6 ݞTW\۠W'6bnewP]u`'ԟ+vBだ;eCP]6{>@'{/PO7ܟoTW6ܞkTW[Au^Oh|Tׁ}|PCf'|*Onn5 +pw{kP]epP]s{|@ { ~x|E<~#{1W}N/'M̗ ~'S`oP (y>OzbL[&XoX ,y>~0~1~2~sYʹ_MMMN_N𛱟NNױO_OO6{0߅0%{ؓ ,444*44*a`ӨR no.OK=_ 7Gm}|K?3/q'CV4>i[Ǧ?9vn4~i|*'>R0WeN l4)Ӥ&OO}!q}4y?!5xaiR)7<[j~<H<&exiToMؿ&_k=Mؿx2ś|uģ|vī[^G {򄽍x:p$8< _0aOl|Ä>"p8q=y`_-6{$o!|΁-[*5I ! lR!JBRCqK , 4 fRцCRنC:[< ! lƇRC:h8M*`8%w>&0I! 6-4~NCZ8㖦jr[ؤ,?tpHkTpHs tot[:uKTpHo2-m6&e2<ݟ؞2{Q؟( <ܟoW4( ܜ@~KlSOs^zfDm'Di\^h7u?1NS+JlDc~6 j]Y۳ύmc|~` ie*Si3W&t7)(yω)i i?'8.$质yyk/d[QdWq4A{S Q"fRҪer0z6d!ETP6كδxϞ1K{WMwf}hmmňPg["=q֮-?gyds΋k6ֽ_; 6|HBkXH<)tN$lg^~C*d墳Ar*c{e#%n{rͩaҒhQ<lϦBK!P$} ԅؚ5]x4#i7Tܙ"cj\v<G=oc$sZ:‹tוhau&$>Zm$?T)Ҫh9"{۶4;ٱsy3b< ՗/[w%lJ_x̾gK4$f'0R8HV:[+A \*rRIM5G}D3;TcoD?aԥ]KLqeh.gpӘ^f{t{_`YsMZφÑY'nG}:_vz]A dD%V(/hz$hdxN&1ק54&QUɨ4Kg0(_tv +;oD<(%VٟDZ[, + ^8 dvD qlj/򠡡PUvKy2z( 9Pd$xĩZrtsvUbԢisaHjv]u=g'LIb< 2ӥEqGdC+@PT1}fg(=;|QP:! BaDu &Ԟzr: Bq\WM(1<1RZg( oe 5#`8T$cEܢ뤓̻ΠeQ|YξZeܩGc?L*Ԋw k&&&9A̠O$zdٶ:KPS%?]K!+d e|+vYk̙!Ť-K #A2va aZOӸS>g׺D*/%=_VʓOVZsj2(HjtdɔEȓXߌ, YL8uŶLw'j'OJy즗|]ÿϔF(=n%;[ h..|-JDsUA_@^ RmIM­zRP3ɷiH"ŽCԙza5V8R&2U_ dl*'ʵM>ʓM׋yA8 DҘg`X [H>{IX 6f,̵hdXϯ-Ͷr2ั-U~i@[Mm,SekE8}jF>waф<܏Q0d˼{S QKΰU]T'mJwHH{@x$.?6:>< %'*sc%Lh7kVP ~jnPifD~#Uլݚ08%%j6m3~&A/)]QGU'MX",֌+.7BR-]el8 jsn,ۤ(Pfv5!nn֧X}3*N;S +4@Y:E! H3ZJHB}d½ 6SNJ C̐OxDPxGDZ8-T/07RiA|w3mkK  {(/Zĺ]h'>Ұ$]x@+Xpy[cG+}f 箙jeNG˳шgׯ uޑ+I`e2/;*yHֵd/;eOGΠ4&dHdL [$u"MKSLոdk>8NIQsdד$VF&3i Q,里zHBŴNYʼn{P) Ԫ6JYD^! B$$^i"Ĩd^v5!#`2KaӢ$x9y)96{|(-*QJcJLRNϭL)#*wQ.sD&W ̊4zM21!kp*u.Cez*^VhЙkAEKZo,Y=Jˎ|oР,bh̥h /*Sbz =fw2&*2-Tވ5w,]ab:m1߫\fc ѧ&ӆ2WlXkrzyVՏOlQR%)y4I9rn-TEs1\6E*孲sɎ\MRV`e);& N7ZӼbU)“3"pԤ,D|fP,Ɏb C : |Q oJzaWiAgPc[TEr0 3$~r,~cڋ_hk[;cXLe-? ɔbG-B}tUdJ2B=Mu#%,Pz ԧR;iX,1j{ b'%[o`&h&J)T -}Q(?-b__j6B܇Ufi֜1yw$>zALdڴ@%Q(lu̽F9nX$aӔ7 ،@-ѿcY~.)g;W{FqѼ't퇚G+e)r ]3MԪbmCkEoޝ>)' -R.' $zBx^U5?0N~oѯ~bAi:_߿_^[=꯾a{Glmkރـz1?u[N4&~/+}Y_<TwvV~h1ſCZ'^oO_?۟_x o/ծ{/^{OkM9R^q&ǵeV_mH/jS _?Î vsh|n0>2يg&_okj'sW1ϕ¯]n_|m|\~U"׾/kjwϵ ڗs9gsl^.o:qJr˂w x#}ct8z*>>0R'o׃L+ N\'^ pqof4>>kl9;jo>>.1DǁYsG;J. cY.w9Nޯ7nh,vaS1NlcS۶oOe?wrqPu~bij=:w5:DuW< vā}|`:yj$xgMY߸;Kub;w=pqxNقQx~g{^9 ӞGV ҉8qg/{I@YS`t98o[1[[vߖN\=q>{? rD}ûx=}'6{n8:[͞O6{n:kw"s y`_w]O6{nx?ܒ>ݟ0\b|On:[ 9p?ax=7<ݟPvDW 9pOO(#.O6{n?l`熛o8ؑf '>ݞ͞O(q<<U ?ܟ0c|OTc=76`8?\c>>p;d>>tr{x]ݞ#߱sx]_ܞ筸͟0||fR<ܟl/'=Sv$}|D`ޏRܟ0\ݞ ?ax=G͚<7Onρ㼾f6pq{n-Ɨ(I)ț ҩ7US]5Yƨ0 Sש.x7%XCWpMuEMAuՄWTWMxNuՄGT:TWUtS]Uw 0`7qMuybҩjP0n7Յso ;7UgAuiHե-b+Q]ɠĽH4յ-Tk0յ-T KeեJRQAum$& lTpP]ڳ⠺6AuiҶ\յk#TOKVTF";G"өmԱS]ۨ_QNuY:mԩS]ۨOQNuxyj]ٖܸ=B1,I a{ArgUF =}qjWeZd :յJtkT6*ϩmTS]ۨ44j̨FumN55__S NP]ڠjڠZڠJڠ: C[]OQNum;uiNum  ;u`DhT׶ԩmS]PѩmS]B5p=z9յ-trk[TW`2Num E lT׶©mS];յUw>\oNuT׆= ޯשo{^6mP]^xfTW2r"spv"P]ǩ 93;xS]W Nu9vO#{1S~-q|M>'-pjn|T<|U"|}·6d"|J`[ډGl|D!678_8=a\Ӊ =w_ܞO6pa'Ki^he YvRxz^2ݟlf 7' W}}WNnr>)pq"p>'W2%6=_8c} On/<?Vz?=ߘ_gN?'?ݱc'K>5tI>fϑ|E>9pqLGO4䗓~͞7˗6||DC=lD{8z!pv{޼w0?!lDEr{nxu}__9,~zڿz5G}Gq"zze[Y|czxt͟(in'*Fk݁Gk^WOD}hx\iFTAj'SEDVU1Y`g*ӒЭ=?ȆH"ȣHPFB&^B^Ux/)2S+B|3fD B՜/"H=q3[2-6e8dePPta"P$>c#-ү䐪+?1db40))Gbt[bIևs. -V^ȋ06yDMz#Yy6ClN<6$Z$Ņi9B#jy<5PHd׶A=X|S$ :́Mvnlaޕc{)؉S4uئ«hx0(ӈC{ ZRGBb0ъޗd[]wN4k[ W6IXk@Bhu @ܧ@gN#jvSA>{:/NN(fِ@4 ,<*6:8m2^XLCExfu+ c:r 8ɹ'?s(Y<,i&8ln 6ŗs8%j/$+:$²2(ܰF[/ ux`{&iF2gkC:%I 16엥$5{=0`NMj! !J~_ce#[eH8uio ʋ FB4]UNA)@h{Fc./ e q N)_3 & xz{*<&;2jEو뗠vB R 2ӏ1aCxV52ovHlN41k98{$Zک4輁߷9FtF'mjvTvj h 6Ecfތ#Z2\ڶ:v򣔜U, jXIϳs3 ?m},`6Z{k&sZ}YM$n*EXp3󮴚`M -x2%Rݐ,ls?]k\X,.jeg@BKư!Z(jC#bNB*P]' 4)M/_wH566uӢyv.|dNhAC5ߣfcize2PvBHU&-i>*˛իɥ/{c wncp?_'I'l8ijl4H+@0$W/yRZ"/J)DkaK,֐T" Mf$^+TIP#kYt(gVUA6ɵ27#Mޙ73}IbU{4#MyKH( 'i!f9]̃r vS%V+K v4534)Ci (7QrO$38BnC;ۘ]k6Ѥ7jaIʒޚUC._eLR>(޽<(VnrHmKiEϫ)?!A |'9]dsg- ,r"vҵ8FHǑG̈4H"O.$>LBYFc:$2rcK4X3Jh6ŪTOSٗx5*e{4QB̟x IHoJOxŎIj0๲b2"'>%,S*=QٗX<`slTaK5bG랍tٗ1R:dԨnXEs*-$N^Cj}1$$NV͂̂|W -CD;rc#'z{me'Hj.'o!3gvIۜYXqXFk]j0vQǍVGA)/P*)a*i2z֛;HCEZeo5lObmٌ qIOqg$*lo$Ͽ'8j ['շJw!9dV}e_M[m&J- -K19M=B*YTJwlS )'L[‹抌ϣ>SY=Ɠ@BJZ?*٥-Ik*C`W/[[eTeCA`,!2`H-iY|`ǥDP:[i{qn`nÛ WFƳ `CXYyfWV<w i&b7OX`L|6&4j>Y4XeD.dVێ&K\Jm.Αh:Hr0}Oxkn YW bi|d4$19خ̌ cXK7`-Fgm6ӂFExe"RͲhvJEoJWd9$$/Ֆ\IsaQe,X] x{Vb3*Zw" e`emJp]!- amKm2ΌU  +T= a\,smo$+$z, SlU9MŐ*|$9'RD 9 WI kp0l-3VxK&NY^\蚨Ybav5ETP]Y}NɄNEpRO,9JzRpr2UV8Y$ua?Q"$$[SN]YgZ t7 `%nՎt3)jsCb,R c_>x kgj뢏 d5 4-4%&L*Sa ŧ󄒔%x4DICj@0d,4ؓB`u" zlUJdw9+԰* ռaC1^k9f]*3:#+}Hh62+\.H2͆-Yie/dI!.AFL1cEF qbk;8Q[~,pcG-y8-gOV:{mӕƬ2is:j}-6IKvYCbߖ|:xXxXeNfŦr)իMw(fÃ#Mj[+AhC<"u5эfI0VL'&En 6"`Yu^V$գSWgɎavG6 Zi6fS]uɃJTWPX唳bYg!2q7y2-?~ 4eU~)I(R?v./&gb\z4ߋRWeCOD%;26 _s@ oBut=4Kl$(؜Or+0״B3eDi]x17r!)mV0"[5XgiϜAUmpA'0vsV sq0玹»xx>0g!7i`nO1<=9 swRLb̕w96J|GY^S+-jlL@Y6F^fIUcl}}9ߺޮ(?t$ߣŹٔoM76 :7Urm[OoSf;L&!UAV^@a9qW;*b0'_9_OJҟ~WOWWkwx(THڑaY,ϙK_~P:+sP7{Sfpv{x =7\ݟ0ܞ^/Od}=l<~yr";wlHn X߱Y(c' W熛͟ȺM'=7<ݟlD=ox?9LOnϕhl.O6{n?a=WpOnOi|JnϕHBlWl;/nϓb}O>p"{M'?axfϓܟ0u'=Ow QQoǾ>pwp{a' O}}aT b[?x%T`aN<ʉ- ![xӰ TF5Nbxȷjg xX+F"ī?R/'60V~t~U 1rҲEq a |N\]pOaljs~2W:t|}ML xR  ةB?TP]5UwKFuQ]P\jTWMp S]Q]Cu 5e  S]5uq&Nu`(&^~0.jQ]59UČ ĩ.@ua.%TQAuՄ51-m9@6666͠յյ-TVK#W__sAuiDuP]aTF;.K=҃ lTF>.K=RP]șեե㠺={P]޸ZSTf>.=.);ب.\rP]V3THT⠺յQT眝ږvVc8եk .y;O{T6rAuޱS_Bui{u@%_:26\SAumPAumPAu6kjk*+EJ}յA]uTtP]TrP]+/6ݠ<ڠZ lTuTTW`6̠Q]۩2յNbkQ]۩)յjʱ>Q]۩WFum:jǩUTW`s+TW`Q'Nu.~1ljsFum: c}`QNuO6{nx.:s`QNu7\ܟlTS]>pwp{*©y`_83ޱc'@M88͟0\b}D`' X_S]6{nx? +O6{TW@σb5<mqu9=|G|HI'[<c <|}ow<< _~ċo.~b_=^8p-9pD<́MC-^:p_V`\k^x/pZ8x2ś-=p}yųw[<k<\|8{+pzy/8pI'^l|ā-fxcKqdWl>]η.*,/|M4b}RTi: wOn ~T~TeO5p>pO <ZzwzO3lx?C7O.v5p̲ \|?ON _|`3ϷсoxxE\O] W)M l|y^z>[/M+X%!i<1s ?NKi/'=G>UD>,p{'"?9ឯ ݞo 7`y`_ׯ#=7ܟ@>k|lpvz|/>p5iOG>m-G>=||`|l~`W\/5Qa zwܝX/6~^oq`'PIO֦)?E<֩ 3xUe8?uu,pu~z8?1ֶ Cxk܁@ ~YDO@S}GT"sNhI"Al%Ò/9 &!p ,Q71۳qz yJPZpw6SBēQQL4F>ԝpLV5 fhӪn T3ic?'*t#A>9PuOM$W] wIT4p°dziS\g'1} t}VI& `aqUsuK쬪jIP6i@9˴\ >B4o!bb7o;h֖݉F^jS2 sɋņyBe \[M|bYDGIHB\/BFn"%tǖl>=Q1A!u?'ѝܜrȴy{'HĈk%vknzrU\[Xn6FLXہ]K De)?X 3E/!Rw/əlL1]vr`'jbR$o0̆{K^Edc 2T{"U]2{^ZYLȴ]0["BhvyܻkwDsMVÜ,!u2%_1 . 5ҍڮ~U\ -fڠ}nE&Q;JJRa}cſJ8so*ѥ/$dsqkM jtX]߿ӆ5[ȷ)lVk\>S [Z>v^BG>?pLI62[~A$U"D-ϘA JZ[7bB[ M8뺴Vdƈ6Dp! JF=]ɀIe9gIMIb$#`A쾝B[Pb'Qzy ]s>G~k.S/nlMl=o0T$l~8 2pg?75kdq~;1 W.YZ3&3^ !:1@#@Hd΂Cd#8C;!J%«{<~͐905fTrNpgrBL6^k{GR)εI(ux<3: r,hZ %M`bdO;"5UVT)R&O315 LÁa$K#,WsZ:ʷ}\UәQU }N٭Y˗l$Қq+^(),*Ch pM(DUB.[e!&4W#GÅNz뎌R1 6gF>VG5d] [2BVcM.E6yP*2dF)Ve3ׅ&HM[ڥƖΒY6/[,qp0w6u'K#H鎐!3Zx(N+X pBb,N87X†IU+QJPBv[e qP<IF(xǿ#*$S>6޴&qNf6'Yr?JJ>)G>!LU6v45X7mı=8Wl=e@ݾ5Ȯ*YS8u#rXCxIШ;lRr[L-)\xIɕ'bl%M$Z O!vӴ'ԇ>#mϵVMJٖX٠ȩ"qwAd|$">jVMJ#?pzhbeGj>UVvmT)!L{hcFyޢx$9jtZ{ԝxz"qZn%0.7^`TiUBr&BHiӦLɒyqR>i&S8C *)h2؜s+;QlܽԮ|q|)(uEoaf5\mV1j5Vi&='[;sà=7D f -zş蔱 Q*-Iuo %nx(4XE%she2?Nb5OI^.IZ/v&Fmw\Ų`էU{IsPk XiFFY,!u{__|$P6|KY&3ƮkPtJ$ }:v#uq3)H堵mvTjdžN#<_4Jdn6 e$@ ?m%kj$aj,~,@##p`Ee|,C ;s1Y2O<LHf"Ϙ\XLV0$Sc'+uRB:y*KD&'M+i=I+5sQ4yw>.ȅt n~+ufzw; u6CK:q1UKI}>%g®{Vh=ÕZ ÐP6N6I[fIBiF~Qà^'2i ,?4RD ?};B)0#ae '\[mT012A ӍD1UdW(AYIp.H"77PP=s:m;x`y ĺ[CJuN>hvq܄F?SŰ ge5=M(h!G1 #6AL)،+Z=;W\$閚x߭Zb'Zw!bIj~Y (B{Pjl9|tU!O<%AJO?:K jJE*"!`ւXX)Q3<O #~g%1?Wą@6QN W/#X^[j]lV- (!ƙYX n^(f'*/E;vK$c#+KJXB+A;MBB=1|44dv II(mt 8 ,VMiYmT v4>P$hI,F3v:un>6#(!);5"y7(PM2fDE+?\ljZЙT?kHҼ{=ksTZm DB_c}}lB$U*{TKR9_ UbHwĢ :r%? _p6 ةZ7F16ZulP;hPE(ٮ(3b}1Ɖ$Ѫ{kˬɧ*BpL;՘pFhm.'%'#CΙ^ʮO-$[Z4NHbwbӺR"+|L+L#i kJ#^PZЌcl%dV;CaU2 >j: VjhzYM͓Ь7q6Be&J#*MDdjh7DљG=,A3;,4 l"6KdQƊ%Q +Omb7(JLZ35ޤlQ.WG+6ԙlSX!FojQuq0DʕDxjz]Z@٠-ZP$ugȹf9@$hӤ 94g Nr a4Oٚ`A p4IbE/>Oor:54&(eԿl<{,:.ߢ&.glLtY`9ܨŇF N*EI֒ɋuѻDQW#&*JfެdO8LCZ%:N;t,m0e3 ,a^jruO_2\i=#K00>PO&S:4EuبɹmPX VEQzZt`f3gUԌFF D1(+4ۄ"UeQ U\QaO wuKO>'$BH?>M5+$קpzfkbh'V -qe9yH4qJ{4/61/R|]ަalpzVKКi4mM-u:[aTDo)lTkf !_f>-M_[q֤.izuc6KdIdQC5$-0 &V 1pLLb$~}׌{@oIbT5Bj<*kr.܇$=>B 5NtF;-Ri&VUIm9%>c4 mF,ͰmL̪3vTKt% n$d;YU f)U6CQ{Cƾ4CFe|?03*O1ଙ n|^H1Rh*T }b~xDȄz89Wҭ9\&7d12@vk&}-w{k!y*" @esO5*W:H,\SFTڴ,QЙ0*-eҊ5ai!"P-cfЙo*>t{TXX jjp/ԁG/vcY!|6 øė=6  WlN%#}(uk˅[gzfYBi% l=iF@eyE*ojy,dM\#:9 K. I.MKOLڤ+(WG ńO6#z;9ՈfnM+B*6b ʹYx _ MklujN;u>-T„yфLʘVV?XLV< W>D54˳~l &l(y"ad\e%&MJ"8]{$ILj4R Is̸B"Fn,98 iLLetވD☥F;;uL9 :F4-j}ҐnpBmcP@HClk%6+}6j-zJC D޷XrӀ~o:SqM~窰Xj5X!.R\᜕X!:$Y1cAP5/€XI;W 5JA5 5;Qf̺$q0]yUVyRZ֡ U vk@%<0rQ FZVX7|T.MSXA>TJ0OL@k F LSJ۳l؎LujZOMwayLD|NCyL)IoOUIa%@)lLZ'gtZ^Sf灱+2A5kQάU{%OB՚B/ OU;;S \L6 q &ՅQ! 8 1q2'̐/.,+1ed1[OTpЍɗj wU/W$f#xbU'6-Qx>93J 5S[N6j;)?90+Brn)g"0Df%KymDf+m^d\(da8b:q,|,mpm3X`-"XeꨮEh[j( ȋzZR5Ur7_/+?ʹה1&ߪߐao:|=_[ioS~kFϟȷV%h[a(EQ=h5bBMI׭ 版-E}C!n_eZHniuEu $Tw 1VϒQώVQv*ܯlߨzYZHi|Rha׳&yܷSz\N *ug |UHZ͂Q~ceV~67Dv#-DQb ʟ0'gl]ߠ43;|܇Wа$S-jr~_ϟ?ۯt> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 184 0 obj << /Length 1866 /Filter /FlateDecode >> stream x]o6=B&o1#(E7AD,8۰߾;Qv,vT Q#y9ֹXwУ H1,,Ipic=եą[D ?7K\/p Nc1F!_-$OJIa]qN Yb5|@O %+gb8<,<¼L<jWRIH6.piI@%fM=X%]/SiWMsձdq OXV㖟[p0]s {|g= l:8 R׊{w%}C/re ~3Mwwo7Û']Xކ:&b-}T &kYo`Oݵ֐YެZqss"ubwCېHې̄gJ>91uE ;l /7LpȄ}!6- _N8GΡmp724+"]bnNar.d *]Nh|&hBm0E^[q Hq os+r5mNͩm<ڜzS9ux0ۜzSost' G=hݥ=hO8N7kt&e /ñCL<Gքp~!#?!LM4ZzЕjSF(jԡhk\0&r7&^th,Qpc5 ;p<#e_Ѡ99kS1Wµor]U_ #V=[\X pF~>V,~E/ki2J|Pb5%t]GؽFjPUp>1@`R`ag~pxHwgn%Ez8Jsu**Y;V(7DJP5UDMy~\˾.YڣEҪ, Uժ)KٛnyyV 1f!XB(֩qN s"S"(ξo%!}C'sr[Mas{\|( r$N@V ؅PR@% ~]հ Bg!1`  )[Ԝ<9쓚| Cp$#LrU*IQ |&| f,t>4 %pHvIW̜,GB UW9()ǥ-kFD@<6d_~X!sPq\tA}S7! /օj(m ܺI endstream endobj 187 0 obj << /Length 623 /Filter /FlateDecode >> stream xڭUM0+|uq:mqW;-Uu&O˟*_/D!+a\EF$*mMބj.HPp Rxzw(RِΗ$Q|(f_ n.u/j5hմ8CbCٕSU=Oܹs Ɔː7Pʺlr*AN18't$xnaP]~7{ =aDDPgf`5HPtU *g2cwÖZO3P`?DyqTPȘ},{Ŝrdu?O@HQԙ)2%rfTyW$GUW5膼 (b'qݸ﷐ט.Dȱe f>a$+{&q/nz2l#p> /ExtGState << /GS1 191 0 R /GS257 192 0 R /GS258 193 0 R >>/ColorSpace << /sRGB 194 0 R >>>> /Length 37596 /Filter /FlateDecode >> stream xˮlKs?ObC[yt%؀MnjѤ |o1"gWh񓘧vժ332b#׿_x/__)?__tW_?WN_?}_77GKu^qOۇ/Zշ_=髗_=7a+kc}_?Go]J+v_r/_G.7;qQO]6{:?o(W'jלq3u]~^JUz\ŋ_eT_:ckO~қ)y؊/OR9\VYm{^^j}_Vqzz\~_ПU[5o7+I+!}\ۛ\osFM]|_|FN?/Ͼ_/\vH]Ne/kg??waeU_nWy}X+mS{=s/gٗO~=ܡn}qe?վ߆% W~RIAj.ݗ_&=_9>[7{|6}<&e;l[>y=A>jlrg|sY$$b7gu{Uզ_VyV%O.{8v?p_g%Vb_n]fO[%=؃K_ ^me`~vU_þ{~s9/}\= |oUo]N)ڿWNžBֽ]_-u_~u]Y z_׶묿7}ժے-\7}틜T>"]7Hu;N}sTS Rï?}3=O^x_C@~Z::ۍ .몘gn>}=K_ʰv}學3٘F$2?FukIڏϵg=Z9lmv~@صs~{Roϵsמ1[hsq,uovo&N?Ju?sGJ~N:ovz+iz|W>{ӮZ9ouovwya׺?_[KWF_~.~ߟ}y}/}9 W>~{ο-GRV]~]la(~]͞g6-<6u~ߦUOYm)~ֵ~_0ߚt=~z9l=9uues6u>~XOy[զηfܮηcy*_~z?oϵ~s~{'xd[g9>j%qz[<_U>Dy?oϵۮ繶fsZo7_]7m﷚">=߬jex`מV񜇶߬jTs~=_W~iyο|GgMޮz/oY]oM~~{۳M[,Z9+*|Jzs%]sm޺ߞmS9l<+а4ToږvӮ߬4U*{Com^B4V9_fo}?oϵlO.ߞmZ\~{<\*=?l^zM}οϛߞ>_t}Y셗]smP<\/{gG}Xo>矃2QosTg7ϪDl_v 5m=a&>%A _ So(eRuѿ_~7 lBW#)Pt5`]mU@Wdj*fjXUdmjtՔ}*]U]2*:7Qft\zrx=xt]M}"??Ut@W=]5]U]U]U-]eY*Jjt ]emɀZ2RY@W[@W[@WKǁ恮 ]BW9Pxe/t+zQZ}CW* tU;֟BW5JoJP ](+兮rRЕG@Wu|}R"h腮<zPɁv>KR@U]|P7t]̀t5 j ] JUwT7*>t?*ZD3@WlJf* ]i]J}_j9 tCW=Е7twのց兮V@Z*RZtTZ%j~+oJ7J7tTЕ7t ]yCWqBWUBWqBW{BW@Y]iCW[BW:o+:VZڿ/t 8 @W*:Е# z}z>OЕʪ_^(}Ё:/_)}󅮺 ]zBW#] /t5UUo/tՎs8/tχt\(+:E~~ؿiZ? {?yW='g9/w{Gvuy;׵l}֋zc(:?h-@g=?gV~~ O-o-ηwˁ#Ƌω'&yQӉW缊xVO%]z|` s{~kU?2oxϋ~γ8oGd{ϫzΧ8jyW~0,[AqyU?qPk5E~y|)VVUWVhuE+mEyynEk.:Ҍw+P[o؈F q%~ǃ]>Ȫz!~=DUJՓToTo*CAu8C8J֣ԏCAxOV7CˁǼ<ԎgçzP_N=Ԧޟq?0R]T}SaO2gT=W81b=cD}轼xɈx|q:D=1{sFjxPP^hyxFPK5_<\a]'}'<|{FPYSPS⣹{Y+*ZځA1oZ8tltZ*N{|>PV!n{CrQ=ԣЛbRC[ZGQ{|_/222UM͡A+^4i+Sg M2(zs jNj%:;6iQbSE}Q^/6kQn)<^ֲ>r?K߷U Z6rs*Evtnp`6c!{f[?d*Ҫ e)I^]δ)0wq٪ ˵~ L7 H4vK J.,yNo'ZQҊz?B[>_k{m_+ʊ;hzaGei'`v~m*^ fxgYXc% E/f;/m&TY=մQ"ΏZ RyH:g阽ZXZՃ˧ "~)HS},kT7`H| 5 gIP>&SZ:F r];Dx΅q-/Ԯ)=7ޱ){q-#?7++s 8)SO~~hE0T:Dട/Pivmdή튁۠<{Q܇EME=}]wՙK4=%_'ieFǻcP0+|ٮ{l헔rlB>gҔi=Jo8m@w,=< ~ѶN7YDWL |/[mn?ғӺ]=R(TNS`mfM;PQrbmuiϢTY<1O]@S-w -l,BFS1~\S^72Ν_PTSeC>־ߘ̌d\^1jyS<$"mW `KubjA$AS[*)>VIE$/nbI%(rG;W-=g>Fýڟ֟ 8Ga7rC7]Eug!sBTw5T-~pr^nJ?M}gU\P+9b~= O[p{WJ:Q;7wtrOV5cPd.g6 @=pX0QQmZ4ۛ5NmqަӽbT_C9Tׯ,wm,?0d8*:cr"ؽonG*к`/v:} 0ҪʄchA|)=ֺ͍v#L(5~"jc:V|ɡm reyy1-:mgy6 Z)S R`o"F=i%W+⫫O!Io u0r~h9$ݏrVaq ~rю:8^Ғ9E>KM sr}_4t>,k t֠l}5$p4hLkJ`ݠ9,X(<v 嵐i {Ԣ7zO>u&Zmk`H@$g͘gZU4R﬇tbC|Vӂ~tFxg[|ι/l5yRtkg)Ek)wiV9\8r ֯8;^5i 2ؕ|Ҙ@ulLcJq jpGRs [zK6j˜[ ওO&vVw9TNw:lc`%I^YOf;ݷi+t+GvIEdQ]:_z|XWPivYAYP׭J4d\25γ#xB1> @|4D=0_r(#Ohni :Z**%LgQ&[091^RV8t iK )2p'XI хԳ(AgK+%f{ʠ[E.&\xZ[D=h3J>gL{Iɖfnre)^O&PNZ)CS\L%XMJOd[5xc;JTk&%wR;%hcʦti/8$ 1[ Rݱ{L C(LqS T)lM-!n`!Wl n^= kD_ʹeN Gk֗ ]Wq2ս%h Ǥ4)ˀ–%]@pDz۽ԬhN0Az_YT*ObP%y Z>?DqƥP.ؘ֕i]8a_IcܟZ1)5͹4|(x\ 9U_#4p*:m7`~#^J@D OJ°&;Yȑ Ip{t}!E gZ!ѥUZ"vNҞLcSKSWNFܼB9T7P4gѩi?7“]t\;yLMm4%"r:>2A1 ̤P8uuJ'PǪM t=a≑ eL*/!5ŵU*d[u:># +0)h^0"ޝf.lC0:`2 ^i~ I5ܼ+}Ӛ:–<:m!`Wx"2ꢬo.P7\ `ץ-Ko.G- v$?#oefU:\ha ]l^[uPtc ́S/eL&U#28Ls $j 12mvdvE q"5Zn *E7o@A~ %aE^ $*X ̆kRiq ]shsfbo(~z0 5 Q7Ui ɕ,` SNA%CA?{|ݞI̯lnt5\rDaL4JB1Z2s'#j7\'OivW#rh3-F'eN:" u 02^ z&3! b@Υ9pmVAl׬M9ʽ&F@h S Oj LBYgl l-u9 sx;EmXw"3: "gUtQrˆ'Q0ת й6 {(iň chj*=:.4{M7cMY-ؗc#g!b>h&oJ$:8(21\ dQBEB8;TJ }8N|K7P(kqDϒc h:fydO%y&i|t3}hTơ K"l/~ tv+&{aW0R@\ &ml_P5z/k[H~W ر: gN4nB<3E,+e5{LBHr hl'^tv;H *T%ed`*(j[ļ6MM)8ЈIg ,CgԚ )f$}Le;5KH|q`PJEi(NB<=~FC^nfe*4!˃:[^P)[^",]ԵH*9!^tS` FE5e.Thdl:9O~;` L;ZAl?lf(&ڿm :an2_4" ]^BQNn(EW:5)PDLZArhZS%.LP. "uy[JS z3 jD% Db?N+-Oa+Yh8_{}'~F, ĺ&#|;nMPo^P Wmf d211rI 8AQ"f5K?0j4˒Lpea_v%<!fԥ 3 1ߙt w/OVi1On ey PFI`>k8c(oX%ֈTDĚby DᠾC`+Gؖ g"u'1'+/y b01g8G y~7GB';i}FAmAӉ Z5{pA {(l/aky{ҭ^~G*];C_@+LY%2jD&5dF');j7eg$R-_NjNӴr3꽬?{ֲUoٓycENv2˦Kb6 ~M>ڐ 8 2|D<@^*A[ ugH6t,Gs EoTRnM5蝰)^A!X!ƃ=IULh*U y9bϿϼ Jphxl46aq*#cnXON]ᐍ p3us&=-W@Z&H$8΄ dZ͠\'&EmH񶤗2]hR% #ɎqiC-9l-^9R_<>3!غD#j',v`'N'G,b Y6mсy`.Cg@ !'M:x˜§*H!k%E[M6IqјQ}G"Eyȵ `Td|J(@pͭ%(+u}d@H4)ZЈA {dp(=$2+8TvVa0tf>;1ֆ`sT dzN}ySrdޘ1[ L&.w^Gh =-Ѝ7U{?|ޡgo)xTkISP^Ŵ[X"D.6 s(1Y5 C=mG65/K;eGTN4mLvkMJ9)U$EjQ1ʫL:2!&.˪hƢzpp3}QLc8a<=Zm-9HiҪwΔ\iKqW `Ѭ%Qg#,f!>Qp,…tFL,QJfk"MSÃϫAGqy {(*[;BpeYV"WMEK%+"3 Wg)ei"=!CJbMA>IRh ekpf!ޙ̬xySMinzqyi|HK'MtCGYeTsLH() Tck,a9@rZK;A]1F8sRCjѾK}L>·b# MyY&qIբWhVJYݞ\Gr6C]FuE]DB,NGvQ.RiEÿLPR# rCm[-[/%Jrq\%MATbzrh>N$C/QYtODXcW"Ef3 c3ݖر xnSHrEYxa\0c "INY ծnFomɄh65n Y؋VT @\H)cJحD}/~iCys!5Fǚ bw e@% oԑ5N0 y\W`w,Z]&n!_:VIaK#<K@0'X L3$rڂTzU^$ڏӤh6ggSf=#Ȓ\ܤۮd4eQ/$BրDCfJ:+|; j5(?EE'ʢu4KL&b 3&dDL7"@%$,4E#iec1N"Q jb5TVq[*Isfh{U<̐Œa`G2u e@|ݶjVȎbWtoˡp? YIXz Pd}CJs*\?8f@Je+ R(%14!De9btV^\ <GlD D){ *saޡ?nVt-+$:d_X&άPZKE: tj$n9|k)=xkt/IJr SPFҖٳG8@φb> XC(U!rLR֠7*& 1l$vB&c[`_iHf#vWx)R1chODçZFr&Z?~apzi4i,9j%Ht ^1Oul̝=v g)vJ1 5맮PU@pЄyQ҆L/){RFCW8-T5$<1hĹf;Z'BХ>X&4dH1&%K$m(k#kDmAOx̰S ޳eJ "q>Z%Q4GIQD|#[eɮLN$rfHc0}`܀$q3$nI W[?t#R Y3#% Ϭn ?Z/$=IO\D!U*yuȊa0QHbaiE ijz'"lCVR$X'w&4L%Y/8Do{P~]=4T5;j޳5tfSlJOgWEI'=mt:{qEF.a2B0ۘ=;ƪ"˺a/a1,K?/~tUG>a{6 B<3ltq [Ƀ̰14}Te2|tV6T[G[>֐%3 ,B;4 bo*4f6 D2r]MqֽQ55iFXhk[CBp>*屡-4\IW̴;E塙L,rbg2q9لZK2jbÆOs!K Nݻ*nQhP3'N#Sl)OA3h߫k5G4Fv` ٭W$ʽL`Ӝ XH e!2HS~cR> [lρT(wY}Qao CLD`+oZSÌfdRe&SQ,:郸V#̅qE/>򤩟vE! %~V|/-uF냥}UiejPhGRFV?JpU_N S ][;SydUfxX̮@犝PT >XH~PD6SeI)'(Mg 5ᔙe\h#? HZ)@%bE]ivs]-d;&c w9FCߺFFUiQ`Gg҆T,K%͂fPt;'cd3QG c݈y($F6s[d7%USӹX>+`ђ8ރl^py0 RC})68KSS,J<)}CRϡ pweoBd O%!sו.$F@iD*x[cW45u-aٺ&fu[v8+'"p(K^W1J;RFk16 V}#"bG s:鬼}FVC؇qO+u^F__ȩu(pXѮm<nI6{#QM0NDGQP&A l_zcZ̀/i*(j 65ZMHԿ8.8{3+r7-8ChJɔah11;`:r+æؐʡ { }LavK#Jf?l72L`EDX4"R`>#xCcxX*gL#I ,daK|Yw@vgʀ (YUt VjƄ օ8>`M5vqoq:ÛhoĠ /(V vDpHr`u0k}&Z:hY* ̴P4)l[+4LhFYww3-Ktt-zC}MĐ 7^Y XT%L)ښ,`x1LZBu|s>ۈ8LeF5qqs&]7$H:kn3Nk_lGhS.ج kT /X1)Fy78{8QTnL9,]0*` rAn(b_ILrOc;$I׆wl%񔫪JD7KWdgyZ$mP4, lLOe!pO\tN͋k^2:cƄ}h!;e t04u3( Tc“ {DZ95G_n J%CL?kB;V!YP7~-QR.[9F Bhس6>p"|Hۦlcw/j;$r6|YM.\@GuԧK~AA6сzUNS>>,Sޗ $>~ALecEAN_ 4dq3U_p`㖍@%y{camw iEP~Ңjt?Mj1ST=S*J̆Fne,lʬņ#KPL&U^dK zǥ)~U4{"̤pZ$ P8gvwlu*XP DӦO/iaȜ&MJJG;BMްXy^uh+㜃J&eu_ AVw"q:R$7"0cF|%SAK' OҗBRo*3 1P)$m|MwrK5/1PG(b@A k/k WaOgu*.{Y6&F=;0ƪb+D/AU@YX)(d1Zc[CYUZFXB~URUX[`^tBaxZ:n~(DȀL6o N&ڮ&dxΒ+W}? |g"t-WP-MAֿGJ ]n,ޙ|*Y|8uEJgkxQ&mŒ'OzfU@%YeѾdt'/H[T  P5,vw5V譓/Ll@hAG2BNe!F(JÉ-pD%I2Muz%V):0;G?x ]1sܦ[b*}CESdi￘ˡQUCK-BZ^ޕMѲJMɝI%l<ö*qd)hr%h;&~h+Пq|D4+:jQaS~WCߐiilɽ jˠD}'7jxhBBbd&7G߁`~/Ê) EA<( S;ѕ&Ǫ>O=)D/ 4kV]W )}Qf0\$H>꽈h wf7è4LR1Cھe:ZHYRZ5r|BԁmcxZCٜ:3r9+.{cw~~!%1j#@85T4-h4@SU5ۙgX:N'$`9BDd.)pz:)؄۰bМ NI;h%侴p{rD_Bͭ_0x†"{"d|UfeIoRzwNcm딑VjȊ>ќ"1nK$tPa8.7vݱ/R( o Dnkrv*ACBuu:/LX4ؘT oqXq#FN!yh6q [ tQ eսQ-W,ݮymQg ]ٺIoYq9Lڍ k:sϖJn1wh:Vw%ԥz22gX4Ti&)RR3ns|D!y}ڱSڑQɔ:赕&+Y <9 >Æ{ Km0 U5SǙD)䆢d9<ՄaQ-4m*#Źǒ呔k椱MagJ ǾD8Ͷ. *BZ:[E veJ+hX=D&mT ix gzw0Nk JڵdF!S-dT9[3&4O$y|:?/5uԌ3!|x,)tw5 <,ؤф4cN%SV{Fgca|ޟ]< [;c}@=J̇ZP&F8!+Mub3MH.!g=Sm;,[F*ۛ[y%HÌ1Mg%a{}706pv;ؾNrĭ+M=b37 f["([+,-Q:(ΎtMUCXn`mPnM^}gUѧVYL3 J($dvMh#cƠ(k/>  mL@Eퟰ;.<Oy)N^gԄjP Cgq9P*UZ#Pcz!dB%ㄕ/T)zt0Ҭ ɉE3yF#>DnpB+6²|`@3e χNB"#&["nCzGC*| 5Q.8z Iza- Ȓg$*Y"XXJx^>cI$D FJl6|b!K*N.!ev.0Ny)U'_b c:h'"'K %l5H8#vя`Y(q7ݘ.ڪ[' ,dZ 7gSISZ$&}LhcIP%{/nqy?تip(#ȁ#eoq!D+6񤈵 'ž%AtO RS Nz9 *]MZ O .mCEђ DBRHQ˥91,О_&?# $U An/+m$<Q}}a}/,KPDٜDϟ$z(arɢkme;UGW6|P m:JeD]&: i?E#&*ڕ*)*x5[v`)ɠֵ=_є< 1n6yu_o6kGC30rknBKX#ϝZ*܂&# 6>An7^*JފUc _0yp䂤J$Zq!ʹSK7v/61S5K "6+U=4>3z[ J޸ Zx!MoJ=!qIHM|ʤ-d_ Jv/vR(g`RW5n#.^"-@],̗dFh}0tVg?AraќiGŌ,MN;DauAdH[`j*TJhF9 &UlШn֭ЎW 1M'{3;4hUi5456~ ^@^<o;$^4:AlA:^@ä m1J z P٬ɉZ,3r31:!j,p*5_O&/-ٮ'EJ=6n^q<z1x y0idM܀;s9aC9ɱ>55:} ћ;QM9pD-6gUAEa(XeL>s@u/]՜9`"C(CٞrBsyp\J&LK,aŭ?iU%T)49RhHQ_!GU ;,|5x;q 8dn{A1h. ,brKg4(f1( sj!{{m$8jnJ! ͕W\ ,6̈́2Kq sgQ, r#7&8`5T6O"( fҨ "`)&BTG0yC 5Dld)m;ÉTt-SDA? `59f5z%^3WAҊ yG^>^I4Ұ, 1ۃp)Î$Ze D])=.&urluD)^N\!hHp'uC~>+&4FU:3HRbl2+? }[:8+=} &L !,/cH#c+guV2 ]ti 솚>D)SO4%z"zFuLW/D#/U>!!.lNhhM@!ҕsrx{=gH?&iErn0.NF]pz'qR]2z؉:ĵ#_=qR:-O'DրE"72l@-r{ lWzD#j|CDwhT + 0il,tmHIJ07yZNl4,f$X_I/B*ZA/kj0pMN. M LwLcLy0Qj݆^^[Bx31#nOĀ&!}IݯB3q,y&R`Ov$m9*ݍ_ ;e a V:YάzCvGxۂ;7 C"!\KBWB'dZwFKS#-PKK?I]%5] t d 퓋i=N~tG^6,O^+%U1kB$U("A ,er sS*87tP2YMOaa!U#a:")AK&%f'2`"Sf,w!]EC@m(8dK4s(@w z ůS~"*ƊJ'cmEE4rVI!w r7ĬLmҠMՒTA)>cg)^ġ9T4-]$<4 Th  eQE< vn蔱~PEܰdfY\nߛe>+p~Mb7cB!jm' Q]c(Q8R[^rixǑcvjUB/JUl8ญZaCd)̓0f c#ƻ=U̶JVM:>Ou/>KĚeӳBOyB[+  ꉈ!:A[@$aFW<`31d);6ʔmKCf3PU"Ѣٕh 5<+3{K`4.зA U9#n3ZIS%ͼ5 3@PȰVNt;kq|U^POy k${a\|RhfIK`%p&R>$Pd i1U05GM}PDz1UdE4䬃ENUZ82* n HxhC9(-EBFYȁBNPP!I}c)˹ZtM.W<ݳ2w9Y4QXK3Q[czJ] &);jȋҤ$CaҭD> 2a޼SN~:bIۧeX&RVRA **_B3ТMZ 1h]DY*n*mQD?f=YJ6LhpPZ(ۖ Rѥ_h|^=I@F`zC>~{9dQSrN\ޛpuX?ٱSw)5MLɵyřEhP03ĸ>rQ@"^5Q8TՑdR%dZΞ=S؉{RP#5ɓS%)צ2`J\*5tYĘ*Ç:1(bj:-[E2PlD7C3W=;&bc0D$g#Ie*K:Gni eGUL'.Gzѷ(EEHh{<i=&ŴFMW8UN]f&-X0О(ɼ׮.ٓ%̔, #Ez I+}1z&לARSߋS"ZS‡~:\ԫ탳w&\L<Ѹ/NL6NT{b/Z 6"Z\֐V4hCVe _&!NMʈ7Ežn }=%Ӑ%8.62]W頽AwǢEC"YS&̦РZiMz,}%G7h!ISv߲}W釡Bгp̓*+&Ի%hhQ 6/TGjDn᱄a}%Ƒ뎡.~iq=S^ *Mw$  )칣҃qwաQhJ-Z_"֨3%, O,036Br>|[XB.WIwI?t*kL&ط;C@qEoԒI*fȑsSSy6x,>3 6hI9 W޶CB0AE6un$G+IFaicSK o:3yҤ 9w0݉rivY;ANMRF~Qn"}S)$y5 mr7'S"PKbZZK\"S luUo YUƙj1mil50}u,ccNDwUS"O uFX\J4yʜS逕hӀX#k{mV^sޖt3Pt"6 *3D` Adcop5UU$jShwé@)YL *:yI|Mfd -G3U=`ȄDxgm b]a\vb ĸ "fF%d8Nr B3,5wg0sR 6E:Ltrm,]VstW28j* kq|Q֒ ҇a+:݅#f 0vkBVUtmp Y6A= :}UL+['+AdOdE,lɾ32B1T7!vШlk`԰MUl[\vM*?`2#[f1HK  4 ^8nb0n]q\NK|JCU AajDvByb-lƾ%eg~|VT5"c|F!M%mW &>IEڟ^a%4ok&XNXw IX9wOOqXc5dġ@Ɖ8+- n){\5hRC^2iy{x@\}p:P,~t|OaMtpZd^QSlxPV>LH>s' )'O rm%$fs6z;eVX'rIэ"XWts%H2#^ )vFsPV)]!Ml)8tfώ`ޯ4$jdC^%c%vṘOdZCXL7*e'h8sRm,qPg*zgP$ɴsƤ9S)3FdLhD툢ON `= ,q;xG)%*6dqCN9z|b*tI,f9t(ɧŐB?$ qkS D /S3 s59(}Ȳ04FLS& /˅9 6Y͊T{ %%R#BIG= vHT2ؾڎ#iz@t8r6?o0 Y>y$XɎ6r8i"R9y5+D;u(C#JzS,B'1$MtY)t5?>TN͎wÜsxW^+_`D4mS-8(IpE2$Jd+ш)гnqVnU|+tdCX62"ychQg{Q+݈/Ys8Q=n4#$ѩDOR8:'f(^ήBRuGa \rҏ [QE##L[Gr:RyS ]rt 3 8ԼOc erV)YH:CZ:jǫS3J\ "Kr:ӷE8Ǯ-3gZ)!%q*$B+Rz0ϝURɮ?R:1G!> ք棦]*?_rȽa!8bZt3:ɻH&-6M YS*D)ylۓcvB*Zְ̺,E a5m1v3}p ٝ7TmF&ZR }?`Ȇq^KHT7uQi&TiڿշW)1䍂L@Ȓ6TGnQ}6XIW@i%.nz8E81PbDtd:H%DGmHDr'$;m1o y wӡOF1ڎYp]]evK#ށ =bM'A~m 5tG}IOnfH Zp!Wdr9!Ewö2 1Y *lcfP \WV.woRճ eJI"mX'&쵠t6kS`4?p(5%s%χ7 zw )rQ'<]'W, SYZ_¯>pZٚ{lg<, JS5P."x{Vt2I/T tH+B&[2fXY͇%-G͋Qv :ZB5nH%H,%fL:ŝL3X5IQ?q^$/̘Os7b)+R_@5TC DžSS^d]UA%<4{D<:!`ZA4i*h)6ߌ1H(i-_@3|B53wXKlLtkaH|Tݟ]O}둤5pˊ"L҆y4#xh{0K.OS()jaK {ܻDd_P_p(د"pM\EX]di1q7A‹PvI^&y8˶|Z>neuY熁"qPKF^-O'=Wڣk쀰Zao ~ϓGkܜϬXTW lGqRM͋&(dHgj'Ei4ʄ^d~N|Cih|T.VWDZ[&j0yB|^[bGׯ/&xY=Y0Wi:bbExpHd#UH03* yfOIy4Iؘk ǾJe!T˯Ky "j4dj7:LL IzɷjtoɲiTGh&1:;@2*~;C@B!'-4rTVn!.V1;<3e}ptN مA; y,BeU|!TjI e%>=H4x.uFD>d,1OG?Yʇ yeCCo 1Bh09M.Ĝe[V(l˖jS H`įp +zI-5mtC^`zntrCv$huU ]tW sRnJMKT?_5r|3sGj @\2UYܔ7`fi ܇%:iKgwCtR`H֧50nK:Jra)]f%xv@t!b]fCbr~u9ZOwCk`c tʝ\rh7]g)2c58-#y@Q^@&UHu`OQ/i 7fQ)/Kw B'pL:=GCIej~~"c3߰T7^9OG4 >ʦT{ tU?r/J|( 3ٻ]? r&Rt) ߭5ٓTLȞjwq@c?ZX [G}4%բE*L<PjM$TmE E-ވRkBʾ>--HGh_q.6A,%Kan]pea .K9%yYXdUP">'`Τ4G\#?i uu4^=LpQ1f&U~Iǐˢ䐂<[:Ov,j5ih#TxZK6q޷JMUc4/"SׇKa\7\#UE'%שl] -z`Yqɽ x,ʚ`4 DgoH ʑj#r\6<[fGSgyH"JbL 80{33 9iP ?pzk=Bտv1D6Z\6n3exCxO=g?O5PN?r}gr!"řa|3#g]Ӭs<hPž~ӈAǁїvf[vkE#(so1aSJ+uG!Ma57Hqx=VLG)>{Kh_ [R4 3jӏ4l`Pŕ+FC|GrȨɪ"b :sLݡl"*u&!%.Hn/hPsI{ (LGRFBU"#>O!_?x>"Yɾ)h{s#9lczv:~nI"E{*^F/0aS)|.ʄ3AܲJݑ[2 C@Zo E\#oCf -;2}"<K8. Yp=] Y.M?(R*h7ԩri/sЩ}Tpff`}^"FR"א|-R&zyJUuZe&8ii7c}Yk2ܪ+q0| f7H|W)`stH9 TKϮq6t`WԹa+'phIZ%RF,>G{+h1˗LZ&IG.0Etj&8 ?,aͽs"T[Fˀ-;Nsa"d2!#nVBR |Oȵ1hTPD-Ԛ܆)K1:f]ֱbO82LC:8ԧQ>C(Jgh wkѕ~"Ug t`Sy/tB7BX~'J1⢄`P³+ۚ*M"oMI J0(bx_Uxd5(҃hMj=l|paT@-hz'PN`HLx[SDtjM,Y3wI -G J~mc ;(K炡"!@Lé 2TG|^\[)R朆UUA<5ɇ) ^ P?d=;SRs3MxHBg#)yŔ`Z=i;:0(?c&l>H苸E3j8ӗ*#J7FQNCbC~&,Gz&PBl*\CtOE63R[T%:Zd^:CE.E%)WC hLOl +H1}0g Faf&n,7wCPU-.(0_CF\plViME6J ܤfXUJr50.$Xc #圏®Mx-;wmqo dQdp^3 \S @Xu!/Ig'#Ff?n(G{A*uۋ\Ť6dfn(Ǔdp#5kdszF8Pޠ xت`ӄa4R/r5" Zٖ(~zϏM,1G`,k09,oK g患trO;(+*fnFrw !k[%w9s/`3Z8+jf -ZeMJ#:@<#2y#f@rULE:cY}ҖoYRzΉvЎhn=̂sD9wT:Nِڭϩ#{{^eRi%T1C+ڦ0IQ xZ=">:(a6r]Kb @fj'KPmϛ 'HOC ))QϹJ(zˇcp5'cCy|`,^>d&=3&#xhL@,`_9P[R5(tla惘Iw cLbjth豯rd s3 /D %#.Sז#JIC+8TA5#9\86{75[JN[?sGyŦcQݡ }I@E2^鷁ER\Sƭ}k;DnpN\V΀d?|ĉ;Z(N蒃+Mr%>ioK!R)4eg>${F=7) a(` 4y^M *"Qg,hLB" ;>~r͉hP%0%Ƈ1?6'M,aq49%5"$$֞&dDp#+Alx mL8=ڬRI5*"BRE ؋;(okĪSPC*x޵>F!Φ- gU Tt\7j 7-\~P3:`7 < [' n:f@4-j`?t)&iυUǭ`'HSHәM%y,M課ҩa Zʊ+)70:D>붮th$~&Qb~=-D5AS)0)O&"o"ϒT%T1|Jp+s!ET, cDN}t*6&*6zr\$j& ^Yog@H?p< Men:*'U={R?M0&g߈|ߒr#4q0IʰZ)w$(Jbʩ Ya1]8,`]vVjk#w}]s?}x]c2ϣ43 &Te;o*~ѱ)Ee 0ʸ `:rl{d9kߩlz3Tq($jg?g44[\XhV: )E8C5ZqmG@L)jY:ɫ#NwTqG4 /6Doc3fUŸE^oz*OjS-4ې0 2 ufÆF *Ϊ-&ꇜ#L LmAko 7GHYBK Dhl\<UN_|½5Ɯ嘠7#ZW%*yW/GhXм|<4|_؂_f9ZjiMVly*_  Qv73ȹ' '^hRiWgӐ:z^G *%;v?sGl)%~?$Vz  bYDf|d,"_UТ^!Kuo24wd&>N.dMX?$"5}S͒`^J=,2h@Ew[w|-u++1~E5LTMҐѯ_o~?lb`߿_~ ӯy#삕t"diϯ endstream endobj 196 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 180 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig-contrived-5b-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 197 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 198 0 R/F3 199 0 R>> /ExtGState << /GS1 200 0 R /GS257 201 0 R /GS258 202 0 R /GS259 203 0 R >>/ColorSpace << /sRGB 204 0 R >>>> /Length 53931 /Filter /FlateDecode >> stream xM-Ir.u|l ЂRKh挦'<}'Rrunnnn?#|~?>Oo]}׹QfǯS_~Ͼo}}}2mǯ7E?>z^G6yu}?c<_"藿}H[i|q(e~}<W/8=:__X1ܤrd9e9yowz}s ߋ {K7=֎}}#/{߸_r+~%9/} '|^q _c9|}ϹR/}}o_yGk;/jϾ4?y[u~Y-ڝ?>}x-?9)?~1x.sD|V [K>|N'f' d=40aϏo#E6Ca+0{[6,6lX+0c<Bõ۰i5dCﳉ1/Fl1F~ pdw<9?{gp&{|ean\[>fl12kgi1xn6{Ú1ܸ6c.x?g7~dkpۘ۶Tm WωYKxM>op6.:mρd?ncq?O66Neׯ߰3qe}N`Nrmv2yϘvظy}`c])2OiWXxfl'gI,W/\&,Viɏch݈r._uyXnM3vBͷ،xgܦ؍'Y<86 ݠY0Pp,M~4۴܋g~>\[o\v⬎y?_Hv,α9 iôu3/w3yf1ˏp=Ž!gaYg {s~=\?،3{\a'c`߿<^9;u\xrfS{C7.q ̆-vi)nd66R܂Q|?Cqˮ*BaC7b g3x aڂǘßۯRq}v^>vdO}ǰ~m xpgĆϑ av ;RІU{ ݊Nj{Av;]vͲk c:9s;ǁ{.<Ʋ yMޚ_ƪ˷/y{!OTD{aKGL`K;?%- lbCTO[*X-, VU`K|ف-eĨ5%-eLM`K&5 R l)þan-kCl'Ty[ RM?aK5-ي//li!qqq[–|1[ZX--k`K [r# G %ơ-1 liJ 4 –glit4`Q[(-li`ă>%V- lL"D*N0R's%`<Ėv`K /%%)-U*^J`KR`KY`KR`K [RRaRa,Ra,Ra,Ra,–[e`K[뽰%^/l {[2s_w%RNq?`KUkyViz`KX/-m6[\/-1]v%>aK-1<Sf[by%ƙ[Z--~lir4[-M-–pXx`K4x4h_[Ke}—0,cY1m6}@Lg@LE@LK5 &fbb- &11э ia' ŐbOi1'4 2b"6& BLh!I| <  Dii@[gh  XGi#D& &:01uBLLL[@LY@LkS Ը615 BLkS ( '7 JS%B£\.TmTH!@1( G@L4 !C8 hNb4I3AsLVY9lI tR<4-zCHz!K"'K R1^r|> \xH8/xJ_ -˸WeF|isr;SnM.W¿.=M O[|P#r3w#O¿s;4w#NDv߉HOoSd܉:W=aƇ+x]`{ WkMoēGf`g% 쭈''ň'㻈?|qSt>&7fq}wf|qk>W&OWpoA|s~N7nU~^7nV~nە~7_ |q|I\ܵX߸o5T;W׃6G+~W/|| q[]o5ƍo~q+߹?s3xv.&w;R/G /~E~br>_Xŝzx?G_ps n! GzyqN&&?a~QvK9;/n3Ë+fO~+E>ʗs^m3/]/ߋ%%#=HELO?gR;HK%Hi$qEw3")ԊC:4l9IKfKp/Wiޑwg2 QL]$u# 4ݤF2Hw8]H#a# ߙgaK$H 0Kq` Z $ J , :ĶQBL, JL(!, xDyOTݰ59QD" V{-vC&#YWTR6KC?'y½J|0{8~̾ ̎z}f1D> t+v⩷Yah g#6!/l%E,]ջUׅf->NV3M2_>#Wiώ'@-({縟0`܋h➉+060M ~_U69R +㿌ߗ\5ݯa0}>x>lSw=ܺM, qe,H_jVsʐj g9<-'-Zp, y_8CNg~/4LsC@=VNJm}3,/APV:L!v}r+F5]oZv޿bT8*@ޗ͊{*5S@0<š9K谥e)Cxkԗ:۷[-Oz4TUfVSoSR ;2W3mPcYx#TF^q#{F8~Ա p(q~-܃ܳ&pG,\zp) -i~_٫ӂ$wiɕJM@= tGD~"yH`0*Bg+b{< $vp'r EɸMFh0w_ߑngdYK9cM2fr䯘^#Л1ԡjD4q%2(b 8)zk}w6] Vl'8ym:OfD("ݷ.`.B2+n|"D#{/8l~xJ,IJ3;q]:hSW7 2HTv UD&yj7 Lv؂>GTj}4:!]M %^IP?ixe% #}Jfe&ލ0>'sٲXui#tT44'3Rg)E` Pd r-)$(w/P'jʲ\;^82wd%)/鬶o61 PpA"I.[AY+cܴn}᥯溉h`4Ԑ޻5mpv$UQzO4(B1UjE0R-Iő& fnY٦UR6/}"wY=}=J3N HS@6 +kNitum+|!.I3*lT#}46ؔ!f|ǷDl{CZפ'NCq $gAe|!1U`OmDojo,h-)67 eh!N\ȍQT|Zz}oO4ЪM|ҍR~tk:fC-(()"& }_.(6S05+nrKb[l8A'g"FlR ꄀYP( >.zw= $O9/jë '޶wޖ(5DP/~lx8i ݌{uKNK9o i` wiHÖ g/8n@ER0'(8UN@$/>1 *H\+qBy+V,vk's[9)S[}so`äʫ` xR3L>`yYkLz)7ed3HC1^{^{kK?R`İ R /si!K]dă 6&xE7; ^ t.rS=\ J@ 3i4*W*$$᧢Ԇ,,ۀjьI~Z?PČe2T[);wѪ\y-m[Q0'*RӪ.[( \ؾC0]U=QR֠fȜ%bZ$R>u` E;ot[MfR3AۮsE鍶*=A[ZL6BKzT7KSUfK)f% ^pm;4qc)d&J"4t&҆B yo<b=N}n,r_a*Pi*ʚHV[( S ҷߊM?)8*ө(/_|ele-ڗ %1`}jY *LG =mWT&\M5يH!S׺w!-qǍDIж xaP7*UfU7 tSI^X"(0ע~ZYA~.ð7U! %3hI~_8-P'ʆ=eqEM, f"VW4ՒtRҒ7h -)@h32IyhQT awv#6Tr~RKK#YLUhed up{Υ>qlҶȠQFO^UKKJ.)M[a\p*jE Xjb ?Z|Z5Xd?uDNR++&.5+ -]_]aG'Kt{M#T΄86viE!vUՔ"Iݷk!>WZ2 odZc5µV}NwC 筲kTXif6q3)j-V4,dU[%D!UbPչm0$sQ薨)%J?,ߘTCQr@EU@ n7OFNޒPPFp**%$pEǪ = nnʽtTJ7;Z 8`[4 G3D}P>bӦ,q$4(#ul>[ELh| ˬ|8Nޯ ),Y_O(hR-- 0I:k!Edȸ.ggwkڿW\7) $eK܂!QZKa;*kC6VFX6hFHؚ?$KL^ާMz<n įyEBfj>ba]>K7@VUC.i\vhqe1Ig$K(\ UF}: mLh**)#lSj0S0z()SM-stv0CJXr]R?sm0+$l@/+ޞڄפW[6kM/rJP8L0T6nm_#RSIBHUjaWTAI'ѢNbY#nkO 6K?"{ym+D>J+EQ$"ْ=e4֣IU1 ͼ&N 9$|$۝`l!N17(21@4Q"9_]LFVj[ƞPR)wzM7r(^:hWSA+szm)=^ehKRDV%i:-BK<: %͉ R=85/- ܯ#DR6 Wxµ% AJhA)/Dc'Y,QR,^dr䯧qa-6,?q#SU 3U% q@w-]`#LZ=q1NiJ`"`Rx0SJF(%&([lMp8uQ^)>K[uz*VhiURNFy*vԶ$ȶ F;RpI.HPwUM q3^*&곓"08SJ8~L^MUaOPCCwQSYx Ț][^ʄJ7O*51ĠS^"qod"ħY,Gy nXЬsh|8RzGIB4FH\lS/ʵ:kA&"'z+ɪCtUjRF@F"Oب$Nn!TNy7CcG㮨MƔ,N5 I._(Eo{+f8u r-ZtԤd2h/ KMɜ9)XGZKr~(@E- ;AA{[EP/J,0IҳrQTtc)Jˉ-(P+=-Kh|9Ygg{ZNGKQeJ+DXS `S57;U7]*s3vN( u굩HA572/ q6mjX!2& 7&!Nf5NAmOZmPSc*sK}on%* " %[믖J_ȺQq5E KD.*_;ʭE@F^%Ԫ,LA߬9@(Ke}(9D;"՜sVpr%"|kܑ׭FvLҍCR?ZYvȨ\F\uEKfn]"qQv|Bٱ T2:%FvNAk߀PnnTPzdނ?lY"}a`RefڢyVu hY? ڠH%7= ee4t>ς֭'̵Vr[R?UR^a"a)gۿ &8;UBT^*[lI{ ZIhizq4t؍p6gD;=; V1LxelUύ vwreSWBkQ,MD[!$J*T}`TKyV`3#G}Gy4e4pc)Ӧ%VԑCmp :N_ȒtxSJᮻ7S-)E;3V TyuJLH^d[hO!ʍ 4( -ID6r *Jh#e.L&ΟeJDm5>tbRa=v_LZrè0e#"_+߆' i.:_UӳaRx ;;UI]/cag. L#C[8bm H$Q^"9@Nj6P!-u,C6 (bJQFw0'! F)vhPo9Tl=j/$!i4 }Ru+PF`,Y`V=p{5S*鲛m i|Q}dT^k~A1zQq. &eQiQ\ Vq<ⲴP&5N"LAqv>y95+)YO#~XI/}ڨPH2"#P"wQSE֦ ;;z| Tu)RAZQ_W*1gî$NMZyZdm%U'bpW>\uc E"A05v#[=@ZxY͵K pEkJ)M@S9k*mĜ$4Eܮm/hXP!|jkB%b.oE>^[*-A􏻰$f (`ш9w%B~U!pn+P&]^Ucwc~"#܍>EəƋ6{Wť(&[K58I%2 o1("N'%2 e (NN!:R硠bUI44X*Tpr|VuI)ZZy'6f|_Xv j]5Mi*(Ua7H-Yq(7_L&EQ&O>{)ҩ<rzI( Q|&mۡj)YaJx- omzW%·$#]a|569΢V}. J)y~L b£6#71L bJueYG'gMaD`$76P h|VvJR{y917k2~^vPsB&o.eB-CVꚱӵcoRdyd_1S(5PEk͈ŸPa/@S ިVz;DAq̾z].V@5)1Aa]&{&TAd_ᦔc3Ee;4뾨g bRtȟmW R̩V4~m9~XL"5^Cvl9z4Rnd,X:gnRwKDp$a=ӓ݈:,[H(|g.B\C|xU -Wk,˲D( ;Q\I!XG i߬Il"n"3ûoimHQMx@xi)%ZXƛ P{U6un5dmQtH%*<[**vƪlL2pVfwlg)xp% n!n!w'"7Iм?r@_T&˾9!T0GdE,IF`S x[mU#MQBlbKU~ w#S_l/8M6AՇNRt8jekE)[=1)=a< !=nUoԿ쐣~HT`uY7L҂rzאr,#SMg-)GT n^Q|[;Ě{U\QHUS1j6dE Ç"dgu n 2R,6Q+$`W+Ql+$_5aK@WQ)))K`^ծx _ec>pPO(Hl%(+rPz0EjZ): D|%ⅽ{8'L-3gWp ȊTƭ0Akv^,Y@;U  %q CP2lcu"ZDyA| H9UH"U~ni`%9E_=M]nj 85Mm`@oѳXDƵBҪtg q,/`pPzU = V eK Zed'RUkrZYU}b&h;֛+nNV=z,˞kމ/muh>2W/^Ew6P)Ao1(*HR5w_(}|ѤdB5Kgn TBndzT&ES1ȳ)>u Ԭ;cJKof%}$'^2=cIVWv֟@ՆTC{<Çp[dPwf=?φbJXOpXם;y3ýK ڥm'wWa`VJuŽ]0l7?~_?>oIguG/>÷ dI%썔LwgOE>w?}9?+ɜ<>=??pտos_?0}c+Ry_T?|_-(ͩ_OV;8ǏW/<\/8~EmخA _w/u+WMwWŬfx)?/yqM_ O?[s}[,,㳮9Q|XBs\@y ~r::1LWӁXS:?Rz dO:K't5*^mcޞA/T|>/c'7yds4O>mmLi k@}ٕ1~, *{ܿ/_T6J=7 c>h>_q)8p0<9hc>!&O̡a‰5`>'}9ہyVsɛAx4pЧ( ʃ9Wܿ|LH>96?gR̃rP*g$&E|%Ƥ` jq꡾\#(+,=wΧ<1}';瓅s>\; 0;bN|CY/f|>6d;s#ϝi{1so\$!wfm]|n*z3|5|6F8%&$ᢍѺ\?y ׾8}>zϚ@ ic*>G2+i >tYbYIu Ys1i XEV3Js|l+Fa7QO6Ε3̐<ɕ)\9l+3ʕYRY3O!b>mC|/Wgq̧iMzgiqgad!`<b> 3)Yϭp> op> C$Y#{v9[8~.j-Caf|L=Χ)zg*竃.B|j`\8^1|64l(FșiJ 0D{ g3ո?泡+:j1+93糍?(?|c>E.811]9P'0DY0泣lN @NL\l1>9r|R#b6qg糣G96N9R9@ʉI}F?8m9q>Gc>o0^b>xis> 9̹CH # $b61uqc>'zW%!c11ls>gc>`>'*ڡmch`4:|K`ILI._ZOjS\ 'YM c>ٽ fƎQ"}k|.Є#|.w|ET55C 72υ8VTv!jC cn)$G 1|v$M#Ž6 QR|Nlq=s/Х&sY&sҎQ{?d}>m<0P͙cb}>ȶkxO\?9hP͞'_&69 g#k0 gAgыrs,8v}r 91ip>sc>Yc>32gip> B3lq?}2bt,p=d:3:糠Sb|Jwwa<)QUԑ1,8sJ9e1COމQ{?lOcSWJ c>+Vq>+éq>+ڣBcYIFoOSY!2uJz.g/~Ew.u퀲N5,B];,B]B?A]ٻu9'kԵ ꢩ;PM݁hԵ"Ե"Ե"P`@]) OPB@]u'@]_@].BUoPzOPD&@]&uMr^'~~&hESvꊌ`@]uD'kr5\o/ ua.ԅ^P(B]^@]T..cuyzlLESu.OP彠.@y/ P >'En:vccccccc1i:PM' "tw.Bw"tw.@w/k:PטPW8u5_@]PWհհհ@ 9P{?^PW@] $OPs h@]kqLI @]qLkuA]p .tt:P:PtBK + +ԵDŽ- ua=.ԅ}jV @]>*8u:B]Eǁ Ɂ + + +{A]/  "Tw.Bu|A]X/ | |PWS@]^:uePצ ks@]o ?^Pԅu|xA]E(@]_u-Z ~.Ե@] 聺H8P /.R!P_@]9.ԵԵ| 'k ;PFԈùu;P j Ubt.?A]&uM@]JTuPW@uP|9Pn?A]u w@]Nk8Pu4PW@u w@]P|58u1:Pu w@]RTuTPu ֏.:;s}9u1;PWH8PW:uuw@]Pu1>;PW|Ǹrk|8*<57>o hEd/g>+swOq?/h2^zho륽҂ =Pku~^yX~`x ɳZznot{ϝq>'7Gx9:syta 6yx<vIOyG9;cb;&R KzKͤM~KR?汗ұq21co{N{c ~v6#Rq7GW;?/R^Sy|Lj_mF\ߋT_ qK7Ww'7?<OL>SL=#^~ ?kOj.*gjQ}# + 3FqC K PɠH=X/_u!>zqfZAjǡ^0~< ƗQ?S;Nx81_rڜ?6o[<9Ox=m?is1O, < m?'%p&%IAJLJzfw]h<6kO//^_x^^_x^_x^_#P#_P#Ph_Z6Qso8]#Q5QO#k*ks"/D>(‘/ *q*7ՠv?7U(YWNɇU}Q1/j9E=?/z *;5𤞓j|!'؂?C~5-Jl_dEІ{ S]#ڰ~O>1fsO !FN n v0_ݙ_|v|8/g~Oß:x'_OIM:(>M/7?#tO9) ,?UړpS'DσO-H;|( f:R ">| 2 #,0~:|?_&JO3^f RSz~1K"gr4q>|T7w0<˄Q2ů̦Opo&RDBƠN Z{_v!6`(>|V`kn3va,-jt0Au8Fo@}eqY6]D|me/" ;ȈMdn(pe|hȘ'L-]3d#!,F,Jw/mo^8B#9km/ ^PAp]iZ2݅~-3WuܲQ3 i)yR4dAfUdS\փT/=7aCKȾ\RؼpfAh;h|Hٛw6DUTo>Kuw'$ y0D*Il4h)~M)=[i瞧!/Ŗ3z[u,h6^2Xe{5ݭg '@M`O!w < U˝ЭZVJbsV`;*5\ [an-T]K8[вQ?S3d S6{TD)+Ӿjw!RotoBu("URY THC:ےt1eZ" 2轝`a&KbuW>5^E@?'"nʪ|'4ꞔh?)'1_@EIHV%3!OKb]674>/spn!iJ!3B,>y 0׼}R} ѪMV Þh˂{a"[TuPVhaP5&/ 46e gmr^TS{}-Z᭽m2 ".+Y\ Må{U>[pں7͛s >5eIVpY*H{oZS~['Ļ98 Y J=?Ο)&DG/=$,M)ELX/]/yoS9rD}jI1w`QZ3?pVNaMGnȽ̞ RK=B~;aE2`Qm*ի"aį\Q$>`ya?3{@)wY::3Ync*zy7 ҷ L CȢݗՁn$KWQ} ''C.@5H5}cbۼ{n)"##igX?G$:^TNw.{ !7b ^ F^M)r)bgZX\p&]ٚy ,uJjeO>ٍlW|(."t̠վR WMפ)FS~8"?Q@W{<ޫ3UM<7e2ءZz -LTT3m)K Q{grl}8 L“tl7R6iP}jy:w"p0%bW߉ܧ=D*&ҕ^/N$I8;[}Fm;s J*sNЦΆ Tʣ bo2BQV.-IF蛶sitmlat%zER g?&`b;c^79f[ xVeW4:jpj4** 7\*Q~MfҽJ !O?AzSFڸ${@X(Y:[U# 0!>eOU ؂'M=6ǣD]0D02T'I$VaiW˒; X|Πgկ*tTwa/՞"[C(씹ܓһ!af iS>9J%T8=- Y]Go($!.t$˴c[Q1,Dj>Lמ{6u(★+bX( q4b$X=a3ʶjUf KlL;֞75J=W &8t/PqDqJmX*k$IW+䬝"g;{Sv-\ +ymF. ,N5#+%i+z-/nb!X!;,&Ӕ0@Hj+j1Y<WٯcFK %o{]gQg ^Ԉ(aےJ)YmbՅ>or|*N)To8 -Hs9.E)ѼϔPY闡|5x;+Aḷc (p}Vޣ5RU|„o032Nv~S?yzX M K _zdG#L)6dWәU/wu9f"P K8]ne5/!q"(K(!!#C9T5if UB̼xS,!ԭ,C)Ԝ/֔չQeJ(K)óR)z$(0yIA&/^uX,U ԚH%͎BõQVlR0LP g\KDR~eU?:*(omTT]Ur\-[lԤеRe(vL7:҆\[ ,kATއxYHo5m=P\IH'? 2Iܮbʻʖcy,[[06uV,qJQJjOgff:O <V*d?.tOL[5$18CNu׳](R[U>2`_B : 3+ypI,,=b<'J6SQQܘ1#t8-iN$$b7(qneUƞ)qzm@I,n/p<H;Rڥ}R qݟݕU+9tEhPujcD󬊔J)K٭lq@#z :\sʌUn/傾ALWN%Ylz,URƴW?ū68$8#Z:CV53UJ.̬>ɪr\. j,l T"{բ8l;%ox=/YPӨQuѽUn|^`<V !A$KV*itRTN?r֣a/Ln$- vQ_([G#7>^5uĒ, wQVX^7|BV7%IVb!fF-N~A47[gKshJ ^^prP~JTTkT!٤ڒ XI^ҽ':]Pq*(سV^+ZI.+ 3{aw' &Zjw>`xJnŮ^IRth?V§ϪJ%⊪~JfUDy֫(ȿ)Jӧ@%HUN^DGQ U֨hܦ=MNg_&i[ 8Qhfd=:tb9>ij"UqnV- ?eXAi{~/4^A{%}W2Q*8?[iNk=ҝc+[{WVqāEFmYК`.U-bE2U <{:.hLRqhn&eDU-ܢ@PA+h>N;" l6NOYhN!]!}8(7$ejUo!sZRU3 JM%* }ORWkMqkD@>OV&q|R،\+K6 ~rR{ӊ^%ZQXUan(F <(پϕ. CqIj2R߲I;ֈHOr>e`2BAǜҔ>[ 5jVCUU(1e6۞^Eըӆn} (4Y1gtSiLb-ir-oͨ^M}@W;צljARjP=K)5I`pi:LZ%A.D.. $E7Sv}Hp%KɵTjTddP8_늂a%MM./poZ %&^xN;,12˂~WkIi@Q?HZF Nx`%n \=!yER|Y\&7rU 1:vrwV*銾d_d zV 6ɏ<ݻWYJR}p $ćBԲKL;TrbOBD*t~lYeH.hH凗*qa﨔)(JY:SD<:2ktxNå8څ^.e~p˒gnUR, 6ˈE l tޥ43곕Ƒ7|MԵ~gFDGX!TQ{)I߲9,_by{V89y?[M ZŃB)Œbx<}A;{KWɯIQE:uIW"}V|!:*arS-Օ>kOg(N%X/ 2ѰSe㞽l(1q.Mp)QR$IVmYӐ)7f,%9SfVPɂtl}[邩Ӥ<ݶE;,bN6)>Cp+.Rwv唂ۥTIkr-@SRmx=CJI_30GNrӶrQW.DK?UܽHzW[ eUT]F+Ir(ľc;.bKvFvv+dS~7m蔴doU%a=.Pi)}D8oGK /M4 w?A~DoMF̓Mc$:ET{,l E d4w6\M UYѴ7᧡ f4xE{4}Nl}hz&Qm&M't%FfPv&M{tDS"g5 n4OQ4FMR?f~=Gx4==zݠ){/\_Hɢi`&p}~&t|eCH@388h"62;lZMDRR?קc\%?~D5Q́mRF^p7Q6Upϟ ~5oyþZE=u4G}/ҧ ΆrY#}ooJ ~u_kf}݌7|N-OLo|5OgI\y}zw~=+cw~{?@HIݟ뽯&/i}4$xu5WL+5/?k 9qz"Ɵ_pQK_yk|CO?|?5>s9s]k{uȪQo~?Z<>]wTWtmyVruXcnM5F(|+mֲ>e7a"{rg=uX[oXXڔxpkdr-4);iCJ^j69E} 4lL <'wgxOs CW7upSG6Jkv?@}N_#k?z(@`~G;H;':ȸk ̯yy*>ip~'g6s;YGW/ml(swncKR,01Jir~)p&w(x旀UmneB5xوxgܿy~ya{ ]Ty緧aa~{*q_O\)<-̯7#>]v;8x!:ǠEXZV2,xޥW&I _0@ǴZHtQ#@SHoy3,jp{Х/O2߯x_8lo'>|N=zc%1B00 c~IC phI؈~:ŧ`C#B7Yi5$*r[F E1FhR͡1^~^ q~SeĘ|oY99y}w \1^OoEWΜ Ɲc'goAΜZcGӽ:yoEe' |}f(`~7tP x ~>淥x>A go+GQgr<}oQ|>5G.gct#haw/өp~fW9v^Rc~ $uм0 @ g@o'UhRP̅kPOo|o!U5 Dʹf>_ctH`ghw$$*wm.^1 GP}Řgx>w@#>Gd!dȇ%'WD\939}'اr~g߇8")JxR6f觍'Q<0:''b@0^1Npkr_ աe젲كq~3Q|>w!ؾE̍z5z>;wMtߵBvG֮] tIØ,#F;ǛhFag@7c~#sفݣQBh;w( W;Վ45 sx"H0^icDƨO G3@r<#3ۘox_#wGwwtT"c}A<\L2f4 D ab2d1 `~38 7]{5f J}1=1"l` k ظn-P430X'緀'tF``c~YC6>5̯e'`xs[O<8>[:Ǜkߊ818rJ ڋh;PWzPW9PW˵|?PWsTށ R!*'DŽ`O 䁺fPkn u@];/B]uUBuU瀺*s@]$Zr~uUo@]#.Ui?ꪜ߀*0ԅ}.ua~kua~k:Pu^E@]j#PP@]=Pf@[!T.ua>kE ?PSb*@]3.Əܟu1^kVCPPXʍq-ߛvyM{|_97K3_[|NZzGB$؃h=b=ZDxOģ~g?:b[xm<u 8x9 = 4sO h>lp${SRᎽq/F>`Þ~}.xHm:?s?ďO*?I-?J?RW>RyD/F#1'_i[Ÿiij_jŸjăjύH}HE5RL]¿yRgT)SH?SPG*RO5l v">+gÕ`˕bP/^ߏ?_ߏ_E

8OYȷ0|0;|'| N7juZܟ5;QAzGG>,/cɧM&Dm⼟|d~`?|}Gҕ,,m)}a~|(% >A߀#<||H;|RK0;| coLjҭkDiW9+=t泃/Yh|R߄oW_<<ߥ<|WOm>i!qxZx>B5DҺ|#Zޑ>wbtPOUo; c8qGɭOakdž7 a6V_47/`KJb1[Vug$˭yrA[ΑӥnM|趭=o]P5=-ѭ2BuȾu ]EǶO?w.ЇKhzYA=`r=-AJ՗2ܲa~zl% 1C#_nj%[ƫ>;6c>UKCC'Ua7_.tbip}["f2XSkְ"qQcx 6Z mUCx).;`]9Õ E҅#I iuP24kxk[Gˑ"IЦޢVI1'/N]IE BVwNBqМڪAD- ~-^6jYHz:a1KfpOywHej$hg78odO]'a?8~Omgo2DsslIwcn clޮB.Վfbm. < ]4f3a@d߁OY>L7HxU:hhy(XHм{e=]DeNȮU?M^sT ˑ-TBxb *6ZJDK$nX+1{ c:p)˲4sY\{֗8{N:߾/;rNjӀ!<sL;Dž r)&zfx,E)Tgv 5!K5Gzf +-N#.δ,pa^1HPŬZPY8g;lL(&{, +[{b{,{ u.eYtߵ&J\8Wϯ#̍ ZBҼY1'BdDk'6H}ni{_#w+F[`!|vm[%.ҥkˤó<{ DD{{8v')ٗZ6`4B]E\kW}o%pq)AJ d<ʷt̵^l_ Z}V_HnsF;6J"+3if`We>HԾ5 '+O2~T'&(C Y)`v:Pu4T) ,,uG>7 IAlkjagK3 $l{=9TRԊA23-`=J4c1jb;d}xQIx57>ĘơVlEi}r4f9[\ܝٜEڭXڏRZLΌYͷOY+{֊g]iH{)\$dϲպ 9x" 쿦@xe)H_lƤ`i%4J\Ija,7q5vn쩳ۊgZJpj%ZaDf%!Eu {uLU9qY" E f #;Nm |gY%#8$E<=PX 1/'} S9=NES^D8Zwg\Uv3({]s9З׍8!\z_&8~Ʌ1Z]Eӏ3a9Q+@yȍǴ5[poɨι;I`/+$j )nE(d-2q гyUU &m!N\2F%vj/ bE& o6tSlM< V1xjC4*N.`aB,J~^y%% g#7k(E%trXAPӏR C*XB(Lf0xOJfvZS?+ 12;zo1H!|Y7ZU ̿[~UNc%侅G0-S'ঌB# E}lUWWavbPv;u.^˂x3I!slÛbk2)N|;ZFe̢{jwn\g,/0'E1ע vLURu]RP ܱ嵉-`L["CœCXbv?)*fIґ8ljgTF9 ɼ# 3up٣(Sd,rg֌fY(.q(n*XFg9X L1'n1SB`{f\Ԟ JIV|T@elSqF:b3E.!X}3 [QktF!P$YqOibNܒ2i[YU/p-dBReY Yue8?߼RV`Fɂ\j}E=ITavx@8e]*g*i"`*)GG5^<+޾y'۸M+* 8=-`'RlRY=Uli3A\B[mak- ު*2ugu t{;£ENґt&J38ƟzM͜b쑥Feb8 L`o/VEÍuqZ\.4;]$3dvSڀIoyY\݅WU pW"1?bo9e8![x%T[A[K @GH$vxiN| [9B}67ey5wb!&>6`1VX *R,kQΣs=3 CTWNlu;%Vu56߭5%o9AcrTn\g} 'H'3ܘL!o2#|P1e'&@Zŏ"@Ѹ s@rdYi̝ؓ gm5jo};||@: Ǯ RBaKIM*-CAyk{ê0;D] !],Izj{DOڽ$J;hLo0wdmĦ#,`'E(]"JL4o:תP^xZDIrGW W&~XXHØ{[9B>Ϋ޶(S\ۉ{BF=}geoKnUkq/W ݚ[ cGrV48SxcS fGbez@5mGAU+l뤆DYXՕg5I&d^UyEڀjW) 3mU ECOOW9[{w" +˅>U'V^(e*BлPAkQZ)•3TI2_:Jڳݑ5#aH{d]~l3+Sr+~RبԅaLI SY'4,]X2r6 5U2B W,4ڪ^*PUزS+Bvl!s-J+Ls—E %&uՊc/hM*ۇK&QX7B:g yKAHgf4s8%(KMC-̝J~LPYTjXuRH> ЪB9%?}/%-UP&Ȅi ׬:"6RT)|ʬA\A;/T8Yq%¸g#wWy]R| CoH0D;g,(ΦPE e=Ӷe1j@fc)%L"(& E5 I# \QWxYO-x,5bPŋ)MJ)x9ڔAKSq0uCݯI׈@XMQW 2j@f MJ&b@do(I.^]10aGD4f|}:25ɪcyJWl)M*hCu7eaXo6֌0w省 y ]r1ˊhI. t:00H%͑X[v6jxTx:^HЩorRTuQ˕wSI ϷԎ(PE/GśC™SdcUAʓApQΥ8^ɝDm,uZ*iq=s Erv\S9o%-|"sO`(Ka % rnfuoт|J޲8LT*(D7aCˤ*rG:#@1`bjR8zRp݈ X 5Pi5e}׊eY˘BCXQg)*3Τ쩨ߜJ{X .t]&@*KDϲ]~1I۲vPbm)*[AܺȡH"*T-^٣P:[(]%`*:ɬ=nM{Sa+YJGCdÕH0 4$5_2:N6YJЭOj!#R3W^%O7Xd%D߲`TsemE[_%ȞinG swrUweQKUս*]'#{CJT1H^-YN[Jc(5Q DVaBFL]{~,N,W*}A紀[`ԜڱNswK~PNћ[;Զu9lH :z;cI :xbہ7o||5YfO8$ph(d`1%+@6aB-lb/gq? ,A =_"P]aV`p5Hۓtu_,rp\e3ؽI}u|ЕjNRmU,;4rςrjLÏڇ6C8__1~y?b:"?bUܞ_z+M,lVA)w/˳y_z]O߿?y*{_bca}bϹ>?sn<>oϛ7>?. (?;NE -(.E޻uzhmѡ{QchwGY<|4d<ѼšI2:;q N10._bbz6t2#3޻/IW"S%5ݽ.Ƨ."q6\Φs 7>u}@t;pJ fWruAK Ȗ6;X!EOF/hw6ʯ$+ QEX7 w}ve:|ź4/K1z6Ɇ%(/O2A6q8XY=0ކVa7o~Β, D k..t򩳆ݽ8âX RH5\FE^5l<EY./7eUJbQ|qXd]#(hcDcf( P fH?ae֎;',}~7cf.f/ag┹<`<1I;']U`X P3!]&ǔi>ӛUz˴uP3|C'U(*k&RV+jڒI5>Aa|n Ւ8ozĎg 1';sda&['O^b<cT%YL8^zM*楎i\8מ>.!69x\j!fv1f?}>ْ:5ecRib&KwzeW†i"`=>3/|ElC>o'0 $bJ a|N&>xzU+DH%a>w\CUv790-^0|+^%0)Ә~}!bjXJչq<]AaD{70W]G0 0/||7 AA XH^Ix|7TWC/`2Xudm̾.1X$zn\~n\6'VX ƮNչ^M<:׋s:PON9ސzN[zu+ac١!v\>؄5{\N>}GWOW'5^#E{ӨlyNiXQP^髼b"0^t|D,m5a^]V6#lxYF#8.]ثOkc-Tk&4s46\zmy(Eni\  a%x Q[mc6Z4bsw'u ] 7ko\ :l2/̍2^2z?#|o#R&Q?Q&P~Y&kѴqXY&Q;g!rX `:uBhPk%T[x1z([X/Op}9Pee#~X9^+#`nD=].摍 ׊ϡ0S^. "&6Qv 1ocaQDf6>֋%*p $єT(\^vP*z$7]=~XҡâTZ\isT t v oX?N>DJexZD2@2@2T*Y*p* T4ЁR>JU~*|Q :P#Z@(U9=(U j-"Xj T dT HTQ|Q*ƂRuRuܤRxP#Z R fֈR 8ŁRx ;JhQ@R(䃈RM>h/lJ5X*wwVå,E~=(Ղ(ՊZ T+jc!JA55;JAvD6D8P*cT"r~*<@G\<.x< *Vx #XyXXU `U (9 09#XUyj<`UjXv*e"X6,Bp`b0`U?EX\h=6666B0UnVe WU91!Xr Z^,`U&`Vp`UfUX`*`*7`*`**:{98&X`**:{w*:{ XUVjE8V= *IU-V7jzYzY:UX*H0;```0FCV!~VVfEX5l?`|j j jE^```V>X~X#MDVL$&cVd * p+:.B9;t*_U`#V1t9`UXd7 0`U5U5U)`U{*_Ua/jb Zo`:Vu*~*V`ՠ IV1}WVM&CU$8V0`V-أV-أV-أV-Z  `AU\X XaXaXEU/VUڇ*CUsUsUsU2X -*H9`Ur:Q :}VUV1Yu*'8"q*"U$XՐ;`UC!XEU'g8)#} 8|x+?G%;9/c_ DZ ˱ˎԿeZy8oeJ(8.x^#8y6ofu w1~;ݱg%݌|%cOG'>r'_ß rJ/H?ɵß 2@;UCWKBS,$ំ??o" FI~x GK7E>Of*l=x~<y7Ox<ćﴷ4/|@ /|2 '"| !b?D>r?Dr?D>䐃/9G=aأڣ(= c3_T#|Mʰ'_E䳢#]Q0ڇonO#YH&=8MO.1<+'ߗtF>Iwz&'hR|Ho"-͊ 9|̽Y CRaw 6S90 I rL';> ?R33Ī#L(;R҃? t6Iܑ L&ʃ4zdQRmu#9Wד L7N̊車Ɵ@AcY ]G :0"7A`Qu(*)2%~%~Q@jG>4Bh"(%gYTY4HVaTF At0`f$(#&O&O&͟b nh?D4YehmOhqi({dqf]g8O*:IacF{o d )ksX\ѻ|V@%ofxkhXPD0ƶ%zX85\6lj{l4Ki;(T(Rq-m6ܢC{c}j|jAƆSkX;r+X4ِ]i4gWwB p6K| o ]-~DR%@[yjiBw^N"5#TuJ,8ؕ!f -:[c^7mj͑kD%gy3[}J"Ήq!܉M[ b zn֮6<ǽ,y mhv;.Fժ}E.`eކ-QYtZ[?cR\MwS]F!ʢk떒5u"xoz+iE,,Z!NdF)lvlm-!!;*xtTO-" %,Eʴ#5̈́Νi#d '&oLNF@że 'R nq.jOh*7PA}iT Z}% ɦM5X do$b!N˜P"d#dUO@|+WRU.# +}ֱ]eЗJӒ B]Qݐ-*h[Nr﯉[Z%䖸Pt ^MxPe3֋_9MODFD}ۀ-}e_mjDsS$!/e~\>6_ӫaOMw2{cKirucwh!ۓnUXTlhIf\}Y::ۛH0.4HkWg V &-)@K*f3 ^X_}T: 4(_$7^6Fg*L73HLX! Xg2 CѲ;:~ݮt!Ff1j+h5g u9խvWA٨D/Gf0e@o۠}]ON:} {-=o~P2m) hSu(!/yVc[H|H^o9FHOHo{fAarˉSC2ܲ_A ۪tBޑ: JL]B}sVOδ)(=Y)r,N$Ct1!^yÐI)I.֤xbO$dVR%\\Y>xmM\p?N[q{s@m6Ќ MGΔS鎹復gT]2,r:A`NU;ng$w@\ha,dA|\(5Y>.)Qé|S Z^ǪӼQUJUپIO(~Jˁˢ UnxIb+vj$ MrR_i(uY2Í4,rEŝ X|#I(gF3qE]kƾ#YnхzV#p>@rBER]/յ@}m3-W¸'t0IM+u k<v~Vh1"=V4xUfۨt\Pe5^7^vI7ܲ GSTIؐ(y7kjd@EjnSKuG qVkHj vG(@?6>$+- -_'(Ell4tR"ZA5+zG pm?E֢*9aђJ#@cᵡ?-zM5%sؓUzEBa%Rp-2:-?N:{[;om[keT Ts-h NT$] 5wiB[R,pZ̪ewlJ!7t.E3JIʽ~C*BIܪeWP9U^7#+[ -ff\d6Q7sMu{Ƃ{e~x˂*+lIM5NJ4Y]:s.P gb4pN^sf݇x!T.W9%5ʹ[@Hz0$)k|j]ht_ԍbT#FP&~W5:iHOժӼ%QzQ@[!$kO9$sB F|R{\~:=ą-E&+N )x}=ӕvTb,)1oUЇ yE}3Arc ~O;ug `:0$wPto˝_G7gO!G. )i/T/m! gCwg6S+LgREʀqO{l7JU.a&3}B,{gob eබݻ]p>@f& E⶙Ie@~qƪ{F Ҿ$*}MKy &{*`^e%n=$S(R TxӑOЋhk9bn\Sa!{ǕunfVqRr- -Eޣmޭvk׻dz{iXnZ\l6daD(2UBc7jt]WJq:hac "6=*,0B72`JRJ"5v_#_3@lPgi†(M\VW]@N? >¯I%LCLӁ/9*ULm:1hORX=QdӇ~Y7kCP 0Y90dq1pԢܜf$N֬%b5)"$+< nvHaXE%~SP4BC(C ˆ @ޛ"9O 02H8ei]*ʔj>W BV%rP0C\K*t@![kjnLE5z( [ҪF ctofEß;[1Akf(T%'iT6_̮پP0JeFyp|a+uThnDBe|c+,h8p@6or[] PLy&"*Fw$1"3H1sؘΥ(Zul !C$PZJxm\/S|1:'r!٦. :O;]@ r jn )X1X=D6Xi߿L3j&TMa,5E [ ڙ^ Y]esU(`T|P͡{TIȐJL[3Ep\g Uݜڳuطə_[98n_0qjF@B|֠ '6jIGs O;9D,,CҥkP|hhRN\oဎ`3,tY&)F mQPcFST,`EAYDRm8evFX!lDK('gH w`+IE 5M[@<@1)e.27GvC"V9J0| RۘXQ53h2Ÿ@p]VAeD QjI6ԾĖ&#qUʬPrdk|ËX ,oB:ٲ[,''Y\ <Y2Bk+_b8?A1V9rA|F)q/˾VMꝳrHԩx\#u>uB"/BE^ HYsD|+9 (܊J_a\E^ri('m+V%!AeR8.I뛐5JNLYC8iF.SqD,Px]pqdSWֿ] j`霾?@bu喕* Cȝ¥E[Syb2MobZe}W`Lg[D6GipI=B-q4ȷ=E2uM$'J7PpZ\R.Y@֊D4xJɩ` +uJX&%bLY/ANɻ LAB\Z?SB:sDUkC*t8BMւXPK š|aH+7> gi *)IV9Q\}ꇲ<6h|CK6EH-{yTx2+a,v)о$BALNN`[ @>us?$uY{k$_-($~J[OI(I~:WV)Ph]w'S2j'!@ 3%*Nba;_HRfYi@?U>뙇@ "W`b@i*C޹ěF$u_NY4ր)ZZĞf9(RJTر4/X`mSEmF w% TecR@xU)2J:QyYDӒrU)mdJXjYuH눋h`Sc\Wr+R;yD0P'MVբ/WM3sd3w5D(X=Ћ`8 58CfAIQj==os嚖-b?X2Bj':$K'cBq%AE~x"\2cW.["pڒ EXh'쭖dd/U=F( ᷲM(X3=w)\ԇc% ìДT,[h 9ڍ7ɢ8=hIAnnj}0! TGM,2rEIS;-Y INCW^ǒJzcA%\kp Z?"U6L)f,AI ||JBoVǐu`X>.,{Y%Qm- Y v▬?G6o{иgEs6 a-.NHm=͗f@GULQQdꙢ'8jxCTP>r@e_3יTCƍT`2)+ee:㸈 Yu5'CR8F؂)A$Y_S9;$fhu4dB3Z$,V.0X]lhx)Ȁ gVĻT %V2?ҩ.jS珍d1O]Ҥ0ڡn9D)ߥOq'bQvTRB_3E e~Hq <Rр.ݐ#bTeY^{iSc"KA+O΋jw\.ORЦ5m>aZr 2)kx-ͨ|U}zPuP$x (Y\eY~-k*;"G|GV% aUF>j,p^toWaq8h]=S>&:kY:7  ffL+&>>ꖇfru5=fǚ*Z0ػoɆ󹩾?[Xӄjth7U;Qˤ3HR ̚v[rS _$/aG [ym˭ eK9'ĵм}'Y!eN 6YZ¥zvtg XTw˗-Z^18I\5R* "xM1mՉL,lHAU&oq[/2_`˔mh-]Q) iMx)&(yaK o~,/R 1JÃu{erZt"˪Z90LgE5zdJI,C9+BnM1Ӕc]J%"8/zGP\g~X,- ɗS  &*PLs Ӻ C%Vff eZyQWZgΨ3*2Zn-i,-$O&j4- ]%We[RBB?lպjvd=:YҾ͡dDWh, vvA |%!eS7ڑ xR1!i$U'y^Yv9N7j#f 7mnR729IO7AOh8e{,K^@Hg&{]+a&ڧz6s~ǖeUq `,DYIlWfNT\&@ELm䶕&dc%3hsH^%v]vZ@Iw#PʭHDn_H`I4?~$Mu2=q"iEdVepNMvJQgWvbYR@R:M&deq-z5ٓt-RO#J(څDi6&T ۵TmI3- By"ovUTS9u8û!lAi4{졭Z0dϲD$-nTq*ErrczM2/w5Ci,oƴY\H~ZfI HߡwXOowi`oqT nHg* ghi-/骜;uȊeʯ7MaCJaM[9{J%}1noYݹ/wJ1F] ;Ipn.(y$yVԌ7IVC]3}CuX`⎖i0Dق>_/4{gbQf" YTllzceaM",EjyԫiG|=8Ao]N^_X>+z59%0)WO!H]"5ɨ3U-\/00&R<ܐxZ:5  5Q6;DW1Hҋ`#(0{UyWI^\K g}aH̝ \^V>Kͥ4 |]y^%NWtRB\aZ-Ev,MT;85"TvZˉMT,1s1$6DGॼ'C$%l7lWTu/ mPմ)E{5et_arNF8ʨ*!Y^|-t2.<AO( Te,eרI-[6FVQRCTv 37 Ti'mՔv[JKї\G|ѐ] 6+ gRDoT@Ԯ@ qdG)؏ӕ)2d˺P*t,%ci$j+g~XV@vEdZMŌJ+K nniY{VPPlPV  {Q! & X^ h﷨W j`{k56BE_?tNϯ_?ïQ}:::m՘뷼N0>y??/f~$9lz?{w =+:+K?ןi__(L0f']/W믿0 ?*F endstream endobj 206 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 181 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpkpsSOP/Rbuildceb728647b9/effects/vignettes/figure/fig-contrived-5c-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 207 0 R /BBox [0 0 864 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 208 0 R/F3 209 0 R>> /ExtGState << /GS1 210 0 R /GS257 211 0 R /GS258 212 0 R /GS259 213 0 R >>/ColorSpace << /sRGB 214 0 R >>>> /Length 53923 /Filter /FlateDecode >> stream xKmYn8 z?%؀ x h$K6 mWVd>tr^OׯpY/j?y?!}_zxE/;|ۿ{_so}׍۫=ן^k?/^_P~ {(k"/u>ևtc]i5l?S|;=C|}BI{g6Ͷ ׋5פ7c5XOOC&uV]N! ɶ\]l:6'~<е*}~K. k٬Xu-k|ghtduX۩lu'\?7e;M*݌ӿ2hdWnzze67,09Sv0șvB?C~~Nk].~Ls|^0~pc}\~Vx^ƧP^22U(\}{Yo7T0ٟYlB}pf,d_&g?s>|=ۭ<*_͏n6Iya}cƈc=][Їb}{/kz~7W˂3C_&]xˈK7Xն g2}{/Krӏt9_Yoq%\sYwv_2%%aݔd:e;d<2˨K}Dy߻*?8ޗl%X 9EL<\p=eܹ=1y^^2se=1o/9eu\rYx'r~/eў ?/ kd?7e=/KM}}`ݞvLn72CO&O؇=*mЗzQ;[gk=%{IޔFĨ6QhI<&&QكQцz0*ШQu|B`To`TjDQ5>ƨܖ~0**J`T\=3bT *M`TjOĨ&aZ{`T%AFe61)MycZĨnLզզM`Ta"2zcT gQ-/03 F`TĈQQMڸQMڬF`FEƨmnՠՠO`T+0+bT30BkP^ꜿ y0*FE̋UU ̉UȈ9jjjLjA1*Q rFUaU  70 r=FUS1*Q31*`HF`T?aT%0 0 g p}F\`T-0B 0 #0*_n' p}F&w/0=079 -*pn*70{ &0BL 0*7Fg`T1 fFÍQݘύQx0*`,F`T\ 70ʘE`T"0J ;0*07FU#'QU~`TaFUn ރQSjܟQUF~Q5hֽaTدFL!011FչQ`T<j&cIYM?x^`T1a`TpFEƨ&1fܟՄtcT܃QgĈQ-'0EV?0FYFy~<ՍY-`LĬQYϿK21FU`T AU`F$0*UQ5o7FՈFՀQaT 1N %0s"FS`T9F5oFCOwcTo1Z!Z0ҍQm~O`TR`T5!aNx>0ʘQebQebƨFƨo"cTn"zcTH`T ƨ:/0U'oj jr j{Z_`TtSo*0v`XcQn1*nȍQ31*B*7FU"FEˍQ1s"FՁU~ j1rˍl}1|?>e{x${ dzR?xM`-Сt(I&ƹ{~zļc=woF1%oV؏_ C~>ȁS_d>In}CGI}e>+1_wO>ajo,'yx>cw [1yҩy~q<}yw [̆5KKyZy[#808 6y<8Ù>'PƯn4O <5gୱ~xmӁ7ON#y|8ؿGxuC?]lo%?~z8(SZw|?#5يxBG~xE#~ FxGk2rs~s_wpI,8#4"wģGqsȴ'OdE窊=9O۸QD -'78 t=aƿ7 L"C"UN$Lz)# ݠW0 Aͨ7cr!h.r>AJH8H!t{A6$2ls20Ar,AH".)^t[HEPo1}2[2(?4D@Ѕ18Du4$&Fj}#QQ-aE1v ẘY?{SolxS? "]mvf \;yʉ|J |.V羂79:2gTI̔[8;y{#c* =\7.U.I ʏ'z.pqB69sql w kgqZ9j:!Vյ=՜[,3#48ӥS|$6L>2>j@ԜwFmyMOKcsm׆GGڰ4gG01 0`.GYx+8 5`=S#OL҅LIb_m0sr=HāQNtx1E/,KBZPYΗ"^w A(CrZgŹ@RxuImW4)sD6 &/ݳh:{;5DNY#|*g;{Xm @7?Cl$2 1* p>]Pc!uH078Y9^/94\jSrboq€ PmVj Kv^LV -6q:XNzn&/=NAzHl1 ;b-a!;x*Ó%X #t?4T9lT='Uq ׭Ov7l Y9ĝ;;u.!DMuzyVѲ吼;4BRq",ҲPIby.juRW'5䀍3B'IgNbLdy,!7TE*I yTh!ME'a) FO`͜.;l4 CyPxZ>MDVln)&OHavwHQB$6qwwUER k٭6'%M <^"=zΌ-oL\ .[l>zlyn8Vs/a ςui ‰JWyVp8 kksNOPsY#N1p@R& * XV{NFy{ pd0IeDT/('eiřp,8[L(3| 4C?qGpyq2XX9@LTD_yí;o=9 +q*gǩMQG+H$s6I#@oS,+Ū$V+HQNCV$<1d`CoDPqO^gqըDp̷dNxVR,K);ϣ<4-ꨊ5=ai vOIyZ:ZQXr%6ZS".XI)%>]Nh,OMpE|AArͩ͐$ ["xet_ Hl]rvxRYl$7+P%Ӱ09FYId;~ E dU:1mqr*i{YQ6>iyxV9H-PpsJ{|݋ZQVTjJبG NU/BZ/b&B6H.I2{F2B(8[wAWŤwsŠA형 I9|2p$yv^P2o*<բsx+r>hif*0ʅ}@6ÖoK 21++NXJ"yVb"+򶢊i\YI ;ժe"eP{ǰևH(YjuObNXe(?R(kSml^!W$(k<ܤ"FĴh K仡s*tYQ %Ĝ=țMX0bp>%G!bfϢxLX46UkhqVp!XF22f2M"eӪ´@1ۏF#eNMm)`[c`Emd.8(CYJ:q"TYzxClKzn^8!RWaO3MQ3e큉 6Z;5G ?R6YXFVFS=I2E90["V{ mO`◥NȜ:4 q[Eڊ/_dIE%-N8%SՋ1Zt猭-pkUp VeAФ$gOpyx0]!El" s݋R@hJ@BGDnS'yG5 i}8=WkO5)GEJ/E8 X!ep\  p*@ƍpN)%GF?1n NsY3pzynQ{) 8xe&, Y2+:+ "tS[t?4Dwh_+6BKRLIp{qٳНjM ?IEr3 ê VWȴJYi4=TTZQPꨃ# SA Vdc\ Sv %xl*FvjUH*֮:h>A:ZsQX9V?c kvTsl]l3^U>ZESoQTQa! XehE. c}k( UF X#U= ?aZj2-PƧڨв5TM1B*:7Mto)#F4EG -18컮v. PIjTUEߊJ;J`KT]⢒@sULʑT-g(Ë**1q 80YhܣQ68[FޕvН9deDå1VA2*cuYZCP>ń⨪L$hZ%41jK1Ҍ40ai0*Bఓ~Zƅx(7 [ SSy9rp~%Ϯ>ǧEBmt2.fIG*Ǘ.fBp:)(0_X ҳ䂗/E1 +)bte뮠 5W(&NSѱY3yXY"Amt3Uc.צJFU+z'2!@ o,RF EOae%t[X)sm~=ԁeM-NAOA}U3v2^DW#[NOns$JŶ[RNfo^f;:*RzG)hGY֊*@b#H=4Z:l֦p[?5H宬t j=;'yMT{JSɿnrߢNC宒J+o2ۈ2ÿB1hm 8,5dcN*Pf0M19/WdkBڗ[H5WWNK(\ xIMUEN6`]2Qsd@S;@nZd'En=^=RintaJcɢ MNP3c}m@9k#nAA^9lGa!%ê42(K&`pˢzؒtlיIx:B%B&=d#KG0J\H]fq_wI79;S *L2TSI> ?xhH}~0K1OӬ¶D+ά۾KtugQ&thirSAaFwh) E}HJʾU]t8Y)>!y" 9qUZ_0Gk^>K}qΊhA?nY`>{h3)i^$bL*TI[44d\冗,-w:@SA c*c#0e#@dvL*ǜGOx.K̂[U:vGv fP:zv* ]Z.cE9/~+wdъ&(ZъKSi(-\"FIZZaBsAUkjNi'Usb ~؊*:)Ca%x[xz*{/͊UU|?6 |zBYP ㍶~UUxjtt}fJڗMn=:;J,/2C l *ݫ@yɲ*ɗay44 ˪|X*8'2Jу:(>1BUhc͜/4e6^dE)d;5Ca ʠO1l]:DrS5߳r]/:o*zNJv+ 3{keTc>Uҟ$?ݙsx*Q#EUsQ-TȒ:by }mGy{Es&&e˜]U91즍ΞpMTRhϨ1r.\A^n9V%9\̉3ΔG^hd28?cIC?+\XV8+4g"ӦAF-(qC]KfqUU .k LFZ1>zio;?om{^\񛥟׿M~GїY|^~VܯI+,7Z׋eί~=&j{n_^{ /D-|u_.ͯ;fAiv^L?Yn{+˕4,/(?QQ5bfzzT+WwG_{tOSsh59~q7O{~tork^ncXXXvϲxE%tN (~/px _?]2b͙Ѧ}y"jZ{n^r A4xР:dC[yQFU6C~ ubУe([*eꅩMF~$@pFe֪5alY2hkWL X,2h{h0zKBY>||L$sDM._2Qf&Cx &fT5+O)=PlH ';hVܟ, 9* Q2i.@ʫ\Z 2%P ܢvٟaP~M/!;E+ 3 ^GY+M 44)tgUPwxI_oqQ({n2kfd;[B{-X uL[;?&O2k aL.8kg9P]9Hq>s :ppx>w+Χ:W+z{,h\BWR񾈿0VtFx`rwxN̞VlrD?7uiJ f긿߼`L:rzhAHi#:CxO)QmQCqif<`o=X4̇v%A6ym.3vu,#ww:fpLtDgˈ(Ӧ¸)Loh\6zCѬi=VQy"fOfxWV갗~:%aPsIޠA(%P.>ꆺ*7z@] K*]뀺j@Y uQPMP7ԕ>Us@]- k#sC];K y@]Ե`:PWD+uHcπF܏PW Z.jrjEP*#auU7U:PW!PMʄF|_B]5aiUꪉJ@]`@];9B]P"TqC]uꚄ P-oP;A7Z!/Tz  s=P h6^oP#oPTtC]~ꪜ蚿A]z +рb=eB]EyPW|o@]1uxP ++πj +t@]nP uz.@h;uuC]MU9>uPT<.|o@] uy2W=;jzTj8hPw@]7n놪uuO@]ၺ u#5y7.B7E ~}.@uMBouM?Pפ=@]n"P uuiO`ڄJv@k75"Եߡ_uukueO@]PW(톺0B]"PW}@]<\u@]u57`/A]kE unk5yM꺡/$tP uMB5#PH@]u w_z6 F{@]5okueBMu1sC] PW?vC]7 uU@7U#E(ԅj cP(P u s75"5"Ե>Z~+ B];FjI@]Ԃ2hPW (PWqC]`hCd÷aí}y'3$=(:邿ZSOד.0>̿orA$Λ>:a(Yϻ~r;?x}𼭜'uyOhJa?lI (aaܡ5SODX۾ahG{)WaO+[7 =_$3n{n{o{' mώ_|fP.Sh~ zB'{<;;;']#T8CwԊ7nH#ڧ?ӈW=}?w?Pn8| jUkC]?{C}? 27 +ᏖND?l7TQ?!:?%gG;< /O A% !ӿ <"?{9=އC<Z<ajC]?=='5 Na?*zP(ԭ[&+`ԱA-K3χ||m7蓇W~37j] woj3i/x'7oA <5SԲcJxm?qA|)>bRRAo)Λ<_/=Y<֒{SoOxEghė"* uwP&5P=SP[ȴ'Oxu #x:vR̛| #ļoHMxdb<;xfb*CG&kCs/͌OG<5wjg<6 ԓP~GjQċzKH[DTe/UE>u7ߊE=uEhUtԑm7CdUZ6SfC#pƷb3fl}U(lE]0! UdI29E^uY,p1헑ֈn usQ`Ýg-tj=JR]|>a;Z\ +`6U>?hEw:h8)<;!8;Aש*hV>g 27!3 Ιfq"|p֟-,yREY\E d%ꥡJ`ZnXUYZ ;{'8]/zQ>F\{ }ngF3Gůsd͉9Iԛ* ]}3؝[,PA>UmweblԹ4ʢ,VΓveoօa!"{T}+PΥg2&GW7hFj]zM<׈8Dvy}~f:  v8p48M[ u+)%m =s|:[ӳ(jXvKM5&{]UHh3/'K88թGB/C`q^ 21kINᦐ5.I3^uϐRˉ^8qgR)nĦe#-:tЧ}EY' /´AK!\Gem;c_q iIg0j`ZE3lFOX㘔|S }q˭S_ Ӆ1BقiΖK^wL1_$i\J#)T[ Ǐ%"Uas?FNY-ny/epbd/*Tm3~2@865,t˪kuc_:\s ґ0YػSO#w o"W^,f`\p8R ˥Z՘ sJHQ띊嬼`Ԟ؀UU1cPcRЬjga~3Y _oPy XajmK|½&f.B KÒCʽpr|0 tՠہ~2e bdzeo&T2]'*cfiyXR]XWDRnxBmWp&]8|sX{IAU`g`Az1KVc($CB44ARNLY4;U9onWB[tphKvf :0t|'9S;cwT 9 !ё˂,ܪ+s˞hX8PT= ~w".<w@.N5nT4˯ (bAIib%Ҧ2GK=gt b:@6ؓ%EK~JV~ʚXi-F5TGDev2j]ROLFaYZ hmeS2@tl_Dll"`Tz|~e >܎Vi>KNx ~̪#j%'0-ex9+uP%ae8EΖsTOh79_%zy$üֹD1l)^"n\0=@]LX&hUO= O@2L6צ +7iy$U$apؒlHC^P=!'y"'ҵX6sUHNW(ϰql+M'?:Xؘlh'MDX~K+iEt#;p-2XVmI=%hλS#fȈl_t[e]qM*ZAK 7ũL}^HsXU-:IHNzW[JUW-^3}FrTē$hNN?In6)G(+@zm'n$վ h pn a( -U9FB 4ؒ>aPJUX&BZJq'>3Q KvqjⅆoݭP~}YRSHAD2A}^H6$oy̭Q\^ LCO_Dd (;-Ef WԾ.䏪%Bbp$p(dU՝㽕^Ŕok4Ц!yRVLdԑ&giB5[K< ϛ$" [Edǎ=XW5)vX@ln,_zQ@;ǪYȏT{)*{?!0@GQ (&{dkH`T0[:S-IuIn "DD2XD'6@)Iforrтt)ԛ8]lD앉A"ϢB ŇfF fd~ -0Vz,>0(Mh(#9722y^-x¸7+L(>oCNk @.w.LϪ(LUη{NEqjb aB5ԣqNxF 5:6(^&Toŕn'kLh8` C`,#LQP>n,цuDIG5uF<4ZFLx,bc9Է-mJڴU 3Yb gIaN It Hpq9j~r!23!AmxGT_"]X4l|1UYx[3\s Z W0籕k 7mHg¦)f A)ۂ?{K>xK]Fk2ע ~7|@{a˳dIfEQw 2Ef%ߜ(#@{fUxρx橦Mղߊ ?|vI>4IPE%4~bv@|Z7P MJ*3Rl[&(!5&jذHhSٹV̓6`x4Qp6T]d{$U2 <;fQs2\#VNmV5"w ]2 \ϭWd|&,VPH荂v+KژPW ̚ƊJ]JE~jV|NY`ڰ4p3f< -(!5' 1% IQ\ nyY58AQP*  ^9p]+U T~*B8RM萩_2)jE- ;S.PEyu**YUȚ3 $++R*Bxc &'Ҭm `.gE]gRlPòVƜqi09BGO-]y8uT?'zQ`bӅ0bYCo+r?*yf0\az7+U` .(Ɓuj,+AX0yRFG*3]HF`שTE^QU!)'[-.|RFFl%н, itdP%\W@U Ò#[(|(v9%VfB~ bX@ER d&UP\;I `Ie %#eeբeNJVm: ŭP9}oV Tj؁QkHScKvhPu떖bM#>gH_=Uxǃ3ʵ6; OɹE1lWF(Ψ}rr}[}.h]Dr ,r: ˠ \O(wʎ ˿Z"F*I_PO]_Q %/*) }i<]$V8e5Y c\Ϡlo#lU3 Z5yr9Q I`Lj,AңUΦݽXRz2ghN8uLVP& [M؊:*zܛ%VY?4/FpdcYN`L P_LWA0@Ź.IMDͤPtMK{/BM2DS?Ita*JeVdtK*Ҋ'"\lQ"xGx^qQ>%U&oN3ta[DH[Ў"z ` +w~*vXbu3(rP\lEeWh,debߑŧmЦdFٕGMFEW8Y`,-w: *Xn.L]ݬdN>4Rʔh % +ÈSߗu|ˆ3/ B{ݞbZ0;K*Đ-s&*ݡ}1';Jp@TobH<1 hYIt鎚נ~ОЖf+(:}*Ykک'P3s]jh !ZrmM<6Vd"IEڥ(bץN'*ێ>NI]ز5qJiEt.GZ+ZM=YPS#G~> wl /F%F`V$`=H=NL`PJz3r pgUa}E@PK;" G7^R᩼7x{#E`)MQ>7{A귊Lg-g#(nSdKW)/]ITZ.$ҳ UOw_u;_o;pТwЅ4hIkn;-ogF1:npQ -7b2ަ}b3hio "Z4E=Eԣeul]{0wN4[*{ u$lނtXE4`,f,x-͇Bu2o[[-M$,oyknyKJ01g޿#BJr?hc7y >v?7YɨWYoos~KQ"-=s?z|L%J\_LZs O}fzet ]\/׶?Aޜ*vEo _1w)޿S{ﶈՎ%Vwּ0XugS˭koW3^r]JZb|?wToNv [5ib9#_\cKFt`VTÆL7N]G&jj Ss X6C;V(d,?;\xO~ZV7ƒ\Ս"v3(A ;3 mF 1_r @Vy"+o52Ym^&lgrk` EV~@R8A@zy EͰMF?Һp d' &Xw udob2CD;MV 3ze/Q/e2K|MlQZ X&XnPd n;d$4 b2 4ܯEn=R\D@ b~ 7dz\R$ltώR:kƣ dBo7&KlM:?ba*ޏi%$+F\:j?ʽòUˠ83sZp737FZnиƋ2H|_m 16oy (Oh OM}BvZ)gZ"ߙA4?S_9G/u|T`ۘ)~ܿhZx:p?`t.}s*Χ>rxg 7W^@7 3m \y%T^0ics 1s3GcStѳs~+7ޟNxOb_V|߬wBHZ7|~9fa@'1dk64?h.mOc᭎93u%S71>&ǪO|]6f-f4Fޜ ۊ)|B#Ə+E.z6ѕ6?HFd7CO|c {8o6wHm uLa7\M mTҾ|ƛ{5>A%F4߿ o 緍gw~>٘E cPe  d譍tmc܀6O<@Z%jK'HA H(+ʎYJm AZGFmQ%`}F՚t" ~ӯDm1y]'('yi|ӊHP;@KFAZK_GBlE\mH}+llD+؟}TxnT44kGEJk`o ã2^zu?AN A>@A L h&.6jXj-^넺( ʁJ@Yz +GPWKr % LZX:ZLL85j*ay:uuBuuLu19PW#@]{~A] U U uBu14=PSuelXuDPWM&4&>P kH kZHP_oP 4PW<1fzB[:C@]끺7ԁPW@)uBunuE*P7:H:: ,PW\@]UUp+ ڀ:  p 5 R7 uuy.'(7  蹿a~PWPuU~@]okŘPR"Bu|?PW@u5E@]u_uR1.܏~@]ԅ kDk4Fk4v.@(灺v@_PU?bu @m kq~ԵbuJ.܏6@];'B]p}ԅPWI<u?oPu #Ej@]?&u퀾6CܟP_O#^*>≐<C9%P$kxrO "ySo|jx&E>=(Lj'CzfH"AjCRfxxx:n7*3Ⳉ;IxzǡK7ZPGZPKAO̯|1~~J4 }˧*ȷ(E=Xe't6 zx>4AGRG#ގ|5[#zz!ғMr2I}|?Ot'O?xDfHs@?GC|H<iP!*?E9JiG6oxP~QGGZ^q|YxtW! K?cGZFiܑ<Ҵ ϋHp##wsޟ#<3C= C1_xi̷Sc>5ؘρ|<7_sxFRxX5#$^xmٱ]I/?QJ]HO7 (U!xXq9GZ#_X|f )o>K)]=|jRSZ%?V~57>Sj( ˧t3ৃg>qrOg>rv+g>Vy[ JM4fހ3gJkD) e)ݡz'" OiPV:ԉzHcGQ}f>ܾ+Roz GOpI (xUz>Y:c]F9&>4fRg4mq>Rσ{[ =Hb}((q~G9CT^BR\ϡb~T Uf(O3Fb=٫ݨ Gr<$LB/ Kjn(~ a[f¶r@ìa[c'vm,}M3!Ǣ4_{{@$]O"45%;0gm@GGZi8M8;mPh9\)-} ̔?2b盥ᵧ94_ªàn7 ^.m|*2/XnlۦMP=ΊIʠN5 G}z{vT{  {^tUv[Wο},f;( F8#̀VAQUE׭m@ 'mY˶viq.;r=%lAI^w'V8}߲eFWW<^OnU6*! -zv8eiߦ6a?jm `~n|Uh:i*s.<ͻO msfl*hb*NX $a|^^!xq_9 \|ɋH,J`ovʧ^k}Y_*>LwOsY_5Pw8Wկؗ')#NBiesmheFƵSQTDd{zUQ20PqbY0H@'"M#;b {~% q@\7}yw{5txScDoOqN;ņlOH2s u`QQ"ΟyOVZ2q>K2-c,7uH\x%n}TniHXy?LATh&ºtcog+ӽ yXN(+$6$l4,5A"406dujvp&<ϫl[{Y{H%ɸlpK%cgTƆy5wX$Ҹgj9RGm=KiK=fU)J.hYejgA% T~IFHAy畖lV|3*@cC)H_Gji*flA>kmJ(LZ̠IjjBФ˯ e1$"L΄pɻER[#:#3rm*] a Х6Y+涢!,3@6q0#uwkYF'܅!pmGYﵶ[m:X?lt PvE戮 Tהt] LB>ŊަBzSJ|v:+̠ sRv^WDI+6ƂrM#NFkovTɺaŮB/6xUaf}VFma-J d)-vW@ (%)b+Ymhvuq+%o WO$Eʸ 8)4k{pPޘE KMz 1O=%j-W.@*%DJbӗnjѨ5vc&#XBᦪV3f,YANB (`&MX34"Si?= +zճ \7*݈"D Ma)̒DP Hzfi*xh(K[r_0 LJ:fxKϠyIb3˞XU$O:D\%U!q+ 0> Z PսDz֬I 6=Iu4ūiˌtgr#Fr~e(?s$@(%)%tDҬ8U)@+U0~.,Bq*zZ.ga~ 1 )5MjY+ѳ :܋*MļfQ"N;eZrPUBuwltfqKūV_rq~O &̴ߪQ!,Ns^BX@V-RUꂴH K4r枔`~Rق!n?ļ32BiE᪮YB1(K~~l"?f:b@/oJTPѩI\^+韇JrdկGq;<}T NZɍ]]x7_Q(t3%嶆n<#R1"]C^ M(@峨Ok{Pa׫ʹevXa )ȸH:\lGf%qy F??Kdw6re}GޠF ni),6в(,5AduݯƅeuIh%򽭐gbՆ!]vԤ!E*g*(Bb1%JjYHXݭ(\._b/;;JH-$iJIJPXKhB(0S9jRUxbFϜ, gIR@v;Rub.q+-[M+8 pQ^ymx je3 TEZfʲc *!у;-~C[T$h]wcJ>h Ni.?bSɣK}SQ8ӗ!9RTbO vHx03[sdG)4 hRJGj"I9očG'`^ ֱA J3kR򽉽J1A[ X<3 r1eXl<,B$^jf?Te:PKs2rRp+D@ tiyMACU pl**3KwZf:RIӵqo-1lp ~ !)A4SB~B٪˲ ߝQXd;af& J.`En̲EIC)-Aq蕡 HM0(j#}v-"M>MRo0avc`j-YK;pEbih]a68ZFgR*Ei9- D@:QY(,=˼PYW @KdC jpF#ԐYkfҞU{}BaB5=Eu ѮZr:h"kMxL+G:I>U ς܉9ū ^HQn0 N O 됄*ׄgEwϊhȫVC_'&lҠIvxT( S)k Q@jGX40TV3,}}hp֝awXPxU&IFfI&^4~nY}Qċ`^媎 $R@[\`^de(/T ,5~)I1 $Nb&KLim kڶ0RPVܐ[pŌ{+RRYD{ENPҊBՊn|j?u+??wV+[0^]ŖޔCɠЮt@QG@Qڍhk%f ;z+=m(+&0Mh/IUE;v.l_>^>^VqA{i8G~.S,|~oH2c>Y 3%gUv,>{&T&Rؽ`VG;] 7p!EQsl~LŶ}v2coG2K ¯MTP:?T: _Wo׿eo3~|/t׏eW~zCW++x4+ܿ"]i Zŗ˯?׷}eW  7fצ_o} ר^Oa?_KΥR`_1f' Ξix"o\_e/b=O5y弉󪻍۴:sx^$c)t^ uF^oec{~V߱?>P%[/?oocW9gcȮಕSP ޢhPM5/L%~Pؿh2ؿ?#XKc>/P@H~e zƴ.뀵Bp6kO?@ƫɛ96s|puQXf7B&!PMxA/}@f=H?W3RyNT7T7G} 5#0{ͼwy}:>&,ݸ>o0o8vk'}{q7Ƌ~`6P&Dv[&1n6)yxU:xH1m Kґ8 ؕ6 6gxרy$oōm ;ԙKW?!~ߪ`s-';1@dp,y`;컀'yX?6fY/ޱM3d>C{}t) fy3Ow쟟@r#^2xPח!L|}tҺ!WɖFKc nX3|!ɅϗS.X_hI91 ),q_Oj\XxtBȅ13QP,:~OѬ[2c<'|xCɳ~Dδb\9v1}2Yf&6x!=r~jc"a+Irnc~<)gg3x?GiX|޿'W{eBQ%~?mϫo-}?~oxks}E0fMVdӁ:w7د1cш)C*U@v-Nb=6Wx@Ο04:bL=\\-0^x?8%9ox$̍s<Ч,7_zTۋ ߯i:y2lTVb>P¼,u~5ZUj5ui\6 |^EbXZ. _l1j|UВ1~_JְֱjWWz|.wmzh5ţ@]t@]g@]JLLۻj *V*x h,z1@]uS|^ Z"LꚄnqBu ޯz@M: [񁺘*+ׁj|?B(.Jb{ߡ.~@]5Z e#B]3.ڜu148Pk{.BO&Ҁi@c4F@c::uyӴoPW@] ǁ/F(恺U NoPC7k*#ţ@]G 4oPO+G@]9PW|}uH$Fu7@[7ぺ6P"P"P׊#uu}.uMuMvu1:Pd@] x~tH%  u@g+6 uuP)ee Pu!+RSC်Ha@] ԅx=1>ԆPWuU>9PWTEE "4u.@ԵB@]OuEjR7B s@]+00 |>PW `9Puq?;PW!4PW@uu)mgW{+~_@]PWܿ?x>u +o@] ぺ 끺0 3T5( ցb}'X_u +g@]~ { c@]_@]O@]?W@]=Puz g@]o@]Py@]5"ԅ#PW?u B75"EhPWuM E(@]1h: =P;B];5B]" @]^ uEPWI= 끺@=@]9PW@Ե ;z Z}ğb|.ƯoP h'=P7kE /.b|ua=Tb@]#uoPk#Ej ڀuP7P.JEiԵ&҅7O+̰Ե:.R@]UUu5PoP)B]=)B]PK@]@]uMޯԵZyk k%BAZ"I%2ueuu9PuUηF>PW u 7ꢔ_Հ}5:^O ([!z~o~GJ~R<ηe=3?ڌabL~^̧mb>g?|x㍳^DiYo5*xcXHu"#>zm~b~h>,4ߕ_RSg?]ިT~>~=q^Q#CgxyrR1# foҷڊ2^󴒚A-yCmo@aBfDTʷx$x?=KKQTތo?tɈ#[# *>q?jVēN9D<:<jCݦ'o`~27/3"^#~PP~#ys#xT+G>zB[>U#abc+R=҅-t䋤N>tG1CjȑvҏC呎o)x=D>/GRB*xA H7ᓂ i >*FcGcL| .vxb~|z @C#]_ i;J5e'M>|cׂ ~0ʄ};>ҝ×_ɧRu'zkK|ۈ$)>|2㏷ G39|u |6k݃'N÷?Ҕ,9v^FiLDLDiMPpJiWxJmF ҞSC=)iWQ*T냇 vԈzSD)U$JB/N'RЛDTQ**ԊzS5BCaƏҰD DZ0xXR6e󽴭F @ 1?z(>z( RLLwCQ|Rהnn 9͛emk[%t8=A0[n!ʤ~Vm[nuXvcWtgu@ڢ=bcr72ѭ r]pʪ5B2h~D:{Ǯ I-]lfm]WΠqB1ވqmpE~ѺNFoX G w5=(/ |k zt7h㗈S E̫o4%iV/3m,.bw AZNEMf vVDe B&fHY4ֱ q؅񬋗ԍ]Vp-q/jUkQa4m!l8-OOhM(UfcO*n qɓhZ7eЋ'UuN{e]/Q[ܫa{PMXs/W5g`+ڄfpߡE׋n՜b;:t.4riȽq~ZɞXQ%ZtlJU\ MbfVvM"PaN)zm89cVxJ3]VK)ɗ 8xƽ'wK_a oXg0ɵʊwek[",-{=Z:& f 'bq#XuRTrc3oB&I!5ru% _cK Z\, D4b+[c-jtljϳ[lN;fKM!cXCh=SUv".khї_4&ZU88}i ʽ|(up(N?Uӧq8T7QÊh )[,3(7*ka(*ĩH߉.rm*Xb EU-lNĊ^ZbG84*eְ&‚F?-ɛ74;= .tB\B?£ CmTz eK{2{qYR(}67"" %c_W$L9BUsoGs|D%]4>s_O)7FC&㕒FlSX[P wY G}vVPd^}˒#V#&| Bq6<=s~Vn+7*j';ƭ}(3!q-݆#1 :T-jww$m2Wx| 0`DCqTdѐ.0$iF]14Iu[bY쁜-&6*^v~"T I %Czb;RHc)whKγ 0@v5  :fkz'zJ}?\jН-FiiU] !Źh )BX LJWA絇؄tP3]x|M 8H{BCN?ߎ-&$•,]WkK#iV٨Rup KqlÉSUJ5!J`S8 vdX2i DtU6h\½\p =zWJ*/0F]d5*PbIV9\ HR@|YU#M P0BU+vS[Ayl=Gwȗc {'4_N/6>,e(l@y Hh~l"w^W <ä4E/L$]- $r7j /+:ϭ߱ cEؕZ(ɇHV:fޓOc | „,wWʣ٢%8z^dhF`{RtCJUtkoiU݄֣Og=K5$R`2"e{˨UTTnka`|gs,=LvZeuU߂s$ _T\S@gcPJ;QV,7S(׬.@ $E }˂zEhEրO]G.t0)L(s/pkUyfZ1y-!o ~s#턳SDkWd0 j<;Pؠˏ׬5]xVȪ-\Mie=?:b`q=L?_FT:҄LU<\}~l۫EV d5Pt P'\P,H$uy1ߙ h) 9d]/65tS *w$9RAW.vՒQ®.b"4]pU Qf)m|@ϿZScq;?(@+l>+C0+g!4Keb:-RBwcrٛ86Z ;BMTuDR(]И ;ۆ*L,DP i3Ah((̞*.FmSV؇2؃ 6+fÏ'Iwђ%8*xpi[a ŧ)%=4 Y=WtRW =rC %fO<΅]EOy ҫC$MMīMݠA5t ':SX b9*(]F3)4Y*ޅQt@ ]%>V75U@4%ۧikA+"R>XY},)Ks,K03\A8*U!+ؒtTI>Q:T<%2XR\e$ڢhkdl\Ggj !e26c#-Us,j%&_JnE]mkqr*J01Ҕl/~}UC\.[]o/~ĖDzXdȧsAR[PAB~E-.- gi88K+gVȃż(寰 a1{FYE#Zo/020z ZwnrWW˖ W]U;I.Q,. &WԔ5M[2%pBgM-RR{ 3?w"!|_=CiaNoUE DLh 򛠊P kUĮZ^D%`)>E[ &rq+6D+ Uzz ̨.r@/\->ddu HotLL:^XPEMՈ [P՞rvsjZ *U]Bev.Ga֧_ ލ $ eqbs(UP ?;]Om B? ']R7!I[s62L Zd[L݄/#Ȳ/kRLv~wxf}5 խDז{΀CI])D:QlQW=Л[^*6 $P@{&7 lt 2BiaNjac5"v`\3]_.-D{ /o(5ӓOEԖhSe1:DD_azc4ϖ򁥱ibWRڋMԾE..AX^e%auT lP$:I "M:G0ɓvBhs/*b3A( MqGmiHL苌`H)髬 UU%5wJ7>)xK~QJl"NtRǹk*pAwIRpx֋=\@@)ZYw+Q`SUI W OIwl/( \~֡Eճ]*aͮԷ Y1਩M2LgJJ-BdU B]9]v@(.`X~Mv"a'[玁-p*R4[uG.AL"xO_-Iݡ qrAzL ZϏEX'E|g6|" rt"#/K}gF\J}f4&eG.0n*CaRj;}uKAXD( '84UΛW[_,uvg`-Mͅ9r~ѕIzē -G* ̫jbA;F)YohYZ]7<OH"ެ($J7@-}! *-ŖTobTMi) FߒB_+)MbؚBפpc2 T6mIWPa)t)U`˼88Uv_H|t4kY]$o3aATJ!fg"pR ,y"Io2Hl Gep15UbZ*I[l_twIgkE6O(|ʤNsJ'?"aRvYTU^J?>DB"֟(iNP,e& ;d"I6_ő2adp]DŖ9sx` ML 턴4(dfSݠ IЖ3 +Y4JMhC.ΝN0r.@vgIӚsDA`D;uOIX'bV* ؠxFm EMJ.rR!.Bq2F S]2z/hcُ D*z՞(Ag*Ag"`ˤjѨY;+%aiTh=Q"~rXNj^Rxq#ۣ[HZ,D;1 0JΩ(|we9v)ZzR9^]Uބ+CbT^-GUpW'r.i9J13f[AD vu`CjB)Z?Pe&-r.XM|{51U J0YBۛ@V%1!Hص}dA޴ԭ} !"ktB߹wJ[H `oHVaPG-g\ :V4JBX\_,nf[;#]ԉ f.[#3a9tVt t|*X|lcSzS# %@0uM#ʼuS?[>4?Ǘ̵|aL}hMidZVb2G1FPm)Q8k YQ/nO{;X,hm1( ! )"A [!m{mWZJXXa2fw"2CBigW HA@JoTA${JQر;a+\PvG{"[ !&se]4<g͌I8X/ xܬtdQdCG-T-;B.k\RHn)X)u5_Љ%ќʎ:rT ׋{)aN(@0-UVWRQ aϜd4%*I+eK࢜pjuo&Ҍ;(8!ą2=AC nQuDˇk3hP) jlȯc<ٸ[T*#^dE.sTS[(ocqJET/z S7~ 9BPdKBh`(/a3(T4d K t#Qzbp{SRa:E a7낓rd14>#ՒÀ*a_fr :s~'t[.$"Q,Hp WU#;, z檉hUeFq,9kEz'v鰡S&T-dmɜMhOդv$;.(PɳA{!rSFkǎעBuZ()ئl|dw,X*IiȪ2T[U0\8˾r"[jNMni$[! /)pyky_}@4Sym(.z Pp0 W>KSACS)"Zh\_We.ZH 9 t4KJE؄t  *egeshpŇbS 9iQUUF &~I/v5C\y4`^끗t0گ'3 ɑH9sY"aje#yjquzQd9e&S KQ/&tZuW{'X62i[ ١z+Lf#.IO5[T٭nB4d")+Ss/":* Vӵ k!JHo0O%[QNS "&9C*!2Wykm=EgUXTQ%9IiqeE*G<.dʓ2%>c+'%&=3HceUY~/vNAyb_TC#^U@>|b -wغne&+{誙32Cg 9[ ;B5ԛ$tZu(tMj1d Wv3~W;$E5J!y*#(;EmoA]RASTŶq9>@mƙ;eC}rU=:%Sn#'hW.ޤ%Cw%6uK {>݂$2'6[}mRƺƦ,y (7kE6*K[L4rM:cIq ^ A Hc)cv~,v."f{D(9M@4)•,?~1g 6Z-b!эz!(_,wpAi,r3^rڭIS(k ^.jD$ ?/y`K ;,/2I}e*S2${.T+6V00bF9?^Z`=])sR1o)+q wڱLY-f`eIT\'B;}<Xcj&ًt[N/fٱ6,)3=WMQ-eٮDKN:!iK$k4~c>3.?~)f@gU=bZeX&YGٌ9YdG\˓`aELM۫N{E b(lQ ♹B%eb&sBiKc ~_#C)A.2Hphy^ZrolP\$K!GE՗zQ!e3dY)5wiɸa`=8,\o4G_V"%YXL"I-U~ M8aŒ}>[H{&MYèJGVʋuUћI‚DhL LQw31XUy3(.G Mj/q>êT%Dkl;* XhkQ>𳃸rVT!<~շhP7RS|v,PlDZ,-I1 v8 8$OaYT_5K2xm|4M,IZPS q+i hE$tBlC QY; I %nT6Um4WU{ZJv 7ِ4iRU_87UkhfGQͷ0- Mg~$"zXx8/Z~[ge/ ~e'V%^OhqrT/A%ZV?)s'*Df+y6zt<$/ 6gCI<XwI*]vqTV|'\ǒDVeBn3({CJ ?T |6ȗOYt#ڑ*TI-JB湮ȝaѡ~ C$̫"J*X|O]󭭢@Vx,Q:O`YڱLܠ`$l#|բ)bL]pܳu+?&G ¡m\Z2g)U2\M#tY0 qre9aPnޙ2)HU?XU0+JT*ygJ3ʱM1n#(21YHΐYg_nuy0UqVf*qe |hڧ>QrŻPFj@:͌:ir OYd`FP׬?/k4h5FݺwO/h/]PZήT 7Vlc߮Mj# nSXd|;o 108Fv½W0Lîgma,;y8c7+~{Zj+*[ C^oM.| T.$7@3jc1tS픀ӔƄ?oVv1QpLօ{P3yͭyzK8۷49U!o {1f;Zq} g$/Yj~Y15/[_boJo *_Wo׿A~ =|->|&OS]?PK3ue~w_+?=?g/^ V@~S_׿6|@x endstream endobj 216 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 229 0 obj << /Length1 1370 /Length2 6122 /Length3 0 /Length 7057 /Filter /FlateDecode >> stream xڍt4\6ѣAlFD 1h#BDD$DD.Z5$os{[֞u羮Ƭgȫ"h^>$h&@ !>HA@((.%$ؔh P4=a *) &  @RP{A>@ٔH3SWÞ(AP{0!n``BоH!FK{{{P|,' E;q~ F#dG7 0GaB<$jh!x? +ݟ_`{{; ;P͇A`/ B`^`( ln *`̄C#h 5#4kV;(! p4WP$s Gx>9Bpt7C=#V$jsO 3.\o[D@C,%w s`7(\O4F: 5%]E}h0F p'ؿR@h{`P8D 0w|>PNvA0gI=1#`_B̒1'O#Go|p` H_>lkDb{KNM T?n9T]c[5MB5%3O&V*D.JFyc-C ?eӲ@2sQ~:<ɤM#|A0t\ .9-Cv?g4~Ee&Ş}~ܕ8eBG|\+Fy=> 319&d1@N/Y Ͱvi1nO:vHr5+P)xDM7 [y*?y|y]BY~"<ӫ]Ov-޹ע:țU"by-x%T/1 oY4ATn(ca3mfncYJfw(A c"݃l2CVw% Ʒ= -ҭ?fׂ&S`oٙLyk%(;<jw* ۵BUy\Wc36^k% U3U4ϟK/nUzkkrی໌.xiM3Xzk{J$j(L<|Ǿ jT5Oaiy>4C*[Y´X넜,Ki,^o)Q*ʙ@nAml%B~Koy g]s{ߞm!HqNJb:DU[oPk$!F Qd¦-b w9U 4_8Y6ľ Ys<Цq!gEx?7m$aRB۟g|j)ޔe+3z'NvDD!e.Rr0nRN'8Cr/;RF(y Wn j?/cWMgi[m8Tr\c(xfղg僻-CU"Y{D SXԮX*u1nJX~ūp>^&ךJ)xAdo)+4X|gO["ʮCZ:ɰ(}*=;_=J4\*ؓ5#yhpJ;Hzֳ~tw;%άհYӧk}o]pN\GNm_Smk UI$lZQ띨y<0Ck*a1u(E܀ gYW eBi҅OO9SɃGv=1] Ӳ"$5ؖPMZ$_6ZvB"ctx ./~~{N]lA]WPΜWx +[/wg"LT-]i dיn_TW㶾W0O'BH8'r漝lһNOpLj,yh' Z&xKkdRRApben )_Z"IeEjm ' >VLzo ",({"tB12L[>7])"0xX%+C$ pHC\˼jCXщQ!b7q,G9XDfl,L yj dq oXnN-#+&'ػ{ 22C'Cd:kr\CƲ*b}xpDNq ( iQĹ+sω:'IK9TX\ukw,+wm1o;# %Q_df37W:SgVX(~ff̐ٲNY n[G, id&w[--:/脯bo4'=I:2Kh|YOYzdNM[Uh~!X>pD⠍\)0~:5ns9GT*c#ÔXO8#,[姝B64#}Km#9 17~{ 3(J͙kmlyӰ8fG+ SM#׵F %vgM]q#XwI\+50$Z B#^Ͷ8TI'z"ٝ4=o=XLъRy E'V/^ީ>wW|bxKΈFLl@j3u>8.:Օ镨BsE~'kxȏpIApF&O <1 :U$.1 !$b֮{I#qS݂wIߍ mA"q8g Q|>JS=9ڌR,5VoG h4艳%fhox?nw=f13 9{['a[.@M5J̮f,7 `*%f*umYXQvZ@ҹJZln@3͌2wh3pUܹԵKo zB˴i0K{QrPe,9 t8ƓL2ޡr 3ͯ ;;ud>R_nFd窯r߉gStۨ&m\p n;RmCkMEd;d7 F?fT&Wʴ},Wy7>;a548IF{ZԎgfh%Esbj[t2 8ɷib6{}!k@E%yAF+*y$&L+Ww϶DUrloNXǷOtdN3GhPۏGJM;(ZpV9  _Ωcv0NInA'`JbGӺooRvx< TgWl+/UFKj`fP+rh9} 1?%Xea҂$4ycS&\D^w(Yqʺ6oѴiݥvJneBΈ@?_IS54]n=+ Q|6yv;&*Vv[샆e% t4No:#ӷFs;S1%=KuPȓ:ںZ"ۜU66fw (Kf]B*X])eQcz57S@Z+!]= c57tXFiu*UB *Չhe后g6q殥D!>9+݉h*}@Cdfw9ibъnK^QƱdN@{c[:.A9R6ii"Wk3W.ez G_^m?Ap]ʥ0}*(0]\]~9#MK`V#l 1;;"qdݴi.K>ݪ{'9o 1_p* L`MHdU8  Ǝ56{!1xHo鱸Q<r^6ܞG@םsSl ?m"s5^Jq8*p1C#mfWi2L븖2}}&ǪtxZuaF![Š5;鉝$~gxh#BEaǕaVwIG%猳 &OGtZ?_FE=-5-F7b mDȃ8su5jZ+^Ъ}ȥ"E;7@Kn`Cݡ5cgEAQbfc2UT$w]zi$0̬G&E~4K>HTi$mx-.βeŞZ1dӰV{w͕4zeG8>& c֗q N: V);dځ}7q.) F&zmp3ny&=vۘtrIJJ|{nID쵈>bɰ5hX1'c5[Dw(;'G^@ PT<ߦ 0DCG)Ԏ-t߶6mbQs{ `jwNxeDIQ1XπʦRo|՜olPMxn>dr;+ֳ^|Thم8ORO+"FzrםzR%)d+e*O  W}/򸴔=]s?4?o|p#dˬ:*oƽ9+rF/eh !p{T҇+3|ynأI .<ar[;$5ޕr[i&[8v'Gqˌ\%]/-P+ejTVw٨nrks򼁥QBk֬'n=8{;>"ct _MG=x)^d1hEm4̠Za&yÕæުN˻W '):lҝ{R?pm6?jƌs[AhL7nͿ='??K.1`M<j9IG6>^b7~᫅e]T*3vA _(i> stream xڍP..ťC$P+ZݽP( KbsLuyޏVKSj RB8yxr/y<<\<<|z`7G +  t{ݞ ա#+$+,!&z\((umܞ/Ŋ+**;@ [!u) ܼ+7'ɕ dx: Wd 2@5. FO.`+b t ȟjppy :9!`-h*qyq߆@GW?vZ>Q:( >uWV0++wܿ5 P'Ss( FܲE a~?H7p,uAn0p[~m/  >% FPwؿOO: >r> > l^9 )) OuqyB4 ߓi=iӪx@A /Vғsk a:+"j*kMvR&uoySBzw5=Y|7>_a7Ą-\ա$=m8aP5$+w.7_yli!̍v̕2El^NRA%3@H"Zh!SPlf RW>p2TO(NMlkD )F5i}KiM5XGzWE' ĉ7T,&a;ov{Q9(Zm׎qĴ;0G>Dq ޑ%3BZ.5z?bg0|ε[gݪ}U+$~zUlh;H@wkOejLL-xnke;!B:EdZp^`@9r !m K,Zg*q-x& /Ӟ5Vg-:ΎQj┤rLmUkm`Q.Ee4AubD1cqOPE |ݩڱJMp4.߶+NUSeQз=asK١FZx6/_ӌu$V=ӻhNodS<,{_Bq|Rug| ?8ppw͕A6g̝A;.Y-%h\xܩ ʷrL{rұ 40INON_ Ve3DTqC2TJiI=^Y:.2->&aYf+b6%E";ɟ3wpK*'*&N4T*Bd 杂EP4}]'vB2VW=pЦ٢\e=Qb? -Iօܼ 4g0i2ߨ|grMwR6l^{_F <-#<$|)vx4t\2/i iv? ptg~/,%!xZZxfTM'=xtq=bE[{v/ÂY?|v*C*9QN`}f;yҎǨ~=1: P;oyF|] 'ڱs`6J%fw&&YwHTQ5@2)^r0 ޮbq/xO| +AY)Ъ˺3\|dd弘JJk%=ZU^;# h])5 >de$U[P]Xh6'p6`oܱt*ڼ98H3׿8Z Lauug'rl.дSfLrb,\1NqF0J:FV||fFqD n,7>fL!fzbE\ÝxcDWi\Ec sY`Qgq_4ja#j̜V1WJEz;̙K^a3Iy<άVՠenOuMyWQm_}]z-|kqg݌Kvoξ2P}S2w;'tW݋w58y qYR*u,ΪxW]q9iۏ(2j5buXT; }[(P#~{&\-W|ʹIRml? (c&00'P\=^ī?b-P0&("=.Vh A[S9 5^nfU]xue ~\uq!nhf|ïz:s9jLSU7e!XZ M% aK_"wtEWQ,)4SA{fCƞE /8 CwK8TH3Ma{̑"˂V5ez +2 os ݬ)D$x{\yed͛:ʀ"Q -&>v~KC󴈃7#ΈؚΕՙӅfϝio{G"ƀ*OeX9\hd\@, ~y|!cL[fbgDB' ضq0^(@sx.)Q}ꁆul8 G]8B4ȥl\P+7Z>hz[zN΅w0J35uڊ 6K\ҼMd?a1r"$ FGzqe'|,^ 0GCTls"K<[2)2cxTmC.wEDyrh 4;ܩ^/ ]Dܩ76ZЖàv3ft#!sv GG2wtU"}0\#皿G'E/]mRu1әc`UQ[71 >ad /-- U G:Pn֮ȗ;5Cx e(˶R;AB /.Ii~6ilh Pv-v[nغ8e:mnTҊMx ±fQQr,QGj|S#ҟyNZZN/Z{YAR /2\Zo- 6t#A:iB72EDi5pe6c0!k1+]܄?5aa'XꢞTU U{^h)| <9? 1D;eLCyqa;pJFu(29;#0rlž~OeA'wʀI}QnfaD/2;lTOvfr!1U,~p7Nv xqS[4; PS+r:=7* 6*\%}FFT̢HFX.>%vzwnݍJ5wFxM#ݢ-%l곻aG MDqm/÷A?rQҰ$E ٌ;#ć FUm3qИ,&7bQTu-~EsKY56e`"@OSS+sbCӡN!gQ`&EݾkRҝQVe9C)im3`/qrOk>C8W%i?"M~AckfzQ()M4xK 4‹Gݵ&0dP)UP>dm BRWmi1#NLU+j篊!InѲE%^h/7T-7 ]( tV&ㆳeHm4q!g\1UF,6顧Qj6(^^u~tbT<)^is$.ߐ)S[N^c"9RS v3+nF@u5bҐ_|!vh5\ HM-=`]6}(w5g79uN纰kRa rκeJt劝#˪fnfH9)|?ח#7tQȘ,)ͺn۩gf2N?[Ǧ5mD ؆ζNjyLpU>#ϚIR'1ѝ>vf*K}kBr_\R~ lmȑ`R׺悇,i1Yr"pnxeØ-E{-I0ޣ~Z3]?FNzA3XGij]7-:,}kI h>QUOgv}v f'hJz3-=lR;s88UMo;e%`uA7N`̕N5Ҩɢ`:C$~)!{/JZ`[/CBiќ}jK^SKZ.rp,=w$x!)4J\oOmK];^ {EZN:`z~ors¤qq' E,\9B7ڇ*.?eh_YvlEdKZ2nezhjY6 e k='a'MclJcH)9Wi7Q 6:t?X~DX1ILR8-5l~KPN{e/{ ,hම\dn̼  '֨. ʞi}.~>j-_ų*ۭZM4{)qO{~tWͅzK%"QL]}_rAc,ez!-vzfIevl̓lfǛl wޥzU'{NVEgJʴDp&׋]!dd5fo]=_Q3_'d$sv_M{n yV٤3(8LAewDlr/֊5kT(:ǥek$W#66*#}v=H74w5X.s="[ $K' l2!ugJwl>49ޘ@3AU v +|;S'WmNFNE2 m˹t@S6W5Sۘ?1{#N)(pwUשiC`h9;D*1<lPep&gë-}B[.;(2/@\x_J/6@dG >p6CP]Vt>=/u%t7Ϝeۚ` 1o^>6XF'.2= :`9f`O$٭ ^t6nP_e*%vt(3⍂&W>#40pU|B!M(,#U}K8F /[}\_..Q.ݵ0f?$g%ѐb+^r*CѩvbpQ*v|Vvnw{mY?^སt-^%P(Ǩ4zXT(,(ymgo_ӎ1lo7zAq kʹ8|^Q di˜YOԥ}RKfRa9eTsyŲs趄` 7/"*54Ϊ'AfT߻_37k7w{盛V'r9Vre-&*l3<<֐#YBg뎽ۀ׭LG_ubtht-{ERFBq>p!iL{^=>57 xWS?뢎u.%“6d]Z;|7]CkeON:$ztd4Dץ!wU;Õ"C]:Bez(Niq;(s4:UiG͠vwwIt&\\|%u^nUsQ( o5|cC,ʋSP=xNy4*h'֛IR !^yU 2/<+30\kJ7fGN?r!lY}zQ Mg>EQm (95( (| ^KZǜqs{r"qm)/+V3b57iMW7^Hidmeoc|LA6ӕue{ZxmECg*<ؙɈhq+.~D"HaL*}jhueƪ`RI-P977>=ܚ0Y+&}grQ,c3;}r0, [i]l|"E]AXJ{ma)(˺^$q5Tu&aHs QZ AEkkV5]Q_U| cSgV\v,$wQDZ6u!>[%D=]zIbz.i@(@>> jt}M_'jJh-IZXdb?T.p_-PRfYU.2*W?Wޕ+H'mMyƀYs.;5%e{G aLe0yW]*Dw]pDDۅ> ,;ChX|Cn4Sl~,<؎c#ܒ{yYz.|7-лKr5U?GW?xE[/O͂pAdUF[@]yͷe؞;v/mn}A!K2u}yc/p{KI-WGbCjQC6ҵV,2转{gZn.|)x oK^s|_83[q}ufaҒ7]jMJi}ˇ!^*0Ѻ0IZЩ2' nZ`K[=૥ז=oг- t?[y oU )a^"\0ʰi<42c1o,VY o4*=ұ}SW 7d*&$[8No n PyrQ>A+'KhN+qEޅ s%.QHZ gVÃ8~ÔaAC܅s= -^Ƣ!7`#|bNi΄sL*2; XGUf{'R80d(wq>.Jb 07$,뺗xĝ'de8j$a Bx~4:$Ma c/립 Bk9^X/8:o"BZx UTu#0MZ+M:{P*8sZbdd\]J?\7;G:D%=~լݨd$6U6[ھ)BS:\{2z&>:75g:՞PLOl_ׂ^U< endstream endobj 233 0 obj << /Length1 2075 /Length2 8105 /Length3 0 /Length 9356 /Filter /FlateDecode >> stream xڍTTm6Lww;twJJw 00HIt7H#!R҈ ! 7>}k:s׾3-yxܼ8`_!B0pLGXj@!Uw'OXOD+!&PzmU(,uDlD8A0 @Έ6@' {'" tvr+Bl  W} `xo [_Dl]x `Wwc";=\ /_)]@|~.PlB=@8` A`]tdF 0EL ߷'!B2"?>z"r b.;(@jmbyo,M(bvAQ7A<ߜ-I3oEM@p b! KvS{lp39! m%pblb4@-oZE ׺ 01QBBG-0x!P8p~G/$Qx0G_$ѽC;$1C?"x"ͿH:!DPWxlA@DvwEځ=#$w.rܙ r:U`a@ r~"֗."4<л!_?".wjDH}q|KňrAl'C [k?r Q+ADܜn ߥAL3Dt`y2ظ࿯-Ħ@ / F"黐*9ZO!Na[{8N(ToisND2+P5PChE<pc AQᮑbzI**)kS޻GeԄYZ~D/J@n᪅APW1P2xWK_GcUipX VUS3GBc8wִ&oE[?_:ɶ"qDfqMgbޢ.ֈk,^EM~r|MOxdf.vCBv%,7gDjs_Ԏx6WS7;ip$]D'FA<'ЛD@"*-b9T$l)U80͛Kzޥ,cz-\f6 (L1ax~ĊǼ"+kQ]OYK]ᇹ?FnrSLb8:R S;ؖzVxM>(~r/Q,gX;5AqW?Ł֜"q&9׀7o$%\x %7mosfŃ޸%z SphXXU LOρH*VٳU^C(9^ ܫIȟZY ,0~nrp yQ9I.Q4O3i<cV|IjV\#S߲ʨJ\r@ϤBQi91f"C Qi8K\X@OE"iC>&$<Te;bVв"QOGD&Қ:A'Kw~ά`D95Yp?zcQ6sZk(eb-_mrdZrg`"+WӱBNh96Qz8 Ӹ)XVQ#̡x+L t[S!T~0rO4mbw;4{}ٹTI2aRyKcgq蓃փU+2N|>7f drJ;˔#+Ы}&E s:dP}r^ѝ8\ImlO>}Sz,>J<܉ M.céǕ5Eyj.UcivHos.dO„hQ=P˰QRlAviơj<-Jd6xU?hIgLqt/9 Nϛr6Ha81'AU d_7]w0Ezx熙TK{r?>;Uj4q5gT1ēHCgGUn sxl7+!,|ge|SREV<UȄFLgpO[s9ګۣpUӽYľdmM$.fUEGT{.ZQLɏ>$QA?oLC0q^acƿey]xS2$݌o@,]┃ֹMcRoXu9A,C3 bQltzKVrĵlFhSӱ)ҕD鑣ձt<՟dtl`WuOY:VۉjCN.h1 7 tgXӘ^E' {top|]$H#T&&qm ks^ltBf+tklaFX`Kn0zs_0@tѻs2$Kʙ\+:$'0 +Ҥ%QR:UС{4Yk C!XQ8bG6 }] Z!2E9;9RFyK{lX݋ut4B)E)&'i;S&i )b5ZOAMRܷv"cb>8ZBo- Vt)]]{ ?Ujf}vF(w{ͣr4伡:Ix_#9 8-}9 Y☽QsL̒`U M`Th͓i皥~Ys)&!ŵҜL ~[-lBܒEy:,mIYA\\[ƶjYvO:%ϛj|O˅#`>YZpmaN`6g1TϽCm2$7%!3J /0Z2h ~ܢ]"IUk$BR ^;>Tijhw5f.tfZR5k{_+o M :O$6EkO΍}'iO iBøIޑu`$"je!]fMt,Kĉ9ns%P|{\HYNihjnpǠK+(U:η33T& tۼi̒?>aU v'.5ՈV* eJ?QU̷?2_e܌ZNKf{㰗Ѥa %~\QlN::0-YIQw#!|!y6䁗O}_朙2R{19Zy:*Z(YW?J=um݆^^&뜤yn^Y& H[5E9,վm+ưfkچ_9&|[ҍT(*aHg)] !NcFj<: C`3z)?FS BR2~]T ],]e@,;DngTElidd>EH:W-h urD%=5>!}6`[ Lrf<ۯ#2+eB58|^qjV _j02i̧8AQ,J8d:MfDodJTfP/@=d`\"|i%aes3@$̧>^K0>_x#!ϕJdE%@F{rk!Sΰ}H{F&jA#ę[5oeIP,Bfc8v=9QgȓbĬJ#BWjfi$=d'n&좲f{*)Ud)_fȠ6#1c7\qKz_;̴kh2N\]rg,Jǭ)ee+iz 70>0a͗s[UL&nЕubn05! 1<\ROI"#{g= \+OW'^DF=)(r쬎!?rПY 日mZ;QfISC~L>CT,,*Bq1MRגs &lW-! {Q{UX%4X[llcsD=Pf6 > ?8Op&!tTjQaLލZ83W-sb7<,s+#fJdjG=;TQr./~P^=g%U^ =xg ϗ\̤DEV6M||דLlN"bAL F 8Opr%ɫDZfۚ4ji:FO ogb-V'H)! Kr9Y \Sn6ZntLX-82 !\'Z Ӹ6 9ތ,}h@"? [ P<ez$e.zd'ܢY'&crLC/Ίg OO޺oi c h25$,oҘzjh0:eA:ZKQ^qC 9>qyï0IhNgΝ~\@Ƴ1[D;ύ¤?[yl>kjwX{nad4ϑ?97$KWd.*PYN2<ƒ"P=,)u#q∷IVS.W|Ш#Us GJ-9% ߴGq2}֥$2i3+;< Zwp=r=XvEݨ\; '0,b\elo@ Qy9͡i_ff/m}%oۃ)ی]06 nq:4G=Rp> ;?2 #GbWFf*g.g̊x+@$hkg ߣ^8{jOj(%^ N3q G\HmUb{}6swԊJ ELx4v>(\h?PZL>Dw,X2 )/ #waqa]* tt3dإدdg[ -|U5pC%25|Cb7`q2*_&H]դe mjG}kK=jJ1`BnO>ylѼ.nFiѴM[kXzs2_FdV7'v\ԏRL:z4ı]uokL²Nݲ4OWcJClĤmXL9 uF6=G"BںmCU麜!i*`Cj(G]("E3ZWk=ho YmFl}{Y2rV6'B$ްƒ5g+ ;LR!ZVdYAx5|X z7U…ۯe!!܍6SHFі\Zx9Z\ d (bJ5Kk&=_, (JJΏIT54KhH4#C'!&9a{BԞ0J2Fib ]{Tm/'Bz0Oy{ 3apSVnmXO:z16}WW#R_CRzEQKJyuV |YO@m?ǛSPj۹WKKZb? 5gvM1gIH#L ~T(^nPBtˤ9xDud=G!XaGgRm-ڌ9F9ҵ1Ѻ&^"j\? endstream endobj 235 0 obj << /Length1 1529 /Length2 7529 /Length3 0 /Length 8559 /Filter /FlateDecode >> stream xڍTk6( Ƞ 5!Ht!RJ 4Ht =}k֚׾ 5wFsy@"Y55e0@D,,0#oED"e!BLO\`>XP,$xA‘"9xwXdO$%͊~X;@ YAj Aў &fF#D@www`vm( tZ~ P8ACеRm$aVPg`v(4P翌U29p9vXYgO-h(=\/C# A`K!i-SPVHAsֲp''3E+?9j9wO:8ݝl`6ʰvEa.Pe?6Pk]O 덀#620(qHW+-k` 9Cm1G<& ЯVfYÝ=1b!矒{xܼ / ,|G*;sPl&`p un Ya|G_QLߌ\2!N0G?꺢1c @]55hfm1a(Z6z Մ`?:̔Y9` (ȡ7 տw[>^Axa`̘ZC=~q1.L;8W% v`brð GpV@D`Z+"xb<&Uz9'}nۭb%ۇ|tM-d{l7x{!+"dn҈cJgٵovRz\IHh`&+(v뷺jqEmme{sRE]t3FV& ĽC,!S[v4:X#Ƕl& D=t^ PZl/$O!}i2!:/P|#11\O, ă2[wg/zd7 re86jMtڧkG9/WV(驤s+^Ü,%&QkWywD(ZpNrzܻiUIE_pZ ϛUHY%?ĉm47٫\gvhr{W%^\7򶻾+ 2,)䴴-Ѣ}7󛺳Wi_.^KsdX؎jVTi1",7>Hvb=n*E >=+FbE|Kmm1?I6fA`0{8 4w`8~€jU#}R~l!=C aOjl{˾8eZ㹮}ؕgF7T,;c1cTy5̩W&&*~KՇc*QJd.lTql#Ი@IT[\I Xr>cPyiT `_=#F-ԳݙJ%[gt\J!j6s&64j|,?J*H\J+4:Lhgo?"RbGj3h =ӥTJ 8PkҸ {H'땞9d\}lŚ''id#'aVq|hЕ%%ɼ?Ԩ00tE9 jZ+2sCKrQ?jJ'm'yOLl&Iqs% ~2lpIc$ &'z<ٞ/hAeՋ%AIS$5AyK8vF@Ö{:ymԝ*Mm^?ߑygCI?< T|S|7e7+;u'Դ_}{pFR7(8YkčHKݬz]G\PV( \=g2}-+Kyr=8`J*[MRg%AvI*9GCUCtjDó=  2mz=xؒ9LOffKGFKP$]Sс_yU8MJq6,jK^AVZc.)%VFĮ4P&?+e ]Af($jJ"=do{ /ިܯp7ϗ~ӸeYJ4!g:37WNo8 SIkh=׺]]J5h|q;b8^bm9U/|D*7 vJ/LYXۋkc Y8L4Ȭ-%Llj ljF1#p_wnw9a'ٍ6=ԆQK}+"wh%٭gӀDrK70h4rt[#?}xXU:^䅱QN?%H~ʸ `A )S,_ž@5χW^^e82X<~ʦ?\7~:*ɠx2/[0BaS)SSk;'!Ƒ+(tg[?p1CvigQ6uy_LjεgCk oB-w#d+\XC~VHE4{6nԂBHLTTf|_]2lw8p8/H6eB!)lӀף4F>z? bz>hm4iö+B,|HrlmR`ݐ ȻXAg,8)n*M1F|DDO4[~v58F\JeceobDَ _W{st؏>Y@yCkqR-EXN\|F- }}TV&w)rB|;jOl#MJeؑ,CO~?NݿMqBOQ\eZRlM.# <iKl9 1kj%" (9&~'@nџ;:YJ9kq jE9gLJzTRM5EE_7a0RTvB^} +{Rފ8!K\h3IDCvmXnBQi-rJ4[9S~lz͔O n-4Ry])]| /k\ { Dv,dܕj˫Xq,gq:CP r* skh;$=Zrx8s/{P—+qMORN0y,?g7{_7?MjLePV;^J1T5v<ƋCv{/fy|h9:8I̳g^¤B:HkH seHػd*5PCʯӈoUCGA)a>#[\>*$ 5r=j Zz"I_'Lx";DҔx.qezxob:^ jL/ KKὉƊ7yq)8qɠae$:ǝLb.Eq XΓ^TZ; V]UVAud9߽Ȱ3TiC& ^+rwDU/Dtl7p = }:N^cMO[ݓ·죯-W9(}Qt\Vc cnU~;Vyx,%#cM~ wqL3/@`lYu9._{O6H?-OXz.Mϧ,, F 5cUh] =~ fxu/N hrmU)̿j&^{C0>|V}֎I]\KnysA־jQDwkZ`ٶ4^Z"*<[f':"/(n.IγLh[^LãS7$"IS 5J > .8AiOͦ!Fu7YWopkIp  ٵn(;|n$EKa uRӢj 0E  j$]Wl_l!:mqzw㾩toy6t60wI= d2^$=Ыܼ+xu94j3c*{ dyZ.یڑufBלH;RMLr"XdX,7) j ?Kҿ&8  y#+4[9ypQbG/jTB@ *ߒ>s6JI@y1W44wp_;hscv'Mۆ,\ymn@n˩;#78v+r+NNMX {XC;&.]x*"N:>Rul9&{f:fQŷ~is h}'K yVy&64Ir6w*gN39\~jv-cK\+XA^ADIkxNq6[I~uNg/T3SҀ0u\jBy:&9ANhPXA3]d7bkm:ruK4X+%\"8`[ܭD]9nZoY_SWF:cY]1/'rnZLHFdc-6 Sd\Ύ U:x}tM X':n/[ 8 ǛUރӝċ2kEVӲ}Bϫ&O8VS-ɶ9i&dT IҋwH\K´M9O7N9weHLB,o`~(0h3WnxDFx% [WLWd@@W4/s@%A`[XOPL`b,l.9#{>>iY}C @ A{C0yڈ|XLT^b{!f*B!+?.Pgn[ դ4אH,5wHx!P&!pMҧg_K.q8p!PӀ<0j"KE6VO~mu-!T߾j(Vztt:͝77jmk_ȵ~!Pa@=Y H|f8yڕB7ANOQY~':y$K#&}XTdErZD%kzg.8%f^"[:~y`%~ܤ`6"D +r@ksIq*{U~ 𽙊Q18V'h' Yz!|NboȖ!-J荂@{I¬ҩn+9jZaV|k)޻cX Uw(ʊּr7Tmu)s%'AUJYHT+n^g3Z_B"( +>5pHtfiɻʱqdSNTgS*F?9OD͈RG }H@Y z'ͣ9%&:RVSUT<g"*kE&i7n 1q,^;:l6R@)Kl>76]Qˑ`Q4ۥCbi~(Rg>D<ɟɩFIYTy0rʾ6Vz\,]scjD~:0a}}$d^l 0BxLUVr\z3@DE⫧&/V299`wCb#yLrtsm{(c4zK(s2C5E5ۈ+,<0dSk|AOO]1w8l_O 9s킕j?~O--8ѐD0StMZc@-c*$d-8e֜wծaAWK?*R`Y1oI.*{A$+(E sSBs,ˀ.\d48mQj1~4 ]C/7PA%U8t1Nj%y_S>VpN] endstream endobj 237 0 obj << /Length1 1346 /Length2 6029 /Length3 0 /Length 6947 /Filter /FlateDecode >> stream xڍwuTTm>]* ApaA )$F@JB)nAѧu:{_}?2 = Y@UOO[ @ 1aH鉂m1c=@Tp'N!0h `IY,@21XY@ ⍄zm Aq"Wo< 8/4 pm] @v0pz Dv@W7vH0 h/ C!H];P6 lEyz{ Qwh*U .O1>hE Cj&rtk ©(9= (wP'_)L࿍_j\n7kDq 7zo `H'wD)S8 `5@0}ő AͿz۪%)!߁ !? _m4HQ/O$ccp$^3+N.I  Hߟ}\t_Zה/?.s%L0AZZ2AxrVskco=jHX.G.3ol\q9Px.ɤswԮpzoR1yG0Fǰ~] IR=%7ntKŜh[~ Z ~)-CSsE< ue<;u;vt(ďk ^2Do0v'*H/ }vm~-j`v A vbIg{?E}T*4(L("̋T@r@H"۰Bit;JD,M:;޳gIk竴v6C&zO>Jk `{)Z˔^W`b. \qKLfuȬw< `ZMuF!%^>{d]v?kU9JDi' ! )6*2ω%za+xw.P6uiW y5k7j%h!iߙ~z;^Nn`$Fg&Ċnl7w-kA+Ɯt%oI_'؉W.K  5 SGV<ƾ=upgCuO=҈֓WW9=j0D!;GvlDL>Qn &sؚ@t QO(&A\]L曭3,/OidlnZc_L'7:nPkJ }7ƏƏדU&YVVj/͌-eg)lm;`+ ͮ0.r$bYbgGVYswYVNUoAŚy #t?2%gV5ڻ&B͌vo$8yv}aE(/`H;UZ 4?6o4v8љ~Nd6V^}i^'Ǖ0HR4vs!BL3RQe׫DDQk _FD[HŠ&rmsX뷭cW)ϰ&7ZV\SjM+B5A8ZuXcc)Q+,62EE||i|6A)e|hdAY'pǏ )I3zClN,:݃?H|O݌4Y;ؓqݦ%ᥤS_pk|γ:aa1Ij- y婄 =9"y@'d7TX+~DyۜnоQg;}]Ř" K-ȴvF/MhLVβˉ)'zmHzC.VP/wpfrvO=pb!ym$]D$[-L?mV zmж?I},II4)ܻX-6vDŽǘ/x:F-JrSlߧ|5&xjDW\A$u:m՘(Pf_:%YLbؽG%.i:~qC56_+CP6{3-O($|2}]|u=Bf`8> [Uiev-9e x;uBޒa}uc ͝Ypeܰpeprn *X`|z\8ei~sӠ'^h)hke1 yg^8(!Mi2B#ZX䍈[Iׯ?y1\ (aSuw]9`4 3w j1]sغ [^zͧԧ|2|kPFgS"=~G3 n?gh`jzg^%БS7w#YAҘb 'VBJpa ^ V5eW̫lZhң Ύyxq&UP:&DTϺa`=o=l3 |Ć5}|<۟4+f-XeYSW E[iXpOFUmwfSYy)::7R X-d>kW[oV}v=ƺ^32ֹ>ik~|nLc5.' ݹ1j>'!6,AGYj\.AZ3%w\^w$^<̢9ޠܽrq5Q3/:Qf/4Sn5LD[ KMs+n=c:ѕ:g48.9T% v~ӨWGBm~X叜Ea\s`9z|Ӎ^=fijiUTNSA7zÙ6s HG^ f1̛j?xnMI+Xņ-fh)\ *ڴ, :X֮9%ܛlZ%1ٚʮq0<ؤdP)b:(fwCdAŌGnngş9p/0/6/ x\]d9$ 1Ym('Z6 90~)y- ~VS6j)OVm<7a"$RJRI497 J9:? Jȧhחj[b3I oߡP#wae\]1.z/&;vhRŜ>iOjjkηd ߵn[ o^3Q/IfP;y()נlndƺFX=kbәx7gG ?+f7'ԿFPBe9/Gi8흎PͧNrGR{*r:%.ObCwW9wJbsȸ\1EՇ Rt1u_Q'ܴ/(h4#61)zqT\dGx#:L8MZ]woxdfaJ5bmC[[S-JF #o&cV>^Ω:2zEa Rsmb6 [b ;G?P;d*J2̘ljü1[.U~QjvY)?&bCx5iH5Wy^֊8"nSUI&uYp>YّyBc@) <(Ta핽2Z|`5!L%W~fO8g)xZ KC^g$JU;ج\mQl-o>ҏג ީ\9z[|96=9<,hiDŽF@{k,\5 muVZUN:' H2u(͂gd")O_Zr8U|rs[%Qlylnwk@ٞK,b9QjhasOLXV9Rt؋f qeIK@]dÚj›:SzO$`bƱ&3ȓH@C^"p";V5']ÂQfT?P6>M1*AQN$;QHm, |.L#T\#;Ӊ.ɁWZD/߹mD%T9QsP{'tG!*;'oNntx UijE[镟2+N Wf>Pq,~$=7ȑX36Da)y;*Vkx;ù\icJFo۷K5'FT(KJϘ4K7>PVtP^U%*>:fl(u67KcI82F'@{ΌKm|91)&^u@S)x^p3*aLXQ 5s~_22p9f_9Rc;z#ݜj~QȐk[Fu6/^H؁ ^|BsM+4zT j˕R02s"ٚX\kVQl=[t&Os8lea}/|6@ZkTHV?%-:;&N+#/G_w7h_R%=6F>1ִagyh170ZB7up45ܔKbsTU8g*u'-QH󵇞JJ&i8Ȁ2rX\TZ//W@/ :Y FV-ZYPhm…~@, n{OCwQow H]W|aq5ō !rnj8Iϫw(Dk& LBc7Dgyg5|9z<ԽuͯD'+U3_cZ'f_/Ze;IȻ3f6:D"L?m\}aZ31OBYTՑGښeoDo`Zl=!ri@]hJ CE[5nN4Gq⍋1Q‹}JFdѴ[1,z VU*-ߔt?^%%gUק;Oy ?6"c*nk9lAp.#kS@5d' N,s$|G' U 0#yv/)Qbd׍Yg0_H a I6[džbйa^D6NUŪhdͱizkk)9ekԳw _f5bUfw2-L;vS6v3NԎv>qnrHsQ/:% *Wʬ#GAq÷n,>t畊ۚz! endstream endobj 239 0 obj << /Length1 2502 /Length2 21033 /Length3 0 /Length 22473 /Filter /FlateDecode >> stream xڌP\-w@.ݝڸ6.-4Hp  n]^ɹWWTAicZ :)P `e`feeGҰvGHX;:a e&`;EG `geCG?@ st R;:y-\4@kF`a jY8M\`F3;5B Z:xxx0ػ0;,֮V5 4U0@OëT +k& ,6:=́ .Pv:c#?1?v`am(K)0z2L24sqXۙ  % 0\@N..vWp%.'a dm=|,-*͉E (+ bee@O3+kx9V%W  7ϟFllsk3W)wthd c?eЖfubb&NV;+%0*&I_Y G?ق?ghstZ r?.WےVMc^Z7W(:j9ZEʺA6ZHY{U]ٖͬ]P <-^ɿU@7_' 0LC#.́/1p!5Qn._7E7F߈o"Vo`8,'E7F`v̮ٕE`>߈#0o|ZO_F&7g 21f '_{߄L 80q=|'; S!7 _ֿn?M,2~s{mdt,{nM#wp~G:=8ɀK . tyrGg~r9'Nvn.K`zg7Gc忧dw . w/]q,M ?7 oZS c]=ppGgހ=^@p' C_O237ծk?o@' q~L [hWQ"wTڟ|Anp骳WA7:ї6%iEH}"~$6?>%o7#΍~9y@̤!d S*ٍU%Σ[ڳlq(|f[u[l)V3F?x*4{֕-<='$WRDDXB5i vvJ]טC>b{rx>%KsMQӖЙ3բj܇ضr?BizkJ@8FX5{mb-7Z6i |):^w ~=ĖlVzQKo`\ڵ y`L}6tApU֟)May`p+L;;B`!iN)!o%FU~*lYԋT!ikSVk{j J?枯DR9@l(ix>_,$|o㦼\gQ#Rl n]'4CZvtih.Sc 1w2x4mwEOeT4=s]_Ep?\7kU@B_Y0jh:!#R׸˧^蚝$5IcW_IK& ̸\}Gbո!Z@\9 \=z#F-4r$RJPȀ:c-@E `X;vHU H''Uy~.kel%7tr?LcKC\$\m*lo/߹@,p75934!`3pd\+Ox̼P:éNit+#imNY4! E{:C>ܫ)3w](g rw):Ktx҃>&b9$oiQi»ؕY'ҪeU()*w}CT)rCn+nISE(=(|?GJV SpޮY~v.݌zt8hMi5Wo2|33*RIL`>QIxŦ/Nᘌ5C'~/:cY*YX^,=*\9|imp JI(u)iw4I[C-OVJu3>[ʘOl f80EG" _*LX??gu%&X\we۵RHhҩ)paf TjG1A 6>D(ڜcFG햑K"d6 qb+ז+w`yna뭉k)2aK69iw/M34E1e=hޣ1RverBU7sZbb~Zt o NVO0qq [bZUZތz޽)7ywy[z{dLrzY X%?4&'3UogD,9eVULǽ 4q~-g#/ŬWd3u Y.BTkDERfVYfl-! 9 NݚڃԝF68;Z;˪Ӊeƽ_&lx_|ZC$C|LTxʂ/3 9qge w%hEi>JYd9Ku;n/9x) AyC/q+vԻw:۳u4# c!A k 7NqD޾noQ^zMˮlneNzs) f/'J@B|+boH=d$[ B)"Ӧ ~5XYG^~u6tX~fdSS$Ʃҏ|+OX {؝Jo]3ME|fI}t9 :Y|2d׿ʤVt ٷ?wy;;HW{71WS-P-׳]!M x #.F[z̓!lK!x}JsٯHF Mv'ckJ F^^}8)\5ы S =~X&F"⚿|ڹ[',׃cKI?6R+sbk{wa>nI{Uꉣʈ*W;,OFgM`UEg]O>oy]Э&fVMgQN67.7;'اQpXq͕hD%,6_zVSN%˶fT7Qʬ ~lAf!>s)]9,u£)?m*0)8F -Zb' |;.X9vX"NlDJٳNX0I=%VNٰ\gym$-EUgҾ[ tg"- W;qa4Dn 1o6quv.:0G\`G;zJxm{'%.yHg`/]܊ILjnd5[ϞݮXlM8ٯTGdSS:% %H3߉ò(.'`X驆+X0m^L*:ҥc$|ob ޔ@Fp&-"e% !ew4 HDop=Rw;fFmӪS)w2^,Ʒ37e DeS_aZN x7j8z.M*EɼZ6's <`RMG_f>Xqf*$.MŨܥPt"}tSШ]k85Ke3G&v, ?0Gjt=Z`/E@\{ % Dy2Eq+ tPuǿv$Wg#dT2aE9jC)^ )gt|l9|V}X!ۮ{ʻTvºޗ1wyIƩ O卅u%TƩ'?\ʄj5@3:^djưҶH;_=~iy`9lV';.؅kb ꁾS=AggLp~Eaǘ['K¤1#/2 9P?J*Ey}$Y]{]md_%YfCo>?2`<*NEg>X'k"[TAm_!'ރ9YDyK=1/'PsuR6%7uB U i#'™47G]RxZ 3 .8/_ YK @ZUTxJ s132?)Ή j[o)D ׎$}~x7^,CT'E>"3I1ۀ*uK|k8 I @ "6<&[T1T}xU.Eh0O$-Hk%klz@{h.6tݼ1)tF%,(% 1va c9S]W$8ˬ5tVk3AMR VsPt0L$a~όHJ8cWշH:Hj0zΩ3 }s//:\xRF!К94"BE4gйeICwneYp'}pO94{ܶ,濄] I&D?if=xUYbEq_3(l^‰sC*jqqDajIB$U){^xt+LשcEZM۷wrϜ#w#Hѫ5oK~_%$5;Z|Gf6ޛ) z©jz!sd'D )S5NoiEP=?Ea3c%1u.𻐎ZزZ=-CRxEo؊=:0Cl%2Pew`a85(M@\VȘ%2m9*K~8H`vYP}[%zJL&{vlbH}nLFXgK{bAF؇ϔTM;;V$CG_ (|̋9Ghl5{9P6T/2&QzbبYU>fxCfOLuNK`Lw];`aQ#ϳ[(gmjhRwGC u$;)ވa_PQҩ; yn|úq͔UO}yZ_aӚr뮞;V"ƀڵ ENE;7Np!p'Ҋ ^Fܡ傶n~>iƴNd;ydc;$CѽŒJI}Y!m>к={NP& ~M:mMR>L$ ~K;%~d͊EY73u0bYh\ }G7%<"%}rPLuq [2 h 3壈e#ӘՉ:1$Kkeaθ~4w>ˤGXJ99h D?% Woa:Z2\%_9dsp.8.T~9 ֗.},D > !*6i ܛ6vdqPܖeM URB<"~߳WP"M¢TO}JDQg['`GN|TPOBxkǷ T'C$Zeo},[n mQd|0;f2Nš<`j\2Fcg@YR{v+'M2)Q6ζ[21XMH2754fRI}1u/^oVZU CB=+8#Gh41X&6AyWemaxc?}\M=3KӶ 3手^CT l>aB{vnr84!Y/?i;89f<5Ĥӌ=)rD}NBDb ,a7k-?ЩYFؽq &ɹ(d+3RyOOTXR1sv[WQd{u\m;:kEax$ [ t.tǥg ]M8뺴Apt3xSZ:Kc'#_UM+)<7#Yż7C8{؄2mI*wlX+soHGc4sG}S9mxTyrްY2ƹ[QڅF[m)!@Ack3PJtE;OMR@ m0}nQMbW2N٪}')V28Δ ˊ0̦_Ϝă~ٯ8w_ά8r_Ϥe2l֏"uohlDTOc5Ö XǸpr\ԡG}I ;T_GzZF7nmXW#mSJCeiIaoSwXH﹦(Dct? X`A}C{[._ܤ+VDhfiD-61+7+!m5%Cw-{SMĻ.vﺾraYwMhG -j;w]{6YnES^7S,CYr*q>{9|3vЍXugTDihxLG 7mT-qx ~Q\hS-h4..fdf "pZ.[|ZاUHڤUgi>!zJ|uL֢7tڝ!6[ˠ⃾ϝ23Ƨ&h$9>/֖f_}C`ya9(\%#'y`u5u8nntn1@ryc-@HY`_fˆ%!k=Owzҁ¢q1W7ep{gޭ*LvZojX[uqs9`O>Gt0Yu9e2l~'CXad׽`o`viH̔z1~.IԤZ]zS;M9Fwl9,2FĀ?{WyOH'է\k4}DWp;S}e?=ψ<1lXi^Qbu1nQ eڿHR62gJ~BrgfU-P"Ɋ9u8ke%@D.1h@6*_^ݢ"ڳB"yZI+܊ol7LC)sA?Йj{jU/TqD~臤g!v{&CդՂS*UA&8EE5gmaE2R3kѓ@_EBM1 C,#^QkѸ/[ ~G-ƻZ+ u hH1(Y')v슷VGdeIif&{hm}슆M! LpLܣЏtbD䱢7 23)P&·bQ7ēm84L*{$^6&"N^1 iJs6Z{c *w$Q{'GGwr_v/FK2ҫ%Sq8k&ߤ  BE*˜E$HAP[BHlA%1ik3XZ!д=^ՋmOۣ:} {~}:H%C^S L2d5jf匒^nXRrWCi؟=W#P6N#՝{ApNEj+}+-m>s[NKҳ1*w4ry;:7@*៩hN;)˱ꯑ]TwKD(W{51CV-i D؊3I&`#:` )2kiTdߎo}q,ׄ2=4ƭ5߿cucy,6nv9QP1꩖ZbqONby_UPW8B'Hx3Lm_~8>|Li|:wX)ڨ&H5"F/ G¬~I#k-|ENC 59h:z1(݄B )\ekAMiSU*7$׉9VgK.ƕh%Yw(ȣB: tc W.~B7@iLAC#BH[1j?%`[FO^Q3\V'bJiyumF{3vL\c U^Q7MNHk"Ap\7\BeuY(E|_XB1-pU, -N 1 ipEQU@M"EܰL?f>[D1ƛ2dNs.1A ؼµ= ߛ>B< *6 ^,ʃn%-6%.ꓙr8/%Y]׀j||/do-!iJ9NMPU(㠅Wө\rN>G1?=I yns9;q aOb﬌i6<߆b=&YDM4LM2j"s xrUz׽:^C1lcpoD3t1}^[)c 3^;Obw~+K &I{W^]=N"C_+u\2VZKu '4;=2[fCsI_:WKiP1V~~(>M:(ra[Fp4fƕ//#a?M!; (OkEe&oP@]Y3!k=FhO.Gtq汯?:[vp_O<5u#D ˊJ%\Z&-*$ILaP"mf|~=.^wh|*041t"u\m>D NFwÝN㛹(TY DûJe 2&(C"r" 39.7#oiK轖Bٗ>PO/8YOVutY(aUj7;w-da,־5- ؾpq}]j]?=džz۳0F$_y2t" kYV7HhBRoe{X=KJ42N+W5m$A>;A_yk%'ż hKƆ Yd2SjL_Lʻ޵iLvKՆR 1_RP+)W/)b&**w^Po:yiMH2M,:Txڍ(] :-e?P`[~R1~Xs;iB}(~ J!8 O"%y+ADG<:<-n#Pt-t6q_SfB/5^A{gEC;Ć| }A(u!7dʔoެ5ixL5[\0,0vOҚ}ڌ?L KA0ZrAÔ~;wk nmCBu,U-d3b;q&cYv׳"K%27xOy@`f^a $ K(+gƹ&S&X;5SN7߲;~b 8q \x ڢOE~la< 0"*bESfDUfpR/3ZekT&trY&~e5qUn[ǻ"_3pX1ydW̤3e_fE[߀?RY9"(k`(5kz-a~g;|(Ƿ݁[;Fz &<*=E͘>v6WcRMCR'%7aCEۊ"sϢ}8ֆD!2,^ƅfBwhu}AHfD2@q1`1Z+@cw#h͕rDs=dPg<乓N[A4kqcӮ4rc^Tݣa674ks ks${hTwf_ߗ %IJ[_+}Ù!򔟙k,/@AY @и,X㫧 HjĦ?5B7lln!_j3 aK1bWnRTDl(YD{Ԝ,I ɯm J*#,&0H@ o}N}b t}"^ޛ1?Ҳ$`p۹kv_:.`E񢄕iWIv9QBA5v6L=BDžc| \חꒊ兺DHüSķ5I'*s fr_#Rmua uz׻*[HߎfR.v'xr)Ћ\JӅ7=?ǵ\%ı)~Q֪)N] _= q}cOg%Q5mI$ϖ\SmX A 1bvL~=y۪! aKaI&yVr[f͋[q,rab=Ƭ@bj;Id̑e1'"ygIƠTi#,8(4t>yL1InϓywnNvӦng ?xP8gU"z Ӗ-,N8J'} &3U:譭QE2&V/ Z-JE3ss\VRD^a:fa AFxs~t5./i%/I|.K=Zu2Q.*(%R4vhEDdRQdЯ/S~E2tb(LK$~ؙ `jzOqE_23EQWw=6Evמ|Ax_UTKN2ڶUz1fjظэ:PhE?{v[vsėQxK!*'O4ѷpLbd{<` lOiCΟEPr(օ@}o`L**#,560;x:}}ZC3~c":^VAix›嚉$wt? "3)hIb=lO*6PLDc)s `bZB/>L6H1—2Dn Oi3 2$GC );,šC̡gmBTٔ)94)TtAVdpp N yl+toKߪe:Gm"A^m ~vu"/iu= # Fy9qN&)§jߴ{hQĸ%y774\Dr,ࢅLtڃ Y5tԡ2;OUñ^$=[yl-OkRZr *_~ebnv6jOެ]/He.9 ջ) ;^Ap]ԙ/$ёԾ}ՌrNvT4QL*W}7zy} &8U\& Px;j<%.0UqO%D|r ?|.ZނSZ-:Bt^rE(r w-!-9eY7h*UUilgwfTE>EJd;-SRȰ廹EyD笡 Cm Ҿъ'21c k˲Np6q 2ŅR~Y! ܶII{ $MkmHY`*" Ɉqe^L R2gNa?lV'`a /7 DWe{:GteP7>c^V^`mL'Nv3";G 8˃҂?C7C `QaQTː8*D|]?ŹK & m uk-J`./i)}O\r8}|`?%W|9ś "Ce1"0pM2J認L21YN@G<ºڈ0t\4Orߝză]#BЦ<䛑znz|H31gn炒c͝qɝ2{ΫyتOr5U %=I '5X/@BӲ@1>Rc[-u-#:Cf?Mrמjk>+dn%"`yZ0/me}n%ؕ5g!i(NkMT5O5*t0#؎pkRg>\7@M` e} +G]av^I+V{ڞǞh6~y.Ǜׇo;I0{/]ܓ\ibI[ 7R̤EuyMXom0du >cHEl;Hb8$≈|thl .;V ĶEC05rmAZNj7b^.-W R!X^w [UӲJ*SJnb0r]sȲI¦1g_~-`͏(FUkxRo PTɝf@OBcGiG/kDޅꐕU'n @/nrfeg,In/gew+HSyN9˫&=ֲGYO|,'d452Wo!'K.UA9zSy$^Lݮ軁 CMH4^Oze/F@B\ꖶF:_϶×2Al`rCe S:oWXӋvm^m@;SX4 m !rZ% VfqћLJ1p2w9Pڠp5J!3GB]ȶTȦkVln'@~==nVxl79ցpSۜ&_: J{eq%\M5>6h`X#Yߏ8@B%KC/epzeLm^c'ah7_gNL'[p7ԟAD8z? HpQ(т" @S:g=Znsatz»tL y@DHzALsef-O1,oJ綀 m7x5 EH1~ˢk|W/ӽR[M>&W-JӂU9YVB!g4)4GhY Bb|X{V7SYVoQ۪[ֻ,t!+gǀMh֛EZ'::E׵\ao_8ϨAXZD@UZCU8>2S/P6yE!- f:Ey?6+fBdl~3`#X;n_B&dsU/{bCAP 3oV=A͡ 8NQ+s 3`1o8&5=a5r@x+b<{<錓Ef"$<,d`Rhĵ!֠}ŭs: Y=1UV e:טE`m'̔aR PXS#fLjS/p/ȞА_m*' \Oeܼ uƫӉ[ԒNug!#슑4:lL?C(4w BAݦ HȬG>ta+#(!aq\4k I95wFE{ys'ztYeg=>< CeJ unҨcRh 8KSۑT{"[ywKK0UpZ]Wǀy&h3G%͒C7~ ,ytd6$3)2͌|>&"6uvNx~?ΘLSuQVP.ԡÎYs8njIƆ![I9:M_{2[L=}V$r&WXRhѲ8[ܻ7Mo#,¢kuVM%'2U؈ق@Rl{>)$l' /){.'4+ĆJ@bEe,WzjQu.$u +y%kZҟ̚G_ $eQ|t^<;[ݦk@ 9}S; h 6 R6E!c,^aJ+H6+%h`>cvKW tg' :+^`zOb ЙcB=tV7_ syq.*ZafS_(XPs͖ 83Gdr- QYp=GKThEYY) km "yeޘWB2Dy+9=GRB`8QQD8/Ur>fB$>uB.CGN}99}S#פj;n\bW6_3I&{_)F;SCD7Fa*d&^|)'wE{ rkN|U(6L`'Xc˯x6eJ1"Id oFZ.uBuy 95͸Q[1ڒng8`oӸ2\|{ZwP!:ck8ԯ%::톌HЕbe1tLZݛ SARIO]lsif=ssXBg> stream xڍTk6L 2tݍtt 00 5tJ# 4Hw)) %9=}Ykڽ}{ #.Hȩ@>. QKh] 2,ev.#(#$ x@D`:@rbszvi `fqq֖=1@ r,PQnn///.Kg7.$+ n` Π?;bكغ{Y@Gq{؀`]5&XO_g;_޿!8[Z[8C-!`h*q9߆Nn.`'KG?*(h,=7kv"0sqvAݰ~'ݛ:B\ [0w6Pn}"ɣ D Wnm;7_ `l z|aYz0xx6`kw 'd'~> ~2} ?mPώʺ|N^0@H(Z࿪uY)`Ͽn;#iA8nZ??3?Gm vWwy jU-@b1pO)dN`H Vp{,kǛ푑@) .67W@` Yzc+ y\E ...0Dnտ0[$~7yD aw6<nп /_1ݿc C~G x<}-nE_yc ~#習=;?xx?X{`78?AZs u fyw=:+x v!2teK\z[kzD[v/[Dɝv$d18w\ [;U\=q ˣs;ڻՂϱo˧8ccLJfYeϒѡsRcf/ r'hTٱ]|u"g 7"F>'dKU%--Z͒|p~ⳣs?1cbe!'F&Ry֦\BƟ}W9jrL?h: `t졳E@z"sp# vocIWM|!jlPniUEvx>2s3鹿Dttf2й;fLn,WӖ+N>B">%+#Q {ܴn6kf^{UdQ~Luep~!2z|u3RƘ QU ȸ{=cOpŹtep4h&~'@i&Kt/Z "Vpoo`)"|NciaM 8=$**G`weKv;"?;Ж2G~IҬ]%^L+)utJC3_ 4/${WTsberYs߾0Dk ʠ֏ꕸCK&pN }sԢrB4h+%LfN\,&LtWy0lЮ )"P6@8_.ETX1kGE'Lv5*Պ\$j`E$d阙Sv*VaK X%E̤gcUk{åN3ɂSƘks{el:uh1 :ͿϦ& `ZAr6Ԝ`.);.`W'8?V!g$M6-^A=4"p-o]%Qm #[i!~l~$. 1){fh;C#df6*"6zXŔm/FkR%[il; W *s'4,) |Do$Pc[ E&فFᒅh|6eD%LgtfD0Xy)na(E-L}gGx/ցmSֲ49F{qz%Vn5#EKsfA )\9jr}<;Q}#ťtbaX8G޿Q&ƔI h!?_CK'~(>-j#1U!dayfx2+ ^RU "`>FjirSZ3sASToV,pXLszt8Y*˨򹉢dV FqPˇ4&c?sq-_KDDNdIjwF0R«v@vF;ʕغ\L trAg{ e纰sp2ʃ=w-r_<^fTLp{XӮȥ>KV!!X%UIygWMت&dc+Aۛw9Q 9sNF8 cz!3S۟)5:CgFZygDk֏Kr޶vp3!+۪J;3E'A5'Te3;$JDkh--0G4r0 v8YiU>za~(5_j ,&8BOWk0-*WTs?}- ~g7VŘ9LY;6.P6ќ+X|-ИpNHab~;J)}cQԀ44o/JpMSS I 'NvJsVQ\f7,-qKZ ^'iBߍ [Ym3*^ʰ3'Ef`PTH)@6,]MY?/R]5{͜kр;!9kФSevB4 $@ D*Z ]/%;үWyIuC{7ƒ{6Ihy}6:ߢ[-)Srx>|_}w1TLAK45& +۟ydkOЫn!6uPCIIc"q0UBFjt)g*aWW\es>ID6Tt|E)hე4: 52QhnVbvb9D\rW,UB -R1D>ߜ m[$t3)( I5Y?%Ý"‘[NL\d@T\C?> crǩ4LD'{oAXBm\f\h.Kþq^YK5Y\=A Y1ށk^d&W/+]6~Yt ^#¹["ҧcVְ4'ˉ/(xpd LCmbzAk@9Plw;-5VГ\DzJn94꒳Œޓlf4R8Zq-h?_R8r8zIe0z~݄e@ܙQpt.a,uT.zև~U[FSv+H3'@M J`8qrpVrGoAS5ËAoHt<\|orpv ˥]9"%~c?`F)O{\ׂe#=D1;zƮ#:*g]t.;~=6DC>x3RHhv=)uo{ni99!ӷ$}1P|jJUm7w[f/򵟙9 ZM?޸dbs @>s%KW)2Ku$oLmd=ZX3fT~|ԍ\:1ϥ5|#z{i[ݷ:w<{'4HO/z}(046b(_լly/({1Jq ](\S^wr;ބ_z(Nh<ָUHaۉ%m)|~)Qc&džz)CCogۖ!Y2|R q\:OseqPwP'4OJ[`Q U)3Gf01) #I_$%BVO ժ |g{Ϝ ljI̞T|Fb蚓2u^n QҋB225X76ksWΎr_F Cß<уIǛᇌ 恅yR B4He1~Z2vJ9Pv\|O2W0T6=4d#ő('5er]yeg,D~vm-C@=#Z6X;ҤTD!5iY=e+o=ET"@HUx~AP,$SkPvkG֔1^=( ugɶC}\nF#tDsj "51sߑ2 'd} @zȵ6Ѫf b8W#::;`[BUwp8d>`6,?+H7}T CtIߤiWՋwEEb$/i,X(LgSm=$¾Ś) 2^"k ʉ&~lȇyqS3iծZUJT@5NьucUwa*LyttU3?O=`X<*o,+<>pwaѰ\o1AuhF Lnh!Qr>CƳ&:=KHfvmg5!_\H#_D^鴞U'w2͛ >[o*F_,Nl(#Dgp쉊!S&Ft?} y PȪ*eq#2,N)(&a2"'Q2+,C=6?t+|^5uVO6iNPJ"1'n-JڍQ53xӖ7wӂCתv%&#o- Χt%;q<& ƾ5)M:gP_r]TCBPoJF:uhq@TY1 wi4dH#ЬC[^R}t8g 6?4p=ois{S3h xA #kŭ=Z}%{` S%U^HBb'}YI]ښ̈́,__~d84US p6iw4Y,6xU|͐`JL W'I_|Ӹ=̓|5ˣRȃW>s@M2~:d$ԜJ8St{c--%>%w1" &( :Q(-UemmVNbaA8cA#&!C kWQxfB6*RYV"FC dl#كSk!O'NzTF_RyE;Ǩx362*C1 dTJ>*;X)x.>|<IJo:.5wJP(GY`GvsYčt~LvB5VVXg߭|=:T$\BZ<#C7˩-n)y7y9:>n{a9+͛x<A\RƎ^1eĤ  _R\@ho]˾& 5J4=#-6[lT7ETw2It&R-DǟÓ1B0X{GЅHv'l c# QBc@8"q1Z:u39gI I(jg0XeKɉ3@k,]ϛ PA&[Nl)܇CJf ʨd/$2_Ϸa9vw9K;*oPe%vJiTnJz=.~4Q 1.cdqQEwZW^gt_3 'w fs-5niMe?w#NG1W5JQd=Vwl2u >,1]B$uZBg+oDibIՌ|i HWɹ@EWfhE&jJ`]A :ZNF/Ŵ`>׎1C^2oAhq0@> ~^&Dwp^yV3q+0\?]KEuޣ >as:},d3gZKk`$n h}eFK. xI-68Uuf-Ġ)tV۹&T~oG |ԠTV|2=4~XUWP5!ϪAFP6R.Ho%F:ZG1-@3uFl,Yk87N Ey[lm^<Aa_Wd Ϛ_)CQ1ľڤuyj^G L3wInm [aj8]h4&mqShy AS;Ķ8\ĝa(+i[ӾXh-ЧSlٮiٺW'5.}vmU[7/VQHӃ3>0rJFy}Zۖ*NK_١)? [o?NL#Ps쎵ַ^FǢvQjmK0Zsm .C"f?kfed\<1q ؔ/L@i- PL1*,@;_N/QA"@\MD&_; jtVQj$'@pxSPl1,b '7& ÌD+-ʠ -AROyǒLDQYY&Ry}i9W^ [liN񕭀+L}YwL!1}v"o6C$Vd0]Cu_1j,X[}+(OW0|kK(2)ukE}DB57n!oCu9*Sa/ra-!8(o|QV]0ˢ^@> stream xڍPضCqwwwN4ڸ!\N\w瑙grWW]E|.4-́2`7fv6;/Z fGL r a 4s{I); {;'GW ?.)3w%@"SK::ym^O=/wda(^2Z4-@@7 A'd$bb-B4@w%w3ߝ Sl@5<\=v}-.My%LpxlfadV { @UFӍ `mhfon731r3:sp9;)K-%`7WI\/ځ=>li K6 Kc"BWf tps Z^N/89:^/_>f@  ` pA`V廀<l/`/t{kJk*1tfNN37(jf`UlؗSv߱T_w ٸ,^?O_.;mwA2{t?j3?/3 q{eǗ-oS; AVe9F hr{Xk^2{ e,^^חK|YN) pa<33/dA%^\/](M|V*cKVi/DdVdZ\V?ҋR_/2D.K"?t_p_9^_ - ../_k2@'yaB0Զ.Fȃy{Lxz['gr:+xJPҦ4ݥ"٣ϯ }L5&ې#yE̬%mg/ y>4^YgV(xjMe8"vg4ĐElh's8JuG=hSZ3!=˯g k8O"dz{;ؔ UĻɜw!vG) u?ɲ8^LVEfpbR#4}ZA}ì2G{^^δ# gT7=UR7pU9\Oo͚|4,3vanF2=P_=o\9N`d !+<=/EvL^":(j%`glF}mQ>Uڤ)O[·e}lBT6ћv.J p_fkު16nbψfRhgQ&W1ML/xcۭ>LTszXVr򙼟RWBAg՝b2.:^T\J |^\T۷㑭u@{&nހ?ަy/$ tYVAuljmL' j,fNT~n~8[^ņ !Su Pdr#6a&+DŽCYXF1-sBőTFqZVQerA#&HQN/:,FۏVNw-8FNBV%d\mAXaB#K_Y/WOyyj;!jrbj? 7ij2$Hcӿ7#eHN6rbuX[S?#SoPXa0޼-yв^ \@Nl9C%A/Ч\,{ӭNdq?\7)оJK4{ldSНysѸZXLO9(^xR#[ȩں 8&cqͽ٠t5Z1bCLff;78>|{ 9Yܺ,vٖmDSO6ԿrlKrPE.94w*m|,F/#|1RMJ(2K*C$&M3o-<GmGu#@ xdG!ͻVHPkI]v~s(50ک٩q2}43t0܄zyR_wgQ^smnM-eĮCQ]"Ф4O5*Vbi%1[?.B9v0^^>%Gl!ó&uP(N:n*VriDܧ& X$ޙTd ܂ ApI6E]xx9T 7\U|CRۆj揜jM*0+4kS޴^LM8NnɈѩoDUơtjx*#Z6-)qF$xhZMڮ᠟E@Wxt*tY>PSf%z%!5P?wTݷ)^« 3UaZס Эbu'86>:75,=jD-?JўotjgP*@mD'Mh)#$ԯ{ێ«2),} .=}Z%yxzYV2Ͼ0W3=ۈ(R|L Ǵ;#eVhԍuosR9jKI?`pB9╡PSN}ߊS4½%}Dy1ZRlȲxz753sufa&M MccrWs V i }.D\U|P܃fjROf+K&TW$ɌxMo-*T鸊hu4{Y_76q1;Iu_~R 1Pa0}gm+ӉH b\f`KR ld`mj^WpӖ፝dzȲ3fp.ӦjFOM/l]?lQ+C"CJnl#.Z[#qj$+SRoP R=9 .(5>xtD*xxBEZ֟@<(?pϔCo.h6E{IH[ qimfzܧDvX!$\I7Hb%s[U8Ż-'#O"4Xw Ϥ'^Z=w <=zXUi)d/7& SRY V̪I-fٻyAK@'٧K 1"C=ȭކ~9 [ g2ó3u{Dw• ˙,ٶ"spV/3qתτ@C۞R VeN)2?Zn+(haI>vZ=::GF5ԁr`L8C$3мcD5)&_j ~َ#ͧ;+ cyk'0̛ђܝ'=*qe*X|c^.Ld放u5P*RTyך'A{Y[3T:Ff9B42ލX^T\__Q$1i"RbKC5oƈ#h:L 4⦈ytv_؎#^9PmjO QO㒈ϩv&W=vs Vk난\*,{W' &Yʏ@f_+ģMfCR;ErڂGi<]iOf$`+OD-Ƚl,Uҟ#\o1-""kvR,OjnuT)Cxx݀z#NOQ[()`GJ$ւ, R/p'lsԩ|xiNI g:5iYbOaj8HpFM +>ųOݯ#fፄ_'](}s1ɪA 9'W62O?ӹ]+? Kw{k*heQRLkU6X%`_|0V|u֫%D\)/P#QщQwph/ҹ .fbj8O T1A}O=Zk 92+Ն4#ʉYķ^)@g'IꢠRA#r 0ݲkltm"4b9:7|&ZKVFW~ؗ՝oJ)h+[ڱ<߹s]ϵ~)cGxƘAȍ :GgPU?T'ՎT5! d,ͷ۬ofl=#؟{u=S6$Ktf%yu$}?l RR1q[蘨W}rߚt6˵2}.:u=PEmɈBP$Zһó!+Gp53[P)a0@KE1hSs/'Z|MF8VL%ۖVgT*8Xt5F# WYY*fZʲ+3=1ZNrZc G6%8a.?pBi֜+_IsaQo\20r?5KJقWvW-eǝ bۆqt(Q.?>t(P`ҕOn rfBMgU3NS2F=܆gI(R߹" vʌ*zC菀^쇷x\o!DYoP&`*;i;bp+Y../@( ݫH5NW[D =:e~ "C;|i3 Q1c2MU⽫cD^ӂ *x흒 V vOCNBqZ؟>`X&b3oG&x_ZT.Q\8?"6!UG8k@>KaZE%/:DZ2[Ͻ@6g-!a*06F=D/3 Ey?u> ;d6n8IlE_2eh -' L#;Cxݗ4| LZb6h\B1CzCj=V q}9ak6k\wX-_~,}UIGvinM0OM@2H\j&PpRӞ)Є/VM{?gN=ɜdj+?v3˦\2ŵquJXIcv~ ꬂPuIۗ.? bA˱MΕP!v.B$}SPZQaN OrBGw6{rT m1c'Kaje;e$3,u;ۨدl A?CWhѷhnG?Q?a_ ʪQ"5G'3rS`^+]wCxYK?!L-/B} iVc` >P%cac'gJnx֒`=Ⱦ#ڗWlHDO(8 W(Dl(8$!weBZ e+O_C1v(U"㫖5^Qb^2WA"?s {ve?WJ9GiF},(#胡9@HU yR5ꃈAMcyV9ު/R䓎l`*K;d{ϧ}ER}0z߃Ki}_=HiVL}7W{<=v Ƙ'Y]x'L-{ =3Q0mH\$'J"$({Ff{zX,R@肿#2' YU~{\y6H6ƅ7zUZ9A+h}talqS,RJT{{)ɵՀY6Cr<J5]p\KkU6|ҙ#O/C\>)̺hئ$cPL{U;(şlUw)),V&&_`mj}7l`Ďċ/'- 7N$ fauBb)>gÛ+|τpS<!uń^dB<8*QG67Cn_\YBj6!ʪ .f NgkKJ O4?'qqİ: 'I#W2'jYS.l{* -᫩]H5{x0di'%Rx~K~-o4](.zfB4J7bt?It\统 QG1 )1ɇ!q[h y 6֤W™pM~xDjak>]o[rd 4"S!~ģ޹rom`"|/XHt!s,BRyKu ZZFS$"߉D "\!aXSvwI6zz;zo-n_k_=j BA%&OIu_)u0f M( >"+ՈԏH1+FvR {[iN.mj^,Brk:Y~΋9ͫoQ*f<#Q1v MgngVeu' f_A,amAYN86sDmw 12ʯJ: +漍Gx$ԅ6i$2()żϽMu ̅6 jk298lh88ٶ-bVhݖp4;CuDTI͇TJNg̫kزk|'nM'rXI CYH~h[sKJ񄈧ZS?'vf^UKL-笜)!)3K8ȶ`H`/23H|~W&{"{9W҄B$Y滘^Iޥl(!sx~r_Y(JETI#2`L+pVNԸXK\/c|hLXrf&/s0 HY uP0Gm$Ư Ve he`/2/}u!* s3P"Y"?Et+dY?r˥(!Ꮄ<1% #mx:H#Nߟ;d@Mc }e rR&huEHc^k𓲋>;zL4>EAEu+h_An9U't~E)r8ϱ > stream xڍvTl7CIal#;0`DPJ@x($C) TR$?ywu44QrB;(D, T3`Ap7_z cP,Ljx!@,DZ 22DcdP_POF*h _G ?LTB1ԃb]H0 CDHoQ4E^@p/ \> ](h~P <08rc&Z@O8ꏱa߭BD!@og( FzBQ b@(!BPGġ@u%# _y0O7W_aMVC9H8 *=VwsvF 2C!|Z[!08( e@s n <ў@g| `3yC}@,ߊJ脀ap xGO}}s L4,UU~o2IPgC(,B92w_ =}CXh>Dx6YW=Z-,J(7᭎;"0?TZ0 nFzP"0t o<j(vIJ 41^ 5tf0$Bc.@|y@g4k2@Ya]1߲m (#\'/p`j 7ǕJl~"rODpS>Ԥ)21GJ)}9/p5MIFgA#̀^n*Uw g1U\ 2NxU76a.ñ_uẇUWR:%Ebm8g" ;<NoʼnOgLżXxXoSHf+ʟ)F`2D.}7xJ⏭V~FTt˵ kì;%uZ_J<$}UN/sxڗS~S%fӈJZ&`A<争(nJ2Sv睓;% kە>bc! 31~d#߯rw-%t3xk|pҚB?`\I(q$̤ǜ m7 ;SbR;AOL(RRjIÂHWW-]-;+^;#n½[*h$sO|=54Y->pOlpp[qhKmW+5@|أpSw~>ng;ITjϳGՉ1bR<ވ(M9Gr#ȿciq~DϬX$ǥEiQFy^IUg!xx/2ѣO0wR{36`=-[4-4]9?D;84\pl_N۸z3|fu&?s|x·|jStT ĴVX'%|L+z 3ok`hha}cw 6rŹ*=qa.Tyrb{0@I*΁Ir!/ Joh%[ۖZJ}-j^OtnJ'Dy8ٕ?Ot0"!,f9LdZjO{WNV-]D毶94zB8b01!0NH_6[~(*O.A}{'C '*2[, B?S;v$8/ xu"I畃/7vSk#eJXj <7 lWaSɘ;I.AJu5  4%Zm 㜵(ob:M:$Ѱ^>?ʷv[%Ok*2V<,g%uSRd}d\s|N)$WB{!6IOgfX5fmz%e^? FxBHϲC޷m3G)\AvV[m"cRN[d | "gpϝO0c lG5e`.3wXt-%naLPb*2xb@CB0EyAfYYY/7a:f&AXJ~/$?{Z7?qԵ)*bS|_J VVV7QJٍg Qt- cK?#Cz8X5kfmF  '{vy=%gGoȟ B^՛>+Mh=eV}s"As׊97is=!{{tiM5:A̽ot;oHǔ, 6. du*$eV.]x/V6DJ=GsEqZ)*J-*بlh8Rd=wME&KRn ravS[cޕ Y')*{Z]K0s5緘9I}jagn"Z}J}K0f.*$;y8@Gz F!crC+t=V<(YasF/dw ܒ,ˎK3i7m$ee,Fn1.ܶ^ E͡Q*D/6v26_q ,<% $HY/I~Kcp\:˓YUйSzݲdͣXmS,"֖t:Y4C7sǩD^i7,RsԃKZ(Zȏx ϋe> S(F:}Gr\iXt[$yZA[z?I(!zkJV8\Nޛv.(J@}pH/Q a(TB2DA0<'3e$dV@Xt:Mpѝf;UvJ?])Rk w=^na8Nɞ%oY atw>XIa 9ُ̌&$"/b')\g !Z}pUTD ]ވuO̪ 3f[ph(8ɕfqƏH #P/' Xt#Km3mlgK *`cOh>_~o f[p|7Q,9?=w lUj iUƾ'߹W_δ `bTɇj6*΄&oHh6AnM5ČPE+!!sfޙby[hnѶFZ;5r /͸ZovY2/ srx콬܋†kV9b c^s\3h,J1#AXZ$|gI鳽 =#[*.V =ROx!OPkN4-;5J= Xa(>Pˈa o0t8]˚7dIEC}*{JW[O 4w]"w;>_hmIcj3G|sh;B<'ѷ(Zd/qҦwu,& 3ms] oL ? >{eiT9=`4Uv 1:} bW[iDU@bI\Y|YLOС0r@Be{mrϦTXRA*v!:s/?YLPOJc7=7g,HX7} ɬ} lnQИ(wrCuwqӵ떑C 7Ey^ufYy7@35g]3C0w_bI5_+VLO^ u]aZw3/;D@KDXloBD*S3uǽ0=/0AXi9r` H4{ MENc=B>'4=|]B2uN}Ht8ֻxQ$FTmrnnoSg\k:IT޽)oqp\s׳M؏)o3rEU*#疷}F5]&-kWwHk48{@p 틷Ҩ^i,h1ORvkJN{2PscŰɿRrtgSkȁ-u"1Sݯ,M..:X\cC^gT!`,T)UFٛ%Z8UPQsFoZ1]Ϲ5TwP" μd#@ٓ۞a"4 r5߻U+'HgGd==dϪp]W3nˎW%qjQ .97k陋0Ktޘ& IXN3>Z&{ ԹW[pO{ rt:Gf *CO!Dq)H1{SqWkߊ|o5{fceBRYW7?g'?-cVM%9ݿ:1y<:<:P (Ыm.QoxuLwZCel`v}Q痝ۅ˩xS 94ewB ("}=A>z8wn%4sv6oRf"a rN\L)MhΙvPMu aizNYy@YkszJBϮ)l0'ea=bM.NYH=w=Π|X-J`OD/._6jW%T@f% + &a"99t PRkRX~rV]3z_]OX JaT~"3X%i*H8. XJr!X"W*Fr;I_zAgs|QUg{;A endstream endobj 247 0 obj << /Length1 1512 /Length2 6808 /Length3 0 /Length 7836 /Filter /FlateDecode >> stream xڍT6(MkB/{U)!I ґ&H H)Uz. Eҋs=w?=dlȯ`~P ch@a PAƉM`h8 )_ %WŔ!,Qh! aHL $.@ɿ(W)2n h041n# IJv(8\P8;B!! a"%(!qF \eplJBaJ f9 Qv+ p( ƺ!maC m Y/@+] H/8`GzO E (?G@lߩC ?p Z GQW1 mP0$M+?e+ =w/?uB<>H[_eغ#`8X%DAc k#/oo[ `-a?}woÿW l`p$?ѱ05pO9+?' lQH?-|hQ~!IC/_  Ws;e?3 ܀Ea p#G@Q o?f@sE!pVn蠰__9UNh~P/V{lp /7 _7 vȠN[o ;CW E6!Q1E5v% a[A$ u`kء\5V Ack}pebABX!`v?(ƞ=t#p.X7-m/˿ʃbuA'PP7!M _[":#D1/} F+Z۾?;Qll,wncfWs\ WaTޚ,Y} ݴo8J%qaxc]nJ7׹UD'dV2~ܭOt|Φ^asܛS!nǧaT^錡O̴qg  [~{jHAHtS#\\OPұS5tY uLkzwQlGL7;6j0QTiMZcb -j%YcMr(&WqRuoI*R:}/a|=S.R&^&Y"dvxV,yM-l\w,[:XrjbDuqkfي?(<ʶ9vzXmP:lCfUOڳc]J^5n֐DY];.Hc.va=k[][ i@˵ZNJʀdS˯t8$}oE+I&  M pWrZ34lO(\v(U1jv{CO T%Ÿ}R@V}j1rNABAX=EYx)XeWRhJ櫆z1(-Ugko#.3AJ~vZC9Gr*Y摿65j^!?pҩ`(nk7t7Sgs!噏`ߠEs 'xQV^3oޜ=2i{ ڿ&u_D9veёDj1/@0@Ւt5ˌOwT&ﲶڪ2d>t-`Vє-!v<|^]/G~3M=8,y03ͼYq.V"MDqw;2`oY,Q>_7ArW89kݻ0~axpwH I9P|(;i[g yv>Ö-)&mLB q*x/UZu{-oeHB҉? vM+BIO2 c@Bgt7'Oi{,)C:e 2]2SJ[Qi\ͧ ZZn22 )I8\绅oA$:_EYWK,,.'7>џ44}.~ڵ>$tˋMz4r2 ёv9,kbQ>a㭦$ +`YJ+0}{ uʽ[ u> wOGO}s˹/]G6hAj<*C[;χuYܩGx'gf^ɝ׈)t/ M.93K0=drsU\f'NjoN_SNYwm'\0b'*\\n94D#|QcJDh~71vƝl$ZOot6'_3lbB.aa`uw﫬jb~ HfgYԂrĽN]Zi0[R+.Gi?wͶږ9Wc, 3rmO ۡ\]7=0ķ!RS?ُEʶK]CórꏋS +I 1As@ON.c(8% V[hW؂4~T-NT gn b2N )k7޾}*Z k{e^k"~{^үIz_oj4/؁y.35zgdtиc1c;|6ʉ7{52;OHa~3aH4:[<0GEs|Գ RYx7Y#xPpƮ;F}=(xڗзqYR LDEl۬mũ3 2HbN%ZhXbZ-nq3^BBtip,ko F98Ƕ \(9\"z$NkEǑoc7!%ٽCji2ͧmhx;ZEv'g V)(ťBj>}Uov)O1g'SAe*uԲ*ݔ.30h;C.IpenQHo4jÝ5~xЯ8}xfQSE{Zܬ2ҼpW }z6=y3 {?DMB6F6N.F}eӱgD|ktɽ"g~+_yy]*>: R(gJI}>@/.ZLOMd.`erm%L8 GWV-^Yn( -S*2>aەT}G(CBPzIwjik+[ e#c^x??"RK7lwӍ l /]>[T[usD*>`cH/af;ZTҒUA2w_}csT@pՃ#@toh}|.* ԽO=i(بMW0NlNNl"P F%)}/0#+^&KķY,t9V{(qqV&'«\gg>[C45y{<4M!1ǣJi*rOq-WXғ43e 9 veOwTv1#3zZ 1ylglodMfm C-KRH7qyt lS4V/U)[#hFLɒңw. ~fZ1SrWs5eyG\[B˝Di᫰.NCt'nūϫTOZaaeMf-0qJ9`W1ܖ>]FމPm.3 hԫԥj^\4Sg%.5w{wXӒdS-:cr1%:?JSQ3Dž^7]Ȝp#Ȕ2V!-bMwll:8Af4њQ:Y/0@%'$͘NzתgigaG'S= ځ9Dq M[Z^d`$I7zg6݋#'r b@UCZc!@Zޱ=v'JbqBLoNiVf_b7dmQ%]^_{; D/\헌 :EbßGsVֶF=IS+]zASAu(xy@7ΰp7To*.™T :٫-wSQ}#zE9E^ڏl7 ,J84laV}8~IZ~[*|tQy`rޥk%rXfb$GeDQ "_WVhaBд,;?*%׆I#04v: )9|) tzpT[ҌgZ;c!M&u}7([Y$0y쭴{t{)#Nd[jI^]4h Nh7ȳ'Qҹ>5 #0K9r<\OcISWCpI.b`"zs١~^IVśnF< ]WVz֟S/XKR v|թdM}D専gUhzrqjC@J/>|(*V3g|>NF: vʝ 8l]H*u/PjIIYӎCaLx]ջҰv_֢o&{̩ǴqݦB;Q/LOs].PϺE>u}`ۡfCỡ8|#ގ%ԼWx峇DT$۩x%ģj8RŢ5/9ju㟒*;..iVvI '5Rfr {ַ{\R}5(h]* zTp",k9ӈaA|=gǍ/-9H$I[ur?g?e02߆NXpX՞9,xEb=ǥlizYQ1eM,ͳ]f1)汿,fFUYIC]]IZ_hu&K2aKz uBo{}5?NQ;θf50Ά:>5Pز @u7bE,bK[Uե>)mK,v˗I&mv[x65{/59&N{S뤻i>ob*&΄ jQdƂjT`ET"-P+xE+>=+]VK0L=15vؒ1[J(y P3ug/9'iTv|E" oZ] fʢ?{P]-ǕC7iAiqfn 6V!,yt?n $L*g354nY/p+e$G֜t|QSȇW3o0hlּyuhv(3/<37gьS!@V<'spx =a.HMiTR?@d9j" UP{'Jh5Ab)*jՍSo=hN4%)  o36 `> hsh0o'7HTpg.Ctn^#V{ז勎 bG~wSBD$ۥИgl ցf2d9 @huX2Ryi/GH'Eb_D S2l^uO,=?ҝǟΊ%)"?"l/+Pهq*0͝6Ni]&X]N5ء]L951XzZ\,k0VuCZKKsOd]'Gn '*嫙Jqq,WE=~Ha7iG+$֓Vi?Z:9;;4pPo-Qa ;ƽ&15P6'7b{?mS]ό \WNb#S gο?Mؖ|u1ygTKOha?eR@﷽=&Kܔh5'7BYZC 9LPjZ&]oႨJʽ`O>G/3=;;sIC_F;& Ϲԏ ן&sjk(" ^̖:W|R l̳> stream xڍP\րN%;4и''KpnC-}^1)IELL,1uV ; %:9&`/ 1gLP f `er~ea n2(0d.b^ K+2:L &V@f&53B[:23{xx0ع098[ 2<@VU he֘(V j&@dwywq7:޳dJ@2`}8V&@ ?MM@ -$)07dkbng&I{b rtuar#aޏY\hG} g{1rm<}C {s?0wsdְ9ey!#8YXXٸ@'̊^?{qtpXY|\L܁Wg7ϿKs+h G'hg'@}X,|d>a^EudnJQQO#;'qM@/_{ _徟Jv{h^ZRtx\ Agd1{b<?HO=_?z; `Mf2& bo>ьL,A. O2ꯩKǾق.?nw/{_23[}4TwJ؛9ll\gg/wN4z9f&{w{~ g?^,G,%KY̒+Yb0Cf=?SCf ש_y`L|f?N_|_fտL-slh~wc. ߫g/|/ f8d.w9 Kqx'ϼ9;_^ =f f|uD<'8/$T bD~j:n̈́1͎!Q-Z+2;)Cr)LAx0K+&=4e\M/GfoRr/NFղEzh r Rl3WOSC>.)ERK3C똾׎$f1ea6)],Θń8ǃD;vTCZ/OjJ#RF_<krMKƟ۩[1jOsXb"zԚ ˓9@=2[4E^m SMG 滠π,f_Zw " B!"k޲Rmsεˆ4j-+ „+S|"Ǹz6eպo(AduJ$_5U]VTsMaԹԵWtՒO(Z0b\W~hC"Ej>.7G&GR@<`"XO\%w_ >. ἶ:Xceejx+W EL&$~pB*dxH"voX?mg"[UU?ɸg`w:DQUo+zyw~YEx&l+ZUESDWoG;^#%0_j7f+}C5b?ՌIFOA9˔zwo$W9DB4ωN`2+*wb,g$[W?̙!* X^?EQn&Oiф`qlR0//Za`yFrazyXZqF?P馬UˡՖY.jDٌiǏV)SSyHPbĖ9sUU_W{/S _2jf ^dsTDo+;b6L5E3A/oNf䖳X;ּˬc KmIˉ5Z~ȫ- NTiJv޹ ,WIwyT:p7b~WՃ&k -~oI4l._?'}$y(:ffrrPuK踦w]puR̛fRπL}!pٯ95 iOu,@J8 _S|Pa "+W %*:uYnl"vVܘ  K\ܛxPe~e*; d1OBJd yv58z/v̓>UY̍cM ]kA [/t[#o6Zl RTq6VeF%KMn/Pfޭ=Q||.l"0e$"^tWѧ&Or\5a4#f$wR܀cS SS9z,6 tPch(2_XqptZ&uEّQMOD()ɨl T@GNׂHėУN:@j>!z(l|'׻*\~rt8h؟5)`CMõݦv&ά0"h s]T Yc&\1|P-E7K-I6|cT wy/hK\܉2Fl*- w`Pn?h6x$!1Ph[On6^zC#z l.q Sq>Y!ec6y}S[E /AT?J e`oh=jv=4D4 f)on,}Q'[h19Ʒ͇k2{-]Ľs\.K_8{:;yEՙ[FVC<*_~+n-™:A$ xߘ=HSr?"LlaH/Kf3Siǐ>Lrҙ@<+@5P4!,|| 8`}l+f&IM`3^4F9eV::Lno O/_GB*\w2|R픲3Ɇ_m}"|l9m+]0j#W5pp; N`9ix{n+ΌEq᝗lJ-a28$P7i|Sz{=pOg6)?흈Ӡ#+D [W=cgMd*86wdK o_f!xÇmZ_ل"3NUueZCE%e;uMqF) ;I W_4*4eLBܰ]"dkFXѧq*|rJZX+Jޣ31; Fv|^7)'9qZ </(ҳGf+b  CЦH] nd9]+T;;)G/sF|m܈p]wrs:^-=L }ߞ 3G$]Wr|sq?p8~p YiĶVD16q$z`٭ $x*bf2Oc֨n >pDc 6Tk(Pѐh"gX %ī.!WX>Vam|F !yqC-# \K!@F7Iay_ltBޜRܳCDW\ tnGVgɳJhYI;p0 ?e0{MpӺdJB6doϋ@~^g. Tㅦ,VQdGriDw6{+ --rm\,CRڐ{@o{Z!Si2VU2OR;Ą4@ol)\g \P (yg([\k҅zɋL j6?/?ޙKo :eM>@2 rq+hOط.t15R`#Gd솕QG_:FA|5p1 5  +BTݬ^MGA{O}4,ԗ7Ԙ{kZ0n= j!$NRom1gyڑmZ0x3$q{sC$3шɈ̅9:WLMv~`sK#!}_at"hmΞj5;% `MuZ m'RZ)H&6)]% P1g#XIؼ[rt)#]OꞠ@Ճɕ\ѱ֝e|9gݝöMPkZ,)]ر=}I~!E6 /Mβ-ktz8enijͧ _ERJڭc Od\59~RTɊyQ,z[= g#6`yfc~͹L9;#Uu)@:~aؓ/| TX٣)~糣ED30 cW[>azS+=i&b!VjVO9J筛&RrlxmxZ93 䶠LePW0! 5wJUL9蕉Jϴz`1m֛hka#ZD9g:{ jKf<~*Iυ}~ը?nH*ío&qbtЛct U[>Vp^HH4_:" -(aC yb_Kr]ҡƮ\SӑA6tYAm޷ {wO4ZY&y&sjG=QEw*S t‰Q'œiPp7R3`TH(6\Ud\c#ƛʹEä;2>MC48is' ڣ9m DDe6~TV' aeLzdꇀ/K67un]3Gx{P2m"nnUMDt'*pLDpĤ^}l+&ʏ4Dž-kxG@> &*C9hQ0ϡrGC>`PiRB~88#ZhEMsK `cd޴&~98Wq=2\~FU kw1oF=}?Б1b"*DzܵƜ7F.ӤvyMDM&tuhEqK6(Z+.I!Β 4G!\imoe:q3;rKvigڜG9%s (S}}꟥DyR~a}m>>ϺB휭e܉)(W ?ͣ+B-Y:{N2V?[0lD5v.h WʼnDM}i=XA/X<[}jjcR߳:[N| ͡Ae9]ڶY'Acp·y- o Ύean(]ŹmX .<(e"3ABStFZH\ f^Qn\>KA?1 %cB')P(U OmB%K4'ur5c%-Of(ɶߍW̯!ο*"11/Nvn3jNycŜn͇^&DGjXʺRF=xden/af1|FۋK%pYzq0Tڸ&r_RGFLtӖ# (8zf* _}rN@/z ۯ!D ~^``+0q,wi+)cTJY_㷄_}cCk]:jKWcWS{>RWJƸ[ =2H M1*LZJh MCוEqtğ?p_|>̻ 7Fa3xB-s~F뉁=Q$x{F٠_i}v[1ܢoTzB Ś qc9(ie 3*r3ʱXc=8\~~㜱tKKx4e}3TX)AZ%[`q>dlNf(LgcJhUkoZ_4./H9vh"~!_Yނ"%wsV#U=ڌJl =r!!R,!P=o -,O'e/ہ\& SOGvPc)W>8u DuSQhIDWmt,YۚfMK1Ias#T 54N'zon'} 7hڦY KIlJhUtR M G :C]&3pb>ȴi^/ۅS@Ø_Ί#!f ԩˋR(ӵA CR/%!›Vs,sre_̞O9/zoUiv&Iaȅ-.dcB2',`{3#I; <)L!kw^TDž$]!k76j+]?&Pt{lw:Q^z%u./+hby%} <9\~y%N$~Z'RP|+ c+bbG,Wd+|iZ %4H@d5cF=錟PnJ7A,mB5 POeAVs >OWMl[E) @;dD| bǥ$ލkA[D=c}q(eR!"iT2qz|sj8&Md%3!Y ߺLNy _|;U$,{2>svMW5y1M_)CPMR7 =jV)9Ft`x)!m#I+l[)V NSGMK۷>0qFAW[,p±L%d'mWGͻtxoNjs.41vhfqAT "C SX-ֹW;"<łCme>Y |PQ)!(-I*I2uN\O12َ<(Z]f`J)^7ԇ@|8KZXb4pjgO! p˳ ubRIlQ&Xȧo8F +(p`7E~VDEjm2?)W\:Jsvha6 {FR露T&΁xBvmɢBǾLD(o{TBTѫLU$Pܝ QzGQ+tN므|wʔA<2xV sA܍>E2xA.I%{ԥ[쩍:p2 V0͂Py\s&[0F[JI']oB9~Jƚļ䣁-x]0I8컀%:tmQl cJz H:,Թ78Ca>] ou݇xb-lCzˮ([ʴ3_#A: I`6e|ʉx8z=y[Q7]5ƫ-H]2={m4C>.Ƥ)gU;VۅZ (R;gϯc0 BOkL|kX3Jv6bnS}\KCTc;7WؕNWhF/p udr ipԝۀvQ$ד|_U,}=?q8J#f=(= ]M&Z!e!hըq'T9f":iV)'+7N#甴`A&U#.[$9jr|?gikɅSߐA]I^B)&VOvlTAgLح23v>J5d?OI*&("wf2XoY_o4\M6džU2L PALBsW:!`F;AÓ{XFArCFW3§_c'-Z^;6_@̚%~*JLfoШ yd@8zr8X )d4@`њ-r+K&$,H,/4ƺrgwFkA~l=4Ωx:oQYj 6܌t SAYSua*c31 phMX;veWB ]glWG בUi:z}O,]04TQ!@e,9QܔVWK0ztKǧv8:)18P8cH}E22 YzYYy!Ui·ĽMtc5z\?ÊDeoܚ 2aKܽh ԕtX0Mdn~5/x(s UKT-'d;re?WUr,/*:x^UjHW}Rg)Jjj@R UhWysɯ틧DUSy|wNW oD6FenjÌ#c#OX yiBFiᎉ O|W0'y&JeEdݧAU_(*\~eiaSJ$rI|{R-O͙1ds^uhC L( sě`V.$"QHTyuc% !dFtw#AAo41bR"AVR%H:{hq>Zc&Ta}z.$a.@?ʫeDEae%򍥊+?ڊS!ҁ%}'ֈ6݌̭H*dvga>Hjx#S~Jδ|&AoӱK;.Et^^WAC)[a"ṋ8#;]<1uBd QhM־pI˜55mS5G 1 ܠ9T_aLi~ewf9&G7 /G;_a/yPo 7;~< /xJ]ҦniObqWU\18~.JMNmqV12F t5A=l`ÃSTS C:F>!'6\OTV[1믓KW-2u(UfF} Ύ%ك*lB+wݷ3PjհȺH= endstream endobj 251 0 obj << /Length1 2562 /Length2 17933 /Length3 0 /Length 19440 /Filter /FlateDecode >> stream xڌT ݍԀtwww7 0twwJ4Rҍt7 *pg]ݿ\UI (Pdcr0#QQi#Qi]\AHHM4IS7@`ggeWх i(1HTN. +k7~КxV]@%S7k=أ@tnnN,,̦̎.VtO5@ tZJlj'5f$*5? GK7OS L\*@;@CNt2r[`*Ҋn^nSM\ ;S3ߡ  +G̀,`!hotpsE+>I \wok_d r+ w'-;PN0 7 bee`@/skhz;fEY|]M=7wEHll  hr@mLZǏ Ͽ f`[HH0LqqG//'US?Q)`O*7`&-eG+9a[ߌeuoDvvi#7y#[w7(97J@ ʹwAB\A^@ U߳_{fr:,&6V/-zGo;Q%cz#' F C `avpt,]j)7E/E7HF|+E7F`+J"^o`Q,؊o `qjFtE|`X2KgcKd n8?T6L]~Yo:ǿ pE\`v_{i5 ,Bpvv,?N;_+`gGYX[ya/n"VVy?EXN;ko'k`\Ip cN惫GFؖx~+fGH;hM?:f}8N?'?>8]o@{ ._86w5 K6pֿ-st , ~r &!N|Yܬ] &n(mm+ǎ`޿]c nQ_W hh.fyW'Ft0%4GuI >6'dXh*ٳY[|d{ZǣߓqA tX "1߳v-tdT<5(||kp&z,|3i5C8F'FKeuOPa0r0Hj`| ^xj>\::ekAuUtz§FDA9Ր= U%B7)+uo2'zǼFj"뇃u% N (;UgMom Veɚ7N<FZ?/dL2`W%:YJqV vYM0ߕl)C2ZY%m-l/=f{%InSF7B(GB^D (&غң*Z 81Pn}C]Ρ͠Ԓ{%YGDqҝ ӧ'/搲Y ? Q=;e4p::1)G:+Y ePI %@5%<;?"O~Z߇>YWbK6a[dUepM d j)fKu}#dqz>#}RƖ&5uHu(cH:SnZU_3^Qc={O!'KiAgnwu<>k>l'tѭY?~JyѴTܞrEI 9t~Y[49NdC82˗3̉~brilec9US LSB8gơ0Wr|h}zПV:H|q.=&7~i>+MZbutftNHݴFNCҘlsmk#>MJh~K&X3~-mhIh`*UFhuV 0^Yqјm83b *+;\;O/*Bu]Z=[@C1;^|IiB8ݍ7#}kwDR8M+fUiDaHc"=d1 ϖo&f66α:Ghyc񓄃?pHo ~+TEL͎{'ߪ#s$KHN nzF_%RH%cx#c"~B/<%#݉_%u'QW4S󔿢I=ޮhNWBдBD:|VFɚbpT9T_򪽎)Su3[vek <'glQ8կ\G0TU?Hl~[#+L$Hb 7 u^'ER+&;x>gSZ ,'>U1)ނ-(ޠ£.Ơ'~RXBW ԰H~|Q>&i#S괐L9z&4JϴcJؕbo,4),(`D/e]RgȆA0("t,SYa* BB|aۢm b9p=Svq!G= 5Վ7.Ii4'YSk߳m![<ņ9&7)je O%8]1bD$;7%מxtw(HC;pQ[^dSp8l"۸;mxnoIDfoӬb4>-kshps0nDQPADWІK1*)Vaj0&B0*Ʃ5p%~oiwX3r5^?mdS,izwW3@eP;9wW\ V x1%Odr;ִF4lVɦhK=pL.}NcI-* c \}hGMuĚ*9 JܷI5Sdp!yvZ>cL>3w= 乽~W}:Ou-*jL]S'^a;fjED\vMun!$BY%v*@ڶKŦ;˛C&xOJ tw?{+//dzy{z,+`+5`S fMj4owiR,he=#KVaZ(XI48kAu;fwj=vVxj?00v? ]L}mVa4o7$%Q ,˻&O{4o|| ̚KmU!X J'}P5C?ǪWP1CSKe6f ?)!zjsf,0lJ#Lˆz JID=>킛Z3z#% Ƿs#UN5͚1>`sh5}#,k"T?H +ni>1B>N/u7n>}錬"aJñ0gӤ+j<~W|*xRz % 8L]>ewC\ LRbIq{kThxqGF*kHG""ri쎈~SNi~MP#JtMYem)m2*uF3K9 ȋah:eLDfh`WIK 3pVY+@LK?ݲb(Sb\ _O^ ~0kV,-HVG 8u$mJ%*YuD/M_wȓT#( "N/?RuQW7%SMM\:9RD -*2zSqSΤJ-ڻ4`⏼wyiܤ1hj R=3 Rݜ'{ OJ#bCa-Yw|8)fA3su'ݕ7HqG C@Sv$$I pNy"RJ̒b?BRB<6lw KA,;)SwBCSffЍ"9(6,UQ"O/H`F[(: 4^{Bk$`I畒QTTA( SQvk"9Z׶LG+pY)IŻjT\ +樸fk¼ 𸹐 QÎүt{ ĬZTcQ``%gImfH6M\R>IT_)(q~y og:Ry2}d߄ &As0EY[KX&Lb9P'oǍ=V<̛@2bVz}ѡS 3ƓŞvz[&!lzr5 l#mb1[5.*I2o2p:@{\[fʷ d4}X 6i':JSfmԌ 5-2!)T{>7Qa|z=+N Ѣg>P>/6yx^œj%'"눯ʱ3->ʦ``3 [1}ubgGS >`@0\)NLS O+*F (8L{uAЈ`(q"|rCM3g&)i@WIFI%%MFI*Plj="+vܳa2xrkMS/p9xT<E^*gNr-WJN?2xؼc;'$P';SJs=uѬ˅!#wg.1*P[4$E!DaI]r(xLδSbs&b5&ښ= #}F*L\ uHK/$[NSP\ F4Ōc$soKYt-]קIĈaJ'q>oiz<^ċhw0LeR *'j{ !XStel+%1,{ 1Mf:m8 JmbʢlJ9(7IwޓM0wmU P|io9vnWP̓or<<[{oJ>>5xt{vf%rKuXL=e|ի:mk|.X_=xl|zW"aSf7tP%-0ixo2NYOP5 ܺN~luOgSNG~JhTJi!oe!.Kc'!>*5<)UeԿ\M*5AnDg>}#ᖉDYeBPxÀ<ʣc(9ƞjh:ݟ cBbdeኣ'HJD.oPm3Yĥt{RPAIjǣ[bdNX6g bL@穇lrh-AO+5X&BVh"yfxSЈ  "<,4y#2,]󑐂dn'+y-Mnު)&4Hr2DӻPOݡCr{kO߯4-0F3s_thoDX}Yy|BV%Sz-;cJ ؃ "M%2if72CzuMk.޵:sS pEn H\sNjz Lu |hF]+Vv6 ujæRÈ($Y 9 9z>$'v\${^yӰ=y{ծtŸy‡@-ѮzA5YᅼaJUlQ9}J'ᅺ=2!!=l \C't*|D(XR,)#4LQu;sHo6?sܤ!a3ML)-K6I & $}(sZ'bba&^Ύy~Aނz'xɓ7\,Lk%Y\.\%;:Uc[VstȾUSeb>2wğvzY9T_K"nTy =ϥ}?N3~^Pc6Pw 3LcTCB15rV.k\Z|Lq {eξΟڤȔo/Hs0Qmz#<%UEj.d>Mf]A :yAg@3G^a!;c[ױdvRvxyE z)~*nuo:b<[ڭq:`fb+ic~@IXn{,++}f5&b XE6UTΥ9 f0kQ`v3|x-7' 5:Wn?sϞ9Kdؠ郧Ƽyb(  ljcغz}ͅMHe&Fz.ZޜΝP~mk(^,$H%{D%FR}A`"@I_Ӛdޔ $f6L9 T ġKQ-R7 ­I',+J"Bӈ,R;E$0(Ma%^-bJb :tl«H(~cc˔@ c|)!{_U&\{kc=2׊(3+V5TkuK'r{wy)?Q6u2]כp1B$e;E"ιl&H]=#0VFQz`D 1N+^K}HwG$Vxrj՗CD8:_N-/_` !%y!lz}5y#o, ΅JVB!h2?^E <m+Z/6 ۩NOjS%Zfn=Vy a٥ ж7<ަ_~在1VF#4?GKd[Ⱦx`Ku'dDZb(fmsfH0'{ ѵi jt@oϋb(__I{ob0tA٪íQ uRSN^Ii@ScIF(zwO$v;fsBinY*Q:v}㞺FzXж#:.g$N_Oս\95njLev ,^ì~=>Nǒ\osݻh,uJJBdT(jDdMg6q1>(DC3ŗoՄ'V훓01^ԕ7>8Gi_nng殧7_t( PiI_p߫=Adw}qsy&zeVb^Ue0z O1; |?1$K<\캫^7RZTc94<(S::zK@M碁~2̻벑چ'Hܯ]r7LȪjDmp>L|߁,eЕ+0oM(AV }R7BFU{q1CnRLF/әU֚()!$۬;Jmza&X+W"\\ikDCKlX[ح s8yfÞ!#cHe(cEn*_jǁ3+p0̧A:@thyo'`8k7}wC9AR ƟEin?4x0nMQEu+j7@w@ /6-T; قfBFyUȾgL2* oG/C!E}xzWd͸U*YÜE ,\[V\Ky[T1&%H{Eū}/%_o 塡g[螴_<̭+ _%>U : _4+"B(%dƀܭKgh_rn08 YsZH]`/+K`юҦek c EH{mrn,i6<6k7 €osO6t $Gt,^(c'L1q)n(9W7nqbcW/nd7"y 5y?..EG() Ps=z#999_~ѫk 1 ?+ >N_5V60 q `2t̸x?iEDi 1p0igyEC[\^׋JEXN?h2 @ﱁ,HY)PĎO\RuMd&I%4 $==w`>XٙAv,C3VP 9s[4g٣\k/ hwj㵈;lGl99~U?P.V %ȞlLeBƹ$h%Щvk$UCJkA˝I~WH6&1StA?A7tE3"*uR2)+QjPL{kh@ ]|bX*Mk lBw6>269Xf c*B!]@2Q+ *.ߢs֮{UL6ʏ9a¸臹-?)xy)~~Pj<Fw'W^ǜgMŒ&q1Ӛx0lYV~ng Kʄu|F.$D }!]}Dm:n $%>'2W0k-ܕmd3f}{gw>.> ] âmŒYWz. aS]Lܠ2KW"=s:x˴QJo3ţ0L 3-jp}(#pƅƂEH,ꂅq1O?j+fKxֵϘy¸&anhVӤvc)i/ U;[2Ih.p;D2њVq #U"6,+I/]oեW)èyS]&?~-%Dka=5L.$JVȷA*RM4?ߣv> ]Rb814"Uˮ)#[c r @}rۏ$oaܮe=\_b{b Sbt_~$a,C"Zbzf&:g ™ czC+cu/'8.W%z/U?`fnAkJBu䯜[\>1Ϫ:,0j9]^PZJP=x*Ȝڕ|a5I:lk)}ي/vi69-aܕӥʮ_ ۉ3?e#έ)2ܶS+_dѦ^DV`9gAcH`TB%`_$V`DmrD޷3{i |zPT)˔FHg#l:]pP0V#i+ʖra@ZH(:{IV!OVzTt Q o4ύ.G[KFd kYK3trޯMa(cЩ܌B"c8ugiJ XwxU4 .8/m4v4I2BS0q]`tݪ뚤+Qݧ[  ua U)&nŬŋَ)5cA]Ps(V`d$IJIAn9aFS/JKxOhhSe;=Cnr6ޖP8.N(%KͲ+_*iA;4mۙ*EwQ6E`,2.r#`}XDdwq27⃶d]:D֌V&t85`m@K '>4ޞ}IݞXL{eu1 %p4W-5]vgN@)t[ FYऴf+n+VqwLzQ񳞽a;ݯK[gcI=*}]~p-]mÿޜCq̿p%S]BÊЮ*c]ݼ㘗5euA;b_"}l>̪9;ӱ˟,9[>ѓ(=_cǒkFzILK;;zE`L~e0MDꅍ-R 4Þe(V}sQBNO2>9ak/Ow>b|T!MoPhs <n|(L ;P Tu`{}R[ e7ay!״ OFT18~}|4p3c-ufuZ{(34#ju!#ˡRJ[K5T7i}G=|٤E=tܬ=rP_p˽pj[Snó3g1J2vWYTޡ,ɵ]nOji(Ý?eB}b޴d:zJruFE3F4h 􈔞 K:,uc7ÝmYAO>jYC?Ǫ T.[ MP:˷@>tD 쨶ٛ0Ofmʒ!|/ůjw9D$ G@Teg6"kLGT }]_ONP_G%'{%hNΡH /Dz( u_ *K1Q7bI76tD)LRGŅ/*|Ivn\iSpy4^(ǻHB#ARE+HȟoDdW6e0n{FS/ÈY{͙sP?R2$ٽߕHLDe"lDlZk8gT̓Yےr~ 4m-">BD.Xy}Z@`vWxݍꪳpMpwH*GeaUdwѵ}no Y{ o ^FF@6XZ'!kdS{hH͜lN FUgD}ڹDt;gb#V/)ICG|ߝSjNR"ן&$OHZǠ|X1{j<UBCT a$SKfw\0Ѧ0:rhLߋtpGR7٭g_/, ڡ]$M (OnYՒ!޴\AبzwZE.7`~i"_)w&lՇ6}> eEQ"B%&E\|Bb԰6ߓOnƠlkוGx 9c'-Ǽ]W,w߈(kGE_%AkB>+xײn hN`jdW~ٹi%£/kl/Eo+%w}n? cf` άf{)dB5h ؇0`nH0^J[e{=o:c4i ם > (69B lດޣzPTDkt=,kY0(8K^I&je؇aQuE37Eb\U[4lc0h`D-/ j2wi,Jlmѳ=B]wNEݛpQХQLcj ! JpoЂu ɟSNS4p ^KbLгwf,d=IWQ `ٺ%H~ (`&XF@0!$*k8o]uMJnV5xB;%EmnLD1]ٗ$1Ā-4of5!6@GIߘ J\(Up :؅%%0^2JF@+b.MLHL> nY xweXm[0y;15O-9>K?XDeZTدc+lEzV۾_3!lO _9B' ͖F_=T14Gk4  A l}=w`I|]\P6<9*!ujp6܀>au{}\|o9W~VxP#qlzה#@h蠹HMcqbkܶ%yf!q-Y{ p\PhQ:r ʨE6wd~5L'qB.b[DpqԮ~.?kpnc/M=tsrn OQh1)(c?a(@$Evl*;H P\ fx֋J-IMQ}ʕ l]>'9{y} L N v߮Ui&T*TYv9:FPהџqU#W_JMyFPezpE&՝@m?⾊>Djv4;ȦY]IJ}ɶ}Hbєw6kH=.R=\Z!i XIX>lu Sl jej)I hP܃`fЋ8ʸ ? t;z>:5_lK\,}ErE:LIl?ԇ(FWȗG/;yM oKψѪp-@y#e#2&R.3r6,%\P(~!EP)4`JMrkfd#?1Ƙ[V3_Pw@VW%9W%Ōh‹诟Gwt||Ǡ ?[з O*u[)?=Rp^ )YTef"{t)S0~ 6%֐#D؀P-4 sQkzH8[KI,6-Mj+_ĮAIyIMZ0BU= +%>EYTq\Вcuernk h |_M uԓb)w[Vn/TdEЋ̪!ǃط+ LS?lD77s.ȡ0I 17x VU"j igIL8xwb  0tZ[ƹ :@VJu'[valm!=:WD=6/7W7"@򌜂"|JIy AV+*{4^A.?[!qcUQ r -_G:8Q$\'E/DL[zL\}AˍLZp0=f $&9@:.ٻ4ҕ yt<(ˈspHRݧCy=ࡍ~;>@.'kSxhʗZiM .t VƔ8LV֙6KCkpKJ]5j笆$6ډ2(i~;Rg> ݉$NXP{r~5r~&cc b'9 A.ښ"?$^ֵƌ;]ZãRZp\9m endstream endobj 255 0 obj << /Producer (pdfTeX-1.40.19) /Creator (TeX) /CreationDate (D:20191115001059+01'00') /ModDate (D:20191115001059+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) kpathsea version 6.3.1/dev) >> endobj 154 0 obj << /Type /ObjStm /N 98 /First 870 /Length 3128 /Filter /FlateDecode >> stream x[[oI~A+uH$ᒅ" p?6};_7wfHjŚB6Wu;tmBUo!tY̆ٲVNUYܽ8M?NIuxK)3E?؟>ZŴ2T7 )EQv&k:/47>QA8NcS1`M׈ M7\n9CĪw<`hL$G| CW L5o(Եy ȆB1%SxŔMX-RʔWY\ZyV#."gJ0>Vo0x4fY.VRу\7)??5wȢ>uyBAh94P Dc 6rB4J HAu ң ൣh# ]Z:r@B]z e{ЁLl)φ9Iia.=R9"cDpL#qhM"_'M(< (Y&K?%Ԥd&GȚMl ʸhӓ'JŸЊUq6Ai1jɚSBcGcg(#Nz+u)U=- Qb c:# :3͏)WgZ^\|Sրjz6ʐيyq c`Q5<Lfj!xي#iT$KtގGxx4Ir&zΌZ q/= 9Y=s!7ʚ2δ_:='/ͩlѨbVqFq7B#]S  qp?# *zr4"\88} kyCM4E G=<\f"C&FJZ!mVgj1$N|n#>,N&/Gҡ14idZ)/59p/ N0-fo6 _J/Wz%*J9z18̾J9ԅW] Wd ~ek\:oѠl|F5gv{(N><0Љ endstream endobj 256 0 obj << /Type /XRef /Index [0 257] /Size 257 /W [1 3 1] /Root 254 0 R /Info 255 0 R /ID [ ] /Length 680 /Filter /FlateDecode >> stream x%;Laﴴ[A(VT]DD'5ۉ&щ098'QcX.O;uι<'n} 8'8L 8 0c[Ykg蜽6*Y$0<%3p A6@! 1ȁk{Ho;"혀$`#Bl͐/[5vc V(mPPIZI:flA5Irf Ұ*$d7@{X uP {`/& }h7a?hpC?9 $rcI[^b?48 $2-30 8C0 #0 !y=e7#8< γ6̳%ZIj'9yͬDؾsp7]PfiXR%>M@#[]#)))iX}:MJΫ{v4N $~Ii‰/hƎZ$'vII-ZսӟҟҟҟҟVj Ԋgn6A? SSSSS6qmRNW؂.I5-~z$q1}{%qɦ>I,,tLrmdMH4(ɹ6 IMÒ\~o%*ꬤkSG\ endstream endobj startxref 1191147 %%EOF effects/inst/CITATION0000644000176200001440000000603113457110343014004 0ustar liggesuserscitHeader("To cite effects in publications use:") citEntry(entry = "Book", title = "An R Companion to Applied Regression", edition = "3rd", author = personList(as.person("John Fox"), as.person("Sanford Weisberg")), year = "2019", publisher = "Sage", address = "Thousand Oaks CA", url = "http://tinyurl.com/carbook", textVersion = paste("John Fox and Sanford Weisberg (2019).", "An R Companion to Applied Regression, 3rd Edition.", "Thousand Oaks, CA", "" )) bibentry(bibtype = "Article", title = "Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots and Partial Residuals", author = c(person(given = "John", family = "Fox", email = "jfox@mcmaster.ca"), person(given = "Sanford", family = "Weisberg", email = "sandy@umn.edu")), journal = "Journal of Statistical Software", year = "2018", volume = "87", number = "9", pages = "1--27", doi = "10.18637/jss.v087.i09", url = "https://www.jstatsoft.org/v087/i09", textVersion = paste("John Fox, Sanford Weisberg (2018).", "Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots and Partial Residuals.", "Journal of Statistical Software, 87(9), 1-27.", "URL https://www.jstatsoft.org/v087/i09."), header = "For predictor effects or partial residuals also cite:" ) citEntry(entry = "Article", title = "Effect Displays in {R} for Generalised Linear Models", author = as.person("John Fox"), journal = "Journal of Statistical Software", year = "2003", volume = "8", number = "15", pages = "1--27", url = "http://www.jstatsoft.org/v08/i15/", textVersion = paste("John Fox (2003).", "Effect Displays in R for Generalised Linear Models.", "Journal of Statistical Software, 8(15), 1-27.", "URL http://www.jstatsoft.org/v08/i15/."), header = "For generalized linear models also cite:" ) citEntry(entry = "Article", title = "Effect Displays in {R} for Multinomial and Proportional-Odds Logit Models: Extensions to the {effects} Package", author = personList(as.person("John Fox"), as.person("Jangman Hong")), journal = "Journal of Statistical Software", year = "2009", volume = "32", number = "1", pages = "1--24", url = "http://www.jstatsoft.org/v32/i01/", textVersion = paste("John Fox, Jangman Hong (2009).", "Effect Displays in R for Multinomial and Proportional-Odds Logit Models: Extensions to the effects Package.", "Journal of Statistical Software, 32(1), 1-24.", "URL http://www.jstatsoft.org/v32/i01/."), header = "For usage in multinomial and proportional-odds logit models also cite:" ) effects/inst/CHANGES0000644000176200001440000001147011716766566013671 0ustar liggesusersVersion 0.9-0 initial release to CRAN Version 1.0-0 o Rewrote summary.effect method and added print.summary.effect method. Version 1.0-1 o Blanks can be inserted into or removed from effect names without causing an error; thus, e.g., "poly(education,3)" is equivalent to "poly(education, 3)". o Name spaces of lattice and grid packages are imported, as required in R 1.8.0. Version 1.0-2 o Added ask argument to plot.effect.list, and row, col, nrow, ncol, and more arguments to plot.effect, to support graphing an array of effect plots. o Fixed bug in plot.effect that caused xlab argument to be ignored in certain circumstances. Version 1.0-3 o effect function now works if na.action is na.exclude. Version 1.0-4 o Fixed small bug introduced in version 1.0-3. Version 1.0-5 o x.var and z.var arguments to plot.effect now take names as well as indices. Version 1.0-6 o A variable specified in xlevels can be fixed to a single value. Version 1.0-7 o Made effect() generic, with a method for lm objects that handles glm objects as well. Version 1.0-8 o Small fixes to the help files. Version 1.0-9 o Small change to compile without a warning in R 2.4.0. Version 1.0-10 o Standard errors of effects are computed using t rather than standard-normal distribution for models with estimated dispersion (as suggested by Brian Ripley). o Small fixes. o Objects are now named "eff" and "eff.list" rather than "effect" and "effect.list". o Data sets now provided by lazy data. Version 1.0-11 o Replaced obsolete \non_function{} markup in Rd files (reported by Kurt Hornik). Version 1.0-12 o key.args argument added to plot.eff() (coutesy of Michael Friendly), to allow conrol over, e.g., placement of legend. Version 2.0-0 o Jangman Hong joins project. o support added for multinomial and proportional-odds logit models, as fit by multinom() (in nnet package) and polr() (in MASS) package, following results in Fox and Andersen (2006). o added the argument given.values to effect() methods for finer-grain control of displays. Version 2.0-1 o Fixed bug in effect.polr() that prevented computation for a model with a single term (reported by Paul Prew). Version 2.0-2 o Fixed bug in print(), summary(), and plot() methods for polytomous logit models with a response with numbered levels (reported by Paul Prew). Version 2.0-3 o Fixed bug in all effect() methods that caused error when na.action="na.exclude" (reported by Tracy Lightcap and Rob Goedman). Version 2.0-4 o Palettes from the colorspace package are used by default for stacked plots. o Fixed bug in handling of typical= argument to effect() (argument was effectively ignored). o Added Titanic and Wells data sets. o Small changes. Version 2.0-5 o Added examples for Titanic, BEPS, and WVS data sets. o Arguments ... (e.g., digits) passed through in print() methods. Version 2.0-6 o Fixed small bugs in print.efflist(), summary.efflist(), and plot.effpoly() methods. o Corrected error in missing-data handling that sometimes surfaced in effect.multinom(). o Added .Rd file for package. Version 2.0-7 o Fixed bug in handling of given.values argument to effect(). Version 2.0-8 o The S3 method print.summary.eff is now declared in NAMESPACE (as it should have been all along). o Added CITATION.txt file (courtesy of Achim Zeileis). o Version corresponding to John Fox, Jangman Hong (2009), Effect Displays in R for Multinomial and Proportional-Odds Logit Models: Extensions to the effects Package. Journal of Statistical Software, 32(1), 1-24 . O Fixed [pgk] markup in .Rd file cross-references. Version 2.0-9 o Applied patches contributed by Ian Fellows to allow logical predictors and various coercions in model formulas to work properly. o Fixed name of CITATION file (was CITATION.txt). o Small changes to docs. Version 2.0-10 o Backed out Ian Fellows's patches because of errors. Version 2.0-11 o Small change to eliminate warnings produced in R 2.12.0. o Added nrows and ncols argument to plot.efflist() (following suggstion by Michael Friendly). o Small fix to docs. Version 2.0-12 o plot.eff() and plot.effpoly now return an object, printed by print.plot.eff() (after a question by Michael Friendly). o New effect.gls() method, various changes for compatibility (after a question by Oriol Verdeny Vilalta). o effect.lm() now stores the covariance matrix of the effects (after a question by Bernhard Kaess). Version 2.0-13 o effect.multinom() and effect.polr() now use update() to refit the model rather than calling multinom() or polr() directly; update for effect.multinom() sets trace=FALSE (after suggestions by David Armstrong). o Added [.efflist method (after a question by Andreas Roesch).