./PaxHeaders/elk-9.2.120000644000000000000000000000013214536061324011522 xustar0030 mtime=1702388436.568488681 30 atime=1702388423.337508272 30 ctime=1702388436.568488681 elk-9.2.12/0000755002504400250440000000000014536061324014164 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/PaxHeaders/src0000644000000000000000000000013114536061314012152 xustar0030 mtime=1702388428.645500413 29 atime=1702388426.26350394 30 ctime=1702388428.645500413 elk-9.2.12/src/0000755002504400250440000000000014536061314014752 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/src/PaxHeaders/eos0000644000000000000000000000013214536061312012737 xustar0030 mtime=1702388426.282503912 30 atime=1702388426.267503934 30 ctime=1702388426.282503912 elk-9.2.12/src/eos/0000755002504400250440000000000014536061312015536 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/src/eos/PaxHeaders/eos.f900000644000000000000000000000013214536061312014122 xustar0030 mtime=1702388426.268503932 30 atime=1702388426.268503932 30 ctime=1702388426.268503932 elk-9.2.12/src/eos/eos.f900000644002504400250440000000051714536061312016647 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. program eos use modmain implicit none call readinput call getedata(etype,nparam,ename,pname) call fitdata call output stop end program elk-9.2.12/src/eos/PaxHeaders/eveos.f900000644000000000000000000000013214536061312014455 xustar0030 mtime=1702388426.270503929 30 atime=1702388426.269503931 30 ctime=1702388426.270503929 elk-9.2.12/src/eos/eveos.f900000644002504400250440000000454414536061312017206 0ustar00dewhurstdewhurst00000000000000real(8) function eveos(etype,param,v) implicit none ! arguments integer, intent(in) :: etype real(8), intent(in) :: param(*) real(8), intent(in) :: v ! local variables real(8) v0,e0,b0,b0p,b0pp real(8) t1,t2,t3,t4,t5,t6,t7 eveos=0.d0 select case(etype) case(1) ! Universal equation of state v0=param(1) e0=param(2) b0=param(3) b0p=param(4) if (v0 < 1.d-5) v0=1.d-5 if (abs(b0p-1.d0) < 1.d-5) b0p=b0p+1.d-5 t1=b0*v0 t2=b0p-1.d0 t3=(v/v0)**(1.d0/3.d0) t4=exp(-3.d0/2.d0*t2*(-1.d0+t3)) t5=t2**2 t6=1.d0/t5 eveos=-2.d0*t1*t4*(3.d0*t3*b0p-3.d0*t3+5.d0-3.d0*b0p)*t6+4.d0*t1*t6+e0 case(2) ! Murnaghan equation of state v0=param(1) e0=param(2) b0=param(3) b0p=param(4) if (v0 < 1.d-5) v0=1.d-5 if (abs(b0p) < 1.d-5) b0p=1.d-5 if (abs(b0p-1.d0) < 1.d-5) b0p=b0p+1.d-5 t1=(v0/v)**b0p t2=1.d0/(b0p-1.d0) eveos=b0*(b0p-1.d0+t1)/b0p*t2*v-b0*v0*t2+e0 case(3) ! Birch-Murnaghan third-order equation of state v0=param(1) e0=param(2) b0=param(3) b0p=param(4) if (v0 < 1.d-5) v0=1.d-5 t1=(v0/v)**(1.d0/3.d0) t2=t1**2 t3=t2-1.d0 eveos=9.d0/8.d0*b0*v0*t3**2*(b0p*t3/2.d0-2.d0*t2+3.d0)+e0 case(4) ! Birch-Murnaghan fourth-order equation of state v0=param(1) e0=param(2) b0=param(3) b0p=param(4) b0pp=param(5) if (v0 < 1.d-5) v0=1.d-5 t1=(v0/v)**(1.d0/3.d0) t2=t1**2 t3=t2-1.d0 t4=t3**2/4.d0 t5=b0p**2 eveos=3.d0/8.d0*b0*v0*t4*(9.d0*t4*b0*b0pp+9.d0*t4*t5-63.d0*t4*b0p+143.d0*t4 & +6.d0*b0p*t3-24.d0*t2+36.d0)+e0 case(5) ! Natural strain third-order equation of state v0=param(1) e0=param(2) b0=param(3) b0p=param(4) if (v0 < 1.d-5) v0=1.d-5 t1=b0*v0 t2=log(v0/v) t3=t2**2 t4=t3*t2 eveos=t1*t3/2.d0+t1*t4*b0p/6.d0-t1*t4/3.d0+e0 case(6) ! Natural strain fourth-order equation of state v0=param(1) e0=param(2) b0=param(3) b0p=param(4) b0pp=param(5) if (v0 < 1.d-5) v0=1.d-5 t1=b0*v0 t2=log(v0/v) t3=t2**2 t4=t3**2 t5=b0**2 t6=b0p**2 t7=t3*t2 eveos=t1*t4/8.d0+t5*v0*t4*b0pp/24.d0-t1*t4*b0p/8.d0+t1*t4*t6/24.d0 & +t1*t7*b0p/6.d0-t1*t7/3.d0+t1*t3/2.d0+e0 case(7) ! cubic polynomial v0=param(1) e0=param(2) b0=param(3) b0p=param(4) if (v0 < 1.d-5) v0=1.d-5 t1=v0**2 t2=v0-v t3=t2**2 eveos=(1.d0+b0p)*b0/t1*t3*t2/6.d0+b0/v0*t3/2.d0+e0 case default write(*,*) write(*,'("Error(eveos): etype not defined : ",I4)') etype write(*,*) stop end select return end function elk-9.2.12/src/eos/PaxHeaders/fitdata.f900000644000000000000000000000013214536061312014750 xustar0030 mtime=1702388426.271503928 30 atime=1702388426.271503928 30 ctime=1702388426.271503928 elk-9.2.12/src/eos/fitdata.f900000644002504400250440000000173214536061312017475 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine fitdata use modmain implicit none ! local variables integer, parameter :: maxit=1000000 integer i,iter real(8), parameter :: eps=1.d-14 ! automatic arrays real(8) x(nparam,nparam+1) ! initial guess: it is assumed that param(1)=V0, param(2)=E0 and param(3)=B0 x(:,1)=0.d0 x(1,1)=vpt(1) x(2,1)=ept(1) x(3,1)=0.003d0 ! fit V0 and E0 do i=1,nparam x(:,i+1)=x(:,1) end do x(1,2)=x(1,2)+1.d0 x(2,3)=x(2,3)+0.1d0 call minf_nm(nparam,x,maxit,iter,eps) ! fit V0, E0 and B0 do i=1,nparam x(:,i+1)=x(:,1) end do x(1,2)=x(1,2)+1.d0 x(2,3)=x(2,3)+0.1d0 x(3,4)=x(3,4)+0.001d0 call minf_nm(nparam,x,maxit,iter,eps) ! fit everything do i=1,nparam x(:,i+1)=x(:,1) x(i,i+1)=x(i,i+1)+0.1d0 end do call minf_nm(nparam,x,maxit,iter,eps) popt(1:nparam)=x(1:nparam,1) return end subroutine elk-9.2.12/src/eos/PaxHeaders/fmin_nm.f900000644000000000000000000000013214536061312014757 xustar0030 mtime=1702388426.272503926 30 atime=1702388426.272503926 30 ctime=1702388426.272503926 elk-9.2.12/src/eos/fmin_nm.f900000644002504400250440000000074614536061312017510 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function fmin_nm(x) use modmain implicit none ! arguments real(8), intent(in) :: x ! local variables integer i real(8) sum ! external functions real(8) eveos external eveos sum=0.d0 do i=1,nevpt sum=sum+(eveos(etype,x,vpt(i))-ept(i))**2 end do fmin_nm=sum return end function elk-9.2.12/src/eos/PaxHeaders/getedata.f900000644000000000000000000000013214536061312015112 xustar0030 mtime=1702388426.273503925 30 atime=1702388426.273503925 30 ctime=1702388426.273503925 elk-9.2.12/src/eos/getedata.f900000644002504400250440000000325114536061312017635 0ustar00dewhurstdewhurst00000000000000subroutine getedata(etype,nparam,ename,pname) ! get eos name and number of parameters implicit none ! arguments integer, intent(in) :: etype integer, intent(out) :: nparam character(256), intent(out) :: ename(2) character(256), intent(out) :: pname(*) select case(etype) case(1) ename(1)="Universal EOS" ename(2)="Vinet P et al., J. Phys.: Condens. Matter 1, p1941 (1989)" nparam=4 pname(1)="V0" pname(2)="E0" pname(3)="B0" pname(4)="B0'" case(2) ename(1)="Murnaghan EOS" ename(2)="Murnaghan F D, Am. J. Math. 49, p235 (1937)" nparam=4 pname(1)="V0" pname(2)="E0" pname(3)="B0" pname(4)="B0'" case(3) ename(1)="Birch-Murnaghan 3rd-order EOS" ename(2)="Birch F, Phys. Rev. 71, p809 (1947)" nparam=4 pname(1)="V0" pname(2)="E0" pname(3)="B0" pname(4)="B0'" case(4) ename(1)="Birch-Murnaghan 4th-order EOS" ename(2)="Birch F, Phys. Rev. 71, p809 (1947)" nparam=5 pname(1)="V0" pname(2)="E0" pname(3)="B0" pname(4)="B0'" pname(5)="B0''" case(5) ename(1)="Natural strain 3rd-order EOS" ename(2)="Poirier J-P and Tarantola A, Phys. Earth Planet Int. 109, p1 (1998)" nparam=4 pname(1)="V0" pname(2)="E0" pname(3)="B0" pname(4)="B0'" case(6) ename(1)="Natural strain 4th-order EOS" ename(2)="Poirier J-P and Tarantola A, Phys. Earth Planet Int. 109, p1 (1998)" nparam=5 pname(1)="V0" pname(2)="E0" pname(3)="B0" pname(4)="B0'" pname(5)="B0''" case(7) ename(1)="Cubic polynomial in (V-V0)" ename(2)="" nparam=4 pname(1)="V0" pname(2)="E0" pname(3)="B0" pname(4)="B0'" case default write(*,*) write(*,'("Error(getedata): etype not defined : ",I4)') etype write(*,*) stop end select return end subroutine elk-9.2.12/src/eos/PaxHeaders/minf_nm.f900000644000000000000000000000013214536061312014757 xustar0030 mtime=1702388426.274503923 30 atime=1702388426.274503923 30 ctime=1702388426.274503923 elk-9.2.12/src/eos/minf_nm.f900000644002504400250440000000370214536061312017503 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst and D. W. H. Rankin. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine minf_nm(n,x,maxit,iter,eps) implicit none ! arguments integer, intent(in) :: n real(8), intent(inout) :: x(n,n+1) integer, intent(in) :: maxit integer, intent(out) :: iter real(8), intent(in) :: eps ! local variables integer i,j,il,iu ! Nelder-Mead parmeters real(8), parameter :: alpha=1.d0,gamma=2.d0 real(8), parameter :: beta=0.5d0,sigma=0.5d0 real(8) fr,fe,fc,sum,t1 ! automatic arrays real(8) f(n+1),xm(n),xr(n),xe(n),xc(n) ! external functions real(8) fmin_nm external fmin_nm if (n < 0) then write(*,*) write(*,'("Error(minf_nm): n <= 0 : ",I8)') n write(*,*) stop end if ! evaluate the function at each vertex do i=1,n+1 f(i)=fmin_nm(x(:,i)) end do iter=0 10 continue iter=iter+1 if (iter >= maxit) return ! find the lowest and highest vertex il=1 iu=1 do i=2,n+1 if (f(i) < f(il)) il=i if (f(i) > f(iu)) iu=i end do ! check for convergence if ((f(iu)-f(il)) < eps) return ! compute the mean of the n lowest vertices t1=1.d0/dble(n) do i=1,n sum=0.d0 do j=1,iu-1 sum=sum+x(i,j) end do do j=iu+1,n+1 sum=sum+x(i,j) end do xm(i)=t1*sum end do xr(:)=xm(:)+alpha*(xm(:)-x(:,iu)) fr=fmin_nm(xr) if (f(il) > fr) goto 30 if ((f(il) <= fr).and.(fr < f(iu))) then ! reflection x(:,iu)=xr(:) f(iu)=fr goto 10 else goto 40 end if 30 continue xe(:)=xm(:)+gamma*(xr(:)-xm(:)) fe=fmin_nm(xe) if (fr > fe) then ! expansion x(:,iu)=xe(:) f(iu)=fe else ! reflection x(:,iu)=xr(:) f(iu)=fr end if goto 10 40 continue xc(:)=xm(:)+beta*(x(:,iu)-xm(:)) fc=fmin_nm(xc) if (fc < f(iu)) then ! contraction x(:,iu)=xc(:) f(iu)=fc goto 10 end if ! shrinkage do j=1,il-1 x(:,j)=x(:,il)+sigma*(x(:,j)-x(:,il)) f(j)=fmin_nm(x(1,j)) end do do j=il+1,n+1 x(:,j)=x(:,il)+sigma*(x(:,j)-x(:,il)) f(j)=fmin_nm(x(1,j)) end do goto 10 return end subroutine elk-9.2.12/src/eos/PaxHeaders/modmain.f900000644000000000000000000000013214536061312014760 xustar0030 mtime=1702388426.275503922 30 atime=1702388426.275503922 30 ctime=1702388426.275503922 elk-9.2.12/src/eos/modmain.f900000644002504400250440000000276214536061312017511 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modmain ! crystal name character(256) cname ! number of atoms integer natoms ! EOS type integer etype ! number of volume points to plot integer nvplt ! volume plot range real(8) vplt1,vplt2 ! number of energy data points to fit integer nevpt ! volume and energy data point sets real(8), allocatable :: vpt(:) real(8), allocatable :: ept(:) ! maximum number of parameters for an EOS integer, parameter :: maxparam=100 ! number of parameters integer nparam ! EOS name character(256) ename(2) ! optimized parameter set real(8) popt(maxparam) ! parameter names character(256) pname(maxparam) !-----------------------------! ! numerical constants ! !-----------------------------! real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: twopi=6.2831853071795864769d0 ! CODATA 2006 constants ! Bohr in SI units real(8), parameter :: bohr_si=0.52917720859d-10 ! electron mass in SI units real(8), parameter :: emass_si=9.10938215d-31 ! atomic unit of time in SI units real(8), parameter :: autime_si=2.418884326505d-17 ! atomic pressure unit in GPa real(8), parameter :: aupress_gpa=1.d-9*emass_si/(bohr_si*autime_si**2) !---------------------------------! ! miscellaneous variables ! !---------------------------------! ! code version integer version(3) data version /1,4,0/ end module elk-9.2.12/src/eos/PaxHeaders/output.f900000644000000000000000000000012714536061312014700 xustar0029 mtime=1702388426.27650392 29 atime=1702388426.27650392 29 ctime=1702388426.27650392 elk-9.2.12/src/eos/output.f900000644002504400250440000000505614536061312017424 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine output use modmain implicit none ! local variables integer ip,ipt,iplt real(8) v ! external functions real(8) eveos,pveos external eveos,pveos ! output parameters open(60,file='PARAM.OUT') write(60,*) write(60,'(A)') trim(cname) write(60,*) write(60,'(A)') trim(ename(1)) write(60,'(A)') trim(ename(2)) write(60,*) write(60,'("(Default units are atomic: Hartree, Bohr etc.) ")') write(60,*) do ip=1,nparam write(60,'(" ",A,T20,"=",T30,G18.10)') trim(pname(ip)),popt(ip) end do write(60,*) do ip=1,nparam if (trim(pname(ip)) == "B0") then write(60,'(" B0 (GPa)",T20,"=",T30,G18.10)') popt(ip)*aupress_gpa end if if (trim(pname(ip)) == "B0''") then write(60,'(A4," (/GPa)",T20,"=",T30,G18.10)') "B0''",popt(ip)/aupress_gpa end if end do write(60,*) close(60) ! output energy vs volume per atom at data points open(60,file='EVPAP.OUT') do ipt=1,nevpt write(60,*) vpt(ipt)/dble(natoms),ept(ipt)/dble(natoms) end do close(60) ! output energy vs volume per atom over volume interval open(60,file='EVPAI.OUT') do iplt=1,nvplt v=(vplt2-vplt1)*dble(iplt)/dble(nvplt)+vplt1 write(60,*) v/dble(natoms),eveos(etype,popt,v)/dble(natoms) end do close(60) ! output pressure vs volume per atom at data points open(60,file='PVPAP.OUT') do ipt=1,nevpt write(60,*) vpt(ipt)/dble(natoms),pveos(etype,popt,vpt(ipt))*aupress_gpa end do close(60) ! output pressure vs volume per atom over volume interval open(60,file='PVPAI.OUT') do iplt=1,nvplt v=(vplt2-vplt1)*dble(iplt)/dble(nvplt)+vplt1 write(60,*) v/dble(natoms),pveos(etype,popt,v)*aupress_gpa end do close(60) ! output enthalpy vs pressure per atom over volume interval open(60,file='HPPAI.OUT') do iplt=1,nvplt v=(vplt2-vplt1)*dble(iplt)/dble(nvplt)+vplt1 write(60,*) pveos(etype,popt,v)*aupress_gpa, & (eveos(etype,popt,v)+pveos(etype,popt,v)*v)/dble(natoms) end do close(60) write(*,*) write(*,'("All units are atomic unless otherwise stated")') write(*,'("EOS parameters written to PARAM.OUT")') write(*,'("Energy-volume per atom at data points written to EVPAP.OUT")') write(*,'("Energy-volume per atom over interval written to EVPAI.OUT")') write(*,'("Pressure(GPa)-volume per atom at data points written to PVPAP.OUT")') write(*,'("Pressure(GPa)-volume per atom over interval written to PVPAI.OUT")') write(*,'("Enthalpy-pressure(GPa) per atom over interval written to HPPAI.OUT")') write(*,*) return end subroutine elk-9.2.12/src/eos/PaxHeaders/pveos.f900000644000000000000000000000013214536061312014470 xustar0030 mtime=1702388426.277503919 30 atime=1702388426.277503919 30 ctime=1702388426.277503919 elk-9.2.12/src/eos/pveos.f900000644002504400250440000000066114536061312017215 0ustar00dewhurstdewhurst00000000000000real(8) function pveos(etype,param,v) ! pressure-volume equation of state function implicit none ! arguments integer, intent(in) :: etype real(8), intent(in) :: param(*) real(8), intent(in) :: v ! local variables real(8) vm,vp,pm,pp,dv ! external functions real(8) eveos external eveos ! use central differences dv=1.d-3 vm=v-dv vp=v+dv pm=eveos(etype,param,vm) pp=eveos(etype,param,vp) pveos=-(pp-pm)/(2.d0*dv) return end function elk-9.2.12/src/eos/PaxHeaders/readinput.f900000644000000000000000000000013214536061312015327 xustar0030 mtime=1702388426.278503917 30 atime=1702388426.278503917 30 ctime=1702388426.278503917 elk-9.2.12/src/eos/readinput.f900000644002504400250440000000144014536061312020050 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readinput use modmain implicit none ! local variables integer ipt open(50,file='eos.in',action='READ',status='OLD',form='FORMATTED') read(50,*) cname read(50,*) natoms if (natoms <= 0) then write(*,*) write(*,'("Error(readinput): natoms <= 0 : ",I8)') natoms write(*,*) stop end if read(50,*) etype read(50,*) vplt1,vplt2,nvplt read(50,*) nevpt if (nevpt <= 0) then write(*,*) write(*,'("Error(readinput): nevpt <= 0 : ",I8)') nevpt write(*,*) stop end if allocate(vpt(nevpt),ept(nevpt)) do ipt=1,nevpt read(50,*) vpt(ipt),ept(ipt) end do close(50) return end subroutine elk-9.2.12/src/eos/PaxHeaders/Makefile0000644000000000000000000000013214536061312014454 xustar0030 mtime=1702388426.280503914 30 atime=1702388426.279503916 30 ctime=1702388426.280503914 elk-9.2.12/src/eos/Makefile0000644002504400250440000000134614536061312017202 0ustar00dewhurstdewhurst00000000000000 include ../../make.inc #------------------------------------------------------------------------------- # Suffix rules #------------------------------------------------------------------------------- .SUFFIXES: .o .f90 .f90.o: $(F90) $(F90_OPTS) -c $< #------------------------------------------------------------------------------- # Source files #------------------------------------------------------------------------------- SRC = modmain.f90 eos.f90 eveos.f90 pveos.f90 readinput.f90 getedata.f90 \ fitdata.f90 output.f90 minf_nm.f90 fmin_nm.f90 OBJ = $(SRC:.f90=.o) EXE = eos eos: $(OBJ) $(F90) $(F90_OPTS) -o $(EXE) $(OBJ) clean: rm -f *.o *.mod *~ fort.* ifc* *.gcno *.OUT gmon.out $(EXE) spaces: ../rmspaces $(SRC) elk-9.2.12/src/eos/PaxHeaders/README0000644000000000000000000000013214536061312013674 xustar0030 mtime=1702388426.281503913 30 atime=1702388426.281503913 30 ctime=1702388426.281503913 elk-9.2.12/src/eos/README0000644002504400250440000000254414536061312016423 0ustar00dewhurstdewhurst00000000000000 +---------------------------+ | EOS Version 1.4.0 | +---------------------------+ Equation of state (EOS) program for fitting energy-volume data. The following variables are set in the file eos.in: cname : name of crystal up to 256 characters natoms : number of atoms in unit cell etype : equation of state type (see below) vplt1, vplt2, nvplt : volume interval over which to plot energy, pressure etc. as well as the number of points in the plot nevpt : number of energy-volume points to be inputted vpt(i) ept(i) : energy-volume points (atomic units) Note that the input units are atomic - Bohr and Hartree (NOT Rydbergs). The equations of state currently implemented are: 1. Universal EOS (Vinet P et al., J. Phys.: Condens. Matter 1, p1941 (1989)) 2. Murnaghan EOS (Murnaghan F D, Am. J. Math. 49, p235 (1937)) 3. Birch-Murnaghan 3rd-order EOS (Birch F, Phys. Rev. 71, p809 (1947)) 4. Birch-Murnaghan 4th-order EOS 5. Natural strain 3rd-order EOS (Poirier J-P and Tarantola A, Phys. Earth Planet Int. 109, p1 (1998)) 6. Natural strain 4th-order EOS 7. Cubic polynomial in (V-V0) -------------------------------------------------------------------------------- J. K. Dewhurst August 2005 elk-9.2.12/src/eos/PaxHeaders/eos.in0000644000000000000000000000013214536061312014132 xustar0030 mtime=1702388426.282503912 30 atime=1702388426.282503912 30 ctime=1702388426.282503912 elk-9.2.12/src/eos/eos.in0000644002504400250440000000063514536061312016660 0ustar00dewhurstdewhurst00000000000000 "Silicon" : cname 2 : natoms 1 : etype 140.0 450.0 1000 : vplt1, vplt2, nvplt 8 : nevpt 165.8207473 -578.0660968 196.8383062 -578.1728409 231.5010189 -578.2305598 270.0113940 -578.2548962 312.5719400 -578.2566194 359.3851654 -578.2453281 410.6535788 -578.2253154 466.5796888 -578.2028836 elk-9.2.12/src/PaxHeaders/spacegroup0000644000000000000000000000013014536061312014317 xustar0030 mtime=1702388426.316503861 28 atime=1702388426.2905039 30 ctime=1702388426.316503861 elk-9.2.12/src/spacegroup/0000755002504400250440000000000014536061312017120 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/src/spacegroup/PaxHeaders/spacegroup.in0000644000000000000000000000013214536061312017076 xustar0030 mtime=1702388426.292503897 30 atime=1702388426.291503898 30 ctime=1702388426.292503897 elk-9.2.12/src/spacegroup/spacegroup.in0000644002504400250440000000101714536061312021617 0ustar00dewhurstdewhurst00000000000000 'Bmab' : hrmg 10.0605232 10.0605232 24.972729 : a, b, c 90.0 90.0 90.0 : bc, ac, ab 1 1 1 : ncell .true. : primcell 3 : nspecies 'La' : spsymb 1 : nwpos 0.0000 0.0000 0.3608 : wpos 'Cu' 1 0.0000 0.0000 0.0000 'O' 2 0.2500 0.2500 0.0000 0.0000 0.0000 0.1820 elk-9.2.12/src/spacegroup/PaxHeaders/findprimcell.f900000644000000000000000000000013214536061312017366 xustar0030 mtime=1702388426.293503895 30 atime=1702388426.293503895 30 ctime=1702388426.293503895 elk-9.2.12/src/spacegroup/findprimcell.f900000644002504400250440000000734414536061312022120 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: findprimcell ! !INTERFACE: subroutine findprimcell ! !USES: use modmain ! !DESCRIPTION: ! This routine finds the smallest primitive cell which produces the same ! crystal structure as the conventional cell. This is done by searching ! through all the vectors which connect atomic positions and finding those ! which leave the crystal structure invariant. Of these, the three shortest ! which produce a non-zero unit cell volume are chosen. ! ! !REVISION HISTORY: ! Created April 2007 (JKD) !EOP !BOC implicit none ! local variables integer is,js,ia,ja,ka,na integer i1,i2,i3,i,j,n real(8) v1(3),v2(3),v3(3) real(8) t1,t2 ! allocatable arrays real(8), allocatable :: dp(:) real(8), allocatable :: vp(:,:) do is=1,nspecies do ia=1,natoms(is) ! make sure all atomic coordinates are in [0,1) call r3frac(epslat,atposl(:,ia,is)) ! determine atomic Cartesian coordinates call r3mv(avec,atposl(:,ia,is),atposc(:,ia,is)) end do end do ! find the smallest set of atoms is=1 do js=1,nspecies ! if a species has only one atom the cell must be primitive if (natoms(js) == 1) return if (natoms(js) < natoms(is)) is=js end do n=27*natoms(is) allocate(dp(n),vp(3,n)) ! generate set of possible lattice vectors n=0 do ia=1,natoms(is) v1(:)=atposl(:,ia,is)-atposl(:,1,is) do i1=-1,1 v2(1)=v1(1)+dble(i1) do i2=-1,1 v2(2)=v1(2)+dble(i2) do i3=-1,1 v2(3)=v1(3)+dble(i3) t1=abs(v2(1))+abs(v2(2))+abs(v2(3)) if (t1 < epslat) goto 20 ! check if vector v2 leaves conventional cell invariant do js=1,nspecies do ja=1,natoms(js) v3(:)=atposl(:,ja,js)+v2(:) call r3frac(epslat,v3) do ka=1,natoms(js) ! check both positions and magnetic fields are the same t1=sum(abs(atposl(:,ka,js)-v3(:))) t2=sum(abs(bfcmt0(:,ja,js)-bfcmt0(:,ka,js))) if ((t1 < epslat).and.(t2 < epslat)) goto 10 end do ! atom ja has no equivalent under translation by v2 goto 20 10 continue end do end do ! cell invariant under translation by v2, so add to list n=n+1 call r3mv(avec,v2,vp(:,n)) dp(n)=sqrt(vp(1,n)**2+vp(2,n)**2+vp(3,n)**2) 20 continue end do end do end do end do if (n == 0) then write(*,*) write(*,'("Error(findprimcell): cannot find any lattice vectors")') write(*,*) stop end if ! find the shortest lattice vector j=1 t1=1.d8 do i=1,n if (dp(i) < t1+epslat) then j=i t1=dp(i) end if end do avec(:,1)=vp(:,j) ! find the next shortest lattice vector not parallel to the first j=1 t1=1.d8 do i=1,n call r3cross(avec(:,1),vp(:,i),v1) t2=sqrt(v1(1)**2+v1(2)**2+v1(3)**2) if (t2 > epslat) then if (dp(i) < t1+epslat) then j=i t1=dp(i) end if end if end do avec(:,2)=vp(:,j) ! find the next shortest lattice vector which gives non-zero unit cell volume call r3cross(avec(:,1),avec(:,2),v1) j=1 t1=1.d8 do i=1,n t2=dot_product(vp(:,i),v1(:)) if (abs(t2) > epslat) then if (dp(i) < t1+epslat) then j=i t1=dp(i) end if end if end do avec(:,3)=vp(:,j) call r3minv(avec,ainv) ! remove redundant atoms do is=1,nspecies na=0 do ia=1,natoms(is) call r3mv(ainv,atposc(:,ia,is),v1) call r3frac(epslat,v1) do ja=1,na t1=sum(abs(atposl(:,ja,is)-v1(:))) if (t1 < epslat) goto 30 end do na=na+1 atposl(:,na,is)=v1(:) call r3mv(avec,atposl(:,na,is),atposc(:,na,is)) bfcmt0(:,na,is)=bfcmt0(:,ia,is) 30 continue end do natoms(is)=na end do deallocate(dp,vp) return end subroutine !EOC elk-9.2.12/src/spacegroup/PaxHeaders/gengroup.f900000644000000000000000000000013214536061312016544 xustar0030 mtime=1702388426.294503894 30 atime=1702388426.294503894 30 ctime=1702388426.294503894 elk-9.2.12/src/spacegroup/gengroup.f900000644002504400250440000000331614536061312021271 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengroup(ngen,srgen,stgen,ngrp,srgrp,stgrp) implicit none ! arguments integer, intent(in) :: ngen real(8), intent(in) :: srgen(3,3,ngen) real(8), intent(in) :: stgen(3,ngen) integer, intent(out) :: ngrp real(8), intent(out) :: srgrp(3,3,192) real(8), intent(out) :: stgrp(3,192) ! local variables integer i,j,k real(8), parameter :: eps=1.d-6 real(8) sr(3,3),st(3) ! external functions logical seitzeq external seitzeq ! store the identity ngrp=1 srgrp(1,1,1)=1.d0; srgrp(1,2,1)=0.d0; srgrp(1,3,1)=0.d0 srgrp(2,1,1)=0.d0; srgrp(2,2,1)=1.d0; srgrp(2,3,1)=0.d0 srgrp(3,1,1)=0.d0; srgrp(3,2,1)=0.d0; srgrp(3,3,1)=1.d0 stgrp(:,1)=0.d0 10 continue ! right multiply by the generators do i=1,ngen do j=1,ngrp call seitzmul(eps,srgrp(:,:,j),stgrp(:,j),srgen(:,:,i),stgen(:,i),sr,st) ! check if the new element already exists do k=1,ngrp if (seitzeq(eps,srgrp(:,:,k),stgrp(:,k),sr,st)) goto 20 end do goto 40 20 continue end do end do ! left multiply by the generators do i=1,ngen do j=1,ngrp call seitzmul(eps,srgen(:,:,i),stgen(:,i),srgrp(:,:,j),stgrp(:,j),sr,st) ! check if the new element already exists do k=1,ngrp if (seitzeq(eps,srgrp(:,:,k),stgrp(:,k),sr,st)) goto 30 end do goto 40 30 continue end do end do ! all elements accounted for return 40 continue ! add new element ngrp=ngrp+1 if (ngrp > 192) then write(*,*) write(*,'("Error(gengroup): more than 192 group elements")') write(*,*) stop end if srgrp(:,:,ngrp)=sr(:,:) stgrp(:,ngrp)=st(:) goto 10 return end subroutine elk-9.2.12/src/spacegroup/PaxHeaders/main.f900000644000000000000000000000013214536061312015642 xustar0030 mtime=1702388426.296503891 30 atime=1702388426.295503892 30 ctime=1702388426.296503891 elk-9.2.12/src/spacegroup/main.f900000644002504400250440000013267614536061312020403 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. program main implicit none ! read the input parameters from spacegroup.in call readinput ! generate the lattice and atomic basis call gencrystal ! write the structural data to GEOMETRY.OUT call writegeom ! write the XCrySDen and V_Sim files for plotting call geomplot stop end program !BOI ! !TITLE: {\huge{\sc The Spacegroup Manual}}\\ \Large{\sc Version 1.2.1} ! !AUTHORS: {\sc J. K. Dewhurst, S. Sharma and L. Nordstr\"{o}m} ! !AFFILIATION: ! !INTRODUCTION: Introduction ! Spacegroup is a utility which produces crystal geometry for use with the Elk ! code, from the space group defined by its Hermann-Mauguin symbol and lattice ! vector lengths and angles. Spacegroup recognises all 230 space groups in ! various coordinate settings giving a total of 530 possible symbols, which are ! tabulated below. The code also provides output compatible with the XCrysDen or ! V\_Sim packages for visualisation of the crystal structure. ! \section{Usage} ! Only one input file, {\tt spacegroup.in}, is required. The structure of this ! file is illustrated by the following example for the high $T_c$ superconductor ! La$_2$CuO$_4$: ! \begin{verbatim} ! 'Bmab' : hrmg ! 10.0605232 10.0605232 24.972729 : a, b, c ! 90.0 90.0 90.0 : bc, ac, ab ! 1 1 1 : ncell ! .true. : primcell ! 3 : nspecies ! 'La' : spsymb ! 1 : nwpos ! 0.0000 0.0000 0.3608 : wpos ! 'Cu' ! 1 ! 0.0000 0.0000 0.0000 ! 'O' ! 2 ! 0.2500 0.2500 0.0000 ! 0.0000 0.0000 0.1820 ! \end{verbatim} ! The input parameters are defined as follows: ! \vskip 6pt ! {\tt hrmg}\\ ! The Hermann-Mauguin symbol of a space group listed in the table below. ! (case-sensitive) ! \vskip 6pt ! {\tt a}, {\tt b}, {\tt c}\\ ! Lattice vector lengths in Bohr (i.e. atomic units, {\bf NOT} \AA ngstroms). ! \vskip 6pt ! {\tt bc}, {\tt ac}, {\tt ab}\\ ! Angles in degrees between lattice vectors ${\bf b}$ and ${\bf c}$ ($\alpha$); ! ${\bf a}$ and ${\bf c}$ ($\beta$); and ${\bf a}$ and ${\bf b}$ ($\gamma$). ! \vskip 6pt ! {\tt ncell}\\ ! The number of unit cells required in each direction. ! \vskip 6pt ! {\tt primcell}\\ ! Set to {\tt .true.} if the primitive unit cell should be found. ! \vskip 6pt ! {\tt nspecies}\\ ! Number of atomic species. ! \vskip 6pt ! {\tt spsymb}\\ ! The atomic species symbol. ! \vskip 6pt ! {\tt nwpos}\\ ! The number of Wyckoff positional coordinates. ! \vskip 6pt ! {\tt wpos}\\ ! Wyckoff positional coordinates in fractions of the lattice vectors. ! \vskip 6pt ! Note that {\tt nwpos} and {\tt wpos} are repeated as many times as there are ! species. After creating the input file, the {\tt spacegroup} command is run ! and the files {\tt GEOMETRY.OUT} and {\tt crystal.xsf} should be produced. ! The {\tt GEOMETRY.OUT} file can simply be appended to an {\tt elk.in} file. If ! XCrysDen is available, then use the command ! \vskip 6pt ! \hskip 24pt {\tt xcrysden --xsf crystal.xsf} ! \vskip 6pt ! to render the unit cell. ! \section{Table of space group symbols} ! We acknowledge Ralf W. Grosse-Kunstleve ({\tt http://cci.lbl.gov/sginfo/}) ! for the following table which associates space group numbers, Sch\"{o}nflies ! symbols, Hermann-Mauguin symbols, and Hall symbols. ! \newpage ! \begin{center} ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 1 & C$_{1}^{1}$ & P1 & P 1 \\ ! 2 & C$_{i}^{1}$ & P-1 & -P 1 \\ ! 3:b & C$_{2}^{1}$ & P2:b = P121 & P 2y \\ ! 3:c & C$_{2}^{1}$ & P2:c = P112 & P 2 \\ ! 3:a & C$_{2}^{1}$ & P2:a = P211 & P 2x \\ ! 4:b & C$_{2}^{2}$ & P21:b = P1211 & P 2yb \\ ! 4:c & C$_{2}^{2}$ & P21:c = P1121 & P 2c \\ ! 4:a & C$_{2}^{2}$ & P21:a = P2111 & P 2xa \\ ! 5:b1 & C$_{2}^{3}$ & C2:b1 = C121 & C 2y \\ ! 5:b2 & C$_{2}^{3}$ & C2:b2 = A121 & A 2y \\ ! 5:b3 & C$_{2}^{3}$ & C2:b3 = I121 & I 2y \\ ! 5:c1 & C$_{2}^{3}$ & C2:c1 = A112 & A 2 \\ ! 5:c2 & C$_{2}^{3}$ & C2:c2 = B112 = B2 & B 2 \\ ! 5:c3 & C$_{2}^{3}$ & C2:c3 = I112 & I 2 \\ ! 5:a1 & C$_{2}^{3}$ & C2:a1 = B211 & B 2x \\ ! 5:a2 & C$_{2}^{3}$ & C2:a2 = C211 & C 2x \\ ! 5:a3 & C$_{2}^{3}$ & C2:a3 = I211 & I 2x \\ ! 6:b & C$_{s}^{1}$ & Pm:b = P1m1 & P -2y \\ ! 6:c & C$_{s}^{1}$ & Pm:c = P11m & P -2 \\ ! 6:a & C$_{s}^{1}$ & Pm:a = Pm11 & P -2x \\ ! 7:b1 & C$_{s}^{2}$ & Pc:b1 = P1c1 & P -2yc \\ ! 7:b2 & C$_{s}^{2}$ & Pc:b2 = P1n1 & P -2yac \\ ! 7:b3 & C$_{s}^{2}$ & Pc:b3 = P1a1 & P -2ya \\ ! 7:c1 & C$_{s}^{2}$ & Pc:c1 = P11a & P -2a \\ ! 7:c2 & C$_{s}^{2}$ & Pc:c2 = P11n & P -2ab \\ ! 7:c3 & C$_{s}^{2}$ & Pc:c3 = P11b = Pb & P -2b \\ ! 7:a1 & C$_{s}^{2}$ & Pc:a1 = Pb11 & P -2xb \\ ! 7:a2 & C$_{s}^{2}$ & Pc:a2 = Pn11 & P -2xbc \\ ! 7:a3 & C$_{s}^{2}$ & Pc:a3 = Pc11 & P -2xc \\ ! 8:b1 & C$_{s}^{3}$ & Cm:b1 = C1m1 & C -2y \\ ! 8:b2 & C$_{s}^{3}$ & Cm:b2 = A1m1 & A -2y \\ ! 8:b3 & C$_{s}^{3}$ & Cm:b3 = I1m1 & I -2y \\ ! 8:c1 & C$_{s}^{3}$ & Cm:c1 = A11m & A -2 \\ ! 8:c2 & C$_{s}^{3}$ & Cm:c2 = B11m = Bm & B -2 \\ ! 8:c3 & C$_{s}^{3}$ & Cm:c3 = I11m & I -2 \\ ! 8:a1 & C$_{s}^{3}$ & Cm:a1 = Bm11 & B -2x \\ ! 8:a2 & C$_{s}^{3}$ & Cm:a2 = Cm11 & C -2x \\ ! 8:a3 & C$_{s}^{3}$ & Cm:a3 = Im11 & I -2x \\ ! 9:b1 & C$_{s}^{4}$ & Cc:b1 = C1c1 & C -2yc \\ ! 9:b2 & C$_{s}^{4}$ & Cc:b2 = A1n1 & A -2yac \\ ! 9:b3 & C$_{s}^{4}$ & Cc:b3 = I1a1 & I -2ya \\ ! 9:-b1 & C$_{s}^{4}$ & Cc:-b1 = A1a1 & A -2ya \\ ! 9:-b2 & C$_{s}^{4}$ & Cc:-b2 = C1n1 & C -2ybc \\ ! 9:-b3 & C$_{s}^{4}$ & Cc:-b3 = I1c1 & I -2yc \\ ! 9:c1 & C$_{s}^{4}$ & Cc:c1 = A11a & A -2a \\ ! 9:c2 & C$_{s}^{4}$ & Cc:c2 = B11n & B -2bc \\ ! 9:c3 & C$_{s}^{4}$ & Cc:c3 = I11b & I -2b \\ ! 9:-c1 & C$_{s}^{4}$ & Cc:-c1 = B11b = Bb & B -2b \\ ! 9:-c2 & C$_{s}^{4}$ & Cc:-c2 = A11n & A -2ac \\ ! 9:-c3 & C$_{s}^{4}$ & Cc:-c3 = I11a & I -2a \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 9:a1 & C$_{s}^{4}$ & Cc:a1 = Bb11 & B -2xb \\ ! 9:a2 & C$_{s}^{4}$ & Cc:a2 = Cn11 & C -2xbc \\ ! 9:a3 & C$_{s}^{4}$ & Cc:a3 = Ic11 & I -2xc \\ ! 9:-a1 & C$_{s}^{4}$ & Cc:-a1 = Cc11 & C -2xc \\ ! 9:-a2 & C$_{s}^{4}$ & Cc:-a2 = Bn11 & B -2xbc \\ ! 9:-a3 & C$_{s}^{4}$ & Cc:-a3 = Ib11 & I -2xb \\ ! 10:b & C$_{2h}^{1}$ & P2/m:b = P12/m1 & -P 2y \\ ! 10:c & C$_{2h}^{1}$ & P2/m:c = P112/m & -P 2 \\ ! 10:a & C$_{2h}^{1}$ & P2/m:a = P2/m11 & -P 2x \\ ! 11:b & C$_{2h}^{2}$ & P21/m:b = P121/m1 & -P 2yb \\ ! 11:c & C$_{2h}^{2}$ & P21/m:c = P1121/m & -P 2c \\ ! 11:a & C$_{2h}^{2}$ & P21/m:a = P21/m11 & -P 2xa \\ ! 12:b1 & C$_{2h}^{3}$ & C2/m:b1 = C12/m1 & -C 2y \\ ! 12:b2 & C$_{2h}^{3}$ & C2/m:b2 = A12/m1 & -A 2y \\ ! 12:b3 & C$_{2h}^{3}$ & C2/m:b3 = I12/m1 & -I 2y \\ ! 12:c1 & C$_{2h}^{3}$ & C2/m:c1 = A112/m & -A 2 \\ ! 12:c2 & C$_{2h}^{3}$ & C2/m:c2 = B112/m = B2/m & -B 2 \\ ! 12:c3 & C$_{2h}^{3}$ & C2/m:c3 = I112/m & -I 2 \\ ! 12:a1 & C$_{2h}^{3}$ & C2/m:a1 = B2/m11 & -B 2x \\ ! 12:a2 & C$_{2h}^{3}$ & C2/m:a2 = C2/m11 & -C 2x \\ ! 12:a3 & C$_{2h}^{3}$ & C2/m:a3 = I2/m11 & -I 2x \\ ! 13:b1 & C$_{2h}^{4}$ & P2/c:b1 = P12/c1 & -P 2yc \\ ! 13:b2 & C$_{2h}^{4}$ & P2/c:b2 = P12/n1 & -P 2yac \\ ! 13:b3 & C$_{2h}^{4}$ & P2/c:b3 = P12/a1 & -P 2ya \\ ! 13:c1 & C$_{2h}^{4}$ & P2/c:c1 = P112/a & -P 2a \\ ! 13:c2 & C$_{2h}^{4}$ & P2/c:c2 = P112/n & -P 2ab \\ ! 13:c3 & C$_{2h}^{4}$ & P2/c:c3 = P112/b = P2/b & -P 2b \\ ! 13:a1 & C$_{2h}^{4}$ & P2/c:a1 = P2/b11 & -P 2xb \\ ! 13:a2 & C$_{2h}^{4}$ & P2/c:a2 = P2/n11 & -P 2xbc \\ ! 13:a3 & C$_{2h}^{4}$ & P2/c:a3 = P2/c11 & -P 2xc \\ ! 14:b1 & C$_{2h}^{5}$ & P21/c:b1 = P121/c1 & -P 2ybc \\ ! 14:b2 & C$_{2h}^{5}$ & P21/c:b2 = P121/n1 & -P 2yn \\ ! 14:b3 & C$_{2h}^{5}$ & P21/c:b3 = P121/a1 & -P 2yab \\ ! 14:c1 & C$_{2h}^{5}$ & P21/c:c1 = P1121/a & -P 2ac \\ ! 14:c2 & C$_{2h}^{5}$ & P21/c:c2 = P1121/n & -P 2n \\ ! 14:c3 & C$_{2h}^{5}$ & P21/c:c3 = P1121/b = P21/b & -P 2bc \\ ! 14:a1 & C$_{2h}^{5}$ & P21/c:a1 = P21/b11 & -P 2xab \\ ! 14:a2 & C$_{2h}^{5}$ & P21/c:a2 = P21/n11 & -P 2xn \\ ! 14:a3 & C$_{2h}^{5}$ & P21/c:a3 = P21/c11 & -P 2xac \\ ! 15:b1 & C$_{2h}^{6}$ & C2/c:b1 = C12/c1 & -C 2yc \\ ! 15:b2 & C$_{2h}^{6}$ & C2/c:b2 = A12/n1 & -A 2yac \\ ! 15:b3 & C$_{2h}^{6}$ & C2/c:b3 = I12/a1 & -I 2ya \\ ! 15:-b1 & C$_{2h}^{6}$ & C2/c:-b1 = A12/a1 & -A 2ya \\ ! 15:-b2 & C$_{2h}^{6}$ & C2/c:-b2 = C12/n1 & -C 2ybc \\ ! 15:-b3 & C$_{2h}^{6}$ & C2/c:-b3 = I12/c1 & -I 2yc \\ ! 15:c1 & C$_{2h}^{6}$ & C2/c:c1 = A112/a & -A 2a \\ ! 15:c2 & C$_{2h}^{6}$ & C2/c:c2 = B112/n & -B 2bc \\ ! 15:c3 & C$_{2h}^{6}$ & C2/c:c3 = I112/b & -I 2b \\ ! 15:-c1 & C$_{2h}^{6}$ & C2/c:-c1 = B112/b = B2/b & -B 2b \\ ! 15:-c2 & C$_{2h}^{6}$ & C2/c:-c2 = A112/n & -A 2ac \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 15:-c3 & C$_{2h}^{6}$ & C2/c:-c3 = I112/a & -I 2a \\ ! 15:a1 & C$_{2h}^{6}$ & C2/c:a1 = B2/b11 & -B 2xb \\ ! 15:a2 & C$_{2h}^{6}$ & C2/c:a2 = C2/n11 & -C 2xbc \\ ! 15:a3 & C$_{2h}^{6}$ & C2/c:a3 = I2/c11 & -I 2xc \\ ! 15:-a1 & C$_{2h}^{6}$ & C2/c:-a1 = C2/c11 & -C 2xc \\ ! 15:-a2 & C$_{2h}^{6}$ & C2/c:-a2 = B2/n11 & -B 2xbc \\ ! 15:-a3 & C$_{2h}^{6}$ & C2/c:-a3 = I2/b11 & -I 2xb \\ ! 16 & D$_{2}^{1}$ & P222 & P 2 2 \\ ! 17 & D$_{2}^{2}$ & P2221 & P 2c 2 \\ ! 17:cab & D$_{2}^{2}$ & P2122 & P 2a 2a \\ ! 17:bca & D$_{2}^{2}$ & P2212 & P 2 2b \\ ! 18 & D$_{2}^{3}$ & P21212 & P 2 2ab \\ ! 18:cab & D$_{2}^{3}$ & P22121 & P 2bc 2 \\ ! 18:bca & D$_{2}^{3}$ & P21221 & P 2ac 2ac \\ ! 19 & D$_{2}^{4}$ & P212121 & P 2ac 2ab \\ ! 20 & D$_{2}^{5}$ & C2221 & C 2c 2 \\ ! 20:cab & D$_{2}^{5}$ & A2122 & A 2a 2a \\ ! 20:bca & D$_{2}^{5}$ & B2212 & B 2 2b \\ ! 21 & D$_{2}^{6}$ & C222 & C 2 2 \\ ! 21:cab & D$_{2}^{6}$ & A222 & A 2 2 \\ ! 21:bca & D$_{2}^{6}$ & B222 & B 2 2 \\ ! 22 & D$_{2}^{7}$ & F222 & F 2 2 \\ ! 23 & D$_{2}^{8}$ & I222 & I 2 2 \\ ! 24 & D$_{2}^{9}$ & I212121 & I 2b 2c \\ ! 25 & C$_{2v}^{1}$ & Pmm2 & P 2 -2 \\ ! 25:cab & C$_{2v}^{1}$ & P2mm & P -2 2 \\ ! 25:bca & C$_{2v}^{1}$ & Pm2m & P -2 -2 \\ ! 26 & C$_{2v}^{2}$ & Pmc21 & P 2c -2 \\ ! 26:ba-c & C$_{2v}^{2}$ & Pcm21 & P 2c -2c \\ ! 26:cab & C$_{2v}^{2}$ & P21ma & P -2a 2a \\ ! 26:-cba & C$_{2v}^{2}$ & P21am & P -2 2a \\ ! 26:bca & C$_{2v}^{2}$ & Pb21m & P -2 -2b \\ ! 26:a-cb & C$_{2v}^{2}$ & Pm21b & P -2b -2 \\ ! 27 & C$_{2v}^{3}$ & Pcc2 & P 2 -2c \\ ! 27:cab & C$_{2v}^{3}$ & P2aa & P -2a 2 \\ ! 27:bca & C$_{2v}^{3}$ & Pb2b & P -2b -2b \\ ! 28 & C$_{2v}^{4}$ & Pma2 & P 2 -2a \\ ! 28:ba-c & C$_{2v}^{4}$ & Pbm2 & P 2 -2b \\ ! 28:cab & C$_{2v}^{4}$ & P2mb & P -2b 2 \\ ! 28:-cba & C$_{2v}^{4}$ & P2cm & P -2c 2 \\ ! 28:bca & C$_{2v}^{4}$ & Pc2m & P -2c -2c \\ ! 28:a-cb & C$_{2v}^{4}$ & Pm2a & P -2a -2a \\ ! 29 & C$_{2v}^{5}$ & Pca21 & P 2c -2ac \\ ! 29:ba-c & C$_{2v}^{5}$ & Pbc21 & P 2c -2b \\ ! 29:cab & C$_{2v}^{5}$ & P21ab & P -2b 2a \\ ! 29:-cba & C$_{2v}^{5}$ & P21ca & P -2ac 2a \\ ! 29:bca & C$_{2v}^{5}$ & Pc21b & P -2bc -2c \\ ! 29:a-cb & C$_{2v}^{5}$ & Pb21a & P -2a -2ab \\ ! 30 & C$_{2v}^{6}$ & Pnc2 & P 2 -2bc \\ ! 30:ba-c & C$_{2v}^{6}$ & Pcn2 & P 2 -2ac \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 30:cab & C$_{2v}^{6}$ & P2na & P -2ac 2 \\ ! 30:-cba & C$_{2v}^{6}$ & P2an & P -2ab 2 \\ ! 30:bca & C$_{2v}^{6}$ & Pb2n & P -2ab -2ab \\ ! 30:a-cb & C$_{2v}^{6}$ & Pn2b & P -2bc -2bc \\ ! 31 & C$_{2v}^{7}$ & Pmn21 & P 2ac -2 \\ ! 31:ba-c & C$_{2v}^{7}$ & Pnm21 & P 2bc -2bc \\ ! 31:cab & C$_{2v}^{7}$ & P21mn & P -2ab 2ab \\ ! 31:-cba & C$_{2v}^{7}$ & P21nm & P -2 2ac \\ ! 31:bca & C$_{2v}^{7}$ & Pn21m & P -2 -2bc \\ ! 31:a-cb & C$_{2v}^{7}$ & Pm21n & P -2ab -2 \\ ! 32 & C$_{2v}^{8}$ & Pba2 & P 2 -2ab \\ ! 32:cab & C$_{2v}^{8}$ & P2cb & P -2bc 2 \\ ! 32:bca & C$_{2v}^{8}$ & Pc2a & P -2ac -2ac \\ ! 33 & C$_{2v}^{9}$ & Pna21 & P 2c -2n \\ ! 33:ba-c & C$_{2v}^{9}$ & Pbn21 & P 2c -2ab \\ ! 33:cab & C$_{2v}^{9}$ & P21nb & P -2bc 2a \\ ! 33:-cba & C$_{2v}^{9}$ & P21cn & P -2n 2a \\ ! 33:bca & C$_{2v}^{9}$ & Pc21n & P -2n -2ac \\ ! 33:a-cb & C$_{2v}^{9}$ & Pn21a & P -2ac -2n \\ ! 34 & C$_{2v}^{10}$ & Pnn2 & P 2 -2n \\ ! 34:cab & C$_{2v}^{10}$ & P2nn & P -2n 2 \\ ! 34:bca & C$_{2v}^{10}$ & Pn2n & P -2n -2n \\ ! 35 & C$_{2v}^{11}$ & Cmm2 & C 2 -2 \\ ! 35:cab & C$_{2v}^{11}$ & A2mm & A -2 2 \\ ! 35:bca & C$_{2v}^{11}$ & Bm2m & B -2 -2 \\ ! 36 & C$_{2v}^{12}$ & Cmc21 & C 2c -2 \\ ! 36:ba-c & C$_{2v}^{12}$ & Ccm21 & C 2c -2c \\ ! 36:cab & C$_{2v}^{12}$ & A21ma & A -2a 2a \\ ! 36:-cba & C$_{2v}^{12}$ & A21am & A -2 2a \\ ! 36:bca & C$_{2v}^{12}$ & Bb21m & B -2 -2b \\ ! 36:a-cb & C$_{2v}^{12}$ & Bm21b & B -2b -2 \\ ! 37 & C$_{2v}^{13}$ & Ccc2 & C 2 -2c \\ ! 37:cab & C$_{2v}^{13}$ & A2aa & A -2a 2 \\ ! 37:bca & C$_{2v}^{13}$ & Bb2b & B -2b -2b \\ ! 38 & C$_{2v}^{14}$ & Amm2 & A 2 -2 \\ ! 38:ba-c & C$_{2v}^{14}$ & Bmm2 & B 2 -2 \\ ! 38:cab & C$_{2v}^{14}$ & B2mm & B -2 2 \\ ! 38:-cba & C$_{2v}^{14}$ & C2mm & C -2 2 \\ ! 38:bca & C$_{2v}^{14}$ & Cm2m & C -2 -2 \\ ! 38:a-cb & C$_{2v}^{14}$ & Am2m & A -2 -2 \\ ! 39 & C$_{2v}^{15}$ & Abm2 & A 2 -2c \\ ! 39:ba-c & C$_{2v}^{15}$ & Bma2 & B 2 -2c \\ ! 39:cab & C$_{2v}^{15}$ & B2cm & B -2c 2 \\ ! 39:-cba & C$_{2v}^{15}$ & C2mb & C -2b 2 \\ ! 39:bca & C$_{2v}^{15}$ & Cm2a & C -2b -2b \\ ! 39:a-cb & C$_{2v}^{15}$ & Ac2m & A -2c -2c \\ ! 40 & C$_{2v}^{16}$ & Ama2 & A 2 -2a \\ ! 40:ba-c & C$_{2v}^{16}$ & Bbm2 & B 2 -2b \\ ! 40:cab & C$_{2v}^{16}$ & B2mb & B -2b 2 \\ ! 40:-cba & C$_{2v}^{16}$ & C2cm & C -2c 2 \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 40:bca & C$_{2v}^{16}$ & Cc2m & C -2c -2c \\ ! 40:a-cb & C$_{2v}^{16}$ & Am2a & A -2a -2a \\ ! 41 & C$_{2v}^{17}$ & Aba2 & A 2 -2ac \\ ! 41:ba-c & C$_{2v}^{17}$ & Bba2 & B 2 -2bc \\ ! 41:cab & C$_{2v}^{17}$ & B2cb & B -2bc 2 \\ ! 41:-cba & C$_{2v}^{17}$ & C2cb & C -2bc 2 \\ ! 41:bca & C$_{2v}^{17}$ & Cc2a & C -2bc -2bc \\ ! 41:a-cb & C$_{2v}^{17}$ & Ac2a & A -2ac -2ac \\ ! 42 & C$_{2v}^{18}$ & Fmm2 & F 2 -2 \\ ! 42:cab & C$_{2v}^{18}$ & F2mm & F -2 2 \\ ! 42:bca & C$_{2v}^{18}$ & Fm2m & F -2 -2 \\ ! 43 & C$_{2v}^{19}$ & Fdd2 & F 2 -2d \\ ! 43:cab & C$_{2v}^{19}$ & F2dd & F -2d 2 \\ ! 43:bca & C$_{2v}^{19}$ & Fd2d & F -2d -2d \\ ! 44 & C$_{2v}^{20}$ & Imm2 & I 2 -2 \\ ! 44:cab & C$_{2v}^{20}$ & I2mm & I -2 2 \\ ! 44:bca & C$_{2v}^{20}$ & Im2m & I -2 -2 \\ ! 45 & C$_{2v}^{21}$ & Iba2 & I 2 -2c \\ ! 45:cab & C$_{2v}^{21}$ & I2cb & I -2a 2 \\ ! 45:bca & C$_{2v}^{21}$ & Ic2a & I -2b -2b \\ ! 46 & C$_{2v}^{22}$ & Ima2 & I 2 -2a \\ ! 46:ba-c & C$_{2v}^{22}$ & Ibm2 & I 2 -2b \\ ! 46:cab & C$_{2v}^{22}$ & I2mb & I -2b 2 \\ ! 46:-cba & C$_{2v}^{22}$ & I2cm & I -2c 2 \\ ! 46:bca & C$_{2v}^{22}$ & Ic2m & I -2c -2c \\ ! 46:a-cb & C$_{2v}^{22}$ & Im2a & I -2a -2a \\ ! 47 & D$_{2h}^{1}$ & Pmmm & -P 2 2 \\ ! 48:1 & D$_{2h}^{2}$ & Pnnn:1 & P 2 2 -1n \\ ! 48:2 & D$_{2h}^{2}$ & Pnnn:2 & -P 2ab 2bc \\ ! 49 & D$_{2h}^{3}$ & Pccm & -P 2 2c \\ ! 49:cab & D$_{2h}^{3}$ & Pmaa & -P 2a 2 \\ ! 49:bca & D$_{2h}^{3}$ & Pbmb & -P 2b 2b \\ ! 50:1 & D$_{2h}^{4}$ & Pban:1 & P 2 2 -1ab \\ ! 50:2 & D$_{2h}^{4}$ & Pban:2 & -P 2ab 2b \\ ! 50:1cab & D$_{2h}^{4}$ & Pncb:1 & P 2 2 -1bc \\ ! 50:2cab & D$_{2h}^{4}$ & Pncb:2 & -P 2b 2bc \\ ! 50:1bca & D$_{2h}^{4}$ & Pcna:1 & P 2 2 -1ac \\ ! 50:2bca & D$_{2h}^{4}$ & Pcna:2 & -P 2a 2c \\ ! 51 & D$_{2h}^{5}$ & Pmma & -P 2a 2a \\ ! 51:ba-c & D$_{2h}^{5}$ & Pmmb & -P 2b 2 \\ ! 51:cab & D$_{2h}^{5}$ & Pbmm & -P 2 2b \\ ! 51:-cba & D$_{2h}^{5}$ & Pcmm & -P 2c 2c \\ ! 51:bca & D$_{2h}^{5}$ & Pmcm & -P 2c 2 \\ ! 51:a-cb & D$_{2h}^{5}$ & Pmam & -P 2 2a \\ ! 52 & D$_{2h}^{6}$ & Pnna & -P 2a 2bc \\ ! 52:ba-c & D$_{2h}^{6}$ & Pnnb & -P 2b 2n \\ ! 52:cab & D$_{2h}^{6}$ & Pbnn & -P 2n 2b \\ ! 52:-cba & D$_{2h}^{6}$ & Pcnn & -P 2ab 2c \\ ! 52:bca & D$_{2h}^{6}$ & Pncn & -P 2ab 2n \\ ! 52:a-cb & D$_{2h}^{6}$ & Pnan & -P 2n 2bc \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 53 & D$_{2h}^{7}$ & Pmna & -P 2ac 2 \\ ! 53:ba-c & D$_{2h}^{7}$ & Pnmb & -P 2bc 2bc \\ ! 53:cab & D$_{2h}^{7}$ & Pbmn & -P 2ab 2ab \\ ! 53:-cba & D$_{2h}^{7}$ & Pcnm & -P 2 2ac \\ ! 53:bca & D$_{2h}^{7}$ & Pncm & -P 2 2bc \\ ! 53:a-cb & D$_{2h}^{7}$ & Pman & -P 2ab 2 \\ ! 54 & D$_{2h}^{8}$ & Pcca & -P 2a 2ac \\ ! 54:ba-c & D$_{2h}^{8}$ & Pccb & -P 2b 2c \\ ! 54:cab & D$_{2h}^{8}$ & Pbaa & -P 2a 2b \\ ! 54:-cba & D$_{2h}^{8}$ & Pcaa & -P 2ac 2c \\ ! 54:bca & D$_{2h}^{8}$ & Pbcb & -P 2bc 2b \\ ! 54:a-cb & D$_{2h}^{8}$ & Pbab & -P 2b 2ab \\ ! 55 & D$_{2h}^{9}$ & Pbam & -P 2 2ab \\ ! 55:cab & D$_{2h}^{9}$ & Pmcb & -P 2bc 2 \\ ! 55:bca & D$_{2h}^{9}$ & Pcma & -P 2ac 2ac \\ ! 56 & D$_{2h}^{10}$ & Pccn & -P 2ab 2ac \\ ! 56:cab & D$_{2h}^{10}$ & Pnaa & -P 2ac 2bc \\ ! 56:bca & D$_{2h}^{10}$ & Pbnb & -P 2bc 2ab \\ ! 57 & D$_{2h}^{11}$ & Pbcm & -P 2c 2b \\ ! 57:ba-c & D$_{2h}^{11}$ & Pcam & -P 2c 2ac \\ ! 57:cab & D$_{2h}^{11}$ & Pmca & -P 2ac 2a \\ ! 57:-cba & D$_{2h}^{11}$ & Pmab & -P 2b 2a \\ ! 57:bca & D$_{2h}^{11}$ & Pbma & -P 2a 2ab \\ ! 57:a-cb & D$_{2h}^{11}$ & Pcmb & -P 2bc 2c \\ ! 58 & D$_{2h}^{12}$ & Pnnm & -P 2 2n \\ ! 58:cab & D$_{2h}^{12}$ & Pmnn & -P 2n 2 \\ ! 58:bca & D$_{2h}^{12}$ & Pnmn & -P 2n 2n \\ ! 59:1 & D$_{2h}^{13}$ & Pmmn:1 & P 2 2ab -1ab \\ ! 59:2 & D$_{2h}^{13}$ & Pmmn:2 & -P 2ab 2a \\ ! 59:1cab & D$_{2h}^{13}$ & Pnmm:1 & P 2bc 2 -1bc \\ ! 59:2cab & D$_{2h}^{13}$ & Pnmm:2 & -P 2c 2bc \\ ! 59:1bca & D$_{2h}^{13}$ & Pmnm:1 & P 2ac 2ac -1ac \\ ! 59:2bca & D$_{2h}^{13}$ & Pmnm:2 & -P 2c 2a \\ ! 60 & D$_{2h}^{14}$ & Pbcn & -P 2n 2ab \\ ! 60:ba-c & D$_{2h}^{14}$ & Pcan & -P 2n 2c \\ ! 60:cab & D$_{2h}^{14}$ & Pnca & -P 2a 2n \\ ! 60:-cba & D$_{2h}^{14}$ & Pnab & -P 2bc 2n \\ ! 60:bca & D$_{2h}^{14}$ & Pbna & -P 2ac 2b \\ ! 60:a-cb & D$_{2h}^{14}$ & Pcnb & -P 2b 2ac \\ ! 61 & D$_{2h}^{15}$ & Pbca & -P 2ac 2ab \\ ! 61:ba-c & D$_{2h}^{15}$ & Pcab & -P 2bc 2ac \\ ! 62 & D$_{2h}^{16}$ & Pnma & -P 2ac 2n \\ ! 62:ba-c & D$_{2h}^{16}$ & Pmnb & -P 2bc 2a \\ ! 62:cab & D$_{2h}^{16}$ & Pbnm & -P 2c 2ab \\ ! 62:-cba & D$_{2h}^{16}$ & Pcmn & -P 2n 2ac \\ ! 62:bca & D$_{2h}^{16}$ & Pmcn & -P 2n 2a \\ ! 62:a-cb & D$_{2h}^{16}$ & Pnam & -P 2c 2n \\ ! 63 & D$_{2h}^{17}$ & Cmcm & -C 2c 2 \\ ! 63:ba-c & D$_{2h}^{17}$ & Ccmm & -C 2c 2c \\ ! 63:cab & D$_{2h}^{17}$ & Amma & -A 2a 2a \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 63:-cba & D$_{2h}^{17}$ & Amam & -A 2 2a \\ ! 63:bca & D$_{2h}^{17}$ & Bbmm & -B 2 2b \\ ! 63:a-cb & D$_{2h}^{17}$ & Bmmb & -B 2b 2 \\ ! 64 & D$_{2h}^{18}$ & Cmca & -C 2bc 2 \\ ! 64:ba-c & D$_{2h}^{18}$ & Ccmb & -C 2bc 2bc \\ ! 64:cab & D$_{2h}^{18}$ & Abma & -A 2ac 2ac \\ ! 64:-cba & D$_{2h}^{18}$ & Acam & -A 2 2ac \\ ! 64:bca & D$_{2h}^{18}$ & Bbcm & -B 2 2bc \\ ! 64:a-cb & D$_{2h}^{18}$ & Bmab & -B 2bc 2 \\ ! 65 & D$_{2h}^{19}$ & Cmmm & -C 2 2 \\ ! 65:cab & D$_{2h}^{19}$ & Ammm & -A 2 2 \\ ! 65:bca & D$_{2h}^{19}$ & Bmmm & -B 2 2 \\ ! 66 & D$_{2h}^{20}$ & Cccm & -C 2 2c \\ ! 66:cab & D$_{2h}^{20}$ & Amaa & -A 2a 2 \\ ! 66:bca & D$_{2h}^{20}$ & Bbmb & -B 2b 2b \\ ! 67 & D$_{2h}^{21}$ & Cmma & -C 2b 2 \\ ! 67:ba-c & D$_{2h}^{21}$ & Cmmb & -C 2b 2b \\ ! 67:cab & D$_{2h}^{21}$ & Abmm & -A 2c 2c \\ ! 67:-cba & D$_{2h}^{21}$ & Acmm & -A 2 2c \\ ! 67:bca & D$_{2h}^{21}$ & Bmcm & -B 2 2c \\ ! 67:a-cb & D$_{2h}^{21}$ & Bmam & -B 2c 2 \\ ! 68:1 & D$_{2h}^{22}$ & Ccca:1 & C 2 2 -1bc \\ ! 68:2 & D$_{2h}^{22}$ & Ccca:2 & -C 2b 2bc \\ ! 68:1ba-c & D$_{2h}^{22}$ & Cccb:1 & C 2 2 -1bc \\ ! 68:2ba-c & D$_{2h}^{22}$ & Cccb:2 & -C 2b 2c \\ ! 68:1cab & D$_{2h}^{22}$ & Abaa:1 & A 2 2 -1ac \\ ! 68:2cab & D$_{2h}^{22}$ & Abaa:2 & -A 2a 2c \\ ! 68:1-cba & D$_{2h}^{22}$ & Acaa:1 & A 2 2 -1ac \\ ! 68:2-cba & D$_{2h}^{22}$ & Acaa:2 & -A 2ac 2c \\ ! 68:1bca & D$_{2h}^{22}$ & Bbcb:1 & B 2 2 -1bc \\ ! 68:2bca & D$_{2h}^{22}$ & Bbcb:2 & -B 2bc 2b \\ ! 68:1a-cb & D$_{2h}^{22}$ & Bbab:1 & B 2 2 -1bc \\ ! 68:2a-cb & D$_{2h}^{22}$ & Bbab:2 & -B 2b 2bc \\ ! 69 & D$_{2h}^{23}$ & Fmmm & -F 2 2 \\ ! 70:1 & D$_{2h}^{24}$ & Fddd:1 & F 2 2 -1d \\ ! 70:2 & D$_{2h}^{24}$ & Fddd:2 & -F 2uv 2vw \\ ! 71 & D$_{2h}^{25}$ & Immm & -I 2 2 \\ ! 72 & D$_{2h}^{26}$ & Ibam & -I 2 2c \\ ! 72:cab & D$_{2h}^{26}$ & Imcb & -I 2a 2 \\ ! 72:bca & D$_{2h}^{26}$ & Icma & -I 2b 2b \\ ! 73 & D$_{2h}^{27}$ & Ibca & -I 2b 2c \\ ! 73:ba-c & D$_{2h}^{27}$ & Icab & -I 2a 2b \\ ! 74 & D$_{2h}^{28}$ & Imma & -I 2b 2 \\ ! 74:ba-c & D$_{2h}^{28}$ & Immb & -I 2a 2a \\ ! 74:cab & D$_{2h}^{28}$ & Ibmm & -I 2c 2c \\ ! 74:-cba & D$_{2h}^{28}$ & Icmm & -I 2 2b \\ ! 74:bca & D$_{2h}^{28}$ & Imcm & -I 2 2a \\ ! 74:a-cb & D$_{2h}^{28}$ & Imam & -I 2c 2 \\ ! 75 & C$_{4}^{1}$ & P4 & P 4 \\ ! 76 & C$_{4}^{2}$ & P41 & P 4w \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 77 & C$_{4}^{3}$ & P42 & P 4c \\ ! 78 & C$_{4}^{4}$ & P43 & P 4cw \\ ! 79 & C$_{4}^{5}$ & I4 & I 4 \\ ! 80 & C$_{4}^{6}$ & I41 & I 4bw \\ ! 81 & S$_{4}^{1}$ & P-4 & P -4 \\ ! 82 & S$_{4}^{2}$ & I-4 & I -4 \\ ! 83 & C$_{4h}^{1}$ & P4/m & -P 4 \\ ! 84 & C$_{4h}^{2}$ & P42/m & -P 4c \\ ! 85:1 & C$_{4h}^{3}$ & P4/n:1 & P 4ab -1ab \\ ! 85:2 & C$_{4h}^{3}$ & P4/n:2 & -P 4a \\ ! 86:1 & C$_{4h}^{4}$ & P42/n:1 & P 4n -1n \\ ! 86:2 & C$_{4h}^{4}$ & P42/n:2 & -P 4bc \\ ! 87 & C$_{4h}^{5}$ & I4/m & -I 4 \\ ! 88:1 & C$_{4h}^{6}$ & I41/a:1 & I 4bw -1bw \\ ! 88:2 & C$_{4h}^{6}$ & I41/a:2 & -I 4ad \\ ! 89 & D$_{4}^{1}$ & P422 & P 4 2 \\ ! 90 & D$_{4}^{2}$ & P4212 & P 4ab 2ab \\ ! 91 & D$_{4}^{3}$ & P4122 & P 4w 2c \\ ! 92 & D$_{4}^{4}$ & P41212 & P 4abw 2nw \\ ! 93 & D$_{4}^{5}$ & P4222 & P 4c 2 \\ ! 94 & D$_{4}^{6}$ & P42212 & P 4n 2n \\ ! 95 & D$_{4}^{7}$ & P4322 & P 4cw 2c \\ ! 96 & D$_{4}^{8}$ & P43212 & P 4nw 2abw \\ ! 97 & D$_{4}^{9}$ & I422 & I 4 2 \\ ! 98 & D$_{4}^{10}$ & I4122 & I 4bw 2bw \\ ! 99 & C$_{4v}^{1}$ & P4mm & P 4 -2 \\ ! 100 & C$_{4v}^{2}$ & P4bm & P 4 -2ab \\ ! 101 & C$_{4v}^{3}$ & P42cm & P 4c -2c \\ ! 102 & C$_{4v}^{4}$ & P42nm & P 4n -2n \\ ! 103 & C$_{4v}^{5}$ & P4cc & P 4 -2c \\ ! 104 & C$_{4v}^{6}$ & P4nc & P 4 -2n \\ ! 105 & C$_{4v}^{7}$ & P42mc & P 4c -2 \\ ! 106 & C$_{4v}^{8}$ & P42bc & P 4c -2ab \\ ! 107 & C$_{4v}^{9}$ & I4mm & I 4 -2 \\ ! 108 & C$_{4v}^{10}$ & I4cm & I 4 -2c \\ ! 109 & C$_{4v}^{11}$ & I41md & I 4bw -2 \\ ! 110 & C$_{4v}^{12}$ & I41cd & I 4bw -2c \\ ! 111 & D$_{2d}^{1}$ & P-42m & P -4 2 \\ ! 112 & D$_{2d}^{2}$ & P-42c & P -4 2c \\ ! 113 & D$_{2d}^{3}$ & P-421m & P -4 2ab \\ ! 114 & D$_{2d}^{4}$ & P-421c & P -4 2n \\ ! 115 & D$_{2d}^{5}$ & P-4m2 & P -4 -2 \\ ! 116 & D$_{2d}^{6}$ & P-4c2 & P -4 -2c \\ ! 117 & D$_{2d}^{7}$ & P-4b2 & P -4 -2ab \\ ! 118 & D$_{2d}^{8}$ & P-4n2 & P -4 -2n \\ ! 119 & D$_{2d}^{9}$ & I-4m2 & I -4 -2 \\ ! 120 & D$_{2d}^{10}$ & I-4c2 & I -4 -2c \\ ! 121 & D$_{2d}^{11}$ & I-42m & I -4 2 \\ ! 122 & D$_{2d}^{12}$ & I-42d & I -4 2bw \\ ! 123 & D$_{4h}^{1}$ & P4/mmm & -P 4 2 \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 124 & D$_{4h}^{2}$ & P4/mcc & -P 4 2c \\ ! 125:1 & D$_{4h}^{3}$ & P4/nbm:1 & P 4 2 -1ab \\ ! 125:2 & D$_{4h}^{3}$ & P4/nbm:2 & -P 4a 2b \\ ! 126:1 & D$_{4h}^{4}$ & P4/nnc:1 & P 4 2 -1n \\ ! 126:2 & D$_{4h}^{4}$ & P4/nnc:2 & -P 4a 2bc \\ ! 127 & D$_{4h}^{5}$ & P4/mbm & -P 4 2ab \\ ! 128 & D$_{4h}^{6}$ & P4/mnc & -P 4 2n \\ ! 129:1 & D$_{4h}^{7}$ & P4/nmm:1 & P 4ab 2ab -1ab \\ ! 129:2 & D$_{4h}^{7}$ & P4/nmm:2 & -P 4a 2a \\ ! 130:1 & D$_{4h}^{8}$ & P4/ncc:1 & P 4ab 2n -1ab \\ ! 130:2 & D$_{4h}^{8}$ & P4/ncc:2 & -P 4a 2ac \\ ! 131 & D$_{4h}^{9}$ & P42/mmc & -P 4c 2 \\ ! 132 & D$_{4h}^{10}$ & P42/mcm & -P 4c 2c \\ ! 133:1 & D$_{4h}^{11}$ & P42/nbc:1 & P 4n 2c -1n \\ ! 133:2 & D$_{4h}^{11}$ & P42/nbc:2 & -P 4ac 2b \\ ! 134:1 & D$_{4h}^{12}$ & P42/nnm:1 & P 4n 2 -1n \\ ! 134:2 & D$_{4h}^{12}$ & P42/nnm:2 & -P 4ac 2bc \\ ! 135 & D$_{4h}^{13}$ & P42/mbc & -P 4c 2ab \\ ! 136 & D$_{4h}^{14}$ & P42/mnm & -P 4n 2n \\ ! 137:1 & D$_{4h}^{15}$ & P42/nmc:1 & P 4n 2n -1n \\ ! 137:2 & D$_{4h}^{15}$ & P42/nmc:2 & -P 4ac 2a \\ ! 138:1 & D$_{4h}^{16}$ & P42/ncm:1 & P 4n 2ab -1n \\ ! 138:2 & D$_{4h}^{16}$ & P42/ncm:2 & -P 4ac 2ac \\ ! 139 & D$_{4h}^{17}$ & I4/mmm & -I 4 2 \\ ! 140 & D$_{4h}^{18}$ & I4/mcm & -I 4 2c \\ ! 141:1 & D$_{4h}^{19}$ & I41/amd:1 & I 4bw 2bw -1bw \\ ! 141:2 & D$_{4h}^{19}$ & I41/amd:2 & -I 4bd 2 \\ ! 142:1 & D$_{4h}^{20}$ & I41/acd:1 & I 4bw 2aw -1bw \\ ! 142:2 & D$_{4h}^{20}$ & I41/acd:2 & -I 4bd 2c \\ ! 143 & C$_{3}^{1}$ & P3 & P 3 \\ ! 144 & C$_{3}^{2}$ & P31 & P 31 \\ ! 145 & C$_{3}^{3}$ & P32 & P 32 \\ ! 146:H & C$_{3}^{4}$ & R3:H & R 3 \\ ! 146:R & C$_{3}^{4}$ & R3:R & P 3* \\ ! 147 & C$_{3i}^{1}$ & P-3 & -P 3 \\ ! 148:H & C$_{3i}^{2}$ & R-3:H & -R 3 \\ ! 148:R & C$_{3i}^{2}$ & R-3:R & -P 3* \\ ! 149 & D$_{3}^{1}$ & P312 & P 3 2 \\ ! 150 & D$_{3}^{2}$ & P321 & P 3 2$''$ \\ ! 151 & D$_{3}^{3}$ & P3112 & P 31 2c (0 0 1) \\ ! 152 & D$_{3}^{4}$ & P3121 & P 31 2$''$ \\ ! 153 & D$_{3}^{5}$ & P3212 & P 32 2c (0 0 -1) \\ ! 154 & D$_{3}^{6}$ & P3221 & P 32 2$''$ \\ ! 155:H & D$_{3}^{7}$ & R32:H & R 3 2$''$ \\ ! 155:R & D$_{3}^{7}$ & R32:R & P 3* 2 \\ ! 156 & C$_{3v}^{1}$ & P3m1 & P 3 -2$''$ \\ ! 157 & C$_{3v}^{2}$ & P31m & P 3 -2 \\ ! 158 & C$_{3v}^{3}$ & P3c1 & P 3 -2$''$c \\ ! 159 & C$_{3v}^{4}$ & P31c & P 3 -2c \\ ! 160:H & C$_{3v}^{5}$ & R3m:H & R 3 -2$''$ \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 160:R & C$_{3v}^{5}$ & R3m:R & P 3* -2 \\ ! 161:H & C$_{3v}^{6}$ & R3c:H & R 3 -2$''$c \\ ! 161:R & C$_{3v}^{6}$ & R3c:R & P 3* -2n \\ ! 162 & D$_{3d}^{1}$ & P-31m & -P 3 2 \\ ! 163 & D$_{3d}^{2}$ & P-31c & -P 3 2c \\ ! 164 & D$_{3d}^{3}$ & P-3m1 & -P 3 2$''$ \\ ! 165 & D$_{3d}^{4}$ & P-3c1 & -P 3 2$''$c \\ ! 166:H & D$_{3d}^{5}$ & R-3m:H & -R 3 2$''$ \\ ! 166:R & D$_{3d}^{5}$ & R-3m:R & -P 3* 2 \\ ! 167:H & D$_{3d}^{6}$ & R-3c:H & -R 3 2$''$c \\ ! 167:R & D$_{3d}^{6}$ & R-3c:R & -P 3* 2n \\ ! 168 & C$_{6}^{1}$ & P6 & P 6 \\ ! 169 & C$_{6}^{2}$ & P61 & P 61 \\ ! 170 & C$_{6}^{3}$ & P65 & P 65 \\ ! 171 & C$_{6}^{4}$ & P62 & P 62 \\ ! 172 & C$_{6}^{5}$ & P64 & P 64 \\ ! 173 & C$_{6}^{6}$ & P63 & P 6c \\ ! 174 & C$_{3h}^{1}$ & P-6 & P -6 \\ ! 175 & C$_{6h}^{1}$ & P6/m & -P 6 \\ ! 176 & C$_{6h}^{2}$ & P63/m & -P 6c \\ ! 177 & D$_{6}^{1}$ & P622 & P 6 2 \\ ! 178 & D$_{6}^{2}$ & P6122 & P 61 2 (0 0 -1) \\ ! 179 & D$_{6}^{3}$ & P6522 & P 65 2 (0 0 1) \\ ! 180 & D$_{6}^{4}$ & P6222 & P 62 2c (0 0 1) \\ ! 181 & D$_{6}^{5}$ & P6422 & P 64 2c (0 0 -1) \\ ! 182 & D$_{6}^{6}$ & P6322 & P 6c 2c \\ ! 183 & C$_{6v}^{1}$ & P6mm & P 6 -2 \\ ! 184 & C$_{6v}^{2}$ & P6cc & P 6 -2c \\ ! 185 & C$_{6v}^{3}$ & P63cm & P 6c -2 \\ ! 186 & C$_{6v}^{4}$ & P63mc & P 6c -2c \\ ! 187 & D$_{3h}^{1}$ & P-6m2 & P -6 2 \\ ! 188 & D$_{3h}^{2}$ & P-6c2 & P -6c 2 \\ ! 189 & D$_{3h}^{3}$ & P-62m & P -6 -2 \\ ! 190 & D$_{3h}^{4}$ & P-62c & P -6c -2c \\ ! 191 & D$_{6h}^{1}$ & P6/mmm & -P 6 2 \\ ! 192 & D$_{6h}^{2}$ & P6/mcc & -P 6 2c \\ ! 193 & D$_{6h}^{3}$ & P63/mcm & -P 6c 2 \\ ! 194 & D$_{6h}^{4}$ & P63/mmc & -P 6c 2c \\ ! 195 & T$_{}^{1}$ & P23 & P 2 2 3 \\ ! 196 & T$_{}^{2}$ & F23 & F 2 2 3 \\ ! 197 & T$_{}^{3}$ & I23 & I 2 2 3 \\ ! 198 & T$_{}^{4}$ & P213 & P 2ac 2ab 3 \\ ! 199 & T$_{}^{5}$ & I213 & I 2b 2c 3 \\ ! 200 & T$_{h}^{1}$ & Pm-3 & -P 2 2 3 \\ ! 201:1 & T$_{h}^{2}$ & Pn-3:1 & P 2 2 3 -1n \\ ! 201:2 & T$_{h}^{2}$ & Pn-3:2 & -P 2ab 2bc 3 \\ ! 202 & T$_{h}^{3}$ & Fm-3 & -F 2 2 3 \\ ! 203:1 & T$_{h}^{4}$ & Fd-3:1 & F 2 2 3 -1d \\ ! 203:2 & T$_{h}^{4}$ & Fd-3:2 & -F 2uv 2vw 3 \\ ! 204 & T$_{h}^{5}$ & Im-3 & -I 2 2 3 \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 205 & T$_{h}^{6}$ & Pa-3 & -P 2ac 2ab 3 \\ ! 206 & T$_{h}^{7}$ & Ia-3 & -I 2b 2c 3 \\ ! 207 & O$^{1}$ & P432 & P 4 2 3 \\ ! 208 & O$^{2}$ & P4232 & P 4n 2 3 \\ ! 209 & O$^{3}$ & F432 & F 4 2 3 \\ ! 210 & O$^{4}$ & F4132 & F 4d 2 3 \\ ! 211 & O$^{5}$ & I432 & I 4 2 3 \\ ! 212 & O$^{6}$ & P4332 & P 4acd 2ab 3 \\ ! 213 & O$^{7}$ & P4132 & P 4bd 2ab 3 \\ ! 214 & O$^{8}$ & I4132 & I 4bd 2c 3 \\ ! 215 & T$_{d}^{1}$ & P-43m & P -4 2 3 \\ ! 216 & T$_{d}^{2}$ & F-43m & F -4 2 3 \\ ! 217 & T$_{d}^{3}$ & I-43m & I -4 2 3 \\ ! 218 & T$_{d}^{4}$ & P-43n & P -4n 2 3 \\ ! 219 & T$_{d}^{5}$ & F-43c & F -4c 2 3 \\ ! 220 & T$_{d}^{6}$ & I-43d & I -4bd 2c 3 \\ ! 221 & O$_{h}^{1}$ & Pm-3m & -P 4 2 3 \\ ! 222:1 & O$_{h}^{2}$ & Pn-3n:1 & P 4 2 3 -1n \\ ! 222:2 & O$_{h}^{2}$ & Pn-3n:2 & -P 4a 2bc 3 \\ ! 223 & O$_{h}^{3}$ & Pm-3n & -P 4n 2 3 \\ ! 224:1 & O$_{h}^{4}$ & Pn-3m:1 & P 4n 2 3 -1n \\ ! 224:2 & O$_{h}^{4}$ & Pn-3m:2 & -P 4bc 2bc 3 \\ ! 225 & O$_{h}^{5}$ & Fm-3m & -F 4 2 3 \\ ! 226 & O$_{h}^{6}$ & Fm-3c & -F 4c 2 3 \\ ! 227:1 & O$_{h}^{7}$ & Fd-3m:1 & F 4d 2 3 -1d \\ ! 227:2 & O$_{h}^{7}$ & Fd-3m:2 & -F 4vw 2vw 3 \\ ! 228:1 & O$_{h}^{8}$ & Fd-3c:1 & F 4d 2 3 -1cd \\ ! 228:2 & O$_{h}^{8}$ & Fd-3c:2 & -F 4cvw 2vw 3 \\ ! 229 & O$_{h}^{9}$ & Im-3m & -I 4 2 3 \\ ! 230 & O$_{h}^{10}$ & Ia-3d & -I 4bd 2c 3 \\ ! \hline ! \end{tabular} ! \end{center} ! !EOI elk-9.2.12/src/spacegroup/PaxHeaders/r3cross.f900000644000000000000000000000013214536061312016314 xustar0030 mtime=1702388426.298503888 30 atime=1702388426.298503888 30 ctime=1702388426.298503888 elk-9.2.12/src/spacegroup/r3cross.f900000644002504400250440000000137314536061312021042 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3cross ! !INTERFACE: subroutine r3cross(x,y,z) ! !INPUT/OUTPUT PARAMETERS: ! x : input vector 1 (in,real(3)) ! y : input vector 2 (in,real(3)) ! z : output cross-product (out,real(3)) ! !DESCRIPTION: ! Returns the cross product of two real 3-vectors. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: x(3) real(8), intent(in) :: y(3) real(8), intent(out) :: z(3) z(1)=x(2)*y(3)-x(3)*y(2) z(2)=x(3)*y(1)-x(1)*y(3) z(3)=x(1)*y(2)-x(2)*y(1) return end subroutine !EOC elk-9.2.12/src/spacegroup/PaxHeaders/r3minv.f900000644000000000000000000000013214536061312016134 xustar0030 mtime=1702388426.299503886 30 atime=1702388426.299503886 30 ctime=1702388426.299503886 elk-9.2.12/src/spacegroup/r3minv.f900000644002504400250440000000236114536061312020660 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3minv ! !INTERFACE: subroutine r3minv(a,b) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,real(3,3)) ! b : output matrix (in,real(3,3)) ! !DESCRIPTION: ! Computes the inverse of a real $3\times 3$ matrix. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3) real(8), intent(out) :: b(3,3) ! local variables real(8) t1 t1=a(1,2)*a(2,3)*a(3,1)-a(1,3)*a(2,2)*a(3,1)+a(1,3)*a(2,1)*a(3,2) & -a(1,1)*a(2,3)*a(3,2)+a(1,1)*a(2,2)*a(3,3)-a(1,2)*a(2,1)*a(3,3) if (abs(t1) < 1.d-40) then write(*,*) write(*,'("Error(r3minv): singular matrix")') write(*,*) stop end if t1=1.d0/t1 b(1,1)=(a(2,2)*a(3,3)-a(2,3)*a(3,2))*t1 b(1,2)=(a(1,3)*a(3,2)-a(1,2)*a(3,3))*t1 b(1,3)=(a(1,2)*a(2,3)-a(1,3)*a(2,2))*t1 b(2,1)=(a(2,3)*a(3,1)-a(2,1)*a(3,3))*t1 b(2,2)=(a(1,1)*a(3,3)-a(1,3)*a(3,1))*t1 b(2,3)=(a(1,3)*a(2,1)-a(1,1)*a(2,3))*t1 b(3,1)=(a(2,1)*a(3,2)-a(2,2)*a(3,1))*t1 b(3,2)=(a(1,2)*a(3,1)-a(1,1)*a(3,2))*t1 b(3,3)=(a(1,1)*a(2,2)-a(1,2)*a(2,1))*t1 return end subroutine !EOC elk-9.2.12/src/spacegroup/PaxHeaders/Makefile0000644000000000000000000000013214536061312016036 xustar0030 mtime=1702388426.301503883 30 atime=1702388426.301503883 30 ctime=1702388426.301503883 elk-9.2.12/src/spacegroup/Makefile0000644002504400250440000000216714536061312020566 0ustar00dewhurstdewhurst00000000000000 include ../../make.inc #------------------------------------------------------------------------------- # Suffix rules #------------------------------------------------------------------------------- .SUFFIXES: .o .f90 .f90.o: $(F90) $(F90_OPTS) -c $< #------------------------------------------------------------------------------- # Source files #------------------------------------------------------------------------------- SRC_modules = modmain.f90 SRC_main = main.f90 SRC_routines = readinput.f90 gencrystal.f90 sgsymb.f90 seitzgen.f90 \ gengroup.f90 seitzeq.f90 seitzmul.f90 writegeom.f90 geomplot.f90 \ findprimcell.f90 r3frac.f90 r3mv.f90 r3cross.f90 r3minv.f90 r3mm.f90 SRC = $(SRC_modules) $(SRC_main) $(SRC_routines) OBJ = $(SRC:.f90=.o) EXE = spacegroup spacegroup: $(OBJ) $(F90) $(F90_OPTS) -o $(EXE) $(OBJ) clean: rm -f *.o *.mod *~ fort.* ifc* *.gcno *.OUT *.xsf *.ascii gmon.out \ *.aux *.dvi *.log *.pdf *.tex *.toc *.out $(EXE) doc: ../protex -s $(SRC_main) $(SRC_modules) $(SRC_routines) > spacegroup.tex pdflatex spacegroup;pdflatex spacegroup;pdflatex spacegroup spaces: ../rmspaces $(SRC) elk-9.2.12/src/spacegroup/PaxHeaders/r3mv.f900000644000000000000000000000013214536061312015605 xustar0030 mtime=1702388426.302503882 30 atime=1702388426.302503882 30 ctime=1702388426.302503882 elk-9.2.12/src/spacegroup/r3mv.f900000644002504400250440000000143714536061312020334 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mv ! !INTERFACE: subroutine r3mv(a,x,y) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,real(3,3)) ! x : input vector (in,real(3)) ! y : output vector (out,real(3)) ! !DESCRIPTION: ! Multiplies a real $3\times 3$ matrix with a vector. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3) real(8), intent(in) :: x(3) real(8), intent(out) :: y(3) y(1)=a(1,1)*x(1)+a(1,2)*x(2)+a(1,3)*x(3) y(2)=a(2,1)*x(1)+a(2,2)*x(2)+a(2,3)*x(3) y(3)=a(3,1)*x(1)+a(3,2)*x(2)+a(3,3)*x(3) return end subroutine !EOC elk-9.2.12/src/spacegroup/PaxHeaders/seitzeq.f900000644000000000000000000000012714536061312016406 xustar0029 mtime=1702388426.30350388 29 atime=1702388426.30350388 29 ctime=1702388426.30350388 elk-9.2.12/src/spacegroup/seitzeq.f900000644002504400250440000000126614536061312021131 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. logical function seitzeq(eps,sr1,st1,sr2,st2) implicit none ! arguments real(8), intent(in) :: eps real(8), intent(in) :: sr1(3,3) real(8), intent(in) :: st1(3) real(8), intent(in) :: sr2(3,3) real(8), intent(in) :: st2(3) ! local variables integer j real(8) v1(3),v2(3) seitzeq=.false. do j=1,3 v1(:)=sr1(:,j)+st1(:) v2(:)=sr2(:,j)+st2(:) if ((abs(v1(1)-v2(1)) > eps).or. & (abs(v1(2)-v2(2)) > eps).or. & (abs(v1(3)-v2(3)) > eps)) return end do seitzeq=.true. return end function elk-9.2.12/src/spacegroup/PaxHeaders/seitzmul.f900000644000000000000000000000013214536061312016572 xustar0030 mtime=1702388426.304503879 30 atime=1702388426.304503879 30 ctime=1702388426.304503879 elk-9.2.12/src/spacegroup/seitzmul.f900000644002504400250440000000112314536061312021311 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine seitzmul(eps,sr1,st1,sr2,st2,sr3,st3) implicit none ! arguments real(8), intent(in) :: eps real(8), intent(in) :: sr1(3,3) real(8), intent(in) :: st1(3) real(8), intent(in) :: sr2(3,3) real(8), intent(in) :: st2(3) real(8), intent(out) :: sr3(3,3) real(8), intent(out) :: st3(3) call r3mv(sr1,st2,st3) st3(:)=st3(:)+st1(:) call r3frac(eps,st3) call r3mm(sr1,sr2,sr3) return end subroutine elk-9.2.12/src/spacegroup/PaxHeaders/writegeom.f900000644000000000000000000000013214536061312016720 xustar0030 mtime=1702388426.306503876 30 atime=1702388426.305503877 30 ctime=1702388426.306503876 elk-9.2.12/src/spacegroup/writegeom.f900000644002504400250440000000334614536061312021450 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writegeom use modmain implicit none ! local variables integer is,ia,ip open(50,file='GEOMETRY.OUT',action='WRITE',form='FORMATTED') write(50,*) write(50,'("! Atomic positions generated by spacegroup version ",& &I1.1,".",I1.1,".",I2.2)') version write(50,'("! Hermann-Mauguin symbol : ",A)') trim(hrmg) write(50,'("! Hall symbol : ",A)') trim(hall) write(50,'("! Schoenflies symbol : ",A)') trim(schn) write(50,'("! space group number : ",A)') trim(num) write(50,'("! lattice constants (a,b,c) : ",3G18.10)') a,b,c write(50,'("! angles in degrees (bc,ac,ab) : ",3G18.10)') bc,ac,ab write(50,'("! number of conventional unit cells : ",3I4)') ncell write(50,'("! reduction to primitive cell : ",L1)') primcell write(50,'("! Wyckoff positions :")') do is=1,nspecies write(50,'("! species : ",I4,", ",A)') is,trim(spsymb(is)) do ip=1,nwpos(is) write(50,'("! ",3G18.10)') wpos(:,ip,is) end do end do write(50,*) write(50,'("avec")') write(50,'(3G18.10)') avec(:,1) write(50,'(3G18.10)') avec(:,2) write(50,'(3G18.10)') avec(:,3) write(50,*) write(50,'("atoms")') write(50,'(I4,T40," : nspecies")') nspecies do is=1,nspecies write(50,'("''",A,"''",T40," : spfname")') trim(spsymb(is))//'.in' write(50,'(I4,T40," : natoms; atposl, bfcmt below")') natoms(is) do ia=1,natoms(is) write(50,'(3F14.8," ",3F12.8)') atposl(:,ia,is),bfcmt0(:,ia,is) end do end do close(50) write(*,*) write(*,'("Info(writegeom):")') write(*,'(" Elk lattice vectors and atomic positions written to GEOMETRY.OUT")') return end subroutine elk-9.2.12/src/spacegroup/PaxHeaders/gencrystal.f900000644000000000000000000000013214536061312017071 xustar0030 mtime=1702388426.307503874 30 atime=1702388426.307503874 30 ctime=1702388426.307503874 elk-9.2.12/src/spacegroup/gencrystal.f900000644002504400250440000000576714536061312021632 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gencrystal use modmain implicit none ! local variables integer is,ia,ip,i,j integer i1,i2,i3 integer ngen,ngrp real(8) abr,acr,bcr real(8) sab,cab,cac,cbc real(8) v1(3),v2(3),t1 ! space group generator Seitz matrices real(8) srgen(3,3,12),stgen(3,12) ! space group Seitz matrices real(8) srgrp(3,3,192),stgrp(3,192) ! convert angles from degrees to radians abr=ab*(pi/180.d0) acr=ac*(pi/180.d0) bcr=bc*(pi/180.d0) ! setup lattice vectors sab=sin(abr) if (abs(sab) < epslat) then write(*,*) write(*,'("Error(gencrystal): degenerate lattice vectors")') write(*,*) stop end if cab=cos(abr) cac=cos(acr) cbc=cos(bcr) avec(1,1)=a avec(2,1)=0.d0 avec(3,1)=0.d0 avec(1,2)=b*cab avec(2,2)=b*sab avec(3,2)=0.d0 avec(1,3)=c*cac avec(2,3)=c*(cbc-cab*cac)/sab avec(3,3)=c*sqrt(sab**2-cac**2+2.d0*cab*cac*cbc-cbc**2)/sab do i=1,3 do j=1,3 if (abs(avec(i,j)) < epslat) avec(i,j)=0.d0 end do end do ! scale lattice vectors by the number of unit cells do i=1,3 avec(:,i)=avec(:,i)*dble(ncell(i)) end do ! determine the Hall symbol from the Hermann-Mauguin symbol call sgsymb(hrmg,num,schn,hall) ! determine the space group generators call seitzgen(hall,ngen,srgen,stgen) ! compute the space group operations call gengroup(ngen,srgen,stgen,ngrp,srgrp,stgrp) ! compute the equivalent atomic positions do is=1,nspecies natoms(is)=0 do ip=1,nwpos(is) do j=1,ngrp ! apply the space group operation call r3mv(srgrp(:,1,j),wpos(:,ip,is),v1) v1(:)=v1(:)+stgrp(:,j) do i1=0,ncell(1)-1 do i2=0,ncell(2)-1 do i3=0,ncell(3)-1 v2(1)=(v1(1)+dble(i1))/dble(ncell(1)) v2(2)=(v1(2)+dble(i2))/dble(ncell(2)) v2(3)=(v1(3)+dble(i3))/dble(ncell(3)) call r3frac(epslat,v2) ! check if new position already exists do ia=1,natoms(is) t1=sum(abs(v2(:)-atposl(:,ia,is))) if (t1 < epslat) goto 30 end do ! add new position to list natoms(is)=natoms(is)+1 if (natoms(is) > maxatoms) then write(*,*) write(*,'("Error(gencrystal): natoms too large")') write(*,'(" for species ",I4)') is write(*,'("Adjust maxatoms and recompile code")') write(*,*) stop end if atposl(:,natoms(is),is)=v2(:) end do end do end do 30 continue end do end do natmtot=natmtot+natoms(is) end do ! set magnetic fields to zero bfcmt0(:,:,:)=0.d0 ! reduce conventional cell to primitive cell if required if (primcell) call findprimcell ! find the total number of atoms natmtot=0 do is=1,nspecies natmtot=natmtot+natoms(is) end do ! determine the Cartesian atomic coordinates do is=1,nspecies do ia=1,natoms(is) call r3mv(avec,atposl(:,ia,is),atposc(:,ia,is)) end do end do return end subroutine elk-9.2.12/src/spacegroup/PaxHeaders/geomplot.f900000644000000000000000000000013214536061312016544 xustar0030 mtime=1702388426.308503873 30 atime=1702388426.308503873 30 ctime=1702388426.308503873 elk-9.2.12/src/spacegroup/geomplot.f900000644002504400250440000000445314536061312021274 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine geomplot use modmain implicit none ! local variables integer is,ia ! Bohr to Angstroms (CODATA 2002) real(8), parameter :: au_to_ang=0.5291772108d0 real(8) v1(3),v2(3),v3(3),v4(3),t1 real(8) dxx,dyx,dyy,dzx,dzy,dzz !------------------------------------------------! ! write the XCrysden file to crystal.xsf ! !------------------------------------------------! open(50,file='crystal.xsf',action='WRITE',form='FORMATTED') write(50,*) write(50,'("CRYSTAL")') write(50,*) write(50,'("PRIMVEC")') write(50,'(3G18.10)') avec(:,1)*au_to_ang write(50,'(3G18.10)') avec(:,2)*au_to_ang write(50,'(3G18.10)') avec(:,3)*au_to_ang write(50,*) write(50,'("PRIMCOORD")') write(50,'(2I8)') natmtot,1 do is=1,nspecies do ia=1,natoms(is) call r3mv(avec,atposl(:,ia,is),v1) write(50,'(A,3G18.10)') trim(spsymb(is)),v1(:)*au_to_ang end do end do close(50) write(*,*) write(*,'("Info(writexsf):")') write(*,'(" XCrysDen file written to crystal.xsf")') !-----------------------------------------------! ! write the V_Sim file to crystal.ascii ! !-----------------------------------------------! ! determine coordinate system vectors t1=sqrt(avec(1,1)**2+avec(2,1)**2+avec(3,1)**2) v1(:)=avec(:,1)/t1 t1=sqrt(avec(1,2)**2+avec(2,2)**2+avec(3,2)**2) v2(:)=avec(:,2)/t1 call r3cross(v1,v2,v3) t1=sqrt(v3(1)**2+v3(2)**2+v3(3)**2) v3(:)=v3(:)/t1 call r3cross(v3,v1,v2) t1=sqrt(v2(1)**2+v2(2)**2+v2(3)**2) v2(:)=v2(:)/t1 dxx=dot_product(avec(:,1),v1(:)) dyx=dot_product(avec(:,2),v1(:)) dyy=dot_product(avec(:,2),v2(:)) dzx=dot_product(avec(:,3),v1(:)) dzy=dot_product(avec(:,3),v2(:)) dzz=dot_product(avec(:,3),v3(:)) open(50,file='crystal.ascii',action='WRITE',form='FORMATTED') write(50,*) write(50,'(3G18.10)') dxx,dyx,dyy write(50,'(3G18.10)') dzx,dzy,dzz write(50,*) do is=1,nspecies do ia=1,natoms(is) v4(1)=dot_product(atposc(:,ia,is),v1(:)) v4(2)=dot_product(atposc(:,ia,is),v2(:)) v4(3)=dot_product(atposc(:,ia,is),v3(:)) write(50,'(3G18.10," ",A)') v4,trim(spsymb(is)) end do end do close(50) write(*,*) write(*,'("Info(writevsim):")') write(*,'(" V_Sim file written to crystal.ascii")') return end subroutine elk-9.2.12/src/spacegroup/PaxHeaders/modmain.f900000644000000000000000000000013214536061312016342 xustar0030 mtime=1702388426.309503871 30 atime=1702388426.309503871 30 ctime=1702388426.309503871 elk-9.2.12/src/spacegroup/modmain.f900000644002504400250440000000454314536061312021072 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !MODULE: modmain ! !DESCRIPTION: ! Contains all the global variables required by the spacegroup code. ! ! !REVISION HISTORY: ! Created October 2006 (JKD) !EOP !BOC module modmain !-------------------------------! ! space group variables ! !-------------------------------! ! Hermann-Mauguin symbol character(20) hrmg ! space-group number character(20) num ! Schoenflies symbol character(20) schn ! Hall symbol character(20) hall !----------------------------! ! lattice parameters ! !----------------------------! ! number of unit cells integer ncell(3) ! lattice vector lengths real(8) a,b,c ! lattice vector angles real(8) ab,ac,bc ! lattice vectors stored column-wise real(8) avec(3,3) ! inverse of lattice vector matrix real(8) ainv(3,3) ! any vector with length less than epslat is considered zero real(8), parameter :: epslat=1.d-6 !--------------------------! ! atomic variables ! !--------------------------! ! maximum allowed species integer, parameter :: maxspecies=8 ! maximum allowed atoms per species integer, parameter :: maxatoms=1000 ! number of species integer nspecies ! number of atoms for each species integer natoms(maxspecies) ! total number of atoms integer natmtot ! primcell is .true. if primitive unit cell is to be found automatically logical primcell ! maximum allowed Wyckoff positions integer, parameter :: maxwpos=100 ! number of Wyckoff positions integer nwpos(maxspecies) ! Wyckoff positions real(8) wpos(3,maxwpos,maxspecies) ! atomic positions in lattice coordinates real(8) atposl(3,maxatoms,maxspecies) ! atomic positions in Cartesian coordinates real(8) atposc(3,maxatoms,maxspecies) ! magnetic fields real(8) bfcmt0(3,maxatoms,maxspecies) !----------------------------------! ! atomic species variables ! !----------------------------------! ! species symbol character(256) spsymb(maxspecies) !-----------------------------! ! numerical constants ! !-----------------------------! real(8), parameter :: pi=3.1415926535897932385d0 !---------------------------------! ! miscellaneous variables ! !---------------------------------! ! code version integer version(3) data version / 1,2,1 / end module !EOC elk-9.2.12/src/spacegroup/PaxHeaders/r3frac.f900000644000000000000000000000013114536061312016075 xustar0030 mtime=1702388426.311503869 29 atime=1702388426.31050387 30 ctime=1702388426.311503869 elk-9.2.12/src/spacegroup/r3frac.f900000644002504400250440000000175514536061312020630 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3frac ! !INTERFACE: subroutine r3frac(eps,v) ! !INPUT/OUTPUT PARAMETERS: ! eps : zero component tolerance (in,real) ! v : input vector (inout,real(3)) ! !DESCRIPTION: ! Finds the fractional part of each component of a real 3-vector using the ! function ${\rm frac}\,(x)=x-\lfloor x\rfloor$. A component is taken to be ! zero if it lies within the intervals $[0,\epsilon)$ or $(1-\epsilon,1]$. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) ! Removed iv, September 2011 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: eps real(8), intent(inout) :: v(3) ! local variables integer i do i=1,3 v(i)=v(i)-int(v(i)) if (v(i) < 0.d0) v(i)=v(i)+1.d0 if ((1.d0-v(i)) < eps) v(i)=0.d0 if (v(i) < eps) v(i)=0.d0 end do return end subroutine !EOC elk-9.2.12/src/spacegroup/PaxHeaders/r3mm.f900000644000000000000000000000013214536061312015574 xustar0030 mtime=1702388426.312503867 30 atime=1702388426.312503867 30 ctime=1702388426.312503867 elk-9.2.12/src/spacegroup/r3mm.f900000644002504400250440000000213514536061312020317 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mm ! !INTERFACE: subroutine r3mm(a,b,c) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix 1 (in,real(3,3)) ! b : input matrix 2 (in,real(3,3)) ! c : output matrix (out,real(3,3)) ! !DESCRIPTION: ! Multiplies two real $3\times 3$ matrices. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3) real(8), intent(in) :: b(3,3) real(8), intent(out) :: c(3,3) c(1,1)=a(1,1)*b(1,1)+a(1,2)*b(2,1)+a(1,3)*b(3,1) c(2,1)=a(2,1)*b(1,1)+a(2,2)*b(2,1)+a(2,3)*b(3,1) c(3,1)=a(3,1)*b(1,1)+a(3,2)*b(2,1)+a(3,3)*b(3,1) c(1,2)=a(1,1)*b(1,2)+a(1,2)*b(2,2)+a(1,3)*b(3,2) c(2,2)=a(2,1)*b(1,2)+a(2,2)*b(2,2)+a(2,3)*b(3,2) c(3,2)=a(3,1)*b(1,2)+a(3,2)*b(2,2)+a(3,3)*b(3,2) c(1,3)=a(1,1)*b(1,3)+a(1,2)*b(2,3)+a(1,3)*b(3,3) c(2,3)=a(2,1)*b(1,3)+a(2,2)*b(2,3)+a(2,3)*b(3,3) c(3,3)=a(3,1)*b(1,3)+a(3,2)*b(2,3)+a(3,3)*b(3,3) return end subroutine !EOC elk-9.2.12/src/spacegroup/PaxHeaders/readinput.f900000644000000000000000000000013214536061312016711 xustar0030 mtime=1702388426.313503866 30 atime=1702388426.313503866 30 ctime=1702388426.313503866 elk-9.2.12/src/spacegroup/readinput.f900000644002504400250440000000277614536061312021447 0ustar00dewhurstdewhurst00000000000000subroutine readinput use modmain implicit none ! local variables integer is,ip open(50,file='spacegroup.in',action='READ',status='OLD',form='FORMATTED') ! read the Hermann-Mauguin symbol read(50,*) hrmg hrmg=adjustl(hrmg) ! read lattice vector lengths read(50,*) a,b,c ! read angles between lattice vectors: alpha, beta, gamma ! (convention fixed by F. Cricchio) read(50,*) bc,ac,ab ! read number of unit cells read(50,*) ncell if ((ncell(1) < 1).or.(ncell(2) < 1).or.(ncell(3) < 1)) then write(*,*) write(*,'("Error(readinput): invalid ncell : ",3I8)') ncell write(*,*) stop end if read(50,*) primcell read(50,*) nspecies if (nspecies <= 0) then write(*,*) write(*,'("Error(readinput): nspecies <= 0 : ",I8)') nspecies write(*,*) stop end if if (nspecies > maxspecies) then write(*,*) write(*,'("Error(readinput): nspecies too large : ",I8)') nspecies write(*,'("Adjust maxspecies and recompile code")') write(*,*) stop end if do is=1,nspecies read(50,*) spsymb(is) read(50,*) nwpos(is) if (nwpos(is) <= 0) then write(*,*) write(*,'("Error(readinput): nwpos <= 0 : ",I8)') nwpos(is) write(*,'(" for species ",I4)') is write(*,*) stop end if if (nwpos(is) > maxwpos) then write(*,*) write(*,'("Error(readinput): nwpos too large : ",I8)') nwpos(is) write(*,'(" for species ",I4)') is write(*,'("Adjust maxwpos and reompile code")') write(*,*) stop end if do ip=1,nwpos(is) read(50,*) wpos(:,ip,is) end do end do close(50) return end subroutine elk-9.2.12/src/spacegroup/PaxHeaders/seitzgen.f900000644000000000000000000000013214536061312016546 xustar0030 mtime=1702388426.314503864 30 atime=1702388426.314503864 30 ctime=1702388426.314503864 elk-9.2.12/src/spacegroup/seitzgen.f900000644002504400250440000002566614536061312021307 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine seitzgen(hall,ngen,srgen,stgen) implicit none character(20), intent(in) :: hall integer, intent(out) :: ngen real(8), intent(out) :: srgen(3,3,12) real(8), intent(out) :: stgen(3,12) ! local variables logical pr integer i,m,n,no,nop,axis ! zero vector tolerance real(8), parameter :: eps=1.d-6 real(8) av(3),r(3,3),t1 real(8) v1(3),v2(3),v3(3) character(20) str1,str2,str3 str1=trim(adjustl(hall))//' ' no=0 nop=0 axis=0 n=0 10 continue ! check for origin shift vector if (scan(str1,'(') == 1) then if (index(str1,'(0 0 1)') /= 0) then v1(1)=0.d0; v1(2)=0.d0; v1(3)=1.d0 else if (index(str1,'(0 0 -1)') /= 0) then v1(1)=0.d0; v1(2)=0.d0; v1(3)=-1.d0 else write(*,*) write(*,'("Error(seitzgen): origin-shift not available : ",A)') trim(str1) write(*,*) stop end if v1(:)=v1(:)/12.d0 ! apply vector shift to all Seitz matrices do i=1,ngen v3(:)=-v1(:) call r3mv(srgen(:,:,i),v3,v2) v2(:)=v2(:)+stgen(:,i) stgen(:,i)=v2(:)+v1(:) end do goto 20 end if m=scan(str1,' ') if (m <= 1) goto 20 str2=str1(1:m-1) n=n+1 !------------------------------! ! lattice translations ! !------------------------------! if (n == 1) then stgen(:,1)=0.d0 if (scan(str2,'P') /= 0) then ngen=1 else if (scan(str2,'A') /= 0) then stgen(1,2)=0.d0 stgen(2,2)=0.5d0 stgen(3,2)=0.5d0 ngen=2 else if (scan(str2,'B') /= 0) then stgen(1,2)=0.5d0 stgen(2,2)=0.d0 stgen(3,2)=0.5d0 ngen=2 else if (scan(str2,'C') /= 0) then stgen(1,2)=0.5d0 stgen(2,2)=0.5d0 stgen(3,2)=0.d0 ngen=2 else if (scan(str2,'I') /= 0) then stgen(:,2)=0.5d0 ngen=2 else if (scan(str2,'R') /= 0) then stgen(1,2)=0.6666666666666666667d0 stgen(2,2)=0.3333333333333333333d0 stgen(3,2)=0.3333333333333333333d0 stgen(1,3)=0.3333333333333333333d0 stgen(2,3)=0.6666666666666666667d0 stgen(3,3)=0.6666666666666666667d0 ngen=3 else if (scan(str2,'S') /= 0) then stgen(1,2)=0.3333333333333333333d0 stgen(2,2)=0.3333333333333333333d0 stgen(3,2)=0.6666666666666666667d0 stgen(1,3)=0.6666666666666666667d0 stgen(2,3)=0.6666666666666666667d0 stgen(3,3)=0.3333333333333333333d0 ngen=3 else if (scan(str2,'T') /= 0) then stgen(1,2)=0.3333333333333333333d0 stgen(2,2)=0.6666666666666666667d0 stgen(3,2)=0.3333333333333333333d0 stgen(1,3)=0.6666666666666666667d0 stgen(2,3)=0.3333333333333333333d0 stgen(3,3)=0.6666666666666666667d0 ngen=3 else if (scan(str2,'F') /= 0) then stgen(1,2)=0.d0 stgen(2,2)=0.5d0 stgen(3,2)=0.5d0 stgen(1,3)=0.5d0 stgen(2,3)=0.d0 stgen(3,3)=0.5d0 stgen(1,4)=0.5d0 stgen(2,4)=0.5d0 stgen(3,4)=0.d0 ngen=4 else write(*,*) write(*,'("Error(seitzgen): Lattice symbol ''",A,"'' not found")') & trim(str2) write(*,*) stop end if ! set the rotations to the identity do i=1,ngen srgen(1,1,i)=1.d0; srgen(1,2,i)=0.d0; srgen(1,3,i)=0.d0 srgen(2,1,i)=0.d0; srgen(2,2,i)=1.d0; srgen(2,3,i)=0.d0 srgen(3,1,i)=0.d0; srgen(3,2,i)=0.d0; srgen(3,3,i)=1.d0 end do ! check if lattice is centrosymmetric if (scan(str2,'-') /= 0) then do i=ngen+1,2*ngen srgen(:,:,i)=-srgen(:,:,i-ngen) stgen(:,i)=stgen(:,i-ngen) end do ngen=2*ngen end if end if !-------------------------------! ! rotation-translations ! !-------------------------------! if (n >= 2) then ! determine if rotation is proper or improper if (scan(str2,'-') == 1) then pr=.false. ! remove the minus sign str3=str2(2:) str2=str3 else pr=.true. end if ! determine the order of rotation if (scan(str2,'1') == 1) then no=1 else if (scan(str2,'2') == 1) then no=2 else if (scan(str2,'3') == 1) then no=3 else if (scan(str2,'4') == 1) then no=4 else if (scan(str2,'6') == 1) then no=6 else write(*,*) write(*,'("Error(seitzgen): invalid rotation order for Hall symbol ''",A,& &"''")') trim(hall) write(*,*) stop end if ! determine the axis of rotation if (scan(str2,'x') /= 0) then ! a axis axis=1 else if (scan(str2,'y') /= 0) then ! b axis axis=2 else if (scan(str2,'z') /= 0) then ! c axis axis=3 else if (scan(str2,'"') /= 0) then ! a+b axis=5 else if (scan(str2,'*') /= 0) then ! a+b+c axis axis=6 else if (n == 2) then ! default first rotation is along c axis=3 else if ((n == 3).and.(no == 2)) then ! default second rotation if ((nop == 2).or.(nop == 4)) then ! a axis axis=1 else if ((nop == 3).or.(nop == 6)) then ! a-b axis axis=4 else write(*,*) write(*,'("Error(seitzgen): malformed Hall symbol ''",A,"''")') trim(hall) write(*,'(" for default second rotation")') write(*,*) stop end if else if ((n == 4).and.(no == 3)) then ! third rotation around a+b+c axis axis=6 else if (no == 1) then ! arbitrary axis for identity axis=1 else write(*,*) write(*,'("Error(seitzgen): malformed Hall symbol ''",A,"''")') trim(hall) write(*,*) stop end if ! determine axis vector av(:)=0.d0 if (axis == 1) then ! a axis av(1)=1.d0 else if (axis == 2) then ! b axis av(2)=1.d0 else if (axis == 3) then ! c axis av(3)=1.d0 else if (axis == 4) then ! a-b axis av(1)=1.d0 av(2)=-1.d0 else if (axis == 5) then ! a+b axis av(1)=1.d0 av(2)=1.d0 else if (axis == 6) then ! a+b+c axis av(:)=1.d0 end if ! compute the rotation part of the Seitz matrix if (axis == 1) then ! a axis if (no == 1) then r(1,1)= 1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 else if (no == 2) then r(1,1)= 1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)=-1.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)=-1.d0 else if (no == 3) then r(1,1)= 1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)= 0.d0; r(2,3)=-1.d0 r(3,1)= 0.d0; r(3,2)= 1.d0; r(3,3)=-1.d0 else if (no == 4) then r(1,1)= 1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)= 0.d0; r(2,3)=-1.d0 r(3,1)= 0.d0; r(3,2)= 1.d0; r(3,3)= 0.d0 else if (no == 6) then r(1,1)= 1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)=-1.d0 r(3,1)= 0.d0; r(3,2)= 1.d0; r(3,3)= 0.d0 end if else if (axis == 2) then ! b axis if (no == 1) then r(1,1)= 1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 else if (no == 2) then r(1,1)=-1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)=-1.d0 else if (no == 3) then r(1,1)=-1.d0; r(1,2)= 0.d0; r(1,3)= 1.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)= 0.d0 r(3,1)=-1.d0; r(3,2)= 0.d0; r(3,3)= 0.d0 else if (no == 4) then r(1,1)= 0.d0; r(1,2)= 0.d0; r(1,3)= 1.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)= 0.d0 r(3,1)=-1.d0; r(3,2)= 0.d0; r(3,3)= 0.d0 else if (no == 6) then r(1,1)= 0.d0; r(1,2)= 0.d0; r(1,3)= 1.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)= 0.d0 r(3,1)=-1.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 end if else if (axis == 3) then ! c axis if (no == 1) then r(1,1)= 1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 else if (no == 2) then r(1,1)=-1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)=-1.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 else if (no == 3) then r(1,1)= 0.d0; r(1,2)=-1.d0; r(1,3)= 0.d0 r(2,1)= 1.d0; r(2,2)=-1.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 else if (no == 4) then r(1,1)= 0.d0; r(1,2)=-1.d0; r(1,3)= 0.d0 r(2,1)= 1.d0; r(2,2)= 0.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 else if (no == 6) then r(1,1)= 1.d0; r(1,2)=-1.d0; r(1,3)= 0.d0 r(2,1)= 1.d0; r(2,2)= 0.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 end if else if (axis == 4) then ! a-b axis r(1,1)= 0.d0; r(1,2)=-1.d0; r(1,3)= 0.d0 r(2,1)=-1.d0; r(2,2)= 0.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)=-1.d0 else if (axis == 5) then ! a+b axis r(1,1)= 0.d0; r(1,2)= 1.d0; r(1,3)= 0.d0 r(2,1)= 1.d0; r(2,2)= 0.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)=-1.d0 else if (axis == 6) then ! a+b+c axis r(1,1)= 0.d0; r(1,2)= 0.d0; r(1,3)= 1.d0 r(2,1)= 1.d0; r(2,2)= 0.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 1.d0; r(3,3)= 0.d0 end if ! check if axis is invariant with respect to rotation call r3mv(r,av,v1) t1=sum(abs(av(:)-v1(:))) if (t1 > eps) then write(*,*) write(*,'("Error(seitzgen): axis not invariant with respect to rotation")') write(*,'(" for Hall symbol ''",A,"''")') trim(hall) write(*,*) stop end if ! apply inverse for improper rotation if (.not.pr) r(:,:)=-r(:,:) ! increment Seitz matrix count ngen=ngen+1 ! store rotation in main array srgen(:,:,ngen)=r(:,:) ! remove rotation symbol str3=str2(2:) str2=str3 ! determine translations stgen(:,ngen)=0.d0 if (scan(str2,'a') /= 0) then stgen(1,ngen)=stgen(1,ngen)+0.5d0 end if if (scan(str2,'b') /= 0) then stgen(2,ngen)=stgen(2,ngen)+0.5d0 end if if (scan(str2,'c') /= 0) then stgen(3,ngen)=stgen(3,ngen)+0.5d0 end if if (scan(str2,'n') /= 0) then stgen(:,ngen)=stgen(:,ngen)+0.5d0 end if if (scan(str2,'u') /= 0) then stgen(1,ngen)=stgen(1,ngen)+0.25d0 end if if (scan(str2,'v') /= 0) then stgen(2,ngen)=stgen(2,ngen)+0.25d0 end if if (scan(str2,'w') /= 0) then stgen(3,ngen)=stgen(3,ngen)+0.25d0 end if if (scan(str2,'d') /= 0) then stgen(:,ngen)=stgen(:,ngen)+0.25d0 end if if (scan(str2,'1') /= 0) then if (no == 3) then stgen(:,ngen)=stgen(:,ngen)+0.3333333333333333333d0*av(:) else if (no == 4) then stgen(:,ngen)=stgen(:,ngen)+0.25d0*av(:) else if (no == 6) then stgen(:,ngen)=stgen(:,ngen)+0.1666666666666666667d0*av(:) end if else if (scan(str2,'2') /= 0) then if (no == 3) then stgen(:,ngen)=stgen(:,ngen)+0.6666666666666666667d0*av(:) else if (no == 6) then stgen(:,ngen)=stgen(:,ngen)+0.3333333333333333333d0*av(:) end if else if (scan(str2,'3') /= 0) then if (no == 4) then stgen(:,ngen)=stgen(:,ngen)+0.75d0*av(:) end if else if (scan(str2,'4') /= 0) then if (no == 6) then stgen(:,ngen)=stgen(:,ngen)+0.6666666666666666667d0*av(:) end if else if (scan(str2,'5') /= 0) then if (no == 6) then stgen(:,ngen)=stgen(:,ngen)+0.8333333333333333333d0*av(:) end if end if end if str3=adjustl(str1(m:)) str1=str3 nop=no goto 10 20 continue ! map translations to [0,1) do i=1,ngen call r3frac(eps,stgen(:,i)) end do return end subroutine elk-9.2.12/src/spacegroup/PaxHeaders/sgsymb.f900000644000000000000000000000013014536061312016220 xustar0029 mtime=1702388426.31750386 30 atime=1702388426.316503861 29 ctime=1702388426.31750386 elk-9.2.12/src/spacegroup/sgsymb.f900000644002504400250440000010040014536061312020737 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: sgsymb ! !INTERFACE: subroutine sgsymb(hrmg,num,schn,hall) ! !INPUT/OUTPUT PARAMETERS: ! hrmg : Hermann-Mauguin symbol (in,character(20)) ! num : space group number (out,character(20)) ! schn : Schoenflies symbol (out,character(20)) ! hall : Hall symbol (out,character(20)) ! !DESCRIPTION: ! Returns the space group number, Schoenflies and Hall symbols given the ! Hermann-Mauguin symbol. The routine is case-sensitive. With acknowledgements ! to Ralf W. Grosse-Kunstleve and the tables available at ! {\tt http://cci.lbl.gov/sginfo/}. ! ! !REVISION HISTORY: ! Created October 2006 (JKD) !EOP !BOC implicit none ! arguments character(20), intent(in) :: hrmg character(20), intent(out) :: num character(20), intent(out) :: schn character(20), intent(out) :: hall select case(trim(adjustl(hrmg))) case('P1') num='1' schn='C1^1' hall='P 1' case('P-1') num='2' schn='Ci^1' hall='-P 1' case('P2:b') num='3:b' schn='C2^1' hall='P 2y' case('P2:c') num='3:c' schn='C2^1' hall='P 2' case('P2:a') num='3:a' schn='C2^1' hall='P 2x' case('P21:b') num='4:b' schn='C2^2' hall='P 2yb' case('P21:c') num='4:c' schn='C2^2' hall='P 2c' case('P21:a') num='4:a' schn='C2^2' hall='P 2xa' case('C2:b1') num='5:b1' schn='C2^3' hall='C 2y' case('C2:b2') num='5:b2' schn='C2^3' hall='A 2y' case('C2:b3') num='5:b3' schn='C2^3' hall='I 2y' case('C2:c1') num='5:c1' schn='C2^3' hall='A 2' case('C2:c2') num='5:c2' schn='C2^3' hall='B 2' case('C2:c3') num='5:c3' schn='C2^3' hall='I 2' case('C2:a1') num='5:a1' schn='C2^3' hall='B 2x' case('C2:a2') num='5:a2' schn='C2^3' hall='C 2x' case('C2:a3') num='5:a3' schn='C2^3' hall='I 2x' case('Pm:b') num='6:b' schn='Cs^1' hall='P -2y' case('Pm:c') num='6:c' schn='Cs^1' hall='P -2' case('Pm:a') num='6:a' schn='Cs^1' hall='P -2x' case('Pc:b1') num='7:b1' schn='Cs^2' hall='P -2yc' case('Pc:b2') num='7:b2' schn='Cs^2' hall='P -2yac' case('Pc:b3') num='7:b3' schn='Cs^2' hall='P -2ya' case('Pc:c1') num='7:c1' schn='Cs^2' hall='P -2a' case('Pc:c2') num='7:c2' schn='Cs^2' hall='P -2ab' case('Pc:c3') num='7:c3' schn='Cs^2' hall='P -2b' case('Pc:a1') num='7:a1' schn='Cs^2' hall='P -2xb' case('Pc:a2') num='7:a2' schn='Cs^2' hall='P -2xbc' case('Pc:a3') num='7:a3' schn='Cs^2' hall='P -2xc' case('Cm:b1') num='8:b1' schn='Cs^3' hall='C -2y' case('Cm:b2') num='8:b2' schn='Cs^3' hall='A -2y' case('Cm:b3') num='8:b3' schn='Cs^3' hall='I -2y' case('Cm:c1') num='8:c1' schn='Cs^3' hall='A -2' case('Cm:c2') num='8:c2' schn='Cs^3' hall='B -2' case('Cm:c3') num='8:c3' schn='Cs^3' hall='I -2' case('Cm:a1') num='8:a1' schn='Cs^3' hall='B -2x' case('Cm:a2') num='8:a2' schn='Cs^3' hall='C -2x' case('Cm:a3') num='8:a3' schn='Cs^3' hall='I -2x' case('Cc:b1') num='9:b1' schn='Cs^4' hall='C -2yc' case('Cc:b2') num='9:b2' schn='Cs^4' hall='A -2yac' case('Cc:b3') num='9:b3' schn='Cs^4' hall='I -2ya' case('Cc:-b1') num='9:-b1' schn='Cs^4' hall='A -2ya' case('Cc:-b2') num='9:-b2' schn='Cs^4' hall='C -2ybc' case('Cc:-b3') num='9:-b3' schn='Cs^4' hall='I -2yc' case('Cc:c1') num='9:c1' schn='Cs^4' hall='A -2a' case('Cc:c2') num='9:c2' schn='Cs^4' hall='B -2bc' case('Cc:c3') num='9:c3' schn='Cs^4' hall='I -2b' case('Cc:-c1') num='9:-c1' schn='Cs^4' hall='B -2b' case('Cc:-c2') num='9:-c2' schn='Cs^4' hall='A -2ac' case('Cc:-c3') num='9:-c3' schn='Cs^4' hall='I -2a' case('Cc:a1') num='9:a1' schn='Cs^4' hall='B -2xb' case('Cc:a2') num='9:a2' schn='Cs^4' hall='C -2xbc' case('Cc:a3') num='9:a3' schn='Cs^4' hall='I -2xc' case('Cc:-a1') num='9:-a1' schn='Cs^4' hall='C -2xc' case('Cc:-a2') num='9:-a2' schn='Cs^4' hall='B -2xbc' case('Cc:-a3') num='9:-a3' schn='Cs^4' hall='I -2xb' case('P2/m:b') num='10:b' schn='C2h^1' hall='-P 2y' case('P2/m:c') num='10:c' schn='C2h^1' hall='-P 2' case('P2/m:a') num='10:a' schn='C2h^1' hall='-P 2x' case('P21/m:b') num='11:b' schn='C2h^2' hall='-P 2yb' case('P21/m:c') num='11:c' schn='C2h^2' hall='-P 2c' case('P21/m:a') num='11:a' schn='C2h^2' hall='-P 2xa' case('C2/m:b1') num='12:b1' schn='C2h^3' hall='-C 2y' case('C2/m:b2') num='12:b2' schn='C2h^3' hall='-A 2y' case('C2/m:b3') num='12:b3' schn='C2h^3' hall='-I 2y' case('C2/m:c1') num='12:c1' schn='C2h^3' hall='-A 2' case('C2/m:c2') num='12:c2' schn='C2h^3' hall='-B 2' case('C2/m:c3') num='12:c3' schn='C2h^3' hall='-I 2' case('C2/m:a1') num='12:a1' schn='C2h^3' hall='-B 2x' case('C2/m:a2') num='12:a2' schn='C2h^3' hall='-C 2x' case('C2/m:a3') num='12:a3' schn='C2h^3' hall='-I 2x' case('P2/c:b1') num='13:b1' schn='C2h^4' hall='-P 2yc' case('P2/c:b2') num='13:b2' schn='C2h^4' hall='-P 2yac' case('P2/c:b3') num='13:b3' schn='C2h^4' hall='-P 2ya' case('P2/c:c1') num='13:c1' schn='C2h^4' hall='-P 2a' case('P2/c:c2') num='13:c2' schn='C2h^4' hall='-P 2ab' case('P2/c:c3') num='13:c3' schn='C2h^4' hall='-P 2b' case('P2/c:a1') num='13:a1' schn='C2h^4' hall='-P 2xb' case('P2/c:a2') num='13:a2' schn='C2h^4' hall='-P 2xbc' case('P2/c:a3') num='13:a3' schn='C2h^4' hall='-P 2xc' case('P21/c:b1') num='14:b1' schn='C2h^5' hall='-P 2ybc' case('P21/c:b2') num='14:b2' schn='C2h^5' hall='-P 2yn' case('P21/c:b3') num='14:b3' schn='C2h^5' hall='-P 2yab' case('P21/c:c1') num='14:c1' schn='C2h^5' hall='-P 2ac' case('P21/c:c2') num='14:c2' schn='C2h^5' hall='-P 2n' case('P21/c:c3') num='14:c3' schn='C2h^5' hall='-P 2bc' case('P21/c:a1') num='14:a1' schn='C2h^5' hall='-P 2xab' case('P21/c:a2') num='14:a2' schn='C2h^5' hall='-P 2xn' case('P21/c:a3') num='14:a3' schn='C2h^5' hall='-P 2xac' case('C2/c:b1') num='15:b1' schn='C2h^6' hall='-C 2yc' case('C2/c:b2') num='15:b2' schn='C2h^6' hall='-A 2yac' case('C2/c:b3') num='15:b3' schn='C2h^6' hall='-I 2ya' case('C2/c:-b1') num='15:-b1' schn='C2h^6' hall='-A 2ya' case('C2/c:-b2') num='15:-b2' schn='C2h^6' hall='-C 2ybc' case('C2/c:-b3') num='15:-b3' schn='C2h^6' hall='-I 2yc' case('C2/c:c1') num='15:c1' schn='C2h^6' hall='-A 2a' case('C2/c:c2') num='15:c2' schn='C2h^6' hall='-B 2bc' case('C2/c:c3') num='15:c3' schn='C2h^6' hall='-I 2b' case('C2/c:-c1') num='15:-c1' schn='C2h^6' hall='-B 2b' case('C2/c:-c2') num='15:-c2' schn='C2h^6' hall='-A 2ac' case('C2/c:-c3') num='15:-c3' schn='C2h^6' hall='-I 2a' case('C2/c:a1') num='15:a1' schn='C2h^6' hall='-B 2xb' case('C2/c:a2') num='15:a2' schn='C2h^6' hall='-C 2xbc' case('C2/c:a3') num='15:a3' schn='C2h^6' hall='-I 2xc' case('C2/c:-a1') num='15:-a1' schn='C2h^6' hall='-C 2xc' case('C2/c:-a2') num='15:-a2' schn='C2h^6' hall='-B 2xbc' case('C2/c:-a3') num='15:-a3' schn='C2h^6' hall='-I 2xb' case('P222') num='16' schn='D2^1' hall='P 2 2' case('P2221') num='17' schn='D2^2' hall='P 2c 2' case('P2122') num='17:cab' schn='D2^2' hall='P 2a 2a' case('P2212') num='17:bca' schn='D2^2' hall='P 2 2b' case('P21212') num='18' schn='D2^3' hall='P 2 2ab' case('P22121') num='18:cab' schn='D2^3' hall='P 2bc 2' case('P21221') num='18:bca' schn='D2^3' hall='P 2ac 2ac' case('P212121') num='19' schn='D2^4' hall='P 2ac 2ab' case('C2221') num='20' schn='D2^5' hall='C 2c 2' case('A2122') num='20:cab' schn='D2^5' hall='A 2a 2a' case('B2212') num='20:bca' schn='D2^5' hall='B 2 2b' case('C222') num='21' schn='D2^6' hall='C 2 2' case('A222') num='21:cab' schn='D2^6' hall='A 2 2' case('B222') num='21:bca' schn='D2^6' hall='B 2 2' case('F222') num='22' schn='D2^7' hall='F 2 2' case('I222') num='23' schn='D2^8' hall='I 2 2' case('I212121') num='24' schn='D2^9' hall='I 2b 2c' case('Pmm2') num='25' schn='C2v^1' hall='P 2 -2' case('P2mm') num='25:cab' schn='C2v^1' hall='P -2 2' case('Pm2m') num='25:bca' schn='C2v^1' hall='P -2 -2' case('Pmc21') num='26' schn='C2v^2' hall='P 2c -2' case('Pcm21') num='26:ba-c' schn='C2v^2' hall='P 2c -2c' case('P21ma') num='26:cab' schn='C2v^2' hall='P -2a 2a' case('P21am') num='26:-cba' schn='C2v^2' hall='P -2 2a' case('Pb21m') num='26:bca' schn='C2v^2' hall='P -2 -2b' case('Pm21b') num='26:a-cb' schn='C2v^2' hall='P -2b -2' case('Pcc2') num='27' schn='C2v^3' hall='P 2 -2c' case('P2aa') num='27:cab' schn='C2v^3' hall='P -2a 2' case('Pb2b') num='27:bca' schn='C2v^3' hall='P -2b -2b' case('Pma2') num='28' schn='C2v^4' hall='P 2 -2a' case('Pbm2') num='28:ba-c' schn='C2v^4' hall='P 2 -2b' case('P2mb') num='28:cab' schn='C2v^4' hall='P -2b 2' case('P2cm') num='28:-cba' schn='C2v^4' hall='P -2c 2' case('Pc2m') num='28:bca' schn='C2v^4' hall='P -2c -2c' case('Pm2a') num='28:a-cb' schn='C2v^4' hall='P -2a -2a' case('Pca21') num='29' schn='C2v^5' hall='P 2c -2ac' case('Pbc21') num='29:ba-c' schn='C2v^5' hall='P 2c -2b' case('P21ab') num='29:cab' schn='C2v^5' hall='P -2b 2a' case('P21ca') num='29:-cba' schn='C2v^5' hall='P -2ac 2a' case('Pc21b') num='29:bca' schn='C2v^5' hall='P -2bc -2c' case('Pb21a') num='29:a-cb' schn='C2v^5' hall='P -2a -2ab' case('Pnc2') num='30' schn='C2v^6' hall='P 2 -2bc' case('Pcn2') num='30:ba-c' schn='C2v^6' hall='P 2 -2ac' case('P2na') num='30:cab' schn='C2v^6' hall='P -2ac 2' case('P2an') num='30:-cba' schn='C2v^6' hall='P -2ab 2' case('Pb2n') num='30:bca' schn='C2v^6' hall='P -2ab -2ab' case('Pn2b') num='30:a-cb' schn='C2v^6' hall='P -2bc -2bc' case('Pmn21') num='31' schn='C2v^7' hall='P 2ac -2' case('Pnm21') num='31:ba-c' schn='C2v^7' hall='P 2bc -2bc' case('P21mn') num='31:cab' schn='C2v^7' hall='P -2ab 2ab' case('P21nm') num='31:-cba' schn='C2v^7' hall='P -2 2ac' case('Pn21m') num='31:bca' schn='C2v^7' hall='P -2 -2bc' case('Pm21n') num='31:a-cb' schn='C2v^7' hall='P -2ab -2' case('Pba2') num='32' schn='C2v^8' hall='P 2 -2ab' case('P2cb') num='32:cab' schn='C2v^8' hall='P -2bc 2' case('Pc2a') num='32:bca' schn='C2v^8' hall='P -2ac -2ac' case('Pna21') num='33' schn='C2v^9' hall='P 2c -2n' case('Pbn21') num='33:ba-c' schn='C2v^9' hall='P 2c -2ab' case('P21nb') num='33:cab' schn='C2v^9' hall='P -2bc 2a' case('P21cn') num='33:-cba' schn='C2v^9' hall='P -2n 2a' case('Pc21n') num='33:bca' schn='C2v^9' hall='P -2n -2ac' case('Pn21a') num='33:a-cb' schn='C2v^9' hall='P -2ac -2n' case('Pnn2') num='34' schn='C2v^10' hall='P 2 -2n' case('P2nn') num='34:cab' schn='C2v^10' hall='P -2n 2' case('Pn2n') num='34:bca' schn='C2v^10' hall='P -2n -2n' case('Cmm2') num='35' schn='C2v^11' hall='C 2 -2' case('A2mm') num='35:cab' schn='C2v^11' hall='A -2 2' case('Bm2m') num='35:bca' schn='C2v^11' hall='B -2 -2' case('Cmc21') num='36' schn='C2v^12' hall='C 2c -2' case('Ccm21') num='36:ba-c' schn='C2v^12' hall='C 2c -2c' case('A21ma') num='36:cab' schn='C2v^12' hall='A -2a 2a' case('A21am') num='36:-cba' schn='C2v^12' hall='A -2 2a' case('Bb21m') num='36:bca' schn='C2v^12' hall='B -2 -2b' case('Bm21b') num='36:a-cb' schn='C2v^12' hall='B -2b -2' case('Ccc2') num='37' schn='C2v^13' hall='C 2 -2c' case('A2aa') num='37:cab' schn='C2v^13' hall='A -2a 2' case('Bb2b') num='37:bca' schn='C2v^13' hall='B -2b -2b' case('Amm2') num='38' schn='C2v^14' hall='A 2 -2' case('Bmm2') num='38:ba-c' schn='C2v^14' hall='B 2 -2' case('B2mm') num='38:cab' schn='C2v^14' hall='B -2 2' case('C2mm') num='38:-cba' schn='C2v^14' hall='C -2 2' case('Cm2m') num='38:bca' schn='C2v^14' hall='C -2 -2' case('Am2m') num='38:a-cb' schn='C2v^14' hall='A -2 -2' case('Abm2') num='39' schn='C2v^15' hall='A 2 -2c' case('Bma2') num='39:ba-c' schn='C2v^15' hall='B 2 -2c' case('B2cm') num='39:cab' schn='C2v^15' hall='B -2c 2' case('C2mb') num='39:-cba' schn='C2v^15' hall='C -2b 2' case('Cm2a') num='39:bca' schn='C2v^15' hall='C -2b -2b' case('Ac2m') num='39:a-cb' schn='C2v^15' hall='A -2c -2c' case('Ama2') num='40' schn='C2v^16' hall='A 2 -2a' case('Bbm2') num='40:ba-c' schn='C2v^16' hall='B 2 -2b' case('B2mb') num='40:cab' schn='C2v^16' hall='B -2b 2' case('C2cm') num='40:-cba' schn='C2v^16' hall='C -2c 2' case('Cc2m') num='40:bca' schn='C2v^16' hall='C -2c -2c' case('Am2a') num='40:a-cb' schn='C2v^16' hall='A -2a -2a' case('Aba2') num='41' schn='C2v^17' hall='A 2 -2ac' case('Bba2') num='41:ba-c' schn='C2v^17' hall='B 2 -2bc' case('B2cb') num='41:cab' schn='C2v^17' hall='B -2bc 2' case('C2cb') num='41:-cba' schn='C2v^17' hall='C -2bc 2' case('Cc2a') num='41:bca' schn='C2v^17' hall='C -2bc -2bc' case('Ac2a') num='41:a-cb' schn='C2v^17' hall='A -2ac -2ac' case('Fmm2') num='42' schn='C2v^18' hall='F 2 -2' case('F2mm') num='42:cab' schn='C2v^18' hall='F -2 2' case('Fm2m') num='42:bca' schn='C2v^18' hall='F -2 -2' case('Fdd2') num='43' schn='C2v^19' hall='F 2 -2d' case('F2dd') num='43:cab' schn='C2v^19' hall='F -2d 2' case('Fd2d') num='43:bca' schn='C2v^19' hall='F -2d -2d' case('Imm2') num='44' schn='C2v^20' hall='I 2 -2' case('I2mm') num='44:cab' schn='C2v^20' hall='I -2 2' case('Im2m') num='44:bca' schn='C2v^20' hall='I -2 -2' case('Iba2') num='45' schn='C2v^21' hall='I 2 -2c' case('I2cb') num='45:cab' schn='C2v^21' hall='I -2a 2' case('Ic2a') num='45:bca' schn='C2v^21' hall='I -2b -2b' case('Ima2') num='46' schn='C2v^22' hall='I 2 -2a' case('Ibm2') num='46:ba-c' schn='C2v^22' hall='I 2 -2b' case('I2mb') num='46:cab' schn='C2v^22' hall='I -2b 2' case('I2cm') num='46:-cba' schn='C2v^22' hall='I -2c 2' case('Ic2m') num='46:bca' schn='C2v^22' hall='I -2c -2c' case('Im2a') num='46:a-cb' schn='C2v^22' hall='I -2a -2a' case('Pmmm') num='47' schn='D2h^1' hall='-P 2 2' case('Pnnn:1') num='48:1' schn='D2h^2' hall='P 2 2 -1n' case('Pnnn:2') num='48:2' schn='D2h^2' hall='-P 2ab 2bc' case('Pccm') num='49' schn='D2h^3' hall='-P 2 2c' case('Pmaa') num='49:cab' schn='D2h^3' hall='-P 2a 2' case('Pbmb') num='49:bca' schn='D2h^3' hall='-P 2b 2b' case('Pban:1') num='50:1' schn='D2h^4' hall='P 2 2 -1ab' case('Pban:2') num='50:2' schn='D2h^4' hall='-P 2ab 2b' case('Pncb:1') num='50:1cab' schn='D2h^4' hall='P 2 2 -1bc' case('Pncb:2') num='50:2cab' schn='D2h^4' hall='-P 2b 2bc' case('Pcna:1') num='50:1bca' schn='D2h^4' hall='P 2 2 -1ac' case('Pcna:2') num='50:2bca' schn='D2h^4' hall='-P 2a 2c' case('Pmma') num='51' schn='D2h^5' hall='-P 2a 2a' case('Pmmb') num='51:ba-c' schn='D2h^5' hall='-P 2b 2' case('Pbmm') num='51:cab' schn='D2h^5' hall='-P 2 2b' case('Pcmm') num='51:-cba' schn='D2h^5' hall='-P 2c 2c' case('Pmcm') num='51:bca' schn='D2h^5' hall='-P 2c 2' case('Pmam') num='51:a-cb' schn='D2h^5' hall='-P 2 2a' case('Pnna') num='52' schn='D2h^6' hall='-P 2a 2bc' case('Pnnb') num='52:ba-c' schn='D2h^6' hall='-P 2b 2n' case('Pbnn') num='52:cab' schn='D2h^6' hall='-P 2n 2b' case('Pcnn') num='52:-cba' schn='D2h^6' hall='-P 2ab 2c' case('Pncn') num='52:bca' schn='D2h^6' hall='-P 2ab 2n' case('Pnan') num='52:a-cb' schn='D2h^6' hall='-P 2n 2bc' case('Pmna') num='53' schn='D2h^7' hall='-P 2ac 2' case('Pnmb') num='53:ba-c' schn='D2h^7' hall='-P 2bc 2bc' case('Pbmn') num='53:cab' schn='D2h^7' hall='-P 2ab 2ab' case('Pcnm') num='53:-cba' schn='D2h^7' hall='-P 2 2ac' case('Pncm') num='53:bca' schn='D2h^7' hall='-P 2 2bc' case('Pman') num='53:a-cb' schn='D2h^7' hall='-P 2ab 2' case('Pcca') num='54' schn='D2h^8' hall='-P 2a 2ac' case('Pccb') num='54:ba-c' schn='D2h^8' hall='-P 2b 2c' case('Pbaa') num='54:cab' schn='D2h^8' hall='-P 2a 2b' case('Pcaa') num='54:-cba' schn='D2h^8' hall='-P 2ac 2c' case('Pbcb') num='54:bca' schn='D2h^8' hall='-P 2bc 2b' case('Pbab') num='54:a-cb' schn='D2h^8' hall='-P 2b 2ab' case('Pbam') num='55' schn='D2h^9' hall='-P 2 2ab' case('Pmcb') num='55:cab' schn='D2h^9' hall='-P 2bc 2' case('Pcma') num='55:bca' schn='D2h^9' hall='-P 2ac 2ac' case('Pccn') num='56' schn='D2h^10' hall='-P 2ab 2ac' case('Pnaa') num='56:cab' schn='D2h^10' hall='-P 2ac 2bc' case('Pbnb') num='56:bca' schn='D2h^10' hall='-P 2bc 2ab' case('Pbcm') num='57' schn='D2h^11' hall='-P 2c 2b' case('Pcam') num='57:ba-c' schn='D2h^11' hall='-P 2c 2ac' case('Pmca') num='57:cab' schn='D2h^11' hall='-P 2ac 2a' case('Pmab') num='57:-cba' schn='D2h^11' hall='-P 2b 2a' case('Pbma') num='57:bca' schn='D2h^11' hall='-P 2a 2ab' case('Pcmb') num='57:a-cb' schn='D2h^11' hall='-P 2bc 2c' case('Pnnm') num='58' schn='D2h^12' hall='-P 2 2n' case('Pmnn') num='58:cab' schn='D2h^12' hall='-P 2n 2' case('Pnmn') num='58:bca' schn='D2h^12' hall='-P 2n 2n' case('Pmmn:1') num='59:1' schn='D2h^13' hall='P 2 2ab -1ab' case('Pmmn:2') num='59:2' schn='D2h^13' hall='-P 2ab 2a' case('Pnmm:1') num='59:1cab' schn='D2h^13' hall='P 2bc 2 -1bc' case('Pnmm:2') num='59:2cab' schn='D2h^13' hall='-P 2c 2bc' case('Pmnm:1') num='59:1bca' schn='D2h^13' hall='P 2ac 2ac -1ac' case('Pmnm:2') num='59:2bca' schn='D2h^13' hall='-P 2c 2a' case('Pbcn') num='60' schn='D2h^14' hall='-P 2n 2ab' case('Pcan') num='60:ba-c' schn='D2h^14' hall='-P 2n 2c' case('Pnca') num='60:cab' schn='D2h^14' hall='-P 2a 2n' case('Pnab') num='60:-cba' schn='D2h^14' hall='-P 2bc 2n' case('Pbna') num='60:bca' schn='D2h^14' hall='-P 2ac 2b' case('Pcnb') num='60:a-cb' schn='D2h^14' hall='-P 2b 2ac' case('Pbca') num='61' schn='D2h^15' hall='-P 2ac 2ab' case('Pcab') num='61:ba-c' schn='D2h^15' hall='-P 2bc 2ac' case('Pnma') num='62' schn='D2h^16' hall='-P 2ac 2n' case('Pmnb') num='62:ba-c' schn='D2h^16' hall='-P 2bc 2a' case('Pbnm') num='62:cab' schn='D2h^16' hall='-P 2c 2ab' case('Pcmn') num='62:-cba' schn='D2h^16' hall='-P 2n 2ac' case('Pmcn') num='62:bca' schn='D2h^16' hall='-P 2n 2a' case('Pnam') num='62:a-cb' schn='D2h^16' hall='-P 2c 2n' case('Cmcm') num='63' schn='D2h^17' hall='-C 2c 2' case('Ccmm') num='63:ba-c' schn='D2h^17' hall='-C 2c 2c' case('Amma') num='63:cab' schn='D2h^17' hall='-A 2a 2a' case('Amam') num='63:-cba' schn='D2h^17' hall='-A 2 2a' case('Bbmm') num='63:bca' schn='D2h^17' hall='-B 2 2b' case('Bmmb') num='63:a-cb' schn='D2h^17' hall='-B 2b 2' case('Cmca') num='64' schn='D2h^18' hall='-C 2bc 2' case('Ccmb') num='64:ba-c' schn='D2h^18' hall='-C 2bc 2bc' case('Abma') num='64:cab' schn='D2h^18' hall='-A 2ac 2ac' case('Acam') num='64:-cba' schn='D2h^18' hall='-A 2 2ac' case('Bbcm') num='64:bca' schn='D2h^18' hall='-B 2 2bc' case('Bmab') num='64:a-cb' schn='D2h^18' hall='-B 2bc 2' case('Cmmm') num='65' schn='D2h^19' hall='-C 2 2' case('Ammm') num='65:cab' schn='D2h^19' hall='-A 2 2' case('Bmmm') num='65:bca' schn='D2h^19' hall='-B 2 2' case('Cccm') num='66' schn='D2h^20' hall='-C 2 2c' case('Amaa') num='66:cab' schn='D2h^20' hall='-A 2a 2' case('Bbmb') num='66:bca' schn='D2h^20' hall='-B 2b 2b' case('Cmma') num='67' schn='D2h^21' hall='-C 2b 2' case('Cmmb') num='67:ba-c' schn='D2h^21' hall='-C 2b 2b' case('Abmm') num='67:cab' schn='D2h^21' hall='-A 2c 2c' case('Acmm') num='67:-cba' schn='D2h^21' hall='-A 2 2c' case('Bmcm') num='67:bca' schn='D2h^21' hall='-B 2 2c' case('Bmam') num='67:a-cb' schn='D2h^21' hall='-B 2c 2' case('Ccca:1') num='68:1' schn='D2h^22' hall='C 2 2 -1bc' case('Ccca:2') num='68:2' schn='D2h^22' hall='-C 2b 2bc' case('Cccb:1') num='68:1ba-c' schn='D2h^22' hall='C 2 2 -1bc' case('Cccb:2') num='68:2ba-c' schn='D2h^22' hall='-C 2b 2c' case('Abaa:1') num='68:1cab' schn='D2h^22' hall='A 2 2 -1ac' case('Abaa:2') num='68:2cab' schn='D2h^22' hall='-A 2a 2c' case('Acaa:1') num='68:1-cba' schn='D2h^22' hall='A 2 2 -1ac' case('Acaa:2') num='68:2-cba' schn='D2h^22' hall='-A 2ac 2c' case('Bbcb:1') num='68:1bca' schn='D2h^22' hall='B 2 2 -1bc' case('Bbcb:2') num='68:2bca' schn='D2h^22' hall='-B 2bc 2b' case('Bbab:1') num='68:1a-cb' schn='D2h^22' hall='B 2 2 -1bc' case('Bbab:2') num='68:2a-cb' schn='D2h^22' hall='-B 2b 2bc' case('Fmmm') num='69' schn='D2h^23' hall='-F 2 2' case('Fddd:1') num='70:1' schn='D2h^24' hall='F 2 2 -1d' case('Fddd:2') num='70:2' schn='D2h^24' hall='-F 2uv 2vw' case('Immm') num='71' schn='D2h^25' hall='-I 2 2' case('Ibam') num='72' schn='D2h^26' hall='-I 2 2c' case('Imcb') num='72:cab' schn='D2h^26' hall='-I 2a 2' case('Icma') num='72:bca' schn='D2h^26' hall='-I 2b 2b' case('Ibca') num='73' schn='D2h^27' hall='-I 2b 2c' case('Icab') num='73:ba-c' schn='D2h^27' hall='-I 2a 2b' case('Imma') num='74' schn='D2h^28' hall='-I 2b 2' case('Immb') num='74:ba-c' schn='D2h^28' hall='-I 2a 2a' case('Ibmm') num='74:cab' schn='D2h^28' hall='-I 2c 2c' case('Icmm') num='74:-cba' schn='D2h^28' hall='-I 2 2b' case('Imcm') num='74:bca' schn='D2h^28' hall='-I 2 2a' case('Imam') num='74:a-cb' schn='D2h^28' hall='-I 2c 2' case('P4') num='75' schn='C4^1' hall='P 4' case('P41') num='76' schn='C4^2' hall='P 4w' case('P42') num='77' schn='C4^3' hall='P 4c' case('P43') num='78' schn='C4^4' hall='P 4cw' case('I4') num='79' schn='C4^5' hall='I 4' case('I41') num='80' schn='C4^6' hall='I 4bw' case('P-4') num='81' schn='S4^1' hall='P -4' case('I-4') num='82' schn='S4^2' hall='I -4' case('P4/m') num='83' schn='C4h^1' hall='-P 4' case('P42/m') num='84' schn='C4h^2' hall='-P 4c' case('P4/n:1') num='85:1' schn='C4h^3' hall='P 4ab -1ab' case('P4/n:2') num='85:2' schn='C4h^3' hall='-P 4a' case('P42/n:1') num='86:1' schn='C4h^4' hall='P 4n -1n' case('P42/n:2') num='86:2' schn='C4h^4' hall='-P 4bc' case('I4/m') num='87' schn='C4h^5' hall='-I 4' case('I41/a:1') num='88:1' schn='C4h^6' hall='I 4bw -1bw' case('I41/a:2') num='88:2' schn='C4h^6' hall='-I 4ad' case('P422') num='89' schn='D4^1' hall='P 4 2' case('P4212') num='90' schn='D4^2' hall='P 4ab 2ab' case('P4122') num='91' schn='D4^3' hall='P 4w 2c' case('P41212') num='92' schn='D4^4' hall='P 4abw 2nw' case('P4222') num='93' schn='D4^5' hall='P 4c 2' case('P42212') num='94' schn='D4^6' hall='P 4n 2n' case('P4322') num='95' schn='D4^7' hall='P 4cw 2c' case('P43212') num='96' schn='D4^8' hall='P 4nw 2abw' case('I422') num='97' schn='D4^9' hall='I 4 2' case('I4122') num='98' schn='D4^10' hall='I 4bw 2bw' case('P4mm') num='99' schn='C4v^1' hall='P 4 -2' case('P4bm') num='100' schn='C4v^2' hall='P 4 -2ab' case('P42cm') num='101' schn='C4v^3' hall='P 4c -2c' case('P42nm') num='102' schn='C4v^4' hall='P 4n -2n' case('P4cc') num='103' schn='C4v^5' hall='P 4 -2c' case('P4nc') num='104' schn='C4v^6' hall='P 4 -2n' case('P42mc') num='105' schn='C4v^7' hall='P 4c -2' case('P42bc') num='106' schn='C4v^8' hall='P 4c -2ab' case('I4mm') num='107' schn='C4v^9' hall='I 4 -2' case('I4cm') num='108' schn='C4v^10' hall='I 4 -2c' case('I41md') num='109' schn='C4v^11' hall='I 4bw -2' case('I41cd') num='110' schn='C4v^12' hall='I 4bw -2c' case('P-42m') num='111' schn='D2d^1' hall='P -4 2' case('P-42c') num='112' schn='D2d^2' hall='P -4 2c' case('P-421m') num='113' schn='D2d^3' hall='P -4 2ab' case('P-421c') num='114' schn='D2d^4' hall='P -4 2n' case('P-4m2') num='115' schn='D2d^5' hall='P -4 -2' case('P-4c2') num='116' schn='D2d^6' hall='P -4 -2c' case('P-4b2') num='117' schn='D2d^7' hall='P -4 -2ab' case('P-4n2') num='118' schn='D2d^8' hall='P -4 -2n' case('I-4m2') num='119' schn='D2d^9' hall='I -4 -2' case('I-4c2') num='120' schn='D2d^10' hall='I -4 -2c' case('I-42m') num='121' schn='D2d^11' hall='I -4 2' case('I-42d') num='122' schn='D2d^12' hall='I -4 2bw' case('P4/mmm') num='123' schn='D4h^1' hall='-P 4 2' case('P4/mcc') num='124' schn='D4h^2' hall='-P 4 2c' case('P4/nbm:1') num='125:1' schn='D4h^3' hall='P 4 2 -1ab' case('P4/nbm:2') num='125:2' schn='D4h^3' hall='-P 4a 2b' case('P4/nnc:1') num='126:1' schn='D4h^4' hall='P 4 2 -1n' case('P4/nnc:2') num='126:2' schn='D4h^4' hall='-P 4a 2bc' case('P4/mbm') num='127' schn='D4h^5' hall='-P 4 2ab' case('P4/mnc') num='128' schn='D4h^6' hall='-P 4 2n' case('P4/nmm:1') num='129:1' schn='D4h^7' hall='P 4ab 2ab -1ab' case('P4/nmm:2') num='129:2' schn='D4h^7' hall='-P 4a 2a' case('P4/ncc:1') num='130:1' schn='D4h^8' hall='P 4ab 2n -1ab' case('P4/ncc:2') num='130:2' schn='D4h^8' hall='-P 4a 2ac' case('P42/mmc') num='131' schn='D4h^9' hall='-P 4c 2' case('P42/mcm') num='132' schn='D4h^10' hall='-P 4c 2c' case('P42/nbc:1') num='133:1' schn='D4h^11' hall='P 4n 2c -1n' case('P42/nbc:2') num='133:2' schn='D4h^11' hall='-P 4ac 2b' case('P42/nnm:1') num='134:1' schn='D4h^12' hall='P 4n 2 -1n' case('P42/nnm:2') num='134:2' schn='D4h^12' hall='-P 4ac 2bc' case('P42/mbc') num='135' schn='D4h^13' hall='-P 4c 2ab' case('P42/mnm') num='136' schn='D4h^14' hall='-P 4n 2n' case('P42/nmc:1') num='137:1' schn='D4h^15' hall='P 4n 2n -1n' case('P42/nmc:2') num='137:2' schn='D4h^15' hall='-P 4ac 2a' case('P42/ncm:1') num='138:1' schn='D4h^16' hall='P 4n 2ab -1n' case('P42/ncm:2') num='138:2' schn='D4h^16' hall='-P 4ac 2ac' case('I4/mmm') num='139' schn='D4h^17' hall='-I 4 2' case('I4/mcm') num='140' schn='D4h^18' hall='-I 4 2c' case('I41/amd:1') num='141:1' schn='D4h^19' hall='I 4bw 2bw -1bw' case('I41/amd:2') num='141:2' schn='D4h^19' hall='-I 4bd 2' case('I41/acd:1') num='142:1' schn='D4h^20' hall='I 4bw 2aw -1bw' case('I41/acd:2') num='142:2' schn='D4h^20' hall='-I 4bd 2c' case('P3') num='143' schn='C3^1' hall='P 3' case('P31') num='144' schn='C3^2' hall='P 31' case('P32') num='145' schn='C3^3' hall='P 32' case('R3:H') num='146:H' schn='C3^4' hall='R 3' case('R3:R') num='146:R' schn='C3^4' hall='P 3*' case('P-3') num='147' schn='C3i^1' hall='-P 3' case('R-3:H') num='148:H' schn='C3i^2' hall='-R 3' case('R-3:R') num='148:R' schn='C3i^2' hall='-P 3*' case('P312') num='149' schn='D3^1' hall='P 3 2' case('P321') num='150' schn='D3^2' hall='P 3 2"' case('P3112') num='151' schn='D3^3' hall='P 31 2c (0 0 1)' case('P3121') num='152' schn='D3^4' hall='P 31 2"' case('P3212') num='153' schn='D3^5' hall='P 32 2c (0 0 -1)' case('P3221') num='154' schn='D3^6' hall='P 32 2"' case('R32:H') num='155:H' schn='D3^7' hall='R 3 2"' case('R32:R') num='155:R' schn='D3^7' hall='P 3* 2' case('P3m1') num='156' schn='C3v^1' hall='P 3 -2"' case('P31m') num='157' schn='C3v^2' hall='P 3 -2' case('P3c1') num='158' schn='C3v^3' hall='P 3 -2"c' case('P31c') num='159' schn='C3v^4' hall='P 3 -2c' case('R3m:H') num='160:H' schn='C3v^5' hall='R 3 -2"' case('R3m:R') num='160:R' schn='C3v^5' hall='P 3* -2' case('R3c:H') num='161:H' schn='C3v^6' hall='R 3 -2"c' case('R3c:R') num='161:R' schn='C3v^6' hall='P 3* -2n' case('P-31m') num='162' schn='D3d^1' hall='-P 3 2' case('P-31c') num='163' schn='D3d^2' hall='-P 3 2c' case('P-3m1') num='164' schn='D3d^3' hall='-P 3 2"' case('P-3c1') num='165' schn='D3d^4' hall='-P 3 2"c' case('R-3m:H') num='166:H' schn='D3d^5' hall='-R 3 2"' case('R-3m:R') num='166:R' schn='D3d^5' hall='-P 3* 2' case('R-3c:H') num='167:H' schn='D3d^6' hall='-R 3 2"c' case('R-3c:R') num='167:R' schn='D3d^6' hall='-P 3* 2n' case('P6') num='168' schn='C6^1' hall='P 6' case('P61') num='169' schn='C6^2' hall='P 61' case('P65') num='170' schn='C6^3' hall='P 65' case('P62') num='171' schn='C6^4' hall='P 62' case('P64') num='172' schn='C6^5' hall='P 64' case('P63') num='173' schn='C6^6' hall='P 6c' case('P-6') num='174' schn='C3h^1' hall='P -6' case('P6/m') num='175' schn='C6h^1' hall='-P 6' case('P63/m') num='176' schn='C6h^2' hall='-P 6c' case('P622') num='177' schn='D6^1' hall='P 6 2' case('P6122') num='178' schn='D6^2' hall='P 61 2 (0 0 -1)' case('P6522') num='179' schn='D6^3' hall='P 65 2 (0 0 1)' case('P6222') num='180' schn='D6^4' hall='P 62 2c (0 0 1)' case('P6422') num='181' schn='D6^5' hall='P 64 2c (0 0 -1)' case('P6322') num='182' schn='D6^6' hall='P 6c 2c' case('P6mm') num='183' schn='C6v^1' hall='P 6 -2' case('P6cc') num='184' schn='C6v^2' hall='P 6 -2c' case('P63cm') num='185' schn='C6v^3' hall='P 6c -2' case('P63mc') num='186' schn='C6v^4' hall='P 6c -2c' case('P-6m2') num='187' schn='D3h^1' hall='P -6 2' case('P-6c2') num='188' schn='D3h^2' hall='P -6c 2' case('P-62m') num='189' schn='D3h^3' hall='P -6 -2' case('P-62c') num='190' schn='D3h^4' hall='P -6c -2c' case('P6/mmm') num='191' schn='D6h^1' hall='-P 6 2' case('P6/mcc') num='192' schn='D6h^2' hall='-P 6 2c' case('P63/mcm') num='193' schn='D6h^3' hall='-P 6c 2' case('P63/mmc') num='194' schn='D6h^4' hall='-P 6c 2c' case('P23') num='195' schn='T^1' hall='P 2 2 3' case('F23') num='196' schn='T^2' hall='F 2 2 3' case('I23') num='197' schn='T^3' hall='I 2 2 3' case('P213') num='198' schn='T^4' hall='P 2ac 2ab 3' case('I213') num='199' schn='T^5' hall='I 2b 2c 3' case('Pm-3') num='200' schn='Th^1' hall='-P 2 2 3' case('Pn-3:1') num='201:1' schn='Th^2' hall='P 2 2 3 -1n' case('Pn-3:2') num='201:2' schn='Th^2' hall='-P 2ab 2bc 3' case('Fm-3') num='202' schn='Th^3' hall='-F 2 2 3' case('Fd-3:1') num='203:1' schn='Th^4' hall='F 2 2 3 -1d' case('Fd-3:2') num='203:2' schn='Th^4' hall='-F 2uv 2vw 3' case('Im-3') num='204' schn='Th^5' hall='-I 2 2 3' case('Pa-3') num='205' schn='Th^6' hall='-P 2ac 2ab 3' case('Ia-3') num='206' schn='Th^7' hall='-I 2b 2c 3' case('P432') num='207' schn='O^1' hall='P 4 2 3' case('P4232') num='208' schn='O^2' hall='P 4n 2 3' case('F432') num='209' schn='O^3' hall='F 4 2 3' case('F4132') num='210' schn='O^4' hall='F 4d 2 3' case('I432') num='211' schn='O^5' hall='I 4 2 3' case('P4332') num='212' schn='O^6' hall='P 4acd 2ab 3' case('P4132') num='213' schn='O^7' hall='P 4bd 2ab 3' case('I4132') num='214' schn='O^8' hall='I 4bd 2c 3' case('P-43m') num='215' schn='Td^1' hall='P -4 2 3' case('F-43m') num='216' schn='Td^2' hall='F -4 2 3' case('I-43m') num='217' schn='Td^3' hall='I -4 2 3' case('P-43n') num='218' schn='Td^4' hall='P -4n 2 3' case('F-43c') num='219' schn='Td^5' hall='F -4c 2 3' case('I-43d') num='220' schn='Td^6' hall='I -4bd 2c 3' case('Pm-3m') num='221' schn='Oh^1' hall='-P 4 2 3' case('Pn-3n:1') num='222:1' schn='Oh^2' hall='P 4 2 3 -1n' case('Pn-3n:2') num='222:2' schn='Oh^2' hall='-P 4a 2bc 3' case('Pm-3n') num='223' schn='Oh^3' hall='-P 4n 2 3' case('Pn-3m:1') num='224:1' schn='Oh^4' hall='P 4n 2 3 -1n' case('Pn-3m:2') num='224:2' schn='Oh^4' hall='-P 4bc 2bc 3' case('Fm-3m') num='225' schn='Oh^5' hall='-F 4 2 3' case('Fm-3c') num='226' schn='Oh^6' hall='-F 4c 2 3' case('Fd-3m:1') num='227:1' schn='Oh^7' hall='F 4d 2 3 -1d' case('Fd-3m:2') num='227:2' schn='Oh^7' hall='-F 4vw 2vw 3' case('Fd-3c:1') num='228:1' schn='Oh^8' hall='F 4d 2 3 -1cd' case('Fd-3c:2') num='228:2' schn='Oh^8' hall='-F 4cvw 2vw 3' case('Im-3m') num='229' schn='Oh^9' hall='-I 4 2 3' case('Ia-3d') num='230' schn='Oh^10' hall='-I 4bd 2c 3' case default write(*,*) write(*,'("Error(sgsymb): Hermann-Mauguin symbol ''",A,"'' not found")') & trim(adjustl(hrmg)) write(*,*) stop end select return end subroutine !EOC elk-9.2.12/src/PaxHeaders/modmain.f900000644000000000000000000000013214536061313014173 xustar0030 mtime=1702388427.537502053 30 atime=1702388426.328503843 30 ctime=1702388427.537502053 elk-9.2.12/src/modmain.f900000644002504400250440000012475114536061313016727 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2009 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modmain !----------------------------! ! lattice parameters ! !----------------------------! ! lattice vectors stored column-wise real(8) avec(3,3),avec0(3,3),davec(3,3) ! magnitude of random displacements added to lattice vectors real(8) rndavec ! inverse of lattice vector matrix real(8) ainv(3,3) ! reciprocal lattice vectors real(8) bvec(3,3),bvec0(3,3) ! inverse of reciprocal lattice vector matrix real(8) binv(3,3),binv0(3,3) ! unit cell volume real(8) omega,omega0 ! Brillouin zone volume real(8) omegabz ! any vector with length less than epslat is considered zero real(8) epslat !--------------------------! ! atomic variables ! !--------------------------! ! maximum allowed species integer, parameter :: maxspecies=8 ! maximum allowed atoms per species integer, parameter :: maxatoms=200 ! number of species integer nspecies ! number of atoms for each species integer natoms(maxspecies),natoms0(maxspecies) ! maximum number of atoms over all the species integer natmmax ! total number of atoms integer natmtot,natmtot0 ! index to atoms and species integer idxas(maxatoms,maxspecies) ! inverse atoms and species indices integer idxis(maxatoms*maxspecies),idxis0(maxatoms*maxspecies) integer idxia(maxatoms*maxspecies) ! molecule is .true. is the system is an isolated molecule logical molecule ! primcell is .true. if primitive unit cell is to be found automatically logical primcell,primcell0 ! atomic positions in lattice coordinates real(8) atposl(3,maxatoms,maxspecies),atposl0(3,maxatoms,maxspecies) real(8) datposl(3,maxatoms,maxspecies) ! atomic positions in Cartesian coordinates real(8) atposc(3,maxatoms,maxspecies),atposc0(3,maxatoms,maxspecies) ! magnitude of random displacements added to the atomic positions real(8) rndatposc ! tatdisp is .true. if small amplitude atomic displacements are to be included ! when calculating the Coulomb potential logical :: tatdisp=.false. ! trdatdv is .true. if the atomic displacements and velocities are to be read ! from file logical trdatdv ! atomic displacements and velocities in Cartesian coordinates real(8) atdvc(3,0:1,maxatoms,maxspecies) ! atomic damping force coefficient real(8) atdfc !----------------------------------! ! atomic species variables ! !----------------------------------! ! species files path character(256) sppath ! species filenames character(256) spfname(maxspecies) ! species name character(64) spname(maxspecies) ! species symbol character(64) spsymb(maxspecies) ! species nuclear charge real(8) spzn(maxspecies) ! ptnucl is .true. if the nuclei are to be treated as point charges, if .false. ! the nuclei have a finite spherical distribution logical ptnucl ! nuclear radius real(8) rnucl(maxspecies) ! nuclear volume real(8) volnucl(maxspecies) ! number of radial mesh points to nuclear radius integer nrnucl(maxspecies) ! nuclear Coulomb potential real(8), allocatable :: vcln(:,:) ! species electronic charge real(8) spze(maxspecies) ! species mass real(8) spmass(maxspecies) ! smallest radial point for each species real(8) rminsp(maxspecies) ! effective infinity for species real(8) rmaxsp(maxspecies) ! number of radial points to effective infinity for each species integer nrsp(maxspecies) ! maximum nrsp over all the species integer nrspmax ! maximum allowed states for each species integer, parameter :: maxstsp=40 ! number of states for each species integer nstsp(maxspecies) ! maximum nstsp over all the species integer nstspmax ! core-valence cut-off energy for species file generation real(8) ecvcut ! semi-core-valence cut-off energy for species file generation real(8) esccut ! state principle quantum number for each species integer nsp(maxstsp,maxspecies) ! state l value for each species integer lsp(maxstsp,maxspecies) ! state k value for each species integer ksp(maxstsp,maxspecies) ! spcore is .true. if species state is core logical spcore(maxstsp,maxspecies) ! total number of core states integer nstcr ! state eigenvalue for each species real(8) evalsp(maxstsp,maxspecies) ! state occupancy for each species real(8) occsp(maxstsp,maxspecies) ! species radial mesh to effective infinity real(8), allocatable :: rsp(:,:) ! species charge density real(8), allocatable :: rhosp(:,:) ! species self-consistent potential real(8), allocatable :: vrsp(:,:) ! exchange-correlation type for atomic species (the converged ground-state of ! the crystal does not depend on this choice) integer xctsp(3) !---------------------------------------------------------------! ! muffin-tin radial mesh and angular momentum variables ! !---------------------------------------------------------------! ! scale factor for number of muffin-tin points real(8) nrmtscf,dnrmtscf ! number of muffin-tin radial points for each species integer nrmt(maxspecies) ! maximum nrmt over all the species integer nrmtmax ! order of averaging applied to the muffin-tin radii integer mrmtav ! optional default muffin-tin radius for all atoms real(8) rmtall ! minimum allowed distance between muffin-tin surfaces real(8) rmtdelta ! muffin-tin radii real(8) rmt(maxspecies),rmt0(maxspecies) ! trmt0 is .true. if the original muffin-tin radii rmt0 are to be retained ! between tasks logical trmt0 ! (R_mt)^l for l up to lmaxo+3 real(8), allocatable :: rmtl(:,:) ! total muffin-tin volume real(8) omegamt ! radial step length for coarse mesh integer lradstp ! number of coarse radial mesh points integer nrcmt(maxspecies) ! maximum nrcmt over all the species integer nrcmtmax ! coarse muffin-tin radial mesh real(8), allocatable :: rcmt(:,:) ! r^l on fine radial mesh real(8), allocatable :: rlmt(:,:,:) ! r^l on coarse radial mesh real(8), allocatable :: rlcmt(:,:,:) ! weights for spline integration on fine radial mesh real(8), allocatable :: wrmt(:,:) ! weights for spline partial integration on fine radial mesh real(8), allocatable :: wprmt(:,:,:) ! weights for spline coefficients on fine radial mesh real(8), allocatable :: wcrmt(:,:,:) ! weights for spline integration on coarse radial mesh real(8), allocatable :: wrcmt(:,:) ! weights for spline partial integration on coarse radial mesh real(8), allocatable :: wprcmt(:,:,:) ! weights for spline coefficients on coarse radial mesh real(8), allocatable :: wcrcmt(:,:,:) ! maximum allowable angular momentum for augmented plane waves integer, parameter :: maxlapw=30 ! maximum angular momentum for augmented plane waves integer lmaxapw,dlmaxapw ! (lmaxapw+1)^2 integer lmmaxapw ! maximum angular momentum on the outer part of the muffin-tin integer lmaxo,dlmaxo ! (lmaxo+1)^2 integer lmmaxo ! maximum angular momentum on the inner part of the muffin-tin integer lmaxi,lmaxi0 ! (lmaxi+1)^2 integer lmmaxi ! fraction of muffin-tin radius which constitutes the inner part real(8) fracinr ! number of fine/coarse radial points on the inner part of the muffin-tin integer nrmti(maxspecies),nrcmti(maxspecies) ! number of fine/coarse points in packed muffin-tins integer npmti(maxspecies),npmt(maxspecies) integer npcmti(maxspecies),npcmt(maxspecies) ! maximum number of points over all packed muffin-tins integer npmtmax,npcmtmax ! smoothing order used when calculating gradients in the muffin-tin integer msmgmt !--------------------------------! ! spin related variables ! !--------------------------------! ! spinpol is .true. for spin-polarised calculations logical spinpol,spinpol0 ! spinorb is .true. for spin-orbit coupling logical spinorb,spinorb0 ! scale factor of spin-orbit coupling term in Hamiltonian real(8) socscf ! dimension of magnetisation and magnetic vector fields (1 or 3) integer ndmag ! ncmag is .true. if the magnetisation is non-collinear, i.e. when ndmag = 3 logical ncmag ! if cmagz is .true. then collinear magnetism along the z-axis is enforced logical cmagz,cmagz0 ! spcpl is .true. if the up and down spins are coupled logical spcpl ! fixed spin moment type ! 0 : none ! 1 (-1) : total moment (direction) ! 2 (-2) : individual muffin-tin moments (direction) ! 3 (-3) : total and muffin-tin moments (direction) integer fsmtype,fsmtype0 ! fixed total spin magnetic moment real(8) momfix(3),momfix0(3),dmomfix(3) ! fixed spin moment global effective field in Cartesian coordinates real(8) bfsmc(3) ! muffin-tin fixed spin moments real(8) mommtfix(3,maxatoms,maxspecies),mommtfix0(3,maxatoms,maxspecies) ! muffin-tin fixed spin moment effective fields in Cartesian coordinates real(8), allocatable :: bfsmcmt(:,:) ! fixed spin moment field step size real(8) taufsm ! second-variational spinor dimension (1 or 2) integer nspinor ! global external magnetic field in Cartesian coordinates real(8) bfieldc(3) ! initial field real(8) bfieldc0(3),bfieldc00(3),dbfieldc0(3) ! external magnetic field in each muffin-tin in Cartesian coordinates real(8) bfcmt(3,maxatoms,maxspecies) ! initial field as read in from input file real(8) bfcmt0(3,maxatoms,maxspecies),bfcmt00(3,maxatoms,maxspecies) ! magnitude of random vectors added to muffin-tin fields real(8) rndbfcmt ! external magnetic fields are multiplied by reducebf after each s.c. loop real(8) reducebf,reducebf0 ! small change in magnetic field used for calculating the magnetoelectric tensor real(8) deltabf ! spinsprl is .true. if a spin-spiral is to be calculated logical spinsprl,spinsprl0 ! ssdph is .true. if the muffin-tin spin-spiral magnetisation is de-phased logical ssdph ! spin-spiral phase factor for each atom complex(8), allocatable :: zqss(:) ! number of spin-dependent first-variational functions per state integer nspnfv ! map from second- to first-variational spin index integer jspnfv(2) ! spin-spiral q-vector in lattice coordinates real(8) vqlss(3),vqlss0(3) ! spin-spiral q-vector in Cartesian coordinates real(8) vqcss(3) ! current q-point in spin-spiral supercell calculation integer iqss ! number of primitive unit cells in spin-spiral supercell integer nscss ! number of fixed spin direction points on the sphere for finding the magnetic ! anisotropy energy (MAE) integer npmae0,npmae ! (theta,phi) coordinates for each MAE direction real(8), allocatable :: tpmae(:,:) !---------------------------------------------! ! electric field and vector potential ! !---------------------------------------------! ! tefield is .true. if a polarising constant electric field is applied logical tefield ! electric field vector in Cartesian coordinates real(8) efieldc(3) ! electric field vector in lattice coordinates real(8) efieldl(3) ! tafield is .true. if a constant vector potential is applied logical tafield ! vector potential A-field which couples to paramagnetic current real(8) afieldc(3),afieldc0(3) ! A-field in lattice coordinates real(8) afieldl(3) !----------------------------! ! symmetry variables ! !----------------------------! ! type of symmetry allowed for the crystal ! 0 : only the identity element is used ! 1 : full symmetry group is used ! 2 : only symmorphic symmetries are allowed integer symtype ! number of Bravais lattice point group symmetries integer nsymlat ! Bravais lattice point group symmetries integer symlat(3,3,48) ! determinants of lattice symmetry matrices (1 or -1) integer symlatd(48) ! index to inverses of the lattice symmetries integer isymlat(48) ! lattice point group symmetries in Cartesian coordinates real(8) symlatc(3,3,48) ! tshift is .true. if atomic basis is allowed to be shifted logical tshift,tshift0 ! tsyminv is .true. if the crystal has inversion symmetry logical tsyminv ! maximum of symmetries allowed integer, parameter :: maxsymcrys=192 ! number of crystal symmetries integer nsymcrys ! crystal symmetry translation vector in lattice and Cartesian coordinates real(8) vtlsymc(3,maxsymcrys) real(8) vtcsymc(3,maxsymcrys) ! tv0symc is .true. if the translation vector is zero logical tv0symc(maxsymcrys) ! spatial rotation element in lattice point group for each crystal symmetry integer lsplsymc(maxsymcrys) ! global spin rotation element in lattice point group for each crystal symmetry integer lspnsymc(maxsymcrys) ! equivalent atom index for each crystal symmetry integer, allocatable :: ieqatom(:,:,:) ! eqatoms(ia,ja,is) is .true. if atoms ia and ja are equivalent logical, allocatable :: eqatoms(:,:,:) ! number of site symmetries integer, allocatable :: nsymsite(:) ! site symmetry spatial rotation element in lattice point group integer, allocatable :: lsplsyms(:,:) ! site symmetry global spin rotation element in lattice point group integer, allocatable :: lspnsyms(:,:) !----------------------------! ! G-vector variables ! !----------------------------! ! G-vector cut-off for interstitial potential and density real(8) gmaxvr,dgmaxvr ! G-vector grid sizes integer ngridg(3),ngridg0(3) ! G-vector grid sizes for coarse grid with |G| < 2 gkmax integer ngdgc(3) ! total number of G-vectors integer ngtot,ngtot0 ! total number of G-vectors for coarse grid integer ngtc ! integer grid intervals for each direction integer intgv(2,3) ! number of G-vectors with |G| < gmaxvr integer ngvec ! number of G-vectors for coarse grid with |G| < 2 gkmax integer ngvc ! G-vector integer coordinates (i1,i2,i3) integer, allocatable :: ivg(:,:),ivg0(:,:) ! map from (i1,i2,i3) to G-vector index integer, allocatable :: ivgig(:,:,:) ! map from G-vector index to FFT array integer, allocatable :: igfft(:),igfft0(:) ! map from G-vector index to FFT array for coarse grid integer, allocatable :: igfc(:) ! G-vectors in Cartesian coordinates real(8), allocatable :: vgc(:,:) ! length of G-vectors real(8), allocatable :: gc(:) ! Coulomb Green's function in G-space = 4π/G² real(8), allocatable :: gclg(:) ! spherical Bessel functions j_l(|G|R_mt) real(8), allocatable :: jlgrmt(:,:,:) ! spherical harmonics of the G-vectors complex(8), allocatable :: ylmg(:,:) ! structure factors for the G-vectors complex(8), allocatable :: sfacg(:,:) ! smooth step function form factors for all species and G-vectors real(8), allocatable :: ffacg(:,:) ! characteristic function in G-space: 0 inside the muffin-tins and 1 outside complex(8), allocatable :: cfunig(:) ! characteristic function in real-space: 0 inside the muffin-tins and 1 outside real(8), allocatable :: cfunir(:) ! characteristic function in real-space for coarse grid real(8), allocatable :: cfrc(:) !---------------------------! ! k-point variables ! !---------------------------! ! autokpt is .true. if the k-point set is determined automatically logical autokpt,autokpt0 ! radius of sphere used to determine k-point density when autokpt is .true. real(8) radkpt ! k-point grid sizes integer ngridk(3),ngridk0(3),dngridk(3) ! k-point offset real(8) vkloff(3),vkloff0(3) ! type of reduction to perform on k-point set ! 0 : no reduction ! 1 : reduce with full crystal symmetry group ! 2 : reduce with symmorphic symmetries only integer reducek,reducek0 ! number of point group symmetries used for k-point reduction integer nsymkpt ! point group symmetry matrices used for k-point reduction integer symkpt(3,3,48) ! total number of reduced k-points integer nkpt ! total number of non-reduced k-points integer nkptnr ! locations of k-points on integer grid integer, allocatable :: ivk(:,:) ! map from integer grid to reduced k-point index integer, allocatable :: ivkik(:,:,:) ! map from integer grid to non-reduced k-point index integer, allocatable :: ivkiknr(:,:,:) ! k-points in lattice coordinates real(8), allocatable :: vkl(:,:) ! k-points in Cartesian coordinates real(8), allocatable :: vkc(:,:) ! reduced k-point weights real(8), allocatable :: wkpt(:) ! weight of each non-reduced k-point real(8) wkptnr ! k-point at which to determine effective mass tensor real(8) vklem(3) ! displacement size for computing the effective mass tensor real(8) deltaem ! number of displacements in each direction integer ndspem ! number of k-points subdivision used for calculating the polarisation phase integer nkspolar !------------------------------! ! G+k-vector variables ! !------------------------------! ! species for which the muffin-tin radius will be used for calculating gkmax integer isgkmax ! smallest muffin-tin radius times gkmax real(8) rgkmax,drgkmax ! maximum |G+k| cut-off for APW functions real(8) gkmax ! number of G+k-vectors for augmented plane waves integer, allocatable :: ngk(:,:) ! maximum number of G+k-vectors over all k-points integer ngkmax ! index from G+k-vectors to G-vectors integer, allocatable :: igkig(:,:,:) ! G+k-vectors in lattice coordinates real(8), allocatable :: vgkl(:,:,:,:) ! G+k-vectors in Cartesian coordinates real(8), allocatable :: vgkc(:,:,:,:) ! length of G+k-vectors real(8), allocatable :: gkc(:,:,:) ! structure factors for the G+k-vectors complex(8), allocatable :: sfacgk(:,:,:,:) !---------------------------! ! q-point variables ! !---------------------------! ! q-point grid sizes integer ngridq(3) ! integer grid intervals for the q-points integer intq(2,3) ! type of reduction to perform on q-point set (see reducek) integer reduceq ! number of point group symmetries used for q-point reduction integer nsymqpt ! point group symmetry matrices used for q-point reduction integer symqpt(3,3,48) ! total number of reduced q-points integer nqpt ! total number of non-reduced q-points integer nqptnr ! locations of q-points on integer grid integer, allocatable :: ivq(:,:) ! map from integer grid to reduced index integer, allocatable :: ivqiq(:,:,:) ! map from integer grid to non-reduced index integer, allocatable :: ivqiqnr(:,:,:) ! map from q-vector index to complex-complex FFT array integer, allocatable :: iqfft(:) ! number of complex FFT elements for real-complex transforms integer nfqrz ! map from q-point index to real-complex FFT index integer, allocatable :: ifqrz(:) ! map from real-complex FFT index to q-point index integer, allocatable :: iqrzf(:) ! q-points in lattice coordinates real(8), allocatable :: vql(:,:) ! q-points in Cartesian coordinates real(8), allocatable :: vqc(:,:) ! q-point weights real(8), allocatable :: wqpt(:) ! weight for each non-reduced q-point real(8) wqptnr ! regularised Coulomb Green's function in q-space real(8), allocatable :: gclq(:) ! if t0gclq0 is .true. then the Coulomb Green's function at q = 0 is set to zero logical t0gclq0 !-----------------------------------------------------! ! spherical harmonic transform (SHT) matrices ! !-----------------------------------------------------! ! trotsht is .true. if the spherical cover used for the SHT is to be rotated logical :: trotsht=.false. ! spherical cover rotation matrix real(8) rotsht(3,3) ! real backward SHT matrix for lmaxi real(8), allocatable :: rbshti(:,:) ! real forward SHT matrix for lmaxi real(8), allocatable :: rfshti(:,:) ! real backward SHT matrix for lmaxo real(8), allocatable :: rbshto(:,:) ! real forward SHT matrix for lmaxo real(8), allocatable :: rfshto(:,:) ! complex backward SHT matrix for lmaxi complex(8), allocatable :: zbshti(:,:) ! complex forward SHT matrix for lmaxi complex(8), allocatable :: zfshti(:,:) ! complex backward SHT matrix for lmaxo complex(8), allocatable :: zbshto(:,:) ! complex forward SHT matrix for lmaxo complex(8), allocatable :: zfshto(:,:) ! single-precision copies of the complex SHT matrices complex(4), allocatable :: cbshti(:,:),cfshti(:,:) complex(4), allocatable :: cbshto(:,:),cfshto(:,:) !---------------------------------------------------------------! ! density, potential and exchange-correlation variables ! !---------------------------------------------------------------! ! exchange-correlation functional type integer xctype(3) ! exchange-correlation functional description character(264) xcdescr ! exchange-correlation functional spin requirement integer xcspin ! exchange-correlation functional density gradient requirement ! 0 : no gradients ! 1 : gradients required for GGA with no post-processing: |grad rho|, ! grad^2 rho, (grad rho).(grad |grad rho|) ! 2 : gradients required for GGA with post-processing: |grad rho|^2 ! 3 : as 2 but with the laplacian, grad^2 rho ! 4 : as 2 but with the kinetic energy density, tau ! 5 : as 4 but with the laplacian, grad^2 rho integer xcgrad ! small constant used to stabilise non-collinear GGA real(8) dncgga ! kinetic energy density functional type integer ktype(3) ! kinetic energy density functional description character(264) kdescr ! kinetic energy density density gradient requirement (see xcgrad) integer kgrad ! muffin-tin and interstitial charge density real(8), allocatable :: rhomt(:,:),rhoir(:) ! trhonorm is .true. if the density is to be normalised after every iteration logical trhonorm ! muffin-tin and interstitial magnetisation vector field real(8), allocatable :: magmt(:,:,:),magir(:,:) ! tjr is .true. if the current density j(r) is to be calculated logical tjr,tjr0 ! muffin-tin and interstitial gauge-invariant current density vector field real(8), allocatable :: jrmt(:,:,:),jrir(:,:) ! muffin-tin and interstitial Coulomb potential real(8), allocatable :: vclmt(:,:),vclir(:) ! Poisson solver pseudocharge density constant integer npsd ! lmaxo+npsd+1 integer lnpsd ! muffin-tin and interstitial exchange energy density real(8), allocatable :: exmt(:,:),exir(:) ! muffin-tin and interstitial correlation energy density real(8), allocatable :: ecmt(:,:),ecir(:) ! muffin-tin and interstitial exchange-correlation potential real(8), allocatable :: vxcmt(:,:),vxcir(:) ! muffin-tin and interstitial exchange-correlation magnetic field real(8), allocatable :: bxcmt(:,:,:),bxcir(:,:) ! muffin-tin and interstitial magnetic dipole field real(8), allocatable :: bdmt(:,:,:),bdir(:,:) ! tbdip is .true. if the spin and current dipole fields are to be added to the ! Kohn-Sham magnetic field logical tbdip ! combined target array for vsmt, vsir, bsmt and bsir real(8), allocatable, target :: vsbs(:) ! muffin-tin and interstitial Kohn-Sham effective potential real(8), pointer, contiguous :: vsmt(:,:),vsir(:) ! muffin-tin Kohn-Sham effective magnetic field in spherical coordinates and on ! a coarse radial mesh real(8), pointer, contiguous :: bsmt(:,:,:) ! interstitial Kohn-Sham effective magnetic field real(8), pointer, contiguous :: bsir(:,:) ! G-space interstitial Kohn-Sham effective potential complex(8), allocatable :: vsig(:) ! trimvg is .true. if the components of the effective potential are to be set to ! zero for |G| > 4 gkmax before the characteristic function is applied logical trimvg,trimvg0 ! nosource is .true. if the field is to be made source-free logical nosource ! tssxc is .true. if scaled spin exchange-correlation is to be used logical tssxc ! spin exchange-correlation scaling factor real(8) sxcscf,dsxcscf ! spin-orbit coupling radial function real(8), allocatable :: socfr(:,:) ! kinetic energy density real(8), allocatable :: taumt(:,:,:),tauir(:,:) ! core kinetic energy density real(8), allocatable :: taucr(:,:,:) ! meta-GGA exchange-correlation potential real(8), allocatable :: wxcmt(:,:),wxcir(:) ! if trdstate is .true. the density and potential can be read from STATE.OUT logical :: trdstate=.false. ! temperature in degrees Kelvin real(8) tempk !--------------------------! ! mixing variables ! !--------------------------! ! type of mixing to use for the potential integer mixtype ! mixing type description character(64) mixdescr ! adaptive mixing parameters (formerly beta0 and betamax) real(8) amixpm(2) ! subspace dimension for Broyden mixing integer mixsdb ! Broyden mixing parameters alpha and w0 real(8) broydpm(2) !----------------------------------------------! ! charge, moment and current variables ! !----------------------------------------------! ! tolerance for error in total charge real(8) epschg ! total nuclear charge real(8) chgzn ! core charges real(8) chgcr(maxspecies) ! total core charge real(8) chgcrtot ! core leakage charge real(8), allocatable :: chgcrlk(:) ! total valence charge real(8) chgval ! excess charge real(8) chgexs,dchgexs ! total charge real(8) chgtot ! calculated total charge real(8) chgcalc ! interstitial region charge real(8) chgir ! muffin-tin charges real(8), allocatable :: chgmt(:) ! total muffin-tin charge real(8) chgmttot ! effective Wigner radius real(8) rwigner ! total moment real(8) momtot(3) ! total moment magnitude real(8) momtotm ! interstitial region moment real(8) momir(3) ! muffin-tin moments real(8), allocatable :: mommt(:,:) ! total muffin-tin moment real(8) mommttot(3) ! total gauge-invariant current and its magnitude real(8) jtot(3),jtotm !-----------------------------------------! ! APW and local-orbital variables ! !-----------------------------------------! ! energy step used for numerical calculation of energy derivatives real(8) deapwlo ! maximum allowable APW order integer, parameter :: maxapword=4 ! APW order integer apword(0:maxlapw,maxspecies) ! maximum of apword over all angular momenta and species integer apwordmax ! total number of APW coefficients (l, m and order) for each species integer lmoapw(maxspecies) ! polynomial order used for APW radial derivatives integer npapw ! APW initial linearisation energies real(8) apwe0(maxapword,0:maxlapw,maxspecies) ! APW linearisation energies real(8), allocatable :: apwe(:,:,:) ! APW derivative order integer apwdm(maxapword,0:maxlapw,maxspecies) ! apwve is .true. if the linearisation energies are allowed to vary logical apwve(maxapword,0:maxlapw,maxspecies) ! APW radial functions real(8), allocatable :: apwfr(:,:,:,:,:) ! derivate of radial functions at the muffin-tin surface real(8), allocatable :: apwdfr(:,:,:) ! maximum number of local-orbitals integer, parameter :: maxlorb=200 ! maximum allowable local-orbital order integer, parameter :: maxlorbord=5 ! number of local-orbitals integer nlorb(maxspecies) ! maximum nlorb over all species integer nlomax ! total number of local-orbitals integer nlotot ! local-orbital order integer lorbord(maxlorb,maxspecies) ! maximum lorbord over all species integer lorbordmax ! polynomial order used for local-orbital radial derivatives integer nplorb ! local-orbital angular momentum integer lorbl(maxlorb,maxspecies) ! maximum lorbl over all species integer lolmax ! (lolmax+1)^2 integer lolmmax ! local-orbital initial energies real(8) lorbe0(maxlorbord,maxlorb,maxspecies) ! local-orbital energies real(8), allocatable :: lorbe(:,:,:) ! local-orbital derivative order integer lorbdm(maxlorbord,maxlorb,maxspecies) ! lorbve is .true. if the linearisation energies are allowed to vary logical lorbve(maxlorbord,maxlorb,maxspecies) ! local-orbital radial functions real(8), allocatable :: lofr(:,:,:,:) ! band energy search tolerance real(8) epsband ! maximum allowed change in energy during band energy search; enforced only if ! default energy is less than zero real(8) demaxbnd ! minimum default linearisation energy over all APWs and local-orbitals real(8) e0min ! if autolinengy is .true. then the fixed linearisation energies are set to the ! Fermi energy minus dlefe logical autolinengy ! difference between linearisation and Fermi energies when autolinengy is .true. real(8) dlefe ! lorbcnd is .true. if conduction state local-orbitals should be added logical lorbcnd ! conduction state local-orbital order integer lorbordc ! excess order of the APW and local-orbital functions integer nxoapwlo ! excess local orbitals integer nxlo ! number of (l,m) components used for generating the muffin-tin wavefunctions integer nlmwf(maxspecies) !-------------------------------------------! ! overlap and Hamiltonian variables ! !-------------------------------------------! ! overlap and Hamiltonian matrices sizes at each k-point integer, allocatable :: nmat(:,:) ! maximum nmat over all k-points integer nmatmax ! index to the position of the local-orbitals in the H and O matrices integer, allocatable :: idxlo(:,:,:) ! APW-local-orbital overlap integrals real(8), allocatable :: oalo(:,:,:) ! local-orbital-local-orbital overlap integrals real(8), allocatable :: ololo(:,:,:) ! APW-APW Hamiltonian integrals real(8), allocatable :: haa(:,:,:,:,:,:) ! local-orbital-APW Hamiltonian integrals real(8), allocatable :: hloa(:,:,:,:,:) ! local-orbital-local-orbital Hamiltonian integrals real(8), allocatable :: hlolo(:,:,:,:) ! complex Gaunt coefficient array complex(8), allocatable :: gntyry(:,:,:) ! tefvr is .true. if the first-variational eigenvalue equation is to be solved ! as a real symmetric problem logical tefvr ! tefvit is .true. if the first-variational eigenvalue equation is to be solved ! iteratively logical tefvit ! minimum and maximum allowed number of eigenvalue equation iterations integer minitefv,maxitefv ! eigenvalue mixing parameter for iterative solver real(8) befvit ! iterative solver convergence tolerance real(8) epsefvit !--------------------------------------------! ! eigenvalue and occupancy variables ! !--------------------------------------------! ! number of empty states per atom and spin real(8) nempty0,dnempty0 ! number of empty states integer nempty ! number of first-variational states integer nstfv ! number of second-variational states integer nstsv ! smearing type integer stype ! smearing function description character(64) sdescr ! smearing width real(8) swidth,swidth0 ! autoswidth is .true. if the smearing width is to be determined automatically logical autoswidth ! effective mass used in smearing width formula real(8) mstar ! maximum allowed occupancy (1 or 2) real(8) occmax ! convergence tolerance for occupation numbers real(8) epsocc ! second-variational occupation numbers real(8), allocatable :: occsv(:,:) ! Fermi energy for second-variational states real(8) efermi ! tscissor is .true. if the scissor correction is non-zero logical tscissor ! scissor correction applied to eigenvalues and momentum matric elements real(8) scissor ! density of states at the Fermi energy real(8) fermidos ! estimated indirect and direct band gaps real(8) bandgap(2) ! k-points of indirect and direct gaps integer ikgap(3) ! error tolerance for the first-variational eigenvalues real(8) evaltol ! second-variational eigenvalues real(8), allocatable :: evalsv(:,:) ! tevecsv is .true. if second-variational eigenvectors are calculated logical tevecsv ! maximum number of k-point and states indices in user-defined list integer, parameter :: maxkst=20 ! number of k-point and states indices in user-defined list integer nkstlist ! user-defined list of k-point and state indices integer kstlist(2,maxkst) !------------------------------! ! core state variables ! !------------------------------! ! occupation numbers for core states real(8), allocatable :: occcr(:,:) ! eigenvalues for core states real(8), allocatable :: evalcr(:,:) ! radial wavefunctions for core states real(8), allocatable :: rwfcr(:,:,:,:) ! radial charge density for core states real(8), allocatable :: rhocr(:,:,:) ! spincore is .true. if the core is to be treated as spin-polarised logical spincore ! number of core spin-channels integer nspncr !--------------------------! ! energy variables ! !--------------------------! ! eigenvalue sum real(8) evalsum ! electron kinetic energy real(8) engykn ! core electron kinetic energy real(8) engykncr ! nuclear-nuclear energy real(8) engynn ! electron-nuclear energy real(8) engyen ! Hartree energy real(8) engyhar ! Coulomb energy (E_nn + E_en + E_H) real(8) engycl ! electronic Coulomb potential energy real(8) engyvcl ! Madelung term real(8) engymad ! exchange-correlation potential energy real(8) engyvxc ! exchange-correlation effective field energy real(8) engybxc ! energy of external global magnetic field real(8) engybext ! exchange energy real(8) engyx ! correlation energy real(8) engyc ! electronic entropy real(8) entrpy ! entropic contribution to free energy real(8) engyts ! total energy real(8) engytot !--------------------------------------------! ! force, stress and strain variables ! !--------------------------------------------! ! tforce is .true. if force should be calculated logical tforce,tforce0 ! Hellmann-Feynman force on each atom real(8), allocatable :: forcehf(:,:) ! incomplete basis set (IBS) force on each atom real(8), allocatable :: forceibs(:,:) ! total force on each atom real(8), allocatable :: forcetot(:,:) ! previous total force on each atom real(8), allocatable :: forcetotp(:,:) ! maximum force magnitude over all atoms real(8) forcemax ! maximum allowed force magnitude; if this force is reached for any atom then ! all forces are rescaled so that the maximum force magnitude is this value real(8) maxforce ! tfav0 is .true. if the average force should be zero in order to prevent ! translation of the atomic basis logical tfav0,tfav00 ! atomic position optimisation type ! 0 : no optimisation ! 1 : unconstrained optimisation integer atpopt ! maximum number of atomic position optimisation steps integer maxatpstp ! default step size parameter for atomic position optimisation real(8) tau0atp ! step size parameters for each atom real(8), allocatable :: tauatp(:) ! number of strain tensors integer nstrain ! current strain tensor integer :: istrain=0 ! strain tensors real(8) strain(3,3,9) ! small displacement parameter multiplied by the strain tensor for computing the ! stress tensor; also used for calculating the piezoelectric tensor real(8) deltast ! symmetry reduced stress tensor components real(8) stress(9) ! previous stress tensor real(8) stressp(9) ! stress tensor component magnitude maximum real(8) stressmax ! lattice vector optimisation type ! 0 : no optimisation ! 1 : unconstrained optimisation ! 2 : iso-volumetric optimisation integer latvopt ! maximum number of lattice vector optimisation steps integer maxlatvstp ! default step size parameter for lattice vector optimisation real(8) tau0latv ! step size for each stress tensor component acting on the lattice vectors real(8) taulatv(9) !--------------------------------------------------------! ! self-consistent loop and convergence variables ! !--------------------------------------------------------! ! maximum number of self-consistent loops integer maxscl,maxscl0 ! current self-consistent loop number integer iscl ! tlast is .true. if the calculation is on the last self-consistent loop logical tlast ! tstop is .true. if the STOP file exists logical tstop ! number of self-consistent loops after which STATE.OUT is written integer nwrite ! Kohn-Sham potential convergence tolerance real(8) epspot ! energy convergence tolerance real(8) epsengy ! force convergence tolerance real(8) epsforce ! stress tensor convergence tolerance real(8) epsstress !----------------------------------------------------------! ! density of states, optics and response variables ! !----------------------------------------------------------! ! number of energy intervals in the DOS/optics function plot integer nwplot ! fine k-point grid size for integration of functions in the Brillouin zone integer ngrkf ! smoothing level for DOS/optics function plot integer nswplot ! energy interval for DOS/optics function plot real(8) wplot(2) ! maximum angular momentum for the partial DOS plot integer lmaxdos ! dosocc is .true. if the DOS is to be weighted by the occupancy logical dosocc ! dosmsum is .true. if the partial DOS is to be summed over m logical dosmsum ! dosssum is .true. if the partial DOS is to be summed over spin logical dosssum ! number of optical matrix components required integer noptcomp ! required optical matrix components integer optcomp(3,27) ! intraband is .true. if the intraband term is to be added to the optical matrix logical intraband ! lmirep is .true. if the (l,m) band characters should correspond to the ! irreducible representations of the site symmetries logical lmirep ! spin-quantisation axis in Cartesian coordinates used when plotting the ! spin-resolved DOS (z-axis by default) real(8) sqados(3) ! q-vector in lattice and Cartesian coordinates for calculating the matrix ! elements < i,k+q | exp(iq.r) | j,k > real(8) vecql(3),vecqc(3) ! maximum initial-state energy allowed in ELNES transitions real(8) emaxelnes ! structure factor energy window real(8) wsfac(2) !-------------------------------------! ! 1D/2D/3D plotting variables ! !-------------------------------------! ! number of vertices in 1D plot integer nvp1d ! total number of points in 1D plot integer npp1d ! starting point for 1D plot integer ip01d ! vertices in lattice coordinates for 1D plot real(8), allocatable :: vvlp1d(:,:) ! distance to vertices in 1D plot real(8), allocatable :: dvp1d(:) ! plot vectors in lattice coordinates for 1D plot real(8), allocatable :: vplp1d(:,:) ! distance to points in 1D plot real(8), allocatable :: dpp1d(:) ! corner vectors of 2D plot in lattice coordinates real(8) vclp2d(3,0:2) ! grid sizes of 2D plot integer np2d(2) ! corner vectors of 3D plot in lattice coordinates real(8) vclp3d(3,0:3) ! grid sizes of 3D plot integer np3d(3) !-------------------------------------------------------------! ! OEP, Hartree-Fock and Kohn-Sham inversion variables ! !-------------------------------------------------------------! ! maximum number of core states over all species integer ncrmax ! maximum number of OEP iterations integer maxitoep ! OEP initial and subsequent step sizes real(8) tau0oep,tauoep ! exchange potential and magnetic field real(8), allocatable :: vxmt(:,:),vxir(:) real(8), allocatable :: bxmt(:,:,:),bxir(:,:) ! OEP residual functions real(8), allocatable :: dvxmt(:,:),dvxir(:) real(8), allocatable :: dbxmt(:,:,:),dbxir(:,:) ! magnitude of the OEP residual real(8) resoep ! hybrid is .true. if a hybrid functional is to be used logical hybrid,hybrid0 ! hybrid functional mixing coefficient real(8) hybridc ! maximum number of Kohn-Sham inversion iterations integer maxitksi ! Kohn-Sham inversion step size real(8) tauksi ! magnitude of the KS inversion residual real(8) resksi ! tolerance for convergence of the absolute change in residual real(8) epsdres !-------------------------------------------------------------! ! response function and perturbation theory variables ! !-------------------------------------------------------------! ! |G| cut-off for response functions real(8) gmaxrf ! energy cut-off for response functions real(8) emaxrf ! number of G-vectors for response functions integer ngrf ! number of response function frequencies integer nwrf ! complex response function frequencies complex(8), allocatable :: wrf(:) ! maximum number of spherical Bessel functions on the coarse radial mesh over ! all species integer njcmax !-------------------------------------------------! ! Bethe-Salpeter equation (BSE) variables ! !-------------------------------------------------! ! number of valence and conduction states for transitions integer nvbse,ncbse ! default number of valence and conduction states integer nvbse0,ncbse0 ! maximum number of extra valence and conduction states integer, parameter :: maxxbse=20 ! number of extra valence and conduction states integer nvxbse,ncxbse ! extra valence and conduction states integer istxbse(maxxbse),jstxbse(maxxbse) ! total number of transitions integer nvcbse ! size of blocks in BSE Hamiltonian matrix integer nbbse ! size of BSE matrix (= 2*nbbse) integer nmbse ! index from BSE valence states to second-variational states integer, allocatable :: istbse(:,:) ! index from BSE conduction states to second-variational states integer, allocatable :: jstbse(:,:) ! index from BSE valence-conduction pair and k-point to location in BSE matrix integer, allocatable :: ijkbse(:,:,:) ! BSE Hamiltonian complex(8), allocatable :: hmlbse(:,:) ! BSE Hamiltonian eigenvalues real(8), allocatable :: evalbse(:) ! if bsefull is .true. then the full BSE Hamiltonian is calculated, otherwise ! only the Hermitian block logical bsefull ! if hxbse/hdbse is .true. then the exchange/direct term is included in the BSE ! Hamiltonian logical hxbse,hdbse !--------------------------! ! timing variables ! !--------------------------! ! initialisation real(8) timeinit ! Hamiltonian and overlap matrix set up real(8) timemat ! first-variational calculation real(8) timefv ! second-variational calculation real(8) timesv ! charge density calculation real(8) timerho ! potential calculation real(8) timepot ! force calculation real(8) timefor !-----------------------------! ! numerical constants ! !-----------------------------! real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: twopi=6.2831853071795864769d0 real(8), parameter :: fourpi=12.566370614359172954d0 ! spherical harmonic for l=m=0 real(8), parameter :: y00=0.28209479177387814347d0 ! complex constants complex(4), parameter :: czero=(0.e0,0.e0),cone=(1.e0,0.e0) complex(8), parameter :: zzero=(0.d0,0.d0),zone=(1.d0,0.d0) complex(8), parameter :: zi=(0.d0,1.d0) ! array of i^l and (-i)^l values complex(8), parameter :: zil(0:3)=[zone,zi,-zone,-zi] complex(8), parameter :: zilc(0:3)=[zone,-zi,-zone,zi] ! Pauli spin matrices: ! σ_x = ⎛0 1⎞ σ_y = ⎛0 -i⎞ σ_z = ⎛1 0⎞ ! ⎝1 0⎠ ⎝i 0⎠ ⎝0 -1⎠ ! Planck constant in SI units (exact, CODATA 2018) real(8), parameter :: h_si=6.62607015d-34 ! reduced Planck constant in SI units real(8), parameter :: hbar_si=h_si/twopi ! speed of light in SI units (exact, CODATA 2018) real(8), parameter :: sol_si=299792458d0 ! speed of light in atomic units (1/α) (CODATA 2018) real(8), parameter :: sol=137.035999084d0 ! scaled speed of light real(8) solsc ! Hartree in SI units (CODATA 2018) real(8), parameter :: ha_si=4.3597447222071d-18 ! Hartree in eV (CODATA 2018) real(8), parameter :: ha_ev=27.211386245988d0 ! Hartree in inverse meters real(8), parameter :: ha_im=ha_si/(h_si*sol_si) ! Boltzmann constant in SI units (exact, CODATA 2018) real(8), parameter :: kb_si=1.380649d-23 ! Boltzmann constant in Hartree/kelvin real(8), parameter :: kboltz=kb_si/ha_si ! electron charge in SI units (exact, CODATA 2018) real(8), parameter :: e_si=1.602176634d-19 ! Bohr radius in SI units (CODATA 2018) real(8), parameter :: br_si=0.529177210903d-10 ! Bohr radius in Angstroms real(8), parameter :: br_ang=br_si*1.d10 ! atomic unit of magnetic flux density in SI real(8), parameter :: b_si=hbar_si/(e_si*br_si**2) ! atomic unit of electric field in SI real(8), parameter :: ef_si=ha_si/(e_si*br_si) ! atomic unit of time in SI real(8), parameter :: t_si=hbar_si/ha_si ! electron g-factor (CODATA 2018) real(8), parameter :: gfacte=2.00231930436256d0 ! electron mass in SI (CODATA 2018) real(8), parameter :: em_si=9.1093837015d-31 ! atomic mass unit in SI (CODATA 2018) real(8), parameter :: amu_si=1.66053906660d-27 ! atomic mass unit in electron masses real(8), parameter :: amu=amu_si/em_si !---------------------------------! ! miscellaneous variables ! !---------------------------------! ! code version integer, parameter :: version(3)=[9,2,12] ! maximum number of tasks integer, parameter :: maxtasks=40 ! number of tasks integer ntasks ! task index integer itask ! task array integer tasks(maxtasks) ! current task integer task ! filename extension for files generated by gndstate character(256) :: filext='.OUT' ! scratch space path character(256) scrpath ! number of note lines integer notelns ! notes to include in INFO.OUT character(256), allocatable :: notes(:) end module elk-9.2.12/src/PaxHeaders/modmpi.f900000644000000000000000000000013014536061313014032 xustar0029 mtime=1702388427.53950205 30 atime=1702388426.331503839 29 ctime=1702388427.53950205 elk-9.2.12/src/modmpi.f900000644002504400250440000000074214536061313016561 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modmpi use mpi ! MPI communicator for main code integer mpicom ! number of MPI processes integer np_mpi ! local MPI process number integer lp_mpi ! mp_mpi is .true. if the local MPI process is the master (0) logical mp_mpi ! commonly used error variable integer ierror end module elk-9.2.12/src/PaxHeaders/modramdisk.f900000644000000000000000000000013214536061313014701 xustar0030 mtime=1702388427.541502047 30 atime=1702388426.332503837 30 ctime=1702388427.541502047 elk-9.2.12/src/modramdisk.f900000644002504400250440000001724414536061313017433 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modramdisk ! ramdisk is .true. if the RAM disk should be used logical ramdisk ! maximum allowed number of files on the RAM disk integer, parameter, private :: maxfiles=32 ! maximum number of records per file integer, parameter, private :: maxrec=32768 ! wrtdsk is .true. if files should also be written to disk logical wrtdsk,wrtdsk0 ! record data stored as 4-byte words type, private :: rec_t integer(4), allocatable :: dat(:) end type ! RAM disk file consisting of the filename and an array of records type, private :: file_t character(len=:), allocatable :: fname type(rec_t), allocatable :: rec(:) end type ! arrays of files constituting the RAM disk type(file_t), allocatable, private :: file(:) ! private subroutines private findfile,openfile contains subroutine initrd ! this subroutine should not be called from a parallel region implicit none ! local variables integer i if (allocated(file)) then write(*,*) write(*,'("Error(initrd): RAM disk already initialised")') write(*,*) stop end if allocate(file(maxfiles)) do i=1,maxfiles file(i)%fname='' end do end subroutine subroutine findfile(fname,fnum) implicit none ! arguments character(*), intent(in) :: fname integer, intent(out) :: fnum ! local variables integer i if (.not.allocated(file)) then write(*,*) write(*,'("Error(findfile): RAM disk not initialised")') write(*,*) stop end if fnum=0 do i=1,maxfiles if (file(i)%fname == fname) then fnum=i return end if end do end subroutine subroutine openfile(fname,fnum) implicit none ! arguments character(*), intent(in) :: fname integer, intent(out) :: fnum ! local variables integer i ! check to see if the file already exists call findfile(fname,fnum) if (fnum /= 0) return ! use the first available file number do i=1,maxfiles if (file(i)%fname == '') then ! assign the filename file(i)%fname=fname ! allocate the record array allocate(file(i)%rec(maxrec)) fnum=i return end if end do write(*,*) write(*,'("Error(openfile): too many RAM disk files open : ",I8)') maxfiles write(*,*) stop end subroutine subroutine delfrd(fname) ! this subroutine should not be called from a parallel region implicit none ! arguments character(*), intent(in) :: fname ! local variables integer fnum,i ! determine the file number call findfile(fname,fnum) ! return if the file does not exist if (fnum == 0) return ! erase filename file(fnum)%fname='' ! deallocate associated arrays do i=1,maxrec if (allocated(file(fnum)%rec(i)%dat)) then deallocate(file(fnum)%rec(i)%dat) end if end do deallocate(file(fnum)%rec) end subroutine subroutine putrd(fname,irec,n1,n2,n3,v1,v2,nrv,rva,nzv,zva) ! this subroutine should be called from an OpenMP critical section implicit none ! arguments character(*), intent(in) :: fname integer, intent(in) :: irec integer, optional, intent(in) :: n1,n2,n3 real(8), optional, intent(in) :: v1(3),v2(3) integer, optional, intent(in) :: nrv real(8), optional, intent(in) :: rva(*) integer, optional, intent(in) :: nzv complex(8), optional, intent(in) :: zva(*) ! local variables integer fnum,n,i,j ! check that the record number does not exceed the maximum if (irec > maxrec) then ! fail safe by enabling disk writes wrtdsk=.true. return end if ! find the record length in 4-byte words n=0 if (present(n1)) n=n+1 if (present(n2)) n=n+1 if (present(n3)) n=n+1 if (present(v1)) n=n+6 if (present(v2)) n=n+6 if (present(rva)) then if (present(nrv)) then n=n+2*nrv else write(*,*) write(*,'("Error(putrd): missing argument nrv")') write(*,*) stop end if end if if (present(zva)) then if (present(nzv)) then n=n+4*nzv else write(*,*) write(*,'("Error(putrd): missing argument nzv")') write(*,*) stop end if end if ! open the file call openfile(fname,fnum) ! allocate the record data array if required if (allocated(file(fnum)%rec(irec)%dat)) then if (size(file(fnum)%rec(irec)%dat) < n) then deallocate(file(fnum)%rec(irec)%dat) end if end if if (.not.allocated(file(fnum)%rec(irec)%dat)) then allocate(file(fnum)%rec(irec)%dat(n)) end if i=1 if (present(n1)) then file(fnum)%rec(irec)%dat(i)=n1 i=i+1 end if if (present(n2)) then file(fnum)%rec(irec)%dat(i)=n2 i=i+1 end if if (present(n3)) then file(fnum)%rec(irec)%dat(i)=n3 i=i+1 end if if (present(v1)) then j=i+5 file(fnum)%rec(irec)%dat(i:j)=transfer(v1(:),file(fnum)%rec(irec)%dat(i:j)) i=i+6 end if if (present(v2)) then j=i+5 file(fnum)%rec(irec)%dat(i:j)=transfer(v2(:),file(fnum)%rec(irec)%dat(i:j)) i=i+6 end if if (present(rva)) then j=i+2*nrv-1 file(fnum)%rec(irec)%dat(i:j)=transfer(rva(1:nrv), & file(fnum)%rec(irec)%dat(i:j)) i=i+2*nrv end if if (present(zva)) then j=i+4*nzv-1 file(fnum)%rec(irec)%dat(i:j)=transfer(zva(1:nzv), & file(fnum)%rec(irec)%dat(i:j)) end if end subroutine subroutine getrd(fname,irec,tgs,n1,n2,n3,v1,v2,nrv,rva,nzv,zva) implicit none ! arguments character(*), intent(in) :: fname integer, intent(in) :: irec logical, intent(out) :: tgs integer, optional, intent(out) :: n1,n2,n3 real(8), optional, intent(out) :: v1(3),v2(3) integer, optional, intent(in) :: nrv real(8), optional, intent(out) :: rva(*) integer, optional, intent(in) :: nzv complex(8), optional, intent(out) :: zva(*) ! local variables integer fnum,n,i if (present(rva)) then if (.not.present(nrv)) then write(*,*) write(*,'("Error(getrd): missing argument nrv")') write(*,*) stop end if end if if (present(zva)) then if (.not.present(nzv)) then write(*,*) write(*,'("Error(getrd): missing argument nzv")') write(*,*) stop end if end if tgs=.false. if (irec > maxrec) return ! determine the file number call findfile(fname,fnum) ! return unsuccessfully if file is not found or record is unavailable if (fnum == 0) return if (.not.allocated(file(fnum)%rec(irec)%dat)) return n=size(file(fnum)%rec(irec)%dat) i=1 if (present(n1)) then if (n < 1) return n1=file(fnum)%rec(irec)%dat(i) i=i+1 n=n-1 end if if (present(n2)) then if (n < 1) return n2=file(fnum)%rec(irec)%dat(i) i=i+1 n=n-1 end if if (present(n3)) then if (n < 1) return n3=file(fnum)%rec(irec)%dat(i) i=i+1 n=n-1 end if if (present(v1)) then if (n < 6) return v1(:)=transfer(file(fnum)%rec(irec)%dat(i:i+5),v1(:)) i=i+6 n=n-6 end if if (present(v2)) then if (n < 6) return v2(:)=transfer(file(fnum)%rec(irec)%dat(i:i+5),v2(:)) i=i+6 n=n-6 end if if (present(rva)) then if (n < 2*nrv) return rva(1:nrv)=transfer(file(fnum)%rec(irec)%dat(i:i+2*nrv-1),rva(1:nrv)) i=i+2*nrv n=n-2*nrv end if if (present(zva)) then if (n < 4*nzv) return zva(1:nzv)=transfer(file(fnum)%rec(irec)%dat(i:i+4*nzv-1),zva(1:nzv)) end if ! flag the get operation as successful tgs=.true. end subroutine subroutine rdstatus ! this subroutine should not be called from a parallel region implicit none ! local variables integer nf,nr,i,j integer(8) m,n write(*,*) write(*,'("Info(rdstatus):")') if (.not.allocated(file)) then write(*,'(" RAM disk not initialised")') return end if nf=0 n=0 do i=1,maxfiles if (file(i)%fname /= '') then write(*,*) write(*,'(" Filename : ",A)') file(i)%fname nf=nf+1 nr=0 m=0 do j=1,maxrec if (allocated(file(i)%rec(j)%dat)) then nr=nr+1 m=m+size(file(i)%rec(j)%dat) end if end do n=n+m write(*,'(" number of records : ",I8)') nr write(*,'(" total number of bytes : ",I14)') 4*m end if end do write(*,*) write(*,'(" Number of files on RAM disk : ",I4)') nf write(*,'(" Total number of bytes used by RAM disk : ",I14)') 4*n end subroutine end module elk-9.2.12/src/PaxHeaders/libxcifc_stub.f900000644000000000000000000000013214536061314015370 xustar0030 mtime=1702388428.627500439 30 atime=1702388426.333503836 30 ctime=1702388428.627500439 elk-9.2.12/src/libxcifc_stub.f900000644002504400250440000000407314536061314020116 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. ! Stub routines for libxc. See Elk manual for libxc installation instructions. module libxcifc integer libxcv(3) contains subroutine xcifc_libxc(xctype,n,tempa,rho,rhoup,rhodn,g2rho,g2up,g2dn,grho2, & gup2,gdn2,gupdn,tau,tauup,taudn,ex,ec,vx,vc,vxup,vxdn,vcup,vcdn,dxdgr2,dxdgu2,& dxdgd2,dxdgud,dcdgr2,dcdgu2,dcdgd2,dcdgud,dxdg2r,dxdg2u,dxdg2d,dcdg2r,dcdg2u, & dcdg2d,wx,wxup,wxdn,wc,wcup,wcdn) implicit none ! mandatory arguments integer, intent(in) :: xctype(3),n ! optional arguments real(8), optional :: tempa real(8), optional :: rho(n),rhoup(n),rhodn(n) real(8), optional :: g2rho(n),g2up(n),g2dn(n) real(8), optional :: grho2(n),gup2(n),gdn2(n),gupdn(n) real(8), optional :: tau(n),tauup(n),taudn(n) real(8), optional :: ex(n),ec(n),vx(n),vc(n) real(8), optional :: vxup(n),vxdn(n),vcup(n),vcdn(n) real(8), optional :: dxdgr2(n),dxdgu2(n),dxdgd2(n),dxdgud(n) real(8), optional :: dcdgr2(n),dcdgu2(n),dcdgd2(n),dcdgud(n) real(8), optional :: dxdg2r(n),dxdg2u(n),dxdg2d(n) real(8), optional :: dcdg2r(n),dcdg2u(n),dcdg2d(n) real(8), optional :: wx(n),wxup(n),wxdn(n) real(8), optional :: wc(n),wcup(n),wcdn(n) write(*,*) write(*,'("Error(libxcifc): libxc not or improperly installed")') write(*,*) stop end subroutine subroutine fxcifc_libxc(fxctype,n,rho,rhoup,rhodn,fxc,fxcuu,fxcud,fxcdd) implicit none ! mandatory arguments integer, intent(in) :: fxctype(3),n ! optional arguments real(8), optional :: rho(n),rhoup(n),rhodn(n) real(8), optional :: fxc(n),fxcuu(n),fxcud(n),fxcdd(n) write(*,*) write(*,'("Error(libxcifc): libxc not or improperly installed")') write(*,*) stop end subroutine subroutine xcdata_libxc(xctype,xcdescr,xcspin,xcgrad,hybrid,hybridc) implicit none ! arguments integer xctype(3) character(264) xcdescr integer xcspin integer xcgrad logical hybrid real(8) hybridc write(*,*) write(*,'("Error(libxcifc): libxc not or improperly installed")') write(*,*) stop end subroutine !EOC end module elk-9.2.12/src/PaxHeaders/modxcifc.f900000644000000000000000000000013214536061313014343 xustar0030 mtime=1702388427.543502044 30 atime=1702388426.335503833 30 ctime=1702388427.543502044 elk-9.2.12/src/modxcifc.f900000644002504400250440000004463514536061313017101 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modxcifc use libxcifc contains !BOP ! !ROUTINE: xcifc ! !INTERFACE: subroutine xcifc(xctype,n,tempa,rho,rhoup,rhodn,grho,gup,gdn,g2rho,g2up,g2dn, & g3rho,g3up,g3dn,grho2,gup2,gdn2,gupdn,tau,tauup,taudn,ex,ec,vx,vc,vxup,vxdn, & vcup,vcdn,dxdgr2,dxdgu2,dxdgd2,dxdgud,dcdgr2,dcdgu2,dcdgd2,dcdgud,dxdg2r, & dxdg2u,dxdg2d,dcdg2r,dcdg2u,dcdg2d,wx,wxup,wxdn,wc,wcup,wcdn,dtdr,dtdru,dtdrd,& dtdgr2,dtdgu2,dtdgd2,dtdg2r,dtdg2u,dtdg2d) ! !INPUT/OUTPUT PARAMETERS: ! xctype : type of exchange-correlation functional (in,integer(3)) ! n : number of density points (in,integer) ! tempa : temperature in atomic units (in,real,optional) ! rho : spin-unpolarised charge density (in,real(n),optional) ! rhoup : spin-up charge density (in,real(n),optional) ! rhodn : spin-down charge density (in,real(n),optional) ! grho : |grad rho| (in,real(n),optional) ! gup : |grad rhoup| (in,real(n),optional) ! gdn : |grad rhodn| (in,real(n),optional) ! g2rho : grad^2 rho (in,real(n),optional) ! g2up : grad^2 rhoup (in,real(n),optional) ! g2dn : grad^2 rhodn (in,real(n),optional) ! g3rho : (grad rho).(grad |grad rho|) (in,real(n),optional) ! g3up : (grad rhoup).(grad |grad rhoup|) (in,real(n),optional) ! g3dn : (grad rhodn).(grad |grad rhodn|) (in,real(n),optional) ! grho2 : |grad rho|^2 (in,real(n),optional) ! gup2 : |grad rhoup|^2 (in,real(n),optional) ! gdn2 : |grad rhodn|^2 (in,real(n),optional) ! gupdn : (grad rhoup).(grad rhodn) (in,real(n),optional) ! tau : kinetic energy density (in,real(n),optional) ! tauup : spin-up kinetic energy density (in,real(n),optional) ! taudn : spin-down kinetic energy density (in,real(n),optional) ! ex : exchange energy density (out,real(n),optional) ! ec : correlation energy density (out,real(n),optional) ! vx : spin-unpolarised exchange potential (out,real(n),optional) ! vc : spin-unpolarised correlation potential (out,real(n),optional) ! vxup : spin-up exchange potential (out,real(n),optional) ! vxdn : spin-down exchange potential (out,real(n),optional) ! vcup : spin-up correlation potential (out,real(n),optional) ! vcdn : spin-down correlation potential (out,real(n),optional) ! dxdgr2 : de_x/d(|grad rho|^2) (out,real(n),optional) ! dxdgu2 : de_x/d(|grad rhoup|^2) (out,real(n),optional) ! dxdgd2 : de_x/d(|grad rhodn|^2) (out,real(n),optional) ! dxdgud : de_x/d((grad rhoup).(grad rhodn)) (out,real(n),optional) ! dcdgr2 : de_c/d(|grad rho|^2) (out,real(n),optional) ! dcdgu2 : de_c/d(|grad rhoup|^2) (out,real(n),optional) ! dcdgd2 : de_c/d(|grad rhodn|^2) (out,real(n),optional) ! dcdgud : de_c/d((grad rhoup).(grad rhodn)) (out,real(n),optional) ! dxdg2r : de_x/d(grad^2 rho) (out,real(n),optional) ! dxdg2u : de_x/d(grad^2 rhoup) (out,real(n),optional) ! dxdg2d : de_x/d(grad^2 rhodn) (out,real(n),optional) ! dcdg2r : de_c/d(grad^2 rho) (out,real(n),optional) ! dcdg2u : de_c/d(grad^2 rhoup) (out,real(n),optional) ! dcdg2d : de_c/d(grad^2 rhodn) (out,real(n),optional) ! wx : de_x/dtau (out,real(n),optional) ! wxup : de_x/dtauup (out,real(n),optional) ! wxdn : de_x/dtaudn (out,real(n),optional) ! wc : de_c/dtau (out,real(n),optional) ! wcup : de_c/dtauup (out,real(n),optional) ! wcdn : de_c/dtaudn (out,real(n),optional) ! dtdr : dtau/drho (out,real(n),optional) ! dtdru : dtauup/drhoup (out,real(n),optional) ! dtdrd : dtaudn/drhodn (out,real(n),optional) ! dtdgr2 : dtau/d|grad rho|^2 (out,real(n),optional) ! dtdgu2 : dtauup/d(|grad rhoup|^2) (out,real(n),optional) ! dtdgd2 : dtaudn/d(|grad rhodn|^2) (out,real(n),optional) ! dtdg2r : dtau/d(grad^2 rho) (out,real(n),optional) ! dtdg2u : dtauup/d(grad^2 rhoup) (out,real(n),optional) ! dtdg2d : dtaudn/d(grad^2 rhodn) (out,real(n),optional) ! !DESCRIPTION: ! Interface to the exchange-correlation routines. In the most general case ! (meta-GGA), the exchange-correlation energy is given by ! $$ E_{xc}[\rho^{\uparrow},\rho^{\downarrow}]=\int d^3r\, ! \rho({\bf r})\,\varepsilon_{xc}(\rho^{\uparrow},\rho^{\downarrow}, ! |\nabla\rho|,|\nabla\rho^{\uparrow}|,|\nabla\rho^{\downarrow}|, ! \nabla^2\rho^{\uparrow},\nabla^2\rho^{\downarrow},\tau), $$ ! where $\rho({\bf r})=\rho^{\uparrow}({\bf r})+\rho^{\downarrow}({\bf r})$ is ! the density; ! $$ \tau({\bf r})\equiv\sum_{i\;{\rm occ}}\nabla\psi({\bf r})\cdot ! \nabla\psi({\bf r}) $$ ! is twice the spin-contracted kinetic energy density; and $\varepsilon_{xc}$ ! is the exchange-correlation energy per electron. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! mandatory arguments integer, intent(in) :: xctype(3) integer, intent(in) :: n ! optional arguments real(8), optional, intent(in) :: tempa real(8), optional, intent(in) :: rho(n),rhoup(n),rhodn(n) real(8), optional, intent(in) :: grho(n),gup(n),gdn(n) real(8), optional, intent(in) :: g2rho(n),g2up(n),g2dn(n) real(8), optional, intent(in) :: g3rho(n),g3up(n),g3dn(n) real(8), optional, intent(in) :: grho2(n),gup2(n),gdn2(n),gupdn(n) real(8), optional, intent(in) :: tau(n),tauup(n),taudn(n) real(8), optional, intent(out) :: ex(n),ec(n),vx(n),vc(n) real(8), optional, intent(out) :: vxup(n),vxdn(n),vcup(n),vcdn(n) real(8), optional, intent(out) :: dxdgr2(n),dxdgu2(n),dxdgd2(n),dxdgud(n) real(8), optional, intent(out) :: dxdg2r(n),dxdg2u(n),dxdg2d(n) real(8), optional, intent(out) :: wx(n),wxup(n),wxdn(n) real(8), optional, intent(out) :: dcdgr2(n),dcdgu2(n),dcdgd2(n),dcdgud(n) real(8), optional, intent(out) :: dcdg2r(n),dcdg2u(n),dcdg2d(n) real(8), optional, intent(out) :: wc(n),wcup(n),wcdn(n) real(8), optional, intent(out) :: dtdr(n),dtdru(n),dtdrd(n) real(8), optional, intent(out) :: dtdgr2(n),dtdgu2(n),dtdgd2(n) real(8), optional, intent(out) :: dtdg2r(n),dtdg2u(n),dtdg2d(n) ! local variables real(8) kappa,mu,beta ! allocatable arrays real(8), allocatable :: ra(:,:) if (n <= 0) then write(*,*) write(*,'("Error(xcifc): n <= 0 : ",I8)') n write(*,*) stop end if select case(abs(xctype(1))) case(1) ! No density-derived exchange-correlation energy or potential if (present(ex)) ex(:)=0.d0 if (present(ec)) ec(:)=0.d0 if (present(vx)) vx(:)=0.d0 if (present(vc)) vc(:)=0.d0 if (present(vxup)) vxup(:)=0.d0 if (present(vxdn)) vxdn(:)=0.d0 if (present(vcup)) vcup(:)=0.d0 if (present(vcdn)) vcdn(:)=0.d0 case(2) ! Perdew-Zunger parameterisation of Ceperley-Alder electron gas ! J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981) ! D. M. Ceperly and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980) if (present(rho).and.present(ex).and.present(ec).and.present(vx) & .and.present(vc)) then call xc_pzca(n,rho,ex,ec,vx,vc) else goto 10 end if case(3) ! Perdew-Wang parameterisation of the spin-polarised Ceperley-Alder electron gas ! J. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992) ! D. M. Ceperly and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980) if (present(rhoup).and.present(rhodn).and.present(ex).and.present(ec) & .and.present(vxup).and.present(vxdn).and.present(vcup) & .and.present(vcdn)) then ! spin-polarised density call xc_pwca(n,rhoup,rhodn,ex,ec,vxup,vxdn,vcup,vcdn) else if (present(rho).and.present(ex).and.present(ec).and.present(vx) & .and.present(vc)) then ! divide spin-unpolarised density into up and down allocate(ra(n,2)) ra(:,1)=0.5d0*rho(:) call xc_pwca(n,ra,ra,ex,ec,vx,ra(:,2),vc,ra(:,2)) deallocate(ra) else goto 10 end if case(4) ! X-alpha approximation ! J. C. Slater, Phys. Rev. 81, 385 (1951) if (present(rho).and.present(ex).and.present(ec).and.present(vx) & .and.present(vc)) then call xc_xalpha(n,rho,ex,vx) ! set correlation energy and potential to zero ec(:)=0.d0 vc(:)=0.d0 else goto 10 end if case(5) ! U. von Barth and L. Hedin parameterisation of LSDA ! J. Phys. C, 5, 1629 (1972) if (present(rhoup).and.present(rhodn).and.present(ex).and.present(ec) & .and.present(vxup).and.present(vxdn).and.present(vcup) & .and.present(vcdn)) then ! spin-polarised density call xc_vbh(n,rhoup,rhodn,ex,ec,vxup,vxdn,vcup,vcdn) else if (present(rho).and.present(ex).and.present(ec).and.present(vx) & .and.present(vc)) then ! divide spin-unpolarised density into up and down allocate(ra(n,2)) ra(:,1)=0.5d0*rho(:) call xc_vbh(n,ra,ra,ex,ec,vx,ra(:,2),vc,ra(:,2)) deallocate(ra) else goto 10 end if case(20,21,22) ! original PBE kappa kappa=0.804d0 if (xctype(1) == 21) then ! Zhang-Yang kappa kappa=1.245d0 end if ! original PBE mu and beta mu=0.2195149727645171d0 beta=0.06672455060314922d0 if (xctype(1) == 22) then ! PBEsol parameters mu=10.d0/81.d0 beta=0.046d0 end if ! Perdew-Burke-Ernzerhof generalised gradient approximation ! Phys. Rev. Lett. 77, 3865 (1996); 78, 1396(E) (1997) ! Revised PBE, Zhang-Yang, Phys. Rev. Lett. 80, 890 (1998) if (present(rhoup).and.present(rhodn).and.present(grho).and.present(gup) & .and.present(gdn).and.present(g2up).and.present(g2dn).and.present(g3rho) & .and.present(g3up).and.present(g3dn).and.present(ex).and.present(ec) & .and.present(vxup).and.present(vxdn).and.present(vcup) & .and.present(vcdn)) then call xc_pbe(n,kappa,mu,beta,rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho,g3up, & g3dn,ex,ec,vxup,vxdn,vcup,vcdn) else if (present(rho).and.present(grho).and.present(g2rho) & .and.present(g3rho).and.present(ex).and.present(ec).and.present(vx) & .and.present(vc)) then allocate(ra(n,5)) ra(:,1)=0.5d0*rho(:) ra(:,2)=0.5d0*grho(:) ra(:,3)=0.5d0*g2rho(:) ra(:,4)=0.25d0*g3rho(:) call xc_pbe(n,kappa,mu,beta,ra,ra,grho,ra(:,2),ra(:,2),ra(:,3),ra(:,3), & g3rho,ra(:,4),ra(:,4),ex,ec,vx,ra(:,5),vc,ra(:,5)) deallocate(ra) else goto 10 end if case(26) ! Wu-Cohen exchange with PBE correlation generalised gradient functional ! Zhigang Wu and R. E. Cohen, Phys. Rev. B 73, 235116 (2006) if (present(rho).and.present(grho).and.present(g2rho).and.present(g3rho) & .and.present(ex).and.present(ec).and.present(vx).and.present(vc)) then call xc_wc06(n,rho,grho,g2rho,g3rho,ex,ec,vx,vc) else goto 10 end if case(30) ! Armiento-Mattsson generalised gradient functional ! R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005) if (present(rho).and.present(grho).and.present(g2rho).and.present(g3rho) & .and.present(ex).and.present(ec).and.present(vx).and.present(vc)) then call xc_am05(n,rho,grho,g2rho,g3rho,ex,ec,vx,vc) else goto 10 end if case(50) ! Thomas-Fermi kinetic energy functional if (present(rhoup).and.present(rhodn).and.present(dtdru) & .and.present(dtdrd)) then call k_tf_sp(n,rhoup,rhodn,dtdru,dtdrd) if (present(dtdgu2)) dtdgu2(:)=0.d0 if (present(dtdgd2)) dtdgd2(:)=0.d0 else if (present(rho).and.present(dtdr)) then call k_tf(n,rho,dtdr) if (present(dtdgr2)) dtdgr2(:)=0.d0 else goto 10 end if case(52) ! Thomas-Fermi-von Weizsacker kinetic energy functional if (present(rhoup).and.present(rhodn).and.present(gup2).and.present(gdn2) & .and.present(dtdru).and.present(dtdrd).and.present(dtdgu2) & .and.present(dtdgd2)) then call k_tfvw_sp(n,rhoup,rhodn,gup2,gdn2,dtdru,dtdrd,dtdgu2,dtdgd2) else if (present(rho).and.present(grho2).and.present(dtdr) & .and.present(dtdgr2)) then call k_tfvw(n,rho,grho2,dtdr,dtdgr2) else goto 10 end if case(100) ! libxc library functionals if (present(rhoup).and.present(rhodn).and.present(g2up).and.present(g2dn) & .and.present(gup2).and.present(gdn2).and.present(gupdn).and.present(tauup) & .and.present(taudn).and.present(ex).and.present(ec).and.present(vxup) & .and.present(vxdn).and.present(vcup).and.present(vcdn).and.present(dxdgu2) & .and.present(dxdgd2).and.present(dxdgud).and.present(dcdgu2) & .and.present(dcdgd2).and.present(dcdgud).and.present(dxdg2u) & .and.present(dxdg2d).and.present(dcdg2u).and.present(dcdg2d) & .and.present(wxup).and.present(wxdn).and.present(wcup) & .and.present(wcdn)) then ! spin-polarised meta-GGA call xcifc_libxc(xctype,n,rhoup=rhoup,rhodn=rhodn,g2up=g2up,g2dn=g2dn, & gup2=gup2,gdn2=gdn2,gupdn=gupdn,tauup=tauup,taudn=taudn,ex=ex,ec=ec, & vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn,dxdgu2=dxdgu2,dxdgd2=dxdgd2, & dxdgud=dxdgud,dcdgu2=dcdgu2,dcdgd2=dcdgd2,dcdgud=dcdgud,dxdg2u=dxdg2u, & dxdg2d=dxdg2d,dcdg2u=dcdg2u,dcdg2d=dcdg2d,wxup=wxup,wxdn=wxdn,wcup=wcup, & wcdn=wcdn) else if (present(rhoup).and.present(rhodn).and.present(gup2) & .and.present(gdn2).and.present(gupdn).and.present(ex).and.present(ec) & .and.present(vxup).and.present(vxdn).and.present(vcup).and.present(vcdn) & .and.present(dxdgu2).and.present(dxdgd2).and.present(dxdgud) & .and.present(dcdgu2).and.present(dcdgd2).and.present(dcdgud)) then ! spin-polarised GGA call xcifc_libxc(xctype,n,rhoup=rhoup,rhodn=rhodn,gup2=gup2,gdn2=gdn2, & gupdn=gupdn,ex=ex,ec=ec,vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn, & dxdgu2=dxdgu2,dxdgd2=dxdgd2,dxdgud=dxdgud,dcdgu2=dcdgu2,dcdgd2=dcdgd2, & dcdgud=dcdgud) else if (present(rhoup).and.present(rhodn).and.present(g2up) & .and.present(g2dn).and.present(gup2).and.present(gdn2).and.present(tauup) & .and.present(taudn).and.present(dtdru).and.present(dtdrd) & .and.present(dtdg2u).and.present(dtdg2d).and.present(dtdgu2) & .and.present(dtdgd2).and.present(wxup).and.present(wxdn)) then ! spin-polarised LSDA, GGA or meta-GGA kinetic energy functional call xcifc_libxc(xctype,n,rhoup=rhoup,rhodn=rhodn,g2up=g2up,g2dn=g2dn, & gup2=gup2,gdn2=gdn2,tauup=tauup,taudn=taudn,vxup=dtdru,vxdn=dtdrd, & dxdg2u=dtdg2u,dxdg2d=dtdg2d,dxdgu2=dtdgu2,dxdgd2=dtdgd2,wxup=wxup, & wxdn=wxdn) else if (present(rhoup).and.present(rhodn).and.present(ex).and.present(ec) & .and.present(vxup).and.present(vxdn).and.present(vcup) & .and.present(vcdn)) then ! spin-polarised LSDA call xcifc_libxc(xctype,n,tempa=tempa,rhoup=rhoup,rhodn=rhodn,ex=ex,ec=ec, & vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn) else if (present(rho).and.present(g2rho).and.present(grho2).and.present(tau) & .and.present(ex).and.present(ec).and.present(vx).and.present(vc) & .and.present(dxdgr2).and.present(dcdgr2).and.present(dxdg2r) & .and.present(dcdg2r).and.present(wx).and.present(wc)) then ! spin-unpolarised meta-GGA call xcifc_libxc(xctype,n,rho=rho,g2rho=g2rho,grho2=grho2,tau=tau,ex=ex, & ec=ec,vx=vx,vc=vc,dxdgr2=dxdgr2,dcdgr2=dcdgr2,dxdg2r=dxdg2r, & dcdg2r=dcdg2r,wx=wx,wc=wc) else if (present(rho).and.present(grho2).and.present(ex).and.present(ec) & .and.present(vx).and.present(vc).and.present(dxdgr2) & .and.present(dcdgr2)) then ! spin-unpolarised GGA call xcifc_libxc(xctype,n,rho=rho,grho2=grho2,ex=ex,ec=ec,vx=vx,vc=vc, & dxdgr2=dxdgr2,dcdgr2=dcdgr2) else if (present(rho).and.present(g2rho).and.present(grho2).and.present(tau) & .and.present(dtdr).and.present(dtdgr2).and.present(dtdg2r) & .and.present(wx)) then ! spin-unpolarised LDA, GGA or meta-GGA kinetic energy functional call xcifc_libxc(xctype,n,rho=rho,g2rho=g2rho,grho2=grho2,tau=tau,vx=dtdr, & dxdgr2=dtdgr2,dxdg2r=dtdg2r,wx=wx) else if (present(rho).and.present(ex).and.present(ec).and.present(vx) & .and.present(vc)) then ! spin-unpolarised LDA call xcifc_libxc(xctype,n,tempa=tempa,rho=rho,ex=ex,ec=ec,vx=vx,vc=vc) else goto 10 end if case default write(*,*) write(*,'("Error(xcifc): xctype not defined : ",I8)') xctype(1) write(*,*) stop end select ! set exchange potential to zero for EXX if (xctype(1) <= -2) then if (present(vx)) vx(:)=0.d0 if (present(vxup)) vxup(:)=0.d0 if (present(vxdn)) vxdn(:)=0.d0 end if return 10 continue write(*,*) write(*,'("Error(xcifc): missing arguments for exchange-correlation type ",& &3I6)') xctype(:) write(*,*) stop end subroutine !EOC !BOP ! !ROUTINE: getxcdata ! !INTERFACE: subroutine getxcdata(xctype,xcdescr,xcspin,xcgrad,hybrid,hybridc) ! !INPUT/OUTPUT PARAMETERS: ! xctype : type of exchange-correlation functional (in,integer(3)) ! xcdescr : description of functional (out,character(264)) ! xcspin : spin treatment (out,integer) ! xcgrad : gradient treatment (out,integer) ! hybrid : .true. if functional a hybrid (out,logical) ! hybridc : hybrid exact exchange mixing coefficient (out,real(8)) ! !DESCRIPTION: ! Returns data on the exchange-correlation functional labeled by {\tt xctype}. ! The character array {\tt xcdescr} contains a short description of the ! functional including journal references. The variable {\tt xcspin} is set to ! 1 or 0 for spin-polarised or -unpolarised functionals, respectively. For ! functionals which require the gradients of the density {\tt xcgrad} is set ! to 1, otherwise it is set to 0. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: xctype(3) character(264), intent(out) :: xcdescr integer, intent(out) :: xcspin,xcgrad logical, intent(out) :: hybrid real(8), intent(out) :: hybridc select case(abs(xctype(1))) case(1) xcdescr='No density-derived exchange-correlation energy or potential' ! spin-polarisation or gradient status not required xcspin=-1 xcgrad=-1 case(2) xcdescr='Perdew-Zunger/Ceperley-Alder, Phys. Rev. B 23, 5048 (1981)' xcspin=0 xcgrad=0 case(3) xcdescr='Perdew-Wang/Ceperley-Alder, Phys. Rev. B 45, 13244 (1992)' xcspin=1 xcgrad=0 case(4) xcdescr='X-alpha approximation, J. C. Slater, Phys. Rev. 81, 385 (1951)' xcspin=0 xcgrad=0 case(5) xcdescr='von Barth-Hedin, J. Phys. C 5, 1629 (1972)' xcspin=1 xcgrad=0 case(20) xcdescr='Perdew-Burke-Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)' xcspin=1 xcgrad=1 case(21) xcdescr='Revised PBE, Zhang-Yang, Phys. Rev. Lett. 80, 890 (1998)' xcspin=1 xcgrad=1 case(22) xcdescr='PBEsol, Phys. Rev. Lett. 100, 136406 (2008)' xcspin=1 xcgrad=1 case(26) xcdescr='Wu-Cohen exchange + PBE correlation, Phys. Rev. B 73, 235116 (2006)' xcspin=0 xcgrad=1 case(30) xcdescr='Armiento-Mattsson functional, Phys. Rev. B 72, 85108 (2005)' xcspin=0 xcgrad=1 case(50) xcdescr='Thomas-Fermi kinetic energy functional' xcspin=-1 xcgrad=0 case(52) xcdescr='Thomas-Fermi-von Weizsacker kinetic energy functional' xcspin=-1 xcgrad=1 case(100) ! libxc library functionals call xcdata_libxc(xctype,xcdescr,xcspin,xcgrad,hybrid,hybridc) case default write(*,*) write(*,'("Error(getxcdata): xctype not defined : ",I8)') xctype(1) write(*,*) stop end select end subroutine !EOC end module elk-9.2.12/src/PaxHeaders/modfxcifc.f900000644000000000000000000000013114536061313014510 xustar0030 mtime=1702388427.545502041 29 atime=1702388426.33750383 30 ctime=1702388427.545502041 elk-9.2.12/src/modfxcifc.f900000644002504400250440000000412714536061313017237 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modfxcifc use libxcifc contains subroutine fxcifc(fxctype,n,rho,rhoup,rhodn,fxc,fxcuu,fxcud,fxcdd) implicit none ! mandatory arguments integer, intent(in) :: fxctype(3),n ! optional arguments real(8), optional, intent(in) :: rho(n),rhoup(n),rhodn(n) real(8), optional, intent(out) :: fxc(n),fxcuu(n),fxcud(n),fxcdd(n) ! allocatable arrays real(8), allocatable :: ra(:,:) if (n <= 0) then write(*,*) write(*,'("Error(fxcifc): n <= 0 : ",I8)') n write(*,*) stop end if select case(abs(fxctype(1))) case(0,1) ! f_xc = 0 if (present(fxcuu).and.present(fxcud).and.present(fxcdd)) then fxcuu(:)=0.d0 fxcud(:)=0.d0 fxcdd(:)=0.d0 else if (present(fxc)) then fxc(:)=0.d0 else goto 10 end if case(3) ! Perdew-Wang-Ceperley-Alder if (present(rhoup).and.present(rhodn).and.present(fxcuu).and.present(fxcud) & .and.present(fxcdd)) then ! spin-polarised density call fxc_pwca(n,rhoup,rhodn,fxcuu,fxcud,fxcdd) else if (present(rho).and.present(fxc)) then ! divide spin-unpolarised density into up and down allocate(ra(n,4)) ra(:,1)=0.5d0*rho(:) call fxc_pwca(n,ra(:,1),ra(:,1),ra(:,2),ra(:,3),ra(:,4)) fxc(:)=0.5d0*(ra(:,2)+ra(:,3)) deallocate(ra) else goto 10 end if case(100) ! libxc library functionals if (present(rhoup).and.present(rhodn).and.present(fxcuu).and.present(fxcud) & .and.present(fxcdd)) then ! LSDA call fxcifc_libxc(fxctype,n,rhoup=rhoup,rhodn=rhodn,fxcuu=fxcuu, & fxcud=fxcud,fxcdd=fxcdd) else if (present(rho).and.present(fxc)) then ! LDA call fxcifc_libxc(fxctype,n,rho=rho,fxc=fxc) else goto 10 end if case default write(*,*) write(*,'("Error(fxcifc): response function unavailable for fxctype ",3I8)') & fxctype write(*,*) stop end select return 10 continue write(*,*) write(*,'("Error(fxcifc): missing arguments for exchange-correlation type ",& &3I6)') fxctype(:) write(*,*) stop end subroutine end module elk-9.2.12/src/PaxHeaders/moddftu.f900000644000000000000000000000013014536061313014207 xustar0029 mtime=1702388427.54650204 30 atime=1702388426.338503828 29 ctime=1702388427.54650204 elk-9.2.12/src/moddftu.f900000644002504400250440000000636614536061313016746 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module moddftu use modmain !-----------------------------------------------------------! ! muffin-tin density and potential matrix variables ! !-----------------------------------------------------------! ! maximum angular momentum for muffin-tin density matrix integer, parameter :: lmaxdm=3 integer, parameter :: lmmaxdm=(lmaxdm+1)**2 ! density matrix in each muffin-tin complex(8), allocatable :: dmatmt(:,:,:,:,:) ! tolerance for checking invariance of density matrix under symmetry operations real(8) epsdmat ! potential matrix in each muffin-tin complex(8), allocatable :: vmatmt(:,:,:,:,:) ! potential matrix in spherical coordinates for lmaxi and lmaxo complex(4), allocatable :: vmatmti(:,:,:,:,:),vmatmto(:,:,:,:,:) ! tvmatmt is .true. if the potential matrices are calculated logical tvmatmt ! tvmmt is .true. if the potential matrix for that l and atom is non-zero logical, allocatable :: tvmmt(:,:) !-------------------------! ! DFT+U variables ! !-------------------------! ! type of DFT+U to use (0 = none) integer dftu ! input type for DFT+U calculation (1:5) integer inpdftu ! maximum number of DFT+U entries integer, parameter :: maxdftu=10 ! number of DFT+U entries integer ndftu ! species and angular momentum for each entry integer isldu(2,maxdftu) ! U and J values for each entry real(8) ujdu(2,maxdftu) ! DFT+U energy for each atom and entry real(8), allocatable :: engyadu(:,:) ! energy from the DFT+U correction real(8) engydu ! Slater parameters real(8) fdu(0:2*lmaxdm,maxdftu) ! Racah parameters real(8) edu(0:lmaxdm,maxdftu) ! screening length of Yukawa potential to calculate Slater integrals real(8) lamdu(maxdftu) ! initial values of screening length if U is fixed real(8) lamdu0(maxdftu) ! energies to calculate radial functions for Slater integrals real(8), allocatable :: efdu(:,:) ! radial functions to calculate Slater integrals real(8), allocatable :: fdufr(:,:,:) ! fixed value of U for which screening length has to be determined real(8) udufix(maxdftu),dudufix(maxdftu) !---------------------------------! ! tensor moment variables ! !---------------------------------! ! tmwrite is .true. if tensor moments are written out at every s.c. loop logical tmwrite ! fixed tensor moment type ! 0 : none ! 1 (-1) : fixed 3-index tensor moment (or just lowering the symmetry) integer ftmtype ! number of fixed tensor moment entries integer ntmfix ! tensor moment indices for each entry: ! is, ia, l for the species, atom, angular momentum ! k, p, r, t for the 3-index tensor moment and vector component integer, allocatable :: itmfix(:,:) ! 3-index tensor component with conventional normalisation real(8), allocatable :: wkprfix(:) ! density matrices corresponding to the fixed tensor moments complex(8), allocatable :: dmftm(:,:,:,:,:) ! fixed tensor moment potential matrix complex(8), allocatable :: vmftm(:,:,:,:,:) ! fixed tensor moment step size real(8) tauftm ! tensor moments at t=0 of a TDDFT+U calculations real(8), allocatable :: wkpr0(:,:) ! tm3old is .true. if the tensor moments should be in the old complex convention logical tm3old end module elk-9.2.12/src/PaxHeaders/modrdm.f900000644000000000000000000000013214536061313014031 xustar0030 mtime=1702388427.548502037 30 atime=1702388426.339503827 30 ctime=1702388427.548502037 elk-9.2.12/src/modrdm.f900000644002504400250440000000213314536061313016552 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modrdm use modmain !--------------------------------------------------------------------! ! reduced density matrix functional theory (RDMFT) variables ! !--------------------------------------------------------------------! ! Coulomb potential matrix elements complex(8), allocatable :: vclmat(:,:,:) ! derivative of kinetic energy w.r.t. natural orbital coefficients complex(8), allocatable :: dkdc(:,:,:) ! step size for occupation numbers real(8) taurdmn ! step size for natural orbital coefficients real(8) taurdmc ! xc functional integer rdmxctype ! maximum number of self-consistent loops integer rdmmaxscl ! maximum number of iterations for occupation number optimisation integer maxitn ! maximum number of iteration for natural orbital optimisation integer maxitc ! exponent for the Power and hybrid functionals real(8) rdmalpha ! temperature real(8) rdmtemp ! entropy real(8) rdmentrpy end module elk-9.2.12/src/PaxHeaders/modphonon.f900000644000000000000000000000013214536061313014550 xustar0030 mtime=1702388427.549502035 30 atime=1702388426.341503824 30 ctime=1702388427.549502035 elk-9.2.12/src/modphonon.f900000644002504400250440000001264114536061313017276 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modphonon use modmain !--------------------------! ! phonon variables ! !--------------------------! ! number of phonon branches (3*natmtot) integer nbph ! current phonon q-point, species, atom and polarisation index integer iqph,isph,iaph,iasph,ipph ! tphq0 is .true. if q = 0 logical tphq0 ! number of vectors for writing out frequencies and eigenvectors integer nphwrt ! vectors in lattice coordinates for writing out frequencies and eigenvectors real(8), allocatable :: vqlwrt(:,:) ! Coulomb pseudopotential real(8) mustar ! number of temperatures for the Eliashberg equations and thermal properties integer ntemp ! phonon frequencies for all q-points real(8), allocatable :: wphq(:,:) !-----------------------------! ! supercell variables ! !-----------------------------! ! number of primitive unit cells in phonon supercell integer nscph ! Cartesian offset vectors for each primitive cell in the supercell real(8), allocatable :: vscph(:,:) ! phonon displacement distance real(8) deltaph !---------------------! ! k+q-vectors ! !---------------------! ! k+q-vectors in lattice coordinates real(8), allocatable :: vkql(:,:) ! k+q-vectors in Cartesian coordinates real(8), allocatable :: vkqc(:,:) !------------------------------! ! G+q-vector variables ! !------------------------------! ! G+q-vectors in Cartesian coordinates real(8), allocatable :: vgqc(:,:) ! G+q-vector lengths real(8), allocatable :: gqc(:) ! regularised Coulomb Green's function in G+q-space real(8), allocatable :: gclgq(:) ! spherical Bessel functions j_l(|G+q|R_mt) real(8), allocatable :: jlgqrmt(:,:,:) ! spherical harmonics for G+q-vectors complex(8), allocatable :: ylmgq(:,:) ! structure factors for G+q-vectors complex(8), allocatable :: sfacgq(:,:) ! smooth step function form factors for all species and G+q-vectors real(8), allocatable :: ffacgq(:,:) ! characteristic function derivative in G- and G+q-space complex(8), allocatable :: dcfunig(:) ! characteristic function derivative in real-space complex(8), allocatable :: dcfunir(:) !--------------------------------! ! G+k+q-vector variables ! !--------------------------------! ! number of G+k+q-vector for each k-point integer, allocatable :: ngkq(:,:) ! index from G+k+q-vectors to G-vectors integer, allocatable :: igkqig(:,:,:) ! G+k+q-vectors in lattice and Cartesian coordinates real(8), allocatable :: vgkql(:,:,:,:),vgkqc(:,:,:,:) ! G+k+q-vector lengths real(8), allocatable :: gkqc(:,:,:) ! structure factors for the G+k+q-vectors complex(8), allocatable :: sfacgkq(:,:,:,:) !----------------------------------------------------------! ! density functional perturbation theory variables ! !----------------------------------------------------------! ! density derivative complex(8), allocatable :: drhomt(:,:),drhoir(:) ! magnetisation derivative complex(8), allocatable :: dmagmt(:,:,:),dmagir(:,:) ! Coulomb potential derivative complex(8), allocatable :: dvclmt(:,:),dvclir(:) ! if tphdyn is .true. then the phonon dynamical matrix is being calculated logical :: tphdyn=.false. ! nuclear potential without the self-term; used for the phonon dynamical matrix complex(8), allocatable :: zvnmt(:) ! gradient of vsmt for the displaced muffin-tin complex(8), allocatable :: gvsmt(:) ! combined target array for dvsmt, dvsir, dbsmt and dbsir complex(8), allocatable, target :: dvsbs(:) ! Kohn-Sham potential derivative complex(8), pointer, contiguous :: dvsmt(:,:),dvsir(:) ! Kohn-Sham effective magnetic field derivative complex(8), pointer, contiguous :: dbsmt(:,:,:),dbsir(:,:) ! G+q-space interstitial Kohn-Sham potential derivative complex(8), allocatable :: dvsig(:) ! spin-orbit coupling radial function derivative complex(8), allocatable :: dsocfr(:,:) ! APW-APW Hamiltonian integral derivatives complex(8), allocatable :: dhaa(:,:,:,:,:,:) ! local-orbital-APW Hamiltonian integral derivatives complex(8), allocatable :: dhloa(:,:,:,:,:) ! local-orbital-local-orbital Hamiltonian integral derivatives complex(8), allocatable :: dhlolo(:,:,:,:) ! real Gaunt coefficient array real(8), allocatable :: gntyyy(:,:,:) ! smallest allowed perturbation theory denominator for eigenvector derivatives real(8) epsdev ! Fermi energy derivative real(8) defermi ! first-variational eigenvalue derivatives real(8), allocatable :: devalfv(:,:,:) ! second-variational eigenvalue derivatives real(8), allocatable :: devalsv(:,:) ! second-variational occupation number derivatives real(8), allocatable :: doccsv(:,:) !-------------------------------------------+ ! electron-phonon mean-field theory | !-------------------------------------------+ ! energy change of the electron system real(8) dengye ! energy change of the phonon system real(8) dengyph ! sum of energy changes in electron and phonon systems real(8) dengy ! phonon frequency cut-off below which modes are neglected real(8) wphcut ! scale factor of the electron-phonon term and its mixing parameter real(8) ephscf(2) ! anomalous is .true. if only the anomalous density matrix is to be used in the ! construction of the electron-phonon Hamiltonian logical anomalous ! tephde is .true. if D = D0 + E, otherwise D = D0 logical tephde ! single-precision electron-phonon matrix element array for each k- and q-point complex(4), allocatable :: ephmkq(:,:,:,:,:) end module elk-9.2.12/src/PaxHeaders/modtest.f900000644000000000000000000000013214536061313014226 xustar0030 mtime=1702388427.550502034 30 atime=1702388426.342503823 30 ctime=1702388427.550502034 elk-9.2.12/src/modtest.f900000644002504400250440000000470014536061313016751 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modtest use modmpi ! if test is .true. then the test variables are written to file logical test contains subroutine writetest(id,descr,nv,iv,iva,tol,rv,rva,zv,zva) implicit none ! arguments integer, intent(in) :: id character(*), intent(in) :: descr integer, optional, intent(in) :: nv integer, optional, intent(in) :: iv integer, optional, intent(in) :: iva(*) real(8), optional, intent(in) :: tol real(8), optional, intent(in) :: rv real(8), optional, intent(in) :: rva(*) complex(8), optional, intent(in) :: zv complex(8), optional, intent(in) :: zva(*) ! local variables integer j character(256) fname if (.not.test) return if (.not.mp_mpi) return if ((id < 0).or.(id > 999)) then write(*,*) write(*,'("Error(writetest): id out of range : ",I8)') id write(*,*) stop end if if ((present(iva)).or.(present(rva)).or.(present(zva))) then if (.not.present(nv)) then write(*,*) write(*,'("Error(writetest): missing argument nv")') write(*,*) stop else if (nv <= 0) then write(*,*) write(*,'("Error(writetest): nv <= 0 : ",I8)') nv write(*,*) stop end if end if end if if ((present(rv)).or.(present(rva)).or.(present(zv)).or.(present(zva))) then if (.not.present(tol)) then write(*,*) write(*,'("Error(writetest): missing argument tol")') write(*,*) stop end if end if write(fname,'("TEST_",I3.3,".OUT")') id !$OMP CRITICAL(writetest_) open(90,file=trim(fname),form='FORMATTED',action='WRITE') write(90,'("''",A,"''")') trim(descr) if (present(iv)) then write(90,'(2I8)') 1,1 write(90,'(2I8)') 1,iv else if (present(rv)) then write(90,'(2I8)') 2,1 write(90,'(G22.12)') tol write(90,'(I8,G22.12)') 1,rv else if (present(zv)) then write(90,'(2I8)') 3,1 write(90,'(G22.12)') tol write(90,'(I8,2G22.12)') 1,dble(zv),aimag(zv) else if (present(iva)) then write(90,'(2I8)') 1,nv do j=1,nv write(90,'(2I8)') j,iva(j) end do else if (present(rva)) then write(90,'(2I8)') 2,nv write(90,'(G22.12)') tol do j=1,nv write(90,'(I8,G22.12)') j,rva(j) end do else if (present(zva)) then write(90,'(2I8)') 3,nv write(90,'(G22.12)') tol do j=1,nv write(90,'(I8,2G22.12)') j,dble(zva(j)),aimag(zva(j)) end do end if close(90) !$OMP END CRITICAL(writetest_) end subroutine end module elk-9.2.12/src/PaxHeaders/modrandom.f900000644000000000000000000000013214536061313014527 xustar0030 mtime=1702388427.552502031 30 atime=1702388426.343503821 30 ctime=1702388427.552502031 elk-9.2.12/src/modrandom.f900000644002504400250440000000251414536061313017253 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modrandom ! random number generator state integer(8) :: rndstate(0:5)=[799047353, 1322018920, 1014372120, 1198189977, & 832907020, 5678910] contains !BOP ! !ROUTINE: randomu ! !INTERFACE: real(8) function randomu() ! !DESCRIPTION: ! Generates random numbers with a uniform distribution in the interval $[0,1]$ ! using the fifth-order multiple recursive generator of P. L'Ecuyer, ! F. Blouin, and R. Coutre, {\it ACM Trans. Modeling Comput. Simulation} ! {\bf 3}, 87 (1993). The sequence of numbers $r_i$ is produced from ! $$ x_i=(a_1 x_{i-1}+a_5 x_{i-5})\mod m $$ ! with $r_i=x_i/m$. The period is about $2^{155}$. ! ! !REVISION HISTORY: ! Created January 2012 (JKD) ! Changed initial state, April 2017 (JKD) !EOP !BOC implicit none ! local variables ! parameters taken from the GNU Scientific Library (GSL) integer(8), parameter :: a1=107374182, a5=104480, m=2147483647 integer(8) :: i=0 integer(8) i1,i5 !$OMP CRITICAL(randomu_) i=modulo(i+1,6_8) i1=modulo(i-1,6_8) i5=modulo(i-5,6_8) rndstate(i)=int(mod(a1*rndstate(i1)+a5*rndstate(i5),m)) randomu=dble(rndstate(i))/dble(m) !$OMP END CRITICAL(randomu_) end function !EOC end module elk-9.2.12/src/PaxHeaders/modpw.f900000644000000000000000000000013014536061313013673 xustar0029 mtime=1702388427.55350203 30 atime=1702388426.345503818 29 ctime=1702388427.55350203 elk-9.2.12/src/modpw.f900000644002504400250440000000320214536061313016414 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modpw !----------------------------! ! H-vector variables ! !----------------------------! ! reduceh is .true. if the H-vectors are reduced with the crystal symmetries logical reduceh ! H-vector cut-off for interstitial potential and density real(8) hmaxvr ! H-vector grid sizes integer ngridh(3) ! total number of H-vectors integer nhtot ! integer grid intervals for each direction integer inthv(2,3) ! number of H-vectors with |H| < hmaxvr integer nhvec ! H-vector integer coordinates (i1,i2,i3) integer, allocatable :: ivh(:,:) ! H-vector multiplicity after symmetry reduction integer, allocatable :: mulh(:) ! H-vectors in Cartesian coordinates real(8), allocatable :: vhc(:,:) ! length of H-vectors real(8), allocatable :: hc(:) ! H-vector transformation matrix real(8) vhmat(3,3) !------------------------------! ! H+k-vector variables ! !------------------------------! ! maximum |H+k| cut-off for plane wave real(8) hkmax ! number of H+k-vectors for plane waves integer, allocatable :: nhk(:,:) ! maximum number of H+k-vectors over all k-points integer nhkmax ! index from H+k-vectors to G-vectors integer, allocatable :: ihkig(:,:,:) ! H+k-vectors in lattice coordinates real(8), allocatable :: vhkl(:,:,:,:) ! H+k-vectors in Cartesian coordinates real(8), allocatable :: vhkc(:,:,:,:) ! length of H+k-vectors real(8), allocatable :: hkc(:,:,:) ! structure factors for the H+k-vectors complex(8), allocatable :: sfachk(:,:,:,:) end module elk-9.2.12/src/PaxHeaders/modvars.f900000644000000000000000000000013214536061313014222 xustar0030 mtime=1702388427.554502028 30 atime=1702388426.346503817 30 ctime=1702388427.554502028 elk-9.2.12/src/modvars.f900000644002504400250440000000454314536061313016752 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modvars use modmain use moddftu ! if wrtvars is .true. then variables are written to VARIABLES.OUT logical wrtvars ! if batch is .true. then Elk will run in batch mode logical batch contains subroutine writevars(vname,n1,n2,n3,n4,n5,n6,nv,iv,iva,rv,rva,zv,zva,sv,sva) implicit none ! arguments character(*), intent(in) :: vname integer, optional, intent(in) :: n1,n2,n3,n4,n5,n6 integer, optional, intent(in) :: nv,iv,iva(*) real(8), optional, intent(in) :: rv,rva(*) complex(8), optional, intent(in) :: zv,zva(*) character(*), optional, intent(in) :: sv,sva(*) ! local variables integer i if ((present(iva)).or.(present(rva)).or.(present(zva)).or.(present(sva))) then if (.not.present(nv)) then write(*,*) write(*,'("Error(writevars): missing argument nv")') write(*,*) stop else if (nv < 0) then write(*,*) write(*,'("Error(writevars): nv < 0 : ",I8)') nv write(*,*) stop end if end if end if open(95,file='VARIABLES.OUT',position='APPEND',form='FORMATTED',action='WRITE') write(95,*) write(95,'(A," ")',advance='NO') trim(vname) if (present(n1)) write(95,'(I8)',advance='NO') n1 if (present(n2)) write(95,'(I8)',advance='NO') n2 if (present(n3)) write(95,'(I8)',advance='NO') n3 if (present(n4)) write(95,'(I8)',advance='NO') n4 if (present(n5)) write(95,'(I8)',advance='NO') n5 if (present(n6)) write(95,'(I8)',advance='NO') n6 write(95,*) if (present(iv)) then write(95,'(2I8)') 1,1 write(95,'(I8)') iv else if (present(rv)) then write(95,'(2I8)') 2,1 write(95,'(G22.12)') rv else if (present(zv)) then write(95,'(2I8)') 3,1 write(95,'(2G22.12)') dble(zv),aimag(zv) else if (present(sv)) then write(95,'(2I8)') 4,1 write(95,'(A)') trim(sv) else if (present(iva)) then write(95,'(2I8)') 1,nv do i=1,nv write(95,'(I8)') iva(i) end do else if (present(rva)) then write(95,'(2I8)') 2,nv do i=1,nv write(95,'(G22.12)') rva(i) end do else if (present(zva)) then write(95,'(2I8)') 3,nv do i=1,nv write(95,'(2G22.12)') dble(zva(i)),aimag(zva(i)) end do else if (present(sva)) then write(95,'(2I8)') 4,nv do i=1,nv write(95,'(A)') trim(sva(i)) end do end if close(95) end subroutine end module elk-9.2.12/src/PaxHeaders/modtddft.f900000644000000000000000000000013214536061313014354 xustar0030 mtime=1702388427.556502025 30 atime=1702388426.347503815 30 ctime=1702388427.556502025 elk-9.2.12/src/modtddft.f900000644002504400250440000000760214536061313017103 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modtddft !-----------------------------------------! ! TDDFT linear response variables ! !-----------------------------------------! ! exchange-correlation kernel type integer fxctype(3) ! parameters for long-range correction (LRC) kernel real(8) fxclrc(2) ! number of independent spin components of the f_xc spin tensor integer nscfxc ! magnetic linear dichroism (MLD) angle between the electric and magnetic fields real(8) thetamld !---------------------------------------------! ! TDDFT real-time evolution variables ! !---------------------------------------------! ! number of laser pulses defining the time-dependent A-field integer npulse ! laser pulse parameters: vector amplitude, frequency, phase, chirp rate, ! peak time, full-width at half-maximum, spin components real(8), allocatable :: pulse(:,:) ! number of A-field ramps integer nramp ! ramp parameters: vector amplitude, ramp start time, linear, quadratic, cubic, ! quartic coefficients, spin components real(8), allocatable :: ramp(:,:) ! number of A-field steps integer nstep ! step parameters: vector amplitude, step start and stop times, spin components real(8), allocatable :: step(:,:) ! total simulation time real(8) tstime ! time step length real(8) dtimes ! number of time steps integer ntimes ! starting time step integer itimes0 ! current time step integer itimes ! time steps real(8), allocatable :: times(:) ! tdt0 is .true. if the time evolution starts at t=0 logical tdt0 ! phase defining complex direction of time evolution real(8) tdphi ! number of time steps after which the time-dependent eigenvectors are backed up integer ntsbackup ! tafieldt is .true. if a time-dependent vector potential is applied logical tafieldt ! time-dependent total A-field (external plus induced) real(8), allocatable :: afieldt(:,:) ! tafspt is .true. if the A-field is spin- and time-dependent logical tafspt ! spin- and time-dependent A-field real(8), allocatable :: afspt(:,:,:) ! induced A-field and its time derivative at the current time step real(8) afindt(3,0:1) ! induced A-field parameters real(8) afindpm(0:2) ! if tafindt is .true. then the induced A-field is determined from Maxwell's ! equation and added to the total logical tafindt ! electric field at current time step real(8) efieldt(3) ! observables are written to file every ntswrite(1) time steps; this begins ! at or after time step ntswrite(2); writing occurs at the first time step ! irrespective of ntswrite integer ntswrite(2) ! ttswrite is .true. if observables are to be written for the current time step logical ttswrite ! static charge density real(8), allocatable :: rhosmt(:,:,:),rhosir(:,:) ! total static charge real(8) chgstot(3) ! muffin-tin static charge real(8), allocatable :: chgsmt(:,:) ! gradient of the muffin-tin Coulomb potential of the nucleus and static density complex(8), allocatable :: gvnsmt(:,:,:) ! the following variables are .true. if the corresponding quantities are to be ! written every ntswrite time steps logical tdrho1d,tdrho2d,tdrho3d logical tdmag1d,tdmag2d,tdmag3d logical tdjr1d,tdjr2d,tdjr3d logical tddos,tdlsj,tdjtk ! magnitude of complex numbers added to initial eigenvectors real(8) rndevt0 ! number of time steps between force calculations integer ntsforce ! ttsforce is .true. if forces are calculated for the current time step logical ttsforce ! total atomic forces at each time step real(8), allocatable :: forcet(:,:,:) ! number of time steps after which the time-dependent Kohn-Sham orbitals are ! made strictly orthogonal using a singular value decomposition integer ntsorth ! jtconst0 is .true. if the constant part of J(t) should be set to zero when ! calculating the dielectric function; this effectively removes the Drude term logical jtconst0 end module elk-9.2.12/src/PaxHeaders/modgw.f900000644000000000000000000000013214536061313013664 xustar0030 mtime=1702388427.557502024 30 atime=1702388426.349503812 30 ctime=1702388427.557502024 elk-9.2.12/src/modgw.f900000644002504400250440000000242714536061313016413 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. module modgw ! maximum Matsubara frequency for the GW calculation real(8) wmaxgw ! maximum number of Matsubara frequencies integer nwgw ! integer grid intervals for Matsubara frequencies integer intwgw(2) ! map from frequency index to FFT array integer, allocatable :: iwfft(:) ! maximum fermionic Matsubara frequency index to be used for the GW calculation integer nwfm ! maximum bosonic frequency index integer nwbs ! imaginary frequencies used for the GW calculation real(8), allocatable :: wgw(:) ! complex fermionic frequencies complex(8), allocatable :: wfm(:) ! twdiag is .true. if the screened interaction W is taken to be diagonal logical twdiag ! tsediag is .true. if the GW self-energy is taken to be diagonal logical tsediag ! type of analytic continuation to be used for determining the self-energy on ! the real axis integer actype ! number of poles used for fitting the self-energy matrix elements integer npole ! number of complex shifts used in averaging the Pade approximant for the ! analytic continuation of the self-energy to the real axis integer nspade end module elk-9.2.12/src/PaxHeaders/modulr.f900000644000000000000000000000013214536061313014051 xustar0030 mtime=1702388427.558502022 30 atime=1702388426.350503811 30 ctime=1702388427.558502022 elk-9.2.12/src/modulr.f900000644002504400250440000000631514536061313016600 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modulr !-----------------------------! ! ultracell variables ! !-----------------------------! ! ultracell lattice vectors stored column-wise real(8) avecu(3,3) ! ultracell reciprocal lattice vectors real(8) bvecu(3,3) ! ultracell volume and Brillouin zone volume real(8) omegau,omegabzu ! original number of k-points integer nkpt0 ! kappa-point grid sizes integer ngridkpa(3) ! integer grid intervals for the kappa-points integer intkpa(2,3) ! number of kappa-points integer nkpa ! R-vectors in Cartesian coordinates spanning the ultracell real(8), allocatable :: vrcu(:,:) !------------------------------! ! G+Q-vector variables ! !------------------------------! ! small Q cut-off for non-zero Q-vectors real(8) q0cut ! G+Q-vectors in Cartesian coordinates real(8), allocatable :: vgqc(:,:,:) ! |G+Q| for all G+Q-vectors real(8), allocatable :: gqc(:,:) ! Coulomb Green's function in G+Q-space = 4 pi / |G+Q|^2 real(8), allocatable :: gclgq(:,:) ! spherical Bessel functions j_l(|G+Q|R_mt) real(8), allocatable :: jlgqrmt(:,:,:,:) ! spherical harmonics of the G+Q-vectors complex(8), allocatable :: ylmgq(:,:,:) ! structure factors for the G+Q-vectors complex(8), allocatable :: sfacgq(:,:,:) ! phase factor functions exp(iQ.r) in each muffin-tin complex(8), allocatable :: expqmt(:,:,:) !---------------------------------------------------! ! ultra long-range densities and potentials ! !---------------------------------------------------! ! trdvclr is .true. if the real-space external Coulomb potential should be read ! in from file logical trdvclr ! Q-dependent external Coulomb potential (FFT ordering) complex(8), allocatable :: vclq(:) ! Q-dependent external magnetic field complex(8), allocatable :: bfcq(:,:) ! Q-dependent external muffin-tin magnetic fields complex(8), allocatable :: bfcmtq(:,:,:) ! electric field vector in Cartesian coordinates real(8) efielduc(3) ! R-dependent density and magnetisation real(8), allocatable :: rhormt(:,:,:),rhorir(:,:) real(8), allocatable :: magrmt(:,:,:,:),magrir(:,:,:) ! muffin-tin charges and moments for each R-vector real(8), allocatable :: chgmtru(:,:) real(8), allocatable :: mommtru(:,:,:) ! Q-dependent density and magnetisation complex(8), allocatable :: rhoqmt(:,:,:),rhoqir(:,:) complex(8), allocatable :: magqmt(:,:,:,:),magqir(:,:,:) ! Q-dependent Kohn-Sham potential and magnetic field complex(8), allocatable, target :: vsbsq(:) complex(8), pointer, contiguous :: vsqmt(:,:,:),vsqir(:,:) complex(8), pointer, contiguous :: bsqmt(:,:,:,:),bsqir(:,:,:) ! random amplitude used for initialising the long-range magnetic field real(8) rndbfcu ! if tplotq0 is .true. then the Q=0 term is included when generating plots logical tplotq0 !----------------------------------------------! ! eigenvalue and eigenvector variables ! !----------------------------------------------! ! number of ultra long-range states integer nstulr ! long-range eigenvalues real(8), allocatable :: evalu(:,:) ! long-range occupation numbers real(8), allocatable :: occulr(:,:) end module elk-9.2.12/src/PaxHeaders/modbog.f900000644000000000000000000000013214536061313014016 xustar0030 mtime=1702388427.559502021 30 atime=1702388426.352503808 30 ctime=1702388427.559502021 elk-9.2.12/src/modbog.f900000644002504400250440000000304114536061313016536 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modbog ! combined target array for fermionic and bosonic density matrices complex(8), allocatable, target :: duvwx(:) !----------------------------------------! ! fermionic Bogoliubov variables ! !----------------------------------------! ! Bogoliubov equation eigenvalues real(8), allocatable :: evaluv(:,:) ! V-norm for each state and k-point real(8), allocatable :: vnorm(:,:) ! Fermi energy adjustment step size real(8) tauefm ! Fermi energy convergence tolerance real(8) epsefm ! Hartree-Fock-Bogoliubov coupling constant real(8) ehfb ! density matrices VV† and UV† complex(8), pointer, contiguous :: dvv(:,:,:),duv(:,:,:) ! fermionic anomalous correlation entropy real(8) face ! bdiag is .true. if the matrix B is taken to be diagonal logical bdiag ! cut-off energy for matrix B (elements outside this window are set to zero) real(8) ecutb !--------------------------------------! ! bosonic Bogoliubov variables ! !--------------------------------------! ! Bogoliubov equation eigenvalues real(8), allocatable :: evalwx(:,:) ! power used in formula for (W,X) pseudo-normalisation (see article) integer pwxpsn ! X-norm for each branch and q-point real(8), allocatable :: xnorm(:,:) ! density matrices XX† and WX† complex(8), pointer, contiguous :: dxx(:,:,:),dwx(:,:,:) ! ediag is .true. if the matrix E is taken to be diagonal logical ediag end module elk-9.2.12/src/PaxHeaders/moddelf.f900000644000000000000000000000013214536061313014161 xustar0030 mtime=1702388427.561502018 30 atime=1702388426.353503806 30 ctime=1702388427.561502018 elk-9.2.12/src/moddelf.f900000644002504400250440000000400114536061313016676 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module moddelf use modphonon use modramdisk use modmpi contains subroutine delfile(fname) implicit none ! arguments character(*), intent(in) :: fname ! local variables integer ios open(40,file=fname,iostat=ios) close(40,status='DELETE',iostat=ios) end subroutine subroutine delfiles(evec,devec,eval,occ,pmat,epsi) implicit none ! arguments logical, optional, intent(in) :: evec,devec,eval,occ,pmat,epsi ! local variables character(256) fext,fname if (present(evec)) then ! delete the first-variational eigenvector file fname=trim(scrpath)//'EVECFV'//trim(filext) if (mp_mpi) call delfile(fname) if (ramdisk) call delfrd(fname) ! delete the second-variational eigenvector file fname=trim(scrpath)//'EVECSV'//trim(filext) if (mp_mpi) call delfile(fname) if (ramdisk) call delfrd(fname) end if if (present(devec)) then ! construct the dynamical matrix file extension call dynfext(iqph,isph,iaph,ipph,fext) ! delete the eigenvector derivative files fname=trim(scrpath)//'DEVECFV'//trim(fext) if (mp_mpi) call delfile(fname) if (ramdisk) call delfrd(fname) fname=trim(scrpath)//'DEVECSV'//trim(fext) if (mp_mpi) call delfile(fname) if (ramdisk) call delfrd(fname) end if if (present(eval)) then ! delete the first-variational eigenvalue file fname='EVALFV'//trim(filext) if (mp_mpi) call delfile(fname) if (ramdisk) call delfrd(fname) ! delete the second-variational eigenvalue file if (mp_mpi) call delfile('EVALSV'//trim(filext)) end if if (present(occ)) then ! delete the occupation number file if (mp_mpi) call delfile('OCCSV'//trim(filext)) end if if (present(pmat)) then ! delete the momentum matrix elements file if (mp_mpi) call delfile('PMAT.OUT') if (ramdisk) call delfrd('PMAT.OUT') end if if (present(epsi)) then ! delete the inverse epsilon file if (mp_mpi) call delfile('EPSINV.OUT') end if end subroutine end module elk-9.2.12/src/PaxHeaders/modomp.f900000644000000000000000000000013214536061313014042 xustar0030 mtime=1702388427.562502016 30 atime=1702388426.355503803 30 ctime=1702388427.562502016 elk-9.2.12/src/modomp.f900000644002504400250440000000671614536061313016576 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modomp ! maximum number of OpenMP threads available integer maxthd ! maximum number of OpenMP threads for the first nesting level integer maxthd1 ! maximum number of threads available to MKL integer maxthdmkl ! maximum OpenMP nesting level integer maxlvl ! number of active OpenMP threads for each nesting level integer, allocatable, protected :: nathd(:) interface integer function omp_get_num_procs() end function integer function omp_get_max_threads() end function integer function omp_get_level() end function subroutine omp_set_num_threads(num_threads) integer, intent(in) :: num_threads end subroutine integer function mkl_set_num_threads_local(num_threads) integer, intent(in) :: num_threads end function subroutine omp_set_nested(nested) logical, intent(in) :: nested end subroutine subroutine omp_set_max_active_levels(max_levels) integer, intent(in) :: max_levels end subroutine subroutine omp_set_dynamic(dynamic_threads) logical, intent(in) :: dynamic_threads end subroutine end interface contains subroutine omp_init implicit none ! determine the maximum number of available threads select case(maxthd) case(:-1) ! set the number of threads equal to a fraction of the number of processors maxthd=omp_get_num_procs()/abs(maxthd) maxthd=max(maxthd,1) call omp_set_num_threads(maxthd) case(0) ! use the system default number of threads maxthd=omp_get_max_threads() case default ! use the number of threads specified in the input file call omp_set_num_threads(maxthd) end select ! determine the maximum number of threads available at first nesting level select case(maxthd1) case(:-1) maxthd1=maxthd/abs(maxthd1) maxthd1=max(maxthd1,1) case(0) maxthd1=maxthd case default maxthd1=min(maxthd1,maxthd) end select ! switch off dynamic allocation of threads call omp_set_dynamic(.false.) ! allow nested parallelism (deprecated in OpenMP version 5) call omp_set_nested(.true.) ! set the maximum nesting level call omp_set_max_active_levels(maxlvl) ! allocate the number of active threads array if (allocated(nathd)) deallocate(nathd) allocate(nathd(0:maxlvl)) ! initialise the number of active threads call omp_reset end subroutine subroutine omp_reset implicit none ! number of active threads at each nesting level nathd(0)=1 nathd(1:)=0 end subroutine subroutine holdthd(nloop,nthd) implicit none ! arguments integer, intent(in) :: nloop integer, intent(out) :: nthd ! local variables integer lvl,na,n ! current nesting level lvl=omp_get_level() if ((lvl < 0).or.(lvl >= maxlvl)) then nthd=1 return end if ! determine number of active threads at the current nesting level na=nathd(lvl) na=max(min(na,maxthd),1) ! number of threads allowed for this loop nthd=maxthd/na if (mod(maxthd,na) > 0) nthd=nthd+1 if (lvl == 0) nthd=min(nthd,maxthd1) nthd=max(min(nthd,maxthd,nloop),1) ! add to number of active threads in next nesting level n=nathd(lvl+1)+nthd n=max(min(n,maxthd),0) !$OMP ATOMIC WRITE nathd(lvl+1)=n end subroutine subroutine freethd(nthd) implicit none ! arguments integer, intent(in) :: nthd ! local variables integer lvl,n ! current nesting level lvl=omp_get_level() if ((lvl < 0).or.(lvl >= maxlvl)) return ! subtract from the number of active threads in next nesting level n=nathd(lvl+1)-nthd n=max(min(n,maxthd),0) !$OMP ATOMIC WRITE nathd(lvl+1)=n end subroutine end module elk-9.2.12/src/PaxHeaders/mkl_init.f900000644000000000000000000000013214536061313014355 xustar0030 mtime=1702388427.563502015 30 atime=1702388426.356503802 30 ctime=1702388427.563502015 elk-9.2.12/src/mkl_init.f900000644002504400250440000000117614536061313017104 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine mkl_init use modomp implicit none ! set the initial global number of MKL threads equal to one call mkl_set_num_threads(1) ! set the maximum number of threads available to MKL select case(maxthdmkl) case(:-1) maxthdmkl=maxthd/abs(maxthdmkl) maxthdmkl=max(maxthdmkl,1) case(0) maxthdmkl=maxthd case default maxthdmkl=min(maxthdmkl,maxthd) end select ! enable dynamic thread allocation call mkl_set_dynamic(.true.) end subroutine elk-9.2.12/src/PaxHeaders/w90_stub.f900000644000000000000000000000013214536061314014224 xustar0030 mtime=1702388428.609500466 30 atime=1702388426.358503799 30 ctime=1702388428.609500466 elk-9.2.12/src/w90_stub.f900000644002504400250440000000322114536061314016744 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin and Lars Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. ! Stub routines for Wannier90 library. subroutine wannier_setup(seed__name,mp_grid_loc,num_kpts_loc, & real_lattice_loc,recip_lattice_loc,kpt_latt_loc,num_bands_tot, & num_atoms_loc,atom_symbols_loc,atoms_cart_loc, gamma_only_loc,spinors_loc, & nntot_loc,nnlist_loc,nncell_loc,num_bands_loc,num_wann_loc, & proj_site_loc,proj_l_loc,proj_m_loc,proj_radial_loc,proj_z_loc, & proj_x_loc,proj_zona_loc,exclude_bands_loc,proj_s_loc,proj_s_qaxis_loc) implicit none ! arguments character(*) seed__name integer mp_grid_loc(3) integer num_kpts_loc real(8) real_lattice_loc(3,3) real(8) recip_lattice_loc(3,3) real(8) kpt_latt_loc(3,num_kpts_loc) integer num_bands_tot integer num_atoms_loc character(*) atom_symbols_loc(num_atoms_loc) real(8) atoms_cart_loc(3,num_atoms_loc) logical gamma_only_loc logical spinors_loc integer nntot_loc integer nnlist_loc(num_kpts_loc,*) integer nncell_loc(3,num_kpts_loc,*) integer num_bands_loc integer num_wann_loc real(8) proj_site_loc(3,num_bands_tot) integer proj_l_loc(num_bands_tot) integer proj_m_loc(num_bands_tot) integer proj_radial_loc(num_bands_tot) real(8) proj_z_loc(3,num_bands_tot) real(8) proj_x_loc(3,num_bands_tot) real(8) proj_zona_loc(num_bands_tot) integer exclude_bands_loc(num_bands_tot) integer, optional :: proj_s_loc(num_bands_tot) real(8), optional :: proj_s_qaxis_loc(3,num_bands_tot) write(*,*) write(*,'("Error(wannier_setup): libwannier not or improperly installed")') write(*,*) error stop end subroutine !EOC elk-9.2.12/src/PaxHeaders/modw90.f900000644000000000000000000000013014536061313013664 xustar0029 mtime=1702388427.56650201 30 atime=1702388426.359503797 29 ctime=1702388427.56650201 elk-9.2.12/src/modw90.f900000644002504400250440000000227414536061313016415 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Jon Lafuente and Manh Duc Le; 2017-18 Arsenii Gerasimov, ! Yaroslav Kvashnin and Lars Nordstrom. This file is distributed under the terms ! of the GNU General Public License. See the file COPYING for license details. module modw90 !---------------------------------------! ! Wannier90 interface variables ! !---------------------------------------! ! seedname for all Wannier90 files character(256) seedname ! number of extra lines to write to .win file integer nxlwin ! extra lines to write to .win file character(256), allocatable :: xlwin(:) ! number of Wannier functions to calculate integer num_wann ! number of bands to pass to Wannier90 integer num_bands ! index to bands integer, allocatable :: idxw90(:) ! number of iterations for the minimisation of omega integer num_iter ! trial step for the line search minimisation real(8) trial_step ! maximum number of nearest neighbours per k-point integer, parameter :: num_nnmax=12 ! total number of nearest neighbours for each k-point integer nntot ! list of nearest neighbours for each k-point integer, allocatable :: nnlist(:,:) ! G-vector offset for each nearest neighbour integer, allocatable :: nncell(:,:,:) end module elk-9.2.12/src/PaxHeaders/zfftifc_fftw.f900000644000000000000000000000013014536061314015227 xustar0029 mtime=1702388428.64050042 30 atime=1702388426.360503796 29 ctime=1702388428.64050042 elk-9.2.12/src/zfftifc_fftw.f900000644002504400250440000000267014536061314017760 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zfftifc(nd,n,sgn,z) implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn complex(8), intent(inout) :: z(*) ! local variables integer, parameter :: FFTW_ESTIMATE=64 integer p integer(8) plan real(8) t1 ! interface to FFTW version 3 !$OMP CRITICAL(zfftifc_) call dfftw_plan_dft(plan,nd,n,z,z,sgn,FFTW_ESTIMATE) !$OMP END CRITICAL(zfftifc_) call dfftw_execute(plan) !$OMP CRITICAL(zfftifc_) call dfftw_destroy_plan(plan) !$OMP END CRITICAL(zfftifc_) if (sgn == -1) then p=product(n(:)) t1=1.d0/dble(p) call zdscal(p,t1,z,1) end if end subroutine subroutine rzfftifc(nd,n,sgn,r,z) implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn real(8), intent(inout) :: r(*) complex(8), intent(inout) :: z(*) ! local variables integer, parameter :: FFTW_ESTIMATE=64 integer p integer(8) plan real(8) t1 !$OMP CRITICAL(rzfftifc_) if (sgn == -1) then call dfftw_plan_dft_r2c(plan,nd,n,r,z,FFTW_ESTIMATE) else call dfftw_plan_dft_c2r(plan,nd,n,z,r,FFTW_ESTIMATE) end if !$OMP END CRITICAL(rzfftifc_) call dfftw_execute(plan) !$OMP CRITICAL(rzfftifc_) call dfftw_destroy_plan(plan) !$OMP END CRITICAL(rzfftifc_) if (sgn == -1) then p=product(n(:)) t1=1.d0/dble(p) p=p/n(1) p=p*(n(1)/2+1) call zdscal(p,t1,z,1) end if end subroutine elk-9.2.12/src/PaxHeaders/cfftifc_fftw.f900000644000000000000000000000013214536061314015202 xustar0030 mtime=1702388428.642500417 30 atime=1702388426.362503793 30 ctime=1702388428.642500417 elk-9.2.12/src/cfftifc_fftw.f900000644002504400250440000000264014536061314017726 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cfftifc(nd,n,sgn,c) implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn complex(4), intent(inout) :: c(*) ! local variables integer, parameter :: FFTW_ESTIMATE=64 integer p integer(8) plan real(4) t1 ! interface to FFTW version 3 !$OMP CRITICAL(cfftifc_) call sfftw_plan_dft(plan,nd,n,c,c,sgn,FFTW_ESTIMATE) !$OMP END CRITICAL(cfftifc_) call sfftw_execute(plan) !$OMP CRITICAL(cfftifc_) call sfftw_destroy_plan(plan) !$OMP END CRITICAL(cfftifc_) if (sgn == -1) then p=product(n(:)) t1=1.e0/real(p) call csscal(p,t1,c,1) end if end subroutine subroutine rcfftifc(nd,n,sgn,r,c) implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn real(4), intent(inout) :: r(*) complex(4), intent(inout) :: c(*) ! local variables integer, parameter :: FFTW_ESTIMATE=64 integer p integer(8) plan real(4) t1 !$OMP CRITICAL(rcfftifc_) if (sgn == -1) then call sfftw_plan_dft_r2c(plan,nd,n,r,c,FFTW_ESTIMATE) else call sfftw_plan_dft_c2r(plan,nd,n,c,r,FFTW_ESTIMATE) end if !$OMP END CRITICAL(rcfftifc_) call sfftw_execute(plan) !$OMP CRITICAL(rcfftifc_) call sfftw_destroy_plan(plan) !$OMP END CRITICAL(rcfftifc_) if (sgn == -1) then p=product(n(:)) t1=1.e0/real(p) p=p/n(1) p=p*(n(1)/2+1) call csscal(p,t1,c,1) end if end subroutine elk-9.2.12/src/PaxHeaders/elk.f900000644000000000000000000000013214536061313013322 xustar0030 mtime=1702388427.571502003 30 atime=1702388426.363503791 30 ctime=1702388427.571502003 elk-9.2.12/src/elk.f900000644002504400250440000024475314536061313016063 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2011 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. ! main routine for the Elk code program elk use modmain use modmpi use modomp use modvars use modramdisk use moddelf implicit none ! local variables logical exist ! initialise MPI execution environment call mpi_init(ierror) ! duplicate mpi_comm_world call mpi_comm_dup(mpi_comm_world,mpicom,ierror) ! determine the number of MPI processes call mpi_comm_size(mpicom,np_mpi,ierror) ! determine the local MPI process number call mpi_comm_rank(mpicom,lp_mpi,ierror) ! determine if the local process is the master if (lp_mpi == 0) then mp_mpi=.true. write(*,*) write(*,'("+---------------------------------+")') write(*,'("| Elk code version ",I1.1,".",I1.1,".",I2.2," started |")') version write(*,'("+---------------------------------+")') else mp_mpi=.false. end if ! read input files call readinput ! initialise OpenMP variables call omp_init ! initialise the MKL library call mkl_init if (mp_mpi) then write(*,*) write(*,'("Number of MPI processes : ",I6)') np_mpi write(*,'("Number of OpenMP threads per MPI process : ",I4)') maxthd write(*,'("Total number of threads (MPI x OpenMP) : ",I6)') np_mpi*maxthd write(*,'("Maximum OpenMP nesting level : ",I4)') maxlvl write(*,'("Number of OpenMP threads at first nesting level : ",I4)') maxthd1 write(*,'("Number of MKL threads : ",I4)') maxthdmkl ! check if Elk is already running in this directory inquire(file='RUNNING',exist=exist) if (exist) then write(*,*) write(*,'("Info(elk): several copies of Elk may be running in this path")') write(*,'("(this could be intentional, or result from a previous crash,")') write(*,'(" or arise from an incorrect MPI compilation)")') else open(50,file='RUNNING') close(50) end if if (batch) then wrtvars=.true. write(*,*) write(*,'("Batch mode enabled")') end if if (wrtvars) then ! delete the VARIABLES.OUT file call delfile('VARIABLES.OUT') ! write version number to VARIABLES.OUT call writevars('version',nv=3,iva=version) end if else wrtvars=.false. end if ! initialise the RAM disk if required if (ramdisk) then call initrd if (mp_mpi) then write(*,*) write(*,'("RAM disk enabled")') if (.not.wrtdsk) then write(*,*) write(*,'("Warning(elk): some direct access files may not be written to & &disk")') end if end if else wrtdsk=.true. end if ! perform the tasks do itask=1,ntasks ! synchronise MPI processes call mpi_barrier(mpicom,ierror) task=tasks(itask) if (mp_mpi) then write(*,*) write(*,'("+-----------------------+")') write(*,'("| Current task : ",I6," |")') task write(*,'("+-----------------------+")') end if ! increment the batch variables if required if (batch) call batchdv ! check if task can be run with MPI if (lp_mpi > 0) then if (any(task == [0,1,2,3,5,15,16,28,29,61,62,63,110,120,121,125,135,136, & 162,170,180,185,188,200,201,205,208,240,241,270,271,300,320,330,331,350, & 351,371,372,373,380,390,420,421,440,460,461,462,463,471,478,600,610,620, & 630,640,700,701])) then continue else write(*,'("Info(elk): MPI process ",I6," idle for task ",I6)') lp_mpi,task cycle end if end if ! write task to VARIABLES.OUT if (wrtvars) call writevars('task',iv=task) select case(task) case(0,1) call gndstate case(2,3) call geomopt case(5) call hartfock case(10) call writedos case(14) call writesf case(15,16) call writelsj case(20,21,22,23) call bandstr case(25) call effmass case(28,29) call mae case(31,32,33) call rhoplot case(41,42,43) call potplot case(51,52,53) call elfplot case(61,62,63,162) call wfplot case(65) call wfcrplot case(68) call rdstatus case(71,72,73,81,82,83,141,142,143,151,152,153) call vecplot case(91,92,93) call dbxcplot case(100,101) call fermisurf case(102) call fermisurfbxsf case(105) call nesting case(110) call mossbauer case(115) call writeefg case(120) call writepmat case(121) call dielectric case(122) call moke case(125) call nonlinopt case(130) call writeexpmat case(135) call writewfpw case(140) call elnes case(150) call writeevsp case(160) call torque case(170) call writeemd case(171,172,173) call emdplot case(180) call writeepsinv case(185) call writehmlbse case(186) call writeevbse case(187) call dielectric_bse case(190) call geomplot case(195) call sfacrho case(196) call sfacmag case(200,201,202) call phononsc case(205) call phonon case(208,209) call bornechg case(210) call phdos case(220) call phdisp case(230) call writephn case(240,241) call ephcouple case(245) call phlwidth case(250) call alpha2f case(260) call eliashberg case(270,271) call gndsteph case(280) call ephdos case(285) call aceplot case(300) call rdmft case(320) call tddftlr case(330,331) call tddftsplr case(341,342,343) call wxcplot case(350,351,352) call spiralsc case(371,372,373) call jprplot case(380) call piezoelt case(390) call magnetoelt case(400) call writetm case(420,421) call moldyn case(430) call writestrain case(440) call writestress case(450) call genafieldt case(460,461,462,463) call tddft case(471) call rhosplot case(478) call bornecdyn case(480,481) call dielectric_tdrt case(485) call writejw case(500) call testcheck case(550) call writew90 case(600) call gwsefm case(610) call gwspecf case(620) call gwbandstr case(630) call gwscrho case(640) call gwdmat case(700,701) call gndstulr case(731,732,733) call rhouplot case(741,742,743) call potuplot case(771,772,773) call maguplot case default write(*,*) write(*,'("Error(elk): task not defined : ",I8)') task write(*,*) stop end select ! reset the OpenMP thread variables call omp_reset ! close all opened files call closefiles end do if (mp_mpi) then call delfile('RUNNING') write(*,*) write(*,'("+------------------+")') write(*,'("| Elk code stopped |")') write(*,'("+------------------+")') end if ! terminate MPI execution environment call mpi_finalize(ierror) end program !BOI ! !TITLE: {\huge{\sc The Elk Code Manual}}\\ \Large{\sc Version 9.2.12}\\ \vskip 20pt \includegraphics[height=1cm]{elk_silhouette.pdf} ! !AUTHORS: {\sc J. K. Dewhurst, S. Sharma} \\ {\sc L. Nordstr\"{o}m, F. Cricchio, O. Gr\aa n\"{a}s} \\ {\sc E. K. U. Gross} ! !AFFILIATION: ! !INTRODUCTION: Introduction ! Welcome to the Elk Code! Elk is an all-electron full-potential linearised ! augmented-plane-wave (FP-LAPW) code for determining the properties of ! crystalline solids. It was developed originally at the ! Karl-Franzens-Universit\"{a}t Graz as part of the EXCITING EU Research and ! Training Network project\footnote{EXCITING code developed under the Research ! and Training Network EXCITING funded by the EU, contract No. ! HPRN-CT-2002-00317}. The guiding philosophy during the implementation of the ! code was to keep it as simple as possible for both users and developers ! without compromising on its capabilities. All the routines are released ! under either the GNU General Public License (GPL) or the GNU Lesser General ! Public License (LGPL) in the hope that they may inspire other scientists to ! implement new developments in the field of density functional theory and ! beyond. ! ! \section{Acknowledgments} ! Lots of people contributed to the Elk code with ideas, checking and testing, ! writing code or documentation and general encouragement. They include ! Claudia Ambrosch-Draxl, Clas Persson, Fredrik Bultmark, Christian Brouder, ! Rickard Armiento, Andrew Chizmeshya, Per Anderson, Igor Nekrasov, Sushil ! Auluck, Frank Wagner, Fateh Kalarasse, J\"{u}rgen Spitaler, Stefano ! Pittalis, Nektarios Lathiotakis, Tobias Burnus, Stephan Sagmeister, ! Christian Meisenbichler, S\'{e}bastien Leb\`{e}gue, Yigang Zhang, Fritz ! K\"{o}rmann, Alexey Baranov, Anton Kozhevnikov, Shigeru Suehara, Frank ! Essenberger, Antonio Sanna, Tyrel McQueen, Tim Baldsiefen, Marty Blaber, ! Anton Filanovich, Torbj\"{o}rn Bj\"{o}rkman, Martin Stankovski, Jerzy ! Goraus, Markus Meinert, Daniel Rohr, Vladimir Nazarov, Kevin Krieger, Pink ! Floyd, Arkardy Davydov, Florian Eich, Aldo Romero Castro, Koichi Kitahara, ! James Glasbrenner, Konrad Bussmann, Igor Mazin, Matthieu Verstraete, David ! Ernsting, Stephen Dugdale, Peter Elliott, Marcin Dulak, Jos\'{e} A. Flores ! Livas, Stefaan Cottenier, Yasushi Shinohara, Michael Fechner, Yaroslav ! Kvashnin, Tristan M\"uller, Arsenii Gerasimov, Manh Duc Le, Jon Lafuente ! Bartolom\'{e}, Ren\'{e} Wirnata, Jagdish Kumar, Andrew Shyichuk, Nisha ! Singh, Pietro Bonfa, Ronald Cohen, Alyn James, Chung-Yu Wang, Leon Kerber, ! Yunfan Liang, Xavier Gonze, Mike Bruckhoff and Eddie Harris-Lee. Special ! mention of David Singh's very useful book on the LAPW method\footnote{D. J. ! Singh, {\it Planewaves, Pseudopotentials and the LAPW Method} (Kluwer ! Academic Publishers, Boston, 1994).} must also be made. Finally we would ! like to acknowledge the generous support of Karl-Franzens-Universit\"{a}t ! Graz, the EU Marie-Curie Research Training Networks initiative, the Max Born ! Institute and the Max Planck Society. ! ! \vspace{24pt} ! Kay Dewhurst\newline ! Sangeeta Sharma\newline ! Lars Nordstr\"{o}m\newline ! Francesco Cricchio\newline ! Oscar Gr\aa n\"{a}s\newline ! Hardy Gross ! ! \vspace{12pt} ! Berlin, Halle, Jerusalem and Uppsala, December 2023 ! \newpage ! ! \section{Units} ! Unless explicitly stated otherwise, Elk uses atomic units. In this system ! $\hbar=1$, the electron mass $m=1$, the Bohr radius $a_0=1$ and the electron ! charge $e=1$ (note that the electron charge is positive, so that the atomic ! numbers $Z$ are negative). Thus the atomic unit of length is ! 0.529177210903(80) \AA, and the atomic unit of energy is the Hartree which ! equals 27.211386245988(53) eV. The unit of the external magnetic fields is ! defined such that one unit of magnetic field in {\tt elk.in} equals ! 1715.255541 Tesla. ! ! \section{Compiling and running Elk} ! \subsection{Compiling the code} ! Unpack the code from the archive file. Edit the file {\tt make.inc} in the ! {\tt elk} directory and adjust the compiler options for your computer ! system. Use of machine-optimised BLAS/LAPACK and FFT libraries will result ! in significant increase in performance. Following this, run ! \begin{verbatim} ! make ! \end{verbatim} ! This will hopefully compile the entire code and all the libraries into one ! executable, {\tt elk}, located in the {\tt elk/src} directory. It will also ! compile two useful auxiliary programs, namely {\tt spacegroup} for producing ! crystal geometries from spacegroup data and {\tt eos} for fitting equations ! of state to energy-volume data. If you want to compile everything all over ! again, then run {\tt make clean} from the {\tt elk} directory, followed by ! {\tt make}. ! \subsubsection{Parallelism in Elk} ! Three forms of parallelism are implemented in Elk, and all can be used in ! combination with each other, with efficiency depending on the particular ! task, crystal structure and computer system. You may need to contact your ! system administrator for assistance with running Elk in parallel. ! \begin{enumerate} ! \item ! OpenMP works for symmetric multiprocessors, i.e. computers that have many ! cores with the same unified memory accessible to each. It is enabled by ! setting the appropriate command-line options (e.g. {\tt -qopenmp} for the ! Intel compiler) before compiling, and also at runtime by the environment ! variable ! \begin{verbatim} ! export OMP_NUM_THREADS=n ! \end{verbatim} ! where n is the number of cores available on a particular node. The same can ! be accomplished in {\tt elk.in} with ! \begin{verbatim} ! maxthd ! n ! \end{verbatim} ! In addition, some vendor-supplied BLAS/LAPACK libraries use OpenMP ! internally. The maximum number of threads used for LAPACK operations by ! Intel's MKL can be set with ! \begin{verbatim} ! maxthdmkl ! n ! \end{verbatim} ! \item ! The message passing interface (MPI) is particularly suitable for running ! Elk across multiple nodes of a cluster, with scaling to hundreds of ! processors possible. To enable MPI, comment out the lines indicated in ! {\tt elk/make.inc}. Then run {\tt make clean} followed by {\tt make}. If ! $y$ is the number of nodes and $x$ is the number of cores per node, then at ! runtime envoke ! \begin{verbatim} ! mpirun -np z ./elk ! \end{verbatim} ! where $z=x y$ is the total number of cores available on the machine. ! Highest efficiency is obtained by using hybrid parallelism with OpenMP on ! each node and MPI across nodes. This can be done by compiling the code ! using the MPI Fortran compiler in combination with the OpenMP command-line ! option. At runtime set {\tt export OMP\_NUM\_THREADS=x} and start the MPI ! run with {\em one process per node} as follows ! \begin{verbatim} ! mpirun -pernode -np y ./elk ! \end{verbatim} ! The number of MPI processes is reported in the file {\tt INFO.OUT} which ! serves as a check that MPI is running correctly. Note that version 2 of the ! MPI libraries is required to run Elk. ! \item ! Phonon calculations use a simple form of parallelism by just examining the ! run directory for dynamical matrix files. These files are of the form ! \begin{verbatim} ! DYN_Qqqqq_qqqq_qqqq_Sss_Aaa_Pp.OUT ! \end{verbatim} ! and contain a single row of a particular dynamical matrix. Elk simply finds ! which {\tt DYN} files do not exist, chooses one and runs it. This way many ! independent runs of Elk can be started in the same directory on a networked ! file system (NFS), and will run until all the dynamical matrices files are ! completed. Should a particular run crash, then delete the associated empty ! {\tt DYN} file and rerun Elk. ! \end{enumerate} ! ! \subsection{Memory requirements} ! Elk is a memory-bound code and runs best on processors with large caches and ! a large number of memory channels per core. Some tasks in Elk require a ! considerable amount of memory which can exceed the physical memory of the ! computer. In such cases, the number of threads at the first nesting level ! can be reduced with (for example) ! \begin{verbatim} ! maxthd1 ! -4 ! \end{verbatim} ! which restricts the number of threads at the first nesting level to ! maxthd/4. Deeper nesting levels, which generally require less memory, will ! still utilise the full compliment of available threads. ! \subsubsection{Stack space} ! The latest versions of Elk use stack space aggressively. This is because ! accessing variables is faster on the stack than on the heap. This can, ! however, result in the code crashing as threads run out of their stack ! space. To avoid this, increase the stack size for each OpenMP thread with ! (for example) ! \begin{verbatim} ! export OMP_STACKSIZE=64M ! \end{verbatim} ! before running the code. ! ! \subsection{Linking with the Libxc functional library} ! Libxc is the ETSF library of exchange-correlation functionals. Elk can use ! the complete set of LDA and GGA functionals available in Libxc as well as ! the potential-only metaGGA's. In order to enable this, first download and ! compile Libxc version 5. This should have produced the files {\tt libxc.a} ! and {\tt libxcf90.a}. Copy these files and the file {\tt libxcf90.f90} from ! the Libxc {\tt src} directory to the {\tt elk/src} directory and then ! uncomment the lines indicated for Libxc in the file {\tt elk/make.inc}. Once ! this is done, run {\tt make clean} followed by {\tt make}. To select a ! particular functional of Libxc, use the block ! \begin{verbatim} ! xctype ! 100 nx nc ! \end{verbatim} ! where {\tt nx} and {\tt nc} are, respectively, the numbers of the exchange ! and correlation functionals in the Libxc library. See the file ! {\tt elk/src/libxcf90.f90} for a list of the functionals and their ! associated numbers. ! ! \subsection{Running the code} ! As a rule, all input files for the code are in lower case and end with the ! extension {\tt .in}. All output files are uppercase and have the extension ! {\tt .OUT}. For most cases, the user will only need to modify the file ! {\tt elk.in}. In this file input parameters are arranged in blocks. ! Each block consists of a block name on one line and the block variables on ! subsequent lines. Almost all blocks are optional: the code uses reasonable ! default values in cases where they are absent. Blocks can appear in any ! order, if a block is repeated then the second instance is used. Comment ! lines can be included in the input file and begin with the {\tt !} ! character. ! ! \subsubsection{Species files} ! The only other input files are those describing the atomic species which go ! into the crystal. These files are found in the {\tt species} directory and ! are named with the element symbol and the extension {\tt .in}, for example ! {\tt Sb.in}. They contain parameters like the atomic charge, mass, ! muffin-tin radius, occupied atomic states and the type of linearisation ! required. Here as an example is the copper species file {\tt Cu.in}: ! \begin{verbatim} ! 'Cu' : spsymb ! 'copper' : spname ! -29.0000 : spzn ! 115837.2716 : spmass ! 0.371391E-06 2.0000 34.8965 500 : rminsp, rmt, rmaxsp, nrmt ! 10 : nstsp ! 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore ! 2 0 1 2.00000 T ! 2 1 1 2.00000 T ! 2 1 2 4.00000 T ! 3 0 1 2.00000 T ! 3 1 1 2.00000 F ! 3 1 2 4.00000 F ! 3 2 2 4.00000 F ! 3 2 3 6.00000 F ! 4 0 1 1.00000 F ! 1 : apword ! 0.1500 0 F : apwe0, apwdm, apwve ! 1 : nlx ! 2 2 : lx, apword ! 0.1500 0 T : apwe0, apwdm, apwve ! 0.1500 1 T ! 4 : nlorb ! 0 2 : lorbl, lorbord ! 0.1500 0 F : lorbe0, lorbdm, lorbve ! 0.1500 1 F ! 1 2 ! 0.1500 0 F ! 0.1500 1 F ! 2 2 ! 0.1500 0 F ! 0.1500 1 F ! 1 3 ! 0.1500 0 F ! 0.1500 1 F ! -2.8652 0 T ! \end{verbatim} ! The input parameters are defined as follows: ! \vskip 6pt ! {\tt spsymb} \\ ! The symbol of the element. ! \vskip 6pt ! {\tt spname} \\ ! The name of the element. ! \vskip 6pt ! {\tt spzn} \\ ! Nuclear charge: should be negative since the electron charge is taken to be ! postive in the code; it can also be fractional for purposes of doping. ! \vskip 6pt ! {\tt spmass} \\ ! Nuclear mass in atomic units. ! \vskip 6pt ! {\tt rminsp}, {\tt rmt}, {\tt rmaxsp}, {\tt nrmt} \\ ! Respectively, the minimum radius on logarithmic radial mesh; muffin-tin ! radius; effective infinity for atomic radial mesh; and number of radial mesh ! points to muffin-tin radius. ! \vskip 6pt ! {\tt nstsp} \\ ! Number of atomic states. ! \vskip 6pt ! {\tt nsp}, {\tt lsp}, {\tt ksp}, {\tt occsp}, {\tt spcore} \\ ! Respectively, the principal quantum number of the radial Dirac equation; ! quantum number $l$; quantum number $k$ ($l$ or $l+1$); occupancy of atomic ! state (can be fractional); {\tt .T.} if state is in the core and therefore ! treated with the Dirac equation in the spherical part of the muffin-tin ! Kohn-Sham potential. ! \vskip 6pt ! {\tt apword} \\ ! Default APW function order, i.e. the number of radial functions and ! therefore the order of the radial derivative matching at the muffin-tin ! surface. ! \vskip 6pt ! {\tt apwe0}, {\tt apwdm}, {\tt apwve} \\ ! Respectively, the default APW linearisation energy; the order of the energy ! derivative of the APW radial function $\partial^m u(r)/\partial E^m$; and ! {\tt .T.} if the linearisation energy is allowed to vary. ! \vskip 6pt ! {\tt nlx} \\ ! The number of exceptions to the default APW configuration. These should be ! listed on subsequent lines for particular angular momenta. In this example, ! the fixed energy APW with angular momentum $d$ ({\tt lx} $=2$) is replaced ! with a LAPW, which has variable linearisation energy. ! \vskip 6pt ! {\tt nlorb} \\ ! Number of local-orbitals. ! \vskip 6pt ! {\tt lorbl}, {\tt lorbord} \\ ! Respectively, the angular momentum $l$ of the local-orbital; and the order ! of the radial derivative which goes to zero at the muffin-tin surface. ! \vskip 6pt ! {\tt lorbe0}, {\tt lorbdm}, {\tt lorbve} \\ ! Respectively, the default local-orbital linearisation energy; the order of ! the energy derivative of the local-orbital radial function; and {\tt .T.} if ! the linearisation energy is allowed to vary. ! ! \subsubsection{Examples} ! The best way to learn to use Elk is to run the examples included with the ! package. These can be found in the {\tt examples} directory and use many of ! the code's capabilities. The following section which describes all the input ! parameters will be of invaluable assistance. ! ! \section{Input blocks} ! This section lists all the input blocks available. It is arranged with the ! name of the block followed by a table which lists each parameter name, what ! the parameter does, its type and default value. A horizontal line in the ! table indicates a new line in {\tt elk.in}. Below the table is a brief ! overview of the block's function. ! ! \block{atoms}{ ! {\tt nspecies} & number of species & integer & 0 \\ ! \hline ! {\tt spfname(i)} & species filename for species $i$ & string & - \\ ! \hline ! {\tt natoms(i)} & number of atoms for species $i$ & integer & - \\ ! \hline ! {\tt atposl(j,i)} & atomic position in lattice coordinates for atom $j$ ! & real(3) & - \\ ! {\tt bfcmt(j,i)} & muffin-tin external magnetic field in Cartesian ! coordinates for atom $j$ & real(3) & -} ! Defines the atomic species as well as their positions in the unit cell and ! the external magnetic field applied throughout the muffin-tin. These fields ! are used to break spin symmetry and should be considered infinitesimal as ! they do not contribute directly to the total energy. Collinear calculations ! are more efficient if the field is applied in the $z$-direction. One could, ! for example, set up an antiferromagnetic crystal by pointing the field on ! one atom in the positive $z$-direction and in the opposite direction on ! another atom. If {\tt molecule} is {\tt .true.} then the atomic positions ! are assumed to be in Cartesian coordinates. See also {\tt sppath}, ! {\tt bfieldc} and {\tt molecule}. ! ! \block{autokpt}{ ! {\tt autokpt} & {\tt .true.} if the $k$-point set is to be determined ! automatically & logical & {\tt .false.}} ! See {\tt radkpt} for details. ! ! \block{autolinengy}{ ! {\tt autolinengy} & {\tt .true.} if the fixed linearisation energies are ! to be determined automatically & logical & {\tt .false.}} ! See {\tt dlefe} for details. ! ! \block{autoswidth}{ ! {\tt autoswidth} & {\tt .true.} if the smearing parameter {\tt swidth} ! should be determined automatically & logical & {\tt .false.}} ! Calculates the smearing width from the $k$-point density, $V_{\rm BZ}/n_k$; ! the valence band width, $W$; and an effective mass parameter, $m^{*}$; ! according to ! $$ \sigma=\frac{\sqrt{2W}}{m^{*}}\left(\frac{3}{4\pi} ! \frac{V_{\rm BZ}}{n_k}\right)^{1/3}. $$ ! The variable {\tt mstar} then replaces {\tt swidth} as the control parameter ! of the smearing width. A large value of $m^{*}$ gives a narrower smearing ! function. Since {\tt swidth} is adjusted according to the fineness of the ! ${\bf k}$-mesh, the smearing parameter can then be eliminated. It is not ! recommended that {\tt autoswidth} be used in conjunction with the ! Fermi-Dirac smearing function, since the electronic temperature will then be ! a function of the $k$-point mesh. See T. Bj\"orkman and O. Gr\aa n\"as, ! {\it Int. J. Quant. Chem.} DOI: 10.1002/qua.22476 (2010) for details. See ! also {\tt stype} and {\tt swidth}. ! ! \block{avec}{ ! {\tt avec(1)} & first lattice vector & real(3) & $(1.0,0.0,0.0)$ \\ ! \hline ! {\tt avec(2)} & second lattice vector & real(3) & $(0.0,1.0,0.0)$ \\ ! \hline ! {\tt avec(3)} & third lattice vector & real(3) & $(0.0,0.0,1.0)$} ! Lattice vectors of the crystal in atomic units (Bohr). ! ! \block{beta0}{ ! {\tt beta0} & adaptive mixing parameter & real & $0.05$} ! This determines how much of the potential from the previous self-consistent ! loop is mixed with the potential from the current loop. It should be made ! smaller if the calculation is unstable. See {\tt betamax} and also the ! routine {\tt mixadapt}. ! ! \block{betamax}{ ! {\tt betamax} & maximum adaptive mixing parameter & real & $0.5$} ! Maximum allowed mixing parameter used in routine {\tt mixadapt}. ! ! \block{bfieldc}{ ! {\tt bfieldc} & global external magnetic field in Cartesian coordinates & ! real(3) & $(0.0,0.0,0.0)$} ! This is a constant magnetic field applied throughout the entire unit cell ! and enters the second-variational Hamiltonian as ! $$ \frac{g_e}{4c}\,\vec{\sigma}\cdot{\bf B}_{\rm ext}, $$ ! where $g_e$ is the electron $g$-factor. This field is normally used to break ! spin symmetry for spin-polarised calculations and considered to be ! infinitesimal with no direct contribution to the total energy. In cases ! where the magnetic field is finite (for example when computing magnetic ! response) the external ${\bf B}$-field energy reported in {\tt INFO.OUT} ! should be added to the total by hand. This field is applied throughout the ! entire unit cell. To apply magnetic fields in particular muffin-tins use the ! {\tt bfcmt} vectors in the {\tt atoms} block. Collinear calculations are ! more efficient if the field is applied in the $z$-direction. ! ! \block{broydpm}{ ! {\tt broydpm} & Broyden mixing parameters $\alpha$ and $w_0$ & real & ! $(0.4,0.15)$} ! See {\tt mixtype} and {\tt mixsdb}. ! ! \block{chgexs}{ ! {\tt chgexs} & excess electronic charge & real & $0.0$} ! This controls the amount of charge in the unit cell beyond that required to ! maintain neutrality. It can be set positive or negative depending on whether ! electron or hole doping is required. ! ! \block{cmagz}{ ! {\tt cmagz} & .true. if $z$-axis collinear magnetism is to be enforced & ! logical & {\tt .false.}} ! This variable can be set to .true. in cases where the magnetism is ! predominantly collinear in the $z$-direction, for example a ferromagnet with ! spin-orbit coupling. This will make the calculation considerably faster at ! the slight expense of precision. ! ! \block{deltaem}{ ! {\tt deltaem} & the size of the ${\bf k}$-vector displacement used when ! calculating numerical derivatives for the effective mass tensor & real & ! $0.025$} ! See {\tt ndspem} and {\tt vklem}. ! ! \block{deltaph}{ ! {\tt deltaph} & size of the atomic displacement used for calculating ! dynamical matrices & real & $0.01$} ! Phonon calculations are performed by constructing a supercell corresponding ! to a particular ${\bf q}$-vector and making a small periodic displacement of ! the atoms. The magnitude of this displacement is given by {\tt deltaph}. ! This should not be made too large, as anharmonic terms could then become ! significant, neither should it be too small as this can introduce numerical ! error. ! ! \block{deltast}{ ! {\tt deltast} & size of the change in lattice vectors used for calculating ! the stress tensor & real & $0.005$} ! The stress tensor is computed by changing the lattice vector matrix $A$ by ! $$ A\rightarrow (1+\delta t\,e_k)A, $$ ! where $\delta t$ is an infinitesimal equal in practice to {\tt deltast} and ! $e_k$ is the $k^{\rm th}$ strain tensor. Numerical finite differences are ! used to compute the stress tensor as the derivative of the total energy ! $dE_k/dt$. ! ! \block{dft+u}{ ! {\tt dftu} & type of DFT+$U$ calculation & integer & 0 \\ ! {\tt inpdftu} & type of input for DFT+U calculation & integer & 1 \\ ! \hline ! {\tt is} & species number & integer & - \\ ! {\tt l} & angular momentum value & integer & -1 \\ ! {\tt u} & the desired $U$ value & real & $0.0$ \\ ! {\tt j} & the desired $J$ value & real & $0.0$} ! This block contains the parameters required for an DFT+$U$ calculation, with ! the list of parameters for each species terminated with a blank line. The ! type of double counting required is set with the parameter {\tt dftu}. ! Currently implemented are: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! 0 & No DFT+$U$ calculation \\ ! 1 & Fully localised limit (FLL) \\ ! 2 & Around mean field (AFM) \\ ! 3 & An interpolation between FLL and AFM \\ ! \end{tabularx} ! \vskip 6pt ! The type of input parameters is set with the parameter {\tt inpdftu}. ! The current possibilities are: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! 1 & U and J \\ ! 2 & Slater parameters \\ ! 3 & Racah parameters \\ ! 4 & Yukawa screening length \\ ! 5 & U and determination of corresponding Yukawa screening length ! \end{tabularx} ! \vskip 6pt ! See (amongst others) {\it Phys. Rev. B} {\bf 67}, 153106 (2003), ! {\it Phys. Rev. B} {\bf 52}, R5467 (1995), {\it Phys. Rev. B} {\bf 60}, ! 10763 (1999), and {\it Phys. Rev. B} {\bf 80}, 035121 (2009). ! ! \block{dlefe}{ ! {\tt dlefe} & difference between the fixed linearisation energy and the ! Fermi energy & real & $-0.1$} ! When {\tt autolinengy} is {\tt .true.} then the fixed linearisation energies ! are set to the Fermi energy plus {\tt dlefe}. ! ! \block{dncgga}{ ! {\tt dncgga} & small constant used to stabilise non-collinear GGA & ! real & $1\times 10^{-8}$} ! This small constant, $d$, is required in order to remove the infinite ! gradients obtained when using `Kubler's trick' in conjunction with GGA and ! non-collinear magnetism. It is applied by calculating the up and down ! densities as ! $$ \rho^{\uparrow}({\bf r})=\rho({\bf r})+\widetilde{m}({\bf r}) ! \qquad \rho^{\downarrow}({\bf r})=\rho({\bf r})-\widetilde{m}({\bf r}), $$ ! where $\widetilde{m}({\bf r})=\sqrt{{\bf m}^2({\bf r})+d}$, ! and should be taken as the smallest value for which the exchange-correlation ! magnetic field ${\bf B}_{\rm xc}$ is smooth. ! ! \block{dosmsum}{ ! {\tt dosmsum} & {\tt .true.} if the partial DOS is to be summed over $m$ & ! logical & {\tt .false.}} ! By default, the partial density of states is resolved over $(l,m)$ quantum ! numbers. If {\tt dosmsum} is set to {\tt .true.} then the partial DOS is ! summed over $m$, and thus depends only on $l$. ! ! \block{dosssum}{ ! {\tt dosssum} & {\tt .true.} if the partial DOS is to be summed over spin & ! logical & {\tt .false.}} ! By default, the partial density of states for spin-polarised systems is spin ! resolved. ! ! \block{dtimes}{ ! {\tt dtimes} & time step used in time evolution run & real & $0.1$} ! See also {\tt tstime}. ! ! \block{epsband}{ ! {\tt epsband} & convergence tolerance for determining band energies & real & ! $1\times 10^{-12}$} ! APW and local-orbital linearisation energies are determined from the band ! energies. This is done by first searching upwards in energy until the radial ! wavefunction at the muffin-tin radius is zero. This is the energy at the top ! of the band, denoted $E_{\rm t}$. A downward search is now performed from ! $E_{\rm t}$ until the slope of the radial wavefunction at the muffin-tin ! radius is zero. This energy, $E_{\rm b}$, is at the bottom of the band. The ! band energy is taken as $(E_{\rm t}+E_{\rm b})/2$. If either $E_{\rm t}$ or ! $E_{\rm b}$ is not found, then the band energy is set to the default value. ! ! \block{epschg}{ ! {\tt epschg} & maximum allowed error in the calculated total charge beyond ! which a warning message will be issued & real & $1\times 10^{-3}$} ! ! \block{epsengy}{ ! {\tt epsengy} & convergence criterion for the total energy & real & ! $1\times 10^{-4}$} ! See {\tt epspot}. ! ! \block{epsforce}{ ! {\tt epsforce} & convergence tolerance for the forces during a geometry ! optimisation run & real & $5\times 10^{-3}$} ! If the mean absolute value of the atomic forces is less than {\tt epsforce} ! then the geometry optimisation run is ended. See also {\tt tasks} and ! {\tt latvopt}. ! ! \block{epslat}{ ! {\tt epslat } & vectors with lengths less than this are considered zero & ! real & $10^{-6}$} ! Sets the tolerance for determining if a vector or its components are zero. ! This is to account for any numerical error in real or reciprocal space ! vectors. ! ! \block{epsocc}{ ! {\tt epsocc} & smallest occupancy for which a state will contribute to the ! density & real & $1\times 10^{-8}$} ! ! \block{epspot}{ ! {\tt epspot} & convergence criterion for the Kohn-Sham potential and field & ! real & $1\times 10^{-6}$} ! If the RMS change in the Kohn-Sham potential and magnetic field is smaller ! than {\tt epspot} and the absolute change in the total energy is less than ! {\tt epsengy}, then the self-consistent loop is considered converged ! and exited. For geometry optimisation runs this results in the forces being ! calculated, the atomic positions updated and the loop restarted. See also ! {\tt epsengy} and {\tt maxscl}. ! ! \block{epsstress}{ ! {\tt epsstress} & convergence tolerance for the stress tensor during a ! geometry optimisation run with lattice vector relaxation & real & ! $2\times 10^{-3}$} ! See also {\tt epsforce} and {\tt latvopt}. ! ! \block{emaxelnes}{ ! {\tt emaxelnes} & maximum allowed initial-state eigenvalue for ELNES ! calculations & real & $-1.2$} ! ! \block{emaxrf}{ ! {\tt emaxrf} & energy cut-off used when calculating Kohn-Sham response ! functions & real & $10^6$} ! A typical Kohn-Sham response function is of the form ! \begin{align*} ! \chi_s({\bf r},{\bf r}',\omega) ! \equiv\frac{\delta\rho({\bf r},\omega)}{\delta v_s({\bf r}',\omega)} ! =\frac{1}{N_k}\sum_{i{\bf k},j{\bf k}'}(f_{i{\bf k}}-f_{j{\bf k}'}) ! \frac{\langle i{\bf k}|\hat{\rho}({\bf r})|j{\bf k}'\rangle ! \langle j{\bf k}'|\hat{\rho}({\bf r}')|i{\bf k}\rangle} ! {w+(\varepsilon_{i{\bf k}}-\varepsilon_{j{\bf k}'})+i\eta}, ! \end{align*} ! where $\hat{\rho}$ is the density operator; $N_k$ is the number of ! $k$-points; $\varepsilon_{i{\bf k}}$ and $f_{i{\bf k}}$ are the eigenvalues ! and occupation numbers, respectively. The variable {\tt emaxrf} is an energy ! window which limits the summation over states in the formula above so that ! $|\varepsilon_{i{\bf k}}-\varepsilon_{\rm Fermi}|<{\tt emaxrf}$. Reducing ! this can result in a faster calculation at the expense of accuracy. ! ! \block{fracinr}{ ! {\tt fracinr} & fraction of the muffin-tin radius up to which {\tt lmaxi} ! is used as the angular momentum cut-off & real & $0.01$} ! If {\tt fracinr} is negative then the fraction is determined from ! $f=\sqrt{({\tt lmaxi}+1)^2/({\tt lmaxo}+1)^2}$ in order to ! maintain a minimum density of points throughout the muffin-tin. See ! {\tt lmaxi} and {\tt lmaxo}. ! ! \block{fsmtype}{ ! {\tt fsmtype} & 0 for no fixed spin moment (FSM), 1 for total FSM, 2 for ! local muffin-tin FSM, and 3 for both total and local FSM & integer & 0} ! Set to 1, 2 or 3 for fixed spin moment calculations. To fix only the ! direction and not the magnitude set to $-1$, $-2$ or $-3$. See also ! {\tt momfix}, {\tt mommtfix}, {\tt taufsm} and {\tt spinpol}. ! ! \block{ftmtype}{ ! {\tt ftmtype} & 1 to enable a fixed tensor moment (FTM) calculation, ! 0 otherwise & integer & 0} ! If {\tt ftmtype} is $-1$ then the symmetry corresponding to the tensor ! moment is broken but no FTM calculation is performed. See also {\tt tm3fix}. ! ! \block{fxclrc}{ ! {\tt fxclrc} & parameters for the dynamical long-range contribution (LRC) to ! the TDDFT exchange-correlation kernel & real(2) & $(0.0,0.0)$} ! These are the parameters $\alpha$ and $\beta$ for the kernel proposed in ! {\it Phys. Rev. B} {\bf 72}, 125203 (2005), namely ! $$ f_{xc}({\bf G},{\bf G}',{\bf q},\omega)=-\frac{\alpha+\beta\omega^2}{q^2} ! \delta_{{\bf G},{\bf G}'}\delta_{{\bf G},{\bf 0}}. $$ ! ! \block{fxctype}{ ! {\tt fxctype} & integer defining the type of exchange-correlation kernel ! $f_{\rm xc}$ & integer & $-1$} ! The acceptable values are: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! $-1$ & $f_{\rm xc}$ defined by {\tt xctype} \\ ! 0,1 & RPA ($f_{\rm xc}=0$) \\ ! 200 & Long-range contribution (LRC) kernel, S. Botti {\it et al.}, ! {\it Phys. Rev. B} {\bf 72}, 125203 (2005); see {\tt fxclrc} \\ ! 210 & `Bootstrap' kernel, S. Sharma, J. K. Dewhurst, A. Sanna and ! E. K. U. Gross, {\it Phys. Rev. Lett.} {\bf 107}, 186401 (2011) \\ ! 211 & Single iteration bootstrap ! \end{tabularx} ! ! \block{gmaxrf}{ ! {\tt gmaxrf} & maximum length of $|{\bf G}|$ for computing response ! functions & real & $3.0$} ! ! \block{gmaxvr}{ ! {\tt gmaxvr} & maximum length of $|{\bf G}|$ for expanding the interstitial ! density and potential & real & $12.0$} ! This variable has a lower bound which is enforced by the code as follows: ! $$ {\rm gmaxvr}\rightarrow\max\,({\rm gmaxvr},2\times{\rm gkmax} ! +{\rm epslat}) $$ ! See {\tt rgkmax}. ! ! \block{hdbse}{ ! {\tt hdbse} & {\tt .true.} if the direct term is to be included in the BSE ! Hamiltonian & logical & {\tt .true.}} ! ! \block{highq}{ ! {\tt highq} & {\tt .true.} if a high-quality parameter set should be used & ! logical & {\tt .false.}} ! Setting this to {\tt .true.} results in some default parameters being ! changed to ensure good convergence in most situations. These changes can be ! overruled by subsequent blocks in the input file. See also {\tt vhighq}. ! ! \block{hmaxvr}{ ! {\tt hmaxvr} & maximum length of ${\bf H}$-vectors & real & $6.0$} ! The ${\bf H}$-vectors are used for calculating X-ray and magnetic structure ! factors. They are also used in linear response phonon calculations for ! expanding the density and potential in plane waves. See also {\tt gmaxvr}, ! {\tt vhmat}, {\tt reduceh}, {\tt wsfac} and {\tt hkmax}. ! ! \block{hxbse}{ ! {\tt hxbse} & {\tt .true.} if the exchange term is to be included in the BSE ! Hamiltonian & {\tt .true.}} ! ! \block{hybrid}{ ! {\tt hybrid} & {\tt .true} if a hybrid functional is to be used when running ! a Hartree-Fock calculation & logical & {\tt .false}} ! See also {\tt hybridc} and {\tt xctype}. ! ! \block{hybridc}{ ! {\tt hybridc} & hybrid functional mixing coefficient & real & $1.0$} ! ! \block{intraband}{ ! {\tt intraband} & {\tt .true.} if the intraband (Drude-like) contribution is ! to be added to the dieletric tensor & logical & {\tt .false.}} ! ! \block{isgkmax}{ ! {\tt isgkmax} & species for which the muffin-tin radius will be used for ! calculating {\tt gkmax} & integer & $-1$} ! The APW cut-off is determined from ${\tt gkmax}={\tt rgkmax}/R$. The ! variable {\tt isgkmax} determines which muffin-tin radius is to be used for ! $R$. These are the options: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! -4 & Use the largest radius \\ ! -3 & Use the smallest radius \\ ! -2 & Use the fixed value $R=2.0$ \\ ! -1 & Use the average of the muffin-tin radii \\ ! $n\ge 1$ & Use the radius of species $n$ ! \end{tabularx} ! ! \block{kstlist}{ ! {\tt kstlist(i)} & $i$th $k$-point and state pair & integer(2) & $(1,1)$} ! This is a user-defined list of $k$-point and state index pairs which are ! those used for plotting wavefunctions and writing ${\bf L}$, ${\bf S}$ and ! ${\bf J}$ expectation values. Only the first pair is used by the ! aforementioned tasks. The list should be terminated by a blank line. ! ! \block{latvopt}{ ! {\tt latvopt} & type of lattice vector optimisation to be performed during ! structural relaxation & integer & 0} ! Optimisation of the lattice vectors will be performed with ${\tt task}=2,3$ ! when ${\tt latvopt}\ne 0$. When ${\tt latvopt}=1$ the lattice vector ! optimisation will be constrained only by symmetry. Optimisation over all ! symmetry-preserving strains except isotropic scaling is performed when ! ${\tt latvopt}=2$. If ${\tt latvopt}<0$ then the optimisation will be over ! strain number $|{\tt latvopt}|$. The list of symmetric strain tensors can be ! produced with ${\tt task}=430$. By default (${\tt latvopt}=0$) no lattice ! vector optimisation is performed during structural relaxation. See also ! {\tt tau0latv} and {\tt atpopt}. ! ! \block{lmaxapw}{ ! {\tt lmaxapw} & angular momentum cut-off for the APW functions & integer & ! $8$} ! ! \block{lmaxdos}{ ! {\tt lmaxdos} & angular momentum cut-off for the partial DOS plot & ! integer & $3$} ! ! \block{lmaxi}{ ! {\tt lmaxi} & angular momentum cut-off for the muffin-tin density and ! potential on the inner part of the muffin-tin & integer & 2} ! Close to the nucleus, the density and potential is almost spherical and ! therefore the spherical harmonic expansion can be truncated a low angular ! momentum. See also {\tt fracinr}. ! ! \block{lmaxo}{ ! {\tt lmaxo} & angular momentum cut-off for the muffin-tin density and ! potential & integer & 6} ! ! \block{lmirep}{ ! {\tt lmirep} & {\tt .true.} if the $Y_{lm}$ basis is to be transformed ! into the basis of irreducible representations of the site symmetries for ! DOS plotting & logical & {\tt .true.}} ! When lmirep is set to .true., the spherical harmonic basis is transformed ! into one in which the site symmetries are block diagonal. Band characters ! determined from the density matrix expressed in this basis correspond to ! irreducible representations, and allow the partial DOS to be resolved into ! physically relevant contributions, for example $e_g$ and $t_{2g}$. ! ! \block{lorbcnd}{ ! {\tt lorbcnd} & {\tt .true.} if conduction state local-orbitals are to be ! automatically added to the basis & logical & {\tt .false.}} ! Adding these higher energy local-orbitals can improve calculations which ! rely on accurate unoccupied states, such as the response function. See also ! {\tt lorbordc}. ! ! \block{lorbordc}{ ! {\tt lorbordc} & the order of the conduction state local-orbitals & ! integer & 2} ! See {\tt lorbcnd}. ! ! \block{lradstp}{ ! {\tt lradstp} & radial step length for determining coarse radial mesh & ! integer & 4} ! Some muffin-tin functions (such as the density) are calculated on a coarse ! radial mesh and then interpolated onto a fine mesh. This is done for the ! sake of efficiency. {\tt lradstp} defines the step size in going from the ! fine to the coarse radial mesh. If it is too large, loss of precision may ! occur. ! ! \block{maxitoep}{ ! {\tt maxitoep} & maximum number of iterations when solving the exact ! exchange integral equations & integer & 300} ! See {\tt tau0oep}. ! ! \block{maxscl}{ ! {\tt maxscl } & maximum number of self-consistent loops allowed & integer & ! 200} ! This determines after how many loops the self-consistent cycle will ! terminate if the convergence criterion is not met. If {\tt maxscl} is $1$ ! then the density and potential file, {\tt STATE.OUT}, will {\bf not} be ! written to disk at the end of the loop. See {\tt epspot}. ! ! \block{mixtype}{ ! {\tt mixtype } & type of mixing required for the potential & integer & 1} ! Currently implemented are: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! 0 & Linear mixing \\ ! 1 & Adaptive linear mixing \\ ! 3 & Broyden mixing, {\it J. Phys. A: Math. Gen.} {\bf 17}, L317 (1984) ! \end{tabularx} ! ! \block{mixsdb}{ ! {\tt mixsdb} & subspace dimension for Broyden mixing & integer & 5} ! This is the number of mixing vectors which define the subspace in which the ! Hessian matrix is calculated. See {\tt mixtype} and {\tt broydpm}. ! ! \block{molecule}{ ! {\tt molecule} & {\tt .true.} if the system is an isolated molecule & ! logical & {\tt .false.}} ! If {\tt molecule} is {\tt .true.}, then the atomic positions, ${\bf a}$, ! given in the {\tt atoms} block are assumed to be in Cartesian coordinates. ! ! \block{momfix}{ ! {\tt momfix} & the desired total moment for a FSM calculation & ! real(3) & $(0.0,0.0,0.0)$} ! Note that all three components must be specified (even for collinear ! calculations). See {\tt fsmtype}, {\tt taufsm} and {\tt spinpol}. ! ! \block{mommtfix}{ ! {\tt is} & species number & integer & 0 \\ ! {\tt ia} & atom number & integer & 0 \\ ! {\tt mommtfix} & the desired muffin-tin moment for a FSM calculation & ! real(3) & $(0.0,0.0,0.0)$} ! The local muffin-tin moments are specified for a subset of atoms, with the ! list terminated with a blank line. Note that all three components must be ! specified (even for collinear calculations). See {\tt fsmtype}, {\tt taufsm} ! and {\tt spinpol}. ! ! \block{mrmtav}{ ! {\tt mrmtav} & order of averaging applied to the muffin-tin radii & ! integer & 0} ! Crystal structures with muffin-tin radii which are widely varying in size ! can cause calculations to become unstable. Applying a simple averaging ! procedure to the radii reduces this variation and can improve stability. ! The larger {\tt mrmtav}, the more equal the muffin-tin radii will become. ! See the routine {\tt rmtavrg}. ! ! \block{mstar}{ ! {\tt mstar} & value of the effective mass parameter used for adaptive ! determination of {\tt swidth} & real & $10.0$} ! See {\tt autoswidth}. ! ! \block{mustar}{ ! {\tt mustar} & Coulomb pseudopotential, $\mu^*$, used in the ! McMillan-Allen-Dynes equation & real & $0.15$} ! This is used when calculating the superconducting critical temperature with ! the formula {\it Phys. Rev. B 12, 905 (1975)} ! $$ T_c=\frac{\omega_{\rm log}}{1.2 k_B}\exp\left[\frac{-1.04(1+\lambda)} ! {\lambda-\mu^*(1+0.62\lambda)}\right], $$ ! where $\omega_{\rm log}$ is the logarithmic average frequency and $\lambda$ ! is the electron-phonon coupling constant. ! ! \block{ncbse}{ ! {\tt ncbse} & number of conduction states to be used for BSE calculations & ! integer & 3} ! See also {\tt nvbse}. ! ! \block{ndspem}{ ! {\tt ndspem} & the number of {\bf k}-vector displacements in each direction ! around {\tt vklem} when computing the numerical derivatives for the ! effective mass tensor & integer & 1} ! See {\tt deltaem} and {\tt vklem}. ! ! \block{nempty}{ ! {\tt nempty} & the number of empty states per atom and spin & real & $4.0$ } ! Defines the number of eigenstates beyond that required for charge ! neutrality. When running metals it is not known {\it a priori} how many ! states will be below the Fermi energy for each $k$-point. Setting ! {\tt nempty} greater than zero allows the additional states to act as a ! buffer in such cases. Furthermore, magnetic calculations use the ! first-variational eigenstates as a basis for setting up the ! second-variational Hamiltonian, and thus {\tt nempty} will determine the ! size of this basis set. Convergence with respect to this quantity should be ! checked. ! ! \block{ngridk}{ ! {\tt ngridk } & the $k$-point mesh sizes & integer(3) & $(1,1,1)$} ! The ${\bf k}$-vectors are generated using ! $$ {\bf k}=(\frac{i_1+v_1}{n_1},\frac{i_2+v_2}{n_2},\frac{i_3+v_3}{n_3}), $$ ! where $i_j$ runs from 0 to $n_j-1$ and $0\le v_j<1$ for $j=1,2,3$. The ! vector ${\bf v}$ is given by the variable {\tt vkloff}. See also ! {\tt reducek}. ! ! \block{ngridq}{ ! {\tt ngridq } & the phonon $q$-point mesh sizes & integer(3) & $(1,1,1)$} ! Same as {\tt ngridk}, except that this mesh is for the phonon $q$-points ! and other tasks. See also {\tt reduceq}. ! ! \block{nosource}{ ! {\tt nosource} & when set to {\tt .true.}, source fields are projected out ! of the exchange-correlation magnetic field & logical & {\tt .false.}} ! Experimental feature. ! ! \block{notes}{ ! {\tt notes(i)} & the $i$th line of the notes & string & -} ! This block allows users to add their own notes to the file {\tt INFO.OUT}. ! The block should be terminated with a blank line, and no line should exceed ! 80 characters. ! ! \block{npmae}{ ! {\tt npmae } & number or distribution of directions for MAE calculations & ! integer & $-1$} ! Automatic determination of the magnetic anisotropy energy (MAE) requires ! that the total energy is determined for a set of directions of the total ! magnetic moment. This variable controls the number or distribution of these ! directions. The convention is: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! $-4,-3,-2,-1$ & Cardinal directions given by the primitive translation ! vectors $n_1{\bf A}_1+n_2{\bf A}_2+n_3{\bf A}_3$, where ! $1\le n_i\le|{\tt npmae}|$ \\ ! 2 & Cartesian $x$ and $z$ directions \\ ! 3 & Cartesian $x$, $y$ and $z$ directions \\ ! $4,5,\ldots$ & Even distribution of {\tt npmae} directions ! \end{tabularx} ! ! \block{ntemp}{ ! {\tt ntemp} & number of temperature steps & integer & 40} ! This is the number of temperature steps to be used in the Eliashberg gap ! and thermodynamic properties calculations. ! ! \block{nvbse}{ ! {\tt nvbse} & number of valence states to be used for BSE calculations & ! integer & 2} ! See also {\tt ncbse}. ! ! \block{nwrite}{ ! {\tt nwrite} & number of self-consistent loops after which {\tt STATE.OUT} ! is to be written & integer & 0} ! Normally, the density and potentials are written to the file {\tt STATE.OUT} ! only after completion of the self-consistent loop. By setting {\tt nwrite} ! to a positive integer the file will instead be written every {\tt nwrite} ! loops. ! ! \block{nxoapwlo}{ ! {\tt nxoapwlo} & extra order of radial functions to be added to the existing ! APW and local-orbital set & integer & 0} ! Setting this variable will result in the APWs and local-orbitals for all ! species becoming higher order with corresponding increase in derivative ! matching at the muffin-tin surface. For example, setting {\tt nxoapwlo}=1 ! turns all APWs into LAPWs. ! ! \block{optcomp}{ ! {\tt optcomp} & the components of the first- or second-order optical tensor ! to be calculated & integer(3) & $(1,1,1)$} ! This selects which components of the optical tensor you would like to plot. ! Only the first two are used for the first-order tensor. Several components ! can be listed one after the other with a blank line terminating the list. ! ! \block{phwrite}{ ! {\tt nphwrt} & number of $q$-points for which phonon modes are to be found & ! integer & 1 \\ ! \hline ! {\tt vqlwrt(i)} & the $i$th $q$-point in lattice coordinates & real(3) & ! $(0.0,0.0,0.0)$} ! This is used in conjunction with {\tt task}=230. The code will write the ! phonon frequencies and eigenvectors to the file {\tt PHONON.OUT} for all the ! $q$-points in the list. The $q$-points can be anywhere in the Brillouin zone ! and do not have to lie on the mesh defined by {\tt ngridq}. Obviously, all ! the dynamical matrices have to be computed first using {\tt task}=200. ! ! \block{plot1d}{ ! {\tt nvp1d} & number of vertices & integer & 2 \\ ! {\tt npp1d} & number of plotting points & integer & 200 \\ ! \hline ! {\tt vvlp1d(i)} & lattice coordinates for vertex $i$ & real(3) & ! $(0.0,0.0,0.0)\rightarrow(1.0,1.0,1.0)$} ! Defines the path in either real or reciprocal space along which the 1D plot ! is to be produced. The user should provide {\tt nvp1d} vertices in lattice ! coordinates. ! ! \block{plot2d}{ ! {\tt vclp2d(0)} & zeroth corner (origin) & real(3) & $(0.0,0.0,0.0)$ \\ ! \hline ! {\tt vclp2d(1)} & first corner & real(3) & $(1.0,0.0,0.0)$ \\ ! \hline ! {\tt vclp2d(2)} & second corner & real(3) & $(0.0,1.0,0.0)$ \\ ! \hline ! {\tt np2d} & number of plotting points in both directions & integer(2) & ! $(40,40)$} ! Defines the corners of a parallelogram and the grid size used for producing ! 2D plots. ! ! \block{plot3d}{ ! {\tt vclp3d(0)} & zeroth corner (origin) & real(3) & $(0.0,0.0,0.0)$ \\ ! \hline ! {\tt vclp3d(1)} & first corner & real(3) & $(1.0,0.0,0.0)$ \\ ! \hline ! {\tt vclp3d(2)} & second corner & real(3) & $(0.0,1.0,0.0)$ \\ ! \hline ! {\tt vclp3d(3)} & third corner & real(3) & $(0.0,0.0,1.0)$ \\ ! \hline ! {\tt np3d} & number of plotting points each direction & integer(3) & ! $(20,20,20)$} ! Defines the corners of a box and the grid size used for producing 3D plots. ! ! \block{primcell}{ ! {\tt primcell} & {\tt .true.} if the primitive unit cell should be found ! & logical & {\tt .false.}} ! Allows the primitive unit cell to be determined automatically from the ! conventional cell. This is done by searching for lattice vectors among all ! those which connect atomic sites, and using the three shortest which produce ! a unit cell with non-zero volume. ! ! \block{pulse}{ ! {\tt n} & number of pulses & integer & - \\ ! \hline ! {\tt a0(i)} & polarisation vector (including amplitude) & real(3) & - \\ ! {\tt w(i)} & frequency & real & - \\ ! {\tt phi(i)} & phase in degrees & real & - \\ ! {\tt rc(i)} & chirp rate & real & - \\ ! {\tt t0(i)} & peak time & real & - \\ ! {\tt d(i)} & full-width at half-maximum & real & -} ! Parameters used to generate a time-dependent vector potential ${\bf A}(t)$ ! representing a laser pulse. The total vector potential is the sum of ! individual pulses and is given by the formula ! $$ {\bf A}(t)=\sum_{i=1}^n {\bf A}_0^i\exp ! \left[-(t-t_0^i)^2/2\sigma_i^2\right] ! \sin\left[w_i(t-t_0^i)+\phi_i+r_{\rm c}^i t^2/2\right], $$ ! where $\sigma=d/2\sqrt{2\ln 2}$. See also {\tt ramp}. ! ! \block{radkpt}{ ! {\tt radkpt } & radius of sphere used to determine $k$-point density & ! real & $40.0$} ! Used for the automatic determination of the $k$-point mesh. If {\tt autokpt} ! is set to {\tt .true.} then the mesh sizes will be determined by ! $n_i=R_k|{\bf B}_i|+1$, where ${\bf B}_i$ are the primitive reciprocal ! lattice vectors. ! ! \block{ramp}{ ! {\tt n} & number of ramps & integer & - \\ ! \hline ! {\tt a0(i)} & polarisation vector (including amplitude) & real(3) & - \\ ! {\tt t0(i)} & ramp start time & real & - \\ ! {\tt c1(i)} & linear coefficient of ${\bf A}(t)$ & real & - \\ ! {\tt c2(i)} & quadratic coefficient & real & -} ! Parameters used to generate a time-dependent vector potential ${\bf A}(t)$ ! representing a constant or linearly increasing electric field ! ${\bf E}(t)=-\partial{\bf A}(t)/\partial t$. The vector potential is given ! by ! $$ {\bf A}(t)=\sum_{i=1}^n {\bf A}_0^i ! \left[c_1(t-t_0)+c_2(t-t_0)^2\right]\Theta(t-t_0). $$ ! ! \block{readadu}{ ! {\tt readadu} & set to {\tt .true.} if the interpolation constant for ! DFT+$U$ should be read from file rather than calculated & logical & ! {\tt .false.}} ! When {\tt dftu}=3, the DFT+$U$ energy and potential are interpolated ! between FLL and AFM. The interpolation constant, $\alpha$, is normally ! calculated from the density matrix, but can also be read in from the file ! {\tt ALPHADU.OUT}. This allows the user to fix $\alpha$, but is also ! necessary when calculating forces, since the contribution of the potential ! of the variation of $\alpha$ with respect to the density matrix is not ! computed. See {\tt dft+u}. ! ! \block{reducebf}{ ! {\tt reducebf} & reduction factor for the external magnetic fields & real & ! $1.0$} ! After each self-consistent loop, the external magnetic fields are multiplied ! with {\tt reducebf}. This allows for a large external magnetic field at the ! start of the self-consistent loop to break spin symmetry, while at the end ! of the loop the field will be effectively zero, i.e. infinitesimal. See ! {\tt bfieldc} and {\tt atoms}. ! ! \block{reduceh}{ ! {\tt reduceh} & set to {\tt .true.} if the reciprocal ${\bf H}$-vectors ! should be reduced by the symmorphic crystal symmetries & logical & .true.} ! See {\tt hmaxvr} and {\tt vmat}. ! ! \block{reducek}{ ! {\tt reducek} & type of reduction of the $k$-point set & integer & 1} ! Types of reduction are defined by the symmetry group used: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! 0 & no reduction \\ ! 1 & reduce with full crystal symmetry group (including non-symmorphic ! symmetries) \\ ! 2 & reduce with symmorphic symmetries only ! \end{tabularx} ! \vskip 6pt ! See also {\tt ngridk} and {\tt vkloff}. ! ! \block{reduceq}{ ! {\tt reduceq} & type of reduction of the $q$-point set & integer & 1} ! See {\tt reducek} and {\tt ngridq}. ! ! \block{rgkmax}{ ! {\tt rgkmax} & $R^{\rm MT}_{\rm min}\times\max\{|{\bf G}+{\bf k}|\}$ & ! real & $7.0$} ! This sets the maximum length for the ${\bf G}+{\bf k}$ vectors, defined as ! {\tt rgkmax} divided by the average muffin-tin radius. See {\tt isgkmax}. ! ! \block{rotavec}{ ! {\tt axang} & axis-angle representation of lattice vector rotation & ! real(4) & $(0.0,0.0,0.0,0.0)$} ! This determines the rotation matrix which is applied to the lattice vectors ! prior to any calculation. The first three components specify the axis and ! the last component is the angle in degrees. The `right-hand rule' convention ! is followed. ! ! \block{scale}{ ! {\tt scale } & lattice vector scaling factor & real & $1.0$} ! Scaling factor for all three lattice vectors. Applied in conjunction with ! {\tt scale1}, {\tt scale2} and {\tt scale3}. ! ! \block{scale1/2/3}{ ! {\tt scale1/2/3 } & separate scaling factors for each lattice vector & ! real & $1.0$} ! ! \block{scissor}{ ! {\tt scissor} & the scissor correction & real & $0.0$} ! This is the scissor shift applied to states above the Fermi energy ! {\it Phys. Rev. B} {\bf 43}, 4187 (1991). Affects optics calculations only. ! ! \block{scrpath}{ ! {\tt scrpath} & scratch space path & string & null} ! This is the scratch space path where the eigenvector files {\tt EVALFV.OUT} ! and {\tt EVALSV.OUT} will be written. If the run directory is accessed via a ! network then {\tt scrpath} can be set to a directory on the local disk, for ! example {\tt /tmp/}. Note that the forward slash {\tt /} at the end of the ! path must be included. ! ! \block{socscf}{ ! {\tt socscf} & scaling factor for the spin-orbit coupling term in the ! Hamiltonian & real & $1.0$} ! This can be used to enhance the effect of spin-orbit coupling in order to ! accurately determine the magnetic anisotropy energy (MAE). ! ! \block{spincore}{ ! {\tt spincore} & set to {\tt .true.} if the core should be spin-polarised ! & logical & {\tt .false.}} ! ! \block{spinorb}{ ! {\tt spinorb} & set to {\tt .true.} if a spin-orbit coupling is required ! & logical & {\tt .false.}} ! If {\tt spinorb} is {\tt .true.}, then a $\boldsymbol\sigma\cdot{\bf L}$ ! term is added to the second-variational Hamiltonian. See {\tt spinpol}. ! ! \block{spinpol}{ ! {\tt spinpol} & set to {\tt .true.} if a spin-polarised calculation is ! required & logical & {\tt .false.}} ! If {\tt spinpol} is {\tt .true.}, then the spin-polarised Hamiltonian is ! solved as a second-variational step using two-component spinors in the ! Kohn-Sham magnetic field. The first variational scalar wavefunctions are ! used as a basis for setting this Hamiltonian. ! ! \block{spinsprl}{ ! {\tt spinsprl} & set to {\tt .true.} if a spin-spiral calculation is ! required & logical & {\tt .false.}} ! Experimental feature for the calculation of spin-spiral states. See ! {\tt vqlss} for details. ! ! \block{sppath}{ ! {\tt sppath} & path where the species files can be found & string & null} ! Note that the forward slash {\tt /} at the end of the path must be included. ! ! \block{ssdph}{ ! {\tt ssdph} & set to {\tt .true.} if a complex de-phasing factor is to be ! used in spin-spiral calculations & logical & {\tt .true.}} ! If this is {\tt .true.} then spin-spiral wavefunctions in each muffin-tin at ! position ${\bf r}_{\alpha}$ are de-phased by the matrix ! $$ \begin{pmatrix} e^{-i{\bf q}\cdot{\bf r}_{\alpha}/2} & 0 \\ ! 0 & e^{i{\bf q}\cdot{\bf r}_{\alpha}/2} \end{pmatrix}. $$ ! In simple situations, this has the advantage of producing magnon dynamical ! matrices which are already in diagonal form. This option should be used with ! care, and a full understanding of the spin-spiral configuration is required. ! See {\tt spinsprl}. ! ! \block{stype}{ ! {\tt stype} & integer defining the type of smearing to be used & integer & ! $3$} ! A smooth approximation to the Dirac delta function is needed to compute the ! occupation numbers of the Kohn-Sham states. The variable {\tt swidth} ! determines the width of the approximate delta function. Currently ! implemented are ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! 0 & Gaussian \\ ! 1 & Methfessel-Paxton order 1, Phys. Rev. B {\bf 40}, 3616 (1989) \\ ! 2 & Methfessel-Paxton order 2 \\ ! 3 & Fermi-Dirac ! \end{tabularx} ! \vskip 6pt ! See also {\tt autoswidth}, {\tt swidth} and {\tt tempk}. ! ! \block{swidth}{ ! {\tt swidth} & width of the smooth approximation to the Dirac delta ! function & real & $0.001$} ! See {\tt stype} for details and the variable {\tt tempk}. ! ! \newpage ! \block{tasks}{ ! {\tt task(i) } & the $i$th task & integer & $-1$} ! A list of tasks for the code to perform sequentially. The list should be ! terminated with a blank line. Each task has an associated integer as ! follows: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! -1 & Write out the version number of the code. \\ ! 0 & Ground state run starting from the atomic densities. \\ ! 1 & Resumption of ground-state run using density in {\tt STATE.OUT}. \\ ! 2 & Geometry optimisation run starting from the atomic densities, with ! atomic positions written to {\tt GEOMETRY.OUT}. \\ ! 3 & Resumption of geometry optimisation run using density in {\tt STATE.OUT} ! but with positions from {\tt elk.in}. \\ ! 5 & Ground state Hartree-Fock run. \\ ! 10 & Total, partial and interstitial density of states (DOS). \\ ! 14 & Plots the smooth Dirac delta and Heaviside step functions used by the ! code to calculate occupation numbers. \\ ! 15 & Output ${\bf L}$, ${\bf S}$ and ${\bf J}$ total expectation values. \\ ! 16 & Output ${\bf L}$, ${\bf S}$ and ${\bf J}$ expectation values for each ! $k$-point and state in {\tt kstlist}. \\ ! 20 & Band structure plot. \\ ! 21 & Band structure plot which includes total and angular momentum ! characters for every atom. \\ ! 22 & Band structure plot which includes $(l,m)$ character for every atom. \\ ! 23 & Band structure plot which includes spin character for every atom. \\ ! 25 & Compute the effective mass tensor at the $k$-point given by ! {\tt vklem}. \\ ! 31, 32, 33 & 1/2/3D charge density plot. \\ ! 41, 42, 43 & 1/2/3D exchange-correlation and Coulomb potential plots. \\ ! 51, 52, 53 & 1/2/3D electron localisation function (ELF) plot. \\ ! 61, 62, 63 & 1/2/3D wavefunction plot: ! $\left|\Psi_{i{\bf k}}({\bf r})\right|^2$. \\ ! 65 & Write the core wavefunctions to file for plotting. \\ ! 71, 72, 73 & 1/2/3D plot of magnetisation vector field, ! ${\bf m}({\bf r})$. \\ ! 81, 82, 83 & 1/2/3D plot of exchange-correlation magnetic vector field, ! ${\bf B}_{\rm xc}({\bf r})$. \\ ! 91, 92, 93 & 1/2/3D plot of $\nabla\cdot{\bf B}_{\rm xc}({\bf r})$. \\ ! 100 & 3D Fermi surface plot using the scalar product ! $p({\bf k})=\Pi_i(\epsilon_{i{\bf k}}-\epsilon_{\rm F})$. \\ ! 101 & 3D Fermi surface plot using separate bands (minus the Fermi ! energy). \\ ! 102 & 3D Fermi surface which can be plotted with XCrysDen. \\ ! 105 & 3D nesting function plot. \\ ! 110 & Calculation of M\"{o}ssbauer contact charge densities and magnetic ! fields at the nuclear sites. \\ ! 115 & Calculation of the electric field gradient (EFG) at the nuclear ! sites. \\ ! 120 & Output of the momentum matrix elements ! $\langle\Psi_{i{\bf k}}|-i\nabla|\Psi_{j{\bf k}}\rangle$. \\ ! 121 & Linear optical dielectric response tensor calculated within the random ! phase approximation (RPA) and in the $q\rightarrow 0$ limit, with no ! microscopic contributions. \\ ! 122 & Magneto optical Kerr effect (MOKE) angle. \\ ! 125 & Non-linear optical second harmonic generation. ! \end{tabularx} ! ! \begin{tabularx}{\textwidth}[h]{lX} ! 130 & Output matrix elements of the type ! $\langle\Psi_{i{\bf k+q}}|\exp[i({\bf G+q})\cdot{\bf r}]| ! \Psi_{j{\bf k}}\rangle$. \\ ! 135 & Output all wavefunctions expanded in the plane wave basis up to a ! cut-off defined by {\tt rgkmax}. \\ ! 140 & Energy loss near edge structure (ELNES). \\ ! 141, 142, 143 & 1/2/3D plot of the electric field ! ${\bf E}({\bf r})\equiv\nabla V_{\rm C}({\bf r})$. \\ ! 151, 152, 153 & 1/2/3D plot of ! ${\bf m}({\bf r})\times{\bf B}_{\rm xc}({\bf r})$. \\ ! 162 & Scanning-tunneling microscopy (STM) image. \\ ! 180 & Generate the RPA inverse dielectric function with local contributions ! and write it to file. \\ ! 185 & Write the Bethe-Salpeter equation (BSE) Hamiltonian to file. \\ ! 186 & Diagonalise the BSE Hamiltonian and write the eigenvectors and ! eigenvalues to file. \\ ! 187 & Output the BSE dielectric response function. \\ ! 190 & Write the atomic geometry to file for plotting with XCrySDen and ! V\_Sim. \\ ! 195 & Calculation of X-ray density structure factors. \\ ! 196 & Calculation of magnetic structure factors. \\ ! 200 & Calculation of phonon dynamical matrices on a $q$-point set defined by ! {\tt ngridq} using the supercell method. \\ ! 202 & Phonon dry run: just produce a set of empty DYN files. \\ ! 205 & Calculation of phonon dynamical matrices using density functional ! perturbation theory (DFPT). \\ ! 210 & Phonon density of states. \\ ! 220 & Phonon dispersion plot. \\ ! 230 & Phonon frequencies and eigenvectors for an arbitrary $q$-point. \\ ! 240, 241 & Generate the ${\bf q}$-dependent phonon linewidths and ! electron-phonon coupling constants and write them to file. \\ ! 245 & Phonon linewidths plot. \\ ! 250 & Eliashberg function $\alpha^2F(\omega)$, electron-phonon coupling ! constant $\lambda$, and the McMillan-Allen-Dynes critical temperature ! $T_c$. \\ ! 300 & Reduced density matrix functional theory (RDMFT) calculation. \\ ! 320 & Time-dependent density functional theory (TDDFT) calculation of the ! dielectric response function including microscopic contributions. \\ ! 330, 331 & TDDFT calculation of the spin-polarised response function for ! arbitrary ${\bf q}$-vectors. Task 331 writes the entire response function ! $\overleftrightarrow{\chi}({\bf G},{\bf G}',q,\omega)$ to file. \\ ! 400 & Calculation of tensor moments and corresponding DFT+$U$ Hartree-Fock ! energy contributions. \\ ! 450 & Generates a laser pulse in the form of a time-dependent vector ! potential ${\bf A}(t)$ and writes it to AFIELDT.OUT. \\ ! 460 & Time evolution run using TDDFT under the influence of ${\bf A}(t)$. ! \end{tabularx} ! ! \block{tau0atp}{ ! {\tt tau0atp} & the step size to be used for atomic position optimisation & ! real & $0.25$} ! The position of atom $\alpha$ is updated on step $m$ of a geometry ! optimisation run using ! $$ {\bf r}_{\alpha}^{m+1}={\bf r}_{\alpha}^m+\tau_{\alpha}^m ! \left({\bf F}_{\alpha}^m+{\bf F}_{\alpha}^{m-1}\right), $$ ! where $\tau_{\alpha}$ is set to {\tt tau0atp} for $m=0$, and incremented by ! the same amount if the atom is moving in the same direction between steps. ! If the direction changes then $\tau_{\alpha}$ is reset to {\tt tau0atp}. ! ! \block{tau0latv}{ ! {\tt tau0latv} & the step size to be used for lattice vector optimisation & ! real & $0.25$} ! This parameter is used for lattice vector optimisation in a procedure ! identical to that for atomic position optimisation. See {\tt tau0atp} and ! {\tt latvopt}. ! ! \block{tau0oep}{ ! {\tt tau0oep} & initial step length for the OEP iterative solver & real & ! $0.5$} ! The optimised effective potential is determined using an interative method ! [Phys. Rev. Lett. 98, 196405 (2007)]. This variable sets the step length as ! described in the article. See {\tt maxitoep}. ! ! \block{taufsm}{ ! {\tt taufsm} & the step size to be used when finding the effective magnetic ! field in fixed spin moment calculations & real & $0.01$} ! An effective magnetic field, ${\bf B}_{\rm FSM}$, is required for fixing the ! spin moment to a given value, ${\bf M}_{\rm FSM}$. This is found by adding a ! vector to the field which is proportional to the difference between the ! moment calculated in the $i$th self-consistent loop and the required moment: ! $$ {\bf B}_{\rm FSM}^{i+1}={\bf B}_{\rm FSM}^i+\lambda\left({\bf M}^i ! -{\bf M}_{\rm FSM}\right), $$ ! where $\lambda$ is proportional to {\tt taufsm}. See also {\tt fsmtype}, ! {\tt momfix} and {\tt spinpol}. ! ! \block{tempk}{ ! {\tt tempk} & temperature $T$ of the electronic system in kelvin & real & -} ! Assigning a value to this variable sets {\tt stype} to 3 (Fermi-Dirac) and ! the smearing width to $k_{\rm B}T$. ! ! \block{tforce}{ ! {\tt tforce} & set to {\tt .true.} if the force should be calculated at the ! end of the self-consistent cycle & logical & {\tt .false.}} ! This variable is automatically set to {\tt .true.} when performing geometry ! optimisation. ! ! \block{tefvit}{ ! {\tt tefvit} & set to {\tt .true.} if the first-variational eigenvalue ! equation should be solved iteratively & logical & {\tt .false.}} ! ! \block{tefvr}{ ! {\tt tefvr} & set to {\tt .true.} if a real symmetric eigenvalue solver ! should be used for crystals which have inversion symmetry & logical & ! {\tt .true.}} ! For crystals with inversion symmetry, the first-variational Hamiltonian and ! overlap matrices can be made real by using appropriate transformations. In ! this case, a real symmetric (instead of complex Hermitian) eigenvalue solver ! can be used. This makes the calculation about three times faster. ! ! \block{tm3fix}{ ! {\tt ntmfix} & number of tensor moments (TM) to be fixed & integer & 0 \\ ! \hline ! {\tt is(i)} & species number for entry $i$ & integer & - \\ ! {\tt ia(i)} & atom number & integer & - \\ ! {\tt l(i)} & $l$ of TM & integer & - \\ ! \hline ! {\tt (k, p, r, t)(i)} & indices for the 3-index TM & integer & - \\ ! \hline ! {\tt wkpr(t)(i)} & real TM value & real & - } ! This block sets up the fixed tensor moment (FTM). There should be as many ! TM entries as {\tt ntmfix}. See the routine {\tt tm3todm} for the tensor ! moment indexing convention. ! ! \block{tmwrite}{ ! {\tt tmwrite} & set to {\tt .true.} if the tensor moments and the ! corresponding decomposition of DFT+$U$ energy should be calculated ! at every loop of the self-consistent cycle & logical & {\tt .false.}} ! This variable is useful to check the convergence of the tensor moments in ! DFT+$U$ caculations. Alternatively, with {\tt task} equal to 400, one can ! calculate the tensor moments and corresponding DFT+$U$ energy contributions ! from a given density matrix and set of Slater parameters at the end of the ! self-consistent cycle. ! ! \block{tsediag}{ ! {\tt tsediag} & set to {\tt .true.} if the self-energy matrix should be ! treated as diagonal & logical & {\tt .true.}} ! When this variable is {\tt .true.}, the self-energy used in a $GW$ ! calculation $\Sigma_{ij}({\bf k},\omega)$ is taken to be diagonal in the ! Kohn-Sham state indices $i$ and $j$. When {\tt tsediag} is {\tt .false.}, ! the entire matrix is used. See also {\tt twdiag}. ! ! \block{tshift}{ ! {\tt tshift} & set to {\tt .true.} if the crystal can be shifted so that the ! atom closest to the origin is exactly at the origin & ! logical & {\tt .true.}} ! ! \block{tstime}{ ! {\tt tstime} & total simulation time of time evolution run & real & ! $1000.0$} ! See also {\tt dtimes}. ! ! \block{twdiag}{ ! {\tt twdiag} & set to {\tt .true.} if the screened interaction matrix should ! be treated as diagonal & logical & {\tt .false.}} ! When this variable is {\tt .true.}, the screened interaction used in a $GW$ ! calculation $W({\bf G},{\bf G}',{\bf q},\omega)$ is taken to be diagonal in ! the plane wave indices ${\bf G}$ and ${\bf G}'$. See also {\tt tsediag}. ! ! \block{vhmat}{ ! {\tt vhmat(1)} & matrix row 1 & real(3) & $(1.0,0.0,0.0)$ \\ ! \hline ! {\tt vhmat(2)} & matrix row 2 & real(3) & $(0.0,1.0,0.0)$ \\ ! \hline ! {\tt vhmat(3)} & matrix row 3 & real(3) & $(0.0,0.0,1.0)$} ! This is the transformation matrix $M$ applied to every vector $\bf H$ in the ! structure factor output files {\tt SFACRHO.OUT} and {\tt SFACMAG.OUT}. It is ! stored in the usual row-column setting and applied directly as ! ${\bf H}'=M{\bf H}$ to every vector but {\em only} when writing the output ! files. See also {\tt hmaxvr} and {\tt reduceh}. ! ! \block{vhighq}{ ! {\tt vhighq} & {\tt .true.} if a very high-quality parameter set should be ! used & logical & {\tt .false.}} ! Setting this to {\tt .true.} results in some default parameters being ! changed to ensure excellent convergence in most situations. See also ! {\tt highq}. ! ! \block{vklem}{ ! {\tt vklem} & the $k$-point in lattice coordinates at which to compute the ! effective mass tensors & real(3) & $(0.0,0.0,0.0)$} ! See {\tt deltaem} and {\tt ndspem}. ! ! \block{vkloff}{ ! {\tt vkloff } & the $k$-point offset vector in lattice coordinates & ! real(3) & $(0.0,0.0,0.0)$} ! See {\tt ngridk}. ! ! \block{vqlss}{ ! {\tt vqlss} & the ${\bf q}$-vector of the spin-spiral state in lattice ! coordinates & real(3) & $(0.0,0.0,0.0)$} ! Spin-spirals arise from spinor states assumed to be of the form ! $$ \Psi^{\bf q}_{\bf k}({\bf r})= ! \left( \begin{array}{c} ! U^{{\bf q}\uparrow}_{\bf k}({\bf r})e^{i({\bf k+q/2})\cdot{\bf r}} \\ ! U^{{\bf q}\downarrow}_{\bf k}({\bf r})e^{i({\bf k-q/2})\cdot{\bf r}} \\ ! \end{array} \right). $$ ! These are determined using a second-variational approach, and give rise to a ! magnetisation density of the form ! $$ {\bf m}^{\bf q}({\bf r})=(m_x({\bf r})\cos({\bf q \cdot r}), ! m_y({\bf r})\sin({\bf q \cdot r}),m_z({\bf r})), $$ ! where $m_x$, $m_y$ and $m_z$ are lattice periodic. See also {\tt spinsprl}. ! ! \block{wmaxgw}{ ! {\tt wmaxgw} & maximum Matsubara frequency for $GW$ calculations & real & ! $-5.0$} ! This defines the cut-off of the Matsubara frequencies on the imaginary ! axis for calculating the $GW$ self-energy and solving the Dyson equation. ! If this number is negative then the cut-off is taken to be ! $|{\tt wmaxgw}|\times\Delta\epsilon$, where $\Delta\epsilon$ is the ! difference between the largest and smallest Kohn-Sham valence eigenvalues. ! ! \block{wplot}{ ! {\tt nwplot} & number of frequency/energy points in the DOS or optics plot & ! integer & $500$ \\ ! {\tt ngrkf} & fine $k$-point grid size used for integrating functions in the ! Brillouin zone & integer & $100$ \\ ! {\tt nswplot} & level of smoothing applied to DOS/optics output & integer & ! $1$ \\ ! \hline ! {\tt wplot} & frequency/energy window for the DOS or optics plot & real(2) & ! $(-0.5,0.5)$} ! DOS and optics plots require integrals of the kind ! $$ g(\omega_i)=\frac{\Omega}{(2\pi)^3}\int_{\rm BZ} f({\bf k}) ! \delta(\omega_i-e({\bf k}))d{\bf k}. $$ ! These are calculated by first interpolating the functions $e({\bf k})$ and ! $f({\bf k})$ with the trilinear method on a much finer mesh whose size is ! determined by {\tt ngrkf}. Then the $\omega$-dependent histogram of the ! integrand is accumulated over the fine mesh. If the output function is noisy ! then either {\tt ngrkf} should be increased or {\tt nwplot} decreased. ! Alternatively, the output function can be artificially smoothed up to a ! level given by {\tt nswplot}. This is the number of successive 3-point ! averages to be applied to the function $g$. ! ! \block{wsfac}{ ! {\tt wsfac} & energy window to be used when calculating density or magnetic ! structure factors & real(2) & $(-10^6,10^6)$} ! Only those states with eigenvalues within this window will contribute to the ! density or magnetisation. See also {\tt hmaxvr} and {\tt vhmat}. ! ! \block{xctype}{ ! {\tt xctype} & integers defining the type of exchange-correlation functional ! to be used & integer(3) & $(3,0,0)$} ! Normally only the first value is used to define the functional type. The ! other value may be used for external libraries. Currently implemented are: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! $-n$ & Exact-exchange optimised effective potential (EXX-OEP) method with ! correlation energy and potential given by functional number $n$ \\ ! 1 & No exchange-correlation funtional ($E_{\rm xc}\equiv 0$) \\ ! 2 & LDA, Perdew-Zunger/Ceperley-Alder, {\it Phys. Rev. B} {\bf 23}, 5048 ! (1981) \\ ! 3 & LSDA, Perdew-Wang/Ceperley-Alder, {\it Phys. Rev. B} {\bf 45}, 13244 ! (1992) \\ ! 4 & LDA, X-alpha approximation, J. C. Slater, {\it Phys. Rev.} {\bf 81}, 385 ! (1951) \\ ! 5 & LSDA, von Barth-Hedin, {\it J. Phys. C} {\bf 5}, 1629 (1972) \\ ! 20 & GGA, Perdew-Burke-Ernzerhof, {\it Phys. Rev. Lett.} {\bf 77}, 3865 ! (1996) \\ ! 21 & GGA, Revised PBE, Zhang-Yang, {\it Phys. Rev. Lett.} {\bf 80}, 890 ! (1998) \\ ! 22 & GGA, PBEsol, Phys. Rev. Lett. 100, 136406 (2008) \\ ! 26 & GGA, Wu-Cohen exchange (WC06) with PBE correlation, {\it Phys. Rev. B} ! {\bf 73}, 235116 (2006) \\ ! 30 & GGA, Armiento-Mattsson (AM05) spin-unpolarised functional, ! {\it Phys. Rev. B} {\bf 72}, 085108 (2005) \\ ! 100 & Libxc functionals; the second and third values of {\tt xctype} define ! the exchange and correlation functionals in the Libxc library, ! respectively \\ ! \end{tabularx} ! ! \section{Contributing to Elk} ! Please bear in mind when writing code for the Elk project that it should be ! an exercise in physics and not software engineering. All code should ! therefore be kept as simple and concise as possible, and above all it should ! be easy for anyone to locate and follow the Fortran representation of the ! original mathematics. We would also appreciate the following conventions ! being adhered to: ! \begin{itemize} ! \item Strict Fortran 2008 should be used. Features which are marked as ! obsolescent in Fortran 2008 should be avoided. These include assigned ! format specifiers, labeled do-loops, computed goto statements and statement ! functions. ! \item Modules should be used in place of common blocks for declaring ! global variables. Use the existing modules to declare new global variables. ! \item Any code should be written in lower-case free form style, starting ! from column one. Try and keep the length of each line to fewer than 80 ! characters using the \& character for line continuation. ! \item Every function or subroutine, no matter how small, should be in its ! own file named {\tt routine.f90}, where {\tt routine} is the function or ! subroutine name. It is recommended that the routines are named so as to ! make their purpose apparent from the name alone. ! \item Use of {\tt implicit none} is mandatory. Remember also to define the ! {\tt intent} of any passed arguments. ! \item Local allocatable arrays must be deallocated on exit of the routine to ! prevent memory leakage. Use of automatic arrays should be limited to arrays ! of small size. ! \item Every function or subroutine must be documented with the Protex source ! code documentation system. This should include a short \LaTeX\ description ! of the algorithms and methods involved. Equations which need to be ! referenced should be labeled with {\tt routine\_1}, {\tt routine\_2}, etc. ! The authorship of each new piece of code or modification should be ! indicated in the {\tt REVISION HISTORY} part of the header. See the Protex ! documentation for details. ! \item Ensure as much as possible that a routine will terminate the program ! when given improper input instead of continuing with erroneous results. ! Specifically, functions should have a well-defined domain for which they ! return accurate results. Input outside that domain should result in an ! error message and termination. ! \item Report errors prior to termination with a short description, for ! example: ! \begin{verbatim} ! write(*,*) ! write(*,'("Error(readinput): natoms <= 0 : ",I8)') natoms(is) ! write(*,'(" for species ",I4)') is ! write(*,*) ! stop ! \end{verbatim} ! \item Wherever possible, real numbers outputted as ASCII data should be ! formatted with the {\tt G18.10} specifier. ! \item Avoid redundant or repeated code: check to see if the routine you need ! already exists, before writing a new one. ! \item All reading in of ASCII data should be done in the subroutine ! {\tt readinput}. For binary data, separate routines for reading and writing ! should be used (for example {\tt writestate} and {\tt readstate}). ! \item Input filenames should be in lowercase and have the extension ! {\tt .in} . All output filenames should be in uppercase with the extension ! {\tt .OUT} . ! \item All internal units should be atomic. Input and output units should be ! atomic by default and clearly stated otherwise. Rydbergs should not be used ! under any circumstances. ! \end{itemize} ! \subsection{Licensing} ! Routines which constitute the main part of the code are released under the ! GNU General Public License (GPL). Library routines are released under the ! less restrictive GNU Lesser General Public License (LGPL). Both licenses ! are contained in the file {\tt COPYING}. Any contribution to the code must ! be licensed at the authors' discretion under either the GPL or LGPL. ! Author(s) of the code retain the copyrights. Copyright and (L)GPL ! information must be included at the beginning of every file, and no code ! will be accepted without this. ! !EOI elk-9.2.12/src/PaxHeaders/factn.f900000644000000000000000000000012414536061313013643 xustar0027 mtime=1702388427.573502 30 atime=1702388426.366503787 27 ctime=1702388427.573502 elk-9.2.12/src/factn.f900000644002504400250440000000230214536061313016361 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. elemental real(8) function factn(n) implicit none ! arguments integer, intent(in) :: n ! local variables integer i real(8), parameter :: f(24)=[ & 1.d0, 2.d0, & 6.d0, 24.d0, & 120.d0, 720.d0, & 5040.d0, 40320.d0, & 362880.d0, 3628800.d0, & 39916800.d0, 479001600.d0, & 6227020800.d0, 87178291200.d0, & 1307674368000.d0, 20922789888000.d0, & 355687428096000.d0, 6402373705728000.d0, & 121645100408832000.d0, 2432902008176640000.d0, & 51090942171709440000.d0, 1124000727777607680000.d0, & 25852016738884976640000.d0, 620448401733239439360000.d0] if (n <= 1) then factn=1.d0 else if (n <= 24) then factn=f(n) else factn=f(24) do i=25,n factn=factn*dble(i) end do end if end function elk-9.2.12/src/PaxHeaders/factr.f900000644000000000000000000000013214536061313013646 xustar0030 mtime=1702388427.574501999 30 atime=1702388426.367503786 30 ctime=1702388427.574501999 elk-9.2.12/src/factr.f900000644002504400250440000000175014536061313016373 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: factr ! !INTERFACE: real(8) function factr(n,d) ! !INPUT/OUTPUT PARAMETERS: ! n : numerator (in,integer) ! d : denominator (in,integer) ! !DESCRIPTION: ! Returns the ratio $n!/d!$ for $n,d\ge 0$. Performs no under- or overflow ! checking. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n,d ! local variables integer i ! external functions real(8), external :: factn if (d == 1) then factr=factn(n) return end if if ((n < 0).or.(d < 0)) then factr=0.d0 return end if if (n < d) then factr=dble(n+1) do i=n+2,d factr=factr*dble(i) end do factr=1.d0/factr else if (n == d) then factr=1.d0 else factr=dble(d+1) do i=d+2,n factr=factr*dble(i) end do end if end function !EOC elk-9.2.12/src/PaxHeaders/factn2.f900000644000000000000000000000013214536061313013724 xustar0030 mtime=1702388427.575501997 30 atime=1702388426.369503783 30 ctime=1702388427.575501997 elk-9.2.12/src/factn2.f900000644002504400250440000000317414536061313016453 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. elemental real(8) function factn2(n) implicit none ! arguments integer, intent(in) :: n ! local variables integer i real(8), parameter :: f(38)=[ & 1.d0, 2.d0, & 3.d0, 8.d0, & 15.d0, 48.d0, & 105.d0, 384.d0, & 945.d0, 3840.d0, & 10395.d0, 46080.d0, & 135135.d0, 645120.d0, & 2027025.d0, 10321920.d0, & 34459425.d0, 185794560.d0, & 654729075.d0, 3715891200.d0, & 13749310575.d0, 81749606400.d0, & 316234143225.d0, 1961990553600.d0, & 7905853580625.d0, 51011754393600.d0, & 213458046676875.d0, 1428329123020800.d0, & 6190283353629375.d0, 42849873690624000.d0, & 191898783962510625.d0, 1371195958099968000.d0, & 6332659870762850625.d0, 46620662575398912000.d0, & 221643095476699771875.d0, 1678343852714360832000.d0, & 8200794532637891559375.d0, 63777066403145711616000.d0] if (n <= 1) then factn2=1.d0 else if (n <= 38) then factn2=f(n) else factn2=dble(n) do i=1,n/2-1 factn2=factn2*dble(n-2*i) end do end if end function elk-9.2.12/src/PaxHeaders/r3mm.f900000644000000000000000000000013214536061313013425 xustar0030 mtime=1702388427.576501995 30 atime=1702388426.370503781 30 ctime=1702388427.576501995 elk-9.2.12/src/r3mm.f900000644002504400250440000000210414536061313016144 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mm ! !INTERFACE: pure subroutine r3mm(a,b,c) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix 1 (in,real(3,3)) ! b : input matrix 2 (in,real(3,3)) ! c : output matrix (out,real(3,3)) ! !DESCRIPTION: ! Multiplies two real $3\times 3$ matrices. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3),b(3,3) real(8), intent(out) :: c(3,3) c(1,1)=a(1,1)*b(1,1)+a(1,2)*b(2,1)+a(1,3)*b(3,1) c(2,1)=a(2,1)*b(1,1)+a(2,2)*b(2,1)+a(2,3)*b(3,1) c(3,1)=a(3,1)*b(1,1)+a(3,2)*b(2,1)+a(3,3)*b(3,1) c(1,2)=a(1,1)*b(1,2)+a(1,2)*b(2,2)+a(1,3)*b(3,2) c(2,2)=a(2,1)*b(1,2)+a(2,2)*b(2,2)+a(2,3)*b(3,2) c(3,2)=a(3,1)*b(1,2)+a(3,2)*b(2,2)+a(3,3)*b(3,2) c(1,3)=a(1,1)*b(1,3)+a(1,2)*b(2,3)+a(1,3)*b(3,3) c(2,3)=a(2,1)*b(1,3)+a(2,2)*b(2,3)+a(2,3)*b(3,3) c(3,3)=a(3,1)*b(1,3)+a(3,2)*b(2,3)+a(3,3)*b(3,3) end subroutine !EOC elk-9.2.12/src/PaxHeaders/r3mtm.f900000644000000000000000000000013214536061313013611 xustar0030 mtime=1702388427.578501992 30 atime=1702388426.372503778 30 ctime=1702388427.578501992 elk-9.2.12/src/r3mtm.f900000644002504400250440000000214414536061313016334 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mtm ! !INTERFACE: pure subroutine r3mtm(a,b,c) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix 1 (in,real(3,3)) ! b : input matrix 2 (in,real(3,3)) ! c : output matrix (out,real(3,3)) ! !DESCRIPTION: ! Multiplies the transpose of one real $3\times 3$ matrix with another. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3),b(3,3) real(8), intent(out) :: c(3,3) c(1,1)=a(1,1)*b(1,1)+a(2,1)*b(2,1)+a(3,1)*b(3,1) c(2,1)=a(1,2)*b(1,1)+a(2,2)*b(2,1)+a(3,2)*b(3,1) c(3,1)=a(1,3)*b(1,1)+a(2,3)*b(2,1)+a(3,3)*b(3,1) c(1,2)=a(1,1)*b(1,2)+a(2,1)*b(2,2)+a(3,1)*b(3,2) c(2,2)=a(1,2)*b(1,2)+a(2,2)*b(2,2)+a(3,2)*b(3,2) c(3,2)=a(1,3)*b(1,2)+a(2,3)*b(2,2)+a(3,3)*b(3,2) c(1,3)=a(1,1)*b(1,3)+a(2,1)*b(2,3)+a(3,1)*b(3,3) c(2,3)=a(1,2)*b(1,3)+a(2,2)*b(2,3)+a(3,2)*b(3,3) c(3,3)=a(1,3)*b(1,3)+a(2,3)*b(2,3)+a(3,3)*b(3,3) end subroutine !EOC elk-9.2.12/src/PaxHeaders/r3mmt.f900000644000000000000000000000013214536061313013611 xustar0030 mtime=1702388427.579501991 30 atime=1702388426.373503777 30 ctime=1702388427.579501991 elk-9.2.12/src/r3mmt.f900000644002504400250440000000212614536061313016334 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2003-2004 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mmt ! !INTERFACE: pure subroutine r3mmt(a,b,c) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix 1 (in,real(3,3)) ! b : input matrix 2 (in,real(3,3)) ! c : output matrix (out,real(3,3)) ! !DESCRIPTION: ! Multiplies a real matrix with the transpose of another. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3),b(3,3) real(8), intent(out) :: c(3,3) c(1,1)=a(1,1)*b(1,1)+a(1,2)*b(1,2)+a(1,3)*b(1,3) c(2,1)=a(2,1)*b(1,1)+a(2,2)*b(1,2)+a(2,3)*b(1,3) c(3,1)=a(3,1)*b(1,1)+a(3,2)*b(1,2)+a(3,3)*b(1,3) c(1,2)=a(1,1)*b(2,1)+a(1,2)*b(2,2)+a(1,3)*b(2,3) c(2,2)=a(2,1)*b(2,1)+a(2,2)*b(2,2)+a(2,3)*b(2,3) c(3,2)=a(3,1)*b(2,1)+a(3,2)*b(2,2)+a(3,3)*b(2,3) c(1,3)=a(1,1)*b(3,1)+a(1,2)*b(3,2)+a(1,3)*b(3,3) c(2,3)=a(2,1)*b(3,1)+a(2,2)*b(3,2)+a(2,3)*b(3,3) c(3,3)=a(3,1)*b(3,1)+a(3,2)*b(3,2)+a(3,3)*b(3,3) end subroutine !EOC elk-9.2.12/src/PaxHeaders/r3vo.f900000644000000000000000000000013014536061313013436 xustar0029 mtime=1702388427.58050199 30 atime=1702388426.374503775 29 ctime=1702388427.58050199 elk-9.2.12/src/r3vo.f900000644002504400250440000000076714536061313016174 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine r3vo(x,y) implicit none ! arguments real(8), intent(in) :: x(3) real(8), intent(inout) :: y(3) ! local variables real(8) t1,t2 ! orthogonalise the vector y with respect to x t1=x(1)**2+x(2)**2+x(3)**2 if (t1 < 1.d-8) return t2=(x(1)*y(1)+x(2)*y(2)+x(3)*y(3))/t1 y(:)=y(:)-t2*x(:) end subroutine elk-9.2.12/src/PaxHeaders/gcd.f900000644000000000000000000000013214536061313013304 xustar0030 mtime=1702388427.581501988 30 atime=1702388426.376503772 30 ctime=1702388427.581501988 elk-9.2.12/src/gcd.f900000644002504400250440000000156214536061313016032 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: gcd ! !INTERFACE: integer function gcd(x,y) ! !INPUT/OUTPUT PARAMETERS: ! x : first integer (in,integer) ! y : second integer (in,integer) ! !DESCRIPTION: ! Computes the greatest common divisor (GCD) of two integers using Euclid's ! algorithm. ! ! !REVISION HISTORY: ! Created September 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: x,y ! local variables integer a,b,c if ((x <= 0).or.(y <= 0)) then write(*,*) write(*,'("Error(gcd): x <= 0 or y <= 0 : ",2I8)') x,y write(*,*) stop end if if (x >= y) then a=x b=y else a=y b=x end if 10 continue c=mod(a,b) a=b b=c if (c > 0) goto 10 gcd=a end function !EOC elk-9.2.12/src/PaxHeaders/rfint.f900000644000000000000000000000013214536061313013671 xustar0030 mtime=1702388427.583501985 30 atime=1702388426.377503771 30 ctime=1702388427.583501985 elk-9.2.12/src/rfint.f900000644002504400250440000000120614536061313016412 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function rfint(rfmt,rfir) use modmain implicit none ! arguments real(8), intent(in) :: rfmt(npmtmax,natmtot),rfir(ngtot) ! local variables integer is,ias ! external functions real(8), external :: rfmtint ! interstitial contribution rfint=dot_product(rfir(:),cfunir(:)) rfint=rfint*omega/dble(ngtot) ! muffin-tin contribution do ias=1,natmtot is=idxis(ias) rfint=rfint+rfmtint(nrmt(is),nrmti(is),wrmt(:,is),rfmt(:,ias)) end do end function elk-9.2.12/src/PaxHeaders/symdmat.f900000644000000000000000000000013214536061313014225 xustar0030 mtime=1702388427.584501984 30 atime=1702388426.379503768 30 ctime=1702388427.584501984 elk-9.2.12/src/symdmat.f900000644002504400250440000000355014536061313016752 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine symdmat(lmax,ld,dmat) use modmain implicit none ! arguments integer, intent(in) :: lmax,ld complex(8), intent(inout) :: dmat(ld,nspinor,ld,nspinor,natmtot) ! local variables integer is,ia,ja,ias,jas integer isym,lspl,lspn,lmmax real(8) t1 ! automatic arrays logical done(natmmax) ! allocatable arrays complex(8), allocatable :: dm(:,:,:,:,:) lmmax=(lmax+1)**2 ! allocate local arrays allocate(dm(ld,nspinor,ld,nspinor,natmmax)) t1=1.d0/dble(nsymcrys) do is=1,nspecies ! make copy of the density matrices do ia=1,natoms(is) ias=idxas(ia,is) dm(1:lmmax,:,1:lmmax,:,ia)=dmat(1:lmmax,:,1:lmmax,:,ias) end do done(:)=.false. do ia=1,natoms(is) if (done(ia)) cycle ias=idxas(ia,is) dmat(:,:,:,:,ias)=0.d0 do isym=1,nsymcrys lspl=lsplsymc(isym) lspn=lspnsymc(isym) ! equivalent atom index (symmetry rotates atom ja into atom ia) ja=ieqatom(ia,is,isym) call rotdmat(symlatc(:,:,lspl),symlatc(:,:,lspn),lmax,nspinor,ld, & dm(:,:,:,:,ja),dmat(:,:,:,:,ias)) ! end loop over crystal symmetries end do ! normalise dmat(:,:,:,:,ias)=t1*dmat(:,:,:,:,ias) done(ia)=.true. ! rotate into equivalent atoms do isym=1,nsymcrys ja=ieqatom(ia,is,isym) if (.not.done(ja)) then jas=idxas(ja,is) ! inverse symmetry (which rotates atom ia into atom ja) lspl=isymlat(lsplsymc(isym)) lspn=isymlat(lspnsymc(isym)) dmat(:,:,:,:,jas)=0.d0 call rotdmat(symlatc(:,:,lspl),symlatc(:,:,lspn),lmax,nspinor,ld, & dmat(:,:,:,:,ias),dmat(:,:,:,:,jas)) done(ja)=.true. end if end do ! end loop over atoms and species end do end do deallocate(dm) end subroutine elk-9.2.12/src/PaxHeaders/axangsu2.f900000644000000000000000000000013214536061313014277 xustar0030 mtime=1702388427.585501982 30 atime=1702388426.380503766 30 ctime=1702388427.585501982 elk-9.2.12/src/axangsu2.f900000644002504400250440000000253014536061313017021 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: axangsu2 pure subroutine axangsu2(v,th,su2) ! !INPUT/OUTPUT PARAMETERS: ! v : rotation axis vector (in,real(3)) ! th : rotation angle (in,real) ! su2 : SU(2) representation of rotation (out,complex(2,2)) ! !DESCRIPTION: ! Finds the complex ${\rm SU}(2)$ representation of a rotation defined by an ! axis vector $\hat{\bf v}$ and angle $\theta$. The spinor rotation matrix is ! given explicitly by ! $$ R^{1/2}(\hat{\bf v},\theta)=I\cos\frac{\theta}{2} ! -i(\hat{\bf v}\cdot\vec{\sigma})\sin\frac{\theta}{2}. $$ ! ! !REVISION HISTORY: ! Created August 2007 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: v(3),th complex(8), intent(out) :: su2(2,2) ! local variables real(8) x,y,z,cs,sn,t1 x=v(1); y=v(2); z=v(3) t1=sqrt(x**2+y**2+z**2) ! return the identity matrix for a zero-length axis if (t1 < 1.d-8) then su2(1,1)=1.d0 su2(2,1)=0.d0 su2(1,2)=0.d0 su2(2,2)=1.d0 return end if ! normalise the vector t1=1.d0/t1 x=x*t1; y=y*t1; z=z*t1 cs=cos(0.5d0*th) sn=sin(0.5d0*th) su2(1,1)=cmplx(cs,-z*sn,8) su2(2,1)=cmplx(y*sn,-x*sn,8) su2(1,2)=cmplx(-y*sn,-x*sn,8) su2(2,2)=cmplx(cs,z*sn,8) end subroutine !EOC elk-9.2.12/src/PaxHeaders/gradzvcln.f900000644000000000000000000000013214536061313014541 xustar0030 mtime=1702388427.586501981 30 atime=1702388426.382503763 30 ctime=1702388427.586501981 elk-9.2.12/src/gradzvcln.f900000644002504400250440000000143214536061313017263 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gradzvcln(is,gzfmt) use modmain implicit none ! arguments integer, intent(in) :: is complex(8), intent(out) :: gzfmt(npmtmax,3) ! local variables integer nr,nri,iro,i0,i1 ! automatic arrays complex(8) zvclmt(npmtmax) nr=nrmt(is) nri=nrmti(is) iro=nri+1 ! convert nuclear Coulomb potential to complex spherical harmonics expansion zvclmt(1:npmt(is))=0.d0 i1=lmmaxi*(nri-1)+1 zvclmt(1:i1:lmmaxi)=vcln(1:nri,is) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zvclmt(i0:i1:lmmaxo)=vcln(iro:nr,is) ! compute the gradient of the potential call gradzfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),zvclmt,npmtmax,gzfmt) end subroutine elk-9.2.12/src/PaxHeaders/gentpmae.f900000644000000000000000000000013214536061313014347 xustar0030 mtime=1702388427.588501978 30 atime=1702388426.383503762 30 ctime=1702388427.588501978 elk-9.2.12/src/gentpmae.f900000644002504400250440000000355214536061313017076 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gentpmae use modmain implicit none ! local variables integer na,n,i1,i2,i3,i integer isym,lspl real(8) v1(3),v2(3),t1 ! allocatable arrays real(8), allocatable :: vp(:,:) if (allocated(tpmae)) deallocate(tpmae) select case(npmae0) case(4:) ! distribute points evenly on a sphere npmae=npmae0 allocate(tpmae(2,npmae)) call sphcover(npmae,tpmae) case(-4:-1) ! use symmetry reduced cardinal directions na=abs(npmae0) n=(2*na+1)**3 allocate(vp(3,n)) npmae=0 do i1=-na,na v1(1)=dble(i1) do i2=-na,na v1(2)=dble(i2) do i3=-na,na v1(3)=dble(i3) if ((i1 == 0).and.(i2 == 0).and.(i3 == 0)) cycle do isym=1,nsymcrys lspl=lsplsymc(isym) v2(:)=symlat(:,1,lspl)*v1(1) & +symlat(:,2,lspl)*v1(2) & +symlat(:,3,lspl)*v1(3) do i=1,npmae t1=abs(vp(1,i)-v2(1))+abs(vp(2,i)-v2(2))+abs(vp(3,i)-v2(3)) if (t1 < epslat) goto 10 end do end do npmae=npmae+1 vp(:,npmae)=v1(:) 10 continue end do end do end do ! convert vectors to spherical coordinates allocate(tpmae(2,npmae)) do i=1,npmae call sphcrd(vp(:,i),t1,tpmae(:,i)) end do deallocate(vp) case(2) ! use x- and z-directions npmae=2 allocate(tpmae(2,npmae)) tpmae(1,1)=pi/2.d0 tpmae(2,1)=0.d0 tpmae(1,2)=0.d0 tpmae(2,2)=0.d0 case(3) ! use x-, y- and z-directions npmae=3 allocate(tpmae(2,npmae)) tpmae(1,1)=pi/2.d0 tpmae(2,1)=0.d0 tpmae(1,2)=pi/2.d0 tpmae(2,2)=pi/2.d0 tpmae(1,3)=0.d0 tpmae(2,3)=0.d0 case default write(*,*) write(*,'("Error(gentpmae): invalid npmae : ",I8)') npmae0 write(*,*) stop end select end subroutine elk-9.2.12/src/PaxHeaders/zfcmtwr.f900000644000000000000000000000013214536061313014243 xustar0030 mtime=1702388427.589501976 30 atime=1702388426.385503759 30 ctime=1702388427.589501976 elk-9.2.12/src/zfcmtwr.f900000644002504400250440000000134714536061313016772 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine zfcmtwr(nr,nri,wr,zfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) complex(8), intent(inout) :: zfmt(*) ! local variables integer n,ir,i real(8) t1 i=1 if (lmaxi == 1) then do ir=1,nri zfmt(i:i+3)=(pi*wr(ir))*zfmt(i:i+3) i=i+4 end do else t1=fourpi/dble(lmmaxi) n=lmmaxi-1 do ir=1,nri zfmt(i:i+n)=(t1*wr(ir))*zfmt(i:i+n) i=i+lmmaxi end do end if t1=fourpi/dble(lmmaxo) n=lmmaxo-1 do ir=nri+1,nr zfmt(i:i+n)=(t1*wr(ir))*zfmt(i:i+n) i=i+lmmaxo end do end subroutine elk-9.2.12/src/PaxHeaders/cfcmtwr.f900000644000000000000000000000013214536061313014214 xustar0030 mtime=1702388427.590501975 30 atime=1702388426.387503756 30 ctime=1702388427.590501975 elk-9.2.12/src/cfcmtwr.f900000644002504400250440000000134714536061313016743 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine cfcmtwr(nr,nri,wr,cfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) complex(4), intent(inout) :: cfmt(*) ! local variables integer n,ir,i real(8) t1 i=1 if (lmaxi == 1) then do ir=1,nri cfmt(i:i+3)=(pi*wr(ir))*cfmt(i:i+3) i=i+4 end do else t1=fourpi/dble(lmmaxi) n=lmmaxi-1 do ir=1,nri cfmt(i:i+n)=(t1*wr(ir))*cfmt(i:i+n) i=i+lmmaxi end do end if t1=fourpi/dble(lmmaxo) n=lmmaxo-1 do ir=nri+1,nr cfmt(i:i+n)=(t1*wr(ir))*cfmt(i:i+n) i=i+lmmaxo end do end subroutine elk-9.2.12/src/PaxHeaders/projsbf.f900000644000000000000000000000013214536061313014214 xustar0030 mtime=1702388427.591501973 30 atime=1702388426.388503754 30 ctime=1702388427.591501973 elk-9.2.12/src/projsbf.f900000644002504400250440000000406214536061313016740 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine projsbf use modmain implicit none ! local variables integer idm,is,ias,np real(8) t1 ! allocatable arrays real(8), allocatable :: rfmt(:,:),rfir(:) real(8), allocatable :: grfmt(:,:,:),grfir(:,:) complex(8), allocatable :: zrhomt(:,:),zrhoir(:) complex(8), allocatable :: zvclmt(:,:),zvclir(:) allocate(rfmt(npmtmax,natmtot),rfir(ngtot)) allocate(grfmt(npmtmax,natmtot,3),grfir(ngtot,3)) allocate(zrhomt(npmtmax,natmtot),zrhoir(ngtot)) allocate(zvclmt(npmtmax,natmtot),zvclir(ngtot)) ! compute the divergence of B_xc rfmt(:,:)=0.d0 rfir(:)=0.d0 do idm=1,3 call gradrf(bxcmt(:,:,idm),bxcir(:,idm),grfmt,grfir) do ias=1,natmtot is=idxis(ias) np=npmt(is) rfmt(1:np,ias)=rfmt(1:np,ias)+grfmt(1:np,ias,idm) end do rfir(:)=rfir(:)+grfir(:,idm) end do ! convert real muffin-tin divergence to complex spherical harmonic expansion do ias=1,natmtot is=idxis(ias) call rtozfmt(nrmt(is),nrmti(is),rfmt(:,ias),zrhomt(:,ias)) end do ! store real interstitial divergence in a complex array zrhoir(:)=rfir(:) ! solve the complex Poisson's equation call genzvclmt(nrmt,nrmti,nrmtmax,rlmt,wprmt,npmtmax,zrhomt,zvclmt) call zpotcoul(nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gc,gclg,ngvec, & jlgrmt,ylmg,sfacg,zrhoir,npmtmax,zvclmt,zvclir) ! convert complex muffin-tin potential to real spherical harmonic expansion do ias=1,natmtot is=idxis(ias) call ztorfmt(nrmt(is),nrmti(is),zvclmt(:,ias),rfmt(:,ias)) end do ! store complex interstitial potential in real array rfir(:)=dble(zvclir(:)) ! compute the gradient call gradrf(rfmt,rfir,grfmt,grfir) ! add gradient over 4π to existing B_xc t1=1.d0/fourpi do idm=1,3 do ias=1,natmtot is=idxis(ias) np=npmt(is) bxcmt(1:np,ias,idm)=bxcmt(1:np,ias,idm)+t1*grfmt(1:np,ias,idm) end do end do bxcir(:,:)=bxcir(:,:)+t1*grfir(:,:) deallocate(rfmt,rfir,grfmt,grfir) deallocate(zrhomt,zrhoir,zvclmt,zvclir) end subroutine elk-9.2.12/src/PaxHeaders/gradzf.f900000644000000000000000000000013214536061313014024 xustar0030 mtime=1702388427.592501972 30 atime=1702388426.390503752 30 ctime=1702388427.592501972 elk-9.2.12/src/gradzf.f900000644002504400250440000000246014536061313016550 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gradzf(zfmt,zfir,gzfmt,gzfir) use modmain use modomp implicit none ! arguments complex(8), intent(in) :: zfmt(npmtmax,natmtot),zfir(ngtot) complex(8), intent(out) :: gzfmt(npmtmax,natmtot,3),gzfir(ngtot,3) ! local variables integer is,ias,ld,i integer ig,ifg,nthd complex(8) z1 ! allocatable arrays complex(8), allocatable :: zfft(:) ! muffin-tin gradient ld=npmtmax*natmtot call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call gradzfmt(nrmt(is),nrmti(is),rlmt(:,-1,is),wcrmt(:,:,is),zfmt(:,ias),ld, & gzfmt(1,ias,1)) end do !$OMP END PARALLEL DO call freethd(nthd) ! interstitial gradient allocate(zfft(ngtot)) zfft(:)=zfir(:) call zfftifc(3,ngridg,-1,zfft) call holdthd(3,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ig,ifg,z1) & !$OMP NUM_THREADS(nthd) do i=1,3 gzfir(:,i)=0.d0 do ig=1,ngvec ifg=igfft(ig) z1=zfft(ifg) gzfir(ifg,i)=vgc(i,ig)*cmplx(-aimag(z1),dble(z1),8) end do call zfftifc(3,ngridg,1,gzfir(:,i)) end do !$OMP END PARALLEL DO call freethd(nthd) deallocate(zfft) end subroutine elk-9.2.12/src/PaxHeaders/timesec.f900000644000000000000000000000013114536061313014177 xustar0030 mtime=1702388427.594501969 29 atime=1702388426.39150375 30 ctime=1702388427.594501969 elk-9.2.12/src/timesec.f900000644002504400250440000000122214536061313016717 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: timesec ! !INTERFACE: subroutine timesec(ts) ! !INPUT/OUTPUT PARAMETERS: ! ts : system time in seconds (out,real) ! !DESCRIPTION: ! Outputs the system time in seconds. ! ! !REVISION HISTORY: ! Created September 2010 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(out) :: ts ! local variables integer count,count_rate call system_clock(count=count,count_rate=count_rate) ts=dble(count)/dble(count_rate) end subroutine !EOC elk-9.2.12/src/PaxHeaders/zfmtftoc.f900000644000000000000000000000013214536061313014403 xustar0030 mtime=1702388427.595501967 30 atime=1702388426.393503747 30 ctime=1702388427.595501967 elk-9.2.12/src/zfmtftoc.f900000644002504400250440000000123514536061313017126 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine zfmtftoc(nrc,nrci,zfmt,zfcmt) use modmain implicit none ! arguments integer, intent(in) :: nrc,nrci complex(8), intent(in) :: zfmt(*) complex(8), intent(out) :: zfcmt(*) ! local variables integer irc,i,j,m,n i=1 j=1 m=lmmaxi*lradstp n=lmmaxi-1 do irc=1,nrci zfcmt(i:i+n)=zfmt(j:j+n) i=i+lmmaxi j=j+m end do j=j+(lradstp-1)*(lmmaxo-lmmaxi) m=lmmaxo*lradstp n=lmmaxo-1 do irc=nrci+1,nrc zfcmt(i:i+n)=zfmt(j:j+n) i=i+lmmaxo j=j+m end do end subroutine elk-9.2.12/src/PaxHeaders/ztorfmt.f900000644000000000000000000000013214536061313014254 xustar0030 mtime=1702388427.596501966 30 atime=1702388426.395503744 30 ctime=1702388427.596501966 elk-9.2.12/src/ztorfmt.f900000644002504400250440000000423314536061313017000 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine ztorfmt(nr,nri,zfmt,rfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri complex(8), intent(in) :: zfmt(*) real(8), intent(out) :: rfmt(*) ! local variables integer i call ztorflmn(lmaxi,nri,lmmaxi,zfmt,rfmt) i=lmmaxi*nri+1 call ztorflmn(lmaxo,nr-nri,lmmaxo,zfmt(i),rfmt(i)) return contains !BOP ! !ROUTINE: ztorflmn ! !INTERFACE: pure subroutine ztorflmn(lmax,n,ld,zflm,rflm) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum angular momentum (in,integer) ! n : number of functions to convert (in,integer) ! ld : leading dimension (in,integer) ! zflm : coefficients of complex spherical harmonic expansion ! (in,complex(ld,n)) ! rflm : coefficients of real spherical harmonic expansion (out,real(ld,n)) ! !DESCRIPTION: ! Converts a real function, $z_{lm}$, expanded in terms of complex spherical ! harmonics into a real spherical harmonic expansion, $r_{lm}$: ! $$ r_{lm}=\begin{cases}\frac{1}{\sqrt{2}}\Re(z_{lm}+(-1)^m z_{l-m}) & m>0 \\ ! \frac{1}{\sqrt{2}}\Im(-z_{lm}+(-1)^m z_{l-m}) & m<0 \\ ! \Re(z_{lm}) & m=0 \end{cases}\;. $$ ! See routine {\tt genrlm}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax,n,ld complex(8), intent(in) :: zflm(ld,n) real(8), intent(out) :: rflm(ld,n) ! local variables integer l,m,lm1,lm2 ! real constant 1/sqrt(2) real(8), parameter :: c1=0.7071067811865475244d0 lm1=0 do l=0,lmax lm2=lm1+2*(l+1) do m=-l,-1 lm1=lm1+1 lm2=lm2-1 if (mod(m,2) /= 0) then rflm(lm1,:)=-c1*(aimag(zflm(lm1,:))+aimag(zflm(lm2,:))) else rflm(lm1,:)=c1*(aimag(zflm(lm2,:))-aimag(zflm(lm1,:))) end if end do lm1=lm1+1 lm2=lm2-1 rflm(lm1,:)=dble(zflm(lm1,:)) do m=1,l lm1=lm1+1 lm2=lm2-1 if (mod(m,2) /= 0) then rflm(lm1,:)=c1*(dble(zflm(lm1,:))-dble(zflm(lm2,:))) else rflm(lm1,:)=c1*(dble(zflm(lm1,:))+dble(zflm(lm2,:))) end if end do end do end subroutine !EOC end subroutine elk-9.2.12/src/PaxHeaders/zfmtctof.f900000644000000000000000000000013214536061313014403 xustar0030 mtime=1702388427.597501964 30 atime=1702388426.396503743 30 ctime=1702388427.597501964 elk-9.2.12/src/zfmtctof.f900000644002504400250440000000432514536061313017131 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine zfmtctof(zfmt) use modmain use modomp implicit none ! arguments complex(8), intent(inout) :: zfmt(npmtmax,natmtot) ! local variables integer is,ias,lm integer nr,nri,nro,iro integer nrc,nrci,nrco,irco integer i0,i1,nthd ! automatic arrays real(8) fi1(nrcmtmax),fi2(nrcmtmax) real(8) fo1(nrmtmax),fo2(nrmtmax) complex(8) zfmt1(npcmtmax) if (lradstp == 1) return call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(zfmt1,fi1,fi2,fo1,fo2,is) & !$OMP PRIVATE(nr,nri,nro,iro) & !$OMP PRIVATE(nrc,nrci,nrco,irco) & !$OMP PRIVATE(lm,i0,i1) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) nro=nr-nri iro=nri+1 nrc=nrcmt(is) nrci=nrcmti(is) nrco=nrc-nrci irco=nrci+1 ! copy the input function zfmt1(1:npcmt(is))=zfmt(1:npcmt(is),ias) ! interpolate up to lmaxi over entire muffin-tin do lm=1,lmmaxi i1=lmmaxi*(nrci-1)+lm fi1(1:nrci)=dble(zfmt1(lm:i1:lmmaxi)) fi2(1:nrci)=aimag(zfmt1(lm:i1:lmmaxi)) i0=i1+lmmaxi i1=lmmaxo*(nrc-irco)+i0 fi1(irco:nrc)=dble(zfmt1(i0:i1:lmmaxo)) fi2(irco:nrc)=aimag(zfmt1(i0:i1:lmmaxo)) call rfinterp(nrc,rcmt(:,is),wcrcmt(:,:,is),fi1,nr,rlmt(:,1,is),fo1) call rfinterp(nrc,rcmt(:,is),wcrcmt(:,:,is),fi2,nr,rlmt(:,1,is),fo2) i1=lmmaxi*(nri-1)+lm zfmt(lm:i1:lmmaxi,ias)=cmplx(fo1(1:nri),fo2(1:nri),8) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zfmt(i0:i1:lmmaxo,ias)=cmplx(fo1(iro:nr),fo2(iro:nr),8) end do ! interpolate up to lmaxo on outer part of muffin-tin do lm=lmmaxi+1,lmmaxo i0=lmmaxi*nrci+lm i1=lmmaxo*(nrc-irco)+i0 fi1(irco:nrc)=dble(zfmt1(i0:i1:lmmaxo)) fi2(irco:nrc)=aimag(zfmt1(i0:i1:lmmaxo)) call rfinterp(nrco,rcmt(irco,is),wcrcmt(:,irco,is),fi1(irco),nro, & rsp(iro,is),fo1(iro)) call rfinterp(nrco,rcmt(irco,is),wcrcmt(:,irco,is),fi2(irco),nro, & rsp(iro,is),fo2(iro)) i0=lmmaxi*nri+lm i1=lmmaxo*(nr-iro)+i0 zfmt(i0:i1:lmmaxo,ias)=cmplx(fo1(iro:nr),fo2(iro:nr),8) end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/eveqnfvz.f900000644000000000000000000000013114536061313014412 xustar0030 mtime=1702388427.599501961 29 atime=1702388426.39850374 30 ctime=1702388427.599501961 elk-9.2.12/src/eveqnfvz.f900000644002504400250440000000262114536061313017136 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnfvz(nmatp,h,o,evalfv,evecfv) use modmain use modomp implicit none ! arguments integer, intent(in) :: nmatp complex(8), intent(in) :: h(*),o(*) real(8), intent(out) :: evalfv(nstfv) complex(8), intent(out) :: evecfv(nmatmax,nstfv) ! local variables integer m,info,nthd,nts real(8) vl,vu real(8) ts0,ts1 ! automatic arrays integer iwork(5*nmatp),ifail(nmatp) real(8) w(nmatp),rwork(7*nmatp) complex(8) work(2*nmatp) call timesec(ts0) ! enable MKL parallelism call holdthd(maxthdmkl,nthd) nts=mkl_set_num_threads_local(nthd) ! diagonalise the matrix call zhegvx(1,'V','I','U',nmatp,h,nmatp,o,nmatp,vl,vu,1,nstfv,evaltol,m,w, & evecfv,nmatmax,work,2*nmatp,rwork,iwork,ifail,info) nts=mkl_set_num_threads_local(0) call freethd(nthd) if (info /= 0) then write(*,*) write(*,'("Error(eveqnfvz): diagonalisation failed")') write(*,'(" ZHEGVX returned INFO = ",I8)') info if (info > nmatp) then write(*,'(" The leading minor of the overlap matrix of order ",I8)') & info-nmatp write(*,'(" is not positive definite")') write(*,'(" Order of overlap matrix : ",I8)') nmatp end if write(*,*) stop end if evalfv(1:nstfv)=w(1:nstfv) call timesec(ts1) !$OMP ATOMIC timefv=timefv+ts1-ts0 end subroutine elk-9.2.12/src/PaxHeaders/energynn.f900000644000000000000000000000013014536061313014372 xustar0029 mtime=1702388427.60050196 30 atime=1702388426.400503737 29 ctime=1702388427.60050196 elk-9.2.12/src/energynn.f900000644002504400250440000000225114536061313017116 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine energynn use modmain implicit none ! local variables integer is,ias,i integer nr,nri,ir real(8) t1 ! allocatable arrays complex(8), allocatable :: zvclmt(:,:),zvclir(:),zrhoir(:) allocate(zvclmt(npmtmax,natmtot)) ! generate the nuclear monopole potentials do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) zvclmt(1:npmt(is),ias)=0.d0 i=1 do ir=1,nri zvclmt(i,ias)=vcln(ir,is) i=i+lmmaxi end do do ir=nri+1,nr zvclmt(i,ias)=vcln(ir,is) i=i+lmmaxo end do end do allocate(zrhoir(ngtot),zvclir(ngtot)) ! set the interstitial density to zero zrhoir(:)=0.d0 ! solve the complex Poisson's equation call zpotcoul(nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gc,gclg,ngvec, & jlgrmt,ylmg,sfacg,zrhoir,npmtmax,zvclmt,zvclir) ! compute the nuclear-nuclear energy engynn=0.d0 do ias=1,natmtot is=idxis(ias) t1=(dble(zvclmt(1,ias))-vcln(1,is))*y00 engynn=engynn+spzn(is)*t1 end do engynn=0.5d0*engynn deallocate(zvclmt,zvclir,zrhoir) end subroutine elk-9.2.12/src/PaxHeaders/gaunt.f900000644000000000000000000000013214536061313013665 xustar0030 mtime=1702388427.601501958 30 atime=1702388426.401503735 30 ctime=1702388427.601501958 elk-9.2.12/src/gaunt.f900000644002504400250440000000407314536061313016413 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: gaunt ! !INTERFACE: real(8) function gaunt(l1,l2,l3,m1,m2,m3) ! !INPUT/OUTPUT PARAMETERS: ! l1, l2, l3 : angular momentum quantum numbers (in,integer) ! m1, m2, m3 : magnetic quantum numbers (in,integer) ! !DESCRIPTION: ! Returns the Gaunt coefficient given by ! $$ \langle Y^{l_1}_{m_1}|Y^{l_2}_{m_2}|Y^{l_3}_{m_3} \rangle ! = (-1)^{m_1}\left[\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi} \right] ! ^{\frac{1}{2}} ! \begin{pmatrix} l_1 & l_2 & l_3 \\ 0 & 0 & 0 \end{pmatrix} ! \begin{pmatrix} l_1 & l_2 & l_3 \\ -m_1 & m_2 & m_3 \end{pmatrix}. $$ ! Suitable for $l_i$ less than 50. ! ! !REVISION HISTORY: ! Created November 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: l1,l2,l3 integer, intent(in) :: m1,m2,m3 ! local variables integer j,j1,j2,j3,jh real(8) t1 ! real constant 1/sqrt(4*pi) real(8), parameter :: c1=0.28209479177387814347d0 ! external functions real(8), external :: wigner3j,factn,factr if ((l1 < 0).or.(l2 < 0).or.(l3 < 0).or.(abs(m1) > l1).or.(abs(m2) > l2) & .or.(abs(m3) > l3)) then write(*,*) write(*,'("Error(gaunt): non-physical arguments :")') write(*,'("l1 = ",I8," l2 = ",I8," l3 = ",I8)') l1,l2,l3 write(*,'("m1 = ",I8," m2 = ",I8," m3 = ",I8)') m1,m2,m3 write(*,*) stop end if if ((l1 > 50).or.(l2 > 50).or.(l3 > 50)) then write(*,*) write(*,'("Error(gaunt): angular momenta out of range : ",3I8)') l1,l2,l3 write(*,*) stop end if if (m1-m2-m3 /= 0) then gaunt=0.d0 return end if j1=l2-l1+l3 j2=l1-l2+l3 j3=l1+l2-l3 if ((j1 < 0).or.(j2 < 0).or.(j3 < 0)) then gaunt=0.d0 return end if j=l1+l2+l3 if (mod(j,2) /= 0) then gaunt=0.d0 return end if jh=j/2 t1=sqrt(dble((2*l1+1)*(2*l2+1)*(2*l3+1))*factr(j1,j+1)*factn(j2)*factn(j3)) t1=t1*factr(jh,jh-l1)/(factn(jh-l2)*factn(jh-l3)) gaunt=t1*c1*wigner3j(l1,l2,l3,-m1,m2,m3) if (mod(m1+jh,2) /= 0) gaunt=-gaunt end function !EOC elk-9.2.12/src/PaxHeaders/potxcmt.f900000644000000000000000000000013214536061313014245 xustar0030 mtime=1702388427.603501956 30 atime=1702388426.403503732 30 ctime=1702388427.603501956 elk-9.2.12/src/potxcmt.f900000644002504400250440000002644714536061313017004 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potxcmt(tsh,ias,xctype_,rhomt_,magmt_,taumt_,exmt_,ecmt_,vxcmt_, & bxcmt_,wxcmt_) use modmain use modxcifc implicit none ! arguments logical, intent(in) :: tsh integer, intent(in) :: ias,xctype_(3) real(8), intent(in) :: rhomt_(npmtmax,natmtot),magmt_(npmtmax,natmtot,ndmag) real(8), intent(in) :: taumt_(npmtmax,natmtot,nspinor) real(8), intent(out) :: exmt_(npmtmax,natmtot),ecmt_(npmtmax,natmtot) real(8), intent(out) :: vxcmt_(npmtmax,natmtot),bxcmt_(npmtmax,natmtot,ndmag) real(8), intent(out) :: wxcmt_(npmtmax,natmtot) ! local variables integer ispn,idm,is integer nr,nri,n,i real(8) t0,t1,t2,t3,t4 ! allocatable arrays real(8), allocatable :: rho(:),rhoup(:),rhodn(:) real(8), allocatable :: gvrho(:,:),gvup(:,:),gvdn(:,:) real(8), allocatable :: grho(:),gup(:),gdn(:) real(8), allocatable :: g2rho(:),g2up(:),g2dn(:) real(8), allocatable :: g3rho(:),g3up(:),g3dn(:) real(8), allocatable :: grho2(:),gup2(:),gdn2(:),gupdn(:) real(8), allocatable :: ex(:),ec(:),vxc(:) real(8), allocatable :: vx(:),vxup(:),vxdn(:) real(8), allocatable :: vc(:),vcup(:),vcdn(:) real(8), allocatable :: mag(:,:),bxc(:,:),tau(:,:) real(8), allocatable :: dxdgr2(:),dxdgu2(:),dxdgd2(:),dxdgud(:) real(8), allocatable :: dcdgr2(:),dcdgu2(:),dcdgd2(:),dcdgud(:) real(8), allocatable :: dxdg2r(:),dxdg2u(:),dxdg2d(:) real(8), allocatable :: dcdg2r(:),dcdg2u(:),dcdg2d(:) real(8), allocatable :: dtdr(:),dtdru(:),dtdrd(:) real(8), allocatable :: wx(:),wxup(:),wxdn(:) real(8), allocatable :: wc(:),wcup(:),wcdn(:) is=idxis(ias) n=npmt(is) ! allocate local arrays allocate(rho(n),ex(n),ec(n),vxc(n)) if (any(xcgrad == [3,4,5])) allocate(tau(n,nspinor)) if (spinpol) then allocate(mag(n,3),bxc(n,3)) end if if (spinpol) then allocate(rhoup(n),rhodn(n)) allocate(vxup(n),vxdn(n),vcup(n),vcdn(n)) if (xcgrad == 1) then allocate(grho(n),gup(n),gdn(n)) allocate(g2up(n),g2dn(n)) allocate(g3rho(n),g3up(n),g3dn(n)) else if (xcgrad == 2) then allocate(g2up(n),g2dn(n)) allocate(gvup(n,3),gvdn(n,3)) allocate(gup2(n),gdn2(n),gupdn(n)) allocate(dxdgu2(n),dxdgd2(n),dxdgud(n)) allocate(dcdgu2(n),dcdgd2(n),dcdgud(n)) else if (any(xcgrad == [3,4,5])) then allocate(g2up(n),g2dn(n)) allocate(gvup(n,3),gvdn(n,3)) allocate(gup2(n),gdn2(n),gupdn(n)) allocate(dxdgu2(n),dxdgd2(n),dxdgud(n)) allocate(dcdgu2(n),dcdgd2(n),dcdgud(n)) allocate(dxdg2u(n),dxdg2d(n)) allocate(dcdg2u(n),dcdg2d(n)) allocate(dtdru(n),dtdrd(n)) allocate(wxup(n),wxdn(n),wcup(n),wcdn(n)) end if else allocate(vx(n),vc(n)) if (xcgrad == 1) then allocate(grho(n),g2rho(n),g3rho(n)) else if (xcgrad == 2) then allocate(g2rho(n),gvrho(n,3),grho2(n)) allocate(dxdgr2(n),dcdgr2(n)) else if (any(xcgrad == [3,4,5])) then allocate(g2rho(n),gvrho(n,3),grho2(n)) allocate(dxdgr2(n),dcdgr2(n)) allocate(dxdg2r(n),dcdg2r(n)) allocate(dtdr(n),wx(n),wc(n)) end if end if nr=nrmt(is) nri=nrmti(is) if (tsh) then ! convert the density to spherical coordinates call rbsht(nr,nri,rhomt_(:,ias),rho) else rho(1:n)=rhomt_(1:n,ias) end if ! convert tau to spherical coordinates if required if (any(xcgrad == [3,4,5])) then do ispn=1,nspinor if (tsh) then call rbsht(nr,nri,taumt_(:,ias,ispn),tau(:,ispn)) else tau(1:n,ispn)=taumt_(1:n,ias,ispn) end if end do end if if (spinpol) then !------------------------! ! spin-polarised ! !------------------------! ! magnetisation in spherical coordinates do idm=1,ndmag if (tsh) then call rbsht(nr,nri,magmt_(:,ias,idm),mag(:,idm)) else mag(1:n,idm)=magmt_(1:n,ias,idm) end if end do ! use scaled spin exchange-correlation if required if (tssxc) mag(:,1:ndmag)=mag(:,1:ndmag)*sxcscf if (ncmag) then ! non-collinear (use Kubler's trick) if (xcgrad == 0) then ! LSDA do i=1,n ! compute rhoup=(rho+|m|)/2 and rhodn=(rho-|m|)/2 t0=rho(i) t1=sqrt(mag(i,1)**2+mag(i,2)**2+mag(i,3)**2) rhoup(i)=0.5d0*(t0+t1) rhodn(i)=0.5d0*(t0-t1) end do else ! functionals which require gradients do i=1,n t0=rho(i) t1=sqrt(mag(i,1)**2+mag(i,2)**2+mag(i,3)**2+dncgga) rhoup(i)=0.5d0*(t0+t1) rhodn(i)=0.5d0*(t0-t1) end do end if else ! collinear do i=1,n ! compute rhoup=(rho+m_z)/2 and rhodn=(rho-m_z)/2 t0=rho(i) t1=mag(i,1) rhoup(i)=0.5d0*(t0+t1) rhodn(i)=0.5d0*(t0-t1) end do end if ! call the exchange-correlation interface routine if (xcgrad <= 0) then call xcifc(xctype_,n,tempa=swidth,rhoup=rhoup,rhodn=rhodn,ex=ex,ec=ec, & vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn) else if (xcgrad == 1) then call ggamt_sp_1(is,n,rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn) call xcifc(xctype_,n,rhoup=rhoup,rhodn=rhodn,grho=grho,gup=gup,gdn=gdn, & g2up=g2up,g2dn=g2dn,g3rho=g3rho,g3up=g3up,g3dn=g3dn,ex=ex,ec=ec,vxup=vxup,& vxdn=vxdn,vcup=vcup,vcdn=vcdn) else if (xcgrad == 2) then call ggamt_sp_2a(is,n,rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2,gupdn) call xcifc(xctype_,n,rhoup=rhoup,rhodn=rhodn,gup2=gup2,gdn2=gdn2, & gupdn=gupdn,ex=ex,ec=ec,vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn, & dxdgu2=dxdgu2,dxdgd2=dxdgd2,dxdgud=dxdgud,dcdgu2=dcdgu2,dcdgd2=dcdgd2, & dcdgud=dcdgud) call ggamt_sp_2b(is,n,g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu2, & dxdgd2,dxdgud,dcdgu2,dcdgd2,dcdgud) else if (any(xcgrad == [3,4,5])) then call ggamt_sp_2a(is,n,rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2,gupdn) ! enforce the von Weizsacker lower bound call k_vwlb(n,rhoup,gup2,tau(:,1)) call k_vwlb(n,rhodn,gdn2,tau(:,2)) call xcifc(xctype_,n,rhoup=rhoup,rhodn=rhodn,g2up=g2up,g2dn=g2dn,gup2=gup2,& gdn2=gdn2,gupdn=gupdn,tauup=tau(:,1),taudn=tau(:,2),ex=ex,ec=ec,vxup=vxup,& vxdn=vxdn,vcup=vcup,vcdn=vcdn,dxdgu2=dxdgu2,dxdgd2=dxdgd2,dxdgud=dxdgud, & dcdgu2=dcdgu2,dcdgd2=dcdgd2,dcdgud=dcdgud,dxdg2u=dxdg2u,dxdg2d=dxdg2d, & dcdg2u=dcdg2u,dcdg2d=dcdg2d,wxup=wxup,wxdn=wxdn,wcup=wcup,wcdn=wcdn) call ggamt_sp_2b(is,n,g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu2, & dxdgd2,dxdgud,dcdgu2,dcdgd2,dcdgud) if (xcgrad == 5) then call ggamt_5b(is,n,vxup,vcup,dxdg2u,dcdg2u) call ggamt_5b(is,n,vxdn,vcdn,dxdg2d,dcdg2d) end if ! determine δτ(r')/δρ(r) using an approximate kinetic energy functional if (xcgrad /= 3) then call xcifc(ktype,n,rhoup=rhoup,rhodn=rhodn,g2up=g2up,g2dn=g2dn,gup2=gup2,& gdn2=gdn2,tauup=tau(:,1),taudn=tau(:,2),dtdru=dtdru,dtdrd=dtdrd, & dtdgu2=dxdgu2,dtdgd2=dxdgd2,dtdg2u=dxdg2u,dtdg2d=dxdg2d,wxup=dcdgu2, & wxdn=dcdgd2) call ggamt_4(is,n,gvup,vxup,vcup,wxup,wcup,dtdru,dxdgu2) call ggamt_4(is,n,gvdn,vxdn,vcdn,wxdn,wcdn,dtdrd,dxdgd2) if (kgrad == 3) then call ggamt_5c(is,n,vxup,vcup,wxup,wcup,dxdg2u) call ggamt_5c(is,n,vxdn,vcdn,wxdn,wcdn,dxdg2d) end if end if wxcmt_(1:n,ias)=0.5d0*(wxup(1:n)+wxdn(1:n)+wcup(1:n)+wcdn(1:n)) if (tsh) call rfshtip(nr,nri,wxcmt_(:,ias)) end if ! hybrid functionals if (hybrid) then t1=1.d0-hybridc ! scale exchange part of energy ex(:)=t1*ex(:) ! scale exchange part of potential vxup(1:n)=t1*vxup(1:n) vxdn(1:n)=t1*vxdn(1:n) end if if (ncmag) then ! non-collinear: locally spin rotate the exchange-correlation potential do i=1,n t1=vxup(i)+vcup(i) t2=vxdn(i)+vcdn(i) vxc(i)=0.5d0*(t1+t2) ! determine the exchange-correlation magnetic field t3=0.5d0*(t1-t2) ! |m| = rhoup - rhodn t4=rhoup(i)-rhodn(i) if (abs(t4) > 1.d-8) t4=t3/t4 bxc(i,1:3)=mag(i,1:3)*t4 end do else ! collinear do i=1,n t1=vxup(i)+vcup(i) t2=vxdn(i)+vcdn(i) vxc(i)=0.5d0*(t1+t2) bxc(i,1)=0.5d0*(t1-t2) end do end if ! scale B_xc if required if (tssxc) bxc(:,1:ndmag)=bxc(:,1:ndmag)*sxcscf do idm=1,ndmag if (tsh) then ! convert field to spherical harmonics call rfsht(nr,nri,bxc(:,idm),bxcmt_(:,ias,idm)) else bxcmt_(1:n,ias,idm)=bxc(1:n,idm) end if end do else !--------------------------! ! spin-unpolarised ! !--------------------------! if (xcgrad <= 0) then call xcifc(xctype_,n,tempa=swidth,rho=rho,ex=ex,ec=ec,vx=vx,vc=vc) else if (xcgrad == 1) then call ggamt_1(tsh,is,n,rhomt_(:,ias),grho,g2rho,g3rho) call xcifc(xctype_,n,rho=rho,grho=grho,g2rho=g2rho,g3rho=g3rho,ex=ex,ec=ec,& vx=vx,vc=vc) else if (xcgrad == 2) then call ggamt_2a(tsh,is,n,rhomt_(:,ias),g2rho,gvrho,grho2) call xcifc(xctype_,n,rho=rho,grho2=grho2,ex=ex,ec=ec,vx=vx,vc=vc, & dxdgr2=dxdgr2,dcdgr2=dcdgr2) call ggamt_2b(is,n,g2rho,gvrho,vx,vc,dxdgr2,dcdgr2) else if (any(xcgrad == [3,4,5])) then call ggamt_2a(tsh,is,n,rhomt_(:,ias),g2rho,gvrho,grho2) ! enforce the von Weizsacker lower bound call k_vwlb(n,rho,grho2,tau) call xcifc(xctype_,n,rho=rho,g2rho=g2rho,grho2=grho2,tau=tau,ex=ex,ec=ec, & vx=vx,vc=vc,dxdgr2=dxdgr2,dcdgr2=dcdgr2,dxdg2r=dxdg2r,dcdg2r=dcdg2r,wx=wx,& wc=wc) call ggamt_2b(is,n,g2rho,gvrho,vx,vc,dxdgr2,dcdgr2) if (xcgrad == 5) then call ggamt_5b(is,n,vx,vc,dxdg2r,dcdg2r) end if ! determine δτ(r')/δρ(r) using an approximate kinetic energy functional if (xcgrad /= 3) then call xcifc(ktype,n,rho=rho,g2rho=g2rho,grho2=grho2,tau=tau,dtdr=dtdr, & dtdgr2=dxdgr2,dtdg2r=dxdg2r,wx=dcdgr2) call ggamt_4(is,n,gvrho,vx,vc,wx,wc,dtdr,dxdgr2) if (kgrad == 3) then call ggamt_5c(is,n,vx,vc,wx,wc,dxdg2r) end if end if wxcmt_(1:n,ias)=wx(1:n)+wc(1:n) if (tsh) call rfshtip(nr,nri,wxcmt_(:,ias)) end if ! hybrid functionals if (hybrid) then t1=1.d0-hybridc ! scale exchange part of energy ex(:)=t1*ex(:) ! scale exchange part of potential vxc(1:n)=t1*vx(1:n)+vc(1:n) else vxc(1:n)=vx(1:n)+vc(1:n) end if end if if (tsh) then ! convert exchange and correlation energy densities to spherical harmonics call rfsht(nr,nri,ex,exmt_(:,ias)) call rfsht(nr,nri,ec,ecmt_(:,ias)) ! convert exchange-correlation potential to spherical harmonics call rfsht(nr,nri,vxc,vxcmt_(:,ias)) else exmt_(1:n,ias)=ex(1:n) ecmt_(1:n,ias)=ec(1:n) vxcmt_(1:n,ias)=vxc(1:n) end if deallocate(rho,ex,ec,vxc) if (any(xcgrad == [3,4,5])) deallocate(tau) if (spinpol) then deallocate(mag,bxc) deallocate(rhoup,rhodn,vxup,vxdn,vcup,vcdn) if (xcgrad == 1) then deallocate(grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn) else if (xcgrad == 2) then deallocate(g2up,g2dn) deallocate(gvup,gvdn) deallocate(gup2,gdn2,gupdn) deallocate(dxdgu2,dxdgd2,dxdgud) deallocate(dcdgu2,dcdgd2,dcdgud) else if (any(xcgrad == [3,4,5])) then deallocate(g2up,g2dn) deallocate(gvup,gvdn) deallocate(gup2,gdn2,gupdn) deallocate(dxdgu2,dxdgd2,dxdgud) deallocate(dcdgu2,dcdgd2,dcdgud) deallocate(dxdg2u,dxdg2d) deallocate(dcdg2u,dcdg2d) deallocate(dtdru,dtdrd) deallocate(wxup,wxdn,wcup,wcdn) end if else deallocate(vx,vc) if (xcgrad == 1) then deallocate(grho,g2rho,g3rho) else if (xcgrad == 2) then deallocate(g2rho,gvrho,grho2) deallocate(dxdgr2,dcdgr2) else if (any(xcgrad == [3,4,5])) then deallocate(g2rho,gvrho,grho2) deallocate(dxdgr2,dcdgr2,dxdg2r,dcdg2r) deallocate(dtdr,wx,wc) end if end if end subroutine elk-9.2.12/src/PaxHeaders/sdelta_mp.f900000644000000000000000000000013214536061313014517 xustar0030 mtime=1702388427.604501954 30 atime=1702388426.405503729 30 ctime=1702388427.604501954 elk-9.2.12/src/sdelta_mp.f900000644002504400250440000000335614536061313017250 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sdelta_mp ! !INTERFACE: real(8) function sdelta_mp(n,x) ! !INPUT/OUTPUT PARAMETERS: ! n : order (in,integer) ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the smooth approximation to the Dirac delta function of order $N$ ! given by Methfessel and Paxton, {\it Phys. Rev. B} {\bf 40}, 3616 (1989), ! $$ \tilde\delta(x)=\sum_{i=0}^N \frac{(-1)^i}{i!4^n\sqrt\pi} H_{2i}(x) ! e^{-x^2},$$ ! where $H_j$ is the $j$th-order Hermite polynomial. This function has the ! property ! $$ \int_{-\infty}^{\infty}\tilde\delta(x)P(x)=P(0), $$ ! where $P(x)$ is any polynomial of degree $2N+1$ or less. The case $N=0$ ! corresponds to Gaussian smearing. This procedure is numerically stable ! and accurate to near machine precision for $N\le 10$. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x ! local variables integer i real(8), parameter :: sqpi=1.7724538509055160273d0 real(8) sm,t0,t1 ! external functions real(8), external :: factn,hermite if (n == 0) then sdelta_mp=exp(-x**2)/sqpi return end if if (n < 0) then write(*,*) write(*,'("Error(sdelta_mp): n < 0 : ",I8)') n write(*,*) stop end if if (n > 10) then write(*,*) write(*,'("Error(sdelta_mp): n out of range : ",I8)') n write(*,*) stop end if if (abs(x) > 12.d0) then sdelta_mp=0.d0 return end if t0=exp(-x**2)/sqpi sm=t0 do i=1,n t1=t0/(factn(i)*dble(4**i)) if (mod(i,2) /= 0) t1=-t1 sm=sm+t1*hermite(2*i,x) end do sdelta_mp=sm end function !EOC elk-9.2.12/src/PaxHeaders/stheta_mp.f900000644000000000000000000000013214536061313014533 xustar0030 mtime=1702388427.606501951 30 atime=1702388426.407503726 30 ctime=1702388427.606501951 elk-9.2.12/src/stheta_mp.f900000644002504400250440000000335214536061313017260 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: stheta_mp ! !INTERFACE: real(8) function stheta_mp(n,x) ! !INPUT/OUTPUT PARAMETERS: ! n : order (in,integer) ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the smooth approximation to the Heaviside step function of order ! $N$ given by Methfessel and Paxton, {\it Phys. Rev. B} {\bf 40}, 3616 ! (1989), ! $$ \tilde\Theta(x)=1-S_N(x) $$ ! where ! \begin{align*} ! S_N(x)&=S_0(x)+\sum_{i=1}^N \frac{(-1)^i}{i!4^n\sqrt\pi} H_{2i-1}(x) ! e^{-x^2},\\ ! S_0(x)&=\frac{1}{2}(1-{\rm erf}(x)) ! \end{align*} ! and $H_j$ is the $j$th-order Hermite polynomial. This procedure is ! numerically stable and accurate to near machine precision for $N\le 10$. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x ! local variables integer i real(8), parameter :: sqpi=1.7724538509055160273d0 real(8) sm,t0,t1 ! external functions real(8), external :: factn,hermite,erf if (n == 0) then stheta_mp=0.5d0*(1.d0+erf(x)) return end if if (n < 0) then write(*,*) write(*,'("Error(stheta_mp): n < 0 : ",I8)') n write(*,*) stop end if if (n > 10) then write(*,*) write(*,'("Error(stheta_mp): n out of range : ",I8)') n write(*,*) stop end if if (x < -12.d0) then stheta_mp=0.d0 return end if if (x > 12.d0) then stheta_mp=1.d0 return end if t0=-exp(-x**2)/sqpi sm=0.5d0*(1.d0+erf(x)) do i=1,n t1=t0/(factn(i)*dble(4**i)) if (mod(i,2) /= 0) t1=-t1 sm=sm+t1*hermite(2*i-1,x) end do stheta_mp=sm end function !EOC elk-9.2.12/src/PaxHeaders/sdelta_fd.f900000644000000000000000000000013214536061313014474 xustar0030 mtime=1702388427.607501949 30 atime=1702388426.408503725 30 ctime=1702388427.607501949 elk-9.2.12/src/sdelta_fd.f900000644002504400250440000000135214536061313017217 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sdelta_fd ! !INTERFACE: elemental real(8) function sdelta_fd(x) ! !INPUT/OUTPUT PARAMETERS: ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the Fermi-Dirac approximation to the Dirac delta function ! $$ \tilde\delta(x)=\frac{e^{-x}}{(1+e^{-x})^2}. $$ ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: x ! local variables real(8) t1 if (abs(x) > 50.d0) then sdelta_fd=0.d0 else t1=exp(-x) sdelta_fd=t1/((1.d0+t1)**2) end if end function !EOC elk-9.2.12/src/PaxHeaders/stheta_fd.f900000644000000000000000000000013214536061313014510 xustar0030 mtime=1702388427.608501948 30 atime=1702388426.410503722 30 ctime=1702388427.608501948 elk-9.2.12/src/stheta_fd.f900000644002504400250440000000134214536061313017232 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: stheta_fd ! !INTERFACE: elemental real(8) function stheta_fd(x) ! !INPUT/OUTPUT PARAMETERS: ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the Fermi-Dirac approximation to the Heaviside step function ! $$ \tilde\Theta(x)=\frac{1}{1+e^{-x}}. $$ ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: x if (x > 50.d0) then stheta_fd=1.d0 else if (x < -50.d0) then stheta_fd=0.d0 else stheta_fd=1.d0/(1.d0+exp(-x)) end if end function !EOC elk-9.2.12/src/PaxHeaders/writelsj.f900000644000000000000000000000013214536061313014412 xustar0030 mtime=1702388427.609501947 30 atime=1702388426.412503719 30 ctime=1702388427.609501947 elk-9.2.12/src/writelsj.f900000644002504400250440000001001114536061313017125 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma, C. Ambrosch-Draxl and ! F. Cricchio. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine writelsj use modmain use moddftu use modmpi use modtest implicit none ! local variables integer kst,ik,ist integer is,ia,ias real(8) xl(3),xs(3) ! allocatable arrays real(8), allocatable :: xj(:,:) complex(8), allocatable :: dmat(:,:,:,:,:) ! initialise universal variables call init0 call init1 ! read density and potentials from file call readstate ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! allocate local arrays allocate(xj(3,natmtot)) allocate(dmat(lmmaxo,nspinor,lmmaxo,nspinor,natmtot)) if (task == 15) then ! compute total L, S and J ! read in the occupation numbers do ik=1,nkpt call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! generate the density matrix in each muffin-tin call gendmat(.false.,.false.,0,lmaxo,lmmaxo,dmat) if (mp_mpi) then open(50,file='LSJ.OUT',form='FORMATTED',action='WRITE') write(50,*) write(50,'("Expectation values are computed only over the muffin-tin")') ! loop over species and atoms do is=1,nspecies write(50,*) write(50,'("Species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) ! calculate the expectation value of L and S call dmatls(dmat(:,:,:,:,ias),xl,xs) ! J = L + S xj(:,ias)=xl(:)+xs(:) write(50,'(" atom : ",I4)') ia write(50,'(" L : ",3G18.10)') xl(:) write(50,'(" S : ",3G18.10)') xs(:) write(50,'(" J : ",3G18.10)') xj(:,ias) ! end loop over atoms and species end do end do close(50) write(*,*) write(*,'("Info(writelsj):")') write(*,'(" muffin-tin L, S and J expectation values written to LSJ.OUT")') end if ! write J to test file call writetest(15,'total muffin-tin angular momentum',nv=3*natmtot,tol=1.d-3,& rva=xj) else ! compute L, S and J for all states in kstlist if (mp_mpi) then open(50,file='LSJ_KST.OUT',form='FORMATTED',action='WRITE') write(50,*) write(50,'("Expectation values are computed only over the muffin-tin")') end if do kst=1,nkstlist ik=kstlist(1,kst) ist=kstlist(2,kst) if ((ik <= 0).or.(ik > nkpt)) then write(*,*) write(*,'("Error(writelsj): k-point out of range : ",I8)') ik write(*,*) stop end if if ((ist <= 0).or.(ist > nstsv)) then write(*,*) write(*,'("Error(writelsj): state out of range : ",I8)') ist write(*,*) stop end if ! select a particular wavefunction using its occupancy occsv(:,:)=0.d0 occsv(ist,ik)=1.d0/wkpt(ik) ! no symmetrisation required nsymcrys=1 ! generate the density matrix in each muffin-tin call gendmat(.false.,.false.,0,lmaxo,lmmaxo,dmat) if (mp_mpi) then ! loop over species and atoms do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! calculate the expectation value of L and S call dmatls(dmat(:,:,:,:,ias),xl,xs) ! J = L + S xj(:,ias)=xl(:)+xs(:) write(50,*) write(50,'("k-point : ",I6,3G18.10)') ik,vkl(:,ik) write(50,'("state : ",I6)') ist write(50,'("species : ",I4," (",A,"), atom : ",I4)') is, & trim(spsymb(is)),ia write(50,'(" L : ",3G18.10)') xl(:) write(50,'(" S : ",3G18.10)') xs(:) write(50,'(" J : ",3G18.10)') xj(:,ias) end do end do end if end do if (mp_mpi) then close(50) write(*,*) write(*,'("Info(writelsj):")') write(*,'(" muffin-tin L, S and J expectation values for each k-point and & &state")') write(*,'(" in kstlist written to LSJ_KST.OUT")') end if ! write J to test file call writetest(16,'muffin-tin angular momentum for one state',nv=3*natmtot, & tol=1.d-3,rva=xj) end if deallocate(xj,dmat) end subroutine elk-9.2.12/src/PaxHeaders/eveqnzh.f900000644000000000000000000000013214536061313014227 xustar0030 mtime=1702388427.611501944 30 atime=1702388426.413503718 30 ctime=1702388427.611501944 elk-9.2.12/src/eveqnzh.f900000644002504400250440000000210514536061313016747 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnzh(n,ld,a,w) use modmain use modomp implicit none ! arguments integer, intent(in) :: n,ld complex(8), intent(inout) :: a(ld,n) real(8), intent(out) :: w(n) ! local variables integer lrwork,lwork,info integer nthd,nts ! automatic arrays integer iwork(5*n+3) ! allocatable arrays real(8), allocatable :: rwork(:) complex(8), allocatable :: work(:) ! use the divide-and-conquer LAPACK routine zheevd lrwork=2*n**2+5*n+1 lwork=n**2+2*n allocate(rwork(lrwork),work(lwork)) ! enable MKL parallelism call holdthd(maxthdmkl,nthd) nts=mkl_set_num_threads_local(nthd) call zheevd('V','U',n,a,ld,w,work,lwork,rwork,lrwork,iwork,5*n+3,info) nts=mkl_set_num_threads_local(0) call freethd(nthd) if (info /= 0) then write(*,*) write(*,'("Error(eveqnzh): diagonalisation failed")') write(*,'(" ZHEEVD returned INFO = ",I8)') info write(*,*) stop end if deallocate(rwork,work) end subroutine elk-9.2.12/src/PaxHeaders/gensmatk.f900000644000000000000000000000013214536061313014360 xustar0030 mtime=1702388427.612501942 30 atime=1702388426.415503714 30 ctime=1702388427.612501942 elk-9.2.12/src/gensmatk.f900000644002504400250440000000203514536061313017102 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gensmatk(evecsv,smat) use modmain implicit none ! arguments complex(8), intent(in) :: evecsv(nstsv,nstsv) complex(8), intent(out) :: smat(nstsv,nstsv,2,2) ! local variables integer ist,jst,n ! external functions complex(8), external :: zdotc n=nstfv+1 do jst=1,nstsv do ist=1,jst smat(ist,jst,1,1)=zdotc(nstfv,evecsv(1,ist),1,evecsv(1,jst),1) smat(ist,jst,2,1)=zdotc(nstfv,evecsv(n,ist),1,evecsv(1,jst),1) smat(ist,jst,1,2)=zdotc(nstfv,evecsv(1,ist),1,evecsv(n,jst),1) smat(ist,jst,2,2)=zdotc(nstfv,evecsv(n,ist),1,evecsv(n,jst),1) end do end do ! set the lower triangular parts do jst=1,nstsv do ist=1,jst-1 smat(jst,ist,1,1)=conjg(smat(ist,jst,1,1)) smat(jst,ist,2,1)=conjg(smat(ist,jst,1,2)) smat(jst,ist,1,2)=conjg(smat(ist,jst,2,1)) smat(jst,ist,2,2)=conjg(smat(ist,jst,2,2)) end do end do end subroutine elk-9.2.12/src/PaxHeaders/gensfacgp.f900000644000000000000000000000013214536061313014504 xustar0030 mtime=1702388427.613501941 30 atime=1702388426.417503711 30 ctime=1702388427.613501941 elk-9.2.12/src/gensfacgp.f900000644002504400250440000000247014536061313017231 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gensfacgp ! !INTERFACE: pure subroutine gensfacgp(ngp,vgpc,ld,sfacgp) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ngp : number of G+p-vectors (in,integer) ! vgpc : G+p-vectors in Cartesian coordinates (in,real(3,*)) ! ld : leading dimension (in,integer) ! sfacgp : structure factors of G+p-vectors (out,complex(ld,natmtot)) ! !DESCRIPTION: ! Generates the atomic structure factors for a set of ${\bf G+p}$-vectors: ! $$ S_{\alpha}({\bf G+p})=\exp(i({\bf G+p})\cdot{\bf r}_{\alpha}), $$ ! where ${\bf r}_{\alpha}$ is the position of atom $\alpha$. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ngp real(8), intent(in) :: vgpc(3,ngp) integer, intent(in) :: ld complex(8), intent(out) :: sfacgp(ld,natmtot) ! local variables integer is,ia,ias,igp real(8) v1,v2,v3,t1 do ias=1,natmtot is=idxis(ias) ia=idxia(ias) v1=atposc(1,ia,is); v2=atposc(2,ia,is); v3=atposc(3,ia,is) do igp=1,ngp t1=vgpc(1,igp)*v1+vgpc(2,igp)*v2+vgpc(3,igp)*v3 sfacgp(igp,ias)=cmplx(cos(t1),sin(t1),8) end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/rhomag.f900000644000000000000000000000013114536061313014023 xustar0030 mtime=1702388427.614501939 29 atime=1702388426.41850371 30 ctime=1702388427.614501939 elk-9.2.12/src/rhomag.f900000644002504400250440000000141214536061313016544 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhomag use modmain use modmpi use modomp implicit none ! local variables integer nthd ! calculate the valence density and magnetisation call rhomagv ! add the core density and magnetisation to the total call rhocore call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP SECTION ! calculate the charges call charge ! normalise the density call rhonorm !$OMP SECTION ! calculate the moments if (spinpol) call moment !$OMP END PARALLEL SECTIONS call freethd(nthd) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/wsplintp.f900000644000000000000000000000013214536061313014427 xustar0030 mtime=1702388427.615501938 30 atime=1702388426.420503707 30 ctime=1702388427.615501938 elk-9.2.12/src/wsplintp.f900000644002504400250440000000306414536061313017154 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wsplintp(n,x,wp) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x(n) real(8), intent(out) :: wp(4,n) ! local variables integer i real(8) f(4),t1,t2 ! external functions real(8), external :: polynm if (n < 4) then write(*,*) write(*,'("Error(wsplintp): n < 4 : ",I8)') n write(*,*) stop end if wp(:,1)=0.d0 f(1)=1.d0 f(2:)=0.d0 wp(1,2)=polynm(-1,4,x,f,x(2)) f(1)=0.d0 f(2)=1.d0 wp(2,2)=polynm(-1,4,x,f,x(2)) f(2)=0.d0 f(3)=1.d0 wp(3,2)=polynm(-1,4,x,f,x(2)) f(3)=0.d0 f(4)=1.d0 wp(4,2)=polynm(-1,4,x,f,x(2)) do i=3,n-1 f(1)=1.d0 f(2:)=0.d0 t1=polynm(-1,4,x(i-2),f,x(i-1)) t2=polynm(-1,4,x(i-2),f,x(i)) wp(1,i)=t2-t1 f(1)=0.d0 f(2)=1.d0 t1=polynm(-1,4,x(i-2),f,x(i-1)) t2=polynm(-1,4,x(i-2),f,x(i)) wp(2,i)=t2-t1 f(2)=0.d0 f(3)=1.d0 t1=polynm(-1,4,x(i-2),f,x(i-1)) t2=polynm(-1,4,x(i-2),f,x(i)) wp(3,i)=t2-t1 f(3)=0.d0 f(4)=1.d0 t1=polynm(-1,4,x(i-2),f,x(i-1)) t2=polynm(-1,4,x(i-2),f,x(i)) wp(4,i)=t2-t1 end do f(1)=1.d0 f(2:)=0.d0 t1=polynm(-1,4,x(n-3),f,x(n-1)) t2=polynm(-1,4,x(n-3),f,x(n)) wp(1,n)=t2-t1 f(1)=0.d0 f(2)=1.d0 t1=polynm(-1,4,x(n-3),f,x(n-1)) t2=polynm(-1,4,x(n-3),f,x(n)) wp(2,n)=t2-t1 f(2)=0.d0 f(3)=1.d0 t1=polynm(-1,4,x(n-3),f,x(n-1)) t2=polynm(-1,4,x(n-3),f,x(n)) wp(3,n)=t2-t1 f(3)=0.d0 f(4)=1.d0 t1=polynm(-1,4,x(n-3),f,x(n-1)) t2=polynm(-1,4,x(n-3),f,x(n)) wp(4,n)=t2-t1 end subroutine elk-9.2.12/src/PaxHeaders/checkmt.f900000644000000000000000000000013214536061313014165 xustar0030 mtime=1702388427.617501935 30 atime=1702388426.422503704 30 ctime=1702388427.617501935 elk-9.2.12/src/checkmt.f900000644002504400250440000000355414536061313016716 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: checkmt ! !INTERFACE: subroutine checkmt ! !USES: use modmain use modmpi use modvars ! !DESCRIPTION: ! Checks for muffin-tins which are too close together or intersecting. If any ! such muffin-tins are found then the radii of their associated atomic species ! are adjusted so that the minimum distance between their surfaces is ! {\tt rmtdelta}. ! ! !REVISION HISTORY: ! Created May 2003 (JKD) ! Modified, October 2011 (JKD) !EOP !BOC implicit none ! local variables integer is,js real(8) dmin,t1,t2 real(8) rmtp(nspecies) if (nspecies <= 0) return ! store previous muffin-tin radii rmtp(1:nspecies)=rmt(1:nspecies) ! restore original muffin-tin radii read from species files if required if (trmt0) rmt(1:nspecies)=rmt0(1:nspecies) 10 continue ! find the minimum distance between muffin-tin surfaces call mtdmin(is,js,dmin) ! adjust muffin-tin radii if required if (dmin < rmtdelta-1.d-4) then t1=rmt(is)+rmt(js) t2=(t1+dmin-rmtdelta)/t1 rmt(is)=rmt(is)*t2 if (is /= js) rmt(js)=rmt(js)*t2 goto 10 end if do is=1,nspecies if (rmt(is) < 0.1d0) then write(*,*) write(*,'("Error(checkmt): muffin-tin radius too small for species ",I4,& &" (",A,")")') is,trim(spsymb(is)) write(*,'(" Radius : ",G18.10)') rmt(is) write(*,*) stop end if ! report changed muffin-tin radii t1=abs(rmt(is)-rmtp(is)) if (t1 > 1.d-4) then if (mp_mpi) then write(*,'("Info(checkmt): changed muffin-tin radius of species ",I3,& &" (",A,") from ",F8.4," to ",F8.4)') is,trim(spsymb(is)),rmtp(is), & rmt(is) end if end if end do ! write to VARIABLES.OUT if (wrtvars) call writevars('rmt',nv=nspecies,rva=rmt) end subroutine !EOC elk-9.2.12/src/PaxHeaders/reciplat.f900000644000000000000000000000013214536061313014352 xustar0030 mtime=1702388427.618501933 30 atime=1702388426.424503701 30 ctime=1702388427.618501933 elk-9.2.12/src/reciplat.f900000644002504400250440000000336614536061313017104 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: reciplat ! !INTERFACE: subroutine reciplat(avec,bvec,omega,omegabz) ! !INPUT/OUTPUT PARAMETERS: ! avec : lattice vectors (in,real(3,3)) ! bvec : reciprocal lattice vectors (out,real(3,3)) ! omega : unit cell volume (out,real) ! omegabz : Brillouin zone volume (out,real) ! !DESCRIPTION: ! Generates the reciprocal lattice vectors from the real-space lattice vectors ! \begin{align*} ! {\bf b}_1&=\frac{2\pi}{s}({\bf a}_2\times{\bf a}_3)\\ ! {\bf b}_2&=\frac{2\pi}{s}({\bf a}_3\times{\bf a}_1)\\ ! {\bf b}_3&=\frac{2\pi}{s}({\bf a}_1\times{\bf a}_2) ! \end{align*} ! and finds the unit cell volume $\Omega=|s|$, where ! $s={\bf a}_1\cdot({\bf a}_2\times{\bf a}_3)$, and the Brillouin zone volume ! $\Omega_{\rm BZ}=(2\pi)^3/\Omega$. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: avec(3,3) real(8), intent(out) :: bvec(3,3) real(8), intent(out) :: omega,omegabz ! local variables real(8), parameter :: twopi=6.2831853071795864769d0 real(8) t1 call r3cross(avec(:,2),avec(:,3),bvec(:,1)) call r3cross(avec(:,3),avec(:,1),bvec(:,2)) call r3cross(avec(:,1),avec(:,2),bvec(:,3)) t1=avec(1,1)*bvec(1,1)+avec(2,1)*bvec(2,1)+avec(3,1)*bvec(3,1) ! unit cell volume omega=abs(t1) if (omega < 1.d-6) then write(*,*) write(*,'("Error(reciplat) omega too small : ",G18.10)') omega write(*,'(" Lattice vectors may be collinear")') write(*,*) stop end if bvec(:,:)=(twopi/t1)*bvec(:,:) ! Brillouin zone volume omegabz=(twopi**3)/omega end subroutine !EOC elk-9.2.12/src/PaxHeaders/gradrf.f900000644000000000000000000000013014536061313014012 xustar0030 mtime=1702388427.619501932 28 atime=1702388426.4255037 30 ctime=1702388427.619501932 elk-9.2.12/src/gradrf.f900000644002504400250440000000231514536061313016537 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gradrf(rfmt,rfir,grfmt,grfir) use modmain use modomp implicit none ! arguments real(8), intent(in) :: rfmt(npmtmax,natmtot),rfir(ngtot) real(8), intent(out) :: grfmt(npmtmax,natmtot,3),grfir(ngtot,3) ! local variables integer is,ias,ld,i integer ig,ifg,nthd complex(8) z1 ! allocatable arrays complex(8), allocatable :: zfft1(:),zfft2(:) ! muffin-tin gradient ld=npmtmax*natmtot call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call gradrfmt(nrmt(is),nrmti(is),rlmt(:,-1,is),wcrmt(:,:,is),rfmt(:,ias),ld, & grfmt(1,ias,1)) end do !$OMP END PARALLEL DO call freethd(nthd) ! interstitial gradient allocate(zfft1(ngtot),zfft2(ngtot)) zfft1(:)=rfir(:) call zfftifc(3,ngridg,-1,zfft1) do i=1,3 zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) z1=zfft1(ifg) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(z1),dble(z1),8) end do call zfftifc(3,ngridg,1,zfft2) grfir(:,i)=dble(zfft2(:)) end do deallocate(zfft1,zfft2) end subroutine elk-9.2.12/src/PaxHeaders/gencfrm.f900000644000000000000000000000013214536061313014170 xustar0030 mtime=1702388427.621501929 30 atime=1702388426.427503697 30 ctime=1702388427.621501929 elk-9.2.12/src/gencfrm.f900000644002504400250440000000265614536061313016723 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2010 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gencfrm(wfmt11,wfmt12,wfir11,wfir12,wfmt21,wfmt22,wfir21,wfir22, & crhomt,crhoir,cmagmt,cmagir) use modmain use modomp implicit none ! arguments complex(4), intent(in) :: wfmt11(npcmtmax,natmtot),wfmt12(npcmtmax,natmtot) complex(4), intent(in) :: wfir11(ngtot),wfir12(ngtot) complex(4), intent(in) :: wfmt21(npcmtmax,natmtot),wfmt22(npcmtmax,natmtot) complex(4), intent(in) :: wfir21(ngtot),wfir22(ngtot) complex(4), intent(out) :: crhomt(npcmtmax,natmtot),crhoir(ngtot) complex(4), intent(out) :: cmagmt(npcmtmax,natmtot,ndmag),cmagir(ngtot,ndmag) ! local variables integer ld,is,ias,nthd ld=npcmtmax*natmtot call holdthd(max(2,natmtot),nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(ias,is) & !$OMP NUM_THREADS(nthd) !-------------------------! ! muffin-tin part ! !-------------------------! !$OMP DO do ias=1,natmtot is=idxis(ias) call gencrm(npcmt(is),wfmt11(:,ias),wfmt12(:,ias),wfmt21(:,ias), & wfmt22(:,ias),crhomt(:,ias),ld,cmagmt(:,ias,1)) end do !$OMP END DO NOWAIT !---------------------------! ! interstitial part ! !---------------------------! !$OMP SINGLE call gencrm(ngtot,wfir11,wfir12,wfir21,wfir22,crhoir,ngtot,cmagir) !$OMP END SINGLE !$OMP END PARALLEL call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/mixadapt.f900000644000000000000000000000013214536061313014356 xustar0030 mtime=1702388427.622501927 30 atime=1702388426.429503694 30 ctime=1702388427.622501927 elk-9.2.12/src/mixadapt.f900000644002504400250440000000504114536061313017100 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: mixadapt ! !INTERFACE: pure subroutine mixadapt(iscl,beta0,betamax,n,nu,mu,beta,f,d) ! !INPUT/OUTPUT PARAMETERS: ! iscl : self-consistent loop number (in,integer) ! beta0 : mixing parameter (in,real) ! betamax : maximum mixing parameter (in,real) ! n : vector length (in,integer) ! nu : current output vector as well as the next input vector of the ! self-consistent loop (inout,real(n)) ! mu : used internally (inout,real(n)) ! beta : used internally (inout,real(n)) ! f : used internally (inout,real(n)) ! d : RMS difference between old and new output vectors (out,real) ! !DESCRIPTION: ! Given the input vector $\mu^i$ and output vector $\nu^i$ of the $i$th ! self-consistent loop, this routine generates the next input vector to the ! loop using an adaptive mixing scheme. The $j$th component of the output ! vector is mixed with a fraction of the same component of the input vector: ! $$ \mu^{i+1}_j=\beta^i_j\nu^i_j+(1-\beta^i_j)\mu^i_j, $$ ! where $\beta^{i+1}_j=\beta^i_j+\beta_0$ if $f^i_j\equiv\nu^i_j-\mu^i_j$ does ! not change sign between loops. If $f^i_j$ does change sign, then ! $\beta^{i+1}_j=(\beta^i_j+\beta_0)/2$. Note that the array {\tt nu} serves ! for both input and output, and the arrays {\tt mu}, {\tt beta} and {\tt f} ! are used internally and should not be changed between calls. The routine is ! thread-safe so long as each thread has its own independent work arrays. ! Complex arrays may be passed as real arrays with $n$ doubled. ! ! !REVISION HISTORY: ! Created March 2003 (JKD) ! Modified, September 2008 (JKD) ! Modified, August 2011 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: iscl real(8), intent(in) :: beta0,betamax integer, intent(in) :: n real(8), intent(inout) :: nu(n),mu(n) real(8), intent(inout) :: beta(n),f(n) real(8), intent(out) :: d ! local variables integer i real(8) t1 if (n <= 0) return ! initialise mixer if (iscl <= 0) then mu(:)=nu(:) f(:)=0.d0 beta(:)=beta0 d=1.d0 return end if d=0.d0 do i=1,n t1=nu(i)-mu(i) d=d+t1**2 if (t1*f(i) >= 0.d0) then beta(i)=beta(i)+beta0 if (beta(i) > betamax) beta(i)=betamax else beta(i)=0.5d0*(beta(i)+beta0) end if f(i)=t1 nu(i)=beta(i)*nu(i)+(1.d0-beta(i))*mu(i) mu(i)=nu(i) end do d=sqrt(d/dble(n)) end subroutine !EOC elk-9.2.12/src/PaxHeaders/zftrf.f900000644000000000000000000000013214536061313013702 xustar0030 mtime=1702388427.623501926 30 atime=1702388426.430503692 30 ctime=1702388427.623501926 elk-9.2.12/src/zftrf.f900000644002504400250440000001220014536061313016417 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 Alexey I. Baranov. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: zftrf ! !INTERFACE: subroutine zftrf(npv,ivp,vpc,rfmt,rfir,zfp) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! npv : number of P-vectors (in,integer) ! ivp : integer coordinates of the P-vectors (in,integer(3,npv)) ! vpc : P-vectors in Cartesian coordinates (in,real(3,npv)) ! rfmt : real muffin-tin function (in,real(npmtmax,natmtot)) ! rfir : real interstitial function (in,real(ngtot)) ! zfp : Fourier expansion coefficients of the real-space function ! (out,complex(npv)) ! !DESCRIPTION: ! Given a real function periodic in the unit cell, $f({\bf r})$, this routine ! calculates its complex Fourier expansion coefficients: ! $$ f({\bf P})=\frac{1}{\Omega}\int d^3r\,f({\bf r})\tilde{\Theta}({\bf r}) ! e^{-i{\bf P}\cdot{\bf r}} ! +\frac{4\pi}{\Omega}\sum_{\alpha}e^{-i{\bf P}\cdot{\bf R}_{\alpha}} ! \sum_{lm}(-i)^l Y_{lm}(\hat{\bf P}) ! \int_{0}^{R_{\alpha}}dr\,r^2 j_{l}(|{\bf P}|r)f_{lm}^{\alpha}(r), $$ ! where $\tilde{\Theta}$ is the smooth characteristic function of the ! interstitial region, $\Omega$ is the unit cell volume and $R_{\alpha}$ is ! the muffin-tin radius of atom $\alpha$. ! ! !REVISION HISTORY: ! Created July 2010 (Alexey I. Baranov) ! Modified, November 2010 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: npv,ivp(3,npv) real(8), intent(in) :: vpc(3,npv) real(8), intent(in) :: rfmt(npmtmax,natmtot),rfir(ngtot) complex(8), intent(out) :: zfp(npv) ! local variables integer is,ia,ias integer nrc,nrci,irco,irc integer lmax,l,m,lm,npci,i integer ip,ig,ifg real(8) p,t0,t1 complex(8) zsm,z1,z2,z3 ! automatic arrays real(8) jl(0:lmaxo,nrcmtmax),rfmt1(npcmtmax) complex(8) ylm(lmmaxo) ! allocatable arrays complex(8), allocatable :: zfft(:),zfmt(:,:) allocate(zfft(ngtot),zfmt(npcmtmax,natmtot)) ! zero the coefficients zfp(:)=0.d0 !---------------------------! ! interstitial part ! !---------------------------! ! Fourier transform to G-space zfft(:)=rfir(:) call zfftifc(3,ngridg,-1,zfft) ! find coefficients for all required input vectors do ip=1,npv if ((ivp(1,ip) >= intgv(1,1)).and.(ivp(1,ip) <= intgv(2,1)).and. & (ivp(2,ip) >= intgv(1,2)).and.(ivp(2,ip) <= intgv(2,2)).and. & (ivp(3,ip) >= intgv(1,3)).and.(ivp(3,ip) <= intgv(2,3))) then ig=ivgig(ivp(1,ip),ivp(2,ip),ivp(3,ip)) zfp(ip)=zfft(igfft(ig)) end if end do !-------------------------! ! muffin-tin part ! !-------------------------! ! convert function from real to complex spherical harmonic expansion on coarse ! radial mesh do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) call rfmtftoc(nrc,nrci,rfmt(:,ias),rfmt1) call rtozfmt(nrc,nrci,rfmt1,zfmt(:,ias)) end do ! remove continuation of interstitial function into muffin-tin do ig=1,ngtot ifg=igfft(ig) ! conjugate spherical harmonics Y_lm*(G) call genylmv(lmaxo,vgc(:,ig),ylm) ylm(:)=conjg(ylm(:)) do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) irco=nrci+1 npci=npcmti(is) ! generate spherical Bessel functions lmax=lmaxi do irc=1,nrc t1=gc(ig)*rcmt(irc,is) call sbessel(lmax,t1,jl(:,irc)) if (irc == nrci) lmax=lmaxo end do do ia=1,natoms(is) ias=idxas(ia,is) ! structure factor t1=dot_product(vgc(:,ig),atposc(:,ia,is)) z1=fourpi*zfft(ifg)*cmplx(cos(t1),sin(t1),8) lm=0 do l=0,lmaxi z2=z1*zil(mod(l,4)) do m=-l,l lm=lm+1 z3=z2*ylm(lm) i=lm do irc=1,nrci zfmt(i,ias)=zfmt(i,ias)-z3*jl(l,irc) i=i+lmmaxi end do end do end do lm=0 do l=0,lmaxo z2=z1*zil(mod(l,4)) do m=-l,l lm=lm+1 z3=z2*ylm(lm) i=npci+lm do irc=irco,nrc zfmt(i,ias)=zfmt(i,ias)-z3*jl(l,irc) i=i+lmmaxo end do end do end do end do end do end do t0=fourpi/omega ! loop over input P-vectors do ip=1,npv ! length of P-vector p=sqrt(vpc(1,ip)**2+vpc(2,ip)**2+vpc(3,ip)**2) ! spherical harmonics Y_lm(P) call genylmv(lmaxo,vpc(:,ip),ylm) do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) ! generate spherical Bessel functions lmax=lmaxi do irc=1,nrc t1=p*rcmt(irc,is) call sbessel(lmax,t1,jl(:,irc)) if (irc == nrci) lmax=lmaxo end do do ia=1,natoms(is) ias=idxas(ia,is) zsm=0.d0 lmax=lmaxi i=0 do irc=1,nrc i=i+1 z1=jl(0,irc)*zfmt(i,ias)*ylm(1) lm=1 do l=1,lmax lm=lm+1 i=i+1 z2=zfmt(i,ias)*ylm(lm) do m=1-l,l lm=lm+1 i=i+1 z2=z2+zfmt(i,ias)*ylm(lm) end do z1=z1+jl(l,irc)*zilc(mod(l,4))*z2 end do zsm=zsm+wrcmt(irc,is)*z1 if (irc == nrci) lmax=lmaxo end do ! conjugate structure factor t1=-dot_product(vpc(:,ip),atposc(:,ia,is)) z1=t0*cmplx(cos(t1),sin(t1),8) zfp(ip)=zfp(ip)+z1*zsm end do end do end do deallocate(zfft,zfmt) end subroutine ! EOC elk-9.2.12/src/PaxHeaders/sbessel.f900000644000000000000000000000013214536061313014207 xustar0030 mtime=1702388427.625501923 30 atime=1702388426.432503689 30 ctime=1702388427.625501923 elk-9.2.12/src/sbessel.f900000644002504400250440000000513114536061313016731 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sbessel ! !INTERFACE: subroutine sbessel(lmax,x,jl) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum order of Bessel function (in,integer) ! x : real argument (in,real) ! jl : array of returned values (out,real(0:lmax)) ! !DESCRIPTION: ! Computes the spherical Bessel functions of the first kind, $j_l(x)$, for ! real argument $x$ and $l=0\ldots l_{\rm max}$. The recurrence relation ! $$ j_{l+1}(x)=\frac{2l+1}{x}j_l(x)-j_{l-1}(x) $$ ! is used downwards for $x 50)) then write(*,*) write(*,'("Error(sbessel): lmax out of range : ",I8)') lmax write(*,*) stop end if if ((x < 0.d0).or.(x > 1.d5)) then write(*,*) write(*,'("Error(sbessel): x out of range : ",G18.10)') x write(*,*) stop end if ! treat x << 1 if (x < 1.d-8) then jl(0)=1.d0 t1=1.d0 do l=1,lmax t1=t1*x/dble(2*l+1) jl(l)=t1 end do return end if if (lmax == 0) then jl(0)=sin(x)/x return end if xi=1.d0/x if (x < lmax) then ! for x < lmax recurse down j1=1.d0 j0=0.d0 ! starting value for l above lmax lst=lmax+lmax/8+14 do l=lst,lmax+1,-1 t1=(2*l+1)*j1*xi-j0 j0=j1 j1=t1 ! check for overflow if (abs(j1) > rsc) then ! rescale t1=t1*rsci j0=j0*rsci j1=j1*rsci end if end do do l=lmax,0,-1 t1=(2*l+1)*j1*xi-j0 j0=j1 j1=t1 ! check for overflow if (abs(j1) > rsc) then ! rescale t1=t1*rsci j0=j0*rsci j1=j1*rsci jl(l+1:lmax)=jl(l+1:lmax)*rsci end if jl(l)=j0 end do ! rescaling constant t1=sin(x)/(x*j0) jl(:)=t1*jl(:) else ! for x >= lmax recurse up jl(0)=sin(x)*xi jl(1)=(jl(0)-cos(x))*xi if (lmax == 1) return j0=jl(0) j1=jl(1) do l=2,lmax t1=(2*l-1)*j1*xi-j0 j0=j1 j1=t1 jl(l)=j1 end do end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/gengclgq.f900000644000000000000000000000013214536061313014336 xustar0030 mtime=1702388427.626501921 30 atime=1702388426.434503686 30 ctime=1702388427.626501921 elk-9.2.12/src/gengclgq.f900000644002504400250440000000166514536061313017070 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine gengclgq(treg,iq,ngq,gqc,gclgq) use modmain implicit none ! arguments logical, intent(in) :: treg integer, intent(in) :: iq,ngq real(8), intent(in) :: gqc(ngq) real(8), intent(out) :: gclgq(ngq) ! local variables integer ig real(8) t1,t2 if (treg) then ! regularise 1/(G+q)^2 for G+q in the first Brillouin zone t1=sqrt(vqc(1,iq)**2+vqc(2,iq)**2+vqc(3,iq)**2) do ig=1,ngq t2=gqc(ig) if (abs(t1-t2) < epslat) then gclgq(ig)=gclq(iq) else if (t2 > epslat) then gclgq(ig)=fourpi/t2**2 else gclgq(ig)=0.d0 end if end do else ! no regularisation do ig=1,ngq t1=gqc(ig) if (t1 > epslat) then gclgq(ig)=fourpi/t1**2 else gclgq(ig)=0.d0 end if end do end if end subroutine elk-9.2.12/src/PaxHeaders/gencfun.f900000644000000000000000000000013214536061313014174 xustar0030 mtime=1702388427.628501918 30 atime=1702388426.435503685 30 ctime=1702388427.628501918 elk-9.2.12/src/gencfun.f900000644002504400250440000000403414536061313016717 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gencfun ! !INTERFACE: subroutine gencfun ! !USES: use modmain ! !DESCRIPTION: ! Generates the smooth characteristic function. This is the function which is ! 0 within the muffin-tins and 1 in the intersitial region and is constructed ! from radial step function form factors with $GG_{\rm max}\end{cases} $$ ! where $R_i$ is the muffin-tin radius of the $i$th species and $\Omega$ is ! the unit cell volume. Therefore the characteristic function in $G$-space is ! $$ \tilde{\Theta}({\bf G})=\delta_{G,0}-\sum_{ij}\exp(-i{\bf G}\cdot ! {\bf r}_{ij})\tilde{\Theta}_i(G), $$ ! where ${\bf r}_{ij}$ is the position of the $j$th atom of the $i$th species. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! local variables integer is,ia,ig,ifg real(8) v1,v2,v3,t1 ! allocatable arrays complex(8), allocatable :: zfft(:) allocate(zfft(ngtot)) zfft(1)=1.d0 zfft(2:)=0.d0 ! begin loop over species do is=1,nspecies ! loop over atoms do ia=1,natoms(is) v1=atposc(1,ia,is); v2=atposc(2,ia,is); v3=atposc(3,ia,is) do ig=1,ngtot ifg=igfft(ig) ! structure factor t1=vgc(1,ig)*v1+vgc(2,ig)*v2+vgc(3,ig)*v3 ! add to characteristic function in G-space zfft(ifg)=zfft(ifg)-ffacg(ig,is)*cmplx(cos(t1),-sin(t1),8) end do end do end do ! allocate global characteristic function arrays if (allocated(cfunig)) deallocate(cfunig) allocate(cfunig(ngvec)) if (allocated(cfunir)) deallocate(cfunir) allocate(cfunir(ngtot)) cfunig(1:ngvec)=zfft(igfft(1:ngvec)) ! Fourier transform to real-space call zfftifc(3,ngridg,1,zfft) cfunir(:)=dble(zfft(:)) deallocate(zfft) end subroutine !EOC elk-9.2.12/src/PaxHeaders/genstress.f900000644000000000000000000000013214536061313014564 xustar0030 mtime=1702388427.629501917 30 atime=1702388426.437503682 30 ctime=1702388427.629501917 elk-9.2.12/src/genstress.f900000644002504400250440000000253614536061313017314 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genstress use modmain use modmpi implicit none ! local variables integer i real(8) et0,t1 ! store original parameters avec0(:,:)=avec(:,:) tforce0=tforce tforce=.false. ! restore original symmetries call symmetry ! generate the strain tensors call genstrain ! zero the stress tensor components stress(:)=0.d0 ! run the ground-state calculation call gndstate ! check for stop signal if (tstop) goto 10 ! subsequent calculations will read in the potential from STATE.OUT trdstate=.true. ! store the total energy et0=engytot ! loop over strain tensors do istrain=1,nstrain if (mp_mpi) then write(*,'("Info(genstress): strain tensor ",I1," of ",I1)') istrain,nstrain end if ! restore the lattice vectors avec(:,:)=avec0(:,:) ! run the ground-state calculation call gndstate ! check for stop signal if (tstop) goto 10 ! compute the stress tensor component stress(istrain)=(engytot-et0)/deltast end do 10 continue istrain=0 ! compute the maximum stress magnitude over all lattice vectors stressmax=0.d0 do i=1,nstrain t1=abs(stress(i)) if (t1 > stressmax) stressmax=t1 end do ! restore original parameters avec(:,:)=avec0(:,:) tforce=tforce0 end subroutine elk-9.2.12/src/PaxHeaders/force.f900000644000000000000000000000013114536061313013644 xustar0030 mtime=1702388427.630501915 29 atime=1702388426.43850368 30 ctime=1702388427.630501915 elk-9.2.12/src/force.f900000644002504400250440000002017414536061313016373 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: force ! !INTERFACE: subroutine force ! !USES: use modmain use modtddft use modtest use modmpi use modomp ! !DESCRIPTION: ! Computes the various contributions to the atomic forces. In principle, the ! force acting on a nucleus is simply the gradient at that site of the ! classical electrostatic potential from the other nuclei and the electronic ! density. This is a result of the Hellmann-Feynman theorem. However because ! the basis set is dependent on the nuclear coordinates and is not complete, ! the Hellman-Feynman force is inaccurate and corrections to it are required. ! The first is the core correction which arises because the core wavefunctions ! were determined by neglecting the non-spherical parts of the Kohn-Sham ! potential $v_s$. Explicitly this is given by ! $$ {\bf F}_{\rm core}^{\alpha}=\int_{\rm MT_{\alpha}} v_s({\bf r}) ! \nabla\rho_{\rm core}^{\alpha}({\bf r})\,d{\bf r} $$ ! for atom $\alpha$. The second, which is the incomplete basis set (IBS) ! correction, is due to the position dependence of the APW functions, and is ! derived by considering the change in total energy if the eigenvector ! coefficients were fixed and the APW functions themselves were changed. This ! would result in changes to the first-variational Hamiltonian and overlap ! matrices given by ! \begin{align*} ! \delta H_{\bf G,G'}^{\alpha}&=i({\bf G-G'}) ! \left(H^{\alpha}_{\bf G+k,G'+k}-\frac{1}{2}({\bf G+k})\cdot({\bf G'+k}) ! \tilde{\Theta}_{\alpha}({\bf G-G'})e^{-i({\bf G-G'})\cdot{\bf r}_{\alpha}} ! \right)\\ ! \delta O_{\bf G,G'}^{\alpha}&=i({\bf G-G'})\left(O^{\alpha}_{\bf G+k,G'+k} ! -\tilde{\Theta}_{\alpha}({\bf G-G'})e^{-i({\bf G-G'})\cdot{\bf r}_{\alpha}} ! \right) ! \end{align*} ! where both ${\bf G}$ and ${\bf G'}$ run over the APW indices; ! $\tilde{\Theta}_{\alpha}$ is the form factor of the smooth step function for ! muffin-tin $\alpha$; and $H^{\alpha}$ and $O^{\alpha}$ are the muffin-tin ! Hamiltonian and overlap matrices, respectively. The APW-local-orbital part ! is given by ! \begin{align*} ! \delta H_{\bf G,G'}^{\alpha}&=i({\bf G+k})H^{\alpha}_{\bf G+k,G'+k}\\ ! \delta O_{\bf G,G'}^{\alpha}&=i({\bf G+k})O^{\alpha}_{\bf G+k,G'+k} ! \end{align*} ! where ${\bf G}$ runs over the APW indices and ${\bf G'}$ runs over the ! local-orbital indices. There is no contribution from the ! local-orbital-local-orbital part of the matrices. We can now write the IBS ! correction in terms of the basis of first-variational states as ! \begin{align*} ! {\bf F}_{ij}^{\alpha{\bf k}}=\sum_{\bf G,G'} ! b^{i{\bf k}*}_{\bf G}b^{j{\bf k}}_{\bf G'}\left( ! \delta H_{\bf G,G'}^{\alpha}-\epsilon_j\delta O_{\bf G,G'}^{\alpha}\right), ! \end{align*} ! where $b^{i{\bf k}}$ is the first-variational eigenvector. ! Finally, the ${\bf F}_{ij}^{\alpha{\bf k}}$ matrix elements can be ! multiplied by the second-variational coefficients, and contracted over all ! indices to obtain the IBS force: ! \begin{align*} ! {\bf F}_{\rm IBS}^{\alpha}=\sum_{\bf k}w_{\bf k}\sum_{l\sigma}n_{l{\bf k}} ! \sum_{ij}c_{\sigma i}^{l{\bf k}*}c_{\sigma j}^{l{\bf k}} ! {\bf F}_{ij}^{\alpha{\bf k}} ! +\int_{\rm MT_{\alpha}}v_s({\bf r})\nabla\left[\rho({\bf r}) ! -\rho^{\alpha}_{\rm core}({\bf r})\right]\,d{\bf r}, ! \end{align*} ! where $c^{l{\bf k}}$ are the second-variational coefficients, $w_{\bf k}$ ! are the $k$-point weights, $n_{l{\bf k}}$ are the occupation numbers. ! ! !REVISION HISTORY: ! Created January 2004 (JKD) ! Fixed problem with second-variational forces, May 2008 (JKD) !EOP !BOC implicit none ! local variables integer ik,idm,is,ias integer nr,nri,i,j,nthd real(8) fav(3),ca,t1,t2 real(8) ts0,ts1 ! automatic arrays real(8) grfmt(npmtmax,3) ! allocatable arrays real(8), allocatable :: rfmt(:,:) ! external functions real(8), external :: rfmtinp,rfmtint call timesec(ts0) ! coupling constant of the external A-field (-1/c) ca=-1.d0/solsc !---------------------------------! ! Hellmann-Feynman forces ! !---------------------------------! do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),vclmt(:,ias),npmtmax,grfmt) ! force from Coulomb potential forcehf(:,ias)=-spzn(is)*grfmt(1,:)*y00 ! force on nuclei from time-dependent E-field if (tafieldt) then do i=1,3 t1=(chgsmt(ias,i)+spzn(is))*efieldt(i) forcehf(i,ias)=forcehf(i,ias)+t1 end do end if end do ! symmetrise Hellmann-Feynman forces call symveca(forcehf) !----------------------------------! ! IBS correction to forces ! !----------------------------------! ! set the IBS forces to zero forceibs(:,:)=0.d0 ! compute k-point dependent contribution to the IBS forces call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call forcek(ik) end do !$OMP END PARALLEL DO call freethd(nthd) ! add IBS forces from each process and redistribute if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,forceibs,3*natmtot,mpi_double_precision, & mpi_sum,mpicom,ierror) end if if (tafieldt) then t2=afieldt(1,itimes)**2+afieldt(2,itimes)**2+afieldt(3,itimes)**2 t2=t2*ca**2 end if ! integral of Kohn-Sham potential with gradient of density do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rhomt(:,ias),npmtmax,grfmt) do i=1,3 t1=rfmtinp(nr,nri,wrmt(:,is),vsmt(:,ias),grfmt(:,i)) ! remove contribution from gauge correction to the current density if (tafieldt) then t1=t1-t2*rfmtint(nr,nri,wrmt(:,is),grfmt(:,i)) end if forceibs(i,ias)=forceibs(i,ias)+t1 end do end do ! integral of Kohn-Sham magnetic field with magnetisation gradient if (spinpol) then allocate(rfmt(npmtmax,natmtot)) do idm=1,ndmag do ias=1,natmtot is=idxis(ias) call rfsht(nrcmt(is),nrcmti(is),bsmt(:,ias,idm),rfmt(:,ias)) end do call rfmtctof(rfmt) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),magmt(:,ias,idm), & npmtmax,grfmt) do i=1,3 t1=rfmtinp(nr,nri,wrmt(:,is),rfmt(:,ias),grfmt(:,i)) forceibs(i,ias)=forceibs(i,ias)+t1 end do end do end do deallocate(rfmt) end if ! time-dependent vector potential times integral of the gradient of the current ! density over the muffin-tin if (tafieldt.and.tjr) then do j=1,3 t1=ca*afieldt(j,itimes) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),jrmt(:,ias,j),npmtmax, & grfmt) do i=1,3 t2=rfmtint(nr,nri,wrmt(:,is),grfmt(:,i)) forceibs(i,ias)=forceibs(i,ias)+t1*t2 end do end do end do end if ! symmetrise IBS forces call symveca(forceibs) ! total force on each atom do ias=1,natmtot forcetot(1:3,ias)=forcehf(1:3,ias)+forceibs(1:3,ias) end do ! symmetrise total forces call symveca(forcetot) ! remove the average force, if required, to prevent translation of atomic basis if (tfav0) then fav(:)=0.d0 do ias=1,natmtot fav(:)=fav(:)+forcetot(:,ias) end do fav(:)=fav(:)/dble(natmtot) do ias=1,natmtot forcetot(:,ias)=forcetot(:,ias)-fav(:) end do end if ! zero force on atoms with negative mass do ias=1,natmtot is=idxis(ias) if (spmass(is) <= 0.d0) forcetot(1:3,ias)=0.d0 end do ! compute maximum force magnitude over all atoms forcemax=0.d0 do ias=1,natmtot t1=sqrt(forcetot(1,ias)**2+forcetot(2,ias)**2+forcetot(3,ias)**2) if (t1 > forcemax) forcemax=t1 end do ! restrict maximum force magnitude if required if (maxforce >= 0.d0) then if (forcemax > maxforce) then t1=maxforce/forcemax forcetot(1:3,1:natmtot)=t1*forcetot(1:3,1:natmtot) end if end if call timesec(ts1) timefor=timefor+ts1-ts0 ! write total forces to test file call writetest(750,'total forces',nv=3*natmtot,tol=1.d-3,rva=forcetot) end subroutine !EOC elk-9.2.12/src/PaxHeaders/genvbmatk.f900000644000000000000000000000013214536061313014525 xustar0030 mtime=1702388427.632501913 30 atime=1702388426.440503678 30 ctime=1702388427.632501913 elk-9.2.12/src/genvbmatk.f900000644002504400250440000001411114536061313017245 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genvbmatk(vmt,vir,bmt,bir,ngp,igpig,wfmt,ld,wfgp,vbmat) use modmain use moddftu use modomp implicit none ! arguments ! the potential and field are multiplied by the radial integration weights in ! the muffin-tin and by the characteristic function in the interstitial region real(8), intent(in) :: vmt(npcmtmax,natmtot),vir(ngtot) real(8), intent(in) :: bmt(npcmtmax,natmtot,ndmag),bir(ngtot,ndmag) integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(4), intent(in) :: wfmt(npcmtmax,natmtot,nspinor,nstsv) integer, intent(in) :: ld complex(4), intent(in) :: wfgp(ld,nspinor,nstsv) complex(8), intent(out) :: vbmat(nstsv,nstsv) ! local variables integer ist,jst,ispn,jspn integer is,ias,nrc,nrci,nrco integer npc,npc2,ipco integer n,igp,nthd ! automatic arrays complex(4) wfmt1(npcmtmax,2),wfmt2(npcmtmax,2),c(ngkmax) ! allocatable arrays complex(4), allocatable :: wfir1(:,:),wfir2(:,:) ! external functions real(4), external :: sdot complex(4), external :: cdotc ! zero the upper triangular matrix elements do jst=1,nstsv vbmat(1:jst,jst)=0.d0 end do call holdthd(nstsv,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfmt1,wfmt2,wfir1,wfir2,c) & !$OMP PRIVATE(ias,is,nrc,nrci,nrco) & !$OMP PRIVATE(npc,npc2,ipco,ist,jst) & !$OMP PRIVATE(ispn,jspn,igp,n) & !$OMP NUM_THREADS(nthd) !-------------------------! ! muffin-tin part ! !-------------------------! do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) nrco=nrc-nrci npc=npcmt(is) npc2=npc*2 ipco=npcmti(is)+1 !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstsv ! apply local potential and magnetic field to spinor wavefunction if (ncmag) then ! non-collinear case call vbmk1(npc,vmt(:,ias),bmt(:,ias,1),bmt(:,ias,2),bmt(:,ias,3), & wfmt(:,ias,1,jst),wfmt(:,ias,2,jst),wfmt1,wfmt1(:,2)) else ! collinear case call vbmk2(npc,vmt(:,ias),bmt(:,ias,1),wfmt(:,ias,1,jst), & wfmt(:,ias,2,jst),wfmt1,wfmt1(:,2)) end if ! apply muffin-tin DFT+U potential matrix if required if (dftu /= 0) then if (any(tvmmt(0:lmaxdm,ias))) then ! multiply wavefunction by radial integration weights wfmt2(1:npc,1)=wfmt(1:npc,ias,1,jst) wfmt2(1:npc,2)=wfmt(1:npc,ias,2,jst) call cfcmtwr(nrc,nrci,wrcmt(:,is),wfmt2(1,1)) call cfcmtwr(nrc,nrci,wrcmt(:,is),wfmt2(1,2)) call cgemm('N','N',lmmaxi,nrci,lmmaxi,cone,vmatmti(1,1,1,1,ias), & lmmaxi,wfmt2(1,1),lmmaxi,cone,wfmt1(1,1),lmmaxi) call cgemm('N','N',lmmaxo,nrco,lmmaxo,cone,vmatmto(1,1,1,1,ias), & lmmaxo,wfmt2(ipco,1),lmmaxo,cone,wfmt1(ipco,1),lmmaxo) call cgemm('N','N',lmmaxi,nrci,lmmaxi,cone,vmatmti(1,1,2,2,ias), & lmmaxi,wfmt2(1,2),lmmaxi,cone,wfmt1(1,2),lmmaxi) call cgemm('N','N',lmmaxo,nrco,lmmaxo,cone,vmatmto(1,1,2,2,ias), & lmmaxo,wfmt2(ipco,2),lmmaxo,cone,wfmt1(ipco,2),lmmaxo) if (ncmag) then call cgemm('N','N',lmmaxi,nrci,lmmaxi,cone,vmatmti(1,1,1,2,ias), & lmmaxi,wfmt2(1,2),lmmaxi,cone,wfmt1(1,1),lmmaxi) call cgemm('N','N',lmmaxo,nrco,lmmaxo,cone,vmatmto(1,1,1,2,ias), & lmmaxo,wfmt2(ipco,2),lmmaxo,cone,wfmt1(ipco,1),lmmaxo) call cgemm('N','N',lmmaxi,nrci,lmmaxi,cone,vmatmti(1,1,2,1,ias), & lmmaxi,wfmt2(1,1),lmmaxi,cone,wfmt1(1,2),lmmaxi) call cgemm('N','N',lmmaxo,nrco,lmmaxo,cone,vmatmto(1,1,2,1,ias), & lmmaxo,wfmt2(ipco,1),lmmaxo,cone,wfmt1(ipco,2),lmmaxo) end if end if end if ! compute the inner products do ist=1,jst-1 vbmat(ist,jst)=vbmat(ist,jst) & +cdotc(npc,wfmt(1,ias,1,ist),1,wfmt1(1,1),1) & +cdotc(npc,wfmt(1,ias,2,ist),1,wfmt1(1,2),1) end do vbmat(jst,jst)=vbmat(jst,jst) & +sdot(npc2,wfmt(1,ias,1,jst),1,wfmt1(1,1),1) & +sdot(npc2,wfmt(1,ias,2,jst),1,wfmt1(1,2),1) end do !$OMP END DO end do !---------------------------! ! interstitial part ! !---------------------------! allocate(wfir1(ngtot,nspinor),wfir2(ngtot,nspinor)) !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstsv ! Fourier transform wavefunction to real-space do ispn=1,nspinor jspn=jspnfv(ispn) wfir1(:,ispn)=0.e0 do igp=1,ngp(jspn) wfir1(igfft(igpig(igp,jspn)),ispn)=wfgp(igp,ispn,jst) end do call cfftifc(3,ngridg,1,wfir1(:,ispn)) end do ! apply local potential and magnetic field to spinor wavefunction if (ncmag) then ! non-collinear case call vbmk1(ngtot,vir,bir,bir(:,2),bir(:,3),wfir1,wfir1(:,2),wfir2, & wfir2(:,2)) else ! collinear case call vbmk2(ngtot,vir,bir,wfir1,wfir1(:,2),wfir2,wfir2(:,2)) end if do ispn=1,nspinor jspn=jspnfv(ispn) n=ngp(jspn) ! Fourier transform to G+p-space call cfftifc(3,ngridg,-1,wfir2(:,ispn)) do igp=1,n c(igp)=wfir2(igfft(igpig(igp,jspn)),ispn) end do do ist=1,jst-1 vbmat(ist,jst)=vbmat(ist,jst)+cdotc(n,wfgp(1,ispn,ist),1,c,1) end do vbmat(jst,jst)=vbmat(jst,jst)+sdot(2*n,wfgp(1,ispn,jst),1,c,1) end do end do !$OMP END DO deallocate(wfir1,wfir2) !$OMP END PARALLEL call freethd(nthd) ! lower triangular part do ist=1,nstsv do jst=1,ist-1 vbmat(ist,jst)=conjg(vbmat(jst,ist)) end do end do return contains pure subroutine vbmk1(n,v,b1,b2,b3,wf11,wf12,wf21,wf22) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: v(n),b1(n),b2(n),b3(n) complex(4), intent(in) :: wf11(n),wf12(n) complex(4), intent(out) :: wf21(n),wf22(n) ! local variables integer i !$OMP SIMD SIMDLEN(8) do i=1,n wf21(i)=(v(i)+b3(i))*wf11(i)+cmplx(b1(i),-b2(i),8)*wf12(i) wf22(i)=(v(i)-b3(i))*wf12(i)+cmplx(b1(i),b2(i),8)*wf11(i) end do end subroutine pure subroutine vbmk2(n,v,b,wf11,wf12,wf21,wf22) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: v(n),b(n) complex(4), intent(in) :: wf11(n),wf12(n) complex(4), intent(out) :: wf21(n),wf22(n) ! local variables integer i !$OMP SIMD SIMDLEN(8) do i=1,n wf21(i)=(v(i)+b(i))*wf11(i) wf22(i)=(v(i)-b(i))*wf12(i) end do end subroutine end subroutine elk-9.2.12/src/PaxHeaders/forcek.f900000644000000000000000000000013214536061313014020 xustar0030 mtime=1702388427.633501911 30 atime=1702388426.441503676 30 ctime=1702388427.633501911 elk-9.2.12/src/forcek.f900000644002504400250440000001174114536061313016546 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: forcek ! !INTERFACE: subroutine forcek(ik) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! ik : reduced k-point number (in,integer) ! !DESCRIPTION: ! Computes the {\bf k}-dependent contribution to the incomplete basis set ! (IBS) force. See the calling routine {\tt force} for a full description. ! ! !REVISION HISTORY: ! Created June 2006 (JKD) ! Updated for spin-spiral case, May 2007 (Francesco Cricchio and JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ik ! local variables integer ispn0,ispn1,ispn,jspn integer n,nm,is,ias,ist,jst integer j1,j2,j3,ig,i,j,l,nthd real(8) v1,v2,v3,sm,t1 complex(8) z1,z2 ! automatic arrays real(8) evalfv(nstfv,nspnfv) complex(8) vh(nmatmax),vo(nmatmax) complex(8) ffv(nstfv,nstfv),y(nstfv) ! allocatable arrays integer, allocatable :: ijg(:,:) real(8), allocatable :: dp(:,:) complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:,:),evecsv(:,:) complex(8), allocatable :: h(:,:),o(:,:),dlh(:,:),dlo(:,:) ! external functions complex(8), external :: zdotc ! allocate local arrays allocate(ijg(nmatmax,nmatmax),dp(nmatmax,nmatmax)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(evecfv(nmatmax,nstfv,nspnfv)) allocate(h(nmatmax,nmatmax),o(nmatmax,nmatmax)) allocate(dlh(nmatmax,nmatmax),dlo(nmatmax,nmatmax)) ! get the eigenvalues/vectors from file call getevalfv(filext,ik,vkl(:,ik),evalfv) call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) if (tevecsv) then allocate(evecsv(nstsv,nstsv)) call getevecsv(filext,ik,vkl(:,ik),evecsv) end if ! loop over first-variational spin components do jspn=1,nspnfv if (spinsprl) then ispn0=jspn; ispn1=jspn else ispn0=1; ispn1=nspinor end if n=ngk(jspn,ik) nm=nmat(jspn,ik) do j=1,n ig=igkig(j,jspn,ik) j1=ivg(1,ig); j2=ivg(2,ig); j3=ivg(3,ig) v1=0.5d0*vgkc(1,j,jspn,ik) v2=0.5d0*vgkc(2,j,jspn,ik) v3=0.5d0*vgkc(3,j,jspn,ik) do i=1,j ig=igkig(i,jspn,ik) ijg(i,j)=ivgig(ivg(1,ig)-j1,ivg(2,ig)-j2,ivg(3,ig)-j3) dp(i,j)=vgkc(1,i,jspn,ik)*v1+vgkc(2,i,jspn,ik)*v2+vgkc(3,i,jspn,ik)*v3 end do end do ! find the matching coefficients call match(n,vgkc(:,:,jspn,ik),gkc(:,jspn,ik),sfacgk(:,:,jspn,ik),apwalm) ! zero the local-orbital-local-orbital contribution do j=n+1,nm dlh(n+1:j,j)=0.d0 dlo(n+1:j,j)=0.d0 end do ! loop over species and atoms do ias=1,natmtot is=idxis(ias) ! Hamiltonian and overlap matrices do j=1,nm h(1:j,j)=0.d0 end do call hmlaa(.false.,is,ias,n,apwalm(:,:,:,ias),nmatmax,h) call hmlalo(is,ias,n,apwalm(:,:,:,ias),nmatmax,h) do j=1,nm o(1:j,j)=0.d0 end do call olpaa(.false.,is,n,apwalm(:,:,:,ias),nmatmax,o) call olpalo(is,ias,n,apwalm(:,:,:,ias),nmatmax,o) ! loop over Cartesian directions do l=1,3 ! APW-APW contribution do j=1,n do i=1,j ig=ijg(i,j) t1=vgc(l,ig) z1=-ffacg(ig,is)*conjg(sfacg(ig,ias)) z2=t1*(dp(i,j)*z1+h(i,j)) dlh(i,j)=cmplx(-aimag(z2),dble(z2),8) z2=t1*(z1+o(i,j)) dlo(i,j)=cmplx(-aimag(z2),dble(z2),8) end do end do ! APW-local-orbital contribution do j=n+1,nm do i=1,n t1=vgkc(l,i,jspn,ik) z1=t1*h(i,j) dlh(i,j)=cmplx(-aimag(z1),dble(z1),8) z1=t1*o(i,j) dlo(i,j)=cmplx(-aimag(z1),dble(z1),8) end do end do ! compute the force matrix elements in the first-variational basis call holdthd(nstfv,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(vh,vo,t1,ist,z1,z2) & !$OMP NUM_THREADS(nthd) do jst=1,nstfv call zhemv('U',nm,zone,dlh,nmatmax,evecfv(:,jst,jspn),1,zzero,vh,1) call zhemv('U',nm,zone,dlo,nmatmax,evecfv(:,jst,jspn),1,zzero,vo,1) t1=evalfv(jst,jspn) do ist=1,nstfv z1=zdotc(nm,evecfv(:,ist,jspn),1,vh,1) z2=zdotc(nm,evecfv(:,ist,jspn),1,vo,1) ffv(ist,jst)=z1-t1*z2 end do end do !$OMP END PARALLEL DO call freethd(nthd) ! compute the force using the second-variational coefficients if required sm=0.d0 if (tevecsv) then ! spin-polarised case do j=1,nstsv do ispn=ispn0,ispn1 i=(ispn-1)*nstfv+1 call zgemv('N',nstfv,nstfv,zone,ffv,nstfv,evecsv(i,j),1,zzero,y,1) z1=zdotc(nstfv,evecsv(i,j),1,y,1) sm=sm+occsv(j,ik)*dble(z1) end do end do else ! spin-unpolarised case do j=1,nstsv sm=sm+occsv(j,ik)*dble(ffv(j,j)) end do end if !$OMP ATOMIC forceibs(l,ias)=forceibs(l,ias)+wkpt(ik)*sm ! end loop over Cartesian components end do ! end loop over atoms and species end do ! end loop over first-variational spins end do deallocate(ijg,dp,apwalm,evecfv) deallocate(h,o,dlh,dlo) if (tevecsv) deallocate(evecsv) end subroutine !EOC elk-9.2.12/src/PaxHeaders/writeepsinv.f900000644000000000000000000000013014536061313015124 xustar0029 mtime=1702388427.63450191 30 atime=1702388426.443503673 29 ctime=1702388427.63450191 elk-9.2.12/src/writeepsinv.f900000644002504400250440000000164614536061313017657 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeepsinv use modmain use modmpi implicit none ! initialise global variables call init0 call init1 call init2 call init3 ! read density and potentials from file call readstate ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! read the eigenvalues and occupation numbers from file call readevalsv call readoccsv ! generate the inverse dielectric function and write to file call epsinv if (mp_mpi) then write(*,*) write(*,'("Info(writeepsinv):")') write(*,'(" inverse RPA dielectric function, eps^(-1)(G,G'',q,w), written to & &EPSINV.OUT")') end if end subroutine elk-9.2.12/src/PaxHeaders/olprad.f900000644000000000000000000000013214536061313014030 xustar0030 mtime=1702388427.636501907 30 atime=1702388426.444503672 30 ctime=1702388427.636501907 elk-9.2.12/src/olprad.f900000644002504400250440000000360614536061313016557 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: olprad ! !INTERFACE: subroutine olprad ! !USES: use modmain use modomp ! !DESCRIPTION: ! Calculates the radial overlap integrals of the APW and local-orbital basis ! functions. In other words, for atom $\alpha$, it computes integrals of the ! form ! $$ o^{\alpha}_{qp}=\int_0^{R_i}u^{\alpha}_{q;l_p}(r)v^{\alpha}_p(r)r^2dr $$ ! and ! $$ o^{\alpha}_{pp'}=\int_0^{R_i}v^{\alpha}_p(r)v^{\alpha}_{p'}(r)r^2dr, ! \quad l_p=l_{p'} $$ ! where $u^{\alpha}_{q;l}$ is the $q$th APW radial function for angular ! momentum $l$; and $v^{\alpha}_p$ is the $p$th local-orbital radial function ! and has angular momentum $l_p$. ! ! !REVISION HISTORY: ! Created November 2003 (JKD) !EOP !BOC implicit none ! local variables integer is,ias,nr,nthd integer ilo,jlo,l,io ! loop over atoms call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is,nr,ilo,jlo,l,io) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) ! loop over local-orbitals do ilo=1,nlorb(is) l=lorbl(ilo,is) !-------------------------------------! ! APW-local-orbital integrals ! !-------------------------------------! do io=1,apword(l,is) oalo(io,ilo,ias)=sum(apwfr(1:nr,1,io,l,ias)*lofr(1:nr,1,ilo,ias) & *wrmt(1:nr,is)) end do !-----------------------------------------------! ! local-orbital-local-orbital integrals ! !-----------------------------------------------! do jlo=1,nlorb(is) if (lorbl(jlo,is) == l) then ololo(ilo,jlo,ias)=sum(lofr(1:nr,1,ilo,ias)*lofr(1:nr,1,jlo,ias) & *wrmt(1:nr,is)) end if end do end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine !EOC elk-9.2.12/src/PaxHeaders/polark.f900000644000000000000000000000013214536061313014037 xustar0030 mtime=1702388427.637501905 30 atime=1702388426.446503669 30 ctime=1702388427.637501905 elk-9.2.12/src/polark.f900000644002504400250440000000346614536061313016572 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine polark(ik,l,expqmt,pl) use modmain implicit none ! arguments integer, intent(in) :: ik,l complex(8), intent(in) :: expqmt(npcmtmax,natmtot) real(8), intent(inout) :: pl ! local variables integer jk,nst,ist real(8) vkql(3) complex(8) z1 ! automatic arrays integer idx(nstsv),ngp(nspnfv) ! allocatable arrays integer, allocatable :: igpig(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfir(:,:,:) complex(8), allocatable :: wfmtq(:,:,:,:),wfgkq(:,:,:) complex(8), allocatable :: oq(:,:) ! external functions complex(8), external :: zmdet ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! find the adjacent k-point in lattice coordinates vkql(:)=vkl(:,ik) vkql(l)=vkql(l)+1.d0/dble(ngridk(l)) ! count and index the occupied states nst=0 do ist=1,nstsv if (evalsv(ist,jk) > efermi) cycle nst=nst+1 idx(nst)=ist end do allocate(igpig(ngkmax,nspnfv)) ! generate the wavefunctions for occupied states at k allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfir(ngtot,nspinor,nst)) call genwfsvp(.false.,.false.,nst,idx,ngridg,igfft,vkl(:,ik),ngp,igpig,wfmt, & ngtot,wfir) ! generate the wavefunctions for occupied states at k+q allocate(wfmtq(npcmtmax,natmtot,nspinor,nst),wfgkq(ngkmax,nspinor,nst)) call genwfsvp(.false.,.true.,nst,idx,ngridg,igfft,vkql,ngp,igpig,wfmtq,ngkmax, & wfgkq) ! determine the overlap matrix for all occupied states allocate(oq(nst,nst)) call genolpq(nst,expqmt,ngp,igpig,wfmt,wfir,wfmtq,wfgkq,oq) ! compute the determinant of the matrix z1=zmdet(nst,oq) ! determine the phase of the determinant and add to total polarisation pl=pl+atan2(aimag(z1),dble(z1)) deallocate(igpig,wfmt,wfir,wfmtq,wfgkq,oq) end subroutine elk-9.2.12/src/PaxHeaders/zfmtinp.f900000644000000000000000000000013214536061313014236 xustar0030 mtime=1702388427.638501904 30 atime=1702388426.448503666 30 ctime=1702388427.638501904 elk-9.2.12/src/zfmtinp.f900000644002504400250440000000370014536061313016760 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: zfmtinp ! !INTERFACE: pure complex(8) function zfmtinp(nr,nri,wr,zfmt1,zfmt2) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of points on the inner part of the muffin-tin (in,integer) ! wr : weights for integration on radial mesh (in,real(nr)) ! zfmt1 : first complex muffin-tin function in spherical harmonics ! (in,complex(*)) ! zfmt2 : second complex muffin-tin function (in,complex(*)) ! !DESCRIPTION: ! Calculates the inner product of two complex fuctions in the muffin-tin. In ! other words, given two complex functions of the form ! $$ f({\bf r})=\sum_{l=0}^{l_{\rm max}}\sum_{m=-l}^{l}f_{lm}(r)Y_{lm} ! (\hat{\bf r}), $$ ! the function returns ! $$ I=\sum_{l=0}^{l_{\rm max}}\sum_{m=-l}^{l}\int f_{lm}^{1*}(r) ! f_{lm}^2(r)r^2\,dr\;. $$ ! ! !REVISION HISTORY: ! Created November 2003 (Sharma) ! Modified, September 2013 (JKD) ! Modified for packed functions, June 2016 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) complex(8), intent(in) :: zfmt1(*),zfmt2(*) ! local variables integer n,ir,i ! compute the dot-products for each radial point and integrate over r zfmtinp=0.d0 if (lmaxi == 1) then do ir=1,nri i=4*(ir-1)+1 zfmtinp=zfmtinp+wr(ir) & *(conjg(zfmt1(i))*zfmt2(i) & +conjg(zfmt1(i+1))*zfmt2(i+1) & +conjg(zfmt1(i+2))*zfmt2(i+2) & +conjg(zfmt1(i+3))*zfmt2(i+3)) end do i=4*nri+1 else i=1 n=lmmaxi-1 do ir=1,nri zfmtinp=zfmtinp+wr(ir)*dot_product(zfmt1(i:i+n),zfmt2(i:i+n)) i=i+lmmaxi end do end if n=lmmaxo-1 do ir=nri+1,nr zfmtinp=zfmtinp+wr(ir)*dot_product(zfmt1(i:i+n),zfmt2(i:i+n)) i=i+lmmaxo end do end function !EOC elk-9.2.12/src/PaxHeaders/hflocal.f900000644000000000000000000000013214536061313014157 xustar0030 mtime=1702388427.640501901 30 atime=1702388426.450503663 30 ctime=1702388427.640501901 elk-9.2.12/src/hflocal.f900000644002504400250440000000335414536061313016706 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hflocal(vmt,vir,bmt,bir) use modmain implicit none ! arguments real(8), intent(out) :: vmt(npcmtmax,natmtot),vir(ngtot) real(8), intent(out) :: bmt(npcmtmax,natmtot,ndmag),bir(ngtot,ndmag) ! local variables integer idm,is,ias integer np,nrc,nrci ! automatic arrays real(8) rfmt1(npmtmax),rfmt2(npcmtmax) ! compute the Coulomb potential call potcoul ! convert to spherical coordinates and store in output arrays if (hybrid) then ! hybrid functional case call potxc(.true.,xctype,rhomt,rhoir,magmt,magir,taumt,tauir,exmt,exir,ecmt, & ecir,vxcmt,vxcir,bxcmt,bxcir,wxcmt,wxcir) do ias=1,natmtot is=idxis(ias) np=npmt(is) nrc=nrcmt(is) nrci=nrcmti(is) rfmt1(1:np)=vclmt(1:np,ias)+vxcmt(1:np,ias) call rfmtftoc(nrc,nrci,rfmt1,rfmt2) call rbsht(nrc,nrci,rfmt2,vmt(:,ias)) call rfcmtwr(nrc,nrci,wrcmt(:,is),vmt(:,ias)) end do vir(:)=(vclir(:)+vxcir(:))*cfunir(:) if (spinpol) then do idm=1,ndmag do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) call rfmtftoc(nrc,nrci,bxcmt(:,ias,idm),rfmt1) call rbsht(nrc,nrci,rfmt1,bmt(:,ias,idm)) call rfcmtwr(nrc,nrci,wrcmt(:,is),bmt(:,ias,idm)) end do bir(:,idm)=bxcir(:,idm)*cfunir(:) end do end if else ! normal Hartree-Fock case do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) call rfmtftoc(nrc,nrci,vclmt(:,ias),rfmt1) call rbsht(nrc,nrci,rfmt1,vmt(:,ias)) call rfcmtwr(nrc,nrci,wrcmt(:,is),vmt(:,ias)) end do vir(:)=vclir(:)*cfunir(:) end if end subroutine elk-9.2.12/src/PaxHeaders/mixbroyden.f900000644000000000000000000000013114536061313014726 xustar0030 mtime=1702388427.641501899 29 atime=1702388426.45250366 30 ctime=1702388427.641501899 elk-9.2.12/src/mixbroyden.f900000644002504400250440000000431614536061313017455 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine mixbroyden(iscl,n,msd,alpha,w0,nu,mu,f,df,u,a,d) use modomp implicit none ! arguments integer, intent(in) :: iscl,n,msd real(8), intent(in) :: alpha,w0 real(8), intent(inout) :: nu(n),mu(n,2) real(8), intent(inout) :: f(n,2),df(n,msd) real(8), intent(inout) :: u(n,msd),a(msd,msd) real(8), intent(out) :: d ! local variables integer jc,kp,kc integer k,l,m integer info,nthd real(8) t1 ! automatic arrays integer ipiv(msd) real(8) c(msd),beta(msd,msd),gamma(msd),work(msd) ! external functions real(8), external :: ddot if (n < 1) then write(*,*) write(*,'("Error(mixbroyden): n < 1 : ",I8)') n write(*,*) stop end if if (msd < 2) then write(*,*) write(*,'("Error(mixbroyden): msd < 2 : ",I8)') msd write(*,*) stop end if ! initialise mixer if (iscl <= 0) then mu(:,1)=nu(:) mu(:,2)=nu(:) f(:,1)=0.d0 df(:,1)=0.d0 u(:,1)=0.d0 a(:,:)=0.d0 d=1.d0 return end if ! current subspace dimension m=min(iscl+1,msd) ! current index modulo m jc=mod(iscl,m)+1 ! previous index modulo 2 kp=mod(iscl-1,2)+1 ! current index modulo 2 kc=mod(iscl,2)+1 f(:,kc)=nu(:)-mu(:,kp) d=sum(f(:,kc)**2) d=sqrt(d/dble(n)) df(:,jc)=f(:,kc)-f(:,kp) t1=norm2(df(:,jc)) if (t1 > 1.d-8) t1=1.d0/t1 df(:,jc)=t1*df(:,jc) u(:,jc)=alpha*df(:,jc)+t1*(mu(:,kp)-mu(:,kc)) call holdthd(m,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP DO do k=1,m c(k)=ddot(n,df(1,k),1,f(1,kc),1) end do !$OMP END DO NOWAIT !$OMP DO do k=1,m a(k,jc)=ddot(n,df(1,k),1,df(1,jc),1) a(jc,k)=a(k,jc) end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) beta(:,:)=a(:,:) do k=1,m beta(k,k)=beta(k,k)+w0**2 end do ! invert beta call dgetrf(m,m,beta,msd,ipiv,info) if (info == 0) call dgetri(m,beta,msd,ipiv,work,m,info) if (info /= 0) then write(*,*) write(*,'("Error(mixbroyden): could not invert matrix")') write(*,*) stop end if do l=1,m gamma(l)=0.d0 do k=1,m gamma(l)=gamma(l)+c(k)*beta(k,l) end do end do nu(:)=mu(:,kp)+alpha*f(:,kc) do l=1,m t1=-gamma(l) nu(:)=nu(:)+t1*u(:,l) end do mu(:,kc)=nu(:) end subroutine elk-9.2.12/src/PaxHeaders/grad2rfmt.f900000644000000000000000000000013214536061313014437 xustar0030 mtime=1702388427.642501898 30 atime=1702388426.453503658 30 ctime=1702388427.642501898 elk-9.2.12/src/grad2rfmt.f900000644002504400250440000000476614536061313017176 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: grad2rfmt ! !INTERFACE: subroutine grad2rfmt(nr,nri,ri,ri2,wcr,rfmt,g2rfmt) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of points on the inner part of the muffin-tin (in,integer) ! ri : 1/r on the radial mesh (in,real(nr)) ! ri2 : 1/r^2 on the radial mesh (in,real(nr)) ! wcr : weights for spline coefficients on radial mesh (in,real(12,nr)) ! rfmt : real muffin-tin function (in,real(*)) ! g2rfmt : laplacian of the input function (out,real(*)) ! !DESCRIPTION: ! Calculates the Laplacian of a real muffin-tin function. In other words, ! given the real spherical harmonic expansion coefficients $f_{lm}(r)$ of a ! function $f({\bf r})$, the routine returns ! $$ F_{lm}(r)=\frac{1}{r}\frac{\partial^2}{\partial r^2}\big(rf_{lm}(r)\big) ! -\frac{l(l+1)}{r^2}f_{lm}(r) $$ ! which yields ! $$ \nabla^2 f({\bf r})=\sum_{lm} F_{lm}(r)R_{lm}(\hat{\bf r}), $$ ! where $R_{lm}$ is a real spherical harmonic function. ! ! !REVISION HISTORY: ! Created July 2009 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: ri(nr),ri2(nr),wcr(12,nr),rfmt(*) real(8), intent(out) :: g2rfmt(*) ! local variables integer nro,iro,npi integer l,lm,i1,j0,j1 real(8) t1 ! automatic arrays real(8) fr(nr),cf(3,nr) nro=nr-nri iro=nri+1 npi=lmmaxi*nri do l=0,lmaxi t1=-dble(l*(l+1)) do lm=l**2+1,(l+1)**2 ! use a cubic spline to compute radial derivatives i1=lmmaxi*(nri-1)+lm j0=i1+lmmaxi j1=lmmaxo*(nr-iro)+j0 fr(1:nri)=rfmt(lm:i1:lmmaxi) fr(iro:nr)=rfmt(j0:j1:lmmaxo) call splinew(nr,wcr,fr,cf) ! apply Laplacian g2rfmt(lm:i1:lmmaxi)=2.d0*(ri(1:nri)*cf(1,1:nri)+cf(2,1:nri)) & +t1*ri2(1:nri)*rfmt(lm:i1:lmmaxi) g2rfmt(j0:j1:lmmaxo)=2.d0*(ri(iro:nr)*cf(1,iro:nr)+cf(2,iro:nr)) & +t1*ri2(iro:nr)*rfmt(j0:j1:lmmaxo) end do end do do l=lmaxi+1,lmaxo t1=-dble(l*(l+1)) do lm=l**2+1,(l+1)**2 j0=lmmaxi*nri+lm j1=lmmaxo*(nr-iro)+j0 fr(iro:nr)=rfmt(j0:j1:lmmaxo) call splinew(nro,wcr(:,iro),fr(iro),cf(1,iro)) g2rfmt(j0:j1:lmmaxo)=2.d0*(ri(iro:nr)*cf(1,iro:nr)+cf(2,iro:nr)) & +t1*ri2(iro:nr)*rfmt(j0:j1:lmmaxo) end do end do ! improve stability by smoothing the laplacian call rfmtsm(msmgmt,nr,nri,g2rfmt) end subroutine !EOC elk-9.2.12/src/PaxHeaders/clebgor.f900000644000000000000000000000013214536061313014164 xustar0030 mtime=1702388427.644501895 30 atime=1702388426.455503655 30 ctime=1702388427.644501895 elk-9.2.12/src/clebgor.f900000644002504400250440000000327414536061313016714 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: clebgor ! !INTERFACE: real(8) function clebgor(j1,j2,j3,m1,m2,m3) ! !INPUT/OUTPUT PARAMETERS: ! j1, j2, j3 : angular momentum quantum numbers (in,integer) ! m1, m2, m3 : magnetic quantum numbers (in,integer) ! !DESCRIPTION: ! Returns the Clebsch-Gordon coefficients using the Wigner $3j$-symbols ! $$ C(J_1 J_2 J_3 | m_1 m_2 m_3)=(-1)^{J_1-J_2+m_3}\sqrt{2J_3+1} ! \begin{pmatrix} J_1 & J_2 & J_3 \\ m_1 & m_2 & -m_3 \end{pmatrix}. $$ ! Suitable for $J_i\le 50$. See {\tt wigner3j}. ! ! !REVISION HISTORY: ! Created September 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: j1,j2,j3 integer, intent(in) :: m1,m2,m3 ! external functions real(8), external :: wigner3j if ((j1 < 0).or.(j2 < 0).or.(j3 < 0).or.(abs(m1) > j1).or.(abs(m2) > j2) & .or.(abs(m2) > j2).or.(abs(m3) > j3)) then write(*,*) write(*,'("Error(clebgor): non-physical arguments :")') write(*,'("j1 = ",I8," j2 = ",I8," j3 = ",I8)') j1,j2,j3 write(*,'("m1 = ",I8," m2 = ",I8," m3 = ",I8)') m1,m2,m3 write(*,*) stop end if if ((j1 == 0).and.(j2 == 0).and.(j3 == 0)) then clebgor=1.d0 return end if if ((j1 > 50).or.(j2 > 50).or.(j3 > 50)) then write(*,*) write(*,'("Error(clebgor): angular momenta out of range : ",3I8)') j1,j2,j3 write(*,*) stop end if if ((m1+m2 /= m3).or.(j1+j2 < j3).or.(j2+j3 < j1).or.(j1+j3 < j2)) then clebgor=0.d0 return end if clebgor=sqrt(dble(2*j3+1))*wigner3j(j1,j2,j3,m1,m2,-m3) if (mod(j1-j2+m3,2) /= 0) clebgor=-clebgor end function !EOC elk-9.2.12/src/PaxHeaders/rfirctof.f900000644000000000000000000000013214536061313014365 xustar0030 mtime=1702388427.645501893 30 atime=1702388426.457503652 30 ctime=1702388427.645501893 elk-9.2.12/src/rfirctof.f900000644002504400250440000000135114536061313017107 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rfirctof(rfirc,rfir) use modmain implicit none ! arguments real(8), intent(in) :: rfirc(ngtc) real(8), intent(out) :: rfir(ngtot) ! automatic arrays complex(8) zfftc(ngtc) ! allocatable arrays complex(8), allocatable :: zfft(:) allocate(zfft(ngtot)) ! Fourier transform function on coarse grid to G-space zfftc(:)=rfirc(:) call zfftifc(3,ngdgc,-1,zfftc) ! Fourier transform to fine real-space grid zfft(:)=0.d0 zfft(igfft(1:ngvc))=zfftc(igfc(1:ngvc)) call zfftifc(3,ngridg,1,zfft) ! output real function rfir(:)=dble(zfft(:)) deallocate(zfft) end subroutine elk-9.2.12/src/PaxHeaders/effmass.f900000644000000000000000000000013214536061313014173 xustar0030 mtime=1702388427.646501892 30 atime=1702388426.459503649 30 ctime=1702388427.646501892 elk-9.2.12/src/effmass.f900000644002504400250440000001130114536061313016711 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine effmass use modmain use modomp use modtest implicit none ! local variables integer ik0,ik,ist,info integer i,j,k,l,m,n,nthd integer i1,i2,i3,j1,j2,j3 real(8) d(3,3),em(3,3) real(8) v1(3),v2(3) real(8) w(3),work(9) ! allocatable arrays integer, allocatable :: ipiv(:) real(8), allocatable :: a(:,:),b(:,:,:,:),c(:,:,:),evalfv(:,:) complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) ! initialise universal variables call init0 call init1 allocate(ipiv(nkpt)) allocate(a(nkpt,nkpt)) n=2*ndspem+1 allocate(b(0:n-1,0:n-1,0:n-1,nstsv)) allocate(c(0:n-1,0:n-1,0:n-1)) ! read density and potentials from file call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ik0=0 ! begin parallel loop over k-points call holdthd(nkpt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evalfv,evecfv,evecsv) & !$OMP PRIVATE(i1,i2,i3,j1,j2,j3,ist) & !$OMP NUM_THREADS(nthd) allocate(evalfv(nstfv,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv)) allocate(evecsv(nstsv,nstsv)) !$OMP DO do ik=1,nkpt i1=ivk(1,ik); i2=ivk(2,ik); i3=ivk(3,ik) if ((i1 == 0).and.(i2 == 0).and.(i3 == 0)) ik0=ik ! solve the first- and second-variational eigenvalue equations call eveqn(ik,evalfv,evecfv,evecsv) ! copy eigenvalues to new array j1=i1+ndspem; j2=i2+ndspem; j3=i3+ndspem do ist=1,nstsv b(j1,j2,j3,ist)=evalsv(ist,ik) end do end do !$OMP END DO deallocate(evalfv,evecfv,evecsv) !$OMP END PARALLEL call freethd(nthd) ! set up polynomial matrix i=0 do i3=-ndspem,ndspem do i2=-ndspem,ndspem do i1=-ndspem,ndspem i=i+1 v1(1)=dble(i1); v1(2)=dble(i2); v1(3)=dble(i3) v1(:)=v1(:)*deltaem j=0 v2(3)=1.d0 do j3=0,n-1 v2(2)=1.d0 do j2=0,n-1 v2(1)=1.d0 do j1=0,n-1 j=j+1 a(i,j)=v2(1)*v2(2)*v2(3) v2(1)=v2(1)*v1(1) end do v2(2)=v2(2)*v1(2) end do v2(3)=v2(3)*v1(3) end do end do end do end do ! solve for the polynomial coefficients call dgesv(nkpt,nstsv,a,nkpt,ipiv,b,nkpt,info) if (info /= 0) then write(*,*) write(*,'("Error(effmass): could not determine polynomial coefficients")') write(*,'(" DGESV returned INFO = ",I8)') info write(*,*) stop end if open(50,file='EFFMASS.OUT',form='FORMATTED') write(50,*) write(50,'("(effective mass matrices are in Cartesian coordinates)")') write(50,*) write(50,'("k-point (lattice coordinates) :")') write(50,'(3G18.10)') vklem write(50,*) write(50,'("k-point (Cartesian coordinates) :")') call r3mv(bvec,vklem,v1) write(50,'(3G18.10)') v1 ! begin loop over states do ist=1,nstsv ! compute matrix of derivatives with respect to k-vector do k=1,3 do l=1,3 c(:,:,:)=b(:,:,:,ist) do i=1,2 if (i == 1) then m=k else m=l end if if (m == 1) then do j=0,n-2 c(j,:,:)=dble(j+1)*c(j+1,:,:) end do c(n-1,:,:)=0.d0 else if (m == 2) then do j=0,n-2 c(:,j,:)=dble(j+1)*c(:,j+1,:) end do c(:,n-1,:)=0.d0 else if (m == 3) then do j=0,n-2 c(:,:,j)=dble(j+1)*c(:,:,j+1) end do c(:,:,n-1)=0.d0 end if end do ! derivative evaluated at zero d(k,l)=c(0,0,0) end do end do write(50,*) write(50,*) write(50,'("State, eigenvalue : ",I6,G18.10)') ist,evalsv(ist,ik0) write(50,*) write(50,'(" matrix of eigenvalue derivatives with respect to k :")') do i=1,3 write(50,'(3G18.10)') (d(i,j),j=1,3) end do write(50,'(" trace : ",G18.10)') d(1,1)+d(2,2)+d(3,3) ! invert derivative matrix call r3minv(d,em) write(50,*) write(50,'(" effective mass tensor (inverse of derivative matrix) :")') do i=1,3 write(50,'(3G18.10)') (em(i,j),j=1,3) end do write(50,'(" trace : ",G18.10)') em(1,1)+em(2,2)+em(3,3) ! find the eigenvalues call dsyev('N','U',3,em,3,w,work,9,info) write(50,'(" eigenvalues :")') write(50,'(3G18.10)') w ! end loop over states end do close(50) write(*,*) write(*,'("Info(effmass):")') write(*,'(" Effective mass tensor for each state written to EFFMASS.OUT")') write(*,'(" for k-point (lattice) ",3G18.10)') vklem ! write the effective mass eigenvalues of the last state to test file call writetest(25,'effective mass',nv=3,tol=1.d-5,rva=w) deallocate(ipiv,a,b,c) end subroutine elk-9.2.12/src/PaxHeaders/zpotcoul.f900000644000000000000000000000013214536061313014426 xustar0030 mtime=1702388427.648501889 30 atime=1702388426.462503645 30 ctime=1702388427.648501889 elk-9.2.12/src/zpotcoul.f900000644002504400250440000002304514536061313017154 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: zpotcoul ! !INTERFACE: subroutine zpotcoul(nr,nri,np,ld1,rl,ngdg,igf,ngp,gpc,gclgp,ld2,jlgprmt,ylmgp, & sfacgp,zrhoir,ld3,zvclmt,zvclir) ! !USES: use modmain use modphonon ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial points for each species (in,integer(nspecies)) ! nri : number of radial points on inner part (in,integer(nspecies)) ! np : total number of points in muffin-tins (in,integer(nspecies)) ! ld1 : leading dimension (in,integer) ! rl : r^l on radial mesh for each species ! (in,real(ld1,-lmaxo-1:lmaxo+2,nspecies)) ! ngdg : G-vector grid sizes (in,integer(3)) ! igf : map from G-vector index to FFT array (in,integer(*)) ! ngp : number of G+p-vectors (in,integer) ! gpc : G+p-vector lengths (in,real(ngp)) ! gclgp : Coulomb Green's function in G+p-space (in,real(ngp)) ! ld2 : leading dimension (in,integer) ! jlgprmt : spherical Bessel functions for evergy G+p-vector and muffin-tin ! radius (in,real(0:lnpsd,ld2,nspecies)) ! ylmgp : spherical harmonics of the G+p-vectors (in,complex(lmmaxo,ngp)) ! sfacgp : structure factors of the G+p-vectors (in,complex(ld2,natmtot)) ! zrhoir : interstitial charge density (in,complex(*)) ! ld3 : leading dimension (in,integer) ! zvclmt : muffin-tin Coulomb potential, with the contribution from the ! isolated muffin-tin density precalculated and passed in ! (inout,complex(ld3,natmtot)) ! zvclir : interstitial Coulomb potential (out,complex(*)) ! !DESCRIPTION: ! Calculates the Coulomb potential of a complex charge density by solving ! Poisson's equation using the method of M. Weinert, {\it J. Math. Phys.} ! {\bf 22}, 2433 (1981). First, the multipole moments of the muffin-tin charge ! are determined for the $j$th atom of the $i$th species by ! $$ q_{ij;lm}^{\rm MT}=\int_0^{R_i}r^{l+2}\rho_{ij;lm}(r)dr+z_{ij}Y_{00} ! \,\delta_{l,0}\;, $$ ! where $R_i$ is the muffin-tin radius and $z_{ij}$ is a point charge located ! at the atom center (usually the nuclear charge, which should be taken as ! {\bf negative}). Next, the multipole moments of the continuation of the ! interstitial density, $\rho^{\rm I}$, into the muffin-tin are found with ! $$ q_{ij;lm}^{\rm I}=4\pi i^l R_i^{l+3}\sum_{\bf G}\frac{j_{l+1}(GR_i)} ! {GR_i}\rho^{\rm I}({\bf G})\exp(i{\bf G}\cdot{\bf r}_{ij})Y_{lm}^* ! (\hat{\bf G}), $$ ! remembering that ! $$ \lim_{x\rightarrow 0}\frac{j_{l+n}(x)}{x^n}=\frac{1}{(2n+1)!!} ! \delta_{l,0} $$ ! should be used for the case ${\bf G}=0$. A pseudocharge is now constructed ! which is equal to the real density in the interstitial region and whose ! multipoles are the difference between the real and interstitial muffin-tin ! multipoles. This pseudocharge density is smooth in the sense that it can be ! expanded in terms of the finite set of ${\bf G}$-vectors. In each muffin-tin ! the pseudocharge has the form ! $$ \rho_{ij}^{\rm P}({\bf r})=\rho^{\rm I}({\bf r}-{\bf r}_{ij})+\sum_{lm} ! \rho_{ij;lm}^{\rm P}\frac{1}{R_i^{l+3}}\left(\frac{r}{R_i}\right)^l\left(1- ! \frac{r^2}{R_i^2}\right)^{N_i}Y_{lm}(\hat{\bf r}) $$ ! where ! $$ \rho_{ij;lm}^{\rm P}=\frac{(2l+2N_i+3)!!}{2^N_iN_i!(2l+1)!!}\left( ! q_{ij;lm}^{\rm MT}-q_{ij;lm}^{\rm I}\right) $$ ! and $N_i\approx\frac{1}{4}R_iG_{\rm max}$ is generally a good choice. ! The pseudocharge in reciprocal space is given by ! $$ \rho^{\rm P}({\bf G})=\rho^{\rm I}({\bf G})+\sum_{ij;lm}2^{N_i}N_i! ! \frac{4\pi(-i)^l}{\Omega R_i^l}\frac{j_{l+N_i+1}(GR_i)}{(GR_i)^{N_i+1}} ! \rho_{ij;lm}^{\rm P}\exp(-i{\bf G}\cdot{\bf r}_{ij})Y_{lm}(\hat{\bf G}) $$ ! which may be used for solving Poisson's equation directly ! $$ V^{\rm P}({\bf G})=\begin{cases} ! 4\pi\frac{\rho^{\rm P}({\bf G})}{G^2} & G>0 \\ ! 0 & G=0 \end{cases}\;. $$ ! The usual Green's function approach is then employed to determine the ! potential in the muffin-tin sphere due to charge in the sphere. In other ! words ! $$ V_{ij;lm}^{\rm MT}(r)=\frac{4\pi}{2l+1}\left(\frac{1}{r^{l+1}}\int_0^r ! \rho_{ij;lm}^{\rm MT}(r'){r'}^{l+2}dr'+r^l\int_r^{R_i}\frac{ ! \rho_{ij;lm}^{\rm MT}(r')}{{r'}^{l-1}}dr'\right)+\frac{1}{Y_{00}} ! \frac{z_{ij}}{r}\delta_{l,0} $$ ! where the last term is the monopole arising from the point charge. All that ! remains is to add the homogenous solution of Poisson's equation, ! $$ V_{ij}^{\rm H}({\bf r})=\sum_{lm}V_{ij;lm}^{\rm H}\left(\frac{r} ! {R_i}\right)^lY_{lm}(\hat{\bf r}), $$ ! to the muffin-tin potential so that it is continuous at the muffin-tin ! boundary. Therefore the coefficients, $\rho_{ij;lm}^{\rm H}$, are given by ! $$ V_{ij;lm}^{\rm H}=4\pi i^l\sum_{\bf G}j_{l}(Gr)V^{\rm P}({\bf G}) ! \exp(i{\bf G}\cdot{\bf r}_{ij})Y_{lm}^*(\hat{\bf G})-V_{ij;lm}^{\rm MT} ! (R_i). $$ ! Finally note that the ${\bf G}$-vectors passed to the routine can represent ! vectors with a non-zero offset, ${\bf G}+{\bf p}$ say, which is required for ! calculating Coulomb matrix elements. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr(nspecies),nri(nspecies),np(nspecies) integer, intent(in) :: ld1 real(8), intent(in) :: rl(ld1,-lmaxo-1:lmaxo+2,nspecies) integer, intent(in) :: ngdg(3),igf(*),ngp real(8), intent(in) :: gpc(ngp),gclgp(ngp) integer, intent(in) :: ld2 real(8), intent(in) :: jlgprmt(0:lnpsd,ld2,nspecies) complex(8), intent(in) :: ylmgp(lmmaxo,ngp),sfacgp(ld2,natmtot) complex(8), intent(in) :: zrhoir(*) integer, intent(in) :: ld3 complex(8), intent(inout) :: zvclmt(ld3,natmtot) complex(8), intent(out) :: zvclir(*) ! local variables integer is,ia,ias,iro integer l,lm,lma,lmb integer ig,jg,i,i0,i1 real(8) t1,t2,t3 complex(8) z1,z2 ! automatic arrays complex(8) qlm(lmmaxo,natmtot) complex(8) zl(0:lmaxo),zlm(lmmaxo) complex(8) zhmt(ld3) ! external functions real(8), external :: factn2 ! compute the multipole moments from the muffin-tin potentials t1=1.d0/fourpi do ias=1,natmtot is=idxis(ias) i=np(is)-lmmaxo do l=0,lmaxo t2=t1*dble(2*l+1)*rmtl(l+1,is) lma=l**2+1; lmb=lma+2*l qlm(lma:lmb,ias)=t2*zvclmt(i+lma:i+lmb,ias) end do end do ! Fourier transform density to G-space and store in zvclir call zcopy(ngdg(1)*ngdg(2)*ngdg(3),zrhoir,1,zvclir,1) call zfftifc(3,ngdg,-1,zvclir) ! subtract the multipole moments of the interstitial charge density do is=1,nspecies do l=0,lmaxo zl(l)=fourpi*zil(mod(l,4))*rmtl(l+2,is) end do do ia=1,natoms(is) ias=idxas(ia,is) zlm(:)=0.d0 do ig=1,ngp jg=igf(ig) if (gpc(ig) > epslat) then z1=zvclir(jg)*sfacgp(ig,ias)/gpc(ig) zlm(1)=zlm(1)+jlgprmt(1,ig,is)*z1*zl(0)*y00 do l=1,lmaxo lma=l**2+1; lmb=lma+2*l z2=jlgprmt(l+1,ig,is)*z1*zl(l) zlm(lma:lmb)=zlm(lma:lmb)+z2*conjg(ylmgp(lma:lmb,ig)) end do else t1=(fourpi/3.d0)*rmtl(3,is)*y00 zlm(1)=zlm(1)+t1*zvclir(jg) end if end do qlm(:,ias)=qlm(:,ias)-zlm(:) end do end do ! find the smooth pseudocharge within the muffin-tin whose multipoles are the ! difference between the real muffin-tin and interstitial multipoles t1=(fourpi/omega)*factn2(2*lnpsd+1) do ias=1,natmtot is=idxis(ias) do l=0,lmaxo t2=t1/(factn2(2*l+1)*rmtl(l,is)) z1=t2*zilc(mod(l,4)) lma=l**2+1; lmb=lma+2*l zlm(lma:lmb)=z1*qlm(lma:lmb,ias) end do ! add the pseudocharge and real interstitial densities in G-space do ig=1,ngp jg=igf(ig) if (gpc(ig) > epslat) then t2=gpc(ig)*rmt(is) t3=1.d0/t2**lnpsd z1=t3*zlm(1)*y00 do l=1,lmaxo lma=l**2+1; lmb=lma+2*l t3=t3*t2 z1=z1+t3*sum(zlm(lma:lmb)*ylmgp(lma:lmb,ig)) end do z2=jlgprmt(lnpsd,ig,is)*conjg(sfacgp(ig,ias)) zvclir(jg)=zvclir(jg)+z1*z2 else t2=y00/factn2(2*lnpsd+1) zvclir(jg)=zvclir(jg)+t2*zlm(1) end if end do end do ! solve Poisson's equation in G+p-space for the pseudocharge do ig=1,ngp jg=igf(ig) zvclir(jg)=gclgp(ig)*zvclir(jg) end do ! match potentials at muffin-tin boundary by adding homogeneous solution do ias=1,natmtot is=idxis(ias) iro=nri(is)+1 ! find the spherical harmonic expansion of the interstitial potential at the ! muffin-tin radius zlm(:)=0.d0 do ig=1,ngp z1=fourpi*zvclir(igf(ig))*sfacgp(ig,ias) zlm(1)=zlm(1)+jlgprmt(0,ig,is)*z1*y00 do l=1,lmaxo lma=l**2+1; lmb=lma+2*l z2=jlgprmt(l,ig,is)*z1*zil(mod(l,4)) zlm(lma:lmb)=zlm(lma:lmb)+z2*conjg(ylmgp(lma:lmb,ig)) end do end do ! calculate the homogenous solution i=np(is)-lmmaxo do l=0,lmaxi t1=1.d0/rmtl(l,is) do lm=l**2+1,(l+1)**2 z1=t1*(zlm(lm)-zvclmt(i+lm,ias)) i1=lmmaxi*(nri(is)-1)+lm zhmt(lm:i1:lmmaxi)=z1*rl(1:nri(is),l,is) i0=i1+lmmaxi i1=lmmaxo*(nr(is)-iro)+i0 zhmt(i0:i1:lmmaxo)=z1*rl(iro:nr(is),l,is) end do end do do l=lmaxi+1,lmaxo t1=1.d0/rmtl(l,is) do lm=l**2+1,(l+1)**2 z1=t1*(zlm(lm)-zvclmt(i+lm,ias)) i0=lmmaxi*nri(is)+lm i1=lmmaxo*(nr(is)-iro)+i0 zhmt(i0:i1:lmmaxo)=z1*rl(iro:nr(is),l,is) end do end do zvclmt(1:np(is),ias)=zvclmt(1:np(is),ias)+zhmt(1:np(is)) ! store the nuclear potential without the self-term for the phonon dynamical ! matrix calculation if (tphdyn) then if (ias == iasph) zvnmt(1:np(is))=zhmt(1:np(is)) end if end do ! Fourier transform interstitial potential to real-space call zfftifc(3,ngdg,1,zvclir) end subroutine !EOC elk-9.2.12/src/PaxHeaders/sfacmag.f900000644000000000000000000000013214536061313014150 xustar0030 mtime=1702388427.650501886 30 atime=1702388426.464503642 30 ctime=1702388427.650501886 elk-9.2.12/src/sfacmag.f900000644002504400250440000000550614536061313016700 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 A. I. Baranov and F. Wagner. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: sfacmag ! !INTERFACE: subroutine sfacmag ! !USES: use modmain use modpw use modtest ! !DESCRIPTION: ! Outputs magnetic structure factors, i.e. the Fourier transform coefficients ! of each component $j$ of magnetization ${\bf m}({\bf r})$, ! $$ F_j({\bf H})=\int_{\Omega}d^3r\,m_j({\bf r})e^{i{\bf H}\cdot{\bf r}}, $$ ! to the files {\tt SFACMAG\_j.OUT}. The lattice coordinates $(h,k,l)$ of ! $\bf H$-vectors in this file are transformed by the matrix {\tt vhmat}. See ! also routines {\tt zftrf} and {\tt genhvec}. ! ! !REVISION HISTORY: ! Created July 2010 (Alexey I. Baranov) ! Added multiplicity of the H-vectors, Oct. 2010 (Alexey I. Baranov) !EOP !BOC implicit none ! local variables integer idm,ih,iv(3) real(8) v(3),a,b,r character(256) fname ! allocatable arrays complex(8), allocatable :: zmagh(:) if (.not.spinpol) return ! initialise the structure factor specific variables call sfacinit ! generate the magnetic structure factors allocate(zmagh(nhvec)) do idm=1,ndmag call zftrf(nhvec,ivh,vhc,magmt(:,:,idm),magir(:,idm),zmagh) write(fname,'("SFACMAG_",I1.1,".OUT")') idm open(50,file=trim(fname),form='FORMATTED') write(50,*) write(50,'("h k l indices transformed by vhmat matrix:")') write(50,'(3G18.10)') vhmat(:,1) write(50,'(3G18.10)') vhmat(:,2) write(50,'(3G18.10)') vhmat(:,3) write(50,*) write(50,'(" h k l multipl. |H| Re(F)& & Im(F) |F|")') write(50,*) do ih=1,nhvec ! apply transformation matrix v(:)=vhmat(:,1)*dble(ivh(1,ih)) & +vhmat(:,2)*dble(ivh(2,ih)) & +vhmat(:,3)*dble(ivh(3,ih)) ! in crystallography the forward Fourier transform of real-space density is ! usually done with positive phase and without 1/omega prefactor a=dble(zmagh(ih))*omega b=-aimag(zmagh(ih))*omega r=abs(zmagh(ih))*omega iv(:)=nint(v(:)) if ((abs(v(1)-iv(1)) <= epslat).and. & (abs(v(2)-iv(2)) <= epslat).and. & (abs(v(3)-iv(3)) <= epslat)) then ! integer hkl write(50,'(4I7,4G16.8)') iv(:),mulh(ih),hc(ih),a,b,r else ! non-integer hkl write(50,'(3F7.2,I7,4G16.8)') v(:),mulh(ih),hc(ih),a,b,r end if end do close(50) end do write(*,*) write(*,'("Info(sfacmag): magnetic structure factors written to & &SFACMAG_j.OUT")') write(*,'(" for magnetic components j = ",3I2)') (idm,idm=1,ndmag) if (ndmag == 1) then write(*,'(" (this corresponds to the z-component of the magnetisation)")') end if write(*,*) write(*,'(" Energy window : ",2G18.10)') wsfac(:) ! write the structure factors to test file call writetest(196,'magnetic structure factors',nv=nhvec,tol=1.d-4,zva=zmagh(:)) deallocate(zmagh) end subroutine !EOC elk-9.2.12/src/PaxHeaders/polynm.f900000644000000000000000000000013214536061313014065 xustar0030 mtime=1702388427.651501884 30 atime=1702388426.466503639 30 ctime=1702388427.651501884 elk-9.2.12/src/polynm.f900000644002504400250440000000667714536061313016627 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: polynm ! !INTERFACE: pure real(8) function polynm(m,np,xa,ya,x) ! !INPUT/OUTPUT PARAMETERS: ! m : order of derivative (in,integer) ! np : number of points to fit (in,integer) ! xa : abscissa array (in,real(np)) ! ya : ordinate array (in,real(np)) ! x : evaluation abscissa (in,real) ! !DESCRIPTION: ! Fits a polynomial of order $n_p-1$ to a set of $n_p$ points. If $m\ge 0$ the ! function returns the $m$th derviative of the polynomial at $x$, while for ! $m<0$ the integral of the polynomial from the first point in the array to ! $x$ is returned. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! argmuments integer, intent(in) :: m,np real(8), intent(in) :: xa(np),ya(np) real(8), intent(in) :: x ! local variables integer i,j,k real(8) x0,x1,x2,x3,y0,y1,y2,y3 real(8) t0,t1,t2,t3,t4,t5,t6 real(8) c1,c2,c3,sm ! automatic arrays real(8) c(np) ! fast evaluations for small np select case(np) case(1) select case(m) case(:-1) polynm=ya(1)*(x-xa(1)) case(0) polynm=ya(1) case default polynm=0.d0 end select return case(2) c1=(ya(2)-ya(1))/(xa(2)-xa(1)) t1=x-xa(1) select case(m) case(:-1) polynm=t1*(ya(1)+0.5d0*c1*t1) case(0) polynm=c1*t1+ya(1) case(1) polynm=c1 case default polynm=0.d0 end select return case(3) x0=xa(1) x1=xa(2)-x0; x2=xa(3)-x0 y0=ya(1) y1=ya(2)-y0; y2=ya(3)-y0 t0=1.d0/(x1*x2*(x2-x1)) t1=x1*y2; t2=x2*y1 c1=x2*t2-x1*t1 c2=t1-t2 t1=x-x0 select case(m) case(:-1) polynm=t1*(y0+t0*t1*(0.5d0*c1+0.3333333333333333333d0*c2*t1)) case(0) polynm=y0+t0*t1*(c1+c2*t1) case(1) polynm=t0*(2.d0*c2*t1+c1) case(2) polynm=t0*2.d0*c2 case default polynm=0.d0 end select return case(4) x0=xa(1) x1=xa(2)-x0; x2=xa(3)-x0; x3=xa(4)-x0 y0=ya(1) y1=ya(2)-y0; y2=ya(3)-y0; y3=ya(4)-y0 t4=x1-x2; t5=x1-x3; t6=x2-x3 t1=x1*x2*y3; t2=x2*x3*y1; t3=x1*x3 t0=1.d0/(x2*t3*t4*t5*t6) t3=t3*y2 c3=t1*t4+t2*t6-t3*t5 t4=x1**2; t5=x2**2; t6=x3**2 y1=t3*t6-t1*t5; y2=t1*t4-t2*t6; y3=t2*t5-t3*t4 c2=y1+y2+y3 c1=x1*y1+x2*y2+x3*y3 t1=x-x0 select case(m) case(:-1) polynm=t1*(y0+t0*t1*(0.5d0*c1+t1*(0.25d0*c3*t1-0.3333333333333333333d0*c2))) case(0) polynm=y0+t0*t1*(c1+t1*(c3*t1-c2)) case(1) polynm=t0*(c1+t1*(3.d0*c3*t1-2.d0*c2)) case(2) polynm=t0*(6.d0*c3*t1-2.d0*c2) case(3) polynm=t0*6.d0*c3 case default polynm=0.d0 end select return end select if ((np <= 0).or.(m >= np)) then polynm=0.d0 return end if ! find the polynomial coefficients in divided differences form c(:)=ya(:) do i=2,np do j=np,i,-1 c(j)=(c(j)-c(j-1))/(xa(j)-xa(j+1-i)) end do end do ! special case m=0 if (m == 0) then sm=c(1) t1=1.d0 do i=2,np t1=t1*(x-xa(i-1)) sm=sm+c(i)*t1 end do polynm=sm return end if x0=xa(1) ! convert to standard form do j=1,np-1 do i=1,np-j k=np-i c(k)=c(k)+(x0-xa(k-j+1))*c(k+1) end do end do if (m > 0) then ! take the m th derivative do j=1,m do i=m+1,np c(i)=c(i)*dble(i-j) end do end do t1=c(np) t2=x-x0 do i=np-1,m+1,-1 t1=t1*t2+c(i) end do polynm=t1 else ! find the integral t1=c(np)/dble(np) t2=x-x0 do i=np-1,1,-1 t1=t1*t2+c(i)/dble(i) end do polynm=t1*t2 end if end function !EOC elk-9.2.12/src/PaxHeaders/epsinv.f900000644000000000000000000000013214536061313014053 xustar0030 mtime=1702388427.653501882 30 atime=1702388426.467503637 30 ctime=1702388427.653501882 elk-9.2.12/src/epsinv.f900000644002504400250440000000507014536061313016577 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine epsinv use modmain use modmpi use modomp implicit none ! local variables integer iq,ik,ig,iw integer n,nthd ! allocatable arrays integer(8), allocatable :: lock(:) real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqr(:,:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:),epsi(:,:,:) ! allocate local arrays allocate(vgqc(3,ngrf),gqc(ngrf),gclgq(ngrf)) allocate(jlgqr(njcmax,nspecies,ngrf)) allocate(ylmgq(lmmaxo,ngrf),sfacgq(ngrf,natmtot)) allocate(epsi(ngrf,ngrf,nwrf)) ! initialise the OpenMP locks allocate(lock(nwrf)) do iw=1,nwrf call omp_init_lock(lock(iw)) end do if (mp_mpi) write(*,*) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! loop over q-points do iq=1,nqpt if (mp_mpi) write(*,'("Info(epsinv): ",I6," of ",I6," q-points")') iq,nqpt ! generate the G+q-vectors and related functions call gengqf(ngrf,vqc(:,iq),vgqc,gqc,jlgqr,ylmgq,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngrf,gqc,gclgq) ! use the symmetric form gclgq(:)=sqrt(gclgq(:)) ! zero the response function (stored in epsi) epsi(:,:,:)=0.d0 call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! compute v^1/2 chi0 v^1/2 call genvchi0(.false.,ik,lock,vql(:,iq),gclgq,jlgqr,ylmgq,sfacgq,ngrf,epsi) end do !$OMP END PARALLEL DO call freethd(nthd) ! add epsi from each process and redistribute if (np_mpi > 1) then n=ngrf*ngrf*nwrf call mpi_allreduce(mpi_in_place,epsi,n,mpi_double_complex,mpi_sum,mpicom, & ierror) end if ! negate and add delta(G,G') epsi(:,:,:)=-epsi(:,:,:) do ig=1,ngrf epsi(ig,ig,:)=epsi(ig,ig,:)+1.d0 end do !-------------------------------------! ! invert epsilon over G-space ! !-------------------------------------! call holdthd(nwrf,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do iw=1,nwrf call zminv(ngrf,epsi(:,:,iw)) end do !$OMP END PARALLEL DO call freethd(nthd) ! write inverse RPA epsilon to EPSINV.OUT if (mp_mpi) call putepsinv(iq,epsi) ! end loop over q-points end do ! destroy the OpenMP locks do iw=1,nwrf call omp_destroy_lock(lock(iw)) end do deallocate(lock) deallocate(vgqc,gqc,gclgq,jlgqr) deallocate(ylmgq,sfacgq,epsi) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/rfinpc.f900000644000000000000000000000013014536061313014026 xustar0029 mtime=1702388427.65450188 30 atime=1702388426.469503635 29 ctime=1702388427.65450188 elk-9.2.12/src/rfinpc.f900000644002504400250440000000171214536061313016553 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function rfinpc(ld,rfmt1,rfir1,rfmt2,rfir2) use modmain use modomp implicit none ! arguments integer, intent(in) :: ld real(8), intent(in) :: rfmt1(ld,natmtot),rfir1(ngtot) real(8), intent(in) :: rfmt2(ld,natmtot),rfir2(ngtot) ! local variables integer is,ias,nthd ! external functions real(8), external :: rfmtinp ! interstitial contribution rfinpc=sum(rfir1(1:ngtot)*rfir2(1:ngtot)*cfunir(1:ngtot)) rfinpc=rfinpc*omega/dble(ngtot) ! muffin-tin contribution call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) REDUCTION(+:rfinpc) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) rfinpc=rfinpc+rfmtinp(nrcmt(is),nrcmti(is),wrcmt(:,is),rfmt1(:,ias), & rfmt2(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) end function elk-9.2.12/src/PaxHeaders/writeiad.f900000644000000000000000000000013214536061313014357 xustar0030 mtime=1702388427.655501878 30 atime=1702388426.470503633 30 ctime=1702388427.655501878 elk-9.2.12/src/writeiad.f900000644002504400250440000000254714536061313017111 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writeiad ! !INTERFACE: subroutine writeiad(fnum) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! fnum : file number for writing output (in,integer) ! !DESCRIPTION: ! Outputs the interatomic distances to file. ! ! !REVISION HISTORY: ! Created May 2005 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: fnum ! local variables integer is,js,ia,ja integer i1,i2,i3 real(8) d,dmin,v(3) do is=1,nspecies do ia=1,natoms(is) write(fnum,*) write(fnum,'("Distance between is = ",I4," (",A,"), ia = ",I4," and")') & is,trim(spsymb(is)),ia do js=1,nspecies do ja=1,natoms(js) dmin=1.d8 do i1=-1,1 do i2=-1,1 do i3=-1,1 v(:)=dble(i1)*avec(:,1) & +dble(i2)*avec(:,2) & +dble(i3)*avec(:,3)+atposc(:,ja,js) v(:)=v(:)-atposc(:,ia,is) d=sqrt(v(1)**2+v(2)**2+v(3)**2) dmin=min(d,dmin) end do end do end do write(fnum,'(" is = ",I4," (",A,"), ia = ",I4," : ",G18.10)') js, & trim(spsymb(js)),ja,dmin end do end do end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/genapwfr.f900000644000000000000000000000013114536061313014357 xustar0030 mtime=1702388427.657501875 29 atime=1702388426.47250363 30 ctime=1702388427.657501875 elk-9.2.12/src/genapwfr.f900000644002504400250440000000767414536061313017120 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genapwfr ! !INTERFACE: subroutine genapwfr ! !USES: use modmain ! !DESCRIPTION: ! Generates the APW radial functions. This is done by integrating the scalar ! relativistic Schr\"{o}dinger equation (or its energy deriatives) at the ! current linearisation energies using the spherical part of the Kohn-Sham ! potential. The number of radial functions at each $l$-value is given by the ! variable {\tt apword} (at the muffin-tin boundary, the APW functions have ! continuous derivatives up to order ${\tt apword}-1$). Within each $l$, these ! functions are orthonormalised with the Gram-Schmidt method. The radial ! Hamiltonian is applied to the orthonormalised functions and the results are ! stored in the global array {\tt apwfr}. ! ! !REVISION HISTORY: ! Created March 2003 (JKD) ! Copied to equivalent atoms, February 2010 (A. Kozhevnikov and JKD) !EOP !BOC implicit none ! local variables integer is,ia,ja,ias,jas integer nr,nri,iro,ir integer i0,i1,nn,l,io,jo real(8) e,t1 ! automatic arrays logical done(natmmax) real(8) vr(nrmtmax),fr(nrmtmax) real(8) p0(nrmtmax,apwordmax),p1(nrmtmax),p1s(apwordmax) real(8) q0(nrmtmax),q1(nrmtmax),ep0(nrmtmax,apwordmax) ! external functions real(8), external :: splint do is=1,nspecies nr=nrmt(is) nri=nrmti(is) iro=nri+1 done(:)=.false. do ia=1,natoms(is) if (done(ia)) cycle ias=idxas(ia,is) ! use spherical part of potential i1=lmmaxi*(nri-1)+1 vr(1:nri)=vsmt(1:i1:lmmaxi,ias)*y00 i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 vr(iro:nr)=vsmt(i0:i1:lmmaxo,ias)*y00 do l=0,lmaxapw do io=1,apword(l,is) ! linearisation energy accounting for energy derivative e=apwe(io,l,ias)+dble(apwdm(io,l,is))*deapwlo ! integrate the radial Schrodinger equation call rschrodint(solsc,l,e,nr,rlmt(:,1,is),vr,nn,p0(:,io),p1,q0,q1) ! multiply by the linearisation energy ep0(1:nr,io)=e*p0(1:nr,io) ! normalise radial functions fr(1:nr)=p0(1:nr,io)**2 t1=splint(nr,rlmt(:,1,is),fr) t1=1.d0/sqrt(abs(t1)) p0(1:nr,io)=t1*p0(1:nr,io) p1s(io)=t1*p1(nr) ep0(1:nr,io)=t1*ep0(1:nr,io) ! subtract linear combination of previous vectors do jo=1,io-1 fr(1:nr)=p0(1:nr,io)*p0(1:nr,jo) t1=-splint(nr,rlmt(:,1,is),fr) p0(1:nr,io)=p0(1:nr,io)+t1*p0(1:nr,jo) p1s(io)=p1s(io)+t1*p1s(jo) ep0(1:nr,io)=ep0(1:nr,io)+t1*ep0(1:nr,jo) end do ! normalise radial functions again fr(1:nr)=p0(1:nr,io)**2 t1=splint(nr,rlmt(:,1,is),fr) t1=abs(t1) if (t1 < 1.d-25) then write(*,*) write(*,'("Error(genapwfr): degenerate APW radial functions")') write(*,'(" for species ",I4)') is write(*,'(" atom ",I4)') ia write(*,'(" angular momentum ",I4)') l write(*,'(" and order ",I4)') io write(*,*) stop end if t1=1.d0/sqrt(t1) p0(1:nr,io)=t1*p0(1:nr,io) p1s(io)=t1*p1s(io) ep0(1:nr,io)=t1*ep0(1:nr,io) ! divide by r and store in global array do ir=1,nr t1=rlmt(ir,-1,is) apwfr(ir,1,io,l,ias)=t1*p0(ir,io) apwfr(ir,2,io,l,ias)=t1*ep0(ir,io) end do ! derivative at the muffin-tin surface apwdfr(io,l,ias)=(p1s(io)-p0(nr,io)*t1)*t1 end do end do done(ia)=.true. ! copy to equivalent atoms do ja=1,natoms(is) if ((.not.done(ja)).and.(eqatoms(ia,ja,is))) then jas=idxas(ja,is) do l=0,lmaxapw do io=1,apword(l,is) apwfr(1:nr,1:2,io,l,jas)=apwfr(1:nr,1:2,io,l,ias) apwdfr(io,l,jas)=apwdfr(io,l,ias) end do end do done(ja)=.true. end if end do ! end loop over atoms and species end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/gengclq.f900000644000000000000000000000013214536061313014167 xustar0030 mtime=1702388427.658501874 30 atime=1702388426.473503629 30 ctime=1702388427.658501874 elk-9.2.12/src/gengclq.f900000644002504400250440000000557414536061313016724 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gengclq ! !INTERFACE: subroutine gengclq ! !USES: use modmain use modtest ! !DESCRIPTION: ! The Fock matrix elements ! $$ V_{ij{\bf k}}\equiv\sum_{l{\bf k'}}\int ! \frac{\Psi^{\dag}_{i{\bf k}}({\bf r})\cdot\Psi_{l{\bf k}'}({\bf r}) ! \Psi^{\dag}_{l{\bf k}'}({\bf r}')\cdot\Psi_{j{\bf k}}({\bf r}')} ! {|{\bf r}-{\bf r'}|}\,d^3r\,d^3r' $$ ! contain a divergent term in the sum over ${\bf k}'$ which behaves as ! $1/q^2$, where ${\bf q}\equiv{\bf k}-{\bf k}'$ is in the first Brillouin ! zone. The resulting convergence with respect to the number of discrete ! $q$-points, $N_q$, is very slow. This routine computes the regularised ! Coulomb Green's function ! \begin{align} ! g({\bf q}_i)=\frac{4\pi}{V}\int_{V_i}\frac{1}{q^2}\,d^3q, ! \end{align} ! where the integral is over the small parallelepiped with volume ! $V=\Omega_{\rm BZ}/N_q$ and centered on the discrete point ${\bf q}_i$. ! This dramatically increases the rate of convergence of methods which involve ! a summation over the $1/q^2$ part of the Coulomb interaction. The above ! integral is evaluated numerically on increasingly finer grids and then ! extrapolated to the continuum. ! ! !REVISION HISTORY: ! Created August 2004 (JKD,SS) ! Changed from genwiq2, July 2017 (JKD) !EOP !BOC implicit none ! local variables integer, parameter :: np=5 integer, parameter :: ns0=10,nss=20 integer ns,iq,i1,i2,i3,ip real(8) d(3),sm,t1,t2 real(8) v1(3),v2(3),v3(3) real(8) xa(np),ya(np) ! external functions real(8), external :: polynm ! allocate global gclq array if (allocated(gclq)) deallocate(gclq) allocate(gclq(nqpt)) ! begin loop over q-points, note that the vectors vqc are assumed to be in the ! first Brillouin zone do iq=1,nqpt ! loop over different subdivisions ns=ns0 do ip=1,np ! subdivision vectors in lattice coordinates d(:)=1.d0/dble(ngridq(:)*2*ns) ! compute the integral of 1/q^2 sm=0.d0 do i1=-ns,ns-1 t1=dble(i1)*d(1) v1(:)=vqc(:,iq)+t1*bvec(:,1) do i2=-ns,ns-1 t1=dble(i2)*d(2) v2(:)=v1(:)+t1*bvec(:,2) do i3=-ns,ns-1 t1=dble(i3)*d(3) v3(:)=v2(:)+t1*bvec(:,3) t2=v3(1)**2+v3(2)**2+v3(3)**2 if (t2 > 1.d-14) sm=sm+1.d0/t2 end do end do end do t1=1.d0/dble(2*ns) xa(ip)=t1 ya(ip)=fourpi*sm*t1**3 ! increment number of subdivisions ns=ns+nss end do ! extrapolate the volume element to zero with a polynomial gclq(iq)=polynm(0,np,xa,ya,0.d0) end do ! zero the Green's function at q = 0 if required if (t0gclq0) gclq(1)=0.d0 ! write gclq to test file call writetest(800,"regularised Coulomb Green''s function (gclq)",nv=nqpt, & tol=1.d-8,rva=gclq) end subroutine !EOC elk-9.2.12/src/PaxHeaders/addbfsm.f900000644000000000000000000000013214536061313014147 xustar0030 mtime=1702388427.659501873 30 atime=1702388426.475503626 30 ctime=1702388427.659501873 elk-9.2.12/src/addbfsm.f900000644002504400250440000000163314536061313016674 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine addbfsm use modmain implicit none ! local variables integer idm,is,ias,npc real(8) t1 ! add the global fixed spin moment B-field to the Kohn-Sham field if ((abs(fsmtype) == 1).or.(abs(fsmtype) == 3)) then do idm=1,ndmag t1=bfsmc(idm) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) bsmt(1:npc,ias,idm)=bsmt(1:npc,ias,idm)+t1 end do bsir(1:ngtot,idm)=bsir(1:ngtot,idm)+t1*cfunir(1:ngtot) end do end if ! add the muffin-tin fields if ((abs(fsmtype) == 2).or.(abs(fsmtype) == 3)) then do idm=1,ndmag do ias=1,natmtot is=idxis(ias) npc=npcmt(is) t1=bfsmcmt(idm,ias) bsmt(1:npc,ias,idm)=bsmt(1:npc,ias,idm)+t1 end do end do end if end subroutine elk-9.2.12/src/PaxHeaders/genylmv.f900000644000000000000000000000013014536061313014226 xustar0029 mtime=1702388427.66150187 30 atime=1702388426.477503623 29 ctime=1702388427.66150187 elk-9.2.12/src/genylmv.f900000644002504400250440000000520614536061313016755 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: genylmv ! !INTERFACE: pure subroutine genylmv(lmax,v,ylm) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum angular momentum (in,integer) ! v : input vector (in,real(3)) ! ylm : array of spherical harmonics (out,complex((lmax+1)**2)) ! !DESCRIPTION: ! Generates a sequence of spherical harmonics, including the Condon-Shortley ! phase, evaluated at angles $(\theta,\phi)$ for $0 eps) then t1=v(3)/r if (t1 >= 1.d0) then st=0.d0 ct=1.d0 else if (t1 <= -1.d0) then st=0.d0 ct=-1.d0 else st=sqrt(1.d0-t1**2) ct=t1 end if if ((abs(v(1)) > eps).or.(abs(v(2)) > eps)) then t1=1.d0/sqrt(v(1)**2+v(2)**2) sp=t1*v(2) cp=t1*v(1) else sp=0.d0 cp=1.d0 end if else st=0.d0 ct=1.d0 sp=0.d0 cp=1.d0 end if z1=cmplx(cp,sp,8) ylm(3)=0.48860251190291992159d0*ct ylm(4)=-0.34549414947133547927d0*st*z1 ylm(2)=-conjg(ylm(4)) do l=2,lmax lm1=(l+1)**2 lm2=l**2 lm3=(l-1)**2+1 lm4=lm2+1 ylm(lm1)=-st*sqrt(dble(2*l+1)/dble(2*l))*z1*ylm(lm2) if (mod(l,2) == 0) then ylm(lm4)=conjg(ylm(lm1)) else ylm(lm4)=-conjg(ylm(lm1)) end if lm1=lm1-1 ylm(lm1)=ct*sqrt(dble(2*l+1))*ylm(lm2) lm4=lm4+1 if (mod(l-1,2) == 0) then ylm(lm4)=conjg(ylm(lm1)) else ylm(lm4)=-conjg(ylm(lm1)) end if t1=ct*sqrt(dble((2*l-1)*(2*l+1))) t2=sqrt(dble((2*l+1))/dble(2*l-3)) do m=l-2,1,-1 lm1=lm1-1; lm2=lm2-1; lm3=lm3-1; lm4=lm4+1 t3=1.d0/sqrt(dble((l-m)*(l+m))) t4=t2*sqrt(dble((l-m-1)*(l+m-1))) ylm(lm1)=t3*(t1*ylm(lm2)-t4*ylm(lm3)) if (mod(m,2) == 0) then ylm(lm4)=conjg(ylm(lm1)) else ylm(lm4)=-conjg(ylm(lm1)) end if end do lm1=lm1-1; lm2=lm2-1; lm3=lm3-1 t3=1.d0/dble(l) t4=t2*dble(l-1) ylm(lm1)=t3*(t1*ylm(lm2)-t4*ylm(lm3)) end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/olpfv.f900000644000000000000000000000013214536061313013675 xustar0030 mtime=1702388427.662501868 30 atime=1702388426.478503621 30 ctime=1702388427.662501868 elk-9.2.12/src/olpfv.f900000644002504400250440000000172314536061313016422 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine olpfv(nmatp,ngp,igpig,apwalm,o) use modmain use modomp implicit none ! arguments integer, intent(in) :: nmatp,ngp,igpig(ngkmax) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) complex(8), intent(out) :: o(nmatp,nmatp) ! local variables integer is,ias,j,nthd ! zero the upper triangular part of the matrix do j=1,nmatp o(1:j,j)=0.d0 end do do ias=1,natmtot is=idxis(ias) call olpaa(tefvr,is,ngp,apwalm(:,:,:,ias),nmatp,o) end do call olpistl(ngp,igpig,nmatp,o) call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call olpalo(is,ias,ngp,apwalm(:,:,:,ias),nmatp,o) call olplolo(is,ias,ngp,nmatp,o) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/hmlfv.f900000644000000000000000000000013214536061313013663 xustar0030 mtime=1702388427.663501867 30 atime=1702388426.480503618 30 ctime=1702388427.663501867 elk-9.2.12/src/hmlfv.f900000644002504400250440000000200714536061313016404 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hmlfv(nmatp,ngp,igpig,vgpc,apwalm,h) use modmain use modomp implicit none ! arguments integer, intent(in) :: nmatp,ngp,igpig(ngkmax) real(8), intent(in) :: vgpc(3,ngkmax) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) complex(8), intent(out) :: h(nmatp,nmatp) ! local variables integer is,ias,j,nthd ! zero the upper triangular part of the matrix do j=1,nmatp h(1:j,j)=0.d0 end do do ias=1,natmtot is=idxis(ias) call hmlaa(tefvr,is,ias,ngp,apwalm(:,:,:,ias),nmatp,h) end do call hmlistl(ngp,igpig,vgpc,nmatp,h) call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call hmlalo(is,ias,ngp,apwalm(:,:,:,ias),nmatp,h) call hmllolo(is,ias,ngp,nmatp,h) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/genexpmt.f900000644000000000000000000000013214536061313014376 xustar0030 mtime=1702388427.665501864 30 atime=1702388426.481503617 30 ctime=1702388427.665501864 elk-9.2.12/src/genexpmt.f900000644002504400250440000000306114536061313017120 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genexpmt(ngp,jlgpr,ylmgp,ld,sfacgp,expmt) use modmain implicit none ! arguments integer, intent(in) :: ngp real(8), intent(in) :: jlgpr(njcmax,nspecies,ngp) complex(8), intent(in) :: ylmgp(lmmaxo,ngp) integer, intent(in) :: ld complex(8), intent(in) :: sfacgp(ld,natmtot) complex(8), intent(out) :: expmt(npcmtmax,natmtot,ngp) ! local variables integer ig,is,ia,ias integer nrc,nrci,irc,npc integer l,lma,lmb,i,j real(8) t1 complex(8) z1 ! automatic arrays complex(8) ylm(lmmaxo),zfmt(npcmtmax) do ig=1,ngp do l=0,lmaxo z1=fourpi*zil(mod(l,4)) lma=l**2+1; lmb=lma+2*l ylm(lma:lmb)=z1*conjg(ylmgp(lma:lmb,ig)) end do do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) i=0 j=0 do irc=1,nrci do l=0,lmaxi j=j+1 t1=jlgpr(j,is,ig) lma=l**2+1; lmb=lma+2*l zfmt(i+lma:i+lmb)=t1*ylm(lma:lmb) end do i=i+lmmaxi end do do irc=nrci+1,nrc do l=0,lmaxo j=j+1 t1=jlgpr(j,is,ig) lma=l**2+1; lmb=lma+2*l zfmt(i+lma:i+lmb)=t1*ylm(lma:lmb) end do i=i+lmmaxo end do ! convert to spherical coordinates call zbshtip(nrc,nrci,zfmt) ! mutiply by phase factors and store for all atoms do ia=1,natoms(is) ias=idxas(ia,is) z1=sfacgp(ig,ias) expmt(1:npc,ias,ig)=z1*zfmt(1:npc) end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/rfinp.f900000644000000000000000000000013214536061313013665 xustar0030 mtime=1702388427.666501862 30 atime=1702388426.483503614 30 ctime=1702388427.666501862 elk-9.2.12/src/rfinp.f900000644002504400250440000000352314536061313016412 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rfinp ! !INTERFACE: real(8) function rfinp(rfmt1,rfir1,rfmt2,rfir2) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! rfmt1 : first function in real spherical harmonics for all muffin-tins ! (in,real(npmtmax,natmtot)) ! rfir1 : first real interstitial function in real-space (in,real(ngtot)) ! rfmt2 : second function in real spherical harmonics for all muffin-tins ! (in,real(npmtmax,natmtot)) ! rfir2 : second real interstitial function in real-space (in,real(ngtot)) ! !DESCRIPTION: ! Calculates the inner product of two real functions over the entire unit ! cell. The input muffin-tin functions should have angular momentum cut-off ! {\tt lmaxo}. In the interstitial region, the integrand is multiplied with ! the characteristic function, $\tilde{\Theta}({\bf r})$, to remove the ! contribution from the muffin-tin. See routines {\tt rfmtinp} and ! {\tt gencfun}. ! ! !REVISION HISTORY: ! Created July 2004 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rfmt1(npmtmax,natmtot),rfir1(ngtot) real(8), intent(in) :: rfmt2(npmtmax,natmtot),rfir2(ngtot) ! local variables integer is,ias,nthd ! external functions real(8), external :: rfmtinp ! interstitial contribution rfinp=sum(rfir1(1:ngtot)*rfir2(1:ngtot)*cfunir(1:ngtot)) rfinp=rfinp*omega/dble(ngtot) ! muffin-tin contribution call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) REDUCTION(+:rfinp) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) rfinp=rfinp+rfmtinp(nrmt(is),nrmti(is),wrmt(:,is),rfmt1(:,ias),rfmt2(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) end function !EOC elk-9.2.12/src/PaxHeaders/sphcover.f900000644000000000000000000000013214536061313014400 xustar0030 mtime=1702388427.667501861 30 atime=1702388426.484503612 30 ctime=1702388427.667501861 elk-9.2.12/src/sphcover.f900000644002504400250440000000254614536061313017131 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sphcover ! !INTERFACE: subroutine sphcover(n,tp) ! !INPUT/OUTPUT PARAMETERS: ! n : number of required points (in,integer) ! tp : (theta, phi) coordinates (out,real(2,n)) ! !DESCRIPTION: ! Produces a set of $N$ points which cover the unit sphere nearly optimally. ! The points in spherical $(\theta,\phi)$ coordinates are generated using the ! explicit `golden section' formula: ! \begin{align*} ! \theta_k&=\arccos\left[1-\left(k-\tfrac{1}{2}\right)\delta z\right] \\ ! \phi_k&=(k-1)\delta\phi, ! \end{align*} ! where $\delta z=2/n$ and $\delta\phi=\pi(1-\sqrt{5})$. ! ! !REVISION HISTORY: ! Created April 2008 (JKD) ! Improved covering, October 2009 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(out) :: tp(2,n) ! local variables integer k real(8), parameter :: pi=3.1415926535897932385d0 real(8) z,dz,p,dp if (n <= 0) then write(*,*) write(*,'("Error(sphcover): n <= 0 : ",I8)') n write(*,*) stop end if dz=2.d0/dble(n) z=1.d0-dz/2.d0 tp(1,1)=acos(z) dp=pi*(1.d0-sqrt(5.d0)) p=0.d0 tp(2,1)=p do k=2,n z=z-dz tp(1,k)=acos(z) p=p+dp tp(2,k)=mod(p,2.d0*pi) end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/sctovec.f900000644000000000000000000000013214536061313014215 xustar0030 mtime=1702388427.668501859 30 atime=1702388426.486503609 30 ctime=1702388427.668501859 elk-9.2.12/src/sctovec.f900000644002504400250440000000064214536061313016741 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine sctovec(tp,v) implicit none ! arguments real(8), intent(in) :: tp(2) real(8), intent(out) :: v(3) ! local variables real(8) t1 t1=sin(tp(1)) v(1)=t1*cos(tp(2)) v(2)=t1*sin(tp(2)) v(3)=cos(tp(1)) end subroutine elk-9.2.12/src/PaxHeaders/genppts.f900000644000000000000000000000013214536061313014227 xustar0030 mtime=1702388427.670501856 30 atime=1702388426.488503606 30 ctime=1702388427.670501856 elk-9.2.12/src/genppts.f900000644002504400250440000001370514536061313016757 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: genppts ! !INTERFACE: subroutine genppts(tfbz,nsym,sym,ngridp,npptnr,epslat,bvec,boxl,nppt,ipvip, & ipvipnr,ivp,vpl,vpc,wppt,wpptnr) ! !INPUT/OUTPUT PARAMETERS: ! tfbz : .true. if vpl and vpc should be mapped to the first Brillouin zone ! (in,logical) ! nsym : number of point group symmetries used for reduction, set to 1 for ! no reduction (in,integer) ! sym : symmetry matrices in lattice coordinates (in,integer(3,3,*)) ! ngridp : p-point grid sizes (in,integer(3)) ! npptnr : number of non-reduced p-points: ngridp(1)*ngridp(2)*ngridp(3) ! (in,integer) ! epslat : tolerance for determining identical vectors (in,real) ! bvec : reciprocal lattice vectors (in,real(3,3)) ! boxl : corners of box containing p-points in lattice coordinates, the ! zeroth vector is the origin (in,real(3,0:3)) ! nppt : total number of p-points (out,integer) ! ipvip : map from (i1,i2,i3) to reduced p-point index ! (out,integer(0:ngridp(1)-1,0:ngridp(2)-1,0:ngridp(3)-1)) ! ipvipnr : map from (i1,i2,i3) to non-reduced p-point index ! (out,integer(0:ngridp(1)-1,0:ngridp(2)-1,0:ngridp(3)-1)) ! ivp : integer coordinates of the p-points ! (out,integer(3,ngridp(1)*ngridp(2)*ngridp(3))) ! vpl : lattice coordinates of each p-point ! (out,real(3,ngridp(1)*ngridp(2)*ngridp(3))) ! vpc : Cartesian coordinates of each p-point ! (out,real(3,ngridp(1)*ngridp(2)*ngridp(3))) ! wppt : weights of each reduced p-point ! (out,real(ngridp(1)*ngridp(2)*ngridp(3))) ! wpptnr : weight of each non-reduced p-point (out,real) ! !DESCRIPTION: ! This routine is used for generating $k$-point or $q$-point sets. Since these ! are stored in global arrays, the points passed to this and other routines ! are referred to as $p$-points. In lattice coordinates, the ${\bf p}$ vectors ! are given by ! $$ {\bf p}=\left(\begin{matrix} & & \\ ! {\bf B}_2-{\bf B}_1 & {\bf B}_3-{\bf B}_1 & {\bf B}_4-{\bf B}_1 \\ ! & & \end{matrix}\right) ! \left(\begin{matrix}i_1/n_1 \\ i_2/n_2 \\ i_3/n_3 \end{matrix}\right) ! +{\bf B}_1 $$ ! where $i_j$ runs from 0 to $n_j-1$, and the ${\bf B}$ vectors define the ! corners of a box with ${\bf B}_1$ as the origin. If {\tt tfbz} is ! {\tt .true.} then each {\tt vpl} vector is mapped to the first Brillouin ! zone. If {\tt tfbz} is {\tt .false.} and then the coordinates of each ! {\tt vpl} are mapped to the $[0,1)$ interval. The $p$-point weights are ! stored in {\tt wppt} and the array {\tt ipvip} contains the map from the ! integer coordinates to the reduced index. ! ! !REVISION HISTORY: ! Created August 2002 (JKD) ! Updated April 2007 (JKD) ! Added mapping to the first Brillouin zone, September 2008 (JKD) ! Made independent of modmain, February 2010 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: tfbz integer, intent(in) :: nsym,sym(3,3,*) integer, intent(in) :: ngridp(3),npptnr real(8), intent(in) :: epslat real(8), intent(in) :: bvec(3,3),boxl(3,0:3) integer, intent(out) :: nppt integer, intent(out) :: ipvip(0:ngridp(1)-1,0:ngridp(2)-1,0:ngridp(3)-1) integer, intent(out) :: ipvipnr(0:ngridp(1)-1,0:ngridp(2)-1,0:ngridp(3)-1) integer, intent(out) :: ivp(3,npptnr) real(8), intent(out) :: vpl(3,npptnr),vpc(3,npptnr) real(8), intent(out) :: wppt(npptnr),wpptnr ! local variables integer i1,i2,i3,i integer isym,ip,jp real(8) v1(3),v2(3),v3(3) real(8) b(3,3),t1 if ((ngridp(1) <= 0).or.(ngridp(2) <= 0).or.(ngridp(3) <= 0)) then write(*,*) write(*,'("Error(genppts): invalid ngridp : ",3I8)') ngridp write(*,*) stop end if if (npptnr /= ngridp(1)*ngridp(2)*ngridp(3)) then write(*,*) write(*,'("Error(genppts): mismatched npptnr and ngridp : ",4I8)') npptnr, & ngridp write(*,*) stop end if ! box vector matrix b(:,1)=boxl(:,1)-boxl(:,0) b(:,2)=boxl(:,2)-boxl(:,0) b(:,3)=boxl(:,3)-boxl(:,0) ! weight of each non-reduced p-point wpptnr=1.d0/dble(ngridp(1)*ngridp(2)*ngridp(3)) ip=0 jp=npptnr do i3=0,ngridp(3)-1 v1(3)=dble(i3)/dble(ngridp(3)) do i2=0,ngridp(2)-1 v1(2)=dble(i2)/dble(ngridp(2)) do i1=0,ngridp(1)-1 v1(1)=dble(i1)/dble(ngridp(1)) call r3mv(b,v1,v2) v2(:)=v2(:)+boxl(:,0) ! map vector components to [0,1) call r3frac(epslat,v2) if (nsym > 1) then ! determine if this point is equivalent to one already in the set do isym=1,nsym call i3mtrv(sym(:,:,isym),v2,v3) call r3frac(epslat,v3) do i=1,ip t1=abs(vpl(1,i)-v3(1))+abs(vpl(2,i)-v3(2))+abs(vpl(3,i)-v3(3)) if (t1 < epslat) then ! equivalent p-point found so add to existing weight ipvip(i1,i2,i3)=i wppt(i)=wppt(i)+wpptnr ! add new point to back of set ipvipnr(i1,i2,i3)=jp ivp(1,jp)=i1; ivp(2,jp)=i2; ivp(3,jp)=i3 vpl(:,jp)=v2(:) wppt(jp)=0.d0 jp=jp-1 goto 10 end if end do end do end if ! add new point to front of set ip=ip+1 ipvip(i1,i2,i3)=ip ipvipnr(i1,i2,i3)=ip ivp(1,ip)=i1; ivp(2,ip)=i2; ivp(3,ip)=i3 vpl(:,ip)=v2(:) wppt(ip)=wpptnr 10 continue end do end do end do nppt=ip do ip=1,npptnr ! map vpl to the first Brillouin zone if required if (tfbz) call vecfbz(epslat,bvec,vpl(:,ip)) ! determine the Cartesian coordinates of the p-points call r3mv(bvec,vpl(:,ip),vpc(:,ip)) end do return contains pure subroutine i3mtrv(a,x,y) implicit none ! arguments integer, intent(in) :: a(3,3) real(8), intent(in) :: x(3) real(8), intent(out) :: y(3) y(1)=a(1,1)*x(1)+a(2,1)*x(2)+a(3,1)*x(3) y(2)=a(1,2)*x(1)+a(2,2)*x(2)+a(3,2)*x(3) y(3)=a(1,3)*x(1)+a(2,3)*x(2)+a(3,3)*x(3) end subroutine end subroutine !EOC elk-9.2.12/src/PaxHeaders/eveqnzg.f900000644000000000000000000000013214536061313014226 xustar0030 mtime=1702388427.671501855 30 atime=1702388426.489503605 30 ctime=1702388427.671501855 elk-9.2.12/src/eveqnzg.f900000644002504400250440000000205214536061313016747 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnzg(n,ld,a,w) use modomp implicit none ! arguments integer, intent(in) :: n,ld complex(8), intent(inout) :: a(ld,n) complex(8), intent(out) :: w(n) ! local variables integer lwork,info integer nthd,nts ! allocatable arrays real(8), allocatable :: rwork(:) complex(8), allocatable :: vr(:,:),work(:) lwork=2*n allocate(rwork(2*n),vr(n,n),work(lwork)) ! enable MKL parallelism call holdthd(maxthdmkl,nthd) nts=mkl_set_num_threads_local(nthd) ! determine the eigenvalues and right eigenvectors call zgeev('N','V',n,a,ld,w,vr,1,vr,n,work,lwork,rwork,info) nts=mkl_set_num_threads_local(0) call freethd(nthd) if (info /= 0) then write(*,*) write(*,'("Error(eveqnzg): diagonalisation failed")') write(*,'(" ZGEEV returned INFO = ",I8)') info write(*,*) stop end if ! copy right eigenvectors to output array a(1:n,1:n)=vr(1:n,1:n) deallocate(rwork,vr,work) end subroutine elk-9.2.12/src/PaxHeaders/fderiv.f900000644000000000000000000000013214536061313014026 xustar0030 mtime=1702388427.672501853 30 atime=1702388426.491503602 30 ctime=1702388427.672501853 elk-9.2.12/src/fderiv.f900000644002504400250440000000324614536061313016555 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: fderiv ! !INTERFACE: subroutine fderiv(m,n,x,f,g) ! !INPUT/OUTPUT PARAMETERS: ! m : order of derivative (in,integer) ! n : number of points (in,integer) ! x : abscissa array (in,real(n)) ! f : function array (in,real(n)) ! g : (anti-)derivative of f (out,real(n)) ! !DESCRIPTION: ! Given function $f$ defined on a set of points $x_i$ then if $m\ge 0$ this ! routine computes the $m$th derivative of $f$ at each point. If $m=-1$ the ! anti-derivative of $f$ given by ! $$ g(x_i)=\int_{x_1}^{x_i} f(x)\,dx $$ ! is calculated. Both derivatives and integrals are computed by first fitting ! the function to a clamped cubic spline. ! ! !REVISION HISTORY: ! Created May 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: m,n real(8), intent(in) :: x(n),f(n) real(8), intent(out) :: g(n) ! local variables integer i real(8) sm,dx ! automatic arrays real(8) cf(3,n) if (n <= 0) then write(*,*) write(*,'("Error(fderiv): invalid number of points : ",I8)') n write(*,*) stop end if ! high accuracy integration/differentiation from spline interpolation call spline(n,x,f,cf) select case(m) case(:-1) sm=0.d0 g(1)=0.d0 do i=1,n-1 dx=x(i+1)-x(i) sm=sm+dx*(f(i) & +dx*(0.5d0*cf(1,i) & +dx*(0.3333333333333333333d0*cf(2,i) & +dx*0.25d0*cf(3,i)))) g(i+1)=sm end do case(1) g(:)=cf(1,:) case(2) g(:)=2.d0*cf(2,:) case(3) g(:)=6.d0*cf(3,:) case(4:) g(:)=0.d0 end select end subroutine !EOC elk-9.2.12/src/PaxHeaders/genpmat.f900000644000000000000000000000013214536061313014202 xustar0030 mtime=1702388427.673501852 30 atime=1702388426.492503601 30 ctime=1702388427.673501852 elk-9.2.12/src/genpmat.f900000644002504400250440000000145714536061313016733 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genpmat use modmain use modmpi use modomp implicit none ! local variables integer ik,nthd if (mp_mpi) write(*,*) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(genpmat_) write(*,'("Info(genpmat): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(genpmat_) call putpmat(ik) end do !$OMP END PARALLEL DO call freethd(nthd) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/genexpmat.f900000644000000000000000000000013214536061313014537 xustar0030 mtime=1702388427.675501849 30 atime=1702388426.494503598 30 ctime=1702388427.675501849 elk-9.2.12/src/genexpmat.f900000644002504400250440000001245714536061313017272 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genexpmat(vpl,expmt,emat) use modmain implicit none ! arguments real(8), intent(in) :: vpl(3) complex(8), intent(in) :: expmt(npcmtmax,natmtot) complex(8), intent(out) :: emat(nstsv,nstsv) ! local variables integer ist,jst,ispn,i,j,k,l integer is,ia,ias,nrc,nrci integer npc,ngp,ngpq,igp,ifg real(8) vpc(3),vpql(3),vpqc(3),t1 complex(8) z1 ! allocatable arrays integer, allocatable :: igpig(:),igpqig(:) real(8), allocatable :: vgpl(:,:),vgpc(:,:),gpc(:) real(8), allocatable :: vgpql(:,:),vgpqc(:,:),gpqc(:) complex(8), allocatable :: sfacgp(:,:),sfacgpq(:,:) complex(8), allocatable :: apwalm1(:,:,:,:),apwalm2(:,:,:,:) complex(8), allocatable :: evecfv1(:,:),evecfv2(:,:) complex(8), allocatable :: evecsv1(:,:),evecsv2(:,:) complex(8), allocatable :: wfmt1(:),wfmt2(:,:) complex(8), allocatable :: zfir(:),x(:),em(:,:) ! external functions complex(8), external :: zfmtinp,zdotc ! check if q-vector is zero t1=abs(vecql(1))+abs(vecql(2))+abs(vecql(3)) if (t1 < epslat) then emat(:,:)=0.d0 do i=1,nstsv emat(i,i)=1.d0 end do return end if ! allocate local arrays allocate(igpig(ngkmax),igpqig(ngkmax)) allocate(vgpl(3,ngkmax),vgpc(3,ngkmax),gpc(ngkmax)) allocate(vgpql(3,ngkmax),vgpqc(3,ngkmax),gpqc(ngkmax)) allocate(sfacgp(ngkmax,natmtot),sfacgpq(ngkmax,natmtot)) allocate(apwalm1(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(apwalm2(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(evecfv1(nmatmax,nstfv),evecfv2(nmatmax,nstfv)) if (tevecsv) then allocate(evecsv1(nstsv,nstsv),evecsv2(nstsv,nstsv)) end if allocate(wfmt1(npcmtmax),wfmt2(npcmtmax,nstfv)) allocate(zfir(ngtot),x(ngkmax),em(nstfv,nstfv)) ! p-vector in Cartesian coordinates call r3mv(bvec,vpl,vpc) ! generate the G+p-vectors call gengkvec(ngvc,ivg,vgc,vpl,vpc,gkmax,ngkmax,ngp,igpig,vgpl,vgpc,gpc) ! generate the structure factors call gensfacgp(ngp,vgpc,ngkmax,sfacgp) ! find the matching coefficients for k-point p call match(ngp,vgpc,gpc,sfacgp,apwalm1) ! get the eigenvectors for k-point p call getevecfv(filext,0,vpl,vgpl,evecfv1) ! p+q-vector in lattice coordinates vpql(:)=vpl(:)+vecql(:) ! p+q-vector in Cartesian coordinates call r3mv(bvec,vpql,vpqc) ! generate the G+p+q-vectors call gengkvec(ngvc,ivg,vgc,vpql,vpqc,gkmax,ngkmax,ngpq,igpqig,vgpql,vgpqc,gpqc) ! generate the structure factors call gensfacgp(ngpq,vgpqc,ngkmax,sfacgpq) ! find the matching coefficients for k-point p+q call match(ngpq,vgpqc,gpqc,sfacgpq,apwalm2) ! get the eigenvectors for k-point p+q call getevecfv(filext,0,vpql,vgpql,evecfv2) ! set the first-variational matrix element array to zero em(:,:)=0.d0 !------------------------------------! ! muffin-tin matrix elements ! !------------------------------------! do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) do ist=1,nstfv ! calculate the wavefunction for k-point p+q call wfmtfv(ias,ngpq,apwalm2(:,:,:,ias),evecfv2(:,ist),wfmt1) ! convert from spherical harmonics to spherical coordinates call zbsht(nrc,nrci,wfmt1,wfmt2(:,ist)) ! multiply by exp(-iq.r) (conjugate because zfmtinp conjugates first function) wfmt1(1:npc)=conjg(expmt(1:npc,ias))*wfmt2(1:npc,ist) ! convert from spherical coordinates to spherical harmonics call zfsht(nrc,nrci,wfmt1,wfmt2(:,ist)) end do do jst=1,nstfv ! calculate the wavefunction for k-point p call wfmtfv(ias,ngp,apwalm1(:,:,:,ias),evecfv1(:,jst),wfmt1) do ist=1,nstfv em(ist,jst)=em(ist,jst)+zfmtinp(nrc,nrci,wrcmt(:,is),wfmt2(:,ist),wfmt1) end do end do ! end loops over atoms and species end do end do !--------------------------------------! ! interstitial matrix elements ! !--------------------------------------! ! compute interstitial wavefunctions for k-point p do jst=1,nstfv zfir(:)=0.d0 do igp=1,ngp ifg=igfft(igpig(igp)) zfir(ifg)=evecfv1(igp,jst) end do ! Fourier transform wavefunction to real-space call zfftifc(3,ngridg,1,zfir) ! multiply with the characteristic function zfir(:)=zfir(:)*cfunir(:) ! Fourier transform back to G-space call zfftifc(3,ngridg,-1,zfir) ! store as wavefunction with G+p+q index do igp=1,ngpq ifg=igfft(igpqig(igp)) x(igp)=zfir(ifg) end do ! add to the first-variational matrix elements do ist=1,nstfv em(ist,jst)=em(ist,jst)+zdotc(ngpq,evecfv2(:,ist),1,x,1) end do end do !-------------------------------------------! ! second-variational matrix elements ! !-------------------------------------------! if (tevecsv) then ! get the second-variational eigenvectors call getevecsv(filext,0,vpl,evecsv1) call getevecsv(filext,0,vpql,evecsv2) do i=1,nstsv do j=1,nstsv z1=0.d0 k=0 do ispn=1,nspinor do ist=1,nstfv k=k+1 l=(ispn-1)*nstfv do jst=1,nstfv l=l+1 z1=z1+em(ist,jst)*conjg(evecsv2(k,i))*evecsv1(l,j) end do end do end do emat(i,j)=z1 end do end do else emat(:,:)=em(:,:) end if deallocate(igpig,igpqig,vgpl,vgpc,gpc) deallocate(vgpql,vgpqc,gpqc,sfacgp,sfacgpq) deallocate(apwalm1,apwalm2,evecfv1,evecfv2) if (tevecsv) deallocate(evecsv1,evecsv2) deallocate(wfmt1,wfmt2,zfir,x,em) end subroutine elk-9.2.12/src/PaxHeaders/writeforces.f900000644000000000000000000000013214536061313015103 xustar0030 mtime=1702388427.676501847 30 atime=1702388426.496503594 30 ctime=1702388427.676501847 elk-9.2.12/src/writeforces.f900000644002504400250440000000161514536061313017630 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2004-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeforces(fnum) use modmain implicit none ! arguments integer, intent(in) :: fnum ! local variables integer is,ia,ias real(8) t1 write(fnum,*) write(fnum,'("Forces :")') do is=1,nspecies write(fnum,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) write(fnum,'(" atom : ",I4)') ia write(fnum,'(" Hellmann-Feynman",T30,": ",3F14.8)') forcehf(:,ias) write(fnum,'(" IBS",T30,": ",3F14.8)') forceibs(:,ias) write(fnum,'(" total force",T30,": ",3F14.8)') forcetot(:,ias) t1=sqrt(forcetot(1,ias)**2+forcetot(2,ias)**2+forcetot(3,ias)**2) write(fnum,'(" total magnitude",T30,": ",F14.8)') t1 end do end do end subroutine elk-9.2.12/src/PaxHeaders/r3cross.f900000644000000000000000000000013214536061313014145 xustar0030 mtime=1702388427.678501844 30 atime=1702388426.497503593 30 ctime=1702388427.678501844 elk-9.2.12/src/r3cross.f900000644002504400250440000000134214536061313016667 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3cross ! !INTERFACE: pure subroutine r3cross(x,y,z) ! !INPUT/OUTPUT PARAMETERS: ! x : input vector 1 (in,real(3)) ! y : input vector 2 (in,real(3)) ! z : output cross-product (out,real(3)) ! !DESCRIPTION: ! Returns the cross product of two real 3-vectors. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: x(3),y(3) real(8), intent(out) :: z(3) z(1)=x(2)*y(3)-x(3)*y(2) z(2)=x(3)*y(1)-x(1)*y(3) z(3)=x(1)*y(2)-x(2)*y(1) end subroutine !EOC elk-9.2.12/src/PaxHeaders/match.f900000644000000000000000000000013114536061313013642 xustar0030 mtime=1702388427.679501843 29 atime=1702388426.49950359 30 ctime=1702388427.679501843 elk-9.2.12/src/match.f900000644002504400250440000001175214536061313016373 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: match ! !INTERFACE: subroutine match(ngp,vgpc,gpc,sfacgp,apwalm) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ngp : number of G+p-vectors (in,integer) ! vgpc : G+p-vectors in Cartesian coordinates (in,real(3,ngkmax)) ! gpc : length of G+p-vectors (in,real(ngkmax)) ! sfacgp : structure factors of G+p-vectors (in,complex(ngkmax,natmtot)) ! apwalm : APW matching coefficients ! (out,complex(ngkmax,apwordmax,lmmaxapw,natmtot)) ! !DESCRIPTION: ! Computes the $({\bf G+p})$-dependent matching coefficients for the APW basis ! functions. Inside muffin-tin $\alpha$, the APW functions are given by ! $$ \phi^{\alpha}_{\bf G+p}({\bf r})=\sum_{l=0}^{l_{\rm max}} ! \sum_{m=-l}^{l}\sum_{j=1}^{M^{\alpha}_l}A^{\alpha}_{jlm}({\bf G+p}) ! u^{\alpha}_{jl}(r)Y_{lm}(\hat{{\bf r}}), $$ ! where $A^{\alpha}_{jlm}({\bf G+p})$ is the matching coefficient, ! $M^{\alpha}_l$ is the order of the APW and $u^{\alpha}_{jl}$ is the radial ! function. In the interstitial region, an APW function is a plane wave, ! $\exp(i({\bf G+p})\cdot{\bf r})/\sqrt{\Omega}$, where $\Omega$ is the unit ! cell volume. Ensuring continuity up to the $(M^{\alpha}_l-1)$th derivative ! across the muffin-tin boundary therefore requires that the matching ! coefficients satisfy ! $$ \sum_{j=1}^{M^{\alpha}_l}D_{ij}A^{\alpha}_{jlm}({\bf G+p})=b_i\;, $$ ! where ! $$ D_{ij}=\left.\frac{d^{i-1}u^{\alpha}_{jl}(r)}{dr^{i-1}} ! \right|_{r=R_{\alpha}} $$ ! and ! $$ b_i=\frac{4\pi i^l}{\sqrt{\Omega}}|{\bf G+p}|^{i-1}j^{(i-1)}_l ! (|{\bf G+p}|R_{\alpha})\exp(i({\bf G+p})\cdot{\bf r}_{\alpha})Y^*_{lm} ! (\widehat{{\bf G+p}}), $$ ! with ${\bf r}_{\alpha}$ the atomic position and $R_{\alpha}$ the muffin-tin ! radius. See routine {\tt wfmtfv}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Fixed documentation, June 2006 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ngp real(8), intent(in) :: vgpc(3,ngkmax),gpc(ngkmax) complex(8), intent(in) :: sfacgp(ngkmax,natmtot) complex(8), intent(out) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) ! local variables integer is,ia,ias integer omax,ord,info integer l,lma,lmb,lm,io,jo integer nr,ir,igp,i real(8) t0,t1 complex(8) z1,z2,z3 ! automatic arrays integer ipiv(apwordmax) real(8) djl(0:lmaxapw,apwordmax,ngp) complex(8) a(apwordmax,apwordmax),ylmgp(lmmaxapw,ngp) complex(8) b(apwordmax,ngp*(2*lmaxapw+1)) ! external functions real(8), external :: polynm ! compute the spherical harmonics of the G+p-vectors do igp=1,ngp call genylmv(lmaxapw,vgpc(:,igp),ylmgp(:,igp)) end do t0=fourpi/sqrt(omega) ! loop over species do is=1,nspecies nr=nrmt(is) ! maximum APW order for this species omax=maxval(apword(1:lmaxapw,is)) ! special case of omax=1 if (omax == 1) then do igp=1,ngp t1=gpc(igp)*rmt(is) call sbessel(lmaxapw,t1,djl(:,1,igp)) end do do ia=1,natoms(is) ias=idxas(ia,is) do l=0,lmaxapw z1=(t0/apwfr(nr,1,1,l,ias))*zil(mod(l,4)) lma=l**2+1; lmb=lma+2*l do igp=1,ngp z2=djl(l,1,igp)*z1*sfacgp(igp,ias) apwalm(igp,1,lma:lmb,ias)=z2*conjg(ylmgp(lma:lmb,igp)) end do end do end do cycle end if ! starting point on radial mesh for fitting polynomial of order npapw ir=nr-npapw+1 ! evaluate the spherical Bessel function derivatives for all G+p-vectors do igp=1,ngp t1=gpc(igp)*rmt(is) do io=1,omax call sbesseldm(io-1,lmaxapw,t1,djl(:,io,igp)) end do t1=1.d0 do io=2,omax t1=t1*gpc(igp) djl(:,io,igp)=t1*djl(:,io,igp) end do end do ! loop over atoms do ia=1,natoms(is) ias=idxas(ia,is) ! begin loop over l do l=0,lmaxapw ord=apword(l,is) z1=t0*zil(mod(l,4)) ! set up matrix of derivatives do jo=1,ord do io=1,ord a(io,jo)=polynm(io-1,npapw,rsp(ir,is),apwfr(ir,1,jo,l,ias),rmt(is)) end do end do lma=l**2+1; lmb=lma+2*l ! set up target vectors i=0 do igp=1,ngp z2=z1*sfacgp(igp,ias) do lm=lma,lmb i=i+1 z3=z2*conjg(ylmgp(lm,igp)) do io=1,ord b(io,i)=djl(l,io,igp)*z3 end do end do end do ! solve the general complex linear systems call zgesv(ord,i,a,apwordmax,ipiv,b,apwordmax,info) if (info /= 0) then write(*,*) write(*,'("Error(match): could not find APW matching coefficients")') write(*,'(" for species ",I4," and atom ",I4)') is,ia write(*,'(" ZGESV returned INFO = ",I8)') info write(*,*) stop end if i=0 do igp=1,ngp do lm=lma,lmb i=i+1 do io=1,ord apwalm(igp,io,lm,ias)=b(io,i) end do end do end do ! end loop over l end do ! end loops over atoms and species end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/genspchi0.f900000644000000000000000000000013014536061313014425 xustar0029 mtime=1702388427.68150184 30 atime=1702388426.500503589 29 ctime=1702388427.68150184 elk-9.2.12/src/genspchi0.f900000644002504400250440000001533414536061313017157 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genspchi0 ! !INTERFACE: subroutine genspchi0(ik,lock,vqpl,jlgqr,ylmgq,sfacgq,chi0) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! ik : k-point from non-reduced set (in,integer) ! lock : OpenMP locks for frequency index of chi0 (in,integer(nwrf)) ! vqpl : input q-point in lattice coordinates (in,real(3)) ! jlgqr : spherical Bessel functions evaluated on the coarse radial mesh for ! all species and G+q-vectors (in,real(njcmax,nspecies,ngrf)) ! ylmgq : spherical harmonics of the G+q-vectors (in,complex(lmmaxo,ngrf)) ! sfacgq : structure factors of G+q-vectors (in,complex(ngrf,natmtot)) ! chi0 : spin-dependent Kohn-Sham response function in G-space ! (out,complex(ngrf,4,ngrf,4,nwrf)) ! !DESCRIPTION: ! Computes the spin-dependent Kohn-Sham response function: ! \begin{align*} ! \chi_{\alpha\beta,\alpha'\beta'}({\bf r},{\bf r}',\omega) ! & \equiv\frac{\delta\rho_{\alpha\beta}({\bf r},\omega)} ! {\delta v_{\alpha'\beta'}({\bf r}',\omega)} \\ ! & =\frac{1}{N_k}\sum_{i{\bf k},j{\bf k}'}(f_{i{\bf k}}-f_{j{\bf k}'}) ! \frac{\langle i{\bf k}|\hat{\rho}_{\beta\alpha}({\bf r})|j{\bf k}'\rangle ! \langle j{\bf k}'|\hat{\rho}_{\alpha'\beta'}({\bf r}')|i{\bf k}\rangle} ! {w+(\varepsilon_{i{\bf k}}-\varepsilon_{j{\bf k}'})+i\eta}, ! \end{align*} ! where $\alpha$ and $\beta$ are spin-coordinates, $N_k$ is the number of ! $k$-points, $f_{i{\bf k}}$ are the occupation numbers, $v$ is the Kohn-Sham ! potential and $\hat{\rho}$ is the spin-density operator. With translational ! symmetry in mind, we adopt the following convention for its Fourier ! transform: ! $$ \chi_{\alpha\beta,\alpha'\beta'}({\bf G},{\bf G}',{\bf q},\omega)= ! \frac{1}{\Omega}\int d^3r\,d^3r'\,e^{-i({\bf G}+{\bf q})\cdot{\bf r}} ! e^{i({\bf G}'+{\bf q})\cdot{\bf r}'} ! \chi_{\alpha\beta,\alpha'\beta'}({\bf r},{\bf r}',\omega). $$ ! Let ! $$ Z_{i{\bf k},j{\bf k}+{\bf q}}^{\alpha\beta}({\bf G})\equiv ! \int d^3r\,e^{i({\bf G}+{\bf q})\cdot{\bf r}} ! \varphi_{j{\bf k}+{\bf q},\alpha}^*({\bf r}) ! \varphi_{i{\bf k},\beta}({\bf r}) $$ ! then the response function in $G$-space can be written ! $$ \chi_{\alpha\beta,\alpha'\beta'}({\bf G},{\bf G}',{\bf q},\omega)= ! \frac{1}{N_k\Omega}\sum_{i{\bf k},j{\bf k}+{\bf q}} ! (f_{i{\bf k}}-f_{j{\bf k}}) ! \frac{\left[Z_{i{\bf k},j{\bf k}+{\bf q}}^{\alpha\beta}({\bf G})\right]^* ! Z_{i{\bf k},j{\bf k}+{\bf q}}^{\alpha'\beta'}({\bf G}')} ! {w+(\varepsilon_{i{\bf k}}-\varepsilon_{j{\bf k}+{\bf q}})+i\eta}. $$ ! ! !REVISION HISTORY: ! Created March 2012 (SS and JKD) !EOP !BOC implicit none ! local variables integer, intent(in) :: ik integer(8), intent(in) :: lock(nwrf) real(8), intent(in) :: vqpl(3),jlgqr(njcmax,nspecies,ngrf) complex(8), intent(in) :: ylmgq(lmmaxo,ngrf),sfacgq(ngrf,natmtot) complex(8), intent(inout) :: chi0(ngrf,4,ngrf,4,nwrf) ! local variables logical tz(4) integer isym,jk,jkq,iw integer nst,nstq,ist,jst,kst,lst integer ig,jg,a,b,i,j,nthd real(8) vkql(3),ei,ej,eij,t1 complex(8) z1 ! automatic arrays integer idx(nstsv),idxq(nstsv) integer ngp(nspnfv),ngpq(nspnfv) ! allocatable arrays integer, allocatable :: igpig(:,:),igpqig(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfir(:,:,:) complex(4), allocatable :: wfmtq(:,:,:,:),wfirq(:,:,:) complex(4), allocatable :: crhomt(:,:),crhoir(:) complex(8), allocatable :: zrhoig(:,:),zw(:),c(:,:,:,:) if (.not.spinpol) then write(*,*) write(*,'("Error(genspchi0): spin-unpolarised calculation")') write(*,*) stop end if ! k+q-vector in lattice coordinates vkql(:)=vkl(:,ik)+vqpl(:) ! equivalent reduced k-points for k and k+q jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) call findkpt(vkql,isym,jkq) ! count and index states at k and k+q in energy window nst=0 do ist=1,nstsv if (abs(evalsv(ist,jk)-efermi) > emaxrf) cycle nst=nst+1 idx(nst)=ist end do nstq=0 do ist=1,nstsv if (abs(evalsv(ist,jkq)-efermi) > emaxrf) cycle nstq=nstq+1 idxq(nstq)=ist end do ! generate the wavefunctions for all states at k and k+q in energy window allocate(igpig(ngkmax,nspnfv)) allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfir(ngtc,nspinor,nst)) call genwfsvp_sp(.false.,.false.,nst,idx,ngdgc,igfc,vkl(:,ik),ngp,igpig,wfmt, & ngtc,wfir) deallocate(igpig) allocate(igpqig(ngkmax,nspnfv)) allocate(wfmtq(npcmtmax,natmtot,nspinor,nstq),wfirq(ngtc,nspinor,nstq)) call genwfsvp_sp(.false.,.false.,nstq,idxq,ngdgc,igfc,vkql,ngpq,igpqig,wfmtq, & ngtc,wfirq) deallocate(igpqig) call holdthd(nst,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(crhomt,crhoir,zrhoig,zw,c) & !$OMP PRIVATE(jst,kst,lst,ei,ej,eij,t1) & !$OMP PRIVATE(iw,i,j,a,b,tz,ig,jg,z1) & !$OMP NUM_THREADS(nthd) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) allocate(zrhoig(ngrf,4),zw(nwrf),c(ngrf,4,ngrf,4)) !$OMP DO do ist=1,nst kst=idx(ist) ei=evalsv(kst,jk) do jst=1,nstq lst=idxq(jst) t1=wkptnr*omega*(occsv(kst,jk)-occsv(lst,jkq)) if (abs(t1) < 1.d-8) cycle ej=evalsv(lst,jkq) eij=ei-ej ! frequency-dependent part in response function formula for all frequencies do iw=1,nwrf zw(iw)=t1/(eij+wrf(iw)) end do ! compute the complex density in G+q-space i=0 do a=1,2 do b=1,2 i=i+1 ! find which contributions are zero for collinear case tz(i)=.false. if (.not.ncmag) then if (((a == 1).and.(kst > nstfv)).or. & ((a == 2).and.(kst <= nstfv)).or. & ((b == 1).and.(lst > nstfv)).or. & ((b == 2).and.(lst <= nstfv))) then tz(i)=.true. cycle end if end if call gencrho(.true.,.false.,ngtc,wfmt(:,:,a,ist),wfir(:,a,ist), & wfmtq(:,:,b,jst),wfirq(:,b,jst),crhomt,crhoir) call zftcf(ngrf,jlgqr,ylmgq,ngrf,sfacgq,crhomt,crhoir,zrhoig(:,i)) end do end do ! Hermitian part of matrix do j=1,4 if (tz(j)) cycle do jg=1,ngrf z1=conjg(zrhoig(jg,j)) do i=1,4 if (tz(i)) cycle do ig=1,ngrf c(ig,i,jg,j)=zrhoig(ig,i)*z1 end do end do end do end do do iw=1,nwrf z1=zw(iw) call omp_set_lock(lock(iw)) do j=1,4 if (tz(j)) cycle do jg=1,ngrf do i=1,4 if (tz(i)) cycle call zaxpy(ngrf,z1,c(:,i,jg,j),1,chi0(:,i,jg,j,iw),1) end do end do end do call omp_unset_lock(lock(iw)) end do ! end loop over jst end do ! end loop over ist end do !$OMP END DO deallocate(crhomt,crhoir,zrhoig,zw,c) !$OMP END PARALLEL call freethd(nthd) deallocate(wfmt,wfmtq,wfir,wfirq) end subroutine !EOC elk-9.2.12/src/PaxHeaders/potefield.f900000644000000000000000000000013214536061313014522 xustar0030 mtime=1702388427.682501839 30 atime=1702388426.502503586 30 ctime=1702388427.682501839 elk-9.2.12/src/potefield.f900000644002504400250440000000320314536061313017242 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potefield use modmain implicit none ! local variables integer is,ia,ias integer nr,nri,ir integer i,i1,i2,i3 real(8) e,tp(2),r,t1 real(8) v0,e00,elm(-1:1) real(8) v1(3),v2(3) ! constant added to potential so that it is zero at the unit cell center v1(:)=0.5d0*(avec(:,1)+avec(:,2)+avec(:,3)) v0=dot_product(efieldc(:),v1(:)) ! determine the electric field vector in spherical coordinates call sphcrd(efieldc,e,tp) ! coefficients for real spherical harmonics R_1-1, R_10 and R_11 t1=e*sqrt(fourpi/3.d0) elm(-1)=t1*sin(tp(1))*sin(tp(2)) elm(0)=-t1*cos(tp(1)) elm(1)=t1*sin(tp(1))*cos(tp(2)) ! muffin-tin potential do is=1,nspecies nr=nrmt(is) nri=nrmti(is) do ia=1,natoms(is) ias=idxas(ia,is) ! coefficient for R_00 e00=v0-dot_product(efieldc(:),atposc(:,ia,is)) e00=e00/y00 i=1 do ir=1,nr r=rsp(ir,is) vclmt(i,ias)=vclmt(i,ias)+e00 vclmt(i+1,ias)=vclmt(i+1,ias)+elm(-1)*r vclmt(i+2,ias)=vclmt(i+2,ias)+elm(0)*r vclmt(i+3,ias)=vclmt(i+3,ias)+elm(1)*r if (ir <= nri) then i=i+lmmaxi else i=i+lmmaxo end if end do end do end do ! interstitial potential ir=0 do i3=0,ngridg(3)-1 v1(3)=dble(i3)/dble(ngridg(3)) do i2=0,ngridg(2)-1 v1(2)=dble(i2)/dble(ngridg(2)) do i1=0,ngridg(1)-1 v1(1)=dble(i1)/dble(ngridg(1)) ir=ir+1 call r3mv(avec,v1,v2) vclir(ir)=vclir(ir)+v0-dot_product(efieldc(:),v2(:)) end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/rhoinit.f900000644000000000000000000000013214536061313014223 xustar0030 mtime=1702388427.683501837 30 atime=1702388426.504503583 30 ctime=1702388427.683501837 elk-9.2.12/src/rhoinit.f900000644002504400250440000000741414536061313016753 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rhoinit ! !INTERFACE: subroutine rhoinit ! !USES: use modmain use modomp ! !DESCRIPTION: ! Initialises the crystal charge density. Inside the muffin-tins it is set to ! the spherical atomic density. In the interstitial region it is taken to be ! constant such that the total charge is correct. Requires that the atomic ! densities have already been calculated. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! local variables integer lmax,is,ia,ias,nthd integer nr,nri,nro,nrs,iro,ir integer nrc,nrci,irco,irc integer l,lm,i0,i1,ig,ifg real(8) x,sm,t1,t2 complex(8) z1,z2,z3 ! automatic arrays real(8) ffg(ngvc),wr(nrspmax),jl(0:lmaxi,nrcmtmax) complex(8) zfmt(npcmtmax) ! allocatable arrays complex(8), allocatable :: zfft(:) lmax=min(lmaxi,1) ! compute the superposition of all the atomic density tails allocate(zfft(ngtot)) zfft(:)=0.d0 call holdthd(nspecies,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ffg,wr,nr,nrs,nro,ig) & !$OMP PRIVATE(t1,t2,sm,ir,x,ia,ias,ifg) & !$OMP NUM_THREADS(nthd) do is=1,nspecies nr=nrmt(is) nrs=nrsp(is) nro=nrs-nr+1 ! determine the weights for the radial integral call wsplint(nro,rsp(nr,is),wr(nr)) do ig=1,ngvc t1=gc(ig) ! spherical bessel function j_0(x) times the atomic density tail if (t1 > epslat) then t2=1.d0/t1 sm=0.d0 do ir=nr,nrs x=t1*rsp(ir,is) sm=sm+t2*sin(x)*rhosp(ir,is)*rsp(ir,is)*wr(ir) end do else sm=sum(rhosp(nr:nrs,is)*(rsp(nr:nrs,is)**2)*wr(nr:nrs)) end if ! apply low-pass filter t1=sm*exp(-4.d0*(gc(ig)/gmaxvr)**2) ffg(ig)=(fourpi/omega)*t1 end do do ia=1,natoms(is) ias=idxas(ia,is) !$OMP CRITICAL(rhoinit_) do ig=1,ngvc ifg=igfft(ig) zfft(ifg)=zfft(ifg)+ffg(ig)*conjg(sfacg(ig,ias)) end do !$OMP END CRITICAL(rhoinit_) end do end do !$OMP END PARALLEL DO call freethd(nthd) ! compute the tails in each muffin-tin call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(jl,zfmt,is,nrc,nrci) & !$OMP PRIVATE(irco,ig,ifg,irc,x) & !$OMP PRIVATE(z1,z2,z3,lm,l,i0,i1) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) irco=nrci+1 zfmt(1:npcmt(is))=0.d0 do ig=1,ngvc ifg=igfft(ig) do irc=1,nrc x=gc(ig)*rcmt(irc,is) call sbessel(lmax,x,jl(:,irc)) end do z1=fourpi*zfft(ifg)*sfacg(ig,ias) do l=0,lmax z2=z1*zil(l) do lm=l**2+1,(l+1)**2 z3=z2*conjg(ylmg(lm,ig)) i1=lmmaxi*(nrci-1)+lm zfmt(lm:i1:lmmaxi)=zfmt(lm:i1:lmmaxi)+jl(l,1:nrci)*z3 i0=i1+lmmaxi i1=lmmaxo*(nrc-irco)+i0 zfmt(i0:i1:lmmaxo)=zfmt(i0:i1:lmmaxo)+jl(l,irco:nrc)*z3 end do end do end do call ztorfmt(nrc,nrci,zfmt,rhomt(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) ! convert the density from a coarse to a fine radial mesh call rfmtctof(rhomt) ! add the atomic charge density and the excess charge in each muffin-tin t1=chgexs/omega do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 i1=lmmaxi*(nri-1)+1 rhomt(1:i1:lmmaxi,ias)=rhomt(1:i1:lmmaxi,ias)+(t1+rhosp(1:nri,is))/y00 i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 rhomt(i0:i1:lmmaxo,ias)=rhomt(i0:i1:lmmaxo,ias)+(t1+rhosp(iro:nr,is))/y00 end do ! interstitial density determined from the atomic tails and excess charge call zfftifc(3,ngridg,1,zfft) do ir=1,ngtot rhoir(ir)=dble(zfft(ir))+t1 ! make sure that the density is always positive if (rhoir(ir) < 1.d-10) rhoir(ir)=1.d-10 end do deallocate(zfft) ! deallocate rhosp as it is not used again deallocate(rhosp) end subroutine !EOC elk-9.2.12/src/PaxHeaders/eveqnsv.f900000644000000000000000000000013214536061313014236 xustar0030 mtime=1702388427.685501834 30 atime=1702388426.505503581 30 ctime=1702388427.685501834 elk-9.2.12/src/eveqnsv.f900000644002504400250440000002423014536061313016761 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2010 J. K. Dewhurst, S. Sharma, C. Ambrosch-Draxl, ! F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnsv(ngp,igpig,vgpc,apwalm,evalfv,evecfv,evalsvp,evecsv) use modmain use moddftu use modomp implicit none ! arguments integer, intent(in) :: ngp,igpig(ngkmax) real(8), intent(in) :: vgpc(3,ngkmax) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) real(8), intent(in) :: evalfv(nstfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv) real(8), intent(out) :: evalsvp(nstsv) complex(8), intent(out) :: evecsv(nstsv,nstsv) ! local variables logical todsb,socz integer ld,ist,jst,ispn,is,ias integer nrc,nrci,nrco,irco,irc integer l,lm,nm,npc,npc2,npci,ipco integer ngp2,igp,i,j,k,nthd real(8) a1,a2,a3,t1 real(8) ts0,ts1 complex(8) z1 complex(4) c1 ! automatic arrays complex(8) wfmt2(npcmtmax),wfmt4(npcmtmax,3) complex(8) wfmt31(npcmtmax),wfmt32(npcmtmax),wfmt33(npcmtmax) complex(4) wfmt5(npcmtmax),wfgp1(ngkmax),wfgp2(ngkmax),wfgp3(ngkmax) ! allocatable arrays complex(4), allocatable :: wfmt0(:,:),wfgp0(:,:),wfir1(:),wfir2(:) complex(8), allocatable :: wfmt1(:,:) ! external functions real(4), external :: sdot complex(4), external :: cdotc ! no calculation of second-variational eigenvectors if (.not.tevecsv) then do i=1,nstsv evalsvp(i)=evalfv(i) end do evecsv(:,:)=0.d0 do i=1,nstsv evecsv(i,i)=1.d0 end do return end if call timesec(ts0) if (tafield) then ! coupling constant of the external A-field (-1/c) t1=-1.d0/solsc a1=t1*afieldc(1); a2=t1*afieldc(2); a3=t1*afieldc(3) end if ! check if the off-diagonal spin block of the Hamiltonian is required if (spinpol.and.(ncmag.or.spinorb)) then todsb=.true. else todsb=.false. end if ! special case of spin-orbit coupling and collinear magnetism if (spinorb.and.cmagz) then socz=.true. else socz=.false. end if ld=lmmaxdm*nspinor call holdthd(nstfv,nthd) ! zero the second-variational Hamiltonian (stored in the eigenvector array) evecsv(:,:)=0.d0 !-------------------------! ! muffin-tin part ! !-------------------------! allocate(wfmt0(npcmtmax,nstfv),wfmt1(npcmtmax,nstfv)) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfmt2,wfmt31,wfmt32,wfmt33,wfmt4,wfmt5) & !$OMP PRIVATE(ias,is,nrc,nrci,nrco,irco) & !$OMP PRIVATE(npc,npc2,npci,ipco,ist,jst) & !$OMP PRIVATE(i,j,k,irc,t1,l,nm,lm,z1) & !$OMP NUM_THREADS(nthd) ! begin loop over atoms do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) nrco=nrc-nrci irco=nrci+1 npc=npcmt(is) npc2=npc*2 npci=npcmti(is) ipco=npci+1 ! compute the first-variational wavefunctions !$OMP DO do ist=1,nstfv call wfmtfv(ias,ngp,apwalm(:,:,:,ias),evecfv(:,ist),wfmt1(:,ist)) ! make a single-precision copy of the wavefunction wfmt0(1:npc,ist)=wfmt1(1:npc,ist) end do !$OMP END DO ! begin loop over states !$OMP DO do jst=1,nstfv if (spinpol) then ! convert wavefunction to spherical coordinates call zbsht(nrc,nrci,wfmt1(:,jst),wfmt2) ! apply Kohn-Sham effective magnetic field wfmt32(1:npc)=bsmt(1:npc,ias,ndmag)*wfmt2(1:npc) ! convert to spherical harmonics call zfsht(nrc,nrci,wfmt32,wfmt31) ! non-collinear magnetic field if (socz) then wfmt33(1:npc)=0.d0 else if (ncmag) then wfmt32(1:npc)=cmplx(bsmt(1:npc,ias,1),-bsmt(1:npc,ias,2),8)*wfmt2(1:npc) call zfsht(nrc,nrci,wfmt32,wfmt33) end if wfmt32(1:npc)=-wfmt31(1:npc) ! apply spin-orbit coupling if required if (spinorb) then call lopzflmn(lmaxi,nrci,lmmaxi,wfmt1(1,jst),wfmt4,wfmt4(1,2), & wfmt4(1,3)) call lopzflmn(lmaxo,nrco,lmmaxo,wfmt1(ipco,jst),wfmt4(ipco,1), & wfmt4(ipco,2),wfmt4(ipco,3)) i=1 ! inner part of muffin-tin do irc=1,nrci t1=socfr(irc,ias) do lm=1,lmmaxi wfmt31(i)=wfmt31(i)+t1*wfmt4(i,3) wfmt32(i)=wfmt32(i)-t1*wfmt4(i,3) wfmt33(i)=wfmt33(i)+t1*(wfmt4(i,1) & +cmplx(aimag(wfmt4(i,2)),-dble(wfmt4(i,2)),8)) i=i+1 end do end do ! outer part of muffin-tin do irc=irco,nrc t1=socfr(irc,ias) do lm=1,lmmaxo wfmt31(i)=wfmt31(i)+t1*wfmt4(i,3) wfmt32(i)=wfmt32(i)-t1*wfmt4(i,3) wfmt33(i)=wfmt33(i)+t1*(wfmt4(i,1) & +cmplx(aimag(wfmt4(i,2)),-dble(wfmt4(i,2)),8)) i=i+1 end do end do end if else wfmt31(1:npc)=0.d0 end if ! apply muffin-tin DFT+U potential matrix if required if (tvmatmt) then do l=0,lmaxdm if (tvmmt(l,ias)) then nm=2*l+1 lm=l**2+1 i=npci+lm if (l <= lmaxi) then call zgemm('N','N',nm,nrci,nm,zone,vmatmt(lm,1,lm,1,ias),ld, & wfmt1(lm,jst),lmmaxi,zone,wfmt31(lm),lmmaxi) end if call zgemm('N','N',nm,nrco,nm,zone,vmatmt(lm,1,lm,1,ias),ld, & wfmt1(i,jst),lmmaxo,zone,wfmt31(i),lmmaxo) if (spinpol) then if (l <= lmaxi) then call zgemm('N','N',nm,nrci,nm,zone,vmatmt(lm,2,lm,2,ias),ld, & wfmt1(lm,jst),lmmaxi,zone,wfmt32(lm),lmmaxi) end if call zgemm('N','N',nm,nrco,nm,zone,vmatmt(lm,2,lm,2,ias),ld, & wfmt1(i,jst),lmmaxo,zone,wfmt32(i),lmmaxo) if (todsb) then if (l <= lmaxi) then call zgemm('N','N',nm,nrci,nm,zone,vmatmt(lm,1,lm,2,ias),ld, & wfmt1(lm,jst),lmmaxi,zone,wfmt33(lm),lmmaxi) end if call zgemm('N','N',nm,nrco,nm,zone,vmatmt(lm,1,lm,2,ias),ld, & wfmt1(i,jst),lmmaxo,zone,wfmt33(i),lmmaxo) end if end if end if end do end if ! apply vector potential if required if (tafield) then call gradzfmt(nrc,nrci,rlcmt(:,-1,is),wcrcmt(:,:,is),wfmt1(:,jst), & npcmtmax,wfmt4) do i=1,npc z1=a1*wfmt4(i,1)+a2*wfmt4(i,2)+a3*wfmt4(i,3) z1=cmplx(aimag(z1),-dble(z1),8) wfmt31(i)=wfmt31(i)+z1 if (spinpol) wfmt32(i)=wfmt32(i)+z1 end do end if ! add to second-variational Hamiltonian matrix ! upper diagonal block call zcfmtwr(nrc,nrci,wrcmt(:,is),wfmt31,wfmt5) do ist=1,jst-1 evecsv(ist,jst)=evecsv(ist,jst)+cdotc(npc,wfmt0(:,ist),1,wfmt5,1) end do evecsv(jst,jst)=evecsv(jst,jst)+sdot(npc2,wfmt0(:,jst),1,wfmt5,1) if (spinpol) then j=jst+nstfv ! lower diagonal block call zcfmtwr(nrc,nrci,wrcmt(:,is),wfmt32,wfmt5) do ist=1,jst-1 i=ist+nstfv evecsv(i,j)=evecsv(i,j)+cdotc(npc,wfmt0(:,ist),1,wfmt5,1) end do evecsv(j,j)=evecsv(j,j)+sdot(npc2,wfmt0(:,jst),1,wfmt5,1) ! off-diagonal block if (todsb) then call zcfmtwr(nrc,nrci,wrcmt(:,is),wfmt33,wfmt5) do ist=1,nstfv evecsv(ist,j)=evecsv(ist,j)+cdotc(npc,wfmt0(:,ist),1,wfmt5,1) end do end if end if ! end loop over states end do !$OMP END DO ! end loop over atoms end do !$OMP END PARALLEL deallocate(wfmt0,wfmt1) !---------------------------! ! interstitial part ! !---------------------------! if (spinpol.or.tafield) then if (socz) todsb=.false. ngp2=ngp*2 allocate(wfgp0(ngp,nstfv)) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfir1,wfir2,wfgp1,wfgp2,wfgp3) & !$OMP PRIVATE(ist,jst,igp,t1,c1,i,j,k) & !$OMP NUM_THREADS(nthd) allocate(wfir1(ngtot),wfir2(ngtot)) ! make single-precision copy of wavefunction !$OMP DO do ist=1,nstfv wfgp0(1:ngp,ist)=evecfv(1:ngp,ist) end do !$OMP END DO ! begin loop over states !$OMP DO do jst=1,nstfv wfir1(:)=0.e0 do igp=1,ngp wfir1(igfft(igpig(igp)))=wfgp0(igp,jst) end do ! Fourier transform wavefunction to real-space call cfftifc(3,ngridg,1,wfir1) ! multiply with magnetic field and transform to G-space if (spinpol) then wfir2(1:ngtot)=bsir(1:ngtot,ndmag)*wfir1(1:ngtot) call cfftifc(3,ngridg,-1,wfir2) do igp=1,ngp wfgp1(igp)=wfir2(igfft(igpig(igp))) end do wfgp2(1:ngp)=-wfgp1(1:ngp) if (ncmag) then wfir2(1:ngtot)=cmplx(bsir(1:ngtot,1),-bsir(1:ngtot,2),8)*wfir1(1:ngtot) call cfftifc(3,ngridg,-1,wfir2) do igp=1,ngp wfgp3(igp)=wfir2(igfft(igpig(igp))) end do end if else wfgp1(1:ngp)=0.e0 end if ! apply vector potential if required if (tafield) then wfir1(:)=0.e0 do igp=1,ngp t1=a1*vgpc(1,igp)+a2*vgpc(2,igp)+a3*vgpc(3,igp) wfir1(igfft(igpig(igp)))=t1*wfgp0(igp,jst) end do call cfftifc(3,ngridg,1,wfir1) wfir1(1:ngtot)=wfir1(1:ngtot)*cfunir(1:ngtot) call cfftifc(3,ngridg,-1,wfir1) do igp=1,ngp c1=wfir1(igfft(igpig(igp))) wfgp1(igp)=wfgp1(igp)+c1 if (spinpol) wfgp2(igp)=wfgp2(igp)+c1 end do end if ! add to second-variational Hamiltonian matrix ! upper diagonal block do ist=1,jst-1 evecsv(ist,jst)=evecsv(ist,jst)+cdotc(ngp,wfgp0(:,ist),1,wfgp1,1) end do evecsv(jst,jst)=evecsv(jst,jst)+sdot(ngp2,wfgp0(:,jst),1,wfgp1,1) if (spinpol) then j=jst+nstfv ! lower diagonal block do ist=1,jst-1 i=ist+nstfv evecsv(i,j)=evecsv(i,j)+cdotc(ngp,wfgp0(:,ist),1,wfgp2,1) end do evecsv(j,j)=evecsv(j,j)+sdot(ngp2,wfgp0(:,jst),1,wfgp2,1) ! off-diagonal block if (todsb) then do ist=1,nstfv evecsv(ist,j)=evecsv(ist,j)+cdotc(ngp,wfgp0(:,ist),1,wfgp3,1) end do end if end if ! end loop over states end do !$OMP END DO deallocate(wfir1,wfir2) !$OMP END PARALLEL deallocate(wfgp0) end if call freethd(nthd) ! add the diagonal first-variational part i=0 do ispn=1,nspinor do ist=1,nstfv i=i+1 evecsv(i,i)=evecsv(i,i)+evalfv(ist) end do end do if (spcpl.or.(.not.spinpol)) then ! spins are coupled; or spin-unpolarised: full diagonalisation call eveqnzh(nstsv,nstsv,evecsv,evalsvp) else ! spins not coupled: block diagonalise H call eveqnzh(nstfv,nstsv,evecsv,evalsvp) i=nstfv+1 call eveqnzh(nstfv,nstsv,evecsv(i,i),evalsvp(i)) do j=1,nstfv do i=1,nstfv evecsv(i,j+nstfv)=0.d0 evecsv(i+nstfv,j)=0.d0 end do end do end if call timesec(ts1) !$OMP ATOMIC timesv=timesv+ts1-ts0 end subroutine elk-9.2.12/src/PaxHeaders/roteuler.f900000644000000000000000000000013214536061313014410 xustar0030 mtime=1702388427.687501831 30 atime=1702388426.507503578 30 ctime=1702388427.687501831 elk-9.2.12/src/roteuler.f900000644002504400250440000000536314536061313017141 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: roteuler ! !INTERFACE: subroutine roteuler(rot,ang) ! !INPUT/OUTPUT PARAMETERS: ! rot : rotation matrix (in,real(3,3)) ! ang : Euler angles (alpha, beta, gamma) (out,real(3)) ! !DESCRIPTION: ! Given a rotation matrix ! \begin{align*} ! &R(\alpha,\beta,\gamma)=\\ ! &\left(\begin{matrix} ! \cos\gamma\cos\beta\cos\alpha-\sin\gamma\sin\alpha & ! \cos\gamma\cos\beta\sin\alpha+\sin\gamma\cos\alpha & ! -\cos\gamma\sin\beta \\ ! -\sin\gamma\cos\beta\cos\alpha-\cos\gamma\sin\alpha & ! -\sin\gamma\cos\beta\sin\alpha+\cos\gamma\cos\alpha & ! \sin\gamma\sin\beta \\ ! \sin\beta\cos\alpha & ! \sin\beta\sin\alpha & ! \cos\beta ! \end{matrix}\right), ! \end{align*} ! this routine determines the Euler angles, $(\alpha,\beta,\gamma)$. This ! corresponds to the so-called `$y$-convention', which involves the following ! successive rotations of the coordinate system: ! \begin{itemize} ! \item[1.]{The $x_1$-, $x_2$-, $x_3$-axes are rotated anticlockwise through ! an angle $\alpha$ about the $x_3$ axis} ! \item[2.]{The $x_1'$-, $x_2'$-, $x_3'$-axes are rotated anticlockwise ! through an angle $\beta$ about the $x_2'$ axis} ! \item[3.]{The $x_1''$-, $x_2''$-, $x_3''$-axes are rotated anticlockwise ! through an angle $\gamma$ about the $x_3''$ axis} ! \end{itemize} ! Note that the Euler angles are not necessarily unique for a given rotation ! matrix. ! ! !REVISION HISTORY: ! Created May 2003 (JKD) ! Fixed problem thanks to Frank Wagner, June 2013 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rot(3,3) real(8), intent(out) :: ang(3) ! local variables real(8), parameter :: eps=1.d-8 real(8), parameter :: pi=3.1415926535897932385d0 real(8) det ! find the determinant det=rot(1,1)*(rot(2,2)*rot(3,3)-rot(3,2)*rot(2,3)) & +rot(2,1)*(rot(3,2)*rot(1,3)-rot(1,2)*rot(3,3)) & +rot(3,1)*(rot(1,2)*rot(2,3)-rot(2,2)*rot(1,3)) if ((det < 1.d0-eps).or.(det > 1.d0+eps)) then write(*,*) write(*,'("Error(roteuler): matrix improper or not unitary")') write(*,'(" Determinant : ",G18.10)') det write(*,*) stop end if if ((abs(rot(3,1)) > eps).or.(abs(rot(3,2)) > eps)) then ang(1)=atan2(rot(3,2),rot(3,1)) if (abs(rot(3,1)) > abs(rot(3,2))) then ang(2)=atan2(rot(3,1)/cos(ang(1)),rot(3,3)) else ang(2)=atan2(rot(3,2)/sin(ang(1)),rot(3,3)) end if ang(3)=atan2(rot(2,3),-rot(1,3)) else ang(1)=atan2(rot(1,2),rot(1,1)) if (rot(3,3) > 0.d0) then ang(2)=0.d0 ang(3)=0.d0 else ang(2)=pi ang(3)=pi end if end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/genrmesh.f900000644000000000000000000000013014536061313014355 xustar0029 mtime=1702388427.68850183 30 atime=1702388426.509503575 29 ctime=1702388427.68850183 elk-9.2.12/src/genrmesh.f900000644002504400250440000001030114536061313017074 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genrmesh ! !INTERFACE: subroutine genrmesh ! !USES: use modmain use modvars ! !DESCRIPTION: ! Generates the coarse and fine radial meshes for each atomic species in the ! crystal. Also determines which points are in the inner part of the ! muffin-tin using the value of {\tt fracinr}. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) !EOP !BOC implicit none ! local variables integer is,nr,nrc integer ir,irc,l real(8) t1 ! estimate the number of radial mesh points to infinity nrspmax=1 do is=1,nspecies ! logarithmic mesh t1=log(rmaxsp(is)/rminsp(is))/log(rmt(is)/rminsp(is)) t1=dble(nrmt(is)-1)*t1 nrsp(is)=nint(t1)+1 nrspmax=max(nrspmax,nrsp(is)) end do ! compute and store (R_mt)^l if (allocated(rmtl)) deallocate(rmtl) allocate(rmtl(0:lmaxo+3,nspecies)) do is=1,nspecies rmtl(0,is)=1.d0 do l=1,lmaxo+3 rmtl(l,is)=rmtl(l-1,is)*rmt(is) end do end do ! generate the radial meshes if (allocated(rsp)) deallocate(rsp) allocate(rsp(nrspmax,nspecies)) if (allocated(rlmt)) deallocate(rlmt) allocate(rlmt(nrmtmax,-lmaxo-1:lmaxo+2,nspecies)) if (allocated(wrmt)) deallocate(wrmt) allocate(wrmt(nrmtmax,nspecies)) if (allocated(wprmt)) deallocate(wprmt) allocate(wprmt(4,nrmtmax,nspecies)) if (allocated(wcrmt)) deallocate(wcrmt) allocate(wcrmt(12,nrmtmax,nspecies)) do is=1,nspecies t1=1.d0/dble(nrmt(is)-1) ! logarithmic mesh t1=t1*log(rmt(is)/rminsp(is)) do ir=1,nrsp(is) rsp(ir,is)=rminsp(is)*exp(dble(ir-1)*t1) end do ! calculate r^l on the fine radial mesh nr=nrmt(is) rlmt(1:nr,-1,is)=1.d0/rsp(1:nr,is) rlmt(1:nr,0,is)=1.d0 rlmt(1:nr,1,is)=rsp(1:nr,is) do l=-2,-lmaxo-1,-1 rlmt(1:nr,l,is)=rlmt(1:nr,l+1,is)*rlmt(1:nr,-1,is) end do do l=2,lmaxo+2 rlmt(1:nr,l,is)=rlmt(1:nr,l-1,is)*rlmt(1:nr,1,is) end do ! determine the weights for spline integration on the fine radial mesh call wsplint(nr,rsp(:,is),wrmt(:,is)) ! multiply by r^2 wrmt(1:nr,is)=wrmt(1:nr,is)*rlmt(1:nr,2,is) ! determine the weights for partial integration on fine radial mesh call wsplintp(nr,rsp(:,is),wprmt(:,:,is)) ! determine the weights for the spline coefficients call wspline(nr,rsp(:,is),wcrmt(:,:,is)) end do ! determine the fraction of the muffin-tin radius which defines the inner part if (fracinr < 0.d0) fracinr=sqrt(dble(lmmaxi)/dble(lmmaxo)) ! set up the coarse radial meshes and find the inner part of the muffin-tin ! where rho is calculated with lmaxi if (allocated(rcmt)) deallocate(rcmt) allocate(rcmt(nrcmtmax,nspecies)) if (allocated(rlcmt)) deallocate(rlcmt) allocate(rlcmt(nrcmtmax,-lmaxo-1:lmaxo+2,nspecies)) if (allocated(wrcmt)) deallocate(wrcmt) allocate(wrcmt(nrcmtmax,nspecies)) if (allocated(wprcmt)) deallocate(wprcmt) allocate(wprcmt(4,nrcmtmax,nspecies)) if (allocated(wcrcmt)) deallocate(wcrcmt) allocate(wcrcmt(12,nrcmtmax,nspecies)) do is=1,nspecies t1=fracinr*rmt(is) nrmti(is)=1 nrcmti(is)=1 irc=0 do ir=1,nrmt(is),lradstp irc=irc+1 rcmt(irc,is)=rsp(ir,is) if (rsp(ir,is) < t1) then nrmti(is)=ir nrcmti(is)=irc end if end do ! store r^l on the coarse radial mesh do l=-lmaxo-1,lmaxo+2 irc=0 do ir=1,nrmt(is),lradstp irc=irc+1 rlcmt(irc,l,is)=rlmt(ir,l,is) end do end do ! determine the weights for spline integration on the coarse radial mesh nrc=nrcmt(is) call wsplint(nrc,rcmt(:,is),wrcmt(:,is)) ! multiply by r^2 wrcmt(1:nrc,is)=wrcmt(1:nrc,is)*rlcmt(1:nrc,2,is) ! determine the weights for partial integration on coarse radial mesh call wsplintp(nrc,rcmt(:,is),wprcmt(:,:,is)) ! determine the weights for the spline coefficients call wspline(nrc,rcmt(:,is),wcrcmt(:,:,is)) end do ! write to VARIABLES.OUT if (wrtvars) then call writevars('nrsp',nv=nspecies,iva=nrsp) call writevars('nrmt',nv=nspecies,iva=nrmt) call writevars('nrmti',nv=nspecies,iva=nrmti) call writevars('lradstp',iv=lradstp) call writevars('nrcmt',nv=nspecies,iva=nrcmt) call writevars('nrcmti',nv=nspecies,iva=nrcmti) do is=1,nspecies call writevars('rsp',nv=nrmt(is),rva=rsp(:,is)) end do end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/splint.f900000644000000000000000000000013214536061313014060 xustar0030 mtime=1702388427.690501827 30 atime=1702388426.510503574 30 ctime=1702388427.690501827 elk-9.2.12/src/splint.f900000644002504400250440000000340514536061313016604 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function splint(n,x,f) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x(n),f(n) ! local variables integer i real(8) x0,x1,x2,x3,y0,y1,y2,y3 real(8) t0,t1,t2,t3,t4,t5,t6,t7 ! external functions real(8), external :: polynm if (n <= 4) then splint=polynm(-1,n,x,f,x(n)) return end if ! fit piecewise cubic spline to data and integrate x0=x(1) x1=x(2)-x0; x2=x(3)-x0; x3=x(4)-x0 t4=x1-x2; t5=x1-x3; t6=x2-x3 y0=f(1) y1=f(2)-y0; y2=f(3)-y0; y3=f(4)-y0 t1=x1*x2*y3; t2=x2*x3*y1; t3=x1*x3 t0=0.5d0/(t3*t4*t5*t6) t3=t3*y2 t7=t1*t4+t2*t6-t3*t5 t4=x1**2; t5=x2**2; t6=x3**2 y1=t3*t6-t1*t5; y3=t2*t5-t3*t4; y2=t1*t4-t2*t6 t1=x1*y1+x2*y2+x3*y3 t2=y1+y2+y3 splint=x2*(y0+t0*(t1+x2*(0.5d0*t7*x2-0.6666666666666666667d0*t2))) do i=3,n-3 x0=x(i) x1=x(i-1)-x0; x2=x(i+1)-x0; x3=x(i+2)-x0 t4=x1-x2; t5=x1-x3; t6=x2-x3; t3=x1*x3 y0=f(i) y1=f(i-1)-y0; y2=f(i+1)-y0; y3=f(i+2)-y0 t1=x1*x2*y3; t2=x2*x3*y1 t0=0.5d0/(t3*t4*t5*t6) t3=t3*y2 t7=t1*t4+t2*t6-t3*t5 t4=x1**2; t5=x2**2; t6=x3**2 y1=t3*t6-t1*t5; y2=t1*t4-t2*t6; y3=t2*t5-t3*t4 t1=x1*y1+x2*y2+x3*y3 t2=y1+y2+y3 splint=splint+x2*(y0+t0*(t1+x2*(0.5d0*t7*x2-0.6666666666666666667d0*t2))) end do x0=x(n-2) x1=x(n-3)-x0; x2=x(n-1)-x0; x3=x(n)-x0 t4=x1-x2; t5=x1-x3; t6=x2-x3 y0=f(n-2) y1=f(n-3)-y0; y2=f(n-1)-y0; y3=f(n)-y0 t1=x1*x2; t2=x2*x3*y1; t3=x1*x3*y2 t0=0.5d0/(t1*t4*t5*t6) t1=t1*y3 t7=t1*t4+t2*t6-t3*t5 t4=x1**2; t5=x2**2; t6=x3**2 y1=t3*t6-t1*t5; y2=t1*t4-t2*t6; y3=t2*t5-t3*t4 t1=x1*y1+x2*y2+x3*y3 t2=y1+y2+y3 splint=splint+x3*(y0+t0*(t1+x3*(0.5d0*t7*x3-0.6666666666666666667d0*t2))) end function elk-9.2.12/src/PaxHeaders/wavefcr.f900000644000000000000000000000013214536061313014204 xustar0030 mtime=1702388427.691501825 30 atime=1702388426.512503571 30 ctime=1702388427.691501825 elk-9.2.12/src/wavefcr.f900000644002504400250440000000547514536061313016741 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2011 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wavefcr(tsh,lrstp,is,ia,ist,m,ld,wfcr) use modmain implicit none ! arguments logical, intent(in) :: tsh integer, intent(in) :: lrstp,is,ia,ist ! pass in m-1/2 integer, intent(in) :: m integer, intent(in) :: ld complex(4), intent(out) :: wfcr(ld,2) ! local variables integer ias,nr,nri,ir integer k,l,lm,lm1,lm2 integer i,i1,i2 real(8) c1,c2,t0,t1,t2 l=lsp(ist,is) k=ksp(ist,is) if (((k /= l+1).and.(k /= l)).or.(m < -k).or.(m > k-1)) then write(*,*) write(*,'("Error(wavefcr): mismatched l, k or m : ",3I4)') l,k,m write(*,'(" for species ",I4)') is write(*,'(" atom ",I4)') ia write(*,'(" and state ",I6)') ist write(*,*) stop end if if (l > lmaxo) then wfcr(:,:)=0.e0 return end if ias=idxas(ia,is) ! calculate the Clebsch-Gordon coefficients t1=sqrt(dble(l+m+1)/dble(2*l+1)) t2=sqrt(dble(l-m)/dble(2*l+1)) if (k == l+1) then c1=t1 c2=t2 else c1=t2 c2=-t1 end if if (abs(m) <= l) then lm1=l*(l+1)+m+1 else lm1=0 end if if (abs(m+1) <= l) then lm2=l*(l+1)+m+2 else lm2=0 end if nr=nrmt(is) nri=nrmti(is) ! zero the wavefunction if (lrstp == 1) then wfcr(1:npmt(is),:)=0.e0 else if (lrstp == lradstp) then wfcr(1:npcmt(is),:)=0.e0 else write(*,*) write(*,'("Error(wavefcr): invalid lrstp : ",I8)') lrstp write(*,*) stop end if !----------------------------------! ! inner part of muffin-tin ! !----------------------------------! if (l > lmaxi) goto 10 if (tsh) then i1=lm1 i2=lm2 else i=0 end if do ir=1,nri,lrstp ! major component of radial wavefunction t0=rwfcr(ir,1,ist,ias)*rlmt(ir,-1,is) if (tsh) then if (lm1 > 0) wfcr(i1,1)=t0*c1 if (lm2 > 0) wfcr(i2,2)=t0*c2 i1=i1+lmmaxi i2=i2+lmmaxi else t1=t0*c1 t2=t0*c2 if (lm1 > 0) then do lm=1,lmmaxi wfcr(i+lm,1)=t1*zbshti(lm,lm1) end do end if if (lm2 > 0) then do lm=1,lmmaxi wfcr(i+lm,2)=t2*zbshti(lm,lm2) end do end if i=i+lmmaxi end if end do !----------------------------------! ! outer part of muffin-tin ! !----------------------------------! 10 continue if (lrstp == 1) then i=lmmaxi*nrmti(is) else i=lmmaxi*nrcmti(is) end if if (tsh) then i1=i+lm1 i2=i+lm2 end if do ir=nri+lrstp,nr,lrstp t0=rwfcr(ir,1,ist,ias)*rlmt(ir,-1,is) if (tsh) then if (lm1 > 0) wfcr(i1,1)=t0*c1 if (lm2 > 0) wfcr(i2,2)=t0*c2 i1=i1+lmmaxo i2=i2+lmmaxo else t1=t0*c1 t2=t0*c2 if (lm1 > 0) then do lm=1,lmmaxo wfcr(i+lm,1)=t1*zbshto(lm,lm1) end do end if if (lm2 > 0) then do lm=1,lmmaxo wfcr(i+lm,2)=t2*zbshto(lm,lm2) end do end if i=i+lmmaxo end if end do end subroutine elk-9.2.12/src/PaxHeaders/lopzflm.f900000644000000000000000000000013214536061313014232 xustar0030 mtime=1702388427.692501824 30 atime=1702388426.514503568 30 ctime=1702388427.692501824 elk-9.2.12/src/lopzflm.f900000644002504400250440000000357114536061313016762 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: lopzflm ! !INTERFACE: pure subroutine lopzflm(lmax,zflm,ld,zlflm) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum angular momentum (in,integer) ! zflm : coefficients of input spherical harmonic expansion ! (in,complex((lmax+1)**2)) ! ld : leading dimension (in,integer) ! zlflm : coefficients of output spherical harmonic expansion ! (out,complex(ld,3)) ! !DESCRIPTION: ! Applies the angular momentum operator $\hat{\bf L}$ to a function expanded ! in terms of complex spherical harmonics. This makes use of the identities ! \begin{align*} ! (L_x+iL_y)Y_{lm}(\theta,\phi)&=\sqrt{(l-m)(l+m+1)}Y_{lm+1}(\theta,\phi)\\ ! (L_x-iL_y)Y_{lm}(\theta,\phi)&=\sqrt{(l+m)(l-m+1)}Y_{lm-1}(\theta,\phi)\\ ! L_zY_{lm}(\theta,\phi)&=mY_{lm}(\theta,\phi). ! \end{align*} ! ! !REVISION HISTORY: ! Created March 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax complex(8), intent(in) :: zflm(*) integer, intent(in) :: ld complex(8), intent(out) :: zlflm(ld,3) ! local variables integer l,m,lm real(8) t1 complex(8) z1 lm=0 do l=0,lmax do m=-l,l lm=lm+1 if (m == -l) then zlflm(lm,1)=0.d0 zlflm(lm,2)=0.d0 end if if (m < l) then t1=0.5d0*sqrt(dble((l-m)*(l+m+1))) z1=t1*zflm(lm) zlflm(lm+1,1)=z1 zlflm(lm+1,2)=cmplx(aimag(z1),-dble(z1),8) end if if (m > -l) then t1=0.5d0*sqrt(dble((l+m)*(l-m+1))) z1=t1*zflm(lm) zlflm(lm-1,1)=zlflm(lm-1,1)+z1 zlflm(lm-1,2)=zlflm(lm-1,2)+cmplx(-aimag(z1),dble(z1),8) end if if (m /= 0) then zlflm(lm,3)=dble(m)*zflm(lm) else zlflm(lm,3)=0.d0 end if end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/brzint.f900000644000000000000000000000013214536061313014057 xustar0030 mtime=1702388427.694501821 30 atime=1702388426.515503566 30 ctime=1702388427.694501821 elk-9.2.12/src/brzint.f900000644002504400250440000001153714536061313016610 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: brzint ! !INTERFACE: subroutine brzint(nsm,ngridk,nsk,ivkik,nw,wint,n,ld,e,f,g) ! !USES: use modomp ! !INPUT/OUTPUT PARAMETERS: ! nsm : level of smoothing for output function (in,integer) ! ngridk : k-point grid size (in,integer(3)) ! nsk : k-point subdivision grid size (in,integer(3)) ! ivkik : map from (i1,i2,i3) to k-point index ! (in,integer(0:ngridk(1)-1,0:ngridk(2)-1,0:ngridk(3)-1)) ! nw : number of energy divisions (in,integer) ! wint : energy interval (in,real(2)) ! n : number of functions to integrate (in,integer) ! ld : leading dimension (in,integer) ! e : array of energies as a function of k-points (in,real(ld,*)) ! f : array of weights as a function of k-points (in,real(ld,*)) ! g : output function (out,real(nw)) ! !DESCRIPTION: ! Given energy and weight functions, $e$ and $f$, on the Brillouin zone and a ! set of equidistant energies $\omega_i$, this routine computes the integrals ! $$ g(\omega_i)=\frac{\Omega}{(2\pi)^3}\int_{\rm BZ} f({\bf k}) ! \delta(\omega_i-e({\bf k}))d{\bf k}, $$ ! where $\Omega$ is the unit cell volume. This is done by first interpolating ! $e$ and $f$ on a finer $k$-point grid using the trilinear method. Then for ! each $e({\bf k})$ on the finer grid the nearest $\omega_i$ is found and ! $f({\bf k})$ is accumulated in $g(\omega_i)$. If the output function is ! noisy then either {\tt nsk} should be increased or {\tt nw} decreased. ! Alternatively, the output function can be artificially smoothed up to a ! level given by {\tt nsm}. See routine {\tt fsmooth}. ! ! !REVISION HISTORY: ! Created October 2003 (JKD) ! Improved efficiency, May 2007 (Sebastian Lebegue) ! Added parallelism, March 2020 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nsm,ngridk(3),nsk(3) integer, intent(in) :: ivkik(0:ngridk(1)-1,0:ngridk(2)-1,0:ngridk(3)-1) integer, intent(in) :: nw real(8), intent(in) :: wint(2) integer, intent(in) :: n,ld real(8), intent(in) :: e(ld,*),f(ld,*) real(8), intent(out) :: g(nw) ! local variables integer nk,i1,i2,i3,j1,j2,j3,k1,k2,k3,i,iw,nthd integer i000,i001,i010,i011,i100,i101,i110,i111 real(8) wd,dw,dwi,w1,t1,t2 ! automatic arrays real(8) f0(n),f1(n),e0(n),e1(n) real(8) f00(n),f01(n),f10(n),f11(n) real(8) e00(n),e01(n),e10(n),e11(n) if ((ngridk(1) < 1).or.(ngridk(2) < 1).or.(ngridk(3) < 1)) then write(*,*) write(*,'("Error(brzint): ngridk < 1 : ",3I8)') ngridk write(*,*) stop end if if ((nsk(1) < 1).or.(nsk(2) < 1).or.(nsk(3) < 1)) then write(*,*) write(*,'("Error(brzint): nsk < 1 : ",3I8)') nsk write(*,*) stop end if ! total number of k-points nk=ngridk(1)*ngridk(2)*ngridk(3) ! length of interval wd=wint(2)-wint(1) ! energy step size dw=wd/dble(nw) dwi=1.d0/dw w1=wint(1)*dwi g(:)=0.d0 call holdthd(nk,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(f0,f1,e0,e1) & !$OMP PRIVATE(f00,f01,f10,f11) & !$OMP PRIVATE(e00,e01,e10,e11) & !$OMP PRIVATE(k1,k2,k3,i1,i2,i3) & !$OMP PRIVATE(i000,i001,i010,i011) & !$OMP PRIVATE(i100,i101,i110,i111) & !$OMP PRIVATE(t1,t2,i,iw) & !$OMP REDUCTION(+:g) & !$OMP NUM_THREADS(nthd) !$OMP DO COLLAPSE(3) do j1=0,ngridk(1)-1 do j2=0,ngridk(2)-1 do j3=0,ngridk(3)-1 k1=mod(j1+1,ngridk(1)) k2=mod(j2+1,ngridk(2)) k3=mod(j3+1,ngridk(3)) i000=ivkik(j1,j2,j3); i001=ivkik(j1,j2,k3) i010=ivkik(j1,k2,j3); i011=ivkik(j1,k2,k3) i100=ivkik(k1,j2,j3); i101=ivkik(k1,j2,k3) i110=ivkik(k1,k2,j3); i111=ivkik(k1,k2,k3) do i1=0,nsk(1)-1 t2=dble(i1)/dble(nsk(1)) t1=1.d0-t2 f00(:)=f(:,i000)*t1+f(:,i100)*t2 f01(:)=f(:,i001)*t1+f(:,i101)*t2 f10(:)=f(:,i010)*t1+f(:,i110)*t2 f11(:)=f(:,i011)*t1+f(:,i111)*t2 t1=t1*dwi t2=t2*dwi e00(:)=e(:,i000)*t1+e(:,i100)*t2-w1 e01(:)=e(:,i001)*t1+e(:,i101)*t2-w1 e10(:)=e(:,i010)*t1+e(:,i110)*t2-w1 e11(:)=e(:,i011)*t1+e(:,i111)*t2-w1 do i2=0,nsk(2)-1 t2=dble(i2)/dble(nsk(2)) t1=1.d0-t2 f0(:)=f00(:)*t1+f10(:)*t2 f1(:)=f01(:)*t1+f11(:)*t2 e0(:)=e00(:)*t1+e10(:)*t2 e1(:)=e01(:)*t1+e11(:)*t2 do i3=0,nsk(3)-1 t2=dble(i3)/dble(nsk(3)) t1=1.d0-t2 do i=1,n iw=nint(e0(i)*t1+e1(i)*t2)+1 if ((iw >= 1).and.(iw <= nw)) g(iw)=g(iw)+f0(i)*t1+f1(i)*t2 end do end do end do end do end do end do end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) ! normalise function t1=dw*dble(nk)*dble(nsk(1)*nsk(2)*nsk(3)) t1=1.d0/t1 g(:)=t1*g(:) ! smooth output function if required if (nsm > 0) call fsmooth(nsm,nw,g) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rotdmat.f900000644000000000000000000000013214536061313014221 xustar0030 mtime=1702388427.695501819 30 atime=1702388426.517503563 30 ctime=1702388427.695501819 elk-9.2.12/src/rotdmat.f900000644002504400250440000000466614536061313016757 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rotdmat(rspl,rspn,lmax,nspinor,ld,dmat1,dmat2) implicit none ! arguments real(8), intent(in) :: rspl(3,3),rspn(3,3) integer, intent(in) :: lmax,nspinor,ld complex(8), intent(in) :: dmat1(ld,nspinor,ld,nspinor) complex(8), intent(inout) :: dmat2(ld,nspinor,ld,nspinor) ! local variables integer lds,ispn,jspn,p integer lmmax,l,lm1,lm2,nm real(8), parameter :: eps=1.d-8 real(8) ang(3),angi(3) real(8) rot(3,3),det,v(3),th complex(8), parameter :: zzero=(0.d0,0.d0),zone=(1.d0,0.d0) complex(8) su2(2,2),a(2,2),b(2,2) ! allocatable arrays complex(8), allocatable :: dm(:,:,:,:),c(:,:),d(:,:) ! external functions real(8), external :: r3mdet lmmax=(lmax+1)**2 allocate(dm(ld,nspinor,ld,nspinor)) allocate(c(lmmax,lmmax),d(lmmax,lmmax)) ! find the determinant of the spatial rotation matrix det=r3mdet(rspl) if (det > 0.d0) then p=1 else p=-1 end if ! make the rotation matrix proper rot(:,:)=dble(p)*rspl(:,:) ! compute the Euler angles of the spatial rotation call roteuler(rot,ang) ! inverse rotation: the matrix is to be rotated, not the spherical harmonics angi(1)=-ang(3) angi(2)=-ang(2) angi(3)=-ang(1) ! determine the rotation matrix for complex spherical harmonics call ylmrot(p,angi,lmax,lmmax,d) ! apply (l,m) rotation matrix as U*D*conjg(U') lds=ld*nspinor do ispn=1,nspinor do jspn=1,nspinor lm1=1 do l=0,lmax nm=2*l+1 call zgemm('N','N',nm,lmmax,nm,zone,d(lm1,lm1),lmmax, & dmat1(lm1,ispn,1,jspn),lds,zzero,c(lm1,1),lmmax) lm1=lm1+nm end do lm1=1 do l=0,lmax nm=2*l+1 call zgemm('N','C',lmmax,nm,nm,zone,c(1,lm1),lmmax,d(lm1,lm1),lmmax, & zzero,dm(1,ispn,lm1,jspn),lds) lm1=lm1+nm end do end do end do ! spin rotation if required if (nspinor == 2) then ! convert spin rotation matrix to axis-angle form call rotaxang(eps,rspn,det,v,th) ! find the SU(2) representation of the rotation matrix call axangsu2(v,th,su2) ! apply SU(2) symmetry matrix as U*D*U† and add to dmat2 do lm1=1,lmmax do lm2=1,lmmax a(:,:)=dm(lm1,:,lm2,:) call z2mm(su2,a,b) call z2mmct(b,su2,a) dmat2(lm1,:,lm2,:)=dmat2(lm1,:,lm2,:)+a(:,:) end do end do else dmat2(1:lmmax,1,1:lmmax,1)=dmat2(1:lmmax,1,1:lmmax,1)+dm(1:lmmax,1,1:lmmax,1) end if deallocate(dm,c,d) end subroutine elk-9.2.12/src/PaxHeaders/genylmg.f900000644000000000000000000000013214536061313014211 xustar0030 mtime=1702388427.696501818 30 atime=1702388426.519503561 30 ctime=1702388427.696501818 elk-9.2.12/src/genylmg.f900000644002504400250440000000135214536061313016734 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genylmg ! !INTERFACE: subroutine genylmg ! !USES: use modmain ! !DESCRIPTION: ! Generates a set of spherical harmonics, $Y_{lm}(\hat{\bf G})$, with angular ! momenta up to {\tt lmaxo} for the set of ${\bf G}$-vectors. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! local variables integer ig ! allocate global G-vector spherical harmonic array if (allocated(ylmg)) deallocate(ylmg) allocate(ylmg(lmmaxo,ngvec)) do ig=1,ngvec call genylmv(lmaxo,vgc(:,ig),ylmg(:,ig)) end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/gentaucr.f900000644000000000000000000000013214536061313014357 xustar0030 mtime=1702388427.698501815 30 atime=1702388426.520503559 30 ctime=1702388427.698501815 elk-9.2.12/src/gentaucr.f900000644002504400250440000000354014536061313017103 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gentaucr use modmain use modomp implicit none ! local variables integer ist,ispn,jspn integer is,ia,ias,nthd integer nr,nri,np,i,m ! allocatable arrays complex(4), allocatable :: wfcr(:,:) complex(8), allocatable :: zfmt(:),gzfmt(:,:) taucr(:,:,:)=0.d0 call holdthd(natmtot,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfcr,zfmt,gzfmt) & !$OMP PRIVATE(is,ia,nr,nri,np) & !$OMP PRIVATE(ist,m,ispn,jspn,i) & !$OMP NUM_THREADS(nthd) allocate(wfcr(npmtmax,2),zfmt(npmtmax),gzfmt(npmtmax,3)) !$OMP DO do ias=1,natmtot is=idxis(ias) ia=idxia(ias) nr=nrmt(is) nri=nrmti(is) np=npmt(is) do ist=1,nstsp(is) if (spcore(ist,is)) then do m=-ksp(ist,is),ksp(ist,is)-1 ! generate the core wavefunction in spherical harmonics (pass in m-1/2) call wavefcr(.true.,1,is,ia,ist,m,npmtmax,wfcr) do ispn=1,2 if (spinpol) then jspn=ispn else jspn=1 end if ! compute the gradient of the wavefunction zfmt(1:np)=wfcr(1:np,ispn) call gradzfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),zfmt,npmtmax,gzfmt) do i=1,3 ! convert gradient to spherical coordinates call zbsht(nr,nri,gzfmt(:,i),zfmt) ! add to total in muffin-tin taucr(1:np,ias,jspn)=taucr(1:np,ias,jspn) & +0.5d0*(dble(zfmt(1:np))**2+aimag(zfmt(1:np))**2) end do end do end do end if end do end do !$OMP END DO deallocate(wfcr,zfmt,gzfmt) !$OMP END PARALLEL call freethd(nthd) ! convert core tau to spherical harmonics do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) call rfshtip(nrmt(is),nrmti(is),taucr(:,ias,ispn)) end do end do end subroutine elk-9.2.12/src/PaxHeaders/readinput.f900000644000000000000000000000013214536061313014542 xustar0030 mtime=1702388427.699501813 30 atime=1702388426.522503556 30 ctime=1702388427.699501813 elk-9.2.12/src/readinput.f900000644002504400250440000014501214536061313017267 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: readinput ! !INTERFACE: subroutine readinput ! !USES: use modmain use moddftu use modrdm use modphonon use modtest use modrandom use modpw use modtddft use modulr use modvars use modgw use modbog use modw90 use modmpi use modomp use modramdisk ! !DESCRIPTION: ! Reads in the input parameters from the file {\tt elk.in}. Also sets default ! values for the input parameters. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) !EOP !BOC implicit none ! local variables logical lv integer is,ia,ias,ios integer i,j,k,l real(8) sc,sc1,sc2,sc3 real(8) scx,scy,scz real(8) scu,scu1,scu2,scu3 real(8) solscf,zn real(8) axang(4),rot(3,3) real(8) v(3),t1 character(256) block,symb,str !------------------------! ! default values ! !------------------------! ntasks=0 avec(:,:)=0.d0 avec(1,1)=1.d0 avec(2,2)=1.d0 avec(3,3)=1.d0 davec(:,:)=0.d0 sc=1.d0 sc1=1.d0 sc2=1.d0 sc3=1.d0 scx=1.d0 scy=1.d0 scz=1.d0 epslat=1.d-6 primcell=.false. tshift=.true. ngridk(:)=1 dngridk(:)=0 vkloff(:)=0.d0 autokpt=.false. radkpt=40.d0 reducek=1 ngridq(:)=-1 reduceq=1 rgkmax=7.d0 drgkmax=0.d0 gmaxvr=12.d0 dgmaxvr=0.d0 lmaxapw=8 dlmaxapw=0 lmaxo=6 dlmaxo=0 lmaxi=1 fracinr=0.01d0 trhonorm=.true. xctype(1)=3 xctype(2:3)=0 xctsp(1)=3 xctsp(2:3)=0 ktype(1)=52 ktype(2:3)=0 stype=3 swidth=0.001d0 autoswidth=.false. mstar=10.d0 epsocc=1.d-8 epschg=1.d-3 nempty0=4.d0 dnempty0=0.d0 maxscl=200 mixtype=3 amixpm(1)=0.05d0 amixpm(2)=1.d0 ! Broyden parameters recommended by M. Meinert mixsdb=5 broydpm(1)=0.4d0 broydpm(2)=0.15d0 epspot=1.d-6 epsengy=1.d-4 epsforce=5.d-3 epsstress=2.d-3 molecule=.false. nspecies=0 natoms(:)=0 atposl(:,:,:)=0.d0 datposl(:,:,:)=0.d0 atposc(:,:,:)=0.d0 bfcmt0(:,:,:)=0.d0 sppath='' scrpath='' nvp1d=2 if (allocated(vvlp1d)) deallocate(vvlp1d) allocate(vvlp1d(3,nvp1d)) vvlp1d(:,1)=0.d0 vvlp1d(:,2)=1.d0 npp1d=200 ip01d=1 vclp2d(:,:)=0.d0 vclp2d(1,1)=1.d0 vclp2d(2,2)=1.d0 np2d(:)=40 vclp3d(:,:)=0.d0 vclp3d(1,1)=1.d0 vclp3d(2,2)=1.d0 vclp3d(3,3)=1.d0 np3d(:)=20 nwplot=500 ngrkf=100 nswplot=1 wplot(1)=-0.5d0 wplot(2)=0.5d0 dosocc=.false. dosmsum=.false. dosssum=.false. lmirep=.true. spinpol=.false. spinorb=.false. socscf=1.d0 atpopt=1 maxatpstp=200 tau0atp=0.2d0 deltast=0.005d0 latvopt=0 maxlatvstp=30 tau0latv=0.2d0 lradstp=4 chgexs=0.d0 dchgexs=0.d0 scissor=0.d0 noptcomp=1 optcomp(:,1)=1 intraband=.false. evaltol=-1.d0 epsband=1.d-12 demaxbnd=2.5d0 autolinengy=.false. dlefe=-0.1d0 deapwlo=0.05d0 bfieldc0(:)=0.d0 dbfieldc0(:)=0.d0 efieldc(:)=0.d0 afieldc(:)=0.d0 fsmtype=0 momfix(:)=0.d0 dmomfix(:)=0.d0 mommtfix(:,:,:)=1.d6 taufsm=0.01d0 rmtdelta=0.05d0 isgkmax=-1 symtype=1 deltaph=0.01d0 nphwrt=1 if (allocated(vqlwrt)) deallocate(vqlwrt) allocate(vqlwrt(3,nphwrt)) vqlwrt(:,:)=0.d0 notelns=0 tforce=.false. maxitoep=400 tau0oep=0.1d0 nkstlist=1 kstlist(:,1)=1 vklem(:)=0.d0 deltaem=0.025d0 ndspem=1 nosource=.false. spinsprl=.false. ssdph=.true. vqlss(:)=0.d0 nwrite=0 dftu=0 inpdftu=1 ndftu=0 ujdu(:,:)=0.d0 fdu(:,:)=0.d0 edu(:,:)=0.d0 lamdu(:)=0.d0 udufix(:)=0.d0 dudufix(:)=0.d0 tmwrite=.false. rdmxctype=2 rdmmaxscl=2 maxitn=200 maxitc=0 taurdmn=0.5d0 taurdmc=0.25d0 rdmalpha=0.656d0 rdmtemp=0.d0 reducebf=1.d0 ptnucl=.true. tefvr=.true. tefvit=.false. minitefv=6 maxitefv=4 befvit=0.25d0 epsefvit=1.d-5 vecql(:)=0.d0 mustar=0.15d0 sqados(1:2)=0.d0 sqados(3)=1.d0 test=.false. spincore=.false. solscf=1.d0 emaxelnes=-1.2d0 wsfac(1)=-1.1d6; wsfac(2)=1.1d6 vhmat(:,:)=0.d0 vhmat(1,1)=1.d0 vhmat(2,2)=1.d0 vhmat(3,3)=1.d0 reduceh=.true. hybrid0=.false. hybridc=1.d0 ecvcut=-3.5d0 esccut=-0.4d0 gmaxrf=3.d0 emaxrf=1.d6 ntemp=40 trimvg=.true. nvbse0=2 ncbse0=3 nvxbse=0 ncxbse=0 bsefull=.false. hxbse=.true. hdbse=.true. fxctype=-1 fxclrc(1)=0.d0 fxclrc(2)=0.d0 rndatposc=0.d0 rndbfcmt=0.d0 rndavec=0.d0 hmaxvr=20.d0 hkmax=12.d0 lorbcnd=.false. lorbordc=3 nrmtscf=1.d0 dnrmtscf=0.d0 lmaxdos=3 epsdev=0.005d0 npmae0=-1 wrtvars=.false. ftmtype=0 ntmfix=0 tauftm=0.1d0 cmagz=.false. axang(:)=0.d0 dncgga=1.d-8 tstime=1000.d0 dtimes=0.1d0 npulse=0 nramp=0 nstep=0 ntswrite(1)=500 ntswrite(2)=1 nxoapwlo=0 nxlo=0 tdrho1d=.false. tdrho2d=.false. tdrho3d=.false. tdmag1d=.false. tdmag2d=.false. tdmag3d=.false. tdjr1d=.false. tdjr2d=.false. tdjr3d=.false. tddos=.false. tdlsj=.false. tdjtk=.false. rndevt0=0.d0 sxcscf=1.d0 dsxcscf=0.d0 avecu(:,:)=0.d0 avecu(1,1)=1.d0 avecu(2,2)=1.d0 avecu(3,3)=1.d0 scu=1.d0 scu1=1.d0 scu2=1.d0 scu3=1.d0 q0cut=0.d0 rndbfcu=0.d0 efielduc(:)=0.d0 tplotq0=.true. trdvclr=.false. wmaxgw=-10.d0 twdiag=.false. tsediag=.true. actype=10 npole=3 nspade=100 tfav0=.true. mrmtav=0 rmtall=-1.d0 maxthd=0 maxthd1=0 maxthdmkl=0 maxlvl=4 tdphi=0.d0 thetamld=45.d0*pi/180.d0 ntsbackup=0 ! Wannier90 variables seedname='wannier' num_wann=0 num_bands=0 num_iter=400 trial_step=1.d-3 nxlwin=0 tbdip=.false. tjr=.false. tauefm=0.01d0 epsefm=1.d-6 ehfb=1.d0 t0gclq0=.false. tafindt=.false. afindpm(:)=0.d0 afindpm(2)=1.d0 nkspolar=4 ntsforce=100 wphcut=1.d-6 ephscf(1)=8.d0 ephscf(2)=0.02d0 anomalous=.false. tephde=.false. bdiag=.false. ecutb=0.001d0 ediag=.false. pwxpsn=2 ramdisk=.true. wrtdsk=.true. epsdmat=1.d-8 tm3old=.false. batch=.false. tafspt=.false. trdatdv=.false. atdfc=0.d0 maxforce=-1.d0 msmgmt=4 maxitksi=300 tauksi=0.01d0 epsdres=1.d-9 ntsorth=1000 deltabf=0.5d0 jtconst0=.false. trmt0=.true. !--------------------------! ! read from elk.in ! !--------------------------! open(50,file='elk.in',status='OLD',form='FORMATTED',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error opening elk.in")') write(*,*) stop end if 10 continue read(50,*,end=30) block ! check for a comment if ((scan(trim(block),'!') == 1).or.(scan(trim(block),'#') == 1)) goto 10 select case(trim(block)) case('tasks') do i=1,maxtasks read(50,'(A)',err=20) str if (trim(str) == '') then if (i == 1) then write(*,*) write(*,'("Error(readinput): no tasks to perform")') write(*,*) stop end if ntasks=i-1 goto 10 end if read(str,*,iostat=ios) tasks(i) if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading tasks")') write(*,'("(blank line required after tasks block)")') write(*,*) stop end if end do write(*,*) write(*,'("Error(readinput): too many tasks")') write(*,'("Adjust maxtasks in modmain and recompile code")') write(*,*) stop case('species') ! generate a species file call genspecies(50) case('fspecies') ! generate fractional species files do is=1,maxspecies read(50,'(A)',err=20) str if (trim(str) == '') goto 10 read(str,*,iostat=ios) zn,symb if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading fractional species")') write(*,'("(blank line required after fspecies block)")') write(*,*) stop end if if (zn > 0.d0) then write(*,*) write(*,'("Error(readinput): fractional nuclear Z > 0 : ",G18.10)') zn write(*,*) stop end if call genfspecies(zn,symb) end do write(*,*) write(*,'("Error(readinput): too many fractional nucleus species")') write(*,*) stop case('avec') read(50,'(A)',err=20) str read(str,*,err=20) avec(:,1) read(str,*,iostat=ios) avec(:,1),davec(:,1) read(50,'(A)',err=20) str read(str,*,err=20) avec(:,2) read(str,*,iostat=ios) avec(:,2),davec(:,2) read(50,'(A)',err=20) str read(str,*,err=20) avec(:,3) read(str,*,iostat=ios) avec(:,3),davec(:,3) case('scale') read(50,*,err=20) sc case('scale1') read(50,*,err=20) sc1 case('scale2') read(50,*,err=20) sc2 case('scale3') read(50,*,err=20) sc3 case('scalex') read(50,*,err=20) scx case('scaley') read(50,*,err=20) scy case('scalez') read(50,*,err=20) scz case('epslat') read(50,*,err=20) epslat if (epslat <= 0.d0) then write(*,*) write(*,'("Error(readinput): epslat <= 0 : ",G18.10)') epslat write(*,*) stop end if case('primcell') read(50,*,err=20) primcell case('tshift') read(50,*,err=20) tshift case('autokpt') read(50,*,err=20) autokpt case('radkpt') read(50,*,err=20) radkpt if (radkpt <= 0.d0) then write(*,*) write(*,'("Error(readinput): radkpt <= 0 : ",G18.10)') radkpt write(*,*) stop end if case('ngridk') read(50,'(A)',err=20) str read(str,*,err=20) ngridk(:) read(str,*,iostat=ios) ngridk(:),dngridk(:) if (any(ngridk(:) <= 0)) then write(*,*) write(*,'("Error(readinput): invalid ngridk : ",3I8)') ngridk write(*,*) stop end if autokpt=.false. case('vkloff') read(50,*,err=20) vkloff(:) if (any(vkloff(:) < 0.d0).or.any(vkloff(:) >= 1.d0)) then write(*,*) write(*,'("Error(readinput): vkloff components should be in [0,1) : ",& &3G18.10)') vkloff write(*,*) stop end if case('reducek') read(50,*,err=20) reducek case('ngridq') read(50,*,err=20) ngridq(:) if (any(ngridq(:) <= 0)) then write(*,*) write(*,'("Error(readinput): invalid ngridq : ",3I8)') ngridq write(*,*) stop end if case('reduceq') read(50,*,err=20) reduceq case('rgkmax') read(50,'(A)',err=20) str read(str,*,err=20) rgkmax read(str,*,iostat=ios) rgkmax,drgkmax if (rgkmax <= 0.d0) then write(*,*) write(*,'("Error(readinput): rgkmax <= 0 : ",G18.10)') rgkmax write(*,*) stop end if case('gmaxvr') read(50,'(A)',err=20) str read(str,*,err=20) gmaxvr read(str,*,iostat=ios) gmaxvr,dgmaxvr case('lmaxapw') read(50,'(A)',err=20) str read(str,*,err=20) lmaxapw read(str,*,iostat=ios) lmaxapw,dlmaxapw if (lmaxapw < 0) then write(*,*) write(*,'("Error(readinput): lmaxapw < 0 : ",I8)') lmaxapw write(*,*) stop end if if (lmaxapw >= maxlapw) then write(*,*) write(*,'("Error(readinput): lmaxapw too large : ",I8)') lmaxapw write(*,'("Adjust maxlapw in modmain and recompile code")') write(*,*) stop end if case('lmaxo','lmaxvr') read(50,'(A)',err=20) str read(str,*,err=20) lmaxo read(str,*,iostat=ios) lmaxo,dlmaxo if (lmaxo < 3) then write(*,*) write(*,'("Error(readinput): lmaxo < 3 : ",I8)') lmaxo write(*,*) stop end if case('lmaxi','lmaxinr') read(50,*,err=20) lmaxi if (lmaxi < 1) then write(*,*) write(*,'("Error(readinput): lmaxi < 1 : ",I8)') lmaxi write(*,*) stop end if case('lmaxmat') read(50,*,err=20) write(*,'("Info(readinput): variable ''lmaxmat'' is no longer used")') case('fracinr') read(50,*,err=20) fracinr case('trhonorm') read(50,*,err=20) trhonorm case('spinpol') read(50,*,err=20) spinpol case('spinorb') read(50,*,err=20) spinorb case('socscf') read(50,*,err=20) socscf if (socscf < 0.d0) then write(*,*) write(*,'("Error(readinput): socscf < 0 : ",G18.10)') socscf write(*,*) stop end if case('xctype') read(50,'(A)',err=20) str str=trim(str)//' 0 0' read(str,*,err=20) xctype case('xctsp') read(50,'(A)',err=20) str str=trim(str)//' 0 0' read(str,*,err=20) xctsp case('ktype') read(50,'(A)',err=20) str str=trim(str)//' 0 0' read(str,*,err=20) ktype if (ktype(3) /= 0) then write(*,*) write(*,'("Error(readinput): ktype(3) should be zero : ",I8)') ktype(3) write(*,*) stop end if case('stype') read(50,*,err=20) stype case('swidth') read(50,*,err=20) swidth if (swidth < 1.d-9) then write(*,*) write(*,'("Error(readinput): swidth too small or negative : ",G18.10)') & swidth write(*,*) stop end if case('autoswidth') read(50,*,err=20) autoswidth case('mstar') read(50,*,err=20) mstar if (mstar <= 0.d0) then write(*,*) write(*,'("Error(readinput): mstar <= 0 : ",G18.10)') mstar write(*,*) stop end if case('epsocc') read(50,*,err=20) epsocc if (epsocc <= 0.d0) then write(*,*) write(*,'("Error(readinput): epsocc <= 0 : ",G18.10)') epsocc write(*,*) stop end if case('epschg') read(50,*,err=20) epschg if (epschg <= 0.d0) then write(*,*) write(*,'("Error(readinput): epschg <= 0 : ",G18.10)') epschg write(*,*) stop end if case('nempty','nempty0') read(50,'(A)',err=20) str read(str,*,err=20) nempty0 read(str,*,iostat=ios) nempty0,dnempty0 if (nempty0 <= 0.d0) then write(*,*) write(*,'("Error(readinput): nempty <= 0 : ",G18.10)') nempty0 write(*,*) stop end if case('mixtype') read(50,*,err=20) mixtype case('amixpm','beta0','betamax') if (trim(block) == 'amixpm') then read(50,*,err=20) amixpm(:) else if (trim(block) == 'beta0') then read(50,*,err=20) amixpm(1) else read(50,*,err=20) amixpm(2) end if if (amixpm(1) < 0.d0) then write(*,*) write(*,'("Error(readinput): beta0 [amixpm(1)] < 0 : ",G18.10)') amixpm(1) write(*,*) stop end if if ((amixpm(2) < 0.d0).or.(amixpm(2) > 1.d0)) then write(*,*) write(*,'("Error(readinput): betamax [amixpm(2)] not in [0,1] : ",G18.10)')& amixpm(2) write(*,*) stop end if case('mixsdb') read(50,*,err=20) mixsdb if (mixsdb < 2) then write(*,*) write(*,'("Error(readinput): mixsdb < 2 : ",I8)') mixsdb write(*,*) stop end if case('broydpm') read(50,*,err=20) broydpm(:) if ((broydpm(1) < 0.d0).or.(broydpm(1) > 1.d0).or. & (broydpm(2) < 0.d0).or.(broydpm(2) > 1.d0)) then write(*,*) write(*,'("Error(readinput): invalid Broyden mixing parameters : ",& &2G18.10)') broydpm write(*,*) stop end if case('maxscl') read(50,*,err=20) maxscl if (maxscl < 0) then write(*,*) write(*,'("Error(readinput): maxscl < 0 : ",I8)') maxscl write(*,*) stop end if case('epspot') read(50,*,err=20) epspot case('epsengy') read(50,*,err=20) epsengy case('epsforce') read(50,*,err=20) epsforce case('epsstress') read(50,*,err=20) epsstress case('sppath') read(50,*,err=20) sppath sppath=adjustl(sppath) case('scrpath') read(50,*,err=20) scrpath case('molecule') read(50,*,err=20) molecule case('atoms') read(50,*,err=20) nspecies if (nspecies <= 0) then write(*,*) write(*,'("Error(readinput): nspecies <= 0 : ",I8)') nspecies write(*,*) stop end if if (nspecies > maxspecies) then write(*,*) write(*,'("Error(readinput): nspecies too large : ",I8)') nspecies write(*,'("Adjust maxspecies in modmain and recompile code")') write(*,*) stop end if do is=1,nspecies read(50,*,err=20) spfname(is) spfname(is)=adjustl(spfname(is)) read(50,*,err=20) natoms(is) if (natoms(is) <= 0) then write(*,*) write(*,'("Error(readinput): natoms <= 0 : ",I8)') natoms(is) write(*,'(" for species ",I4)') is write(*,*) stop end if if (natoms(is) > maxatoms) then write(*,*) write(*,'("Error(readinput): natoms too large : ",I8)') natoms(is) write(*,'(" for species ",I4)') is write(*,'("Adjust maxatoms in modmain and recompile code")') write(*,*) stop end if do ia=1,natoms(is) read(50,'(A)',err=20) str read(str,*,err=20) atposl(:,ia,is) read(str,*,iostat=ios) atposl(:,ia,is),bfcmt0(:,ia,is),datposl(:,ia,is) end do end do case('plot1d') read(50,*,err=20) nvp1d,npp1d if (nvp1d < 1) then write(*,*) write(*,'("Error(readinput): nvp1d < 1 : ",I8)') nvp1d write(*,*) stop end if if (npp1d < nvp1d) then write(*,*) write(*,'("Error(readinput): npp1d < nvp1d : ",2I8)') npp1d,nvp1d write(*,*) stop end if if (allocated(vvlp1d)) deallocate(vvlp1d) allocate(vvlp1d(3,nvp1d)) do i=1,nvp1d read(50,*,err=20) vvlp1d(:,i) end do case('ip01d') read(50,*,err=20) ip01d if (ip01d < 1) then write(*,*) write(*,'("Error(readinput): ip01d < 1 : ",I8)') ip01d write(*,*) stop end if case('plot2d') read(50,*,err=20) vclp2d(:,0) read(50,*,err=20) vclp2d(:,1) read(50,*,err=20) vclp2d(:,2) read(50,*,err=20) np2d(:) if ((np2d(1) < 1).or.(np2d(2) < 1)) then write(*,*) write(*,'("Error(readinput): np2d < 1 : ",2I8)') np2d write(*,*) stop end if case('plot3d') read(50,*,err=20) vclp3d(:,0) read(50,*,err=20) vclp3d(:,1) read(50,*,err=20) vclp3d(:,2) read(50,*,err=20) vclp3d(:,3) read(50,*,err=20) np3d(:) if ((np3d(1) < 1).or.(np3d(2) < 1).or.(np3d(3) < 1)) then write(*,*) write(*,'("Error(readinput): np3d < 1 : ",3I8)') np3d write(*,*) stop end if case('wplot','dos') read(50,*,err=20) nwplot,ngrkf,nswplot if (nwplot < 2) then write(*,*) write(*,'("Error(readinput): nwplot < 2 : ",I8)') nwplot write(*,*) stop end if if (ngrkf < 1) then write(*,*) write(*,'("Error(readinput): ngrkf < 1 : ",I8)') ngrkf write(*,*) stop end if if (nswplot < 0) then write(*,*) write(*,'("Error(readinput): nswplot < 0 : ",I8)') nswplot write(*,*) stop end if read(50,*,err=20) wplot(:) if (wplot(1) > wplot(2)) then write(*,*) write(*,'("Error(readinput): wplot(1) > wplot(2) : ",2G18.10)') wplot write(*,*) stop end if case('dosocc') read(50,*,err=20) dosocc case('dosmsum') read(50,*,err=20) dosmsum case('dosssum') read(50,*,err=20) dosssum case('lmirep') read(50,*,err=20) lmirep case('atpopt') read(50,*,err=20) atpopt case('maxatpstp','maxatmstp') read(50,*,err=20) maxatpstp if (maxatpstp <= 0) then write(*,*) write(*,'("Error(readinput): maxatpstp <= 0 : ",I8)') maxatpstp write(*,*) stop end if case('tau0atp','tau0atm') read(50,*,err=20) tau0atp case('deltast') read(50,*,err=20) deltast if (deltast <= 0.d0) then write(*,*) write(*,'("Error(readinput): deltast <= 0 : ",G18.10)') deltast write(*,*) stop end if case('latvopt') read(50,*,err=20) latvopt case('maxlatvstp') read(50,*,err=20) maxlatvstp if (maxlatvstp <= 0) then write(*,*) write(*,'("Error(readinput): maxlatvstp <= 0 : ",I8)') maxlatvstp write(*,*) stop end if case('tau0latv') read(50,*,err=20) tau0latv case('nstfsp') read(50,*,err=20) write(*,'("Info(readinput): variable ''nstfsp'' is no longer used")') case('lradstp') read(50,*,err=20) lradstp if (lradstp <= 0) then write(*,*) write(*,'("Error(readinput): lradstp <= 0 : ",I8)') lradstp write(*,*) stop end if case('chgexs') read(50,'(A)',err=20) str read(str,*,err=20) chgexs read(str,*,iostat=ios) chgexs,dchgexs case('nprad') read(50,*,err=20) write(*,'("Info(readinput): variable ''nprad'' is no longer used")') case('scissor') read(50,*,err=20) scissor case('optcomp') do i=1,27 read(50,'(A)',err=20) str if (trim(str) == '') then if (i == 1) then write(*,*) write(*,'("Error(readinput): empty optical component list")') write(*,*) stop end if noptcomp=i-1 goto 10 end if str=trim(str)//' 1 1' read(str,*,iostat=ios) optcomp(:,i) if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading optical component list")') write(*,'("(blank line required after optcomp block)")') write(*,*) stop end if if (any(optcomp(:,i) < 1).or.any(optcomp(:,i) > 3)) then write(*,*) write(*,'("Error(readinput): invalid optcomp : ",3I8)') optcomp(:,i) write(*,*) stop end if end do write(*,*) write(*,'("Error(readinput): optical component list too long")') write(*,*) stop case('intraband') read(50,*,err=20) intraband case('evaltol') read(50,*,err=20) evaltol case('deband') read(50,*,err=20) write(*,'("Info(readinput): variable ''deband'' is no longer used")') case('epsband') read(50,*,err=20) epsband if (epsband <= 0.d0) then write(*,*) write(*,'("Error(readinput): epsband <= 0 : ",G18.10)') epsband write(*,*) stop end if case('demaxbnd') read(50,*,err=20) demaxbnd if (demaxbnd <= 0.d0) then write(*,*) write(*,'("Error(readinput): demaxbnd <= 0 : ",G18.10)') demaxbnd write(*,*) stop end if case('autolinengy') read(50,*,err=20) autolinengy case('dlefe') read(50,*,err=20) dlefe case('deapwlo') read(50,*,err=20) deapwlo if (abs(deapwlo) < 1.d-8) then write(*,*) write(*,'("Error(readinput): invalid deapwlo : ",G18.10)') deapwlo write(*,*) stop end if case('bfieldc') read(50,'(A)',err=20) str read(str,*,err=20) bfieldc0(:) read(str,*,iostat=ios) bfieldc0(:),dbfieldc0(:) case('efieldc') read(50,*,err=20) efieldc(:) case('afieldc') read(50,*,err=20) afieldc(:) case('fsmtype','fixspin') read(50,*,err=20) fsmtype case('momfix') read(50,'(A)',err=20) str read(str,*,err=20) momfix(:) read(str,*,iostat=ios) momfix(:),dmomfix(:) case('mommtfix') do ias=1,maxspecies*maxatoms read(50,'(A)',err=20) str if (trim(str) == '') goto 10 read(str,*,iostat=ios) is,ia,mommtfix(:,ia,is) if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading muffin-tin fixed spin & &moments")') write(*,'("(blank line required after mommtfix block")') write(*,*) stop end if end do case('taufsm') read(50,*,err=20) taufsm if (taufsm < 0.d0) then write(*,*) write(*,'("Error(readinput): taufsm < 0 : ",G18.10)') taufsm write(*,*) stop end if case('autormt') read(50,*,err=20) write(*,'("Info(readinput): variable ''autormt'' is no longer used")') case('rmtdelta') read(50,*,err=20) rmtdelta if (rmtdelta < 0.d0) then write(*,*) write(*,'("Warning(readinput): rmtdelta < 0 : ",G18.10)') rmtdelta end if case('isgkmax') read(50,*,err=20) isgkmax case('nosym') read(50,*,err=20) lv if (lv) symtype=0 case('symtype') read(50,*,err=20) symtype if ((symtype < 0).or.(symtype > 2)) then write(*,*) write(*,'("Error(readinput): symtype not defined : ",I8)') symtype write(*,*) stop end if case('deltaph') read(50,*,err=20) deltaph if (deltaph <= 0.d0) then write(*,*) write(*,'("Error(readinput): deltaph <= 0 : ",G18.10)') deltaph write(*,*) stop end if case('phwrite') read(50,*,err=20) nphwrt if (nphwrt <= 0) then write(*,*) write(*,'("Error(readinput): nphwrt <= 0 : ",I8)') nphwrt write(*,*) stop end if if (allocated(vqlwrt)) deallocate(vqlwrt) allocate(vqlwrt(3,nphwrt)) do i=1,nphwrt read(50,*,err=20) vqlwrt(:,i) end do case('notes') if (allocated(notes)) deallocate(notes) allocate(notes(0)) notelns=0 do read(50,'(A)') str if (trim(str) == '') goto 10 notelns=notelns+1 notes=[notes,str] end do case('tforce') read(50,*,err=20) tforce case('tfibs') read(50,*,err=20) write(*,'("Info(readinput): variable ''tfibs'' is no longer used")') case('maxitoep') read(50,*,err=20) maxitoep if (maxitoep < 1) then write(*,*) write(*,'("Error(readinput): maxitoep < 1 : ",I8)') maxitoep write(*,*) stop end if case('tauoep') read(50,*,err=20) write(*,'("Info(readinput): variable ''tauoep'' is no longer used")') case('tau0oep') read(50,*,err=20) tau0oep if (tau0oep < 0.d0) then write(*,*) write(*,'("Error(readinput): tau0oep < 0 : ",G18.10)') tau0oep write(*,*) stop end if case('kstlist') do i=1,maxkst read(50,'(A)',err=20) str if (trim(str) == '') then if (i == 1) then write(*,*) write(*,'("Error(readinput): empty k-point and state list")') write(*,*) stop end if nkstlist=i-1 goto 10 end if read(str,*,iostat=ios) kstlist(:,i) if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading k-point and state list")') write(*,'("(blank line required after kstlist block)")') write(*,*) stop end if end do write(*,*) write(*,'("Error(readinput): k-point and state list too long")') write(*,*) stop case('vklem') read(50,*,err=20) vklem case('deltaem') read(50,*,err=20) deltaem if (deltaem <= 0.d0) then write(*,*) write(*,'("Error(readinput): deltaem <= 0 : ",G18.10)') deltaem write(*,*) stop end if case('ndspem') read(50,*,err=20) ndspem if ((ndspem < 1).or.(ndspem > 4)) then write(*,*) write(*,'("Error(readinput): ndspem out of range : ",I8)') ndspem write(*,*) stop end if case('nosource') read(50,*,err=20) nosource case('spinsprl') read(50,*,err=20) spinsprl case('ssdph') read(50,*,err=20) ssdph case('vqlss') read(50,*,err=20) vqlss case('nwrite') read(50,*,err=20) nwrite case('DFT+U','dft+u','lda+u') read(50,*,err=20) dftu,inpdftu do i=1,maxdftu read(50,'(A)',err=20) str if (trim(str) == '') then ndftu=i-1 goto 10 end if select case(inpdftu) case(1) read(str,*,iostat=ios) is,l,ujdu(1:2,i) case(2) read(str,*,iostat=ios) is,l,(fdu(k,i),k=0,2*l,2) case(3) read(str,*,iostat=ios) is,l,(edu(k,i),k=0,l) case(4) read(str,*,iostat=ios) is,l,lamdu(i) case(5) read(str,*,iostat=ios) is,l,udufix(i),dudufix(i) read(str,*,iostat=ios) is,l,udufix(i) case default write(*,*) write(*,'("Error(readinput): invalid inpdftu : ",I8)') inpdftu write(*,*) stop end select if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading DFT+U parameters")') write(*,'("(blank line required after dft+u block)")') write(*,*) stop end if if ((is <= 0).or.(is >= maxspecies)) then write(*,*) write(*,'("Error(readinput): invalid species number in dft+u block : ", & &I8)') is write(*,*) stop end if if (l < 0) then write(*,*) write(*,'("Error(readinput): l < 0 in dft+u block : ",I8)') l write(*,*) stop end if if (l > lmaxdm) then write(*,*) write(*,'("Error(readinput): l > lmaxdm in dft+u block : ",2I8)') l,lmaxdm write(*,*) stop end if ! check for repeated entries do j=1,i-1 if ((is == isldu(1,j)).and.(l == isldu(2,j))) then write(*,*) write(*,'("Error(readinput): repeated entry in DFT+U block")') write(*,*) stop end if end do isldu(1,i)=is isldu(2,i)=l end do write(*,*) write(*,'("Error(readinput): too many DFT+U entries")') write(*,'("Adjust maxdftu in modmain and recompile code")') write(*,*) stop case('tmwrite','tmomlu') read(50,*,err=20) tmwrite case('readadu','readalu') read(50,*,err=20) write(*,'("Info(readinput): variable ''readadu'' is no longer used")') case('rdmxctype') read(50,*,err=20) rdmxctype case('rdmmaxscl') read(50,*,err=20) rdmmaxscl if (rdmmaxscl < 0) then write(*,*) write(*,'("Error(readinput): rdmmaxscl < 0 : ",I8)') rdmmaxscl write(*,*) end if case('maxitn') read(50,*,err=20) maxitn case('maxitc') read(50,*,err=20) maxitc case('taurdmn') read(50,*,err=20) taurdmn if (taurdmn < 0.d0) then write(*,*) write(*,'("Error(readinput): taurdmn < 0 : ",G18.10)') taurdmn write(*,*) stop end if case('taurdmc') read(50,*,err=20) taurdmc if (taurdmc < 0.d0) then write(*,*) write(*,'("Error(readinput): taurdmc < 0 : ",G18.10)') taurdmc write(*,*) stop end if case('rdmalpha') read(50,*,err=20) rdmalpha if ((rdmalpha <= 0.d0).or.(rdmalpha >= 1.d0)) then write(*,*) write(*,'("Error(readinput): rdmalpha not in (0,1) : ",G18.10)') rdmalpha write(*,*) stop end if case('rdmtemp') read(50,*,err=20) rdmtemp if (rdmtemp < 0.d0) then write(*,*) write(*,'("Error(readinput): rdmtemp < 0 : ",G18.10)') rdmtemp write(*,*) stop end if case('reducebf') read(50,*,err=20) reducebf if ((reducebf < 0.49d0).or.(reducebf > 1.d0)) then write(*,*) write(*,'("Error(readinput): reducebf not in [0.5,1] : ",G18.10)') reducebf write(*,*) stop end if case('ptnucl') read(50,*,err=20) ptnucl case('tefvr','tseqr') read(50,*,err=20) tefvr case('tefvit','tseqit') read(50,*,err=20) tefvit case('minitefv','minseqit') read(50,*,err=20) minitefv if (minitefv < 1) then write(*,*) write(*,'("Error(readinput): minitefv < 1 : ",I8)') minitefv write(*,*) stop end if case('maxitefv','maxseqit') read(50,*,err=20) maxitefv if (maxitefv < 1) then write(*,*) write(*,'("Error(readinput): maxitefv < 1 : ",I8)') maxitefv write(*,*) stop end if case('befvit','bseqit') read(50,*,err=20) befvit if (befvit <= 0.d0) then write(*,*) write(*,'("Error(readinput): befvit <= 0 : ",G18.10)') befvit write(*,*) stop end if case('epsefvit','epsseqit') read(50,*,err=20) epsefvit if (epsefvit < 0.d0) then write(*,*) write(*,'("Error(readinput): epsefvit < 0 : ",G18.10)') epsefvit write(*,*) stop end if case('nseqit') read(50,*,err=20) write(*,'("Info(readinput): variable ''nseqit'' is no longer used")') case('tauseq') read(50,*,err=20) write(*,'("Info(readinput): variable ''tauseq'' is no longer used")') case('vecql') read(50,*,err=20) vecql(:) case('mustar') read(50,*,err=20) mustar case('sqados') read(50,*,err=20) sqados(:) case('test') read(50,*,err=20) test case('frozencr') read(50,*,err=20) write(*,'("Info(readinput): variable ''frozencr'' is no longer used")') case('spincore') read(50,*,err=20) spincore case('solscf') read(50,*,err=20) solscf if (solscf < 0.d0) then write(*,*) write(*,'("Error(readinput): solscf < 0 : ",G18.10)') solscf write(*,*) stop end if case('emaxelnes') read(50,*,err=20) emaxelnes case('wsfac') read(50,*,err=20) wsfac(:) case('vhmat') read(50,*,err=20) vhmat(1,:) read(50,*,err=20) vhmat(2,:) read(50,*,err=20) vhmat(3,:) case('reduceh') read(50,*,err=20) reduceh case('hybrid') read(50,*,err=20) hybrid0 case('hybridc','hybmix') read(50,*,err=20) hybridc if ((hybridc < 0.d0).or.(hybridc > 1.d0)) then write(*,*) write(*,'("Error(readinput): invalid hybridc : ",G18.10)') hybridc write(*,*) stop end if case('ecvcut') read(50,*,err=20) ecvcut case('esccut') read(50,*,err=20) esccut case('nvbse') read(50,*,err=20) nvbse0 if (nvbse0 < 0) then write(*,*) write(*,'("Error(readinput): nvbse < 0 : ",I8)') nvbse0 write(*,*) stop end if case('ncbse') read(50,*,err=20) ncbse0 if (ncbse0 < 0) then write(*,*) write(*,'("Error(readinput): ncbse < 0 : ",I8)') ncbse0 write(*,*) stop end if case('istxbse') do i=1,maxxbse read(50,'(A)',err=20) str if (trim(str) == '') then if (i == 1) then write(*,*) write(*,'("Error(readinput): empty BSE extra valence state list")') write(*,*) stop end if nvxbse=i-1 goto 10 end if read(str,*,iostat=ios) istxbse(i) if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading BSE valence state list")') write(*,'("(blank line required after istxbse block)")') write(*,*) stop end if end do write(*,*) write(*,'("Error(readinput): BSE extra valence state list too long")') write(*,*) stop case('jstxbse') do i=1,maxxbse read(50,'(A)',err=20) str if (trim(str) == '') then if (i == 1) then write(*,*) write(*,'("Error(readinput): empty BSE extra conduction state list")') write(*,*) stop end if ncxbse=i-1 goto 10 end if read(str,*,iostat=ios) jstxbse(i) if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading BSE conduction state list")') write(*,'("(blank line required after jstxbse block)")') write(*,*) stop end if end do write(*,*) write(*,'("Error(readinput): BSE extra conduction state list too long")') write(*,*) stop case('bsefull') read(50,*,err=20) bsefull case('hxbse') read(50,*,err=20) hxbse case('hdbse') read(50,*,err=20) hdbse case('gmaxrf','gmaxrpa') read(50,*,err=20) gmaxrf if (gmaxrf < 0.d0) then write(*,*) write(*,'("Error(readinput): gmaxrf < 0 : ",G18.10)') gmaxrf write(*,*) stop end if case('emaxrf') read(50,*,err=20) emaxrf if (emaxrf < 0.d0) then write(*,*) write(*,'("Error(readinput): emaxrf < 0 : ",G18.10)') emaxrf write(*,*) stop end if case('fxctype') read(50,'(A)',err=20) str str=trim(str)//' 0 0' read(str,*,err=20) fxctype case('fxclrc') read(50,'(A)',err=20) str str=trim(str)//' 0.0' read(str,*,err=20) fxclrc(:) case('ntemp') read(50,*,err=20) ntemp if (ntemp < 1) then write(*,*) write(*,'("Error(readinput): ntemp < 1 : ",I8)') ntemp write(*,*) stop end if case('trimvg') read(50,*,err=20) trimvg case('rndstate','rndseed') read(50,*,err=20) rndstate(0) rndstate(0)=abs(rndstate(0)) case('rndatposc') read(50,*,err=20) rndatposc case('rndbfcmt') read(50,*,err=20) rndbfcmt case('rndavec') read(50,*,err=20) rndavec case('c_tb09') read(50,*,err=20) write(*,'("Info(readinput): variable ''c_tb09'' is no longer used")') case('lowq','highq','vhighq','uhighq') read(50,*,err=20) lv if (lv) then if (trim(block) == 'lowq') then rgkmax=6.5d0 gmaxvr=10.d0 lmaxapw=7 lmaxo=5 nxlo=2 lorbcnd=.true. radkpt=25.d0 autokpt=.true. vkloff(:)=0.5d0 nempty0=4.d0 epspot=1.d-5 epsengy=5.d-4 epsforce=1.d-2 epsstress=3.d-3 autolinengy=.true. gmaxrf=2.5d0 lradstp=6 else if (trim(block) == 'highq') then ! parameter set for high-quality calculation rgkmax=max(rgkmax,8.d0) gmaxvr=max(gmaxvr,16.d0) lmaxapw=max(lmaxapw,9) lmaxo=max(lmaxo,7) nrmtscf=max(nrmtscf,1.5d0) nxlo=max(nxlo,2) lorbcnd=.true. radkpt=max(radkpt,50.d0) autokpt=.true. vkloff(:)=0.d0 nempty0=max(nempty0,10.d0) epspot=min(epspot,1.d-7) epsengy=min(epsengy,1.d-5) epsforce=min(epsforce,5.d-4) epsstress=min(epsstress,1.d-3) autolinengy=.true. gmaxrf=max(gmaxrf,4.d0) else if (trim(block) == 'vhighq') then ! parameter set for very high-quality calculation rgkmax=max(rgkmax,9.d0) gmaxvr=max(gmaxvr,18.d0) lmaxapw=max(lmaxapw,12) lmaxo=max(lmaxo,8) nrmtscf=max(nrmtscf,2.d0) nxlo=max(nxlo,3) lorbcnd=.true. radkpt=max(radkpt,90.d0) autokpt=.true. vkloff(:)=0.d0 nempty0=max(nempty0,20.d0) epspot=min(epspot,1.d-7) epsengy=min(epsengy,1.d-6) epsforce=min(epsforce,2.d-4) epsstress=min(epsstress,5.d-4) autolinengy=.true. gmaxrf=max(gmaxrf,5.d0) else ! parameter set for ultra high-quality calculation rgkmax=max(rgkmax,10.d0) gmaxvr=max(gmaxvr,20.d0) lmaxapw=max(lmaxapw,14) lmaxo=max(lmaxo,9) nrmtscf=max(nrmtscf,4.d0) nxlo=max(nxlo,3) lorbcnd=.true. radkpt=max(radkpt,120.d0) autokpt=.true. vkloff(:)=0.d0 nempty0=max(nempty0,40.d0) epspot=min(epspot,1.d-7) epsengy=min(epsengy,1.d-6) epsforce=min(epsforce,1.d-4) epsstress=min(epsstress,2.d-4) autolinengy=.true. gmaxrf=max(gmaxrf,6.d0) end if if (mp_mpi) then write(*,*) write(*,'("Info(readinput): parameters set by ",A," option")') trim(block) write(*,'(" rgkmax : ",G18.10)') rgkmax write(*,'(" gmaxvr : ",G18.10)') gmaxvr write(*,'(" lmaxapw : ",I4)') lmaxapw write(*,'(" lmaxo : ",I4)') lmaxo write(*,'(" nrmtscf : ",G18.10)') nrmtscf write(*,'(" nxlo : ",I4)') nxlo write(*,'(" lorbcnd : ",L1)') lorbcnd write(*,'(" radkpt : ",G18.10)') radkpt write(*,'(" autokpt : ",L1)') autokpt write(*,'(" vkloff : ",3G18.10)') vkloff write(*,'(" nempty0 : ",G18.10)') nempty0 write(*,'(" epspot : ",G18.10)') epspot write(*,'(" epsengy : ",G18.10)') epsengy write(*,'(" epsforce : ",G18.10)') epsforce write(*,'(" epsstress : ",G18.10)') epsstress write(*,'(" autolinengy : ",L1)') autolinengy write(*,'(" gmaxrf : ",G18.10)') gmaxrf if (trim(block) == 'lowq') then write(*,'(" lradstp : ",I4)') lradstp end if end if end if case('hmaxvr') read(50,*,err=20) hmaxvr if (hmaxvr < 0.d0) then write(*,*) write(*,'("Error(readinput): hmaxvr < 0 : ",G18.10)') hmaxvr write(*,*) stop end if case('hkmax') read(50,*,err=20) hkmax if (hkmax <= 0.d0) then write(*,*) write(*,'("Error(readinput): hkmax <= 0 : ",G18.10)') hkmax write(*,*) stop end if case('lorbcnd') read(50,*,err=20) lorbcnd case('lorbordc') read(50,*,err=20) lorbordc if (lorbordc < 2) then write(*,*) write(*,'("Error(readinput): lorbordc < 2 : ",I8)') lorbordc write(*,*) stop end if if (lorbordc > maxlorbord) then write(*,*) write(*,'("Error(readinput): lorbordc too large : ",I8)') lorbordc write(*,'("Adjust maxlorbord in modmain and recompile code")') write(*,*) stop end if case('nrmtscf') read(50,'(A)',err=20) str read(str,*,err=20) nrmtscf read(str,*,iostat=ios) nrmtscf,dnrmtscf if (nrmtscf < 0.5d0) then write(*,*) write(*,'("Error(readinput): nrmtscf < 0.5 : ",G18.10)') nrmtscf write(*,*) stop end if case('lmaxdos') read(50,*,err=20) lmaxdos if (lmaxdos < 0) then write(*,*) write(*,'("Error(readinput): lmaxdos < 0 : ",I8)') lmaxdos write(*,*) stop end if case('epsdev') read(50,*,err=20) epsdev if (epsdev <= 0.d0) then write(*,*) write(*,'("Error(readinput): epsdev <= 0 : ",G18.10)') epsdev write(*,*) stop end if case('msmooth') read(50,*,err=20) write(*,'("Info(readinput): variable ''msmooth'' is no longer used")') write(*,'(" setting trimvg to .true. instead")') trimvg=.true. case('npmae') read(50,*,err=20) npmae0 case('wrtvars') read(50,*,err=20) wrtvars case('ftmtype') read(50,*,err=20) ftmtype case('tmomfix') write(*,*) write(*,'("Error(readinput): variable ''tmomfix'' is no longer used")') write(*,'(" use tm3fix instead")') write(*,*) stop case('tm3fix') read(50,*,err=20) ntmfix if (ntmfix <= 0) then write(*,*) write(*,'("Error(readinput): ntmfix <= 0 : ",I8)') ntmfix write(*,*) stop end if if (allocated(itmfix)) deallocate(itmfix) allocate(itmfix(7,ntmfix)) if (allocated(wkprfix)) deallocate(wkprfix) allocate(wkprfix(ntmfix)) do i=1,ntmfix read(50,*,err=20) is,ia,l if ((is <= 0).or.(ia <= 0).or.(l < 0)) then write(*,*) write(*,'("Error(readinput): invalid is, ia or l in tm3fix block : ",& &4I8)') is,ia,l write(*,*) stop end if itmfix(1,i)=is itmfix(2,i)=ia itmfix(3,i)=l ! read k, p, r, t for the 3-index tensor read(50,*,err=20) itmfix(4:7,i) ! read 3-index tensor component with conventional normalisation read(50,*,err=20) wkprfix(i) end do case('tauftm') read(50,*,err=20) tauftm if (tauftm < 0.d0) then write(*,*) write(*,'("Error(readinput): tauftm < 0 : ",G18.10)') tauftm write(*,*) stop end if case('ftmstep') read(50,*,err=20) write(*,'("Info(readinput): variable ''ftmstep'' is no longer used")') case('cmagz','forcecmag') read(50,*,err=20) cmagz case('rotavec') read(50,*,err=20) axang(:) case('tstime') read(50,*,err=20) tstime if (tstime < 0.d0) then write(*,*) write(*,'("Error(readinput): tstime <= 0 : ",G18.10)') tstime write(*,*) stop end if case('dtimes') read(50,*,err=20) dtimes if (dtimes <= 0.d0) then write(*,*) write(*,'("Error(readinput): dtimes <= 0 : ",G18.10)') dtimes write(*,*) stop end if case('pulse') read(50,*,err=20) npulse if (npulse < 1) then write(*,*) write(*,'("Error(readinput): npulse < 1 : ",I8)') npulse write(*,*) stop end if if (allocated(pulse)) deallocate(pulse) allocate(pulse(12,npulse)) do i=1,npulse read(50,'(A)',err=20) str str=trim(str)//' 1.0 0.0 0.0 0.0' read(str,*,err=20) pulse(:,i) end do case('ramp') read(50,*,err=20) nramp if (nramp < 1) then write(*,*) write(*,'("Error(readinput): nramp < 1 : ",I8)') nramp write(*,*) stop end if if (allocated(ramp)) deallocate(ramp) allocate(ramp(12,nramp)) do i=1,nramp read(50,'(A)',err=20) str str=trim(str)//' 1.0 0.0 0.0 0.0' read(str,*,err=20) ramp(:,i) end do case('step') read(50,*,err=20) nstep if (nstep < 1) then write(*,*) write(*,'("Error(readinput): nstep < 1 : ",I8)') nstep write(*,*) stop end if if (allocated(step)) deallocate(step) allocate(step(9,nstep)) do i=1,nstep read(50,'(A)',err=20) str str=trim(str)//' 1.0 0.0 0.0 0.0' read(str,*,err=20) step(:,i) end do case('ncgga') read(50,*,err=20) write(*,'("Info(readinput): variable ''ncgga'' is no longer used")') case('dncgga') read(50,*,err=20) dncgga if (dncgga < 0.d0) then write(*,*) write(*,'("Error(readinput): dncgga < 0 : ",G18.10)') dncgga write(*,*) stop end if case('ntswrite') read(50,'(A)',err=20) str str=trim(str)//' 1' read(str,*,err=20) ntswrite(:) case('nxoapwlo','nxapwlo') read(50,*,err=20) nxoapwlo if (nxoapwlo < 0) then write(*,*) write(*,'("Error(readinput): nxoapwlo < 0 : ",I8)') nxoapwlo write(*,*) stop end if case('nxlo') read(50,*,err=20) nxlo if (nxlo < 0) then write(*,*) write(*,'("Error(readinput): nxlo < 0 : ",I8)') nxlo write(*,*) stop end if case('tdrho1d') read(50,*,err=20) tdrho1d case('tdrho2d') read(50,*,err=20) tdrho2d case('tdrho3d') read(50,*,err=20) tdrho3d case('tdmag1d') read(50,*,err=20) tdmag1d case('tdmag2d') read(50,*,err=20) tdmag2d case('tdmag3d') read(50,*,err=20) tdmag3d case('tdjr1d','tdcd1d') read(50,*,err=20) tdjr1d case('tdjr2d','tdcd2d') read(50,*,err=20) tdjr2d case('tdjr3d','tdcd3d') read(50,*,err=20) tdjr3d case('tddos') read(50,*,err=20) tddos case('tdlsj') read(50,*,err=20) tdlsj case('tdjtk') read(50,*,err=20) tdjtk case('epseph') read(50,*,err=20) write(*,'("Info(readinput): variable ''epseph'' is no longer used")') case('rndevt0') read(50,*,err=20) rndevt0 case('sxcscf','ssxc','rstsf') read(50,'(A)',err=20) str read(str,*,err=20) sxcscf read(str,*,iostat=ios) sxcscf,dsxcscf case('tempk') read(50,*,err=20) tempk if (tempk <= 0.d0) then write(*,*) write(*,'("Error(readinput): tempk <= 0 : ",G18.10)') tempk write(*,*) stop end if ! set Fermi-Dirac smearing stype=3 ! set the smearing width swidth=kboltz*tempk case('avecu') read(50,*,err=20) avecu(:,1) read(50,*,err=20) avecu(:,2) read(50,*,err=20) avecu(:,3) case('scaleu') read(50,*,err=20) scu case('scaleu1') read(50,*,err=20) scu1 case('scaleu2') read(50,*,err=20) scu2 case('scaleu3') read(50,*,err=20) scu3 case('q0cut') read(50,*,err=20) q0cut if (q0cut < 0.d0) then write(*,*) write(*,'("Error(readinput): q0cut < 0 : ",G18.10)') q0cut write(*,*) stop end if case('rndbfcu') read(50,*,err=20) rndbfcu case('efielduc') read(50,*,err=20) efielduc case('tplotq0') read(50,*,err=20) tplotq0 case('trdvclr') read(50,*,err=20) trdvclr case('evtype') read(50,*,err=20) write(*,'("Info(readinput): variable ''evtype'' is no longer used")') case('wmaxgw') read(50,*,err=20) wmaxgw case('twdiag') read(50,*,err=20) twdiag case('tsediag') read(50,*,err=20) tsediag case('actype') read(50,*,err=20) actype case('npole') read(50,*,err=20) npole if (npole <= 0) then write(*,*) write(*,'("Error(readinput): npole <= 0 : ",I8)') npole write(*,*) stop end if case('nspade') read(50,*,err=20) nspade if (nspade <= 0) then write(*,*) write(*,'("Error(readinput): nspade <= 0 : ",I8)') nspade write(*,*) stop end if case('tfav0') read(50,*,err=20) tfav0 case('mrmtav') read(50,*,err=20) mrmtav case('rmtall') read(50,*,err=20) rmtall case('maxthd','omp_num_threads','OMP_NUM_THREADS') read(50,*,err=20) maxthd case('maxthd1') read(50,*,err=20) maxthd1 case('maxthdmkl') read(50,*,err=20) maxthdmkl case('maxlvl','omp_max_active_levels','OMP_MAX_ACTIVE_LEVELS') read(50,*,err=20) maxlvl if (maxlvl < 1) then write(*,*) write(*,'("Error(readinput): maxlvl < 1 : ",I8)') maxlvl write(*,*) stop end if case('stable') read(50,*,err=20) lv if (lv) then trimvg=.true. autolinengy=.true. mrmtav=1 lmaxapw=max(lmaxapw,10) gmaxvr=max(gmaxvr,24.d0) msmgmt=max(msmgmt,8) if (mp_mpi) then write(*,*) write(*,'("Info(readinput): parameters set by stable option")') write(*,'(" trimvg : ",L1)') trimvg write(*,'(" autolinengy : ",L1)') autolinengy write(*,'(" mrmtav : ",I4)') mrmtav write(*,'(" lmaxapw : ",I4)') lmaxapw write(*,'(" gmaxvr : ",G18.10)') gmaxvr write(*,'(" msmgmt : ",I4)') msmgmt end if end if case('metagga') read(50,*,err=20) lv if (lv) then lmaxi=max(lmaxi,2) gmaxvr=max(gmaxvr,16.d0) nrmtscf=max(nrmtscf,3.d0) msmgmt=max(msmgmt,8) epspot=1.d6 epsengy=min(epsengy,1.d-6) if (mp_mpi) then write(*,*) write(*,'("Info(readinput): parameters set by metagga option")') write(*,'(" lmaxi : ",I4)') lmaxi write(*,'(" gmaxvr : ",G18.10)') gmaxvr write(*,'(" nrmtscf : ",G18.10)') nrmtscf write(*,'(" msmgmt : ",I4)') msmgmt write(*,'(" epspot : ",G18.10)') epspot write(*,'(" epsengy : ",G18.10)') epsengy end if end if case('t0tdlr') read(50,*,err=20) write(*,'("Info(readinput): variable ''t0tdlr'' is no longer used")') case('tdphi') read(50,*,err=20) tdphi ! convert phase from degrees to radians tdphi=tdphi*pi/180.d0 case('thetamld') read(50,*,err=20) thetamld ! convert MLD angle from degrees to radians thetamld=thetamld*pi/180.d0 case('ntsbackup') read(50,*,err=20) ntsbackup case('seedname') read(50,*,err=20) seedname seedname=adjustl(seedname) case('num_wann') read(50,*,err=20) num_wann case('idxw90','wann_bands') read(50,'(A)',err=20) str num_bands=1024 if (allocated(idxw90)) deallocate(idxw90) allocate(idxw90(num_bands)) call numlist(str,num_bands,idxw90) case('num_iter') read(50,*,err=20) num_iter case('trial_step') read(50,*,err=20) trial_step case('xlwin','wannierExtra') if (allocated(xlwin)) deallocate(xlwin) allocate(xlwin(0)) nxlwin=0 do read(50,'(A)',err=20) str if (trim(str) == '') goto 10 nxlwin=nxlwin+1 xlwin=[xlwin,str] end do case('tbdip') read(50,*,err=20) tbdip case('tjr','tcden') read(50,*,err=20) tjr case('tauefm') read(50,*,err=20) tauefm case('epsefm') read(50,*,err=20) epsefm case('ehfb') read(50,*,err=20) ehfb case('t0gclq0') read(50,*,err=20) t0gclq0 case('tafindt') read(50,*,err=20) tafindt case('afindscf') read(50,*,err=20) write(*,'("Info(readinput): variable ''afindscf'' is no longer used")') case('afindpm') read(50,*,err=20) afindpm(:) case('nkspolar') read(50,*,err=20) nkspolar if (nkspolar < 1) then write(*,*) write(*,'("Error(readinput): nkspolar < 1 : ",I8)') nkspolar write(*,*) stop end if case('ntsforce') read(50,*,err=20) ntsforce if (ntsforce < 1) then write(*,*) write(*,'("Error(readinput): ntsforce < 1 : ",I8)') ntsforce write(*,*) stop end if case('wphcut') read(50,*,err=20) wphcut if (wphcut <= 0.d0) then write(*,*) write(*,'("Error(readinput): wphcut <= 0 : ",G18.10)') wphcut write(*,*) stop end if case('ephscf') read(50,*,err=20) ephscf(:) case('anomalous') read(50,*,err=20) anomalous case('tephde') read(50,*,err=20) tephde case('bdiag') read(50,*,err=20) bdiag case('ecutb') read(50,*,err=20) ecutb if (ecutb <= 0.d0) then write(*,*) write(*,'("Error(readinput): ecutb <= 0 : ",G18.10)') ecutb write(*,*) stop end if case('ediag') read(50,*,err=20) ediag case('pwxpsn') read(50,*,err=20) pwxpsn if (pwxpsn < 1) then write(*,*) write(*,'("Error(readinput): pwxpsn < 1 : ",I8)') pwxpsn write(*,*) stop end if case('ramdisk') read(50,*,err=20) ramdisk case('wrtdsk') read(50,*,err=20) wrtdsk case('epsdmat') read(50,*,err=20) epsdmat case('tm3old') read(50,*,err=20) tm3old case('batch') read(50,*,err=20) batch case('tafspt') read(50,*,err=20) tafspt case('trdatdv') read(50,*,err=20) trdatdv case('atdfc') read(50,*,err=20) atdfc if (atdfc < 0.d0) then write(*,*) write(*,'("Error(readinput): atdfc < 0 : ",G18.10)') atdfc write(*,*) stop end if case('maxforce') read(50,*,err=20) maxforce case('msmgmt','msmg2mt') read(50,*,err=20) msmgmt case('maxitksi') read(50,*,err=20) maxitksi if (maxitksi < 1) then write(*,*) write(*,'("Error(readinput): maxitksi < 1 : ",I8)') maxitksi write(*,*) stop end if case('tauksi') read(50,*,err=20) tauksi if (tauksi < 0.d0) then write(*,*) write(*,'("Error(readinput): tauksi < 0 : ",G18.10)') tauksi write(*,*) stop end if case('epsdres') read(50,*,err=20) epsdres case('ntsorth') read(50,*,err=20) ntsorth case('deltabf') read(50,*,err=20) deltabf if (deltabf <= 0.d0) then write(*,*) write(*,'("Error(readinput): deltabf <= 0 : ",G18.10)') deltabf write(*,*) stop end if case('jtconst0') read(50,*,err=20) jtconst0 case('trmt0') read(50,*,err=20) trmt0 case('') goto 10 case default write(*,*) write(*,'("Error(readinput): invalid block name : ",A)') trim(block) write(*,*) stop end select goto 10 20 continue write(*,*) write(*,'("Error(readinput): error reading from elk.in")') write(*,'("Problem occurred in ''",A,"'' block")') trim(block) write(*,'("Check input convention in manual")') write(*,*) stop 30 continue close(50) ! scale the speed of light solsc=sol*solscf ! scale and rotate the lattice vectors (not referenced again in code) avec(:,:)=sc*avec(:,:) avec(:,1)=sc1*avec(:,1) avec(:,2)=sc2*avec(:,2) avec(:,3)=sc3*avec(:,3) avec(1,:)=scx*avec(1,:) avec(2,:)=scy*avec(2,:) avec(3,:)=scz*avec(3,:) t1=axang(4) if (t1 /= 0.d0) then t1=t1*pi/180.d0 call axangrot(axang(:),t1,rot) do i=1,3 v(:)=avec(:,i) call r3mv(rot,v,avec(:,i)) end do end if ! randomise lattice vectors if required if (rndavec > 0.d0) then do i=1,3 do j=1,3 t1=rndavec*(randomu()-0.5d0) avec(i,j)=avec(i,j)+t1 end do end do end if ! case of isolated molecule if (molecule) then ! convert atomic positions from Cartesian to lattice coordinates call r3minv(avec,ainv) do is=1,nspecies do ia=1,natoms(is) call r3mv(ainv,atposl(:,ia,is),v) atposl(:,ia,is)=v(:) end do end do end if ! randomise atomic positions if required if (rndatposc > 0.d0) then call r3minv(avec,ainv) do is=1,nspecies do ia=1,natoms(is) call r3mv(avec,atposl(:,ia,is),v) do i=1,3 t1=rndatposc*(randomu()-0.5d0) v(i)=v(i)+t1 end do call r3mv(ainv,v,atposl(:,ia,is)) end do end do end if ! randomise the muffin-tin magnetic fields if required if (rndbfcmt > 0.d0) then do is=1,nspecies do ia=1,natoms(is) do i=1,3 t1=rndbfcmt*(randomu()-0.5d0) bfcmt0(i,ia,is)=bfcmt0(i,ia,is)+t1 end do end do end do end if ! set fxctype to fxctype if required if (fxctype(1) == -1) fxctype(:)=xctype(:) ! find primitive cell if required if (primcell) call findprimcell ! scale the ultracell vectors if required avecu(:,1)=scu1*avecu(:,1) avecu(:,2)=scu2*avecu(:,2) avecu(:,3)=scu3*avecu(:,3) avecu(:,:)=scu*avecu(:,:) ! read in atomic species data call readspecies return end subroutine !EOC elk-9.2.12/src/PaxHeaders/numlist.f900000644000000000000000000000013014536061313014240 xustar0029 mtime=1702388427.70150181 30 atime=1702388426.524503553 29 ctime=1702388427.70150181 elk-9.2.12/src/numlist.f900000644002504400250440000000156414536061313016772 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Manh Duc Le, 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin, ! Lars Nordstrom and J. K. Dewhurst. This file is distributed under the terms of ! the GNU General Public License. See the file COPYING for license details. subroutine numlist(str,n,list) implicit none ! arguments character(256), intent(in) :: str integer, intent(inout) :: n integer, intent(out) :: list(n) ! local variables integer i0,i1,i,j,m,ios ! automatic arrays integer l(n) i=0 i0=1 do m=index(str(i0:),'-') if (m == 0) then i1=256 else i1=i0+m-2 end if l(:)=0 read(str(i0:i1),*,iostat=ios) l if (i > 0) then do j=list(i)+1,l(1)-1 if (i == n) goto 10 i=i+1 list(i)=j end do end if do j=1,n if (l(j) == 0) exit if (i == n) goto 10 i=i+1 list(i)=l(j) end do if (m == 0) exit i0=i0+m end do 10 continue n=i end subroutine elk-9.2.12/src/PaxHeaders/hermite.f900000644000000000000000000000013114536061313014203 xustar0030 mtime=1702388427.702501809 29 atime=1702388426.52650355 30 ctime=1702388427.702501809 elk-9.2.12/src/hermite.f900000644002504400250440000000266114536061313016733 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: hermite ! !INTERFACE: real(8) function hermite(n,x) ! !INPUT/OUTPUT PARAMETERS: ! n : order of Hermite polynomial (in,integer) ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the $n$th Hermite polynomial. The recurrence relation ! $$ H_i(x)=2xH_{i-1}(x)-2nH_{i-2}(x), $$ ! with $H_0=1$ and $H_1=2x$, is used. This procedure is numerically stable ! and accurate to near machine precision for $n\le 20$. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x ! local variables integer i real(8) h1,h2,ht ! fast return if possible if (n == 0) then hermite=1.d0 return else if (n == 1) then hermite=2.d0*x return else if (n == 2) then hermite=4.d0*x**2-2.d0 return end if if (n < 0) then write(*,*) write(*,'("Error(hermite): n < 0 : ",I8)') n write(*,*) stop end if if (n > 20) then write(*,*) write(*,'("Error(hermite): n out of range : ",I8)') n write(*,*) stop end if if (abs(x) > 1.d15) then write(*,*) write(*,'("Error(hermite): x out of range : ",G18.10)') x write(*,*) stop end if h1=2.d0*x h2=1.d0 do i=2,n ht=2.d0*(x*h1-dble(i-1)*h2) h2=h1 h1=ht end do hermite=h1 end function !EOC elk-9.2.12/src/PaxHeaders/genfspecies.f900000644000000000000000000000013214536061313015042 xustar0030 mtime=1702388427.703501808 30 atime=1702388426.527503549 30 ctime=1702388427.703501808 elk-9.2.12/src/genfspecies.f900000644002504400250440000000644214536061313017572 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genfspecies(zn,symb) use modmain use modmpi implicit none ! arguments real(8), intent(in) :: zn character(*), intent(in) :: symb ! local variables integer, parameter :: nit=4 integer nst,ist,jst integer nmax,in,il,ik integer nrm,nr,ir,it integer n(maxstsp),l(maxstsp),k(maxstsp) integer idx(maxstsp),iv(maxstsp) real(8) rm,rmin,rmax real(8) mass,t1,t2,t3 real(8) occ(maxstsp),eval(maxstsp),rv(maxstsp) character(64) name ! allocatable arrays real(8), allocatable :: r(:),rho(:),vr(:),rwf(:,:,:) ! external functions real(8), external :: massnucl name='Fractional species' ! set up the initial occupation numbers occ(:)=0.d0 t1=abs(zn) nmax=1 ist=0 do in=1,maxstsp do il=0,in-1 do ik=max(il,1),il+1 t2=dble(2*ik) t2=min(t2,t1) ist=ist+1 n(ist)=in l(ist)=il k(ist)=ik occ(ist)=t2 if (t2 > epsocc) nmax=in t1=t1-t2 if (ist == maxstsp) then if (t1 > epsocc) then write(*,*) write(*,'("Error(genfspecies): too many states for fractional & &species ",A)') trim(symb) write(*,*) stop else goto 10 end if end if end do end do end do 10 continue ! minimum radius rmin=2.d-6/sqrt(abs(zn)) ! initial maximum radius rmax=100.d0 ! initial muffin-tin radius rm=2.d0 ! number of points to muffin-tin radius nrm=100*(nmax+1) ! iterate the solution but not to self-consistency do it=1,nit ! number of points to effective infinity t1=log(rm/rmin) t2=log(rmax/rmin) t3=dble(nrm)*t2/t1 nr=int(t3) allocate(r(nr),rho(nr),vr(nr),rwf(nr,2,maxstsp)) ! generate logarithmic radial mesh t2=t1/dble(nrm-1) do ir=1,nr r(ir)=rmin*exp(dble(ir-1)*t2) end do ! solve the Kohn-Sham-Dirac equation for the atom call atom(sol,.true.,zn,maxstsp,n,l,k,occ,3,0,nr,r,eval,rho,vr,rwf) ! check for spurious eigenvalues do ist=2,maxstsp if (eval(ist) < eval(1)) eval(ist)=1.d6 end do ! recompute the effective infinity do ir=nr,1,-1 if (rho(ir) > 1.d-20) then rmax=1.75d0*r(ir) exit end if end do ! estimate the muffin-tin radius do ir=nr,1,-1 if (rho(ir) > 2.d-2) then rm=r(ir) exit end if end do if (rm < 1.d0) rm=1.d0 if (rm > 3.2d0) rm=3.2d0 ! sort the eigenvalues call sortidx(maxstsp,eval,idx) ! recompute the occupation numbers occ(:)=0.d0 t1=abs(zn) do ist=1,maxstsp jst=idx(ist) ik=k(jst) t2=dble(2*ik) t2=min(t2,t1) occ(jst)=t2 t1=t1-t2 end do deallocate(r,rho,vr,rwf) end do ! rearrange the arrays iv(:)=n(:) n(:)=iv(idx(:)) iv(:)=l(:) l(:)=iv(idx(:)) iv(:)=k(:) k(:)=iv(idx(:)) rv(:)=occ(:) occ(:)=rv(idx(:)) rv(:)=eval(:) eval(:)=rv(idx(:)) ! find the number of occupied states nst=0 do ist=1,maxstsp if (occ(ist) < epsocc) then nst=ist exit end if end do ! estimate the nuclear mass mass=massnucl(zn) ! convert from 'atomic mass units' to atomic units mass=mass*amu ! write the species file call writespecies(symb,name,zn,mass,rmin,rm,rmax,nrm,nst,n,l,k,occ,eval) if (mp_mpi) then write(*,'("Info(genfspecies): wrote fractional species file ",A,".in")') & trim(symb) end if end subroutine elk-9.2.12/src/PaxHeaders/atpstep.f900000644000000000000000000000013214536061313014227 xustar0030 mtime=1702388427.705501805 30 atime=1702388426.529503546 30 ctime=1702388427.705501805 elk-9.2.12/src/atpstep.f900000644002504400250440000000352314536061313016754 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: atpstep ! !INTERFACE: subroutine atpstep ! !USES: use modmain use modmpi ! !DESCRIPTION: ! Makes a geometry optimisation step and updates the current atomic positions ! according to the force on each atom. If ${\bf r}_{ij}^m$ is the position and ! ${\bf F}_{ij}^m$ is the force acting on it for atom $j$ of species $i$ and ! after time step $m$, then the new position is calculated by ! $$ {\bf r}_{ij}^{m+1}={\bf r}_{ij}^m+\tau_{ij}^m\left({\bf F}_{ij}^m ! +{\bf F}_{ij}^{m-1}\right), $$ ! where $\tau_{ij}^m$ is a parameter governing the size of the displacement. ! If ${\bf F}_{ij}^m\cdot{\bf F}_{ij}^{m-1}>0$ then $\tau_{ij}^m$ is ! increased, otherwise it is decreased. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! local variables integer is,ia,ias,n real(8) t1 do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! compute the dot-product between the current and previous total force t1=dot_product(forcetot(1:3,ias),forcetotp(1:3,ias)) ! if the force is in the same direction then increase step size parameter if (t1 > 0.d0) then tauatp(ias)=tauatp(ias)+tau0atp else tauatp(ias)=tau0atp end if ! make atomic position step atposc(1:3,ia,is)=atposc(1:3,ia,is)+tauatp(ias)*(forcetot(1:3,ias) & +forcetotp(1:3,ias)) end do end do ! each MPI process should have identical atomic positions n=3*maxatoms*maxspecies call mpi_bcast(atposc,n,mpi_double_precision,0,mpicom,ierror) do is=1,nspecies do ia=1,natoms(is) ! compute the lattice coordinates of the atomic positions call r3mv(ainv,atposc(:,ia,is),atposl(:,ia,is)) end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/dmatls.f900000644000000000000000000000013214536061313014033 xustar0030 mtime=1702388427.706501803 30 atime=1702388426.530503544 30 ctime=1702388427.706501803 elk-9.2.12/src/dmatls.f900000644002504400250440000000162114536061313016555 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dmatls(dmat,xl,xs) use modmain implicit none ! arguments complex(8), intent(in) :: dmat(lmmaxo,nspinor,lmmaxo,nspinor) real(8), intent(out) :: xl(3),xs(3) ! local variables integer ispn,lm ! automatic arrays complex(8) zlflm(lmmaxo,3) ! compute tr(LD) xl(:)=0.d0 do ispn=1,nspinor do lm=1,lmmaxo call lopzflm(lmaxo,dmat(:,ispn,lm,ispn),lmmaxo,zlflm) xl(:)=xl(:)+dble(zlflm(lm,:)) end do end do ! compute tr(sigma D) xs(:)=0.d0 if (spinpol) then do lm=1,lmmaxo xs(1)=xs(1)+dble(dmat(lm,2,lm,1)+dmat(lm,1,lm,2)) xs(2)=xs(2)+dble(-zi*dmat(lm,2,lm,1)+zi*dmat(lm,1,lm,2)) xs(3)=xs(3)+dble(dmat(lm,1,lm,1)-dmat(lm,2,lm,2)) end do ! S = 1/2 sigma xs(:)=0.5d0*xs(:) end if end subroutine elk-9.2.12/src/PaxHeaders/writeengy.f900000644000000000000000000000013214536061313014564 xustar0030 mtime=1702388427.707501801 30 atime=1702388426.532503541 30 ctime=1702388427.707501801 elk-9.2.12/src/writeengy.f900000644002504400250440000000305014536061313017304 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine writeengy(fnum) use modmain use moddftu implicit none ! arguments integer, intent(in) :: fnum write(fnum,*) write(fnum,'("Energies :")') write(fnum,'(" Fermi",T30,": ",G22.12)') efermi write(fnum,'(" sum of eigenvalues",T30,": ",G22.12)') evalsum write(fnum,'(" electron kinetic",T30,": ",G22.12)') engykn write(fnum,'(" core electron kinetic",T30,": ",G22.12)') engykncr write(fnum,'(" Coulomb",T30,": ",G22.12)') engycl write(fnum,'(" Coulomb potential",T30,": ",G22.12)') engyvcl write(fnum,'(" nuclear-nuclear",T30,": ",G22.12)') engynn write(fnum,'(" electron-nuclear",T30,": ",G22.12)') engyen write(fnum,'(" Hartree",T30,": ",G22.12)') engyhar write(fnum,'(" Madelung",T30,": ",G22.12)') engymad write(fnum,'(" xc potential",T30,": ",G22.12)') engyvxc if (spinpol) then write(fnum,'(" xc effective B-field",T30,": ",G22.12)') engybxc write(fnum,'(" external B-field",T30,": ",G22.12)') engybext end if write(fnum,'(" exchange",T30,": ",G22.12)') engyx write(fnum,'(" correlation",T30,": ",G22.12)') engyc if (dftu /= 0) then write(fnum,'(" DFT+U",T30,": ",G22.12)') engydu end if if (stype == 3) then write(fnum,'(" electron entropic",T30,": ",G22.12)') engyts end if write(fnum,'(" total energy",T30,": ",G22.12)') engytot if (spinpol) then write(fnum,'(" (external B-field energy excluded from total)")') end if flush(fnum) end subroutine elk-9.2.12/src/PaxHeaders/writechg.f900000644000000000000000000000012514536061313014365 xustar0028 mtime=1702388427.7085018 29 atime=1702388426.53350354 28 ctime=1702388427.7085018 elk-9.2.12/src/writechg.f900000644002504400250440000000225114536061313017105 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine writechg(fnum) use modmain implicit none ! arguments integer, intent(in) :: fnum ! local variables integer is,ia,ias ! write charges write(fnum,*) write(fnum,'("Charges :")') write(fnum,'(" core",T30,": ",G18.10)') chgcrtot write(fnum,'(" valence",T30,": ",G18.10)') chgval write(fnum,'(" interstitial",T30,": ",G18.10)') chgir write(fnum,'(" muffin-tins (core leakage)")') do is=1,nspecies write(fnum,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) write(fnum,'(" atom ",I4,T30,": ",G18.10," (",G18.10,")")') ia, & chgmt(ias),chgcrlk(ias) end do end do write(fnum,'(" total in muffin-tins",T30,": ",G18.10)') chgmttot if (chgexs /= 0.d0) then write(fnum,'(" excess",T30,": ",G18.10)') chgexs end if write(fnum,'(" total calculated charge",T30,": ",G18.10)') chgcalc write(fnum,'(" total charge",T30,": ",G18.10)') chgtot write(fnum,'(" error",T30,": ",G18.10)') abs(chgtot-chgcalc) flush(fnum) end subroutine elk-9.2.12/src/PaxHeaders/rbsht.f900000644000000000000000000000013214536061313013671 xustar0030 mtime=1702388427.710501797 30 atime=1702388426.535503537 30 ctime=1702388427.710501797 elk-9.2.12/src/rbsht.f900000644002504400250440000000127714536061313016422 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rbsht(nr,nri,rfmt1,rfmt2) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: rfmt1(*) real(8), intent(out) :: rfmt2(*) ! local variables integer i ! transform the inner part of the muffin-tin call dgemm('N','N',lmmaxi,nri,lmmaxi,1.d0,rbshti,lmmaxi,rfmt1,lmmaxi,0.d0, & rfmt2,lmmaxi) ! transform the outer part of the muffin-tin i=lmmaxi*nri+1 call dgemm('N','N',lmmaxo,nr-nri,lmmaxo,1.d0,rbshto,lmmaxo,rfmt1(i),lmmaxo, & 0.d0,rfmt2(i),lmmaxo) end subroutine elk-9.2.12/src/PaxHeaders/rfsht.f900000644000000000000000000000013214536061313013675 xustar0030 mtime=1702388427.711501796 30 atime=1702388426.536503535 30 ctime=1702388427.711501796 elk-9.2.12/src/rfsht.f900000644002504400250440000000127714536061313016426 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rfsht(nr,nri,rfmt1,rfmt2) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: rfmt1(*) real(8), intent(out) :: rfmt2(*) ! local variables integer i ! transform the inner part of the muffin-tin call dgemm('N','N',lmmaxi,nri,lmmaxi,1.d0,rfshti,lmmaxi,rfmt1,lmmaxi,0.d0, & rfmt2,lmmaxi) ! transform the outer part of the muffin-tin i=lmmaxi*nri+1 call dgemm('N','N',lmmaxo,nr-nri,lmmaxo,1.d0,rfshto,lmmaxo,rfmt1(i),lmmaxo, & 0.d0,rfmt2(i),lmmaxo) end subroutine elk-9.2.12/src/PaxHeaders/genlofr.f900000644000000000000000000000013214536061313014203 xustar0030 mtime=1702388427.712501794 30 atime=1702388426.537503534 30 ctime=1702388427.712501794 elk-9.2.12/src/genlofr.f900000644002504400250440000001113314536061313016724 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genlofr ! !INTERFACE: subroutine genlofr ! !USES: use modmain ! !DESCRIPTION: ! Generates the local-orbital radial functions. This is done by integrating ! the scalar relativistic Schr\"{o}dinger equation (or its energy deriatives) ! at the current linearisation energies using the spherical part of the ! Kohn-Sham potential. For each local-orbital, a linear combination of ! {\tt lorbord} radial functions is constructed such that its radial ! derivatives up to order ${\tt lorbord}-1$ are zero at the muffin-tin radius. ! This function is normalised and the radial Hamiltonian applied to it. The ! results are stored in the global array {\tt lofr}. ! ! !REVISION HISTORY: ! Created March 2003 (JKD) ! Copied to equivalent atoms, February 2010 (A. Kozhevnikov and JKD) !EOP !BOC implicit none ! local variables integer is,ia,ja,ias,jas integer nr,nri,iro,ir,i integer i0,i1,nn,l,info integer ilo,jlo,io,jo real(8) e,t1 ! automatic arrays logical done(natmmax) integer ipiv(nplorb) real(8) vr(nrmtmax),fr(nrmtmax) real(8) p0(nrmtmax,lorbordmax),p1(nrmtmax) real(8) q0(nrmtmax),q1(nrmtmax),ep0(nrmtmax,lorbordmax) real(8) p0s(nrmtmax,nlomax),ep0s(nrmtmax,nlomax) real(8) xa(nplorb),ya(nplorb) real(8) a(nplorb,nplorb),b(nplorb) ! external functions real(8), external :: splint,polynm do is=1,nspecies nr=nrmt(is) nri=nrmti(is) iro=nri+1 done(:)=.false. do ia=1,natoms(is) if (done(ia)) cycle ias=idxas(ia,is) ! use spherical part of potential i1=lmmaxi*(nri-1)+1 vr(1:nri)=vsmt(1:i1:lmmaxi,ias)*y00 i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 vr(iro:nr)=vsmt(i0:i1:lmmaxo,ias)*y00 do ilo=1,nlorb(is) l=lorbl(ilo,is) do jo=1,lorbord(ilo,is) ! linearisation energy accounting for energy derivative e=lorbe(jo,ilo,ias)+dble(lorbdm(jo,ilo,is))*deapwlo ! integrate the radial Schrodinger equation call rschrodint(solsc,l,e,nr,rlmt(:,1,is),vr,nn,p0(:,jo),p1,q0,q1) ep0(1:nr,jo)=e*p0(1:nr,jo) ! normalise radial functions fr(1:nr)=p0(1:nr,jo)**2 t1=splint(nr,rlmt(:,1,is),fr) t1=1.d0/sqrt(abs(t1)) p0(1:nr,jo)=t1*p0(1:nr,jo) ep0(1:nr,jo)=t1*ep0(1:nr,jo) ! set up the matrix of radial derivatives do i=1,nplorb ir=nr-nplorb+i xa(i)=rlmt(ir,1,is) ya(i)=p0(ir,jo)*rlmt(ir,-1,is) end do do io=1,lorbord(ilo,is) a(io,jo)=polynm(io-1,nplorb,xa,ya,rmt(is)) end do end do ! set up the target vector b(:)=0.d0 b(lorbord(ilo,is))=1.d0 call dgesv(lorbord(ilo,is),1,a,nplorb,ipiv,b,nplorb,info) if (info /= 0) goto 10 ! generate linear superposition of radial functions p0s(:,ilo)=0.d0 ep0s(:,ilo)=0.d0 do io=1,lorbord(ilo,is) t1=b(io) p0s(1:nr,ilo)=p0s(1:nr,ilo)+t1*p0(1:nr,io) ep0s(1:nr,ilo)=ep0s(1:nr,ilo)+t1*ep0(1:nr,io) end do ! normalise radial functions fr(1:nr)=p0s(1:nr,ilo)**2 t1=splint(nr,rlmt(:,1,is),fr) t1=1.d0/sqrt(abs(t1)) p0s(1:nr,ilo)=t1*p0s(1:nr,ilo) ep0s(1:nr,ilo)=t1*ep0s(1:nr,ilo) ! subtract linear combination of previous local-orbitals with same l do jlo=1,ilo-1 if (lorbl(jlo,is) == l) then fr(1:nr)=p0s(1:nr,ilo)*p0s(1:nr,jlo) t1=-splint(nr,rlmt(:,1,is),fr) p0s(1:nr,ilo)=p0s(1:nr,ilo)+t1*p0s(1:nr,jlo) ep0s(1:nr,ilo)=ep0s(1:nr,ilo)+t1*ep0s(1:nr,jlo) end if end do ! normalise radial functions again fr(1:nr)=p0s(1:nr,ilo)**2 t1=splint(nr,rlmt(:,1,is),fr) t1=abs(t1) if (t1 < 1.d-25) goto 10 t1=1.d0/sqrt(t1) p0s(1:nr,ilo)=t1*p0s(1:nr,ilo) ep0s(1:nr,ilo)=t1*ep0s(1:nr,ilo) ! divide by r and store in global array do ir=1,nr t1=rlmt(ir,-1,is) lofr(ir,1,ilo,ias)=t1*p0s(ir,ilo) lofr(ir,2,ilo,ias)=t1*ep0s(ir,ilo) end do end do done(ia)=.true. ! copy to equivalent atoms do ja=1,natoms(is) if ((.not.done(ja)).and.(eqatoms(ia,ja,is))) then jas=idxas(ja,is) do ilo=1,nlorb(is) lofr(1:nr,1:2,ilo,jas)=lofr(1:nr,1:2,ilo,ias) end do done(ja)=.true. end if end do ! end loop over atoms and species end do end do return 10 continue write(*,*) write(*,'("Error(genlofr): degenerate local-orbital radial functions")') write(*,'(" for species ",I4)') is write(*,'(" atom ",I4)') ia write(*,'(" and local-orbital ",I4)') ilo write(*,*) stop end subroutine !EOC elk-9.2.12/src/PaxHeaders/rotrfmt.f900000644000000000000000000000013214536061313014244 xustar0030 mtime=1702388427.714501791 30 atime=1702388426.539503531 30 ctime=1702388427.714501791 elk-9.2.12/src/rotrfmt.f900000644002504400250440000001442614536061313016775 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rotrfmt(rot,nr,nri,rfmt1,rfmt2) use modmain implicit none ! arguments real(8), intent(in) :: rot(3,3) integer, intent(in) :: nr,nri real(8), intent(in) :: rfmt1(*) real(8), intent(out) :: rfmt2(*) ! local variables integer i ! inner part of muffin-tin call rotrflm(rot,lmaxi,nri,lmmaxi,rfmt1,rfmt2) ! outer part of muffin-tin i=lmmaxi*nri+1 call rotrflm(rot,lmaxo,nr-nri,lmmaxo,rfmt1(i),rfmt2(i)) return contains !BOP ! !ROUTINE: rotrflm ! !INTERFACE: subroutine rotrflm(rot,lmax,n,ld,rflm1,rflm2) ! !INPUT/OUTPUT PARAMETERS: ! rot : rotation matrix (in,real(3,3)) ! lmax : maximum angular momentum (in,integer) ! n : number of functions to rotate (in,integer) ! ld : leading dimension (in,integer) ! rflm1 : coefficients of the real spherical harmonic expansion for each ! function (in,real(ld,n)) ! rflm2 : coefficients of rotated functions (out,complex(ld,n)) ! !DESCRIPTION: ! Rotates a set of real functions ! $$ f_i({\bf r})=\sum_{lm}f_{lm}^iR_{lm}(\hat{\bf r}) $$ ! for all $i$, given the coefficients $f_{lm}^i$ and a rotation matrix $R$. ! This is done by first the computing the Euler angles $(\alpha,\beta,\gamma)$ ! of $R^{-1}$ (see routine {\tt roteuler}) and then applying the spherical ! harmonic rotation matrix generated by the routine {\tt rlmrot}. ! ! !REVISION HISTORY: ! Created December 2008 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rot(3,3) integer, intent(in) :: lmax,n,ld real(8), intent(in) :: rflm1(ld,*) real(8), intent(out) :: rflm2(ld,*) ! local variables integer l,lm,nm,p real(8) det,rotp(3,3) real(8) ang(3),angi(3) ! automatic arrays real(8) d(ld,ld) if (lmax < 0) then write(*,*) write(*,'("Error(rotrflm): lmax < 0 : ",I8)') lmax write(*,*) stop end if if (n == 0) return if (n < 0) then write(*,*) write(*,'("Error(rotrflm): n < 0 : ",I8)') n write(*,*) stop end if ! find the determinant det=rot(1,1)*(rot(2,2)*rot(3,3)-rot(3,2)*rot(2,3)) & +rot(2,1)*(rot(3,2)*rot(1,3)-rot(1,2)*rot(3,3)) & +rot(3,1)*(rot(1,2)*rot(2,3)-rot(2,2)*rot(1,3)) ! make the rotation proper p=1 if (det < 0.d0) p=-1 rotp(:,:)=dble(p)*rot(:,:) ! compute the Euler angles of the rotation matrix call roteuler(rotp,ang) ! inverse rotation: the function is to be rotated, not the spherical harmonics angi(1)=-ang(3) angi(2)=-ang(2) angi(3)=-ang(1) ! determine the rotation matrix for real spherical harmonics call rlmrot(p,angi,lmax,ld,d) ! apply rotation matrix do l=0,lmax nm=2*l+1 lm=l**2+1 call dgemm('N','N',nm,n,nm,1.d0,d(lm,lm),ld,rflm1(lm,1),ld,0.d0,rflm2(lm,1), & ld) end do end subroutine !EOC !BOP ! !ROUTINE: rlmrot ! !INTERFACE: subroutine rlmrot(p,ang,lmax,ld,d) ! !INPUT/OUTPUT PARAMETERS: ! p : if p=-1 then the rotation matrix is improper (in,integer) ! ang : Euler angles; alpha, beta, gamma (in,real(3)) ! lmax : maximum angular momentum (in,integer) ! ld : leading dimension (in,integer) ! d : real spherical harmonic rotation matrix (out,real(ld,*)) ! !DESCRIPTION: ! Returns the rotation matrix in the basis of real spherical harmonics given ! the three Euler angles, $(\alpha,\beta,\gamma)$, and the parity, $p$, of the ! rotation. The matrix is determined using the formula of V. V. Nechaev, ! [{\it J. Struct. Chem.} {\bf 35}, 115 (1994)], suitably modified for our ! definition of the real spherical harmonics ($m_1>0$, $m_2>0$): ! \begin{align*} ! &\Delta^l_{00}=d^l_{00}, \\ ! &\Delta^l_{m_10}=\sqrt{2}\,(-1)^{m_1}d^l_{0m_1}\cos(m_1\alpha), \\ ! &\Delta^l_{0m_2}=\sqrt{2}\,(-1)^{m_2}d^l_{m_20}\cos(m_2\gamma), \\ ! &\Delta^l_{-m_10}=-\sqrt{2}\,d^l_{0m_1}\sin(m_1\alpha), \\ ! &\Delta^l_{0-m_2}=\sqrt{2}\,d^l_{m_20}\sin(m_2\gamma), \\ ! &\Delta^l_{m_1m_2}=(-1)^{m_1}(-1)^{m_2}\{\cos(m_1\alpha)\cos(m_2\gamma) ! [d_A+d_B]-\sin(m_1\alpha)\sin(m_2\gamma)[d_A-d_B]\}, \\ ! &\Delta^l_{m_1-m_2}=(-1)^{m_1}\{\sin(m_1\alpha)\cos(m_2\gamma) ! [d_A-d_B]+\cos(m_1\alpha)\sin(m_2\gamma)[d_A+d_B]\}, \\ ! &\Delta^l_{-m_1m_2}=-(-1)^{m_2}\{\sin(m_1\alpha)\cos(m_2\gamma) ! [d_A+d_B]+\cos(m_1\alpha)\sin(m_2\gamma)[d_A-d_B]\}, \\ ! &\Delta^l_{-m_1-m_2}=\cos(m_1\alpha)\cos(m_2\gamma) ! [d_A-d_B]-\sin(m_1\alpha)\sin(m_2\gamma)[d_A+d_B], ! \end{align*} ! where $d_A\equiv d^l_{-m_1-m_2}$, $d_B\equiv(-1)^{m_1}d^l_{m_1-m_2}$ and ! $d$ is the rotation matrix about the $y$-axis for complex spherical ! harmonics. See the routines {\tt genrlm}, {\tt roteuler} and {\tt ylmroty}. ! ! !REVISION HISTORY: ! Created December 2008 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: p real(8), intent(in) :: ang(3) integer, intent(in) :: lmax,ld real(8), intent(out) :: d(ld,*) ! local variables integer l,m1,m2,lm0,lm1,lm2 real(8), parameter :: sqtwo=1.4142135623730950488d0 real(8) s1,s2,t1,t2,t3,t4,t5,t6,t7,t8 ! automatic arrays integer lmi(-lmax:lmax) real(8) ca(lmax),sa(lmax) real(8) cg(lmax),sg(lmax) real(8) dy(ld,ld) ! generate the complex spherical harmonic rotation matrix about the y-axis call ylmroty(ang(2),lmax,ld,dy) do m1=1,lmax ca(m1)=cos(m1*ang(1)) sa(m1)=sin(m1*ang(1)) cg(m1)=cos(m1*ang(3)) sg(m1)=sin(m1*ang(3)) end do lm1=0 do l=0,lmax do m1=-l,l lm1=lm1+1 lmi(m1)=lm1 end do lm0=lmi(0) d(lm0,lm0)=dy(lm0,lm0) do m1=1,l if (mod(m1,2) == 0) then s1=1.d0 else s1=-1.d0 end if t1=sqtwo*dy(lm0,lmi(m1)) t2=sqtwo*dy(lmi(m1),lm0) d(lmi(m1),lm0)=s1*t1*ca(m1) d(lm0,lmi(m1))=s1*t2*cg(m1) d(lmi(-m1),lm0)=-t1*sa(m1) d(lm0,lmi(-m1))=t2*sg(m1) do m2=1,l if (mod(m2,2) == 0) then s2=1.d0 else s2=-1.d0 end if t1=ca(m1)*cg(m2) t2=sa(m1)*sg(m2) t3=sa(m1)*cg(m2) t4=ca(m1)*sg(m2) t5=dy(lmi(-m1),lmi(-m2)) t6=s1*dy(lmi(m1),lmi(-m2)) t7=t5+t6 t8=t5-t6 d(lmi(m1),lmi(m2))=s1*s2*(t1*t7-t2*t8) d(lmi(m1),lmi(-m2))=s1*(t3*t8+t4*t7) d(lmi(-m1),lmi(m2))=-s2*(t3*t7+t4*t8) d(lmi(-m1),lmi(-m2))=t1*t8-t2*t7 end do end do end do ! apply inversion if required if (p == -1) then do l=1,lmax,2 lm1=l**2+1 lm2=lm1+2*l d(lm1:lm2,lm1:lm2)=-d(lm1:lm2,lm1:lm2) end do end if end subroutine !EOC end subroutine elk-9.2.12/src/PaxHeaders/genpmatk.f900000644000000000000000000000013014536061313014353 xustar0029 mtime=1702388427.71550179 30 atime=1702388426.540503529 29 ctime=1702388427.71550179 elk-9.2.12/src/genpmatk.f900000644002504400250440000001347114536061313017105 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genpmatk ! !INTERFACE: subroutine genpmatk(ngp,igpig,vgpc,wfmt,wfgp,pmat) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ngp : number of G+p-vectors (in,integer(nspnfv)) ! igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax,nspnfv)) ! vgpc : G+p-vectors in Cartesian coordinates (in,real(3,ngkmax,nspnfv)) ! wfmt : muffin-tin wavefunction in spherical harmonics ! (in,complex(npcmtmax,natmtot,nspinor,nstsv)) ! wfgp : interstitial wavefunction in plane wave basis ! (in,complex(ngkmax,nspinor,nstsv)) ! pmat : momentum matrix elements (out,complex(nstsv,nstsv,3)) ! !DESCRIPTION: ! Calculates the momentum matrix elements ! $$ P_{ij}=\int d^3r\,\Psi_{i{\bf k}}^*({\bf r})\left(-i\nabla ! +\frac{1}{4c^2}\left[\vec{\sigma}\times\nabla V_s({\bf r})\right]\right) ! \Psi_{j{\bf k}}({\bf r}), $$ ! where $V_s$ is the Kohn-Sham effective potential. The second term in the ! brackets is only calculated if spin-orbit coupling is enabled. See Rathgen ! and Katsnelson, {\it Physica Scripta} {\bf T109}, 170 (2004). ! ! !REVISION HISTORY: ! Created November 2003 (Sharma) ! Fixed bug found by Juergen Spitaler, September 2006 (JKD) ! Added spin-orbit correction, July 2010 (JKD) ! Fixed bug found by Koichi Kitahara, January 2014 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) real(8), intent(in) :: vgpc(3,ngkmax,nspnfv) complex(8), intent(in) :: wfmt(npcmtmax,natmtot,nspinor,nstsv) complex(8), intent(in) :: wfgp(ngkmax,nspinor,nstsv) complex(8), intent(out) :: pmat(nstsv,nstsv,3) ! local variables integer ist,jst,ispn,jspn integer is,ia,ias integer nrc,nrci,npc integer igp,ifg,i real(8) cso complex(8) z1,z2,z11,z12,z21,z22,z31,z32 ! automatic arrays real(8) rfmt(npcmtmax) complex(8) gwfmt(npcmtmax,3,nspinor),gvmt(npcmtmax,3) complex(8) zfmt1(npcmtmax,nspinor),zfmt2(npcmtmax,3,nspinor) complex(8) z(ngkmax) ! allocatable arrays complex(8), allocatable :: gwfir(:,:) ! external functions complex(8), external :: zdotc ! coefficient of spin-orbit coupling cso=1.d0/(4.d0*solsc**2) ! zero the momentum matrix elements array pmat(:,:,:)=0.d0 !---------------------------------! ! muffin-tin contribution ! !---------------------------------! do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) ! compute gradient of potential for spin-orbit correction if required if (spinorb) then call rfmtftoc(nrc,nrci,vsmt(:,ias),rfmt) call rtozfmt(nrc,nrci,rfmt,zfmt1) call gradzfmt(nrc,nrci,rlcmt(:,-1,is),wcrcmt(:,:,is),zfmt1,npcmtmax,gvmt) ! convert to spherical coordinates do i=1,3 call zbshtip(nrc,nrci,gvmt(:,i)) end do end if do jst=1,nstsv do ispn=1,nspinor ! compute the gradient of the wavefunction call gradzfmt(nrc,nrci,rlcmt(:,-1,is),wcrcmt(:,:,is), & wfmt(:,ias,ispn,jst),npcmtmax,gwfmt(:,:,ispn)) end do ! add spin-orbit correction if required if (spinorb) then do ispn=1,nspinor ! convert wavefunction to spherical coordinates call zbsht(nrc,nrci,wfmt(:,ias,ispn,jst),zfmt1(:,ispn)) end do ! compute i σ x (grad V(r)) φ(r) do i=1,npc z1=zfmt1(i,1) z1=cmplx(-aimag(z1),dble(z1),8) z2=zfmt1(i,2) z2=cmplx(-aimag(z2),dble(z2),8) z11=gvmt(i,1)*z1; z12=gvmt(i,1)*z2 z21=gvmt(i,2)*z1; z22=gvmt(i,2)*z2 z31=gvmt(i,3)*z1; z32=gvmt(i,3)*z2 zfmt2(i,1,1)=cmplx(aimag(z32),-dble(z32),8)-z21 zfmt2(i,1,2)=cmplx(-aimag(z31),dble(z31),8)+z22 zfmt2(i,2,1)=z11-z32 zfmt2(i,2,2)=-z12-z31 zfmt2(i,3,1)=cmplx(-aimag(z12),dble(z12),8)+z22 zfmt2(i,3,2)=cmplx(aimag(z11),-dble(z11),8)+z21 end do ! convert to spherical harmonics and add to wavefunction gradient do ispn=1,nspinor do i=1,3 call zfsht(nrc,nrci,zfmt2(:,i,ispn),zfmt1) gwfmt(1:npc,i,ispn)=gwfmt(1:npc,i,ispn)+cso*zfmt1(1:npc,1) end do end do end if do i=1,3 do ispn=1,nspinor ! apply the radial integral weights call zfmtwr(nrc,nrci,wrcmt(:,is),gwfmt(:,i,ispn)) ! compute the overlaps do ist=1,jst pmat(ist,jst,i)=pmat(ist,jst,i)+zdotc(npc,wfmt(:,ias,ispn,ist),1, & gwfmt(:,i,ispn),1) end do end do end do end do end do end do !-----------------------------------! ! interstitial contribution ! !-----------------------------------! allocate(gwfir(ngtc,3)) do jst=1,nstsv do ispn=1,nspinor jspn=jspnfv(ispn) ! compute the gradient gwfir(:,:)=0.d0 do igp=1,ngp(jspn) ifg=igfc(igpig(igp,jspn)) z1=wfgp(igp,ispn,jst) gwfir(ifg,1:3)=vgpc(1:3,igp,jspn)*cmplx(-aimag(z1),dble(z1),8) end do do i=1,3 ! Fourier transform to real-space call zfftifc(3,ngdgc,1,gwfir(:,i)) ! multiply by coarse characteristic function gwfir(:,i)=gwfir(:,i)*cfrc(:) ! Fourier transform back to G-space call zfftifc(3,ngdgc,-1,gwfir(:,i)) end do ! find the overlaps do i=1,3 do igp=1,ngp(jspn) ifg=igfc(igpig(igp,jspn)) z(igp)=gwfir(ifg,i) end do do ist=1,jst pmat(ist,jst,i)=pmat(ist,jst,i)+zdotc(ngp(jspn),wfgp(:,ispn,ist),1,z,1) end do end do end do end do deallocate(gwfir) ! multiply by -i and set lower triangular part do i=1,3 do jst=1,nstsv do ist=1,jst-1 z1=pmat(ist,jst,i) z1=cmplx(aimag(z1),-dble(z1),8) pmat(ist,jst,i)=z1 pmat(jst,ist,i)=conjg(z1) end do pmat(jst,jst,i)=aimag(pmat(jst,jst,i)) end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/rvfcross.f900000644000000000000000000000013214536061313014416 xustar0030 mtime=1702388427.716501788 30 atime=1702388426.542503527 30 ctime=1702388427.716501788 elk-9.2.12/src/rvfcross.f900000644002504400250440000000420614536061313017142 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rvfcross ! !INTERFACE: subroutine rvfcross(rvfmt1,rvfir1,rvfmt2,rvfir2,rvfmt3,rvfir3) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! rvfmt1 : first input muffin-tin field (in,real(npmtmax,natmtot,3)) ! rvfir1 : first input interstitial field (in,real(ngtot,3)) ! rvfmt2 : second input muffin-tin field (in,real(npmtmax,natmtot,3)) ! rvfir2 : second input interstitial field (in,real(ngtot,3)) ! rvfmt3 : output muffin-tin field (out,real(npmtmax,natmtot,3)) ! rvfir3 : output interstitial field (out,real(ngtot,3)) ! !DESCRIPTION: ! Given two real vector fields, ${\bf f}_1$ and ${\bf f}_2$, defined over the ! entire unit cell, this routine computes the local cross product ! $$ {\bf f}_3({\bf r})\equiv{\bf f}_1({\bf r})\times{\bf f}_2({\bf r}). $$ ! ! !REVISION HISTORY: ! Created February 2007 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rvfmt1(npmtmax,natmtot,3),rvfir1(ngtot,3) real(8), intent(in) :: rvfmt2(npmtmax,natmtot,3),rvfir2(ngtot,3) real(8), intent(out) :: rvfmt3(npmtmax,natmtot,3),rvfir3(ngtot,3) ! local variables integer is,ias,nr,nri,ir,i real(8) v1(3),v2(3),v3(3) ! allocatable arrays real(8), allocatable :: rvfmt4(:,:),rvfmt5(:,:) !---------------------------! ! muffin-tin region ! !---------------------------! allocate(rvfmt4(npmtmax,3),rvfmt5(npmtmax,3)) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) do i=1,3 call rbsht(nr,nri,rvfmt1(:,ias,i),rvfmt4(:,i)) call rbsht(nr,nri,rvfmt2(:,ias,i),rvfmt5(:,i)) end do do i=1,npmt(is) v1(:)=rvfmt4(i,:) v2(:)=rvfmt5(i,:) call r3cross(v1,v2,v3) rvfmt4(i,:)=v3(:) end do do i=1,3 call rfsht(nr,nri,rvfmt4(:,i),rvfmt3(:,ias,i)) end do end do deallocate(rvfmt4,rvfmt5) !-----------------------------! ! interstitial region ! !-----------------------------! do ir=1,ngtot v1(:)=rvfir1(ir,:) v2(:)=rvfir2(ir,:) call r3cross(v1,v2,v3) rvfir3(ir,:)=v3(:) end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/writeinfo.f900000644000000000000000000000013214536061313014555 xustar0030 mtime=1702388427.718501785 30 atime=1702388426.543503525 30 ctime=1702388427.718501785 elk-9.2.12/src/writeinfo.f900000644002504400250440000003405314536061313017304 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2009 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writeinfo ! !INTERFACE: subroutine writeinfo(fnum) ! !USES: use modmain use moddftu use modrdm use modxcifc use modmpi ! !INPUT/OUTPUT PARAMETERS: ! fnum : unit specifier for INFO.OUT file (in,integer) ! !DESCRIPTION: ! Outputs basic information about the run to the file {\tt INFO.OUT}. Does not ! close the file afterwards. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) ! Updated with DFT+U quantities July 2009 (FC) !EOP !BOC implicit none ! arguments integer fnum ! local variables integer is,ia,k,l,i character(10) dat,tim write(fnum,'("+----------------------------+")') write(fnum,'("| Elk version ",I1.1,".",I1.1,".",I2.2," started |")') version write(fnum,'("+----------------------------+")') call date_and_time(date=dat,time=tim) write(fnum,*) write(fnum,'("Date (YYYY-MM-DD) : ",A4,"-",A2,"-",A2)') dat(1:4),dat(5:6), & dat(7:8) write(fnum,'("Time (hh:mm:ss) : ",A2,":",A2,":",A2)') tim(1:2),tim(3:4), & tim(5:6) if (np_mpi > 1) then write(fnum,*) write(fnum,'("Using MPI, number of processes : ",I8)') np_mpi end if if (notelns > 0) then write(fnum,*) write(fnum,'("Notes :")') do i=1,notelns write(fnum,'(A)') trim(notes(i)) end do end if write(fnum,*) write(fnum,'("All units are atomic (Hartree, Bohr, etc.)")') write(fnum,*) select case(task) case(2,3) if (trdstate) then write(fnum,'("+---------------------------------------------------+")') write(fnum,'("| Geometry optimisation run resuming from STATE.OUT |")') write(fnum,'("+---------------------------------------------------+")') else write(fnum,'("+------------------------------------------------------+")') write(fnum,'("| Geometry optimisation starting from atomic densities |")') write(fnum,'("+------------------------------------------------------+")') end if case(5) write(fnum,'("+-------------------------------+")') write(fnum,'("| Ground-state Hartree-Fock run |")') write(fnum,'("+-------------------------------+")') case(300) write(fnum,'("+----------------------------------------------+")') write(fnum,'("| Reduced density matrix functional theory run |")') write(fnum,'("+----------------------------------------------+")') case default if (trdstate) then write(fnum,'("+------------------------------------------+")') write(fnum,'("| Ground-state run resuming from STATE.OUT |")') write(fnum,'("+------------------------------------------+")') else write(fnum,'("+-------------------------------------------------+")') write(fnum,'("| Ground-state run starting from atomic densities |")') write(fnum,'("+-------------------------------------------------+")') end if end select write(fnum,*) write(fnum,'("Lattice vectors :")') write(fnum,'(3G18.10)') avec(1,1),avec(2,1),avec(3,1) write(fnum,'(3G18.10)') avec(1,2),avec(2,2),avec(3,2) write(fnum,'(3G18.10)') avec(1,3),avec(2,3),avec(3,3) write(fnum,*) write(fnum,'("Reciprocal lattice vectors :")') write(fnum,'(3G18.10)') bvec(1,1),bvec(2,1),bvec(3,1) write(fnum,'(3G18.10)') bvec(1,2),bvec(2,2),bvec(3,2) write(fnum,'(3G18.10)') bvec(1,3),bvec(2,3),bvec(3,3) write(fnum,*) write(fnum,'("Unit cell volume : ",G18.10)') omega write(fnum,'("Brillouin zone volume : ",G18.10)') omegabz write(fnum,*) write(fnum,'("Muffin-tin inner radius fraction : ",G18.10)') fracinr do is=1,nspecies write(fnum,*) write(fnum,'("Species : ",I4," (",A,")")') is,trim(spsymb(is)) write(fnum,'(" parameters loaded from : ",A)') trim(spfname(is)) write(fnum,'(" name : ",A)') trim(spname(is)) write(fnum,'(" nuclear charge : ",G18.10)') spzn(is) write(fnum,'(" electronic charge : ",G18.10)') spze(is) write(fnum,'(" atomic mass : ",G18.10)') spmass(is) write(fnum,'(" muffin-tin radius : ",G18.10)') rmt(is) write(fnum,'(" number of radial points in muffin-tin : ",I6)') nrmt(is) write(fnum,'(" number on inner part of muffin-tin : ",I6)') nrmti(is) write(fnum,'(" atomic positions (lattice), magnetic fields (Cartesian) :")') do ia=1,natoms(is) write(fnum,'(I4," : ",3F12.8," ",3F12.8)') ia,atposl(:,ia,is), & bfcmt(:,ia,is) end do end do write(fnum,*) write(fnum,'("Total number of atoms per unit cell : ",I4)') natmtot write(fnum,*) write(fnum,'("Spin treatment :")') if (spinpol) then write(fnum,'(" spin-polarised")') else write(fnum,'(" spin-unpolarised")') end if if (spinorb) then write(fnum,'(" spin-orbit coupling")') end if if (spincore) then write(fnum,'(" spin-polarised core states")') end if if (spinpol) then write(fnum,'(" global magnetic field (Cartesian) : ",3G18.10)') bfieldc if (ncmag) then write(fnum,'(" non-collinear magnetisation")') else write(fnum,'(" collinear magnetisation in z-direction")') end if end if if (tbdip) then write(fnum,'(" magnetic dipole field included")') if (tjr) then write(fnum,'(" spin and current contribution")') else write(fnum,'(" only spin contribution")') end if end if if (spinsprl) then write(fnum,'(" spin-spiral state assumed")') write(fnum,'(" q-vector (lattice) : ",3G18.10)') vqlss write(fnum,'(" q-vector (Cartesian) : ",3G18.10)') vqcss write(fnum,'(" q-vector length : ",G18.10)') sqrt(vqcss(1)**2 & +vqcss(2)**2+vqcss(3)**2) end if if (fsmtype /= 0) then write(fnum,'(" fixed spin moment (FSM) calculation, type : ",I4)') fsmtype if (fsmtype < 0) then write(fnum,'(" only moment direction is fixed")') end if end if if ((abs(fsmtype) == 1).or.(abs(fsmtype) == 3)) then write(fnum,'(" fixing total moment to (Cartesian) :")') write(fnum,'(" ",3G18.10)') momfix end if if ((abs(fsmtype) == 2).or.(abs(fsmtype) == 3)) then write(fnum,'(" fixing local muffin-tin moments to (Cartesian) :")') do is=1,nspecies write(fnum,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) write(fnum,'(" ",I4,3G18.10)') ia,mommtfix(:,ia,is) end do end do end if if (tssxc) then write(fnum,'(" scaled spin exchange-correlation enabled")') write(fnum,'(" scaling factor : ",G18.10)') sxcscf end if if (ftmtype /= 0) then write(fnum,*) write(fnum,'(" fixed tensor moment (FTM) calculation, type : ",I4)') ftmtype end if if (tefield) then write(fnum,*) write(fnum,'("Constant electric field applied across unit cell")') write(fnum,'(" field strength : ",3G18.10)') efieldc end if if (tafield) then write(fnum,*) write(fnum,'("Constant A-field applied across unit cell")') write(fnum,'(" field strength : ",3G18.10)') afieldc end if write(fnum,*) write(fnum,'("Number of Bravais lattice symmetries : ",I4)') nsymlat write(fnum,'("Number of crystal symmetries : ",I4)') nsymcrys if (tsyminv) then write(fnum,'("Crystal has inversion symmetry")') else write(fnum,'("Crystal has no inversion symmetry")') end if if (tefvr) then write(fnum,'("Real symmetric eigensolver will be used")') else write(fnum,'("Complex Hermitian eigensolver will be used")') end if write(fnum,*) if (autokpt) then write(fnum,'("Radius of sphere used to determine k-point grid density : ",& &G18.10)') radkpt end if write(fnum,'("k-point grid : ",3I6)') ngridk write(fnum,'("k-point offset : ",3G18.10)') vkloff if (reducek == 0) then write(fnum,'("k-point set is not reduced")') else if (reducek == 1) then write(fnum,'("k-point set is reduced with full crystal symmetry group")') else if (reducek == 2) then write(fnum,'("k-point set is reduced with symmorphic symmetries only")') else write(*,*) write(*,'("Error(writeinfo): undefined k-point reduction type : ",I8)') & reducek write(*,*) stop end if write(fnum,'("Total number of k-points : ",I8)') nkpt write(fnum,*) write(fnum,'("Muffin-tin radius times maximum |G+k| : ",G18.10)') rgkmax select case(isgkmax) case(:-4) write(fnum,'(" using largest radius")') case(-3) write(fnum,'(" using smallest radius")') case(-2) write(fnum,'(" using gkmax = rgkmax / 2")') case(-1) write(fnum,'(" using average radius")') case(1:) if (isgkmax <= nspecies) then write(fnum,'(" using radius of species ",I4," (",A,")")') isgkmax, & trim(spsymb(isgkmax)) else write(*,*) write(*,'("Error(writeinfo): isgkmax > nspecies : ",2I8)') isgkmax,nspecies write(*,*) stop end if end select write(fnum,'("Maximum |G+k| for APW functions : ",G18.10)') gkmax write(fnum,'("Maximum (1/2)|G+k|² : ",G18.10)') 0.5d0*gkmax**2 write(fnum,'("Maximum |G| for potential and density : ",G18.10)') gmaxvr if (trimvg) then write(fnum,'(" potential will be trimmed for |G| > 2 gkmax")') end if write(fnum,'("Constant for pseudocharge density : ",I4)') npsd write(fnum,'("Radial integration step length : ",I4)') lradstp write(fnum,*) write(fnum,'("G-vector grid sizes : ",3I6)') ngridg(:) write(fnum,'("Number of G-vectors : ",I8)') ngvec write(fnum,*) write(fnum,'("Maximum angular momentum used for")') write(fnum,'(" APW functions : ",I4)') lmaxapw write(fnum,'(" outer part of muffin-tin : ",I4)') lmaxo write(fnum,'(" inner part of muffin-tin : ",I4)') lmaxi write(fnum,*) write(fnum,'("Total nuclear charge : ",G18.10)') chgzn write(fnum,'("Total core charge : ",G18.10)') chgcrtot write(fnum,'("Total valence charge : ",G18.10)') chgval write(fnum,'("Total excess charge : ",G18.10)') chgexs write(fnum,'("Total electronic charge : ",G18.10)') chgtot write(fnum,*) write(fnum,'("Effective Wigner radius, rₛ : ",G18.10)') rwigner write(fnum,*) write(fnum,'("Number of empty states : ",I4)') nempty write(fnum,'("Total number of valence states : ",I4)') nstsv write(fnum,'("Total number of core states : ",I4)') nstcr write(fnum,*) if (lorbcnd) then write(fnum,'("Conduction state local-orbitals added automatically")') end if write(fnum,'("Total number of local-orbitals : ",I4)') nlotot if (tefvit) then write(fnum,*) write(fnum,'("Using iterative diagonalisation for the first-variational & &eigenvalue equation")') end if write(fnum,*) if (task == 5) then write(fnum,'("Hartree-Fock calculation using Kohn-Sham states")') if (hybrid) then write(fnum,'(" hybrid functional, coefficient : ",G18.10)') hybridc end if end if if (xctype(1) == 100) then write(fnum,'("Using Libxc version ",I2.2,".",I2.2,".",I2.2)') libxcv(:) end if if (xctype(1) < 0) then write(fnum,'("Optimised effective potential (OEP) and exact exchange (EXX)")') write(fnum,'(" Phys. Rev. B 53, 7024 (1996)")') write(fnum,'("Correlation functional : ",3I6)') abs(xctype(1)),xctype(2:3) write(fnum,'(" ",A)') trim(xcdescr) else write(fnum,'("Exchange-correlation functional : ",3I6)') xctype(:) write(fnum,'(" ",A)') trim(xcdescr) write(fnum,'(" gradient requirement : ",I4)') xcgrad end if if (xcgrad == 0) then write(fnum,'(" local density approximation (LDA)")') else if ((xcgrad == 1).or.(xcgrad == 2)) then write(fnum,'(" generalised gradient approximation (GGA)")') else if (any(xcgrad == [3,4,5])) then write(fnum,'(" meta-GGA")') if (xcgrad /= 3) then write(fnum,'(" partially deorbitalised functional")') write(fnum,'(" using Kohn-Sham orbital kinetic energy density τ(r)")') write(fnum,'(" kinetic energy functional used for δτ(r'')/δρ(r) : ",3I6)') & ktype(:) write(fnum,'(" ",A)') trim(kdescr) write(fnum,'(" gradient requirement : ",I4)') kgrad else write(fnum,'(" fully deorbitalised functional")') end if end if if (dftu /= 0) then write(fnum,*) write(fnum,'("DFT+U calculation")') if (dftu == 1) then write(fnum,'(" fully localised limit (FLL)")') write(fnum,'(" see Phys. Rev. B 52, R5467 (1995)")') else if (dftu == 2) then write(fnum,'(" around mean field (AMF)")') write(fnum,'(" see Phys. Rev. B 49, 14211 (1994)")') else write(*,*) write(*,'("Error(writeinfo): dftu not defined : ",I8)') dftu write(*,*) stop end if do i=1,ndftu is=isldu(1,i) l=isldu(2,i) if (inpdftu == 1) then write(fnum,'(" species : ",I4," (",A,")",", l = ",I2,", U = ",F12.8, & &", J = ",F12.8)') is,trim(spsymb(is)),l,ujdu(1,i),ujdu(2,i) else if (inpdftu == 2) then write(fnum,'(" species : ",I4," (",A,")",", l = ",I2)') is, & trim(spsymb(is)),l write(fnum,'(" Slater integrals are provided as input")') do k=0,2*l,2 write(fnum,'(" F^(",I1,") = ",F12.8)') k,fdu(k,i) end do else if (inpdftu == 3) then write(fnum,'(" species : ",I4," (",A,")",", l = ",I2)') is, & trim(spsymb(is)),l write(fnum,'(" Racah parameters are provided as input")') do k=0,l write(fnum,'(" E^(",I1,") = ",F12.8)') k,edu(k,i) end do else if (inpdftu == 4) then write(fnum,'(" species : ",I4," (",A,")",", l = ",I2)') is, & trim(spsymb(is)),l write(fnum,'(" Slater integrals are calculated by means of Yukawa & &potential")') write(fnum,'(" Yukawa potential screening length (a.u.⁻¹) : ",F12.8)') & lamdu(i) else if(inpdftu == 5) then write(fnum,'(" species : ",I4," (",A,")",", l = ",I2)') is, & trim(spsymb(is)),l write(fnum,'(" Slater integrals are calculated by means of Yukawa & &potential")') write(fnum,'(" Yukawa potential screening length corresponds to U = ",& &F12.8)') udufix(i) end if end do end if if (task == 300) then write(fnum,*) write(fnum,'("RDMFT calculation")') write(fnum,'(" see Phys. Rev. B 78, 201103 (2008)")') write(fnum,'(" RDMFT exchange-correlation type : ",I4)') rdmxctype if (rdmxctype == 1) then write(fnum,'(" Hartree-Fock functional")') else if (rdmxctype == 2) then write(fnum,'(" Power functional, exponent : ",G18.10)') rdmalpha end if end if write(fnum,*) write(fnum,'("Smearing type : ",I4)') stype write(fnum,'(" ",A)') trim(sdescr) if (autoswidth) then write(fnum,'("Automatic determination of smearing width")') else write(fnum,'("Smearing width : ",G18.10)') swidth write(fnum,'("Effective electronic temperature (K) : ",G18.10)') tempk end if write(fnum,*) write(fnum,'("Mixing type : ",I4)') mixtype write(fnum,'(" ",A)') trim(mixdescr) flush(fnum) end subroutine !EOC elk-9.2.12/src/PaxHeaders/mossbauer.f900000644000000000000000000000013214536061313014547 xustar0030 mtime=1702388427.719501784 30 atime=1702388426.545503522 30 ctime=1702388427.719501784 elk-9.2.12/src/mossbauer.f900000644002504400250440000001104314536061313017270 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: mossbauer ! !INTERFACE: subroutine mossbauer ! !USES: use modmain use modmpi use modtest ! !DESCRIPTION: ! Computes the contact charge density and magnetic hyperfine field for each ! atom and outputs the data to the file {\tt MOSSBAUER.OUT}. ! See S. Bl\"{u}gel, H. Akai, R. Zeller, and P. H. Dederichs, ! {\it Phys. Rev. B} {\bf 35}, 3271 (1987). ! ! !REVISION HISTORY: ! Created May 2004 (JKD) ! Contact hyperfine field evaluated at the nuclear radius rather than averaged ! over the Thomson sphere, June 2019 (JKD) ! Added spin and orbital dipole terms, July 2019 (JKD) !EOP !BOC implicit none ! local variables integer idm,is,ia,ias integer nr,nri,nrn real(8) mc(3),bc(3),bd(3) real(8) rho0,rhon,rhoa real(8) cb,t1 ! allocatable arrays real(8), allocatable :: fr(:) ! spin dipole field prefactor cb=gfacte/(4.d0*solsc) ! initialise universal variables call init0 call init1 ! read density and potentials from file call readstate ! generate the core wavefunctions and densities call gencore ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! read the eigenvalues and occupation numbers from file call readevalsv call readoccsv ! calculate the density call rhomag ! calculate the dipole magnetic field if required if (tbdip) call bdipole ! allocate local arrays allocate(fr(nrmtmax)) if (mp_mpi) then open(50,file='MOSSBAUER.OUT',form='FORMATTED') end if ! loop over species do is=1,nspecies nr=nrmt(is) nri=nrmti(is) nrn=nrnucl(is) ! loop over atoms do ia=1,natoms(is) ias=idxas(ia,is) if (mp_mpi) then write(50,*) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is,trim(spsymb(is)),& ia write(50,*) write(50,'(" approximate nuclear radius : ",G18.10)') rnucl(is) write(50,'(" number of mesh points to nuclear radius : ",I6)') nrn end if !--------------------------------! ! contact charge density ! !--------------------------------! ! extract the l=m=0 component of the muffin-tin density call rfmtlm(1,nr,nri,rhomt(:,ias),fr) rho0=fr(1)*y00 rhon=fr(nrn)*y00 t1=dot_product(wrmt(1:nrn,is),fr(1:nrn)) rhoa=fourpi*y00*t1/volnucl(is) if (mp_mpi) then write(50,*) write(50,'(" density at nuclear center : ",G18.10)') rho0 write(50,'(" density at nuclear surface : ",G18.10)') rhon write(50,'(" average contact charge density : ",G18.10)') rhoa end if !----------------------------------! ! magnetic hyperfine field ! !----------------------------------! if (spinpol) then ! contact term do idm=1,ndmag ! extract the l=m=0 component of the muffin-tin magnetisation call rfmtlm(1,nr,nri,magmt(:,ias,idm),fr) t1=dot_product(wrmt(1:nrn,is),fr(1:nrn)) mc(idm)=fourpi*y00*t1/volnucl(is) end do t1=8.d0*pi*cb/(3.d0*solsc) bc(1:ndmag)=t1*mc(1:ndmag) if (mp_mpi) then write(50,*) write(50,'(" contact magnetic moment (mu_B) : ",3G18.10)') mc(1:ndmag) write(50,'(" contact field : ",3G18.10)') bc(1:ndmag) write(50,'(" tesla : ",3G18.10)') b_si*bc(1:ndmag) end if ! spin and orbital dipole term if (tbdip) then ! extract the l=m=0 component of the dipole field do idm=1,3 call rfmtlm(1,nr,nri,bdmt(:,ias,idm),fr) t1=dot_product(wrmt(1:nrn,is),fr(1:nrn)) bd(idm)=fourpi*y00*t1/(volnucl(is)*solsc) end do if (mp_mpi) then write(50,*) if (tjr) then write(50,'(" spin and orbital dipole field : ",3G18.10)') bd else write(50,'(" spin dipole field : ",3G18.10)') bd end if write(50,'(" tesla : ",3G18.10)') b_si*bd end if ! write to test file if required call writetest(110,'hyperfine field',nv=3,tol=1.d-4,rva=bd) end if end if end do end do if (mp_mpi) then if (spinpol.and.tbdip) then write(50,*) write(50,'("Note that the contact term is implicitly included in the & &spin dipole field")') write(50,'(" but may not match exactly with the directly & &calculated value.")') end if close(50) write(*,*) write(*,'("Info(mossbauer):")') write(*,'(" Mossbauer parameters written to MOSSBAUER.OUT")') end if deallocate(fr) end subroutine !EOC elk-9.2.12/src/PaxHeaders/initoep.f900000644000000000000000000000013214536061313014216 xustar0030 mtime=1702388427.721501781 30 atime=1702388426.547503519 30 ctime=1702388427.721501781 elk-9.2.12/src/initoep.f900000644002504400250440000000204514536061313016741 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine initoep use modmain implicit none ! local variables integer is,ist,nc ! find maximum core states over all species ncrmax=0 do is=1,nspecies nc=0 do ist=1,nstsp(is) if (spcore(ist,is)) nc=nc+2*ksp(ist,is) end do ncrmax=max(ncrmax,nc) end do ! allocate the exchange potential and magnetic field if (allocated(vxmt)) deallocate(vxmt) allocate(vxmt(npcmtmax,natmtot)) if (allocated(vxir)) deallocate(vxir) allocate(vxir(ngtot)) if (spinpol) then if (allocated(bxmt)) deallocate(bxmt) allocate(bxmt(npcmtmax,natmtot,ndmag)) if (allocated(bxir)) deallocate(bxir) allocate(bxir(ngtot,ndmag)) end if ! allocate the OEP residual functions allocate(dvxmt(npcmtmax,natmtot),dvxir(ngtot)) if (spinpol) then allocate(dbxmt(npcmtmax,natmtot,ndmag),dbxir(ngtot,ndmag)) end if ! set initial step size for iterative method tauoep=tau0oep end subroutine elk-9.2.12/src/PaxHeaders/i3minv.f900000644000000000000000000000013214536061313013754 xustar0030 mtime=1702388427.722501779 30 atime=1702388426.548503518 30 ctime=1702388427.722501779 elk-9.2.12/src/i3minv.f900000644002504400250440000000242114536061313016475 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2003-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: i3minv ! !INTERFACE: subroutine i3minv(a,b) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,integer(3,3)) ! b : output matrix (in,integer(3,3)) ! !DESCRIPTION: ! Computes the inverse of a integer $3\times 3$ matrix: $B=A^{-1}$. ! ! !REVISION HISTORY: ! Created November 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: a(3,3) integer, intent(out) :: b(3,3) ! local variables integer m m=a(1,1)*(a(2,2)*a(3,3)-a(3,2)*a(2,3)) & +a(2,1)*(a(3,2)*a(1,3)-a(1,2)*a(3,3)) & +a(3,1)*(a(1,2)*a(2,3)-a(2,2)*a(1,3)) if ((m /= 1).and.(m /= -1)) then write(*,*) write(*,'("Error(i3minv): cannot invert matrix")') write(*,'(" Determinant : ",I8)') m write(*,*) stop end if b(1,1)=m*(a(2,2)*a(3,3)-a(2,3)*a(3,2)) b(2,1)=m*(a(2,3)*a(3,1)-a(2,1)*a(3,3)) b(3,1)=m*(a(2,1)*a(3,2)-a(2,2)*a(3,1)) b(1,2)=m*(a(1,3)*a(3,2)-a(1,2)*a(3,3)) b(2,2)=m*(a(1,1)*a(3,3)-a(1,3)*a(3,1)) b(3,2)=m*(a(1,2)*a(3,1)-a(1,1)*a(3,2)) b(1,3)=m*(a(1,2)*a(2,3)-a(1,3)*a(2,2)) b(2,3)=m*(a(1,3)*a(2,1)-a(1,1)*a(2,3)) b(3,3)=m*(a(1,1)*a(2,2)-a(1,2)*a(2,1)) end subroutine !EOC elk-9.2.12/src/PaxHeaders/r3mv.f900000644000000000000000000000013214536061313013436 xustar0030 mtime=1702388427.723501778 30 atime=1702388426.549503516 30 ctime=1702388427.723501778 elk-9.2.12/src/r3mv.f900000644002504400250440000000140614536061313016161 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mv ! !INTERFACE: pure subroutine r3mv(a,x,y) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,real(3,3)) ! x : input vector (in,real(3)) ! y : output vector (out,real(3)) ! !DESCRIPTION: ! Multiplies a real $3\times 3$ matrix with a vector. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3),x(3) real(8), intent(out) :: y(3) y(1)=a(1,1)*x(1)+a(1,2)*x(2)+a(1,3)*x(3) y(2)=a(2,1)*x(1)+a(2,2)*x(2)+a(2,3)*x(3) y(3)=a(3,1)*x(1)+a(3,2)*x(2)+a(3,3)*x(3) end subroutine !EOC elk-9.2.12/src/PaxHeaders/genidxlo.f900000644000000000000000000000013214536061313014360 xustar0030 mtime=1702388427.724501776 30 atime=1702388426.551503513 30 ctime=1702388427.724501776 elk-9.2.12/src/genidxlo.f900000644002504400250440000000164114536061313017104 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genidxlo ! !INTERFACE: subroutine genidxlo ! !USES: use modmain ! !DESCRIPTION: ! Generates an index array which maps the local-orbitals in each atom to their ! locations in the overlap or Hamiltonian matrices. Also finds the total ! number of local-orbitals. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! local variables integer is,ias,i,ilo,l,m,lm ! allocate global local-orbital index if (allocated(idxlo)) deallocate(idxlo) allocate(idxlo(lolmmax,nlomax,natmtot)) i=0 do ias=1,natmtot is=idxis(ias) do ilo=1,nlorb(is) l=lorbl(ilo,is) do m=-l,l i=i+1 lm=l*(l+1)+m+1 idxlo(lm,ilo,ias)=i end do end do end do nlotot=i end subroutine !EOC elk-9.2.12/src/PaxHeaders/nuclei.f900000644000000000000000000000013214536061313014026 xustar0030 mtime=1702388427.725501775 30 atime=1702388426.552503512 30 ctime=1702388427.725501775 elk-9.2.12/src/nuclei.f900000644002504400250440000000120614536061313016547 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine nuclei use modmain implicit none ! local variables integer is,ir ! external functions real(8), external :: radnucl do is=1,nspecies ! approximate nuclear radius rnucl(is)=radnucl(spzn(is)) ! nuclear volume volnucl(is)=(4.d0/3.d0)*pi*rnucl(is)**3 ! number of radial mesh points to nuclear radius nrnucl(is)=1 do ir=1,nrmt(is) if (rsp(ir,is) > rnucl(is)) then nrnucl(is)=ir exit end if end do end do end subroutine elk-9.2.12/src/PaxHeaders/writeefg.f900000644000000000000000000000013214536061313014363 xustar0030 mtime=1702388427.727501772 30 atime=1702388426.554503509 30 ctime=1702388427.727501772 elk-9.2.12/src/writeefg.f900000644002504400250440000000623114536061313017107 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writeefg ! !INTERFACE: subroutine writeefg ! !USES: use modmain use modtest ! !DESCRIPTION: ! Computes the electric field gradient (EFG) tensor for each atom, $\alpha$, ! and writes it to the file {\tt EFG.OUT} along with its eigenvalues. The EFG ! is defined by ! $$ V^{\alpha}_{ij}\equiv\left.\frac{\partial^2 V'_{\rm C}({\bf r})} ! {\partial{\bf r}_i\partial{\bf r}_j}\right|_{{\bf r}={\bf r}_{\alpha}}, $$ ! where $V'_{\rm C}$ is the Coulomb potential with the $l=m=0$ component ! removed in each muffin-tin. The derivatives are computed explicitly using ! the routine {\tt gradrfmt}. ! ! !REVISION HISTORY: ! Created May 2004 (JKD) ! Fixed serious problem, November 2006 (JKD) !EOP !BOC implicit none ! local variables integer, parameter :: lwork=10 integer is,ia,ias integer nr,nri,ir integer np,i,j,info real(8) efg(3,3),a(3,3) real(8) w(3),work(lwork) ! allocatable arrays real(8), allocatable :: rfmt(:),grfmt1(:,:),grfmt2(:,:) if (lmaxi < 2) then write(*,*) write(*,'("Error(writeefg): lmaxi too small for calculating the EFG : ",& &I4)') lmaxi write(*,'(" Run the ground-state calculation again with lmaxi >= 2")') write(*,*) stop end if ! initialise universal variables call init0 ! read density and potentials from file call readstate ! allocate local arrays allocate(rfmt(npmtmax),grfmt1(npmtmax,3),grfmt2(npmtmax,3)) open(50,file='EFG.OUT',form='FORMATTED') write(50,*) write(50,'("(electric field gradient tensor is in Cartesian coordinates)")') do is=1,nspecies nr=nrmt(is) nri=nrmti(is) np=npmt(is) do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is,trim(spsymb(is)),ia ! remove the l=m=0 part of the potential rfmt(1:np)=vclmt(1:np,ias) i=1 do ir=1,nri rfmt(i)=0.d0 i=i+lmmaxi end do do ir=nri+1,nr rfmt(i)=0.d0 i=i+lmmaxo end do ! compute the gradient of the Coulomb potential call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt,npmtmax,grfmt1) do i=1,3 ! compute the gradient of the gradient call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),grfmt1(:,i),npmtmax, & grfmt2) do j=1,3 efg(i,j)=grfmt2(1,j)*y00 end do end do ! symmetrise the EFG do i=1,3 do j=i+1,3 efg(i,j)=0.5d0*(efg(i,j)+efg(j,i)) efg(j,i)=efg(i,j) end do end do write(50,*) write(50,'(" EFG tensor :")') do i=1,3 write(50,'(3G18.10)') (efg(i,j),j=1,3) end do write(50,'(" trace : ",G18.10)') efg(1,1)+efg(2,2)+efg(3,3) ! diagonalise the EFG a(:,:)=efg(:,:) call dsyev('N','U',3,a,3,w,work,lwork,info) write(50,'(" eigenvalues :")') write(50,'(3G18.10)') w end do end do close(50) write(*,*) write(*,'("Info(writeefg): electric field gradient written to EFG.OUT")') deallocate(rfmt,grfmt1,grfmt2) ! write EFG of last atom to test file call writetest(115,'electric field gradient',nv=9,tol=1.d-3,rva=efg) end subroutine !EOC elk-9.2.12/src/PaxHeaders/writeevsp.f900000644000000000000000000000013014536061313014575 xustar0029 mtime=1702388427.72850177 30 atime=1702388426.555503507 29 ctime=1702388427.72850177 elk-9.2.12/src/writeevsp.f900000644002504400250440000000177114536061313017327 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeevsp use modmain implicit none ! local variables integer is,ist ! solve the atomic Dirac-Kohn-Sham ground-state for all species call init0 ! write out the atomic eigenvalues for each species open(50,file='EVALSP.OUT',form='FORMATTED') write(50,*) write(50,'("Kohn-Sham-Dirac eigenvalues for all atomic species")') write(50,*) write(50,'("Exchange-correlation functional : ",3I6)') xctsp(:) do is=1,nspecies write(50,*) write(50,'("Species : ",I4," (",A,")",I4)') is,trim(spsymb(is)) do ist=1,nstsp(is) write(50,'(" n = ",I2,", l = ",I2,", k = ",I2," : ",G18.10)') nsp(ist,is), & lsp(ist,is),ksp(ist,is),evalsp(ist,is) end do end do close(50) write(*,*) write(*,'("Info(writeevsp)")') write(*,'(" Kohn-Sham-Dirac eigenvalues written to EVALSP.OUT for all atomic & &species")') end subroutine elk-9.2.12/src/PaxHeaders/gencore.f900000644000000000000000000000013214536061313014171 xustar0030 mtime=1702388427.729501769 30 atime=1702388426.556503506 30 ctime=1702388427.729501769 elk-9.2.12/src/gencore.f900000644002504400250440000001101514536061313016711 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gencore ! !INTERFACE: subroutine gencore ! !USES: use modmain use modomp ! !DESCRIPTION: ! Computes the core radial wavefunctions, eigenvalues and densities. The ! radial Dirac equation is solved in the spherical part of the Kohn-Sham ! potential to which the atomic potential has been appended for ! $r>R_{\rm MT}$. In the case of spin-polarised calculations, and when ! {\tt spincore} is set to {\tt .true.}, the Dirac equation is solved in the ! spin-up and -down potentials created from the Kohn-Sham scalar potential and ! magnetic field magnitude, with the occupancy divided equally between up and ! down. The up and down densities determined in this way are added to both the ! scalar density and the magnetisation in the routine {\tt rhocore}. Note ! that this procedure is a simple, but inexact, approach to solving the radial ! Dirac equation in a magnetic field. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Added polarised cores, November 2009 (JKD) !EOP !BOC implicit none ! local variables integer ist,ispn,idm integer is,ia,ja,ias,jas integer nr,nri,nrs,nthd real(8) v(ndmag),t1 ! automatic arrays logical done(natmmax) real(8) vr(nrspmax),br(nrmtmax),fr(nrmtmax) real(8) eval(nstspmax) ! external functions real(8), external :: rfmtint ! loop over species and atoms do is=1,nspecies nr=nrmt(is) nri=nrmti(is) nrs=nrsp(is) done(:)=.false. do ia=1,natoms(is) if (done(ia)) cycle ias=idxas(ia,is) ! Kohn-Sham magnetic field for spin-polarised core if (spincore) then ! compute the averaged direction of the exchange-correlation magnetic field do idm=1,ndmag v(idm)=rfmtint(nr,nri,wrmt(:,is),bxcmt(:,ias,idm)) end do ! normalise if (ncmag) then t1=sqrt(v(1)**2+v(2)**2+v(3)**2) else t1=abs(v(1)) end if if (t1 > 1.d-10) v(:)=v(:)/t1 ! determine the component of the field along the averaged direction br(1:nr)=0.d0 do idm=1,ndmag ! extract the spherical (l=m=0) component of B_xc call rfmtlm(1,nr,nri,bxcmt(:,ias,idm),fr) t1=v(idm)*y00 br(1:nr)=br(1:nr)+t1*fr(1:nr) end do end if ! loop over spin channels do ispn=1,nspncr ! use the spherical part of the crystal Kohn-Sham potential call rfmtlm(1,nr,nri,vsmt(:,ias),vr) vr(1:nr)=vr(1:nr)*y00 ! spin-up and -down potentials for polarised core if (spincore) then if (ispn == 1) then vr(1:nr)=vr(1:nr)-br(1:nr) else vr(1:nr)=vr(1:nr)+br(1:nr) end if end if ! append the Kohn-Sham potential from the atomic calculation for r > R_MT t1=vr(nr)-vrsp(nr,is) vr(nr+1:nrs)=vrsp(nr+1:nrs,is)+t1 rhocr(1:nr,ias,ispn)=0.d0 call holdthd(nstsp(is),nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(t1) SHARED(is) & !$OMP NUM_THREADS(nthd) do ist=1,nstsp(is) if (spcore(ist,is)) then ! solve the Dirac equation eval(ist)=evalcr(ist,ias) call rdirac(solsc,nsp(ist,is),lsp(ist,is),ksp(ist,is),nrs,rsp(:,is), & vr,eval(ist),rwfcr(:,1,ist,ias),rwfcr(:,2,ist,ias)) if (spincore) then ! use the spin-averaged eigenvalue for the polarised core if (ispn == 1) then evalcr(ist,ias)=eval(ist) else evalcr(ist,ias)=0.5d0*(evalcr(ist,ias)+eval(ist)) end if t1=0.5d0*occcr(ist,ias) else evalcr(ist,ias)=eval(ist) t1=occcr(ist,ias) end if ! add to the core density !$OMP CRITICAL(gencore_) rhocr(1:nr,ias,ispn)=rhocr(1:nr,ias,ispn) & +t1*(rwfcr(1:nr,1,ist,ias)**2+rwfcr(1:nr,2,ist,ias)**2) !$OMP END CRITICAL(gencore_) end if end do !$OMP END PARALLEL DO call freethd(nthd) rhocr(1:nr,ias,ispn)=rhocr(1:nr,ias,ispn)*rlmt(1:nr,-2,is)*y00 ! end loop over spin channels end do done(ia)=.true. ! copy to equivalent atoms do ja=1,natoms(is) if ((.not.done(ja)).and.(eqatoms(ia,ja,is))) then jas=idxas(ja,is) do ist=1,nstsp(is) if (spcore(ist,is)) then evalcr(ist,jas)=evalcr(ist,ias) rwfcr(1:nrs,:,ist,jas)=rwfcr(1:nrs,:,ist,ias) end if end do rhocr(1:nr,jas,:)=rhocr(1:nr,ias,:) done(ja)=.true. end if end do ! end loop over species and atoms end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/r3mtv.f900000644000000000000000000000013214536061313013622 xustar0030 mtime=1702388427.731501766 30 atime=1702388426.558503503 30 ctime=1702388427.731501766 elk-9.2.12/src/r3mtv.f900000644002504400250440000000143114536061313016343 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mtv ! !INTERFACE: pure subroutine r3mtv(a,x,y) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,real(3,3)) ! x : input vector (in,real(3)) ! y : output vector (out,real(3)) ! !DESCRIPTION: ! Multiplies the transpose of a real $3\times 3$ matrix with a vector. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3),x(3) real(8), intent(out) :: y(3) y(1)=a(1,1)*x(1)+a(2,1)*x(2)+a(3,1)*x(3) y(2)=a(1,2)*x(1)+a(2,2)*x(2)+a(3,2)*x(3) y(3)=a(1,3)*x(1)+a(2,3)*x(2)+a(3,3)*x(3) end subroutine !EOC elk-9.2.12/src/PaxHeaders/r3minv.f900000644000000000000000000000013014536061313013763 xustar0030 mtime=1702388427.733501763 28 atime=1702388426.5605035 30 ctime=1702388427.733501763 elk-9.2.12/src/r3minv.f900000644002504400250440000000235314536061313016512 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3minv ! !INTERFACE: subroutine r3minv(a,b) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,real(3,3)) ! b : output matrix (out,real(3,3)) ! !DESCRIPTION: ! Computes the inverse of a real $3\times 3$ matrix. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3) real(8), intent(out) :: b(3,3) ! local variables real(8) t1 t1=a(1,2)*a(2,3)*a(3,1)-a(1,3)*a(2,2)*a(3,1)+a(1,3)*a(2,1)*a(3,2) & -a(1,1)*a(2,3)*a(3,2)+a(1,1)*a(2,2)*a(3,3)-a(1,2)*a(2,1)*a(3,3) if (abs(t1) < 1.d-40) then write(*,*) write(*,'("Error(r3minv): singular matrix")') write(*,*) stop end if t1=1.d0/t1 b(1,1)=t1*(a(2,2)*a(3,3)-a(2,3)*a(3,2)) b(2,1)=t1*(a(2,3)*a(3,1)-a(2,1)*a(3,3)) b(3,1)=t1*(a(2,1)*a(3,2)-a(2,2)*a(3,1)) b(1,2)=t1*(a(1,3)*a(3,2)-a(1,2)*a(3,3)) b(2,2)=t1*(a(1,1)*a(3,3)-a(1,3)*a(3,1)) b(3,2)=t1*(a(1,2)*a(3,1)-a(1,1)*a(3,2)) b(1,3)=t1*(a(1,2)*a(2,3)-a(1,3)*a(2,2)) b(2,3)=t1*(a(1,3)*a(2,1)-a(1,1)*a(2,3)) b(3,3)=t1*(a(1,1)*a(2,2)-a(1,2)*a(2,1)) end subroutine !EOC elk-9.2.12/src/PaxHeaders/r3frac.f900000644000000000000000000000013214536061313013727 xustar0030 mtime=1702388427.734501762 30 atime=1702388426.561503498 30 ctime=1702388427.734501762 elk-9.2.12/src/r3frac.f900000644002504400250440000000221614536061313016452 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3frac ! !INTERFACE: pure subroutine r3frac(eps,v) ! !INPUT/OUTPUT PARAMETERS: ! eps : zero component tolerance (in,real) ! v : input vector (inout,real(3)) ! !DESCRIPTION: ! Finds the fractional part of each component of a real 3-vector using the ! function ${\rm frac}\,(x)=x-\lfloor x\rfloor$. A component is taken to be ! zero if it lies within the intervals $[0,\epsilon)$ or $(1-\epsilon,1]$. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) ! Removed iv, September 2011 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: eps real(8), intent(inout) :: v(3) ! local variables real(8) t1 t1=1.d0-eps v(1)=v(1)-int(v(1)) if (v(1) < 0.d0) v(1)=v(1)+1.d0 if ((v(1) < eps).or.(v(1) > t1)) v(1)=0.d0 v(2)=v(2)-int(v(2)) if (v(2) < 0.d0) v(2)=v(2)+1.d0 if ((v(2) < eps).or.(v(2) > t1)) v(2)=0.d0 v(3)=v(3)-int(v(3)) if (v(3) < 0.d0) v(3)=v(3)+1.d0 if ((v(3) < eps).or.(v(3) > t1)) v(3)=0.d0 end subroutine !EOC elk-9.2.12/src/PaxHeaders/genapwlofr.f900000644000000000000000000000013014536061313014711 xustar0029 mtime=1702388427.73550176 30 atime=1702388426.563503495 29 ctime=1702388427.73550176 elk-9.2.12/src/genapwlofr.f900000644002504400250440000000134414536061313017437 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genapwlofr use modomp implicit none ! local variables integer nthd call holdthd(2,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP SECTIONS !$OMP SECTION ! generate the APW radial functions call genapwfr !$OMP SECTION ! generate the local-orbital radial functions call genlofr !$OMP END SECTIONS !$OMP SECTIONS !$OMP SECTION ! compute the overlap radial integrals call olprad !$OMP SECTION ! compute the Hamiltonian radial integrals call hmlrad !$OMP END SECTIONS !$OMP END PARALLEL call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/gridsize.f900000644000000000000000000000013214536061313014367 xustar0030 mtime=1702388427.737501757 30 atime=1702388426.564503494 30 ctime=1702388427.737501757 elk-9.2.12/src/gridsize.f900000644002504400250440000000342314536061313017113 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: gridsize ! !INTERFACE: subroutine gridsize(avec,gmaxvr,ngridg,ngtot,intgv) ! !INPUT/OUTPUT PARAMETERS: ! avec : lattice vectors (in,real(3,3)) ! gmaxvr : G-vector cut-off (in,real) ! ngridg : G-vector grid sizes (out,integer(3)) ! ngtot : total number of G-vectors (out,integer) ! intgv : integer grid intervals for each direction (out,integer(2,3)) ! !DESCRIPTION: ! Finds the ${\bf G}$-vector grid which completely contains the vectors with ! $G= 0).and.((l-m2-k) >= 0).and.((m2-m1+k) >= 0)) then j=2*(l-k)+m1-m2 if (j == 0) then t2=1.d0 else t2=cb**j end if j=2*k+m2-m1 if (j /= 0) t2=t2*sb**j t2=t2/(factn(k)*factn(l+m1-k)*factn(l-m2-k)*factn(m2-m1+k)) if (mod(k,2) /= 0) t2=-t2 sm=sm+t2 end if end do dy(lm1,lm2)=sqrt(t1*factn(l+m2)*factn(l-m2))*sm end do end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/ssfext.f900000644000000000000000000000013214536061313014063 xustar0030 mtime=1702388427.743501748 30 atime=1702388426.571503484 30 ctime=1702388427.743501748 elk-9.2.12/src/ssfext.f900000644002504400250440000000122414536061313016604 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine ssfext(iq,fext) use modmain implicit none ! arguments integer, intent(in) :: iq character(*), intent(out) :: fext ! local variables integer i,j,m(3),n(3) ! external functions integer, external :: gcd do i=1,3 if (ivq(i,iq) /= 0) then j=gcd(ivq(i,iq),ngridq(i)) m(i)=ivq(i,iq)/j n(i)=ngridq(i)/j else m(i)=0 n(i)=0 end if end do write(fext,'("_Q",2I2.2,"_",2I2.2,"_",2I2.2,".OUT")') m(1),n(1),m(2),n(2), & m(3),n(3) end subroutine elk-9.2.12/src/PaxHeaders/writestate.f900000644000000000000000000000013214536061313014742 xustar0030 mtime=1702388427.745501745 30 atime=1702388426.573503481 30 ctime=1702388427.745501745 elk-9.2.12/src/writestate.f900000644002504400250440000000662714536061313017477 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writestate ! !INTERFACE: subroutine writestate ! !USES: use modmain use moddftu ! !DESCRIPTION: ! Writes the charge density, potentials and other relevant variables to the ! file {\tt STATE.OUT}. Note to developers: changes to the way the variables ! are written should be mirrored in {\tt readstate}. ! ! !REVISION HISTORY: ! Created May 2003 (JKD) !EOP !BOC implicit none ! local variables integer idm,is,ias ! allocatable arrays real(8), allocatable :: rfmt(:,:,:),rvfmt(:,:,:,:),rvfcmt(:,:,:,:) open(100,file='STATE'//trim(filext),form='UNFORMATTED',action='WRITE') write(100) version write(100) spinpol write(100) nspecies write(100) lmmaxo write(100) nrmtmax write(100) nrcmtmax do is=1,nspecies write(100) natoms(is) write(100) nrmt(is) write(100) rsp(1:nrmt(is),is) write(100) nrcmt(is) write(100) rcmt(1:nrcmt(is),is) end do write(100) ngridg write(100) ngvec write(100) ndmag write(100) nspinor write(100) fsmtype write(100) ftmtype write(100) dftu write(100) lmmaxdm write(100) xcgrad ! muffin-tin functions are unpacked to maintain backward compatibility allocate(rfmt(lmmaxo,nrmtmax,natmtot)) if (spinpol) then allocate(rvfmt(lmmaxo,nrmtmax,natmtot,ndmag)) allocate(rvfcmt(lmmaxo,nrcmtmax,natmtot,ndmag)) end if ! write the density do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),rhomt(:,ias),rfmt(:,:,ias)) end do write(100) rfmt,rhoir ! write the Coulomb potential do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),vclmt(:,ias),rfmt(:,:,ias)) end do write(100) rfmt,vclir ! write the exchange-correlation potential do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),vxcmt(:,ias),rfmt(:,:,ias)) end do write(100) rfmt,vxcir ! write the Kohn-Sham effective potential do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),vsmt(:,ias),rfmt(:,:,ias)) end do write(100) rfmt,vsir if (spinpol) then ! write the magnetisation, exchange-correlation and effective magnetic fields do idm=1,ndmag do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),magmt(:,ias,idm), & rvfmt(:,:,ias,idm)) end do end do write(100) rvfmt,magir do idm=1,ndmag do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),bxcmt(:,ias,idm), & rvfmt(:,:,ias,idm)) end do end do write(100) rvfmt,bxcir do idm=1,ndmag do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrcmt(is),nrcmti(is),bsmt(:,ias,idm), & rvfcmt(:,:,ias,idm)) end do end do write(100) rvfcmt,bsir ! write fixed spin moment magnetic fields if (fsmtype /= 0) then write(100) bfsmc write(100) bfsmcmt end if end if ! write the meta-GGA exchange-correlation potential if (any(xcgrad == [3,4,5])) then do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),wxcmt(:,ias),rfmt(:,:,ias)) end do write(100) rfmt,wxcir end if ! write the potential matrix in each muffin-tin if ((dftu /= 0).or.(ftmtype /= 0)) then write(100) vmatmt end if ! write the fixed tensor moment potential matrix if (ftmtype /= 0) then write(100) vmftm end if close(100) deallocate(rfmt) if (spinpol) deallocate(rvfmt,rvfcmt) end subroutine !EOC elk-9.2.12/src/PaxHeaders/sdelta_sq.f900000644000000000000000000000013214536061313014526 xustar0030 mtime=1702388427.746501744 30 atime=1702388426.574503479 30 ctime=1702388427.746501744 elk-9.2.12/src/sdelta_sq.f900000644002504400250440000000136714536061313017257 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sdelta_sq ! !INTERFACE: elemental real(8) function sdelta_sq(x) ! !INPUT/OUTPUT PARAMETERS: ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the square-wave pulse approximation to the Dirac delta function ! $$ \tilde\delta(x)=\left\{\begin{array}{ll} ! 1 & \quad |x|\le 1/2 \\ ! 0 & \quad |x|>1/2 \end{array}\right. $$ ! ! !REVISION HISTORY: ! Created July 2008 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: x if (abs(x) <= 0.5d0) then sdelta_sq=1.d0 else sdelta_sq=0.d0 end if end function !EOC elk-9.2.12/src/PaxHeaders/potxcir.f900000644000000000000000000000013214536061313014237 xustar0030 mtime=1702388427.747501742 30 atime=1702388426.576503476 30 ctime=1702388427.747501742 elk-9.2.12/src/potxcir.f900000644002504400250440000002234514536061313016767 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potxcir(xctype_,rhoir_,magir_,tauir_,exir_,ecir_,vxcir_,bxcir_, & wxcir_) use modmain use modxcifc implicit none ! arguments integer, intent(in) :: xctype_(3) real(8), intent(in) :: rhoir_(ngtot),magir_(ngtot,ndmag),tauir_(ngtot,nspinor) real(8), intent(out) :: exir_(ngtot),ecir_(ngtot) real(8), intent(out) :: vxcir_(ngtot),bxcir_(ngtot,ndmag),wxcir_(ngtot) ! local variables integer n,i real(8) t0,t1,t2,t3,t4 ! allocatable arrays real(8), allocatable :: rhoup(:),rhodn(:) real(8), allocatable :: gvrho(:,:),gvup(:,:),gvdn(:,:) real(8), allocatable :: grho(:),gup(:),gdn(:) real(8), allocatable :: g2rho(:),g2up(:),g2dn(:) real(8), allocatable :: g3rho(:),g3up(:),g3dn(:) real(8), allocatable :: grho2(:),gup2(:),gdn2(:),gupdn(:) real(8), allocatable :: vx(:),vxup(:),vxdn(:) real(8), allocatable :: vc(:),vcup(:),vcdn(:) real(8), allocatable :: dxdgr2(:),dxdgu2(:),dxdgd2(:),dxdgud(:) real(8), allocatable :: dcdgr2(:),dcdgu2(:),dcdgd2(:),dcdgud(:) real(8), allocatable :: dxdg2r(:),dxdg2u(:),dxdg2d(:) real(8), allocatable :: dcdg2r(:),dcdg2u(:),dcdg2d(:) real(8), allocatable :: dtdr(:),dtdru(:),dtdrd(:) real(8), allocatable :: wx(:),wxup(:),wxdn(:) real(8), allocatable :: wc(:),wcup(:),wcdn(:) n=ngtot if (spinpol) then allocate(rhoup(n),rhodn(n)) allocate(vxup(n),vxdn(n),vcup(n),vcdn(n)) if (xcgrad == 1) then allocate(grho(n),gup(n),gdn(n)) allocate(g2up(n),g2dn(n)) allocate(g3rho(n),g3up(n),g3dn(n)) else if (xcgrad == 2) then allocate(g2up(n),g2dn(n)) allocate(gvup(n,3),gvdn(n,3)) allocate(gup2(n),gdn2(n),gupdn(n)) allocate(dxdgu2(n),dxdgd2(n),dxdgud(n)) allocate(dcdgu2(n),dcdgd2(n),dcdgud(n)) else if (any(xcgrad == [3,4,5])) then allocate(g2up(n),g2dn(n)) allocate(gvup(n,3),gvdn(n,3)) allocate(gup2(n),gdn2(n),gupdn(n)) allocate(dxdgu2(n),dxdgd2(n),dxdgud(n)) allocate(dcdgu2(n),dcdgd2(n),dcdgud(n)) allocate(dxdg2u(n),dxdg2d(n)) allocate(dcdg2u(n),dcdg2d(n)) allocate(dtdru(n),dtdrd(n)) allocate(wxup(n),wxdn(n),wcup(n),wcdn(n)) end if else allocate(vx(n),vc(n)) if (xcgrad == 1) then allocate(grho(n),g2rho(n),g3rho(n)) else if (xcgrad == 2) then allocate(g2rho(n),gvrho(n,3),grho2(n)) allocate(dxdgr2(n),dcdgr2(n)) else if (any(xcgrad == [3,4,5])) then allocate(g2rho(n),gvrho(n,3),grho2(n)) allocate(dxdgr2(n),dcdgr2(n)) allocate(dxdg2r(n),dcdg2r(n)) allocate(dtdr(n),wx(n),wc(n)) end if end if if (spinpol) then !------------------------! ! spin-polarised ! !------------------------! if (ncmag) then ! non-collinear if (xcgrad == 0) then ! LSDA do i=1,n t0=rhoir_(i) t1=sqrt(magir_(i,1)**2+magir_(i,2)**2+magir_(i,3)**2)*sxcscf rhoup(i)=0.5d0*(t0+t1) rhodn(i)=0.5d0*(t0-t1) end do else ! functionals which require gradients do i=1,n t0=rhoir_(i) t1=sqrt(magir_(i,1)**2+magir_(i,2)**2+magir_(i,3)**2+dncgga)*sxcscf rhoup(i)=0.5d0*(t0+t1) rhodn(i)=0.5d0*(t0-t1) end do end if else ! collinear do i=1,n t0=rhoir_(i) t1=magir_(i,1)*sxcscf rhoup(i)=0.5d0*(t0+t1) rhodn(i)=0.5d0*(t0-t1) end do end if if (xcgrad <= 0) then call xcifc(xctype_,n,tempa=swidth,rhoup=rhoup,rhodn=rhodn,ex=exir_, & ec=ecir_,vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn) else if (xcgrad == 1) then call ggair_sp_1(rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn) call xcifc(xctype_,n,rhoup=rhoup,rhodn=rhodn,grho=grho,gup=gup,gdn=gdn, & g2up=g2up,g2dn=g2dn,g3rho=g3rho,g3up=g3up,g3dn=g3dn,ex=exir_,ec=ecir_, & vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn) else if (xcgrad == 2) then call ggair_sp_2a(rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2,gupdn) call xcifc(xctype_,n,rhoup=rhoup,rhodn=rhodn,gup2=gup2,gdn2=gdn2, & gupdn=gupdn,ex=exir_,ec=ecir_,vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn, & dxdgu2=dxdgu2,dxdgd2=dxdgd2,dxdgud=dxdgud,dcdgu2=dcdgu2,dcdgd2=dcdgd2, & dcdgud=dcdgud) call ggair_sp_2b(g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu2,dxdgd2, & dxdgud,dcdgu2,dcdgd2,dcdgud) else if (any(xcgrad == [3,4,5])) then call ggair_sp_2a(rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2,gupdn) ! enforce the von Weizsacker lower bound call k_vwlb(n,rhoup,gup2,tauir_(:,1)) call k_vwlb(n,rhodn,gdn2,tauir_(:,2)) call xcifc(xctype_,n,rhoup=rhoup,rhodn=rhodn,g2up=g2up,g2dn=g2dn, & gup2=gup2,gdn2=gdn2,gupdn=gupdn,tauup=tauir_(:,1),taudn=tauir_(:,2), & ex=exir_,ec=ecir_,vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn,dxdgu2=dxdgu2, & dxdgd2=dxdgd2,dxdgud=dxdgud,dcdgu2=dcdgu2,dcdgd2=dcdgd2,dcdgud=dcdgud, & dxdg2u=dxdg2u,dxdg2d=dxdg2d,dcdg2u=dcdg2u,dcdg2d=dcdg2d,wxup=wxup, & wxdn=wxdn,wcup=wcup,wcdn=wcdn) call ggair_sp_2b(g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu2,dxdgd2, & dxdgud,dcdgu2,dcdgd2,dcdgud) if (xcgrad == 5) then call ggair_5b(vxup,vcup,dxdg2u,dcdg2u) call ggair_5b(vxdn,vcdn,dxdg2d,dcdg2d) end if ! determine δτ(r')/δρ(r) using an approximate kinetic energy functional if (xcgrad /= 3) then call xcifc(ktype,n,rhoup=rhoup,rhodn=rhodn,g2up=g2up,g2dn=g2dn,gup2=gup2,& gdn2=gdn2,tauup=tauir_(:,1),taudn=tauir_(:,2),dtdru=dtdru,dtdrd=dtdrd, & dtdgu2=dxdgu2,dtdgd2=dxdgd2,dtdg2u=dxdg2u,dtdg2d=dxdg2d,wxup=dcdgu2, & wxdn=dcdgd2) call ggair_4(gvup,vxup,vcup,wxup,wcup,dtdru,dxdgu2) call ggair_4(gvdn,vxdn,vcdn,wxdn,wcdn,dtdrd,dxdgd2) if (kgrad == 3) then call ggair_5c(vxup,vcup,wxup,wcup,dxdg2u) call ggair_5c(vxdn,vcdn,wxdn,wcdn,dxdg2d) end if wxcir_(:)=0.5d0*(wxup(:)+wxdn(:)+wcup(:)+wcdn(:)) end if end if ! hybrid functionals if (hybrid) then t1=1.d0-hybridc ! scale exchange part of energy exir_(:)=t1*exir_(:) ! scale exchange part of potential vxup(1:n)=t1*vxup(1:n) vxdn(1:n)=t1*vxdn(1:n) end if if (ncmag) then ! non-collinear: spin rotate the local exchange potential do i=1,n t1=vxup(i)+vcup(i) t2=vxdn(i)+vcdn(i) vxcir_(i)=0.5d0*(t1+t2) ! determine the exchange-correlation magnetic field t3=0.5d0*(t1-t2) t4=rhoup(i)-rhodn(i) if (abs(t4) > 1.d-8) t4=t3/t4 bxcir_(i,:)=magir_(i,:)*t4 end do else ! collinear do i=1,n t1=vxup(i)+vcup(i) t2=vxdn(i)+vcdn(i) vxcir_(i)=0.5d0*(t1+t2) bxcir_(i,1)=0.5d0*(t1-t2) end do end if ! scale field if required if (tssxc) bxcir_(:,1:ndmag)=bxcir_(:,1:ndmag)*sxcscf else !--------------------------! ! spin-unpolarised ! !--------------------------! if (xcgrad <= 0) then call xcifc(xctype_,n,tempa=swidth,rho=rhoir_,ex=exir_,ec=ecir_,vx=vx,vc=vc) else if (xcgrad == 1) then call ggair_1(rhoir_,grho,g2rho,g3rho) call xcifc(xctype_,n,rho=rhoir_,grho=grho,g2rho=g2rho,g3rho=g3rho,ex=exir_,& ec=ecir_,vx=vx,vc=vc) else if (xcgrad == 2) then call ggair_2a(rhoir_,g2rho,gvrho,grho2) call xcifc(xctype_,n,rho=rhoir_,grho2=grho2,ex=exir_,ec=ecir_,vx=vx,vc=vc, & dxdgr2=dxdgr2,dcdgr2=dcdgr2) call ggair_2b(g2rho,gvrho,vx,vc,dxdgr2,dcdgr2) else if (any(xcgrad == [3,4,5])) then call ggair_2a(rhoir_,g2rho,gvrho,grho2) ! enforce the von Weizsacker lower bound call k_vwlb(n,rhoir_,grho2,tauir_) call xcifc(xctype_,n,rho=rhoir_,g2rho=g2rho,grho2=grho2,tau=tauir_, & ex=exir_,ec=ecir_,vx=vx,vc=vc,dxdgr2=dxdgr2,dcdgr2=dcdgr2,dxdg2r=dxdg2r, & dcdg2r=dcdg2r,wx=wx,wc=wc) call ggair_2b(g2rho,gvrho,vx,vc,dxdgr2,dcdgr2) if (xcgrad == 5) then call ggair_5b(vx,vc,dxdg2r,dcdg2r) end if ! determine δτ(r')/δρ(r) using an approximate kinetic energy functional if (xcgrad /= 3) then call xcifc(ktype,n,rho=rhoir_,g2rho=g2rho,grho2=grho2,tau=tauir_, & dtdr=dtdr,dtdgr2=dxdgr2,dtdg2r=dxdg2r,wx=dcdgr2) call ggair_4(gvrho,vx,vc,wx,wc,dtdr,dxdgr2) if (kgrad == 3) then call ggair_5c(vx,vc,wx,wc,dxdg2r) end if end if wxcir_(:)=wx(:)+wc(:) end if ! hybrid functionals if (hybrid) then t1=1.d0-hybridc ! scale exchange part of energy exir_(:)=t1*exir_(:) ! scale exchange part of potential vxcir_(:)=t1*vx(:)+vc(:) else vxcir_(:)=vx(:)+vc(:) end if end if if (spinpol) then deallocate(rhoup,rhodn,vxup,vxdn,vcup,vcdn) if (xcgrad == 1) then deallocate(grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn) else if (xcgrad == 2) then deallocate(g2up,g2dn) deallocate(gvup,gvdn) deallocate(gup2,gdn2,gupdn) deallocate(dxdgu2,dxdgd2,dxdgud) deallocate(dcdgu2,dcdgd2,dcdgud) else if (any(xcgrad == [3,4,5])) then deallocate(g2up,g2dn) deallocate(gvup,gvdn) deallocate(gup2,gdn2,gupdn) deallocate(dxdgu2,dxdgd2,dxdgud) deallocate(dcdgu2,dcdgd2,dcdgud) deallocate(dxdg2u,dxdg2d) deallocate(dcdg2u,dcdg2d) deallocate(dtdru,dtdrd) deallocate(wxup,wxdn,wcup,wcdn) end if else deallocate(vx,vc) if (xcgrad == 1) then deallocate(grho,g2rho,g3rho) else if (xcgrad == 2) then deallocate(g2rho,gvrho,grho2) deallocate(dxdgr2,dcdgr2) else if (any(xcgrad == [3,4,5])) then deallocate(g2rho,gvrho,grho2) deallocate(dxdgr2,dcdgr2,dxdg2r,dcdg2r) deallocate(dtdr,wx,wc) end if end if end subroutine elk-9.2.12/src/PaxHeaders/potxc.f900000644000000000000000000000013214536061313013704 xustar0030 mtime=1702388427.749501739 30 atime=1702388426.578503473 30 ctime=1702388427.749501739 elk-9.2.12/src/potxc.f900000644002504400250440000000457714536061313016443 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: potxc ! !INTERFACE: subroutine potxc(tsh,xctype_,rhomt_,rhoir_,magmt_,magir_,taumt_,tauir_,exmt_, & exir_,ecmt_,ecir_,vxcmt_,vxcir_,bxcmt_,bxcir_,wxcmt_,wxcir_) ! !USES: use modmain use modomp ! !DESCRIPTION: ! Computes the exchange-correlation potential and energy density. In the ! muffin-tin, the density is transformed from spherical harmonic coefficients ! $\rho_{lm}$ to spherical coordinates $(\theta,\phi)$ with a backward ! spherical harmonic transformation (SHT). Once calculated, the ! exchange-correlation potential and energy density are transformed with a ! forward SHT. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: tsh integer, intent(in) :: xctype_(3) real(8), intent(in) :: rhomt_(npmtmax,natmtot),rhoir_(ngtot) real(8), intent(in) :: magmt_(npmtmax,natmtot,ndmag),magir_(ngtot,ndmag) real(8), intent(in) :: taumt_(npmtmax,natmtot,nspinor),tauir_(ngtot,nspinor) real(8), intent(out) :: exmt_(npmtmax,natmtot),exir_(ngtot) real(8), intent(out) :: ecmt_(npmtmax,natmtot),ecir_(ngtot) real(8), intent(out) :: vxcmt_(npmtmax,natmtot),vxcir_(ngtot) real(8), intent(out) :: bxcmt_(npmtmax,natmtot,ndmag),bxcir_(ngtot,ndmag) real(8), intent(out) :: wxcmt_(npmtmax,natmtot),wxcir_(ngtot) ! local variables integer ias,nthd call holdthd(max(2,natmtot),nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) ! muffin-tin exchange-correlation potential, field and energy density !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot call potxcmt(tsh,ias,xctype_,rhomt_,magmt_,taumt_,exmt_,ecmt_,vxcmt_,bxcmt_, & wxcmt_) end do !$OMP END DO NOWAIT ! interstitial exchange-correlation potential, field and energy density !$OMP SINGLE call potxcir(xctype_,rhoir_,magir_,tauir_,exir_,ecir_,vxcir_,bxcir_,wxcir_) !$OMP END SINGLE ! symmetrise the exchange-correlation potential and magnetic field if (tsh) then !$OMP SECTIONS !$OMP SECTION call symrf(nrmt,nrmti,npmt,ngridg,ngtot,ngvec,igfft,npmtmax,vxcmt_,vxcir_) !$OMP SECTION if (spinpol) call symrvf(.true.,ncmag,nrmt,nrmti,npmt,ngridg,ngtot,ngvec, & igfft,npmtmax,bxcmt_,ngtot,bxcir_) !$OMP END SECTIONS end if !$OMP END PARALLEL call freethd(nthd) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rcfmtinp.f900000644000000000000000000000013214536061313014371 xustar0030 mtime=1702388427.750501738 30 atime=1702388426.579503472 30 ctime=1702388427.750501738 elk-9.2.12/src/rcfmtinp.f900000644002504400250440000000202014536061313017105 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure complex(8) function rcfmtinp(nr,nri,wr,rfmt,cfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) real(8), intent(in) :: rfmt(*) complex(4), intent(in) :: cfmt(*) ! local variables integer n,ir,i complex(8) z1,z2 ! compute the dot-products for each radial point and integrate over r z1=0.d0 i=1 if (lmaxi == 1) then do ir=1,nri z1=z1+wr(ir) & *(rfmt(i)*cfmt(i) & +rfmt(i+1)*cfmt(i+1) & +rfmt(i+2)*cfmt(i+2) & +rfmt(i+3)*cfmt(i+3)) i=i+4 end do z1=pi*z1 else n=lmmaxi-1 do ir=1,nri z1=z1+wr(ir)*dot_product(rfmt(i:i+n),cfmt(i:i+n)) i=i+lmmaxi end do z1=(fourpi/dble(lmmaxi))*z1 end if z2=0.d0 n=lmmaxo-1 do ir=nri+1,nr z2=z2+wr(ir)*dot_product(rfmt(i:i+n),cfmt(i:i+n)) i=i+lmmaxo end do rcfmtinp=z1+(fourpi/dble(lmmaxo))*z2 end function elk-9.2.12/src/PaxHeaders/rhoplot.f900000644000000000000000000000013214536061313014236 xustar0030 mtime=1702388427.752501735 30 atime=1702388426.581503469 30 ctime=1702388427.752501735 elk-9.2.12/src/rhoplot.f900000644002504400250440000000254614536061313016767 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rhoplot ! !INTERFACE: subroutine rhoplot ! !USES: use modmain ! !DESCRIPTION: ! Outputs the charge density, read in from {\tt STATE.OUT}, for 1D, 2D or 3D ! plotting. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! initialise universal variables call init0 ! read density from file call readstate ! write the density plot to file select case(task) case(31) open(50,file='RHO1D.OUT',form='FORMATTED',action='WRITE') open(51,file='RHOLINES.OUT',form='FORMATTED',action='WRITE') call plot1d(50,51,1,rhomt,rhoir) close(50) close(51) write(*,*) write(*,'("Info(rhoplot):")') write(*,'(" 1D density plot written to RHO1D.OUT")') write(*,'(" vertex location lines written to RHOLINES.OUT")') case(32) open(50,file='RHO2D.OUT',form='FORMATTED',action='WRITE') call plot2d(.false.,50,1,rhomt,rhoir) close(50) write(*,*) write(*,'("Info(rhoplot): 2D density plot written to RHO2D.OUT")') case(33) open(50,file='RHO3D.OUT',form='FORMATTED',action='WRITE') call plot3d(50,1,rhomt,rhoir) close(50) write(*,*) write(*,'("Info(rhoplot): 3D density plot written to RHO3D.OUT")') end select end subroutine !EOC elk-9.2.12/src/PaxHeaders/occupy.f900000644000000000000000000000013214536061313014051 xustar0030 mtime=1702388427.753501733 30 atime=1702388426.582503467 30 ctime=1702388427.753501733 elk-9.2.12/src/occupy.f900000644002504400250440000000612214536061313016574 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: occupy ! !INTERFACE: subroutine occupy ! !USES: use modmain use modtest ! !DESCRIPTION: ! Finds the Fermi energy and sets the occupation numbers for the ! second-variational states using the routine {\tt fermi}. ! ! !REVISION HISTORY: ! Created February 2004 (JKD) ! Added gap estimation, November 2009 (F. Cricchio) ! Added adaptive smearing width, April 2010 (T. Bjorkman) !EOP !BOC implicit none ! local variables integer, parameter :: maxit=1000 integer ik,ist,it real(8) e0,e1,e,de real(8) ei0,ei1,ed0,ed1 real(8) chg,w,x,t0 ! external functions real(8), external :: sdelta,stheta ! determine the smearing width automatically if required if ((autoswidth).and.(iscl > 1)) call findswidth ! find minimum and maximum eigenvalues e0=evalsv(1,1) e1=e0 do ik=1,nkpt do ist=1,nstsv e=evalsv(ist,ik) if (e < e0) e0=e if (e > e1) e1=e end do end do if (e0 < e0min) then write(*,*) write(*,'("Warning(occupy): minimum eigenvalue less than minimum & &linearisation energy : ",2G18.10)') e0,e0min write(*,'(" for s.c. loop ",I5)') iscl end if t0=1.d0/swidth ! determine the Fermi energy using the bisection method do it=1,maxit efermi=0.5d0*(e0+e1) chg=0.d0 do ik=1,nkpt w=wkpt(ik) do ist=1,nstsv e=evalsv(ist,ik) if (e < e0min) then occsv(ist,ik)=0.d0 else x=(efermi-e)*t0 occsv(ist,ik)=occmax*stheta(stype,x) chg=chg+w*occsv(ist,ik) end if end do end do if (chg < chgval) then e0=efermi else e1=efermi end if if ((e1-e0) < 1.d-12) goto 10 end do write(*,*) write(*,'("Warning(occupy): could not find Fermi energy")') 10 continue ! find the density of states at the Fermi surface in units of ! states/Hartree/unit cell fermidos=0.d0 do ik=1,nkpt w=wkpt(ik) do ist=1,nstsv x=(evalsv(ist,ik)-efermi)*t0 fermidos=fermidos+w*sdelta(stype,x) end do if (abs(occsv(nstsv,ik)) > epsocc) then write(*,*) write(*,'("Warning(occupy): not enough empty states for k-point ",I6)') ik write(*,'(" and s.c. loop ",I5)') iscl end if end do fermidos=fermidos*occmax*t0 ! write Fermi density of states to test file call writetest(500,'DOS at Fermi energy',tol=5.d-3,rv=fermidos) ! estimate the indirect and direct band gaps (FC) ei0=-1.d8; ei1=1.d8 de=1.d8 ikgap(1:3)=1 do ik=1,nkpt ed0=-1.d8; ed1=1.d8 do ist=1,nstsv e=evalsv(ist,ik) if (e <= efermi) then if (e > ed0) ed0=e if (e > ei0) then ! transfer is a workaround for a bug in Intel Fortran versions 17 and 18 ikgap(1)=transfer(ik,ik) ei0=e end if else if (e < ed1) ed1=e if (e < ei1) then ikgap(2)=ik ei1=e end if end if end do e=ed1-ed0 if (e < de) then ikgap(3)=ik de=e end if end do bandgap(1)=ei1-ei0 bandgap(2)=de ! write band gap to test file call writetest(510,'estimated indirect band gap',tol=2.d-2,rv=bandgap(1)) end subroutine !EOC elk-9.2.12/src/PaxHeaders/symveca.f900000644000000000000000000000013214536061313014216 xustar0030 mtime=1702388427.754501732 30 atime=1702388426.584503464 30 ctime=1702388427.754501732 elk-9.2.12/src/symveca.f900000644002504400250440000000224114536061313016737 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: symveca ! !INTERFACE: subroutine symveca(vca) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! vca : vectors in Cartesian coordinates for all atoms (in,real(3,natmtot)) ! !DESCRIPTION: ! Symmetrises a 3-vector at each atomic site by rotating and averaging over ! equivalent atoms. Only the spatial part of each crystal symmetry is used. ! ! !REVISION HISTORY: ! Created June 2004 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(inout) :: vca(3,natmtot) ! local variables integer is,ia,ja,ias,jas integer isym,lspl real(8) v(3),t1 ! automatic arrays real(8) vs(3,natmtot) ! make symmetric average vs(:,:)=0.d0 do isym=1,nsymcrys lspl=lsplsymc(isym) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ja=ieqatom(ia,is,isym) jas=idxas(ja,is) call r3mv(symlatc(:,:,lspl),vca(:,jas),v) vs(:,ias)=vs(:,ias)+v(:) end do end do end do ! normalise t1=1.d0/dble(nsymcrys) vca(:,:)=t1*vs(:,:) end subroutine !EOC elk-9.2.12/src/PaxHeaders/jprplot.f900000644000000000000000000000013214536061313014241 xustar0030 mtime=1702388427.756501729 30 atime=1702388426.585503463 30 ctime=1702388427.756501729 elk-9.2.12/src/jprplot.f900000644002504400250440000000335314536061313016767 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine jprplot use modmain use modmpi implicit none ! local variables integer ik ! initialise universal variables call init0 call init1 ! read density and potentials from file call readstate ! generate the core wavefunctions and densities call gencore ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the occupation numbers from file do ik=1,nkpt call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! compute the paramagnetic current density call genjpr ! plot the current density (master process only) if (mp_mpi) then write(*,*) write(*,'("Info(jprplot):")') select case(task) case(371) open(50,file='JPR1D.OUT',form='FORMATTED') open(51,file='JPRLINES.OUT',form='FORMATTED') call plot1d(50,51,3,jrmt,jrir) close(50) write(*,'(" 1D paramagnetic current density written to JPR1D.OUT")') write(*,'(" vertex location lines written to JPRLINES.OUT")') case(372) open(50,file='JPR2D.OUT',form='FORMATTED') call plot2d(.true.,50,3,jrmt,jrir) close(50) write(*,'(" 2D paramagnetic current density written to JPR2D.OUT")') write(*,'(" Note that the 3D vector field has been locally projected")') write(*,'(" onto the 2D plotting plane axes")') case(373) open(50,file='JPR3D.OUT',form='FORMATTED') call plot3d(50,3,jrmt,jrir) close(50) write(*,'(" 3D paramagnetic current density written to JPR3D.OUT")') end select end if end subroutine elk-9.2.12/src/PaxHeaders/genvmatk.f900000644000000000000000000000013114536061313014362 xustar0030 mtime=1702388427.757501727 29 atime=1702388426.58750346 30 ctime=1702388427.757501727 elk-9.2.12/src/genvmatk.f900000644002504400250440000000704514536061313017113 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genvmatk(vmt,vir,ngp,igpig,wfmt,ld,wfgp,vmat) use modmain use moddftu use modomp implicit none ! arguments ! the potential is multiplied by the radial integration weights in the ! muffin-tin and by the characteristic function in the interstitial region real(8), intent(in) :: vmt(npcmtmax,natmtot),vir(ngtot) integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(4), intent(in) :: wfmt(npcmtmax,natmtot,nspinor,nstsv) integer, intent(in) :: ld complex(4), intent(in) :: wfgp(ld,nspinor,nstsv) complex(8), intent(out) :: vmat(nstsv,nstsv) ! local variables integer ist,jst,ispn,jspn integer is,ias,nrc,nrci,nrco integer npc,npc2,ipco integer n,igp,nthd ! automatic arrays complex(4) wfmt1(npcmtmax),wfmt2(npcmtmax),c(ngkmax) ! allocatable arrays complex(4), allocatable :: wfir(:) ! external functions real(4), external :: sdot complex(4), external :: cdotc ! zero the upper triangular matrix elements do jst=1,nstsv vmat(1:jst,jst)=0.d0 end do call holdthd(nstsv,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfmt1,wfmt2,wfir,c) & !$OMP PRIVATE(ias,is,nrc,nrci,nrco) & !$OMP PRIVATE(npc,npc2,ipco,ist,jst) & !$OMP PRIVATE(ispn,jspn,n,igp) & !$OMP NUM_THREADS(nthd) !-------------------------! ! muffin-tin part ! !-------------------------! do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) nrco=nrc-nrci npc=npcmt(is) npc2=npc*2 ipco=npcmti(is)+1 !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstsv wfmt1(1:npc)=vmt(1:npc,ias)*wfmt(1:npc,ias,ispn,jst) ! apply muffin-tin DFT+U potential matrix if required (note that this should be ! used only in the spin-unpolarised case) if (dftu /= 0) then if (any(tvmmt(0:lmaxdm,ias))) then call cgemm('N','N',lmmaxi,nrci,lmmaxi,cone,vmatmti(1,1,1,1,ias), & lmmaxi,wfmt(1,ias,ispn,jst),lmmaxi,czero,wfmt2,lmmaxi) call cgemm('N','N',lmmaxo,nrco,lmmaxo,cone,vmatmto(1,1,1,1,ias), & lmmaxo,wfmt(ipco,ias,ispn,jst),lmmaxo,czero,wfmt2(ipco),lmmaxo) call cfcmtwr(nrc,nrci,wrcmt(:,is),wfmt2) wfmt1(1:npc)=wfmt1(1:npc)+wfmt2(1:npc) end if end if ! compute the inner products do ist=1,jst-1 vmat(ist,jst)=vmat(ist,jst)+cdotc(npc,wfmt(1,ias,ispn,ist),1,wfmt1,1) end do vmat(jst,jst)=vmat(jst,jst)+sdot(npc2,wfmt(1,ias,ispn,jst),1,wfmt1,1) end do !$OMP END DO end do end do !---------------------------! ! interstitial part ! !---------------------------! allocate(wfir(ngtot)) !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstsv do ispn=1,nspinor jspn=jspnfv(ispn) n=ngp(jspn) ! Fourier transform wavefunction to real-space wfir(:)=0.e0 do igp=1,n wfir(igfft(igpig(igp,jspn)))=wfgp(igp,ispn,jst) end do call cfftifc(3,ngridg,1,wfir) ! apply potential to wavefunction wfir(1:ngtot)=vir(1:ngtot)*wfir(1:ngtot) ! Fourier transform to G+p-space call cfftifc(3,ngridg,-1,wfir) do igp=1,n c(igp)=wfir(igfft(igpig(igp,jspn))) end do ! compute the inner products do ist=1,jst-1 vmat(ist,jst)=vmat(ist,jst)+cdotc(n,wfgp(1,ispn,ist),1,c,1) end do vmat(jst,jst)=vmat(jst,jst)+sdot(n*2,wfgp(1,ispn,jst),1,c,1) end do end do !$OMP END DO deallocate(wfir) !$OMP END PARALLEL call freethd(nthd) ! lower triangular part do ist=1,nstsv do jst=1,ist-1 vmat(ist,jst)=conjg(vmat(jst,ist)) end do end do end subroutine elk-9.2.12/src/PaxHeaders/geomopt.f900000644000000000000000000000013214536061313014221 xustar0030 mtime=1702388427.758501726 30 atime=1702388426.588503458 30 ctime=1702388427.758501726 elk-9.2.12/src/geomopt.f900000644002504400250440000001435614536061313016754 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine geomopt use modmain use modmpi use moddelf use modvars implicit none ! local variables integer istp,jstp,is,i real(8) ds ! initialise global variables (and the muffin-tin radii) call init0 call init1 ! trim the Fourier components of the Kohn-Sham potential trimvg0=trimvg trimvg=.true. ! store orginal volume omega0=omega ! atomic forces are required tforce=.true. if (task == 3) then trdstate=.true. else trdstate=.false. end if ! initial atomic step sizes if (allocated(tauatp)) deallocate(tauatp) allocate(tauatp(natmtot)) tauatp(:)=tau0atp ! initialise the previous total force on each atom if (allocated(forcetotp)) deallocate(forcetotp) allocate(forcetotp(3,natmtot)) forcetotp(:,:)=0.d0 ! initial lattice optimisation step size taulatv(:)=tau0latv ! initialise previous stress tensor stressp(:)=0.d0 ! open formatted files for writing if (mp_mpi) then open(71,file='TOTENERGY_OPT.OUT',form='FORMATTED') open(72,file='FORCEMAX.OUT',form='FORMATTED') open(73,file='GEOMETRY_OPT.OUT',form='FORMATTED') open(74,file='IADIST_OPT.OUT',form='FORMATTED') open(75,file='FORCES_OPT.OUT',form='FORMATTED') if (spinpol) then open(78,file='MOMENTM_OPT.OUT',form='FORMATTED') end if if (latvopt /= 0) then open(86,file='STRESSMAX.OUT',form='FORMATTED') open(87,file='STRESS_OPT.OUT',form='FORMATTED') open(88,file='OMEGA_OPT.OUT',form='FORMATTED') end if end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) do istp=1,maxlatvstp do jstp=1,maxatpstp if (atpopt == 0) exit if (mp_mpi) then write(*,'("Info(geomopt): atomic position optimisation step : ",I6)') jstp end if ! ground-state and forces calculation call gndstate ! check for stop signal if (tstop) goto 10 ! subsequent calculations will read in the potential from STATE.OUT trdstate=.true. ! update the atomic positions call atpstep ! write total energy, forces, atomic positions, interatomic distances to file if (mp_mpi) then write(71,'(G22.12)') engytot flush(71) write(72,'(G18.10)') forcemax flush(72) write(73,*); write(73,*) write(73,'("! Atomic position optimisation step : ",I6)') jstp call writegeom(73) flush(73) write(74,*); write(74,*) write(74,'("Atomic position optimisation step : ",I6)') jstp call writeiad(74) flush(74) write(75,*); write(75,*) write(75,'("Atomic position optimisation step : ",I6)') jstp call writeforces(75) write(75,*) write(75,'("Maximum force magnitude over all atoms (target) : ",G18.10,& &" (",G18.10,")")') forcemax,epsforce flush(75) if (spinpol) then write(78,'(G22.12)') momtotm flush(78) end if end if ! broadcast forcemax from master process to all other processes call mpi_bcast(forcemax,1,mpi_double_precision,0,mpicom,ierror) ! check force convergence if (forcemax <= epsforce) then if (mp_mpi) then write(75,*) write(75,'("Force convergence target achieved")') end if exit end if if (mp_mpi.and.(jstp == maxatpstp)) then write(*,*) write(*,'("Warning(geomopt): atomic position optimisation failed to & &converge in ",I6," steps")') maxatpstp end if ! store the current forces array forcetotp(:,:)=forcetot(:,:) ! end loop over atomic position optimisation end do ! exit lattice optimisation loop if required if (latvopt == 0) exit if (mp_mpi) then write(*,'("Info(geomopt): lattice optimisation step : ",I6)') istp end if ! generate the stress tensor call genstress ! take average of current and previous stress tensors stress(:)=0.5d0*(stress(:)+stressp(:)) ! check for stop signal if (tstop) goto 10 ! update the lattice vectors call latvstep ! write stress tensor components and maximum magnitude to file if (mp_mpi) then write(71,'(G22.12)') engytot flush(71) write(73,*); write(73,*) write(73,'("! Lattice optimisation step : ",I6)') istp call writegeom(73) flush(73) write(74,*); write(74,*) write(74,'("Lattice optimisation step : ",I6)') istp call writeiad(74) flush(74) if (spinpol) then write(78,'(G22.12)') momtotm flush(78) end if write(86,'(G18.10)') stressmax flush(86) write(87,*) write(87,'("Lattice optimisation step : ",I6)') istp write(87,'("Derivative of total energy w.r.t. strain tensors :")') do i=1,nstrain write(87,'(G18.10)') stress(i) end do flush(87) write(88,'(G18.10)') omega flush(88) end if ! check for stress convergence if (latvopt == 1) then ds=sum(abs(stress(:))) else ! stress may be non-zero because of volume constraint; check change in stress ! tensor instead ds=sum(abs(stress(:)-stressp(:))) end if ! broadcast ds from master process to all other processes call mpi_bcast(ds,1,mpi_double_precision,0,mpicom,ierror) if ((istp >= 3).and.(ds <= epsstress*tau0latv)) then if (mp_mpi) then write(87,*) write(87,'("Stress convergence target achieved")') end if exit end if if (mp_mpi.and.(istp == maxlatvstp)) then write(*,*) write(*,'("Warning(geomopt): lattice optimisation failed to converge in ",& &I6," steps")') maxlatvstp end if stressp(1:nstrain)=stress(1:nstrain) ! delete the eigenvector files call delfiles(evec=.true.) ! end loop over lattice optimisation end do 10 continue if (mp_mpi) then close(71); close(72); close(73); close(74); close(75) if (spinpol) close(78) if (latvopt /= 0) then close(86); close(87); close(88) end if end if ! ground-state should be run again after lattice optimisation if (latvopt /= 0) call gndstate ! write optimised variables if (wrtvars) then call writevars('avec (geomopt)',nv=9,rva=avec) call writevars('omega (geomopt)',rv=omega) do is=1,nspecies call writevars('atposl (geomopt)',n1=is,nv=3*natoms(is),rva=atposl(:,:,is)) end do do is=1,nspecies call writevars('atposc (geomopt)',n1=is,nv=3*natoms(is),rva=atposc(:,:,is)) end do call writevars('engytot (geomopt)',rv=engytot) end if ! restore original parameters trimvg=trimvg0 end subroutine elk-9.2.12/src/PaxHeaders/eveqnss.f900000644000000000000000000000013214536061313014233 xustar0030 mtime=1702388427.760501723 30 atime=1702388426.590503455 30 ctime=1702388427.760501723 elk-9.2.12/src/eveqnss.f900000644002504400250440000001464114536061313016763 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnss(ngp,igpig,apwalm,evalfv,evecfv,evalsvp,evecsv) use modmain use moddftu use modomp implicit none ! arguments integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) real(8), intent(in) :: evalfv(nstfv,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv) real(8), intent(out) :: evalsvp(nstsv) complex(8), intent(out) :: evecsv(nstsv,nstsv) ! local variables integer ist,jst,ispn integer is,ias,i,j,k integer nrc,nrci,nrco integer l,lm,nm,npc,npci integer igp,ld,nthd real(8) ts0,ts1 complex(8) zq ! automatic arrays complex(8) wfmt2(npcmtmax,nspnfv),wfmt4(npcmtmax) complex(8) wfmt31(npcmtmax),wfmt32(npcmtmax),wfmt33(npcmtmax) complex(8) wfgp1(ngkmax),wfgp2(ngkmax),wfgp3(ngkmax) ! allocatable arrays complex(8), allocatable :: wfmt1(:,:,:),wfir1(:,:),wfir2(:) ! external functions complex(8), external :: zdotc if (.not.spinpol) then write(*,*) write(*,'("Error(eveqnss): spin-unpolarised calculation")') write(*,*) stop end if call timesec(ts0) ld=lmmaxdm*nspinor call holdthd(nstfv,nthd) ! zero the second-variational Hamiltonian (stored in the eigenvector array) evecsv(:,:)=0.d0 !-------------------------! ! muffin-tin part ! !-------------------------! allocate(wfmt1(npcmtmax,nstfv,nspnfv)) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfmt2,wfmt31,wfmt32,wfmt33,wfmt4) & !$OMP PRIVATE(ias,is,nrc,nrci,nrco) & !$OMP PRIVATE(npc,npci,zq,ispn) & !$OMP PRIVATE(ist,jst,l,nm,lm,i,j,k) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) nrco=nrc-nrci npc=npcmt(is) npci=npcmti(is) ! de-phasing factor (FC, FB & LN) if (ssdph) zq=zqss(ias) ! compute the first-variational wavefunctions do ispn=1,nspnfv if (ssdph.and.(ispn == 2)) zq=conjg(zq) !$OMP DO do ist=1,nstfv call wfmtfv(ias,ngp(ispn),apwalm(:,:,:,ias,ispn),evecfv(:,ist,ispn), & wfmt1(:,ist,ispn)) ! de-phase if required if (ssdph) wfmt1(1:npc,ist,ispn)=zq*wfmt1(1:npc,ist,ispn) end do !$OMP END DO end do !$OMP DO do jst=1,nstfv ! convert wavefunction to spherical coordinates do ispn=1,nspnfv call zbsht(nrc,nrci,wfmt1(:,jst,ispn),wfmt2(:,ispn)) end do ! apply effective magnetic field and convert to spherical harmonics wfmt4(1:npc)=bsmt(1:npc,ias,3)*wfmt2(1:npc,1) call zfsht(nrc,nrci,wfmt4,wfmt31) wfmt4(1:npc)=-bsmt(1:npc,ias,3)*wfmt2(1:npc,2) call zfsht(nrc,nrci,wfmt4,wfmt32) wfmt4(1:npc)=cmplx(bsmt(1:npc,ias,1),-bsmt(1:npc,ias,2),8)*wfmt2(1:npc,2) call zfsht(nrc,nrci,wfmt4,wfmt33) ! apply muffin-tin DFT+U potential matrix if required if (tvmatmt) then do l=0,lmaxdm if (tvmmt(l,ias)) then nm=2*l+1 lm=l**2+1 i=npci+lm if (l <= lmaxi) then call zgemm('N','N',nm,nrci,nm,zone,vmatmt(lm,1,lm,1,ias),ld, & wfmt1(lm,jst,1),lmmaxi,zone,wfmt31(lm),lmmaxi) end if call zgemm('N','N',nm,nrco,nm,zone,vmatmt(lm,1,lm,1,ias),ld, & wfmt1(i,jst,1),lmmaxo,zone,wfmt31(i),lmmaxo) if (l <= lmaxi) then call zgemm('N','N',nm,nrci,nm,zone,vmatmt(lm,2,lm,2,ias),ld, & wfmt1(lm,jst,2),lmmaxi,zone,wfmt32(lm),lmmaxi) end if call zgemm('N','N',nm,nrco,nm,zone,vmatmt(lm,2,lm,2,ias),ld, & wfmt1(i,jst,2),lmmaxo,zone,wfmt32(i),lmmaxo) if (l <= lmaxi) then call zgemm('N','N',nm,nrci,nm,zone,vmatmt(lm,1,lm,2,ias),ld, & wfmt1(lm,jst,2),lmmaxi,zone,wfmt33(lm),lmmaxi) end if call zgemm('N','N',nm,nrco,nm,zone,vmatmt(lm,1,lm,2,ias),ld, & wfmt1(i,jst,2),lmmaxo,zone,wfmt33(i),lmmaxo) end if end do end if ! add to second-variational Hamiltonian matrix ! upper diagonal block call zfmtwr(nrc,nrci,wrcmt(:,is),wfmt31) do ist=1,jst evecsv(ist,jst)=evecsv(ist,jst)+zdotc(npc,wfmt1(:,ist,1),1,wfmt31,1) end do j=jst+nstfv ! lower diagonal block call zfmtwr(nrc,nrci,wrcmt(:,is),wfmt32) do ist=1,jst i=ist+nstfv evecsv(i,j)=evecsv(i,j)+zdotc(npc,wfmt1(:,ist,2),1,wfmt32,1) end do ! off-diagonal block call zfmtwr(nrc,nrci,wrcmt(:,is),wfmt33) do ist=1,nstfv evecsv(ist,j)=evecsv(ist,j)+zdotc(npc,wfmt1(:,ist,1),1,wfmt33,1) end do end do !$OMP END DO ! end loop over atoms end do !$OMP END PARALLEL deallocate(wfmt1) !---------------------------! ! interstitial part ! !---------------------------! !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfir1,wfir2,wfgp1,wfgp2,wfgp3) & !$OMP PRIVATE(ispn,igp,ist,i,j) & !$OMP NUM_THREADS(nthd) allocate(wfir1(ngtot,nspnfv),wfir2(ngtot)) ! begin loop over states !$OMP DO do jst=1,nstfv do ispn=1,nspnfv wfir1(:,ispn)=0.d0 do igp=1,ngp(ispn) wfir1(igfft(igpig(igp,ispn)),ispn)=evecfv(igp,jst,ispn) end do ! Fourier transform wavefunction to real-space call zfftifc(3,ngridg,1,wfir1(:,ispn)) end do ! multiply with magnetic field and transform to G-space wfir2(1:ngtot)=bsir(1:ngtot,3)*wfir1(1:ngtot,1) call zfftifc(3,ngridg,-1,wfir2) do igp=1,ngp(1) wfgp1(igp)=wfir2(igfft(igpig(igp,1))) end do wfir2(1:ngtot)=-bsir(1:ngtot,3)*wfir1(1:ngtot,2) call zfftifc(3,ngridg,-1,wfir2) do igp=1,ngp(2) wfgp2(igp)=wfir2(igfft(igpig(igp,2))) end do wfir2(1:ngtot)=cmplx(bsir(1:ngtot,1),-bsir(1:ngtot,2),8)*wfir1(1:ngtot,2) call zfftifc(3,ngridg,-1,wfir2) do igp=1,ngp(1) wfgp3(igp)=wfir2(igfft(igpig(igp,1))) end do ! add to second-variational Hamiltonian matrix ! upper diagonal block do ist=1,jst evecsv(ist,jst)=evecsv(ist,jst)+zdotc(ngp(1),evecfv(:,ist,1),1,wfgp1,1) end do ! lower diagonal block j=jst+nstfv do ist=1,jst i=ist+nstfv evecsv(i,j)=evecsv(i,j)+zdotc(ngp(2),evecfv(:,ist,2),1,wfgp2,1) end do ! off-diagonal block do ist=1,nstfv evecsv(ist,j)=evecsv(ist,j)+zdotc(ngp(1),evecfv(:,ist,1),1,wfgp3,1) end do end do !$OMP END DO deallocate(wfir1,wfir2) !$OMP END PARALLEL call freethd(nthd) ! add the diagonal first-variational part i=0 do ispn=1,nspinor do ist=1,nstfv i=i+1 evecsv(i,i)=evecsv(i,i)+evalfv(ist,ispn) end do end do ! diagonalise the second-variational Hamiltonian call eveqnzh(nstsv,nstsv,evecsv,evalsvp) call timesec(ts1) !$OMP ATOMIC timesv=timesv+ts1-ts0 end subroutine elk-9.2.12/src/PaxHeaders/hartfock.f900000644000000000000000000000013214536061313014350 xustar0030 mtime=1702388427.761501722 30 atime=1702388426.591503454 30 ctime=1702388427.761501722 elk-9.2.12/src/hartfock.f900000644002504400250440000001575714536061313017111 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hartfock use modmain use modmpi use modomp implicit none ! local variables integer ik,lp,nthd real(8) etp,de ! allocatable arrays real(8), allocatable :: vmt(:,:),vir(:) real(8), allocatable :: bmt(:,:,:),bir(:,:) complex(8), allocatable :: evecsv(:,:) ! initialise universal variables call init0 call init1 call init2 ! read the charge density from file call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! generate the core wavefunctions and densities call gencore ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ! generate the first- and second-variational eigenvectors and eigenvalues call genevfsv ! find the occupation numbers and Fermi energy call occupy ! generate the kinetic matrix elements in the first-variational basis call genkmat(.true.,.true.) ! allocate local arrays allocate(vmt(npcmtmax,natmtot),vir(ngtot)) if (hybrid.and.spinpol) then allocate(bmt(npcmtmax,natmtot,ndmag),bir(ngtot,ndmag)) end if ! only the MPI master process should write files if (mp_mpi) then ! open HF_INFO.OUT file open(60,file='HF_INFO'//trim(filext),form='FORMATTED') ! open TOTENERGY.OUT open(61,file='TOTENERGY'//trim(filext),form='FORMATTED') ! open FERMIDOS.OUT open(62,file='FERMIDOS'//trim(filext),form='FORMATTED') ! open MOMENT.OUT if required if (spinpol) open(63,file='MOMENT'//trim(filext),form='FORMATTED') ! open GAP.OUT open(64,file='GAP'//trim(filext),form='FORMATTED') ! open DTOTENERGY.OUT open(66,file='DTOTENERGY'//trim(filext),form='FORMATTED') ! open MOMENTM.OUT if (spinpol) open(68,file='MOMENTM'//trim(filext),form='FORMATTED') ! write out general information to HF_INFO.OUT call writeinfo(60) end if ! set last self-consistent loop flag tlast=.false. etp=0.d0 ! begin the self-consistent loop if (mp_mpi) then write(60,*) write(60,'("+------------------------------+")') write(60,'("| Self-consistent loop started |")') write(60,'("+------------------------------+")') end if do iscl=1,maxscl if (mp_mpi) then write(60,*) write(60,'("+--------------------+")') write(60,'("| Loop number : ",I4," |")') iscl write(60,'("+--------------------+")') flush(60) write(*,'("Info(hartfock): self-consistent loop number : ",I4)') iscl end if if (iscl >= maxscl) then if (mp_mpi) then write(60,*) write(60,'("Reached self-consistent loops maximum")') end if tlast=.true. end if ! reset the OpenMP thread variables call omp_reset ! compute the Hartree-Fock local potentials call hflocal(vmt,vir,bmt,bir) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecsv) & !$OMP NUM_THREADS(nthd) allocate(evecsv(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call getevecsv(filext,ik,vkl(:,ik),evecsv) ! solve the Hartree-Fock eigenvalue equation call eveqnhf(ik,vmt,vir,bmt,bir,evecsv) ! write the eigenvalues/vectors to file call putevalsv(filext,ik,evalsv(:,ik)) call putevecsv(filext,ik,evecsv) end do !$OMP END DO deallocate(evecsv) !$OMP END PARALLEL call freethd(nthd) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! broadcast eigenvalue array to every process do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(evalsv(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) end do ! find the occupation numbers and Fermi energy call occupy if (mp_mpi) then ! write the occupation numbers to file do ik=1,nkpt call putoccsv(filext,ik,occsv(:,ik)) end do ! write out the eigenvalues and occupation numbers call writeeval ! write the Fermi energy to file call writefermi end if ! generate the density and magnetisation call rhomag ! compute the energy components call energy if (mp_mpi) then ! output energy components call writeengy(60) write(60,*) write(60,'("Density of states at Fermi energy : ",G18.10)') fermidos write(60,'(" (states/Hartree/unit cell)")') write(60,*) write(60,'("Estimated indirect band gap : ",G18.10)') bandgap(1) write(60,'(" from k-point ",I6," to k-point ",I6)') ikgap(1),ikgap(2) write(60,'("Estimated direct band gap : ",G18.10)') bandgap(2) write(60,'(" at k-point ",I6)') ikgap(3) ! write total energy to TOTENERGY.OUT write(61,'(G22.12)') engytot flush(61) ! write DOS at Fermi energy to FERMIDOS.OUT write(62,'(G18.10)') fermidos flush(62) ! output charges and moments call writechg(60) if (spinpol) then call writemom(60) ! write total moment to MOMENT.OUT write(63,'(3G18.10)') momtot(1:ndmag) flush(63) ! write total moment magnitude to MOMENTM.OUT write(68,'(G18.10)') momtotm flush(68) end if ! write estimated Hartree-Fock indirect band gap write(64,'(G22.12)') bandgap(1) flush(64) end if if (tlast) goto 10 ! compute the change in total energy and check for convergence if (iscl >= 2) then de=abs(engytot-etp) if (mp_mpi) then write(60,*) write(60,'("Absolute change in total energy (target) : ",G18.10," (",& &G18.10,")")') de,epsengy end if if (de < epsengy) then if (mp_mpi) then write(60,*) write(60,'("Energy convergence target achieved")') end if tlast=.true. end if if (mp_mpi) then write(66,'(G18.10)') de flush(66) end if end if etp=engytot ! check for STOP file call checkstop if (tstop) tlast=.true. ! broadcast tlast from master process to all other processes call mpi_bcast(tlast,1,mpi_logical,0,mpicom,ierror) end do 10 continue if (mp_mpi) then write(60,*) write(60,'("+------------------------------+")') write(60,'("| Self-consistent loop stopped |")') write(60,'("+------------------------------+")') if (maxscl > 1) then call writestate write(60,*) write(60,'("Wrote STATE.OUT")') end if end if !-----------------------! ! compute forces ! !-----------------------! if (tforce) then call force ! output forces to HF_INFO.OUT if (mp_mpi) call writeforces(60) end if if (mp_mpi) then write(60,*) write(60,'("+----------------------------+")') write(60,'("| Elk version ",I1.1,".",I1.1,".",I2.2," stopped |")') version write(60,'("+----------------------------+")') ! close the HF_INFO.OUT file close(60) ! close the TOTENERGY.OUT file close(61) ! close the FERMIDOS.OUT file close(62) ! close the MOMENT.OUT and MOMENTM.OUT files if (spinpol) then close(63); close(68) end if ! close the GAP.OUT file close(64) ! close the DTOTENERGY.OUT file close(66) end if deallocate(vmt,vir) if (hybrid.and.spinpol) deallocate(bmt,bir) end subroutine elk-9.2.12/src/PaxHeaders/potplot.f900000644000000000000000000000013214536061313014250 xustar0030 mtime=1702388427.763501719 30 atime=1702388426.593503451 30 ctime=1702388427.763501719 elk-9.2.12/src/potplot.f900000644002504400250440000000411614536061313016774 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: potplot ! !INTERFACE: subroutine potplot ! !USES: use modmain ! !DESCRIPTION: ! Outputs the exchange, correlation and Coulomb potentials, read in from ! {\tt STATE.OUT}, for 1D, 2D or 3D plotting. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! initialise universal variables call init0 ! read the density and potentials from file call readstate ! write the potential plots to file select case(task) case(41) open(50,file='VCL1D.OUT',form='FORMATTED',action='WRITE') open(51,file='VLINES.OUT',form='FORMATTED',action='WRITE') call plot1d(50,51,1,vclmt,vclir) close(50) close(51) open(50,file='VXC1D.OUT',form='FORMATTED',action='WRITE') open(51,file='VLINES.OUT',form='FORMATTED',action='WRITE') call plot1d(50,51,1,vxcmt,vxcir) close(50) close(51) write(*,*) write(*,'("Info(potplot):")') write(*,'(" 1D Coulomb potential plot written to VCL1D.OUT")') write(*,'(" 1D exchange-correlation potential plot written to VXC1D.OUT")') write(*,'(" vertex location lines written to VLINES.OUT")') case(42) open(50,file='VCL2D.OUT',form='FORMATTED',action='WRITE') call plot2d(.false.,50,1,vclmt,vclir) close(50) open(50,file='VXC2D.OUT',form='FORMATTED',action='WRITE') call plot2d(.false.,50,1,vxcmt,vxcir) close(50) write(*,*) write(*,'("Info(potplot):")') write(*,'(" 2D Coulomb potential plot written to VCL2D.OUT")') write(*,'(" 2D exchange-correlation potential plot written to VXC2D.OUT")') case(43) open(50,file='VCL3D.OUT',form='FORMATTED',action='WRITE') call plot3d(50,1,vclmt,vclir) close(50) open(50,file='VXC3D.OUT',form='FORMATTED',action='WRITE') call plot3d(50,1,vxcmt,vxcir) close(50) write(*,*) write(*,'("Info(potplot):")') write(*,'(" 3D Coulomb potential plot written to VCL3D.OUT")') write(*,'(" 3D exchange-correlation potential plot written to VXC3D.OUT")') end select end subroutine !EOC elk-9.2.12/src/PaxHeaders/genwfpw.f900000644000000000000000000000013214536061313014224 xustar0030 mtime=1702388427.764501717 30 atime=1702388426.594503449 30 ctime=1702388427.764501717 elk-9.2.12/src/genwfpw.f900000644002504400250440000001341514536061313016752 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genwfpw(vpl,ngp,igpig,vgpl,vgpc,gpc,sfacgp,nhp,vhpc,hpc,sfachp,wfpw) use modmain use modpw implicit none ! arguments real(8), intent(in) :: vpl(3) integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) real(8), intent(in) :: vgpl(3,ngkmax,nspnfv),vgpc(3,ngkmax,nspnfv) real(8), intent(in) :: gpc(ngkmax,nspnfv) complex(8), intent(in) :: sfacgp(ngkmax,natmtot,nspnfv) integer, intent(in) :: nhp(nspnfv) real(8), intent(in) :: vhpc(3,nhkmax,nspnfv),hpc(nhkmax,nspnfv) complex(8), intent(in) :: sfachp(nhkmax,natmtot,nspnfv) complex(8), intent(out) :: wfpw(nhkmax,nspinor,nstsv) ! local variables integer ispn0,ispn1,ispn,jspn integer ist,is,ia,ias integer nrc,nrci,irco,irc integer lmax,l,m,lm integer npci,i,igp,ihp real(8) t0,t1 complex(8) zsm,z1,z2,z3,z4 ! automatic arrays complex(8) ylm(lmmaxo) ! allocatable arrays real(8), allocatable :: jl(:,:) complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:,:),evecsv(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfgp(:,:,:) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv)) allocate(wfgp(ngkmax,nspinor,nstsv)) ! get the eigenvectors from file call getevecfv(filext,0,vpl,vgpl,evecfv) call getevecsv(filext,0,vpl,evecsv) ! find the matching coefficients do ispn=1,nspnfv call match(ngp(ispn),vgpc(:,:,ispn),gpc(:,ispn),sfacgp(:,:,ispn), & apwalm(:,:,:,:,ispn)) end do ! calculate the second-variational wavefunctions for all states call genwfsv(.true.,.true.,nstsv,[0],ngridg,igfft,ngp,igpig,apwalm,evecfv, & evecsv,wfmt,ngkmax,wfgp) deallocate(apwalm,evecfv,evecsv) ! zero the plane wave coefficients wfpw(:,:,:)=0.d0 !---------------------------! ! interstitial part ! !---------------------------! do jspn=1,nspnfv if (spinsprl) then ispn0=jspn; ispn1=jspn else ispn0=1; ispn1=nspinor end if i=1 do ihp=1,nhp(jspn) do igp=i,ngp(jspn) t1=abs(vhpc(1,ihp,jspn)-vgpc(1,igp,jspn)) & +abs(vhpc(2,ihp,jspn)-vgpc(2,igp,jspn)) & +abs(vhpc(3,ihp,jspn)-vgpc(3,igp,jspn)) if (t1 < epslat) then do ist=1,nstsv do ispn=ispn0,ispn1 wfpw(ihp,ispn,ist)=wfgp(igp,ispn,ist) end do end do if (igp == i) i=i+1 exit end if end do end do end do !-------------------------! ! muffin-tin part ! !-------------------------! allocate(jl(0:lmaxo,nrcmtmax)) t0=fourpi/sqrt(omega) ! remove continuation of interstitial function into muffin-tin do jspn=1,nspnfv if (spinsprl) then ispn0=jspn; ispn1=jspn else ispn0=1; ispn1=nspinor end if ! loop over G+p-vectors do igp=1,ngp(jspn) ! generate the conjugate spherical harmonics Y_lm*(G+p) call genylmv(lmaxo,vgpc(:,igp,jspn),ylm) ylm(:)=conjg(ylm(:)) do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) irco=nrci+1 npci=npcmti(is) ! generate spherical Bessel functions lmax=lmaxi do irc=1,nrc t1=gpc(igp,jspn)*rcmt(irc,is) call sbessel(lmax,t1,jl(:,irc)) if (irc == nrci) lmax=lmaxo end do ! loop over atoms do ia=1,natoms(is) ias=idxas(ia,is) z1=t0*sfacgp(igp,ias,jspn) do ist=1,nstsv do ispn=ispn0,ispn1 z2=z1*wfgp(igp,ispn,ist) lm=0 do l=0,lmaxi z3=z2*zil(mod(l,4)) do m=-l,l lm=lm+1 z4=z3*ylm(lm) i=lm do irc=1,nrci wfmt(i,ias,ispn,ist)=wfmt(i,ias,ispn,ist)-z4*jl(l,irc) i=i+lmmaxi end do end do end do lm=0 do l=0,lmaxo z3=z2*zil(mod(l,4)) do m=-l,l lm=lm+1 z4=z3*ylm(lm) i=npci+lm do irc=irco,nrc wfmt(i,ias,ispn,ist)=wfmt(i,ias,ispn,ist)-z4*jl(l,irc) i=i+lmmaxo end do end do end do end do end do end do end do end do end do ! Fourier transform the muffin-tin wavefunctions do jspn=1,nspnfv if (spinsprl) then ispn0=jspn; ispn1=jspn else ispn0=1; ispn1=nspinor end if ! loop over H+p-vectors do ihp=1,nhp(jspn) ! generate the spherical harmonics Y_lm(H+p) call genylmv(lmaxo,vhpc(:,ihp,jspn),ylm) do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) ! generate spherical Bessel functions lmax=lmaxi do irc=1,nrc t1=hpc(ihp,jspn)*rcmt(irc,is) call sbessel(lmax,t1,jl(:,irc)) if (irc == nrci) lmax=lmaxo end do do ia=1,natoms(is) ias=idxas(ia,is) ! conjugate structure factor z3=t0*conjg(sfachp(ihp,ias,jspn)) ! loop over states do ist=1,nstsv do ispn=ispn0,ispn1 zsm=0.d0 lmax=lmaxi i=0 do irc=1,nrc i=i+1 z1=jl(0,irc)*wfmt(i,ias,ispn,ist)*ylm(1) lm=1 do l=1,lmax lm=lm+1 i=i+1 z2=wfmt(i,ias,ispn,ist)*ylm(lm) do m=1-l,l lm=lm+1 i=i+1 z2=z2+wfmt(i,ias,ispn,ist)*ylm(lm) end do z1=z1+jl(l,irc)*zilc(mod(l,4))*z2 end do zsm=zsm+wrcmt(irc,is)*z1 if (irc == nrci) lmax=lmaxo end do ! add to the H+p wavefunction wfpw(ihp,ispn,ist)=wfpw(ihp,ispn,ist)+z3*zsm end do end do end do end do end do end do deallocate(jl,wfmt,wfgp) end subroutine elk-9.2.12/src/PaxHeaders/hmlxbse.f900000644000000000000000000000013214536061313014211 xustar0030 mtime=1702388427.765501716 30 atime=1702388426.596503446 30 ctime=1702388427.765501716 elk-9.2.12/src/hmlxbse.f900000644002504400250440000000125414536061313016735 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hmlxbse use modmain use modmpi use modomp implicit none ! local variables integer ik2,nthd call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ik2=1,nkptnr ! distribute among MPI processes if (mod(ik2-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(hmlxbse_) write(*,'("Info(hmlxbse): ",I6," of ",I6," k-points")') ik2,nkptnr !$OMP END CRITICAL(hmlxbse_) call hmlxbsek(ik2) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/hmlxbsek.f900000644000000000000000000000013214536061313014364 xustar0030 mtime=1702388427.766501714 30 atime=1702388426.597503445 30 ctime=1702388427.766501714 elk-9.2.12/src/hmlxbsek.f900000644002504400250440000000650514536061313017114 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hmlxbsek(ik2) use modmain implicit none ! arguments integer, intent(in) :: ik2 ! local variables integer ik1,ist1,ist2,jst1,jst2 integer i1,i2,j1,j2,a1,a2,b1,b2 integer is,ias,l real(8) t0 complex(8) z1 ! automatic arrays integer ngp(nspnfv) ! allocatable arrays integer, allocatable :: igpig(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: crhomt(:,:),crhoir(:) complex(4), allocatable :: cvclmt(:,:,:),cvclir(:,:) ! external functions complex(8), external :: zcfinp ! allocate local arrays allocate(igpig(ngkmax,nspnfv)) allocate(wfmt1(npcmtmax,natmtot,nspinor,nstsv),wfir1(ngtc,nspinor,nstsv)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv),wfir2(ngtc,nspinor,nstsv)) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) allocate(cvclmt(npcmtmax,natmtot,nvcbse),cvclir(ngtc,nvcbse)) ! calculate the wavefunctions for all states of k-point ik2 call genwfsvp_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,vkl(:,ik2),ngp,igpig, & wfmt2,ngtc,wfir2) l=0 do i2=1,nvbse ist2=istbse(i2,ik2) do j2=1,ncbse jst2=jstbse(j2,ik2) a2=ijkbse(i2,j2,ik2) l=l+1 ! calculate the complex overlap density call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist2),wfir2(:,:,ist2), & wfmt2(:,:,:,jst2),wfir2(:,:,jst2),crhomt,crhoir) ! compute the Coulomb potential call gencvclmt(nrcmt,nrcmti,nrcmtmax,rlcmt,wprcmt,npcmtmax,crhomt, & cvclmt(:,:,l)) call cpotcoul(nrcmt,nrcmti,npcmt,nrcmtmax,rlcmt,ngdgc,igfc,ngvc,gc,gclg, & ngvec,jlgrmt,ylmg,sfacg,crhoir,npcmtmax,cvclmt(:,:,l),cvclir(:,l)) cvclir(:,l)=cvclir(:,l)*cfrc(:) end do end do t0=occmax*wkptnr ! start loop over ik1 do ik1=1,nkptnr if (ik1 == ik2) then wfmt1(:,:,:,:)=wfmt2(:,:,:,:) wfir1(:,:,:)=wfir2(:,:,:) else call genwfsvp_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,vkl(:,ik1),ngp,igpig,& wfmt1,ngtc,wfir1) end if do i1=1,nvbse ist1=istbse(i1,ik1) do j1=1,ncbse jst1=jstbse(j1,ik1) a1=ijkbse(i1,j1,ik1) ! calculate the complex overlap density call gencrho(.true.,.true.,ngtc,wfmt1(:,:,:,ist1),wfir1(:,:,ist1), & wfmt1(:,:,:,jst1),wfir1(:,:,jst1),crhomt,crhoir) l=0 do i2=1,nvbse ist2=istbse(i2,ik2) do j2=1,ncbse jst2=jstbse(j2,ik2) a2=ijkbse(i2,j2,ik2) l=l+1 ! compute the matrix element z1=t0*zcfinp(crhomt,crhoir,cvclmt(:,:,l),cvclir(:,l)) hmlbse(a1,a2)=hmlbse(a1,a2)+z1 ! compute off-diagonal blocks if required if (bsefull) then b1=a1+nbbse b2=a2+nbbse hmlbse(b1,b2)=hmlbse(b1,b2)-conjg(z1) ! conjugate the potential do ias=1,natmtot is=idxis(ias) call cfmtconj(nrcmt(is),nrcmti(is),npcmt(is),cvclmt(:,ias,l)) end do cvclir(:,l)=conjg(cvclir(:,l)) z1=t0*zcfinp(crhomt,crhoir,cvclmt(:,:,l),cvclir(:,l)) hmlbse(a1,b2)=hmlbse(a1,b2)+z1 hmlbse(b1,a2)=hmlbse(b1,a2)-conjg(z1) end if end do end do end do end do end do deallocate(igpig,wfmt1,wfmt2,wfir1,wfir2) deallocate(crhomt,crhoir,cvclmt,cvclir) end subroutine elk-9.2.12/src/PaxHeaders/hmldbse.f900000644000000000000000000000013214536061313014165 xustar0030 mtime=1702388427.768501711 30 atime=1702388426.598503443 30 ctime=1702388427.768501711 elk-9.2.12/src/hmldbse.f900000644002504400250440000000125414536061313016711 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hmldbse use modmain use modmpi use modomp implicit none ! local variables integer ik2,nthd call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ik2=1,nkptnr ! distribute among MPI processes if (mod(ik2-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(hmldbse_) write(*,'("Info(hmldbse): ",I6," of ",I6," k-points")') ik2,nkptnr !$OMP END CRITICAL(hmldbse_) call hmldbsek(ik2) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/hmldbsek.f900000644000000000000000000000013014536061313014336 xustar0029 mtime=1702388427.76950171 30 atime=1702388426.600503441 29 ctime=1702388427.76950171 elk-9.2.12/src/hmldbsek.f900000644002504400250440000001424214536061313017065 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hmldbsek(ik2) use modmain use modomp implicit none ! arguments integer, intent(in) :: ik2 ! local variables integer ik1,ist1,ist2,jst1,jst2 integer i1,i2,j1,j2,a1,a2,b1,b2 integer iv(3),iq,ig,jg,nthd real(8) vl(3),vc(3),t0,t1,t2 complex(8) z1 ! automatic arrays integer ngp(nspnfv) ! allocatable arrays integer, allocatable :: igpig(:,:) real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqr(:,:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: crhomt(:,:),crhoir(:) complex(8), allocatable :: zvv(:,:,:),zcc(:,:,:) complex(8), allocatable :: zvc(:,:,:),zcv(:,:,:) complex(8), allocatable :: epsi(:,:,:) allocate(igpig(ngkmax,nspnfv)) allocate(vgqc(3,ngrf),gqc(ngrf),gclgq(ngrf)) allocate(jlgqr(njcmax,nspecies,ngrf)) allocate(ylmgq(lmmaxo,ngrf),sfacgq(ngrf,natmtot)) allocate(wfmt1(npcmtmax,natmtot,nspinor,nstsv),wfir1(ngtc,nspinor,nstsv)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv),wfir2(ngtc,nspinor,nstsv)) allocate(zvv(ngrf,nvbse,nvbse),zcc(ngrf,ncbse,ncbse)) allocate(epsi(ngrf,ngrf,nwrf)) if (bsefull) then allocate(zvc(ngrf,nvbse,ncbse)) allocate(zcv(ngrf,ncbse,nvbse)) end if ! generate the wavefunctions for all states of k-point ik2 call genwfsvp_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,vkl(:,ik2),ngp,igpig, & wfmt2,ngtc,wfir2) ! begin loop over ik1 do ik1=1,nkptnr ! generate the wavefunctions for all states of k-point ik1 call genwfsvp_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,vkl(:,ik1),ngp,igpig, & wfmt1,ngtc,wfir1) ! determine equivalent q-vector in first Brillouin zone iv(:)=ivk(:,ik1)-ivk(:,ik2) iv(:)=modulo(iv(:),ngridk(:)) iq=ivqiq(iv(1),iv(2),iv(3)) ! q-vector in lattice and Cartesian coordinates vl(:)=vkl(:,ik1)-vkl(:,ik2) vc(:)=vkc(:,ik1)-vkc(:,ik2) ! generate the G+q-vectors and related functions call gengqf(ngrf,vc,vgqc,gqc,jlgqr,ylmgq,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngrf,gqc,gclgq) ! symmetrise the Coulomb Green's function gclgq(:)=sqrt(gclgq(:)) ! compute the matrix elements call holdthd(nvbse,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(crhomt,crhoir,ist1,ist2,i2) & !$OMP NUM_THREADS(nthd) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) !$OMP DO do i1=1,nvbse ist1=istbse(i1,ik1) do i2=1,nvbse ist2=istbse(i2,ik2) call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist2),wfir2(:,:,ist2), & wfmt1(:,:,:,ist1),wfir1(:,:,ist1),crhomt,crhoir) call zftcf(ngrf,jlgqr,ylmgq,ngrf,sfacgq,crhomt,crhoir,zvv(:,i1,i2)) end do end do !$OMP END DO deallocate(crhomt,crhoir) !$OMP END PARALLEL call freethd(nthd) ! compute the matrix elements call holdthd(ncbse,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(crhomt,crhoir,jst1,jst2,j2) & !$OMP NUM_THREADS(nthd) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) !$OMP DO do j1=1,ncbse jst1=jstbse(j1,ik1) do j2=1,ncbse jst2=jstbse(j2,ik2) call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,jst2),wfir2(:,:,jst2), & wfmt1(:,:,:,jst1),wfir1(:,:,jst1),crhomt,crhoir) call zftcf(ngrf,jlgqr,ylmgq,ngrf,sfacgq,crhomt,crhoir,zcc(:,j1,j2)) end do end do !$OMP END DO deallocate(crhomt,crhoir) !$OMP END PARALLEL call freethd(nthd) ! matrix elements for full BSE kernel if required if (bsefull) then ! compute the matrix elements call holdthd(nvbse,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(crhomt,crhoir,ist1,jst2,j2) & !$OMP NUM_THREADS(nthd) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) !$OMP DO do i1=1,nvbse ist1=istbse(i1,ik1) do j2=1,ncbse jst2=jstbse(j2,ik2) call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,jst2),wfir2(:,:,jst2), & wfmt1(:,:,:,ist1),wfir1(:,:,ist1),crhomt,crhoir) call zftcf(ngrf,jlgqr,ylmgq,ngrf,sfacgq,crhomt,crhoir,zvc(:,i1,j2)) end do end do !$OMP END DO deallocate(crhomt,crhoir) !$OMP END PARALLEL call freethd(nthd) ! compute the matrix elements call holdthd(ncbse,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(crhomt,crhoir,jst1,ist2,i2) & !$OMP NUM_THREADS(nthd) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) !$OMP DO do j1=1,ncbse jst1=jstbse(j1,ik1) do i2=1,nvbse ist2=istbse(i2,ik2) call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist2),wfir2(:,:,ist2), & wfmt1(:,:,:,jst1),wfir1(:,:,jst1),crhomt,crhoir) call zftcf(ngrf,jlgqr,ylmgq,ngrf,sfacgq,crhomt,crhoir,zcv(:,j1,i2)) end do end do !$OMP END DO deallocate(crhomt,crhoir) !$OMP END PARALLEL call freethd(nthd) end if ! get RPA inverse epsilon from file call getcfgq('EPSINV.OUT',vl,ngrf,nwrf,epsi) t0=wkptnr*omega do i1=1,nvbse do j1=1,ncbse a1=ijkbse(i1,j1,ik1) do i2=1,nvbse do j2=1,ncbse a2=ijkbse(i2,j2,ik2) z1=0.d0 do ig=1,ngrf t1=t0*gclgq(ig) do jg=1,ngrf t2=t1*gclgq(jg) z1=z1+t2*epsi(ig,jg,1)*conjg(zcc(ig,j1,j2))*zvv(jg,i1,i2) end do end do hmlbse(a1,a2)=hmlbse(a1,a2)-z1 ! compute off-diagonal blocks if required if (bsefull) then b1=a1+nbbse b2=a2+nbbse hmlbse(b1,b2)=hmlbse(b1,b2)+conjg(z1) z1=0.d0 do ig=1,ngrf t1=t0*gclgq(ig) do jg=1,ngrf t2=t1*gclgq(jg) z1=z1+t2*epsi(ig,jg,1)*conjg(zcv(ig,j1,i2))*zvc(jg,i1,j2) end do end do hmlbse(a1,b2)=hmlbse(a1,b2)-z1 hmlbse(b1,a2)=hmlbse(b1,a2)+conjg(z1) end if ! end loop over i2 and j2 end do end do ! end loop over i1 and j1 end do end do ! end loop over ik1 end do deallocate(igpig,vgqc,gqc,gclgq,jlgqr) deallocate(ylmgq,sfacgq) deallocate(wfmt1,wfmt2,wfir1,wfir2) deallocate(zvv,zcc,epsi) if (bsefull) deallocate(zvc,zcv) end subroutine elk-9.2.12/src/PaxHeaders/gradwfcr2.f900000644000000000000000000000013214536061313014430 xustar0030 mtime=1702388427.770501708 30 atime=1702388426.601503439 30 ctime=1702388427.770501708 elk-9.2.12/src/gradwfcr2.f900000644002504400250440000000255014536061313017154 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gradwfcr2(gwf2mt) use modmain implicit none ! arguments real(8), intent(inout) :: gwf2mt(npmtmax,natmtot) ! local variables integer ist,is,ias integer nr,nri,iro,ir integer np,l,lm,i ! allocatable arrays complex(8), allocatable :: wfmt(:),gwfmt(:,:),zfmt(:) allocate(wfmt(npmtmax),gwfmt(npmtmax,3),zfmt(npmtmax)) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 np=npmt(is) do ist=1,nstsp(is) if (spcore(ist,is).and.(ksp(ist,is) == lsp(ist,is)+1)) then l=lsp(ist,is) do lm=l**2+1,(l+1)**2 wfmt(1:np)=0.d0 i=lm do ir=1,nri wfmt(i)=rwfcr(ir,1,ist,ias)/rsp(ir,is) i=i+lmmaxi end do do ir=iro,nr wfmt(i)=rwfcr(ir,1,ist,ias)/rsp(ir,is) i=i+lmmaxo end do call gradzfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),wfmt,npmtmax,gwfmt) do i=1,3 call zbsht(nr,nri,gwfmt(:,i),zfmt) ! factor of 2 from spin gwf2mt(1:np,ias)=gwf2mt(1:np,ias) & +2.d0*(dble(zfmt(1:np))**2+aimag(zfmt(1:np))**2) end do end do end if end do ! end loops over atoms end do deallocate(wfmt,gwfmt,zfmt) end subroutine elk-9.2.12/src/PaxHeaders/oepresk.f900000644000000000000000000000013214536061313014217 xustar0030 mtime=1702388427.771501707 30 atime=1702388426.603503436 30 ctime=1702388427.771501707 elk-9.2.12/src/oepresk.f900000644002504400250440000001343114536061313016743 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine oepresk(ik,vclcv,vclvv) use modmain implicit none ! arguments integer, intent(in) :: ik complex(8), intent(in) :: vclcv(ncrmax,natmtot,nstsv,nkpt) complex(8), intent(in) :: vclvv(nstsv,nstsv,nkpt) ! local variables integer ist,jst,idm integer is,ia,ias,ic,m integer nrc,nrci,npc real(8) de complex(8) z1,z2 ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfir(:,:,:),wfcr(:,:) complex(4), allocatable :: cfmt1(:),cvfmt1(:,:) complex(4), allocatable :: cfmt2(:,:),cfir2(:) complex(4), allocatable :: cvfmt2(:,:,:),cvfir2(:,:) ! external functions complex(8), external :: rcfinp,rcfmtinp ! get the eigenvalues/vectors from file for input k-point allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! calculate the wavefunctions for all states allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfir(ngtot,nspinor,nstsv)) call genwfsv_sp(.false.,.false.,nstsv,[0],ngridg,igfft,ngk(1,ik),igkig(:,1,ik),& apwalm,evecfv,evecsv,wfmt,ngtot,wfir) deallocate(apwalm,evecfv,evecsv) !-----------------------------------------------------------! ! core-conduction overlap density and magnetisation ! !-----------------------------------------------------------! allocate(wfcr(npcmtmax,2),cfmt1(npcmtmax)) if (spinpol) allocate(cvfmt1(npcmtmax,ndmag)) do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) ic=0 do ist=1,nstsp(is) if (spcore(ist,is)) then do m=-ksp(ist,is),ksp(ist,is)-1 ic=ic+1 ! pass in m-1/2 to wavefcr call wavefcr(.false.,lradstp,is,ia,ist,m,npcmtmax,wfcr) do jst=1,nstsv if (evalsv(jst,ik) > efermi) then if (spinpol) then ! compute the complex density and magnetisation call gencrm(npc,wfcr,wfcr(:,2),wfmt(:,ias,1,jst), & wfmt(:,ias,2,jst),cfmt1,npcmtmax,cvfmt1) else ! compute the complex density cfmt1(1:npc)=conjg(wfcr(1:npc,1))*wfmt(1:npc,ias,1,jst) end if z1=conjg(vclcv(ic,ias,jst,ik)) z2=rcfmtinp(nrc,nrci,wrcmt(:,is),vxmt(:,ias),cfmt1) z1=z1-conjg(z2) do idm=1,ndmag z2=rcfmtinp(nrc,nrci,wrcmt(:,is),bxmt(:,ias,idm),cvfmt1(:,idm)) z1=z1-conjg(z2) end do de=evalcr(ist,ias)-evalsv(jst,ik) z1=z1*occmax*wkpt(ik)/(de+zi*swidth) ! residuals for exchange potential and field !$OMP CRITICAL(oepresk_) call rcadd(npc,z1,cfmt1,dvxmt(:,ias)) do idm=1,ndmag call rcadd(npc,z1,cvfmt1(:,idm),dbxmt(:,ias,idm)) end do !$OMP END CRITICAL(oepresk_) ! end loop over jst end if end do end do ! end loop over ist end if end do ! end loops over atoms and species end do end do deallocate(wfcr,cfmt1) if (spinpol) deallocate(cvfmt1) !--------------------------------------------------------------! ! valence-conduction overlap density and magnetisation ! !--------------------------------------------------------------! allocate(cfmt2(npcmtmax,natmtot),cfir2(ngtot)) if (spinpol) then allocate(cvfmt2(npcmtmax,natmtot,ndmag),cvfir2(ngtot,ndmag)) end if do ist=1,nstsv if (evalsv(ist,ik) < efermi) then do jst=1,nstsv if (evalsv(jst,ik) > efermi) then if (spinpol) then ! compute the complex density and magnetisation call gencfrm(wfmt(:,:,1,ist),wfmt(:,:,2,ist),wfir(:,1,ist), & wfir(:,2,ist),wfmt(:,:,1,jst),wfmt(:,:,2,jst),wfir(:,1,jst), & wfir(:,2,jst),cfmt2,cfir2,cvfmt2,cvfir2) else ! compute the complex density call gencrho(.false.,.true.,ngtot,wfmt(:,:,:,ist),wfir(:,:,ist), & wfmt(:,:,:,jst),wfir(:,:,jst),cfmt2,cfir2) end if z1=conjg(vclvv(ist,jst,ik)) z2=rcfinp(vxmt,vxir,cfmt2,cfir2) z1=z1-conjg(z2) do idm=1,ndmag z2=rcfinp(bxmt(:,:,idm),bxir(:,idm),cvfmt2(:,:,idm),cvfir2(:,idm)) z1=z1-conjg(z2) end do de=evalsv(ist,ik)-evalsv(jst,ik) z1=z1*occmax*wkpt(ik)/(de+zi*swidth) ! add to residuals for exchange potential and field !$OMP CRITICAL(oepresk_) call rcfadd(z1,cfmt2,cfir2,dvxmt,dvxir) do idm=1,ndmag call rcfadd(z1,cvfmt2(:,:,idm),cvfir2(:,idm),dbxmt(:,:,idm), & dbxir(:,idm)) end do !$OMP END CRITICAL(oepresk_) ! end loop over jst end if end do ! end loop over ist end if end do deallocate(wfmt,wfir,cfmt2,cfir2) if (spinpol) deallocate(cvfmt2,cvfir2) contains pure subroutine rcfadd(za,cfmt,cfir,rfmt,rfir) implicit none ! arguments complex(8), intent(in) :: za complex(4), intent(in) :: cfmt(npcmtmax,natmtot),cfir(ngtot) real(8), intent(inout) :: rfmt(npcmtmax,natmtot),rfir(ngtot) ! local variables integer is,ias do ias=1,natmtot is=idxis(ias) call rcadd(npcmt(is),za,cfmt(:,ias),rfmt(:,ias)) end do call rcadd(ngtot,za,cfir,rfir) end subroutine pure subroutine rcadd(n,za,cv,rv) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: za complex(4), intent(in) :: cv(n) real(8), intent(out) :: rv(n) ! local variables real(8) t1 t1=dble(za) if (abs(t1) > 1.d-12) rv(:)=rv(:)+t1*real(cv(:)) t1=-aimag(za) if (abs(t1) > 1.d-12) rv(:)=rv(:)+t1*aimag(cv(:)) end subroutine end subroutine elk-9.2.12/src/PaxHeaders/addlorbcnd.f900000644000000000000000000000013214536061313014643 xustar0030 mtime=1702388427.773501704 30 atime=1702388426.605503433 30 ctime=1702388427.773501704 elk-9.2.12/src/addlorbcnd.f900000644002504400250440000000154014536061313017365 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine addlorbcnd use modmain implicit none ! local variables integer is,nlo,l,io ! add conduction local-orbitals to each species do is=1,nspecies nlo=nlorb(is) do l=0,lmaxo nlo=nlo+1 if (nlo > maxlorb) then write(*,*) write(*,'("Error(addlorbcnd): nlorb too large : ",I8)') nlo write(*,'(" for species ",I4)') is write(*,'("Adjust maxlorb in modmain and recompile code")') write(*,*) stop end if lorbl(nlo,is)=l lorbord(nlo,is)=lorbordc do io=1,lorbordc lorbe0(io,nlo,is)=0.15d0 lorbdm(io,nlo,is)=io-1 lorbve(io,nlo,is)=.true. end do end do nlorb(is)=nlo end do end subroutine elk-9.2.12/src/PaxHeaders/energy.f900000644000000000000000000000013214536061313014040 xustar0030 mtime=1702388427.774501702 30 atime=1702388426.606503432 30 ctime=1702388427.774501702 elk-9.2.12/src/energy.f900000644002504400250440000002064614536061313016572 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: energy ! !INTERFACE: subroutine energy ! !USES: use modmain use moddftu use modtest ! !DESCRIPTION: ! Computes the total energy and its individual contributions. The kinetic ! energy is given by ! $$ T_s=\sum_i n_i\epsilon_i-\int\rho({\bf r})[v_{\rm C}({\bf r}) ! +v_{\rm xc}({\bf r})]d{\bf r}-\int {\bf m}({\bf r})\cdot ! ({\bf B}_{\rm xc}({\bf r})+{\bf B}_{\rm ext}({\bf r}))d{\bf r}, $$ ! where $n_i$ are the occupation numbers and $\epsilon_i$ are the eigenvalues ! of both the core and valence states; $\rho$ is the density; ${\bf m}$ is the ! magnetisation density; $v_{\rm C}$ is the Coulomb potential; $v_{\rm xc}$ ! and ${\bf B}_{\rm xc}$ are the exchange-correlation potential and magnetic ! field, respectively; and ${\bf B}_{\rm ext}$ is the external magnetic field. ! The Hartree, electron-nuclear and nuclear-nuclear electrostatic energies are ! combined into the Coulomb energy: ! \begin{align*} ! E_{\rm C}&=E_{\rm H}+E_{\rm en}+E_{\rm nn} \\ ! &=\frac{1}{2}V_{\rm C}+E_{\rm Mad}, ! \end{align*} ! where ! $$ V_{\rm C}=\int\rho({\bf r})v_{\rm C}({\bf r})d{\bf r} $$ ! is the Coulomb potential energy. The Madelung energy is given by ! $$ E_{\rm Mad}=\frac{1}{2}\sum_{\alpha}z_{\alpha}R_{\alpha}, $$ ! where ! $$ R_{\alpha}=\lim_{r\rightarrow 0}\left(v^{\rm C}_{\alpha;00}(r)Y_{00} ! +\frac{z_{\alpha}}{r}\right) $$ ! for atom $\alpha$, with $v^{\rm C}_{\alpha;00}$ being the $l=0$ component of ! the spherical harmonic expansion of $v_{\rm C}$ in the muffin-tin, and ! $z_{\alpha}$ is the nuclear charge. Using the nuclear-nuclear energy ! determined at the start of the calculation, the electron-nuclear and Hartree ! energies can be isolated with ! $$ E_{\rm en}=2\left(E_{\rm Mad}-E_{\rm nn}\right) $$ ! and ! $$ E_{\rm H}=\frac{1}{2}(E_{\rm C}-E_{\rm en}). $$ ! Finally, the total energy is ! $$ E=T_s+E_{\rm C}+E_{\rm xc}, $$ ! where $E_{\rm xc}$ is obtained either by integrating the ! exchange-correlation energy density, or in the case of exact exchange, the ! explicit calculation of the Fock exchange integral. The energy from the ! external magnetic fields in the muffin-tins, {\tt bfcmt}, is always removed ! from the total since these fields are non-physical: their field lines do not ! close. The energy of the physical external field, {\tt bfieldc}, is also not ! included in the total because this field, like those in the muffin-tins, is ! used for breaking spin symmetry and taken to be infintesimal. If this field ! is intended to be finite, then the associated energy, {\tt engybext}, should ! be added to the total by hand. See {\tt potxc}, {\tt exxengy} and related ! subroutines. ! ! !REVISION HISTORY: ! Created May 2003 (JKD) !EOP !BOC implicit none ! local variables integer ik,ist,idm,jdm integer is,ia,ias,n2,idu real(8) cb,sm,w,f complex(8) z1 ! allocatable arrays real(8), allocatable :: rfmt(:,:) complex(8), allocatable :: evecsv(:,:),kmat(:,:),c(:,:) ! external functions real(8), external :: rfinp complex(8), external :: zdotc ! coupling constant of the external field (g_e/4c) cb=gfacte/(4.d0*solsc) !-----------------------------------------------! ! exchange-correlation potential energy ! !-----------------------------------------------! engyvxc=rfinp(rhomt,rhoir,vxcmt,vxcir) !-----------------------------------------------------! ! exchange-correlation effective field energy ! !-----------------------------------------------------! engybxc=0.d0 do idm=1,ndmag engybxc=engybxc+rfinp(magmt(:,:,idm),magir(:,idm),bxcmt(:,:,idm),bxcir(:,idm)) end do !------------------------------------------! ! external magnetic field energies ! !------------------------------------------! engybext=0.d0 do idm=1,ndmag if (ncmag) then jdm=idm else jdm=3 end if ! energy of physical global field engybext=engybext+cb*momtot(idm)*bfieldc(jdm) end do !----------------------------------! ! Coulomb potential energy ! !----------------------------------! engyvcl=rfinp(rhomt,rhoir,vclmt,vclir) !-----------------------! ! Madelung term ! !-----------------------! engymad=0.d0 do ias=1,natmtot is=idxis(ias) engymad=engymad+0.5d0*spzn(is)*(vclmt(1,ias)-vcln(1,is))*y00 end do !---------------------------------------------! ! electron-nuclear interaction energy ! !---------------------------------------------! engyen=2.d0*(engymad-engynn) !------------------------! ! Hartree energy ! !------------------------! engyhar=0.5d0*(engyvcl-engyen) !------------------------! ! Coulomb energy ! !------------------------! engycl=engynn+engyen+engyhar !-------------------------! ! exchange energy ! !-------------------------! if ((xctype(1) < 0).or.(task == 5)) then ! exact exchange for OEP-EXX or Hartree-Fock on last self-consistent loop if (tlast) then call exxengy ! mix exact and DFT exchange energies for hybrid functionals if (hybrid) then engyx=engyx*hybridc engyx=engyx+rfinp(rhomt,rhoir,exmt,exir) end if else engyx=0.d0 end if else ! exchange energy from the density engyx=rfinp(rhomt,rhoir,exmt,exir) end if !----------------------------! ! correlation energy ! !----------------------------! if ((task == 5).and.(.not.hybrid)) then ! zero correlation energy for pure Hartree-Fock engyc=0.d0 else ! correlation energy from the density engyc=rfinp(rhomt,rhoir,ecmt,ecir) end if !----------------------! ! DFT+U energy ! !----------------------! engydu=0.d0 if (dftu /= 0) then do idu=1,ndftu is=isldu(1,idu) do ia=1,natoms(is) engydu=engydu+engyadu(ia,idu) end do end do end if !----------------------------! ! sum of eigenvalues ! !----------------------------! ! core eigenvalues evalsum=0.d0 do ias=1,natmtot is=idxis(ias) do ist=1,nstsp(is) if (spcore(ist,is)) evalsum=evalsum+occcr(ist,ias)*evalcr(ist,ias) end do end do ! valence eigenvalues do ik=1,nkpt w=wkpt(ik) do ist=1,nstsv evalsum=evalsum+w*occsv(ist,ik)*evalsv(ist,ik) end do end do !------------------------! ! kinetic energy ! !------------------------! ! core electron kinetic energy call energykncr ! total electron kinetic energy if (task == 5) then ! Hartree-Fock case engykn=engykncr ! kinetic energy from valence states allocate(evecsv(nstsv,nstsv),kmat(nstsv,nstsv),c(nstsv,nstsv)) do ik=1,nkpt w=wkpt(ik) call getevecsv(filext,ik,vkl(:,ik),evecsv) call getkmat(ik,kmat) call zgemm('N','N',nstsv,nstsv,nstsv,zone,kmat,nstsv,evecsv,nstsv,zzero,c, & nstsv) do ist=1,nstsv z1=zdotc(nstsv,evecsv(:,ist),1,c(:,ist),1) engykn=engykn+w*occsv(ist,ik)*dble(z1) end do end do deallocate(evecsv,kmat,c) else ! Kohn-Sham case allocate(rfmt(npmtmax,natmtot)) ! remove magnetic field contribution sm=0.d0 do idm=1,ndmag do ias=1,natmtot is=idxis(ias) call rfsht(nrcmt(is),nrcmti(is),bsmt(:,ias,idm),rfmt(:,ias)) end do call rfmtctof(rfmt) sm=sm+rfinp(magmt(:,:,idm),magir(:,idm),rfmt,bsir(:,idm)) end do ! remove fixed tensor moment potential matrix contribution if (ftmtype /= 0) then n2=(lmmaxdm*nspinor)**2 do ias=1,natmtot z1=zdotc(n2,dmatmt(:,:,:,:,ias),1,vmftm(:,:,:,:,ias),1) sm=sm+dble(z1) end do end if engykn=evalsum-engyvcl-engyvxc-sm deallocate(rfmt) end if ! add vector potential constant term (1/2c²)A²Q if required if (tafield) then sm=sum(afieldc(:)**2) engykn=engykn+(0.5d0/solsc**2)*sm*chgval end if !-------------------------------! ! entropic contribution ! !-------------------------------! entrpy=0.d0 engyts=0.d0 ! non-zero only for the Fermi-Dirac smearing function if (stype == 3) then sm=0.d0 do ik=1,nkpt w=wkpt(ik) do ist=1,nstsv f=occsv(ist,ik)/occmax if ((f > 0.d0).and.(f < 1.d0)) then sm=sm+w*(f*log(f)+(1.d0-f)*log(1.d0-f)) end if end do end do ! entropy entrpy=-occmax*kboltz*sm ! contribution to free energy engyts=-swidth*entrpy/kboltz end if !----------------------! ! total energy ! !----------------------! engytot=engykn+0.5d0*engyvcl+engymad+engyx+engyc+engyts ! add the DFT+U correction if required if (dftu /= 0) engytot=engytot+engydu ! write total energy to test file call writetest(0,'total energy',tol=1.d-5,rv=engytot) end subroutine !EOC elk-9.2.12/src/PaxHeaders/wfplot.f900000644000000000000000000000013214536061313014062 xustar0030 mtime=1702388427.776501699 30 atime=1702388426.608503429 30 ctime=1702388427.776501699 elk-9.2.12/src/wfplot.f900000644002504400250440000000565714536061313016621 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wfplot use modmain use modmpi use modomp implicit none ! local variables integer ik,ist real(8) x,t1 ! external functions real(8), external :: sdelta ! initialise universal variables call init0 call init1 ! read the density and potentials from file call readstate ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! set the occupation numbers if ((task == 61).or.(task == 62).or.(task == 63)) then ! plot of wavefunction modulus squared ik=kstlist(1,1) ist=kstlist(2,1) if ((ik < 1).or.(ik > nkpt)) then write(*,*) write(*,'("Error(wfplot): k-point out of range : ",I8)') ik write(*,*) stop end if if ((ist < 1).or.(ist > nstsv)) then write(*,*) write(*,'("Error(wfplot): state out of range : ",I8)') ist write(*,*) stop end if ! select a particular wavefunction using its occupancy occsv(:,:)=0.d0 occsv(ist,ik)=1.d0/wkpt(ik) ! no symmetrisation required nsymcrys=1 else ! plotting an STM image by setting occupation numbers to be a delta function at ! the Fermi energy t1=1.d0/swidth do ik=1,nkpt ! get the eigenvalues from file call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) do ist=1,nstsv x=(efermi-evalsv(ist,ik))*t1 occsv(ist,ik)=occmax*wkpt(ik)*sdelta(stype,x)*t1 end do end do end if ! compute the valence charge density with the new occupation numbers call rhomagv ! write the wavefunction modulus squared plot to file if (mp_mpi) then select case(task) case(61) open(50,file='WF1D.OUT',form='FORMATTED') open(51,file='WFLINES.OUT',form='FORMATTED') call plot1d(50,51,1,rhomt,rhoir) close(50) close(51) write(*,*) write(*,'("Info(wfplot):")') write(*,'(" 1D wavefunction modulus squared written to WF1D.OUT")') write(*,'(" vertex location lines written to WFLINES.OUT")') case(62) open(50,file='WF2D.OUT',form='FORMATTED') call plot2d(.false.,50,1,rhomt,rhoir) close(50) write(*,*) write(*,'("Info(wfplot):")') write(*,'(" 2D wavefunction modulus squared written to WF2D.OUT")') case(162) open(50,file='STM2D.OUT',form='FORMATTED') call plot2d(.false.,50,1,rhomt,rhoir) close(50) write(*,*) write(*,'("Info(wfplot):")') write(*,'(" 2D STM image written to STM2D.OUT")') case(63) open(50,file='WF3D.OUT',form='FORMATTED') call plot3d(50,1,rhomt,rhoir) close(50) write(*,*) write(*,'("Info(wfplot):")') write(*,'(" 3D wavefunction modulus squared written to WF3D.OUT")') end select if (task /= 162) then write(*,'(" for k-point ",I8," and state ",I6)') kstlist(1,1),kstlist(2,1) end if end if end subroutine elk-9.2.12/src/PaxHeaders/oepvcl.f900000644000000000000000000000013214536061313014037 xustar0030 mtime=1702388427.777501698 30 atime=1702388426.610503426 30 ctime=1702388427.777501698 elk-9.2.12/src/oepvcl.f900000644002504400250440000000220714536061313016562 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine oepvcl(vclcv,vclvv) use modmain use modmpi use modomp implicit none ! arguments complex(8), intent(out) :: vclcv(ncrmax,natmtot,nstsv,nkpt) complex(8), intent(out) :: vclvv(nstsv,nstsv,nkpt) ! local variables integer ik,ncv,nvv integer lp,nthd call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(oepvcl_) write(*,'("Info(oepvcl): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(oepvcl_) call oepvclk(ik,vclcv(:,:,:,ik),vclvv(:,:,ik)) end do !$OMP END PARALLEL DO call freethd(nthd) ! broadcast matrix elements to all other processes ncv=ncrmax*natmtot*nstsv nvv=nstsv*nstsv do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(vclcv(:,:,:,ik),ncv,mpi_double_complex,lp,mpicom,ierror) call mpi_bcast(vclvv(:,:,ik),nvv,mpi_double_complex,lp,mpicom,ierror) end do end subroutine elk-9.2.12/src/PaxHeaders/oepvclk.f900000644000000000000000000000013214536061313014212 xustar0030 mtime=1702388427.779501695 30 atime=1702388426.611503424 30 ctime=1702388427.779501695 elk-9.2.12/src/oepvclk.f900000644002504400250440000002331614536061313016741 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine oepvclk(ikp,vclcv,vclvv) use modmain implicit none ! arguments integer, intent(in) :: ikp complex(8), intent(out) :: vclcv(ncrmax,natmtot,nstsv) complex(8), intent(out) :: vclvv(nstsv,nstsv) ! local variables integer ik,jk,nst,ist1,ist2,ist3 integer is,ia,ias,nrc,nrci,npc integer iv(3),ig,iq,ic,jc,m1,m2 real(8) vc(3) complex(8) z1 ! automatic arrays integer idx(nstsv) ! allocatable arrays real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqrmt(:,:,:) complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: wfcr1(:,:),wfcr2(:,:) complex(4), allocatable :: crhomt1(:,:,:),crhomt2(:,:),crhoir1(:,:) complex(4), allocatable :: cvclmt(:,:),cvclir(:) ! external functions complex(8), external :: zcfinp,zcfmtinp ! allocate local arrays allocate(vgqc(3,ngvc),gqc(ngvc),gclgq(ngvc)) allocate(jlgqrmt(0:lnpsd,ngvc,nspecies)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) allocate(ylmgq(lmmaxo,ngvc),sfacgq(ngvc,natmtot)) allocate(wfmt1(npcmtmax,natmtot,nspinor,nstsv),wfir1(ngtc,nspinor,nstsv)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv),wfir2(ngtc,nspinor,nstsv)) allocate(wfcr1(npcmtmax,2),wfcr2(npcmtmax,2)) allocate(crhomt1(npcmtmax,natmtot,nstsv),crhoir1(ngtc,nstsv)) allocate(crhomt2(npcmtmax,nstcr)) allocate(cvclmt(npcmtmax,natmtot),cvclir(ngtc)) ! zero the Coulomb matrix elements vclcv(:,:,:)=0.d0 vclvv(:,:)=0.d0 ! get the eigenvectors from file for input reduced k-point call getevecfv(filext,ikp,vkl(:,ikp),vgkl(:,:,:,ikp),evecfv) call getevecsv(filext,ikp,vkl(:,ikp),evecsv) ! find the matching coefficients call match(ngk(1,ikp),vgkc(:,:,1,ikp),gkc(:,1,ikp),sfacgk(:,:,1,ikp),apwalm) ! calculate the wavefunctions for all states of the input k-point call genwfsv_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,ngk(1,ikp),igkig(:,1,ikp),& apwalm,evecfv,evecsv,wfmt1,ngtc,wfir1) ! loop over non-reduced k-point set do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! determine the q-vector iv(:)=ivk(:,ikp)-ivk(:,ik) iv(:)=modulo(iv(:),ngridk(:)) ! check if the q-point is in user-defined set iv(:)=iv(:)*ngridq(:) if (any(mod(iv(:),ngridk(:)) /= 0)) cycle iv(:)=iv(:)/ngridk(:) iq=ivqiq(iv(1),iv(2),iv(3)) vc(:)=vkc(:,ikp)-vkc(:,ik) do ig=1,ngvc ! determine the G+q-vectors vgqc(:,ig)=vgc(:,ig)+vc(:) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) ! spherical harmonics for G+q-vectors call genylmv(lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! structure factors for G+q call gensfacgp(ngvc,vgqc,ngvc,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngvc,gqc,gclgq) ! compute the required spherical Bessel functions call genjlgprmt(lnpsd,ngvc,gqc,ngvc,jlgqrmt) ! find the matching coefficients call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! get the eigenvectors from file for non-reduced k-points call getevecfv(filext,0,vkl(:,ik),vgkl(:,:,1,ik),evecfv) call getevecsv(filext,0,vkl(:,ik),evecsv) ! count and index occupied states nst=0 do ist3=1,nstsv if (evalsv(ist3,jk) > efermi) cycle nst=nst+1 idx(nst)=ist3 end do ! calculate the wavefunctions for occupied states call genwfsv_sp(.false.,.false.,nst,idx,ngdgc,igfc,ngk(1,ik),igkig(:,1,ik), & apwalm,evecfv,evecsv,wfmt2,ngtc,wfir2) do ist3=1,nst ! compute the complex overlap densities for all valence-valence states do ist1=1,nstsv call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist3),wfir2(:,:,ist3), & wfmt1(:,:,:,ist1),wfir1(:,:,ist1),crhomt1(:,:,ist1),crhoir1(:,ist1)) end do ! compute the complex overlap densities for all valence-core states jc=0 do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) do ist1=1,nstsp(is) if (spcore(ist1,is)) then do m1=-ksp(ist1,is),ksp(ist1,is)-1 jc=jc+1 ! generate the core wavefunction in spherical coordinates (pass in m-1/2) call wavefcr(.false.,lradstp,is,ia,ist1,m1,npcmtmax,wfcr1) if (spinpol) then call crho2(npc,wfmt2(:,ias,1,ist3),wfmt2(:,ias,2,ist3),wfcr1, & wfcr1(:,2),crhomt2(:,jc)) else call crho1(npc,wfmt2(:,ias,1,ist3),wfcr1,crhomt2(:,jc)) end if ! convert to spherical harmonics call cfshtip(nrc,nrci,crhomt2(:,jc)) end do end if end do end do end do do ist2=1,nstsv if (evalsv(ist2,ikp) > efermi) then ! calculate the Coulomb potential call gencvclmt(nrcmt,nrcmti,nrcmtmax,rlcmt,wprcmt,npcmtmax, & crhomt1(:,:,ist2),cvclmt) call cpotcoul(nrcmt,nrcmti,npcmt,nrcmtmax,rlcmt,ngdgc,igfc,ngvc,gqc, & gclgq,ngvc,jlgqrmt,ylmgq,sfacgq,crhoir1(:,ist2),npcmtmax,cvclmt,cvclir) cvclir(:)=cvclir(:)*cfrc(:) !----------------------------------------------! ! valence-valence-valence contribution ! !----------------------------------------------! do ist1=1,nstsv if (evalsv(ist1,ikp) < efermi) then z1=zcfinp(crhomt1(:,:,ist1),crhoir1(:,ist1),cvclmt,cvclir) vclvv(ist1,ist2)=vclvv(ist1,ist2)-wqptnr*z1 end if end do !-------------------------------------------! ! core-valence-valence contribution ! !-------------------------------------------! jc=0 do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) do ia=1,natoms(is) ias=idxas(ia,is) ic=0 do ist1=1,nstsp(is) if (spcore(ist1,is)) then do m1=-ksp(ist1,is),ksp(ist1,is)-1 ic=ic+1 jc=jc+1 z1=zcfmtinp(nrc,nrci,wrcmt(:,is),crhomt2(:,jc),cvclmt(:,ias)) vclcv(ic,ias,ist2)=vclcv(ic,ias,ist2)-wqptnr*z1 end do ! end loop over ist1 end if end do ! end loops over atoms and species end do end do ! end loop over ist2 end if end do ! end loop over ist3 end do ! end loop over non-reduced k-point set end do ! begin loops over atoms and species do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) do ist3=1,nstsp(is) if (spcore(ist3,is)) then do m1=-ksp(ist3,is),ksp(ist3,is)-1 ! generate the core wavefunction in spherical coordinates (pass in m-1/2) call wavefcr(.false.,lradstp,is,ia,ist3,m1,npcmtmax,wfcr1) ! compute the complex overlap densities for the core-valence states do ist1=1,nstsv if (spinpol) then call crho2(npc,wfcr1,wfcr1(:,2),wfmt1(:,ias,1,ist1), & wfmt1(:,ias,2,ist1),crhomt1(:,ias,ist1)) else call crho1(npc,wfcr1,wfmt1(:,ias,1,ist1),crhomt1(:,ias,ist1)) end if call cfshtip(nrc,nrci,crhomt1(:,ias,ist1)) end do ! compute the complex overlap densities for the core-core states ic=0 do ist1=1,nstsp(is) if (spcore(ist1,is)) then do m2=-ksp(ist1,is),ksp(ist1,is)-1 ic=ic+1 call wavefcr(.false.,lradstp,is,ia,ist1,m2,npcmtmax,wfcr2) call crho2(npc,wfcr1,wfcr1(:,2),wfcr2,wfcr2(:,2),crhomt2(:,ic)) call cfshtip(nrc,nrci,crhomt2(:,ic)) end do end if end do do ist2=1,nstsv if (evalsv(ist2,ikp) > efermi) then ! calculate the Coulomb potential call cpotclmt(nrc,nrci,nrcmtmax,rlcmt(:,:,is),wprcmt(:,:,is), & crhomt1(:,ias,ist2),cvclmt) !-------------------------------------------! ! valence-core-valence contribution ! !-------------------------------------------! do ist1=1,nstsv if (evalsv(ist1,ikp) < efermi) then z1=zcfmtinp(nrc,nrci,wrcmt(:,is),crhomt1(:,ias,ist1),cvclmt) vclvv(ist1,ist2)=vclvv(ist1,ist2)-z1 end if end do !----------------------------------------! ! core-core-valence contribution ! !----------------------------------------! ic=0 do ist1=1,nstsp(is) if (spcore(ist1,is)) then do m2=-ksp(ist1,is),ksp(ist1,is)-1 ic=ic+1 z1=zcfmtinp(nrc,nrci,wrcmt(:,is),crhomt2(:,ic),cvclmt) vclcv(ic,ias,ist2)=vclcv(ic,ias,ist2)-z1 end do ! end loop over ist1 end if end do ! end loop over ist2 end if end do ! end loops over ist3 and m1 end do end if end do ! end loops over atoms and species end do end do deallocate(vgqc,gqc,gclgq,jlgqrmt) deallocate(apwalm,evecfv,evecsv,ylmgq,sfacgq) deallocate(wfmt1,wfir1,wfmt2,wfir2,wfcr1,wfcr2) deallocate(crhomt1,crhomt2,crhoir1) deallocate(cvclmt,cvclir) return contains pure subroutine crho1(n,wf1,wf2,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf1(n),wf2(n) complex(4), intent(out) :: crho(n) crho(:)=conjg(wf1(:))*wf2(:) end subroutine pure subroutine crho2(n,wf11,wf12,wf21,wf22,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf11(n),wf12(n),wf21(n),wf22(n) complex(4), intent(out) :: crho(n) crho(:)=conjg(wf11(:))*wf21(:)+conjg(wf12(:))*wf22(:) end subroutine end subroutine !EOC elk-9.2.12/src/PaxHeaders/polar.f900000644000000000000000000000013214536061313013664 xustar0030 mtime=1702388427.781501692 30 atime=1702388426.613503421 30 ctime=1702388427.781501692 elk-9.2.12/src/polar.f900000644002504400250440000000477214536061313016420 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: polar ! !INTERFACE: subroutine polar(pvl) ! !USES: use modmain use modmpi use modomp ! !INPUT/OUTPUT PARAMETERS: ! pvl : polarisation vector modulo $2\pi$ (out,real(8)) ! !DESCRIPTION: ! Calculates the polarisation vector modulo $2\pi$ in lattice coordinates ! using the formula of R. D. King-Smith and David Vanderbilt [Phys. Rev. B ! {\bf 47}, 1651(R) (1993)], namely ! $$ P_l=\sum_{\bf k}{\rm Im}\ln\det\left(\langle ! u_{i{\bf k}+\Delta{\bf k}_l}|u_{j{\bf k}}\rangle\right),$$ ! where $\Delta{\bf k}_l=(1/n_l){\bf B}_l$ and ${\bf B}_l$ is a reciprocal ! lattice vector. The number of points $n_l$ is equal to that of the original ! $k$-point grid in direction of ${\bf B}_l$, multiplied by {\tt nskpolar}. ! See also the routines {\tt polark} and {\tt bornechg}. ! ! !REVISION HISTORY: ! Created May 2020 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(out) :: pvl(3) ! local variables integer ik,l,nthd real(8) vc(3),vgqc(3),gqc,pl ! allocatable arrays real(8), allocatable :: jlgqr(:,:) complex(8), allocatable :: ylmgq(:),sfacgq(:),expqmt(:,:) ! allocate local arrays allocate(jlgqr(njcmax,nspecies)) allocate(ylmgq(lmmaxo),sfacgq(natmtot)) allocate(expqmt(npcmtmax,natmtot)) maxscl=1 ! loop over reciprocal lattice vectors do l=1,3 ! create fine k-point grid in direction l ngridk(:)=ngridk0(:) ngridk(l)=nkspolar*ngridk(l) ! run one loop of the ground-state calculation call gndstate ! difference between adjacent k-vectors in this reciprocal lattice direction vc(:)=bvec(:,l)/dble(ngridk(l)) ! calculate the phase factor function exp(iq.r) call gengqf(1,vc,vgqc,gqc,jlgqr,ylmgq,sfacgq) call genexpmt(1,jlgqr,ylmgq,1,sfacgq,expqmt) pl=0.d0 ! parallel loop over non-reduced k-points call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP REDUCTION(+:pl) & !$OMP NUM_THREADS(nthd) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call polark(ik,l,expqmt,pl) end do !$OMP END PARALLEL DO call freethd(nthd) ! add polarisation from each process and redistribute if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,pl,1,mpi_double_precision,mpi_sum,mpicom, & ierror) end if pvl(l)=pl end do ! restore original input parameters ngridk(:)=ngridk0(:) maxscl=maxscl0 deallocate(jlgqr,ylmgq,sfacgq,expqmt) end subroutine !EOC elk-9.2.12/src/PaxHeaders/dbxcplot.f900000644000000000000000000000013014536061313014364 xustar0029 mtime=1702388427.78250169 30 atime=1702388426.615503418 29 ctime=1702388427.78250169 elk-9.2.12/src/dbxcplot.f900000644002504400250440000000416114536061313017112 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dbxcplot use modmain implicit none ! local variables integer idm,is,ias,np ! allocatable arrays real(8), allocatable :: rvfmt(:,:,:),rvfir(:,:) real(8), allocatable :: rfmt(:,:),rfir(:) real(8), allocatable :: grfmt(:,:,:),grfir(:,:) ! initialise universal variables call init0 if (.not.spinpol) then write(*,*) write(*,'("Error(dbxcplot): spin-unpolarised magnetic field is zero")') write(*,*) stop end if ! read magnetisation from file call readstate allocate(rvfmt(npmtmax,natmtot,3),rvfir(ngtot,3)) allocate(rfmt(npmtmax,natmtot),rfir(ngtot)) allocate(grfmt(npmtmax,natmtot,3),grfir(ngtot,3)) if (ncmag) then ! non-collinear rvfmt(:,:,:)=bxcmt(:,:,:) rvfir(:,:)=bxcir(:,:) else ! collinear rvfmt(:,:,1:2)=0.d0 rvfir(:,1:2)=0.d0 rvfmt(:,:,3)=bxcmt(:,:,1) rvfir(:,3)=bxcir(:,1) end if rfmt(:,:)=0.d0 rfir(:)=0.d0 do idm=1,3 call gradrf(rvfmt(:,:,idm),rvfir(:,idm),grfmt,grfir) do ias=1,natmtot is=idxis(ias) np=npmt(is) rfmt(1:np,ias)=rfmt(1:np,ias)+grfmt(1:np,ias,idm) end do rfir(:)=rfir(:)+grfir(:,idm) end do select case(task) case(91) open(50,file='DBXC1D.OUT',form='FORMATTED') open(51,file='DBXCLINES.OUT',form='FORMATTED') call plot1d(50,51,1,rfmt,rfir) close(50) close(51) write(*,*) write(*,'("Info(dbxcplot):")') write(*,'(" 1D divergence of exchange-correlation field written to & &DBXC1D.OUT")') write(*,'(" vertex location lines written to DBXCLINES.OUT")') case(92) open(50,file='DBXC2D.OUT',form='FORMATTED') call plot2d(.false.,50,1,rfmt,rfir) close(50) write(*,'("Info(dbxcplot):")') write(*,'(" 2D divergence of exchange-correlation field written to & &DBXC2D.OUT")') case(93) open(50,file='DBXC3D.OUT',form='FORMATTED') call plot3d(50,1,rfmt,rfir) close(50) write(*,'("Info(dbxcplot):")') write(*,'(" 3D divergence of exchange-correlation field written to & &DBXC3D.OUT")') end select deallocate(rvfmt,rvfir,rfmt,rfir,grfmt,grfir) end subroutine elk-9.2.12/src/PaxHeaders/sbesseldm.f900000644000000000000000000000013214536061313014530 xustar0030 mtime=1702388427.783501689 30 atime=1702388426.616503417 30 ctime=1702388427.783501689 elk-9.2.12/src/sbesseldm.f900000644002504400250440000000603014536061313017251 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sbesseldm ! !INTERFACE: subroutine sbesseldm(m,lmax,x,djl) ! !INPUT/OUTPUT PARAMETERS: ! m : order of derivatve (in,integer) ! lmax : maximum order of Bessel function (in,integer) ! x : real argument (in,real) ! djl : array of returned values (out,real(0:lmax)) ! !DESCRIPTION: ! Computes the $m$th derivative of the spherical Bessel function of the first ! kind, $j_l(x)$, for argument $x$ and $l=0,1,\ldots,l_{\rm max}$. For ! $x\ge 1$ this is done by repeatedly using the relations ! \begin{align*} ! \frac{d}{dx}j_l(x)&=\frac{l}{x}j_l(x)-j_{l+1}(x) \\ ! j_{l+1}(x)&=\frac{2l+1}{x}j_l(x)-j_{l-1}(x). ! \end{align*} ! While for $x<1$ the series expansion of the Bessel function is used ! $$ \frac{d^m}{dx^m}j_l(x)=\sum_{i=0}^{\infty} ! \frac{(2i+l)!}{(-2)^ii!(2i+l-m)!(2i+2l+1)!!}x^{2i+l-m}. $$ ! This procedure is numerically stable and accurate to near machine precision ! for $l\le 30$ and $m\le 6$. ! ! !REVISION HISTORY: ! Created March 2003 (JKD) ! Modified to return an array of values, October 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: m,lmax real(8), intent(in) :: x real(8), intent(out) :: djl(0:lmax) ! local variables integer, parameter :: maxm=6,maxns=20 integer i,j,l,i0 real(8) t1,sm,x2 ! automatic arrays integer a(0:maxm+1),a1(0:maxm+1) integer b(0:maxm+1),b1(0:maxm+1) real(8) jl(0:lmax+1) ! external functions real(8), external :: factn,factn2,factr if (m == 0) then call sbessel(lmax,x,djl) return end if if ((m < 0).or.(m > maxm)) then write(*,*) write(*,'("Error(sbesseldm): m out of range : ",I8)') m write(*,*) stop end if if ((lmax < 0).or.(lmax > 30)) then write(*,*) write(*,'("Error(sbesseldm): lmax out of range : ",I8)') lmax write(*,*) stop end if if ((x < 0.d0).or.(x > 1.d5)) then write(*,*) write(*,'("Error(sbesseldm): x out of range : ",G18.10)') x write(*,*) stop end if if (x > 1.d0) then call sbessel(lmax+1,x,jl) do l=0,lmax a(1:m+1)=0 a(0)=1 a1(0:m+1)=0 do i=1,m b(0)=0 b1(0)=0 do j=0,i b(j+1)=a(j)*(l-j) b1(j+1)=-a1(j)*(j+l+2) end do do j=0,i b1(j)=b1(j)-a(j) b(j)=b(j)+a1(j) end do a(0:i+1)=b(0:i+1) a1(0:i+1)=b1(0:i+1) end do t1=1.d0 sm=dble(a(0))*jl(l)+dble(a1(0))*jl(l+1) do i=1,m+1 t1=t1*x sm=sm+(dble(a(i))*jl(l)+dble(a1(i))*jl(l+1))/t1 end do djl(l)=sm end do else x2=x**2 do l=0,lmax i0=max((m-l+1)/2,0) j=2*i0+l-m if (j == 0) then t1=1.d0 else t1=x**j end if t1=factr(j+m,j)*t1/(factn(i0)*factn2(j+l+m+1)*dble((-2)**i0)) sm=t1 do i=i0+1,maxns j=2*i+l t1=-t1*dble((j-1)*j)*x2/dble((j-l)*(j-m-1)*(j-m)*(j+l+1)) if (abs(t1) <= 1.d-40) exit sm=sm+t1 end do djl(l)=sm end do end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/writehmlbse.f900000644000000000000000000000013214536061313015074 xustar0030 mtime=1702388427.785501686 30 atime=1702388426.618503414 30 ctime=1702388427.785501686 elk-9.2.12/src/writehmlbse.f900000644002504400250440000000532414536061313017622 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writehmlbse use modmain use modmpi ! sets up the BSE matrix and writes it to file implicit none ! local variables integer ik,jk,ist,jst integer a,b,i,j,m,n real(8) t1 ! initialise global variables call init0 call init1 call init2 call init3 ! read density and potentials from file call readstate ! read Fermi energy from a file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the eigenvalues and occupation numbers from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! check if system is metallic t1=minval(abs(0.5d0-occsv(:,:)/occmax)) if (abs(t1-0.5d0) > 0.01d0) then write(*,*) write(*,'("Warning(writehmlbse): system is metallic, the BSE may fail")') write(*,'("Try using a different vkloff or reducing swidth")') end if ! generate the BSE state index arrays call genidxbse if (allocated(hmlbse)) deallocate(hmlbse) allocate(hmlbse(nmbse,nmbse)) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) if (mp_mpi) then write(*,*) write(*,'("Info(writehmlbse): setting up BSE Hamiltonian matrix")') end if ! zero the BSE Hamiltonian hmlbse(:,:)=0.d0 ! compute diagonal matrix elements do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) do i=1,nvbse ist=istbse(i,ik) do j=1,ncbse jst=jstbse(j,ik) a=ijkbse(i,j,ik) hmlbse(a,a)=evalsv(jst,jk)-evalsv(ist,jk) if (bsefull) then b=a+nbbse hmlbse(b,b)=-hmlbse(a,a) end if end do end do end do ! add the exchange matrix elements if (hxbse) call hmlxbse ! add the direct matrix elements if (hdbse) call hmldbse ! add matrices from all processes and redistribute if (np_mpi > 1) then ! ensure that the number of elements transmitted by MPI is not larger than the ! maximum packet size (assumed to be 1024³ bytes) m=67108864/nmbse do b=1,nmbse,m n=min(nmbse-b+1,m) n=nmbse*n call mpi_allreduce(mpi_in_place,hmlbse(1,b),n,mpi_double_complex,mpi_sum, & mpicom,ierror) end do end if ! write the BSE matrix to HMLBSE.OUT if (mp_mpi) then open(140,file='HMLBSE.OUT',form='UNFORMATTED',action='WRITE') write(140) nmbse write(140) hmlbse close(140) write(*,*) write(*,'("Info(writehmlbse): BSE Hamiltonian matrix written to HMLBSE.OUT")') end if ! deallocate global BSE arrays deallocate(istbse,jstbse,ijkbse,hmlbse) end subroutine elk-9.2.12/src/PaxHeaders/dielectric_bse.f900000644000000000000000000000013214536061313015507 xustar0030 mtime=1702388427.786501684 30 atime=1702388426.619503412 30 ctime=1702388427.786501684 elk-9.2.12/src/dielectric_bse.f900000644002504400250440000000740614536061313020240 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dielectric_bse use modmain use modomp use modtest implicit none ! local variables integer a1,a2,ik1,jk1 integer i1,j1,ist1,jst1 integer iw,ioc,i,j,nthd integer ios,nmbse_ real(8) e,eji,t1,t2 complex(8) eta,z1 character(256) fname ! allocatable arrays real(8), allocatable :: w(:) complex(8), allocatable :: pmat(:,:,:),sigma(:,:,:),zv(:,:) ! initialise global variables call init0 call init1 ! read Fermi energy from a file call readfermi ! get the eigenvalues from file do ik1=1,nkpt call getevalsv(filext,ik1,vkl(:,ik1),evalsv(:,ik1)) end do ! generate the BSE state index arrays call genidxbse ! allocate global BSE arrays if (allocated(evalbse)) deallocate(evalbse) allocate(evalbse(nmbse)) if (allocated(hmlbse)) deallocate(hmlbse) allocate(hmlbse(nmbse,nmbse)) ! read in the BSE eigenvectors and eigenvalues open(140,file='EVBSE.OUT',form='UNFORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(dielectric_bse): error opening EVBSE.OUT")') write(*,*) stop end if read(140) nmbse_ if (nmbse /= nmbse_) then write(*,*) write(*,'("Error(dielectric_bse): differing nmbse")') write(*,'(" current : ",I6)') nmbse write(*,'(" EVBSE.OUT : ",I6)') nmbse_ stop end if read(140) evalbse read(140) hmlbse close(140) ! set up the frequency grid (starting from zero) allocate(w(nwplot)) t1=wplot(2)/dble(nwplot) do iw=1,nwplot w(iw)=t1*dble(iw-1) end do ! i divided by the complex relaxation time eta=cmplx(0.d0,swidth,8) allocate(pmat(nstsv,nstsv,3)) allocate(sigma(3,3,nwplot)) allocate(zv(3,nmbse)) sigma(:,:,:)=0.d0 zv(:,:)=0.d0 call holdthd(nmbse,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(ik1,jk1,a1,a2,e,i1,j1) & !$OMP PRIVATE(ist1,jst1,eji,z1,i,j) & !$OMP REDUCTION(+:sigma) & !$OMP NUM_THREADS(nthd) ! loop over non-reduced k-points do ik1=1,nkptnr ! equivalent reduced k-point jk1=ivkik(ivk(1,ik1),ivk(2,ik1),ivk(3,ik1)) ! read the momentum matrix elements from file !$OMP SINGLE call getpmat(vkl(:,ik1),pmat) !$OMP END SINGLE !$OMP DO SCHEDULE(DYNAMIC) do a2=1,nmbse e=evalbse(a2) do i1=1,nvbse ist1=istbse(i1,ik1) do j1=1,ncbse jst1=jstbse(j1,ik1) a1=ijkbse(i1,j1,ik1) eji=evalsv(jst1,jk1)-evalsv(ist1,jk1) z1=(e/eji)*hmlbse(a1,a2) zv(1:3,a2)=zv(1:3,a2)+z1*pmat(ist1,jst1,1:3) end do end do end do !$OMP END DO end do !$OMP DO SCHEDULE(DYNAMIC) do a2=1,nmbse e=evalbse(a2) if (abs(e) > 1.d-8) then do i=1,3 do j=1,3 z1=zv(i,a2)*conjg(zv(j,a2))/e sigma(i,j,:)=sigma(i,j,:)+z1/(w(:)-e+eta)+conjg(z1)/(w(:)+e+eta) end do end do end if end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) z1=zi*occmax*wkptnr/omega sigma(:,:,:)=z1*sigma(:,:,:) ! loop over tensor components do ioc=1,noptcomp i=optcomp(1,ioc) j=optcomp(2,ioc) t1=0.d0 if (i == j) t1=1.d0 write(fname,'("EPSILON_BSE_",2I1,".OUT")') i,j open(50,file=trim(fname),form='FORMATTED') do iw=1,nwplot t2=t1-fourpi*aimag(sigma(i,j,iw)/(w(iw)+eta)) write(50,'(2G18.10)') w(iw),t2 end do write(50,*) do iw=1,nwplot t2=fourpi*dble(sigma(i,j,iw)/(w(iw)+eta)) write(50,'(2G18.10)') w(iw),t2 end do close(50) end do write(*,*) write(*,'("Info(dielectric_bse):")') write(*,'(" dielectric tensor written to EPSILON_BSE_ij.OUT")') write(*,'(" for components")') do ioc=1,noptcomp write(*,'(" i = ",I1,", j = ",I1)') optcomp(1:2,ioc) end do ! write sigma to test file call writetest(187,'BSE optical conductivity',nv=nwplot,tol=1.d-3,zva=sigma) deallocate(w,pmat,sigma,zv) ! deallocate global BSE arrays deallocate(evalbse,hmlbse) end subroutine elk-9.2.12/src/PaxHeaders/vecplot.f900000644000000000000000000000013214536061313014223 xustar0030 mtime=1702388427.787501683 30 atime=1702388426.620503411 30 ctime=1702388427.787501683 elk-9.2.12/src/vecplot.f900000644002504400250440000001241514536061313016750 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: vecplot ! !INTERFACE: subroutine vecplot ! !DESCRIPTION: ! Outputs a 2D or 3D vector field for plotting. The vector field can be the ! magnetisation vector field, ${\bf m}$; the exchange-correlation magnetic ! field, ${\bf B}_{\rm xc}$; or the electric field ! ${\bf E}\equiv-\nabla V_{\rm C}$. The magnetisation is obtained from the ! spin density matrix, $\rho_{\alpha\beta}$, by solving ! $$ \rho_{\alpha\beta}({\bf r})=\frac{1}{2}\left(n({\bf r}) ! \delta_{\alpha\beta}+\sigma\cdot {\bf m}({\bf r})\right), $$ ! where $n\equiv\tr\rho_{\alpha\beta}$ is the total density. In the case of 2D ! plots, the magnetisation vectors are still 3D, but are in the coordinate ! system of the plane. ! ! !REVISION HISTORY: ! Created August 2004 (JKD) ! Included electric field plots, August 2006 (JKD) !EOP !BOC use modmain implicit none ! allocatable arrays real(8), allocatable :: rvfmt(:,:,:),rvfir(:,:) ! initialise universal variables call init0 if ((task == 72).or.(task == 73).or.(task == 82).or.(task == 83)) then if (.not.spinpol) then write(*,*) write(*,'("Error(vecplot): spin-unpolarised magnetisation/field is zero")') write(*,*) stop end if end if ! read magnetisation and exchange-correlation magnetic field from file call readstate allocate(rvfmt(npmtmax,natmtot,3),rvfir(ngtot,3)) select case(task) case(71,72,73) ! magnetisation if (ncmag) then ! non-collinear rvfmt(:,:,:)=magmt(:,:,:) rvfir(:,:)=magir(:,:) else ! collinear rvfmt(:,:,1:2)=0.d0 rvfir(:,1:2)=0.d0 rvfmt(:,:,3)=magmt(:,:,1) rvfir(:,3)=magir(:,1) end if case(81,82,83) ! exchange-correlation magnetic field if (ncmag) then ! non-collinear rvfmt(:,:,:)=bxcmt(:,:,:) rvfir(:,:)=bxcir(:,:) else ! collinear rvfmt(:,:,1:2)=0.d0 rvfir(:,1:2)=0.d0 rvfmt(:,:,3)=bxcmt(:,:,1) rvfir(:,3)=bxcir(:,1) end if case(141,142,143) ! electric field call gradrf(vclmt,vclir,rvfmt,rvfir) ! use the negative of the gradient rvfmt(:,:,:)=-rvfmt(:,:,:) rvfir(:,:)=-rvfir(:,:) case(151,152,153) if (.not.ncmag) then write(*,*) write(*,'("Error(vecplot): collinear m(r) x B_xc(r) is zero")') write(*,*) stop end if call rvfcross(magmt,magir,bxcmt,bxcir,rvfmt,rvfir) end select select case(task) case(71,81,141,151) if (task == 71) then open(50,file='MAG1D.OUT',form='FORMATTED') open(51,file='MAGLINES.OUT',form='FORMATTED') else if (task == 81) then open(50,file='BXC1D.OUT',form='FORMATTED') open(51,file='BXCLINES.OUT',form='FORMATTED') else if (task == 141) then open(50,file='EF1D.OUT',form='FORMATTED') open(51,file='EFLINES.OUT',form='FORMATTED') else open(50,file='MCBXC1D.OUT',form='FORMATTED') open(51,file='MCBXCLINES.OUT',form='FORMATTED') end if call plot1d(50,51,3,rvfmt,rvfir) close(50) write(*,*) write(*,'("Info(vecplot):")') if (task == 71) then write(*,'(" 1D magnetisation density written to MAG1D.OUT")') write(*,'(" vertex location lines written to MAGLINES.OUT")') else if (task == 81) then write(*,'(" 1D exchange-correlation field written to BXC1D.OUT")') write(*,'(" vertex location lines written to BXCLINES.OUT")') else if (task == 141) then write(*,'(" 1D electric field written to EF1D.OUT")') write(*,'(" vertex location lines written to EFLINES.OUT")') else write(*,'(" 1D m(r) x B_xc(r) written to MCBXC1D.OUT")') write(*,'(" vertex location lines written to MCBXCLINES.OUT")') end if case(72,82,142,152) if (task == 72) then open(50,file='MAG2D.OUT',form='FORMATTED') else if (task == 82) then open(50,file='BXC2D.OUT',form='FORMATTED') else if (task == 142) then open(50,file='EF2D.OUT',form='FORMATTED') else open(50,file='MCBXC2D.OUT',form='FORMATTED') end if call plot2d(.true.,50,3,rvfmt,rvfir) close(50) write(*,*) write(*,'("Info(vecplot):")') if (task == 72) then write(*,'(" 2D magnetisation density written to MAG2D.OUT")') else if (task == 82) then write(*,'(" 2D exchange-correlation field written to BXC2D.OUT")') else if (task == 142) then write(*,'(" 2D electric field written to EF2D.OUT")') else write(*,'(" 2D m(r) x B_xc(r) written to MCBXC2D.OUT")') end if write(*,'(" Note that the 3D vector field has been locally projected")') write(*,'(" onto the 2D plotting plane axes")') case(73,83,143,153) if (task == 73) then open(50,file='MAG3D.OUT',form='FORMATTED') else if (task == 83) then open(50,file='BXC3D.OUT',form='FORMATTED') else if (task == 143) then open(50,file='EF3D.OUT',form='FORMATTED') else open(50,file='MCBXC3D.OUT',form='FORMATTED') end if call plot3d(50,3,rvfmt,rvfir) close(50) write(*,*) write(*,'("Info(vecplot):")') if (task == 73) then write(*,'(" 3D magnetisation density written to MAG3D.OUT")') else if (task == 83) then write(*,'(" 3D exchange-correlation field written to BXC3D.OUT")') else if (task == 143) then write(*,'(" 3D electric field written to EF3D.OUT")') else write(*,'(" 3D m(r) x B_xc(r) written to MCBXC3D.OUT")') end if end select deallocate(rvfmt,rvfir) end subroutine !EOC elk-9.2.12/src/PaxHeaders/nesting.f900000644000000000000000000000013014536061313014214 xustar0029 mtime=1702388427.78950168 30 atime=1702388426.622503408 29 ctime=1702388427.78950168 elk-9.2.12/src/nesting.f900000644002504400250440000000441714536061313016746 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine nesting use modmain use modomp implicit none ! local variables integer iq,ik,jk,jkq,ivkq(3) integer ist,i1,i2,i3,nthd real(8) sm0,sm1,sm2,sm3 real(8) vl(3),vc(3),x,t1 ! allocatable arrays real(8), allocatable :: nq(:) ! external functions real(8), external :: sdelta ! initialise universal variables call init0 call init1 call init2 ! read Fermi energy from file call readfermi ! get the eigenvalues from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) end do allocate(nq(nqpt)) t1=1.d0/swidth sm0=0.d0 call holdthd(nqpt,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(sm1,sm2,sm3,ik,jk) & !$OMP PRIVATE(ivkq,jkq,ist,x) & !$OMP REDUCTION(+:sm0) & !$OMP NUM_THREADS(nthd) do iq=1,nqpt !$OMP CRITICAL(nesting_) write(*,'("Info(nesting): ",I6," of ",I6," q-points")') iq,nqpt !$OMP END CRITICAL(nesting_) sm1=0.d0 do ik=1,nkptnr jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ivkq(:)=ivk(:,ik)+ivq(:,iq) ivkq(:)=mod(ivkq(:),ngridk(:)) jkq=ivkik(ivkq(1),ivkq(2),ivkq(3)) sm2=0.d0 do ist=1,nstsv x=(efermi-evalsv(ist,jk))*t1 sm2=sm2+sdelta(stype,x)*t1 end do sm3=0.d0 do ist=1,nstsv x=(efermi-evalsv(ist,jkq))*t1 sm3=sm3+sdelta(stype,x)*t1 end do sm1=sm1+sm2*sm3 end do nq(iq)=occmax*omegabz*wkptnr*sm1 sm0=sm0+omegabz*wqpt(iq)*nq(iq) end do !$OMP END PARALLEL DO call freethd(nthd) open(50,file='NEST3D.OUT',form='FORMATTED') write(50,'(3I6," : grid size")') ngridq(:) do i3=0,ngridq(3)-1 vl(3)=dble(i3)/dble(ngridq(3)) do i2=0,ngridq(2)-1 vl(2)=dble(i2)/dble(ngridq(2)) do i1=0,ngridq(1)-1 vl(1)=dble(i1)/dble(ngridq(1)) vc(:)=bvec(:,1)*vl(1)+bvec(:,2)*vl(2)+bvec(:,3)*vl(3) iq=ivqiq(i1,i2,i3) write(50,'(4G18.10)') vc(:),nq(iq) end do end do end do close(50) open(50,file='NESTING.OUT',form='FORMATTED') write(50,'(G18.10)') sm0 close(50) write(*,*) write(*,'("Info(nesting):")') write(*,'(" Nesting function N(q) written to NEST3D.OUT for plotting")') write(*,*) write(*,'(" Total integrated nesting per unit volume written to NESTING.OUT")') deallocate(nq) end subroutine elk-9.2.12/src/PaxHeaders/writeevbse.f900000644000000000000000000000013214536061313014726 xustar0030 mtime=1702388427.790501679 30 atime=1702388426.623503407 30 ctime=1702388427.790501679 elk-9.2.12/src/writeevbse.f900000644002504400250440000000436414536061313017457 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeevbse use modmain implicit none ! local variables integer ik,a integer ios,nmbse_ ! allocatable arrays complex(8), allocatable :: w(:) ! initialise global variables call init0 call init1 ! read Fermi energy from a file call readfermi ! get the eigenvalues from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) end do ! generate the BSE state index arrays call genidxbse ! allocate global BSE arrays if (allocated(evalbse)) deallocate(evalbse) allocate(evalbse(nmbse)) if (allocated(hmlbse)) deallocate(hmlbse) allocate(hmlbse(nmbse,nmbse)) ! read in BSE Hamiltonian matrix open(140,file='HMLBSE.OUT',form='UNFORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(writeevbse): error opening HMLBSE.OUT")') write(*,*) stop end if read(140) nmbse_ if (nmbse /= nmbse_) then write(*,*) write(*,'("Error(writeevbse): differing nmbse")') write(*,'(" current : ",I6)') nmbse write(*,'(" HMLBSE.OUT : ",I6)') nmbse_ write(*,*) stop end if read(140) hmlbse close(140) write(*,'("Info(writeevbse): diagonalising the BSE Hamiltonian matrix")') if (bsefull) then ! full non-Hermitian matrix allocate(w(nmbse)) call eveqnzg(nmbse,nmbse,hmlbse,w) evalbse(:)=dble(w(:)) else ! Hermitian block only call eveqnzh(nmbse,nmbse,hmlbse,evalbse) end if ! write the BSE eigenvectors and eigenvalues to file open(140,file='EVBSE.OUT',form='UNFORMATTED',action='WRITE') write(140) nmbse write(140) evalbse write(140) hmlbse close(140) ! write the BSE eigenvalues to file open(50,file='EIGVAL_BSE.OUT',form='FORMATTED',action='WRITE') write(50,'(I6," : nmbse")') nmbse if (bsefull) then do a=1,nmbse write(50,'(I6,2G18.10)') a,dble(w(a)),aimag(w(a)) end do deallocate(w) else do a=1,nmbse write(50,'(I6,G18.10)') a,evalbse(a) end do end if close(50) write(*,*) write(*,'("Info(writeevbse):")') write(*,'(" BSE eigenvectors and eigenvalues written to EVBSE.OUT")') write(*,'(" BSE eigenvalues written to EIGVAL_BSE.OUT")') ! deallocate global BSE arrays deallocate(evalbse,hmlbse) end subroutine elk-9.2.12/src/PaxHeaders/emdplot3d.f900000644000000000000000000000013214536061313014442 xustar0030 mtime=1702388427.791501677 30 atime=1702388426.625503404 30 ctime=1702388427.791501677 elk-9.2.12/src/emdplot3d.f900000644002504400250440000000202514536061313017163 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 D. Ernsting, S. Dugdale and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine emdplot3d(emds) use modmain use modpw use modomp implicit none ! arguments real(4), intent(in) :: emds(nhkmax,nkpt) ! local variables integer np,ip,nthd real(8) v1(3),t1 ! allocatable arrays real(8), allocatable :: vpl(:,:) ! external functions real(8), external :: rfhkintp ! total number of plot points np=np3d(1)*np3d(2)*np3d(3) ! generate the 3D plotting points allocate(vpl(3,np)) call plotpt3d(vpl) open(50,file='EMD3D.OUT',form='FORMATTED') write(50,'(3I6," : grid size")') np3d(:) call holdthd(np,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(t1,v1) & !$OMP NUM_THREADS(nthd) !$OMP DO ORDERED do ip=1,np t1=rfhkintp(vpl(:,ip),emds) call r3mv(bvec,vpl(:,ip),v1) !$OMP ORDERED write(50,'(4G18.10)') v1(:),t1 !$OMP END ORDERED end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) close(50) deallocate(vpl) end subroutine elk-9.2.12/src/PaxHeaders/emdplot2d.f900000644000000000000000000000013214536061313014441 xustar0030 mtime=1702388427.793501674 30 atime=1702388426.626503402 30 ctime=1702388427.793501674 elk-9.2.12/src/emdplot2d.f900000644002504400250440000000311314536061313017161 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 D. Ernsting, S. Dugdale and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine emdplot2d(emds) use modmain use modpw use modomp implicit none ! arguments real(4), intent(in) :: emds(nhkmax,nkpt) ! local variables integer nh(3),np,ip,n,i,nthd real(8) vpnl(3),v1(3),t1 ! allocatable arrays real(8), allocatable :: vpl(:,:),vppc(:,:) real(8), allocatable :: x(:),wx(:),f(:) ! external functions real(8), external :: rfhkintp ! allocate local arrays np=np2d(1)*np2d(2) allocate(vpl(3,np),vppc(2,np)) ! generate the 2D plotting points call plotpt2d(bvec,binv,vpnl,vpl,vppc) ! determine the number of integration points nh(:)=int(hkmax*sqrt(avec(1,:)**2+avec(2,:)**2+avec(3,:)**2)/pi)+1 n=2*maxval(nh(:)*ngridk(:)) allocate(x(n),wx(n)) do i=1,n t1=2.d0*dble(i-1)/dble(n-1)-1.d0 x(i)=t1*hkmax end do ! determine the weights for spline integration call wsplint(n,x,wx) open(50,file='EMD2D.OUT',form='FORMATTED') write(50,'(2I6," : grid size")') np2d(:) ! loop over plotting points in the 2D plane call holdthd(np,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(f,i,v1,t1) & !$OMP NUM_THREADS(nthd) allocate(f(n)) !$OMP DO ORDERED do ip=1,np ! integrate along normal to plane do i=1,n v1(:)=vpl(:,ip)+x(i)*vpnl(:) f(i)=rfhkintp(v1,emds) end do t1=dot_product(wx(:),f(:)) !$OMP ORDERED write(50,'(3G18.10)') vppc(1,ip),vppc(2,ip),t1 !$OMP END ORDERED end do !$OMP END DO deallocate(f) !$OMP END PARALLEL call freethd(nthd) close(50) deallocate(vpl,vppc,x,wx) end subroutine elk-9.2.12/src/PaxHeaders/emdplot1d.f900000644000000000000000000000013214536061313014440 xustar0030 mtime=1702388427.794501673 30 atime=1702388426.628503399 30 ctime=1702388427.794501673 elk-9.2.12/src/emdplot1d.f900000644002504400250440000000470614536061313017171 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 D. Ernsting, S. Dugdale and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine emdplot1d(emds) use modmain use modpw use modomp use modtest implicit none ! arguments real(4), intent(in) :: emds(nhkmax,nkpt) ! local variables integer nh(3),ip,n,i,j,nthd real(8) vl1(3),vl2(3),vl3(3) real(8) vc1(3),vc2(3),vc3(3),t1 ! allocatable arrays real(8), allocatable :: x(:),wx(:),f1(:),f2(:) ! external functions real(8), external :: rfhkintp ! generate the 1D plotting points: use only the first segment call plotpt1d(bvec,2,npp1d,vvlp1d,vplp1d,dvp1d,dpp1d) ! compute two vectors orthogonal to each other and the plotting vector; these ! are the directions to be used for integration vl1(:)=vvlp1d(:,2)-vvlp1d(:,1) call r3mv(bvec,vl1,vc1) t1=sqrt(vc1(1)**2+vc1(2)**2+vc1(3)**2) if (t1 < epslat) then write(*,*) write(*,'("Error(emdplot1d): zero length plotting vector")') write(*,*) stop end if vc1(:)=vc1(:)/t1 i=1 do j=2,3 if (abs(vc1(j)) < abs(vc1(i))) i=j end do vc2(:)=0.d0 vc2(i)=1.d0 t1=dot_product(vc1,vc2) vc2(:)=vc2(:)-t1*vc1(:) t1=sqrt(vc2(1)**2+vc2(2)**2+vc2(3)**2) vc2(:)=vc2(:)/t1 call r3cross(vc1,vc2,vc3) ! integration directions in lattice coordinates call r3mv(binv,vc2,vl2) call r3mv(binv,vc3,vl3) ! determine the number of integration points nh(:)=int(hkmax*sqrt(avec(1,:)**2+avec(2,:)**2+avec(3,:)**2)/pi)+1 n=2*maxval(nh(:)*ngridk(:)) allocate(x(n),wx(n)) do i=1,n t1=2.d0*dble(i-1)/dble(n-1)-1.d0 x(i)=t1*hkmax end do ! determine the weights for spline integration call wsplint(n,x,wx) open(50,file='EMD1D.OUT',form='FORMATTED') write(*,*) ! loop over plotting points along 1D line call holdthd(npp1d,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(f1,f2,i,j,vl1,t1) & !$OMP NUM_THREADS(nthd) allocate(f1(n),f2(n)) !$OMP DO ORDERED do ip=ip01d,npp1d do i=1,n do j=1,n vl1(:)=vplp1d(:,ip)+x(i)*vl2(:)+x(j)*vl3(:) f1(j)=rfhkintp(vl1,emds) end do f2(i)=dot_product(wx(:),f1(:)) end do t1=dot_product(wx(:),f2(:)) !$OMP ORDERED write(*,'("Info(emdplot1d): done ",I6," of ",I6," points")') ip,npp1d write(50,'(2G18.10)') dpp1d(ip),t1 flush(50) !$OMP END ORDERED ! write to test file if required if (test.and.(ip == 1)) then call writetest(171,'integrated EMD',nv=n,tol=1.d-4,rva=f2) end if end do !$OMP END DO deallocate(f1,f2) !$OMP END PARALLEL call freethd(nthd) close(50) deallocate(x,wx) end subroutine elk-9.2.12/src/PaxHeaders/rfhkintp.f900000644000000000000000000000013014536061313014372 xustar0029 mtime=1702388427.79650167 30 atime=1702388426.629503398 29 ctime=1702388427.79650167 elk-9.2.12/src/rfhkintp.f900000644002504400250440000000461114536061313017120 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 D. Ernsting, S. Dugdale and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function rfhkintp(vhpl,rfhk) use modmain use modpw implicit none ! arguments real(8), intent(in) :: vhpl(3) real(4), intent(in) :: rfhk(nhkmax,nkpt) ! local variables integer ivh0(3),ivk0(3),ihk integer ivhb(3,0:1,0:1,0:1) integer ivkb(3,0:1,0:1,0:1) integer isym,lspl,ik,jk,i,j,k real(8) vpl(3),fb(0:1,0:1,0:1) real(8) f00,f01,f10,f11,f0,f1 real(8) v0(3),v1(3),v2(3),t1,t2 ! find the H-vector and k-vector corresponding to the input H+p-vector ivh0(:)=floor(vhpl(:)) vpl(:)=vhpl(:)-dble(ivh0(:)) v1(:)=vpl(:)*dble(ngridk(:)) ivk0(:)=floor(v1(:)) ! determine the corners of the box containing the input point do i=0,1; do j=0,1; do k=0,1 ivkb(1,i,j,k)=ivk0(1)+i ivkb(2,i,j,k)=ivk0(2)+j ivkb(3,i,j,k)=ivk0(3)+k ivhb(:,i,j,k)=ivh0(:)+ivkb(:,i,j,k)/ngridk(:) ivkb(:,i,j,k)=modulo(ivkb(:,i,j,k),ngridk(:)) end do; end do; end do ! determine the function at each corner of the box do i=0,1; do j=0,1; do k=0,1 fb(i,j,k)=0.d0 ! non-reduced k-point index jk=ivkiknr(ivkb(1,i,j,k),ivkb(2,i,j,k),ivkb(3,i,j,k)) ! H+k-vector at corner of box v1(:)=dble(ivhb(:,i,j,k))+vkl(:,jk) ! store the origin of the box if ((i == 0).and.(j == 0).and.(k == 0)) v0(:)=v1(:) ! vector in Cartesian coordinates v2(:)=bvec(:,1)*v1(1)+bvec(:,2)*v1(2)+bvec(:,3)*v1(3) ! check length is within range t1=sqrt(v2(1)**2+v2(2)**2+v2(3)**2) if (t1 > hkmax) cycle ! find the lattice symmetry which maps the non-reduced to reduced k-point call findkpt(vkl(:,jk),isym,ik) ! index to spatial rotation in lattice point group lspl=lsplsymc(isym) v2(:)=symlat(1,:,lspl)*v1(1)+symlat(2,:,lspl)*v1(2)+symlat(3,:,lspl)*v1(3) ! find the H+k-vector for the reduced k-point do ihk=1,nhk(1,ik) t1=abs(v2(1)-vhkl(1,ihk,1,ik)) & +abs(v2(2)-vhkl(2,ihk,1,ik)) & +abs(v2(3)-vhkl(3,ihk,1,ik)) if (t1 < epslat) then fb(i,j,k)=rfhk(ihk,ik) exit end if end do end do; end do; end do ! interpolate function t2=(vhpl(1)-v0(1))*dble(ngridk(1)) t1=1.d0-t2 f00=fb(0,0,0)*t1+fb(1,0,0)*t2 f01=fb(0,0,1)*t1+fb(1,0,1)*t2 f10=fb(0,1,0)*t1+fb(1,1,0)*t2 f11=fb(0,1,1)*t1+fb(1,1,1)*t2 t2=(vhpl(2)-v0(2))*dble(ngridk(2)) t1=1.d0-t2 f0=f00*t1+f10*t2 f1=f01*t1+f11*t2 t2=(vhpl(3)-v0(3))*dble(ngridk(3)) t1=1.d0-t2 rfhkintp=f0*t1+f1*t2 end function elk-9.2.12/src/PaxHeaders/writewfpw.f900000644000000000000000000000013214536061313014605 xustar0030 mtime=1702388427.797501668 30 atime=1702388426.630503396 30 ctime=1702388427.797501668 elk-9.2.12/src/writewfpw.f900000644002504400250440000000411114536061313017324 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writewfpw use modmain use modpw use modmpi use modomp use moddelf implicit none ! local variables integer ik,recl,nthd ! allocatable arrays complex(8), allocatable :: wfpw(:,:,:) ! initialise global variables call init0 call init1 call init4 ! read density and potentials from file call readstate ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! delete existing WFPW.OUT if (mp_mpi) call delfile('WFPW.OUT') ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! determine the record length and open WFPW.OUT allocate(wfpw(nhkmax,nspinor,nstsv)) inquire(iolength=recl) vkl(:,1),nhkmax,nspinor,nstsv,wfpw deallocate(wfpw) open(270,file='WFPW.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) ! begin parallel loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfpw) & !$OMP NUM_THREADS(nthd) allocate(wfpw(nhkmax,nspinor,nstsv)) !$OMP DO do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(writewfpw_) write(*,'("Info(writewfpw): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(writewfpw_) ! generate the plane wave wavefunctions call genwfpw(vkl(:,ik),ngk(:,ik),igkig(:,:,ik),vgkl(:,:,:,ik), & vgkc(:,:,:,ik),gkc(:,:,ik),sfacgk(:,:,:,ik),nhk(:,ik),vhkc(:,:,:,ik), & hkc(:,:,ik),sfachk(:,:,:,ik),wfpw) !$OMP CRITICAL(u270) write(270,rec=ik) vkl(:,ik),nhkmax,nspinor,nstsv,wfpw !$OMP END CRITICAL(u270) end do !$OMP END DO deallocate(wfpw) !$OMP END PARALLEL call freethd(nthd) close(270) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) if (mp_mpi) then write(*,*) write(*,'("Info(writewfpw): plane wave wavefunctions written to WFPW.OUT")') write(*,'(" for all H+k-vectors up to |H+k| < hkmax")') end if end subroutine elk-9.2.12/src/PaxHeaders/vblocal.f900000644000000000000000000000013214536061313014171 xustar0030 mtime=1702388427.798501667 30 atime=1702388426.632503393 30 ctime=1702388427.798501667 elk-9.2.12/src/vblocal.f900000644002504400250440000000274214536061313016720 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine vblocal(vmt,vir,bmt) use modmain use modomp implicit none ! arguments real(8), intent(out) :: vmt(npcmtmax,natmtot),vir(ngtot) real(8), intent(out) :: bmt(npcmtmax,natmtot,ndmag) ! local variables integer idm,is,ias,nthd integer nrc,nrci,npc ! automatic arrays real(8) rfmt(npcmtmax) call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(rfmt,is,nrc,nrci) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) ! convert muffin-tin Kohn-Sham potential to coarse radial mesh call rfmtftoc(nrc,nrci,vsmt(:,ias),rfmt) ! convert to spherical coordinates call rbsht(nrc,nrci,rfmt,vmt(:,ias)) ! multiply by radial integration weights call rfcmtwr(nrc,nrci,wrcmt(:,is),vmt(:,ias)) end do !$OMP END PARALLEL DO ! multiply interstitial Kohn-Sham potential by characteristic function vir(:)=vsir(:)*cfunir(:) ! repeat for the Kohn-Sham magnetic field if (spinpol) then !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is,nrc,nrci,npc,idm) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do idm=1,ndmag bmt(1:npc,ias,idm)=bsmt(1:npc,ias,idm) call rfcmtwr(nrc,nrci,wrcmt(:,is),bmt(:,ias,idm)) end do end do !$OMP END PARALLEL DO end if call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/writefsm.f900000644000000000000000000000013214536061313014407 xustar0030 mtime=1702388427.800501664 30 atime=1702388426.633503392 30 ctime=1702388427.800501664 elk-9.2.12/src/writefsm.f900000644002504400250440000000154114536061313017132 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writefsm(fnum) use modmain implicit none ! arguments integer, intent(in) :: fnum ! local variables integer is,ia,ias if (fsmtype == 0) return write(fnum,*) if ((abs(fsmtype) == 1).or.(abs(fsmtype) == 3)) then write(fnum,'("FSM global effective field",T30,": ",3G18.10)') bfsmc(1:ndmag) end if if ((abs(fsmtype) == 2).or.(abs(fsmtype) == 3)) then write(fnum,'("FSM local muffin-tin effective fields :")') do is=1,nspecies write(fnum,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) write(fnum,'(" atom ",I4,T30,": ",3G18.10)') ia,bfsmcmt(1:ndmag,ias) end do end do end if end subroutine elk-9.2.12/src/PaxHeaders/getwfpw.f900000644000000000000000000000013214536061313014232 xustar0030 mtime=1702388427.801501662 30 atime=1702388426.635503389 30 ctime=1702388427.801501662 elk-9.2.12/src/getwfpw.f900000644002504400250440000001177714536061313016771 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getwfpw(vpl,vhpl,wfpw) use modmain use modpw implicit none ! arguments real(8), intent(in) :: vpl(3) real(8), intent(in) :: vhpl(3,nhkmax,nspnfv) complex(8), intent(out) :: wfpw(nhkmax,nspinor,nstsv) ! local variables integer isym,lspl,ilspl,lspn integer ik,ist,ihk,ihp,jhp,ig integer ispn0,ispn1,jspn,i integer recl,nhkmax_,nspinor_,nstsv_ real(8) vkl_(3),si(3,3) real(8) v(3),det,th,t1 complex(8) su2(2,2),z1,z2 ! automatic arrays logical done(nhkmax) ! allocatable arrays complex(8), allocatable :: wfpw_(:,:,:) ! find the equivalent k-point number and symmetry which rotates vkl to vpl call findkpt(vpl,isym,ik) ! index to spatial rotation in lattice point group lspl=lsplsymc(isym) ! find the record length inquire(iolength=recl) vkl_,nhkmax_,nspinor_,nstsv_,wfpw !$OMP CRITICAL(u270) open(270,file='WFPW.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(270,rec=ik) vkl_,nhkmax_,nspinor_,nstsv_,wfpw close(270) !$OMP END CRITICAL(u270) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getwfpw): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" WFPW.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nhkmax /= nhkmax_) then write(*,*) write(*,'("Error(getwfpw): differing nhkmax for k-point ",I8)') ik write(*,'(" current : ",I8)') nhkmax write(*,'(" WFPW.OUT : ",I8)') nhkmax_ write(*,*) stop end if if (nspinor /= nspinor_) then write(*,*) write(*,'("Error(getwfpw): differing nspinor for k-point ",I8)') ik write(*,'(" current : ",I8)') nspinor write(*,'(" WFPW.OUT : ",I8)') nspinor_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getwfpw): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" WFPW.OUT : ",I8)') nstsv_ write(*,*) stop end if ! if p = k then return t1=abs(vpl(1)-vkl(1,ik))+abs(vpl(2)-vkl(2,ik))+abs(vpl(3)-vkl(3,ik)) if (t1 < epslat) return !--------------------------------------------------------! ! translate and rotate wavefunction coefficients ! !--------------------------------------------------------! ! allocate temporary copy of wavefunction allocate(wfpw_(nhkmax,nspinor,nstsv)) ! the inverse of the spatial symmetry ilspl=isymlat(lspl) si(:,:)=dble(symlat(:,:,ilspl)) ! loop over first-variational spins do jspn=1,nspnfv if (spinsprl) then ispn0=jspn; ispn1=jspn else ispn0=1; ispn1=nspinor end if ! apply translation operation if required if (tv0symc(isym)) then ! translation vector is zero do ihk=1,nhk(jspn,ik) wfpw_(ihk,ispn0:ispn1,:)=wfpw(ihk,ispn0:ispn1,:) end do else ! non-zero translation vector gives a phase factor v(:)=vtcsymc(:,isym) do ihk=1,nhk(jspn,ik) ig=ihkig(ihk,jspn,ik) t1=-(vgc(1,ig)*v(1)+vgc(2,ig)*v(2)+vgc(3,ig)*v(3)) z1=cmplx(cos(t1),sin(t1),8) wfpw_(ihk,ispn0:ispn1,:)=z1*wfpw(ihk,ispn0:ispn1,:) end do end if ! apply spatial rotation operation (passive transformation) done(1:nhk(jspn,ik))=.false. i=1 do ihk=1,nhk(jspn,ik) call r3mtv(si,vhkl(:,ihk,jspn,ik),v) do ihp=i,nhk(jspn,ik) if (done(ihp)) cycle t1=abs(v(1)-vhpl(1,ihp,jspn)) & +abs(v(2)-vhpl(2,ihp,jspn)) & +abs(v(3)-vhpl(3,ihp,jspn)) if (t1 < epslat) then wfpw(ihp,ispn0:ispn1,:)=wfpw_(ihk,ispn0:ispn1,:) done(ihp)=.true. exit end if end do do ihp=i,nhk(jspn,ik) if (.not.done(ihp)) then i=ihp exit end if end do end do end do ! apply spin rotation if required if (spinpol) then ! index to global spin rotation in lattice point group lspn=lspnsymc(isym) ! if symmetry element is the identity return if (lspn == 1) return ! find the SU(2) representation of the spin rotation matrix call rotaxang(epslat,symlatc(:,:,lspn),det,v,th) call axangsu2(v,th,su2) ! apply SU(2) matrix to spinor wavefunctions (active transformation) if (spinsprl) then ! spin-spiral case wfpw(:,2,:)=0.d0 i=1 do ihp=1,nhk(1,ik) v(:)=vhpl(:,ihp,1)-vqlss(:) do jhp=i,nhk(2,ik) t1=abs(v(1)-vhpl(1,jhp,2)) & +abs(v(2)-vhpl(2,jhp,2)) & +abs(v(3)-vhpl(3,jhp,2)) if (t1 < epslat) then do ist=1,nstsv z1=wfpw(ihp,1,ist) z2=wfpw(jhp,2,ist) wfpw(ihp,1,ist)=su2(1,1)*z1+su2(1,2)*z2 wfpw(jhp,2,ist)=su2(2,1)*z1+su2(2,2)*z2 end do if (jhp == i) i=i+1 goto 10 end if end do wfpw(ihp,1,:)=0.d0 10 continue end do else ! normal spin case do ist=1,nstsv do ihp=1,nhk(1,ik) z1=wfpw(ihp,1,ist) z2=wfpw(ihp,2,ist) wfpw(ihp,1,ist)=su2(1,1)*z1+su2(1,2)*z2 wfpw(ihp,2,ist)=su2(2,1)*z1+su2(2,2)*z2 end do end do end if end if deallocate(wfpw_) end subroutine elk-9.2.12/src/PaxHeaders/plotpt1d.f900000644000000000000000000000013214536061313014316 xustar0030 mtime=1702388427.802501661 30 atime=1702388426.636503387 30 ctime=1702388427.802501661 elk-9.2.12/src/plotpt1d.f900000644002504400250440000000523114536061313017041 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: plotpt1d ! !INTERFACE: subroutine plotpt1d(cvec,nv,np,vvl,vpl,dv,dp) ! !INPUT/OUTPUT PARAMETERS: ! cvec : matrix of (reciprocal) lattice vectors stored column-wise ! (in,real(3,3)) ! nv : number of vertices (in,integer) ! np : number of connecting points (in,integer) ! vvl : vertex vectors in lattice coordinates (in,real(3,nv)) ! vpl : connecting point vectors in lattice coordinates (out,real(3,np)) ! dv : cummulative distance to each vertex (out,real(nv)) ! dp : cummulative distance to each connecting point (out,real(np)) ! !DESCRIPTION: ! Generates a set of points which interpolate between a given set of vertices. ! Vertex points are supplied in lattice coordinates in the array {\tt vvl} and ! converted to Cartesian coordinates with the matrix {\tt cvec}. Interpolating ! points are stored in the array {\tt vpl}. The cummulative distances to the ! vertices and points along the path are stored in arrays {\tt dv} and ! {\tt dp}, respectively. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) ! Improved September 2007 (JKD) ! Improved again, July 2010 (T. McQueen and JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: cvec(3,3) integer, intent(in) :: nv,np real(8), intent(in) :: vvl(3,nv) real(8), intent(out) :: vpl(3,np),dv(nv),dp(np) ! local variables integer i,j,k,m,n real(8) vl(3),vc(3) real(8) dt,f,t1 ! alloctable arrays real(8), allocatable :: seg(:) if (nv < 1) then write(*,*) write(*,'("Error(plotpt1d): nv < 1 : ",I8)') nv write(*,*) stop end if if (np < nv) then write(*,*) write(*,'("Error(plotpt1d): np < nv : ",2I8)') np,nv write(*,*) stop end if ! special case of 1 vertex if (nv == 1) then dv(1)=0.d0 dp(:)=0.d0 do i=1,np vpl(:,i)=vvl(:,1) end do return end if allocate(seg(nv)) ! find the length of each segment and total distance dt=0.d0 do i=1,nv-1 dv(i)=dt vl(:)=vvl(:,i+1)-vvl(:,i) call r3mv(cvec,vl,vc) seg(i)=sqrt(vc(1)**2+vc(2)**2+vc(3)**2) dt=dt+seg(i) end do dv(nv)=dt ! add small amount to total distance to avoid 0/0 condition dt=dt+1.d-8 ! number of points to use between vertices n=np-nv ! construct the interpolating path k=0 do i=1,nv-1 t1=dble(n)*seg(i)/dt m=nint(t1) if ((m > n).or.(i == (nv-1))) m=n do j=1,m+1 k=k+1 f=dble(j-1)/dble(m+1) dp(k)=dv(i)+f*seg(i) vpl(:,k)=vvl(:,i)*(1.d0-f)+vvl(:,i+1)*f end do dt=dt-seg(i) n=n-m end do dp(np)=dv(nv) vpl(:,np)=vvl(:,nv) deallocate(seg) end subroutine !EOC elk-9.2.12/src/PaxHeaders/init1.f900000644000000000000000000000013214536061313013573 xustar0030 mtime=1702388427.804501658 30 atime=1702388426.637503386 30 ctime=1702388427.804501658 elk-9.2.12/src/init1.f900000644002504400250440000002567114536061313016330 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: init1 ! !INTERFACE: subroutine init1 ! !USES: use modmain use moddftu use modulr use modtddft use modtest use modvars ! !DESCRIPTION: ! Generates the $k$-point set and then allocates and initialises global ! variables which depend on the $k$-point set. ! ! !REVISION HISTORY: ! Created January 2004 (JKD) !EOP !BOC implicit none ! local variables logical lsym(48) integer is,ias,nppt integer io,ilo,i1,i2,i3 integer ik,isym,jspn integer l1,l2,l3,m1,m2,m3 integer lm1,lm2,lm3,n real(8) vl(3),vc(3),t1 real(8) boxl(3,0:3) real(8) ts0,ts1 ! external functions complex(8), external :: gauntyry call timesec(ts0) !---------------------! ! k-point set ! !---------------------! ! check if the system is an isolated molecule if (molecule) then ngridk(:)=1 vkloff(:)=0.d0 autokpt=.false. end if ! store the point group symmetries for reducing the k-point set if (reducek == 0) then nsymkpt=1 symkpt(:,:,1)=symlat(:,:,1) else lsym(:)=.false. do isym=1,nsymcrys if (reducek == 2) then ! check symmetry is symmorphic if (.not.tv0symc(isym)) goto 10 ! check also that the spin rotation is the same as the spatial rotation if (spinpol) then if (lspnsymc(isym) /= lsplsymc(isym)) goto 10 end if end if lsym(lsplsymc(isym))=.true. 10 continue end do nsymkpt=0 do isym=1,nsymlat if (lsym(isym)) then nsymkpt=nsymkpt+1 symkpt(:,:,nsymkpt)=symlat(:,:,isym) end if end do end if if (any(task == [20,21,22,23])) then ! generate k-points along a path for band structure plots call plotpt1d(bvec,nvp1d,npp1d,vvlp1d,vplp1d,dvp1d,dpp1d) nkpt=npp1d if (allocated(vkl)) deallocate(vkl) allocate(vkl(3,nkpt)) if (allocated(vkc)) deallocate(vkc) allocate(vkc(3,nkpt)) do ik=1,nkpt vkl(:,ik)=vplp1d(:,ik) call r3mv(bvec,vkl(:,ik),vkc(:,ik)) end do nkptnr=nkpt else if (task == 25) then ! effective mass calculation nkpt=(2*ndspem+1)**3 if (allocated(ivk)) deallocate(ivk) allocate(ivk(3,nkpt)) if (allocated(vkl)) deallocate(vkl) allocate(vkl(3,nkpt)) if (allocated(vkc)) deallocate(vkc) allocate(vkc(3,nkpt)) ! map vector to [0,1) call r3frac(epslat,vklem) ik=0 do i3=-ndspem,ndspem do i2=-ndspem,ndspem do i1=-ndspem,ndspem ik=ik+1 ivk(1,ik)=i1; ivk(2,ik)=i2; ivk(3,ik)=i3 vc(1)=dble(i1); vc(2)=dble(i2); vc(3)=dble(i3) vc(:)=vc(:)*deltaem call r3mv(binv,vc,vl) vkl(:,ik)=vklem(:)+vl(:) call r3mv(bvec,vkl(:,ik),vkc(:,ik)) end do end do end do nkptnr=nkpt else ! determine the k-point grid automatically from radkpt if required if (autokpt) then t1=radkpt/twopi ngridk(:)=int(t1*sqrt(bvec(1,:)**2+bvec(2,:)**2+bvec(3,:)**2))+1 end if ! set up the default k-point box boxl(:,0)=vkloff(:)/dble(ngridk(:)) if (task == 102) boxl(:,0)=0.d0 boxl(:,1)=boxl(:,0) boxl(:,2)=boxl(:,0) boxl(:,3)=boxl(:,0) boxl(1,1)=boxl(1,1)+1.d0 boxl(2,2)=boxl(2,2)+1.d0 boxl(3,3)=boxl(3,3)+1.d0 ! k-point set and box for Fermi surface plots if (any(task == [100,101,102])) then ngridk(:)=np3d(:) if (task /= 102) boxl(:,:)=vclp3d(:,:) end if ! allocate the k-point set arrays if (allocated(ivkik)) deallocate(ivkik) allocate(ivkik(0:ngridk(1)-1,0:ngridk(2)-1,0:ngridk(3)-1)) if (allocated(ivkiknr)) deallocate(ivkiknr) allocate(ivkiknr(0:ngridk(1)-1,0:ngridk(2)-1,0:ngridk(3)-1)) nkptnr=ngridk(1)*ngridk(2)*ngridk(3) if (allocated(ivk)) deallocate(ivk) allocate(ivk(3,nkptnr)) if (allocated(vkl)) deallocate(vkl) allocate(vkl(3,nkptnr)) if (allocated(vkc)) deallocate(vkc) allocate(vkc(3,nkptnr)) if (allocated(wkpt)) deallocate(wkpt) allocate(wkpt(nkptnr)) ! generate the k-point set call genppts(.false.,nsymkpt,symkpt,ngridk,nkptnr,epslat,bvec,boxl,nkpt, & ivkik,ivkiknr,ivk,vkl,vkc,wkpt,wkptnr) ! write to VARIABLES.OUT if (wrtvars) then call writevars('nsymkpt',iv=nsymkpt) call writevars('symkpt',nv=9*nsymkpt,iva=symkpt) call writevars('ngridk',nv=3,iva=ngridk) call writevars('vkloff',nv=3,rva=vkloff) call writevars('nkpt',iv=nkpt) call writevars('ivkik',nv=nkptnr,iva=ivkik) call writevars('ivk',nv=3*nkptnr,iva=ivk) call writevars('vkl',nv=3*nkptnr,rva=vkl) call writevars('wkpt',nv=nkpt,rva=wkpt) end if end if if (any(task == [700,701,731,732,733,741,742,743,771,772,773])) then ! generate ultracell reciprocal lattice vectors if required call reciplat(avecu,bvecu,omegau,omegabzu) ! generate the kappa, k+kappa and Q-points if required call genkpakq end if ! write the k-points to test file call writetest(910,'k-points (Cartesian)',nv=3*nkpt,tol=1.d-8,rva=vkc) !---------------------! ! G+k-vectors ! !---------------------! if ((xctype(1) < 0).or.tddos.or. & (any(task == [5,10,205,300,600,620,630]))) then nppt=nkptnr else nppt=nkpt end if ! find the maximum number of G+k-vectors call findngkmax(nkpt,vkc,nspnfv,vqcss,ngvc,vgc,gkmax,ngkmax) ! allocate the G+k-vector arrays if (allocated(ngk)) deallocate(ngk) allocate(ngk(nspnfv,nppt)) if (allocated(igkig)) deallocate(igkig) allocate(igkig(ngkmax,nspnfv,nppt)) if (allocated(vgkl)) deallocate(vgkl) allocate(vgkl(3,ngkmax,nspnfv,nppt)) if (allocated(vgkc)) deallocate(vgkc) allocate(vgkc(3,ngkmax,nspnfv,nppt)) if (allocated(gkc)) deallocate(gkc) allocate(gkc(ngkmax,nspnfv,nppt)) if (allocated(sfacgk)) deallocate(sfacgk) allocate(sfacgk(ngkmax,natmtot,nspnfv,nppt)) do ik=1,nppt do jspn=1,nspnfv vl(:)=vkl(:,ik) vc(:)=vkc(:,ik) ! spin-spiral case if (spinsprl) then if (jspn == 1) then vl(:)=vl(:)+0.5d0*vqlss(:) vc(:)=vc(:)+0.5d0*vqcss(:) else vl(:)=vl(:)-0.5d0*vqlss(:) vc(:)=vc(:)-0.5d0*vqcss(:) end if end if ! generate the G+k-vectors call gengkvec(ngvc,ivg,vgc,vl,vc,gkmax,ngkmax,ngk(jspn,ik), & igkig(:,jspn,ik),vgkl(:,:,jspn,ik),vgkc(:,:,jspn,ik),gkc(:,jspn,ik)) ! generate structure factors for G+k-vectors call gensfacgp(ngk(jspn,ik),vgkc(:,:,jspn,ik),ngkmax,sfacgk(:,:,jspn,ik)) end do end do ! write to VARIABLES.OUT if (wrtvars) then call writevars('nspnfv',iv=nspnfv) call writevars('gkmax',rv=gkmax) call writevars('ngk',nv=nspnfv*nkpt,iva=ngk) do ik=1,nkpt do jspn=1,nspnfv call writevars('igkig',n1=jspn,n2=ik,nv=ngk(jspn,ik),iva=igkig(:,jspn,ik)) end do end do end if !---------------------------------! ! APWs and local-orbitals ! !---------------------------------! apwordmax=0 lorbordmax=0 nlomax=0 lolmax=0 do is=1,nspecies lmoapw(is)=0 do l1=0,lmaxapw ! find the maximum APW order apwordmax=max(apwordmax,apword(l1,is)) ! find total number of APW coefficients (l, m and order) lmoapw(is)=lmoapw(is)+(2*l1+1)*apword(l1,is) if (l1 == lmaxo) nlmwf(is)=lmoapw(is) end do ! find the maximum number of local-orbitals nlomax=max(nlomax,nlorb(is)) ! find the maximum local-orbital order and angular momentum n=0 do ilo=1,nlorb(is) l1=lorbl(ilo,is) lolmax=max(lolmax,l1) lorbordmax=max(lorbordmax,lorbord(ilo,is)) n=n+2*l1+1 end do ! number of (l,m) components used for generating the muffin-tin wavefunctions nlmwf(is)=max(nlmwf(is),n) end do lolmmax=(lolmax+1)**2 ! polynomial order used for APW and local-orbital radial derivatives npapw=max(apwordmax+1,4) nplorb=max(lorbordmax+1,4) ! set the APW and local-orbital linearisation energies to the default if (allocated(apwe)) deallocate(apwe) allocate(apwe(apwordmax,0:lmaxapw,natmtot)) if (allocated(lorbe)) deallocate(lorbe) allocate(lorbe(lorbordmax,maxlorb,natmtot)) do ias=1,natmtot is=idxis(ias) do l1=0,lmaxapw do io=1,apword(l1,is) apwe(io,l1,ias)=apwe0(io,l1,is) end do end do do ilo=1,nlorb(is) do io=1,lorbord(ilo,is) lorbe(io,ilo,ias)=lorbe0(io,ilo,is) end do end do end do ! generate the local-orbital index call genidxlo ! allocate radial function arrays if (allocated(apwfr)) deallocate(apwfr) allocate(apwfr(nrmtmax,2,apwordmax,0:lmaxapw,natmtot)) if (allocated(apwdfr)) deallocate(apwdfr) allocate(apwdfr(apwordmax,0:lmaxapw,natmtot)) if (allocated(lofr)) deallocate(lofr) allocate(lofr(nrmtmax,2,nlomax,natmtot)) !-------------------------! ! DFT+U variables ! !-------------------------! if (dftu /= 0) then ! allocate energy arrays to calculate Slater integrals with Yukawa potential if (allocated(efdu)) deallocate(efdu) allocate(efdu(0:lmaxdm,natmtot)) ! allocate radial functions to calculate Slater integrals with Yukawa potential if (allocated(fdufr)) deallocate(fdufr) allocate(fdufr(nrmtmax,0:lmaxdm,natmtot)) end if !---------------------------------------! ! eigenvalue equation variables ! !---------------------------------------! ! total number of empty states (M. Meinert) nempty=nint(nempty0*max(natmtot,1)) if (nempty < 1) nempty=1 ! number of first-variational states nstfv=int(chgval/2.d0)+nempty+1 ! overlap and Hamiltonian matrix sizes if (allocated(nmat)) deallocate(nmat) allocate(nmat(nspnfv,nkpt)) nmatmax=0 do ik=1,nkpt do jspn=1,nspnfv n=ngk(jspn,ik)+nlotot if (nstfv > n) then write(*,*) write(*,'("Error(init1): number of first-variational states larger than & &matrix size")') write(*,'("Increase rgkmax or decrease nempty")') write(*,*) stop end if nmat(jspn,ik)=n nmatmax=max(nmatmax,n) end do end do ! number of second-variational states nstsv=nstfv*nspinor ! allocate second-variational arrays if (allocated(evalsv)) deallocate(evalsv) allocate(evalsv(nstsv,nkpt)) if (allocated(occsv)) deallocate(occsv) allocate(occsv(nstsv,nkpt)) occsv(:,:)=0.d0 ! allocate overlap and Hamiltonian integral arrays if (allocated(oalo)) deallocate(oalo) allocate(oalo(apwordmax,nlomax,natmtot)) if (allocated(ololo)) deallocate(ololo) allocate(ololo(nlomax,nlomax,natmtot)) if (allocated(haa)) deallocate(haa) allocate(haa(lmmaxo,apwordmax,0:lmaxapw,apwordmax,0:lmaxapw,natmtot)) if (allocated(hloa)) deallocate(hloa) allocate(hloa(lmmaxo,apwordmax,0:lmaxapw,nlomax,natmtot)) if (allocated(hlolo)) deallocate(hlolo) allocate(hlolo(lmmaxo,nlomax,nlomax,natmtot)) ! allocate and generate complex Gaunt coefficient array if (allocated(gntyry)) deallocate(gntyry) allocate(gntyry(lmmaxo,lmmaxapw,lmmaxapw)) do l1=0,lmaxapw do m1=-l1,l1 lm1=l1*(l1+1)+m1+1 do l3=0,lmaxapw do m3=-l3,l3 lm3=l3*(l3+1)+m3+1 do l2=0,lmaxo do m2=-l2,l2 lm2=l2*(l2+1)+m2+1 gntyry(lm2,lm3,lm1)=gauntyry(l1,l2,l3,m1,m2,m3) end do end do end do end do end do end do ! check if the scissor correction is non-zero if (abs(scissor).gt.1.d-8) then tscissor=.true. else tscissor=.false. end if ! write to VARIABLES.OUT if (wrtvars) then call writevars('nempty',iv=nempty) call writevars('nstfv',iv=nstfv) call writevars('nlotot',iv=nlotot) call writevars('nstsv',iv=nstsv) end if call timesec(ts1) timeinit=timeinit+ts1-ts0 end subroutine !EOC elk-9.2.12/src/PaxHeaders/init2.f900000644000000000000000000000013214536061313013574 xustar0030 mtime=1702388427.806501655 30 atime=1702388426.639503383 30 ctime=1702388427.806501655 elk-9.2.12/src/init2.f900000644002504400250440000000773014536061313016325 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine init2 use modmain use modrdm use modphonon use modvars use modmpi implicit none ! local variables logical lsym(48) integer isym,iv(3) real(8) boxl(3,0:3) real(8) ts0,ts1 call timesec(ts0) !---------------------! ! q-point set ! !---------------------! ! check if the system is an isolated molecule if (molecule) ngridq(:)=1 ! store the point group symmetries for reducing the q-point set if (reduceq == 0) then nsymqpt=1 symqpt(:,:,1)=symlat(:,:,1) else lsym(:)=.false. do isym=1,nsymcrys lsym(lsplsymc(isym))=.true. end do nsymqpt=0 do isym=1,nsymlat if (lsym(isym)) then nsymqpt=nsymqpt+1 symqpt(:,:,nsymqpt)=symlat(:,:,isym) end if end do end if if (any(task == [105,180,185,320,330,331])) then ! equal k- and q-point grids for nesting function, BSE and linear-reposnse TDDFT ngridq(:)=ngridk(:) else if ((xctype(1) < 0).or.(any(task == [5,300,600,620,630]))) then ! allow the q-point grid to be smaller than the k-point grid for OEP, ! Hartree-Fock, RDMFT and GW if (any(ngridq(:) <= 0)) ngridq(:)=ngridk(:) else ngridq(:)=abs(ngridq(:)) end if ! check that the q-point and k-point grids are commensurate for some tasks if ((xctype(1) < 0).or.(any(task == [5,205,240,241,300,600,620,630]))) then iv(:)=mod(ngridk(:),ngridq(:)) if (any(iv(:) /= 0)) then write(*,*) write(*,'("Error(init2): k-point grid incommensurate with q-point grid")') write(*,'(" ngridk : ",3I6)') ngridk write(*,'(" ngridq : ",3I6)') ngridq write(*,*) stop end if end if ! allocate the q-point arrays if (allocated(ivqiq)) deallocate(ivqiq) allocate(ivqiq(0:ngridq(1)-1,0:ngridq(2)-1,0:ngridq(3)-1)) if (allocated(ivqiqnr)) deallocate(ivqiqnr) allocate(ivqiqnr(0:ngridq(1)-1,0:ngridq(2)-1,0:ngridq(3)-1)) nqptnr=ngridq(1)*ngridq(2)*ngridq(3) if (allocated(ivq)) deallocate(ivq) allocate(ivq(3,nqptnr)) if (allocated(vql)) deallocate(vql) allocate(vql(3,nqptnr)) if (allocated(vqc)) deallocate(vqc) allocate(vqc(3,nqptnr)) if (allocated(wqpt)) deallocate(wqpt) allocate(wqpt(nqptnr)) ! set up the q-point box (offset should always be zero) boxl(:,:)=0.d0 boxl(1,1)=1.d0; boxl(2,2)=1.d0; boxl(3,3)=1.d0 ! generate the q-point set ! (note that the vectors vql and vqc are in the first Brillouin zone) call genppts(.true.,nsymqpt,symqpt,ngridq,nqptnr,epslat,bvec,boxl,nqpt,ivqiq, & ivqiqnr,ivq,vql,vqc,wqpt,wqptnr) ! write the q-points to QPOINTS.OUT if (mp_mpi) call writeqpts ! write to VARIABLES.OUT if (wrtvars) then call writevars('nsymqpt',iv=nsymqpt) call writevars('symqpt',nv=9*nsymqpt,iva=symqpt) call writevars('ngridq',nv=3,iva=ngridq) call writevars('nqpt',iv=nqpt) call writevars('ivqiq',nv=nqptnr,iva=ivqiq) call writevars('ivq',nv=3*nqptnr,iva=ivq) call writevars('vql',nv=3*nqptnr,rva=vql) call writevars('wqpt',nv=nqpt,rva=wqpt) end if !--------------------------------------------------------! ! OEP, Hartree-Fock, RDMFT, BSE and GW variables ! !--------------------------------------------------------! if ((xctype(1) < 0).or.(any(task == [5,180,185,188,205,300,320,330,331,600, & 620,630]))) then ! determine the regularised Coulomb Green's function for small q call gengclq ! output the Coulomb Green's function to GCLQ.OUT if (mp_mpi) call writegclq ! initialise OEP variables if (xctype(1) < 0) call initoep end if if (task == 300) then if (allocated(vclmat)) deallocate(vclmat) allocate(vclmat(nstsv,nstsv,nkpt)) if (allocated(dkdc)) deallocate(dkdc) allocate(dkdc(nstsv,nstsv,nkpt)) end if !-------------------------! ! phonon variables ! !-------------------------! if (allocated(wphq)) deallocate(wphq) if (task == 220) then allocate(wphq(nbph,npp1d)) end if if (any(task == [240,241,250,270,271,280,285])) then allocate(wphq(nbph,nqpt)) end if call timesec(ts1) timeinit=timeinit+ts1-ts0 end subroutine elk-9.2.12/src/PaxHeaders/findsymcrys.f900000644000000000000000000000013114536061313015120 xustar0030 mtime=1702388427.807501653 29 atime=1702388426.64150338 30 ctime=1702388427.807501653 elk-9.2.12/src/findsymcrys.f900000644002504400250440000001501614536061313017646 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: findsymcrys ! !INTERFACE: subroutine findsymcrys ! !USES: use modmain use modmpi use modtest ! !DESCRIPTION: ! Finds the complete set of symmetries which leave the crystal structure ! (including the magnetic fields) invariant. A crystal symmetry is of the form ! $\{\alpha_S|\alpha_R|{\bf t}\}$, where ${\bf t}$ is a translation vector, ! $\alpha_R$ is a spatial rotation operation and $\alpha_S$ is a global spin ! rotation. Note that the order of operations is important and defined to be ! from right to left, i.e. translation followed by spatial rotation followed ! by spin rotation. In the case of spin-orbit coupling $\alpha_S=\alpha_R$. In ! order to determine the translation vectors, the entire atomic basis is ! shifted so that the first atom in the smallest set of atoms of the same ! species is at the origin. Then all displacement vectors between atoms in ! this set are checked as possible symmetry translations. If the global ! variable {\tt tshift} is set to {\tt .false.} then the shift is not ! performed. See L. M. Sandratskii and P. G. Guletskii, {\it J. Phys. F: Met. ! Phys.} {\bf 16}, L43 (1986) and the routine {\tt findsym}. ! ! !REVISION HISTORY: ! Created April 2007 (JKD) ! Modified for trimvg=.false., November 2023 (JKD) !EOP !BOC implicit none ! local variables integer ia,ja,is,is0 integer isym,nsym,i,n integer lspl(48),lspn(48),ilspl real(8) v0(3),v1(3),v2(3),t1 real(8) apl1(3,maxatoms,maxspecies) real(8) apl2(3,maxatoms,maxspecies) ! automatic arrays integer iea(natmmax,nspecies,48) real(8) vtl(3,natmmax**2+1) ! allocate global equivalent atom arrays if (allocated(ieqatom)) deallocate(ieqatom) allocate(ieqatom(natmmax,nspecies,maxsymcrys)) if (allocated(eqatoms)) deallocate(eqatoms) allocate(eqatoms(natmmax,natmmax,nspecies)) ! find the smallest set of atoms is0=1 do is=1,nspecies if (natoms(is) < natoms(is0)) is0=is end do if (natmtot > 0) then ! position of first atom in the smallest atom set v0(:)=atposl(:,1,is0) ! shift basis so that the first atom in the smallest atom set is at the origin do is=1,nspecies do ia=1,natoms(is) ! shift atom apl1(:,ia,is)=atposl(:,ia,is)-v0(:) ! map lattice coordinates back to [0,1) call r3frac(epslat,apl1(:,ia,is)) end do end do else v0(:)=0.d0 end if ! determine possible translation vectors from smallest set of atoms n=1 vtl(:,1)=0.d0 do ia=1,natoms(is0) do ja=2,natoms(is0) ! compute difference between two atom vectors v1(:)=apl1(:,ia,is0)-apl1(:,ja,is0) ! map lattice coordinates to [0,1) call r3frac(epslat,v1) ! check if vector has any component along electric field if (tefield) then call r3mv(avec,v1,v2) t1=efieldc(1)*v2(1)+efieldc(2)*v2(2)+efieldc(3)*v2(3) if (abs(t1) > epslat) goto 10 end if do i=1,n t1=abs(vtl(1,i)-v1(1))+abs(vtl(2,i)-v1(2))+abs(vtl(3,i)-v1(3)) if (t1 < epslat) goto 10 end do n=n+1 vtl(:,n)=v1(:) 10 continue end do end do ! no translations required when symtype=0,2 (F. Cricchio) if (symtype /= 1) n=1 eqatoms(:,:,:)=.false. nsymcrys=0 ! loop over all possible translations do i=1,n ! construct new array with translated positions do is=1,nspecies do ia=1,natoms(is) apl2(:,ia,is)=apl1(:,ia,is)+vtl(:,i) end do end do ! find the symmetries for current translation call findsym(apl1,apl2,nsym,lspl,lspn,iea) do isym=1,nsym nsymcrys=nsymcrys+1 if (nsymcrys > maxsymcrys) then write(*,*) write(*,'("Error(findsymcrys): too many crystal symmetries")') write(*,'(" Adjust maxsymcrys in modmain and recompile code")') write(*,*) stop end if vtlsymc(:,nsymcrys)=vtl(:,i) lsplsymc(nsymcrys)=lspl(isym) lspnsymc(nsymcrys)=lspn(isym) do is=1,nspecies do ia=1,natoms(is) ja=iea(ia,is,isym) ieqatom(ia,is,nsymcrys)=ja eqatoms(ia,ja,is)=.true. eqatoms(ja,ia,is)=.true. end do end do end do end do tsyminv=.false. do isym=1,nsymcrys ! check if inversion symmetry is present i=lsplsymc(isym) if (all(symlat(:,:,i) == -symlat(:,:,1))) then tsyminv=.true. ! make inversion the second symmetry element (the identity is the first) v1(:)=vtlsymc(:,isym); vtlsymc(:,isym)=vtlsymc(:,2); vtlsymc(:,2)=v1(:) i=lsplsymc(isym); lsplsymc(isym)=lsplsymc(2); lsplsymc(2)=i i=lspnsymc(isym); lspnsymc(isym)=lspnsymc(2); lspnsymc(2)=i do is=1,nspecies do ia=1,natoms(is) i=ieqatom(ia,is,isym) ieqatom(ia,is,isym)=ieqatom(ia,is,2) ieqatom(ia,is,2)=i end do end do exit end if end do if (tshift) then if (tsyminv) then ! if inversion exists then shift basis so that inversion center is at origin v1(:)=v1(:)/2.d0 else v1(:)=0.d0 end if else v1(:)=v0(:) end if do is=1,nspecies do ia=1,natoms(is) ! shift atom atposl(:,ia,is)=apl1(:,ia,is)+v1(:) ! map lattice coordinates back to [0,1) call r3frac(epslat,atposl(:,ia,is)) ! map lattice coordinates to [-0.5,0.5) if inversion exists if (tsyminv) then do i=1,3 if (atposl(i,ia,is) > 0.5d0) atposl(i,ia,is)=atposl(i,ia,is)-1.d0 end do end if ! determine the new Cartesian coordinates call r3mv(avec,atposl(:,ia,is),atposc(:,ia,is)) end do end do do isym=1,nsymcrys ! recalculate crystal symmetry translation vectors ilspl=isymlat(lsplsymc(isym)) v2(:)=symlat(:,1,ilspl)*v1(1) & +symlat(:,2,ilspl)*v1(2) & +symlat(:,3,ilspl)*v1(3) vtlsymc(:,isym)=vtlsymc(:,isym)-v1(:)+v2(:) call r3frac(epslat,vtlsymc(:,isym)) ! translation vector in Cartesian coordinates call r3mv(avec,vtlsymc(:,isym),vtcsymc(:,isym)) ! set flag for zero translation vector t1=abs(vtlsymc(1,isym))+abs(vtlsymc(2,isym))+abs(vtlsymc(3,isym)) if (t1 < epslat) then tv0symc(isym)=.true. else tv0symc(isym)=.false. end if end do ! check inversion does not include a translation if (tsyminv) then if (.not.tv0symc(2)) tsyminv=.false. end if if (tshift.and.(natmtot > 0)) then v1(:)=atposl(:,1,is0)-v0(:) call r3frac(epslat,v1) t1=abs(v1(1))+abs(v1(2))+abs(v1(3)) if (mp_mpi.and.(t1 > epslat)) then write(*,*) write(*,'("Info(findsymcrys): atomic basis shift (lattice) :")') write(*,'(3G18.10)') v1(:) write(*,'("See GEOMETRY.OUT for new atomic positions")') end if end if ! write number of crystal symmetries to test file call writetest(705,'number of crystal symmetries',iv=nsymcrys) end subroutine !EOC elk-9.2.12/src/PaxHeaders/plotpt3d.f900000644000000000000000000000013214536061313014320 xustar0030 mtime=1702388427.808501652 30 atime=1702388426.643503377 30 ctime=1702388427.808501652 elk-9.2.12/src/plotpt3d.f900000644002504400250440000000142714536061313017046 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine plotpt3d(vpl) use modmain implicit none ! arguments real(8), intent(out) :: vpl(3,np3d(1)*np3d(2)*np3d(3)) ! local variables integer ip,i1,i2,i3 real(8) v1(3),v2(3),v3(3) real(8) t1,t2,t3 ! generate 3D grid from corner vectors v1(:)=vclp3d(:,1)-vclp3d(:,0) v2(:)=vclp3d(:,2)-vclp3d(:,0) v3(:)=vclp3d(:,3)-vclp3d(:,0) ip=0 do i3=0,np3d(3)-1 t3=dble(i3)/dble(np3d(3)) do i2=0,np3d(2)-1 t2=dble(i2)/dble(np3d(2)) do i1=0,np3d(1)-1 t1=dble(i1)/dble(np3d(1)) ip=ip+1 vpl(:,ip)=t1*v1(:)+t2*v2(:)+t3*v3(:)+vclp3d(:,0) end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/elnes.f900000644000000000000000000000013214536061313013655 xustar0030 mtime=1702388427.810501649 30 atime=1702388426.644503376 30 ctime=1702388427.810501649 elk-9.2.12/src/elnes.f900000644002504400250440000000717514536061313016411 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine elnes use modmain use modomp use modtest implicit none ! local variables integer ik,jk,ikq,isym,nsk(3) integer ist,jst,iw,n,nthd real(8) vgqc(3),gqc real(8) vkql(3),v(3) real(8) q,wd,dw,w,t1 ! allocatable arrays real(8), allocatable :: jlgqr(:,:),ddcs(:) real(8), allocatable :: e(:,:,:),f(:,:,:) complex(8), allocatable :: ylmgq(:),sfacgq(:) complex(8), allocatable :: expmt(:,:),emat(:,:) ! initialise universal variables call init0 call init1 call init2 ! check q-vector is commensurate with k-point grid v(:)=dble(ngridk(:))*vecql(:) v(:)=abs(v(:)-nint(v(:))) if ((v(1) > epslat).or.(v(2) > epslat).or.(v(3) > epslat)) then write(*,*) write(*,'("Error(elnes): q-vector incommensurate with k-point grid")') write(*,'(" ngridk : ",3I6)') ngridk write(*,'(" vecql : ",3G18.10)') vecql write(*,*) stop end if ! read in the density and potentials from file call readstate ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the second-variational eigenvalues and occupation numbers from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! generate the phase factor function exp(iq.r) in the muffin-tins allocate(jlgqr(njcmax,nspecies)) allocate(ylmgq(lmmaxo),sfacgq(natmtot)) allocate(expmt(npcmtmax,natmtot)) call gengqf(1,vecqc,vgqc,gqc,jlgqr,ylmgq,sfacgq) call genexpmt(1,jlgqr,ylmgq,1,sfacgq,expmt) deallocate(jlgqr,ylmgq,sfacgq) allocate(e(nstsv,nstsv,nkptnr),f(nstsv,nstsv,nkptnr)) e(:,:,:)=0.d0 f(:,:,:)=0.d0 ! begin parallel loop over non-reduced k-points call holdthd(nkptnr,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(emat,jk,vkql,isym) & !$OMP PRIVATE(ikq,ist,jst,t1) & !$OMP NUM_THREADS(nthd) allocate(emat(nstsv,nstsv)) !$OMP DO do ik=1,nkptnr !$OMP CRITICAL(elnes_) write(*,'("Info(elnes): ",I6," of ",I6," k-points")') ik,nkptnr !$OMP END CRITICAL(elnes_) ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! k+q-vector in lattice coordinates vkql(:)=vkl(:,ik)+vecql(:) ! index to k+q-vector call findkpt(vkql,isym,ikq) ! compute < i,k+q | exp(iq.r) | j,k > matrix elements call genexpmat(vkl(:,ik),expmt,emat) ! add to the double differential scattering cross-section do jst=1,nstsv if (evalsv(jst,jk) < emaxelnes) then do ist=1,nstsv e(ist,jst,ik)=evalsv(ist,ikq)-evalsv(jst,jk) t1=dble(emat(ist,jst))**2+aimag(emat(ist,jst))**2 f(ist,jst,ik)=t1*occsv(jst,jk)*(occmax-occsv(ist,ikq)) end do end if end do end do !$OMP END DO deallocate(emat) !$OMP END PARALLEL call freethd(nthd) ! number of subdivisions used for interpolation nsk(:)=max(ngrkf/ngridk(:),1) n=nstsv*nstsv ! integrate over the Brillouin zone allocate(ddcs(nwplot)) call brzint(nswplot,ngridk,nsk,ivkiknr,nwplot,wplot,n,n,e,f,ddcs) q=sqrt(vecqc(1)**2+vecqc(2)**2+vecqc(3)**2) t1=2.d0/(omega*occmax) if (q > epslat) t1=t1/q**4 ddcs(:)=t1*ddcs(:) open(50,file='ELNES.OUT',form='FORMATTED') wd=wplot(2)-wplot(1) dw=wd/dble(nwplot) do iw=1,nwplot w=dw*dble(iw-1)+wplot(1) write(50,'(2G18.10)') w,ddcs(iw) end do close(50) write(*,*) write(*,'("Info(elnes):")') write(*,'(" ELNES double differential cross-section written to ELNES.OUT")') ! write ELNES distribution to test file call writetest(140,'ELNES cross-section',nv=nwplot,tol=1.d-2,rva=ddcs) deallocate(e,f,ddcs,expmt) end subroutine elk-9.2.12/src/PaxHeaders/fermisurfbxsf.f900000644000000000000000000000013214536061313015434 xustar0030 mtime=1702388427.811501648 30 atime=1702388426.645503374 30 ctime=1702388427.811501648 elk-9.2.12/src/fermisurfbxsf.f900000644002504400250440000001011314536061313020152 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 F. Cricchio, F. Bultmark and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine fermisurfbxsf use modmain use modomp implicit none ! local variables integer ik,nst,ist integer ist0,ist1,jst0,jst1 integer i1,i2,i3,j1,j2,j3 integer nf,f,i,nthd real(8) e0,e1 ! allocatable arrays integer, allocatable :: idx(:) real(8), allocatable :: evalfv(:,:),e(:) complex(8), allocatable :: evecfv(:,:,:) complex(8), allocatable :: evecsv(:,:) ! initialise universal variables call init0 call init1 ! read density and potentials from file call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ! begin parallel loop over reduced k-points set call holdthd(nkpt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evalfv,evecfv,evecsv) & !$OMP NUM_THREADS(nthd) allocate(evalfv(nstfv,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv)) allocate(evecsv(nstsv,nstsv)) !$OMP DO do ik=1,nkpt !$OMP CRITICAL(fermisurfbxsf_) write(*,'("Info(fermisurfbxsf): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(fermisurfbxsf_) ! solve the first- and second-variational eigenvalue equations call eveqn(ik,evalfv,evecfv,evecsv) ! end loop over reduced k-points set end do !$OMP END DO deallocate(evalfv,evecfv,evecsv) !$OMP END PARALLEL call freethd(nthd) ! if iterative diagonalisation is used the eigenvalues must be reordered if (tefvit.and.(.not.spinpol)) then allocate(idx(nstsv),e(nstsv)) do ik=1,nkpt e(:)=evalsv(:,ik) call sortidx(nstsv,e,idx) do ist=1,nstsv evalsv(ist,ik)=e(idx(ist)) end do end do deallocate(idx,e) end if ! number of files to plot (2 for collinear magnetism, 1 otherwise) if (ndmag == 1) then nf=2 else nf=1 end if do f=1,nf if (nf == 2) then if (f == 1) then open(50,file='FERMISURF_UP.bxsf',form='FORMATTED') jst0=1; jst1=nstfv else open(50,file='FERMISURF_DN.bxsf',form='FORMATTED') jst0=nstfv+1; jst1=2*nstfv end if else open(50,file='FERMISURF.bxsf',form='FORMATTED') jst0=1; jst1=nstsv end if ! find the range of eigenvalues which contribute to the Fermi surface (Lars) ist0=jst1; ist1=jst0 do ist=jst0,jst1 e0=minval(evalsv(ist,:)); e1=maxval(evalsv(ist,:)) ! determine if the band crosses the Fermi energy if ((e0 < efermi).and.(e1 > efermi)) then ist0=min(ist0,ist); ist1=max(ist1,ist) end if end do nst=ist1-ist0+1 write(50,'(" BEGIN_INFO")') write(50,'(" # Band-XCRYSDEN-Structure-File for Fermi surface plotting")') write(50,'(" # created by Elk version ",I1.1,".",I1.1,".",I2.2)') version write(50,'(" # Launch as: xcrysden --bxsf FERMISURF(_UP/_DN).bxsf")') write(50,'(" Fermi Energy: ",G18.10)') 0.d0 write(50,'(" END_INFO")') write(50,'(" BEGIN_BLOCK_BANDGRID_3D")') write(50, '(" band_energies")') write(50,'(" BANDGRID_3D_BANDS")') write(50,'(I4)') nst write(50,'(3I6)') ngridk(:)+1 write(50,'(3G18.10)') 0.d0,0.d0,0.d0 do i=1,3 write(50,'(3G18.10)') bvec(:,i) end do do ist=ist0,ist1 write(50,'(" BAND: ",I4)') ist do i1=0,ngridk(1) j1=mod(i1,ngridk(1)) do i2=0,ngridk(2) j2=mod(i2,ngridk(2)) do i3=0,ngridk(3) j3=mod(i3,ngridk(3)) ik=ivkik(j1,j2,j3) write(50,'(G18.10)') evalsv(ist,ik)-efermi end do end do end do end do write(50,'(" END_BANDGRID_3D")') write(50,'(" END_BLOCK_BANDGRID_3D")') close(50) end do write(*,*) write(*,'("Info(fermisurfbxsf):")') if (ndmag == 1) then write(*,'(" 3D Fermi surface data written to FERMISURF_UP.bxsf and & &FERMISURF_DN.bxsf")') else write(*,'(" 3D Fermi surface data written to FERMISURF.bxsf")') end if write(*,'(" for plotting with XCrysDen (Fermi energy set to zero)")') write(*,*) write(*,'(" Launch as: xcrysden --bxsf FERMISURF(_UP/_DN).bxsf")') end subroutine elk-9.2.12/src/PaxHeaders/genspecies.f900000644000000000000000000000013214536061313014674 xustar0030 mtime=1702388427.812501646 30 atime=1702388426.647503371 30 ctime=1702388427.812501646 elk-9.2.12/src/genspecies.f900000644002504400250440000000467214536061313017427 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genspecies(fnum) use modmain use modmpi implicit none ! arguments integer, intent(in) :: fnum ! local variables integer nz,nmax,nst,ist integer ne,nrm,nr,ir,it,i integer n(maxstsp),l(maxstsp),k(maxstsp) real(8) mass,zn,t1,t2,t3 real(8) rm,rmin,rmax real(8) occ(maxstsp),eval(maxstsp) character(64) symb,name ! allocatable arrays real(8), allocatable :: r(:),rho(:),vr(:),rwf(:,:,:) read(fnum,*,err=20) nz if (nz <= 0) then write(*,*) write(*,'("Error(genspecies): atomic number negative : ",I8)') nz write(*,*) stop end if read(fnum,*,err=20) symb,name read(fnum,*,err=20) mass ! convert from 'atomic mass units' to atomic units mass=mass*amu read(fnum,*,err=20) rm read(fnum,*,err=20) nst if ((nst <= 0).or.(nst > maxstsp)) then write(*,*) write(*,'("Error(genspecies): nst out of range : ",I8)') nst write(*,'(" for species ",A)') trim(name) write(*,*) stop end if ne=0 nmax=1 do ist=1,nst read(fnum,*,err=20) n(ist),l(ist),k(ist),i ne=ne+i occ(ist)=i nmax=max(nmax,n(ist)) end do if (mp_mpi) then write(*,'("Info(genspecies): running Z = ",I4,", (",A,")")') nz,trim(name) if (ne /= nz) then write(*,*) write(*,'("Warning(genspecies): atom not neutral, electron number : ",& &I4)') ne end if end if ! nuclear charge in units of e zn=-dble(nz) ! minimum radial mesh point proportional to 1/sqrt(Z) rmin=2.d-6/sqrt(dble(nz)) ! default effective infinity rmax=100.d0 ! set the number of radial mesh points proportional to number of nodes nrm=100*(nmax+1) do it=1,2 ! number of points to effective infinity t1=log(rm/rmin) t2=log(rmax/rmin) t3=dble(nrm)*t2/t1 nr=int(t3) allocate(r(nr),rho(nr),vr(nr),rwf(nr,2,nst)) ! generate logarithmic radial mesh t2=t1/dble(nrm-1) do ir=1,nr r(ir)=rmin*exp(dble(ir-1)*t2) end do ! solve the Kohn-Sham-Dirac equation for the atom call atom(sol,.true.,zn,nst,n,l,k,occ,3,0,nr,r,eval,rho,vr,rwf) ! recompute the effective infinity do ir=nr,1,-1 if (rho(ir) > 1.d-20) then rmax=1.75d0*r(ir) exit end if end do deallocate(r,rho,vr,rwf) end do ! write the species file call writespecies(symb,name,zn,mass,rmin,rm,rmax,nrm,nst,n,l,k,occ,eval) return 20 continue write(*,*) write(*,'("Error(genspecies): error reading species data")') write(*,*) stop end subroutine elk-9.2.12/src/PaxHeaders/writeexpmat.f900000644000000000000000000000013214536061313015120 xustar0030 mtime=1702388427.814501643 30 atime=1702388426.648503369 30 ctime=1702388427.814501643 elk-9.2.12/src/writeexpmat.f900000644002504400250440000000501014536061313017636 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeexpmat use modmain implicit none ! local variables integer nk,ik,jk,i,j real(8) vgqc(3),gqc real(8) a,b ! allocatable arrays real(8), allocatable :: jlgqr(:,:) complex(8), allocatable :: ylmgq(:),sfacgq(:) complex(8), allocatable :: expmt(:,:),emat(:,:) ! initialise universal variables call init0 call init1 call init2 ! read in the density and potentials from file call readstate ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! generate the phase factor function exp(iq.r) in the muffin-tins allocate(jlgqr(njcmax,nspecies)) allocate(ylmgq(lmmaxo),sfacgq(natmtot)) allocate(expmt(npcmtmax,natmtot)) call gengqf(1,vecqc,vgqc,gqc,jlgqr,ylmgq,sfacgq) call genexpmt(1,jlgqr,ylmgq,1,sfacgq,expmt) expmt(:,:)=omega*expmt(:,:) deallocate(jlgqr,ylmgq,sfacgq) ! number of k-points to write out if (kstlist(1,1) <= 0) then nk=nkpt else nk=nkstlist end if open(50,file='EXPIQR.OUT',form='FORMATTED') write(50,*) write(50,'("q-vector (lattice coordinates) :")') write(50,'(3G18.10)') vecql write(50,'("q-vector (Cartesian coordinates) :")') write(50,'(3G18.10)') vecqc write(50,*) write(50,'(I8," : number of k-points")') nk write(50,'(I6," : number of states per k-point")') nstsv allocate(emat(nstsv,nstsv)) do jk=1,nk if (kstlist(1,1) <= 0) then ik=jk else ik=kstlist(1,jk) end if if ((ik <= 0).or.(ik > nkpt)) then write(*,*) write(*,'("Error(writeexpiqr): k-point out of range : ",I8)') ik write(*,*) stop end if write(50,*) write(50,'(" k-point (lattice coordinates) :")') write(50,'(3G18.10)') vkl(:,ik) write(50,*) write(50,'(" k-point (Cartesian coordinates) :")') write(50,'(3G18.10)') vkc(:,ik) call genexpmat(vkl(:,ik),expmt,emat) do i=1,nstsv write(50,*) write(50,'(I6," : state i; state j, <...>, |<...>|² below")') i do j=1,nstsv a=dble(emat(i,j)) b=aimag(emat(i,j)) write(50,'(I6,3G18.10)') j,a,b,a**2+b**2 end do end do ! end loop over k-points end do close(50) write(*,*) write(*,'("Info(writeexpmat)")') write(*,'(" < i,k+q | exp(iq.r) | j,k > matrix elements written to & &EXPIQR.OUT")') write(*,'(" for the q-vector in vecql and all k-points in kstlist")') deallocate(expmt,emat) end subroutine elk-9.2.12/src/PaxHeaders/writekpts.f900000644000000000000000000000013214536061313014603 xustar0030 mtime=1702388427.815501642 30 atime=1702388426.650503367 30 ctime=1702388427.815501642 elk-9.2.12/src/writekpts.f900000644002504400250440000000137314536061313017331 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writekpts ! !INTERFACE: subroutine writekpts ! !USES: use modmain ! !DESCRIPTION: ! Writes the $k$-points in lattice coordinates, weights and number of ! ${\bf G+k}$-vectors to the file {\tt KPOINTS.OUT}. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! local variables integer ik open(50,file='KPOINTS'//trim(filext),form='FORMATTED') write(50,'(I6," : nkpt; k-point, vkl, wkpt, nmat below")') nkpt do ik=1,nkpt write(50,'(I6,4G18.10,2I8)') ik,vkl(:,ik),wkpt(ik),nmat(:,ik) end do close(50) end subroutine !EOC elk-9.2.12/src/PaxHeaders/wfcrplot.f900000644000000000000000000000013014536061313014405 xustar0029 mtime=1702388427.81650164 30 atime=1702388426.652503364 29 ctime=1702388427.81650164 elk-9.2.12/src/wfcrplot.f900000644002504400250440000000177114536061313017137 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wfcrplot use modmain implicit none ! local variables integer ist,is,ia,ias,ir character(256) fname ! initialise universal variables call init0 ! read density and potentials from file call readstate ! generate the core wavefunctions call gencore do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(fname,'("WFCORE_S",I2.2,"_A",I4.4,".OUT")') is,ia open(50,file=trim(fname),form='FORMATTED') do ist=1,nstsp(is) if (spcore(ist,is)) then do ir=1,nrsp(is) write(50,'(2G18.10)') rsp(ir,is),rwfcr(ir,1,ist,ias) end do write(50,*) end if end do close(50) end do end do write(*,*) write(*,'("Info(wfcrplot):")') write(*,'(" Core state wavefunctions written to WFCORE_Sss_Aaaaa.OUT")') write(*,'(" for all species and atoms")') end subroutine elk-9.2.12/src/PaxHeaders/writedos.f900000644000000000000000000000013214536061313014407 xustar0030 mtime=1702388427.818501637 30 atime=1702388426.654503361 30 ctime=1702388427.818501637 elk-9.2.12/src/writedos.f900000644002504400250440000000326714536061313017141 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writedos use modmain implicit none ! initialise universal variables call init0 call init1 ! read density and potentials from file call readstate ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the eigenvalues and occupation numbers from file call readevalsv if (dosocc) call readoccsv ! generate the partial and total DOS and write to file call dos('.OUT',dosocc,occsv) write(*,*) write(*,'("Info(writedos):")') write(*,'(" Total density of states written to TDOS.OUT")') write(*,*) write(*,'(" Partial density of states written to PDOS_Sss_Aaaaa.OUT")') write(*,'(" for all species and atoms")') if (dosmsum) then write(*,'(" PDOS summed over m")') end if if (dosssum) then write(*,'(" PDOS summed over spin")') end if write(*,*) write(*,'(" Spin-quantisation axis : ",3G18.10)') sqados(:) if (lmirep) then write(*,*) write(*,'(" Eigenvalues of a random matrix in the (l,m) basis symmetrised")') write(*,'(" with the site symmetries written to ELMIREP.OUT for all")') write(*,'(" species and atoms. Degenerate eigenvalues correspond to")') write(*,'(" irreducible representations of each site symmetry group")') end if write(*,*) write(*,'(" Interstitial density of states written to IDOS.OUT")') write(*,*) write(*,'(" Fermi energy is at zero in plots")') write(*,*) write(*,'(" DOS units are states/Hartree/unit cell")') end subroutine elk-9.2.12/src/PaxHeaders/energykncr.f900000644000000000000000000000013214536061313014716 xustar0030 mtime=1702388427.819501636 30 atime=1702388426.656503358 30 ctime=1702388427.819501636 elk-9.2.12/src/energykncr.f900000644002504400250440000000223714536061313017444 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine energykncr use modmain implicit none integer ist,is,ias integer nr,nri,ir,i ! automatic arrays real(8) rfmt(npmtmax) ! external functions real(8), external :: rfmtinp ! calculate the kinetic energy for core states engykncr=0.d0 do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) ! sum of core eigenvalues do ist=1,nstsp(is) if (spcore(ist,is)) engykncr=engykncr+occcr(ist,ias)*evalcr(ist,ias) end do ! core density rfmt(1:npmt(is))=0.d0 i=1 if (spincore) then ! spin-polarised core do ir=1,nri rfmt(i)=rhocr(ir,ias,1)+rhocr(ir,ias,2) i=i+lmmaxi end do do ir=nri+1,nr rfmt(i)=rhocr(ir,ias,1)+rhocr(ir,ias,2) i=i+lmmaxo end do else ! spin-unpolarised core do ir=1,nri rfmt(i)=rhocr(ir,ias,1) i=i+lmmaxi end do do ir=nri+1,nr rfmt(i)=rhocr(ir,ias,1) i=i+lmmaxo end do end if engykncr=engykncr-rfmtinp(nr,nri,wrmt(:,is),rfmt,vsmt(:,ias)) end do end subroutine elk-9.2.12/src/PaxHeaders/ggamt_1.f900000644000000000000000000000013214536061313014066 xustar0030 mtime=1702388427.820501634 30 atime=1702388426.657503356 30 ctime=1702388427.820501634 elk-9.2.12/src/ggamt_1.f900000644002504400250440000000305714536061313016615 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggamt_1 ! !INTERFACE: subroutine ggamt_1(tsh,is,np,rho,grho,g2rho,g3rho) ! !USES: use modmain ! !DESCRIPTION: ! Spin-unpolarised version of {\tt ggamt\_sp\_1}. ! ! !REVISION HISTORY: ! Created November 2009 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: tsh integer, intent(in) :: is,np real(8), intent(in) :: rho(np) real(8), intent(out) :: grho(np),g2rho(np),g3rho(np) ! local variables integer nr,nri,i ! automatic arrays real(8) grfmt(np,3),gvrho(np,3),rfmt1(np),rfmt2(np) nr=nrmt(is) nri=nrmti(is) ! |grad rho| if (tsh) then call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rho,np,grfmt) else call rfsht(nr,nri,rho,rfmt1) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) end if do i=1,3 call rbsht(nr,nri,grfmt(:,i),gvrho(:,i)) end do grho(1:np)=sqrt(gvrho(1:np,1)**2+gvrho(1:np,2)**2+gvrho(1:np,3)**2) ! grad^2 rho in spherical coordinates if (tsh) then call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rho,rfmt2) else call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt1,rfmt2) end if call rbsht(nr,nri,rfmt2,g2rho) ! (grad rho).(grad |grad rho|) call rfsht(nr,nri,grho,rfmt2) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt2,np,grfmt) g3rho(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt2) g3rho(1:np)=g3rho(1:np)+gvrho(1:np,i)*rfmt2(1:np) end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/ggair_1.f900000644000000000000000000000013214536061313014060 xustar0030 mtime=1702388427.822501631 30 atime=1702388426.658503355 30 ctime=1702388427.822501631 elk-9.2.12/src/ggair_1.f900000644002504400250440000000307014536061313016602 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggair_1 ! !INTERFACE: subroutine ggair_1(rho,grho,g2rho,g3rho) ! !USES: use modmain ! !DESCRIPTION: ! Spin-unpolarised version of {\tt ggair\_sp\_1}. ! ! !REVISION HISTORY: ! Created November 2009 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rho(ngtot) real(8), intent(out) :: grho(ngtot),g2rho(ngtot),g3rho(ngtot) ! local variables integer ig,ifg,i ! allocatable arrays real(8), allocatable :: gvrho(:,:) complex(8), allocatable :: zfft1(:),zfft2(:) allocate(gvrho(ngtot,3)) allocate(zfft1(ngtot),zfft2(ngtot)) zfft1(:)=rho(:) call zfftifc(3,ngridg,-1,zfft1) ! |grad rho| do i=1,3 zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) gvrho(:,i)=dble(zfft2(:)) end do grho(:)=sqrt(gvrho(:,1)**2+gvrho(:,2)**2+gvrho(:,3)**2) ! grad^2 rho zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=-(gc(ig)**2)*zfft1(ifg) end do call zfftifc(3,ngridg,1,zfft2) g2rho(:)=dble(zfft2(:)) ! (grad rho).(grad |grad rho|) zfft1(:)=grho(:) call zfftifc(3,ngridg,-1,zfft1) g3rho(:)=0.d0 do i=1,3 zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) g3rho(:)=g3rho(:)+gvrho(:,i)*dble(zfft2(:)) end do deallocate(gvrho,zfft1,zfft2) end subroutine !EOC elk-9.2.12/src/PaxHeaders/ggamt_sp_1.f900000644000000000000000000000013014536061313014566 xustar0029 mtime=1702388427.82350163 30 atime=1702388426.660503352 29 ctime=1702388427.82350163 elk-9.2.12/src/ggamt_sp_1.f900000644002504400250440000000775314536061313017326 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggamt_sp_1 ! !INTERFACE: subroutine ggamt_sp_1(is,np,rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! is : species number (in,integer) ! np : number of muffin-tin points (in,integer) ! rhoup : spin-up density in spherical coordinates (in,real(np)) ! rhodn : spin-down density (in,real(np)) ! grho : |grad rho| (out,real(np)) ! gup : |grad rhoup| (out,real(np)) ! gdn : |grad rhodn| (out,real(np)) ! g2up : grad^2 rhoup (out,real(np)) ! g2dn : grad^2 rhodn (out,real(np)) ! g3rho : (grad rho).(grad |grad rho|) (out,real(np)) ! g3up : (grad rhoup).(grad |grad rhoup|) (out,real(np)) ! g3dn : (grad rhodn).(grad |grad rhodn|) (out,real(np)) ! !DESCRIPTION: ! Computes $|\nabla\rho|$, $|\nabla\rho^{\uparrow}|$, ! $|\nabla\rho^{\downarrow}|$, $\nabla^2\rho^{\uparrow}$, ! $\nabla^2\rho^{\downarrow}$, $\nabla\rho\cdot(\nabla|\nabla\rho|)$, ! $\nabla\rho^{\uparrow}\cdot(\nabla|\nabla\rho^{\uparrow}|)$ and ! $\nabla\rho^{\downarrow}\cdot(\nabla|\nabla\rho^{\downarrow}|)$ ! for a muffin-tin charge density, as required by the generalised gradient ! approximation functionals of type 1 for spin-polarised densities. The input ! densities and output gradients are in terms of spherical coordinates. See ! routines {\tt potxc} and {\tt modxcifc}. ! ! !REVISION HISTORY: ! Created April 2004 (JKD) ! Simplified and improved, October 2009 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: is,np real(8), intent(in) :: rhoup(np),rhodn(np) real(8), intent(out) :: grho(np),gup(np),gdn(np) real(8), intent(out) :: g2up(np),g2dn(np) real(8), intent(out) :: g3rho(np),g3up(np),g3dn(np) ! local variables integer nr,nri,i ! automatic arrays real(8) grfmt(np,3),gvup(np,3),gvdn(np,3) real(8) rfmt1(np),rfmt2(np) nr=nrmt(is) nri=nrmti(is) !----------------! ! rho up ! !----------------! ! convert rhoup to spherical harmonics call rfsht(nr,nri,rhoup,rfmt1) ! grad rhoup in spherical coordinates call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) do i=1,3 call rbsht(nr,nri,grfmt(:,i),gvup(:,i)) end do ! |grad rhoup| gup(1:np)=sqrt(gvup(1:np,1)**2+gvup(1:np,2)**2+gvup(1:np,3)**2) ! grad^2 rhoup in spherical coordinates call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt1,rfmt2) call rbsht(nr,nri,rfmt2,g2up) ! (grad rhoup).(grad |grad rhoup|) call rfsht(nr,nri,gup,rfmt1) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) g3up(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt1) g3up(1:np)=g3up(1:np)+gvup(1:np,i)*rfmt1(1:np) end do !------------------! ! rho down ! !------------------! ! convert rhodn to spherical harmonics call rfsht(nr,nri,rhodn,rfmt1) ! grad rhodn in spherical coordinates call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) do i=1,3 call rbsht(nr,nri,grfmt(:,i),gvdn(:,i)) end do gdn(1:np)=sqrt(gvdn(1:np,1)**2+gvdn(1:np,2)**2+gvdn(1:np,3)**2) ! grad^2 rhodn in spherical coordinates call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt1,rfmt2) call rbsht(nr,nri,rfmt2,g2dn) ! (grad rhodn).(grad |grad rhodn|) call rfsht(nr,nri,gdn,rfmt1) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) g3dn(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt1) g3dn(1:np)=g3dn(1:np)+gvdn(1:np,i)*rfmt1(1:np) end do !-------------! ! rho ! !-------------! ! |grad rho| grho(1:np)=sqrt((gvup(1:np,1)+gvdn(1:np,1))**2 & +(gvup(1:np,2)+gvdn(1:np,2))**2 & +(gvup(1:np,3)+gvdn(1:np,3))**2) ! (grad rho).(grad |grad rho|) call rfsht(nr,nri,grho,rfmt1) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) g3rho(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt1) g3rho(1:np)=g3rho(1:np)+(gvup(1:np,i)+gvdn(1:np,i))*rfmt1(1:np) end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/ggair_sp_1.f900000644000000000000000000000013114536061313014561 xustar0030 mtime=1702388427.824501628 29 atime=1702388426.66150335 30 ctime=1702388427.824501628 elk-9.2.12/src/ggair_sp_1.f900000644002504400250440000001021214536061313017300 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggair_sp_1 ! !INTERFACE: subroutine ggair_sp_1(rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn) ! !INPUT/OUTPUT PARAMETERS: ! rhoup : spin-up density (in,real(ngtot)) ! rhodn : spin-down density (in,real(ngtot)) ! grho : |grad rho| (out,real(ngtot)) ! gup : |grad rhoup| (out,real(ngtot)) ! gdn : |grad rhodn| (out,real(ngtot)) ! g2up : grad^2 rhoup (out,real(ngtot)) ! g2dn : grad^2 rhodn (out,real(ngtot)) ! g3rho : (grad rho).(grad |grad rho|) (out,real(ngtot)) ! g3up : (grad rhoup).(grad |grad rhoup|) (out,real(ngtot)) ! g3dn : (grad rhodn).(grad |grad rhodn|) (out,real(ngtot)) ! !DESCRIPTION: ! Computes $|\nabla\rho|$, $|\nabla\rho^{\uparrow}|$, ! $|\nabla\rho^{\downarrow}|$, $\nabla^2\rho^{\uparrow}$, ! $\nabla^2\rho^{\downarrow}$, $\nabla\rho\cdot(\nabla|\nabla\rho|)$, ! $\nabla\rho^{\uparrow}\cdot(\nabla|\nabla\rho^{\uparrow}|)$ and ! $\nabla\rho^{\downarrow}\cdot(\nabla|\nabla\rho^{\downarrow}|)$ for the ! interstitial charge density, as required by the generalised gradient ! approximation functionals of type 1 for spin-polarised densities. See ! routines {\tt potxc} and {\tt modxcifc}. ! ! !REVISION HISTORY: ! Created October 2004 (JKD) ! Simplified and improved, October 2009 (JKD) !EOP !BOC use modmain implicit none ! arguments real(8), intent(in) :: rhoup(ngtot),rhodn(ngtot) real(8), intent(out) :: grho(ngtot),gup(ngtot),gdn(ngtot) real(8), intent(out) :: g2up(ngtot),g2dn(ngtot) real(8), intent(out) :: g3rho(ngtot),g3up(ngtot),g3dn(ngtot) ! local variables integer ig,ifg,i ! allocatable arrays real(8), allocatable :: gvup(:,:),gvdn(:,:) complex(8), allocatable :: zfft1(:),zfft2(:) allocate(gvup(ngtot,3),gvdn(ngtot,3)) allocate(zfft1(ngtot),zfft2(ngtot)) !----------------! ! rho up ! !----------------! zfft1(:)=rhoup(:) call zfftifc(3,ngridg,-1,zfft1) ! |grad rhoup| do i=1,3 zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) gvup(:,i)=dble(zfft2(:)) end do gup(:)=sqrt(gvup(:,1)**2+gvup(:,2)**2+gvup(:,3)**2) ! grad^2 rhoup zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=-(gc(ig)**2)*zfft1(ifg) end do call zfftifc(3,ngridg,1,zfft2) g2up(:)=dble(zfft2(:)) ! (grad rhoup).(grad |grad rhoup|) zfft1(:)=gup(:) call zfftifc(3,ngridg,-1,zfft1) g3up(:)=0.d0 do i=1,3 zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) g3up(:)=g3up(:)+gvup(:,i)*dble(zfft2(:)) end do !------------------! ! rho down ! !------------------! zfft1(:)=rhodn(:) call zfftifc(3,ngridg,-1,zfft1) ! |grad rhodn| do i=1,3 zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) gvdn(:,i)=dble(zfft2(:)) end do gdn(:)=sqrt(gvdn(:,1)**2+gvdn(:,2)**2+gvdn(:,3)**2) ! grad^2 rhodn zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=-(gc(ig)**2)*zfft1(ifg) end do call zfftifc(3,ngridg,1,zfft2) g2dn(:)=dble(zfft2(:)) ! (grad rhodn).(grad |grad rhodn|) zfft1(:)=gdn(:) call zfftifc(3,ngridg,-1,zfft1) g3dn(:)=0.d0 do i=1,3 zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) g3dn(:)=g3dn(:)+gvdn(:,i)*dble(zfft2(:)) end do !-------------! ! rho ! !-------------! ! |grad rho| grho(:)=sqrt((gvup(:,1)+gvdn(:,1))**2 & +(gvup(:,2)+gvdn(:,2))**2 & +(gvup(:,3)+gvdn(:,3))**2) ! (grad rho).(grad |grad rho|) zfft1(:)=grho(:) call zfftifc(3,ngridg,-1,zfft1) g3rho(:)=0.d0 do i=1,3 zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) g3rho(:)=g3rho(:)+(gvup(:,i)+gvdn(:,i))*dble(zfft2(:)) end do deallocate(gvup,gvdn,zfft1,zfft2) end subroutine !EOC elk-9.2.12/src/PaxHeaders/ggamt_2a.f900000644000000000000000000000013214536061313014230 xustar0030 mtime=1702388427.826501625 30 atime=1702388426.663503347 30 ctime=1702388427.826501625 elk-9.2.12/src/ggamt_2a.f900000644002504400250440000000253414536061313016756 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggamt_2a ! !INTERFACE: subroutine ggamt_2a(tsh,is,np,rho,g2rho,gvrho,grho2) ! !USES: use modmain ! !DESCRIPTION: ! Spin-unpolarised version of {\tt ggamt\_sp\_2a}. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none ! arguments logical, intent(in) :: tsh integer, intent(in) :: is,np real(8), intent(in) :: rho(np) real(8), intent(out) :: g2rho(np),gvrho(np,3),grho2(np) ! local variables integer nr,nri,i ! automatic arrays real(8) grfmt(np,3),rfmt1(np),rfmt2(np) nr=nrmt(is) nri=nrmti(is) ! compute grad^2 rho in spherical coordinates if (tsh) then call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rho,rfmt2) else call rfsht(nr,nri,rho,rfmt1) call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt1,rfmt2) end if call rbsht(nr,nri,rfmt2,g2rho) ! compute grad rho in spherical coordinates if (tsh) then call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rho,np,grfmt) else call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) end if do i=1,3 call rbsht(nr,nri,grfmt(:,i),gvrho(:,i)) end do ! (grad rho)^2 grho2(1:np)=gvrho(1:np,1)**2+gvrho(1:np,2)**2+gvrho(1:np,3)**2 end subroutine !EOC elk-9.2.12/src/PaxHeaders/ggair_2a.f900000644000000000000000000000013214536061313014222 xustar0030 mtime=1702388427.827501624 30 atime=1702388426.664503346 30 ctime=1702388427.827501624 elk-9.2.12/src/ggair_2a.f900000644002504400250440000000235014536061313016744 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggair_2a ! !INTERFACE: subroutine ggair_2a(rho,g2rho,gvrho,grho2) ! !USES: use modmain ! !DESCRIPTION: ! Spin-unpolarised version of {\tt ggair\_sp\_2a}. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rho(ngtot) real(8), intent(out) :: g2rho(ngtot),gvrho(ngtot,3),grho2(ngtot) ! local variables integer ig,ifg,i ! allocatable arrays complex(8), allocatable :: zfft1(:),zfft2(:) allocate(zfft1(ngtot),zfft2(ngtot)) ! Fourier transform density to G-space zfft1(:)=rho(:) call zfftifc(3,ngridg,-1,zfft1) ! grad^2 rho zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=-(gc(ig)**2)*zfft1(ifg) end do call zfftifc(3,ngridg,1,zfft2) g2rho(:)=dble(zfft2(:)) ! grad rho do i=1,3 zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) gvrho(:,i)=dble(zfft2(:)) end do ! (grad rho)^2 grho2(:)=gvrho(:,1)**2+gvrho(:,2)**2+gvrho(:,3)**2 deallocate(zfft1,zfft2) end subroutine !EOC elk-9.2.12/src/PaxHeaders/ggamt_2b.f900000644000000000000000000000013214536061313014231 xustar0030 mtime=1702388427.828501622 30 atime=1702388426.666503343 30 ctime=1702388427.828501622 elk-9.2.12/src/ggamt_2b.f900000644002504400250440000000323414536061313016755 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggamt_2b ! !INTERFACE: subroutine ggamt_2b(is,np,g2rho,gvrho,vx,vc,dxdgr2,dcdgr2) ! !USES: use modmain ! !DESCRIPTION: ! Spin-unpolarised version of {\tt ggamt\_sp\_2b}. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none ! arguments integer, intent(in) :: is,np real(8), intent(in) :: g2rho(np),gvrho(np,3) real(8), intent(inout) :: vx(np),vc(np) real(8), intent(in) :: dxdgr2(np),dcdgr2(np) ! local variables integer nr,nri,i ! automatic arrays real(8) rfmt1(np),rfmt2(np),grfmt(np,3) nr=nrmt(is) nri=nrmti(is) !------------------! ! exchange ! !------------------! ! convert dxdgr2 to spherical harmonics call rfsht(nr,nri,dxdgr2,rfmt1) ! compute grad dxdgr2 call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dxdgr2).(grad rho) in spherical coordinates rfmt1(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt2) rfmt1(1:np)=rfmt1(1:np)+rfmt2(1:np)*gvrho(1:np,i) end do vx(1:np)=vx(1:np)-2.d0*(rfmt1(1:np)+dxdgr2(1:np)*g2rho(1:np)) !---------------------! ! correlation ! !---------------------! ! convert dcdgr2 to spherical harmonics call rfsht(nr,nri,dcdgr2,rfmt1) ! compute grad dcdgr2 call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dcdgr2).(grad rho) in spherical coordinates rfmt1(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt2) rfmt1(1:np)=rfmt1(1:np)+rfmt2(1:np)*gvrho(1:np,i) end do vc(1:np)=vc(1:np)-2.d0*(rfmt1(1:np)+dcdgr2(1:np)*g2rho(1:np)) end subroutine !EOC elk-9.2.12/src/PaxHeaders/ggair_2b.f900000644000000000000000000000013214536061313014223 xustar0030 mtime=1702388427.830501619 30 atime=1702388426.667503341 30 ctime=1702388427.830501619 elk-9.2.12/src/ggair_2b.f900000644002504400250440000000326114536061313016747 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggair_2b ! !INTERFACE: subroutine ggair_2b(g2rho,gvrho,vx,vc,dxdgr2,dcdgr2) ! !USES: use modmain ! !DESCRIPTION: ! Spin-unpolarised version of {\tt ggair\_sp\_2b}. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none ! arguments real(8), intent(in) :: g2rho(ngtot),gvrho(ngtot,3) real(8), intent(inout) :: vx(ngtot),vc(ngtot) real(8), intent(in) :: dxdgr2(ngtot),dcdgr2(ngtot) ! local variables integer ig,ifg,i ! allocatable arrays real(8), allocatable :: rfir(:) complex(8), allocatable :: zfft1(:),zfft2(:) allocate(rfir(ngtot)) allocate(zfft1(ngtot),zfft2(ngtot)) !------------------! ! exchange ! !------------------! ! compute grad dxdgr2 zfft1(:)=dxdgr2(:) call zfftifc(3,ngridg,-1,zfft1) ! (grad dxdgr2).(grad rho) rfir(:)=0.d0 do i=1,3 do ig=1,ngtot ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) rfir(:)=rfir(:)+dble(zfft2(:))*gvrho(:,i) end do vx(:)=vx(:)-2.d0*(rfir(:)+dxdgr2(:)*g2rho(:)) !---------------------! ! correlation ! !---------------------! ! compute grad dcdgr2 zfft1(:)=dcdgr2(:) call zfftifc(3,ngridg,-1,zfft1) ! (grad dcdgr2).(grad rho) rfir(:)=0.d0 do i=1,3 do ig=1,ngtot ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) rfir(:)=rfir(:)+dble(zfft2(:))*gvrho(:,i) end do vc(:)=vc(:)-2.d0*(rfir(:)+dcdgr2(:)*g2rho(:)) deallocate(rfir,zfft1,zfft2) end subroutine !EOC elk-9.2.12/src/PaxHeaders/ggamt_sp_2a.f900000644000000000000000000000013214536061313014732 xustar0030 mtime=1702388427.831501618 30 atime=1702388426.669503338 30 ctime=1702388427.831501618 elk-9.2.12/src/ggamt_sp_2a.f900000644002504400250440000001017314536061313017456 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggamt_sp_2a ! !INTERFACE: subroutine ggamt_sp_2a(is,np,rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2,gupdn) ! !USES: use modmain ! !DESCRIPTION: ! Computes the muffin-tin gradients $\nabla^2\rho^{\uparrow}$, ! $\nabla^2\rho^{\downarrow}$, $\nabla\rho^{\uparrow}$, ! $\nabla\rho^{\downarrow}$, $(\nabla\rho^{\uparrow})^2$, ! $(\nabla\rho^{\downarrow})^2$ and ! $\nabla\rho^{\uparrow}\cdot\nabla\rho^{\downarrow}$, which are passed in to ! GGA functional subroutines of type 2. The exchange-correlation energy in ! these routines has the functional form ! $$ E_{xc}[\rho^{\uparrow},\rho^{\downarrow}]=\int d^3r\,\hat{\epsilon}_{xc} ! \bigl(\rho^{\uparrow}({\bf r}),\rho^{\downarrow}({\bf r}), ! (\nabla\rho^{\uparrow}({\bf r}))^2,(\nabla\rho^{\downarrow}({\bf r}))^2, ! \nabla\rho^{\uparrow}({\bf r}) ! \cdot\nabla\rho^{\downarrow}({\bf r})\bigr), $$ ! where $\hat{\epsilon}_{xc}({\bf r})=\epsilon_{xc}({\bf r})\rho({\bf r})$ is ! the xc energy per unit volume, with $\epsilon_{xc}$ being the xc energy per ! electron, and $\rho=\rho^{\uparrow}+\rho^{\downarrow}$. From the gradients ! above, type 2 GGA routines return $\epsilon_{xc}$, but not directly the xc ! potentials. Instead they generate the derivatives ! $\partial\hat{\epsilon}_{xc}/\partial\rho^{\uparrow}({\bf r})$, ! $\partial\hat{\epsilon}_{xc}/\partial(\nabla\rho^{\uparrow}({\bf r}))^2$, ! and the same for down spin, as well as ! $\partial\hat{\epsilon}_{xc}/\partial(\nabla\rho^{\uparrow}({\bf r}) ! \cdot\nabla\rho^{\downarrow}({\bf r}))$. In a post-processing step invoked ! by {\tt ggamt\_sp\_2b}, integration by parts is used to obtain the xc ! potential explicitly with ! \begin{align*} ! V_{xc}^{\uparrow}({\bf r})=&\frac{\partial\hat{\epsilon}_{xc}}{\partial ! \rho^{\uparrow}({\bf r})}-2\left(\nabla\frac{\partial\hat{\epsilon}_{xc}} ! {\partial(\nabla\rho^{\uparrow})^2}\right)\cdot\nabla\rho^{\uparrow} ! -2\frac{\hat{\epsilon}_{xc}}{\partial(\nabla\rho^{\uparrow})^2}\nabla^2 ! \rho^{\uparrow}\\ ! &-\left(\nabla\frac{\hat{\epsilon}_{xc}}{\partial(\nabla\rho^{\uparrow} ! \cdot\nabla\rho^{\downarrow})}\right)\cdot\nabla\rho^{\downarrow} ! -\frac{\partial\hat{\epsilon}_{xc}}{\partial(\nabla\rho^{\uparrow}\cdot ! \nabla\rho^{\downarrow})}\nabla^2\rho^{\downarrow}, ! \end{align*} ! and similarly for $V_{xc}^{\downarrow}$. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none ! arguments integer, intent(in) :: is,np real(8), intent(in) :: rhoup(np),rhodn(np) real(8), intent(out) :: g2up(np),g2dn(np) real(8), intent(out) :: gvup(np,3),gvdn(np,3) real(8), intent(out) :: gup2(np),gdn2(np),gupdn(np) ! local variables integer nr,nri,i ! automatic arrays real(8) rfmt1(np),rfmt2(np),grfmt(np,3) nr=nrmt(is) nri=nrmti(is) !----------------! ! rho up ! !----------------! ! convert rhoup to spherical harmonics call rfsht(nr,nri,rhoup,rfmt1) ! compute grad^2 rhoup in spherical coordinates call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt1,rfmt2) call rbsht(nr,nri,rfmt2,g2up) ! grad rhoup in spherical coordinates call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) do i=1,3 call rbsht(nr,nri,grfmt(:,i),gvup(:,i)) end do ! (grad rhoup)^2 gup2(1:np)=gvup(1:np,1)**2+gvup(1:np,2)**2+gvup(1:np,3)**2 !------------------! ! rho down ! !------------------! ! convert rhodn to spherical harmonics call rfsht(nr,nri,rhodn,rfmt1) ! compute grad^2 rhodn in spherical coordinates call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt1,rfmt2) call rbsht(nr,nri,rfmt2,g2dn) ! grad rhodn in spherical coordinates call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) do i=1,3 call rbsht(nr,nri,grfmt(:,i),gvdn(:,i)) end do ! (grad rhodn)^2 gdn2(1:np)=gvdn(1:np,1)**2+gvdn(1:np,2)**2+gvdn(1:np,3)**2 ! (grad rhoup).(grad rhodn) gupdn(1:np)=gvup(1:np,1)*gvdn(1:np,1) & +gvup(1:np,2)*gvdn(1:np,2) & +gvup(1:np,3)*gvdn(1:np,3) end subroutine !EOC elk-9.2.12/src/PaxHeaders/ggair_sp_2a.f900000644000000000000000000000013214536061313014724 xustar0030 mtime=1702388427.832501616 30 atime=1702388426.670503337 30 ctime=1702388427.832501616 elk-9.2.12/src/ggair_sp_2a.f900000644002504400250440000000455314536061313017455 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggair_sp_2a ! !INTERFACE: subroutine ggair_sp_2a(rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2,gupdn) ! !USES: use modmain ! !DESCRIPTION: ! Computes the interstitial gradients $\nabla^2\rho^{\uparrow}$, ! $\nabla^2\rho^{\downarrow}$, $\nabla\rho^{\uparrow}$, ! $\nabla\rho^{\downarrow}$, $(\nabla\rho^{\uparrow})^2$, ! $(\nabla\rho^{\downarrow})^2$ and ! $\nabla\rho^{\uparrow}\cdot\nabla\rho^{\downarrow}$. These are used for GGA ! functionals of type 2 and meta-GGA. See {\tt ggamt\_sp\_2a} for details. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rhoup(ngtot),rhodn(ngtot) real(8), intent(out) :: g2up(ngtot),g2dn(ngtot) real(8), intent(out) :: gvup(ngtot,3),gvdn(ngtot,3) real(8), intent(out) :: gup2(ngtot),gdn2(ngtot),gupdn(ngtot) ! local variables integer ig,ifg,i ! allocatable arrays complex(8), allocatable :: zfft1(:),zfft2(:) allocate(zfft1(ngtot),zfft2(ngtot)) !----------------! ! rho up ! !----------------! zfft1(:)=rhoup(:) call zfftifc(3,ngridg,-1,zfft1) ! compute grad^2 rhoup zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=-(gc(ig)**2)*zfft1(ifg) end do call zfftifc(3,ngridg,1,zfft2) g2up(:)=dble(zfft2(:)) ! grad rhoup do i=1,3 zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) gvup(:,i)=dble(zfft2(:)) end do ! (grad rhoup)^2 gup2(:)=gvup(:,1)**2+gvup(:,2)**2+gvup(:,3)**2 !------------------! ! rho down ! !------------------! zfft1(:)=rhodn(:) call zfftifc(3,ngridg,-1,zfft1) ! compute grad^2 rhodn zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=-(gc(ig)**2)*zfft1(ifg) end do call zfftifc(3,ngridg,1,zfft2) g2dn(:)=dble(zfft2(:)) ! grad rhodn do i=1,3 zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) gvdn(:,i)=dble(zfft2(:)) end do ! (grad rhodn)^2 gdn2(:)=gvdn(:,1)**2+gvdn(:,2)**2+gvdn(:,3)**2 ! (grad rhoup).(grad rhodn) gupdn(:)=gvup(:,1)*gvdn(:,1)+gvup(:,2)*gvdn(:,2)+gvup(:,3)*gvdn(:,3) deallocate(zfft1,zfft2) end subroutine !EOC elk-9.2.12/src/PaxHeaders/ggamt_sp_2b.f900000644000000000000000000000013214536061313014733 xustar0030 mtime=1702388427.834501614 30 atime=1702388426.671503336 30 ctime=1702388427.834501614 elk-9.2.12/src/ggamt_sp_2b.f900000644002504400250440000000706414536061313017464 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggamt_sp_2b ! !INTERFACE: subroutine ggamt_sp_2b(is,np,g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu2, & dxdgd2,dxdgud,dcdgu2,dcdgd2,dcdgud) ! !USES: use modmain ! !DESCRIPTION: ! Post processing step of muffin-tin gradients for GGA type 2. See routine ! {\tt ggamt\_sp\_2a} for full details. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none ! arguments integer, intent(in) :: is,np real(8), intent(in) :: g2up(np),g2dn(np) real(8), intent(in) :: gvup(np,3),gvdn(np,3) real(8), intent(inout) :: vxup(np),vxdn(np) real(8), intent(inout) :: vcup(np),vcdn(np) real(8), intent(in) :: dxdgu2(np),dxdgd2(np),dxdgud(np) real(8), intent(in) :: dcdgu2(np),dcdgd2(np),dcdgud(np) ! local variables integer nr,nri,i ! automatic arrays real(8) rfmt1(np),rfmt2(np),grfmt(np,3) nr=nrmt(is) nri=nrmti(is) !------------------! ! exchange ! !------------------! ! convert dxdgu2 to spherical harmonics call rfsht(nr,nri,dxdgu2,rfmt1) ! compute grad dxdgu2 call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dxdgu2).(grad rhoup) in spherical coordinates rfmt1(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt2) rfmt1(1:np)=rfmt1(1:np)+rfmt2(1:np)*gvup(1:np,i) end do vxup(1:np)=vxup(1:np)-2.d0*(rfmt1(1:np)+dxdgu2(1:np)*g2up(1:np)) & -dxdgud(1:np)*g2dn(1:np) ! convert dxdgd2 to spherical harmonics call rfsht(nr,nri,dxdgd2,rfmt1) ! compute grad dxdgd2 call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dxdgd2).(grad rhodn) in spherical coordinates rfmt1(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt2) rfmt1(1:np)=rfmt1(1:np)+rfmt2(1:np)*gvdn(1:np,i) end do vxdn(1:np)=vxdn(1:np)-2.d0*(rfmt1(1:np)+dxdgd2(1:np)*g2dn(1:np)) & -dxdgud(1:np)*g2up(1:np) ! convert dxdgud to spherical harmonics call rfsht(nr,nri,dxdgud,rfmt1) ! compute grad dxdgud call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dxdgud).(grad rhodn) and (grad dxdgud).(grad rhoup) do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt1) vxup(1:np)=vxup(1:np)-rfmt1(1:np)*gvdn(1:np,i) vxdn(1:np)=vxdn(1:np)-rfmt1(1:np)*gvup(1:np,i) end do !---------------------! ! correlation ! !---------------------! ! convert dcdgu2 to spherical harmonics call rfsht(nr,nri,dcdgu2,rfmt1) ! compute grad dcdgu2 call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dcdgu2).(grad rhoup) in spherical coordinates rfmt1(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt2) rfmt1(1:np)=rfmt1(1:np)+rfmt2(1:np)*gvup(1:np,i) end do vcup(1:np)=vcup(1:np)-2.d0*(rfmt1(1:np)+dcdgu2(1:np)*g2up(1:np)) & -dcdgud(1:np)*g2dn(1:np) ! convert dcdgd2 to spherical harmonics call rfsht(nr,nri,dcdgd2,rfmt1) ! compute grad dcdgd2 call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dcdgd2).(grad rhodn) in spherical coordinates rfmt1(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt2) rfmt1(1:np)=rfmt1(1:np)+rfmt2(1:np)*gvdn(1:np,i) end do vcdn(1:np)=vcdn(1:np)-2.d0*(rfmt1(1:np)+dcdgd2(1:np)*g2dn(1:np)) & -dcdgud(1:np)*g2up(1:np) ! convert dcdgud to spherical harmonics call rfsht(nr,nri,dcdgud,rfmt1) ! compute grad dcdgud call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dcdgud).(grad rhodn) and (grad dcdgud).(grad rhoup) do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt1) vcup(1:np)=vcup(1:np)-rfmt1(1:np)*gvdn(1:np,i) vcdn(1:np)=vcdn(1:np)-rfmt1(1:np)*gvup(1:np,i) end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/ggair_sp_2b.f900000644000000000000000000000013214536061313014725 xustar0030 mtime=1702388427.835501612 30 atime=1702388426.673503332 30 ctime=1702388427.835501612 elk-9.2.12/src/ggair_sp_2b.f900000644002504400250440000000700514536061313017451 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggair_sp_2b ! !INTERFACE: subroutine ggair_sp_2b(g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu2,dxdgd2, & dxdgud,dcdgu2,dcdgd2,dcdgud) ! !USES: use modmain ! !DESCRIPTION: ! Post processing step of interstitial gradients for GGA type 2. See routine ! {\tt ggamt\_sp\_2a} for full details. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none real(8), intent(in) :: g2up(ngtot),g2dn(ngtot) real(8), intent(in) :: gvup(ngtot,3),gvdn(ngtot,3) real(8), intent(inout) :: vxup(ngtot),vxdn(ngtot) real(8), intent(inout) :: vcup(ngtot),vcdn(ngtot) real(8), intent(in) :: dxdgu2(ngtot),dxdgd2(ngtot),dxdgud(ngtot) real(8), intent(in) :: dcdgu2(ngtot),dcdgd2(ngtot),dcdgud(ngtot) ! local variables integer ig,ifg,i ! allocatable arrays real(8), allocatable :: rfir(:) complex(8), allocatable :: zfft1(:),zfft2(:) allocate(rfir(ngtot)) allocate(zfft1(ngtot),zfft2(ngtot)) !------------------! ! exchange ! !------------------! ! compute grad dxdgu2 zfft1(:)=dxdgu2(:) call zfftifc(3,ngridg,-1,zfft1) ! (grad dxdgu2).(grad rhoup) rfir(:)=0.d0 do i=1,3 do ig=1,ngtot ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) rfir(:)=rfir(:)+dble(zfft2(:))*gvup(:,i) end do vxup(:)=vxup(:)-2.d0*(rfir(:)+dxdgu2(:)*g2up(:))-dxdgud(:)*g2dn(:) ! compute grad dxdgd2 zfft1(:)=dxdgd2(:) call zfftifc(3,ngridg,-1,zfft1) ! (grad dxdgd2).(grad rhodn) rfir(:)=0.d0 do i=1,3 do ig=1,ngtot ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) rfir(:)=rfir(:)+dble(zfft2(:))*gvdn(:,i) end do vxdn(:)=vxdn(:)-2.d0*(rfir(:)+dxdgd2(:)*g2dn(:))-dxdgud(:)*g2up(:) ! compute grad dxdgud zfft1(:)=dxdgud(:) call zfftifc(3,ngridg,-1,zfft1) ! (grad dxdgud).(grad rhodn) and (grad dxdgud).(grad rhoup) do i=1,3 do ig=1,ngtot ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) vxup(:)=vxup(:)-dble(zfft2(:))*gvdn(:,i) vxdn(:)=vxdn(:)-dble(zfft2(:))*gvup(:,i) end do !---------------------! ! correlation ! !---------------------! ! compute grad dcdgu2 zfft1(:)=dcdgu2(:) call zfftifc(3,ngridg,-1,zfft1) ! (grad dcdgu2).(grad rhoup) rfir(:)=0.d0 do i=1,3 do ig=1,ngtot ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) rfir(:)=rfir(:)+dble(zfft2(:))*gvup(:,i) end do vcup(:)=vcup(:)-2.d0*(rfir(:)+dcdgu2(:)*g2up(:))-dcdgud(:)*g2dn(:) ! compute grad dcdgd2 zfft1(:)=dcdgd2(:) call zfftifc(3,ngridg,-1,zfft1) ! (grad dcdgd2).(grad rhodn) rfir(:)=0.d0 do i=1,3 do ig=1,ngtot ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) rfir(:)=rfir(:)+dble(zfft2(:))*gvdn(:,i) end do vcdn(:)=vcdn(:)-2.d0*(rfir(:)+dcdgd2(:)*g2dn(:))-dcdgud(:)*g2up(:) ! compute grad dcdgud zfft1(:)=dcdgud(:) call zfftifc(3,ngridg,-1,zfft1) ! (grad dcdgud).(grad rhodn) and (grad dcdgud).(grad rhoup) do i=1,3 do ig=1,ngtot ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) vcup(:)=vcup(:)-dble(zfft2(:))*gvdn(:,i) vcdn(:)=vcdn(:)-dble(zfft2(:))*gvup(:,i) end do deallocate(rfir,zfft1,zfft2) end subroutine !EOC elk-9.2.12/src/PaxHeaders/writeemd.f900000644000000000000000000000013014536061313014365 xustar0029 mtime=1702388427.83650161 30 atime=1702388426.675503329 29 ctime=1702388427.83650161 elk-9.2.12/src/writeemd.f900000644002504400250440000000521014536061313017107 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 S. Dugdale, D. Ernsting and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeemd use modmain use modpw use modmpi use modomp use moddelf implicit none ! local variables integer ik,ihk,recl integer ist,ispn,nthd real(8) sm,t1 complex(8) z1 ! allocatable arrays real(8), allocatable :: emd(:) complex(8), allocatable :: wfpw(:,:,:) if (spinsprl) then write(*,*) write(*,'("Error(writeemd): electron momentum density not available for & &spin-spirals")') write(*,*) stop end if ! initialise universal variables call init0 call init1 call init4 ! read density and potentials from file call readstate ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the occupation numbers from file do ik=1,nkpt call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! delete existing EMD.OUT if (mp_mpi) call delfile('EMD.OUT') ! synchronise MPI processes call mpi_barrier(mpicom,ierror) allocate(emd(nhkmax)) inquire(iolength=recl) vkl(:,1),nhkmax,emd deallocate(emd) open(250,file='EMD.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) ! loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(emd,wfpw,ihk,sm) & !$OMP PRIVATE(ist,ispn,z1,t1) & !$OMP NUM_THREADS(nthd) allocate(emd(nhkmax),wfpw(nhkmax,nspinor,nstsv)) !$OMP DO do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(writeemd_) write(*,'("Info(writeemd): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(writeemd_) ! Fourier transform the wavefunctions call genwfpw(vkl(:,ik),ngk(1,ik),igkig(:,1,ik),vgkl(:,:,1,ik), & vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),nhk(1,ik),vhkc(:,:,1,ik), & hkc(:,1,ik),sfachk(:,:,1,ik),wfpw) ! loop over all H+k-vectors do ihk=1,nhk(1,ik) ! sum over occupied states and spins sm=0.d0 do ist=1,nstsv do ispn=1,nspinor z1=wfpw(ihk,ispn,ist) t1=dble(z1)**2+aimag(z1)**2 sm=sm+occsv(ist,ik)*t1 end do end do emd(ihk)=sm end do !$OMP CRITICAL(u250) write(250,rec=ik) vkl(:,ik),nhk(1,ik),emd !$OMP END CRITICAL(u250) end do !$OMP END DO deallocate(emd,wfpw) !$OMP END PARALLEL call freethd(nthd) close(250) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) if (mp_mpi) then write(*,*) write(*,'("Info(writeemd): electron momentum density written to EMD.OUT")') write(*,'(" for all H+k-vectors up to |H+k| < hkmax")') end if end subroutine elk-9.2.12/src/PaxHeaders/reademd.f900000644000000000000000000000013214536061313014150 xustar0030 mtime=1702388427.837501609 30 atime=1702388426.676503328 30 ctime=1702388427.837501609 elk-9.2.12/src/reademd.f900000644002504400250440000000262614536061313016700 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 D. Ernsting, S. Dugdale and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine reademd(emds) use modmain use modpw use modtest implicit none ! arguments real(4), intent(out) :: emds(nhkmax,nkpt) ! local variables integer ik,recl,nhk_ real(8) vkl_(3),t1 ! allocatable arrays real(8), allocatable :: emd(:) allocate(emd(nhkmax)) ! find the record length inquire(iolength=recl) vkl_,nhk_,emd open(250,file='EMD.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) do ik=1,nkpt read(250,rec=ik) vkl_,nhk_,emd t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(reademd): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EMD.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nhk(1,ik) /= nhk_) then write(*,*) write(*,'("Error(reademd): differing nhk for k-point ",I8)') ik write(*,'(" current : ",I8)') nhk(1,ik) write(*,'(" EMD.OUT : ",I8)') nhk_ write(*,*) stop end if ! store momentum density in single-precision array emds(:,ik)=real(emd(:)) end do close(250) ! write the EMD of the last k-point to test file if required call writetest(170,'electron momentum density',nv=nhkmax,tol=1.d-4,rva=emd) deallocate(emd) end subroutine elk-9.2.12/src/PaxHeaders/emdplot.f900000644000000000000000000000013214536061313014213 xustar0030 mtime=1702388427.839501606 30 atime=1702388426.678503325 30 ctime=1702388427.839501606 elk-9.2.12/src/emdplot.f900000644002504400250440000000216014536061313016734 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 D. Ernsting, S. Dugdale and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine emdplot use modmain use modpw implicit none ! local variables real(8) t1 ! allocatable arrays real(4), allocatable :: emds(:,:) t1=sum(abs(vkloff(:))) if (t1 > epslat) then write(*,*) write(*,'("Error(emdplot): use vkloff = 0 for the ground-state run")') write(*,*) stop end if ! initialise universal variables call init0 call init1 call init4 ! read in the electron momentum density allocate(emds(nhkmax,nkpt)) call reademd(emds) ! write the density plot to file select case(task) case(171) call emdplot1d(emds) write(*,*) write(*,'("Info(emdplot): 1D electron momentum density written to & &EMD1D.OUT")') case(172) call emdplot2d(emds) write(*,*) write(*,'("Info(emdplot): 2D electron momentum density written to & &EMD2D.OUT")') case(173) call emdplot3d(emds) write(*,*) write(*,'("Info(emdplot): 3D electron momentum density written to & &EMD3D.OUT")') end select deallocate(emds) end subroutine elk-9.2.12/src/PaxHeaders/init3.f900000644000000000000000000000013214536061313013575 xustar0030 mtime=1702388427.840501605 30 atime=1702388426.679503324 30 ctime=1702388427.840501605 elk-9.2.12/src/init3.f900000644002504400250440000000301214536061313016313 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine init3 use modmain use modgw use modtddft use modvars use modmpi implicit none ! local variables integer ig,iw real(8) w1,w2,t1,t2 !-------------------------------------------------------------! ! response function and perturbation theory variables ! !-------------------------------------------------------------! ! G-vectors for response functions ngrf=1 do ig=2,ngvec if (gc(ig) > gmaxrf) then ngrf=ig-1 exit end if end do ngrf=min(ngrf,ngvc) ! write the G-vectors to file if (mp_mpi) call writegvecrf ! frequencies for reponse functions nwrf=1 if (allocated(wrf)) deallocate(wrf) select case(task) case(188,320,330,331) nwrf=nwplot allocate(wrf(nwrf)) w1=wplot(1) w2=max(wplot(2),w1) t1=(w2-w1)/dble(nwplot) do iw=1,nwplot t2=w1+t1*dble(iw-1) wrf(iw)=cmplx(t2,swidth,8) end do ! set the first frequency to zero for the bootstrap functional if ((fxctype(1) == 210).or.(fxctype(1) == 211)) then wrf(1)=cmplx(0.d0,swidth,8) end if case(600,610,620,630,640) ! GW Matsubara frequencies call genwgw case default nwrf=1 allocate(wrf(nwrf)) wrf(1)=cmplx(0.d0,swidth,8) end select ! write to VARIABLES.OUT if (wrtvars) then call writevars('gmaxrf',rv=gmaxrf) call writevars('ngrf',iv=ngrf) call writevars('nwrf',iv=nwrf) call writevars('wrf',nv=nwrf,zva=wrf) end if end subroutine elk-9.2.12/src/PaxHeaders/init4.f900000644000000000000000000000013214536061313013576 xustar0030 mtime=1702388427.841501603 30 atime=1702388426.680503322 30 ctime=1702388427.841501603 elk-9.2.12/src/init4.f900000644002504400250440000001433414536061313016325 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine init4 use modmain use modphonon use modpw use modvars implicit none ! local variables integer ik,jspn,n,i integer l1,l2,l3,m1,m2,m3 integer lm1,lm2,lm3 real(8) vl(3),vc(3) ! external functions real(8), external :: gaunt !---------------------------! ! H+k-vector arrays ! !---------------------------! if (any(task == [135,170,171,172,173])) then if (task == 135) hkmax=0.5d0*gmaxvr-epslat call findngkmax(nkpt,vkc,nspnfv,vqcss,ngvec,vgc,hkmax,nhkmax) ! allocate the H+k-vector arrays if (allocated(nhk)) deallocate(nhk) allocate(nhk(nspnfv,nkpt)) if (allocated(ihkig)) deallocate(ihkig) allocate(ihkig(nhkmax,nspnfv,nkpt)) if (allocated(vhkl)) deallocate(vhkl) allocate(vhkl(3,nhkmax,nspnfv,nkpt)) if (allocated(vhkc)) deallocate(vhkc) allocate(vhkc(3,nhkmax,nspnfv,nkpt)) if (allocated(hkc)) deallocate(hkc) allocate(hkc(nhkmax,nspnfv,nkpt)) if (allocated(sfachk)) deallocate(sfachk) allocate(sfachk(nhkmax,natmtot,nspnfv,nkpt)) ! initialise H+k-vectors arrays do ik=1,nkpt do jspn=1,nspnfv vl(:)=vkl(:,ik) vc(:)=vkc(:,ik) ! spin-spiral case if (spinsprl) then if (jspn == 1) then vl(:)=vl(:)+0.5d0*vqlss(:) vc(:)=vc(:)+0.5d0*vqcss(:) else vl(:)=vl(:)-0.5d0*vqlss(:) vc(:)=vc(:)-0.5d0*vqcss(:) end if end if ! generate the H+k-vectors call gengkvec(ngvec,ivg,vgc,vl,vc,hkmax,nhkmax,nhk(jspn,ik), & ihkig(:,jspn,ik),vhkl(:,:,jspn,ik),vhkc(:,:,jspn,ik),hkc(:,jspn,ik)) ! generate structure factors for H+k-vectors call gensfacgp(nhk(jspn,ik),vhkc(:,:,jspn,ik),nhkmax,sfachk(:,:,jspn,ik)) end do end do ! write to VARIABLES.OUT if (wrtvars) then call writevars('hkmax',rv=hkmax) call writevars('nhk',nv=nspnfv*nkpt,iva=nhk) do ik=1,nkpt do jspn=1,nspnfv call writevars('ihkig',n1=jspn,n2=ik,nv=nhk(jspn,ik), & iva=ihkig(:,jspn,ik)) end do end do end if end if !-----------------------------! ! G+k+q-vector arrays ! !-----------------------------! if (task == 205) then if (allocated(vkql)) deallocate(vkql) allocate(vkql(3,nkptnr)) if (allocated(vkqc)) deallocate(vkqc) allocate(vkqc(3,nkptnr)) if (allocated(ngkq)) deallocate(ngkq) allocate(ngkq(nspnfv,nkptnr)) if (allocated(igkqig)) deallocate(igkqig) allocate(igkqig(ngkmax,nspnfv,nkptnr)) if (allocated(vgkql)) deallocate(vgkql) allocate(vgkql(3,ngkmax,nspnfv,nkptnr)) if (allocated(vgkqc)) deallocate(vgkqc) allocate(vgkqc(3,ngkmax,nspnfv,nkptnr)) if (allocated(gkqc)) deallocate(gkqc) allocate(gkqc(ngkmax,nspnfv,nkptnr)) if (allocated(sfacgkq)) deallocate(sfacgkq) allocate(sfacgkq(ngkmax,natmtot,nspnfv,nkptnr)) end if !---------------------------! ! G+q-vector arrays ! !---------------------------! if (task == 205) then if (allocated(vgqc)) deallocate(vgqc) allocate(vgqc(3,ngtot)) if (allocated(gqc)) deallocate(gqc) allocate(gqc(ngtot)) if (allocated(gclgq)) deallocate(gclgq) allocate(gclgq(ngvec)) if (allocated(jlgqrmt)) deallocate(jlgqrmt) allocate(jlgqrmt(0:lnpsd,ngvec,nspecies)) if (allocated(ylmgq)) deallocate(ylmgq) allocate(ylmgq(lmmaxo,ngvec)) if (allocated(sfacgq)) deallocate(sfacgq) allocate(sfacgq(ngvec,natmtot)) if (allocated(ffacgq)) deallocate(ffacgq) allocate(ffacgq(ngtot,nspecies)) if (allocated(dcfunig)) deallocate(dcfunig) allocate(dcfunig(ngtot)) if (allocated(dcfunir)) deallocate(dcfunir) allocate(dcfunir(ngtot)) end if !-----------------------------------------------------------------! ! phonon density functional perturbation theory variables ! !-----------------------------------------------------------------! if (task == 205) then if (allocated(drhomt)) deallocate(drhomt) allocate(drhomt(npmtmax,natmtot)) if (allocated(drhoir)) deallocate(drhoir) allocate(drhoir(ngtot)) if (allocated(dmagmt)) deallocate(dmagmt) if (allocated(dmagir)) deallocate(dmagir) if (spinpol) then allocate(dmagmt(npmtmax,natmtot,ndmag)) allocate(dmagir(ngtot,ndmag)) end if if (allocated(dvclmt)) deallocate(dvclmt) allocate(dvclmt(npmtmax,natmtot)) if (allocated(dvclir)) deallocate(dvclir) allocate(dvclir(ngtot)) if (allocated(zvnmt)) deallocate(zvnmt) allocate(zvnmt(npmtmax)) if (allocated(gvsmt)) deallocate(gvsmt) allocate(gvsmt(npmtmax)) ! combined target array for Kohn-Sham potential and magnetic field derivative if (allocated(dvsbs)) deallocate(dvsbs) n=npmtmax*natmtot+ngtot if (spinpol) n=n+(npcmtmax*natmtot+ngtot)*ndmag allocate(dvsbs(n)) ! zero the array dvsbs(:)=0.d0 ! associate pointer arrays with target dvsmt(1:npmtmax,1:natmtot)=>dvsbs(1:) i=npmtmax*natmtot+1 dvsir(1:ngtot)=>dvsbs(i:) if (spinpol) then i=i+ngtot dbsmt(1:npcmtmax,1:natmtot,1:ndmag)=>dvsbs(i:) i=i+npcmtmax*natmtot*ndmag dbsir(1:ngtot,1:ndmag)=>dvsbs(i:) end if if (allocated(dvsig)) deallocate(dvsig) allocate(dvsig(ngvec)) if (allocated(dsocfr)) deallocate(dsocfr) if (spinorb) then allocate(dsocfr(nrcmtmax,natmtot)) end if if (allocated(dhaa)) deallocate(dhaa) allocate(dhaa(lmmaxo,apwordmax,0:lmaxapw,apwordmax,0:lmaxapw,natmtot)) if (allocated(dhloa)) deallocate(dhloa) allocate(dhloa(lmmaxo,apwordmax,0:lmaxapw,nlomax,natmtot)) if (allocated(dhlolo)) deallocate(dhlolo) allocate(dhlolo(lmmaxo,nlomax,nlomax,natmtot)) ! allocate and generate real Gaunt coefficient array if (allocated(gntyyy)) deallocate(gntyyy) allocate(gntyyy(lmmaxo,lmmaxapw,lmmaxapw)) do l1=0,lmaxapw do m1=-l1,l1 lm1=l1*(l1+1)+m1+1 do l3=0,lmaxapw do m3=-l3,l3 lm3=l3*(l3+1)+m3+1 do l2=0,lmaxo do m2=-l2,l2 lm2=l2*(l2+1)+m2+1 gntyyy(lm2,lm3,lm1)=gaunt(l1,l2,l3,m1,m2,m3) end do end do end do end do end do end do if (allocated(devalfv)) deallocate(devalfv) allocate(devalfv(nstfv,nspnfv,nkptnr)) if (allocated(devalsv)) deallocate(devalsv) allocate(devalsv(nstsv,nkptnr)) if (allocated(doccsv)) deallocate(doccsv) allocate(doccsv(nstsv,nkptnr)) end if end subroutine elk-9.2.12/src/PaxHeaders/bfieldfsm.f900000644000000000000000000000013214536061313014502 xustar0030 mtime=1702388427.842501602 30 atime=1702388426.682503319 30 ctime=1702388427.842501602 elk-9.2.12/src/bfieldfsm.f900000644002504400250440000000436214536061313017231 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: bfieldfsm ! !INTERFACE: subroutine bfieldfsm ! !USES: use modmain ! !DESCRIPTION: ! Updates the effective magnetic field, ${\bf B}_{\rm FSM}$, required for ! fixing the spin moment to a given value, ${\bf M}_{\rm FSM}$. This is done ! by adding a vector to the field which is proportional to the difference ! between the moment calculated in the $i$th self-consistent loop and the ! required moment: ! $$ {\bf B}_{\rm FSM}^{i+1}={\bf B}_{\rm FSM}^i+\lambda\left({\bf M}^i ! -{\bf M}_{\rm FSM}\right), $$ ! where $\lambda$ is a scaling factor. ! ! !REVISION HISTORY: ! Created March 2005 (JKD) !EOP !BOC implicit none ! local variables integer is,ia,ias real(8) v1(3),v2(3),t1 if ((.not.spinpol).or.(fsmtype == 0)) return ! fixed spin direction not valid for collinear magnetism if ((.not.ncmag).and.(fsmtype < 0)) return ! determine the global effective field if ((abs(fsmtype) == 1).or.(abs(fsmtype) == 3)) then if (ncmag) then v1(:)=momtot(:) else v1(:)=0.d0 v1(3)=momtot(1) end if v2(:)=v1(:)-momfix(:) if (ncmag) then bfsmc(:)=bfsmc(:)+taufsm*v2(:) else bfsmc(1)=bfsmc(1)+taufsm*v2(3) end if ! make sure that the constraining field is perpendicular to the fixed moment ! for fixed direction calculations (Y. Kvashnin and LN) if (fsmtype < 0) call r3vo(momfix,bfsmc) end if if ((abs(fsmtype) == 2).or.(abs(fsmtype) == 3)) then ! determine the muffin-tin fields for fixed local moments do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! if any component is >= 1000 then do not fix the moment t1=sum(abs(mommtfix(:,ia,is))) if (t1 >= 1000.d0) cycle if (ncmag) then v1(:)=mommt(:,ias) else v1(:)=0.d0 v1(3)=mommt(1,ias) end if v2(:)=v1(:)-mommtfix(:,ia,is) if (ncmag) then bfsmcmt(:,ias)=bfsmcmt(:,ias)+taufsm*v2(:) else bfsmcmt(1,ias)=bfsmcmt(1,ias)+taufsm*v2(3) end if ! fixed spin direction if (fsmtype < 0) call r3vo(mommtfix(:,ia,is),bfsmcmt(:,ias)) end do end do end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/testcheck.f900000644000000000000000000000013214536061313014524 xustar0030 mtime=1702388427.844501599 30 atime=1702388426.684503316 30 ctime=1702388427.844501599 elk-9.2.12/src/testcheck.f900000644002504400250440000001127314536061313017252 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine testcheck implicit none ! local variables logical exist integer i,j,k,n integer nv_,nv,vt_,vt,iv_,iv real(8) rv_,rv,a,b real(8) tol,t1,t2 complex(8) zv_,zv character(256) fname_,fname,descr n=0 do i=0,999 write(fname_,'("TEST_",I3.3,".OUT_")') i inquire(file=trim(fname_),exist=exist) if (exist) then write(fname,'("TEST_",I3.3,".OUT")') i inquire(file=trim(fname),exist=exist) if (.not.exist) then write(*,*) write(*,'("Error(testcheck): file ",A," does not exist")') trim(fname) write(*,*) error stop end if open(91,file=trim(fname_),form='FORMATTED') open(92,file=trim(fname),form='FORMATTED') read(91,*,err=10) descr read(92,*,err=20) descr read(91,*,err=10) vt_,nv_ read(92,*,err=20) vt,nv if (vt_ /= vt) then write(*,*) write(*,'("Error(testcheck): differing variable type")') write(*,'(" for quantity ''",A,"''")') trim(descr) write(*,'(" ",A," : ",I8)') trim(fname_),vt_ write(*,'(" ",A," : ",I8)') trim(fname),vt write(*,*) error stop end if if (nv_ /= nv) then write(*,*) write(*,'("Error(testcheck): differing number of variables")') write(*,'(" for quantity ''",A,"''")') trim(descr) write(*,'(" ",A," : ",I8)') trim(fname_),nv_ write(*,'(" ",A," : ",I8)') trim(fname),nv write(*,*) error stop end if if (nv <= 0) then write(*,*) write(*,'("Error(testcheck): nv <= 0 : ",I8)') nv write(*,*) error stop end if if (vt == 1) then ! integer variables do j=1,nv read(91,*,err=10) k,iv_ if (j /= k) goto 10 read(92,*,err=20) k,iv if (j /= k) goto 20 if (iv /= iv_) then write(*,*) write(*,'("Error(testcheck): variable ",I8," is different")') j write(*,'(" for quantity ''",A,"''")') trim(descr) write(*,'(" ",A," : ",I8)') trim(fname_),iv_ write(*,'(" ",A," : ",I8)') trim(fname),iv write(*,*) error stop end if end do else if (vt == 2) then ! real variables read(91,*,err=10) tol read(92,*,err=20) tol do j=1,nv read(91,*,err=10) k,rv_ if (j /= k) goto 10 read(92,*,err=20) k,rv if (j /= k) goto 20 t1=abs(rv_-rv) t2=abs(rv_)*tol if ((t1 > t2).and.(abs(rv_) > 1.d-4)) then write(*,*) write(*,'("Error(testcheck): variable ",I8," outside tolerance")') j write(*,'(" for quantity ''",A,"''")') trim(descr) write(*,'(" ",A," (correct value)",T40," : ",G22.12)') trim(fname_), & rv_ write(*,'(" ",A,T40," : ",G22.12)') trim(fname),rv write(*,'(" absolute difference",T40," : ",G22.12)') t1 write(*,'(" required relative tolerance",T40," : ",G22.12)') tol write(*,'(" required absolute tolerance",T40," : ",G22.12)') t2 write(*,*) error stop end if end do else if (vt == 3) then ! complex variables read(91,*,err=10) tol read(92,*,err=20) tol do j=1,nv read(91,*,err=10) k,a,b zv_=cmplx(a,b,8) if (j /= k) goto 10 read(92,*,err=20) k,a,b zv=cmplx(a,b,8) if (j /= k) goto 20 t1=abs(zv_-zv) t2=abs(zv_)*tol if ((t1 > t2).and.(abs(zv_) > 1.d-4)) then write(*,*) write(*,'("Error(testcheck): variable ",I8," outside tolerance")') j write(*,'(" for quantity ''",A,"''")') trim(descr) write(*,'(" ",A," (correct value)",T40," : ",2G22.12)') & trim(fname_),zv_ write(*,'(" ",A,T40," : ",2G22.12)') trim(fname),zv write(*,'(" difference",T40," : ",G22.12)') t1 write(*,'(" required relative tolerance",T40," : ",G22.12)') tol write(*,'(" required absolute tolerance",T40," : ",G22.12)') t2 write(*,*) error stop end if end do else write(*,*) write(*,'("Error(testcheck): variable type not defined : ",I8)') vt write(*,*) error stop end if close(91) close(92) n=n+1 end if end do if (n == 0) then write(*,*) write(*,'("Warning(testcheck): no tests found")') else write(*,*) write(*,'("Info(testcheck): passed all tests")') end if return 10 continue write(*,*) write(*,'("Error(testcheck): error reading from ",A)') trim(fname_) write(*,*) error stop 20 continue write(*,*) write(*,'("Error(testcheck): error reading from ",A)') trim(fname) write(*,*) error stop end subroutine elk-9.2.12/src/PaxHeaders/pade.f900000644000000000000000000000013214536061313013460 xustar0030 mtime=1702388427.845501597 30 atime=1702388426.686503313 30 ctime=1702388427.845501597 elk-9.2.12/src/pade.f900000644002504400250440000000464514536061313016213 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) A. Sanna and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: pade ! !INTERFACE: subroutine pade(ni,zi,ui,no,zo,uo) ! !INPUT/OUTPUT PARAMETERS: ! ni : number of input points (in,integer) ! zi : input points (in,complex(ni)) ! ui : input function values (in,complex(ni)) ! no : number of output points (in,integer) ! zo : output points (in,complex(no)) ! uo : output function values (out,complex(no)) ! !DESCRIPTION: ! Calculates a Pad\'{e} approximant of a function, given the function ! evaluated on a set of points in the complex plane. The function is returned ! for a set of complex output points. The algorithm from H. J. Vidberg and ! J. W. Serene {\it J. Low Temp. Phys.} {\bf 29}, 179 (1977) is used. ! ! !REVISION HISTORY: ! Created December 2010 (Antonio Sanna) !EOP !BOC implicit none ! arguments integer, intent(in) :: ni complex(8), intent(in) :: zi(ni) complex(8), intent(in) :: ui(ni) integer, intent(in) :: no complex(8), intent(in) :: zo(no) complex(8), intent(out) :: uo(no) ! local variables integer i,j real(8) t1 complex(8) a0,a1,b0,b1,z1,z2 ! allocatable arrays complex(8), allocatable :: g(:,:) if ((ni <= 0).or.(no <= 0)) then write(*,*) write(*,'("Error(pade): invalid number of input or output points : ",2I8)') & ni,no write(*,*) stop end if allocate(g(ni,ni)) ! define the g functions using Eq. (A2) g(1,:)=ui(:) do i=2,ni do j=i,ni z1=(zi(j)-zi(i-1))*g(i-1,j) t1=abs(dble(z1))+abs(aimag(z1)) if (t1 > 1.d-14) then g(i,j)=(g(i-1,i-1)-g(i-1,j))/z1 else g(i,j)=0.d0 end if end do end do ! loop over output points do i=1,no ! use recursive algorithm in Eq. (A3) to evaluate function a0=0.d0 a1=g(1,1) b0=1.d0 b1=1.d0 do j=2,ni z1=(zo(i)-zi(j-1))*g(j,j) z2=a1+z1*a0 a0=a1 a1=z2 z2=b1+z1*b0 b0=b1 b1=z2 ! check for overflow and rescale if ((abs(dble(a1)) > 1.d100).or.(abs(aimag(a1)) > 1.d100)) then t1=1.d0/abs(a1) a0=a0*t1 b0=b0*t1 a1=a1*t1 b1=b1*t1 end if if ((abs(dble(b1)) > 1.d100).or.(abs(aimag(b1)) > 1.d100)) then t1=1.d0/abs(b1) a0=a0*t1 b0=b0*t1 a1=a1*t1 b1=b1*t1 end if end do t1=abs(dble(b1))+abs(aimag(b1)) if (t1 >= 1.d-14) then uo(i)=a1/b1 else uo(i)=0.d0 end if end do deallocate(g) end subroutine !EOC elk-9.2.12/src/PaxHeaders/wsplint.f900000644000000000000000000000013214536061313014247 xustar0030 mtime=1702388427.846501596 30 atime=1702388426.687503312 30 ctime=1702388427.846501596 elk-9.2.12/src/wsplint.f900000644002504400250440000000135714536061313016777 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wsplint(n,x,w) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x(n) real(8), intent(out) :: w(n) ! local variables integer i ! automatic arrays real(8) f(9) ! external functions real(8), external :: splint if (n <= 9) then do i=1,n f(:)=0.d0 f(i)=1.d0 w(i)=splint(n,x,f) end do return end if do i=1,4 f(:)=0.d0 f(i)=1.d0 w(i)=splint(9,x,f) end do f(:)=0.d0 f(5)=1.d0 do i=5,n-4 w(i)=splint(9,x(i-4),f) end do do i=1,4 f(:)=0.d0 f(i+5)=1.d0 w(n-4+i)=splint(9,x(n-8),f) end do end subroutine elk-9.2.12/src/PaxHeaders/gensocfr.f900000644000000000000000000000013114536061313014354 xustar0030 mtime=1702388427.848501593 29 atime=1702388426.68850331 30 ctime=1702388427.848501593 elk-9.2.12/src/gensocfr.f900000644002504400250440000000200314536061313017072 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine gensocfr use modmain use modomp implicit none ! local variables integer is,ias,nthd integer nr,nri,ir,irc real(8) cso,rm ! automatic arrays real(8) vr(nrmtmax),dvr(nrmtmax) if (.not.spinorb) return ! coefficient of spin-orbit coupling cso=y00*socscf/(4.d0*solsc**2) call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(vr,dvr,is,nr,nri) & !$OMP PRIVATE(irc,ir,rm) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) ! radial derivative of the spherical part of the Kohn-Sham potential call rfmtlm(1,nr,nri,vsmt(:,ias),vr) call splined(nr,wcrmt(:,:,is),vr,dvr) irc=0 do ir=1,nr,lradstp irc=irc+1 rm=1.d0-2.d0*cso*vr(ir) socfr(irc,ias)=cso*dvr(ir)/(rsp(ir,is)*rm**2) end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/pades.f900000644000000000000000000000013214536061313013643 xustar0030 mtime=1702388427.849501591 30 atime=1702388426.690503307 30 ctime=1702388427.849501591 elk-9.2.12/src/pades.f900000644002504400250440000000210614536061313016364 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine pades(ns,r,ni,zi,ui,no,zo,uo) implicit none ! arguments integer, intent(in) :: ns real(8), intent(in) :: r integer, intent(in) :: ni complex(8), intent(in) :: zi(ni) complex(8), intent(in) :: ui(ni) integer, intent(in) :: no complex(8), intent(in) :: zo(no) complex(8), intent(out) :: uo(no) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8) t1,t2 complex(8) z1 ! allocatable arrays complex(8), allocatable :: u1(:),u2(:) if (ns <= 0) then write(*,*) write(*,'("Error(pades): ns <= 0 : ",I8)') ns write(*,*) stop end if if (ns == 1) then call pade(ni,zi,ui,no,zo,uo) return end if allocate(u1(ni),u2(no)) uo(:)=0.d0 do i=1,ns t1=dble(i-1)/dble(ns) t2=6.d0*pi*t1 z1=r*t1*cmplx(cos(t2),sin(t2),8) u1(:)=ui(:)+z1 call pade(ni,zi,u1,no,zo,u2) uo(:)=uo(:)+u2(:)-z1 end do t1=1.d0/dble(ns) uo(:)=t1*uo(:) deallocate(u1,u2) end subroutine elk-9.2.12/src/PaxHeaders/genscss.f900000644000000000000000000000013214536061313014214 xustar0030 mtime=1702388427.851501588 30 atime=1702388426.691503306 30 ctime=1702388427.851501588 elk-9.2.12/src/genscss.f900000644002504400250440000000273414536061313016744 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genscss use modmain implicit none ! local variables integer is,ia,na,i real(8) vc(3),cs,sn,t1 ! automatic arrays real(8) vsc(3,nqptnr) ! find the smallest supercell which contains q-vector call findscq(iqss,nscss,vsc) ! construct supercell atomic positions and magnetic fields do is=1,nspecies na=0 do ia=1,natoms0(is) do i=1,nscss na=na+1 if (na > maxatoms) then write(*,*) write(*,'("Error(genscss): too many atoms in supercell : ",I8)') na write(*,'(" for species ",I4)') is write(*,'("Adjust maxatoms in modmain and recompile code")') write(*,*) stop end if vc(:)=vsc(:,i)+atposc0(:,ia,is) ! new atomic position in lattice coordinates call r3mv(ainv,vc,atposl(:,na,is)) ! rotate external B-field and fixed spin moment vector by angle q.r t1=dot_product(vqc(:,iqss),vc(:)) cs=cos(t1); sn=sin(t1) bfcmt0(1,na,is)=cs*bfcmt00(1,ia,is)-sn*bfcmt00(2,ia,is) bfcmt0(2,na,is)=sn*bfcmt00(1,ia,is)+cs*bfcmt00(2,ia,is) bfcmt0(3,na,is)=bfcmt00(3,ia,is) mommtfix(1,na,is)=cs*mommtfix0(1,ia,is)-sn*mommtfix0(2,ia,is) mommtfix(2,na,is)=sn*mommtfix0(1,ia,is)+cs*mommtfix0(2,ia,is) mommtfix(3,na,is)=mommtfix0(3,ia,is) end do end do natoms(is)=na end do end subroutine elk-9.2.12/src/PaxHeaders/rfcmtwr.f900000644000000000000000000000013214536061313014233 xustar0030 mtime=1702388427.852501587 30 atime=1702388426.693503303 30 ctime=1702388427.852501587 elk-9.2.12/src/rfcmtwr.f900000644002504400250440000000134414536061313016757 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine rfcmtwr(nr,nri,wr,rfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) real(8), intent(inout) :: rfmt(*) ! local variables integer n,ir,i real(8) t1 i=1 if (lmaxi == 1) then do ir=1,nri rfmt(i:i+3)=(pi*wr(ir))*rfmt(i:i+3) i=i+4 end do else t1=fourpi/dble(lmmaxi) n=lmmaxi-1 do ir=1,nri rfmt(i:i+n)=(t1*wr(ir))*rfmt(i:i+n) i=i+lmmaxi end do end if t1=fourpi/dble(lmmaxo) n=lmmaxo-1 do ir=nri+1,nr rfmt(i:i+n)=(t1*wr(ir))*rfmt(i:i+n) i=i+lmmaxo end do end subroutine elk-9.2.12/src/PaxHeaders/nonlinopt.f900000644000000000000000000000013214536061313014567 xustar0030 mtime=1702388427.854501584 30 atime=1702388426.694503301 30 ctime=1702388427.854501584 elk-9.2.12/src/nonlinopt.f900000644002504400250440000002223014536061313017310 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: nonlinopt ! !INTERFACE: subroutine nonlinopt ! !USES: use modmain use modmpi use modomp use modtest ! !DESCRIPTION: ! Calculates the second-order response tensor ! $\chi^{abc}(-2\omega;\omega,\omega)$, where $a$, $b$ and $c$ label Cartesian ! directions. This tensor is used for determining the optical second-harmonic ! generation of materials. We follow the convention of Sipe and Ghahramani in ! {\it Phys. Rev. B} {\bf 48}, 11705 (1993); and Hughes and Sipe in ! {\it Phys. Rev. B} {\bf 53}, 10751 (1996). The individual contributions ! $\chi_{II}^{abc}(-2\omega;\omega,\omega)$, ! $\eta_{II}^{abc}(-2\omega;\omega,\omega)$ and ! $\frac{i}{2\omega}\sigma_{II}^{abc}(-2\omega;\omega,\omega)$ are also ! written separately to file. ! ! !REVISION HISTORY: ! Rewrote earlier version, June 2010 (Sharma) ! Improved parallelism, January 2020 (R. Cohen) ! Rewrote, thanks to corrections from X. Gonze, March 2022 (JKD) !EOP !BOC implicit none ! local variables integer ik,jk,l,m,n,i integer iw,ioc,a,b,c integer nthd real(8) t0,t1 complex(8) eta,z1,z2 character(64) fname ! allocatable arrays real(8), allocatable :: w(:),e(:,:),f(:,:),d(:,:,:) complex(8), allocatable :: r(:,:,:),zv(:) complex(8), allocatable :: cc1(:,:),cc2(:,:) complex(8), allocatable :: ce1(:,:),ce2(:,:),cs1(:,:) complex(8), allocatable :: chi2w(:),eta2w(:),sigma2w(:) ! initialise universal variables call init0 call init1 ! read Fermi energy from file call readfermi ! read the eigenvalues and occupation numbers from file call readevalsv call readoccsv ! i divided by the complex relaxation time eta=cmplx(0.d0,swidth,8) ! generate energy grid (starting from zero) allocate(w(nwplot)) t1=wplot(2)/dble(nwplot) do iw=1,nwplot w(iw)=t1*dble(iw-1) end do allocate(chi2w(nwplot),eta2w(nwplot),sigma2w(nwplot)) t0=wkptnr/omega ! begin loop over components do ioc=1,noptcomp a=optcomp(1,ioc) b=optcomp(2,ioc) c=optcomp(3,ioc) chi2w(:)=0.d0 eta2w(:)=0.d0 sigma2w(:)=0.d0 ! parallel loop over non-reduced k-points call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(e,f,d,r,zv) & !$OMP PRIVATE(cc1,cc2,ce1,ce2,cs1) & !$OMP PRIVATE(jk,n,m,i,t1,z1,z2,l) & !$OMP REDUCTION(+:chi2w,eta2w,sigma2w) & !$OMP NUM_THREADS(nthd) allocate(e(nstsv,nstsv),f(nstsv,nstsv),d(nstsv,nstsv,3)) allocate(r(nstsv,nstsv,3),zv(nwplot)) allocate(cc1(nstsv,nstsv),cc2(nstsv,nstsv)) allocate(ce1(nstsv,nstsv),ce2(nstsv,nstsv)) allocate(cs1(nstsv,nstsv)) !$OMP DO do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(nonlinopt_) write(*,'("Info(nonlinopt): ",I6," of ",I6," k-points")') ik,nkptnr !$OMP END CRITICAL(nonlinopt_) ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! calculate differences in eigenvalues and occupation numbers do n=1,nstsv do m=1,nstsv e(m,n)=evalsv(m,jk)-evalsv(n,jk) f(m,n)=occsv(m,jk)-occsv(n,jk) end do end do ! read momentum matrix elements from file call getpmat(vkl(:,ik),r) ! compute the Delta matrix elements do i=1,3 do n=1,nstsv do m=1,nstsv d(m,n,i)=dble(r(m,m,i))-dble(r(n,n,i)) end do end do end do ! compute the matrix elements of the position operator do i=1,3 do n=1,nstsv do m=1,nstsv t1=e(m,n) if (abs(t1) > swidth) then z1=r(m,n,i)/t1 r(m,n,i)=cmplx(aimag(z1),-dble(z1),8) else r(m,n,i)=0.d0 end if end do end do end do ! zero the coefficients for χ_II, η_II and i/2ω σ_II cc1(:,:)=0.d0; cc2(:,:)=0.d0 ce1(:,:)=0.d0; ce2(:,:)=0.d0 cs1(:,:)=0.d0 ! sum over states do n=1,nstsv do m=1,nstsv do l=1,nstsv ! terms involving a triple summation z1=0.5d0*r(n,m,a)*(r(m,l,b)*r(l,n,c)+r(m,l,c)*r(l,n,b)) ! χ_II(-2ω;ω,ω) terms t1=e(l,n)-e(m,l) if (abs(t1) > swidth) then ! Eq. (B4) z2=z1/t1 if (abs(f(n,m)) > epsocc) then cc2(m,n)=cc2(m,n)+2.d0*f(n,m)*z2 end if if (abs(f(m,l)) > epsocc) then cc1(m,l)=cc1(m,l)+f(m,l)*z2 end if if (abs(f(l,n)) > epsocc) then cc1(l,n)=cc1(l,n)+f(l,n)*z2 end if end if ! η_II(-2ω;ω,ω) terms z2=z1*e(m,n) ! Eq. (B13b) if (abs(f(n,l)) > epsocc) then t1=e(l,n) if (abs(t1) > swidth) then ce1(l,n)=ce1(l,n)+f(n,l)*z2/t1**2 end if end if if (abs(f(l,m)) > epsocc) then t1=e(m,l) if (abs(t1) > swidth) then ce1(m,l)=ce1(m,l)-f(l,m)*z2/t1**2 end if end if if (abs(f(n,m)) > epsocc) then ! Eq. (B13a) t1=e(m,n) if (abs(t1) > swidth) then t1=1.d0/t1**2 z1=2.d0*f(n,m)*(e(m,l)-e(l,n))*t1*z1 ce2(m,n)=ce2(m,n)+z1 ! i/2ω σ_II(-2ω;ω,ω) term ! Eq. (B17) z1=e(n,l)*r(l,m,a)*(r(m,n,b)*r(n,l,c)+r(m,n,c)*r(n,l,b)) & -e(l,m)*r(n,l,a)*(r(l,m,b)*r(m,n,c)+r(l,m,c)*r(m,n,b)) z1=0.25d0*f(n,m)*t1*z1 cs1(m,n)=cs1(m,n)+z1 end if end if end do ! terms involving a double summation if (abs(f(n,m)) > epsocc) then ! Eq. (B12a) t1=e(m,n) if (abs(t1) > swidth) then t1=1.d0/t1**2 z1=r(n,m,a)*(d(m,n,b)*r(m,n,c)+d(m,n,c)*r(m,n,b)) z1=cmplx(aimag(z1),-dble(z1),8) z1=4.d0*f(n,m)*t1*z1 ce2(m,n)=ce2(m,n)+z1 ! Eq. (B16b) z1=r(n,m,a)*(r(m,n,b)*d(m,n,c)+r(m,n,c)*d(m,n,b)) z1=cmplx(-aimag(z1),dble(z1),8) z1=0.25d0*f(n,m)*t1*z1 cs1(m,n)=cs1(m,n)+z1 end if end if end do end do do n=1,nstsv do m=1,nstsv zv(:)=1.d0/(e(m,n)-w(:)+eta) chi2w(:)=chi2w(:)+cc1(m,n)*zv(:) eta2w(:)=eta2w(:)+ce1(m,n)*zv(:) sigma2w(:)=sigma2w(:)+cs1(m,n)*zv(:) zv(:)=1.d0/(e(m,n)-2.d0*(w(:)-eta)) chi2w(:)=chi2w(:)+cc2(m,n)*zv(:) eta2w(:)=eta2w(:)+ce2(m,n)*zv(:) end do end do end do !$OMP END DO deallocate(e,f,d,r,zv) deallocate(cc1,cc2,ce1,ce2,cs1) !$OMP END PARALLEL call freethd(nthd) ! multiply response functions by prefactor chi2w(:)=t0*chi2w(:) eta2w(:)=t0*eta2w(:) sigma2w(:)=t0*sigma2w(:) ! add response functions from each process and redistribute if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,chi2w,nwplot,mpi_double_complex,mpi_sum, & mpicom,ierror) call mpi_allreduce(mpi_in_place,eta2w,nwplot,mpi_double_complex,mpi_sum, & mpicom,ierror) call mpi_allreduce(mpi_in_place,sigma2w,nwplot,mpi_double_complex,mpi_sum, & mpicom,ierror) end if ! write χ_II(-2ω;ω,ω), η_II(-2ω;ω,ω) and i/2ω σ_II(-2ω;ω,ω) to file if (mp_mpi) then write(fname,'("CHI_II_2WWW_",3I1,".OUT")') a,b,c open(50,file=trim(fname),form='FORMATTED') write(fname,'("ETA_II_2WWW_",3I1,".OUT")') a,b,c open(51,file=trim(fname),form='FORMATTED') write(fname,'("SIGMA_II_2WWW_",3I1,".OUT")') a,b,c open(52,file=trim(fname),form='FORMATTED') do iw=1,nwplot t1=dble(w(iw)) write(50,'(2G18.10)') t1,dble(chi2w(iw)) write(51,'(2G18.10)') t1,dble(eta2w(iw)) write(52,'(2G18.10)') t1,dble(sigma2w(iw)) end do write(50,*) write(51,*) write(52,*) do iw=1,nwplot t1=dble(w(iw)) write(50,'(2G18.10)') t1,aimag(chi2w(iw)) write(51,'(2G18.10)') t1,aimag(eta2w(iw)) write(52,'(2G18.10)') t1,aimag(sigma2w(iw)) end do close(50) close(51) close(52) ! write χ(-2ω;ω,ω) to file chi2w(:)=chi2w(:)+eta2w(:)+sigma2w(:) write(fname,'("CHI_2WWW_",3I1,".OUT")') a,b,c open(50,file=trim(fname),form='FORMATTED') do iw=1,nwplot t1=dble(w(iw)) write(50,'(2G18.10)') t1,dble(chi2w(iw)) end do write(50,*) do iw=1,nwplot t1=dble(w(iw)) write(50,'(2G18.10)') t1,aimag(chi2w(iw)) end do close(50) end if ! end loop over components end do if (mp_mpi) then write(*,*) write(*,'("Info(nonlinopt):")') write(*,'(" Following the convention in Phys. Rev. B 48, 11705 (1993) and")') write(*,'(" Phys. Rev. B 53, 10751 (1996), the second-order response")') write(*,'(" functions χ_II(-2ω;ω,ω), η_II(-2ω;ω,ω) and i/2ω σ_II(-2ω;ω,ω)")') write(*,'(" were written to the files CHI_II_2WWW_abc.OUT,")') write(*,'(" ETA_II_2WWW_abc.OUT and SIGMA_II_2WWW_abc.OUT, respectively")') write(*,*) write(*,'(" The total second-order response function χ(-2ω;ω,ω) was")') write(*,'(" written to the file CHI_2WWW_abc.OUT")') write(*,*) write(*,'(" This was done for Cartesian components :")') do ioc=1,noptcomp write(*,'(" a = ",I1,", b = ",I1,", c = ",I1)') optcomp(1:3,ioc) end do end if ! write chi2w to test file if required call writetest(125,'non-linear susceptibility',nv=nwplot,tol=1.d-2,zva=chi2w) deallocate(w,chi2w,eta2w,sigma2w) end subroutine !EOC elk-9.2.12/src/PaxHeaders/writelat.f900000644000000000000000000000013214536061313014402 xustar0030 mtime=1702388427.855501582 30 atime=1702388426.696503298 30 ctime=1702388427.855501582 elk-9.2.12/src/writelat.f900000644002504400250440000000325514536061313017131 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writelat use modmain implicit none open(50,file='LATTICE'//trim(filext),form='FORMATTED',action='WRITE') write(50,*) write(50,'("+----------------------------+")') write(50,'("| Real-space lattice vectors |")') write(50,'("+----------------------------+")') write(50,*) write(50,'("vector a1 : ",3G18.10)') avec(:,1) write(50,'("vector a2 : ",3G18.10)') avec(:,2) write(50,'("vector a3 : ",3G18.10)') avec(:,3) write(50,*) write(50,'("Stored column-wise as a matrix :")') write(50,'(3G18.10)') avec(1,:) write(50,'(3G18.10)') avec(2,:) write(50,'(3G18.10)') avec(3,:) write(50,*) write(50,'("Inverse of matrix :")') write(50,'(3G18.10)') ainv(1,:) write(50,'(3G18.10)') ainv(2,:) write(50,'(3G18.10)') ainv(3,:) write(50,*) write(50,'("Unit cell volume : ",G18.10)') omega write(50,*) write(50,*) write(50,'("+----------------------------------+")') write(50,'("| Reciprocal-space lattice vectors |")') write(50,'("+----------------------------------+")') write(50,*) write(50,'("vector b1 : ",3G18.10)') bvec(:,1) write(50,'("vector b2 : ",3G18.10)') bvec(:,2) write(50,'("vector b3 : ",3G18.10)') bvec(:,3) write(50,*) write(50,'("Stored column-wise as a matrix :")') write(50,'(3G18.10)') bvec(1,:) write(50,'(3G18.10)') bvec(2,:) write(50,'(3G18.10)') bvec(3,:) write(50,*) write(50,'("Inverse of matrix :")') write(50,'(3G18.10)') binv(1,:) write(50,'(3G18.10)') binv(2,:) write(50,'(3G18.10)') binv(3,:) write(50,*) write(50,'("Brillouin zone volume : ",G18.10)') omegabz close(50) end subroutine elk-9.2.12/src/PaxHeaders/rhocore.f900000644000000000000000000000013214536061313014210 xustar0030 mtime=1702388427.856501581 30 atime=1702388426.698503295 30 ctime=1702388427.856501581 elk-9.2.12/src/rhocore.f900000644002504400250440000000376614536061313016746 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rhocore ! !INTERFACE: subroutine rhocore ! !USES: use modmain ! !DESCRIPTION: ! Adds the core density and magnetisation to the muffin-tin functions. Also ! computes the amount of leakage of core charge from the muffin-tin spheres ! into the interstitial. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Fixed core moment direction, October 2012 (M. Meinert) !EOP !BOC implicit none ! local variables integer ispn,idm,is,ias integer nr,nri,iro,ir,i,i0,i1 real(8) v(ndmag),sm,t1 ! external functions real(8), external :: rfmtint do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 sm=0.d0 ! loop over spin channels do ispn=1,nspncr ! add the core density to the muffin-tin density i1=lmmaxi*(nri-1)+1 rhomt(1:i1:lmmaxi,ias)=rhomt(1:i1:lmmaxi,ias)+rhocr(1:nri,ias,ispn) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 rhomt(i0:i1:lmmaxo,ias)=rhomt(i0:i1:lmmaxo,ias)+rhocr(iro:nr,ias,ispn) ! compute the core charge inside the muffin-tins t1=dot_product(wrmt(1:nr,is),rhocr(1:nr,ias,ispn)) sm=sm+fourpi*y00*t1 end do ! core leakage charge chgcrlk(ias)=chgcr(is)-sm ! add to the magnetisation in the case of a spin-polarised core if (spincore) then ! compute the moment in the muffin-tin do idm=1,ndmag v(idm)=rfmtint(nr,nri,wrmt(:,is),magmt(:,ias,idm)) end do ! normalise if (ncmag) then t1=sqrt(v(1)**2+v(2)**2+v(3)**2) else t1=abs(v(1)) end if if (t1 > 1.d-10) v(:)=v(:)/t1 ! add the core magnetisation to the total i=1 do ir=1,nri t1=rhocr(ir,ias,1)-rhocr(ir,ias,2) magmt(i,ias,:)=magmt(i,ias,:)+t1*v(:) i=i+lmmaxi end do do ir=iro,nr t1=rhocr(ir,ias,1)-rhocr(ir,ias,2) magmt(i,ias,:)=magmt(i,ias,:)+t1*v(:) i=i+lmmaxo end do end if end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/rcfinp.f900000644000000000000000000000013214536061313014030 xustar0030 mtime=1702388427.858501578 30 atime=1702388426.699503294 30 ctime=1702388427.858501578 elk-9.2.12/src/rcfinp.f900000644002504400250440000000165214536061313016556 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. complex(8) function rcfinp(rfmt,rfir,cfmt,cfir) use modmain use modomp implicit none ! arguments real(8), intent(in) :: rfmt(npcmtmax,natmtot),rfir(ngtot) complex(4), intent(in) :: cfmt(npcmtmax,natmtot),cfir(ngtot) ! local variables integer is,ias,nthd ! external functions complex(8), external :: rcfmtinp ! interstitial contribution rcfinp=sum((cfunir(:)*rfir(:))*cfir(:)) rcfinp=rcfinp*(omega/dble(ngtot)) ! muffin-tin contribution call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) REDUCTION(+:rcfinp) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) rcfinp=rcfinp+rcfmtinp(nrcmt(is),nrcmti(is),wrcmt(:,is),rfmt(:,ias), & cfmt(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) end function elk-9.2.12/src/PaxHeaders/readspecies.f900000644000000000000000000000013214536061313015036 xustar0030 mtime=1702388427.859501576 30 atime=1702388426.701503291 30 ctime=1702388427.859501576 elk-9.2.12/src/readspecies.f900000644002504400250440000002353314536061313017566 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readspecies use modmain implicit none ! local variables integer is,ist,ios integer nlx,ilx,lx,ilo integer io,jo,ko,l,i,j e0min=0.d0 do is=1,nspecies open(50,file=trim(sppath)//trim(spfname(is)),status='OLD',form='FORMATTED', & action='READ',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readspecies): error opening species file ",A)') & trim(sppath)//trim(spfname(is)) write(*,*) stop end if read(50,*) spsymb(is) read(50,*) spname(is) read(50,*) spzn(is) read(50,*) spmass(is) read(50,*) rminsp(is),rmt(is),rmaxsp(is),nrmt(is) if (rminsp(is) <= 0.d0) then write(*,*) write(*,'("Error(readspecies): rminsp <= 0 : ",G18.10)') rminsp(is) write(*,'(" for species ",I4)') is write(*,*) stop end if if (rmt(is) <= rminsp(is)) then write(*,*) write(*,'("Error(readspecies): rmt <= rminsp : ",2G18.10)') rmt(is), & rminsp(is) write(*,'(" for species ",I4)') is write(*,*) stop end if if (rmaxsp(is) < rmt(is)) then write(*,*) write(*,'("Error(readspecies): rmaxsp < rmt : ",2G18.10)') rmaxsp(is), & rmt(is) write(*,*) stop end if if (nrmt(is) < 20) then write(*,*) write(*,'("Error(readspecies): nrmt too small : ",I8)') nrmt(is) write(*,'(" for species ",I4)') is write(*,*) stop end if ! multiply nrmt by the scale factor nrmt(is)=nint(dble(nrmt(is))*nrmtscf) ! reduce the minimum radial mesh point by the same factor rminsp(is)=rminsp(is)/nrmtscf read(50,*) nstsp(is) if ((nstsp(is) <= 0).or.(nstsp(is) > maxstsp)) then write(*,*) write(*,'("Error(readspecies): nstsp out of range : ",I8)') nstsp(is) write(*,'(" for species ",I4)') is write(*,*) stop end if do ist=1,nstsp(is) read(50,*) nsp(ist,is),lsp(ist,is),ksp(ist,is),occsp(ist,is),spcore(ist,is) if (nsp(ist,is) < 1) then write(*,*) write(*,'("Error(readspecies): nsp < 1 : ",I8)') nsp(ist,is) write(*,'(" for species ",I4)') is write(*,'(" and state ",I4)') ist write(*,*) stop end if if (lsp(ist,is) < 0) then write(*,*) write(*,'("Error(readspecies): lsp < 0 : ",I8)') lsp(ist,is) write(*,'(" for species ",I4)') is write(*,'(" and state ",I4)') ist write(*,*) stop end if if (ksp(ist,is) < 1) then write(*,*) write(*,'("Error(readspecies): ksp < 1 : ",I8)') ksp(ist,is) write(*,'(" for species ",I4)') is write(*,'(" and state ",I4)') ist write(*,*) stop end if if (occsp(ist,is) < 0.d0) then write(*,*) write(*,'("Error(readspecies): occsp < 0 : ",G18.10)') occsp(ist,is) write(*,'(" for species ",I4)') is write(*,'(" and state ",I4)') ist write(*,*) stop end if end do read(50,*) apword(0,is) if (apword(0,is) <= 0) then write(*,*) write(*,'("Error(readspecies): apword <= 0 : ",I8)') apword(0,is) write(*,'(" for species ",I4)') is write(*,*) stop end if if (apword(0,is) > maxapword) then write(*,*) write(*,'("Error(readspecies): apword too large : ",I8)') apword(0,is) write(*,'(" for species ",I4)') is write(*,'("Adjust maxapword in modmain and recompile code")') write(*,*) stop end if ! set the APW orders for l>0 apword(1:lmaxapw,is)=apword(0,is) do io=1,apword(0,is) read(50,*) apwe0(io,0,is),apwdm(io,0,is),apwve(io,0,is) if (apwdm(io,0,is) < 0) then write(*,*) write(*,'("Error(readspecies): apwdm < 0 : ",I8)') apwdm(io,0,is) write(*,'(" for species ",I4)') is write(*,'(" and order ",I4)') io write(*,*) stop end if ! set the APW linearisation energies, derivative orders and variability for l>0 apwe0(io,1:lmaxapw,is)=apwe0(io,0,is) apwdm(io,1:lmaxapw,is)=apwdm(io,0,is) apwve(io,1:lmaxapw,is)=apwve(io,0,is) e0min=min(e0min,apwe0(io,0,is)) end do read(50,*) nlx if (nlx < 0) then write(*,*) write(*,'("Error(readspecies): nlx < 0 : ",I8)') nlx write(*,'(" for species ",I4)') is write(*,*) stop end if do ilx=1,nlx read(50,*) lx,io if (lx < 0) then write(*,*) write(*,'("Error(readspecies): lx < 0 : ",I8)') lx write(*,'(" for species ",I4)') is write(*,'(" and exception number ",I4)') ilx write(*,*) stop end if if (lx > lmaxapw) then write(*,*) write(*,'("Error(readspecies): lx > lmaxapw : ",I8)') lx write(*,'(" for species ",I4)') is write(*,'(" and exception number ",I4)') ilx write(*,*) stop end if apword(lx,is)=io if (apword(lx,is) <= 0) then write(*,*) write(*,'("Error(readspecies): apword <= 0 : ",I8)') apword(lx,is) write(*,'(" for species ",I4)') is write(*,'(" and exception number ",I4)') ilx write(*,*) stop end if if (apword(lx,is) > maxapword) then write(*,*) write(*,'("Error(readspecies): apword too large : ",I8)') apword(lx,is) write(*,'(" for species ",I4)') is write(*,'(" and exception number ",I4)') ilx write(*,'("Adjust maxapword in modmain and recompile code")') write(*,*) stop end if do io=1,apword(lx,is) read(50,*) apwe0(io,lx,is),apwdm(io,lx,is),apwve(io,lx,is) if (apwdm(io,lx,is) < 0) then write(*,*) write(*,'("Error(readspecies): apwdm < 0 : ",I8)') apwdm(io,lx,is) write(*,'(" for species ",I4)') is write(*,'(" exception number ",I4)') ilx write(*,'(" and order ",I4)') io write(*,*) stop end if e0min=min(e0min,apwe0(io,lx,is)) end do end do ! add excess order to APW functions if required if (nxoapwlo > 0) then do l=0,lmaxapw jo=apword(l,is) ko=jo+nxoapwlo if (ko > maxapword) ko=maxapword i=0 do io=jo+1,ko i=i+1 apwe0(io,l,is)=apwe0(jo,l,is) apwdm(io,l,is)=apwdm(jo,l,is)+i apwve(io,l,is)=apwve(jo,l,is) end do apword(l,is)=ko end do end if read(50,*) nlorb(is) if (nlorb(is) < 0) then write(*,*) write(*,'("Error(readspecies): nlorb < 0 : ",I8)') nlorb(is) write(*,'(" for species ",I4)') is write(*,*) stop end if if (nlorb(is) > maxlorb) then write(*,*) write(*,'("Error(readspecies): nlorb too large : ",I8)') nlorb(is) write(*,'(" for species ",I4)') is write(*,'("Adjust maxlorb in modmain and recompile code")') write(*,*) stop end if do ilo=1,nlorb(is) read(50,*) lorbl(ilo,is),lorbord(ilo,is) if (lorbl(ilo,is) < 0) then write(*,*) write(*,'("Error(readspecies): lorbl < 0 : ",I8)') lorbl(ilo,is) write(*,'(" for species ",I4)') is write(*,'(" and local-orbital ",I4)') ilo write(*,*) stop end if if (lorbl(ilo,is) > lmaxo) then write(*,*) write(*,'("Error(readspecies): lorbl > lmaxo : ",2I8)') lorbl(ilo,is), & lmaxo write(*,'(" for species ",I4)') is write(*,'(" and local-orbital ",I4)') ilo write(*,*) stop end if if (lorbord(ilo,is) < 2) then write(*,*) write(*,'("Error(readspecies): lorbord < 2 : ",I8)') lorbord(ilo,is) write(*,'(" for species ",I4)') is write(*,'(" and local-orbital ",I4)') ilo write(*,*) stop end if if (lorbord(ilo,is) > maxlorbord) then write(*,*) write(*,'("Error(readspecies): lorbord too large : ",I8)') lorbord(ilo,is) write(*,'(" for species ",I4)') is write(*,'(" and local-orbital ",I4)') ilo write(*,'("Adjust maxlorbord in modmain and recompile code")') write(*,*) stop end if do io=1,lorbord(ilo,is) read(50,*) lorbe0(io,ilo,is),lorbdm(io,ilo,is),lorbve(io,ilo,is) if (lorbdm(io,ilo,is) < 0) then write(*,*) write(*,'("Error(readspecies): lorbdm < 0 : ",I8)') lorbdm(io,ilo,is) write(*,'(" for species ",I4)') is write(*,'(" local-orbital ",I4)') ilo write(*,'(" and order ",I4)') io write(*,*) stop end if e0min=min(e0min,lorbe0(io,ilo,is)) end do end do ! add excess local-orbitals if required if (nxlo > 0) then lx=-1 do ilo=1,nlorb(is) do io=1,lorbord(ilo,is) if (lorbe0(io,ilo,is) < 0.d0) goto 10 end do if (lorbl(ilo,is) > lx) lx=lorbl(ilo,is) 10 continue end do ilo=nlorb(is) do i=1,nxlo if (ilo == maxlorb) exit l=lx+i if (l > lmaxo) exit ilo=ilo+1 lorbl(ilo,is)=l lorbord(ilo,is)=apword(l,is)+1 do io=1,lorbord(ilo,is) lorbe0(io,ilo,is)=apwe0(1,l,is) lorbdm(io,ilo,is)=io-1 lorbve(io,ilo,is)=apwve(1,l,is) end do end do nlorb(is)=ilo end if ! add excess order to local-orbitals if required if (nxoapwlo > 0) then do ilo=1,nlorb(is) ! find the maximum energy derivative jo=1 j=lorbdm(jo,ilo,is) do io=1,lorbord(ilo,is) i=lorbdm(io,ilo,is) if (i > j) then jo=io j=i end if end do ko=lorbord(ilo,is)+nxoapwlo if (ko > maxlorbord) ko=maxlorbord i=0 do io=lorbord(ilo,is)+1,ko i=i+1 lorbe0(io,ilo,is)=lorbe0(jo,ilo,is) lorbdm(io,ilo,is)=lorbdm(jo,ilo,is)+i lorbve(io,ilo,is)=lorbve(jo,ilo,is) end do lorbord(ilo,is)=ko end do end if close(50) end do if (rmtall > 0.d0) then ! set all muffin-tin radii to single value if required rmt(1:nspecies)=rmtall else if (mrmtav > 0) then ! apply averaging scheme to the muffin-tin radii call rmtavrg end if ! make a copy of the muffin-tin radii rmt0(1:nspecies)=rmt(1:nspecies) ! add conduction state local-orbitals if required if (lorbcnd) call addlorbcnd ! subtract 2 Hartree from the minimum energy e0min=e0min-2.d0 end subroutine elk-9.2.12/src/PaxHeaders/findband.f900000644000000000000000000000013214536061313014314 xustar0030 mtime=1702388427.861501573 30 atime=1702388426.703503288 30 ctime=1702388427.861501573 elk-9.2.12/src/findband.f900000644002504400250440000000631014536061313017036 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: findband ! !INTERFACE: subroutine findband(sol,l,nr,r,vr,eps,demax,e,fnd) ! !INPUT/OUTPUT PARAMETERS: ! sol : speed of light in atomic units (in,real) ! l : angular momentum quantum number (in,integer) ! nr : number of radial mesh points (in,integer) ! r : radial mesh (in,real(nr)) ! vr : potential on radial mesh (in,real(nr)) ! eps : energy search tolerance (in,real) ! demax : maximum allowed change from the input energy; enforced only if e < 0 ! (in,real) ! e : input energy and returned band energy (inout,real) ! fnd : set to .true. if the band energy is found (out,logical) ! !DESCRIPTION: ! Finds the band energies for a given radial potential and angular momentum. ! This is done by first searching upwards in energy, starting from the input ! energy plus the offset energy, until the radial wavefunction at the ! muffin-tin radius is zero. This is the energy at the top of the band, ! denoted $E_{\rm t}$. A downward search is now performed from $E_{\rm t}$ ! until the slope of the radial wavefunction at the muffin-tin radius is zero. ! This energy, $E_{\rm b}$, is at the bottom of the band. The band energy is ! taken as $(E_{\rm t}+E_{\rm b})/2$. If either $E_{\rm t}$ or $E_{\rm b}$ ! cannot be found then the band energy is set to the input value. ! ! !REVISION HISTORY: ! Created September 2004 (JKD) ! Added two-pass loop, October 2013 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: sol integer, intent(in) :: l,nr real(8), intent(in) :: r(nr),vr(nr) real(8), intent(in) :: eps,demax real(8), intent(inout) :: e logical, intent(out) :: fnd ! local variables logical ft,fb ! maximum number of steps integer, parameter :: maxstp=250 integer ip,ie,nn ! initial step size real(8), parameter :: de0=0.001d0 real(8) de,et,eb,t,tp ! automatic arrays real(8) p0(nr),p1(nr),q0(nr),q1(nr) ft=.false. fb=.false. fnd=.false. et=e eb=e ! two-pass loop do ip=1,2 ! find the top of the band tp=0.d0 de=de0 do ie=1,maxstp et=et+de if (e < 0.d0) then if (et > e+demax) exit end if call rschrodint(sol,l,et,nr,r,vr,nn,p0,p1,q0,q1) t=p0(nr) if (ie > 1) then if (t*tp <= 0.d0) then if (abs(de) < eps) then if (fb) goto 10 ft=.true. eb=et+5.d0*abs(de0) exit end if de=-0.5d0*de else de=1.5d0*de end if end if tp=t end do if (fb) return ! find the bottom of the band tp=0.d0 de=-de0 do ie=1,maxstp eb=eb+de if (eb < e-demax) return call rschrodint(sol,l,eb,nr,r,vr,nn,p0,p1,q0,q1) t=p1(nr) if (ie > 1) then if (t*tp <= 0.d0) then if (abs(de) < eps) then if (ft) goto 10 fb=.true. et=eb-5.d0*abs(de0) exit end if de=-0.5d0*de else de=1.5d0*de end if end if tp=t end do end do return 10 continue ! set the band energy halfway between top and bottom e=(et+eb)/2.d0 fnd=.true. end subroutine !EOC elk-9.2.12/src/PaxHeaders/exxengy.f900000644000000000000000000000013214536061313014236 xustar0030 mtime=1702388427.862501572 30 atime=1702388426.704503287 30 ctime=1702388427.862501572 elk-9.2.12/src/exxengy.f900000644002504400250440000000535014536061313016763 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine exxengy use modmain use modmpi use modomp implicit none ! local variables integer ik,ist,jst,is,ia integer nrc,nrci,npc integer m1,m2,nthd complex(8) z1 ! automatic arrays complex(4) wfcr1(npcmtmax,2),wfcr2(npcmtmax,2) complex(4) crhomt(npcmtmax),cvclmt(npcmtmax) ! external functions complex(8), external :: zcfmtinp ! zero the exchange energy engyx=0.d0 !--------------------------------------------------! ! val-val-val and val-cr-val contributions ! !--------------------------------------------------! call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP DO do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(exxengy_) write(*,'("Info(exxengy): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(exxengy_) call exxengyk(ik) end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) ! add energies from each process and redistribute call mpi_allreduce(mpi_in_place,engyx,1,mpi_double_precision,mpi_sum,mpicom, & ierror) !-----------------------------------! ! core-core-core contribution ! !-----------------------------------! ! begin loops over atoms and species do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) do jst=1,nstsp(is) if (spcore(jst,is)) then do m2=-ksp(jst,is),ksp(jst,is)-1 ! generate the core wavefunction in spherical coordinates (pass in m-1/2) call wavefcr(.false.,lradstp,is,ia,jst,m2,npcmtmax,wfcr2) do ist=1,nstsp(is) if (spcore(ist,is)) then do m1=-ksp(ist,is),ksp(ist,is)-1 call wavefcr(.false.,lradstp,is,ia,ist,m1,npcmtmax,wfcr1) ! calculate the complex overlap density call crho2(npc,wfcr1,wfcr1(:,2),wfcr2,wfcr2(:,2),crhomt) call cfshtip(nrc,nrci,crhomt) ! calculate the Coulomb potential call cpotclmt(nrc,nrci,nrcmtmax,rlcmt(:,:,is),wprcmt(:,:,is), & crhomt,cvclmt) z1=zcfmtinp(nrc,nrci,wrcmt(:,is),crhomt,cvclmt) engyx=engyx-0.5d0*dble(z1) end do ! end loop over ist end if end do end do ! end loop over jst end if end do ! end loops over atoms and species end do end do return contains pure subroutine crho2(n,wf11,wf12,wf21,wf22,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf11(n),wf12(n),wf21(n),wf22(n) complex(4), intent(out) :: crho(n) crho(:)=conjg(wf11(:))*wf21(:)+conjg(wf12(:))*wf22(:) end subroutine end subroutine elk-9.2.12/src/PaxHeaders/gentauk.f900000644000000000000000000000013214536061313014205 xustar0030 mtime=1702388427.864501569 30 atime=1702388426.705503285 30 ctime=1702388427.864501569 elk-9.2.12/src/gentauk.f900000644002504400250440000000554614536061313016741 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gentauk(ik) use modmain implicit none ! arguments integer, intent(in) :: ik ! local variables integer ispn,jspn,nst,ist,jst integer is,ias,nrc,nrci integer npc,igk,ifg,i real(8) wo complex(8) z1 ! automatic arrays integer idx(nstsv) ! automatic arrays complex(8) gzfmt(npcmtmax,3),zfmt(npcmtmax),zfft(ngtc) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfgp(:,:,:) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) ! find the matching coefficients do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! count and index the occupied states nst=0 do ist=1,nstsv if (abs(occsv(ist,ik)) < epsocc) cycle nst=nst+1 idx(nst)=ist end do ! calculate the second-variational wavefunctions for occupied states allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfgp(ngkmax,nspinor,nst)) call genwfsv(.true.,.true.,nst,idx,ngdgc,igfc,ngk(:,ik),igkig(:,:,ik),apwalm, & evecfv,evecsv,wfmt,ngkmax,wfgp) deallocate(apwalm,evecfv,evecsv) !-------------------------! ! muffin-tin part ! !-------------------------! do ist=1,nst jst=idx(ist) wo=0.5d0*wkpt(ik)*occsv(jst,ik) do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) ! compute the gradient of the wavefunction call gradzfmt(nrc,nrci,rlcmt(:,-1,is),wcrcmt(:,:,is), & wfmt(:,ias,ispn,ist),npcmtmax,gzfmt) do i=1,3 ! convert gradient to spherical coordinates call zbsht(nrc,nrci,gzfmt(:,i),zfmt) ! add to total in muffin-tin !$OMP CRITICAL(gentauk_1) taumt(1:npc,ias,ispn)=taumt(1:npc,ias,ispn) & +wo*(dble(zfmt(1:npc))**2+aimag(zfmt(1:npc))**2) !$OMP END CRITICAL(gentauk_1) end do end do end do end do deallocate(wfmt) !---------------------------! ! interstitial part ! !---------------------------! do ist=1,nst jst=idx(ist) wo=0.5d0*wkpt(ik)*occsv(jst,ik)/omega do ispn=1,nspinor jspn=jspnfv(ispn) do i=1,3 zfft(:)=0.d0 do igk=1,ngk(jspn,ik) ifg=igfc(igkig(igk,jspn,ik)) z1=wfgp(igk,ispn,ist) zfft(ifg)=vgkc(i,igk,jspn,ik)*cmplx(-aimag(z1),dble(z1),8) end do call zfftifc(3,ngdgc,1,zfft) !$OMP CRITICAL(gentauk_2) tauir(1:ngtc,ispn)=tauir(1:ngtc,ispn) & +wo*(dble(zfft(1:ngtc))**2+aimag(zfft(1:ngtc))**2) !$OMP END CRITICAL(gentauk_2) end do end do end do deallocate(wfgp) end subroutine elk-9.2.12/src/PaxHeaders/gradrfmt.f900000644000000000000000000000013214536061313014355 xustar0030 mtime=1702388427.865501568 30 atime=1702388426.707503282 30 ctime=1702388427.865501568 elk-9.2.12/src/gradrfmt.f900000644002504400250440000000363314536061313017104 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: gradrfmt ! !INTERFACE: subroutine gradrfmt(nr,nri,ri,wcr,rfmt,ld,grfmt) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of points on inner part of muffin-tin (in,integer) ! ri : 1/r on the radial mesh (in,real(nr)) ! wcr : weights for spline coefficients on radial mesh (in,real(12,nr)) ! rfmt : real muffin-tin function (in,real(*)) ! ld : leading dimension (in,integer) ! grfmt : gradient of rfmt (out,real(ld,3)) ! !DESCRIPTION: ! Calculates the gradient of a real muffin-tin function. In other words, given ! the real spherical harmonic expansion coefficients $f_{lm}(r)$ of a function ! $f({\bf r})$, the routine returns ${\bf F}_{lm}$ where ! $$ \sum_{lm}{\bf F}_{lm}(r)R_{lm}(\hat{\bf r})=\nabla f({\bf r}), $$ ! and $R_{lm}$ is a real spherical harmonic function. This is done by first ! converting the function to a complex spherical harmonic expansion and then ! using the routine {\tt gradzfmt}. See routine {\tt genrlm}. ! ! !REVISION HISTORY: ! Created August 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: ri(nr),wcr(12,nr),rfmt(*) integer, intent(in) :: ld real(8), intent(out) :: grfmt(ld,3) ! local variables integer i ! automatic arrays complex(8) zfmt(ld),gzfmt(ld,3) ! convert real to complex spherical harmonic expansion call rtozfmt(nr,nri,rfmt,zfmt) ! compute the gradient call gradzfmt(nr,nri,ri,wcr,zfmt,ld,gzfmt) ! convert complex to real spherical harmonic expansion do i=1,3 call ztorfmt(nr,nri,gzfmt(:,i),grfmt(:,i)) ! improve stability by smoothing the gradient call rfmtsm(msmgmt,nr,nri,grfmt(:,i)) end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/checkfsm.f900000644000000000000000000000013214536061313014332 xustar0030 mtime=1702388427.866501566 30 atime=1702388426.708503281 30 ctime=1702388427.866501566 elk-9.2.12/src/checkfsm.f900000644002504400250440000000303614536061313017056 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine checkfsm use modmain implicit none ! local variables integer isym,lspn integer is,ia,ja real(8) sc(3,3),v(3),t1 if (fsmtype == 0) return do isym=1,nsymcrys lspn=lspnsymc(isym) ! proper rotation matrix in Cartesian coordinates sc(:,:)=dble(symlatd(lspn))*symlatc(:,:,lspn) ! check invariance of global moment if ((abs(fsmtype) == 1).or.(abs(fsmtype) == 3)) then call r3mv(sc,momfix,v) t1=sum(abs(momfix(:)-v(:))) if (t1 > epslat) then write(*,*) write(*,'("Error(checkfsm): momfix not invariant under symmetry group")') write(*,*) stop end if end if ! check invariance of muffin-tin moments if ((abs(fsmtype) == 2).or.(abs(fsmtype) == 3)) then do is=1,nspecies do ia=1,natoms(is) ! if any component is >= 1000 then do not fix the moment t1=sum(abs(mommtfix(:,ia,is))) if (t1 >= 1000.d0) cycle ! equivalent atom ja=ieqatom(ia,is,isym) call r3mv(sc,mommtfix(:,ja,is),v) t1=sum(abs(mommtfix(:,ia,is)-v(:))) if (t1 > epslat) then write(*,*) write(*,'("Error(checkfsm): mommtfix not invariant under symmetry & &group")') write(*,'(" for species ",I4)') is write(*,'(" and equivalent atoms ",2I4)') ia,ja write(*,*) stop end if end do end do end if end do end subroutine elk-9.2.12/src/PaxHeaders/genrlmv.f900000644000000000000000000000013214536061313014221 xustar0030 mtime=1702388427.867501565 30 atime=1702388426.710503278 30 ctime=1702388427.867501565 elk-9.2.12/src/genrlmv.f900000644002504400250440000000367314536061313016754 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: genrlmv ! !INTERFACE: subroutine genrlmv(lmax,v,rlm) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum angular momentum (in,integer) ! v : input vector (in,real(3)) ! rlm : array of real spherical harmonics (out,real((lmax+1)**2)) ! !DESCRIPTION: ! Generates a sequence of real spherical harmonics evaluated at angles ! $(\theta,\phi)$ for $00 \\ ! \sqrt{2}\,\Im\{Y_{lm}(\theta,\phi)\} & m<0 \\ ! \Re\{Y_{lm}(\theta,\phi)\} & m=0 ! \end{cases}, $$ ! where $Y_{lm}$ are the complex spherical harmonics. These functions are ! orthonormal and complete and may be used for expanding real-valued functions ! on the sphere. This routine is numerically stable and accurate to near ! machine precision for $l\le 50$. See routine {\tt genylmv}. ! ! !REVISION HISTORY: ! Created March 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax real(8), intent(in) :: v(3) real(8), intent(out) :: rlm(*) ! local variables integer l,m,lm real(8), parameter :: sqtwo=1.4142135623730950488d0 ! automatic arrays complex(8) ylm((lmax+1)**2) if ((lmax < 0).or.(lmax > 50)) then write(*,*) write(*,'("Error(genrlmv): lmax out of range : ",I8)') lmax write(*,*) stop end if ! generate complex spherical harmonics call genylmv(lmax,v,ylm) ! convert to real spherical harmonics lm=0 do l=0,lmax do m=-l,-1 lm=lm+1 rlm(lm)=sqtwo*aimag(ylm(lm)) end do lm=lm+1 rlm(lm)=dble(ylm(lm)) do m=1,l lm=lm+1 rlm(lm)=sqtwo*dble(ylm(lm)) end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/mae.f900000644000000000000000000000013214536061313013311 xustar0030 mtime=1702388427.869501562 30 atime=1702388426.711503276 30 ctime=1702388427.869501562 elk-9.2.12/src/mae.f900000644002504400250440000001016114536061313016032 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine mae use modmain use modmpi use moddelf use modtest implicit none ! local variables integer i,j,i0,i1 real(8) e0,e1,de real(8) v1(3),v2(3),th real(8) a(3,3),b(3,3) ! initialise global variables call init0 ! store original parameters avec0(:,:)=avec(:,:) spinpol0=spinpol spinorb0=spinorb cmagz0=cmagz bfieldc00(:)=bfieldc0(:) reducebf0=reducebf fsmtype0=fsmtype vkloff0(:)=vkloff(:) ! enable spin-orbit coupling spinorb=.true. ! enforce collinear magnetism in the z-direction cmagz=.true. ! no fixed spin moment calculation: the crystal is rotated instead fsmtype=0 ! if task=28 then start from atomic densities; if task=29 read STATE.OUT if (task == 28) then trdstate=.false. else trdstate=.true. end if ! zero k-point offset vkloff(:)=0.d0 ! start with large magnetic field bfieldc0(1:2)=0.d0 bfieldc0(3)=-2.d0 ! reduce the external magnetic field after each s.c. loop reducebf=0.75d0 ! generate the spin moment directions in (theta,phi) coordinates call gentpmae ! open MAE_INFO.OUT if (mp_mpi) then open(71,file='MAE_INFO.OUT',form='FORMATTED') write(71,*) write(71,'("Scale factor of spin-orbit coupling term : ",G18.10)') socscf end if i0=1; i1=1 e0=1.d8; e1=-1.d8 ! loop over points on sphere do i=1,npmae if (mp_mpi) then write(*,'("Info(mae): fixed spin moment direction ",I6," of ",I6)') i,npmae end if ! rotate lattice vectors instead of moment (thanks to J. Glasbrenner, ! K. Bussmann and I. Mazin) ! first by -phi around the z-axis v1(:)=0.d0 v1(3)=1.d0 th=-tpmae(2,i) call axangrot(v1,th,a) ! then by -theta around the y-axis v1(:)=0.d0 v1(2)=1.d0 th=-tpmae(1,i) call axangrot(v1,th,b) call r3mm(b,a,rotsht) call r3mm(rotsht,avec0,avec) ! find the corresponding moment direction vector call r3minv(rotsht,a) v1(:)=0.d0 v1(3)=1.d0 call r3mv(a,v1,v2) do j=1,3 if (abs(v2(j)) < epslat) v2(j)=0.d0 end do ! rotate the spherical cover used for the spherical harmonic transform trotsht=.true. ! run the ground-state calculation call gndstate ! subsequent calculations should read the previous density trdstate=.true. ! make external magnetic field small bfieldc0(3)=-0.01d0 if (mp_mpi) then write(71,*) write(71,'("Fixed spin moment direction point ",I6," of ",I6)') i,npmae write(71,'("Spherical coordinates of direction : ",2G18.10)') tpmae(:,i) write(71,'("Direction vector (Cartesian coordinates) : ",3G18.10)') v2 write(71,'("Calculated total moment magnitude : ",G18.10)') momtotm write(71,'("Total energy : ",G22.12)') engytot flush(71) end if ! check for minimum and maximum total energy if (engytot < e0) then e0=engytot i0=i end if if (engytot > e1) then e1=engytot i1=i end if ! delete the eigenvector files call delfiles(evec=.true.) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end do ! magnetic anisotropy energy de=e1-e0 if (mp_mpi) then write(71,*) write(71,'("Minimum energy point : ",I6)') i0 write(71,'("Maximum energy point : ",I6)') i1 write(71,*) write(71,'("Estimated magnetic anisotropy energy (MAE) : ",G18.10)') de write(71,*) write(71,'("MAE per unit volume : ",G18.10)') de/omega close(71) open(50,file='MAE.OUT',form='FORMATTED') write(50,'(G18.10)') de close(50) open(50,file='MAEPUV.OUT',form='FORMATTED') write(50,'(G18.10)') de/omega close(50) write(*,*) write(*,'("Info(mae):")') write(*,'(" Estimated magnetic anisotropy energy written to MAE.OUT")') write(*,'(" MAE per unit volume written to MAEPUV.OUT")') write(*,*) write(*,'(" Number of fixed spin moment directions used : ",I6)') npmae write(*,*) write(*,'(" Additional information written to MAE_INFO.OUT")') end if ! write the MAE to test file call writetest(28,'magnetic anisotropy energy',tol=1.d-5,rv=de) ! restore original input parameters avec(:,:)=avec0(:,:) spinpol=spinpol0 spinorb=spinorb0 cmagz=cmagz0 fsmtype=fsmtype0 bfieldc0(:)=bfieldc00(:) reducebf=reducebf0 vkloff(:)=vkloff0(:) trotsht=.false. end subroutine elk-9.2.12/src/PaxHeaders/writegvecrf.f900000644000000000000000000000013014536061313015074 xustar0029 mtime=1702388427.87050156 30 atime=1702388426.713503273 29 ctime=1702388427.87050156 elk-9.2.12/src/writegvecrf.f900000644002504400250440000000077714536061313017633 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writegvecrf use modmain implicit none ! local variables integer ig open(50,file='GVECRF.OUT',form='FORMATTED',action='WRITE') write(50,'(G18.10," : gmaxrf")') gmaxrf write(50,'(I8," : ngrf; G-vector index, ivg below")') ngrf do ig=1,ngrf write(50,'(I8,3I6)') ig,ivg(1:3,ig) end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/zcfmtwr.f900000644000000000000000000000013214536061313014243 xustar0030 mtime=1702388427.871501559 30 atime=1702388426.714503272 30 ctime=1702388427.871501559 elk-9.2.12/src/zcfmtwr.f900000644002504400250440000000134714536061313016772 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine zcfmtwr(nr,nri,wr,zfmt,cfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) complex(8), intent(in) :: zfmt(*) complex(4), intent(out) :: cfmt(*) ! local variables integer n,ir,i i=1 if (lmaxi == 1) then do ir=1,nri cfmt(i:i+3)=cmplx(wr(ir)*zfmt(i:i+3)) i=i+4 end do else n=lmmaxi-1 do ir=1,nri cfmt(i:i+n)=cmplx(wr(ir)*zfmt(i:i+n)) i=i+lmmaxi end do end if n=lmmaxo-1 do ir=nri+1,nr cfmt(i:i+n)=cmplx(wr(ir)*zfmt(i:i+n)) i=i+lmmaxo end do end subroutine elk-9.2.12/src/PaxHeaders/wfmtsv.f900000644000000000000000000000013214536061313014075 xustar0030 mtime=1702388427.873501556 30 atime=1702388426.716503269 30 ctime=1702388427.873501556 elk-9.2.12/src/wfmtsv.f900000644002504400250440000001110214536061313016612 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wfmtsv(tsh,lrstp,is,ias,nst,idx,ngp,apwalm,evecfv,evecsv,ld,wfmt) use modmain use modomp implicit none ! arguments logical, intent(in) :: tsh integer, intent(in) :: lrstp,is,ias,nst,idx(*),ngp(nspnfv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) integer, intent(in) :: ld complex(8), intent(out) :: wfmt(ld,nspinor,nst) ! local variables logical tasv integer io,ilo,ispn,jspn integer nr,nri,nro,iro integer l,lm,np,npi integer n,p,i,j,k,nthd complex(8) zq(2),z1 ! automatic arrays complex(8) x(nstfv,nspnfv),y(nlmwf(is),nspinor,nst) ! external functions complex(8), external :: zdotu iro=nrmti(is)+lrstp if (lrstp == 1) then nr=nrmt(is) nri=nrmti(is) np=npmt(is) npi=npmti(is) else nr=nrcmt(is) nri=nrcmti(is) np=npcmt(is) npi=npcmti(is) end if nro=nr-nri ! de-phasing factor for spin-spirals if (ssdph) then zq(1)=zqss(ias) zq(2)=conjg(zq(1)) end if ! check if all the second-variational wavefunctions should be calculated if (idx(1) == 0) then tasv=.true. else tasv=.false. end if call holdthd(nst,nthd) !-----------------------! ! APW functions ! !-----------------------! !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(p,l,lm,io,ispn,jspn) & !$OMP PRIVATE(n,i,j,k,z1,ilo) & !$OMP NUM_THREADS(nthd) p=0 do l=0,lmaxo do lm=l**2+1,(l+1)**2 do io=1,apword(l,is) p=p+1 if (tevecsv) then do jspn=1,nspnfv n=ngp(jspn) !$OMP DO do j=1,nstfv x(j,jspn)=zdotu(n,evecfv(:,j,jspn),1,apwalm(:,io,lm,ias,jspn),1) end do !$OMP END DO end do ! loop only over required states !$OMP DO do j=1,nst ! index to state in evecsv if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=zdotu(nstfv,evecsv(1,k),1,x,1) if (spinpol) then jspn=jspnfv(2) y(p,2,j)=zdotu(nstfv,evecsv(nstfv+1,k),1,x(1,jspn),1) end if end do !$OMP END DO else !$OMP DO do j=1,nst if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=zdotu(ngp(1),evecfv(:,k,1),1,apwalm(:,io,lm,ias,1),1) end do !$OMP END DO end if end do end do end do !$OMP DO do j=1,nst wfmt(1:np,:,j)=0.d0 do ispn=1,nspinor p=0 do l=0,lmaxo do lm=l**2+1,(l+1)**2 i=npi+lm do io=1,apword(l,is) p=p+1 z1=y(p,ispn,j) if (ssdph) z1=z1*zq(ispn) if (l <= lmaxi) then call zfzrf(nri,z1,apwfr(1,1,io,l,ias),lmmaxi,wfmt(lm,ispn,j)) end if call zfzrf(nro,z1,apwfr(iro,1,io,l,ias),lmmaxo,wfmt(i,ispn,j)) end do end do end do end do end do !$OMP END DO !---------------------------------! ! local-orbital functions ! !---------------------------------! p=0 do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 p=p+1 i=idxlo(lm,ilo,ias) if (tevecsv) then do jspn=1,nspnfv n=ngp(jspn) x(1:nstfv,jspn)=evecfv(n+i,1:nstfv,jspn) end do !$OMP DO do j=1,nst if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=zdotu(nstfv,evecsv(1,k),1,x,1) if (spinpol) then jspn=jspnfv(2) y(p,2,j)=zdotu(nstfv,evecsv(nstfv+1,k),1,x(1,jspn),1) end if end do !$OMP END DO else do j=1,nst if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=evecfv(ngp(1)+i,k,1) end do end if end do end do !$OMP DO do j=1,nst do ispn=1,nspinor p=0 do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 p=p+1 i=npi+lm z1=y(p,ispn,j) if (ssdph) z1=z1*zq(ispn) if (l <= lmaxi) then call zfzrf(nri,z1,lofr(1,1,ilo,ias),lmmaxi,wfmt(lm,ispn,j)) end if call zfzrf(nro,z1,lofr(iro,1,ilo,ias),lmmaxo,wfmt(i,ispn,j)) end do end do end do end do !$OMP END DO ! convert to spherical coordinates if required if (.not.tsh) then !$OMP DO do j=1,nst do ispn=1,nspinor call zbshtip(nr,nri,wfmt(:,ispn,j)) end do end do !$OMP END DO end if !$OMP END PARALLEL call freethd(nthd) return contains pure subroutine zfzrf(n,z,rf,ld,zf) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: z real(8), intent(in) :: rf(lrstp,n) integer, intent(in) :: ld complex(8), intent(inout) :: zf(ld,n) zf(1,:)=zf(1,:)+z*rf(1,:) end subroutine end subroutine elk-9.2.12/src/PaxHeaders/olpistl.f900000644000000000000000000000013214536061313014235 xustar0030 mtime=1702388427.874501554 30 atime=1702388426.718503266 30 ctime=1702388427.874501554 elk-9.2.12/src/olpistl.f900000644002504400250440000000234614536061313016764 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: olpistl ! !INTERFACE: pure subroutine olpistl(ngp,igpig,ld,o) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ngp : number of G+p-vectors (in,integer) ! igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax)) ! ld : leading dimension of o (in,integer) ! o : overlap matrix (inout,complex(*)) ! !DESCRIPTION: ! Computes the interstitial contribution to the overlap matrix for the APW ! basis functions. The overlap is given by ! $$ O^{\rm I}({\bf G+k,G'+k})=\tilde{\Theta}({\bf G-G'}), $$ ! where $\tilde{\Theta}$ is the characteristic function. See routine ! {\tt gencfun}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ngp,igpig(ngkmax),ld complex(8), intent(inout) :: o(ld,*) ! local variables integer ig,j1,j2,j3,i,j do j=1,ngp ig=igpig(j) j1=ivg(1,ig); j2=ivg(2,ig); j3=ivg(3,ig) do i=1,j ig=igpig(i) ig=ivgig(ivg(1,ig)-j1,ivg(2,ig)-j2,ivg(3,ig)-j3) o(i,j)=o(i,j)+cfunig(ig) end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/hmlistl.f900000644000000000000000000000013214536061313014223 xustar0030 mtime=1702388427.875501553 30 atime=1702388426.719503264 30 ctime=1702388427.875501553 elk-9.2.12/src/hmlistl.f900000644002504400250440000000316314536061313016750 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: hmlistl ! !INTERFACE: pure subroutine hmlistl(ngp,igpig,vgpc,ld,h) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ngp : number of G+p-vectors (in,integer) ! igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax)) ! vgpc : G+p-vectors in Cartesian coordinates (in,real(3,ngkmax)) ! ld : leading dimension of h (in,integer) ! h : Hamiltonian matrix (inout,complex(*)) ! !DESCRIPTION: ! Computes the interstitial contribution to the Hamiltonian matrix for the APW ! basis functions. The Hamiltonian is given by ! $$ H^{\rm I}({\bf G+k,G'+k})=\frac{1}{2}({\bf G+k})\cdot({\bf G'+k}) ! \tilde{\Theta}({\bf G-G'})+V_s({\bf G-G'}), $$ ! where $V_s$ is the interstitial Kohn-Sham potential and $\tilde{\Theta}$ is ! the characteristic function. See routine {\tt gencfun}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ngp,igpig(ngkmax) real(8), intent(in) :: vgpc(3,ngkmax) integer, intent(in) :: ld complex(8), intent(inout) :: h(ld,*) ! local variables integer ig,j1,j2,j3,i,j real(8) v1,v2,v3,t1 do j=1,ngp ig=igpig(j) j1=ivg(1,ig); j2=ivg(2,ig); j3=ivg(3,ig) v1=0.5d0*vgpc(1,j); v2=0.5d0*vgpc(2,j); v3=0.5d0*vgpc(3,j) do i=1,j ig=igpig(i) ig=ivgig(ivg(1,ig)-j1,ivg(2,ig)-j2,ivg(3,ig)-j3) t1=vgpc(1,i)*v1+vgpc(2,i)*v2+vgpc(3,i)*v3 h(i,j)=h(i,j)+vsig(ig)+t1*cfunig(ig) end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/olpalo.f900000644000000000000000000000013014536061313014033 xustar0029 mtime=1702388427.87750155 30 atime=1702388426.720503263 29 ctime=1702388427.87750155 elk-9.2.12/src/olpalo.f900000644002504400250440000000133514536061313016561 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine olpalo(is,ias,ngp,apwalm,ld,o) use modmain implicit none ! arguments integer, intent(in) :: is,ias,ngp complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: o(ld,*) ! local variables integer ilo,io,l,lm,j real(8) t1 do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 j=ngp+idxlo(lm,ilo,ias) do io=1,apword(l,is) t1=oalo(io,ilo,ias) o(1:ngp,j)=o(1:ngp,j)+t1*conjg(apwalm(1:ngp,io,lm)) end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/hmlalo.f900000644000000000000000000000013114536061313014022 xustar0030 mtime=1702388427.878501548 29 atime=1702388426.72250326 30 ctime=1702388427.878501548 elk-9.2.12/src/hmlalo.f900000644002504400250440000000232714536061313016551 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine hmlalo(is,ias,ngp,apwalm,ld,h) use modmain implicit none ! arguments integer, intent(in) :: is,ias,ngp complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: h(ld,*) ! local variables integer io,ilo,j integer l1,l2,l3 integer lm1,lm2,lm3 complex(8) z1 do ilo=1,nlorb(is) l1=lorbl(ilo,is) do lm1=l1**2+1,(l1+1)**2 j=ngp+idxlo(lm1,ilo,ias) do l3=0,lmaxapw do lm3=l3**2+1,(l3+1)**2 do io=1,apword(l3,is) z1=0.d0 do l2=0,lmaxo if (mod(l1+l2+l3,2) == 0) then do lm2=l2**2+1,(l2+1)**2 z1=z1+gntyry(lm2,lm3,lm1)*hloa(lm2,io,l3,ilo,ias) end do end if end do ! note that what is actually computed is the Hermitian conjugate of if (abs(dble(z1))+abs(aimag(z1)) > 1.d-14) then h(1:ngp,j)=h(1:ngp,j)+conjg(z1*apwalm(1:ngp,io,lm3)) end if end do end do end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/olplolo.f900000644000000000000000000000013214536061313014227 xustar0030 mtime=1702388427.879501547 30 atime=1702388426.723503259 30 ctime=1702388427.879501547 elk-9.2.12/src/olplolo.f900000644002504400250440000000125714536061313016756 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine olplolo(is,ias,ngp,ld,o) use modmain implicit none ! arguments integer, intent(in) :: is,ias,ngp,ld complex(8), intent(inout) :: o(ld,*) ! local variables integer ilo,jlo,l,lm,i,j do ilo=1,nlorb(is) l=lorbl(ilo,is) do jlo=1,nlorb(is) if (lorbl(jlo,is) == l) then do lm=l**2+1,(l+1)**2 i=ngp+idxlo(lm,ilo,ias) j=ngp+idxlo(lm,jlo,ias) if (i <= j) o(i,j)=o(i,j)+ololo(ilo,jlo,ias) end do end if end do end do end subroutine elk-9.2.12/src/PaxHeaders/hmllolo.f900000644000000000000000000000013214536061313014215 xustar0030 mtime=1702388427.881501544 30 atime=1702388426.725503255 30 ctime=1702388427.881501544 elk-9.2.12/src/hmllolo.f900000644002504400250440000000172314536061313016742 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine hmllolo(is,ias,ngp,ld,h) use modmain implicit none ! arguments integer, intent(in) :: is,ias,ngp,ld complex(8), intent(inout) :: h(ld,*) ! local variables integer ilo,jlo,i,j integer l1,l2,l3 integer lm1,lm3,lma,lmb complex(8) z1 do jlo=1,nlorb(is) l3=lorbl(jlo,is) do lm3=l3**2+1,(l3+1)**2 j=ngp+idxlo(lm3,jlo,ias) do ilo=1,nlorb(is) l1=lorbl(ilo,is) do lm1=l1**2+1,(l1+1)**2 i=ngp+idxlo(lm1,ilo,ias) if (i > j) cycle z1=0.d0 do l2=0,lmaxo if (mod(l1+l2+l3,2) == 0) then lma=l2**2+1; lmb=(l2+1)**2 z1=z1+sum(gntyry(lma:lmb,lm3,lm1)*hlolo(lma:lmb,jlo,ilo,ias)) end if end do h(i,j)=h(i,j)+z1 end do end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/olpaa.f900000644000000000000000000000013214536061313013643 xustar0030 mtime=1702388427.882501542 30 atime=1702388426.726503254 30 ctime=1702388427.882501542 elk-9.2.12/src/olpaa.f900000644002504400250440000000151514536061313016367 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine olpaa(tor,is,ngp,apwalm,ld,o) use modmain implicit none ! arguments logical, intent(in) :: tor integer, intent(in) :: is,ngp complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: o(*) ! local variables integer io,l,lm,i ! automatic arrays complex(8) a(lmoapw(is),ngp) i=0 do l=0,lmaxapw do lm=l**2+1,(l+1)**2 do io=1,apword(l,is) i=i+1 a(i,1:ngp)=apwalm(1:ngp,io,lm) end do end do end do if (tor) then ! matrix O is real call rzmctmu(lmoapw(is),ngp,a,a,ld,o) else ! matrix O is complex call zmctmu(lmoapw(is),ngp,a,a,ld,o) end if end subroutine elk-9.2.12/src/PaxHeaders/hmlaa.f900000644000000000000000000000013014536061313013627 xustar0029 mtime=1702388427.88450154 30 atime=1702388426.728503251 29 ctime=1702388427.88450154 elk-9.2.12/src/hmlaa.f900000644002504400250440000000435114536061313016356 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: hmlaa ! !INTERFACE: subroutine hmlaa(thr,is,ias,ngp,apwalm,ld,h) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! thr : .true. if the matrix h is real valued (in,logical) ! is : species number (in,integer) ! ias : joint atom and species number (in,integer) ! ngp : number of G+p-vectors (in,integer) ! apwalm : APW matching coefficients (in,complex(ngkmax,apwordmax,lmmaxapw)) ! ld : leading dimension of h (in,integer) ! h : Hamiltonian matrix (inout,complex(*)) ! !DESCRIPTION: ! Calculates the APW-APW contribution to the Hamiltonian matrix. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: thr integer, intent(in) :: is,ias,ngp complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: h(*) ! local variables integer io,jo,i integer l0,l1,l2,l3 integer lm1,lm3,lma,lmb real(8) t0,t1 complex(8) z1 ! automatic arrays complex(8) a(lmoapw(is),ngp),b(lmoapw(is),ngp) t0=0.5d0*rmt(is)**2 i=0 do l1=0,lmaxapw do lm1=l1**2+1,(l1+1)**2 do io=1,apword(l1,is) i=i+1 t1=t0*apwfr(nrmt(is),1,io,l1,ias) b(i,:)=0.d0 do l3=0,lmaxapw if (mod(l1+l3,2) == 0) then; l0=0; else; l0=1; end if do lm3=l3**2+1,(l3+1)**2 do jo=1,apword(l3,is) z1=0.d0 ! kinetic and potential contribution do l2=l0,lmaxo,2 lma=l2**2+1; lmb=lma+2*l2 z1=z1+sum(gntyry(lma:lmb,lm3,lm1)*haa(lma:lmb,jo,l3,io,l1,ias)) end do ! kinetic surface contribution if (lm1 == lm3) z1=z1+t1*apwdfr(jo,l1,ias) if (abs(dble(z1))+abs(aimag(z1)) > 1.d-14) then b(i,1:ngp)=b(i,1:ngp)+z1*apwalm(1:ngp,jo,lm3) end if end do end do end do a(i,1:ngp)=apwalm(1:ngp,io,lm1) end do end do end do if (thr) then ! matrix H is real call rzmctmu(lmoapw(is),ngp,a,b,ld,h) else ! matrix H is complex call zmctmu(lmoapw(is),ngp,a,b,ld,h) end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/gengclg.f900000644000000000000000000000013114536061313014154 xustar0030 mtime=1702388427.885501538 29 atime=1702388426.72950325 30 ctime=1702388427.885501538 elk-9.2.12/src/gengclg.f900000644002504400250440000000057314536061313016704 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengclg use modmain implicit none ! local variables if (allocated(gclg)) deallocate(gclg) allocate(gclg(ngvec)) gclg(1)=0.d0 gclg(2:ngvec)=fourpi/gc(2:ngvec)**2 end subroutine elk-9.2.12/src/PaxHeaders/rhomagsh.f900000644000000000000000000000013214536061313014357 xustar0030 mtime=1702388427.886501536 30 atime=1702388426.731503247 30 ctime=1702388427.886501536 elk-9.2.12/src/rhomagsh.f900000644002504400250440000000210414536061313017076 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rhomagsh ! !INTERFACE: subroutine rhomagsh ! !USES: use modmain use modomp ! !DESCRIPTION: ! Converts the muffin-tin density and magnetisation from spherical coordinates ! to a spherical harmonic expansion. See {\tt rhomagk}. ! ! !REVISION HISTORY: ! Created January 2009 (JKD) !EOP !BOC implicit none ! local variables integer idm,is,ias,nthd call holdthd(natmtot,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(is,idm) & !$OMP NUM_THREADS(nthd) !$OMP DO do ias=1,natmtot is=idxis(ias) ! convert the density to spherical harmonics call rfshtip(nrcmt(is),nrcmti(is),rhomt(:,ias)) end do !$OMP END DO NOWAIT do idm=1,ndmag !$OMP DO do ias=1,natmtot is=idxis(ias) ! convert the magnetisation to spherical harmonics call rfshtip(nrcmt(is),nrcmti(is),magmt(:,ias,idm)) end do !$OMP END DO end do !$OMP END PARALLEL call freethd(nthd) end subroutine !EOC elk-9.2.12/src/PaxHeaders/charge.f900000644000000000000000000000013214536061313014000 xustar0030 mtime=1702388427.887501535 30 atime=1702388426.732503245 30 ctime=1702388427.887501535 elk-9.2.12/src/charge.f900000644002504400250440000000177714536061313016536 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: charge ! !INTERFACE: subroutine charge ! !USES: use modmain use modtest ! !DESCRIPTION: ! Computes the muffin-tin, interstitial and total charges by integrating the ! density. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! local variables integer is,ias real(8) t1 ! external functions real(8), external :: rfmtint,ddot ! find the muffin-tin charges chgmttot=0.d0 do ias=1,natmtot is=idxis(ias) chgmt(ias)=rfmtint(nrmt(is),nrmti(is),wrmt(:,is),rhomt(:,ias)) chgmttot=chgmttot+chgmt(ias) end do ! find the interstitial charge t1=ddot(ngtot,rhoir,1,cfunir,1) chgir=t1*omega/dble(ngtot) ! total calculated charge chgcalc=chgmttot+chgir ! write total calculated charge to test file call writetest(400,'calculated total charge',tol=1.d-6,rv=chgcalc) end subroutine !EOC elk-9.2.12/src/PaxHeaders/moment.f900000644000000000000000000000013214536061313014046 xustar0030 mtime=1702388427.889501532 30 atime=1702388426.734503242 30 ctime=1702388427.889501532 elk-9.2.12/src/moment.f900000644002504400250440000000255214536061313016574 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: moment ! !INTERFACE: subroutine moment ! !USES: use modmain use modtest ! !DESCRIPTION: ! Computes the muffin-tin, interstitial and total moments by integrating the ! magnetisation. ! ! !REVISION HISTORY: ! Created January 2005 (JKD) !EOP !BOC implicit none ! local variables integer idm,is,ias real(8) t1 ! external functions real(8), external :: rfmtint,ddot if (.not.spinpol) then mommt(:,:)=0.d0 mommttot(:)=0.d0 momir(:)=0.d0 momtot(:)=0.d0 momtotm=0.d0 return end if ! find the muffin-tin moments mommttot(:)=0.d0 do idm=1,ndmag do ias=1,natmtot is=idxis(ias) mommt(idm,ias)=rfmtint(nrmt(is),nrmti(is),wrmt(:,is),magmt(:,ias,idm)) mommttot(idm)=mommttot(idm)+mommt(idm,ias) end do end do ! find the interstitial and total moments do idm=1,ndmag t1=ddot(ngtot,magir(1,idm),1,cfunir,1) momir(idm)=t1*omega/dble(ngtot) momtot(idm)=mommttot(idm)+momir(idm) end do ! total moment magnitude if (ncmag) then momtotm=sqrt(momtot(1)**2+momtot(2)**2+momtot(3)**2) else momtotm=abs(momtot(1)) end if ! write total moment magnitude to test file call writetest(450,'total moment magnitude',tol=1.d-3,rv=momtotm) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rfint0.f900000644000000000000000000000013214536061313013751 xustar0030 mtime=1702388427.890501531 30 atime=1702388426.735503241 30 ctime=1702388427.890501531 elk-9.2.12/src/rfint0.f900000644002504400250440000000142614536061313016476 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rfint0(rf0,rfmt,rfir) use modmain implicit none ! arguments real(8), intent(in) :: rf0 real(8), intent(inout) :: rfmt(npmtmax,natmtot),rfir(ngtot) ! local variables integer is,ias,nr,nri integer iro,i0,i1 real(8) t1 ! external functions real(8), external :: rfint t1=rfint(rfmt,rfir) t1=rf0-t1/omega rfir(:)=rfir(:)+t1 t1=t1/y00 do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 i1=lmmaxi*(nri-1)+1 rfmt(1:i1:lmmaxi,ias)=rfmt(1:i1:lmmaxi,ias)+t1 i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 rfmt(i0:i1:lmmaxo,ias)=rfmt(i0:i1:lmmaxo,ias)+t1 end do end subroutine elk-9.2.12/src/PaxHeaders/r3mdet.f900000644000000000000000000000013214536061313013745 xustar0030 mtime=1702388427.891501529 30 atime=1702388426.737503238 30 ctime=1702388427.891501529 elk-9.2.12/src/r3mdet.f900000644002504400250440000000126114536061313016467 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mdet ! !INTERFACE: pure real(8) function r3mdet(a) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,real(3,3)) ! !DESCRIPTION: ! Returns the determinant of a real $3\times 3$ matrix $A$. ! ! !REVISION HISTORY: ! Created May 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3) r3mdet=a(1,1)*(a(2,2)*a(3,3)-a(3,2)*a(2,3)) & +a(2,1)*(a(3,2)*a(1,3)-a(1,2)*a(3,3)) & +a(3,1)*(a(1,2)*a(2,3)-a(2,2)*a(1,3)) end function !EOC elk-9.2.12/src/PaxHeaders/gencfrc.f900000644000000000000000000000013214536061313014156 xustar0030 mtime=1702388427.893501526 30 atime=1702388426.738503236 30 ctime=1702388427.893501526 elk-9.2.12/src/gencfrc.f900000644002504400250440000000101714536061313016677 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gencfrc use modmain implicit none ! allocatable arrays complex(8), allocatable :: zfft(:) if (allocated(cfrc)) deallocate(cfrc) allocate(cfrc(ngtc),zfft(ngtc)) zfft(:)=0.d0 zfft(igfc(1:ngvc))=cfunig(1:ngvc) ! Fourier transform to real-space call zfftifc(3,ngdgc,1,zfft) cfrc(:)=dble(zfft(:)) deallocate(zfft) end subroutine elk-9.2.12/src/PaxHeaders/checkstop.f900000644000000000000000000000013214536061313014532 xustar0030 mtime=1702388427.894501525 30 atime=1702388426.740503233 30 ctime=1702388427.894501525 elk-9.2.12/src/checkstop.f900000644002504400250440000000114114536061313017251 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine checkstop use modmain use modmpi use moddelf implicit none ! check for STOP file (only MPI master process) if (mp_mpi) then inquire(file='STOP',exist=tstop) if (tstop) then write(*,'("Info(checkstop): STOP file exists")') ! delete the STOP file call delfile('STOP') end if end if ! broadcast tstop from master process to all other processes call mpi_bcast(tstop,1,mpi_logical,0,mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/genbs.f900000644000000000000000000000013214536061313013645 xustar0030 mtime=1702388427.896501522 30 atime=1702388426.741503232 30 ctime=1702388427.896501522 elk-9.2.12/src/genbs.f900000644002504400250440000000344314536061313016373 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine genbs use modmain use modomp implicit none ! local variables integer idm,is,ia,ias integer nrc,nrci,npc,nthd real(8) cb,t1 if (.not.spinpol) return ! coupling constant of the external field (g_e/4c) cb=gfacte/(4.d0*solsc) !------------------------------------! ! muffin-tin Kohn-Sham field ! !------------------------------------! call holdthd(max(natmtot,ndmag),nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(ias,is,ia,nrc) & !$OMP PRIVATE(nrci,npc,idm,t1) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) ia=idxia(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) ! exchange-correlation magnetic field in spherical coordinates do idm=1,ndmag call rfmtftoc(nrc,nrci,bxcmt(:,ias,idm),bsmt(:,ias,idm)) call rbshtip(nrc,nrci,bsmt(:,ias,idm)) end do ! add the external magnetic field t1=cb*(bfcmt(3,ia,is)+bfieldc(3)) bsmt(1:npc,ias,ndmag)=bsmt(1:npc,ias,ndmag)+t1 if (ncmag) then do idm=1,2 t1=cb*(bfcmt(idm,ia,is)+bfieldc(idm)) bsmt(1:npc,ias,idm)=bsmt(1:npc,ias,idm)+t1 end do end if end do !$OMP END DO NOWAIT !-----------------------------------------------! ! interstitial Kohn-Sham magnetic field ! !-----------------------------------------------! !$OMP DO SCHEDULE(DYNAMIC) do idm=1,ndmag if (ncmag) then t1=cb*bfieldc(idm) else t1=cb*bfieldc(3) end if ! multiply by characteristic function bsir(1:ngtot,idm)=(bxcir(1:ngtot,idm)+t1)*cfunir(1:ngtot) end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) ! add the magnetic dipole field if required if (tbdip) call bdipole end subroutine elk-9.2.12/src/PaxHeaders/gradwf2.f900000644000000000000000000000013214536061313014103 xustar0030 mtime=1702388427.898501519 30 atime=1702388426.743503229 30 ctime=1702388427.898501519 elk-9.2.12/src/gradwf2.f900000644002504400250440000000565214536061313016635 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gradwf2(ik,gwf2mt,gwf2ir) use modmain implicit none ! arguments integer, intent(in) :: ik real(8), intent(inout) :: gwf2mt(npmtmax,natmtot),gwf2ir(ngtot) ! local variables integer ispn,jspn,nst,ist,jst integer is,ia,ias,nrc,nrci,npc integer igk,ifg,i real(8) wo complex(8) z1 ! automatic arrays integer idx(nstsv) complex(8) gwfmt(npcmtmax,3),zfmt(npcmtmax) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfgk(:,:,:) complex(8), allocatable :: zfft(:) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik),sfacgk(:,:,ispn,ik),& apwalm(:,:,:,:,ispn)) end do ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! count and index the occupied states nst=0 do ist=1,nstsv if (abs(occsv(ist,ik)) < epsocc) cycle nst=nst+1 idx(nst)=ist end do ! calculate the second-variational wavefunctions for occupied states allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfgk(ngkmax,nspinor,nst)) call genwfsv(.true.,.true.,nst,idx,ngdgc,igfc,ngk(:,ik),igkig(:,:,ik),apwalm, & evecfv,evecsv,wfmt,ngkmax,wfgk) deallocate(apwalm) !-------------------------! ! muffin-tin part ! !-------------------------! do ist=1,nst jst=idx(ist) wo=wkpt(ik)*occsv(jst,ik) do ispn=1,nspinor do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) ! compute the gradient of the wavefunction call gradzfmt(nrc,nrci,rlcmt(:,-1,is),wcrcmt(:,:,is), & wfmt(:,ias,ispn,ist),npcmtmax,gwfmt) do i=1,3 ! convert gradient from spherical harmonics to spherical coordinates call zbsht(nrc,nrci,gwfmt(:,i),zfmt) ! add to total gwf2mt(1:npc,ias)=gwf2mt(1:npc,ias) & +wo*(dble(zfmt(1:npc))**2+aimag(zfmt(1:npc))**2) end do end do end do end do end do deallocate(wfmt) !---------------------------! ! interstitial part ! !---------------------------! allocate(zfft(ngtc)) do ist=1,nst jst=idx(ist) wo=wkpt(ik)*occsv(jst,ik)/omega do ispn=1,nspinor jspn=jspnfv(ispn) ! compute gradient of wavefunction do i=1,3 zfft(:)=0.d0 do igk=1,ngk(jspn,ik) ifg=igfc(igkig(igk,jspn,ik)) z1=wfgk(igk,ispn,ist) zfft(ifg)=vgkc(i,igk,jspn,ik)*cmplx(-aimag(z1),dble(z1),8) end do call zfftifc(3,ngdgc,1,zfft) gwf2ir(1:ngtc)=gwf2ir(1:ngtc) & +wo*(dble(zfft(1:ngtc))**2+aimag(zfft(1:ngtc))**2) end do end do end do deallocate(wfgk,zfft) end subroutine elk-9.2.12/src/PaxHeaders/closefiles.f900000644000000000000000000000013214536061313014677 xustar0030 mtime=1702388427.899501517 30 atime=1702388426.744503227 30 ctime=1702388427.899501517 elk-9.2.12/src/closefiles.f900000644002504400250440000000064314536061313017424 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine closefiles use modmain implicit none ! local variables logical opnd integer iu ! loop over possible file units used by the code do iu=20,400 inquire(unit=iu,opened=opnd) if (opnd) close(iu) end do end subroutine elk-9.2.12/src/PaxHeaders/writelinen.f900000644000000000000000000000013214536061313014727 xustar0030 mtime=1702388427.900501516 30 atime=1702388426.746503224 30 ctime=1702388427.900501516 elk-9.2.12/src/writelinen.f900000644002504400250440000000242414536061313017453 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writelinen ! !INTERFACE: subroutine writelinen ! !USES: use modmain ! !DESCRIPTION: ! Writes the linearisation energies for all APW and local-orbital functions to ! the file {\tt LINENGY.OUT}. ! ! !REVISION HISTORY: ! Created February 2004 (JKD) !EOP !BOC implicit none ! local variables integer is,ia,ias,l,io,ilo open(50,file='LINENGY'//trim(filext),form='FORMATTED') do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is,trim(spsymb(is)),ia write(50,'(" APW functions :")') do l=0,lmaxapw do io=1,apword(l,is) write(50,'(" l = ",I2,", energy derivative = ",I2," : ",G18.10)') l, & apwdm(io,l,is),apwe(io,l,ias) end do end do write(50,'(" local-orbital functions :")') do ilo=1,nlorb(is) do io=1,lorbord(ilo,is) write(50,'(" l.o. = ",I2,", l = ",I2,", energy derivative = ",I2,& &" : ",G18.10)') ilo,lorbl(ilo,is),lorbdm(io,ilo,is),lorbe(io,ilo,ias) end do end do end do end do close(50) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rfmtlm.f900000644000000000000000000000013214536061313014050 xustar0030 mtime=1702388427.902501513 30 atime=1702388426.747503223 30 ctime=1702388427.902501513 elk-9.2.12/src/rfmtlm.f900000644002504400250440000000123714536061313016575 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine rfmtlm(lm,nr,nri,rfmt,fr) use modmain implicit none ! arguments integer, intent(in) :: lm,nr,nri real(8), intent(in) :: rfmt(npmtmax) real(8), intent(out) :: fr(nrmtmax) ! local variables integer iro,i0,i1 if (lm > lmmaxi) then fr(1:nri)=0.d0 else i1=lmmaxi*(nri-1)+lm fr(1:nri)=rfmt(lm:i1:lmmaxi) end if iro=nri+1 if (lm > lmmaxo) then fr(iro:nr)=0.d0 else i0=lmmaxi*nri+lm i1=lmmaxo*(nr-iro)+i0 fr(iro:nr)=rfmt(i0:i1:lmmaxo) end if end subroutine elk-9.2.12/src/PaxHeaders/putpmat.f900000644000000000000000000000013114536061313014240 xustar0030 mtime=1702388427.903501511 29 atime=1702388426.74950322 30 ctime=1702388427.903501511 elk-9.2.12/src/putpmat.f900000644002504400250440000000350614536061313016767 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putpmat(ik) use modmain use modmpi use modramdisk implicit none ! arguments integer, intent(in) :: ik ! local variables integer ispn,recl ! automatic arrays complex(8) pmat(nstsv,nstsv,3) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:,:),evecsv(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfgk(:,:,:) ! get the eigenvectors from file allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! calculate the wavefunctions for all states allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfgk(ngkmax,nspinor,nstsv)) call genwfsv(.true.,.true.,nstsv,[0],ngridg,igfft,ngk(:,ik),igkig(:,:,ik), & apwalm,evecfv,evecsv,wfmt,ngkmax,wfgk) deallocate(evecfv,evecsv,apwalm) ! calculate the momentum matrix elements call genpmatk(ngk(:,ik),igkig(:,:,ik),vgkc(:,:,:,ik),wfmt,wfgk,pmat) deallocate(wfmt,wfgk) ! write the matrix elements in the second-variational basis !$OMP CRITICAL(u230) ! write to RAM disk if required if (ramdisk) then call putrd('PMAT.OUT',ik,v1=vkl(:,ik),n1=nstsv,nzv=nstsv*nstsv*3,zva=pmat) end if ! write to disk if required if (wrtdsk) then ! determine the record length inquire(iolength=recl) vkl(:,1),nstsv,pmat open(230,file='PMAT.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(230,rec=ik) vkl(:,ik),nstsv,pmat close(230) end if !$OMP END CRITICAL(u230) end subroutine elk-9.2.12/src/PaxHeaders/getpmat.f900000644000000000000000000000013214536061313014210 xustar0030 mtime=1702388427.905501508 30 atime=1702388426.750503219 30 ctime=1702388427.905501508 elk-9.2.12/src/getpmat.f900000644002504400250440000000507114536061313016735 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getpmat(vpl,pmat) use modmain use modramdisk implicit none ! arguments real(8), intent(in) :: vpl(3) complex(8), intent(out) :: pmat(nstsv,nstsv,3) ! local variables logical tgs integer isym,ik,ist,jst integer recl,nstsv_ real(8) vkl_(3),sc(3,3) real(8) ei,ej,eij,t1 complex(8) v1(3),v2(3) ! find the equivalent k-point number and symmetry which rotates vkl to vpl call findkpt(vpl,isym,ik) !$OMP CRITICAL(u230) ! read from RAM disk if required if (ramdisk) then call getrd('PMAT.OUT',ik,tgs,v1=vkl_,n1=nstsv_,nzv=nstsv*nstsv*3,zva=pmat) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,pmat open(230,file='PMAT.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(230,rec=ik) vkl_,nstsv_,pmat close(230) 10 continue !$OMP END CRITICAL(u230) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getpmat): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" PMAT.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getpmat): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" PMAT.OUT : ",I8)') nstsv_ write(*,*) stop end if ! apply scissor correction if required if (tscissor) then do jst=1,nstsv ej=evalsv(jst,ik) do ist=1,nstsv ei=evalsv(ist,ik) eij=ei-ej ! note that the eigenvalues have *already* been scissor corrected if ((ei > efermi).and.(ej <= efermi)) then t1=eij/(eij-scissor) else if ((ei <= efermi).and.(ej > efermi)) then t1=eij/(eij+scissor) end if pmat(ist,jst,1:3)=pmat(ist,jst,1:3)*t1 end do end do end if ! if p = k then return t1=abs(vpl(1)-vkl(1,ik))+abs(vpl(2)-vkl(2,ik))+abs(vpl(3)-vkl(3,ik)) if (t1 < epslat) return ! rotate the matrix elements from the reduced to non-reduced k-point sc(:,:)=symlatc(:,:,lsplsymc(isym)) do jst=1,nstsv do ist=1,nstsv v1(:)=pmat(ist,jst,:) call rz3mv(sc,v1,v2) pmat(ist,jst,:)=v2(:) end do end do return contains pure subroutine rz3mv(a,x,y) implicit none real(8), intent(in) :: a(3,3) complex(8), intent(in) :: x(3) complex(8), intent(out) :: y(3) y(1)=a(1,1)*x(1)+a(1,2)*x(2)+a(1,3)*x(3) y(2)=a(2,1)*x(1)+a(2,2)*x(2)+a(2,3)*x(3) y(3)=a(3,1)*x(1)+a(3,2)*x(2)+a(3,3)*x(3) end subroutine end subroutine elk-9.2.12/src/PaxHeaders/rfmtpack.f900000644000000000000000000000013214536061313014356 xustar0030 mtime=1702388427.906501507 30 atime=1702388426.752503216 30 ctime=1702388427.906501507 elk-9.2.12/src/rfmtpack.f900000644002504400250440000000136114536061313017101 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine rfmtpack(tpack,nr,nri,rfmt1,rfmt2) use modmain implicit none ! arguments logical, intent(in) :: tpack integer, intent(in) :: nr,nri real(8), intent(in) :: rfmt1(*) real(8), intent(out) :: rfmt2(*) ! local variables integer ir,i,j,k,n n=lmmaxi-1 i=1 j=1 if (tpack) then do ir=1,nri rfmt2(j:j+n)=rfmt1(i:i+n) i=i+lmmaxo j=j+lmmaxi end do else do ir=1,nri rfmt2(j:j+n)=rfmt1(i:i+n) i=i+lmmaxi k=j+lmmaxi j=j+lmmaxo rfmt2(k:j-1)=0.d0 end do end if n=lmmaxo*(nr-nri)-1 rfmt2(j:j+n)=rfmt1(i:i+n) end subroutine elk-9.2.12/src/PaxHeaders/zfmtpack.f900000644000000000000000000000013214536061313014366 xustar0030 mtime=1702388427.907501505 30 atime=1702388426.753503214 30 ctime=1702388427.907501505 elk-9.2.12/src/zfmtpack.f900000644002504400250440000000136714536061313017117 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine zfmtpack(tpack,nr,nri,zfmt1,zfmt2) use modmain implicit none ! arguments logical, intent(in) :: tpack integer, intent(in) :: nr,nri complex(8), intent(in) :: zfmt1(*) complex(8), intent(out) :: zfmt2(*) ! local variables integer ir,i,j,k,n n=lmmaxi-1 i=1 j=1 if (tpack) then do ir=1,nri zfmt2(j:j+n)=zfmt1(i:i+n) i=i+lmmaxo j=j+lmmaxi end do else do ir=1,nri zfmt2(j:j+n)=zfmt1(i:i+n) i=i+lmmaxi k=j+lmmaxi j=j+lmmaxo zfmt2(k:j-1)=0.d0 end do end if n=lmmaxo*(nr-nri)-1 zfmt2(j:j+n)=zfmt1(i:i+n) end subroutine elk-9.2.12/src/PaxHeaders/putevalfv.f900000644000000000000000000000013214536061313014563 xustar0030 mtime=1702388427.909501502 30 atime=1702388426.754503213 30 ctime=1702388427.909501502 elk-9.2.12/src/putevalfv.f900000644002504400250440000000170214536061313017305 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putevalfv(fext,ik,evalfv) use modmain use modramdisk implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ik real(8), intent(in) :: evalfv(nstfv,nspnfv) ! local variables integer recl character(256) fname ! construct the filename fname='EVALFV'//trim(fext) !$OMP CRITICAL(u200) ! write to RAM disk if required if (ramdisk) then call putrd(fname,ik,v1=vkl(:,ik),n1=nstfv,n2=nspnfv,nrv=nstfv*nspnfv, & rva=evalfv) end if ! write to disk if required if (wrtdsk) then ! find the record length inquire(iolength=recl) vkl(:,ik),nstfv,nspnfv,evalfv open(200,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) write(200,rec=ik) vkl(:,ik),nstfv,nspnfv,evalfv close(200) end if !$OMP END CRITICAL(u200) end subroutine elk-9.2.12/src/PaxHeaders/getevalfv.f900000644000000000000000000000013114536061313014531 xustar0030 mtime=1702388427.910501501 29 atime=1702388426.75650321 30 ctime=1702388427.910501501 elk-9.2.12/src/getevalfv.f900000644002504400250440000000351014536061313017253 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getevalfv(fext,ikp,vpl,evalfv) use modmain use modramdisk implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ikp real(8), intent(in) :: vpl(3) real(8), intent(out) :: evalfv(nstfv,nspnfv) ! local variables logical tgs integer isym,ik integer recl,nstfv_,nspnfv_ real(8) vkl_(3),t1 character(256) fname if (ikp > 0) then ik=ikp else ! find the k-point number call findkpt(vpl,isym,ik) end if ! construct the filename fname='EVALFV'//trim(fext) !$OMP CRITICAL(u200) ! read from RAM disk if required if (ramdisk) then call getrd(fname,ik,tgs,v1=vkl_,n1=nstfv_,n2=nspnfv_,nrv=nstfv*nspnfv, & rva=evalfv) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nstfv_,nspnfv_,evalfv open(200,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) read(200,rec=ik) vkl_,nstfv_,nspnfv_,evalfv close(200) 10 continue !$OMP END CRITICAL(u200) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevalfv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EVALFV.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstfv /= nstfv_) then write(*,*) write(*,'("Error(getevalfv): differing nstfv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstfv write(*,'(" EVALFV.OUT : ",I8)') nstfv_ write(*,*) stop end if if (nspnfv /= nspnfv_) then write(*,*) write(*,'("Error(getevalfv): differing nspnfv for k-point ",I8)') ik write(*,'(" current : ",I8)') nspnfv write(*,'(" EVALFV.OUT : ",I8)') nspnfv_ write(*,*) stop end if end subroutine elk-9.2.12/src/PaxHeaders/wfmtfv.f900000644000000000000000000000013214536061313014060 xustar0030 mtime=1702388427.911501499 30 atime=1702388426.757503208 30 ctime=1702388427.911501499 elk-9.2.12/src/wfmtfv.f900000644002504400250440000000663114536061313016610 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: wfmtfv ! !INTERFACE: subroutine wfmtfv(ias,ngp,apwalm,evecfv,wfmt) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ias : joint atom and species number (in,integer) ! ngp : number of G+p-vectors (in,integer) ! apwalm : APW matching coefficients (in,complex(ngkmax,apwordmax,lmmaxapw)) ! evecfv : first-variational eigenvector (in,complex(nmatmax)) ! wfmt : complex muffin-tin wavefunction passed in as real array ! (out,real(2,*)) ! !DESCRIPTION: ! Calculates the first-variational wavefunction in the muffin-tin in terms of ! a spherical harmonic expansion. For atom $\alpha$ and a particular $k$-point ! ${\bf p}$, the $r$-dependent $(l,m)$-coefficients of the wavefunction for ! the $i$th state are given by ! $$ \Phi^{i{\bf p}}_{\alpha lm}(r)=\sum_{\bf G}b^{i{\bf p}}_{\bf G} ! \sum_{j=1}^{M^{\alpha}_l}A^{\alpha}_{jlm}({\bf G+p})u^{\alpha}_{jl}(r) ! +\sum_{j=1}^{N^{\alpha}}b^{i{\bf p}}_{(\alpha,j,m)}v^{\alpha}_j(r) ! \delta_{l,l_j}, $$ ! where $b^{i{\bf p}}$ is the $i$th eigenvector returned from routine ! {\tt eveqn}; $A^{\alpha}_{jlm}({\bf G+p})$ is the matching coefficient; ! $M^{\alpha}_l$ is the order of the APW; $u^{\alpha}_{jl}$ is the APW radial ! function; $N^{\alpha}$ is the number of local-orbitals; $v^{\alpha}_j$ is ! the $j$th local-orbital radial function; and $(\alpha,j,m)$ is a compound ! index for the location of the local-orbital in the eigenvector. See routines ! {\tt genapwfr}, {\tt genlofr}, {\tt match} and {\tt eveqn}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Fixed description, October 2004 (C. Brouder) ! Removed argument ist, November 2006 (JKD) ! Changed arguments and optimised, December 2014 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ias,ngp complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw),evecfv(nmatmax) complex(8), intent(out) :: wfmt(*) ! local variables integer is,io,ilo integer nrci,nrco,iro integer l,lm,npci,i complex(8) z1 ! external functions complex(8), external :: zdotu is=idxis(ias) iro=nrmti(is)+lradstp nrci=nrcmti(is) nrco=nrcmt(is)-nrci npci=npcmti(is) ! zero the wavefunction wfmt(1:npcmt(is))=0.d0 !-----------------------! ! APW functions ! !-----------------------! do l=0,lmaxo do lm=l**2+1,(l+1)**2 i=npci+lm do io=1,apword(l,is) z1=zdotu(ngp,evecfv,1,apwalm(:,io,lm),1) if (l <= lmaxi) then call zfzrf(nrci,z1,apwfr(1,1,io,l,ias),lmmaxi,wfmt(lm)) end if call zfzrf(nrco,z1,apwfr(iro,1,io,l,ias),lmmaxo,wfmt(i)) end do end do end do !---------------------------------! ! local-orbital functions ! !---------------------------------! do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 i=npci+lm z1=evecfv(ngp+idxlo(lm,ilo,ias)) if (l <= lmaxi) then call zfzrf(nrci,z1,lofr(1,1,ilo,ias),lmmaxi,wfmt(lm)) end if call zfzrf(nrco,z1,lofr(iro,1,ilo,ias),lmmaxo,wfmt(i)) end do end do return contains pure subroutine zfzrf(n,z,rf,ld,zf) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: z real(8), intent(in) :: rf(lradstp,n) integer, intent(in) :: ld complex(8), intent(inout) :: zf(ld,n) zf(1,:)=zf(1,:)+z*rf(1,:) end subroutine end subroutine !EOC elk-9.2.12/src/PaxHeaders/putkmat.f900000644000000000000000000000013214536061313014234 xustar0030 mtime=1702388427.913501497 30 atime=1702388426.758503207 30 ctime=1702388427.913501497 elk-9.2.12/src/putkmat.f900000644002504400250440000000540114536061313016756 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putkmat(tfv,tvclcr,ik,vmt,vir,bmt,bir) use modmain use modmpi use modramdisk implicit none ! arguments logical, intent(in) :: tfv,tvclcr integer, intent(in) :: ik real(8), intent(in) :: vmt(npcmtmax,natmtot),vir(ngtot) real(8), intent(in) :: bmt(npcmtmax,natmtot,ndmag),bir(ngtot,ndmag) ! local variables integer ist,ispn,recl ! automatic arrays complex(8) kmat(nstsv,nstsv),a(nstsv,nstsv) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:,:),evecsv(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfgk(:,:,:) ! get the eigenvalues/vectors from file for input reduced k-point allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! calculate the wavefunctions for all states of the input k-point allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfgk(ngkmax,nspinor,nstsv)) call genwfsv_sp(.false.,.true.,nstsv,[0],ngridg,igfft,ngk(:,ik),igkig(:,:,ik), & apwalm,evecfv,evecsv,wfmt,ngkmax,wfgk) deallocate(apwalm,evecfv) ! compute Kohn-Sham potential matrix elements if (spinpol) then call genvbmatk(vmt,vir,bmt,bir,ngk(:,ik),igkig(:,:,ik),wfmt,ngkmax,wfgk,kmat) else call genvmatk(vmt,vir,ngk(:,ik),igkig(:,:,ik),wfmt,ngkmax,wfgk,kmat) end if deallocate(wfgk) ! negate the potential matrix elements because we have to subtract them kmat(:,:)=-kmat(:,:) ! add second-variational eigenvalues along the diagonal do ist=1,nstsv kmat(ist,ist)=kmat(ist,ist)+evalsv(ist,ik) end do ! add the Coulomb core matrix elements if required if (tvclcr) call vclcore(wfmt,kmat) ! rotate kinetic matrix elements to first-variational basis if required if (tfv) then call zgemm('N','C',nstsv,nstsv,nstsv,zone,kmat,nstsv,evecsv,nstsv,zzero,a, & nstsv) call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,a,nstsv,zzero,kmat, & nstsv) end if deallocate(evecsv,wfmt) !$OMP CRITICAL(u220) ! write to RAM disk if required if (ramdisk) then call putrd('KMAT.OUT',ik,v1=vkl(:,ik),n1=nstsv,nzv=nstsv*nstsv,zva=kmat) end if ! write to disk if required if (wrtdsk) then ! determine the record length inquire(iolength=recl) vkl(:,1),nstsv,kmat open(220,file='KMAT.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(220,rec=ik) vkl(:,ik),nstsv,kmat close(220) end if !$OMP END CRITICAL(u220) end subroutine elk-9.2.12/src/PaxHeaders/getkmat.f900000644000000000000000000000013214536061313014203 xustar0030 mtime=1702388427.914501495 30 atime=1702388426.760503204 30 ctime=1702388427.914501495 elk-9.2.12/src/getkmat.f900000644002504400250440000000246414536061313016733 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getkmat(ik,kmat) use modmain use modramdisk implicit none ! arguments integer, intent(in) :: ik complex(8), intent(out) :: kmat(nstsv,nstsv) ! local variables logical tgs integer nstsv_,recl real(8) vkl_(3),t1 !$OMP CRITICAL(u220) ! read from RAM disk if required if (ramdisk) then call getrd('KMAT.OUT',ik,tgs,v1=vkl_,n1=nstsv_,nzv=nstsv*nstsv,zva=kmat) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,kmat open(220,file='KMAT.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(220,rec=ik) vkl_,nstsv_,kmat close(220) 10 continue !$OMP END CRITICAL(u220) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getkmat): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" KMAT.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getkmat): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" KMAT.OUT : ",I8)') nstsv_ write(*,*) stop end if end subroutine elk-9.2.12/src/PaxHeaders/putepsinv.f900000644000000000000000000000013214536061313014604 xustar0030 mtime=1702388427.915501493 30 atime=1702388426.761503202 30 ctime=1702388427.915501493 elk-9.2.12/src/putepsinv.f900000644002504400250440000000120514536061313017324 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putepsinv(iq,epsi) use modmain implicit none ! arguments integer, intent(in) :: iq complex(8), intent(in) :: epsi(ngrf,ngrf,nwrf) ! local variables integer recl ! determine the record length for EPSINV.OUT inquire(iolength=recl) vql(:,iq),ngrf,nwrf,epsi !$OMP CRITICAL(u245) open(245,file='EPSINV.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(245,rec=iq) vql(:,iq),ngrf,nwrf,epsi close(245) !$OMP END CRITICAL(u245) end subroutine elk-9.2.12/src/PaxHeaders/getcfgq.f900000644000000000000000000000013014536061313014165 xustar0029 mtime=1702388427.91750149 30 atime=1702388426.763503199 29 ctime=1702388427.91750149 elk-9.2.12/src/getcfgq.f900000644002504400250440000000652314536061313016717 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getcfgq(fname,vpl,ng,m,cf) use modmain implicit none ! arguments character(*), intent(in) :: fname real(8), intent(in) :: vpl(3) integer, intent(in) :: ng,m complex(8), intent(out) :: cf(ng,ng,m) ! local variables integer isym,iq,lspl,ilspl integer igq,jgq,igp,jgp,i integer recl,ng_,m_ real(8) vql_(3),si(3,3) real(8) vgql(3),v(3),t1 complex(8) z1 ! automatic arrays logical done(ng) integer map(ng) ! allocatable arrays real(8), allocatable :: vgpl(:,:) complex(8), allocatable :: cf_(:,:,:),x(:) ! find the equivalent reduced q-point and symmetry which rotates vql to vpl call findqpt(vpl,isym,iq) ! find the record length inquire(iolength=recl) vql_,ng_,m_,cf !$OMP CRITICAL(u245) open(245,file=trim(fname),form='UNFORMATTED',access='DIRECT',recl=recl) read(245,rec=iq) vql_,ng_,m_,cf close(245) !$OMP END CRITICAL(u245) t1=abs(vql(1,iq)-vql_(1))+abs(vql(2,iq)-vql_(2))+abs(vql(3,iq)-vql_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getcfgq): differing vectors for q-point ",I8)') iq write(*,'(" current : ",3G18.10)') vql(:,iq) write(*,'(" file : ",3G18.10)') vql_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if if (ng /= ng_) then write(*,*) write(*,'("Error(getcfgq): differing ng for q-point ",I8)') iq write(*,'(" current : ",I8)') ng write(*,'(" file : ",I8)') ng_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if if (m /= m_) then write(*,*) write(*,'("Error(getcfgq): differing m for q-point ",I8)') iq write(*,'(" current : ",I8)') m write(*,'(" file : ",I8)') m_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if ! if p = q then return t1=abs(vpl(1)-vql(1,iq))+abs(vpl(2)-vql(2,iq))+abs(vpl(3)-vql(3,iq)) if (t1 < epslat) return ! allocate local arrays allocate(vgpl(3,ng),cf_(ng,ng,m),x(ng)) ! perform translation operation and store in temporary array if (tv0symc(isym)) then ! translation vector is zero cf_(:,:,:)=cf(:,:,:) else ! non-zero translation vector gives a phase factor v(:)=vtcsymc(:,isym) do igq=1,ng t1=-(vgc(1,igq)*v(1)+vgc(2,igq)*v(2)+vgc(3,igq)*v(3)) x(igq)=cmplx(cos(t1),sin(t1),8) end do do jgq=1,ng z1=conjg(x(jgq)) do igq=1,ng cf_(igq,jgq,:)=z1*x(igq)*cf(igq,jgq,:) end do end do end if ! index to spatial rotation in lattice point group lspl=lsplsymc(isym) ! the inverse of the spatial symmetry ilspl=isymlat(lspl) si(:,:)=dble(symlat(:,:,ilspl)) ! find the map from {G+q} to {G+p} map(:)=0 do igp=1,ng vgpl(:,igp)=dble(ivg(:,igp))+vpl(:) end do done(:)=.false. i=1 do igq=1,ng vgql(:)=dble(ivg(:,igq))+vql(:,iq) call r3mtv(si,vgql,v) do igp=i,ng if (done(igp)) cycle t1=abs(v(1)-vgpl(1,igp))+abs(v(2)-vgpl(2,igp))+abs(v(3)-vgpl(3,igp)) if (t1 < epslat) then map(igp)=igq done(igp)=.true. exit end if end do do igp=i,ng if (.not.done(igp)) then i=igp exit end if end do end do ! rotate correlation function (passive transformation) do jgp=1,ng jgq=map(jgp) do igp=1,ng igq=map(igp) if ((igq == 0).or.(jgq == 0)) then cf(igp,jgp,:)=0.d0 else cf(igp,jgp,:)=cf_(igq,jgq,:) end if end do end do deallocate(vgpl,cf_,x) end subroutine elk-9.2.12/src/PaxHeaders/putevalsv.f900000644000000000000000000000013214536061313014600 xustar0030 mtime=1702388427.918501489 30 atime=1702388426.764503198 30 ctime=1702388427.918501489 elk-9.2.12/src/putevalsv.f900000644002504400250440000000123214536061313017320 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putevalsv(fext,ik,evalsvp) use modmain implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ik real(8), intent(in) :: evalsvp(nstsv) ! local variables integer recl ! find the record length inquire(iolength=recl) vkl(:,ik),nstsv,evalsvp !$OMP CRITICAL(u204) open(204,file='EVALSV'//trim(fext),form='UNFORMATTED',access='DIRECT',recl=recl) write(204,rec=ik) vkl(:,ik),nstsv,evalsvp close(204) !$OMP END CRITICAL(u204) end subroutine elk-9.2.12/src/PaxHeaders/getevalsv.f900000644000000000000000000000013214536061313014547 xustar0030 mtime=1702388427.919501488 30 atime=1702388426.766503195 30 ctime=1702388427.919501488 elk-9.2.12/src/getevalsv.f900000644002504400250440000000274614536061313017302 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getevalsv(fext,ikp,vpl,evalsvp) use modmain implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ikp real(8), intent(in) :: vpl(3) real(8), intent(out) :: evalsvp(nstsv) ! local variables integer isym,ik,ist integer recl,nstsv_ real(8) vkl_(3),t1 if (ikp > 0) then ik=ikp else ! find the k-point number call findkpt(vpl,isym,ik) end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,evalsvp !$OMP CRITICAL(u204) open(204,file='EVALSV'//trim(fext),form='UNFORMATTED',access='DIRECT',recl=recl) read(204,rec=ik) vkl_,nstsv_,evalsvp close(204) !$OMP END CRITICAL(u204) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevalsv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EVALSV.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getevalsv): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" EVALSV.OUT : ",I8)') nstsv_ write(*,*) stop end if ! apply scissor correction if required if (tscissor) then do ist=1,nstsv if (evalsvp(ist).gt.efermi) evalsvp(ist)=evalsvp(ist)+scissor end do end if end subroutine elk-9.2.12/src/PaxHeaders/getevecsv.f900000644000000000000000000000013214536061313014542 xustar0030 mtime=1702388427.921501485 30 atime=1702388426.767503193 30 ctime=1702388427.921501485 elk-9.2.12/src/getevecsv.f900000644002504400250440000000451414536061313017270 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getevecsv(fext,ikp,vpl,evecsv) use modmain use modramdisk implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ikp real(8), intent(in) :: vpl(3) complex(8), intent(out) :: evecsv(nstsv,nstsv) ! local variables logical tgs integer isym,lspn integer ik,ist,jst integer recl,nstsv_ real(8) vkl_(3),det,v(3),th,t1 complex(8) su2(2,2),z1,z2 character(256) fname if (ikp > 0) then ik=ikp else ! find the equivalent k-point number and symmetry which rotates vkl to vpl call findkpt(vpl,isym,ik) end if ! construct the filename fname=trim(scrpath)//'EVECSV'//trim(fext) !$OMP CRITICAL(u206) ! read from RAM disk if required if (ramdisk) then call getrd(fname,ik,tgs,v1=vkl_,n1=nstsv_,nzv=nstsv*nstsv,zva=evecsv) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,evecsv open(206,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) read(206,rec=ik) vkl_,nstsv_,evecsv close(206) 10 continue !$OMP END CRITICAL(u206) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevecsv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EVECSV.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getevecsv): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" EVECSV.OUT : ",I8)') nstsv_ write(*,*) stop end if ! if eigenvectors are spin-unpolarised return if (.not.spinpol) return ! if p = k then return if (ikp > 0) return ! index to global spin rotation in lattice point group lspn=lspnsymc(isym) ! if symmetry element is the identity return if (lspn == 1) return ! find the SU(2) representation of the spin rotation matrix call rotaxang(epslat,symlatc(:,:,lspn),det,v,th) call axangsu2(v,th,su2) ! apply SU(2) matrix to second-variational states (active transformation) do jst=1,nstsv do ist=1,nstfv z1=evecsv(ist,jst) z2=evecsv(ist+nstfv,jst) evecsv(ist,jst)=su2(1,1)*z1+su2(1,2)*z2 evecsv(ist+nstfv,jst)=su2(2,1)*z1+su2(2,2)*z2 end do end do end subroutine elk-9.2.12/src/PaxHeaders/putevecsv.f900000644000000000000000000000013214536061313014573 xustar0030 mtime=1702388427.922501483 30 atime=1702388426.768503192 30 ctime=1702388427.922501483 elk-9.2.12/src/putevecsv.f900000644002504400250440000000166414536061313017324 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putevecsv(fext,ik,evecsv) use modmain use modramdisk implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ik complex(8), intent(in) :: evecsv(nstsv,nstsv) ! local variables integer recl character(256) fname ! construct the filename fname=trim(scrpath)//'EVECSV'//trim(fext) !$OMP CRITICAL(u206) ! write to RAM disk if required if (ramdisk) then call putrd(fname,ik,v1=vkl(:,ik),n1=nstsv,nzv=nstsv*nstsv,zva=evecsv) end if ! write to disk if required if (wrtdsk) then ! find the record length inquire(iolength=recl) vkl(:,ik),nstsv,evecsv open(206,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) write(206,rec=ik) vkl(:,ik),nstsv,evecsv close(206) end if !$OMP END CRITICAL(u206) end subroutine elk-9.2.12/src/PaxHeaders/genshtmat.f900000644000000000000000000000013214536061313014541 xustar0030 mtime=1702388427.923501482 30 atime=1702388426.770503189 30 ctime=1702388427.923501482 elk-9.2.12/src/genshtmat.f900000644002504400250440000000741614536061313017273 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genshtmat ! !INTERFACE: subroutine genshtmat ! !USES: use modmain ! !DESCRIPTION: ! Generates the forward and backward spherical harmonic transformation (SHT) ! matrices using the spherical covering set produced by the routine ! {\tt sphcover}. These matrices are used to transform a function between its ! $(l,m)$-expansion coefficients and its values at the $(\theta,\phi)$ points ! on the sphere. Both real and complex SHT matrices are calculated and stored ! in global arrays. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! local variables integer itp real(8) v(3) ! automatic arrays real(8) tp(2,lmmaxo),vtp(3,lmmaxo),rlm(lmmaxo) complex(8) ylm(lmmaxo) !--------------------------------! ! SHT matrices for lmaxi ! !--------------------------------! ! allocate real SHT matrices if (allocated(rbshti)) deallocate(rbshti) allocate(rbshti(lmmaxi,lmmaxi)) if (allocated(rfshti)) deallocate(rfshti) allocate(rfshti(lmmaxi,lmmaxi)) ! allocate complex SHT matrices if (allocated(zbshti)) deallocate(zbshti) allocate(zbshti(lmmaxi,lmmaxi)) if (allocated(zfshti)) deallocate(zfshti) allocate(zfshti(lmmaxi,lmmaxi)) ! allocate single-precision complex copies if (allocated(cbshti)) deallocate(cbshti) allocate(cbshti(lmmaxi,lmmaxi)) if (allocated(cfshti)) deallocate(cfshti) allocate(cfshti(lmmaxi,lmmaxi)) ! generate spherical covering set for lmaxi call sphcover(lmmaxi,tp) ! convert (theta, phi) angles to vectors do itp=1,lmmaxi call sctovec(tp(:,itp),vtp(:,itp)) end do ! rotate the spherical covering set if required if (trotsht) then do itp=1,lmmaxi v(:)=vtp(:,itp) call r3mv(rotsht,v,vtp(:,itp)) end do end if ! generate real and complex spherical harmonics and set the backward SHT arrays do itp=1,lmmaxi call genrlmv(lmaxi,vtp(:,itp),rlm) rbshti(itp,1:lmmaxi)=rlm(1:lmmaxi) call genylmv(lmaxi,vtp(:,itp),ylm) zbshti(itp,1:lmmaxi)=ylm(1:lmmaxi) end do ! find the forward SHT arrays ! real rfshti(:,:)=rbshti(:,:) call rminv(lmmaxi,rfshti) ! complex zfshti(:,:)=zbshti(:,:) call zminv(lmmaxi,zfshti) ! make single-precision complex copies cbshti(:,:)=zbshti(:,:) cfshti(:,:)=zfshti(:,:) !--------------------------------! ! SHT matrices for lmaxo ! !--------------------------------! ! allocate real SHT matrices if (allocated(rbshto)) deallocate(rbshto) allocate(rbshto(lmmaxo,lmmaxo)) if (allocated(rfshto)) deallocate(rfshto) allocate(rfshto(lmmaxo,lmmaxo)) ! allocate complex SHT matrices if (allocated(zbshto)) deallocate(zbshto) allocate(zbshto(lmmaxo,lmmaxo)) if (allocated(zfshto)) deallocate(zfshto) allocate(zfshto(lmmaxo,lmmaxo)) ! allocate single-precision complex copies if (allocated(cbshto)) deallocate(cbshto) allocate(cbshto(lmmaxo,lmmaxo)) if (allocated(cfshto)) deallocate(cfshto) allocate(cfshto(lmmaxo,lmmaxo)) ! generate spherical covering set call sphcover(lmmaxo,tp) ! convert (theta, phi) angles to vectors do itp=1,lmmaxo call sctovec(tp(:,itp),vtp(:,itp)) end do ! rotate the spherical covering set if required if (trotsht) then do itp=1,lmmaxo v(:)=vtp(:,itp) call r3mv(rotsht,v,vtp(:,itp)) end do end if ! generate real and complex spherical harmonics and set the backward SHT arrays do itp=1,lmmaxo call genrlmv(lmaxo,vtp(:,itp),rlm) rbshto(itp,1:lmmaxo)=rlm(1:lmmaxo) call genylmv(lmaxo,vtp(:,itp),ylm) zbshto(itp,1:lmmaxo)=ylm(1:lmmaxo) end do ! find the forward SHT arrays ! real rfshto(:,:)=rbshto(:,:) call rminv(lmmaxo,rfshto) ! complex zfshto(:,:)=zbshto(:,:) call zminv(lmmaxo,zfshto) ! make single-precision complex copies cbshto(:,:)=zbshto(:,:) cfshto(:,:)=zfshto(:,:) end subroutine !EOC elk-9.2.12/src/PaxHeaders/allatoms.f900000644000000000000000000000013214536061313014363 xustar0030 mtime=1702388427.925501479 30 atime=1702388426.771503187 30 ctime=1702388427.925501479 elk-9.2.12/src/allatoms.f900000644002504400250440000000356214536061313017113 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: allatoms ! !INTERFACE: subroutine allatoms ! !USES: use modmain use modxcifc use modomp ! !DESCRIPTION: ! Solves the Kohn-Sham-Dirac equations for each atom type in the solid and ! finds the self-consistent radial wavefunctions, eigenvalues, charge ! densities and potentials. The atomic densities can then be used to ! initialise the crystal densities, and the atomic self-consistent potentials ! can be appended to the muffin-tin potentials to solve for the core states. ! Note that, irrespective of the value of {\tt xctype}, exchange-correlation ! functional type 3 is used. See also {\tt atoms}, {\tt rhoinit}, ! {\tt gencore} and {\tt modxcifc}. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) ! Modified for GGA, June 2007 (JKD) !EOP !BOC implicit none logical hybrid_ integer xcspin_,xcgrad_ integer is,nthd real(8) hybridc_ character(264) xcdescr_ ! allocatable arrays real(8), allocatable :: rwf(:,:,:) ! allocate global species charge density and potential arrays if (allocated(rhosp)) deallocate(rhosp) allocate(rhosp(nrspmax,nspecies)) if (allocated(vrsp)) deallocate(vrsp) allocate(vrsp(nrspmax,nspecies)) ! get the exchange-correlation functional data call getxcdata(xctsp,xcdescr_,xcspin_,xcgrad_,hybrid_,hybridc_) call holdthd(nspecies,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(rwf) & !$OMP NUM_THREADS(nthd) allocate(rwf(nrspmax,2,nstspmax)) !$OMP DO do is=1,nspecies call atom(solsc,ptnucl,spzn(is),nstsp(is),nsp(:,is),lsp(:,is),ksp(:,is), & occsp(:,is),xctsp,xcgrad_,nrsp(is),rsp(:,is),evalsp(:,is),rhosp(:,is), & vrsp(:,is),rwf) end do !$OMP END DO deallocate(rwf) !$OMP END PARALLEL call freethd(nthd) end subroutine !EOC elk-9.2.12/src/PaxHeaders/putevecfv.f900000644000000000000000000000013214536061313014556 xustar0030 mtime=1702388427.926501477 30 atime=1702388426.773503185 30 ctime=1702388427.926501477 elk-9.2.12/src/putevecfv.f900000644002504400250440000000177714536061313017314 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putevecfv(fext,ik,evecfv) use modmain use modramdisk implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ik complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv) ! local variables integer recl character(256) fname ! construct the filename fname=trim(scrpath)//'EVECFV'//trim(fext) !$OMP CRITICAL(u202) ! write to RAM disk if required if (ramdisk) then call putrd(fname,ik,v1=vkl(:,ik),n1=nmatmax,n2=nstfv,n3=nspnfv, & nzv=nmatmax*nstfv*nspnfv,zva=evecfv) end if ! write to disk if required if (wrtdsk) then ! find the record length inquire(iolength=recl) vkl(:,ik),nmatmax,nstfv,nspnfv,evecfv open(202,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) write(202,rec=ik) vkl(:,ik),nmatmax,nstfv,nspnfv,evecfv close(202) end if !$OMP END CRITICAL(u202) end subroutine elk-9.2.12/src/PaxHeaders/getevecfv.f900000644000000000000000000000013214536061313014525 xustar0030 mtime=1702388427.927501476 30 atime=1702388426.774503183 30 ctime=1702388427.927501476 elk-9.2.12/src/getevecfv.f900000644002504400250440000001414214536061313017251 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: getevecfv ! !INTERFACE: subroutine getevecfv(fext,ikp,vpl,vgpl,evecfv) ! !USES: use modmain use modramdisk ! !INPUT/OUTPUT PARAMETERS: ! fext : filename extension (in,character(*)) ! ikp : p-point vector index (in,integer) ! vpl : p-point vector in lattice coordinates (in,real(3)) ! vgpl : G+p-vectors in lattice coordinates (out,real(3,ngkmax,nspnfv)) ! evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv,nspnfv)) ! !DESCRIPTION: ! Reads in a first-variational eigenvector from file. If the input $k$-point, ! ${\bf p}$, is not in the reduced set, then the eigenvector of the equivalent ! point is read in and the required rotation/translation operations applied. ! ! !REVISION HISTORY: ! Created Feburary 2007 (JKD) ! Fixed transformation error, October 2007 (JKD, Anton Kozhevnikov) ! Fixed l.o. rotation, June 2010 (A. Kozhevnikov) !EOP !BOC implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ikp real(8), intent(in) :: vpl(3),vgpl(3,ngkmax,nspnfv) complex(8), intent(out) :: evecfv(nmatmax,nstfv,nspnfv) ! local variables logical tgs integer isym,lspl,ilspl integer jspn,ilo,l,lm,i,j integer ik,ist,igp,igk,ig integer is,ia,ja,ias,jas integer recl,nmatmax_,nstfv_,nspnfv_ real(8) vkl_(3),v(3) real(8) si(3,3),t1 complex(8) z1 character(256) fname ! automatic arrays logical done(ngkmax) ! allocatable arrays complex(8), allocatable :: evecfv_(:,:) if (ikp > 0) then ik=ikp else ! find the equivalent k-point number and crystal symmetry element call findkpt(vpl,isym,ik) end if ! construct the filename fname=trim(scrpath)//'EVECFV'//trim(fext) !$OMP CRITICAL(u202) ! read from RAM disk if required if (ramdisk) then call getrd(fname,ik,tgs,v1=vkl_,n1=nmatmax_,n2=nstfv_,n3=nspnfv_, & nzv=nmatmax*nstfv*nspnfv,zva=evecfv) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nmatmax_,nstfv_,nspnfv_,evecfv open(202,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) read(202,rec=ik) vkl_,nmatmax_,nstfv_,nspnfv_,evecfv close(202) 10 continue !$OMP END CRITICAL(u202) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevecfv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EVECFV.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nmatmax /= nmatmax_) then write(*,*) write(*,'("Error(getevecfv): differing nmatmax for k-point ",I8)') ik write(*,'(" current : ",I8)') nmatmax write(*,'(" EVECFV.OUT : ",I8)') nmatmax_ write(*,*) stop end if if (nstfv /= nstfv_) then write(*,*) write(*,'("Error(getevecfv): differing nstfv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstfv write(*,'(" EVECFV.OUT : ",I8)') nstfv_ write(*,*) stop end if if (nspnfv /= nspnfv_) then write(*,*) write(*,'("Error(getevecfv): differing nspnfv for k-point ",I8)') ik write(*,'(" current : ",I8)') nspnfv write(*,'(" EVECFV.OUT : ",I8)') nspnfv_ write(*,*) stop end if ! if p = k then return if (ikp > 0) return t1=abs(vpl(1)-vkl(1,ik))+abs(vpl(2)-vkl(2,ik))+abs(vpl(3)-vkl(3,ik)) if (t1 < epslat) return ! allocate temporary eigenvector array allocate(evecfv_(nmatmax,nstfv)) ! index to spatial rotation in lattice point group lspl=lsplsymc(isym) ! the inverse of the spatial symmetry rotates k into p ilspl=isymlat(lspl) si(:,:)=dble(symlat(:,:,ilspl)) !-----------------------------------------------! ! translate and rotate APW coefficients ! !-----------------------------------------------! ! loop over the first-variational spins do jspn=1,nspnfv if (tv0symc(isym)) then ! translation vector is zero do ist=1,nstfv do igk=1,ngk(jspn,ik) evecfv_(igk,ist)=evecfv(igk,ist,jspn) end do end do else ! non-zero translation vector gives a phase factor v(:)=vtcsymc(:,isym) do igk=1,ngk(jspn,ik) ig=igkig(igk,jspn,ik) t1=-(vgc(1,ig)*v(1)+vgc(2,ig)*v(2)+vgc(3,ig)*v(3)) z1=cmplx(cos(t1),sin(t1),8) evecfv_(igk,:)=z1*evecfv(igk,:,jspn) end do end if ! apply spatial rotation operation (passive transformation) done(1:ngk(jspn,ik))=.false. i=1 do igk=1,ngk(jspn,ik) call r3mtv(si,vgkl(:,igk,jspn,ik),v) do igp=i,ngk(jspn,ik) if (done(igp)) cycle t1=abs(v(1)-vgpl(1,igp,jspn)) & +abs(v(2)-vgpl(2,igp,jspn)) & +abs(v(3)-vgpl(3,igp,jspn)) if (t1 < epslat) then evecfv(igp,:,jspn)=evecfv_(igk,:) done(igp)=.true. exit end if end do do igp=i,ngk(jspn,ik) if (.not.done(igp)) then i=igp exit end if end do end do end do !---------------------------------------------------------! ! translate and rotate local-orbital coefficients ! !---------------------------------------------------------! if (nlotot > 0) then ! rotate k-point by inverse symmetry matrix call r3mtv(si,vkl(:,ik),v) ! loop over the first-variational spins do jspn=1,nspnfv ! make a copy of the local-orbital coefficients do i=ngk(jspn,ik)+1,nmat(jspn,ik) evecfv_(i,:)=evecfv(i,:,jspn) end do do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! equivalent atom for this symmetry ja=ieqatom(ia,is,isym) jas=idxas(ja,is) ! phase factor from translation t1=-twopi*dot_product(vkl(1:3,ik),atposl(1:3,ja,is)) z1=cmplx(cos(t1),sin(t1),8) t1=twopi*dot_product(v(:),atposl(:,ia,is)) z1=z1*cmplx(cos(t1),sin(t1),8) ! rotate local-orbitals (active transformation) do ilo=1,nlorb(is) l=lorbl(ilo,is) lm=l**2+1 i=ngk(jspn,ik)+idxlo(lm,ilo,ias) j=ngk(jspn,ik)+idxlo(lm,ilo,jas) call rotzflm(symlatc(:,:,lspl),l,l,lolmmax,nstfv,nmatmax, & evecfv_(j,1),evecfv(i,1,jspn)) evecfv(i:i+2*l,:,jspn)=z1*evecfv(i:i+2*l,:,jspn) end do end do end do end do end if deallocate(evecfv_) end subroutine !EOC elk-9.2.12/src/PaxHeaders/writesym.f900000644000000000000000000000013114536061313014431 xustar0030 mtime=1702388427.929501473 29 atime=1702388426.77650318 30 ctime=1702388427.929501473 elk-9.2.12/src/writesym.f900000644002504400250440000000570214536061313017160 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writesym ! !INTERFACE: subroutine writesym ! !USES: use modmain ! !DESCRIPTION: ! Outputs the Bravais, crystal and site symmetry matrices to files ! {\tt SYMLAT.OUT}, {\tt SYMCRYS.OUT} and {\tt SYMSITE.OUT}, respectively. ! Also writes out equivalent atoms and related crystal symmetries to ! {\tt EQATOMS.OUT}. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! local variables integer is,ia,ja,ias,i integer isym,lspl,lspn ! output the Bravais lattice symmetries open(50,file='SYMLAT'//trim(filext),form='FORMATTED',action='WRITE') write(50,'(I4," : nsymlat")') nsymlat do isym=1,nsymlat write(50,*) write(50,'(I4)') isym do i=1,3 write(50,'(3I4)') symlat(i,:,isym) end do end do close(50) ! output the crystal symmetries open(50,file='SYMCRYS'//trim(filext),form='FORMATTED',action='WRITE') write(50,*) write(50,'("(translation vectors and rotation matrices are in lattice & &coordinates)")') write(50,*) write(50,'(I4," : nsymcrys")') nsymcrys do isym=1,nsymcrys write(50,*) write(50,'("Crystal symmetry : ",I4)') isym write(50,'(" spatial translation :")') write(50,'(3G18.10)') vtlsymc(:,isym) write(50,'(" spatial rotation :")') lspl=lsplsymc(isym) do i=1,3 write(50,'(3I4)') symlat(i,:,lspl) end do write(50,'(" global spin rotation :")') lspn=lspnsymc(isym) do i=1,3 write(50,'(3I4)') symlat(i,:,lspn) end do end do close(50) ! output the site symmetries open(50,file='SYMSITE'//trim(filext),form='FORMATTED',action='WRITE') write(50,*) write(50,'("(rotation matrices are in lattice coordinates)")') do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is,trim(spsymb(is)),ia write(50,'(I4," : nsymsite")') nsymsite(ias) do isym=1,nsymsite(ias) write(50,*) write(50,'(" Site symmetry : ",I4)') isym write(50,'(" spatial rotation :")') lspl=lsplsyms(isym,ias) do i=1,3 write(50,'(3I4)') symlat(i,:,lspl) end do write(50,'(" global spin rotation :")') lspn=lspnsyms(isym,ias) do i=1,3 write(50,'(3I4)') symlat(i,:,lspn) end do end do end do end do close(50) ! output the equivalent atoms and related symmetries open(50,file='EQATOMS'//trim(filext),form='FORMATTED',action='WRITE') do is=1,nspecies write(50,*) write(50,'("Species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) write(50,'(" atom ",I4," is equivalent to atom(s)")') ia i=0 do ja=1,natoms(is) if (eqatoms(ia,ja,is)) then if ((i > 0).and.(mod(i,20) == 0)) write(50,*) write(50,'(I4)',advance='NO') ja i=i+1 end if end do write(50,*) end do end do close(50) end subroutine !EOC elk-9.2.12/src/PaxHeaders/putoccsv.f900000644000000000000000000000013214536061313014415 xustar0030 mtime=1702388427.930501471 30 atime=1702388426.777503178 30 ctime=1702388427.930501471 elk-9.2.12/src/putoccsv.f900000644002504400250440000000122414536061313017136 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putoccsv(fext,ik,occsvp) use modmain implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ik real(8), intent(in) :: occsvp(nstsv) ! local variables integer recl ! find the record length inquire(iolength=recl) vkl(:,ik),nstsv,occsvp !$OMP CRITICAL(u208) open(208,file='OCCSV'//trim(fext),form='UNFORMATTED',access='DIRECT',recl=recl) write(208,rec=ik) vkl(:,ik),nstsv,occsvp close(208) !$OMP END CRITICAL(u208) end subroutine elk-9.2.12/src/PaxHeaders/getoccsv.f900000644000000000000000000000013014536061313014362 xustar0029 mtime=1702388427.93150147 30 atime=1702388426.779503176 29 ctime=1702388427.93150147 elk-9.2.12/src/getoccsv.f900000644002504400250440000000247114536061313017112 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getoccsv(fext,ikp,vpl,occsvp) use modmain implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ikp real(8), intent(in) :: vpl(3) real(8), intent(out) :: occsvp(nstsv) ! local variables integer isym,ik integer recl,nstsv_ real(8) vkl_(3),t1 if (ikp > 0) then ik=ikp else ! find the k-point number call findkpt(vpl,isym,ik) end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,occsvp !$OMP CRITICAL(u208) open(208,file='OCCSV'//trim(fext),form='UNFORMATTED',access='DIRECT',recl=recl) read(208,rec=ik) vkl_,nstsv_,occsvp close(208) !$OMP END CRITICAL(u208) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getoccsv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" OCCSV.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getoccsv): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" OCCSV.OUT : ",I8)') nstsv_ write(*,*) stop end if end subroutine elk-9.2.12/src/PaxHeaders/torque.f900000644000000000000000000000013214536061313014066 xustar0030 mtime=1702388427.933501467 30 atime=1702388426.780503174 30 ctime=1702388427.933501467 elk-9.2.12/src/torque.f900000644002504400250440000000171714536061313016616 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine torque use modmain implicit none ! local variables integer idm real(8) torq(3) ! allocatable arrays real(8), allocatable :: rvfmt(:,:,:),rvfir(:,:) ! external functions real(8), external :: rfint ! initialise universal variables call init0 if (.not.ncmag) then torq(:)=0.d0 goto 10 end if ! read magnetisation and exchange-correlation magnetic field from file call readstate ! compute m(r) x B_xc(r) allocate(rvfmt(npmtmax,natmtot,3),rvfir(ngtot,3)) call rvfcross(magmt,magir,bxcmt,bxcir,rvfmt,rvfir) ! integrate to find the total torque do idm=1,ndmag torq(idm)=rfint(rvfmt(:,:,idm),rvfir(:,idm)) end do 10 continue write(*,*) write(*,'("Info(torque):")') write(*,'(" Total torque exerted by B_xc on the magnetisation :")') write(*,'(3G18.10)') torq end subroutine elk-9.2.12/src/PaxHeaders/findqpt.f900000644000000000000000000000013214536061313014214 xustar0030 mtime=1702388427.934501465 30 atime=1702388426.781503173 30 ctime=1702388427.934501465 elk-9.2.12/src/findqpt.f900000644002504400250440000000211714536061313016737 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine findqpt(vpl,isym,iq) use modmain implicit none ! arguments real(8), intent(in) :: vpl(3) integer, intent(out) :: isym,iq ! local variables integer i1,i2,i3,lspl real(8) v1(3),v2(3),t1 i1=modulo(nint(vpl(1)*ngridq(1)),ngridq(1)) i2=modulo(nint(vpl(2)*ngridq(2)),ngridq(2)) i3=modulo(nint(vpl(3)*ngridq(3)),ngridq(3)) iq=ivqiq(i1,i2,i3) v1(:)=vql(:,iq) call r3frac(epslat,v1) ! find the symmetry which rotates vql to vpl do isym=1,nsymcrys lspl=lsplsymc(isym) ! multiply vpl by the transpose of the symmetry matrix (i.e. the inverse) v2(:)=symlat(1,:,lspl)*vpl(1) & +symlat(2,:,lspl)*vpl(2) & +symlat(3,:,lspl)*vpl(3) call r3frac(epslat,v2) t1=abs(v1(1)-v2(1))+abs(v1(2)-v2(2))+abs(v1(3)-v2(3)) if (t1 < epslat) return end do write(*,*) write(*,'("Error(findqpt): equivalent q-point not in set")') write(*,'(" Requested q-point : ",3G18.10)') vpl write(*,*) stop end subroutine elk-9.2.12/src/PaxHeaders/findkpt.f900000644000000000000000000000013114536061313014205 xustar0030 mtime=1702388427.935501464 29 atime=1702388426.78350317 30 ctime=1702388427.935501464 elk-9.2.12/src/findkpt.f900000644002504400250440000000213714536061313016733 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine findkpt(vpl,isym,ik) use modmain implicit none ! arguments real(8), intent(in) :: vpl(3) integer, intent(out) :: isym,ik ! local variables integer i1,i2,i3,lspl real(8) v1(3),v2(3),t1 v1(:)=vpl(:)-vkloff(:)/dble(ngridk(:)) i1=modulo(nint(v1(1)*ngridk(1)),ngridk(1)) i2=modulo(nint(v1(2)*ngridk(2)),ngridk(2)) i3=modulo(nint(v1(3)*ngridk(3)),ngridk(3)) ik=ivkik(i1,i2,i3) v1(:)=vkl(:,ik) ! find the symmetry which rotates vkl to vpl do isym=1,nsymcrys lspl=lsplsymc(isym) ! multiply vpl by the transpose of the symmetry matrix (i.e. the inverse) v2(:)=symlat(1,:,lspl)*vpl(1) & +symlat(2,:,lspl)*vpl(2) & +symlat(3,:,lspl)*vpl(3) call r3frac(epslat,v2) t1=abs(v1(1)-v2(1))+abs(v1(2)-v2(2))+abs(v1(3)-v2(3)) if (t1 < epslat) return end do write(*,*) write(*,'("Error(findkpt): equivalent k-point not in set")') write(*,'(" Requested k-point : ",3G18.10)') vpl write(*,*) stop end subroutine elk-9.2.12/src/PaxHeaders/genevfsv.f900000644000000000000000000000013214536061313014372 xustar0030 mtime=1702388427.936501462 30 atime=1702388426.786503165 30 ctime=1702388427.936501462 elk-9.2.12/src/genevfsv.f900000644002504400250440000000247614536061313017125 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genevfsv use modmain use modmpi use modomp implicit none ! local variables integer ik,lp,nthd ! automatic arrays real(8) evalfv(nstfv,nspnfv) ! allocatable arrays complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) ! begin parallel loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evalfv,evecfv,evecsv) & !$OMP NUM_THREADS(nthd) allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! solve the first- and second-variational eigenvalue equations call eveqn(ik,evalfv,evecfv,evecsv) ! write the eigenvalues/vectors to file call putevalfv(filext,ik,evalfv) call putevalsv(filext,ik,evalsv(:,ik)) call putevecfv(filext,ik,evecfv) call putevecsv(filext,ik,evecsv) end do !$OMP END DO deallocate(evecfv,evecsv) !$OMP END PARALLEL call freethd(nthd) ! broadcast eigenvalue array to every MPI process if (np_mpi > 1) then do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(evalsv(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) end do end if end subroutine elk-9.2.12/src/PaxHeaders/genwfsv.f900000644000000000000000000000013214536061313014226 xustar0030 mtime=1702388427.938501459 30 atime=1702388426.787503164 30 ctime=1702388427.938501459 elk-9.2.12/src/genwfsv.f900000644002504400250440000000564414536061313016761 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genwfsv ! !INTERFACE: subroutine genwfsv(tsh,tgp,nst,idx,ngdg,igf,ngp,igpig,apwalm,evecfv,evecsv, & wfmt,ld,wfir) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! tsh : .true. if wfmt should be in spherical harmonic basis (in,logical) ! tgp : .true. if wfir should be in G+p-space, otherwise in real-space ! (in,logical) ! nst : number of states to be calculated (in,integer) ! idx : index to states which are to be calculated; if idx(1)=0 then ! all states are calculated in the usual order (in,integer(*)) ! ngdg : G-vector grid sizes (in,integer(3)) ! igf : map from G-vector index to FFT array (in,integer(*)) ! ngp : number of G+p-vectors (in,integer(nspnfv)) ! igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax,nspnfv)) ! apwalm : APW matching coefficients ! (in,complex(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) ! evecfv : first-variational eigenvectors (in,complex(nmatmax,nstfv,nspnfv)) ! evecsv : second-variational eigenvectors (in,complex(nstsv,nstsv)) ! wfmt : muffin-tin part of the wavefunctions for every state in spherical ! coordinates (out,complex(npcmtmax,natmtot,nspinor,nst)) ! ld : leading dimension of wfir (in,integer) ! wfir : interstitial part of the wavefunctions for every state ! (out,complex(ld,nspinor,nst)) ! !DESCRIPTION: ! Calculates the second-variational spinor wavefunctions in both the ! muffin-tin and interstitial regions for every state of a particular ! $k$-point. A coarse radial mesh is assumed in the muffin-tins with angular ! momentum cut-off of {\tt lmaxo}. ! ! !REVISION HISTORY: ! Created November 2004 (Sharma) ! Updated for spin-spirals, June 2010 (JKD) ! Packed muffin-tins, April 2016 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: tsh,tgp integer, intent(in) :: nst,idx(*),ngdg(3),igf(*) integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) complex(8), intent(out) :: wfmt(npcmtmax,natmtot,nspinor,nst) integer, intent(in) :: ld complex(8), intent(out) :: wfir(ld,nspinor,nst) ! local variables integer is,ias,ldmt,nthd ! muffin-tin wavefunction ldmt=npcmtmax*natmtot call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) call wfmtsv(tsh,lradstp,is,ias,nst,idx,ngp,apwalm,evecfv,evecsv,ldmt, & wfmt(1,ias,1,1)) end do !$OMP END PARALLEL DO call freethd(nthd) ! interstitial wavefunction call wfirsv(tgp,nst,idx,ngdg,igf,ngp,igpig,evecfv,evecsv,ld,wfir) end subroutine !EOC elk-9.2.12/src/PaxHeaders/sdelta.f900000644000000000000000000000013214536061313014023 xustar0030 mtime=1702388427.939501458 30 atime=1702388426.789503161 30 ctime=1702388427.939501458 elk-9.2.12/src/sdelta.f900000644002504400250440000000501414536061313016545 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sdelta ! !INTERFACE: real(8) function sdelta(stype,x) ! !INPUT/OUTPUT PARAMETERS: ! stype : smearing type (in,integer) ! x : real argument (in,real) ! !DESCRIPTION: ! Returns a normalised smooth approximation to the Dirac delta function. These ! functions are defined such that ! $$ \int\tilde{\delta}(x)dx=1. $$ ! The effective width, $w$, of the delta function may be varied by using the ! normalising transformation ! $$ \tilde{\delta}_w(x)\equiv\frac{\tilde{\delta}(x/w)}{w}. $$ ! Currently implimented are: ! \begin{list}{}{\itemsep -2pt} ! \item[0.] Gaussian ! \item[1.] Methfessel-Paxton order 1 ! \item[2.] Methfessel-Paxton order 2 ! \item[3.] Fermi-Dirac ! \item[4.] Square-wave impulse ! \item[5.] Lorentzian ! \end{list} ! See routines {\tt stheta}, {\tt sdelta\_mp}, {\tt sdelta\_fd} and ! {\tt sdelta\_sq}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: stype real(8), intent(in) :: x ! external functions real(8), external :: sdelta_mp,sdelta_fd,sdelta_sq,sdelta_lr select case(stype) case(0) sdelta=sdelta_mp(0,x) case(1) sdelta=sdelta_mp(1,x) case(2) sdelta=sdelta_mp(2,x) case(3) sdelta=sdelta_fd(x) case(4) sdelta=sdelta_sq(x) case(5) sdelta=sdelta_lr(x) case default write(*,*) write(*,'("Error(sdelta): sytpe not defined : ",I8)') stype write(*,*) stop end select end function !EOC !BOP ! !ROUTINE: getsdata ! !INTERFACE: subroutine getsdata(stype,sdescr) ! !INPUT/OUTPUT PARAMETERS: ! stype : smearing type (in,integer) ! sdescr : smearing scheme description (out,character(*)) ! !DESCRIPTION: ! Returns a description of the smearing scheme as string {\tt sdescr} up to ! 256 characters long. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: stype character(*), intent(out) :: sdescr select case(stype) case(0) sdescr='Gaussian' case(1) sdescr='Methfessel-Paxton order 1, Phys. Rev. B 40, 3616 (1989)' case(2) sdescr='Methfessel-Paxton order 2, Phys. Rev. B 40, 3616 (1989)' case(3) sdescr='Fermi-Dirac' case(4) sdescr='Square-wave impulse' case(5) sdescr='Lorentzian' case default write(*,*) write(*,'("Error(getsdata): sytpe not defined : ",I8)') stype write(*,*) stop end select end subroutine !EOC elk-9.2.12/src/PaxHeaders/stheta.f900000644000000000000000000000013214536061313014037 xustar0030 mtime=1702388427.940501456 30 atime=1702388426.790503159 30 ctime=1702388427.940501456 elk-9.2.12/src/stheta.f900000644002504400250440000000224114536061313016560 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: stheta ! !INTERFACE: real(8) function stheta(stype,x) ! !INPUT/OUTPUT PARAMETERS: ! stype : smearing type (in,integer) ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the Heaviside step function corresponding to the smooth ! approximation to the Dirac delta function: ! $$ \tilde\Theta(x)=\int_{-\infty}^x dt\,\tilde\delta(t). $$ ! See function {\tt sdelta} for details. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: stype real(8), intent(in) :: x ! external functions real(8), external :: stheta_mp,stheta_fd,stheta_sq,stheta_lr select case(stype) case(0) stheta=stheta_mp(0,x) case(1) stheta=stheta_mp(1,x) case(2) stheta=stheta_mp(2,x) case(3) stheta=stheta_fd(x) case(4) stheta=stheta_sq(x) case(5) stheta=stheta_lr(x) case default write(*,*) write(*,'("Error(stheta): sytpe not defined : ",I8)') stype write(*,*) stop end select end function !EOC elk-9.2.12/src/PaxHeaders/sortidx.f900000644000000000000000000000013214536061313014243 xustar0030 mtime=1702388427.942501454 30 atime=1702388426.792503156 30 ctime=1702388427.942501454 elk-9.2.12/src/sortidx.f900000644002504400250440000000302314536061313016763 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sortidx ! !INTERFACE: subroutine sortidx(n,x,idx) ! !INPUT/OUTPUT PARAMETERS: ! n : number of elements in array (in,integer) ! x : real array (in,real(n)) ! idx : permutation index (out,integer(n)) ! !DESCRIPTION: ! Finds the permutation index {\tt idx} which sorts the real array {\tt x} ! into ascending order. No sorting of the array {\tt x} itself is performed. ! Uses the heapsort algorthim. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) ! Included tolerance eps, April 2006 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x(n) integer, intent(out) :: idx(n) ! local variables integer i,j,k,l,m ! tolerance for deciding if one number is smaller than another real(8), parameter :: eps=1.d-14 if (n <= 0) then write(*,*) write(*,'("Error(sortidx): n <= 0 : ",I8)') n write(*,*) stop end if do i=1,n idx(i)=i end do if (n == 1) return l=n/2+1 k=n 10 continue if (l > 1) then l=l-1 m=idx(l) else m=idx(k) idx(k)=idx(1) k=k-1 if (k == 1) then idx(1)=m return end if end if i=l j=l+l 20 continue if (j <= k) then if (j < k) then if (x(idx(j)) < x(idx(j+1))+eps) j=j+1 end if if (x(m) < x(idx(j))+eps) then idx(i)=idx(j) i=j j=j+j else j=k+1 end if goto 20 end if idx(i)=m goto 10 end subroutine !EOC elk-9.2.12/src/PaxHeaders/symmat.f900000644000000000000000000000013214536061313014061 xustar0030 mtime=1702388427.943501452 30 atime=1702388426.793503155 30 ctime=1702388427.943501452 elk-9.2.12/src/symmat.f900000644002504400250440000000115614536061313016606 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine symmat(al) use modmain implicit none ! arguments real(8), intent(inout) :: al(3,3) ! local variables integer isym,lspl real(8) as(3,3),s(3,3) real(8) b(3,3),c(3,3),t1 ! make symmetric average as(:,:)=0.d0 do isym=1,nsymcrys lspl=lsplsymc(isym) s(:,:)=dble(symlat(:,:,lspl)) call r3mtm(s,al,b) call r3mm(b,s,c) as(:,:)=as(:,:)+c(:,:) end do ! normalise t1=1.d0/dble(nsymcrys) al(:,:)=t1*as(:,:) end subroutine elk-9.2.12/src/PaxHeaders/radnucl.f900000644000000000000000000000013214536061313014177 xustar0030 mtime=1702388427.945501449 30 atime=1702388426.795503152 30 ctime=1702388427.945501449 elk-9.2.12/src/radnucl.f900000644002504400250440000000312714536061313016724 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: radnucl ! !INTERFACE: elemental real(8) function radnucl(z) ! !INPUT/OUTPUT PARAMETERS: ! z : atomic number (in,real) ! !DESCRIPTION: ! Computes an approximate nuclear charge radius from the atomic number $Z$. ! The nuclear mass number, $A$, is estimated using ! $$ A=4.467\times 10^{-3}Z^2+2.163 Z-1.168, $$ ! [D. Andrae in {\it Relativistic Electronic Structure Theory - Fundamentals} ! {\bf 11}, 203 (2002)], and the nuclear charge radius can be determined from ! $$ r=\left(r_0+\frac{r_1}{A^{2/3}}+\frac{r_2}{A^{4/3}}\right)A^{1/3}, $$ ! where $r_0=0.9071$, $r_1=1.105$ and $r_2=-0.548$ [I. Angeli, {\it Atomic ! Data and Nuclear Data Tables} {\bf 87}, 185 (2004)]. ! ! !REVISION HISTORY: ! Created October 2011 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: z ! local variables ! coefficients for computing mass number real(8), parameter :: c2=4.467d-3, c1=2.163d0, c0=-1.168d0 ! coefficients for computing charge radius (fm) real(8), parameter :: r0=0.9071d0, r1=1.105d0, r2=-0.548d0 ! Bohr radius in SI units (CODATA 2018) real(8), parameter :: br_si=0.529177210903d-10 real(8) za,a,a13,a23,a43 za=abs(z) ! approximate nuclear mass number if (za <= 1.d0) then a=1.d0 else a=abs(c2*za**2+c1*za+c0) end if ! approximate nuclear charge radius a13=a**(1.d0/3.d0) a23=a13**2 a43=a13*a radnucl=(r0+r1/a23+r2/a43)*a13 radnucl=radnucl*1.d-15/br_si end function !EOC elk-9.2.12/src/PaxHeaders/symrvf.f900000644000000000000000000000013114536061313014074 xustar0030 mtime=1702388427.946501448 29 atime=1702388426.79650315 30 ctime=1702388427.946501448 elk-9.2.12/src/symrvf.f900000644002504400250440000000516014536061313016621 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: symrvf ! !INTERFACE: subroutine symrvf(tspin,tnc,nr,nri,np,ngdg,ngt,ngv,igf,ld1,rvfmt,ld2,rvfir) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! tspin : .true. if spin rotations should be used (in,logical) ! tnc : .true. if the vector field is non-collinear, otherwise it is ! collinear along the z-axis (in,logical) ! nr : number of radial points for each species (in,integer(nspecies)) ! nri : number of radial points on the inner part (in,integer(nspecies)) ! np : total number of points in each muffin-tin (in,integer(nspecies)) ! ngdg : G-vector grid sizes (in,integer(3)) ! ngt : total number of G-vectors (in,integer) ! ngv : number of G-vectors within cut-off (in,integer) ! igf : map from G-vector index to FFT array (in,integer(ngv)) ! ld1 : leading dimension (in,integer) ! rvfmt : real muffin-tin vector field (in,real(ld1,natmtot,*)) ! ld2 : leading dimension (in,integer) ! rvfir : real interstitial vector field (in,real(ld2,*)) ! !DESCRIPTION: ! Symmetrises a vector field defined over the entire unit cell using the full ! set of crystal symmetries. If a particular symmetry involves rotating atom ! 1 into atom 2, then the spatial and spin rotations of that symmetry are ! applied to the vector field in atom 2 (expressed in spherical harmonic ! coefficients), which is then added to the field in atom 1. This is repeated ! for all symmetry operations. The fully symmetrised field in atom 1 is then ! rotated and copied to atom 2. Symmetrisation of the interstitial part of the ! field is performed by {\tt symrvfir}. See also {\tt symrfmt} and ! {\tt findsym}. ! ! !REVISION HISTORY: ! Created May 2007 (JKD) ! Fixed problem with improper rotations, February 2008 (L. Nordstrom, ! F. Bultmark and F. Cricchio) !EOP !BOC implicit none ! arguments logical, intent(in) :: tspin,tnc integer, intent(in) :: nr(nspecies),nri(nspecies),np(nspecies) integer, intent(in) :: ngdg(3),ngt,ngv,igf(ngv) integer, intent(in) :: ld1 real(8), intent(inout) :: rvfmt(ld1,natmtot,*) integer, intent(in) :: ld2 real(8), intent(inout) :: rvfir(ld2,*) ! local variables integer nthd call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP SECTION call symrvfmt(tspin,tnc,nr,nri,np,ld1,rvfmt) !$OMP SECTION call symrvfir(tspin,tnc,ngdg,ngt,ngv,igf,ld2,rvfir) !$OMP END PARALLEL SECTIONS call freethd(nthd) end subroutine !EOC elk-9.2.12/src/PaxHeaders/writeqpts.f900000644000000000000000000000013214536061313014611 xustar0030 mtime=1702388427.948501445 30 atime=1702388426.798503147 30 ctime=1702388427.948501445 elk-9.2.12/src/writeqpts.f900000644002504400250440000000074014536061313017334 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeqpts use modmain implicit none ! local variables integer iq open(50,file='QPOINTS.OUT',form='FORMATTED',action='WRITE') write(50,'(I6," : nqpt; q-point, vql, wqpt below")') nqpt do iq=1,nqpt write(50,'(I6,4G18.10)') iq,vql(:,iq),wqpt(iq) end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/rndevsv.f900000644000000000000000000000013214536061313014236 xustar0030 mtime=1702388427.949501443 30 atime=1702388426.799503146 30 ctime=1702388427.949501443 elk-9.2.12/src/rndevsv.f900000644002504400250440000000130514536061313016757 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rndevsv(rndm,evecsv) use modmain use modrandom implicit none ! arguments real(8), intent(in) :: rndm complex(8), intent(inout) :: evecsv(nstsv,nstsv) ! local variables integer ist,jst real(8) a,b if (abs(rndm) < 1.d-8) return ! add complex random numbers to each eigenvector do ist=1,nstsv do jst=1,nstsv a=rndm*(randomu()-0.5d0) b=rndm*(randomu()-0.5d0) evecsv(ist,jst)=evecsv(ist,jst)+cmplx(a,b,8) end do end do ! orthonormalise the eigenvectors call unitary(nstsv,evecsv) end subroutine elk-9.2.12/src/PaxHeaders/gengkvec.f900000644000000000000000000000013214536061313014340 xustar0030 mtime=1702388427.950501442 30 atime=1702388426.801503143 30 ctime=1702388427.950501442 elk-9.2.12/src/gengkvec.f900000644002504400250440000000416314536061313017066 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2012 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gengkvec ! !INTERFACE: pure subroutine gengkvec(ngv,ivg,vgc,vkl,vkc,gkmax,ngkmax,ngk,igkig,vgkl,vgkc, & gkc) ! !INPUT/OUTPUT PARAMETERS: ! ngv : number of G-vectors (in,integer) ! ivg : G-vector integer coordinates (in,integer(3,ngv)) ! vgc : G-vectors in Cartesian coordinates (in,real(3,ngv)) ! vkl : k-point vector in lattice coordinates (in,real(3)) ! vkc : k-point vector in Cartesian coordinates (in,real(3)) ! gkmax : G+k-vector cut-off (in,real) ! ngkmax : maximum number of G+k-vectors (in,integer) ! ngk : number of G+k-vectors returned (out,integer) ! igkig : index from G+k-vectors to G-vectors (out,integer(ngkmax)) ! vgkl : G+k-vectors in lattice coordinates (out,real(3,ngkmax)) ! vgkc : G+k-vectors in Cartesian coordinates (out,real(3,ngkmax)) ! gkc : length of G+k-vectors (out,real(ngkmax)) ! !DESCRIPTION: ! Generates a set of ${\bf G+k}$-vectors for the input $k$-point with length ! less than {\tt gkmax}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Removed spherical coordinate generation, May 2010 (JKD) ! Removed modmain and added arguments, September 2012 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ngv,ivg(3,ngv) real(8), intent(in) :: vgc(3,ngv),vkl(3),vkc(3),gkmax integer, intent(in) :: ngkmax integer, intent(out) :: ngk,igkig(ngkmax) real(8), intent(out) :: vgkl(3,ngkmax),vgkc(3,ngkmax),gkc(ngkmax) ! local variables integer ig real(8) v1,v2,v3,t0,t1 t0=gkmax**2 ngk=0 do ig=1,ngv v1=vgc(1,ig)+vkc(1) v2=vgc(2,ig)+vkc(2) v3=vgc(3,ig)+vkc(3) t1=v1**2+v2**2+v3**2 if (t1 < t0) then ngk=ngk+1 ! index to G-vector igkig(ngk)=ig ! G+k-vector in lattice coordinates vgkl(:,ngk)=dble(ivg(:,ig))+vkl(:) ! G+k-vector in Cartesian coordinates vgkc(1,ngk)=v1 vgkc(2,ngk)=v2 vgkc(3,ngk)=v3 ! length of G+k-vector gkc(ngk)=sqrt(t1) if (ngk == ngkmax) exit end if end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/mixlinear.f900000644000000000000000000000013214536061313014537 xustar0030 mtime=1702388427.952501439 30 atime=1702388426.802503142 30 ctime=1702388427.952501439 elk-9.2.12/src/mixlinear.f900000644002504400250440000000126114536061313017261 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine mixlinear(iscl,beta,n,nu,mu,d) implicit none ! arguments integer, intent(in) :: iscl real(8), intent(in) :: beta integer, intent(in) :: n real(8), intent(inout) :: nu(n),mu(n) real(8), intent(out) :: d ! local variables integer i real(8) t0,t1 if (n <= 0) return ! initialise mixer if (iscl <= 0) then mu(:)=nu(:) d=1.d0 return end if t0=1.d0-beta d=0.d0 do i=1,n t1=nu(i)-mu(i) d=d+t1**2 nu(i)=beta*nu(i)+t0*mu(i) mu(i)=nu(i) end do d=sqrt(d/dble(n)) end subroutine elk-9.2.12/src/PaxHeaders/writesf.f900000644000000000000000000000013114536061313014231 xustar0030 mtime=1702388427.953501437 29 atime=1702388426.80350314 30 ctime=1702388427.953501437 elk-9.2.12/src/writesf.f900000644002504400250440000000162414536061313016757 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine writesf use modmain implicit none ! local variables integer iw ! width of plotting interval in units of swidth real(8), parameter :: swf=10.d0 real(8) dw,w,x ! external functions real(8), external :: sdelta,stheta open(50,file='SDELTA.OUT',form='FORMATTED',action='WRITE') open(51,file='STHETA.OUT',form='FORMATTED',action='WRITE') dw=(2.d0*swf*swidth)/dble(nwplot-1) do iw=1,nwplot w=-swf*swidth+dw*dble(iw-1) x=w/swidth write(50,'(2G18.10)') w,sdelta(stype,x)/swidth write(51,'(2G18.10)') w,stheta(stype,x) end do close(50) close(51) write(*,*) write(*,'("Info(writesf): smooth Dirac delta and Heaviside functions written")') write(*,'(" SDELTA.OUT and STHETA.OUT, respectively")') end subroutine elk-9.2.12/src/PaxHeaders/gengqf.f900000644000000000000000000000013214536061313014016 xustar0030 mtime=1702388427.954501436 30 atime=1702388426.805503137 30 ctime=1702388427.954501436 elk-9.2.12/src/gengqf.f900000644002504400250440000000161214536061313016540 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengqf(ng,vqpc,vgqc,gqc,jlgqr,ylmgq,sfacgq) use modmain implicit none ! arguments integer, intent(in) :: ng real(8), intent(in) :: vqpc(3) real(8), intent(out) :: vgqc(3,ng),gqc(ng),jlgqr(njcmax,nspecies,ng) complex(8), intent(out) :: ylmgq(lmmaxo,ng),sfacgq(ng,natmtot) ! local variables integer ig do ig=1,ng ! G+q-vector in Cartesian coordinates vgqc(:,ig)=vgc(:,ig)+vqpc(:) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) ! spherical harmonics for G+q-vectors call genylmv(lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! generate the spherical Bessel functions call genjlgpr(ng,gqc,jlgqr) ! structure factors for G+q-vectors call gensfacgp(ng,vgqc,ng,sfacgq) end subroutine elk-9.2.12/src/PaxHeaders/genkmat.f900000644000000000000000000000013214536061313014175 xustar0030 mtime=1702388427.956501433 30 atime=1702388426.806503135 30 ctime=1702388427.956501433 elk-9.2.12/src/genkmat.f900000644002504400250440000000371114536061313016721 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genkmat ! !INTERFACE: subroutine genkmat(tfv,tvclcr) ! !USES: use modmain use modmpi use modomp ! !INPUT/OUTPUT PARAMETERS: ! tfv : .true. if the matrix elements are to be expressed in the ! first-variational basis; second-variational otherwise (in,logical) ! tvclvr : .true. if the non-local Coulomb potential from the core states is ! to be included in the kinetic matrix elements (in,logical) ! !DESCRIPTION: ! Computes the kinetic matrix elements in the first- or second-variational ! basis and stores them in the file {\tt KMAT.OUT}. See routine {\tt putkmat}. ! ! !REVISION HISTORY: ! Created January 2007 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: tfv,tvclcr ! local variables integer ik,nthd ! allocatable arrays real(8), allocatable :: vmt(:,:),vir(:),bmt(:,:,:) allocate(vmt(npcmtmax,natmtot),vir(ngtot)) if (spinpol) allocate(bmt(npcmtmax,natmtot,ndmag)) ! generate the Kohn-Sham potential and magnetic field in spherical coordinates ! and multiply by the radial integration weights; also multiply the interstitial ! potential with the characteristic function call vblocal(vmt,vir,bmt) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) if (mp_mpi) write(*,*) ! loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(genkmat_) write(*,'("Info(genkmat): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(genkmat_) call putkmat(tfv,tvclcr,ik,vmt,vir,bmt,bsir) end do !$OMP END PARALLEL DO call freethd(nthd) deallocate(vmt,vir) if (spinpol) deallocate(bmt) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine !EOC elk-9.2.12/src/PaxHeaders/genolpq.f900000644000000000000000000000013214536061313014214 xustar0030 mtime=1702388427.957501431 30 atime=1702388426.808503133 30 ctime=1702388427.957501431 elk-9.2.12/src/genolpq.f900000644002504400250440000000473514536061313016747 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genolpq(nst,expqmt,ngpq,igpqig,wfmt,wfir,wfmtq,wfgpq,oq) use modmain use modomp implicit none ! arguments integer, intent(in) :: nst complex(8), intent(in) :: expqmt(npcmtmax,natmtot) integer, intent(in) :: ngpq(nspnfv),igpqig(ngkmax,nspnfv) complex(8), intent(in) :: wfmt(npcmtmax,natmtot,nspinor,nst) complex(8), intent(in) :: wfir(ngtot,nspinor,nst) complex(8), intent(in) :: wfmtq(npcmtmax,natmtot,nspinor,nst) complex(8), intent(in) :: wfgpq(ngkmax,nspinor,nst) complex(8), intent(out) :: oq(nst,nst) ! local variables integer ist,jst,ispn,jspn integer is,ias,nrc,nrci integer npc,igpq,nthd real(8) t1 ! automatic arrays complex(8) wfmt1(npcmtmax),z(ngkmax) ! allocatable arrays complex(8), allocatable :: wfir1(:) ! external functions complex(8), external :: zdotc call holdthd(nst,nthd) ! zero the matrix elements oq(:,:)=0.d0 !-------------------------! ! muffin-tin part ! !-------------------------! !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(wfmt1,ispn,ias,is) & !$OMP PRIVATE(nrc,nrci,npc,ist) & !$OMP NUM_THREADS(nthd) do jst=1,nst do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) ! multiply by local phase factor function exp(iq.r) wfmt1(1:npc)=expqmt(1:npc,ias)*wfmt(1:npc,ias,ispn,jst) ! apply the radial integral weights call zfcmtwr(nrc,nrci,wrcmt(:,is),wfmt1) ! compute the inner products do ist=1,nst oq(ist,jst)=oq(ist,jst)+zdotc(npc,wfmtq(:,ias,ispn,ist),1,wfmt1,1) end do end do end do end do !$OMP END PARALLEL DO !---------------------------! ! interstitial part ! !---------------------------! t1=sqrt(omega) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfir1,z,ispn,jspn) & !$OMP PRIVATE(igpq,ist) & !$OMP NUM_THREADS(nthd) allocate(wfir1(ngtot)) !$OMP DO do jst=1,nst do ispn=1,nspinor jspn=jspnfv(ispn) ! multiply wavefunction by characteristic function wfir1(:)=wfir(:,ispn,jst)*cfunir(:) ! Fourier transform to G+p+q-space call zfftifc(3,ngridg,-1,wfir1) do igpq=1,ngpq(jspn) z(igpq)=wfir1(igfft(igpqig(igpq,jspn))) end do do ist=1,nst oq(ist,jst)=oq(ist,jst)+t1*zdotc(ngpq(jspn),wfgpq(:,ispn,ist),1,z,1) end do end do end do !$OMP END DO deallocate(wfir1) !$OMP END PARALLEL call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/genjlgprmt.f900000644000000000000000000000013014536061313014716 xustar0029 mtime=1702388427.95850143 30 atime=1702388426.809503131 29 ctime=1702388427.95850143 elk-9.2.12/src/genjlgprmt.f900000644002504400250440000000234714536061313017450 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genjlgprmt ! !INTERFACE: subroutine genjlgprmt(lmax,ngp,gpc,ld,jlgprmt) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! lmax : angular momentum cut-off (in,integer) ! ngp : number of G+p-vectors (in,integer) ! gpc : length of G+p-vectors (in,real(ngkmax)) ! ld : leading dimension (in,integer) ! jlgprmt : spherical Bessel functions (out,real(0:lmax,ld,nspecies)) ! !DESCRIPTION: ! Calculates and stores the spherical Bessel functions ! $j_l(|{\bf G}+{\bf p}|{\bf R}_{\rm MT})$ for all input ${\bf G}+{\bf p}$ ! vectors and the muffin-tin radii ${\bf R}_{\rm MT}$ of every atomic species. ! ! !REVISION HISTORY: ! Created April 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax,ngp real(8), intent(in) :: gpc(ngp) integer, intent(in) :: ld real(8), intent(out) :: jlgprmt(0:lmax,ld,nspecies) ! local variables integer is,ig real(8) r,t1 do is=1,nspecies r=rmt(is) do ig=1,ngp t1=gpc(ig)*r call sbessel(lmax,t1,jlgprmt(:,ig,is)) end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/rfinterp.f900000644000000000000000000000013214536061313014400 xustar0030 mtime=1702388427.960501427 30 atime=1702388426.811503128 30 ctime=1702388427.960501427 elk-9.2.12/src/rfinterp.f900000644002504400250440000000333714536061313017130 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rfinterp ! !INTERFACE: subroutine rfinterp(ni,xi,wci,fi,no,xo,fo) ! !INPUT/OUTPUT PARAMETERS: ! ni : number of input points (in,integer) ! xi : input abscissa array (in,real(ni)) ! wci : input spline coefficient weights (in,real(12,ni)) ! fi : input data array (in,real(ni)) ! no : number of output points (in,integer) ! xo : output abscissa array (in,real(no)) ! fo : output interpolated function (out,real(no)) ! !DESCRIPTION: ! Given a function defined on a set of input points, this routine uses a ! clamped cubic spline to interpolate the function on a different set of ! points. See routine {\tt spline}. ! ! !REVISION HISTORY: ! Created January 2005 (JKD) ! Arguments changed, April 2016 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ni real(8), intent(in) :: xi(ni),wci(12,ni),fi(ni) integer, intent(in) :: no real(8), intent(in) :: xo(no) real(8), intent(out) :: fo(no) ! local variables integer i,j,k,l real(8) x,dx ! automatic arrays real(8) cf(3,ni) if (ni == 1) then fo(:)=fi(1) return end if ! compute the spline coefficients call splinew(ni,wci,fi,cf) ! evaluate spline at output points i=1 do l=1,no x=xo(l) if (i >= ni) i=1 if (x >= xi(i)) then if (x > xi(i+1)) then ! binary search i=1 j=ni do while (j > i+1) k=(i+j)/2 if (x < xi(k)) then j=k else i=k end if end do end if end if dx=x-xi(i) fo(l)=fi(i)+dx*(cf(1,i)+dx*(cf(2,i)+dx*cf(3,i))) end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/fsmooth.f900000644000000000000000000000013214536061313014226 xustar0030 mtime=1702388427.962501424 30 atime=1702388426.812503127 30 ctime=1702388427.962501424 elk-9.2.12/src/fsmooth.f900000644002504400250440000000164314536061313016754 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2005 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: fsmooth ! !INTERFACE: pure subroutine fsmooth(m,n,f) ! !INPUT/OUTPUT PARAMETERS: ! m : number of 3-point running averages to perform (in,integer) ! n : number of point (in,integer) ! f : function array (inout,real(n)) ! !DESCRIPTION: ! Removes numerical noise from a function by performing $m$ successive ! 3-point running averages on the data. The endpoints are kept fixed. ! ! !REVISION HISTORY: ! Created December 2005 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: m,n real(8), intent(inout) :: f(n) ! local variables integer i,j ! automatic arrays real(8) g(n) do i=1,m do j=2,n-1 g(j)=0.3333333333333333333d0*(f(j-1)+f(j)+f(j+1)) end do f(2:n-1)=g(2:n-1) end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/axangrot.f900000644000000000000000000000013214536061313014372 xustar0030 mtime=1702388427.963501423 30 atime=1702388426.814503124 30 ctime=1702388427.963501423 elk-9.2.12/src/axangrot.f900000644002504400250440000000252314536061313017116 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: axangrot ! !INTERFACE: pure subroutine axangrot(v,th,rot) ! !INPUT/OUTPUT PARAMETERS: ! v : axis vector (in,real) ! th : rotation angle (in,real) ! rot : rotation matrix (out,real(3,3)) ! !DESCRIPTION: ! Determines the $3\times 3$ rotation matrix of a rotation specified by an ! axis-angle pair following the `right-hand rule'. The axis vector need not be ! normalised. See {\tt rotaxang} for details. ! ! !REVISION HISTORY: ! Created February 2014 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: v(3),th real(8), intent(out) :: rot(3,3) ! local variables real(8) x,y,z,x2,y2,z2 real(8) xy,xz,yz,cs,sn,t1 x=v(1); y=v(2); z=v(3) t1=sqrt(x**2+y**2+z**2) ! if the axis has zero length then assume the identity if (t1 < 1.d-14) then rot(:,:)=0.d0 rot(1,1)=1.d0 rot(2,2)=1.d0 rot(3,3)=1.d0 return end if t1=1.d0/t1 x=x*t1; y=y*t1; z=z*t1 x2=x**2; y2=y**2; z2=z**2 xy=x*y; xz=x*z; yz=y*z cs=cos(th); sn=sin(th) t1=1.d0-cs rot(1,1)=cs+x2*t1 rot(2,1)=xy*t1+z*sn rot(3,1)=xz*t1-y*sn rot(1,2)=xy*t1-z*sn rot(2,2)=cs+y2*t1 rot(3,2)=yz*t1+x*sn rot(1,3)=xz*t1+y*sn rot(2,3)=yz*t1-x*sn rot(3,3)=cs+z2*t1 end subroutine !EOC elk-9.2.12/src/PaxHeaders/rotaxang.f900000644000000000000000000000013214536061313014372 xustar0030 mtime=1702388427.965501419 30 atime=1702388426.815503122 30 ctime=1702388427.965501419 elk-9.2.12/src/rotaxang.f900000644002504400250440000000616614536061313017125 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rotaxang ! !INTERFACE: subroutine rotaxang(eps,rot,det,v,th) ! !INPUT/OUTPUT PARAMETERS: ! eps : zero vector tolerance (in,real) ! rot : rotation matrix (in,real(3,3)) ! det : matrix determinant (out,real) ! v : normalised axis vector (out,real(3)) ! th : rotation angle (out,real) ! !DESCRIPTION: ! Given a rotation matrix ! $$ R(\hat{\bf v},\theta)= ! \left(\begin{matrix} ! \cos\theta+x^2(1-\cos\theta) & ! xy(1-\cos\theta)+z\sin\theta & ! xz(1-\cos\theta)-y\sin\theta \\ ! xy(1-\cos\theta)-z\sin\theta & ! \cos\theta+y^2(1-\cos\theta) & ! yz(1-\cos\theta)+x\sin\theta \\ ! xz(1-\cos\theta)+y\sin\theta & ! yz(1-\cos\theta)-x\sin\theta & ! \cos\theta+z^2(1-\cos\theta) ! \end{matrix}\right), $$ ! this routine determines the axis of rotation $\hat{\bf v}$ and the angle of ! rotation $\theta$. If $R$ corresponds to an improper rotation then only the ! proper part is used and {\tt det} is set to $-1$. The rotation convention ! follows the `right-hand rule'. ! ! !REVISION HISTORY: ! Created December 2006 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: eps,rot(3,3) real(8), intent(out) :: det,v(3),th ! local variables real(8), parameter :: pi=3.1415926535897932385d0 real(8) rotp(3,3),t1,t2 ! find the determinant det=rot(1,1)*(rot(2,2)*rot(3,3)-rot(3,2)*rot(2,3)) & +rot(2,1)*(rot(3,2)*rot(1,3)-rot(1,2)*rot(3,3)) & +rot(3,1)*(rot(1,2)*rot(2,3)-rot(2,2)*rot(1,3)) if (abs(det-1.d0) < eps) then det=1.d0 else if (abs(det+1.d0) < eps) then det=-1.d0 else goto 10 end if ! proper rotation matrix rotp(:,:)=det*rot(:,:) v(1)=0.5d0*(rotp(2,3)-rotp(3,2)) v(2)=0.5d0*(rotp(3,1)-rotp(1,3)) v(3)=0.5d0*(rotp(1,2)-rotp(2,1)) t1=sqrt(v(1)**2+v(2)**2+v(3)**2) t2=0.5d0*(rotp(1,1)+rotp(2,2)+rotp(3,3)-1.d0) if (abs(abs(t2)-1.d0) > eps) then ! theta not equal to 0 or pi th=-atan2(t1,t2) v(:)=v(:)/t1 else ! special case of sin(th)=0 if (t2 > 0.d0) then ! zero angle: axis arbitrary th=0.d0 v(:)=1.d0/sqrt(3.d0) else ! rotation by pi th=pi if ((rotp(1,1) >= rotp(2,2)).and.(rotp(1,1) >= rotp(3,3))) then if (rotp(1,1) < (-1.d0+eps)) goto 10 v(1)=sqrt(0.5d0*abs(rotp(1,1)+1.d0)) v(2)=(rotp(2,1)+rotp(1,2))/(4.d0*v(1)) v(3)=(rotp(3,1)+rotp(1,3))/(4.d0*v(1)) else if ((rotp(2,2) >= rotp(1,1)).and.(rotp(2,2) >= rotp(3,3))) then if (rotp(2,2) < (-1.d0+eps)) goto 10 v(2)=sqrt(0.5d0*abs(rotp(2,2)+1.d0)) v(3)=(rotp(3,2)+rotp(2,3))/(4.d0*v(2)) v(1)=(rotp(1,2)+rotp(2,1))/(4.d0*v(2)) else if (rotp(3,3) < (-1.d0+eps)) goto 10 v(3)=sqrt(0.5d0*abs(rotp(3,3)+1.d0)) v(1)=(rotp(1,3)+rotp(3,1))/(4.d0*v(3)) v(2)=(rotp(2,3)+rotp(3,2))/(4.d0*v(3)) end if end if end if return 10 continue write(*,*) write(*,'("Error(rotaxang): invalid rotation matrix:")') write(*,'(3G18.10)') rot(1,:) write(*,'(3G18.10)') rot(2,:) write(*,'(3G18.10)') rot(3,:) write(*,*) stop end subroutine !EOC elk-9.2.12/src/PaxHeaders/wspline.f900000644000000000000000000000013214536061313014230 xustar0030 mtime=1702388427.966501418 30 atime=1702388426.817503119 30 ctime=1702388427.966501418 elk-9.2.12/src/wspline.f900000644002504400250440000000301014536061313016744 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wspline(n,x,wc) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x(n) real(8), intent(out) :: wc(4,3,n) ! local variables integer i,j real(8) f(4),cf(3,4) if (n < 4) then write(*,*) write(*,'("Error(wspline): n < 4 : ",I8)') n write(*,*) stop end if f(1)=1.d0 f(2:)=0.d0 call spline(4,x,f,cf) wc(1,:,1)=cf(:,1) wc(1,:,2)=cf(:,2) f(1)=0.d0 f(2)=1.d0 call spline(4,x,f,cf) wc(2,:,1)=cf(:,1) wc(2,:,2)=cf(:,2) f(2)=0.d0 f(3)=1.d0 call spline(4,x,f,cf) wc(3,:,1)=cf(:,1) wc(3,:,2)=cf(:,2) f(3)=0.d0 f(4)=1.d0 call spline(4,x,f,cf) wc(4,:,1)=cf(:,1) wc(4,:,2)=cf(:,2) do i=3,n-3 j=i-1 f(1)=1.d0 f(2:)=0.d0 call spline(4,x(j),f,cf) wc(1,:,i)=cf(:,2) f(1)=0.d0 f(2)=1.d0 call spline(4,x(j),f,cf) wc(2,:,i)=cf(:,2) f(2)=0.d0 f(3)=1.d0 call spline(4,x(j),f,cf) wc(3,:,i)=cf(:,2) f(3)=0.d0 f(4)=1.d0 call spline(4,x(j),f,cf) wc(4,:,i)=cf(:,2) end do j=n-3 f(1)=1.d0 f(2:)=0.d0 call spline(4,x(j),f,cf) wc(1,:,n-2)=cf(:,2) wc(1,:,n-1)=cf(:,3) wc(1,:,n)=cf(:,4) f(1)=0.d0 f(2)=1.d0 call spline(4,x(j),f,cf) wc(2,:,n-2)=cf(:,2) wc(2,:,n-1)=cf(:,3) wc(2,:,n)=cf(:,4) f(2)=0.d0 f(3)=1.d0 call spline(4,x(j),f,cf) wc(3,:,n-2)=cf(:,2) wc(3,:,n-1)=cf(:,3) wc(3,:,n)=cf(:,4) f(3)=0.d0 f(4)=1.d0 call spline(4,x(j),f,cf) wc(4,:,n-2)=cf(:,2) wc(4,:,n-1)=cf(:,3) wc(4,:,n)=cf(:,4) end subroutine elk-9.2.12/src/PaxHeaders/splined.f900000644000000000000000000000013214536061313014205 xustar0030 mtime=1702388427.967501416 30 atime=1702388426.818503118 30 ctime=1702388427.967501416 elk-9.2.12/src/splined.f900000644002504400250440000000145114536061313016730 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine splined(n,wc,f,df) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wc(12,n),f(n) real(8), intent(out) :: df(n) ! local variables integer i real(8) f1,f2,f3,f4 f1=f(1); f2=f(2); f3=f(3); f4=f(4) df(1)=wc(1,1)*f1+wc(2,1)*f2+wc(3,1)*f3+wc(4,1)*f4 df(2)=wc(1,2)*f1+wc(2,2)*f2+wc(3,2)*f3+wc(4,2)*f4 !$OMP SIMD LASTPRIVATE(f1,f2,f3,f4) SIMDLEN(8) do i=3,n-2 f1=f(i-1); f2=f(i); f3=f(i+1); f4=f(i+2) df(i)=wc(1,i)*f1+wc(2,i)*f2+wc(3,i)*f3+wc(4,i)*f4 end do i=n-1 df(i)=wc(1,i)*f1+wc(2,i)*f2+wc(3,i)*f3+wc(4,i)*f4 df(n)=wc(1,n)*f1+wc(2,n)*f2+wc(3,n)*f3+wc(4,n)*f4 end subroutine elk-9.2.12/src/PaxHeaders/findswidth.f900000644000000000000000000000013214536061313014712 xustar0030 mtime=1702388427.969501414 30 atime=1702388426.820503115 30 ctime=1702388427.969501414 elk-9.2.12/src/findswidth.f900000644002504400250440000000333214536061313017435 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 T. Bjorkman and O. Granas. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: findswidth ! !INTERFACE: subroutine findswidth ! !USES: use modmain ! !DESCRIPTION: ! Calculates the smearing width from the $k$-point density, ! $V_{\rm BZ}/n_k$; the valence band width, $W$; and an effective mass ! parameter, $m^{*}$; according to ! $$ \sigma=\frac{\sqrt{2W}}{m^{*}}\left(\frac{3}{4\pi} ! \frac{V_{\rm BZ}}{n_k}\right)^{1/3}. $$ ! The valence bandwidth is determined by stepping down in energy from the ! Fermi level until a gap larger than a given tolerance is found. This method ! was presented in T. Bj\"{o}rkman and O. Gr\aa n\"{a}s, {\it Int. J. Quant. ! Chem.} DOI: 10.1002/qua.22476. ! ! !REVISION HISTORY: ! Created April 2010 (Torbjorn Bjorkman and JKD) !EOP !BOC implicit none ! local variables integer i,j,m,n,ik,ist real(8), parameter :: eps=0.05d0 real(8) e,vbw ! allocatable arrays integer, allocatable :: idx(:) n=nstsv*nkpt allocate(idx(n)) ! find the index which sorts the eigenvalues in ascending order call sortidx(n,evalsv,idx) ! find the highest eigenvalue < efermi m=n e=efermi do i=n,1,-1 j=idx(i) ik=(j-1)/nstsv+1 ist=mod(j-1,nstsv)+1 if (evalsv(ist,ik) < efermi) then m=i e=evalsv(ist,ik) exit end if end do ! search downwards until a gap larger than eps is found do i=m,1,-1 j=idx(i) ik=(j-1)/nstsv+1 ist=mod(j-1,nstsv)+1 if ((e-evalsv(ist,ik)) > eps) exit e=evalsv(ist,ik) end do ! valence band width vbw=efermi-e vbw=max(vbw,1.d-2) ! determine swidth swidth=(sqrt(2.d0*vbw)/mstar)*(6.d0*pi**2/(omega*dble(nkptnr)))**(1.d0/3.d0) deallocate(idx) end subroutine !EOC elk-9.2.12/src/PaxHeaders/findsymlat.f900000644000000000000000000000013214536061313014721 xustar0030 mtime=1702388427.970501412 30 atime=1702388426.821503113 30 ctime=1702388427.970501412 elk-9.2.12/src/findsymlat.f900000644002504400250440000001172314536061313017447 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: findsymlat ! !INTERFACE: subroutine findsymlat ! !USES: use modmain use modtddft ! !DESCRIPTION: ! Finds the point group symmetries which leave the Bravais lattice invariant. ! Let $A$ be the matrix consisting of the lattice vectors in columns, then ! $$ g=A^{\rm T}A $$ ! is the metric tensor. Any $3\times 3$ matrix $S$ with elements $-1$, 0 or 1 ! is a point group symmetry of the lattice if $\det(S)$ is $-1$ or 1, and ! $$ S^{\rm T}gS=g. $$ ! The first matrix in the set returned is the identity. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) ! Removed arguments and simplified, April 2007 (JKD) !EOP !BOC implicit none ! local variables integer md,sym(3,3),its,i,j integer i11,i12,i13,i21,i22,i23,i31,i32,i33 real(8) s(3,3),g(3,3),sgs(3,3),sc(3,3),scp(3,3) real(8) c(3,3),d(3,3),v(3),t1 ! determine metric tensor call r3mtm(avec,avec,g) ! loop over all possible symmetry matrices nsymlat=0 do i11=-1,1; do i12=-1,1; do i13=-1,1 do i21=-1,1; do i22=-1,1; do i23=-1,1 do i31=-1,1; do i32=-1,1; do i33=-1,1 sym(1,1)=i11; sym(1,2)=i12; sym(1,3)=i13 sym(2,1)=i21; sym(2,2)=i22; sym(2,3)=i23 sym(3,1)=i31; sym(3,2)=i32; sym(3,3)=i33 ! determinant of matrix md=i3mdet(sym) ! matrix should be orthogonal if (abs(md) /= 1) goto 10 ! check invariance of metric tensor s(:,:)=dble(sym(:,:)) call r3mtm(s,g,c) call r3mm(c,s,sgs) do j=1,3 do i=1,3 if (abs(sgs(i,j)-g(i,j)) > epslat) goto 10 end do end do ! check invariance of spin-spiral q-vector if required if (spinsprl) then call r3mtv(s,vqlss,v) t1=abs(vqlss(1)-v(1))+abs(vqlss(2)-v(2))+abs(vqlss(3)-v(3)) if (t1 > epslat) goto 10 end if ! check invariance of electric field if required if (tefield) then call r3mv(s,efieldl,v) t1=abs(efieldl(1)-v(1))+abs(efieldl(2)-v(2))+abs(efieldl(3)-v(3)) if (t1 > epslat) goto 10 end if ! check invariance of static A-field if required if (tafield) then call r3mv(s,afieldl,v) t1=abs(afieldl(1)-v(1))+abs(afieldl(2)-v(2))+abs(afieldl(3)-v(3)) if (t1 > epslat) goto 10 end if ! check invariance of time-dependent A-field if required if (tafieldt) then call r3mm(s,ainv,c) call r3mm(avec,c,sc) do its=1,ntimes call r3mv(sc,afieldt(:,its),v) t1=abs(afieldt(1,its)-v(1)) & +abs(afieldt(2,its)-v(2)) & +abs(afieldt(3,its)-v(3)) if (t1 > epslat) goto 10 end do ! spin-dependent A-field if (tafspt) then ! proper part of symmetry matrix scp(:,:)=dble(md)*sc(:,:) do its=1,ntimes call r3mm(sc,afspt(:,:,its),c) call r3mmt(c,scp,d) t1=sum(abs(afspt(:,:,its)-d(:,:))) if (t1 > epslat) goto 10 end do end if end if nsymlat=nsymlat+1 if (nsymlat > 48) then write(*,*) write(*,'("Error(findsymlat): more than 48 symmetries found")') write(*,'(" (lattice vectors may be linearly dependent)")') write(*,*) stop end if ! store the symmetry and determinant in global arrays symlat(:,:,nsymlat)=sym(:,:) symlatd(nsymlat)=md 10 continue end do; end do; end do end do; end do; end do end do; end do; end do if (nsymlat == 0) then write(*,*) write(*,'("Error(findsymlat): no symmetries found")') write(*,*) stop end if ! make the first symmetry the identity do i=1,nsymlat if ((symlat(1,1,i) == 1).and.(symlat(1,2,i) == 0).and.(symlat(1,3,i) == 0) & .and.(symlat(2,1,i) == 0).and.(symlat(2,2,i) == 1).and.(symlat(2,3,i) == 0) & .and.(symlat(3,1,i) == 0).and.(symlat(3,2,i) == 0).and.(symlat(3,3,i) == 1)) & then sym(:,:)=symlat(:,:,1) symlat(:,:,1)=symlat(:,:,i) symlat(:,:,i)=sym(:,:) md=symlatd(1) symlatd(1)=symlatd(i) symlatd(i)=md exit end if end do ! index to the inverse of each operation do i=1,nsymlat call i3minv(symlat(:,:,i),sym) do j=1,nsymlat if ((symlat(1,1,j) == sym(1,1)).and.(symlat(1,2,j) == sym(1,2)).and. & (symlat(1,3,j) == sym(1,3)).and.(symlat(2,1,j) == sym(2,1)).and. & (symlat(2,2,j) == sym(2,2)).and.(symlat(2,3,j) == sym(2,3)).and. & (symlat(3,1,j) == sym(3,1)).and.(symlat(3,2,j) == sym(3,2)).and. & (symlat(3,3,j) == sym(3,3))) then isymlat(i)=j goto 30 end if end do write(*,*) write(*,'("Error(findsymlat): inverse operation not found")') write(*,'(" for lattice symmetry ",I2)') i write(*,*) stop 30 continue end do ! determine the lattice symmetries in Cartesian coordinates do i=1,nsymlat s(:,:)=dble(symlat(:,:,i)) call r3mm(s,ainv,c) call r3mm(avec,c,symlatc(:,:,i)) end do return contains pure integer function i3mdet(a) implicit none ! arguments integer, intent(in) :: a(3,3) ! determinant of integer matrix i3mdet=a(1,1)*(a(2,2)*a(3,3)-a(3,2)*a(2,3)) & +a(2,1)*(a(3,2)*a(1,3)-a(1,2)*a(3,3)) & +a(3,1)*(a(1,2)*a(2,3)-a(2,2)*a(1,3)) end function end subroutine !EOC elk-9.2.12/src/PaxHeaders/writepmat.f900000644000000000000000000000013214536061313014563 xustar0030 mtime=1702388427.971501411 30 atime=1702388426.823503111 30 ctime=1702388427.971501411 elk-9.2.12/src/writepmat.f900000644002504400250440000000210514536061313017303 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writepmat ! !INTERFACE: subroutine writepmat ! !USES: use modmain use modmpi ! !DESCRIPTION: ! Calculates the momentum matrix elements using routine {\tt genpmat} and ! writes them to direct access file {\tt PMAT.OUT}. ! ! !REVISION HISTORY: ! Created November 2003 (Sharma) !EOP !BOC implicit none ! initialise universal variables call init0 call init1 ! read in the density and potentials from file call readstate ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! write the momentum matrix elements in the second-variational basis to file call genpmat if (mp_mpi) then write(*,*) write(*,'("Info(writepmat):")') write(*,'(" momentum matrix elements written to file PMAT.OUT")') end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/genstrain.f900000644000000000000000000000013214536061313014541 xustar0030 mtime=1702388427.973501408 30 atime=1702388426.824503109 30 ctime=1702388427.973501408 elk-9.2.12/src/genstrain.f900000644002504400250440000000314414536061313017265 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genstrain use modmain implicit none ! local variables integer i,j,k real(8) a(3,3),b(3,3),t1 ! set first strain equal to isotropic scaling t1=norm2(avec(:,:)) strain(:,:,1)=avec(:,:)/t1 nstrain=1 do i=1,3 do j=1,3 ! set strain tensor in lattice coordinates to delta_ij a(:,:)=0.d0 a(i,j)=1.d0 ! symmetrise strain tensor call symmat(a) ! convert to mixed Cartesian-lattice coordinates call r3mtm(ainv,a,b) ! orthogonalise strain tensor to previous tensors do k=1,nstrain t1=sum(b(:,:)*strain(:,:,k)) b(:,:)=b(:,:)-t1*strain(:,:,k) end do ! compute the norm t1=norm2(b(:,:)) if (t1 < epslat) cycle ! normalise tensor and store in global array nstrain=nstrain+1 strain(:,:,nstrain)=b(:,:)/t1 end do end do ! zero small components do k=1,nstrain do i=1,3 do j=1,3 if (abs(strain(i,j,k)) < epslat) strain(i,j,k)=0.d0 end do end do end do ! lattice optimisation case if ((task == 2).or.(task == 3)) then if (latvopt == 2) then ! remove isotropic scaling when latvopt=2 strain(:,:,1)=strain(:,:,nstrain) nstrain=nstrain-1 else if (latvopt < 0) then ! optimise over particular strain when latvopt < 0 i=abs(latvopt) if (i > nstrain) then write(*,*) write(*,'("Error(genstrain): |latvopt| > nstrain : ",2I8)') i,nstrain write(*,*) stop end if strain(:,:,1)=strain(:,:,i) nstrain=1 end if end if end subroutine elk-9.2.12/src/PaxHeaders/symmetry.f900000644000000000000000000000013214536061313014440 xustar0030 mtime=1702388427.974501406 30 atime=1702388426.826503106 30 ctime=1702388427.974501406 elk-9.2.12/src/symmetry.f900000644002504400250440000000211214536061313017156 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine symmetry use modmain use modvars implicit none ! inverse of the lattice vector matrix call r3minv(avec,ainv) ! find Bravais lattice symmetries call findsymlat ! use only the identity if required if (symtype == 0) nsymlat=1 ! find the crystal symmetries and shift atomic positions if required call findsymcrys ! find the site symmetries call findsymsite ! check if fixed spin moments are invariant under the symmetry group call checkfsm ! check if real symmetric first-variational eigen solver can be used if (.not.tsyminv) tefvr=.false. ! write to VARIABLES.OUT if (wrtvars) then call writevars('nsymlat',iv=nsymlat) call writevars('symlat',nv=9*nsymlat,iva=symlat) call writevars('nsymcrys',iv=nsymcrys) call writevars('vtlsymc',nv=3*nsymcrys,rva=vtlsymc) call writevars('lsplsymc',nv=nsymcrys,iva=lsplsymc) call writevars('lspnsymc',nv=nsymcrys,iva=lspnsymc) end if end subroutine elk-9.2.12/src/PaxHeaders/linengy.f900000644000000000000000000000013214536061313014214 xustar0030 mtime=1702388427.975501405 30 atime=1702388426.827503104 30 ctime=1702388427.975501405 elk-9.2.12/src/linengy.f900000644002504400250440000000750314536061313016743 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: linengy ! !INTERFACE: subroutine linengy ! !USES: use modmain use modmpi use modomp ! !DESCRIPTION: ! Calculates the new linearisation energies for both the APW and local-orbital ! radial functions. See the routine {\tt findband}. ! ! !REVISION HISTORY: ! Created May 2003 (JKD) !EOP !BOC implicit none ! local variables logical fnd integer is,ia,ja,ias,jas integer nr,nri,iro,i0,i1 integer l,ilo,io,jo,nnf,nthd ! automatic arrays logical done(natmmax) real(8) vr(nrmtmax) nnf=0 ! begin loops over atoms and species call holdthd(natmmax,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(vr,is,nr,nri,iro) & !$OMP PRIVATE(ia,ias,i0,i1,l) & !$OMP PRIVATE(io,jo,ilo,ja,jas) & !$OMP REDUCTION(+:nnf) & !$OMP NUM_THREADS(nthd) do is=1,nspecies nr=nrmt(is) nri=nrmti(is) iro=nri+1 !$OMP SINGLE done(:)=.false. !$OMP END SINGLE !$OMP DO SCHEDULE(DYNAMIC) do ia=1,natoms(is) if (done(ia)) cycle ias=idxas(ia,is) i1=lmmaxi*(nri-1)+1 vr(1:nri)=vsmt(1:i1:lmmaxi,ias)*y00 i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 vr(iro:nr)=vsmt(i0:i1:lmmaxo,ias)*y00 !-----------------------! ! APW functions ! !-----------------------! do l=0,lmaxapw do io=1,apword(l,is) if (apwve(io,l,is)) then ! check if previous radial functions have same default energies do jo=1,io-1 if (apwve(jo,l,is)) then if (abs(apwe0(io,l,is)-apwe0(jo,l,is)) < 1.d-4) then apwe(io,l,ias)=apwe(jo,l,ias) goto 10 end if end if end do ! find the band energy starting from default apwe(io,l,ias)=apwe0(io,l,is) call findband(solsc,l,nr,rlmt(:,1,is),vr,epsband,demaxbnd, & apwe(io,l,ias),fnd) if (.not.fnd) nnf=nnf+1 else ! set linearisation energy automatically if (autolinengy) apwe(io,l,ias)=efermi+dlefe end if 10 continue end do end do !---------------------------------! ! local-orbital functions ! !---------------------------------! do ilo=1,nlorb(is) do io=1,lorbord(ilo,is) if (lorbve(io,ilo,is)) then ! check if previous radial functions have same default energies do jo=1,io-1 if (lorbve(jo,ilo,is)) then if (abs(lorbe0(io,ilo,is)-lorbe0(jo,ilo,is)) < 1.d-4) then lorbe(io,ilo,ias)=lorbe(jo,ilo,ias) goto 20 end if end if end do l=lorbl(ilo,is) ! find the band energy starting from default lorbe(io,ilo,ias)=lorbe0(io,ilo,is) call findband(solsc,l,nr,rlmt(:,1,is),vr,epsband,demaxbnd, & lorbe(io,ilo,ias),fnd) if (.not.fnd) nnf=nnf+1 else ! set linearisation energy automatically if (autolinengy) lorbe(io,ilo,ias)=efermi+dlefe end if 20 continue end do end do ! mark as done and copy to equivalent atoms !$OMP CRITICAL(linengy_) done(ia)=.true. do ja=1,natoms(is) if ((.not.done(ja)).and.(eqatoms(ia,ja,is))) then jas=idxas(ja,is) do l=0,lmaxapw do io=1,apword(l,is) apwe(io,l,jas)=apwe(io,l,ias) end do end do do ilo=1,nlorb(is) do io=1,lorbord(ilo,is) lorbe(io,ilo,jas)=lorbe(io,ilo,ias) end do end do done(ja)=.true. end if end do !$OMP END CRITICAL(linengy_) ! end loops over atoms and species end do !$OMP END DO end do !$OMP END PARALLEL if (mp_mpi.and.(nnf > 0)) then write(*,*) write(*,'("Warning(linengy): could not find ",I3," linearisation energies & &in s.c. loop ",I5)') nnf,iscl end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/writestress.f900000644000000000000000000000013214536061313015145 xustar0030 mtime=1702388427.977501402 30 atime=1702388426.829503101 30 ctime=1702388427.977501402 elk-9.2.12/src/writestress.f900000644002504400250440000000245414536061313017674 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writestress use modmain use modmpi use modtest implicit none ! local variables integer i,j,k ! initialise universal variables call init0 ! start from the atomic densities trdstate=.false. ! generate the stress tensors call genstress ! write the stress tensors to file if (mp_mpi) then open(50,file='STRESS.OUT',form='FORMATTED',action='WRITE') write(50,*) write(50,'("Lattice vector matrix, A, changed by")') write(50,*) write(50,'(" A → A + e_k dt,")') write(50,*) write(50,'("where dt is an infinitesimal scalar and e_k is a strain tensor")') write(50,*) write(50,'("Stress is given by the derivative of the total energy dE/dt")') do k=1,nstrain write(50,*) write(50,'("Strain tensor k : ",I1)') k do j=1,3 write(50,'(3G18.10)') (strain(i,j,k),i=1,3) end do write(50,'("Stress : ",G18.10)') stress(k) end do close(50) write(*,*) write(*,'("Info(writestress):")') write(*,'(" Stress tensor components written to STRESS.OUT")') end if ! write test file if required call writetest(440,'Stress tensor components',nv=nstrain,tol=1.d-2,rva=stress) end subroutine elk-9.2.12/src/PaxHeaders/eulerrot.f900000644000000000000000000000013014536061313014406 xustar0030 mtime=1702388427.979501399 28 atime=1702388426.8305031 30 ctime=1702388427.979501399 elk-9.2.12/src/eulerrot.f900000644002504400250440000000215714536061313017137 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: eulerrot ! !INTERFACE: pure subroutine eulerrot(ang,rot) ! !INPUT/OUTPUT PARAMETERS: ! ang : Euler angles (alpha, beta, gamma) (in,real(3)) ! rot : rotation matrix (out,real(3,3)) ! !DESCRIPTION: ! Given a set of Euler angles, $(\alpha,\beta,\gamma)$, this routine ! determines the corresponding $3\times 3$ rotation matrix. The so-called ! `y-convention' is taken for the Euler angles. See the routine {\tt roteuler} ! for details. ! ! !REVISION HISTORY: ! Created January 2014 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: ang(3) real(8), intent(out) :: rot(3,3) ! local variables real(8) sa,sb,sg,ca,cb,cg sa=sin(ang(1)); ca=cos(ang(1)) sb=sin(ang(2)); cb=cos(ang(2)) sg=sin(ang(3)); cg=cos(ang(3)) rot(1,1)=cg*cb*ca-sg*sa rot(2,1)=-sg*cb*ca-cg*sa rot(3,1)=sb*ca rot(1,2)=cg*cb*sa+sg*ca rot(2,2)=-sg*cb*sa+cg*ca rot(3,2)=sb*sa rot(1,3)=-cg*sb rot(2,3)=sg*sb rot(3,3)=cb end subroutine !EOC elk-9.2.12/src/PaxHeaders/cftwfir.f900000644000000000000000000000013214536061313014213 xustar0030 mtime=1702388427.980501397 30 atime=1702388426.832503097 30 ctime=1702388427.980501397 elk-9.2.12/src/cftwfir.f900000644002504400250440000000170114536061313016734 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cftwfir(ngp,igpig,wfir) use modmain use modomp implicit none ! arguments integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(4), intent(inout) :: wfir(ngtc,nspinor,nstsv) ! local variables integer ist,ispn,jspn integer n,igp,nthd real(8) t0 ! automatic arrays complex(4) c(ngkmax) t0=1.d0/sqrt(omega) call holdthd(nstsv,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(c,ispn,jspn,n,igp) & !$OMP NUM_THREADS(nthd) do ist=1,nstsv do ispn=1,nspinor jspn=jspnfv(ispn) n=ngp(jspn) c(1:n)=wfir(1:n,ispn,ist) wfir(:,ispn,ist)=0.e0 do igp=1,n wfir(igfc(igpig(igp,jspn)),ispn,ist)=t0*c(igp) end do call cfftifc(3,ngdgc,1,wfir(:,ispn,ist)) end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/rschrodint.f900000644000000000000000000000013214536061313014726 xustar0030 mtime=1702388427.981501396 30 atime=1702388426.833503096 30 ctime=1702388427.981501396 elk-9.2.12/src/rschrodint.f900000644002504400250440000001050414536061313017450 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2015 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rschrodint ! !INTERFACE: pure subroutine rschrodint(sol,l,e,nr,r,vr,nn,p0,p1,q0,q1) ! !INPUT/OUTPUT PARAMETERS: ! sol : speed of light in atomic units (in,real) ! l : angular momentum quantum number (in,integer) ! e : energy (in,real) ! nr : number of radial mesh points (in,integer) ! r : radial mesh (in,real(nr)) ! vr : potential on radial mesh (in,real(nr)) ! nn : number of nodes (out,integer) ! p0 : m th energy derivative of P (out,real(nr)) ! p1 : radial derivative of p0 (out,real(nr)) ! q0 : m th energy derivative of Q (out,real(nr)) ! q1 : radial derivative of q0 (out,real(nr)) ! !DESCRIPTION: ! Integrates the scalar relativistic radial Schr\"{o}dinger equation from ! $r=0$ outwards. This involves using the predictor-corrector method to solve ! the coupled first-order equations (in atomic units) ! \begin{align*} ! \frac{d}{dr}P_l&=2MQ_l+\frac{1}{r}P_l\\ ! \frac{d}{dr}Q_l&=-\frac{1}{r}Q_l+\left[\frac{l(l+1)}{2Mr^2} ! +(V-E)\right]P_l, ! \end{align*} ! where $V$ is the external potential, $E$ is the eigen energy and ! $M=1+(E-V)/2c^2$. Following the convention of Koelling and Harmon, ! {\it J. Phys. C: Solid State Phys.} {\bf 10}, 3107 (1977), the functions ! $P_l$ and $Q_l$ are defined by ! \begin{align*} ! P_l&=rg_l\\ ! Q_l&=\frac{r}{2M}\frac{dg_l}{dr}, ! \end{align*} ! where $g_l$ is the major component of the Dirac equation (see the routine ! {\tt rdiracint}). ! ! !REVISION HISTORY: ! Created October 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: sol integer, intent(in) :: l real(8), intent(in) :: e integer, intent(in) :: nr real(8), intent(in) :: r(nr),vr(nr) integer, intent(out) :: nn real(8), intent(out) :: p0(nr),p1(nr) real(8), intent(out) :: q0(nr),q1(nr) ! local variables integer ir,ir0 real(8) ri,t1,t2,t3,t4 t1=1.d0/sol**2 t2=dble(l*(l+1)) ! determine the r -> 0 boundary values of P and Q ri=1.d0/r(1) t3=2.d0+t1*(e-vr(1)) t4=t2/(t3*r(1)**2)+vr(1)-e q0(1)=1.d0 q1(1)=0.d0 p0(1)=(q1(1)+q0(1)*ri)/t4 p1(1)=t3*q0(1)+p0(1)*ri ! extrapolate to the first four points p1(2:4)=p1(1) q1(2:4)=q1(1) nn=0 do ir=2,nr ri=1.d0/r(ir) t3=2.d0+t1*(e-vr(ir)) t4=t2/(t3*r(ir)**2)+vr(ir)-e ir0=ir-3 if (ir0 < 1) ir0=1 p1(ir)=poly3(r(ir0),p1(ir0),r(ir)) q1(ir)=poly3(r(ir0),q1(ir0),r(ir)) ! integrate to find wavefunction p0(ir)=poly4i(r(ir0),p1(ir0),r(ir))+p0(ir0) q0(ir)=poly4i(r(ir0),q1(ir0),r(ir))+q0(ir0) ! compute the derivatives p1(ir)=t3*q0(ir)+p0(ir)*ri q1(ir)=t4*p0(ir)-q0(ir)*ri ! integrate for correction p0(ir)=poly4i(r(ir0),p1(ir0),r(ir))+p0(ir0) q0(ir)=poly4i(r(ir0),q1(ir0),r(ir))+q0(ir0) ! compute the derivatives again p1(ir)=t3*q0(ir)+p0(ir)*ri q1(ir)=t4*p0(ir)-q0(ir)*ri ! check for overflow if ((abs(p0(ir)) > 1.d100).or.(abs(p1(ir)) > 1.d100).or. & (abs(q0(ir)) > 1.d100).or.(abs(q1(ir)) > 1.d100)) then p0(ir:nr)=p0(ir) p1(ir:nr)=p1(ir) q0(ir:nr)=q0(ir) q1(ir:nr)=q1(ir) return end if ! check for node if (p0(ir-1)*p0(ir) < 0.d0) nn=nn+1 end do return contains pure real(8) function poly3(xa,ya,x) implicit none ! arguments real(8), intent(in) :: xa(3),ya(3),x ! local variables real(8) x0,x1,x2,y0,y1,y2 real(8) c1,c2,t0,t1,t2 ! evaluate the polynomial coefficients x0=xa(1) x1=xa(2)-x0; x2=xa(3)-x0 y0=ya(1) y1=ya(2)-y0; y2=ya(3)-y0 t0=1.d0/(x1*x2*(x2-x1)) t1=x1*y2; t2=x2*y1 c1=x2*t2-x1*t1 c2=t1-t2 t1=x-x0 ! evaluate the polynomial poly3=y0+t0*t1*(c1+c2*t1) end function pure real(8) function poly4i(xa,ya,x) implicit none ! arguments real(8), intent(in) :: xa(4),ya(4),x ! local variables real(8) x0,x1,x2,x3,y0,y1,y2,y3 real(8) c1,c2,c3,t0,t1,t2,t3,t4,t5,t6 ! evaluate the polynomial coefficients x0=xa(1) x1=xa(2)-x0; x2=xa(3)-x0; x3=xa(4)-x0 y0=ya(1) y1=ya(2)-y0; y2=ya(3)-y0; y3=ya(4)-y0 t4=x1-x2; t5=x1-x3; t6=x2-x3 t1=x1*x2*y3; t2=x2*x3*y1; t3=x1*x3 t0=1.d0/(x2*t3*t4*t5*t6) t3=t3*y2 c3=t1*t4+t2*t6-t3*t5 t4=x1**2; t5=x2**2; t6=x3**2 c2=t1*(t5-t4)+t2*(t6-t5)+t3*(t4-t6) c1=t1*(x2*t4-x1*t5)+t2*(x3*t5-x2*t6)+t3*(x1*t6-x3*t4) t1=x-x0 ! integrate the polynomial poly4i=t1*(y0+t0*t1*(0.5d0*c1+t1*(0.3333333333333333333d0*c2+0.25d0*c3*t1))) end function end subroutine !EOC elk-9.2.12/src/PaxHeaders/writegclq.f900000644000000000000000000000013214536061313014550 xustar0030 mtime=1702388427.983501393 30 atime=1702388426.834503094 30 ctime=1702388427.983501393 elk-9.2.12/src/writegclq.f900000644002504400250440000000201214536061313017265 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writegclq ! !INTERFACE: subroutine writegclq ! !USES: use modmain ! !DESCRIPTION: ! Outputs the volume-averaged integral of $4\pi/q^2$ in the small ! parallelepiped around each discrete $q$-point to the file {\tt GCLQ.OUT}. ! These represent the regularised Coulomb Green's function in reciprocal ! space for small $q$. See the routine gengclq. ! ! !REVISION HISTORY: ! Created June 2005 (JKD) !EOP !BOC implicit none ! local variables integer iq real(8) t1 open(50,file='GCLQ'//trim(filext),form='FORMATTED',action='WRITE') write(50,'(I6," : nqpt; q-point, vql, gclq, 4π/q² below")') nqpt do iq=1,nqpt t1=vqc(1,iq)**2+vqc(2,iq)**2+vqc(3,iq)**2 if (t1 > 1.d-12) then t1=fourpi/t1 else t1=0.d0 end if write(50,'(I6,5G18.10)') iq,vql(:,iq),gclq(iq),t1 end do close(50) end subroutine !EOC elk-9.2.12/src/PaxHeaders/writegeom.f900000644000000000000000000000013214536061313014551 xustar0030 mtime=1702388427.984501391 30 atime=1702388426.836503091 30 ctime=1702388427.984501391 elk-9.2.12/src/writegeom.f900000644002504400250440000000346114536061313017277 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writegeom ! !INTERFACE: subroutine writegeom(fnum) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! fnum : file number for writing output (in,integer) ! !DESCRIPTION: ! Outputs the lattice vectors and atomic positions to file, in a format ! which may be then used directly in {\tt elk.in}. ! ! !REVISION HISTORY: ! Created January 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: fnum ! local variables integer is,ia,i real(8) v1(3),v2(3) write(fnum,*) write(fnum,'("scale")') write(fnum,'(" 1.0")') write(fnum,*) write(fnum,'("scale1")') write(fnum,'(" 1.0")') write(fnum,*) write(fnum,'("scale2")') write(fnum,'(" 1.0")') write(fnum,*) write(fnum,'("scale3")') write(fnum,'(" 1.0")') write(fnum,*) write(fnum,'("avec")') write(fnum,'(3G18.10)') avec(:,1) write(fnum,'(3G18.10)') avec(:,2) write(fnum,'(3G18.10)') avec(:,3) if (molecule) then write(fnum,*) write(fnum,'("molecule")') write(fnum,'(" ",L1)') molecule end if write(fnum,*) write(fnum,'("atoms")') write(fnum,'(I4,T40," : nspecies")') nspecies do is=1,nspecies write(fnum,'("''",A,"''",T40," : spfname")') trim(spfname(is)) write(fnum,'(I4,T40," : natoms; atpos, bfcmt below")') natoms(is) do ia=1,natoms(is) if (molecule) then ! map lattice coordinates to [-0.5,0.5) and write as Cartesian coordinates v1(:)=atposl(:,ia,is) do i=1,3 if (v1(i) > 0.5d0) v1(i)=v1(i)-1.d0 end do call r3mv(avec,v1,v2) else ! otherwise write lattice coordinates v2(:)=atposl(:,ia,is) end if write(fnum,'(3F14.8," ",3F12.8)') v2(:),bfcmt(:,ia,is) end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/writemom.f900000644000000000000000000000012714536061313014416 xustar0029 mtime=1702388427.98550139 29 atime=1702388426.83750309 29 ctime=1702388427.98550139 elk-9.2.12/src/writemom.f900000644002504400250440000000152614536061313017140 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine writemom(fnum) use modmain implicit none ! arguments integer, intent(in) :: fnum ! local variables integer is,ia,ias write(fnum,*) write(fnum,'("Moments :")') write(fnum,'(" interstitial",T30,": ",3G18.10)') momir(1:ndmag) write(fnum,'(" muffin-tins")') do is=1,nspecies write(fnum,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) write(fnum,'(" atom ",I4,T30,": ",3G18.10)') ia,mommt(1:ndmag,ias) end do end do write(fnum,'(" total in muffin-tins",T30,": ",3G18.10)') mommttot(1:ndmag) write(fnum,'(" total moment",T30,": ",3G18.10)') momtot(1:ndmag) flush(fnum) end subroutine elk-9.2.12/src/PaxHeaders/gendmat.f900000644000000000000000000000013214536061313014166 xustar0030 mtime=1702388427.986501388 30 atime=1702388426.839503087 30 ctime=1702388427.986501388 elk-9.2.12/src/gendmat.f900000644002504400250440000000465414536061313016721 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gendmat(tspndg,tlmdg,lmin,lmax,ld,dmat) use modmain use modmpi use modomp implicit none ! arguments logical, intent(in) :: tspndg,tlmdg integer, intent(in) :: lmin,lmax,ld complex(8), intent(out) :: dmat(ld,nspinor,ld,nspinor,natmtot) ! local variables integer ik,ispn integer nst,ist,jst integer ias,n,nthd real(8) wo ! automatic arrays integer idx(nstsv) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:,:),evecsv(:,:) complex(8), allocatable :: dmatk(:,:,:,:,:) ! zero the density matrix dmat(:,:,:,:,:)=0.d0 ! begin parallel loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(idx,apwalm,evecfv,evecsv,dmatk) & !$OMP PRIVATE(ispn,nst,ist,jst,ias,wo) & !$OMP NUM_THREADS(nthd) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) allocate(dmatk(ld,nspinor,ld,nspinor,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! find the matching coefficients do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! index to occupied states nst=0 do ist=1,nstsv if (abs(occsv(ist,ik)) < epsocc) cycle nst=nst+1 idx(nst)=ist end do ! begin loop over atoms and species do ias=1,natmtot call gendmatk(tspndg,tlmdg,lmin,lmax,ias,nst,idx,ngk(:,ik),apwalm,evecfv, & evecsv,ld,dmatk) do ist=1,nst jst=idx(ist) wo=occsv(jst,ik)*wkpt(ik) !$OMP CRITICAL(gendmat_) dmat(:,:,:,:,ias)=dmat(:,:,:,:,ias)+wo*dmatk(:,:,:,:,ist) !$OMP END CRITICAL(gendmat_) end do end do end do !$OMP END DO deallocate(apwalm,evecfv,evecsv,dmatk) !$OMP END PARALLEL call freethd(nthd) ! add density matrices from each process and redistribute if (np_mpi > 1) then n=((ld*nspinor)**2)*natmtot call mpi_allreduce(mpi_in_place,dmat,n,mpi_double_complex,mpi_sum,mpicom, & ierror) end if ! symmetrise the density matrix call symdmat(lmax,ld,dmat) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/curlrvf.f900000644000000000000000000000013214536061313014232 xustar0030 mtime=1702388427.988501385 30 atime=1702388426.840503085 30 ctime=1702388427.988501385 elk-9.2.12/src/curlrvf.f900000644002504400250440000000265714536061313016766 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine curlrvf(rvfmt,rvfir,curlmt,curlir) use modmain use modomp implicit none ! arguments real(8), intent(in) :: rvfmt(npmtmax,natmtot,3),rvfir(ngtot,3) real(8), intent(out) :: curlmt(npmtmax,natmtot,3),curlir(ngtot,3) ! local variables integer is,ias,np,i,nthd ! allocatable arrays real(8), allocatable :: grfmt(:,:,:,:),grfir(:,:,:) allocate(grfmt(npmtmax,natmtot,3,3),grfir(ngtot,3,3)) ! compute the gradients call holdthd(3,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do i=1,3 call gradrf(rvfmt(:,:,i),rvfir(:,i),grfmt(:,:,:,i),grfir(:,:,i)) end do !$OMP END PARALLEL DO call freethd(nthd) ! determine the muffin-tin and interstitial curl call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP PRIVATE(ias,is,np) & !$OMP NUM_THREADS(nthd) !$OMP SECTION do ias=1,natmtot is=idxis(ias) np=npmt(is) curlmt(1:np,ias,1)=grfmt(1:np,ias,2,3)-grfmt(1:np,ias,3,2) curlmt(1:np,ias,2)=grfmt(1:np,ias,3,1)-grfmt(1:np,ias,1,3) curlmt(1:np,ias,3)=grfmt(1:np,ias,1,2)-grfmt(1:np,ias,2,1) end do !$OMP SECTION curlir(:,1)=grfir(:,2,3)-grfir(:,3,2) curlir(:,2)=grfir(:,3,1)-grfir(:,1,3) curlir(:,3)=grfir(:,1,2)-grfir(:,2,1) !$OMP END PARALLEL SECTIONS call freethd(nthd) deallocate(grfmt,grfir) end subroutine elk-9.2.12/src/PaxHeaders/genzvclmt.f900000644000000000000000000000013214536061313014560 xustar0030 mtime=1702388427.989501384 30 atime=1702388426.842503082 30 ctime=1702388427.989501384 elk-9.2.12/src/genzvclmt.f900000644002504400250440000000166414536061313017311 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genzvclmt(nr,nri,ld1,rl,wpr,ld2,zrhomt,zvclmt) use modmain use modomp implicit none ! arguments integer, intent(in) :: nr(nspecies),nri(nspecies) integer, intent(in) :: ld1 real(8), intent(in) :: rl(ld1,-lmaxo-1:lmaxo+2,nspecies) real(8), intent(in) :: wpr(4,ld1,nspecies) integer, intent(in) :: ld2 complex(8), intent(in) :: zrhomt(ld2,natmtot) complex(8), intent(out) :: zvclmt(ld2,natmtot) ! local variables integer is,ias,nthd call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) call zpotclmt(nr(is),nri(is),ld1,rl(:,:,is),wpr(:,:,is),zrhomt(:,ias), & zvclmt(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/genjtot.f900000644000000000000000000000013214536061313014221 xustar0030 mtime=1702388427.990501382 30 atime=1702388426.843503081 30 ctime=1702388427.990501382 elk-9.2.12/src/genjtot.f900000644002504400250440000000077014536061313016747 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genjtot use modmain implicit none ! local variables integer i ! external functions real(8), external :: rfint if (.not.tjr) return ! compute the total current in the unit cell do i=1,3 jtot(i)=rfint(jrmt(:,:,i),jrir(:,i)) end do ! total current magnitude jtotm=sqrt(jtot(1)**2+jtot(2)**2+jtot(3)**2) end subroutine elk-9.2.12/src/PaxHeaders/symvec.f900000644000000000000000000000013214536061313014055 xustar0030 mtime=1702388427.991501381 30 atime=1702388426.845503078 30 ctime=1702388427.991501381 elk-9.2.12/src/symvec.f900000644002504400250440000000104214536061313016574 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine symvec(vc) use modmain implicit none ! arguments real(8), intent(inout) :: vc(3) ! local variables integer isym,lspl real(8) vs(3),v(3),t1 ! make symmetric average vs(:)=0.d0 do isym=1,nsymcrys lspl=lsplsymc(isym) call r3mv(symlatc(:,:,lspl),vc,v) vs(:)=vs(:)+v(:) end do ! normalise t1=1.d0/dble(nsymcrys) vc(:)=t1*vs(:) end subroutine elk-9.2.12/src/PaxHeaders/checkwrite.f900000644000000000000000000000013214536061313014677 xustar0030 mtime=1702388427.993501378 30 atime=1702388426.846503076 30 ctime=1702388427.993501378 elk-9.2.12/src/checkwrite.f900000644002504400250440000000074514536061313017427 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine checkwrite(twrite) use modmain use moddelf implicit none ! arguments logical, intent(out) :: twrite ! check for WRITE file inquire(file='WRITE',exist=twrite) if (twrite) then write(*,'("Info(checkwrite): WRITE file exists")') ! delete the WRITE file call delfile('WRITE') end if end subroutine elk-9.2.12/src/PaxHeaders/genjprk.f900000644000000000000000000000013214536061313014207 xustar0030 mtime=1702388427.994501377 30 atime=1702388426.848503073 30 ctime=1702388427.994501377 elk-9.2.12/src/genjprk.f900000644002504400250440000000721414536061313016735 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genjprk(ik,lock) use modmain implicit none ! arguments integer, intent(in) :: ik integer(8), intent(in) :: lock(natmtot) ! local variables integer ispn,jspn,nst,ist,jst integer is,ia,ias,nrc,nrci,npc integer igk,ifg,i real(8) wo complex(8) z1 ! automatic arrays integer idx(nstsv) real(8) rfmt(npcmtmax) complex(8) gwfmt(npcmtmax,3),zfmt1(npcmtmax),zfmt2(npcmtmax) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:,:),evecsv(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfgk(:,:,:) complex(8), allocatable :: zfft1(:),zfft2(:) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) ! find the matching coefficients do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! count and index the occupied states nst=0 do ist=1,nstsv if (abs(occsv(ist,ik)) < epsocc) cycle nst=nst+1 idx(nst)=ist end do ! calculate the second-variational wavefunctions for occupied states allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfgk(ngkmax,nspinor,nst)) call genwfsv(.true.,.true.,nst,idx,ngdgc,igfc,ngk(:,ik),igkig(:,:,ik),apwalm, & evecfv,evecsv,wfmt,ngkmax,wfgk) deallocate(apwalm,evecfv,evecsv) !-------------------------------------------------! ! muffin-tin paramagnetic current density ! !-------------------------------------------------! do ist=1,nst jst=idx(ist) wo=wkpt(ik)*occsv(jst,ik) do ispn=1,nspinor do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) ! compute the gradient of the wavefunction call gradzfmt(nrc,nrci,rlcmt(:,-1,is),wcrcmt(:,:,is), & wfmt(:,ias,ispn,ist),npcmtmax,gwfmt) ! convert wavefunction to spherical coordinates and conjugate call zbsht(nrc,nrci,wfmt(:,ias,ispn,ist),zfmt1) zfmt1(1:npc)=conjg(zfmt1(1:npc)) do i=1,3 ! convert wavefunction gradient to spherical coordinates call zbsht(nrc,nrci,gwfmt(:,i),zfmt2) ! compute the partial current density rfmt(1:npc)=aimag(zfmt1(1:npc)*zfmt2(1:npc)) call omp_set_lock(lock(ias)) jrmt(1:npc,ias,i)=jrmt(1:npc,ias,i)+wo*rfmt(1:npc) call omp_unset_lock(lock(ias)) end do end do end do end do end do deallocate(wfmt) !---------------------------------------------------! ! interstitial paramagnetic current density ! !---------------------------------------------------! allocate(zfft1(ngtc),zfft2(ngtc)) do ist=1,nst jst=idx(ist) wo=wkpt(ik)*occsv(jst,ik)/omega do ispn=1,nspinor jspn=jspnfv(ispn) ! Fourier transform to real-space and conjugate zfft1(:)=0.d0 do igk=1,ngk(jspn,ik) ifg=igfc(igkig(igk,jspn,ik)) zfft1(ifg)=wfgk(igk,ispn,ist) end do call zfftifc(3,ngdgc,1,zfft1) zfft1(:)=conjg(zfft1(:)) do i=1,3 ! compute the gradient of the wavefunction zfft2(:)=0.d0 do igk=1,ngk(jspn,ik) ifg=igfc(igkig(igk,jspn,ik)) z1=wfgk(igk,ispn,ist) zfft2(ifg)=vgkc(i,igk,jspn,ik)*cmplx(-aimag(z1),dble(z1),8) end do call zfftifc(3,ngdgc,1,zfft2) !$OMP CRITICAL(currentk_) jrir(1:ngtc,i)=jrir(1:ngtc,i)+wo*aimag(zfft1(1:ngtc)*zfft2(1:ngtc)) !$OMP END CRITICAL(currentk_) end do end do end do deallocate(wfgk,zfft1,zfft2) end subroutine elk-9.2.12/src/PaxHeaders/proj2d.f900000644000000000000000000000013114536061313013746 xustar0030 mtime=1702388427.995501375 29 atime=1702388426.85050307 30 ctime=1702388427.995501375 elk-9.2.12/src/proj2d.f900000644002504400250440000000254214536061313016474 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine proj2d(np,fp) use modmain implicit none ! arguments integer, intent(in) :: np real(8), intent(inout) :: fp(np,3) ! local variables integer i real(8) vl1(3),vl2(3),t1,t2,t3 real(8) vc1(3),vc2(3),vc3(3),vc4(3) ! determine the 2D plotting plane vectors in Cartesian coordinates vl1(:)=vclp2d(:,1)-vclp2d(:,0) vl2(:)=vclp2d(:,2)-vclp2d(:,0) call r3mv(avec,vl1,vc1) call r3mv(avec,vl2,vc2) ! the z axis is orthogonal to the plotting plane vectors call r3cross(vc1,vc2,vc3) t1=sqrt(vc1(1)**2+vc1(2)**2+vc1(3)**2) t2=sqrt(vc2(1)**2+vc2(2)**2+vc2(3)**2) t3=sqrt(vc3(1)**2+vc3(2)**2+vc3(3)**2) if ((t1 < epslat).or.(t2 < epslat).or.(t3 < epslat)) then write(*,*) write(*,'("Error(proj2d): degenerate 2D plotting directions")') write(*,*) stop end if ! normalise the x and z axes vc1(:)=vc1(:)/t1 vc3(:)=vc3(:)/t3 ! create new y axis orthogonal to x and z axes call r3cross(vc3,vc1,vc2) t1=sqrt(vc2(1)**2+vc2(2)**2+vc2(3)**2) vc2(:)=vc2(:)/t1 ! project the vector function onto the orthogonalised plotting plane axes do i=1,np vc4(:)=fp(i,:) fp(i,1)=dot_product(vc4(:),vc1(:)) fp(i,2)=dot_product(vc4(:),vc2(:)) fp(i,3)=dot_product(vc4(:),vc3(:)) end do end subroutine elk-9.2.12/src/PaxHeaders/genidxbse.f900000644000000000000000000000013214536061313014517 xustar0030 mtime=1702388427.997501372 30 atime=1702388426.851503069 30 ctime=1702388427.997501372 elk-9.2.12/src/genidxbse.f900000644002504400250440000000755614536061313017256 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genidxbse use modmain implicit none integer ik,jk,a,ntop integer ist,jst,i,j,k ! automatic arrays integer idx(nstsv) ! check if the BSE extra valence or conduction states are in range do i=1,nvxbse ist=istxbse(i) if ((ist < 1).or.(ist > nstsv)) then write(*,*) write(*,'("Error(genidxbse): extra valence state out of range : ",I8)') ist write(*,*) stop end if end do do j=1,ncxbse jst=jstxbse(j) if ((jst < 1).or.(jst > nstsv)) then write(*,*) write(*,'("Error(genidxbse): extra conduction state out of range : ",I8)') & jst write(*,*) stop end if end do ! number of valence states for transitions nvbse=nvbse0+nvxbse ! number of conduction states for transitions ncbse=ncbse0+ncxbse if ((nvbse <= 0).or.(ncbse <= 0)) then write(*,*) write(*,'("Error(genidxbse): invalid number of valence or conduction & &transition states : ",2I8)') nvbse,ncbse write(*,*) stop end if ! total number of transitions nvcbse=nvbse*ncbse ! block size in BSE matrix nbbse=nvcbse*nkptnr ! BSE matrix size if (bsefull) then nmbse=2*nbbse else nmbse=nbbse end if ! allocate global BSE index arrays if (allocated(istbse)) deallocate(istbse) allocate(istbse(nvbse,nkptnr)) if (allocated(jstbse)) deallocate(jstbse) allocate(jstbse(ncbse,nkptnr)) if (allocated(ijkbse)) deallocate(ijkbse) allocate(ijkbse(nvbse,ncbse,nkptnr)) a=0 ! loop over non-reduced k-points do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! index for sorting the eigenvalues into ascending order call sortidx(nstsv,evalsv(:,jk),idx) ! find the topmost occupied band ntop=nstsv do ist=nstsv,1,-1 if (evalsv(idx(ist),jk) < efermi) then ntop=ist exit end if end do if ((ntop-nvbse0+1) < 1) then write(*,*) write(*,'("Error(genidxbse): not enough valence states, reduce nvbse")') write(*,*) stop end if if ((ntop+ncbse0) > nstsv) then write(*,*) write(*,'("Error(genidxbse): not enough conduction states")') write(*,'(" reduce ncbse or increase nempty")') write(*,*) stop end if ! index from BSE valence states to second-variational state numbers do i=1,nvbse0 istbse(i,ik)=idx(ntop-nvbse0+i) end do ! index from BSE conduction states to second-variational state numbers do j=1,ncbse0 jstbse(j,ik)=idx(ntop+j) end do ! add extra states to the list do i=1,nvxbse ist=istxbse(i) if (evalsv(ist,jk) > efermi) then write(*,*) write(*,'("Error(genidxbse): extra valence state above Fermi energy : ",& &I6)') ist write(*,'(" for k-point ",I8)') jk write(*,*) stop end if do k=1,nvbse0+i-1 if (ist == istbse(k,ik)) then write(*,*) write(*,'("Error(genidxbse): redundant extra valence state : ",I6)') ist write(*,'(" for k-point ",I8)') jk write(*,*) stop end if end do istbse(nvbse0+i,ik)=ist end do do j=1,ncxbse jst=jstxbse(j) if (evalsv(jst,jk) < efermi) then write(*,*) write(*,'("Error(genidxbse): extra conduction state below Fermi & &energy : ",I6)') jst write(*,'(" for k-point ",I8)') jk write(*,*) stop end if do k=1,ncbse0+j-1 if (jst == jstbse(k,ik)) then write(*,*) write(*,'("Error(genidxbse): redundant extra conduction state : ",& &I6)') jst write(*,'(" for k-point ",I8)') jk write(*,*) stop end if end do jstbse(ncbse0+j,ik)=jst end do ! index from BSE valence-conduction pair and k-point to location in BSE matrix do i=1,nvbse do j=1,ncbse a=a+1 ijkbse(i,j,ik)=a end do end do ! end loop over non-reduced k-points end do end subroutine elk-9.2.12/src/PaxHeaders/symrvfir.f900000644000000000000000000000013214536061313014430 xustar0030 mtime=1702388427.998501371 30 atime=1702388426.853503066 30 ctime=1702388427.998501371 elk-9.2.12/src/symrvfir.f900000644002504400250440000001020614536061313017151 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: symrvfir subroutine symrvfir(tspin,tnc,ngdg,ngt,ngv,igf,ld,rvfir) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! tspin : .true. if spin rotations should be used (in,logical) ! tnc : .true. if the vector field is non-collinear, otherwise it is ! collinear along the z-axis (in,logical) ! ngdg : G-vector grid sizes (in,integer(3)) ! ngt : total number of G-vectors (in,integer) ! ngv : number of G-vectors within cut-off (in,integer) ! igf : map from G-vector index to FFT array (in,integer(ngv)) ! ld : leading dimension (in,integer) ! rvfir : real interstitial vector function (inout,real(ld,*)) ! !DESCRIPTION: ! Symmetrises a real interstitial vector function. See routines {\tt symrvf} ! and {\tt symrfir} for details. ! ! !REVISION HISTORY: ! Created July 2007 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: tspin,tnc integer, intent(in) :: ngdg(3),ngt,ngv,igf(ngv) integer, intent(in) :: ld real(8), intent(inout) :: rvfir(ld,*) ! local variables logical tv0 integer nd,isym,lspl,ilspl,lspn integer sym(3,3),ig,ifg,jfg integer i1,i2,i3,j1,j2,j3,i real(8) sc(3,3),v1,v2,v3,t1 complex(8) x1,x2,x3,z1 ! allocatable arrays complex(8), allocatable :: zfft1(:,:),zfft2(:,:) ! dimension of the vector field if (tnc) then nd=3 else nd=1 end if allocate(zfft1(ngt,nd),zfft2(ngt,nd)) ! Fourier transform vector function to G-space do i=1,nd zfft1(1:ngt,i)=rvfir(1:ngt,i) call zfftifc(3,ngdg,-1,zfft1(:,i)) end do zfft2(:,:)=0.d0 do isym=1,nsymcrys ! zero translation vector flag tv0=tv0symc(isym) ! translation vector in Cartesian coordinates if (.not.tv0) then v1=vtcsymc(1,isym) v2=vtcsymc(2,isym) v3=vtcsymc(3,isym) end if ! index to spatial rotation lattice symmetry lspl=lsplsymc(isym) ! inverse rotation required for rotation of G-vectors ilspl=isymlat(lspl) sym(:,:)=symlat(:,:,ilspl) if (tspin) then ! global spin proper rotation in Cartesian coordinates lspn=lspnsymc(isym) sc(:,:)=symlatd(lspn)*symlatc(:,:,lspn) else ! set spin rotation equal to spatial rotation lspn=lspl sc(:,:)=symlatc(:,:,lspl) end if do ig=1,ngv ifg=igf(ig) ! multiply the transpose of the inverse symmetry matrix with the G-vector if (lspl == 1) then jfg=ifg else i1=ivg(1,ig); i2=ivg(2,ig); i3=ivg(3,ig) j1=sym(1,1)*i1+sym(2,1)*i2+sym(3,1)*i3 j2=sym(1,2)*i1+sym(2,2)*i2+sym(3,2)*i3 j3=sym(1,3)*i1+sym(2,3)*i2+sym(3,3)*i3 jfg=igf(ivgig(j1,j2,j3)) end if ! translation, spatial rotation and global spin rotation if (tv0) then ! zero translation vector if (lspn == 1) then ! global spin symmetry is the identity zfft2(jfg,:)=zfft2(jfg,:)+zfft1(ifg,:) else if (tnc) then ! non-collinear case x1=zfft1(ifg,1); x2=zfft1(ifg,2); x3=zfft1(ifg,3) zfft2(jfg,1)=zfft2(jfg,1)+sc(1,1)*x1+sc(1,2)*x2+sc(1,3)*x3 zfft2(jfg,2)=zfft2(jfg,2)+sc(2,1)*x1+sc(2,2)*x2+sc(2,3)*x3 zfft2(jfg,3)=zfft2(jfg,3)+sc(3,1)*x1+sc(3,2)*x2+sc(3,3)*x3 else ! collinear case zfft2(jfg,1)=zfft2(jfg,1)+sc(3,3)*zfft1(ifg,1) end if end if else ! complex phase factor for translation t1=-(vgc(1,ig)*v1+vgc(2,ig)*v2+vgc(3,ig)*v3) z1=cmplx(cos(t1),sin(t1),8) if (lspn == 1) then zfft2(jfg,:)=zfft2(jfg,:)+z1*zfft1(ifg,:) else if (tnc) then x1=zfft1(ifg,1); x2=zfft1(ifg,2); x3=zfft1(ifg,3) zfft2(jfg,1)=zfft2(jfg,1)+z1*(sc(1,1)*x1+sc(1,2)*x2+sc(1,3)*x3) zfft2(jfg,2)=zfft2(jfg,2)+z1*(sc(2,1)*x1+sc(2,2)*x2+sc(2,3)*x3) zfft2(jfg,3)=zfft2(jfg,3)+z1*(sc(3,1)*x1+sc(3,2)*x2+sc(3,3)*x3) else zfft2(jfg,1)=zfft2(jfg,1)+sc(3,3)*z1*zfft1(ifg,1) end if end if end if end do end do ! Fourier transform to real-space and normalise t1=1.d0/dble(nsymcrys) do i=1,nd call zfftifc(3,ngdg,1,zfft2(:,i)) rvfir(1:ngt,i)=t1*dble(zfft2(1:ngt,i)) end do deallocate(zfft1,zfft2) end subroutine !EOC elk-9.2.12/src/PaxHeaders/genjpr.f900000644000000000000000000000013214536061313014034 xustar0030 mtime=1702388427.999501369 30 atime=1702388426.854503064 30 ctime=1702388427.999501369 elk-9.2.12/src/genjpr.f900000644002504400250440000000426714536061313016567 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genjpr use modmain use modmpi use modomp implicit none ! local variables integer ik,is,ias,n,i integer nrc,nrci,nthd ! automatic arrays integer(8) lock(natmtot) ! set the current density to zero do i=1,3 do ias=1,natmtot is=idxis(ias) jrmt(1:npcmt(is),ias,i)=0.d0 end do end do jrir(1:ngtc,1:3)=0.d0 ! current density cannot be computed if wavefunctions do not exist if (iscl <= 0) return ! initialise the OpenMP locks do ias=1,natmtot call omp_init_lock(lock(ias)) end do call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call genjprk(ik,lock) end do !$OMP END PARALLEL DO call freethd(nthd) ! destroy the OpenMP locks do ias=1,natmtot call omp_destroy_lock(lock(ias)) end do ! convert muffin-tin current density to spherical harmonics call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is,nrc,nrci,i) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) do i=1,3 call rfshtip(nrc,nrci,jrmt(:,ias,i)) end do end do !$OMP END PARALLEL DO call freethd(nthd) ! symmetrise the current density call symrvf(.false.,.true.,nrcmt,nrcmti,npcmt,ngdgc,ngtc,ngvc,igfc,npmtmax, & jrmt,ngtot,jrir) ! convert muffin-tin and interstitial current density from coarse to fine grids call holdthd(6,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP DO do i=1,3 call rfmtctof(jrmt(:,:,i)) end do !$OMP END DO NOWAIT !$OMP DO do i=1,3 call rfirctof(jrir(:,i),jrir(:,i)) end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) ! add current densities from each process and redistribute if (np_mpi > 1) then n=npmtmax*natmtot*3 call mpi_allreduce(mpi_in_place,jrmt,n,mpi_double_precision,mpi_sum,mpicom, & ierror) n=ngtot*3 call mpi_allreduce(mpi_in_place,jrir,n,mpi_double_precision,mpi_sum,mpicom, & ierror) end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/eveqnfvr.f900000644000000000000000000000013214536061314014404 xustar0030 mtime=1702388428.001501366 30 atime=1702388426.856503061 30 ctime=1702388428.001501366 elk-9.2.12/src/eveqnfvr.f900000644002504400250440000001670414536061314017136 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: eveqnfvr ! !INTERFACE: subroutine eveqnfvr(nmatp,ngp,vpc,h,o,evalfv,evecfv) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! nmatp : order of overlap and Hamiltonian matrices (in,integer) ! ngp : number of G+p-vectors (in,integer) ! vpc : p-vector in Cartesian coordinates (in,real(3)) ! h,o : Hamiltonian and overlap matrices in upper triangular form ! (in,complex(*)) ! evalfv : first-variational eigenvalues (out,real(nstfv)) ! evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv)) ! !DESCRIPTION: ! This routine solves the first-variational eigenvalue equation for the ! special case when inversion symmetry is present. In this case the ! Hamiltonian and overlap matrices can be made real by using appropriate ! linear combinations of the local-orbitals for atoms related by inversion ! symmetry. These are derived from the effect of parity and complex ! conjugation on the spherical harmonics: $P Y_{lm}=(-1)^l Y_{lm}$ and ! $(Y_{lm})^*=(-1)^mY_{l-m}$. ! ! !REVISION HISTORY: ! Created May 2011 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nmatp,ngp real(8), intent(in) :: vpc(3) complex(8), intent(in) :: h(*),o(*) real(8), intent(out) :: evalfv(nstfv) complex(8), intent(out) :: evecfv(nmatmax,nstfv) ! local variables integer is,ia,ja,jas integer ilo,i,j,k,l,m integer i1,i2,j1,j2 integer k1,k2,k3,k4 integer l1,l2,m1,m2 integer info,nthd,nts real(8) v(3),vl,vu real(8) t1,t2,t3,t4 real(8) ts0,ts1 complex(8) h1,h2,o1,o2,z1 ! automatic arrays logical tr(nlotot),tp(nlotot) integer idx(nlotot),s(nlotot) integer iwork(5*nmatp),ifail(nmatp) real(8) w(nmatp),work(8*nmatp) complex(8) zp(nlotot) ! allocatable arrays real(8), allocatable :: rh(:),ro(:),rv(:,:) call timesec(ts0) tp(:)=.false. i=0 do is=1,nspecies do ia=1,natoms(is) ! symmetry equivalent atom, mapped with inversion ja=ieqatom(ia,is,2) jas=idxas(ja,is) ! residual phase factor v(:)=atposc(:,ia,is)+atposc(:,ja,is) t1=0.5d0*(vpc(1)*v(1)+vpc(2)*v(2)+vpc(3)*v(3)) z1=cmplx(cos(t1),sin(t1),8) do ilo=1,nlorb(is) l=lorbl(ilo,is) do m=-l,l i=i+1 ! index to conjugate local-orbital in symmetry equivalent atom idx(i)=idxlo(l*(l+1)-m+1,ilo,jas) if (ia /= ja) then ! sign of parity and conjugation operators if (mod(l+m,2) == 0) then s(i)=1 else s(i)=-1 end if if (ia < ja) then ! if ia < ja use the real part of the sum of matrix elements tr(i)=.true. else if (ia > ja) then ! if ia > ja use the imaginary part of the difference of matrix elements s(i)=-s(i) tr(i)=.false. end if else ! if ia = ja then use real function when l even and imaginary when l is odd if (mod(m,2) == 0) then s(i)=1 else s(i)=-1 end if ! new function should be real if symmetric or imaginary if antisymmetric if (mod(l,2) == 0) then ! l even if (m >= 0) then tr(i)=.true. else s(i)=-s(i) tr(i)=.false. end if else ! l odd if (m >= 0) then tr(i)=.false. else s(i)=-s(i) tr(i)=.true. end if end if end if ! phase factors if required if (abs(t1) > 1.d-8) then zp(i)=z1 tp(i)=.true. end if end do end do end do end do !---------------------------------! ! real Hamiltonian matrix ! !---------------------------------! allocate(rh(nmatp**2)) ! do j=1,ngp k=(j-1)*nmatp+1 rh(k:k+j-1)=dble(h(k:k+j-1)) end do ! do m1=1,nlotot j1=ngp+m1 j2=ngp+idx(m1) do i=1,ngp k1=i+(j1-1)*nmatp k2=i+(j2-1)*nmatp h1=h(k1); h2=h(k2) if (tp(m1)) then h1=h1*zp(m1); h2=h2*zp(m1) end if if (tr(m1)) then rh(k1)=dble(h1)+s(m1)*dble(h2) else rh(k1)=aimag(h1)+s(m1)*aimag(h2) end if end do end do ! do m1=1,nlotot m2=idx(m1) do l1=1,m1 l2=idx(l1) k1=map(l1,m1); k2=map(l1,m2); k3=map(l2,m1); k4=map(l2,m2) if ((tr(l1).and.tr(m1)).or.((.not.tr(l1)).and.(.not.tr(m1)))) then rh(k1)=dble(h(k1))+s(m1)*dble(h(k2))+s(l1)*(dble(h(k3))+s(m1)*dble(h(k4))) else t2=aimag(h(k2)) if (l1 > m2) t2=-t2 t3=aimag(h(k3)) if (l2 > m1) t3=-t3 t4=aimag(h(k4)) if (l2 > m2) t4=-t4 rh(k1)=aimag(h(k1))+s(m1)*t2+s(l1)*(t3+s(m1)*t4) if (.not.tr(l1)) rh(k1)=-rh(k1) end if end do end do !-----------------------------! ! real overlap matrix ! !-----------------------------! allocate(ro(nmatp**2)) ! do j=1,ngp k=(j-1)*nmatp+1 ro(k:k+j-1)=dble(o(k:k+j-1)) end do ! do m1=1,nlotot j1=ngp+m1 j2=ngp+idx(m1) do i=1,ngp k1=i+(j1-1)*nmatp k2=i+(j2-1)*nmatp o1=o(k1); o2=o(k2) if (tp(m1)) then o1=o1*zp(m1); o2=o2*zp(m1) end if if (tr(m1)) then ro(k1)=dble(o1)+s(m1)*dble(o2) else ro(k1)=aimag(o1)+s(m1)*aimag(o2) end if end do end do ! do m1=1,nlotot m2=idx(m1) do l1=1,m1 l2=idx(l1) k1=map(l1,m1); k2=map(l1,m2); k3=map(l2,m1); k4=map(l2,m2) if ((tr(l1).and.tr(m1)).or.((.not.tr(l1)).and.(.not.tr(m1)))) then ro(k1)=dble(o(k1))+s(m1)*dble(o(k2))+s(l1)*(dble(o(k3))+s(m1)*dble(o(k4))) else t2=aimag(o(k2)) if (l1 > m2) t2=-t2 t3=aimag(o(k3)) if (l2 > m1) t3=-t3 t4=aimag(o(k4)) if (l2 > m2) t4=-t4 ro(k1)=aimag(o(k1))+s(m1)*t2+s(l1)*(t3+s(m1)*t4) if (.not.tr(l1)) ro(k1)=-ro(k1) end if end do end do ! solve the generalised eigenvalue problem for real symmetric matrices allocate(rv(nmatp,nstfv)) ! enable MKL parallelism call holdthd(maxthdmkl,nthd) nts=mkl_set_num_threads_local(nthd) ! diagonalise the matrix call dsygvx(1,'V','I','U',nmatp,rh,nmatp,ro,nmatp,vl,vu,1,nstfv,evaltol,m,w, & rv,nmatp,work,8*nmatp,iwork,ifail,info) nts=mkl_set_num_threads_local(0) call freethd(nthd) if (info /= 0) then write(*,*) write(*,'("Error(eveqnfvr): diagonalisation failed")') write(*,'(" DSYGVX returned INFO = ",I8)') info if (info > nmatp) then i=info-nmatp write(*,'(" The leading minor of the overlap matrix of order ",I8)') i write(*,'(" is not positive definite")') write(*,'(" Order of overlap matrix : ",I8)') nmatp end if write(*,*) stop end if evalfv(1:nstfv)=w(1:nstfv) ! reconstruct the complex eigenvectors do j=1,nstfv evecfv(1:ngp,j)=rv(1:ngp,j) evecfv(ngp+1:nmatp,j)=0.d0 do l1=1,nlotot i1=ngp+l1 i2=ngp+idx(l1) t1=rv(i1,j) if (tr(l1)) then evecfv(i1,j)=evecfv(i1,j)+t1 evecfv(i2,j)=evecfv(i2,j)+s(l1)*t1 else evecfv(i1,j)=evecfv(i1,j)-cmplx(0.d0,t1,8) evecfv(i2,j)=evecfv(i2,j)-cmplx(0.d0,s(l1)*t1,8) end if end do do l1=1,nlotot if (tp(l1)) then i1=ngp+l1 evecfv(i1,j)=evecfv(i1,j)*zp(l1) end if end do end do deallocate(rh,ro,rv) call timesec(ts1) !$OMP ATOMIC timefv=timefv+ts1-ts0 contains elemental integer function map(i,j) implicit none ! arguments integer, intent(in) :: i,j ! map from local-orbital indices to position in matrix if (i <= j) then map=ngp+i+(ngp+j-1)*nmatp else map=ngp+j+(ngp+i-1)*nmatp end if end function end subroutine !EOC elk-9.2.12/src/PaxHeaders/gentau.f900000644000000000000000000000013114536061314014032 xustar0030 mtime=1702388428.002501365 29 atime=1702388426.85750306 30 ctime=1702388428.002501365 elk-9.2.12/src/gentau.f900000644002504400250440000000643314536061314016563 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gentau use modmain use modmpi use modomp implicit none ! local variables integer ik,ispn,is,ias integer np,npi,npc,n,nthd ! allocatable arrays real(8), allocatable :: rfmt(:,:),rfir(:) real(8), allocatable :: rvfmt(:,:,:),rvfir(:,:) ! tau cannot be computed if wavefunctions do not exist if (iscl <= 0) then taumt(:,:,:)=0.d0 tauir(:,:)=0.d0 return end if ! set the kinetic energy density to zero on the coarse grids do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) taumt(1:npcmt(is),ias,ispn)=0.d0 end do end do tauir(1:ngtc,1:nspinor)=0.d0 call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call gentauk(ik) end do !$OMP END PARALLEL DO call freethd(nthd) ! convert taumt to spherical harmonics do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) call rfshtip(nrcmt(is),nrcmti(is),taumt(:,ias,ispn)) end do end do allocate(rfmt(npcmtmax,natmtot)) ! symmetrise tau if (spinpol) then ! spin-polarised case: convert to scalar-vector form allocate(rvfmt(npcmtmax,natmtot,ndmag)) allocate(rvfir(ngtc,ndmag),rfir(ngtc)) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) rfmt(1:npc,ias)=taumt(1:npc,ias,1)+taumt(1:npc,ias,2) rvfmt(1:npc,ias,1:ndmag-1)=0.d0 rvfmt(1:npc,ias,ndmag)=taumt(1:npc,ias,1)-taumt(1:npc,ias,2) end do rfir(1:ngtc)=tauir(1:ngtc,1)+tauir(1:ngtc,2) rvfir(1:ngtc,1:ndmag-1)=0.d0 rvfir(1:ngtc,ndmag)=tauir(1:ngtc,1)-tauir(1:ngtc,2) call symrf(nrcmt,nrcmti,npcmt,ngdgc,ngtc,ngvc,igfc,npcmtmax,rfmt,rfir) call symrvf(.true.,ncmag,nrcmt,nrcmti,npcmt,ngdgc,ngtc,ngvc,igfc,npcmtmax,& rvfmt,ngtc,rvfir) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) taumt(1:npc,ias,1)=0.5d0*(rfmt(1:npc,ias)+rvfmt(1:npc,ias,ndmag)) taumt(1:npc,ias,2)=0.5d0*(rfmt(1:npc,ias)-rvfmt(1:npc,ias,ndmag)) end do tauir(1:ngtc,1)=0.5d0*(rfir(1:ngtc)+rvfir(1:ngtc,ndmag)) tauir(1:ngtc,2)=0.5d0*(rfir(1:ngtc)-rvfir(1:ngtc,ndmag)) deallocate(rvfmt,rvfir,rfir) else ! spin-unpolarised case call symrf(nrcmt,nrcmti,npcmt,ngdgc,ngtc,ngvc,igfc,npmtmax,taumt,tauir) end if ! convert muffin-tin tau from coarse to fine radial mesh do ispn=1,nspinor call rfmtctof(taumt(:,:,ispn)) end do ! convert interstitial tau from coarse to fine grid do ispn=1,nspinor call rfirctof(tauir(:,ispn),tauir(:,ispn)) end do ! add tau from each process and redistribute if (np_mpi > 1) then n=npmtmax*natmtot*nspinor call mpi_allreduce(mpi_in_place,taumt,n,mpi_double_precision,mpi_sum,mpicom, & ierror) n=ngtot*nspinor call mpi_allreduce(mpi_in_place,tauir,n,mpi_double_precision,mpi_sum,mpicom, & ierror) end if ! generate the core kinetic energy density call gentaucr do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) np=npmt(is) npi=npmti(is) ! add the core contribution taumt(1:np,ias,ispn)=taumt(1:np,ias,ispn)+taucr(1:np,ias,ispn) ! improve stability by smoothing tau call rfmtsm(msmgmt,nrmt(is),nrmti(is),taumt(:,ias,ispn)) end do end do deallocate(rfmt) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/genjlgpr.f900000644000000000000000000000013214536061314014360 xustar0030 mtime=1702388428.003501363 30 atime=1702388426.859503057 30 ctime=1702388428.003501363 elk-9.2.12/src/genjlgpr.f900000644002504400250440000000211414536061314017100 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genjlgpr(ngp,gpc,jlgpr) use modmain use modomp implicit none ! arguments integer, intent(in) :: ngp real(8), intent(in) :: gpc(ngp) real(8), intent(out) :: jlgpr(njcmax,nspecies,ngp) ! local variables integer ig,is,n,i,nthd integer nrc,nrci,irc real(8) t1,t2 ! generate spherical Bessel functions on the coarse radial mesh over all species call holdthd(ngp,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(t1,t2,is,nrc) & !$OMP PRIVATE(nrci,n,i,irc) & !$OMP NUM_THREADS(nthd) do ig=1,ngp t1=gpc(ig) do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) n=lmaxi+1 i=1 do irc=1,nrci t2=t1*rcmt(irc,is) call sbessel(lmaxi,t2,jlgpr(i,is,ig)) i=i+n end do n=lmaxo+1 do irc=nrci+1,nrc t2=t1*rcmt(irc,is) call sbessel(lmaxo,t2,jlgpr(i,is,ig)) i=i+n end do end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/writestrain.f900000644000000000000000000000013014536061314015121 xustar0029 mtime=1702388428.00550136 30 atime=1702388426.860503056 29 ctime=1702388428.00550136 elk-9.2.12/src/writestrain.f900000644002504400250440000000142314536061314017645 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writestrain use modmain implicit none ! local variables integer i,j,k ! initialise universal variables call init0 ! generate the strain tensors call genstrain ! write the strain tensors to file open(50,file='STRAIN.OUT',form='FORMATTED',action='WRITE') do k=1,nstrain write(50,*) write(50,'("Strain tensor : ",I1)') k do j=1,3 write(50,'(3G18.10)') (strain(i,j,k),i=1,3) end do end do close(50) write(*,*) write(*,'("Info(writestrain)")') write(*,'(" Strain tensors written to STRAIN.OUT")') write(*,'(" (the first strain tensor is isotropic expansion)")') end subroutine elk-9.2.12/src/PaxHeaders/writefermi.f900000644000000000000000000000013214536061314014725 xustar0030 mtime=1702388428.006501359 30 atime=1702388426.862503053 30 ctime=1702388428.006501359 elk-9.2.12/src/writefermi.f900000644002504400250440000000106214536061314017446 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writefermi ! !INTERFACE: subroutine writefermi ! !USES: use modmain ! !DESCRIPTION: ! Writes the Fermi energy to the file {\tt EFERMI.OUT}. ! ! !REVISION HISTORY: ! Created March 2005 (JKD) !EOP !BOC implicit none open(50,file='EFERMI'//trim(filext),form='FORMATTED',action='WRITE') write(50,'(G18.10)') efermi close(50) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rfmtctof.f900000644000000000000000000000013214536061314014374 xustar0030 mtime=1702388428.007501357 30 atime=1702388426.863503051 30 ctime=1702388428.007501357 elk-9.2.12/src/rfmtctof.f900000644002504400250440000000422014536061314017114 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rfmtctof ! !INTERFACE: subroutine rfmtctof(rfmt) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! rfmt : real muffin-tin function (in,real(npmtmax,natmtot)) ! !DESCRIPTION: ! Converts a real muffin-tin function from a coarse to a fine radial mesh by ! using cubic spline interpolation. See {\tt rfinterp} and {\tt spline}. ! ! !REVISION HISTORY: ! Created October 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(inout) :: rfmt(npmtmax,natmtot) ! local variables integer is,ias,lm integer nr,nri,nro,iro integer nrc,nrci,nrco,irco integer i0,i1,nthd ! automatic arrays real(8) rfmt1(npcmtmax),fi(nrcmtmax),fo(nrmtmax) if (lradstp == 1) return call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(rfmt1,fi,fo,is) & !$OMP PRIVATE(nr,nri,nro,iro) & !$OMP PRIVATE(nrc,nrci,nrco,irco) & !$OMP PRIVATE(lm,i0,i1) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) nro=nr-nri iro=nri+1 nrc=nrcmt(is) nrci=nrcmti(is) nrco=nrc-nrci irco=nrci+1 ! copy the input function rfmt1(1:npcmt(is))=rfmt(1:npcmt(is),ias) ! interpolate up to lmaxi over entire muffin-tin do lm=1,lmmaxi i1=lmmaxi*(nrci-1)+lm fi(1:nrci)=rfmt1(lm:i1:lmmaxi) i0=i1+lmmaxi i1=lmmaxo*(nrc-irco)+i0 fi(irco:nrc)=rfmt1(i0:i1:lmmaxo) call rfinterp(nrc,rcmt(:,is),wcrcmt(:,:,is),fi,nr,rlmt(:,1,is),fo) i1=lmmaxi*(nri-1)+lm rfmt(lm:i1:lmmaxi,ias)=fo(1:nri) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 rfmt(i0:i1:lmmaxo,ias)=fo(iro:nr) end do ! interpolate up to lmaxo on outer part of muffin-tin do lm=lmmaxi+1,lmmaxo i0=lmmaxi*nrci+lm i1=lmmaxo*(nrc-irco)+i0 fi(irco:nrc)=rfmt1(i0:i1:lmmaxo) call rfinterp(nrco,rcmt(irco,is),wcrcmt(:,irco,is),fi(irco),nro, & rsp(iro,is),fo(iro)) i0=lmmaxi*nri+lm i1=lmmaxo*(nr-iro)+i0 rfmt(i0:i1:lmmaxo,ias)=fo(iro:nr) end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine !EOC elk-9.2.12/src/PaxHeaders/findsym.f900000644000000000000000000000013214536061314014221 xustar0030 mtime=1702388428.008501356 30 atime=1702388426.865503048 30 ctime=1702388428.008501356 elk-9.2.12/src/findsym.f900000644002504400250440000001264714536061314016755 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: findsym ! !INTERFACE: subroutine findsym(apl1,apl2,nsym,lspl,lspn,iea) ! !USES: use modmain use moddftu ! !INPUT/OUTPUT PARAMETERS: ! apl1 : first set of atomic positions in lattice coordinates ! (in,real(3,maxatoms,maxspecies)) ! apl2 : second set of atomic positions in lattice coordinates ! (in,real(3,maxatoms,maxspecies)) ! nsym : number of symmetries (out,integer) ! lspl : spatial rotation element in lattice point group for each symmetry ! (out,integer(48)) ! lspn : spin rotation element in lattice point group for each symmetry ! (out,integer(48)) ! iea : equivalent atom index for each symmetry ! (out,integer(iea(natmmax,nspecies,48)) ! !DESCRIPTION: ! Finds the symmetries which rotate one set of atomic positions into another. ! Both sets of positions differ only by a translation vector and have the same ! muffin-tin magnetic fields (stored in the global array {\tt bfcmt}). Any ! symmetry element consists of a spatial rotation of the atomic position ! vectors followed by a global magnetic rotation: $\{\alpha_S|\alpha_R\}$. In ! the case of spin-orbit coupling $\alpha_S=\alpha_R$. The symmetries are ! returned as indices of elements in the Bravais lattice point group. An ! index to equivalent atoms is stored in the array {\tt iea}. ! ! !REVISION HISTORY: ! Created April 2007 (JKD) ! Fixed use of proper rotations for spin, February 2008 (L. Nordstrom) !EOP !BOC implicit none ! arguments real(8), intent(in) :: apl1(3,maxatoms,maxspecies) real(8), intent(in) :: apl2(3,maxatoms,maxspecies) integer, intent(out) :: nsym,lspl(48),lspn(48) integer, intent(out) :: iea(natmmax,nspecies,48) ! local variables integer isym,jsym,jsym0,jsym1 integer is,ia,ias,ja,jas,md,n real(8) sl(3,3),sc(3,3),v(3),t1 ! automatic arrays integer jea(natmmax,nspecies) real(8) apl3(3,natmmax) complex(8) dmat(lmmaxdm,nspinor,lmmaxdm,nspinor) ! external functions real(8), external :: dznrm2 nsym=0 ! loop over lattice symmetries (spatial rotations) do isym=1,nsymlat ! make real copy of lattice rotation symmetry sl(:,:)=dble(symlat(:,:,isym)) ! loop over species do is=1,nspecies ! map apl1 coordinates to [0,1) and store in apl3 do ia=1,natoms(is) apl3(:,ia)=apl1(:,ia,is) call r3frac(epslat,apl3(:,ia)) end do do ja=1,natoms(is) ! apply lattice symmetry to atomic positions v(:)=sl(:,1)*apl2(1,ja,is)+sl(:,2)*apl2(2,ja,is)+sl(:,3)*apl2(3,ja,is) ! map coordinates to [0,1) call r3frac(epslat,v) ! check if atomic positions are invariant do ia=1,natoms(is) t1=abs(apl3(1,ia)-v(1))+abs(apl3(2,ia)-v(2))+abs(apl3(3,ia)-v(3)) if (t1 < epslat) then ! equivalent atom index jea(ia,is)=ja goto 10 end if end do ! not invariant so try new spatial rotation goto 40 10 continue end do end do ! all atomic positions invariant at this point jsym=1 ! spin polarised case if (spinpol) then ! check invariance of magnetic fields under global spin rotation if (spinorb) then ! with spin-orbit coupling spin rotation equals spatial rotation jsym0=isym jsym1=isym else ! without spin-orbit coupling spin rotation independent of spatial rotation jsym0=1 jsym1=nsymlat end if do jsym=jsym0,jsym1 ! determinant of the symmetry matrix md=symlatd(jsym) sc(:,:)=dble(md)*symlatc(:,:,jsym) ! rotate global field and check invariance using proper part of symmetry matrix v(:)=sc(:,1)*bfieldc0(1)+sc(:,2)*bfieldc0(2)+sc(:,3)*bfieldc0(3) t1=abs(bfieldc0(1)-v(1))+abs(bfieldc0(2)-v(2))+abs(bfieldc0(3)-v(3)) ! if not invariant try a different global spin rotation if (t1 > epslat) goto 20 ! rotate muffin-tin magnetic fields and check invariance do is=1,nspecies do ia=1,natoms(is) ! equivalent atom ja=jea(ia,is) v(:)=sc(:,1)*bfcmt0(1,ja,is) & +sc(:,2)*bfcmt0(2,ja,is) & +sc(:,3)*bfcmt0(3,ja,is) t1=abs(bfcmt0(1,ia,is)-v(1)) & +abs(bfcmt0(2,ia,is)-v(2)) & +abs(bfcmt0(3,ia,is)-v(3)) ! if not invariant try a different global spin rotation if (t1 > epslat) goto 20 end do end do ! all fields invariant goto 30 20 continue ! end loop over global spin rotations end do ! magnetic fields not invariant so try different spatial rotation goto 40 end if 30 continue ! check invariance of density matrices for fixed tensor moment calculations if (ftmtype /= 0) then n=(lmmaxdm*nspinor)**2 do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! equivalent atom ja=jea(ia,is) jas=idxas(ja,is) ! rotate the fixed tensor moment density matrix dmat(:,:,:,:)=0.d0 call rotdmat(symlatc(:,:,isym),symlatc(:,:,jsym),lmaxdm,nspinor, & lmmaxdm,dmftm(:,:,:,:,jas),dmat) ! check invariance dmat(:,:,:,:)=dmat(:,:,:,:)-dmftm(:,:,:,:,ias) t1=dznrm2(n,dmat,1)/dble(n) if (t1 > epsdmat) goto 40 end do end do end if ! everything invariant so add symmetry to set nsym=nsym+1 lspl(nsym)=isym lspn(nsym)=jsym do is=1,nspecies do ia=1,natoms(is) iea(ia,is,nsym)=jea(ia,is) end do end do 40 continue ! end loop over spatial rotations end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/zfsht.f900000644000000000000000000000013214536061314013706 xustar0030 mtime=1702388428.010501353 30 atime=1702388426.866503047 30 ctime=1702388428.010501353 elk-9.2.12/src/zfsht.f900000644002504400250440000000261414536061314016433 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: zfsht ! !INTERFACE: subroutine zfsht(nr,nri,zfmt1,zfmt2) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of points on the inner part of the muffin-tin (in,integer) ! zfmt1 : input complex muffin-tin function in spherical coordinates ! (in,complex(*)) ! zfmt2 : output complex muffin-tin function in spherical harmonics ! (out,complex(*)) ! !DESCRIPTION: ! Performs a forward spherical harmonic transform (SHT) on a complex ! muffin-tin function in spherical coordinates to obtain a function expressed ! in spherical harmonics. See also {\tt genshtmat} and {\tt zbsht}. ! !REVISION HISTORY: ! Created October 2013 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri complex(8), intent(in) :: zfmt1(*) complex(8), intent(out) :: zfmt2(*) ! local variables integer i ! transform the inner part of the muffin-tin call zgemm('N','N',lmmaxi,nri,lmmaxi,zone,zfshti,lmmaxi,zfmt1,lmmaxi,zzero, & zfmt2,lmmaxi) ! transform the outer part of the muffin-tin i=lmmaxi*nri+1 call zgemm('N','N',lmmaxo,nr-nri,lmmaxo,zone,zfshto,lmmaxo,zfmt1(i),lmmaxo, & zzero,zfmt2(i),lmmaxo) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rhonorm.f900000644000000000000000000000013214536061314014234 xustar0030 mtime=1702388428.011501351 30 atime=1702388426.868503044 30 ctime=1702388428.011501351 elk-9.2.12/src/rhonorm.f900000644002504400250440000000345414536061314016764 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rhonorm ! !INTERFACE: subroutine rhonorm ! !USES: use modmain ! !DESCRIPTION: ! Loss of precision of the calculated total charge can result because the ! muffin-tin density is computed on a set of $(\theta,\phi)$ points and then ! transformed to a spherical harmonic representation. This routine adds a ! constant to the density so that the total charge is correct. If the error in ! total charge exceeds a certain tolerance then a warning is issued. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Changed from rescaling to adding, September 2006 (JKD) !EOP !BOC implicit none ! local variables integer is,ia,ias integer nr,nri,iro,i0,i1 real(8) t1,t2 if (.not.trhonorm) return ! check error in total charge t1=chgcalc/chgtot-1.d0 if (abs(t1) > epschg) then write(*,*) write(*,'("Warning(rhonorm): total charge density incorrect for s.c. & &loop ",I5)') iscl write(*,'(" Calculated : ",G18.10)') chgcalc write(*,'(" Required : ",G18.10)') chgtot end if ! error in average density t1=(chgtot-chgcalc)/omega ! add the constant difference to the density t2=t1/y00 do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 i1=lmmaxi*(nri-1)+1 rhomt(1:i1:lmmaxi,ias)=rhomt(1:i1:lmmaxi,ias)+t2 i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 rhomt(i0:i1:lmmaxo,ias)=rhomt(i0:i1:lmmaxo,ias)+t2 end do rhoir(1:ngtot)=rhoir(1:ngtot)+t1 ! add the difference to the charges t1=t1*(fourpi/3.d0) do is=1,nspecies t2=t1*rmt(is)**3 do ia=1,natoms(is) ias=idxas(ia,is) chgmt(ias)=chgmt(ias)+t2 chgmttot=chgmttot+t2 end do end do chgir=chgtot-chgmttot end subroutine !EOC elk-9.2.12/src/PaxHeaders/genvchi0.f900000644000000000000000000000013014536061314014251 xustar0029 mtime=1702388428.01250135 30 atime=1702388426.869503042 29 ctime=1702388428.01250135 elk-9.2.12/src/genvchi0.f900000644002504400250440000001213514536061314016777 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genvchi0(t3hw,ik,lock,vqpl,gclgq,jlgqr,ylmgq,sfacgq,nm,vchi0) use modmain use modomp implicit none ! local variables logical, intent(in) :: t3hw integer, intent(in) :: ik integer(8), intent(in) :: lock(nwrf) real(8), intent(in) :: vqpl(3),gclgq(ngrf) real(8), intent(in) :: jlgqr(njcmax,nspecies,ngrf) complex(8), intent(in) :: ylmgq(lmmaxo,ngrf) complex(8), intent(in) :: sfacgq(ngrf,natmtot) integer, intent(in) :: nm complex(8), intent(inout) :: vchi0(nm,nm,nwrf) ! local variables logical tq0 integer isym,jk,jkq,iw integer nst,nstq,ist,jst,kst,lst integer nm2,ig,jg,i,j,nthd real(8) vkql(3),ei,ej,eij,t1 complex(8) a(3,3),z1 ! automatic arrays integer idx(nstsv),idxq(nstsv) integer ngp(nspnfv),ngpq(nspnfv) ! allocatable arrays integer, allocatable :: igpig(:,:),igpqig(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfir(:,:,:) complex(4), allocatable :: wfmtq(:,:,:,:),wfirq(:,:,:) complex(4), allocatable :: crhomt(:,:),crhoir(:) complex(8), allocatable :: zrhoig(:),pmat(:,:,:),zw(:),b(:,:) ! check if q = 0 tq0=.false. if (sum(abs(vqpl(:))) < epslat) tq0=.true. ! k+q-vector in lattice coordinates vkql(:)=vkl(:,ik)+vqpl(:) ! equivalent reduced k-points for k and k+q jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) call findkpt(vkql,isym,jkq) ! count and index states at k and k+q in energy window nst=0 do ist=1,nstsv if (abs(evalsv(ist,jk)-efermi) > emaxrf) cycle nst=nst+1 idx(nst)=ist end do nstq=0 do ist=1,nstsv if (abs(evalsv(ist,jkq)-efermi) > emaxrf) cycle nstq=nstq+1 idxq(nstq)=ist end do ! generate the wavefunctions for all states at k and k+q in energy window allocate(igpig(ngkmax,nspnfv)) allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfir(ngtc,nspinor,nst)) call genwfsvp_sp(.false.,.false.,nst,idx,ngdgc,igfc,vkl(:,ik),ngp,igpig,wfmt, & ngtc,wfir) deallocate(igpig) allocate(igpqig(ngkmax,nspnfv)) allocate(wfmtq(npcmtmax,natmtot,nspinor,nstq),wfirq(ngtc,nspinor,nstq)) call genwfsvp_sp(.false.,.false.,nstq,idxq,ngdgc,igfc,vkql,ngpq,igpqig,wfmtq, & ngtc,wfirq) deallocate(igpqig) ! read the momentum matrix elements from file for q = 0 if (tq0) then allocate(pmat(nstsv,nstsv,3)) call getpmat(vkl(:,ik),pmat) ! divide by unit cell volume t1=1.d0/omega pmat(:,:,:)=t1*pmat(:,:,:) end if nm2=nm**2 call holdthd(nst,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(crhomt,crhoir,zrhoig,zw,b) & !$OMP PRIVATE(jst,kst,lst,ei,ej,eij,t1) & !$OMP PRIVATE(iw,ig,jg,z1,i,j,a) & !$OMP NUM_THREADS(nthd) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) allocate(zrhoig(ngrf),zw(nwrf)) if (tq0.and.t3hw) then allocate(b(-1:ngrf,-1:ngrf)) else allocate(b(ngrf,ngrf)) end if !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nst kst=idx(ist) ei=evalsv(kst,jk) do jst=1,nstq lst=idxq(jst) t1=wkptnr*omega*(occsv(kst,jk)-occsv(lst,jkq)) if (abs(t1) < 1.d-8) cycle ej=evalsv(lst,jkq) eij=ei-ej ! frequency-dependent part in response function formula for all frequencies do iw=1,nwrf zw(iw)=t1/(eij+wrf(iw)) end do ! compute the complex density in G+q-space call gencrho(.true.,.true.,ngtc,wfmt(:,:,:,ist),wfir(:,:,ist), & wfmtq(:,:,:,jst),wfirq(:,:,jst),crhomt,crhoir) call zftcf(ngrf,jlgqr,ylmgq,ngrf,sfacgq,crhomt,crhoir,zrhoig) ! Hermitian part of body do jg=1,ngrf do ig=1,jg-1 b(ig,jg)=conjg(b(jg,ig)) end do z1=gclgq(jg)*conjg(zrhoig(jg)) do ig=jg,ngrf b(ig,jg)=gclgq(ig)*zrhoig(ig)*z1 end do end do ! case of q = 0 if (tq0) then if (t3hw) then b(-1:1,-1:1)=0.d0 ! calculate 3 x ngrf wings of matrix t1=-sqrt(fourpi)/eij do i=-1,1 z1=t1*pmat(kst,lst,i+2) b(i,2:)=z1*conjg(zrhoig(2:))*gclgq(2:) do j=2,ngrf b(j,i)=conjg(b(i,j)) end do end do else ! use trace of 3 x 3 head of matrix t1=sum(dble(pmat(kst,lst,1:3))**2+aimag(pmat(kst,lst,1:3))**2)/3.d0 b(1,1)=(fourpi/eij**2)*t1 ! wings of matrix t1=-sqrt(fourpi)/eij z1=(t1/3.d0)*(pmat(kst,lst,1)+pmat(kst,lst,2)+pmat(kst,lst,3)) b(1,2:)=z1*conjg(zrhoig(2:))*gclgq(2:) b(2:,1)=conjg(b(1,2:)) end if end if ! add to body and wings of the response function do iw=1,nwrf call omp_set_lock(lock(iw)) call zaxpy(nm2,zw(iw),b,1,vchi0(1,1,iw),1) call omp_unset_lock(lock(iw)) end do ! calculate 3 x 3 head if (tq0.and.t3hw) then t1=-fourpi/eij zw(1:nwrf)=zw(1:nwrf)/wrf(1:nwrf) do j=1,3 do i=1,3 a(i,j)=t1*pmat(kst,lst,i)*conjg(pmat(kst,lst,j)) end do end do ! add to the head of the response function do iw=1,nwrf call omp_set_lock(lock(iw)) vchi0(1:3,1:3,iw)=vchi0(1:3,1:3,iw)+a(1:3,1:3)*zw(iw) call omp_unset_lock(lock(iw)) end do end if ! end loop over jst end do ! end loop over ist end do !$OMP END DO deallocate(crhomt,crhoir,zrhoig,zw,b) !$OMP END PARALLEL call freethd(nthd) deallocate(wfmt,wfir,wfmtq,wfirq) if (tq0) deallocate(pmat) end subroutine elk-9.2.12/src/PaxHeaders/cfmtconj.f900000644000000000000000000000013214536061314014353 xustar0030 mtime=1702388428.014501347 30 atime=1702388426.871503039 30 ctime=1702388428.014501347 elk-9.2.12/src/cfmtconj.f900000644002504400250440000000376514536061314017110 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine cfmtconj(nr,nri,np,cfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri,np complex(4), intent(inout) :: cfmt(np) ! local variables integer i ! automatic arrays complex(4) cfmt1(np) cfmt1(:)=cfmt(:) call cflmnconj(lmaxi,nri,lmmaxi,cfmt1,cfmt) i=lmmaxi*nri+1 call cflmnconj(lmaxo,nr-nri,lmmaxo,cfmt1(i),cfmt(i)) return contains !BOP ! !ROUTINE: cflmnconj ! !INTERFACE: pure subroutine cflmnconj(lmax,n,ld,cflm1,cflm2) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum angular momentum (in,integer) ! n : number of functions to conjugate (in,integer) ! ld : leading dimension (in,integer) ! cflm1 : coefficients of input complex spherical harmonic expansion ! (in,complex((lmax+1)**2))) ! cflm2 : coefficients of output complex spherical harmonic expansion ! (out,complex((lmax+1)**2))) ! !DESCRIPTION: ! Returns the complex conjugate of a function expanded in spherical harmonics. ! In other words, given the input function coefficients $c_{lm}$, the routine ! returns $c'_{lm}=(-1)^m c^*_{l-m}$ so that ! $$ \sum_{lm}c'_{lm}Y_{lm}(\theta,\phi)=\left(\sum_{lm}c_{lm}Y_{lm} ! (\theta,\phi)\right)^* $$ ! for all $(\theta,\phi)$. ! ! !REVISION HISTORY: ! Created April 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax,n,ld complex(4), intent(in) :: cflm1(ld,n) complex(4), intent(out) :: cflm2(ld,n) ! local variables integer l,m,lm1,lm2 do l=0,lmax lm1=l**2 lm2=(l+1)**2+1 do m=-l,-1 lm1=lm1+1 lm2=lm2-1 if (mod(m,2) == 0) then cflm2(lm1,:)=conjg(cflm1(lm2,:)) cflm2(lm2,:)=conjg(cflm1(lm1,:)) else cflm2(lm1,:)=-conjg(cflm1(lm2,:)) cflm2(lm2,:)=-conjg(cflm1(lm1,:)) end if end do ! m=0 case lm1=lm1+1 cflm2(lm1,:)=conjg(cflm1(lm1,:)) end do end subroutine !EOC end subroutine elk-9.2.12/src/PaxHeaders/stheta_sq.f900000644000000000000000000000013214536061314014543 xustar0030 mtime=1702388428.015501346 30 atime=1702388426.872503038 30 ctime=1702388428.015501346 elk-9.2.12/src/stheta_sq.f900000644002504400250440000000160014536061314017262 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: stheta_sq ! !INTERFACE: elemental real(8) function stheta_sq(x) ! !INPUT/OUTPUT PARAMETERS: ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the Heaviside step function corresponding to the square-wave pulse ! approximation to the Dirac delta function ! $$ \tilde\Theta(x)=\left\{\begin{array}{ll} ! 0 & \quad x \le -1/2 \\ ! x+1/2 & \quad -1/2 < x < 1/2 \\ ! 1 & \quad x\ge 1 \end{array}\right. $$ ! ! !REVISION HISTORY: ! Created July 2008 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: x if (x <= -0.5d0) then stheta_sq=0.d0 return end if if (x < 0.5d0) then stheta_sq=x+0.5d0 else stheta_sq=1.d0 end if end function !EOC elk-9.2.12/src/PaxHeaders/sdelta_lr.f900000644000000000000000000000013214536061314014521 xustar0030 mtime=1702388428.017501342 30 atime=1702388426.874503035 30 ctime=1702388428.017501342 elk-9.2.12/src/sdelta_lr.f900000644002504400250440000000063114536061314017243 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. elemental real(8) function sdelta_lr(x) implicit none ! arguments real(8), intent(in) :: x ! local variables real(8), parameter :: twopi=6.2831853071795864769d0 sdelta_lr=1.d0/(twopi*(x**2+0.25d0)) end function elk-9.2.12/src/PaxHeaders/stheta_lr.f900000644000000000000000000000013214536061314014535 xustar0030 mtime=1702388428.018501341 30 atime=1702388426.875503033 30 ctime=1702388428.018501341 elk-9.2.12/src/stheta_lr.f900000644002504400250440000000062114536061314017256 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. elemental real(8) function stheta_lr(x) implicit none ! arguments real(8), intent(in) :: x ! local variables real(8), parameter :: pi=3.1415926535897932385d0 stheta_lr=0.5d0+atan(2.d0*x)/pi end function elk-9.2.12/src/PaxHeaders/findsymsite.f900000644000000000000000000000013114536061314015105 xustar0030 mtime=1702388428.019501339 29 atime=1702388426.87750303 30 ctime=1702388428.019501339 elk-9.2.12/src/findsymsite.f900000644002504400250440000000163614536061314017636 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine findsymsite use modmain implicit none ! local variables integer is,js,ia,ja,ias real(8) apl(3,maxatoms,maxspecies) ! automatic arrays real(8) iea(natmmax,nspecies,48) ! allocate the site symmetry arrays if (allocated(nsymsite)) deallocate(nsymsite) allocate(nsymsite(natmtot)) if (allocated(lsplsyms)) deallocate(lsplsyms) allocate(lsplsyms(48,natmtot)) if (allocated(lspnsyms)) deallocate(lspnsyms) allocate(lspnsyms(48,natmtot)) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) do js=1,nspecies do ja=1,natoms(js) apl(:,ja,js)=atposl(:,ja,js)-atposl(:,ia,is) end do end do call findsym(apl,apl,nsymsite(ias),lsplsyms(:,ias),lspnsyms(:,ias),iea) end do end do end subroutine elk-9.2.12/src/PaxHeaders/genlmirep.f900000644000000000000000000000013214536061314014532 xustar0030 mtime=1702388428.021501337 30 atime=1702388426.878503029 30 ctime=1702388428.021501337 elk-9.2.12/src/genlmirep.f900000644002504400250440000000427214536061314017261 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genlmirep(lmax,ld,elm,ulm) use modmain implicit none ! arguments integer, intent(in) :: lmax integer, intent(in) :: ld real(8), intent(out) :: elm(ld,natmtot) complex(8), intent(out) :: ulm(ld,ld,natmtot) ! local variables integer isym,lspl,is,ia,ias integer lmmax,i,j,l,lm,n,p integer info,lwork ! allocatable arrays real(8), allocatable :: rwork(:) complex(8), allocatable :: ulat(:,:,:) complex(8), allocatable :: a(:,:),b(:,:) complex(8), allocatable :: h(:,:),work(:) lmmax=(lmax+1)**2 allocate(rwork(3*lmmax)) allocate(ulat(lmmax,lmmax,nsymlat)) allocate(a(lmmax,lmmax),b(lmmax,lmmax)) allocate(h(lmmax,lmmax)) lwork=2*lmmax allocate(work(lwork)) ! construct (l,m) rotation matrix for each lattice symmetry a(:,:)=0.d0 do i=1,lmmax a(i,i)=1.d0 end do do isym=1,nsymlat call rotzflm(symlatc(:,:,isym),0,lmax,lmmax,lmmax,lmmax,a,ulat(:,:,isym)) end do ! set up pseudorandom symmetric matrix H h(:,:)=0.d0 p=1 do l=0,lmax n=2*l+1 lm=l**2+1 do i=lm,lm+n-1 do j=i,lm+n-1 ! Park and Miller linear congruential generator p=mod(p*171,30269) h(i,j)=mod(p,lmmax) h(j,i)=h(i,j) end do end do end do ! loop over species and atoms do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! symmetrise H with site symmetries b(:,:)=0.d0 do isym=1,nsymsite(ias) ! spatial rotation element in lattice point group lspl=lsplsyms(isym,ias) ! apply lattice symmetry as U*H*conjg(U') call zgemm('N','N',lmmax,lmmax,lmmax,zone,ulat(:,:,lspl),lmmax,h,lmmax, & zzero,a,lmmax) call zgemm('N','C',lmmax,lmmax,lmmax,zone,a,lmmax,ulat(:,:,lspl),lmmax, & zone,b,lmmax) end do ! block diagonalise symmetrised H do l=0,lmax n=2*l+1 lm=l**2+1 call zheev('V','U',n,b(lm,lm),lmmax,elm(lm,ias),work,lwork,rwork,info) end do ! the unitary matrix U is the transpose of the eigenvector array do i=1,lmmax do j=1,lmmax ulm(i,j,ias)=b(j,i) end do end do end do end do deallocate(rwork,ulat,a,b,h,work) end subroutine elk-9.2.12/src/PaxHeaders/writespecies.f900000644000000000000000000000013214536061314015256 xustar0030 mtime=1702388428.022501335 30 atime=1702388426.880503026 30 ctime=1702388428.022501335 elk-9.2.12/src/writespecies.f900000644002504400250440000000526114536061314020004 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writespecies(symb,name,zn,mass,rmin,rm,rmax,nrm,nst,n,l,k,occ,eval) use modmain use modmpi implicit none ! arguments character(*), intent(in) :: symb,name real(8), intent(in) :: zn,mass real(8), intent(in) :: rmin,rm,rmax integer, intent(in) :: nrm,nst integer, intent(in) :: n(nst),l(nst),k(nst) real(8), intent(in) :: occ(nst) real(8), intent(in) :: eval(nst) ! local variables integer lmax,nlo integer ist,jst,i logical core(maxstsp),lorb(maxstsp) ! default APW band energy real(8), parameter :: e0=0.15d0 ! find which states belong to core do ist=1,nst if (eval(ist) < ecvcut) then core(ist)=.true. else core(ist)=.false. end if end do ! check that the state for same n and l but different k is also core do ist=1,nst if (core(ist)) then do jst=1,nst if ((n(ist) == n(jst)).and.(l(ist) == l(jst))) core(jst)=.true. end do end if end do lmax=1 do ist=1,nst if (.not.core(ist)) lmax=max(lmax,l(ist)) end do ! determine the local orbitals nlo=lmax+1 lorb(:)=.false. do ist=1,nst if (.not.core(ist)) then if ((l(ist) == 0).or.(l(ist) < k(ist))) then if ((eval(ist) < esccut).or.(l(ist) >= 2)) then lorb(ist)=.true. nlo=nlo+1 end if end if end if end do if (mp_mpi) then open(55,file=trim(symb)//'.in',form='FORMATTED') write(55,'(" ''",A,"''",T45,": spsymb")') trim(symb) write(55,'(" ''",A,"''",T45,": spname")') trim(name) write(55,'(G14.6,T45,": spzn")') zn write(55,'(G18.10,T45,": spmass")') mass write(55,'(G14.6,2F10.4,I6,T45,": rminsp, rmt, rmaxsp, nrmt")') rmin,rm, & rmax,nrm write(55,'(I4,T45,": nstsp")') nst write(55,'(3I4,G14.6,L1,T45,": nsp, lsp, ksp, occsp, spcore")') n(1),l(1), & k(1),occ(1),core(1) do ist=2,nst write(55,'(3I4,G14.6,L1)') n(ist),l(ist),k(ist),occ(ist),core(ist) end do write(55,'(I4,T45,": apword")') 1 write(55,'(F10.4,I4," ",L1,T45,": apwe0, apwdm, apwve")') e0,0,.false. write(55,'(I4,T45,": nlx")') 0 write(55,'(I4,T45,": nlorb")') nlo do i=0,lmax write(55,'(2I4,T45,": lorbl, lorbord")') i,2 write(55,'(F10.4,I4," ",L1,T45,": lorbe0, lorbdm, lorbve")') e0,0,.false. write(55,'(F10.4,I4," ",L1)') e0,1,.false. end do do ist=1,nst if (lorb(ist)) then write(55,'(2I4,T45,": lorbl, lorbord")') l(ist),2 write(55,'(F10.4,I4," ",L1,T45,": lorbe0, lorbdm, lorbve")') e0,0,.false. write(55,'(F10.4,I4," ",L1)') eval(ist),0,.true. end if end do close(55) end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/rhomagk.f900000644000000000000000000000013214536061314014200 xustar0030 mtime=1702388428.023501334 30 atime=1702388426.881503025 30 ctime=1702388428.023501334 elk-9.2.12/src/rhomagk.f900000644002504400250440000001465714536061314016737 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2010 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rhomagk ! !INTERFACE: subroutine rhomagk(ngp,igpig,lock,wppt,occsvp,apwalm,evecfv,evecsv) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! ngp : number of G+p-vectors (in,integer(nspnfv)) ! igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax,nspnfv)) ! lock : OpenMP lock for each atom (in,integer(natmtot)) ! wppt : weight of input p-point (in,real) ! occsvp : occupation number for each state (in,real(nstsv)) ! apwalm : APW matching coefficients ! (in,complex(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) ! evecfv : first-variational eigenvectors (in,complex(nmatmax,nstfv,nspnfv)) ! evecsv : second-variational eigenvectors (in,complex(nstsv,nstsv)) ! !DESCRIPTION: ! Generates the partial valence charge density and magnetisation from the ! eigenvectors at a particular $k$-point. In the muffin-tin region, the ! wavefunction is obtained in terms of its $(l,m)$-components from both the ! APW and local-orbital functions. Using a backward spherical harmonic ! transform (SHT), the wavefunction is converted to real-space and the density ! obtained from its modulus squared. A similar proccess is used for the ! intersitial density in which the wavefunction in real-space is obtained from ! a Fourier transform of the APW functions. See routines {\tt wfmtsv}, ! {\tt genshtmat} and {\tt eveqn}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Removed conversion to spherical harmonics, January 2009 (JKD) ! Partially de-phased the muffin-tin magnetisation for spin-spirals, ! February 2009 (FC, FB & LN) ! Optimisations, July 2010 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) integer(8), intent(in) :: lock(natmtot) real(8), intent(in) :: wppt,occsvp(nstsv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) ! local variables integer ispn,jspn,nst,ist integer is,ias,npc,i,j,k integer n,igp,nthd real(8) wo,ts0,ts1 complex(8) z1 ! automatic arrays integer idx(nstsv) complex(8) wfir(ngtc,nspinor),wfgp(ngkmax) ! allocatable arrays complex(8), allocatable :: wfmt(:,:,:) call timesec(ts0) call holdthd(nst,nthd) !----------------------------------------------! ! muffin-tin density and magnetisation ! !----------------------------------------------! ! number of and index to occupied states nst=0 do ist=1,nstsv if (abs(occsvp(ist)) < epsocc) cycle nst=nst+1 idx(nst)=ist end do allocate(wfmt(npcmtmax,nspinor,nst)) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) call wfmtsv(.false.,lradstp,is,ias,nst,idx,ngp,apwalm,evecfv,evecsv,npcmtmax,& wfmt) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(k,wo) & !$OMP NUM_THREADS(nthd) do j=1,nst k=idx(j) wo=occsvp(k)*wppt ! add to density and magnetisation call omp_set_lock(lock(ias)) if (spinpol) then ! spin-polarised if (ncmag) then ! non-collinear call rmk1(npc,wo,wfmt(:,1,j),wfmt(:,2,j),rhomt(:,ias),magmt(:,ias,1), & magmt(:,ias,2),magmt(:,ias,3)) else ! collinear call rmk2(npc,wo,wfmt(:,1,j),wfmt(:,2,j),rhomt(:,ias),magmt(:,ias,1)) end if else ! spin-unpolarised call rmk3(npc,wo,wfmt(:,1,j),rhomt(:,ias)) end if call omp_unset_lock(lock(ias)) end do !$OMP END PARALLEL DO end do deallocate(wfmt) !------------------------------------------------! ! interstitial density and magnetisation ! !------------------------------------------------! !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(wfir,wfgp,k,wo) & !$OMP PRIVATE(ispn,jspn,n,ist) & !$OMP PRIVATE(i,z1,igp) & !$OMP NUM_THREADS(nthd) do j=1,nst k=idx(j) wo=occsvp(k)*wppt/omega if (tevecsv) then ! generate spinor wavefunction from second-variational eigenvectors do ispn=1,nspinor jspn=jspnfv(ispn) n=ngp(jspn) wfgp(1:n)=0.d0 do ist=1,nstfv i=(ispn-1)*nstfv+ist z1=evecsv(i,k) if (abs(dble(z1))+abs(aimag(z1)) > epsocc) then wfgp(1:n)=wfgp(1:n)+z1*evecfv(1:n,ist,jspn) end if end do wfir(:,ispn)=0.d0 do igp=1,n wfir(igfc(igpig(igp,jspn)),ispn)=wfgp(igp) end do ! Fourier transform wavefunction to real-space call zfftifc(3,ngdgc,1,wfir(:,ispn)) end do else ! spin-unpolarised wavefunction wfir(:,1)=0.d0 do igp=1,ngp(1) wfir(igfc(igpig(igp,1)),1)=evecfv(igp,k,1) end do call zfftifc(3,ngdgc,1,wfir) end if ! add to density and magnetisation !$OMP CRITICAL(rhomagk_) if (spinpol) then ! spin-polarised if (ncmag) then ! non-collinear call rmk1(ngtc,wo,wfir,wfir(:,2),rhoir,magir,magir(:,2),magir(:,3)) else ! collinear call rmk2(ngtc,wo,wfir,wfir(:,2),rhoir,magir) end if else ! spin-unpolarised call rmk3(ngtc,wo,wfir,rhoir) end if !$OMP END CRITICAL(rhomagk_) end do !$OMP END PARALLEL DO call freethd(nthd) call timesec(ts1) !$OMP ATOMIC timerho=timerho+ts1-ts0 return contains pure subroutine rmk1(n,wo,wf1,wf2,rho,mag1,mag2,mag3) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wo complex(8), intent(in) :: wf1(n),wf2(n) real(8), intent(inout) :: rho(n),mag1(n),mag2(n),mag3(n) ! local variables integer i real(8) wo2,t1,t2 real(8) a1,b1,a2,b2 wo2=2.d0*wo !$OMP SIMD PRIVATE(a1,b1,a2,b2,t1,t2) SIMDLEN(8) do i=1,n a1=dble(wf1(i)); b1=aimag(wf1(i)) a2=dble(wf2(i)); b2=aimag(wf2(i)) t1=a1**2+b1**2; t2=a2**2+b2**2 mag1(i)=mag1(i)+wo2*(a1*a2+b1*b2) mag2(i)=mag2(i)+wo2*(a1*b2-b1*a2) mag3(i)=mag3(i)+wo*(t1-t2) rho(i)=rho(i)+wo*(t1+t2) end do end subroutine pure subroutine rmk2(n,wo,wf1,wf2,rho,mag) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wo complex(8), intent(in) :: wf1(n),wf2(n) real(8), intent(inout) :: rho(n),mag(n) ! local variables integer i real(8) t1,t2 !$OMP SIMD PRIVATE(t1,t2) SIMDLEN(8) do i=1,n t1=dble(wf1(i))**2+aimag(wf1(i))**2 t2=dble(wf2(i))**2+aimag(wf2(i))**2 mag(i)=mag(i)+wo*(t1-t2) rho(i)=rho(i)+wo*(t1+t2) end do end subroutine pure subroutine rmk3(n,wo,wf,rho) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wo complex(8), intent(in) :: wf(n) real(8), intent(inout) :: rho(n) rho(:)=rho(:)+wo*(dble(wf(:))**2+aimag(wf(:))**2) end subroutine end subroutine !EOC elk-9.2.12/src/PaxHeaders/symrvfmt.f900000644000000000000000000000013214536061314014437 xustar0030 mtime=1702388428.025501331 30 atime=1702388426.883503022 30 ctime=1702388428.025501331 elk-9.2.12/src/symrvfmt.f900000644002504400250440000000721214536061314017163 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine symrvfmt(tspin,tnc,nr,nri,np,ld,rvfmt) use modmain implicit none ! arguments logical, intent(in) :: tspin,tnc integer, intent(in) :: nr(nspecies),nri(nspecies),np(nspecies) integer, intent(in) :: ld real(8), intent(inout) :: rvfmt(ld,natmtot,*) ! local variables integer is,ia,ja,ias,jas,n integer nd,isym,lspl,lspn,i real(8) sc(3,3),t0,t1 real(8) x1,x2,x3,y1,y2,y3 ! automatic arrays logical done(natmmax) ! allocatable arrays real(8), allocatable :: rvfmt1(:,:,:),rvfmt2(:,:) ! dimension of the vector field if (tnc) then nd=3 else nd=1 end if allocate(rvfmt1(ld,natmmax,nd),rvfmt2(ld,nd)) t0=1.d0/dble(nsymcrys) do is=1,nspecies n=np(is) ! make copy of vector field for all atoms of current species do i=1,nd do ia=1,natoms(is) ias=idxas(ia,is) rvfmt1(1:n,ia,i)=rvfmt(1:n,ias,i) end do end do done(:)=.false. do ia=1,natoms(is) if (done(ia)) cycle ias=idxas(ia,is) rvfmt(1:n,ias,1:nd)=0.d0 ! begin loop over crystal symmetries do isym=1,nsymcrys ! equivalent atom ja=ieqatom(ia,is,isym) ! parallel transport of vector field lspl=lsplsymc(isym) do i=1,nd call rotrfmt(symlatc(:,:,lspl),nr(is),nri(is),rvfmt1(:,ja,i), & rvfmt2(:,i)) end do if (tspin) then ! global spin proper rotation matrix in Cartesian coordinates lspn=lspnsymc(isym) sc(:,:)=symlatd(lspn)*symlatc(:,:,lspn) else ! set spin rotation equal to spatial rotation lspn=lspl sc(:,:)=symlatc(:,:,lspl) end if ! global spin rotation of vector field if (tnc) then ! non-collinear case do i=1,n x1=rvfmt2(i,1); x2=rvfmt2(i,2); x3=rvfmt2(i,3) y1=sc(1,1)*x1+sc(1,2)*x2+sc(1,3)*x3 y2=sc(2,1)*x1+sc(2,2)*x2+sc(2,3)*x3 y3=sc(3,1)*x1+sc(3,2)*x2+sc(3,3)*x3 rvfmt(i,ias,1)=rvfmt(i,ias,1)+y1 rvfmt(i,ias,2)=rvfmt(i,ias,2)+y2 rvfmt(i,ias,3)=rvfmt(i,ias,3)+y3 end do else ! collinear case t1=sc(3,3) rvfmt(1:n,ias,1)=rvfmt(1:n,ias,1)+t1*rvfmt2(1:n,1) end if ! end loop over crystal symmetries end do ! normalise do i=1,nd rvfmt(1:n,ias,i)=t0*rvfmt(1:n,ias,i) end do ! mark atom as done done(ia)=.true. ! rotate into equivalent atoms do isym=1,nsymcrys ja=ieqatom(ia,is,isym) if (done(ja)) cycle jas=idxas(ja,is) ! parallel transport of vector field (using operation inverse) lspl=isymlat(lsplsymc(isym)) do i=1,nd call rotrfmt(symlatc(:,:,lspl),nr(is),nri(is),rvfmt(:,ias,i), & rvfmt(:,jas,i)) end do if (tspin) then ! inverse of global proper rotation matrix in Cartesian coordinates lspn=isymlat(lspnsymc(isym)) sc(:,:)=symlatd(lspn)*symlatc(:,:,lspn) else ! set spin rotation equal to spatial rotation lspn=lspl sc(:,:)=symlatc(:,:,lspl) end if ! global spin rotation of vector field if (tnc) then ! non-collinear case do i=1,n x1=rvfmt(i,jas,1); x2=rvfmt(i,jas,2); x3=rvfmt(i,jas,3) y1=sc(1,1)*x1+sc(1,2)*x2+sc(1,3)*x3 y2=sc(2,1)*x1+sc(2,2)*x2+sc(2,3)*x3 y3=sc(3,1)*x1+sc(3,2)*x2+sc(3,3)*x3 rvfmt(i,jas,1)=y1; rvfmt(i,jas,2)=y2; rvfmt(i,jas,3)=y3 end do else ! collinear case t1=sc(3,3) rvfmt(1:n,jas,1)=t1*rvfmt(1:n,jas,1) end if ! mark atom as done done(ja)=.true. end do ! end loop over atoms and species end do end do deallocate(rvfmt1,rvfmt2) end subroutine elk-9.2.12/src/PaxHeaders/wigner3jf.f900000644000000000000000000000013214536061314014446 xustar0030 mtime=1702388428.026501329 30 atime=1702388426.885503019 30 ctime=1702388428.026501329 elk-9.2.12/src/wigner3jf.f900000644002504400250440000000517414536061314017177 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: wigner3jf ! !INTERFACE: real(8) function wigner3jf(j12,j22,j32,m12,m22,m32) ! !INPUT/OUTPUT PARAMETERS: ! j12, j22, j32 : angular momentum quantum numbers times 2 (in,integer) ! m12, m22, m32 : magnetic quantum numbers times 2 (in,integer) ! !DESCRIPTION: ! Returns the Wigner $3j$-symbol for the case where the arguments may be ! fractional, i.e. multiples of $\frac{1}{2}$. The input parameters to this ! function are taken to be twice their actual values, which allows them to ! remain integers. The formula used is identical to that in {\tt wigner3j}. ! ! !REVISION HISTORY: ! Created January 2014 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: j12,j22,j32 integer, intent(in) :: m12,m22,m32 ! local variables integer jm1,jm2,jm3,n1,n2 integer l12,l22,l32,l42 integer k,k1,k2,l1,l2,l3 real(8) sgn,sm,t1 ! external functions real(8), external :: factn,factr ! check input variables if ((j12 < 0).or.(j22 < 0).or.(j32 < 0).or.(abs(m12) > j12).or. & (abs(m22) > j22).or.(abs(m32) > j32)) then write(*,*) write(*,'("Error(wigner3jf): invalid arguments :")') write(*,'("j12 = ",I8," j22 = ",I8," j32 = ",I8)') j12,j22,j32 write(*,'("m12 = ",I8," m22 = ",I8," m32 = ",I8)') m12,m22,m32 write(*,*) stop end if if ((j12 == 0).and.(j22 == 0).and.(j32 == 0)) then wigner3jf=1.d0 return end if if ((j12 > 100).or.(j22 > 100).or.(j32 > 100)) then write(*,*) write(*,'("Error(wigner3jf): angular momenta out of range : ",3I8)') j12, & j22,j32 write(*,*) stop end if jm1=j12+m12 jm2=j22+m22 jm3=j32+m32 if ((mod(jm1,2) /= 0).or.(mod(jm2,2) /= 0).or.(mod(jm3,2) /= 0)) then wigner3jf=0.d0 return end if l12=j22-j12+j32 l22=j12-j22+j32 l32=j12+j22-j32 l42=j12+j22+j32 if ((mod(l12,2) /= 0).or.(mod(l22,2) /= 0).or.(mod(l32,2) /= 0).or. & (mod(l42,2) /= 0)) then wigner3jf=0.d0 return end if l1=l12/2 l2=l22/2 l3=l32/2 if ((m12+m22+m32 /= 0).or.(l1 < 0).or.(l2 < 0).or.(l3 < 0)) then wigner3jf=0.d0 return end if n1=(j12-m12)/2 n2=(j22+m22)/2 k1=max(0,n1-l2,n2-l1) k2=min(l3,n1,n2) k=k1+(j22-j12+m32)/2 if (mod(k,2) /= 0) then sgn=-1.d0 else sgn=1.d0 end if sm=0.d0 do k=k1,k2 t1=sgn*factr(l1,l1-n2+k)*factr(l2,l2-n1+k)*factr(l3,l3-k) sm=sm+t1/(factn(k)*factn(n1-k)*factn(n2-k)) sgn=-sgn end do jm1=jm1/2 jm2=jm2/2 jm3=jm3/2 t1=factr(jm1,l1)*factr(jm2,l2)*factr(jm3,l3) jm1=(j12-m12)/2 jm2=(j22-m22)/2 jm3=(j32-m32)/2 t1=t1*factr(jm3,1+l42/2)*factn(jm1)*factn(jm2) wigner3jf=sm*sqrt(t1) end function !EOC elk-9.2.12/src/PaxHeaders/genhvec.f900000644000000000000000000000013214536061314014167 xustar0030 mtime=1702388428.027501328 30 atime=1702388426.886503017 30 ctime=1702388428.027501328 elk-9.2.12/src/genhvec.f900000644002504400250440000000611014536061314016707 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 Alexey I. Baranov. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genhvec use modmain use modpw implicit none ! local variables logical lsym(48) integer ih,jh,kh,lh,k integer i1,i2,i3,iv(3) integer nsym,isym,sym(3,3,48) real(8) v1(3),v2(3),v3(3) ! allocatable arrays integer, allocatable :: idx(:),ivh0(:,:) real(8), allocatable :: vhc0(:,:),hc0(:) ! find the H-vector grid sizes call gridsize(avec,hmaxvr,ngridh,nhtot,inthv) ! allocate global H-vector arrays if (allocated(ivh)) deallocate(ivh) allocate(ivh(3,nhtot)) if (allocated(mulh)) deallocate(mulh) allocate(mulh(nhtot)) if (allocated(vhc)) deallocate(vhc) allocate(vhc(3,nhtot)) if (allocated(hc)) deallocate(hc) allocate(hc(nhtot)) ! allocate local arrays allocate(idx(nhtot),ivh0(3,nhtot)) allocate(vhc0(3,nhtot),hc0(nhtot)) ih=0 do i1=inthv(1,1),inthv(2,1) v1(:)=dble(i1)*bvec(:,1) do i2=inthv(1,2),inthv(2,2) v2(:)=v1(:)+dble(i2)*bvec(:,2) do i3=inthv(1,3),inthv(2,3) v3(:)=v2(:)+dble(i3)*bvec(:,3) ih=ih+1 ! map from H-vector to (i1,i2,i3) index ivh0(1,ih)=i1 ivh0(2,ih)=i2 ivh0(3,ih)=i3 ! H-vector in Cartesian coordinates vhc0(:,ih)=v3(:) ! length of each H-vector hc0(ih)=sqrt(v3(1)**2+v3(2)**2+v3(3)**2) end do end do end do ! sort by vector length call sortidx(nhtot,hc0,idx) ! reorder arrays do ih=1,nhtot jh=idx(ih) ivh(:,ih)=ivh0(:,jh) hc(ih)=hc0(jh) vhc(:,ih)=vhc0(:,jh) end do ! find the number of vectors with H < hmaxvr nhvec=1 do ih=nhtot,1,-1 if (hc(ih) < hmaxvr) then nhvec=ih exit end if end do ! find the subgroup of symmorphic, non-magnetic symmetries lsym(:)=.false. do isym=1,nsymcrys if (tv0symc(isym).and.(lspnsymc(isym) == 1)) lsym(lsplsymc(isym))=.true. end do nsym=0 do isym=1,nsymlat if (lsym(isym)) then nsym=nsym+1 sym(:,:,nsym)=symlat(:,:,isym) end if end do if (reduceh) then ! find the subgroup of symmorphic, non-magnetic symmetries lsym(:)=.false. do isym=1,nsymcrys if (tv0symc(isym).and.(lspnsymc(isym) == 1)) lsym(lsplsymc(isym))=.true. end do nsym=0 do isym=1,nsymlat if (lsym(isym)) then nsym=nsym+1 sym(:,:,nsym)=symlat(:,:,isym) end if end do else ! use only the identity element if no reduction is required nsym=1 end if ! reduce the H-vector set with the symmetries if required if (nsym > 1) then ivh0(:,1:nhvec)=ivh(:,1:nhvec) hc0(1:nhvec)=hc(1:nhvec) vhc0(:,1:nhvec)=vhc(:,1:nhvec) kh=0 lh=nhvec do ih=1,nhvec do isym=1,nsym call i3mtv(sym(:,:,isym),ivh0(:,ih),iv(:)) do jh=1,kh k=abs(ivh(1,jh)-iv(1))+abs(ivh(2,jh)-iv(2))+abs(ivh(3,jh)-iv(3)) if (k == 0) then ivh(:,lh)=ivh0(:,ih) hc(lh)=hc0(ih) vhc(:,lh)=vhc0(:,ih) lh=lh-1 mulh(jh)=mulh(jh)+1 goto 10 end if end do end do kh=kh+1 ivh(:,kh)=ivh0(:,ih) hc(kh)=hc0(ih) vhc(:,kh)=vhc0(:,ih) mulh(kh)=1 10 continue end do nhvec=kh else mulh(:)=1 end if deallocate(idx,ivh0,vhc0,hc0) end subroutine elk-9.2.12/src/PaxHeaders/ylmrot.f900000644000000000000000000000013214536061314014076 xustar0030 mtime=1702388428.029501325 30 atime=1702388426.888503014 30 ctime=1702388428.029501325 elk-9.2.12/src/ylmrot.f900000644002504400250440000000407114536061314016622 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: ylmrot ! !INTERFACE: subroutine ylmrot(p,ang,lmax,ld,d) ! !INPUT/OUTPUT PARAMETERS: ! p : if p=-1 then the rotation matrix is improper (in,integer) ! ang : Euler angles; alpha, beta, gamma (in,real(3)) ! lmax : maximum angular momentum (in,integer) ! ld : leading dimension (in,integer) ! d : complex spherical harmonic rotation matrix (out,complex(ld,*)) ! !DESCRIPTION: ! Returns the rotation matrix in the basis of complex spherical harmonics ! given the three Euler angles, $(\alpha,\beta,\gamma)$, and the parity, $p$, ! of the rotation. The matrix is given by the formula ! $$ D^l_{m_1m_2}(\alpha,\beta,\gamma)=d^l_{m_1m_2}(\beta) ! e^{-i(m_1\alpha+m_2\gamma)}, $$ ! where $d$ is the rotation matrix about the $y$-axis. For improper rotations, ! i.e. those which are a combination of a rotation and inversion, $D$ is ! modified with $D^l_{m_1m_2}\rightarrow(-1)^l D^l_{m_1m_2}$. See the routines ! {\tt roteuler} and {\tt ylmroty}. ! ! !REVISION HISTORY: ! Created December 2008 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: p real(8), intent(in) :: ang(3) integer, intent(in) :: lmax,ld complex(8), intent(out) :: d(ld,*) ! local variables integer l,m1,m2 integer lm1,lm2,n real(8) t1 ! automatic arrays real(8) dy(ld,ld) if (lmax < 0) then write(*,*) write(*,'("Error(ylmrot): lmax < 0 : ",I8)') lmax write(*,*) stop end if ! generate the rotation matrix about the y-axis call ylmroty(ang(2),lmax,ld,dy) ! apply inversion if required if (p == -1) then do l=1,lmax,2 lm1=l**2+1 lm2=lm1+2*l dy(lm1:lm2,lm1:lm2)=-dy(lm1:lm2,lm1:lm2) end do end if ! rotation by alpha and gamma do l=0,lmax n=l*(l+1)+1 do m1=-l,l lm1=n+m1 do m2=-l,l lm2=n+m2 t1=-dble(m1)*ang(1)-dble(m2)*ang(3) d(lm1,lm2)=dy(lm1,lm2)*cmplx(cos(t1),sin(t1),8) end do end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/wxcplot.f900000644000000000000000000000013214536061314014250 xustar0030 mtime=1702388428.030501323 30 atime=1702388426.890503011 30 ctime=1702388428.030501323 elk-9.2.12/src/wxcplot.f900000644002504400250440000000253514536061314016777 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wxcplot use modmain implicit none ! initialise universal variables call init0 if (all(xcgrad /= [3,4,5])) then write(*,*) write(*,'("Error(wxcplot): meta-GGA not in use")') write(*,*) stop end if ! read the density and potentials from file call readstate ! write the potential plots to file select case(task) case(341) open(50,file='WXC1D.OUT',form='FORMATTED') open(51,file='WLINES.OUT',form='FORMATTED') call plot1d(50,51,1,wxcmt,wxcir) close(50) close(51) write(*,*) write(*,'("Info(wxcplot):")') write(*,'(" 1D meta-GGA exchange-correlation potential written to & &WXC1D.OUT")') write(*,'(" vertex location lines written to WLINES.OUT")') case(342) open(50,file='WXC2D.OUT',form='FORMATTED') call plot2d(.false.,50,1,wxcmt,wxcir) close(50) write(*,*) write(*,'("Info(wxcplot):")') write(*,'(" 2D meta-GGA exchange-correlation potential written to & &WXC2D.OUT")') case(343) open(50,file='WXC3D.OUT',form='FORMATTED') call plot3d(50,1,wxcmt,wxcir) close(50) write(*,*) write(*,'("Info(wxcplot):")') write(*,'(" 3D meta-GGA exchange-correlation potential written to & &WXC3D.OUT")') end select end subroutine elk-9.2.12/src/PaxHeaders/massnucl.f900000644000000000000000000000013114536061314014374 xustar0030 mtime=1702388428.031501322 29 atime=1702388426.89150301 30 ctime=1702388428.031501322 elk-9.2.12/src/massnucl.f900000644002504400250440000000373514536061314017127 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: massnucl ! !INTERFACE: elemental real(8) function massnucl(z) ! !INPUT/OUTPUT PARAMETERS: ! z : atomic number (in,real) ! !DESCRIPTION: ! Computes an approximate nuclear mass from the atomic number $Z$. The nuclear ! mass number, $A$, is first estimated using ! $$ A=4.467\times 10^{-3}Z^2+2.163 Z-1.168, $$ ! [D. Andrae in {\it Relativistic Electronic Structure Theory - Fundamentals} ! {\bf 11}, 203 (2002)]. Then the nuclear mass can be determined from: ! $$ M=Z m_p+N m_n-\frac{B}{c^2}, $$ ! where $m_p$ is the proton mass, $m_n$ is the neutron mass and $B$ is the ! nuclear binding energy. The binding energy is approximated by the ! Weizs\"{a}cker formula: ! $$ B=a_V A-a_S A^{2/3}-a_C Z^2 A^{-1/3}-a_{\rm sym}(Z-N)^2A^{-1} ! +B_p+B_{\rm shell}. $$ ! See F. Yang and J. H. Hamilton in {\it Modern Atomic and Nuclear Physics}, ! Revised Edition 2010, for details on the quantities in this formula. In this ! implementation, $B_p$ and $B_{\rm shell}$ are set to zero. ! ! !REVISION HISTORY: ! Created February 2014 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: z ! local variables ! coefficients for computing mass number real(8), parameter :: c2=4.467d-3, c1=2.163d0, c0=-1.168d0 ! Weizsacker coefficients in MeV real(8), parameter :: av=15.8d0, as=18.3d0, ac=0.72d0, asym=23.2d0 ! proton and neutron masses in MeV/c^2 (CODATA 2018) real(8), parameter :: mp=938.27208816d0 real(8), parameter :: mn=939.56542052d0 ! atomic mass unit in MeV/c^2 (CODATA 2018) real(8), parameter :: mu=931.49410242d0 real(8) za,n,a,b za=abs(z) ! approximate nuclear mass number if (za <= 1.d0) then a=1.d0 else a=abs(c2*za**2+c1*za+c0) end if n=a-za b=av*a-as*a**(2.d0/3.d0)-ac*(za**2)/a**(1.d0/3.d0)-asym*(za-n)**2/a massnucl=(za*mp+n*mn-b)/mu end function !EOC elk-9.2.12/src/PaxHeaders/gendmatk.f900000644000000000000000000000013214536061314014342 xustar0030 mtime=1702388428.033501319 30 atime=1702388426.893503007 30 ctime=1702388428.033501319 elk-9.2.12/src/gendmatk.f900000644002504400250440000000506414536061314017071 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gendmatk(tspndg,tlmdg,lmin,lmax,ias,nst,idx,ngp,apwalm,evecfv, & evecsv,ld,dmat) use modmain implicit none ! arguments logical, intent(in) :: tspndg,tlmdg integer, intent(in) :: lmin,lmax,ias integer, intent(in) :: nst,idx(*) integer, intent(in) :: ngp(nspnfv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) integer, intent(in) :: ld complex(8), intent(out) :: dmat(ld,nspinor,ld,nspinor,nst) ! local variables integer ispn,jspn,ist,is integer nrc,nrci,irco,irc integer l,lma,lmb,lm1,lm2 integer npci,i1,i2 complex(8) zsm ! allocatable arrays complex(8), allocatable :: wfmt(:,:,:) if (lmin < 0) then write(*,*) write(*,'("Error(gendmatk): lmin < 0 : ",I8)') lmin write(*,*) stop end if if (lmax > lmaxo) then write(*,*) write(*,'("Error(gendmatk): lmax > lmaxo : ",2I8)') lmax,lmaxo write(*,*) stop end if is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) irco=nrci+1 npci=npcmti(is) ! generate the second-variational wavefunctions allocate(wfmt(npcmtmax,nspinor,nst)) call wfmtsv(.true.,lradstp,is,ias,nst,idx,ngp,apwalm,evecfv,evecsv,npcmtmax, & wfmt) ! zero the density matrix dmat(:,:,:,:,:)=0.d0 ! loop over second-variational states do ist=1,nst do ispn=1,nspinor do jspn=1,nspinor if (tspndg.and.(ispn /= jspn)) cycle do l=lmin,lmax lma=l**2+1; lmb=lma+2*l do lm1=lma,lmb do lm2=lma,lmb if (tlmdg.and.(lm1 /= lm2)) cycle if (l <= lmaxi) then zsm=0.d0 i1=lm1; i2=lm2 do irc=1,nrci zsm=zsm+wfmt(i1,ispn,ist)*conjg(wfmt(i2,jspn,ist))*wrcmt(irc,is) i1=i1+lmmaxi; i2=i2+lmmaxi end do do irc=irco,nrc zsm=zsm+wfmt(i1,ispn,ist)*conjg(wfmt(i2,jspn,ist))*wrcmt(irc,is) i1=i1+lmmaxo; i2=i2+lmmaxo end do else zsm=0.d0 i1=npci+lm1; i2=npci+lm2 do irc=irco,nrc zsm=zsm+wfmt(i1,ispn,ist)*conjg(wfmt(i2,jspn,ist))*wrcmt(irc,is) i1=i1+lmmaxo; i2=i2+lmmaxo end do end if dmat(lm1,ispn,lm2,jspn,ist)=zsm end do end do end do end do end do ! end loop over second-variational states end do deallocate(wfmt) end subroutine elk-9.2.12/src/PaxHeaders/rfplot.f900000644000000000000000000000013214536061314014056 xustar0030 mtime=1702388428.034501317 30 atime=1702388426.894503005 30 ctime=1702388428.034501317 elk-9.2.12/src/rfplot.f900000644002504400250440000000756214536061314016612 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rfplot(np,vpl,rfmt,rfir,fp) use modmain use modomp implicit none ! arguments integer, intent(in) :: np real(8), intent(in) :: vpl(3,np) real(8), intent(in) :: rfmt(npmtmax,natmtot),rfir(ngtot) real(8), intent(out) :: fp(np) ! local variables integer ias,is,ip,nthd ! allocatable arrays real(8), allocatable :: rfmt1(:,:,:) complex(8), allocatable :: zfft(:) ! unpack the muffin-tin function allocate(rfmt1(lmmaxo,nrmtmax,natmtot)) call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),rfmt(:,ias),rfmt1(:,:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) ! Fourier transform rfir to G-space allocate(zfft(ngtot)) zfft(:)=rfir(:) call zfftifc(3,ngridg,-1,zfft) ! begin loop over all points call holdthd(np,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ip=1,np call rfip(ip) end do !$OMP END PARALLEL DO call freethd(nthd) deallocate(rfmt1,zfft) return contains subroutine rfip(ip) implicit none ! arguments integer, intent(in) :: ip ! local variables integer is,ia,ias,nr,nri integer ir0,ir,lmax,l,m,lm integer ig,ifg,i1,i2,i3,i,j real(8) rmt2,r,sm,ya(4),t1 real(8) v1(3),v2(3),v3(3),v4(3),v5(3) ! automatic arrays real(8) rlm(lmmaxo) v2(:)=vpl(:,ip) call r3frac(epslat,v2) ! convert point to Cartesian coordinates call r3mv(avec,v2,v1) ! check if point is in a muffin-tin do is=1,nspecies nr=nrmt(is) nri=nrmti(is) rmt2=rmt(is)**2 do ia=1,natoms(is) ias=idxas(ia,is) v2(:)=v1(:)-atposc(:,ia,is) do i1=-1,1 v3(:)=v2(:)+dble(i1)*avec(:,1) do i2=-1,1 v4(:)=v3(:)+dble(i2)*avec(:,2) do i3=-1,1 v5(:)=v4(:)+dble(i3)*avec(:,3) t1=v5(1)**2+v5(2)**2+v5(3)**2 if (t1 < rmt2) then r=sqrt(t1) call genrlmv(lmaxo,v5,rlm) do ir=1,nr if (rsp(ir,is) >= r) then if (ir <= 3) then ir0=1 else if (ir > nr-2) then ir0=nr-3 else ir0=ir-2 end if r=max(r,rsp(1,is)) if (ir0 <= nri) then lmax=lmaxi else lmax=lmaxo end if sm=0.d0 lm=0 do l=0,lmax do m=-l,l lm=lm+1 do j=1,4 i=ir0+j-1 ya(j)=rfmt1(lm,i,ias) end do t1=poly4(rsp(ir0,is),ya,r) sm=sm+t1*rlm(lm) end do end do goto 10 end if end do end if end do end do end do end do end do ! otherwise use direct Fourier transform of interstitial function sm=0.d0 do ig=1,ngvec ifg=igfft(ig) t1=vgc(1,ig)*v1(1)+vgc(2,ig)*v1(2)+vgc(3,ig)*v1(3) sm=sm+dble(zfft(ifg)*cmplx(cos(t1),sin(t1),8)) end do 10 continue fp(ip)=sm end subroutine pure real(8) function poly4(xa,ya,x) implicit none ! arguments real(8), intent(in) :: xa(4),ya(4),x ! local variables real(8) x0,x1,x2,x3,y0,y1,y2,y3 real(8) c1,c2,c3,t0,t1,t2,t3,t4,t5,t6 ! evaluate the polynomial coefficients x0=xa(1) x1=xa(2)-x0; x2=xa(3)-x0; x3=xa(4)-x0 t4=x1-x2; t5=x1-x3; t6=x2-x3 y0=ya(1) y1=ya(2)-y0; y2=ya(3)-y0; y3=ya(4)-y0 t1=x1*x2*y3; t2=x2*x3*y1; t3=x1*x3 t0=1.d0/(x2*t3*t4*t5*t6) t3=t3*y2 c3=t1*t4+t2*t6-t3*t5 t4=x1**2; t5=x2**2; t6=x3**2 c2=t1*(t5-t4)+t2*(t6-t5)+t3*(t4-t6) c1=t1*(x2*t4-x1*t5)+t2*(x3*t5-x2*t6)+t3*(x1*t6-x3*t4) t1=x-x0 ! evaluate the polynomial poly4=y0+t0*t1*(c1+t1*(c2+c3*t1)) end function end subroutine elk-9.2.12/src/PaxHeaders/straingkq.f900000644000000000000000000000013214536061314014553 xustar0030 mtime=1702388428.036501314 30 atime=1702388426.896503002 30 ctime=1702388428.036501314 elk-9.2.12/src/straingkq.f900000644002504400250440000000441214536061314017276 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine straingkq use modmain use modulr implicit none integer is,ia,ig integer nppt,ik,igk integer jspn,iq real(8) ta(3,3),tb(3,3),vc(3) if ((istrain < 1).or.(istrain > nstrain)) return ! compute the strained lattice vectors avec(:,:)=avec0(:,:)+deltast*strain(:,:,istrain) ! generate the strained reciprocal lattice vectors and unit cell volume call reciplat(avec,bvec,omega,omegabz) ! determine the transformation matrix to the strained vectors call r3mm(avec,ainv,ta) call r3mm(bvec,binv,tb) ! recalculate all required variables which depend on avec call r3minv(avec,ainv) call r3minv(bvec,binv) call r3mv(bvec,vqlss,vqcss) do is=1,nspecies do ia=1,natoms(is) call r3mv(avec,atposl(:,ia,is),atposc(:,ia,is)) end do end do call r3mv(bvec,vecql,vecqc) call r3mv(ainv,efieldc,efieldl) call r3mv(ainv,afieldc,afieldl) call symmetry ! apply the transformation matrix to the G-vectors do ig=1,ngtot vc(:)=vgc(:,ig) call r3mv(tb,vc,vgc(:,ig)) gc(ig)=sqrt(vgc(1,ig)**2+vgc(2,ig)**2+vgc(3,ig)**2) end do ! recalculate variables which depend on the G-vectors call gengclg call genjlgprmt(lnpsd,ngvec,gc,ngvec,jlgrmt) call genylmg call gensfacgp(ngvec,vgc,ngvec,sfacg) do is=1,nspecies call genffacgp(is,gc,ffacg(:,is)) end do call gencfun call gencfrc call energynn ! apply the transformation to the k-vectors do ik=1,nkptnr vc(:)=vkc(:,ik) call r3mv(tb,vc,vkc(:,ik)) end do ! apply the transformation to G+k-vectors and recalculate dependent variables if (xctype(1) < 0) then nppt=nkptnr else nppt=nkpt end if do ik=1,nppt do jspn=1,nspnfv do igk=1,ngk(jspn,ik) vc(:)=vgkc(:,igk,jspn,ik) call r3mv(tb,vc,vgkc(:,igk,jspn,ik)) gkc(igk,jspn,ik)=sqrt(vgkc(1,igk,jspn,ik)**2 & +vgkc(2,igk,jspn,ik)**2 & +vgkc(3,igk,jspn,ik)**2) end do call gensfacgp(ngk(jspn,ik),vgkc(:,:,jspn,ik),ngkmax,sfacgk(:,:,jspn,ik)) end do end do ! apply the transformation to the q-vectors if required if (xctype(1) < 0) then do iq=1,nqptnr vc(:)=vqc(:,iq) call r3mv(tb,vc,vqc(:,iq)) end do call gengclq end if end subroutine elk-9.2.12/src/PaxHeaders/eveqnit.f900000644000000000000000000000013214536061314014223 xustar0030 mtime=1702388428.037501313 30 atime=1702388426.897503001 30 ctime=1702388428.037501313 elk-9.2.12/src/eveqnit.f900000644002504400250440000001300214536061314016741 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnit(nmatp,ngp,igpig,vpl,vgpl,vgpc,apwalm,evalfv,evecfv) use modmain use modomp implicit none ! arguments integer, intent(in) :: nmatp,ngp,igpig(ngkmax) real(8), intent(in) :: vpl(3),vgpl(3,ngkmax),vgpc(3,ngkmax) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) real(8), intent(out) :: evalfv(nstfv) complex(8), intent(out) :: evecfv(nmatmax,nstfv) ! local variables integer ns,ist,it,i integer is,ias,nthd integer lwork,info real(8) rmax,t1 real(8) ts1,ts0 ! allocatable arrays real(8), allocatable :: w(:),rwork(:) complex(8), allocatable :: h(:,:),o(:,:),hv(:,:),ov(:,:) complex(8), allocatable :: u(:,:),hu(:,:),ou(:,:) complex(8), allocatable :: hs(:,:),os(:,:),work(:) ! external functions real(8), external :: ddot ns=2*nstfv if (iscl >= 2) then ! read in the eigenvalues/vectors from file call getevalfv(filext,0,vpl,evalfv) call getevecfv(filext,0,vpl,vgpl,evecfv) else ! initialise the eigenvectors to canonical basis vectors evecfv(1:nmatp,:)=0.d0 do ist=1,nstfv evecfv(ist,ist)=1.d0 end do end if ! compute Hamiltonian and overlap matrices call timesec(ts0) allocate(h(nmatp,nmatp),o(nmatp,nmatp)) call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP PRIVATE(i,ias,is) & !$OMP NUM_THREADS(nthd) !$OMP SECTION ! Hamiltonian do i=1,nmatp h(1:i,i)=0.d0 end do do ias=1,natmtot is=idxis(ias) call hmlaa(tefvr,is,ias,ngp,apwalm(:,:,:,ias),nmatp,h) call hmlalo(is,ias,ngp,apwalm(:,:,:,ias),nmatp,h) call hmllolo(is,ias,ngp,nmatp,h) end do call hmlistl(ngp,igpig,vgpc,nmatp,h) !$OMP SECTION ! overlap do i=1,nmatp o(1:i,i)=0.d0 end do do ias=1,natmtot is=idxis(ias) call olpaa(tefvr,is,ngp,apwalm(:,:,:,ias),nmatp,o) call olpalo(is,ias,ngp,apwalm(:,:,:,ias),nmatp,o) call olplolo(is,ias,ngp,nmatp,o) end do call olpistl(ngp,igpig,nmatp,o) !$OMP END PARALLEL SECTIONS call freethd(nthd) call timesec(ts1) !$OMP ATOMIC timemat=timemat+ts1-ts0 call timesec(ts0) allocate(w(ns),rwork(3*ns)) allocate(hv(nmatp,nstfv),ov(nmatp,nstfv)) allocate(u(nmatp,nstfv),hu(nmatp,nstfv),ou(nmatp,nstfv)) allocate(hs(ns,ns),os(ns,ns)) lwork=2*ns allocate(work(lwork)) call holdthd(nstfv,nthd) ! iteration loop !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(it,ist,t1) & !$OMP NUM_THREADS(nthd) do it=1,maxitefv !$OMP SINGLE rmax=0.d0 !$OMP END SINGLE !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nstfv ! operate with O on the current eigenvector call zhemv('U',nmatp,zone,o,nmatp,evecfv(:,ist),1,zzero,ov(:,ist),1) ! normalise the eigenvector t1=ddot(2*nmatp,evecfv(:,ist),1,ov(:,ist),1) if (t1 > 0.d0) then t1=1.d0/sqrt(t1) call zdscal(nmatp,t1,evecfv(:,ist),1) call zdscal(nmatp,t1,ov(:,ist),1) end if ! operate with H on the current eigenvector call zhemv('U',nmatp,zone,h,nmatp,evecfv(:,ist),1,zzero,hv(:,ist),1) ! estimate the eigenvalue t1=ddot(2*nmatp,evecfv(:,ist),1,hv(:,ist),1) if ((iscl <= 1).and.(it == 1)) then evalfv(ist)=t1 else evalfv(ist)=(1.d0-befvit)*evalfv(ist)+befvit*t1 end if ! compute the residual |u> = (H - eO)|v> call zcopy(nmatp,hv(:,ist),1,u(:,ist),1) t1=-evalfv(ist) u(:,ist)=u(:,ist)+t1*ov(:,ist) ! apply the overlap matrix to the residual call zhemv('U',nmatp,zone,o,nmatp,u(:,ist),1,zzero,ou(:,ist),1) ! compute the overlap of the residual with itself t1=ddot(2*nmatp,u(:,ist),1,ou(:,ist),1) !$OMP ATOMIC rmax=max(rmax,t1) ! normalise the residual if (t1 > 0.d0) then t1=1.d0/sqrt(t1) call zdscal(nmatp,t1,u(:,ist),1) call zdscal(nmatp,t1,ou(:,ist),1) end if ! apply the Hamiltonian matrix to the residual call zhemv('U',nmatp,zone,h,nmatp,u(:,ist),1,zzero,hu(:,ist),1) end do !$OMP END DO ! compute the Hamiltonian and overlap matrices in the subspace formed by the ! eigenvectors and their residuals !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nstfv call zgemv('C',nmatp,nstfv,zone,evecfv,nmatmax,hv(:,ist),1,zzero, & hs(1,ist),1) call zgemv('C',nmatp,nstfv,zone,evecfv,nmatmax,hu(:,ist),1,zzero, & hs(1,nstfv+ist),1) call zgemv('C',nmatp,nstfv,zone,u,nmatp,hu(:,ist),1,zzero, & hs(nstfv+1,nstfv+ist),1) end do !$OMP END DO NOWAIT !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nstfv call zgemv('C',nmatp,nstfv,zone,evecfv,nmatmax,ov(:,ist),1,zzero, & os(1,ist),1) call zgemv('C',nmatp,nstfv,zone,evecfv,nmatmax,ou(:,ist),1,zzero, & os(1,nstfv+ist),1) call zgemv('C',nmatp,nstfv,zone,u,nmatp,ou(:,ist),1,zzero, & os(nstfv+1,nstfv+ist),1) end do !$OMP END DO ! solve the generalised eigenvalue problem in the subspace (one thread only) !$OMP SINGLE call zhegv(1,'V','U',ns,hs,ns,os,ns,w,work,lwork,rwork,info) !$OMP END SINGLE if (info /= 0) exit ! construct the new eigenvectors !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nstfv call zgemv('N',nmatp,nstfv,zone,evecfv,nmatmax,hs(1,ist),1,zzero, & ov(:,ist),1) call zgemv('N',nmatp,nstfv,zone,u,nmatp,hs(nstfv+1,ist),1,zone,ov(:,ist),1) end do !$OMP END DO !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nstfv call zcopy(nmatp,ov(:,ist),1,evecfv(:,ist),1) end do !$OMP END DO ! check for convergence !$OMP SINGLE rmax=sqrt(abs(rmax)/dble(nmatp)) !$OMP END SINGLE if ((it >= minitefv).and.(rmax < epsefvit)) exit ! end iteration loop end do !$OMP END PARALLEL call freethd(nthd) deallocate(w,rwork,h,o,hv,ov) deallocate(u,hu,ou,hs,os,work) call timesec(ts1) !$OMP ATOMIC timefv=timefv+ts1-ts0 end subroutine elk-9.2.12/src/PaxHeaders/oepmain.f900000644000000000000000000000013214536061314014200 xustar0030 mtime=1702388428.038501311 30 atime=1702388426.899502998 30 ctime=1702388428.038501311 elk-9.2.12/src/oepmain.f900000644002504400250440000001304314536061314016723 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine oepmain use modmain use modmpi use modomp implicit none ! local variables integer ik,idm,is,ias integer nrc,nrci,np,npc integer n,nthd,it real(8) resp,t1 ! allocatable arrays real(8), allocatable :: rfmt1(:,:),rfmt2(:),rfir(:) real(8), allocatable :: rvfmt(:,:,:),rvfir(:,:) complex(8), allocatable :: vclcv(:,:,:,:),vclvv(:,:,:) ! external functions real(8), external :: rfint,rfinpc if (iscl <= 0) return ! calculate Coulomb matrix elements allocate(vclcv(ncrmax,natmtot,nstsv,nkpt),vclvv(nstsv,nstsv,nkpt)) call oepvcl(vclcv,vclvv) ! allocate local arrays allocate(rfmt1(npmtmax,natmtot),rfir(ngtot)) if (spinpol) then allocate(rvfmt(npmtmax,natmtot,ndmag),rvfir(ngtot,ndmag)) end if ! zero initial exchange potential and magnetic field vxmt(:,:)=0.d0 vxir(:)=0.d0 if (spinpol) then bxmt(:,:,:)=0.d0 bxir(:,:)=0.d0 end if !------------------------------! ! start iteration loop ! !------------------------------! do it=1,maxitoep if (mp_mpi.and.(mod(it,10) == 0)) then write(*,'("Info(oepmain): done ",I4," iterations of ",I4)') it,maxitoep end if ! zero the residuals dvxmt(:,:)=0.d0 dvxir(:)=0.d0 if (spinpol) then dbxmt(:,:,:)=0.d0 dbxir(:,:)=0.d0 end if ! calculate the k-dependent residuals call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call oepresk(ik,vclcv,vclvv) end do !$OMP END PARALLEL DO call freethd(nthd) ! add residuals from each process and redistribute if (np_mpi > 1) then n=npcmtmax*natmtot call mpi_allreduce(mpi_in_place,dvxmt,n,mpi_double_precision,mpi_sum, & mpicom,ierror) call mpi_allreduce(mpi_in_place,dvxir,ngtot,mpi_double_precision, & mpi_sum,mpicom,ierror) if (spinpol) then n=n*ndmag call mpi_allreduce(mpi_in_place,dbxmt,n,mpi_double_precision,mpi_sum, & mpicom,ierror) n=ngtot*ndmag call mpi_allreduce(mpi_in_place,dbxir,n,mpi_double_precision,mpi_sum, & mpicom,ierror) end if end if ! convert muffin-tin residuals to spherical harmonics call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is,nrc,nrci,idm) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) call rfsht(nrc,nrci,dvxmt(:,ias),rfmt1(:,ias)) do idm=1,ndmag call rfsht(nrc,nrci,dbxmt(:,ias,idm),rvfmt(:,ias,idm)) end do end do !$OMP END PARALLEL DO call freethd(nthd) ! symmetrise the residuals call symrf(nrcmt,nrcmti,npcmt,ngridg,ngtot,ngvec,igfft,npmtmax,rfmt1,dvxir) if (spinpol) then call symrvf(.true.,ncmag,nrcmt,nrcmti,npcmt,ngridg,ngtot,ngvec,igfft, & npmtmax,rvfmt,ngtot,dbxir) end if ! magnitude of residuals resoep=rfinpc(npmtmax,rfmt1,dvxir,rfmt1,dvxir) do idm=1,ndmag t1=rfinpc(npmtmax,rvfmt(:,:,idm),dbxir(:,idm),rvfmt(:,:,idm),dbxir(:,idm)) resoep=resoep+t1 end do resoep=sqrt(resoep)/omega ! update the step size if (it >= 2) then ! check residual against previous value if (resoep < resp) then tauoep=tauoep+tau0oep else tauoep=tau0oep end if end if ! store previous residual resp=resoep ! update exchange potential and magnetic field call holdthd(natmtot,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(rfmt2,is,nrc,nrci,npc,idm) & !$OMP NUM_THREADS(nthd) allocate(rfmt2(npcmtmax)) !$OMP DO do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) ! convert residual to spherical coordinates call rbsht(nrc,nrci,rfmt1(:,ias),rfmt2) ! subtract from exchange potential vxmt(1:npc,ias)=vxmt(1:npc,ias)-tauoep*rfmt2(1:npc) ! repeat for exchange magnetic field do idm=1,ndmag call rbsht(nrc,nrci,rvfmt(:,ias,idm),rfmt2) bxmt(1:npc,ias,idm)=bxmt(1:npc,ias,idm)-tauoep*rfmt2(1:npc) end do end do !$OMP END DO deallocate(rfmt2) !$OMP END PARALLEL call freethd(nthd) vxir(:)=vxir(:)-tauoep*dvxir(:) do idm=1,ndmag bxir(:,idm)=bxir(:,idm)-tauoep*dbxir(:,idm) end do ! end iteration loop end do ! convert the exchange potential and field to spherical harmonics call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is,nrc,nrci,idm) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) call rfsht(nrc,nrci,vxmt(:,ias),rfmt1(:,ias)) do idm=1,ndmag call rfsht(nrc,nrci,bxmt(:,ias,idm),rvfmt(:,ias,idm)) end do end do !$OMP END PARALLEL DO call freethd(nthd) ! convert potential and field from a coarse to a fine radial mesh call rfmtctof(rfmt1) do idm=1,ndmag call rfmtctof(rvfmt(:,:,idm)) end do ! add to existing (density derived) correlation potential and field do ias=1,natmtot is=idxis(ias) np=npmt(is) vxcmt(1:np,ias)=vxcmt(1:np,ias)+rfmt1(1:np,ias) do idm=1,ndmag bxcmt(1:np,ias,idm)=bxcmt(1:np,ias,idm)+rvfmt(1:np,ias,idm) end do end do vxcir(:)=vxcir(:)+vxir(:) do idm=1,ndmag bxcir(:,idm)=bxcir(:,idm)+bxir(:,idm) end do ! symmetrise the exchange potential and field call symrf(nrmt,nrmti,npmt,ngridg,ngtot,ngvec,igfft,npmtmax,vxcmt,vxcir) if (spinpol) then call symrvf(.true.,ncmag,nrmt,nrmti,npmt,ngridg,ngtot,ngvec,igfft,npmtmax, & bxcmt,ngtot,bxcir) end if deallocate(rfmt1,rfir,vclcv,vclvv) if (spinpol) deallocate(rvfmt,rvfir) ! set the constant part of the exchange potential equal to zero call rfint0(0.d0,vxcmt,vxcir) end subroutine elk-9.2.12/src/PaxHeaders/rdirac.f900000644000000000000000000000013214536061314014014 xustar0030 mtime=1702388428.040501308 30 atime=1702388426.900502996 30 ctime=1702388428.040501308 elk-9.2.12/src/rdirac.f900000644002504400250440000000711414536061314016541 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rdirac ! !INTERFACE: subroutine rdirac(sol,n,l,k,nr,r,vr,eval,g0,f0) ! !INPUT/OUTPUT PARAMETERS: ! sol : speed of light in atomic units (in,real) ! n : principal quantum number (in,integer) ! l : quantum number l (in,integer) ! k : quantum number k (l or l+1) (in,integer) ! nr : number of radial mesh points (in,integer) ! r : radial mesh (in,real(nr)) ! vr : potential on radial mesh (in,real(nr)) ! eval : eigenvalue without rest-mass energy (inout,real) ! g0 : major component of the radial wavefunction (out,real(nr)) ! f0 : minor component of the radial wavefunction (out,real(nr)) ! !DESCRIPTION: ! Finds the solution to the radial Dirac equation for a given potential $v(r)$ ! and quantum numbers $n$, $k$ and $l$. The method involves integrating the ! equation using the predictor-corrector method and adjusting $E$ until the ! number of nodes in the wavefunction equals $n-l-1$. The calling routine must ! provide an initial estimate for the eigenvalue. Note that the arrays ! {\tt g0} and {\tt f0} represent the radial functions multiplied by $r$. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: sol integer, intent(in) :: n,l,k,nr real(8), intent(in) :: r(nr),vr(nr) real(8), intent(inout) :: eval real(8), intent(out) :: g0(nr),f0(nr) ! local variables integer, parameter :: maxit=2000 integer kpa,it,ir integer nn,nnd,nndp ! energy convergence tolerance real(8), parameter :: eps=1.d-12 real(8) t1,de ! automatic arrays real(8) g1(nr),f1(nr),fr(nr) ! external functions real(8), external :: splint if (k <= 0) then write(*,*) write(*,'("Error(rdirac): k <= 0 : ",I8)') k write(*,*) stop end if if (k > n) then write(*,*) write(*,'("Error(rdirac): incompatible n and k : ",2I8)') n,k write(*,*) stop end if if ((k == n).and.(l /= k-1)) then write(*,*) write(*,'("Error(rdirac): incompatible n, k and l : ",3I8)') n,k,l write(*,*) stop end if if (k == l) then kpa=k else if (k == l+1) then kpa=-k else write(*,*) write(*,'("Error(rdirac): incompatible l and k : ",2I8)') l,k write(*,*) stop end if if (nr < 4) then write(*,*) write(*,'("Error(rdirac): nr < 4 : ",I8)') nr write(*,*) stop end if de=1.d0 nndp=0 do it=1,maxit ! integrate the Dirac equation call rdiracint(sol,kpa,eval,nr,r,vr,nn,g0,g1,f0,f1) ! check the number of nodes nnd=nn-(n-l-1) if (nnd > 0) then eval=eval-de else eval=eval+de end if if (it > 1) then if ((nnd /= 0).or.(nndp /= 0)) then if (nnd*nndp <= 0) then de=de*0.5d0 else de=de*1.1d0 end if end if end if nndp=nnd if (de < eps*(abs(eval)+1.d0)) goto 20 end do write(*,*) write(*,'("Warning(rdirac): maximum iterations exceeded")') 20 continue ! find effective infinity and set wavefunction to zero after that point ! major component do ir=nr,2,-1 if ((g0(ir-1)*g0(ir) < 0.d0).or.(g1(ir-1)*g1(ir) < 0.d0)) then g0(ir:nr)=0.d0 exit end if end do ! minor component do ir=nr,2,-1 if ((f0(ir-1)*f0(ir) < 0.d0).or.(f1(ir-1)*f1(ir) < 0.d0)) then f0(ir:nr)=0.d0 exit end if end do ! normalise do ir=1,nr fr(ir)=g0(ir)**2+f0(ir)**2 end do t1=splint(nr,r,fr) t1=sqrt(abs(t1)) if (t1 <= 0.d0) then write(*,*) write(*,'("Error(rdirac): zero wavefunction")') write(*,*) stop end if t1=1.d0/t1 g0(:)=t1*g0(:) f0(:)=t1*f0(:) end subroutine !EOC elk-9.2.12/src/PaxHeaders/bandstr.f900000644000000000000000000000013214536061314014205 xustar0030 mtime=1702388428.041501307 30 atime=1702388426.902502994 30 ctime=1702388428.041501307 elk-9.2.12/src/bandstr.f900000644002504400250440000001566314536061314016742 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: bandstr ! !INTERFACE: subroutine bandstr ! !USES: use modmain use modomp ! !DESCRIPTION: ! Produces a band structure along the path in reciprocal space which connects ! the vertices in the array {\tt vvlp1d}. The band structure is obtained from ! the second-variational eigenvalues and is written to the file {\tt BAND.OUT} ! with the Fermi energy set to zero. If required, band structures are plotted ! to files {\tt BAND\_Sss\_Aaaaa.OUT} for atom {\tt aaaa} of species {\tt ss}, ! which include the band characters for each $l$ component of that atom in ! columns 4 onwards. Column 3 contains the sum over $l$ of the characters. ! Vertex location lines are written to {\tt BANDLINES.OUT}. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! local variables integer ik,ist,ispn,is,ia,ias integer lmax,lmmax,l,m,lm,iv,nthd real(8) emin,emax,sm,t1 character(256) fname ! allocatable arrays real(8), allocatable :: evalfv(:,:),e(:,:) ! low precision for band character array saves memory real(4), allocatable :: bc(:,:,:,:) complex(8), allocatable :: dmat(:,:,:,:,:),apwalm(:,:,:,:,:) complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) ! initialise universal variables call init0 call init1 ! allocate array for storing the eigenvalues allocate(e(nstsv,nkpt)) ! maximum angular momentum for band character lmax=min(3,lmaxo) lmmax=(lmax+1)**2 if (task == 21) then allocate(bc(0:lmax,natmtot,nstsv,nkpt)) else if (task == 22) then allocate(bc(lmmax,natmtot,nstsv,nkpt)) else if (task == 23) then allocate(bc(nspinor,natmtot,nstsv,nkpt)) end if ! read density and potentials from file call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr emin=1.d5 emax=-1.d5 ! begin parallel loop over k-points call holdthd(nkpt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evalfv,evecfv,evecsv) & !$OMP PRIVATE(dmat,apwalm,ist,ispn) & !$OMP PRIVATE(ias,l,m,lm,sm) & !$OMP NUM_THREADS(nthd) allocate(evalfv(nstfv,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) if (task >= 21) then allocate(dmat(lmmax,nspinor,lmmax,nspinor,nstsv)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) end if !$OMP DO do ik=1,nkpt !$OMP CRITICAL(bandstr_1) write(*,'("Info(bandstr): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(bandstr_1) ! solve the first- and second-variational eigenvalue equations call eveqn(ik,evalfv,evecfv,evecsv) do ist=1,nstsv ! subtract the Fermi energy e(ist,ik)=evalsv(ist,ik)-efermi !$OMP CRITICAL(bandstr_2) emin=min(emin,e(ist,ik)) emax=max(emax,e(ist,ik)) !$OMP END CRITICAL(bandstr_2) end do ! compute the band characters if required if (task >= 21) then ! find the matching coefficients do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! average band character over spin and m for all atoms do ias=1,natmtot ! generate the diagonal of the density matrix call gendmatk(.true.,.true.,0,lmax,ias,nstsv,[0],ngk(:,ik),apwalm,evecfv,& evecsv,lmmax,dmat) do ist=1,nstsv if (task == 21) then ! l character of band lm=0 do l=0,lmax sm=0.d0 do m=-l,l lm=lm+1 do ispn=1,nspinor sm=sm+dble(dmat(lm,ispn,lm,ispn,ist)) end do end do bc(l,ias,ist,ik)=real(sm) end do else if (task == 22) then ! (l,m) character of band lm=0 do l=0,lmax do m=-l,l lm=lm+1 sm=0.d0 do ispn=1,nspinor sm=sm+dble(dmat(lm,ispn,lm,ispn,ist)) end do bc(lm,ias,ist,ik)=real(sm) end do end do else ! spin character of band do ispn=1,nspinor sm=0.d0 lm=0 do l=0,lmax do m=-l,l lm=lm+1 sm=sm+dble(dmat(lm,ispn,lm,ispn,ist)) end do end do bc(ispn,ias,ist,ik)=real(sm) end do end if end do end do end if ! end loop over k-points end do !$OMP END DO deallocate(evalfv,evecfv,evecsv) if (task >= 21) deallocate(dmat,apwalm) !$OMP END PARALLEL call freethd(nthd) t1=(emax-emin)*0.5d0 emin=emin-t1 emax=emax+t1 ! output the band structure if (task == 20) then open(50,file='BAND.OUT',form='FORMATTED',action='WRITE') do ist=1,nstsv do ik=1,nkpt write(50,'(2G18.10)') dpp1d(ik),e(ist,ik) end do write(50,*) end do close(50) write(*,*) write(*,'("Info(bandstr):")') write(*,'(" band structure plot written to BAND.OUT")') else do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(fname,'("BAND_S",I2.2,"_A",I4.4,".OUT")') is,ia open(50,file=trim(fname),form='FORMATTED',action='WRITE') do ist=1,nstsv do ik=1,nkpt if (task == 21) then ! sum band character over l to find total atomic character sm=0.d0 do l=0,lmax sm=sm+bc(l,ias,ist,ik) end do write(50,'(2G18.10,5F12.6)') dpp1d(ik),e(ist,ik),sm, & (bc(l,ias,ist,ik),l=0,lmax) else if (task == 22) then write(50,'(2G18.10,16F12.6)') dpp1d(ik),e(ist,ik), & (bc(lm,ias,ist,ik),lm=1,lmmax) else write(50,'(2G18.10,2F12.6)') dpp1d(ik),e(ist,ik), & (bc(ispn,ias,ist,ik),ispn=1,nspinor) end if end do write(50,*) end do close(50) end do end do write(*,*) write(*,'("Info(bandstr):")') write(*,'(" Band structure plot written to BAND_Sss_Aaaaa.OUT")') write(*,'(" for all species and atoms")') write(*,*) write(*,'(" Columns in the file are :")') if (task == 21) then write(*,'(" distance, eigenvalue, total atomic character, l character & &(l = 0...",I1,")")') lmax else if (task == 22) then write(*,'(" distance, eigenvalue, (l,m) character & &(l = 0...",I1,", m = -l...l)")') lmax else write(*,'(" distance, eigenvalue, spin-up and spin-down characters")') end if end if write(*,*) write(*,'(" Fermi energy is at zero in plot")') ! output the vertex location lines open(50,file='BANDLINES.OUT',form='FORMATTED',action='WRITE') do iv=1,nvp1d write(50,'(2G18.10)') dvp1d(iv),emin write(50,'(2G18.10)') dvp1d(iv),emax write(50,*) end do close(50) write(*,*) write(*,'(" Vertex location lines written to BANDLINES.OUT")') deallocate(e) if (task >= 21) deallocate(bc) end subroutine !EOC elk-9.2.12/src/PaxHeaders/sfacinit.f900000644000000000000000000000013214536061314014350 xustar0030 mtime=1702388428.042501306 30 atime=1702388426.903502992 30 ctime=1702388428.042501306 elk-9.2.12/src/sfacinit.f900000644002504400250440000000357014536061314017077 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 A. I. Baranov and F. Wagner. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine sfacinit use modmain use modpw implicit none ! local variables logical trhonorm0 integer ik,ist,is,ias ! allocatable arrays real(8), allocatable :: occcr0(:,:) ! initialise universal variables call init0 call init1 ! read density and potentials from file call readstate ! use existing density if wsfac is default if ((wsfac(1) <= -1.d6).and.(wsfac(2) >= 1.d6)) goto 10 ! make a copy of the core state occupation numbers allocate(occcr0(nstspmax,natmtot)) occcr0(:,:)=occcr(:,:) ! zero the core state occupation numbers for eigenvalues not in energy window do ias=1,natmtot is=idxis(ias) do ist=1,nstsp(is) if (spcore(ist,is)) then if ((evalcr(ist,ias) < wsfac(1)).or.(evalcr(ist,ias) > wsfac(2))) then occcr(ist,ias)=0.d0 end if end if end do end do ! generate the core wavefunctions and densities call gencore ! restore the core state occupation numbers occcr(:,:)=occcr0(:,:) deallocate(occcr0) ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr do ik=1,nkpt ! get the eigenvalues and occupation numbers from file call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) ! zero occupation numbers for eigenvalues not in energy window do ist=1,nstsv if ((evalsv(ist,ik) < wsfac(1)).or.(evalsv(ist,ik) > wsfac(2))) then occsv(ist,ik)=0.d0 end if end do end do ! computed density should not be normalised trhonorm0=trhonorm trhonorm=.false. ! generate the density and magnetisation call rhomag trhonorm=trhonorm0 10 continue ! generate the H-vectors call genhvec end subroutine elk-9.2.12/src/PaxHeaders/findscq.f900000644000000000000000000000013214536061314014177 xustar0030 mtime=1702388428.044501303 30 atime=1702388426.905502989 30 ctime=1702388428.044501303 elk-9.2.12/src/findscq.f900000644002504400250440000000677314536061314016736 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine findscq(iq,nsc,vsc) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq integer, intent(out) :: nsc real(8), intent(out) :: vsc(3,nqptnr) ! local variables integer i1,i2,i3 integer scl(3,3),i,n real(8) dmin,t1 real(8) v1(3),v2(3) ! check for Gamma-point phonon if (tphq0) then scl(:,:)=0 scl(1,1)=1 scl(2,2)=1 scl(3,3)=1 nsc=1 goto 10 end if ! find the first lattice vector dmin=1.d8 do i1=-ngridq(1),ngridq(1) do i2=-ngridq(2),ngridq(2) do i3=-ngridq(3),ngridq(3) t1=dble(i1)*vql(1,iq)+dble(i2)*vql(2,iq)+dble(i3)*vql(3,iq) if (abs(t1-nint(t1)) < epslat) then v1(:)=dble(i1)*avec0(:,1)+dble(i2)*avec0(:,2)+dble(i3)*avec0(:,3) t1=sqrt(v1(1)**2+v1(2)**2+v1(3)**2) if ((t1 < dmin).and.(t1 > epslat)) then scl(1,1)=i1 scl(2,1)=i2 scl(3,1)=i3 dmin=t1 end if end if end do end do end do ! find the second lattice vector dmin=1.d8 do i1=-ngridq(1),ngridq(1) do i2=-ngridq(2),ngridq(2) do i3=-ngridq(3),ngridq(3) t1=dble(i1)*vql(1,iq)+dble(i2)*vql(2,iq)+dble(i3)*vql(3,iq) if (abs(t1-nint(t1)) < epslat) then ! area defined by first two lattice vectors n=(i2*scl(3,1)-i3*scl(2,1))**2 & +(i3*scl(1,1)-i1*scl(3,1))**2 & +(i1*scl(2,1)-i2*scl(1,1))**2 if (n /= 0) then v1(:)=dble(i1)*avec0(:,1)+dble(i2)*avec0(:,2)+dble(i3)*avec0(:,3) t1=v1(1)**2+v1(2)**2+v1(3)**2 if (t1 < dmin) then scl(1,2)=i1 scl(2,2)=i2 scl(3,2)=i3 dmin=t1 end if end if end if end do end do end do ! find the third lattice vector nsc=0 dmin=1.d8 do i1=-ngridq(1),ngridq(1) do i2=-ngridq(2),ngridq(2) do i3=-ngridq(3),ngridq(3) t1=dble(i1)*vql(1,iq)+dble(i2)*vql(2,iq)+dble(i3)*vql(3,iq) if (abs(t1-nint(t1)) < epslat) then ! number of primitive unit cells in supercell n=scl(1,2)*(i2*scl(3,1)-i3*scl(2,1)) & +scl(2,2)*(i3*scl(1,1)-i1*scl(3,1)) & +scl(3,2)*(i1*scl(2,1)-i2*scl(1,1)) if (n /= 0) then v1(:)=dble(i1)*avec0(:,1)+dble(i2)*avec0(:,2)+dble(i3)*avec0(:,3) t1=v1(1)**2+v1(2)**2+v1(3)**2 if (t1 < dmin) then nsc=abs(n) scl(1,3)=i1 scl(2,3)=i2 scl(3,3)=i3 dmin=t1 end if end if end if end do end do end do if (nsc == 0) goto 30 10 continue ! new lattice vectors do i=1,3 avec(:,i)=dble(scl(1,i))*avec0(:,1) & +dble(scl(2,i))*avec0(:,2) & +dble(scl(3,i))*avec0(:,3) end do ! inverse of lattice vector matrix call r3minv(avec,ainv) ! generate offset vectors for each primitive cell in the supercell n=1 vsc(:,1)=0.d0 do i1=-ngridq(1),ngridq(1) do i2=-ngridq(2),ngridq(2) do i3=-ngridq(3),ngridq(3) if (n == nsc) return v1(:)=dble(i1)*avec0(:,1)+dble(i2)*avec0(:,2)+dble(i3)*avec0(:,3) call r3mv(ainv,v1,v2) call r3frac(epslat,v2) call r3mv(avec,v2,v1) do i=1,n t1=abs(v1(1)-vsc(1,i))+abs(v1(2)-vsc(2,i))+abs(v1(3)-vsc(3,i)) if (t1 < epslat) goto 20 end do n=n+1 vsc(:,n)=v1(:) 20 continue end do end do end do 30 continue write(*,*) write(*,'("Error(findscq): unable to generate supercell")') write(*,*) stop end subroutine elk-9.2.12/src/PaxHeaders/plot1d.f900000644000000000000000000000013214536061314013753 xustar0030 mtime=1702388428.045501301 30 atime=1702388426.906502987 30 ctime=1702388428.045501301 elk-9.2.12/src/plot1d.f900000644002504400250440000000354014536061314016477 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: plot1d ! !INTERFACE: subroutine plot1d(fnum1,fnum2,nf,rfmt,rfir) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! fnum1 : plot file number (in,integer) ! fnum2 : vertex location file number (in,integer) ! nf : number of functions (in,integer) ! rfmt : real muffin-tin function (in,real(npmtmax,natmtot,nf)) ! rfir : real intersitial function (in,real(ngtot,nf)) ! !DESCRIPTION: ! Produces a 1D plot of the real functions contained in arrays {\tt rfmt} and ! {\tt rfir} along the lines connecting the vertices in the global array ! {\tt vvlp1d}. See routine {\tt rfplot}. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: fnum1,fnum2,nf real(8), intent(in) :: rfmt(npmtmax,natmtot,nf),rfir(ngtot,nf) ! local variables integer jf,ip,iv real(8) fmin,fmax,t1 ! allocatable arrays real(8), allocatable :: fp(:,:) if ((nf < 1).or.(nf > 4)) then write(*,*) write(*,'("Error(plot1d): invalid number of functions : ",I8)') nf write(*,*) stop end if allocate(fp(npp1d,nf)) ! connect the 1D plotting vertices call plotpt1d(avec,nvp1d,npp1d,vvlp1d,vplp1d,dvp1d,dpp1d) do jf=1,nf ! evaluate function at each point call rfplot(npp1d,vplp1d,rfmt(:,:,jf),rfir(:,jf),fp(:,jf)) end do do ip=ip01d,npp1d ! write the point distances and function to file write(fnum1,'(5G18.10)') dpp1d(ip),(fp(ip,jf),jf=1,nf) end do ! write the vertex location lines fmin=minval(fp(:,:)) fmax=maxval(fp(:,:)) t1=0.5d0*(fmax-fmin) fmin=fmin-t1 fmax=fmax+t1 do iv=1,nvp1d write(fnum2,'(2G18.10)') dvp1d(iv),fmin write(fnum2,'(2G18.10)') dvp1d(iv),fmax write(fnum2,*) end do deallocate(fp) end subroutine !EOC elk-9.2.12/src/PaxHeaders/plot2d.f900000644000000000000000000000013214536061314013754 xustar0030 mtime=1702388428.046501299 30 atime=1702388426.908502984 30 ctime=1702388428.046501299 elk-9.2.12/src/plot2d.f900000644002504400250440000000367314536061314016507 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: plot2d ! !INTERFACE: subroutine plot2d(tproj,fnum,nf,rfmt,rfir) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! tproj : .true. if nf=3 and the vector function should be projected onto the ! 2D plotting plane axes (in,logical) ! fnum : plot file number (in,integer) ! nf : number of functions (in,integer) ! rfmt : real muffin-tin function (in,real(npmtmax,natmtot,nf)) ! rfir : real intersitial function (in,real(ngtot,nf)) ! !DESCRIPTION: ! Produces a 2D plot of the real functions contained in arrays {\tt rfmt} and ! {\tt rfir} on the parallelogram defined by the corner vertices in the global ! array {\tt vclp2d}. See routine {\tt rfplot}. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: tproj integer, intent(in) :: fnum,nf real(8), intent(in) :: rfmt(npmtmax,natmtot,nf),rfir(ngtot,nf) ! local variables integer np,jf,ip real(8) vpnl(3) ! allocatable arrays real(8), allocatable :: vpl(:,:),vppc(:,:),fp(:,:) if ((nf < 1).or.(nf > 4)) then write(*,*) write(*,'("Error(plot2d): invalid number of functions : ",I8)') nf write(*,*) stop end if ! allocate local arrays np=np2d(1)*np2d(2) allocate(vpl(3,np),vppc(2,np),fp(np,nf)) ! generate the 2D plotting points call plotpt2d(avec,ainv,vpnl,vpl,vppc) ! evaluate the functions at the grid points do jf=1,nf call rfplot(np,vpl,rfmt(:,:,jf),rfir(:,jf),fp(:,jf)) end do ! project the vector function onto the 2D plotting plane axes if required if (tproj.and.(nf == 3)) then call proj2d(np,fp) end if ! write the functions to file write(fnum,'(2I6," : grid size")') np2d(:) do ip=1,np write(fnum,'(6G18.10)') vppc(1,ip),vppc(2,ip),(fp(ip,jf),jf=1,nf) end do deallocate(vpl,vppc,fp) end subroutine !EOC elk-9.2.12/src/PaxHeaders/plot3d.f900000644000000000000000000000013214536061314013755 xustar0030 mtime=1702388428.047501298 30 atime=1702388426.909502983 30 ctime=1702388428.047501298 elk-9.2.12/src/plot3d.f900000644002504400250440000000332714536061314016504 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: plot3d ! !INTERFACE: subroutine plot3d(fnum,nf,rfmt,rfir) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! fnum : plot file number (in,integer) ! nf : number of functions (in,integer) ! rfmt : real muffin-tin function (in,real(npmtmax,natmtot,nf)) ! rfir : real intersitial function (in,real(ngtot,nf)) ! !DESCRIPTION: ! Produces a 3D plot of the real functions contained in arrays {\tt rfmt} and ! {\tt rfir} in the parallelepiped defined by the corner vertices in the ! global array {\tt vclp3d}. See routine {\tt rfarray}. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) ! Modified, October 2008 (F. Bultmark, F. Cricchio, L. Nordstrom) !EOP !BOC implicit none ! arguments integer, intent(in) :: fnum,nf real(8), intent(in) :: rfmt(npmtmax,natmtot,nf),rfir(ngtot,nf) ! local variables integer np,jf,ip real(8) v1(3) ! allocatable arrays real(8), allocatable :: vpl(:,:),fp(:,:) if ((nf < 1).or.(nf > 4)) then write(*,*) write(*,'("Error(plot3d): invalid number of functions : ",I8)') nf write(*,*) stop end if ! total number of plot points np=np3d(1)*np3d(2)*np3d(3) ! allocate local arrays allocate(vpl(3,np),fp(np,nf)) ! generate the 3D plotting points call plotpt3d(vpl) ! evaluate the functions at the grid points do jf=1,nf call rfplot(np,vpl,rfmt(:,:,jf),rfir(:,jf),fp(:,jf)) end do ! write functions to file write(fnum,'(3I6," : grid size")') np3d(:) do ip=1,np call r3mv(avec,vpl(:,ip),v1) write(fnum,'(7G18.10)') v1(:),(fp(ip,jf),jf=1,nf) end do deallocate(vpl,fp) end subroutine !EOC elk-9.2.12/src/PaxHeaders/init0.f900000644000000000000000000000013214536061314013573 xustar0030 mtime=1702388428.049501295 30 atime=1702388426.910502982 30 ctime=1702388428.049501295 elk-9.2.12/src/init0.f900000644002504400250440000005312214536061314016320 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: init0 ! !INTERFACE: subroutine init0 ! !USES: use modmain use modxcifc use moddftu use modtddft use modphonon use modulr use modtest use modvars use modmpi use modomp ! !DESCRIPTION: ! Performs basic consistency checks as well as allocating and initialising ! global variables not dependent on the $k$-point set. ! ! !REVISION HISTORY: ! Created January 2004 (JKD) !EOP !BOC implicit none ! local variables logical hybrid_ integer is,ia,ias,idu integer ist,nr,l,n,i integer xcspin_ real(8) hybridc_,t1 real(8) ts0,ts1 !-------------------------------! ! zero timing variables ! !-------------------------------! timeinit=0.d0 timemat=0.d0 timefv=0.d0 timesv=0.d0 timerho=0.d0 timepot=0.d0 timefor=0.d0 call timesec(ts0) !------------------------------------! ! angular momentum variables ! !------------------------------------! if (lmaxo > lmaxapw) then write(*,*) write(*,'("Error(init0): lmaxo > lmaxapw : ",2I8)') lmaxo,lmaxapw write(*,*) stop end if lmaxi=min(lmaxi,lmaxo) lmmaxapw=(lmaxapw+1)**2 lmmaxi=(lmaxi+1)**2 lmmaxo=(lmaxo+1)**2 ! check DOS lmax is within range lmaxdos=min(lmaxdos,lmaxo) ! write to VARIABLES.OUT if (wrtvars) then call writevars('lmaxapw',iv=lmaxapw) call writevars('lmaxi',iv=lmaxi) call writevars('lmaxo',iv=lmaxo) end if !------------------------------------! ! index to atoms and species ! !------------------------------------! natmmax=0 ias=0 do is=1,nspecies do ia=1,natoms(is) ias=ias+1 idxas(ia,is)=ias idxis(ias)=is idxia(ias)=ia end do ! maximum number of atoms over all species natmmax=max(natmmax,natoms(is)) end do ! total number of atoms natmtot=ias ! number of phonon branches nbph=3*natmtot ! write to VARIABLES.OUT if (wrtvars) then call writevars('nspecies',iv=nspecies) call writevars('natoms',nv=nspecies,iva=natoms) call writevars('spsymb',nv=nspecies,sva=spsymb) call writevars('spname',nv=nspecies,sva=spname) call writevars('spzn',nv=nspecies,rva=spzn) end if !------------------------! ! spin variables ! !------------------------! if (spinsprl) then spinpol=.true. spinorb=.false. if (any(task == [5,51,52,53,61,62,63,700,701])) then write(*,*) write(*,'("Error(init0): spin-spirals do not work with task ",I4)') task write(*,*) stop end if if (xctype(1) < 0) then write(*,*) write(*,'("Error(init0): spin-spirals do not work with the OEP method")') write(*,*) stop end if if (tefvit) then write(*,*) write(*,'("Error(init0): spin-spirals do not work with iterative & &diagonalisation")') write(*,*) stop end if end if ! de-phasing required only for spin-spirals if (.not.spinsprl) ssdph=.false. ! spin-orbit coupling, fixed spin moment, spin spirals or spin-polarised cores ! requires a spin-polarised calculation if ((spinorb).or.(fsmtype /= 0).or.(spinsprl).or.(spincore)) spinpol=.true. ! number of spinor components and maximum allowed occupancy if (spinpol) then nspinor=2 occmax=1.d0 else nspinor=1 occmax=2.d0 end if ! number of spin-dependent first-variational functions per state and map from ! second- to first-variational spin index if (spinsprl) then nspnfv=2 jspnfv(1)=1 jspnfv(2)=2 else nspnfv=1 jspnfv(1)=1 jspnfv(2)=1 end if ! no calculation of second-variational eigenvectors by default tevecsv=.false. ! spin-polarised calculations require second-variational eigenvectors if (spinpol) tevecsv=.true. ! Hartree-Fock/RDMFT/TDDFT/GW/ULR requires second-variational eigenvectors if (any(task == [5,10,170,300,460,461,462,463,600,620,630,700,701])) then tevecsv=.true. end if ! get exchange-correlation functional data call getxcdata(xctype,xcdescr,xcspin,xcgrad,hybrid0,hybridc) if ((spinpol).and.(xcspin == 0)) then write(*,*) write(*,'("Error(init0): requested spin-polarised run with & &spin-unpolarised")') write(*,'(" exchange-correlation functional")') write(*,*) stop end if ! set flag for hybrid functional if (task == 5) then hybrid=hybrid0 else hybrid=.false. end if ! check for collinearity in the z-direction and set the dimension of the ! magnetisation and exchange-correlation vector fields if (spinpol) then ndmag=1 if ((abs(bfieldc0(1)) > epslat).or.(abs(bfieldc0(2)) > epslat)) ndmag=3 do is=1,nspecies do ia=1,natoms(is) if ((abs(bfcmt0(1,ia,is)) > epslat).or. & (abs(bfcmt0(2,ia,is)) > epslat)) ndmag=3 end do end do ! spin-orbit coupling is non-collinear in general if (spinorb) ndmag=3 ! source-free fields and spin-spirals must be non-collinear if ((nosource).or.(spinsprl)) then ndmag=3 cmagz=.false. end if ! force collinear magnetism along the z-axis if required if (cmagz) ndmag=1 else ndmag=0 end if ! set the non-collinear flag if (ndmag == 3) then ncmag=.true. else ncmag=.false. end if ! check for meta-GGA with non-collinearity if ((any(xcgrad == [3,4,5])).and.ncmag) then write(*,*) write(*,'("Error(init0): meta-GGA is not valid for non-collinear magnetism")') write(*,*) stop end if if (ncmag.or.spinorb) then ! spins are coupled in the second-variational Hamiltonian spcpl=.true. else ! spins are decoupled spcpl=.false. end if ! spin-polarised cores if (.not.spinpol) spincore=.false. if (fsmtype /= 0) then ! set fixed spin moment effective field to zero bfsmc(:)=0.d0 ! set muffin-tin FSM fields to zero if (allocated(bfsmcmt)) deallocate(bfsmcmt) allocate(bfsmcmt(3,natmtot)) bfsmcmt(:,:)=0.d0 if (mp_mpi.and.(mixtype /= 1)) then write(*,'("Info(init0): mixtype changed to 1 for FSM calculation")') end if mixtype=1 end if ! number of independent spin components of the f_xc spin tensor if (spinpol) then if (ncmag) then nscfxc=10 else nscfxc=3 end if else nscfxc=1 end if ! set the magnetic fields to the initial values bfieldc(:)=bfieldc0(:) bfcmt(:,:,:)=bfcmt0(:,:,:) ! if reducebf < 1 then reduce the external magnetic fields immediately for ! non-self-consistent calculations or resumptions if (reducebf < 1.d0-1.d-4) then if (all(task /= [0,1,2,3,5,28,200,201,350,351,630])) then bfieldc(:)=0.d0 bfcmt(:,:,:)=0.d0 end if end if if (tmwrite.or.(ftmtype /= 0).or.(task == 400)) then if (.not.spinorb) then write(*,*) write(*,'("Error(init0): tensor moments require spin-orbit coupling & &enabled")') write(*,'(" set spinorb=.true.")') write(*,*) stop end if end if ! generate the fixed tensor moment density matrices if required if (ftmtype /= 0) call gendmftm ! write to VARIABLES.OUT if (wrtvars) then call writevars('nspinor',iv=nspinor) call writevars('ndmag',iv=ndmag) call writevars('sxcscf',rv=sxcscf) call writevars('bfieldc0',nv=3,rva=bfieldc0) end if !----------------------------------! ! crystal structure set up ! !----------------------------------! ! generate the reciprocal lattice vectors and unit cell volume call reciplat(avec,bvec,omega,omegabz) ! inverse of the lattice vector matrix call r3minv(avec,ainv) ! inverse of the reciprocal vector matrix call r3minv(bvec,binv) ! Cartesian coordinates of the spin-spiral vector call r3mv(bvec,vqlss,vqcss) do is=1,nspecies do ia=1,natoms(is) ! map atomic lattice coordinates to [0,1) call r3frac(epslat,atposl(:,ia,is)) ! determine atomic Cartesian coordinates call r3mv(avec,atposl(:,ia,is),atposc(:,ia,is)) end do end do ! check for overlapping muffin-tins and adjust radii if required call checkmt ! compute the total muffin-tin volume (M. Meinert) omegamt=0.d0 do is=1,nspecies omegamt=omegamt+dble(natoms(is))*(fourpi/3.d0)*rmt(is)**3 end do ! input q-vector in Cartesian coordinates call r3mv(bvec,vecql,vecqc) ! write to VARIABLES.OUT if (wrtvars) then call writevars('avec',nv=9,rva=avec) call writevars('bvec',nv=9,rva=bvec) call writevars('omega',rv=omega) do is=1,nspecies call writevars('atposl',n1=is,nv=3*natoms(is),rva=atposl(:,:,is)) end do do is=1,nspecies call writevars('atposc',n1=is,nv=3*natoms(is),rva=atposc(:,:,is)) end do end if !-------------------------------! ! vector fields E and A ! !-------------------------------! tefield=.false. if (any(abs(efieldc(:)) > epslat)) then ! no shift of the atomic positions tshift=.false. ! electric field vector in lattice coordinates call r3mv(ainv,efieldc,efieldl) tefield=.true. end if tafield=.false. if (any(abs(afieldc(:)) > epslat)) then tafield=.true. ! A-field in lattice coordinates call r3mv(ainv,afieldc,afieldl) ! vector potential added in second-variational step tevecsv=.true. end if tafieldt=.false. if (any(task == [460,461,462,463,480,481,485])) then ! read time-dependent A-field from file call readafieldt tafieldt=.true. ! zero the induced A-field and its time derivative afindt(:,:)=0.d0 end if !---------------------------------! ! crystal symmetry set up ! !---------------------------------! call symmetry !-----------------------! ! radial meshes ! !-----------------------! nrmtmax=1 nrcmtmax=1 do is=1,nspecies ! make the muffin-tin mesh commensurate with lradstp nrmt(is)=nrmt(is)-mod(nrmt(is)-1,lradstp) nrmtmax=max(nrmtmax,nrmt(is)) ! number of coarse radial mesh points nrcmt(is)=(nrmt(is)-1)/lradstp+1 nrcmtmax=max(nrcmtmax,nrcmt(is)) end do ! set up atomic and muffin-tin radial meshes call genrmesh ! number of points in packed muffin-tins npmtmax=1 npcmtmax=1 do is=1,nspecies npmti(is)=lmmaxi*nrmti(is) npmt(is)=npmti(is)+lmmaxo*(nrmt(is)-nrmti(is)) npmtmax=max(npmtmax,npmt(is)) npcmti(is)=lmmaxi*nrcmti(is) npcmt(is)=npcmti(is)+lmmaxo*(nrcmt(is)-nrcmti(is)) npcmtmax=max(npcmtmax,npcmt(is)) end do !--------------------------------------! ! charges and number of states ! !--------------------------------------! chgzn=0.d0 chgcrtot=0.d0 chgval=0.d0 nstspmax=0 nstcr=0 do is=1,nspecies ! nuclear charge chgzn=chgzn+spzn(is)*natoms(is) ! find the maximum number of atomic states nstspmax=max(nstspmax,nstsp(is)) ! compute the electronic charge for each species, as well as the total core and ! valence charge spze(is)=0.d0 chgcr(is)=0.d0 do ist=1,nstsp(is) spze(is)=spze(is)+occsp(ist,is) if (spcore(ist,is)) then chgcr(is)=chgcr(is)+occsp(ist,is) nstcr=nstcr+2*ksp(ist,is)*natoms(is) else chgval=chgval+occsp(ist,is)*natoms(is) end if end do chgcrtot=chgcrtot+chgcr(is)*natoms(is) end do ! add excess charge chgval=chgval+chgexs ! total charge chgtot=chgcrtot+chgval if (chgtot < 1.d-8) then write(*,*) write(*,'("Error(init0): zero total charge")') write(*,*) stop end if ! effective Wigner radius rwigner=(3.d0/(fourpi*(chgtot/omega)))**(1.d0/3.d0) ! write to VARIABLES.OUT if (wrtvars) then call writevars('spze',nv=nspecies,rva=spze) call writevars('chgcr',nv=nspecies,rva=chgcr) call writevars('chgexs',rv=chgexs) call writevars('chgval',rv=chgtot) end if !-------------------------! ! G-vector arrays ! !-------------------------! ! determine gkmax from rgkmax if (nspecies == 0) isgkmax=-2 select case(isgkmax) case(:-4) ! use largest muffin-tin radius gkmax=rgkmax/maxval(rmt(1:nspecies)) case(-3) ! use smallest muffin-tin radius gkmax=rgkmax/minval(rmt(1:nspecies)) case(-2) ! use the fixed value of 2.0 gkmax=rgkmax/2.d0 case(-1) ! use average muffin-tin radius t1=sum(natoms(1:nspecies)*rmt(1:nspecies))/dble(natmtot) gkmax=rgkmax/t1 case(1:) ! use user-specified muffin-tin radius if (isgkmax <= nspecies) then gkmax=rgkmax/rmt(isgkmax) else write(*,*) write(*,'("Error(init0): isgkmax > nspecies : ",2I8)') isgkmax,nspecies write(*,*) stop end if end select ! generate the G-vectors call gengvec ! write number of G-vectors to test file call writetest(900,'number of G-vectors',iv=ngvec) ! Poisson solver pseudocharge density constant if (nspecies > 0) then t1=0.25d0*gmaxvr*maxval(rmt(1:nspecies)) else t1=0.25d0*gmaxvr*2.d0 end if npsd=max(nint(t1),1) lnpsd=lmaxo+npsd+1 ! generate the Coulomb Green's function in G-space = fourpi / G^2 call gengclg ! compute the spherical Bessel functions j_l(|G|R_mt) if (allocated(jlgrmt)) deallocate(jlgrmt) allocate(jlgrmt(0:lnpsd,ngvec,nspecies)) call genjlgprmt(lnpsd,ngvec,gc,ngvec,jlgrmt) ! generate the spherical harmonics of the G-vectors call genylmg ! allocate structure factor array for G-vectors if (allocated(sfacg)) deallocate(sfacg) allocate(sfacg(ngvec,natmtot)) ! generate structure factors for G-vectors call gensfacgp(ngvec,vgc,ngvec,sfacg) ! generate the smooth step function form factors if (allocated(ffacg)) deallocate(ffacg) allocate(ffacg(ngtot,nspecies)) do is=1,nspecies call genffacgp(is,gc,ffacg(:,is)) end do ! generate the characteristic function call gencfun ! G-vector variables for coarse grid with |G| < 2 gkmax call gengvc ! generate the characteristic function on the coarse grid call gencfrc ! write to VARIABLES.OUT if (wrtvars) then call writevars('gmaxvr',rv=gmaxvr) call writevars('ngridg',nv=3,iva=ngridg) call writevars('intgv',nv=6,iva=intgv) call writevars('ngvec',iv=ngvec) call writevars('ivg',nv=3*ngtot,iva=ivg) call writevars('igfft',nv=ngtot,iva=igfft) end if !-------------------------! ! atoms and cores ! !-------------------------! ! determine the nuclear Coulomb potential if (allocated(vcln)) deallocate(vcln) allocate(vcln(nrspmax,nspecies)) t1=1.d0/y00 do is=1,nspecies nr=nrsp(is) call potnucl(ptnucl,nr,rsp(:,is),spzn(is),vcln(:,is)) vcln(1:nr,is)=t1*vcln(1:nr,is) end do ! solve the Kohn-Sham-Dirac equations for all atoms call allatoms ! allocate core state occupancy and eigenvalue arrays and set to default if (allocated(occcr)) deallocate(occcr) allocate(occcr(nstspmax,natmtot)) if (allocated(evalcr)) deallocate(evalcr) allocate(evalcr(nstspmax,natmtot)) do ias=1,natmtot is=idxis(ias) do ist=1,nstsp(is) occcr(ist,ias)=occsp(ist,is) evalcr(ist,ias)=evalsp(ist,is) end do end do ! allocate core state radial wavefunction array if (allocated(rwfcr)) deallocate(rwfcr) allocate(rwfcr(nrspmax,2,nstspmax,natmtot)) ! number of core spin channels if (spincore) then nspncr=2 else nspncr=1 end if ! allocate core state charge density array if (allocated(rhocr)) deallocate(rhocr) allocate(rhocr(nrmtmax,natmtot,nspncr)) !-------------------------------------------------------------! ! charge density, potentials and exchange-correlation ! !-------------------------------------------------------------! ! allocate charge density arrays if (allocated(rhomt)) deallocate(rhomt) allocate(rhomt(npmtmax,natmtot)) if (allocated(rhoir)) deallocate(rhoir) allocate(rhoir(ngtot)) ! allocate magnetisation arrays if (allocated(magmt)) deallocate(magmt) if (allocated(magir)) deallocate(magir) if (spinpol) then allocate(magmt(npmtmax,natmtot,ndmag)) allocate(magir(ngtot,ndmag)) end if ! check if the current density j(r) should be calculated if (tafield.or.tdjr1d.or.tdjr2d.or.tdjr3d.or.(any(task == [371,372,373]))) then tjr=.true. end if ! allocate current density arrays if (allocated(jrmt)) deallocate(jrmt) if (allocated(jrir)) deallocate(jrir) if (tjr) then allocate(jrmt(npmtmax,natmtot,3),jrir(ngtot,3)) end if ! Coulomb potential if (allocated(vclmt)) deallocate(vclmt) allocate(vclmt(npmtmax,natmtot)) if (allocated(vclir)) deallocate(vclir) allocate(vclir(ngtot)) ! exchange energy density if (allocated(exmt)) deallocate(exmt) allocate(exmt(npmtmax,natmtot)) if (allocated(exir)) deallocate(exir) allocate(exir(ngtot)) ! correlation energy density if (allocated(ecmt)) deallocate(ecmt) allocate(ecmt(npmtmax,natmtot)) if (allocated(ecir)) deallocate(ecir) allocate(ecir(ngtot)) ! exchange-correlation potential if (allocated(vxcmt)) deallocate(vxcmt) allocate(vxcmt(npmtmax,natmtot)) if (allocated(vxcir)) deallocate(vxcir) allocate(vxcir(ngtot)) ! exchange-correlation and dipole magnetic fields if (allocated(bxcmt)) deallocate(bxcmt) if (allocated(bxcir)) deallocate(bxcir) if (allocated(bdmt)) deallocate(bdmt) if (allocated(bdir)) deallocate(bdir) if (spinpol) then allocate(bxcmt(npmtmax,natmtot,ndmag),bxcir(ngtot,ndmag)) if (tbdip) allocate(bdmt(npmtmax,natmtot,ndmag),bdir(ngtot,ndmag)) end if ! combined target array for Kohn-Sham potential and magnetic field if (allocated(vsbs)) deallocate(vsbs) n=npmtmax*natmtot+ngtot if (spinpol) n=n+(npcmtmax*natmtot+ngtot)*ndmag allocate(vsbs(n)) ! zero the array vsbs(:)=0.d0 ! associate pointer arrays with target vsmt(1:npmtmax,1:natmtot)=>vsbs(1:) i=npmtmax*natmtot+1 vsir(1:ngtot)=>vsbs(i:) if (spinpol) then i=i+ngtot bsmt(1:npcmtmax,1:natmtot,1:ndmag)=>vsbs(i:) i=i+npcmtmax*natmtot*ndmag bsir(1:ngtot,1:ndmag)=>vsbs(i:) end if ! effective Kohn-Sham potential in G-space if (allocated(vsig)) deallocate(vsig) allocate(vsig(ngvec)) ! kinetic energy density and meta-GGA exchange-correlation potential if (allocated(taumt)) deallocate(taumt) if (allocated(tauir)) deallocate(tauir) if (allocated(taucr)) deallocate(taucr) if (allocated(wxcmt)) deallocate(wxcmt) if (allocated(wxcir)) deallocate(wxcir) if (any(xcgrad == [3,4,5])) then allocate(taumt(npmtmax,natmtot,nspinor),tauir(ngtot,nspinor)) allocate(taucr(npmtmax,natmtot,nspinor)) allocate(wxcmt(npmtmax,natmtot),wxcir(ngtot)) ! approximate kinetic energy density functional used to compute the functional ! derivative δτ(r')/δρ(r) for meta-GGA call getxcdata(ktype,kdescr,xcspin_,kgrad,hybrid_,hybridc_) end if ! spin-orbit coupling radial function if (allocated(socfr)) deallocate(socfr) if (spinorb) then allocate(socfr(nrcmtmax,natmtot)) end if ! allocate muffin-tin charge and moment arrays if (allocated(chgcrlk)) deallocate(chgcrlk) allocate(chgcrlk(natmtot)) if (allocated(chgmt)) deallocate(chgmt) allocate(chgmt(natmtot)) if (allocated(mommt)) deallocate(mommt) allocate(mommt(3,natmtot)) ! check if scaled spin exchange-correlation should be used if (abs(sxcscf-1.d0) > 1.d-6) then tssxc=.true. else tssxc=.false. end if ! spin-spiral phase factors if (ssdph) then if (allocated(zqss)) deallocate(zqss) allocate(zqss(natmtot)) do ias=1,natmtot is=idxis(ias) ia=idxia(ias) t1=-0.5d0*dot_product(vqcss(:),atposc(:,ia,is)) zqss(ias)=cmplx(cos(t1),sin(t1),8) end do end if !-------------------------! ! force variables ! !-------------------------! if (tforce) then if (allocated(forcehf)) deallocate(forcehf) allocate(forcehf(3,natmtot)) if (allocated(forceibs)) deallocate(forceibs) allocate(forceibs(3,natmtot)) if (allocated(forcetot)) deallocate(forcetot) allocate(forcetot(3,natmtot)) end if !-------------------------------------------------! ! DFT+U and fixed tensor moment variables ! !-------------------------------------------------! if ((dftu /= 0).or.(ftmtype /= 0)) then ! density matrix elements in each muffin-tin if (allocated(dmatmt)) deallocate(dmatmt) allocate(dmatmt(lmmaxdm,nspinor,lmmaxdm,nspinor,natmtot)) ! potential matrix elements in each muffin-tin if (allocated(vmatmt)) deallocate(vmatmt) allocate(vmatmt(lmmaxdm,nspinor,lmmaxdm,nspinor,natmtot)) ! zero the potential matrix vmatmt(:,:,:,:,:)=0.d0 ! matrix elements in spherical coordinates for TDDFT+U if (any(task == [460,461,462,463,478])) then if (allocated(vmatmti)) deallocate(vmatmti) allocate(vmatmti(lmmaxi,lmmaxi,nspinor,nspinor,natmtot)) if (allocated(vmatmto)) deallocate(vmatmto) allocate(vmatmto(lmmaxo,lmmaxo,nspinor,nspinor,natmtot)) end if ! require the potential matrix elements be calculated tvmatmt=.true. ! flags for non-zero muffin-tin potential matrices if (allocated(tvmmt)) deallocate(tvmmt) allocate(tvmmt(0:lmaxdm,natmtot)) tvmmt(:,:)=.false. ! require second-variational eigenvectors tevecsv=.true. end if if (dftu /= 0) then if (any(task == [5,300,600,610,620,630,640])) then write(*,*) write(*,'("Error(init0): DFT+U does not work with task ",I8)') task write(*,*) stop end if ! DFT+U energy for each atom if (allocated(engyadu)) deallocate(engyadu) allocate(engyadu(natmmax,ndftu)) ! flag the muffin-tin potential matrices which are non-zero do idu=1,ndftu is=isldu(1,idu) if (is > nspecies) then write(*,*) write(*,'("Error(init0): invalid species number : ",I8)') is write(*,*) stop end if l=isldu(2,idu) do ia=1,natoms(is) ias=idxas(ia,is) tvmmt(l,ias)=.true. end do end do ! zero the initial values of screening length lamdu0(:)=0.d0 ! write to VARIABLES.OUT if (wrtvars) then call writevars('udufix',nv=ndftu,rva=udufix) end if end if if (ftmtype /= 0) then ! allocate and zero the fixed tensor moment potential array if (allocated(vmftm)) deallocate(vmftm) allocate(vmftm(lmmaxdm,nspinor,lmmaxdm,nspinor,natmtot)) vmftm(:,:,:,:,:)=0.d0 ! flag the muffin-tin potential matrices which are non-zero do i=1,ntmfix is=itmfix(1,i) ia=itmfix(2,i) ias=idxas(ia,is) l=itmfix(3,i) tvmmt(l,ias)=.true. end do end if !-----------------------! ! miscellaneous ! !-----------------------! ! determine nuclear radii and volumes call nuclei ! determine the nuclear-nuclear energy call energynn ! get smearing function description call getsdata(stype,sdescr) ! get mixing type description call getmixdata(mixtype,mixdescr) ! generate the spherical harmonic transform (SHT) matrices call genshtmat ! find the maximum size of the spherical Bessel function array over all species call findnjcmax ! allocate 1D plotting arrays if (allocated(dvp1d)) deallocate(dvp1d) allocate(dvp1d(nvp1d)) if (allocated(vplp1d)) deallocate(vplp1d) allocate(vplp1d(3,npp1d)) if (allocated(dpp1d)) deallocate(dpp1d) allocate(dpp1d(npp1d)) ! initial self-consistent loop number iscl=1 tlast=.false. ! set the Fermi energy to zero efermi=0.d0 ! set the temperature from the smearing width tempk=swidth/kboltz call timesec(ts1) timeinit=timeinit+ts1-ts0 end subroutine !EOC elk-9.2.12/src/PaxHeaders/readstate.f900000644000000000000000000000013214536061314014524 xustar0030 mtime=1702388428.051501292 30 atime=1702388426.913502977 30 ctime=1702388428.051501292 elk-9.2.12/src/readstate.f900000644002504400250440000002327614536061314017260 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: readstate ! !INTERFACE: subroutine readstate ! !USES: use modmain use moddftu ! !DESCRIPTION: ! Reads in the charge density and other relevant variables from the file ! {\tt STATE.OUT}. Checks for version and parameter compatibility. ! ! !REVISION HISTORY: ! Created May 2003 (JKD) !EOP !BOC implicit none ! local variables logical spinpol_ integer is,ia,ias,lmmax,lm,ir,jr integer idm,jdm,mapidm(3),ios integer i1,i2,i3,j1,j2,j3,n integer version_(3) integer nspecies_,natoms_,lmmaxo_ integer nrmt_(maxspecies),nrmtmax_ integer nrcmt_(maxspecies),nrcmtmax_ integer ngridg_(3),ngtot_,ngvec_ integer ndmag_,nspinor_,fsmtype_,ftmtype_ integer dftu_,lmmaxdm_,xcgrad_ real(8) t1 ! allocatable arrays integer, allocatable :: mapir(:) real(8), allocatable :: rsp_(:,:),rcmt_(:,:) real(8), allocatable :: wcrmt_(:,:,:),wcrcmt_(:,:,:) real(8), allocatable :: rfmt_(:,:,:),rfir_(:) real(8), allocatable :: rvfmt_(:,:,:,:),rvfir_(:,:) real(8), allocatable :: rvfcmt_(:,:,:,:),rfmt(:,:) real(8), allocatable :: bfsmcmt_(:,:),fi(:),fo(:) complex(8), allocatable :: vsig_(:) complex(8), allocatable :: vmatmt_(:,:,:,:,:),vmftm_(:,:,:,:,:) open(100,file='STATE'//trim(filext),form='UNFORMATTED',action='READ', & status='OLD',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readstate): error opening ",A)') 'STATE'//trim(filext) write(*,*) stop end if read(100) version_ if (version_(1) < 2) then write(*,*) write(*,'("Error(readstate): unable to read STATE.OUT from versions earlier & &than 2.0.0")') write(*,*) stop end if if (any(version(:) /= version_(:))) then write(*,*) write(*,'("Warning(readstate): different versions")') write(*,'(" current : ",I3.3,".",I3.3,".",I3.3)') version write(*,'(" STATE.OUT : ",I3.3,".",I3.3,".",I3.3)') version_ end if read(100) spinpol_ read(100) nspecies_ if (nspecies /= nspecies_) then write(*,*) write(*,'("Error(readstate): differing nspecies")') write(*,'(" current : ",I4)') nspecies write(*,'(" STATE.OUT : ",I4)') nspecies_ write(*,*) stop end if read(100) lmmaxo_ lmmax=min(lmmaxo,lmmaxo_) read(100) nrmtmax_ read(100) nrcmtmax_ allocate(rsp_(nrmtmax_,nspecies)) allocate(rcmt_(nrcmtmax_,nspecies)) do is=1,nspecies read(100) natoms_ if (natoms(is) /= natoms_) then write(*,*) write(*,'("Error(readstate): differing natoms for species ",I4)') is write(*,'(" current : ",I4)') natoms(is) write(*,'(" STATE.OUT : ",I4)') natoms_ write(*,*) stop end if read(100) nrmt_(is) read(100) rsp_(1:nrmt_(is),is) read(100) nrcmt_(is) read(100) rcmt_(1:nrcmt_(is),is) end do read(100) ngridg_ read(100) ngvec_ read(100) ndmag_ if ((spinpol_).and.(ndmag_ /= 1).and.(ndmag_ /= 3)) then write(*,*) write(*,'("Error(readstate): invalid ndmag in STATE.OUT : ",I8)') ndmag_ write(*,*) stop end if read(100) nspinor_ read(100) fsmtype_ if ((version_(1) > 2).or.(version_(2) >= 3)) then read(100) ftmtype_ else ftmtype_=0 end if read(100) dftu_ read(100) lmmaxdm_ if ((version_(1) > 5).or.((version_(1) == 5).and.(version_(2) >= 1))) then read(100) xcgrad_ else xcgrad_=0 end if ngtot_=ngridg_(1)*ngridg_(2)*ngridg_(3) ! map from old interstitial grid to new allocate(mapir(ngtot)) ir=0 do i3=0,ngridg(3)-1 t1=dble(i3*ngridg_(3))/dble(ngridg(3)) j3=modulo(nint(t1),ngridg_(3)) do i2=0,ngridg(2)-1 t1=dble(i2*ngridg_(2))/dble(ngridg(2)) j2=modulo(nint(t1),ngridg_(2)) do i1=0,ngridg(1)-1 t1=dble(i1*ngridg_(1))/dble(ngridg(1)) j1=modulo(nint(t1),ngridg_(1)) ir=ir+1 jr=j3*ngridg_(2)*ngridg_(1)+j2*ngridg_(1)+j1+1 mapir(ir)=jr end do end do end do ! determine the spline coefficient weights on the old radial mesh allocate(wcrmt_(12,nrmtmax_,nspecies)) allocate(wcrcmt_(12,nrcmtmax_,nspecies)) do is=1,nspecies call wspline(nrmt_(is),rsp_(:,is),wcrmt_(:,:,is)) call wspline(nrcmt_(is),rcmt_(:,is),wcrcmt_(:,:,is)) end do allocate(rfmt_(lmmaxo_,nrmtmax_,natmtot),rfir_(ngtot_)) allocate(rfmt(lmmaxo,nrmtmax)) n=max(nrmtmax,nrmtmax_) allocate(fi(n),fo(n)) ! read the muffin-tin density read(100) rfmt_,rfir_ ! regrid and pack the muffin-tin function call rgfmt(rhomt) ! regrid the interstitial function rhoir(:)=rfir_(mapir(:)) ! read the Coulomb potential, regrid and pack read(100) rfmt_,rfir_ call rgfmt(vclmt) vclir(:)=rfir_(mapir(:)) ! read the exchange-correlation potential, regrid and pack read(100) rfmt_,rfir_ call rgfmt(vxcmt) vxcir(:)=rfir_(mapir(:)) ! read the Kohn-Sham effective potential, regrid and pack if ((version_(1) > 2).or.(version_(2) >= 2)) then read(100) rfmt_,rfir_ else allocate(vsig_(ngvec_)) read(100) rfmt_,rfir_,vsig_ deallocate(vsig_) end if call rgfmt(vsmt) vsir(:)=rfir_(mapir(:)) ! read the magnetisation, exchange-correlation and effective magnetic fields if (spinpol_) then ! component map for spin-polarised case mapidm(:)=0 if (ndmag == ndmag_) then do idm=1,ndmag mapidm(idm)=idm end do else mapidm(ndmag)=ndmag_ end if allocate(rvfmt_(lmmaxo_,nrmtmax_,natmtot,ndmag_)) allocate(rvfir_(ngtot_,ndmag_)) allocate(rvfcmt_(lmmaxo_,nrcmtmax_,natmtot,ndmag_)) read(100) rvfmt_,rvfir_ call rgvfmt(magmt) call rgvir(magir) read(100) rvfmt_,rvfir_ call rgvfmt(bxcmt) call rgvir(bxcir) read(100) rvfcmt_,rvfir_ call rgvfcmt(bsmt) call rgvir(bsir) deallocate(rvfmt_,rvfir_,rvfcmt_) ! read fixed spin moment effective fields if (fsmtype_ /= 0) then allocate(bfsmcmt_(3,natmtot)) read(100) bfsmc read(100) bfsmcmt_ if (fsmtype /= 0) bfsmcmt(:,:)=bfsmcmt_(:,:) ! make sure that the constraining fields are perpendicular to the fixed moments ! for fixed direction calculations (Y. Kvashnin and LN) if (fsmtype < 0) then if (ncmag) then call r3vo(momfix,bfsmc) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) call r3vo(mommtfix(:,ia,is),bfsmcmt(:,ias)) end do end do else bfsmc(:)=0.d0 bfsmcmt(:,:)=0.d0 end if end if deallocate(bfsmcmt_) end if end if if (any(xcgrad == [3,4,5])) then if (any(xcgrad_ == [3,4,5])) then read(100) rfmt_,rfir_ call rgfmt(wxcmt) wxcir(:)=rfir_(mapir(:)) else wxcmt(:,:)=0.d0 wxcir(:)=0.d0 end if end if deallocate(wcrmt_,wcrcmt_,rfmt_,rfir_,rfmt,fi,fo) ! read DFT+U potential matrix in each muffin-tin if (((dftu /= 0).and.(dftu_ /= 0)).or. & ((ftmtype /= 0).and.(ftmtype_ /= 0))) then allocate(vmatmt_(lmmaxdm_,nspinor_,lmmaxdm_,nspinor_,natmtot)) read(100) vmatmt_ lmmax=min(lmmaxdm,lmmaxdm_) vmatmt(:,:,:,:,:)=0.d0 if (nspinor == nspinor_) then vmatmt(1:lmmax,:,1:lmmax,:,:)=vmatmt_(1:lmmax,:,1:lmmax,:,:) else if ((nspinor == 1).and.(nspinor_ == 2)) then vmatmt(1:lmmax,1,1:lmmax,1,:)=0.5d0*(vmatmt_(1:lmmax,1,1:lmmax,1,:) & +vmatmt_(1:lmmax,2,1:lmmax,2,:)) else vmatmt(1:lmmax,1,1:lmmax,1,:)=vmatmt_(1:lmmax,1,1:lmmax,1,:) vmatmt(1:lmmax,2,1:lmmax,2,:)=vmatmt_(1:lmmax,1,1:lmmax,1,:) end if deallocate(vmatmt_) end if ! read fixed tensor moment potential matrix elements if ((ftmtype /= 0).and.(ftmtype_ /= 0)) then allocate(vmftm_(lmmaxdm_,nspinor_,lmmaxdm_,nspinor_,natmtot)) read(100) vmftm_ lmmax=min(lmmaxdm,lmmaxdm_) vmftm_(:,:,:,:,:)=0.d0 if (nspinor == nspinor_) then vmftm(1:lmmax,:,1:lmmax,:,:)=vmftm_(1:lmmax,:,1:lmmax,:,:) else if ((nspinor == 1).and.(nspinor_ == 2)) then vmftm(1:lmmax,1,1:lmmax,1,:)=0.5d0*(vmftm_(1:lmmax,1,1:lmmax,1,:) & +vmftm_(1:lmmax,2,1:lmmax,2,:)) else vmftm(1:lmmax,1,1:lmmax,1,:)=vmftm_(1:lmmax,1,1:lmmax,1,:) vmftm(1:lmmax,2,1:lmmax,2,:)=vmftm_(1:lmmax,1,1:lmmax,1,:) end if deallocate(vmftm_) end if close(100) return contains subroutine rgfmt(rfmtp) implicit none ! arguments real(8), intent(out) :: rfmtp(npmtmax,natmtot) do ias=1,natmtot is=idxis(ias) ! regrid the muffin-tin function do lm=1,lmmax fi(1:nrmt_(is))=rfmt_(lm,1:nrmt_(is),ias) call rfinterp(nrmt_(is),rsp_(:,is),wcrmt_(:,:,is),fi,nrmt(is),rsp(:,is),fo) rfmt(lm,1:nrmt(is))=fo(1:nrmt(is)) end do rfmt(lmmax+1:lmmaxo,1:nrmt(is))=0.d0 ! pack the muffin-tin function call rfmtpack(.true.,nrmt(is),nrmti(is),rfmt,rfmtp(:,ias)) end do end subroutine subroutine rgvfmt(rvfmt) implicit none ! arguments real(8), intent(out) :: rvfmt(npmtmax,natmtot,ndmag) do idm=1,ndmag jdm=mapidm(idm) if (jdm == 0) then rvfmt(:,:,idm)=0.d0 cycle end if do ias=1,natmtot is=idxis(ias) do lm=1,lmmax fi(1:nrmt_(is))=rvfmt_(lm,1:nrmt_(is),ias,jdm) call rfinterp(nrmt_(is),rsp_(:,is),wcrmt_(:,:,is),fi,nrmt(is),rsp(:,is), & fo) rfmt(lm,1:nrmt(is))=fo(1:nrmt(is)) end do rfmt(lmmax+1:lmmaxo,1:nrmt(is))=0.d0 call rfmtpack(.true.,nrmt(is),nrmti(is),rfmt,rvfmt(:,ias,idm)) end do end do end subroutine subroutine rgvfcmt(rvfcmt) implicit none ! arguments real(8), intent(out) :: rvfcmt(npcmtmax,natmtot,ndmag) do idm=1,ndmag jdm=mapidm(idm) if (jdm == 0) then rvfcmt(:,:,idm)=0.d0 cycle end if do ias=1,natmtot is=idxis(ias) do lm=1,lmmax fi(1:nrcmt_(is))=rvfcmt_(lm,1:nrcmt_(is),ias,jdm) call rfinterp(nrcmt_(is),rcmt_(:,is),wcrcmt_(:,:,is),fi,nrcmt(is), & rcmt(:,is),fo) rfmt(lm,1:nrcmt(is))=fo(1:nrcmt(is)) end do rfmt(lmmax+1:lmmaxo,1:nrcmt(is))=0.d0 call rfmtpack(.true.,nrcmt(is),nrcmti(is),rfmt,rvfcmt(:,ias,idm)) end do end do end subroutine subroutine rgvir(rvfir) implicit none ! arguments real(8), intent(out) :: rvfir(ngtot,ndmag) do idm=1,ndmag jdm=mapidm(idm) if (jdm == 0) then rvfir(:,idm)=0.d0 cycle end if rvfir(:,idm)=rvfir_(mapir(:),jdm) end do end subroutine end subroutine !EOC elk-9.2.12/src/PaxHeaders/eveqnhf.f900000644000000000000000000000013214536061314014204 xustar0030 mtime=1702388428.052501291 30 atime=1702388426.915502974 30 ctime=1702388428.052501291 elk-9.2.12/src/eveqnhf.f900000644002504400250440000001477014536061314016737 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnhf(ikp,vmt,vir,bmt,bir,evecsvp) use modmain use modomp implicit none ! arguments integer, intent(in) :: ikp real(8), intent(in) :: vmt(npcmtmax,natmtot),vir(ngtot) real(8), intent(in) :: bmt(npcmtmax,natmtot,ndmag),bir(ngtot,ndmag) complex(8), intent(inout) :: evecsvp(nstsv,nstsv) ! local variables integer ik,jk,nst integer ist1,ist2,ist3,jst3 integer iv(3),iq,ig,nthd real(8) vc(3),t1 complex(8) z1 ! automatic arrays integer idx(nstsv) ! allocatable arrays real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqrmt(:,:,:) complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(8), allocatable :: h(:,:),v(:,:),kmat(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: crhomt(:,:,:),crhoir(:,:) complex(4), allocatable :: cvclmt(:,:),cvclir(:) ! external functions complex(8), external :: zcfinp !$OMP CRITICAL(eveqnhf_) write(*,'("Info(eveqnhf): ",I6," of ",I6," k-points")') ikp,nkpt !$OMP END CRITICAL(eveqnhf_) ! allocate local arrays allocate(vgqc(3,ngvc),gqc(ngvc),gclgq(ngvc)) allocate(jlgqrmt(0:lnpsd,ngvc,nspecies)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) allocate(ylmgq(lmmaxo,ngvc),sfacgq(ngvc,natmtot)) allocate(h(nstsv,nstsv),v(nstsv,nstsv)) allocate(wfmt1(npcmtmax,natmtot,nspinor,nstsv),wfir1(ngtc,nspinor,nstsv)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv),wfir2(ngtc,nspinor,nstsv)) allocate(crhomt(npcmtmax,natmtot,nstsv),crhoir(ngtc,nstsv)) ! get the first-variational eigenvectors from file for input reduced k-point call getevecfv(filext,ikp,vkl(:,ikp),vgkl(:,:,1,ikp),evecfv) ! find the matching coefficients call match(ngk(1,ikp),vgkc(:,:,1,ikp),gkc(:,1,ikp),sfacgk(:,:,1,ikp),apwalm) ! calculate the wavefunctions for all states of the input k-point call genwfsv_sp(.false.,.true.,nstsv,[0],ngdgc,igfc,ngk(1,ikp),igkig(:,1,ikp), & apwalm,evecfv,evecsvp,wfmt1,ngtc,wfir1) !-----------------------------------------! ! local potential matrix elements ! !-----------------------------------------! if (hybrid.and.spinpol) then ! magnetic field matrix elements in hybrid case call genvbmatk(vmt,vir,bmt,bir,ngk(1,ikp),igkig(:,1,ikp),wfmt1,ngtc,wfir1,h) else call genvmatk(vmt,vir,ngk(1,ikp),igkig(:,1,ikp),wfmt1,ngtc,wfir1,h) end if ! Fourier transform wavefunctions to real-space call cftwfir(ngk(1,ikp),igkig(:,1,ikp),wfir1) !---------------------------------! ! kinetic matrix elements ! !---------------------------------! allocate(kmat(nstsv,nstsv)) call getkmat(ikp,kmat) call zgemm('N','N',nstsv,nstsv,nstsv,zone,kmat,nstsv,evecsvp,nstsv,zzero,v, & nstsv) call zgemm('C','N',nstsv,nstsv,nstsv,zone,evecsvp,nstsv,v,nstsv,zone,h,nstsv) deallocate(kmat) !------------------------------! ! Fock matrix elements ! !------------------------------! v(:,:)=0.d0 ! loop over non-reduced k-point set do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! determine the q-vector iv(:)=ivk(:,ikp)-ivk(:,ik) iv(:)=modulo(iv(:),ngridk(:)) ! check if the q-point is in user-defined set iv(:)=iv(:)*ngridq(:) if (any(mod(iv(:),ngridk(:)) /= 0)) cycle iv(:)=iv(:)/ngridk(:) iq=ivqiq(iv(1),iv(2),iv(3)) vc(:)=vkc(:,ikp)-vkc(:,ik) do ig=1,ngvc ! determine the G+q-vectors vgqc(:,ig)=vgc(:,ig)+vc(:) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) ! spherical harmonics for G+q-vectors call genylmv(lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! structure factors for G+q call gensfacgp(ngvc,vgqc,ngvc,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngvc,gqc,gclgq) ! compute the required spherical Bessel functions call genjlgprmt(lnpsd,ngvc,gqc,ngvc,jlgqrmt) ! find the matching coefficients call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! get the eigenvectors from file for non-reduced k-point call getevecfv(filext,0,vkl(:,ik),vgkl(:,:,1,ik),evecfv) call getevecsv(filext,0,vkl(:,ik),evecsv) ! count and index occupied states nst=0 do ist3=1,nstsv if (abs(occsv(ist3,jk)) < epsocc) cycle nst=nst+1 idx(nst)=ist3 end do ! calculate the wavefunctions for occupied states call genwfsv_sp(.false.,.false.,nst,idx,ngdgc,igfc,ngk(1,ik),igkig(:,1,ik), & apwalm,evecfv,evecsv,wfmt2,ngtc,wfir2) do ist3=1,nst jst3=idx(ist3) ! calculate the complex overlap densities for all states (T. McQueen) call holdthd(nstsv,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ist1=1,nstsv call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist3),wfir2(:,:,ist3), & wfmt1(:,:,:,ist1),wfir1(:,:,ist1),crhomt(:,:,ist1),crhoir(:,ist1)) end do !$OMP END PARALLEL DO t1=wqptnr*occsv(jst3,jk)/occmax !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(cvclmt,cvclir) & !$OMP PRIVATE(ist1,z1) & !$OMP NUM_THREADS(nthd) allocate(cvclmt(npcmtmax,natmtot),cvclir(ngtc)) !$OMP DO do ist2=1,nstsv ! calculate the Coulomb potential call gencvclmt(nrcmt,nrcmti,nrcmtmax,rlcmt,wprcmt,npcmtmax, & crhomt(:,:,ist2),cvclmt) call cpotcoul(nrcmt,nrcmti,npcmt,nrcmtmax,rlcmt,ngdgc,igfc,ngvc,gqc, & gclgq,ngvc,jlgqrmt,ylmgq,sfacgq,crhoir(:,ist2),npcmtmax,cvclmt,cvclir) cvclir(:)=cvclir(:)*cfrc(:) do ist1=1,ist2 z1=zcfinp(crhomt(:,:,ist1),crhoir(:,ist1),cvclmt,cvclir) v(ist1,ist2)=v(ist1,ist2)-t1*z1 end do end do !$OMP END DO deallocate(cvclmt,cvclir) !$OMP END PARALLEL call freethd(nthd) end do ! end loop over non-reduced k-point set end do deallocate(vgqc,gqc,gclgq,jlgqrmt) deallocate(ylmgq,sfacgq,apwalm,evecfv) deallocate(wfmt1,wfir1,wfmt2,wfir2) deallocate(crhomt,crhoir) ! scale the Coulomb matrix elements in the case of a hybrid functional if (hybrid) v(:,:)=hybridc*v(:,:) ! add the Coulomb matrix elements to Hamiltonian h(:,:)=h(:,:)+v(:,:) !----------------------------------------------! ! diagonalise Hartree-Fock Hamiltonian ! !----------------------------------------------! call eveqnzh(nstsv,nstsv,h,evalsv(:,ikp)) ! apply unitary transformation to the third-variational states so that they ! refer to the first-variational basis evecsv(:,:)=evecsvp(:,:) call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,h,nstsv,zzero,evecsvp, & nstsv) deallocate(evecsv,h,v) end subroutine elk-9.2.12/src/PaxHeaders/zbsht.f900000644000000000000000000000013214536061314013702 xustar0030 mtime=1702388428.054501288 30 atime=1702388426.916502973 30 ctime=1702388428.054501288 elk-9.2.12/src/zbsht.f900000644002504400250440000000261614536061314016431 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: zbsht ! !INTERFACE: subroutine zbsht(nr,nri,zfmt1,zfmt2) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of points on the inner part of the muffin-tin (in,integer) ! zfmt1 : input complex muffin-tin function in spherical harmonics ! (in,complex(*)) ! zfmt2 : output complex muffin-tin function in spherical coordinates ! (out,complex(*)) ! !DESCRIPTION: ! Performs a backward spherical harmonic transform (SHT) on a complex ! muffin-tin function expressed in spherical harmonics to obtain a function in ! spherical coordinates. See also {\tt genshtmat} and {\tt zfsht}. ! ! !REVISION HISTORY: ! Created October 2013 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri complex(8), intent(in) :: zfmt1(*) complex(8), intent(out) :: zfmt2(*) ! local variables integer i ! transform the inner part of the muffin-tin call zgemm('N','N',lmmaxi,nri,lmmaxi,zone,zbshti,lmmaxi,zfmt1,lmmaxi,zzero, & zfmt2,lmmaxi) ! transform the outer part of the muffin-tin i=lmmaxi*nri+1 call zgemm('N','N',lmmaxo,nr-nri,lmmaxo,zone,zbshto,lmmaxo,zfmt1(i),lmmaxo, & zzero,zfmt2(i),lmmaxo) end subroutine !EOC elk-9.2.12/src/PaxHeaders/i3mtv.f900000644000000000000000000000013114536061314013611 xustar0030 mtime=1702388428.055501286 29 atime=1702388426.91850297 30 ctime=1702388428.055501286 elk-9.2.12/src/i3mtv.f900000644002504400250440000000143714536061314016341 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: i3mtv ! !INTERFACE: pure subroutine i3mtv(a,x,y) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,integer(3,3)) ! x : input vector (in,integer(3)) ! y : output vector (out,integer(3)) ! !DESCRIPTION: ! Multiplies the transpose of an integer $3\times 3$ matrix with a vector. ! ! !REVISION HISTORY: ! Created April 2007 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: a(3,3),x(3) integer, intent(out) :: y(3) y(1)=a(1,1)*x(1)+a(2,1)*x(2)+a(3,1)*x(3) y(2)=a(1,2)*x(1)+a(2,2)*x(2)+a(3,2)*x(3) y(3)=a(1,3)*x(1)+a(2,3)*x(2)+a(3,3)*x(3) end subroutine !EOC elk-9.2.12/src/PaxHeaders/spline.f900000644000000000000000000000013214536061314014042 xustar0030 mtime=1702388428.057501283 30 atime=1702388426.919502968 30 ctime=1702388428.057501283 elk-9.2.12/src/spline.f900000644002504400250440000000564614536061314016577 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: spline ! !INTERFACE: subroutine spline(n,x,f,cf) ! !INPUT/OUTPUT PARAMETERS: ! n : number of points (in,integer) ! x : abscissa array (in,real(n)) ! f : input data array (in,real(n)) ! cf : cubic spline coefficients (out,real(3,n)) ! !DESCRIPTION: ! Calculates the coefficients of a cubic spline fitted to input data. In other ! words, given a set of data points $f_i$ defined at $x_i$, where ! $i=1\ldots n$, the coefficients $c_j^i$ are determined such that ! $$ y_i(x)=f_i+c_1^i(x-x_i)+c_2^i(x-x_i)^2+c_3^i(x-x_i)^3, $$ ! is the interpolating function for $x\in[x_i,x_{i+1})$. The coefficients are ! determined piecewise by fitting a cubic polynomial to adjacent points. ! ! !REVISION HISTORY: ! Created November 2011 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x(n),f(n) real(8), intent(out) :: cf(3,n) ! local variables integer i real(8) x0,x1,x2,x3,y0,y1,y2,y3 real(8) t0,t1,t2,t3,t4,t5,t6,t7 if (n <= 0) then write(*,*) write(*,'("Error(spline): n <= 0 : ",I8)') n write(*,*) stop end if if (n == 1) then cf(:,1)=0.d0 return end if if (n == 2) then cf(1,1)=(f(2)-f(1))/(x(2)-x(1)) cf(2:3,1)=0.d0 cf(1,2)=cf(1,1) cf(2:3,2)=0.d0 return end if if (n == 3) then x0=x(1) x1=x(2)-x0; x2=x(3)-x0 y0=f(1) y1=f(2)-y0; y2=f(3)-y0 t0=1.d0/(x1*x2*(x2-x1)) t3=x1*y2; t4=x2*y1 t1=t0*(x2*t4-x1*t3) t2=t0*(t3-t4) cf(1,1)=t1 cf(2,1)=t2 cf(3,1)=0.d0 t3=2.d0*t2 cf(1,2)=t1+t3*x1 cf(2,2)=t2 cf(3,2)=0.d0 cf(1,3)=t1+t3*x2 cf(2,3)=t2 cf(3,3)=0.d0 return end if x0=x(1) x1=x(2)-x0; x2=x(3)-x0; x3=x(4)-x0 t4=x1-x2; t5=x1-x3; t6=x2-x3 y0=f(1) y1=f(2)-y0; y2=f(3)-y0; y3=f(4)-y0 t1=x1*x2*y3; t2=x2*x3*y1; t3=x1*x3 t0=1.d0/(x2*t3*t4*t5*t6) t3=t3*y2 t7=t0*(t1*t4+t2*t6-t3*t5) t4=x1**2; t5=x2**2; t6=x3**2 y1=t3*t6-t1*t5; y3=t2*t5-t3*t4; y2=t1*t4-t2*t6 t1=t0*(x1*y1+x2*y2+x3*y3) t2=-t0*(y1+y2+y3) cf(1,1)=t1; cf(2,1)=t2; cf(3,1)=t7 cf(1,2)=t1+2.d0*t2*x1+3.d0*t7*t4 cf(2,2)=t2+3.d0*t7*x1 cf(3,2)=t7 if (n == 4) then cf(1,3)=t1+2.d0*t2*x2+3.d0*t7*t5 cf(2,3)=t2+3.d0*t7*x2 cf(3,3)=t7 cf(1,4)=t1+2.d0*t2*x3+3.d0*t7*t6 cf(2,4)=t2+3.d0*t7*x3 cf(3,4)=t7 return end if do i=3,n-2 x0=x(i) x1=x(i-1)-x0; x2=x(i+1)-x0; x3=x(i+2)-x0 t4=x1-x2; t5=x1-x3; t6=x2-x3 y0=f(i) y1=f(i-1)-y0; y2=f(i+1)-y0; y3=f(i+2)-y0 t1=x1*x2*y3; t2=x2*x3*y1; t3=x1*x3 t0=1.d0/(x2*t3*t4*t5*t6) t3=t3*y2 t7=t0*(t1*t4+t2*t6-t3*t5) t4=x1**2; t5=x2**2; t6=x3**2 y1=t3*t6-t1*t5; y2=t1*t4-t2*t6; y3=t2*t5-t3*t4 t1=t0*(x1*y1+x2*y2+x3*y3) t2=-t0*(y1+y2+y3) cf(1,i)=t1; cf(2,i)=t2; cf(3,i)=t7 end do cf(1,n-1)=t1+2.d0*t2*x2+3.d0*t7*t5 cf(2,n-1)=t2+3.d0*t7*x2 cf(3,n-1)=t7 cf(1,n)=t1+2.d0*t2*x3+3.d0*t7*t6 cf(2,n)=t2+3.d0*t7*x3 cf(3,n)=t7 end subroutine !EOC elk-9.2.12/src/PaxHeaders/gauntyry.f900000644000000000000000000000013214536061314014432 xustar0030 mtime=1702388428.058501282 30 atime=1702388426.921502965 30 ctime=1702388428.058501282 elk-9.2.12/src/gauntyry.f900000644002504400250440000000302114536061314017150 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: gauntyry ! !INTERFACE: complex(8) function gauntyry(l1,l2,l3,m1,m2,m3) ! !INPUT/OUTPUT PARAMETERS: ! l1, l2, l3 : angular momentum quantum numbers (in,integer) ! m1, m2, m3 : magnetic quantum numbers (in,integer) ! !DESCRIPTION: ! Returns the complex Gaunt-like coefficient given by ! $\langle Y^{l_1}_{m_1}|R^{l_2}_{m_2}|Y^{l_3}_{m_3}\rangle$, where $Y_{lm}$ ! and $R_{lm}$ are the complex and real spherical harmonics, respectively. ! Suitable for $l_i$ less than 50. See routine {\tt genrlm}. ! ! !REVISION HISTORY: ! Created November 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: l1,l2,l3 integer, intent(in) :: m1,m2,m3 ! local variables ! real constant sqrt(2)/2 real(8), parameter :: c1=0.7071067811865475244d0 real(8) t1 ! external functions real(8), external :: gaunt if (m2 > 0) then if (mod(m2,2) == 0) then t1=c1*(gaunt(l1,l2,l3,m1,m2,m3)+gaunt(l1,l2,l3,m1,-m2,m3)) else t1=c1*(gaunt(l1,l2,l3,m1,m2,m3)-gaunt(l1,l2,l3,m1,-m2,m3)) end if gauntyry=cmplx(t1,0.d0,8) else if (m2 < 0) then if (mod(m2,2) == 0) then t1=c1*(gaunt(l1,l2,l3,m1,m2,m3)-gaunt(l1,l2,l3,m1,-m2,m3)) else t1=c1*(gaunt(l1,l2,l3,m1,m2,m3)+gaunt(l1,l2,l3,m1,-m2,m3)) end if gauntyry=cmplx(0.d0,-t1,8) else gauntyry=cmplx(gaunt(l1,l2,l3,m1,m2,m3),0.d0,8) end if end function !EOC elk-9.2.12/src/PaxHeaders/findnjcmax.f900000644000000000000000000000013214536061314014671 xustar0030 mtime=1702388428.060501279 30 atime=1702388426.922502964 30 ctime=1702388428.060501279 elk-9.2.12/src/findnjcmax.f900000644002504400250440000000074414536061314017420 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine findnjcmax use modmain implicit none ! local variables integer is,n ! find the maximum size of the spherical Bessel function array over all species njcmax=1 do is=1,nspecies n=(lmaxi+1)*nrcmti(is)+(lmaxo+1)*(nrcmt(is)-nrcmti(is)) if (n > njcmax) njcmax=n end do end subroutine elk-9.2.12/src/PaxHeaders/gndstate.f900000644000000000000000000000013214536061314014361 xustar0030 mtime=1702388428.061501277 30 atime=1702388426.924502961 30 ctime=1702388428.061501277 elk-9.2.12/src/gndstate.f900000644002504400250440000002775714536061314017125 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2013 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gndstate ! !INTERFACE: subroutine gndstate ! !USES: use modmain use moddftu use modulr use modmpi use modomp use modvars use modramdisk ! !DESCRIPTION: ! Computes the self-consistent Kohn-Sham ground-state. General information is ! written to the file {\tt INFO.OUT}. First- and second-variational ! eigenvalues, eigenvectors and occupation numbers are written to the ! unformatted files {\tt EVALFV.OUT}, {\tt EVALSV.OUT}, {\tt EVECFV.OUT}, ! {\tt EVECSV.OUT} and {\tt OCCSV.OUT}. The density, magnetisation, Kohn-Sham ! potential and magnetic field are written to {\tt STATE.OUT}. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) ! Added MPI, August 2010 (JKD) !EOP !BOC implicit none ! local variables logical twrite integer ik,nmix,nwork real(8) dv,etp,de,timetot ! allocatable arrays real(8), allocatable :: work(:) ! initialise global variables call init0 call init1 ! initialise q-vector-dependent variables if required if (xctype(1) < 0) call init2 wrtdsk0=wrtdsk ! apply strain to the G, k, G+k and q-vectors if required call straingkq if (task == 0) trdstate=.false. if (task == 1) trdstate=.true. ! only the MPI master process should write files if (mp_mpi) then ! write the real and reciprocal lattice vectors to file call writelat ! write symmetry matrices to file call writesym ! output the k-point set to file call writekpts ! write lattice vectors and atomic positions to file open(50,file='GEOMETRY'//trim(filext),form='FORMATTED') call writegeom(50) close(50) ! write interatomic distances to file open(50,file='IADIST'//trim(filext),form='FORMATTED') call writeiad(50) close(50) ! open INFO.OUT file open(60,file='INFO'//trim(filext),form='FORMATTED') ! write out general information to INFO.OUT call writeinfo(60) write(60,*) ! open TOTENERGY.OUT open(61,file='TOTENERGY'//trim(filext),form='FORMATTED') ! open FERMIDOS.OUT open(62,file='FERMIDOS'//trim(filext),form='FORMATTED') ! open MOMENT.OUT if required if (spinpol) open(63,file='MOMENT'//trim(filext),form='FORMATTED') ! open GAP.OUT open(64,file='GAP'//trim(filext),form='FORMATTED') ! open RMSDVS.OUT open(65,file='RMSDVS'//trim(filext),form='FORMATTED') ! open DTOTENERGY.OUT open(66,file='DTOTENERGY'//trim(filext),form='FORMATTED') ! open MOMENTM.OUT if (spinpol) open(68,file='MOMENTM'//trim(filext),form='FORMATTED') ! open RESIDUAL.OUT if (xctype(1) < 0) open(69,file='RESIDUAL'//trim(filext),form='FORMATTED') end if iscl=0 if (trdstate) then ! read the Kohn-Sham potential and fields from file call readstate if (mp_mpi) then write(60,'("Potential read in from STATE.OUT")') end if if (autolinengy) call readfermi else ! initialise the density and magnetisation from atomic data call rhoinit call maginit ! generate the Kohn-Sham potential and magnetic field call potks(.true.) if (mp_mpi) then write(60,'("Kohn-Sham potential initialised from atomic data")') end if end if if (mp_mpi) flush(60) call genvsig ! size of mixing vector nmix=size(vsbs) ! determine the size of the mixer work array nwork=-1 call mixerifc(mixtype,nmix,vsbs,dv,nwork,vsbs) allocate(work(nwork)) ! initialise the mixer iscl=0 call mixerifc(mixtype,nmix,vsbs,dv,nwork,work) ! set the stop signal to .false. tstop=.false. ! set last self-consistent loop flag tlast=.false. etp=0.d0 ! begin the self-consistent loop if (mp_mpi) then write(60,*) write(60,'("+------------------------------+")') write(60,'("| Self-consistent loop started |")') write(60,'("+------------------------------+")') end if do iscl=1,maxscl if (mp_mpi) then write(60,*) write(60,'("+--------------------+")') write(60,'("| Loop number : ",I4," |")') iscl write(60,'("+--------------------+")') end if if (iscl >= maxscl) then if (mp_mpi) then write(60,*) write(60,'("Reached self-consistent loops maximum")') end if if (maxscl > 1) then write(*,*) write(*,'("Warning(gndstate): failed to reach self-consistency after ", & &I4," loops")') iscl end if tlast=.true. end if if (mp_mpi) flush(60) ! always write the eigenvectors to disk on the last loop if (tlast) wrtdsk=.true. ! generate the core wavefunctions and densities call gencore ! find the new linearisation energies call linengy ! write out the linearisation energies if (mp_mpi) call writelinen ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ! generate the first- and second-variational eigenvectors and eigenvalues call genevfsv ! find the occupation numbers and Fermi energy call occupy if (mp_mpi) then if (autoswidth) then write(60,*) write(60,'("New smearing width : ",G18.10)') swidth end if ! write the occupation numbers to file do ik=1,nkpt call putoccsv(filext,ik,occsv(:,ik)) end do ! write eigenvalues to file call writeeval ! write the Fermi energy to file call writefermi end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! generate the density and magnetisation call rhomag ! DFT+U or fixed tensor moment calculation if ((dftu /= 0).or.(ftmtype /= 0)) then ! generate the muffin-tin density matrix used for computing the potential matrix call gendmatmt ! write the FTM tensor moments to file if (ftmtype /= 0) call writeftm ! generate the DFT+U or FTM muffin-tin potential matrices call genvmatmt end if if (dftu /= 0) then if (mp_mpi) then ! write the DFT+U matrices to file call writedftu ! calculate and write tensor moments to file if (tmwrite) call writetm3 end if end if ! compute the Kohn-Sham potentials and magnetic fields call potks(.true.) ! mix the old effective potential and field with the new call mixerifc(mixtype,nmix,vsbs,dv,nwork,work) ! calculate and add the fixed spin moment effective field (after mixing) call bfieldfsm call addbfsm ! Fourier transform Kohn-Sham potential to G-space call genvsig ! reduce the external magnetic fields if required if (reducebf < 1.d0) then bfieldc(:)=bfieldc(:)*reducebf bfcmt(:,:,:)=bfcmt(:,:,:)*reducebf end if ! compute the energy components call energy if (mp_mpi) then ! output energy components call writeengy(60) write(60,*) write(60,'("Density of states at Fermi energy : ",G18.10)') fermidos write(60,'(" (states/Hartree/unit cell)")') write(60,*) write(60,'("Estimated indirect band gap : ",G18.10)') bandgap(1) write(60,'(" from k-point ",I6," to k-point ",I6)') ikgap(1),ikgap(2) write(60,'("Estimated direct band gap : ",G18.10)') bandgap(2) write(60,'(" at k-point ",I6)') ikgap(3) ! write total energy to TOTENERGY.OUT write(61,'(G22.12)') engytot flush(61) ! write DOS at Fermi energy to FERMIDOS.OUT write(62,'(G18.10)') fermidos flush(62) ! output charges and moments call writechg(60) if (spinpol) then call writemom(60) ! write total moment to MOMENT.OUT write(63,'(3G18.10)') momtot(1:ndmag) flush(63) ! write total moment magnitude to MOMENTM.OUT write(68,'(G18.10)') momtotm flush(68) end if ! write estimated Kohn-Sham indirect band gap write(64,'(G22.12)') bandgap(1) flush(64) ! output effective fields for fixed spin moment calculations if (fsmtype /= 0) call writefsm(60) ! check for existence of the WRITE file call checkwrite(twrite) ! check self-consistent loop number modulo nwrite if (nwrite >= 1) then if (mod(iscl,nwrite) == 0) twrite=.true. end if ! write STATE.OUT file if required if (twrite) then call writestate write(60,*) write(60,'("Wrote STATE.OUT")') end if ! write OEP residual if (xctype(1) < 0) then write(60,*) write(60,'("OEP iterative solver step size : ",G18.10)') tauoep write(60,'("Magnitude of OEP residual : ",G18.10)') resoep write(69,'(G18.10)') resoep flush(69) end if end if ! exit self-consistent loop if required if (tlast) goto 10 ! check for convergence if (iscl >= 2) then de=abs(engytot-etp) if (mp_mpi) then write(60,*) write(60,'("RMS change in Kohn-Sham potential (target) : ",G18.10," (",& &G18.10,")")') dv,epspot write(65,'(G18.10)') dv flush(65) write(60,'("Absolute change in total energy (target) : ",G18.10," (",& &G18.10,")")') de,epsengy write(66,'(G18.10)') de flush(66) if ((dv < epspot).and.(de < epsengy)) then write(60,*) write(60,'("Convergence targets achieved")') tlast=.true. end if end if end if ! average the current and previous total energies and store if (iscl > 1) then etp=0.75d0*engytot+0.25d0*etp else etp=engytot end if ! check for STOP file call checkstop if (tstop) tlast=.true. ! broadcast tlast from master process to all other processes call mpi_bcast(tlast,1,mpi_logical,0,mpicom,ierror) ! output the current total CPU time timetot=timeinit+timemat+timefv+timesv+timerho+timepot+timefor if (mp_mpi) then write(60,*) write(60,'("Time (CPU seconds) : ",F12.2)') timetot end if ! end the self-consistent loop end do 10 continue ! synchronise MPI processes call mpi_barrier(mpicom,ierror) if (mp_mpi) then write(60,*) write(60,'("+------------------------------+")') write(60,'("| Self-consistent loop stopped |")') write(60,'("+------------------------------+")') ! write density and potentials to file only if maxscl > 1 if (maxscl > 1) then call writestate write(60,*) write(60,'("Wrote STATE.OUT")') end if end if ! compute forces if required if (tforce) then call force ! output forces to INFO.OUT if (mp_mpi) call writeforces(60) end if ! compute the paramagnetic current density and total current if required if (tjr) then call genjpr call genjtot if (mp_mpi) then write(60,*) write(60,'("Total paramagnetic current per unit cell")') write(60,'(3G18.10)') jtot write(60,'(" magnitude : ",G18.10)') jtotm end if end if ! total time used timetot=timeinit+timemat+timefv+timesv+timerho+timepot+timefor if (mp_mpi) then ! output timing information write(60,*) write(60,'("Timings (CPU seconds) :")') write(60,'(" initialisation",T40,": ",F12.2)') timeinit write(60,'(" Hamiltonian and overlap matrix set up",T40,": ",F12.2)') timemat write(60,'(" first-variational eigenvalue equation",T40,": ",F12.2)') timefv if (tevecsv) then write(60,'(" second-variational calculation",T40,": ",F12.2)') timesv end if write(60,'(" charge density calculation",T40,": ",F12.2)') timerho write(60,'(" potential calculation",T40,": ",F12.2)') timepot if (tforce) then write(60,'(" force calculation",T40,": ",F12.2)') timefor end if write(60,'(" total",T40,": ",F12.2)') timetot write(60,*) write(60,'("+----------------------------+")') write(60,'("| Elk version ",I1.1,".",I1.1,".",I2.2," stopped |")') version write(60,'("+----------------------------+")') ! close the INFO.OUT file close(60) ! close the TOTENERGY.OUT file close(61) ! close the FERMIDOS.OUT file close(62) ! close the MOMENT.OUT and MOMENTM.OUT files if (spinpol) then close(63); close(68) end if ! close the GAP.OUT file close(64) ! close the RMSDVS.OUT file close(65) ! close the DTOTENERGY.OUT file close(66) ! close the RESIDUAL.OUT file if (xctype(1) < 0) close(69) ! write to VARIABLES.OUT if required if (wrtvars) then call writevars('engytot',rv=engytot) call writevars('fermidos',rv=fermidos) call writevars('bandgap',nv=2,rva=bandgap) if (spinpol) then call writevars('momtot',nv=ndmag,rva=momtot) call writevars('momtotm',rv=momtotm) call writevars('mommt',nv=3*natmtot,rva=mommt) end if if (tforce) then call writevars('forcetot',nv=3*natmtot,rva=forcetot) end if end if end if deallocate(work) wrtdsk=wrtdsk0 ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine !EOC elk-9.2.12/src/PaxHeaders/sstask.f900000644000000000000000000000013214536061314014060 xustar0030 mtime=1702388428.063501274 30 atime=1702388426.926502958 30 ctime=1702388428.063501274 elk-9.2.12/src/sstask.f900000644002504400250440000000165414536061314016610 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine sstask(fnum,fext) use modmain use modmpi implicit none ! arguments integer, intent(in) :: fnum character(*), intent(out) :: fext ! local variables logical exist ! only master process should search for file if (.not.mp_mpi) goto 10 do iqss=1,nqpt ! construct the spin-spiral file extension call ssfext(iqss,fext) ! determine if the SS file exists inquire(file='SS'//trim(fext),exist=exist) if (.not.exist) then open(fnum,file='SS'//trim(fext),form='FORMATTED') goto 10 end if end do iqss=0 write(*,'("Info(sstask): nothing more to do")') 10 continue ! broadcast to all other processes call mpi_bcast(iqss,1,mpi_integer,0,mpicom,ierror) if (iqss == 0) then fext='.OUT' else call ssfext(iqss,fext) end if end subroutine elk-9.2.12/src/PaxHeaders/fermisurf.f900000644000000000000000000000013214536061314014552 xustar0030 mtime=1702388428.064501273 30 atime=1702388426.927502956 30 ctime=1702388428.064501273 elk-9.2.12/src/fermisurf.f900000644002504400250440000001023214536061314017272 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine fermisurf use modmain use modomp implicit none ! local variables integer ik,nst,ist integer ist0,ist1,jst0,jst1 integer i1,i2,i3,nf,f integer np,i,nthd real(8) e0,e1,prd,v(3) ! allocatable arrays integer, allocatable :: idx(:) real(8), allocatable :: evalfv(:,:),e(:),vpc(:,:) complex(8), allocatable :: evecfv(:,:,:) complex(8), allocatable :: evecsv(:,:) ! initialise universal variables call init0 call init1 ! read density and potentials from file call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ! begin parallel loop over reduced k-points set call holdthd(nkpt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evalfv,evecfv,evecsv) & !$OMP NUM_THREADS(nthd) allocate(evalfv(nstfv,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv)) allocate(evecsv(nstsv,nstsv)) !$OMP DO do ik=1,nkpt !$OMP CRITICAL(fermisurf_) write(*,'("Info(fermisurf): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(fermisurf_) ! solve the first- and second-variational eigenvalue equations call eveqn(ik,evalfv,evecfv,evecsv) ! end loop over reduced k-points set end do !$OMP END DO deallocate(evalfv,evecfv,evecsv) !$OMP END PARALLEL call freethd(nthd) ! if iterative diagonalisation is used the eigenvalues must be reordered if (tefvit.and.(.not.spinpol)) then allocate(idx(nstsv),e(nstsv)) do ik=1,nkpt e(:)=evalsv(:,ik) call sortidx(nstsv,e,idx) evalsv(1:nstsv,ik)=e(idx(1:nstsv)) end do deallocate(idx,e) end if ! generate the plotting point grid in Cartesian coordinates (this has the same ! arrangement as the k-point grid) np=np3d(1)*np3d(2)*np3d(3) allocate(vpc(3,np)) call plotpt3d(vpc) do i=1,np v(:)=vpc(:,i) call r3mv(bvec,v,vpc(:,i)) end do ! number of files to plot (2 for collinear magnetism, 1 otherwise) if (ndmag == 1) then nf=2 else nf=1 end if do f=1,nf if (nf == 2) then if (f == 1) then open(50,file='FERMISURF_UP.OUT',form='FORMATTED',action='WRITE') jst0=1; jst1=nstfv else open(50,file='FERMISURF_DN.OUT',form='FORMATTED',action='WRITE') jst0=nstfv+1; jst1=2*nstfv end if else open(50,file='FERMISURF.OUT',form='FORMATTED',action='WRITE') jst0=1; jst1=nstsv end if ! find the range of eigenvalues which contribute to the Fermi surface (Lars) ist0=jst1; ist1=jst0 do ist=jst0,jst1 e0=minval(evalsv(ist,:)); e1=maxval(evalsv(ist,:)) ! determine if the band crosses the Fermi energy if ((e0 < efermi).and.(e1 > efermi)) then ist0=min(ist0,ist); ist1=max(ist1,ist) end if end do nst=ist1-ist0+1 if (task == 100) then ! write product of eigenstates minus the Fermi energy write(50,'(3I6," : grid size")') np3d(:) i=0 do i3=0,ngridk(3)-1 do i2=0,ngridk(2)-1 do i1=0,ngridk(1)-1 i=i+1 ik=ivkik(i1,i2,i3) prd=product(evalsv(ist0:ist1,ik)-efermi) write(50,'(4G18.10)') vpc(:,i),prd end do end do end do else ! write the eigenvalues minus the Fermi energy separately write(50,'(4I6," : grid size, number of states")') np3d(:),nst i=0 do i3=0,ngridk(3)-1 do i2=0,ngridk(2)-1 do i1=0,ngridk(1)-1 i=i+1 ik=ivkik(i1,i2,i3) write(50,'(3G18.10,40F14.8)') vpc(:,i),evalsv(ist0:ist1,ik)-efermi end do end do end do end if close(50) end do write(*,*) write(*,'("Info(fermisurf):")') if (ndmag == 1) then write(*,'(" 3D Fermi surface data written to FERMISURF_UP.OUT and & &FERMISURF_DN.OUT")') else write(*,'(" 3D Fermi surface data written to FERMISURF.OUT")') end if if (task == 100) then write(*,'(" in terms of the product of eigenvalues minus the Fermi energy")') else write(*,'(" in terms of separate eigenvalues minus the Fermi energy")') end if deallocate(vpc) end subroutine elk-9.2.12/src/PaxHeaders/spiralsc.f900000644000000000000000000000013214536061314014370 xustar0030 mtime=1702388428.065501272 30 atime=1702388426.929502953 30 ctime=1702388428.065501272 elk-9.2.12/src/spiralsc.f900000644002504400250440000000456014536061314017117 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine spiralsc use modmain use modmpi use moddelf implicit none ! local variables integer nq,iq,jq real(8) q ! store original parameters natoms0(:)=natoms(:) avec0(:,:)=avec(:,:) atposl0(:,:,:)=atposl(:,:,:) bfcmt00(:,:,:)=bfcmt0(:,:,:) mommtfix0(:,:,:)=mommtfix(:,:,:) autokpt0=autokpt ngridk0(:)=ngridk ! initialise universal variables call init0 ! initialise q-point dependent variables call init2 ! store original parameters atposc0(:,:,:)=atposc(:,:,:) 10 continue call sstask(80,filext) ! if nothing more to do then restore input parameters and return if (iqss == 0) then filext='.OUT' natoms(:)=natoms0(:) avec(:,:)=avec0(:,:) atposl(:,:,:)=atposl0(:,:,:) bfcmt0(:,:,:)=bfcmt00(:,:,:) mommtfix(:,:,:)=mommtfix0(:,:,:) autokpt=autokpt0 ngridk(:)=ngridk0(:) return end if ! spiral dry run: just generate empty SS files if (task == 352) goto 10 if (mp_mpi) then write(*,'("Info(spiralsc): working on ",A)') 'SS'//trim(filext) end if ! determine k-point grid size from radkpt autokpt=.true. ! generate the spin-spiral supercell call genscss ! initialise or read the charge density and potentials from file if (task == 350) then trdstate=.false. else trdstate=.true. end if ! run the ground-state calculation call gndstate if (mp_mpi) then write(80,'(I6,T20," : number of unit cells in supercell")') nscss write(80,'(G18.10,T20," : total energy per unit cell")') engytot/dble(nscss) write(80,*) write(80,'("q-point in lattice and Cartesian coordinates :")') write(80,'(3G18.10)') vql(:,iqss) write(80,'(3G18.10)') vqc(:,iqss) q=sqrt(vqc(1,iqss)**2+vqc(2,iqss)**2+vqc(3,iqss)**2) write(80,'(G18.10,T20," : length of q-vector")') q write(80,*) nq=nint(dble(nqptnr)*wqpt(iqss)) write(80,'(I6,T20," : number of equivalent q-points")') nq write(80,'("Equivalent q-points in lattice and Cartesian coordinates :")') do iq=1,nqptnr jq=ivqiq(ivq(1,iq),ivq(2,iq),ivq(3,iq)) if (jq == iqss) then write(80,'(3G18.10)') vql(:,iq) write(80,'(3G18.10)') vqc(:,iq) write(80,*) end if end do close(80) end if ! delete the eigenvector files call delfiles(evec=.true.) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) goto 10 end subroutine elk-9.2.12/src/PaxHeaders/atom.f900000644000000000000000000000013214536061314013510 xustar0030 mtime=1702388428.067501268 30 atime=1702388426.931502951 30 ctime=1702388428.067501268 elk-9.2.12/src/atom.f900000644002504400250440000001372014536061314016235 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: atom ! !INTERFACE: subroutine atom(sol,ptnucl,zn,nst,n,l,k,occ,xctype,xcgrad,nr,r,eval,rho,vr,rwf) ! !USES: use modxcifc ! !INPUT/OUTPUT PARAMETERS: ! sol : speed of light in atomic units (in,real) ! ptnucl : .true. if the nucleus is a point particle (in,logical) ! zn : nuclear charge (in,real) ! nst : number of states to solve for (in,integer) ! n : priciple quantum number of each state (in,integer(nst)) ! l : quantum number l of each state (in,integer(nst)) ! k : quantum number k (l or l+1) of each state (in,integer(nst)) ! occ : occupancy of each state (inout,real(nst)) ! xctype : exchange-correlation type (in,integer(3)) ! xcgrad : 1 for GGA functional, 0 otherwise (in,integer) ! nr : number of radial mesh points (in,integer) ! r : radial mesh (in,real(nr)) ! eval : eigenvalue without rest-mass energy for each state (out,real(nst)) ! rho : charge density (out,real(nr)) ! vr : self-constistent potential (out,real(nr)) ! rwf : major and minor components of radial wavefunctions for each state ! (out,real(nr,2,nst)) ! !DESCRIPTION: ! Solves the Dirac-Kohn-Sham equations for an atom using the ! exchange-correlation functional {\tt xctype} and returns the self-consistent ! radial wavefunctions, eigenvalues, charge densities and potentials. Requires ! the exchange-correlation interface routine {\tt xcifc}. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) ! Fixed s.c. convergence problem, October 2003 (JKD) ! Added support for GGA functionals, June 2006 (JKD) ! !EOP !BOC implicit none ! arguments real(8), intent(in) :: sol logical, intent(in) :: ptnucl real(8), intent(in) :: zn integer, intent(in) :: nst integer, intent(in) :: n(nst),l(nst),k(nst) real(8), intent(inout) :: occ(nst) integer, intent(in) :: xctype(3),xcgrad integer, intent(in) :: nr real(8), intent(in) :: r(nr) real(8), intent(out) :: eval(nst) real(8), intent(out) :: rho(nr),vr(nr) real(8), intent(out) :: rwf(nr,2,nst) ! local variables integer, parameter :: maxscl=200 integer ir,ist,iscl real(8), parameter :: fourpi=12.566370614359172954d0 ! potential convergence tolerance real(8), parameter :: eps=1.d-6 real(8) dv,dvp,ze,beta,t1 ! allocatable arrays real(8), allocatable :: vn(:),vh(:),ex(:),ec(:),vx(:),vc(:),vrp(:) real(8), allocatable :: ri(:),wpr(:,:),fr1(:),fr2(:),gr1(:),gr2(:) real(8), allocatable :: grho(:),g2rho(:),g3rho(:) if (nst <= 0) then write(*,*) write(*,'("Error(atom): invalid nst : ",I8)') nst write(*,*) stop end if ! allocate local arrays allocate(vn(nr),vh(nr),ex(nr),ec(nr),vx(nr),vc(nr),vrp(nr)) allocate(ri(nr),wpr(4,nr),fr1(nr),fr2(nr),gr1(nr),gr2(nr)) if (xcgrad == 1) then allocate(grho(nr),g2rho(nr),g3rho(nr)) end if ! find total electronic charge ze=0.d0 do ist=1,nst ze=ze+occ(ist) end do ! set up nuclear potential call potnucl(ptnucl,nr,r,zn,vn) do ir=1,nr ri(ir)=1.d0/r(ir) ! initialise the Kohn-Sham potential to the nuclear potential vr(ir)=vn(ir) end do ! determine the weights for radial integration call wsplintp(nr,r,wpr) dvp=0.d0 vrp(:)=0.d0 ! initialise mixing parameter beta=0.5d0 ! initialise eigenvalues to relativistic values (minus the rest mass energy) do ist=1,nst t1=sqrt(dble(k(ist)**2)-(zn/sol)**2) t1=(dble(n(ist)-abs(k(ist)))+t1)**2 t1=1.d0+((zn/sol)**2)/t1 eval(ist)=sol**2/sqrt(t1)-sol**2 end do ! start of self-consistent loop do iscl=1,maxscl ! solve the Dirac equation for each state !$OMP PARALLEL DO DEFAULT(SHARED) do ist=1,nst call rdirac(sol,n(ist),l(ist),k(ist),nr,r,vr,eval(ist),rwf(:,1,ist), & rwf(:,2,ist)) end do !$OMP END PARALLEL DO ! compute the charge density do ir=1,nr t1=sum(occ(:)*(rwf(ir,1,:)**2+rwf(ir,2,:)**2)) fr1(ir)=t1 fr2(ir)=t1*ri(ir) rho(ir)=(1.d0/fourpi)*t1*ri(ir)**2 end do call splintwp(nr,wpr,fr1,gr1) call splintwp(nr,wpr,fr2,gr2) ! find the Hartree potential t1=gr2(nr) do ir=1,nr vh(ir)=gr1(ir)*ri(ir)+t1-gr2(ir) end do ! normalise charge density and potential t1=ze/gr1(nr) rho(:)=t1*rho(:) vh(:)=t1*vh(:) ! compute the exchange-correlation energy and potential if (xcgrad == 1) then ! GGA functional ! |grad rho| call fderiv(1,nr,r,rho,grho) ! grad^2 rho call fderiv(2,nr,r,rho,g2rho) do ir=1,nr g2rho(ir)=g2rho(ir)+2.d0*ri(ir)*grho(ir) end do ! approximate (grad rho).(grad |grad rho|) do ir=1,nr g3rho(ir)=grho(ir)*g2rho(ir) end do call xcifc(xctype,nr,rho=rho,grho=grho,g2rho=g2rho,g3rho=g3rho,ex=ex,ec=ec,& vx=vx,vc=vc) else ! LDA functional call xcifc(xctype,nr,rho=rho,ex=ex,ec=ec,vx=vx,vc=vc) end if ! self-consistent potential vr(:)=vh(:)+vx(:)+vc(:) ! determine change in potential t1=sum((vr(:)-vrp(:))**2) dv=sqrt(t1)/dble(nr) if (iscl > 2) then ! reduce beta if change in potential is diverging if (dv > dvp) beta=beta*0.8d0 beta=max(beta,0.01d0) end if dvp=dv do ir=1,nr ! mix old and new potentials vr(ir)=(1.d0-beta)*vrp(ir)+beta*vr(ir) vrp(ir)=vr(ir) ! add nuclear potential vr(ir)=vr(ir)+vn(ir) end do ! check for convergence if ((iscl > 2).and.(dv < eps)) goto 10 ! end self-consistent loop end do write(*,*) write(*,'("Warning(atom): maximum iterations exceeded")') 10 continue deallocate(vn,vh,ex,ec,vx,vc,vrp) deallocate(ri,wpr,fr1,fr2,gr1,gr2) if (xcgrad == 1) deallocate(grho,g2rho,g3rho) return contains pure subroutine splintwp(n,wp,f,g) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wp(*),f(n) real(8), intent(out) :: g(n) ! local variables integer i,j real(8) sm g(1)=0.d0 sm=wp(5)*f(1)+wp(6)*f(2)+wp(7)*f(3)+wp(8)*f(4) g(2)=sm do i=2,n-2 j=i*4+1 sm=sm+wp(j)*f(i-1)+wp(j+1)*f(i)+wp(j+2)*f(i+1)+wp(j+3)*f(i+2) g(i+1)=sm end do j=(n-1)*4+1 g(n)=sm+wp(j)*f(n-3)+wp(j+1)*f(n-2)+wp(j+2)*f(n-1)+wp(j+3)*f(n) end subroutine end subroutine !EOC elk-9.2.12/src/PaxHeaders/maginit.f900000644000000000000000000000013214536061314014200 xustar0030 mtime=1702388428.068501267 30 atime=1702388426.932502949 30 ctime=1702388428.068501267 elk-9.2.12/src/maginit.f900000644002504400250440000000205414536061314016723 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine maginit use modmain implicit none ! local variables integer idm,is,ia,ias,np ! magnetisation as fraction of density real(8), parameter :: fmr=0.15d0 real(8) v(3),t1 if (.not.spinpol) return ! initialise muffin-tin magnetisation do ias=1,natmtot is=idxis(ias) ia=idxia(ias) np=npmt(is) v(:)=bfcmt(:,ia,is)+bfieldc(:) t1=sqrt(v(1)**2+v(2)**2+v(3)**2) if (t1 > 1.d-8) then t1=-fmr/t1 v(:)=t1*v(:) if (.not.ncmag) v(1)=v(3) do idm=1,ndmag t1=v(idm) magmt(1:np,ias,idm)=t1*rhomt(1:np,ias) end do else magmt(1:np,ias,:)=0.d0 end if end do ! initialise interstitial magnetisation v(:)=bfieldc(:) t1=sqrt(v(1)**2+v(2)**2+v(3)**2) if (t1 > 1.d-8) then t1=-fmr/t1 v(:)=t1*v(:) if (.not.ncmag) v(1)=v(3) do idm=1,ndmag t1=v(idm) magir(:,idm)=t1*rhoir(:) end do else magir(:,:)=0.d0 end if end subroutine elk-9.2.12/src/PaxHeaders/exxengyk.f900000644000000000000000000000013214536061314014412 xustar0030 mtime=1702388428.069501265 30 atime=1702388426.933502948 30 ctime=1702388428.069501265 elk-9.2.12/src/exxengyk.f900000644002504400250440000001463414536061314017144 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine exxengyk(ikp) use modmain implicit none ! arguments integer, intent(in) :: ikp ! local variables integer iq,ik,jk,m integer nst1,nst2,ist,jst integer is,ia,ias integer nrc,nrci,npc integer iv(3),ig real(8) ex,vc(3) complex(8) z1 ! automatic arrays integer idx(nstsv) ! allocatable arrays real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqrmt(:,:,:) complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:),wfcr(:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: crhomt(:,:),crhoir(:) complex(4), allocatable :: cvclmt(:,:),cvclir(:) ! external functions complex(8), external :: zcfinp,zcfmtinp ! get the eigenvectors from file for input reduced k-point allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) call getevecfv(filext,ikp,vkl(:,ikp),vgkl(:,:,:,ikp),evecfv) call getevecsv(filext,ikp,vkl(:,ikp),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) call match(ngk(1,ikp),vgkc(:,:,1,ikp),gkc(:,1,ikp),sfacgk(:,:,1,ikp),apwalm) ! count and index the occupied states nst1=0 do ist=1,nstsv if (evalsv(ist,ikp) > efermi) cycle nst1=nst1+1 idx(nst1)=ist end do ! calculate the wavefunctions for occupied states of the input k-point allocate(wfmt1(npcmtmax,natmtot,nspinor,nst1),wfir1(ngtc,nspinor,nst1)) call genwfsv_sp(.false.,.false.,nst1,idx,ngdgc,igfc,ngk(1,ikp),igkig(:,1,ikp), & apwalm,evecfv,evecsv,wfmt1,ngtc,wfir1) ! allocate local arrays allocate(vgqc(3,ngvc),gqc(ngvc),gclgq(ngvc)) allocate(jlgqrmt(0:lnpsd,ngvc,nspecies)) allocate(ylmgq(lmmaxo,ngvc),sfacgq(ngvc,natmtot)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv)) allocate(wfir2(ngtc,nspinor,nstsv)) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) allocate(cvclmt(npcmtmax,natmtot),cvclir(ngtc)) ! zero the local exchange energy variable ex=0.d0 ! start loop over non-reduced k-point set do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! determine the q-vector iv(:)=ivk(:,ikp)-ivk(:,ik) iv(:)=modulo(iv(:),ngridk(:)) ! check if the q-point is in user-defined set iv(:)=iv(:)*ngridq(:) if (any(mod(iv(:),ngridk(:)) /= 0)) cycle iv(:)=iv(:)/ngridk(:) iq=ivqiq(iv(1),iv(2),iv(3)) vc(:)=vkc(:,ikp)-vkc(:,ik) do ig=1,ngvc ! determine the G+q-vectors vgqc(:,ig)=vgc(:,ig)+vc(:) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) ! spherical harmonics for G+q-vectors call genylmv(lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! structure factors for G+q call gensfacgp(ngvc,vgqc,ngvc,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngvc,gqc,gclgq) ! compute the required spherical Bessel functions call genjlgprmt(lnpsd,ngvc,gqc,ngvc,jlgqrmt) ! find the matching coefficients call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! get the eigenvectors from file for non-reduced k-point call getevecfv(filext,0,vkl(:,ik),vgkl(:,:,1,ik),evecfv) call getevecsv(filext,0,vkl(:,ik),evecsv) ! count and index the occupied states nst2=0 do jst=1,nstsv if (evalsv(jst,jk) > efermi) cycle nst2=nst2+1 idx(nst2)=jst end do ! calculate the wavefunctions for occupied states call genwfsv_sp(.false.,.false.,nst2,idx,ngdgc,igfc,ngk(1,ik),igkig(:,1,ik), & apwalm,evecfv,evecsv,wfmt2,ngtc,wfir2) !--------------------------------------------! ! valence-valence-valence contribution ! !--------------------------------------------! do jst=1,nst2 do ist=1,nst1 ! calculate the complex overlap density call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,jst),wfir2(:,:,jst), & wfmt1(:,:,:,ist),wfir1(:,:,ist),crhomt,crhoir) ! calculate the Coulomb potential call gencvclmt(nrcmt,nrcmti,nrcmtmax,rlcmt,wprcmt,npcmtmax,crhomt,cvclmt) call cpotcoul(nrcmt,nrcmti,npcmt,nrcmtmax,rlcmt,ngdgc,igfc,ngvc,gqc, & gclgq,ngvc,jlgqrmt,ylmgq,sfacgq,crhoir,npcmtmax,cvclmt,cvclir) cvclir(:)=cvclir(:)*cfrc(:) z1=zcfinp(crhomt,crhoir,cvclmt,cvclir) ex=ex-0.5d0*occmax*wkpt(ikp)*wqptnr*dble(z1) end do end do ! end loop over non-reduced k-point set end do deallocate(vgqc,gqc,gclgq,jlgqrmt) deallocate(evecfv,evecsv) deallocate(apwalm,ylmgq,sfacgq) deallocate(wfmt2,wfir2) !-----------------------------------------! ! valence-core-valence contribution ! !-----------------------------------------! allocate(wfcr(npcmtmax,2)) ! begin loops over atoms and species do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) do jst=1,nstsp(is) if (spcore(jst,is)) then do m=-ksp(jst,is),ksp(jst,is)-1 ! generate the core wavefunction in spherical coordinates (pass in m-1/2) call wavefcr(.false.,lradstp,is,ia,jst,m,npcmtmax,wfcr) do ist=1,nst1 ! calculate the complex overlap density in spherical harmonics if (spinpol) then call crho2(npc,wfcr,wfcr(:,2),wfmt1(:,ias,1,ist), & wfmt1(:,ias,2,ist),crhomt(:,ias)) else call crho1(npc,wfcr,wfmt1(:,ias,1,ist),crhomt(:,ias)) end if call cfshtip(nrc,nrci,crhomt(:,ias)) ! calculate the Coulomb potential call cpotclmt(nrc,nrci,nrcmtmax,rlcmt(:,:,is),wprcmt(:,:,is), & crhomt(:,ias),cvclmt(:,ias)) z1=zcfmtinp(nrc,nrci,wrcmt(:,is),crhomt(:,ias),cvclmt(:,ias)) ex=ex-occmax*wkpt(ikp)*dble(z1) end do ! end loop over m end do ! end loop over jst end if end do ! end loops over atoms and species end do end do ! add to global exchange energy !$OMP CRITICAL(exxengyk_) engyx=engyx+ex !$OMP END CRITICAL(exxengyk_) deallocate(wfmt1,wfir1,wfcr) deallocate(crhomt,crhoir,cvclmt,cvclir) return contains pure subroutine crho1(n,wf1,wf2,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf1(n),wf2(n) complex(4), intent(out) :: crho(n) crho(:)=conjg(wf1(:))*wf2(:) end subroutine pure subroutine crho2(n,wf11,wf12,wf21,wf22,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf11(n),wf12(n),wf21(n),wf22(n) complex(4), intent(out) :: crho(n) crho(:)=conjg(wf11(:))*wf21(:)+conjg(wf12(:))*wf22(:) end subroutine end subroutine elk-9.2.12/src/PaxHeaders/moke.f900000644000000000000000000000013214536061314013503 xustar0030 mtime=1702388428.071501263 30 atime=1702388426.935502945 30 ctime=1702388428.071501263 elk-9.2.12/src/moke.f900000644002504400250440000000412014536061314016222 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 S. Sharma, J. K. Dewhurst and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine moke use modmain implicit none ! local variables integer iw,ios complex(8) z1,z2,z3 ! allocatable arrays real(8), allocatable :: w(:),sig1(:,:),sig2(:,:) complex(8), allocatable :: kerr(:) ! calculate dielectric function for the 11 and 12 components noptcomp=2 optcomp(1,1)=1 optcomp(2,1)=1 optcomp(1,2)=1 optcomp(2,2)=2 call dielectric ! allocate local arrays allocate(w(nwplot)) allocate(sig1(nwplot,2),sig2(nwplot,2)) allocate(kerr(nwplot)) ! read diagonal contribution to optical conductivity open(50,file='SIGMA_11.OUT',status='OLD',form='FORMATTED',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(moke): error opening SIGMA_11.OUT")') write(*,*) stop end if do iw=1,nwplot read(50,'(2G18.10)') w(iw),sig1(iw,1) end do read(50,*) do iw=1,nwplot read(50,'(2G18.10)') w(iw),sig2(iw,1) end do close(50) ! read off-diagonal contribution to optical conductivity open(50,file='SIGMA_12.OUT',status='OLD',form='FORMATTED',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(moke): error opening SIGMA_12.OUT")') write(*,*) stop end if do iw=1,nwplot read(50,'(2G18.10)') w(iw),sig1(iw,2) end do read(50,*) do iw=1,nwplot read(50,'(2G18.10)') w(iw),sig2(iw,2) end do close(50) ! calculate the complex Kerr angle do iw=1,nwplot if (w(iw) > 0.d0) then z1=cmplx(sig1(iw,1),sig2(iw,1),8) z2=cmplx(sig1(iw,2),sig2(iw,2),8) z3=z1*sqrt(1.d0+fourpi*zi*z1/w(iw)) if (abs(z3) > 1.d-8) then kerr(iw)=-z2/z3 else kerr(iw)=0.d0 end if else kerr(iw)=0.d0 end if end do open(50,file='KERR.OUT',form='FORMATTED') do iw=1,nwplot write(50,'(2G18.10)') w(iw),dble(kerr(iw))*180.d0/pi end do write(50,'(" ")') do iw=1,nwplot write(50,'(2G18.10)') w(iw),aimag(kerr(iw))*180.d0/pi end do close(50) write(*,*) write(*,'("Info(moke):")') write(*,'(" complex Kerr angle in degrees written to KERR.OUT")') deallocate(w,sig1,sig2,kerr) end subroutine elk-9.2.12/src/PaxHeaders/hmlrad.f900000644000000000000000000000013214536061314014017 xustar0030 mtime=1702388428.072501261 30 atime=1702388426.936502943 30 ctime=1702388428.072501261 elk-9.2.12/src/hmlrad.f900000644002504400250440000001303214536061314016540 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2016 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: hmlrad ! !INTERFACE: subroutine hmlrad ! !USES: use modmain use modomp ! !DESCRIPTION: ! Calculates the radial Hamiltonian integrals of the APW and local-orbital ! basis functions. In other words, for atom $\alpha$, it computes integrals of ! the form ! $$ h^{\alpha}_{qq';ll'l''m''}=\begin{cases} ! \int_0^{R_i}u^{\alpha}_{q;l}(r)H u^{\alpha}_{q';l'}(r)r^2dr & l''=0 \\ ! \int_0^{R_i}u^{\alpha}_{q;l}(r)V^{\alpha}_{l''m''}(r) ! u^{\alpha}_{q';l'}(r)r^2dr & l''>0 \end{cases}, $$ ! where $u^{\alpha}_{q;l}$ is the $q$th APW radial function for angular ! momentum $l$; $H$ is the Hamiltonian of the radial Schr\"{o}dinger equation; ! and $V^{\alpha}_{l''m''}$ is the muffin-tin Kohn-Sham potential. Similar ! integrals are calculated for APW-local-orbital and ! local-orbital-local-orbital contributions. ! ! !REVISION HISTORY: ! Created December 2003 (JKD) ! Updated for compressed muffin-tin functions, March 2016 (JKD) !EOP !BOC implicit none ! local variables integer is,ias,nthd integer nr,nri,iro,i0,i1 integer l1,l2,l3,lm2 integer io,jo,ilo,jlo real(8) sm ! begin loops over atoms and species call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is,nr,nri,iro) & !$OMP PRIVATE(l1,l2,l3,io,jo,sm) & !$OMP PRIVATE(lm2,i0,i1,ilo,jlo) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 !---------------------------! ! APW-APW integrals ! !---------------------------! do l1=0,lmaxapw do io=1,apword(l1,is) do l3=0,lmaxapw do jo=1,apword(l3,is) if (l1 == l3) then sm=sum(apwfr(1:nr,1,io,l1,ias)*apwfr(1:nr,2,jo,l3,ias) & *wrmt(1:nr,is)) haa(1,jo,l3,io,l1,ias)=sm/y00 else haa(1,jo,l3,io,l1,ias)=0.d0 end if if (l1 >= l3) then do l2=1,lmaxi do lm2=l2**2+1,(l2+1)**2 i1=lmmaxi*(nri-1)+lm2 sm=sum(apwfr(1:nri,1,io,l1,ias)*apwfr(1:nri,1,jo,l3,ias) & *wrmt(1:nri,is)*vsmt(lm2:i1:lmmaxi,ias)) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 sm=sm+sum(apwfr(iro:nr,1,io,l1,ias)*apwfr(iro:nr,1,jo,l3,ias) & *wrmt(iro:nr,is)*vsmt(i0:i1:lmmaxo,ias)) haa(lm2,jo,l3,io,l1,ias)=sm haa(lm2,io,l1,jo,l3,ias)=sm end do end do do l2=lmaxi+1,lmaxo do lm2=l2**2+1,(l2+1)**2 i0=lmmaxi*nri+lm2 i1=lmmaxo*(nr-iro)+i0 sm=sum(apwfr(iro:nr,1,io,l1,ias)*apwfr(iro:nr,1,jo,l3,ias) & *wrmt(iro:nr,is)*vsmt(i0:i1:lmmaxo,ias)) haa(lm2,jo,l3,io,l1,ias)=sm haa(lm2,io,l1,jo,l3,ias)=sm end do end do end if end do end do end do end do !-------------------------------------! ! local-orbital-APW integrals ! !-------------------------------------! do ilo=1,nlorb(is) l1=lorbl(ilo,is) do l3=0,lmaxapw do io=1,apword(l3,is) if (l1 == l3) then sm=sum(lofr(1:nr,1,ilo,ias)*apwfr(1:nr,2,io,l3,ias)*wrmt(1:nr,is)) hloa(1,io,l3,ilo,ias)=sm/y00 else hloa(1,io,l3,ilo,ias)=0.d0 end if do l2=1,lmaxi do lm2=l2**2+1,(l2+1)**2 i1=lmmaxi*(nri-1)+lm2 sm=sum(lofr(1:nri,1,ilo,ias)*apwfr(1:nri,1,io,l3,ias) & *wrmt(1:nri,is)*vsmt(lm2:i1:lmmaxi,ias)) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 sm=sm+sum(lofr(iro:nr,1,ilo,ias)*apwfr(iro:nr,1,io,l3,ias) & *wrmt(iro:nr,is)*vsmt(i0:i1:lmmaxo,ias)) hloa(lm2,io,l3,ilo,ias)=sm end do end do do l2=lmaxi+1,lmaxo do lm2=l2**2+1,(l2+1)**2 i0=lmmaxi*nri+lm2 i1=lmmaxo*(nr-iro)+i0 sm=sum(lofr(iro:nr,1,ilo,ias)*apwfr(iro:nr,1,io,l3,ias) & *wrmt(iro:nr,is)*vsmt(i0:i1:lmmaxo,ias)) hloa(lm2,io,l3,ilo,ias)=sm end do end do end do end do end do !-----------------------------------------------! ! local-orbital-local-orbital integrals ! !-----------------------------------------------! do ilo=1,nlorb(is) l1=lorbl(ilo,is) do jlo=1,nlorb(is) l3=lorbl(jlo,is) if (l1 == l3) then sm=sum(lofr(1:nr,1,ilo,ias)*lofr(1:nr,2,jlo,ias)*wrmt(1:nr,is)) hlolo(1,jlo,ilo,ias)=sm/y00 else hlolo(1,jlo,ilo,ias)=0.d0 end if do l2=1,lmaxi do lm2=l2**2+1,(l2+1)**2 i1=lmmaxi*(nri-1)+lm2 sm=sum(lofr(1:nri,1,ilo,ias)*lofr(1:nri,1,jlo,ias)*wrmt(1:nri,is) & *vsmt(lm2:i1:lmmaxi,ias)) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 sm=sm+sum(lofr(iro:nr,1,ilo,ias)*lofr(iro:nr,1,jlo,ias) & *wrmt(iro:nr,is)*vsmt(i0:i1:lmmaxo,ias)) hlolo(lm2,jlo,ilo,ias)=sm end do end do do l2=lmaxi+1,lmaxo do lm2=l2**2+1,(l2+1)**2 i0=lmmaxi*nri+lm2 i1=lmmaxo*(nr-iro)+i0 sm=sum(lofr(iro:nr,1,ilo,ias)*lofr(iro:nr,1,jlo,ias)*wrmt(iro:nr,is) & *vsmt(i0:i1:lmmaxo,ias)) hlolo(lm2,jlo,ilo,ias)=sm end do end do end do end do ! end loops over atoms and species end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine !EOC elk-9.2.12/src/PaxHeaders/dos.f900000644000000000000000000000012714536061314013341 xustar0029 mtime=1702388428.07350126 29 atime=1702388426.93850294 29 ctime=1702388428.07350126 elk-9.2.12/src/dos.f900000644002504400250440000002562514536061314016071 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: dos ! !INTERFACE: subroutine dos(fext,tocc,occsvp) ! !USES: use modmain use modomp use modtest ! !INPUT/OUTPUT PARAMETERS: ! fext : filename extension (in,character(*)) ! tocc : .true. if just the occupied orbitals should contribute to the DOS ! (in,logical) ! occsvp : occupation numbers of second-variational orbitals ! (in,real(nstsv,nkpt)) ! !DESCRIPTION: ! Produces a total and partial density of states (DOS) for plotting. The total ! DOS is written to the file {\tt TDOS.OUT} while the partial DOS is written ! to the file {\tt PDOS\_Sss\_Aaaaa.OUT} for atom {\tt aaaa} of species ! {\tt ss}. In the case of the partial DOS, each symmetrised ! $(l,m)$-projection is written consecutively and separated by blank lines. ! If the global variable {\tt lmirep} is {\tt .true.}, then the density matrix ! from which the $(l,m)$-projections are obtained is first rotated into a ! irreducible representation basis, i.e. one that block diagonalises all the ! site symmetry matrices in the $Y_{lm}$ basis. Eigenvalues of a quasi-random ! matrix in the $Y_{lm}$ basis which has been symmetrised with the site ! symmetries are written to {\tt ELMIREP.OUT}. This allows for identification ! of the irreducible representations of the site symmetries, for example $e_g$ ! or $t_{2g}$, by the degeneracies of the eigenvalues. In the plot, spin-up is ! made positive and spin-down negative. See the routines {\tt gendmatk} and ! {\tt brzint}. ! ! !REVISION HISTORY: ! Created January 2004 (JKD) ! Parallelised and included sum over m, November 2009 (F. Cricchio) !EOP !BOC implicit none ! arguments character(*), intent(in) :: fext logical, intent(in) :: tocc real(8), intent(in) :: occsvp(nstsv,nkpt) ! local variables logical tsqaz integer nsk(3),ik,jk,ist,iw,ld integer nsd,ispn,jspn,is,ia,ias integer lmmax,l0,l1,l,m,lm,nthd real(8) dw,th,sps(2),vl(3),vc(3) real(8) v1(3),v2(3),v3(3),t1 complex(8) su2(2,2),b(2,2),c(2,2) character(256) fname ! allocatable arrays ! low precision for band/spin character array saves memory real(4), allocatable :: bc(:,:,:,:,:),sc(:,:,:) real(8), allocatable :: w(:),e(:,:,:),f(:,:),g(:) real(8), allocatable :: dt(:,:),dp(:,:,:),elm(:,:) complex(8), allocatable :: ulm(:,:,:),a(:,:) complex(8), allocatable :: dmat(:,:,:,:,:),sdmat(:,:,:) complex(8), allocatable :: apwalm(:,:,:,:,:) complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) lmmax=(lmaxdos+1)**2 ld=lmmax*nspinor if (dosssum) then nsd=1 else nsd=nspinor end if if (dosmsum) then l0=0; l1=lmaxdos else l0=1; l1=lmmax end if allocate(bc(lmmax,nspinor,natmtot,nstsv,nkptnr)) allocate(sc(nspinor,nstsv,nkptnr)) ! generate unitary matrices which convert the (l,m) basis into the irreducible ! representation basis of the symmetry group at each atomic site if (lmirep) then allocate(elm(lmmax,natmtot)) allocate(ulm(lmmax,lmmax,natmtot)) call genlmirep(lmaxdos,lmmax,elm,ulm) end if ! compute the SU(2) operator used for rotating the density matrix to the ! desired spin-quantisation axis v1(:)=sqados(:) t1=sqrt(v1(1)**2+v1(2)**2+v1(3)**2) if (t1 <= epslat) then write(*,*) write(*,'("Error(dos): spin-quantisation axis (sqados) has zero length")') write(*,*) stop end if v1(:)=v1(:)/t1 if (v1(3) >= 1.d0-epslat) then tsqaz=.true. else tsqaz=.false. v2(1:2)=0.d0 v2(3)=1.d0 call r3cross(v1,v2,v3) ! note that the spin-quantisation axis is rotated, so the density matrix should ! be rotated in the opposite direction th=-acos(v1(3)) call axangsu2(v3,th,su2) end if ! begin parallel loop over k-points call holdthd(nkptnr,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(apwalm,evecfv,evecsv,dmat,sdmat,a) & !$OMP PRIVATE(jk,ispn,jspn,vl,vc) & !$OMP PRIVATE(is,ia,ias,ist,lm,b,c,t1) & !$OMP NUM_THREADS(nthd) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) allocate(dmat(lmmax,nspinor,lmmax,nspinor,nstsv)) allocate(sdmat(nspinor,nspinor,nstsv),a(lmmax,lmmax)) !$OMP DO do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! loop over first-variational spins do ispn=1,nspnfv vl(:)=vkl(:,ik) vc(:)=vkc(:,ik) ! spin-spiral case if (spinsprl) then if (ispn == 1) then vl(:)=vl(:)+0.5d0*vqlss(:) vc(:)=vc(:)+0.5d0*vqcss(:) else vl(:)=vl(:)-0.5d0*vqlss(:) vc(:)=vc(:)-0.5d0*vqcss(:) end if end if ! find the matching coefficients call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! get the eigenvectors from file for non-reduced k-point call getevecfv('.OUT',0,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv('.OUT',0,vkl(:,ik),evecsv) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! generate the density matrix for all states call gendmatk(.false.,.false.,0,lmaxdos,ias,nstsv,[0],ngk(:,ik),apwalm, & evecfv,evecsv,lmmax,dmat) ! convert (l,m) part to an irreducible representation if required if (lmirep) then do ist=1,nstsv do ispn=1,nspinor do jspn=1,nspinor call zgemm('N','N',lmmax,lmmax,lmmax,zone,ulm(:,:,ias),lmmax, & dmat(:,ispn,1,jspn,ist),ld,zzero,a,lmmax) call zgemm('N','C',lmmax,lmmax,lmmax,zone,a,lmmax,ulm(:,:,ias), & lmmax,zzero,dmat(:,ispn,1,jspn,ist),ld) end do end do end do end if ! spin rotate the density matrices to desired spin-quantisation axis if (spinpol.and.(.not.tsqaz)) then do ist=1,nstsv do lm=1,lmmax b(:,:)=dmat(lm,:,lm,:,ist) call z2mm(su2,b,c) call z2mmct(c,su2,b) dmat(lm,:,lm,:,ist)=b(:,:) end do end do end if ! determine the band characters from the density matrix do ist=1,nstsv do ispn=1,nspinor do lm=1,lmmax t1=dble(dmat(lm,ispn,lm,ispn,ist)) bc(lm,ispn,ias,ist,ik)=real(t1) end do end do end do end do end do ! compute the spin density matrices of the second-variational states call gensdmat(evecsv,sdmat) ! spin rotate the density matrices to desired spin-quantisation axis if (spinpol.and.(.not.tsqaz)) then do ist=1,nstsv call z2mm(su2,sdmat(:,:,ist),b) call z2mmct(b,su2,sdmat(:,:,ist)) end do end if do ist=1,nstsv do ispn=1,nspinor t1=dble(sdmat(ispn,ispn,ist)) sc(ispn,ist,ik)=real(t1) end do end do end do !$OMP END DO deallocate(apwalm,evecfv,evecsv,dmat,sdmat,a) !$OMP END PARALLEL call freethd(nthd) allocate(w(nwplot),e(nstsv,nkptnr,nspinor)) allocate(dt(nwplot,nsd),dp(nwplot,l0:l1,nsd)) ! generate frequency grid dw=(wplot(2)-wplot(1))/dble(nwplot) do iw=1,nwplot w(iw)=dw*dble(iw-1)+wplot(1) end do ! number of subdivisions used for interpolation in the Brillouin zone nsk(:)=max(ngrkf/ngridk(:),1) ! sign for spin in DOS sps(1)=1.d0 sps(2)=-1.d0 !-------------------! ! total DOS ! !-------------------! allocate(f(nstsv,nkptnr),g(nwplot)) dt(:,:)=0.d0 do ispn=1,nspinor do ik=1,nkptnr jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) do ist=1,nstsv ! subtract the Fermi energy e(ist,ik,ispn)=evalsv(ist,jk)-efermi ! use diagonal of spin density matrix for weight f(ist,ik)=sc(ispn,ist,ik) if (tocc) then f(ist,ik)=f(ist,ik)*occsvp(ist,jk) else f(ist,ik)=f(ist,ik)*occmax end if end do end do ! integrate over the Brillouin zone call brzint(nswplot,ngridk,nsk,ivkiknr,nwplot,wplot,nstsv,nstsv,e(:,:,ispn), & f,g) if (dosssum) then dt(:,1)=dt(:,1)+g(:) else dt(:,ispn)=g(:) end if end do deallocate(f,g) ! output to file open(50,file='TDOS'//trim(fext),form='FORMATTED',action='WRITE') do ispn=1,nsd do iw=1,nwplot write(50,'(2G18.10)') w(iw),dt(iw,ispn)*sps(ispn) end do write(50,*) end do close(50) !---------------------! ! partial DOS ! !---------------------! do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) dp(:,:,:)=0.d0 do ispn=1,nspinor call holdthd(lmaxdos+1,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(f,g,lm,ik,jk,ist) & !$OMP NUM_THREADS(nthd) allocate(f(nstsv,nkptnr),g(nwplot)) !$OMP DO do l=0,lmaxdos do lm=l**2+1,(l+1)**2 do ik=1,nkptnr jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) do ist=1,nstsv f(ist,ik)=bc(lm,ispn,ias,ist,ik) if (tocc) then f(ist,ik)=f(ist,ik)*occsvp(ist,jk) else f(ist,ik)=f(ist,ik)*occmax end if end do end do call brzint(nswplot,ngridk,nsk,ivkiknr,nwplot,wplot,nstsv,nstsv, & e(:,:,ispn),f,g) if (dosmsum) then if (dosssum) then dp(:,l,1)=dp(:,l,1)+g(:) else dp(:,l,ispn)=dp(:,l,ispn)+g(:) end if else if (dosssum) then dp(:,lm,1)=dp(:,lm,1)+g(:) else dp(:,lm,ispn)=g(:) end if end if ! subtract from interstitial DOS !$OMP CRITICAL(dos_) if (dosssum) then dt(:,1)=dt(:,1)-g(:) else dt(:,ispn)=dt(:,ispn)-g(:) end if !$OMP END CRITICAL(dos_) end do end do !$OMP END DO deallocate(f,g) !$OMP END PARALLEL call freethd(nthd) end do ! output to file write(fname,'("PDOS_S",I2.2,"_A",I4.4)') is,ia open(50,file=trim(fname)//trim(fext),form='FORMATTED',action='WRITE') do ispn=1,nsd do l=l0,l1 do iw=1,nwplot write(50,'(2G18.10)') w(iw),dp(iw,l,ispn)*sps(ispn) end do write(50,*) end do end do close(50) end do end do !------------------------------------------! ! irreducible representations file ! !------------------------------------------! if (lmirep) then open(50,file='ELMIREP'//trim(fext),form='FORMATTED',action='WRITE') do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is, & trim(spsymb(is)),ia do l=0,lmaxdos do m=-l,l lm=l*(l+1)+m+1 write(50,'(" l = ",I2,", m = ",I2,", lm= ",I3," : ",G18.10)') l,m, & lm,elm(lm,ias) end do end do end do end do close(50) end if !--------------------------! ! interstitial DOS ! !--------------------------! open(50,file='IDOS'//trim(fext),form='FORMATTED',action='WRITE') do ispn=1,nsd do iw=1,nwplot write(50,'(2G18.10)') w(iw),dt(iw,ispn)*sps(ispn) end do write(50,*) end do close(50) ! write the total DOS to test file call writetest(10,'total DOS',nv=nwplot*nsd,tol=2.d-2,rva=dt) deallocate(bc,sc,w,e,dt,dp) if (lmirep) deallocate(elm,ulm) end subroutine !EOC elk-9.2.12/src/PaxHeaders/findprimcell.f900000644000000000000000000000013214536061314015220 xustar0030 mtime=1702388428.075501257 30 atime=1702388426.940502937 30 ctime=1702388428.075501257 elk-9.2.12/src/findprimcell.f900000644002504400250440000000746614536061314017757 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: findprimcell ! !INTERFACE: subroutine findprimcell ! !USES: use modmain ! !DESCRIPTION: ! This routine finds the smallest primitive cell which produces the same ! crystal structure as the conventional cell. This is done by searching ! through all the vectors which connect atomic positions and finding those ! which leave the crystal structure invariant. Of these, the three shortest ! which produce a non-zero unit cell volume are chosen. ! ! !REVISION HISTORY: ! Created April 2007 (JKD) !EOP !BOC implicit none ! local variables integer is,js,ia,ja,ka,na integer i1,i2,i3,i,j,n real(8) v1(3),v2(3),v3(3) real(8) t1,t2 ! allocatable arrays real(8), allocatable :: dp(:),vp(:,:) do is=1,nspecies do ia=1,natoms(is) ! make sure all atomic coordinates are in [0,1) call r3frac(epslat,atposl(:,ia,is)) ! determine atomic Cartesian coordinates call r3mv(avec,atposl(:,ia,is),atposc(:,ia,is)) end do end do ! find the smallest set of atoms is=1 do js=1,nspecies ! if a species has only one atom the cell must be primitive if (natoms(js) == 1) return if (natoms(js) < natoms(is)) is=js end do n=27*natoms(is) allocate(dp(n),vp(3,n)) ! generate set of possible lattice vectors n=0 do ia=1,natoms(is) v1(:)=atposl(:,ia,is)-atposl(:,1,is) do i1=-1,1 v2(1)=v1(1)+dble(i1) do i2=-1,1 v2(2)=v1(2)+dble(i2) do i3=-1,1 v2(3)=v1(3)+dble(i3) t1=abs(v2(1))+abs(v2(2))+abs(v2(3)) if (t1 < epslat) goto 20 ! check if vector v2 leaves conventional cell invariant do js=1,nspecies do ja=1,natoms(js) v3(:)=atposl(:,ja,js)+v2(:) call r3frac(epslat,v3) do ka=1,natoms(js) ! check both positions and magnetic fields are the same t1=sum(abs(atposl(:,ka,js)-v3(:))) t2=sum(abs(bfcmt0(:,ja,js)-bfcmt0(:,ka,js))) if ((t1 < epslat).and.(t2 < epslat)) goto 10 end do ! atom ja has no equivalent under translation by v2 goto 20 10 continue end do end do ! cell invariant under translation by v2, so add to list n=n+1 call r3mv(avec,v2,vp(:,n)) dp(n)=sqrt(vp(1,n)**2+vp(2,n)**2+vp(3,n)**2) 20 continue end do end do end do end do if (n == 0) then write(*,*) write(*,'("Error(findprimcell): cannot find any lattice vectors")') write(*,*) stop end if ! find the shortest lattice vector j=1 t1=1.d8 do i=1,n if (dp(i) < t1+epslat) then j=i t1=dp(i) end if end do avec(:,1)=vp(:,j) ! find the next shortest lattice vector not parallel to the first j=1 t1=1.d8 do i=1,n call r3cross(avec(:,1),vp(:,i),v1) t2=sqrt(v1(1)**2+v1(2)**2+v1(3)**2) if (t2 > epslat) then if (dp(i) < t1+epslat) then j=i t1=dp(i) end if end if end do avec(:,2)=vp(:,j) ! find the next shortest lattice vector which gives non-zero unit cell volume call r3cross(avec(:,1),avec(:,2),v1) j=1 t1=1.d8 do i=1,n t2=dot_product(vp(:,i),v1(:)) if (abs(t2) > epslat) then if (dp(i) < t1+epslat) then j=i t1=dp(i) end if end if end do avec(:,3)=vp(:,j) call r3minv(avec,ainv) ! remove redundant atoms do is=1,nspecies na=0 do ia=1,natoms(is) call r3mv(ainv,atposc(:,ia,is),v1) call r3frac(epslat,v1) do ja=1,na t1=sum(abs(atposl(:,ja,is)-v1(:))) if (t1 < epslat) goto 30 end do na=na+1 atposl(:,na,is)=v1(:) call r3mv(avec,atposl(:,na,is),atposc(:,na,is)) ! re-index external magnetic fields bfcmt0(:,na,is)=bfcmt0(:,ia,is) ! re-index fixed spin moment vectors mommtfix(:,na,is)=mommtfix(:,ia,is) 30 continue end do natoms(is)=na end do deallocate(dp,vp) end subroutine !EOC elk-9.2.12/src/PaxHeaders/plotpt2d.f900000644000000000000000000000013214536061314014320 xustar0030 mtime=1702388428.077501254 30 atime=1702388426.942502934 30 ctime=1702388428.077501254 elk-9.2.12/src/plotpt2d.f900000644002504400250440000000277314536061314017053 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine plotpt2d(cvec,cinv,vpnl,vpl,vppc) use modmain implicit none ! arguments real(8), intent(in) :: cvec(3,3),cinv(3,3) real(8), intent(out) :: vpnl(3) real(8), intent(out) :: vpl(3,np2d(1)*np2d(2)) real(8), intent(out) :: vppc(2,np2d(1)*np2d(2)) ! local variables integer ip,i1,i2 real(8) vl1(3),vl2(3) real(8) vc1(3),vc2(3),vc3(3) real(8) d1,d2,d12,t1,t2 vl1(:)=vclp2d(:,1)-vclp2d(:,0) vl2(:)=vclp2d(:,2)-vclp2d(:,0) call r3mv(cvec,vl1,vc1) call r3mv(cvec,vl2,vc2) d1=sqrt(vc1(1)**2+vc1(2)**2+vc1(3)**2) d2=sqrt(vc2(1)**2+vc2(2)**2+vc2(3)**2) if ((d1 < epslat).or.(d2 < epslat)) then write(*,*) write(*,'("Error(plotpt2d): zero length plotting vectors")') write(*,*) stop end if d12=(vc1(1)*vc2(1)+vc1(2)*vc2(2)+vc1(3)*vc2(3))/(d1*d2) ! vector normal to plane call r3cross(vc1,vc2,vc3) t1=sqrt(vc3(1)**2+vc3(2)**2+vc3(3)**2) if (t1 < epslat) then write(*,*) write(*,'("Error(plotpt2d): 2D plotting plane vectors are collinear")') write(*,*) stop end if vc3(:)=vc3(:)/t1 call r3mv(cinv,vc3,vpnl) ip=0 do i2=0,np2d(2)-1 do i1=0,np2d(1)-1 ip=ip+1 t1=dble(i1)/dble(np2d(1)) t2=dble(i2)/dble(np2d(2)) ! plot points in 3D space vpl(:,ip)=t1*vl1(:)+t2*vl2(:)+vclp2d(:,0) ! plot points on the plane vppc(1,ip)=t1*d1+t2*d2*d12 vppc(2,ip)=t2*d2*sqrt(abs(1.d0-d12**2)) end do end do end subroutine elk-9.2.12/src/PaxHeaders/sfacrho.f900000644000000000000000000000013214536061314014175 xustar0030 mtime=1702388428.079501251 30 atime=1702388426.943502933 30 ctime=1702388428.079501251 elk-9.2.12/src/sfacrho.f900000644002504400250440000000510314536061314016716 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 A. I. Baranov and F. Wagner. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: sfacrho ! !INTERFACE: subroutine sfacrho ! !USES: use modmain use modpw use modtest ! !DESCRIPTION: ! Outputs X-ray structure factors, i.e. the Fourier transform coefficients of ! the total electron density ! $$ F({\bf H})=\int_{\Omega}d^3r\,\rho({\bf r})e^{i{\bf H}\cdot{\bf r}}, $$ ! to the file {\tt SFACRHO.OUT}. The lattice coordinates $(h,k,l)$ of the ! $\bf H$-vectors in this file are transformed by the matrix {\tt vhmat}. If ! and energy window is set using the variable {\tt wsfac}, then only those ! states within the window are used to compute the density. See also routines ! {\tt zftrf} and {\tt genhvec}. ! ! !REVISION HISTORY: ! Created July 2010 (Alexey I. Baranov) ! Added multiplicity of the H-vectors, Oct. 2010 (Alexey I. Baranov) !EOP !BOC implicit none ! local variables integer ih,iv(3) real(8) v(3),a,b,r ! allocatable arrays complex(8), allocatable :: zrhoh(:) ! initialise the structure factor specific variables call sfacinit ! calculate the density structure factors allocate(zrhoh(nhvec)) call zftrf(nhvec,ivh,vhc,rhomt,rhoir,zrhoh) open(50,file='SFACRHO.OUT',form='FORMATTED') write(50,*) write(50,'("h k l indices transformed by vhmat matrix:")') write(50,'(3G18.10)') vhmat(:,1) write(50,'(3G18.10)') vhmat(:,2) write(50,'(3G18.10)') vhmat(:,3) write(50,*) write(50,'(" h k l multipl. |H| Re(F)& & Im(F) |F|")') write(50,*) do ih=1,nhvec ! apply transformation matrix v(:)=vhmat(:,1)*dble(ivh(1,ih)) & +vhmat(:,2)*dble(ivh(2,ih)) & +vhmat(:,3)*dble(ivh(3,ih)) ! in crystallography the forward Fourier transform of real-space density is ! usually done with positive phase and without 1/omega prefactor a=dble(zrhoh(ih))*omega b=-aimag(zrhoh(ih))*omega r=abs(zrhoh(ih))*omega iv(:)=nint(v(:)) if ((abs(v(1)-iv(1)) <= epslat).and. & (abs(v(2)-iv(2)) <= epslat).and. & (abs(v(3)-iv(3)) <= epslat)) then ! integer hkl write(50,'(4I7,4G16.8)') iv(:),mulh(ih),hc(ih),a,b,r else ! non-integer hkl write(50,'(3F7.2,I7,4G16.8)') v(:),mulh(ih),hc(ih),a,b,r end if end do close(50) write(*,*) write(*,'("Info(sfacrho): density structure factors written to SFACRHO.OUT")') write(*,*) write(*,'(" Energy window : ",2G18.10)') wsfac(:) ! write the structure factors to test file call writetest(195,'density structure factors',nv=nhvec,tol=1.d-5,zva=zrhoh(:)) deallocate(zrhoh) end subroutine !EOC elk-9.2.12/src/PaxHeaders/bdipole.f900000644000000000000000000000013114536061314014165 xustar0030 mtime=1702388428.080501249 29 atime=1702388426.94550293 30 ctime=1702388428.080501249 elk-9.2.12/src/bdipole.f900000644002504400250440000000522614536061314016715 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine bdipole use modmain implicit none ! local variables integer idm,is,ias integer nrc,nrci,npc real(8) cb,t1 ! automatic arrays real(8) rfmt(npcmtmax) ! allocatable arrays real(8), allocatable :: rvfmt(:,:,:),rvfir(:,:) complex(8), allocatable :: zrhomt(:,:),zrhoir(:) complex(8), allocatable :: zvclmt(:,:),zvclir(:) if (.not.ncmag) then write(*,*) write(*,'("Error(bdipole): non-collinear magnetism required for inclusion of & &the dipole field")') write(*,*) stop end if ! prefactor for the spin dipole magnetic field cb=gfacte/(4.d0*solsc) ! compute the gauge invariant current density if required if (tjr) call genjr ! allocate local arrays allocate(rvfmt(npmtmax,natmtot,3),rvfir(ngtot,3)) allocate(zrhomt(npmtmax,natmtot),zrhoir(ngtot)) allocate(zvclmt(npmtmax,natmtot),zvclir(ngtot)) ! compute the curl of the magnetisation density, i.e. the magnetisation current call curlrvf(magmt,magir,rvfmt,rvfir) ! multiply by prefactor rvfmt(:,:,:)=cb*rvfmt(:,:,:) rvfir(:,:)=cb*rvfir(:,:) ! add the current density if required if (tjr) then t1=1.d0/solsc rvfmt(:,:,:)=rvfmt(:,:,:)+t1*jrmt(:,:,:) rvfir(:,:)=rvfir(:,:)+t1*jrir(:,:) end if do idm=1,3 ! transform to complex spherical harmonics do ias=1,natmtot is=idxis(ias) call rtozfmt(nrmt(is),nrmti(is),rvfmt(:,ias,idm),zrhomt(:,ias)) end do ! solve Poisson's equation in the muffin-tin to find the A-field call genzvclmt(nrmt,nrmti,nrmtmax,rlmt,wprmt,npmtmax,zrhomt,zvclmt) zrhoir(:)=rvfir(:,idm) ! solve in the entire unit cell call zpotcoul(nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gc,gclg,ngvec, & jlgrmt,ylmg,sfacg,zrhoir,npmtmax,zvclmt,zvclir) ! convert muffin-tin A-field to real spherical harmonics do ias=1,natmtot is=idxis(ias) call ztorfmt(nrmt(is),nrmti(is),zvclmt(:,ias),rvfmt(:,ias,idm)) end do ! store the real part of the interstitial A-field rvfir(:,idm)=dble(zvclir(:)) end do ! compute the curl of A to obtain the dipole B-field call curlrvf(rvfmt,rvfir,bdmt,bdir) ! add to the Kohn-Sham field do idm=1,3 do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) ! convert to coarse radial mesh call rfmtftoc(nrc,nrci,bdmt(:,ias,idm),rfmt) ! convert to spherical coordinates call rbshtip(nrc,nrci,rfmt) bsmt(1:npc,ias,idm)=bsmt(1:npc,ias,idm)+cb*rfmt(1:npc) end do end do do idm=1,3 bsir(:,idm)=bsir(:,idm)+cb*bdir(:,idm)*cfunir(:) end do deallocate(rvfmt,rvfir) deallocate(zrhomt,zrhoir,zvclmt,zvclir) end subroutine elk-9.2.12/src/PaxHeaders/dielectric.f900000644000000000000000000000013214536061314014657 xustar0030 mtime=1702388428.081501248 30 atime=1702388426.946502928 30 ctime=1702388428.081501248 elk-9.2.12/src/dielectric.f900000644002504400250440000001223514536061314017404 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2009 S. Sharma, J. K. Dewhurst and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: dielectric ! !INTERFACE: subroutine dielectric ! !USES: use modmain use modmpi use modomp use modtest ! !DESCRIPTION: ! Computes the dielectric tensor, optical conductivity and plasma frequency. ! The formulae are taken from {\it Physica Scripta} {\bf T109}, 170 (2004). ! ! !REVISION HISTORY: ! Created November 2005 (SS and JKD) ! Added plasma frequency and intraband contribution (S. Lebegue) ! Complete rewrite, 2008 (JKD) ! Fixed problem with plasma frequency, 2009 (Marty Blaber and JKD) ! Parallelised, 2009 (M. Blaber) !EOP !BOC implicit none ! local variables integer ik,jk,ist,jst integer iw,ioc,i,j,nthd real(8) w1,w2,wplas,x real(8) ei,ej,eji,t1,t2 complex(8) eta,z1 character(256) fname ! allocatable arrays real(8), allocatable :: w(:) complex(8), allocatable :: pmat(:,:,:),sigma(:) ! external functions real(8), external :: sdelta ! initialise universal variables call init0 call init1 ! read Fermi energy from file call readfermi ! get the eigenvalues and occupation numbers from file call readevalsv call readoccsv ! allocate local arrays allocate(w(nwplot),sigma(nwplot)) ! generate energy grid (always non-negative) w1=max(wplot(1),0.d0) w2=max(wplot(2),w1) t1=(w2-w1)/dble(nwplot) do iw=1,nwplot w(iw)=w1+t1*dble(iw-1) end do ! i divided by the complex relaxation time eta=cmplx(0.d0,swidth,8) ! loop over dielectric tensor components do ioc=1,noptcomp i=optcomp(1,ioc) j=optcomp(2,ioc) wplas=0.d0 sigma(:)=0.d0 ! parallel loop over non-reduced k-points call holdthd(nkptnr,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(pmat,jk,ist,jst) & !$OMP PRIVATE(ei,ej,eji,z1,t1,x) & !$OMP REDUCTION(+:wplas,sigma) & !$OMP NUM_THREADS(nthd) allocate(pmat(nstsv,nstsv,3)) !$OMP DO do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(dielectric_) write(*,'("Info(dielectric): ",I6," of ",I6," k-points")') ik,nkptnr !$OMP END CRITICAL(dielectric_) ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! read in the momentum matrix elements call getpmat(vkl(:,ik),pmat) ! valance states do ist=1,nstsv ei=evalsv(ist,jk) ! conduction states do jst=1,nstsv ej=evalsv(jst,jk) eji=ej-ei z1=pmat(ist,jst,i)*conjg(pmat(ist,jst,j)) if (abs(eji) > 1.d-8) then t1=occsv(ist,jk)*(1.d0-occsv(jst,jk)/occmax)/eji sigma(:)=sigma(:)+t1*(z1/(w(:)-eji+eta)+conjg(z1)/(w(:)+eji+eta)) end if ! add to the plasma frequency if (intraband) then if (i == j) then if (ist == jst) then x=(ei-efermi)/swidth t1=wkptnr*dble(z1)*sdelta(stype,x)/swidth wplas=wplas+t1 end if end if end if end do end do end do !$OMP END DO deallocate(pmat) !$OMP END PARALLEL call freethd(nthd) ! multiply response function by prefactor z1=zi*wkptnr/omega sigma(:)=z1*sigma(:) ! add response function and plasma frequency from each process and redistribute if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,sigma,nwplot,mpi_double_complex,mpi_sum, & mpicom,ierror) call mpi_allreduce(mpi_in_place,wplas,1,mpi_double_precision,mpi_sum, & mpicom,ierror) end if ! intraband contribution if (intraband) then if (i == j) then wplas=sqrt(occmax*abs(wplas)*fourpi/omega) ! write the plasma frequency to file write(fname,'("PLASMA_",2I1,".OUT")') i,j open(50,file=trim(fname),form='FORMATTED') write(50,'(G18.10," : plasma frequency")') wplas close(50) ! add the intraband contribution to sigma t1=wplas**2/fourpi do iw=1,nwplot sigma(iw)=sigma(iw)+t1/(swidth-zi*w(iw)) end do end if end if ! write the optical conductivity to file write(fname,'("SIGMA_",2I1,".OUT")') i,j open(50,file=trim(fname),form='FORMATTED') do iw=1,nwplot write(50,'(2G18.10)') w(iw),dble(sigma(iw)) end do write(50,*) do iw=1,nwplot write(50,'(2G18.10)') w(iw),aimag(sigma(iw)) end do close(50) ! write the dielectric function to file write(fname,'("EPSILON_",2I1,".OUT")') i,j open(50,file=trim(fname),form='FORMATTED') t1=0.d0 if (i == j) t1=1.d0 do iw=1,nwplot t2=t1-fourpi*aimag(sigma(iw)/(w(iw)+eta)) write(50,'(2G18.10)') w(iw),t2 end do write(50,*) do iw=1,nwplot t2=fourpi*dble(sigma(iw)/(w(iw)+eta)) write(50,'(2G18.10)') w(iw),t2 end do close(50) ! end loop over tensor components end do if (mp_mpi) then write(*,*) write(*,'("Info(dielectric):")') write(*,'(" dielectric tensor written to EPSILON_ij.OUT")') write(*,'(" optical conductivity written to SIGMA_ij.OUT")') if (intraband) then write(*,'(" plasma frequency written to PLASMA_ij.OUT")') end if write(*,'(" for components")') do ioc=1,noptcomp write(*,'(" i = ",I1,", j = ",I1)') optcomp(1:2,ioc) end do end if ! write sigma to test file if required call writetest(121,'optical conductivity',nv=nwplot,tol=1.d-2,zva=sigma) deallocate(w,sigma) end subroutine !EOC elk-9.2.12/src/PaxHeaders/elfplot.f900000644000000000000000000000013214536061314014215 xustar0030 mtime=1702388428.083501245 30 atime=1702388426.947502927 30 ctime=1702388428.083501245 elk-9.2.12/src/elfplot.f900000644002504400250440000001275714536061314016753 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: elfplot ! !INTERFACE: subroutine elfplot ! !USES: use modmain ! !DESCRIPTION: ! Outputs the electron localisation function (ELF) for 1D, 2D or 3D plotting. ! The spin-averaged ELF is given by ! $$ f_{\rm ELF}({\bf r})=\frac{1}{1+[D({\bf r})/D^0({\bf r})]^2}, $$ ! where ! $$ D({\bf r})=\frac{1}{2}\left(\tau({\bf r})-\frac{1}{4} ! \frac{[\nabla n({\bf r})]^2}{n({\bf r})}\right) $$ ! and ! $$ \tau({\bf r})=\sum_{i=1}^N \left|\nabla\Psi_i({\bf r}) ! \right|^2 $$ ! is the spin-averaged kinetic energy density from the spinor wavefunctions. ! The function $D^0$ is the kinetic energy density for the homogeneous ! electron gas evaluated for $n({\bf r})$: ! $$ D^0({\bf r})=\frac{3}{5}(6\pi^2)^{2/3}\left(\frac{n({\bf r})}{2} ! \right)^{5/3}. $$ ! The ELF is useful for the topological classification of bonding. See for ! example T. Burnus, M. A. L. Marques and E. K. U. Gross [Phys. Rev. A 71, ! 10501 (2005)]. ! ! !REVISION HISTORY: ! Created September 2003 (JKD) ! Fixed bug found by F. Wagner (JKD) !EOP !BOC implicit none ! local variables integer ik,is,ias integer nr,nri,ir integer ig,ifg,i real(8) r,t1,t2 complex(8) z1 ! allocatable arrays real(8), allocatable :: gwf2mt(:,:),gwf2ir(:) real(8), allocatable :: rfmt(:),grfmt(:,:),grfir(:) real(8), allocatable :: elfmt(:,:),elfir(:) complex(8), allocatable :: zfft1(:),zfft2(:) ! initialise universal variables call init0 call init1 ! allocate local arrays allocate(gwf2mt(npmtmax,natmtot),gwf2ir(ngtot)) allocate(rfmt(npmtmax),grfmt(npmtmax,3),grfir(ngtot)) allocate(elfmt(npmtmax,natmtot),elfir(ngtot)) allocate(zfft1(ngtot),zfft2(ngtot)) ! read density and potentials from file call readstate ! generate the core wavefunctions and densities call gencore ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the occupation numbers from file call readoccsv ! set the wavefunction gradient squared to zero gwf2mt(:,:)=0.d0 gwf2ir(:)=0.d0 do ik=1,nkpt ! add to the valence wavefunction gradient squared call gradwf2(ik,gwf2mt,gwf2ir) end do ! convert muffin-tin gradient squared to spherical harmonics do ias=1,natmtot is=idxis(ias) call rfshtip(nrcmt(is),nrcmti(is),gwf2mt(:,ias)) end do ! symmetrise the wavefunction gradient squared call symrf(nrcmt,nrcmti,npcmt,ngdgc,ngtc,ngvc,igfc,npmtmax,gwf2mt,gwf2ir) ! convert back to spherical coordinates do ias=1,natmtot is=idxis(ias) call rbshtip(nrcmt(is),nrcmti(is),gwf2mt(:,ias)) end do ! convert from coarse to fine muffin-tin radial mesh call rfmtctof(gwf2mt) ! convert from coarse to fine interstitial grid call rfirctof(gwf2ir,gwf2ir) ! add core wavefunction gradient squared call gradwfcr2(gwf2mt) !------------------------! ! muffin-tin ELF ! !------------------------! do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) ! convert rho from spherical harmonics to spherical coordinates call rbsht(nr,nri,rhomt(:,ias),rfmt) ! compute the gradient of the density call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rhomt(:,ias),npmtmax,grfmt) ! convert gradient to spherical coordinates do i=1,3 call rbshtip(nr,nri,grfmt(:,i)) end do do i=1,npmt(is) r=abs(rfmt(i)) ! square of gradient of rho t1=grfmt(i,1)**2+grfmt(i,2)**2+grfmt(i,3)**2 ! D for inhomogeneous density t1=(1.d0/2.d0)*(gwf2mt(i,ias)-(1.d0/4.d0)*t1/r) ! D0 for uniform electron gas t2=(3.d0/5.d0)*((6.d0*pi**2)**(2.d0/3.d0))*(r/2.d0)**(5.d0/3.d0) ! ELF function elfmt(i,ias)=1.d0/(1.d0+(t1/t2)**2) end do ! convert ELF from spherical coordinates to spherical harmonics call rfshtip(nr,nri,elfmt(:,ias)) end do !--------------------------! ! interstitial ELF ! !--------------------------! ! Fourier transform density to G-space zfft1(:)=rhoir(:) call zfftifc(3,ngridg,-1,zfft1) ! calculate the square of gradient of rho grfir(:)=0.d0 do i=1,3 zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) ! take the gradient z1=zfft1(ifg) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(z1),dble(z1),8) end do ! Fourier transform gradient to real-space call zfftifc(3,ngridg,1,zfft2) do ir=1,ngtot grfir(ir)=grfir(ir)+dble(zfft2(ir))**2 end do end do do ir=1,ngtot r=abs(rhoir(ir)) ! D for inhomogeneous density t1=(1.d0/2.d0)*(gwf2ir(ir)-(1.d0/4.d0)*grfir(ir)/r) ! D0 for homogeneous electron gas t2=(3.d0/5.d0)*((6.d0*pi**2)**(2.d0/3.d0))*(r/2.d0)**(5.d0/3.d0) ! ELF function elfir(ir)=1.d0/(1.d0+(t1/t2)**2) end do ! plot the ELF to file select case(task) case(51) open(50,file='ELF1D.OUT',form='FORMATTED') open(51,file='ELFLINES.OUT',form='FORMATTED') call plot1d(50,51,1,elfmt,elfir) close(50) close(51) write(*,*) write(*,'("Info(elfplot):")') write(*,'(" 1D ELF plot written to ELF1D.OUT")') write(*,'(" vertex location lines written to ELFLINES.OUT")') case(52) open(50,file='ELF2D.OUT',form='FORMATTED') call plot2d(.false.,50,1,elfmt,elfir) close(50) write(*,*) write(*,'("Info(elfplot): 2D ELF plot written to ELF2D.OUT")') case(53) open(50,file='ELF3D.OUT',form='FORMATTED') call plot3d(50,1,elfmt,elfir) close(50) write(*,*) write(*,'("Info(elfplot): 3D ELF plot written to ELF3D.OUT")') end select deallocate(gwf2mt,gwf2ir,rfmt,grfmt,grfir) deallocate(elfmt,elfir,zfft1,zfft2) end subroutine !EOC elk-9.2.12/src/PaxHeaders/vclcore.f900000644000000000000000000000013214536061314014205 xustar0030 mtime=1702388428.084501243 30 atime=1702388426.949502924 30 ctime=1702388428.084501243 elk-9.2.12/src/vclcore.f900000644002504400250440000000536114536061314016734 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine vclcore(wfmt,vmat) use modmain use modomp implicit none ! arguments complex(4), intent(in) :: wfmt(npcmtmax,natmtot,nspinor,nstsv) complex(8), intent(inout) :: vmat(nstsv,nstsv) ! local variables integer ist1,ist2,ist3 integer is,ia,ias,m,nthd integer nrc,nrci,npc ! automatic arrays complex(4) wfcr(npcmtmax,2),cfmt(npcmtmax) complex(8) v(nstsv,nstsv) ! allocatable arrays complex(4), allocatable :: crhomt(:,:) ! external functions complex(8), external :: zcfmtinp allocate(crhomt(npcmtmax,nstsv)) call holdthd(nstsv,nthd) v(:,:)=0.d0 do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) do ist3=1,nstsp(is) if (spcore(ist3,is)) then do m=-ksp(ist3,is),ksp(ist3,is)-1 ! generate the core wavefunction in spherical coordinates (pass in m-1/2) call wavefcr(.false.,lradstp,is,ia,ist3,m,npcmtmax,wfcr) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(cfmt,ist1,ist2) & !$OMP NUM_THREADS(nthd) !$OMP DO do ist1=1,nstsv ! calculate the complex overlap density in spherical harmonics if (spinpol) then call crho2(npc,wfcr,wfcr(:,2),wfmt(:,ias,1,ist1), & wfmt(:,ias,2,ist1),cfmt) else call crho1(npc,wfcr,wfmt(:,ias,1,ist1),cfmt) end if call cfsht(nrc,nrci,cfmt,crhomt(:,ist1)) end do !$OMP END DO !$OMP DO do ist2=1,nstsv call cpotclmt(nrc,nrci,nrcmtmax,rlcmt(:,:,is),wprcmt(:,:,is), & crhomt(:,ist2),cfmt) do ist1=1,ist2 v(ist1,ist2)=v(ist1,ist2)-zcfmtinp(nrc,nrci,wrcmt(:,is), & crhomt(:,ist1),cfmt) end do end do !$OMP END DO !$OMP END PARALLEL end do end if end do end do end do call freethd(nthd) ! set the lower triangular part of the matrix do ist1=1,nstsv do ist2=1,ist1-1 v(ist1,ist2)=conjg(v(ist2,ist1)) end do end do ! scale the Coulomb matrix elements in the case of a hybrid functional if (hybrid) v(:,:)=hybridc*v(:,:) ! add to input matrix vmat(:,:)=vmat(:,:)+v(:,:) deallocate(crhomt) return contains pure subroutine crho1(n,wf1,wf2,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf1(n),wf2(n) complex(4), intent(out) :: crho(n) crho(:)=conjg(wf1(:))*wf2(:) end subroutine pure subroutine crho2(n,wf11,wf12,wf21,wf22,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf11(n),wf12(n),wf21(n),wf22(n) complex(4), intent(out) :: crho(n) crho(:)=conjg(wf11(:))*wf21(:)+conjg(wf12(:))*wf22(:) end subroutine end subroutine elk-9.2.12/src/PaxHeaders/zfmtwr.f900000644000000000000000000000013214536061314014101 xustar0030 mtime=1702388428.085501242 30 atime=1702388426.950502922 30 ctime=1702388428.085501242 elk-9.2.12/src/zfmtwr.f900000644002504400250440000000123414536061314016623 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine zfmtwr(nr,nri,wr,zfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) complex(8), intent(inout) :: zfmt(*) ! local variables integer n,ir,i i=1 if (lmaxi == 1) then do ir=1,nri zfmt(i:i+3)=wr(ir)*zfmt(i:i+3) i=i+4 end do else n=lmmaxi-1 do ir=1,nri zfmt(i:i+n)=wr(ir)*zfmt(i:i+n) i=i+lmmaxi end do end if n=lmmaxo-1 do ir=nri+1,nr zfmt(i:i+n)=wr(ir)*zfmt(i:i+n) i=i+lmmaxo end do end subroutine elk-9.2.12/src/PaxHeaders/zvcldisp.f900000644000000000000000000000013214536061314014406 xustar0030 mtime=1702388428.087501239 30 atime=1702388426.952502919 30 ctime=1702388428.087501239 elk-9.2.12/src/zvcldisp.f900000644002504400250440000000122014536061314017123 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zvcldisp(zvclmt) use modmain use modtddft implicit none ! arguments complex(8), intent(inout) :: zvclmt(npmtmax,natmtot) ! local variables integer is,ia,ias,np,i real(8) t1 do is=1,nspecies np=npmt(is) do ia=1,natoms(is) ias=idxas(ia,is) do i=1,3 t1=-atdvc(i,0,ia,is) ! add the gradient of the Coulomb potential of the nucleus plus static density zvclmt(1:np,ias)=zvclmt(1:np,ias)+t1*gvnsmt(1:np,i,ias) end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/vecfbz.f900000644000000000000000000000013214536061314014027 xustar0030 mtime=1702388428.088501237 30 atime=1702388426.953502918 30 ctime=1702388428.088501237 elk-9.2.12/src/vecfbz.f900000644002504400250440000000270614536061314016556 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: vecfbz ! !INTERFACE: subroutine vecfbz(eps,bvec,vpl) ! !INPUT/OUTPUT PARAMETERS: ! eps : zero component tolerance (in,real) ! bvec : reciprocal lattice vectors (in,real(3,3)) ! vpl : input vector in lattice coordinates (inout,real(3)) ! !DESCRIPTION: ! Maps a vector in lattice coordinates to the first Brillouin zone. This is ! done by first removing its integer components and then adding primitive ! reciprocal lattice vectors until the shortest vector is found. ! ! !REVISION HISTORY: ! Created September 2008 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: eps,bvec(3,3) real(8), intent(inout) :: vpl(3) ! local variables integer i1,i2,i3,j1,j2,j3 real(8) v0(3),v1(3),v2(3),v3(3),t1,t2 ! map vector to [0,1) interval call r3frac(eps,vpl) v0(:)=bvec(:,1)*vpl(1)+bvec(:,2)*vpl(2)+bvec(:,3)*vpl(3) t1=v0(1)**2+v0(2)**2+v0(3)**2 j1=0; j2=0; j3=0 do i1=-1,0 v1(:)=v0(:)+dble(i1)*bvec(:,1) do i2=-1,0 v2(:)=v1(:)+dble(i2)*bvec(:,2) do i3=-1,0 v3(:)=v2(:)+dble(i3)*bvec(:,3) t2=v3(1)**2+v3(2)**2+v3(3)**2 if (t2 < t1+eps) then j1=i1; j2=i2; j3=i3 t1=t2 end if end do end do end do vpl(1)=vpl(1)+dble(j1) vpl(2)=vpl(2)+dble(j2) vpl(3)=vpl(3)+dble(j3) end subroutine !EOC elk-9.2.12/src/PaxHeaders/lopzflmn.f900000644000000000000000000000013214536061314014411 xustar0030 mtime=1702388428.089501236 30 atime=1702388426.954502917 30 ctime=1702388428.089501236 elk-9.2.12/src/lopzflmn.f900000644002504400250440000000220114536061314017126 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine lopzflmn(lmax,n,ld,zflm,zlflm1,zlflm2,zlflm3) implicit none ! arguments integer, intent(in) :: lmax,n,ld complex(8), intent(in) :: zflm(ld,n) complex(8), intent(out) :: zlflm1(ld,n),zlflm2(ld,n),zlflm3(ld,n) ! local variables integer l,m,lm,i real(8) t1 complex(8) z1 lm=0 do l=0,lmax do m=-l,l lm=lm+1 if (m == -l) then zlflm1(lm,:)=0.d0 zlflm2(lm,:)=0.d0 end if if (m < l) then t1=0.5d0*sqrt(dble((l-m)*(l+m+1))) do i=1,n z1=t1*zflm(lm,i) zlflm1(lm+1,i)=z1 zlflm2(lm+1,i)=cmplx(aimag(z1),-dble(z1),8) end do end if if (m > -l) then t1=0.5d0*sqrt(dble((l+m)*(l-m+1))) do i=1,n z1=t1*zflm(lm,i) zlflm1(lm-1,i)=zlflm1(lm-1,i)+z1 zlflm2(lm-1,i)=zlflm2(lm-1,i)+cmplx(-aimag(z1),dble(z1),8) end do end if if (m /= 0) then zlflm3(lm,:)=dble(m)*zflm(lm,:) else zlflm3(lm,:)=0.d0 end if end do end do end subroutine elk-9.2.12/src/PaxHeaders/zpotclmt.f900000644000000000000000000000013214536061314014424 xustar0030 mtime=1702388428.091501233 30 atime=1702388426.956502913 30 ctime=1702388428.091501233 elk-9.2.12/src/zpotclmt.f900000644002504400250440000000645314536061314017156 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: zpotclmt ! !INTERFACE: pure subroutine zpotclmt(nr,nri,ld,rl,wpr,zrhomt,zvclmt) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of points on inner part of muffin-tin (in,integer) ! ld : leading dimension (in,integer) ! rl : r^l on the radial mesh (in,real(ld,-lmaxo-1:lmaxo+2)) ! wpr : weights for partial integration on radial mesh (in,real(4,nr)) ! zrhomt : muffin-tin charge density (in,complex(*)) ! zvclmt : muffin-tin Coulomb potential (out,complex(*)) ! !DESCRIPTION: ! Solves the Poisson equation for the charge density contained in an isolated ! muffin-tin using the Green's function approach. In other words, the ! spherical harmonic expansion of the Coulomb potential, $V_{lm}$, is obtained ! from the density expansion, $\rho_{lm}$, by ! $$ V_{lm}(r)=\frac{4\pi}{2l+1}\left(\frac{1}{r^{l+1}}\int_0^r\rho_{lm}(r') ! {r'}^{l+2}dr'+r^l\int_r^R\frac{\rho_{lm}(r')}{{r'}^{l-1}}dr'\right) $$ ! where $R$ is the muffin-tin radius. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri,ld real(8), intent(in) :: rl(ld,-lmaxo-1:lmaxo+2),wpr(4,nr) complex(8), intent(in) :: zrhomt(*) complex(8), intent(out) :: zvclmt(*) ! local variables integer nro,iro,ir integer l,l1,l2,l3 integer lm,npi,i0,i real(8) t0 complex(8) z1 ! automatic arrays complex(8) f1(nr),f2(nr),f3(nr) nro=nr-nri iro=nri+1 npi=lmmaxi*nri do l=0,lmaxi l1=l+2 l2=-l+1 l3=-l-1 t0=fourpi/dble(2*l+1) do lm=l**2+1,(l+1)**2 do ir=1,nri i=lm+lmmaxi*(ir-1) f1(ir)=rl(ir,l1)*zrhomt(i) f2(ir)=rl(ir,l2)*zrhomt(i) end do i0=lm+npi do ir=iro,nr i=i0+lmmaxo*(ir-iro) f1(ir)=rl(ir,l1)*zrhomt(i) f2(ir)=rl(ir,l2)*zrhomt(i) end do call splintwp(nr,wpr,f1,f3) call splintwp(nr,wpr,f2,f1) z1=f1(nr) do ir=1,nri i=lm+lmmaxi*(ir-1) zvclmt(i)=t0*(rl(ir,l3)*f3(ir)+rl(ir,l)*(z1-f1(ir))) end do do ir=iro,nr i=i0+lmmaxo*(ir-iro) zvclmt(i)=t0*(rl(ir,l3)*f3(ir)+rl(ir,l)*(z1-f1(ir))) end do end do end do do l=lmaxi+1,lmaxo l1=l+2 l2=-l+1 l3=-l-1 t0=fourpi/dble(2*l+1) do lm=l**2+1,(l+1)**2 i0=lm+npi do ir=iro,nr i=i0+lmmaxo*(ir-iro) f1(ir)=rl(ir,l1)*zrhomt(i) f2(ir)=rl(ir,l2)*zrhomt(i) end do call splintwp(nro,wpr(1,iro),f1(iro),f3(iro)) call splintwp(nro,wpr(1,iro),f2(iro),f1(iro)) z1=f1(nr) do ir=iro,nr i=i0+lmmaxo*(ir-iro) zvclmt(i)=t0*(rl(ir,l3)*f3(ir)+rl(ir,l)*(z1-f1(ir))) end do end do end do return contains pure subroutine splintwp(n,wp,f,g) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wp(*) complex(8), intent(in) :: f(n) complex(8), intent(out) :: g(n) ! local variables integer i,j complex(8) zsm g(1)=0.d0 zsm=wp(5)*f(1)+wp(6)*f(2)+wp(7)*f(3)+wp(8)*f(4) g(2)=zsm do i=2,n-2 j=i*4+1 zsm=zsm+wp(j)*f(i-1)+wp(j+1)*f(i)+wp(j+2)*f(i+1)+wp(j+3)*f(i+2) g(i+1)=zsm end do j=(n-1)*4+1 g(n)=zsm+wp(j)*f(n-3)+wp(j+1)*f(n-2)+wp(j+2)*f(n-1)+wp(j+3)*f(n) end subroutine end subroutine !EOC elk-9.2.12/src/PaxHeaders/readfermi.f900000644000000000000000000000013214536061314014506 xustar0030 mtime=1702388428.092501231 30 atime=1702388426.957502912 30 ctime=1702388428.092501231 elk-9.2.12/src/readfermi.f900000644002504400250440000000157214536061314017235 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: readfermi ! !INTERFACE: subroutine readfermi ! !USES: use modmain ! !DESCRIPTION: ! Reads the Fermi energy from the file {\tt EFERMI.OUT}. ! ! !REVISION HISTORY: ! Created March 2005 (JKD) !EOP !BOC implicit none ! local variables integer ios open(50,file='EFERMI'//trim(filext),form='FORMATTED',action='READ', & status='OLD',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readfermi): error opening ",A)') 'EFERMI'//trim(filext) write(*,*) stop end if read(50,*,iostat=ios) efermi if (ios /= 0) then write(*,*) write(*,'("Error(readfermi): error reading Fermi energy from EFERMI.OUT")') write(*,*) stop end if close(50) end subroutine !EOC elk-9.2.12/src/PaxHeaders/gensdmat.f900000644000000000000000000000013014536061314014350 xustar0029 mtime=1702388428.09350123 30 atime=1702388426.959502909 29 ctime=1702388428.09350123 elk-9.2.12/src/gensdmat.f900000644002504400250440000000212314536061314017072 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gensdmat ! !INTERFACE: pure subroutine gensdmat(evecsv,sdmat) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! evecsv : second-variational eigenvectors (in,complex(nstsv,nstsv)) ! sdmat : spin density matrices (out,complex(nspinor,nspinor,nstsv)) ! !DESCRIPTION: ! Computes the spin density matrices for a set of second-variational states. ! ! !REVISION HISTORY: ! Created September 2008 (JKD) !EOP !BOC implicit none ! arguments complex(8), intent(in) :: evecsv(nstsv,nstsv) complex(8), intent(out) :: sdmat(nspinor,nspinor,nstsv) ! local variables integer ispn,jspn,ist,j complex(8) z1,z2 sdmat(:,:,:)=0.d0 do j=1,nstsv do ispn=1,nspinor do jspn=1,nspinor do ist=1,nstfv z1=evecsv(ist+nstfv*(ispn-1),j) z2=evecsv(ist+nstfv*(jspn-1),j) sdmat(ispn,jspn,j)=sdmat(ispn,jspn,j)+z1*conjg(z2) end do end do end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/symrfmt.f900000644000000000000000000000013214536061314014251 xustar0030 mtime=1702388428.094501229 30 atime=1702388426.960502908 30 ctime=1702388428.094501229 elk-9.2.12/src/symrfmt.f900000644002504400250440000000350214536061314016773 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine symrfmt(nr,nri,np,ld,rfmt) use modmain implicit none ! arguments integer, intent(in) :: nr(nspecies),nri(nspecies),np(nspecies) integer, intent(in) :: ld real(8), intent(inout) :: rfmt(ld,natmtot) ! local variables integer is,ia,ja,ias,jas integer n,isym,lspl real(8) t0 ! automatic arrays logical done(natmmax) ! allocatable arrays real(8), allocatable :: rfmt1(:,:),rfmt2(:) allocate(rfmt1(ld,natmmax),rfmt2(ld)) t0=1.d0/dble(nsymcrys) do is=1,nspecies n=np(is) ! make a copy of the input function do ia=1,natoms(is) ias=idxas(ia,is) rfmt1(1:n,ia)=rfmt(1:n,ias) end do done(:)=.false. ! loop over atoms do ia=1,natoms(is) if (done(ia)) cycle ias=idxas(ia,is) rfmt(1:n,ias)=0.d0 ! loop over crystal symmetries do isym=1,nsymcrys ! index to spatial rotation lattice symmetry lspl=lsplsymc(isym) ! equivalent atom index (symmetry rotates atom ja into atom ia) ja=ieqatom(ia,is,isym) ! apply the rotation to the muffin-tin function call rotrfmt(symlatc(:,:,lspl),nr(is),nri(is),rfmt1(:,ja),rfmt2) ! accumulate in original function array rfmt(1:n,ias)=rfmt(1:n,ias)+rfmt2(1:n) end do ! normalise rfmt(1:n,ias)=t0*rfmt(1:n,ias) done(ia)=.true. ! rotate into equivalent atoms do isym=1,nsymcrys ja=ieqatom(ia,is,isym) if (done(ja)) cycle jas=idxas(ja,is) ! inverse symmetry (which rotates atom ia into atom ja) lspl=isymlat(lsplsymc(isym)) ! rotate symmetrised function into equivalent muffin-tin call rotrfmt(symlatc(:,:,lspl),nr(is),nri(is),rfmt(:,ias),rfmt(:,jas)) done(ja)=.true. end do end do end do deallocate(rfmt1,rfmt2) end subroutine elk-9.2.12/src/PaxHeaders/sphcrd.f900000644000000000000000000000013214536061314014033 xustar0030 mtime=1702388428.096501225 30 atime=1702388426.962502905 30 ctime=1702388428.096501225 elk-9.2.12/src/sphcrd.f900000644002504400250440000000222214536061314016553 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sphcrd ! !INTERFACE: pure subroutine sphcrd(v,r,tp) ! !INPUT/OUTPUT PARAMETERS: ! v : input vector (in,real(3)) ! r : length of v (out,real) ! tp : (theta, phi) coordinates (out,real(2)) ! !DESCRIPTION: ! Returns the spherical coordinates $(r,\theta,\phi)$ of a vector ! $$ {\bf v}=(r\sin(\theta)\cos(\phi), r\sin(\theta)\sin(\phi), ! r\cos(\theta)). $$ ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: v(3) real(8), intent(out) :: r,tp(2) ! local variables real(8), parameter :: eps=1.d-14 real(8) t1 r=sqrt(v(1)**2+v(2)**2+v(3)**2) if (r > eps) then t1=v(3)/r if (t1 >= 1.d0) then tp(1)=0.d0 else if (t1 <= -1.d0) then tp(1)=3.1415926535897932385d0 else tp(1)=acos(t1) end if if ((abs(v(1)) > eps).or.(abs(v(2)) > eps)) then tp(2)=atan2(v(2),v(1)) else tp(2)=0.d0 end if else tp(1)=0.d0 tp(2)=0.d0 end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/potcoul.f900000644000000000000000000000013214536061314014235 xustar0030 mtime=1702388428.097501224 30 atime=1702388426.963502903 30 ctime=1702388428.097501224 elk-9.2.12/src/potcoul.f900000644002504400250440000000504214536061314016760 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: potcoul ! !INTERFACE: subroutine potcoul ! !USES: use modmain use modomp ! !DESCRIPTION: ! Calculates the Coulomb potential of the real charge density stored in the ! global variables {\tt rhomt} and {\tt rhoir} by solving Poisson's equation. ! These variables are coverted to complex representations and passed to the ! routine {\tt zpotcoul}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! local variables integer is,ias,nthd integer nr,nri,iro,i0,i1 ! allocatable arrays complex(8), allocatable :: zrhomt(:,:),zrhoir(:) complex(8), allocatable :: zvclmt(:,:),zvclir(:) allocate(zrhomt(npmtmax,natmtot)) ! convert real muffin-tin charge density to complex spherical harmonic expansion call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call rtozfmt(nrmt(is),nrmti(is),rhomt(:,ias),zrhomt(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) ! solve the complex Poisson's equation in the muffin-tins allocate(zvclmt(npmtmax,natmtot)) call genzvclmt(nrmt,nrmti,nrmtmax,rlmt,wprmt,npmtmax,zrhomt,zvclmt) deallocate(zrhomt) ! add the nuclear monopole potentials do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 i1=lmmaxi*(nri-1)+1 zvclmt(1:i1:lmmaxi,ias)=zvclmt(1:i1:lmmaxi,ias)+vcln(1:nri,is) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zvclmt(i0:i1:lmmaxo,ias)=zvclmt(i0:i1:lmmaxo,ias)+vcln(iro:nr,is) end do ! apply atomic displacement potential if required if (tatdisp) call zvcldisp(zvclmt) allocate(zrhoir(ngtot),zvclir(ngtot)) ! store real interstitial charge density in complex array zrhoir(:)=rhoir(:) ! solve Poisson's equation in the entire unit cell call zpotcoul(nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gc,gclg,ngvec, & jlgrmt,ylmg,sfacg,zrhoir,npmtmax,zvclmt,zvclir) ! convert complex muffin-tin potential to real spherical harmonic expansion call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call ztorfmt(nrmt(is),nrmti(is),zvclmt(:,ias),vclmt(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) ! store complex interstitial potential in real array vclir(:)=dble(zvclir(:)) deallocate(zrhoir,zvclmt,zvclir) ! apply constant electric field if required if (tefield) call potefield end subroutine !EOC elk-9.2.12/src/PaxHeaders/gencrm.f900000644000000000000000000000013014536061314014021 xustar0030 mtime=1702388428.098501222 28 atime=1702388426.9655029 30 ctime=1702388428.098501222 elk-9.2.12/src/gencrm.f900000644002504400250440000000235714536061314016554 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine gencrm(n,wf11,wf12,wf21,wf22,crho,ld,cmag) use modmain implicit none ! arguments integer, intent(in) :: n complex(4), intent(in) :: wf11(n),wf12(n),wf21(n),wf22(n) complex(4), intent(out) :: crho(n) integer, intent(in) :: ld complex(4), intent(out) :: cmag(ld,ndmag) ! local variables integer i complex(4) c11,c12,c21,c22,c1,c2 if (ncmag) then ! non-collinear case !$OMP SIMD PRIVATE(c11,c12,c21,c22,c1,c2) SIMDLEN(8) do i=1,n c11=wf11(i); c12=wf12(i) c21=wf21(i); c22=wf22(i) ! up-dn spin density c1=conjg(c11)*c22 ! dn-up spin density c2=conjg(c12)*c21 ! x-component: up-dn + dn-up cmag(i,1)=c1+c2 ! y-component: i*(dn-up - up-dn) c1=c2-c1 cmag(i,2)=cmplx(-aimag(c1),real(c1),4) c1=conjg(c11)*c21 c2=conjg(c12)*c22 ! z-component: up-up - dn-dn cmag(i,3)=c1-c2 ! density: up-up + dn-dn crho(i)=c1+c2 end do else ! collinear case !$OMP SIMD PRIVATE(c1,c2) SIMDLEN(8) do i=1,n c1=conjg(wf11(i))*wf21(i) c2=conjg(wf12(i))*wf22(i) cmag(i,1)=c1-c2 crho(i)=c1+c2 end do end if end subroutine elk-9.2.12/src/PaxHeaders/rminv.f900000644000000000000000000000013014536061314013701 xustar0029 mtime=1702388428.10050122 30 atime=1702388426.966502899 29 ctime=1702388428.10050122 elk-9.2.12/src/rminv.f900000644002504400250440000000143014536061314016423 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rminv(n,a) implicit none ! arguments integer, intent(in) :: n real(8), intent(inout) :: a(n,n) ! local variables integer info ! automatic arrays integer ipiv(n) real(8) work(n) call dgetrf(n,n,a,n,ipiv,info) if (info /= 0) then write(*,*) write(*,'("Error(rminv): unable to invert matrix")') write(*,'(" DGETRF returned INFO = ",I8)') info write(*,*) stop end if call dgetri(n,a,n,ipiv,work,n,info) if (info /= 0) then write(*,*) write(*,'("Error(rminv): unable to invert matrix")') write(*,'(" DGETRI returned INFO = ",I8)') info write(*,*) stop end if end subroutine elk-9.2.12/src/PaxHeaders/rtozfmt.f900000644000000000000000000000013214536061314014255 xustar0030 mtime=1702388428.101501218 30 atime=1702388426.967502897 30 ctime=1702388428.101501218 elk-9.2.12/src/rtozfmt.f900000644002504400250440000000416514536061314017005 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine rtozfmt(nr,nri,rfmt,zfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: rfmt(*) complex(8), intent(out) :: zfmt(*) ! local variables integer i call rtozflmn(lmaxi,nri,lmmaxi,rfmt,zfmt) i=lmmaxi*nri+1 call rtozflmn(lmaxo,nr-nri,lmmaxo,rfmt(i),zfmt(i)) return contains !BOP ! !ROUTINE: rtozflmn ! !INTERFACE: pure subroutine rtozflmn(lmax,n,ld,rflm,zflm) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum angular momentum (in,integer) ! n : number of functions to convert (in,integer) ! ld : leading dimension (in,integer) ! rflm : coefficients of real spherical harmonic expansion (in,real(ld,n)) ! zflm : coefficients of complex spherical harmonic expansion ! (out,complex(ld,n)) ! !DESCRIPTION: ! Converts a real function, $r_{lm}$, expanded in terms of real spherical ! harmonics into a complex spherical harmonic expansion, $z_{lm}$: ! $$ z_{lm}=\begin{cases} \frac{1}{\sqrt{2}}(r_{lm}+i(-1)^mr_{l-m}) & m>0 \\ ! \frac{1}{\sqrt{2}}((-1)^mr_{l-m}-ir_{lm}) & m<0 \\ ! r_{lm} & m=0 \end{cases}\;. $$ ! See routine {\tt genrlm}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax,n,ld real(8), intent(in) :: rflm(ld,n) complex(8), intent(out) :: zflm(ld,n) ! local variables integer l,m,lm1,lm2 ! real constant 1/sqrt(2) real(8), parameter :: c1=0.7071067811865475244d0 lm1=0 do l=0,lmax lm2=lm1+2*(l+1) do m=-l,-1 lm1=lm1+1 lm2=lm2-1 if (mod(m,2) /= 0) then zflm(lm1,:)=c1*cmplx(-rflm(lm2,:),-rflm(lm1,:),8) else zflm(lm1,:)=c1*cmplx(rflm(lm2,:),-rflm(lm1,:),8) end if end do lm1=lm1+1 lm2=lm2-1 zflm(lm1,:)=rflm(lm1,:) do m=1,l lm1=lm1+1 lm2=lm2-1 if (mod(m,2) /= 0) then zflm(lm1,:)=c1*cmplx(rflm(lm1,:),-rflm(lm2,:),8) else zflm(lm1,:)=c1*cmplx(rflm(lm1,:),rflm(lm2,:),8) end if end do end do end subroutine !EOC end subroutine elk-9.2.12/src/PaxHeaders/genwfsvp.f900000644000000000000000000000013214536061314014407 xustar0030 mtime=1702388428.102501217 30 atime=1702388426.969502894 30 ctime=1702388428.102501217 elk-9.2.12/src/genwfsvp.f900000644002504400250440000000376114536061314017140 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genwfsvp(tsh,tgp,nst,idx,ngdg,igf,vpl,ngp,igpig,wfmt,ld,wfir) use modmain implicit none ! arguments logical, intent(in) :: tsh,tgp integer, intent(in) :: nst,idx(*),ngdg(3),igf(*) real(8), intent(in) :: vpl(3) integer, intent(out) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(8), intent(out) :: wfmt(npcmtmax,natmtot,nspinor,nst) integer, intent(in) :: ld complex(8), intent(out) :: wfir(ld,nspinor,nst) ! local variables integer ispn real(8) vl(3),vc(3) ! automatic arrays real(8) vgpl(3,ngkmax,nspnfv),vgpc(3,ngkmax),gpc(ngkmax) ! allocatable arrays complex(8), allocatable :: sfacgp(:,:),apwalm(:,:,:,:,:) complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) allocate(sfacgp(ngkmax,natmtot)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) ! loop over first-variational spins do ispn=1,nspnfv vl(:)=vpl(:) vc(:)=bvec(:,1)*vpl(1)+bvec(:,2)*vpl(2)+bvec(:,3)*vpl(3) ! spin-spiral case if (spinsprl) then if (ispn == 1) then vl(:)=vl(:)+0.5d0*vqlss(:) vc(:)=vc(:)+0.5d0*vqcss(:) else vl(:)=vl(:)-0.5d0*vqlss(:) vc(:)=vc(:)-0.5d0*vqcss(:) end if end if ! generate the G+p-vectors call gengkvec(ngvc,ivg,vgc,vl,vc,gkmax,ngkmax,ngp(ispn),igpig(:,ispn), & vgpl(:,:,ispn),vgpc,gpc) ! generate structure factors for G+p-vectors call gensfacgp(ngp(ispn),vgpc,ngkmax,sfacgp) ! find the matching coefficients call match(ngp(ispn),vgpc,gpc,sfacgp,apwalm(:,:,:,:,ispn)) end do deallocate(sfacgp) ! get the first- and second-variational eigenvectors from file allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) call getevecfv(filext,0,vpl,vgpl,evecfv) call getevecsv(filext,0,vpl,evecsv) ! calculate the second-variational wavefunctions call genwfsv(tsh,tgp,nst,idx,ngdg,igf,ngp,igpig,apwalm,evecfv,evecsv,wfmt,ld, & wfir) deallocate(apwalm,evecfv,evecsv) end subroutine elk-9.2.12/src/PaxHeaders/genwfsvp_sp.f900000644000000000000000000000013214536061314015111 xustar0030 mtime=1702388428.103501215 30 atime=1702388426.970502893 30 ctime=1702388428.103501215 elk-9.2.12/src/genwfsvp_sp.f900000644002504400250440000000374714536061314017646 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genwfsvp_sp(tsh,tgp,nst,idx,ngdg,igf,vpl,ngp,igpig,wfmt,ld,wfir) use modmain implicit none ! arguments logical, intent(in) :: tsh,tgp integer, intent(in) :: nst,idx(*),ngdg(3),igf(*) real(8), intent(in) :: vpl(3) integer, intent(out) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(4), intent(out) :: wfmt(npcmtmax,natmtot,nspinor,nst) integer, intent(in) :: ld complex(4), intent(out) :: wfir(ld,nspinor,nst) ! local variables integer ispn real(8) vl(3),vc(3) ! automatic arrays real(8) vgpl(3,ngkmax,nspnfv),vgpc(3,ngkmax),gpc(ngkmax) ! allocatable arrays complex(8), allocatable :: sfacgp(:,:),apwalm(:,:,:,:,:) complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) allocate(sfacgp(ngkmax,natmtot)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) ! loop over first-variational spins do ispn=1,nspnfv vl(:)=vpl(:) vc(:)=bvec(:,1)*vpl(1)+bvec(:,2)*vpl(2)+bvec(:,3)*vpl(3) ! spin-spiral case if (spinsprl) then if (ispn == 1) then vl(:)=vl(:)+0.5d0*vqlss(:) vc(:)=vc(:)+0.5d0*vqcss(:) else vl(:)=vl(:)-0.5d0*vqlss(:) vc(:)=vc(:)-0.5d0*vqcss(:) end if end if ! generate the G+p-vectors call gengkvec(ngvc,ivg,vgc,vl,vc,gkmax,ngkmax,ngp(ispn),igpig(:,ispn), & vgpl(:,:,ispn),vgpc,gpc) ! generate structure factors for G+p-vectors call gensfacgp(ngp(ispn),vgpc,ngkmax,sfacgp) ! find the matching coefficients call match(ngp(ispn),vgpc,gpc,sfacgp,apwalm(:,:,:,:,ispn)) end do deallocate(sfacgp) ! get the first- and second-variational eigenvectors from file allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) call getevecfv(filext,0,vpl,vgpl,evecfv) call getevecsv(filext,0,vpl,evecsv) ! calculate the second-variational wavefunctions call genwfsv_sp(tsh,tgp,nst,idx,ngdg,igf,ngp,igpig,apwalm,evecfv,evecsv,wfmt, & ld,wfir) deallocate(apwalm,evecfv,evecsv) end subroutine elk-9.2.12/src/PaxHeaders/rdiracint.f900000644000000000000000000000013214536061314014527 xustar0030 mtime=1702388428.105501212 30 atime=1702388426.971502891 30 ctime=1702388428.105501212 elk-9.2.12/src/rdiracint.f900000644002504400250440000001077414536061314017262 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2015 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rdiracint ! !INTERFACE: pure subroutine rdiracint(sol,kpa,e,nr,r,vr,nn,g0,g1,f0,f1) ! !INPUT/OUTPUT PARAMETERS: ! sol : speed of light in atomic units (in,real) ! kpa : quantum number kappa (in,integer) ! e : energy (in,real) ! nr : number of radial mesh points (in,integer) ! r : radial mesh (in,real(nr)) ! vr : potential on radial mesh (in,real(nr)) ! nn : number of nodes (out,integer) ! g0 : m th energy derivative of the major component multiplied by r ! (out,real(nr)) ! g1 : radial derivative of g0 (out,real(nr)) ! f0 : m th energy derivative of the minor component multiplied by r ! (out,real(nr)) ! f1 : radial derivative of f0 (out,real(nr)) ! !DESCRIPTION: ! Integrates the radial Dirac equation from $r=0$ outwards. This involves ! using the predictor-corrector method to solve the coupled first-order ! equations (in atomic units) ! \begin{align*} ! \left(\frac{d}{dr}+\frac{\kappa}{r}\right)G_{\kappa}&=\frac{1}{c} ! \{2E_0+E-V\}F_{\kappa}\\ ! \left(\frac{d}{dr}-\frac{\kappa}{r}\right)F_{\kappa}&= ! -\frac{1}{c}\{E-V\}G_{\kappa}, ! \end{align*} ! where $G_{\kappa}=rg_{\kappa}$ and $F_{\kappa}=rf_{\kappa}$ are the major ! and minor components multiplied by $r$, respectively; $V$ is the external ! potential; $E_0$ is the electron rest energy; $E$ is the eigen energy ! (excluding $E_0$); and $\kappa=l$ for $j=l-\frac{1}{2}$ or $\kappa=-(l+1)$ ! for $j=l+\frac{1}{2}$. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) ! Polynomial order fixed to 3, September 2013 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: sol integer, intent(in) :: kpa real(8), intent(in) :: e integer, intent(in) :: nr real(8), intent(in) :: r(nr),vr(nr) integer, intent(out) :: nn real(8), intent(out) :: g0(nr),g1(nr) real(8), intent(out) :: f0(nr),f1(nr) ! local variables integer ir,ir0 ! rescaling limit real(8), parameter :: rsc=1.d100 real(8) ci,e0,t1,t2,t3,t4 ! inverse speed of light ci=1.d0/sol ! electron rest energy e0=sol**2 t1=2.d0*e0+e ! determine the r -> 0 boundary values of F and G t2=dble(kpa)/r(1) t3=ci*(t1-vr(1)) t4=ci*(vr(1)-e) f0(1)=1.d0 f1(1)=0.d0 g0(1)=(f1(1)-t2*f0(1))/t4 g1(1)=t3*f0(1)-t2*g0(1) ! extrapolate to the first four points g1(2:4)=g1(1) f1(2:4)=f1(1) nn=0 do ir=2,nr t2=dble(kpa)/r(ir) t3=ci*(t1-vr(ir)) t4=ci*(vr(ir)-e) ir0=ir-3 if (ir0 < 1) ir0=1 g1(ir)=poly3(r(ir0),g1(ir0),r(ir)) f1(ir)=poly3(r(ir0),f1(ir0),r(ir)) ! integrate to find wavefunction g0(ir)=poly4i(r(ir0),g1(ir0),r(ir))+g0(ir0) f0(ir)=poly4i(r(ir0),f1(ir0),r(ir))+f0(ir0) ! compute the derivatives g1(ir)=t3*f0(ir)-t2*g0(ir) f1(ir)=t4*g0(ir)+t2*f0(ir) ! integrate for correction g0(ir)=poly4i(r(ir0),g1(ir0),r(ir))+g0(ir0) f0(ir)=poly4i(r(ir0),f1(ir0),r(ir))+f0(ir0) ! compute the derivatives again g1(ir)=t3*f0(ir)-t2*g0(ir) f1(ir)=t4*g0(ir)+t2*f0(ir) ! check for overflow if ((abs(g0(ir)) > rsc).or.(abs(g1(ir)) > rsc).or. & (abs(f0(ir)) > rsc).or.(abs(f1(ir)) > rsc)) then ! set the remaining points and return g0(ir:nr)=g0(ir) g1(ir:nr)=g1(ir) f0(ir:nr)=f0(ir) f1(ir:nr)=f1(ir) return end if ! check for node if (g0(ir-1)*g0(ir) < 0.d0) nn=nn+1 end do return contains pure real(8) function poly3(xa,ya,x) implicit none ! arguments real(8), intent(in) :: xa(3),ya(3),x ! local variables real(8) x0,x1,x2,y0,y1,y2 real(8) c1,c2,t0,t1,t2 ! evaluate the polynomial coefficients x0=xa(1) x1=xa(2)-x0; x2=xa(3)-x0 y0=ya(1) y1=ya(2)-y0; y2=ya(3)-y0 t0=1.d0/(x1*x2*(x2-x1)) t1=x1*y2; t2=x2*y1 c1=x2*t2-x1*t1 c2=t1-t2 t1=x-x0 ! evaluate the polynomial poly3=y0+t0*t1*(c1+c2*t1) end function pure real(8) function poly4i(xa,ya,x) implicit none ! arguments real(8), intent(in) :: xa(4),ya(4),x ! local variables real(8) x0,x1,x2,x3,y0,y1,y2,y3 real(8) c1,c2,c3,t0,t1,t2,t3,t4,t5,t6 ! evaluate the polynomial coefficients x0=xa(1) x1=xa(2)-x0; x2=xa(3)-x0; x3=xa(4)-x0 y0=ya(1) y1=ya(2)-y0; y2=ya(3)-y0; y3=ya(4)-y0 t4=x1-x2; t5=x1-x3; t6=x2-x3 t1=x1*x2*y3; t2=x2*x3*y1; t3=x1*x3 t0=1.d0/(x2*t3*t4*t5*t6) t3=t3*y2 c3=t1*t4+t2*t6-t3*t5 t4=x1**2; t5=x2**2; t6=x3**2 c2=t1*(t5-t4)+t2*(t6-t5)+t3*(t4-t6) c1=t1*(x2*t4-x1*t5)+t2*(x3*t5-x2*t6)+t3*(x1*t6-x3*t4) t1=x-x0 ! integrate the polynomial poly4i=t1*(y0+t0*t1*(0.5d0*c1+t1*(0.3333333333333333333d0*c2+0.25d0*c3*t1))) end function end subroutine !EOC elk-9.2.12/src/PaxHeaders/rotzflm.f900000644000000000000000000000013214536061314014245 xustar0030 mtime=1702388428.106501211 30 atime=1702388426.973502888 30 ctime=1702388428.106501211 elk-9.2.12/src/rotzflm.f900000644002504400250440000000544514536061314016777 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rotzflm ! !INTERFACE: subroutine rotzflm(rot,lmin,lmax,lmmax,n,ld,zflm1,zflm2) ! !INPUT/OUTPUT PARAMETERS: ! rot : rotation matrix (in,real(3,3)) ! lmin : minimum angular momentum (in,integer) ! lmax : maximum angular momentum (in,integer) ! lmmax : (lmax+1)^2 or larger (in,integer) ! n : number of functions to rotate (in,integer) ! ld : leading dimension (in,integer) ! zflm1 : coefficients of the complex spherical harmonic expansion for each ! function (in,complex(ld,n)) ! zflm2 : coefficients of rotated functions (out,complex(ld,n)) ! !DESCRIPTION: ! Rotates a set of complex functions ! $$ f_i({\bf r})=\sum_{lm}f_{lm}^iY_{lm}(\hat{\bf r}) $$ ! for all $i$, given the coefficients $f_{lm}^i$ and a rotation matrix $R$. ! This is done by first the computing the Euler angles $(\alpha,\beta,\gamma)$ ! of $R^{-1}$ (see routine {\tt roteuler}) and then applying the spherical ! harmonic rotation matrix generated by the routine {\tt ylmrot}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Modified, December 2008 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rot(3,3) integer, intent(in) :: lmin,lmax,lmmax,n,ld complex(8), intent(in) :: zflm1(ld,n) complex(8), intent(out) :: zflm2(ld,n) ! local variables integer l,lm1,lm2,nm,p real(8) det,ang(3),angi(3) complex(8), parameter :: zzero=(0.d0,0.d0),zone=(1.d0,0.d0) ! automatic arrays complex(8) d(lmmax,lmmax) if (lmin < 0) then write(*,*) write(*,'("Error(rotzflm): lmin < 0 : ",I8)') lmin write(*,*) stop end if if (lmin > lmax) then write(*,*) write(*,'("Error(rotzflm): lmin > lmax : ",2I8)') lmin,lmax write(*,*) stop end if if (n == 0) return if (n < 0) then write(*,*) write(*,'("Error(rotzflm): n < 0 : ",I8)') n write(*,*) stop end if ! find the determinant det=rot(1,1)*(rot(2,2)*rot(3,3)-rot(3,2)*rot(2,3)) & +rot(2,1)*(rot(3,2)*rot(1,3)-rot(1,2)*rot(3,3)) & +rot(3,1)*(rot(1,2)*rot(2,3)-rot(2,2)*rot(1,3)) ! calculate the Euler angles of the proper rotation if (det > 0.d0) then p=1 call roteuler(rot,ang) else p=-1 call roteuler(-rot(:,:),ang) end if ! inverse rotation: the function is to be rotated, not the spherical harmonics angi(1)=-ang(3) angi(2)=-ang(2) angi(3)=-ang(1) ! determine the rotation matrix for complex spherical harmonics call ylmrot(p,angi,lmax,lmmax,d) ! apply rotation matrix (d and zflm may have different starting indices) lm1=lmin**2+1 lm2=1 do l=lmin,lmax nm=2*l+1 call zgemm('N','N',nm,n,nm,zone,d(lm1,lm1),lmmax,zflm1(lm2,1),ld,zzero, & zflm2(lm2,1),ld) lm1=lm1+nm lm2=lm2+nm end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/latvstep.f900000644000000000000000000000013214536061314014412 xustar0030 mtime=1702388428.107501209 30 atime=1702388426.974502887 30 ctime=1702388428.107501209 elk-9.2.12/src/latvstep.f900000644002504400250440000000200714536061314017133 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine latvstep use modmain use modmpi implicit none ! local variables integer i real(8) t1 do i=1,nstrain ! compute product of current and previous stress tensor components t1=stress(i)*stressp(i) ! if component is in the same direction then increase step size parameter if (t1 > 0.d0) then taulatv(i)=taulatv(i)+tau0latv else taulatv(i)=tau0latv end if t1=taulatv(i)*(stress(i)+stressp(i)) avec(:,:)=avec(:,:)-t1*strain(:,:,i) end do ! compute the new unit cell volume call reciplat(avec,bvec,omega,omegabz) ! preserve the volume if required (added by Ronald Cohen) if (latvopt == 2) then t1=(omega0/omega)**(1.d0/3.d0) avec(:,:)=t1*avec(:,:) omega=omega0 end if ! each MPI process should have numerically identical lattice vectors call mpi_bcast(avec,9,mpi_double_precision,0,mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/gradzfmt.f900000644000000000000000000000013214536061314014366 xustar0030 mtime=1702388428.109501206 30 atime=1702388426.976502884 30 ctime=1702388428.109501206 elk-9.2.12/src/gradzfmt.f900000644002504400250440000001375214536061314017120 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2009 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: gradzfmt ! !INTERFACE: subroutine gradzfmt(nr,nri,ri,wcr,zfmt,ld,gzfmt) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of points on inner part of muffin-tin (in,integer) ! ri : 1/r on the radial mesh (in,real(nr)) ! wcr : weights for spline coefficients on radial mesh (in,real(12,nr)) ! zfmt : complex muffin-tin function (in,complex(*)) ! ld : leading dimension (in,integer) ! gzfmt : gradient of zfmt (out,complex(ld,3)) ! !DESCRIPTION: ! Calculates the gradient of a complex muffin-tin function. In other words, ! given the spherical harmonic expansion coefficients, $f_{lm}(r)$, of a ! function $f({\bf r})$, the routine returns ${\bf F}_{lm}$ where ! $$ \sum_{lm}{\bf F}_{lm}(r)Y_{lm}(\hat{\bf r})=\nabla f({\bf r}). $$ ! This is done using the gradient formula (see, for example, V. Devanathan, ! {\em Angular Momentum Techniques In Quantum Mechanics}) ! \begin{align*} ! \nabla f_{lm}(r)Y_{lm}(\hat{\bf r})&=-\sqrt{\frac{l+1}{2l+1}} ! \left(\frac{d}{dr}-\frac{l}{r}\right)f_{lm}(r) ! {\bf Y}_{lm}^{l+1}(\hat{\bf r})\\ ! &+\sqrt{\frac{l}{2l+1}}\left(\frac{d}{dr}+\frac{l+1}{r}\right)f_{lm}(r) ! {\bf Y}_{lm}^{l-1}(\hat{\bf r}), ! \end{align*} ! where the vector spherical harmonics are determined from Clebsch-Gordan ! coefficients as follows: ! $$ {\bf Y}_{lm}^{l'}(\hat{\bf r})=\sum_{m'\mu} ! \begin{bmatrix} l' & 1 & l \\ m' & \mu & m \end{bmatrix} ! Y_{lm}(\hat{\bf r})\hat{\bf e}^{\mu} $$ ! and the (contravariant) spherical unit vectors are given by ! $$ \hat{\bf e}_{+1}=-\frac{\hat{\bf x}+i\hat{\bf y}}{\sqrt{2}}, ! \qquad\hat{\bf e}_0=\hat{\bf z},\qquad ! \hat{\bf e}_{-1}=\frac{\hat{\bf x}-i\hat{\bf y}}{\sqrt{2}}. $$ ! ! !REVISION HISTORY: ! Rewritten May 2009 (JKD) ! Modified, February 2020 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: ri(nr),wcr(12,nr) complex(8), intent(in) :: zfmt(*) integer, intent(in) :: ld complex(8), intent(out) :: gzfmt(ld,3) ! local variables integer nro,iro,ir,mu integer np,npi,i,i1,j integer l,m,lm,lm1 ! real constant 1/sqrt(2) real(8), parameter :: c1=0.7071067811865475244d0 real(8) t1,t2,t3 complex(8) z1 ! automatic arrays real(8) f1(nr),f2(nr),g1(nr),g2(nr) complex(8) drmt(ld) ! external functions real(8), external :: clebgor nro=nr-nri iro=nri+1 npi=lmmaxi*nri np=npi+lmmaxo*nro !----------------------------------------! ! compute the radial derivatives ! !----------------------------------------! do lm=1,lmmaxi i=lm do ir=1,nri f1(ir)=dble(zfmt(i)) f2(ir)=aimag(zfmt(i)) i=i+lmmaxi end do do ir=iro,nr f1(ir)=dble(zfmt(i)) f2(ir)=aimag(zfmt(i)) i=i+lmmaxo end do call splined(nr,wcr,f1,g1) call splined(nr,wcr,f2,g2) i=lm do ir=1,nri drmt(i)=cmplx(g1(ir),g2(ir),8) i=i+lmmaxi end do do ir=iro,nr drmt(i)=cmplx(g1(ir),g2(ir),8) i=i+lmmaxo end do end do do lm=lmmaxi+1,lmmaxo i=npi+lm do ir=iro,nr f1(ir)=dble(zfmt(i)) f2(ir)=aimag(zfmt(i)) i=i+lmmaxo end do call splined(nro,wcr(1,iro),f1(iro),g1(iro)) call splined(nro,wcr(1,iro),f2(iro),g2(iro)) i=npi+lm do ir=iro,nr drmt(i)=cmplx(g1(ir),g2(ir),8) i=i+lmmaxo end do end do !-----------------------------------------------------! ! compute the gradient in the spherical basis ! !-----------------------------------------------------! ! zero the gradient array gzfmt(1:np,:)=0.d0 ! inner part of muffin-tin lm=0 do l=0,lmaxi t1=-sqrt(dble(l+1)/dble(2*l+1)) if (l > 0) then t2=sqrt(dble(l)/dble(2*l+1)) else t2=0.d0 end if do m=-l,l lm=lm+1 j=1 do mu=-1,1 if (mu == 0) j=3 if (mu == 1) j=2 if (l+1 <= lmaxi) then ! index to (l,m) is l*(l+1)+m+1, therefore index to (l+1,m-mu) is lm1=(l+1)*(l+2)+(m-mu)+1 t3=t1*clebgor(l+1,1,l,m-mu,mu,m) i=lm; i1=lm1 do ir=1,nri gzfmt(i1,j)=gzfmt(i1,j)+t3*(drmt(i)-dble(l)*ri(ir)*zfmt(i)) i=i+lmmaxi; i1=i1+lmmaxi end do end if if (abs(m-mu) <= l-1) then ! index to (l-1,m-mu) lm1=(l-1)*l+(m-mu)+1 t3=t2*clebgor(l-1,1,l,m-mu,mu,m) i=lm; i1=lm1 do ir=1,nri gzfmt(i1,j)=gzfmt(i1,j)+t3*(drmt(i)+dble(l+1)*ri(ir)*zfmt(i)) i=i+lmmaxi; i1=i1+lmmaxi end do end if end do end do end do ! outer part of muffin-tin lm=0 do l=0,lmaxo t1=-sqrt(dble(l+1)/dble(2*l+1)) if (l > 0) then t2=sqrt(dble(l)/dble(2*l+1)) else t2=0.d0 end if do m=-l,l lm=lm+1 j=1 do mu=-1,1 if (mu == 0) j=3 if (mu == 1) j=2 if (l+1 <= lmaxo) then lm1=(l+1)*(l+2)+(m-mu)+1 t3=t1*clebgor(l+1,1,l,m-mu,mu,m) i=npi+lm; i1=npi+lm1 do ir=iro,nr gzfmt(i1,j)=gzfmt(i1,j)+t3*(drmt(i)-dble(l)*ri(ir)*zfmt(i)) i=i+lmmaxo; i1=i1+lmmaxo end do end if if (abs(m-mu) <= l-1) then lm1=(l-1)*l+(m-mu)+1 t3=t2*clebgor(l-1,1,l,m-mu,mu,m) i=npi+lm; i1=npi+lm1 do ir=iro,nr gzfmt(i1,j)=gzfmt(i1,j)+t3*(drmt(i)+dble(l+1)*ri(ir)*zfmt(i)) i=i+lmmaxo; i1=i1+lmmaxo end do end if end do end do end do !---------------------------------------------------! ! convert from spherical to Cartesian basis ! !---------------------------------------------------! ! note that the gradient transforms as a covariant vector, i.e. y -> -y i=0 do ir=1,nri do lm=1,lmmaxi i=i+1 z1=gzfmt(i,1) gzfmt(i,1)=c1*(z1-gzfmt(i,2)) z1=c1*(z1+gzfmt(i,2)) gzfmt(i,2)=cmplx(aimag(z1),-dble(z1),8) end do end do do ir=iro,nr do lm=1,lmmaxo i=i+1 z1=gzfmt(i,1) gzfmt(i,1)=c1*(z1-gzfmt(i,2)) z1=c1*(z1+gzfmt(i,2)) gzfmt(i,2)=cmplx(aimag(z1),-dble(z1),8) end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/eveqnfv.f900000644000000000000000000000013214536061314014222 xustar0030 mtime=1702388428.110501205 30 atime=1702388426.977502882 30 ctime=1702388428.110501205 elk-9.2.12/src/eveqnfv.f900000644002504400250440000000463014536061314016747 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: eveqnfv ! !INTERFACE: subroutine eveqnfv(nmatp,ngp,igpig,vpc,vgpc,apwalm,evalfv,evecfv) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! nmatp : order of overlap and Hamiltonian matrices (in,integer) ! ngp : number of G+p-vectors (in,integer) ! igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax)) ! vpc : p-vector in Cartesian coordinates (in,real(3)) ! vgpc : G+p-vectors in Cartesian coordinates (in,real(3,ngkmax)) ! apwalm : APW matching coefficients ! (in,complex(ngkmax,apwordmax,lmmaxapw,natmtot)) ! evalfv : first-variational eigenvalues (out,real(nstfv)) ! evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv)) ! !DESCRIPTION: ! Solves the eigenvalue equation, ! $$ (H-\epsilon O)b=0, $$ ! for the all the first-variational states of the input $p$-point. ! ! !REVISION HISTORY: ! Created March 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nmatp,ngp,igpig(ngkmax) real(8), intent(in) :: vpc(3),vgpc(3,ngkmax) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) real(8), intent(out) :: evalfv(nstfv) complex(8), intent(out) :: evecfv(nmatmax,nstfv) ! local variables integer nthd real(8) ts0,ts1 ! allocatable arrays complex(8), allocatable :: h(:,:),o(:,:) !-----------------------------------------------! ! Hamiltonian and overlap matrix set up ! !-----------------------------------------------! call timesec(ts0) allocate(h(nmatp,nmatp),o(nmatp,nmatp)) call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP SECTION ! Hamiltonian call hmlfv(nmatp,ngp,igpig,vgpc,apwalm,h) !$OMP SECTION ! overlap call olpfv(nmatp,ngp,igpig,apwalm,o) !$OMP END PARALLEL SECTIONS call freethd(nthd) call timesec(ts1) !$OMP ATOMIC timemat=timemat+ts1-ts0 !---------------------------------------! ! solve the eigenvalue equation ! !---------------------------------------! if (tefvr) then ! system has inversion symmetry: use real symmetric matrix eigen solver call eveqnfvr(nmatp,ngp,vpc,h,o,evalfv,evecfv) else ! no inversion symmetry: use complex Hermitian matrix eigen solver call eveqnfvz(nmatp,h,o,evalfv,evecfv) end if deallocate(h,o) end subroutine !EOC elk-9.2.12/src/PaxHeaders/cfsht.f900000644000000000000000000000013214536061314013657 xustar0030 mtime=1702388428.111501203 30 atime=1702388426.979502879 30 ctime=1702388428.111501203 elk-9.2.12/src/cfsht.f900000644002504400250440000000130714536061314016402 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cfsht(nr,nri,cfmt1,cfmt2) use modmain implicit none ! arguments integer, intent(in) :: nr,nri complex(4), intent(in) :: cfmt1(*) complex(4), intent(out) :: cfmt2(*) ! local variables integer i ! transform the inner part of the muffin-tin call cgemm('N','N',lmmaxi,nri,lmmaxi,cone,cfshti,lmmaxi,cfmt1,lmmaxi,czero, & cfmt2,lmmaxi) ! transform the outer part of the muffin-tin i=lmmaxi*nri+1 call cgemm('N','N',lmmaxo,nr-nri,lmmaxo,cone,cfshto,lmmaxo,cfmt1(i),lmmaxo, & czero,cfmt2(i),lmmaxo) end subroutine elk-9.2.12/src/PaxHeaders/wfmtsv_sp.f900000644000000000000000000000012614536061314014603 xustar0028 mtime=1702388428.1135012 30 atime=1702388426.980502878 28 ctime=1702388428.1135012 elk-9.2.12/src/wfmtsv_sp.f900000644002504400250440000001075514536061314017332 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wfmtsv_sp(tsh,is,ias,nst,idx,ngp,apwalm,evecfv,evecsv,ld,wfmt) use modmain use modomp implicit none ! arguments logical, intent(in) :: tsh integer, intent(in) :: is,ias,nst,idx(*),ngp(nspnfv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) integer, intent(in) :: ld complex(4), intent(out) :: wfmt(ld,nspinor,nst) ! local variables logical tasv integer io,ilo,ispn,jspn integer nrc,nrci,nrco,iro integer l,lm,npc,npci integer n,p,i,j,k,nthd complex(8) zq(2),z1 ! automatic arrays complex(8) x(nstfv,nspnfv),y(nlmwf(is),nspinor,nst) ! external functions complex(8), external :: zdotu iro=nrmti(is)+lradstp nrc=nrcmt(is) nrci=nrcmti(is) nrco=nrc-nrci npc=npcmt(is) npci=npcmti(is) ! de-phasing factor for spin-spirals if (ssdph) then zq(1)=zqss(ias) zq(2)=conjg(zq(1)) end if ! check if all the second-variational wavefunctions should be calculated if (idx(1) == 0) then tasv=.true. else tasv=.false. end if call holdthd(nst,nthd) !-----------------------! ! APW functions ! !-----------------------! !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(p,l,lm,io,ispn,jspn) & !$OMP PRIVATE(n,i,j,k,z1,ilo) & !$OMP NUM_THREADS(nthd) p=0 do l=0,lmaxo do lm=l**2+1,(l+1)**2 do io=1,apword(l,is) p=p+1 if (tevecsv) then do jspn=1,nspnfv n=ngp(jspn) !$OMP DO do j=1,nstfv x(j,jspn)=zdotu(n,evecfv(:,j,jspn),1,apwalm(:,io,lm,ias,jspn),1) end do !$OMP END DO end do ! loop only over required states !$OMP DO do j=1,nst ! index to state in evecsv if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=zdotu(nstfv,evecsv(1,k),1,x,1) if (spinpol) then jspn=jspnfv(2) y(p,2,j)=zdotu(nstfv,evecsv(nstfv+1,k),1,x(1,jspn),1) end if end do !$OMP END DO else !$OMP DO do j=1,nst if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=zdotu(ngp(1),evecfv(:,k,1),1,apwalm(:,io,lm,ias,1),1) end do !$OMP END DO end if end do end do end do !$OMP DO do j=1,nst wfmt(1:npc,:,j)=0.e0 do ispn=1,nspinor p=0 do l=0,lmaxo do lm=l**2+1,(l+1)**2 i=npci+lm do io=1,apword(l,is) p=p+1 z1=y(p,ispn,j) if (ssdph) z1=z1*zq(ispn) if (l <= lmaxi) then call cfzrf(nrci,z1,apwfr(1,1,io,l,ias),lmmaxi,wfmt(lm,ispn,j)) end if call cfzrf(nrco,z1,apwfr(iro,1,io,l,ias),lmmaxo,wfmt(i,ispn,j)) end do end do end do end do end do !$OMP END DO !---------------------------------! ! local-orbital functions ! !---------------------------------! p=0 do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 p=p+1 i=idxlo(lm,ilo,ias) if (tevecsv) then do jspn=1,nspnfv n=ngp(jspn) x(1:nstfv,jspn)=evecfv(n+i,1:nstfv,jspn) end do !$OMP DO do j=1,nst if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=zdotu(nstfv,evecsv(1,k),1,x,1) if (spinpol) then jspn=jspnfv(2) y(p,2,j)=zdotu(nstfv,evecsv(nstfv+1,k),1,x(1,jspn),1) end if end do !$OMP END DO else do j=1,nst if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=evecfv(ngp(1)+i,k,1) end do end if end do end do !$OMP DO do j=1,nst do ispn=1,nspinor p=0 do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 p=p+1 i=npci+lm z1=y(p,ispn,j) if (ssdph) z1=z1*zq(ispn) if (l <= lmaxi) then call cfzrf(nrci,z1,lofr(1,1,ilo,ias),lmmaxi,wfmt(lm,ispn,j)) end if call cfzrf(nrco,z1,lofr(iro,1,ilo,ias),lmmaxo,wfmt(i,ispn,j)) end do end do end do end do !$OMP END DO ! convert to spherical coordinates if required if (.not.tsh) then !$OMP DO do j=1,nst do ispn=1,nspinor call cbshtip(nrc,nrci,wfmt(:,ispn,j)) end do end do !$OMP END DO end if !$OMP END PARALLEL call freethd(nthd) return contains pure subroutine cfzrf(n,z,rf,ld,cf) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: z real(8), intent(in) :: rf(lradstp,n) integer, intent(in) :: ld complex(4), intent(inout) :: cf(ld,n) cf(1,:)=cf(1,:)+z*rf(1,:) end subroutine end subroutine elk-9.2.12/src/PaxHeaders/wfirsv.f900000644000000000000000000000013214536061314014070 xustar0030 mtime=1702388428.114501199 30 atime=1702388426.981502876 30 ctime=1702388428.114501199 elk-9.2.12/src/wfirsv.f900000644002504400250440000000427514536061314016622 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wfirsv(tgp,nst,idx,ngdg,igf,ngp,igpig,evecfv,evecsv,ld,wfir) use modmain use modomp implicit none ! arguments logical, intent(in) :: tgp integer, intent(in) :: nst,idx(*),ngdg(3),igf(*) integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) integer, intent(in) :: ld complex(8), intent(out) :: wfir(ld,nspinor,nst) ! local variables integer ist,ispn,jspn integer n,igp,i,j,k,nthd real(8) t0 complex(8) z1 ! automatic arrays complex(8) wfgp(ngkmax) t0=1.d0/sqrt(omega) call holdthd(nst,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(wfgp,k,i,ispn,jspn) & !$OMP PRIVATE(n,ist,z1,igp) & !$OMP NUM_THREADS(nthd) do j=1,nst ! index to state in evecsv if (idx(1) == 0) then; k=j; else; k=idx(j); end if if (tevecsv) then ! generate spinor wavefunction from second-variational eigenvectors i=0 do ispn=1,nspinor jspn=jspnfv(ispn) n=ngp(jspn) if (tgp) then wfir(1:n,ispn,j)=0.d0 else wfgp(1:n)=0.d0 end if do ist=1,nstfv i=i+1 z1=evecsv(i,k) if (abs(dble(z1))+abs(aimag(z1)) < epsocc) cycle if (tgp) then ! wavefunction in G+p-space wfir(1:n,ispn,j)=wfir(1:n,ispn,j)+z1*evecfv(1:n,ist,jspn) else ! wavefunction in real-space z1=t0*z1 wfgp(1:n)=wfgp(1:n)+z1*evecfv(1:n,ist,jspn) end if end do ! Fourier transform wavefunction to real-space if required if (.not.tgp) then wfir(:,ispn,j)=0.d0 do igp=1,n wfir(igf(igpig(igp,jspn)),ispn,j)=wfgp(igp) end do call zfftifc(3,ngdg,1,wfir(:,ispn,j)) end if end do else ! spin-unpolarised wavefunction n=ngp(1) if (tgp) then wfir(1:n,1,j)=evecfv(1:n,k,1) else wfir(:,1,j)=0.d0 do igp=1,n wfir(igf(igpig(igp,1)),1,j)=t0*evecfv(igp,k,1) end do call zfftifc(3,ngdg,1,wfir(:,1,j)) end if end if end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/wfirsv_sp.f900000644000000000000000000000013214536061314014572 xustar0030 mtime=1702388428.115501197 30 atime=1702388426.983502874 30 ctime=1702388428.115501197 elk-9.2.12/src/wfirsv_sp.f900000644002504400250440000000426014536061314017316 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wfirsv_sp(tgp,nst,idx,ngdg,igf,ngp,igpig,evecfv,evecsv,ld,wfir) use modmain use modomp implicit none ! arguments logical, intent(in) :: tgp integer, intent(in) :: nst,idx(*),ngdg(3),igf(*) integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) integer, intent(in) :: ld complex(4), intent(out) :: wfir(ld,nspinor,nst) ! local variables integer ist,ispn,jspn integer n,igp,i,j,k,nthd real(8) t0 complex(8) z1 ! automatic arrays complex(4) wfgp(ngkmax) t0=1.d0/sqrt(omega) call holdthd(nst,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(wfgp,k,i,ispn,jspn) & !$OMP PRIVATE(n,ist,z1,igp) & !$OMP NUM_THREADS(nthd) do j=1,nst ! index to state in evecsv if (idx(1) == 0) then; k=j; else; k=idx(j); end if if (tevecsv) then ! generate spinor wavefunction from second-variational eigenvectors i=0 do ispn=1,nspinor jspn=jspnfv(ispn) n=ngp(jspn) if (tgp) then wfir(1:n,ispn,j)=0.e0 else wfgp(1:n)=0.e0 end if do ist=1,nstfv i=i+1 z1=evecsv(i,k) if (abs(dble(z1))+abs(aimag(z1)) < epsocc) cycle if (tgp) then ! wavefunction in G+p-space wfir(1:n,ispn,j)=wfir(1:n,ispn,j)+z1*evecfv(1:n,ist,jspn) else ! wavefunction in real-space z1=t0*z1 wfgp(1:n)=wfgp(1:n)+z1*evecfv(1:n,ist,jspn) end if end do ! Fourier transform wavefunction to real-space if required if (.not.tgp) then wfir(:,ispn,j)=0.e0 do igp=1,n wfir(igf(igpig(igp,jspn)),ispn,j)=wfgp(igp) end do call cfftifc(3,ngdg,1,wfir(:,ispn,j)) end if end do else ! spin-unpolarised wavefunction n=ngp(1) if (tgp) then wfir(1:n,1,j)=evecfv(1:n,k,1) else wfir(:,1,j)=0.e0 do igp=1,n wfir(igf(igpig(igp,1)),1,j)=t0*evecfv(igp,k,1) end do call cfftifc(3,ngdg,1,wfir(:,1,j)) end if end if end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/genwfsv_sp.f900000644000000000000000000000013214536061314014731 xustar0030 mtime=1702388428.117501194 30 atime=1702388426.984502872 30 ctime=1702388428.117501194 elk-9.2.12/src/genwfsv_sp.f900000644002504400250440000000235114536061314017454 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genwfsv_sp(tsh,tgp,nst,idx,ngdg,igf,ngp,igpig,apwalm,evecfv,evecsv, & wfmt,ld,wfir) use modmain use modomp implicit none ! arguments logical, intent(in) :: tsh,tgp integer, intent(in) :: nst,idx(*),ngdg(3),igf(*) integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) complex(4), intent(out) :: wfmt(npcmtmax,natmtot,nspinor,nst) integer, intent(in) :: ld complex(4), intent(out) :: wfir(ld,nspinor,nst) ! local variables integer is,ias,ldmt,nthd ! muffin-tin wavefunction ldmt=npcmtmax*natmtot call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) call wfmtsv_sp(tsh,is,ias,nst,idx,ngp,apwalm,evecfv,evecsv,ldmt, & wfmt(1,ias,1,1)) end do !$OMP END PARALLEL DO call freethd(nthd) ! interstitial wavefunction call wfirsv_sp(tgp,nst,idx,ngdg,igf,ngp,igpig,evecfv,evecsv,ld,wfir) end subroutine elk-9.2.12/src/PaxHeaders/ggamt_4.f900000644000000000000000000000013214536061314014072 xustar0030 mtime=1702388428.118501193 30 atime=1702388426.986502869 30 ctime=1702388428.118501193 elk-9.2.12/src/ggamt_4.f900000644002504400250440000000251414536061314016616 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine ggamt_4(is,np,gvrho,vx,vc,wx,wc,dtdr,dtdgr2) use modmain implicit none ! arguments integer, intent(in) :: is,np real(8), intent(in) :: gvrho(np,3) real(8), intent(inout) :: vx(np),vc(np) real(8), intent(in) :: wx(np),wc(np) real(8), intent(in) :: dtdr(np),dtdgr2(np) ! local variables integer nr,nri,i ! automatic arrays real(8) grfmt(np,3),rfmt1(np),rfmt2(np),rfmt3(np) nr=nrmt(is) nri=nrmti(is) !------------------! ! exchange ! !------------------! vx(1:np)=vx(1:np)+wx(1:np)*dtdr(1:np) rfmt1(1:np)=wx(1:np)*dtdgr2(1:np) do i=1,3 rfmt2(1:np)=rfmt1(1:np)*gvrho(1:np,i) call rfsht(nr,nri,rfmt2,rfmt3) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt3,np,grfmt) call rbsht(nr,nri,grfmt(:,i),rfmt2) vx(1:np)=vx(1:np)-2.d0*rfmt2(1:np) end do !---------------------! ! correlation ! !---------------------! vc(1:np)=vc(1:np)+wc(1:np)*dtdr(1:np) rfmt1(1:np)=wc(1:np)*dtdgr2(1:np) do i=1,3 rfmt2(1:np)=rfmt1(1:np)*gvrho(1:np,i) call rfsht(nr,nri,rfmt2,rfmt3) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt3,np,grfmt) call rbsht(nr,nri,grfmt(:,i),rfmt2) vc(1:np)=vc(1:np)-2.d0*rfmt2(1:np) end do end subroutine elk-9.2.12/src/PaxHeaders/ggair_4.f900000644000000000000000000000013014536061314014062 xustar0029 mtime=1702388428.12050119 30 atime=1702388426.987502867 29 ctime=1702388428.12050119 elk-9.2.12/src/ggair_4.f900000644002504400250440000000267414536061314016617 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine ggair_4(gvrho,vx,vc,wx,wc,dtdr,dtdgr2) use modmain implicit none ! arguments real(8), intent(in) :: gvrho(ngtot,3) real(8), intent(inout) :: vx(ngtot),vc(ngtot) real(8), intent(in) :: wx(ngtot),wc(ngtot) real(8), intent(in) :: dtdr(ngtot),dtdgr2(ngtot) ! local variables integer ig,ifg,i ! allocatable arrays real(8), allocatable :: rfir(:) complex(8), allocatable :: zfft1(:),zfft2(:) allocate(rfir(ngtot),zfft1(ngtot),zfft2(ngtot)) !------------------! ! exchange ! !------------------! vx(:)=vx(:)+wx(:)*dtdr(:) rfir(:)=wx(:)*dtdgr2(:) do i=1,3 zfft1(:)=rfir(:)*gvrho(:,i) call zfftifc(3,ngridg,-1,zfft1) zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) vx(:)=vx(:)-2.d0*dble(zfft2(:)) end do !---------------------! ! correlation ! !---------------------! vc(:)=vc(:)+wc(:)*dtdr(:) rfir(:)=wc(:)*dtdgr2(:) do i=1,3 zfft1(:)=rfir(:)*gvrho(:,i) call zfftifc(3,ngridg,-1,zfft1) zfft2(:)=0.d0 do ig=1,ngvec ifg=igfft(ig) zfft2(ifg)=vgc(i,ig)*cmplx(-aimag(zfft1(ifg)),dble(zfft1(ifg)),8) end do call zfftifc(3,ngridg,1,zfft2) vc(:)=vc(:)-2.d0*dble(zfft2(:)) end do deallocate(rfir,zfft1,zfft2) end subroutine elk-9.2.12/src/PaxHeaders/trzhmm.f900000644000000000000000000000013214536061314014071 xustar0030 mtime=1702388428.121501189 30 atime=1702388426.988502866 30 ctime=1702388428.121501189 elk-9.2.12/src/trzhmm.f900000644002504400250440000000201214536061314016606 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: trzhmm ! !INTERFACE: pure real(8) function trzhmm(n,a,b) ! !INPUT/OUTPUT PARAMETERS: ! n : order of matrix (in,integer) ! a : Hermitian matrix A (in,complex(n,n)) ! b : Hermitian matrix B (in,complex(n,n)) ! !DESCRIPTION: ! Calculates the trace of the product of two Hermitian matrices, $\tr(AB)$. ! Only the upper triangular parts of $A$ and $B$ are referenced. ! ! !REVISION HISTORY: ! Created December 2021 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: a(n,n),b(n,n) ! local variables integer i,j real(8) sm sm=0.d0 ! off-diagonal contribution (use upper triangular part) do j=1,n do i=1,j-1 sm=sm+dble(a(i,j)*conjg(b(i,j))) end do end do sm=sm*2.d0 ! diagonal contribution do i=1,n sm=sm+dble(a(i,i))*dble(b(i,i)) end do trzhmm=sm end function !EOC elk-9.2.12/src/PaxHeaders/gengvec.f900000644000000000000000000000013214536061314014166 xustar0030 mtime=1702388428.122501187 30 atime=1702388426.990502863 30 ctime=1702388428.122501187 elk-9.2.12/src/gengvec.f900000644002504400250440000000571714536061314016722 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2012 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: gengvec ! !INTERFACE: subroutine gengvec ! !USES: use modmain ! !DESCRIPTION: ! Generates a set of ${\bf G}$-vectors used for the Fourier transform of the ! charge density and potential and sorts them according to length. Integers ! corresponding to the vectors in lattice coordinates are stored, as well as ! the map from these integer coordinates to the ${\bf G}$-vector index. A map ! from the ${\bf G}$-vector set to the standard FFT array structure is also ! generated. Finally, the number of ${\bf G}$-vectors with magnitude less than ! {\tt gmaxvr} is determined. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! local variables integer ig,jg,i1,i2,i3,j1,j2,j3 real(8) v1(3),v2(3),v3(3) ! allocatable arrays integer, allocatable :: idx(:),ivg1(:,:) real(8), allocatable :: vgc1(:,:),gc1(:) if (gmaxvr < 0.d0) gmaxvr=abs(gmaxvr)*gkmax ! ensure |G| cut-off is at least twice |G+k| cut-off gmaxvr=max(gmaxvr,2.d0*gkmax+epslat) ! find the G-vector grid sizes call gridsize(avec,gmaxvr,ngridg,ngtot,intgv) ! allocate global G-vector arrays if (allocated(ivg)) deallocate(ivg) allocate(ivg(3,ngtot)) if (allocated(ivgig)) deallocate(ivgig) allocate(ivgig(intgv(1,1):intgv(2,1),intgv(1,2):intgv(2,2), & intgv(1,3):intgv(2,3))) if (allocated(igfft)) deallocate(igfft) allocate(igfft(ngtot)) if (allocated(vgc)) deallocate(vgc) allocate(vgc(3,ngtot)) if (allocated(gc)) deallocate(gc) allocate(gc(ngtot)) ! allocate local arrays allocate(idx(ngtot),ivg1(3,ngtot)) allocate(vgc1(3,ngtot),gc1(ngtot)) ig=0 do i1=intgv(1,1),intgv(2,1) v1(:)=dble(i1)*bvec(:,1) do i2=intgv(1,2),intgv(2,2) v2(:)=v1(:)+dble(i2)*bvec(:,2) do i3=intgv(1,3),intgv(2,3) v3(:)=v2(:)+dble(i3)*bvec(:,3) ig=ig+1 ! map from G-vector to (i1,i2,i3) index ivg1(1,ig)=i1 ivg1(2,ig)=i2 ivg1(3,ig)=i3 ! G-vector in Cartesian coordinates vgc1(:,ig)=v3(:) ! length of each G-vector gc1(ig)=sqrt(v3(1)**2+v3(2)**2+v3(3)**2) end do end do end do ! sort by vector length call sortidx(ngtot,gc1,idx) ! reorder arrays do ig=1,ngtot jg=idx(ig) ivg(1:3,ig)=ivg1(1:3,jg) gc(ig)=gc1(jg) vgc(1:3,ig)=vgc1(1:3,jg) end do ! find the number of vectors with |G| < gmaxvr ngvec=1 do ig=2,ngtot if (gc(ig) > gmaxvr) then ngvec=ig-1 exit end if end do ! generate index arrays do ig=1,ngtot i1=ivg(1,ig) i2=ivg(2,ig) i3=ivg(3,ig) ! map from (i1,i2,i3) to G-vector index ivgig(i1,i2,i3)=ig ! Fourier transform index if (i1 >= 0) then j1=i1 else j1=ngridg(1)+i1 end if if (i2 >= 0) then j2=i2 else j2=ngridg(2)+i2 end if if (i3 >= 0) then j3=i3 else j3=ngridg(3)+i3 end if igfft(ig)=j3*ngridg(2)*ngridg(1)+j2*ngridg(1)+j1+1 end do deallocate(idx,ivg1,vgc1,gc1) end subroutine !EOC elk-9.2.12/src/PaxHeaders/wigner3j.f900000644000000000000000000000013214536061314014300 xustar0030 mtime=1702388428.124501184 30 atime=1702388426.991502862 30 ctime=1702388428.124501184 elk-9.2.12/src/wigner3j.f900000644002504400250440000000501714536061314017025 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: wigner3j ! !INTERFACE: real(8) function wigner3j(j1,j2,j3,m1,m2,m3) ! !INPUT/OUTPUT PARAMETERS: ! j1, j2, j3 : angular momentum quantum numbers (in,integer) ! m1, m2, m3 : magnetic quantum numbers (in,integer) ! !DESCRIPTION: ! Returns the Wigner $3j$-symbol. There are many equivalent formulae for ! the $3j$-symbols, the following provides high accuracy for $j\le 50$ ! \begin{align*} ! &\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix}= \\ ! &(-1)^{j1+j2+m3}\sqrt{\frac{(j_1+m_1)!\,(j_2+m_2)!\,(j_3+m_3)!\, ! (j_3-m_3)!\,(j_1-m_1)!\,(j_2-m_2)!}{(j_2-j_1+j_3)!\,(j_1-j_2+j_3)!\, ! (j_1+j_2-j_3)!\,(1+j_1+j_2+j_3)!}}\,\sum_k(-1)^k \\ ! &\frac{(j_2-j_1+j_3)!\,(j_1-j_2+j_3)!\,(j_1+j_2-j_3)!}{(j_3-j_1-m_2+k)!\, ! (j_3-j_2+m_1+k)!\,(j_1+j_2-j_3-k)!\,k!\,(j_1-m_1-k)!\,(j_2+m_2-k)!}, ! \end{align*} ! where the sum is over all integers $k$ for which the factorials in the ! summand are non-negative. ! ! !REVISION HISTORY: ! Created November 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: j1,j2,j3 integer, intent(in) :: m1,m2,m3 ! local variables integer k,k1,k2,l1,l2,l3,n1,n2 real(8) sgn,sm,t1 ! external functions real(8), external :: factn,factr ! check input variables if ((j1 < 0).or.(j2 < 0).or.(j3 < 0).or.(abs(m1) > j1).or.(abs(m2) > j2) & .or.(abs(m3) > j3)) then write(*,*) write(*,'("Error(wigner3j): invalid arguments :")') write(*,'("j1 = ",I8," j2 = ",I8," j3 = ",I8)') j1,j2,j3 write(*,'("m1 = ",I8," m2 = ",I8," m3 = ",I8)') m1,m2,m3 write(*,*) stop end if if ((j1 == 0).and.(j2 == 0).and.(j3 == 0)) then wigner3j=1.d0 return end if if ((j1 > 50).or.(j2 > 50).or.(j3 > 50)) then write(*,*) write(*,'("Error(wigner3j): angular momenta out of range : ",3I8)') j1,j2,j3 write(*,*) stop end if l1=j2-j1+j3 l2=j1-j2+j3 l3=j1+j2-j3 if ((m1+m2+m3 /= 0).or.(l1 < 0).or.(l2 < 0).or.(l3 < 0)) then wigner3j=0.d0 return end if n1=j1-m1 n2=j2+m2 k1=max(0,n1-l2,n2-l1) k2=min(l3,n1,n2) if (mod(k1-j1+j2+m3,2) /= 0) then sgn=-1.d0 else sgn=1.d0 end if sm=0.d0 do k=k1,k2 t1=sgn*factr(l1,l1-n2+k)*factr(l2,l2-n1+k)*factr(l3,l3-k) sm=sm+t1/(factn(k)*factn(n1-k)*factn(n2-k)) sgn=-sgn end do t1=factr(j1+m1,l1)*factr(j2+m2,l2)*factr(j3+m3,l3) t1=t1*factr(j3-m3,1+j1+j2+j3)*factn(j1-m1)*factn(j2-m2) wigner3j=sm*sqrt(t1) end function !EOC elk-9.2.12/src/PaxHeaders/gengvc.f900000644000000000000000000000013214536061314014021 xustar0030 mtime=1702388428.125501183 30 atime=1702388426.993502859 30 ctime=1702388428.125501183 elk-9.2.12/src/gengvc.f900000644002504400250440000000224614536061314016547 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengvc use modmain implicit none ! local variables integer ig,i1,i2,i3,j1,j2,j3 real(8) gk2 ! find optimal grid size for |G| < 2 gkmax gk2=2.d0*gkmax+epslat ngdgc(:)=int(gk2*sqrt(avec(1,:)**2+avec(2,:)**2+avec(3,:)**2)/pi)+1 ! find next largest FFT-compatible grid size (radices 2, 3, 5 and 7) call nfftifc(4,ngdgc(1)) call nfftifc(4,ngdgc(2)) call nfftifc(4,ngdgc(3)) ! total number of points in coarse grid ngtc=ngdgc(1)*ngdgc(2)*ngdgc(3) ! find the number of vectors with |G| < 2 gkmax ngvc=ngvec do ig=2,ngvec if (gc(ig) > gk2) then ngvc=ig-1 exit end if end do ! Fourier transform index if (allocated(igfc)) deallocate(igfc) allocate(igfc(ngvc)) do ig=1,ngvc i1=ivg(1,ig) i2=ivg(2,ig) i3=ivg(3,ig) if (i1 >= 0) then j1=i1 else j1=ngdgc(1)+i1 end if if (i2 >= 0) then j2=i2 else j2=ngdgc(2)+i2 end if if (i3 >= 0) then j3=i3 else j3=ngdgc(3)+i3 end if igfc(ig)=j3*ngdgc(2)*ngdgc(1)+j2*ngdgc(1)+j1+1 end do end subroutine elk-9.2.12/src/PaxHeaders/potnucl.f900000644000000000000000000000013214536061314014234 xustar0030 mtime=1702388428.126501181 30 atime=1702388426.994502857 30 ctime=1702388428.126501181 elk-9.2.12/src/potnucl.f900000644002504400250440000000313114536061314016754 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: potnucl ! !INTERFACE: subroutine potnucl(ptnucl,nr,r,zn,vn) ! !INPUT/OUTPUT PARAMETERS: ! ptnucl : .true. if the nucleus is a point charge (in,logical) ! nr : number of radial mesh points (in,integer) ! r : radial mesh (in,real(nr)) ! zn : nuclear charge (in,real) ! vn : potential on radial mesh (out,real(nr)) ! !DESCRIPTION: ! Computes the nuclear Coulomb potential on a radial mesh. The nuclear radius ! $R$ is estimated from the nuclear charge $Z$ and the potential is given by ! $$ V(r)=\begin{cases} ! Z(3R^2-r^2)/2R^3 & r 2 gkmax if (trimvg) call trimrfg(vxcir) ! effective potential from sum of Coulomb and exchange-correlation potentials do ias=1,natmtot is=idxis(ias) np=npmt(is) vsmt(1:np,ias)=vclmt(1:np,ias)+vxcmt(1:np,ias) end do vsir(1:ngtot)=vclir(1:ngtot)+vxcir(1:ngtot) ! generate the effective magnetic fields call genbs call timesec(ts1) timepot=timepot+ts1-ts0 end subroutine !EOC elk-9.2.12/src/PaxHeaders/mtdmin.f900000644000000000000000000000013214536061314014040 xustar0030 mtime=1702388428.136501166 30 atime=1702388427.005502841 30 ctime=1702388428.136501166 elk-9.2.12/src/mtdmin.f900000644002504400250440000000337714536061314016574 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: mtdmin ! !INTERFACE: pure subroutine mtdmin(is,js,dmin) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! is, js : species numbers (out,integer) ! dmin : minimum distance between muffin-tin surfaces (out,real) ! !DESCRIPTION: ! Finds the atomic species pair for which the distance between the muffin-tin ! surfaces is a minimum. This distance may be negative if the muffin-tins ! overlap. ! ! !REVISION HISTORY: ! Created October 2011 (JKD) !EOP !BOC implicit none ! arguments integer, intent(out) :: is,js real(8), intent(out) :: dmin ! local variables integer i1,i2,i3,ks,ka,ls,la real(8) d2,d2m,r,r2,rm,dr,drm real(8) v1,v2,v3,w1,w2,w3 is=1 js=1 drm=1.d8 do i1=-1,1; do i2=-1,1; do i3=-1,1 v1=i1*avec(1,1)+i2*avec(1,2)+i3*avec(1,3) v2=i1*avec(2,1)+i2*avec(2,2)+i3*avec(2,3) v3=i1*avec(3,1)+i2*avec(3,2)+i3*avec(3,3) do ks=1,nspecies do ka=1,natoms(ks) w1=v1+atposc(1,ka,ks) w2=v2+atposc(2,ka,ks) w3=v3+atposc(3,ka,ks) do ls=1,nspecies r=rmt(ks)+rmt(ls) r2=r**2 do la=1,natoms(ls) if ((i1 /= 0).or.(i2 /= 0).or.(i3 /= 0).or. & (ks /= ls).or.(ka /= la)) then d2=(w1-atposc(1,la,ls))**2 & +(w2-atposc(2,la,ls))**2 & +(w3-atposc(3,la,ls))**2 dr=d2-r2 if (dr < drm-epslat) then is=ks js=ls rm=r d2m=d2 drm=dr end if end if end do end do end do end do end do; end do; end do dmin=sqrt(d2m)-rm end subroutine !EOC elk-9.2.12/src/PaxHeaders/rfcopy.f900000644000000000000000000000013214536061314014052 xustar0030 mtime=1702388428.137501165 30 atime=1702388427.006502839 30 ctime=1702388428.137501165 elk-9.2.12/src/rfcopy.f900000644002504400250440000000104514536061314016574 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine rfcopy(rfmt1,rfir1,rfmt2,rfir2) use modmain implicit none ! arguments real(8), intent(in) :: rfmt1(npmtmax,natmtot),rfir1(ngtot) real(8), intent(out) :: rfmt2(npmtmax,natmtot),rfir2(ngtot) ! local variables integer is,ias do ias=1,natmtot is=idxis(ias) rfmt2(1:npmt(is),ias)=rfmt1(1:npmt(is),ias) end do rfir2(:)=rfir1(:) end subroutine elk-9.2.12/src/PaxHeaders/rhomagv.f900000644000000000000000000000013214536061314014213 xustar0030 mtime=1702388428.138501163 30 atime=1702388427.007502838 30 ctime=1702388428.138501163 elk-9.2.12/src/rhomagv.f900000644002504400250440000000632714536061314016745 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhomagv use modmain use modmpi use modomp implicit none ! local variables integer ik,ispn,idm integer is,ias,n,nthd ! automatic arrays integer(8) lock(natmtot) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:,:),evecsv(:,:) ! set the charge density and magnetisation to zero do ias=1,natmtot is=idxis(ias) rhomt(1:npcmt(is),ias)=0.d0 end do rhoir(1:ngtc)=0.d0 do idm=1,ndmag do ias=1,natmtot is=idxis(ias) magmt(1:npcmt(is),ias,idm)=0.d0 end do magir(1:ngtc,idm)=0.d0 end do ! initialise the OpenMP locks do ias=1,natmtot call omp_init_lock(lock(ias)) end do call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(apwalm,evecfv,evecsv,ispn) & !$OMP NUM_THREADS(nthd) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! find the matching coefficients do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! add to the density and magnetisation call rhomagk(ngk(:,ik),igkig(:,:,ik),lock,wkpt(ik),occsv(:,ik),apwalm, & evecfv,evecsv) end do !$OMP END DO deallocate(apwalm,evecfv,evecsv) !$OMP END PARALLEL call freethd(nthd) ! destroy the OpenMP locks do ias=1,natmtot call omp_destroy_lock(lock(ias)) end do ! convert muffin-tin density/magnetisation to spherical harmonics call rhomagsh call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP PRIVATE(idm) & !$OMP NUM_THREADS(nthd) !$OMP SECTION ! symmetrise the density call symrf(nrcmt,nrcmti,npcmt,ngdgc,ngtc,ngvc,igfc,npmtmax,rhomt,rhoir) ! convert the muffin-tin density from coarse to fine radial mesh call rfmtctof(rhomt) ! convert the interstitial density from coarse to fine grid call rfirctof(rhoir,rhoir) !$OMP SECTION if (spinpol) then ! symmetrise the magnetisation call symrvf(.true.,ncmag,nrcmt,nrcmti,npcmt,ngdgc,ngtc,ngvc,igfc,npmtmax, & magmt,ngtot,magir) ! convert the muffin-tin magnetisation from coarse to fine radial mesh do idm=1,ndmag call rfmtctof(magmt(:,:,idm)) end do ! convert the interstitial magnetisation from coarse to fine grid do idm=1,ndmag call rfirctof(magir(:,idm),magir(:,idm)) end do end if !$OMP END PARALLEL SECTIONS call freethd(nthd) ! add densities from each process and redistribute if (np_mpi > 1) then n=npmtmax*natmtot call mpi_allreduce(mpi_in_place,rhomt,n,mpi_double_precision,mpi_sum,mpicom, & ierror) call mpi_allreduce(mpi_in_place,rhoir,ngtot,mpi_double_precision,mpi_sum, & mpicom,ierror) if (spinpol) then n=n*ndmag call mpi_allreduce(mpi_in_place,magmt,n,mpi_double_precision,mpi_sum, & mpicom,ierror) n=ngtot*ndmag call mpi_allreduce(mpi_in_place,magir,n,mpi_double_precision,mpi_sum, & mpicom,ierror) end if end if end subroutine elk-9.2.12/src/PaxHeaders/eveqn.f900000644000000000000000000000013214536061314013666 xustar0030 mtime=1702388428.139501162 30 atime=1702388427.009502835 30 ctime=1702388428.139501162 elk-9.2.12/src/eveqn.f900000644002504400250440000000414714536061314016416 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: eveqn subroutine eveqn(ik,evalfv,evecfv,evecsv) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ik : k-point number (in,integer) ! evalfv : first-variational eigenvalues (out,real(nstfv)) ! evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv)) ! evecsv : second-variational eigenvectors (out,complex(nstsv,nstsv)) ! !DESCRIPTION: ! Solves the first- and second-variational eigenvalue equations. See routines ! {\tt match}, {\tt eveqnfv}, {\tt eveqnss} and {\tt eveqnsv}. ! ! !REVISION HISTORY: ! Created March 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ik real(8), intent(out) :: evalfv(nstfv,nspnfv) complex(8), intent(out) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) ! local variables integer jspn ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) ! loop over first-variational spins (nspnfv=2 for spin-spirals only) do jspn=1,nspnfv ! find the matching coefficients call match(ngk(jspn,ik),vgkc(:,:,jspn,ik),gkc(:,jspn,ik), & sfacgk(:,:,jspn,ik),apwalm(:,:,:,:,jspn)) ! solve the first-variational eigenvalue equation if (tefvit) then ! iteratively call eveqnit(nmat(jspn,ik),ngk(jspn,ik),igkig(:,jspn,ik),vkl(:,ik), & vgkl(:,:,jspn,ik),vgkc(:,:,jspn,ik),apwalm(:,:,:,:,jspn),evalfv(:,jspn), & evecfv(:,:,jspn)) else ! directly call eveqnfv(nmat(jspn,ik),ngk(jspn,ik),igkig(:,jspn,ik),vkc(:,ik), & vgkc(:,:,jspn,ik),apwalm(:,:,:,:,jspn),evalfv(:,jspn),evecfv(:,:,jspn)) end if end do if (spinsprl) then ! solve the spin-spiral second-variational eigenvalue equation call eveqnss(ngk(:,ik),igkig(:,:,ik),apwalm,evalfv,evecfv,evalsv(:,ik),evecsv) else ! solve the second-variational eigenvalue equation call eveqnsv(ngk(1,ik),igkig(:,1,ik),vgkc(:,:,1,ik),apwalm,evalfv,evecfv, & evalsv(:,ik),evecsv) end if deallocate(apwalm) end subroutine !EOC elk-9.2.12/src/PaxHeaders/genffacgp.f900000644000000000000000000000013214536061314014470 xustar0030 mtime=1702388428.141501159 30 atime=1702388427.010502834 30 ctime=1702388428.141501159 elk-9.2.12/src/genffacgp.f900000644002504400250440000000202214536061314017206 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genffacgp ! !INTERFACE: pure subroutine genffacgp(is,gpc,ffacgp) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! is : species number (in,integer) ! gpc : length of G+p-vectors (in,real(ngtot)) ! ffacgp : form factors (out,real(ngtot)) ! !DESCRIPTION: ! Generates the form factors used to determine the smooth characteristic ! function. See {\tt gencfun} for details. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: is real(8), intent(in) :: gpc(ngtot) real(8), intent(out) :: ffacgp(ngtot) ! local variables integer ig real(8) t1,t2 t1=fourpi/omega do ig=1,ngtot if (gpc(ig) > epslat) then t2=gpc(ig)*rmt(is) ffacgp(ig)=t1*(sin(t2)-t2*cos(t2))/(gpc(ig)**3) else ffacgp(ig)=(t1/3.d0)*rmt(is)**3 end if end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/unitary.f900000644000000000000000000000013214536061314014243 xustar0030 mtime=1702388428.142501157 30 atime=1702388427.012502831 30 ctime=1702388428.142501157 elk-9.2.12/src/unitary.f900000644002504400250440000000274714536061314016777 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: unitary ! !INTERFACE: subroutine unitary(n,a) ! !INPUT/OUTPUT PARAMETERS: ! n : order of matrix (in,integer) ! a : complex square matrix (inout,complex(n,n)) ! !DESCRIPTION: ! Finds the closest unitary matrix (in terms of the Frobenius norm) to a ! given matrix $A$. Let $U\Sigma V^{\dag}$ be the singular value ! decomposition of $A$. Then it can be shown that $UV^{\dag}$ is the closest ! unitary matrix to $A$. The input matrix is overwritten by this matrix. ! ! !REVISION HISTORY: ! Created January 2020 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n complex(8), intent(inout) :: a(n,n) ! local variables integer info complex(8), parameter :: zzero=(0.d0,0.d0),zone=(1.d0,0.d0) ! automatic arrays real(8) s(n),rwork(5*n) complex(8) work(3*n) ! allocatable arrays complex(8), allocatable :: u(:,:),vt(:,:) ! perform singular value decomposition on matrix allocate(u(n,n),vt(n,n)) call zgesvd('A','A',n,n,a,n,s,u,n,vt,n,work,3*n,rwork,info) if (info /= 0) then write(*,*) write(*,'("Error(unitary): singular value decomposition failed")') write(*,'(" ZGESVD returned INFO = ",I8)') info write(*,*) stop end if ! multiply the two unitary matrices together and store in the input matrix call zgemm('N','N',n,n,n,zone,u,n,vt,n,zzero,a,n) deallocate(u,vt) end subroutine !EOC elk-9.2.12/src/PaxHeaders/zmdet.f900000644000000000000000000000013214536061314013673 xustar0030 mtime=1702388428.144501155 30 atime=1702388427.013502829 30 ctime=1702388428.144501155 elk-9.2.12/src/zmdet.f900000644002504400250440000000244414536061314016421 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: zmdet ! !INTERFACE: complex(8) function zmdet(n,a) ! !INPUT/OUTPUT PARAMETERS: ! n : order of matrix (in,integer) ! a : complex square matrix (inout,complex(n,n)) ! !DESCRIPTION: ! Calculates the determinant of a complex matrix $A$ by using its $LU$ ! decomposition with partial pivoting. Let $A=PLU$ where $P$ is the ! permutation matrix corresponding to row interchanges, then ! \begin{align*} ! |A|&=|P||L||U| \\ ! &=(-1)^p\prod_{i=1}^n U_{ii}, ! \end{align*} ! where $p$ is the number of interchanges. Note that the input matrix is ! destroyed on exit. ! ! !REVISION HISTORY: ! Created January 2020 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n complex(8), intent(inout) :: a(n,n) ! local variables integer i,m,info ! automatic arrays integer ipiv(n) ! perform an LU factorisation of the input matrix call zgetrf(n,n,a,n,ipiv,info) ! multiply diagonal elements of U together zmdet=a(1,1) do i=2,n zmdet=zmdet*a(i,i) end do ! determine the sign from the number of row interchanges m=1 do i=1,n if (ipiv(i) /= i) m=-m end do if (m == -1) zmdet=-zmdet end function !EOC elk-9.2.12/src/PaxHeaders/rfmtftoc.f900000644000000000000000000000013214536061314014374 xustar0030 mtime=1702388428.145501153 30 atime=1702388427.015502826 30 ctime=1702388428.145501153 elk-9.2.12/src/rfmtftoc.f900000644002504400250440000000122714536061314017120 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine rfmtftoc(nrc,nrci,rfmt,rfcmt) use modmain implicit none ! arguments integer, intent(in) :: nrc,nrci real(8), intent(in) :: rfmt(*) real(8), intent(out) :: rfcmt(*) ! local variables integer irc,i,j,m,n i=1 j=1 m=lmmaxi*lradstp n=lmmaxi-1 do irc=1,nrci rfcmt(i:i+n)=rfmt(j:j+n) i=i+lmmaxi j=j+m end do j=j+(lradstp-1)*(lmmaxo-lmmaxi) m=lmmaxo*lradstp n=lmmaxo-1 do irc=nrci+1,nrc rfcmt(i:i+n)=rfmt(j:j+n) i=i+lmmaxo j=j+m end do end subroutine elk-9.2.12/src/PaxHeaders/zminv.f900000644000000000000000000000013214536061314013713 xustar0030 mtime=1702388428.146501151 30 atime=1702388427.017502823 30 ctime=1702388428.146501151 elk-9.2.12/src/zminv.f900000644002504400250440000000170014536061314016433 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zminv(n,a) use modomp implicit none ! arguments integer, intent(in) :: n complex(8), intent(inout) :: a(n,n) ! local variables integer info,nthd,nts ! automatic arrays integer ipiv(n) complex(8) work(n) ! enable MKL parallelism call holdthd(maxthdmkl,nthd) nts=mkl_set_num_threads_local(nthd) call zgetrf(n,n,a,n,ipiv,info) if (info /= 0) then write(*,*) write(*,'("Error(zminv): unable to invert matrix")') write(*,'(" ZGETRF returned INFO = ",I8)') info write(*,*) stop end if call zgetri(n,a,n,ipiv,work,n,info) if (info /= 0) then write(*,*) write(*,'("Error(zminv): unable to invert matrix")') write(*,'(" ZGETRI returned INFO = ",I8)') info write(*,*) stop end if nts=mkl_set_num_threads_local(0) call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/symrf.f900000644000000000000000000000013014536061314013706 xustar0029 mtime=1702388428.14750115 30 atime=1702388427.018502822 29 ctime=1702388428.14750115 elk-9.2.12/src/symrf.f900000644002504400250440000000373214536061314016437 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: symrf ! !INTERFACE: subroutine symrf(nr,nri,np,ngdg,ngt,ngv,igf,ld,rfmt,rfir) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial points for each species (in,integer(nspecies)) ! nri : number of radial points on the inner part (in,integer(nspecies)) ! np : total number of points in each muffin-tin (in,integer(nspecies)) ! ngdg : G-vector grid sizes (in,integer(3)) ! ngt : total number of G-vectors (in,integer) ! ngv : number of G-vectors within cut-off (in,integer) ! igf : map from G-vector index to FFT array (in,integer(ngv)) ! ld : leading dimension (in,integer) ! rfmt : real muffin-tin function (inout,real(ld,natmtot)) ! rfir : real intersitial function (inout,real(ngtot)) ! !DESCRIPTION: ! Symmetrises a real scalar function defined over the entire unit cell using ! the full set of crystal symmetries. In the muffin-tin of a particular atom ! the spherical harmonic coefficients of every equivlent atom are rotated and ! averaged. The interstitial part of the function is first Fourier transformed ! to $G$-space, and then averaged over each symmetry by rotating the Fourier ! coefficients and multiplying them by a phase factor corresponding to the ! symmetry translation. ! ! !REVISION HISTORY: ! Created May 2007 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr(nspecies),nri(nspecies),np(nspecies) integer, intent(in) :: ngdg(3),ngt,ngv,igf(ngv),ld real(8), intent(inout) :: rfmt(ld,natmtot),rfir(ngt) ! local variables integer nthd call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP SECTION call symrfmt(nr,nri,np,ld,rfmt) !$OMP SECTION call symrfir(ngdg,ngt,ngv,igf,rfir) !$OMP END PARALLEL SECTIONS call freethd(nthd) end subroutine !EOC elk-9.2.12/src/PaxHeaders/genvmat.f900000644000000000000000000000013214536061314014211 xustar0030 mtime=1702388428.149501147 30 atime=1702388427.020502819 30 ctime=1702388428.149501147 elk-9.2.12/src/genvmat.f900000644002504400250440000000532214536061314016735 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genvmat(vmt,vir,vmat) ! generates potential matrix elements for all states and k-points use modmain use modmpi use modomp implicit none ! arguments real(8), intent(in) :: vmt(npmtmax,natmtot),vir(ngtot) complex(8), intent(out) :: vmat(nstsv,nstsv,nkpt) ! local variables integer ik,ispn integer is,ias,nrc,nrci integer n,lp,nthd ! allocatable arrays real(8), allocatable :: vmt1(:,:),vir1(:) complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:),evecsv(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfgk(:,:,:) ! allocate local arrays allocate(vmt1(npcmtmax,natmtot),vir1(ngtot)) call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is,nrc,nrci) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) ! convert muffin-tin potential to a coarse radial mesg call rfmtftoc(nrc,nrci,vmt(:,ias),vmt1(:,ias)) ! convert potential to spherical coordinates call rbshtip(nrc,nrci,vmt1(:,ias)) ! multiply by the radial integration weights call rfcmtwr(nrc,nrci,wrcmt(:,is),vmt1(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) ! multiply interstitial potential by characteristic function vir1(:)=vir(:)*cfunir(:) ! loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(apwalm,evecfv,evecsv) & !$OMP PRIVATE(wfmt,wfgk,ispn) & !$OMP NUM_THREADS(nthd) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfgk(ngkmax,nspinor,nstsv)) !$OMP DO do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! find the matching coefficients do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! calculate the wavefunctions for all states of the input k-point call genwfsv_sp(.false.,.true.,nstsv,[0],ngridg,igfft,ngk(:,ik), & igkig(:,:,ik),apwalm,evecfv,evecsv,wfmt,ngkmax,wfgk) call genvmatk(vmt1,vir1,ngk(:,ik),igkig(:,:,ik),wfmt,ngkmax,wfgk,vmat(:,:,ik)) end do !$OMP END DO deallocate(apwalm,evecfv,evecsv,wfmt,wfgk) !$OMP END PARALLEL call freethd(nthd) ! broadcast matrix elements to every process if (np_mpi > 1) then n=nstsv*nstsv do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(vmat(:,:,ik),n,mpi_double_complex,lp,mpicom,ierror) end do end if deallocate(vmt1,vir1) end subroutine elk-9.2.12/src/PaxHeaders/writeeval.f900000644000000000000000000000013214536061314014552 xustar0030 mtime=1702388428.151501144 30 atime=1702388427.021502817 30 ctime=1702388428.151501144 elk-9.2.12/src/writeeval.f900000644002504400250440000000264114536061314017277 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writeeval ! !INTERFACE: subroutine writeeval ! !USES: use modmain ! !DESCRIPTION: ! Outputs the second-variational eigenvalues and occupation numbers to the ! file {\tt EIGVAL.OUT}. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! local variables integer ik,ist,is,ia,ias ! write out the valence eigenvalues open(50,file='EIGVAL'//trim(filext),form='FORMATTED') write(50,'(I6," : nkpt")') nkpt write(50,'(I6," : nstsv")') nstsv do ik=1,nkpt write(50,*) write(50,'(I6,3G18.10," : k-point, vkl")') ik,vkl(:,ik) write(50,'(" (state, eigenvalue and occupancy below)")') do ist=1,nstsv write(50,'(I6,2G18.10)') ist,evalsv(ist,ik),occsv(ist,ik) end do write(50,*) end do close(50) ! write out the core eigenvalues open(50,file='EVALCORE'//trim(filext),form='FORMATTED') do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is,trim(spsymb(is)),ia do ist=1,nstsp(is) if (spcore(ist,is)) then write(50,'(" n = ",I2,", l = ",I2,", k = ",I2," : ",G18.10)') & nsp(ist,is),lsp(ist,is),ksp(ist,is),evalcr(ist,ias) end if end do end do end do close(50) end subroutine !EOC elk-9.2.12/src/PaxHeaders/mixerifc.f900000644000000000000000000000013214536061314014356 xustar0030 mtime=1702388428.152501143 30 atime=1702388427.022502816 30 ctime=1702388428.152501143 elk-9.2.12/src/mixerifc.f900000644002504400250440000000303614536061314017102 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine mixerifc(mtype,n,v,dv,nwork,work) use modmain implicit none ! arguments integer, intent(in) :: mtype,n real(8), intent(inout) :: v(n) real(8), intent(out) :: dv integer, intent(inout) :: nwork real(8), intent(inout) :: work(*) select case(mtype) case(0) ! linear mixing if (nwork <= 0) then nwork=n return end if call mixlinear(iscl,amixpm(1),n,v,work,dv) case(1) ! adaptive linear mixing if (nwork <= 0) then nwork=3*n return end if call mixadapt(iscl,amixpm(1),amixpm(2),n,v,work,work(n+1),work(2*n+1),dv) case(3) ! Broyden mixing if (nwork <= 0) then nwork=(4+2*mixsdb)*n+mixsdb**2 return end if call mixbroyden(iscl,n,mixsdb,broydpm(1),broydpm(2),v,work,work(2*n+1), & work(4*n+1),work((4+mixsdb)*n+1),work((4+2*mixsdb)*n+1),dv) case default write(*,*) write(*,'("Error(mixerifc): mtype not defined : ",I8)') mtype write(*,*) stop end select end subroutine subroutine getmixdata(mtype,mixdescr) implicit none ! arguments integer, intent(in) :: mtype character(*), intent(out) :: mixdescr select case(mtype) case(0) mixdescr='Linear mixing' case(1) mixdescr='Adaptive linear mixing' case(3) mixdescr='Broyden mixing, J. Phys. A: Math. Gen. 17, L317 (1984)' case default write(*,*) write(*,'("Error(getmixdata): mixtype not defined : ",I8)') mtype write(*,*) stop end select end subroutine elk-9.2.12/src/PaxHeaders/splinew.f900000644000000000000000000000013214536061314014231 xustar0030 mtime=1702388428.153501141 30 atime=1702388427.024502813 30 ctime=1702388428.153501141 elk-9.2.12/src/splinew.f900000644002504400250440000000267214536061314016762 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine splinew(n,wc,f,cf) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wc(4,3,n),f(n) real(8), intent(out) :: cf(3,n) ! local variables integer i real(8) f1,f2,f3,f4 f1=f(1); f2=f(2); f3=f(3); f4=f(4) cf(1,1)=wc(1,1,1)*f1+wc(2,1,1)*f2+wc(3,1,1)*f3+wc(4,1,1)*f4 cf(2,1)=wc(1,2,1)*f1+wc(2,2,1)*f2+wc(3,2,1)*f3+wc(4,2,1)*f4 cf(3,1)=wc(1,3,1)*f1+wc(2,3,1)*f2+wc(3,3,1)*f3+wc(4,3,1)*f4 cf(1,2)=wc(1,1,2)*f1+wc(2,1,2)*f2+wc(3,1,2)*f3+wc(4,1,2)*f4 cf(2,2)=wc(1,2,2)*f1+wc(2,2,2)*f2+wc(3,2,2)*f3+wc(4,2,2)*f4 cf(3,2)=wc(1,3,2)*f1+wc(2,3,2)*f2+wc(3,3,2)*f3+wc(4,3,2)*f4 !$OMP SIMD LASTPRIVATE(f1,f2,f3,f4) SIMDLEN(8) do i=3,n-2 f1=f(i-1); f2=f(i); f3=f(i+1); f4=f(i+2) cf(1,i)=wc(1,1,i)*f1+wc(2,1,i)*f2+wc(3,1,i)*f3+wc(4,1,i)*f4 cf(2,i)=wc(1,2,i)*f1+wc(2,2,i)*f2+wc(3,2,i)*f3+wc(4,2,i)*f4 cf(3,i)=wc(1,3,i)*f1+wc(2,3,i)*f2+wc(3,3,i)*f3+wc(4,3,i)*f4 end do i=n-1 cf(1,i)=wc(1,1,i)*f1+wc(2,1,i)*f2+wc(3,1,i)*f3+wc(4,1,i)*f4 cf(2,i)=wc(1,2,i)*f1+wc(2,2,i)*f2+wc(3,2,i)*f3+wc(4,2,i)*f4 cf(3,i)=wc(1,3,i)*f1+wc(2,3,i)*f2+wc(3,3,i)*f3+wc(4,3,i)*f4 cf(1,n)=wc(1,1,n)*f1+wc(2,1,n)*f2+wc(3,1,n)*f3+wc(4,1,n)*f4 cf(2,n)=wc(1,2,n)*f1+wc(2,2,n)*f2+wc(3,2,n)*f3+wc(4,2,n)*f4 cf(3,n)=wc(1,3,n)*f1+wc(2,3,n)*f2+wc(3,3,n)*f3+wc(4,3,n)*f4 end subroutine elk-9.2.12/src/PaxHeaders/nfftifc.f900000644000000000000000000000012714536061314014173 xustar0029 mtime=1702388428.15450114 29 atime=1702388427.02650281 29 ctime=1702388428.15450114 elk-9.2.12/src/nfftifc.f900000644002504400250440000000233214536061314016711 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: nfftifc ! !INTERFACE: subroutine nfftifc(np,n) ! !INPUT/OUTPUT PARAMETERS: ! np : number of allowed primes (in,integer) ! n : required/avalable grid size (inout,integer) ! !DESCRIPTION: ! Interface to the grid requirements of the fast Fourier transform routine. ! Most routines restrict $n$ to specific prime factorisations. This routine ! returns the next largest grid size allowed by the FFT routine. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: np integer, intent(inout) :: n ! local variables integer i,j integer, parameter :: p(10)=[2,3,5,7,11,13,17,19,23,29] if ((np < 1).or.(np > 10)) then write(*,*) write(*,'("Error(nfftifc): np out of range : ",I8)') np write(*,*) stop end if if (n <= 0) then write(*,*) write(*,'("Error(nfftifc): n <= 0 : ",I8)') n write(*,*) stop end if 10 continue i=n do j=1,np do while(mod(i,p(j)) == 0) i=i/p(j) end do end do if (i /= 1) then n=n+1 goto 10 end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/batchdv.f900000644000000000000000000000013214536061314014163 xustar0030 mtime=1702388428.156501137 30 atime=1702388427.027502808 30 ctime=1702388428.156501137 elk-9.2.12/src/batchdv.f900000644002504400250440000000430114536061314016703 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine batchdv use modmain use modvars use modmpi implicit none ! no increment for first task if (itask <= 1) return ! only increment for ground-state tasks if (all(task /= [0,1,2,3])) return ! increment selected variables if (any(dngridk(:) /= 0)) then ngridk(:)=ngridk(:)+dngridk(:) if (mp_mpi) write(*,'("Info(batchdv): incremented ngridk")') end if if (dlmaxapw /= 0) then lmaxapw=lmaxapw+dlmaxapw if (mp_mpi) write(*,'("Info(batchdv): incremented lmaxapw")') end if if (dlmaxo /= 0) then lmaxo=lmaxo+dlmaxo if (mp_mpi) write(*,'("Info(batchdv): incremented lmaxo")') end if if (any(davec(:,:) /= 0.d0)) then avec(:,:)=avec(:,:)+davec(:,:) if (mp_mpi) write(*,'("Info(batchdv): incremented avec")') end if if (any(datposl(:,:,:) /= 0.d0)) then atposl(:,:,:)=atposl(:,:,:)+datposl(:,:,:) if (mp_mpi) write(*,'("Info(batchdv): incremented atposl")') end if if (drgkmax /= 0.d0) then rgkmax=rgkmax+drgkmax if (mp_mpi) write(*,'("Info(batchdv): incremented rgkmax")') end if if (dgmaxvr /= 0.d0) then gmaxvr=gmaxvr+dgmaxvr if (mp_mpi) write(*,'("Info(batchdv): incremented gmaxvr")') end if if (dnempty0 /= 0.d0) then nempty0=nempty0+dnempty0 if (mp_mpi) write(*,'("Info(batchdv): incremented nempty")') end if if (dchgexs /= 0.d0) then chgexs=chgexs+dchgexs if (mp_mpi) write(*,'("Info(batchdv): incremented chgexs")') end if if (dsxcscf /= 0.d0) then sxcscf=sxcscf+dsxcscf if (mp_mpi) write(*,'("Info(batchdv): incremented sxcscf")') end if if (dnrmtscf /= 0.d0) then nrmtscf=nrmtscf+dnrmtscf if (mp_mpi) write(*,'("Info(batchdv): incremented nrmtscf")') end if if (any(dudufix(:) /= 0.d0)) then udufix(:)=udufix(:)+dudufix(:) if (mp_mpi) write(*,'("Info(batchdv): incremented udufix")') end if if (any(dmomfix(:) /= 0.d0)) then momfix(:)=momfix(:)+dmomfix(:) if (mp_mpi) write(*,'("Info(batchdv): incremented momfix")') end if if (any(dbfieldc0(:) /= 0.d0)) then bfieldc0(:)=bfieldc0(:)+dbfieldc0(:) if (mp_mpi) write(*,'("Info(batchdv): incremented dbfieldc0")') end if end subroutine elk-9.2.12/src/PaxHeaders/readevalsv.f900000644000000000000000000000013214536061314014704 xustar0030 mtime=1702388428.157501135 30 atime=1702388427.029502805 30 ctime=1702388428.157501135 elk-9.2.12/src/readevalsv.f900000644002504400250440000000064714536061314017435 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readevalsv use modmain implicit none ! local variables integer ik ! get the second-variational eigenvalues from file for all k-points do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) end do end subroutine elk-9.2.12/src/PaxHeaders/readoccsv.f900000644000000000000000000000013214536061314014521 xustar0030 mtime=1702388428.158501134 30 atime=1702388427.030502804 30 ctime=1702388428.158501134 elk-9.2.12/src/readoccsv.f900000644002504400250440000000063014536061314017242 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readoccsv use modmain implicit none ! local variables integer ik ! get the occupation numbers from file for all k-points do ik=1,nkpt call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do end subroutine elk-9.2.12/src/PaxHeaders/z2mm.f900000644000000000000000000000013214536061314013435 xustar0030 mtime=1702388428.159501132 30 atime=1702388427.032502801 30 ctime=1702388428.159501132 elk-9.2.12/src/z2mm.f900000644002504400250440000000155314536061314016163 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: z2mm ! !INTERFACE: pure subroutine z2mm(a,b,c) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix 1 (in,complex(2,2)) ! b : input matrix 2 (in,complex(2,2)) ! c : output matrix (out,complex(2,2)) ! !DESCRIPTION: ! Multiplies two complex $2\times 2$ matrices. Note that the output matrix ! cannot be one of the input matrices. ! ! !REVISION HISTORY: ! Created October 2007 (JKD) !EOP !BOC implicit none ! arguments complex(8), intent(in) :: a(2,2),b(2,2) complex(8), intent(out) :: c(2,2) c(1,1)=a(1,1)*b(1,1)+a(1,2)*b(2,1) c(2,1)=a(2,1)*b(1,1)+a(2,2)*b(2,1) c(1,2)=a(1,1)*b(1,2)+a(1,2)*b(2,2) c(2,2)=a(2,1)*b(1,2)+a(2,2)*b(2,2) end subroutine !EOC elk-9.2.12/src/PaxHeaders/z2mctm.f900000644000000000000000000000013014536061314013762 xustar0030 mtime=1702388428.161501129 28 atime=1702388427.0335028 30 ctime=1702388428.161501129 elk-9.2.12/src/z2mctm.f900000644002504400250440000000171514536061314016512 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: z2mctm ! !INTERFACE: pure subroutine z2mctm(a,b,c) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix 1 (in,complex(2,2)) ! b : input matrix 2 (in,complex(2,2)) ! c : output matrix (out,complex(2,2)) ! !DESCRIPTION: ! Multiplies the conjugate transpose of one complex $2\times 2$ matrix with ! another. Note that the output matrix cannot be one of the input matrices. ! ! !REVISION HISTORY: ! Created October 2007 (JKD) !EOP !BOC implicit none ! arguments complex(8), intent(in) :: a(2,2),b(2,2) complex(8), intent(out) :: c(2,2) c(1,1)=conjg(a(1,1))*b(1,1)+conjg(a(2,1))*b(2,1) c(2,1)=conjg(a(1,2))*b(1,1)+conjg(a(2,2))*b(2,1) c(1,2)=conjg(a(1,1))*b(1,2)+conjg(a(2,1))*b(2,2) c(2,2)=conjg(a(1,2))*b(1,2)+conjg(a(2,2))*b(2,2) end subroutine !EOC elk-9.2.12/src/PaxHeaders/z2mmct.f900000644000000000000000000000013214536061314013764 xustar0030 mtime=1702388428.162501128 30 atime=1702388427.035502796 30 ctime=1702388428.162501128 elk-9.2.12/src/z2mmct.f900000644002504400250440000000170314536061314016507 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: z2mmct ! !INTERFACE: pure subroutine z2mmct(a,b,c) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix 1 (in,complex(2,2)) ! b : input matrix 2 (in,complex(2,2)) ! c : output matrix (out,complex(2,2)) ! !DESCRIPTION: ! Multiplies a $2\times 2$ matrix with the conjugate transpose of another. ! Note that the output matrix cannot be one of the input matrices. ! ! !REVISION HISTORY: ! Created October 2007 (JKD) !EOP !BOC implicit none ! arguments complex(8), intent(in) :: a(2,2),b(2,2) complex(8), intent(out) :: c(2,2) c(1,1)=a(1,1)*conjg(b(1,1))+a(1,2)*conjg(b(1,2)) c(2,1)=a(2,1)*conjg(b(1,1))+a(2,2)*conjg(b(1,2)) c(1,2)=a(1,1)*conjg(b(2,1))+a(1,2)*conjg(b(2,2)) c(2,2)=a(2,1)*conjg(b(2,1))+a(2,2)*conjg(b(2,2)) end subroutine !EOC elk-9.2.12/src/PaxHeaders/zmctmu.f900000644000000000000000000000013214536061314014067 xustar0030 mtime=1702388428.163501126 30 atime=1702388427.036502795 30 ctime=1702388428.163501126 elk-9.2.12/src/zmctmu.f900000644002504400250440000000144414536061314016614 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zmctmu(l,n,a,b,ld,c) use modomp implicit none ! arguments integer, intent(in) :: l,n complex(8), intent(in) :: a(l,n),b(l,n) integer, intent(in) :: ld complex(8), intent(inout) :: c(ld,*) ! local variables integer i,j,nthd ! external functions real(8), external :: ddot complex(8), external :: zdotc call holdthd(n,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(i) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do j=1,n do i=1,j-1 c(i,j)=c(i,j)+zdotc(l,a(1,i),1,b(1,j),1) end do c(j,j)=c(j,j)+ddot(2*l,a(1,j),1,b(1,j),1) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/zmctm.f900000644000000000000000000000013214536061314013702 xustar0030 mtime=1702388428.165501123 30 atime=1702388427.037502793 30 ctime=1702388428.165501123 elk-9.2.12/src/zmctm.f900000644002504400250440000000133714536061314016430 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zmctm(l,m,n,a,b,ld,c) use modomp implicit none ! arguments integer, intent(in) :: l,m,n complex(8), intent(in) :: a(l,m),b(l,n) integer, intent(in) :: ld complex(8), intent(inout) :: c(ld,*) ! local variables integer i,j,nthd ! external functions complex(8), external :: zdotc call holdthd(n,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(i) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do j=1,n do i=1,m c(i,j)=c(i,j)+zdotc(l,a(:,i),1,b(:,j),1) end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/rzmctmu.f900000644000000000000000000000013214536061314014251 xustar0030 mtime=1702388428.166501122 30 atime=1702388427.039502791 30 ctime=1702388428.166501122 elk-9.2.12/src/rzmctmu.f900000644002504400250440000000127414536061314016777 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rzmctmu(l,n,a,b,ld,c) use modomp implicit none ! arguments integer, intent(in) :: l,n ! pass in complex arrays as real real(8), intent(in) :: a(2*l,n),b(2*l,n) integer, intent(in) :: ld complex(8), intent(inout) :: c(ld,*) ! local variables integer i,j,nthd call holdthd(n,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(i) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do j=1,n do i=1,j c(i,j)=c(i,j)+dot_product(a(:,i),b(:,j)) end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/moldyn.f900000644000000000000000000000013014536061314014050 xustar0029 mtime=1702388428.16750112 30 atime=1702388427.040502789 29 ctime=1702388428.16750112 elk-9.2.12/src/moldyn.f900000644002504400250440000000553414536061314016603 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine moldyn use modmain use modtddft use modmpi use modomp use moddelf implicit none ! local variables integer is,ia ! initialise universal variables call init0 ! store original parameters atposl0(:,:,:)=atposl(:,:,:) atposc0(:,:,:)=atposc(:,:,:) tshift0=tshift tforce0=tforce tfav00=tfav0 trimvg0=trimvg ! no shifting of atomic basis allowed tshift=.false. ! calculate atomic forces tforce=.true. ! average force can be non-zero (allow for translation of atomic basis) tfav0=.false. ! trim the Fourier components of the exchange-correlation potential trimvg=.true. ! generate the time step grid call gentimes if (task == 420) then ! calculation starts at t=0 tdt0=.true. else ! calculation restarts tdt0=.false. end if if (tdt0) then ! start from t=0 itimes0=1 else ! restart if required call readtimes itimes0=itimes0+ntsforce trdatdv=.true. end if if (trdatdv) then ! read the atomic displacements and velocities call readatdvc else ! set the displacements and velocities to zero atdvc(:,:,:,:)=0.d0 end if trdstate=.false. if (tdt0.and.mp_mpi) then call delfile('TOTENERGY_TD.OUT') if (spinpol) then call delfile('MOMENT_TD.OUT') call delfile('MOMENTM_TD.OUT') call delfile('MOMENTMT_TD.OUT') call delfile('MOMENTIR_TD.OUT') end if call delfile('FORCETOT_TD.OUT') call delfile('FORCEMAX_TD.OUT') call delfile('ATDISPL_TD.OUT') call delfile('ATDISPC_TD.OUT') end if do itimes=itimes0,ntimes-1,ntsforce if (mp_mpi) then write(*,'("Info(moldyn): time step ",I8," of ",I8,", t = ",G18.10)') & itimes,ntimes,times(itimes) end if ! reset the OpenMP thread variables call omp_reset ! add the displacements to the atomic positions do is=1,nspecies do ia=1,natoms(is) atposc(:,ia,is)=atposc0(:,ia,is)+atdvc(:,0,ia,is) call r3mv(ainv,atposc(:,ia,is),atposl(:,ia,is)) end do end do ! calculate the ground-state and atomic forces call gndstate ! subsequent calculations will read in the potential from STATE.OUT trdstate=.true. ! time step the atomic positions within the adiabatic approximation call atptstep(forcetot) if (mp_mpi) then ! write the time step to file call writetimes ! write time-dependent total energy call writetdengy ! write spin moments if required if (spinpol) call writemomtd ! write time-dependent atomic forces call writetdforces ! write the time-dependent atomic displacements call writeatdisp ! write the XCrysden animation file crystal.axsf call writeaxsf end if if (tstop) exit end do ! restore original input parameters atposl(:,:,:)=atposl0(:,:,:) tshift=tshift0 tforce=tforce0 tfav0=tfav00 trimvg=trimvg0 ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/gencrho.f900000644000000000000000000000013214536061314014175 xustar0030 mtime=1702388428.168501119 30 atime=1702388427.042502786 30 ctime=1702388428.168501119 elk-9.2.12/src/gencrho.f900000644002504400250440000000355114536061314016723 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gencrho(tsh,tspc,ngt,wfmt1,wfir1,wfmt2,wfir2,crhomt,crhoir) use modmain implicit none ! arguments logical, intent(in) :: tsh,tspc integer, intent(in) :: ngt complex(4), intent(in) :: wfmt1(npcmtmax,natmtot,*),wfir1(ngt,*) complex(4), intent(in) :: wfmt2(npcmtmax,natmtot,*),wfir2(ngt,*) complex(4), intent(out) :: crhomt(npcmtmax,natmtot),crhoir(ngt) ! local variables integer is,ias ! muffin-tin part do ias=1,natmtot is=idxis(ias) if (tsh) then if (tspc.and.spinpol) then ! contract over spin call crho2(npcmt(is),wfmt1(:,ias,1),wfmt1(:,ias,2),wfmt2(:,ias,1), & wfmt2(:,ias,2),crhomt(:,ias)) else ! no spin contraction call crho1(npcmt(is),wfmt1(:,ias,1),wfmt2(:,ias,1),crhomt(:,ias)) end if ! convert to spherical harmonics call cfshtip(nrcmt(is),nrcmti(is),crhomt(:,ias)) else if (tspc.and.spinpol) then call crho2(npcmt(is),wfmt1(:,ias,1),wfmt1(:,ias,2),wfmt2(:,ias,1), & wfmt2(:,ias,2),crhomt(:,ias)) else call crho1(npcmt(is),wfmt1(:,ias,1),wfmt2(:,ias,1),crhomt(:,ias)) end if end if end do ! interstitial part if (tspc.and.spinpol) then call crho2(ngt,wfir1,wfir1(:,2),wfir2,wfir2(:,2),crhoir) else call crho1(ngt,wfir1,wfir2,crhoir) end if return contains pure subroutine crho1(n,wf1,wf2,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf1(n),wf2(n) complex(4), intent(out) :: crho(n) crho(:)=conjg(wf1(:))*wf2(:) end subroutine pure subroutine crho2(n,wf11,wf12,wf21,wf22,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf11(n),wf12(n),wf21(n),wf22(n) complex(4), intent(out) :: crho(n) crho(:)=conjg(wf11(:))*wf21(:)+conjg(wf12(:))*wf22(:) end subroutine end subroutine elk-9.2.12/src/PaxHeaders/cpotclmt.f900000644000000000000000000000013214536061314014375 xustar0030 mtime=1702388428.170501116 30 atime=1702388427.043502785 30 ctime=1702388428.170501116 elk-9.2.12/src/cpotclmt.f900000644002504400250440000000432014536061314017116 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine cpotclmt(nr,nri,ld,rl,wpr,crhomt,cvclmt) use modmain integer, intent(in) :: nr,nri,ld real(8), intent(in) :: rl(ld,-lmaxo-1:lmaxo+2),wpr(4,nr) complex(4), intent(in) :: crhomt(*) complex(4), intent(out) :: cvclmt(*) ! local variables integer nro,iro,ir integer l,l1,l2,l3 integer lm,npi,i0,i real(8) t0 complex(4) c1 ! automatic arrays complex(4) f1(nr),f2(nr),f3(nr) nro=nr-nri iro=nri+1 npi=lmmaxi*nri do l=0,lmaxi l1=l+2 l2=-l+1 l3=-l-1 t0=fourpi/dble(2*l+1) do lm=l**2+1,(l+1)**2 do ir=1,nri i=lm+lmmaxi*(ir-1) f1(ir)=rl(ir,l1)*crhomt(i) f2(ir)=rl(ir,l2)*crhomt(i) end do i0=lm+npi do ir=iro,nr i=i0+lmmaxo*(ir-iro) f1(ir)=rl(ir,l1)*crhomt(i) f2(ir)=rl(ir,l2)*crhomt(i) end do call splintwp(nr,wpr,f1,f3) call splintwp(nr,wpr,f2,f1) c1=f1(nr) do ir=1,nri i=lm+lmmaxi*(ir-1) cvclmt(i)=t0*(rl(ir,l3)*f3(ir)+rl(ir,l)*(c1-f1(ir))) end do do ir=iro,nr i=i0+lmmaxo*(ir-iro) cvclmt(i)=t0*(rl(ir,l3)*f3(ir)+rl(ir,l)*(c1-f1(ir))) end do end do end do do l=lmaxi+1,lmaxo l1=l+2 l2=-l+1 l3=-l-1 t0=fourpi/dble(2*l+1) do lm=l**2+1,(l+1)**2 i0=lm+npi do ir=iro,nr i=i0+lmmaxo*(ir-iro) f1(ir)=rl(ir,l1)*crhomt(i) f2(ir)=rl(ir,l2)*crhomt(i) end do call splintwp(nro,wpr(1,iro),f1(iro),f3(iro)) call splintwp(nro,wpr(1,iro),f2(iro),f1(iro)) c1=f1(nr) do ir=iro,nr i=i0+lmmaxo*(ir-iro) cvclmt(i)=t0*(rl(ir,l3)*f3(ir)+rl(ir,l)*(c1-f1(ir))) end do end do end do return contains pure subroutine splintwp(n,wp,f,g) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wp(*) complex(4), intent(in) :: f(n) complex(4), intent(out) :: g(n) ! local variables integer i,j complex(8) zsm g(1)=0.e0 zsm=wp(5)*f(1)+wp(6)*f(2)+wp(7)*f(3)+wp(8)*f(4) g(2)=zsm do i=2,n-2 j=i*4+1 zsm=zsm+wp(j)*f(i-1)+wp(j+1)*f(i)+wp(j+2)*f(i+1)+wp(j+3)*f(i+2) g(i+1)=zsm end do j=(n-1)*4+1 g(n)=zsm+wp(j)*f(n-3)+wp(j+1)*f(n-2)+wp(j+2)*f(n-1)+wp(j+3)*f(n) end subroutine end subroutine elk-9.2.12/src/PaxHeaders/rfmtsm.f900000644000000000000000000000013214536061314014060 xustar0030 mtime=1702388428.171501114 30 atime=1702388427.045502782 30 ctime=1702388428.171501114 elk-9.2.12/src/rfmtsm.f900000644002504400250440000000155014536061314016603 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rfmtsm(m,nr,nri,rfmt) use modmain implicit none ! arguments integer, intent(in) :: m,nr,nri real(8), intent(inout) :: rfmt(*) ! local variables integer nro,iro,lm integer i1,j0,j1 ! automatic arrays real(8) fr(nr) if (m <= 0) return nro=nr-nri iro=nri+1 do lm=1,lmmaxi i1=lmmaxi*(nri-1)+lm j0=i1+lmmaxi j1=lmmaxo*(nr-iro)+j0 fr(1:nri)=rfmt(lm:i1:lmmaxi) fr(iro:nr)=rfmt(j0:j1:lmmaxo) call fsmooth(m,nr,fr) rfmt(lm:i1:lmmaxi)=fr(1:nri) rfmt(j0:j1:lmmaxo)=fr(iro:nr) end do do lm=lmmaxi+1,lmmaxo j0=lmmaxi*nri+lm j1=lmmaxo*(nr-iro)+j0 fr(iro:nr)=rfmt(j0:j1:lmmaxo) call fsmooth(m,nro,fr(iro)) rfmt(j0:j1:lmmaxo)=fr(iro:nr) end do end subroutine elk-9.2.12/src/PaxHeaders/rbshtip.f900000644000000000000000000000013114536061314014222 xustar0030 mtime=1702388428.172501113 29 atime=1702388427.04650278 30 ctime=1702388428.172501113 elk-9.2.12/src/rbshtip.f900000644002504400250440000000147114536061314016750 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rbshtip(nr,nri,rfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(inout) :: rfmt(*) ! local variables integer nro,npi,npo,i ! automatic arrays real(8) f(max(lmmaxi*nri,lmmaxo*(nr-nri))) ! transform the inner part of the muffin-tin function in-place npi=lmmaxi*nri f(1:npi)=rfmt(1:npi) call dgemm('N','N',lmmaxi,nri,lmmaxi,1.d0,rbshti,lmmaxi,f,lmmaxi,0.d0,rfmt, & lmmaxi) ! transform the outer part of the muffin-tin function in-place nro=nr-nri npo=lmmaxo*nro i=npi+1 f(1:npo)=rfmt(i:npi+npo) call dgemm('N','N',lmmaxo,nro,lmmaxo,1.d0,rbshto,lmmaxo,f,lmmaxo,0.d0,rfmt(i), & lmmaxo) end subroutine elk-9.2.12/src/PaxHeaders/rfshtip.f900000644000000000000000000000013214536061314014227 xustar0030 mtime=1702388428.173501112 30 atime=1702388427.048502777 30 ctime=1702388428.173501112 elk-9.2.12/src/rfshtip.f900000644002504400250440000000147114536061314016754 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rfshtip(nr,nri,rfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(inout) :: rfmt(*) ! local variables integer nro,npi,npo,i ! automatic arrays real(8) f(max(lmmaxi*nri,lmmaxo*(nr-nri))) ! transform the inner part of the muffin-tin function in-place npi=lmmaxi*nri f(1:npi)=rfmt(1:npi) call dgemm('N','N',lmmaxi,nri,lmmaxi,1.d0,rfshti,lmmaxi,f,lmmaxi,0.d0,rfmt, & lmmaxi) ! transform the outer part of the muffin-tin function in-place nro=nr-nri npo=lmmaxo*nro i=npi+1 f(1:npo)=rfmt(i:npi+npo) call dgemm('N','N',lmmaxo,nro,lmmaxo,1.d0,rfshto,lmmaxo,f,lmmaxo,0.d0,rfmt(i), & lmmaxo) end subroutine elk-9.2.12/src/PaxHeaders/zbshtip.f900000644000000000000000000000013214536061314014233 xustar0030 mtime=1702388428.175501109 30 atime=1702388427.049502776 30 ctime=1702388428.175501109 elk-9.2.12/src/zbshtip.f900000644002504400250440000000150014536061314016751 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zbshtip(nr,nri,zfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri complex(8), intent(inout) :: zfmt(*) ! local variables integer nro,npi,npo,i ! automatic arrays complex(8) f(max(lmmaxi*nri,lmmaxo*(nr-nri))) ! transform the inner part of the muffin-tin function in-place npi=lmmaxi*nri f(1:npi)=zfmt(1:npi) call zgemm('N','N',lmmaxi,nri,lmmaxi,zone,zbshti,lmmaxi,f,lmmaxi,zzero,zfmt, & lmmaxi) ! transform the outer part of the muffin-tin function in-place nro=nr-nri npo=lmmaxo*nro i=npi+1 f(1:npo)=zfmt(i:npi+npo) call zgemm('N','N',lmmaxo,nro,lmmaxo,zone,zbshto,lmmaxo,f,lmmaxo,zzero,zfmt(i),& lmmaxo) end subroutine elk-9.2.12/src/PaxHeaders/zfshtip.f900000644000000000000000000000013214536061314014237 xustar0030 mtime=1702388428.176501107 30 atime=1702388427.051502773 30 ctime=1702388428.176501107 elk-9.2.12/src/zfshtip.f900000644002504400250440000000150014536061314016755 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zfshtip(nr,nri,zfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri complex(8), intent(inout) :: zfmt(*) ! local variables integer nro,npi,npo,i ! automatic arrays complex(8) f(max(lmmaxi*nri,lmmaxo*(nr-nri))) ! transform the inner part of the muffin-tin function in-place npi=lmmaxi*nri f(1:npi)=zfmt(1:npi) call zgemm('N','N',lmmaxi,nri,lmmaxi,zone,zfshti,lmmaxi,f,lmmaxi,zzero,zfmt, & lmmaxi) ! transform the outer part of the muffin-tin function in-place nro=nr-nri npo=lmmaxo*nro i=npi+1 f(1:npo)=zfmt(i:npi+npo) call zgemm('N','N',lmmaxo,nro,lmmaxo,zone,zfshto,lmmaxo,f,lmmaxo,zzero,zfmt(i),& lmmaxo) end subroutine elk-9.2.12/src/PaxHeaders/writejw.f900000644000000000000000000000013214536061314014243 xustar0030 mtime=1702388428.177501106 30 atime=1702388427.052502771 30 ctime=1702388428.177501106 elk-9.2.12/src/writejw.f900000644002504400250440000000316514536061314016772 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writejw use modmain use modtddft implicit none ! local variables integer its,iw,i real(8) w1,w2,t1,t2 complex(8) eta,z1 ! allocatable arrays real(8), allocatable :: w(:),wt(:),jt(:,:) real(8), allocatable :: f1(:),f2(:) ! initialise global variables call init0 call init1 ! generate energy grid (always non-negative) allocate(w(nwplot)) w1=max(wplot(1),0.d0) w2=max(wplot(2),w1) t1=(w2-w1)/dble(nwplot) do iw=1,nwplot w(iw)=w1+t1*dble(iw-1) end do ! i divided by the complex relaxation time eta=cmplx(0.d0,swidth,8) ! determine the weights for the spline integration allocate(wt(ntimes)) call wsplint(ntimes,times,wt) ! read in the total current from file allocate(jt(3,ntimes)) call readjtot(jt) ! divide by the unit cell volume jt(:,:)=jt(:,:)/omega ! filter the high-frequency components from the current do its=1,ntimes t1=exp(-swidth*times(its)) jt(:,its)=t1*jt(:,its) end do ! Fourier transform the current allocate(f1(ntimes),f2(ntimes)) open(50,file='JTOTW.OUT',form='FORMATTED') do i=1,3 do iw=1,nwplot do its=1,ntimes t1=jt(i,its) t2=w(iw)*times(its) f1(its)=t1*cos(t2) f2(its)=t1*sin(t2) end do t1=dot_product(wt(:),f1(:)) t2=dot_product(wt(:),f2(:)) z1=cmplx(t1,t2,8) write(50,'(3G18.10)') w(iw),z1 end do write(50,*) end do close(50) write(*,*) write(*,'("Info(writejw):")') write(*,'(" Fourier transformed total current J(ω) written to JTOTW.OUT")') deallocate(w,wt,jt,f1,f2) end subroutine elk-9.2.12/src/PaxHeaders/cbsht.f900000644000000000000000000000013114536061314013652 xustar0030 mtime=1702388428.178501104 29 atime=1702388427.05350277 30 ctime=1702388428.178501104 elk-9.2.12/src/cbsht.f900000644002504400250440000000130714536061314016376 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cbsht(nr,nri,cfmt1,cfmt2) use modmain implicit none ! arguments integer, intent(in) :: nr,nri complex(4), intent(in) :: cfmt1(*) complex(4), intent(out) :: cfmt2(*) ! local variables integer i ! transform the inner part of the muffin-tin call cgemm('N','N',lmmaxi,nri,lmmaxi,cone,cbshti,lmmaxi,cfmt1,lmmaxi,czero, & cfmt2,lmmaxi) ! transform the outer part of the muffin-tin i=lmmaxi*nri+1 call cgemm('N','N',lmmaxo,nr-nri,lmmaxo,cone,cbshto,lmmaxo,cfmt1(i),lmmaxo, & czero,cfmt2(i),lmmaxo) end subroutine elk-9.2.12/src/PaxHeaders/cbshtip.f900000644000000000000000000000013214536061314014204 xustar0030 mtime=1702388428.179501103 30 atime=1702388427.055502767 30 ctime=1702388428.179501103 elk-9.2.12/src/cbshtip.f900000644002504400250440000000150014536061314016722 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cbshtip(nr,nri,cfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri complex(4), intent(inout) :: cfmt(*) ! local variables integer nro,npi,npo,i ! automatic arrays complex(4) f(max(lmmaxi*nri,lmmaxo*(nr-nri))) ! transform the inner part of the muffin-tin function in-place npi=lmmaxi*nri f(1:npi)=cfmt(1:npi) call cgemm('N','N',lmmaxi,nri,lmmaxi,cone,cbshti,lmmaxi,f,lmmaxi,czero,cfmt, & lmmaxi) ! transform the outer part of the muffin-tin function in-place nro=nr-nri npo=lmmaxo*nro i=npi+1 f(1:npo)=cfmt(i:npi+npo) call cgemm('N','N',lmmaxo,nro,lmmaxo,cone,cbshto,lmmaxo,f,lmmaxo,czero,cfmt(i),& lmmaxo) end subroutine elk-9.2.12/src/PaxHeaders/cfshtip.f900000644000000000000000000000012614536061314014213 xustar0028 mtime=1702388428.1815011 30 atime=1702388427.056502765 28 ctime=1702388428.1815011 elk-9.2.12/src/cfshtip.f900000644002504400250440000000150014536061314016726 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cfshtip(nr,nri,cfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri complex(4), intent(inout) :: cfmt(*) ! local variables integer nro,npi,npo,i ! automatic arrays complex(4) f(max(lmmaxi*nri,lmmaxo*(nr-nri))) ! transform the inner part of the muffin-tin function in-place npi=lmmaxi*nri f(1:npi)=cfmt(1:npi) call cgemm('N','N',lmmaxi,nri,lmmaxi,cone,cfshti,lmmaxi,f,lmmaxi,czero,cfmt, & lmmaxi) ! transform the outer part of the muffin-tin function in-place nro=nr-nri npo=lmmaxo*nro i=npi+1 f(1:npo)=cfmt(i:npi+npo) call cgemm('N','N',lmmaxo,nro,lmmaxo,cone,cfshto,lmmaxo,f,lmmaxo,czero,cfmt(i),& lmmaxo) end subroutine elk-9.2.12/src/PaxHeaders/gencvclmt.f900000644000000000000000000000013214536061314014532 xustar0030 mtime=1702388428.182501098 30 atime=1702388427.058502762 30 ctime=1702388428.182501098 elk-9.2.12/src/gencvclmt.f900000644002504400250440000000164414536061314017261 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gencvclmt(nr,nri,ld1,rl,wpr,ld2,crhomt,cvclmt) use modmain use modomp implicit none ! arguments integer, intent(in) :: nr(nspecies),nri(nspecies) integer, intent(in) :: ld1 real(8), intent(in) :: rl(ld1,-lmaxo-1:lmaxo+2,nspecies) real(8), intent(in) :: wpr(4,ld1,nspecies) integer, intent(in) :: ld2 complex(4), intent(in) :: crhomt(ld2,natmtot) complex(4), intent(out) :: cvclmt(ld2,natmtot) ! local variables integer is,ias,nthd call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) call cpotclmt(nr(is),nri(is),ld1,rl(:,:,is),wpr(:,:,is),crhomt(:,ias), & cvclmt(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/zcfmtinp.f900000644000000000000000000000013214536061314014402 xustar0030 mtime=1702388428.183501097 30 atime=1702388427.060502759 30 ctime=1702388428.183501097 elk-9.2.12/src/zcfmtinp.f900000644002504400250440000000175514536061314017134 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure complex(8) function zcfmtinp(nr,nri,wr,cfmt1,cfmt2) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) complex(4), intent(in) :: cfmt1(*),cfmt2(*) ! local variables integer n,ir,i ! compute the dot-products for each radial point and integrate over r zcfmtinp=0.d0 if (lmaxi == 1) then do ir=1,nri i=4*(ir-1)+1 zcfmtinp=zcfmtinp+wr(ir) & *(conjg(cfmt1(i))*cfmt2(i) & +conjg(cfmt1(i+1))*cfmt2(i+1) & +conjg(cfmt1(i+2))*cfmt2(i+2) & +conjg(cfmt1(i+3))*cfmt2(i+3)) end do i=4*nri+1 else i=1 n=lmmaxi-1 do ir=1,nri zcfmtinp=zcfmtinp+wr(ir)*dot_product(cfmt1(i:i+n),cfmt2(i:i+n)) i=i+lmmaxi end do end if n=lmmaxo-1 do ir=nri+1,nr zcfmtinp=zcfmtinp+wr(ir)*dot_product(cfmt1(i:i+n),cfmt2(i:i+n)) i=i+lmmaxo end do end function elk-9.2.12/src/PaxHeaders/zcfinp.f900000644000000000000000000000013214536061314014041 xustar0030 mtime=1702388428.185501094 30 atime=1702388427.062502757 30 ctime=1702388428.185501094 elk-9.2.12/src/zcfinp.f900000644002504400250440000000202514536061314016562 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. complex(8) function zcfinp(cfmt1,cfir1,cfmt2,cfir2) use modmain use modomp implicit none ! arguments complex(4), intent(in) :: cfmt1(npcmtmax,natmtot),cfir1(ngtc) complex(4), intent(in) :: cfmt2(npcmtmax,natmtot),cfir2(ngtc) ! local variables integer is,ias,nthd ! external functions complex(4), external :: cdotc complex(8), external :: zcfmtinp ! interstitial contribution (requires that one of the functions has been ! multiplied by the characteristic function) zcfinp=cdotc(ngtc,cfir1,1,cfir2,1) zcfinp=zcfinp*omega/dble(ngtc) ! muffin-tin contribution call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) REDUCTION(+:zcfinp) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) zcfinp=zcfinp+zcfmtinp(nrcmt(is),nrcmti(is),wrcmt(:,is),cfmt1(:,ias), & cfmt2(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) end function elk-9.2.12/src/PaxHeaders/cpotcoul.f900000644000000000000000000000013214536061314014400 xustar0030 mtime=1702388428.186501092 30 atime=1702388427.063502755 30 ctime=1702388428.186501092 elk-9.2.12/src/cpotcoul.f900000644002504400250440000001067214536061314017130 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cpotcoul(nr,nri,np,ld1,rl,ngdg,igf,ngp,gpc,gclgp,ld2,jlgprmt,ylmgp, & sfacgp,crhoir,ld3,cvclmt,cvclir) use modmain use modphonon implicit none integer, intent(in) :: nr(nspecies),nri(nspecies),np(nspecies) integer, intent(in) :: ld1 real(8), intent(in) :: rl(ld1,-lmaxo-1:lmaxo+2,nspecies) integer, intent(in) :: ngdg(3),igf(*),ngp real(8), intent(in) :: gpc(ngp),gclgp(ngp) integer, intent(in) :: ld2 real(8), intent(in) :: jlgprmt(0:lnpsd,ld2,nspecies) complex(8), intent(in) :: ylmgp(lmmaxo,ngp),sfacgp(ld2,natmtot) complex(4), intent(in) :: crhoir(*) integer, intent(in) :: ld3 complex(4), intent(inout) :: cvclmt(ld3,natmtot) complex(4), intent(out) :: cvclir(*) ! local variables integer is,ia,ias,iro integer l,lm,lma,lmb integer ig,jg,i,i0,i1 real(8) t1,t2,t3 complex(8) z1,z2 ! automatic arrays complex(8) qlm(lmmaxo,natmtot) complex(8) zl(0:lmaxo),zlm(lmmaxo) ! external functions real(8), external :: factn2 ! compute the multipole moments from the muffin-tin potentials t1=1.d0/fourpi do ias=1,natmtot is=idxis(ias) i=np(is)-lmmaxo do l=0,lmaxo t2=t1*dble(2*l+1)*rmtl(l+1,is) lma=l**2+1; lmb=lma+2*l qlm(lma:lmb,ias)=t2*cvclmt(i+lma:i+lmb,ias) end do end do ! Fourier transform density to G-space and store in zvclir call ccopy(ngdg(1)*ngdg(2)*ngdg(3),crhoir,1,cvclir,1) call cfftifc(3,ngdg,-1,cvclir) ! subtract the multipole moments of the interstitial charge density do is=1,nspecies do l=0,lmaxo zl(l)=fourpi*zil(mod(l,4))*rmtl(l+2,is) end do do ia=1,natoms(is) ias=idxas(ia,is) zlm(:)=0.d0 do ig=1,ngp jg=igf(ig) if (gpc(ig) > epslat) then z1=cvclir(jg)*sfacgp(ig,ias)/gpc(ig) zlm(1)=zlm(1)+jlgprmt(1,ig,is)*z1*zl(0)*y00 do l=1,lmaxo lma=l**2+1; lmb=lma+2*l z2=jlgprmt(l+1,ig,is)*z1*zl(l) zlm(lma:lmb)=zlm(lma:lmb)+z2*conjg(ylmgp(lma:lmb,ig)) end do else t1=(fourpi/3.d0)*rmtl(3,is)*y00 zlm(1)=zlm(1)+t1*cvclir(jg) end if end do qlm(:,ias)=qlm(:,ias)-zlm(:) end do end do ! find the smooth pseudocharge within the muffin-tin whose multipoles are the ! difference between the real muffin-tin and interstitial multipoles t1=(fourpi/omega)*factn2(2*lnpsd+1) do ias=1,natmtot is=idxis(ias) do l=0,lmaxo t2=t1/(factn2(2*l+1)*rmtl(l,is)) z1=t2*zilc(mod(l,4)) lma=l**2+1; lmb=lma+2*l zlm(lma:lmb)=z1*qlm(lma:lmb,ias) end do ! add the pseudocharge and real interstitial densities in G-space do ig=1,ngp jg=igf(ig) if (gpc(ig) > epslat) then t2=gpc(ig)*rmt(is) t3=1.d0/t2**lnpsd z1=t3*zlm(1)*y00 do l=1,lmaxo lma=l**2+1; lmb=lma+2*l t3=t3*t2 z1=z1+t3*sum(zlm(lma:lmb)*ylmgp(lma:lmb,ig)) end do z2=jlgprmt(lnpsd,ig,is)*conjg(sfacgp(ig,ias)) cvclir(jg)=cvclir(jg)+z1*z2 else t2=y00/factn2(2*lnpsd+1) cvclir(jg)=cvclir(jg)+t2*zlm(1) end if end do end do ! solve Poisson's equation in G+p-space for the pseudocharge do ig=1,ngp jg=igf(ig) cvclir(jg)=gclgp(ig)*cvclir(jg) end do ! match potentials at muffin-tin boundary by adding homogeneous solution do ias=1,natmtot is=idxis(ias) iro=nri(is)+1 ! find the spherical harmonic expansion of the interstitial potential at the ! muffin-tin radius zlm(:)=0.d0 do ig=1,ngp z1=fourpi*cvclir(igf(ig))*sfacgp(ig,ias) zlm(1)=zlm(1)+jlgprmt(0,ig,is)*z1*y00 do l=1,lmaxo lma=l**2+1; lmb=lma+2*l z2=jlgprmt(l,ig,is)*z1*zil(mod(l,4)) zlm(lma:lmb)=zlm(lma:lmb)+z2*conjg(ylmgp(lma:lmb,ig)) end do end do ! add the homogenous solution i=np(is)-lmmaxo do l=0,lmaxi t1=1.d0/rmtl(l,is) do lm=l**2+1,(l+1)**2 z1=t1*(zlm(lm)-cvclmt(i+lm,ias)) i1=lmmaxi*(nri(is)-1)+lm cvclmt(lm:i1:lmmaxi,ias)=cvclmt(lm:i1:lmmaxi,ias)+z1*rl(1:nri(is),l,is) i0=i1+lmmaxi i1=lmmaxo*(nr(is)-iro)+i0 cvclmt(i0:i1:lmmaxo,ias)=cvclmt(i0:i1:lmmaxo,ias)+z1*rl(iro:nr(is),l,is) end do end do do l=lmaxi+1,lmaxo t1=1.d0/rmtl(l,is) do lm=l**2+1,(l+1)**2 z1=t1*(zlm(lm)-cvclmt(i+lm,ias)) i0=lmmaxi*nri(is)+lm i1=lmmaxo*(nr(is)-iro)+i0 cvclmt(i0:i1:lmmaxo,ias)=cvclmt(i0:i1:lmmaxo,ias)+z1*rl(iro:nr(is),l,is) end do end do end do ! Fourier transform interstitial potential to real-space call cfftifc(3,ngdg,1,cvclir) end subroutine elk-9.2.12/src/PaxHeaders/ggamt_5b.f900000644000000000000000000000013214536061314014235 xustar0030 mtime=1702388428.187501091 30 atime=1702388427.065502752 30 ctime=1702388428.187501091 elk-9.2.12/src/ggamt_5b.f900000644002504400250440000000201514536061314016755 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine ggamt_5b(is,np,vx,vc,dxdg2r,dcdg2r) use modmain implicit none ! arguments integer, intent(in) :: is,np real(8), intent(inout) :: vx(np),vc(np) real(8), intent(in) :: dxdg2r(np),dcdg2r(np) ! local variables integer nr,nri ! automatic arrays real(8) rfmt1(np),rfmt2(np) nr=nrmt(is) nri=nrmti(is) !------------------! ! exchange ! !------------------! ! convert dxdg2r to spherical harmonics call rfsht(nr,nri,dxdg2r,rfmt1) ! compute grad^2 dxdg2r call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt1,rfmt2) vx(1:np)=vx(1:np)+rfmt2(1:np) !---------------------! ! correlation ! !---------------------! ! convert dcdg2r to spherical harmonics call rfsht(nr,nri,dcdg2r,rfmt1) ! compute grad^2 dcdg2r call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt1,rfmt2) vc(1:np)=vc(1:np)+rfmt2(1:np) end subroutine elk-9.2.12/src/PaxHeaders/ggamt_5c.f900000644000000000000000000000013214536061314014236 xustar0030 mtime=1702388428.189501088 30 atime=1702388427.066502751 30 ctime=1702388428.189501088 elk-9.2.12/src/ggamt_5c.f900000644002504400250440000000204614536061314016762 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine ggamt_5c(is,np,vx,vc,wx,wc,dtdg2r) use modmain implicit none ! arguments integer, intent(in) :: is,np real(8), intent(inout) :: vx(np),vc(np) real(8), intent(in) :: wx(np),wc(np) real(8), intent(in) :: dtdg2r(np) ! local variables integer nr,nri ! automatic arrays real(8) rfmt1(np),rfmt2(np) nr=nrmt(is) nri=nrmti(is) !------------------! ! exchange ! !------------------! rfmt1(1:np)=wx(1:np)*dtdg2r(1:np) call rfsht(nr,nri,rfmt1,rfmt2) call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt2,rfmt1) call rbsht(nr,nri,rfmt1,rfmt2) vx(1:np)=vx(1:np)+rfmt2(1:np) !---------------------! ! correlation ! !---------------------! rfmt1(1:np)=wc(1:np)*dtdg2r(1:np) call rfsht(nr,nri,rfmt1,rfmt2) call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt2,rfmt1) call rbsht(nr,nri,rfmt1,rfmt2) vc(1:np)=vc(1:np)+rfmt2(1:np) end subroutine elk-9.2.12/src/PaxHeaders/ggair_5b.f900000644000000000000000000000013214536061314014227 xustar0030 mtime=1702388428.190501086 30 atime=1702388427.068502748 30 ctime=1702388428.190501086 elk-9.2.12/src/ggair_5b.f900000644002504400250440000000212314536061314016747 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine ggair_5b(vx,vc,dxdg2r,dcdg2r) use modmain implicit none ! arguments real(8), intent(inout) :: vx(ngtot),vc(ngtot) real(8), intent(in) :: dxdg2r(ngtot),dcdg2r(ngtot) ! local variables integer ig,ifg ! allocatable arrays complex(8), allocatable :: zfft1(:) allocate(zfft1(ngtot)) !------------------! ! exchange ! !------------------! ! Fourier transform dxdg2r to G-space zfft1(:)=dxdg2r(:) call zfftifc(3,ngridg,-1,zfft1) ! grad^2 dxdg2r do ig=1,ngtot ifg=igfft(ig) zfft1(ifg)=-(gc(ig)**2)*zfft1(ifg) end do call zfftifc(3,ngridg,1,zfft1) vx(:)=vx(:)+dble(zfft1(:)) !---------------------! ! correlation ! !---------------------! ! Fourier transform dcdg2r to G-space zfft1(:)=dcdg2r(:) call zfftifc(3,ngridg,-1,zfft1) ! grad^2 dcdg2r do ig=1,ngtot ifg=igfft(ig) zfft1(ifg)=-(gc(ig)**2)*zfft1(ifg) end do call zfftifc(3,ngridg,1,zfft1) vc(:)=vc(:)+dble(zfft1(:)) deallocate(zfft1) end subroutine elk-9.2.12/src/PaxHeaders/ggair_5c.f900000644000000000000000000000013214536061314014230 xustar0030 mtime=1702388428.191501085 30 atime=1702388427.069502746 30 ctime=1702388428.191501085 elk-9.2.12/src/ggair_5c.f900000644002504400250440000000222714536061314016755 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine ggair_5c(vx,vc,wx,wc,dtdg2r) use modmain implicit none ! arguments real(8), intent(inout) :: vx(ngtot),vc(ngtot) real(8), intent(in) :: wx(ngtot),wc(ngtot) real(8), intent(in) :: dtdg2r(ngtot) ! local variables integer ig,ifg ! allocatable arrays complex(8), allocatable :: zfft1(:) allocate(zfft1(ngtot)) !------------------! ! exchange ! !------------------! ! Fourier transform (wx * dtdg2r) to G-space zfft1(:)=wx(:)*dtdg2r(:) call zfftifc(3,ngridg,-1,zfft1) ! grad^2 (wx * dtdg2r) do ig=1,ngtot ifg=igfft(ig) zfft1(ifg)=-(gc(ig)**2)*zfft1(ifg) end do call zfftifc(3,ngridg,1,zfft1) vx(:)=vx(:)+dble(zfft1(:)) !---------------------! ! correlation ! !---------------------! ! Fourier transform (wc * dtdg2r) to G-space zfft1(:)=wc(:)*dtdg2r(:) call zfftifc(3,ngridg,-1,zfft1) ! grad^2 (wc * dtdg2r) do ig=1,ngtot ifg=igfft(ig) zfft1(ifg)=-(gc(ig)**2)*zfft1(ifg) end do call zfftifc(3,ngridg,1,zfft1) vc(:)=vc(:)+dble(zfft1(:)) deallocate(zfft1) end subroutine elk-9.2.12/src/PaxHeaders/piezoelt.f900000644000000000000000000000013214536061314014403 xustar0030 mtime=1702388428.193501082 30 atime=1702388427.071502743 30 ctime=1702388428.193501082 elk-9.2.12/src/piezoelt.f900000644002504400250440000000560314536061314017131 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine piezoelt use modmain use modmpi use modtest implicit none ! local variables integer i,j,k real(8) pvl1(3),pvl2(3) real(8) vc(3),t1 ! allocatable arrays real(8), allocatable :: pelt(:,:) ! initialise universal variables call init0 call init1 ! store original parameters avec0(:,:)=avec(:,:) ngridk0(:)=ngridk(:) maxscl0=maxscl tshift0=tshift ! no shifting of the atomic basis tshift=.false. ! generate the strain tensors call genstrain ! allocate the piezoelectric tensor array allocate(pelt(3,nstrain)) ! initial ground-state run should start from atomic densities trdstate=.false. ! run the ground-state calculation call gndstate ! subsequent calculations will read in the previous potential trdstate=.true. ! compute the first polarisation in lattice coordinates call polar(pvl1) ! loop over strain tensors do istrain=1,nstrain if (mp_mpi) then write(*,'("Info(piezoelt): working on strain tensor ",I1," of ",I1)') & istrain,nstrain end if ! run the ground-state calculation again call gndstate ! compute the second polarisation call polar(pvl2) do i=1,3 ! add multiple of 2*pi to bring polarisation vectors into coincidence pvl1(i)=modulo(pvl1(i),twopi) pvl2(i)=modulo(pvl2(i),twopi) t1=pvl1(i)-pvl2(i) if (abs(t1-twopi) < abs(t1)) then pvl1(i)=pvl1(i)-twopi else if (abs(t1+twopi) < abs(t1)) then pvl1(i)=pvl1(i)+twopi end if ! calculate the piezoelectric tensor element from difference in polarisations t1=wkptnr*occmax*dble(nkspolar*ngridk(i))/(twopi*deltast) pelt(i,istrain)=t1*(pvl2(i)-pvl1(i)) end do end do if (mp_mpi) then open(50,file='PIEZOELT.OUT',form='FORMATTED') write(50,*) write(50,'("Lattice vector matrix, A, changed by")') write(50,*) write(50,'(" A → A + e_k dt,")') write(50,*) write(50,'("where dt is an infinitesimal scalar and e_k is a strain tensor")') write(50,*) write(50,'("The piezoelectric tensor is the derivative of the polarisation & &vector dP_i/dt, i=1...3")') do k=1,nstrain write(50,*) write(50,'("Strain tensor k : ",I1)') k do j=1,3 write(50,'(3G18.10)') (strain(i,j,k),i=1,3) end do write(50,'("Piezoelectric tensor components dP_i/dt, i=1...3 :")') write(50,'(" lattice coordinates : ",3G18.10)') pelt(:,k) call r3mv(avec,pelt(:,k),vc) write(50,'(" Cartesian coordinates : ",3G18.10)') vc(:) write(50,'(" length : ",G18.10)') norm2(vc(:)) end do close(50) write(*,*) write(*,'("Info(piezoelt):")') write(*,'(" Piezoelectric tensor written to PIEZOELT.OUT")') end if ! write test file if required call writetest(380,'Piezoelectric tensor',nv=3*nstrain,tol=1.d-5,rva=pelt) deallocate(pelt) ! restore original parameters tshift=tshift0 avec(:,:)=avec0(:,:) end subroutine elk-9.2.12/src/PaxHeaders/magnetoelt.f900000644000000000000000000000013214536061314014707 xustar0030 mtime=1702388428.194501081 30 atime=1702388427.072502742 30 ctime=1702388428.194501081 elk-9.2.12/src/magnetoelt.f900000644002504400250440000000545414536061314017441 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine magnetoelt use modmain use modmpi use modtest implicit none ! local variables integer i,j real(8) pvl1(3),pvl2(3) real(8) felt(3,3),vc(3),t1 ! initialise universal variables call init0 call init1 ! store original parameters bfieldc00(:)=bfieldc0(:) ngridk0(:)=ngridk(:) maxscl0=maxscl spinpol0=spinpol reducebf0=reducebf tshift0=tshift ! no shifting of the atomic basis tshift=.false. ! enable spin-polarisation spinpol=.true. ! no magnetic field reduction reducebf=1.d0 ! initial ground-state run should start from atomic densities trdstate=.false. do j=1,3 if (mp_mpi) then write(*,'("Info(magnetoelt): working on magnetic field component ",I1)') j end if ! apply negative change to magnetic field bfieldc0(j)=bfieldc00(j)-0.5d0*deltabf ! run the ground-state calculation call gndstate ! subsequent calculations will read in the previous potential trdstate=.true. ! compute the first polarisation in lattice coordinates call polar(pvl1) ! apply positive change to magnetic field bfieldc0(j)=bfieldc00(j)+0.5d0*deltabf ! run the ground-state calculation again call gndstate ! compute the second polarisation call polar(pvl2) do i=1,3 ! add multiple of 2*pi to bring polarisation vectors into coincidence pvl1(i)=modulo(pvl1(i),twopi) pvl2(i)=modulo(pvl2(i),twopi) t1=pvl1(i)-pvl2(i) if (abs(t1-twopi) < abs(t1)) then pvl1(i)=pvl1(i)-twopi else if (abs(t1+twopi) < abs(t1)) then pvl1(i)=pvl1(i)+twopi end if ! calculate the magnetoelectric tensor element from difference in polarisations t1=wkptnr*occmax*dble(nkspolar*ngridk(i))/(twopi*deltabf) felt(i,j)=t1*(pvl2(i)-pvl1(i)) end do end do if (mp_mpi) then open(50,file='MAGNETOELT.OUT',form='FORMATTED') write(50,*) write(50,'("The magnetoelectric tensor is the change in the polarisation")') write(50,'("with respect to the external magnetic field dP_i/dB_j, for")') write(50,'("components i,j=1...3")') do j=1,3 write(50,*) write(50,'("Magnetic field Cartesian component j : ",I1)') j write(50,'("Magnetoelectric tensor components dP_i/dB_j, i=1...3")') write(50,'(" lattice coordinates : ",3G18.10)') felt(:,j) call r3mv(avec,felt(:,j),vc) write(50,'(" Cartesian coordinates : ",3G18.10)') vc(:) write(50,'(" length : ",G18.10)') norm2(vc(:)) end do close(50) write(*,*) write(*,'("Info(magnetoelt):")') write(*,'(" Magnetoelectric tensor writtent to MAGNETOELT.OUT")') end if ! write test file if required call writetest(390,'Magnetoelectric tensor',nv=9,tol=1.d-5,rva=felt) ! restore original parameters tshift=tshift0 spinpol=spinpol0 bfieldc0(:)=bfieldc00(:) reducebf=reducebf0 end subroutine elk-9.2.12/src/PaxHeaders/zftcf.f900000644000000000000000000000013214536061314013664 xustar0030 mtime=1702388428.196501077 30 atime=1702388427.074502739 30 ctime=1702388428.196501077 elk-9.2.12/src/zftcf.f900000644002504400250440000000605414536061314016413 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zftcf(ngp,jlgpr,ylmgp,ld,sfacgp,cfmt,cfir,zfgp) use modmain implicit none ! arguments integer, intent(in) :: ngp real(8), intent(in) :: jlgpr(njcmax,nspecies,ngp) complex(8), intent(in) :: ylmgp(lmmaxo,ngp) integer, intent(in) :: ld complex(8), intent(in) :: sfacgp(ld,natmtot) complex(4), intent(in) :: cfmt(npcmtmax,natmtot),cfir(ngtc) complex(8), intent(out) :: zfgp(ngp) ! local variables integer is,ia,ias,ig integer nrc,nrci,irco,irc integer l,lm,n,i,j real(8) t0,y0 complex(8) zsm,z1 ! automatic arrays complex(4) ylm(lmmaxo),cfft(ngtc) !-----------------------------------! ! interstitial contribution ! !-----------------------------------! ! multiply by coarse characteristic function cfft(:)=cfir(:)*cfrc(:) ! Fourier transform to coarse G-grid call cfftifc(3,ngdgc,-1,cfft) zfgp(1:ngp)=cfft(igfc(1:ngp)) !---------------------------------! ! muffin-tin contribution ! !---------------------------------! t0=fourpi/omega y0=t0*y00 do ig=1,ngp do l=1,lmaxo z1=t0*zilc(mod(l,4)) do lm=l**2+1,(l+1)**2 ylm(lm)=z1*ylmgp(lm,ig) end do end do do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) irco=nrci+1 do ia=1,natoms(is) ias=idxas(ia,is) zsm=0.d0 i=1 j=1 ! inner part of muffin-tin, note that lmaxi >= 1 if (lmaxi == 1) then do irc=1,nrci zsm=zsm+wrcmt(irc,is)*(jlgpr(j,is,ig)*cfmt(i,ias)*y0+jlgpr(j+1,is,ig)& *(cfmt(i+1,ias)*ylm(2)+cfmt(i+2,ias)*ylm(3)+cfmt(i+3,ias)*ylm(4))) i=i+4 j=j+2 end do else do irc=1,nrci z1=jlgpr(j,is,ig)*cfmt(i,ias)*y0+jlgpr(j+1,is,ig) & *(cfmt(i+1,ias)*ylm(2)+cfmt(i+2,ias)*ylm(3)+cfmt(i+3,ias)*ylm(4)) i=i+4 j=j+2 do l=2,lmaxi n=2*l lm=l**2+1 z1=z1+jlgpr(j,is,ig)*sum(cfmt(i:i+n,ias)*ylm(lm:lm+n)) i=i+n+1 j=j+1 end do zsm=zsm+wrcmt(irc,is)*z1 end do end if ! outer part of muffin-tin, note that lmaxo >= 3 do irc=irco,nrc z1=jlgpr(j,is,ig)*cfmt(i,ias)*y0+jlgpr(j+1,is,ig) & *(cfmt(i+1,ias)*ylm(2)+cfmt(i+2,ias)*ylm(3)+cfmt(i+3,ias)*ylm(4)) & +jlgpr(j+2,is,ig) & *(cfmt(i+4,ias)*ylm(5)+cfmt(i+5,ias)*ylm(6)+cfmt(i+6,ias)*ylm(7) & +cfmt(i+7,ias)*ylm(8)+cfmt(i+8,ias)*ylm(9)) & +jlgpr(j+3,is,ig) & *(cfmt(i+9,ias)*ylm(10)+cfmt(i+10,ias)*ylm(11)+cfmt(i+11,ias)*ylm(12) & +cfmt(i+12,ias)*ylm(13)+cfmt(i+13,ias)*ylm(14)+cfmt(i+14,ias)*ylm(15)& +cfmt(i+15,ias)*ylm(16)) i=i+16 j=j+4 do l=4,lmaxo n=2*l lm=l**2+1 z1=z1+jlgpr(j,is,ig)*sum(cfmt(i:i+n,ias)*ylm(lm:lm+n)) i=i+n+1 j=j+1 end do zsm=zsm+wrcmt(irc,is)*z1 end do zfgp(ig)=zfgp(ig)+conjg(sfacgp(ig,ias))*zsm end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/trimrfg.f900000644000000000000000000000013214536061314014222 xustar0030 mtime=1702388428.197501076 30 atime=1702388427.076502736 30 ctime=1702388428.197501076 elk-9.2.12/src/trimrfg.f900000644002504400250440000000117314536061314016746 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine trimrfg(rfir) use modmain implicit none ! arguments real(8), intent(inout) :: rfir(ngtot) ! allocatable arrays complex(8), allocatable :: zfft(:) allocate(zfft(ngtot)) ! Fourier transform function to G-space zfft(:)=rfir(:) call zfftifc(3,ngridg,-1,zfft) ! zero the components for |G| > 2 gkmax zfft(igfft(ngvc+1:ngtot))=0.d0 ! Fourier transform back to real-space call zfftifc(3,ngridg,1,zfft) rfir(:)=dble(zfft(:)) deallocate(zfft) end subroutine elk-9.2.12/src/PaxHeaders/rmtavrg.f900000644000000000000000000000013214536061314014232 xustar0030 mtime=1702388428.199501073 30 atime=1702388427.077502734 30 ctime=1702388428.199501073 elk-9.2.12/src/rmtavrg.f900000644002504400250440000000100114536061314016744 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rmtavrg use modmain implicit none ! local variables integer is,i real(8) ra if (nspecies <= 1) return do i=1,mrmtav ! average muffin-tin radius ra=sum(rmt(1:nspecies))/nspecies ! replace each muffin-tin radius with half itself plus the average do is=1,nspecies rmt(is)=0.5d0*(rmt(is)+ra) end do end do end subroutine elk-9.2.12/src/PaxHeaders/dolpistl.f900000644000000000000000000000013214536061314014402 xustar0030 mtime=1702388428.200501071 30 atime=1702388427.078502733 30 ctime=1702388428.200501071 elk-9.2.12/src/dolpistl.f900000644002504400250440000000133614536061314017127 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine dolpistl(ngp,ngpq,igpig,igpqig,ld,od) use modmain use modphonon implicit none ! arguments integer, intent(in) :: ngp,ngpq integer, intent(in) :: igpig(ngkmax),igpqig(ngkmax) integer, intent(in) :: ld complex(8), intent(inout) :: od(ld,*) ! local variables integer i1,i2,i3,j1,j2,j3 integer ig,i,j do j=1,ngp ig=igpig(j) j1=ivg(1,ig); j2=ivg(2,ig); j3=ivg(3,ig) do i=1,ngpq ig=igpqig(i) i1=ivg(1,ig)-j1; i2=ivg(2,ig)-j2; i3=ivg(3,ig)-j3 od(i,j)=od(i,j)+dcfunig(ivgig(i1,i2,i3)) end do end do end subroutine elk-9.2.12/src/PaxHeaders/dhmlistl.f900000644000000000000000000000012714536061314014374 xustar0029 mtime=1702388428.20150107 29 atime=1702388427.08050273 29 ctime=1702388428.20150107 elk-9.2.12/src/dhmlistl.f900000644002504400250440000000162714536061314017120 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine dhmlistl(ngp,ngpq,igpig,igpqig,vgpc,vgpqc,ld,dh) use modmain use modphonon implicit none ! arguments integer, intent(in) :: ngp,ngpq integer, intent(in) :: igpig(ngkmax),igpqig(ngkmax) real(8), intent(in) :: vgpc(3,ngkmax),vgpqc(3,ngkmax) integer, intent(in) :: ld complex(8), intent(inout) :: dh(ld,*) ! local variables integer j1,j2,j3 integer ig,i,j real(8) v1,v2,v3,t1 do j=1,ngp ig=igpig(j) j1=ivg(1,ig); j2=ivg(2,ig); j3=ivg(3,ig) v1=0.5d0*vgpc(1,j); v2=0.5d0*vgpc(2,j); v3=0.5d0*vgpc(3,j) do i=1,ngpq ig=igpqig(i) ig=ivgig(ivg(1,ig)-j1,ivg(2,ig)-j2,ivg(3,ig)-j3) t1=vgpqc(1,i)*v1+vgpqc(2,i)*v2+vgpqc(3,i)*v3 dh(i,j)=dh(i,j)+dvsig(ig)+t1*dcfunig(ig) end do end do end subroutine elk-9.2.12/src/PaxHeaders/olpaloq.f900000644000000000000000000000013214536061314014217 xustar0030 mtime=1702388428.202501069 30 atime=1702388427.081502728 30 ctime=1702388428.202501069 elk-9.2.12/src/olpaloq.f900000644002504400250440000000170514536061314016744 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine olpaloq(is,ias,ngp,ngpq,apwalm,apwalmq,ld,oq) use modmain implicit none ! arguments integer, intent(in) :: is,ias integer, intent(in) :: ngp,ngpq complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: oq(ld,*) ! local variables integer ilo,io,l,lm integer i0,j0,i,j real(8) t1 do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 i=idxlo(lm,ilo,ias) i0=ngpq+i j0=ngp+i do io=1,apword(l,is) t1=oalo(io,ilo,ias) do i=1,ngpq oq(i,j0)=oq(i,j0)+t1*conjg(apwalmq(i,io,lm)) end do do j=1,ngp oq(i0,j)=oq(i0,j)+t1*apwalm(j,io,lm) end do end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/hmlaloq.f900000644000000000000000000000013214536061314014205 xustar0030 mtime=1702388428.204501066 30 atime=1702388427.083502726 30 ctime=1702388428.204501066 elk-9.2.12/src/hmlaloq.f900000644002504400250440000000261714536061314016735 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hmlaloq(is,ias,ngp,ngpq,apwalm,apwalmq,ld,hq) use modmain implicit none ! arguments integer, intent(in) :: is,ias integer, intent(in) :: ngp,ngpq complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: hq(ld,*) ! local variables integer io,ilo integer l1,l2,l3 integer lm1,lm2,lm3 integer i0,j0,i,j complex(8) z1 do ilo=1,nlorb(is) l1=lorbl(ilo,is) do lm1=l1**2+1,(l1+1)**2 i=idxlo(lm1,ilo,ias) i0=ngpq+i j0=ngp+i do l3=0,lmaxapw do lm3=l3**2+1,(l3+1)**2 do io=1,apword(l3,is) z1=0.d0 do l2=0,lmaxo if (mod(l1+l2+l3,2) == 0) then do lm2=l2**2+1,(l2+1)**2 z1=z1+gntyry(lm2,lm3,lm1)*hloa(lm2,io,l3,ilo,ias) end do end if end do if (abs(dble(z1))+abs(aimag(z1)) > 1.d-14) then do i=1,ngpq hq(i,j0)=hq(i,j0)+conjg(z1*apwalmq(i,io,lm3)) end do do j=1,ngp hq(i0,j)=hq(i0,j)+z1*apwalm(j,io,lm3) end do end if end do end do end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/dolpalo.f900000644000000000000000000000013214536061314014202 xustar0030 mtime=1702388428.205501064 30 atime=1702388427.085502722 30 ctime=1702388428.205501064 elk-9.2.12/src/dolpalo.f900000644002504400250440000000174014536061314016726 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine dolpalo(is,ias,ngp,ngpq,dapwalm,dapwalmq,ld,od) use modmain use modphonon implicit none ! arguments integer, intent(in) :: is,ias,ngp,ngpq complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: od(ld,*) ! local variables integer ilo,io,l,lm integer i0,j0,i,j real(8) t1 if (ias /= iasph) return do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 i=idxlo(lm,ilo,ias) i0=ngpq+i j0=ngp+i do io=1,apword(l,is) t1=oalo(io,ilo,ias) do i=1,ngpq od(i,j0)=od(i,j0)+t1*conjg(dapwalmq(i,io,lm)) end do do j=1,ngp od(i0,j)=od(i0,j)+t1*dapwalm(j,io,lm) end do end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/dhmlalo.f900000644000000000000000000000013214536061314014170 xustar0030 mtime=1702388428.206501063 30 atime=1702388427.086502721 30 ctime=1702388428.206501063 elk-9.2.12/src/dhmlalo.f900000644002504400250440000000435314536061314016717 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine dhmlalo(is,ias,ngp,ngpq,apwalm,apwalmq,dapwalm,dapwalmq,ld,dh) use modmain use modphonon implicit none ! arguments integer, intent(in) :: is,ias,ngp,ngpq complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: dh(ld,*) ! local variables integer io,ilo integer l1,l2,l3 integer lm1,lm2,lm3 integer i0,j0,i,j complex(8) z1 do ilo=1,nlorb(is) l1=lorbl(ilo,is) do lm1=l1**2+1,(l1+1)**2 i=idxlo(lm1,ilo,ias) i0=ngpq+i j0=ngp+i do l3=0,lmaxapw do lm3=l3**2+1,(l3+1)**2 do io=1,apword(l3,is) z1=0.d0 do l2=0,lmaxo if (mod(l1+l2+l3,2) == 0) then do lm2=l2**2+1,(l2+1)**2 z1=z1+gntyyy(lm2,lm3,lm1)*dhloa(lm2,io,l3,ilo,ias) end do end if end do if (abs(dble(z1))+abs(aimag(z1)) > 1.d-14) then do i=1,ngpq dh(i,j0)=dh(i,j0)+conjg(z1*apwalmq(i,io,lm3)) end do do j=1,ngp dh(i0,j)=dh(i0,j)+z1*apwalm(j,io,lm3) end do end if end do end do end do if (ias == iasph) then do l3=0,lmaxapw do lm3=l3**2+1,(l3+1)**2 do io=1,apword(l3,is) z1=0.d0 do l2=0,lmaxo if (mod(l1+l2+l3,2) == 0) then do lm2=l2**2+1,(l2+1)**2 z1=z1+gntyry(lm2,lm3,lm1)*hloa(lm2,io,l3,ilo,ias) end do end if end do if (abs(dble(z1))+abs(aimag(z1)) > 1.d-14) then do i=1,ngpq dh(i,j0)=dh(i,j0)+conjg(z1*dapwalmq(i,io,lm3)) end do do j=1,ngp dh(i0,j)=dh(i0,j)+z1*dapwalm(j,io,lm3) end do end if end do end do end do end if end do end do end subroutine elk-9.2.12/src/PaxHeaders/dhmllolo.f900000644000000000000000000000013214536061314014362 xustar0030 mtime=1702388428.207501061 30 atime=1702388427.088502718 30 ctime=1702388428.207501061 elk-9.2.12/src/dhmllolo.f900000644002504400250440000000200114536061314017075 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine dhmllolo(is,ias,ngp,ngpq,ld,dh) use modmain use modphonon implicit none ! arguments integer, intent(in) :: is,ias integer, intent(in) :: ngp,ngpq integer, intent(in) :: ld complex(8), intent(inout) :: dh(ld,*) ! local variables integer ilo,jlo,i,j integer l1,l2,l3 integer lm1,lm2,lm3 complex(8) z1 do jlo=1,nlorb(is) l3=lorbl(jlo,is) do lm3=l3**2+1,(l3+1)**2 j=ngp+idxlo(lm3,jlo,ias) do ilo=1,nlorb(is) l1=lorbl(ilo,is) do lm1=l1**2+1,(l1+1)**2 i=ngpq+idxlo(lm1,ilo,ias) z1=0.d0 do l2=0,lmaxo if (mod(l1+l2+l3,2) == 0) then do lm2=l2**2+1,(l2+1)**2 z1=z1+gntyyy(lm2,lm3,lm1)*dhlolo(lm2,jlo,ilo,ias) end do end if end do dh(i,j)=dh(i,j)+z1 end do end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/olpaaq.f900000644000000000000000000000013214536061314014025 xustar0030 mtime=1702388428.209501058 30 atime=1702388427.089502717 30 ctime=1702388428.209501058 elk-9.2.12/src/olpaaq.f900000644002504400250440000000151314536061314016547 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine olpaaq(is,ngp,ngpq,apwalm,apwalmq,ld,oq) use modmain implicit none ! arguments integer, intent(in) :: is,ngp,ngpq complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: oq(*) ! local variables integer io,l,lm,i ! automatic arrays complex(8) a(lmoapw(is),ngpq),b(lmoapw(is),ngp) i=0 do l=0,lmaxapw do lm=l**2+1,(l+1)**2 do io=1,apword(l,is) i=i+1 a(i,1:ngpq)=apwalmq(1:ngpq,io,lm) b(i,1:ngp)=apwalm(1:ngp,io,lm) end do end do end do call zmctm(lmoapw(is),ngpq,ngp,a,b,ld,oq) end subroutine elk-9.2.12/src/PaxHeaders/dolpaa.f900000644000000000000000000000013214536061314014010 xustar0030 mtime=1702388428.211501055 30 atime=1702388427.091502714 30 ctime=1702388428.211501055 elk-9.2.12/src/dolpaa.f900000644002504400250440000000240614536061314016534 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dolpaa(is,ias,ngp,ngpq,apwalm,apwalmq,dapwalm,dapwalmq,ld,od) use modmain use modphonon implicit none ! arguments integer, intent(in) :: is,ias integer, intent(in) :: ngp,ngpq complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: od(*) ! local variables integer lmo,io,l,lm,i ! automatic arrays complex(8) a(lmoapw(is),ngpq),b(lmoapw(is),ngp) if (ias /= iasph) return lmo=lmoapw(is) i=0 do l=0,lmaxapw do lm=l**2+1,(l+1)**2 do io=1,apword(l,is) i=i+1 a(i,1:ngpq)=apwalmq(1:ngpq,io,lm) b(i,1:ngp)=dapwalm(1:ngp,io,lm) end do end do end do call zmctm(lmo,ngpq,ngp,a,b,ld,od) i=0 do l=0,lmaxapw do lm=l**2+1,(l+1)**2 do io=1,apword(l,is) i=i+1 a(i,1:ngpq)=dapwalmq(1:ngpq,io,lm) b(i,1:ngp)=apwalm(1:ngp,io,lm) end do end do end do call zmctm(lmo,ngpq,ngp,a,b,ld,od) end subroutine elk-9.2.12/src/PaxHeaders/dhmlaa.f900000644000000000000000000000013214536061314013776 xustar0030 mtime=1702388428.212501054 30 atime=1702388427.092502712 30 ctime=1702388428.212501054 elk-9.2.12/src/dhmlaa.f900000644002504400250440000000513314536061314016522 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dhmlaa(is,ias,ngp,ngpq,apwalm,apwalmq,dapwalm,dapwalmq,ld,dh) use modmain use modphonon implicit none ! arguments integer, intent(in) :: is,ias integer, intent(in) :: ngp,ngpq complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: dh(*) ! local variables integer lmo,io,jo,i integer l1,l2,l3 integer lm1,lm2,lm3 real(8) t0,t1 complex(8) z1 ! automatic arrays complex(8) a1(lmoapw(is),ngpq),b1(lmoapw(is),ngp) complex(8) a2(lmoapw(is),ngpq),b2(lmoapw(is),ngp) lmo=lmoapw(is) t0=0.5d0*rmt(is)**2 i=0 do l1=0,lmaxapw do lm1=l1**2+1,(l1+1)**2 do io=1,apword(l1,is) i=i+1 t1=t0*apwfr(nrmt(is),1,io,l1,ias) b1(i,:)=0.d0 do l3=0,lmaxapw do lm3=l3**2+1,(l3+1)**2 do jo=1,apword(l3,is) z1=0.d0 do l2=0,lmaxo if (mod(l1+l2+l3,2) == 0) then do lm2=l2**2+1,(l2+1)**2 z1=z1+gntyyy(lm2,lm3,lm1)*dhaa(lm2,jo,l3,io,l1,ias) end do end if end do if (abs(dble(z1))+abs(aimag(z1)) > 1.d-14) then call zaxpy(ngp,z1,apwalm(:,jo,lm3),1,b1(i,1),lmo) end if end do end do end do if (ias == iasph) then b2(i,:)=0.d0 do l3=0,lmaxapw do lm3=l3**2+1,(l3+1)**2 do jo=1,apword(l3,is) z1=0.d0 do l2=0,lmaxo if (mod(l1+l2+l3,2) == 0) then do lm2=l2**2+1,(l2+1)**2 z1=z1+gntyry(lm2,lm3,lm1)*haa(lm2,jo,l3,io,l1,ias) end do end if end do ! kinetic surface contribution if (lm1 == lm3) z1=z1+t1*apwdfr(jo,l1,ias) if (abs(dble(z1))+abs(aimag(z1)) > 1.d-14) then call zaxpy(ngp,z1,dapwalm(:,jo,lm3),1,b1(i,1),lmo) call zaxpy(ngp,z1,apwalm(:,jo,lm3),1,b2(i,1),lmo) end if end do end do end do a2(i,1:ngpq)=dapwalmq(1:ngpq,io,lm1) end if a1(i,1:ngpq)=apwalmq(1:ngpq,io,lm1) end do end do end do call zmctm(lmo,ngpq,ngp,a1,b1,ld,dh) if (ias == iasph) then call zmctm(lmo,ngpq,ngp,a2,b2,ld,dh) end if end subroutine elk-9.2.12/src/PaxHeaders/hmlaaq.f900000644000000000000000000000013214536061314014013 xustar0030 mtime=1702388428.213501052 30 atime=1702388427.094502709 30 ctime=1702388428.213501052 elk-9.2.12/src/hmlaaq.f900000644002504400250440000000313614536061314016540 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hmlaaq(is,ias,ngp,ngpq,apwalm,apwalmq,ld,hq) use modmain implicit none integer, intent(in) :: is,ias,ngp,ngpq complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: hq(*) ! local variables integer io,jo,i integer l1,l2,l3 integer lm1,lm2,lm3 real(8) t0 complex(8) z1 ! automatic arrays complex(8) a(lmoapw(is),ngpq),b(lmoapw(is),ngp) t0=0.5d0*rmt(is)**2 i=0 do l1=0,lmaxapw do lm1=l1**2+1,(l1+1)**2 do io=1,apword(l1,is) i=i+1 b(i,:)=0.d0 do l3=0,lmaxapw do lm3=l3**2+1,(l3+1)**2 do jo=1,apword(l3,is) z1=0.d0 ! kinetic and potential contribution do l2=0,lmaxo if (mod(l1+l2+l3,2) == 0) then do lm2=l2**2+1,(l2+1)**2 z1=z1+gntyry(lm2,lm3,lm1)*haa(lm2,jo,l3,io,l1,ias) end do end if end do ! kinetic surface contribution if (lm1 == lm3) then z1=z1+t0*apwfr(nrmt(is),1,io,l1,ias)*apwdfr(jo,l1,ias) end if if (abs(dble(z1))+abs(aimag(z1)) > 1.d-14) then b(i,1:ngp)=b(i,1:ngp)+z1*apwalm(1:ngp,jo,lm3) end if end do end do end do a(i,1:ngpq)=apwalmq(1:ngpq,io,lm1) end do end do end do call zmctm(lmoapw(is),ngpq,ngp,a,b,ld,hq) end subroutine elk-9.2.12/src/PaxHeaders/initeph.f900000644000000000000000000000013214536061314014210 xustar0030 mtime=1702388428.215501049 30 atime=1702388427.095502708 30 ctime=1702388428.215501049 elk-9.2.12/src/initeph.f900000644002504400250440000000643614536061314016743 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine initeph use modmain use modphonon use modbog implicit none ! local variables integer iq,ik,n,i ! automatic arrays complex(8) u(nstsv,nstsv),v(nstsv,nstsv) complex(8) w(nbph,nbph),x(nbph,nbph),y(nbph) ! allocatable arrays complex(8), allocatable :: dynq(:,:,:),ev(:,:) complex(8), allocatable :: ephmat(:,:,:) ! combined target array for fermionic and bosonic density matrices if (allocated(duvwx)) deallocate(duvwx) n=2*nstsv*nstsv*nkpt+2*nbph*nbph*nqpt allocate(duvwx(n)) !------------------------------! ! electronic variables ! !------------------------------! if (allocated(evaluv)) deallocate(evaluv) allocate(evaluv(nstsv,nkpt)) if (allocated(vnorm)) deallocate(vnorm) allocate(vnorm(nstsv,nkpt)) ! associate the electronic density matrices with target dvv(1:nstsv,1:nstsv,1:nkpt)=>duvwx(1:) i=nstsv*nstsv*nkpt+1 duv(1:nstsv,1:nstsv,1:nkpt)=>duvwx(i:) i=i+nstsv*nstsv*nkpt if (task == 270) then ! initialise the density matrices to random numbers dvv(:,:,:)=0.d0 duv(:,:,:)=0.d0 do ik=1,nkpt call rndevsv(1.d0,dvv(:,:,ik)) call rndevsv(1.d0,duv(:,:,ik)) end do else do ik=1,nkpt ! get the eigenvalues from file call getevaluv(ik,evaluv(:,ik)) ! get the eigenvectors from file call getevecuv(ik,vkl(:,ik),u,v) ! calculate the density matrices call dmatuv(nstsv,efermi,evalsv(:,ik),u,v,dvv(:,:,ik),duv(:,:,ik), & vnorm(:,ik)) end do end if !----------------------------! ! phononic variables ! !----------------------------! allocate(dynq(nbph,nbph,nqpt),ev(nbph,nbph)) ! read in the dynamical matrices call readdyn(dynq) ! apply the acoustic sum rule call sumrule(dynq) ! find the eigenvalues of the dynamical matrices and store in global array do iq=1,nqpt call dynev(dynq(:,:,iq),wphq(:,iq),ev) end do deallocate(dynq,ev) if (allocated(evalwx)) deallocate(evalwx) allocate(evalwx(nbph,nqpt)) if (allocated(xnorm)) deallocate(xnorm) allocate(xnorm(nbph,nqpt)) ! associate the phononic density matrices with target dxx(1:nbph,1:nbph,1:nqpt)=>duvwx(i:) i=i+nbph*nbph*nqpt dwx(1:nbph,1:nbph,1:nqpt)=>duvwx(i:) if (task == 270) then ! zero the density matrices dxx(:,:,:)=0.d0 dwx(:,:,:)=0.d0 else do iq=1,nqpt ! get the eigenvalues from file call getevalwx(iq,evalwx(:,iq)) ! get the eigenvectors from file call getevecwxy(iq,w,x,y) ! calculate the density matrices call dmatwx(nbph,w,x,dxx(:,:,iq),dwx(:,:,iq),xnorm(:,iq)) end do end if !-----------------------------------! ! electron-phonon variables ! !-----------------------------------! if (any(task == [270,271])) then ! allocate the electron-phonon matrix elements array if (allocated(ephmkq)) deallocate(ephmkq) allocate(ephmkq(nstsv,nstsv,nbph,nkptnr,nqpt)) ! read the matrix elements from file and store in global array allocate(ephmat(nstsv,nstsv,nbph)) do iq=1,nqpt do ik=1,nkptnr call getephmat(iq,ik,ephmat) ephmkq(:,:,:,ik,iq)=ephmat(:,:,:) end do ! zero the electron-phonon coupling for phonon small phonon frequencies do i=1,nbph if (wphq(i,iq) < wphcut) ephmkq(:,:,i,:,iq)=0.d0 end do end do deallocate(ephmat) end if end subroutine elk-9.2.12/src/PaxHeaders/dengyeph.f900000644000000000000000000000013214536061314014353 xustar0030 mtime=1702388428.216501048 30 atime=1702388427.097502705 30 ctime=1702388428.216501048 elk-9.2.12/src/dengyeph.f900000644002504400250440000000134314536061314017076 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine dengyeph use modmain use modphonon use modbog implicit none ! local variables integer ik,iq,i real(8) w ! change in electron energy per unit cell dengye=0.d0 do ik=1,nkpt w=wkpt(ik) do i=1,nstsv dengye=dengye+w*abs((evalsv(i,ik)-efermi)*dble(dvv(i,i,ik))) end do end do dengye=abs(occmax*dengye) ! change in phonon energy per unit cell dengyph=0.d0 do iq=1,nqpt w=wqpt(iq) do i=1,nbph dengyph=dengyph+w*abs(wphq(i,iq)*dble(dxx(i,i,iq))) end do end do ! sum of both dengy=dengye+dengyph end subroutine elk-9.2.12/src/PaxHeaders/gndsteph.f900000644000000000000000000000013214536061314014364 xustar0030 mtime=1702388428.217501046 30 atime=1702388427.098502703 30 ctime=1702388428.217501046 elk-9.2.12/src/gndsteph.f900000644002504400250440000001127514536061314017114 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine gndsteph use modmain use modphonon use modbog use modmpi use modomp implicit none ! local variables integer nmix,nwork real(8) dv ! allocatable arrays real(8), allocatable :: work(:) ! initialise universal variables call init0 call init1 call init2 call readstate call genvsig call gencore call readfermi call linengy call genapwlofr call gensocfr call genevfsv ! precise determination of the Fermi energy swidth0=swidth swidth=1.d-5 call occupy swidth=swidth0 ! initialise electron-phonon variables call initeph ! size of mixing vector for electron and phonon density matrices (complex array) nmix=2*size(duvwx) ! determine the size of the mixer work array nwork=-1 call mixerifc(mixtype,nmix,duvwx,dv,nwork,work) allocate(work(nwork)) ! initialise the mixer iscl=0 call mixerifc(mixtype,nmix,duvwx,dv,nwork,work) ! set the stop signal to .false. tstop=.false. ! set last self-consistent loop flag tlast=.false. ! only the MPI master process should write files if (mp_mpi) then ! open EPH_INFO.OUT file open(60,file='EPH_INFO.OUT',form='FORMATTED') write(60,*) write(60,'("+------------------------------+")') write(60,'("| Self-consistent loop started |")') write(60,'("+------------------------------+")') ! open EPHGAP.OUT open(64,file='EPHGAP.OUT',form='FORMATTED') ! open RMSDVS.OUT open(65,file='RMSDVS.OUT',form='FORMATTED') ! open FACE.OUT open(67,file='FACE.OUT',form='FORMATTED') end if if (mp_mpi) write(*,*) ! begin the self-consistent loop do iscl=1,maxscl if (mp_mpi) then write(60,*) write(60,'("+--------------------+")') write(60,'("| Loop number : ",I4," |")') iscl write(60,'("+--------------------+")') flush(60) write(*,'("Info(gndsteph): self-consistent loop number : ",I4)') iscl end if if (iscl >= maxscl) then if (mp_mpi) then write(60,*) write(60,'("Reached self-consistent loops maximum")') end if tlast=.true. end if ! determine change in electron and phonon energies call dengyeph ! solve the electron and phonon eigenvalue equations call eveqneph ! update the Fermi energy call occupyuv if (mp_mpi) then ! write the electronic eigenvalues to file call writeevaluv ! write the phononic eigenvalues to file call writeevalwx ! write the Fermi energy to file call writefermi write(60,*) write(60,'("Energies :")') write(60,'(" Fermi",T30,": ",G22.12)') efermi write(60,'(" electronic change",T30,": ",G22.12)') dengye write(60,'(" phononic change",T30,": ",G22.12)') dengyph write(60,'(" sum of changes",T30,": ",G22.12)') dengy write(60,*) write(60,'("Estimated indirect band gap : ",G18.10)') bandgap(1) write(60,'(" from k-point ",I6," to k-point ",I6)') ikgap(1),ikgap(2) write(60,'("Estimated direct band gap : ",G18.10)') bandgap(2) write(60,'(" at k-point ",I6)') ikgap(3) write(60,*) write(60,'("Fermionic anomalous correlation entropy : ",G18.10)') face write(60,*) write(60,'("Electron-phonon scaling factor : ",G18.10)') ephscf(1) ! write estimated indirect band gap write(64,'(G22.12)') bandgap(1) flush(64) ! write the fermionic anomalous correlation entropy write(67,'(G18.10)') face flush(67) end if ! mix the old and new electron and phonon density matrices call mixerifc(mixtype,nmix,duvwx,dv,nwork,work) ! adjust the electron-phonon term scale factor towards 1 ephscf(1)=(1.d0-ephscf(2))*ephscf(1)+ephscf(2) ! exit self-consistent loop if required if (tlast) goto 10 ! check for convergence if (iscl >= 2) then if (mp_mpi) then write(60,*) write(60,'("RMS change in density matrices (target) : ",G18.10," (",& &G18.10,")")') dv,epspot write(65,'(G18.10)') dv flush(65) if (dv < epspot) then write(60,*) write(60,'("Convergence targets achieved")') tlast=.true. end if end if end if ! check for STOP file call checkstop if (tstop) tlast=.true. ! broadcast tlast from master process to all other processes call mpi_bcast(tlast,1,mpi_logical,0,mpicom,ierror) ! reset the OpenMP thread variables call omp_reset end do 10 continue if (mp_mpi) then write(60,*) write(60,'("+------------------------------+")') write(60,'("| Self-consistent loop stopped |")') write(60,'("+------------------------------+")') ! close the EPH_INFO.OUT file close(60) ! close the EPHGAP.OUT file close(64) ! close the RMSDVS.OUT file close(65) ! close the FACE.OUT file close(67) end if deallocate(work) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/eveqneph.f900000644000000000000000000000013014536061314014361 xustar0030 mtime=1702388428.219501043 28 atime=1702388427.1005027 30 ctime=1702388428.219501043 elk-9.2.12/src/eveqneph.f900000644002504400250440000000671314536061314017114 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine eveqneph use modmain use modphonon use modbog use modmpi use modomp implicit none ! local variables integer iq,ik integer n,lp,nthd ! allocatable arrays complex(8), allocatable :: dw(:,:,:),ex(:,:,:),fy(:,:) complex(8), allocatable :: au(:,:,:),bv(:,:,:) !------------------------------------! ! phonon eigenvalue equation ! !------------------------------------! allocate(dw(nbph,nbph,nqpt),ex(nbph,nbph,nqpt),fy(nbph,nqpt)) ! parallel loop over reduced q-point set call holdthd(nqpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP DO do iq=1,nqpt ! distribute among MPI processes if (mod(iq-1,np_mpi) /= lp_mpi) cycle ! generate the matrices D and E call hmlephde(iq,dw(:,:,iq),ex(:,:,iq)) ! zero the vector F fy(:,iq)=0.d0 ! solve the phononic Bogoliubov equation call eveqnwxy(nbph,pwxpsn,dw(:,:,iq),ex(:,:,iq),fy(:,iq),evalwx(:,iq)) end do !$OMP END DO !$OMP DO do iq=1,nqpt ! distribute among MPI processes if (mod(iq-1,np_mpi) /= lp_mpi) cycle ! compute the density matrices call dmatwx(nbph,dw(:,:,iq),ex(:,:,iq),dxx(:,:,iq),dwx(:,:,iq),xnorm(:,iq)) ! write the eigenvalues, eigenvectors and X-norms to file if (tlast) then call putevalwx(iq,evalwx(:,iq)) call putevecwxy(iq,dw(:,:,iq),ex(:,:,iq),fy(:,iq)) end if end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) deallocate(dw,ex,fy) ! broadcast arrays to every MPI process if (np_mpi > 1) then n=nbph*nbph do iq=1,nqpt lp=mod(iq-1,np_mpi) call mpi_bcast(evalwx(:,iq),nbph,mpi_double_precision,lp,mpicom,ierror) call mpi_bcast(xnorm(:,iq),nbph,mpi_double_precision,lp,mpicom,ierror) call mpi_bcast(dxx(:,:,iq),n,mpi_double_complex,lp,mpicom,ierror) call mpi_bcast(dwx(:,:,iq),n,mpi_double_complex,lp,mpicom,ierror) end do end if !--------------------------------------! ! electron eigenvalue equation ! !--------------------------------------! allocate(au(nstsv,nstsv,nkpt),bv(nstsv,nstsv,nkpt)) ! parallel loop over reduced k-point set call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP DO do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! generate the matrix A call hmlepha(ik,au(:,:,ik)) ! generate the matrix B call hmlephb(ik,bv(:,:,ik)) ! solve the electronic Bogoliubov equation call eveqnuv(nstsv,au(:,:,ik),bv(:,:,ik),evaluv(:,ik)) end do !$OMP END DO !$OMP DO do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! compute the density matrices call dmatuv(nstsv,efermi,evalsv(:,ik),au(:,:,ik),bv(:,:,ik),dvv(:,:,ik), & duv(:,:,ik),vnorm(:,ik)) ! write the eigenvalues and eigenvectors to file if (tlast) then call putevaluv(ik,evaluv(:,ik)) call putevecuv(ik,au(:,:,ik),bv(:,:,ik)) end if end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) deallocate(au,bv) ! broadcast arrays to every MPI process if (np_mpi > 1) then n=nstsv*nstsv do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(evaluv(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) call mpi_bcast(vnorm(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) call mpi_bcast(dvv(:,:,ik),n,mpi_double_complex,lp,mpicom,ierror) call mpi_bcast(duv(:,:,ik),n,mpi_double_complex,lp,mpicom,ierror) end do end if end subroutine elk-9.2.12/src/PaxHeaders/hmlepha.f900000644000000000000000000000013214536061314014166 xustar0030 mtime=1702388428.220501042 30 atime=1702388427.102502697 30 ctime=1702388428.220501042 elk-9.2.12/src/hmlepha.f900000644002504400250440000000403114536061314016706 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine hmlepha(ik,a) use modmain use modphonon use modbog use modomp implicit none ! arguments integer, intent(in) :: ik complex(8), intent(out) :: a(nstsv,nstsv) ! local variables integer iq,jq,ikq,isym,nthd integer i1,i2,j1,j2,l1,l2 real(8) vl(3),t0 complex(8) z1,z2 ! automatic arrays complex(4) ephmat(nstsv,nstsv,nbph) complex(8) x(nbph,nstsv),y(nstsv,nbph) ! prefactor t0=-2.d0*wqptnr*ephscf(1)**2/dengy a(:,:)=0.d0 if (anomalous) goto 10 ! parallel loop over non-reduced q-points call holdthd(nqptnr,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ephmat,x,y,jq,vl,isym,ikq) & !$OMP PRIVATE(i1,i2,j1,j2,l1,l2,z1,z2) & !$OMP REDUCTION(+:a) & !$OMP NUM_THREADS(nthd) do iq=1,nqptnr ! equivalent reduced q-point jq=ivqiq(ivq(1,iq),ivq(2,iq),ivq(3,iq)) ! k+q-vector in lattice coordinates vl(:)=vkl(:,ik)+vql(:,iq) ! index to reduced k+q-vector call findkpt(vl,isym,ikq) ! read in the electron-phonon matrix elements from file call getephmkq(iq,ik,ephmat) ! perform the contraction do i2=1,nstsv do j2=1,nstsv do l2=1,nbph z1=0.d0 do j1=1,nstsv ! swap indices of VV† to get the density matrix at k+q z1=z1+ephmat(j1,i2,l2)*dvv(j2,j1,ikq) end do x(l2,j2)=z1 end do end do do l1=1,nbph do j2=1,nstsv z1=0.d0 do l2=1,nbph z2=dxx(l2,l1,jq)+dwx(l2,l1,jq) z1=z1+z2*x(l2,j2) end do y(j2,l1)=z1 end do end do do i1=1,i2 z1=0.d0 do l1=1,nbph do j2=1,nstsv z1=z1+conjg(ephmat(j2,i1,l1))*y(j2,l1) end do end do a(i1,i2)=a(i1,i2)+t0*z1 end do end do end do !$OMP END PARALLEL DO call freethd(nthd) 10 continue ! add the second-variational eigenvalues minus the Fermi energy do i1=1,nstsv a(i1,i1)=dble(a(i1,i1))+evalsv(i1,ik)-efermi end do end subroutine elk-9.2.12/src/PaxHeaders/hmlephb.f900000644000000000000000000000013014536061314014165 xustar0029 mtime=1702388428.22150104 30 atime=1702388427.103502696 29 ctime=1702388428.22150104 elk-9.2.12/src/hmlephb.f900000644002504400250440000000374114536061314016716 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine hmlephb(ik,b) use modmain use modphonon use modbog use modomp implicit none ! arguments integer, intent(in) :: ik complex(8), intent(out) :: b(nstsv,nstsv) ! local variables integer iq,jq,ikq,isym,nthd integer i1,i2,j1,j2,l1,l2 real(8) vl(3),t0 complex(8) z1,z2 ! automatic arrays complex(4) ephmat(nstsv,nstsv,nbph) complex(8) x(nbph,nstsv),y(nstsv,nbph) ! prefactor t0=-2.d0*wqptnr*ephscf(1)**2/dengy b(:,:)=0.d0 if (.not.anomalous) return ! parallel loop over non-reduced q-points call holdthd(nqptnr,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ephmat,x,y,jq,vl,isym,ikq) & !$OMP PRIVATE(i1,i2,j1,j2,l1,l2,z1,z2) & !$OMP REDUCTION(+:b) & !$OMP NUM_THREADS(nthd) do iq=1,nqptnr ! equivalent reduced q-point jq=ivqiq(ivq(1,iq),ivq(2,iq),ivq(3,iq)) ! k+q-vector in lattice coordinates vl(:)=vkl(:,ik)+vql(:,iq) ! index to reduced k+q-vector call findkpt(vl,isym,ikq) ! read in the electron-phonon matrix elements from file call getephmkq(iq,ik,ephmat) ! perform the contraction do i2=1,nstsv if (abs(evalsv(i2,ik)-efermi) > ecutb) cycle do j1=1,nstsv do l2=1,nbph z1=0.d0 do j2=1,nstsv z1=z1+ephmat(j2,i2,l2)*duv(j1,j2,ikq) end do x(l2,j1)=z1 end do end do do l1=1,nbph do j1=1,nstsv z1=0.d0 do l2=1,nbph z2=dxx(l2,l1,jq)+dwx(l2,l1,jq) z1=z1+z2*x(l2,j1) end do y(j1,l1)=z1 end do end do do i1=1,nstsv if (bdiag.and.(i1 /= i2)) cycle if (abs(evalsv(i1,ik)-efermi) > ecutb) cycle z1=0.d0 do l1=1,nbph do j1=1,nstsv z1=z1+conjg(ephmat(j1,i1,l1))*y(j1,l1) end do end do b(i1,i2)=b(i1,i2)+t0*z1 end do end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/hmlephde.f900000644000000000000000000000013214536061314014336 xustar0030 mtime=1702388428.223501038 30 atime=1702388427.105502693 30 ctime=1702388428.223501038 elk-9.2.12/src/hmlephde.f900000644002504400250440000000554014536061314017064 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine hmlephde(iq,d,e) use modmain use modphonon use modbog use modomp implicit none ! arguments integer, intent(in) :: iq complex(8), intent(out) :: d(nbph,nbph),e(nbph,nbph) ! local variables integer ik,jk,ikq,isym,nthd integer i1,i2,j1,j2,l1,l2 real(8) vl(3),t0 complex(8) z1 ! automatic arrays complex(4) ephmat(nstsv,nstsv,nbph) complex(8) x(nstsv,nstsv),y(nstsv,nstsv) ! prefactor t0=-occmax*wkptnr*ephscf(1)**2/dengy e(:,:)=0.d0 ! parallel loop over non-reduced k-points call holdthd(nkptnr,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ephmat,x,y,jk,vl,isym,ikq) & !$OMP PRIVATE(l1,l2,j1,j2,i1,i2,z1) & !$OMP REDUCTION(+:e) & !$OMP NUM_THREADS(nthd) do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! k+q-vector in lattice coordinates vl(:)=vkl(:,ik)+vql(:,iq) ! index to reduced k+q-vector call findkpt(vl,isym,ikq) ! read in the electron-phonon matrix elements from file call getephmkq(iq,ik,ephmat) ! perform the contraction if (anomalous) then do l2=1,nbph do j1=1,nstsv do i2=1,nstsv z1=0.d0 do j2=1,nstsv z1=z1+ephmat(j2,i2,l2)*duv(j1,j2,ikq) end do x(i2,j1)=z1 end do end do do i1=1,nstsv do j1=1,nstsv z1=0.d0 do i2=1,nstsv z1=z1-conjg(duv(i1,i2,jk))*x(i2,j1) end do y(j1,i1)=z1 end do end do do l1=1,nbph if (ediag.and.(l1 /= l2)) cycle z1=0.d0 do i1=1,nstsv do j1=1,nstsv z1=z1+conjg(ephmat(j1,i1,l1))*y(j1,i1) end do end do e(l1,l2)=e(l1,l2)+t0*z1 end do end do else do l2=1,nbph do j2=1,nstsv do i2=1,nstsv z1=0.d0 do j1=1,nstsv ! swap indices of VV† to get the density matrix at k+q z1=z1+ephmat(j1,i2,l2)*dvv(j2,j1,ikq) end do x(i2,j2)=z1 end do end do do j2=1,nstsv do i1=1,nstsv z1=0.d0 do i2=1,nstsv ! swap indices of VV† to get density matrix at k z1=z1+dvv(i2,i1,jk)*x(i2,j2) end do y(i1,j2)=z1 end do end do do l1=1,nbph if (ediag.and.(l1 /= l2)) cycle z1=0.d0 do j2=1,nstsv do i1=1,nstsv z1=z1+conjg(ephmat(j2,i1,l1))*y(i1,j2) end do end do e(l1,l2)=e(l1,l2)+t0*z1 end do end do end if end do !$OMP END PARALLEL DO call freethd(nthd) ! determine the matrix D = D0 or D = D0 + E if (tephde) then d(:,:)=e(:,:) else d(:,:)=0.d0 end if do l1=1,nbph d(l1,l1)=d(l1,l1)+wphq(l1,iq) end do end subroutine elk-9.2.12/src/PaxHeaders/getephmkq.f900000644000000000000000000000013214536061314014535 xustar0030 mtime=1702388428.224501036 30 atime=1702388427.106502691 30 ctime=1702388428.224501036 elk-9.2.12/src/getephmkq.f900000644002504400250440000000135314536061314017261 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getephmkq(iqp,ikp,ephmat) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iqp,ikp complex(4), intent(out) :: ephmat(nstsv,nstsv,nbph) ! local variables integer isym,lspl,iq,ik,iv(3) if (iqp <= nqpt) then ! q-point is in the reduced set iq=iqp ik=ikp else ! q-point is not in the reduced set call findqpt(vql(:,iqp),isym,iq) lspl=lsplsymc(isym) call i3mtv(symlat(:,:,lspl),ivk(:,ikp),iv) iv(:)=modulo(iv(:),ngridk(:)) ik=ivkiknr(iv(1),iv(2),iv(3)) end if ephmat(:,:,:)=ephmkq(:,:,:,ik,iq) end subroutine elk-9.2.12/src/PaxHeaders/ephdos.f900000644000000000000000000000013214536061314014032 xustar0030 mtime=1702388428.225501034 30 atime=1702388427.108502688 30 ctime=1702388428.225501034 elk-9.2.12/src/ephdos.f900000644002504400250440000000475014536061314016562 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine ephdos use modmain use modphonon use modbog implicit none ! local variables integer nsk(3),ik,ist,iw real(8) v(3),dw,vn,t1 ! allocatable arrays integer, allocatable :: idx(:) real(8), allocatable :: w(:),f(:,:),g(:) ! initialise universal variables call init0 call init1 call init2 call initeph allocate(idx(nstsv),w(nstsv)) do ik=1,nkpt ! get the eigenvalues from file call getevaluv(ik,evaluv(:,ik)) ! negate eigenvalues corresponding to V-norm > 1/2 do ist=1,nstsv if (vnorm(ist,ik) > 0.5d0) evaluv(ist,ik)=-evaluv(ist,ik) end do ! arrange in ascending order w(:)=evaluv(:,ik) call sortidx(nstsv,w,idx) evaluv(:,ik)=w(idx(:)) ! put the V-norm into the same order as the eigenvalues w(:)=vnorm(:,ik) vnorm(:,ik)=w(idx(:)) end do deallocate(idx,w) ! generate the partial and total DOS and write to file allocate(w(nwplot),f(nstsv,nkptnr),g(nwplot)) ! generate frequency grid dw=(wplot(2)-wplot(1))/dble(nwplot) do iw=1,nwplot w(iw)=dw*dble(iw-1)+wplot(1) end do ! number of subdivisions used for interpolation in the Brillouin zone nsk(:)=max(ngrkf/ngridk(:),1) ! set the weight array f(:,:)=occmax ! integrate over the Brillouin zone call brzint(nswplot,ngridk,nsk,ivkik,nwplot,wplot,nstsv,nstsv,evaluv,f,g) ! output the total electronic DOS to file open(50,file='TDOS_EPH.OUT.OUT',form='FORMATTED',action='WRITE') do iw=1,nwplot write(50,'(2G18.10)') w(iw),g(iw) end do close(50) ! output the FACE vs energy histogram to file open(50,file='FACEEH.OUT',form='FORMATTED',action='WRITE') do ik=1,nkpt ! map k-vector to first Brillouin zone v(:)=vkc(:,ik) call vecfbz(epslat,bvec,v) do ist=1,nstsv vn=vnorm(ist,ik) if ((vn > 0.d0).and.(vn < 1.d0)) then t1=-(vn*log(vn)+(1.d0-vn)*log(1.d0-vn)) else t1=0.d0 end if if (t1 < 1.d-4) cycle write(50,'(5G18.10)') evaluv(ist,ik),t1,v end do end do close(50) write(*,*) write(*,'("Info(ephdos):")') write(*,'(" Total electronic density of states for the electron-phonon")') write(*,'(" system written to TDOS_EPH.OUT.OUT")') write(*,*) write(*,'(" Fermionic anomalous correlation entropy vs energy histogram")') write(*,'(" written to FACEEH.OUT")') write(*,*) write(*,'(" Fermi energy is at zero in plots")') write(*,*) write(*,'(" DOS units are states/Hartree/unit cell")') deallocate(w,f,g) end subroutine elk-9.2.12/src/PaxHeaders/gradrhomt.f900000644000000000000000000000013214536061314014537 xustar0030 mtime=1702388428.227501031 30 atime=1702388427.109502687 30 ctime=1702388428.227501031 elk-9.2.12/src/gradrhomt.f900000644002504400250440000000137114536061314017263 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gradrhomt use modmain use modphonon implicit none ! local variables integer nr,nri,np ! automatic arrays complex(8) zfmt(npmtmax),gzfmt(npmtmax,3) ! add gradient contribution from rigid shift of muffin-tin nr=nrmt(isph) nri=nrmti(isph) np=npmt(isph) ! convert the density to complex spherical harmonic expansion call rtozfmt(nr,nri,rhomt(:,iasph),zfmt) ! compute the gradient call gradzfmt(nr,nri,rlmt(:,-1,isph),wcrmt(:,:,isph),zfmt,npmtmax,gzfmt) ! subtract from the density derivative drhomt(1:np,iasph)=drhomt(1:np,iasph)-gzfmt(1:np,ipph) end subroutine elk-9.2.12/src/PaxHeaders/gendcfun.f900000644000000000000000000000013014536061314014337 xustar0029 mtime=1702388428.22850103 30 atime=1702388427.111502684 29 ctime=1702388428.22850103 elk-9.2.12/src/gendcfun.f900000644002504400250440000000114414536061314017063 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gendcfun use modmain use modphonon implicit none ! local variables integer ig real(8) v1,v2,v3,t1,t2 complex(8) z1 v1=atposc(1,iaph,isph) v2=atposc(2,iaph,isph) v3=atposc(3,iaph,isph) do ig=1,ngtot t1=vgqc(1,ig)*v1+vgqc(2,ig)*v2+vgqc(3,ig)*v3 t2=ffacgq(ig,isph)*vgqc(ipph,ig) z1=t2*cmplx(sin(t1),cos(t1),8) dcfunig(ig)=z1 dcfunir(igfft(ig))=z1 end do call zfftifc(3,ngridg,1,dcfunir) end subroutine elk-9.2.12/src/PaxHeaders/gendvsig.f900000644000000000000000000000013214536061314014356 xustar0030 mtime=1702388428.229501029 30 atime=1702388427.113502681 30 ctime=1702388428.229501029 elk-9.2.12/src/gendvsig.f900000644002504400250440000000102414536061314017075 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gendvsig use modmain use modphonon implicit none ! allocatable arrays complex(8), allocatable :: zfft(:) allocate(zfft(ngtot)) zfft(:)=dvsir(:)*cfunir(:)+vsir(:)*dcfunir(:) ! Fourier transform to G+q-space call zfftifc(3,ngridg,-1,zfft) ! store in global array dvsig(1:ngvec)=zfft(igfft(1:ngvec)) deallocate(zfft) end subroutine elk-9.2.12/src/PaxHeaders/drhomagsh.f900000644000000000000000000000013214536061314014524 xustar0030 mtime=1702388428.230501027 30 atime=1702388427.114502679 30 ctime=1702388428.230501027 elk-9.2.12/src/drhomagsh.f900000644002504400250440000000152414536061314017250 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine drhomagsh use modmain use modphonon use modomp implicit none ! local variables integer idm,is,ias,nthd call holdthd(natmtot,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(is,idm) & !$OMP NUM_THREADS(nthd) !$OMP DO do ias=1,natmtot is=idxis(ias) ! convert the density derivative to spherical harmonics call zfshtip(nrcmt(is),nrcmti(is),drhomt(:,ias)) end do !$OMP END DO NOWAIT do idm=1,ndmag !$OMP DO do ias=1,natmtot is=idxis(ias) ! convert the magnetisation derivative to spherical harmonics call zfshtip(nrcmt(is),nrcmti(is),dmagmt(:,ias,idm)) end do !$OMP END DO end do !$OMP END PARALLEL call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/doccupy.f900000644000000000000000000000013214536061314014216 xustar0030 mtime=1702388428.232501024 30 atime=1702388427.116502676 30 ctime=1702388428.232501024 elk-9.2.12/src/doccupy.f900000644002504400250440000000217514536061314016745 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine doccupy use modmain use modphonon implicit none ! local variables integer, parameter :: maxit=1000 integer ik,jk,ist,it real(8) de0,de1,de real(8) dchg,x,dx,t1 ! external functions real(8), external :: sdelta if (.not.tphq0) return de0=1.d6 de1=-1.d6 do ik=1,nkptnr do ist=1,nstsv de=devalsv(ist,ik) if (de < de0) de0=de if (de > de1) de1=de end do end do t1=1.d0/swidth do it=1,maxit defermi=0.5d0*(de0+de1) dchg=0.d0 do ik=1,nkptnr jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) do ist=1,nstsv x=(efermi-evalsv(ist,jk))*t1 dx=(defermi-devalsv(ist,ik))*t1 doccsv(ist,ik)=occmax*sdelta(stype,x)*dx dchg=dchg+wkptnr*doccsv(ist,ik) end do end do if (dchg < 0.d0) then de0=defermi else de1=defermi end if if ((de1-de0) < 1.d-12) return end do write(*,*) write(*,'("Warning(doccupy): could not find Fermi energy derivative")') write(*,'(" for s.c. loop ",I5)') iscl end subroutine elk-9.2.12/src/PaxHeaders/dhmlrad.f900000644000000000000000000000013214536061314014163 xustar0030 mtime=1702388428.233501023 30 atime=1702388427.118502674 30 ctime=1702388428.233501023 elk-9.2.12/src/dhmlrad.f900000644002504400250440000000713714536061314016715 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dhmlrad use modmain use modphonon implicit none ! local variables integer is,ias integer nr,nri,iro,i0,i1 integer l1,l2,l3,lm2 integer io,jo,ilo,jlo complex(8) zsm ! begin loops over atoms and species do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 !---------------------------! ! APW-APW integrals ! !---------------------------! do l1=0,lmaxapw do io=1,apword(l1,is) do l3=0,lmaxapw do jo=1,apword(l3,is) do l2=0,lmaxi do lm2=l2**2+1,(l2+1)**2 i1=lmmaxi*(nri-1)+lm2 zsm=sum(apwfr(1:nri,1,io,l1,ias)*apwfr(1:nri,1,jo,l3,ias) & *wrmt(1:nri,is)*dvsmt(lm2:i1:lmmaxi,ias)) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zsm=zsm+sum(apwfr(iro:nr,1,io,l1,ias)*apwfr(iro:nr,1,jo,l3,ias) & *wrmt(iro:nr,is)*dvsmt(i0:i1:lmmaxo,ias)) dhaa(lm2,jo,l3,io,l1,ias)=zsm end do end do do l2=lmaxi+1,lmaxo do lm2=l2**2+1,(l2+1)**2 i0=lmmaxi*nri+lm2 i1=lmmaxo*(nr-iro)+i0 zsm=sum(apwfr(iro:nr,1,io,l1,ias)*apwfr(iro:nr,1,jo,l3,ias) & *wrmt(iro:nr,is)*dvsmt(i0:i1:lmmaxo,ias)) dhaa(lm2,jo,l3,io,l1,ias)=zsm end do end do end do end do end do end do !-------------------------------------! ! local-orbital-APW integrals ! !-------------------------------------! do ilo=1,nlorb(is) l1=lorbl(ilo,is) do l3=0,lmaxapw do io=1,apword(l3,is) do l2=0,lmaxi do lm2=l2**2+1,(l2+1)**2 i1=lmmaxi*(nri-1)+lm2 zsm=sum(lofr(1:nri,1,ilo,ias)*apwfr(1:nri,1,io,l3,ias) & *wrmt(1:nri,is)*dvsmt(lm2:i1:lmmaxi,ias)) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zsm=zsm+sum(lofr(iro:nr,1,ilo,ias)*apwfr(iro:nr,1,io,l3,ias) & *wrmt(iro:nr,is)*dvsmt(i0:i1:lmmaxo,ias)) dhloa(lm2,io,l3,ilo,ias)=zsm end do end do do l2=lmaxi+1,lmaxo do lm2=l2**2+1,(l2+1)**2 i0=lmmaxi*nri+lm2 i1=lmmaxo*(nr-iro)+i0 zsm=sum(lofr(iro:nr,1,ilo,ias)*apwfr(iro:nr,1,io,l3,ias) & *wrmt(iro:nr,is)*dvsmt(i0:i1:lmmaxo,ias)) dhloa(lm2,io,l3,ilo,ias)=zsm end do end do end do end do end do !-----------------------------------------------! ! local-orbital-local-orbital integrals ! !-----------------------------------------------! do ilo=1,nlorb(is) l1=lorbl(ilo,is) do jlo=1,nlorb(is) l3=lorbl(jlo,is) do l2=0,lmaxi do lm2=l2**2+1,(l2+1)**2 i1=lmmaxi*(nri-1)+lm2 zsm=sum(lofr(1:nri,1,ilo,ias)*lofr(1:nri,1,jlo,ias)*wrmt(1:nri,is) & *dvsmt(lm2:i1:lmmaxi,ias)) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zsm=zsm+sum(lofr(iro:nr,1,ilo,ias)*lofr(iro:nr,1,jlo,ias) & *wrmt(iro:nr,is)*dvsmt(i0:i1:lmmaxo,ias)) dhlolo(lm2,jlo,ilo,ias)=zsm end do end do do l2=lmaxi+1,lmaxo do lm2=l2**2+1,(l2+1)**2 i0=lmmaxi*nri+lm2 i1=lmmaxo*(nr-iro)+i0 zsm=sum(lofr(iro:nr,1,ilo,ias)*lofr(iro:nr,1,jlo,ias)*wrmt(iro:nr,is)& *dvsmt(i0:i1:lmmaxo,ias)) dhlolo(lm2,jlo,ilo,ias)=zsm end do end do end do end do ! end loops over atoms and species end do end subroutine elk-9.2.12/src/PaxHeaders/gendwfsv.f900000644000000000000000000000013014536061314014371 xustar0029 mtime=1702388428.23550102 30 atime=1702388427.119502672 29 ctime=1702388428.23550102 elk-9.2.12/src/gendwfsv.f900000644002504400250440000001246214536061314017122 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gendwfsv(tsh,tgp,nst,idx,ngp,ngpq,igpqig,apwalmq,dapwalm,evecfv, & devecfv,evecsv,devecsv,dwfmt,ld,dwfir) use modmain implicit none ! arguments logical, intent(in) :: tsh,tgp integer, intent(in) :: nst,idx(nst) integer, intent(in) :: ngp(nspnfv),ngpq(nspnfv) integer, intent(in) :: igpqig(ngkmax,nspnfv) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv) complex(8), intent(in) :: devecfv(nmatmax,nstfv,nspnfv) complex(8), intent(in) :: evecsv(nstsv,nstsv),devecsv(nstsv,nstsv) complex(8), intent(out) :: dwfmt(npcmtmax,natmtot,nspinor,nst) integer, intent(in) :: ld complex(8), intent(out) :: dwfir(ld,nspinor,nst) ! local variables integer ist,ispn,jspn integer is,ia,ias,nrc,nrci integer npc,igp,ifg,i,j,k real(8) t1 complex(8) z1 ! automatic arrays logical done(nstfv),ddone(nstfv) ! allocatable arrays complex(8), allocatable :: wfmt1(:,:),wfmt2(:),dwfmt1(:,:) !---------------------------------------------! ! muffin-tin wavefunction derivatives ! !---------------------------------------------! if (tevecsv) then allocate(wfmt1(npcmtmax,nstfv),dwfmt1(npcmtmax,nstfv)) end if if (.not.tsh) allocate(wfmt2(npcmtmax)) do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) done(:)=.false. do j=1,nst k=idx(j) if (tevecsv) then i=0 do ispn=1,nspinor jspn=jspnfv(ispn) dwfmt(1:npc,ias,ispn,j)=0.d0 do ist=1,nstfv i=i+1 z1=devecsv(i,k) !***** check if tq0 is needed here if (abs(dble(z1))+abs(aimag(z1)) > epsocc) then if (.not.done(ist)) then if (tsh) then call wfmtfv(ias,ngp(jspn),apwalmq(:,:,:,ias,jspn), & evecfv(:,ist,jspn),wfmt1(:,ist)) else call wfmtfv(ias,ngp(jspn),apwalmq(:,:,:,ias,jspn), & evecfv(:,ist,jspn),wfmt2) call zbsht(nrc,nrci,wfmt2,wfmt1(:,ist)) end if done(ist)=.true. end if call zaxpy(npc,z1,wfmt1(:,ist),1,dwfmt(:,ias,ispn,j),1) end if z1=evecsv(i,k) if (abs(dble(z1))+abs(aimag(z1)) > epsocc) then if (.not.ddone(ist)) then if (tsh) then call dwfmtfv(ias,ngp(jspn),ngpq(jspn), & apwalmq(:,:,:,ias,jspn),dapwalm(:,:,:,jspn), & evecfv(:,ist,jspn),devecfv(:,ist,jspn),dwfmt1(:,ist)) else call dwfmtfv(ias,ngp(jspn),ngpq(jspn), & apwalmq(:,:,:,ias,jspn),dapwalm(:,:,:,jspn), & evecfv(:,ist,jspn),devecfv(:,ist,jspn),wfmt2) call zbsht(nrc,nrci,wfmt2,dwfmt1(:,ist)) end if ddone(ist)=.true. end if call zaxpy(npc,z1,dwfmt1(:,ist),1,dwfmt(:,ias,ispn,j),1) end if end do end do else if (tsh) then call dwfmtfv(ias,ngp,ngpq,apwalmq(:,:,:,ias,1),dapwalm,evecfv(:,k,1),& devecfv(:,k,1),dwfmt(:,ias,1,j)) else call dwfmtfv(ias,ngp,ngpq,apwalmq(:,:,:,ias,1),dapwalm,evecfv(:,k,1),& devecfv(:,k,1),wfmt2) call zbsht(nrc,nrci,wfmt2,dwfmt(:,ias,1,j)) end if end if end do end do end do if (tevecsv) deallocate(wfmt1,dwfmt1) if (.not.tsh) deallocate(wfmt2) !-----------------------------------------------! ! interstitial wavefunction derivatives ! !-----------------------------------------------! t1=1.d0/sqrt(omega) do j=1,nst k=idx(j) dwfir(:,:,j)=0.d0 if (tevecsv) then i=0 do ispn=1,nspinor jspn=jspnfv(ispn) do ist=1,nstfv i=i+1 z1=devecsv(i,k) if (abs(dble(z1))+abs(aimag(z1)) > epsocc) then if (tgp) then do igp=1,ngp(jspn) dwfir(igp,ispn,j)=dwfir(igp,ispn,j)+z1*evecfv(igp,ist,jspn) end do else z1=t1*z1 do igp=1,ngp(jspn) ifg=igfft(igpqig(igp,jspn)) dwfir(ifg,ispn,j)=dwfir(ifg,ispn,j)+z1*evecfv(igp,ist,jspn) end do end if end if z1=evecsv(i,k) if (abs(dble(z1))+abs(aimag(z1)) > epsocc) then if (tgp) then do igp=1,ngpq(jspn) dwfir(igp,ispn,j)=dwfir(igp,ispn,j)+z1*devecfv(igp,ist,jspn) end do else z1=t1*z1 do igp=1,ngpq(jspn) ifg=igfft(igpqig(igp,jspn)) dwfir(ifg,ispn,j)=dwfir(ifg,ispn,j)+z1*devecfv(igp,ist,jspn) end do end if end if end do end do else if (tgp) then do igp=1,ngpq(1) dwfir(igp,1,j)=devecfv(igp,k,1) end do else do igp=1,ngpq(1) ifg=igfft(igpqig(igp,1)) dwfir(ifg,1,j)=t1*devecfv(igp,k,1) end do end if end if if (.not.tgp) then do ispn=1,nspinor call zfftifc(3,ngridg,1,dwfir(:,ispn,j)) end do end if end do end subroutine elk-9.2.12/src/PaxHeaders/dwfmtfv.f900000644000000000000000000000013214536061314014225 xustar0030 mtime=1702388428.236501018 30 atime=1702388427.120502671 30 ctime=1702388428.236501018 elk-9.2.12/src/dwfmtfv.f900000644002504400250440000000406414536061314016753 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dwfmtfv(ias,ngp,ngpq,apwalmq,dapwalm,evecfv,devecfv,dwfmt) use modmain use modphonon implicit none ! arguments integer, intent(in) :: ias,ngp,ngpq complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: evecfv(nmatmax),devecfv(nmatmax) complex(8), intent(out) :: dwfmt(*) ! local variables integer is,io,ilo integer nrci,nrco,iro integer l,lm,npci,i complex(8) z1 ! external functions complex(8), external :: zdotu is=idxis(ias) iro=nrmti(is)+lradstp nrci=nrcmti(is) nrco=nrcmt(is)-nrci npci=npcmti(is) ! zero the wavefunction derivative dwfmt(1:npcmt(is))=0.d0 !-----------------------! ! APW functions ! !-----------------------! do l=0,lmaxo do lm=l**2+1,(l+1)**2 i=npci+lm do io=1,apword(l,is) z1=zdotu(ngpq,devecfv,1,apwalmq(:,io,lm),1) if (ias == iasph) then z1=z1+zdotu(ngp,evecfv,1,dapwalm(:,io,lm),1) end if if (l <= lmaxi) then call zfzrf(nrci,z1,lradstp,apwfr(1,1,io,l,ias),lmmaxi,dwfmt(lm)) end if call zfzrf(nrco,z1,lradstp,apwfr(iro,1,io,l,ias),lmmaxo,dwfmt(i)) end do end do end do !---------------------------------! ! local-orbital functions ! !---------------------------------! do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 i=npci+lm z1=devecfv(ngpq+idxlo(lm,ilo,ias)) if (l <= lmaxi) then call zfzrf(nrci,z1,lradstp,lofr(1,1,ilo,ias),lmmaxi,dwfmt(lm)) end if call zfzrf(nrco,z1,lradstp,lofr(iro,1,ilo,ias),lmmaxo,dwfmt(i)) end do end do return contains pure subroutine zfzrf(n,z,ld1,rf,ld2,zf) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: z integer, intent(in) :: ld1 real(8), intent(in) :: rf(ld1,n) integer, intent(in) :: ld2 complex(8), intent(inout) :: zf(ld2,n) zf(1,:)=zf(1,:)+z*rf(1,:) end subroutine end subroutine elk-9.2.12/src/PaxHeaders/gengqvec.f900000644000000000000000000000013214536061314014347 xustar0030 mtime=1702388428.237501017 30 atime=1702388427.122502668 30 ctime=1702388428.237501017 elk-9.2.12/src/gengqvec.f900000644002504400250440000000161714536061314017076 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengqvec(iq) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq ! local variables integer is,ig do ig=1,ngtot ! G+q-vector in Cartesian coordinates vgqc(1:3,ig)=vgc(1:3,ig)+vqc(1:3,iq) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) end do ! spherical harmonics for G+q-vectors do ig=1,ngvec call genylmv(lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! compute the spherical Bessel functions j_l(|G+q|R_mt) call genjlgprmt(lnpsd,ngvec,gqc,ngvec,jlgqrmt) ! structure factors for G+q call gensfacgp(ngvec,vgqc,ngvec,sfacgq) ! generate the smooth step function form factors for G+q do is=1,nspecies call genffacgp(is,gqc,ffacgq(:,is)) end do end subroutine elk-9.2.12/src/PaxHeaders/dmatch.f900000644000000000000000000000013214536061314014010 xustar0030 mtime=1702388428.239501014 30 atime=1702388427.123502666 30 ctime=1702388428.239501014 elk-9.2.12/src/dmatch.f900000644002504400250440000000152214536061314016532 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine dmatch(ias,ip,ngp,vgpc,apwalm,dapwalm) use modmain implicit none ! arguments integer, intent(in) :: ias,ip,ngp real(8), intent(in) :: vgpc(3,ngkmax) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) complex(8), intent(out) :: dapwalm(ngkmax,apwordmax,lmmaxapw) ! local variables integer is,l,lm,io,igp complex(8) z1 ! take derivative with respect to atomic displacement is=idxis(ias) do l=0,lmaxapw do lm=l**2+1,(l+1)**2 do io=1,apword(l,is) do igp=1,ngp z1=apwalm(igp,io,lm,ias) dapwalm(igp,io,lm)=vgpc(ip,igp)*cmplx(-aimag(z1),dble(z1),8) end do end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/writedvs.f900000644000000000000000000000013214536061314014417 xustar0030 mtime=1702388428.240501012 30 atime=1702388427.125502663 30 ctime=1702388428.240501012 elk-9.2.12/src/writedvs.f900000644002504400250440000000147214536061314017145 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writedvs(fext) use modmain use modphonon implicit none ! arguments character(*), intent(in) :: fext ! local variables integer is,ias ! allocatable arrays complex(8), allocatable :: zfmt(:,:,:) allocate(zfmt(lmmaxo,nrmtmax,natmtot)) open(150,file='DVS'//trim(fext),form='UNFORMATTED',action='WRITE') write(150) version write(150) nspecies write(150) lmmaxo do is=1,nspecies write(150) natoms(is) write(150) nrmt(is) end do write(150) ngridg do ias=1,natmtot is=idxis(ias) call zfmtpack(.false.,nrmt(is),nrmti(is),dvsmt(:,ias),zfmt(:,:,ias)) end do write(150) zfmt,dvsir close(150) deallocate(zfmt) end subroutine elk-9.2.12/src/PaxHeaders/readdyn.f900000644000000000000000000000013214536061314014176 xustar0030 mtime=1702388428.241501011 30 atime=1702388427.126502662 30 ctime=1702388428.241501011 elk-9.2.12/src/readdyn.f900000644002504400250440000000244714536061314016727 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readdyn(dynq) use modmain use modphonon implicit none ! arguments complex(8), intent(out) :: dynq(nbph,nbph,nqpt) ! local variables logical exist integer iq,is,js,ia,ja integer ip,jp,i,j real(8) a,b character(256) fext do iq=1,nqpt i=0 do is=1,nspecies do ia=1,natoms(is) do ip=1,3 i=i+1 call dynfext(iq,is,ia,ip,fext) inquire(file='DYN'//trim(fext),exist=exist) if (.not.exist) then write(*,*) write(*,'("Error(readdyn): file not found :")') write(*,'(A)') ' DYN'//trim(fext) write(*,*) stop end if open(50,file='DYN'//trim(fext),status='OLD',form='FORMATTED') j=0 do js=1,nspecies do ja=1,natoms(js) do jp=1,3 j=j+1 read(50,*) a,b dynq(i,j,iq)=cmplx(a,b,8) end do end do end do close(50) end do ! end loops over atoms and species end do end do ! symmetrise the dynamical matrix call dynsym(vql(:,iq),dynq(:,:,iq)) ! end loop over q-vectors end do end subroutine elk-9.2.12/src/PaxHeaders/dyntask.f900000644000000000000000000000013214536061314014225 xustar0030 mtime=1702388428.242501009 30 atime=1702388427.128502659 30 ctime=1702388428.242501009 elk-9.2.12/src/dyntask.f900000644002504400250440000000275614536061314016761 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dyntask(fnum,fext) use modmain use modphonon use modmpi implicit none ! arguments integer, intent(in) :: fnum character(*), intent(out) :: fext ! local variables logical exist ! only master process should search for file if (.not.mp_mpi) goto 10 do ipph=1,3 do isph=1,nspecies do iaph=1,natoms(isph) do iqph=1,nqpt ! construct the dynamical matrix file extension call dynfext(iqph,isph,iaph,ipph,fext) ! determine if the DYN file with this extension exists inquire(file='DYN'//trim(fext),exist=exist) if (.not.exist) then open(fnum,file='DYN'//trim(fext),form='FORMATTED') iasph=idxas(iaph,isph) goto 10 end if end do end do end do end do iqph=0; isph=0; iaph=0; iasph=0; ipph=0 write(*,'("Info(dyntask): nothing more to do")') 10 continue ! broadcast to all other MPI processes call mpi_bcast(iqph,1,mpi_integer,0,mpicom,ierror) call mpi_bcast(isph,1,mpi_integer,0,mpicom,ierror) call mpi_bcast(iaph,1,mpi_integer,0,mpicom,ierror) call mpi_bcast(iasph,1,mpi_integer,0,mpicom,ierror) call mpi_bcast(ipph,1,mpi_integer,0,mpicom,ierror) if (iqph == 0) then fext='.OUT' else call dynfext(iqph,isph,iaph,ipph,fext) end if ! set the q = 0 flag if (iqph == 1) then tphq0=.true. else tphq0=.false. end if end subroutine elk-9.2.12/src/PaxHeaders/dpotks.f900000644000000000000000000000013214536061314014054 xustar0030 mtime=1702388428.244501006 30 atime=1702388427.129502657 30 ctime=1702388428.244501006 elk-9.2.12/src/dpotks.f900000644002504400250440000000252014536061314016575 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dpotks use modmain use modphonon use modomp implicit none ! local variables integer is,ias,np,nthd ! convert density derivative to spherical coordinates call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call zbshtip(nrmt(is),nrmti(is),drhomt(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) ! compute the exchange-correlation potential derivative call dpotxc ! convert density derivative to spherical harmonics call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call zfshtip(nrmt(is),nrmti(is),drhomt(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) ! generate the Coulomb potential derivative call dpotcoul ! add to the Kohn-Sham potential derivative do ias=1,natmtot is=idxis(ias) np=npmt(is) dvsmt(1:np,ias)=dvsmt(1:np,ias)+dvclmt(1:np,ias) end do dvsir(1:ngtot)=dvsir(1:ngtot)+dvclir(1:ngtot) ! remove the gradient part of the potential derivative for displaced muffin-tin np=npmt(isph) dvsmt(1:np,iasph)=dvsmt(1:np,iasph)+gvsmt(1:np) end subroutine elk-9.2.12/src/PaxHeaders/dpotxc.f900000644000000000000000000000013214536061314014051 xustar0030 mtime=1702388428.245501005 30 atime=1702388427.131502654 30 ctime=1702388428.245501005 elk-9.2.12/src/dpotxc.f900000644002504400250440000001106314536061314016574 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dpotxc use modmain use modphonon implicit none ! local variables integer idm,is,ias integer nr,nri,nrc,nrci integer ir,np ! allocatable arrays real(8), allocatable :: fxcmt(:,:,:,:),fxcir(:,:,:) complex(8), allocatable :: dvmt(:),dbmt(:,:) ! compute the exchange-correlation kernel if (spinpol) then allocate(fxcmt(npmtmax,natmtot,4,4),fxcir(ngtot,4,4)) call genspfxcr(.false.,fxcmt,fxcir) else allocate(fxcmt(npmtmax,natmtot,1,1),fxcir(ngtot,1,1)) call genfxcr(.false.,fxcmt,fxcir) end if allocate(dvmt(npmtmax)) if (spinpol) allocate(dbmt(npmtmax,3)) !---------------------------------------! ! muffin-tin potential and field ! !---------------------------------------! ! note: muffin-tin functions are in spherical coordinates do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) nrc=nrcmt(is) nrci=nrcmti(is) np=npmt(is) ! charge-charge contribution to potential derivative dvmt(1:np)=fxcmt(1:np,ias,1,1)*drhomt(1:np,ias) ! spin-polarised case if (spinpol) then if (ncmag) then ! non-collinear ! add charge-spin contribution to potential derivative dvmt(1:np)=dvmt(1:np) & +fxcmt(1:np,ias,1,2)*dmagmt(1:np,ias,1) & +fxcmt(1:np,ias,1,3)*dmagmt(1:np,ias,2) & +fxcmt(1:np,ias,1,4)*dmagmt(1:np,ias,3) ! spin-charge contribution to B-field derivative dbmt(1:np,1)=fxcmt(1:np,ias,1,2)*drhomt(1:np,ias) dbmt(1:np,2)=fxcmt(1:np,ias,1,3)*drhomt(1:np,ias) dbmt(1:np,3)=fxcmt(1:np,ias,1,4)*drhomt(1:np,ias) ! add spin-spin contribution to B-field derivative ! (note: fxc is stored as an upper triangular matrix) dbmt(1:np,1)=dbmt(1:np,1) & +fxcmt(1:np,ias,2,2)*dmagmt(1:np,ias,1) & +fxcmt(1:np,ias,2,3)*dmagmt(1:np,ias,2) & +fxcmt(1:np,ias,2,4)*dmagmt(1:np,ias,3) dbmt(1:np,2)=dbmt(1:np,2) & +fxcmt(1:np,ias,2,3)*dmagmt(1:np,ias,1) & +fxcmt(1:np,ias,3,3)*dmagmt(1:np,ias,2) & +fxcmt(1:np,ias,3,4)*dmagmt(1:np,ias,3) dbmt(1:np,3)=dbmt(1:np,3) & +fxcmt(1:np,ias,2,4)*dmagmt(1:np,ias,1) & +fxcmt(1:np,ias,3,4)*dmagmt(1:np,ias,2) & +fxcmt(1:np,ias,4,4)*dmagmt(1:np,ias,3) else ! collinear ! add charge-spin contribution to potential derivative dvmt(1:np)=dvmt(1:np)+fxcmt(1:np,ias,1,4)*dmagmt(1:np,ias,1) ! spin-charge contribution to B-field derivative dbmt(1:np,1)=fxcmt(1:np,ias,1,4)*drhomt(1:np,ias) ! add spin-spin contribution to B-field derivative dbmt(1:np,1)=dbmt(1:np,1)+fxcmt(1:np,ias,4,4)*dmagmt(1:np,ias,1) end if end if ! convert potential derivative to spherical harmonics call zfsht(nr,nri,dvmt,dvsmt(:,ias)) ! convert magnetic field derivative to spherical harmonics on coarse mesh do idm=1,ndmag call zfmtftoc(nrc,nrci,dbmt(:,idm),dbsmt(:,ias,idm)) call zfshtip(nrc,nrci,dbsmt(:,ias,idm)) end do end do !------------------------------------------! ! interstitial potential and field ! !------------------------------------------! ! charge-charge contribution to potential derivative do ir=1,ngtot dvsir(ir)=fxcir(ir,1,1)*drhoir(ir) end do ! spin-polarised case if (spinpol) then if (ncmag) then ! non-collinear do ir=1,ngtot ! add charge-spin contribution to potential derivative dvsir(ir)=dvsir(ir) & +fxcir(ir,1,2)*dmagir(ir,1) & +fxcir(ir,1,3)*dmagir(ir,2) & +fxcir(ir,1,4)*dmagir(ir,3) ! spin-charge contribution to B-field derivative dbsir(ir,1)=fxcir(ir,1,2)*drhoir(ir) dbsir(ir,2)=fxcir(ir,1,3)*drhoir(ir) dbsir(ir,3)=fxcir(ir,1,4)*drhoir(ir) ! add spin-spin contribution to B-field derivative dbsir(ir,1)=dbsir(ir,1) & +fxcir(ir,2,2)*dmagir(ir,1) & +fxcir(ir,2,3)*dmagir(ir,2) & +fxcir(ir,2,4)*dmagir(ir,3) dbsir(ir,2)=dbsir(ir,2) & +fxcir(ir,2,3)*dmagir(ir,1) & +fxcir(ir,3,3)*dmagir(ir,2) & +fxcir(ir,3,4)*dmagir(ir,3) dbsir(ir,3)=dbsir(ir,3) & +fxcir(ir,2,4)*dmagir(ir,1) & +fxcir(ir,3,4)*dmagir(ir,2) & +fxcir(ir,4,4)*dmagir(ir,3) end do else ! collinear do ir=1,ngtot ! add charge-spin contribution to potential derivative dvsir(ir)=dvsir(ir)+fxcir(ir,1,4)*dmagir(ir,1) ! spin-charge contribution to B-field derivative dbsir(ir,1)=fxcir(ir,1,4)*drhoir(ir) ! add spin-spin contribution to B-field derivative dbsir(ir,1)=dbsir(ir,1)+fxcir(ir,4,4)*dmagir(ir,1) end do end if end if deallocate(fxcmt,fxcir,dvmt) if (spinpol) deallocate(dbmt) end subroutine elk-9.2.12/src/PaxHeaders/deveqnfv.f900000644000000000000000000000013214536061314014366 xustar0030 mtime=1702388428.247501002 30 atime=1702388427.132502653 30 ctime=1702388428.247501002 elk-9.2.12/src/deveqnfv.f900000644002504400250440000000713014536061314017111 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine deveqnfv(ngp,ngpq,igpig,igpqig,vgpc,vgpqc,evalfv,apwalm,apwalmq, & dapwalm,dapwalmq,evecfv,devalfvp,devecfv) use modmain use modphonon use modomp implicit none ! arguments integer, intent(in) :: ngp,ngpq integer, intent(in) :: igpig(ngkmax),igpqig(ngkmax) real(8), intent(in) :: vgpc(3,ngkmax),vgpqc(3,ngkmax) real(8), intent(in) :: evalfv(nstfv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw,natmtot) complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalmq(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: evecfv(nmatmax,nstfv) real(8), intent(out) :: devalfvp(nstfv) complex(8), intent(out) :: devecfv(nmatmax,nstfv) ! local variables integer nm,nmq,is,ias,jst,i integer lwork,info,nthd real(8) t1 complex(8) z1 ! allocatable arrays real(8), allocatable :: w(:),rwork(:) complex(8), allocatable :: h(:,:),o(:,:),dh(:,:),od(:,:) complex(8), allocatable :: x(:),y(:),work(:) ! external functions complex(8), external :: zdotc ! matrix sizes for k and k+q nm=ngp+nlotot nmq=ngpq+nlotot allocate(h(nmq,nmq),o(nmq,nmq)) ! compute the Hamiltonian and overlap matrices at p+q call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP SECTION call hmlfv(nmq,ngpq,igpqig,vgpqc,apwalmq,h) !$OMP SECTION call olpfv(nmq,ngpq,igpqig,apwalmq,o) !$OMP END PARALLEL SECTIONS call freethd(nthd) ! solve the generalised eigenvalue problem (H - e_j O)|v_j> = 0 ! (note: these are also the eigenvalues/vectors of O⁻¹ H ) lwork=2*nmq allocate(w(nmq),rwork(3*nmq),work(lwork)) call zhegv(1,'V','U',nmq,h,nmq,o,nmq,w,work,lwork,rwork,info) if (info /= 0) then write(*,*) write(*,'("Error(deveqnfv): diagonalisation failed")') write(*,'(" ZHEGV returned INFO = ",I8)') info write(*,*) stop end if deallocate(rwork,o,work) ! compute the Hamiltonian and overlap matrix derivatives allocate(dh(nmq,nm),od(nmq,nm)) call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP PRIVATE(ias,is) & !$OMP NUM_THREADS(nthd) !$OMP SECTION dh(:,:)=0.d0 do ias=1,natmtot is=idxis(ias) call dhmlaa(is,ias,ngp,ngpq,apwalm(:,:,:,ias),apwalmq(:,:,:,ias),dapwalm, & dapwalmq,nmq,dh) call dhmlalo(is,ias,ngp,ngpq,apwalm(:,:,:,ias),apwalmq(:,:,:,ias),dapwalm, & dapwalmq,nmq,dh) call dhmllolo(is,ias,ngp,ngpq,nmq,dh) end do call dhmlistl(ngp,ngpq,igpig,igpqig,vgpc,vgpqc,nmq,dh) !$OMP SECTION od(:,:)=0.d0 do ias=1,natmtot is=idxis(ias) call dolpaa(is,ias,ngp,ngpq,apwalm(:,:,:,ias),apwalmq(:,:,:,ias),dapwalm, & dapwalmq,nmq,od) call dolpalo(is,ias,ngp,ngpq,dapwalm,dapwalmq,nmq,od) end do call dolpistl(ngp,ngpq,igpig,igpqig,nmq,od) !$OMP END PARALLEL SECTIONS call freethd(nthd) allocate(x(nmq),y(nmq)) ! loop over states do jst=1,nstfv ! compute |dv_j> = V (e_j - D)⁻¹ V† (dH - e_j dO)|v_j> z1=-evalfv(jst) call zgemv('N',nmq,nm,z1,od,nmq,evecfv(:,jst),1,zzero,x,1) call zgemv('N',nmq,nm,zone,dh,nmq,evecfv(:,jst),1,zone,x,1) ! compute the first-order change in eigenvalue if (tphq0) then z1=zdotc(nmq,evecfv(:,jst),1,x,1) devalfvp(jst)=dble(z1) else devalfvp(jst)=0.d0 end if call zgemv('C',nmq,nmq,zone,h,nmq,x,1,zzero,y,1) do i=1,nmq t1=evalfv(jst)-w(i) if (abs(t1) > epsdev) then y(i)=y(i)/t1 else y(i)=0.d0 end if end do call zgemv('N',nmq,nmq,zone,h,nmq,y,1,zzero,devecfv(:,jst),1) end do deallocate(w,h,dh,od,x,y) end subroutine elk-9.2.12/src/PaxHeaders/dpotcoul.f900000644000000000000000000000012314536061314014401 xustar0027 mtime=1702388428.248501 29 atime=1702388427.13450265 27 ctime=1702388428.248501 elk-9.2.12/src/dpotcoul.f900000644002504400250440000000154614536061314017131 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dpotcoul use modmain use modphonon implicit none ! local variables integer np ! automatic arrays complex(8) gzfmt(npmtmax,3) ! solve the complex Poisson's equation in the muffin-tins call genzvclmt(nrmt,nrmti,nrmtmax,rlmt,wprmt,npmtmax,drhomt,dvclmt) ! calculate the gradient of the nuclear potential call gradzvcln(isph,gzfmt) ! subtract gradient component corresponding to the phonon polarisation np=npmt(isph) dvclmt(1:np,iasph)=dvclmt(1:np,iasph)-gzfmt(1:np,ipph) ! solve Poisson's equation in the entire unit cell call zpotcoul(nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gqc,gclgq,ngvec, & jlgqrmt,ylmgq,sfacgq,drhoir,npmtmax,dvclmt,dvclir) end subroutine elk-9.2.12/src/PaxHeaders/drhomagk.f900000644000000000000000000000013214536061314014344 xustar0030 mtime=1702388428.250500997 30 atime=1702388427.135502648 30 ctime=1702388428.250500997 elk-9.2.12/src/drhomagk.f900000644002504400250440000001531414536061314017072 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine drhomagk(ngp,ngpq,igpig,igpqig,occsvp,doccsvp,apwalm,apwalmq, & dapwalm,evecfv,devecfv,evecsv,devecsv) use modmain use modphonon implicit none ! arguments integer, intent(in) :: ngp(nspnfv),ngpq(nspnfv) integer, intent(in) :: igpig(ngkmax,nspnfv),igpqig(ngkmax,nspnfv) real(8), intent(in) :: occsvp(nstsv),doccsvp(nstsv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv) complex(8), intent(in) :: devecfv(nmatmax,nstfv,nspnfv) complex(8), intent(in) :: evecsv(nstsv,nstsv),devecsv(nstsv,nstsv) ! local variables integer nst,ist,jst integer is,ias,npc real(8) wo,dwo ! automatic arrays integer idx(nstsv) ! allocatable arrays complex(8), allocatable :: wfmt(:,:,:,:),wfir(:,:,:) complex(8), allocatable :: dwfmt(:,:,:,:),dwfir(:,:,:) ! count and index the occupied states nst=0 do ist=1,nstsv if (abs(occsvp(ist)) < epsocc) cycle nst=nst+1 idx(nst)=ist end do ! generate the wavefunctions allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfir(ngtot,nspinor,nst)) call genwfsv(.false.,.false.,nst,idx,ngridg,igfft,ngp,igpig,apwalm,evecfv, & evecsv,wfmt,ngtot,wfir) ! generate the wavefunction derivatives allocate(dwfmt(npcmtmax,natmtot,nspinor,nst),dwfir(ngtot,nspinor,nst)) call gendwfsv(.false.,.false.,nst,idx,ngp,ngpq,igpqig,apwalmq,dapwalm,evecfv, & devecfv,evecsv,devecsv,dwfmt,ngtot,dwfir) ! loop over occupied states do ist=1,nst jst=idx(ist) wo=2.d0*wkptnr*occsvp(jst) dwo=wkptnr*doccsvp(jst) !----------------------------------------------! ! muffin-tin density and magnetisation ! !----------------------------------------------! do ias=1,natmtot is=idxis(ias) npc=npcmt(is) !$OMP CRITICAL(drhomagk_1) if (spinpol) then ! spin-polarised if (ncmag) then ! non-collinear call drmk1(npc,wo,wfmt(:,ias,1,jst),wfmt(:,ias,2,jst), & dwfmt(:,ias,1,jst),dwfmt(:,ias,2,jst),drhomt(:,ias),dmagmt(:,ias,1), & dmagmt(:,ias,2),dmagmt(:,ias,3)) if (tphq0) then call drmk01(npc,dwo,wfmt(:,ias,1,jst),wfmt(:,ias,2,jst), & drhomt(:,ias),dmagmt(:,ias,1),dmagmt(:,ias,2),dmagmt(:,ias,3)) end if else ! collinear call drmk2(npc,wo,wfmt(:,ias,1,jst),wfmt(:,ias,2,jst), & dwfmt(:,ias,1,jst),dwfmt(:,ias,2,jst),drhomt(:,ias),dmagmt(:,ias,1)) if (tphq0) then call drmk02(npc,dwo,wfmt(:,ias,1,jst),wfmt(:,ias,2,jst), & drhomt(:,ias),dmagmt(:,ias,1)) end if end if else ! spin-unpolarised call drmk3(npc,wo,wfmt(:,ias,1,jst),dwfmt(:,ias,1,jst),drhomt(:,ias)) if (tphq0) then call drmk03(npc,dwo,wfmt(:,ias,1,jst),drhomt(:,ias)) end if end if !$OMP END CRITICAL(drhomagk_1) !****** use lock end do !------------------------------------------------! ! interstitial density and magnetisation ! !------------------------------------------------! !$OMP CRITICAL(drhomagk_2) if (spinpol) then ! spin-polarised if (ncmag) then call drmk1(ngtot,wo,wfir(:,1,jst),wfir(:,2,jst),dwfir(:,1,jst), & dwfir(:,2,jst),drhoir,dmagir,dmagir(:,2),dmagir(:,3)) if (tphq0) then call drmk01(ngtot,dwo,wfir(:,1,jst),wfir(:,2,jst),drhoir,dmagir, & dmagir(:,2),dmagir(:,3)) end if else ! collinear call drmk2(ngtot,wo,wfir(:,1,jst),wfir(:,2,jst),dwfir(:,1,jst), & dwfir(:,2,jst),drhoir,dmagir) if (tphq0) then call drmk02(ngtot,dwo,wfir(:,1,jst),wfir(:,2,jst),drhoir,dmagir) end if end if else ! spin-unpolarised call drmk3(ngtot,wo,wfir(:,1,jst),dwfir(:,1,jst),drhoir) if (tphq0) then call drmk03(ngtot,dwo,wfir(:,1,jst),drhoir) end if end if !$OMP END CRITICAL(drhomagk_2) ! end loop over states end do deallocate(wfmt,wfir,dwfmt,dwfir) return contains pure subroutine drmk1(n,wo,wf1,wf2,dwf1,dwf2,drho,dmag1,dmag2,dmag3) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wo complex(8), intent(in) :: wf1(n),wf2(n) complex(8), intent(in) :: dwf1(n),dwf2(n) complex(8), intent(inout) :: drho(n) complex(8), intent(inout) :: dmag1(n),dmag2(n),dmag3(n) ! local variables integer i complex(8) z1,z2,z3,z4,z5,z6 do i=1,n z1=conjg(wf1(i)) z2=conjg(wf2(i)) z3=dwf1(i) z4=dwf2(i) z5=z1*z3 z6=z2*z4 drho(i)=drho(i)+wo*(z5+z6) dmag3(i)=dmag3(i)+wo*(z5-z6) z5=z1*z4 z6=z2*z3 dmag1(i)=dmag1(i)+wo*(z5+z6) z5=z5-z6 dmag2(i)=dmag2(i)+wo*cmplx(aimag(z5),-dble(z5),8) end do end subroutine pure subroutine drmk01(n,dwo,wf1,wf2,drho,dmag1,dmag2,dmag3) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: dwo complex(8), intent(in) :: wf1(n),wf2(n) complex(8), intent(inout) :: drho(n) complex(8), intent(inout) :: dmag1(n),dmag2(n),dmag3(n) ! local variables integer i real(8) t1,t2 complex(8) z1,z2 do i=1,n z1=wf1(i) z2=wf2(i) t1=dble(z1)**2+aimag(z1)**2 t2=dble(z2)**2+aimag(z2)**2 z1=conjg(z1)*z2 drho(i)=drho(i)+dwo*(t1+t2) dmag1(i)=dmag1(i)+dwo*2.d0*dble(z1) dmag2(i)=dmag2(i)+dwo*2.d0*aimag(z1) dmag3(i)=dmag3(i)+dwo*(t1-t2) end do !******* speed up: see rhomagk end subroutine pure subroutine drmk2(n,wo,wf1,wf2,dwf1,dwf2,drho,dmag) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wo complex(8), intent(in) :: wf1(n),wf2(n) complex(8), intent(in) :: dwf1(n),dwf2(n) complex(8), intent(inout) :: drho(n),dmag(n) ! local variables integer i complex(8) z1,z2 do i=1,n z1=conjg(wf1(i))*dwf1(i) z2=conjg(wf2(i))*dwf2(i) drho(i)=drho(i)+wo*(z1+z2) dmag(i)=dmag(i)+wo*(z1-z2) end do end subroutine pure subroutine drmk02(n,dwo,wf1,wf2,drho,dmag) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: dwo complex(8), intent(in) :: wf1(n),wf2(n) complex(8), intent(inout) :: drho(n),dmag(n) ! local variables integer i real(8) t1,t2 do i=1,n t1=dble(wf1(i))**2+aimag(wf1(i))**2 t2=dble(wf2(i))**2+aimag(wf2(i))**2 drho(i)=drho(i)+dwo*(t1+t2) dmag(i)=dmag(i)+dwo*(t1-t2) end do end subroutine pure subroutine drmk3(n,wo,wf,dwf,drho) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wo complex(8), intent(in) :: wf(n),dwf(n) complex(8), intent(inout) :: drho(n) drho(:)=drho(:)+wo*conjg(wf(:))*dwf(:) end subroutine pure subroutine drmk03(n,dwo,wf,drho) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: dwo complex(8), intent(in) :: wf(n) complex(8), intent(inout) :: drho(n) drho(:)=drho(:)+dwo*(dble(wf(:))**2+aimag(wf(:))**2) end subroutine end subroutine elk-9.2.12/src/PaxHeaders/gengvsmt.f900000644000000000000000000000013214536061314014402 xustar0030 mtime=1702388428.251500996 30 atime=1702388427.137502645 30 ctime=1702388428.251500996 elk-9.2.12/src/gengvsmt.f900000644002504400250440000000135614536061314017131 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengvsmt use modmain use modphonon implicit none ! local variables integer nr,nri,np ! allocatable arrays complex(8), allocatable :: zfmt(:),gzfmt(:,:) allocate(zfmt(npmtmax),gzfmt(npmtmax,3)) nr=nrmt(isph) nri=nrmti(isph) np=npmt(isph) ! convert potential to complex spherical harmonics call rtozfmt(nr,nri,vsmt(:,iasph),zfmt) ! calculate the gradient call gradzfmt(nr,nri,rlmt(:,-1,isph),wcrmt(:,:,isph),zfmt,npmtmax,gzfmt) ! copy current polarisation component to global array gvsmt(1:np)=gzfmt(1:np,ipph) deallocate(zfmt,gzfmt) end subroutine elk-9.2.12/src/PaxHeaders/dforce.f900000644000000000000000000000013214536061314014012 xustar0030 mtime=1702388428.252500995 30 atime=1702388427.138502644 30 ctime=1702388428.252500995 elk-9.2.12/src/dforce.f900000644002504400250440000001147214536061314016541 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dforce(dyn) use modmain use modphonon use modomp implicit none ! arguments complex(8), intent(out) :: dyn(3,natmtot) ! local variables integer ik,is,ias,nthd integer nr,nri,ir,np,i complex(8) z1 ! allocatable arrays complex(8), allocatable :: zrhomt(:,:),zrhoir(:) complex(8), allocatable :: grhomt(:,:,:),grhoir(:,:) complex(8), allocatable :: zvclmt(:,:),zvclir(:) complex(8), allocatable :: gvclmt(:,:,:),gvclir(:,:) complex(8), allocatable :: zfmt(:),gzfmt(:,:) ! external functions complex(8), external :: zfmtinp allocate(zrhomt(npmtmax,natmtot),zrhoir(ngtot)) allocate(grhomt(npmtmax,natmtot,3),grhoir(ngtot,3)) allocate(zvclmt(npmtmax,natmtot),zvclir(ngtot)) allocate(gvclmt(npmtmax,natmtot,3),gvclir(ngtot,3)) allocate(zfmt(npmtmax),gzfmt(npmtmax,3)) ! make complex copy of the density do ias=1,natmtot is=idxis(ias) call rtozfmt(nrmt(is),nrmti(is),rhomt(:,ias),zrhomt(:,ias)) end do zrhoir(:)=rhoir(:) ! compute the gradient of the density call gradzf(zrhomt,zrhoir,grhomt,grhoir) !--------------------------------------------------------------! ! Hellmann-Feynman force derivative for displaced atom ! !--------------------------------------------------------------! nr=nrmt(isph) nri=nrmti(isph) np=npmt(isph) ! calculate the gradient of the nuclear potential call gradzvcln(isph,gzfmt) ! compute the q-dependent nuclear Coulomb potential derivative zvclmt(:,:)=0.d0 zvclmt(1:np,iasph)=gzfmt(1:np,ipph) tphdyn=.true. ! zero the interstitial density zrhoir(:)=0.d0 call zpotcoul(nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gqc,gclgq,ngvec, & jlgqrmt,ylmgq,sfacgq,zrhoir,npmtmax,zvclmt,zvclir) zfmt(1:np)=zvnmt(1:np) ! multiply with density derivative and integrate z1=0.d0 do ir=1,ngtot z1=z1+cfunir(ir)*conjg(zvclir(ir))*drhoir(ir) end do z1=z1*omega/dble(ngtot) do ias=1,natmtot is=idxis(ias) z1=z1+zfmtinp(nrmt(is),nrmti(is),wrmt(:,is),zvclmt(:,ias),drhomt(:,ias)) end do dyn(ipph,iasph)=-z1 ! compute the lattice-periodic nuclear Coulomb potential derivative zvclmt(:,:)=0.d0 zvclmt(1:np,iasph)=gzfmt(1:np,ipph) call zpotcoul(nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gc,gclg,ngvec, & jlgrmt,ylmg,sfacg,zrhoir,npmtmax,zvclmt,zvclir) tphdyn=.false. ! multiply with density gradient and integrate z1=0.d0 do ir=1,ngtot z1=z1+cfunir(ir)*zvclir(ir)*grhoir(ir,ipph) end do z1=z1*omega/dble(ngtot) do ias=1,natmtot is=idxis(ias) z1=z1+zfmtinp(nrmt(is),nrmti(is),wrmt(:,is),zvclmt(:,ias),grhomt(:,ias,ipph)) end do dyn(ipph,iasph)=dyn(ipph,iasph)-z1 ! nuclear-nuclear term zvclmt(1:np,iasph)=zvnmt(1:np)-zfmt(1:np) call gradzf(zvclmt,zvclir,gvclmt,gvclir) do ias=1,natmtot is=idxis(ias) z1=spzn(is)*gvclmt(1,ias,ipph)*y00 dyn(ipph,iasph)=dyn(ipph,iasph)+z1 end do !-------------------------------------------------------------------! ! Hellmann-Feynman force derivative for non-displaced atoms ! !-------------------------------------------------------------------! do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) np=npmt(is) ! remove the gradient part of the Coulomb potential for displaced muffin-tin if (ias == iasph) then call rtozfmt(nr,nri,vclmt(:,ias),zfmt) call gradzfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),zfmt,npmtmax,gzfmt) dvclmt(1:np,ias)=dvclmt(1:np,ias)+gzfmt(1:np,ipph) end if ! compute the gradient of the Coulomb potential derivative at the nucleus call gradzfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),dvclmt(:,ias),npmtmax,gzfmt) do i=1,3 if ((ias == iasph).and.(i == ipph)) cycle dyn(i,ias)=spzn(is)*gzfmt(1,i)*y00 end do end do !--------------------------------------------! ! IBS correction to force derivative ! !--------------------------------------------! ! k-point dependent part call holdthd(nkptnr,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ik=1,nkptnr call dforcek(ik,dyn) end do !$OMP END PARALLEL DO call freethd(nthd) ! k-point independent part do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) np=npmt(is) do i=1,3 z1=zfmtinp(nr,nri,wrmt(:,is),grhomt(:,ias,i),dvsmt(:,ias)) dyn(i,ias)=dyn(i,ias)-z1 end do ! remove the gradient part from the density derivative for displaced muffin-tin if (ias == iasph) then drhomt(1:np,ias)=drhomt(1:np,ias)+grhomt(1:np,ias,ipph) end if ! compute the gradient of the density derivative call gradzfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),drhomt(:,ias),npmtmax,gzfmt) ! convert Kohn-Sham potential to complex spherical harmonics call rtozfmt(nr,nri,vsmt(:,ias),zfmt) do i=1,3 z1=zfmtinp(nr,nri,wrmt(:,is),zfmt,gzfmt(:,i)) dyn(i,ias)=dyn(i,ias)-z1 end do end do deallocate(zrhomt,zrhoir,grhomt,grhoir) deallocate(zvclmt,zvclir,gvclmt,gvclir,zfmt,gzfmt) end subroutine elk-9.2.12/src/PaxHeaders/dforcek.f900000644000000000000000000000013214536061314014165 xustar0030 mtime=1702388428.254500992 30 atime=1702388427.139502642 30 ctime=1702388428.254500992 elk-9.2.12/src/dforcek.f900000644002504400250440000002411414536061314016711 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dforcek(ik,dyn) use modmain use modphonon use modpw implicit none ! arguments integer, intent(in) :: ik complex(8), intent(inout) :: dyn(3,natmtot) ! local variables integer ispn0,ispn1,ispn,jspn integer n,nq,nm,nmq integer is,ias,ist,jst,jk integer iv(3),ig,i,j,l real(8) t1 complex(8) z1,z2,dt1,dz1,dz2 ! automatic arrays real(8) evalfv(nstfv,nspnfv) complex(8) vh(nmatmax),vo(nmatmax),dvh(nmatmax),dvo(nmatmax) complex(8) ffv(nstfv,nstfv),dffv(nstfv,nstfv),y(nstfv),dy(nstfv) ! allocatable arrays integer, allocatable :: ijg(:,:),ijgq(:,:) real(8), allocatable :: dp(:,:),dpq(:,:) complex(8), allocatable :: apwalm(:,:,:,:),apwalmq(:,:,:,:),dapwalm(:,:,:) complex(8), allocatable :: evecfv(:,:,:),devecfv(:,:,:) complex(8), allocatable :: evecsv(:,:),devecsv(:,:) complex(8), allocatable :: h(:,:),o(:,:),dlh(:,:),dlo(:,:) complex(8), allocatable :: hq(:,:),oq(:,:),dh(:,:),od(:,:) complex(8), allocatable :: dlhq(:,:),dloq(:,:),ddlh(:,:),ddlo(:,:) ! external functions complex(8), external :: zdotc ! allocate local arrays allocate(ijg(nmatmax,nmatmax),ijgq(nmatmax,nmatmax)) allocate(dp(nmatmax,nmatmax),dpq(nmatmax,nmatmax)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(apwalmq(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(dapwalm(ngkmax,apwordmax,lmmaxapw)) allocate(evecfv(nmatmax,nstfv,nspnfv)) allocate(devecfv(nmatmax,nstfv,nspnfv)) allocate(h(nmatmax,nmatmax),o(nmatmax,nmatmax)) allocate(dlh(nmatmax,nmatmax),dlo(nmatmax,nmatmax)) allocate(hq(nmatmax,nmatmax),oq(nmatmax,nmatmax)) allocate(dh(nmatmax,nmatmax),od(nmatmax,nmatmax)) allocate(dlhq(nmatmax,nmatmax),dloq(nmatmax,nmatmax)) allocate(ddlh(nmatmax,nmatmax),ddlo(nmatmax,nmatmax)) ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! get the eigenvalues/vectors from file call getevalfv(filext,0,vkl(:,ik),evalfv) call getevecfv(filext,0,vkl(:,ik),vgkl(:,:,:,ik),evecfv) ! get the eigenvalue/vector derivatives from file call getdevecfv(ik,iqph,isph,iaph,ipph,devecfv) if (tevecsv) then allocate(evecsv(nstsv,nstsv),devecsv(nstsv,nstsv)) call getevecsv(filext,0,vkl(:,ik),evecsv) call getdevecsv(ik,iqph,isph,iaph,ipph,devecsv) end if ! loop over first-variational spin components do jspn=1,nspnfv if (spinsprl) then ispn0=jspn; ispn1=jspn else ispn0=1; ispn1=nspinor end if n=ngk(jspn,ik) nq=ngkq(jspn,ik) nm=n+nlotot nmq=nq+nlotot do j=1,n do i=1,n iv(:)=ivg(:,igkig(i,jspn,ik))-ivg(:,igkig(j,jspn,ik)) iv(:)=modulo(iv(:)-intgv(1,:),ngridg(:))+intgv(1,:) ijg(i,j)=ivgig(iv(1),iv(2),iv(3)) dp(i,j)=0.5d0*dot_product(vgkc(1:3,i,jspn,ik),vgkc(1:3,j,jspn,ik)) end do end do do j=1,n do i=1,nq iv(:)=ivg(:,igkqig(i,jspn,ik))-ivg(:,igkig(j,jspn,ik)) iv(:)=modulo(iv(:)-intgv(1,:),ngridg(:))+intgv(1,:) ijgq(i,j)=ivgig(iv(1),iv(2),iv(3)) dpq(i,j)=0.5d0*dot_product(vgkqc(1:3,i,jspn,ik),vgkc(1:3,j,jspn,ik)) end do end do ! find the matching coefficients call match(n,vgkc(:,:,jspn,ik),gkc(:,jspn,ik),sfacgk(:,:,jspn,ik),apwalm) call match(nq,vgkqc(:,:,jspn,ik),gkqc(:,jspn,ik),sfacgkq(:,:,jspn,ik), & apwalmq) ! find the matching coefficient derivatives call dmatch(iasph,ipph,n,vgkc(:,:,jspn,ik),apwalm,dapwalm) ! loop over species and atoms do ias=1,natmtot is=idxis(ias) ! Hamiltonian and overlap matrices do j=1,nm h(1:j,j)=0.d0 end do call hmlaa(.false.,is,ias,n,apwalm(:,:,:,ias),nmatmax,h) call hmlalo(is,ias,n,apwalm(:,:,:,ias),nmatmax,h) do j=1,nm o(1:j,j)=0.d0 end do call olpaa(.false.,is,n,apwalm(:,:,:,ias),nmatmax,o) call olpalo(is,ias,n,apwalm(:,:,:,ias),nmatmax,o) hq(:,:)=0.d0 call hmlaaq(is,ias,n,nq,apwalm(:,:,:,ias),apwalmq(:,:,:,ias),nmatmax,hq) call hmlaloq(is,ias,n,nq,apwalm(:,:,:,ias),apwalmq(:,:,:,ias),nmatmax,hq) oq(:,:)=0.d0 call olpaaq(is,n,nq,apwalm(:,:,:,ias),apwalmq(:,:,:,ias),nmatmax,oq) call olpaloq(is,ias,n,nq,apwalm(:,:,:,ias),apwalmq(:,:,:,ias),nmatmax,oq) ! Hamiltonian and overlap derivatives dh(:,:)=0.d0 call dhmlaa(is,ias,n,n,apwalm(:,:,:,ias),apwalm(:,:,:,ias),dapwalm,dapwalm,& nmatmax,dh) call dhmlalo(is,ias,n,n,apwalm(:,:,:,ias),apwalm(:,:,:,ias),dapwalm, & dapwalm,nmatmax,dh) od(:,:)=0.d0 call dolpaa(is,ias,n,n,apwalm(:,:,:,ias),apwalm(:,:,:,ias),dapwalm,dapwalm,& nmatmax,od) call dolpalo(is,ias,n,n,dapwalm,dapwalm,nmatmax,od) ! loop over Cartesian directions do l=1,3 ! APW-APW contribution do j=1,n do i=1,j ig=ijg(i,j) t1=vgc(l,ig) z1=-ffacg(ig,is)*conjg(sfacg(ig,ias)) z2=t1*(dp(i,j)*z1+h(i,j)) dlh(i,j)=cmplx(-aimag(z2),dble(z2),8) z2=t1*(z1+o(i,j)) dlo(i,j)=cmplx(-aimag(z2),dble(z2),8) end do end do do j=n+1,nm ! APW-local-orbital contribution do i=1,n t1=vgkc(l,i,jspn,ik) z1=t1*h(i,j) dlh(i,j)=cmplx(-aimag(z1),dble(z1),8) z1=t1*o(i,j) dlo(i,j)=cmplx(-aimag(z1),dble(z1),8) end do ! zero the local-orbital-local-orbital contribution do i=n+1,j dlh(i,j)=0.d0 dlo(i,j)=0.d0 end do end do ! non-square H/O(G+k+q,G'+k) matrices ! APW-APW contribution do j=1,n do i=1,nq ig=ijgq(i,j) t1=vgqc(l,ig) z1=-ffacgq(ig,is)*conjg(sfacgq(ig,ias)) z2=t1*(dpq(i,j)*z1+hq(i,j)) dlhq(i,j)=cmplx(-aimag(z2),dble(z2),8) z2=t1*(z1+oq(i,j)) dloq(i,j)=cmplx(-aimag(z2),dble(z2),8) end do ! local-orbital-APW derivative t1=-vgkc(l,j,jspn,ik) do i=nq+1,nmq z1=t1*hq(i,j) dlhq(i,j)=cmplx(-aimag(z1),dble(z1),8) z1=t1*oq(i,j) dloq(i,j)=cmplx(-aimag(z1),dble(z1),8) end do end do do j=n+1,nm ! APW-local-orbital contribution do i=1,nq t1=vgkqc(l,i,jspn,ik) z1=t1*hq(i,j) dlhq(i,j)=cmplx(-aimag(z1),dble(z1),8) z1=t1*oq(i,j) dloq(i,j)=cmplx(-aimag(z1),dble(z1),8) end do ! zero the local-orbital-local-orbital contribution do i=nq+1,nmq dlhq(i,j)=0.d0 dloq(i,j)=0.d0 end do end do ! APW-APW derivative do j=1,n do i=1,n ig=ijg(i,j) t1=vgc(l,ig) if (ias == iasph) then z1=-ffacg(ig,is)*conjg(sfacg(ig,ias)) dz1=vgc(ipph,ig)*cmplx(aimag(z1),-dble(z1),8) else dz1=0.d0 end if z2=t1*(dp(i,j)*dz1+dh(i,j)) ddlh(i,j)=cmplx(-aimag(z2),dble(z2),8) z2=t1*(dz1+od(i,j)) ddlo(i,j)=cmplx(-aimag(z2),dble(z2),8) end do ! local-orbital-APW derivative t1=-vgkc(l,j,jspn,ik) do i=n+1,nm z1=t1*dh(i,j) ddlh(i,j)=cmplx(-aimag(z1),dble(z1),8) z1=t1*od(i,j) ddlo(i,j)=cmplx(-aimag(z1),dble(z1),8) end do end do ! APW-local-orbital derivative do j=n+1,nm do i=1,n t1=vgkc(l,i,jspn,ik) z1=t1*dh(i,j) ddlh(i,j)=cmplx(-aimag(z1),dble(z1),8) z1=t1*od(i,j) ddlo(i,j)=cmplx(-aimag(z1),dble(z1),8) end do ! zero the local-orbital-local-orbital derivative do i=n+1,nm ddlh(i,j)=0.d0 ddlo(i,j)=0.d0 end do end do if (tphq0) then ! compute the force matrix elements in the first-variational basis do jst=1,nstfv call zhemv('U',nm,zone,dlh,nmatmax,evecfv(:,jst,jspn),1,zzero,vh,1) call zhemv('U',nm,zone,dlo,nmatmax,evecfv(:,jst,jspn),1,zzero,vo,1) t1=evalfv(jst,jspn) do ist=1,nstfv z1=zdotc(nm,evecfv(:,ist,jspn),1,vh,1) z2=zdotc(nm,evecfv(:,ist,jspn),1,vo,1) ffv(ist,jst)=z1-t1*z2 end do end do end if ! compute the force derivative matrix elements in the first-variational basis dffv(:,:)=0.d0 do jst=1,nstfv call zhemv('U',nm,zone,dlo,nmatmax,evecfv(:,jst,jspn),1,zzero,vo,1) call zgemv('N',nm,nm,zone,ddlh,nmatmax,evecfv(:,jst,jspn),1,zzero,dvh,1) call zgemv('N',nm,nm,zone,ddlo,nmatmax,evecfv(:,jst,jspn),1,zzero,dvo,1) t1=evalfv(jst,jspn) dt1=devalfv(jst,jspn,ik) do ist=1,nstfv z2=zdotc(nm,evecfv(:,ist,jspn),1,vo,1) dz1=zdotc(nm,evecfv(:,ist,jspn),1,dvh,1) dz2=zdotc(nm,evecfv(:,ist,jspn),1,dvo,1) dffv(ist,jst)=dffv(ist,jst)+dz1-dt1*z2-t1*dz2 end do call zgemv('C',nmq,nm,zone,dlhq,nmatmax,devecfv(:,jst,jspn),1,zzero, & dvh,1) call zgemv('C',nmq,nm,zone,dloq,nmatmax,devecfv(:,jst,jspn),1,zzero, & dvo,1) do ist=1,nstfv dz1=2.d0*zdotc(nm,evecfv(:,ist,jspn),1,dvh,1) dz2=2.d0*zdotc(nm,evecfv(:,ist,jspn),1,dvo,1) dffv(ist,jst)=dffv(ist,jst)+dz1-t1*dz2 end do end do z1=0.d0 if (tevecsv) then ! spin-polarised case do j=1,nstsv do ispn=ispn0,ispn1 i=(ispn-1)*nstfv+1 call zgemv('N',nstfv,nstfv,zone,ffv,nstfv,evecsv(i,j),1,zzero,y,1) call zgemv('N',nstfv,nstfv,zone,dffv,nstfv,evecsv(i,j),1,zzero,dy,1) call zgemv('N',nstfv,nstfv,zone,ffv,nstfv,devecsv(i,j),1,zone,dy,1) dz1=zdotc(nstfv,evecsv(i,j),1,dy,1) dz1=dz1+zdotc(nstfv,devecsv(i,j),1,y,1) z1=z1+occsv(j,jk)*dz1 !******** doccsv end do end do else ! spin-unpolarised case do j=1,nstsv z1=z1+occsv(j,jk)*dffv(j,j) if (tphq0) then z1=z1+doccsv(j,ik)*dble(ffv(j,j)) end if end do end if !$OMP ATOMIC dyn(l,ias)=dyn(l,ias)-wkptnr*z1 ! end loop over Cartesian components end do ! end loop over atoms and species end do ! end loop over first-variational spins end do deallocate(ijg,ijgq,dp,dpq) deallocate(apwalm,apwalmq,dapwalm) deallocate(evecfv,devecfv) deallocate(h,o,dlh,dlo,hq,oq,dh,od) deallocate(dlhq,dloq,ddlh,ddlo) if (tevecsv) deallocate(evecsv,devecsv) end subroutine elk-9.2.12/src/PaxHeaders/dynqtor.f900000644000000000000000000000012714536061314014254 xustar0029 mtime=1702388428.25550099 29 atime=1702388427.14150264 29 ctime=1702388428.25550099 elk-9.2.12/src/dynqtor.f900000644002504400250440000000426114536061314016775 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dynqtor(dynq,dynr) use modmain use modphonon implicit none ! arguments complex(8), intent(in) :: dynq(nbph,nbph,nqpt) complex(8), intent(out) :: dynr(nbph,nbph,nqptnr) ! local variables integer ir,iq,i,j,n integer isym,lspl,intr(2,3) integer i1,i2,i3,j1,j2,j3 real(8) v1(3),v2(3),v3(3) real(8) s(3,3),t1 complex(8) z1 ! automatic arrays complex(8) dyns(nbph,nbph) intr(2,:)=ngridq(:)/2 intr(1,:)=intr(2,:)-ngridq(:)+1 dynr(:,:,:)=0.d0 ! loop over q-vectors do j1=0,ngridq(1)-1 v1(1)=dble(j1)/dble(ngridq(1)) do j2=0,ngridq(2)-1 v1(2)=dble(j2)/dble(ngridq(2)) do j3=0,ngridq(3)-1 v1(3)=dble(j3)/dble(ngridq(3)) iq=ivqiq(j1,j2,j3) ! map v1 to the first Brillouin zone v2(:)=v1(:) call vecfbz(epslat,bvec,v2) ! rotate and add the dynamical matrix of the reduced q-point with all symmetries n=0 dyns(:,:)=0.d0 do isym=1,nsymcrys lspl=lsplsymc(isym) s(:,:)=dble(symlat(:,:,lspl)) call r3mtv(s,vql(:,iq),v3) call vecfbz(epslat,bvec,v3) t1=abs(v2(1)-v3(1))+abs(v2(2)-v3(2))+abs(v2(3)-v3(3)) if (t1 < epslat) then call dynsymapp(isym,vql(:,iq),dynq(:,:,iq),dyns) n=n+1 end if end do if (n == 0) then write(*,*) write(*,'("Error(dynqtor): vector ",3G18.10)') v1 write(*,'(" cannot be mapped to reduced q-point set")') write(*,*) stop end if t1=1.d0/dble(n) dyns(:,:)=t1*dyns(:,:) ! loop over R-vectors ir=0 do i3=intr(1,3),intr(2,3) do i2=intr(1,2),intr(2,2) do i1=intr(1,1),intr(2,1) ir=ir+1 t1=twopi*(v1(1)*dble(i1)+v1(2)*dble(i2)+v1(3)*dble(i3)) z1=cmplx(cos(t1),sin(t1),8) do i=1,nbph do j=1,nbph dynr(i,j,ir)=dynr(i,j,ir)+z1*dyns(i,j) end do end do end do end do end do end do end do end do t1=1.d0/dble(nqptnr) dynr(:,:,:)=t1*dynr(:,:,:) end subroutine elk-9.2.12/src/PaxHeaders/dynevs.f900000644000000000000000000000013214536061314014060 xustar0030 mtime=1702388428.257500987 30 atime=1702388427.143502637 30 ctime=1702388428.257500987 elk-9.2.12/src/dynevs.f900000644002504400250440000000153014536061314016601 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dynevs(ev,a,w) use modmain use modphonon implicit none ! arguments complex(8), intent(in) :: ev(nbph,nbph) complex(8), intent(inout) :: a(nbph,nbph) real(8), intent(out) :: w(nbph) ! local variables integer i,j,k real(8) t1,t2 complex(8) z1 ! automatic arrays real(8) wt(nbph) ! find the eigenvalues and eigenvectors of the matrix a call eveqnzh(nbph,nbph,a,w) ! reorder eigenvalues so that the eigenvectors maximally overlap with ev wt(:)=w(:) do i=1,nbph j=1 t1=0.d0 do k=1,nbph z1=dot_product(ev(:,i),a(:,k)) t2=dble(z1)**2+aimag(z1)**2 if (t2 > t1) then j=k t1=t2 end if end do w(i)=wt(j) end do end subroutine elk-9.2.12/src/PaxHeaders/phonon.f900000644000000000000000000000013214536061314014051 xustar0030 mtime=1702388428.258500986 30 atime=1702388427.144502635 30 ctime=1702388428.258500986 elk-9.2.12/src/phonon.f900000644002504400250440000002272314536061314016601 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine phonon use modmain use modphonon use modpw use modmpi use modomp use moddelf implicit none ! local variables integer ik,jk,iv(3),jspn,idm integer is,ia,ias,ip,nthd integer nmix,nwork,n,lp ! use Broyden mixing only integer, parameter :: mtype=3 real(8) ddv,a,b character(256) fext ! allocatable arrays real(8), allocatable :: evalfv(:,:),work(:) complex(8), allocatable :: dyn(:,:) complex(8), allocatable :: apwalm(:,:,:,:,:),apwalmq(:,:,:,:,:) complex(8), allocatable :: dapwalm(:,:,:,:),dapwalmq(:,:,:,:) complex(8), allocatable :: evecfv(:,:,:),devecfv(:,:,:) complex(8), allocatable :: evecsv(:,:),devecsv(:,:) ! initialise universal variables call init0 call init1 call init2 call init4 ! check k-point grid is commensurate with q-point grid iv(:)=mod(ngridk(:),ngridq(:)) if ((iv(1) /= 0).or.(iv(2) /= 0).or.(iv(3) /= 0)) then write(*,*) write(*,'("Error(phonon): k-point grid incommensurate with q-point grid")') write(*,'(" ngridk : ",3I6)') ngridk write(*,'(" ngridq : ",3I6)') ngridq write(*,*) stop end if if (spinpol) then write(*,*) write(*,'("Error(phonon): spin-polarised phonons not yet available")') write(*,*) stop end if ! check spin-spiral de-phasing is not used if (ssdph) then write(*,*) write(*,'("Error(phonon): ssdph should be .false. for DFPT phonons")') write(*,*) stop end if ! check for zero atoms if (natmtot == 0) return ! read in the density and potentials call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ! get the eigenvalues and occupation numbers from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! size of mixing vector (complex array) nmix=2*size(dvsbs) ! determine the size of the mixer work array nwork=-1 call mixerifc(mtype,nmix,dvsbs,ddv,nwork,work) allocate(work(nwork)) ! allocate dynamical matrix column allocate(dyn(3,natmtot)) ! begin new dynamical matrix task 10 continue call dyntask(80,fext) ! if nothing more to do then return if (iqph == 0) return if (mp_mpi) then write(*,'("Info(phonon): working on ",A)') 'DYN'//trim(fext) ! open RMSDDVS.OUT open(65,file='RMSDDVS'//trim(fext),form='FORMATTED') end if ! zero the dynamical matrix row dyn(:,:)=0.d0 ! check to see if mass is considered infinite if (spmass(isph) <= 0.d0) goto 20 ! generate the G+k+q-vectors and related quantities call gengkqvec(iqph) ! generate the G+q-vectors and related quantities call gengqvec(iqph) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.false.,iqph,ngvec,gqc,gclgq) ! generate the characteristic function derivative call gendcfun ! generate the gradient of the Kohn-Sham potential call gengvsmt ! initialise the potential derivative drhomt(:,:)=0.d0 drhoir(:)=0.d0 if (spinpol) then dmagmt(:,:,:)=0.d0 dmagir(:,:)=0.d0 end if call dpotks call gendvsig ! initialise the mixer iscl=0 call mixerifc(mtype,nmix,dvsbs,ddv,nwork,work) ! initialise the Fermi energy and occupancy derivatives defermi=0.d0 doccsv(:,:)=0.d0 ! set last self-consistent loop flag tlast=.false. ! begin the self-consistent loop do iscl=1,maxscl ! compute the Hamiltonian radial integral derivatives call dhmlrad ! zero the density and magnetisation derivatives drhomt(:,:)=0.d0 drhoir(:)=0.d0 if (spinpol) then dmagmt(:,:,:)=0.d0 dmagir(:,:)=0.d0 end if ! parallel loop over k-points call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evalfv,apwalm,apwalmq,dapwalm,dapwalmq) & !$OMP PRIVATE(evecfv,devecfv,evecsv,devecsv,jk,jspn) & !$OMP NUM_THREADS(nthd) allocate(evalfv(nstfv,nspnfv)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(apwalmq(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(dapwalm(ngkmax,apwordmax,lmmaxapw,nspnfv)) allocate(dapwalmq(ngkmax,apwordmax,lmmaxapw,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv),devecfv(nmatmax,nstfv,nspnfv)) allocate(evecsv(nstsv,nstsv),devecsv(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! compute the matching coefficients and derivatives do jspn=1,nspnfv call match(ngk(jspn,ik),vgkc(:,:,jspn,ik),gkc(:,jspn,ik), & sfacgk(:,:,jspn,ik),apwalm(:,:,:,:,jspn)) call dmatch(iasph,ipph,ngk(jspn,ik),vgkc(:,:,jspn,ik), & apwalm(:,:,:,:,jspn),dapwalm(:,:,:,jspn)) call match(ngkq(jspn,ik),vgkqc(:,:,jspn,ik),gkqc(:,jspn,ik), & sfacgkq(:,:,jspn,ik),apwalmq(:,:,:,:,jspn)) call dmatch(iasph,ipph,ngkq(jspn,ik),vgkqc(:,:,jspn,ik), & apwalmq(:,:,:,:,jspn),dapwalmq(:,:,:,jspn)) end do ! get the first- and second-variational eigenvalues and eigenvectors from file call getevalfv(filext,0,vkl(:,ik),evalfv) call getevecfv(filext,0,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,0,vkl(:,ik),evecsv) ! solve the first-variational eigenvalue equation derivative do jspn=1,nspnfv call deveqnfv(ngk(jspn,ik),ngkq(jspn,ik),igkig(:,jspn,ik), & igkqig(:,jspn,ik),vgkc(:,:,jspn,ik),vgkqc(:,:,jspn,ik),evalfv(:,jspn), & apwalm(:,:,:,:,jspn),apwalmq(:,:,:,:,jspn),dapwalm(:,:,:,jspn), & dapwalmq(:,:,:,jspn),evecfv(:,:,jspn),devalfv(:,jspn,ik), & devecfv(:,:,jspn)) end do if (spinsprl) then ! solve the spin-spiral second-variational eigenvalue equation derivative ! call deveqnss(ngk(:,ik),ngkq(:,ik),igkig(:,:,ik),igkqig(:,:,ik),apwalm, & ! dapwalm,devalfv,evecfv,evecfvq,devecfv,evalsv(:,jk),evecsv,devecsv) else ! solve the second-variational eigenvalue equation derivative ! call deveqnsv(ngk(1,ik),ngkq(1,ik),igkig(:,1,ik),igkqig(:,1,ik), & ! vgkqc(:,:,1,ik),apwalm,dapwalm,devalfv,evecfv,evecfvq,devecfv, & ! evalsv(:,jk),evecsv,devecsv) end if !******* devalsv(:,ik)=devalfv(:,1,ik) !******* ! write the eigenvalue/vector derivatives to file call putdevecfv(ik,devecfv) if (tevecsv) call putdevecsv(ik,devecsv) ! add to the density and magnetisation derivatives call drhomagk(ngk(:,ik),ngkq(:,ik),igkig(:,:,ik),igkqig(:,:,ik), & occsv(:,jk),doccsv(:,ik),apwalm,apwalmq,dapwalm,evecfv,devecfv,evecsv, & devecsv) end do !$OMP END DO deallocate(evalfv,apwalm,apwalmq,dapwalm,dapwalmq) deallocate(evecfv,devecfv,evecsv,devecsv) !$OMP END PARALLEL call freethd(nthd) ! broadcast eigenvalue derivative arrays to every process n=nstfv*nspnfv do ik=1,nkptnr lp=mod(ik-1,np_mpi) call mpi_bcast(devalfv(:,:,ik),n,mpi_double_precision,lp,mpicom,ierror) call mpi_bcast(devalsv(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) end do ! convert to spherical harmonic representation call drhomagsh ! convert from a coarse to a fine radial mesh call zfmtctof(drhomt) do idm=1,ndmag call zfmtctof(dmagmt(:,:,idm)) end do ! add densities from each process and redistribute if (np_mpi > 1) then n=npmtmax*natmtot call mpi_allreduce(mpi_in_place,drhomt,n,mpi_double_complex,mpi_sum, & mpicom,ierror) call mpi_allreduce(mpi_in_place,drhoir,ngtot,mpi_double_complex,mpi_sum, & mpicom,ierror) if (spinpol) then n=npmtmax*natmtot*ndmag call mpi_allreduce(mpi_in_place,dmagmt,n,mpi_double_complex,mpi_sum, & mpicom,ierror) n=ngtot*ndmag call mpi_allreduce(mpi_in_place,dmagir,n,mpi_double_complex,mpi_sum, & mpicom,ierror) end if end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! add gradient contribution to density derivative call gradrhomt ! compute the Kohn-Sham potential derivative call dpotks ! mix the old potential and field with the new call mixerifc(mtype,nmix,dvsbs,ddv,nwork,work) if (mp_mpi) then write(65,'(G18.10)') ddv flush(65) end if ! exit self-consistent loop if required if (tlast) goto 20 ! check for convergence if (iscl >= 2) then if (ddv < epspot) tlast=.true. end if ! broadcast tlast from master process to all other processes call mpi_bcast(tlast,1,mpi_logical,0,mpicom,ierror) ! Fourier transform Kohn-Sham potential derivative to G+q-space call gendvsig ! compute the occupation number derivatives call doccupy ! end the self-consistent loop end do write(*,*) write(*,'("Warning(phonon): failed to reach self-consistency after ",I4,& &" loops")') maxscl 20 continue ! close the RMSDDVS.OUT file if (mp_mpi) close(65) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! generate the dynamical matrix row from force derivatives call dforce(dyn) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! write dynamical matrix row to file if (mp_mpi) then do ias=1,natmtot is=idxis(ias) ia=idxia(ias) do ip=1,3 a=dble(dyn(ip,ias)) b=aimag(dyn(ip,ias)) if (abs(a) < 1.d-12) a=0.d0 if (abs(b) < 1.d-12) b=0.d0 write(80,'(2G18.10," : is = ",I4,", ia = ",I4,", ip = ",I4)') a,b,is,ia,ip end do end do close(80) ! write the complex Kohn-Sham potential derivative to file call writedvs(fext) end if ! delete the non-essential files call delfiles(devec=.true.) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) goto 10 end subroutine elk-9.2.12/src/PaxHeaders/dynrtoq.f900000644000000000000000000000013214536061314014250 xustar0030 mtime=1702388428.260500983 30 atime=1702388427.146502632 30 ctime=1702388428.260500983 elk-9.2.12/src/dynrtoq.f900000644002504400250440000000171514536061314016776 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dynrtoq(vpl,dynr,dynp) use modmain use modphonon implicit none ! arguments real(8), intent(in) :: vpl(3) complex(8), intent(in) :: dynr(nbph,nbph,nqptnr) complex(8), intent(out) :: dynp(nbph,nbph) ! local variables integer i1,i2,i3,ir,i,j real(8) t1 complex(8) z1 dynp(:,:)=0.d0 ! loop over R-vectors ir=0 do i3=ngridq(3)/2-ngridq(3)+1,ngridq(3)/2 do i2=ngridq(2)/2-ngridq(2)+1,ngridq(2)/2 do i1=ngridq(1)/2-ngridq(1)+1,ngridq(1)/2 ir=ir+1 t1=-twopi*(vpl(1)*dble(i1)+vpl(2)*dble(i2)+vpl(3)*dble(i3)) z1=cmplx(cos(t1),sin(t1),8) do i=1,nbph do j=1,nbph dynp(i,j)=dynp(i,j)+z1*dynr(i,j,ir) end do end do end do end do end do ! symmetrise the dynamical matrix call dynsym(vpl,dynp) end subroutine elk-9.2.12/src/PaxHeaders/mcmillan.f900000644000000000000000000000013214536061314014344 xustar0030 mtime=1702388428.261500981 30 atime=1702388427.148502629 30 ctime=1702388428.261500981 elk-9.2.12/src/mcmillan.f900000644002504400250440000000274614536061314017077 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, A. Sanna, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine mcmillan(w,a2f,lambda,wlog,wrms,tc) use modmain use modphonon implicit none ! arguments real(8), intent(in) :: w(nwplot),a2f(nwplot) real(8), intent(out) :: lambda,wlog,wrms,tc ! local variables integer iw real(8) l1,l2,f1,f2,t1 ! allocatable arrays real(8), allocatable :: f(:) ! external functions real(8), external :: splint allocate(f(nwplot)) ! compute the total lambda do iw=1,nwplot if (w(iw) > 1.d-8) then f(iw)=a2f(iw)/w(iw) else f(iw)=0.d0 end if end do t1=splint(nwplot,w,f) lambda=2.d0*t1 ! compute the logarithmic average frequency do iw=1,nwplot if (w(iw) > 1.d-8) then f(iw)=a2f(iw)*log(w(iw))/w(iw) else f(iw)=0.d0 end if end do t1=splint(nwplot,w,f) t1=(2.d0/lambda)*t1 wlog=exp(t1) ! compute < w^2 >^(1/2) do iw=1,nwplot if (w(iw) > 1.d-8) then f(iw)=a2f(iw)*w(iw) else f(iw)=0.d0 end if end do t1=splint(nwplot,w,f) t1=(2.d0/lambda)*t1 wrms=sqrt(abs(t1)) ! compute McMillan-Allen-Dynes superconducting critical temperature t1=(-1.04d0*(1.d0+lambda))/(lambda-mustar-0.62d0*lambda*mustar) tc=(wlog/(1.2d0*kboltz))*exp(t1) l1=2.46d0*(1.d0+3.8d0*mustar) l2=1.82d0*(1.d0+6.3d0*mustar)*(wrms/wlog) f1=(1.d0+(lambda/l1)**(3.d0/2.d0))**(1.d0/3.d0) f2=1.d0+(wrms/wlog-1.d0)*(lambda**2)/(lambda**2+l2**2) tc=tc*f1*f2 deallocate(f) end subroutine elk-9.2.12/src/PaxHeaders/genephmat.f900000644000000000000000000000013214536061314014520 xustar0030 mtime=1702388428.263500978 30 atime=1702388427.149502628 30 ctime=1702388428.263500978 elk-9.2.12/src/genephmat.f900000644002504400250440000000742014536061314017245 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genephmat(iq,ik,de,a,dvmt,dvir,ephmat) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq,ik real(8), intent(in) :: de complex(8), intent(in) :: a(nbph,nbph) complex(8), intent(in) :: dvmt(npcmtmax,natmtot,nbph),dvir(ngtot,nbph) complex(8), intent(out) :: ephmat(nstsv,nstsv,nbph) ! local variables integer jk,jkq,isym,ld integer nst,nstq,ist,jst integer ispn,jspn,is,ias integer npc,nq,igp,i,j,l real(8) vpql(3) ! automatic arrays integer idx(nstsv),idxq(nstsv) integer ngp(nspnfv),ngpq(nspnfv) complex(4) cfmt1(npcmtmax),cfmt2(npcmtmax),c(ngkmax) complex(8) x(nbph) ! allocatable arrays integer, allocatable :: igpig(:,:),igpqig(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfgp(:,:,:) complex(4), allocatable :: wfmtq(:,:,:,:),wfgpq(:,:,:) complex(4), allocatable :: wfir1(:),wfir2(:) ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! k+q-vector in lattice coordinates vpql(:)=vkl(:,ik)+vql(:,iq) ! find reduced k-point index corresponding to k+q call findkpt(vpql,isym,jkq) ! index to states in energy window around Fermi energy nst=0 do ist=1,nstsv if (abs(evalsv(ist,jk)-efermi) > de) cycle nst=nst+1 idx(nst)=ist end do nstq=0 do ist=1,nstsv if (abs(evalsv(ist,jkq)-efermi) > de) cycle nstq=nstq+1 idxq(nstq)=ist end do ! generate the second-variational wavefunctions for all states at k and k+q allocate(igpig(ngkmax,nspnfv)) allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfgp(ngkmax,nspinor,nst)) call genwfsvp_sp(.false.,.true.,nst,idx,ngridg,igfft,vkl(:,ik),ngp,igpig,wfmt, & ngkmax,wfgp) allocate(igpqig(ngkmax,nspnfv)) allocate(wfmtq(npcmtmax,natmtot,nspinor,nstq),wfgpq(ngkmax,nspinor,nstq)) call genwfsvp_sp(.false.,.true.,nstq,idxq,ngridg,igfft,vpql,ngpq,igpqig,wfmtq, & ngkmax,wfgpq) ! zero the electron-phonon coupling matrix elements ephmat(:,:,:)=0.d0 !-------------------------! ! muffin-tin part ! !-------------------------! do j=1,nst jst=idx(j) do i=1,nstq ist=idxq(i) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) if (spinpol) then cfmt1(1:npc)=wfmtq(1:npc,ias,1,i)*conjg(wfmt(1:npc,ias,1,j)) & +wfmtq(1:npc,ias,2,i)*conjg(wfmt(1:npc,ias,2,j)) else cfmt1(1:npc)=wfmtq(1:npc,ias,1,i)*conjg(wfmt(1:npc,ias,1,j)) end if call cfsht(nrcmt(is),nrcmti(is),cfmt1,cfmt2) do l=1,nbph ephmat(ist,jst,l)=ephmat(ist,jst,l) & +dot_product(cfmt2(1:npc),dvmt(1:npc,ias,l)) end do end do end do end do deallocate(wfmt,wfmtq) !---------------------------! ! interstitial part ! !---------------------------! allocate(wfir1(ngtot),wfir2(ngtot)) do j=1,nst jst=idx(j) do ispn=1,nspinor jspn=jspnfv(ispn) nq=ngpq(jspn) ! Fourier transform wavefunction to real-space wfir1(:)=0.e0 do igp=1,ngp(jspn) wfir1(igfft(igpig(igp,jspn)))=wfgp(igp,ispn,j) end do call cfftifc(3,ngridg,1,wfir1) do l=1,nbph ! apply potential derivative to wavefunction wfir2(:)=dvir(:,l)*wfir1(:) ! Fourier transform to G+p+q-space call cfftifc(3,ngridg,-1,wfir2) do igp=1,nq c(igp)=wfir2(igfft(igpqig(igp,jspn))) end do do i=1,nstq ist=idxq(i) ! compute inner product ephmat(ist,jst,l)=ephmat(ist,jst,l) & +dot_product(wfgpq(1:nq,ispn,i),c(1:nq)) end do end do end do end do deallocate(wfir1,wfir2) ! convert to phonon coordinates ld=nstsv**2 do i=1,nstq ist=idxq(i) do j=1,nst jst=idx(j) x(:)=ephmat(ist,jst,:) call zgemv('T',nbph,nbph,zone,a,nbph,x,1,zzero,ephmat(ist,jst,1),ld) end do end do deallocate(igpig,igpqig,wfgp,wfgpq) end subroutine elk-9.2.12/src/PaxHeaders/gengkqvec.f900000644000000000000000000000013214536061314014522 xustar0030 mtime=1702388428.265500975 30 atime=1702388427.151502625 30 ctime=1702388428.265500975 elk-9.2.12/src/gengkqvec.f900000644002504400250440000000222314536061314017243 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengkqvec(iq) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq ! local variables integer ik,jspn real(8) vl(3),vc(3) ! loop over non-reduced k-point set do ik=1,nkptnr ! k+q-vectors in lattice and Cartesian coordinates vkql(1:3,ik)=vkl(1:3,ik)+vql(1:3,iq) vkqc(1:3,ik)=vkc(1:3,ik)+vqc(1:3,iq) do jspn=1,nspnfv vl(:)=vkql(:,ik) vc(:)=vkqc(:,ik) ! spin-spiral case if (spinsprl) then if (jspn == 1) then vl(:)=vl(:)+0.5d0*vqlss(:) vc(:)=vc(:)+0.5d0*vqcss(:) else vl(:)=vl(:)-0.5d0*vqlss(:) vc(:)=vc(:)-0.5d0*vqcss(:) end if end if ! generate the G+k+q-vectors call gengkvec(ngvec,ivg,vgc,vl,vc,gkmax,ngkmax,ngkq(jspn,ik), & igkqig(:,jspn,ik),vgkql(:,:,jspn,ik),vgkqc(:,:,jspn,ik),gkqc(:,jspn,ik)) ! generate structure factors for the G+k+q-vectors call gensfacgp(ngkq(jspn,ik),vgkqc(:,:,jspn,ik),ngkmax,sfacgkq(:,:,jspn,ik)) end do end do end subroutine elk-9.2.12/src/PaxHeaders/genmcph.f900000644000000000000000000000013214536061314014171 xustar0030 mtime=1702388428.266500974 30 atime=1702388427.152502623 30 ctime=1702388428.266500974 elk-9.2.12/src/genmcph.f900000644002504400250440000000131614536061314016714 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine genmcph(w,ev,a) use modmain use modphonon implicit none ! arguments real(8), intent(in) :: w(nbph) complex(8), intent(in) :: ev(nbph,nbph) complex(8), intent(out) :: a(nbph,nbph) ! local variables integer is,ia,ip,i,j real(8) t1 do j=1,nbph i=0 do is=1,nspecies t1=2.d0*spmass(is)*w(j) if (t1 > 1.d-8) then t1=1.d0/sqrt(t1) else t1=0.d0 end if do ia=1,natoms(is) do ip=1,3 i=i+1 a(i,j)=t1*ev(i,j) end do end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/putdevecfv.f900000644000000000000000000000013214536061314014723 xustar0030 mtime=1702388428.267500972 30 atime=1702388427.153502622 30 ctime=1702388428.267500972 elk-9.2.12/src/putdevecfv.f900000644002504400250440000000210314536061314017441 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putdevecfv(ik,devecfv) use modmain use modphonon use modramdisk implicit none ! arguments integer, intent(in) :: ik complex(8), intent(in) :: devecfv(nmatmax,nstfv,nspnfv) ! local variables integer recl character(256) fext,fname ! construct the dynamical matrix file extension call dynfext(iqph,isph,iaph,ipph,fext) ! construct filename fname=trim(scrpath)//'DEVECFV'//trim(fext) !$OMP CRITICAL(u222) ! write to RAM disk if required if (ramdisk) then call putrd(fname,ik,v1=vkl(:,ik),n1=nmatmax,n2=nstfv,n3=nspnfv, & nzv=nmatmax*nstfv*nspnfv,zva=devecfv) end if ! write to disk if required if (wrtdsk) then ! find the record length inquire(iolength=recl) vkl(:,ik),nmatmax,nstfv,nspnfv,devecfv open(222,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) write(222,rec=ik) vkl(:,ik),nmatmax,nstfv,nspnfv,devecfv close(222) end if !$OMP END CRITICAL(u222) end subroutine elk-9.2.12/src/PaxHeaders/getdevecfv.f900000644000000000000000000000013214536061314014672 xustar0030 mtime=1702388428.269500969 30 atime=1702388427.155502619 30 ctime=1702388428.269500969 elk-9.2.12/src/getdevecfv.f900000644002504400250440000000411514536061314017415 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getdevecfv(ik,iq,is,ia,ip,devecfv) use modmain use modphonon use modramdisk implicit none ! arguments integer, intent(in) :: ik,iq,is,ia,ip complex(8), intent(out) :: devecfv(nmatmax,nstfv,nspnfv) ! local variables logical tgs integer recl,nmatmax_,nstfv_,nspnfv_ real(8) vkl_(3),t1 character(256) fext,fname ! construct the dynamical matrix file extension call dynfext(iq,is,ia,ip,fext) ! construct filename fname=trim(scrpath)//'DEVECFV'//trim(fext) !$OMP CRITICAL(u222) ! read from RAM disk if required if (ramdisk) then call getrd(fname,ik,tgs,v1=vkl_,n1=nmatmax_,n2=nstfv_,n3=nspnfv_, & nzv=nmatmax*nstfv*nspnfv,zva=devecfv) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nmatmax_,nstfv_,nspnfv_,devecfv open(222,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) read(222,rec=ik) vkl_,nmatmax_,nstfv_,nspnfv_,devecfv close(222) 10 continue !$OMP END CRITICAL(u222) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getdevecfv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" ",A," : ",3G18.10)') trim(fname),vkl_ write(*,*) stop end if if (nmatmax /= nmatmax_) then write(*,*) write(*,'("Error(getdevecfv): differing nmatmax for k-point ",I8)') ik write(*,'(" current : ",I8)') nmatmax write(*,'(" ",A," : ",I8)') trim(fname),nmatmax_ write(*,*) stop end if if (nstfv /= nstfv_) then write(*,*) write(*,'("Error(getdevecfv): differing nstfv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstfv write(*,'(" ",A," : ",I8)') trim(fname),nstfv_ write(*,*) stop end if if (nspnfv /= nspnfv_) then write(*,*) write(*,'("Error(getdevecfv): differing nspnfv for k-point ",I8)') ik write(*,'(" current : ",I8)') nspnfv write(*,'(" ",A," : ",I8)') trim(fname),nspnfv_ write(*,*) stop end if end subroutine elk-9.2.12/src/PaxHeaders/putdevecsv.f900000644000000000000000000000013214536061314014740 xustar0030 mtime=1702388428.270500968 30 atime=1702388427.156502617 30 ctime=1702388428.270500968 elk-9.2.12/src/putdevecsv.f900000644002504400250440000000177014536061314017467 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putdevecsv(ik,devecsv) use modmain use modphonon use modramdisk implicit none ! arguments integer, intent(in) :: ik complex(8), intent(in) :: devecsv(nstsv,nstsv) ! local variables integer recl character(256) fext,fname ! construct the dynamical matrix file extension call dynfext(iqph,isph,iaph,ipph,fext) ! construct filename fname=trim(scrpath)//'DEVECSV'//trim(fext) !$OMP CRITICAL(u226) ! write to RAM disk if required if (ramdisk) then call putrd(fname,ik,v1=vkl(:,ik),n1=nstsv,nzv=nstsv*nstsv,zva=devecsv) end if ! write to disk if required if (wrtdsk) then ! find the record length inquire(iolength=recl) vkl(:,ik),nstsv,devecsv open(226,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) write(226,rec=ik) vkl(:,ik),nstsv,devecsv close(226) end if !$OMP END CRITICAL(u226) end subroutine elk-9.2.12/src/PaxHeaders/getdevecsv.f900000644000000000000000000000013214536061314014707 xustar0030 mtime=1702388428.271500966 30 atime=1702388427.158502614 30 ctime=1702388428.271500966 elk-9.2.12/src/getdevecsv.f900000644002504400250440000000303414536061314017431 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getdevecsv(ik,iq,is,ia,ip,devecsv) use modmain use modphonon use modramdisk implicit none ! arguments integer, intent(in) :: ik,iq,is,ia,ip complex(8), intent(out) :: devecsv(nstsv,nstsv) ! local variables logical tgs integer recl,nstsv_ real(8) vkl_(3),t1 character(256) fext,fname ! construct the dynamical matrix file extension call dynfext(iq,is,ia,ip,fext) ! construct filename fname=trim(scrpath)//'DEVECSV'//trim(fext) !$OMP CRITICAL(u226) ! read from RAM disk if required if (ramdisk) then call getrd(fname,ik,tgs,v1=vkl_,n1=nstsv_,nzv=nstsv*nstsv,zva=devecsv) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,devecsv open(226,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) read(226,rec=ik) vkl_,nstsv_,devecsv close(226) 10 continue !$OMP END CRITICAL(u226) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getdevecsv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" ",A," : ",3G18.10)') trim(fname),vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getdevecsv): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" ",A," : ",I8)') trim(fname),nstsv_ write(*,*) stop end if end subroutine elk-9.2.12/src/PaxHeaders/phononsc.f900000644000000000000000000000013214536061314014377 xustar0030 mtime=1702388428.272500965 30 atime=1702388427.159502613 30 ctime=1702388428.272500965 elk-9.2.12/src/phononsc.f900000644002504400250440000001167714536061314017135 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine phononsc use modmain use modphonon use modmpi use moddelf implicit none ! local variables integer is,ia,ja,ias,jas integer ip,nph,p,n,i real(8) a,b,t1 real(8) ft(3,maxatoms*maxspecies) complex(8) z1,z2 ! allocatable arrays real(8), allocatable :: vsmt0(:,:),vsir0(:) complex(8), allocatable :: dyn(:,:) ! store original parameters natoms0(:)=natoms(:) avec0(:,:)=avec(:,:) atposl0(:,:,:)=atposl(:,:,:) bfcmt00(:,:,:)=bfcmt0(:,:,:) mommtfix0(:,:,:)=mommtfix(:,:,:) tshift0=tshift tforce0=tforce autokpt0=autokpt primcell0=primcell ngridk0(:)=ngridk(:) ! no shifting of atomic basis allowed tshift=.false. ! require forces tforce=.true. ! determine k-point grid size from radkpt autokpt=.true. ! no reduction to primitive cell primcell=.false. ! initialise universal variables call init0 ! initialise q-point dependent variables call init2 ! store original parameters natmtot0=natmtot idxis0(1:natmtot)=idxis(1:natmtot) bvec0(:,:)=bvec(:,:) binv0(:,:)=binv(:,:) atposc0(:,:,:)=atposc(:,:,:) ngridg0(:)=ngridg(:) ngtot0=ngtot if (allocated(ivg0)) deallocate(ivg0) allocate(ivg0(3,ngtot0)) ivg0(:,:)=ivg(:,:) if (allocated(igfft0)) deallocate(igfft0) allocate(igfft0(ngtot0)) igfft0(:)=igfft(:) ! allocate the Kohn-Sham potential derivative arrays if (allocated(dvsbs)) deallocate(dvsbs) n=npmtmax*natmtot+ngtot allocate(dvsbs(n)) dvsmt(1:npmtmax,1:natmtot)=>dvsbs(1:) i=npmtmax*natmtot+1 dvsir(1:ngtot)=>dvsbs(i:) ! allocate supercell offset vector array if (allocated(vscph)) deallocate(vscph) allocate(vscph(3,nqptnr)) ! allocate dynamical matrix column allocate(dyn(3,natmtot)) ! begin new phonon task 10 continue natoms(:)=natoms0(:) ! find a dynamical matrix to calculate call dyntask(80,filext) ! if nothing more to do then restore original input parameters and return if (iqph == 0) then filext='.OUT' natoms(:)=natoms0(:) avec(:,:)=avec0(:,:) atposl(:,:,:)=atposl0(:,:,:) bfcmt0(:,:,:)=bfcmt00(:,:,:) mommtfix(:,:,:)=mommtfix0(:,:,:) tshift=tshift0 tforce=tforce0 autokpt=autokpt0 primcell=primcell0 ngridk(:)=ngridk0(:) deallocate(ivg0,igfft0) return end if if (mp_mpi) write(*,'("Info(phononsc): working on ",A)') 'DYN'//trim(filext) ! dry run: just generate empty DYN files if (task == 202) goto 10 ! zero the dynamical matrix row dyn(:,:)=0.d0 ! zero the Kohn-Sham potential derivative dvsmt(:,:)=0.d0 dvsir(:)=0.d0 ! check to see if mass is considered infinite if (spmass(isph) <= 0.d0) goto 20 ! loop over phases: 0 = cos and 1 = sin displacements if ((ivq(1,iqph) == 0).and.(ivq(2,iqph) == 0).and.(ivq(3,iqph) == 0)) then nph=0 else nph=1 end if ! initialise or read the charge density and potentials from file if (task == 200) then trdstate=.false. else trdstate=.true. end if ! loop over cos and sin displacements do p=0,nph ! generate the supercell with negative displacement call genscph(p,-0.5d0*deltaph) ! run the ground-state calculation call gndstate ! subsequent calculations will read in this supercell potential trdstate=.true. ! store the total force for this displacement do ias=1,natmtot ft(:,ias)=forcetot(:,ias) end do ! store the Kohn-Sham potential for this displacement allocate(vsmt0(npmtmax,natmtot),vsir0(ngtot)) vsmt0(:,:)=vsmt(:,:) vsir0(:)=vsir(:) ! generate the supercell again with positive displacement call genscph(p,0.5d0*deltaph) ! run the ground-state calculation again call gndstate ! compute the complex Kohn-Sham potential derivative with implicit q-phase call phscdvs(p,vsmt0,vsir0) deallocate(vsmt0,vsir0) ! Fourier transform the force differences to obtain the dynamical matrix z1=1.d0/(dble(nscph)*deltaph) ! multiply by i for sin-like displacement if (p == 1) z1=z1*zi ias=0 jas=0 do is=1,nspecies ja=0 do ia=1,natoms0(is) ias=ias+1 do i=1,nscph ja=ja+1 jas=jas+1 t1=-dot_product(vqc(:,iqph),vscph(:,i)) z2=z1*cmplx(cos(t1),sin(t1),8) do ip=1,3 t1=-(forcetot(ip,jas)-ft(ip,jas)) dyn(ip,ias)=dyn(ip,ias)+z2*t1 end do end do end do end do end do 20 continue ! write dynamical matrix row to file if (mp_mpi) then ias=0 do is=1,nspecies do ia=1,natoms0(is) ias=ias+1 do ip=1,3 a=dble(dyn(ip,ias)) b=aimag(dyn(ip,ias)) if (abs(a) < 1.d-12) a=0.d0 if (abs(b) < 1.d-12) b=0.d0 write(80,'(2G18.10," : is = ",I4,", ia = ",I4,", ip = ",I4)') a,b,is, & ia,ip end do end do end do close(80) ! write the complex Kohn-Sham potential derivative to file natoms(:)=natoms0(:) natmtot=natmtot0 idxis(1:natmtot)=idxis0(1:natmtot) ngridg(:)=ngridg0(:) call writedvs(filext) end if ! delete the non-essential files call delfiles(evec=.true.,eval=.true.,occ=.true.) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) goto 10 end subroutine elk-9.2.12/src/PaxHeaders/genscph.f900000644000000000000000000000013114536061314014176 xustar0030 mtime=1702388428.274500962 29 atime=1702388427.16150261 30 ctime=1702388428.274500962 elk-9.2.12/src/genscph.f900000644002504400250440000000325014536061314016721 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genscph(p,dph) use modmain use modphonon implicit none ! arguments integer, intent(in) :: p real(8), intent(in) :: dph ! local variables integer is,ia,na,i real(8) vc(3),t1 if ((p /= 0).and.(p /= 1)) then write(*,*) write(*,'("Error(genscph): phase (p) should be 0 or 1 : ",I8)') p write(*,*) stop end if ! find the smallest supercell which contains the q-vector call findscq(iqph,nscph,vscph) ! construct supercell atomic positions and magnetic fields do is=1,nspecies na=0 do ia=1,natoms0(is) do i=1,nscph na=na+1 if (na > maxatoms) then write(*,*) write(*,'("Error(genscph): too many atoms in supercell : ",I8)') na write(*,'(" for species ",I4)') is write(*,'("Adjust maxatoms in modmain and recompile code")') write(*,*) stop end if vc(:)=vscph(:,i)+atposc0(:,ia,is) ! add small periodic displacement if ((isph == is).and.(iaph == ia)) then t1=dot_product(vqc(:,iqph),vscph(:,i)) if (p == 0) then vc(ipph)=vc(ipph)+dph*cos(t1) else vc(ipph)=vc(ipph)+dph*sin(t1) end if end if ! convert to new lattice coordinates call r3mv(ainv,vc,atposl(:,na,is)) call r3frac(epslat,atposl(:,na,is)) ! set muffin-tin fields and fixed spin moments if required if (spinpol) then bfcmt0(:,na,is)=bfcmt00(:,ia,is) mommtfix(:,na,is)=mommtfix0(:,ia,is) end if end do end do natoms(is)=na end do end subroutine elk-9.2.12/src/PaxHeaders/phdisp.f900000644000000000000000000000013214536061314014037 xustar0030 mtime=1702388428.275500961 30 atime=1702388427.162502609 30 ctime=1702388428.275500961 elk-9.2.12/src/phdisp.f900000644002504400250440000000356714536061314016574 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine phdisp use modmain use modphonon implicit none ! local variables integer iq,i,iv real(8) wmin,wmax,t1 ! allocatable arrays complex(8), allocatable :: dynq(:,:,:),dynr(:,:,:) complex(8), allocatable :: dynp(:,:),ev(:,:) ! initialise universal variables call init0 call init2 ! allocate local arrays allocate(dynq(nbph,nbph,nqpt)) allocate(dynr(nbph,nbph,nqptnr)) allocate(dynp(nbph,nbph)) allocate(ev(nbph,nbph)) ! read in the dynamical matrices call readdyn(dynq) ! apply the acoustic sum rule call sumrule(dynq) ! Fourier transform the dynamical matrices to real-space call dynqtor(dynq,dynr) ! generate a set of q-point vectors along a path in the Brillouin zone call plotpt1d(bvec,nvp1d,npp1d,vvlp1d,vplp1d,dvp1d,dpp1d) wmin=0.d0 wmax=0.d0 ! compute the phonon frequencies along the path do iq=ip01d,npp1d ! compute the dynamical matrix at this particular q-point call dynrtoq(vplp1d(:,iq),dynr,dynp) ! find the phonon frequencies and eigenvectors call dynev(dynp,wphq(:,iq),ev) wmin=min(wmin,wphq(1,iq)) wmax=max(wmax,wphq(nbph,iq)) end do t1=(wmax-wmin)*0.5d0 wmin=wmin-t1 wmax=wmax+t1 ! output the vertex location lines open(50,file='PHDLINES.OUT',form='FORMATTED') do iv=1,nvp1d write(50,'(2G18.10)') dvp1d(iv),wmin write(50,'(2G18.10)') dvp1d(iv),wmax write(50,*) end do close(50) ! output the phonon dispersion open(50,file='PHDISP.OUT',form='FORMATTED') do i=1,nbph do iq=ip01d,npp1d write(50,'(2G18.10)') dpp1d(iq),wphq(i,iq) end do write(50,*) end do close(50) write(*,*) write(*,'("Info(phdisp):")') write(*,'(" phonon dispersion written to PHDISP.OUT")') write(*,'(" vertex location lines written to PHDLINES.OUT")') deallocate(dynq,dynr,dynp,ev) end subroutine elk-9.2.12/src/PaxHeaders/dynsymapp.f900000644000000000000000000000013214536061314014574 xustar0030 mtime=1702388428.277500957 30 atime=1702388427.164502605 30 ctime=1702388428.277500957 elk-9.2.12/src/dynsymapp.f900000644002504400250440000000360114536061314017316 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2005-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dynsymapp(isym,vpl,dyn,dyns) use modmain use modphonon implicit none ! arguments integer, intent(in) :: isym real(8), intent(in) :: vpl(3) complex(8), intent(in) :: dyn(nbph,nbph) complex(8), intent(inout) :: dyns(nbph,nbph) ! local variables integer is,ia,ja,ias,jas integer lspl,ilspl,i,j,k,l,m,n real(8) sl(3,3),sic(3,3),v(3),t1 real(8) a(3,3),b(3,3),c(3,3) complex(8) z1 ! automatic arrays integer map(natmtot) complex(8) zph(natmtot) ! index to spatial rotation in lattice point group lspl=lsplsymc(isym) ! the inverse of the spatial symmetry ilspl=isymlat(lspl) ! symmetry matrix in lattice coordinates sl(:,:)=dble(symlat(:,:,lspl)) ! inverse symmetry matrix in Cartesian coordinates sic(:,:)=symlatc(:,:,ilspl) ! operate with symmetry matrix on vpl call r3mtv(sl,vpl,v) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! equivalent atom with this symmetry ja=ieqatom(ia,is,isym) jas=idxas(ja,is) map(ias)=jas ! phase factor t1=twopi*dot_product(vpl(:),atposl(:,ia,is)) z1=cmplx(cos(t1),sin(t1),8) zph(ias)=z1 t1=-twopi*dot_product(v(:),atposl(:,ja,is)) zph(ias)=z1*cmplx(cos(t1),sin(t1),8) end do end do ! rotate and phase-shift dynamical matrix with symmetry do ias=1,natmtot i=3*(ias-1) k=3*(map(ias)-1) do jas=1,natmtot j=3*(jas-1) l=3*(map(jas)-1) do m=1,3 do n=1,3 a(m,n)=dble(dyn(i+m,j+n)) b(m,n)=aimag(dyn(i+m,j+n)) end do end do call r3mm(sic,a,c) call r3mmt(c,sic,a) call r3mm(sic,b,c) call r3mmt(c,sic,b) z1=zph(ias)*conjg(zph(jas)) do m=1,3 do n=1,3 dyns(k+m,l+n)=dyns(k+m,l+n)+z1*cmplx(a(m,n),b(m,n),8) end do end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/dynsym.f900000644000000000000000000000013214536061314014073 xustar0030 mtime=1702388428.278500956 30 atime=1702388427.165502604 30 ctime=1702388428.278500956 elk-9.2.12/src/dynsym.f900000644002504400250440000000234014536061314016614 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dynsym(vpl,dynp) use modmain use modphonon implicit none ! arguments real(8), intent(in) :: vpl(3) complex(8), intent(inout) :: dynp(nbph,nbph) ! local variables integer isym,lspl,i,j,n real(8) v1(3),v2(3),s(3,3),t1 ! automatic arrays complex(8) dyns(nbph,nbph) ! map input vector to first Brillouin zone v1(:)=vpl(:) call vecfbz(epslat,bvec,v1) n=0 dyns(:,:)=0.d0 ! use the symmetries which leave vpl invariant do isym=1,nsymcrys if (.not.tv0symc(isym)) cycle lspl=lsplsymc(isym) s(:,:)=dble(symlat(:,:,lspl)) call r3mtv(s,v1,v2) t1=abs(v1(1)-v2(1))+abs(v1(2)-v2(2))+abs(v1(3)-v2(3)) if (t1 < epslat) then call dynsymapp(isym,v1,dynp,dyns) n=n+1 end if end do if (n == 0) then write(*,*) write(*,'("Error(dynsym): no symmetries leave vpl invariant")') write(*,*) stop end if t1=1.d0/dble(n) dynp(:,:)=t1*dyns(:,:) ! make the matrix Hermitian do j=1,nbph do i=1,j-1 dynp(i,j)=0.5d0*(dynp(i,j)+conjg(dynp(j,i))) dynp(j,i)=conjg(dynp(i,j)) end do dynp(j,j)=dble(dynp(j,j)) end do end subroutine elk-9.2.12/src/PaxHeaders/dynev.f900000644000000000000000000000013214536061314013675 xustar0030 mtime=1702388428.279500954 30 atime=1702388427.167502601 30 ctime=1702388428.279500954 elk-9.2.12/src/dynev.f900000644002504400250440000000236014536061314016420 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dynev(dynp,w,ev) use modmain use modphonon implicit none ! arguments complex(8), intent(in) :: dynp(nbph,nbph) real(8), intent(out) :: w(nbph) complex(8), intent(out) :: ev(nbph,nbph) ! local variables integer is,ia,js,ja integer ip,jp,i,j real(8) t1 ev(:,:)=0.d0 i=0 do is=1,nspecies do ia=1,natoms(is) do ip=1,3 i=i+1 j=0 do js=1,nspecies ! mass factor if ((spmass(is) <= 0.d0).or.(spmass(js) <= 0.d0)) then ! infinite mass t1=0.d0 else t1=1.d0/sqrt(spmass(is)*spmass(js)) end if do ja=1,natoms(js) do jp=1,3 j=j+1 if (i <= j) then ! use Hermitian average of dynamical matrix ev(i,j)=0.5d0*t1*(dynp(i,j)+conjg(dynp(j,i))) end if end do end do end do end do end do end do ! find the eigenvalues and eigenvectors of the dynamical matrix call eveqnzh(nbph,nbph,ev,w) do i=1,nbph if (w(i) >= 0.d0) then w(i)=sqrt(w(i)) else w(i)=-sqrt(abs(w(i))) end if end do end subroutine elk-9.2.12/src/PaxHeaders/phdos.f900000644000000000000000000000013014536061314013663 xustar0030 mtime=1702388428.281500952 28 atime=1702388427.1685026 30 ctime=1702388428.281500952 elk-9.2.12/src/phdos.f900000644002504400250440000001007714536061314016414 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine phdos use modmain use modphonon use modtest implicit none ! local variables integer iq,i,iw integer i1,i2,i3 real(8) wmin,wmax,wd,dw real(8) tmax,temp(ntemp),s(ntemp) real(8) v(3),t1,t2 ! allocatable arrays real(8), allocatable :: wq(:),w(:),gw(:),f(:) complex(8), allocatable :: dynq(:,:,:),dynr(:,:,:) complex(8), allocatable :: dynp(:,:),ev(:,:) ! external functions real(8), external :: splint ! initialise universal variables call init0 call init2 allocate(wq(nbph),w(nwplot),gw(nwplot),f(nwplot)) allocate(dynq(nbph,nbph,nqpt),dynr(nbph,nbph,nqptnr)) allocate(dynp(nbph,nbph),ev(nbph,nbph)) ! read in the dynamical matrices call readdyn(dynq) ! apply the acoustic sum rule call sumrule(dynq) ! Fourier transform the dynamical matrices to real-space call dynqtor(dynq,dynr) ! find the minimum and maximum frequencies wmin=0.d0 wmax=0.d0 do iq=1,nqpt call dynev(dynq(:,:,iq),wq,ev) wmin=min(wmin,wq(1)) wmax=max(wmax,wq(nbph)) end do t1=(wmax-wmin)*0.1d0 wmin=wmin-t1 wmax=wmax+t1 wd=wmax-wmin if (wd < 1.d-8) wd=1.d0 dw=wd/dble(nwplot) ! generate energy grid do iw=1,nwplot w(iw)=dw*dble(iw-1)+wmin end do gw(:)=0.d0 do i1=0,ngrkf-1 v(1)=dble(i1)/dble(ngrkf) do i2=0,ngrkf-1 v(2)=dble(i2)/dble(ngrkf) do i3=0,ngrkf-1 v(3)=dble(i3)/dble(ngrkf) ! compute the dynamical matrix at this particular q-point call dynrtoq(v,dynr,dynp) ! find the phonon frequencies call dynev(dynp,wq,ev) do i=1,nbph t1=(wq(i)-wmin)/dw+1.d0 iw=nint(t1) if ((iw >= 1).and.(iw <= nwplot)) then gw(iw)=gw(iw)+1.d0 end if end do end do end do end do t1=1.d0/(dw*dble(ngrkf)**3) gw(:)=t1*gw(:) ! smooth phonon DOS if required if (nswplot > 0) call fsmooth(nswplot,nwplot,gw) ! write phonon DOS to file open(50,file='PHDOS.OUT',form='FORMATTED') do iw=1,nwplot write(50,'(2G18.10)') w(iw),gw(iw) end do close(50) write(*,*) write(*,'("Info(phdos):")') write(*,'(" phonon density of states written to PHDOS.OUT")') !-------------------------------------------! ! thermodynamic properties from DOS ! !-------------------------------------------! ! maximum temperature tmax=wmax/kboltz ! temperature grid do i=1,ntemp temp(i)=tmax*dble(i)/dble(ntemp) end do open(50,file='THERMO.OUT',form='FORMATTED') write(50,*) write(50,'("(All quantities are per unit cell)")') ! zero point energy do iw=1,nwplot f(iw)=gw(iw)*w(iw) end do t1=splint(nwplot,w,f) t1=0.5d0*t1 write(50,*) write(50,'("Zero-point energy : ",G18.10)') t1 ! vibrational energy write(50,*) write(50,'("Vibrational energy vs. temperature :")') do i=1,ntemp do iw=1,nwplot t1=w(iw)/(2.d0*kboltz*temp(i)) if (t1 > 0.d0) then f(iw)=gw(iw)*w(iw)*cosh(t1)/sinh(t1) else f(iw)=0.d0 end if end do t1=splint(nwplot,w,f) t1=0.5d0*t1 write(50,'(2G18.10)') temp(i),t1 s(i)=t1 end do ! free energy write(50,*) write(50,'("Free energy vs. temperature :")') do i=1,ntemp do iw=1,nwplot t1=2.d0*sinh(w(iw)/(2.d0*kboltz*temp(i))) if (t1 > 0.d0) then f(iw)=gw(iw)*log(t1) else f(iw)=0.d0 end if end do t1=splint(nwplot,w,f) t1=kboltz*temp(i)*t1 write(50,'(2G18.10)') temp(i),t1 ! compute entropy from S = (F-E)/T s(i)=(s(i)-t1)/temp(i) end do ! entropy write(50,*) write(50,'("Entropy vs. temperature :")') do i=1,ntemp write(50,'(2G18.10)') temp(i),s(i) end do ! heat capacity write(50,*) write(50,'("Heat capacity vs. temperature :")') do i=1,ntemp do iw=1,nwplot t1=w(iw)/(kboltz*temp(i)) t2=exp(t1)-1.d0 if (abs(t2) > 1.d-14) then f(iw)=gw(iw)*(t1**2)*(t2+1.d0)/t2**2 else f(iw)=0.d0 end if end do t1=splint(nwplot,w,f) t1=kboltz*t1 write(50,'(2G18.10)') temp(i),t1 end do close(50) write(*,'(" thermodynamic properties written to THERMO.OUT")') ! write phonon DOS to test file call writetest(210,'phonon DOS',nv=nwplot,tol=1.d-2,rva=gw) deallocate(wq,w,gw,f,dynq,dynr,dynp,ev) end subroutine elk-9.2.12/src/PaxHeaders/sumrule.f900000644000000000000000000000013014536061314014242 xustar0029 mtime=1702388428.28250095 30 atime=1702388427.170502597 29 ctime=1702388428.28250095 elk-9.2.12/src/sumrule.f900000644002504400250440000000337614536061314016777 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: sumrule ! !INTERFACE: subroutine sumrule(dynq) ! !INPUT/OUTPUT PARAMETERS: ! dynq : dynamical matrices on q-point set (in,real(nbph,nbph,nqpt)) ! !DESCRIPTION: ! Applies the same correction to all the dynamical matrices such that the ! matrix for ${\bf q}=0$ satisfies the acoustic sum rule. In other words, the ! matrices are updated with ! $$ D_{ij}^{\bf q}\rightarrow D_{ij}^{\bf q}-\sum_{k=1}^3 \omega_k^0 ! v_{k;i}^0 v_{k;j}^0 $$ ! for all ${\bf q}$, where $\omega_k^0$ is the $k$th eigenvalue of the ! ${\bf q}=0$ dynamical matrix and $v_{k;i}^0$ the $i$th component of its ! eigenvector. The eigenvalues are assumed to be arranged in ascending order. ! This ensures that the ${\bf q}=0$ dynamical matrix has 3 zero eigenvalues, ! which the uncorrected matrix may not have due to the finite ! exchange-correlation grid. ! ! !REVISION HISTORY: ! Created May 2005 (JKD) !EOP !BOC use modmain use modphonon implicit none ! arguments complex(8), intent(inout) :: dynq(nbph,nbph,nqpt) ! local variables integer iq,i,j,k ! automatic arrays real(8) w(nbph) complex(8) ev(nbph,nbph) ! compute the eigenvalues and vectors of the q = 0 dynamical matrix do i=1,nbph do j=i,nbph ev(i,j)=0.5d0*(dynq(i,j,1)+conjg(dynq(j,i,1))) end do end do call eveqnzh(nbph,nbph,ev,w) ! subtract outer products of 3 lowest eigenvectors for q = 0 from all the ! dynamical matrices do iq=1,nqpt do i=1,nbph do j=1,nbph do k=1,3 dynq(i,j,iq)=dynq(i,j,iq)-w(k)*ev(i,k)*conjg(ev(j,k)) end do end do end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/writephn.f900000644000000000000000000000013214536061314014410 xustar0030 mtime=1702388428.284500947 30 atime=1702388427.172502594 30 ctime=1702388428.284500947 elk-9.2.12/src/writephn.f900000644002504400250440000000325214536061314017134 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writephn use modmain use modphonon implicit none ! local variables integer iq,i,j,is,ia,ip ! allocatable arrays real(8), allocatable :: w(:) complex(8), allocatable :: dynq(:,:,:),dynr(:,:,:) complex(8), allocatable :: dynp(:,:),ev(:,:) ! initialise universal variables call init0 call init2 allocate(w(nbph)) allocate(dynq(nbph,nbph,nqpt)) allocate(dynr(nbph,nbph,nqptnr)) allocate(dynp(nbph,nbph)) allocate(ev(nbph,nbph)) ! read in the dynamical matrices call readdyn(dynq) ! apply the acoustic sum rule call sumrule(dynq) ! Fourier transform the dynamical matrices to real-space call dynqtor(dynq,dynr) open(50,file='PHONON.OUT',form='FORMATTED') do iq=1,nphwrt call dynrtoq(vqlwrt(:,iq),dynr,dynp) call dynev(dynp,w,ev) write(50,*) write(50,'(I6,3G18.10," : q-point, vqlwrt")') iq,vqlwrt(:,iq) do j=1,nbph write(50,*) write(50,'(I6,G18.10," : mode, frequency")') j,w(j) i=0 do is=1,nspecies do ia=1,natoms(is) do ip=1,3 i=i+1 if (i == 1) then write(50,'(3I4,2G18.10," : species, atom, polarisation, & &eigenvector")') is,ia,ip,ev(i,j) else write(50,'(3I4,2G18.10)') is,ia,ip,ev(i,j) end if end do end do end do end do write(50,*) end do close(50) write(*,*) write(*,'("Info(writephn): phonon frequencies and eigenvectors written to & &PHONON.OUT")') write(*,'(" for all q-vectors in the phwrite list")') deallocate(w,dynq,dynr,dynp,ev) end subroutine elk-9.2.12/src/PaxHeaders/dynfext.f900000644000000000000000000000013214536061314014231 xustar0030 mtime=1702388428.285500946 30 atime=1702388427.174502591 30 ctime=1702388428.285500946 elk-9.2.12/src/dynfext.f900000644002504400250440000000132414536061314016753 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dynfext(iq,is,ia,ip,fext) use modmain implicit none ! arguments integer, intent(in) :: iq,is,ia,ip character(*), intent(out) :: fext ! local variables integer i,j,m(3),n(3) ! external functions integer, external :: gcd do i=1,3 if (ivq(i,iq) /= 0) then j=gcd(ivq(i,iq),ngridq(i)) m(i)=ivq(i,iq)/j n(i)=ngridq(i)/j else m(i)=0 n(i)=0 end if end do write(fext,'("_Q",2I2.2,"_",2I2.2,"_",2I2.2,"_S",I2.2,"_A",I3.3,"_P",I1,& &".OUT")') m(1),n(1),m(2),n(2),m(3),n(3),is,ia,ip end subroutine elk-9.2.12/src/PaxHeaders/writegamma.f900000644000000000000000000000013214536061314014705 xustar0030 mtime=1702388428.286500944 30 atime=1702388427.175502589 30 ctime=1702388428.286500944 elk-9.2.12/src/writegamma.f900000644002504400250440000000164714536061314017437 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writegamma(gq) use modmain use modphonon implicit none ! arguments real(8), intent(in) :: gq(nbph,nqpt) ! local variables integer iq,i open(50,file='GAMMAQ.OUT',form='FORMATTED',action='WRITE') write(50,*) write(50,'(I4," : total number of atoms")') natmtot write(50,'(I6," : number of q-points")') nqpt write(50,*) do iq=1,nqpt write(50,'(I6," : q-point")') iq write(50,'(3G18.10," : q-vector (lattice coordinates)")') vql(:,iq) write(50,'(3G18.10," : q-vector (Cartesian coordinates)")') vqc(:,iq) do i=1,nbph write(50,'(I4,G18.10)') i,gq(i,iq) end do write(50,*) end do close(50) write(*,*) write(*,'("Info(writegamma):")') write(*,'(" wrote phonon linewidths for all q-points to GAMMAQ.OUT")') end subroutine elk-9.2.12/src/PaxHeaders/readgamma.f900000644000000000000000000000013214536061314014466 xustar0030 mtime=1702388428.287500943 30 atime=1702388427.177502586 30 ctime=1702388428.287500943 elk-9.2.12/src/readgamma.f900000644002504400250440000000401114536061314017204 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readgamma(gq) use modmain use modphonon implicit none ! arguments real(8), intent(out) :: gq(nbph,nqpt) ! local variables integer iq,i integer natmtot_,nqpt_,iq_,i_ real(8) vql_(3),vqc_(3),t1 open(50,file='GAMMAQ.OUT',form='FORMATTED',status='OLD') read(50,*) read(50,*) natmtot_ if (natmtot /= natmtot_) then write(*,*) write(*,'("Error(readgamma): differing natmtot")') write(*,'(" current : ",I4)') natmtot write(*,'(" GAMMAQ.OUT : ",I4)') natmtot_ write(*,*) stop end if read(50,*) nqpt_ if (nqpt /= nqpt_) then write(*,*) write(*,'("Error(readgamma): differing nqpt")') write(*,'(" current : ",I6)') nqpt write(*,'(" GAMMAQ.OUT : ",I6)') nqpt_ write(*,*) stop end if read(50,*) do iq=1,nqpt read(50,*) iq_ if (iq /= iq_) then write(*,*) write(*,'("Error(readgamma): incorrect q-point index in GAMMAQ.OUT for & &q-point ",I6)') iq write(*,*) stop end if read(50,*) vql_ t1=sum(abs(vql(:,iq)-vql_(:))) if (t1 > epslat) then write(*,*) write(*,'("Error(readgamma): differing q-vectors in lattice coordinates & &for q-point ",I6)') iq write(*,'(" current : ",3G18.10)') vql(:,iq) write(*,'(" GAMMAQ.OUT : ",3G18.10)') vql_ write(*,*) stop end if read(50,*) vqc_ t1=sum(abs(vqc(:,iq)-vqc_(:))) if (t1 > epslat) then write(*,*) write(*,'("Error(readgamma): differing q-vectors in Cartesian coordinates & &for q-point ",I6)') iq write(*,'(" current : ",3G18.10)') vqc(:,iq) write(*,'(" GAMMAQ.OUT : ",3G18.10)') vqc_ write(*,*) stop end if do i=1,nbph read(50,*) i_,gq(i,iq) if (i /= i_) then write(*,*) write(*,'("Error(readgamma): incorrect mode index in GAMMAQ.OUT for & &q-point ",I6)') iq write(*,*) stop end if end do read(50,*) end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/phlwidth.f900000644000000000000000000000013014536061314014371 xustar0029 mtime=1702388428.28950094 30 atime=1702388427.178502585 29 ctime=1702388428.28950094 elk-9.2.12/src/phlwidth.f900000644002504400250440000000605014536061314017116 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine phlwidth use modmain use modphonon implicit none ! local variables integer i,j,iq,iv real(8) gmin,gmax,t1 ! allocatable arrays real(8), allocatable :: wq(:),gq(:,:),gp(:,:) complex(8), allocatable :: dynq(:,:,:),dynr(:,:,:),dynp(:,:) complex(8), allocatable :: gmq(:,:,:),gmr(:,:,:),gmp(:,:) complex(8), allocatable :: ev(:,:),b(:,:) ! initialise universal variables call init0 call init2 allocate(wq(nbph),gq(nbph,nqpt),gp(nbph,npp1d)) allocate(dynq(nbph,nbph,nqpt)) allocate(dynr(nbph,nbph,nqptnr)) allocate(dynp(nbph,nbph)) allocate(gmq(nbph,nbph,nqpt)) allocate(gmr(nbph,nbph,nqptnr)) allocate(gmp(nbph,nbph)) allocate(ev(nbph,nbph),b(nbph,nbph)) ! read in the dynamical matrices call readdyn(dynq) ! apply the acoustic sum rule call sumrule(dynq) ! Fourier transform the dynamical matrices to real-space call dynqtor(dynq,dynr) ! read in the phonon linewidths for each q-point call readgamma(gq) ! loop over phonon q-points do iq=1,nqpt ! find the eigenvalues and eigenvectors of the dynamical matrix call dynev(dynq(:,:,iq),wq,ev) ! construct a complex matrix from the phonon eigenvectors such that its ! eigenvalues squared are the phonon linewidths do i=1,nbph t1=sqrt(abs(gq(i,iq))) do j=1,nbph b(i,j)=t1*conjg(ev(j,i)) end do end do call zgemm('N','N',nbph,nbph,nbph,zone,ev,nbph,b,nbph,zzero,gmq(:,:,iq),nbph) end do ! Fourier transform the gamma matrices to real-space call dynqtor(gmq,gmr) ! generate a set of q-point vectors along a path in the Brillouin zone call plotpt1d(bvec,nvp1d,npp1d,vvlp1d,vplp1d,dvp1d,dpp1d) gmin=1.d8 gmax=0.d0 ! compute the linewidths along the path do iq=ip01d,npp1d ! compute the dynamical matrix at this particular q-point call dynrtoq(vplp1d(:,iq),dynr,dynp) ! find the phonon eigenvalues and eigenvectors call dynev(dynp,wq,ev) ! compute the gamma matrix at this particular q-point call dynrtoq(vplp1d(:,iq),gmr,gmp) ! diagonalise the gamma matrix simultaneously with the dynamical matrix call dynevs(ev,gmp,gp(:,iq)) ! square the eigenvalues to recover the linewidths gp(:,iq)=gp(:,iq)**2 do i=1,nbph t1=gp(i,iq) if (t1 < gmin) gmin=t1 if (t1 > gmax) gmax=t1 end do end do t1=(gmax-gmin)*0.5d0 gmin=gmin-t1 gmax=gmax+t1 ! output the vertex location lines open(50,file='PHLWLINES.OUT',form='FORMATTED') do iv=1,nvp1d write(50,'(2G18.10)') dvp1d(iv),gmin write(50,'(2G18.10)') dvp1d(iv),gmax write(50,*) end do close(50) ! output the phonon linewidth dispersion open(50,file='PHLWIDTH.OUT',form='FORMATTED') do i=1,nbph do iq=ip01d,npp1d write(50,'(2G18.10)') dpp1d(iq),gp(i,iq) end do write(50,*) end do close(50) write(*,*) write(*,'("Info(phlwidth):")') write(*,'(" phonon linewidth dispersion written to PHLWIDTH.OUT")') write(*,'(" vertex location lines written to PHLWLINES.OUT")') deallocate(wq,gq,gp) deallocate(dynq,dynr,dynp) deallocate(gmq,gmr,gmp) deallocate(ev,b) end subroutine elk-9.2.12/src/PaxHeaders/alpha2f.f900000644000000000000000000000013214536061314014065 xustar0030 mtime=1702388428.290500938 30 atime=1702388427.180502582 30 ctime=1702388428.290500938 elk-9.2.12/src/alpha2f.f900000644002504400250440000001155014536061314016611 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine alpha2f use modmain use modphonon use modtest implicit none ! local variables integer ik,iq,i,j integer i1,i2,i3,iw real(8) wmin,wmax,wd,dw real(8) wlog,wrms,lambda,tc real(8) v(3),t1 ! allocatable arrays real(8), allocatable :: gq(:,:),wq(:),a2fp(:),w(:),a2f(:) complex(8), allocatable :: dynq(:,:,:),dynr(:,:,:),dynp(:,:) complex(8), allocatable :: a2fmq(:,:,:),a2fmr(:,:,:),a2fmp(:,:) complex(8), allocatable :: ev(:,:),b(:,:) ! initialise universal variables call init0 call init1 call init2 ! allocate local arrays allocate(gq(nbph,nqpt),wq(nbph),a2fp(nbph)) allocate(w(nwplot),a2f(nwplot)) allocate(dynq(nbph,nbph,nqpt)) allocate(dynr(nbph,nbph,nqptnr)) allocate(dynp(nbph,nbph)) allocate(a2fmq(nbph,nbph,nqpt)) allocate(a2fmr(nbph,nbph,nqptnr)) allocate(a2fmp(nbph,nbph)) allocate(ev(nbph,nbph),b(nbph,nbph)) ! get the eigenvalues from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) end do ! compute the density of states at the Fermi energy call occupy ! read in the dynamical matrices call readdyn(dynq) ! apply the acoustic sum rule call sumrule(dynq) ! Fourier transform the dynamical matrices to real-space call dynqtor(dynq,dynr) ! read in the phonon linewidths for each q-point call readgamma(gq) ! loop over phonon q-points do iq=1,nqpt ! find the eigenvalues and eigenvectors of the dynamical matrix call dynev(dynq(:,:,iq),wphq(:,iq),ev) ! construct a complex matrix from the phonon eigenvectors such that its ! eigenvalues squared are the phonon linewidths divided by the frequency do i=1,nbph if (wphq(i,iq) > 1.d-8) then t1=sqrt(abs(gq(i,iq)/wphq(i,iq))) else t1=0.d0 end if do j=1,nbph b(i,j)=t1*conjg(ev(j,i)) end do end do call zgemm('N','N',nbph,nbph,nbph,zone,ev,nbph,b,nbph,zzero,a2fmq(:,:,iq), & nbph) end do ! Fourier transform the matrices to real-space call dynqtor(a2fmq,a2fmr) ! find the minimum and maximum frequencies wmin=0.d0 wmax=0.d0 do iq=1,nqpt wmin=min(wmin,wphq(1,iq)) wmax=max(wmax,wphq(nbph,iq)) end do t1=(wmax-wmin)*0.1d0 wmin=wmin-t1 wmax=wmax+t1 wd=wmax-wmin if (wd < 1.d-8) wd=1.d0 dw=wd/dble(nwplot) ! generate energy grid do iw=1,nwplot w(iw)=dw*dble(iw-1)+wmin end do a2f(:)=0.d0 do i1=0,ngrkf-1 v(1)=dble(i1)/dble(ngrkf) do i2=0,ngrkf-1 v(2)=dble(i2)/dble(ngrkf) do i3=0,ngrkf-1 v(3)=dble(i3)/dble(ngrkf) ! compute the dynamical matrix at this particular q-point call dynrtoq(v,dynr,dynp) ! find the phonon eigenvalues and eigenvectors call dynev(dynp,wq,ev) ! compute the α²F matrix at this particular q-point call dynrtoq(v,a2fmr,a2fmp) ! diagonalise the α²F matrix simultaneously with the dynamical matrix ! (thanks to Matthieu Verstraete and Ryotaro Arita for correcting this) call dynevs(ev,a2fmp,a2fp) ! square the eigenvalues to recover the linewidths divided by the frequency a2fp(:)=a2fp(:)**2 do i=1,nbph t1=(wq(i)-wmin)/dw+1.d0 iw=nint(t1) if ((iw >= 1).and.(iw <= nwplot)) then a2f(iw)=a2f(iw)+a2fp(i) end if end do end do end do end do t1=twopi*(fermidos/2.d0)*dw*dble(ngrkf)**3 if (t1 > 1.d-8) then t1=1.d0/t1 else t1=0.d0 end if a2f(:)=t1*a2f(:) ! smooth Eliashberg function if required if (nswplot > 0) call fsmooth(nswplot,nwplot,a2f) ! write Eliashberg function to file open(50,file='ALPHA2F.OUT',form='FORMATTED') do iw=1,nwplot write(50,'(2G18.10)') w(iw),a2f(iw) end do close(50) write(*,*) write(*,'("Info(alpha2f):")') write(*,'(" Eliashberg function α²F written to ALPHA2F.OUT")') ! compute lambda, logarithmic average frequency, RMS average frequency and ! McMillan-Allen-Dynes superconducting critical temperature call mcmillan(w,a2f,lambda,wlog,wrms,tc) open(50,file='MCMILLAN.OUT',form='FORMATTED') write(50,*) write(50,'("Electron-phonon coupling constant, λ : ",G18.10)') lambda write(50,*) write(50,'("Logarithmic average frequency : ",G18.10)') wlog write(50,*) write(50,'("RMS average frequency : ",G18.10)') wrms write(50,*) write(50,'("Coulomb pseudopotential, μ* : ",G18.10)') mustar write(50,*) write(50,'("McMillan-Allen-Dynes superconducting critical temperature")') write(50,'(" [Eq. 34, Phys. Rev. B 12, 905 (1975)] (kelvin) : ",G18.10)') tc write(50,*) close(50) write(*,*) write(*,'("Info(alpha2f):")') write(*,'(" Electron-phonon coupling constant, λ,")') write(*,'(" logarithmic and RMS average frequencies,")') write(*,'(" and McMillan-Allen-Dynes superconducting critical temperature")') write(*,'(" written to MCMILLAN.OUT")') ! write lambda to test file call writetest(251,'electron-phonon coupling constant, lambda',tol=5.d-2, & rv=lambda) deallocate(wq,gq,a2fp,w,a2f) deallocate(dynq,dynr,dynp) deallocate(a2fmq,a2fmr,a2fmp) deallocate(ev,b) end subroutine elk-9.2.12/src/PaxHeaders/writelambda.f900000644000000000000000000000013114536061314015042 xustar0030 mtime=1702388428.291500937 29 atime=1702388427.18150258 30 ctime=1702388428.291500937 elk-9.2.12/src/writelambda.f900000644002504400250440000000204714536061314017570 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writelambda(gq) use modmain use modphonon implicit none ! arguments real(8), intent(in) :: gq(nbph,nqpt) ! local variables integer iq,i real(8) t1,t2 open(50,file='LAMBDAQ.OUT',form='FORMATTED') write(50,*) write(50,'(I4," : total number of atoms")') natmtot write(50,'(I6," : number of q-points")') nqpt write(50,*) do iq=1,nqpt write(50,'(I6," : q-point")') iq write(50,'(3G18.10," : q-vector (lattice coordinates)")') vql(:,iq) write(50,'(3G18.10," : q-vector (Cartesian coordinates)")') vqc(:,iq) do i=1,nbph t1=pi*fermidos*wphq(i,iq)**2 if (t1 > 1.d-8) then t2=gq(i,iq)/t1 else t2=0.d0 end if write(50,'(I4,G18.10)') i,t2 end do write(50,*) end do close(50) write(*,*) write(*,'("Info(writelambda):")') write(*,'(" wrote electron-phonon coupling constants for all q-points to & &LAMBDAQ.OUT")') end subroutine elk-9.2.12/src/PaxHeaders/ephcouple.f900000644000000000000000000000013214536061314014534 xustar0030 mtime=1702388428.293500934 30 atime=1702388427.183502577 30 ctime=1702388428.293500934 elk-9.2.12/src/ephcouple.f900000644002504400250440000001274714536061314017271 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine ephcouple use modmain use modphonon use modmpi use modomp implicit none ! local variables integer iq,ik,jk,jkq integer ist,jst,isym,ip integer is,ia,ias,js,jas integer nr,nri,np,i,n,nthd real(8) vl(3),de,x real(8) t1,t2,t3,t4 ! allocatable arrays real(8), allocatable :: gq(:,:),z(:) complex(8), allocatable :: dynq(:,:,:),ev(:,:),a(:,:) complex(8), allocatable :: dvmt(:,:,:),dvir(:,:) complex(8), allocatable :: zfmt(:),gzfmt(:,:,:) complex(8), allocatable :: ephmat(:,:,:) ! external functions real(8), external :: sdelta ! increase the angular momentum cut-off on the inner part of the muffin-tin lmaxi0=lmaxi lmaxi=max(lmaxi,4) ! initialise universal variables call init0 call init1 call init2 ! allocate global arrays if (allocated(dvsbs)) deallocate(dvsbs) n=npmtmax*natmtot+ngtot allocate(dvsbs(n)) dvsmt(1:npmtmax,1:natmtot)=>dvsbs(1:) i=npmtmax*natmtot+1 dvsir(1:ngtot)=>dvsbs(i:) ! allocate local arrays allocate(gq(nbph,nqpt),z(nbph)) allocate(dynq(nbph,nbph,nqpt),ev(nbph,nbph),a(nbph,nbph)) allocate(dvmt(npcmtmax,natmtot,nbph),dvir(ngtot,nbph)) allocate(zfmt(npmtmax),gzfmt(npmtmax,3,natmtot)) ! read in the density and potentials from file call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! read Fermi energy from file call readfermi ! set the speed of light >> 1 (non-relativistic approximation) solsc=sol*100.d0 ! new file extension for eigenvector files with c >> 1 filext='_EPH.OUT' ! generate the first- and second-variational eigenvectors and eigenvalues call linengy call genapwlofr call gensocfr call genevfsv ! precise determination of the Fermi energy swidth0=swidth swidth=1.d-5 call occupy swidth=swidth0 ! restore the speed of light solsc=sol ! read in the dynamical matrices call readdyn(dynq) ! apply the acoustic sum rule call sumrule(dynq) ! compute the gradients of the Kohn-Sham potential for the rigid-ion term do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) call rtozfmt(nr,nri,vsmt(:,ias),zfmt) call gradzfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),zfmt,npmtmax,gzfmt(:,:,ias)) end do ! energy window for calculating the electron-phonon matrix elements if (task == 240) then de=4.d0*swidth else de=1.d6 end if ! loop over phonon q-points do iq=1,nqpt if (mp_mpi) write(*,'("Info(ephcouple): ",I6," of ",I6," q-points")') iq,nqpt ! diagonalise the dynamical matrix call dynev(dynq(:,:,iq),wphq(:,iq),ev) ! generate the matrix for converting between Cartesian and phonon coordinates call genmcph(wphq(:,iq),ev,a) i=0 do is=1,nspecies nr=nrmt(is) nri=nrmti(is) np=npmt(is) do ia=1,natoms(is) ias=idxas(ia,is) do ip=1,3 i=i+1 ! read in the Cartesian change in Kohn-Sham potential call readdvs(iq,is,ia,ip,dvsmt,dvsir) ! add the rigid-ion term dvsmt(1:np,ias)=dvsmt(1:np,ias)-gzfmt(1:np,ip,ias) do jas=1,natmtot js=idxis(jas) ! convert to coarse radial mesh call zfmtftoc(nrcmt(js),nrcmti(js),dvsmt(:,jas),dvmt(:,jas,i)) ! apply the radial integration weights call zfmtwr(nrcmt(js),nrcmti(js),wrcmt(:,js),dvmt(:,jas,i)) end do ! multiply the interstitial potential with the characteristic function dvir(:,i)=dvsir(:)*cfunir(:) end do end do end do z(:)=0.d0 call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(ephmat,jk,vl,isym,jkq) & !$OMP PRIVATE(t1,t2,t3,t4,ist,jst,x,i) & !$OMP REDUCTION(+:z) & !$OMP NUM_THREADS(nthd) allocate(ephmat(nstsv,nstsv,nbph)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! compute the electron-phonon coupling matrix elements call genephmat(iq,ik,de,a,dvmt,dvir,ephmat) ! write the matrix elements to file if required if (task == 241) call putephmat(iq,ik,ephmat) ! k+q-vector in lattice coordinates vl(:)=vkl(:,ik)+vql(:,iq) ! index to k+q-vector call findkpt(vl,isym,jkq) t1=pi*wkptnr*occmax ! loop over second-variational states do ist=1,nstsv x=(evalsv(ist,jkq)-efermi)/swidth t2=t1*sdelta(stype,x)/swidth do jst=1,nstsv ! loop over phonon branches do i=1,nbph x=(wphq(i,iq)+evalsv(jst,jk)-evalsv(ist,jkq))/swidth t3=t2*sdelta(stype,x)/swidth t4=dble(ephmat(ist,jst,i))**2+aimag(ephmat(ist,jst,i))**2 z(i)=z(i)+wphq(i,iq)*t3*t4 end do end do end do ! end loop over k-points end do !$OMP END DO deallocate(ephmat) !$OMP END PARALLEL call freethd(nthd) ! store in phonon linewidths array gq(:,iq)=z(:) ! end loop over phonon q-points end do ! add gq from each MPI process if (np_mpi > 1) then n=nbph*nqpt call mpi_allreduce(mpi_in_place,gq,n,mpi_double_precision,mpi_sum,mpicom, & ierror) end if ! restore the default file extension filext='.OUT' if (mp_mpi) then ! write the phonon linewidths to file call writegamma(gq) ! write electron-phonon coupling constants to file call writelambda(gq) if (task == 241) then write(*,*) write(*,'("Info(ephcouple):")') write(*,'(" wrote electron-phonon matrix elements to EPHMAT.OUT")') end if end if ! deallocate global arrays deallocate(dvsbs) ! deallocate local arrays deallocate(gq,dynq,ev,a) deallocate(dvmt,dvir,zfmt,gzfmt) ! restore original input parameters lmaxi=lmaxi0 end subroutine elk-9.2.12/src/PaxHeaders/eliashberg.f900000644000000000000000000000013214536061314014655 xustar0030 mtime=1702388428.294500932 30 atime=1702388427.185502574 30 ctime=1702388428.294500932 elk-9.2.12/src/eliashberg.f900000644002504400250440000001446314536061314017407 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 A. Sanna and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: eliashberg ! !INTERFACE: subroutine eliashberg ! !USES: use modmain use modphonon use modomp ! !DESCRIPTION: ! Calculates the superconducting gap within Eliashberg theory. This ! implementation is isotropic and assumes a flat density of states. The ! Eliashberg function $\alpha^2F$ is required as input for this calculation. ! ! !REVISION HISTORY: ! Created December 2010 (Antonio Sanna) ! Modified, June 2011 (JKD) !EOP !BOC implicit none ! local variables ! maximum allowed number of Matsubara frequencies integer, parameter :: maxwf=40000 ! maximum number of iterations integer, parameter :: maxit=1000 integer nwf,nwfcl,nin,nout integer itemp,it,i,m,n,nthd ! convergence tolerance real(8), parameter :: eps=1.d-12 ! mixing paramter real(8), parameter :: beta=0.5d0 real(8) lambda,wlog,wrms,tc real(8) wfmax,tmin,tmax,dtemp,temp real(8) dw,dmu,sm,a,b,t0,t1 ! allocatable arrays real(8), allocatable :: w(:),a2f(:),wf(:),l(:) real(8), allocatable :: d0(:),d(:),z0(:),z(:),r(:) complex(8), allocatable :: zin(:),uin(:),zout(:),uout(:) ! initialise universal variables call init0 call init1 allocate(w(nwplot),a2f(nwplot)) ! read in the Eliashberg function call readalpha2f(w,a2f) dw=(w(nwplot)-w(1))/dble(nwplot) ! compute the McMillan parameters call mcmillan(w,a2f,lambda,wlog,wrms,tc) ! Matsubara frequency cut-off wfmax=20.d0*wrms ! minumum temperature tmin=tc/6.d0 if (tmin < 1.d-2) tmin=0.1d0 ! maximum temperature tmax=5.d0*tc if (tmax < 1.d0) tmax=1.d0 ! temperature step size dtemp=(tmax-tmin)/dble(ntemp) ! maximum number of fermionic Matsubara frequencies nwf=nint(wfmax/(twopi*kboltz*dtemp)) if (nwf < 1) nwf=1 if (nwf > maxwf) nwf=maxwf allocate(wf(-nwf:nwf)) allocate(l(-2*nwf:2*nwf)) allocate(d0(0:nwf),d(0:nwf)) allocate(z0(0:nwf),z(0:nwf)) allocate(r(0:nwf)) allocate(zin(0:nwf),uin(0:nwf)) ! generate output points for continuation on the real axis nout=4*nwplot allocate(zout(nout),uout(nout)) do i=1,nout zout(i)=cmplx(2.d0*dble(i-1)*dw,0.d0,8) end do ! open files for writing open(62,file='ELIASHBERG.OUT',form='FORMATTED') open(63,file='ELIASHBERG_IA.OUT',form='FORMATTED') open(64,file='ELIASHBERG_GAP_T.OUT',form='FORMATTED') open(65,file='ELIASHBERG_GAP_RA.OUT',form='FORMATTED') open(66,file='ELIASHBERG_Z_RA.OUT',form='FORMATTED') write(62,'("+------------------------------+")') write(62,'("| Eliashberg equations |")') write(62,'("+------------------------------+")') write(62,*) write(62,'("Temperature range : ",2G18.10)') tmin,tmax write(62,'("Number of temperature steps : ",I6)') ntemp write(62,'("Number of output frequencies : ",I8)') nout write(62,'("Fermionic Matsubara frequency cut-off")') write(62,'(" phonons : ",G18.10)') wfmax write(62,'(" Coulomb : ",G18.10)') 2.d0*wrms flush(62) d0(:)=1.d-4 z0(:)=1.d0 ! main loop over temperature do itemp=1,ntemp write(*,'("Info(eliashberg): temperature step ",I6," of ",I6)') itemp,ntemp temp=dble(itemp)*dtemp+tmin write(62,*) write(62,'("Temperature (kelvin) : ",G18.10)') temp t0=pi*kboltz*temp ! number of Matsubara frequencies nwf=nint(wfmax/(2.d0*t0)) if (nwf > maxwf) nwf=maxwf nwfcl=nint(2.d0*wrms/(2.d0*t0)) if (nwfcl < 1) nwfcl=1 if (nwfcl > nwf) nwfcl=nwf write(62,'("Number of Matsubara frequencies")') write(62,'(" phonons : ",I8)') nwf write(62,'(" Coulomb : ",I8)') nwfcl ! make Pade approximant input points same as Matsubara frequencies nin=nwf ! generate fermionic Matsubara frequencies do m=-nwf,nwf wf(m)=t0*dble(2*m+1) end do ! compute lambda call holdthd(4*nwf+1,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(t1,sm,i) & !$OMP NUM_THREADS(nthd) do m=-2*nwf,2*nwf t1=(t0*dble(2*m))**2 sm=0.d0 do i=1,nwplot sm=sm+w(i)*a2f(i)/(w(i)**2+t1) end do l(m)=2.d0*sm*dw end do !$OMP END PARALLEL DO call freethd(nthd) ! begin iteration loop do it=1,maxit do m=0,nwf r(m)=sqrt((wf(m)**2+d0(m)**2)*z0(m)**2) end do do n=0,nwf sm=0.d0 do m=0,nwf-1 sm=sm+(l(n-m)-l(n+m+1))*z0(m)*wf(m)/r(m) end do z(n)=t0*sm/wf(n) end do z(0:nwf)=z(0:nwf)+1.d0 z0(0:nwf)=z(0:nwf) ! Coulomb part of summation dmu=0.d0 do n=0,nwfcl dmu=dmu+mustar*d0(n)*z(n)/r(n) end do dmu=dmu*2.d0 ! Gap do n=0,nwf sm=0.d0 do m=0,nwf-1 sm=sm+(l(n-m)+l(n+m+1))*d0(m)*z(m)/r(m) end do d(n)=t0*(sm-dmu)/z(n) end do ! mix old and new gap functions d(0:nwf)=beta*d(0:nwf)+(1.d0-beta)*d0(0:nwf) sm=0.d0 do m=0,nwf sm=sm+abs(d0(m)-d(m)) end do sm=sm/dble(2*nwf) d0(0:nwf)=d(0:nwf) if (sm <= eps) then write(62,'("Eliashberg equations converged in ",I6," iterations")') it goto 10 end if ! end iteration loop end do write(*,*) write(*,'("Warning(eliashberg): failed to converge: possibly close to T_c")') write(62,'("Failed to converge: possibly close to T_c")') 10 continue flush(62) do n=-nwf,nwf if (n >= 0) then m=n else m=-n-1 end if write(63,'(3G18.10)') wf(n),d(m),z(m) end do write(63,*) flush(63) write(64,'(3G18.10)') temp,d(0),z(0) flush(64) ! analytic continuation to real axis do m=0,nin zin(m)=cmplx(0.d0,wf(m),8) uin(m)=cmplx(d(m),0.d0,8) end do call pade(nin,zin,uin,nout,zout,uout) do i=1,nout a=dble(uout(i)) b=aimag(uout(i)) write(65,'(3G18.10)') dble(zout(i)),a,b end do write(65,*) flush(65) do m=0,nin uin(m)=cmplx(z(m),0.d0,8) end do call pade(nin,zin,uin,nout,zout,uout) do i=1,nout a=dble(uout(i)) b=aimag(uout(i)) write(66,'(3G18.10)') dble(zout(i)),a,b end do write(66,*) flush(66) ! end loop over temperatures end do close(62); close(63); close(64); close(65); close(66) write(*,*) write(*,'("Info(eliashberg):")') write(*,'(" calculation information written to ELIASHBERG.OUT")') write(*,'(" gap and Z functions on the imaginary axis written to & &ELIASHBERG_IA.OUT")') write(*,'(" gap vs. temperature written to ELIASHBERG_GAP_T.OUT")') write(*,'(" gap function on the real axis written to ELIASHBERG_GAP_RA.OUT")') write(*,'(" Z function on the real axis written to ELIASHBERG_Z_RA.OUT")') deallocate(w,a2f,wf,l) deallocate(d0,d,z0,z,r) deallocate(zin,uin,zout,uout) end subroutine !EOC elk-9.2.12/src/PaxHeaders/phscdvs.f900000644000000000000000000000013214536061314014222 xustar0030 mtime=1702388428.296500929 30 atime=1702388427.187502571 30 ctime=1702388428.296500929 elk-9.2.12/src/phscdvs.f900000644002504400250440000000451314536061314016747 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine phscdvs(p,vsmt0,vsir0) use modmain use modphonon implicit none ! arguments integer, intent(in) :: p real(8), intent(in) :: vsmt0(npmtmax,natmtot),vsir0(ngtot) ! local variables integer is,ia,ja,ias,jas integer nr,nri,np,i integer iv(3),ig0,ifg0,ifg real(8) vl(3),vc(3),t1 complex(8) z0,z1,z2 ! allocatable arrays real(8), allocatable :: rfmt(:) complex(8), allocatable :: zfmt(:),zfir(:) ! prefactor z0=1.d0/deltaph ! multiply by i for sin-like displacement if (p == 1) z0=z0*zi !------------------------------! ! muffin-tin potential ! !------------------------------! allocate(rfmt(npmtmax),zfmt(npmtmax)) z1=z0/dble(nscph) ias=0 jas=0 do is=1,nspecies nr=nrmt(is) nri=nrmti(is) np=npmt(is) ja=0 do ia=1,natoms0(is) ias=ias+1 do i=1,nscph ja=ja+1 jas=jas+1 ! compute the difference between the perturbed and unperturbed potentials rfmt(1:np)=vsmt(1:np,jas)-vsmt0(1:np,jas) ! convert real potential difference to a complex spherical harmonic expansion call rtozfmt(nr,nri,rfmt,zfmt) ! the muffin-tin potential should have an *explicit* phase exp(iq.r) t1=-dot_product(vqc(:,iqph),vscph(:,i)) z2=z1*cmplx(cos(t1),sin(t1),8) ! add to total dvsmt(1:np,ias)=dvsmt(1:np,ias)+z2*zfmt(1:np) end do ! end loop over atoms and species end do end do deallocate(rfmt,zfmt) !--------------------------------! ! interstitial potential ! !--------------------------------! ! Fourier transform interstitial potential derivative to G-space allocate(zfir(ngtot)) zfir(:)=z0*(vsir(:)-vsir0(:)) call zfftifc(3,ngridg,-1,zfir) ! convert to G+q-space do ig0=1,ngtot0 ifg0=igfft0(ig0) vl(:)=dble(ivg0(:,ig0))+vql(:,iqph) call r3mv(bvec0,vl,vc) call r3mv(binv,vc,vl) iv(:)=nint(vl(:)) if ((iv(1) >= intgv(1,1)).and.(iv(1) <= intgv(2,1)).and. & (iv(2) >= intgv(1,2)).and.(iv(2) <= intgv(2,2)).and. & (iv(3) >= intgv(1,3)).and.(iv(3) <= intgv(2,3))) then ifg=igfft(ivgig(iv(1),iv(2),iv(3))) dvsir(ifg0)=dvsir(ifg0)+zfir(ifg) else dvsir(ifg0)=0.d0 end if end do ! Fourier transform back to real-space if (p == 1) call zfftifc(3,ngridg0,1,dvsir) deallocate(zfir) end subroutine elk-9.2.12/src/PaxHeaders/readdvs.f900000644000000000000000000000013114536061314014177 xustar0030 mtime=1702388428.297500928 29 atime=1702388427.18850257 30 ctime=1702388428.297500928 elk-9.2.12/src/readdvs.f900000644002504400250440000000550314536061314016725 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readdvs(iq,is,ia,ip,dvsmt,dvsir) use modmain implicit none ! arguments integer, intent(in) :: iq,is,ia,ip complex(8), intent(out) :: dvsmt(npmtmax,natmtot),dvsir(ngtot) ! local variables integer js,jas,ios integer version_(3),nspecies_ integer lmmaxo_,natoms_ integer nrmt_,ngridg_(3) character(256) fext,fname ! allocatable arrays complex(8), allocatable :: zfmt(:,:,:) allocate(zfmt(lmmaxo,nrmtmax,natmtot)) call dynfext(iq,is,ia,ip,fext) fname='DVS'//trim(fext) open(150,file=trim(fname),form='UNFORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readdvs): error opening ",A)') trim(fname) write(*,*) stop end if read(150) version_ if ((version(1) /= version_(1)).or.(version(2) /= version_(2)) & .or.(version(3) /= version_(3))) then write(*,*) write(*,'("Warning(readdvs): different versions")') write(*,'(" current : ",I3.3,".",I3.3,".",I3.3)') version write(*,'(" file : ",I3.3,".",I3.3,".",I3.3)') version_ write(*,'(" in file ",A)') trim(fname) end if read(150) nspecies_ if (nspecies /= nspecies_) then write(*,*) write(*,'("Error(readdvs): differing nspecies")') write(*,'(" current : ",I4)') nspecies write(*,'(" file : ",I4)') nspecies_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if read(150) lmmaxo_ if (lmmaxo /= lmmaxo_) then write(*,*) write(*,'("Error(readdvs): differing lmmaxo")') write(*,'(" current : ",I4)') lmmaxo write(*,'(" file : ",I4)') lmmaxo_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if do js=1,nspecies read(150) natoms_ if (natoms(js) /= natoms_) then write(*,*) write(*,'("Error(readdvs): differing natoms for species ",I4)') js write(*,'(" current : ",I4)') natoms(js) write(*,'(" file : ",I4)') natoms_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if read(150) nrmt_ if (nrmt(js) /= nrmt_) then write(*,*) write(*,'("Error(readdvs): differing nrmt for species ",I4)') js write(*,'(" current : ",I6)') nrmt(js) write(*,'(" file : ",I6)') nrmt_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if end do read(150) ngridg_ if ((ngridg(1) /= ngridg_(1)).or.(ngridg(2) /= ngridg_(2)).or. & (ngridg(3) /= ngridg_(3))) then write(*,*) write(*,'("Error(readdvs): differing ngridg")') write(*,'(" current : ",3I6)') ngridg write(*,'(" file : ",3I6)') ngridg_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if read(150) zfmt,dvsir do jas=1,natmtot js=idxis(jas) call zfmtpack(.true.,nrmt(js),nrmti(js),zfmt(:,:,jas),dvsmt(:,jas)) end do close(150) deallocate(zfmt) end subroutine elk-9.2.12/src/PaxHeaders/readalpha2f.f900000644000000000000000000000013214536061314014721 xustar0030 mtime=1702388428.298500926 30 atime=1702388427.190502567 30 ctime=1702388428.298500926 elk-9.2.12/src/readalpha2f.f900000644002504400250440000000146314536061314017447 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 A. Sanna and E. K. U. Gross ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readalpha2f(w,a2f) use modmain implicit none ! arguments real(8), intent(out) :: w(nwplot) real(8), intent(out) :: a2f(nwplot) ! local variables integer iw,ios open(50,file='ALPHA2F.OUT',form='FORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readalpha2f): error opening ALPHA2F.OUT")') write(*,*) stop end if do iw=1,nwplot read(50,*,iostat=ios) w(iw),a2f(iw) if (ios /= 0) then write(*,*) write(*,'("Error(readalpha2f): error reading from ALPHA2F.OUT")') write(*,'(" for frequency ",I6)') iw write(*,*) stop end if end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/gendsocfr.f900000644000000000000000000000013214536061314014522 xustar0030 mtime=1702388428.300500923 30 atime=1702388427.192502564 30 ctime=1702388428.300500923 elk-9.2.12/src/gendsocfr.f900000644002504400250440000000214614536061314017247 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine gendsocfr use modmain use modphonon implicit none integer is,ias,i integer nr,nri,ir,irc real(8) cso complex(8) z1 ! allocatable arrays real(8), allocatable :: vr1(:),vr2(:) real(8), allocatable :: dvr1(:),dvr2(:) if (.not.spinorb) return ! coefficient of spin-orbit coupling cso=y00*socscf/(4.d0*solsc**2) allocate(vr1(nrmtmax),vr2(nrmtmax)) allocate(dvr1(nrmtmax),dvr2(nrmtmax)) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) i=1 do ir=1,nri vr1(ir)=dble(dvsmt(i,ias)) vr2(ir)=aimag(dvsmt(i,ias)) i=i+lmmaxi end do do ir=nri+1,nr vr1(ir)=dble(dvsmt(i,ias)) vr2(ir)=aimag(dvsmt(i,ias)) i=i+lmmaxo end do call splined(nr,wcrmt(:,:,is),vr1,dvr1) call splined(nr,wcrmt(:,:,is),vr2,dvr2) irc=0 do ir=1,nr,lradstp irc=irc+1 z1=cmplx(dvr1(ir),dvr2(ir),8) dsocfr(irc,ias)=(cso/rsp(ir,is))*z1 end do end do deallocate(vr1,vr2,dvr1,dvr2) end subroutine elk-9.2.12/src/PaxHeaders/bornechg.f900000644000000000000000000000013214536061314014337 xustar0030 mtime=1702388428.301500922 30 atime=1702388427.193502563 30 ctime=1702388428.301500922 elk-9.2.12/src/bornechg.f900000644002504400250440000000532514536061314017066 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine bornechg use modmain use modphonon use modmpi use modtest implicit none ! local variables integer ip,i real(8) vc(3),pvl1(3),pvl2(3) real(8) becl(3),becc(3),t1 ! initialise universal variables call init0 call init1 ! store original parameters atposl0(:,:,:)=atposl(:,:,:) atposc0(:,:,:)=atposc(:,:,:) ngridk0(:)=ngridk(:) maxscl0=maxscl tshift0=tshift ! no shifting of the atomic basis tshift=.false. ! begin new Born effective charge task 10 continue call bectask(80,filext) ! if nothing more to do then restore original input parameters and return if (isph == 0) then filext='.OUT' tshift=tshift0 atposl(:,:,:)=atposl0(:,:,:) return end if if (mp_mpi) then write(*,'("Info(bornechg): working on ",A)') 'BEC'//trim(filext) end if ! dry run: just generate empty BEC files if (task == 209) goto 10 ! apply negative atomic displacement atposl(:,:,:)=atposl0(:,:,:) atposc(:,:,:)=atposc0(:,:,:) vc(:)=atposc(:,iaph,isph) vc(ipph)=vc(ipph)-0.5d0*deltaph call r3mv(ainv,vc,atposl(:,iaph,isph)) ! initial ground-state run should start from atomic densities trdstate=.false. ! run the ground-state calculation call gndstate ! subsequent calculations will read in the previous potential trdstate=.true. ! compute the first polarisation in lattice coordinates call polar(pvl1) ! apply positive atomic displacement atposl(:,:,:)=atposl0(:,:,:) atposc(:,:,:)=atposc0(:,:,:) vc(:)=atposc(:,iaph,isph) vc(ipph)=vc(ipph)+0.5d0*deltaph call r3mv(ainv,vc,atposl(:,iaph,isph)) ! run the ground-state calculation again call gndstate ! compute the second polarisation call polar(pvl2) do i=1,3 ! add multiple of 2*pi to bring polarisation vectors into coincidence pvl1(i)=modulo(pvl1(i),twopi) pvl2(i)=modulo(pvl2(i),twopi) t1=pvl1(i)-pvl2(i) if (abs(t1-twopi) < abs(t1)) then pvl1(i)=pvl1(i)-twopi else if (abs(t1+twopi) < abs(t1)) then pvl1(i)=pvl1(i)+twopi end if ! calculate the Born effective charge from the difference in polarisations t1=wkptnr*occmax*dble(nkspolar*ngridk(i))/(twopi*deltaph) becl(i)=t1*(pvl2(i)-pvl1(i)) end do ! convert from lattice to Cartesian coordinates call r3mv(avec,becl,becc) ! add the core and nuclear charge becc(ipph)=becc(ipph)+chgcr(isph)+spzn(isph) ! write Born effective charge matrix row to file if (mp_mpi) then do ip=1,3 write(80,'(G18.10," : ip = ",I4)') becc(ip),ip end do close(80) end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! write test file if required and return if (test) then call writetest(208,'Born effective charge',nv=3,tol=1.d-3,rva=becc) return end if goto 10 end subroutine elk-9.2.12/src/PaxHeaders/bectask.f900000644000000000000000000000013114536061314014163 xustar0030 mtime=1702388428.302500921 29 atime=1702388427.19550256 30 ctime=1702388428.302500921 elk-9.2.12/src/bectask.f900000644002504400250440000000240414536061314016706 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine bectask(fnum,fext) use modmain use modphonon use modmpi implicit none ! arguments integer, intent(in) :: fnum character(*), intent(out) :: fext ! local variables logical exist ! only master process should search for file if (.not.mp_mpi) goto 10 do ipph=1,3 do isph=1,nspecies do iaph=1,natoms(isph) ! Born effective charge file extension call becfext(isph,iaph,ipph,fext) ! determine if the BEC file with this extension exists inquire(file='BEC'//trim(fext),exist=exist) if (.not.exist) then open(fnum,file='BEC'//trim(fext),form='FORMATTED') iasph=idxas(iaph,isph) goto 10 end if end do end do end do isph=0; iaph=0; iasph=0; ipph=0 write(*,'("Info(bectask): nothing more to do")') 10 continue ! broadcast to all other MPI processes call mpi_bcast(isph,1,mpi_integer,0,mpicom,ierror) call mpi_bcast(iaph,1,mpi_integer,0,mpicom,ierror) call mpi_bcast(iasph,1,mpi_integer,0,mpicom,ierror) call mpi_bcast(ipph,1,mpi_integer,0,mpicom,ierror) if (isph == 0) then fext='.OUT' else call becfext(isph,iaph,ipph,fext) end if end subroutine elk-9.2.12/src/PaxHeaders/becfext.f900000644000000000000000000000013214536061314014170 xustar0030 mtime=1702388428.304500918 30 atime=1702388427.197502557 30 ctime=1702388428.304500918 elk-9.2.12/src/becfext.f900000644002504400250440000000060514536061314016713 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine becfext(is,ia,ip,fext) use modmain implicit none ! arguments integer, intent(in) :: is,ia,ip character(*), intent(out) :: fext write(fext,'("_S",I2.2,"_A",I3.3,"_P",I1,".OUT")') is,ia,ip end subroutine elk-9.2.12/src/PaxHeaders/putephmat.f900000644000000000000000000000013214536061314014557 xustar0030 mtime=1702388428.305500916 30 atime=1702388427.198502555 30 ctime=1702388428.305500916 elk-9.2.12/src/putephmat.f900000644002504400250440000000133514536061314017303 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine putephmat(iq,ik,ephmat) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq,ik complex(8), intent(in) :: ephmat(nstsv,nstsv,nbph) ! local variables integer recl,n ! determine the record length inquire(iolength=recl) vql(:,iq),vkl(:,ik),nstsv,nbph,ephmat ! record number n=(iq-1)*nkptnr+ik !$OMP CRITICAL(u240) open(240,file='EPHMAT.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(240,rec=n) vql(:,iq),vkl(:,ik),nstsv,nbph,ephmat close(240) !$OMP END CRITICAL(u240) end subroutine elk-9.2.12/src/PaxHeaders/getephmat.f900000644000000000000000000000013214536061314014526 xustar0030 mtime=1702388428.306500915 30 atime=1702388427.199502554 30 ctime=1702388428.306500915 elk-9.2.12/src/getephmat.f900000644002504400250440000000413714536061314017255 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine getephmat(iqp,ikp,ephmat) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iqp,ikp complex(8), intent(out) :: ephmat(nstsv,nstsv,nbph) ! local variables integer isym,lspl,iq,ik,iv(3) integer recl,n,nstsv_,nbph_ real(8) vql_(3),vkl_(3),t1 if (iqp <= nqpt) then ! q-point is in the reduced set iq=iqp ik=ikp else ! q-point is not in the reduced set call findqpt(vql(:,iqp),isym,iq) lspl=lsplsymc(isym) call i3mtv(symlat(:,:,lspl),ivk(:,ikp),iv) iv(:)=modulo(iv(:),ngridk(:)) ik=ivkiknr(iv(1),iv(2),iv(3)) end if ! find the record length inquire(iolength=recl) vql_,vkl_,nstsv_,nbph_,ephmat ! record number n=(iq-1)*nkptnr+ik !$OMP CRITICAL(u240) open(240,file='EPHMAT.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(240,rec=n) vql_,vkl_,nstsv_,nbph_,ephmat close(240) !$OMP END CRITICAL(u240) t1=abs(vql(1,iq)-vql_(1))+abs(vql(2,iq)-vql_(2))+abs(vql(3,iq)-vql_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getephmat): differing vectors for q-point ",I8)') iq write(*,'(" current : ",3G18.10)') vql(:,iq) write(*,'(" EPHMAT.OUT : ",3G18.10)') vql_ write(*,*) stop end if t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getephmat): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EPHMAT.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getephmat): differing nstsv for q-point, k-point ",2I8)') & iq,ik write(*,'(" current : ",I8)') nstsv write(*,'(" EPHMAT.OUT : ",I8)') nstsv_ write(*,*) stop end if if (nbph /= nbph_) then write(*,*) write(*,'("Error(getephmat): differing nbph for q-point, k-point ",2I8)') & iq,ik write(*,'(" current : ",I8)') nbph write(*,'(" EPHMAT.OUT : ",I8)') nbph_ write(*,*) stop end if end subroutine elk-9.2.12/src/PaxHeaders/xc_pzca.f900000644000000000000000000000013214536061314014177 xustar0030 mtime=1702388428.307500913 30 atime=1702388427.201502551 30 ctime=1702388428.307500913 elk-9.2.12/src/xc_pzca.f900000644002504400250440000000376114536061314016730 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: xc_pzca ! !INTERFACE: subroutine xc_pzca(n,rho,ex,ec,vx,vc) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! rho : charge density (in,real(n)) ! ex : exchange energy density (out,real(n)) ! ec : correlation energy density (out,real(n)) ! vx : exchange potential (out,real(n)) ! vc : correlation potential (out,real(n)) ! !DESCRIPTION: ! Spin-unpolarised exchange-correlation potential and energy of the ! Perdew-Zunger parameterisation of Ceperley-Alder electron gas: {\it Phys. ! Rev. B} {\bf 23}, 5048 (1981) and {\it Phys. Rev. Lett.} {\bf 45}, 566 ! (1980). ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rho(n) real(8), intent(out) :: ex(n),ec(n),vx(n),vc(n) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: thrd=1.d0/3.d0, thrd2=2.d0/3.d0, thrd4=4.d0/3.d0 real(8), parameter :: g=-0.1423d0,b1=1.0529d0,b2=0.3334d0 real(8), parameter :: a=0.0311d0,b=-0.048d0,c=0.0020d0,d=-0.0116d0 real(8) p1,p2,r,rs,t1 if (n <= 0) then write(*,*) write(*,'("Error(xc_pzca): invalid n : ",I8)') n write(*,*) stop end if ! prefactors t1=3.d0/(4.d0*pi) p1=t1**thrd p2=t1*(9.d0*pi/4.d0)**thrd do i=1,n r=rho(i) if (r < 1.d-12) then ex(i)=0.d0 ec(i)=0.d0 vx(i)=0.d0 vc(i)=0.d0 cycle end if rs=p1/r**thrd ! exchange energy and potential ex(i)=-p2/rs vx(i)=thrd4*ex(i) ! correlation energy and potential if (rs >= 1.d0) then t1=sqrt(rs) ec(i)=g/(1.d0+b1*t1+b2*rs) vc(i)=ec(i)*(1.d0+(7.d0/6.d0)*b1*t1+thrd4*b2*rs)/(1.d0+b1*t1+b2*rs) else t1=dlog(rs) ec(i)=a*t1+b+c*rs*t1+d*rs vc(i)=a*t1+(b-thrd*a)+thrd2*c*rs*t1+thrd*(2.d0*d-c)*rs end if end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/xc_pwca.f900000644000000000000000000000013014536061314014172 xustar0029 mtime=1702388428.30950091 30 atime=1702388427.203502548 29 ctime=1702388428.30950091 elk-9.2.12/src/xc_pwca.f900000644002504400250440000001101714536061314016716 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2011 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: xc_pwca ! !INTERFACE: subroutine xc_pwca(n,rhoup,rhodn,ex,ec,vxup,vxdn,vcup,vcdn) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! rhoup : spin-up charge density (in,real(n)) ! rhodn : spin-down charge density (in,real(n)) ! ex : exchange energy density (out,real(n)) ! ec : correlation energy density (out,real(n)) ! vxup : spin-up exchange potential (out,real(n)) ! vxdn : spin-down exchange potential (out,real(n)) ! vcup : spin-up correlation potential (out,real(n)) ! vcdn : spin-down correlation potential (out,real(n)) ! !DESCRIPTION: ! Spin-polarised exchange-correlation potential and energy of the Perdew-Wang ! parameterisation of the Ceperley-Alder electron gas: {\it Phys. Rev. B} ! {\bf 45}, 13244 (1992) and {\it Phys. Rev. Lett.} {\bf 45}, 566 (1980). ! ! !REVISION HISTORY: ! Created January 2004 (JKD) ! Rewrote, October 2011 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rhoup(n),rhodn(n) real(8), intent(out) :: ex(n),ec(n) real(8), intent(out) :: vxup(n),vxdn(n) real(8), intent(out) :: vcup(n),vcdn(n) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: thrd=1.d0/3.d0, thrd4=4.d0/3.d0 real(8), parameter :: d2f0=1.709921d0 real(8), parameter :: a(3)=[ 0.0310907d0, 0.01554535d0, 0.0168869d0 ] real(8), parameter :: a1(3)=[ 0.21370d0, 0.20548d0, 0.11125d0 ] real(8), parameter :: b1(3)=[ 7.5957d0, 14.1189d0, 10.357d0 ] real(8), parameter :: b2(3)=[ 3.5876d0, 6.1977d0, 3.6231d0 ] real(8), parameter :: b3(3)=[ 1.6382d0, 3.3662d0, 0.88026d0 ] real(8), parameter :: b4(3)=[ 0.49294d0, 0.62517d0, 0.49671d0 ] real(8) p1,p2,p3,rup,rdn,r,ri,ri2 real(8) rs,rs2,rs12,rs32,rsi,rs12i real(8) mz,z,z3,z4,drs,dzu,dzd real(8) fz,dfz,ders,dez,deu,ded real(8) a2,ec0,dec0,ec1,dec1,ac,dac real(8) t1,t2,t3,t4,t5,t6,t7,dt1,dt2 if (n <= 0) then write(*,*) write(*,'("Error(xc_pwca): invalid n : ",I8)') n write(*,*) stop end if ! prefactors t1=3.d0/(4.d0*pi) p1=t1**thrd p2=t1*(9.d0*pi/4.d0)**thrd p3=1.d0/(2.d0**thrd4-2.d0) do i=1,n rup=rhoup(i); rdn=rhodn(i) ! total density r=rup+rdn if ((rup < 0.d0).or.(rdn < 0.d0).or.(r < 1.d-20)) then ex(i)=0.d0 ec(i)=0.d0 vxup(i)=0.d0 vxdn(i)=0.d0 vcup(i)=0.d0 vcdn(i)=0.d0 cycle end if ri=1.d0/r ri2=ri**2 rs=p1*ri**thrd rs2=rs**2 rs12=sqrt(rs) rs32=rs12*rs rsi=1.d0/rs rs12i=1.d0/rs12 mz=rup-rdn z=mz/r z3=z**3 z4=z3*z ! drs/drup = drs/drdn = drs/drho drs=-thrd*rs*ri ! dz/drup, dz/drdn t1=mz*ri2 dzu=ri-t1 dzd=-ri-t1 !------------------! ! exchange ! !------------------! t1=-p2*rsi/2.d0 t2=1.d0+z t3=1.d0-z t4=t2**thrd4 t5=t3**thrd4 t6=t4+t5 ! exchange energy density ex(i)=t1*t6 ! dex/drs ders=-ex(i)*rsi ! f(z) fz=p3*(t6-2.d0) ! dex/dz t4=t4/t2 t5=t5/t3 t6=t4-t5 t7=thrd4*t6 dez=t1*t7 ! df/dz dfz=p3*t7 ! dex/drup, dex/drdn t1=ders*drs deu=t1+dez*dzu ded=t1+dez*dzd ! exchange potential vxup(i)=ex(i)+r*deu vxdn(i)=ex(i)+r*ded !---------------------! ! correlation ! !---------------------! ! ec(rs,0) a2=2.d0*a(1) t1=a2*(b1(1)*rs12+b2(1)*rs+b3(1)*rs32+b4(1)*rs2) dt1=a2*(0.5d0*b1(1)*rs12i+b2(1)+1.5d0*b3(1)*rs12+2.d0*b4(1)*rs) t3=1.d0/t1 t2=1.d0+t3 dt2=-dt1*t3**2 t3=1.d0/t2 t4=1.d0+a1(1)*rs t5=log(t2) ec0=-a2*t4*t5 dec0=-a2*(a1(1)*t5+t4*t3*dt2) ! ec(rs,1) a2=2.d0*a(2) t1=a2*(b1(2)*rs12+b2(2)*rs+b3(2)*rs32+b4(2)*rs2) dt1=a2*(0.5d0*b1(2)*rs12i+b2(2)+1.5d0*b3(2)*rs12+2.d0*b4(2)*rs) t3=1.d0/t1 t2=1.d0+t3 dt2=-dt1*t3**2 t3=1.d0/t2 t4=1.d0+a1(2)*rs t5=log(t2) ec1=-a2*t4*t5 dec1=-a2*(a1(2)*t5+t4*t3*dt2) ! ac(rs) a2=2.d0*a(3) t1=a2*(b1(3)*rs12+b2(3)*rs+b3(3)*rs32+b4(3)*rs2) dt1=a2*(0.5d0*b1(3)*rs12i+b2(3)+1.5d0*b3(3)*rs12+2.d0*b4(3)*rs) t3=1.d0/t1 t2=1.d0+t3 dt2=-dt1*t3**2 t3=1.d0/t2 t4=1.d0+a1(3)*rs t5=log(t2) ac=a2*t4*t5 dac=a2*(a1(3)*t5+t4*t3*dt2) ! correlation energy density t1=1.d0-z4 t2=(fz/d2f0)*t1 t3=ec1-ec0 t4=fz*z4 ec(i)=ec0+ac*t2+t3*t4 ! dec/drs t5=dec1-dec0 ders=dec0+dac*t2+t5*t4 ! dec/dz t6=4.d0*fz*z3 dez=(ac/d2f0)*(dfz*t1-t6)+t3*(dfz*z4+t6) ! dec/drup, dec/drdn t1=ders*drs deu=t1+dez*dzu ded=t1+dez*dzd ! correlation potential vcup(i)=ec(i)+r*deu vcdn(i)=ec(i)+r*ded end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/xc_pbe.f900000644000000000000000000000013214536061314014010 xustar0030 mtime=1702388428.310500909 30 atime=1702388427.204502546 30 ctime=1702388428.310500909 elk-9.2.12/src/xc_pbe.f900000644002504400250440000000711214536061314016533 0ustar00dewhurstdewhurst00000000000000 ! This routine is based on code written by K. Burke. !BOP ! !ROUTINE: xc_pbe ! !INTERFACE: subroutine xc_pbe(n,kappa,mu,beta,rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho, & g3up,g3dn,ex,ec,vxup,vxdn,vcup,vcdn) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! kappa : parameter for large-gradient limit (in,real) ! mu : gradient expansion coefficient (in,real) ! beta : gradient expansion coefficient (in,real) ! rhoup : spin-up charge density (in,real(n)) ! rhodn : spin-down charge density (in,real(n)) ! grho : |grad rho| (in,real(n)) ! gup : |grad rhoup| (in,real(n)) ! gdn : |grad rhodn| (in,real(n)) ! g2up : grad^2 rhoup (in,real(n)) ! g2dn : grad^2 rhodn (in,real(n)) ! g3rho : (grad rho).(grad |grad rho|) (in,real(n)) ! g3up : (grad rhoup).(grad |grad rhoup|) (in,real(n)) ! g3dn : (grad rhodn).(grad |grad rhodn|) (in,real(n)) ! ex : exchange energy density (out,real(n)) ! ec : correlation energy density (out,real(n)) ! vxup : spin-up exchange potential (out,real(n)) ! vxdn : spin-down exchange potential (out,real(n)) ! vcup : spin-up correlation potential (out,real(n)) ! vcdn : spin-down correlation potential (out,real(n)) ! !DESCRIPTION: ! Spin-polarised exchange-correlation potential and energy of the generalised ! gradient approximation functional of J. P. Perdew, K. Burke and M. Ernzerhof ! {\it Phys. Rev. Lett.} {\bf 77}, 3865 (1996) and {\bf 78}, 1396(E) (1997). ! The parameter $\kappa$, which controls the large-gradient limit, can be set ! to $0.804$ or $1.245$ corresponding to the value in the original article or ! the revised version of Y. Zhang and W. Yang, {\it Phys. Rev. Lett.} ! {\bf 80}, 890 (1998). ! ! !REVISION HISTORY: ! Modified routines written by K. Burke, October 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: kappa,mu,beta real(8), intent(in) :: rhoup(n),rhodn(n) real(8), intent(in) :: grho(n),gup(n),gdn(n) real(8), intent(in) :: g2up(n),g2dn(n) real(8), intent(in) :: g3rho(n),g3up(n),g3dn(n) real(8), intent(out) :: ex(n),ec(n) real(8), intent(out) :: vxup(n),vxdn(n) real(8), intent(out) :: vcup(n),vcdn(n) ! local variables integer i real(8), parameter :: thrd=1.d0/3.d0 real(8), parameter :: thrd2=2.d0/3.d0 real(8), parameter :: pi=3.1415926535897932385d0 real(8) rup,rdn,r,r2,kf,s,u,v real(8) rs,z,g,ks,ksg real(8) t,uu,vv,ww real(8) g2rho,exup,exdn do i=1,n rup=rhoup(i); rdn=rhodn(i) ! total density r=rup+rdn if ((rup >= 0.d0).and.(rdn >= 0.d0).and.(r > 1.d-12)) then ! exchange energy density and potential ! spin-up r2=2.d0*rup kf=(r2*3.d0*pi**2)**thrd s=gup(i)/(2.d0*kf*rup) u=g3up(i)/((rup**2)*(2.d0*kf)**3) v=g2up(i)/(rup*(2.d0*kf)**2) call x_pbe(kappa,mu,r2,s,u,v,exup,vxup(i)) ! spin-down r2=2.d0*rdn kf=(r2*3.d0*pi**2)**thrd s=gdn(i)/(2.d0*kf*rdn) u=g3dn(i)/((rdn**2)*(2.d0*kf)**3) v=g2dn(i)/(rdn*(2.d0*kf)**2) call x_pbe(kappa,mu,r2,s,u,v,exdn,vxdn(i)) ! average exchange energy density ex(i)=(exup*rhoup(i)+exdn*rhodn(i))/r ! correlation rs=(3.d0/(4.d0*pi*r))**thrd z=(rhoup(i)-rhodn(i))/r g=((1.d0+z)**thrd2+(1.d0-z)**thrd2)/2.d0 kf=(r*3.d0*pi**2)**thrd ks=sqrt(4.d0*kf/pi) ksg=2.d0*ks*g t=grho(i)/(ksg*r) uu=g3rho(i)/((r**2)*ksg**3) g2rho=g2up(i)+g2dn(i) vv=g2rho/(r*ksg**2) ww=(gup(i)**2-gdn(i)**2-z*grho(i)**2)/(r*r*ksg**2) call c_pbe(beta,rs,z,t,uu,vv,ww,ec(i),vcup(i),vcdn(i)) else ex(i)=0.d0 ec(i)=0.d0 vxup(i)=0.d0 vxdn(i)=0.d0 vcup(i)=0.d0 vcdn(i)=0.d0 end if end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/xc_am05.f900000644000000000000000000000013214536061314014004 xustar0030 mtime=1702388428.312500906 30 atime=1702388427.206502543 30 ctime=1702388428.312500906 elk-9.2.12/src/xc_am05.f900000644002504400250440000002322314536061314016530 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2004, 2005 Rickard Armiento ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: xc_am05 ! !INTERFACE: subroutine xc_am05(n,rho,grho,g2rho,g3rho,ex,ec,vx,vc) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! rho : charge density (in,real(n)) ! grho : |grad rho| (in,real(n)) ! g2rho : grad^2 rho (in,real(n)) ! g3rho : (grad rho).(grad |grad rho|) (in,real(n)) ! ex : exchange energy density (out,real(n)) ! ec : correlation energy density (out,real(n)) ! vx : spin-unpolarised exchange potential (out,real(n)) ! vc : spin-unpolarised correlation potential (out,real(n)) ! !DESCRIPTION: ! Spin-unpolarised exchange-correlation potential and energy functional of ! R. Armiento and A. E. Mattsson, {\it Phys. Rev. B} {\bf 72}, 085108 (2005). ! ! !REVISION HISTORY: ! Created April 2005 (RAR); based on xc_pbe !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rho(n),grho(n),g2rho(n),g3rho(n) real(8), intent(out) :: ex(n),ec(n),vx(n),vc(n) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8) r,kf,s,v,u real(8) grho_,g2rho_,g3rho_ do i=1,n r=rho(i) if (r > 1.d-12) then grho_=grho(i) g2rho_=g2rho(i) g3rho_=g3rho(i) ! exchange energy density and potential kf=(r*3.d0*pi**2)**(1.d0/3.d0) s=grho_/(2.d0*kf*r) v=g2rho_/(r*(2.d0*kf)**2) u=g3rho_/((r**2)*(2.d0*kf)**3) call xc_am05_point(r,s,u,v,ex(i),ec(i),vx(i),vc(i),1) else ex(i)=0.d0 ec(i)=0.d0 vx(i)=0.d0 vc(i)=0.d0 end if end do end subroutine !EOC !BOP ! !ROUTINE: xc_am05_point ! !INTERFACE: subroutine xc_am05_point(rho,s,u,v,ex,ec,vx,vc,pot) ! !INPUT/OUTPUT PARAMETERS: ! rho : electron density (in,real) ! s : gradient of n / (2 kF n) ! u : grad n * grad | grad n | / (n**2 (2 kF)**3) ! v : laplacian of density / (n**2 (2.d0*kf)**3) ! ex : exchange energy density (out,real) ! ec : correlation energy density (out,real) ! vx : spin-unpolarised exchange potential (out,real) ! vc : spin-unpolarised correlation potential (out,real) ! !DESCRIPTION: ! Calculate the spin-unpolarised exchange-correlation potential and energy for ! the Armiento-Mattsson 05 functional for a single point. ! ! !REVISION HISTORY: ! Created April 2005 (RAR) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rho, s, u, v integer, intent(in) :: pot real(8), intent(out) :: ex, ec, vx, vc ! constants real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: g = 0.8098d0 real(8), parameter :: a = 2.804d0 real(8), parameter :: c = 0.7168d0 ! local variables real(8) s2,exlda, vxlda, eclda, vclda, X, Xs, Xss real(8) F, Fs, Fss, Hx, Hxs, Hxss, Hc, Hcs, Hcss real(8) zb, zbs, zbss, w real(8) n0b, n0bs, n0bss real(8) ln0b, ln0bs, ln0bss real(8) zbb, zbbc, zbbs, zbbss real(8) fxb, fxbs, fxbss ! cutoff if((rho <= 1.d-16)) then ex = 0.0d0 ec = 0.0d0 vx = 0.0d0 vc = 0.0d0 return endif s2 = s**2 ! LDA correlation call xc_am05_ldapwc(rho,eclda,vclda) ! LDA exchange call xc_am05_ldax(rho,exlda,vxlda) !------------------! ! exchange ! !------------------! ! interpolation index X = 1.0d0 - a*s2/(1.0d0 + a*s2) ! Airy LAA refinement function call xc_am05_labertw(s**(3.0d0/2.0d0)/sqrt(24.0d0),w) zb = (3.0d0/2.0d0*w)**(2.0d0/3.0d0) n0b = w/(2.0d0*pi**2*s**3) ln0b = -3.0d0/(2.0d0*pi)*(3.0d0*pi**2*n0b)**(1.0d0/3.0d0) zbbc = ((4.0d0/3.0d0)**(1.0d0/3.0d0)*2.0d0*pi/3.0d0)**4 zbb = (zbbc*zb**2 + zb**4)**(1.0d0/4.0d0) Fxb = -1.0d0/(ln0b*2.0d0*zbb) F = (c*s2 + 1.0d0)/(c*s2/Fxb + 1.0d0) ! exchange refinement function Hx = X + (1.0d0 - X)*F ! exchange energy per particle, Ex = Integrate[n*ex] ex = exlda*Hx !---------------------! ! correlation ! !---------------------! ! correlation refinement function Hc = X + g*(1.0d0 - X) ! correlation energy per particle, Ec = Integrate[rho*ec] ec = eclda*Hc if (pot == 0) return !----------------------------! ! exchange potential ! !----------------------------! ! interpolation index derivatives, dX/ds Xs = -2.0d0*a*s/(1.0d0 + a*s2)**2 Xss = 2.0d0*a*(3.0d0*a*s2-1.0d0)/(1.0d0+a*s2)**3 ! airy LAA refinement function derivatives, dF/ds zbs = zb/(s + s*w) zbss = - zb*w*(5.0d0+2.0d0*w)/(2.0d0*s2*(1.0d0+w)**3) n0bs = sqrt(zb)*(-2.0d0*zb+s*zbs)/(2.0d0*pi**2*s2**2) n0bss = (16.0d0*zb**2+s**2*zbs**2+2.0d0*s*zb*(-6.0d0* & zbs+s*zbss))/(4.0d0*pi**2*s**5*sqrt(zb)) ln0bs = -(3.0d0/pi)**(1.0d0/3.0d0)*n0bs/ & (2.0d0*n0b**(2.0d0/3.0d0)) ln0bss = (2.0d0*n0bs**2-3.0d0*n0b*n0bss)/(2.0d0* & 3.0d0**(2.0d0/3.0d0)*pi**(1.0d0/3.0d0)*n0b**(5.0d0/3.0d0)) zbbs = zb*(zbbc+2*zb**2)*zbs/ & (2.0d0*(zb**2*(zbbc+zb**2))**(3.0d0/4.0d0)) zbbss = zb**2*(-zbbc*(zbbc-2.0d0*zb**2)*zbs**2+ & 2.0d0*zb*(zbbc+zb**2)*(zbbc+2.0d0*zb**2)*zbss)/ & (4.0d0*(zb**2*(zbbc+zb**2))**(7.0d0/4.0d0)) Fxbs = (zbb*ln0bs+ln0b*zbbs)/(2.0d0*ln0b**2*zbb**2) Fxbss = (-2.0d0*ln0b**2*zbbs**2+zbb**2*(-2.0d0*ln0bs**2 + & ln0b*ln0bss)+ln0b*zbb*(-2.0d0*ln0bs*zbbs+ln0b*zbbss))/ & (2.0d0*ln0b**3*zbb**3) Fs = (c*s*(2.0d0*(Fxb-1.0d0)*Fxb + s*(1.0d0+c*s2)*Fxbs))/ & (c*s2 + Fxb)**2 Fss = (c*(-2.0d0*(3.0d0*c*s2-Fxb)*(Fxb-1.0d0)*Fxb+ & 4.0d0*s*(-c*s2+Fxb+2.0d0*c*s2*Fxb)*Fxbs - & 2.0d0*s2*(1.0d0+c*s2)*Fxbs**2+s2*(1.0d0+c*s2)* & (c*s2 + Fxb)*Fxbss))/(c*s2+Fxb)**3 ! GGA refinement function derivatives, dF/ds Hxs = - (X - 1.0d0)*Fs - (F - 1.0d0)*Xs Hxss = - 2.0d0*Fs*Xs - (X - 1.0d0)*Fss - (F - 1.0d0)*Xss ! vx formula for gradient dependent functional, ! generalized form of Eq. (24) in PRB 33, 8800 (1986) vx = vxlda*(Hx - s*Hxs) + & exlda*((4.0d0/3.0d0*s-v/s)*Hxs - & (u-4.0d0/3.0d0*s**3)*(Hxss/s-Hxs/s2)) !-------------------------------! ! correlation potential ! !-------------------------------! ! correlation refinement function derivatives, dF/ds Hcs = Xs - g*Xs Hcss = Xss - g*Xss ! vc formula for gradient dependent functional, ! generalized form of Eq. (24) in Phys. Rev. B 33, 8800 (1986) vc = vclda*(Hc - s*Hcs) + & eclda*((4.0d0/3.0d0*s - v/s)*Hcs - & (u - 4.0d0/3.0d0*s**3)*(Hcss/s - Hcs/s2)) end subroutine !EOC !BOP ! !ROUTINE: xc_am05_ldax ! !INTERFACE: subroutine xc_am05_ldax(n,ex,vx) ! !INPUT/OUTPUT PARAMETERS: ! n : electron density (in,real) ! ex : exchange energy per electron (out,real) ! vx : exchange potential (out,real) ! !DESCRIPTION: ! Local density approximation exchange. ! ! !REVISION HISTORY: ! Created April 2005 (RAR) !EOP !BOC implicit none ! arguments real(8), intent(in) :: n real(8), intent(out) :: ex real(8), intent(out) :: vx ! constants real(8), parameter :: pi=3.1415926535897932385d0 vx=-(3.d0*n/pi)**(1.d0/3.d0) ex=(3.d0/4.d0)*vx end subroutine !EOC !BOP ! !ROUTINE: xc_am05_ldapwc ! !INTERFACE: subroutine xc_am05_ldapwc(n,ec,vc) ! !INPUT/OUTPUT PARAMETERS: ! n : electron density (in,real) ! ec : correlation energy per electron (out,real) ! vc : correlation potential (out,real) ! !DESCRIPTION: ! Correlation energy and potential of the Perdew-Wang parameterisation of ! the Ceperley-Alder electron gas {\it Phys. Rev. B} {\bf 45}, 13244 (1992) ! and {\it Phys. Rev. Lett.} {\bf 45}, 566 (1980). This is a clean-room ! implementation from paper. ! ! !REVISION HISTORY: ! Created April 2005 (RAR) !EOP !BOC implicit none ! arguments real(8), intent(in) :: n real(8), intent(out) :: ec real(8), intent(out) :: vc ! constants real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: a01 = 0.21370d0 real(8), parameter :: b01 = 7.5957d0 real(8), parameter :: b02 = 3.5876d0 real(8), parameter :: b03 = 1.6382d0 real(8), parameter :: b04 = 0.49294d0 ! paper actually use this: ! real(8), parameter (A0 = 0.031091d0) ! but routines now "defacto standard" was distributed using: real(8), parameter :: A0 = 0.0310907d0 ! local variables real(8) rsq real(8) Q0, Q1, Q1p, ecrs rsq = (3.0d0/(4.0d0*pi*n))**(1.0d0/6.0d0) ec = -2.0d0*A0*(1.0d0 + a01*rsq**2)* & log(1.0d0 + 1.0d0/ & (2.0d0*A0*rsq*(b01 + rsq*(b02 + rsq*(b03 + b04*rsq))))) Q0 = -2.0d0*A0*(1.0d0 + a01*rsq**2) Q1 = 2.0d0*A0*rsq*(b01 + rsq*(b02 + rsq*(b03 + b04*rsq))) Q1p = A0*(b01/rsq+2.0d0*b02+3.0d0*b03*rsq+4.0d0*b04*rsq**2) ecrs = -2.0d0*A0*a01*log(1.0d0 + 1.0d0/Q1)-Q0*Q1p/(Q1**2+Q1) vc = ec - rsq**2/3.0d0*ecrs end subroutine !EOC !BOP ! !ROUTINE: xc_am05_labertw ! !INTERFACE: subroutine xc_am05_labertw(z,val) ! !INPUT/OUTPUT PARAMETERS: ! z : function argument (in,real) ! val : value of lambert W function of z (out,real) ! !DESCRIPTION: ! Lambert $W$-function using the method of Corless, Gonnet, Hare, Jeffrey and ! Knuth, {\it Adv. Comp. Math.} {\bf 5}, 329 (1996). The approach is based ! loosely on that in GNU Octave by N. N. Schraudolph, but this implementation ! is for real values and the principal branch only. ! ! !REVISION HISTORY: ! Created April 2005 (RAR) !EOP !BOC implicit none ! arguments real(8), intent(in) :: z real(8), intent(out) :: val ! local variables real(8) e,t,p integer i ! if z too low, go with the first term of the power expansion, z if (z < 1.d-20) then val=z return end if e=exp(1.d0) ! inital guess if (abs(z+1.d0/e) > 1.45d0) then ! asymptotic expansion at 0 and Inf val=log(z) val=val-log(val) else ! series expansion about -1/e to first order val=1.d0*sqrt(2.d0*e*z+2.d0)-1.d0 end if ! find val through iteration do i=1,10 p=exp(val) t=val*p-z if (val /= -1.d0) then t=t/(p*(val+1.d0)-0.5d0*(val+2.d0)*t/(val+1.d0)) else t=0.d0 end if val=val-t if (abs(t) < (2.48d0*1.d-14)*(1.d0+abs(val))) return end do ! this should never happen! write(*,*) write(*,'("Error(xc_am05_labertw): iteration limit reached")') write(*,'(" Likely cause: improper numbers (INFs, NaNs) in density")') write(*,*) stop end subroutine !EOC elk-9.2.12/src/PaxHeaders/xc_xalpha.f900000644000000000000000000000013114536061314014516 xustar0030 mtime=1702388428.313500904 29 atime=1702388427.20850254 30 ctime=1702388428.313500904 elk-9.2.12/src/xc_xalpha.f900000644002504400250440000000244014536061314017241 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 1998-2006 ABINIT group (DCA, XG, GMR). ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: xc_xalpha ! !INTERFACE: subroutine xc_xalpha(n,rho,exc,vxc) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! rho : charge density (in,real(n)) ! exc : exchange-correlation energy density (out,real(n)) ! vxc : exchange-correlation potential (out,real(n)) ! !DESCRIPTION: ! $X_{\alpha}$ approximation to the exchange-correlation potential and energy ! density. See J. C. Slater, {\it Phys. Rev.} {\bf 81}, 385 (1951). ! ! !REVISION HISTORY: ! Modified an ABINIT routine, September 2006 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rho(n) real(8), intent(out) :: exc(n),vxc(n) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: alpha=1.d0 real(8) r,efac,rs,rsm1,vfac vfac=(1.5d0/pi)**(2.d0/3.d0) efac=0.75d0*vfac ! loop over density points do i=1,n r=rho(i) if (r > 1.d-12) then rs=(3.d0/(4.d0*pi*r))**(1.d0/3.d0) rsm1=1.0d0/rs ! compute energy density exc(i)=-alpha*efac*rsm1 ! compute potential vxc(i)=-alpha*vfac*rsm1 end if end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/xc_wc06.f900000644000000000000000000000013214536061314014021 xustar0030 mtime=1702388428.315500901 30 atime=1702388427.209502539 30 ctime=1702388428.315500901 elk-9.2.12/src/xc_wc06.f900000644002504400250440000000242514536061314016546 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 Zhigang Wu and R. E. Cohen. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine xc_wc06(n,rho,grho,g2rho,g3rho,ex,ec,vx,vc) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rho(n),grho(n),g2rho(n),g3rho(n) real(8), intent(out) :: ex(n),ec(n),vx(n),vc(n) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: thrd=1.d0/3.d0 ! default PBE beta real(8), parameter :: beta=0.06672455060314922d0 real(8) r,grho_,g2rho_,g3rho_ real(8) kf,s,u,v,rs,z,g real(8) ks,ksg,t,uu,vv,ww do i=1,n r=rho(i) if (r > 1.d-12) then grho_=grho(i) g2rho_=g2rho(i) g3rho_=g3rho(i) kf=(r*3.d0*pi**2)**thrd s=grho_/(2.d0*kf*r) u=g3rho_/((r**2)*(2.d0*kf)**3) v=g2rho_/(r*(2.d0*kf)**2) ! Wu-Cohen exchange call x_wc06(r,s,u,v,ex(i),vx(i)) ! Perdew-Burke-Ernzerhof correlation rs=(3.d0/(4.d0*pi*r))**thrd z=0.d0 g=1.d0 ks=sqrt(4.d0*kf/pi) ksg=2.d0*ks*g t=grho_/(ksg*r) uu=g3rho_/((r**2)*ksg**3) vv=g2rho_/(r*ksg**2) ww=0.d0 call c_pbe(beta,rs,z,t,uu,vv,ww,ec(i),vc(i),vc(i)) else ex(i)=0.d0 ec(i)=0.d0 vx(i)=0.d0 vc(i)=0.d0 end if end do end subroutine elk-9.2.12/src/PaxHeaders/x_wc06.f900000644000000000000000000000012614536061314013661 xustar0028 mtime=1702388428.3165009 30 atime=1702388427.210502537 28 ctime=1702388428.3165009 elk-9.2.12/src/x_wc06.f900000644002504400250440000000221314536061314016376 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 Zhigang Wu and R. E. Cohen. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. elemental subroutine x_wc06(rho,s,u,v,ex,vx) implicit none ! arguments real(8), intent(in) :: rho,s,u,v real(8), intent(out) :: ex,vx ! local variables real(8), parameter :: ax=-0.7385587663820224059d0 real(8), parameter :: mu=0.2195149727645171d0 real(8), parameter :: kappa=0.804d0 real(8), parameter :: b=10.d0/81.d0 real(8), parameter :: c=0.00793746933516d0 real(8), parameter :: thrd=1.d0/3.d0 real(8), parameter :: thrd4=4.d0/3.d0 real(8) dmu,exu real(8) s2,s4,es2,x,p0,fxwc real(8) fs,fss,t0,t1,t2,t3 ! lda exchange energy density exu=ax*rho**thrd s2=s**2 s4=s2**2 es2=exp(-s2) t0=1.d0+c*s4 dmu=mu-b x=b*s2+dmu*s2*es2+log(t0) p0=1.d0+x/kappa ! WC enhancement factor fxwc=1.d0+kappa-kappa/p0 ! exchange energy density ex=exu*fxwc t1=b+dmu*(1.d0-s2)*es2+2.d0*c*s2/t0 t2=dmu*s*(s2-2.d0)*es2+2.d0*c/t0-4.d0*(c**2)*s4/(t0**2) t3=1.d0/(p0**2) fs=2.d0*t1*t3 fss=t3*(4.d0*t2-8.d0*s*(t1**2)/(kappa*p0)) ! exchange potential vx=exu*(thrd4*fxwc-(u-thrd4*s2*s)*fss-v*fs) end subroutine elk-9.2.12/src/PaxHeaders/x_pbe.f900000644000000000000000000000013214536061314013645 xustar0030 mtime=1702388428.317500898 30 atime=1702388427.212502534 30 ctime=1702388428.317500898 elk-9.2.12/src/x_pbe.f900000644002504400250440000000125714536061314016374 0ustar00dewhurstdewhurst00000000000000 ! This routine is based on code written by K. Burke. elemental subroutine x_pbe(kappa,mu,rho,s,u,v,ex,vx) implicit none ! arguments real(8), intent(in) :: kappa,mu real(8), intent(in) :: rho,s,u,v real(8), intent(out) :: ex,vx ! local variables real(8), parameter :: ax=-0.7385587663820224058d0 real(8), parameter :: thrd=1.d0/3.d0 real(8), parameter :: thrd4=4.d0/3.d0 real(8) ul,exu,s2,p0 real(8) fxpbe,fs,fss ul=mu/kappa ! LDA exchange energy density exu=ax*rho**thrd ! PBE enhancement factor s2=s**2 p0=1.d0+ul*s2 fxpbe=1.d0+kappa-kappa/p0 ex=exu*fxpbe fs=2.d0*kappa*ul/(p0*p0) fss=-4.d0*ul*s*fs/p0 ! exchange potential vx=exu*(thrd4*fxpbe-(u-thrd4*s2*s)*fss-v*fs) end subroutine elk-9.2.12/src/PaxHeaders/c_pbe.f900000644000000000000000000000013214536061314013620 xustar0030 mtime=1702388428.319500895 30 atime=1702388427.213502533 30 ctime=1702388428.319500895 elk-9.2.12/src/c_pbe.f900000644002504400250440000000516414536061314016350 0ustar00dewhurstdewhurst00000000000000 ! This routine is based on code written by K. Burke. subroutine c_pbe(beta,rs,z,t,uu,vv,ww,ec,vcup,vcdn) implicit none ! arguments real(8), intent(in) :: beta,rs,z,t,uu,vv,ww real(8), intent(out) :: ec,vcup,vcdn ! local variables real(8), parameter :: thrd=1.d0/3.d0 real(8), parameter :: thrdm=-thrd real(8), parameter :: thrd2=2.d0*thrd real(8), parameter :: thrd4=4.d0*thrd real(8), parameter :: sixthm=thrdm/2.d0 real(8), parameter :: gam=0.5198420997897463295d0 real(8), parameter :: fzz=8.d0/(9.d0*gam) real(8), parameter :: gamma=0.0310906908696548950d0 real(8), parameter :: eta=1.d-12 real(8) rtrs,eu,eurs,ep,eprs,alfm,alfrsm,z4,f real(8) ecrs,fz,ecz,comm,g,g3,pon,b,b2,t2,t4 real(8) q4,q5,g4,t6,rsthrd,gz,fac,bg,bec,q8,q9 real(8) hb,hrs,fact0,fact1,hbt,hrst,hz,ht,hzt real(8) fact2,fact3,htt,pref,fact5,h,dvcup,dvcdn real(8) delt delt=beta/gamma rtrs=sqrt(rs) call c_pbe_gcor(0.0310907d0,0.21370d0,7.5957d0,3.5876d0,1.6382d0,0.49294d0, & rtrs,eu,eurs) call c_pbe_gcor(0.01554535d0,0.20548d0,14.1189d0,6.1977d0,3.3662d0,0.62517d0, & rtrs,ep,eprs) call c_pbe_gcor(0.0168869d0,0.11125d0,10.357d0,3.6231d0,0.88026d0,0.49671d0, & rtrs,alfm,alfrsm) z4=z**4 f=((1.d0+z)**thrd4+(1.d0-z)**thrd4-2.d0)/gam ! local contribution to correlation energy density ec=eu*(1.d0-f*z4)+ep*f*z4-alfm*f*(1.d0-z4)/fzz ecrs=eurs*(1.d0-f*z4)+eprs*f*z4-alfrsm*f*(1.d0-z4)/fzz fz=thrd4*((1.d0+z)**thrd-(1.d0-z)**thrd)/gam ecz=4.d0*(z**3)*f*(ep-eu+alfm/fzz)+fz*(z4*ep-z4*eu-(1.d0-z4)*alfm/fzz) comm=ec-rs*ecrs/3.d0-z*ecz ! local contribution to correlation potential vcup=comm+ecz vcdn=comm-ecz g=((1.d0+z)**thrd2+(1.d0-z)**thrd2)/2.d0 g3=g**3 pon=-ec/(g3*gamma) b=delt/(exp(pon)-1.d0) b2=b*b t2=t*t t4=t2*t2 q4=1.d0+b*t2 q5=1.d0+b*t2+b2*t4 ! gradient correction to energy density h=g3*(beta/delt)*log(1.d0+delt*q4*t2/q5) g4=g3*g t6=t4*t2 rsthrd=rs/3.d0 gz=(((1.d0+z)**2+eta)**sixthm-((1.d0-z)**2+eta)**sixthm)/3.d0 fac=delt/b+1.d0 bg=-3.d0*b2*ec*fac/(beta*g4) bec=b2*fac/(beta*g3) q8=q5*q5+delt*q4*q5*t2 q9=1.d0+2.d0*b*t2 hb=-beta*g3*b*t6*(2.d0+b*t2)/q8 hrs=-rsthrd*hb*bec*ecrs fact0=2.d0*delt-6.d0*b fact1=q5*q9+q4*q9*q9 hbt=2.d0*beta*g3*t4*((q4*q5*fact0-delt*fact1)/q8)/q8 hrst=rsthrd*t2*hbt*bec*ecrs hz=3.d0*gz*h/g+hb*(bg*gz+bec*ecz) ht=2.d0*beta*g3*q9/q8 hzt=3.d0*gz*ht/g+hbt*(bg*gz+bec*ecz) fact2=q4*q5+b*t2*(q4*q9+q5) fact3=2.d0*b*q5*q9+delt*fact2 htt=4.d0*beta*g3*t*(2.d0*b/q8-(q9*fact3/q8)/q8) comm=h+hrs+hrst+t2*ht/6.d0+7.d0*t2*t*htt/6.d0 pref=hz-gz*t2*ht/g fact5=gz*(2.d0*ht+t*htt)/g comm=comm-pref*z-uu*htt-vv*ht-ww*(hzt-fact5) ! gradient correction to potential dvcup=comm+pref dvcdn=comm-pref ! add gradient corrections ec=ec+h vcup=vcup+dvcup vcdn=vcdn+dvcdn end subroutine elk-9.2.12/src/PaxHeaders/c_pbe_gcor.f900000644000000000000000000000013214536061314014632 xustar0030 mtime=1702388428.320500894 30 atime=1702388427.214502532 30 ctime=1702388428.320500894 elk-9.2.12/src/c_pbe_gcor.f900000644002504400250440000000073314536061314017357 0ustar00dewhurstdewhurst00000000000000 ! This routine is based on code written by K. Burke. elemental subroutine c_pbe_gcor(a,a1,b1,b2,b3,b4,rtrs,gg,ggrs) implicit none ! arguments real(8), intent(in) :: a,a1,b1,b2,b3,b4,rtrs real(8), intent(out) :: gg,ggrs ! local variables real(8) q0,q1,q2,q3 q0=-2.d0*a*(1.d0+a1*rtrs*rtrs) q1=2.d0*a*rtrs*(b1+rtrs*(b2+rtrs*(b3+b4*rtrs))) q2=log(1.d0+1.d0/q1) gg=q0*q2 q3=a*(b1/rtrs+2.d0*b2+rtrs*(3.d0*b3+4.d0*b4*rtrs)) ggrs=-2.d0*a*a1*q2-q0*q3/(q1*(1.d0+q1)) end subroutine elk-9.2.12/src/PaxHeaders/xc_vbh.f900000644000000000000000000000013114536061314014020 xustar0030 mtime=1702388428.321500892 29 atime=1702388427.21550253 30 ctime=1702388428.321500892 elk-9.2.12/src/xc_vbh.f900000644002504400250440000000620114536061314016542 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 F. Cricchio, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: xc_vbh ! !INTERFACE: subroutine xc_vbh(n,rhoup,rhodn,ex,ec,vxup,vxdn,vcup,vcdn) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! rhoup : spin-up charge density (in,real(n)) ! rhodn : spin-down charge density (in,real(n)) ! ex : exchange energy density (out,real(n)) ! ec : correlation energy density (out,real(n)) ! vxup : spin-up exchange potential (out,real(n)) ! vxdn : spin-down exchange potential (out,real(n)) ! vcup : spin-up correlation potential (out,real(n)) ! vcdn : spin-down correlation potential (out,real(n)) ! !DESCRIPTION: ! Spin-polarised exchange-correlation potential and energy functional of ! von Barth and Hedin: {\it J. Phys. C} {\bf 5}, 1629 (1972). Note that the ! implementation is in Rydbergs in order to follow the paper step by step, at ! the end the potential and energy are converted to Hartree. ! ! !REVISION HISTORY: ! Created September 2007 (F. Cricchio) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rhoup(n),rhodn(n) real(8), intent(out) :: ex(n),ec(n) real(8), intent(out) :: vxup(n),vxdn(n) real(8), intent(out) :: vcup(n),vcdn(n) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: cp=0.0504d0 real(8), parameter :: cf=0.0254d0 real(8), parameter :: rp=30.d0 real(8), parameter :: rf=75.d0 real(8) alpha0,eps0_x,a,gamma real(8) rup,rdn,r,rs,x,zf,zp real(8) fx,fp,ff,epsp_x,mup_x real(8) epsp_c,epsf_c,mup_c,muf_c,vc,tau_c alpha0=(4.d0/(9.d0*pi))**(1.d0/3.d0) eps0_x=(3.d0/2.d0)/(pi*alpha0) a=2.d0**(-1.d0/3.d0) gamma=(4.d0/3.d0)*a/(1.d0-a) do i=1,n rup=rhoup(i); rdn=rhodn(i) ! total density r=rup+rdn if ((rup >= 0.d0).and.(rdn >= 0.d0).and.(r > 1.d-12)) then ! Wigner-Seitz radius in atomic units (a0=1) rs=(3.d0/(4.d0*pi*r))**(1.d0/3.d0) x=rup/r fx=(1.d0/(1.d0-a))*(x**(4.d0/3.d0)+(1.d0-x)**(4.d0/3.d0)-a) epsp_x=-eps0_x/rs mup_x=(4.d0/3.d0)*epsp_x ! exchange energy ex(i)=epsp_x+(1.d0/gamma)*mup_x*fx zp=rs/rp fp=(1.d0+zp**3)*log(1.d0+1.d0/zp)+0.5d0*zp-zp**2-1.d0/3.d0 zf=rs/rf ff=(1.d0+zf**3)*log(1.d0+1.d0/zf)+0.5d0*zf-zf**2-1.d0/3.d0 epsp_c=-cp*fp epsf_c=-cf*ff vc=gamma*(epsf_c-epsp_c) ! correlation energy ec(i)=epsp_c+(1.d0/gamma)*vc*fx mup_c=-cp*log(1.d0+rp/rs) muf_c=-cf*log(1.d0+rf/rs) tau_c=muf_c-mup_c-(4.d0/3.d0)*(epsf_c-epsp_c) ! exchange potential vxup(i)=mup_x*(2.d0*x)**(1.d0/3.d0) vxdn(i)=mup_x*(2.d0*(1.d0-x))**(1.d0/3.d0) ! correlation potential vcup(i)=vc*(2.d0*x)**(1.d0/3.d0)+mup_c-vc+tau_c*fx vcdn(i)=vc*(2.d0*(1.d0-x))**(1.d0/3.d0)+mup_c-vc+tau_c*fx ! convert from Rybergs to Hartree ex(i)=0.5d0*ex(i) ec(i)=0.5d0*ec(i) vxup(i)=0.5d0*vxup(i) vxdn(i)=0.5d0*vxdn(i) vcup(i)=0.5d0*vcup(i) vcdn(i)=0.5d0*vcdn(i) else ex(i)=0.d0 ec(i)=0.d0 vxup(i)=0.d0 vxdn(i)=0.d0 vcup(i)=0.d0 vcdn(i)=0.d0 end if end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/fxc_pwca.f900000644000000000000000000000013214536061314014342 xustar0030 mtime=1702388428.323500889 30 atime=1702388427.217502527 30 ctime=1702388428.323500889 elk-9.2.12/src/fxc_pwca.f900000644002504400250440000001251414536061314017067 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine fxc_pwca(n,rhoup,rhodn,fxcuu,fxcud,fxcdd) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rhoup(n) real(8), intent(in) :: rhodn(n) real(8), intent(out) :: fxcuu(n) real(8), intent(out) :: fxcud(n) real(8), intent(out) :: fxcdd(n) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: thrd=1.d0/3.d0, thrd4=4.d0/3.d0 real(8), parameter :: d2f0=1.709921d0 real(8), parameter :: a(3)=[ 0.0310907d0, 0.01554535d0, 0.0168869d0 ] real(8), parameter :: a1(3)=[ 0.21370d0, 0.20548d0, 0.11125d0 ] real(8), parameter :: b1(3)=[ 7.5957d0, 14.1189d0, 10.357d0 ] real(8), parameter :: b2(3)=[ 3.5876d0, 6.1977d0, 3.6231d0 ] real(8), parameter :: b3(3)=[ 1.6382d0, 3.3662d0, 0.88026d0 ] real(8), parameter :: b4(3)=[ 0.49294d0, 0.62517d0, 0.49671d0 ] real(8) p1,p2,p3,rup,rdn,r,ri,ri2,ri3 real(8) rs,rs2,rs12,rs32,rsi,rs12i,rs32i real(8) mz,z,z2,z3,z4,fz,dfz,d2fz real(8) drs,d2rs,dzu,d2zu,dzd,d2zd,d2zud real(8) ders,d2ers,dez,d2ez,d2ersz real(8) deu,d2eu,ded,d2ed,d2eud,ex real(8) ec0,dec0,d2ec0,ec1,dec1,d2ec1 real(8) ac,dac,d2ac,a2,dt1,d2t1,dt2,d2t2 real(8) t1,t2,t3,t4,t5,t6,t7,t8 if (n <= 0) then write(*,*) write(*,'("Error(xc_pwca): invalid n : ",I8)') n write(*,*) stop end if ! prefactors t1=3.d0/(4.d0*pi) p1=t1**thrd p2=t1*(9.d0*pi/4.d0)**thrd p3=1.d0/(2.d0**thrd4-2.d0) do i=1,n rup=rhoup(i); rdn=rhodn(i) ! total density r=rup+rdn if ((rup < 0.d0).or.(rdn < 0.d0).or.(r < 1.d-20)) then fxcuu(i)=0.d0 fxcud(i)=0.d0 fxcdd(i)=0.d0 cycle end if ri=1.d0/r ri2=ri**2 ri3=ri2*ri rs=p1*ri**thrd rs2=rs**2 rs12=sqrt(rs) rs32=rs12*rs rsi=1.d0/rs rs12i=1.d0/rs12 rs32i=1.d0/rs32 mz=rup-rdn z=mz/r z2=z**2 z3=z2*z z4=z3*z ! drs/drup = drs/drdn = drs/drho drs=-thrd*rs*ri ! d2rs/drup^2 = d^2rs/drn^2 = d^2rs/drho^2 d2rs=-thrd4*drs*ri ! dz/drup, dz/drdn t1=mz*ri2 dzu=ri-t1 dzd=-ri-t1 ! d^2z/drup^2, d^2z/drdn^2, d^2z/drup*drdn t1=2.d0*mz*ri3 t2=2.d0*ri2 d2zu=t1-t2 d2zd=t1+t2 d2zud=t1 !------------------! ! exchange ! !------------------! t1=-p2*rsi/2.d0 t2=1.d0+z t3=1.d0-z t4=t2**thrd4 t5=t3**thrd4 t6=t4+t5 ! exchange energy density ex=t1*t6 ! dex/drs ders=-ex*rsi ! d^2ex/drs^2 d2ers=-2.d0*ders*rsi ! f(z) fz=p3*(t6-2.d0) ! dex/dz t4=t4/t2 t5=t5/t3 t6=t4-t5 t7=thrd4*t6 dez=t1*t7 ! df/dz dfz=p3*t7 ! d^2ex/dz^2 t4=t4/t2 t5=t5/t3 t6=t4+t5 t7=thrd4*thrd*t6 d2ez=t1*t7 ! d^2f/dz^2 d2fz=p3*t7 ! d^2ex/drs*dz d2ersz=-dez*rsi ! dex/drup, dex/drdn t1=ders*drs deu=t1+dez*dzu ded=t1+dez*dzd ! d^2ex/drup^2 t1=d2ers*drs t2=d2ersz*drs t3=ders*d2rs t4=(t1+d2ersz*dzu)*drs+t3 t5=t2+d2ez*dzu d2eu=t4+t5*dzu+dez*d2zu ! d^2ex/drdn^2 d2ed=(t1+d2ersz*dzd)*drs+t3+(t2+d2ez*dzd)*dzd+dez*d2zd ! d^2ex/drup*drdn d2eud=t4+t5*dzd+dez*d2zud ! calculate fxc fxcuu(i)=2.d0*deu+r*d2eu fxcud(i)=deu+ded+r*d2eud fxcdd(i)=2.d0*ded+r*d2ed !---------------------! ! correlation ! !---------------------! ! ec(rs,0) a2=2.d0*a(1) t1=a2*(b1(1)*rs12+b2(1)*rs+b3(1)*rs32+b4(1)*rs2) dt1=a2*(0.5d0*b1(1)*rs12i+b2(1)+1.5d0*b3(1)*rs12+2.d0*b4(1)*rs) d2t1=a2*(-0.25d0*b1(1)*rs32i+0.75d0*b3(1)*rs12i+2.d0*b4(1)) t3=1.d0/t1 t4=t3**2 t2=1.d0+t3 dt2=-dt1*t4 d2t2=t4*(2.d0*t3*dt1**2-d2t1) t3=1.d0/t2 t4=1.d0+a1(1)*rs t5=log(t2) ec0=-a2*t4*t5 dec0=-a2*(a1(1)*t5+t4*t3*dt2) d2ec0=-a2*(2.d0*a1(1)*t3*dt2+t4*t3*(d2t2-t3*dt2**2)) ! ec(rs,1) a2=2.d0*a(2) t1=a2*(b1(2)*rs12+b2(2)*rs+b3(2)*rs32+b4(2)*rs2) dt1=a2*(0.5d0*b1(2)*rs12i+b2(2)+1.5d0*b3(2)*rs12+2.d0*b4(2)*rs) d2t1=a2*(-0.25d0*b1(2)*rs32i+0.75d0*b3(2)*rs12i+2.d0*b4(2)) t3=1.d0/t1 t4=t3**2 t2=1.d0+t3 dt2=-dt1*t4 d2t2=t4*(2.d0*t3*dt1**2-d2t1) t3=1.d0/t2 t4=1.d0+a1(2)*rs t5=log(t2) ec1=-a2*t4*t5 dec1=-a2*(a1(2)*t5+t4*t3*dt2) d2ec1=-a2*(2.d0*a1(2)*t3*dt2+t4*t3*(d2t2-t3*dt2**2)) ! ac(rs) a2=2.d0*a(3) t1=a2*(b1(3)*rs12+b2(3)*rs+b3(3)*rs32+b4(3)*rs2) dt1=a2*(0.5d0*b1(3)*rs12i+b2(3)+1.5d0*b3(3)*rs12+2.d0*b4(3)*rs) d2t1=a2*(-0.25d0*b1(3)*rs32i+0.75d0*b3(3)*rs12i+2.d0*b4(3)) t3=1.d0/t1 t4=t3**2 t2=1.d0+t3 dt2=-dt1*t4 d2t2=t4*(2.d0*t3*dt1**2-d2t1) t3=1.d0/t2 t4=1.d0+a1(3)*rs t5=log(t2) ac=a2*t4*t5 dac=a2*(a1(3)*t5+t4*t3*dt2) d2ac=a2*(2.d0*a1(3)*t3*dt2+t4*t3*(d2t2-t3*dt2**2)) ! correlation energy density derivatives t1=1.d0-z4 t2=(fz/d2f0)*t1 t3=ec1-ec0 t4=fz*z4 ! dec/drs t5=dec1-dec0 ders=dec0+dac*t2+t5*t4 ! d^2ec/drs^2 t6=d2ec1-d2ec0 d2ers=d2ec0+d2ac*t2+t6*t4 ! dec/dz t4=ac/d2f0 t6=4.d0*fz*z3 t7=dfz*t1-t6 t8=dfz*z4+t6 dez=t4*t7+t3*t8 ! d^2ec/drs*dz d2ersz=(dac/d2f0)*t7+t5*t8 ! d^2ec/dz^2 t7=8.d0*dfz*z3 t8=12.d0*fz*z2 d2ez=t4*(d2fz*t1-t7-t8)+t3*(d2fz*z4+t7+t8) ! dec/drup, dec/drdn t1=ders*drs deu=t1+dez*dzu ded=t1+dez*dzd ! d^2ec/drup^2 t1=d2ers*drs t2=d2ersz*drs t3=ders*d2rs t4=(t1+d2ersz*dzu)*drs+t3 t5=t2+d2ez*dzu d2eu=t4+t5*dzu+dez*d2zu ! d^2ec/drdn^2 d2ed=(t1+d2ersz*dzd)*drs+t3+(t2+d2ez*dzd)*dzd+dez*d2zd ! d^2ec/drup*drdn d2eud=t4+t5*dzd+dez*d2zud ! calculate fxc fxcuu(i)=fxcuu(i)+2.d0*deu+r*d2eu fxcud(i)=fxcud(i)+deu+ded+r*d2eud fxcdd(i)=fxcdd(i)+2.d0*ded+r*d2ed end do end subroutine elk-9.2.12/src/PaxHeaders/k_tf.f900000644000000000000000000000013214536061314013473 xustar0030 mtime=1702388428.324500888 30 atime=1702388427.218502525 30 ctime=1702388428.324500888 elk-9.2.12/src/k_tf.f900000644002504400250440000000064514536061314016222 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine k_tf(n,rho,dtdr) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rho(n) real(8), intent(out) :: dtdr(n) ! local variables integer i do i=1,n call k_tf1(rho(i),dtdr(i)) end do end subroutine elk-9.2.12/src/PaxHeaders/k_tf_sp.f900000644000000000000000000000013214536061314014175 xustar0030 mtime=1702388428.325500887 30 atime=1702388427.219502524 30 ctime=1702388428.325500887 elk-9.2.12/src/k_tf_sp.f900000644002504400250440000000101114536061314016710 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine k_tf_sp(n,rhoup,rhodn,dtdru,dtdrd) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rhoup(n),rhodn(n) real(8), intent(out) :: dtdru(n),dtdrd(n) ! local variables integer i do i=1,n call k_tf1(2.d0*rhoup(i),dtdru(i)) end do do i=1,n call k_tf1(2.d0*rhodn(i),dtdrd(i)) end do end subroutine elk-9.2.12/src/PaxHeaders/k_tf1.f900000644000000000000000000000013214536061314013554 xustar0030 mtime=1702388428.326500885 30 atime=1702388427.220502523 30 ctime=1702388428.326500885 elk-9.2.12/src/k_tf1.f900000644002504400250440000000107614536061314016302 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. elemental subroutine k_tf1(rho,dtdr) implicit none ! arguments real(8), intent(in) :: rho real(8), intent(out) :: dtdr ! local variables real(8), parameter :: pi=3.1415926535897932385d0 ! Thomas-Fermi coefficient real(8), parameter :: ctf=(3.d0/10.d0)*(3.d0*pi**2)**(2.d0/3.d0) if (rho < 1.d-20) then dtdr=0.d0 return end if dtdr=ctf*(5.d0/3.d0)*rho**(2.d0/3.d0) end subroutine elk-9.2.12/src/PaxHeaders/k_tfvw.f900000644000000000000000000000013114536061314014047 xustar0030 mtime=1702388428.328500882 29 atime=1702388427.22250252 30 ctime=1702388428.328500882 elk-9.2.12/src/k_tfvw.f900000644002504400250440000000206014536061314016570 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: k_tfvw ! !INTERFACE: subroutine k_tfvw(n,rho,grho2,dtdr,dtdgr2) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! rho : spin-unpolarised charge density (in,real(n)) ! grho2 : |grad rho|^2 (in,real(n)) ! dtdr : dtau/drho (out,real(n)) ! dtdgr2 : dtau/d|grad rho|^2 (out,real(n)) ! !DESCRIPTION: ! Calculates the derivatives $\partial\tau/\partial\rho$ and ! $\partial\tau/\partial|\nabla\rho|^2$ of the gradient expansion of the ! kinetic energy density $\tau$ for a set of points. See {\tt k\_tfvw1}. ! ! !REVISION HISTORY: ! Created December 2021 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rho(n),grho2(n) real(8), intent(out) :: dtdr(n),dtdgr2(n) ! local variables integer i do i=1,n call k_tfvw1(rho(i),grho2(i),dtdr(i),dtdgr2(i)) end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/k_tfvw_sp.f900000644000000000000000000000013014536061314014550 xustar0029 mtime=1702388428.32950088 30 atime=1702388427.223502518 29 ctime=1702388428.32950088 elk-9.2.12/src/k_tfvw_sp.f900000644002504400250440000000434514536061314017302 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: k_tfvw_sp ! !INTERFACE: subroutine k_tfvw_sp(n,rhoup,rhodn,gup2,gdn2,dtdru,dtdrd,dtdgu2,dtdgd2) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! rhoup : spin-up charge density (in,real(n)) ! rhodn : spin-down charge density (in,real(n)) ! gup2 : |grad rhoup|^2 (in,real(n)) ! gdn2 : |grad rhodn|^2 (in,real(n)) ! dtdru : dtauup/drhoup (out,real(n)) ! dtdrd : dtaudn/drhodn (out,real(n)) ! dtdgu2 : dtauup/d(|grad rhoup|^2) (out,real(n)) ! dtdgu2 : dtaudn/d(|grad rhodn|^2) (out,real(n)) ! !DESCRIPTION: ! Calculates the derivatives of the spin-polarised kinetic energy density ! $\partial\tau^{\uparrow}/\partial\rho^{\uparrow}$, ! $\partial\tau^{\downarrow}/\partial\rho^{\downarrow}$, ! $\partial\tau^{\uparrow}/\partial|\nabla\rho^{\uparrow}|^2$ and ! $\partial\tau^{\downarrow}/\partial|\nabla\rho^{\downarrow}|^2$. ! This is done by noting the relation for the kinetic energy functional ! [G. L. Oliver and J. P. Perdew, {\it Phys. Rev. A} ! {\bf 20}, 397 (1979)] ! $$ T[\rho^{\uparrow},\rho^{\downarrow}]=\tfrac{1}{2}T[2\rho^{\uparrow}] ! +\tfrac{1}{2}T[2\rho^{\downarrow}] $$ ! and taking, for example, ! $$ \tau^{\uparrow}(\rho^{\uparrow},|\nabla\rho^{\uparrow}|^2) ! =\tfrac{1}{2}\tau(2\rho^{\uparrow},4|\nabla\rho^{\uparrow}|^2), $$ ! where the gradient expansion of the unpolarised kinetic energy density is ! used for $\tau$. See the routines {\tt k\_tfvw1}, {\tt ggamt\_4}, ! {\tt ggair\_4}, {\tt potxcmt}, and {\tt potxcir}. ! ! !REVISION HISTORY: ! Created December 2021 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rhoup(n),rhodn(n) real(8), intent(in) :: gup2(n),gdn2(n) real(8), intent(out) :: dtdru(n),dtdrd(n) real(8), intent(out) :: dtdgu2(n),dtdgd2(n) ! local variables integer i do i=1,n call k_tfvw1(2.d0*rhoup(i),4.d0*gup2(i),dtdru(i),dtdgu2(i)) dtdgu2(i)=2.d0*dtdgu2(i) end do do i=1,n call k_tfvw1(2.d0*rhodn(i),4.d0*gdn2(i),dtdrd(i),dtdgd2(i)) dtdgd2(i)=2.d0*dtdgd2(i) end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/k_tfvw1.f900000644000000000000000000000013214536061314014131 xustar0030 mtime=1702388428.330500879 30 atime=1702388427.224502517 30 ctime=1702388428.330500879 elk-9.2.12/src/k_tfvw1.f900000644002504400250440000000262114536061314016654 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: k_tfvw1 ! !INTERFACE: elemental subroutine k_tfvw1(rho,grho2,dtdr,dtdgr2) ! !INPUT/OUTPUT PARAMETERS: ! rho : spin-unpolarised charge density (in,real) ! grho2 : |grad rho|^2 (in,real) ! dtdr : dtau/drho (out,real) ! dtdgr2 : dtau/d(|grad rho|^2) (out,real) ! !DESCRIPTION: ! Calculates the derivatives $\partial\tau/\partial\rho$ and ! $\partial\tau/\partial|\nabla\rho|^2$ of the gradient expansion of ! the kinetic energy density $\tau$. This includes the Thomas-Fermi and ! von Weizsacker terms: ! $$ \tau=\frac{3}{10}(3\pi^2)^{2/3}\rho^{5/3} ! +\frac{1}{72}\frac{|\nabla\rho|^2}{\rho}. $$ ! ! !REVISION HISTORY: ! Created December 2021 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rho,grho2 real(8), intent(out) :: dtdr,dtdgr2 ! local variables real(8), parameter :: pi=3.1415926535897932385d0 ! Thomas-Fermi coefficient real(8), parameter :: ctf=(3.d0/10.d0)*(3.d0*pi**2)**(2.d0/3.d0) ! von Weizsacker coefficient real(8), parameter :: cvw=1.d0/72.d0 real(8) ri,t1,t2 if ((rho < 1.d-20).or.(grho2 < 0.d0)) then dtdr=0.d0 dtdgr2=0.d0 return end if ri=1.d0/rho t1=ctf*(5.d0/3.d0)*rho**(2.d0/3.d0) t2=cvw*ri dtdr=t1-t2*grho2*ri dtdgr2=t2 end subroutine !EOC elk-9.2.12/src/PaxHeaders/k_vwlb.f900000644000000000000000000000013214536061314014034 xustar0030 mtime=1702388428.332500876 30 atime=1702388427.226502514 30 ctime=1702388428.332500876 elk-9.2.12/src/k_vwlb.f900000644002504400250440000000102014536061314016547 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine k_vwlb(n,rho,grho2,tau) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rho(n),grho2(n) real(8), intent(inout) :: tau(n) ! local variables integer i real(8) t1 ! enforce the von Weizsacker lower bound do i=1,n t1=(1.d0/8.d0)*grho2(i)/rho(i) if (tau(i) < t1) tau(i)=t1 end do end subroutine elk-9.2.12/src/PaxHeaders/gendmatmt.f900000644000000000000000000000013214536061314014530 xustar0030 mtime=1702388428.333500875 30 atime=1702388427.227502512 30 ctime=1702388428.333500875 elk-9.2.12/src/gendmatmt.f900000644002504400250440000000116614536061314017256 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gendmatmt use modmain use moddftu implicit none ! generate the density matrix in each muffin-tin call gendmat(.false.,.false.,0,lmaxdm,lmmaxdm,dmatmt) ! initialise with symmetry-breaking tensor moments if (ftmtype < 0) then dmftm(:,:,:,:,:)=dmftm(:,:,:,:,:)*reducebf dmatmt(:,:,:,:,:)=dmatmt(:,:,:,:,:)+dmftm(:,:,:,:,:) end if ! symmetrise the density matrix call symdmat(lmaxdm,lmmaxdm,dmatmt) end subroutine elk-9.2.12/src/PaxHeaders/genveedu.f900000644000000000000000000000013214536061314014352 xustar0030 mtime=1702388428.335500872 30 atime=1702388427.229502509 30 ctime=1702388428.335500872 elk-9.2.12/src/genveedu.f900000644002504400250440000000317114536061314017076 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genveedu ! !INTERFACE: subroutine genveedu(idu,u,j,vee) ! !USES: use modmain use moddftu ! !INPUT/OUTPUT PARAMETERS: ! idu : DFT+U entry (in,integer) ! u : parameter U (out,real) ! j : parameter J (out,real) ! vee : Coulomb matrix elements (out,real(-lmaxdm:lmaxdm,-lmaxdm:lmaxdm, ! -lmaxdm:lmaxdm,-lmaxdm:lmaxdm)) ! !DESCRIPTION: ! Calculates the Coulomb matrix elements used in DFT+U calculations. See ! {\it Phys. Rev. B} {\bf 52}, 5467 (1995). ! ! !REVISION HISTORY: ! Created November 2007 (FC,JKD,FB,LN) ! Modified July 2009 (FC) !EOP !BOC implicit none ! arguments integer, intent(in) :: idu real(8), intent(out) :: u,j real(8), intent(out) :: vee(-lmaxdm:lmaxdm,-lmaxdm:lmaxdm,-lmaxdm:lmaxdm, & -lmaxdm:lmaxdm) ! local variables integer l,m1,m2,m3,m4,k,q real(8) sm1,sm2,t1 ! automatic arrays real(8) :: f(0:2*lmaxdm) ! external functions real(8), external :: gaunt l=isldu(2,idu) ! calculate Slater integrals call genfdu(idu,u,j,f) do m1=-l,l do m2=-l,l do m3=-l,l do m4=-l,l sm1=0.d0 do k=0,2*l,2 sm2=0.d0 do q=-k,k t1=gaunt(l,k,l,m1,q,m2)*gaunt(l,k,l,m3,-q,m4) if (mod(q,2) == 0) then sm2=sm2+t1 else sm2=sm2-t1 end if end do sm1=sm1+f(k)*sm2/dble(2*k+1) end do vee(m1,m3,m2,m4)=fourpi*sm1 end do end do end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/tm2todm.f900000644000000000000000000000013014536061314014134 xustar0029 mtime=1702388428.33650087 30 atime=1702388427.230502508 29 ctime=1702388428.33650087 elk-9.2.12/src/tm2todm.f900000644002504400250440000000722614536061314016667 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: tm2todm ! !INTERFACE: subroutine tm2todm(l,k,p,ld,wkp,dm) ! !INPUT/OUTPUT PARAMETERS: ! l : angular momentum quantum number (in,integer) ! k : angular momentum tensor moment label (in,integer) ! p : spin tensor moment label (in,integer) ! ld : leading dimension (in,integer) ! wkp : 2-index tensor moment components (in,real(-ld:ld,-1:1)) ! dm : real density matrix (out,real(ld,2,ld,2)) ! !DESCRIPTION: ! Calculates the real density matrix ! $$ D=\sum_{y=-p}^p\sum_{x=-k}^k w_{xy}^{kp}\,\Gamma_{xy}^{kp} $$ ! from the real 2-index coefficients $w_{xy}^{kp}$ and the uncoupled tensor ! moment matrices given by ! $$ \Gamma_{xy}^{kp}(m_1\sigma_1,m_2\sigma_2)= ! (-1)^{l-m_2+s-\sigma_2}\sqrt{(2k+1)(2p+1)} ! \begin{pmatrix} l & k & l \\ -m_2 & x & m_1 \end{pmatrix} ! \begin{pmatrix} s & p & s \\ -\sigma_2 & y & \sigma_1 \end{pmatrix}, $$ ! where $l$ is the angular momentum quantum number, $s=\frac{1}{2}$ and the ! irreducible representations are labeled by $k\in\{0,\ldots,2l\}$ and ! $p\in\{0,1\}$. The variables $x\in\{-k,\ldots, k\}$ and $y\in\{-1,0,1\}$ ! index the components in the array {\tt wkp}. These matrices are real and ! orthonormal in the sense ! $$ \tr\big(\Gamma_{xy}^{kp}\Gamma_{x'y'}^{k'p'}\big)= ! \delta_{kk'}\delta_{pp'}\delta_{xx'}\delta_{yy'}. $$ ! For a detailed derivation see {\it Phys. Rev. B} {\bf 80}, 035121 (2009) and ! {\it J. Phys.: Condens. Matter} {\bf 7}, 9947 (1995). See also the routine ! {\tt tm3todm}. ! ! !REVISION HISTORY: ! Created 2007 (Francesco Cricchio and Lars Nordstrom) ! Changed normalisation and decoupled loops, January 2022 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: l,k,p,ld real(8), intent(in) :: wkp(-ld:ld,-1:1) real(8), intent(out) :: dm(ld,2,ld,2) ! local variables integer ispn,jspn integer m1,m2,n,x,y integer lm0,lm1,lm2 real(8) t0,t1 ! automatic arrays real(8) dlm(2*l+1,2*l+1,-k:k),dsp(2,2,-p:p) ! external functions real(8), external :: wigner3j,wigner3jf if (l < 0) then write(*,*) write(*,'("Error(tm2todm): l < 0 : ",I8)') l write(*,*) stop end if if (k < 0) then write(*,*) write(*,'("Error(tm2todm): k < 0 : ",I8)') k write(*,*) stop end if if (k > 2*l) then write(*,*) write(*,'("Error(tm2todm): k > 2*l : ",2I8)') k,2*l write(*,*) stop end if if ((p < 0).or.(p > 1)) then write(*,*) write(*,'("Error(tm2todm): p should be 0 or 1 : ",I8)') p write(*,*) stop end if ! calculate the angular momentum matrices t0=sqrt(dble(2*k+1)) do x=-k,k dlm(:,:,x)=0.d0 lm2=0 do m2=-l,l lm2=lm2+1 if (mod(l-m2,2) == 0) then t1=t0 else t1=-t0 end if lm1=0 do m1=-l,l lm1=lm1+1 dlm(lm1,lm2,x)=t1*wigner3j(l,k,l,-m2,x,m1) end do end do end do ! calculate the spin matrices t0=sqrt(dble(2*p+1)) do y=-p,p dsp(:,:,y)=0.d0 do jspn=1,2 if (jspn == 1) then t1=t0 else t1=-t0 end if do ispn=1,2 dsp(ispn,jspn,y)=t1*wigner3jf(1,2*p,1,2*jspn-3,2*y,3-2*ispn) end do end do end do ! determine the full matrix from the Kronecker product of dlm and dsp dm(:,:,:,:)=0.d0 lm0=l**2 n=2*l+1 do y=-p,p do x=-k,k t1=wkp(x,y) if (abs(t1) < 1.d-8) cycle do jspn=1,2 do lm2=1,n do ispn=1,2 do lm1=1,n dm(lm0+lm1,ispn,lm0+lm2,jspn)=dm(lm0+lm1,ispn,lm0+lm2,jspn) & +t1*dlm(lm1,lm2,x)*dsp(ispn,jspn,y) end do end do end do end do end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/tm3todm.f900000644000000000000000000000013214536061314014137 xustar0030 mtime=1702388428.337500869 30 atime=1702388427.231502506 30 ctime=1702388428.337500869 elk-9.2.12/src/tm3todm.f900000644002504400250440000001120714536061314016662 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: tm3todm ! !INTERFACE: subroutine tm3todm(l,k,p,r,ld,wkpr,dm) ! !INPUT/OUTPUT PARAMETERS: ! l : angular momentum quantum number (in,integer) ! k : k-index of tensor moment (in,integer) ! p : p-index of tensor moment (in,integer) ! r : r-index of tensor moment (in,integer) ! ld : leading dimension (in,integer) ! wkpr : 3-index tensor moment components (in,real(-ld:ld)) ! dm : complex Hermitian density matrix (out,complex(ld,2,ld,2)) ! !DESCRIPTION: ! The 3-index coupled tensor moment matrices are given by ! $$ \Gamma_t^{kpr}= ! \sqrt{2r+1}\sum_{x=-k}^k\sum_{y=-p}^p ! \begin{pmatrix} k & r & p \\ -x & t & -y \end{pmatrix} ! \Gamma_{xy}^{kp}, $$ ! where the irreducible representations are labeled by $k\in\{0,\ldots,2l\}$, ! $p\in\{0,1\}$, $r\in\{|k-p|,\ldots,k+p\}$ and $\Gamma_{xy}^{kp}$ are the ! uncoupled tensor moments (note that the phase $(-1)^{x+y}$ in the original ! formula has been removed because of the Wigner $3j$ condition $x+y=t$). The ! coupled tensor moment matrices are real and orthonormal in the sense ! $$ \tr\big(\Gamma_t^{kpr}\Gamma_{t'}^{k'p'r'}\big)= ! \delta_{kk'}\delta_{pp'}\delta_{rr'}\delta_{tt'}. $$ ! It can also be shown that the matrices are complete, thus any general ! complex matrix $D$ of dimension $2(2l+1)$ can be expanded as ! $$ D=\sum_{k=0}^{2l}\sum_{p=0}^1\sum_{r=|k-p|}^{k+p}\sum_{t=-r}^r ! z_t^{kpr}\Gamma_t^{kpr} $$ ! where $z_t^{kpr}$ are complex numbers. Likewise, any real matrix can be ! expanded in real tensor moments $w_t^{kpr}$. Using the the symmetry ! properties of the Wigner $3j$-symbols, one can show that the transpose ! $$ \big(\Gamma_t^{kpr}\big)^t=(-1)^{k+p+r+t}\,\Gamma_{-t}^{kpr} $$ ! and thus both the symmetric and antisymmetric parts of $\Gamma_t^{kpr}$ ! transform under rotation within the same irreducible representation. ! Consequently, any complex Hermitian matrix $D$ can be written as ! $$ D=\sum_{k,p,r,t} w_t^{kpr}\big[(\Gamma_t^{kpr})_{\rm S} ! +i(\Gamma_t^{kpr})_{\rm A}\big], $$ ! where the subscripts S and A refer to the symmetric and antisymmetric parts ! of the matrix, respectively. This routine generates the Hermitian density ! matrix $D$ as described above from the real tensor moments $w_t^{kpr}$. For ! a detailed derivation see {\it Phys. Rev. B} {\bf 80}, 035121 (2009) and ! {\it J. Phys.: Condens. Matter} {\bf 7}, 9947 (1995). See also the routines ! {\tt tm2todm} and {\tt tm3rtoz}. ! ! !REVISION HISTORY: ! Created 2007 (Francesco Cricchio and Lars Nordstrom) ! Changed normalisation, made the moments real and the matrix Hermitian, ! January 2022 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: l,k,p,r,ld real(8), intent(in) :: wkpr(-ld:ld) complex(8), intent(out) :: dm(ld,2,ld,2) ! local variables integer x,y,t real(8) t0,t1 ! automatic arrays real(8) wkp(-ld:ld,-1:1),dmr(ld,2,ld,2) ! external functions real(8), external :: wigner3j if (l < 0) then write(*,*) write(*,'("Error(tm3todm): l < 0 : ",I8)') l write(*,*) stop end if if (k < 0) then write(*,*) write(*,'("Error(tm3todm): k < 0 : ",I8)') k write(*,*) stop end if if (k > 2*l) then write(*,*) write(*,'("Error(tm3todm): k > 2*l : ",2I8)') k,2*l write(*,*) stop end if if ((p < 0).or.(p > 1)) then write(*,*) write(*,'("Error(tm3todm): p should be 0 or 1 : ",I8)') p write(*,*) stop end if if (r < abs(k-p)) then write(*,*) write(*,'("Error(tm3todm): r < |k-p| : ",2I8)') r,abs(k-p) write(*,*) stop end if if (r > (k+p)) then write(*,*) write(*,'("Error(tm3todm): r > k+p : ",2I8)') r,k+p write(*,*) stop end if ! compute 2-index tensor moment from 3-index tensor moment wkp(:,:)=0.d0 t0=sqrt(dble(2*r+1)) do t=-r,r t1=wkpr(t) if (abs(t1) < 1.d-8) cycle t1=t0*t1 do x=-k,k do y=-p,p wkp(x,y)=wkp(x,y)+t1*wigner3j(k,r,p,-x,t,-y) end do end do end do ! compute the real matrix from the 2-index tensor moment call tm2todm(l,k,p,ld,wkp,dmr) ! convert to complex Hermitian matrix call dmrtoz(ld*2,dmr,dm) return contains pure subroutine dmrtoz(n,dmr,dm) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: dmr(n,n) complex(8), intent(out) :: dm(n,n) ! local variables integer i,j real(8) a,b do j=1,n do i=1,j-1 ! symmetric part a=0.5d0*(dmr(i,j)+dmr(j,i)) ! antisymmetric part b=0.5d0*(dmr(i,j)-dmr(j,i)) dm(i,j)=cmplx(a,b,8) dm(j,i)=cmplx(a,-b,8) end do dm(j,j)=dmr(j,j) end do end subroutine end subroutine !EOC elk-9.2.12/src/PaxHeaders/dmtotm3.f900000644000000000000000000000013214536061314014137 xustar0030 mtime=1702388428.339500866 30 atime=1702388427.233502503 30 ctime=1702388428.339500866 elk-9.2.12/src/dmtotm3.f900000644002504400250440000000425214536061314016664 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: dmtotm3 ! !INTERFACE: subroutine dmtotm3(l,k,p,r,ld,dm,wkpr) ! !INPUT/OUTPUT PARAMETERS: ! l : angular momentum (in,integer) ! k : k-index of tensor moment (in,integer) ! p : p-index of tensor moment (in,integer) ! r : r-index of tensor moment (in,integer) ! ld : leading dimension (in,integer) ! dm : density matrix (in,complex(ld,2,ld,2)) ! wkpr : 3-index spherical tensor moments (out,real(-ld:ld)) ! !DESCRIPTION: ! Determines the 3-index spherical tensor moments of a density matrix $D$ with ! $$ w_t^{kpr}=\tr\big(\Gamma_t^{kpr}D\big). $$ ! This exploits the orthonormality of the $\Gamma_t^{kpr}$ matrices. See the ! routines {\tt tm2todm} and {\tt tm3todm} for more details. ! ! !REVISION HISTORY: ! Created April 2008 (F. Cricchio and L. Nordstrom) ! Modified, January 2014 (JKD) ! Changed to real tensor moments, December 2021 (JKD) !EOP !BOC implicit none integer, intent(in) :: l,k,p,r,ld complex(8), intent(in) :: dm(ld,2,ld,2) real(8), intent(out) :: wkpr(-ld:ld) ! local variables integer n,t ! automatic arrays real(8) w(-ld:ld) complex(8) gamma(ld,2,ld,2) ! external functions real(8), external :: trzhmm if (l < 0) then write(*,*) write(*,'("Error(dmtotm3): l < 0 : ",I8)') l write(*,*) stop end if if (k < 0) then write(*,*) write(*,'("Error(dmtotm3): k < 0 : ",I8)') k write(*,*) stop end if if (k > 2*l) then write(*,*) write(*,'("Error(dmtotm3): k > 2*l : ",2I8)') k,2*l write(*,*) stop end if if ((p < 0).or.(p > 1)) then write(*,*) write(*,'("Error(dmtotm3): p should be 0 or 1 : ",I8)') p write(*,*) stop end if if (r < abs(k-p)) then write(*,*) write(*,'("Error(dmtotm3): r < |k-p| : ",2I8)') r,abs(k-p) write(*,*) stop end if if (r > (k+p)) then write(*,*) write(*,'("Error(dmtotm3): r > k+p : ",2I8)') r,k+p write(*,*) stop end if n=ld*2 wkpr(:)=0.d0 do t=-r,r w(:)=0.d0 w(t)=1.d0 call tm3todm(l,k,p,r,ld,w,gamma) wkpr(t)=trzhmm(n,gamma,dm) end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/writedftu.f900000644000000000000000000000013214536061314014565 xustar0030 mtime=1702388428.340500864 30 atime=1702388427.234502502 30 ctime=1702388428.340500864 elk-9.2.12/src/writedftu.f900000644002504400250440000000421614536061314017312 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine writedftu use modmain use moddftu implicit none ! local variables integer ispn,jspn,idu integer is,ia,ias integer k,l,ll,m1,m2,lm1,lm2 if (dftu == 0) return ! machine readable density matrix file open(50,file='DMATMT'//trim(filext),form='FORMATTED',action='WRITE') do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) ll=l*(l+1)+1 do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,*) write(50,'(3I4," : species, atom, l")') is,ia,l do ispn=1,nspinor do jspn=1,nspinor write(50,*) write(50,'(2I4," : ispn, jspn; m1, m2, dmatmt below")') ispn,jspn do m1=-l,l lm1=ll+m1 do m2=-l,l lm2=ll+m2 write(50,'(2I6," ",2G18.10)') m1,m2,dmatmt(lm1,ispn,lm2,jspn,ias) end do end do end do end do end do end do close(50) ! machine readable potential matrix file open(50,file='VMATMT'//trim(filext),form='FORMATTED',action='WRITE') do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) ll=l*(l+1)+1 do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,*) write(50,'(3I4," : species, atom, l")') is,ia,l do ispn=1,nspinor do jspn=1,nspinor write(50,*) write(50,'(2I4," : ispn, jspn; m1, m2, vmatmt below")') ispn,jspn do m1=-l,l lm1=ll+m1 do m2=-l,l lm2=ll+m2 write(50,'(2I6," ",2G18.10)') m1,m2,vmatmt(lm1,ispn,lm2,jspn,ias) end do end do end do end do end do end do close(50) ! Slater parameters open(50,file='FDU'//trim(filext),form='FORMATTED',action='WRITE') do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) write(50,*) write(50,'(2I4," : species, l")') is,l do k=0,2*l,2 write(50,'(G18.10," : F^(",I1,")")') fdu(k,idu),k end do write(50,'(G18.10," : U")') ujdu(1,idu) write(50,'(G18.10," : J")') ujdu(2,idu) if (inpdftu >= 4) write(50,'(G18.10," : screening length λ")') lamdu(idu) end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/sbesseli.f900000644000000000000000000000013014536061314014357 xustar0030 mtime=1702388428.341500863 28 atime=1702388427.2355025 30 ctime=1702388428.341500863 elk-9.2.12/src/sbesseli.f900000644002504400250440000000523514536061314017110 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: sbesseli ! !INTERFACE: subroutine sbesseli(lmax,x,jl) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum order of Bessel function (in,integer) ! x : real argument (in,real) ! jl : array of returned values (out,real(0:lmax)) ! !DESCRIPTION: ! Computes spherical Bessel functions with imaginary argument, ! $\tilde{j}_l(x)\equiv i^lj_l(ix)$, for real $x$ and ! $l=0\ldots l_{\rm max}$. The recurrence relation ! $$ \tilde{j}_{l+1}(x)=\frac{2l+1}{x}\tilde{j}_l(x)+\tilde{j}_{l-1}(x) $$ ! is used either downwards for $x<2\,l_{\rm max}$ or upwards for ! $x\ge 2\,l_{\rm max}$. The starting values are $\tilde{j}_0(x)=\sinh(x)/x$ ! and $\tilde{j}_1(x)=(\tilde{j}_0(x)-\cosh(x))/x$. The asymptotic form ! $$ \tilde{j}_l(x)\approx\frac{(-x)^l}{(2l+1)!!} $$ ! is used for $x\ll 1$. ! ! !REVISION HISTORY: ! Created April 2008 from sbessel routine (Lars Nordstrom) ! Fixed accuracy issue and changed name, September 2021 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax real(8), intent(in) :: x real(8), intent(out) :: jl(0:lmax) ! local variables integer l,lst real(8), parameter :: rsc=1.d150,rsci=1.d0/rsc real(8) xi,j0,j1,t1 if ((lmax < 0).or.(lmax > 20)) then write(*,*) write(*,'("Error(sbesseli): lmax out of range : ",I8)') lmax write(*,*) stop end if if ((x < 0.d0).or.(x > 1.d8)) then write(*,*) write(*,'("Error(sbesseli): x out of range : ",G18.10)') x write(*,*) stop end if ! treat x << 1 if (x < 1.d-8) then jl(0)=1.d0 t1=1.d0 do l=1,lmax t1=-t1*x/dble(2*l+1) jl(l)=t1 end do return end if if (lmax == 0) then jl(0)=sinh(x)/x return end if xi=1.d0/x if (x < 2*lmax) then ! for x < 2*lmax recurse down j1=1.d0 j0=0.d0 ! starting value for l above lmax lst=lmax+lmax/2+12 do l=lst,lmax+1,-1 t1=j0-(2*l+1)*j1*xi j0=j1 j1=t1 ! check for overflow if (abs(j1) > rsc) then ! rescale t1=t1*rsci j0=j0*rsci j1=j1*rsci end if end do do l=lmax,0,-1 t1=j0-(2*l+1)*j1*xi j0=j1 j1=t1 ! check for overflow if (abs(j1) > rsc) then ! rescale t1=t1*rsci j0=j0*rsci j1=j1*rsci jl(l+1:lmax)=jl(l+1:lmax)*rsci end if jl(l)=j0 end do ! rescaling constant t1=sinh(x)/(x*j0) jl(:)=t1*jl(:) else ! for x >= 2*lmax recurse up jl(0)=sinh(x)*xi jl(1)=(jl(0)-cosh(x))*xi if (lmax == 1) return j0=jl(0) j1=jl(1) do l=2,lmax t1=(2*l-1)*j1*xi+j0 j0=j1 j1=t1 jl(l)=j1 end do end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/shankeli.f900000644000000000000000000000013014536061314014344 xustar0029 mtime=1702388428.34350086 30 atime=1702388427.237502497 29 ctime=1702388428.34350086 elk-9.2.12/src/shankeli.f900000644002504400250440000000351514536061314017074 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: shankeli ! !INTERFACE: subroutine shankeli(lmax,x,hl) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum order of Hankel function (in,integer) ! x : real argument (in,real) ! hl : array of returned values (out,real(0:lmax)) ! !DESCRIPTION: ! Computes the spherical Hankel function of the first kind with imaginary ! argument, $\tilde{h}_l(x)=i^lh_l(ix)$, for real $x$ and ! $l=0\ldots l_{\rm max}$. The recurrence relation ! $$ \tilde{h}_{l+1}(x)=\frac{2l+1}{x}\tilde{h}_l(x)+\tilde{h}_{l-1}(x) $$ ! is used upwards. The starting values there are ! $\tilde{h}_0(x)=-e^{-x}/x$ and $\tilde{h}_1(x)=\tilde{h}_0(x)(1+1/x)$. ! For $x\ll 1$ we use the asymptotic form ! $$ \tilde{h}_l(x)\approx\frac{-(2l-1)!!}{(-x)^{l+1}}. $$ ! ! !REVISION HISTORY: ! Created April 2008 from sbessel routine (Lars Nordstrom) ! Changed name, September 2021 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax real(8), intent(in) :: x real(8), intent(out) :: hl(0:lmax) ! local variables integer l real(8) xi,h0,h1,t1 if ((lmax < 0).or.(lmax > 50)) then write(*,*) write(*,'("Error(shankeli): lmax out of range : ",I8)') lmax write(*,*) stop end if if ((x <= 0.d0).or.(x > 1.d8)) then write(*,*) write(*,'("Error(shankeli): x out of range : ",G18.10)') x write(*,*) stop end if xi=1.d0/x hl(0)=-xi*exp(-x) if (lmax == 0) return ! treat x << 1 if (x < 1.d-8) then t1=-xi do l=1,lmax t1=t1*xi*dble(2*l-1) hl(l)=t1 end do return end if ! recurse up hl(1)=hl(0)*(1.d0+xi) if (lmax == 1) return h0=hl(0) h1=hl(1) do l=2,lmax t1=(2*l-1)*h1*xi+h0 h0=h1 h1=t1 hl(l)=h1 end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/genfdu.f900000644000000000000000000000013214536061314014020 xustar0030 mtime=1702388428.344500858 30 atime=1702388427.238502496 30 ctime=1702388428.344500858 elk-9.2.12/src/genfdu.f900000644002504400250440000001136614536061314016551 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genfdu ! !INTERFACE: subroutine genfdu(idu,u,j,f) ! !USES: use moddftu use modmpi ! !INPUT/OUTPUT PARAMETERS: ! idu : DFT+U entry (in,integer) ! u : parameter U (inout,real) ! j : parameter J (inout,real) ! f : Slater parameters (inout,real) ! !DESCRIPTION: ! Calculate the Slater parameters for DFT+$U$ calculation with different ! approaches, see {\it Phys. Rev. B} {\bf 80}, 035121 (2009). The relations ! among Slater and Racah parameters are from E. U. Condon and G. H. Shortley, ! {\it The Theory of Atomic Spectra}, The University Press, Cambridge (1935). ! ! !REVISION HISTORY: ! Created July 2008 (Francesco Cricchio) !EOP !BOC implicit none ! arguments integer, intent(in) :: idu real(8), intent(inout) :: u,j real(8), intent(inout) :: f(0:2*lmaxdm) ! local variables integer is,l,k,q real(8) ufix,r1,r2 real(8) a(3,3),v1(3),v2(3) ! automatic arrays real(8) e(0:lmaxdm) ! external functions real(8), external :: fyukawa,fyukawa0 is=isldu(1,idu) l=isldu(2,idu) if (l > 3) return ! load input parameters to calculate Slater integrals u=ujdu(1,idu) j=ujdu(2,idu) f(:)=fdu(:,idu) e(:)=edu(:,idu) if (inpdftu < 4) then ! F(0) = U for any l-shell if (inpdftu == 1) f(0)=u select case(l) case(0) ! s electrons only f(0)=u if (inpdftu == 3) then f(0)=e(0) u=f(0) end if case(1) ! p electrons if (inpdftu == 1) then ! F(2) = 5.0 * J f(2)=5.d0*j else if (inpdftu == 3) then ! F(0) = E(0) + J= E(0) + 5/3 * E(1) f(0)=e(0)+(5.d0/3.d0)*e(1) ! F(2) = 5 * J = 25/3 * E1, Eq. 101 f(2)=(25.d0/3.d0)*e(1) end if case(2) ! d electrons if (inpdftu == 1) then ! r1 = F(4)/F(2), see PRB 52, R5467 (1995) r1=0.625d0 f(2)=(14.d0*j)/(1.d0+r1) f(4)=f(2)*r1 else if (inpdftu == 3) then ! copy Racah parameters v1(1:3)=e(0:2) ! transformation matrix from Racah to Slater parameters ! obtained from inversion of Eq. 110-112, LN Notes 29-12-08 a(1,1)=1.d0 a(1,2)=1.4d0 a(1,3)=0.d0 a(2,1)=0.d0 a(2,2)=0.1428571428571428d0 a(2,3)=1.285714285714286d0 a(3,1)=0.d0 a(3,2)=2.8571428571428571d-2 a(3,3)=-0.1428571428571428d0 ! multiply transformation matrix by Racah parameters call r3mv(a,v1,v2) ! Slater parameters, Eq. 104-105, LN Notes 29-12-08 f(0)=v2(1) f(2)=49.d0*v2(2) f(4)=441.d0*v2(3) end if case(3) ! f electrons if (inpdftu == 1) then ! r2 = F(6)/F(2), r1 = F(4)/F(2), see PRB 50, 16861 (1994) r1=451.d0/675.d0 r2=1001.d0/2025.d0 f(2)=6435.d0*j/(286.d0+195.d0*r1+250.d0*r2) f(4)=f(2)*r1 f(6)=f(2)*r2 else if (inpdftu == 3) then ! F(0) = E(0) + 9/7 * E(1) , Eq. 119, LN Notes 29-12-08 f(0)=e(0)+(9.d0/7.d0)*e(1) ! copy Racah parameters v1(1:3)=e(1:3) ! transformation matrix from Racah to Slater parameters ! obtained from inversion of Eq. 120-122, LN Notes 29-12-08 a(1,1)=2.3809523809523808d-2 a(1,2)=3.404761904761904d0 a(1,3)=0.2619047619047619d0 a(2,1)=1.2987012987012984d-2 a(2,2)=-1.688311688311688d0 a(2,3)=5.1948051948051951d-2 a(3,1)=2.1645021645021645d-3 a(3,2)=7.5757575757575760d-2 a(3,3)=-1.5151515151515152d-2 ! multiply transformation matrix by Racah parameters call r3mv(a,v1,v2) ! Slater parameters, Eq. 115-117, LN Notes 29-12-08 f(2)=225.d0*v2(1) f(4)=1089.d0*v2(2) f(6)=(184041.d0/25.d0)*v2(3) end if end select else if (inpdftu >= 4) then ! define energies for Slater parameters call engyfdu(idu) ! calculate radial functions for Slater parameters call genfdufr(idu) if (inpdftu == 5) then ufix=udufix(idu) ! calculate the screening length λ corresponding to udufix ! lamdu0 is in/out and is initialized to 0 in init0 call findlambda(is,l,ufix,lamdu0(idu),lamdu(idu)) end if do q=0,l k=2*q if (lamdu(idu) < 1.d-2) then ! unscreened Slater parameters f(k)=fyukawa0(is,l,k) else ! screened Slater parameters f(k)=fyukawa(is,l,k,lamdu(idu)) end if end do end if ! calculate U and J from Slater integrals if (inpdftu /= 1) then u=f(0) select case(l) case(0) j=0.d0 case(1) ! J = 1/5 * F(2) j=(1.d0/5.d0)*f(2) case(2) ! J = 1/14 * ( F(2) + F(4) ), Eq. 106, LN Notes 29-12-08 j=(1.d0/14.d0)*(f(2)+f(4)) case(3) ! J= 2/45 * F(2) + 1/33 * F(4) + 50/1287 * F(6), Eq. 118, LN Notes 29-12-08 j=(2.d0/45.d0)*f(2)+(1.d0/33.d0)*f(4)+(50.d0/1287.d0)*f(6) end select end if ! save calculated parameters ! (except Racah parameters that are provided only as input) ujdu(1,idu)=u ujdu(2,idu)=j fdu(:,idu)=f(:) end subroutine !EOC elk-9.2.12/src/PaxHeaders/genfdufr.f900000644000000000000000000000013214536061314014350 xustar0030 mtime=1702388428.346500855 30 atime=1702388427.240502493 30 ctime=1702388428.346500855 elk-9.2.12/src/genfdufr.f900000644002504400250440000000315214536061314017073 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genfdufr ! !INTERFACE: subroutine genfdufr(idu) ! !USES: use modmain use moddftu ! !INPUT/OUTPUT PARAMETERS: ! idu : DFT+U entry (in,integer) ! !DESCRIPTION: ! Generates the radial functions used to calculate the Slater integrals ! through a Yukawa potential. ! ! !REVISION HISTORY: ! Created April 2008 from genapwfr (Francesco Cricchio) !EOP !BOC implicit none integer, intent(in) :: idu ! local variables integer is,ia,ias integer nr,nri,ir integer nn,l real(8) t1 ! automatic arrays real(8) vr(nrmtmax),fr(nrmtmax) real(8) p0(nrmtmax),p1(nrmtmax),q0(nrmtmax),q1(nrmtmax) ! external functions real(8), external :: splint is=isldu(1,idu) l=isldu(2,idu) nr=nrmt(is) nri=nrmti(is) do ia=1,natoms(is) ias=idxas(ia,is) call rfmtlm(1,nr,nri,vsmt(:,ias),vr) vr(1:nr)=vr(1:nr)*y00 ! integrate the radial Schrodinger equation call rschrodint(solsc,l,efdu(l,ias),nr,rlmt(:,1,is),vr,nn,p0,p1,q0,q1) ! normalise radial functions fr(1:nr)=p0(1:nr)**2 t1=splint(nr,rlmt(:,1,is),fr) if (t1 < 1.d-20) then write(*,*) write(*,'("Error(genfdufr): degenerate radial functions")') write(*,'(" for species ",I4)') is write(*,'(" atom ",I4)') ia write(*,'(" and angular momentum ",I4)') l write(*,*) stop end if t1=1.d0/sqrt(abs(t1)) p0(1:nr)=t1*p0(1:nr) ! divide by r and store in global array do ir=1,nr fdufr(ir,l,ias)=p0(ir)/rsp(ir,is) end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/engyfdu.f900000644000000000000000000000013114536061314014210 xustar0030 mtime=1702388428.347500854 29 atime=1702388427.24250249 30 ctime=1702388428.347500854 elk-9.2.12/src/engyfdu.f900000644002504400250440000000310214536061314016727 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: engyfdu ! !INTERFACE: subroutine engyfdu(idu) ! !USES: use modmain use moddftu use modmpi ! !INPUT/OUTPUT PARAMETERS: ! idu : DFT+U entry (in,integer) ! !DESCRIPTION: ! Calculates the energies of radial functions to be used to calculate the ! Slater integrals. By convention those energies are chosen to be the ones at ! the center of the band. ! ! !REVISION HISTORY: ! Created April 2008 (F. Cricchio) !EOP !BOC implicit none integer, intent(in) :: idu ! local variables integer is,ia,ja,ias,jas integer nr,nri,nnf,l logical fnd ! automatic arrays logical done(natmmax) real(8) vr(nrmtmax) nnf=0 is=isldu(1,idu) l=isldu(2,idu) nr=nrmt(is) nri=nrmti(is) done(:)=.false. do ia=1,natoms(is) if (done(ia)) cycle ias=idxas(ia,is) call rfmtlm(1,nr,nri,vsmt(:,ias),vr) vr(1:nr)=vr(1:nr)*y00 ! find the center of the band starting from -0.5 Ha efdu(l,ias)=-0.5d0 call findband(solsc,l,nrmt(is),rsp(1,is),vr,epsband,demaxbnd,efdu(l,ias),fnd) if (.not.fnd) nnf=nnf+1 done(ia)=.true. ! copy to equivalent atoms do ja=1,natoms(is) if ((.not.done(ja)).and.(eqatoms(ia,ja,is))) then jas=idxas(ja,is) efdu(l,jas)=efdu(l,ias) done(ja)=.true. end if end do ! end loops over atoms and species end do if (mp_mpi.and.(nnf > 0)) then write(*,*) write(*,'("Warning(engyfdu): could not find ",I3," energies")') nnf end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/findlambda.f900000644000000000000000000000013214536061314014631 xustar0030 mtime=1702388428.349500851 30 atime=1702388427.244502487 30 ctime=1702388428.349500851 elk-9.2.12/src/findlambda.f900000644002504400250440000000700714536061314017357 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: findlambda ! !INTERFACE: subroutine findlambda(is,l,ufix,lambda0,lambda) use modmpi ! !INPUT/OUTPUT PARAMETERS: ! is : species type (in,integer) ! l : angular momentum (in,integer) ! ufix : fixed U (in,integer) ! lambda0 : starting value for screening length (inout,real) ! lambda : screening length corresponding to fixed U (out,real) ! !DESCRIPTION: ! Find the screening length corresponding to a fixed value of $U$ by using the ! half-interval method in the first few steps and then the more efficient ! secant method. For $U=0$ the code automatically sets the screening length to ! ${\rm lambdamax}=50$. This value is enough to get $F^{(k)}\sim 10^{-3}$ ! corresponding to $U\sim 0$ (that perfectly mimics a bare DFT calculation). ! ! !REVISION HISTORY: ! Created July 2009 (Francesco Cricchio) !EOP !BOC implicit none ! arguments integer, intent(in) :: is,l real(8), intent(in) :: ufix real(8), intent(inout) :: lambda0 real(8), intent(out) :: lambda ! local variables ! max iterations in secant algorithm integer, parameter :: maxit=100 integer it,nit ! if ufix < umin, assume lambda=lambdamax real(8), parameter :: umin=1.d-4 ! if lambda < lambdamin, perform unscreened calculation real(8), parameter :: lambdamin=1.d-2 ! max value of lambda ! lambdamax=50 is enough to get F^(k)~1.d-3 corresponding to U~0 real(8), parameter :: lambdamax=50.d0 ! initial step for lambda real(8), parameter :: dl0=0.5d0 real(8) f,fp,lambdap,dl,tol ! external functions real(8), external :: fyukawa,fyukawa0 ! small U limit if (ufix < umin) then lambda=lambdamax if (mp_mpi) write(*,'("Info(findlambda): lambda set to lambdamax : ",& &G18.10)') lambdamax return end if ! first perform a search of lambda with half-interval method and low accuracy ! initialize values and search upward from lambda0 lambda=lambda0 dl=dl0 fp=1.d0 tol=1.d-1 nit=0 do it=1,maxit if (lambda < lambdamin) then ! unscreened Slater parameters f=fyukawa0(is,l,0)-ufix else ! screened Slater parameters f=fyukawa(is,l,0,lambda)-ufix end if if ((f*fp) < 0) dl=-0.5d0*dl lambdap=lambda lambda=lambda+dl fp=f nit=nit+1 if (abs(f) < tol) goto 10 end do 10 continue ! use the found value of lambda to continue the search with secant algorithm and ! higher accuracy tol=1.d-8 ! calculate F^(0)-ufix at lambdap value if (lambdap < lambdamin) then ! unscreened Slater parameters fp=fyukawa0(is,l,0)-ufix else ! screened Slater parameters fp=fyukawa(is,l,0,lambdap)-ufix end if ! start secant algorithm do it=1,maxit ! calculate F^(0)-ufix if (lambda < lambdamin) then ! unscreened Slater parameters f=fyukawa0(is,l,0)-ufix else ! screened Slater parameters f=fyukawa(is,l,0,lambda)-ufix end if ! if requested tolerance has been reached exit the loop if (abs(f) < tol) goto 20 ! update lambda with secant algorithm and roll values dl=-f*((lambda-lambdap)/(f-fp)) lambdap=lambda lambda=lambda+dl fp=f nit=nit+1 end do 20 continue if (nit >= maxit) then write(*,*) write(*,'("Error(findlambda): max number of iterations to obtain lambda & &reached")') write(*,*) stop else ! update initial value for lambda for the next iteration in the SC loop ! 0.5*dl0 is enough lambda0=lambda-0.5d0*dl0 if (mp_mpi) write(*,'("Info(findlambda): lambda obtained in ",I4,& &" iterations")') nit end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/vmatmtsc.f900000644000000000000000000000013214536061314014406 xustar0030 mtime=1702388428.350500849 30 atime=1702388427.245502486 30 ctime=1702388428.350500849 elk-9.2.12/src/vmatmtsc.f900000644002504400250440000000273114536061314017133 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine vmatmtsc use modmain use moddftu implicit none ! local variables integer ispn,jspn,ias,lm ! automatic arrays complex(8) a(lmmaxo,lmmaxo),b(lmmaxo,lmmaxo),c(lmmaxo,lmmaxo) lm=min(lmmaxi,lmmaxdm) ! transform the muffin-tin potential matrix elements from a spherical harmonics ! basis to a mixed spherical harmonics/coordinates basis and store in global ! single-precision arrays do ias=1,natmtot if (any(tvmmt(0:lmaxdm,ias))) then do jspn=1,nspinor do ispn=1,nspinor ! inner part of muffin-tin a(1:lmmaxi,1:lmmaxi)=0.d0 a(1:lm,1:lm)=vmatmt(1:lm,ispn,1:lm,jspn,ias) call zgemm('N','N',lmmaxi,lmmaxi,lmmaxi,zone,a,lmmaxo,zfshti,lmmaxi, & zzero,b,lmmaxo) call zgemm('N','N',lmmaxi,lmmaxi,lmmaxi,zone,zbshti,lmmaxi,b,lmmaxo, & zzero,c,lmmaxo) vmatmti(1:lmmaxi,1:lmmaxi,ispn,jspn,ias)=c(1:lmmaxi,1:lmmaxi) ! outer part of muffin-tin a(:,:)=0.d0 a(1:lmmaxdm,1:lmmaxdm)=vmatmt(1:lmmaxdm,ispn,1:lmmaxdm,jspn,ias) call zgemm('N','N',lmmaxo,lmmaxo,lmmaxo,zone,a,lmmaxo,zfshto,lmmaxo, & zzero,b,lmmaxo) call zgemm('N','N',lmmaxo,lmmaxo,lmmaxo,zone,zbshto,lmmaxo,b,lmmaxo, & zzero,c,lmmaxo) vmatmto(:,:,ispn,jspn,ias)=c(:,:) end do end do end if end do end subroutine elk-9.2.12/src/PaxHeaders/genvmatmt.f900000644000000000000000000000013214536061314014552 xustar0030 mtime=1702388428.351500848 30 atime=1702388427.246502484 30 ctime=1702388428.351500848 elk-9.2.12/src/genvmatmt.f900000644002504400250440000000210414536061314017271 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genvmatmt !INTERFACE: subroutine genvmatmt ! !USES: use modmain use moddftu ! !DESCRIPTION: ! Calculate the DFT+$U$ potential matrix to be used in the second-variational ! step and/or the potential matrix used for fixed tensor moment calculations. ! See {\it Phys. Rev. B} {\bf 52}, 5467 (1995) and {\it Phys. Rev. B} ! {\bf 80}, 035121 (2009). ! ! !REVISION HISTORY: ! Created November 2007 (FC,FB,LN,JKD) ! Fixed bug for dftu=3, January 2021 (JKD) ! Cleaned up and removed options, September 2021 (JKD) !EOP !BOC implicit none ! zero the non-local muffin-tin potential for each atom vmatmt(:,:,:,:,:)=0.d0 ! add the DFT+U potential and calculate the corresponding energies if (dftu /= 0) call vmatmtdu ! add the fixed tensor moment potential if required if (ftmtype > 0) call vmatmtftm ! symmetrise the potential call symdmat(lmaxdm,lmmaxdm,vmatmt) end subroutine !EOC elk-9.2.12/src/PaxHeaders/vmatmtdu.f900000644000000000000000000000013214536061314014411 xustar0030 mtime=1702388428.353500845 30 atime=1702388427.248502481 30 ctime=1702388428.353500845 elk-9.2.12/src/vmatmtdu.f900000644002504400250440000001415114536061314017135 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine vmatmtdu use modmain use moddftu use modtest implicit none ! local variables integer ispn,jspn integer is,ia,ias,idu integer l,m1,m2,m3,m4 integer ll,nm,lma,lmb integer lm1,lm2,lm3,lm4 real(8) u,j,n,n0 real(8) mg(3),mg0(3) real(8) v,edc,sm complex(8) zsm,z1,z2 ! automatic arrays real(8) vee(-lmaxdm:lmaxdm,-lmaxdm:lmaxdm,-lmaxdm:lmaxdm,-lmaxdm:lmaxdm) complex(8) dm(lmmaxdm,nspinor,lmmaxdm,nspinor) complex(8) dms(nspinor,nspinor) ! zero the DFT+U energy for each atom engyadu(:,:)=0.d0 do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) ll=l*(l+1)+1 nm=2*l+1 lma=l**2+1; lmb=lma+2*l ! calculate the Coulomb matrix elements call genveedu(idu,u,j,vee) if ((abs(u) < 1.d-10).and.(abs(j) < 1.d-10)) cycle ! begin loop over atoms do ia=1,natoms(is) ias=idxas(ia,is) ! copy the density matrix for this atom dm(:,:,:,:)=dmatmt(:,:,:,:,ias) ! spin-unpolarised: scale density matrix so that it represents one spin channel ! (thanks to Mike Bruckhoff for this) if (.not.spinpol) dm(:,:,:,:)=0.5d0*dm(:,:,:,:) ! trace of density matrix for each spin dms(:,:)=0.d0 do ispn=1,nspinor do jspn=1,nspinor zsm=0.d0 do lm1=lma,lmb zsm=zsm+dm(lm1,ispn,lm1,jspn) end do dms(ispn,jspn)=dms(ispn,jspn)+zsm end do end do ! trace over spin n=dble(dms(1,1)) if (spinpol) n=n+dble(dms(2,2)) n0=n/dble(nspinor*nm) ! magnetisation if (spinpol) then mg(:)=0.d0 mg(3)=dble(dms(1,1)-dms(2,2)) ! non-collinear terms if (ncmag) then mg(1)=dble(dms(1,2)+dms(2,1)) mg(2)=dble(zi*(dms(1,2)-dms(2,1))) end if mg0(:)=mg(:)/dble(nspinor*nm) end if !---------------------------------! ! around mean field (AFM) ! !---------------------------------! if (dftu == 2) then ! modify density matrices do lm1=lma,lmb if (spinpol) then dm(lm1,1,lm1,1)=dm(lm1,1,lm1,1)-(n0+mg0(3)) dm(lm1,2,lm1,2)=dm(lm1,2,lm1,2)-(n0-mg0(3)) ! non-collinear terms if (ncmag) then dm(lm1,1,lm1,2)=dm(lm1,1,lm1,2)-(mg0(1)-zi*mg0(2)) dm(lm1,2,lm1,1)=dm(lm1,2,lm1,1)-(mg0(1)+zi*mg0(2)) end if else ! spin-unpolarised case dm(lm1,1,lm1,1)=dm(lm1,1,lm1,1)-n0 end if end do end if !------------------------------------! ! DFT+U potential and energy ! !------------------------------------! ! begin loops over m1 and m2 do m1=-l,l lm1=ll+m1 do m2=-l,l lm2=ll+m2 ! begin loops over m3 and m4 do m3=-l,l lm3=ll+m3 do m4=-l,l lm4=ll+m4 v=vee(m1,m3,m2,m4) do ispn=1,nspinor do jspn=1,nspinor z1=dm(lm2,ispn,lm1,ispn)*dm(lm4,jspn,lm3,jspn) z2=dm(lm4,jspn,lm1,ispn)*dm(lm2,ispn,lm3,jspn) engyadu(ia,idu)=engyadu(ia,idu)+dble(z1-z2)*v vmatmt(lm1,ispn,lm2,ispn,ias)=vmatmt(lm1,ispn,lm2,ispn,ias) & +dm(lm4,jspn,lm3,jspn)*v vmatmt(lm1,ispn,lm4,jspn,ias)=vmatmt(lm1,ispn,lm4,jspn,ias) & -dm(lm2,ispn,lm3,jspn)*v end do end do ! end loops over m3 and m4 end do end do ! end loops over m1 and m2 end do end do ! multiply energy by factor 1/2 engyadu(ia,idu)=0.5d0*engyadu(ia,idu) !-----------------------------------------------------------------! ! fully localised limit (FLL) double counting corrections ! !-----------------------------------------------------------------! if (dftu == 1) then if (spinpol) then ! spin-polarised if (ncmag) then ! non-collinear case ! correction to the energy edc=0.5d0*u*n*(n-1.d0) edc=edc-0.5d0*j*dble(dms(1,1)*(dms(1,1)-1.d0)) edc=edc-0.5d0*j*dble(dms(2,2)*(dms(2,2)-1.d0)) edc=edc-0.5d0*j*dble(dms(1,2)*dms(2,1)) edc=edc-0.5d0*j*dble(dms(2,1)*dms(1,2)) ! correction to the potential do lm1=lma,lmb vmatmt(lm1,1,lm1,1,ias)=vmatmt(lm1,1,lm1,1,ias) & -u*(n-0.5d0)+j*(dms(1,1)-0.5d0) vmatmt(lm1,2,lm1,2,ias)=vmatmt(lm1,2,lm1,2,ias) & -u*(n-0.5d0)+j*(dms(2,2)-0.5d0) vmatmt(lm1,1,lm1,2,ias)=vmatmt(lm1,1,lm1,2,ias)+j*dms(1,2) vmatmt(lm1,2,lm1,1,ias)=vmatmt(lm1,2,lm1,1,ias)+j*dms(2,1) end do else ! collinear case ! correction to the energy edc=0.5d0*u*n*(n-1.d0) edc=edc-0.5d0*j*dble(dms(1,1)*(dms(1,1)-1.d0)) edc=edc-0.5d0*j*dble(dms(2,2)*(dms(2,2)-1.d0)) ! correction to the potential do lm1=lma,lmb vmatmt(lm1,1,lm1,1,ias)=vmatmt(lm1,1,lm1,1,ias) & -u*(n-0.5d0)+j*(dms(1,1)-0.5d0) vmatmt(lm1,2,lm1,2,ias)=vmatmt(lm1,2,lm1,2,ias) & -u*(n-0.5d0)+j*(dms(2,2)-0.5d0) end do end if else ! spin-unpolarised ! correction to the energy edc=0.5d0*u*n*(n-1.d0) edc=edc-0.5d0*j*n*(n-1.d0) ! correction to the potential do lm1=lma,lmb vmatmt(lm1,1,lm1,1,ias)=vmatmt(lm1,1,lm1,1,ias)-u*(n-0.5d0) & +j*(n-0.5d0) end do end if engyadu(ia,idu)=engyadu(ia,idu)-edc end if !---------------------------------------------------------! ! subtract DFT+U potential contribution to energy ! !---------------------------------------------------------! ! trace of dmatmt times vmatmt sm=0.d0 do ispn=1,nspinor do lm1=lma,lmb do jspn=1,nspinor do lm2=lma,lmb sm=sm+dble(dm(lm1,ispn,lm2,jspn)*vmatmt(lm2,jspn,lm1,ispn,ias)) end do end do end do end do engyadu(ia,idu)=engyadu(ia,idu)-sm ! end loop over atoms end do ! end loop over species end do ! write DFT+U energy for each atom to test file call writetest(800,'DFT+U energy for each atom',nv=natmmax*ndftu,tol=1.d-4, & rva=engyadu) ! write U and J parameters to test file call writetest(810,'U and J parameters',nv=2*ndftu,tol=1.d-4,rva=ujdu) end subroutine elk-9.2.12/src/PaxHeaders/vmatmtftm.f900000644000000000000000000000013114536061314014566 xustar0030 mtime=1702388428.354500844 29 atime=1702388427.24950248 30 ctime=1702388428.354500844 elk-9.2.12/src/vmatmtftm.f900000644002504400250440000000240714536061314017314 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 L. Nordstrom, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine vmatmtftm use modmain use moddftu implicit none ! local variables integer is,ia,ias,i integer l,k,p,r,t real(8) t0,t1 ! automatic arrays real(8) wkpr(-lmmaxdm:lmmaxdm) complex(8) dm(lmmaxdm,2,lmmaxdm,2) ! loop over fixed tensor moment entries do i=1,ntmfix is=itmfix(1,i) ia=itmfix(2,i) ias=idxas(ia,is) l=itmfix(3,i) k=itmfix(4,i) p=itmfix(5,i) r=itmfix(6,i) t=itmfix(7,i) ! decompose density matrix in 3-index tensor moment components call dmtotm3(l,k,p,r,lmmaxdm,dmatmt(:,:,:,:,ias),wkpr) ! scale factor for conventional normalisation t0=sqrt(dble((2*l+1)*2)) ! take difference between current and target moment t1=wkpr(t)-wkprfix(i)/t0 wkpr(:)=0.d0 wkpr(t)=tauftm*t1 ! compute new density matrix call tm3todm(l,k,p,r,lmmaxdm,wkpr,dm) ! add to global FTM potential matrix vmftm(:,:,:,:,ias)=vmftm(:,:,:,:,ias)+dm(:,:,:,:) end do ! add to muffin-tin potential matrix (fix by Leon Kerber) do i=1,ntmfix is=itmfix(1,i) ia=itmfix(2,i) ias=idxas(ia,is) vmatmt(:,:,:,:,ias)=vmatmt(:,:,:,:,ias)+vmftm(:,:,:,:,ias) end do end subroutine elk-9.2.12/src/PaxHeaders/fyukawa.f900000644000000000000000000000013214536061314014217 xustar0030 mtime=1702388428.355500842 30 atime=1702388427.251502477 30 ctime=1702388428.355500842 elk-9.2.12/src/fyukawa.f900000644002504400250440000000430214536061314016740 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: fyukawa ! !INTERFACE: real(8) function fyukawa(is,l,k,lambda) ! !USES: use modmain use moddftu ! !INPUT/OUTPUT PARAMETERS: ! is : species type (in,integer) ! l : an angular momentum (in,integer) ! k : order of Slater parameter (in,integer) ! lambda : screening length of Yukawa potential (in,real) ! !DESCRIPTION: ! Calculates the Slater parameters using a screened Yukawa potential. See ! {\it Phys. Rev. B} {\bf 52}, 1421 (1995) and {\it Phys. Rev. B} {\bf 80}, ! 035121 (2009). ! ! !REVISION HISTORY: ! Created April 2008 (Lars Nordstrom) ! Modified and tested July 2008 (LN and FC) !EOP !BOC implicit none ! arguments integer, intent(in) :: is,l,k real(8), intent(in) :: lambda ! local variables integer ias,nr,ir integer nr1,nr2,ir1,ir2 real(8) r2,x,t1 ! automatic arrays real(8) bint(nrmtmax),cint(nrmtmax),fint(nrmtmax) real(8) blow(nrmtmax),bhigh(nrmtmax) real(8) clow(nrmtmax),chigh(nrmtmax) real(8) a(0:2*l,nrmtmax),b(0:2*l,nrmtmax) ias=idxas(1,is) nr=nrmt(is) ! (-1)**k factor takes care of the additional (-1)**k introduced by sbesseli(b) t1=lambda*dble((2*k+1)*(-1)**(k+1)) ! zero all quantities bint(1:nr)=0.d0 blow(1:nr)=0.d0 bhigh(1:nr)=0.d0 clow(1:nr)=0.d0 chigh(1:nr)=0.d0 a(:,1:nr)=0.d0 b(:,1:nr)=0.d0 ! calculate screened Slater parameters do ir=1,nr r2=rlmt(ir,2,is) bint(ir)=fdufr(ir,l,ias)*fdufr(ir,l,ias)*r2 x=rsp(ir,is)*lambda ! spherical Bessel and Hankel functions with imaginary arguments call sbesseli(2*l,x,a(:,ir)) call shankeli(2*l,x,b(:,ir)) end do do ir=1,nr nr1=ir nr2=nr-ir+1 ! 1st term: r1 < r do ir1=1,nr1 ir2=ir1 blow(ir1)=bint(ir2)*a(k,ir2) end do ! integrate 1st term call fderiv(-1,nr1,rsp(1,is),blow,clow) ! 2nd term : r2 > r do ir1=1,nr2 ir2=ir1+ir-1 bhigh(ir1)=bint(ir2)*b(k,ir2) end do ! integrate 2nd term call fderiv(-1,nr2,rsp(ir,is),bhigh,chigh) ! sum of the two terms cint(ir)=bint(ir)*(b(k,ir)*clow(nr1)+a(k,ir)*chigh(nr2)) end do call fderiv(-1,nr,rsp(1,is),cint,fint) fyukawa=t1*fint(nr) end function !EOC elk-9.2.12/src/PaxHeaders/fyukawa0.f900000644000000000000000000000013014536061314014275 xustar0029 mtime=1702388428.35650084 30 atime=1702388427.252502475 29 ctime=1702388428.35650084 elk-9.2.12/src/fyukawa0.f900000644002504400250440000000334514536061314017026 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: fyukawa0 ! !INTERFACE: real(8) function fyukawa0(is,l,k) ! !USES: use modmain use moddftu ! !INPUT/OUTPUT PARAMETERS: ! is : species type (in,integer) ! l : an angular momentum (in,integer) ! k : order of Slater parameter (in,integer) ! !DESCRIPTION: ! Calculates the Slater parameters in the unscreened case. See {\it Phys. Rev. ! B} {\bf 52}, 1421 (1995) and {\it Phys. Rev. B} {\bf 80}, 035121 (2009). ! ! !REVISION HISTORY: ! Created April 2008 (LN) ! Modified and tested July 2008 (LN and FC) !EOP !BOC implicit none ! arguments integer, intent(in) :: is,l,k ! local variables integer, parameter :: nstart=1 integer ias,nr,ir integer ir1,ir2,nr1,nr2 real(8) r2,x ! automatic arrays real(8) bint(nrmtmax),cint(nrmtmax),fint(nrmtmax) real(8) blow(nrmtmax),bhigh(nrmtmax) real(8) clow(nrmtmax),chigh(nrmtmax) real(8) ak(nrmtmax),bk(nrmtmax) ias=idxas(1,is) nr=nrmt(is) ak(1:nr)=0.d0 bk(1:nr)=0.d0 ! calculate unscreened Slater parameters do ir=1,nr r2=rlmt(ir,2,is) bint(ir)=fdufr(ir,l,ias)*fdufr(ir,l,ias)*r2 x=rsp(ir,is)**k ak(ir)=x bk(ir)=1.d0/(x*rsp(ir,is)) end do do ir=nstart,nr nr1=ir-nstart+1 nr2=nr-ir+1 do ir1=1,nr1 ir2=ir1+nstart-1 blow(ir1)=bint(ir2)*ak(ir2) end do call fderiv(-1,nr1,rsp(nstart,is),blow,clow) do ir1=1,nr2 ir2=ir1+ir-1 bhigh(ir1)=bint(ir2)*bk(ir2) end do call fderiv(-1,nr2,rsp(ir,is),bhigh,chigh) cint(ir-nstart+1)=bint(ir)*(bk(ir)*clow(nr1)+ak(ir)*chigh(nr2)) end do nr1=nr-nstart+1 call fderiv(-1,nr1,rsp(nstart,is),cint,fint) fyukawa0=fint(nr1) end function !EOC elk-9.2.12/src/PaxHeaders/readdmatmt.f900000644000000000000000000000013214536061314014672 xustar0030 mtime=1702388428.358500837 30 atime=1702388427.254502472 30 ctime=1702388428.358500837 elk-9.2.12/src/readdmatmt.f900000644002504400250440000000362514536061314017422 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readdmatmt use modmain use moddftu implicit none ! local variables integer is,ia,ias,ispn,jspn,idu integer is_,ia_,ispn_,jspn_ integer l,ll,m1,m2,lm1,lm2 integer l_,m1_,m2_ real(8) a,b ! zero the density matrix dmatmt(:,:,:,:,:)=0.d0 ! read density matrix from DMATMT.OUT open(50,file='DMATMT'//trim(filext),form='FORMATTED') do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) ll=l*(l+1)+1 do ia=1,natoms(is) ias=idxas(ia,is) read(50,*) read(50,*) read(50,*) is_,ia_,l_ if ((is /= is_).or.(ia /= ia_).or.(l /= l_)) then write(*,*) write(*,'("Error(readdmatmt): differing is, ia or l")') write(*,'(" current : ",3I4)') is,ia,l write(*,'(" DMATMT.OUT : ",3I4)') is_,ia_,l_ write(*,*) stop end if do ispn=1,nspinor do jspn=1,nspinor read(50,*) read(50,*) ispn_,jspn_ if ((ispn /= ispn_).or.(jspn /= jspn_)) then write(*,*) write(*,'("Error(readdmatmt): differing ispn or jspn")') write(*,'(" current : ",2I4)') ispn,jspn write(*,'(" DMATMT.OUT : ",2I4)') ispn_,jspn_ write(*,*) stop end if do m1=-l,l lm1=ll+m1 do m2=-l,l lm2=ll+m2 read(50,*) m1_,m2_,a,b if ((m1 /= m1_).or.(m2 /= m2_)) then write(*,*) write(*,'("Error(readdmatmt): differing m1 or m2")') write(*,'(" current : ",2I6)') m1,m2 write(*,'(" DMATMT.OUT : ",2I6)') m1_,m2_ write(*,*) stop end if dmatmt(lm1,ispn,lm2,jspn,ias)=cmplx(a,b,8) end do end do end do end do end do end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/writetm.f900000644000000000000000000000013214536061314014243 xustar0030 mtime=1702388428.359500836 30 atime=1702388427.255502471 30 ctime=1702388428.359500836 elk-9.2.12/src/writetm.f900000644002504400250440000000143514536061314016770 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetm use modmain use moddftu implicit none if (dftu == 0) then write(*,*) write(*,'("Error(writetmdu): dftu = 0")') write(*,*) stop end if ! initialize universal variables call init0 call init1 ! read the potential from file call readstate ! read density matrix from file DMATMT.OUT call readdmatmt ! generate the DFT+U muffin-tin potential matrices call genvmatmt ! write tensor moments to TENSMOM.OUT file call writetm3 write(*,*) write(*,'("Info(writetm): tensor moment decomposition of density matrix")') write(*,'(" in the spherical basis written to TENSMOM.OUT")') end subroutine elk-9.2.12/src/PaxHeaders/writetm3.f900000644000000000000000000000013214536061314014326 xustar0030 mtime=1702388428.361500833 30 atime=1702388427.257502468 30 ctime=1702388428.361500833 elk-9.2.12/src/writetm3.f900000644002504400250440000000617014536061314017054 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writetm3 ! !INTERFACE: subroutine writetm3 ! !USES: use modmain use moddftu use modtest use modvars ! !DESCRIPTION: ! Decompose the density matrix into 3-index tensor moments and write to ! {\tt TENSMOM.OUT}. See {\it Phys. Rev. B} {\bf 80}, 035121 (2009) and ! {\it J. Phys.: Condens. Matter} {\bf 7} 9947 (1995). See also the routines ! {\tt tm2todm} and {\tt tm3todm}. ! ! !REVISION HISTORY: ! Created April 2008 (F. Cricchio and L. Nordstrom) ! Updated, December 2021 (JKD) !EOP !BOC implicit none ! local variables integer is,ia,ias,idu integer l,p,k,r,t real(8) ehx,sm,t0,t1 ! automatic arrays real(8) wkpr(-lmmaxdm:lmmaxdm) complex(8) zkpr(-lmmaxdm:lmmaxdm) complex(8) gamma(lmmaxdm,2,lmmaxdm,2) ! external functions real(8), external :: trzhmm wkpr(:)=0.d0 ! open TENSMOM.OUT file open(50,file='TENSMOM'//trim(filext),form='FORMATTED',action='WRITE') write(50,'("Density matrix decomposition in coupled tensor moments")') write(50,'("Components are in the spherical basis")') write(50,'(" (see Phys. Rev. B. 80, 035121 (2009))")') ! loop over DFT+U entries do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) ! scale factor for conventional normalisation t0=sqrt(dble((2*l+1)*2)) do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is,trim(spsymb(is)),ia write(50,'(" l = ",I1)') l do k=0,2*l do p=0,1 do r=abs(k-p),k+p ! decompose density matrix in 3-index tensor moment components call dmtotm3(l,k,p,r,lmmaxdm,dmatmt(:,:,:,:,ias),wkpr) ! determine the contribution to muffin-tin Hartree + exchange energy call tm3todm(l,k,p,r,lmmaxdm,wkpr,gamma) ehx=0.5d0*trzhmm(lmmaxdm*2,gamma,vmatmt(:,:,:,:,ias)) ! write out tensor moment components and vector magnitude write(50,*) write(50,'(" k = ",I1,", p = ",I1,", r = ",I1)') k,p,r if (tm3old) then ! old complex convention call tm3rtoz(l,k,p,r,lmmaxdm,wkpr,zkpr) do t=-r,r write(50,'(" t = ",I2," : ",2F14.8)') t,zkpr(t) end do else ! new real convention sm=0.d0 do t=-r,r t1=t0*wkpr(t) write(50,'(" t = ",I2," : ",F14.8)') t,t1 sm=sm+t1**2 end do sm=sqrt(sm) write(50,'(" magnitude : ",F14.8)') sm end if write(50,'(" Hartree + exchange energy : ",F14.8)') ehx ! write to VARIABLES.OUT if required, but only on the last iteration if (wrtvars.and.tlast) then call writevars('wkpr',n1=is,n2=ia,n3=l,n4=k,n5=p,n6=r,nv=2*r+1, & rva=wkpr(-r:r)) end if end do end do end do ! end loop over atoms and species end do end do close(50) ! write last entry of tensor moment components to test file if required if (test) then call writetest(820,'Coupled tensor moments',nv=size(wkpr),tol=5.d-4,rva=wkpr) end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/gendmftm.f900000644000000000000000000000013214536061314014351 xustar0030 mtime=1702388428.362500832 30 atime=1702388427.258502466 30 ctime=1702388428.362500832 elk-9.2.12/src/gendmftm.f900000644002504400250440000000324314536061314017075 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma, E. K. U. Gross and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gendmftm use modmain use moddftu implicit none ! local variables integer is,ia,ias,i integer l,k,p,r,t real(8) t0 ! automatic arrays real(8) wkpr(-lmmaxdm:lmmaxdm) complex(8) dm(lmmaxdm,2,lmmaxdm,2) ! allocate global array if (allocated(dmftm)) deallocate(dmftm) allocate(dmftm(lmmaxdm,2,lmmaxdm,2,natmtot)) ! zero the fixed tensor moment density matrices dmftm(:,:,:,:,:)=0.d0 do i=1,ntmfix is=itmfix(1,i) if (is > nspecies) then write(*,*) write(*,'("Error(gendmftm): invalid species number : ",I8)') is write(*,*) stop end if ia=itmfix(2,i) if (ia > natoms(is)) then write(*,*) write(*,'("Error(gendmftm): invalid atom number : ",I8)') ia write(*,'(" for species ",I4)') is write(*,*) stop end if ias=idxas(ia,is) l=itmfix(3,i) if (l > lmaxdm) then write(*,*) write(*,'("Error(gendmftm): l > lmaxdm ",2I8)') l,lmaxdm write(*,'(" for species ",I4," and atom ",I4)') is,ia write(*,*) stop end if ! generate the 3-index density matrix k=itmfix(4,i) p=itmfix(5,i) r=itmfix(6,i) t=itmfix(7,i) if (abs(t) > lmmaxdm) then write(*,*) write(*,'("Error(gendmftm): invalid t : ",I8)') t write(*,'(" for tensor moment entry ",I3)') i write(*,*) stop end if ! scale factor for conventional normalisation t0=sqrt(dble((2*l+1)*2)) wkpr(:)=0.d0 wkpr(t)=wkprfix(i)/t0 call tm3todm(l,k,p,r,lmmaxdm,wkpr,dm) dmftm(:,:,:,:,ias)=dmftm(:,:,:,:,ias)+dm(:,:,:,:) end do end subroutine elk-9.2.12/src/PaxHeaders/writeftm.f900000644000000000000000000000013014536061314014407 xustar0029 mtime=1702388428.36350083 30 atime=1702388427.260502463 29 ctime=1702388428.36350083 elk-9.2.12/src/writeftm.f900000644002504400250440000000216314536061314017135 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeftm use modmain use moddftu implicit none ! local variables integer is,ia,ias,i integer l,k,p,r,t real(8) t0 ! automatic arrays real(8) wkpr(-lmmaxdm:lmmaxdm) ! open FTM.OUT open(50,file='FTM.OUT',form='FORMATTED',action='WRITE') do i=1,ntmfix is=itmfix(1,i) ia=itmfix(2,i) ias=idxas(ia,is) l=itmfix(3,i) k=itmfix(4,i) p=itmfix(5,i) r=itmfix(6,i) t=itmfix(7,i) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is,trim(spsymb(is)),ia write(50,'(" l = ",I2)') l ! scale factor for conventional normalisation t0=sqrt(dble((2*l+1)*nspinor)) write(50,'(" k = ",I2,", p = ",I2,", r = ",I2,", t = ",I2)') k,p,r,t ! decompose density matrix in 3-index tensor moment components call dmtotm3(l,k,p,r,lmmaxdm,dmatmt(:,:,:,:,ias),wkpr) write(50,'(" tensor moment")') write(50,'(" current : ",G18.10)') t0*wkpr(t) write(50,'(" target : ",G18.10)') wkprfix(i) end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/writetdtm3.f900000644000000000000000000000013214536061314014656 xustar0030 mtime=1702388428.365500827 30 atime=1702388427.261502462 30 ctime=1702388428.365500827 elk-9.2.12/src/writetdtm3.f900000644002504400250440000000243014536061314017377 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 Leon Kerber, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetdtm3 use modmain use modtddft use moddftu implicit none ! local variables integer is,ia,ias,idu integer l,p,k,r,t,i real(8) t0 character(256) fname ! automatic arrays real(8) wkpr(-lmmaxdm:lmmaxdm) ! loop over DFT+U entries i=0 do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) ! scale factor for conventional normalisation t0=sqrt(dble((2*l+1)*2)) do ia=1,natoms(is) ias=idxas(ia,is) do k=0,2*l do p=0,1 do r=abs(k-p),k+p i=i+1 ! decompose density matrix in 3-index tensor moment components call dmtotm3(l,k,p,r,lmmaxdm,dmatmt(:,:,:,:,ias),wkpr) ! construct the filename write(fname,'("TMTD_S",I2.2,"_A",I3.3,"_L",I1,"_K",I1,"_P",I1,& &"_R",I1,".OUT")') is,ia,l,k,p,r if (itimes <= 1) then open(50,file=trim(fname),form='FORMATTED') else open(50,file=trim(fname),form='FORMATTED',position='APPEND') end if write(50,'(20G18.10)') times(itimes),(t0*(wkpr(t)-wkpr0(t,i)),t=-r,r) close(50) end do end do end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/genwkpr0.f900000644000000000000000000000013214536061314014305 xustar0030 mtime=1702388428.366500826 30 atime=1702388427.263502459 30 ctime=1702388428.366500826 elk-9.2.12/src/genwkpr0.f900000644002504400250440000000202514536061314017026 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 Leon Kerber, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genwkpr0 use modmain use modtddft use moddftu implicit none integer is,ia,ias,idu integer n,l,p,k,r,i ! determine the total number of tensor moments n=0 do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) do ia=1,natoms(is) do k=0,2*l do p=0,1 do r=abs(k-p),k+p n=n+1 end do end do end do end do end do ! allocate the t=0 tensor moment global array if (allocated(wkpr0)) deallocate(wkpr0) allocate(wkpr0(-lmmaxdm:lmmaxdm,n)) i=0 do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) do ia=1,natoms(is) ias=idxas(ia,is) do k=0,2*l do p=0,1 do r=abs(k-p),k+p i=i+1 ! decompose density matrix in 3-index tensor moment components call dmtotm3(l,k,p,r,lmmaxdm,dmatmt(:,:,:,:,ias),wkpr0(:,i)) end do end do end do end do end do end subroutine elk-9.2.12/src/PaxHeaders/tm3rtoz.f900000644000000000000000000000013214536061314014172 xustar0030 mtime=1702388428.367500824 30 atime=1702388427.265502456 30 ctime=1702388428.367500824 elk-9.2.12/src/tm3rtoz.f900000644002504400250440000000241114536061314016712 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 Leon Kerber, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tm3rtoz(l,k,p,r,ld,wkpr,zkpr) use modmain implicit none ! arguments integer, intent(in) :: l,k,p,r,ld real(8), intent(in) :: wkpr(-ld:ld) complex(8), intent(out) :: zkpr(-ld:ld) ! local variables integer g,t real(8) a,b,t0,t1,t2 ! external functions real(8), external :: wigner3j,factn,factn2,factr ! old convention normalisation factors and phase factors g=k+p+r if (mod(g,2) == 0) then t0=1.d0/wigner3j(k,p,r,0,0,0) else t0=sqrt(factr(g+1,g-2*k)/(factn(g-2*p)*factn(g-2*r))) t0=t0*factn2(g-2*k)*factn2(g-2*p)*factn2(g-2*r)/factn2(g) end if t0=t0/sqrt(dble(2*r+1)) t0=t0*sqrt(factn(2*l-k)*factn(2*l+k+1))/factn(2*l) t0=t0*sqrt(factn(2+p)) if (mod(k+p,2) /= 0) t0=-t0 ! remove orthonormal convention normalisation factors t0=t0/sqrt(dble(2*k+1)) t0=t0/sqrt(dble(2*p+1)) t0=t0/2.d0 do t=-r,r t1=t0*(wkpr(t)+wkpr(-t)) t2=t0*(wkpr(t)-wkpr(-t)) if (mod(t,2) == 0) then a=t1 b=t2 else a=-t2 b=-t1 end if if ((k == r).and.(p == 1)) then if (mod(k,2) == 0) then b=-b else a=-a end if end if zkpr(t)=cmplx(a,b,8) end do end subroutine elk-9.2.12/src/PaxHeaders/rdmft.f900000644000000000000000000000013214536061314013664 xustar0030 mtime=1702388428.368500823 30 atime=1702388427.266502454 30 ctime=1702388428.368500823 elk-9.2.12/src/rdmft.f900000644002504400250440000000634514536061314016416 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmft ! !INTERFACE: subroutine rdmft ! !USES: use modmain use modrdm use modmpi ! !DESCRIPTION: ! Main routine for one-body reduced density matrix functional theory (RDMFT). ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! initialise global variables call init0 call init1 ! generate q-point set and gclq array call init2 ! read density and potentials from file call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! generate the core wavefunctions and densities call gencore ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ! compute the kinetic energy of the core call energykncr ! generate the first- and second-variational eigenvectors and eigenvalues call genevfsv ! find the occupation numbers call occupy ! generate the kinetic matrix elements in the first-variational basis call genkmat(.true.,.false.) ! open information files (MPI master process only) if (mp_mpi) then open(60,file='RDM_INFO.OUT',form='FORMATTED') open(61,file='RDMN_ENERGY.OUT',form='FORMATTED') open(62,file='RDMC_ENERGY.OUT',form='FORMATTED') if (spinpol) then open(63,file='RDMN_MOMENT.OUT',form='FORMATTED') open(64,file='RDMC_MOMENT.OUT',form='FORMATTED') end if open(65,file='RDM_ENERGY.OUT',form='FORMATTED') ! write out general information to RDM_INFO.OUT call writeinfo(60) write(60,*) write(60,'("+------------------------------+")') write(60,'("| Self-consistent loop started |")') write(60,'("+------------------------------+")') end if ! begin main RDMFT self-consistent loop do iscl=1,rdmmaxscl if (mp_mpi) then write(60,*) write(60,'("+--------------------+")') write(60,'("| Loop number : ",I4," |")') iscl write(60,'("+--------------------+")') flush(60) write(*,'("Info(rdmft): self-consistent loop number : ",I4)') iscl end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! minimisation over natural orbitals call rdmminc ! minimisation over occupation number call rdmminn ! compute the RDMFT 'eigenvalues' call rdmeval if (mp_mpi) then call rdmwriteengy(60) call writechg(60) if (spinpol) call writemom(60) call writeeval ! write out the total energy write(65,'(G18.10)') engytot flush(65) end if end do if (mp_mpi) then write(60,*) write(60,'("+------------------------------+")') write(60,'("| Self-consistent loop stopped |")') write(60,'("+------------------------------+")') ! write density to STATE.OUT call writestate write(60,*) write(60,'("Wrote STATE.OUT")') write(60,*) write(60,'("+----------------------------+")') write(60,'("| Elk version ",I1.1,".",I1.1,".",I2.2," stopped |")') version write(60,'("+----------------------------+")') ! close information files close(60) close(61) close(62) if (spinpol) then close(63) close(64) end if close(65) end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmwriteengy.f900000644000000000000000000000013014536061314015266 xustar0029 mtime=1702388428.37050082 30 atime=1702388427.268502451 29 ctime=1702388428.37050082 elk-9.2.12/src/rdmwriteengy.f900000644002504400250440000000206614536061314020016 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmwriteengy ! !INTERFACE: subroutine rdmwriteengy(fnum) ! !USES: use modmain use modrdm ! !INPUT/OUTPUT PARAMETERS: ! fnum : file number for writing output (in,integer) ! !DESCRIPTION: ! Writes all contributions to the total energy to file. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! arguments integer, intent(in) :: fnum write(fnum,*) write(fnum,'("Energies :")') write(fnum,'(" electronic kinetic",T30,": ",G18.10)') engykn write(fnum,'(" core electron kinetic",T30,": ",G18.10)') engykncr write(fnum,'(" Coulomb",T30,": ",G18.10)') engyvcl write(fnum,'(" Madelung",T30,": ",G18.10)') engymad write(fnum,'(" exchange-correlation",T30,": ",G18.10)') engyx if (rdmtemp > 0.d0) then write(fnum,'(" entropy",T30,": ",G18.10)') rdmentrpy end if write(fnum,'(" total energy",T30,": ",G18.10)') engytot flush(fnum) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmminc.f900000644000000000000000000000013114536061314014200 xustar0030 mtime=1702388428.371500818 29 atime=1702388427.26950245 30 ctime=1702388428.371500818 elk-9.2.12/src/rdmminc.f900000644002504400250440000000261014536061314016722 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmminc ! !INTERFACE: subroutine rdmminc ! !USES: use modmain use modrdm use modmpi ! !DESCRIPTION: ! Minimizes the total energy with respect to the second-variational ! coefficients {\tt evecsv}. The steepest-descent algorithm is used. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! local variables integer it if (maxitc < 1) return ! begin iteration loop do it=1,maxitc if (mp_mpi) then write(*,'("Info(rdmminc): iteration ",I4," of ",I4)') it,maxitc end if ! generate the density and magnetisation call rhomag ! calculate the Coulomb potential call potcoul ! calculate Coulomb potential matrix elements call genvmat(vclmt,vclir,vclmat) ! calculate derivative of kinetic energy w.r.t. evecsv call rdmdkdc ! write the Coulomb matrix elements to file call writevcl1223 ! update evecsv, orthogonalise and write to file call rdmvaryc ! calculate the energy call rdmenergy ! write energy to file if (mp_mpi) then write(62,'(I6,G18.10)') it,engytot flush(62) end if ! end iteration loop end do if (mp_mpi) then write(60,*) write(60,'("Natural orbital minimisation done")') write(62,*) if (spinpol) write(64,*) end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmvaryc.f900000644000000000000000000000013214536061314014377 xustar0030 mtime=1702388428.372500817 30 atime=1702388427.271502447 30 ctime=1702388428.372500817 elk-9.2.12/src/rdmvaryc.f900000644002504400250440000000233314536061314017122 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmvaryc ! !INTERFACE: subroutine rdmvaryc ! !USES: use modmain use modrdm use modmpi ! !DESCRIPTION: ! Calculates new {\tt evecsv} from old by using the derivatives of the total ! energy w.r.t. {\tt evecsv}. A single step of steepest-descent is made. ! ! !REVISION HISTORY: ! Created 2009 (Sharma) !EOP !BOC implicit none ! local variables integer ik ! allocatable arrays complex(8), allocatable :: dedc(:,:,:),evecsv(:,:) ! compute the derivative w.r.t. evecsv allocate(dedc(nstsv,nstsv,nkpt)) call rdmdedc(dedc) allocate(evecsv(nstsv,nstsv)) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! get the eigenvectors from file call getevecsv(filext,ik,vkl(:,ik),evecsv) ! calculate new evecsv evecsv(:,:)=evecsv(:,:)-taurdmc*dedc(:,:,ik) ! othogonalise evecsv call unitary(nstsv,evecsv) ! write new evecsv to file call putevecsv(filext,ik,evecsv) ! end loop over k-points end do deallocate(dedc,evecsv) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmdedc.f900000644000000000000000000000013214536061314014152 xustar0030 mtime=1702388428.374500814 30 atime=1702388427.272502446 30 ctime=1702388428.374500814 elk-9.2.12/src/rdmdedc.f900000644002504400250440000000256414536061314016703 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmdedc ! !INTERFACE: subroutine rdmdedc(dedc) ! !USES: use modmain use modrdm use modomp ! !INPUT/OUTPUT PARAMETERS: ! dedc : energy derivative (out,complex(nstsv,nstsv,nkpt)) ! !DESCRIPTION: ! Calculates the derivative of the total energy w.r.t. the second-variational ! coefficients {\tt evecsv}. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! arguments complex(8), intent(out) :: dedc(nstsv,nstsv,nkpt) ! local variables integer ik,ist,nthd ! allocatable arrays complex(8), allocatable :: evecsv(:,:),c(:,:) call holdthd(nkpt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecsv,c,ist) & !$OMP NUM_THREADS(nthd) allocate(evecsv(nstsv,nstsv),c(nstsv,nstsv)) !$OMP DO do ik=1,nkpt ! get the eigenvectors from file call getevecsv(filext,ik,vkl(:,ik),evecsv) ! kinetic and Coulomb potential contribution call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,vclmat(:,:,ik),nstsv, & zzero,c,nstsv) do ist=1,nstsv dedc(:,ist,ik)=occsv(ist,ik)*(dkdc(:,ist,ik)+c(:,ist)) end do end do !$OMP END DO deallocate(evecsv,c) !$OMP END PARALLEL call freethd(nthd) ! exchange-correlation contribution call rdmdexcdc(dedc) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmengyxc.f900000644000000000000000000000013214536061314014550 xustar0030 mtime=1702388428.375500813 30 atime=1702388427.274502443 30 ctime=1702388428.375500813 elk-9.2.12/src/rdmengyxc.f900000644002504400250440000000353114536061314017274 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rdmengyxc ! !INTERFACE: subroutine rdmengyxc ! !USES: use modmain use modrdm ! !DESCRIPTION: ! Calculates RDMFT exchange-correlation energy. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! local variables integer ik1,ik2,jk,iv(3) integer ist1,ist2 real(8) t1,t2,t3,t4 ! allocatable arays real(8), allocatable :: vcl1221(:,:,:) ! calculate the prefactor if (rdmxctype == 0) then engyx=0.d0 return else if (rdmxctype == 1) then ! Hartree-Fock functional t1=0.5d0/occmax else if (rdmxctype == 2) then ! Power functional if (spinpol) then t1=0.5d0 else t1=(0.25d0)**rdmalpha end if else write(*,*) write(*,'("Error(rdmengyxc): rdmxctype not defined : ",I8)') rdmxctype write(*,*) stop end if ! exchange-correlation energy engyx=0.d0 allocate(vcl1221(nstsv,nstsv,nkpt)) ! start loop over non-reduced k-points do ik1=1,nkptnr call getvcl1221(ik1,vcl1221) ! find the equivalent reduced k-point iv(:)=ivk(:,ik1) jk=ivkik(iv(1),iv(2),iv(3)) do ist1=1,nstsv ! start loop over reduced k-points do ik2=1,nkpt do ist2=1,nstsv ! Hartree-Fock functional if (rdmxctype == 1) then t2=t1*wkpt(ik2)*occsv(ist2,ik2)*occsv(ist1,jk) ! Power functional else if (rdmxctype == 2) then t3=occsv(ist2,ik2)*occsv(ist1,jk) t4=sum(abs(vkl(:,ik2)-vkl(:,ik1))) if ((ist2 == ist1).and.(t4 < epslat)) then t2=(0.5d0/occmax)*wkpt(ik2)*t3 else t2=t1*wkpt(ik2)*(t3**rdmalpha) end if end if engyx=engyx-t2*vcl1221(ist2,ist1,ik2) end do end do end do end do deallocate(vcl1221) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmminn.f900000644000000000000000000000013214536061314014214 xustar0030 mtime=1702388428.376500811 30 atime=1702388427.275502441 30 ctime=1702388428.376500811 elk-9.2.12/src/rdmminn.f900000644002504400250440000000307014536061314016736 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmminn ! !INTERFACE: subroutine rdmminn ! !USES: use modmain use modrdm use modmpi ! !DESCRIPTION: ! Minimizes the total energy w.r.t. occupation numbers. The steepest-descent ! algorithm is used. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! local variables integer it,n if (maxitn < 1) return ! write the Coulomb matrix elements to file call writevcl1221 ! calculate derivative of kinetic energy w.r.t. evecsv call rdmdkdc ! begin iteration loop do it=1,maxitn if (mp_mpi) then if (mod(it,10) == 0) then write(*,'("Info(rdmminn): iteration ",I4," of ",I4)') it,maxitn end if end if ! generate the density and magnetisation call rhomag ! calculate the Coulomb potential call potcoul ! calculate Coulomb potential matrix elements call genvmat(vclmt,vclir,vclmat) ! update occupation numbers and write to file (MPI master process only) if (mp_mpi) call rdmvaryn ! broadcast occupation numbers to all other processes n=nstsv*nkpt call mpi_bcast(occsv,n,mpi_double_precision,0,mpicom,ierror) ! calculate the energy call rdmenergy ! write energy to file if (mp_mpi) then write(61,'(I6,G18.10)') it,engytot flush(61) end if ! end iteration loop end do if (mp_mpi) then write(60,*) write(60,'("Occupation number minimisation done")') write(61,*) if (spinpol) write(63,*) end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmvaryn.f900000644000000000000000000000013214536061314014412 xustar0030 mtime=1702388428.378500808 30 atime=1702388427.277502438 30 ctime=1702388428.378500808 elk-9.2.12/src/rdmvaryn.f900000644002504400250440000000735414536061314017145 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rdmvaryn ! !INTERFACE: subroutine rdmvaryn ! !USES: use modmain use modrdm use modmpi ! !DESCRIPTION: ! Calculates new occupation numbers from old by using the derivatives of the ! total energy: $n_i^{\rm new} = n_i^{\rm old}-\tau \gamma_i$, where $\tau$ is ! chosen such that $0 \le n_i \le n_{\rm max}$ with ! $$ \gamma_i=\begin{cases} ! g_i(n_{\rm max}-n_i) & g_i > 0 \\ ! g_i n_i & g_i\le 0 \end{cases} $$ ! where $g_i=\partial E/\partial n_i-\kappa$, and $\kappa$ is chosen such that ! $\sum_i\gamma_i=0$. ! ! !REVISION HISTORY: ! Created 2009 (JKD,Sharma) !EOP !BOC implicit none ! local variables integer, parameter :: maxit=10000 integer it,ik,ist real(8), parameter :: eps=1.d-12 real(8) tau,sm,gs,gsp,dgs real(8) kapa,dkapa,t1 ! allocatable arrays real(8), allocatable :: dedn(:,:),gamma(:,:) ! add constant to occupation numbers for charge conservation sm=0.d0 do ik=1,nkpt do ist=1,nstsv sm=sm+wkpt(ik)*occsv(ist,ik) end do end do t1=(chgval-sm)/dble(nstsv) occsv(:,:)=occsv(:,:)+t1 ! redistribute charge so that occupation numbers are in the interval [0,occmax] sm=0.d0 do ik=1,nkpt do ist=1,nstsv if (occsv(ist,ik) > occmax) then sm=sm+wkpt(ik)*(occsv(ist,ik)-occmax) occsv(ist,ik)=occmax end if if (occsv(ist,ik) < 0.d0) then sm=sm+wkpt(ik)*occsv(ist,ik) occsv(ist,ik)=0.d0 end if end do end do do ist=1,nstsv do ik=1,nkpt if (sm > 0.d0) then t1=wkpt(ik)*(occmax-occsv(ist,ik)) t1=min(t1,sm) occsv(ist,ik)=occsv(ist,ik)+t1/wkpt(ik) sm=sm-t1 else t1=wkpt(ik)*occsv(ist,ik) t1=min(t1,-sm) occsv(ist,ik)=occsv(ist,ik)-t1/wkpt(ik) sm=sm+t1 end if end do end do allocate(dedn(nstsv,nkpt)) allocate(gamma(nstsv,nkpt)) ! get the derivatives call rdmdedn(dedn) ! find suitable value of kapa such that sum of gamma is 0 gsp=0.d0 kapa=0.d0 dkapa=0.1d0 do it=1,maxit gs=0.d0 sm=0.d0 do ik=1,nkpt do ist=1,nstsv t1=dedn(ist,ik)-kapa if (t1 > 0.d0) then gamma(ist,ik)=t1*(occmax-occsv(ist,ik)) else gamma(ist,ik)=t1*occsv(ist,ik) end if gs=gs+wkpt(ik)*gamma(ist,ik) sm=sm+wkpt(ik)*gamma(ist,ik)**2 end do end do sm=sqrt(sm) sm=max(sm,1.d0) t1=abs(gs)/sm if (t1 < eps) goto 10 if (it >= 2) then dgs=gs-gsp if (gs*dgs > 0.d0) dkapa=-dkapa if (gs*gsp < 0.d0) then dkapa=0.5d0*dkapa else dkapa=1.1d0*dkapa end if end if gsp=gs kapa=kapa+dkapa end do write(*,*) write(*,'("Error(rdmvaryn): could not find offset")') write(*,*) stop 10 continue ! write derivatives and occupation numbers to file call rdmwritededn(dedn) deallocate(dedn) ! normalize gamma if sum of squares is greater than 1 sm=0.d0 do ik=1,nkpt do ist=1,nstsv sm=sm+wkpt(ik)*gamma(ist,ik)**2 end do end do if (sm > 1.d0) then t1=1.d0/sqrt(sm) gamma(:,:)=t1*gamma(:,:) end if ! find step size which keeps occupation numbers in the interval [0,occmax] tau=taurdmn 20 continue if (abs(tau) < eps) goto 30 do ik=1,nkpt do ist=1,nstsv t1=occsv(ist,ik)+tau*gamma(ist,ik) if (gamma(ist,ik) > 0.d0) then if (t1 > occmax+eps) then tau=0.75d0*tau goto 20 end if end if if (gamma(ist,ik) < 0.d0) then if (t1 < -eps) then tau=0.75d0*tau goto 20 end if end if end do end do 30 continue ! update occupation numbers and write to file do ik=1,nkpt do ist=1,nstsv occsv(ist,ik)=occsv(ist,ik)+tau*gamma(ist,ik) end do call putoccsv(filext,ik,occsv(:,ik)) end do deallocate(gamma) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmdkdc.f900000644000000000000000000000013214536061314014160 xustar0030 mtime=1702388428.379500806 30 atime=1702388427.278502437 30 ctime=1702388428.379500806 elk-9.2.12/src/rdmdkdc.f900000644002504400250440000000203614536061314016703 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmdkdc ! !INTERFACE: subroutine rdmdkdc ! !USES: use modmain use modrdm use modomp ! !DESCRIPTION: ! Calculates the derivative of kinetic energy w.r.t. the second-variational ! coefficients {\tt evecsv}. ! ! !REVISION HISTORY: ! Created October 2008 (Sharma) !EOP !BOC implicit none ! local variables integer ik,nthd ! allocatable arrays complex(8), allocatable :: evecsv(:,:),kmat(:,:) call holdthd(nkpt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecsv,kmat) & !$OMP NUM_THREADS(nthd) allocate(evecsv(nstsv,nstsv),kmat(nstsv,nstsv)) !$OMP DO do ik=1,nkpt call getevecsv(filext,ik,vkl(:,ik),evecsv) call getkmat(ik,kmat) call zgemm('N','N',nstsv,nstsv,nstsv,zone,kmat,nstsv,evecsv,nstsv,zzero, & dkdc(:,:,ik),nstsv) end do !$OMP END DO deallocate(evecsv,kmat) !$OMP END PARALLEL call freethd(nthd) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmenergy.f900000644000000000000000000000013214536061314014544 xustar0030 mtime=1702388428.380500805 30 atime=1702388427.280502434 30 ctime=1702388428.380500805 elk-9.2.12/src/rdmenergy.f900000644002504400250440000000427014536061314017271 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2005-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmenergy ! !INTERFACE: subroutine rdmenergy ! !USES: use modmain use modrdm use modtest ! !DESCRIPTION: ! Calculates RDMFT total energy (free energy for finite temperatures). ! ! !REVISION HISTORY: ! Created 2008 (Sharma) ! Updated for free energy 2009 (Baldsiefen) !EOP !BOC implicit none ! local variables integer ik,ist,is,ias integer nr,nri,ir,i real(8) wo complex(8) z1 ! automatic arrays real(8) rfmt(npmtmax) ! allocatable arrays complex(8), allocatable :: evecsv(:,:) ! external functions real(8), external :: rfmtinp complex(8), external :: zdotc ! Coulomb energy from core states engyvcl=0.d0 do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) rfmt(1:npmt(is))=0.d0 i=1 if (spincore) then ! spin-polarised core do ir=1,nri rfmt(i)=rhocr(ir,ias,1)+rhocr(ir,ias,2) i=i+lmmaxi end do do ir=nri+1,nr rfmt(i)=rhocr(ir,ias,1)+rhocr(ir,ias,2) i=i+lmmaxo end do else ! spin-unpolarised core do ir=1,nri rfmt(i)=rhocr(ir,ias,1) i=i+lmmaxi end do do ir=nri+1,nr rfmt(i)=rhocr(ir,ias,1) i=i+lmmaxo end do end if engyvcl=engyvcl+rfmtinp(nr,nri,wrmt(:,is),rfmt,vclmt(:,ias)) end do engykn=engykncr allocate(evecsv(nstsv,nstsv)) do ik=1,nkpt call getevecsv(filext,ik,vkl(:,ik),evecsv) do ist=1,nstsv wo=wkpt(ik)*occsv(ist,ik) ! Coulomb energy from valence states engyvcl=engyvcl+wo*dble(vclmat(ist,ist,ik)) ! kinetic energy from valence states z1=zdotc(nstsv,evecsv(:,ist),1,dkdc(:,ist,ik),1) engykn=engykn+wo*dble(z1) end do end do deallocate(evecsv) ! Madelung term engymad=0.d0 do ias=1,natmtot is=idxis(ias) engymad=engymad+0.5d0*spzn(is)*(vclmt(1,ias)-vcln(1,is))*y00 end do ! exchange-correlation energy call rdmengyxc ! total energy engytot=0.5d0*engyvcl+engymad+engykn+engyx if (rdmtemp > 0.d0) then call rdmentropy engytot=engytot-rdmtemp*rdmentrpy end if ! write total energy to test file call writetest(300,'RDMFT total energy',tol=1.d-6,rv=engytot) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmwritededn.f900000644000000000000000000000013214536061314015240 xustar0030 mtime=1702388428.381500804 30 atime=1702388427.281502432 30 ctime=1702388428.381500804 elk-9.2.12/src/rdmwritededn.f900000644002504400250440000000203714536061314017764 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rdmwritededn ! !INTERFACE: subroutine rdmwritededn(dedn) ! !USES: use modmain use modrdm ! !INPUT/OUTPUT PARAMETERS: ! dedn : derivative of energy (in,real(nstsv,nkpt)) ! !DESCRIPTION: ! Writes the derivative of total energy with respect to occupation numbers to ! file {\tt RDM\_DEDN.OUT}. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! arguments real(8), intent(in) :: dedn(nstsv,nkpt) ! local variables integer ik,ist open(50,file='RDM_DEDN.OUT',form='FORMATTED') write(50,'(I6," : nkpt")') nkpt write(50,'(I6," : nstsv")') nstsv do ik=1,nkpt write(50,*) write(50,'(I6,3G18.10," : k-point, vkl")') ik,vkl(:,ik) write(50,'(" (state, occupancy and derivative below)")') do ist=1,nstsv write(50,'(I6,4G18.10)') ist,occsv(ist,ik),-dedn(ist,ik) end do end do close(50) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmdedn.f900000644000000000000000000000013214536061314014165 xustar0030 mtime=1702388428.383500801 30 atime=1702388427.283502429 30 ctime=1702388428.383500801 elk-9.2.12/src/rdmdedn.f900000644002504400250440000000265614536061314016720 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmdedn ! !INTERFACE: subroutine rdmdedn(dedn) ! !USES: use modmain use modrdm use modomp ! !INPUT/OUTPUT PARAMETERS: ! dedn : free energy derivative (out,real(nstsv,nkpt)) ! !DESCRIPTION: ! Calculates the negative of the derivative of total free energy w.r.t. ! occupation numbers. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! arguments real(8), intent(out) :: dedn(nstsv,nkpt) ! local variables integer ik,ist,nthd ! allocatable arrays complex(8), allocatable :: evecsv(:,:),c(:,:) call holdthd(nkpt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecsv,c,ist) & !$OMP NUM_THREADS(nthd) allocate(evecsv(nstsv,nstsv),c(nstsv,nstsv)) !$OMP DO do ik=1,nkpt ! get eigenvectors from file call getevecsv(filext,ik,vkl(:,ik),evecsv) ! kinetic and Coulomb potential contribution call zgemm('C','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,dkdc(:,:,ik),nstsv, & zzero,c,nstsv) do ist=1,nstsv dedn(ist,ik)=-(dble(c(ist,ist))+dble(vclmat(ist,ist,ik))) end do end do !$OMP END DO deallocate(evecsv,c) !$OMP END PARALLEL call freethd(nthd) ! add exchange correlation contribution call rdmdexcdn(dedn) ! add entropic contribution if needed if (rdmtemp > 0.d0) call rdmdtsdn(dedn) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmdexcdn.f900000644000000000000000000000013214536061314014520 xustar0030 mtime=1702388428.384500799 30 atime=1702388427.285502426 30 ctime=1702388428.384500799 elk-9.2.12/src/rdmdexcdn.f900000644002504400250440000000420314536061314017241 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmdexcdn ! !INTERFACE: subroutine rdmdexcdn(dedn) ! !USES: use modmain use modrdm ! !INPUT/OUTPUT PARAMETERS: ! dedn : energy derivative (inout,real(nstsv,nkpt)) ! !DESCRIPTION: ! Calculates the derivative of the exchange-correlation energy w.r.t. ! occupation numbers and adds the result to the total. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! arguments real(8), intent(inout) :: dedn(nstsv,nkpt) ! local variables integer ik1,ik2,jk,iv(3) integer ist1,ist2 ! parameter for calculating the functional derivatives real(8), parameter :: eps=1.d-12 real(8) t1,t2,t3,t4 ! allocatable arays real(8), allocatable :: vcl1221(:,:,:) if (rdmxctype == 0) return ! calculate the prefactor if (rdmxctype == 1) then t1=1.d0/occmax ! Power functional else if (rdmxctype == 2) then if (spinpol) then t1=rdmalpha else t1=2.d0*rdmalpha*(0.25d0)**rdmalpha end if else write(*,*) write(*,'("Error(rdmdexcdn): rdmxctype not defined : ",I8)') rdmxctype write(*,*) stop end if allocate(vcl1221(nstsv,nstsv,nkpt)) ! start loop over non-reduced k-points do ik1=1,nkptnr ! get the Coulomb matrix elements call getvcl1221(ik1,vcl1221) ! find the equivalent reduced k-point iv(:)=ivk(:,ik1) jk=ivkik(iv(1),iv(2),iv(3)) ! loop over reduced k-points do ik2=1,nkpt do ist1=1,nstsv do ist2=1,nstsv ! Hartree-Fock functional if (rdmxctype == 1) then t2=t1*occsv(ist1,jk) ! Power functional else if (rdmxctype == 2) then t3=sum(abs(vkl(:,ik2)-vkl(:,ik1))) if ((ist2 == ist1).and.(t3 < epslat)) then t2=(1.d0/occmax)*occsv(ist1,jk) else t3=max(occsv(ist2,ik2),eps) t4=max(occsv(ist1,jk),eps) t2=t1*(t4**rdmalpha)/(t3**(1.d0-rdmalpha)) end if end if dedn(ist2,ik2)=dedn(ist2,ik2)+t2*vcl1221(ist2,ist1,ik2) end do end do end do end do deallocate(vcl1221) end subroutine !EOC elk-9.2.12/src/PaxHeaders/genvcl1223.f900000644000000000000000000000013214536061314014336 xustar0030 mtime=1702388428.386500796 30 atime=1702388427.286502425 30 ctime=1702388428.386500796 elk-9.2.12/src/genvcl1223.f900000644002504400250440000001163414536061314017065 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genvcl1223 ! !INTERFACE: subroutine genvcl1223(ikp,vcl1223) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ikp : k-point from non-reduced set (in,integer) ! vcl1223 : Coulomb matrix elements (out,complex(nstsv,nstsv,nstsv,nkpt)) ! !DESCRIPTION: ! Calculates Coulomb matrix elements of the type ! $$ V(1,2,2,3)=\int d^3r\,d^3r'\,\frac{\varphi_{i_1{\bf k}}^*({\bf r}) ! \varphi_{i_2{\bf k}'}({\bf r})\varphi_{i_2{\bf k}'}^*({\bf r}') ! \varphi_{i_3{\bf k}}({\bf r}')}{|{\bf r}-{\bf r}'|}. $$ ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! arguments integer, intent(in) :: ikp complex(8), intent(out) :: vcl1223(nstsv,nstsv,nstsv,nkpt) ! local variables integer ik,ist1,ist2,ist3 integer iv(3),iq,ig real(8) vc(3) complex(8) z1 ! allocatable arrays real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqrmt(:,:,:) complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: crhomt(:,:,:),crhoir(:,:) complex(4), allocatable :: cvclmt(:,:),cvclir(:) ! external functions complex(8), external :: zcfinp ! allocate local arrays allocate(vgqc(3,ngvc),gqc(ngvc),gclgq(ngvc)) allocate(jlgqrmt(0:lnpsd,ngvc,nspecies)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) allocate(ylmgq(lmmaxo,ngvc),sfacgq(ngvc,natmtot)) allocate(wfmt1(npcmtmax,natmtot,nspinor,nstsv),wfir1(ngtc,nspinor,nstsv)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv),wfir2(ngtc,nspinor,nstsv)) allocate(crhomt(npcmtmax,natmtot,nstsv),crhoir(ngtc,nstsv)) allocate(cvclmt(npcmtmax,natmtot),cvclir(ngtc)) ! get the eigenvectors from file for non-reduced k-point ikp call getevecfv(filext,0,vkl(:,ikp),vgkl(:,:,1,ikp),evecfv) call getevecsv(filext,0,vkl(:,ikp),evecsv) ! find the matching coefficients call match(ngk(1,ikp),vgkc(:,:,1,ikp),gkc(:,1,ikp),sfacgk(:,:,1,ikp),apwalm) ! calculate the wavefunctions for all states of passed non-reduced k-point ikp call genwfsv_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,ngk(1,ikp),igkig(:,1,ikp),& apwalm,evecfv,evecsv,wfmt2,ngtc,wfir2) ! start loop over reduced k-point set do ik=1,nkpt ! determine the q-vector iv(:)=ivk(:,ik)-ivk(:,ikp) iv(:)=modulo(iv(:),ngridk(:)) ! check if the q-point is in user-defined set iv(:)=iv(:)*ngridq(:) if (any(mod(iv(:),ngridk(:)) /= 0)) cycle iv(:)=iv(:)/ngridk(:) iq=ivqiq(iv(1),iv(2),iv(3)) vc(:)=vkc(:,ik)-vkc(:,ikp) do ig=1,ngvc ! determine the G+q-vectors vgqc(:,ig)=vgc(:,ig)+vc(:) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) ! spherical harmonics for G+q-vectors call genylmv(lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! structure factors for G+q call gensfacgp(ngvc,vgqc,ngvc,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngvc,gqc,gclgq) ! compute the required spherical Bessel functions call genjlgprmt(lnpsd,ngvc,gqc,ngvc,jlgqrmt) ! find the matching coefficients call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! calculate the wavefunctions for all states of the reduced k-point call genwfsv_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,ngk(1,ik),igkig(:,1,ik),& apwalm,evecfv,evecsv,wfmt1,ngtc,wfir1) !----------------------------------------------! ! valence-valence-valence contribution ! !----------------------------------------------! do ist2=1,nstsv do ist1=1,nstsv ! calculate the complex overlap density for all states call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist2),wfir2(:,:,ist2), & wfmt1(:,:,:,ist1),wfir1(:,:,ist1),crhomt(:,:,ist1),crhoir(:,ist1)) end do do ist3=1,nstsv ! compute the Coulomb potential call gencvclmt(nrcmt,nrcmti,nrcmtmax,rlcmt,wprcmt,npcmtmax, & crhomt(:,:,ist3),cvclmt) call cpotcoul(nrcmt,nrcmti,npcmt,nrcmtmax,rlcmt,ngdgc,igfc,ngvc,gqc, & gclgq,ngvc,jlgqrmt,ylmgq,sfacgq,crhoir(:,ist3),npcmtmax,cvclmt,cvclir) cvclir(:)=cvclir(:)*cfrc(:) do ist1=ist3,nstsv z1=zcfinp(crhomt(:,:,ist1),crhoir(:,ist1),cvclmt,cvclir) vcl1223(ist1,ist3,ist2,ik)=wqptnr*z1 end do end do end do ! calculate the lower diagonal do ist1=1,nstsv do ist3=1,ist1-1 vcl1223(ist3,ist1,:,ik)=conjg(vcl1223(ist1,ist3,:,ik)) end do end do ! end loop over reduced k-point set end do deallocate(vgqc,gqc,gclgq,jlgqrmt) deallocate(apwalm,evecfv,evecsv,ylmgq,sfacgq) deallocate(wfmt1,wfmt2,wfir1,wfir2) deallocate(crhomt,crhoir,cvclmt,cvclir) end subroutine !EOC elk-9.2.12/src/PaxHeaders/getvcl1221.f900000644000000000000000000000013214536061314014342 xustar0030 mtime=1702388428.387500795 30 atime=1702388427.288502422 30 ctime=1702388428.387500795 elk-9.2.12/src/getvcl1221.f900000644002504400250440000000173514536061314017072 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: getvcl1221 ! !INTERFACE: subroutine getvcl1221(ikp,vcl1221) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ikp : k-point from non-reduced set (in,integer) ! vcl1221 : Coulomb matrix elements (out,real(nstsv,nstsv,nkpt)) ! !DESCRIPTION: ! Retrieves Coulomb matrix elements of the type $V(1,2,2,1)$ from the file ! {\tt VCL1221.OUT}. ! ! !REVISION HISTORY: ! Created 2009 (Sharma) !EOP !BOC implicit none ! arguments integer, intent(in) :: ikp real(8), intent(out) :: vcl1221(nstsv,nstsv,nkpt) ! local variables integer recl ! determine record length inquire(iolength=recl) vcl1221 !$OMP CRITICAL(u260) open(260,file='VCL1221.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(260,rec=ikp) vcl1221 close(260) !$OMP END CRITICAL(u260) end subroutine !EOC elk-9.2.12/src/PaxHeaders/getvcl1223.f900000644000000000000000000000013214536061314014344 xustar0030 mtime=1702388428.388500793 30 atime=1702388427.290502419 30 ctime=1702388428.388500793 elk-9.2.12/src/getvcl1223.f900000644002504400250440000000175714536061314017100 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: getvcl1223 ! !INTERFACE: subroutine getvcl1223(ikp,vcl1223) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ikp : k-point from non-reduced set (in,integer) ! vcl1223 : Coulomb matrix elements (out,complex(nstsv,nstsv,nstsv,nkpt)) ! !DESCRIPTION: ! Retrieves Coulomb matrix elements of the type $V(1,2,2,3)$ from the file ! {\tt VCL1223.OUT}. ! ! !REVISION HISTORY: ! Created 2009 (Sharma) !EOP !BOC implicit none ! arguments integer, intent(in) :: ikp complex(8), intent(out) :: vcl1223(nstsv,nstsv,nstsv,nkpt) ! local variables integer recl ! determine record length inquire(iolength=recl) vcl1223 !$OMP CRITICAL(u262) open(262,file='VCL1223.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(262,rec=ikp) vcl1223 close(262) !$OMP END CRITICAL(u262) end subroutine !EOC elk-9.2.12/src/PaxHeaders/writevcl1221.f900000644000000000000000000000013014536061314014713 xustar0029 mtime=1702388428.39050079 30 atime=1702388427.291502417 29 ctime=1702388428.39050079 elk-9.2.12/src/writevcl1221.f900000644002504400250440000000276314536061314017447 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writevcl1221 ! !INTERFACE: subroutine writevcl1221 ! !USES: use modmain use modmpi use modomp ! !DESCRIPTION: ! Generates Coulomb matrix elements of the type $V(1,2,2,1)$ and outputs them ! to the file {\tt VCL1221.OUT}. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! allocatable arrays real(8), allocatable :: vcl1221(:,:,:) integer recl,ik,nthd ! determine record length for vcl1221 and open file allocate(vcl1221(nstsv,nstsv,nkpt)) inquire(iolength=recl) vcl1221 deallocate(vcl1221) open(260,file='VCL1221.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(vcl1221) & !$OMP NUM_THREADS(nthd) allocate(vcl1221(nstsv,nstsv,nkpt)) !$OMP DO do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(writevcl1221_) write(*,'("Info(writevcl1221): ",I6," of ",I6," k-points")') ik,nkptnr !$OMP END CRITICAL(writevcl1221_) ! calculate Coulomb matrix elements of the type V(1,2,2,1) call genvcl1221(ik,vcl1221) !$OMP CRITICAL(u260) write(260,rec=ik) vcl1221 !$OMP END CRITICAL(u260) end do !$OMP END DO deallocate(vcl1221) !$OMP END PARALLEL call freethd(nthd) close(260) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine !EOC elk-9.2.12/src/PaxHeaders/writevcl1223.f900000644000000000000000000000013214536061314014717 xustar0030 mtime=1702388428.391500789 30 atime=1702388427.293502415 30 ctime=1702388428.391500789 elk-9.2.12/src/writevcl1223.f900000644002504400250440000000415314536061314017444 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writevcl1223 ! !INTERFACE: subroutine writevcl1223 ! !USES: use modmain use modmpi use modomp ! !DESCRIPTION: ! Generates Coulomb matrix elements of the type $V(1,2,2,3)$ and outputs them ! to the file {\tt VCL1223.OUT}. Also writes the real diagonal of this matrix, ! $V(1,2,2,1)$, to {\tt VCL1221.OUT}. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! local variables integer ik,ist,recl,nthd ! allocatable arrays real(8), allocatable :: vcl1221(:,:,:) complex(8), allocatable :: vcl1223(:,:,:,:) ! determine record length for vcl1221 and open file allocate(vcl1221(nstsv,nstsv,nkpt)) inquire(iolength=recl) vcl1221 deallocate(vcl1221) open(260,file='VCL1221.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) ! determine record length for vcl1223 and open file allocate(vcl1223(nstsv,nstsv,nstsv,nkpt)) inquire(iolength=recl) vcl1223 deallocate(vcl1223) open(262,file='VCL1223.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(vcl1221,vcl1223,ist) & !$OMP NUM_THREADS(nthd) allocate(vcl1221(nstsv,nstsv,nkpt),vcl1223(nstsv,nstsv,nstsv,nkpt)) !$OMP DO do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(writevcl1223_) write(*,'("Info(writevcl1223): ",I6," of ",I6," k-points")') ik,nkptnr !$OMP END CRITICAL(writevcl1223_) ! calculate Coulomb matrix elements of the type V(1,2,2,3) call genvcl1223(ik,vcl1223) ! make a copy of the diagonal elements V(1,2,2,1) do ist=1,nstsv vcl1221(ist,:,:)=dble(vcl1223(ist,ist,:,:)) end do !$OMP CRITICAL(u260) write(260,rec=ik) vcl1221 !$OMP END CRITICAL(u260) !$OMP CRITICAL(u262) write(262,rec=ik) vcl1223 !$OMP END CRITICAL(u262) end do !$OMP END DO deallocate(vcl1221,vcl1223) !$OMP END PARALLEL call freethd(nthd) close(260) close(262) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmdexcdc.f900000644000000000000000000000013214536061314014505 xustar0030 mtime=1702388428.393500786 30 atime=1702388427.294502413 30 ctime=1702388428.393500786 elk-9.2.12/src/rdmdexcdc.f900000644002504400250440000000463714536061314017241 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmdexcdc ! !INTERFACE: subroutine rdmdexcdc(dedc) ! !USES: use modmain use modrdm ! !INPUT/OUTPUT PARAMETERS: ! dedc : energy derivative (inout,complex(nstsv,nstsv,nkpt)) ! !DESCRIPTION: ! Calculates the derivative of the exchange-correlation energy w.r.t. ! {\tt evecsv} and adds the result to the total. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! arguments complex(8), intent(inout) :: dedc(nstsv,nstsv,nkpt) ! local variables integer ik1,ik2,jk,iv(3) integer ist1,ist2,ist3,ist4 real(8) t1,t2,t3 ! allocatable arrays complex(8), allocatable :: vcl1223(:,:,:,:),evecsv(:,:) if (rdmxctype == 0) return ! calculate the prefactor if (rdmxctype == 1) then ! Hartree-Fock functional t1=1.d0/occmax else if (rdmxctype == 2) then ! Power functional if (spinpol) then t1=1.d0 else t1=2.d0*(0.25d0)**rdmalpha end if else write(*,*) write(*,'("Error(rdmdexcdc): rdmxctype not defined : ",I8)') rdmxctype write(*,*) stop end if allocate(vcl1223(nstsv,nstsv,nstsv,nkpt)) allocate(evecsv(nstsv,nstsv)) ! start loop over non-reduced k-points do ik1=1,nkptnr ! get the Coulomb matrix elements call getvcl1223(ik1,vcl1223) ! find the equivalent reduced k-point iv(:)=ivk(:,ik1) jk=ivkik(iv(1),iv(2),iv(3)) ! start loop over reduced k-points do ik2=1,nkpt ! get the eigenvectors from file call getevecsv(filext,ik2,vkl(:,ik2),evecsv) do ist4=1,nstsv do ist3=1,nstsv do ist2=1,nstsv do ist1=1,nstsv if (rdmxctype == 1) then ! Hartree-Fock functional t2=t1*occsv(ist3,ik2)*occsv(ist4,jk) else if (rdmxctype == 2) then ! Power functional t3=sum(abs(vkl(:,ik2)-vkl(:,ik1))) if ((ist3 == ist4).and.(t3 < epslat)) then t2=(1.d0/occmax)*occsv(ist4,jk)**2 else t2=t1*(occsv(ist3,ik2)*occsv(ist4,jk))**rdmalpha end if end if dedc(ist2,ist3,ik2)=dedc(ist2,ist3,ik2)-t2*evecsv(ist2,ist1)* & vcl1223(ist1,ist3,ist4,ik2) end do end do end do end do ! end loop over reduced k-points end do ! end loop over non-reduced k-points end do deallocate(vcl1223,evecsv) end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmdtsdn.f900000644000000000000000000000013114536061314014366 xustar0030 mtime=1702388428.394500784 29 atime=1702388427.29650241 30 ctime=1702388428.394500784 elk-9.2.12/src/rdmdtsdn.f900000644002504400250440000000164014536061314017112 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 T. Baldsiefen, S. Sharma, J. K. Dewhurst and ! E. K. U. Gross. This file is distributed under the terms of the GNU Lesser ! General Public License. See the file COPYING for license details. !BOP ! !ROUTINE: rdmdtsdn ! !INTERFACE: subroutine rdmdtsdn(dedn) ! !USES: use modmain use modrdm ! !INPUT/OUTPUT PARAMETERS: ! dedn : energy derivative (inout,real(nstsv,nkpt)) ! !DESCRIPTION: ! Calculates the derivative of the entropic contribution to the free energy ! with respect to the occupation numbers and adds it to the total. ! ! !REVISION HISTORY: ! Created 2008 (Baldsiefen) !EOP !BOC implicit none ! arguments real(8), intent(inout) :: dedn(nstsv,nkpt) ! local variables integer ik,ist real(8) t1 do ik=1,nkpt do ist=1,nstsv t1=max(occsv(ist,ik),epsocc) t1=min(t1,occmax-epsocc) dedn(ist,ik)=dedn(ist,ik)-rdmtemp*kboltz*log(t1/(occmax-t1)) end do end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmentropy.f900000644000000000000000000000013214536061314014753 xustar0030 mtime=1702388428.395500783 30 atime=1702388427.297502408 30 ctime=1702388428.395500783 elk-9.2.12/src/rdmentropy.f900000644002504400250440000000156014536061314017477 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 T. Baldsiefen, S. Sharma, J. K. Dewhurst and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. !BOP ! !ROUTINE: rdmentropy ! !INTERFACE: subroutine rdmentropy ! !USES: use modmain use modrdm ! !DESCRIPTION: ! Calculates RDMFT entropy $S=-\sum_i n_i\log(n_i/n_{\rm max}) ! +(n_{\rm max}-n_i)\log(1-n_i/n_{\rm max})$, where $n_{\rm max}$ is the ! maximum allowed occupancy (1 or 2). ! ! !REVISION HISTORY: ! Created 2008 (Baldsiefen) !EOP !BOC implicit none ! local variables integer ik,ist real(8) t1 rdmentrpy=0.d0 do ik=1,nkpt do ist=1,nstsv t1=max(occsv(ist,ik),epsocc) t1=min(t1,occmax-epsocc) rdmentrpy=rdmentrpy-wkpt(ik)*(t1*log(t1/occmax) & +(occmax-t1)*log(1.d0-t1/occmax)) end do end do rdmentrpy=kboltz*rdmentrpy end subroutine !EOC elk-9.2.12/src/PaxHeaders/rdmeval.f900000644000000000000000000000013014536061314014200 xustar0029 mtime=1702388428.39750078 30 atime=1702388427.298502407 29 ctime=1702388428.39750078 elk-9.2.12/src/rdmeval.f900000644002504400250440000000165014536061314016726 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmeval ! !INTERFACE: subroutine rdmeval ! !USES: use modmain use modrdm ! !DESCRIPTION: ! RDMFT eigenvalues are determined by calculating the derivative of the total ! energy with respect to the occupation number at half the maximum occupancy ! ($n_{\rm max}/2$). ! ! !REVISION HISTORY: ! Created 2009 (Sharma) !EOP !BOC implicit none ! local variables integer ik,ist real(8) t1 ! allocatable arrays real(8), allocatable :: dedn(:,:) allocate(dedn(nstsv,nkpt)) do ik=1,nkpt do ist=1,nstsv t1=occsv(ist,ik) occsv(ist,ik)=occmax/2.d0 call rdmdedn(dedn) evalsv(ist,ik)=-dedn(ist,ik) occsv(ist,ik)=t1 end do call putevalsv(filext,ik,evalsv(:,ik)) end do deallocate(dedn) end subroutine !EOC elk-9.2.12/src/PaxHeaders/genvcl1221.f900000644000000000000000000000013214536061314014334 xustar0030 mtime=1702388428.398500778 30 atime=1702388427.300502404 30 ctime=1702388428.398500778 elk-9.2.12/src/genvcl1221.f900000644002504400250440000001101114536061314017050 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genvcl1221 ! !INTERFACE: subroutine genvcl1221(ikp,vcl1221) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ikp : k-point from non-reduced set (in,integer) ! vcl1221 : Coulomb matrix elements (out,real(nstsv,nstsv,nkpt)) ! !DESCRIPTION: ! Calculates the Coulomb matrix elements of the type $V(1,2,2,1)$. See the ! routine {\tt genvcl1223} for details. ! ! !REVISION HISTORY: ! Created June 2008 (Sharma) !EOP !BOC implicit none ! arguments integer, intent(in) :: ikp real(8), intent(out) :: vcl1221(nstsv,nstsv,nkpt) ! local variables integer ik,ist1,ist2 integer iv(3),iq,ig real(8) vc(3) complex(8) z1 ! allocatable arrays real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqrmt(:,:,:) complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: crhomt(:,:),crhoir(:) complex(4), allocatable :: cvclmt(:,:),cvclir(:) ! external functions complex(8), external :: zcfinp ! allocate local arrays allocate(vgqc(3,ngvc),gqc(ngvc),gclgq(ngvc)) allocate(jlgqrmt(0:lnpsd,ngvc,nspecies)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) allocate(ylmgq(lmmaxo,ngvc),sfacgq(ngvc,natmtot)) allocate(wfmt1(npcmtmax,natmtot,nspinor,nstsv),wfir1(ngtc,nspinor,nstsv)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv),wfir2(ngtc,nspinor,nstsv)) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) allocate(cvclmt(npcmtmax,natmtot),cvclir(ngtc)) ! get the eigenvectors from file for non-reduced k-point ikp call getevecfv(filext,0,vkl(:,ikp),vgkl(:,:,1,ikp),evecfv) call getevecsv(filext,0,vkl(:,ikp),evecsv) ! find the matching coefficients call match(ngk(1,ikp),vgkc(:,:,1,ikp),gkc(:,1,ikp),sfacgk(:,:,1,ikp),apwalm) ! calculate the wavefunctions for all states of passed non-reduced k-point ikp call genwfsv_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,ngk(1,ikp),igkig(:,1,ikp),& apwalm,evecfv,evecsv,wfmt2,ngtc,wfir2) ! start loop over reduced k-point set do ik=1,nkpt ! determine the q-vector iv(:)=ivk(:,ik)-ivk(:,ikp) iv(:)=modulo(iv(:),ngridk(:)) ! check if the q-point is in user-defined set iv(:)=iv(:)*ngridq(:) if (any(mod(iv(:),ngridk(:)) /= 0)) cycle iv(:)=iv(:)/ngridk(:) iq=ivqiq(iv(1),iv(2),iv(3)) vc(:)=vkc(:,ik)-vkc(:,ikp) do ig=1,ngvc ! determine the G+q-vectors vgqc(:,ig)=vgc(:,ig)+vc(:) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) ! spherical harmonics for G+q-vectors call genylmv(lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! structure factors for G+q call gensfacgp(ngvc,vgqc,ngvc,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngvc,gqc,gclgq) ! compute the required spherical Bessel functions call genjlgprmt(lnpsd,ngvc,gqc,ngvc,jlgqrmt) ! find the matching coefficients call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! calculate the wavefunctions for all states of the reduced k-point call genwfsv_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,ngk(1,ik),igkig(:,1,ik),& apwalm,evecfv,evecsv,wfmt1,ngtc,wfir1) !----------------------------------------------! ! valence-valence-valence contribution ! !----------------------------------------------! do ist1=1,nstsv do ist2=1,nstsv ! calculate the complex overlap density call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist2),wfir2(:,:,ist2), & wfmt1(:,:,:,ist1),wfir1(:,:,ist1),crhomt,crhoir) ! compute the potential and G=0 coefficient of the density call gencvclmt(nrcmt,nrcmti,nrcmtmax,rlcmt,wprcmt,npcmtmax,crhomt,cvclmt) call cpotcoul(nrcmt,nrcmti,npcmt,nrcmtmax,rlcmt,ngdgc,igfc,ngvc,gqc, & gclgq,ngvc,jlgqrmt,ylmgq,sfacgq,crhoir,npcmtmax,cvclmt,cvclir) cvclir(:)=cvclir(:)*cfrc(:) z1=zcfinp(crhomt,crhoir,cvclmt,cvclir) vcl1221(ist1,ist2,ik)=wqptnr*dble(z1) ! end loop over ist2 end do ! end loop over ist1 end do ! end loop over reduced k-point set end do deallocate(vgqc,gqc,gclgq,jlgqrmt) deallocate(apwalm,evecfv,evecsv,ylmgq,sfacgq) deallocate(wfmt1,wfmt2,wfir1,wfir2) deallocate(crhomt,crhoir,cvclmt,cvclir) end subroutine !EOC elk-9.2.12/src/PaxHeaders/gwdmat.f900000644000000000000000000000013214536061314014033 xustar0030 mtime=1702388428.399500777 30 atime=1702388427.301502403 30 ctime=1702388428.399500777 elk-9.2.12/src/gwdmat.f900000644002504400250440000000300614536061314016554 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gwdmat use modmain use modgw use modmpi use modomp implicit none ! local variables integer ik,lp,nthd ! initialise universal variables call init0 call init1 call init3 ! read Fermi energy from file call readfermi ! get the eigenvalues from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) end do ! determine the GW Fermi energy call gwefermi ! compute the GW density matrices and write the natural orbitals and occupation ! numbers to EVECSV.OUT and OCCSV.OUT, respectively call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call gwdmatk(ik) end do !$OMP END PARALLEL DO call freethd(nthd) ! broadcast occupation number array to every MPI process if (np_mpi > 1) then do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(occsv(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) end do end if if (mp_mpi) then ! write the occupation numbers to file do ik=1,nkpt call putoccsv(filext,ik,occsv(:,ik)) end do write(*,*) write(*,'("Info(gwdmat):")') write(*,'(" GW density matrices determined for each k-point")') write(*,*) write(*,'(" Natural orbitals and occupation numbers written to")') write(*,'(" EVECSV.OUT and OCCSV.OUT, respectively")') end if end subroutine elk-9.2.12/src/PaxHeaders/gwlocal.f900000644000000000000000000000013014536061314014176 xustar0030 mtime=1702388428.401500774 28 atime=1702388427.3035024 30 ctime=1702388428.401500774 elk-9.2.12/src/gwlocal.f900000644002504400250440000000301314536061314016717 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine gwlocal(vmt,vir,bmt,bir) use modmain implicit none ! arguments real(8), intent(out) :: vmt(npcmtmax,natmtot),vir(ngtot) real(8), intent(out) :: bmt(npcmtmax,natmtot,ndmag),bir(ngtot,ndmag) ! local variables integer idm,is,ias integer nrc,nrci,npc ! automatic arrays real(8) rfmt(npcmtmax) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) ! convert exchange-correlation potential to a coarse radial mesh call rfmtftoc(nrc,nrci,vxcmt(:,ias),rfmt) ! negate because V_xc should be removed from the self-energy rfmt(1:npc)=-rfmt(1:npc) ! convert to spherical coordinates call rbsht(nrc,nrci,rfmt,vmt(:,ias)) ! multiply by radial integration weights call rfcmtwr(nrc,nrci,wrcmt(:,is),vmt(:,ias)) end do ! negate and multiply the interstitial V_xc by the characteristic function vir(:)=-vxcir(:)*cfunir(:) ! do the same for B_xc in the spin-polarised case if (spinpol) then do idm=1,ndmag do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) call rfmtftoc(nrc,nrci,bxcmt(:,ias,idm),rfmt) rfmt(1:npc)=-rfmt(1:npc) call rbsht(nrc,nrci,rfmt,bmt(:,ias,idm)) call rfcmtwr(nrc,nrci,wrcmt(:,is),bmt(:,ias,idm)) end do end do do idm=1,ndmag bir(:,idm)=-bxcir(:,idm)*cfunir(:) end do end if end subroutine elk-9.2.12/src/PaxHeaders/genwgw.f900000644000000000000000000000013214536061314014046 xustar0030 mtime=1702388428.402500772 30 atime=1702388427.304502398 30 ctime=1702388428.402500772 elk-9.2.12/src/genwgw.f900000644002504400250440000000326414536061314016575 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine genwgw use modmain use modgw implicit none ! local variables integer ik,iw,jw,n real(8) de,t0,t1 t0=kboltz*tempk if (wmaxgw <= 0.d0) then ! read the Fermi energy from file call readfermi ! find the maximum eigenvalue range over all k-points do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) end do de=maxval(abs(evalsv(:,:)-efermi)) wmaxgw=abs(wmaxgw)*de end if ! number of Matsubara frequencies t1=pi*t0 nwgw=2*nint(wmaxgw/t1) nwgw=max(nwgw,2) call nfftifc(4,nwgw) ! determine integer ranges for grid intwgw(1)=nwgw/2-nwgw+1 intwgw(2)=nwgw/2 if (allocated(iwfft)) deallocate(iwfft) allocate(iwfft(intwgw(1):intwgw(2))) if (allocated(wgw)) deallocate(wgw) allocate(wgw(intwgw(1):intwgw(2))) do iw=intwgw(1),intwgw(2) if (iw >= 0) then jw=iw else jw=nwgw+iw end if iwfft(iw)=jw+1 wgw(iw)=dble(iw)*t1 end do n=minval(abs(intwgw(:))) if (n == 0) then write(*,*) write(*,'("Error(genwgw): not enough Matsubara frequencies")') write(*,'("Increase wmaxgw")') write(*,*) stop end if if (mod(n,2) == 0) then nwbs=n nwfm=n-1 else nwfm=n nwbs=n-1 end if ! store the complex fermionic frequencies if (allocated(wfm)) deallocate(wfm) allocate(wfm(0:nwfm)) do iw=-nwfm,nwfm,2 jw=(iw+nwfm)/2 wfm(jw)=cmplx(0.d0,wgw(iw),8) end do ! store the complex response function frequencies nwrf=nwbs+1 if (allocated(wrf)) deallocate(wrf) allocate(wrf(nwrf)) do iw=-nwbs,nwbs,2 jw=(iw+nwbs)/2+1 wrf(jw)=cmplx(0.d0,wgw(iw),8) end do end subroutine elk-9.2.12/src/PaxHeaders/ksinvert.f900000644000000000000000000000013214536061314014415 xustar0030 mtime=1702388428.403500771 30 atime=1702388427.306502395 30 ctime=1702388428.403500771 elk-9.2.12/src/ksinvert.f900000644002504400250440000000444614536061314017147 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 P. Elliott, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine ksinvert use modmain use modmpi implicit none ! local variables integer idm,it ! allocatable arrays real(8), allocatable :: rhomt_(:,:),rhoir_(:) real(8), allocatable :: magmt_(:,:,:),magir_(:,:) real(8), allocatable :: rfmt(:,:),rfir(:) ! copy the existing density and magnetisation allocate(rhomt_(npmtmax,natmtot),rhoir_(ngtot)) call rfcopy(rhomt,rhoir,rhomt_,rhoir_) if (spinpol) then allocate(magmt_(npmtmax,natmtot,ndmag),magir_(ngtot,ndmag)) do idm=1,ndmag call rfcopy(magmt(:,:,idm),magir(:,idm),magmt_(:,:,idm),magir_(:,idm)) end do end if allocate(rfmt(npmtmax,natmtot),rfir(ngtot)) if (mp_mpi) then write(*,'("Info(ksinvert): inverting the Kohn-Sham equations")') end if do it=1,maxitksi if (mp_mpi.and.(mod(it,10) == 0)) then write(*,'("Info(ksinvert): done ",I4," iterations of ",I4)') it,maxitksi end if call gencore call hmlrad call genevfsv call occupy call rhomag ! determine the residual and add it to the exchange-correlation potential call residual ! set the constant part of V_xc equal to zero call rfint0(0.d0,vxcmt,vxcir) ! add the external and Hartree potentials call potks(.false.) call genvsig end do deallocate(rhomt_,rhoir_,rfmt,rfir) if (spinpol) deallocate(magmt_,magir_) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) return contains subroutine residual implicit none ! local variables integer is,ias,np ! external functions real(8), external :: rfinp do ias=1,natmtot is=idxis(ias) np=npmt(is) rfmt(1:np,ias)=rhomt(1:np,ias)-rhomt_(1:np,ias) vxcmt(1:np,ias)=vxcmt(1:np,ias)+tauksi*rfmt(1:np,ias) end do rfir(:)=rhoir(:)-rhoir_(:) vxcir(:)=vxcir(:)+tauksi*rfir(:) resksi=rfinp(rfmt,rfir,rfmt,rfir) if (spinpol) then do idm=1,ndmag do ias=1,natmtot is=idxis(ias) np=npmt(is) rfmt(1:np,ias)=magmt(1:np,ias,idm)-magmt_(1:np,ias,idm) bxcmt(1:np,ias,idm)=bxcmt(1:np,ias,idm)+tauksi*rfmt(1:np,ias) end do rfir(:)=magir(:,idm)-magir_(:,idm) bxcir(:,idm)=bxcir(:,idm)+tauksi*rfir(:) resksi=resksi+rfinp(rfmt,rfir,rfmt,rfir) end do end if resksi=sqrt(resksi)/omega end subroutine end subroutine elk-9.2.12/src/PaxHeaders/gtwsum.f900000644000000000000000000000013014536061314014074 xustar0029 mtime=1702388428.40450077 30 atime=1702388427.307502394 29 ctime=1702388428.40450077 elk-9.2.12/src/gtwsum.f900000644002504400250440000000312014536061314016614 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 A. Davydov, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gtwsum ! !INTERFACE: pure complex(8) function gtwsum(gf,gl) ! !USES: use modmain use modgw ! !INPUT/OUTPUT PARAMETERS: ! gf : first point of the Green's function (in,complex) ! gl : last point of the Green's function (in,complex) ! !DESCRIPTION: ! Sums the tails of the Green's function over the Matsubara frequencies as ! part of the evaluation of the density matrix. Thus if the Green's function ! $G(ij{\bf k},\omega_n)$ has been determined numerically over all Fermionic ! Matsubara frequencies up to $\pm \omega_{n_{\rm max}}$, then the density ! matrix is approximated by ! $$ \gamma_{ij{\bf k}}=\frac{1}{\beta}\sum_{n\;{\rm odd}}^{\pm n_{\rm max}} ! \left[G(ij{\bf k},\omega_n)+\frac{a_2}{\omega_n^2}\right] ! +\frac{1}{2}a_1-\frac{\beta}{4}a_2, $$ ! where $a_1$ and $a_2$ are chosen so that the Green's function is equal to ! $$ g(z)=\frac{a_1}{z}+\frac{a_2}{z^2} $$ ! at the first and last points $z=\pm i\omega_{n_{\rm max}}$. ! ! !REVISION HISTORY: ! Created April 2018 (A. Davydov) !EOP !BOC implicit none ! arguments complex(8), intent(in) :: gf,gl ! local variables integer iw real(8) b,sm complex(8) a1,a2,z1 z1=wfm(0) a1=0.5d0*(gf-gl)*z1 a2=0.5d0*(gf+gl)*z1**2 b=1.d0/(kboltz*tempk) gtwsum=b*(0.5d0*a1-0.25d0*b*a2) sm=0.d0 !$OMP SIMD REDUCTION(+:sm) SIMDLEN(8) do iw=0,nwfm sm=sm+1.d0/aimag(wfm(iw))**2 end do gtwsum=gtwsum+sm*a2 end function !EOC elk-9.2.12/src/PaxHeaders/minf_nm.f900000644000000000000000000000013214536061314014173 xustar0030 mtime=1702388428.406500766 30 atime=1702388427.309502391 30 ctime=1702388428.406500766 elk-9.2.12/src/minf_nm.f900000644002504400250440000000402414536061314016715 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst and D. W. H. Rankin. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine minf_nm(id,rd,n,x,maxit,iter,eps) implicit none ! arguments integer, intent(in) :: id(*) real(8), intent(in) :: rd(*) integer, intent(in) :: n real(8), intent(inout) :: x(n,n+1) integer, intent(in) :: maxit integer, intent(out) :: iter real(8), intent(in) :: eps ! local variables integer i,j,il,iu ! Nelder-Mead parmeters real(8), parameter :: alpha=1.d0,gamma=2.d0 real(8), parameter :: beta=0.5d0,sigma=0.5d0 real(8) fr,fe,fc,sm,t1 ! automatic arrays real(8) f(n+1),xm(n),xr(n),xe(n),xc(n) ! external functions real(8), external :: fmin_nm if (n < 0) then write(*,*) write(*,'("Error(minf_nm): n <= 0 : ",I8)') n write(*,*) stop end if ! evaluate the function at each vertex do i=1,n+1 f(i)=fmin_nm(id,rd,x(:,i)) end do iter=0 10 continue iter=iter+1 if (iter >= maxit) return ! find the lowest and highest vertex il=1 iu=1 do i=2,n+1 if (f(i) < f(il)) il=i if (f(i) > f(iu)) iu=i end do ! check for convergence if ((f(iu)-f(il)) < eps) return ! compute the mean of the n lowest vertices t1=1.d0/dble(n) do i=1,n sm=0.d0 do j=1,iu-1 sm=sm+x(i,j) end do do j=iu+1,n+1 sm=sm+x(i,j) end do xm(i)=t1*sm end do xr(:)=xm(:)+alpha*(xm(:)-x(:,iu)) fr=fmin_nm(id,rd,xr) if (f(il) > fr) goto 30 if ((f(il) <= fr).and.(fr < f(iu))) then ! reflection x(:,iu)=xr(:) f(iu)=fr goto 10 else goto 40 end if 30 continue xe(:)=xm(:)+gamma*(xr(:)-xm(:)) fe=fmin_nm(id,rd,xe) if (fr > fe) then ! expansion x(:,iu)=xe(:) f(iu)=fe else ! reflection x(:,iu)=xr(:) f(iu)=fr end if goto 10 40 continue xc(:)=xm(:)+beta*(x(:,iu)-xm(:)) fc=fmin_nm(id,rd,xc) if (fc < f(iu)) then ! contraction x(:,iu)=xc(:) f(iu)=fc goto 10 end if ! shrinkage do j=1,il-1 x(:,j)=x(:,il)+sigma*(x(:,j)-x(:,il)) f(j)=fmin_nm(id,rd,x(1,j)) end do do j=il+1,n+1 x(:,j)=x(:,il)+sigma*(x(:,j)-x(:,il)) f(j)=fmin_nm(id,rd,x(1,j)) end do goto 10 end subroutine elk-9.2.12/src/PaxHeaders/acpole.f900000644000000000000000000000013214536061314014013 xustar0030 mtime=1702388428.407500765 30 atime=1702388427.310502389 30 ctime=1702388428.407500765 elk-9.2.12/src/acpole.f900000644002504400250440000000262714536061314016544 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine acpole(zm,zwr,zr) use modmain use modgw implicit none ! arguments complex(8), intent(in) :: zm(0:nwfm),zwr(nwplot) complex(8), intent(out) :: zr(nwplot) ! local variables integer, parameter :: maxit=1000 integer iter,iw integer n,n2,i,j real(8), parameter :: eps=1.d-5 ! allocatable arrays real(8), allocatable :: x(:,:) ! external functions complex(8), external :: zfpole n=2*npole+1 n2=2*n allocate(x(n2,n2+1)) ! intialise simplex x(:,:)=0.d0 ! fit the constant x(1,2)=0.5d0 x(2,3)=0.5d0 call minf_nm(1,zm,n2,x,maxit,iter,eps) ! fit the constant and the first pole x(3,1)=1.d0 do i=1,6 x(i,i+1)=x(i,1)+0.1d0 end do call minf_nm(1,zm,n2,x,maxit,iter,eps) ! fit the remaining poles one-by-one i=7 do j=2,npole x(i,1)=1.d0 x(i,i+1)=x(i,1)+0.1d0 i=i+1 x(i,i+1)=0.1d0 i=i+1 x(i,i+1)=0.1d0 i=i+1 x(i,i+1)=0.1d0 i=i+1 call minf_nm(1,zm,n2,x,maxit,iter,eps) end do ! fit the constant and the first pole again do i=1,6 x(i,i+1)=x(i,1)+0.1d0 end do call minf_nm(1,zm,n2,x,maxit,iter,eps) ! fit everything together if (npole > 1) then do i=1,n2 x(i,i+1)=x(i,1)+0.1d0 end do call minf_nm(1,zm,n2,x,maxit,iter,eps) end if do iw=1,nwplot zr(iw)=zfpole(x(:,1),zwr(iw)) end do deallocate(x) end subroutine elk-9.2.12/src/PaxHeaders/gwrhomag.f900000644000000000000000000000013214536061314014363 xustar0030 mtime=1702388428.408500763 30 atime=1702388427.312502386 30 ctime=1702388428.408500763 elk-9.2.12/src/gwrhomag.f900000644002504400250440000000224414536061314017107 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine gwrhomag use modmain use modgw use modmpi use modomp implicit none ! local variables integer ik,lp,nthd ! compute the GW density matrices and write the natural orbitals and occupation ! numbers to EVECSV.OUT and OCCSV.OUT, respectively call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call gwdmatk(ik) end do !$OMP END PARALLEL DO call freethd(nthd) ! broadcast occupation number array to every MPI process if (np_mpi > 1) then do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(occsv(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) end do end if ! write the occupation numbers to file if (mp_mpi) then do ik=1,nkpt call putoccsv(filext,ik,occsv(:,ik)) end do end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! determine the density and magnetisation in the usual way call rhomag end subroutine elk-9.2.12/src/PaxHeaders/gwdmatk.f900000644000000000000000000000013214536061314014206 xustar0030 mtime=1702388428.409500762 30 atime=1702388427.314502383 30 ctime=1702388428.409500762 elk-9.2.12/src/gwdmatk.f900000644002504400250440000000441014536061314016727 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gwdmatk(ik) use modmain use modgw implicit none ! arguments integer, intent(in) :: ik ! local variables integer ist,jst,iw real(8) e,t1 complex(8) z1 ! allocatable arrays complex(8), allocatable :: evecsv(:,:),se(:,:,:) complex(8), allocatable :: gs(:),g(:,:),gf(:,:),gl(:,:) complex(8), allocatable :: d(:,:),a(:,:) ! external functions complex(8), external :: gtwsum ! read the self-energy from file allocate(se(nstsv,nstsv,0:nwfm)) call getgwsefm(ik,se) ! allocate local arrays allocate(gs(nstsv),g(nstsv,nstsv)) allocate(gf(nstsv,nstsv),gl(nstsv,nstsv)) allocate(d(nstsv,nstsv)) ! zero the density matrix d(:,:)=0.d0 ! loop over fermionic Matsubara frequencies do iw=0,nwfm ! compute the diagonal matrix G_s do ist=1,nstsv e=evalsv(ist,ik)-efermi gs(ist)=1.d0/(wfm(iw)-e) end do ! compute 1 - G_s Sigma do ist=1,nstsv z1=-gs(ist) g(ist,:)=z1*se(ist,:,iw) g(ist,ist)=g(ist,ist)+1.d0 end do ! invert this matrix call zminv(nstsv,g) ! compute G = (1 - G_s Sigma)^(-1) G_s do jst=1,nstsv z1=gs(jst) g(:,jst)=g(:,jst)*z1 end do ! add to the density matrix d(:,:)=d(:,:)+g(:,:) ! store the Green's function at the first and last frequencies if (iw == 0) gf(:,:)=g(:,:) if (iw == nwfm) gl(:,:)=g(:,:) end do ! add the Matsubara tails analytically do jst=1,nstsv do ist=1,nstsv d(ist,jst)=d(ist,jst)+gtwsum(gf(ist,jst),gl(ist,jst)) end do end do ! multiply by 1/beta t1=kboltz*tempk d(:,:)=t1*d(:,:) deallocate(se,gs,g,gf,gl) ! diagonalise the density matrix for the natural orbitals and occupation numbers call eveqnzh(nstsv,nstsv,d,occsv(:,ik)) occsv(:,ik)=occsv(:,ik)*occmax ! get the second-variational eigenvectors from file allocate(evecsv(nstsv,nstsv)) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! apply unitary transformation to the third-variational states so that they ! refer to the first-variational basis allocate(a(nstsv,nstsv)) call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,d,nstsv,zzero,a,nstsv) ! write the density matrix to file as second-variational eigenvectors call putevecsv(filext,ik,a) deallocate(evecsv,d,a) end subroutine elk-9.2.12/src/PaxHeaders/gwefermi.f900000644000000000000000000000013214536061314014355 xustar0030 mtime=1702388428.411500759 30 atime=1702388427.315502382 30 ctime=1702388428.411500759 elk-9.2.12/src/gwefermi.f900000644002504400250440000000276614536061314017112 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 P. Elliott, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gwefermi use modmain use modgw use modmpi use modomp implicit none ! local variables integer, parameter :: maxit=1000 integer ik,ist,it,nthd real(8) e0,e1,e real(8) chg,chgk if (mp_mpi) then write(*,'("Info(gwefermi): finding the GW Fermi energy")') end if ! find minimum and maximum eigenvalues e0=evalsv(1,1) e1=e0 do ik=1,nkpt do ist=1,nstsv e=evalsv(ist,ik) if (e < e0) e0=e if (e > e1) e1=e end do end do do it=1,maxit if (mp_mpi.and.(mod(it,10) == 0)) then write(*,'("Info(gwefermi): done ",I4," iterations")') it end if efermi=0.5d0*(e0+e1) chg=0.d0 ! begin parallel loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(chgk) REDUCTION(+:chg) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call gwchgk(ik,chgk) chg=chg+chgk end do !$OMP END PARALLEL DO call freethd(nthd) ! add charge from each process and redistribute if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,chg,1,mpi_double_precision,mpi_sum,mpicom, & ierror) end if if (chg < chgval) then e0=efermi else e1=efermi end if if ((e1-e0) < 1.d-12) return end do write(*,*) write(*,'("Warning(gwefermi): could not find GW Fermi energy")') end subroutine elk-9.2.12/src/PaxHeaders/dysonr.f900000644000000000000000000000013214536061314014066 xustar0030 mtime=1702388428.412500758 30 atime=1702388427.317502379 30 ctime=1702388428.412500758 elk-9.2.12/src/dysonr.f900000644002504400250440000000355514536061314016620 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine dysonr(ik,wr,sem,sf) use modmain use modgw use modomp implicit none ! arguments integer, intent(in) :: ik real(8), intent(in) :: wr(nwplot) complex(8), intent(in) :: sem(nstsv,nstsv,0:nwfm) real(8), intent(out) :: sf(nwplot) ! local variables integer ist,jst,iw integer nthd real(8) w,e,sm,t1 complex(8) z1 ! allocatable arrays complex(8), allocatable :: ser(:,:,:),gs(:),g(:,:) allocate(ser(nstsv,nstsv,nwplot)) ser(:,:,:)=0.d0 call holdthd(nstsv,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ist) & !$OMP NUM_THREADS(nthd) do jst=1,nstsv do ist=1,nstsv if (tsediag.and.(ist /= jst)) cycle ! perform analytic continuation from the imaginary to the real axis call acgwse(ist,jst,sem,wr,ser) end do end do !$OMP END PARALLEL DO call freethd(nthd) ! solve the Dyson equation for each frequency call holdthd(nwplot,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(gs,g,w,ist,jst) & !$OMP PRIVATE(e,t1,z1,sm) & !$OMP NUM_THREADS(nthd) allocate(gs(nstsv),g(nstsv,nstsv)) !$OMP DO do iw=1,nwplot w=wr(iw) ! compute the diagonal matrix G_s do ist=1,nstsv e=evalsv(ist,ik)-efermi t1=sign(swidth,e) gs(ist)=1.d0/cmplx(w-e,t1,8) end do ! compute 1 - G_s Sigma do ist=1,nstsv z1=-gs(ist) g(ist,:)=z1*ser(ist,:,iw) g(ist,ist)=g(ist,ist)+1.d0 end do ! invert this matrix call zminv(nstsv,g) ! compute G = (1 - G_s Sigma)^(-1) G_s do jst=1,nstsv z1=gs(jst) g(:,jst)=g(:,jst)*z1 end do ! determine the spectral function sm=0.d0 do ist=1,nstsv sm=sm+abs(aimag(g(ist,ist))) end do sf(iw)=sm*occmax/pi end do !$OMP END DO deallocate(gs,g) !$OMP END PARALLEL call freethd(nthd) deallocate(ser) end subroutine elk-9.2.12/src/PaxHeaders/gwsefm.f900000644000000000000000000000013214536061314014040 xustar0030 mtime=1702388428.413500756 30 atime=1702388427.318502377 30 ctime=1702388428.413500756 elk-9.2.12/src/gwsefm.f900000644002504400250440000000445014536061314016565 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine gwsefm use modmain use modgw use modmpi use modomp implicit none ! local variables integer ik,nthd ! allocatable arrays real(8), allocatable :: vmt(:,:),vir(:) real(8), allocatable :: bmt(:,:,:),bir(:,:) complex(8), allocatable :: se(:,:,:) ! initialise universal variables call init0 call init1 call init2 call init3 ! read density and potentials from file call readstate ! generate the core wavefunctions and densities call gencore ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the eigenvalues and occupation numbers from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! write the momentum matrix elements in the second-variational basis to file call genpmat ! generate the inverse dielectric function and write to file call epsinv ! compute the matrix elements of -V_xc and -B_xc allocate(vmt(npcmtmax,natmtot),vir(ngtot)) if (spinpol) then allocate(bmt(npcmtmax,natmtot,ndmag),bir(ngtot,ndmag)) end if call gwlocal(vmt,vir,bmt,bir) if (mp_mpi) write(*,*) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! loop over reduced k-point set call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(se) & !$OMP NUM_THREADS(nthd) allocate(se(nstsv,nstsv,0:nwfm)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(gwsefm_) write(*,'("Info(gwsefm): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(gwsefm_) ! determine the self-energy at the fermionic frequencies for current k-point call gwsefmk(ik,vmt,vir,bmt,bir,se) ! write the self-energy to file call putgwsefm(ik,se) end do !$OMP END DO deallocate(se) !$OMP END PARALLEL call freethd(nthd) if (mp_mpi) then write(*,*) write(*,'("Info(gwsefm): GW self-energy at the fermionic frequencies & &written to GWSEFM.OUT")') end if deallocate(vmt,vir) if (spinpol) deallocate(bmt,bir) end subroutine elk-9.2.12/src/PaxHeaders/putgwsefm.f900000644000000000000000000000013214536061314014571 xustar0030 mtime=1702388428.415500753 30 atime=1702388427.320502375 30 ctime=1702388428.415500753 elk-9.2.12/src/putgwsefm.f900000644002504400250440000000156514536061314017322 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine putgwsefm(ik,se) use modmain use modgw use modramdisk implicit none ! arguments integer, intent(in) :: ik complex(8), intent(in) :: se(nstsv,nstsv,0:nwfm) ! local variables integer recl !$OMP CRITICAL(u280) ! write to RAM disk if required if (ramdisk) then call putrd('GWSEFM.OUT',ik,v1=vkl(:,ik),n1=nstsv,n2=nwfm, & nzv=nstsv*nstsv*(nwfm+1),zva=se) end if ! write to disk if required if (wrtdsk) then ! find the record length inquire(iolength=recl) vkl(:,ik),nstsv,nwfm,se open(280,file='GWSEFM.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(280,rec=ik) vkl(:,ik),nstsv,nwfm,se close(280) end if !$OMP END CRITICAL(u280) end subroutine elk-9.2.12/src/PaxHeaders/getgwsefm.f900000644000000000000000000000013214536061314014540 xustar0030 mtime=1702388428.416500752 30 atime=1702388427.321502373 30 ctime=1702388428.416500752 elk-9.2.12/src/getgwsefm.f900000644002504400250440000000313614536061314017265 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine getgwsefm(ik,se) use modmain use modgw use modramdisk implicit none ! arguments integer, intent(in) :: ik complex(8), intent(out) :: se(nstsv,nstsv,0:nwfm) ! local variables logical tgs integer recl,nstsv_,nwfm_ real(8) vkl_(3),t1 !$OMP CRITICAL(u280) ! read from RAM disk if required if (ramdisk) then call getrd('GWSEFM.OUT',ik,tgs,v1=vkl_,n1=nstsv_,n2=nwfm_, & nzv=nstsv*nstsv*(nwfm+1),zva=se) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,nwfm_,se open(280,file='GWSEFM.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(280,rec=ik) vkl_,nstsv_,nwfm_,se close(280) 10 continue !$OMP END CRITICAL(u280) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getgwsefm): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" GWSEFM.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getgwsefm): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" GWSEFM.OUT : ",I8)') nstsv_ write(*,*) stop end if if (nwfm /= nwfm_) then write(*,*) write(*,'("Error(getgwsefm): differing nwfm for k-point ",I8)') ik write(*,'(" current : ",I8)') nwfm write(*,'(" GWSEFM.OUT : ",I8)') nwfm_ write(*,*) stop end if end subroutine elk-9.2.12/src/PaxHeaders/writeigw.f900000644000000000000000000000013114536061314014410 xustar0030 mtime=1702388428.418500749 29 atime=1702388427.32350237 30 ctime=1702388428.418500749 elk-9.2.12/src/writeigw.f900000644002504400250440000000151114536061314017131 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeigw(fnum) use modmain use modgw implicit none ! arguments integer fnum write(fnum,'("+----------------------------------------|")') write(fnum,'("| Self-consistent density GW calculation |")') write(fnum,'("+----------------------------------------|")') write(fnum,*) write(fnum,'("Temperature (K) : ",G18.10)') tempk write(fnum,*) write(fnum,'("Matsubara frequency cut-off : ",G18.10)') wmaxgw write(fnum,'("Number of Matsubara frequencies : ",I6)') nwgw write(fnum,*) write(fnum,'("Maximum |G| for response function : ",G18.10)') gmaxrf write(fnum,'("Number of response-function G-vectors : ",I8)') ngrf flush(fnum) end subroutine elk-9.2.12/src/PaxHeaders/polefit.f900000644000000000000000000000013214536061314014212 xustar0030 mtime=1702388428.419500747 30 atime=1702388427.324502369 30 ctime=1702388428.419500747 elk-9.2.12/src/polefit.f900000644002504400250440000000101614536061314016732 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function polefit(zfm,c) use modgw implicit none ! arguments complex(8), intent(in) :: zfm(0:nwfm),c(2*npole+1) ! local variables integer iw complex(8) z1 ! external functions complex(8), external :: zfpole polefit=0.d0 do iw=0,nwfm z1=zfm(iw)-zfpole(c,wfm(iw)) polefit=polefit+dble(z1)**2+aimag(z1)**2 end do end function elk-9.2.12/src/PaxHeaders/gwchgk.f900000644000000000000000000000013214536061314014022 xustar0030 mtime=1702388428.420500746 30 atime=1702388427.326502366 30 ctime=1702388428.420500746 elk-9.2.12/src/gwchgk.f900000644002504400250440000000310314536061314016541 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 P. Elliott, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gwchgk(ik,chgk) use modmain use modgw implicit none ! arguments integer, intent(in) :: ik real(8), intent(out) :: chgk ! local variables integer ist,iw real(8) e complex(8) z1 ! allocatable arrays complex(8), allocatable :: gs(:),g(:,:),gf(:),gl(:) complex(8), allocatable :: se(:,:,:) ! external functions complex(8), external :: gtwsum ! read the self-energy from file allocate(se(nstsv,nstsv,0:nwfm)) call getgwsefm(ik,se) ! allocate local arrays allocate(gs(nstsv),g(nstsv,nstsv)) allocate(gf(nstsv),gl(nstsv)) chgk=0.d0 do iw=0,nwfm ! compute the diagonal matrix G_s do ist=1,nstsv e=evalsv(ist,ik)-efermi gs(ist)=1.d0/(wfm(iw)-e) end do ! compute 1 - G_s Sigma do ist=1,nstsv z1=-gs(ist) g(ist,:)=z1*se(ist,:,iw) g(ist,ist)=g(ist,ist)+1.d0 end do ! invert this matrix call zminv(nstsv,g) ! take the trace of G = (1 - G_s Sigma)^(-1) G_s do ist=1,nstsv g(ist,ist)=g(ist,ist)*gs(ist) chgk=chgk+dble(g(ist,ist)) end do ! store the Green's function at the first and last frequencies if (iw == 0) then do ist=1,nstsv gf(ist)=g(ist,ist) end do end if if (iw == nwfm) then do ist=1,nstsv gl(ist)=g(ist,ist) end do end if end do ! add the Matsubara tails analytically do ist=1,nstsv chgk=chgk+dble(gtwsum(gf(ist),gl(ist))) end do chgk=chgk*wkpt(ik)*occmax*kboltz*tempk deallocate(se,gs,g,gf,gl) end subroutine elk-9.2.12/src/PaxHeaders/gwsefmk.f900000644000000000000000000000013214536061314014213 xustar0030 mtime=1702388428.422500743 30 atime=1702388427.327502364 30 ctime=1702388428.422500743 elk-9.2.12/src/gwsefmk.f900000644002504400250440000002305614536061314016743 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine gwsefmk(ikp,vmt,vir,bmt,bir,se) use modmain use modgw use modomp implicit none ! arguments integer, intent(in) :: ikp real(8), intent(in) :: vmt(npcmtmax,natmtot),vir(ngtot) real(8), intent(in) :: bmt(npcmtmax,natmtot,ndmag),bir(ngtot,ndmag) complex(8), intent(out) :: se(nstsv,nstsv,0:nwfm) ! local variables integer ik,jk,ist1,ist2,ist3 integer iv(3),iq,ig,jg integer iw,jw,it,nthd real(8) vl(3),vc(3),t1,t2 complex(8) z1,z2 ! automatic arrays complex(8) zfgq(ngrf) ! allocatable arrays integer(8), allocatable :: lock(:) real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:) real(8), allocatable :: jlgqr(:,:,:),jlgqrmt(:,:,:) complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: crhomt(:,:,:),crhoir(:,:) complex(4), allocatable :: cvclmt(:,:),cvclir(:) complex(8), allocatable :: zrgq(:,:,:),epsi(:,:,:) complex(8), allocatable :: v(:,:),stau(:,:,:) complex(8), allocatable :: gs(:,:),wc(:,:),zv(:) ! external functions complex(8), external :: zcfinp ! allocate local arrays allocate(vgqc(3,ngvc),gqc(ngvc),gclgq(ngvc)) allocate(jlgqr(njcmax,nspecies,ngrf),jlgqrmt(0:lnpsd,ngvc,nspecies)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(ylmgq(lmmaxo,ngvc),sfacgq(ngvc,natmtot)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) allocate(wfmt1(npcmtmax,natmtot,nspinor,nstsv),wfir1(ngtc,nspinor,nstsv)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv),wfir2(ngtc,nspinor,nstsv)) allocate(crhomt(npcmtmax,natmtot,nstsv),crhoir(ngtc,nstsv)) allocate(zrgq(nstsv,ngrf,nstsv),epsi(ngrf,ngrf,nwrf)) allocate(v(nstsv,nstsv),stau(nstsv,nstsv,nwgw),gs(nwgw,nstsv)) ! initialise the OpenMP locks allocate(lock(nwgw)) do it=1,nwgw call omp_init_lock(lock(it)) end do ! get the eigenvectors from file for input reduced k-point call getevecfv(filext,ikp,vkl(:,ikp),vgkl(:,:,:,ikp),evecfv) call getevecsv(filext,ikp,vkl(:,ikp),evecsv) ! find the matching coefficients call match(ngk(1,ikp),vgkc(:,:,1,ikp),gkc(:,1,ikp),sfacgk(:,:,1,ikp),apwalm) ! calculate the wavefunctions for all states of the input k-point call genwfsv_sp(.false.,.true.,nstsv,[0],ngdgc,igfc,ngk(1,ikp),igkig(:,1,ikp), & apwalm,evecfv,evecsv,wfmt1,ngtc,wfir1) ! local -V_xc and -B_xc matrix elements if (spinpol) then call genvbmatk(vmt,vir,bmt,bir,ngk(1,ikp),igkig(:,1,ikp),wfmt1,ngtc,wfir1,v) else call genvmatk(vmt,vir,ngk(1,ikp),igkig(:,1,ikp),wfmt1,ngtc,wfir1,v) end if ! Fourier transform wavefunctions to real-space call cftwfir(ngk(1,ikp),igkig(:,1,ikp),wfir1) ! add the core Fock matrix elements call vclcore(wfmt1,v) ! zero the self-energy matrix elements in tau-space stau(:,:,:)=0.d0 ! loop over non-reduced k-point set do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! determine the q-vector iv(:)=ivk(:,ikp)-ivk(:,ik) iv(:)=modulo(iv(:),ngridk(:)) ! check if the q-point is in user-defined set iv(:)=iv(:)*ngridq(:) if (any(mod(iv(:),ngridk(:)) /= 0)) cycle iv(:)=iv(:)/ngridk(:) iq=ivqiq(iv(1),iv(2),iv(3)) vl(:)=vkl(:,ikp)-vkl(:,ik) vc(:)=vkc(:,ikp)-vkc(:,ik) do ig=1,ngvc ! determine the G+q-vectors vgqc(:,ig)=vgc(:,ig)+vc(:) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) ! spherical harmonics for G+q-vectors call genylmv(lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! structure factors for G+q call gensfacgp(ngvc,vgqc,ngvc,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngvc,gqc,gclgq) ! compute the required spherical Bessel functions call genjlgprmt(lnpsd,ngvc,gqc,ngvc,jlgqrmt) call genjlgpr(ngrf,gqc,jlgqr) ! find the matching coefficients call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! get the eigenvectors from file for non-reduced k-point call getevecfv(filext,0,vkl(:,ik),vgkl(:,:,1,ik),evecfv) call getevecsv(filext,0,vkl(:,ik),evecsv) ! calculate the wavefunctions for all states call genwfsv_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,ngk(1,ik),igkig(:,1,ik),& apwalm,evecfv,evecsv,wfmt2,ngtc,wfir2) call holdthd(nstsv,nthd) ! determine the complex densities and Fourier transform to G+q-space do ist3=1,nstsv !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(zfgq) & !$OMP NUM_THREADS(nthd) do ist1=1,nstsv call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist3),wfir2(:,:,ist3), & wfmt1(:,:,:,ist1),wfir1(:,:,ist1),crhomt(:,:,ist1),crhoir(:,ist1)) call zftcf(ngrf,jlgqr,ylmgq,ngvc,sfacgq,crhomt(:,:,ist1),crhoir(:,ist1), & zfgq) zrgq(ist1,:,ist3)=conjg(zfgq(:)) end do !$OMP END PARALLEL DO !--------------------------------------! ! valence Fock matrix elements ! !--------------------------------------! t1=wqptnr*occsv(ist3,jk)/occmax if (abs(t1) < epsocc) cycle !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(cvclmt,cvclir) & !$OMP PRIVATE(ist1,z1) & !$OMP NUM_THREADS(nthd) allocate(cvclmt(npcmtmax,natmtot),cvclir(ngtc)) !$OMP DO do ist2=1,nstsv ! calculate the Coulomb potential call gencvclmt(nrcmt,nrcmti,nrcmtmax,rlcmt,wprcmt,npcmtmax, & crhomt(:,:,ist2),cvclmt) call cpotcoul(nrcmt,nrcmti,npcmt,nrcmtmax,rlcmt,ngdgc,igfc,ngvc,gqc, & gclgq,ngvc,jlgqrmt,ylmgq,sfacgq,crhoir(:,ist2),npcmtmax,cvclmt,cvclir) cvclir(:)=cvclir(:)*cfrc(:) do ist1=1,ist2 z1=zcfinp(crhomt(:,:,ist1),crhoir(:,ist1),cvclmt,cvclir) v(ist1,ist2)=v(ist1,ist2)-t1*z1 end do end do !$OMP END DO deallocate(cvclmt,cvclir) !$OMP END PARALLEL end do !-------------------------------------! ! correlation matrix elements ! !-------------------------------------! ! symmetrise the Coulomb Green's function gclgq(1:ngrf)=sqrt(gclgq(1:ngrf)) ! generate G_s in state and tau-space !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(t1,iw) & !$OMP NUM_THREADS(nthd) do ist1=1,nstsv t1=efermi-evalsv(ist1,jk) gs(:,ist1)=0.d0 do iw=-nwfm,nwfm,2 gs(iwfft(iw),ist1)=1.d0/cmplx(t1,wgw(iw),8) end do call zfftifc(1,nwgw,1,gs(:,ist1)) end do !$OMP END PARALLEL DO call freethd(nthd) ! get RPA inverse epsilon from file ! this is the symmetric version: epsilon = 1 - v^1/2 chi0 v^1/2 call getcfgq('EPSINV.OUT',vl,ngrf,nwrf,epsi) call holdthd(ngrf,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wc,zv,t1,t2,ig,iw,jw) & !$OMP PRIVATE(it,ist2,ist3,z1,z2) & !$OMP NUM_THREADS(nthd) allocate(wc(nwgw,ngrf),zv(nstsv)) !$OMP DO do jg=1,ngrf ! if epsi is exactly zero then there is no entry for this particular G'+q-vector ! so we cycle to the next if (abs(epsi(jg,jg,1)) == 0.d0) cycle ! subtract one from inverse epsilon to leave just the correlation part epsi(jg,jg,:)=epsi(jg,jg,:)-1.d0 ! compute the correlation part of the screened interaction W_c t1=gclgq(jg) do ig=1,ngrf t2=t1*gclgq(ig) wc(:,ig)=0.d0 do iw=-nwbs,nwbs,2 jw=(iw+nwbs)/2+1 wc(iwfft(iw),ig)=t2*epsi(ig,jg,jw) end do ! Fourier transform W_c to tau-space call zfftifc(1,nwgw,1,wc(:,ig)) end do do it=1,nwgw do ist3=1,nstsv z1=gs(it,ist3) zv(1:nstsv)=0.d0 if (twdiag) then ! use only the diagonal elements of W_c z2=z1*wc(it,jg) call zaxpy(nstsv,z2,zrgq(:,jg,ist3),1,zv,1) else ! use the full W_c do ig=1,ngrf z2=z1*wc(it,ig) call zaxpy(nstsv,z2,zrgq(:,ig,ist3),1,zv,1) end do end if call omp_set_lock(lock(it)) if (tsediag) then ! compute only the diagonal elements of the self-energy do ist2=1,nstsv z2=conjg(zrgq(ist2,jg,ist3)) stau(ist2,ist2,it)=stau(ist2,ist2,it)+z2*zv(ist2) end do else ! compute the full self-energy matrix do ist2=1,nstsv z2=conjg(zrgq(ist2,jg,ist3)) call zaxpy(nstsv,z2,zv,1,stau(:,ist2,it),1) end do end if call omp_unset_lock(lock(it)) end do end do end do !$OMP END DO deallocate(wc,zv) !$OMP END PARALLEL call freethd(nthd) ! end loop over k-points end do ! destroy the OpenMP locks do it=1,nwgw call omp_destroy_lock(lock(it)) end do deallocate(lock) ! Fourier transform the self-energy to frequency space, multiply by GW diagram ! prefactor and store in output array t1=-wqptnr*omega*kboltz*tempk call holdthd(nstsv,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(zv,ist1,iw,jw) & !$OMP NUM_THREADS(nthd) allocate(zv(nwgw)) !$OMP DO do ist2=1,nstsv do ist1=1,nstsv zv(1:nwgw)=stau(ist1,ist2,1:nwgw) call zfftifc(1,nwgw,-1,zv) do iw=-nwfm,nwfm,2 jw=(iw+nwfm)/2 se(ist1,ist2,jw)=t1*zv(iwfft(iw)) end do end do end do !$OMP END DO deallocate(zv) !$OMP END PARALLEL call freethd(nthd) ! add the local potential and Fock matrix elements to the self-energy for each ! Matsubara frequency call holdthd(nwfm+1,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ist1,ist2) & !$OMP NUM_THREADS(nthd) do iw=0,nwfm do ist2=1,nstsv do ist1=1,ist2 se(ist1,ist2,iw)=se(ist1,ist2,iw)+v(ist1,ist2) end do do ist1=ist2+1,nstsv se(ist1,ist2,iw)=se(ist1,ist2,iw)+conjg(v(ist2,ist1)) end do end do end do !$OMP END PARALLEL DO call freethd(nthd) deallocate(vgqc,gqc,gclgq,jlgqr,jlgqrmt) deallocate(ylmgq,sfacgq,apwalm,evecfv,evecsv) deallocate(wfmt1,wfir1,wfmt2,wfir2) deallocate(crhomt,crhoir,zrgq,epsi,v,stau,gs) end subroutine elk-9.2.12/src/PaxHeaders/gwspecf.f900000644000000000000000000000013014536061314014204 xustar0029 mtime=1702388428.42450074 30 atime=1702388427.329502361 29 ctime=1702388428.42450074 elk-9.2.12/src/gwspecf.f900000644002504400250440000000575314536061314016742 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine gwspecf use modmain use modgw use modmpi use modomp use modtest implicit none ! local variables integer ik,iw,nthd real(8) dw,w ! allocatable arrays real(8), allocatable :: wr(:),sft(:),sf(:) complex(8), allocatable :: se(:,:,:) ! initialise universal variables call init0 call init1 call init2 call init3 ! read Fermi energy from file call readfermi ! get the eigenvalues and occupation numbers from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! real axis frequencies allocate(wr(nwplot)) dw=(wplot(2)-wplot(1))/dble(nwplot) do iw=1,nwplot wr(iw)=dw*dble(iw-1)+wplot(1) end do ! allocate and zero the total spectral function allocate(sft(nwplot)) sft(:)=0.d0 if (mp_mpi) write(*,*) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! loop over reduced k-point set call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(sf,se) & !$OMP NUM_THREADS(nthd) allocate(sf(nwplot),se(nstsv,nstsv,0:nwfm)) !$OMP DO do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(gwspecf_1) write(*,'("Info(gwspecf): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(gwspecf_1) ! get the self-energy at the fermionic frequencies from file call getgwsefm(ik,se) ! solve the Dyson equation on the real axis call dysonr(ik,wr,se,sf) ! write the spectral function to file !$OMP CRITICAL(gwspecf_2) call writegwsf(ik,sf) !$OMP END CRITICAL(gwspecf_2) ! add to the total spectral function !$OMP CRITICAL(gwspecf_3) sft(:)=sft(:)+wkpt(ik)*sf(:) !$OMP END CRITICAL(gwspecf_3) end do !$OMP END DO deallocate(sf,se) !$OMP END PARALLEL call freethd(nthd) ! add total spectral function from each process if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,sft,nwplot,mpi_double_precision,mpi_sum, & mpicom,ierror) end if ! write the total spectral function to file (MPI master process only) if (mp_mpi) then open(50,file='GWTSF.OUT',form='FORMATTED') dw=(wplot(2)-wplot(1))/dble(nwplot) do iw=1,nwplot w=dw*dble(iw-1)+wplot(1) write(50,'(2G18.10)') w,sft(iw) end do close(50) write(*,*) write(*,'("Info(gw):")') write(*,'(" GW spectral functions and Kohn-Sham eigenvalues written to & &GWSF_Kkkkkkk.OUT")') write(*,'(" for all k-points")') write(*,*) write(*,'(" Total GW spectral function written to GWTSF.OUT")') write(*,*) write(*,'(" Fermi energy for the Kohn-Sham eigenvalues is at zero in plots")') write(*,'(" Fermi energy for the GW spectral function is undetermined")') write(*,*) write(*,'(" Spectral function units are states/Hartree/unit cell")') end if ! write the total GW spectral function to test file call writetest(610,'total GW spectral function',nv=nwplot,tol=5.d-2,rva=sft) deallocate(wr,sft) end subroutine elk-9.2.12/src/PaxHeaders/writegwsf.f900000644000000000000000000000013214536061314014571 xustar0030 mtime=1702388428.425500738 30 atime=1702388427.331502358 30 ctime=1702388428.425500738 elk-9.2.12/src/writegwsf.f900000644002504400250440000000154614536061314017321 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine writegwsf(ik,sf) use modmain use modgw implicit none ! arguments integer, intent(in) :: ik real(8), intent(in) :: sf(nwplot) ! local variables integer iw,ist real(8) dw,w,e character(256) fname write(fname,'("GWSF_K",I6.6,".OUT")') ik open(50,file=trim(fname),form='FORMATTED') ! write the GW spectral function dw=(wplot(2)-wplot(1))/dble(nwplot) do iw=1,nwplot w=dw*dble(iw-1)+wplot(1) write(50,'(2G18.10)') w,sf(iw) end do write(50,*) ! write the Kohn-Sham eigenvalues for reference do ist=1,nstsv e=evalsv(ist,ik)-efermi write(50,'(2G18.10)') e,0.d0 write(50,'(2G18.10)') e,1.d0/swidth write(50,*) end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/acgwse.f900000644000000000000000000000013214536061314014021 xustar0030 mtime=1702388428.426500737 30 atime=1702388427.332502357 30 ctime=1702388428.426500737 elk-9.2.12/src/acgwse.f900000644002504400250440000000163514536061314016550 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine acgwse(ist,jst,sem,wr,ser) use modmain use modgw implicit none ! arguments integer ist,jst complex(8), intent(in) :: sem(nstsv,nstsv,0:nwfm) real(8), intent(in) :: wr(nwplot) complex(8), intent(out) :: ser(nstsv,nstsv,nwplot) ! allocatable arrays complex(8), allocatable :: zm(:),zwr(:),zr(:) allocate(zm(0:nwfm),zwr(nwplot),zr(nwplot)) zm(:)=sem(ist,jst,:) zwr(:)=wr(:) select case(actype) case(1) ! fit a multipole model call acpole(zm,zwr,zr) case(10) ! stabilised Pade approximant call pades(nspade,swidth,nwfm+1,wfm,zm,nwplot,zwr,zr) case default write(*,*) write(*,'("Error(acgwse): actype not defined : ",I8)') actype write(*,*) stop end select ser(ist,jst,:)=zr(:) deallocate(zm,zwr,zr) end subroutine elk-9.2.12/src/PaxHeaders/fmin_nm.f900000644000000000000000000000013214536061314014173 xustar0030 mtime=1702388428.428500734 30 atime=1702388427.334502354 30 ctime=1702388428.428500734 elk-9.2.12/src/fmin_nm.f900000644002504400250440000000106514536061314016717 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function fmin_nm(id,rd,x) implicit none ! arguments integer, intent(in) :: id(*) real(8), intent(in) :: rd(*),x(*) ! external functions real(8), external :: polefit select case(id(1)) case(1) fmin_nm=polefit(rd,x) case default write(*,*) write(*,'("Error(fmin_nm): function type not defined : ",I8)') id(1) write(*,*) stop end select end function elk-9.2.12/src/PaxHeaders/zfpole.f900000644000000000000000000000013214536061314014047 xustar0030 mtime=1702388428.429500732 30 atime=1702388427.335502352 30 ctime=1702388428.429500732 elk-9.2.12/src/zfpole.f900000644002504400250440000000076214536061314016576 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure complex(8) function zfpole(c,z) use modgw implicit none ! arguments complex(8), intent(in) :: c(*),z ! local variables integer i,j real(8) t1 complex(8) z1 zfpole=c(1) i=2 do j=1,npole z1=c(i)+z t1=abs(dble(z1))+abs(aimag(z1)) if (t1 > 1.d-8) zfpole=zfpole+c(i+1)/z1 i=i+2 end do end function elk-9.2.12/src/PaxHeaders/gwbandstr.f900000644000000000000000000000013214536061314014543 xustar0030 mtime=1702388428.430500731 30 atime=1702388427.337502349 30 ctime=1702388428.430500731 elk-9.2.12/src/gwbandstr.f900000644002504400250440000000547414536061314017277 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gwbandstr use modmain use modgw use modmpi use modomp implicit none ! local variables integer ip,iw real(8) dw ! allocatable arrays real(8), allocatable :: vmt(:,:),vir(:) real(8), allocatable :: bmt(:,:,:),bir(:,:) real(8), allocatable :: wr(:),sf(:) complex(8), allocatable :: se(:,:,:) ! store original parameters vkloff0(:)=vkloff(:) ! initialise universal variables call init0 call init1 call init2 call init3 ! read density and potentials from file call readstate ! generate the core wavefunctions and densities call gencore ! Fourier transform Kohn-Sham potential to G-space call genvsig ! read Fermi energy from file call readfermi ! generate k-points along a path for band structure plots call plotpt1d(bvec,nvp1d,npp1d,vvlp1d,vplp1d,dvp1d,dpp1d) ! compute the matrix elements of -V_xc and -B_xc allocate(vmt(npcmtmax,natmtot),vir(ngtot)) if (spinpol) then allocate(bmt(npcmtmax,natmtot,ndmag),bir(ngtot,ndmag)) end if call gwlocal(vmt,vir,bmt,bir) ! real axis frequencies allocate(wr(nwplot)) dw=(wplot(2)-wplot(1))/dble(nwplot) do iw=1,nwplot wr(iw)=dw*dble(iw-1)+wplot(1) end do allocate(sf(nwplot),se(nstsv,nstsv,0:nwfm)) if (mp_mpi) then open(85,file='GWBAND.OUT',form='FORMATTED',action='WRITE') write(85,'(2I6," : grid size")') nwplot,npp1d end if ! loop over plot points along path do ip=ip01d,npp1d if (mp_mpi) then write(*,'("Info(gwbandstr): ",I6," of ",I6," plot points")') ip,npp1d end if ! reset the OpenMP thread variables call omp_reset ! change the k-point offset vkloff(:)=vplp1d(:,ip)*ngridk(:) ! generate the new k-point set call init1 ! determine the Kohn-Sham ground-state for this k-point offset call linengy call genapwlofr call gensocfr call genevfsv call occupy ! write the momentum matrix elements to file call genpmat ! generate the inverse dielectric function and write to file call epsinv ! determine the self-energy for the first k-point if (mp_mpi) then write(*,'("Info(gwbandstr): calculating self-energy for first k-point")') end if call gwsefmk(1,vmt,vir,bmt,bir,se) ! solve the Dyson equation on the real axis call dysonr(1,wr,se,sf) if (mp_mpi) then do iw=1,nwplot write(85,'(3G18.10)') dpp1d(ip),wr(iw),sf(iw) end do flush(85) end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end do deallocate(vmt,vir,wr,sf,se) if (spinpol) deallocate(bmt,bir) if (mp_mpi) then close(85) write(*,*) write(*,'("Info(gwbandstr):")') write(*,'(" GW spectral function band structure written to GWBAND.OUT")') end if ! restore original input parameters vkloff(:)=vkloff0(:) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/gwscrho.f900000644000000000000000000000013214536061314014224 xustar0030 mtime=1702388428.432500728 30 atime=1702388427.338502348 30 ctime=1702388428.432500728 elk-9.2.12/src/gwscrho.f900000644002504400250440000001522214536061314016750 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 A. Davydov, P. Elliott, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine gwscrho use modmain use modgw use modmpi use modomp implicit none ! local variables integer ik,nthd integer nmix,nwork real(8) dv ! allocatable arrays real(8), allocatable :: vmt(:,:),vir(:) real(8), allocatable :: bmt(:,:,:),bir(:,:) real(8), allocatable :: work(:) complex(8), allocatable :: se(:,:,:) ! initialise universal variables call init0 call init1 call init2 call init3 ! read density and potentials from file call readstate call genvsig ! read the Fermi energy call readfermi ! get the eigenvalues and occupation numbers from file call readevalsv call readoccsv ! allocate local potential and magnetic field arrays allocate(vmt(npcmtmax,natmtot),vir(ngtot)) if (spinpol) then allocate(bmt(npcmtmax,natmtot,ndmag),bir(ngtot,ndmag)) end if if (mp_mpi) then ! open GW_INFO.OUT file open(60,file='GW_INFO.OUT',form='FORMATTED') ! open FERMIDOS.OUT open(62,file='FERMIDOS.OUT',form='FORMATTED') ! open MOMENT.OUT if required if (spinpol) open(63,file='MOMENT.OUT',form='FORMATTED') ! open GAP.OUT open(64,file='GAP.OUT',form='FORMATTED') ! open RMSDVS.OUT open(65,file='RMSDVS.OUT',form='FORMATTED') ! open MOMENTM.OUT if (spinpol) open(68,file='MOMENTM.OUT',form='FORMATTED') ! open RESIDUAL.OUT open(69,file='RESIDUAL.OUT',form='FORMATTED') ! write out general information to GW_INFO.OUT call writeigw(60) write(60,*) write(60,'("+------------------------------+")') write(60,'("| Self-consistent loop started |")') write(60,'("+------------------------------+")') end if ! size of mixing vector nmix=size(vsbs) ! determine the size of the mixer work array nwork=-1 call mixerifc(mixtype,nmix,vsbs,dv,nwork,vsbs) allocate(work(nwork)) ! initialise the mixer iscl=0 call mixerifc(mixtype,nmix,vsbs,dv,nwork,work) ! set the stop signal to .false. tstop=.false. ! set last self-consistent loop flag tlast=.false. do iscl=1,maxscl if (mp_mpi) then write(60,*) write(60,'("+--------------------+")') write(60,'("| Loop number : ",I4," |")') iscl write(60,'("+--------------------+")') end if ! generate the core wavefunctions and densities call gencore ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ! generate the momentum matrix elements call genpmat ! generate the inverse RPA response function call epsinv ! compute the matrix elements of -V_xc and -B_xc call gwlocal(vmt,vir,bmt,bir) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) if (mp_mpi) write(*,*) ! loop over reduced k-point set call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(se) & !$OMP NUM_THREADS(nthd) allocate(se(nstsv,nstsv,0:nwfm)) !$OMP DO do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(gwscrho_) write(*,'("Info(gwscrho): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(gwscrho_) ! determine the self-energy at the fermionic frequencies for current k-point call gwsefmk(ik,vmt,vir,bmt,bir,se) ! write the self-energy to file call putgwsefm(ik,se) end do !$OMP END DO deallocate(se) !$OMP END PARALLEL call freethd(nthd) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) if (mp_mpi) then write(60,*) write(60,'("Kohn-Sham Fermi energy : ",G18.10)') efermi end if ! determine the GW Fermi energy call gwefermi if (mp_mpi) then write(60,'("GW Fermi energy : ",G18.10)') efermi flush(60) end if ! determine the density and magnetisation call gwrhomag ! invert the Kohn-Sham equations to find V_s and B_s call ksinvert ! mix the old effective potential and field with the new call mixerifc(mixtype,nmix,vsbs,dv,nwork,work) ! Fourier transform Kohn-Sham potential to G-space call genvsig if (mp_mpi) then ! write the Kohn-Sham occupation numbers to file do ik=1,nkpt call putoccsv(filext,ik,occsv(:,ik)) end do call writeeval call writefermi ! write STATE.OUT file call writestate write(60,*) write(60,'("Density of states at Fermi energy : ",G18.10)') fermidos write(60,'(" (states/Hartree/unit cell)")') write(60,*) write(60,'("Estimated indirect band gap : ",G18.10)') bandgap(1) write(60,'(" from k-point ",I6," to k-point ",I6)') ikgap(1),ikgap(2) write(60,'("Estimated direct band gap : ",G18.10)') bandgap(2) write(60,'(" at k-point ",I6)') ikgap(3) ! output charges and moments call writechg(60) if (spinpol) call writemom(60) write(60,*) write(60,'("Magnitude of residual : ",G18.10)') resksi flush(60) ! write DOS at Fermi energy to FERMIDOS.OUT write(62,'(G18.10)') fermidos flush(62) if (spinpol) then ! write total moment to MOMENT.OUT write(63,'(3G18.10)') momtot(1:ndmag) flush(63) ! write total moment magnitude to MOMENTM.OUT write(68,'(G18.10)') momtotm flush(68) end if ! write estimated Kohn-Sham indirect band gap write(64,'(G22.12)') bandgap(1) flush(64) ! write residual to RESIDUAL.OUT write(69,'(G18.10)') resksi flush(69) end if ! exit self-consistent loop if required if (tlast) goto 10 ! check for convergence if (iscl >= 2) then if (mp_mpi) then write(60,*) write(60,'("RMS change in Kohn-Sham potential (target) : ",G18.10," (",& &G18.10,")")') dv,epspot flush(60) write(65,'(G18.10)') dv flush(65) end if if (dv < epspot) then if (mp_mpi) then write(60,*) write(60,'("Convergence targets achieved")') end if tlast=.true. end if end if ! check for STOP file call checkstop if (tstop) tlast=.true. ! broadcast tlast from master process to all other processes call mpi_bcast(tlast,1,mpi_logical,0,mpicom,ierror) ! reset the OpenMP thread variables call omp_reset ! end the self-consistent loop end do 10 continue ! synchronise MPI processes call mpi_barrier(mpicom,ierror) if (mp_mpi) then write(60,*) write(60,'("+------------------------------+")') write(60,'("| Self-consistent loop stopped |")') write(60,'("+------------------------------+")') ! close the GW_INFO.OUT file close(60) ! close the FERMIDOS.OUT file close(62) ! close the MOMENT.OUT and MOMENTM.OUT files if (spinpol) then close(63); close(68) end if ! close the GAP.OUT file close(64) ! close the RMSDVS.OUT file close(65) ! close the RESIDUAL.OUT file close(69) end if deallocate(vmt,vir) if (spinpol) deallocate(bmt,bir) end subroutine elk-9.2.12/src/PaxHeaders/writeatdisp.f900000644000000000000000000000013214536061314015107 xustar0030 mtime=1702388428.433500727 30 atime=1702388427.340502345 30 ctime=1702388428.433500727 elk-9.2.12/src/writeatdisp.f900000644002504400250440000000133214536061314017630 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeatdisp use modmain use modtddft implicit none ! local variables integer is,ia real(8) vl(3) open(50,file='ATDISPL_TD.OUT',form='FORMATTED',position='APPEND') open(51,file='ATDISPC_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(I8,G18.10)') itimes,times(itimes) write(51,'(I8,G18.10)') itimes,times(itimes) do is=1,nspecies do ia=1,natoms(is) call r3mv(ainv,atdvc(:,0,ia,is),vl) write(50,'(2I4,3G18.10)') is,ia,vl(:) write(51,'(2I4,3G18.10)') is,ia,atdvc(:,0,ia,is) end do end do close(50) close(51) end subroutine elk-9.2.12/src/PaxHeaders/writetdforces.f900000644000000000000000000000013214536061314015434 xustar0030 mtime=1702388428.434500725 30 atime=1702388427.341502343 30 ctime=1702388428.434500725 elk-9.2.12/src/writetdforces.f900000644002504400250440000000136014536061314020156 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetdforces use modmain use modtddft implicit none ! local variables integer is,ia,ias ! write the total force on each atom open(50,file='FORCETOT_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(I8,G18.10)') itimes,times(itimes) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(50,'(2I4,3G18.10)') is,ia,forcetot(1:3,ias) end do end do close(50) ! write the maximum force magnitude over all atoms open(50,file='FORCEMAX_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(2G18.10)') times(itimes),forcemax close(50) end subroutine elk-9.2.12/src/PaxHeaders/readatdvc.f900000644000000000000000000000013214536061314014505 xustar0030 mtime=1702388428.435500724 30 atime=1702388427.343502341 30 ctime=1702388428.435500724 elk-9.2.12/src/readatdvc.f900000644002504400250440000000151514536061314017231 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readatdvc use modmain implicit none ! local variables integer is,ia,is_,ia_,ios open(50,file='ATDVC.OUT',form='FORMATTED',action='READ',status='OLD',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readatdvc): error opening ATDVC.OUT")') write(*,*) stop end if do is=1,nspecies do ia=1,natoms(is) read(50,*) is_,ia_,atdvc(:,:,ia,is) if ((is /= is_).or.(ia /= ia_)) then write(*,*) write(*,'("Error(readatdvc): species or atom number mismatch")') write(*,'(" internal : ",2I4)') is,ia write(*,'(" ATDVC.OUT : ",2I4)') is_,ia_ write(*,*) stop end if end do end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/writetdengy.f900000644000000000000000000000013214536061314015115 xustar0030 mtime=1702388428.437500721 30 atime=1702388427.344502339 30 ctime=1702388428.437500721 elk-9.2.12/src/writetdengy.f900000644002504400250440000000056714536061314017647 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetdengy use modmain use modtddft implicit none open(50,file='TOTENERGY_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(2G18.10)') times(itimes),engytot close(50) end subroutine elk-9.2.12/src/PaxHeaders/writemomtd.f900000644000000000000000000000013214536061314014743 xustar0030 mtime=1702388428.438500719 30 atime=1702388427.346502336 30 ctime=1702388428.438500719 elk-9.2.12/src/writemomtd.f900000644002504400250440000000202214536061314017461 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writemomtd use modmain use modtddft implicit none ! local variables integer is,ia,ias ! write the total spin moment open(50,file='MOMENT_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(4G18.10)') times(itimes),momtot(1:ndmag) close(50) ! write the total spin moment magnitude open(50,file='MOMENTM_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(2G18.10)') times(itimes),momtotm close(50) ! write muffin-tin moments open(50,file='MOMENTMT_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(G18.10)') times(itimes) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(50,'(2I4,3G18.10)') is,ia,mommt(1:ndmag,ias) end do end do write(50,*) close(50) ! write interstitial moment open(50,file='MOMENTIR_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(4G18.10)') times(itimes),momir(1:ndmag) close(50) end subroutine elk-9.2.12/src/PaxHeaders/tddftlr.f900000644000000000000000000000013214536061314014213 xustar0030 mtime=1702388428.439500718 30 atime=1702388427.347502334 30 ctime=1702388428.439500718 elk-9.2.12/src/tddftlr.f900000644002504400250440000002247414536061314016746 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tddftlr use modmain use modtddft use modtest use modmpi use modomp implicit none ! local variables logical tq0 integer, parameter :: maxit=500 integer iq,ik,isym integer nm,it,i,j,n integer iw,ioc,nthd real(8) v(3),t1,t2 complex(8) vfxcp,z1 character(256) fname ! allocatable arrays integer(8), allocatable :: lock(:) real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqr(:,:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(8), allocatable :: vchi0(:,:,:),vfxc(:,:,:) complex(8), allocatable :: eps0(:,:,:),epsi(:,:,:),epsm(:,:,:) complex(8), allocatable :: zw(:),a(:,:) ! initialise global variables call init0 call init1 call init2 call init3 ! check q-vector is commensurate with k-point grid v(:)=dble(ngridk(:))*vecql(:) v(:)=abs(v(:)-nint(v(:))) if ((v(1) > epslat).or.(v(2) > epslat).or.(v(3) > epslat)) then write(*,*) write(*,'("Error(tddftlr): q-vector incommensurate with k-point grid")') write(*,'(" ngridk : ",3I6)') ngridk write(*,'(" vecql : ",3G18.10)') vecql write(*,*) stop end if ! find the equivalent reduced q-point call findqpt(vecql,isym,iq) ! check if q = 0 tq0=.false. if (sum(abs(vecql(:))) < epslat) tq0=.true. ! read density and potentials from file call readstate ! read Fermi energy from a file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the eigenvalues and occupation numbers from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! generate the G+q-vectors and related functions allocate(vgqc(3,ngrf),gqc(ngrf),jlgqr(njcmax,nspecies,ngrf)) allocate(ylmgq(lmmaxo,ngrf),sfacgq(ngrf,natmtot)) call gengqf(ngrf,vecqc,vgqc,gqc,jlgqr,ylmgq,sfacgq) deallocate(vgqc) ! generate the regularised Coulomb Green's function in G+q-space allocate(gclgq(ngrf)) call gengclgq(.true.,iq,ngrf,gqc,gclgq) gclgq(:)=sqrt(gclgq(:)) ! matrix sizes if (tq0) then ! for q = 0 the head is a 3 x 3 matrix and the wings are 3 x ngrf nm=ngrf+2 else ! otherwise the head is just G = G' = 0 and finite q nm=ngrf end if ! allocate local arrays allocate(vchi0(nm,nm,nwrf),vfxc(nm,nm,nwrf)) allocate(eps0(nm,nm,nwrf),epsi(nm,nm,nwrf)) ! initialise the OpenMP locks allocate(lock(nwrf)) do iw=1,nwrf call omp_init_lock(lock(iw)) end do ! compute v^1/2 chi0 v^1/2 (the symmetric version of v chi0) vchi0(:,:,:)=0.d0 call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(tddftlr_) write(*,'("Info(tddftlr): ",I6," of ",I6," k-points")') ik,nkptnr !$OMP END CRITICAL(tddftlr_) ! compute v^1/2 chi0 v^1/2 call genvchi0(.true.,ik,lock,vecql,gclgq,jlgqr,ylmgq,sfacgq,nm,vchi0) end do !$OMP END PARALLEL DO call freethd(nthd) ! destroy the OpenMP locks do iw=1,nwrf call omp_destroy_lock(lock(iw)) end do deallocate(lock) ! add vchi0 from each process and redistribute if (np_mpi > 1) then n=nm*nm*nwrf call mpi_allreduce(mpi_in_place,vchi0,n,mpi_double_complex,mpi_sum,mpicom, & ierror) end if ! calculate symmetric epsilon_0 = 1 - v^1/2 chi0 v^1/2 eps0(:,:,:)=-vchi0(:,:,:) do i=1,nm eps0(i,i,:)=eps0(i,i,:)+1.d0 end do ! initialise epsilon for use with the bootstrap functional if (any(fxctype(1) == [210,211])) then epsi(:,:,:)=vchi0(:,:,:) do i=1,nm epsi(i,i,:)=epsi(i,i,:)+1.d0 end do end if allocate(a(nm,nm)) vfxcp=0.d0 it=0 10 continue ! compute vchi0 v^(-1/2) f_xc v^(-1/2) vchi0 call genvfxc(tq0,.true.,gclgq,nm,vchi0,eps0,epsi,vfxc) ! begin loop over frequencies do iw=1,nwrf ! compute 1 - v^1/2 chi0 v^1/2 - v^(-1/2) f_xc v^(-1/2) vchi0 a(:,:)=eps0(:,:,iw)-vfxc(:,:,iw) ! invert this matrix call zminv(nm,a) ! left multiply by v^1/2 chi0 v^1/2 call zgemm('N','N',nm,nm,nm,zone,vchi0(:,:,iw),nm,a,nm,zzero,epsi(:,:,iw),nm) ! compute epsilon^(-1) = 1 + v^1/2 chi v^1/2 do i=1,nm epsi(i,i,iw)=1.d0+epsi(i,i,iw) end do end do if (fxctype(1) == 210) then ! self-consistent bootstrap f_xc it=it+1 if (it > maxit) then write(*,*) write(*,'("Error(tddftlr): bootstrap kernel failed to converge")') write(*,*) stop end if if (mod(it,10) == 0) then write(*,'("Info(tddftlr): done ",I4," bootstrap iterations")') it write(*,'(" head of matrix v.f_xc : ",2G18.10)') vfxc(1,1,1) end if ! check for convergence t1=abs(vfxcp)-abs(vfxc(1,1,1)) vfxcp=vfxc(1,1,1) if (abs(t1) > 1.d-8) goto 10 else if (fxctype(1) == 211) then ! single iteration bootstrap it=it+1 if (it <= 1) goto 10 end if deallocate(gclgq,jlgqr) deallocate(ylmgq,sfacgq) deallocate(vchi0,vfxc) ! invert epsilon^(-1) to find epsilon and store in array eps0 do iw=1,nwrf eps0(:,:,iw)=epsi(:,:,iw) call zminv(nm,eps0(:,:,iw)) end do if (mp_mpi) then ! write G = G' = 0 components to file if (tq0) then do ioc=1,noptcomp i=optcomp(1,ioc) j=optcomp(2,ioc) write(fname,'("EPSILON_TDDFT_",2I1,".OUT")') i,j open(50,file=trim(fname),form='FORMATTED') write(fname,'("EPSINV_TDDFT_",2I1,".OUT")') i,j open(51,file=trim(fname),form='FORMATTED') do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(eps0(i,j,iw)) write(51,'(2G18.10)') dble(wrf(iw)),dble(epsi(i,j,iw)) end do write(50,*) write(51,*) do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(eps0(i,j,iw)) write(51,'(2G18.10)') dble(wrf(iw)),aimag(epsi(i,j,iw)) end do close(50) close(51) end do else open(50,file='EPSILON_TDDFT.OUT',form='FORMATTED') open(51,file='EPSINV_TDDFT.OUT',form='FORMATTED') do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(eps0(1,1,iw)) write(51,'(2G18.10)') dble(wrf(iw)),dble(epsi(1,1,iw)) end do write(50,*) write(51,*) do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(eps0(1,1,iw)) write(51,'(2G18.10)') dble(wrf(iw)),aimag(epsi(1,1,iw)) end do close(50) close(51) end if ! find the macroscopic part of epsilon by inverting the 3x3 head only if (tq0) then allocate(epsm(3,3,nwrf)) do iw=1,nwrf epsm(1:3,1:3,iw)=epsi(1:3,1:3,iw) call zminv(3,epsm(:,:,iw)) end do ! write out the macroscopic components do ioc=1,noptcomp i=optcomp(1,ioc) j=optcomp(2,ioc) write(fname,'("EPSM_TDDFT_",2I1,".OUT")') i,j open(50,file=trim(fname),form='FORMATTED') do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(epsm(i,j,iw)) end do write(50,*) do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(epsm(i,j,iw)) end do close(50) end do allocate(zw(nwrf)) ! output the Faraday angle components Delta delta and Delta beta do iw=2,nwrf zw(iw)=0.5d0*zi*epsm(1,2,iw)/sqrt(epsm(1,1,iw)) end do open(50,file='FARADAY.OUT',form='FORMATTED') do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(zw(iw)) end do write(50,*) do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(zw(iw)) end do close(50) ! output the Kerr angle do iw=2,nwrf zw(iw)=-epsm(1,2,iw)/(sqrt(epsm(1,1,iw))*(epsm(1,1,iw)-1.d0)) end do open(50,file='KERR_TDDFT.OUT',form='FORMATTED') do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(zw(iw))*180.d0/pi end do write(50,*) do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(zw(iw))*180.d0/pi end do close(50) ! output magnetic linear dichroism (MLD) spectrum t1=sin(thetamld)**2 t2=sin(2.d0*thetamld) do iw=2,nwrf z1=epsm(1,1,iw) zw(iw)=t2*epsm(1,2,iw)/((z1-1.d0)*(z1-(t1*(z1+1.d0)))) end do open(50,file='MLD.OUT',form='FORMATTED') do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(zw(iw)) end do write(50,*) do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(zw(iw)) end do close(50) deallocate(epsm,zw) end if end if ! write inverse epsilon to test file call writetest(320,'inverse epsilon',nv=nm*nm*nwrf,tol=1.d-2,zva=epsi) deallocate(eps0,epsi,a) if (mp_mpi) then write(*,*) write(*,'("Info(tddftlr):")') if (tq0) then write(*,'(" Dielectric tensor written to EPSILON_TDDFT_ij.OUT")') write(*,'(" Inverse written to EPSINV_TDDFT_ij.OUT")') write(*,'(" Macroscopic part written to EPSM_TDDFT_ij.OUT")') write(*,'(" for components")') do ioc=1,noptcomp write(*,'(" i = ",I1,", j = ",I1)') optcomp(1:2,ioc) end do write(*,*) write(*,'(" Faraday angle parameters Δδ and Δβ written to FARADAY.OUT")') write(*,'(" MOKE Kerr angle written to KERR_TDDFT.OUT")') write(*,'(" Magnetic linear dichroism (MLD) spectrum written to MLD.OUT")') write(*,*) write(*,'(" Note that the q-vector is zero and therefore the head of the")') write(*,'(" tensor is a 3 x 3 matrix and the wings are 3 x ngrf matrices")') else write(*,'(" Dielectric tensor written to EPSILON_TDDFT.OUT")') write(*,'(" Inverse written to EPSINV_TDDFT.OUT")') write(*,'(" q-vector (lattice coordinates) : ")') write(*,'(3G18.10)') vecql write(*,'(" q-vector length : ",G18.10)') gqc(1) end if end if deallocate(gqc) end subroutine elk-9.2.12/src/PaxHeaders/genhmlt.f900000644000000000000000000000013214536061314014206 xustar0030 mtime=1702388428.441500715 30 atime=1702388427.349502332 30 ctime=1702388428.441500715 elk-9.2.12/src/genhmlt.f900000644002504400250440000000426014536061314016732 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genhmlt(ik,vmt,vir,bmt,bir,kmat,pmat,h) use modmain use modtddft use modmpi implicit none ! arguments integer, intent(in) :: ik real(8), intent(in) :: vmt(npcmtmax,natmtot),vir(ngtot) real(8), intent(in) :: bmt(npcmtmax,natmtot,ndmag),bir(ngtot,ndmag) complex(8), intent(in) :: kmat(nstsv,nstsv),pmat(nstsv,nstsv,3) complex(8), intent(out) :: h(nstsv,nstsv) ! local variables integer jst,i real(8) ca,t1 ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfgk(:,:,:) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) ! get the ground-state eigenvectors from file for input k-point call getevecfv('.OUT',ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv('.OUT',ik,vkl(:,ik),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! calculate the wavefunctions for all states of the input k-point allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfgk(ngkmax,nspinor,nstsv)) call genwfsv_sp(.false.,.true.,nstsv,[0],ngridg,igfft,ngk(:,ik),igkig(:,:,ik), & apwalm,evecfv,evecsv,wfmt,ngkmax,wfgk) deallocate(apwalm,evecfv) ! Kohn-Sham potential and magnetic field matrix elements if (spinpol) then call genvbmatk(vmt,vir,bmt,bir,ngk(:,ik),igkig(:,:,ik),wfmt,ngkmax,wfgk,h) else call genvmatk(vmt,vir,ngk(:,ik),igkig(:,:,ik),wfmt,ngkmax,wfgk,h) end if deallocate(wfmt,wfgk) ! add the kinetic matrix elements in the second-variational basis do jst=1,nstsv h(1:jst,jst)=h(1:jst,jst)+kmat(1:jst,jst) end do ! coupling constant of the external A-field (-1/c) ca=-1.d0/solsc ! add the A-field matrix elements in the second-variational basis do i=1,3 t1=ca*afieldt(i,itimes) if (abs(t1) > 1.d-10) then do jst=1,nstsv h(1:jst,jst)=h(1:jst,jst)+t1*pmat(1:jst,jst,i) end do end if end do ! add the spin-polarised A-field if required if (tafspt) call genhafspt(evecsv,pmat,h) deallocate(evecsv) end subroutine elk-9.2.12/src/PaxHeaders/writetddos.f900000644000000000000000000000013214536061314014740 xustar0030 mtime=1702388428.442500713 30 atime=1702388427.351502329 30 ctime=1702388428.442500713 elk-9.2.12/src/writetddos.f900000644002504400250440000000457314536061314017473 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writetddos ! !INTERFACE: subroutine writetddos ! !USES: use modmain use modtddft use modmpi ! !DESCRIPTION: ! Calculates the time-dependent density of states (DOS). This is defined as ! $$ {\rm DOS}(\omega,t)=\frac{\Omega}{(2\pi)^3}\int d^3k \sum_i ! \delta(\varepsilon_{i{\bf k}}-\omega) F_{i{\bf k}}(t), $$ ! where ! $$ F_{i{\bf k}}(t)=\sum_j f_{j{\bf k}}|\langle\varphi_{i{\bf k}}| ! \phi_{j{\bf k}}(t)\rangle|^2, $$ ! with occupation numbers $f_{j{\bf k}}$, ground-state orbitals ! $\varphi_{i{\bf k}}$ and time-dependent orbitals $\phi_{j{\bf k}}(t)$. ! ! !REVISION HISTORY: ! Created April 2015 (JKD) !EOP !BOC implicit none ! local variables integer ik,ist,jst,lp real(8) sm,t1 complex(8) z1 character(256) fext ! allocatable arrays real(8), allocatable :: occsvp(:,:) complex(8), allocatable :: evecsv(:,:),evecsvt(:,:) ! external functions complex(8), external :: zdotc ! file extension write(fext,'("_TS",I8.8,".OUT")') itimes allocate(occsvp(nstsv,nkpt)) allocate(evecsv(nstsv,nstsv),evecsvt(nstsv,nstsv)) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! read in ground-state eigenvectors call getevecsv('.OUT',ik,vkl(:,ik),evecsv) ! read in the time evolving eigenvectors call getevecsv('_TD.OUT',ik,vkl(:,ik),evecsvt) ! determine the time-dependent projected occupation numbers do ist=1,nstsv sm=0.d0 do jst=1,nstsv t1=occsv(jst,ik) if (abs(t1) < epsocc) cycle z1=zdotc(nstsv,evecsv(:,ist),1,evecsvt(:,jst),1) sm=sm+t1*(dble(z1)**2+aimag(z1)**2) end do occsvp(ist,ik)=sm end do ! write projected occupation numbers to file call putoccsv('P'//trim(fext),ik,occsvp(:,ik)) end do deallocate(evecsv,evecsvt) ! broadcast projected occupation numbers to every MPI process if (np_mpi > 1) then do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(occsvp(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) end do end if if (mp_mpi) then ! compute the effective electronic temperature and write to file call tdtemp(occsvp) ! write the DOS to file call dos(fext,.true.,occsvp) end if deallocate(occsvp) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine !EOC elk-9.2.12/src/PaxHeaders/writeafpdt.f900000644000000000000000000000013014536061314014717 xustar0029 mtime=1702388428.44450071 30 atime=1702388427.352502327 29 ctime=1702388428.44450071 elk-9.2.12/src/writeafpdt.f900000644002504400250440000000255614536061314017453 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeafpdt use modmain use modtddft implicit none ! local variables integer its,i real(8) ed,t1 ! conversion factor of energy density to J/cm^2 real(8), parameter :: ced=ha_si/(100.d0*br_si)**2 ! allocatable arrays real(8), allocatable :: f(:),g(:),pd(:) ! external functions real(8), external :: splint ! allocate local arrays allocate(f(ntimes),g(ntimes),pd(ntimes)) ! compute the power density at each time step pd(:)=0.d0 do i=1,3 f(:)=afieldt(i,:) call fderiv(1,ntimes,times,f,g) pd(:)=pd(:)+g(:)**2 end do t1=1.d0/(8.d0*pi*solsc) pd(:)=t1*pd(:) ! write the power density to file open(50,file='AFPDT.OUT',form='FORMATTED') do its=1,ntimes write(50,'(2G18.10)') times(its),pd(its) end do close(50) ! integrate power density to find the total energy density ed=splint(ntimes,times,pd) open(50,file='AFTED.OUT',form='FORMATTED') write(50,*) write(50,'("Total energy density : ",G18.10)') ed write(50,'(" in J/cm² : ",G18.10)') ed*ced close(50) write(*,*) write(*,'("Info(writeafpdt):")') write(*,'(" Power density of A-field written to AFPDT.OUT")') write(*,'(" Total energy density of A-field written to AFTED.OUT")') deallocate(f,g,pd) end subroutine elk-9.2.12/src/PaxHeaders/readafindt.f900000644000000000000000000000013214536061314014651 xustar0030 mtime=1702388428.445500709 30 atime=1702388427.354502324 30 ctime=1702388428.445500709 elk-9.2.12/src/readafindt.f900000644002504400250440000000101414536061314017367 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Peter Elliott, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readafindt use modtddft implicit none ! local variables integer ios open(50,file='AFINDT.OUT',form='FORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readafindt): error opening AFINDT.OUT")') write(*,*) stop end if read(50,*) afindt(:,:) close(50) end subroutine elk-9.2.12/src/PaxHeaders/genvfxc.f900000644000000000000000000000013214536061314014210 xustar0030 mtime=1702388428.446500707 30 atime=1702388427.355502323 30 ctime=1702388428.446500707 elk-9.2.12/src/genvfxc.f900000644002504400250440000000330114536061314016727 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genvfxc(tq0,t3hw,gclgq,nm,vchi0,eps0,epsi,vfxc) use modmain use modtddft implicit none ! arguments logical, intent(in) :: tq0,t3hw real(8), intent(in) :: gclgq(ngrf) integer, intent(in) :: nm complex(8), intent(in) :: vchi0(nm,nm,nwrf) complex(8), intent(in) :: eps0(nm,nm,nwrf) complex(8), intent(in) :: epsi(nm,nm,nwrf) complex(8), intent(out) :: vfxc(nm,nm,nwrf) ! local variables integer iw,i,j complex(8) z1 ! allocatable arrays complex(8), allocatable :: a(:,:) ! compute v^(-1/2) f_xc v^(-1/2) select case(fxctype(1)) case(0,1) ! RPA vfxc(:,:,:)=0.d0 return case(3) ! ALDA if (tq0.and.t3hw) then call genvfxcg(gclgq,nm,vfxc(3,3,1)) ! the head and wings are zero vfxc(1:3,:,:)=0.d0 vfxc(4:,1:3,:)=0.d0 else call genvfxcg(gclgq,nm,vfxc) end if case(200) ! long-range contribution with dynamic correlations vfxc(:,:,:)=0.d0 do i=1,nm vfxc(i,i,:)=-(fxclrc(1)+fxclrc(2)*dble(wrf(:))**2)/fourpi end do case(210,211) ! bootstrap vfxc(:,:,:)=0.d0 if (tq0.and.t3hw) then z1=(eps0(1,1,1)+eps0(2,2,1)+eps0(3,3,1))/3.d0 else z1=eps0(1,1,1) end if z1=-1.d0/(z1-1.d0) do j=1,nm do i=1,nm vfxc(i,j,:)=z1*epsi(i,j,1) end do end do case default write(*,*) write(*,'("Error(genvfxc): fxctype not defined : ",3I8)') fxctype write(*,*) stop end select ! right multiply by v^1/2 chi0 v^1/2 allocate(a(nm,nm)) do iw=1,nwrf a(:,:)=vfxc(:,:,iw) call zgemm('N','N',nm,nm,nm,zone,a,nm,vchi0(:,:,iw),nm,zzero,vfxc(:,:,iw),nm) end do deallocate(a) end subroutine elk-9.2.12/src/PaxHeaders/genfxcr.f900000644000000000000000000000013114536061314014203 xustar0030 mtime=1702388428.447500706 29 atime=1702388427.35750232 30 ctime=1702388428.447500706 elk-9.2.12/src/genfxcr.f900000644002504400250440000000625414536061314016735 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genfxcr(tsh,fxcmt,fxcir) use modmain use modtddft use modfxcifc implicit none ! arguments logical, intent(in) :: tsh real(8), intent(out) :: fxcmt(npmtmax,natmtot),fxcir(ngtot) ! local variables integer idm,is,ias integer nr,nri,ir,np,i,n real(8) t1 real(8), allocatable :: rho(:),rhoup(:),rhodn(:),mag(:,:) real(8), allocatable :: fxc(:),fxcuu(:),fxcud(:),fxcdd(:) ! number of independent spin components n=npmtmax allocate(rho(n),fxc(n)) if (spinpol) then allocate(mag(n,3)) n=max(n,ngtot) allocate(rhoup(n),rhodn(n)) allocate(fxcuu(n),fxcud(n),fxcdd(n)) end if !---------------------------! ! muffin-tin kernel ! !---------------------------! do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) np=npmt(is) ! compute the density in spherical coordinates call rbsht(nr,nri,rhomt(:,ias),rho) if (spinpol) then !------------------------! ! spin-polarised ! !------------------------! ! magnetisation in spherical coordinates do idm=1,ndmag call rbsht(nr,nri,magmt(:,ias,idm),mag(:,idm)) end do if (ncmag) then ! non-collinear (use Kubler's trick) do i=1,np ! compute rhoup=(rho+|m|)/2 and rhodn=(rho-|m|)/2 t1=sqrt(mag(i,1)**2+mag(i,2)**2+mag(i,3)**2) rhoup(i)=0.5d0*(rho(i)+t1) rhodn(i)=0.5d0*(rho(i)-t1) end do else ! collinear do i=1,np ! compute rhoup=(rho+m_z)/2 and rhodn=(rho-m_z)/2 rhoup(i)=0.5d0*(rho(i)+mag(i,1)) rhodn(i)=0.5d0*(rho(i)-mag(i,1)) end do end if ! compute fxc call fxcifc(fxctype,n=np,rhoup=rhoup,rhodn=rhodn,fxcuu=fxcuu,fxcud=fxcud, & fxcdd=fxcdd) ! form the scalar quantity dv/drho do i=1,np fxc(i)=0.25d0*(fxcuu(i)+2.d0*fxcud(i)+fxcdd(i)) end do else !--------------------------! ! spin-unpolarised ! !--------------------------! call fxcifc(fxctype,n=np,rho=rho,fxc=fxc) end if if (tsh) then ! convert fxc to spherical harmonics if required call rfsht(nr,nri,fxc,fxcmt(:,ias)) else fxcmt(1:np,ias)=fxc(1:np) end if end do !-----------------------------! ! interstitial kernel ! !-----------------------------! if (spinpol) then !------------------------! ! spin-polarised ! !------------------------! if (ncmag) then ! non-collinear do ir=1,ngtot t1=sqrt(magir(ir,1)**2+magir(ir,2)**2+magir(ir,3)**2) rhoup(ir)=0.5d0*(rhoir(ir)+t1) rhodn(ir)=0.5d0*(rhoir(ir)-t1) end do else ! collinear do ir=1,ngtot rhoup(ir)=0.5d0*(rhoir(ir)+magir(ir,1)) rhodn(ir)=0.5d0*(rhoir(ir)-magir(ir,1)) end do end if ! compute fxc call fxcifc(fxctype,n=ngtot,rhoup=rhoup,rhodn=rhodn,fxcuu=fxcuu,fxcud=fxcud, & fxcdd=fxcdd) do ir=1,ngtot fxcir(ir)=0.25d0*(fxcuu(ir)+2.d0*fxcud(ir)+fxcdd(ir)) end do else !--------------------------! ! spin-unpolarised ! !--------------------------! call fxcifc(fxctype,n=ngtot,rho=rhoir,fxc=fxcir) end if deallocate(rho,fxc) if (spinpol) then deallocate(mag,rhoup,rhodn) deallocate(fxcuu,fxcud,fxcdd) end if end subroutine elk-9.2.12/src/PaxHeaders/tdtemp.f900000644000000000000000000000013214536061314014045 xustar0030 mtime=1702388428.449500703 30 atime=1702388427.358502318 30 ctime=1702388428.449500703 elk-9.2.12/src/tdtemp.f900000644002504400250440000000241014536061314016564 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tdtemp(occsvp) use modmain use modtddft implicit none ! arguments real(8), intent(in) :: occsvp(nstsv,nkpt) ! local variables integer, parameter :: maxit=1000 integer ik,ist,it real(8), parameter :: eps=1.d-6 real(8) sw,dsw,sm,sp real(8) x,t1,t2,t3 ! external functions real(8), external :: sdelta_fd,stheta_fd ! initial smearing width sw=1.d-6 ! initial smearing width step size dsw=1.d-6 sp=0.d0 do it=1,maxit t1=1.d0/sw sm=0.d0 do ik=1,nkpt do ist=1,nstsv x=(efermi-evalsv(ist,ik))*t1 t2=occmax*stheta_fd(x) t3=sdelta_fd(x)*x*t1 sm=sm+(occsvp(ist,ik)-t2)*t3 end do end do if ((sm*sp) < 0.d0) then dsw=-0.5d0*dsw if (abs(dsw) < eps) goto 10 else dsw=1.5d0*dsw end if sp=sm sw=sw+dsw if ((sw < 0.d0).or.(sw > 1.d6)) exit end do write(*,*) write(*,'("Warning(tdtemp): could not estimate effective temperature")') return 10 continue ! write effective temperature to file t1=sw/kboltz open(50,file='TDTEMP.OUT',form='FORMATTED',position='APPEND') write(50,'(2G18.10)') times(itimes),t1 close(50) end subroutine elk-9.2.12/src/PaxHeaders/writetdlsj.f900000644000000000000000000000013214536061314014743 xustar0030 mtime=1702388428.450500701 30 atime=1702388427.360502315 30 ctime=1702388428.450500701 elk-9.2.12/src/writetdlsj.f900000644002504400250440000000215014536061314017463 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetdlsj use modmain use modtddft use modmpi implicit none ! local variables integer is,ia,ias real(8) xl(3),xs(3) character(256) fext ! allocatable arrays complex(8), allocatable :: dmat(:,:,:,:,:) allocate(dmat(lmmaxo,nspinor,lmmaxo,nspinor,natmtot)) ! generate the density matrix in each muffin-tin call gendmat(.false.,.false.,0,lmaxo,lmmaxo,dmat) if (mp_mpi) then write(fext,'("_TS",I8.8,".OUT")') itimes open(50,file='LSJ'//trim(fext),form='FORMATTED') do is=1,nspecies write(50,*) write(50,'("Species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) ! calculate the expectation value of L and S call dmatls(dmat(:,:,:,:,ias),xl,xs) write(50,'(" atom : ",I4)') ia write(50,'(" L : ",3G18.10)') xl(:) write(50,'(" S : ",3G18.10)') xs(:) write(50,'(" J : ",3G18.10)') xl(:)+xs(:) end do end do close(50) end if end subroutine elk-9.2.12/src/PaxHeaders/genspfxcr.f900000644000000000000000000000012614536061314014552 xustar0028 mtime=1702388428.4515007 30 atime=1702388427.362502312 28 ctime=1702388428.4515007 elk-9.2.12/src/genspfxcr.f900000644002504400250440000001204014536061314017266 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genspfxcr(tsh,fxcmt,fxcir) use modmain use modtddft use modfxcifc implicit none ! arguments logical, intent(in) :: tsh real(8), intent(out) :: fxcmt(npmtmax,natmtot,4,4),fxcir(ngtot,4,4) ! local variables integer idm,is,ias integer nr,nri,ir,np,i,j,n real(8) t1 ! allocatable arrays real(8), allocatable :: rho(:),rhoup(:),rhodn(:) real(8), allocatable :: mag(:,:),magu(:,:),magm(:) real(8), allocatable :: bxc(:,:),bxcp(:) real(8), allocatable :: fxcuu(:),fxcud(:),fxcdd(:) real(8), allocatable :: fxc(:,:,:) if (.not.spinpol) then write(*,*) write(*,'("Error(genspfxcr): spin-unpolarised calculation")') write(*,*) stop end if ! allocate local arrays n=npmtmax allocate(rho(n),mag(n,ndmag)) allocate(bxc(n,ndmag),fxc(n,4,4)) n=max(n,ngtot) allocate(rhoup(n),rhodn(n)) allocate(magu(3,n),magm(n),bxcp(n)) allocate(fxcuu(n),fxcud(n),fxcdd(n)) !---------------------------! ! muffin-tin kernel ! !---------------------------! do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) np=npmt(is) ! compute the density in spherical coordinates call rbsht(nr,nri,rhomt(:,ias),rho) do idm=1,ndmag ! magnetisation in spherical coordinates call rbsht(nr,nri,magmt(:,ias,idm),mag(:,idm)) ! B_xc in spherical coordinates call rbsht(nr,nri,bxcmt(:,ias,idm),bxc(:,idm)) end do if (ncmag) then ! non-collinear (use Kubler's trick) do i=1,np ! compute |m| magm(i)=sqrt(mag(i,1)**2+mag(i,2)**2+mag(i,3)**2) ! compute rhoup=(rho+|m|)/2 and rhodn=(rho-|m|)/2 rhoup(i)=0.5d0*(rho(i)+magm(i)) rhodn(i)=0.5d0*(rho(i)-magm(i)) ! unit vector m/|m| t1=1.d0/(magm(i)+1.d-8) magu(1,i)=t1*mag(i,1) magu(2,i)=t1*mag(i,2) magu(3,i)=t1*mag(i,3) ! compute B_xc.(m/|m|) bxcp(i)=bxc(i,1)*magu(1,i)+bxc(i,2)*magu(2,i)+bxc(i,3)*magu(3,i) end do else ! collinear do i=1,np ! compute |m| = |m_z| magm(i)=abs(mag(i,1)) ! compute rhoup=(rho+|m|)/2 and rhodn=(rho-|m|)/2 rhoup(i)=0.5d0*(rho(i)+magm(i)) rhodn(i)=0.5d0*(rho(i)-magm(i)) ! unit vector m/|m| magu(1,i)=0.d0 magu(2,i)=0.d0 if (mag(i,1) > 0.d0) then magu(3,i)=1.d0 else magu(3,i)=-1.d0 end if ! compute B_xc.(m/|m|) bxcp(i)=bxc(i,1)*magu(3,i) end do end if ! compute f_xc in U(2) x U(2) basis call fxcifc(fxctype,n=np,rhoup=rhoup,rhodn=rhodn,fxcuu=fxcuu,fxcud=fxcud, & fxcdd=fxcdd) ! transform f_xc to O(1) x O(3) basis (upper triangular part) call tfm2213(np,fxcuu,fxcud,fxcdd,magu,magm,bxcp,npmtmax,fxc) do i=1,4 do j=i,4 if (tsh) then ! convert to spherical harmonics if required call rfsht(nr,nri,fxc(:,i,j),fxcmt(:,ias,i,j)) else fxcmt(1:np,ias,i,j)=fxc(1:np,i,j) end if end do end do end do !-----------------------------! ! interstitial kernel ! !-----------------------------! if (ncmag) then ! non-collinear do ir=1,ngtot magm(ir)=sqrt(magir(ir,1)**2+magir(ir,2)**2+magir(ir,3)**2) rhoup(ir)=0.5d0*(rhoir(ir)+magm(ir)) rhodn(ir)=0.5d0*(rhoir(ir)-magm(ir)) t1=1.d0/(magm(ir)+1.d-8) magu(1,ir)=t1*magir(ir,1) magu(2,ir)=t1*magir(ir,2) magu(3,ir)=t1*magir(ir,3) ! compute B_xc.(m/|m|) bxcp(ir)=bxcir(ir,1)*magu(1,ir) & +bxcir(ir,2)*magu(2,ir) & +bxcir(ir,3)*magu(3,ir) end do else ! collinear do ir=1,ngtot magm(ir)=abs(magir(ir,1)) rhoup(ir)=0.5d0*(rhoir(ir)+magm(ir)) rhodn(ir)=0.5d0*(rhoir(ir)-magm(ir)) magu(1,ir)=0.d0 magu(2,ir)=0.d0 if (magir(ir,1) > 0.d0) then magu(3,ir)=1.d0 else magu(3,ir)=-1.d0 end if ! compute B_xc.(m/|m|) bxcp(ir)=bxcir(ir,1)*magu(3,ir) end do end if ! compute f_xc in U(2) x U(2) basis call fxcifc(fxctype,n=ngtot,rhoup=rhoup,rhodn=rhodn,fxcuu=fxcuu,fxcud=fxcud, & fxcdd=fxcdd) ! transform f_xc to O(1) x O(3) basis call tfm2213(ngtot,fxcuu,fxcud,fxcdd,magu,magm,bxcp,ngtot,fxcir) deallocate(rho,mag,bxc,fxc) deallocate(rhoup,rhodn) deallocate(magu,magm,bxcp) deallocate(fxcuu,fxcud,fxcdd) return contains pure subroutine tfm2213(n,fxcuu,fxcud,fxcdd,magu,magm,bxcp,ld,fxc) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: fxcuu(n),fxcud(n),fxcdd(n) real(8), intent(in) :: magu(3,n),magm(n),bxcp(n) integer, intent(in) :: ld real(8), intent(out) :: fxc(ld,4,4) ! local variables integer i real(8) t1,t2 do i=1,n ! charge-charge fxc(i,1,1)=0.25d0*(fxcuu(i)+2.d0*fxcud(i)+fxcdd(i)) ! charge-spin t1=0.25d0*(fxcuu(i)-fxcdd(i)) fxc(i,1,2)=t1*magu(1,i) fxc(i,1,3)=t1*magu(2,i) fxc(i,1,4)=t1*magu(3,i) ! spin-spin if (magm(i) > 1.d-14) then t1=bxcp(i)/magm(i) else t1=0.d0 end if t2=0.25d0*(fxcuu(i)-2.d0*fxcud(i)+fxcdd(i))-t1 fxc(i,2,2)=t2*magu(1,i)*magu(1,i)+t1 fxc(i,2,3)=t2*magu(1,i)*magu(2,i) fxc(i,2,4)=t2*magu(1,i)*magu(3,i) fxc(i,3,3)=t2*magu(2,i)*magu(2,i)+t1 fxc(i,3,4)=t2*magu(2,i)*magu(3,i) fxc(i,4,4)=t2*magu(3,i)*magu(3,i)+t1 end do end subroutine end subroutine elk-9.2.12/src/PaxHeaders/genvfxcg.f900000644000000000000000000000013214536061314014357 xustar0030 mtime=1702388428.452500698 30 atime=1702388427.364502309 30 ctime=1702388428.452500698 elk-9.2.12/src/genvfxcg.f900000644002504400250440000000216414536061314017104 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genvfxcg(gclgq,nm,vfxc) use modmain implicit none ! arguments real(8), intent(in) :: gclgq(ngrf) integer, intent(in) :: nm complex(8), intent(out) :: vfxc(nm,nm,nwrf) ! local variables integer ig,jg,kg,iv(3) ! allocatable arrays real(8), allocatable :: fxcmt(:,:),fxcir(:) complex(8), allocatable :: fxcg(:) allocate(fxcmt(npmtmax,natmtot),fxcir(ngtot)) allocate(fxcg(ngtot)) ! generate the kernel f_xc in real-space call genfxcr(.true.,fxcmt,fxcir) ! Fourier transform the kernel to G-space call zftrf(ngtot,ivg,vgc,fxcmt,fxcir,fxcg) do ig=1,ngrf do jg=1,ngrf iv(:)=ivg(:,ig)-ivg(:,jg) if ((iv(1) >= intgv(1,1)).and.(iv(1) <= intgv(2,1)).and. & (iv(2) >= intgv(1,2)).and.(iv(2) <= intgv(2,2)).and. & (iv(3) >= intgv(1,3)).and.(iv(3) <= intgv(2,3))) then kg=ivgig(iv(1),iv(2),iv(3)) vfxc(ig,jg,:)=fxcg(kg)/(gclgq(ig)*gclgq(jg)) end if end do end do deallocate(fxcmt,fxcir,fxcg) end subroutine elk-9.2.12/src/PaxHeaders/tddftsplr.f900000644000000000000000000000013214536061314014556 xustar0030 mtime=1702388428.454500696 30 atime=1702388427.365502308 30 ctime=1702388428.454500696 elk-9.2.12/src/tddftsplr.f900000644002504400250440000002072514536061314017306 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tddftsplr use modmain use modtest use modmpi use modomp implicit none ! local variables integer ik,isym,iq,iw integer ig,jg,i,j,n integer nthd real(8) v(3) complex(8) a(4,4),b(4,4),z1 character(256) fname ! allocatable arrays integer(8), allocatable :: lock(:) real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqr(:,:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(8), allocatable :: chi(:,:,:,:,:),chit(:),fxc(:,:,:,:) complex(8), allocatable :: c(:,:),d(:,:,:,:) if (.not.spinpol) then write(*,*) write(*,'("Error(tddftsplr): spin-unpolarised calculation")') write(*,*) stop end if ! initialise global variables call init0 call init1 call init2 call init3 ! check q-vector is commensurate with k-point grid v(:)=dble(ngridk(:))*vecql(:) v(:)=abs(v(:)-nint(v(:))) if ((v(1) > epslat).or.(v(2) > epslat).or.(v(3) > epslat)) then write(*,*) write(*,'("Error(tddftsplr): q-vector incommensurate with k-point grid")') write(*,'(" ngridk : ",3I6)') ngridk write(*,'(" vecql : ",3G18.10)') vecql write(*,*) stop end if ! find the equivalent reduced q-point call findqpt(vecql,isym,iq) ! read density and potentials from file call readstate ! read Fermi energy from a file call readfermi ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the eigenvalues and occupation numbers from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! generate the G+q-vectors and related functions allocate(vgqc(3,ngrf),gqc(ngrf),jlgqr(njcmax,nspecies,ngrf)) allocate(ylmgq(lmmaxo,ngrf),sfacgq(ngrf,natmtot)) call gengqf(ngrf,vecqc,vgqc,gqc,jlgqr,ylmgq,sfacgq) deallocate(vgqc) ! initialise the OpenMP locks allocate(lock(nwrf)) do iw=1,nwrf call omp_init_lock(lock(iw)) end do ! compute chi0 allocate(chi(ngrf,4,ngrf,4,nwrf)) chi(:,:,:,:,:)=0.d0 call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(tddftsplr_) write(*,'("Info(tddftsplr): ",I6," of ",I6," k-points")') ik,nkptnr !$OMP END CRITICAL(tddftsplr_) call genspchi0(ik,lock,vecql,jlgqr,ylmgq,sfacgq,chi) end do !$OMP END PARALLEL DO call freethd(nthd) ! destroy the OpenMP locks do iw=1,nwrf call omp_destroy_lock(lock(iw)) end do deallocate(lock) ! add chi0 from each process and redistribute if (np_mpi > 1) then n=ngrf*4*ngrf*4*nwrf call mpi_allreduce(mpi_in_place,chi,n,mpi_double_complex,mpi_sum,mpicom, & ierror) end if ! transform chi0 from 2x2 to 1x3 basis do iw=1,nwrf do ig=1,ngrf do jg=1,ngrf a(:,:)=chi(ig,:,jg,:,iw) call tfm2213(a,b) chi(ig,:,jg,:,iw)=b(:,:) end do end do end do ! generate transverse chi0 for the collinear case if (.not.ncmag) then allocate(chit(nwrf)) do iw=1,nwrf a(:,:)=chi(1,:,1,:,iw) call tfm13t(a,b) chit(iw)=b(2,2) end do end if ! write chi0 to file if (mp_mpi) then ! write chi0 to file in 1x3 basis do i=1,4 do j=1,4 write(fname,'("CHI0_",2I1,".OUT")') i-1,j-1 open(50,file=trim(fname),form='FORMATTED',action='WRITE') do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(chi(1,i,1,j,iw)) end do write(50,*) do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(chi(1,i,1,j,iw)) end do close(50) end do end do ! write transverse chi0 for collinear case if (.not.ncmag) then open(50,file='CHI0_T.OUT',form='FORMATTED',action='WRITE') do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(chit(iw)) end do write(50,*) do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(chit(iw)) end do close(50) end if end if ! compute f_xc in G-space allocate(fxc(ngrf,4,ngrf,4)) call genspfxcg(fxc) ! generate the Coulomb Green's function in G+q-space regularised for q = 0 allocate(gclgq(ngrf)) call gengclgq(.true.,iq,ngrf,gqc,gclgq) ! add the regularised Coulomb interaction to f_xc to give f_Hxc do ig=1,ngrf fxc(ig,1,ig,1)=fxc(ig,1,ig,1)+gclgq(ig) end do deallocate(gclgq) ! matrix size n=4*ngrf allocate(c(n,n),d(ngrf,4,ngrf,4)) ! loop over frequencies do iw=1,nwrf ! multiply f_Hxc by -chi0 from the left z1=-1.d0 call zgemm('N','N',n,n,n,z1,chi(:,:,:,:,iw),n,fxc,n,zzero,c,n) ! add the identity do i=1,n c(i,i)=c(i,i)+1.d0 end do ! invert the matrix call zminv(n,c) ! multiply by chi0 on the right and store in chi call zgemm('N','N',n,n,n,zone,c,n,chi(:,:,:,:,iw),n,zzero,d,n) chi(:,:,:,:,iw)=d(:,:,:,:) end do deallocate(c,d) ! generate transverse chi for the collinear case if (.not.ncmag) then do iw=1,nwrf a(:,:)=chi(1,:,1,:,iw) call tfm13t(a,b) chit(iw)=b(2,2) end do end if if (mp_mpi) then ! write the complete chi matrix if required if (task == 331) then open(120,file='CHI.OUT',form='UNFORMATTED',action='WRITE') write(120) chi close(120) end if ! write chi for G = G' = 0 in the 1x3 basis do i=1,4 do j=1,4 write(fname,'("CHI_",2I1,".OUT")') i-1,j-1 open(50,file=trim(fname),form='FORMATTED',action='WRITE') do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(chi(1,i,1,j,iw)) end do write(50,*) do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(chi(1,i,1,j,iw)) end do close(50) end do end do ! write transverse chi for collinear case if (.not.ncmag) then open(50,file='CHI_T.OUT',form='FORMATTED',action='WRITE') do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(chit(iw)) end do write(50,*) do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(chit(iw)) end do close(50) end if write(*,*) write(*,'("Info(tddftsplr):")') write(*,'(" Spin-dependent response function χ_ij(G,G'',q,w) written to & &CHI_ij.OUT")') write(*,'(" for i,j = 0-3; G = G'' = 0; and all wplot frequencies")') write(*,'(" q-vector (lattice coordinates) : ")') write(*,'(3G18.10)') vecql write(*,'(" q-vector length : ",G18.10)') gqc(1) write(*,*) write(*,'(" The elements of χ labeled by (i,j) form the 4x4 matrix :")') write(*,*) write(*,'(" ⎛_|_ _ _⎞")') write(*,'(" χ(G,G'',q,w) = ⎜ | ⎟")') write(*,'(" ⎜ | ⎟")') write(*,'(" ⎝ | ⎠")') write(*,*) write(*,'(" (0,0) is the charge-charge response dρ/dv")') write(*,'(" (0,1-3) is the charge-magnetisation response dρ/dB")') write(*,'(" (1-3,0) is the magnetisation-charge response dm/v")') write(*,'(" (1-3,1-3) is the magnetisation-magnetisation response dm/dB")') write(*,*) write(*,'(" Non-interacting Kohn-Sham reponse function written to & &CHI0_ij.OUT")') if (.not.ncmag) then write(*,*) write(*,'(" Transverse components corresponding to m_± = m_x ± im_y")') write(*,'(" written to CHI_T.OUT and CHI0_T.OUT")') end if if (task == 331) then write(*,*) write(*,'(" Complete response function for all G, G'' written to binary & &file CHI.OUT")') write(*,'(" (array index ordering changed from version 4.5.16 onwards)")') end if end if ! write transverse response to test file call writetest(330,'transverse response function',nv=nwrf,tol=1.d-2,zva=chit) deallocate(gqc,ylmgq,sfacgq,chi,fxc) if (.not.ncmag) deallocate(chit) return contains pure subroutine tfm2213(a,b) implicit none ! arguments complex(8), intent(in) :: a(4,4) complex(8), intent(out) :: b(4,4) ! local variables integer i,j complex(8) c(4,4),z1 do i=1,4 c(i,1)=a(i,1)+a(i,4) c(i,2)=a(i,2)+a(i,3) z1=a(i,2)-a(i,3) c(i,3)=cmplx(aimag(z1),-dble(z1),8) c(i,4)=a(i,1)-a(i,4) end do do j=1,4 b(1,j)=c(1,j)+c(4,j) b(2,j)=c(2,j)+c(3,j) z1=c(2,j)-c(3,j) b(3,j)=cmplx(-aimag(z1),dble(z1),8) b(4,j)=c(1,j)-c(4,j) end do end subroutine pure subroutine tfm13t(a,b) implicit none ! arguments complex(8), intent(in) :: a(4,4) complex(8), intent(out) :: b(4,4) ! local variables integer i,j complex(8) c(4,4),z1 do i=1,4 c(i,1)=a(i,1) z1=a(i,3) c(i,2)=a(i,2)+cmplx(aimag(z1),-dble(z1),8) c(i,3)=a(i,2)+cmplx(-aimag(z1),dble(z1),8) c(i,4)=a(i,4) end do do j=1,4 b(1,j)=c(1,j) z1=c(3,j) b(2,j)=c(2,j)+cmplx(-aimag(z1),dble(z1),8) b(3,j)=c(2,j)+cmplx(aimag(z1),-dble(z1),8) b(4,j)=c(4,j) end do end subroutine end subroutine elk-9.2.12/src/PaxHeaders/genspfxcg.f900000644000000000000000000000013214536061314014534 xustar0030 mtime=1702388428.455500694 30 atime=1702388427.367502305 30 ctime=1702388428.455500694 elk-9.2.12/src/genspfxcg.f900000644002504400250440000000233614536061314017262 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genspfxcg(fxc) use modmain implicit none ! arguments complex(8), intent(out) :: fxc(ngrf,4,ngrf,4) ! local variables integer ig,jg,kg integer iv(3),i,j complex(8) z1 ! allocatable arrays real(8), allocatable :: fxcmt(:,:,:,:),fxcir(:,:,:) complex(8), allocatable :: fxcg(:) allocate(fxcmt(npmtmax,natmtot,4,4),fxcir(ngtot,4,4)) allocate(fxcg(ngtot)) ! generate the kernel f_xc in real-space call genspfxcr(.true.,fxcmt,fxcir) ! Fourier transform the kernel to G-space do i=1,4 do j=i,4 call zftrf(ngtot,ivg,vgc,fxcmt(:,:,i,j),fxcir(:,i,j),fxcg) do ig=1,ngrf do jg=1,ngrf iv(:)=ivg(:,ig)-ivg(:,jg) if ((iv(1) >= intgv(1,1)).and.(iv(1) <= intgv(2,1)).and. & (iv(2) >= intgv(1,2)).and.(iv(2) <= intgv(2,2)).and. & (iv(3) >= intgv(1,3)).and.(iv(3) <= intgv(2,3))) then kg=ivgig(iv(1),iv(2),iv(3)) z1=fxcg(kg) fxc(ig,i,jg,j)=z1 fxc(jg,j,ig,i)=conjg(z1) end if end do end do end do end do deallocate(fxcmt,fxcir,fxcg) end subroutine elk-9.2.12/src/PaxHeaders/genafieldt.f900000644000000000000000000000013214536061314014652 xustar0030 mtime=1702388428.456500692 30 atime=1702388427.368502303 30 ctime=1702388428.456500692 elk-9.2.12/src/genafieldt.f900000644002504400250440000001556014536061314017403 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genafieldt ! !INTERFACE: subroutine genafieldt ! !USES: use modmain use modtddft ! !DESCRIPTION: ! Generates a time-dependent vector potential, ${\bf A}(t)$, representing a ! laser pulse and stores it in {\tt AFIELDT.OUT}. The vector potential is ! constructed from a sum of sinusoidal waves, each modulated with a Gaussian ! envelope function: ! $$ {\bf A}(t)={\bf A}_0 ! \frac{e^{-(t-t_0)^2/2\sigma^2}}{\sigma\sqrt{2\pi}} ! \sin(\omega(t-t_0)+\phi). $$ ! Seven real numbers have to be specified for each pulse, namely the vector ! amplitude ${\bf A}_0$, peak time $t_0$, full-width at half-maximum ! $d=2\sqrt{2\ln 2}\sigma$, frequency $\omega$ and phase $\phi$. ! ! !REVISION HISTORY: ! Created May 2012 (K. Krieger) ! Modified, January 2014 (S. Sharma) ! Modified, February 2014 (JKD) ! Added spin-dependent A-fields, January 2023 (E. Harris-Lee) !EOP !BOC implicit none ! local variables integer its,i,j real(8) av0(3),t0,d,w,phi,rc real(8) ft,ppd,s,t real(8) av(3),s0,sv(3) real(8) t1,t2,t3,t4 ! conversion factor of power density to W/cm^2 real(8), parameter :: cpd=ha_si/(t_si*(100.d0*br_si)**2) ! generate the time step grid call gentimes open(50,file='TD_INFO.OUT',form='FORMATTED') write(50,*) write(50,'("(All units are atomic unless otherwise specified)")') write(50,*) write(50,'("1 atomic unit of time is ",G18.10," attoseconds")') t_si*1.d18 write(50,*) write(50,'("Total simulation time : ",G18.10)') tstime write(50,'(" in attoseconds : ",G18.10)') tstime*t_si*1.d18 write(50,*) write(50,'("Time step length : ",G18.10)') dtimes write(50,'(" in attoseconds : ",G18.10)') dtimes*t_si*1.d18 write(50,*) write(50,'("Number of time steps : ",I8)') ntimes write(50,*) write(50,'("Number of laser pulses : ",I6)') npulse write(50,'("Number of ramps : ",I6)') nramp write(50,'("Number of steps : ",I6)') nstep ! allocate and zero time-dependent A-field array if (allocated(afieldt)) deallocate(afieldt) allocate(afieldt(3,ntimes)) afieldt(:,:)=0.d0 ! allocate and zero spin- and time-dependent A-field array if (tafspt) then if (allocated(afspt)) deallocate(afspt) allocate(afspt(3,3,ntimes)) afspt(:,:,:)=0.d0 end if !----------------------! ! laser pulses ! !----------------------! do i=1,npulse ! vector amplitude av0(1:3)=pulse(1:3,i) ! frequency w=pulse(4,i) ! phase phi=pulse(5,i) ! chirp rate rc=pulse(6,i) ! peak time t0=pulse(7,i) ! full-width at half-maximum d=pulse(8,i) ! Gaussian sigma s=d/(2.d0*sqrt(2.d0*log(2.d0))) ! write information to TD_INFO.OUT write(50,*) write(50,'("Pulse : ",I6)') i write(50,'(" vector amplitude : ",3G18.10)') av0(:) write(50,'(" laser frequency : ",G18.10)') w write(50,'(" in eV : ",G18.10)') w*ha_ev write(50,'(" laser wavelength (Angstroms) : ",G18.10)') 1.d10/(w*ha_im) write(50,'(" phase (degrees) : ",G18.10)') phi write(50,'(" chirp rate : ",G18.10)') rc write(50,'(" peak time : ",G18.10)') t0 write(50,'(" full-width at half-maximum : ",G18.10)') d write(50,'(" Gaussian σ = FWHM / 2√(2ln2) : ",G18.10)') s t1=av0(1)**2+av0(2)**2+av0(3)**2 ppd=t1*(w**2)/(8.d0*pi*solsc) write(50,'(" peak laser power density : ",G18.10)') ppd write(50,'(" in W/cm² : ",G18.10)') ppd*cpd if (tafspt) then s0=pulse(9,i) sv(1:3)=pulse(10:12,i) write(50,'(" spin components for σ_0, σ_x, σ_y, σ_z : ")') write(50,'(4G18.10)') s0,sv(:) end if ! loop over time steps do its=1,ntimes t=times(its) t1=t-t0 t2=-0.5d0*(t1/s)**2 t3=w*t1+phi*pi/180.d0+0.5d0*rc*t**2 ft=exp(t2)*sin(t3) if (abs(ft) < 1.d-20) ft=0.d0 av(:)=ft*av0(:) ! spin-polarised vector potential if (tafspt) then do j=1,3 afspt(:,j,its)=afspt(:,j,its)+av(:)*sv(j) end do av(:)=s0*av(:) end if afieldt(:,its)=afieldt(:,its)+av(:) end do end do !---------------! ! ramps ! !---------------! do i=1,nramp ! vector amplitude av0(1:3)=ramp(1:3,i) ! ramp start time t0=ramp(4,i) ! linear coefficient t1=ramp(5,i) ! quadratic coefficient t2=ramp(6,i) ! cubic coefficient t3=ramp(7,i) ! quartic coefficient t4=ramp(8,i) ! write information to TD_INFO.OUT write(50,*) write(50,'("Ramp : ",I6)') i write(50,'(" vector amplitude : ",3G18.10)') av0(:) write(50,'(" ramp start time : ",G18.10)') t0 write(50,'(" coefficients : ",4G18.10)') t1,t2,t3,t4 if (tafspt) then s0=ramp(9,i) sv(1:3)=ramp(10:12,i) write(50,'(" spin components for σ_0, σ_x, σ_y, σ_z : ")') write(50,'(4G18.10)') s0,sv(:) end if ! loop over time steps do its=1,ntimes t=times(its)-t0 if (t > 0.d0) then ft=t*(t1+t*(t2+t*(t3+t*t4))) av(:)=ft*av0(:) if (tafspt) then do j=1,3 afspt(:,j,its)=afspt(:,j,its)+av(:)*sv(j) end do av(:)=s0*av(:) end if afieldt(:,its)=afieldt(:,its)+av(:) end if end do end do !---------------! ! steps ! !---------------! do i=1,nstep ! vector amplitude av(1:3)=step(1:3,i) ! step start time t0=step(4,i)-1.d-14 ! step stop time t1=step(5,i) ! write information to TD_INFO.OUT write(50,*) write(50,'("Step : ",I6)') i write(50,'(" vector amplitude : ",3G18.10)') av(:) write(50,'(" step start and stop times : ",2G18.10)') t0,t1 if (tafspt) then s0=step(6,i) sv(1:3)=step(7:9,i) write(50,'(" spin components for σ_0, σ_x, σ_y, σ_z : ")') write(50,'(4G18.10)') s0,sv(:) end if ! loop over time steps do its=1,ntimes t=times(its) if (t > t1) exit if (t >= t0) then afieldt(:,its)=afieldt(:,its)+av(:) if (tafspt) then do j=1,3 afspt(:,j,its)=afspt(:,j,its)+av(:)*sv(j) end do end if end if end do end do close(50) ! write the vector potential to AFIELDT.OUT open(50,file='AFIELDT.OUT',form='FORMATTED') write(50,'(I8," : number of time steps")') ntimes do its=1,ntimes write(50,'(I8,4G18.10)') its,times(its),afieldt(:,its) end do close(50) ! write the spin-polarised vector potential to AFSPT.OUT if (tafspt) then open(50,file='AFSPT.OUT',form='FORMATTED') write(50,'(I8," : number of time steps")') ntimes do its=1,ntimes write(50,'(I8,10G18.10)') its,times(its),afspt(:,:,its) end do close(50) end if write(*,*) write(*,'("Info(genafieldt):")') write(*,'(" Time-dependent A-field written to AFIELDT.OUT")') if (tafspt) then write(*,'(" Time- and spin-dependent A-field written to AFSPT.OUT")') end if write(*,'(" Laser pulse, ramp and step parameters written to TD_INFO.OUT")') write(*,*) write(*,'(" 1 atomic unit of time is ",G18.10," attoseconds")') t_si*1.d18 write(*,'(" Total simulation time : ",G18.10)') tstime write(*,'(" in attoseconds : ",G18.10)') tstime*t_si*1.d18 deallocate(times,afieldt) end subroutine !EOC elk-9.2.12/src/PaxHeaders/writetddft.f900000644000000000000000000000013014536061314014726 xustar0030 mtime=1702388428.458500689 28 atime=1702388427.3705023 30 ctime=1702388428.458500689 elk-9.2.12/src/writetddft.f900000644002504400250440000001107214536061314017453 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetddft use modmain use modtddft use moddftu use moddelf implicit none ! local variables integer is,ia,ias character(32) fext ! allocatable arrays real(8), allocatable :: rvfmt(:,:,:),rvfir(:,:) ! file extension write(fext,'("_TS",I8.8,".OUT")') itimes ! delete files at first time step if (itimes <= 1) then call delfile('TOTENERGY_TD.OUT') call delfile('CHARGEMT_TD.OUT') call delfile('CHARGEIR_TD.OUT') if (spinpol) then call delfile('MOMENT_TD.OUT') call delfile('MOMENTM_TD.OUT') call delfile('MOMENTMT_TD.OUT') call delfile('MOMENTIR_TD.OUT') end if call delfile('JTOT_TD.OUT') call delfile('JTOTM_TD.OUT') if (tddos) call delfile('TDTEMP.OUT') if (tdlsj) call delfile('TDLSJ.OUT') if (tforce) call delfile('FORCETOT_TD.OUT') if (tatdisp) then call delfile('ATDISPL_TD.OUT') call delfile('ATDISPC_TD.OUT') end if if (tafindt) call delfile('AFIND_TD.OUT') end if ! total energy call writetdengy ! muffin-tin charges open(50,file='CHARGEMT_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(G18.10)') times(itimes) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(50,'(2I4,G18.10)') is,ia,chgmt(ias) end do end do write(50,*) close(50) ! interstitial charge open(50,file='CHARGEIR_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(2G18.10)') times(itimes),chgir close(50) ! write spin moments to file if required if (spinpol) call writemomtd ! total current open(50,file='JTOT_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(4G18.10)') times(itimes),jtot(:) close(50) ! total current magnitude open(50,file='JTOTM_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(4G18.10)') times(itimes),jtotm close(50) ! write the time-dependent atomic forces if (tforce.and.ttsforce) then call writetdforces open(50,file='FORCES'//trim(fext),form='FORMATTED',action='WRITE') call writeforces(50) close(50) end if ! write the time-dependent atomic displacements if (tatdisp.and.ttsforce) call writeatdisp ! write the time-dependent induced A-field if (tafindt) then open(50,file='AFIND_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(4G18.10)') times(itimes),afindt(:,0) close(50) end if ! write optional quantities if (.not.ttswrite) return ! charge density in 1D if (tdrho1d) then open(50,file='RHO1D'//trim(fext),form='FORMATTED',action='WRITE') open(51,file='RHOLINES.OUT',form='FORMATTED',action='WRITE') call plot1d(50,51,1,rhomt,rhoir) close(50) close(51) end if ! charge density in 2D if (tdrho2d) then open(50,file='RHO2D'//trim(fext),form='FORMATTED',action='WRITE') call plot2d(.false.,50,1,rhomt,rhoir) close(50) end if ! charge density in 3D if (tdrho3d) then open(50,file='RHO3D'//trim(fext),form='FORMATTED',action='WRITE') call plot3d(50,1,rhomt,rhoir) close(50) end if ! magnetisation in 1D, 2D or 3D if ((tdmag1d.or.tdmag2d.or.tdmag3d).and.(spinpol)) then allocate(rvfmt(npmtmax,natmtot,3),rvfir(ngtot,3)) if (ncmag) then ! non-collinear rvfmt(:,:,:)=magmt(:,:,:) rvfir(:,:)=magir(:,:) else ! collinear rvfmt(:,:,1:2)=0.d0 rvfir(:,1:2)=0.d0 rvfmt(:,:,3)=magmt(:,:,1) rvfir(:,3)=magir(:,1) end if if (tdmag1d) then open(50,file='MAG1D'//trim(fext),form='FORMATTED',action='WRITE') open(51,file='MAGLINES.OUT',form='FORMATTED',action='WRITE') call plot1d(50,51,3,rvfmt,rvfir) close(50) close(51) end if if (tdmag2d) then open(50,file='MAG2D'//trim(fext),form='FORMATTED',action='WRITE') call plot2d(.true.,50,3,rvfmt,rvfir) close(50) end if if (tdmag3d) then open(50,file='MAG3D'//trim(fext),form='FORMATTED',action='WRITE') call plot3d(50,3,rvfmt,rvfir) close(50) end if deallocate(rvfmt,rvfir) end if ! gauge-invariant current density in 1D if (tdjr1d) then open(50,file='JR1D'//trim(fext),form='FORMATTED',action='WRITE') open(51,file='JRLINES.OUT',form='FORMATTED',action='WRITE') call plot1d(50,51,3,jrmt,jrir) close(50) close(51) end if ! gauge-invariant current density in 2D if (tdjr2d) then open(50,file='JR2D'//trim(fext),form='FORMATTED',action='WRITE') call plot2d(.true.,50,3,jrmt,jrir) close(50) end if ! gauge-invariant current density in 3D if (tdjr3d) then open(50,file='JR3D'//trim(fext),form='FORMATTED',action='WRITE') call plot3d(50,3,jrmt,jrir) close(50) end if ! calculate and write tensor moments if (dftu /= 0) then if (tmwrite) call writetdtm3 end if end subroutine elk-9.2.12/src/PaxHeaders/dielectric_tdrt.f900000644000000000000000000000013214536061314015714 xustar0030 mtime=1702388428.459500688 30 atime=1702388427.371502299 30 ctime=1702388428.459500688 elk-9.2.12/src/dielectric_tdrt.f900000644002504400250440000000706714536061314020450 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dielectric_tdrt use modmain use modtddft implicit none ! local variables integer its,iw,i,j real(8) w1,w2,a0,t0,t1,t2 complex(8) eta,z1,z2 character(256) fname ! allocatable arrays real(8), allocatable :: w(:),wt(:),jt(:,:) real(8), allocatable :: f1(:),f2(:),g(:) complex(8), allocatable :: ew(:,:),jw(:,:),eps(:) ! initialise global variables call init0 call init1 ! generate energy grid (always non-negative) allocate(w(nwplot)) w1=max(wplot(1),0.d0) w2=max(wplot(2),w1) t1=(w2-w1)/dble(nwplot) do iw=1,nwplot w(iw)=w1+t1*dble(iw-1) end do ! i divided by the complex relaxation time eta=cmplx(0.d0,swidth,8) ! determine the weights for the spline integration allocate(wt(ntimes)) call wsplint(ntimes,times,wt) ! compute the electric field from E = -1/c dA/dt and Fourier transform allocate(f1(ntimes),f2(ntimes),g(ntimes)) allocate(ew(nwplot,3)) t0=-1.d0/solsc do i=1,3 ! constant term corresponding to instantaneous A-field at t=0 a0=afieldt(i,1) if (task == 480) then ! Fourier transform E(t) numerically f1(:)=afieldt(i,:) call fderiv(1,ntimes,times,f1,g) do iw=1,nwplot do its=1,ntimes t1=g(its) t2=w(iw)*times(its) f1(its)=t1*cos(t2) f2(its)=t1*sin(t2) end do t1=dot_product(wt(:),f1(:)) t2=dot_product(wt(:),f2(:)) ew(iw,i)=t0*cmplx(t1+a0,t2,8) end do else ! analytic Fourier transform of E(t) assumed to be a delta function at t=0 t1=t0*a0 ew(1:nwplot,i)=t1 end if end do ! read in the total current from file allocate(jt(3,ntimes)) call readjtot(jt) ! divide by the unit cell volume jt(:,:)=jt(:,:)/omega ! set the constant part of J(t) to zero if required; this effectively removes ! the Drude term if (jtconst0) then do i=1,3 f1(1:ntimes)=jt(i,1:ntimes) t1=dot_product(wt(:),f1(:)) t1=t1/times(ntimes) jt(i,1:ntimes)=jt(i,1:ntimes)-t1 end do end if ! filter the high-frequency components from the current do its=1,ntimes t1=exp(-swidth*times(its)) jt(:,its)=t1*jt(:,its) end do ! Fourier transform the current allocate(jw(nwplot,3)) do i=1,3 do iw=1,nwplot do its=1,ntimes t1=jt(i,its) t2=w(iw)*times(its) f1(its)=t1*cos(t2) f2(its)=t1*sin(t2) end do t1=dot_product(wt(:),f1(:)) t2=dot_product(wt(:),f2(:)) jw(iw,i)=cmplx(t1,t2,8) end do end do deallocate(wt,f1,f2,g,jt) ! compute the dielectric function and write to file allocate(eps(nwplot)) do i=1,3 do j=1,3 do iw=1,nwplot z1=jw(iw,i) z2=ew(iw,j) t1=abs(dble(z2))+abs(aimag(z2)) if (t1 > 1.d-8) then z1=z1/z2 else z1=0.d0 end if z1=fourpi*cmplx(-aimag(z1),dble(z1),8) z1=z1/(w(iw)+eta) if (i == j) z1=z1+1.d0 eps(iw)=z1 end do write(fname,'("EPSILON_TDRT_",2I1,".OUT")') i,j open(50,file=trim(fname),form='FORMATTED') do iw=1,nwplot write(50,'(2G18.10)') w(iw),dble(eps(iw)) end do write(50,*) do iw=1,nwplot write(50,'(2G18.10)') w(iw),aimag(eps(iw)) end do close(50) end do end do write(*,*) write(*,'("Info(dielectric_tdrt):")') write(*,'(" dielectric tensor determined from real-time evolution")') write(*,'(" written to EPSILON_TDRT_ij.OUT for components i,j = 1,2,3")') write(*,*) write(*,'("(Note that only those components which are not orthogonal to the")') write(*,'(" applied A-field will be calculated correctly)")') deallocate(w,ew,jw,eps) end subroutine elk-9.2.12/src/PaxHeaders/readjtot.f900000644000000000000000000000013214536061314014364 xustar0030 mtime=1702388428.460500687 30 atime=1702388427.373502296 30 ctime=1702388428.460500687 elk-9.2.12/src/readjtot.f900000644002504400250440000000172714536061314017115 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readjtot(jt) use modmain use modtddft implicit none ! arguments real(8), intent(out) :: jt(3,ntimes) ! local variables integer its,ios real(8) times_,t1 open(50,file='JTOT_TD.OUT',form='FORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readjtot): error opening JTOT_TD.OUT")') write(*,*) stop end if do its=1,ntimes-1 read(50,*) times_,jt(:,its) t1=abs(times(its)-times_) if (t1 > 1.d-10) then write(*,*) write(*,'("Error(readjtot): time step mismatch for step number ",I8)') its write(*,'(" internal : ",G18.10)') times(its) write(*,'(" JTOT_TD.OUT : ",G18.10)') times_ write(*,*) stop end if end do close(50) ! set current at last time step jt(:,ntimes)=jt(:,ntimes-1) end subroutine elk-9.2.12/src/PaxHeaders/afindtstep.f900000644000000000000000000000013214536061314014711 xustar0030 mtime=1702388428.461500685 30 atime=1702388427.374502295 30 ctime=1702388428.461500685 elk-9.2.12/src/afindtstep.f900000644002504400250440000000326414536061314017440 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Peter Elliott, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: afindtstep ! !INTERFACE: subroutine afindtstep ! !USES: use modmain use modtddft use modmpi ! !DESCRIPTION: ! Performs a time step of the macroscopic Maxwell equation and updates the ! induced vector potential ${\bf A}(t)$. In practice, a more general damped ! Proca equation is solved: ! $$ p_0{\bf A}+p_1\dot{\bf A}+p_2\ddot{\bf A}= ! \frac{4\pi c}{\Omega}{\bf J}, $$ ! where $\Omega$ is the unit cell volume, ${\bf J}$ is the total current ! across the unit cell, and the parameters $p_i$, $i=0,1,2$ are stored in the ! array {\tt afindpm}. This generalisation allows for both a mass and damping ! term, however the default values of $p_0=p_1=0$ and $p_2=1$ recover the ! physical Maxwell equation. ! ! !REVISION HISTORY: ! Created January 2020 (P. Elliott) ! Added mass and damping terms, December 2022 (JKD) !EOP !BOC implicit none ! local variables integer i real(8) dt,t1,t2,t3 ! time step length dt=times(itimes+1)-times(itimes) ! add to the time derivative of the induced A-field t1=fourpi*solsc/omega t2=dt/afindpm(2) do i=1,3 t3=t1*jtot(i)-afindpm(1)*afindt(i,1)-afindpm(0)*afindt(i,0) afindt(i,1)=afindt(i,1)+t2*t3 end do ! add to the induced A-field afindt(:,0)=afindt(:,0)+afindt(:,1)*dt ! add to the total A-field afieldt(:,itimes+1)=afieldt(:,itimes+1)+afindt(:,0) ! write the induced A-field and its time derivative to file if (mp_mpi) then open(50,file='AFINDT.OUT',form='FORMATTED') write(50,'(6G18.10)') afindt(:,:) close(50) end if end subroutine !EOC elk-9.2.12/src/PaxHeaders/genefieldt.f900000644000000000000000000000013214536061314014656 xustar0030 mtime=1702388428.463500682 30 atime=1702388427.376502292 30 ctime=1702388428.463500682 elk-9.2.12/src/genefieldt.f900000644002504400250440000000115414536061314017401 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Peter Elliott, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genefieldt use modmain use modtddft implicit none ! local variables integer np,it,i,j real(8) t1 ! automatic arrays real(8) ya(4) ! external functions real(8), external :: polynm ! determine the electric field at the current time step t1=-1.d0/solsc np=min(4,itimes) it=itimes-np+1 do i=1,3 do j=1,np ya(j)=afieldt(i,it+j-1) end do efieldt(i)=t1*polynm(1,np,times(it),ya,times(itimes)) end do end subroutine elk-9.2.12/src/PaxHeaders/energytd.f900000644000000000000000000000013114536061314014370 xustar0030 mtime=1702388428.464500681 29 atime=1702388427.37750229 30 ctime=1702388428.464500681 elk-9.2.12/src/energytd.f900000644002504400250440000000147614536061314017123 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine energytd use modmain use modtddft implicit none ! local variables integer is,ias real(8) ca,engya ! external functions real(8), external :: rfinp ! Coulomb potential energy engyvcl=rfinp(rhomt,rhoir,vclmt,vclir) ! Madelung term engymad=0.d0 do ias=1,natmtot is=idxis(ias) engymad=engymad+0.5d0*spzn(is)*(vclmt(1,ias)-vcln(1,is))*y00 end do ! exchange and correlation energy engyx=rfinp(rhomt,rhoir,exmt,exir) engyc=rfinp(rhomt,rhoir,ecmt,ecir) ! external vector potential interaction energy ca=-1.d0/solsc engya=ca*dot_product(afieldt(:,itimes),jtot(:)) ! total energy engytot=engykn+0.5d0*engyvcl+engymad+engyx+engyc+engya end subroutine elk-9.2.12/src/PaxHeaders/engyknk.f900000644000000000000000000000013214536061314014216 xustar0030 mtime=1702388428.465500679 30 atime=1702388427.379502287 30 ctime=1702388428.465500679 elk-9.2.12/src/engyknk.f900000644002504400250440000000221214536061314016735 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine engyknk(ik,kmat,evecsv,evecsvt) use modmain use modtddft implicit none ! arguments integer, intent(in) :: ik complex(8), intent(in) :: kmat(nstsv,nstsv) complex(8), intent(in) :: evecsv(nstsv,nstsv),evecsvt(nstsv,nstsv) ! local variables integer ist real(8) wo complex(8) z1 ! allocatable arrays complex(8), allocatable :: a(:,:),b(:,:) ! external functions complex(8), external :: zdotc allocate(a(nstsv,nstsv),b(nstsv,nstsv)) ! form the kinetic operator matrix elements in the first-variational basis call zgemm('N','C',nstsv,nstsv,nstsv,zone,kmat,nstsv,evecsv,nstsv,zzero,a,nstsv) call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,a,nstsv,zzero,b,nstsv) ! add to the kinetic energy call zgemm('N','N',nstsv,nstsv,nstsv,zone,b,nstsv,evecsvt,nstsv,zzero,a,nstsv) do ist=1,nstsv wo=occsv(ist,ik) if (abs(wo) < epsocc) cycle wo=wo*wkpt(ik) z1=zdotc(nstsv,evecsvt(:,ist),1,a(:,ist),1) !$OMP ATOMIC engykn=engykn+wo*dble(z1) end do deallocate(a,b) end subroutine elk-9.2.12/src/PaxHeaders/readforcet.f900000644000000000000000000000013214536061314014666 xustar0030 mtime=1702388428.467500676 30 atime=1702388427.380502286 30 ctime=1702388428.467500676 elk-9.2.12/src/readforcet.f900000644002504400250440000000336314536061314017415 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readforcet use modmain use modtddft implicit none ! local variables integer ios,its,its_ integer is,ia,ias,is_,ia_ real(8) times_,t1 ! allocate and zero the time-dependent force array if (allocated(forcet)) deallocate(forcet) allocate(forcet(3,natmtot,ntimes)) forcet(:,:,:)=0.d0 ! read in the time-dependent total atomic forces open(50,file='FORCETOT_TD.OUT',form='FORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readforcet): error opening FORCETOT_TD.OUT")') write(*,*) stop end if do its=1,ntimes-1,ntsforce read(50,*) its_,times_ if (its /= its_) then write(*,*) write(*,'("Error(readforcet): time step number mismatch")') write(*,'(" internal : ",I8)') its write(*,'(" FORCETOT_TD.OUT : ",I8)') its_ write(*,*) stop end if t1=abs(times(its)-times_) if (t1 > 1.d-10) then write(*,*) write(*,'("Error(readforcet): time step mismatch for step number ",I8)') its write(*,'(" internal : ",G18.10)') times(its) write(*,'(" FORCETOT_TD.OUT : ",G18.10)') times_ stop end if do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) read(50,*) is_,ia_,forcet(:,ias,its) if ((is /= is_).or.(ia /= ia_)) then write(*,*) write(*,'("Error(readforcet): species or atom number mismatch for time & &step number ",I8)') its write(*,'(" internal : ",2I4)') is,ia write(*,'(" FORCETOT_TD.OUT : ",2I4)') is_,ia_ write(*,*) stop end if end do end do end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/tdrestart.f900000644000000000000000000000013214536061314014564 xustar0030 mtime=1702388428.468500675 30 atime=1702388427.382502283 30 ctime=1702388428.468500675 elk-9.2.12/src/tdrestart.f900000644002504400250440000000141414536061314017306 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Peter Elliott, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tdrestart use modmain use modtddft use moddftu implicit none ! last time step for which the eigenvectors were written to file call readtimes ! generate the density and magnetisation call rhomag ! compute the time-dependent Kohn-Sham potentials and magnetic fields call potkst ! DFT+U if (dftu /= 0) then call gendmatmt call genvmatmt end if ! read in the induced A-field and its time derivative if (tafindt) call readafindt ! read in the atomic displacements and velocities if (tatdisp) trdatdv=.true. ! begin TDDFT loop with next time step itimes0=itimes0+1 end subroutine elk-9.2.12/src/PaxHeaders/writeatdvc.f900000644000000000000000000000013214536061314014724 xustar0030 mtime=1702388428.469500673 30 atime=1702388427.383502281 30 ctime=1702388428.469500673 elk-9.2.12/src/writeatdvc.f900000644002504400250440000000101714536061314017445 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeatdvc use modmain implicit none ! local variables integer is,ia ! write the atomic displacements and velocities in Cartesian coordinates to file open(50,file='ATDVC.OUT',form='FORMATTED',action='WRITE') do is=1,nspecies do ia=1,natoms(is) write(50,'(2I4,6G18.10)') is,ia,atdvc(:,:,ia,is) end do end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/rhostatic.f900000644000000000000000000000013214536061314014550 xustar0030 mtime=1702388428.470500672 30 atime=1702388427.385502278 30 ctime=1702388428.470500672 elk-9.2.12/src/rhostatic.f900000644002504400250440000000545214536061314017300 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhostatic use modmain use modtddft use modmpi implicit none ! local variables integer is,ia,ias,np,i real(8) t0,t1 ! allocatable arrays real(8), allocatable :: jrmt0(:,:,:),jrir0(:,:) ! external functions real(8), external :: rfmtint,rfint ! store original parameters maxscl0=maxscl afieldc0(:)=afieldc(:) tforce0=tforce tjr0=tjr ! initialise global variables call init0 ! only one self-consistent loop required maxscl=1 ! read potential from STATE.OUT trdstate=.true. ! calculate current density with zero A-field tjr=.true. afieldc(:)=0.d0 ! switch off forces tforce=.false. ! run the ground-state calculation call gndstate ! store the current density allocate(jrmt0(npmtmax,natmtot,3),jrir0(ngtot,3)) do i=1,3 call rfcopy(jrmt(:,:,i),jrir(:,i),jrmt0(:,:,i),jrir0(:,i)) end do ! allocate static density and charge global arrays if (allocated(rhosmt)) deallocate(rhosmt) allocate(rhosmt(npmtmax,natmtot,3)) if (allocated(rhosir)) deallocate(rhosir) allocate(rhosir(ngtot,3)) if (allocated(chgsmt)) deallocate(chgsmt) allocate(chgsmt(natmtot,3)) ! magnitude of applied external A-field t0=0.75d0*solsc t1=solsc/t0 ! loop over three directions do i=1,3 afieldc(:)=0.d0 afieldc(i)=t0 ! run the ground-state calculation call gndstate ! muffin-tin static density do ias=1,natmtot is=idxis(ias) np=npmt(is) rhosmt(1:np,ias,i)=rhomt(1:np,ias)+t1*(jrmt0(1:np,ias,i)-jrmt(1:np,ias,i)) ! compute the muffin-tin static charge chgsmt(ias,i)=rfmtint(nrmt(is),nrmti(is),wrmt(:,is),rhosmt(:,ias,i)) end do ! interstitial static density rhosir(:,i)=rhoir(:)+t1*(jrir0(:,i)-jrir(:,i)) ! compute the static charge chgstot(i)=rfint(rhosmt(:,:,i),rhosir(:,i)) end do if (mp_mpi) then ! write static density and charges to binary file open(100,file='RHOSTAT.OUT',form='UNFORMATTED',action='WRITE') write(100) natmtot write(100) npmtmax write(100) ngtot write(100) rhosmt,rhosir write(100) chgsmt write(100) chgstot close(100) ! write static charges to text file open(50,file='CHGSTAT.OUT',form='FORMATTED',action='WRITE') write(50,'("Muffin-tin static charges :")') do is=1,nspecies write(50,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) write(50,'(" core charge",T25,": ",G18.10)') chgcr(is) do ia=1,natoms(is) ias=idxas(ia,is) write(50,'(" atom ",I4,T25,": ",3G18.10)') ia,chgsmt(ias,:) end do end do write(50,*) write(50,'("Total static charge",T25,": ",3G18.10)') chgstot(:) close(50) end if deallocate(jrmt0,jrir0) ! restore original input parameters maxscl=maxscl0 afieldc(:)=afieldc0(:) tforce=tforce0 tjr=tjr0 ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/jtotk.f900000644000000000000000000000013214536061314013703 xustar0030 mtime=1702388428.472500669 30 atime=1702388427.386502277 30 ctime=1702388428.472500669 elk-9.2.12/src/jtotk.f900000644002504400250440000000226214536061314016427 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine jtotk(ik,pmat,evecsv,evecsvt) use modmain implicit none ! arguments integer, intent(in) :: ik complex(8), intent(in) :: pmat(nstsv,nstsv,3) complex(8), intent(in) :: evecsv(nstsv,nstsv),evecsvt(nstsv,nstsv) ! local variables integer ist,l real(8) wo complex(8) z1 ! allocatable arrays complex(8), allocatable :: a(:,:),b(:,:) ! external functions complex(8), external :: zdotc allocate(a(nstsv,nstsv),b(nstsv,nstsv)) do l=1,3 ! form the momentum operator matrix elements in the first-variational basis call zgemm('N','C',nstsv,nstsv,nstsv,zone,pmat(:,:,l),nstsv,evecsv,nstsv, & zzero,a,nstsv) call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,a,nstsv,zzero,b,nstsv) ! add to the total current call zgemm('N','N',nstsv,nstsv,nstsv,zone,b,nstsv,evecsvt,nstsv,zzero,a,nstsv) do ist=1,nstsv wo=occsv(ist,ik) if (abs(wo) < epsocc) cycle wo=wo*wkpt(ik) z1=zdotc(nstsv,evecsvt(:,ist),1,a(:,ist),1) !$OMP ATOMIC jtot(l)=jtot(l)+wo*dble(z1) end do end do deallocate(a,b) end subroutine elk-9.2.12/src/PaxHeaders/rhosplot.f900000644000000000000000000000013214536061314014422 xustar0030 mtime=1702388428.473500667 30 atime=1702388427.387502275 30 ctime=1702388428.473500667 elk-9.2.12/src/rhosplot.f900000644002504400250440000000223114536061314017142 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhosplot use modmain use modtddft implicit none ! local variables integer is,ias,ispn integer nr,nri,iro,ir,i ! determine the static density and charge call rhostatic ! remove the core charge density do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 do ispn=1,nspncr i=1 do ir=1,nri rhosmt(i,ias,:)=rhosmt(i,ias,:)-rhocr(ir,ias,ispn) i=i+lmmaxi end do do ir=iro,nr rhosmt(i,ias,:)=rhosmt(i,ias,:)-rhocr(ir,ias,ispn) i=i+lmmaxo end do end do end do ! produce 1D plot of the static density open(50,file='RHOS1D.OUT',form='FORMATTED',action='WRITE') open(51,file='RHOSLINES.OUT',form='FORMATTED',action='WRITE') call plot1d(50,51,3,rhosmt,rhosir) close(50) close(51) write(*,*) write(*,'("Info(rhosplot):")') write(*,'(" 1D static density plot written to RHOS1D.OUT")') write(*,'(" vertex location lines written to RHOSLINES.OUT")') write(*,*) write(*,'(" The core density is not included in the plot")') end subroutine elk-9.2.12/src/PaxHeaders/bornecdyn.f900000644000000000000000000000013214536061314014533 xustar0030 mtime=1702388428.474500666 30 atime=1702388427.389502272 30 ctime=1702388428.474500666 elk-9.2.12/src/bornecdyn.f900000644002504400250440000000702014536061314017254 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine bornecdyn use modmain use modphonon use modtddft use modmpi use modtest implicit none ! local variables integer its,iw,i real(8) vc(3),w1,w2,t0,t1,t2 character(256) fext ! allocatable arrays real(8), allocatable :: w(:),wt(:),jt(:,:) real(8), allocatable :: f1(:),f2(:) complex(8), allocatable :: bec(:,:) ! initialise universal variables call init0 ! store original parameters atposl0(:,:,:)=atposl(:,:,:) atposc0(:,:,:)=atposc(:,:,:) afieldc0(:)=afieldc(:) tshift0=tshift ! no shifting of atomic basis allowed tshift=.false. ! generate the time step grid call gentimes ! allocate local arrays allocate(w(nwplot),wt(ntimes),jt(3,ntimes)) allocate(f1(ntimes),f2(ntimes),bec(nwplot,3)) ! generate energy grid (always non-negative) w1=max(wplot(1),0.d0) w2=max(wplot(2),w1) t1=(w2-w1)/dble(nwplot) do iw=1,nwplot w(iw)=w1+t1*dble(iw-1) end do ! determine the weights for the spline integration call wsplint(ntimes,times,wt) ! generate a zero A-field and write to file npulse=0 nramp=0 if (mp_mpi) call genafieldt ! initial ground-state run should start from atomic densities trdstate=.false. ! begin new Born effective charge task 10 continue call bectask(80,fext) ! if nothing more to do then restore original input parameters and return if (isph == 0) then filext='.OUT' atposl(:,:,:)=atposl0(:,:,:) afieldc(:)=afieldc0(:) tshift=tshift0 trdatdv=.false. deallocate(w,wt,jt,f1,f2,bec) return end if if (mp_mpi) then write(*,'("Info(bornecdyn): working on ",A)') 'BEC'//trim(fext) end if ! break the crystal symmetry for the displaced atom atposl(:,:,:)=atposl0(:,:,:) atposc(:,:,:)=atposc0(:,:,:) vc(:)=atposc(:,iaph,isph) vc(ipph)=vc(ipph)-0.5d0*deltaph call r3mv(ainv,vc,atposl(:,iaph,isph)) ! apply a small static A-field afieldc(:)=0.d0 afieldc(ipph)=1.d-4 ! run the ground-state calculation call gndstate ! subsequent calculations will read in the previous potential trdstate=.true. ! write zero atomic forces to file if (mp_mpi) call becforce ! write displacement to file atdvc(:,:,:,:)=0.d0 atdvc(ipph,0,iaph,isph)=deltaph if (mp_mpi) call writeatdvc trdatdv=.true. ! run the time evolution calculation with Ehrenfest dynamics task=462 call tddft task=478 ! read in the total current from file call readjtot(jt) ! filter the high-frequency components from the current do its=1,ntimes t1=exp(-swidth*times(its)) jt(:,its)=t1*jt(:,its) end do ! compute the dynamical BEC from the Fourier transformed current t0=1.d0/(deltaph*cos(tdphi)) do i=1,3 do iw=1,nwplot do its=1,ntimes t1=jt(i,its) t2=w(iw)*times(its) f1(its)=t1*cos(t2) f2(its)=t1*sin(t2) end do t1=dot_product(wt(:),f1(:)) t2=dot_product(wt(:),f2(:)) bec(iw,i)=t0*cmplx(t1,t2,8) end do end do ! static and nuclear charge t1=sum(chgsmt(iasph,1:3))/3.d0+spzn(isph) ! write Born effective charge matrix row to file if (mp_mpi) then do i=1,3 if (i == ipph) then t2=t1 else t2=0.d0 end if do iw=1,nwplot write(80,'(2G18.10)') w(iw),dble(bec(iw,i))+t2 end do write(80,*) do iw=1,nwplot write(80,'(2G18.10)') w(iw),aimag(bec(iw,i)) end do write(80,*) end do close(80) end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! write test file if required and return if (test) then call writetest(478,'dynamical Born effective charge',nv=nwplot,tol=1.d-2, & zva=bec) return end if goto 10 end subroutine elk-9.2.12/src/PaxHeaders/becforce.f900000644000000000000000000000013214536061314014320 xustar0030 mtime=1702388428.476500663 30 atime=1702388427.390502271 30 ctime=1702388428.476500663 elk-9.2.12/src/becforce.f900000644002504400250440000000115314536061314017042 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine becforce use modmain use modphonon use modtddft implicit none integer its,is,ia ! generate the time step grid call gentimes ! write zero force to file for all time steps open(50,file='FORCETOT_TD.OUT',form='FORMATTED') do its=1,ntimes,ntsforce write(50,'(I8,G18.10)') its,times(its) do is=1,nspecies do ia=1,natoms(is) write(50,'(2I4,3G18.10)') is,ia,0.d0,0.d0,0.d0 end do end do end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/tdinit.f900000644000000000000000000000013214536061314014043 xustar0030 mtime=1702388428.477500661 30 atime=1702388427.392502268 30 ctime=1702388428.477500661 elk-9.2.12/src/tdinit.f900000644002504400250440000000714514536061314016574 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tdinit use modmain use modtddft use moddftu use modmpi use modomp use modramdisk implicit none ! local variables integer ik ! allocatable arrays real(8), allocatable :: evalfv(:,:) complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) if ((task == 460).or.(task == 462)) then ! calculation starts at t=0 tdt0=.true. else ! calculation restarts tdt0=.false. end if ! determine the static density and charge and write to file if (tdt0) call rhostatic ! store original parameters tforce0=tforce tfav00=tfav0 tjr0=tjr ! currents should be calculated with forces if (tforce) tjr=.true. ! average force can be non-zero (allow for translation of atomic basis) tfav0=.false. ! ensure eigenvectors are written to disk during initialisation wrtdsk0=wrtdsk wrtdsk=.true. ! initialise global variables call init0 call init1 ! read the charge density and potentials from file call readstate call genvsig call gencore call energykncr call readfermi call linengy call genapwlofr call gensocfr if (tdt0) then ! generate eigenvalues and eigenvectors only at t=0 (not for the restart) for ! the k-point set reduced with the symmetries which leave A(t) invariant for all ! time steps call genevfsv else ! only read in the second-variational eigenvalues for restarts call readevalsv ! read in the static density and charge call readrhos end if ! compute the occupation numbers call occupy ! DFT+U if (dftu /= 0) then call gendmatmt call genvmatmt call vmatmtsc if (tmwrite) call genwkpr0 end if ! generate the kinetic matrix elements in the second-variational basis call genkmat(.false.,.false.) ! write the momentum matrix elements in the second-variational basis call genpmat ! write the power density to file if (mp_mpi) call writeafpdt ! copy EVALFV.OUT, EVECFV.OUT, OCCSV.OUT and EVECSV.OUT to _TD.OUT extension if (tdt0) then allocate(evalfv(nstfv,nspnfv),evecfv(nmatmax,nstfv,nspnfv)) allocate(evecsv(nstsv,nstsv)) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call getevalfv('.OUT',ik,vkl(:,ik),evalfv) call putevalfv('_TD.OUT',ik,evalfv) call getevecfv('.OUT',ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call putevecfv('_TD.OUT',ik,evecfv) call putoccsv('_TD.OUT',ik,occsv(:,ik)) call getevecsv('.OUT',ik,vkl(:,ik),evecsv) ! randomise eigenvectors at t=0 if required call rndevsv(rndevt0,evecsv) call putevecsv('_TD.OUT',ik,evecsv) end do deallocate(evalfv,evecfv,evecsv) end if ! set global file extension filext='_TD.OUT' ! output the new k-point set to file if (mp_mpi) call writekpts ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! Ehrenfest dynamics if ((task == 462).or.(task == 463)) then ! forces should not be calculated tforce=.false. ! enable small amplitude displacements tatdisp=.true. ! zero the displacements and velocities atdvc(:,:,:,:)=0.d0 ! generate the gradient of the nucleus and static density Coulomb potential call gengvnsmt end if if (tdt0) then ! start from t=0 itimes0=1 else ! restart if required call tdrestart end if ! deallocate the static density if not required if (.not.tjr) deallocate(rhosmt,rhosir) ! read the forces calculated during the previous TDDFT run if (tatdisp) call readforcet ! read the atomic displacements and velocities if (trdatdv) call readatdvc wrtdsk=wrtdsk0 ! make the time-dependent Kohn-Sham orbitals strictly orthogonal after each ! time step for complex time evolution if (tdphi /= 0.d0) ntsorth=1 end subroutine elk-9.2.12/src/PaxHeaders/readrhos.f900000644000000000000000000000013014536061314014355 xustar0029 mtime=1702388428.47850066 30 atime=1702388427.394502265 29 ctime=1702388428.47850066 elk-9.2.12/src/readrhos.f900000644002504400250440000000277714536061314017116 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readrhos use modmain use modtddft implicit none integer ios integer natmtot_,npmtmax_,ngtot_ ! allocate static density and charge global arrays if (allocated(rhosmt)) deallocate(rhosmt) allocate(rhosmt(npmtmax,natmtot,3)) if (allocated(rhosir)) deallocate(rhosir) allocate(rhosir(ngtot,3)) if (allocated(chgsmt)) deallocate(chgsmt) allocate(chgsmt(natmtot,3)) open(100,file='RHOSTAT.OUT',form='UNFORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readrhos): error opening RHOSTAT.OUT")') write(*,*) stop end if read(100) natmtot_ if (natmtot /= natmtot_) then write(*,*) write(*,'("Error(readrhos): differing natmtot")') write(*,'(" current : ",I6)') natmtot write(*,'(" RHOSTAT.OUT : ",I6)') natmtot_ write(*,*) stop end if read(100) npmtmax_ if (npmtmax /= npmtmax_) then write(*,*) write(*,'("Error(readrhos): differing npmtmax")') write(*,'(" current : ",I6)') npmtmax write(*,'(" RHOSTAT.OUT : ",I6)') npmtmax_ write(*,*) stop end if read(100) ngtot_ if (ngtot /= ngtot_) then write(*,*) write(*,'("Error(readrhos): differing ngtot")') write(*,'(" current : ",I8)') ngtot write(*,'(" RHOSTAT.OUT : ",I8)') ngtot_ write(*,*) stop end if read(100) rhosmt,rhosir read(100) chgsmt read(100) chgstot close(100) end subroutine elk-9.2.12/src/PaxHeaders/gengvnsmt.f900000644000000000000000000000013214536061314014560 xustar0030 mtime=1702388428.479500658 30 atime=1702388427.395502263 30 ctime=1702388428.479500658 elk-9.2.12/src/gengvnsmt.f900000644002504400250440000000250614536061314017305 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengvnsmt use modmain use modtddft implicit none ! local variables integer is,ias integer nr,nri,iro integer np,i0,i1 ! automatic arrays real(8) rfmt(npmtmax) complex(8) zrhomt(npmtmax),zvclmt(npmtmax) ! allocate global array if (allocated(gvnsmt)) deallocate(gvnsmt) allocate(gvnsmt(npmtmax,3,natmtot)) ! loop over atoms do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 np=npmt(is) ! take the average of the static density over the three directions rfmt(1:np)=(1.d0/3.d0) & *(rhosmt(1:np,ias,1)+rhosmt(1:np,ias,2)+rhosmt(1:np,ias,3)) ! convert to complex spherical harmonics expansion call rtozfmt(nr,nri,rfmt,zrhomt) ! solve Poisson's equation in the muffin-tin call zpotclmt(nr,nri,nrmtmax,rlmt(:,:,is),wprmt(:,:,is),zrhomt,zvclmt) ! add the nuclear Coulomb potential i1=lmmaxi*(nri-1)+1 zvclmt(1:i1:lmmaxi)=zvclmt(1:i1:lmmaxi)+vcln(1:nri,is) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zvclmt(i0:i1:lmmaxo)=zvclmt(i0:i1:lmmaxo)+vcln(iro:nr,is) ! compute the gradient of the potential and store in global array call gradzfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),zvclmt,npmtmax, & gvnsmt(:,:,ias)) end do end subroutine elk-9.2.12/src/PaxHeaders/genhafspt.f900000644000000000000000000000013114536061314014526 xustar0030 mtime=1702388428.481500655 29 atime=1702388427.39750226 30 ctime=1702388428.481500655 elk-9.2.12/src/genhafspt.f900000644002504400250440000000211614536061314017251 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 E. Harris-Lee, S. Sharma and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genhafspt(evecsv,pmat,h) use modmain use modtddft implicit none ! arguments complex(8), intent(in) :: evecsv(nstsv,nstsv),pmat(nstsv,nstsv,3) complex(8), intent(inout) :: h(nstsv,nstsv) ! local variables integer i,j,l real(8) ca,v(3) complex(8) zm(2,2) ! allocatable arrays complex(8), allocatable :: smat(:,:,:,:) allocate(smat(nstsv,nstsv,2,2)) ! generate the spin operator matrix elements in the second-variational basis call gensmatk(evecsv,smat) ! coupling constant of the external spin-polarised A-field (-1/c) ca=-1.d0/solsc ! add the spin-current operator to the Hamiltonian do l=1,3 v(:)=ca*afspt(l,:,itimes) zm(1,1)=v(3) zm(1,2)=cmplx(v(1),-v(2),8) zm(2,1)=cmplx(v(1),v(2),8) zm(2,2)=-v(3) do j=1,2 do i=1,2 call zhemm('L','U',nstsv,nstsv,zm(i,j),pmat(:,:,l),nstsv,smat(:,:,i,j), & nstsv,zone,h,nstsv) end do end do end do deallocate(smat) end subroutine elk-9.2.12/src/PaxHeaders/writeaxsf.f900000644000000000000000000000013214536061314014564 xustar0030 mtime=1702388428.482500654 30 atime=1702388427.398502259 30 ctime=1702388428.482500654 elk-9.2.12/src/writeaxsf.f900000644002504400250440000000163314536061314017311 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeaxsf use modmain use modtddft implicit none ! local variables integer is,ia ! write header at first time step if (itimes <= 1) then open(50,file='crystal.axsf',form='FORMATTED') write(50,'("ANIMSTEPS ",I8)') (ntimes-2)/ntsforce+1 write(50,'("CRYSTAL")') write(50,'("PRIMVEC")') write(50,'(3G18.10)') avec(:,1)*br_ang write(50,'(3G18.10)') avec(:,2)*br_ang write(50,'(3G18.10)') avec(:,3)*br_ang close(50) end if open(50,file='crystal.axsf',form='FORMATTED',position='APPEND') write(50,*) write(50,'("PRIMCOORD ",I8)') (itimes-1)/ntsforce+1 write(50,'(2I8)') natmtot,1 do is=1,nspecies do ia=1,natoms(is) write(50,'(A,3G18.10)') trim(spsymb(is)),atposc(:,ia,is)*br_ang end do end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/atptstep.f900000644000000000000000000000013214536061314014414 xustar0030 mtime=1702388428.483500653 30 atime=1702388427.400502256 30 ctime=1702388428.483500653 elk-9.2.12/src/atptstep.f900000644002504400250440000000162214536061314017137 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine atptstep(ft) use modmain use modtddft use modmpi implicit none ! arguments real(8), intent(in) :: ft(3,natmtot) ! local variables integer itn,is,ia,ias real(8) dt,t1,t2 ! next time step when the forces will be calculated itn=itimes+ntsforce if (itn > ntimes) return ! time step length dt=times(itn)-times(itimes) do is=1,nspecies t1=1.d0-atdfc*dt if (t1 < 0.d0) t1=0.d0 t2=dt/spmass(is) do ia=1,natoms(is) ias=idxas(ia,is) ! add to the atomic velocities atdvc(:,1,ia,is)=t1*atdvc(:,1,ia,is)+t2*ft(:,ias) ! add to the atomic displacements atdvc(:,0,ia,is)=atdvc(:,0,ia,is)+atdvc(:,1,ia,is)*dt end do end do ! write the atomic displacements and velocities to file if (mp_mpi) call writeatdvc end subroutine elk-9.2.12/src/PaxHeaders/potkst.f900000644000000000000000000000013014536061314014072 xustar0029 mtime=1702388428.48550065 30 atime=1702388427.401502255 29 ctime=1702388428.48550065 elk-9.2.12/src/potkst.f900000644002504400250440000000053314536061314016617 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potkst use modmain use modtddft implicit none ! adiabatic approximation to the exchange-correlation potential call potks(.true.) end subroutine elk-9.2.12/src/PaxHeaders/tdbackup.f900000644000000000000000000000013214536061314014345 xustar0030 mtime=1702388428.486500648 30 atime=1702388427.403502252 30 ctime=1702388428.486500648 elk-9.2.12/src/tdbackup.f900000644002504400250440000000210014536061314017060 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tdbackup use modmain use modtddft use modmpi use modramdisk implicit none ! local variables integer ik ! allocatable arrays complex(8), allocatable :: evecsvt(:,:) if (ntsbackup <= 0) return if (mod(itimes-1,ntsbackup) /= 0) return ! ensure eigenvectors are written to disk wrtdsk0=wrtdsk wrtdsk=.true. allocate(evecsvt(nstsv,nstsv)) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! read in time-dependent Kohn-Sham eigenvectors call getevecsv(filext,ik,vkl(:,ik),evecsvt) ! write eigenvectors to backup file call putevecsv('_TD_BACKUP.OUT',ik,evecsvt) end do deallocate(evecsvt) ! write the time step backup file if (mp_mpi) then open(50,file='TIMESTEP_BACKUP.OUT',form='FORMATTED') write(50,'(I8,G18.10)') itimes,times(itimes) close(50) end if wrtdsk=wrtdsk0 ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/writetimes.f900000644000000000000000000000013114536061314014743 xustar0030 mtime=1702388428.487500647 29 atime=1702388427.40450225 30 ctime=1702388428.487500647 elk-9.2.12/src/writetimes.f900000644002504400250440000000057514536061314017475 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetimes use modmain use modtddft implicit none open(50,file='TIMESTEP.OUT',form='FORMATTED') write(50,'(I8,G18.10)') itimes,times(itimes) close(50) end subroutine elk-9.2.12/src/PaxHeaders/readtimes.f900000644000000000000000000000013214536061314014525 xustar0030 mtime=1702388428.488500645 30 atime=1702388427.405502249 30 ctime=1702388428.488500645 elk-9.2.12/src/readtimes.f900000644002504400250440000000211514536061314017246 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readtimes use modmain use modtddft implicit none ! local variables integer ios real(8) times_,t1 open(50,file='TIMESTEP.OUT',form='FORMATTED',status='OLD',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readtimes): error opening TIMESTEP.OUT")') write(*,*) stop end if read(50,*,iostat=ios) itimes0,times_ if (ios /= 0) then write(*,*) write(*,'("Error(readtimes): error reading time step from TIMESTEP.OUT")') write(*,*) stop end if if ((itimes0 < 1).or.(itimes0 > ntimes)) then write(*,*) write(*,'("Error(readtimes): invalid itimes : ",I8)') itimes0 write(*,*) stop end if t1=abs(times(itimes0)-times_) if (t1 > 1.d-8) then write(*,*) write(*,'("Error(readtimes): differing time step")') write(*,'(" current : ",G18.10)') times(itimes0) write(*,'(" TIMESTEP.OUT : ",G18.10)') times_ write(*,*) stop end if close(50) end subroutine elk-9.2.12/src/PaxHeaders/gentimes.f900000644000000000000000000000013214536061314014363 xustar0030 mtime=1702388428.490500642 30 atime=1702388427.407502246 30 ctime=1702388428.490500642 elk-9.2.12/src/gentimes.f900000644002504400250440000000117714536061314017113 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gentimes use modmain use modtddft implicit none ! local variables integer its if (tstime < dtimes) then write(*,*) write(*,'("Error(gentimes): tstime < dtimes : ",2G18.10)') tstime,dtimes write(*,*) stop end if ! number of time steps ntimes=nint(tstime/dtimes)+1 ! generate the time step array if (allocated(times)) deallocate(times) allocate(times(ntimes)) do its=1,ntimes times(its)=dble(its-1)*dtimes end do end subroutine elk-9.2.12/src/PaxHeaders/readafieldt.f900000644000000000000000000000013214536061314015014 xustar0030 mtime=1702388428.491500641 30 atime=1702388427.408502244 30 ctime=1702388428.491500641 elk-9.2.12/src/readafieldt.f900000644002504400250440000000475614536061314017552 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readafieldt use modmain use modtddft implicit none ! local variables integer ios,ntimes_,its,its_ real(8) times_,t1 ! generate the time step grid call gentimes ! read in the time-dependent vector potential open(50,file='AFIELDT.OUT',form='FORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readafieldt): error opening AFIELDT.OUT")') write(*,*) stop end if read(50,*) ntimes_ if (ntimes_ <= 0) then write(*,*) write(*,'("Error(readafieldt): ntimes <= 0 : ",I8)') ntimes_ write(*,*) stop end if ntimes=min(ntimes,ntimes_) if (allocated(afieldt)) deallocate(afieldt) allocate(afieldt(3,ntimes)) do its=1,ntimes read(50,*) its_,times_,afieldt(:,its) if (its /= its_) then write(*,*) write(*,'("Error(readafieldt): time step number mismatch")') write(*,'(" internal : ",I8)') its write(*,'(" AFIELDT.OUT : ",I8)') its_ write(*,*) stop end if t1=abs(times(its)-times_) if (t1 > 1.d-10) then write(*,*) write(*,'("Error(readafieldt): time step mismatch for step number ",& &I8)') its write(*,'(" internal : ",G18.10)') times(its) write(*,'(" AFIELDT.OUT : ",G18.10)') times_ stop end if end do close(50) if (.not.tafspt) return open(50,file='AFSPT.OUT',form='FORMATTED',action='READ',status='OLD',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readafieldt): error opening AFSPT.OUT")') write(*,*) stop end if read(50,*) ntimes_ if (ntimes /= ntimes_) then write(*,*) write(*,'("Error(readafieldt): differing ntimes")') write(*,'(" internal : ",I8)') ntimes write(*,'(" AFSPT.OUT : ",I8)') ntimes_ write(*,*) stop end if if (allocated(afspt)) deallocate(afspt) allocate(afspt(3,3,ntimes)) do its=1,ntimes read(50,*) its_,times_,afspt(:,:,its) if (its /= its_) then write(*,*) write(*,'("Error(readafieldt): time step number mismatch")') write(*,'(" internal : ",I8)') its write(*,'(" AFSPT.OUT : ",I8)') its_ write(*,*) stop end if t1=abs(times(its)-times_) if (t1 > 1.d-10) then write(*,*) write(*,'("Error(readafieldt): time step mismatch for step number ",& &I8)') its write(*,'(" internal : ",G18.10)') times(its) write(*,'(" AFSPT.OUT : ",G18.10)') times_ stop end if end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/genjr.f900000644000000000000000000000013214536061314013655 xustar0030 mtime=1702388428.492500639 30 atime=1702388427.410502241 30 ctime=1702388428.492500639 elk-9.2.12/src/genjr.f900000644002504400250440000000154114536061314016400 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genjr use modmain use modtddft implicit none ! local variables integer is,ias,np,l real(8) ca,t1 ! generate the paramagnetic current call genjpr ! add the diamagnetic term if a time-dependent A-field is present if (tafieldt) then ! coupling constant of the external A-field (-1/c) ca=-1.d0/solsc ! muffin-tin part do l=1,3 t1=ca*afieldt(l,itimes) do ias=1,natmtot is=idxis(ias) np=npmt(is) jrmt(1:np,ias,l)=jrmt(1:np,ias,l)+t1*(rhomt(1:np,ias)-rhosmt(1:np,ias,l)) end do end do ! interstitial part do l=1,3 t1=ca*afieldt(l,itimes) jrir(1:ngtot,l)=jrir(1:ngtot,l)+t1*(rhoir(1:ngtot)-rhosir(1:ngtot,l)) end do end if end subroutine elk-9.2.12/src/PaxHeaders/tddft.f900000644000000000000000000000013114536061314013654 xustar0030 mtime=1702388428.493500638 29 atime=1702388427.41150224 30 ctime=1702388428.493500638 elk-9.2.12/src/tddft.f900000644002504400250440000000564014536061314016404 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tddft use modmain use modtddft use moddftu use modmpi use modomp use modramdisk use modtest implicit none if (tshift) then write(*,*) write(*,'("Error(tddft): use tshift = .false. for the ground-state run")') write(*,*) stop end if ! initialise TDDFT variables call tdinit ! set the stop signal to .false. tstop=.false. !---------------------------------! ! main loop over time steps ! !---------------------------------! if (mp_mpi) write(*,*) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) do itimes=itimes0,ntimes-1 if (mp_mpi) then write(*,'("Info(tddft): time step ",I8," of ",I8,", t = ",G18.10)') & itimes,ntimes-1,times(itimes) end if ! reset the OpenMP thread variables call omp_reset ! check for STOP file call checkstop ! write all files on last loop if ((itimes == ntimes-1).or.tstop) wrtdsk=.true. ! flag for writing observables at this time step ttswrite=.false. if (ntswrite(1) > 0) then if (mod(itimes-1,ntswrite(1)) == 0) then if ((itimes == 1).or.(itimes >= ntswrite(2))) ttswrite=.true. end if end if ! flag for calculating forces at this time step if (mod(itimes-1,ntsforce) == 0) then ttsforce=.true. else ttsforce=.false. end if ! evolve the wavefunctions across a single time step call timestep ! generate the density and magnetisation at current time step call rhomag ! compute the gauge-invariant current j(r) if required if (tjr) call genjr ! time step the induced A-field if (tafindt) call afindtstep ! calculate the electric field call genefieldt ! compute the time-dependent Kohn-Sham potentials and magnetic fields call potkst ! add the fixed spin moment effective field if required call addbfsm ! DFT+U if (dftu /= 0) then call gendmatmt call genvmatmt call vmatmtsc end if ! compute the total energy call energytd ! calculate the atomic forces if required if (tforce.and.ttsforce) call force ! time step the atomic positions for Ehrenfest dynamics using forces calculated ! during the previous TDDFT run if (tatdisp.and.ttsforce) call atptstep(forcet(:,:,itimes)) ! write general TDDFT output if (mp_mpi) call writetddft ! write time-dependent DOS if required if (tddos.and.ttswrite) call writetddos ! write muffin-tin L, S and J if required if (tdlsj.and.ttswrite) call writetdlsj ! write the k-point dependent total current if (tdjtk.and.ttswrite) call writetdjtk if (tstop) exit end do filext='.OUT' ! restore original input parameters tforce=tforce0 tfav0=tfav00 tjr=tjr0 tatdisp=.false. ! write the total current of the last step to test file call writetest(460,'total current of last time step',nv=3,tol=5.d-4,rva=jtot) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/timestep.f900000644000000000000000000000013214536061314014402 xustar0030 mtime=1702388428.495500635 30 atime=1702388427.412502238 30 ctime=1702388428.495500635 elk-9.2.12/src/timestep.f900000644002504400250440000001126214536061314017126 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine timestep use modmain use modtddft use modmpi use modomp implicit none ! local variables integer ik,i,j,nthd real(8) ca,dt,t1 complex(8) z1,z2 ! automatic arrays real(8) w(nstsv) ! allocatable arrays real(8), allocatable :: vmt(:,:),vir(:),bmt(:,:,:) complex(8), allocatable :: evecsv(:,:),evectv(:,:),evecsvt(:,:) complex(8), allocatable :: kmat(:,:),pmat(:,:,:) complex(8), allocatable :: a(:,:),b(:,:),c(:,:) if (itimes >= ntimes) then write(*,*) write(*,'("Error(timestep): itimes >= ntimes : ",2I8)') itimes,ntimes write(*,*) stop end if allocate(vmt(npcmtmax,natmtot),vir(ngtot)) if (spinpol) allocate(bmt(npcmtmax,natmtot,ndmag)) ! generate the Kohn-Sham potential and magnetic field in spherical coordinates ! and multiply by the radial integration weights; also multiply the interstitial ! potential with the characteristic function call vblocal(vmt,vir,bmt) ! time step length dt=times(itimes+1)-times(itimes) ! zero the kinetic energy engykn=0.d0 ! zero the total current jtot(:)=0.d0 ! loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecsv,evectv,evecsvt) & !$OMP PRIVATE(kmat,pmat,w,a,b,c) & !$OMP PRIVATE(i,j,t1,z1,z2) & !$OMP NUM_THREADS(nthd) allocate(evecsv(nstsv,nstsv),evectv(nstsv,nstsv),evecsvt(nstsv,nstsv)) allocate(kmat(nstsv,nstsv),pmat(nstsv,nstsv,3)) allocate(a(nstsv,nstsv),b(nstsv,nstsv),c(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! get the kinetic matrix elements from file call getkmat(ik,kmat) ! get the momentum matrix elements from file call getpmat(vkl(:,ik),pmat) ! generate the Hamiltonian matrix in the ground-state second-variational basis call genhmlt(ik,vmt,vir,bmt,bsir,kmat,pmat,evectv) ! diagonalise the Hamiltonian to get third-variational eigenvectors if (spinpol.and.(.not.ncmag)) then ! collinear case requires block diagonalisation call eveqnzh(nstfv,nstsv,evectv,w) i=nstfv+1 call eveqnzh(nstfv,nstsv,evectv(i,i),w(i)) do i=1,nstfv do j=1,nstfv evectv(i,j+nstfv)=0.d0 evectv(i+nstfv,j)=0.d0 end do end do else ! non-collinear or spin-unpolarised: full diagonalisation call eveqnzh(nstsv,nstsv,evectv,w) end if ! read in ground-state eigenvectors call getevecsv('.OUT',ik,vkl(:,ik),evecsv) ! convert third-variational eigenvectors to first-variational basis call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,evectv,nstsv,zzero,a, & nstsv) ! time propagate instantaneous eigenvectors across one time step if (tdphi == 0.d0) then ! real time evolution do i=1,nstsv t1=-w(i)*dt z1=cmplx(cos(t1),sin(t1),8) b(:,i)=z1*a(:,i) end do else ! complex time evolution z2=cmplx(sin(tdphi),cos(tdphi),8) do i=1,nstsv t1=-w(i)*dt z1=exp(t1*z2) b(:,i)=z1*a(:,i) end do end if ! read in time-dependent Kohn-Sham eigenvectors (first-variational basis) call getevecsv(filext,ik,vkl(:,ik),evecsvt) ! apply time evolution operator call zgemm('C','N',nstsv,nstsv,nstsv,zone,a,nstsv,evecsvt,nstsv,zzero,c,nstsv) call zgemm('N','N',nstsv,nstsv,nstsv,zone,b,nstsv,c,nstsv,zzero,evecsvt,nstsv) ! orthonormalise the eigenvectors if required if (ntsorth > 0) then if (mod(itimes-1,ntsorth) == 0) call unitary(nstsv,evecsvt) end if ! add to the kinetic energy call engyknk(ik,kmat,evecsv,evecsvt) ! add to the total current call jtotk(ik,pmat,evecsv,evecsvt) ! write the new eigenvectors to file call putevecsv(filext,ik,evecsvt) end do !$OMP END DO deallocate(evecsv,evectv,evecsvt) deallocate(kmat,pmat,a,b,c) !$OMP END PARALLEL call freethd(nthd) deallocate(vmt,vir) if (spinpol) deallocate(bmt) ! add the kinetic energy and total current from each process and redistribute if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,engykn,1,mpi_double_precision,mpi_sum,mpicom,& ierror) call mpi_allreduce(mpi_in_place,jtot,3,mpi_double_precision,mpi_sum,mpicom, & ierror) end if ! add the core kinetic energy engykn=engykn+engykncr ! coupling constant of the external A-field (-1/c) ca=-1.d0/solsc ! add the diamagnetic current to total do i=1,3 jtot(i)=jtot(i)+ca*afieldt(i,itimes)*(chgtot-chgstot(i)) end do ! symmetrise the vector call symvec(jtot) ! total current magnitude jtotm=sqrt(jtot(1)**2+jtot(2)**2+jtot(3)**2) ! write the time step to file if (mp_mpi) call writetimes ! backup existing time-dependent Kohn-Sham eigenvectors if required call tdbackup ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/writetdjtk.f900000644000000000000000000000013214536061314014743 xustar0030 mtime=1702388428.496500633 30 atime=1702388427.414502235 30 ctime=1702388428.496500633 elk-9.2.12/src/writetdjtk.f900000644002504400250440000000516214536061314017471 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetdjtk use modmain use modtddft use modmpi use modomp implicit none ! local variables integer ik,ist,l,lp,nthd real(8) ca,t1,t2 complex(8) z1 character(32) fext ! allocatable arrays real(8), allocatable :: jtk(:,:) complex(8), allocatable :: evecsv(:,:),evecsvt(:,:) complex(8), allocatable :: pmat(:,:,:),a(:,:),b(:,:) ! external functions complex(8), external :: zdotc ! coupling constant of the external A-field (-1/c) ca=-1.d0/solsc allocate(jtk(3,nkpt)) jtk(:,:)=0.d0 call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecsv,evecsvt,pmat) & !$OMP PRIVATE(a,b,l,t1,t2,ist,z1) & !$OMP NUM_THREADS(nthd) allocate(evecsv(nstsv,nstsv),evecsvt(nstsv,nstsv)) allocate(pmat(nstsv,nstsv,3),a(nstsv,nstsv),b(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! get the momentum matrix elements from file call getpmat(vkl(:,ik),pmat) ! read in ground-state eigenvectors call getevecsv('.OUT',ik,vkl(:,ik),evecsv) ! read in time-dependent Kohn-Sham eigenvectors (first-variational basis) call getevecsv(filext,ik,vkl(:,ik),evecsvt) do l=1,3 ! form the momentum operator matrix elements in the first-variational basis call zgemm('N','C',nstsv,nstsv,nstsv,zone,pmat(:,:,l),nstsv,evecsv,nstsv, & zzero,a,nstsv) call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,a,nstsv,zzero,b, & nstsv) call zgemm('N','N',nstsv,nstsv,nstsv,zone,b,nstsv,evecsvt,nstsv,zzero,a, & nstsv) ! add to the total current for this k-point (including diamagnetic contribution) t1=ca*afieldt(l,itimes) do ist=1,nstsv t2=occsv(ist,ik) if (abs(t2) > epsocc) then z1=zdotc(nstsv,evecsvt(:,ist),1,a(:,ist),1) jtk(l,ik)=jtk(l,ik)+t2*(dble(z1)+t1) end if end do end do end do !$OMP END DO deallocate(evecsv,evecsvt,pmat,a,b) !$OMP END PARALLEL call freethd(nthd) ! broadcast current array to every MPI process if (np_mpi > 1) then do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(jtk(:,ik),3,mpi_double_precision,lp,mpicom,ierror) end do end if ! write k-point dependent total current to file if (mp_mpi) then ! file extension write(fext,'("_TS",I8.8,".OUT")') itimes open(50,file='JTOTK'//trim(fext),form='FORMATTED',action='WRITE') do ik=1,nkpt write(50,'(I6,6G18.10)') ik,vkl(:,ik),jtk(:,ik) end do close(50) end if deallocate(jtk) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/zfirctof.f900000644000000000000000000000013214536061314014376 xustar0030 mtime=1702388428.497500632 30 atime=1702388427.415502234 30 ctime=1702388428.497500632 elk-9.2.12/src/zfirctof.f900000644002504400250440000000121614536061314017120 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zfirctof(zfirc,zfir) use modmain implicit none ! arguments complex(8), intent(in) :: zfirc(ngtc) complex(8), intent(out) :: zfir(ngtot) ! local variables integer ig ! automatic arrays complex(8) zfftc(ngtc) ! Fourier transform function on coarse grid to G-space zfftc(:)=zfirc(:) call zfftifc(3,ngdgc,-1,zfftc) ! Fourier transform to fine real-space grid zfir(:)=0.d0 do ig=1,ngvc zfir(igfft(ig))=zfftc(igfc(ig)) end do call zfftifc(3,ngridg,1,zfir) end subroutine elk-9.2.12/src/PaxHeaders/writeevalu.f900000644000000000000000000000013214536061314014737 xustar0030 mtime=1702388428.499500629 30 atime=1702388427.417502231 30 ctime=1702388428.499500629 elk-9.2.12/src/writeevalu.f900000644002504400250440000000136714536061314017470 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeevalu use modmain use modulr implicit none ! local variables integer ik0,ik,ist ! write out the valence eigenvalues open(50,file='EIGVALU.OUT',form='FORMATTED') write(50,'(I6," : nkpt0")') nkpt0 write(50,'(I6," : nstulr")') nstulr do ik0=1,nkpt0 ! central k-point ik=(ik0-1)*nkpa+1 write(50,*) write(50,'(I6,3G18.10," : k-point, vkl")') ik0,vkl(:,ik) write(50,'(" (state, eigenvalue and occupancy below)")') do ist=1,nstulr write(50,'(I6,2G18.10)') ist,evalu(ist,ik0),occulr(ist,ik0) end do end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/writekpa.f900000644000000000000000000000013214536061314014376 xustar0030 mtime=1702388428.500500627 30 atime=1702388427.418502229 30 ctime=1702388428.500500627 elk-9.2.12/src/writekpa.f900000644002504400250440000000077114536061314017125 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writekpa use modmain use modulr implicit none ! local variables integer ikpa open(50,file='KAPPA.OUT',form='FORMATTED') write(50,'(I6," : nkpa; kappa-point, vector in unit cell reciprocal lattice & &coordinates below")') nkpa do ikpa=1,nkpa write(50,'(I6,3G18.10)') ikpa,vql(:,ikpa) end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/genhdbulr.f900000644000000000000000000000013214536061314014522 xustar0030 mtime=1702388428.501500626 30 atime=1702388427.419502228 30 ctime=1702388428.501500626 elk-9.2.12/src/genhdbulr.f900000644002504400250440000000133614536061314017247 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genhdbulr use modmain use modulr use modmpi use modomp implicit none ! local variables integer ik0,nthd ! loop over original k-points call holdthd(nkpt0/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ik0=1,nkpt0 ! distribute among MPI processes if (mod(ik0-1,np_mpi) /= lp_mpi) cycle ! write the long-range Hamiltonian diagonal blocks to file call puthdbulr(ik0) end do !$OMP END PARALLEL DO call freethd(nthd) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/vblocalu.f900000644000000000000000000000013214536061314014357 xustar0030 mtime=1702388428.502500624 30 atime=1702388427.421502225 30 ctime=1702388428.502500624 elk-9.2.12/src/vblocalu.f900000644002504400250440000000456114536061314017107 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine vblocalu use modmain use modulr use modomp implicit none ! local variables integer ifq,idm,is,ias integer nrc,nrci,npc,nthd ! automatic arrays real(8) rfmt1(npcmtmax),rfmt2(npcmtmax) ! subtract the normal Kohn-Sham potential for Q=0 do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) call rfmtftoc(nrc,nrci,vsmt(:,ias),rfmt1) call rbsht(nrc,nrci,rfmt1,rfmt2) vsqmt(1:npc,ias,1)=vsqmt(1:npc,ias,1)-rfmt2(1:npc) end do vsqir(1:ngtot,1)=vsqir(1:ngtot,1)-vsir(1:ngtot) call holdthd(nfqrz,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(ias,is,nrc,nrci) & !$OMP NUM_THREADS(nthd) !$OMP DO do ifq=1,nfqrz do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) ! multiply the muffin-tin potential by the radial integration weights call zfcmtwr(nrc,nrci,wrcmt(:,is),vsqmt(:,ias,ifq)) end do end do !$OMP END DO NOWAIT !$OMP DO do ifq=1,nfqrz ! multiply the interstitial potential by the characteristic function vsqir(1:ngtot,ifq)=vsqir(1:ngtot,ifq)*cfunir(1:ngtot) end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) if (.not.spinpol) return ! subtract the normal Kohn-Sham magnetic field for Q=0 in the muffin-tins do idm=1,ndmag do ias=1,natmtot is=idxis(ias) npc=npcmt(is) bsqmt(1:npc,ias,idm,1)=bsqmt(1:npc,ias,idm,1)-bsmt(1:npc,ias,idm) end do end do call holdthd(nfqrz,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(idm,ias,is,nrc,nrci) & !$OMP NUM_THREADS(nthd) !$OMP DO do ifq=1,nfqrz do idm=1,ndmag do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) ! multiply the muffin-tin field by the radial integration weights call zfcmtwr(nrc,nrci,wrcmt(:,is),bsqmt(:,ias,idm,ifq)) end do end do end do !$OMP END DO NOWAIT !$OMP DO do ifq=1,nfqrz do idm=1,ndmag ! multiply interstitial field by the characteristic function bsqir(1:ngtot,idm,ifq)=bsqir(1:ngtot,idm,ifq)*cfunir(1:ngtot) end do end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) ! subtract the normal Kohn-Sham magnetic field for Q=0 in the interstitial ! (this is already multiplied by the characteristic function) do idm=1,ndmag bsqir(1:ngtot,idm,1)=bsqir(1:ngtot,idm,1)-bsir(1:ngtot,idm) end do end subroutine elk-9.2.12/src/PaxHeaders/chargeu.f900000644000000000000000000000013214536061314014166 xustar0030 mtime=1702388428.503500623 30 atime=1702388427.422502224 30 ctime=1702388428.503500623 elk-9.2.12/src/chargeu.f900000644002504400250440000000207414536061314016713 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine chargeu use modmain use modulr use modtest implicit none ! local variables integer ifq,is,ias integer nrc,nrci real(8) t1 ! automatic arrays real(8) rfft(nqpt) complex(8) zfft(nfqrz) ! external functions real(8), external :: ddot complex(8), external :: zfmtint ! calculate muffin-tin charges chgmttot=0.d0 do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) do ifq=1,nfqrz zfft(ifq)=zfmtint(nrc,nrci,wrcmt(:,is),rhoqmt(:,ias,ifq)) end do chgmt(ias)=dble(zfft(1)) chgmttot=chgmttot+chgmt(ias) call rzfftifc(3,ngridq,1,rfft,zfft) chgmtru(ias,:)=rfft(:) end do ! calculate interstitial charge t1=ddot(ngtc,rhoqir(:,1),2,cfrc,1) chgir=t1*omega/dble(ngtc) ! total calculated charge chgcalc=chgmttot+chgir ! write muffin-tin charges to file call writetest(730,'ULR muffin-tin charges',nv=natmtot*nqpt,tol=5.d-5, & rva=chgmtru) end subroutine elk-9.2.12/src/PaxHeaders/addbfsmu.f900000644000000000000000000000013014536061314014333 xustar0029 mtime=1702388428.50550062 30 atime=1702388427.424502221 29 ctime=1702388428.50550062 elk-9.2.12/src/addbfsmu.f900000644002504400250440000000167514536061314017070 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine addbfsmu use modmain use modulr implicit none ! local variables integer idm,is,ias,npc real(8) t1 ! add the global fixed spin moment B-field to the Kohn-Sham field if ((abs(fsmtype) == 1).or.(abs(fsmtype) == 3)) then do idm=1,ndmag t1=bfsmc(idm) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) bsqmt(1:npc,ias,idm,1)=bsqmt(1:npc,ias,idm,1)+t1 end do bsqir(1:ngtot,idm,1)=bsqir(1:ngtot,idm,1)+t1*cfunir(1:ngtot) end do end if ! add the muffin-tin fields if ((abs(fsmtype) == 2).or.(abs(fsmtype) == 3)) then do idm=1,ndmag do ias=1,natmtot is=idxis(ias) npc=npcmt(is) t1=bfsmcmt(idm,ias) bsqmt(1:npc,ias,idm,1)=bsqmt(1:npc,ias,idm,1)+t1 end do end do end if end subroutine elk-9.2.12/src/PaxHeaders/momentu.f900000644000000000000000000000013214536061314014234 xustar0030 mtime=1702388428.506500619 30 atime=1702388427.425502219 30 ctime=1702388428.506500619 elk-9.2.12/src/momentu.f900000644002504400250440000000253314536061314016761 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine momentu use modmain use modulr use modtest implicit none ! local variables integer ifq,idm,is,ias integer nrc,nrci real(8) t1 ! automatic arrays real(8) rfft(nqpt) complex(8) zfft(nfqrz) ! external functions real(8), external :: ddot complex(8), external :: zfmtint if (.not.spinpol) return ! calculate muffin-tin moments mommttot(:)=0.d0 do idm=1,ndmag do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) do ifq=1,nfqrz zfft(ifq)=zfmtint(nrc,nrci,wrcmt(:,is),magqmt(:,ias,idm,ifq)) end do mommt(idm,ias)=dble(zfft(1)) mommttot(idm)=mommttot(idm)+mommt(idm,ias) call rzfftifc(3,ngridq,1,rfft,zfft) mommtru(idm,ias,:)=rfft(:) end do end do ! find the interstitial and total moments do idm=1,ndmag t1=ddot(ngtc,magqir(:,idm,1),2,cfrc,1) momir(idm)=t1*omega/dble(ngtc) momtot(idm)=mommttot(idm)+momir(idm) end do ! total moment magnitude if (ncmag) then momtotm=sqrt(momtot(1)**2+momtot(2)**2+momtot(3)**2) else momtotm=abs(momtot(1)) end if ! write the muffin-tin moments to test file call writetest(770,'ULR muffin-tin moments',nv=ndmag*natmtot*nqpt,tol=1.d-2, & rva=mommtru) end subroutine elk-9.2.12/src/PaxHeaders/occupyulr.f900000644000000000000000000000013214536061314014575 xustar0030 mtime=1702388428.507500617 30 atime=1702388427.426502217 30 ctime=1702388428.507500617 elk-9.2.12/src/occupyulr.f900000644002504400250440000000261114536061314017317 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine occupyulr use modmain use modulr implicit none ! local variables integer, parameter :: maxit=1000 integer ik0,ik,ist,it real(8) e0,e1,e real(8) chg,x,t1 ! external functions real(8), external :: stheta ! find minimum and maximum eigenvalues e0=evalu(1,1) e1=e0 do ik0=1,nkpt0 do ist=1,nstulr e=evalu(ist,ik0) if (e < e0) e0=e if (e > e1) e1=e end do end do if (e0 < e0min) then write(*,*) write(*,'("Warning(occupyulr): minimum eigenvalue less than minimum & &linearisation energy : ",2G18.10)') e0,e0min write(*,'(" for s.c. loop ",I5)') iscl end if t1=1.d0/swidth ! determine the Fermi energy using the bisection method do it=1,maxit efermi=0.5d0*(e0+e1) chg=0.d0 do ik0=1,nkpt0 ! central k-point ik=(ik0-1)*nkpa+1 do ist=1,nstulr e=evalu(ist,ik0) if (e < e0min) then occulr(ist,ik0)=0.d0 else x=(efermi-e)*t1 occulr(ist,ik0)=occmax*stheta(stype,x) chg=chg+wkpt(ik)*occulr(ist,ik0) end if end do end do if (chg < chgval) then e0=efermi else e1=efermi end if if ((e1-e0) < 1.d-12) return end do write(*,*) write(*,'("Warning(occupyulr): could not find Fermi energy")') end subroutine elk-9.2.12/src/PaxHeaders/potksu.f900000644000000000000000000000013214536061314014075 xustar0030 mtime=1702388428.509500614 30 atime=1702388427.428502215 30 ctime=1702388428.509500614 elk-9.2.12/src/potksu.f900000644002504400250440000000123414536061314016617 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potksu use modmain use modulr implicit none ! local variables real(8) ts0,ts1 call timesec(ts0) ! compute the ultra long-range Coulomb potential call potcoulu ! compute the ultra long-range exchange-correlation potential and fields call potxcu ! reduce the external magnetic field if required if (reducebf < 1.d0) then bfcq(:,:)=bfcq(:,:)*reducebf bfcmtq(:,:,:)=bfcmtq(:,:,:)*reducebf end if call timesec(ts1) timepot=timepot+ts1-ts0 end subroutine elk-9.2.12/src/PaxHeaders/writevclr.f900000644000000000000000000000013214536061314014571 xustar0030 mtime=1702388428.510500612 30 atime=1702388427.429502213 30 ctime=1702388428.510500612 elk-9.2.12/src/writevclr.f900000644002504400250440000000144414536061314017316 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writevclr use modmain use modulr implicit none ! local variables integer i1,i2,i3,ir ! allocatable arrays real(8), allocatable :: vclr(:) allocate(vclr(nqpt)) ! Fourier transform external Coulomb potential from Q-space to real-space call rzfftifc(3,ngridq,1,vclr,vclq) ! write the real-space potential to file open(50,file='VCLR.OUT',form='FORMATTED') write(50,'(3I6," : grid size")') ngridq ir=0 do i3=1,ngridq(3) do i2=1,ngridq(2) do i1=1,ngridq(1) ir=ir+1 write(50,'(3I6,G18.10)') i1,i2,i3,vclr(ir) end do end do end do close(50) deallocate(vclr) end subroutine elk-9.2.12/src/PaxHeaders/genzvmatk.f900000644000000000000000000000013114536061314014555 xustar0030 mtime=1702388428.511500611 29 atime=1702388427.43150221 30 ctime=1702388428.511500611 elk-9.2.12/src/genzvmatk.f900000644002504400250440000000462114536061314017303 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genzvmatk(zvmt,zvir,ngp,igpig,wfmt,wfir,wfgp,vmat) use modmain use modomp implicit none ! arguments ! the potential is multiplied by the radial integration weights in the ! muffin-tin and by the characteristic function in the interstitial region complex(8), intent(in) :: zvmt(npcmtmax,natmtot),zvir(ngtot) integer, intent(in) :: ngp,igpig(ngp) complex(4), intent(in) :: wfmt(npcmtmax,natmtot,nspinor,nstsv) ! note that wfir does not have a 1/sqrt(omega) prefactor complex(4), intent(in) :: wfir(ngtot,nspinor,nstsv) complex(4), intent(in) :: wfgp(ngp,nspinor,nstsv) complex(8), intent(out) :: vmat(nstsv,nstsv) ! local variables integer ist,jst,ispn,nthd integer is,ias,npc,igp ! automatic arrays complex(4) wfmt1(npcmtmax),c(ngp) ! allocatable arrays complex(4), allocatable :: wfir1(:) ! external functions complex(4), external :: cdotc call holdthd(nstsv,nthd) ! zero the matrix elements vmat(:,:)=0.d0 !-------------------------! ! muffin-tin part ! !-------------------------! !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(wfmt1,ispn,ias) & !$OMP PRIVATE(is,npc,ist) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do jst=1,nstsv do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) npc=npcmt(is) ! apply complex potential to wavefunction wfmt1(1:npc)=zvmt(1:npc,ias)*wfmt(1:npc,ias,ispn,jst) ! compute the inner products do ist=1,nstsv vmat(ist,jst)=vmat(ist,jst)+cdotc(npc,wfmt(:,ias,ispn,ist),1,wfmt1,1) end do end do end do end do !$OMP END PARALLEL DO !---------------------------! ! interstitial part ! !---------------------------! !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfir1,c,ispn,igp,ist) & !$OMP NUM_THREADS(nthd) allocate(wfir1(ngtot)) !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstsv do ispn=1,nspinor ! apply potential to wavefunction wfir1(1:ngtot)=zvir(1:ngtot)*wfir(1:ngtot,ispn,jst) ! Fourier transform to G+p-space call cfftifc(3,ngridg,-1,wfir1) do igp=1,ngp c(igp)=wfir1(igfft(igpig(igp))) end do do ist=1,nstsv ! compute inner product vmat(ist,jst)=vmat(ist,jst)+cdotc(ngp,wfgp(:,ispn,ist),1,c,1) end do end do end do !$OMP END DO deallocate(wfir1) !$OMP END PARALLEL call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/genzvbmatk.f900000644000000000000000000000013214536061314014720 xustar0030 mtime=1702388428.513500608 30 atime=1702388427.432502209 30 ctime=1702388428.513500608 elk-9.2.12/src/genzvbmatk.f900000644002504400250440000000752014536061314017446 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genzvbmatk(zvmt,zvir,zbmt,zbir,ngp,igpig,wfmt,wfir,wfgp,vbmat) use modmain use modomp implicit none ! arguments ! the potential and field are multiplied by the radial integration weights in ! the muffin-tin and by the characteristic function in the interstitial region complex(8), intent(in) :: zvmt(npcmtmax,natmtot),zvir(ngtot) complex(8), intent(in) :: zbmt(npcmtmax,natmtot,ndmag),zbir(ngtot,ndmag) integer, intent(in) :: ngp,igpig(ngp) complex(4), intent(in) :: wfmt(npcmtmax,natmtot,nspinor,nstsv) ! note that wfir does not have a 1/sqrt(omega) prefactor complex(4), intent(in) :: wfir(ngtot,nspinor,nstsv) complex(4), intent(in) :: wfgp(ngp,nspinor,nstsv) complex(8), intent(out) :: vbmat(nstsv,nstsv) ! local variables integer ist,jst,ispn,nthd integer is,ias,npc,igp ! automatic arrays complex(4) wfmt1(npcmtmax,nspinor),c(ngp) ! allocatable arrays complex(4), allocatable :: wfir1(:,:) ! external functions complex(4), external :: cdotc call holdthd(nstsv,nthd) ! zero the matrix elements vbmat(:,:)=0.d0 !-------------------------! ! muffin-tin part ! !-------------------------! !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(wfmt1,ias,is,npc,ist) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do jst=1,nstsv do ias=1,natmtot is=idxis(ias) npc=npcmt(is) ! apply local potential and magnetic field to spinor wavefunction if (ncmag) then ! non-collinear case call zvbmk1(npc,zvmt(:,ias),zbmt(:,ias,1),zbmt(:,ias,2),zbmt(:,ias,3), & wfmt(:,ias,1,jst),wfmt(:,ias,2,jst),wfmt1,wfmt1(:,2)) else ! collinear case call zvbmk2(npc,zvmt(:,ias),zbmt(:,ias,1),wfmt(:,ias,1,jst), & wfmt(:,ias,2,jst),wfmt1,wfmt1(:,2)) end if ! compute the inner products do ist=1,nstsv vbmat(ist,jst)=vbmat(ist,jst) & +cdotc(npc,wfmt(:,ias,1,ist),1,wfmt1,1) & +cdotc(npc,wfmt(:,ias,2,ist),1,wfmt1(:,2),1) end do end do end do !$OMP END PARALLEL DO !---------------------------! ! interstitial part ! !---------------------------! !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfir1,c,ispn,igp,ist) & !$OMP NUM_THREADS(nthd) allocate(wfir1(ngtot,nspinor)) !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstsv ! apply local potential and magnetic field to spinor wavefunction if (ncmag) then ! non-collinear case call zvbmk1(ngtot,zvir,zbir,zbir(:,2),zbir(:,3),wfir(:,1,jst), & wfir(:,2,jst),wfir1,wfir1(:,2)) else ! collinear case call zvbmk2(ngtot,zvir,zbir,wfir(:,1,jst),wfir(:,2,jst),wfir1,wfir1(:,2)) end if do ispn=1,nspinor ! Fourier transform to G+p-space call cfftifc(3,ngridg,-1,wfir1(:,ispn)) do igp=1,ngp c(igp)=wfir1(igfft(igpig(igp)),ispn) end do do ist=1,nstsv vbmat(ist,jst)=vbmat(ist,jst)+cdotc(ngp,wfgp(:,ispn,ist),1,c,1) end do end do end do !$OMP END DO deallocate(wfir1) !$OMP END PARALLEL call freethd(nthd) return contains pure subroutine zvbmk1(n,zv,zb1,zb2,zb3,wf11,wf12,wf21,wf22) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: zv(n),zb1(n),zb2(n),zb3(n) complex(4), intent(in) :: wf11(n),wf12(n) complex(4), intent(out) :: wf21(n),wf22(n) ! local variables integer i complex(8) z1 do i=1,n z1=cmplx(-aimag(zb2(i)),dble(zb2(i)),8) wf21(i)=(zv(i)+zb3(i))*wf11(i)+(zb1(i)-z1)*wf12(i) wf22(i)=(zv(i)-zb3(i))*wf12(i)+(zb1(i)+z1)*wf11(i) end do end subroutine pure subroutine zvbmk2(n,zv,zb,wf11,wf12,wf21,wf22) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: zv(n),zb(n) complex(4), intent(in) :: wf11(n),wf12(n) complex(4), intent(out) :: wf21(n),wf22(n) ! local variables integer i do i=1,n wf21(i)=(zv(i)+zb(i))*wf11(i) wf22(i)=(zv(i)-zb(i))*wf12(i) end do end subroutine end subroutine elk-9.2.12/src/PaxHeaders/rhomagq.f900000644000000000000000000000013214536061314014206 xustar0030 mtime=1702388428.514500607 30 atime=1702388427.433502207 30 ctime=1702388428.514500607 elk-9.2.12/src/rhomagq.f900000644002504400250440000000234314536061314016732 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhomagq use modmain use modulr use modomp implicit none ! local variables integer ifq,idm,is,ias,nthd ! partial Fourier transform of density to Q-space call rfzfftq(-1,1,ngtc,rhormt,rhorir,rhoqmt,rhoqir) ! convert density to spherical harmonics call holdthd(nfqrz,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ias,is) & !$OMP NUM_THREADS(nthd) do ifq=1,nfqrz do ias=1,natmtot is=idxis(ias) call zfshtip(nrcmt(is),nrcmti(is),rhoqmt(:,ias,ifq)) end do end do !$OMP END PARALLEL DO call freethd(nthd) if (.not.spinpol) return ! partial Fourier transform of magnetisation to Q-space call rfzfftq(-1,ndmag,ngtc,magrmt,magrir,magqmt,magqir) ! convert magnetisation to spherical harmonics call holdthd(nfqrz,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(idm,ias,is) & !$OMP NUM_THREADS(nthd) do ifq=1,nfqrz do idm=1,ndmag do ias=1,natmtot is=idxis(ias) call zfshtip(nrcmt(is),nrcmti(is),magqmt(:,ias,idm,ifq)) end do end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-9.2.12/src/PaxHeaders/writeengyu.f900000644000000000000000000000013214536061314014752 xustar0030 mtime=1702388428.515500605 30 atime=1702388427.435502204 30 ctime=1702388428.515500605 elk-9.2.12/src/writeengyu.f900000644002504400250440000000063714536061314017502 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeengyu(fnum) use modmain use modulr implicit none ! arguments integer, intent(in) :: fnum write(fnum,*) write(fnum,'("Energies :")') write(fnum,'(" Fermi",T30,": ",G22.12)') efermi end subroutine elk-9.2.12/src/PaxHeaders/rfzfftq.f900000644000000000000000000000013214536061314014232 xustar0030 mtime=1702388428.517500602 30 atime=1702388427.436502203 30 ctime=1702388428.517500602 elk-9.2.12/src/rfzfftq.f900000644002504400250440000000452214536061314016757 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rfzfftq(sgn,nf,ngt,rfmt,rfir,zfmt,zfir) use modmain use modomp implicit none ! arguments integer, intent(in) :: sgn,nf,ngt real(8), intent(inout) :: rfmt(npcmtmax,natmtot,nf,nqpt) real(8), intent(inout) :: rfir(ngt,nf,nqpt) complex(8), intent(inout) :: zfmt(npcmtmax,natmtot,nf,nfqrz) complex(8), intent(inout) :: zfir(ngt,nf,nfqrz) ! local variables integer jf,is,ias,ir integer npc,i,nthd ! automatic arrays real(8) r(nqpt) complex(8) z(nfqrz) if (sgn == -1) then ! loop over the number of functions do jf=1,nf ! Fourier transform the muffin-tin function call holdthd(npc,nthd) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(r,z) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do i=1,npc r(1:nqpt)=rfmt(i,ias,jf,1:nqpt) call rzfftifc(3,ngridq,-1,r,z) zfmt(i,ias,jf,1:nfqrz)=z(1:nfqrz) end do !$OMP END PARALLEL DO end do call freethd(nthd) ! Fourier transform the interstitial function call holdthd(ngt,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(r,z) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do ir=1,ngt r(1:nqpt)=rfir(ir,jf,1:nqpt) call rzfftifc(3,ngridq,-1,r,z) zfir(ir,jf,1:nfqrz)=z(1:nfqrz) end do !$OMP END PARALLEL DO call freethd(nthd) ! end loop over number of functions end do else ! loop over the number of functions do jf=1,nf call holdthd(npc,nthd) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(z,r) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do i=1,npc z(1:nfqrz)=zfmt(i,ias,jf,1:nfqrz) call rzfftifc(3,ngridq,1,r,z) rfmt(i,ias,jf,1:nqpt)=r(1:nqpt) end do !$OMP END PARALLEL DO end do call freethd(nthd) call holdthd(ngt,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(z,r) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do ir=1,ngt z(1:nfqrz)=zfir(ir,jf,1:nfqrz) call rzfftifc(3,ngridq,1,r,z) rfir(ir,jf,1:nqpt)=r(1:nqpt) end do !$OMP END PARALLEL DO call freethd(nthd) ! end loop over number of functions end do end if end subroutine elk-9.2.12/src/PaxHeaders/rhocoreu.f900000644000000000000000000000013014536061314014374 xustar0030 mtime=1702388428.518500601 28 atime=1702388427.4385022 30 ctime=1702388428.518500601 elk-9.2.12/src/rhocoreu.f900000644002504400250440000000225014536061314017117 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhocoreu use modmain use modulr use modomp implicit none ! local variables integer is,ias,ir,i integer nrc,nrci,irc integer npc,n,nthd real(8) t1 ! allocatable arrays real(8), allocatable :: rfmt(:,:) ! generate the core density in spherical coordinates allocate(rfmt(npcmtmax,natmtot)) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) n=lmmaxi-1 ir=1 i=1 do irc=1,nrci t1=rhocr(ir,ias,1)*y00 rfmt(i:i+n,ias)=t1 ir=ir+lradstp i=i+lmmaxi end do n=lmmaxo-1 do irc=nrci+1,nrc t1=rhocr(ir,ias,1)*y00 rfmt(i:i+n,ias)=t1 ir=ir+lradstp i=i+lmmaxo end do end do ! add to the ultra long-range density call holdthd(nqpt,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ias,is,npc) & !$OMP NUM_THREADS(nthd) do ir=1,nqpt do ias=1,natmtot is=idxis(ias) npc=npcmt(is) rhormt(1:npc,ias,ir)=rhormt(1:npc,ias,ir)+rfmt(1:npc,ias) end do end do !$OMP END PARALLEL DO call freethd(nthd) deallocate(rfmt) end subroutine elk-9.2.12/src/PaxHeaders/eveqnulr.f900000644000000000000000000000013214536061314014411 xustar0030 mtime=1702388428.520500598 30 atime=1702388427.439502198 30 ctime=1702388428.520500598 elk-9.2.12/src/eveqnulr.f900000644002504400250440000000126214536061314017134 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnulr(ik0,evecu) use modmain use modulr implicit none ! arguments integer, intent(in) :: ik0 complex(8), intent(out) :: evecu(nstulr,nstulr) ! local variables real(8) ts0,ts1 ! generate the ultra long-range Hamiltonian call timesec(ts0) call genhmlu(ik0,evecu) call timesec(ts1) !$OMP ATOMIC timemat=timemat+ts1-ts0 ! find the eigenvalues and vectors call timesec(ts0) call eveqnzh(nstulr,nstulr,evecu,evalu(:,ik0)) call timesec(ts1) !$OMP ATOMIC timesv=timesv+ts1-ts0 end subroutine elk-9.2.12/src/PaxHeaders/rhomaguk.f900000644000000000000000000000013214536061314014365 xustar0030 mtime=1702388428.521500596 30 atime=1702388427.440502197 30 ctime=1702388428.521500596 elk-9.2.12/src/rhomaguk.f900000644002504400250440000001157114536061314017114 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhomaguk(ik0,lock,evecu) use modmain use modulr use modomp implicit none ! arguments integer, intent(in) :: ik0 integer(8), intent(in) :: lock(nqpt) complex(8), intent(in) :: evecu(nstulr,nstulr) ! local variables integer ik,ikpa,jkpa integer ist,jst,i,j integer ngk0,is,ias integer npc,ir,nthd real(8) ts0,ts1 real(4) wo ! automatic arrays complex(8) zfft(nqpt) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: evectv(:,:,:),evecsvt(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfir(:,:,:) call timesec(ts0) ! central k-point ik=(ik0-1)*nkpa+1 ! number of G+k-vectors for central k-point ngk0=ngk(1,ik) ! get the eigenvectors from file allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) call match(ngk0,vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) allocate(evectv(nstsv,nstsv,nqpt),evecsvt(nstsv,nstsv)) allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfir(ngtc,nspinor,nstsv)) do jkpa=1,nkpa do jst=1,nstsv j=(jkpa-1)*nstsv+jst do ist=1,nstsv zfft(:)=0.d0 do ikpa=1,nkpa i=(ikpa-1)*nstsv+ist ! store the long-range state in FFT Q-space zfft(iqfft(ikpa))=evecu(i,j) end do ! Fourier transform to R-space call zfftifc(3,ngridq,1,zfft) evectv(ist,jst,:)=zfft(:) end do end do ! loop over R-points do ir=1,nqpt ! convert third-variational states to second-variational states call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,evectv(:,:,ir), & nstsv,zzero,evecsvt,nstsv) ! generate the wavefunctions in single-precision call genwfsv_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,ngk0,igkig(:,1,ik), & apwalm,evecfv,evecsvt,wfmt,ngtc,wfir) ! parallel loop over states call holdthd(nstsv,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(j,wo,ias,is,npc) & !$OMP NUM_THREADS(nthd) do jst=1,nstsv j=(jkpa-1)*nstsv+jst wo=occulr(j,ik0)*wkpt(ik) if (abs(wo) < epsocc) cycle ! add to the density and magnetisation call omp_set_lock(lock(ir)) ! muffin-tin part do ias=1,natmtot is=idxis(ias) npc=npcmt(is) if (spinpol) then if (ncmag) then call rmk1(npc,wo,wfmt(:,ias,1,jst),wfmt(:,ias,2,jst), & rhormt(:,ias,ir),magrmt(:,ias,1,ir),magrmt(:,ias,2,ir), & magrmt(:,ias,3,ir)) else call rmk2(npc,wo,wfmt(:,ias,1,jst),wfmt(:,ias,2,jst), & rhormt(:,ias,ir),magrmt(:,ias,1,ir)) end if else call rmk3(npc,wo,wfmt(:,ias,1,jst),rhormt(:,ias,ir)) end if end do ! interstitial part if (spinpol) then if (ncmag) then call rmk1(ngtc,wo,wfir(:,1,jst),wfir(:,2,jst),rhorir(:,ir), & magrir(:,1,ir),magrir(:,2,ir),magrir(:,3,ir)) else call rmk2(ngtc,wo,wfir(:,1,jst),wfir(:,2,jst),rhorir(:,ir), & magrir(:,1,ir)) end if else call rmk3(ngtc,wo,wfir(:,1,jst),rhorir(:,ir)) end if call omp_unset_lock(lock(ir)) end do !$OMP END PARALLEL DO call freethd(nthd) ! end loop over R-points end do end do deallocate(apwalm,evecfv,evecsv) deallocate(evectv,evecsvt,wfmt,wfir) call timesec(ts1) !$OMP ATOMIC timerho=timerho+ts1-ts0 return contains pure subroutine rmk1(n,wo,wf1,wf2,rho,mag1,mag2,mag3) implicit none ! arguments integer, intent(in) :: n real(4), intent(in) :: wo complex(4), intent(in) :: wf1(n),wf2(n) real(8), intent(inout) :: rho(n),mag1(n),mag2(n),mag3(n) ! local variables integer i real(4) wo2,t1,t2 real(4) a1,b1,a2,b2 wo2=2.e0*wo !$OMP SIMD PRIVATE(a1,b1,a2,b2,t1,t2) SIMDLEN(8) do i=1,n a1=real(wf1(i)); b1=aimag(wf1(i)) a2=real(wf2(i)); b2=aimag(wf2(i)) t1=a1**2+b1**2; t2=a2**2+b2**2 mag1(i)=mag1(i)+wo2*(a1*a2+b1*b2) mag2(i)=mag2(i)+wo2*(a1*b2-b1*a2) mag3(i)=mag3(i)+wo*(t1-t2) rho(i)=rho(i)+wo*(t1+t2) end do end subroutine pure subroutine rmk2(n,wo,wf1,wf2,rho,mag) implicit none ! arguments integer, intent(in) :: n real(4), intent(in) :: wo complex(4), intent(in) :: wf1(n),wf2(n) real(8), intent(inout) :: rho(n),mag(n) ! local variables integer i real(4) t1,t2 !$OMP SIMD PRIVATE(t1,t2) SIMDLEN(8) do i=1,n t1=real(wf1(i))**2+aimag(wf1(i))**2 t2=real(wf2(i))**2+aimag(wf2(i))**2 mag(i)=mag(i)+wo*(t1-t2) rho(i)=rho(i)+wo*(t1+t2) end do end subroutine pure subroutine rmk3(n,wo,wf,rho) implicit none ! arguments integer, intent(in) :: n real(4), intent(in) :: wo complex(4), intent(in) :: wf(n) real(8), intent(inout) :: rho(n) rho(:)=rho(:)+wo*(real(wf(:))**2+aimag(wf(:))**2) end subroutine end subroutine elk-9.2.12/src/PaxHeaders/genhmlu.f900000644000000000000000000000013214536061314014207 xustar0030 mtime=1702388428.523500593 30 atime=1702388427.442502194 30 ctime=1702388428.523500593 elk-9.2.12/src/genhmlu.f900000644002504400250440000000722714536061314016741 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genhmlu(ik0,h) use modmain use modulr use modomp implicit none ! arguments integer, intent(in) :: ik0 complex(8), intent(out) :: h(nstulr,nstulr) ! local variables integer ik,ist,jst,ispn,nthd integer ikpa,jkpa,iq,ifq,ngk0,igk integer i1,i2,i3,j1,j2,j3,i,j ! automatic arrays complex(8) vmat(nstsv,nstsv) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfir(:,:,:),wfgk(:,:,:) complex(8), allocatable :: hdb(:,:,:) ! central k-point ik=(ik0-1)*nkpa+1 ! number of G+k-vectors for central k-point ngk0=ngk(1,ik) ! get the ground-state eigenvectors from file for central k-point allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) call getevecfv('.OUT',ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv('.OUT',ik,vkl(:,ik),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) call match(ngk0,vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! calculate the wavefunctions for all states of the central k-point allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfgk(ngk0,nspinor,nstsv)) call genwfsv_sp(.false.,.true.,nstsv,[0],ngridg,igfft,ngk0,igkig(:,1,ik), & apwalm,evecfv,evecsv,wfmt,ngk0,wfgk) deallocate(apwalm,evecfv,evecsv) ! determine the interstitial wavefunctions in real-space (without 1/sqrt(omega)) allocate(wfir(ngtot,nspinor,nstsv)) call holdthd(nstsv,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ispn,igk) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do ist=1,nstsv do ispn=1,nspinor wfir(:,ispn,ist)=0.e0 do igk=1,ngk0 wfir(igfft(igkig(igk,1,ik)),ispn,ist)=wfgk(igk,ispn,ist) end do call cfftifc(3,ngridg,1,wfir(:,ispn,ist)) end do end do !$OMP END PARALLEL DO call freethd(nthd) ! generate the matrix elements for all Q-vectors call holdthd(nfqrz,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(vmat,iq,i,j,ikpa,jkpa) & !$OMP PRIVATE(j1,j2,j3,ist,jst,i1,i2,i3) & !$OMP NUM_THREADS(nthd) SCHEDULE(DYNAMIC) do ifq=1,nfqrz iq=iqrzf(ifq) if (spinpol) then call genzvbmatk(vsqmt(:,:,ifq),vsqir(:,ifq),bsqmt(:,:,:,ifq), & bsqir(:,:,ifq),ngk0,igkig(:,1,ik),wfmt,wfir,wfgk,vmat) else call genzvmatk(vsqmt(:,:,ifq),vsqir(:,ifq),ngk0,igkig(:,1,ik),wfmt,wfir, & wfgk,vmat) end if j=0 do jkpa=1,nkpa j1=ivq(1,jkpa); j2=ivq(2,jkpa); j3=ivq(3,jkpa) do jst=1,nstsv j=j+1 do ikpa=1,jkpa-1 i=(ikpa-1)*nstsv+1 i1=ivq(1,ikpa)-j1; i2=ivq(2,ikpa)-j2; i3=ivq(3,ikpa)-j3 if (ivqiq(i1,i2,i3) == iq) then ! copy matrix elements for kappa_i - kappa_j in Q-point set call zcopy(nstsv,vmat(:,jst),1,h(i,j),1) else if (ivqiq(-i1,-i2,-i3) == iq) then ! otherwise use conjugate transpose do ist=1,nstsv h(i,j)=conjg(vmat(jst,ist)) i=i+1 end do end if end do ! copy only the upper triangular part for Q=0 if (ifq == 1) then i=(jkpa-1)*nstsv+1 call zcopy(jst,vmat(:,jst),1,h(i,j),1) end if end do end do end do !$OMP END PARALLEL DO call freethd(nthd) deallocate(wfmt,wfir,wfgk) ! add the second-variational eigenvalues of k+kappa to the diagonal but in the ! basis of the states at k do ist=1,nstsv h(ist,ist)=h(ist,ist)+evalsv(ist,ik) end do allocate(hdb(nstsv,nstsv,2:nkpa)) call gethdbulr(ik0,hdb) do ikpa=2,nkpa i=(ikpa-1)*nstsv do jst=1,nstsv j=i+jst do ist=1,jst h(i+ist,j)=h(i+ist,j)+hdb(ist,jst,ikpa) end do end do end do deallocate(hdb) end subroutine elk-9.2.12/src/PaxHeaders/potxcu.f900000644000000000000000000000013214536061314014072 xustar0030 mtime=1702388428.524500592 30 atime=1702388427.443502192 30 ctime=1702388428.524500592 elk-9.2.12/src/potxcu.f900000644002504400250440000001142214536061314016614 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potxcu use modmain use modulr use modmpi use modomp implicit none ! local variables integer ifq,idm,is,ias integer ir,npc,n,lp,nthd complex(8) z1,z2 ! allocatable arrays real(8), allocatable :: vxcrmt(:,:,:),vxcrir(:,:) real(8), allocatable :: bxcrmt(:,:,:,:),bxcrir(:,:,:) real(8), allocatable :: rhomt_(:,:),rhoir_(:) real(8), allocatable :: magmt_(:,:,:),magir_(:,:) real(8), allocatable :: vxcmt_(:,:),bxcmt_(:,:,:) complex(8), allocatable :: vxcqmt(:,:,:),vxcqir(:,:) allocate(vxcrmt(npcmtmax,natmtot,nqpt),vxcrir(ngtot,nqpt)) if (spinpol) then allocate(bxcrmt(npcmtmax,natmtot,ndmag,nqpt)) allocate(bxcrir(ngtot,ndmag,nqpt)) end if call holdthd(nqpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(rhomt_,rhoir_,vxcmt_) & !$OMP PRIVATE(magmt_,magir_,bxcmt_) & !$OMP PRIVATE(ias,is,idm) & !$OMP NUM_THREADS(nthd) allocate(rhomt_(npmtmax,natmtot),rhoir_(ngtot)) allocate(vxcmt_(npmtmax,natmtot)) if (spinpol) then allocate(magmt_(npmtmax,natmtot,ndmag),magir_(ngtot,ndmag)) allocate(bxcmt_(npmtmax,natmtot,ndmag)) end if !$OMP DO do ir=1,nqpt ! distribute among MPI processes if (mod(ir-1,np_mpi) /= lp_mpi) cycle ! convert muffin-tin density and magnetisation from coarse to fine radial mesh do ias=1,natmtot is=idxis(ias) rhomt_(1:npcmt(is),ias)=rhormt(1:npcmt(is),ias,ir) end do call rfmtctof(rhomt_) do idm=1,ndmag do ias=1,natmtot is=idxis(ias) magmt_(1:npcmt(is),ias,idm)=magrmt(1:npcmt(is),ias,idm,ir) end do call rfmtctof(magmt_(:,:,idm)) end do ! convert interstitial density and magnetisation from coarse to fine grid call rfirctof(rhorir(:,ir),rhoir_) do idm=1,ndmag call rfirctof(magrir(:,idm,ir),magir_(:,idm)) end do ! calculate the exchange-correlation potential and magnetic field call potxc(.false.,xctype,rhomt_,rhoir_,magmt_,magir_,taumt,tauir,exmt,exir, & ecmt,ecir,vxcmt_,vxcrir(:,ir),bxcmt_,bxcrir(:,:,ir),wxcmt,wxcir) ! convert muffin-tin potential and field from fine to coarse radial mesh do ias=1,natmtot is=idxis(ias) call rfmtftoc(nrcmt(is),nrcmti(is),vxcmt_(:,ias),vxcrmt(:,ias,ir)) end do do idm=1,ndmag do ias=1,natmtot is=idxis(ias) call rfmtftoc(nrcmt(is),nrcmti(is),bxcmt_(:,ias,idm),bxcrmt(:,ias,idm,ir)) end do end do end do !$OMP END DO deallocate(rhomt_,rhoir_,vxcmt_) if (spinpol) deallocate(magmt_,magir_,bxcmt_) !$OMP END PARALLEL call freethd(nthd) ! broadcast potentials and fields to every MPI process if (np_mpi > 1) then n=npcmtmax*natmtot do ir=1,nqpt lp=mod(ir-1,np_mpi) call mpi_bcast(vxcrmt(:,:,ir),n,mpi_double_precision,lp,mpicom,ierror) end do do ir=1,nqpt lp=mod(ir-1,np_mpi) call mpi_bcast(vxcrir(:,ir),ngtot,mpi_double_precision,lp,mpicom,ierror) end do if (spinpol) then n=npcmtmax*natmtot*ndmag do ir=1,nqpt lp=mod(ir-1,np_mpi) call mpi_bcast(bxcrmt(:,:,:,ir),n,mpi_double_precision,lp,mpicom,ierror) end do n=ngtot*ndmag do ir=1,nqpt lp=mod(ir-1,np_mpi) call mpi_bcast(bxcrir(:,:,ir),n,mpi_double_precision,lp,mpicom,ierror) end do end if end if allocate(vxcqmt(npcmtmax,natmtot,nfqrz),vxcqir(ngtot,nfqrz)) ! Fourier transform exchange-correlation potential to Q-space call rfzfftq(-1,1,ngtot,vxcrmt,vxcrir,vxcqmt,vxcqir) deallocate(vxcrmt,vxcrir) ! add V_xc and external Coulomb potential to Kohn-Sham potential call holdthd(nfqrz,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(z1,ias,is,npc) & !$OMP NUM_THREADS(nthd) !$OMP DO do ifq=1,nfqrz z1=vclq(ifq) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) vsqmt(1:npc,ias,ifq)=vsqmt(1:npc,ias,ifq)+vxcqmt(1:npc,ias,ifq)+z1 end do end do !$OMP END DO NOWAIT !$OMP DO do ifq=1,nfqrz z1=vclq(ifq) vsqir(:,ifq)=vsqir(:,ifq)+vxcqir(:,ifq)+z1 end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) deallocate(vxcqmt,vxcqir) if (spinpol) then ! Fourier transform the exchange-correlation magnetic field to Q-space call rfzfftq(-1,ndmag,ngtot,bxcrmt,bxcrir,bsqmt,bsqir) deallocate(bxcrmt,bxcrir) ! add external magnetic fields call holdthd(nfqrz,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(idm,z1,z2,ias,is,npc) & !$OMP NUM_THREADS(nthd) !$OMP DO do ifq=1,nfqrz do idm=1,ndmag z1=bfcq(idm,ifq) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) z2=z1+bfcmtq(ias,idm,ifq) bsqmt(1:npc,ias,idm,ifq)=bsqmt(1:npc,ias,idm,ifq)+z2 end do end do end do !$OMP END DO NOWAIT !$OMP DO do ifq=1,nfqrz do idm=1,ndmag z1=bfcq(idm,ifq) bsqir(:,idm,ifq)=bsqir(:,idm,ifq)+z1 end do end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) end if end subroutine elk-9.2.12/src/PaxHeaders/writeinfou.f900000644000000000000000000000012714536061314014747 xustar0029 mtime=1702388428.52550059 29 atime=1702388427.44550219 29 ctime=1702388428.52550059 elk-9.2.12/src/writeinfou.f900000644002504400250440000000335714536061314017475 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeinfou(fnum) use modmain use modulr implicit none ! arguments integer fnum ! local variables real(8) t1 write(fnum,'("+------------------------------+")') write(fnum,'("| Ultra long-range calculation |")') write(fnum,'("+------------------------------+")') write(fnum,*) write(fnum,'("Ultracell lattice vectors :")') write(fnum,'(3G18.10)') avecu(1,1),avecu(2,1),avecu(3,1) write(fnum,'(3G18.10)') avecu(1,2),avecu(2,2),avecu(3,2) write(fnum,'(3G18.10)') avecu(1,3),avecu(2,3),avecu(3,3) write(fnum,*) write(fnum,'("Ultracell reciprocal lattice vectors :")') write(fnum,'(3G18.10)') bvecu(1,1),bvecu(2,1),bvecu(3,1) write(fnum,'(3G18.10)') bvecu(1,2),bvecu(2,2),bvecu(3,2) write(fnum,'(3G18.10)') bvecu(1,3),bvecu(2,3),bvecu(3,3) write(fnum,*) write(fnum,'("Ultracell volume : ",G18.10)') omegau write(fnum,'("Ultracell Brillouin zone volume : ",G18.10)') omegabzu write(fnum,*) t1=omegau/omega write(fnum,'("Ratio of ultracell to unit cell volume : ",G18.10)') t1 t1=t1*dble(natmtot) write(fnum,'("Number of atoms in ultracell : ",I16)') nint(t1,8) write(fnum,*) write(fnum,'("kappa-point grid : ",3I6)') ngridkpa write(fnum,'("Q-point grid : ",3I6)') ngridq write(fnum,*) write(fnum,'("Small Q-vector cut-off : ",G18.10)') q0cut if (fsmtype /= 0) then write(fnum,*) write(fnum,'("Fixed spin moment (FSM) calculation, type : ",I4)') fsmtype if (fsmtype < 0) then write(fnum,'(" only moment direction is fixed")') end if end if write(fnum,*) write(fnum,'("Hamiltonian matrix size : ",I8)') nstulr flush(fnum) end subroutine elk-9.2.12/src/PaxHeaders/zfplot.f900000644000000000000000000000013214536061314014066 xustar0030 mtime=1702388428.527500587 30 atime=1702388427.446502188 30 ctime=1702388428.527500587 elk-9.2.12/src/zfplot.f900000644002504400250440000001000314536061314016602 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zfplot(np,vpl,zfmt,zfir,fp) use modmain use modomp implicit none ! arguments integer, intent(in) :: np real(8), intent(in) :: vpl(3,np) complex(8), intent(in) :: zfmt(npcmtmax,natmtot),zfir(ngtot) complex(8), intent(out) :: fp(np) ! local variables integer ias,is,ip,nthd ! allocatable arrays complex(8), allocatable :: zfmt1(:,:,:),zfft(:) ! unpack the muffin-tin function allocate(zfmt1(lmmaxo,nrcmtmax,natmtot)) call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call zfmtpack(.false.,nrcmt(is),nrcmti(is),zfmt(:,ias),zfmt1(:,:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) ! Fourier transform rfir to G-space allocate(zfft(ngtot)) zfft(:)=zfir(:) call zfftifc(3,ngridg,-1,zfft) ! begin loop over all points call holdthd(np,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ip=1,np call zfip(ip) end do !$OMP END PARALLEL DO call freethd(nthd) deallocate(zfmt1,zfft) return contains subroutine zfip(ip) implicit none ! arguments integer, intent(in) :: ip ! local variables integer is,ia,ias,nrc,nrci integer irc0,irc,lmax,l,m,lm integer ig,ifg,i1,i2,i3,i,j real(8) rmt2,r,ya1(4),ya2(4),t1,t2 real(8) v1(3),v2(3),v3(3),v4(3),v5(3) complex(8) z1 ! automatic arrays complex(8) ylm(lmmaxo) v2(:)=vpl(:,ip) call r3frac(epslat,v2) ! convert point to Cartesian coordinates call r3mv(avec,v2,v1) ! check if point is in a muffin-tin do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) rmt2=rmt(is)**2 do ia=1,natoms(is) ias=idxas(ia,is) v2(:)=v1(:)-atposc(:,ia,is) do i1=-1,1 v3(:)=v2(:)+dble(i1)*avec(:,1) do i2=-1,1 v4(:)=v3(:)+dble(i2)*avec(:,2) do i3=-1,1 v5(:)=v4(:)+dble(i3)*avec(:,3) t1=v5(1)**2+v5(2)**2+v5(3)**2 if (t1 < rmt2) then r=sqrt(t1) call genylmv(lmaxo,v5,ylm) do irc=1,nrc if (rcmt(irc,is) >= r) then if (irc <= 3) then irc0=1 else if (irc > nrc-2) then irc0=nrc-3 else irc0=irc-2 end if r=max(r,rcmt(1,is)) if (irc0 <= nrci) then lmax=lmaxi else lmax=lmaxo end if z1=0.d0 lm=0 do l=0,lmax do m=-l,l lm=lm+1 do j=1,4 i=irc0+j-1 ya1(j)=dble(zfmt1(lm,i,ias)) ya2(j)=aimag(zfmt1(lm,i,ias)) end do t1=poly4(rcmt(irc0,is),ya1,r) t2=poly4(rcmt(irc0,is),ya2,r) z1=z1+cmplx(t1,t2,8)*ylm(lm) end do end do goto 10 end if end do end if end do end do end do end do end do ! otherwise use direct Fourier transform of interstitial function z1=0.d0 do ig=1,ngvec ifg=igfft(ig) t1=vgc(1,ig)*v1(1)+vgc(2,ig)*v1(2)+vgc(3,ig)*v1(3) z1=z1+zfft(ifg)*cmplx(cos(t1),sin(t1),8) end do 10 continue fp(ip)=z1 end subroutine pure real(8) function poly4(xa,ya,x) implicit none ! arguments real(8), intent(in) :: xa(4),ya(4),x ! local variables real(8) x0,x1,x2,x3,y0,y1,y2,y3 real(8) c1,c2,c3,t0,t1,t2,t3,t4,t5,t6 ! evaluate the polynomial coefficients x0=xa(1) x1=xa(2)-x0; x2=xa(3)-x0; x3=xa(4)-x0 t4=x1-x2; t5=x1-x3; t6=x2-x3 y0=ya(1) y1=ya(2)-y0; y2=ya(3)-y0; y3=ya(4)-y0 t1=x1*x2*y3; t2=x2*x3*y1; t3=x1*x3 t0=1.d0/(x2*t3*t4*t5*t6) t3=t3*y2 c3=t1*t4+t2*t6-t3*t5 t4=x1**2; t5=x2**2; t6=x3**2 c2=t1*(t5-t4)+t2*(t6-t5)+t3*(t4-t6) c1=t1*(x2*t4-x1*t5)+t2*(x3*t5-x2*t6)+t3*(x1*t6-x3*t4) t1=x-x0 ! evaluate the polynomial poly4=y0+t0*t1*(c1+t1*(c2+c3*t1)) end function end subroutine elk-9.2.12/src/PaxHeaders/vclqinit.f900000644000000000000000000000013214536061314014401 xustar0030 mtime=1702388428.528500586 30 atime=1702388427.448502185 30 ctime=1702388428.528500586 elk-9.2.12/src/vclqinit.f900000644002504400250440000000113214536061314017120 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine vclqinit use modmain use modulr implicit none ! zero the external Coulomb potential in Q-space vclq(:)=0.d0 if (trdvclr) then ! read the external Coulomb potential from file if required call readvclr else ! determine the external Coulomb potential from the constant electric field call potefieldu ! write the external Coulomb potential to file call writevclr end if end subroutine elk-9.2.12/src/PaxHeaders/writechgrmt.f900000644000000000000000000000013214536061314015107 xustar0030 mtime=1702388428.530500583 30 atime=1702388427.449502183 30 ctime=1702388428.530500583 elk-9.2.12/src/writechgrmt.f900000644002504400250440000000131314536061314017627 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writechgrmt use modmain use modulr implicit none ! local variables integer is,ia,ias,ir open(50,file='CHGMTRU.OUT',form='FORMATTED') do ir=1,nqpt write(50,*) write(50,'("R-point (Cartesian coordinates) :")') write(50,'(3G18.10)') vrcu(:,ir) do is=1,nspecies write(50,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) write(50,'(" atom ",I4,T30,": ",G18.10)') ia,chgmtru(ias,ir) end do end do end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/initulr.f900000644000000000000000000000013214536061314014236 xustar0030 mtime=1702388428.531500581 30 atime=1702388427.451502181 30 ctime=1702388428.531500581 elk-9.2.12/src/initulr.f900000644002504400250440000001200314536061314016754 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine initulr use modmain use modulr use modomp implicit none ! local variables integer ik0,ik,ist,jst integer iq,jq,ifq,ig integer n,i,i1,i2,i3,nthd real(8) t1 ! allocatable arrays integer, allocatable :: idx(:) real(8), allocatable :: jlgqr(:,:) ! allocate long-range density and magnetisation arrays if (allocated(rhormt)) deallocate(rhormt) allocate(rhormt(npcmtmax,natmtot,nqpt)) if (allocated(rhorir)) deallocate(rhorir) allocate(rhorir(ngtc,nqpt)) if (allocated(magrmt)) deallocate(magrmt) if (allocated(magrir)) deallocate(magrir) if (spinpol) then allocate(magrmt(npcmtmax,natmtot,ndmag,nqpt)) allocate(magrir(ngtc,ndmag,nqpt)) end if if (allocated(rhoqmt)) deallocate(rhoqmt) allocate(rhoqmt(npcmtmax,natmtot,nfqrz)) if (allocated(rhoqir)) deallocate(rhoqir) allocate(rhoqir(ngtc,nfqrz)) if (allocated(chgmtru)) deallocate(chgmtru) allocate(chgmtru(natmtot,nqpt)) if (allocated(magqmt)) deallocate(magqmt) if (allocated(magqir)) deallocate(magqir) if (allocated(mommtru)) deallocate(mommtru) if (spinpol) then allocate(magqmt(npcmtmax,natmtot,ndmag,nfqrz)) allocate(magqir(ngtc,ndmag,nfqrz)) allocate(mommtru(ndmag,natmtot,nqpt)) end if ! allocate potential and magnetic field arrays if (allocated(vclq)) deallocate(vclq) allocate(vclq(nfqrz)) if (allocated(bfcq)) deallocate(bfcq) if (allocated(bfcmtq)) deallocate(bfcmtq) if (spinpol) then allocate(bfcq(ndmag,nfqrz)) allocate(bfcmtq(natmtot,ndmag,nfqrz)) end if ! combined target array for Kohn-Sham potential and magnetic field if (allocated(vsbsq)) deallocate(vsbsq) n=(npcmtmax*natmtot+ngtot)*nfqrz if (spinpol) n=n*(1+ndmag) allocate(vsbsq(n)) ! zero the array vsbsq(:)=0.d0 ! associate pointer arrays with target vsqmt(1:npcmtmax,1:natmtot,1:nfqrz)=>vsbsq(1:) i=npcmtmax*natmtot*nfqrz+1 vsqir(1:ngtot,1:nfqrz)=>vsbsq(i:) if (spinpol) then i=i+ngtot*nfqrz bsqmt(1:npcmtmax,1:natmtot,1:ndmag,1:nfqrz)=>vsbsq(i:) i=i+npcmtmax*natmtot*ndmag*nfqrz bsqir(1:ngtot,1:ndmag,1:nfqrz)=>vsbsq(i:) end if ! G+Q-vector arrays if (allocated(vgqc)) deallocate(vgqc) allocate(vgqc(3,ngvec,nfqrz)) if (allocated(gqc)) deallocate(gqc) allocate(gqc(ngvec,nfqrz)) if (allocated(ylmgq)) deallocate(ylmgq) allocate(ylmgq(lmmaxo,ngvec,nfqrz)) if (allocated(sfacgq)) deallocate(sfacgq) allocate(sfacgq(ngvec,natmtot,nfqrz)) if (allocated(gclq)) deallocate(gclq) allocate(gclq(nqpt)) if (allocated(gclgq)) deallocate(gclgq) allocate(gclgq(ngvec,nfqrz)) if (allocated(jlgqrmt)) deallocate(jlgqrmt) allocate(jlgqrmt(0:lnpsd,ngvec,nspecies,nfqrz)) if (allocated(expqmt)) deallocate(expqmt) allocate(expqmt(npcmtmax,natmtot,nqpt)) call holdthd(nfqrz,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(jlgqr,iq,ig,t1) & !$OMP PRIVATE(i1,i2,i3,jq) & !$OMP NUM_THREADS(nthd) allocate(jlgqr(njcmax,nspecies)) !$OMP DO do ifq=1,nfqrz iq=iqrzf(ifq) do ig=1,ngvec ! determine the G+Q-vectors vgqc(:,ig,ifq)=vgc(:,ig)+vqc(:,iq) ! G+Q-vector length gqc(ig,ifq)=sqrt(vgqc(1,ig,ifq)**2+vgqc(2,ig,ifq)**2+vgqc(3,ig,ifq)**2) ! spherical harmonics for G+Q-vectors call genylmv(lmaxo,vgqc(:,ig,ifq),ylmgq(:,ig,ifq)) end do ! generate the spherical Bessel functions j_l(|G+Q|r) call genjlgpr(1,gqc(1,ifq),jlgqr) ! structure factors for G+Q-vectors call gensfacgp(ngvec,vgqc(:,:,ifq),ngvec,sfacgq(:,:,ifq)) ! generate the Coulomb Green's function in Q-space with small Q cut-off t1=sqrt(vqc(1,iq)**2+vqc(2,iq)**2+vqc(3,iq)**2) if (t1 > q0cut+epslat) then gclq(iq)=fourpi/t1**2 else gclq(iq)=0.d0 end if ! generate the Coulomb Green's function in G+Q-space call gengclgq(.true.,iq,ngvec,gqc(:,ifq),gclgq(:,ifq)) ! compute the spherical Bessel functions j_l(|G+Q|R_mt) call genjlgprmt(lnpsd,ngvec,gqc(:,ifq),ngvec,jlgqrmt(:,:,:,ifq)) ! generate phase factor functions exp(iQ.r) in each muffin-tin call genexpmt(1,jlgqr,ylmgq(:,:,ifq),ngvec,sfacgq(:,:,ifq),expqmt(:,:,iq)) ! store the phase factor function for -Q i1=-ivq(1,iq); i2=-ivq(2,iq); i3=-ivq(3,iq) if ((i1 >= intq(1,1)).and.(i1 <= intq(2,1)).and. & (i2 >= intq(1,2)).and.(i2 <= intq(2,2)).and. & (i3 >= intq(1,3)).and.(i3 <= intq(2,3)).and.(ifq > 1)) then jq=ivqiq(i1,i2,i3) expqmt(:,:,jq)=conjg(expqmt(:,:,iq)) end if end do !$OMP END DO deallocate(jlgqr) !$OMP END PARALLEL call freethd(nthd) ! number of long-range states nstulr=nstsv*nkpa ! allocate eigenvalue array if (allocated(evalu)) deallocate(evalu) allocate(evalu(nstulr,nkpt0)) ! allocate the occupation number array if (allocated(occulr)) deallocate(occulr) allocate(occulr(nstulr,nkpt0)) ! initialise the occupation numbers allocate(idx(nstulr)) do ik0=1,nkpt0 ik=(ik0-1)*nkpa+1 call sortidx(nstulr,occsv(1,ik),idx) do ist=1,nstulr i=idx(nstulr-ist+1)-1 ik=(ik0-1)*nkpa+i/nstsv+1 jst=mod(i,nstsv)+1 occulr(ist,ik0)=occsv(jst,ik) end do end do deallocate(idx) ! zero the timing variables timemat=0.d0 timesv=0.d0 timerho=0.d0 timepot=0.d0 end subroutine elk-9.2.12/src/PaxHeaders/writemomrmt.f900000644000000000000000000000013214536061314015136 xustar0030 mtime=1702388428.533500579 30 atime=1702388427.452502179 30 ctime=1702388428.533500579 elk-9.2.12/src/writemomrmt.f900000644002504400250440000000132414536061314017660 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writemomrmt use modmain use modulr implicit none ! local variables integer is,ia,ias,ir open(50,file='MOMMTRU.OUT',form='FORMATTED') do ir=1,nqpt write(50,*) write(50,'("R-point (Cartesian coordinates) :")') write(50,'(3G18.10)') vrcu(:,ir) do is=1,nspecies write(50,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) write(50,'(" atom ",I4,T30,": ",3G18.10)') ia,mommtru(1:ndmag,ias,ir) end do end do end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/writestulr.f900000644000000000000000000000013214536061314014774 xustar0030 mtime=1702388428.534500577 30 atime=1702388427.453502178 30 ctime=1702388428.534500577 elk-9.2.12/src/writestulr.f900000644002504400250440000000307214536061314017520 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writestulr use modmain use modulr implicit none ! local variables integer ifq,idm open(100,file='STATE_ULR.OUT',form='UNFORMATTED',action='WRITE') write(100) version write(100) natmtot write(100) npcmtmax write(100) ngtc write(100) ngtot write(100) ndmag write(100) fsmtype write(100) nqpt write(100) nfqrz write(100) ivq write(100) iqrzf ! write the ultra long-range density in Q-space do ifq=1,nfqrz write(100) rhoqmt(:,:,ifq) write(100) rhoqir(:,ifq) end do ! write the Kohn-Sham effective potential in Q-space do ifq=1,nfqrz write(100) vsqmt(:,:,ifq) write(100) vsqir(:,ifq) end do ! write the external Coulomb potential in Q-space do ifq=1,nfqrz write(100) vclq(ifq) end do if (spinpol) then ! write the magnetisation in Q-space do ifq=1,nfqrz do idm=1,ndmag write(100) magqmt(:,:,idm,ifq) write(100) magqir(:,idm,ifq) end do end do ! write the Kohn-Sham effective magnetic field in Q-space do ifq=1,nfqrz do idm=1,ndmag write(100) bsqmt(:,:,idm,ifq) write(100) bsqir(:,idm,ifq) end do end do ! write the external magnetic fields in Q-space do ifq=1,nfqrz do idm=1,ndmag write(100) bfcq(idm,ifq) write(100) bfcmtq(:,idm,ifq) end do end do ! write fixed spin moment magnetic fields if (fsmtype /= 0) then write(100) bfsmc write(100) bfsmcmt end if end if close(100) end subroutine elk-9.2.12/src/PaxHeaders/readstulr.f900000644000000000000000000000013214536061314014555 xustar0030 mtime=1702388428.535500575 30 atime=1702388427.455502175 30 ctime=1702388428.535500575 elk-9.2.12/src/readstulr.f900000644002504400250440000001211314536061314017275 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readstulr use modmain use modulr implicit none ! local variables integer iq,jq,ifq,jfq integer idm,i1,i2,i3 integer version_(3),ios integer natmtot_,npcmtmax_,ngtc_,ngtot_ integer ndmag_,fsmtype_,nqpt_,nfqrz_ complex(8) z1 ! automatic arrays complex(8) zv(natmtot) ! allocatable arrays integer, allocatable :: ivq_(:,:),iqrzf_(:),map(:) complex(8), allocatable :: zfmt(:,:),zfir(:) open(100,file='STATE_ULR.OUT',form='UNFORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readstulr): error opening STATE_ULR.OUT")') write(*,*) stop end if read(100) version_ if ((version(1) /= version_(1)).or.(version(2) /= version_(2)).or. & (version(3) /= version_(3))) then write(*,*) write(*,'("Warning(readstulr): different versions")') write(*,'(" current : ",I3.3,".",I3.3,".",I3.3)') version write(*,'(" STATE_ULR.OUT : ",I3.3,".",I3.3,".",I3.3)') version_ end if read(100) natmtot_ if (natmtot /= natmtot_) then write(*,*) write(*,'("Error(readstulr): differing natmtot")') write(*,'(" current : ",I6)') natmtot write(*,'(" STATE_ULR.OUT : ",I6)') natmtot_ write(*,*) stop end if read(100) npcmtmax_ if (npcmtmax /= npcmtmax_) then write(*,*) write(*,'("Error(readstulr): differing npcmtmax")') write(*,'(" current : ",I6)') npcmtmax write(*,'(" STATE_ULR.OUT : ",I6)') npcmtmax_ write(*,*) stop end if read(100) ngtc_ if (ngtc /= ngtc_) then write(*,*) write(*,'("Error(readstulr): differing ngtc")') write(*,'(" current : ",I8)') ngtc write(*,'(" STATE_ULR.OUT : ",I8)') ngtc_ write(*,*) stop end if read(100) ngtot_ if (ngtot /= ngtot_) then write(*,*) write(*,'("Error(readstulr): differing ngtot")') write(*,'(" current : ",I8)') ngtot write(*,'(" STATE_ULR.OUT : ",I8)') ngtot_ write(*,*) stop end if read(100) ndmag_ if (ndmag /= ndmag_) then write(*,*) write(*,'("Error(readstulr): differing ndmag")') write(*,'(" current : ",I1)') ndmag write(*,'(" STATE_ULR.OUT : ",I1)') ndmag_ write(*,*) stop end if read(100) fsmtype_ if (fsmtype /= fsmtype_) then write(*,*) write(*,'("Error(readstulr): differing fsmtype")') write(*,'(" current : ",I4)') fsmtype write(*,'(" STATE_ULR.OUT : ",I4)') fsmtype_ write(*,*) stop end if read(100) nqpt_ if (nqpt_ <= 0) then write(*,*) write(*,'("Error(readstulr): nqpt_ <= 0 : ",I8)') nqpt_ write(*,*) stop end if read(100) nfqrz_ if (nfqrz_ <= 0) then write(*,*) write(*,'("Error(readstulr): nfqrz_ <= 0 : ",I8)') nfqrz_ write(*,*) stop end if allocate(ivq_(3,nqpt_),iqrzf_(nfqrz_),map(nfqrz_)) read(100) ivq_ read(100) iqrzf_ ! generate map from old Q-vector grid to new map(:)=0 do ifq=1,nfqrz_ iq=iqrzf_(ifq) i1=ivq_(1,iq); i2=ivq_(2,iq); i3=ivq_(3,iq) if ((i1 >= intq(1,1)).and.(i1 <= intq(2,1)).and. & (i2 >= intq(1,2)).and.(i2 <= intq(2,2)).and. & (i3 >= intq(1,3)).and.(i3 <= intq(2,3))) then jq=ivqiq(i1,i2,i3) jfq=ifqrz(jq) map(ifq)=jfq end if end do deallocate(ivq_,iqrzf_) allocate(zfmt(npcmtmax,natmtot),zfir(ngtot)) ! read the Q-space density rhoqmt(:,:,:)=0.d0 rhoqir(:,:)=0.d0 do ifq=1,nfqrz_ jfq=map(ifq) if (jfq > 0) then read(100) rhoqmt(:,:,jfq) read(100) rhoqir(:,jfq) else read(100) zfmt read(100) zfir(1:ngtc) end if end do ! read the Q-space Kohn-Sham potential vsqmt(:,:,:)=0.d0 vsqir(:,:)=0.d0 do ifq=1,nfqrz_ jfq=map(ifq) if (jfq > 0) then read(100) vsqmt(:,:,jfq) read(100) vsqir(:,jfq) else read(100) zfmt read(100) zfir end if end do ! read the external Coulomb potential in Q-space vclq(:)=0.d0 do ifq=1,nfqrz_ jfq=map(ifq) if (jfq > 0) then read(100) vclq(jfq) else read(100) z1 end if end do if (spinpol) then ! read the Q-space magnetisation density magqmt(:,:,:,:)=0.d0 magqir(:,:,:)=0.d0 do ifq=1,nfqrz_ jfq=map(ifq) if (jfq > 0) then do idm=1,ndmag read(100) magqmt(:,:,idm,jfq) read(100) magqir(:,idm,jfq) end do else do idm=1,ndmag read(100) zfmt read(100) zfir(1:ngtc) end do end if end do bsqmt(:,:,:,:)=0.d0 bsqir(:,:,:)=0.d0 do ifq=1,nfqrz_ jfq=map(ifq) if (jfq > 0) then do idm=1,ndmag read(100) bsqmt(:,:,idm,jfq) read(100) bsqir(:,idm,jfq) end do else do idm=1,ndmag read(100) zfmt read(100) zfir end do end if end do ! read the external magnetic fields in Q-space bfcq(:,:)=0.d0 bfcmtq(:,:,:)=0.d0 do ifq=1,nfqrz_ jfq=map(ifq) if (jfq > 0) then do idm=1,ndmag read(100) bfcq(idm,jfq) read(100) bfcmtq(:,idm,jfq) end do else do idm=1,ndmag read(100) z1 read(100) zv end do end if end do ! read fixed spin moment effective fields if (fsmtype /= 0) then read(100) bfsmc read(100) bfsmcmt end if end if close(100) deallocate(map,zfmt,zfir) end subroutine elk-9.2.12/src/PaxHeaders/potefieldu.f900000644000000000000000000000013214536061314014710 xustar0030 mtime=1702388428.537500572 30 atime=1702388427.457502172 30 ctime=1702388428.537500572 elk-9.2.12/src/potefieldu.f900000644002504400250440000000142314536061314017432 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potefieldu use modmain use modulr implicit none ! local variables integer ir real(8) v0,v(3) ! allocatable arrays real(8), allocatable :: rfft(:) if (sum(abs(efielduc(:))) < epslat) return allocate(rfft(nqpt)) ! constant added to potential so that it is zero at the ultracell center v(:)=0.5d0*(avecu(:,1)+avecu(:,2)+avecu(:,3)) v0=dot_product(efielduc(:),v(:)) ! calculate the potential in real-space do ir=1,nqpt rfft(ir)=v0-dot_product(efielduc(:),vrcu(:,ir)) end do ! Fourier transform to Q-space call rzfftifc(3,ngridq,-1,rfft,vclq) deallocate(rfft) end subroutine elk-9.2.12/src/PaxHeaders/puthdbulr.f900000644000000000000000000000013114536061314014560 xustar0030 mtime=1702388428.538500571 29 atime=1702388427.45850217 30 ctime=1702388428.538500571 elk-9.2.12/src/puthdbulr.f900000644002504400250440000000577014536061314017314 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine puthdbulr(ik0) use modmain use modulr use modramdisk implicit none ! arguments integer, intent(in) :: ik0 ! local variables integer ik,ikk,ikpa integer ist,recl real(8) t1 ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfir(:,:,:) complex(8), allocatable :: wfmtk(:,:,:,:),wfgkk(:,:,:) complex(8), allocatable :: hdb(:,:,:),ok(:,:),b(:,:) ! central k-point ik=(ik0-1)*nkpa+1 ! get the ground-state eigenvectors from file for central k-point allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) call getevecfv('.OUT',ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv('.OUT',ik,vkl(:,ik),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! calculate the wavefunctions for all states of the central k-point allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfir(ngtot,nspinor,nstsv)) call genwfsv(.false.,.false.,nstsv,[0],ngridg,igfft,ngk(1,ik),igkig(:,1,ik), & apwalm,evecfv,evecsv,wfmt,ngtot,wfir) ! compute the diagonal blocks of the ultra long-range Hamiltonian in the basis ! of the states at the central k-point allocate(wfmtk(npcmtmax,natmtot,nspinor,nstsv),wfgkk(ngkmax,nspinor,nstsv)) allocate(hdb(nstsv,nstsv,2:nkpa),ok(nstsv,nstsv),b(nstsv,nstsv)) do ikpa=2,nkpa ikk=(ik0-1)*nkpa+ikpa call getevecfv('.OUT',ikk,vkl(:,ikk),vgkl(:,:,:,ikk),evecfv) call getevecsv('.OUT',ikk,vkl(:,ikk),evecsv) call match(ngk(1,ikk),vgkc(:,:,1,ikk),gkc(:,1,ikk),sfacgk(:,:,1,ikk),apwalm) call genwfsv(.false.,.true.,nstsv,[0],ngridg,igfft,ngk(:,ikk),igkig(:,:,ikk),& apwalm,evecfv,evecsv,wfmtk,ngkmax,wfgkk) ! compute the overlap matrix between the states at k and k+kappa call genolpq(nstsv,expqmt(:,:,ikpa),ngk(:,ikk),igkig(:,:,ikk),wfmt,wfir, & wfmtk,wfgkk,ok) ! use singular value decompostion to make the matrix strictly unitary call unitary(nstsv,ok) ! apply the overlap matrix from the right to the eigenvalues at k+kappa do ist=1,nstsv t1=evalsv(ist,ikk) b(ist,:)=t1*ok(ist,:) end do ! apply the conjugate transpose of the overlap matrix from the left to form the ! Hamiltonian matrix in the basis of states at k call zgemm('C','N',nstsv,nstsv,nstsv,zone,ok,nstsv,b,nstsv,zzero, & hdb(:,:,ikpa),nstsv) end do ! determine the record length inquire(iolength=recl) vkl(:,1),nstsv,nkpa,hdb !$OMP CRITICAL(u300) open(300,file='HDBULR.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(300,rec=ik0) vkl(:,ik),nstsv,nkpa,hdb close(300) ! write to RAM disk if required if (ramdisk) then call putrd('HDBULR.OUT',ik0,v1=vkl(:,ik),n1=nstsv,n2=nkpa, & nzv=nstsv*nstsv*(nkpa-1),zva=hdb) end if !$OMP END CRITICAL(u300) deallocate(apwalm,evecfv,evecsv) deallocate(wfmt,wfir,wfmtk,wfgkk) deallocate(hdb,ok,b) end subroutine elk-9.2.12/src/PaxHeaders/gethdbulr.f900000644000000000000000000000013014536061314014526 xustar0029 mtime=1702388428.53950057 30 atime=1702388427.460502167 29 ctime=1702388428.53950057 elk-9.2.12/src/gethdbulr.f900000644002504400250440000000322014536061314017247 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gethdbulr(ik0,hdb) use modmain use modulr use modramdisk implicit none ! arguments integer, intent(in) :: ik0 complex(8), intent(out) :: hdb(nstsv,nstsv,2:nkpa) ! local variables logical tgs integer nstsv_,nkpa_ integer ik,recl real(8) vkl_(3),t1 !$OMP CRITICAL(u300) ! read from RAM disk if required if (ramdisk) then call getrd('HDBULR.OUT',ik0,tgs,v1=vkl_,n1=nstsv_,n2=nkpa_, & nzv=nstsv*nstsv*(nkpa-1),zva=hdb) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,nkpa_,hdb open(300,file='HDBULR.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(300,rec=ik0) vkl_,nstsv_,nkpa_,hdb close(300) 10 continue !$OMP END CRITICAL(u300) ! central k-point ik=(ik0-1)*nkpa+1 t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(gethdbulr): differing vectors for k-point ",I8)') ik0 write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" HDBULR.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(gethdbulr): differing nstsv for k-point ",I8)') ik0 write(*,'(" current : ",I8)') nstsv write(*,'(" HDBULR.OUT : ",I8)') nstsv_ write(*,*) stop end if if (nkpa /= nkpa_) then write(*,*) write(*,'("Error(gethdbulr): differing nkpa for k-point ",I8)') ik0 write(*,'(" current : ",I8)') nkpa write(*,'(" HDBULR.OUT : ",I8)') nkpa_ write(*,*) stop end if end subroutine elk-9.2.12/src/PaxHeaders/potuinit.f900000644000000000000000000000013214536061314014423 xustar0030 mtime=1702388428.541500567 30 atime=1702388427.461502166 30 ctime=1702388428.541500567 elk-9.2.12/src/potuinit.f900000644002504400250440000000345714536061314017156 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potuinit use modmain use modulr use modrandom use modomp implicit none ! local variables integer ifq,idm,is,ias integer nrc,nrci,npc real(8) cb,t1 ! automatic arrays real(8) rfmt(npcmtmax) ! set the Q=0 muffin-tin potential equal to that of the normal ground-state do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) call rfmtftoc(nrc,nrci,vsmt(:,ias),rfmt) call rbshtip(nrc,nrci,rfmt) vsqmt(1:npc,ias,1)=rfmt(1:npc) end do ! zero the muffin-tin potential for non-zero Q do ifq=2,nfqrz do ias=1,natmtot is=idxis(ias) vsqmt(1:npcmt(is),ias,ifq)=0.d0 end do end do ! repeat for the interstitial potential vsqir(:,1)=vsir(:) vsqir(:,2:nfqrz)=0.d0 if (.not.spinpol) return ! set the Q=0 muffin-tin magnetic field equal to that of the normal ground-state do idm=1,ndmag do ias=1,natmtot is=idxis(ias) npc=npcmt(is) bsqmt(1:npc,ias,idm,1)=bsmt(1:npc,ias,idm) end do end do ! zero the magnetic field for non-zero Q do ifq=2,nfqrz do idm=1,ndmag do ias=1,natmtot is=idxis(ias) bsqmt(1:npcmt(is),ias,idm,ifq)=0.d0 end do end do end do ! repeat for the interstitial magnetic field bsqir(:,:,1)=bsir(:,:) bsqir(:,:,2:nfqrz)=0.d0 ! coupling constant of the external field (g_e/4c) cb=gfacte/(4.d0*solsc) ! initialise the external magnetic fields t1=cb*rndbfcu do ifq=1,nfqrz do idm=1,ndmag bfcq(idm,ifq)=t1*cmplx(randomu()-0.5d0,randomu()-0.5d0,8) do ias=1,natmtot bfcmtq(ias,idm,ifq)=t1*cmplx(randomu()-0.5d0,randomu()-0.5d0,8) end do end do end do bfcq(:,1)=dble(bfcq(:,1)) bfcmtq(:,:,1)=dble(bfcmtq(:,:,1)) end subroutine elk-9.2.12/src/PaxHeaders/readvclr.f900000644000000000000000000000013214536061314014352 xustar0030 mtime=1702388428.542500565 30 atime=1702388427.463502163 30 ctime=1702388428.542500565 elk-9.2.12/src/readvclr.f900000644002504400250440000000245314536061314017100 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readvclr use modmain use modulr implicit none ! local variables integer i1,i2,i3,ir integer ngridq_(3),i1_,i2_,i3_ ! allocatable arrays real(8), allocatable :: vclr(:) allocate(vclr(nqpt)) ! read the real-space external Coulomb potential from file open(50,file='VCLR.OUT',form='FORMATTED') read(50,*) ngridq_(:) if (any(ngridq(:) /= ngridq_(:))) then write(*,*) write(*,'("Error(readvclr): differing ngridq")') write(*,'(" current : ",3I6)') ngridq write(*,'(" VCLR.OUT : ",3I6)') ngridq_ write(*,*) stop end if ir=0 do i3=1,ngridq(3) do i2=1,ngridq(2) do i1=1,ngridq(1) ir=ir+1 read(50,*) i1_,i2_,i3_,vclr(ir) if ((i1 /= i1_).or.(i2 /= i2_).or.(i3 /= i3_)) then write(*,*) write(*,'("Error(readvclr): differing i1, i2 or i3")') write(*,'(" current : ",3I6)') i1,i2,i3 write(*,'(" VCLR.OUT : ",3I6)') i1_,i2_,i3_ write(*,*) stop end if end do end do end do close(50) ! Fourier transform external Coulomb potential from real-space to Q-space call rzfftifc(3,ngridq,-1,vclr,vclq) deallocate(vclr) end subroutine elk-9.2.12/src/PaxHeaders/genkpakq.f900000644000000000000000000000013114536061314014350 xustar0030 mtime=1702388428.543500564 29 atime=1702388427.46550216 30 ctime=1702388428.543500564 elk-9.2.12/src/genkpakq.f900000644002504400250440000001040214536061314017070 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genkpakq use modmain use modulr implicit none ! local variables integer i1,i2,i3,j1,j2,j3 integer ikpa,ik0,ik integer n1,iq,ifq,ir real(8) v(3) ! allocatable arrays real(8), allocatable :: vkl0(:,:),vkc0(:,:),wkpt0(:) ! find next largest FFT-compatible Q-point grid size (radices 2, 3, 5 and 7) call nfftifc(4,ngridq(1)) call nfftifc(4,ngridq(2)) call nfftifc(4,ngridq(3)) ! total number of Q-points nqpt=ngridq(1)*ngridq(2)*ngridq(3) ! number of complex FFT elements for real-complex transforms n1=ngridq(1)/2+1 nfqrz=n1*ngridq(2)*ngridq(3) ! integer grid intervals for the Q-points intq(1,:)=ngridq(:)/2-ngridq(:)+1 intq(2,:)=ngridq(:)/2 ! kappa-point grid should be half the Q-point grid ngridkpa(:)=(ngridq(:)+1)/2 ! number of kappa-points nkpa=ngridkpa(1)*ngridkpa(2)*ngridkpa(3) ! integer grid intervals for the kappa-points intkpa(1,:)=ngridkpa(:)/2-ngridkpa(:)+1 intkpa(2,:)=ngridkpa(:)/2 ! allocate global Q-point arrays if (allocated(ivq)) deallocate(ivq) allocate(ivq(3,nqpt)) if (allocated(ivqiq)) deallocate(ivqiq) allocate(ivqiq(intq(1,1):intq(2,1),intq(1,2):intq(2,2),intq(1,3):intq(2,3))) if (allocated(iqfft)) deallocate(iqfft) allocate(iqfft(nqpt)) if (allocated(ifqrz)) deallocate(ifqrz) allocate(ifqrz(nqpt)) if (allocated(iqrzf)) deallocate(iqrzf) allocate(iqrzf(nfqrz)) if (allocated(vql)) deallocate(vql) allocate(vql(3,nqpt)) if (allocated(vqc)) deallocate(vqc) allocate(vqc(3,nqpt)) ! store the kappa-points as the first nkpa entries in the Q-point arrays iq=0 do i1=intkpa(1,1),intkpa(2,1) do i2=intkpa(1,2),intkpa(2,2) do i3=intkpa(1,3),intkpa(2,3) iq=iq+1 ivq(1,iq)=i1 ivq(2,iq)=i2 ivq(3,iq)=i3 end do end do end do ! store the remaining Q-points do i1=intq(1,1),intq(2,1) do i2=intq(1,2),intq(2,2) do i3=intq(1,3),intq(2,3) if ((i1 < intkpa(1,1)).or.(i1 > intkpa(2,1)).or. & (i2 < intkpa(1,2)).or.(i2 > intkpa(2,2)).or. & (i3 < intkpa(1,3)).or.(i3 > intkpa(2,3))) then iq=iq+1 ivq(1,iq)=i1 ivq(2,iq)=i2 ivq(3,iq)=i3 end if end do end do end do ! ensure the first point is the zero vector do iq=1,nkpa if ((ivq(1,iq) == 0).and.(ivq(2,iq) == 0).and.(ivq(3,iq) == 0)) then ivq(:,iq)=ivq(:,1) ivq(:,1)=0 exit end if end do do iq=1,nqpt i1=ivq(1,iq); i2=ivq(2,iq); i3=ivq(3,iq) ! map from (i1,i2,i3) to Q-vector index ivqiq(i1,i2,i3)=iq ! Q-vector in Cartesian coordinates vqc(:,iq)=dble(i1)*bvecu(:,1) & +dble(i2)*bvecu(:,2) & +dble(i3)*bvecu(:,3) ! Q-vector in (unit cell) lattice coordinates call r3mv(binv,vqc(:,iq),vql(:,iq)) where(abs(vql(:,iq)) < epslat) vql(:,iq)=0.d0 end do ! set up Fourier transform index do iq=1,nqpt i1=ivq(1,iq); i2=ivq(2,iq); i3=ivq(3,iq) if (i1 >= 0) then j1=i1 else j1=ngridq(1)+i1 end if if (i2 >= 0) then j2=i2 else j2=ngridq(2)+i2 end if if (i3 >= 0) then j3=i3 else j3=ngridq(3)+i3 end if iqfft(iq)=j3*ngridq(2)*ngridq(1)+j2*ngridq(1)+j1+1 ! map from q-point index to real-complex FFT index and vice versa if (i1 >= 0) then ifq=j3*ngridq(2)*n1+j2*n1+j1+1 ifqrz(iq)=ifq iqrzf(ifq)=iq end if end do ! store the R-vectors in Cartesian coordinates spanning the ultracell if (allocated(vrcu)) deallocate(vrcu) allocate(vrcu(3,nqpt)) ir=0 do i3=0,ngridq(3)-1 v(3)=dble(i3)/dble(ngridq(3)) do i2=0,ngridq(2)-1 v(2)=dble(i2)/dble(ngridq(2)) do i1=0,ngridq(1)-1 v(1)=dble(i1)/dble(ngridq(1)) ir=ir+1 call r3mv(avecu,v,vrcu(:,ir)) end do end do end do ! store the existing k-point and weight arrays allocate(vkl0(3,nkpt),vkc0(3,nkpt),wkpt0(nkpt)) vkl0(:,1:nkpt)=vkl(:,1:nkpt) vkc0(:,1:nkpt)=vkc(:,1:nkpt) wkpt0(1:nkpt)=wkpt(1:nkpt) ! number of k+kappa-points nkpt0=nkpt nkpt=nkpt0*nkpa ! deallocate and reallocate k-point and weight arrays deallocate(vkl,vkc,wkpt) allocate(vkl(3,nkpt),vkc(3,nkpt),wkpt(nkpt)) ik=0 do ik0=1,nkpt0 do ikpa=1,nkpa ik=ik+1 vkl(:,ik)=vkl0(:,ik0)+vql(:,ikpa) vkc(:,ik)=vkc0(:,ik0)+vqc(:,ikpa) wkpt(ik)=wkpt0(ik0)/dble(nkpa) end do end do deallocate(vkl0,vkc0,wkpt0) end subroutine elk-9.2.12/src/PaxHeaders/plotu1d.f900000644000000000000000000000013214536061314014140 xustar0030 mtime=1702388428.545500561 30 atime=1702388427.466502158 30 ctime=1702388428.545500561 elk-9.2.12/src/plotu1d.f900000644002504400250440000000236314536061314016666 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine plotu1d(fnum1,fnum2,nf,zfmt,zfir) use modmain implicit none ! arguments integer, intent(in) :: fnum1,fnum2,nf complex(8), intent(in) :: zfmt(npcmtmax,natmtot,nf,nfqrz) complex(8), intent(in) :: zfir(ngtot,nf,nfqrz) ! local variables integer jf,ip,iv real(8) fmin,fmax,t1 ! allocatable arrays real(8), allocatable :: fp(:,:) if ((nf < 1).or.(nf > 4)) then write(*,*) write(*,'("Error(plotu1d): invalid number of functions : ",I8)') nf write(*,*) stop end if allocate(fp(npp1d,nf)) ! connect the 1D plotting vertices call plotpt1d(avec,nvp1d,npp1d,vvlp1d,vplp1d,dvp1d,dpp1d) ! evaluate function at each point call plotulr(npp1d,vplp1d,nf,zfmt,zfir,fp) do ip=ip01d,npp1d ! write the point distances and function to file write(fnum1,'(5G18.10)') dpp1d(ip),(fp(ip,jf),jf=1,nf) end do ! write the vertex location lines fmin=minval(fp(:,:)) fmax=maxval(fp(:,:)) t1=0.5d0*(fmax-fmin) fmin=fmin-t1 fmax=fmax+t1 do iv=1,nvp1d write(fnum2,'(2G18.10)') dvp1d(iv),fmin write(fnum2,'(2G18.10)') dvp1d(iv),fmax write(fnum2,*) end do deallocate(fp) end subroutine elk-9.2.12/src/PaxHeaders/plotu2d.f900000644000000000000000000000013214536061314014141 xustar0030 mtime=1702388428.546500559 30 atime=1702388427.468502155 30 ctime=1702388428.546500559 elk-9.2.12/src/plotu2d.f900000644002504400250440000000236214536061314016666 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine plotu2d(tproj,fnum,nf,zfmt,zfir) use modmain implicit none ! arguments logical, intent(in) :: tproj integer, intent(in) :: fnum,nf complex(8), intent(in) :: zfmt(npcmtmax,natmtot,nf,nfqrz) complex(8), intent(in) :: zfir(ngtot,nf,nfqrz) ! local variables integer np,jf,ip real(8) vpnl(3) ! allocatable arrays real(8), allocatable :: vpl(:,:),vppc(:,:),fp(:,:) if ((nf < 1).or.(nf > 4)) then write(*,*) write(*,'("Error(plotu2d): invalid number of functions : ",I8)') nf write(*,*) stop end if ! allocate local arrays np=np2d(1)*np2d(2) allocate(vpl(3,np),vppc(2,np),fp(np,nf)) ! generate the 2D plotting points call plotpt2d(avec,ainv,vpnl,vpl,vppc) ! evaluate the functions at the grid points call plotulr(np,vpl,nf,zfmt,zfir,fp) ! project the vector function onto the 2D plotting plane if required if (tproj.and.(nf == 3)) then call proj2d(np,fp) end if ! write the functions to file write(fnum,'(2I6," : grid size")') np2d(:) do ip=1,np write(fnum,'(6G18.10)') vppc(1,ip),vppc(2,ip),(fp(ip,jf),jf=1,nf) end do deallocate(vpl,vppc,fp) end subroutine elk-9.2.12/src/PaxHeaders/plotu3d.f900000644000000000000000000000013214536061314014142 xustar0030 mtime=1702388428.547500558 30 atime=1702388427.470502152 30 ctime=1702388428.547500558 elk-9.2.12/src/plotu3d.f900000644002504400250440000000212114536061314016660 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine plotu3d(fnum,nf,zfmt,zfir) use modmain implicit none ! arguments integer, intent(in) :: fnum,nf complex(8), intent(in) :: zfmt(npcmtmax,natmtot,nf,nfqrz) complex(8), intent(in) :: zfir(ngtot,nf,nfqrz) ! local variables integer np,jf,ip real(8) v1(3) ! allocatable arrays real(8), allocatable :: vpl(:,:),fp(:,:) if ((nf < 1).or.(nf > 4)) then write(*,*) write(*,'("Error(plotu3d): invalid number of functions : ",I8)') nf write(*,*) stop end if ! total number of plot points np=np3d(1)*np3d(2)*np3d(3) ! allocate local arrays allocate(vpl(3,np),fp(np,nf)) ! generate the 3D plotting points call plotpt3d(vpl) ! evaluate the functions at the grid points call plotulr(np,vpl,nf,zfmt,zfir,fp) ! write functions to file write(fnum,'(3I6," : grid size")') np3d(:) do ip=1,np call r3mv(avec,vpl(:,ip),v1) write(fnum,'(7G18.10)') v1(:),(fp(ip,jf),jf=1,nf) end do deallocate(vpl,fp) end subroutine elk-9.2.12/src/PaxHeaders/gndstulr.f900000644000000000000000000000013214536061314014412 xustar0030 mtime=1702388428.549500555 30 atime=1702388427.471502151 30 ctime=1702388428.549500555 elk-9.2.12/src/gndstulr.f900000644002504400250440000001713614536061314017144 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gndstulr use modmain use modulr use moddftu use modmpi use modomp implicit none ! local variables logical twrite integer ik0,ir,lp,nthd integer nmix,nwork,n real(8) dv ! allocatable arrays integer(8), allocatable :: lock(:) real(8), allocatable :: work(:) complex(8), allocatable :: evecu(:,:) if (xctype(1) < 0) then write(*,*) write(*,'("Error(gndstulr): ultra long-range does not work with OEP")') write(*,*) stop end if if (spincore) then write(*,*) write(*,'("Error(gndstulr): ultra long-range does not work with & &spin-polarised cores")') write(*,*) stop end if ! no k-point reduction reducek0=reducek reducek=0 ! initialise global variables call init0 call init1 ! write the kappa-points to file call writekpa ! write the k+kappa-points to file call writekpts ! read the regular Kohn-Sham potential from file call readstate ! generate the first- and second-variational eigenvectors and eigenvalues for ! the k+kappa-point set call genvsig call gencore call readfermi call linengy call genapwlofr call gensocfr call genevfsv call occupy ! initialise the ultra long-range variables call initulr if (task == 700) then ! initialise the long-range Kohn-Sham potential and magnetic field call potuinit else ! read in the potential and density from STATE_ULR.OUT call readstulr end if ! initialise the external Coulomb potential call vclqinit ! write the long-range Hamiltonian diagonal blocks to file call genhdbulr ! size of mixing vector (complex array) nmix=2*size(vsbsq) ! determine the size of the mixer work array nwork=-1 call mixerifc(mixtype,nmix,vsbsq,dv,nwork,work) allocate(work(nwork)) ! initialise the mixer iscl=0 call mixerifc(mixtype,nmix,vsbsq,dv,nwork,work) ! initialise the OpenMP locks allocate(lock(nqpt)) do ir=1,nqpt call omp_init_lock(lock(ir)) end do ! set last self-consistent loop flag tlast=.false. ! begin the self-consistent loop if (mp_mpi) then ! open ULR_INFO.OUT file open(60,file='ULR_INFO.OUT',form='FORMATTED') ! open RMSDVS.OUT open(65,file='RMSDVS.OUT',form='FORMATTED') call writeinfou(60) write(60,*) write(60,'("+------------------------------+")') write(60,'("| Self-consistent loop started |")') write(60,'("+------------------------------+")') end if do iscl=1,maxscl if (mp_mpi) then write(60,*) write(60,'("+--------------------+")') write(60,'("| Loop number : ",I4," |")') iscl write(60,'("+--------------------+")') end if if (iscl >= maxscl) then if (mp_mpi) then write(60,*) write(60,'("Reached self-consistent loops maximum")') end if write(*,*) write(*,'("Warning(gndstulr): failed to reach self-consistency after ",I4,& &" loops")') iscl tlast=.true. end if ! reset the OpenMP thread variables call omp_reset ! apply required local operations to the potential and magnetic field call vblocalu ! zero the density and magnetisation rhormt(:,:,:)=0.d0 rhorir(:,:)=0.d0 if (spinpol) then magrmt(:,:,:,:)=0.d0 magrir(:,:,:)=0.d0 end if ! loop over original k-points call holdthd(nkpt0/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecu) & !$OMP NUM_THREADS(nthd) allocate(evecu(nstulr,nstulr)) !$OMP DO SCHEDULE(DYNAMIC) do ik0=1,nkpt0 ! distribute among MPI processes if (mod(ik0-1,np_mpi) /= lp_mpi) cycle ! solve the ultra long-range eigenvalue equation call eveqnulr(ik0,evecu) ! add to the density, magnetisation and current call rhomaguk(ik0,lock,evecu) end do !$OMP END DO deallocate(evecu) !$OMP END PARALLEL call freethd(nthd) if (np_mpi > 1) then ! broadcast eigenvalue array to every process do ik0=1,nkpt0 lp=mod(ik0-1,np_mpi) call mpi_bcast(evalu(:,ik0),nstulr,mpi_double_precision,lp,mpicom,ierror) end do ! add densities from each process and redistribute n=npcmtmax*natmtot*nqpt call mpi_allreduce(mpi_in_place,rhormt,n,mpi_double_precision,mpi_sum, & mpicom,ierror) n=ngtc*nqpt call mpi_allreduce(mpi_in_place,rhorir,n,mpi_double_precision,mpi_sum, & mpicom,ierror) if (spinpol) then n=npcmtmax*natmtot*ndmag*nqpt call mpi_allreduce(mpi_in_place,magrmt,n,mpi_double_precision,mpi_sum, & mpicom,ierror) n=ngtc*ndmag*nqpt call mpi_allreduce(mpi_in_place,magrir,n,mpi_double_precision,mpi_sum, & mpicom,ierror) end if end if ! find the occupation numbers and Fermi energy call occupyulr ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! add the core density call rhocoreu ! perform partial Fourier transform to Q-space call rhomagq ! determine the muffin-tin and interstitial charges and moments call chargeu call momentu ! compute the ultra long-range Kohn-Sham potential call potksu ! mix the old potential and field with the new call mixerifc(mixtype,nmix,vsbsq,dv,nwork,work) ! multiply the RMS change in potential by the number of Q-points dv=dv*dble(nfqrz) ! calculate and add the fixed spin moment effective field (after mixing) call bfieldfsm call addbfsmu if (mp_mpi) then ! write eigenvalues to file call writeevalu ! output energy components call writeengyu(60) ! output charges call writechg(60) ! write muffin-tin charges for each R-vector call writechgrmt if (spinpol) then ! output moments call writemom(60) ! write muffin-tin moments for each R-vector call writemomrmt end if ! output effective fields for fixed spin moment calculations if (fsmtype /= 0) call writefsm(60) ! check for existence of the WRITE file call checkwrite(twrite) ! check self-consistent loop number modulo nwrite if (nwrite >= 1) then if (mod(iscl,nwrite) == 0) twrite=.true. end if ! write STATE_ULR.OUT file if required if (twrite) then call writestulr write(60,*) write(60,'("Wrote STATE_ULR.OUT")') end if end if ! exit self-consistent loop if required if (tlast) goto 10 ! check for convergence if (iscl >= 2) then if (mp_mpi) then write(60,*) write(60,'("RMS change in Kohn-Sham potential (target) : ",G18.10," (",& &G18.10,")")') dv,epspot flush(60) write(65,'(G18.10)') dv flush(65) end if if (dv < epspot) then if (mp_mpi) then write(60,*) write(60,'("Convergence targets achieved")') end if tlast=.true. end if end if ! check for STOP file call checkstop if (tstop) tlast=.true. ! broadcast tlast from master process to all other processes call mpi_bcast(tlast,1,mpi_logical,0,mpicom,ierror) ! reset the OpenMP thread variables call omp_reset end do 10 continue if (mp_mpi) then ! output timing information write(60,*) write(60,'("Timings (CPU seconds) :")') write(60,'(" Hamiltonian matrix set up",T40,": ",F12.2)') timemat write(60,'(" eigenvalue equation",T40,": ",F12.2)') timesv write(60,'(" charge density calculation",T40,": ",F12.2)') timerho write(60,'(" potential calculation",T40,": ",F12.2)') timepot write(60,*) write(60,'("+------------------------------+")') write(60,'("| Self-consistent loop stopped |")') write(60,'("+------------------------------+")') if (maxscl > 1) then call writestulr write(60,*) write(60,'("Wrote STATE_ULR.OUT")') end if ! close the ULR_INFO.OUT file close(60) ! close the RMSDVS.OUT file close(65) end if ! destroy the OpenMP locks do ir=1,nqpt call omp_destroy_lock(lock(ir)) end do deallocate(lock,work) ! restore original parameters reducek=reducek0 ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-9.2.12/src/PaxHeaders/plotulr.f900000644000000000000000000000013214536061314014251 xustar0030 mtime=1702388428.550500553 30 atime=1702388427.473502148 30 ctime=1702388428.550500553 elk-9.2.12/src/plotulr.f900000644002504400250440000000254214536061314016776 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine plotulr(np,vpl,nf,zfmt,zfir,fp) use modmain use modulr use modomp implicit none ! arguments integer, intent(in) :: np real(8), intent(in) :: vpl(3,np) integer, intent(in) :: nf complex(8), intent(in) :: zfmt(npcmtmax,natmtot,nf,nfqrz) complex(8), intent(in) :: zfir(ngtot,nf,nfqrz) real(8), intent(out) :: fp(np,nf) ! local variables integer iq,ifq0,ifq integer jf,ip real(8) sm,t1 complex(8) z1 ! allocatable arrays complex(8), allocatable :: fpq(:,:) allocate(fpq(np,nfqrz)) ! include or exclude the Q=0 component as required if (tplotq0) then ifq0=1 else ifq0=2 end if ! loop over the number of functions do jf=1,nf ! loop over real-complex FFT points do ifq=ifq0,nfqrz ! evaluate the complex function at all the plot points call zfplot(np,vpl,zfmt(:,:,jf,ifq),zfir(:,jf,ifq),fpq(:,ifq)) end do do ip=1,np sm=0.d0 do ifq=ifq0,nfqrz iq=iqrzf(ifq) ! multiply complex function by phase factor exp(iQ.r) t1=twopi*dot_product(vql(:,iq),vpl(:,ip)) z1=cmplx(cos(t1),sin(t1),8) t1=dble(fpq(ip,ifq)*z1) if (ifq > 1) t1=t1*2.d0 sm=sm+t1 end do fp(ip,jf)=sm end do end do deallocate(fpq) end subroutine elk-9.2.12/src/PaxHeaders/potuplot.f900000644000000000000000000000013014536061314014434 xustar0029 mtime=1702388428.55250055 30 atime=1702388427.474502146 29 ctime=1702388428.55250055 elk-9.2.12/src/potuplot.f900000644002504400250440000000302014536061314017153 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potuplot use modmain use modulr implicit none ! local variables integer ifq,ias,is ! initialise universal variables call init0 call init1 ! initialise the ultra long-range variables call initulr ! read in the Kohn-Sham potential from STATE_ULR.OUT call readstulr ! convert potential to spherical harmonics do ifq=1,nfqrz do ias=1,natmtot is=idxis(ias) call zfshtip(nrcmt(is),nrcmti(is),vsqmt(:,ias,ifq)) end do end do ! write the density plot to file select case(task) case(741) open(50,file='VSU1D.OUT',form='FORMATTED') open(51,file='VSULINES.OUT',form='FORMATTED') call plotu1d(50,51,1,vsqmt,vsqir) close(50) close(51) write(*,*) write(*,'("Info(potuplot):")') write(*,'(" 1D ultra long-range Kohn-Sham potential plot written to & &VSU1D.OUT")') write(*,'(" vertex location lines written to VSULINES.OUT")') case(742) open(50,file='VSU2D.OUT',form='FORMATTED') call plotu2d(.false.,50,1,vsqmt,vsqir) open(50) write(*,*) write(*,'("Info(potuplot):")') write(*,'(" 2D ultra long-range Kohn-Sham potential plot written to & &VSU2D.OUT")') case(743) open(50,file='VSU3D.OUT',form='FORMATTED') call plotu3d(50,1,vsqmt,vsqir) close(50) write(*,*) write(*,'("Info(potuplot):")') write(*,'(" 3D ultra long-range Kohn-Sham potential plot written to & &VSU3D.OUT")') end select end subroutine elk-9.2.12/src/PaxHeaders/potcoulu.f900000644000000000000000000000013214536061314014422 xustar0030 mtime=1702388428.553500549 30 atime=1702388427.476502143 30 ctime=1702388428.553500549 elk-9.2.12/src/potcoulu.f900000644002504400250440000000506014536061314017145 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potcoulu use modmain use modulr use modmpi use modomp implicit none ! local variables integer ifq,is,ias integer nr,nri,ir integer nrc,nrci,i integer n,lp,nthd ! allocatable arrays complex(8), allocatable :: zrhomt(:,:),zrhoir(:) complex(8), allocatable :: zvclmt(:,:) call holdthd(nfqrz/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(zrhomt,zrhoir,zvclmt) & !$OMP PRIVATE(ias,is,nr,nri) & !$OMP PRIVATE(i,ir,nrc,nrci) & !$OMP NUM_THREADS(nthd) allocate(zrhomt(npmtmax,natmtot),zrhoir(ngtot)) allocate(zvclmt(npmtmax,natmtot)) !$OMP DO do ifq=1,nfqrz ! distribute among MPI processes if (mod(ifq-1,np_mpi) /= lp_mpi) cycle ! convert the complex muffin-tin density from coarse to fine radial mesh do ias=1,natmtot is=idxis(ias) zrhomt(1:npcmt(is),ias)=rhoqmt(1:npcmt(is),ias,ifq) end do call zfmtctof(zrhomt) ! solve the complex Poisson's equation in the muffin-tins call genzvclmt(nrmt,nrmti,nrmtmax,rlmt,wprmt,npmtmax,zrhomt,zvclmt) ! add the nuclear monopole potentials for Q=0 if (ifq == 1) then do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) i=1 do ir=1,nri zvclmt(i,ias)=zvclmt(i,ias)+vcln(ir,is) i=i+lmmaxi end do do ir=nri+1,nr zvclmt(i,ias)=zvclmt(i,ias)+vcln(ir,is) i=i+lmmaxo end do end do end if ! convert the interstitial density from coarse to fine grid call zfirctof(rhoqir(:,ifq),zrhoir) ! solve Poisson's equation in the entire unit cell call zpotcoul(nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gqc(:,ifq), & gclgq(:,ifq),ngvec,jlgqrmt(:,:,:,ifq),ylmgq(:,:,ifq),sfacgq(:,:,ifq),zrhoir,& npmtmax,zvclmt,vsqir(:,ifq)) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) ! convert from fine to coarse radial mesh call zfmtftoc(nrc,nrci,zvclmt(:,ias),vsqmt(:,ias,ifq)) ! convert to spherical coordinates call zbshtip(nrc,nrci,vsqmt(:,ias,ifq)) end do end do !$OMP END DO deallocate(zrhomt,zrhoir,zvclmt) !$OMP END PARALLEL call freethd(nthd) ! broadcast potentials to every MPI process if (np_mpi > 1) then n=npcmtmax*natmtot do ifq=1,nfqrz lp=mod(ifq-1,np_mpi) call mpi_bcast(vsqmt(:,:,ifq),n,mpi_double_complex,lp,mpicom,ierror) end do do ifq=1,nfqrz lp=mod(ifq-1,np_mpi) call mpi_bcast(vsqir(:,ifq),ngtot,mpi_double_complex,lp,mpicom,ierror) end do end if end subroutine elk-9.2.12/src/PaxHeaders/rhouplot.f900000644000000000000000000000013214536061314014424 xustar0030 mtime=1702388428.554500547 30 atime=1702388427.477502142 30 ctime=1702388428.554500547 elk-9.2.12/src/rhouplot.f900000644002504400250440000000322414536061314017147 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhouplot use modmain use modulr use modomp implicit none ! local variables integer ifq,nthd ! allocatable arrays complex(8), allocatable :: rhoqir_(:,:) ! initialise universal variables call init0 call init1 ! initialise the ultra long-range variables call initulr ! read in the density from STATE_ULR.OUT call readstulr ! convert interstitial density from coarse to fine grid allocate(rhoqir_(ngtot,nfqrz)) call holdthd(nfqrz,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) do ifq=1,nfqrz call zfirctof(rhoqir(:,ifq),rhoqir_(:,ifq)) end do !$OMP END PARALLEL DO call freethd(nthd) ! write the density plot to file select case(task) case(731) open(50,file='RHOU1D.OUT',form='FORMATTED') open(51,file='RHOULINES.OUT',form='FORMATTED') call plotu1d(50,51,1,rhoqmt,rhoqir_) close(50) close(51) write(*,*) write(*,'("Info(rhouplot):")') write(*,'(" 1D ultra long-range density plot written to RHOU1D.OUT")') write(*,'(" vertex location lines written to RHOULINES.OUT")') case(732) open(50,file='RHOU2D.OUT',form='FORMATTED') call plotu2d(.false.,50,1,rhoqmt,rhoqir_) close(50) write(*,*) write(*,'("Info(rhouplot): 2D ultra long-range density plot written to & &RHOU2D.OUT")') case(733) open(50,file='RHOU3D.OUT',form='FORMATTED') call plotu3d(50,1,rhoqmt,rhoqir_) close(50) write(*,*) write(*,'("Info(rhouplot): 3D ultra long-range density plot written to & &RHOU3D.OUT")') end select deallocate(rhoqir_) end subroutine elk-9.2.12/src/PaxHeaders/maguplot.f900000644000000000000000000000013214536061314014400 xustar0030 mtime=1702388428.556500544 30 atime=1702388427.479502139 30 ctime=1702388428.556500544 elk-9.2.12/src/maguplot.f900000644002504400250440000000404714536061314017127 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine maguplot use modmain use modulr use modomp implicit none ! local variables integer ifq,idm,nthd ! allocatable arrays complex(8), allocatable :: magqir_(:,:,:) ! initialise universal variables call init0 call init1 if (.not.spinpol) then write(*,*) write(*,'("Error(maguplot): spin-unpolarised calculation")') write(*,*) stop end if ! initialise the ultra long-range variables call initulr ! read in the magnetisation from STATE_ULR.OUT call readstulr ! convert interstitial magnetisation from coarse to fine grid allocate(magqir_(ngtot,ndmag,nfqrz)) call holdthd(nfqrz,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(idm) & !$OMP NUM_THREADS(nthd) do ifq=1,nfqrz do idm=1,ndmag call zfirctof(magqir(:,idm,ifq),magqir_(:,idm,ifq)) end do end do !$OMP END PARALLEL DO call freethd(nthd) ! write the magnetisation plot to file select case(task) case(771) open(50,file='MAGU1D.OUT',form='FORMATTED') open(51,file='MAGULINES.OUT',form='FORMATTED') call plotu1d(50,51,ndmag,magqmt,magqir_) close(50) close(51) write(*,*) write(*,'("Info(maguplot):")') write(*,'(" 1D ultra long-range magnetisation plot written to MAGU1D.OUT")') write(*,'(" vertex location lines written to MAGULINES.OUT")') case(772) open(50,file='MAGU2D.OUT',form='FORMATTED') call plotu2d(.true.,50,ndmag,magqmt,magqir_) close(50) write(*,*) write(*,'("Info(maguplot): 2D ultra long-range magnetisation plot written to & &MAGU2D.OUT")') if (ndmag == 3) then write(*,'(" Note that the 3D vector field has been locally projected")') write(*,'(" onto the 2D plotting plane axes")') end if case(773) open(50,file='MAGU3D.OUT',form='FORMATTED') call plotu3d(50,ndmag,magqmt,magqir_) close(50) write(*,*) write(*,'("Info(maguplot): 3D ultra long-range magnetisation plot written to & &MAGU3D.OUT")') end select deallocate(magqir_) end subroutine elk-9.2.12/src/PaxHeaders/initw90.f900000644000000000000000000000013214536061314014053 xustar0030 mtime=1702388428.557500543 30 atime=1702388427.480502138 30 ctime=1702388428.557500543 elk-9.2.12/src/initw90.f900000644002504400250440000000317014536061314016576 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin and Lars Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: initw90 ! !INTERFACE: subroutine initw90 ! !USES: use modmain use modw90 ! !DESCRIPTION: ! Initialises global variables for the Wannier90 interface. ! ! !REVISION HISTORY: ! Created November 2018 (Arsenii Gerasimov) !EOP !BOC implicit none ! local variables integer ik,ist,i ! initialise universal variables call init0 call init1 if (num_bands > nstsv) then write(*,*) write(*,'("Error(initw90): num_bands > nstsv : ",2I8)') num_bands,nstsv write(*,*) stop end if ! if num_bands is not positive then assume all states are used if (num_bands <= 0) then if (allocated(idxw90)) deallocate(idxw90) allocate(idxw90(nstsv)) do ist=1,nstsv idxw90(ist)=ist end do num_bands=nstsv end if ! check that each state index is in range do i=1,num_bands ist=idxw90(i) if ((ist < 1).or.(ist > nstsv)) then write(*,*) write(*,'("Error(initw90): state index out of range : ",I8)') ist write(*,*) stop end if end do ! set the number of Wannier functions equal to the number of states if required if (num_wann <= 0) num_wann=num_bands ! read density and potentials from file call readstate ! read Fermi energy from file call readfermi ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! read in the second-variational eigenvalues do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) end do end subroutine !EOC elk-9.2.12/src/PaxHeaders/writew90.f900000644000000000000000000000013214536061314014242 xustar0030 mtime=1702388428.558500541 30 atime=1702388427.482502135 30 ctime=1702388428.558500541 elk-9.2.12/src/writew90.f900000644002504400250440000000106114536061314016762 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Manh Duc Le, 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin ! and Lars Nordstrom. This file is distributed under the terms of the GNU ! General Public License. See the file COPYING for license details. subroutine writew90 use modmain use modw90 implicit none ! initialise universal and Wannier90 variables call initw90 ! write the .win file call writew90win ! write the .eig file call writew90eig ! call the Wannier90 setup routine call setupw90 ! write the .mmn file call writew90mmn ! write the .spn file call writew90spn end subroutine elk-9.2.12/src/PaxHeaders/writew90win.f900000644000000000000000000000013214536061314014760 xustar0030 mtime=1702388428.560500538 30 atime=1702388427.483502133 30 ctime=1702388428.560500538 elk-9.2.12/src/writew90win.f900000644002504400250440000000405214536061314017503 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Manh Duc Le, 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin ! and Lars Nordstrom. This file is distributed under the terms of the GNU ! General Public License. See the file COPYING for license details. !BOP ! !ROUTINE: writew90win ! !INTERFACE: subroutine writew90win ! !USES: use modmain use modw90 ! !DESCRIPTION: ! Writes out a template {\tt seedname.win} file with the Wannier90 input ! parameters. Uses {\tt wannier} and {\tt wannierExtra} blocks. ! ! !REVISION HISTORY: ! Created January 2015 (Manh Duc Le) ! Modified, August 2018 (Arsenii Gerasimov) ! Modified, February 2019 (JKD) !EOP !BOC implicit none ! local variables integer ik,is,ia,i character(256) fname fname=trim(seedname)//'.win' open(50,file=trim(fname),action='WRITE',form='FORMATTED') ! write the number of Wannier functions and bands write(50,'("length_unit = bohr")') write(50,'("num_wann = ",I8)') num_wann write(50,'("num_bands = ",I8)') num_bands write(50,'("num_iter = ",I8)') num_iter write(50,*) write(50,'("trial_step = ",G18.10)') trial_step write(50,*) write(50,'("use_bloch_phases = true")') ! write spinors if required if (spinpol) then write(50,*) write(50,'("spinors = true")') write(50,'("spn_formatted = true")') end if ! write lattice vectors write(50,*) write(50,'("begin unit_cell_cart")') write(50,'("bohr")') write(50,'(3G18.10)') avec(:,1) write(50,'(3G18.10)') avec(:,2) write(50,'(3G18.10)') avec(:,3) write(50,'("end unit_cell_cart")') ! writes atomic positions write(50,*) write(50,'("begin atoms_frac")') do is=1,nspecies do ia=1,natoms(is) write(50,'(A5,3G18.10)') trim(spsymb(is)),atposl(:,ia,is) end do end do write(50,'("end atoms_frac")') ! write the list of k-points write(50,*) write(50,'("mp_grid = ",3I6)') ngridk write(50,*) write(50,'("begin kpoints")') do ik=1,nkptnr write(50,'(3G18.10)') vkl(:,ik) end do write(50,'("end kpoints")') write(50,*) ! write the extra lines do i=1,nxlwin write(50,'(A)') trim(xlwin(i)) end do close(50) write(*,*) write(*,'("Info(writew90win): created file ",A)') trim(fname) end subroutine !EOC elk-9.2.12/src/PaxHeaders/writew90eig.f900000644000000000000000000000013114536061314014726 xustar0030 mtime=1702388428.561500537 29 atime=1702388427.48550213 30 ctime=1702388428.561500537 elk-9.2.12/src/writew90eig.f900000644002504400250440000000141714536061314017454 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Manh Duc Le, 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin ! and Lars Nordstrom. This file is distributed under the terms of the GNU ! General Public License. See the file COPYING for license details. subroutine writew90eig use modmain use modw90 implicit none ! local variables integer ik,jk,ist,i real(8) t1 character(256) fname fname=trim(seedname)//'.eig' open(50,file=trim(fname),action='WRITE',form='FORMATTED') ! loop over non-reduced k-points do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) do i=1,num_bands ist=idxw90(i) t1=evalsv(ist,jk)-efermi write(50,'(2I6,G18.10)') i,ik,t1*ha_ev end do end do close(50) write(*,*) write(*,'("Info(writew90eig): created file ",A)') trim(fname) end subroutine elk-9.2.12/src/PaxHeaders/setupw90.f900000644000000000000000000000013214536061314014250 xustar0030 mtime=1702388428.562500536 30 atime=1702388427.486502129 30 ctime=1702388428.562500536 elk-9.2.12/src/setupw90.f900000644002504400250440000000355714536061314017004 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Manh Duc Le, 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin ! and Lars Nordstrom. This file is distributed under the terms of the GNU ! General Public License. See the file COPYING for license details. subroutine setupw90 use modmain use modw90 implicit none ! local variables integer is,ia,ias real(8) real_lattice(3,3),recip_lattice(3,3) ! allocatable arrays integer, allocatable :: proj_l(:),proj_m(:),proj_radial(:),proj_s(:) integer, allocatable :: exclude_bands(:) real(8), allocatable :: atoms_cart(:,:),proj_site(:,:) real(8), allocatable :: proj_z(:,:),proj_x(:,:) real(8), allocatable :: proj_zona(:),proj_s_qaxis(:,:) character(256), allocatable :: atom_symbols(:) ! allocate global arrays if (allocated(nnlist)) deallocate(nnlist) allocate(nnlist(nkptnr,num_nnmax)) if (allocated(nncell)) deallocate(nncell) allocate(nncell(3,nkptnr,num_nnmax)) ! allocate local arrays allocate(proj_l(num_bands),proj_m(num_bands)) allocate(proj_radial(num_bands),proj_s(num_bands)) allocate(exclude_bands(num_bands)) allocate(atoms_cart(3,natmtot),proj_site(3,num_bands)) allocate(proj_z(3,num_bands),proj_x(3,num_bands)) allocate(proj_zona(num_bands),proj_s_qaxis(3,num_bands)) allocate(atom_symbols(natmtot)) real_lattice=br_ang*transpose(avec) recip_lattice=(1.d0/br_ang)*transpose(bvec) do ias=1,natmtot is=idxis(ias) ia=idxia(ias) atom_symbols(ias)=trim(spsymb(is)) atoms_cart(:,ias)=br_ang*atposc(:,ia,is) end do call wannier_setup(seedname,ngridk,nkptnr,real_lattice,recip_lattice,vkl, & num_bands,natmtot,atom_symbols,atoms_cart,.false.,spinpol,nntot,nnlist, & nncell,num_bands,num_wann,proj_site,proj_l,proj_m,proj_radial,proj_z,proj_x, & proj_zona,exclude_bands,proj_s,proj_s_qaxis) deallocate(proj_l,proj_m) deallocate(proj_radial,proj_s,exclude_bands) deallocate(atoms_cart,proj_site,proj_z,proj_x) deallocate(proj_zona,proj_s_qaxis,atom_symbols) end subroutine elk-9.2.12/src/PaxHeaders/writew90mmn.f900000644000000000000000000000013214536061314014752 xustar0030 mtime=1702388428.564500533 30 atime=1702388427.488502126 30 ctime=1702388428.564500533 elk-9.2.12/src/writew90mmn.f900000644002504400250440000000501614536061314017476 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Manh Duc Le, 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin ! and Lars Nordstrom. This file is distributed under the terms of the GNU ! General Public License. See the file COPYING for license details. subroutine writew90mmn use modmain use modw90 implicit none ! local variables integer ik,jk,ist,jst,i integer ngp(nspnfv),ngpq(nspnfv) real(8) vl(3),vc(3),q,vkql(3) character(256) fname ! automatic arrays complex(8) ylmq(lmmaxo),sfacq(natmtot) ! allocatable arrays integer, allocatable :: igpig(:,:),igpqig(:,:) real(8), allocatable :: jlqr(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfir(:,:,:) complex(8), allocatable :: wfmtq(:,:,:,:),wfgpq(:,:,:) complex(8), allocatable :: expqmt(:,:),oq(:,:) ! allocate local arrays allocate(igpig(ngkmax,nspnfv),igpqig(ngkmax,nspnfv)) allocate(jlqr(njcmax,nspecies)) allocate(wfmt(npcmtmax,natmtot,nspinor,num_bands)) allocate(wfir(ngtot,nspinor,num_bands)) allocate(wfmtq(npcmtmax,natmtot,nspinor,num_bands)) allocate(wfgpq(ngkmax,nspinor,num_bands)) allocate(expqmt(npcmtmax,natmtot)) allocate(oq(num_bands,num_bands)) fname=trim(seedname)//'.mmn' open(50,file=trim(fname),action='WRITE',form='FORMATTED') write(50,'("Generated by Elk version ",I1.1,".",I1.1,".",I2.2)') version write(50,'(3I8)') num_bands,nkptnr,nntot do ik=1,nkptnr call genwfsvp(.false.,.false.,num_bands,idxw90,ngridg,igfft,vkl(:,ik),ngp, & igpig,wfmt,ngtot,wfir) do i=1,nntot jk=nnlist(ik,i) ! q-vector in lattice coordinates vl(:)=dble(nncell(:,ik,i))+vkl(:,jk)-vkl(:,ik) ! q-vector in Cartesian coordinates call r3mv(bvec,vl,vc) ! q-vector length q=sqrt(vc(1)**2+vc(2)**2+vc(3)**2) ! generate phase factor function exp(iq.r) in the muffin-tins call genjlgpr(1,q,jlqr) call genylmv(lmaxo,vc,ylmq) call gensfacgp(1,vc,1,sfacq) call genexpmt(1,jlqr,ylmq,1,sfacq,expqmt) ! k+q-vector in lattice coordinates vkql(:)=vkl(:,ik)+vl(:) ! generate the wavefunctions at k+q call genwfsvp(.false.,.true.,num_bands,idxw90,ngridg,igfft,vkql,ngpq, & igpqig,wfmtq,ngkmax,wfgpq) ! determine the overlap matrix call genolpq(num_bands,expqmt,ngpq,igpqig,wfmt,wfir,wfmtq,wfgpq,oq) ! write overlap matrix to file write(50,'(5I8)') ik,jk,nncell(:,ik,i) do jst=1,num_bands do ist=1,num_bands write(50,'(2G18.10)') dble(oq(jst,ist)),-aimag(oq(jst,ist)) end do end do end do end do close(50) write(*,*) write(*,'("Info(writew90mmn): created file ",A)') trim(fname) deallocate(igpig,igpqig,jlqr) deallocate(wfmt,wfir,wfmtq,wfgpq) deallocate(expqmt,oq) end subroutine elk-9.2.12/src/PaxHeaders/writew90spn.f900000644000000000000000000000013214536061314014763 xustar0030 mtime=1702388428.565500531 30 atime=1702388427.489502124 30 ctime=1702388428.565500531 elk-9.2.12/src/writew90spn.f900000644002504400250440000000245414536061314017512 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Manh Duc Le, 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin ! and Lars Nordstrom. This file is distributed under the terms of the GNU ! General Public License. See the file COPYING for license details. subroutine writew90spn use modmain use modw90 implicit none ! local variables integer ik,ist,jst,i,j complex(8) z1 character(256) fname ! allocatable arrays complex(8), allocatable :: evecsv(:,:),smat(:,:,:,:) if (.not.spinpol) return fname=trim(seedname)//'.spn' open(50,file=trim(fname),action='WRITE',form='FORMATTED') write(50,'("Generated by Elk version ",I1.1,".",I1.1,".",I2.2)') version write(50,'(3I8)') num_bands,nkptnr allocate(evecsv(nstsv,nstsv),smat(nstsv,nstsv,2,2)) do ik=1,nkptnr ! generate the spin operator matrix elements call getevecsv(filext,0,vkl(:,ik),evecsv) call gensmatk(evecsv,smat) do j=1,num_bands jst=idxw90(j) do i=1,j ist=idxw90(i) z1=smat(ist,jst,1,2)+smat(ist,jst,2,1) write(50,'(2G18.10)') z1 z1=smat(ist,jst,1,2)-smat(ist,jst,2,1) z1=cmplx(-aimag(z1),dble(z1),8) write(50,'(2G18.10)') z1 z1=smat(ist,jst,1,1)-smat(ist,jst,2,2) write(50,'(2G18.10)') z1 end do end do end do deallocate(evecsv,smat) close(50) write(*,*) write(*,'("Info(writew90spn): created file ",A)') trim(fname) end subroutine elk-9.2.12/src/PaxHeaders/dmatuv.f900000644000000000000000000000013014536061314014046 xustar0029 mtime=1702388428.56650053 30 atime=1702388427.491502121 29 ctime=1702388428.56650053 elk-9.2.12/src/dmatuv.f900000644002504400250440000000157614536061314016603 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine dmatuv(n,ef,e,u,v,dvv,duv,vn) use modmain implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: ef,e(n) complex(8), intent(in) :: u(n,n),v(n,n) complex(8), intent(out) :: dvv(n,n),duv(n,n) real(8), intent(out) :: vn(n) ! local variables integer i ! external functions real(8), external :: dznrm2 ! normal fermionic density matrix VV† call zgemm('N','C',n,n,n,(1.d0,0.d0),v,n,v,n,(0.d0,0.d0),dvv,n) do i=1,n ! store the V-norm vn(i)=dznrm2(n,v(:,i),1)**2 ! subtract unperturbed density matrix if (e(i) <= ef) dvv(i,i)=dvv(i,i)-1.d0 end do ! anomalous density matrix UV† call zgemm('N','C',n,n,n,(1.d0,0.d0),u,n,v,n,(0.d0,0.d0),duv,n) end subroutine elk-9.2.12/src/PaxHeaders/dmatwx.f900000644000000000000000000000013114536061314014053 xustar0030 mtime=1702388428.567500528 29 atime=1702388427.49250212 30 ctime=1702388428.567500528 elk-9.2.12/src/dmatwx.f900000644002504400250440000000135214536061314016577 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine dmatwx(n,w,x,dxx,dwx,xn) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: w(n,n),x(n,n) complex(8), intent(out) :: dxx(n,n),dwx(n,n) real(8), intent(out) :: xn(n) ! local variables integer i real(8), external :: dznrm2 ! normal bosonic density matrix XX† call zgemm('N','C',n,n,n,(1.d0,0.d0),x,n,x,n,(0.d0,0.d0),dxx,n) ! store the X-norm do i=1,n xn(i)=dznrm2(n,x(:,i),1)**2 end do ! anomalous density matrix -WX† call zgemm('N','C',n,n,n,(-1.d0,0.d0),w,n,x,n,(0.d0,0.d0),dwx,n) end subroutine elk-9.2.12/src/PaxHeaders/eveqnuv.f900000644000000000000000000000013214536061314014241 xustar0030 mtime=1702388428.569500525 30 atime=1702388427.494502117 30 ctime=1702388428.569500525 elk-9.2.12/src/eveqnuv.f900000644002504400250440000000167614536061314016775 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine eveqnuv(n,au,bv,w) implicit none ! arguments integer, intent(in) :: n complex(8), intent(inout) :: au(n,n),bv(n,n) real(8), intent(out) :: w(n) ! local variables integer n2,i,j ! allocatable arrays real(8), allocatable :: w2(:) complex(8), allocatable :: h(:,:) n2=2*n ! setup the fermionic Bogoliubov Hamiltonian allocate(w2(n2),h(n2,n2)) do j=1,n do i=1,j h(i,j)=au(i,j) h(n+i,n+j)=-au(i,j) end do end do do j=1,n do i=1,n h(i,n+j)=bv(i,j) end do end do ! find the eigenvalues and eigenvectors call eveqnzh(n2,n2,h,w2) ! copy to output arrays do i=1,n ! choose the positive eigenvalues j=n+i w(i)=w2(j) call zcopy(n,h(1,j),1,au(1,i),1) call zcopy(n,h(n+1,j),1,bv(1,i),1) end do deallocate(w2,h) end subroutine elk-9.2.12/src/PaxHeaders/eveqnwxy.f900000644000000000000000000000013214536061314014436 xustar0030 mtime=1702388428.570500524 30 atime=1702388427.495502115 30 ctime=1702388428.570500524 elk-9.2.12/src/eveqnwxy.f900000644002504400250440000000307314536061314017163 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine eveqnwxy(n,p,dw,ex,fy,w) implicit none ! arguments integer, intent(in) :: n,p complex(8), intent(inout) :: dw(n,n),ex(n,n),fy(n) real(8), intent(out) :: w(n) ! local variables integer n2,i,j real(8) t1,t2 ! allocatable arrays integer, allocatable :: idx(:) real(8), allocatable :: r(:) complex(8), allocatable :: w2(:),h(:,:) complex(8), allocatable :: x(:),a(:,:) ! external functions real(8), external :: dznrm2 n2=2*n ! setup the bosonic Bogoliubov Hamiltonian allocate(w2(n2),h(n2,n2)) do j=1,n do i=1,n h(i,j)=dw(i,j) h(n+i,n+j)=-dw(i,j) h(i,n+j)=-ex(i,j) h(n+i,j)=ex(i,j) end do end do ! find the eigenvalues and right eigenvectors call eveqnzg(n2,n2,h,w2) ! select the eigenpairs corresponding to W†W - X†X = I allocate(idx(n2),r(n2)) do j=1,n2 t1=dznrm2(n,h(1,j),1)**2 t2=dznrm2(n,h(n+1,j),1)**2 r(j)=t1-t2 end do call sortidx(n2,r,idx) ! pseudo-normalise the eigenvectors and store in output arrays do i=1,n j=idx(n+i) t1=abs(r(j))+1.d-8 t1=(1.d0-(1.d0-t1)**p)/sqrt(t1) w(i)=dble(w2(j)) dw(1:n,i)=t1*h(1:n,j) ex(1:n,i)=t1*h(n+1:n2,j) end do deallocate(idx,r,w2,h) ! solve for the vector y allocate(x(n),a(n,n)) a(:,:)=dw(:,:)-ex(:,:) x(:)=fy(:) call zgemv('T',n,n,(1.d0,0.d0),a,n,x,1,(0.d0,0.d0),fy,1) do i=1,n if (w(i) > 1.d-6) then fy(i)=fy(i)/w(i) else fy(i)=0.d0 end if end do deallocate(x,a) end subroutine elk-9.2.12/src/PaxHeaders/writeevaluv.f900000644000000000000000000000013214536061314015125 xustar0030 mtime=1702388428.571500522 30 atime=1702388427.496502114 30 ctime=1702388428.571500522 elk-9.2.12/src/writeevaluv.f900000644002504400250440000000137014536061314017650 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeevaluv use modmain use modbog implicit none ! local variables integer ik,ist real(8) e ! write out the fermionic eigenvalues open(50,file='EIGVALUV.OUT',form='FORMATTED',action='WRITE') write(50,'(I6," : nkpt")') nkpt write(50,'(I6," : nstsv")') nstsv do ik=1,nkpt write(50,*) write(50,'(I6,3G18.10," : k-point, vkl")') ik,vkl(:,ik) write(50,'(" (state, eigenvalue, V-norm below)")') do ist=1,nstsv e=evaluv(ist,ik) if (vnorm(ist,ik) > 0.5d0) e=-e write(50,'(I6,2G18.10)') ist,e,vnorm(ist,ik) end do write(50,*) end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/occupyuv.f900000644000000000000000000000013214536061314014425 xustar0030 mtime=1702388428.572500521 30 atime=1702388427.498502111 30 ctime=1702388428.572500521 elk-9.2.12/src/occupyuv.f900000644002504400250440000000305714536061314017154 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine occupyuv use modmain use modbog use modmpi implicit none integer ik,ist real(8) chg,w,vn real(8) e0,e1,e,t1 ! determine the total charge and fermionic anomalous correlation entropy chg=0.d0 face=0.d0 do ik=1,nkpt w=wkpt(ik) do ist=1,nstsv vn=vnorm(ist,ik) chg=chg+w*vn if ((vn > 0.d0).and.(vn < 1.d0)) then face=face+w*(vn*log(vn)+(1.d0-vn)*log(1.d0-vn)) end if end do end do chg=occmax*chg face=-occmax*face ! adjust the Fermi energy efermi=efermi+tauefm*(chgval-chg) if (mp_mpi) then if (abs(chg-chgval) > epschg) then write(*,*) write(*,'("Warning(occupyuv): incorrect charge : ",2G18.10)') chg,chgval end if end if ! estimate the indirect band gap e0=-1.d8 e1=1.d8 ikgap(1)=1 ikgap(2)=1 do ist=1,nstsv do ik=1,nkpt e=evaluv(ist,ik) if (vnorm(ist,ik) > 0.5d0) e=-e if (e <= 0.d0) then if (e > e0) then e0=e ikgap(1)=ik end if else if (e < e1) then e1=e ikgap(2)=ik end if end if end do end do bandgap(1)=e1-e0 ! estimate the direct band gap e=1.d8 ikgap(3)=1 do ik=1,nkpt e0=-1.d8 e1=1.d8 do ist=1,nstsv t1=evaluv(ist,ik) if (vnorm(ist,ik) > 0.5d0) t1=-t1 if (t1 <= 0.d0) then if (t1 > e0) e0=t1 else if (t1 < e1) e1=t1 end if end do t1=e1-e0 if (t1 < e) then e=t1 ikgap(3)=ik end if end do bandgap(2)=e end subroutine elk-9.2.12/src/PaxHeaders/putevaluv.f900000644000000000000000000000013214536061314014603 xustar0030 mtime=1702388428.574500518 30 atime=1702388427.499502109 30 ctime=1702388428.574500518 elk-9.2.12/src/putevaluv.f900000644002504400250440000000113114536061314017321 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putevaluv(ik,evaluvp) use modmain implicit none ! arguments integer, intent(in) :: ik real(8), intent(in) :: evaluvp(nstsv) ! local variables integer recl ! find the record length inquire(iolength=recl) vkl(:,ik),nstsv,evaluvp !$OMP CRITICAL(u320) open(320,file='EVALUV.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(320,rec=ik) vkl(:,ik),nstsv,evaluvp close(320) !$OMP END CRITICAL(u320) end subroutine elk-9.2.12/src/PaxHeaders/getevaluv.f900000644000000000000000000000013214536061314014552 xustar0030 mtime=1702388428.575500516 30 atime=1702388427.501502107 30 ctime=1702388428.575500516 elk-9.2.12/src/getevaluv.f900000644002504400250440000000216314536061314017276 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getevaluv(ik,evaluvp) use modmain implicit none ! arguments integer, intent(in) :: ik real(8), intent(out) :: evaluvp(nstsv) ! local variables integer recl,nstsv_ real(8) vkl_(3),t1 ! find the record length inquire(iolength=recl) vkl_,nstsv_,evaluvp !$OMP CRITICAL(u320) open(320,file='EVALUV.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(320,rec=ik) vkl_,nstsv_,evaluvp close(320) !$OMP END CRITICAL(u320) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevaluv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EVALUV.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getevaluv): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" EVALUV.OUT : ",I8)') nstsv_ write(*,*) stop end if end subroutine elk-9.2.12/src/PaxHeaders/putevecuv.f900000644000000000000000000000013214536061314014576 xustar0030 mtime=1702388428.576500515 30 atime=1702388427.502502105 30 ctime=1702388428.576500515 elk-9.2.12/src/putevecuv.f900000644002504400250440000000117714536061314017326 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putevecuv(ik,evecu,evecv) use modmain implicit none ! arguments integer, intent(in) :: ik complex(8), intent(in) :: evecu(nstsv,nstsv),evecv(nstsv,nstsv) ! local variables integer recl ! find the record length inquire(iolength=recl) vkl(:,ik),nstsv,evecu,evecv !$OMP CRITICAL(u322) open(322,file='EVECUV.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(322,rec=ik) vkl(:,ik),nstsv,evecu,evecv close(322) !$OMP END CRITICAL(u322) end subroutine elk-9.2.12/src/PaxHeaders/getevecuv.f900000644000000000000000000000013214536061314014545 xustar0030 mtime=1702388428.578500512 30 atime=1702388427.503502104 30 ctime=1702388428.578500512 elk-9.2.12/src/getevecuv.f900000644002504400250440000000247314536061314017275 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getevecuv(ikp,vpl,u,v) use modmain implicit none ! arguments integer, intent(in) :: ikp real(8), intent(in) :: vpl(3) complex(8), intent(out) :: u(nstsv,nstsv),v(nstsv,nstsv) ! local variables integer isym,ik integer recl,nstsv_ real(8) vkl_(3),t1 if (ikp > 0) then ik=ikp else ! find the equivalent k-point number and symmetry which rotates vkl to vpl call findkpt(vpl,isym,ik) end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,u,v !$OMP CRITICAL(u322) open(322,file='EVECUV.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(322,rec=ik) vkl_,nstsv_,u,v close(322) !$OMP END CRITICAL(u322) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevecuv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EVECUV.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getevecuv): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" EVECUV.OUT : ",I8)') nstsv_ write(*,*) stop end if end subroutine elk-9.2.12/src/PaxHeaders/putevecwxy.f900000644000000000000000000000013014536061314014771 xustar0029 mtime=1702388428.57950051 30 atime=1702388427.505502101 29 ctime=1702388428.57950051 elk-9.2.12/src/putevecwxy.f900000644002504400250440000000122614536061314017516 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine putevecwxy(iq,w,x,y) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq complex(8), intent(in) :: w(nbph,nbph),x(nbph,nbph),y(nbph) ! local variables integer recl ! find the record length inquire(iolength=recl) vql(:,iq),nbph,w,x,y !$OMP CRITICAL(u332) open(332,file='EVECWXY.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(332,rec=iq) vql(:,iq),nbph,w,x,y close(332) !$OMP END CRITICAL(u332) end subroutine elk-9.2.12/src/PaxHeaders/getevecwxy.f900000644000000000000000000000013214536061314014742 xustar0030 mtime=1702388428.580500509 30 atime=1702388427.506502099 30 ctime=1702388428.580500509 elk-9.2.12/src/getevecwxy.f900000644002504400250440000000226014536061314017464 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine getevecwxy(iq,w,x,y) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq complex(8), intent(out) :: w(nbph,nbph),x(nbph,nbph),y(nbph) ! local variables integer recl,nbph_ real(8) vql_(3),t1 ! find the record length inquire(iolength=recl) vql_,nbph_,w,x,y !$OMP CRITICAL(u332) open(332,file='EVECWXY.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(332,rec=iq) vql_,nbph_,w,x,y close(332) !$OMP END CRITICAL(u332) t1=abs(vql(1,iq)-vql_(1))+abs(vql(2,iq)-vql_(2))+abs(vql(3,iq)-vql_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevecwxy): differing vectors for q-point ",I8)') iq write(*,'(" current : ",3G18.10)') vql(:,iq) write(*,'(" EVECWXY.OUT : ",3G18.10)') vql_ write(*,*) stop end if if (nbph /= nbph_) then write(*,*) write(*,'("Error(getevecwxy): differing nbph for q-point ",I8)') iq write(*,'(" current : ",I8)') nbph write(*,'(" EVECWXY.OUT : ",I8)') nbph_ write(*,*) stop end if end subroutine elk-9.2.12/src/PaxHeaders/putevalwx.f900000644000000000000000000000013214536061314014607 xustar0030 mtime=1702388428.582500506 30 atime=1702388427.508502096 30 ctime=1702388428.582500506 elk-9.2.12/src/putevalwx.f900000644002504400250440000000120314536061314017325 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine putevalwx(iq,evalwxp) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq real(8), intent(in) :: evalwxp(nbph) ! local variables integer recl ! find the record length inquire(iolength=recl) vql(:,iq),nbph,evalwxp !$OMP CRITICAL(u330) open(330,file='EVALWX.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(330,rec=iq) vql(:,iq),nbph,evalwxp close(330) !$OMP END CRITICAL(u330) end subroutine elk-9.2.12/src/PaxHeaders/getevalwx.f900000644000000000000000000000013214536061314014556 xustar0030 mtime=1702388428.583500504 30 atime=1702388427.509502095 30 ctime=1702388428.583500504 elk-9.2.12/src/getevalwx.f900000644002504400250440000000222714536061314017303 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine getevalwx(iq,evalwxp) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq real(8), intent(out) :: evalwxp(nbph) ! local variables integer recl,nbph_ real(8) vql_(3),t1 ! find the record length inquire(iolength=recl) vql_,nbph_,evalwxp !$OMP CRITICAL(u330) open(330,file='EVALWX.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(330,rec=iq) vql_,nbph_,evalwxp close(330) !$OMP END CRITICAL(u330) t1=abs(vql(1,iq)-vql_(1))+abs(vql(2,iq)-vql_(2))+abs(vql(3,iq)-vql_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevalwx): differing vectors for q-point ",I8)') iq write(*,'(" current : ",3G18.10)') vql(:,iq) write(*,'(" EVALWX.OUT : ",3G18.10)') vql_ write(*,*) stop end if if (nbph /= nbph_) then write(*,*) write(*,'("Error(getevalwx): differing nbph for q-point ",I8)') iq write(*,'(" current : ",I8)') nbph write(*,'(" EVALWX.OUT : ",I8)') nbph_ write(*,*) stop end if end subroutine elk-9.2.12/src/PaxHeaders/aceplot.f900000644000000000000000000000013214536061314014177 xustar0030 mtime=1702388428.584500503 30 atime=1702388427.511502092 30 ctime=1702388428.584500503 elk-9.2.12/src/aceplot.f900000644002504400250440000000367614536061314016735 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine aceplot use modmain use modphonon use modbog implicit none ! local variables integer ik,jk,iq,jq integer i1,i2,i3,ist,i real(8) ace,vn,xn ! initialise universal variables call init0 call init1 call init2 call initeph !----------------------------------------------------------! ! plot the fermionic anomalous correlation entropy ! !----------------------------------------------------------! open(50,file='FACE3D.OUT',form='FORMATTED',action='WRITE') write(50,'(3I6," : grid size")') ngridk(:) do i3=0,ngridk(3)-1 do i2=0,ngridk(2)-1 do i1=0,ngridk(1)-1 ik=ivkiknr(i1,i2,i3) jk=ivkik(i1,i2,i3) ace=0.d0 do ist=1,nstsv vn=vnorm(ist,jk) if ((vn > 0.d0).and.(vn < 1.d0)) then ace=ace+vn*log(vn)+(1.d0-vn)*log(1.d0-vn) end if end do ace=-occmax*ace write(50,'(4G18.10)') vkc(:,ik),ace end do end do end do close(50) !--------------------------------------------------------! ! plot the bosonic anomalous correlation entropy ! !--------------------------------------------------------! open(50,file='BACE3D.OUT',form='FORMATTED',action='WRITE') write(50,'(3I6," : grid size")') ngridq(:) do i3=0,ngridq(3)-1 do i2=0,ngridq(2)-1 do i1=0,ngridq(1)-1 iq=ivqiqnr(i1,i2,i3) jq=ivqiq(i1,i2,i3) ace=0.d0 do i=1,nbph xn=xnorm(i,jq) if (xn > 0.d0) then ace=ace+xn*log(xn)-(1.d0+xn)*log(1.d0+xn) end if end do ace=-ace write(50,'(4G18.10)') vqc(:,iq),ace end do end do end do close(50) write(*,*) write(*,'("Info(aceplot):")') write(*,'(" 3D fermionic anomalous correlation entropy written to FACE3D.OUT")') write(*,'(" 3D bosonic anomalous correlation entropy written to BACE3D.OUT")') end subroutine elk-9.2.12/src/PaxHeaders/writeevalwx.f900000644000000000000000000000012514536061314015133 xustar0028 mtime=1702388428.5865005 29 atime=1702388427.51250209 28 ctime=1702388428.5865005 elk-9.2.12/src/writeevalwx.f900000644002504400250440000000133214536061314017652 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine writeevalwx use modmain use modphonon use modbog implicit none ! local variables integer iq,i ! write out the bosonic eigenvalues open(50,file='EIGVALWX.OUT',form='FORMATTED',action='WRITE') write(50,'(I6," : nqpt")') nqpt write(50,'(I6," : nbph")') nbph do iq=1,nqpt write(50,*) write(50,'(I6,3G18.10," : q-point, vql")') iq,vql(:,iq) write(50,'(" (phonon branch, eigenvalue, X-norm below)")') do i=1,nbph write(50,'(I6,2G18.10)') i,evalwx(i,iq),xnorm(i,iq) end do end do close(50) end subroutine elk-9.2.12/src/PaxHeaders/Makefile0000644000000000000000000000013214536061313013667 xustar0030 mtime=1702388427.514502087 30 atime=1702388427.514502087 30 ctime=1702388427.514502087 elk-9.2.12/src/Makefile0000644002504400250440000003317314536061313016420 0ustar00dewhurstdewhurst00000000000000 include ../make.inc # modules SRC_modules = modmain.f90 $(SRC_MPI) modmpi.f90 modramdisk.f90 $(SRC_LIBXC) \ modxcifc.f90 modfxcifc.f90 moddftu.f90 modrdm.f90 modphonon.f90 modtest.f90 \ modrandom.f90 modpw.f90 modvars.f90 modtddft.f90 modgw.f90 modulr.f90 \ modbog.f90 moddelf.f90 $(SRC_OMP) modomp.f90 $(SRC_MKL) mkl_init.f90 \ $(SRC_W90S) modw90.f90 # Elk program SRC_elk = elk.f90 # main subroutines and functions SRC_main0 = \ factn.f90 factr.f90 factn2.f90 r3mm.f90 r3mtm.f90 r3mmt.f90 r3vo.f90 gcd.f90 \ rfint.f90 SRC_main1 = \ symdmat.f90 axangsu2.f90 gradzvcln.f90 gentpmae.f90 zfcmtwr.f90 cfcmtwr.f90 \ projsbf.f90 gradzf.f90 timesec.f90 zfmtftoc.f90 ztorfmt.f90 zfmtctof.f90 \ eveqnfvz.f90 energynn.f90 gaunt.f90 potxcmt.f90 sdelta_mp.f90 stheta_mp.f90 \ sdelta_fd.f90 stheta_fd.f90 writelsj.f90 eveqnzh.f90 gensmatk.f90 \ gensfacgp.f90 rhomag.f90 wsplintp.f90 checkmt.f90 reciplat.f90 gradrf.f90 \ gencfrm.f90 mixadapt.f90 zftrf.f90 sbessel.f90 gengclgq.f90 gencfun.f90 \ genstress.f90 force.f90 genvbmatk.f90 forcek.f90 writeepsinv.f90 olprad.f90 \ polark.f90 zfmtinp.f90 hflocal.f90 mixbroyden.f90 grad2rfmt.f90 clebgor.f90 \ rfirctof.f90 effmass.f90 zpotcoul.f90 sfacmag.f90 polynm.f90 epsinv.f90 \ rfinpc.f90 writeiad.f90 genapwfr.f90 gengclq.f90 addbfsm.f90 genylmv.f90 \ olpfv.f90 hmlfv.f90 genexpmt.f90 rfinp.f90 sphcover.f90 sctovec.f90 \ genppts.f90 eveqnzg.f90 fderiv.f90 genpmat.f90 genexpmat.f90 writeforces.f90 \ r3cross.f90 match.f90 genspchi0.f90 potefield.f90 rhoinit.f90 \ eveqnsv.f90 roteuler.f90 genrmesh.f90 splint.f90 wavefcr.f90 lopzflm.f90 \ brzint.f90 rotdmat.f90 genylmg.f90 gentaucr.f90 readinput.f90 numlist.f90 \ hermite.f90 genfspecies.f90 atpstep.f90 dmatls.f90 writeengy.f90 writechg.f90 \ rbsht.f90 rfsht.f90 genlofr.f90 rotrfmt.f90 genpmatk.f90 \ rvfcross.f90 writeinfo.f90 mossbauer.f90 initoep.f90 i3minv.f90 r3mv.f90 \ genidxlo.f90 nuclei.f90 writeefg.f90 writeevsp.f90 gencore.f90 r3mtv.f90 \ r3minv.f90 r3frac.f90 genapwlofr.f90 gridsize.f90 symrfir.f90 erf.f90 \ geomplot.f90 ylmroty.f90 ssfext.f90 writestate.f90 sdelta_sq.f90 potxcir.f90 \ potxc.f90 rcfmtinp.f90 rhoplot.f90 occupy.f90 symveca.f90 jprplot.f90 \ genvmatk.f90 geomopt.f90 eveqnss.f90 hartfock.f90 potplot.f90 genwfpw.f90 \ hmlxbse.f90 hmlxbsek.f90 hmldbse.f90 hmldbsek.f90 gradwfcr2.f90 oepresk.f90 \ addlorbcnd.f90 energy.f90 wfplot.f90 oepvcl.f90 oepvclk.f90 polar.f90 \ dbxcplot.f90 sbesseldm.f90 writehmlbse.f90 dielectric_bse.f90 vecplot.f90 \ nesting.f90 writeevbse.f90 emdplot3d.f90 emdplot2d.f90 emdplot1d.f90 \ rfhkintp.f90 writewfpw.f90 vblocal.f90 writefsm.f90 getwfpw.f90 plotpt1d.f90 \ init1.f90 init2.f90 findsymcrys.f90 plotpt3d.f90 elnes.f90 fermisurfbxsf.f90 \ genspecies.f90 writeexpmat.f90 writekpts.f90 wfcrplot.f90 writedos.f90 \ energykncr.f90 ggamt_1.f90 ggair_1.f90 ggamt_sp_1.f90 ggair_sp_1.f90 \ ggamt_2a.f90 ggair_2a.f90 ggamt_2b.f90 ggair_2b.f90 ggamt_sp_2a.f90 \ ggair_sp_2a.f90 ggamt_sp_2b.f90 ggair_sp_2b.f90 writeemd.f90 reademd.f90 \ emdplot.f90 init3.f90 init4.f90 bfieldfsm.f90 testcheck.f90 pade.f90 \ wsplint.f90 gensocfr.f90 pades.f90 genscss.f90 rfcmtwr.f90 nonlinopt.f90 \ writelat.f90 rhocore.f90 rcfinp.f90 readspecies.f90 findband.f90 exxengy.f90 \ gentauk.f90 gradrfmt.f90 checkfsm.f90 genrlmv.f90 mae.f90 writegvecrf.f90 \ zcfmtwr.f90 wfmtsv.f90 olpistl.f90 hmlistl.f90 olpalo.f90 hmlalo.f90 \ olplolo.f90 hmllolo.f90 olpaa.f90 hmlaa.f90 gengclg.f90 rhomagsh.f90 \ charge.f90 moment.f90 rfint0.f90 r3mdet.f90 gencfrc.f90 checkstop.f90 \ genbs.f90 gradwf2.f90 closefiles.f90 \ writelinen.f90 rfmtlm.f90 putpmat.f90 getpmat.f90 rfmtpack.f90 zfmtpack.f90 \ putevalfv.f90 getevalfv.f90 wfmtfv.f90 putkmat.f90 getkmat.f90 putepsinv.f90 \ getcfgq.f90 putevalsv.f90 getevalsv.f90 getevecsv.f90 putevecsv.f90 \ genshtmat.f90 allatoms.f90 putevecfv.f90 getevecfv.f90 writesym.f90 \ putoccsv.f90 getoccsv.f90 torque.f90 findqpt.f90 findkpt.f90 genevfsv.f90 \ genwfsv.f90 sdelta.f90 stheta.f90 sortidx.f90 symmat.f90 radnucl.f90 \ symrvf.f90 writeqpts.f90 rndevsv.f90 gengkvec.f90 mixlinear.f90 writesf.f90 \ gengqf.f90 genkmat.f90 genolpq.f90 genjlgprmt.f90 rfinterp.f90 fsmooth.f90 \ axangrot.f90 rotaxang.f90 wspline.f90 splined.f90 findswidth.f90 \ findsymlat.f90 writepmat.f90 genstrain.f90 symmetry.f90 linengy.f90 \ writestress.f90 eulerrot.f90 cftwfir.f90 rschrodint.f90 writegclq.f90 \ writegeom.f90 writemom.f90 gendmat.f90 curlrvf.f90 genzvclmt.f90 genjtot.f90 \ symvec.f90 checkwrite.f90 genjprk.f90 proj2d.f90 genidxbse.f90 symrvfir.f90 \ genjpr.f90 eveqnfvr.f90 gentau.f90 genjlgpr.f90 writestrain.f90 \ writefermi.f90 rfmtctof.f90 findsym.f90 zfsht.f90 rhonorm.f90 genvchi0.f90 \ cfmtconj.f90 stheta_sq.f90 sdelta_lr.f90 stheta_lr.f90 findsymsite.f90 \ genlmirep.f90 writespecies.f90 rhomagk.f90 symrvfmt.f90 wigner3jf.f90 \ genhvec.f90 ylmrot.f90 wxcplot.f90 massnucl.f90 gendmatk.f90 rfplot.f90 \ straingkq.f90 eveqnit.f90 oepmain.f90 rdirac.f90 bandstr.f90 sfacinit.f90 \ findscq.f90 plot1d.f90 plot2d.f90 plot3d.f90 init0.f90 readstate.f90 \ eveqnhf.f90 zbsht.f90 i3mtv.f90 spline.f90 gauntyry.f90 findnjcmax.f90 \ gndstate.f90 sstask.f90 fermisurf.f90 spiralsc.f90 atom.f90 maginit.f90 \ exxengyk.f90 moke.f90 hmlrad.f90 dos.f90 findprimcell.f90 \ plotpt2d.f90 sfacrho.f90 bdipole.f90 dielectric.f90 elfplot.f90 vclcore.f90 \ zfmtwr.f90 zvcldisp.f90 vecfbz.f90 lopzflmn.f90 zpotclmt.f90 \ readfermi.f90 gensdmat.f90 symrfmt.f90 sphcrd.f90 potcoul.f90 gencrm.f90 \ rminv.f90 rtozfmt.f90 genwfsvp.f90 genwfsvp_sp.f90 rdiracint.f90 rotzflm.f90 \ latvstep.f90 gradzfmt.f90 eveqnfv.f90 cfsht.f90 \ wfmtsv_sp.f90 wfirsv.f90 wfirsv_sp.f90 genwfsv_sp.f90 ggamt_4.f90 ggair_4.f90 \ trzhmm.f90 gengvec.f90 wigner3j.f90 gengvc.f90 potnucl.f90 zfmtint.f90 \ rfmtint.f90 genvsig.f90 rfmtinp.f90 findngkmax.f90 potks.f90 mtdmin.f90 \ rfcopy.f90 rhomagv.f90 eveqn.f90 genffacgp.f90 unitary.f90 zmdet.f90 \ rfmtftoc.f90 zminv.f90 symrf.f90 genvmat.f90 writeeval.f90 mixerifc.f90 \ splinew.f90 nfftifc.f90 batchdv.f90 readevalsv.f90 readoccsv.f90 z2mm.f90 \ z2mctm.f90 z2mmct.f90 zmctmu.f90 zmctm.f90 rzmctmu.f90 moldyn.f90 gencrho.f90 \ cpotclmt.f90 rfmtsm.f90 rbshtip.f90 rfshtip.f90 zbshtip.f90 zfshtip.f90 \ writejw.f90 cbsht.f90 cbshtip.f90 cfshtip.f90 gencvclmt.f90 \ zcfmtinp.f90 zcfinp.f90 cpotcoul.f90 ggamt_5b.f90 ggamt_5c.f90 ggair_5b.f90 \ ggair_5c.f90 piezoelt.f90 magnetoelt.f90 zftcf.f90 trimrfg.f90 rmtavrg.f90 SRC_main = $(SRC_main0) $(SRC_main1) SRC_BOG0 = \ dmatuv.f90 dmatwx.f90 eveqnuv.f90 eveqnwxy.f90 SRC_BOG1 = \ writeevaluv.f90 occupyuv.f90 putevaluv.f90 getevaluv.f90 putevecuv.f90 \ getevecuv.f90 putevecwxy.f90 getevecwxy.f90 putevalwx.f90 getevalwx.f90 \ aceplot.f90 writeevalwx.f90 SRC_BOG = $(SRC_BOG0) $(SRC_BOG1) SRC_phonon0 = \ dolpistl.f90 dhmlistl.f90 olpaloq.f90 hmlaloq.f90 dolpalo.f90 dhmlalo.f90 \ dhmllolo.f90 olpaaq.f90 dolpaa.f90 dhmlaa.f90 hmlaaq.f90 initeph.f90 \ dengyeph.f90 gndsteph.f90 eveqneph.f90 hmlepha.f90 hmlephb.f90 hmlephde.f90 \ getephmkq.f90 ephdos.f90 SRC_phonon1 = \ gradrhomt.f90 gendcfun.f90 gendvsig.f90 drhomagsh.f90 doccupy.f90 dhmlrad.f90 \ gendwfsv.f90 dwfmtfv.f90 gengqvec.f90 dmatch.f90 writedvs.f90 readdyn.f90 \ dyntask.f90 dpotks.f90 dpotxc.f90 deveqnfv.f90 dpotcoul.f90 drhomagk.f90 \ gengvsmt.f90 dforce.f90 dforcek.f90 dynqtor.f90 dynevs.f90 phonon.f90 \ dynrtoq.f90 mcmillan.f90 genephmat.f90 gengkqvec.f90 genmcph.f90 \ putdevecfv.f90 getdevecfv.f90 putdevecsv.f90 getdevecsv.f90 phononsc.f90 \ genscph.f90 phdisp.f90 dynsymapp.f90 dynsym.f90 dynev.f90 phdos.f90 \ sumrule.f90 writephn.f90 dynfext.f90 writegamma.f90 readgamma.f90 \ phlwidth.f90 alpha2f.f90 writelambda.f90 ephcouple.f90 eliashberg.f90 \ phscdvs.f90 readdvs.f90 readalpha2f.f90 gendsocfr.f90 bornechg.f90 \ bectask.f90 becfext.f90 putephmat.f90 getephmat.f90 SRC_phonon = $(SRC_phonon0) $(SRC_phonon1) SRC_ULR0 = \ zfirctof.f90 writeevalu.f90 writekpa.f90 genhdbulr.f90 vblocalu.f90 \ chargeu.f90 addbfsmu.f90 momentu.f90 occupyulr.f90 potksu.f90 writevclr.f90 \ genzvmatk.f90 genzvbmatk.f90 rhomagq.f90 writeengyu.f90 rfzfftq.f90 SRC_ULR1 = \ rhocoreu.f90 eveqnulr.f90 rhomaguk.f90 genhmlu.f90 potxcu.f90 writeinfou.f90 \ zfplot.f90 vclqinit.f90 writechgrmt.f90 initulr.f90 writemomrmt.f90 \ writestulr.f90 readstulr.f90 potefieldu.f90 puthdbulr.f90 gethdbulr.f90 \ potuinit.f90 readvclr.f90 genkpakq.f90 plotu1d.f90 plotu2d.f90 plotu3d.f90 \ gndstulr.f90 plotulr.f90 potuplot.f90 potcoulu.f90 rhouplot.f90 maguplot.f90 SRC_ULR = $(SRC_ULR0) $(SRC_ULR1) SRC_DFTU0 = \ gendmatmt.f90 genveedu.f90 tm2todm.f90 tm3todm.f90 dmtotm3.f90 SRC_DFTU1 = \ writedftu.f90 sbesseli.f90 shankeli.f90 genfdu.f90 genfdufr.f90 engyfdu.f90 \ findlambda.f90 vmatmtsc.f90 genvmatmt.f90 vmatmtdu.f90 vmatmtftm.f90 \ fyukawa.f90 fyukawa0.f90 readdmatmt.f90 writetm.f90 writetm3.f90 gendmftm.f90 \ writeftm.f90 writetdtm3.f90 genwkpr0.f90 tm3rtoz.f90 SRC_DFTU = $(SRC_DFTU0) $(SRC_DFTU1) SRC_RDMFT0 = \ rdmft.f90 rdmwriteengy.f90 rdmminc.f90 rdmvaryc.f90 rdmdedc.f90 rdmengyxc.f90 \ rdmminn.f90 rdmvaryn.f90 SRC_RDMFT1 = \ rdmdkdc.f90 rdmenergy.f90 rdmwritededn.f90 rdmdedn.f90 rdmdexcdn.f90 \ genvcl1223.f90 getvcl1221.f90 getvcl1223.f90 writevcl1221.f90 \ writevcl1223.f90 rdmdexcdc.f90 rdmdtsdn.f90 rdmentropy.f90 rdmeval.f90 \ genvcl1221.f90 SRC_RDMFT = $(SRC_RDMFT0) $(SRC_RDMFT1) SRC_GW0 = \ gwdmat.f90 gwlocal.f90 genwgw.f90 ksinvert.f90 gtwsum.f90 minf_nm.f90 \ acpole.f90 SRC_GW1 = \ gwrhomag.f90 gwdmatk.f90 gwefermi.f90 dysonr.f90 gwsefm.f90 putgwsefm.f90 \ getgwsefm.f90 writeigw.f90 polefit.f90 gwchgk.f90 gwsefmk.f90 gwspecf.f90 \ writegwsf.f90 acgwse.f90 fmin_nm.f90 zfpole.f90 gwbandstr.f90 gwscrho.f90 SRC_GW = $(SRC_GW0) $(SRC_GW1) SRC_TDDFT0 = \ writeatdisp.f90 writetdforces.f90 readatdvc.f90 writetdengy.f90 \ writemomtd.f90 SRC_TDDFT1 = \ tddftlr.f90 genhmlt.f90 writetddos.f90 writeafpdt.f90 readafindt.f90 \ genvfxc.f90 genfxcr.f90 tdtemp.f90 writetdlsj.f90 genspfxcr.f90 genvfxcg.f90 \ tddftsplr.f90 genspfxcg.f90 genafieldt.f90 writetddft.f90 dielectric_tdrt.f90 \ readjtot.f90 afindtstep.f90 genefieldt.f90 energytd.f90 engyknk.f90 \ readforcet.f90 tdrestart.f90 writeatdvc.f90 rhostatic.f90 jtotk.f90 \ rhosplot.f90 bornecdyn.f90 becforce.f90 tdinit.f90 readrhos.f90 gengvnsmt.f90 \ genhafspt.f90 writeaxsf.f90 atptstep.f90 potkst.f90 tdbackup.f90 \ writetimes.f90 readtimes.f90 gentimes.f90 readafieldt.f90 genjr.f90 \ tddft.f90 timestep.f90 writetdjtk.f90 SRC_TDDFT = $(SRC_TDDFT0) $(SRC_TDDFT1) SRC_XC = \ xc_pzca.f90 xc_pwca.f90 xc_pbe.f90 xc_am05.f90 xc_xalpha.f90 xc_wc06.f90 \ x_wc06.f90 x_pbe.f90 c_pbe.f90 c_pbe_gcor.f90 xc_vbh.f90 fxc_pwca.f90 \ k_tf.f90 k_tf_sp.f90 k_tf1.f90 k_tfvw.f90 k_tfvw_sp.f90 k_tfvw1.f90 k_vwlb.f90 SRC_W90 = \ initw90.f90 writew90.f90 writew90win.f90 writew90eig.f90 setupw90.f90 \ writew90mmn.f90 writew90spn.f90 SRC = $(SRC_modules) $(SRC_FFT) $(SRC_elk) $(SRC_main) $(SRC_phonon) \ $(SRC_XC) $(SRC_DFTU) $(SRC_RDMFT) $(SRC_GW) $(SRC_TDDFT) \ $(SRC_ULR) $(SRC_W90) $(SRC_BOG) $(SRC_TDHFC) OBJ = $(SRC:.f90=.o) EXE = elk #------------------------------------------------------------------------------- # Suffix rules #------------------------------------------------------------------------------- .SUFFIXES: .o .f90 .f90.o: $(F90) $(F90_OPTS) -c $< #------------------------------------------------------------------------------- # Targets #------------------------------------------------------------------------------- elk: $(OBJ) $(F90) $(F90_OPTS) -o $(EXE) $(OBJ) $(F90_LIB) $(LIB_LIBXC) $(LIB_W90) all: elk clean: rm -f *.o *.mod *~ ifc* *.gcno gmon.out *.aux *.dvi *.log \ elk.pdf *.tex *.toc *.out $(EXE) cleanall: $(MAKE) clean doc: rm -f elk.aux elk.bbl elk.blg elk.log elk.pdf elk.tex elk.toc elk.lst ls $(SRC_modules) $(SRC_main) $(SRC_XC) $(SRC_phonon) $(SRC_DFTU) \ $(SRC_RDMFT) $(SRC_TDDFT) $(SRC_GW) > elk.lst ./protex -F -s $(SRC_elk) $$(cat elk.lst) > elk.tex pdflatex elk;pdflatex elk;pdflatex elk backup: tar -czf elk.tgz *.f90 libfftv eos spacegroup junk Makefile notes.txt \ ../docs ../examples ../tests ../tests-libxc protex ../COPYING \ ../README elk_silhouette.pdf depend gentest genalltests checklist.txt \ rmspaces checklen relopf90 grepelk vimelk VERSION = $$(grep "version(3)" modmain.f90 | sed 's/.*\[\([^]]*\)\].*/\1/g' | sed 's/,/./g') NAME = elk-$(VERSION) RELEASE = ../release/$(NAME) version: echo $(VERSION) release: rm -rf $(RELEASE) mkdir $(RELEASE) cd eos; $(MAKE) clean cd spacegroup; $(MAKE) clean cd ..; find . -type f -name *~ -exec rm -f {} \; cd ..; find . -type f -name gmon.out -exec rm -f {} \; cd ..; find . -type f -name RUNNING -exec rm -f {} \; mkdir $(RELEASE)/src cp -r eos $(RELEASE)/src cp -r spacegroup $(RELEASE)/src cp $(SRC) Makefile protex elk_silhouette.pdf $(RELEASE)/src cp $(SRC) rmspaces grepelk vimelk $(RELEASE)/src cp mpi_stub.f90 omp_stub.f90 mkl_stub.f90 w90_stub.f90 $(RELEASE)/src cp libxcf90.f90 libxcifc.f90 libxcifc_stub.f90 $(RELEASE)/src cp zfftifc_fftw.f90 cfftifc_fftw.f90 zfftifc_mkl.f90 cfftifc_mkl.f90 $(RELEASE)/src cp -r ../examples $(RELEASE) cp -r ../tests $(RELEASE) cp -r ../tests-libxc $(RELEASE) mkdir $(RELEASE)/species cp ../species/*.in $(RELEASE)/species cp -r ../utilities $(RELEASE) cp ../COPYING $(RELEASE) cp ../README $(RELEASE) cp ../release_notes.txt $(RELEASE) cp ../Makefile $(RELEASE) cp ../make.inc $(RELEASE) cp ../elk.sh $(RELEASE) $(MAKE) doc cp elk.pdf ../docs cd spacegroup;$(MAKE) doc;cp spacegroup.pdf ../../docs;$(MAKE) clean cp -r ../docs $(RELEASE) mkdir $(RELEASE)/release tar -C ../release -czf ../release/$(NAME).tgz $(NAME) cp ../docs/elk.pdf ../release cp ../docs/spacegroup.pdf ../release echo $(NAME) lines: cat $(SRC) | wc -l spaces: ./rmspaces $(SRC) length: ./checklen $(SRC) vim: ./vimelk elk-9.2.12/src/PaxHeaders/protex0000644000000000000000000000013214536061313013473 xustar0030 mtime=1702388427.517502083 30 atime=1702388427.516502084 30 ctime=1702388427.517502083 elk-9.2.12/src/protex0000755002504400250440000011077514536061313016233 0ustar00dewhurstdewhurst00000000000000#!/usr/bin/perl # # $Id: protex,v 1.15 2004/06/03 23:49:46 eschwab Exp $ # #BOP # # !ROUTINE: ProTeX v. 2.00 - Translates DAO Prologues to LaTeX # # !INTERFACE: # protex [-hbACFS] ] [+-nlsxf] [src_file(s)] # # !DESCRIPTION: # Perl filter to produce a \LaTeX compatible document # from a DAO Fortran source code with standard Pro\TeX # prologues. If source files are not specified it # reads from stdin; output is always to stdout. # # \noindent # {\bf Command Line Switches:} \vspace{0.2cm} # # \begin{center} # \begin{tabular}{|c|l|} \hline \hline # -h & Help mode: list command line options \\ \hline # -b & Bare mode, meaning no preamble, etc. \\ \hline # -i & internal mode: omit prologues marked !BOPI \\ \hline # +/-n & New Page for each subsection (wastes paper) \\ \hline # +/-l & Listing mode, default is prologues only \\ \hline # +/-s & Shut-up mode, i.e., ignore any code from BOC to EOC \\ \hline # +/-x & No LaTeX mode, i.e., put !DESCRIPTION: in verbatim mode \\ \hline # +/-f & No source file info \\ \hline # -A & Ada code \\ \hline # -C & C++ code \\ \hline # -F & F90 code (default) \\ \hline # -S & Shell script \\ \hline \hline # \end{tabular} # \end{center} # # The options can appear in any order. The options, -h and -b, affect # the input from all files listed on command-line input. Each of the # remaining options effects only the input from the files listed after # the option and prior to any overriding option. The plus sign # turns off the option. For example, the command-line input, # \bv # protex -bnS File1 -F File2.f +n File3.f # \ev # will cause the option, {\tt -n} to affect the input from the files, # {\tt File} and {\tt File2.f}, but not from {\tt File3.f}. The # {\tt -S} option is implemented for {\tt File1} but is overridden by # the {\tt -F} for files {\tt File2.f} and {\tt File3.f}. # # # !SEE ALSO: # For a more detailed description of ProTeX functionality, # DAO Prologue and other conventions, consult: # # Sawyer, W., and A. da Silva, 1997: ProTeX: A Sample # Fortran 90 Source Code Documentation System. # DAO Office Note 97-11 # # # !REVISION HISTORY: # # 20Dec1995 da Silva First experimental version # 10Nov1996 da Silva First internal release (v1.01) # 28Jun1997 da Silva Modified so that !DESCRIPTION can appear after # !INTERFACE, and !INPUT PARAMETERS etc. changed to italics. # 02Jul1997 Sawyer Added shut-up mode # 20Oct1997 Sawyer Added support for shell scripts # 11Mar1998 Sawyer Added: file name, date in header, C, script support # 05Aug1998 Sawyer Fixed LPChang-bug-support-for-files-with-underscores # 10Oct1998 da Silva Introduced -f option for removing source file info # from subsection, etc. Added help (WS). # 06Dec1999 C. Redder Added LaTeX command "\label{sec:prologues}" just # after the beginning of the proglogue section. # 13Dec1999 C. Redder Increased flexbility in command-line # interface. The options can appear in any # order which will allow the user to implement # options for select files. # 01Feb1999 C. Redder Added \usepackage commands to preamble of latex # document to include the packages amsmath, epsfig # and hangcaption. # 10May2000 C. Redder Revised LaTeX command "\label{sec:prologues}" # to "\label{app:ProLogues}" # 10/10/2002 da Silva Introduced ARGUMENTS keyword, touch ups. # # 15Jan2003 R. Staufer Modified table of contents to print only section headers - no descriptions # # 25Feb2003 R. Staufer Added BOPI/EOPI and -i (internal) switch to provide the option of omitting prologue information from output files. # #EOP #---------------------------------------------------------------------------- # Keep this if you don't know what it does... # ------------------------------------------- ### $[ = 1; # set array base to 1 (removed to maintain Perl 5.30 compatibility) $, = ' '; # set output field separator $\ = "\n"; # set output record separator # Set valid options lists # ----------------------- $GlobOptions = 'hb'; # Global options (i.e for all files) $LangOptions = 'ACFS'; # Options for setting programming languages $SwOptions = 'flinsx'; # Options that can change for each input # file $RegOptions = "$GlobOptions$LangOptions"; # Scan for global options until first first # file is processed. # Scan for global options # ----------------------- $NFiles = 0; Arg: foreach $arg (@ARGV) { $option = &CheckOpts ( $arg, $RegOptions, $SwOptions ) + 1; if ( $option ) { $rc = &GetOpts ( $arg, $GlobOptions ); next Arg; } else { $NFiles++; }# end if }# end foreach # If all input arguments are options, then assume the # filename, "-", for the standard input # -------------------------------------------------- if ( $NFiles == 0 ) { push (@ARGV, "-"); } # Implement help option # --------------------- if ( $opt_h ) { &print_help(); exit(); }#end if # Optional Prologue Keywords # -------------------------- @keys = ( "!INTERFACE:", "!USES:", "!PUBLIC TYPES:", "!PRIVATE TYPES:", "!PUBLIC MEMBER FUNCTIONS:", "!PRIVATE MEMBER FUNCTIONS:", "!PUBLIC DATA MEMBERS:", "!PARAMETERS:", "!ARGUMENTS:", "!DEFINED PARAMETERS:", "!INPUT PARAMETERS:", "!INPUT/OUTPUT PARAMETERS:", "!OUTPUT PARAMETERS:", "!RETURN VALUE:", "!REVISION HISTORY:", "!BUGS:", "!SEE ALSO:", "!SYSTEM ROUTINES:", "!FILES USED:", "!REMARKS:", "!TO DO:", "!CALLING SEQUENCE:", "!AUTHOR:", "!CALLED FROM:", "!LOCAL VARIABLES:" ); # Initialize these for clarity # ---------------------------- $intro = 0; # doing introduction? $prologue = 0; # doing prologue? $first = 1; # first prologue? $source = 0; # source code mode? $verb = 0; # verbatim mode? $tpage = 0; # title page? $begdoc = 0; # has \begin{document} been written? # Initial LaTeX stuff # ------------------- &print_notice(); &print_preamble(); # \documentclass, text dimensions, etc. &print_macros(); # short-hand LaTeX macros # Main loop -- for each command-line argument # ------------------------------------------- ARG: foreach $arg (@ARGV) { # Scan for non-global command-line options # ---------------------------------------- $option = &CheckOpts ( $arg, $RegOptions, $SwOptions, "quiet" ) + 1; if ( $option ) { &GetOpts ( $arg, $SwOptions ); &SetOpt ( $arg, $LangOptions ); next ARG; }# end if # Determine the type of code, set corresponding search strings # ------------------------------------------------------------ # if ( $opt_F ) { # FORTRAN $comment_string = '!'; # ------- $boi_string = '!BOI'; $eoi_string = '!EOI'; $bop_string = '!BOP'; $eop_string = '!EOP'; $bopi_string = '!BOPI'; $eopi_string = '!EOPI'; $boc_string = '!BOC'; $eoc_string = '!EOC'; $boe_string = '!BOE'; $eoe_string = '!EOE'; #}# end if if ( $opt_A ) { # ADA $comment_string = '--'; # --- $boi_string = '--BOI'; $eoi_string = '--EOI'; $bop_string = '--BOP'; $eop_string = '--EOP'; $bopi_string = '--BOPI'; $eopi_string = '--EOPI'; $boc_string = '--BOC'; $eoc_string = '--EOC'; $boe_string = '--BOE'; $eoe_string = '--EOE'; }# end if if ( $opt_C ) { $comment_string = '//'; # C $boi_string = '//BOI'; # - $eoi_string = '//EOI'; $bop_string = '//BOP'; $eop_string = '//EOP'; $bopi_string = '//BOPI'; $eopi_string = '//EOPI'; $boc_string = '//BOC'; $eoc_string = '//EOC'; $boe_string = '//BOE'; $eoe_string = '//EOE'; }# end if if ( $opt_S ) { # Script $comment_string = '#'; # ------ $boi_string = '#BOI'; $eoi_string = '#EOI'; $bop_string = '#BOP'; $eop_string = '#EOP'; $bopi_string = '#BOPI'; $eopi_string = '#EOPI'; $boc_string = '#BOC'; $eoc_string = '#EOC'; $boe_string = '#BOE'; $eoe_string = '#EOE'; }# end if # Set file name parameters # ------------------------ $InputFile = $arg; @all_path_components = split( /\//, $InputFile ); $FileBaseName = pop ( @all_path_components ); $FileBaseName =~ s/_/\\_/g; if ( $InputFile eq "-" ) {$FileBaseName = "Standard Input";} # Set date # -------- $Date = `date`; # Open current file # ----------------- open ( InputFile, "$InputFile" ) or print STDERR "Unable to open $InputFile: $!"; # Print page header # ----------------- # printf "\n\\markboth{Left}{Source File: %s, Date: %s}\n\n", # $FileBaseName, $Date; LINE: # Inner loop --- for processing each line of the input file # --------------------------------------------------------- while ( ) { chop; # strip record separator # !PARAMETERS: really mean !ARGUMENTS: # ------------------------------------ # s/!PARAMETERS:/!ARGUMENTS:/g; @Fld = split(' ', $_, 9999); # Straight quote # -------------- if ($Fld[0] eq '!QUOTE:') { for ($i = 1; $i <= $#Fld - 1; $i++) { printf '%s ', $Fld[$i]; }# end for print " "; next LINE; }# end if # Handle optional Title Page and Introduction # ------------------------------------------- if ($Fld[0] eq $boi_string) { print ' '; $intro = 1; next LINE; }# end if if ($Fld[1] eq '!TITLE:') { if ( $intro ) { shift @Fld; shift @Fld; @title = @Fld; $tpage = 1; next LINE; }# end if }# end if if ($Fld[1] eq '!AUTHORS:') { if ( $intro ) { shift @Fld; shift @Fld; @author = @Fld; $tpage = 1; next LINE; }# end if }# end if if ($Fld[1] eq '!AFFILIATION:') { if ( $intro ) { shift @Fld; shift @Fld; @affiliation = @Fld; $tpage = 1; next LINE; }# end if }# end if if ($Fld[1] eq '!DATE:') { if ( $intro ) { shift @Fld; shift @Fld; @date = @Fld; $tpage = 1; next LINE; }# end if }# end if if ($Fld[1] eq '!INTRODUCTION:') { if ( $intro ) { &do_beg(); print ' '; print '%..............................................'; shift @Fld; shift @Fld; print "\\section{@Fld}"; next LINE; }# end if }# end if # End of introduction # ------------------- if ($Fld[0] eq $eoi_string) { print ' '; print '%/////////////////////////////////////////////////////////////'; print "\\newpage"; $intro = 0; next LINE; }# end if # Beginning of prologue # --------------------- if ($Fld[0] eq $bop_string) { if ( $source ) { &do_eoc(); } print ' '; print '%/////////////////////////////////////////////////////////////'; &do_beg(); if ($first == 0) { ### print "\\newpage"; print " "; print "\\mbox{}\\hrulefill\\ "; print " ";} else { unless($opt_b){print "\\section{Routine/Function Prologues} \\label{app:ProLogues}";} }# end if $first = 0; $prologue = 1; $verb = 0; $source = 0; &set_missing(); # no required keyword yet next LINE; }# end if # Beginning of internal prologue # ------------------------------ if ($Fld[0] eq $bopi_string) { if ($opt_i) {$prologue = 0;} else { if ($source) { &do_eoc(); } print ' '; print '%/////////////////////////////////////////////////////////////'; &do_beg(); if ($first ==0) { ### print "\\newpage"; print " "; print "\\mbox{}\\hrulefill\\"; print " ";} else { unless($opt_b){print "\\section{Routine/Function Prologues} \\label{app:ProLogues}";} }# endif $first = 0; $prologue = 1; $verb = 0; $source = 0; &set_missing(); # no required keyword yet next LINE; }# endelse }# endif # A new subroutine/function # ------------------------- if ($Fld[1] eq '!ROUTINE:' ) { if ($prologue) { shift @Fld; shift @Fld; $_ = join(' ', @Fld); $name_is = $_; s/_/\\_/g; # Replace "_" with "\_" if ( $opt_n && $not_first ) { printf "\\newpage\n"; } unless ($opt_f) {printf "\\subsection{%s (Source File: %s)}\n\n", $_, $FileBaseName;} else {printf "\\subsection{%s }\n\n", $_;} $have_name = 1; $not_first = 1; next LINE; }# end if }# end if # A new Module # ------------ if ($Fld[1] eq '!MODULE:' ) { if ($prologue) { shift @Fld; shift @Fld; $_ = join(' ', @Fld); $name_is = $_; s/_/\\_/g; # Replace "_" with "\_" if ( $opt_n && $not_first ) { printf "\\newpage\n"; } unless($opt_f) {printf "\\subsection{Fortran: Module Interface %s (Source File: %s)}\n\n", $_, $FileBaseName;} else {printf "\\subsection{Fortran: Module Interface %s }\n\n", $_;} $have_name = 1; $have_intf = 1; # fake it, it does not need one. $not_first = 1; next LINE; }# end if }# end if # A new include file # ------------------ if ($Fld[1] eq '!INCLUDE:' ) { if ($prologue) { shift @Fld; shift @Fld; $_ = join(' ', @Fld); $name_is = $_; s/_/\\_/g; # Replace "_" with "\_" if ( $opt_n && $not_first ) { printf "\\newpage\n"; } unless($opt_f) {printf "\\subsection{Include File %s (Source File: %s)}\n\n", $_, $FileBaseName;} else {printf "\\subsection{Include File %s }\n\n", $_;} $have_name = 1; $have_intf = 1; # fake it, it does not need one. $not_first = 1; next LINE; }# end if }# end if # A new INTERNAL subroutine/function # ---------------------------------- if ($Fld[1] eq '!IROUTINE:') { # Internal routine if ($prologue) { shift @Fld; shift @Fld; $_ = join(' ', @Fld); $name_is = $_; s/_/\\_/g; # Replace "_" with "\_" @words = split " ", $_; printf "\\subsection [$words[1]] {$_}\n\n"; $have_name = 1; next LINE; }# end if }# end if # A new CLASS # ------------ if ($Fld[1] eq '!CLASS:' ) { if ($prologue) { shift @Fld; shift @Fld; $_ = join(' ', @Fld); $name_is = $_; s/_/\\_/g; # Replace "_" with "\_" if ( $opt_n && $not_first ) { printf "\\newpage\n"; } unless($opt_f) {printf "\\subsection{C++: Class Interface %s (Source File: %s)}\n\n", $_, $FileBaseName;} else {printf "\\subsection{C++: Class Interface %s }\n\n", $_;} $have_name = 1; $have_intf = 1; # fake it, it does not need one. $not_first = 1; next LINE; }# end if }# end if # A new Method # ------------------------- if ($Fld[1] eq '!METHOD:' ) { if ($prologue) { shift @Fld; shift @Fld; $_ = join(' ', @Fld); $name_is = $_; s/_/\\_/g; # Replace "_" with "\_" if ( $opt_n && $not_first ) { printf "\\newpage\n"; } unless ($opt_f) {printf "\\subsection{%s (Source File: %s)}\n\n", $_, $FileBaseName;} else {printf "\\subsection{%s }\n\n", $_;} $have_name = 1; $not_first = 1; next LINE; }# end if }# end if # A new function # ------------------------- if ($Fld[1] eq '!FUNCTION:' ) { if ($prologue) { shift @Fld; shift @Fld; $_ = join(' ', @Fld); $name_is = $_; s/_/\\_/g; # Replace "_" with "\_" if ( $opt_n && $not_first ) { printf "\\newpage\n"; } unless ($opt_f) {printf "\\subsection{%s (Source File: %s)}\n\n", $_, $FileBaseName;} else {printf "\\subsection{%s }\n\n", $_;} $have_name = 1; $not_first = 1; next LINE; }# end if }# end if # Description: what follows will be regular LaTeX (no verbatim) # ------------------------------------------------------------- if (/!DESCRIPTION:/) { if ($prologue) { if ($verb) { printf "\\end{verbatim}"; printf "\n{\\sf DESCRIPTION:\\\\ }\n\n"; $verb = 0; } else { # probably never occurs }# end if if ($opt_x) { printf "\\begin{verbatim} "; $verb = 1; $first_verb = 1; } else { for ($i = 2; $i <= $#Fld - 1; $i++) { printf '%s ', $Fld[$i]; }# end for }# end if ### print " "; $have_desc = 1; next LINE; }# end if }# end if # Handle optional keywords (these will appear as verbatim) # -------------------------------------------------------- if ($prologue) { KEY: foreach $key ( @keys ) { if ( /$key/ ) { if ($verb) { printf "\\end{verbatim}"; $verb = 0; } else { printf "\n\\bigskip"; }# end if $k = sprintf('%s', $key); $ln = length($k); ###printf "\\subsection*{%s}\n", substr($k, 2, $ln - 1); ###printf "{\\Large \\em %s}\n", ucfirst lc substr($k, 2, $ln - 1); $_ = $key; if( /USES/ || /INPUT/ || /OUTPUT/ || /PARAMETERS/ || /VALUE/ || /ARGUMENTS/ ) { printf "{\\em %s}\n", substr($k, 1, $ln - 1); } # italics else { printf "{\\sf %s}\n", substr($k, 1, $ln - 1); # san serif }# end if printf "\\begin{verbatim} "; $verb = 1; $first_verb = 1; if ( $key eq "!INTERFACE:" ) { $have_intf = 1; } if ( $key eq "!CALLING SEQUENCE:" ) { $have_intf = 1; } if ( $key eq "!REVISION HISTORY:" ) { $have_hist = 1; } next LINE; }# end if }# end foreach }# end if # End of prologue # --------------- if ($Fld[0] eq $eop_string) { if ($verb) { print "\\end{verbatim}"; $verb = 0; }# end if $prologue = 0; # &check_if_all_there(); # check if all required keywords are there. if ( $opt_l ) { $Fld[0] = $boc_string;} else { next LINE; } }# end if unless ( $opt_s ) { # End of Internal Prologue # ------------------------ if ($Fld[0] eq $eopi_string) { if ($verb) { print "\\end{verbatim}"; $verb = 0; }# endif $prologue = 0; # &check_if_all_there(); # check if all required keywords are there. if ($opt_l) { $Fld[0] = $boc_string;} else { next LINE; } }# endif # # Beginning of source code section # -------------------------------- if ($Fld[0] eq $boc_string) { print ' '; print '%/////////////////////////////////////////////////////////////'; $first = 0; $prologue = 0; $source = 1; ### printf "\\subsection*{CONTENTS:}\n\n", $Fld[3]; ###printf "{\\sf CONTENTS:}"; printf "\n \\begin{verbatim}\n"; $verb = 1; next LINE; }# end if # End of source code # ------------------ if ($Fld[0] eq $eoc_string) { &do_eoc(); $prologue = 0; next LINE; }# end if # Beginning of example prologue # ----------------------------- if ($Fld[0] eq $boe_string) { if ( $source ) { &do_eoc(); } print ' '; print '%/////////////////////////////////////////////////////////////'; $first = 0; $prologue = 1; $verb = 0; $source = 0; next LINE; }# end if # End of example prologue # ----------------------- if ($Fld[0] eq $eoe_string) { if ($verb) { print "\\end{verbatim}"; $verb = 0; }# end if $prologue = 0; if ( $opt_l ) { $Fld[0] = $boc_string;} else { next LINE; } }# end if }# end unless # Prologue or Introduction, print regular line (except for !) # ----------------------------------------------------------- if ($prologue||$intro) { if ( $verb && $#Fld == 0 && ( $Fld[0] eq $comment_string ) ) { next LINE; # to eliminate excessive blanks }# end if if ( $Fld[1] eq "\\ev" ) { # special handling $_ = $comment_string . " \\end{verbatim}"; }# end if s/^$comment_string/ /; # replace comment string with blank # $line = sprintf('%s', $_); # not necessary -- comment str is absent # $ln = length($line); # not necessary -- comment str is absent unless ( $first_verb ) { printf "\n "; } printf '%s', $_; # printf '%s', substr($line, 1, $ln - 1); # comment str is absent $first_verb = 0; next LINE; }# end if # Source code: print the full line # -------------------------------- if ($source) { print $_; next LINE; }# end if }# end inner loop for processing each line of the input file # --------------------------------------------------------- }# end main loop for each command-line argument # -------------------------------------------- print $_; if ( $source ) { &do_eoc(); } print '%...............................................................'; # see comment above where these are originally set. #print "\\setlength{\\parskip}{\\oldparskip}"; #print "\\setlength{\\parindent}{\\oldparindent}"; #print "\\setlength{\\baselineskip}{\\oldbaselineskip}"; unless ( $opt_b ) { print "\\end{document}"; }#end unless #---------------------------------------------------------------------- sub CheckOpts # Checks options against a given list. Outputs error message # for any invalid option. # # Usage: # $rc = &CheckOpts ( options, valid_reg_options, # valid_sw_options, # quiet_mode ) # # character: options - options to be checked. (e.g. -df+x) The # list must begin with a positive or # negative sign. If no sign appears at the # beginning or by itself, then the argument # is not recognized as a list of options. # character: valid_reg_options - list of valid regular options. # (i.e. options that are associated only # eith negative sign.) # character: valid_sw_options - list of valid switch options. # (i.e. options that can be associated with # either a positive or negative sign. # logical: quiet mode (optional) If true then print no error # messages. # integer: rc - return code # = -1 if the arguement, options, is # not recognized as a list of options # = 0 if all options are valid. # > 0 for the number of invalid options. # { local($options, $valid_reg_options, $valid_sw_options, $quiet_mode ) = @_; if ( $options eq "+" || $options eq "-" ) {return -1} local(@Options) = split( / */, $options ); if ( $Options[ $[ ] ne "-" && $Options[ $[ ] ne "+" ) {return -1;} local($option, $option_sign, $valid_list, $pos); local($errs) = 0; foreach $option ( @Options ) { if ( $option eq "-" || $option eq "+" ) {$option_sign = $option;} else { if ( $option_sign eq "-" ) { $valid_list = $valid_reg_options . $valid_sw_options; } else { $valid_list = $valid_sw_options; } $pos = index ($valid_list,$option); if ( $pos < $[ && $quiet_mode ) { $errs++; print STDERR "Invalid option: $option_sign$option \n"; }# end if }# end if }# end foreach return $errs; }#end sub GetOpts sub GetOpts # Gets options. If an option is valid, then opt_[option] is # set to 0 or 1 as a side effect if the option is preceeded by # a positive or negative sign. # # Usage: # $rc = &GetOpts ( options, valid_options ) # # character: options - options to be checked. (e.g. -df+x) The # list must begin with a positive or # negative sign. If no sign appears at the # beginning or by itself, then the argument # is not recognized as a list of options. # character: valid_options - list of valid options (e.g. dfhx) # integer: rc - return code # = -1 if the arguement, options, is # not recognized as a list of options. # = 0 otherwise # { local($options,$valid_options) = @_; if ( $options eq "+" || $options eq "-" ) {return -1} local(@Options) = split( / */, $options ); if ( $Options[ $[ ] ne "-" && $Options[ $[ ] ne "+" ) {return -1;} local($option, $option_sign); foreach $option ( @Options ) { if ( $option eq "-" || $option eq "+" ) { $option_sign = $option; } else { if ( index ($valid_options,$option) >= $[ ) { if ( $option_sign eq "-" ) {${"opt_$option"} = 1;} if ( $option_sign eq "+" ) {${"opt_$option"} = 0;}; }# end if }# end if }# end foreach return 0; }#end sub GetOpts sub SetOpt # Sets option flags. For the last input option that is in a # list, the flag opt_[option] is set to 1 as a side effect. # For all other options in the list, opt_[option] is set to 0. # # Usage: # $rc = &SetOpt ( options, valid_options ) # # character: options - options to be checked. (e.g. -df+x) The # list must begin with a positive or # negative sign. If no sign appears at the # beginning or by itself, then the argument # is not recognized as a list of options. # character: valid_options - list of valid options (e.g. def ) # integer: rc - return code # = -1 if the arguement, options, is # not recognized as a list of options. # = 0 otherwise # Note: For the examples provided for the input arguments, # $opt_d = 0, $opt_e = 0, and $opt_f = 1, since the # input option, -f, was the last in the argument, # option. # { local($options,$valid_options) = @_; if ( $options eq "+" || $options eq "-" ) {return -1} local(@Options) = split( / */, $options ); local(@ValidOptions) = split( / */, $valid_options ); if ( $Options[ $[ ] ne "-" && $Options[ $[ ] ne "+" ) {return -1;} local($option, $option_sign); foreach $option ( @Options ) { if ( $option ne "-" && $option ne "+" ) { if ( index ($valid_options,$option) >= $[ ) { foreach $valid_option (@ValidOptions ) { ${"opt_$valid_option"} = 0; }# end foreach ${"opt_$option"} = 1; }# end if }# end if }# end foreach return 0; }#end sub SetOpt sub print_help { print "Usage: protex [-hbACFS] [+-nlsxf] [src_file(s)]"; print " "; print " Options:"; print " -h Help mode: list command line options"; print " -b Bare mode, meaning no preamble, etc."; print " +-n New Page for each subsection (wastes paper)"; print " +-l Listing mode, default is prologues only"; print " +-s Shut-up mode, i.e., ignore any code from BOC to EOC"; print " +-x No LaTeX mode, i.e., put !DESCRIPTION: in verbatim mode"; print " +-f No source file info"; print " -A Ada code"; print " -C C++ code"; print " -F F90 code"; print " -S Shell script"; print " "; print " The options can appear in any order. The options, -h and -b,"; print " affect the input from all files listed on command-line input."; print " Each of the remaining options effects only the input from the"; print " files listed after the option and prior to any overriding"; print " option. The plus sign turns off the option."; }# end sub print_help sub print_notice { print "% **** IMPORTANT NOTICE *****" ; print "% This LaTeX file has been automatically produced by ProTeX v. 1.1"; print "% Any changes made to this file will likely be lost next time"; print "% this file is regenerated from its source. Send questions "; print "% to Arlindo da Silva, dasilva\@gsfc.nasa.gov"; print " "; }# sub print_notice sub print_preamble { unless ( $opt_b ) { print "%------------------------ PREAMBLE --------------------------"; print "\\documentclass[a4paper,11pt]{article}"; print "\\usepackage{amsmath}"; print "\\usepackage{amssymb}"; print "\\usepackage{epsfig}"; print "\\usepackage{tabularx}"; print "\\usepackage{color}"; print "\\usepackage[linkbordercolor={0 0 1}]{hyperref}"; print "\\textheight 9in"; print "\\topmargin 0pt"; print "\\headsep 1cm"; print "\\headheight 0pt"; print "\\textwidth 6in"; print "\\oddsidemargin 0in"; print "\\evensidemargin 0in"; print "\\marginparpush 0pt"; print "\\pagestyle{plain}"; print "\\markboth{}{}"; print "%-------------------------------------------------------------"; }# end unless # in your main document before you include any protex-generated files # for the first time, if you define these three variables as length # settings (like this:) # \newlength{\oldparskip} # \newlength{\oldparindent} # \newlength{\oldbaselineskip} # then 1) comment in all the lines below, and 2) find the 3 reset lines # further down and comment in them as well. # then protex will override the paragraph and skip settings during # the source sections, but will restore the original document settings # at the end. if someone can figure out how to check to see if a # latex variable exists, and do a conditional section, we could make # this fully self-contained. # nsc feb 2003 #print "\\setlength{\\oldparskip}{\\parskip}"; print "\\setlength{\\parskip}{0pt}"; #print "\\setlength{\\oldparindent}{\\parindent}"; print "\\setlength{\\parindent}{0pt}"; #print "\\setlength{\\oldbaselineskip}{\\baselineskip}"; print "\\setlength{\\baselineskip}{11pt}"; }# end sub print_preamble sub print_macros { print " "; print "%--------------------- SHORT-HAND MACROS ----------------------"; print "\\def\\bv{\\begin{verbatim}}"; print "\\def\\ev\{\\end\{verbatim}}"; print "\\def\\be{\\begin{equation}}"; print "\\def\\ee{\\end{equation}}"; print "\\def\\bea{\\begin{eqnarray}}"; print "\\def\\eea{\\end{eqnarray}}"; print "\\def\\bi{\\begin{itemize}}"; print "\\def\\ei{\\end{itemize}}"; print "\\def\\bn{\\begin{enumerate}}"; print "\\def\\en{\\end{enumerate}}"; print "\\def\\bd{\\begin{description}}"; print "\\def\\ed{\\end{description}}"; print "\\def\\({\\left (}"; print "\\def\\){\\right )}"; print "\\def\\[{\\left [}"; print "\\def\\]{\\right ]}"; print "\\def\\<{\\left \\langle}"; print "\\def\\>{\\right \\rangle}"; print "\\def\\cI{{\\cal I}}"; print "\\def\\diag{\\mathop{\\rm diag}}"; print "\\def\\tr{\\mathop{\\rm tr}}"; print "%-------------------------------------------------------------"; print " "; print "%------------------------ Elk commands -----------------------"; print "\\newcommand{\\block}[2]{"; print "\\color{blue}\\subsection{\\tt #1}\\color{black}"; print "\\begin{tabularx}{\\textwidth}[h]{|l|X|c|c|}"; print "\\hline"; print "#2 \\\\"; print "\\hline"; print "\\end{tabularx}\\vskip 0.25cm"; print "}"; print "%-------------------------------------------------------------"; }# end sub print_macros sub do_beg { unless ( $opt_b ) { if ( $begdoc == 0 ) { if ( $tpage ) { print "\\title{@title}"; print "\\author{@author\\\\ {\\em @affiliation}}"; print "\\date{@date}"; } print "\\begin{document}"; if ( $tpage ) { print "\\pagecolor[rgb]{1,0.95,0.85}"; print "\\fcolorbox{black}{white}{\\fbox{"; print "\\begin{minipage}[t]{\\linewidth}"; print "\\maketitle"; print "\\end{minipage}}}"; print "\\thispagestyle{empty}"; print "\\newpage"; print "\\pagecolor{white}"; } print "\\tableofcontents"; print "\\newpage"; $begdoc = 1; } } }# end sub do_beg sub do_eoc { print ' '; if ($verb) { print "\\end{verbatim}"; $verb = 0; } $source = 0; }# end sub do_eoc sub set_missing { $have_name = 0; # have routine name? $have_desc = 0; # have description? $have_intf = 0; # have interface? $have_hist = 0; # have revision history? $name_is = "UNKNOWN"; }# end sub set_missing sub check_if_all_there { $have_name || die "ProTeX: invalid prologue, missing !ROUTINE: or !IROUTINE: in <$name_is>"; $have_desc || die "ProTeX: invalid prologue, missing !DESCRIPTION: in <$name_is>"; $have_intf || die "ProTeX: invalid prologue, missing !INTERFACE: in <$name_is>"; $have_hist || die "ProTeX: invalid prologue, missing !REVISION HISTORY: in <$name_is>"; }# end sub check_if_all_there elk-9.2.12/src/PaxHeaders/elk_silhouette.pdf0000644000000000000000000000013014536061313015740 xustar0029 mtime=1702388427.51950208 30 atime=1702388427.518502081 29 ctime=1702388427.51950208 elk-9.2.12/src/elk_silhouette.pdf0000644002504400250440000001426214536061313020471 0ustar00dewhurstdewhurst00000000000000%PDF-1.4 % 3 0 obj << /Length 4 0 R /Filter /FlateDecode >> stream xm[8rߵZ,ex <~yERӃF?̒(2/Iq\Qy1^i̳׫l%RgkIzY_:7uޯu^Y<ǫ|V^IS*:1_kVPzTt]gZ #s*3EIisjB,SsqT^LCsz֕_*JS ԫCTXx׼^ZS3KΖ<oX9Zgk'<)mι?{z$Eje{7j },Mmi1lX9,QfA#C4KosI9ize ߶KxKyR Y2w ))/9*W?̹e#KªD\3l;jz˓HZJҔ#4W}MyQGk_/$Xx Wsz2JQnEM6UqWWWG+z42ϢHP(02p+MHSkoĎ|3kr9"ٌ֬_9X"}NVɝ=M~yձ5R&|y/u`6cg &?WP(耟7ސ~M b[rj#[DԔ<l4Tܡyj?9uKh}17~!ǫ6R !_mٱIM_$uu/*xdKaao<~_Szl"$[~|nTcIM^QSr@:Vބe!vw4=>婸RܫLxD> cK]!Rf$] P@uHa=|nݱ>єY9#0$lvxC 4ȒA\N&,Rgİ\ `@ yI3ILU'1m}Nv|I+q;`H ~ 8Wd3I`p;A+7ac1^VHZ!L)ĭ 5+87ѼL<#ä IzEA%E"O硰wa(8[,Yk{}غ x43:Ү֬ܔ1c8hdRP0jx+B7z; c7,(48]v4ALCN=Gҝ%nDD2"#{tvV3"Z0w_s  Ylk?rnVHb+>O='r%z[BN+PF~}2JVOldӕZ 6Ӱ: Zwܜ_$I5/>c0:n=łH].T1;dXx @;L{D JƋ?n(+q3< b٫1vN;j4{"(Q3n(?'a3'!aϷdWGJ2~{7e :2U[-zT(xy@.p\?bRT-FZ 3U-=j2wрi ^47ܗ*kh{g6i_~)_`Q0IwhjoXeV2Dܮ])m8ptPBՄ}4hfS7F=j.P=$9(܏ ߱w 4uYn Ո}IN5ZTd䎧!xܮ]cv515f,|}4BٍNTYt^ڌ!5{]L&.E $Q?mG5nB!{oEOT6~Q洒`ޤ" 2L?|BB낫K{~SLE/VsCtwU+›ZGiҮk+,9F۶\fYl=AHA&!mmY`&lEN2_}h'0Yg's4+8!;-&5m \vVSsT>|#q}{46)NfD%ѰvNZIsN2B$EQQ &C\'oT希HZry1L^@_B^;A)$F0VSs^.P.F,/LRH%M/4@$wiOMH]TVt8.XЖZC Cu*~ ɯ@%o:ScRqN:腱ܚ= R40n&ViZm(q#=au勜>ؤ|QqYo)(ݔBHNvN x^8*;SЖ%d;IŐˉLwv!rw$#tFg2s)/0PYNDU[$S8';.tAnz L%9~t{%ĤrEN8wc>q-"H(뮾8R9C8@eyiseo3dP*Ã1G%z G22)n TkQ)Dv"E&sdKR,ɂj[AL{8ōj*+jU ^q$ZP3 .}UL&K&њ& :1`1%~fuƋF?o&r /Z.C|!ʗ?$?]o+A@t9{B4:8;1`qOhm1L@s&1nAMQ)>ǩ]`AYT}e펲3nwa/(uAh*bI:)P$Hϵ bƒs]{ zhS*"p%sRthbÇ.8nagX3tY*9p|om fO(9#=WݥOUiKn'|ܟ:\?2-wnle{1PUuBNQck24ɵf.ֻK6NeHt.fǞ)m%lIW ɩgy[Uh ڳVTxgZc5s8֭ FnmLƚj6i`W:jSIt765YhZظ[ןѴu63=>(ЁG%v"VLQD~py3l g$hkƍ>,~vexU@//,4J ֨Hi+A ;PE¿G׬-7O^74|aaTeƵɛ-"ƼbgnRt?OvM>xӰ[qزGp Ao?1+&`z8"e}qp7'˓Ywk#ngD}"e$QoyV{=~;paFʰS E9Ka{at3%Tcri(dV3oeD/tyd7FC8JCd18+;ǝE)&cM~7B5ƪO 3nW[E-oYh356V#o!2=&f~LJeo y2缻Ṝ*x =L?WS0ע I̶?3#7wXEnyL̨+=>y_^@҈:6[e r~¹88 7ZQOB04ǠQ|CMy-}njIwu0jƾ)(B?t-C0]*Q?]Hd)I6c\t=0}k#:b/Dw1׽_t)z] c>PL9Y5+M+?#iz퉜lQ%H2h,ƮK؁1Gݥ|aO>nײk<U"}/Gq>%RӧpW}As4tz˴$K kطFPBߨw* K[6q|Z}>}%Qs ;b~,h$fՕ[2aueҬt|wquQWʵ.w69Br\ }Qnp^U>qcwbyH)OH:Μ endstream endobj 4 0 obj 5438 endobj 2 0 obj << /ExtGState << /a0 << /CA 1 /ca 1 >> >> >> endobj 5 0 obj << /Type /Page /Parent 1 0 R /MediaBox [ 0 0 818.336792 550.414001 ] /Contents 3 0 R /Group << /Type /Group /S /Transparency /CS /DeviceRGB >> /Resources 2 0 R >> endobj 1 0 obj << /Type /Pages /Kids [ 5 0 R ] /Count 1 >> endobj 6 0 obj << /Creator (cairo 1.8.8 (http://cairographics.org)) /Producer (cairo 1.8.8 (http://cairographics.org)) >> endobj 7 0 obj << /Type /Catalog /Pages 1 0 R >> endobj xref 0 8 0000000000 65535 f 0000005838 00000 n 0000005552 00000 n 0000000015 00000 n 0000005529 00000 n 0000005624 00000 n 0000005903 00000 n 0000006028 00000 n trailer << /Size 8 /Root 7 0 R /Info 6 0 R >> startxref 6080 %%EOF elk-9.2.12/src/PaxHeaders/rmspaces0000644000000000000000000000013214536061314013770 xustar0030 mtime=1702388428.587500498 30 atime=1702388428.587500498 30 ctime=1702388428.587500498 elk-9.2.12/src/rmspaces0000755002504400250440000000021114536061314016507 0ustar00dewhurstdewhurst00000000000000#!/bin/bash while [ "$*" != "" ] do echo $1 sed -i 's/[ \t]*$//' $1 sed -i ':a;/^[ \n]*$/{$d;N;ba}' $1 echo >> $1 shift done elk-9.2.12/src/PaxHeaders/grepelk0000644000000000000000000000013214536061314013604 xustar0030 mtime=1702388428.589500495 30 atime=1702388428.589500495 30 ctime=1702388428.589500495 elk-9.2.12/src/grepelk0000755002504400250440000000064414536061314016335 0ustar00dewhurstdewhurst00000000000000#!/bin/bash echo echo "main code" grep "$@" *.f90 Makefile echo echo "spacegroup" grep "$@" spacegroup/*.f90 spacegroup/Makefile echo echo "eos" grep "$@" eos/*.f90 eos/Makefile echo echo "examples" grep -r "$@" ../examples/* echo echo "tests" grep -r "$@" ../tests/* echo echo "tests-libxc" grep -r "$@" ../tests-libxc/* echo echo "species" grep -r "$@" ../species/* echo echo "utilities" grep -r "$@" ../utilities/* elk-9.2.12/src/PaxHeaders/vimelk0000644000000000000000000000013214536061314013442 xustar0030 mtime=1702388428.590500494 30 atime=1702388428.590500494 30 ctime=1702388428.590500494 elk-9.2.12/src/vimelk0000755002504400250440000000213614536061314016171 0ustar00dewhurstdewhurst00000000000000#!/bin/bash if [ "$1" == "-d" ]; then rm -f ~/.vim/ftdetect/elk.vim rm -f ~/.vim/syntax/elk.vim echo echo "Syntax highlighting disabled for vim." echo exit fi rm -f elk.vim echo > elk.vim echo 'syn match elkComment "!.*$"' >> elk.vim echo 'syn match elkComment ":.*$"' >> elk.vim grep "case('" readinput.f90 | cut -d "'" -f2 | grep -v '^$' > vimelk.temp grep "case('" readinput.f90 | cut -d "'" -f4 | grep -v '^$' >> vimelk.temp grep "case('" readinput.f90 | cut -d "'" -f6 | grep -v '^$' >> vimelk.temp grep "case('" readinput.f90 | cut -d "'" -f8 | grep -v '^$' >> vimelk.temp awk '{print "syn match elkBlock '\''"$1"'\''";}' vimelk.temp >> elk.vim rm vimelk.temp echo >> elk.vim echo 'colorscheme zellner' >> elk.vim echo >> elk.vim echo 'hi link elkComment Comment' >> elk.vim echo 'hi link elkBlock Identifier' >> elk.vim mkdir -p ~/.vim/ftdetect mkdir -p ~/.vim/syntax echo "au BufRead,BufNewFile elk.in set filetype=elk" > ~/.vim/ftdetect/elk.vim mv elk.vim ~/.vim/syntax echo echo "Syntax highlighting enabled for vim." echo echo "To disable highlighting type:" echo " ./vimelk -d" echo elk-9.2.12/src/PaxHeaders/mpi_stub.f900000644000000000000000000000013214536061314014372 xustar0030 mtime=1702388428.604500473 30 atime=1702388428.604500473 30 ctime=1702388428.604500473 elk-9.2.12/src/mpi_stub.f900000644002504400250440000000317314536061314017120 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. ! Stub routines for MPI. module mpi integer mpi_comm_world integer mpi_in_place integer mpi_sum integer mpi_logical integer mpi_integer integer mpi_double_precision integer mpi_double_complex contains subroutine mpi_init(ierror) implicit none integer, intent(out) :: ierror ierror=0 end subroutine subroutine mpi_finalize(ierror) implicit none integer, intent(out) :: ierror ierror=0 end subroutine subroutine mpi_comm_dup(comm,newcomm,ierror) implicit none integer, intent(in) :: comm integer, intent(out) :: newcomm,ierror newcomm=comm ierror=0 end subroutine subroutine mpi_comm_size(comm,size,ierror) implicit none integer, intent(in) :: comm integer, intent(out) :: size,ierror size=1 ierror=0 end subroutine subroutine mpi_comm_rank(comm,rank,ierror) implicit none integer, intent(in) :: comm integer, intent(out) :: rank,ierror rank=0 ierror=0 end subroutine subroutine mpi_barrier(comm,ierror) implicit none integer, intent(in) :: comm integer, intent(out) :: ierror ierror=0 end subroutine subroutine mpi_bcast(buffer,count,datatype,root,comm,ierror) implicit none type(*), intent(in) :: buffer(..) integer, intent(in) :: count,datatype,root,comm integer, intent(out) :: ierror ierror=0 end subroutine subroutine mpi_allreduce(sendbuf,recvbuf,count,datatype,op,comm,ierror) implicit none type(*), intent(in) :: sendbuf(..),recvbuf(..) integer, intent(in) :: count,datatype,op,comm integer, intent(out) :: ierror ierror=0 end subroutine end module elk-9.2.12/src/PaxHeaders/omp_stub.f900000644000000000000000000000012714536061314014404 xustar0029 mtime=1702388428.60650047 29 atime=1702388428.60650047 29 ctime=1702388428.60650047 elk-9.2.12/src/omp_stub.f900000644002504400250440000000234714536061314017130 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. ! Stub routines for OpenMP. integer function omp_get_num_procs() implicit none omp_get_num_procs=1 end function integer function omp_get_max_threads() implicit none omp_get_max_threads=1 end function integer function omp_get_level() implicit none omp_get_level=0 end function subroutine omp_set_num_threads(num_threads) implicit none integer, intent(in) :: num_threads end subroutine subroutine omp_set_nested(nested) implicit none logical, intent(in) :: nested end subroutine subroutine omp_set_max_active_levels(max_levels) implicit none integer, intent(in) :: max_levels end subroutine subroutine omp_set_dynamic(dynamic) implicit none logical, intent(in) :: dynamic end subroutine subroutine omp_init_lock(lock) implicit none integer(8), intent(in) :: lock end subroutine subroutine omp_destroy_lock(lock) implicit none integer(8), intent(in) :: lock end subroutine subroutine omp_set_lock(lock) implicit none integer(8), intent(in) :: lock end subroutine subroutine omp_unset_lock(lock) implicit none integer(8), intent(in) :: lock end subroutine elk-9.2.12/src/PaxHeaders/mkl_stub.f900000644000000000000000000000013214536061314014370 xustar0030 mtime=1702388428.607500469 30 atime=1702388428.607500469 30 ctime=1702388428.607500469 elk-9.2.12/src/mkl_stub.f900000644002504400250440000000107714536061314017117 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. ! Stub routines for Intel MKL subroutine mkl_set_num_threads(num_threads) implicit none integer, intent(in) :: num_threads end subroutine integer function mkl_set_num_threads_local(num_threads) implicit none integer, intent(in) :: num_threads mkl_set_num_threads_local=0 end function subroutine mkl_set_dynamic(dynamic) implicit none logical, intent(in) :: dynamic end subroutine elk-9.2.12/src/PaxHeaders/libxcf90.f900000644000000000000000000000013214536061314014170 xustar0030 mtime=1702388428.623500445 30 atime=1702388428.621500448 30 ctime=1702388428.623500445 elk-9.2.12/src/libxcf90.f900000644002504400250440000037477414536061314016740 0ustar00dewhurstdewhurst00000000000000!! Copyright (C) 2016 Micael Oliveira !! 2020-2022 Susi Lehtola !! All rights reserved. !! !! This Source Code Form is subject to the terms of the Mozilla Public !! License, v. 2.0. If a copy of the MPL was not distributed with this !! file, You can obtain one at mozilla.org/MPL/2.0/. module xc_f90_lib_m use, intrinsic :: iso_c_binding implicit none private public :: & ! version xc_f90_version, & xc_f90_version_string, & ! literature reference xc_f90_reference, & xc_f90_reference_doi, & ! func_info xc_f90_func_info_t, & xc_f90_func_info_get_number, & xc_f90_func_info_get_kind, & xc_f90_func_info_get_name, & xc_f90_func_info_get_family, & xc_f90_func_info_get_references, & xc_f90_func_info_get_flags, & xc_f90_func_info_get_n_ext_params, & xc_f90_func_info_get_ext_params_name, & xc_f90_func_info_get_ext_params_description, & xc_f90_func_info_get_ext_params_default_value, & ! func_reference xc_f90_func_reference_t, & xc_f90_func_reference_get_ref, & xc_f90_func_reference_get_doi, & xc_f90_func_reference_get_bibtex, & ! func xc_f90_func_t, & xc_f90_func_init, & xc_f90_func_end, & xc_f90_func_get_info, & xc_f90_functional_get_name, & xc_f90_functional_get_number, & xc_f90_family_from_id, & xc_f90_number_of_functionals, & xc_f90_maximum_name_length, & xc_f90_available_functional_numbers, & xc_f90_available_functional_names, & xc_f90_func_set_dens_threshold, & xc_f90_func_set_zeta_threshold, & xc_f90_func_set_sigma_threshold, & xc_f90_func_set_tau_threshold, & xc_f90_func_set_ext_params, & xc_f90_func_set_ext_params_name, & ! mixed functional interfaces xc_f90_num_aux_funcs, & xc_f90_aux_func_ids, & xc_f90_aux_func_weights, & ! lda xc_f90_lda, & xc_f90_lda_exc, & xc_f90_lda_exc_vxc, & xc_f90_lda_exc_vxc_fxc, & xc_f90_lda_exc_vxc_fxc_kxc, & xc_f90_lda_vxc, & xc_f90_lda_vxc_fxc, & xc_f90_lda_vxc_fxc_kxc, & xc_f90_lda_fxc, & xc_f90_lda_kxc, & xc_f90_lda_lxc, & ! gga xc_f90_gga, & xc_f90_gga_exc, & xc_f90_gga_exc_vxc, & xc_f90_gga_exc_vxc_fxc, & xc_f90_gga_exc_vxc_fxc_kxc, & xc_f90_gga_vxc, & xc_f90_gga_vxc_fxc, & xc_f90_gga_vxc_fxc_kxc, & xc_f90_gga_fxc, & xc_f90_gga_kxc, & xc_f90_gga_lxc, & xc_f90_gga_ak13_get_asymptotic, & xc_f90_hyb_exx_coef, & xc_f90_hyb_cam_coef, & xc_f90_nlc_coef, & ! mgga xc_f90_mgga, & xc_f90_mgga_exc, & xc_f90_mgga_exc_vxc, & xc_f90_mgga_exc_vxc_fxc, & xc_f90_mgga_exc_vxc_fxc_kxc, & xc_f90_mgga_vxc, & xc_f90_mgga_vxc_fxc, & xc_f90_mgga_vxc_fxc_kxc, & xc_f90_mgga_fxc, & xc_f90_mgga_kxc, & xc_f90_mgga_lxc integer(c_int), parameter, public :: & XC_UNPOLARIZED = 1, & ! Spin unpolarized XC_POLARIZED = 2 ! Spin polarized integer(c_int), parameter, public :: & XC_NON_RELATIVISTIC = 0, & ! Functional includes or not relativistic XC_RELATIVISTIC = 1 ! corrections. Only available in some functionals. ! Kinds integer(c_int), parameter, public :: & XC_EXCHANGE = 0, & XC_CORRELATION = 1, & XC_EXCHANGE_CORRELATION = 2, & XC_KINETIC = 3 ! Families of xc functionals integer(c_int), parameter, public :: & XC_FAMILY_UNKNOWN = -1, & XC_FAMILY_NONE = 0, & XC_FAMILY_LDA = 1, & XC_FAMILY_GGA = 2, & XC_FAMILY_MGGA = 4, & XC_FAMILY_LCA = 8, & XC_FAMILY_OEP = 16, & XC_FAMILY_HYB_GGA = 32, & XC_FAMILY_HYB_MGGA = 64, & XC_FAMILY_HYB_LDA = 128 integer(c_int), parameter, public :: & XC_FLAGS_HAVE_EXC = 1, & XC_FLAGS_HAVE_VXC = 2, & XC_FLAGS_HAVE_FXC = 4, & XC_FLAGS_HAVE_KXC = 8, & XC_FLAGS_HAVE_LXC = 16, & XC_FLAGS_HAVE_ALL = 31, & ! The most common case XC_FLAGS_1D = 32, & XC_FLAGS_2D = 64, & XC_FLAGS_3D = 128, & XC_FLAGS_HYB_CAM = 256, & XC_FLAGS_HYB_CAMY = 512, & XC_FLAGS_VV10 = 1024, & XC_FLAGS_HYB_LC = 2048, & XC_FLAGS_HYB_LCY = 4096, & XC_FLAGS_STABLE = 8192, & XC_FLAGS_DEVELOPMENT = 16384, & XC_FLAGS_NEEDS_LAPLACIAN = 32768 integer(c_int), parameter, public :: & XC_TAU_EXPLICIT = 0, & XC_TAU_EXPANSION = 1 integer(c_int), parameter, public :: & XC_MAX_REFERENCES = 5 ! List of functionals ! Slater exchange integer(c_int), parameter, public :: XC_LDA_X = 1 ! Wigner integer(c_int), parameter, public :: XC_LDA_C_WIGNER = 2 ! Random Phase Approximation (RPA) integer(c_int), parameter, public :: XC_LDA_C_RPA = 3 ! Hedin & Lundqvist integer(c_int), parameter, public :: XC_LDA_C_HL = 4 ! Gunnarson & Lundqvist integer(c_int), parameter, public :: XC_LDA_C_GL = 5 ! Slaters Xalpha integer(c_int), parameter, public :: XC_LDA_C_XALPHA = 6 ! Vosko, Wilk & Nusair (VWN5) integer(c_int), parameter, public :: XC_LDA_C_VWN = 7 ! Vosko, Wilk & Nusair (VWN5_RPA) integer(c_int), parameter, public :: XC_LDA_C_VWN_RPA = 8 ! Perdew & Zunger integer(c_int), parameter, public :: XC_LDA_C_PZ = 9 ! Perdew & Zunger (Modified) integer(c_int), parameter, public :: XC_LDA_C_PZ_MOD = 10 ! Ortiz & Ballone (PZ parametrization) integer(c_int), parameter, public :: XC_LDA_C_OB_PZ = 11 ! Perdew & Wang integer(c_int), parameter, public :: XC_LDA_C_PW = 12 ! Perdew & Wang (modified) integer(c_int), parameter, public :: XC_LDA_C_PW_MOD = 13 ! Ortiz & Ballone (PW parametrization) integer(c_int), parameter, public :: XC_LDA_C_OB_PW = 14 ! AMGB (for 2D systems) integer(c_int), parameter, public :: XC_LDA_C_2D_AMGB = 15 ! PRM (for 2D systems) integer(c_int), parameter, public :: XC_LDA_C_2D_PRM = 16 ! von Barth & Hedin integer(c_int), parameter, public :: XC_LDA_C_VBH = 17 ! Casula, Sorella & Senatore integer(c_int), parameter, public :: XC_LDA_C_1D_CSC = 18 ! Slater exchange integer(c_int), parameter, public :: XC_LDA_X_2D = 19 ! Teter 93 integer(c_int), parameter, public :: XC_LDA_XC_TETER93 = 20 ! Exchange in 1D for an soft-Coulomb interaction integer(c_int), parameter, public :: XC_LDA_X_1D_SOFT = 21 ! Modified LSD (version 1) of Proynov and Salahub integer(c_int), parameter, public :: XC_LDA_C_ML1 = 22 ! Modified LSD (version 2) of Proynov and Salahub integer(c_int), parameter, public :: XC_LDA_C_ML2 = 23 ! Gombas integer(c_int), parameter, public :: XC_LDA_C_GOMBAS = 24 ! Perdew & Wang (fit to the RPA energy) integer(c_int), parameter, public :: XC_LDA_C_PW_RPA = 25 ! P-F Loos correlation LDA integer(c_int), parameter, public :: XC_LDA_C_1D_LOOS = 26 ! Ragot-Cortona integer(c_int), parameter, public :: XC_LDA_C_RC04 = 27 ! Vosko, Wilk & Nusair (VWN1) integer(c_int), parameter, public :: XC_LDA_C_VWN_1 = 28 ! Vosko, Wilk & Nusair (VWN2) integer(c_int), parameter, public :: XC_LDA_C_VWN_2 = 29 ! Vosko, Wilk & Nusair (VWN3) integer(c_int), parameter, public :: XC_LDA_C_VWN_3 = 30 ! Vosko, Wilk & Nusair (VWN4) integer(c_int), parameter, public :: XC_LDA_C_VWN_4 = 31 ! Minnesota GAM exhange functional integer(c_int), parameter, public :: XC_GGA_X_GAM = 32 ! Minnesota GAM correlation functional integer(c_int), parameter, public :: XC_GGA_C_GAM = 33 ! HCTH-A integer(c_int), parameter, public :: XC_GGA_X_HCTH_A = 34 ! Engel and Vosko integer(c_int), parameter, public :: XC_GGA_X_EV93 = 35 ! Dispersionless Density Functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_DLDF = 36 ! Dispersionless Density Functional integer(c_int), parameter, public :: XC_MGGA_C_DLDF = 37 ! Burke, Cancio, Gould, and Pittalis integer(c_int), parameter, public :: XC_GGA_X_BCGP = 38 ! acGGA, asymptotically corrected GGA correlation integer(c_int), parameter, public :: XC_GGA_C_ACGGA = 39 ! lambda_OC2(N) version of PBE integer(c_int), parameter, public :: XC_GGA_X_LAMBDA_OC2_N = 40 ! Revised Becke 86 with modified gradient correction integer(c_int), parameter, public :: XC_GGA_X_B86_R = 41 ! Zhao, Levy & Parr, Eq. (21) integer(c_int), parameter, public :: XC_MGGA_XC_ZLP = 42 ! Zhao, Levy & Parr, Eq. (20) integer(c_int), parameter, public :: XC_LDA_XC_ZLP = 43 ! lambda_CH(N) version of PBE integer(c_int), parameter, public :: XC_GGA_X_LAMBDA_CH_N = 44 ! lambda_LO(N) version of PBE integer(c_int), parameter, public :: XC_GGA_X_LAMBDA_LO_N = 45 ! HJS screened exchange B88 corrected version integer(c_int), parameter, public :: XC_GGA_X_HJS_B88_V2 = 46 ! Chiodo et al integer(c_int), parameter, public :: XC_GGA_C_Q2D = 47 ! Chiodo et al integer(c_int), parameter, public :: XC_GGA_X_Q2D = 48 ! Reparametrized PBE by del Campo, Gazquez, Trickey & Vela integer(c_int), parameter, public :: XC_GGA_X_PBE_MOL = 49 ! Thomas-Fermi kinetic energy integer(c_int), parameter, public :: XC_LDA_K_TF = 50 ! Lee and Parr Gaussian ansatz for the kinetic energy integer(c_int), parameter, public :: XC_LDA_K_LP = 51 ! Thomas-Fermi plus von Weiszaecker correction integer(c_int), parameter, public :: XC_GGA_K_TFVW = 52 ! interpolated version of revAPBE integer(c_int), parameter, public :: XC_GGA_K_REVAPBEINT = 53 ! interpolated version of APBE integer(c_int), parameter, public :: XC_GGA_K_APBEINT = 54 ! revised APBE integer(c_int), parameter, public :: XC_GGA_K_REVAPBE = 55 ! Armiento & Kuemmel 2013 integer(c_int), parameter, public :: XC_GGA_X_AK13 = 56 ! Meyer, Wang, and Young integer(c_int), parameter, public :: XC_GGA_K_MEYER = 57 ! Berland and Hyldgaard integer(c_int), parameter, public :: XC_GGA_X_LV_RPW86 = 58 ! PBE revised by Tognetti et al integer(c_int), parameter, public :: XC_GGA_X_PBE_TCA = 59 ! PBE for hybrid interfaces integer(c_int), parameter, public :: XC_GGA_X_PBEINT = 60 ! spin-dependent gradient correction to PBEint integer(c_int), parameter, public :: XC_GGA_C_ZPBEINT = 61 ! PBE for hybrid interfaces integer(c_int), parameter, public :: XC_GGA_C_PBEINT = 62 ! spin-dependent gradient correction to PBEsol integer(c_int), parameter, public :: XC_GGA_C_ZPBESOL = 63 ! oTPSS-D functional of Goerigk and Grimme integer(c_int), parameter, public :: XC_MGGA_XC_OTPSS_D = 64 ! oPBE-D functional of Goerigk and Grimme integer(c_int), parameter, public :: XC_GGA_XC_OPBE_D = 65 ! oPWLYP-D functional of Goerigk and Grimme integer(c_int), parameter, public :: XC_GGA_XC_OPWLYP_D = 66 ! oBLYP-D functional of Goerigk and Grimme integer(c_int), parameter, public :: XC_GGA_XC_OBLYP_D = 67 ! VMT{8,4} with constraint satisfaction with mu = mu_GE integer(c_int), parameter, public :: XC_GGA_X_VMT84_GE = 68 ! VMT{8,4} with constraint satisfaction with mu = mu_PBE integer(c_int), parameter, public :: XC_GGA_X_VMT84_PBE = 69 ! Vela, Medel, and Trickey with mu = mu_GE integer(c_int), parameter, public :: XC_GGA_X_VMT_GE = 70 ! Vela, Medel, and Trickey with mu = mu_PBE integer(c_int), parameter, public :: XC_GGA_X_VMT_PBE = 71 ! Colle and Salvetti integer(c_int), parameter, public :: XC_MGGA_C_CS = 72 ! Minnesota MN12-SX correlation functional integer(c_int), parameter, public :: XC_MGGA_C_MN12_SX = 73 ! Minnesota MN12-L correlation functional integer(c_int), parameter, public :: XC_MGGA_C_MN12_L = 74 ! Minnesota M11-L correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M11_L = 75 ! Minnesota M11 correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M11 = 76 ! Minnesota M08-SO correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M08_SO = 77 ! Minnesota M08 correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M08_HX = 78 ! Minnesota N12-SX correlation functional integer(c_int), parameter, public :: XC_GGA_C_N12_SX = 79 ! Minnesota N12 correlation functional integer(c_int), parameter, public :: XC_GGA_C_N12 = 80 ! Minnesota N12-SX exchange functional integer(c_int), parameter, public :: XC_HYB_GGA_X_N12_SX = 81 ! Minnesota N12 exchange functional integer(c_int), parameter, public :: XC_GGA_X_N12 = 82 ! regularized TPSS correlation integer(c_int), parameter, public :: XC_GGA_C_REGTPSS = 83 ! one-parameter progressive functional (Xalpha version) integer(c_int), parameter, public :: XC_GGA_C_OP_XALPHA = 84 ! one-parameter progressive functional (G96 version) integer(c_int), parameter, public :: XC_GGA_C_OP_G96 = 85 ! one-parameter progressive functional (PBE version) integer(c_int), parameter, public :: XC_GGA_C_OP_PBE = 86 ! one-parameter progressive functional (B88 version) integer(c_int), parameter, public :: XC_GGA_C_OP_B88 = 87 ! Filatov & Thiel correlation integer(c_int), parameter, public :: XC_GGA_C_FT97 = 88 ! PBE correlation to be used with the SSB exchange integer(c_int), parameter, public :: XC_GGA_C_SPBE = 89 ! Swart, Sola and Bickelhaupt correction to PBE integer(c_int), parameter, public :: XC_GGA_X_SSB_SW = 90 ! Swart, Sola and Bickelhaupt integer(c_int), parameter, public :: XC_GGA_X_SSB = 91 ! Swart, Sola and Bickelhaupt dispersion integer(c_int), parameter, public :: XC_GGA_X_SSB_D = 92 ! HCTH/407+ integer(c_int), parameter, public :: XC_GGA_XC_HCTH_407P = 93 ! HCTH p=7/6 integer(c_int), parameter, public :: XC_GGA_XC_HCTH_P76 = 94 ! HCTH p=1/4 integer(c_int), parameter, public :: XC_GGA_XC_HCTH_P14 = 95 ! Becke 97 GGA-1 integer(c_int), parameter, public :: XC_GGA_XC_B97_GGA1 = 96 ! HCTH-A integer(c_int), parameter, public :: XC_GGA_C_HCTH_A = 97 ! BPCCAC (GRAC for the energy) integer(c_int), parameter, public :: XC_GGA_X_BPCCAC = 98 ! Tognetti, Cortona, Adamo (revised) integer(c_int), parameter, public :: XC_GGA_C_REVTCA = 99 ! Tognetti, Cortona, Adamo integer(c_int), parameter, public :: XC_GGA_C_TCA = 100 ! Perdew, Burke & Ernzerhof integer(c_int), parameter, public :: XC_GGA_X_PBE = 101 ! Revised PBE from Zhang & Yang integer(c_int), parameter, public :: XC_GGA_X_PBE_R = 102 ! Becke 86 integer(c_int), parameter, public :: XC_GGA_X_B86 = 103 ! Herman Xalphabeta GGA integer(c_int), parameter, public :: XC_GGA_X_HERMAN = 104 ! Becke 86 with modified gradient correction integer(c_int), parameter, public :: XC_GGA_X_B86_MGC = 105 ! Becke 88 integer(c_int), parameter, public :: XC_GGA_X_B88 = 106 ! Gill 96 integer(c_int), parameter, public :: XC_GGA_X_G96 = 107 ! Perdew & Wang 86 integer(c_int), parameter, public :: XC_GGA_X_PW86 = 108 ! Perdew & Wang 91 integer(c_int), parameter, public :: XC_GGA_X_PW91 = 109 ! Handy & Cohen OPTX 01 integer(c_int), parameter, public :: XC_GGA_X_OPTX = 110 ! dePristo & Kress 87 version R1 integer(c_int), parameter, public :: XC_GGA_X_DK87_R1 = 111 ! dePristo & Kress 87 version R2 integer(c_int), parameter, public :: XC_GGA_X_DK87_R2 = 112 ! Lacks & Gordon 93 integer(c_int), parameter, public :: XC_GGA_X_LG93 = 113 ! Filatov & Thiel 97 (version A) integer(c_int), parameter, public :: XC_GGA_X_FT97_A = 114 ! Filatov & Thiel 97 (version B) integer(c_int), parameter, public :: XC_GGA_X_FT97_B = 115 ! Perdew, Burke & Ernzerhof SOL integer(c_int), parameter, public :: XC_GGA_X_PBE_SOL = 116 ! Hammer, Hansen, and Norskov integer(c_int), parameter, public :: XC_GGA_X_RPBE = 117 ! Wu & Cohen integer(c_int), parameter, public :: XC_GGA_X_WC = 118 ! mPW91 of Adamo & Barone integer(c_int), parameter, public :: XC_GGA_X_MPW91 = 119 ! Armiento & Mattsson 05 integer(c_int), parameter, public :: XC_GGA_X_AM05 = 120 ! Madsen 07 integer(c_int), parameter, public :: XC_GGA_X_PBEA = 121 ! Adamo & Barone modification to PBE integer(c_int), parameter, public :: XC_GGA_X_MPBE = 122 ! Extended PBE by Xu & Goddard III integer(c_int), parameter, public :: XC_GGA_X_XPBE = 123 ! Becke 86 with modified gradient correction for 2D integer(c_int), parameter, public :: XC_GGA_X_2D_B86_MGC = 124 ! Bayesian best fit for the enhancement factor integer(c_int), parameter, public :: XC_GGA_X_BAYESIAN = 125 ! Reparametrized PBE by Pedroza, Silva & Capelle integer(c_int), parameter, public :: XC_GGA_X_PBE_JSJR = 126 ! Becke 88 in 2D integer(c_int), parameter, public :: XC_GGA_X_2D_B88 = 127 ! Becke 86 in 2D integer(c_int), parameter, public :: XC_GGA_X_2D_B86 = 128 ! Perdew, Burke & Ernzerhof in 2D integer(c_int), parameter, public :: XC_GGA_X_2D_PBE = 129 ! Perdew, Burke & Ernzerhof integer(c_int), parameter, public :: XC_GGA_C_PBE = 130 ! Lee, Yang & Parr integer(c_int), parameter, public :: XC_GGA_C_LYP = 131 ! Perdew 86 integer(c_int), parameter, public :: XC_GGA_C_P86 = 132 ! Perdew, Burke & Ernzerhof SOL integer(c_int), parameter, public :: XC_GGA_C_PBE_SOL = 133 ! Perdew & Wang 91 integer(c_int), parameter, public :: XC_GGA_C_PW91 = 134 ! Armiento & Mattsson 05 integer(c_int), parameter, public :: XC_GGA_C_AM05 = 135 ! Extended PBE by Xu & Goddard III integer(c_int), parameter, public :: XC_GGA_C_XPBE = 136 ! Langreth & Mehl integer(c_int), parameter, public :: XC_GGA_C_LM = 137 ! Reparametrized PBE by Pedroza, Silva & Capelle integer(c_int), parameter, public :: XC_GGA_C_PBE_JRGX = 138 ! opt-Becke 88 for vdW integer(c_int), parameter, public :: XC_GGA_X_OPTB88_VDW = 139 ! Reparametrized PBE for vdW integer(c_int), parameter, public :: XC_GGA_X_PBEK1_VDW = 140 ! Reparametrized PBE for vdW integer(c_int), parameter, public :: XC_GGA_X_OPTPBE_VDW = 141 ! Regularized PBE integer(c_int), parameter, public :: XC_GGA_X_RGE2 = 142 ! Regularized PBE integer(c_int), parameter, public :: XC_GGA_C_RGE2 = 143 ! Refitted Perdew & Wang 86 integer(c_int), parameter, public :: XC_GGA_X_RPW86 = 144 ! Exchange part of Keal and Tozer version 1 integer(c_int), parameter, public :: XC_GGA_X_KT1 = 145 ! Keal and Tozer, version 2 integer(c_int), parameter, public :: XC_GGA_XC_KT2 = 146 ! Wilson & Levy integer(c_int), parameter, public :: XC_GGA_C_WL = 147 ! Wilson & Ivanov integer(c_int), parameter, public :: XC_GGA_C_WI = 148 ! Modified Becke 88 for proton transfer integer(c_int), parameter, public :: XC_GGA_X_MB88 = 149 ! Second-order generalized gradient approximation integer(c_int), parameter, public :: XC_GGA_X_SOGGA = 150 ! Second-order generalized gradient approximation 2011 integer(c_int), parameter, public :: XC_GGA_X_SOGGA11 = 151 ! Second-order generalized gradient approximation 2011 integer(c_int), parameter, public :: XC_GGA_C_SOGGA11 = 152 ! Wilson & Ivanov initial version integer(c_int), parameter, public :: XC_GGA_C_WI0 = 153 ! Tozer and Handy v. 1 integer(c_int), parameter, public :: XC_GGA_XC_TH1 = 154 ! Tozer and Handy v. 2 integer(c_int), parameter, public :: XC_GGA_XC_TH2 = 155 ! Tozer and Handy v. 3 integer(c_int), parameter, public :: XC_GGA_XC_TH3 = 156 ! Tozer and Handy v. 4 integer(c_int), parameter, public :: XC_GGA_XC_TH4 = 157 ! C09x to be used with the VdW of Rutgers-Chalmers integer(c_int), parameter, public :: XC_GGA_X_C09X = 158 ! To be used with HYB_GGA_X_SOGGA11_X integer(c_int), parameter, public :: XC_GGA_C_SOGGA11_X = 159 ! van Leeuwen & Baerends integer(c_int), parameter, public :: XC_GGA_X_LB = 160 ! HCTH/93 integer(c_int), parameter, public :: XC_GGA_XC_HCTH_93 = 161 ! HCTH/120 integer(c_int), parameter, public :: XC_GGA_XC_HCTH_120 = 162 ! HCTH/147 integer(c_int), parameter, public :: XC_GGA_XC_HCTH_147 = 163 ! HCTH/407 integer(c_int), parameter, public :: XC_GGA_XC_HCTH_407 = 164 ! EDF1 integer(c_int), parameter, public :: XC_GGA_XC_EDF1 = 165 ! XLYP integer(c_int), parameter, public :: XC_GGA_XC_XLYP = 166 ! Keal and Tozer, version 1 integer(c_int), parameter, public :: XC_GGA_XC_KT1 = 167 ! lsPBE, a PW91-like modification of PBE exchange integer(c_int), parameter, public :: XC_GGA_X_LSPBE = 168 ! lsRPBE, a PW91-like modification of RPBE integer(c_int), parameter, public :: XC_GGA_X_LSRPBE = 169 ! Becke 97-D integer(c_int), parameter, public :: XC_GGA_XC_B97_D = 170 ! Becke 86 reoptimized for use with vdW functional of Dion et al integer(c_int), parameter, public :: XC_GGA_X_OPTB86B_VDW = 171 ! Revised Minnesota M11 correlation functional integer(c_int), parameter, public :: XC_MGGA_C_REVM11 = 172 ! PBE1W integer(c_int), parameter, public :: XC_GGA_XC_PBE1W = 173 ! mPWLYP1w integer(c_int), parameter, public :: XC_GGA_XC_MPWLYP1W = 174 ! PBELYP1W integer(c_int), parameter, public :: XC_GGA_XC_PBELYP1W = 175 ! acGGA+, asymptotically corrected GGA correlation+ integer(c_int), parameter, public :: XC_GGA_C_ACGGAP = 176 ! LDA hybrid exchange (LDA0) integer(c_int), parameter, public :: XC_HYB_LDA_XC_LDA0 = 177 ! CAM version of LDA0 integer(c_int), parameter, public :: XC_HYB_LDA_XC_CAM_LDA0 = 178 ! Becke 88 reoptimized with the 6-311G** basis set integer(c_int), parameter, public :: XC_GGA_X_B88_6311G = 179 ! Nearly correct asymptotic potential integer(c_int), parameter, public :: XC_GGA_X_NCAP = 180 ! NCAP exchange + P86 correlation integer(c_int), parameter, public :: XC_GGA_XC_NCAP = 181 ! van Leeuwen & Baerends modified integer(c_int), parameter, public :: XC_GGA_X_LBM = 182 ! Exchange form based on Ou-Yang and Levy v.2 integer(c_int), parameter, public :: XC_GGA_X_OL2 = 183 ! mu fixed from the semiclassical neutral atom integer(c_int), parameter, public :: XC_GGA_X_APBE = 184 ! mu fixed from the semiclassical neutral atom integer(c_int), parameter, public :: XC_GGA_K_APBE = 185 ! mu fixed from the semiclassical neutral atom integer(c_int), parameter, public :: XC_GGA_C_APBE = 186 ! Tran and Wesolowski set 1 (Table II) integer(c_int), parameter, public :: XC_GGA_K_TW1 = 187 ! Tran and Wesolowski set 2 (Table II) integer(c_int), parameter, public :: XC_GGA_K_TW2 = 188 ! Tran and Wesolowski set 3 (Table II) integer(c_int), parameter, public :: XC_GGA_K_TW3 = 189 ! Tran and Wesolowski set 4 (Table II) integer(c_int), parameter, public :: XC_GGA_K_TW4 = 190 ! Haas, Tran, Blaha, and Schwarz integer(c_int), parameter, public :: XC_GGA_X_HTBS = 191 ! Constantin et al based on the Airy gas integer(c_int), parameter, public :: XC_GGA_X_AIRY = 192 ! Local Airy Gas integer(c_int), parameter, public :: XC_GGA_X_LAG = 193 ! Functional for organometallic chemistry integer(c_int), parameter, public :: XC_GGA_XC_MOHLYP = 194 ! Functional for barrier heights integer(c_int), parameter, public :: XC_GGA_XC_MOHLYP2 = 195 ! Tozer and Handy v. FL integer(c_int), parameter, public :: XC_GGA_XC_TH_FL = 196 ! Tozer and Handy v. FC integer(c_int), parameter, public :: XC_GGA_XC_TH_FC = 197 ! Tozer and Handy v. FCFO integer(c_int), parameter, public :: XC_GGA_XC_TH_FCFO = 198 ! Tozer and Handy v. FCO integer(c_int), parameter, public :: XC_GGA_XC_TH_FCO = 199 ! Optimized correlation functional of Cohen and Handy integer(c_int), parameter, public :: XC_GGA_C_OPTC = 200 ! Local tau approximation integer(c_int), parameter, public :: XC_MGGA_X_LTA = 201 ! Tao, Perdew, Staroverov & Scuseria integer(c_int), parameter, public :: XC_MGGA_X_TPSS = 202 ! Minnesota M06-L exchange functional integer(c_int), parameter, public :: XC_MGGA_X_M06_L = 203 ! GVT4 (X part of VSXC) integer(c_int), parameter, public :: XC_MGGA_X_GVT4 = 204 ! tau-HCTH from Boese and Handy integer(c_int), parameter, public :: XC_MGGA_X_TAU_HCTH = 205 ! Becke-Roussel 89, gamma = 0.8 integer(c_int), parameter, public :: XC_MGGA_X_BR89 = 206 ! Becke & Johnson 06 integer(c_int), parameter, public :: XC_MGGA_X_BJ06 = 207 ! Tran & Blaha 09 integer(c_int), parameter, public :: XC_MGGA_X_TB09 = 208 ! Rasanen, Pittalis & Proetto 09 integer(c_int), parameter, public :: XC_MGGA_X_RPP09 = 209 ! Pittalis-Rasanen-Helbig-Gross 2007 integer(c_int), parameter, public :: XC_MGGA_X_2D_PRHG07 = 210 ! PRHG07 with Pittalis-Rasanen-Proetto 2010 correction integer(c_int), parameter, public :: XC_MGGA_X_2D_PRHG07_PRP10 = 211 ! revised Tao, Perdew, Staroverov & Scuseria integer(c_int), parameter, public :: XC_MGGA_X_REVTPSS = 212 ! Perdew, Kurth, Zupan, and Blaha integer(c_int), parameter, public :: XC_MGGA_X_PKZB = 213 ! Becke-Roussel 89, gamma = 1.0 integer(c_int), parameter, public :: XC_MGGA_X_BR89_1 = 214 ! Engel, Chevary, Macdonald and Vosko integer(c_int), parameter, public :: XC_GGA_X_ECMV92 = 215 ! Perdew, Burke & Ernzerhof based on VWN correlation integer(c_int), parameter, public :: XC_GGA_C_PBE_VWN = 216 ! Perdew 86 with more accurate value for ftilde integer(c_int), parameter, public :: XC_GGA_C_P86_FT = 217 ! RATIONAL$^{p}$ by Lehtomaki and Lopez-Acevedo (by default $p=3/2$, $C_{2}=0.7687$) integer(c_int), parameter, public :: XC_GGA_K_RATIONAL_P = 218 ! PG1 (Pauli-Gaussian) functional by Constantin, Fabiano, and Della Sala integer(c_int), parameter, public :: XC_GGA_K_PG1 = 219 ! PGSL025 (Pauli-Gaussian) functional by Constantin, Fabiano, and Della Sala integer(c_int), parameter, public :: XC_MGGA_K_PGSL025 = 220 ! MS exchange of Sun, Xiao, and Ruzsinszky integer(c_int), parameter, public :: XC_MGGA_X_MS0 = 221 ! MS1 exchange of Sun, et al integer(c_int), parameter, public :: XC_MGGA_X_MS1 = 222 ! MS2 exchange of Sun, et al integer(c_int), parameter, public :: XC_MGGA_X_MS2 = 223 ! MS2 hybrid exchange of Sun, et al integer(c_int), parameter, public :: XC_HYB_MGGA_X_MS2H = 224 ! Tsuneda and Hirao integer(c_int), parameter, public :: XC_MGGA_X_TH = 225 ! Minnesota M11-L exchange functional integer(c_int), parameter, public :: XC_MGGA_X_M11_L = 226 ! Minnesota MN12-L exchange functional integer(c_int), parameter, public :: XC_MGGA_X_MN12_L = 227 ! MS2 exchange of Sun, et al with revised value for c integer(c_int), parameter, public :: XC_MGGA_X_MS2_REV = 228 ! Cancio and Chou 2006 integer(c_int), parameter, public :: XC_MGGA_XC_CC06 = 229 ! Exchange for accurate virtual orbital energies integer(c_int), parameter, public :: XC_MGGA_X_MK00 = 230 ! Tao, Perdew, Staroverov & Scuseria integer(c_int), parameter, public :: XC_MGGA_C_TPSS = 231 ! VSXC (correlation part) integer(c_int), parameter, public :: XC_MGGA_C_VSXC = 232 ! Minnesota M06-L correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M06_L = 233 ! Minnesota M06-HF correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M06_HF = 234 ! Minnesota M06 correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M06 = 235 ! Minnesota M06-2X correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M06_2X = 236 ! Minnesota M05 correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M05 = 237 ! Minnesota M05-2X correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M05_2X = 238 ! Perdew, Kurth, Zupan, and Blaha integer(c_int), parameter, public :: XC_MGGA_C_PKZB = 239 ! Becke correlation 95 integer(c_int), parameter, public :: XC_MGGA_C_BC95 = 240 ! revised TPSS correlation integer(c_int), parameter, public :: XC_MGGA_C_REVTPSS = 241 ! TPSSLYP1W integer(c_int), parameter, public :: XC_MGGA_XC_TPSSLYP1W = 242 ! Exchange for accurate virtual orbital energies (v. B) integer(c_int), parameter, public :: XC_MGGA_X_MK00B = 243 ! functional with balanced localization integer(c_int), parameter, public :: XC_MGGA_X_BLOC = 244 ! Modified Tao, Perdew, Staroverov & Scuseria integer(c_int), parameter, public :: XC_MGGA_X_MODTPSS = 245 ! Semilocal dynamical correlation integer(c_int), parameter, public :: XC_GGA_C_PBELOC = 246 ! Semilocal dynamical correlation integer(c_int), parameter, public :: XC_MGGA_C_TPSSLOC = 247 ! Minnesota MN12-SX hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_MN12_SX = 248 ! mBEEF exchange integer(c_int), parameter, public :: XC_MGGA_X_MBEEF = 249 ! mBEEF-vdW exchange integer(c_int), parameter, public :: XC_MGGA_X_MBEEFVDW = 250 ! Tao and Mo 2016 correlation integer(c_int), parameter, public :: XC_MGGA_C_TM = 251 ! Perdew 86 based on VWN5 correlation integer(c_int), parameter, public :: XC_GGA_C_P86VWN = 252 ! Perdew 86 based on VWN5 correlation, with more accurate value for ftilde integer(c_int), parameter, public :: XC_GGA_C_P86VWN_FT = 253 ! B97M-V exchange-correlation functional integer(c_int), parameter, public :: XC_MGGA_XC_B97M_V = 254 ! Vydrov and Van Voorhis integer(c_int), parameter, public :: XC_GGA_XC_VV10 = 255 ! Jemmer-Knowles meta-GGA exchange integer(c_int), parameter, public :: XC_MGGA_X_JK = 256 ! MVS exchange of Sun, Perdew, and Ruzsinszky integer(c_int), parameter, public :: XC_MGGA_X_MVS = 257 ! PBE for formation energies integer(c_int), parameter, public :: XC_GGA_C_PBEFE = 258 ! Karasiev, Sjostrom, Dufty & Trickey integer(c_int), parameter, public :: XC_LDA_XC_KSDT = 259 ! Minnesota MN15-L exchange functional integer(c_int), parameter, public :: XC_MGGA_X_MN15_L = 260 ! Minnesota MN15-L correlation functional integer(c_int), parameter, public :: XC_MGGA_C_MN15_L = 261 ! one-parameter progressive functional (PW91 version) integer(c_int), parameter, public :: XC_GGA_C_OP_PW91 = 262 ! SCAN exchange of Sun, Ruzsinszky, and Perdew integer(c_int), parameter, public :: XC_MGGA_X_SCAN = 263 ! SCAN hybrid exchange (SCAN0) integer(c_int), parameter, public :: XC_HYB_MGGA_X_SCAN0 = 264 ! PBE for formation energies integer(c_int), parameter, public :: XC_GGA_X_PBEFE = 265 ! version of B97 by Cohen and Handy integer(c_int), parameter, public :: XC_HYB_GGA_XC_B97_1P = 266 ! SCAN correlation of Sun, Ruzsinszky, and Perdew integer(c_int), parameter, public :: XC_MGGA_C_SCAN = 267 ! Minnesota MN15 hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_MN15 = 268 ! Minnesota MN15 correlation functional integer(c_int), parameter, public :: XC_MGGA_C_MN15 = 269 ! Correct Asymptotic Potential integer(c_int), parameter, public :: XC_GGA_X_CAP = 270 ! Non-empirical (excogitated) B88 functional of Becke and Elliott integer(c_int), parameter, public :: XC_GGA_X_EB88 = 271 ! Reparametrized PBE by del Campo, Gazquez, Trickey & Vela integer(c_int), parameter, public :: XC_GGA_C_PBE_MOL = 272 ! PBEmol0 integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBE_MOL0 = 273 ! PBEsol0 integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBE_SOL0 = 274 ! PBEbeta0 integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBEB0 = 275 ! PBEmolbeta0 integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBE_MOLB0 = 276 ! gamma-TFvW form by Acharya et al [$g = 1 - 1.513/N^{0.35}]$ integer(c_int), parameter, public :: XC_GGA_K_ABSP3 = 277 ! gamma-TFvW form by Acharya et al [$g = l = 1/(1 + 1.332/N^{1/3})$] integer(c_int), parameter, public :: XC_GGA_K_ABSP4 = 278 ! Boese-Martin for kinetics integer(c_int), parameter, public :: XC_HYB_MGGA_X_BMK = 279 ! Boese-Martin correlation for kinetics integer(c_int), parameter, public :: XC_GGA_C_BMK = 280 ! correlation part of tau-hcth integer(c_int), parameter, public :: XC_GGA_C_TAU_HCTH = 281 ! Hybrid version of tau-HCTH integer(c_int), parameter, public :: XC_HYB_MGGA_X_TAU_HCTH = 282 ! correlation part of hyb-tau-hcth integer(c_int), parameter, public :: XC_GGA_C_HYB_TAU_HCTH = 283 ! Becke 2000 integer(c_int), parameter, public :: XC_MGGA_X_B00 = 284 ! BEEF-vdW exchange integer(c_int), parameter, public :: XC_GGA_X_BEEFVDW = 285 ! BEEF-vdW exchange-correlation integer(c_int), parameter, public :: XC_GGA_XC_BEEFVDW = 286 ! Chachiyo simple 2 parameter correlation integer(c_int), parameter, public :: XC_LDA_C_CHACHIYO = 287 ! high local exchange 2017 integer(c_int), parameter, public :: XC_MGGA_XC_HLE17 = 288 ! Liu-Parr correlation integer(c_int), parameter, public :: XC_LDA_C_LP96 = 289 ! PBE50 integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBE50 = 290 ! Gradient-regulated connection-based correction for the PBE exchange integer(c_int), parameter, public :: XC_GGA_X_PBETRANS = 291 ! SCAN + rVV10 correlation integer(c_int), parameter, public :: XC_MGGA_C_SCAN_RVV10 = 292 ! Minnesota revM06-L exchange functional integer(c_int), parameter, public :: XC_MGGA_X_REVM06_L = 293 ! Minnesota revM06-L correlation functional integer(c_int), parameter, public :: XC_MGGA_C_REVM06_L = 294 ! Minnesota M08-HX hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M08_HX = 295 ! Minnesota M08-SO hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M08_SO = 296 ! Minnesota M11 hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M11 = 297 ! Chachiyo exchange integer(c_int), parameter, public :: XC_GGA_X_CHACHIYO = 298 ! TPSS for surface adsorption integer(c_int), parameter, public :: XC_MGGA_X_RTPSS = 299 ! MS2beta exchange of Furness and Sun integer(c_int), parameter, public :: XC_MGGA_X_MS2B = 300 ! MS2beta* exchange of Furness and Sun integer(c_int), parameter, public :: XC_MGGA_X_MS2BS = 301 ! MVSbeta exchange by Furness and Sun integer(c_int), parameter, public :: XC_MGGA_X_MVSB = 302 ! MVSbeta* exchange by Furness and Sun integer(c_int), parameter, public :: XC_MGGA_X_MVSBS = 303 ! Revised Minnesota M11 hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_REVM11 = 304 ! Revised Minnesota M06 hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_REVM06 = 305 ! Revised Minnesota M06 correlation functional integer(c_int), parameter, public :: XC_MGGA_C_REVM06 = 306 ! Chachiyo simple 2 parameter correlation with modified spin scaling integer(c_int), parameter, public :: XC_LDA_C_CHACHIYO_MOD = 307 ! Karasiev reparameterization of Chachiyo integer(c_int), parameter, public :: XC_LDA_C_KARASIEV_MOD = 308 ! Chachiyo simple GGA correlation integer(c_int), parameter, public :: XC_GGA_C_CHACHIYO = 309 ! Minnesota M06-SX short-range hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M06_SX = 310 ! Minnesota M06-SX correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M06_SX = 311 ! Revised Swart, Sola and Bickelhaupt dispersion integer(c_int), parameter, public :: XC_GGA_X_REVSSB_D = 312 ! ccDF: coupled-cluster motivated density functional integer(c_int), parameter, public :: XC_GGA_C_CCDF = 313 ! HF + LYP correlation integer(c_int), parameter, public :: XC_HYB_GGA_XC_HFLYP = 314 ! B3P86, NWChem version integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3P86_NWCHEM = 315 ! PW91, alternate version with more digits integer(c_int), parameter, public :: XC_GGA_X_PW91_MOD = 316 ! Xie, Wu, and Zhao interpolation ansatz without fitting parameters integer(c_int), parameter, public :: XC_LDA_C_W20 = 317 ! Corrected KSDT by Karasiev, Dufty and Trickey integer(c_int), parameter, public :: XC_LDA_XC_CORRKSDT = 318 ! Filatov and Thiel 1998 meta-GGA exchange integer(c_int), parameter, public :: XC_MGGA_X_FT98 = 319 ! Perdew, Burke & Ernzerhof with less precise value for beta integer(c_int), parameter, public :: XC_GGA_X_PBE_MOD = 320 ! Perdew, Burke & Ernzerhof with parameter values used in Gaussian integer(c_int), parameter, public :: XC_GGA_X_PBE_GAUSSIAN = 321 ! Perdew, Burke & Ernzerhof with parameters from Gaussian integer(c_int), parameter, public :: XC_GGA_C_PBE_GAUSSIAN = 322 ! Tao, Perdew, Staroverov & Scuseria with parameters from Gaussian integer(c_int), parameter, public :: XC_MGGA_C_TPSS_GAUSSIAN = 323 ! Nearly correct asymptotic potential revised integer(c_int), parameter, public :: XC_GGA_X_NCAPR = 324 ! Becke 97-3c by Grimme et. al. integer(c_int), parameter, public :: XC_GGA_XC_B97_3C = 327 ! Self-interaction corrected correlation functional by Schmidt et al integer(c_int), parameter, public :: XC_MGGA_C_CC = 387 ! Iso-orbital corrected LDA correlation by Lebeda et al integer(c_int), parameter, public :: XC_MGGA_C_CCALDA = 388 ! BR3P86 hybrid meta-GGA from Neumann and Handy integer(c_int), parameter, public :: XC_HYB_MGGA_XC_BR3P86 = 389 ! CASE21: Constrained And Smoothed semi-Empirical 2021 functional integer(c_int), parameter, public :: XC_HYB_GGA_XC_CASE21 = 390 ! Revised regTM correlation by Jana et al integer(c_int), parameter, public :: XC_MGGA_C_RREGTM = 391 ! PBE-2X: PBE0 with 56% exact exchange integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBE_2X = 392 ! PBE38: PBE0 with 3/8 = 37.5% exact exchange integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBE38 = 393 ! B3LYP with VWN functional 3 instead of RPA integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3LYP3 = 394 ! CAM-O3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAM_O3LYP = 395 ! TPSS0 with 25% exact exchange integer(c_int), parameter, public :: XC_HYB_MGGA_XC_TPSS0 = 396 ! Becke 1994 meta-GGA correlation integer(c_int), parameter, public :: XC_MGGA_C_B94 = 397 ! Becke 1994 hybrid meta-GGA integer(c_int), parameter, public :: XC_HYB_MGGA_XC_B94_HYB = 398 ! wB97X-D3 range-separated functional integer(c_int), parameter, public :: XC_HYB_GGA_XC_WB97X_D3 = 399 ! LC version of BLYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_BLYP = 400 ! The original (ACM, B3PW91) hybrid of Becke integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3PW91 = 401 ! B3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3LYP = 402 ! B3P86 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3P86 = 403 ! O3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_O3LYP = 404 ! mPW1K integer(c_int), parameter, public :: XC_HYB_GGA_XC_MPW1K = 405 ! PBEH (PBE0) integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBEH = 406 ! Becke 97 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B97 = 407 ! Becke 97-1 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B97_1 = 408 ! APF hybrid functional integer(c_int), parameter, public :: XC_HYB_GGA_XC_APF = 409 ! Becke 97-2 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B97_2 = 410 ! X3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_X3LYP = 411 ! B1WC integer(c_int), parameter, public :: XC_HYB_GGA_XC_B1WC = 412 ! Boese-Martin for Kinetics integer(c_int), parameter, public :: XC_HYB_GGA_XC_B97_K = 413 ! Becke 97-3 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B97_3 = 414 ! MPW3PW of Adamo & Barone integer(c_int), parameter, public :: XC_HYB_GGA_XC_MPW3PW = 415 ! B1LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_B1LYP = 416 ! B1PW91 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B1PW91 = 417 ! mPW1PW integer(c_int), parameter, public :: XC_HYB_GGA_XC_MPW1PW = 418 ! MPW3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_MPW3LYP = 419 ! SB98 (1a) integer(c_int), parameter, public :: XC_HYB_GGA_XC_SB98_1A = 420 ! SB98 (1b) integer(c_int), parameter, public :: XC_HYB_GGA_XC_SB98_1B = 421 ! SB98 (1c) integer(c_int), parameter, public :: XC_HYB_GGA_XC_SB98_1C = 422 ! SB98 (2a) integer(c_int), parameter, public :: XC_HYB_GGA_XC_SB98_2A = 423 ! SB98 (2b) integer(c_int), parameter, public :: XC_HYB_GGA_XC_SB98_2B = 424 ! SB98 (2c) integer(c_int), parameter, public :: XC_HYB_GGA_XC_SB98_2C = 425 ! Hybrid based on SOGGA11 form integer(c_int), parameter, public :: XC_HYB_GGA_X_SOGGA11_X = 426 ! HSE03 integer(c_int), parameter, public :: XC_HYB_GGA_XC_HSE03 = 427 ! HSE06 integer(c_int), parameter, public :: XC_HYB_GGA_XC_HSE06 = 428 ! HJS hybrid screened exchange PBE version integer(c_int), parameter, public :: XC_HYB_GGA_XC_HJS_PBE = 429 ! HJS hybrid screened exchange PBE_SOL version integer(c_int), parameter, public :: XC_HYB_GGA_XC_HJS_PBE_SOL = 430 ! HJS hybrid screened exchange B88 version integer(c_int), parameter, public :: XC_HYB_GGA_XC_HJS_B88 = 431 ! HJS hybrid screened exchange B97x version integer(c_int), parameter, public :: XC_HYB_GGA_XC_HJS_B97X = 432 ! CAM version of B3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAM_B3LYP = 433 ! CAM version of B3LYP, tuned for excitations and properties integer(c_int), parameter, public :: XC_HYB_GGA_XC_TUNED_CAM_B3LYP = 434 ! BHandH i.e. BHLYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_BHANDH = 435 ! BHandHLYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_BHANDHLYP = 436 ! B3LYP with RC04 LDA integer(c_int), parameter, public :: XC_HYB_GGA_XC_MB3LYP_RC04 = 437 ! Minnesota M05 hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M05 = 438 ! Minnesota M05-2X hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M05_2X = 439 ! Mixture of B88 with BC95 (B1B95) integer(c_int), parameter, public :: XC_HYB_MGGA_XC_B88B95 = 440 ! Mixture of B86 with BC95 integer(c_int), parameter, public :: XC_HYB_MGGA_XC_B86B95 = 441 ! Mixture of PW86 with BC95 integer(c_int), parameter, public :: XC_HYB_MGGA_XC_PW86B95 = 442 ! Mixture of B88 with BC95 from Zhao and Truhlar integer(c_int), parameter, public :: XC_HYB_MGGA_XC_BB1K = 443 ! Minnesota M06-HF hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M06_HF = 444 ! Mixture of mPW91 with BC95 from Zhao and Truhlar integer(c_int), parameter, public :: XC_HYB_MGGA_XC_MPW1B95 = 445 ! Mixture of mPW91 with BC95 for kinetics integer(c_int), parameter, public :: XC_HYB_MGGA_XC_MPWB1K = 446 ! Mixture of X with BC95 integer(c_int), parameter, public :: XC_HYB_MGGA_XC_X1B95 = 447 ! Mixture of X with BC95 for kinetics integer(c_int), parameter, public :: XC_HYB_MGGA_XC_XB1K = 448 ! Minnesota M06 hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M06 = 449 ! Minnesota M06-2X hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M06_2X = 450 ! Mixture of PW91 with BC95 from Zhao and Truhlar integer(c_int), parameter, public :: XC_HYB_MGGA_XC_PW6B95 = 451 ! Mixture of PW91 with BC95 from Zhao and Truhlar for kinetics integer(c_int), parameter, public :: XC_HYB_MGGA_XC_PWB6K = 452 ! MPW with 1 par. for metals/LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_MPWLYP1M = 453 ! Revised B3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_REVB3LYP = 454 ! CAMY version of BLYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAMY_BLYP = 455 ! PBE0-1/3 integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBE0_13 = 456 ! TPSSh integer(c_int), parameter, public :: XC_HYB_MGGA_XC_TPSSH = 457 ! revTPSSh integer(c_int), parameter, public :: XC_HYB_MGGA_XC_REVTPSSH = 458 ! B3LYP* integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3LYPS = 459 ! Global hybrid for vertical ionization potentials integer(c_int), parameter, public :: XC_HYB_GGA_XC_QTP17 = 460 ! B3LYP-MCM1 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3LYP_MCM1 = 461 ! B3LYP-MCM2 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3LYP_MCM2 = 462 ! wB97 range-separated functional integer(c_int), parameter, public :: XC_HYB_GGA_XC_WB97 = 463 ! wB97X range-separated functional integer(c_int), parameter, public :: XC_HYB_GGA_XC_WB97X = 464 ! Long-range corrected short-range hybrid PBE (LRC-wPBEh) by Rohrdanz, Martins and Herbert integer(c_int), parameter, public :: XC_HYB_GGA_XC_LRC_WPBEH = 465 ! wB97X-V range-separated functional integer(c_int), parameter, public :: XC_HYB_GGA_XC_WB97X_V = 466 ! LCY version of PBE integer(c_int), parameter, public :: XC_HYB_GGA_XC_LCY_PBE = 467 ! LCY version of BLYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_LCY_BLYP = 468 ! Vydrov and Van Voorhis integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_VV10 = 469 ! CAMY version of B3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAMY_B3LYP = 470 ! wB97X-D range-separated functional integer(c_int), parameter, public :: XC_HYB_GGA_XC_WB97X_D = 471 ! hPBEint integer(c_int), parameter, public :: XC_HYB_GGA_XC_HPBEINT = 472 ! Long-range corrected PBE (LRC-wPBE) by Rohrdanz, Martins and Herbert integer(c_int), parameter, public :: XC_HYB_GGA_XC_LRC_WPBE = 473 ! MVSh hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_MVSH = 474 ! B3LYP with VWN functional 5 instead of RPA integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3LYP5 = 475 ! EDF2 integer(c_int), parameter, public :: XC_HYB_GGA_XC_EDF2 = 476 ! Correct Asymptotic Potential hybrid integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAP0 = 477 ! Long-range corrected PBE (LC-wPBE) by Vydrov and Scuseria integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_WPBE = 478 ! HSE12 integer(c_int), parameter, public :: XC_HYB_GGA_XC_HSE12 = 479 ! HSE12 (short-range version) integer(c_int), parameter, public :: XC_HYB_GGA_XC_HSE12S = 480 ! HSEsol integer(c_int), parameter, public :: XC_HYB_GGA_XC_HSE_SOL = 481 ! CAM-B3LYP retuned using ionization potentials of water integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAM_QTP_01 = 482 ! mPW1LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_MPW1LYP = 483 ! mPW1PBE integer(c_int), parameter, public :: XC_HYB_GGA_XC_MPW1PBE = 484 ! Kang-Musgrave hybrid integer(c_int), parameter, public :: XC_HYB_GGA_XC_KMLYP = 485 ! Long-range corrected PBE (LC-wPBE) by Weintraub, Henderson and Scuseria integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_WPBE_WHS = 486 ! Long-range corrected short-range hybrid PBE (LC-wPBE) by Weintraub, Henderson and Scuseria integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_WPBEH_WHS = 487 ! Long-range corrected PBE (LC-wPBE) by Weintraub, Henderson and Scuseria integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_WPBE08_WHS = 488 ! Long-range corrected PBE (LC-wPBE) by Weintraub, Henderson and Scuseria integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_WPBESOL_WHS = 489 ! CAM-B3LYP retuned using ionization potentials of water integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAM_QTP_00 = 490 ! CAM-B3LYP retuned using ionization potentials of water integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAM_QTP_02 = 491 ! CAM-B3LYP retuned using ionization potentials of water integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_QTP = 492 ! Regularized SCAN exchange by Bartok and Yates integer(c_int), parameter, public :: XC_MGGA_X_RSCAN = 493 ! Regularized SCAN correlation by Bartok and Yates integer(c_int), parameter, public :: XC_MGGA_C_RSCAN = 494 ! Swart 2012 GGA exchange integer(c_int), parameter, public :: XC_GGA_X_S12G = 495 ! Swart 2012 hybrid exchange integer(c_int), parameter, public :: XC_HYB_GGA_X_S12H = 496 ! Re-regularized SCAN exchange by Furness et al integer(c_int), parameter, public :: XC_MGGA_X_R2SCAN = 497 ! Re-regularized SCAN correlation by Furness et al integer(c_int), parameter, public :: XC_MGGA_C_R2SCAN = 498 ! BLYP35 integer(c_int), parameter, public :: XC_HYB_GGA_XC_BLYP35 = 499 ! von Weiszaecker correction to Thomas-Fermi integer(c_int), parameter, public :: XC_GGA_K_VW = 500 ! Second-order gradient expansion of the kinetic energy density integer(c_int), parameter, public :: XC_GGA_K_GE2 = 501 ! TF-lambda-vW form by Golden (l = 13/45) integer(c_int), parameter, public :: XC_GGA_K_GOLDEN = 502 ! TF-lambda-vW form by Yonei and Tomishima (l = 1/5) integer(c_int), parameter, public :: XC_GGA_K_YT65 = 503 ! TF-lambda-vW form by Baltin (l = 5/9) integer(c_int), parameter, public :: XC_GGA_K_BALTIN = 504 ! TF-lambda-vW form by Lieb (l = 0.185909191) integer(c_int), parameter, public :: XC_GGA_K_LIEB = 505 ! gamma-TFvW form by Acharya et al [$g = 1 - 1.412/N^{1/3}$] integer(c_int), parameter, public :: XC_GGA_K_ABSP1 = 506 ! gamma-TFvW form by Acharya et al [$g = 1 - 1.332/N^{1/3}$] integer(c_int), parameter, public :: XC_GGA_K_ABSP2 = 507 ! gamma-TFvW form by Gazquez and Robles integer(c_int), parameter, public :: XC_GGA_K_GR = 508 ! gamma-TFvW form by Ludena integer(c_int), parameter, public :: XC_GGA_K_LUDENA = 509 ! gamma-TFvW form by Ghosh and Parr integer(c_int), parameter, public :: XC_GGA_K_GP85 = 510 ! Pearson 1992 integer(c_int), parameter, public :: XC_GGA_K_PEARSON = 511 ! Ou-Yang and Levy v.1 integer(c_int), parameter, public :: XC_GGA_K_OL1 = 512 ! Ou-Yang and Levy v.2 integer(c_int), parameter, public :: XC_GGA_K_OL2 = 513 ! Fuentealba & Reyes (B88 version) integer(c_int), parameter, public :: XC_GGA_K_FR_B88 = 514 ! Fuentealba & Reyes (PW86 version) integer(c_int), parameter, public :: XC_GGA_K_FR_PW86 = 515 ! DePristo and Kress integer(c_int), parameter, public :: XC_GGA_K_DK = 516 ! Perdew integer(c_int), parameter, public :: XC_GGA_K_PERDEW = 517 ! Vitos, Skriver, and Kollar integer(c_int), parameter, public :: XC_GGA_K_VSK = 518 ! Vitos, Johansson, Kollar, and Skriver integer(c_int), parameter, public :: XC_GGA_K_VJKS = 519 ! Ernzerhof integer(c_int), parameter, public :: XC_GGA_K_ERNZERHOF = 520 ! Lembarki & Chermette integer(c_int), parameter, public :: XC_GGA_K_LC94 = 521 ! Lee, Lee & Parr integer(c_int), parameter, public :: XC_GGA_K_LLP = 522 ! Thakkar 1992 integer(c_int), parameter, public :: XC_GGA_K_THAKKAR = 523 ! short-range part of the PBE (default w=0 gives PBEh) integer(c_int), parameter, public :: XC_GGA_X_WPBEH = 524 ! HJS screened exchange PBE version integer(c_int), parameter, public :: XC_GGA_X_HJS_PBE = 525 ! HJS screened exchange PBE_SOL version integer(c_int), parameter, public :: XC_GGA_X_HJS_PBE_SOL = 526 ! HJS screened exchange B88 version integer(c_int), parameter, public :: XC_GGA_X_HJS_B88 = 527 ! HJS screened exchange B97x version integer(c_int), parameter, public :: XC_GGA_X_HJS_B97X = 528 ! Short-range recipe for B88 functional - erf integer(c_int), parameter, public :: XC_GGA_X_ITYH = 529 ! Short-range recipe for B88 functional - Yukawa integer(c_int), parameter, public :: XC_GGA_X_SFAT = 530 ! wB97M-V exchange-correlation functional integer(c_int), parameter, public :: XC_HYB_MGGA_XC_WB97M_V = 531 ! Slater exchange with relativistic corrections integer(c_int), parameter, public :: XC_LDA_X_REL = 532 ! Semiclassical GGA at fourth order integer(c_int), parameter, public :: XC_GGA_X_SG4 = 533 ! Semiclassical GGA at fourth order integer(c_int), parameter, public :: XC_GGA_C_SG4 = 534 ! Gilbert and Gill 1999 integer(c_int), parameter, public :: XC_GGA_X_GG99 = 535 ! LDA constructed from slab-like systems of 1 electron integer(c_int), parameter, public :: XC_LDA_XC_1D_EHWLRG_1 = 536 ! LDA constructed from slab-like systems of 2 electrons integer(c_int), parameter, public :: XC_LDA_XC_1D_EHWLRG_2 = 537 ! LDA constructed from slab-like systems of 3 electrons integer(c_int), parameter, public :: XC_LDA_XC_1D_EHWLRG_3 = 538 ! PBE power integer(c_int), parameter, public :: XC_GGA_X_PBEPOW = 539 ! Tao and Mo 2016 exchange integer(c_int), parameter, public :: XC_MGGA_X_TM = 540 ! meta-GGA version of VT{8,4} GGA integer(c_int), parameter, public :: XC_MGGA_X_VT84 = 541 ! TPSS with correct surface asymptotics integer(c_int), parameter, public :: XC_MGGA_X_SA_TPSS = 542 ! Perdew and Constantin 2007 integer(c_int), parameter, public :: XC_MGGA_K_PC07 = 543 ! Gilbert and Gill 1999 (mixed) integer(c_int), parameter, public :: XC_GGA_X_KGG99 = 544 ! high local exchange 2016 integer(c_int), parameter, public :: XC_GGA_XC_HLE16 = 545 ! Short-range LDA exchange with error function kernel (erfc) integer(c_int), parameter, public :: XC_LDA_X_ERF = 546 ! Lee-Parr reparametrization A integer(c_int), parameter, public :: XC_LDA_XC_LP_A = 547 ! Lee-Parr reparametrization B integer(c_int), parameter, public :: XC_LDA_XC_LP_B = 548 ! Rae self-energy corrected exchange integer(c_int), parameter, public :: XC_LDA_X_RAE = 549 ! Wigner including kinetic energy contribution integer(c_int), parameter, public :: XC_LDA_K_ZLP = 550 ! McWeeny 76 integer(c_int), parameter, public :: XC_LDA_C_MCWEENY = 551 ! Brual & Rothstein 78 integer(c_int), parameter, public :: XC_LDA_C_BR78 = 552 ! GGA component of SCAN integer(c_int), parameter, public :: XC_GGA_C_SCAN_E0 = 553 ! Proynov and Kong 2009 integer(c_int), parameter, public :: XC_LDA_C_PK09 = 554 ! GapC integer(c_int), parameter, public :: XC_GGA_C_GAPC = 555 ! Gaploc integer(c_int), parameter, public :: XC_GGA_C_GAPLOC = 556 ! another spin-dependent correction to PBEint integer(c_int), parameter, public :: XC_GGA_C_ZVPBEINT = 557 ! another spin-dependent correction to PBEsol integer(c_int), parameter, public :: XC_GGA_C_ZVPBESOL = 558 ! Takkar and McCarthy reparametrization integer(c_int), parameter, public :: XC_GGA_C_TM_LYP = 559 ! Thakkar and McCarthy reparametrization integer(c_int), parameter, public :: XC_GGA_C_TM_PBE = 560 ! Wilson 94 (Eq. 25) integer(c_int), parameter, public :: XC_GGA_C_W94 = 561 ! Krieger, Chen, Iafrate, and Savin integer(c_int), parameter, public :: XC_MGGA_C_KCIS = 562 ! Hybrid based on KCIS integer(c_int), parameter, public :: XC_HYB_MGGA_XC_B0KCIS = 563 ! Lee & Parr, Eq. (56) integer(c_int), parameter, public :: XC_MGGA_XC_LP90 = 564 ! A dynamical correlation functional integer(c_int), parameter, public :: XC_GGA_C_CS1 = 565 ! MPW1KCIS for barrier heights integer(c_int), parameter, public :: XC_HYB_MGGA_XC_MPW1KCIS = 566 ! MPWKCIS1K for barrier heights integer(c_int), parameter, public :: XC_HYB_MGGA_XC_MPWKCIS1K = 567 ! PBE1KCIS for binding energies integer(c_int), parameter, public :: XC_HYB_MGGA_XC_PBE1KCIS = 568 ! TPSS1KCIS for thermochemistry and kinetics integer(c_int), parameter, public :: XC_HYB_MGGA_XC_TPSS1KCIS = 569 ! Becke 88 reoptimized to be used with tau1 integer(c_int), parameter, public :: XC_GGA_X_B88M = 570 ! Meta-GGA correlation by Becke integer(c_int), parameter, public :: XC_MGGA_C_B88 = 571 ! B5050LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_B5050LYP = 572 ! Wigner with corresponding LYP parameters integer(c_int), parameter, public :: XC_LDA_C_OW_LYP = 573 ! Optimized Wigner integer(c_int), parameter, public :: XC_LDA_C_OW = 574 ! GX functional of Loos integer(c_int), parameter, public :: XC_MGGA_X_GX = 575 ! PBE-GX functional of Loos integer(c_int), parameter, public :: XC_MGGA_X_PBE_GX = 576 ! Groth, Dornheim, Sjostrom, Malone, Foulkes, Bonitz integer(c_int), parameter, public :: XC_LDA_XC_GDSMFB = 577 ! Gordon and Kim 1972 integer(c_int), parameter, public :: XC_LDA_C_GK72 = 578 ! Karasiev reparameterization of Chachiyo integer(c_int), parameter, public :: XC_LDA_C_KARASIEV = 579 ! Liu-Parr kinetic integer(c_int), parameter, public :: XC_LDA_K_LP96 = 580 ! revised SCAN integer(c_int), parameter, public :: XC_MGGA_X_REVSCAN = 581 ! revised SCAN integer(c_int), parameter, public :: XC_MGGA_C_REVSCAN = 582 ! revised SCAN hybrid exchange (SCAN0) integer(c_int), parameter, public :: XC_HYB_MGGA_X_REVSCAN0 = 583 ! SCAN + VV10 correlation integer(c_int), parameter, public :: XC_MGGA_C_SCAN_VV10 = 584 ! REVSCAN + VV10 correlation integer(c_int), parameter, public :: XC_MGGA_C_REVSCAN_VV10 = 585 ! Becke-Roussel 89 with an explicit inversion of x(y), gamma = 0.8 integer(c_int), parameter, public :: XC_MGGA_X_BR89_EXPLICIT = 586 ! Keal and Tozer, version 3 integer(c_int), parameter, public :: XC_GGA_XC_KT3 = 587 ! Baer and Neuhauser, gamma=1 integer(c_int), parameter, public :: XC_HYB_LDA_XC_BN05 = 588 ! Livshits and Baer, empirical functional also used for IP tuning integer(c_int), parameter, public :: XC_HYB_GGA_XC_LB07 = 589 ! Long-range LDA correlation functional integer(c_int), parameter, public :: XC_LDA_C_PMGB06 = 590 ! Combined analytical theory with Monte Carlo sampling integer(c_int), parameter, public :: XC_GGA_K_GDS08 = 591 ! As GDS08 but for an electron gas with spin integer(c_int), parameter, public :: XC_GGA_K_GHDS10 = 592 ! Reparametrized GHDS10 integer(c_int), parameter, public :: XC_GGA_K_GHDS10R = 593 ! Trickey, Karasiev, and Vela integer(c_int), parameter, public :: XC_GGA_K_TKVLN = 594 ! Three parameter PBE-like expansion integer(c_int), parameter, public :: XC_GGA_K_PBE3 = 595 ! Four parameter PBE-like expansion integer(c_int), parameter, public :: XC_GGA_K_PBE4 = 596 ! Intermediate form between PBE3 and PBE4 integer(c_int), parameter, public :: XC_GGA_K_EXP4 = 597 ! Becke 98 integer(c_int), parameter, public :: XC_HYB_MGGA_XC_B98 = 598 ! Neural network LDA from Tozer et al integer(c_int), parameter, public :: XC_LDA_XC_TIH = 599 ! Exchange in 1D for an exponentially screened interaction integer(c_int), parameter, public :: XC_LDA_X_1D_EXPONENTIAL = 600 ! Short-range recipe for PBE functional - Yukawa integer(c_int), parameter, public :: XC_GGA_X_SFAT_PBE = 601 ! Becke-Roussel 89 with an explicit inversion of x(y), gamma = 1.0 integer(c_int), parameter, public :: XC_MGGA_X_BR89_EXPLICIT_1 = 602 ! Regularized TPSS integer(c_int), parameter, public :: XC_MGGA_X_REGTPSS = 603 ! Functional derivative recovered from the stray LB94 potential integer(c_int), parameter, public :: XC_GGA_X_FD_LB94 = 604 ! Revised FD_LB94 integer(c_int), parameter, public :: XC_GGA_X_FD_REVLB94 = 605 ! PBEloc variation with enhanced compatibility with exact exchange integer(c_int), parameter, public :: XC_GGA_C_ZVPBELOC = 606 ! Hybrid based on APBE integer(c_int), parameter, public :: XC_HYB_GGA_XC_APBE0 = 607 ! Hybrid based in APBE and zvPBEloc integer(c_int), parameter, public :: XC_HYB_GGA_XC_HAPBE = 608 ! JS17 meta-GGA for 2D integer(c_int), parameter, public :: XC_MGGA_X_2D_JS17 = 609 ! Similar to CAM-B3LYP, but trying to reduce the many-electron self-interaction integer(c_int), parameter, public :: XC_HYB_GGA_XC_RCAM_B3LYP = 610 ! hybrid fitted to carbon NMR shifts integer(c_int), parameter, public :: XC_HYB_GGA_XC_WC04 = 611 ! hybrid fitted to proton NMR shifts integer(c_int), parameter, public :: XC_HYB_GGA_XC_WP04 = 612 ! Luo-Karasiev-Trickey GGA kinetic integer(c_int), parameter, public :: XC_GGA_K_LKT = 613 ! CAM version of B3LYP, tuned for TDDFT integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAMH_B3LYP = 614 ! Long-range corrected short-range hybrid PBE (whPBE0) by Shao et al integer(c_int), parameter, public :: XC_HYB_GGA_XC_WHPBE0 = 615 ! Three parameter PBE-like expansion integer(c_int), parameter, public :: XC_GGA_K_PBE2 = 616 ! L0.4 by Laricchia et al integer(c_int), parameter, public :: XC_MGGA_K_L04 = 617 ! L0.6 by Laricchia et al integer(c_int), parameter, public :: XC_MGGA_K_L06 = 618 ! VT84F by Karasiev et al integer(c_int), parameter, public :: XC_GGA_K_VT84F = 619 ! LGAP by Constantin et al integer(c_int), parameter, public :: XC_GGA_K_LGAP = 620 ! Reduced derivative approximation by Karasiev et al integer(c_int), parameter, public :: XC_MGGA_K_RDA = 621 ! Short-range recipe for OPTX functional integer(c_int), parameter, public :: XC_GGA_X_ITYH_OPTX = 622 ! Short-range recipe for PBE functional integer(c_int), parameter, public :: XC_GGA_X_ITYH_PBE = 623 ! Short-range LYP by Ai, Fang, and Su integer(c_int), parameter, public :: XC_GGA_C_LYPR = 624 ! LC version of BLYP for electron affinities integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_BLYP_EA = 625 ! Regularized Tao and Mo exchange integer(c_int), parameter, public :: XC_MGGA_X_REGTM = 626 ! Second-order gradient expansion integer(c_int), parameter, public :: XC_MGGA_K_GEA2 = 627 ! Fourth-order gradient expansion integer(c_int), parameter, public :: XC_MGGA_K_GEA4 = 628 ! mGGA-rev functional by Cancio, Stewart, and Kuna (a=1) integer(c_int), parameter, public :: XC_MGGA_K_CSK1 = 629 ! mGGA-rev functional by Cancio, Stewart, and Kuna (a=4) integer(c_int), parameter, public :: XC_MGGA_K_CSK4 = 630 ! mGGAloc-rev functional by Cancio, Stewart, and Kuna (a=1) integer(c_int), parameter, public :: XC_MGGA_K_CSK_LOC1 = 631 ! mGGAloc-rev functional by Cancio, Stewart, and Kuna (a=4) integer(c_int), parameter, public :: XC_MGGA_K_CSK_LOC4 = 632 ! LGAP-GE by Constantin et al integer(c_int), parameter, public :: XC_GGA_K_LGAP_GE = 633 ! Reoptimized PC07 by Mejia-Rodriguez and Trickey integer(c_int), parameter, public :: XC_MGGA_K_PC07_OPT = 634 ! empirically optimized gamma-TFvW form integer(c_int), parameter, public :: XC_GGA_K_TFVW_OPT = 635 ! LC version of B88 integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_BOP = 636 ! LC version of PBE integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_PBEOP = 637 ! Krieger, Chen, and Kurth integer(c_int), parameter, public :: XC_MGGA_C_KCISK = 638 ! LC version of BLYP with correlation only in the short range integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_BLYPR = 639 ! Modified CAM-B3LYP by Day, Nguyen and Pachter integer(c_int), parameter, public :: XC_HYB_GGA_XC_MCAM_B3LYP = 640 ! Short-range LDA exchange with Yukawa attenuation integer(c_int), parameter, public :: XC_LDA_X_YUKAWA = 641 ! Re-regularized SCAN correlation with larger value for eta integer(c_int), parameter, public :: XC_MGGA_C_R2SCAN01 = 642 ! Revised correlation energy for MGGAC exchange functional integer(c_int), parameter, public :: XC_MGGA_C_RMGGAC = 643 ! MCML exchange integer(c_int), parameter, public :: XC_MGGA_X_MCML = 644 ! Re-regularized SCAN exchange by Furness et al with larger value for eta integer(c_int), parameter, public :: XC_MGGA_X_R2SCAN01 = 645 ! Swart 2012 range-separated hybrid GGA exchange integer(c_int), parameter, public :: XC_HYB_GGA_X_CAM_S12G = 646 ! Swart 2012 range-separated hybrid GGA exchange integer(c_int), parameter, public :: XC_HYB_GGA_X_CAM_S12H = 647 ! r++SCAN: rSCAN with uniform density limit and coordinate scaling behavior integer(c_int), parameter, public :: XC_MGGA_X_RPPSCAN = 648 ! r++SCAN: rSCAN with uniform density limit and coordinate scaling behavior integer(c_int), parameter, public :: XC_MGGA_C_RPPSCAN = 649 ! r$^{4}$SCAN, a functional that satisfies the same exact constraints that SCAN does integer(c_int), parameter, public :: XC_MGGA_X_R4SCAN = 650 ! Exchange part of VCML-rVV10 by Trepte and Voss integer(c_int), parameter, public :: XC_MGGA_X_VCML = 651 ! VCML-rVV10 by Trepte and Voss integer(c_int), parameter, public :: XC_MGGA_XC_VCML_RVV10 = 652 ! CAM hybrid screened exchange PBE version integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAM_PBEH = 681 ! CAMY hybrid screened exchange PBE version integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAMY_PBEH = 682 ! Ruggeri, Rios, and Alavi unrestricted fit integer(c_int), parameter, public :: XC_LDA_C_UPW92 = 683 ! Ruggeri, Rios, and Alavi restricted fit integer(c_int), parameter, public :: XC_LDA_C_RPW92 = 684 ! LDA-type exchange with tau-dependent potential integer(c_int), parameter, public :: XC_MGGA_X_TLDA = 685 ! Tao 2001 integer(c_int), parameter, public :: XC_MGGA_X_EDMGGA = 686 ! Generalized density-matrix with a=1/2 integer(c_int), parameter, public :: XC_MGGA_X_GDME_NV = 687 ! Reparametrized local-density approximation integer(c_int), parameter, public :: XC_MGGA_X_RLDA = 688 ! Generalized density-matrix with a=0 integer(c_int), parameter, public :: XC_MGGA_X_GDME_0 = 689 ! Generalized density-matrix with a=0.00638 integer(c_int), parameter, public :: XC_MGGA_X_GDME_KOS = 690 ! Varied-terms (VT) mGGA of Koehl, Odom, and Scuseria integer(c_int), parameter, public :: XC_MGGA_X_GDME_VT = 691 ! simple local model for Slater potential integer(c_int), parameter, public :: XC_LDA_X_SLOC = 692 ! revised Tao and Mo 2016 exchange integer(c_int), parameter, public :: XC_MGGA_X_REVTM = 693 ! revised Tao and Mo 2016 exchange integer(c_int), parameter, public :: XC_MGGA_C_REVTM = 694 ! EDMGGA hybrid integer(c_int), parameter, public :: XC_HYB_MGGA_XC_EDMGGAH = 695 ! Modified Becke-Roussel for band gaps - cuspless hole integer(c_int), parameter, public :: XC_MGGA_X_MBRXC_BG = 696 ! Modified Becke-Roussel for band gaps - hydrogen hole integer(c_int), parameter, public :: XC_MGGA_X_MBRXH_BG = 697 ! Half-and-half meta-LDAized LDA exchange by Lehtola and Marques integer(c_int), parameter, public :: XC_MGGA_X_HLTA = 698 ! Half-and-half meta-LDAized PW correlation by Lehtola and Marques integer(c_int), parameter, public :: XC_MGGA_C_HLTAPW = 699 ! Deorbitalized SCAN (SCAN-L) exchange integer(c_int), parameter, public :: XC_MGGA_X_SCANL = 700 ! Deorbitalized revised SCAN (revSCAN-L) exchange integer(c_int), parameter, public :: XC_MGGA_X_REVSCANL = 701 ! Deorbitalized SCAN (SCAN-L) correlation integer(c_int), parameter, public :: XC_MGGA_C_SCANL = 702 ! SCAN-L + rVV10 correlation integer(c_int), parameter, public :: XC_MGGA_C_SCANL_RVV10 = 703 ! SCAN-L + VV10 correlation integer(c_int), parameter, public :: XC_MGGA_C_SCANL_VV10 = 704 ! Jana and Samal 2018, screened range-separated TM exchange integer(c_int), parameter, public :: XC_HYB_MGGA_X_JS18 = 705 ! Patra, Jana and Samal 2018, screened range-separated TM exchange integer(c_int), parameter, public :: XC_HYB_MGGA_X_PJS18 = 706 ! TASK exchange of Aschebrock and Kuemmel integer(c_int), parameter, public :: XC_MGGA_X_TASK = 707 ! MGGAC exchange of Patra et al integer(c_int), parameter, public :: XC_MGGA_X_MGGAC = 711 ! beta fitted to LC20 to be used with MGGAC integer(c_int), parameter, public :: XC_GGA_C_MGGAC = 712 ! modified Becke-Roussel by Patra et al integer(c_int), parameter, public :: XC_MGGA_X_MBR = 716 ! Deorbitalized re-regularized SCAN (r2SCAN-L) exchange integer(c_int), parameter, public :: XC_MGGA_X_R2SCANL = 718 ! Deorbitalized re-regularized SCAN (r2SCAN-L) correlation integer(c_int), parameter, public :: XC_MGGA_C_R2SCANL = 719 ! Long-range corrected TM-LYP by Jana et al integer(c_int), parameter, public :: XC_HYB_MGGA_XC_LC_TMLYP = 720 ! modified TASK exchange integer(c_int), parameter, public :: XC_MGGA_X_MTASK = 724 ! Functional for quasi-1D systems integer(c_int), parameter, public :: XC_GGA_X_Q1D = 734 ! These are old names kept for compatibility integer(c_int), parameter, public :: & XC_LDA_X_1D = 21, & XC_GGA_X_BGCP = 38, & XC_GGA_C_BGCP = 39, & XC_GGA_C_BCGP = 39, & XC_GGA_C_VPBE = 83, & XC_GGA_XC_LB = 160, & XC_MGGA_C_CC06 = 229, & XC_GGA_K_ABSR1 = 506, & XC_GGA_K_ABSR2 = 507, & XC_LDA_C_LP_A = 547, & XC_LDA_C_LP_B = 548, & XC_MGGA_C_LP90 = 564 !---------------------------------------------------------------- interface subroutine xc_version(major, minor, micro) bind(c) import integer(c_int), intent(out) :: major, minor, micro end subroutine xc_version type(c_ptr) function xc_version_string() bind(c) import end function xc_version_string type(c_ptr) function xc_reference() bind(c) import end function xc_reference type(c_ptr) function xc_reference_doi() bind(c) import end function xc_reference_doi end interface !---------------------------------------------------------------- type :: xc_f90_func_info_t private type(c_ptr) :: ptr = C_NULL_PTR end type xc_f90_func_info_t interface integer(c_int) function xc_func_info_get_number(info) bind(c) import type(c_ptr), value :: info end function xc_func_info_get_number integer(c_int) function xc_func_info_get_kind(info) bind(c) import type(c_ptr), value :: info end function xc_func_info_get_kind type(c_ptr) function xc_func_info_get_name(info) bind(c) import type(c_ptr), value :: info end function xc_func_info_get_name integer(c_int) function xc_func_info_get_family(info) bind(c) import type(c_ptr), value :: info end function xc_func_info_get_family integer(c_int) function xc_func_info_get_flags(info) bind(c) import type(c_ptr), value :: info end function xc_func_info_get_flags type(c_ptr) function xc_func_info_get_references(info, number) bind(c) import type(c_ptr), value :: info integer(c_int), value :: number end function xc_func_info_get_references integer(c_int) function xc_func_info_get_n_ext_params(info) bind(c) import type(c_ptr), value :: info end function xc_func_info_get_n_ext_params type(c_ptr) function xc_func_info_get_ext_params_name(info, number) bind(c) import type(c_ptr), value :: info integer(c_int), value :: number end function xc_func_info_get_ext_params_name type(c_ptr) function xc_func_info_get_ext_params_description(info, number) bind(c) import type(c_ptr), value :: info integer(c_int), value :: number end function xc_func_info_get_ext_params_description real(c_double) function xc_func_info_get_ext_params_default_value(info, number) bind(c) import type(c_ptr), value :: info integer(c_int), value :: number end function xc_func_info_get_ext_params_default_value end interface !---------------------------------------------------------------- type :: xc_f90_func_reference_t private type(c_ptr) :: ptr = C_NULL_PTR end type xc_f90_func_reference_t interface type(c_ptr) function xc_func_reference_get_ref(reference) bind(c) import type(c_ptr), value :: reference end function xc_func_reference_get_ref type(c_ptr) function xc_func_reference_get_doi(reference) bind(c) import type(c_ptr), value :: reference end function xc_func_reference_get_doi type(c_ptr) function xc_func_reference_get_bibtex(reference) bind(c) import type(c_ptr), value :: reference end function xc_func_reference_get_bibtex end interface !---------------------------------------------------------------- type :: xc_f90_func_t private type(c_ptr) :: ptr = C_NULL_PTR end type xc_f90_func_t interface type(c_ptr) function xc_func_alloc() bind(c) import end function xc_func_alloc integer(c_int) function xc_func_init(p, functional, nspin) bind(c) import type(c_ptr), value :: p integer(c_int), value :: functional, nspin end function xc_func_init subroutine xc_func_end(p) bind(c) import type(c_ptr), value :: p end subroutine xc_func_end subroutine xc_func_free(p) bind(c) import type(c_ptr), value :: p end subroutine xc_func_free subroutine libxc_free(p) bind(c) import type(c_ptr), value :: p end subroutine libxc_free type(c_ptr) function xc_func_get_info(p) bind(c) import type(c_ptr), value :: p end function xc_func_get_info type(c_ptr) function xc_functional_get_name(number) bind(c) import integer(c_int), value :: number end function xc_functional_get_name integer(c_int) function xc_functional_get_number(func_string) bind(c) import character(kind=c_char), intent(in) :: func_string(*) end function xc_functional_get_number integer(c_int) function xc_family_from_id(id, family, number) bind(c) import integer(c_int), value :: id type(c_ptr), value :: family, number end function xc_family_from_id integer(c_int) function xc_f90_number_of_functionals() bind(c, name="xc_number_of_functionals") import end function xc_f90_number_of_functionals integer(c_int) function xc_f90_maximum_name_length() bind(c, name="xc_maximum_name_length") import end function xc_f90_maximum_name_length subroutine xc_f90_available_functional_numbers(list) bind(c, name="xc_available_functional_numbers") import integer(c_int), intent(out) :: list(*) end subroutine xc_f90_available_functional_numbers subroutine xc_available_functional_names(list) bind(c) import type(c_ptr) :: list(*) end subroutine xc_available_functional_names subroutine xc_func_set_dens_threshold(p, dens_threshold) bind(c) import type(c_ptr), value :: p real(c_double), value :: dens_threshold end subroutine xc_func_set_dens_threshold subroutine xc_func_set_zeta_threshold(p, zeta_threshold) bind(c) import type(c_ptr), value :: p real(c_double), value :: zeta_threshold end subroutine xc_func_set_zeta_threshold subroutine xc_func_set_sigma_threshold(p, sigma_threshold) bind(c) import type(c_ptr), value :: p real(c_double), value :: sigma_threshold end subroutine xc_func_set_sigma_threshold subroutine xc_func_set_tau_threshold(p, tau_threshold) bind(c) import type(c_ptr), value :: p real(c_double), value :: tau_threshold end subroutine xc_func_set_tau_threshold subroutine xc_func_set_ext_params(p, ext_params) bind(c) import type(c_ptr), value :: p real(c_double), intent(in) :: ext_params(*) end subroutine xc_func_set_ext_params subroutine xc_func_set_ext_params_name(p, name, par) bind(c) import type(c_ptr), value :: p character(kind=c_char), intent(in) :: name(*) real(c_double), value :: par end subroutine xc_func_set_ext_params_name end interface ! LDAs !---------------------------------------------------------------- interface subroutine xc_lda(p, np, rho, zk, vrho, v2rho2, v3rho3, v4rho4) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*), v2rho2(*), v3rho3(*), v4rho4(*) end subroutine xc_lda subroutine xc_lda_exc(p, np, rho, zk) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*) end subroutine xc_lda_exc subroutine xc_lda_exc_vxc(p, np, rho, zk, vrho) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*) end subroutine xc_lda_exc_vxc subroutine xc_lda_exc_vxc_fxc(p, np, rho, zk, vrho, v2rho2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*), v2rho2(*) end subroutine xc_lda_exc_vxc_fxc subroutine xc_lda_exc_vxc_fxc_kxc(p, np, rho, zk, vrho, v2rho2, v3rho3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*), v2rho2(*), v3rho3(*) end subroutine xc_lda_exc_vxc_fxc_kxc subroutine xc_lda_vxc(p, np, rho, vrho) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: vrho(*) end subroutine xc_lda_vxc subroutine xc_lda_vxc_fxc(p, np, rho, vrho, v2rho2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: vrho(*), v2rho2(*) end subroutine xc_lda_vxc_fxc subroutine xc_lda_vxc_fxc_kxc(p, np, rho, vrho, v2rho2, v3rho3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: vrho(*), v2rho2(*), v3rho3(*) end subroutine xc_lda_vxc_fxc_kxc subroutine xc_lda_fxc(p, np, rho, v2rho2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: v2rho2(*) end subroutine xc_lda_fxc subroutine xc_lda_kxc(p, np, rho, v3rho3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: v3rho3(*) end subroutine xc_lda_kxc subroutine xc_lda_lxc(p, np, rho, v4rho4) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: v4rho4(*) end subroutine xc_lda_lxc end interface ! GGAs !---------------------------------------------------------------- interface subroutine xc_gga(p, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3, & v4rho4, v4rho3sigma, v4rho2sigma2, v4rhosigma3, v4sigma4 & ) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) real(c_double), intent(out) :: v4rho4(*), v4rho3sigma(*), v4rho2sigma2(*), v4rhosigma3(*), v4sigma4(*) end subroutine xc_gga subroutine xc_gga_exc(p, np, rho, sigma, zk) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*) end subroutine xc_gga_exc subroutine xc_gga_exc_vxc(p, np, rho, sigma, zk, vrho, vsigma) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) end subroutine xc_gga_exc_vxc subroutine xc_gga_exc_vxc_fxc(p, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) end subroutine xc_gga_exc_vxc_fxc subroutine xc_gga_exc_vxc_fxc_kxc(p, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) end subroutine xc_gga_exc_vxc_fxc_kxc subroutine xc_gga_vxc(p, np, rho, sigma, vrho, vsigma) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: vrho(*), vsigma(*) end subroutine xc_gga_vxc subroutine xc_gga_vxc_fxc(p, np, rho, sigma, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) end subroutine xc_gga_vxc_fxc subroutine xc_gga_vxc_fxc_kxc(p, np, rho, sigma, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) end subroutine xc_gga_vxc_fxc_kxc subroutine xc_gga_fxc(p, np, rho, sigma, v2rho2, v2rhosigma, v2sigma2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) end subroutine xc_gga_fxc subroutine xc_gga_kxc(p, np, rho, sigma, v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) end subroutine xc_gga_kxc subroutine xc_gga_lxc(p, np, rho, sigma, v4rho4, v4rho3sigma, v4rho2sigma2, v4rhosigma3, v4sigma4) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: v4rho4(*), v4rho3sigma(*), v4rho2sigma2(*), v4rhosigma3(*), v4sigma4(*) end subroutine xc_gga_lxc end interface interface real(c_double) function xc_gga_ak13_get_asymptotic(homo) bind(c) import real(c_double), value :: homo end function xc_gga_ak13_get_asymptotic end interface interface real(c_double) function xc_hyb_exx_coef(p) bind(c) import type(c_ptr), value :: p end function xc_hyb_exx_coef subroutine xc_hyb_cam_coef(p, omega, alpha, beta) bind(c) import type(c_ptr), value :: p real(c_double), intent(out) :: omega, alpha, beta end subroutine xc_hyb_cam_coef subroutine xc_nlc_coef(p, nlc_b, nlc_c) bind(c) import type(c_ptr), value :: p real(c_double), intent(out) :: nlc_b, nlc_c end subroutine xc_nlc_coef integer(c_int) function xc_num_aux_funcs(p) bind(c, name="xc_num_aux_funcs") import type(c_ptr), value :: p end function xc_num_aux_funcs subroutine xc_aux_func_ids(p, ids) bind(c, name="xc_aux_func_ids") import type(c_ptr), value :: p integer(c_int), intent(out) :: ids(*) end subroutine xc_aux_func_ids subroutine xc_aux_func_weights(p, weights) bind(c, name="xc_aux_func_weights") import type(c_ptr), value :: p real(c_double), intent(in) :: weights(*) end subroutine xc_aux_func_weights end interface ! the meta-GGAs !---------------------------------------------------------------- interface subroutine xc_mgga(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3, & v4rho4, v4rho3sigma, v4rho3lapl, v4rho3tau, v4rho2sigma2, v4rho2sigmalapl, & v4rho2sigmatau, v4rho2lapl2, v4rho2lapltau, v4rho2tau2, v4rhosigma3, & v4rhosigma2lapl, v4rhosigma2tau, v4rhosigmalapl2, v4rhosigmalapltau, & v4rhosigmatau2, v4rholapl3, v4rholapl2tau, v4rholapltau2, v4rhotau3, v4sigma4, & v4sigma3lapl, v4sigma3tau, v4sigma2lapl2, v4sigma2lapltau, v4sigma2tau2, & v4sigmalapl3, v4sigmalapl2tau, v4sigmalapltau2, v4sigmatau3, v4lapl4, & v4lapl3tau, v4lapl2tau2, v4lapltau3, v4tau4 & ) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) real(c_double), intent(out) :: & v4rho4(*), v4rho3sigma(*), v4rho3lapl(*), v4rho3tau(*), v4rho2sigma2(*), v4rho2sigmalapl(*), & v4rho2sigmatau(*), v4rho2lapl2(*), v4rho2lapltau(*), v4rho2tau2(*), v4rhosigma3(*), & v4rhosigma2lapl(*), v4rhosigma2tau(*), v4rhosigmalapl2(*), v4rhosigmalapltau(*), & v4rhosigmatau2(*), v4rholapl3(*), v4rholapl2tau(*), v4rholapltau2(*), v4rhotau3(*), v4sigma4(*), & v4sigma3lapl(*), v4sigma3tau(*), v4sigma2lapl2(*), v4sigma2lapltau(*), v4sigma2tau2(*), & v4sigmalapl3(*), v4sigmalapl2tau(*), v4sigmalapltau2(*), v4sigmatau3(*), v4lapl4(*), & v4lapl3tau(*), v4lapl2tau2(*), v4lapltau3(*), v4tau4(*) end subroutine xc_mgga subroutine xc_mgga_exc(p, np, rho, sigma, lapl, tau, zk) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*) end subroutine xc_mgga_exc subroutine xc_mgga_exc_vxc(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) end subroutine xc_mgga_exc_vxc subroutine xc_mgga_exc_vxc_fxc(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) end subroutine xc_mgga_exc_vxc_fxc subroutine xc_mgga_exc_vxc_fxc_kxc(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) end subroutine xc_mgga_exc_vxc_fxc_kxc subroutine xc_mgga_vxc(p, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: vrho(*), vsigma(*), vlapl(*), vtau(*) end subroutine xc_mgga_vxc subroutine xc_mgga_vxc_fxc(p, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) end subroutine xc_mgga_vxc_fxc subroutine xc_mgga_vxc_fxc_kxc(p, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) end subroutine xc_mgga_vxc_fxc_kxc subroutine xc_mgga_fxc(p, np, rho, sigma, lapl, tau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) end subroutine xc_mgga_fxc subroutine xc_mgga_kxc(p, np, rho, sigma, lapl, tau, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) end subroutine xc_mgga_kxc subroutine xc_mgga_lxc(p, np, rho, sigma, lapl, tau, & v4rho4, v4rho3sigma, v4rho3lapl, v4rho3tau, v4rho2sigma2, v4rho2sigmalapl, & v4rho2sigmatau, v4rho2lapl2, v4rho2lapltau, v4rho2tau2, v4rhosigma3, & v4rhosigma2lapl, v4rhosigma2tau, v4rhosigmalapl2, v4rhosigmalapltau, & v4rhosigmatau2, v4rholapl3, v4rholapl2tau, v4rholapltau2, v4rhotau3, v4sigma4, & v4sigma3lapl, v4sigma3tau, v4sigma2lapl2, v4sigma2lapltau, v4sigma2tau2, & v4sigmalapl3, v4sigmalapl2tau, v4sigmalapltau2, v4sigmatau3, v4lapl4, & v4lapl3tau, v4lapl2tau2, v4lapltau3, v4tau4 & ) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: & v4rho4(*), v4rho3sigma(*), v4rho3lapl(*), v4rho3tau(*), v4rho2sigma2(*), v4rho2sigmalapl(*), & v4rho2sigmatau(*), v4rho2lapl2(*), v4rho2lapltau(*), v4rho2tau2(*), v4rhosigma3(*), & v4rhosigma2lapl(*), v4rhosigma2tau(*), v4rhosigmalapl2(*), v4rhosigmalapltau(*), & v4rhosigmatau2(*), v4rholapl3(*), v4rholapl2tau(*), v4rholapltau2(*), v4rhotau3(*), v4sigma4(*), & v4sigma3lapl(*), v4sigma3tau(*), v4sigma2lapl2(*), v4sigma2lapltau(*), v4sigma2tau2(*), & v4sigmalapl3(*), v4sigmalapl2tau(*), v4sigmalapltau2(*), v4sigmatau3(*), v4lapl4(*), & v4lapl3tau(*), v4lapl2tau2(*), v4lapltau3(*), v4tau4(*) end subroutine xc_mgga_lxc end interface contains !---------------------------------------------------------------- subroutine xc_f90_version(major, minor, micro) integer(c_int), intent(out) :: major, minor, micro call xc_version(major, minor, micro) end subroutine xc_f90_version subroutine xc_f90_version_string(version) character(len=*), intent(out) :: version type(c_ptr) :: c_version c_version = xc_version_string() call c_to_f_string_ptr(c_version, version) end subroutine xc_f90_version_string subroutine xc_f90_reference(ref) character(len=*), intent(out) :: ref type(c_ptr) :: c_ref c_ref = xc_reference() call c_to_f_string_ptr(c_ref, ref) end subroutine xc_f90_reference subroutine xc_f90_reference_doi(doi) character(len=*), intent(out) :: doi type(c_ptr) :: c_doi c_doi = xc_reference_doi() call c_to_f_string_ptr(c_doi, doi) end subroutine xc_f90_reference_doi !---------------------------------------------------------------- integer(c_int) function xc_f90_func_info_get_number(info) result(number) type(xc_f90_func_info_t), intent(in) :: info number = xc_func_info_get_number(info%ptr) end function xc_f90_func_info_get_number integer(c_int) function xc_f90_func_info_get_kind(info) result(kind) type(xc_f90_func_info_t), intent(in) :: info kind = xc_func_info_get_kind(info%ptr) end function xc_f90_func_info_get_kind character(len=128) function xc_f90_func_info_get_name(info) result(name) type(xc_f90_func_info_t), intent(in) :: info call c_to_f_string_ptr(xc_func_info_get_name(info%ptr), name) end function xc_f90_func_info_get_name integer(c_int) function xc_f90_func_info_get_family(info) result(family) type(xc_f90_func_info_t), intent(in) :: info family = xc_func_info_get_family(info%ptr) end function xc_f90_func_info_get_family integer(c_int) function xc_f90_func_info_get_flags(info) result(flags) type(xc_f90_func_info_t), intent(in) :: info flags = xc_func_info_get_flags(info%ptr) end function xc_f90_func_info_get_flags type(xc_f90_func_reference_t) function xc_f90_func_info_get_references(info, number) result(reference) type(xc_f90_func_info_t), intent(in) :: info integer(c_int), intent(inout) :: number ! number of the reference. Must be 0 in the first call type(c_ptr) :: next_ref reference%ptr = xc_func_info_get_references(info%ptr, number) if (.not. c_associated(reference%ptr)) then number = -1 else next_ref = xc_func_info_get_references(info%ptr, INT(number + 1, c_int)) if (c_associated(next_ref)) then number = number + 1 else number = -1 end if end if end function xc_f90_func_info_get_references integer(c_int) function xc_f90_func_info_get_n_ext_params(info) result(n_ext_params) type(xc_f90_func_info_t), intent(in) :: info n_ext_params = xc_func_info_get_n_ext_params(info%ptr) end function xc_f90_func_info_get_n_ext_params character(len=128) function xc_f90_func_info_get_ext_params_name(info, number) result(name) type(xc_f90_func_info_t), intent(in) :: info integer(c_int), intent(in) :: number call c_to_f_string_ptr(xc_func_info_get_ext_params_name(info%ptr, number), name) end function xc_f90_func_info_get_ext_params_name character(len=128) function xc_f90_func_info_get_ext_params_description(info, number) result(description) type(xc_f90_func_info_t), intent(in) :: info integer(c_int), intent(in) :: number call c_to_f_string_ptr(xc_func_info_get_ext_params_description(info%ptr, number), description) end function xc_f90_func_info_get_ext_params_description real(c_double) function xc_f90_func_info_get_ext_params_default_value(info, number) result(val) type(xc_f90_func_info_t), intent(in) :: info integer(c_int), intent(in) :: number val = xc_func_info_get_ext_params_default_value(info%ptr, number) end function xc_f90_func_info_get_ext_params_default_value !---------------------------------------------------------------- character(len=1024) function xc_f90_func_reference_get_ref(reference) result(ref) type(xc_f90_func_reference_t), intent(in) :: reference call c_to_f_string_ptr(xc_func_reference_get_ref(reference%ptr), ref) end function xc_f90_func_reference_get_ref character(len=1024) function xc_f90_func_reference_get_doi(reference) result(doi) type(xc_f90_func_reference_t), intent(in) :: reference call c_to_f_string_ptr(xc_func_reference_get_doi(reference%ptr), doi) end function xc_f90_func_reference_get_doi character(len=1024) function xc_f90_func_reference_get_bibtex(reference) result(bibtex) type(xc_f90_func_reference_t), intent(in) :: reference call c_to_f_string_ptr(xc_func_reference_get_bibtex(reference%ptr), bibtex) end function xc_f90_func_reference_get_bibtex !---------------------------------------------------------------- subroutine xc_f90_func_init(p, functional, nspin, err) type(xc_f90_func_t), intent(inout) :: p integer(c_int), intent(in) :: functional integer(c_int), intent(in) :: nspin integer(c_int), optional, intent(out) :: err integer(c_int) :: ierr p%ptr = xc_func_alloc() ierr = xc_func_init(p%ptr, functional, nspin) if(present(err)) err = ierr end subroutine xc_f90_func_init subroutine xc_f90_func_end(p) type(xc_f90_func_t), intent(inout) :: p call xc_func_end(p%ptr) call xc_func_free(p%ptr) end subroutine xc_f90_func_end type(xc_f90_func_info_t) function xc_f90_func_get_info(p) result(info) type(xc_f90_func_t), intent(in) :: p info%ptr = xc_func_get_info(p%ptr) end function xc_f90_func_get_info character(len=128) function xc_f90_functional_get_name(number) result(name) integer(c_int), intent(in) :: number type(c_ptr) :: cstr cstr = xc_functional_get_name(number) call c_to_f_string_ptr(cstr, name) call libxc_free(cstr) end function xc_f90_functional_get_name integer(c_int) function xc_f90_functional_get_number(func_string) result(number) character(len=*), intent(in) :: func_string number = xc_functional_get_number(f_to_c_string(func_string)) end function xc_f90_functional_get_number integer(c_int) function xc_f90_family_from_id(id, family, number) integer(c_int), intent(in) :: id integer(c_int), intent(out), optional, target :: family, number type(c_ptr) c_family, c_number integer(c_int), pointer :: f_family, f_number if (present(family)) then f_family => family call c_f_pointer(c_family, f_family) else c_family = C_NULL_PTR end if if (present(number)) then f_number => number call c_f_pointer(c_number, f_number) else c_number = C_NULL_PTR end if xc_f90_family_from_id = xc_family_from_id(id, c_family, c_number) end function xc_f90_family_from_id subroutine xc_f90_available_functional_names(list) character(len=*), intent(out) :: list(*) integer(c_int) :: n, i, maxlen character(kind=c_char), allocatable, target :: names(:,:) type(c_ptr), allocatable :: c_list(:) n = xc_f90_number_of_functionals() maxlen = xc_f90_maximum_name_length() allocate(names(maxlen, n)) allocate(c_list(n)) do i = 1, n c_list(i) = c_loc(names(1,i)) end do call xc_available_functional_names(c_list) do i = 1, n call c_to_f_string_ptr(c_list(i), list(i)) end do deallocate(c_list) deallocate(names) end subroutine xc_f90_available_functional_names subroutine xc_f90_func_set_dens_threshold(p, dens_threshold) type(xc_f90_func_t), intent(in) :: p real(c_double), intent(in) :: dens_threshold call xc_func_set_dens_threshold(p%ptr, dens_threshold) end subroutine xc_f90_func_set_dens_threshold subroutine xc_f90_func_set_zeta_threshold(p, zeta_threshold) type(xc_f90_func_t), intent(in) :: p real(c_double), intent(in) :: zeta_threshold call xc_func_set_zeta_threshold(p%ptr, zeta_threshold) end subroutine xc_f90_func_set_zeta_threshold subroutine xc_f90_func_set_sigma_threshold(p, sigma_threshold) type(xc_f90_func_t), intent(in) :: p real(c_double), intent(in) :: sigma_threshold call xc_func_set_sigma_threshold(p%ptr, sigma_threshold) end subroutine xc_f90_func_set_sigma_threshold subroutine xc_f90_func_set_tau_threshold(p, tau_threshold) type(xc_f90_func_t), intent(in) :: p real(c_double), intent(in) :: tau_threshold call xc_func_set_tau_threshold(p%ptr, tau_threshold) end subroutine xc_f90_func_set_tau_threshold subroutine xc_f90_func_set_ext_params(p, ext_params) type(xc_f90_func_t), intent(in) :: p real(c_double), intent(in) :: ext_params(*) call xc_func_set_ext_params(p%ptr, ext_params) end subroutine xc_f90_func_set_ext_params subroutine xc_f90_func_set_ext_params_name(p, name, par) type(xc_f90_func_t), intent(in) :: p character(len=*), intent(in) :: name real(c_double), intent(in) :: par call xc_func_set_ext_params_name(p%ptr, f_to_c_string(name), par) end subroutine xc_f90_func_set_ext_params_name ! LDAs !---------------------------------------------------------------- subroutine xc_f90_lda(p, np, rho, zk, vrho, v2rho2, v3rho3, v4rho4) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*), v2rho2(*), v3rho3(*), v4rho4(*) call xc_lda(p%ptr, np, rho, zk, vrho, v2rho2, v3rho3, v4rho4) end subroutine xc_f90_lda subroutine xc_f90_lda_exc(p, np, rho, zk) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*) call xc_lda_exc(p%ptr, np, rho, zk) end subroutine xc_f90_lda_exc subroutine xc_f90_lda_exc_vxc(p, np, rho, zk, vrho) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*) call xc_lda_exc_vxc(p%ptr, np, rho, zk, vrho) end subroutine xc_f90_lda_exc_vxc subroutine xc_f90_lda_exc_vxc_fxc(p, np, rho, zk, vrho, v2rho2) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*), v2rho2(*) call xc_lda_exc_vxc_fxc(p%ptr, np, rho, zk, vrho, v2rho2) end subroutine xc_f90_lda_exc_vxc_fxc subroutine xc_f90_lda_exc_vxc_fxc_kxc(p, np, rho, zk, vrho, v2rho2, v3rho3) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*), v2rho2(*), v3rho3(*) call xc_lda_exc_vxc_fxc_kxc(p%ptr, np, rho, zk, vrho, v2rho2, v3rho3) end subroutine xc_f90_lda_exc_vxc_fxc_kxc subroutine xc_f90_lda_vxc(p, np, rho, vrho) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: vrho(*) call xc_lda_vxc(p%ptr, np, rho, vrho) end subroutine xc_f90_lda_vxc subroutine xc_f90_lda_vxc_fxc(p, np, rho, vrho, v2rho2) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: vrho(*), v2rho2(*) call xc_lda_vxc_fxc(p%ptr, np, rho, vrho, v2rho2) end subroutine xc_f90_lda_vxc_fxc subroutine xc_f90_lda_vxc_fxc_kxc(p, np, rho, vrho, v2rho2, v3rho3) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: vrho(*), v2rho2(*), v3rho3(*) call xc_lda_vxc_fxc_kxc(p%ptr, np, rho, vrho, v2rho2, v3rho3) end subroutine xc_f90_lda_vxc_fxc_kxc subroutine xc_f90_lda_fxc(p, np, rho, v2rho2) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: v2rho2(*) call xc_lda_fxc(p%ptr, np, rho, v2rho2) end subroutine xc_f90_lda_fxc subroutine xc_f90_lda_kxc(p, np, rho, v3rho3) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: v3rho3(*) call xc_lda_kxc(p%ptr, np, rho, v3rho3) end subroutine xc_f90_lda_kxc subroutine xc_f90_lda_lxc(p, np, rho, v4rho4) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: v4rho4(*) call xc_lda_lxc(p%ptr, np, rho, v4rho4) end subroutine xc_f90_lda_lxc ! GGAs !---------------------------------------------------------------- subroutine xc_f90_gga(p, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3, & v4rho4, v4rho3sigma, v4rho2sigma2, v4rhosigma3, v4sigma4 & ) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) real(c_double), intent(out) :: v4rho4(*), v4rho3sigma(*), v4rho2sigma2(*), v4rhosigma3(*), v4sigma4(*) call xc_gga(p%ptr, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3, & v4rho4, v4rho3sigma, v4rho2sigma2, v4rhosigma3, v4sigma4 & ) end subroutine xc_f90_gga subroutine xc_f90_gga_exc(p, np, rho, sigma, zk) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*) call xc_gga_exc(p%ptr, np, rho, sigma, zk) end subroutine xc_f90_gga_exc subroutine xc_f90_gga_exc_vxc(p, np, rho, sigma, zk, vrho, vsigma) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) call xc_gga_exc_vxc(p%ptr, np, rho, sigma, zk, vrho, vsigma) end subroutine xc_f90_gga_exc_vxc subroutine xc_f90_gga_exc_vxc_fxc(p, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) call xc_gga_exc_vxc_fxc(p%ptr, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2) end subroutine xc_f90_gga_exc_vxc_fxc subroutine xc_f90_gga_exc_vxc_fxc_kxc(p, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) call xc_gga_exc_vxc_fxc_kxc(p%ptr, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) end subroutine xc_f90_gga_exc_vxc_fxc_kxc subroutine xc_f90_gga_vxc(p, np, rho, sigma, vrho, vsigma) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: vrho(*), vsigma(*) call xc_gga_vxc(p%ptr, np, rho, sigma, vrho, vsigma) end subroutine xc_f90_gga_vxc subroutine xc_f90_gga_vxc_fxc(p, np, rho, sigma, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) call xc_gga_vxc_fxc(p%ptr, np, rho, sigma, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2) end subroutine xc_f90_gga_vxc_fxc subroutine xc_f90_gga_vxc_fxc_kxc(p, np, rho, sigma, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) call xc_gga_vxc_fxc_kxc(p%ptr, np, rho, sigma, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) end subroutine xc_f90_gga_vxc_fxc_kxc subroutine xc_f90_gga_fxc(p, np, rho, sigma, v2rho2, v2rhosigma, v2sigma2) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) call xc_gga_fxc(p%ptr, np, rho, sigma, v2rho2, v2rhosigma, v2sigma2) end subroutine xc_f90_gga_fxc subroutine xc_f90_gga_kxc(p, np, rho, sigma, v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) call xc_gga_kxc(p%ptr, np, rho, sigma, v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) end subroutine xc_f90_gga_kxc subroutine xc_f90_gga_lxc(p, np, rho, sigma, v4rho4, v4rho3sigma, v4rho2sigma2, v4rhosigma3, v4sigma4) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: v4rho4(*), v4rho3sigma(*), v4rho2sigma2(*), v4rhosigma3(*), v4sigma4(*) call xc_gga_lxc(p%ptr, np, rho, sigma, v4rho4, v4rho3sigma, v4rho2sigma2, v4rhosigma3, v4sigma4) end subroutine xc_f90_gga_lxc real(c_double) function xc_f90_gga_ak13_get_asymptotic(homo) result(asymptotic) real(c_double), intent(in) :: homo asymptotic = xc_gga_ak13_get_asymptotic(homo) end function xc_f90_gga_ak13_get_asymptotic real(c_double) function xc_f90_hyb_exx_coef(p) result(coef) type(xc_f90_func_t), intent(in) :: p coef = xc_hyb_exx_coef(p%ptr) end function xc_f90_hyb_exx_coef subroutine xc_f90_hyb_cam_coef(p, omega, alpha, beta) type(xc_f90_func_t), intent(in) :: p real(c_double), intent(out) :: omega, alpha, beta call xc_hyb_cam_coef(p%ptr, omega, alpha, beta) end subroutine xc_f90_hyb_cam_coef subroutine xc_f90_nlc_coef(p, nlc_b, nlc_c) type(xc_f90_func_t), intent(in) :: p real(c_double), intent(out) :: nlc_b, nlc_c call xc_nlc_coef(p%ptr, nlc_b, nlc_c) end subroutine xc_f90_nlc_coef integer(c_int) function xc_f90_num_aux_funcs(p) result(naux) type(xc_f90_func_t), intent(in) :: p naux = xc_num_aux_funcs(p%ptr) end function xc_f90_num_aux_funcs subroutine xc_f90_aux_func_ids(p, ids) type(xc_f90_func_t), intent(in) :: p integer(c_int), intent(out) :: ids(:) call xc_aux_func_ids(p%ptr, ids) end subroutine xc_f90_aux_func_ids subroutine xc_f90_aux_func_weights(p, weights) type(xc_f90_func_t), intent(in) :: p real(c_double), intent(out) :: weights(:) call xc_aux_func_weights(p%ptr, weights) end subroutine xc_f90_aux_func_weights ! the meta-GGAs !---------------------------------------------------------------- subroutine xc_f90_mgga(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3, & v4rho4, v4rho3sigma, v4rho3lapl, v4rho3tau, v4rho2sigma2, v4rho2sigmalapl, & v4rho2sigmatau, v4rho2lapl2, v4rho2lapltau, v4rho2tau2, v4rhosigma3, & v4rhosigma2lapl, v4rhosigma2tau, v4rhosigmalapl2, v4rhosigmalapltau, & v4rhosigmatau2, v4rholapl3, v4rholapl2tau, v4rholapltau2, v4rhotau3, v4sigma4, & v4sigma3lapl, v4sigma3tau, v4sigma2lapl2, v4sigma2lapltau, v4sigma2tau2, & v4sigmalapl3, v4sigmalapl2tau, v4sigmalapltau2, v4sigmatau3, v4lapl4, & v4lapl3tau, v4lapl2tau2, v4lapltau3, v4tau4 & ) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) real(c_double), intent(out) :: & v4rho4(*), v4rho3sigma(*), v4rho3lapl(*), v4rho3tau(*), v4rho2sigma2(*), v4rho2sigmalapl(*), & v4rho2sigmatau(*), v4rho2lapl2(*), v4rho2lapltau(*), v4rho2tau2(*), v4rhosigma3(*), & v4rhosigma2lapl(*), v4rhosigma2tau(*), v4rhosigmalapl2(*), v4rhosigmalapltau(*), & v4rhosigmatau2(*), v4rholapl3(*), v4rholapl2tau(*), v4rholapltau2(*), v4rhotau3(*), v4sigma4(*), & v4sigma3lapl(*), v4sigma3tau(*), v4sigma2lapl2(*), v4sigma2lapltau(*), v4sigma2tau2(*), & v4sigmalapl3(*), v4sigmalapl2tau(*), v4sigmalapltau2(*), v4sigmatau3(*), v4lapl4(*), & v4lapl3tau(*), v4lapl2tau2(*), v4lapltau3(*), v4tau4(*) call xc_mgga(p%ptr, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3, & v4rho4, v4rho3sigma, v4rho3lapl, v4rho3tau, v4rho2sigma2, v4rho2sigmalapl, & v4rho2sigmatau, v4rho2lapl2, v4rho2lapltau, v4rho2tau2, v4rhosigma3, & v4rhosigma2lapl, v4rhosigma2tau, v4rhosigmalapl2, v4rhosigmalapltau, & v4rhosigmatau2, v4rholapl3, v4rholapl2tau, v4rholapltau2, v4rhotau3, v4sigma4, & v4sigma3lapl, v4sigma3tau, v4sigma2lapl2, v4sigma2lapltau, v4sigma2tau2, & v4sigmalapl3, v4sigmalapl2tau, v4sigmalapltau2, v4sigmatau3, v4lapl4, & v4lapl3tau, v4lapl2tau2, v4lapltau3, v4tau4 & ) end subroutine xc_f90_mgga subroutine xc_f90_mgga_exc(p, np, rho, sigma, lapl, tau, zk) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*) call xc_mgga_exc(p%ptr, np, rho, sigma, lapl, tau, zk) end subroutine xc_f90_mgga_exc subroutine xc_f90_mgga_exc_vxc(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) call xc_mgga_exc_vxc(p%ptr, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau) end subroutine xc_f90_mgga_exc_vxc subroutine xc_f90_mgga_exc_vxc_fxc(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) call xc_mgga_exc_vxc_fxc(p%ptr, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) end subroutine xc_f90_mgga_exc_vxc_fxc subroutine xc_f90_mgga_exc_vxc_fxc_kxc(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) call xc_mgga_exc_vxc_fxc_kxc(p%ptr, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) end subroutine xc_f90_mgga_exc_vxc_fxc_kxc subroutine xc_f90_mgga_vxc(p, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: vrho(*), vsigma(*), vlapl(*), vtau(*) call xc_mgga_vxc(p%ptr, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau) end subroutine xc_f90_mgga_vxc subroutine xc_f90_mgga_vxc_fxc(p, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) call xc_mgga_vxc_fxc(p%ptr, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) end subroutine xc_f90_mgga_vxc_fxc subroutine xc_f90_mgga_vxc_fxc_kxc(p, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) call xc_mgga_vxc_fxc_kxc(p%ptr, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) end subroutine xc_f90_mgga_vxc_fxc_kxc subroutine xc_f90_mgga_fxc(p, np, rho, sigma, lapl, tau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) call xc_mgga_fxc(p%ptr, np, rho, sigma, lapl, tau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, & v2sigma2, v2sigmalapl, v2sigmatau, v2lapl2, v2lapltau, v2tau2) end subroutine xc_f90_mgga_fxc subroutine xc_f90_mgga_kxc(p, np, rho, sigma, lapl, tau, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) call xc_mgga_kxc(p%ptr, np, rho, sigma, lapl, tau, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) end subroutine xc_f90_mgga_kxc subroutine xc_f90_mgga_lxc(p, np, rho, sigma, lapl, tau, & v4rho4, v4rho3sigma, v4rho3lapl, v4rho3tau, v4rho2sigma2, v4rho2sigmalapl, & v4rho2sigmatau, v4rho2lapl2, v4rho2lapltau, v4rho2tau2, v4rhosigma3, & v4rhosigma2lapl, v4rhosigma2tau, v4rhosigmalapl2, v4rhosigmalapltau, & v4rhosigmatau2, v4rholapl3, v4rholapl2tau, v4rholapltau2, v4rhotau3, v4sigma4, & v4sigma3lapl, v4sigma3tau, v4sigma2lapl2, v4sigma2lapltau, v4sigma2tau2, & v4sigmalapl3, v4sigmalapl2tau, v4sigmalapltau2, v4sigmatau3, v4lapl4, & v4lapl3tau, v4lapl2tau2, v4lapltau3, v4tau4 & ) type(xc_f90_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: & v4rho4(*), v4rho3sigma(*), v4rho3lapl(*), v4rho3tau(*), v4rho2sigma2(*), v4rho2sigmalapl(*), & v4rho2sigmatau(*), v4rho2lapl2(*), v4rho2lapltau(*), v4rho2tau2(*), v4rhosigma3(*), & v4rhosigma2lapl(*), v4rhosigma2tau(*), v4rhosigmalapl2(*), v4rhosigmalapltau(*), & v4rhosigmatau2(*), v4rholapl3(*), v4rholapl2tau(*), v4rholapltau2(*), v4rhotau3(*), v4sigma4(*), & v4sigma3lapl(*), v4sigma3tau(*), v4sigma2lapl2(*), v4sigma2lapltau(*), v4sigma2tau2(*), & v4sigmalapl3(*), v4sigmalapl2tau(*), v4sigmalapltau2(*), v4sigmatau3(*), v4lapl4(*), & v4lapl3tau(*), v4lapl2tau2(*), v4lapltau3(*), v4tau4(*) call xc_mgga_lxc(p%ptr, np, rho, sigma, lapl, tau, & v4rho4, v4rho3sigma, v4rho3lapl, v4rho3tau, v4rho2sigma2, v4rho2sigmalapl, & v4rho2sigmatau, v4rho2lapl2, v4rho2lapltau, v4rho2tau2, v4rhosigma3, & v4rhosigma2lapl, v4rhosigma2tau, v4rhosigmalapl2, v4rhosigmalapltau, & v4rhosigmatau2, v4rholapl3, v4rholapl2tau, v4rholapltau2, v4rhotau3, v4sigma4, & v4sigma3lapl, v4sigma3tau, v4sigma2lapl2, v4sigma2lapltau, v4sigma2tau2, & v4sigmalapl3, v4sigmalapl2tau, v4sigmalapltau2, v4sigmatau3, v4lapl4, & v4lapl3tau, v4lapl2tau2, v4lapltau3, v4tau4 & ) end subroutine xc_f90_mgga_lxc ! Helper functions to convert between C and Fortran strings ! Based on the routines by Joseph M. Krahn function f_to_c_string(f_string) result(c_string) character(len=*), intent(in) :: f_string character(kind=c_char,len=1) :: c_string(len_trim(f_string)+1) integer :: i, strlen strlen = len_trim(f_string) forall (i=1:strlen) c_string(i) = f_string(i:i) end forall c_string(strlen+1) = C_NULL_CHAR end function f_to_c_string subroutine c_to_f_string(c_string, f_string) character(kind=c_char,len=1), intent(in) :: c_string(*) character(len=*), intent(out) :: f_string integer :: i i = 1 do while(c_string(i) /= C_NULL_CHAR .and. i <= len(f_string)) f_string(i:i) = c_string(i) i = i + 1 end do if (i < len(f_string)) f_string(i:) = ' ' end subroutine c_to_f_string subroutine c_to_f_string_ptr(c_string, f_string) type(c_ptr), intent(in) :: c_string character(len=*), intent(out) :: f_string character(len=1, kind=c_char), pointer :: p_chars(:) integer :: i if (.not. c_associated(c_string)) then f_string = ' ' else call c_f_pointer(c_string, p_chars, [huge(0)]) i = 1 do while(p_chars(i) /= C_NULL_CHAR .and. i <= len(f_string)) f_string(i:i) = p_chars(i) i = i + 1 end do if (i < len(f_string)) f_string(i:) = ' ' end if end subroutine c_to_f_string_ptr end module xc_f90_lib_m !! Local Variables: !! mode: f90 !! coding: utf-8 !! End: elk-9.2.12/src/PaxHeaders/libxcifc.f900000644000000000000000000000013214536061314014333 xustar0030 mtime=1702388428.625500442 30 atime=1702388428.625500442 30 ctime=1702388428.625500442 elk-9.2.12/src/libxcifc.f900000644002504400250440000004401014536061314017054 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module libxcifc use xc_f90_lib_m ! libxc version number integer libxcv(3) private grad contains !BOP ! !ROUTINE: xcifc_libxc ! !INTERFACE: subroutine xcifc_libxc(xctype,n,tempa,rho,rhoup,rhodn,g2rho,g2up,g2dn,grho2, & gup2,gdn2,gupdn,tau,tauup,taudn,ex,ec,vx,vc,vxup,vxdn,vcup,vcdn,dxdgr2,dxdgu2,& dxdgd2,dxdgud,dcdgr2,dcdgu2,dcdgd2,dcdgud,dxdg2r,dxdg2u,dxdg2d,dcdg2r,dcdg2u, & dcdg2d,wx,wxup,wxdn,wc,wcup,wcdn) ! !USES: use, intrinsic :: iso_c_binding ! !INPUT/OUTPUT PARAMETERS: ! xctype : type of exchange-correlation functional (in,integer(3)) ! n : number of density points (in,integer) ! tempa : temperature in atomic units (in,real,optional) ! rho : spin-unpolarised charge density (in,real(n),optional) ! rhoup : spin-up charge density (in,real(n),optional) ! rhodn : spin-down charge density (in,real(n),optional) ! g2rho : grad^2 rho (in,real(n),optional) ! g2up : grad^2 rhoup (in,real(n),optional) ! g2dn : grad^2 rhodn (in,real(n),optional) ! grho2 : |grad rho|^2 (in,real(n),optional) ! gup2 : |grad rhoup|^2 (in,real(n),optional) ! gdn2 : |grad rhodn|^2 (in,real(n),optional) ! gupdn : (grad rhoup).(grad rhodn) (in,real(n),optional) ! tau : kinetic energy density (in,real(n),optional) ! tauup : spin-up kinetic energy density (in,real(n),optional) ! taudn : spin-down kinetic energy density (in,real(n),optional) ! ex : exchange energy density (out,real(n),optional) ! ec : correlation energy density (out,real(n),optional) ! vx : spin-unpolarised exchange potential (out,real(n),optional) ! vc : spin-unpolarised correlation potential (out,real(n),optional) ! vxup : spin-up exchange potential (out,real(n),optional) ! vxdn : spin-down exchange potential (out,real(n),optional) ! vcup : spin-up correlation potential (out,real(n),optional) ! vcdn : spin-down correlation potential (out,real(n),optional) ! dxdgr2 : de_x/d(|grad rho|^2) (out,real(n),optional) ! dxdgu2 : de_x/d(|grad rhoup|^2) (out,real(n),optional) ! dxdgd2 : de_x/d(|grad rhodn|^2) (out,real(n),optional) ! dxdgud : de_x/d((grad rhoup).(grad rhodn)) (out,real(n),optional) ! dcdgr2 : de_c/d(|grad rho|^2) (out,real(n),optional) ! dcdgu2 : de_c/d(|grad rhoup|^2) (out,real(n),optional) ! dcdgd2 : de_c/d(|grad rhodn|^2) (out,real(n),optional) ! dcdgud : de_c/d((grad rhoup).(grad rhodn)) (out,real(n),optional) ! dxdg2r : de_x/d(grad^2 rho) (out,real(n),optional) ! dxdg2u : de_x/d(grad^2 rhoup) (out,real(n),optional) ! dxdg2d : de_x/d(grad^2 rhodn) (out,real(n),optional) ! dcdg2r : de_c/d(grad^2 rho) (out,real(n),optional) ! dcdg2u : de_c/d(grad^2 rhoup) (out,real(n),optional) ! dcdg2d : de_c/d(grad^2 rhodn) (out,real(n),optional) ! wx : de_x/dtau (out,real(n),optional) ! wxup : de_x/dtauup (out,real(n),optional) ! wxdn : de_x/dtaudn (out,real(n),optional) ! wc : de_c/dtau (out,real(n),optional) ! wcup : de_c/dtauup (out,real(n),optional) ! wcdn : de_c/dtaudn (out,real(n),optional) ! !DESCRIPTION: ! Interface to the ETSF {\tt libxc} exchange-correlation functional library: ! \newline{\tt http://www.tddft.org/programs/octopus/wiki/index.php/Libxc}. ! The second and third integers in {\tt xctype} define the exchange and ! correlation functionals in {\tt libxc}, respectively. ! ! !REVISION HISTORY: ! Created April 2009 (Tyrel McQueen) ! Modified September 2009 (JKD and TMQ) ! Updated for Libxc 1, July 2010 (JKD) ! Updated for Libxc 4, March 2018 (JKD) ! Updated for Libxc 5, May 2020 (JKD) ! Updated for Libxc 6, December 2022 (JKD) !EOP !BOC implicit none ! mandatory arguments integer, intent(in) :: xctype(3),n ! optional arguments real(8), optional, intent(in) :: tempa real(8), optional, intent(in) :: rho(n),rhoup(n),rhodn(n) real(8), optional, intent(in) :: g2rho(n),g2up(n),g2dn(n) real(8), optional, intent(in) :: grho2(n),gup2(n),gdn2(n),gupdn(n) real(8), optional, intent(in) :: tau(n),tauup(n),taudn(n) real(8), optional, intent(out) :: ex(n),ec(n),vx(n),vc(n) real(8), optional, intent(out) :: vxup(n),vxdn(n),vcup(n),vcdn(n) real(8), optional, intent(out) :: dxdgr2(n),dxdgu2(n),dxdgd2(n),dxdgud(n) real(8), optional, intent(out) :: dxdg2r(n),dxdg2u(n),dxdg2d(n) real(8), optional, intent(out) :: wx(n),wxup(n),wxdn(n) real(8), optional, intent(out) :: dcdgr2(n),dcdgu2(n),dcdgd2(n),dcdgud(n) real(8), optional, intent(out) :: dcdg2r(n),dcdg2u(n),dcdg2d(n) real(8), optional, intent(out) :: wc(n),wcup(n),wcdn(n) ! local variables integer nspin,fmly,id,k integer(c_size_t) np type(xc_f90_func_t) p ! allocatable arrays real(8), allocatable :: r(:,:),sigma(:,:),vrho(:,:),vsigma(:,:) real(8), allocatable :: lapl(:,:),t(:,:),vlapl(:,:),vtau(:,:) if (present(rho)) then nspin=XC_UNPOLARIZED else if (present(rhoup).and.present(rhodn)) then nspin=XC_POLARIZED else write(*,*) write(*,'("Error(libxcifc): missing arguments")') write(*,*) stop end if if (xctype(2) /= 0) then if (xctype(2) == xctype(3)) then write(*,*) write(*,'("Error(libxcifc): Libxc exchange and correlation functionals")') write(*,'(" are the same : ",2I8)') xctype(2:3) write(*,*) stop end if end if ! convert number of points to long integer np=n ! loop over functional kinds (exchange or correlation) do k=2,3 id=xctype(k) if (id > 0) then fmly=xc_f90_family_from_id(id) ! initialise functional call xc_f90_func_init(p,id,nspin) select case(fmly) case(XC_FAMILY_LDA) !-------------------------! ! LDA functionals ! !-------------------------! ! set temperature for free energy functional if ((id == XC_LDA_XC_KSDT).or.(id == XC_LDA_XC_GDSMFB)) then call xc_f90_func_set_ext_params(p,[tempa]) end if if (k == 2) then ! exchange or a kinetic energy functional if (present(rho)) then if (present(ex)) then call xc_f90_lda_exc_vxc(p,np,rho,ex,vx) else call xc_f90_lda_vxc(p,np,rho,vx) end if else allocate(r(2,n),vrho(2,n)) r(1,:)=rhoup(:); r(2,:)=rhodn(:) if (present(ex)) then call xc_f90_lda_exc_vxc(p,np,r,ex,vrho) else call xc_f90_lda_vxc(p,np,r,vrho) end if vxup(:)=vrho(1,:); vxdn(:)=vrho(2,:) deallocate(r,vrho) end if else ! correlation if (present(rho)) then if (present(ec)) then call xc_f90_lda_exc_vxc(p,np,rho,ec,vc) else call xc_f90_lda_vxc(p,np,rho,vc) end if else allocate(r(2,n),vrho(2,n)) r(1,:)=rhoup(:); r(2,:)=rhodn(:) if (present(ec)) then call xc_f90_lda_exc_vxc(p,np,r,ec,vrho) else call xc_f90_lda_vxc(p,np,r,vrho) end if vcup(:)=vrho(1,:); vcdn=vrho(2,:) deallocate(r,vrho) end if end if case(XC_FAMILY_GGA,XC_FAMILY_HYB_GGA) !-------------------------! ! GGA functionals ! !-------------------------! if (k == 2) then ! exchange or a kinetic energy functional if (present(rho)) then if (present(ex)) then call xc_f90_gga_exc_vxc(p,np,rho,grho2,ex,vx,dxdgr2) else call xc_f90_gga_vxc(p,np,rho,grho2,vx,dxdgr2) end if else allocate(r(2,n),sigma(3,n),vrho(2,n),vsigma(3,n)) r(1,:)=rhoup(:); r(2,:)=rhodn(:) sigma(1,:)=gup2(:) if (present(gupdn)) then sigma(2,:)=gupdn(:) else sigma(2,:)=0.d0 end if sigma(3,:)=gdn2(:) if (present(ex)) then call xc_f90_gga_exc_vxc(p,np,r,sigma,ex,vrho,vsigma) else call xc_f90_gga_vxc(p,np,r,sigma,vrho,vsigma) end if vxup(:)=vrho(1,:); vxdn(:)=vrho(2,:) dxdgu2(:)=vsigma(1,:) if (present(dxdgud)) dxdgud(:)=vsigma(2,:) dxdgd2(:)=vsigma(3,:) deallocate(r,sigma,vrho,vsigma) end if else ! correlation if (present(rho)) then if (present(ec)) then call xc_f90_gga_exc_vxc(p,np,rho,grho2,ec,vc,dcdgr2) else call xc_f90_gga_vxc(p,np,rho,grho2,vc,dcdgr2) end if else allocate(r(2,n),sigma(3,n),vrho(2,n),vsigma(3,n)) r(1,:)=rhoup(:); r(2,:)=rhodn(:) sigma(1,:)=gup2(:); sigma(2,:)=gupdn(:); sigma(3,:)=gdn2(:) if (present(ec)) then call xc_f90_gga_exc_vxc(p,np,r,sigma,ec,vrho,vsigma) else call xc_f90_gga_vxc(p,np,r,sigma,vrho,vsigma) end if vcup(:)=vrho(1,:); vcdn(:)=vrho(2,:) dcdgu2(:)=vsigma(1,:); dcdgud(:)=vsigma(2,:); dcdgd2(:)=vsigma(3,:) deallocate(r,sigma,vrho,vsigma) end if end if case(XC_FAMILY_MGGA) !------------------------------! ! meta-GGA functionals ! !------------------------------! if (k == 2) then ! exchange or a kinetic energy functional if (present(rho)) then if (present(ex)) then call xc_f90_mgga_exc_vxc(p,np,rho,grho2,g2rho,tau,ex,vx,dxdgr2, & dxdg2r,wx) else call xc_f90_mgga_vxc(p,np,rho,grho2,g2rho,tau,vx,dxdgr2,dxdg2r,wx) end if else allocate(r(2,n),sigma(3,n),lapl(2,n),t(2,n)) allocate(vrho(2,n),vsigma(3,n),vlapl(2,n),vtau(2,n)) r(1,:)=rhoup(:); r(2,:)=rhodn(:) sigma(1,:)=gup2(:); sigma(3,:)=gdn2(:) if (present(gupdn)) then sigma(2,:)=gupdn(:) else sigma(2,:)=0.d0 end if lapl(1,:)=g2up(:); lapl(2,:)=g2dn(:) t(1,:)=tauup(:); t(2,:)=taudn(:) if (present(ex)) then call xc_f90_mgga_exc_vxc(p,np,r,sigma,lapl,t,ex,vrho,vsigma,vlapl, & vtau) else call xc_f90_mgga_vxc(p,np,r,sigma,lapl,t,vrho,vsigma,vlapl,vtau) end if vxup(:)=vrho(1,:); vxdn(:)=vrho(2,:) dxdgu2(:)=vsigma(1,:); dxdgd2(:)=vsigma(3,:) if (present(dxdgud)) dxdgud(:)=vsigma(2,:) dxdg2u(:)=vlapl(1,:); dxdg2d(:)=vlapl(2,:) wxup(:)=vtau(1,:); wxdn(:)=vtau(2,:) deallocate(r,sigma,lapl,t) deallocate(vrho,vsigma,vlapl,vtau) end if else ! correlation if (present(rho)) then if (present(ec)) then call xc_f90_mgga_exc_vxc(p,np,rho,grho2,g2rho,tau,ec,vc,dcdgr2, & dcdg2r,wc) else call xc_f90_mgga_vxc(p,np,rho,grho2,g2rho,tau,vc,dcdgr2,dcdg2r,wc) end if else allocate(r(2,n),sigma(3,n),lapl(2,n),t(2,n)) allocate(vrho(2,n),vsigma(3,n),vlapl(2,n),vtau(2,n)) r(1,:)=rhoup(:); r(2,:)=rhodn(:) sigma(1,:)=gup2(:); sigma(2,:)=gupdn(:); sigma(3,:)=gdn2(:) lapl(1,:)=g2up(:); lapl(2,:)=g2dn(:) t(1,:)=tauup(:); t(2,:)=taudn(:) if (present(ec)) then call xc_f90_mgga_exc_vxc(p,np,r,sigma,lapl,t,ec,vrho,vsigma,vlapl, & vtau) else call xc_f90_mgga_vxc(p,np,r,sigma,lapl,t,vrho,vsigma,vlapl,vtau) end if vcup(:)=vrho(1,:); vcdn(:)=vrho(2,:) dcdgu2(:)=vsigma(1,:); dcdgud(:)=vsigma(2,:); dcdgd2(:)=vsigma(3,:) dcdg2u(:)=vlapl(1,:); dcdg2d(:)=vlapl(2,:) wcup(:)=vtau(1,:); wcdn(:)=vtau(2,:) deallocate(r,sigma,lapl,t) deallocate(vrho,vsigma,vlapl,vtau) end if end if case default write(*,*) write(*,'("Error(libxcifc): unsupported Libxc functional family : ",I8)')& fmly write(*,*) stop end select ! destroy functional call xc_f90_func_end(p) else ! case when id=0 if (k == 2) then if (present(ex)) ex(:)=0.d0 if (present(vx)) vx(:)=0.d0 if (present(vxup)) vxup(:)=0.d0 if (present(vxdn)) vxdn(:)=0.d0 if (present(dxdgr2)) dxdgr2(:)=0.d0 if (present(dxdgu2)) dxdgu2(:)=0.d0 if (present(dxdgd2)) dxdgd2(:)=0.d0 if (present(dxdgud)) dxdgud(:)=0.d0 if (present(dxdg2r)) dxdg2r(:)=0.d0 if (present(dxdg2u)) dxdg2u(:)=0.d0 if (present(dxdg2d)) dxdg2d(:)=0.d0 if (present(wx)) wx(:)=0.d0 if (present(wxup)) wxup(:)=0.d0 if (present(wxdn)) wxdn(:)=0.d0 else if (present(ec)) ec(:)=0.d0 if (present(vc)) vc(:)=0.d0 if (present(vcup)) vcup(:)=0.d0 if (present(vcdn)) vcdn(:)=0.d0 if (present(dcdgr2)) dcdgr2(:)=0.d0 if (present(dcdgu2)) dcdgu2(:)=0.d0 if (present(dcdgd2)) dcdgd2(:)=0.d0 if (present(dcdgud)) dcdgud(:)=0.d0 if (present(dcdg2r)) dcdg2r(:)=0.d0 if (present(dcdg2u)) dcdg2u(:)=0.d0 if (present(dcdg2d)) dcdg2d(:)=0.d0 if (present(wc)) wc(:)=0.d0 if (present(wcup)) wcup(:)=0.d0 if (present(wcdn)) wcdn(:)=0.d0 end if end if end do end subroutine subroutine fxcifc_libxc(fxctype,n,rho,rhoup,rhodn,fxc,fxcuu,fxcud,fxcdd) use, intrinsic :: iso_c_binding implicit none ! mandatory arguments integer, intent(in) :: fxctype(3),n ! optional arguments real(8), optional, intent(in) :: rho(n),rhoup(n),rhodn(n) real(8), optional, intent(out) :: fxc(n),fxcuu(n),fxcud(n),fxcdd(n) ! local variables integer nspin,fmly,id,k integer(c_size_t) np type(xc_f90_func_t) p ! allocatable arrays real(8), allocatable :: r(:,:),f(:,:) np=n if (present(rho)) then nspin=XC_UNPOLARIZED else if (present(rhoup).and.present(rhodn)) then nspin=XC_POLARIZED else write(*,*) write(*,'("Error(libxcifc): missing arguments")') write(*,*) stop end if ! zero the kernel if (present(fxc)) fxc(:)=0.d0 if (present(fxcuu)) fxcuu(:)=0.d0 if (present(fxcud)) fxcud(:)=0.d0 if (present(fxcdd)) fxcdd(:)=0.d0 ! loop over functional kinds (exchange or correlation) do k=2,3 id=fxctype(k) if (id <= 0) cycle fmly=xc_f90_family_from_id(id) ! initialise functional call xc_f90_func_init(p,id,nspin) select case(fmly) case(XC_FAMILY_LDA) !-------------------------! ! LDA functionals ! !-------------------------! if (present(rho)) then allocate(f(1,n)) call xc_f90_lda_fxc(p,np,rho,f) fxc(:)=fxc(:)+f(1,:) deallocate(f) else allocate(r(2,n),f(3,n)) r(1,:)=rhoup(:); r(2,:)=rhodn(:) call xc_f90_lda_fxc(p,np,r,f) fxcuu(:)=fxcuu(:)+f(1,:) fxcud(:)=fxcud(:)+f(2,:) fxcdd(:)=fxcdd(:)+f(3,:) deallocate(r,f) end if case default write(*,*) write(*,'("Error(libxcifc): unsupported Libxc functional family : ",I8)') & fmly write(*,'(" for calculating f_xc")') write(*,*) stop end select ! destroy functional call xc_f90_func_end(p) end do end subroutine subroutine xcdata_libxc(xctype,xcdescr,xcspin,xcgrad,hybrid,hybridc) implicit none ! arguments integer, intent(in) :: xctype(3) character(264), intent(out) :: xcdescr integer, intent(out) :: xcspin,xcgrad logical, intent(out) :: hybrid real(8), intent(out) :: hybridc ! local variables integer k,id,fmly,g character(128) name type(xc_f90_func_t) p ! check version is compatible call xc_f90_version(libxcv(1),libxcv(2),libxcv(3)) if (libxcv(1) /= 6) then write(*,*) write(*,'("Error(libxcifc): incompatible Libxc version : ",I2.2,".",I3.3,".",& &I3.3)') libxcv(:) write(*,*) stop end if ! undefined spin polarisation xcspin=-1 ! undefined gradient type xcgrad=-1 ! not a hybrid functional by default hybrid=.false. ! default description xcdescr='none' do k=2,3 id=xctype(k) if (id <= 0) cycle ! initialise functional call xc_f90_func_init(p,id,XC_UNPOLARIZED) !-----------------------! ! gradient type ! !-----------------------! g=grad(p) if (g < 0) then write(*,*) write(*,'("Error(libxcifc): unsupported gradient type")') write(*,*) stop end if if (k == 3) then if ((xcgrad >= 0).and.(g /= xcgrad)) then write(*,*) write(*,'("Error(libxcifc): inconsistent exchange and correlation & &gradient types")') write(*,*) stop end if end if xcgrad=g !----------------------------! ! hybrid functionals ! !----------------------------! fmly=xc_f90_family_from_id(id) ! hybrid GGA functionals if (fmly == XC_FAMILY_HYB_GGA) then if (k == 2) then write(*,*) write(*,'("Error(libxcifc): set only correlation part of xctype for & &Libxc hybrids")') write(*,*) stop end if ! set the hybrid mixing coefficient hybridc=xc_f90_hyb_exx_coef(p) hybrid=.true. end if !--------------------------------! ! functional description ! !--------------------------------! name=xc_f90_functional_get_name(id) if (k == 2) then xcdescr=trim(name) else xcdescr=trim(xcdescr)//'; '//trim(name) end if ! destroy functional call xc_f90_func_end(p) end do end subroutine integer function grad(p) implicit none ! arguments type(xc_f90_func_t), intent(in) :: p ! local variables type(xc_f90_func_info_t) info type(xc_f90_func_t) pa integer fmly,flg,knd integer naux,i ! allocatable arrays integer, allocatable :: ida(:) info=xc_f90_func_get_info(p) fmly=xc_f90_func_info_get_family(info) select case(fmly) case(XC_FAMILY_LDA) ! no gradients required grad=0 case(XC_FAMILY_GGA,XC_FAMILY_HYB_GGA) ! GGA gradients required grad=2 case(XC_FAMILY_MGGA) flg=xc_f90_func_info_get_flags(info) if (iand(flg,XC_FLAGS_NEEDS_LAPLACIAN) == 0) then ! tau and no Laplacian grad=4 else ! tau and Laplacian grad=5 end if ! check if tau is not required knd=xc_f90_func_info_get_kind(info) if (knd == XC_KINETIC) then ! this is a kinetic energy functional grad=3 else ! this is an exchange and/or correlation functional naux=xc_f90_num_aux_funcs(p) allocate(ida(naux)) call xc_f90_aux_func_ids(p,ida) do i=1,naux call xc_f90_func_init(pa,ida(i),XC_UNPOLARIZED) info=xc_f90_func_get_info(pa) knd=xc_f90_func_info_get_kind(info) call xc_f90_func_end(pa) if (knd == XC_KINETIC) then ! this is a deorbitalised functional and does not require tau grad=3 exit end if end do deallocate(ida) end if case default grad=-1 end select end function !EOC end module elk-9.2.12/src/PaxHeaders/zfftifc_mkl.f900000644000000000000000000000013214536061314015046 xustar0030 mtime=1702388428.644500414 30 atime=1702388428.643500416 30 ctime=1702388428.644500414 elk-9.2.12/src/zfftifc_mkl.f900000644002504400250440000000364314536061314017576 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zfftifc(nd,n,sgn,z) use mkl_dfti implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn complex(8), intent(inout) :: z(*) ! local variables integer status,p real(8) t1 type(DFTI_DESCRIPTOR), pointer :: handle ! interface to the Intel MKL advanced Discreet Fourier Transform (DFT) routines ! (with thanks to Torbjorn Bjorkman) p=product(n(:)) t1=1.d0/dble(p) status=DftiCreateDescriptor(handle,DFTI_DOUBLE,DFTI_COMPLEX,nd,n) status=DftiSetValue(handle,DFTI_FORWARD_SCALE,t1) status=DftiCommitDescriptor(handle) if (sgn.eq.-1) then status=DftiComputeForward(handle,z) else status=DftiComputeBackward(handle,z) end if status=DftiFreeDescriptor(handle) end subroutine subroutine rzfftifc(nd,n,sgn,r,z) use mkl_dfti implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn real(8), intent(inout) :: r(*) complex(8), intent(inout) :: z(*) ! local variables integer status,p,i real(8) t1 type(DFTI_DESCRIPTOR), pointer :: handle ! automatic arrays integer strides(0:nd) p=product(n(:)) t1=1.d0/dble(p) status=DftiCreateDescriptor(handle,DFTI_DOUBLE,DFTI_REAL,nd,n) status=DftiSetValue(handle,DFTI_CONJUGATE_EVEN_STORAGE,DFTI_COMPLEX_COMPLEX) status=DftiSetValue(handle,DFTI_PLACEMENT,DFTI_NOT_INPLACE) status=DftiSetValue(handle,DFTI_FORWARD_SCALE,t1) strides(0)=0 strides(1)=1 if (nd.gt.1) then strides(2)=n(1)/2+1 do i=2,nd-1 strides(i+1)=strides(i)*n(i) end do end if if (sgn.eq.-1) then status=DftiSetValue(handle,DFTI_OUTPUT_STRIDES,strides) status=DftiCommitDescriptor(handle) status=DftiComputeForward(handle,r,z) else status=DftiSetValue(handle,DFTI_INPUT_STRIDES,strides) status=DftiCommitDescriptor(handle) status=DftiComputeBackward(handle,z,r) end if status=DftiFreeDescriptor(handle) end subroutine elk-9.2.12/src/PaxHeaders/cfftifc_mkl.f900000644000000000000000000000013214536061314015017 xustar0030 mtime=1702388428.645500413 30 atime=1702388428.645500413 30 ctime=1702388428.645500413 elk-9.2.12/src/cfftifc_mkl.f900000644002504400250440000000363414536061314017547 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cfftifc(nd,n,sgn,c) use mkl_dfti implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn complex(4), intent(inout) :: c(*) ! local variables ! local variables integer status,p real(4) t1 type(DFTI_DESCRIPTOR), pointer :: handle ! interface to the Intel MKL advanced Discreet Fourier Transform (DFT) routines ! (with thanks to Torbjorn Bjorkman) p=product(n(:)) t1=1.e0/real(p) status=DftiCreateDescriptor(handle,DFTI_SINGLE,DFTI_COMPLEX,nd,n) status=DftiSetValue(handle,DFTI_FORWARD_SCALE,t1) status=DftiCommitDescriptor(handle) if (sgn.eq.-1) then status=DftiComputeForward(handle,c) else status=DftiComputeBackward(handle,c) end if status=DftiFreeDescriptor(handle) end subroutine subroutine rcfftifc(nd,n,sgn,r,c) use mkl_dfti implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn real(4), intent(inout) :: r(*) complex(4), intent(inout) :: c(*) ! local variables integer status,p,i real(4) t1 type(DFTI_DESCRIPTOR), pointer :: handle ! automatic arrays integer strides(0:nd) p=product(n(:)) t1=1.e0/real(p) status=DftiCreateDescriptor(handle,DFTI_SINGLE,DFTI_REAL,nd,n) status=DftiSetValue(handle,DFTI_CONJUGATE_EVEN_STORAGE,DFTI_COMPLEX_COMPLEX) status=DftiSetValue(handle,DFTI_PLACEMENT,DFTI_NOT_INPLACE) status=DftiSetValue(handle,DFTI_FORWARD_SCALE,t1) strides(0)=0 strides(1)=1 if (nd.gt.1) then strides(2)=n(1)/2+1 do i=2,nd-1 strides(i+1)=strides(i)*n(i) end do end if if (sgn.eq.-1) then status=DftiSetValue(handle,DFTI_OUTPUT_STRIDES,strides) status=DftiCommitDescriptor(handle) status=DftiComputeForward(handle,r,c) else status=DftiSetValue(handle,DFTI_INPUT_STRIDES,strides) status=DftiCommitDescriptor(handle) status=DftiComputeBackward(handle,c,r) end if status=DftiFreeDescriptor(handle) end subroutine elk-9.2.12/PaxHeaders/examples0000644000000000000000000000013214536061315013203 xustar0030 mtime=1702388429.132499692 30 atime=1702388428.657500395 30 ctime=1702388429.132499692 elk-9.2.12/examples/0000755002504400250440000000000014536061315016002 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/PaxHeaders/BSE0000644000000000000000000000013214536061314013613 xustar0030 mtime=1702388428.671500374 30 atime=1702388428.658500393 30 ctime=1702388428.671500374 elk-9.2.12/examples/BSE/0000755002504400250440000000000014536061314016412 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/BSE/PaxHeaders/Si0000644000000000000000000000013214536061314014166 xustar0030 mtime=1702388428.665500383 30 atime=1702388428.658500393 30 ctime=1702388428.665500383 elk-9.2.12/examples/BSE/Si/0000755002504400250440000000000014536061314016765 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/BSE/Si/PaxHeaders/EPSILON_11.OUT0000644000000000000000000000012714536061314016252 xustar0029 mtime=1702388428.66050039 29 atime=1702388428.66050039 29 ctime=1702388428.66050039 elk-9.2.12/examples/BSE/Si/EPSILON_11.OUT0000644002504400250440000016350614536061314021003 0ustar00dewhurstdewhurst00000000000000 0.000000000 11.66588532 0.1250000000E-02 11.65430648 0.2500000000E-02 11.61124981 0.3750000000E-02 11.51356928 0.5000000000E-02 11.33618510 0.6250000000E-02 11.08496950 0.7500000000E-02 10.81533017 0.8750000000E-02 10.58797550 0.1000000000E-01 10.42531540 0.1125000000E-01 10.32538260 0.1250000000E-01 10.27976752 0.1375000000E-01 10.27373754 0.1500000000E-01 10.28929980 0.1625000000E-01 10.31195281 0.1750000000E-01 10.33401056 0.1875000000E-01 10.35352667 0.2000000000E-01 10.37034339 0.2125000000E-01 10.38534219 0.2250000000E-01 10.40206854 0.2375000000E-01 10.42376516 0.2500000000E-01 10.45035451 0.2625000000E-01 10.48026076 0.2750000000E-01 10.51241792 0.2875000000E-01 10.54606657 0.3000000000E-01 10.58034798 0.3125000000E-01 10.61452198 0.3250000000E-01 10.64829180 0.3375000000E-01 10.68195032 0.3500000000E-01 10.71615309 0.3625000000E-01 10.75142730 0.3750000000E-01 10.78797059 0.3875000000E-01 10.82576250 0.4000000000E-01 10.86470568 0.4125000000E-01 10.90465691 0.4250000000E-01 10.94532003 0.4375000000E-01 10.98615689 0.4500000000E-01 11.02646878 0.4625000000E-01 11.06589616 0.4750000000E-01 11.10512901 0.4875000000E-01 11.14544997 0.5000000000E-01 11.18726601 0.5125000000E-01 11.23021645 0.5250000000E-01 11.27459524 0.5375000000E-01 11.32151176 0.5500000000E-01 11.37173449 0.5625000000E-01 11.42511348 0.5750000000E-01 11.48098154 0.5875000000E-01 11.53876936 0.6000000000E-01 11.59836383 0.6125000000E-01 11.66002470 0.6250000000E-01 11.72397672 0.6375000000E-01 11.79023497 0.6500000000E-01 11.85873416 0.6625000000E-01 11.92944054 0.6750000000E-01 12.00236633 0.6875000000E-01 12.07754405 0.7000000000E-01 12.15499526 0.7125000000E-01 12.23471210 0.7250000000E-01 12.31669111 0.7375000000E-01 12.40106751 0.7500000000E-01 12.48822782 0.7625000000E-01 12.57862618 0.7750000000E-01 12.67250732 0.7875000000E-01 12.76992981 0.8000000000E-01 12.87092234 0.8125000000E-01 12.97555135 0.8250000000E-01 13.08391475 0.8375000000E-01 13.19611514 0.8500000000E-01 13.31223858 0.8625000000E-01 13.43237337 0.8750000000E-01 13.55672765 0.8875000000E-01 13.68577681 0.9000000000E-01 13.82014461 0.9125000000E-01 13.96029233 0.9250000000E-01 14.10647790 0.9375000000E-01 14.25892054 0.9500000000E-01 14.41790102 0.9625000000E-01 14.58377697 0.9750000000E-01 14.75697281 0.9875000000E-01 14.93797229 0.1000000000 15.12731937 0.1012500000 15.32562492 0.1025000000 15.53357150 0.1037500000 15.75191509 0.1050000000 15.98149371 0.1062500000 16.22324573 0.1075000000 16.47823250 0.1087500000 16.74765820 0.1100000000 17.03288436 0.1112500000 17.33544886 0.1125000000 17.65709364 0.1137500000 17.99979326 0.1150000000 18.36577460 0.1162500000 18.75751579 0.1175000000 19.17769827 0.1187500000 19.62905547 0.1200000000 20.11400104 0.1212500000 20.63379473 0.1225000000 21.18675427 0.1237500000 21.76456884 0.1250000000 22.34517818 0.1262500000 22.88095862 0.1275000000 23.28651801 0.1287500000 23.44969343 0.1300000000 23.30623288 0.1312500000 22.94598268 0.1325000000 22.60991062 0.1337500000 22.55880956 0.1350000000 22.91764885 0.1362500000 23.62914353 0.1375000000 24.54219570 0.1387500000 25.48729144 0.1400000000 26.29425940 0.1412500000 26.81782719 0.1425000000 26.99746089 0.1437500000 26.88689145 0.1450000000 26.61995937 0.1462500000 26.29193583 0.1475000000 25.84624877 0.1487500000 25.23837557 0.1500000000 24.63027612 0.1512500000 24.25348519 0.1525000000 24.17246299 0.1537500000 24.25674511 0.1550000000 24.27821973 0.1562500000 24.00545031 0.1575000000 23.36816322 0.1587500000 22.49749292 0.1600000000 21.48572012 0.1612500000 20.28305745 0.1625000000 18.85350783 0.1637500000 17.21839501 0.1650000000 15.37906101 0.1662500000 13.27847992 0.1675000000 10.84726159 0.1687500000 8.143736706 0.1700000000 5.452482046 0.1712500000 3.078634736 0.1725000000 1.083328444 0.1737500000 -0.6798127544 0.1750000000 -2.398544048 0.1762500000 -4.093826040 0.1775000000 -5.504856629 0.1787500000 -6.321029385 0.1800000000 -6.442488533 0.1812500000 -5.957280231 0.1825000000 -5.059098583 0.1837500000 -4.042200943 0.1850000000 -3.232313967 0.1862500000 -2.844639338 0.1875000000 -2.920050747 0.1887500000 -3.389136243 0.1900000000 -4.139978322 0.1912500000 -4.993079474 0.1925000000 -5.680476155 0.1937500000 -5.958466854 0.1950000000 -5.798532232 0.1962500000 -5.365532098 0.1975000000 -4.819008635 0.1987500000 -4.284064922 0.2000000000 -3.921634767 0.2012500000 -3.873955684 0.2025000000 -4.162290855 0.2037500000 -4.683145724 0.2050000000 -5.286239240 0.2062500000 -5.888783582 0.2075000000 -6.500589633 0.2087500000 -7.169462720 0.2100000000 -7.958038022 0.2112500000 -8.874168848 0.2125000000 -9.824656310 0.2137500000 -10.63217438 0.2150000000 -11.11342243 0.2162500000 -11.21482368 0.2175000000 -11.01839659 0.2187500000 -10.66430360 0.2200000000 -10.28947644 0.2212500000 -9.973347702 0.2225000000 -9.735670359 0.2237500000 -9.589092818 0.2250000000 -9.545543858 0.2262500000 -9.574854580 0.2275000000 -9.621513927 0.2287500000 -9.642493979 0.2300000000 -9.612183258 0.2312500000 -9.527090907 0.2325000000 -9.406374905 0.2337500000 -9.261464441 0.2350000000 -9.064871943 0.2362500000 -8.791664938 0.2375000000 -8.478553021 0.2387500000 -8.197018422 0.2400000000 -8.001941193 0.2412500000 -7.916186632 0.2425000000 -7.925996481 0.2437500000 -7.996574932 0.2450000000 -8.094422474 0.2462500000 -8.174047464 0.2475000000 -8.200019114 0.2487500000 -8.200048515 0.2500000000 -8.237830320 0.2512500000 -8.329109249 0.2525000000 -8.414889572 0.2537500000 -8.435251310 0.2550000000 -8.402010028 0.2562500000 -8.362861480 0.2575000000 -8.333448953 0.2587500000 -8.287874491 0.2600000000 -8.198767669 0.2612500000 -8.070583978 0.2625000000 -7.917737162 0.2637500000 -7.732721975 0.2650000000 -7.508774259 0.2662500000 -7.261596185 0.2675000000 -7.008429674 0.2687500000 -6.757795714 0.2700000000 -6.524118406 0.2712500000 -6.331715744 0.2725000000 -6.202164742 0.2737500000 -6.140982086 0.2750000000 -6.132027987 0.2762500000 -6.140570097 0.2775000000 -6.134437462 0.2787500000 -6.111013304 0.2800000000 -6.084979060 0.2812500000 -6.052434203 0.2825000000 -5.991885783 0.2837500000 -5.887709990 0.2850000000 -5.738695068 0.2862500000 -5.560384940 0.2875000000 -5.379941004 0.2887500000 -5.218994201 0.2900000000 -5.081630146 0.2912500000 -4.964121423 0.2925000000 -4.868101406 0.2937500000 -4.792050413 0.2950000000 -4.724151301 0.2962500000 -4.659490024 0.2975000000 -4.603612330 0.2987500000 -4.559699686 0.3000000000 -4.537103914 0.3012500000 -4.553927583 0.3025000000 -4.608110162 0.3037500000 -4.665372049 0.3050000000 -4.691811867 0.3062500000 -4.680893920 0.3075000000 -4.645279156 0.3087500000 -4.597033682 0.3100000000 -4.541341689 0.3112500000 -4.483021935 0.3125000000 -4.426647674 0.3137500000 -4.368723764 0.3150000000 -4.302164024 0.3162500000 -4.224915734 0.3175000000 -4.137679465 0.3187500000 -4.043116812 0.3200000000 -3.948665696 0.3212500000 -3.860010684 0.3225000000 -3.774947099 0.3237500000 -3.688177003 0.3250000000 -3.597922073 0.3262500000 -3.508310180 0.3275000000 -3.428555205 0.3287500000 -3.364198508 0.3300000000 -3.308886162 0.3312500000 -3.249778415 0.3325000000 -3.178980212 0.3337500000 -3.096860517 0.3350000000 -3.008242899 0.3362500000 -2.919250132 0.3375000000 -2.833526850 0.3387500000 -2.749032456 0.3400000000 -2.663348102 0.3412500000 -2.580152814 0.3425000000 -2.506918564 0.3437500000 -2.452624420 0.3450000000 -2.423938182 0.3462500000 -2.418800989 0.3475000000 -2.434232531 0.3487500000 -2.478663395 0.3500000000 -2.562642787 0.3512500000 -2.682432280 0.3525000000 -2.817524837 0.3537500000 -2.935571292 0.3550000000 -3.004170163 0.3562500000 -3.012174418 0.3575000000 -2.975992936 0.3587500000 -2.920329830 0.3600000000 -2.859402353 0.3612500000 -2.798588158 0.3625000000 -2.742679753 0.3637500000 -2.697244109 0.3650000000 -2.666924475 0.3662500000 -2.649306588 0.3675000000 -2.633356971 0.3687500000 -2.610752157 0.3700000000 -2.581665078 0.3712500000 -2.547293397 0.3725000000 -2.505701179 0.3737500000 -2.457624553 0.3750000000 -2.410832292 0.3762500000 -2.374832930 0.3775000000 -2.352556076 0.3787500000 -2.341148494 0.3800000000 -2.339769224 0.3812500000 -2.348170927 0.3825000000 -2.359406428 0.3837500000 -2.362866457 0.3850000000 -2.351297718 0.3862500000 -2.324480464 0.3875000000 -2.289981450 0.3887500000 -2.257239655 0.3900000000 -2.228610977 0.3912500000 -2.198651864 0.3925000000 -2.162711610 0.3937500000 -2.121706156 0.3950000000 -2.079041167 0.3962500000 -2.036012752 0.3975000000 -1.991711166 0.3987500000 -1.946978717 0.4000000000 -1.905611853 0.4012500000 -1.871443196 0.4025000000 -1.847385004 0.4037500000 -1.834857863 0.4050000000 -1.829657747 0.4062500000 -1.822969987 0.4075000000 -1.809839274 0.4087500000 -1.791717774 0.4100000000 -1.773061118 0.4112500000 -1.759225704 0.4125000000 -1.752995945 0.4137500000 -1.752580671 0.4150000000 -1.753344548 0.4162500000 -1.748997942 0.4175000000 -1.734249043 0.4187500000 -1.708954428 0.4200000000 -1.677326282 0.4212500000 -1.643905707 0.4225000000 -1.613267238 0.4237500000 -1.590569185 0.4250000000 -1.579799331 0.4262500000 -1.582592088 0.4275000000 -1.598667852 0.4287500000 -1.624818758 0.4300000000 -1.652753855 0.4312500000 -1.672289400 0.4325000000 -1.678318704 0.4337500000 -1.671758655 0.4350000000 -1.655064480 0.4362500000 -1.630837315 0.4375000000 -1.602290599 0.4387500000 -1.571798821 0.4400000000 -1.539180569 0.4412500000 -1.502601231 0.4425000000 -1.461819730 0.4437500000 -1.419191272 0.4450000000 -1.378344094 0.4462500000 -1.343121722 0.4475000000 -1.316243164 0.4487500000 -1.297665387 0.4500000000 -1.284970756 0.4512500000 -1.275859624 0.4525000000 -1.269429052 0.4537500000 -1.265471200 0.4550000000 -1.263254541 0.4562500000 -1.261447950 0.4575000000 -1.258475121 0.4587500000 -1.253095720 0.4600000000 -1.244979511 0.4612500000 -1.233100960 0.4625000000 -1.215224445 0.4637500000 -1.190183446 0.4650000000 -1.159257842 0.4662500000 -1.126235073 0.4675000000 -1.096507447 0.4687500000 -1.074024188 0.4700000000 -1.058051451 0.4712500000 -1.043873924 0.4725000000 -1.027503892 0.4737500000 -1.008900116 0.4750000000 -0.9907326928 0.4762500000 -0.9752809848 0.4775000000 -0.9627725018 0.4787500000 -0.9521199904 0.4800000000 -0.9428379714 0.4812500000 -0.9359933340 0.4825000000 -0.9330509120 0.4837500000 -0.9337720692 0.4850000000 -0.9352468824 0.4862500000 -0.9331709950 0.4875000000 -0.9247145455 0.4887500000 -0.9107175575 0.4900000000 -0.8944702991 0.4912500000 -0.8785137292 0.4925000000 -0.8635046082 0.4937500000 -0.8498004839 0.4950000000 -0.8382791318 0.4962500000 -0.8292399690 0.4975000000 -0.8224139924 0.4987500000 -0.8174824909 0.5000000000 -0.8142533421 0.5012500000 -0.8133343439 0.5025000000 -0.8146931317 0.5037500000 -0.8158575729 0.5050000000 -0.8142723457 0.5062500000 -0.8094665113 0.5075000000 -0.8017441448 0.5087500000 -0.7909309190 0.5100000000 -0.7766267934 0.5112500000 -0.7598022156 0.5125000000 -0.7429406319 0.5137500000 -0.7277376805 0.5150000000 -0.7139857800 0.5162500000 -0.7009228677 0.5175000000 -0.6885285954 0.5187500000 -0.6775224700 0.5200000000 -0.6696579225 0.5212500000 -0.6672800548 0.5225000000 -0.6702610116 0.5237500000 -0.6744072267 0.5250000000 -0.6752425562 0.5262500000 -0.6724232563 0.5275000000 -0.6688321800 0.5287500000 -0.6671197923 0.5300000000 -0.6677175695 0.5312500000 -0.6687328482 0.5325000000 -0.6680209973 0.5337500000 -0.6644706049 0.5350000000 -0.6574054085 0.5362500000 -0.6463563300 0.5375000000 -0.6314593062 0.5387500000 -0.6137489553 0.5400000000 -0.5950536275 0.5412500000 -0.5773277868 0.5425000000 -0.5614904049 0.5437500000 -0.5469856388 0.5450000000 -0.5330414399 0.5462500000 -0.5199444997 0.5475000000 -0.5086441448 0.5487500000 -0.5000611035 0.5500000000 -0.4944998296 0.5512500000 -0.4907893726 0.5525000000 -0.4865660040 0.5537500000 -0.4804388777 0.5550000000 -0.4733681583 0.5562500000 -0.4675038641 0.5575000000 -0.4647029890 0.5587500000 -0.4654924924 0.5600000000 -0.4683190875 0.5612500000 -0.4706949093 0.5625000000 -0.4708275463 0.5637500000 -0.4678109555 0.5650000000 -0.4613233126 0.5662500000 -0.4516370878 0.5675000000 -0.4397638701 0.5687500000 -0.4272282785 0.5700000000 -0.4151517203 0.5712500000 -0.4039355612 0.5725000000 -0.3937606140 0.5737500000 -0.3849908354 0.5750000000 -0.3782037341 0.5762500000 -0.3736426795 0.5775000000 -0.3704009953 0.5787500000 -0.3667913668 0.5800000000 -0.3620191429 0.5812500000 -0.3568622383 0.5825000000 -0.3523916158 0.5837500000 -0.3486003778 0.5850000000 -0.3448862760 0.5862500000 -0.3414081564 0.5875000000 -0.3390422620 0.5887500000 -0.3380820536 0.5900000000 -0.3373545515 0.5912500000 -0.3348838078 0.5925000000 -0.3292754245 0.5937500000 -0.3203392147 0.5950000000 -0.3090125301 0.5962500000 -0.2967833188 0.5975000000 -0.2849587297 0.5987500000 -0.2744529520 0.6000000000 -0.2659128907 0.6012500000 -0.2594242775 0.6025000000 -0.2540889359 0.6037500000 -0.2485631459 0.6050000000 -0.2421406798 0.6062500000 -0.2351890749 0.6075000000 -0.2286354907 0.6087500000 -0.2230110001 0.6100000000 -0.2181701783 0.6112500000 -0.2137432695 0.6125000000 -0.2094826845 0.6137500000 -0.2055018676 0.6150000000 -0.2022862021 0.6162500000 -0.1999819511 0.6175000000 -0.1978953021 0.6187500000 -0.1951055813 0.6200000000 -0.1910803903 0.6212500000 -0.1856189271 0.6225000000 -0.1786936314 0.6237500000 -0.1706404993 0.6250000000 -0.1621807955 0.6262500000 -0.1539711738 0.6275000000 -0.1461522219 0.6287500000 -0.1382743735 0.6300000000 -0.1297289723 0.6312500000 -0.1203504250 0.6325000000 -0.1105621129 0.6337500000 -0.1010321852 0.6350000000 -0.9236878597E-01 0.6362500000 -0.8485358101E-01 0.6375000000 -0.7840343407E-01 0.6387500000 -0.7277517738E-01 0.6400000000 -0.6769645678E-01 0.6412500000 -0.6296898715E-01 0.6425000000 -0.5851633847E-01 0.6437500000 -0.5445330075E-01 0.6450000000 -0.5109982492E-01 0.6462500000 -0.4885026403E-01 0.6475000000 -0.4802120929E-01 0.6487500000 -0.4876692633E-01 0.6500000000 -0.5075753584E-01 0.6512500000 -0.5300450334E-01 0.6525000000 -0.5439122628E-01 0.6537500000 -0.5428555963E-01 0.6550000000 -0.5241194570E-01 0.6562500000 -0.4850531394E-01 0.6575000000 -0.4255724166E-01 0.6587500000 -0.3506384330E-01 0.6600000000 -0.2670947909E-01 0.6612500000 -0.1813546232E-01 0.6625000000 -0.9973611733E-02 0.6637500000 -0.2718510833E-02 0.6650000000 0.3386128725E-02 0.6662500000 0.8207574825E-02 0.6675000000 0.1175705001E-01 0.6687500000 0.1446181965E-01 0.6700000000 0.1690939744E-01 0.6712500000 0.1911830025E-01 0.6725000000 0.2054960143E-01 0.6737500000 0.2086807997E-01 0.6750000000 0.2038617003E-01 0.6762500000 0.1991446843E-01 0.6775000000 0.2028080582E-01 0.6787500000 0.2174453410E-01 0.6800000000 0.2394233818E-01 0.6812500000 0.2665580352E-01 0.6825000000 0.3021000292E-01 0.6837500000 0.3477452383E-01 0.6850000000 0.3998831962E-01 0.6862500000 0.4547461340E-01 0.6875000000 0.5108222377E-01 0.6887500000 0.5675271763E-01 0.6900000000 0.6255126666E-01 0.6912500000 0.6859973170E-01 0.6925000000 0.7472502117E-01 0.6937500000 0.8038712009E-01 0.6950000000 0.8514782833E-01 0.6962500000 0.8908265361E-01 0.6975000000 0.9272484977E-01 0.6987500000 0.9664964232E-01 0.7000000000 0.1010248792 0.7012500000 0.1056370554 0.7025000000 0.1101589436 0.7037500000 0.1142741223 0.7050000000 0.1178690694 0.7062500000 0.1210346309 0.7075000000 0.1239090175 0.7087500000 0.1265944966 0.7100000000 0.1289723473 0.7112500000 0.1307598718 0.7125000000 0.1319236176 0.7137500000 0.1328611497 0.7150000000 0.1341419016 0.7162500000 0.1361376733 0.7175000000 0.1389357972 0.7187500000 0.1426587465 0.7200000000 0.1474543279 0.7212500000 0.1531039447 0.7225000000 0.1590333624 0.7237500000 0.1647002663 0.7250000000 0.1698738738 0.7262500000 0.1745826272 0.7275000000 0.1789123362 0.7287500000 0.1829172938 0.7300000000 0.1865522012 0.7312500000 0.1897618312 0.7325000000 0.1926997459 0.7337500000 0.1955583640 0.7350000000 0.1982558884 0.7362500000 0.2005500939 0.7375000000 0.2022977875 0.7387500000 0.2034767124 0.7400000000 0.2041362513 0.7412500000 0.2045182881 0.7425000000 0.2051087300 0.7437500000 0.2063326561 0.7450000000 0.2082686757 0.7462500000 0.2108039234 0.7475000000 0.2138439735 0.7487500000 0.2172264903 0.7500000000 0.2207518789 0.7512500000 0.2243849316 0.7525000000 0.2281075657 0.7537500000 0.2317212422 0.7550000000 0.2351143122 0.7562500000 0.2384660526 0.7575000000 0.2419648625 0.7587500000 0.2456284689 0.7600000000 0.2494250504 0.7612500000 0.2532454157 0.7625000000 0.2568479009 0.7637500000 0.2600833537 0.7650000000 0.2630360912 0.7662500000 0.2657935724 0.7675000000 0.2682843217 0.7687500000 0.2703854846 0.7700000000 0.2721046192 0.7712500000 0.2736647888 0.7725000000 0.2753658399 0.7737500000 0.2774413792 0.7750000000 0.2800098542 0.7762500000 0.2830617838 0.7775000000 0.2864490387 0.7787500000 0.2898893469 0.7800000000 0.2930462797 0.7812500000 0.2957401355 0.7825000000 0.2981533905 0.7837500000 0.3006708133 0.7850000000 0.3034775995 0.7862500000 0.3064802448 0.7875000000 0.3094985835 0.7887500000 0.3124249898 0.7900000000 0.3152266190 0.7912500000 0.3178588008 0.7925000000 0.3202725902 0.7937500000 0.3225223412 0.7950000000 0.3247430599 0.7962500000 0.3270049092 0.7975000000 0.3293745810 0.7987500000 0.3320164205 0.8000000000 0.3349899259 0.8012500000 0.3380230004 0.8025000000 0.3406032859 0.8037500000 0.3422764913 0.8050000000 0.3429648802 0.8062500000 0.3430922303 0.8075000000 0.3432719800 0.8087500000 0.3438522901 0.8100000000 0.3449296995 0.8112500000 0.3465820680 0.8125000000 0.3487977018 0.8137500000 0.3513832935 0.8150000000 0.3540808277 0.8162500000 0.3567355836 0.8175000000 0.3593662652 0.8187500000 0.3621102349 0.8200000000 0.3650701273 0.8212500000 0.3681803466 0.8225000000 0.3712246033 0.8237500000 0.3739383061 0.8250000000 0.3761269060 0.8262500000 0.3777390440 0.8275000000 0.3788357558 0.8287500000 0.3796008826 0.8300000000 0.3803445517 0.8312500000 0.3813412963 0.8325000000 0.3826933886 0.8337500000 0.3843618557 0.8350000000 0.3862616212 0.8362500000 0.3882538317 0.8375000000 0.3901551147 0.8387500000 0.3919014540 0.8400000000 0.3936015377 0.8412500000 0.3953661363 0.8425000000 0.3972356694 0.8437500000 0.3992421803 0.8450000000 0.4014191629 0.8462500000 0.4037509655 0.8475000000 0.4061833948 0.8487500000 0.4086799006 0.8500000000 0.4112419337 0.8512500000 0.4138565806 0.8525000000 0.4164635401 0.8537500000 0.4189899646 0.8550000000 0.4213919696 0.8562500000 0.4236640247 0.8575000000 0.4258159703 0.8587500000 0.4278588058 0.8600000000 0.4298077011 0.8612500000 0.4316809976 0.8625000000 0.4335005027 0.8637500000 0.4352853534 0.8650000000 0.4370676591 0.8662500000 0.4389197636 0.8675000000 0.4409056201 0.8687500000 0.4430240852 0.8700000000 0.4452315782 0.8712500000 0.4474786638 0.8725000000 0.4497177413 0.8737500000 0.4519113481 0.8750000000 0.4540478922 0.8762500000 0.4561255448 0.8775000000 0.4581136055 0.8787500000 0.4599644504 0.8800000000 0.4616618374 0.8812500000 0.4632306503 0.8825000000 0.4647203467 0.8837500000 0.4661859494 0.8850000000 0.4676687762 0.8862500000 0.4692038910 0.8875000000 0.4708034389 0.8887500000 0.4724426620 0.8900000000 0.4741070685 0.8912500000 0.4758307727 0.8925000000 0.4776603257 0.8937500000 0.4795847244 0.8950000000 0.4815297791 0.8962500000 0.4834068478 0.8975000000 0.4851419573 0.8987500000 0.4866912040 0.9000000000 0.4880551988 0.9012500000 0.4892619475 0.9025000000 0.4903559008 0.9037500000 0.4914062462 0.9050000000 0.4925050674 0.9062500000 0.4937590948 0.9075000000 0.4952294086 0.9087500000 0.4968856722 0.9100000000 0.4986508107 0.9112500000 0.5004685513 0.9125000000 0.5023174774 0.9137500000 0.5041783990 0.9150000000 0.5060126128 0.9162500000 0.5077721202 0.9175000000 0.5094327017 0.9187500000 0.5110219757 0.9200000000 0.5125972152 0.9212500000 0.5141827889 0.9225000000 0.5157568188 0.9237500000 0.5172998379 0.9250000000 0.5188199244 0.9262500000 0.5203359128 0.9275000000 0.5218574946 0.9287500000 0.5233690532 0.9300000000 0.5248304156 0.9312500000 0.5261842997 0.9325000000 0.5273714301 0.9337500000 0.5284003339 0.9350000000 0.5293790156 0.9362500000 0.5303964820 0.9375000000 0.5314445971 0.9387500000 0.5325132683 0.9400000000 0.5336693858 0.9412500000 0.5349884103 0.9425000000 0.5364630488 0.9437500000 0.5380181244 0.9450000000 0.5395615548 0.9462500000 0.5410068878 0.9475000000 0.5422894670 0.9487500000 0.5434008799 0.9500000000 0.5444311615 0.9512500000 0.5455284325 0.9525000000 0.5467740407 0.9537500000 0.5481483567 0.9550000000 0.5495937660 0.9562500000 0.5510613148 0.9575000000 0.5525177681 0.9587500000 0.5539422869 0.9600000000 0.5553255016 0.9612500000 0.5566746441 0.9625000000 0.5580151012 0.9637500000 0.5593652170 0.9650000000 0.5607146134 0.9662500000 0.5620386606 0.9675000000 0.5633279522 0.9687500000 0.5645989992 0.9700000000 0.5658684007 0.9712500000 0.5671294520 0.9725000000 0.5683640331 0.9737500000 0.5695621750 0.9750000000 0.5707239505 0.9762500000 0.5718654871 0.9775000000 0.5730258582 0.9787500000 0.5742347609 0.9800000000 0.5754861805 0.9812500000 0.5767539529 0.9825000000 0.5780125817 0.9837500000 0.5792469325 0.9850000000 0.5804565660 0.9862500000 0.5816526780 0.9875000000 0.5828464421 0.9887500000 0.5840422446 0.9900000000 0.5852412615 0.9912500000 0.5864414629 0.9925000000 0.5876367280 0.9937500000 0.5888227486 0.9950000000 0.5900019178 0.9962500000 0.5911788045 0.9975000000 0.5923531765 0.9987500000 0.5935202445 0.000000000 0.000000000 0.1250000000E-02 0.2106769079 0.2500000000E-02 0.4326592792 0.3750000000E-02 0.6647871022 0.5000000000E-02 0.8782870378 0.6250000000E-02 1.018177003 0.7500000000E-02 1.047770042 0.8750000000E-02 0.9858522044 0.1000000000E-01 0.8750672595 0.1125000000E-01 0.7469865512 0.1250000000E-01 0.6238754306 0.1375000000E-01 0.5217200270 0.1500000000E-01 0.4462655561 0.1625000000E-01 0.3940527254 0.1750000000E-01 0.3574764102 0.1875000000E-01 0.3299381195 0.2000000000E-01 0.3072004621 0.2125000000E-01 0.2852620381 0.2250000000E-01 0.2617835875 0.2375000000E-01 0.2384279787 0.2500000000E-01 0.2179413757 0.2625000000E-01 0.2012923693 0.2750000000E-01 0.1883982739 0.2875000000E-01 0.1791588013 0.3000000000E-01 0.1732992488 0.3125000000E-01 0.1701321181 0.3250000000E-01 0.1686794256 0.3375000000E-01 0.1680420608 0.3500000000E-01 0.1678132433 0.3625000000E-01 0.1681003293 0.3750000000E-01 0.1691817166 0.3875000000E-01 0.1712845944 0.4000000000E-01 0.1745573193 0.4125000000E-01 0.1791503401 0.4250000000E-01 0.1852235886 0.4375000000E-01 0.1927899439 0.4500000000E-01 0.2014217539 0.4625000000E-01 0.2100278738 0.4750000000E-01 0.2174173367 0.4875000000E-01 0.2234903581 0.5000000000E-01 0.2289651439 0.5125000000E-01 0.2338739964 0.5250000000E-01 0.2375416176 0.5375000000E-01 0.2399065169 0.5500000000E-01 0.2418776830 0.5625000000E-01 0.2444907070 0.5750000000E-01 0.2482102436 0.5875000000E-01 0.2528827974 0.6000000000E-01 0.2581013502 0.6125000000E-01 0.2636720333 0.6250000000E-01 0.2697207542 0.6375000000E-01 0.2764243920 0.6500000000E-01 0.2838505931 0.6625000000E-01 0.2919903097 0.6750000000E-01 0.3008191860 0.6875000000E-01 0.3103251097 0.7000000000E-01 0.3205029231 0.7125000000E-01 0.3313160496 0.7250000000E-01 0.3426298956 0.7375000000E-01 0.3541981432 0.7500000000E-01 0.3658488156 0.7625000000E-01 0.3777061595 0.7750000000E-01 0.3900721041 0.7875000000E-01 0.4031796094 0.8000000000E-01 0.4171434868 0.8125000000E-01 0.4320222495 0.8250000000E-01 0.4478650816 0.8375000000E-01 0.4647213732 0.8500000000E-01 0.4826149048 0.8625000000E-01 0.5014830732 0.8750000000E-01 0.5211401037 0.8875000000E-01 0.5414243489 0.9000000000E-01 0.5624601036 0.9125000000E-01 0.5846141174 0.9250000000E-01 0.6082275927 0.9375000000E-01 0.6335200950 0.9500000000E-01 0.6606447061 0.9625000000E-01 0.6897478746 0.9750000000E-01 0.7209982229 0.9875000000E-01 0.7545968201 0.1000000000 0.7907821545 0.1012500000 0.8298385841 0.1025000000 0.8721098966 0.1037500000 0.9180098874 0.1050000000 0.9680294225 0.1062500000 1.022750070 0.1075000000 1.082870672 0.1087500000 1.149247729 0.1100000000 1.222943587 0.1112500000 1.305282256 0.1125000000 1.397928143 0.1137500000 1.503003021 0.1150000000 1.623254205 0.1162500000 1.762295554 0.1175000000 1.924957035 0.1187500000 2.117795025 0.1200000000 2.349833173 0.1212500000 2.633608065 0.1225000000 2.986524119 0.1237500000 3.432182377 0.1250000000 4.000192209 0.1262500000 4.719856862 0.1275000000 5.597654591 0.1287500000 6.570480493 0.1300000000 7.468773347 0.1312500000 8.081105540 0.1325000000 8.305890525 0.1337500000 8.239061288 0.1350000000 8.125865615 0.1362500000 8.205967193 0.1375000000 8.618643845 0.1387500000 9.414314746 0.1400000000 10.57158551 0.1412500000 11.98566826 0.1425000000 13.48627218 0.1437500000 14.91245173 0.1450000000 16.19441789 0.1462500000 17.39527153 0.1475000000 18.56687910 0.1487500000 19.58908087 0.1500000000 20.33770968 0.1512500000 20.90939007 0.1525000000 21.55782197 0.1537500000 22.49526285 0.1550000000 23.80021250 0.1562500000 25.37669972 0.1575000000 26.99144190 0.1587500000 28.50707880 0.1600000000 29.97619133 0.1612500000 31.43516702 0.1625000000 32.82679904 0.1637500000 34.10883187 0.1650000000 35.28030230 0.1662500000 36.31831536 0.1675000000 37.09825586 0.1687500000 37.38837290 0.1700000000 37.04425492 0.1712500000 36.21006327 0.1725000000 35.16918393 0.1737500000 34.09035419 0.1750000000 32.93117427 0.1762500000 31.46728154 0.1775000000 29.55311441 0.1787500000 27.34622771 0.1800000000 25.17254502 0.1812500000 23.32215777 0.1825000000 22.01412490 0.1837500000 21.36408199 0.1850000000 21.30458207 0.1862500000 21.60227384 0.1875000000 21.98800062 0.1887500000 22.25585807 0.1900000000 22.24997281 0.1912500000 21.84569431 0.1925000000 21.02855437 0.1937500000 19.98912837 0.1950000000 19.03557277 0.1962500000 18.35869214 0.1975000000 18.00186989 0.1987500000 17.98329971 0.2000000000 18.28124684 0.2012500000 18.76175265 0.2025000000 19.22795876 0.2037500000 19.53172380 0.2050000000 19.64574945 0.2062500000 19.64300625 0.2075000000 19.58977479 0.2087500000 19.50682993 0.2100000000 19.35298055 0.2112500000 19.01579519 0.2125000000 18.38436352 0.2137500000 17.42378419 0.2150000000 16.24554982 0.2162500000 15.05969549 0.2175000000 14.03758425 0.2187500000 13.26000303 0.2200000000 12.71566557 0.2212500000 12.33511018 0.2225000000 12.05625401 0.2237500000 11.84159788 0.2250000000 11.63714768 0.2262500000 11.38386036 0.2275000000 11.06232436 0.2287500000 10.68554417 0.2300000000 10.28061309 0.2312500000 9.880874913 0.2325000000 9.504512479 0.2337500000 9.139413714 0.2350000000 8.779616300 0.2362500000 8.471992048 0.2375000000 8.276009724 0.2387500000 8.201091368 0.2400000000 8.210907033 0.2412500000 8.248989783 0.2425000000 8.260366408 0.2437500000 8.215601388 0.2450000000 8.101731128 0.2462500000 7.920121667 0.2475000000 7.716619262 0.2487500000 7.547312963 0.2500000000 7.405377145 0.2512500000 7.225019523 0.2525000000 6.965008016 0.2537500000 6.663821850 0.2550000000 6.382303443 0.2562500000 6.127725374 0.2575000000 5.865881323 0.2587500000 5.575470743 0.2600000000 5.273167735 0.2612500000 4.985220647 0.2625000000 4.712548687 0.2637500000 4.451589349 0.2650000000 4.221170262 0.2662500000 4.039169907 0.2675000000 3.906167817 0.2687500000 3.822444817 0.2700000000 3.793056766 0.2712500000 3.813516768 0.2725000000 3.861734245 0.2737500000 3.903821410 0.2750000000 3.906952522 0.2762500000 3.855779759 0.2775000000 3.765067921 0.2787500000 3.661096286 0.2800000000 3.546745366 0.2812500000 3.407570175 0.2825000000 3.243546082 0.2837500000 3.073058169 0.2850000000 2.921571840 0.2862500000 2.811844532 0.2875000000 2.750873003 0.2887500000 2.726023363 0.2900000000 2.719780817 0.2912500000 2.724806918 0.2925000000 2.737061306 0.2937500000 2.746148746 0.2950000000 2.748525812 0.2962500000 2.753167042 0.2975000000 2.764328871 0.2987500000 2.782429759 0.3000000000 2.810582017 0.3012500000 2.835825771 0.3025000000 2.824692192 0.3037500000 2.757991336 0.3050000000 2.652144082 0.3062500000 2.537053658 0.3075000000 2.429966051 0.3087500000 2.332933929 0.3100000000 2.244642156 0.3112500000 2.164698671 0.3125000000 2.087888913 0.3137500000 2.007446381 0.3150000000 1.924506958 0.3162500000 1.844433459 0.3175000000 1.771446926 0.3187500000 1.710468080 0.3200000000 1.663435048 0.3212500000 1.624772678 0.3225000000 1.588196590 0.3237500000 1.553732146 0.3250000000 1.526228488 0.3262500000 1.510848967 0.3275000000 1.506875970 0.3287500000 1.503928266 0.3300000000 1.490592650 0.3312500000 1.465598102 0.3325000000 1.437233721 0.3337500000 1.414738886 0.3350000000 1.403723119 0.3362500000 1.405336460 0.3375000000 1.416378838 0.3387500000 1.434361340 0.3400000000 1.463150510 0.3412500000 1.508472320 0.3425000000 1.572552711 0.3437500000 1.653285936 0.3450000000 1.742150437 0.3462500000 1.830235456 0.3475000000 1.917981257 0.3487500000 2.005818467 0.3500000000 2.079307270 0.3512500000 2.114487609 0.3525000000 2.091829290 0.3537500000 2.006325124 0.3550000000 1.876515726 0.3562500000 1.739270627 0.3575000000 1.624717153 0.3587500000 1.540224062 0.3600000000 1.479646951 0.3612500000 1.438066342 0.3625000000 1.412870006 0.3637500000 1.400148207 0.3650000000 1.391981796 0.3662500000 1.377006857 0.3675000000 1.350220449 0.3687500000 1.317207527 0.3700000000 1.284122375 0.3712500000 1.252196065 0.3725000000 1.223601838 0.3737500000 1.204872625 0.3750000000 1.200790732 0.3762500000 1.207870470 0.3775000000 1.217444985 0.3787500000 1.224302640 0.3800000000 1.226567818 0.3812500000 1.218620398 0.3825000000 1.194222686 0.3837500000 1.154315625 0.3850000000 1.106711209 0.3862500000 1.062110088 0.3875000000 1.027781024 0.3887500000 1.001968516 0.3900000000 0.9768261411 0.3912500000 0.9483545360 0.3925000000 0.9198410456 0.3937500000 0.8959863580 0.3950000000 0.8779110211 0.3962500000 0.8642086686 0.3975000000 0.8550979538 0.3987500000 0.8531471987 0.4000000000 0.8595349431 0.4012500000 0.8725655268 0.4025000000 0.8889592319 0.4037500000 0.9028587705 0.4050000000 0.9074069459 0.4062500000 0.9019307130 0.4075000000 0.8926995908 0.4087500000 0.8858906895 0.4100000000 0.8844338662 0.4112500000 0.8872884923 0.4125000000 0.8893985945 0.4137500000 0.8854267699 0.4150000000 0.8722998079 0.4162500000 0.8502266054 0.4175000000 0.8242151433 0.4187500000 0.8017407626 0.4200000000 0.7875964405 0.4212500000 0.7834685736 0.4225000000 0.7898510113 0.4237500000 0.8051780192 0.4250000000 0.8252076529 0.4262500000 0.8444462812 0.4275000000 0.8569249939 0.4287500000 0.8558194659 0.4300000000 0.8363760483 0.4312500000 0.8008905040 0.4325000000 0.7572874757 0.4337500000 0.7124022991 0.4350000000 0.6698947839 0.4362500000 0.6321392082 0.4375000000 0.5999875589 0.4387500000 0.5721499220 0.4400000000 0.5467932200 0.4412500000 0.5243639893 0.4425000000 0.5076915485 0.4437500000 0.4992902303 0.4450000000 0.4999227208 0.4462500000 0.5083081420 0.4475000000 0.5209700264 0.4487500000 0.5335413742 0.4500000000 0.5433333458 0.4512500000 0.5500129515 0.4525000000 0.5539485766 0.4537500000 0.5548368797 0.4550000000 0.5518308311 0.4562500000 0.5444326877 0.4575000000 0.5327382199 0.4587500000 0.5176740621 0.4600000000 0.4999405033 0.4612500000 0.4794450543 0.4625000000 0.4574289863 0.4637500000 0.4372631772 0.4650000000 0.4228711193 0.4662500000 0.4170736298 0.4675000000 0.4196221157 0.4687500000 0.4262134886 0.4700000000 0.4310543504 0.4712500000 0.4315865582 0.4725000000 0.4300627683 0.4737500000 0.4302554894 0.4750000000 0.4337641797 0.4762500000 0.4394324492 0.4775000000 0.4452892041 0.4787500000 0.4505550280 0.4800000000 0.4558620830 0.4812500000 0.4616184048 0.4825000000 0.4664121313 0.4837500000 0.4673059934 0.4850000000 0.4619563845 0.4862500000 0.4508510461 0.4875000000 0.4376919971 0.4887500000 0.4269256161 0.4900000000 0.4204806589 0.4912500000 0.4175458987 0.4925000000 0.4169715856 0.4937500000 0.4185129738 0.4950000000 0.4216457550 0.4962500000 0.4252570695 0.4975000000 0.4285916538 0.4987500000 0.4311918240 0.5000000000 0.4329773503 0.5012500000 0.4335370425 0.5025000000 0.4308901548 0.5037500000 0.4235889359 0.5050000000 0.4129139206 0.5062500000 0.4008432262 0.5075000000 0.3883288006 0.5087500000 0.3759178249 0.5100000000 0.3649429577 0.5112500000 0.3574222509 0.5125000000 0.3539463662 0.5137500000 0.3530728913 0.5150000000 0.3533207573 0.5162500000 0.3545702807 0.5175000000 0.3574352326 0.5187500000 0.3625260041 0.5200000000 0.3700249893 0.5212500000 0.3780071827 0.5225000000 0.3822184006 0.5237500000 0.3799885158 0.5250000000 0.3734661366 0.5262500000 0.3669787456 0.5275000000 0.3625049481 0.5287500000 0.3588711234 0.5300000000 0.3534098732 0.5312500000 0.3443603339 0.5325000000 0.3320263708 0.5337500000 0.3174705471 0.5350000000 0.3017249487 0.5362500000 0.2861073701 0.5375000000 0.2722663133 0.5387500000 0.2617419409 0.5400000000 0.2553272303 0.5412500000 0.2525172470 0.5425000000 0.2517484010 0.5437500000 0.2518058339 0.5450000000 0.2528470388 0.5462500000 0.2555218805 0.5475000000 0.2598299753 0.5487500000 0.2649811722 0.5500000000 0.2693918279 0.5512500000 0.2713777682 0.5525000000 0.2708412295 0.5537500000 0.2698046221 0.5550000000 0.2704112708 0.5562500000 0.2731289724 0.5575000000 0.2767285898 0.5587500000 0.2787646166 0.5600000000 0.2770297336 0.5612500000 0.2711308097 0.5625000000 0.2620811451 0.5637500000 0.2512595317 0.5650000000 0.2401300816 0.5662500000 0.2301836169 0.5675000000 0.2226693464 0.5687500000 0.2179712945 0.5700000000 0.2155560558 0.5712500000 0.2147941751 0.5725000000 0.2153726177 0.5737500000 0.2170955498 0.5750000000 0.2194436339 0.5762500000 0.2212385324 0.5775000000 0.2212221352 0.5787500000 0.2194049573 0.5800000000 0.2171686678 0.5812500000 0.2156364502 0.5825000000 0.2145294815 0.5837500000 0.2130001566 0.5850000000 0.2110322329 0.5862500000 0.2091766544 0.5875000000 0.2072197133 0.5887500000 0.2038422540 0.5900000000 0.1977395444 0.5912500000 0.1889627761 0.5925000000 0.1789309193 0.5937500000 0.1695468739 0.5950000000 0.1623565681 0.5962500000 0.1579756251 0.5975000000 0.1561783382 0.5987500000 0.1563539257 0.6000000000 0.1576054621 0.6012500000 0.1586533952 0.6025000000 0.1584361112 0.6037500000 0.1569685675 0.6050000000 0.1552286033 0.6062500000 0.1542190549 0.6075000000 0.1541249293 0.6087500000 0.1543571585 0.6100000000 0.1543378169 0.6112500000 0.1538967147 0.6125000000 0.1531835029 0.6137500000 0.1524703097 0.6150000000 0.1516380124 0.6162500000 0.1499176931 0.6175000000 0.1466528193 0.6187500000 0.1419468078 0.6200000000 0.1363448231 0.6212500000 0.1304201229 0.6225000000 0.1247851362 0.6237500000 0.1200874823 0.6250000000 0.1166038799 0.6262500000 0.1140212921 0.6275000000 0.1116971125 0.6287500000 0.1092089645 0.6300000000 0.1067602887 0.6312500000 0.1050297915 0.6325000000 0.1045904313 0.6337500000 0.1055913907 0.6350000000 0.1077613870 0.6362500000 0.1105566613 0.6375000000 0.1134957683 0.6387500000 0.1163035256 0.6400000000 0.1189043358 0.6412500000 0.1213812960 0.6425000000 0.1239160322 0.6437500000 0.1267231527 0.6450000000 0.1298920781 0.6462500000 0.1332549717 0.6475000000 0.1364012935 0.6487500000 0.1386552082 0.6500000000 0.1391205750 0.6512500000 0.1372232441 0.6525000000 0.1331713606 0.6537500000 0.1276287909 0.6550000000 0.1211778290 0.6562500000 0.1144258354 0.6575000000 0.1082338814 0.6587500000 0.1033520982 0.6600000000 0.1001252185 0.6612500000 0.9864215636E-01 0.6625000000 0.9878506789E-01 0.6637500000 0.1001799253 0.6650000000 0.1023786218 0.6662500000 0.1049556893 0.6675000000 0.1073702570 0.6687500000 0.1091539388 0.6700000000 0.1104189994 0.6712500000 0.1116687337 0.6725000000 0.1129674247 0.6737500000 0.1137159966 0.6750000000 0.1131727251 0.6762500000 0.1110064012 0.6775000000 0.1075566579 0.6787500000 0.1035907131 0.6800000000 0.9955637138E-01 0.6812500000 0.9529400849E-01 0.6825000000 0.9077061122E-01 0.6837500000 0.8648919839E-01 0.6850000000 0.8284853094E-01 0.6862500000 0.7982071731E-01 0.6875000000 0.7727845515E-01 0.6887500000 0.7511576893E-01 0.6900000000 0.7325608210E-01 0.6912500000 0.7184783846E-01 0.6925000000 0.7122506083E-01 0.6937500000 0.7144588320E-01 0.6950000000 0.7204824165E-01 0.6962500000 0.7237810661E-01 0.6975000000 0.7207548184E-01 0.6987500000 0.7132396088E-01 0.7000000000 0.7061941339E-01 0.7012500000 0.7031932780E-01 0.7025000000 0.7053813096E-01 0.7037500000 0.7115543626E-01 0.7050000000 0.7188494871E-01 0.7062500000 0.7252108375E-01 0.7075000000 0.7299157243E-01 0.7087500000 0.7336774780E-01 0.7100000000 0.7377254425E-01 0.7112500000 0.7405192193E-01 0.7125000000 0.7373434264E-01 0.7137500000 0.7242818790E-01 0.7150000000 0.7013142554E-01 0.7162500000 0.6717521736E-01 0.7175000000 0.6386886433E-01 0.7187500000 0.6041200906E-01 0.7200000000 0.5722401372E-01 0.7212500000 0.5487021257E-01 0.7225000000 0.5362409235E-01 0.7237500000 0.5332077669E-01 0.7250000000 0.5359005043E-01 0.7262500000 0.5415382690E-01 0.7275000000 0.5488877537E-01 0.7287500000 0.5576760203E-01 0.7300000000 0.5678057070E-01 0.7312500000 0.5777948790E-01 0.7325000000 0.5860894869E-01 0.7337500000 0.5937930141E-01 0.7350000000 0.6029835320E-01 0.7362500000 0.6135643853E-01 0.7375000000 0.6235800868E-01 0.7387500000 0.6307743379E-01 0.7400000000 0.6325176499E-01 0.7412500000 0.6257864972E-01 0.7425000000 0.6096625087E-01 0.7437500000 0.5870703438E-01 0.7450000000 0.5622178860E-01 0.7462500000 0.5375801310E-01 0.7475000000 0.5147273473E-01 0.7487500000 0.4950908105E-01 0.7500000000 0.4784982315E-01 0.7512500000 0.4641430451E-01 0.7525000000 0.4527176889E-01 0.7537500000 0.4443574246E-01 0.7550000000 0.4367286057E-01 0.7562500000 0.4280497622E-01 0.7575000000 0.4192044932E-01 0.7587500000 0.4116485431E-01 0.7600000000 0.4064614944E-01 0.7612500000 0.4049636618E-01 0.7625000000 0.4072415693E-01 0.7637500000 0.4112164641E-01 0.7650000000 0.4151314943E-01 0.7662500000 0.4191940113E-01 0.7675000000 0.4237545578E-01 0.7687500000 0.4276737177E-01 0.7700000000 0.4284387285E-01 0.7712500000 0.4240416648E-01 0.7725000000 0.4144475049E-01 0.7737500000 0.4012104706E-01 0.7750000000 0.3867231157E-01 0.7762500000 0.3736403212E-01 0.7775000000 0.3643474918E-01 0.7787500000 0.3601196078E-01 0.7800000000 0.3600302611E-01 0.7812500000 0.3606407833E-01 0.7825000000 0.3583170580E-01 0.7837500000 0.3527781614E-01 0.7850000000 0.3467208505E-01 0.7862500000 0.3425186846E-01 0.7875000000 0.3407277216E-01 0.7887500000 0.3407380382E-01 0.7900000000 0.3420247151E-01 0.7912500000 0.3442566617E-01 0.7925000000 0.3465018051E-01 0.7937500000 0.3474445701E-01 0.7950000000 0.3467944578E-01 0.7962500000 0.3450159551E-01 0.7975000000 0.3421320276E-01 0.7987500000 0.3390441936E-01 0.8000000000 0.3388889686E-01 0.8012500000 0.3449837581E-01 0.8025000000 0.3577054838E-01 0.8037500000 0.3733205669E-01 0.8050000000 0.3853459736E-01 0.8062500000 0.3885168391E-01 0.8075000000 0.3823856798E-01 0.8087500000 0.3699147217E-01 0.8100000000 0.3536177075E-01 0.8112500000 0.3355759910E-01 0.8125000000 0.3185866080E-01 0.8137500000 0.3048513881E-01 0.8150000000 0.2946327153E-01 0.8162500000 0.2865778159E-01 0.8175000000 0.2791318285E-01 0.8187500000 0.2719399109E-01 0.8200000000 0.2663736326E-01 0.8212500000 0.2644627608E-01 0.8225000000 0.2673606712E-01 0.8237500000 0.2746064285E-01 0.8250000000 0.2841873484E-01 0.8262500000 0.2934852258E-01 0.8275000000 0.3000172682E-01 0.8287500000 0.3015735943E-01 0.8300000000 0.2973847827E-01 0.8312500000 0.2888391057E-01 0.8325000000 0.2783141222E-01 0.8337500000 0.2677081794E-01 0.8350000000 0.2582622492E-01 0.8362500000 0.2508066776E-01 0.8375000000 0.2449042628E-01 0.8387500000 0.2387468902E-01 0.8400000000 0.2311207995E-01 0.8412500000 0.2221989843E-01 0.8425000000 0.2124255146E-01 0.8437500000 0.2020837807E-01 0.8450000000 0.1917475040E-01 0.8462500000 0.1821710294E-01 0.8475000000 0.1737198113E-01 0.8487500000 0.1663232551E-01 0.8500000000 0.1600081690E-01 0.8512500000 0.1551848743E-01 0.8525000000 0.1521615726E-01 0.8537500000 0.1507607310E-01 0.8550000000 0.1504399304E-01 0.8562500000 0.1506533422E-01 0.8575000000 0.1510383117E-01 0.8587500000 0.1513158168E-01 0.8600000000 0.1512452219E-01 0.8612500000 0.1506307299E-01 0.8625000000 0.1493261233E-01 0.8637500000 0.1472042506E-01 0.8650000000 0.1440141326E-01 0.8662500000 0.1397297837E-01 0.8675000000 0.1349933046E-01 0.8687500000 0.1306723988E-01 0.8700000000 0.1273134327E-01 0.8712500000 0.1251426841E-01 0.8725000000 0.1241787396E-01 0.8737500000 0.1242256613E-01 0.8750000000 0.1250327638E-01 0.8762500000 0.1265837348E-01 0.8775000000 0.1289474601E-01 0.8787500000 0.1318177552E-01 0.8800000000 0.1345452682E-01 0.8812500000 0.1365274604E-01 0.8825000000 0.1373984594E-01 0.8837500000 0.1371135998E-01 0.8850000000 0.1358231940E-01 0.8862500000 0.1337923468E-01 0.8875000000 0.1314815145E-01 0.8887500000 0.1291649777E-01 0.8900000000 0.1266903118E-01 0.8912500000 0.1239330849E-01 0.8925000000 0.1213540160E-01 0.8937500000 0.1198130637E-01 0.8950000000 0.1198698680E-01 0.8962500000 0.1215209019E-01 0.8975000000 0.1243391963E-01 0.8987500000 0.1275792577E-01 0.9000000000 0.1304257805E-01 0.9012500000 0.1322306358E-01 0.9025000000 0.1324342990E-01 0.9037500000 0.1306245075E-01 0.9050000000 0.1266694505E-01 0.9062500000 0.1209957499E-01 0.9075000000 0.1147324582E-01 0.9087500000 0.1090329731E-01 0.9100000000 0.1044014143E-01 0.9112500000 0.1007917191E-01 0.9125000000 0.9811986908E-02 0.9137500000 0.9647602813E-02 0.9150000000 0.9592295781E-02 0.9162500000 0.9623517132E-02 0.9175000000 0.9684576404E-02 0.9187500000 0.9718178243E-02 0.9200000000 0.9716849107E-02 0.9212500000 0.9719422237E-02 0.9225000000 0.9750444055E-02 0.9237500000 0.9797371146E-02 0.9250000000 0.9843770958E-02 0.9262500000 0.9892838413E-02 0.9275000000 0.9968090541E-02 0.9287500000 0.1010051723E-01 0.9300000000 0.1030724592E-01 0.9312500000 0.1057942376E-01 0.9325000000 0.1085563787E-01 0.9337500000 0.1102135791E-01 0.9350000000 0.1101358898E-01 0.9362500000 0.1088330136E-01 0.9375000000 0.1068396922E-01 0.9387500000 0.1039217339E-01 0.9400000000 0.9988607707E-02 0.9412500000 0.9543257074E-02 0.9425000000 0.9167891247E-02 0.9437500000 0.8933866698E-02 0.9450000000 0.8856619658E-02 0.9462500000 0.8905239144E-02 0.9475000000 0.9002469518E-02 0.9487500000 0.9029476961E-02 0.9500000000 0.8878841233E-02 0.9512500000 0.8551786634E-02 0.9525000000 0.8154158808E-02 0.9537500000 0.7787729770E-02 0.9550000000 0.7496693395E-02 0.9562500000 0.7285067529E-02 0.9575000000 0.7140487898E-02 0.9587500000 0.7043165889E-02 0.9600000000 0.6968542430E-02 0.9612500000 0.6890592551E-02 0.9625000000 0.6799344562E-02 0.9637500000 0.6712820755E-02 0.9650000000 0.6653234344E-02 0.9662500000 0.6619495325E-02 0.9675000000 0.6588705374E-02 0.9687500000 0.6544927997E-02 0.9700000000 0.6498442312E-02 0.9712500000 0.6465582790E-02 0.9725000000 0.6445132659E-02 0.9737500000 0.6421629455E-02 0.9750000000 0.6375017282E-02 0.9762500000 0.6281416799E-02 0.9775000000 0.6135794576E-02 0.9787500000 0.5969727275E-02 0.9800000000 0.5822089399E-02 0.9812500000 0.5711193140E-02 0.9825000000 0.5634473694E-02 0.9837500000 0.5576580735E-02 0.9850000000 0.5518949458E-02 0.9862500000 0.5451097511E-02 0.9875000000 0.5374546283E-02 0.9887500000 0.5294897232E-02 0.9900000000 0.5217188207E-02 0.9912500000 0.5146890284E-02 0.9925000000 0.5085865647E-02 0.9937500000 0.5029761716E-02 0.9950000000 0.4973788315E-02 0.9962500000 0.4919268069E-02 0.9975000000 0.4870994494E-02 0.9987500000 0.4831110925E-02 elk-9.2.12/examples/BSE/Si/PaxHeaders/EPSILON_BSE_11.OUT0000644000000000000000000000013214536061314016737 xustar0030 mtime=1702388428.664500384 30 atime=1702388428.663500386 30 ctime=1702388428.664500384 elk-9.2.12/examples/BSE/Si/EPSILON_BSE_11.OUT0000644002504400250440000016350614536061314021474 0ustar00dewhurstdewhurst00000000000000 0.000000000 11.17590407 0.1250000000E-02 11.17652447 0.2500000000E-02 11.17838616 0.3750000000E-02 11.18149065 0.5000000000E-02 11.18584046 0.6250000000E-02 11.19143913 0.7500000000E-02 11.19829121 0.8750000000E-02 11.20640230 0.1000000000E-01 11.21577901 0.1125000000E-01 11.22642905 0.1250000000E-01 11.23836119 0.1375000000E-01 11.25158529 0.1500000000E-01 11.26611233 0.1625000000E-01 11.28195444 0.1750000000E-01 11.29912491 0.1875000000E-01 11.31763825 0.2000000000E-01 11.33751017 0.2125000000E-01 11.35875768 0.2250000000E-01 11.38139909 0.2375000000E-01 11.40545406 0.2500000000E-01 11.43094364 0.2625000000E-01 11.45789037 0.2750000000E-01 11.48631825 0.2875000000E-01 11.51625288 0.3000000000E-01 11.54772148 0.3125000000E-01 11.58075296 0.3250000000E-01 11.61537804 0.3375000000E-01 11.65162926 0.3500000000E-01 11.68954114 0.3625000000E-01 11.72915022 0.3750000000E-01 11.77049518 0.3875000000E-01 11.81361696 0.4000000000E-01 11.85855889 0.4125000000E-01 11.90536676 0.4250000000E-01 11.95408903 0.4375000000E-01 12.00477693 0.4500000000E-01 12.05748466 0.4625000000E-01 12.11226950 0.4750000000E-01 12.16919210 0.4875000000E-01 12.22831657 0.5000000000E-01 12.28971080 0.5125000000E-01 12.35344664 0.5250000000E-01 12.41960019 0.5375000000E-01 12.48825206 0.5500000000E-01 12.55948771 0.5625000000E-01 12.63339777 0.5750000000E-01 12.71007840 0.5875000000E-01 12.78963172 0.6000000000E-01 12.87216622 0.6125000000E-01 12.95779726 0.6250000000E-01 13.04664759 0.6375000000E-01 13.13884793 0.6500000000E-01 13.23453763 0.6625000000E-01 13.33386535 0.6750000000E-01 13.43698985 0.6875000000E-01 13.54408085 0.7000000000E-01 13.65531999 0.7125000000E-01 13.77090187 0.7250000000E-01 13.89103528 0.7375000000E-01 14.01594445 0.7500000000E-01 14.14587058 0.7625000000E-01 14.28107344 0.7750000000E-01 14.42183328 0.7875000000E-01 14.56845285 0.8000000000E-01 14.72125980 0.8125000000E-01 14.88060933 0.8250000000E-01 15.04688721 0.8375000000E-01 15.22051322 0.8500000000E-01 15.40194511 0.8625000000E-01 15.59168303 0.8750000000E-01 15.79027479 0.8875000000E-01 15.99832177 0.9000000000E-01 16.21648584 0.9125000000E-01 16.44549732 0.9250000000E-01 16.68616440 0.9375000000E-01 16.93938392 0.9500000000E-01 17.20615425 0.9625000000E-01 17.48759020 0.9750000000E-01 17.78494081 0.9875000000E-01 18.09961016 0.1000000000 18.43318204 0.1012500000 18.78744903 0.1025000000 19.16444660 0.1037500000 19.56649272 0.1050000000 19.99623304 0.1062500000 20.45669055 0.1075000000 20.95131637 0.1087500000 21.48403332 0.1100000000 22.05925374 0.1112500000 22.68183218 0.1125000000 23.35686991 0.1137500000 24.08919921 0.1150000000 24.88218923 0.1162500000 25.73513972 0.1175000000 26.63780929 0.1187500000 27.55948390 0.1200000000 28.42929980 0.1212500000 29.10957539 0.1225000000 29.39065155 0.1237500000 29.08916662 0.1250000000 28.27984121 0.1262500000 27.38214824 0.1275000000 26.88353439 0.1287500000 27.03681360 0.1300000000 27.75472801 0.1312500000 28.69446464 0.1325000000 29.42090741 0.1337500000 29.59053621 0.1350000000 29.18239111 0.1362500000 28.51745051 0.1375000000 27.88542356 0.1387500000 27.25621194 0.1400000000 26.40179147 0.1412500000 25.08320894 0.1425000000 23.27149814 0.1437500000 21.35098084 0.1450000000 19.77026932 0.1462500000 18.55299807 0.1475000000 17.31391573 0.1487500000 15.53640976 0.1500000000 12.85392738 0.1512500000 9.445410935 0.1525000000 6.022950455 0.1537500000 3.049998238 0.1550000000 0.4696160537 0.1562500000 -1.774958968 0.1575000000 -3.498895006 0.1587500000 -4.577308110 0.1600000000 -5.190242437 0.1612500000 -5.667387323 0.1625000000 -6.214927921 0.1637500000 -6.854047992 0.1650000000 -7.563624420 0.1662500000 -8.359310639 0.1675000000 -9.182186673 0.1687500000 -9.806089765 0.1700000000 -10.03530563 0.1712500000 -9.868272348 0.1725000000 -9.359736575 0.1737500000 -8.556939958 0.1750000000 -7.591457491 0.1762500000 -6.695472974 0.1775000000 -6.138515191 0.1787500000 -6.108690719 0.1800000000 -6.532684610 0.1812500000 -7.094893852 0.1825000000 -7.545768909 0.1837500000 -7.862878890 0.1850000000 -8.093952153 0.1862500000 -8.194888447 0.1875000000 -8.066006125 0.1887500000 -7.700821340 0.1900000000 -7.266109592 0.1912500000 -6.992055243 0.1925000000 -7.004889818 0.1937500000 -7.284195352 0.1950000000 -7.740617642 0.1962500000 -8.309063125 0.1975000000 -8.958623214 0.1987500000 -9.623623989 0.2000000000 -10.18497708 0.2012500000 -10.54934870 0.2025000000 -10.70514260 0.2037500000 -10.70866209 0.2050000000 -10.64523215 0.2062500000 -10.58101553 0.2075000000 -10.51815053 0.2087500000 -10.39643949 0.2100000000 -10.17387879 0.2112500000 -9.876207829 0.2125000000 -9.567282525 0.2137500000 -9.308774798 0.2150000000 -9.124928903 0.2162500000 -8.999806953 0.2175000000 -8.914767459 0.2187500000 -8.868971056 0.2200000000 -8.854016538 0.2212500000 -8.840211971 0.2225000000 -8.795676193 0.2237500000 -8.685565252 0.2250000000 -8.484712521 0.2262500000 -8.212857333 0.2275000000 -7.918321263 0.2287500000 -7.633708895 0.2300000000 -7.370316479 0.2312500000 -7.143713676 0.2325000000 -6.975295223 0.2337500000 -6.867684786 0.2350000000 -6.810013624 0.2362500000 -6.792411287 0.2375000000 -6.806937800 0.2387500000 -6.859109932 0.2400000000 -6.953517800 0.2412500000 -7.067307148 0.2425000000 -7.171557547 0.2437500000 -7.249639797 0.2450000000 -7.277518876 0.2462500000 -7.233363022 0.2475000000 -7.132537147 0.2487500000 -7.027217377 0.2500000000 -6.970514654 0.2512500000 -6.972542358 0.2525000000 -6.988178694 0.2537500000 -6.962612069 0.2550000000 -6.883582463 0.2562500000 -6.769171972 0.2575000000 -6.626594131 0.2587500000 -6.455098752 0.2600000000 -6.271642761 0.2612500000 -6.102644044 0.2625000000 -5.959148709 0.2637500000 -5.837141491 0.2650000000 -5.731905183 0.2662500000 -5.640704314 0.2675000000 -5.560320779 0.2687500000 -5.491598937 0.2700000000 -5.439725081 0.2712500000 -5.401115942 0.2725000000 -5.362958920 0.2737500000 -5.318487072 0.2750000000 -5.262877683 0.2762500000 -5.186934950 0.2775000000 -5.087668375 0.2787500000 -4.969193393 0.2800000000 -4.835643616 0.2812500000 -4.692720981 0.2825000000 -4.550457666 0.2837500000 -4.418353408 0.2850000000 -4.300965557 0.2862500000 -4.202902322 0.2875000000 -4.128264076 0.2887500000 -4.069159419 0.2900000000 -4.009038090 0.2912500000 -3.941652227 0.2925000000 -3.875363858 0.2937500000 -3.827513633 0.2950000000 -3.816772684 0.2962500000 -3.841886316 0.2975000000 -3.874117300 0.2987500000 -3.886524191 0.3000000000 -3.878455483 0.3012500000 -3.867122590 0.3025000000 -3.868519241 0.3037500000 -3.884536842 0.3050000000 -3.902951340 0.3062500000 -3.908665037 0.3075000000 -3.891911673 0.3087500000 -3.848322890 0.3100000000 -3.779782041 0.3112500000 -3.693956914 0.3125000000 -3.600127692 0.3137500000 -3.507415334 0.3150000000 -3.423692861 0.3162500000 -3.351590116 0.3175000000 -3.287618323 0.3187500000 -3.225752706 0.3200000000 -3.161265314 0.3212500000 -3.095037310 0.3225000000 -3.034515660 0.3237500000 -2.985833441 0.3250000000 -2.945852487 0.3262500000 -2.905143839 0.3275000000 -2.857558627 0.3287500000 -2.803243161 0.3300000000 -2.746228032 0.3312500000 -2.691349810 0.3325000000 -2.639266220 0.3337500000 -2.584327178 0.3350000000 -2.521410273 0.3362500000 -2.453012686 0.3375000000 -2.388323935 0.3387500000 -2.337525813 0.3400000000 -2.304948192 0.3412500000 -2.285830231 0.3425000000 -2.272962107 0.3437500000 -2.267263022 0.3450000000 -2.276950423 0.3462500000 -2.307372724 0.3475000000 -2.355501467 0.3487500000 -2.409057096 0.3500000000 -2.448415233 0.3512500000 -2.458904568 0.3525000000 -2.441414307 0.3537500000 -2.406152923 0.3550000000 -2.363818679 0.3562500000 -2.323720702 0.3575000000 -2.290626812 0.3587500000 -2.262847472 0.3600000000 -2.237016129 0.3612500000 -2.211355129 0.3625000000 -2.185824399 0.3637500000 -2.162429192 0.3650000000 -2.142329482 0.3662500000 -2.121953849 0.3675000000 -2.095591820 0.3687500000 -2.063918870 0.3700000000 -2.035908949 0.3712500000 -2.019854750 0.3725000000 -2.016612979 0.3737500000 -2.024069763 0.3750000000 -2.042112689 0.3762500000 -2.068243352 0.3775000000 -2.094035838 0.3787500000 -2.110683829 0.3800000000 -2.113302901 0.3812500000 -2.101604263 0.3825000000 -2.081008059 0.3837500000 -2.058646228 0.3850000000 -2.036145425 0.3862500000 -2.009831280 0.3875000000 -1.978008798 0.3887500000 -1.943740344 0.3900000000 -1.911338266 0.3912500000 -1.882411821 0.3925000000 -1.855074398 0.3937500000 -1.828137046 0.3950000000 -1.803371293 0.3962500000 -1.782714027 0.3975000000 -1.768170381 0.3987500000 -1.761417423 0.4000000000 -1.759256153 0.4012500000 -1.754869577 0.4025000000 -1.744218495 0.4037500000 -1.726372361 0.4050000000 -1.700722133 0.4062500000 -1.667065339 0.4075000000 -1.626469009 0.4087500000 -1.581259823 0.4100000000 -1.534202070 0.4112500000 -1.487139441 0.4125000000 -1.440883919 0.4137500000 -1.396438662 0.4150000000 -1.355658529 0.4162500000 -1.320698596 0.4175000000 -1.293107017 0.4187500000 -1.273784364 0.4200000000 -1.263839190 0.4212500000 -1.265028352 0.4225000000 -1.277125353 0.4237500000 -1.295412262 0.4250000000 -1.313666809 0.4262500000 -1.328222348 0.4275000000 -1.337771695 0.4287500000 -1.340908171 0.4300000000 -1.336242066 0.4312500000 -1.324977507 0.4325000000 -1.310632480 0.4337500000 -1.295359603 0.4350000000 -1.277875709 0.4362500000 -1.255619563 0.4375000000 -1.228135953 0.4387500000 -1.197962837 0.4400000000 -1.169134642 0.4412500000 -1.145070599 0.4425000000 -1.127020333 0.4437500000 -1.113266590 0.4450000000 -1.099993717 0.4462500000 -1.084873012 0.4475000000 -1.069863604 0.4487500000 -1.059471548 0.4500000000 -1.056984181 0.4512500000 -1.061568758 0.4525000000 -1.067709227 0.4537500000 -1.069444068 0.4550000000 -1.065297491 0.4562500000 -1.056917047 0.4575000000 -1.044825966 0.4587500000 -1.028043631 0.4600000000 -1.006861680 0.4612500000 -0.9839078004 0.4625000000 -0.9624674396 0.4637500000 -0.9443807922 0.4650000000 -0.9290866411 0.4662500000 -0.9142293245 0.4675000000 -0.8977140929 0.4687500000 -0.8795000262 0.4700000000 -0.8607306317 0.4712500000 -0.8420981256 0.4725000000 -0.8241516852 0.4737500000 -0.8082189239 0.4750000000 -0.7959282021 0.4762500000 -0.7875394407 0.4775000000 -0.7810797821 0.4787500000 -0.7739839831 0.4800000000 -0.7650762981 0.4812500000 -0.7546670272 0.4825000000 -0.7438193373 0.4837500000 -0.7335545011 0.4850000000 -0.7242037419 0.4862500000 -0.7151592917 0.4875000000 -0.7050355623 0.4887500000 -0.6926781635 0.4900000000 -0.6780896705 0.4912500000 -0.6619572176 0.4925000000 -0.6451178240 0.4937500000 -0.6287082566 0.4950000000 -0.6140275027 0.4962500000 -0.6021071751 0.4975000000 -0.5930877377 0.4987500000 -0.5858991798 0.5000000000 -0.5797736006 0.5012500000 -0.5758585647 0.5025000000 -0.5757403704 0.5037500000 -0.5784890027 0.5050000000 -0.5803036524 0.5062500000 -0.5779867934 0.5075000000 -0.5714703432 0.5087500000 -0.5622156512 0.5100000000 -0.5514930039 0.5112500000 -0.5404889790 0.5125000000 -0.5299329782 0.5137500000 -0.5193345384 0.5150000000 -0.5079363480 0.5162500000 -0.4961438166 0.5175000000 -0.4851789720 0.5187500000 -0.4757839099 0.5200000000 -0.4679263788 0.5212500000 -0.4617313951 0.5225000000 -0.4575096276 0.5237500000 -0.4547277822 0.5250000000 -0.4519446169 0.5262500000 -0.4479409584 0.5275000000 -0.4425246462 0.5287500000 -0.4360164896 0.5300000000 -0.4284215178 0.5312500000 -0.4194874024 0.5325000000 -0.4092551364 0.5337500000 -0.3981688923 0.5350000000 -0.3867315469 0.5362500000 -0.3752386239 0.5375000000 -0.3637668618 0.5387500000 -0.3523356607 0.5400000000 -0.3410306162 0.5412500000 -0.3300185747 0.5425000000 -0.3195621888 0.5437500000 -0.3100694168 0.5450000000 -0.3020596464 0.5462500000 -0.2958866796 0.5475000000 -0.2913335048 0.5487500000 -0.2875370512 0.5500000000 -0.2834020153 0.5512500000 -0.2781126612 0.5525000000 -0.2713919585 0.5537500000 -0.2635058177 0.5550000000 -0.2549614238 0.5562500000 -0.2461965884 0.5575000000 -0.2374797011 0.5587500000 -0.2289183528 0.5600000000 -0.2205123882 0.5612500000 -0.2122482337 0.5625000000 -0.2041670934 0.5637500000 -0.1964027954 0.5650000000 -0.1892232461 0.5662500000 -0.1829957732 0.5675000000 -0.1779224964 0.5687500000 -0.1736209116 0.5700000000 -0.1692381726 0.5712500000 -0.1641958029 0.5725000000 -0.1584464031 0.5737500000 -0.1521866367 0.5750000000 -0.1456530561 0.5762500000 -0.1390227767 0.5775000000 -0.1323710498 0.5787500000 -0.1257175704 0.5800000000 -0.1190847771 0.5812500000 -0.1125041039 0.5825000000 -0.1060009287 0.5837500000 -0.9958887737E-01 0.5850000000 -0.9327233023E-01 0.5862500000 -0.8705042948E-01 0.5875000000 -0.8091998516E-01 0.5887500000 -0.7487719443E-01 0.5900000000 -0.6891870218E-01 0.5912500000 -0.6304246408E-01 0.5925000000 -0.5724857442E-01 0.5937500000 -0.5153942809E-01 0.5950000000 -0.4591696368E-01 0.5962500000 -0.4037518399E-01 0.5975000000 -0.3489628145E-01 0.5987500000 -0.2946247762E-01 0.6000000000 -0.2406831650E-01 0.6012500000 -0.1871703916E-01 0.6025000000 -0.1341282106E-01 0.6037500000 -0.8157988848E-02 0.6050000000 -0.2953395836E-02 0.6062500000 0.2200479261E-02 0.6075000000 0.7302283714E-02 0.6087500000 0.1234811881E-01 0.6100000000 0.1732910850E-01 0.6112500000 0.2222905971E-01 0.6125000000 0.2702748051E-01 0.6137500000 0.3171824690E-01 0.6150000000 0.3633557707E-01 0.6162500000 0.4093865299E-01 0.6175000000 0.4555864739E-01 0.6187500000 0.5018750173E-01 0.6200000000 0.5480555426E-01 0.6212500000 0.5939896981E-01 0.6225000000 0.6396104726E-01 0.6237500000 0.6848866853E-01 0.6250000000 0.7297984620E-01 0.6262500000 0.7743332917E-01 0.6275000000 0.8184866743E-01 0.6287500000 0.8622601351E-01 0.6300000000 0.9056585183E-01 0.6312500000 0.9486880343E-01 0.6325000000 0.9913550636E-01 0.6337500000 0.1033665355 0.6350000000 0.1075623451 0.6362500000 0.1117232818 0.6375000000 0.1158498076 0.6387500000 0.1199428901 0.6400000000 0.1240039015 0.6412500000 0.1280338149 0.6425000000 0.1320327996 0.6437500000 0.1360003972 0.6450000000 0.1399355332 0.6462500000 0.1438363078 0.6475000000 0.1477004171 0.6487500000 0.1515275874 0.6500000000 0.1553227526 0.6512500000 0.1590937752 0.6525000000 0.1628447827 0.6537500000 0.1665749970 0.6550000000 0.1702821491 0.6562500000 0.1739645995 0.6575000000 0.1776215945 0.6587500000 0.1812529539 0.6600000000 0.1848587885 0.6612500000 0.1884393406 0.6625000000 0.1919948329 0.6637500000 0.1955251628 0.6650000000 0.1990294868 0.6662500000 0.2025057868 0.6675000000 0.2059501040 0.6687500000 0.2093548762 0.6700000000 0.2127079141 0.6712500000 0.2159985031 0.6725000000 0.2192344480 0.6737500000 0.2224491185 0.6750000000 0.2256742041 0.6762500000 0.2289151152 0.6775000000 0.2321603227 0.6787500000 0.2353974285 0.6800000000 0.2386185558 0.6812500000 0.2418196865 0.6825000000 0.2449990612 0.6837500000 0.2481560728 0.6850000000 0.2512906626 0.6862500000 0.2544030199 0.6875000000 0.2574934363 0.6887500000 0.2605622380 0.6900000000 0.2636097540 0.6912500000 0.2666363035 0.6925000000 0.2696421907 0.6937500000 0.2726277036 0.6950000000 0.2755931150 0.6962500000 0.2785386836 0.6975000000 0.2814646557 0.6987500000 0.2843712667 0.7000000000 0.2872587420 0.7012500000 0.2901272988 0.7025000000 0.2929771464 0.7037500000 0.2958084876 0.7050000000 0.2986215190 0.7062500000 0.3014164320 0.7075000000 0.3041934127 0.7087500000 0.3069526430 0.7100000000 0.3096943005 0.7112500000 0.3124185590 0.7125000000 0.3151255888 0.7137500000 0.3178155567 0.7150000000 0.3204886265 0.7162500000 0.3231449591 0.7175000000 0.3257847123 0.7187500000 0.3284080416 0.7200000000 0.3310150997 0.7212500000 0.3336060370 0.7225000000 0.3361810016 0.7237500000 0.3387401391 0.7250000000 0.3412835933 0.7262500000 0.3438115056 0.7275000000 0.3463240156 0.7287500000 0.3488212608 0.7300000000 0.3513033768 0.7312500000 0.3537704974 0.7325000000 0.3562227547 0.7337500000 0.3586602787 0.7350000000 0.3610831982 0.7362500000 0.3634916398 0.7375000000 0.3658857290 0.7387500000 0.3682655892 0.7400000000 0.3706313426 0.7412500000 0.3729831097 0.7425000000 0.3753210097 0.7437500000 0.3776451601 0.7450000000 0.3799556770 0.7462500000 0.3822526754 0.7475000000 0.3845362686 0.7487500000 0.3868065686 0.7500000000 0.3890636861 0.7512500000 0.3913077307 0.7525000000 0.3935388104 0.7537500000 0.3957570321 0.7550000000 0.3979625016 0.7562500000 0.4001553232 0.7575000000 0.4023356002 0.7587500000 0.4045034347 0.7600000000 0.4066589277 0.7612500000 0.4088021789 0.7625000000 0.4109332870 0.7637500000 0.4130523497 0.7650000000 0.4151594634 0.7662500000 0.4172547237 0.7675000000 0.4193382248 0.7687500000 0.4214100602 0.7700000000 0.4234703223 0.7712500000 0.4255191024 0.7725000000 0.4275564908 0.7737500000 0.4295825771 0.7750000000 0.4315974496 0.7762500000 0.4336011959 0.7775000000 0.4355939026 0.7787500000 0.4375756553 0.7800000000 0.4395465388 0.7812500000 0.4415066370 0.7825000000 0.4434560330 0.7837500000 0.4453948088 0.7850000000 0.4473230458 0.7862500000 0.4492408244 0.7875000000 0.4511482243 0.7887500000 0.4530453243 0.7900000000 0.4549322025 0.7912500000 0.4568089359 0.7925000000 0.4586756011 0.7937500000 0.4605322738 0.7950000000 0.4623790288 0.7962500000 0.4642159403 0.7975000000 0.4660430818 0.7987500000 0.4678605259 0.8000000000 0.4696683445 0.8012500000 0.4714666090 0.8025000000 0.4732553898 0.8037500000 0.4750347568 0.8050000000 0.4768047792 0.8062500000 0.4785655256 0.8075000000 0.4803170636 0.8087500000 0.4820594604 0.8100000000 0.4837927827 0.8112500000 0.4855170962 0.8125000000 0.4872324662 0.8137500000 0.4889389573 0.8150000000 0.4906366335 0.8162500000 0.4923255581 0.8175000000 0.4940057941 0.8187500000 0.4956774034 0.8200000000 0.4973404478 0.8212500000 0.4989949883 0.8225000000 0.5006410852 0.8237500000 0.5022787985 0.8250000000 0.5039081874 0.8262500000 0.5055293108 0.8275000000 0.5071422268 0.8287500000 0.5087469932 0.8300000000 0.5103436670 0.8312500000 0.5119323048 0.8325000000 0.5135129628 0.8337500000 0.5150856965 0.8350000000 0.5166505611 0.8362500000 0.5182076109 0.8375000000 0.5197569002 0.8387500000 0.5212984825 0.8400000000 0.5228324109 0.8412500000 0.5243587380 0.8425000000 0.5258775159 0.8437500000 0.5273887962 0.8450000000 0.5288926303 0.8462500000 0.5303890689 0.8475000000 0.5318781621 0.8487500000 0.5333599600 0.8500000000 0.5348345118 0.8512500000 0.5363018665 0.8525000000 0.5377620728 0.8537500000 0.5392151786 0.8550000000 0.5406612316 0.8562500000 0.5421002792 0.8575000000 0.5435323682 0.8587500000 0.5449575449 0.8600000000 0.5463758555 0.8612500000 0.5477873456 0.8625000000 0.5491920604 0.8637500000 0.5505900448 0.8650000000 0.5519813431 0.8662500000 0.5533659996 0.8675000000 0.5547440579 0.8687500000 0.5561155613 0.8700000000 0.5574805528 0.8712500000 0.5588390749 0.8725000000 0.5601911699 0.8737500000 0.5615368797 0.8750000000 0.5628762458 0.8762500000 0.5642093093 0.8775000000 0.5655361110 0.8787500000 0.5668566915 0.8800000000 0.5681710908 0.8812500000 0.5694793488 0.8825000000 0.5707815048 0.8837500000 0.5720775981 0.8850000000 0.5733676674 0.8862500000 0.5746517513 0.8875000000 0.5759298879 0.8887500000 0.5772021150 0.8900000000 0.5784684701 0.8912500000 0.5797289906 0.8925000000 0.5809837133 0.8937500000 0.5822326749 0.8950000000 0.5834759117 0.8962500000 0.5847134596 0.8975000000 0.5859453545 0.8987500000 0.5871716317 0.9000000000 0.5883923264 0.9012500000 0.5896074735 0.9025000000 0.5908171076 0.9037500000 0.5920212630 0.9050000000 0.5932199737 0.9062500000 0.5944132734 0.9075000000 0.5956011957 0.9087500000 0.5967837737 0.9100000000 0.5979610405 0.9112500000 0.5991330287 0.9125000000 0.6002997707 0.9137500000 0.6014612987 0.9150000000 0.6026176447 0.9162500000 0.6037688403 0.9175000000 0.6049149168 0.9187500000 0.6060559056 0.9200000000 0.6071918375 0.9212500000 0.6083227432 0.9225000000 0.6094486531 0.9237500000 0.6105695975 0.9250000000 0.6116856062 0.9262500000 0.6127967091 0.9275000000 0.6139029357 0.9287500000 0.6150043152 0.9300000000 0.6161008766 0.9312500000 0.6171926489 0.9325000000 0.6182796605 0.9337500000 0.6193619400 0.9350000000 0.6204395154 0.9362500000 0.6215124146 0.9375000000 0.6225806656 0.9387500000 0.6236442957 0.9400000000 0.6247033322 0.9412500000 0.6257578024 0.9425000000 0.6268077330 0.9437500000 0.6278531508 0.9450000000 0.6288940822 0.9462500000 0.6299305537 0.9475000000 0.6309625912 0.9487500000 0.6319902206 0.9500000000 0.6330134678 0.9512500000 0.6340323581 0.9525000000 0.6350469169 0.9537500000 0.6360571694 0.9550000000 0.6370631404 0.9562500000 0.6380648548 0.9575000000 0.6390623371 0.9587500000 0.6400556117 0.9600000000 0.6410447029 0.9612500000 0.6420296346 0.9625000000 0.6430104307 0.9637500000 0.6439871150 0.9650000000 0.6449597108 0.9662500000 0.6459282416 0.9675000000 0.6468927305 0.9687500000 0.6478532006 0.9700000000 0.6488096745 0.9712500000 0.6497621751 0.9725000000 0.6507107247 0.9737500000 0.6516553458 0.9750000000 0.6525960605 0.9762500000 0.6535328907 0.9775000000 0.6544658585 0.9787500000 0.6553949854 0.9800000000 0.6563202930 0.9812500000 0.6572418027 0.9825000000 0.6581595356 0.9837500000 0.6590735130 0.9850000000 0.6599837557 0.9862500000 0.6608902844 0.9875000000 0.6617931199 0.9887500000 0.6626922826 0.9900000000 0.6635877929 0.9912500000 0.6644796709 0.9925000000 0.6653679366 0.9937500000 0.6662526101 0.9950000000 0.6671337111 0.9962500000 0.6680112591 0.9975000000 0.6688852737 0.9987500000 0.6697557743 0.000000000 0.000000000 0.1250000000E-02 0.4985250980E-02 0.2500000000E-02 0.9974571219E-02 0.3750000000E-02 0.1497203888E-01 0.5000000000E-02 0.1998174996E-01 0.6250000000E-02 0.2500782733E-01 0.7500000000E-02 0.3005442985E-01 0.8750000000E-02 0.3512576167E-01 0.1000000000E-01 0.4022608169E-01 0.1125000000E-01 0.4535971332E-01 0.1250000000E-01 0.5053105450E-01 0.1375000000E-01 0.5574458797E-01 0.1500000000E-01 0.6100489207E-01 0.1625000000E-01 0.6631665185E-01 0.1750000000E-01 0.7168467070E-01 0.1875000000E-01 0.7711388256E-01 0.2000000000E-01 0.8260936466E-01 0.2125000000E-01 0.8817635106E-01 0.2250000000E-01 0.9382024677E-01 0.2375000000E-01 0.9954664287E-01 0.2500000000E-01 0.1053613324 0.2625000000E-01 0.1112703275 0.2750000000E-01 0.1172798771 0.2875000000E-01 0.1233964866 0.3000000000E-01 0.1296269385 0.3125000000E-01 0.1359783142 0.3250000000E-01 0.1424580181 0.3375000000E-01 0.1490738033 0.3500000000E-01 0.1558337984 0.3625000000E-01 0.1627465382 0.3750000000E-01 0.1698209954 0.3875000000E-01 0.1770666151 0.4000000000E-01 0.1844933533 0.4125000000E-01 0.1921117173 0.4250000000E-01 0.1999328107 0.4375000000E-01 0.2079683820 0.4500000000E-01 0.2162308774 0.4625000000E-01 0.2247334992 0.4750000000E-01 0.2334902693 0.4875000000E-01 0.2425160985 0.5000000000E-01 0.2518268635 0.5125000000E-01 0.2614394910 0.5250000000E-01 0.2713720500 0.5375000000E-01 0.2816438550 0.5500000000E-01 0.2922755788 0.5625000000E-01 0.3032893780 0.5750000000E-01 0.3147090323 0.5875000000E-01 0.3265600998 0.6000000000E-01 0.3388700889 0.6125000000E-01 0.3516686518 0.6250000000E-01 0.3649877995 0.6375000000E-01 0.3788621439 0.6500000000E-01 0.3933291696 0.6625000000E-01 0.4084295399 0.6750000000E-01 0.4242074427 0.6875000000E-01 0.4407109821 0.7000000000E-01 0.4579926225 0.7125000000E-01 0.4761096948 0.7250000000E-01 0.4951249740 0.7375000000E-01 0.5151073407 0.7500000000E-01 0.5361325409 0.7625000000E-01 0.5582840625 0.7750000000E-01 0.5816541478 0.7875000000E-01 0.6063449706 0.8000000000E-01 0.6324700069 0.8125000000E-01 0.6601556391 0.8250000000E-01 0.6895430422 0.8375000000E-01 0.7207904093 0.8500000000E-01 0.7540755926 0.8625000000E-01 0.7895992517 0.8750000000E-01 0.8275886278 0.8875000000E-01 0.8683020933 0.9000000000E-01 0.9120346693 0.9125000000E-01 0.9591247615 0.9250000000E-01 1.009962437 0.9375000000E-01 1.064999670 0.9500000000E-01 1.124763129 0.9625000000E-01 1.189870255 0.9750000000E-01 1.261049665 0.9875000000E-01 1.339167299 0.1000000000 1.425260244 0.1012500000 1.520580968 0.1025000000 1.626655838 0.1037500000 1.745363467 0.1050000000 1.879040937 0.1062500000 2.030629774 0.1075000000 2.203879283 0.1087500000 2.403633726 0.1100000000 2.636243310 0.1112500000 2.910159171 0.1125000000 3.236801414 0.1137500000 3.631825194 0.1150000000 4.116935872 0.1162500000 4.722349172 0.1175000000 5.489611626 0.1187500000 6.473054857 0.1200000000 7.733828136 0.1212500000 9.310743362 0.1225000000 11.14409577 0.1237500000 12.97359694 0.1250000000 14.38298837 0.1262500000 15.11645214 0.1275000000 15.31046052 0.1287500000 15.38928903 0.1300000000 15.81805848 0.1312500000 16.88477212 0.1325000000 18.60527728 0.1337500000 20.70187810 0.1350000000 22.73608054 0.1362500000 24.47221035 0.1375000000 26.06272407 0.1387500000 27.77102077 0.1400000000 29.68174092 0.1412500000 31.64624107 0.1425000000 33.29036243 0.1437500000 34.34998302 0.1450000000 35.06011823 0.1462500000 35.92329216 0.1475000000 37.25073328 0.1487500000 38.96896726 0.1500000000 40.58557227 0.1512500000 41.39110949 0.1525000000 41.13917589 0.1537500000 40.21925875 0.1550000000 38.96276682 0.1562500000 37.36463503 0.1575000000 35.46232246 0.1587500000 33.55738303 0.1600000000 31.97238651 0.1612500000 30.77145842 0.1625000000 29.79835271 0.1637500000 28.89172384 0.1650000000 27.98248696 0.1662500000 26.99307595 0.1675000000 25.77280990 0.1687500000 24.25723348 0.1700000000 22.61021344 0.1712500000 21.03698651 0.1725000000 19.65265708 0.1737500000 18.57941134 0.1750000000 17.95781166 0.1762500000 17.84895835 0.1775000000 18.16360336 0.1787500000 18.62258040 0.1800000000 18.86045219 0.1812500000 18.71313737 0.1825000000 18.30579994 0.1837500000 17.80579096 0.1850000000 17.24379866 0.1862500000 16.59929121 0.1875000000 15.94746114 0.1887500000 15.47403012 0.1900000000 15.32859697 0.1912500000 15.48282441 0.1925000000 15.76639169 0.1937500000 16.00706080 0.1950000000 16.11963296 0.1962500000 16.08694297 0.1975000000 15.88273876 0.1987500000 15.45708248 0.2000000000 14.81206285 0.2012500000 14.03728880 0.2025000000 13.25165527 0.2037500000 12.54277409 0.2050000000 11.93697427 0.2062500000 11.39719512 0.2075000000 10.85739476 0.2087500000 10.29626094 0.2100000000 9.767798315 0.2112500000 9.337482679 0.2125000000 9.030181991 0.2137500000 8.821713296 0.2150000000 8.658044792 0.2162500000 8.498729047 0.2175000000 8.333815681 0.2187500000 8.155023092 0.2200000000 7.938077974 0.2212500000 7.667527845 0.2225000000 7.345747263 0.2237500000 6.988387520 0.2250000000 6.641702125 0.2262500000 6.361230188 0.2275000000 6.166082792 0.2287500000 6.042706814 0.2300000000 5.979543486 0.2312500000 5.973496759 0.2325000000 6.006927217 0.2337500000 6.051157319 0.2350000000 6.089590607 0.2362500000 6.114204762 0.2375000000 6.124312016 0.2387500000 6.119278877 0.2400000000 6.077479723 0.2412500000 5.976157635 0.2425000000 5.817742510 0.2437500000 5.610051880 0.2450000000 5.362330515 0.2462500000 5.110481257 0.2475000000 4.904398265 0.2487500000 4.766635490 0.2500000000 4.669890670 0.2512500000 4.553148291 0.2525000000 4.374266059 0.2537500000 4.148320784 0.2550000000 3.918774024 0.2562500000 3.706198570 0.2575000000 3.511423418 0.2587500000 3.346400133 0.2600000000 3.227548454 0.2612500000 3.150639550 0.2625000000 3.096141354 0.2637500000 3.050424783 0.2650000000 3.008732477 0.2662500000 2.967970670 0.2675000000 2.927032281 0.2687500000 2.887365453 0.2700000000 2.843938058 0.2712500000 2.784732702 0.2725000000 2.706436816 0.2737500000 2.613530073 0.2750000000 2.506795896 0.2762500000 2.391359865 0.2775000000 2.279207507 0.2787500000 2.179064000 0.2800000000 2.096369087 0.2812500000 2.037136678 0.2825000000 2.004368965 0.2837500000 1.994323078 0.2850000000 2.001445261 0.2862500000 2.021178473 0.2875000000 2.042998069 0.2887500000 2.053712965 0.2900000000 2.054130427 0.2912500000 2.058751487 0.2925000000 2.080322834 0.2937500000 2.121975597 0.2950000000 2.169134776 0.2962500000 2.191702232 0.2975000000 2.173324314 0.2987500000 2.129299853 0.3000000000 2.085286142 0.3012500000 2.052493662 0.3025000000 2.023260160 0.3037500000 1.980751788 0.3050000000 1.913815851 0.3062500000 1.823739255 0.3075000000 1.719138925 0.3087500000 1.611345420 0.3100000000 1.512500806 0.3112500000 1.431174686 0.3125000000 1.370667666 0.3137500000 1.330415537 0.3150000000 1.305185483 0.3162500000 1.286292236 0.3175000000 1.266849262 0.3187500000 1.244981095 0.3200000000 1.223999293 0.3212500000 1.210194464 0.3225000000 1.205630723 0.3237500000 1.203496329 0.3250000000 1.194317597 0.3262500000 1.175873642 0.3275000000 1.153688748 0.3287500000 1.134310529 0.3300000000 1.121384081 0.3312500000 1.113836804 0.3325000000 1.106703277 0.3337500000 1.097889143 0.3350000000 1.093185598 0.3362500000 1.101456810 0.3375000000 1.127097137 0.3387500000 1.166486126 0.3400000000 1.209705461 0.3412500000 1.248373915 0.3425000000 1.283322230 0.3437500000 1.320489971 0.3450000000 1.359393011 0.3462500000 1.390385172 0.3475000000 1.400602378 0.3487500000 1.379604197 0.3500000000 1.327469162 0.3512500000 1.259452597 0.3525000000 1.194657696 0.3537500000 1.143708517 0.3550000000 1.109445217 0.3562500000 1.089362286 0.3575000000 1.076400994 0.3587500000 1.064503005 0.3600000000 1.052237384 0.3612500000 1.040445241 0.3625000000 1.030674669 0.3637500000 1.023251927 0.3650000000 1.015294637 0.3662500000 1.003857047 0.3675000000 0.9921820869 0.3687500000 0.9887996691 0.3700000000 0.9978583677 0.3712500000 1.014185382 0.3725000000 1.030070446 0.3737500000 1.041820404 0.3750000000 1.046212995 0.3762500000 1.036892742 0.3775000000 1.010071763 0.3787500000 0.9688336533 0.3800000000 0.9200720681 0.3812500000 0.8721032483 0.3825000000 0.8311645298 0.3837500000 0.7966473312 0.3850000000 0.7635428513 0.3862500000 0.7304083632 0.3875000000 0.7009894607 0.3887500000 0.6785615603 0.3900000000 0.6624384021 0.3912500000 0.6491727817 0.3925000000 0.6367580082 0.3937500000 0.6266416292 0.3950000000 0.6199402225 0.3962500000 0.6158410342 0.3975000000 0.6128502376 0.3987500000 0.6066761889 0.4000000000 0.5916097066 0.4012500000 0.5667872978 0.4025000000 0.5357943781 0.4037500000 0.5017624889 0.4050000000 0.4670015618 0.4062500000 0.4342996155 0.4075000000 0.4065640239 0.4087500000 0.3858868454 0.4100000000 0.3727904446 0.4112500000 0.3666031731 0.4125000000 0.3669318995 0.4137500000 0.3740935117 0.4150000000 0.3882348807 0.4162500000 0.4084718665 0.4175000000 0.4331148791 0.4187500000 0.4604530952 0.4200000000 0.4889468401 0.4212500000 0.5156998021 0.4225000000 0.5352657077 0.4237500000 0.5430111197 0.4250000000 0.5388519381 0.4262500000 0.5256454517 0.4275000000 0.5058038150 0.4287500000 0.4809982230 0.4300000000 0.4542762184 0.4312500000 0.4294974930 0.4325000000 0.4080022677 0.4337500000 0.3878398685 0.4350000000 0.3670314019 0.4362500000 0.3466325037 0.4375000000 0.3300773511 0.4387500000 0.3203378728 0.4400000000 0.3179339264 0.4412500000 0.3207205394 0.4425000000 0.3249354137 0.4437500000 0.3270411307 0.4450000000 0.3263282180 0.4462500000 0.3258594376 0.4475000000 0.3291723842 0.4487500000 0.3363538621 0.4500000000 0.3434362964 0.4512500000 0.3445274312 0.4525000000 0.3360882582 0.4537500000 0.3202148185 0.4550000000 0.3016439793 0.4562500000 0.2826654032 0.4575000000 0.2632814352 0.4587500000 0.2445191794 0.4600000000 0.2290607064 0.4612500000 0.2188379104 0.4625000000 0.2133217161 0.4637500000 0.2099526029 0.4650000000 0.2058846403 0.4662500000 0.1998771983 0.4675000000 0.1930933395 0.4687500000 0.1875240210 0.4700000000 0.1839706387 0.4712500000 0.1824231823 0.4725000000 0.1831829834 0.4737500000 0.1863832395 0.4750000000 0.1908057996 0.4762500000 0.1938856790 0.4775000000 0.1936386073 0.4787500000 0.1903506024 0.4800000000 0.1857335796 0.4812500000 0.1813438567 0.4825000000 0.1778570844 0.4837500000 0.1749328104 0.4850000000 0.1715957202 0.4862500000 0.1668654324 0.4875000000 0.1605468621 0.4887500000 0.1537076430 0.4900000000 0.1478290290 0.4912500000 0.1438742061 0.4925000000 0.1424598868 0.4937500000 0.1439110481 0.4950000000 0.1479291106 0.4962500000 0.1534875866 0.4975000000 0.1590411499 0.4987500000 0.1636745044 0.5000000000 0.1680726750 0.5012500000 0.1728658457 0.5025000000 0.1763583105 0.5037500000 0.1753411513 0.5050000000 0.1685630260 0.5062500000 0.1583991315 0.5075000000 0.1480806081 0.5087500000 0.1391761579 0.5100000000 0.1321459014 0.5112500000 0.1269266832 0.5125000000 0.1226498335 0.5137500000 0.1185203294 0.5150000000 0.1150212898 0.5162500000 0.1131803239 0.5175000000 0.1131333805 0.5187500000 0.1140648803 0.5200000000 0.1153016047 0.5212500000 0.1165610326 0.5225000000 0.1170436781 0.5237500000 0.1155294169 0.5250000000 0.1115418580 0.5262500000 0.1057956809 0.5275000000 0.9932360113E-01 0.5287500000 0.9254694534E-01 0.5300000000 0.8549522263E-01 0.5312500000 0.7846971339E-01 0.5325000000 0.7206823565E-01 0.5337500000 0.6671508770E-01 0.5350000000 0.6245382558E-01 0.5362500000 0.5910921734E-01 0.5375000000 0.5653332103E-01 0.5387500000 0.5471639141E-01 0.5400000000 0.5372730185E-01 0.5412500000 0.5364273451E-01 0.5425000000 0.5452080425E-01 0.5437500000 0.5632469944E-01 0.5450000000 0.5873689833E-01 0.5462500000 0.6100539290E-01 0.5475000000 0.6214098865E-01 0.5487500000 0.6145415241E-01 0.5500000000 0.5894463224E-01 0.5512500000 0.5521908896E-01 0.5525000000 0.5115543857E-01 0.5537500000 0.4749616467E-01 0.5550000000 0.4458266719E-01 0.5562500000 0.4242618658E-01 0.5575000000 0.4088690814E-01 0.5587500000 0.3980034825E-01 0.5600000000 0.3906786739E-01 0.5612500000 0.3868716129E-01 0.5625000000 0.3871570767E-01 0.5637500000 0.3922673426E-01 0.5650000000 0.4022823864E-01 0.5662500000 0.4149716288E-01 0.5675000000 0.4243686142E-01 0.5687500000 0.4233329593E-01 0.5700000000 0.4102621957E-01 0.5712500000 0.3900328492E-01 0.5725000000 0.3681673391E-01 0.5737500000 0.3478984387E-01 0.5750000000 0.3304210836E-01 0.5762500000 0.3155216090E-01 0.5775000000 0.3025584236E-01 0.5787500000 0.2912163302E-01 0.5800000000 0.2814419603E-01 0.5812500000 0.2731317039E-01 0.5825000000 0.2660714997E-01 0.5837500000 0.2600155426E-01 0.5850000000 0.2547471188E-01 0.5862500000 0.2500976365E-01 0.5875000000 0.2459438559E-01 0.5887500000 0.2421990997E-01 0.5900000000 0.2388044435E-01 0.5912500000 0.2357197876E-01 0.5925000000 0.2329104792E-01 0.5937500000 0.2303224054E-01 0.5950000000 0.2278484617E-01 0.5962500000 0.2253352513E-01 0.5975000000 0.2226931334E-01 0.5987500000 0.2199878762E-01 0.6000000000 0.2173516179E-01 0.6012500000 0.2148674979E-01 0.6025000000 0.2125604206E-01 0.6037500000 0.2104311202E-01 0.6050000000 0.2084799414E-01 0.6062500000 0.2067171066E-01 0.6075000000 0.2051662919E-01 0.6087500000 0.2038628596E-01 0.6100000000 0.2028388582E-01 0.6112500000 0.2020737477E-01 0.6125000000 0.2013917632E-01 0.6137500000 0.2003869777E-01 0.6150000000 0.1986386976E-01 0.6162500000 0.1961586465E-01 0.6175000000 0.1933675638E-01 0.6187500000 0.1906393705E-01 0.6200000000 0.1881141776E-01 0.6212500000 0.1857934478E-01 0.6225000000 0.1836448488E-01 0.6237500000 0.1816425863E-01 0.6250000000 0.1797668660E-01 0.6262500000 0.1779977729E-01 0.6275000000 0.1763162614E-01 0.6287500000 0.1747065161E-01 0.6300000000 0.1731565789E-01 0.6312500000 0.1716578746E-01 0.6325000000 0.1702044596E-01 0.6337500000 0.1687922290E-01 0.6350000000 0.1674178685E-01 0.6362500000 0.1660772043E-01 0.6375000000 0.1647637060E-01 0.6387500000 0.1634707014E-01 0.6400000000 0.1621980553E-01 0.6412500000 0.1609536996E-01 0.6425000000 0.1597474881E-01 0.6437500000 0.1585871777E-01 0.6450000000 0.1574773064E-01 0.6462500000 0.1564143103E-01 0.6475000000 0.1553741945E-01 0.6487500000 0.1543042698E-01 0.6500000000 0.1531527195E-01 0.6512500000 0.1519245781E-01 0.6525000000 0.1506754288E-01 0.6537500000 0.1494542893E-01 0.6550000000 0.1482814225E-01 0.6562500000 0.1471594362E-01 0.6575000000 0.1460857182E-01 0.6587500000 0.1450581414E-01 0.6600000000 0.1440768336E-01 0.6612500000 0.1431449261E-01 0.6625000000 0.1422698397E-01 0.6637500000 0.1414644732E-01 0.6650000000 0.1407466453E-01 0.6662500000 0.1401374309E-01 0.6675000000 0.1396589043E-01 0.6687500000 0.1393218539E-01 0.6700000000 0.1390786649E-01 0.6712500000 0.1387479931E-01 0.6725000000 0.1380385563E-01 0.6737500000 0.1368019234E-01 0.6750000000 0.1352131606E-01 0.6762500000 0.1335621258E-01 0.6775000000 0.1320192484E-01 0.6787500000 0.1306264806E-01 0.6800000000 0.1293678917E-01 0.6812500000 0.1282145135E-01 0.6825000000 0.1271404114E-01 0.6837500000 0.1261259152E-01 0.6850000000 0.1251569117E-01 0.6862500000 0.1242234275E-01 0.6875000000 0.1233183966E-01 0.6887500000 0.1224367595E-01 0.6900000000 0.1215748399E-01 0.6912500000 0.1207299230E-01 0.6925000000 0.1198999697E-01 0.6937500000 0.1190834221E-01 0.6950000000 0.1182790703E-01 0.6962500000 0.1174859589E-01 0.6975000000 0.1167033213E-01 0.6987500000 0.1159305333E-01 0.7000000000 0.1151670788E-01 0.7012500000 0.1144125252E-01 0.7025000000 0.1136665047E-01 0.7037500000 0.1129287008E-01 0.7050000000 0.1121988378E-01 0.7062500000 0.1114766728E-01 0.7075000000 0.1107619895E-01 0.7087500000 0.1100545933E-01 0.7100000000 0.1093543078E-01 0.7112500000 0.1086609716E-01 0.7125000000 0.1079744359E-01 0.7137500000 0.1072945628E-01 0.7150000000 0.1066212234E-01 0.7162500000 0.1059542968E-01 0.7175000000 0.1052936690E-01 0.7187500000 0.1046392318E-01 0.7200000000 0.1039908826E-01 0.7212500000 0.1033485232E-01 0.7225000000 0.1027120598E-01 0.7237500000 0.1020814021E-01 0.7250000000 0.1014564633E-01 0.7262500000 0.1008371597E-01 0.7275000000 0.1002234105E-01 0.7287500000 0.9961513717E-02 0.7300000000 0.9901226380E-02 0.7312500000 0.9841471658E-02 0.7325000000 0.9782242375E-02 0.7337500000 0.9723531543E-02 0.7350000000 0.9665332354E-02 0.7362500000 0.9607638166E-02 0.7375000000 0.9550442496E-02 0.7387500000 0.9493739009E-02 0.7400000000 0.9437521511E-02 0.7412500000 0.9381783944E-02 0.7425000000 0.9326520377E-02 0.7437500000 0.9271725000E-02 0.7450000000 0.9217392122E-02 0.7462500000 0.9163516163E-02 0.7475000000 0.9110091652E-02 0.7487500000 0.9057113219E-02 0.7500000000 0.9004575596E-02 0.7512500000 0.8952473612E-02 0.7525000000 0.8900802185E-02 0.7537500000 0.8849556328E-02 0.7550000000 0.8798731136E-02 0.7562500000 0.8748321792E-02 0.7575000000 0.8698323559E-02 0.7587500000 0.8648731779E-02 0.7600000000 0.8599541873E-02 0.7612500000 0.8550749336E-02 0.7625000000 0.8502349734E-02 0.7637500000 0.8454338706E-02 0.7650000000 0.8406711960E-02 0.7662500000 0.8359465270E-02 0.7675000000 0.8312594479E-02 0.7687500000 0.8266095489E-02 0.7700000000 0.8219964269E-02 0.7712500000 0.8174196847E-02 0.7725000000 0.8128789311E-02 0.7737500000 0.8083737807E-02 0.7750000000 0.8039038538E-02 0.7762500000 0.7994687764E-02 0.7775000000 0.7950681799E-02 0.7787500000 0.7907017009E-02 0.7800000000 0.7863689814E-02 0.7812500000 0.7820696684E-02 0.7825000000 0.7778034140E-02 0.7837500000 0.7735698751E-02 0.7850000000 0.7693687135E-02 0.7862500000 0.7651995957E-02 0.7875000000 0.7610621928E-02 0.7887500000 0.7569561805E-02 0.7900000000 0.7528812389E-02 0.7912500000 0.7488370523E-02 0.7925000000 0.7448233096E-02 0.7937500000 0.7408397036E-02 0.7950000000 0.7368859314E-02 0.7962500000 0.7329616942E-02 0.7975000000 0.7290666969E-02 0.7987500000 0.7252006485E-02 0.8000000000 0.7213632619E-02 0.8012500000 0.7175542535E-02 0.8025000000 0.7137733437E-02 0.8037500000 0.7100202563E-02 0.8050000000 0.7062947188E-02 0.8062500000 0.7025964621E-02 0.8075000000 0.6989252206E-02 0.8087500000 0.6952807321E-02 0.8100000000 0.6916627377E-02 0.8112500000 0.6880709819E-02 0.8125000000 0.6845052121E-02 0.8137500000 0.6809651793E-02 0.8150000000 0.6774506373E-02 0.8162500000 0.6739613430E-02 0.8175000000 0.6704970565E-02 0.8187500000 0.6670575405E-02 0.8200000000 0.6636425611E-02 0.8212500000 0.6602518869E-02 0.8225000000 0.6568852894E-02 0.8237500000 0.6535425429E-02 0.8250000000 0.6502234246E-02 0.8262500000 0.6469277141E-02 0.8275000000 0.6436551938E-02 0.8287500000 0.6404056488E-02 0.8300000000 0.6371788666E-02 0.8312500000 0.6339746373E-02 0.8325000000 0.6307927535E-02 0.8337500000 0.6276330103E-02 0.8350000000 0.6244952051E-02 0.8362500000 0.6213791377E-02 0.8375000000 0.6182846103E-02 0.8387500000 0.6152114275E-02 0.8400000000 0.6121593959E-02 0.8412500000 0.6091283246E-02 0.8425000000 0.6061180248E-02 0.8437500000 0.6031283098E-02 0.8450000000 0.6001589952E-02 0.8462500000 0.5972098987E-02 0.8475000000 0.5942808399E-02 0.8487500000 0.5913716407E-02 0.8500000000 0.5884821247E-02 0.8512500000 0.5856121178E-02 0.8525000000 0.5827614478E-02 0.8537500000 0.5799299443E-02 0.8550000000 0.5771174388E-02 0.8562500000 0.5743237650E-02 0.8575000000 0.5715487581E-02 0.8587500000 0.5687922552E-02 0.8600000000 0.5660540953E-02 0.8612500000 0.5633341192E-02 0.8625000000 0.5606321694E-02 0.8637500000 0.5579480900E-02 0.8650000000 0.5552817270E-02 0.8662500000 0.5526329280E-02 0.8675000000 0.5500015423E-02 0.8687500000 0.5473874208E-02 0.8700000000 0.5447904159E-02 0.8712500000 0.5422103819E-02 0.8725000000 0.5396471743E-02 0.8737500000 0.5371006505E-02 0.8750000000 0.5345706692E-02 0.8762500000 0.5320570906E-02 0.8775000000 0.5295597765E-02 0.8787500000 0.5270785902E-02 0.8800000000 0.5246133964E-02 0.8812500000 0.5221640610E-02 0.8825000000 0.5197304517E-02 0.8837500000 0.5173124374E-02 0.8850000000 0.5149098884E-02 0.8862500000 0.5125226762E-02 0.8875000000 0.5101506740E-02 0.8887500000 0.5077937560E-02 0.8900000000 0.5054517978E-02 0.8912500000 0.5031246764E-02 0.8925000000 0.5008122698E-02 0.8937500000 0.4985144576E-02 0.8950000000 0.4962311204E-02 0.8962500000 0.4939621401E-02 0.8975000000 0.4917073999E-02 0.8987500000 0.4894667839E-02 0.9000000000 0.4872401778E-02 0.9012500000 0.4850274680E-02 0.9025000000 0.4828285425E-02 0.9037500000 0.4806432901E-02 0.9050000000 0.4784716009E-02 0.9062500000 0.4763133660E-02 0.9075000000 0.4741684778E-02 0.9087500000 0.4720368294E-02 0.9100000000 0.4699183153E-02 0.9112500000 0.4678128309E-02 0.9125000000 0.4657202728E-02 0.9137500000 0.4636405384E-02 0.9150000000 0.4615735263E-02 0.9162500000 0.4595191359E-02 0.9175000000 0.4574772678E-02 0.9187500000 0.4554478235E-02 0.9200000000 0.4534307055E-02 0.9212500000 0.4514258172E-02 0.9225000000 0.4494330629E-02 0.9237500000 0.4474523479E-02 0.9250000000 0.4454835785E-02 0.9262500000 0.4435266618E-02 0.9275000000 0.4415815058E-02 0.9287500000 0.4396480194E-02 0.9300000000 0.4377261124E-02 0.9312500000 0.4358156955E-02 0.9325000000 0.4339166802E-02 0.9337500000 0.4320289788E-02 0.9350000000 0.4301525046E-02 0.9362500000 0.4282871717E-02 0.9375000000 0.4264328947E-02 0.9387500000 0.4245895895E-02 0.9400000000 0.4227571725E-02 0.9412500000 0.4209355608E-02 0.9425000000 0.4191246727E-02 0.9437500000 0.4173244268E-02 0.9450000000 0.4155347427E-02 0.9462500000 0.4137555408E-02 0.9475000000 0.4119867421E-02 0.9487500000 0.4102282684E-02 0.9500000000 0.4084800423E-02 0.9512500000 0.4067419870E-02 0.9525000000 0.4050140265E-02 0.9537500000 0.4032960855E-02 0.9550000000 0.4015880893E-02 0.9562500000 0.3998899640E-02 0.9575000000 0.3982016364E-02 0.9587500000 0.3965230338E-02 0.9600000000 0.3948540843E-02 0.9612500000 0.3931947167E-02 0.9625000000 0.3915448604E-02 0.9637500000 0.3899044454E-02 0.9650000000 0.3882734023E-02 0.9662500000 0.3866516626E-02 0.9675000000 0.3850391580E-02 0.9687500000 0.3834358212E-02 0.9700000000 0.3818415853E-02 0.9712500000 0.3802563841E-02 0.9725000000 0.3786801519E-02 0.9737500000 0.3771128236E-02 0.9750000000 0.3755543348E-02 0.9762500000 0.3740046216E-02 0.9775000000 0.3724636207E-02 0.9787500000 0.3709312692E-02 0.9800000000 0.3694075050E-02 0.9812500000 0.3678922665E-02 0.9825000000 0.3663854925E-02 0.9837500000 0.3648871225E-02 0.9850000000 0.3633970964E-02 0.9862500000 0.3619153547E-02 0.9875000000 0.3604418385E-02 0.9887500000 0.3589764894E-02 0.9900000000 0.3575192493E-02 0.9912500000 0.3560700608E-02 0.9925000000 0.3546288670E-02 0.9937500000 0.3531956115E-02 0.9950000000 0.3517702383E-02 0.9962500000 0.3503526919E-02 0.9975000000 0.3489429174E-02 0.9987500000 0.3475408602E-02 elk-9.2.12/examples/BSE/Si/PaxHeaders/elk.in0000644000000000000000000000013214536061314015346 xustar0030 mtime=1702388428.665500383 30 atime=1702388428.665500383 30 ctime=1702388428.665500383 elk-9.2.12/examples/BSE/Si/elk.in0000644002504400250440000000331014536061314020065 0ustar00dewhurstdewhurst00000000000000 ! BSE optical spectrum of silicon. Note that the non-zero vkloff is needed to ! make the system non-metallic, i.e. all occupation numbers in EIGVAL.OUT should ! be either 0 or 1. If this is not the case, then the response function will be ! too large. This is quite a time-consuming calculation and should be run on ! a multi-processor system. ! Silicon is surprisingly difficult for a BSE calculation: it requires quite a ! large k-point set for good convergence, unlike the excitonic peak in LiF. tasks 0 ! ground-state calculation 120 ! compute momentum matrix elements 121 ! compute RPA dielectric function with no local field contributions 180 ! generate RPA dielectric function with local field contributions 185 ! write the BSE Hamiltonian matrix to file 186 ! diagonalise the BSE matrix 187 ! compute BSE dielectric function ! this should be small (but not so small that it affects the results!) for a ! fast calculation because the wavefunctions used in the construction of the BSE ! matrix elements are expanded to this angular momentum cut-off lmaxo 4 ! number of valence states to use in BSE Hamiltonian nvbse 3 ! number of conduction states ncbse 4 ! a scissor correction is required to match the gap to experiment scissor 0.0331 swidth 0.005 wplot 800 100 0 : nwplot, ngrkf, nswplot 0.0 1.0 : wplot avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 5 5 5 vkloff 0.25 0.5 0.625 elk-9.2.12/examples/BSE/PaxHeaders/CaO-core0000644000000000000000000000013214536061314015203 xustar0030 mtime=1702388428.670500376 30 atime=1702388428.666500381 30 ctime=1702388428.670500376 elk-9.2.12/examples/BSE/CaO-core/0000755002504400250440000000000014536061314020002 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/BSE/CaO-core/PaxHeaders/Ca_lo.in0000644000000000000000000000013114536061314016624 xustar0030 mtime=1702388428.668500378 29 atime=1702388428.66750038 30 ctime=1702388428.668500378 elk-9.2.12/examples/BSE/CaO-core/Ca_lo.in0000644002504400250440000000357314536061314021357 0ustar00dewhurstdewhurst00000000000000 'Ca_lo' : spsymb 'calcium' : spname -20.0000 : spzn 73057.72467 : spmass 0.447214E-06 2.2000 40.2509 500 : sprmin, rmt, sprmax, nrmt 8 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 T 2 1 1 2.00000 F 2 1 2 4.00000 F 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -12.300 0 T 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -1.9708 0 T 1 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -1.2735 0 T 2 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0.5000 0 T elk-9.2.12/examples/BSE/CaO-core/PaxHeaders/O.in0000644000000000000000000000013214536061314016006 xustar0030 mtime=1702388428.669500377 30 atime=1702388428.669500377 30 ctime=1702388428.669500377 elk-9.2.12/examples/BSE/CaO-core/O.in0000644002504400250440000000222014536061314020524 0ustar00dewhurstdewhurst00000000000000 'O' : spsymb 'oxygen' : spname -8.00000 : spzn 29165.12202 : spmass 0.707107E-06 1.6000 22.7954 300 : sprmin, rmt, sprmax, nrmt 4 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 F 2 1 1 2.00000 F 2 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -1.1227 0 T elk-9.2.12/examples/BSE/CaO-core/PaxHeaders/elk.in0000644000000000000000000000013214536061314016363 xustar0030 mtime=1702388428.671500374 30 atime=1702388428.670500376 30 ctime=1702388428.671500374 elk-9.2.12/examples/BSE/CaO-core/elk.in0000644002504400250440000000506214536061314021110 0ustar00dewhurstdewhurst00000000000000 ! This example demonstrates the calculation of the Ca 2p 1/2 - 2p 3/2 (L2 / L3) ! x-ray absorption spectra in CaO. The Ca 2p states are treated as local ! orbitals in Ca_lo.in; additional local orbitals are added to allow an accurate ! description of the unoccupied 3d states (compare with the default version of Ca.in). ! Look at the imaginary part of the spectrum (EPSILON_BSE_11.OUT) in the range 11.8 to ! 12.5 Ha. Compare to the independent-particle calculation (EPSILON_11.OUT). ! Try switching off the exchange and the direct term in the BSE Hamiltonian ! individually (set hxbse/hdbse to .false.). ! For a converged spectrum a lot more k-points (6 x 6 x 6 or more) are needed. ! The numerical cut-offs are well converged, so the computation is quite time ! and memory consuming. Run with hybrid parallelization (MPI across nodes, OpenMP ! across cores) on a cluster for smaller memory footprint. Compare with calculations ! and experimental data in J. Phys. Condens. Matter 23, 145501 (2011). ! Example by Markus Meinert. tasks 0 ! ground-state calculation 120 ! compute momentum matrix elements 121 ! compute RPA dielectric function without local field contributions 180 ! generate RPA dielectric function with local field contributions 185 ! write the BSE Hamiltonian matrix to file 186 ! diagonalise BSE matrix 187 ! compute BSE dielectric function ! do not include valence bands right below E_F nvbse 0 ! additional valence bands for the BSE calculation - these are the six 2p states ! of Ca (check EIGVAL.OUT) istxbse 1 2 3 4 5 6 ! number of conduction band states for the BSE calculation ncbse 20 ! large number of empty states required nempty 20 ! enhanced G-vector cut-off of local contribution to RPA gmaxrf 5.0 ! the spectrum is very sensitive to the k-point mesh ngridk 2 2 2 ! use a symmetry breaking shift for more efficient use of the k-points vkloff 0.05 0.15 0.25 ! Broyden mixing for fast convergence mixtype 3 ! the energy window for the plot starts at zero by default; ! sufficient energy points needed wplot 5000 100 0 0.0 14.0 ! include spin-orbit coupling for the 2p 1/2 - 2p 3/2 splitting spinorb .true. ! about 0.27 eV Lorentzian broadening to simulate lifetime effects swidth 0.01 sppath './' avec 4.545 4.545 0.0 4.545 -4.545 0.0 4.545 0.0 4.545 atoms 2 : nspecies 'Ca_lo.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'O.in' 1 0.5 0.5 0.0 elk-9.2.12/examples/BSE/PaxHeaders/LiF0000644000000000000000000000013214536061314014265 xustar0030 mtime=1702388428.672500373 30 atime=1702388428.671500374 30 ctime=1702388428.672500373 elk-9.2.12/examples/BSE/LiF/0000755002504400250440000000000014536061314017064 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/BSE/LiF/PaxHeaders/elk.in0000644000000000000000000000013214536061314015445 xustar0030 mtime=1702388428.673500371 30 atime=1702388428.672500373 30 ctime=1702388428.673500371 elk-9.2.12/examples/BSE/LiF/elk.in0000644002504400250440000000217614536061314020175 0ustar00dewhurstdewhurst00000000000000 ! BSE optical spectrum of lithium fluoride. This material has a prominent ! excitonic peak, which is absent in the usual RPA dielectric function. tasks 0 ! ground-state calculation 120 ! compute momentum matrix elements 121 ! compute RPA dielectric function with no local field contributions 180 ! generate RPA dielectric function with local field contributions 185 ! write BSE Hamiltonian matrix 186 ! diagonalise BSE matrix 187 ! generate BSE dielectric function scissor 0.21 ! number of BSE valence states nvbse 3 ! number of BSE conduction states ncbse 4 ! G-vector cut-off of local contribution to RPA gmaxrf 3.0 swidth 0.005 nempty 8 wplot 800 100 0 : nwplot, ngrkf, nswplot 0.0 1.5 : wplot avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 4 4 4 elk-9.2.12/examples/PaxHeaders/ELF0000644000000000000000000000013214536061314013610 xustar0030 mtime=1702388428.676500367 30 atime=1702388428.673500371 30 ctime=1702388428.676500367 elk-9.2.12/examples/ELF/0000755002504400250440000000000014536061314016407 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/ELF/PaxHeaders/BN0000644000000000000000000000013114536061314014106 xustar0030 mtime=1702388428.675500368 29 atime=1702388428.67450037 30 ctime=1702388428.675500368 elk-9.2.12/examples/ELF/BN/0000755002504400250440000000000014536061314016706 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/ELF/BN/PaxHeaders/elk.in0000644000000000000000000000013214536061314015267 xustar0030 mtime=1702388428.675500368 30 atime=1702388428.675500368 30 ctime=1702388428.675500368 elk-9.2.12/examples/ELF/BN/elk.in0000644002504400250440000000105514536061314020012 0ustar00dewhurstdewhurst00000000000000 ! Electron localisation function (ELF) of cubic boron nitride. Note that the ELF ! is not continuous at the muffin-tin boundaries. To make it smooth increase ! several parameters such as rgkmax, gmaxvr, lmaxo and lmaxapw. Alternatively, ! run with highq=.true. tasks 0 51 plot1d 2 400 0.0 0.0 0.0 1.0 1.0 1.0 avec 3.4204 3.4204 0.0000 3.4204 0.0000 3.4204 0.0000 3.4204 3.4204 sppath '../../../species/' atoms 2 'B.in' 1 0.0 0.0 0.0 'N.in' 1 0.25 0.25 0.25 ngridk 2 2 2 vkloff 0.25 0.5 0.625 elk-9.2.12/examples/ELF/PaxHeaders/Ru0000644000000000000000000000013214536061314014176 xustar0030 mtime=1702388428.679500362 30 atime=1702388428.676500367 30 ctime=1702388428.679500362 elk-9.2.12/examples/ELF/Ru/0000755002504400250440000000000014536061314016775 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/ELF/Ru/PaxHeaders/Ru.in0000644000000000000000000000013214536061314015171 xustar0030 mtime=1702388428.678500364 30 atime=1702388428.678500364 30 ctime=1702388428.678500364 elk-9.2.12/examples/ELF/Ru/Ru.in0000644002504400250440000000404114536061314017712 0ustar00dewhurstdewhurst00000000000000 'Ru' : spsymb 'ruthenium' : spname -44.0000 : spzn 184239.3392 : spmass 0.301511E-06 2.0000 43.5262 600 : sprmin, rmt, sprmax, nrmt 15 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 3.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 1 : nlx 2 2 : lx, io 0.1500 0 F : apwe0, apwdm, apwve 0.1500 1 F 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0.1500 2 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -2.6548 0 T 1 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -1.6432 0 T elk-9.2.12/examples/ELF/Ru/PaxHeaders/elk.in0000644000000000000000000000013214536061314015356 xustar0030 mtime=1702388428.679500362 30 atime=1702388428.679500362 30 ctime=1702388428.679500362 elk-9.2.12/examples/ELF/Ru/elk.in0000644002504400250440000000146714536061314020110 0ustar00dewhurstdewhurst00000000000000 ! Example due to A. Baranov on how to obtain a very smooth electron localisation ! function (ELF). Since the ELF depends on derivatives of the density it can ! sometimes be mismatched at the muffin-tin boundaries. This can be corrected ! by using high cut-offs for angular momenta and APW functions. Note also that a ! modified species file Ru.in is used. tasks 0 31 51 avec 4.42816109463 -2.5566 0.0 0.0 5.1132 0.0 0.0 0.0 8.0901 atoms 1 'Ru.in' 2 0.3333333333 0.6666666667 0.25 0.6666666667 0.3333333333 0.75 ! this ensures that no radial points will be skipped when computing the density lradstp 1 rgkmax 11.0 gmaxvr 22.0 lmaxapw 12 lmaxo 12 ngridk 2 2 1 vkloff 0.5 0.5 0.5 plot1d 2 1000 0.0 0.0 0.0 0.0 1.0 0.0 elk-9.2.12/examples/PaxHeaders/Hartree-Fock0000644000000000000000000000013214536061314015454 xustar0030 mtime=1702388428.683500356 30 atime=1702388428.680500361 30 ctime=1702388428.683500356 elk-9.2.12/examples/Hartree-Fock/0000755002504400250440000000000014536061314020253 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Hartree-Fock/PaxHeaders/HEG0000644000000000000000000000013214536061314016057 xustar0030 mtime=1702388428.681500359 30 atime=1702388428.681500359 30 ctime=1702388428.681500359 elk-9.2.12/examples/Hartree-Fock/HEG/0000755002504400250440000000000014536061314020656 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Hartree-Fock/HEG/PaxHeaders/elk.in0000644000000000000000000000013214536061314017237 xustar0030 mtime=1702388428.682500358 30 atime=1702388428.682500358 30 ctime=1702388428.682500358 elk-9.2.12/examples/Hartree-Fock/HEG/elk.in0000644002504400250440000000065214536061314021764 0ustar00dewhurstdewhurst00000000000000 ! Hartree-Fock ground state of the homogenous electron gas. The Wigner radius ! (r_s) is written to INFO.OUT. Note that the exact exchange energy is only ! computed during the last iteration. tasks 0 5 chgexs 10.0 ! use the unit cell of aluminium avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.75 ! note that low density gases require denser k-point grids! ngridk 2 2 2 vkloff 0.5 0.5 0.5 elk-9.2.12/examples/Hartree-Fock/PaxHeaders/Si0000644000000000000000000000013214536061314016027 xustar0030 mtime=1702388428.684500355 30 atime=1702388428.683500356 30 ctime=1702388428.684500355 elk-9.2.12/examples/Hartree-Fock/Si/0000755002504400250440000000000014536061314020626 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Hartree-Fock/Si/PaxHeaders/elk.in0000644000000000000000000000013214536061314017207 xustar0030 mtime=1702388428.684500355 30 atime=1702388428.684500355 30 ctime=1702388428.684500355 elk-9.2.12/examples/Hartree-Fock/Si/elk.in0000644002504400250440000000151214536061314021730 0ustar00dewhurstdewhurst00000000000000 ! Hartree-Fock calculation of silicon. Note that this is still an experimental ! feature in Elk. It is also quite slow and is best run using OpenMP on a ! multi-processor machine. ! Important: the exact exchange energy is only calculated on the last iteration. ! All previously calculated exchange energies are approximate. tasks 0 5 ! Hartree-Fock is treated as a second-variational correction to the Kohn-Sham ! problem. Thus a large number of empty states are required for convergence. nempty 8 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 2 2 2 vkloff 0.25 0.25 0.25 elk-9.2.12/examples/PaxHeaders/TDDFT-magnetic-response0000644000000000000000000000013214536061314017470 xustar0030 mtime=1702388428.691500345 30 atime=1702388428.685500353 30 ctime=1702388428.691500345 elk-9.2.12/examples/TDDFT-magnetic-response/0000755002504400250440000000000014536061314022267 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-magnetic-response/PaxHeaders/Ni-magnetic-response0000644000000000000000000000013214536061314023457 xustar0030 mtime=1702388428.690500346 30 atime=1702388428.686500352 30 ctime=1702388428.690500346 elk-9.2.12/examples/TDDFT-magnetic-response/Ni-magnetic-response/0000755002504400250440000000000014536061314026256 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-magnetic-response/Ni-magnetic-response/PaxHeaders/CHI0_T.OUT0000644000000000000000000000012714536061314025077 xustar0029 mtime=1702388428.68750035 29 atime=1702388428.68750035 29 ctime=1702388428.68750035 elk-9.2.12/examples/TDDFT-magnetic-response/Ni-magnetic-response/CHI0_T.OUT0000644002504400250440000001053214536061314027616 0ustar00dewhurstdewhurst00000000000000 0.000000000 -1.169399737 0.3333333333E-03 -1.180064743 0.6666666667E-03 -1.190839903 0.1000000000E-02 -1.201497740 0.1333333333E-02 -1.211893033 0.1666666667E-02 -1.222342874 0.2000000000E-02 -1.233315994 0.2333333333E-02 -1.245298205 0.2666666667E-02 -1.258562475 0.3000000000E-02 -1.273000392 0.3333333333E-02 -1.288383516 0.3666666667E-02 -1.304637755 0.4000000000E-02 -1.321833172 0.4333333333E-02 -1.340027347 0.4666666667E-02 -1.359238627 0.5000000000E-02 -1.379484422 0.5333333333E-02 -1.400824318 0.5666666667E-02 -1.423370803 0.6000000000E-02 -1.447251187 0.6333333333E-02 -1.472530935 0.6666666667E-02 -1.499122868 0.7000000000E-02 -1.526654516 0.7333333333E-02 -1.554437359 0.7666666667E-02 -1.581407646 0.8000000000E-02 -1.605589842 0.8333333333E-02 -1.625760598 0.8666666667E-02 -1.643850604 0.9000000000E-02 -1.659660401 0.9333333333E-02 -1.671708350 0.9666666667E-02 -1.682008779 0.1000000000E-01 -1.689039540 0.1033333333E-01 -1.691769564 0.1066666667E-01 -1.694575575 0.1100000000E-01 -1.705930589 0.1133333333E-01 -1.733473412 0.1166666667E-01 -1.776791141 0.1200000000E-01 -1.828935719 0.1233333333E-01 -1.882639876 0.1266666667E-01 -1.933642392 0.1300000000E-01 -1.983673294 0.1333333333E-01 -2.035056792 0.1366666667E-01 -2.079482726 0.1400000000E-01 -2.102617650 0.1433333333E-01 -2.106032706 0.1466666667E-01 -2.117766575 0.1500000000E-01 -2.155158865 0.1533333333E-01 -2.206430136 0.1566666667E-01 -2.259152859 0.1600000000E-01 -2.319359916 0.1633333333E-01 -2.397988369 0.1666666667E-01 -2.494952820 0.1700000000E-01 -2.604613005 0.1733333333E-01 -2.719111589 0.1766666667E-01 -2.827094434 0.1800000000E-01 -2.920306356 0.1833333333E-01 -3.001406405 0.1866666667E-01 -3.084291489 0.1900000000E-01 -3.183535833 0.1933333333E-01 -3.284242511 0.1966666667E-01 -3.342322159 0.000000000 -0.3022315633E-01 0.3333333333E-03 -0.3347470196E-01 0.6666666667E-03 -0.3694264790E-01 0.1000000000E-02 -0.4054120530E-01 0.1333333333E-02 -0.4385516884E-01 0.1666666667E-02 -0.4644968320E-01 0.2000000000E-02 -0.4822915850E-01 0.2333333333E-02 -0.4933399848E-01 0.2666666667E-02 -0.5022648079E-01 0.3000000000E-02 -0.5131150679E-01 0.3333333333E-02 -0.5271726473E-01 0.3666666667E-02 -0.5438696123E-01 0.4000000000E-02 -0.5633169082E-01 0.4333333333E-02 -0.5864414169E-01 0.4666666667E-02 -0.6142708760E-01 0.5000000000E-02 -0.6475920875E-01 0.5333333333E-02 -0.6871921014E-01 0.5666666667E-02 -0.7344019241E-01 0.6000000000E-02 -0.7917251729E-01 0.6333333333E-02 -0.8630978875E-01 0.6666666667E-02 -0.9539027545E-01 0.7000000000E-02 -0.1070291645 0.7333333333E-02 -0.1217502007 0.7666666667E-02 -0.1400093291 0.8000000000E-02 -0.1615460765 0.8333333333E-02 -0.1838532507 0.8666666667E-02 -0.2054415729 0.9000000000E-02 -0.2277103553 0.9333333333E-02 -0.2485751570 0.9666666667E-02 -0.2670959518 0.1000000000E-01 -0.2838540861 0.1033333333E-01 -0.2943655775 0.1066666667E-01 -0.2937976104 0.1100000000E-01 -0.2815054704 0.1133333333E-01 -0.2645243724 0.1166666667E-01 -0.2535438630 0.1200000000E-01 -0.2545997152 0.1233333333E-01 -0.2677295870 0.1266666667E-01 -0.2889050781 0.1300000000E-01 -0.3143707938 0.1333333333E-01 -0.3481122778 0.1366666667E-01 -0.3955258521 0.1400000000E-01 -0.4479752645 0.1433333333E-01 -0.4811172622 0.1466666667E-01 -0.4853855451 0.1500000000E-01 -0.4829100648 0.1533333333E-01 -0.4910656543 0.1566666667E-01 -0.5040959354 0.1600000000E-01 -0.5126483863 0.1633333333E-01 -0.5226747535 0.1666666667E-01 -0.5459798699 0.1700000000E-01 -0.5899690415 0.1733333333E-01 -0.6597397675 0.1766666667E-01 -0.7552227926 0.1800000000E-01 -0.8673797682 0.1833333333E-01 -0.9844396909 0.1866666667E-01 -1.102311376 0.1900000000E-01 -1.238407654 0.1933333333E-01 -1.423779339 0.1966666667E-01 -1.660370932 elk-9.2.12/examples/TDDFT-magnetic-response/Ni-magnetic-response/PaxHeaders/CHI_T.OUT0000644000000000000000000000013214536061314025013 xustar0030 mtime=1702388428.689500347 30 atime=1702388428.688500349 30 ctime=1702388428.689500347 elk-9.2.12/examples/TDDFT-magnetic-response/Ni-magnetic-response/CHI_T.OUT0000644002504400250440000001053214536061314027536 0ustar00dewhurstdewhurst00000000000000 0.000000000 -7.947625401 0.3333333333E-03 -8.437765313 0.6666666667E-03 -8.964537558 0.1000000000E-02 -9.512772499 0.1333333333E-02 -10.07748384 0.1666666667E-02 -10.69051052 0.2000000000E-02 -11.39609507 0.2333333333E-02 -12.23183126 0.2666666667E-02 -13.15147742 0.3000000000E-02 -13.95607301 0.3333333333E-02 -14.26787677 0.3666666667E-02 -13.36053649 0.4000000000E-02 -9.771320013 0.4333333333E-02 -2.424589324 0.4666666667E-02 6.093511471 0.5000000000E-02 11.43418701 0.5333333333E-02 13.05307386 0.5666666667E-02 12.67045067 0.6000000000E-02 11.57071734 0.6333333333E-02 10.32941695 0.6666666667E-02 9.158722357 0.7000000000E-02 8.128141390 0.7333333333E-02 7.252062436 0.7666666667E-02 6.516791089 0.8000000000E-02 5.917830063 0.8333333333E-02 5.463322839 0.8666666667E-02 5.114826421 0.9000000000E-02 4.833042646 0.9333333333E-02 4.631614923 0.9666666667E-02 4.493575097 0.1000000000E-01 4.411970992 0.1033333333E-01 4.403105999 0.1066666667E-01 4.447642841 0.1100000000E-01 4.485349736 0.1133333333E-01 4.435113452 0.1166666667E-01 4.271194411 0.1200000000E-01 4.042496785 0.1233333333E-01 3.806813331 0.1266666667E-01 3.595745727 0.1300000000E-01 3.407989749 0.1333333333E-01 3.228114181 0.1366666667E-01 3.062801866 0.1400000000E-01 2.938586661 0.1433333333E-01 2.872491455 0.1466666667E-01 2.837604389 0.1500000000E-01 2.787366568 0.1533333333E-01 2.719670235 0.1566666667E-01 2.657991234 0.1600000000E-01 2.602456618 0.1633333333E-01 2.534386517 0.1666666667E-01 2.447813997 0.1700000000E-01 2.350605028 0.1733333333E-01 2.253322405 0.1766666667E-01 2.165368402 0.1800000000E-01 2.090486430 0.1833333333E-01 2.023927027 0.1866666667E-01 1.957906575 0.1900000000E-01 1.888382522 0.1933333333E-01 1.818930266 0.1966666667E-01 1.757425101 0.000000000 -1.580545278 0.3333333333E-03 -1.950668145 0.6666666667E-03 -2.415558754 0.1000000000E-02 -2.989251270 0.1333333333E-02 -3.666678700 0.1666666667E-02 -4.456243558 0.2000000000E-02 -5.412859379 0.2333333333E-02 -6.661497976 0.2666666667E-02 -8.417568557 0.3000000000E-02 -10.92675946 0.3333333333E-02 -14.41576173 0.3666666667E-02 -19.07814087 0.4000000000E-02 -24.45213244 0.4333333333E-02 -27.94948860 0.4666666667E-02 -26.36873493 0.5000000000E-02 -20.97036535 0.5333333333E-02 -15.38297753 0.5666666667E-02 -11.16759873 0.6000000000E-02 -8.290034133 0.6333333333E-02 -6.370392998 0.6666666667E-02 -5.092453311 0.7000000000E-02 -4.244113480 0.7333333333E-02 -3.682622714 0.7666666667E-02 -3.317876023 0.8000000000E-02 -3.100910340 0.8333333333E-02 -2.971031250 0.8666666667E-02 -2.867009256 0.9000000000E-02 -2.793713099 0.9333333333E-02 -2.744699557 0.9666666667E-02 -2.691555862 0.1000000000E-01 -2.640594933 0.1033333333E-01 -2.565924960 0.1066666667E-01 -2.419947718 0.1100000000E-01 -2.171690692 0.1133333333E-01 -1.849959957 0.1166666667E-01 -1.542994748 0.1200000000E-01 -1.312573298 0.1233333333E-01 -1.161818538 0.1266666667E-01 -1.063608651 0.1300000000E-01 -0.9891054435 0.1333333333E-01 -0.9365564833 0.1366666667E-01 -0.9202209036 0.1400000000E-01 -0.9363459151 0.1433333333E-01 -0.9501975250 0.1466666667E-01 -0.9218537854 0.1500000000E-01 -0.8612213124 0.1533333333E-01 -0.8045842577 0.1566666667E-01 -0.7554398023 0.1600000000E-01 -0.6953404972 0.1633333333E-01 -0.6238407621 0.1666666667E-01 -0.5572012273 0.1700000000E-01 -0.5066171962 0.1733333333E-01 -0.4748287160 0.1766666667E-01 -0.4578680894 0.1800000000E-01 -0.4463923863 0.1833333333E-01 -0.4325528159 0.1866666667E-01 -0.4159591229 0.1900000000E-01 -0.4025242244 0.1933333333E-01 -0.3987401259 0.1966666667E-01 -0.4042694944 elk-9.2.12/examples/TDDFT-magnetic-response/Ni-magnetic-response/PaxHeaders/elk.in0000644000000000000000000000013214536061314024637 xustar0030 mtime=1702388428.690500346 30 atime=1702388428.690500346 30 ctime=1702388428.690500346 elk-9.2.12/examples/TDDFT-magnetic-response/Ni-magnetic-response/elk.in0000644002504400250440000000161014536061314027357 0ustar00dewhurstdewhurst00000000000000 ! Magnetic response of fcc nickel. Try plotting the transverse component as a ! function of frequency. Compare to B. Rousseau, A. Eiguren and A. Bergara, ! Phys. Rev. B 85, 054305 (2012) and references therein. tasks 0 330 ! energy cut-off for Kohn-Sham response function emaxrf 1.5 ! G-vector cut-off for response function gmaxrf 5.0 ! frequency plot range wplot 60 100 1 0 0.020 ! q-vector of response function vecql 0.1 0.1 0.0 spinpol .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ! dense k-point grid is required for response functions ngridk 10 10 10 vkloff 0.5 0.5 0.5 elk-9.2.12/examples/TDDFT-magnetic-response/PaxHeaders/Ni-magnon-spiral0000644000000000000000000000013214536061314022603 xustar0030 mtime=1702388428.692500343 30 atime=1702388428.691500345 30 ctime=1702388428.692500343 elk-9.2.12/examples/TDDFT-magnetic-response/Ni-magnon-spiral/0000755002504400250440000000000014536061314025402 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-magnetic-response/Ni-magnon-spiral/PaxHeaders/elk.in0000644000000000000000000000013214536061314023763 xustar0030 mtime=1702388428.692500343 30 atime=1702388428.692500343 30 ctime=1702388428.692500343 elk-9.2.12/examples/TDDFT-magnetic-response/Ni-magnon-spiral/elk.in0000644002504400250440000000334614536061314026513 0ustar00dewhurstdewhurst00000000000000 ! In this example, the frequency of a magnon at a particular q-vector in fcc Ni ! is determined. Computing a magnon frequency requires the energy difference, ! dE, between the ferromagnetic and a conical spin-spiral state with small polar ! angle theta. The following formula can then be used to compute the frequency: ! ! w(q) = (4/M) dE / sin^2(theta) ! ! where M is the total moment in the unit cell. See Q. Niu and L. Kleinman, ! Phys. Rev. Lett. 80, 2205 (1998). It is good practice to fix a q and then run ! two fixed spin direction calculations: one at theta=0, and the other at a ! finite theta (in this case 15 degrees). ! Note that the energy difference is very small (order of meV), and the ! calculation has to be very well converged in all parameters. As a result this ! example is best run on a multi-processor, and is still quite time-consuming. tasks 0 stype 1 taufsm 0.01 swidth 0.005 rgkmax 8.0 gmaxvr 14.0 lmaxapw 8 lmaxo 8 ! tight convergence required epspot 1.d-9 epsengy 1.d-6 ! use a fixed spin direction calculation fsmtype -1 ! use a polar angle of 15 degrees momfix 0.0 0.258819045 0.965925826 ! large global field in same direction as momfix bfieldc 0.0 0.258819045 0.965925826 spinsprl .true. ! spin-spiral q-vector in lattice coordinates vqlss 0.1 0.1 0.0 nempty 10 ! very fine k-point grid required for good convergence ngridk 20 20 20 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 ! experimental lattice parameter scale 3.325 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-9.2.12/examples/PaxHeaders/basic0000644000000000000000000000013214536061314014263 xustar0030 mtime=1702388428.730500287 30 atime=1702388428.693500342 30 ctime=1702388428.730500287 elk-9.2.12/examples/basic/0000755002504400250440000000000014536061314017062 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/PaxHeaders/Au0000644000000000000000000000013014536061314014626 xustar0029 mtime=1702388428.69450034 30 atime=1702388428.693500342 29 ctime=1702388428.69450034 elk-9.2.12/examples/basic/Au/0000755002504400250440000000000014536061314017427 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/Au/PaxHeaders/elk.in0000644000000000000000000000013214536061314016010 xustar0030 mtime=1702388428.695500339 30 atime=1702388428.695500339 30 ctime=1702388428.695500339 elk-9.2.12/examples/basic/Au/elk.in0000644002504400250440000000125214536061314020532 0ustar00dewhurstdewhurst00000000000000 ! Example of spin-orbit coupling for Au. Try comparing the band structure ! without spin-orbit coupling. tasks 0 20 spinorb .true. avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.85 sppath '../../../species/' atoms 1 : nspecies 'Au.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 plot1d 7 100 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-9.2.12/examples/basic/PaxHeaders/HfSiO40000644000000000000000000000013214536061314015317 xustar0030 mtime=1702388428.699500333 30 atime=1702388428.696500337 30 ctime=1702388428.699500333 elk-9.2.12/examples/basic/HfSiO4/0000755002504400250440000000000014536061314020116 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/HfSiO4/PaxHeaders/elk.in0000644000000000000000000000013214536061314016477 xustar0030 mtime=1702388428.698500334 30 atime=1702388428.698500334 30 ctime=1702388428.698500334 elk-9.2.12/examples/basic/HfSiO4/elk.in0000644002504400250440000000454514536061314021231 0ustar00dewhurstdewhurst00000000000000 ! HfSiO4 generated with spacegroup data from Am. Mineral. 67, 804 (1982). tasks 0 ngridk 2 2 2 ! Atomic positions generated by spacegroup version 1.2.00 ! Hermann-Mauguin symbol : I41/amd:2 ! Hall symbol : -I 4bd 2 ! Schoenflies symbol : D4h^19 ! space group number : 141:2 ! lattice constants (a,b,c) : 12.42022400 12.42022400 11.26881400 ! angles in degrees (bc,ac,ab) : 90.00000000 90.00000000 90.00000000 ! number of conventional unit cells : 1 1 1 ! reduction to primitive cell : T ! Wyckoff positions : ! species : 1, Hf.in ! 0.000000000 0.7500000000 0.1250000000 ! species : 2, Si.in ! 0.000000000 0.7500000000 0.6250000000 ! species : 3, O.in ! 0.000000000 0.6550000000E-01 0.1948000000 avec 6.210112000 6.210112000 5.634407000 6.210112000 6.210112000 -5.634407000 6.210112000 -6.210112000 5.634407000 sppath '../../../species/' atoms 3 : nspecies 'Hf.in' : spfname 2 : natoms; atposl, bfcmt below 0.87500000 0.87500000 0.25000000 0.00000000 0.00000000 0.00000000 0.12500000 0.12500000 0.75000000 0.00000000 0.00000000 0.00000000 'Si.in' : spfname 2 : natoms; atposl, bfcmt below 0.37500000 0.37500000 0.25000000 0.00000000 0.00000000 0.00000000 0.62500000 0.62500000 0.75000000 0.00000000 0.00000000 0.00000000 'O.in' : spfname 8 : natoms; atposl, bfcmt below 0.26030000 0.80520000 0.93450000 0.00000000 0.00000000 0.00000000 0.73970000 0.19480000 0.06550000 0.00000000 0.00000000 0.00000000 0.19480000 0.73970000 0.43450000 0.00000000 0.00000000 0.00000000 0.80520000 0.26030000 0.56550000 0.00000000 0.00000000 0.00000000 0.62930000 0.80520000 0.56550000 0.00000000 0.00000000 0.00000000 0.37070000 0.19480000 0.43450000 0.00000000 0.00000000 0.00000000 0.19480000 0.37070000 0.06550000 0.00000000 0.00000000 0.00000000 0.80520000 0.62930000 0.93450000 0.00000000 0.00000000 0.00000000 elk-9.2.12/examples/basic/HfSiO4/PaxHeaders/spacegroup.in0000644000000000000000000000013214536061314020074 xustar0030 mtime=1702388428.700500331 30 atime=1702388428.699500333 30 ctime=1702388428.700500331 elk-9.2.12/examples/basic/HfSiO4/spacegroup.in0000644002504400250440000000101414536061314022612 0ustar00dewhurstdewhurst00000000000000 'I41/amd:2' : hrmg 12.420224 12.420224 11.268814 : a, b, c 90.0 90.0 90.0 : ab, ac, bc 1 1 1 : ncell .true. : primcell 3 : nspecies 'Hf' 'Hf.in' : spsymb, spfname 1 : nwpos 0.0000 0.7500 0.1250 : wpos 'Si' 'Si.in' 1 0.0000 0.7500 0.6250 'O' 'O.in' 1 0.0000 0.0655 0.1948 elk-9.2.12/examples/basic/PaxHeaders/Si0000644000000000000000000000013114536061314014635 xustar0030 mtime=1702388428.702500328 29 atime=1702388428.70150033 30 ctime=1702388428.702500328 elk-9.2.12/examples/basic/Si/0000755002504400250440000000000014536061314017435 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/Si/PaxHeaders/elk.in0000644000000000000000000000013214536061314016016 xustar0030 mtime=1702388428.702500328 30 atime=1702388428.702500328 30 ctime=1702388428.702500328 elk-9.2.12/examples/basic/Si/elk.in0000644002504400250440000000141714536061314020543 0ustar00dewhurstdewhurst00000000000000 ! Band structure of silicon. The points listed after plot1d below are the ! vertices joined in the band structure. tasks 0 20 ! use Broyden mixing mixtype 3 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 2 2 2 vkloff 0.25 0.5 0.625 ! These are the vertices to be joined for the band structure plot plot1d 7 200 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-9.2.12/examples/basic/PaxHeaders/graphene0000644000000000000000000000013214536061314016054 xustar0030 mtime=1702388428.704500325 30 atime=1702388428.703500327 30 ctime=1702388428.704500325 elk-9.2.12/examples/basic/graphene/0000755002504400250440000000000014536061314020653 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/graphene/PaxHeaders/elk.in0000644000000000000000000000013214536061314017234 xustar0030 mtime=1702388428.705500324 30 atime=1702388428.704500325 30 ctime=1702388428.705500324 elk-9.2.12/examples/basic/graphene/elk.in0000644002504400250440000000141514536061314021757 0ustar00dewhurstdewhurst00000000000000 ! Band structure of graphene. Observe the massless Dirac-like dispersion in the ! density of states. tasks 0 10 nempty 8 wplot 200 150 1 -0.5 0.5 plot1d 4 100 0.333333333 0.333333333 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.333333333 0.333333333 0.0 ! very high number of k-points required to resolve the linear dispersion ngridk 30 30 1 avec -0.5 0.866025403784 0.0 -1.0 0.0 0.0 0.0 0.0 3.2265697 scale 4.64890 sppath '../../../species/' atoms 1 : nspecies 'C.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.333333333333 0.333333333333 0.0 elk-9.2.12/examples/basic/PaxHeaders/B120000644000000000000000000000013214536061314014607 xustar0030 mtime=1702388428.706500322 30 atime=1702388428.705500324 30 ctime=1702388428.706500322 elk-9.2.12/examples/basic/B12/0000755002504400250440000000000014536061314017406 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/B12/PaxHeaders/elk.in0000644000000000000000000000013214536061314015767 xustar0030 mtime=1702388428.707500321 30 atime=1702388428.707500321 30 ctime=1702388428.707500321 elk-9.2.12/examples/basic/B12/elk.in0000644002504400250440000000137014536061314020512 0ustar00dewhurstdewhurst00000000000000 ! B12 ground state (Andrew Chizmeshya) tasks 0 10 rgkmax 6.0 scale 9.6376071 avec 0.55522 0.00000 0.82027 -0.27761 0.48083 0.82027 -0.27761 -0.48083 0.82027 sppath '../../../species/' atoms 1 : nspecies 'B.in' : spfname 12 : natoms; atposl below 0.77917 0.77917 0.36899 0.36899 0.77917 0.77914 0.77917 0.36899 0.77918 0.22082 0.22082 0.63108 0.22082 0.63100 0.22082 0.63100 0.22082 0.22086 0.98989 0.98989 0.34576 0.34579 0.98989 0.98986 0.98989 0.34579 0.98981 0.01010 0.01010 0.65424 0.01010 0.65420 0.01019 0.65420 0.01010 0.01014 ngridk 2 2 2 elk-9.2.12/examples/basic/PaxHeaders/Nb-autoswidth0000644000000000000000000000013214536061314017013 xustar0030 mtime=1702388428.709500318 30 atime=1702388428.708500319 30 ctime=1702388428.709500318 elk-9.2.12/examples/basic/Nb-autoswidth/0000755002504400250440000000000014536061314021612 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/Nb-autoswidth/PaxHeaders/elk.in0000644000000000000000000000013214536061314020173 xustar0030 mtime=1702388428.709500318 30 atime=1702388428.709500318 30 ctime=1702388428.709500318 elk-9.2.12/examples/basic/Nb-autoswidth/elk.in0000644002504400250440000000100514536061314022711 0ustar00dewhurstdewhurst00000000000000 ! Example demonstrating the automatic determination of the smearing width. See ! 'autoswidth' in the manual for details. ! Example by T. Bjorkman and O. Granas. tasks 0 autoswidth .true. avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 3.118 sppath '../../../species/' atoms 1 : nspecies 'Nb.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 elk-9.2.12/examples/basic/PaxHeaders/TiC-eg-t2g0000644000000000000000000000013214536061314016025 xustar0030 mtime=1702388428.711500315 30 atime=1702388428.710500316 30 ctime=1702388428.711500315 elk-9.2.12/examples/basic/TiC-eg-t2g/0000755002504400250440000000000014536061314020624 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/TiC-eg-t2g/PaxHeaders/elk.in0000644000000000000000000000013214536061314017205 xustar0030 mtime=1702388428.712500313 30 atime=1702388428.711500315 30 ctime=1702388428.712500313 elk-9.2.12/examples/basic/TiC-eg-t2g/elk.in0000644002504400250440000000213214536061314021725 0ustar00dewhurstdewhurst00000000000000 ! Density of states of TiC resolved into irreducible representations. When ! lmirep is set to .true., the Y_lm basis is transformed into one in which the ! site symmetries are block diagonal. The band characters determined from the ! density matrix expressed in this basis correspond therefore to irreducible ! representations (IR). ! In this example, we want the e_g and t_2g resolved DOS for the Ti atom. The ! ELMIREP.OUT file contains a set of eigenvalues, the degeneracies of which ! allow for easy identification of the IR. For l = 2, the 3-fold degeneracy is ! the t_2g IR, while the 2-fold is the e_g IR. Adding together curves 5, 6 and 7 ! in the file PDOS_S01_A0001.OUT will give the t_2g plot, and adding curves 8 ! and 9 will give the e_g plot. tasks 0 10 lmirep .true. avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 8.1787 sppath '../../../species/' atoms 2 : nspecies 'Ti.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'C.in' 1 0.5 0.5 0.5 ngridk 8 8 8 elk-9.2.12/examples/basic/PaxHeaders/Al0000644000000000000000000000013214536061314014617 xustar0030 mtime=1702388428.713500312 30 atime=1702388428.712500313 30 ctime=1702388428.713500312 elk-9.2.12/examples/basic/Al/0000755002504400250440000000000014536061314017416 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/Al/PaxHeaders/elk.in0000644000000000000000000000013214536061314015777 xustar0030 mtime=1702388428.714500311 30 atime=1702388428.714500311 30 ctime=1702388428.714500311 elk-9.2.12/examples/basic/Al/elk.in0000644002504400250440000000127514536061314020526 0ustar00dewhurstdewhurst00000000000000 ! Ground state of aluminium. Try calculating the density of states by using ! tasks=10 tasks 0 ! You can add notes to the INFO.OUT file using the "notes" block notes Simple calculation of the ground state of aluminium. Must check convergence with respect to k-point set later. Run by H. Golightly avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.8267 ! this is the relative path to the species files sppath '../../../species/' atoms 1 : nspecies 'Al.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-9.2.12/examples/basic/PaxHeaders/Cu0000644000000000000000000000013214536061314014632 xustar0030 mtime=1702388428.716500307 30 atime=1702388428.715500309 30 ctime=1702388428.716500307 elk-9.2.12/examples/basic/Cu/0000755002504400250440000000000014536061314017431 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/Cu/PaxHeaders/elk.in0000644000000000000000000000013214536061314016012 xustar0030 mtime=1702388428.716500307 30 atime=1702388428.716500307 30 ctime=1702388428.716500307 elk-9.2.12/examples/basic/Cu/elk.in0000644002504400250440000000144414536061314020537 0ustar00dewhurstdewhurst00000000000000 ! Try and find the equilibrium volume of fcc copper by adjusting the scale ! parameter. The individual lattice vectors can also be scaled separately using ! scale1, scale2 or scale3. Remember that a previously converged charge density ! can be used to begin a new calculation, even at a different volume. This is ! done by setting task=1. tasks 0 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale1 6.83117 scale2 6.83117 scale3 6.83117 scale 0.96 ! large cut-off is required for Cu rgkmax 8.5 lmaxapw 10 gmaxvr 14.0 sppath '../../../species/' atoms 1 : nspecies 'Cu.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 8 8 8 elk-9.2.12/examples/basic/PaxHeaders/Pb0000644000000000000000000000013214536061314014624 xustar0030 mtime=1702388428.718500304 30 atime=1702388428.717500306 30 ctime=1702388428.718500304 elk-9.2.12/examples/basic/Pb/0000755002504400250440000000000014536061314017423 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/Pb/PaxHeaders/elk.in0000644000000000000000000000013214536061314016004 xustar0030 mtime=1702388428.719500303 30 atime=1702388428.718500304 30 ctime=1702388428.719500303 elk-9.2.12/examples/basic/Pb/elk.in0000644002504400250440000000123614536061314020530 0ustar00dewhurstdewhurst00000000000000 ! Band structure of lead with spin-orbit coupling. tasks 0 20 spinpol .true. spinorb .true. nempty 8 rgkmax 8.0 avec 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 scale 9.3541 sppath '../../../species/' atoms 1 : nspecies 'Pb.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 8 8 8 plot1d 7 200 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-9.2.12/examples/basic/PaxHeaders/YBCO0000644000000000000000000000013214536061314015017 xustar0030 mtime=1702388428.720500302 30 atime=1702388428.719500303 30 ctime=1702388428.720500302 elk-9.2.12/examples/basic/YBCO/0000755002504400250440000000000014536061314017616 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/YBCO/PaxHeaders/elk.in0000644000000000000000000000012414536061314016200 xustar0028 mtime=1702388428.7215003 28 atime=1702388428.7215003 28 ctime=1702388428.7215003 elk-9.2.12/examples/basic/YBCO/elk.in0000644002504400250440000000147014536061314020723 0ustar00dewhurstdewhurst00000000000000 ! High T_c superconductor YBa2Cu3O7. Note that the code determines which atoms ! are equivalent, and lists them in EQATOMS.OUT. tasks 0 ! small cut-off for testing purposes rgkmax 6.0 ! use Broyden mixing mixtype 3 avec 7.2246 0.0 0.0 0.0 7.3442 0.0 0.0 0.0 22.0733 sppath '../../../species/' atoms 4 : nspecies 'Y.in' : spfname 1 : natoms; atposl below 0.5 0.5 0.5 'Ba.in' 2 0.5 0.5 0.1843 0.5 0.5 0.8157 'Cu.in' 3 0.0 0.0 0.0 0.0 0.0 0.3556 0.0 0.0 0.6444 'O.in' 7 0.0 0.5 0.0 0.5 0.0 0.3773 0.5 0.0 0.6227 0.0 0.5 0.3789 0.0 0.5 0.6211 0.0 0.0 0.1584 0.0 0.0 0.8416 ngridk 2 2 1 vkloff 0.25 0.5 0.5 elk-9.2.12/examples/basic/PaxHeaders/AlAs-fatbands0000644000000000000000000000013014536061314016661 xustar0030 mtime=1702388428.724500296 28 atime=1702388428.7215003 30 ctime=1702388428.724500296 elk-9.2.12/examples/basic/AlAs-fatbands/0000755002504400250440000000000014536061314021462 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/AlAs-fatbands/PaxHeaders/AlAs.par0000644000000000000000000000013214536061314020264 xustar0030 mtime=1702388428.723500297 30 atime=1702388428.723500297 30 ctime=1702388428.723500297 elk-9.2.12/examples/basic/AlAs-fatbands/AlAs.par0000644002504400250440000000551114536061314023010 0ustar00dewhurstdewhurst00000000000000 world 0.0, -0.25, 1.113445717, 0.5 title "AlAs band structure" subtitle "(atomic character of As)" xaxis tick off xaxis ticklabel off yaxis tick major 0.1 yaxis tick minor ticks 2 yaxis label "Energy (Hartree)" s0.y1=0.05*s0.y1 s1.y1=0.05*s1.y1 s2.y1=0.05*s2.y1 s3.y1=0.05*s3.y1 s4.y1=0.05*s4.y1 s5.y1=0.05*s5.y1 s6.y1=0.05*s6.y1 s7.y1=0.05*s7.y1 s8.y1=0.05*s8.y1 s9.y1=0.05*s9.y1 s10.y1=0.05*s10.y1 s11.y1=0.05*s11.y1 s12.y1=0.05*s12.y1 s13.y1=0.05*s13.y1 s14.y1=0.05*s14.y1 s15.y1=0.05*s15.y1 s16.y1=0.05*s16.y1 s17.y1=0.05*s17.y1 s18.y1=0.05*s18.y1 s19.y1=0.05*s19.y1 s20.y1=0.05*s20.y1 s21.y1=0.05*s21.y1 s22.y1=0.05*s22.y1 s0 line type 0 s1 line type 0 s2 line type 0 s3 line type 0 s4 line type 0 s5 line type 0 s6 line type 0 s7 line type 0 s8 line type 0 s9 line type 0 s10 line type 0 s11 line type 0 s12 line type 0 s13 line type 0 s14 line type 0 s15 line type 0 s16 line type 0 s17 line type 0 s18 line type 0 s19 line type 0 s20 line type 0 s21 line type 0 s22 line type 0 s0 errorbar linestyle 0 s1 errorbar linestyle 0 s2 errorbar linestyle 0 s3 errorbar linestyle 0 s4 errorbar linestyle 0 s5 errorbar linestyle 0 s6 errorbar linestyle 0 s7 errorbar linestyle 0 s8 errorbar linestyle 0 s9 errorbar linestyle 0 s10 errorbar linestyle 0 s11 errorbar linestyle 0 s12 errorbar linestyle 0 s13 errorbar linestyle 0 s14 errorbar linestyle 0 s15 errorbar linestyle 0 s16 errorbar linestyle 0 s17 errorbar linestyle 0 s18 errorbar linestyle 0 s19 errorbar linestyle 0 s20 errorbar linestyle 0 s21 errorbar linestyle 0 s22 errorbar linestyle 0 s0 errorbar riser linewidth 3.5 s1 errorbar riser linewidth 3.5 s2 errorbar riser linewidth 3.5 s3 errorbar riser linewidth 3.5 s4 errorbar riser linewidth 3.5 s5 errorbar riser linewidth 3.5 s6 errorbar riser linewidth 3.5 s7 errorbar riser linewidth 3.5 s8 errorbar riser linewidth 3.5 s9 errorbar riser linewidth 3.5 s10 errorbar riser linewidth 3.5 s11 errorbar riser linewidth 3.5 s12 errorbar riser linewidth 3.5 s13 errorbar riser linewidth 3.5 s14 errorbar riser linewidth 3.5 s15 errorbar riser linewidth 3.5 s16 errorbar riser linewidth 3.5 s17 errorbar riser linewidth 3.5 s18 errorbar riser linewidth 3.5 s19 errorbar riser linewidth 3.5 s20 errorbar riser linewidth 3.5 s21 errorbar riser linewidth 3.5 s22 errorbar riser linewidth 3.5 s0 errorbar color 1 s1 errorbar color 1 s2 errorbar color 1 s3 errorbar color 1 s4 errorbar color 1 s5 errorbar color 1 s6 errorbar color 1 s7 errorbar color 1 s8 errorbar color 1 s9 errorbar color 1 s10 errorbar color 1 s11 errorbar color 1 s12 errorbar color 1 s13 errorbar color 1 s14 errorbar color 1 s15 errorbar color 1 s16 errorbar color 1 s17 errorbar color 1 s18 errorbar color 1 s19 errorbar color 1 s20 errorbar color 1 s21 errorbar color 1 s22 errorbar color 1 s23 line color 1 s24 line color 1 s25 line color 1 s23 linewidth 2.0 s24 linewidth 2.0 s25 linewidth 2.0 elk-9.2.12/examples/basic/AlAs-fatbands/PaxHeaders/elk.in0000644000000000000000000000013214536061314020043 xustar0030 mtime=1702388428.725500294 30 atime=1702388428.724500296 30 ctime=1702388428.725500294 elk-9.2.12/examples/basic/AlAs-fatbands/elk.in0000644002504400250440000000146514536061314022573 0ustar00dewhurstdewhurst00000000000000 ! Band structure of AlAs which produces a band-structure with line thickness ! proportional to the atomic character. You can produce the plot by running ! ! xmgrace -settype xydy BAND_S02_A0001.OUT -settype xy BANDLINES.OUT -param AlAs.par ! ! You can change the graph appearance either in xmgrace or by editing AlAs.par tasks 0 21 nempty 8 plot1d 3 200 : nvp1d, npp1d 0.5 0.0 0.0 : vlvp1d 0.0 0.0 0.0 0.5 0.5 0.0 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 10.53 sppath '../../../species/' atoms 2 : nspecies 'Al.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 ngridk 4 4 4 elk-9.2.12/examples/basic/PaxHeaders/CuFeS20000644000000000000000000000013214536061314015312 xustar0030 mtime=1702388428.726500293 30 atime=1702388428.725500294 30 ctime=1702388428.726500293 elk-9.2.12/examples/basic/CuFeS2/0000755002504400250440000000000014536061314020111 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/CuFeS2/PaxHeaders/elk.in0000644000000000000000000000013214536061314016472 xustar0030 mtime=1702388428.727500291 30 atime=1702388428.726500293 30 ctime=1702388428.727500291 elk-9.2.12/examples/basic/CuFeS2/elk.in0000644002504400250440000000324714536061314021222 0ustar00dewhurstdewhurst00000000000000 ! An example of how Elk can automatically determine the primitive unit cell ! from the conventional one. The input chalcopyrite unit cell contains 16 atoms ! which is reduced to 8 by the code. tasks 0 ! large smearing width for better convergence swidth 0.01 ! automatic determination of the primitive unit cell primcell .true. avec 9.99476 0.00000 0.00000 0.00000 9.99476 0.00000 0.00000 0.00000 19.6966 sppath '../../../species/' atoms 3 : nspecies 'Cu.in' : spfname 4 : natoms; atposl, bfcmt below 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.2500 0.0000 0.0000 0.0000 0.5000 0.0000 0.7500 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.0000 0.0000 0.0000 'Fe.in' : spfname 4 : natoms; atposl, bfcmt below 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.5000 0.7500 0.0000 0.0000 0.0000 0.5000 0.0000 0.2500 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 'S.in' : spfname 8 : natoms; atposl, bfcmt below 0.2574 0.2500 0.1250 0.0000 0.0000 0.0000 0.7426 0.7500 0.1250 0.0000 0.0000 0.0000 0.2500 0.7426 0.8750 0.0000 0.0000 0.0000 0.7500 0.2574 0.8750 0.0000 0.0000 0.0000 0.7574 0.7500 0.6250 0.0000 0.0000 0.0000 0.2426 0.2500 0.6250 0.0000 0.0000 0.0000 0.7500 0.2426 0.3750 0.0000 0.0000 0.0000 0.2500 0.7574 0.3750 0.0000 0.0000 0.0000 ngridk 2 2 2 elk-9.2.12/examples/basic/PaxHeaders/Si-PBEsol0000644000000000000000000000013114536061314015757 xustar0030 mtime=1702388428.729500288 29 atime=1702388428.72850029 30 ctime=1702388428.729500288 elk-9.2.12/examples/basic/Si-PBEsol/0000755002504400250440000000000014536061314020557 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/Si-PBEsol/PaxHeaders/elk.in0000644000000000000000000000013214536061314017140 xustar0030 mtime=1702388428.729500288 30 atime=1702388428.729500288 30 ctime=1702388428.729500288 elk-9.2.12/examples/basic/Si-PBEsol/elk.in0000644002504400250440000000136514536061314021667 0ustar00dewhurstdewhurst00000000000000 ! Band structure of silicon using the new PBEsol functional (xctype = 22) ! (http://arxiv.org/pdf/0711.0156). tasks 0 20 xctype 22 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 2 2 2 vkloff 0.25 0.5 0.625 ! These are the vertices to be joined for the band structure plot plot1d 7 200 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-9.2.12/examples/basic/PaxHeaders/diamond-rho3D0000644000000000000000000000013214536061314016653 xustar0030 mtime=1702388428.734500281 30 atime=1702388428.730500287 30 ctime=1702388428.734500281 elk-9.2.12/examples/basic/diamond-rho3D/0000755002504400250440000000000014536061314021452 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/basic/diamond-rho3D/PaxHeaders/elk.in0000644000000000000000000000013214536061314020033 xustar0030 mtime=1702388428.731500285 30 atime=1702388428.731500285 30 ctime=1702388428.731500285 elk-9.2.12/examples/basic/diamond-rho3D/elk.in0000644002504400250440000000112314536061314022552 0ustar00dewhurstdewhurst00000000000000 ! 3D plot of the charge density of diamond using OpenDX. tasks 0 33 ! define box corners and grid size for 3D plot, first point is the origin plot3d 0.0 0.0 0.0 : vclp3d 2.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 2.0 80 80 80 avec 3.3637 3.3637 0.0000 3.3637 0.0000 3.3637 0.0000 3.3637 3.3637 sppath '../../../species/' atoms 1 : nspecies 'C.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 2 2 2 vkloff 0.25 0.5 0.625 elk-9.2.12/examples/basic/diamond-rho3D/PaxHeaders/rho3d.general0000644000000000000000000000013214536061314021306 xustar0030 mtime=1702388428.733500282 30 atime=1702388428.733500282 30 ctime=1702388428.733500282 elk-9.2.12/examples/basic/diamond-rho3D/rho3d.general0000644002504400250440000000027414536061314024033 0ustar00dewhurstdewhurst00000000000000file = RHO3D.OUT grid = 80 x 80 x 80 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 3-vector, scalar type = float, float end elk-9.2.12/examples/basic/diamond-rho3D/PaxHeaders/rho3d.net0000644000000000000000000000013214536061314020457 xustar0030 mtime=1702388428.734500281 30 atime=1702388428.734500281 30 ctime=1702388428.734500281 elk-9.2.12/examples/basic/diamond-rho3D/rho3d.net0000644002504400250440000003450214536061314023205 0ustar00dewhurstdewhurst00000000000000// // time: Fri Sep 26 23:37:42 2008 // // version: 3.2.0 (format), 4.4.0 (DX) // // // MODULE main // workspace: width = 298, height = 472 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Import[1]: x = 56, y = 47, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "rho3d.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node Isosurface[2]: x = 220, y = 121, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.04 // main_Isosurface_2_out_1 = Isosurface( main_Import_1_out_1, main_Isosurface_2_in_2, main_Isosurface_2_in_3, main_Isosurface_2_in_4, main_Isosurface_2_in_5, main_Isosurface_2_in_6 ) [instance: 2, cache: 1]; // // node Color[1]: x = 72, y = 232, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "white" // input[4]: defaulting = 0, visible = 0, type = 32, value = "front colors" // main_Color_1_out_1 = Color( main_Isosurface_2_out_1, main_Color_1_in_2, main_Color_1_in_3, main_Color_1_in_4, main_Color_1_in_5 ) [instance: 1, cache: 1]; // // node Color[2]: x = 69, y = 316, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "orange" // input[4]: defaulting = 0, visible = 0, type = 32, value = "back colors" // main_Color_2_out_1 = Color( main_Color_1_out_1, main_Color_2_in_2, main_Color_2_in_3, main_Color_2_in_4, main_Color_2_in_5 ) [instance: 2, cache: 1]; // // node Image[4]: x = 223, y = 410, inputs = 49, label = Image // input[1]: defaulting = 0, visible = 0, type = 32, value = "Image_4" // input[4]: defaulting = 0, visible = 0, type = 1, value = 1 // input[5]: defaulting = 0, visible = 0, type = 8, value = [7.29024 7.29024 7.29024] // input[6]: defaulting = 0, visible = 0, type = 8, value = [-4.66221 51.8696 -4.66221] // input[7]: defaulting = 0, visible = 0, type = 5, value = 21.0859 // input[8]: defaulting = 0, visible = 0, type = 1, value = 640 // input[9]: defaulting = 0, visible = 0, type = 5, value = 0.75 // input[10]: defaulting = 0, visible = 0, type = 8, value = [0 0 -1] // input[11]: defaulting = 1, visible = 0, type = 5, value = 24.9389 // input[12]: defaulting = 0, visible = 0, type = 1, value = 0 // input[14]: defaulting = 0, visible = 0, type = 1, value = 1 // input[15]: defaulting = 1, visible = 0, type = 32, value = "none" // input[16]: defaulting = 1, visible = 0, type = 32, value = "none" // input[17]: defaulting = 1, visible = 0, type = 1, value = 1 // input[18]: defaulting = 1, visible = 0, type = 1, value = 1 // input[19]: defaulting = 0, visible = 0, type = 1, value = 0 // input[29]: defaulting = 1, visible = 0, type = 3, value = 0 // input[41]: defaulting = 0, visible = 0, type = 32, value = "zoom" // depth: value = 24 // window: position = (0.0104,0.0600), size = 0.4542x0.5800, screen = 0 // internal caching: 1 // main_Image_4_out_1, main_Image_4_out_2, main_Image_4_out_3 = Image( main_Image_4_in_1, main_Color_2_out_1, main_Image_4_in_3, main_Image_4_in_4, main_Image_4_in_5, main_Image_4_in_6, main_Image_4_in_7, main_Image_4_in_8, main_Image_4_in_9, main_Image_4_in_10, main_Image_4_in_11, main_Image_4_in_12, main_Image_4_in_13, main_Image_4_in_14, main_Image_4_in_15, main_Image_4_in_16, main_Image_4_in_17, main_Image_4_in_18, main_Image_4_in_19, main_Image_4_in_20, main_Image_4_in_21, main_Image_4_in_22, main_Image_4_in_23, main_Image_4_in_24, main_Image_4_in_25, main_Image_4_in_26, main_Image_4_in_27, main_Image_4_in_28, main_Image_4_in_29, main_Image_4_in_30, main_Image_4_in_31, main_Image_4_in_32, main_Image_4_in_33, main_Image_4_in_34, main_Image_4_in_35, main_Image_4_in_36, main_Image_4_in_37, main_Image_4_in_38, main_Image_4_in_39, main_Image_4_in_40, main_Image_4_in_41, main_Image_4_in_42, main_Image_4_in_43, main_Image_4_in_44, main_Image_4_in_45, main_Image_4_in_46, main_Image_4_in_47, main_Image_4_in_48, main_Image_4_in_49 ) [instance: 4, cache: 1]; // network: end of macro body CacheScene(main_Image_4_in_1, main_Image_4_out_1, main_Image_4_out_2); } main_Import_1_in_1 = "rho3d.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_Isosurface_2_in_2 = 0.04; main_Isosurface_2_in_3 = NULL; main_Isosurface_2_in_4 = NULL; main_Isosurface_2_in_5 = NULL; main_Isosurface_2_in_6 = NULL; main_Isosurface_2_out_1 = NULL; main_Color_1_in_2 = "white"; main_Color_1_in_3 = NULL; main_Color_1_in_4 = "front colors"; main_Color_1_in_5 = NULL; main_Color_1_out_1 = NULL; main_Color_2_in_2 = "orange"; main_Color_2_in_3 = NULL; main_Color_2_in_4 = "back colors"; main_Color_2_in_5 = NULL; main_Color_2_out_1 = NULL; macro Image( id, object, where, useVector, to, from, width, resolution, aspect, up, viewAngle, perspective, options, buttonState = 1, buttonUpApprox = "none", buttonDownApprox = "none", buttonUpDensity = 1, buttonDownDensity = 1, renderMode = 0, defaultCamera, reset, backgroundColor, throttle, RECenable = 0, RECfile, RECformat, RECresolution, RECaspect, AAenable = 0, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, interactionMode, title, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels, webOptions) -> ( object, camera, where) { ImageMessage( id, backgroundColor, throttle, RECenable, RECfile, RECformat, RECresolution, RECaspect, AAenable, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels, interactionMode, title, renderMode, buttonUpApprox, buttonDownApprox, buttonUpDensity, buttonDownDensity) [instance: 1, cache: 1]; autoCamera = AutoCamera( object, "front", object, resolution, aspect, [0,1,0], perspective, viewAngle, backgroundColor) [instance: 1, cache: 1]; realCamera = Camera( to, from, width, resolution, aspect, up, perspective, viewAngle, backgroundColor) [instance: 1, cache: 1]; coloredDefaultCamera = UpdateCamera(defaultCamera, background=backgroundColor) [instance: 1, cache: 1]; nullDefaultCamera = Inquire(defaultCamera, "is null + 1") [instance: 1, cache: 1]; resetCamera = Switch( nullDefaultCamera, coloredDefaultCamera, autoCamera) [instance: 1, cache: 1]; resetNull = Inquire( reset, "is null + 1") [instance: 2, cache: 1]; reset = Switch( resetNull, reset, 0) [instance: 2, cache: 1]; whichCamera = Compute( "($0 != 0 || $1 == 0) ? 1 : 2", reset, useVector) [instance: 1, cache: 1]; camera = Switch( whichCamera, resetCamera, realCamera) [instance: 3, cache: 1]; AAobject = AutoAxes( object, camera, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels) [instance: 1, cache: 1]; switchAAenable = Compute("$0+1", AAenable) [instance: 2, cache: 1]; object = Switch( switchAAenable, object, AAobject) [instance:4, cache: 1]; SWapproximation_options = Switch( buttonState, buttonUpApprox, buttonDownApprox) [instance: 5, cache: 1]; SWdensity_options = Switch( buttonState, buttonUpDensity, buttonDownDensity) [instance: 6, cache: 1]; HWapproximation_options = Format( "%s,%s", buttonDownApprox, buttonUpApprox) [instance: 1, cache: 1]; HWdensity_options = Format( "%d,%d", buttonDownDensity, buttonUpDensity) [instance: 2, cache: 1]; switchRenderMode = Compute( "$0+1", renderMode) [instance: 3, cache: 1]; approximation_options = Switch( switchRenderMode, SWapproximation_options, HWapproximation_options) [instance: 7, cache: 1]; density_options = Switch( switchRenderMode, SWdensity_options, HWdensity_options) [instance: 8, cache: 1]; renderModeString = Switch( switchRenderMode, "software", "hardware")[instance: 9, cache: 1]; object_tag = Inquire( object, "object tag")[instance: 3, cache: 1]; annoted_object = Options( object, "send boxes", 0, "cache", 1, "object tag", object_tag, "ddcamera", whichCamera, "rendering approximation", approximation_options, "render every", density_options, "button state", buttonState, "rendering mode", renderModeString) [instance: 1, cache: 1]; RECresNull = Inquire( RECresolution, "is null + 1") [instance: 4, cache: 1]; ImageResolution = Inquire( camera, "camera resolution") [instance: 5, cache: 1]; RECresolution = Switch( RECresNull, RECresolution, ImageResolution) [instance: 10, cache: 1]; RECaspectNull = Inquire( RECaspect, "is null + 1") [instance: 6, cache: 1]; ImageAspect = Inquire( camera, "camera aspect") [instance: 7, cache: 1]; RECaspect = Switch( RECaspectNull, RECaspect, ImageAspect) [instance: 11, cache: 1]; switchRECenable = Compute( "$0 == 0 ? 1 : (($2 == $3) && ($4 == $5)) ? ($1 == 1 ? 2 : 3) : 4", RECenable, switchRenderMode, RECresolution, ImageResolution, RECaspect, ImageAspect) [instance: 4, cache: 1]; NoRECobject, RECNoRerenderObject, RECNoRerHW, RECRerenderObject = Route(switchRECenable, annoted_object); Display( NoRECobject, camera, where, throttle) [instance: 1, cache: 1]; image = Render( RECNoRerenderObject, camera) [instance: 1, cache: 1]; Display( image, NULL, where, throttle) [instance: 2, cache: 1]; WriteImage( image, RECfile, RECformat) [instance: 1, cache: 1]; rec_where = Display( RECNoRerHW, camera, where, throttle) [instance: 1, cache: 0]; rec_image = ReadImageWindow( rec_where) [instance: 1, cache: 1]; WriteImage( rec_image, RECfile, RECformat) [instance: 1, cache: 1]; RECupdateCamera = UpdateCamera( camera, resolution=RECresolution, aspect=RECaspect) [instance: 2, cache: 1]; Display( RECRerenderObject, camera, where, throttle) [instance: 1, cache: 1]; RECRerenderObject = ScaleScreen( RECRerenderObject, NULL, RECresolution, camera) [instance: 1, cache: 1]; image = Render( RECRerenderObject, RECupdateCamera) [instance: 2, cache: 1]; WriteImage( image, RECfile, RECformat) [instance: 2, cache: 1]; } main_Image_4_in_1 = "Image_4"; main_Image_4_in_3 = "X24,,"; main_Image_4_in_4 = 1; main_Image_4_in_5 = [7.29024 7.29024 7.29024]; main_Image_4_in_6 = [-4.66221 51.8696 -4.66221]; main_Image_4_in_7 = 21.0859; main_Image_4_in_8 = 640; main_Image_4_in_9 = 0.75; main_Image_4_in_10 = [0 0 -1]; main_Image_4_in_11 = NULL; main_Image_4_in_12 = 0; main_Image_4_in_13 = NULL; main_Image_4_in_14 = 1; main_Image_4_in_15 = NULL; main_Image_4_in_16 = NULL; main_Image_4_in_17 = NULL; main_Image_4_in_18 = NULL; main_Image_4_in_19 = 0; main_Image_4_in_20 = NULL; main_Image_4_in_21 = NULL; main_Image_4_in_22 = NULL; main_Image_4_in_23 = NULL; main_Image_4_in_25 = NULL; main_Image_4_in_26 = NULL; main_Image_4_in_27 = NULL; main_Image_4_in_28 = NULL; main_Image_4_in_29 = NULL; main_Image_4_in_30 = NULL; main_Image_4_in_31 = NULL; main_Image_4_in_32 = NULL; main_Image_4_in_33 = NULL; main_Image_4_in_34 = NULL; main_Image_4_in_35 = NULL; main_Image_4_in_36 = NULL; main_Image_4_in_37 = NULL; main_Image_4_in_38 = NULL; main_Image_4_in_39 = NULL; main_Image_4_in_40 = NULL; main_Image_4_in_41 = "zoom"; main_Image_4_in_42 = NULL; main_Image_4_in_43 = NULL; main_Image_4_in_44 = NULL; main_Image_4_in_45 = NULL; main_Image_4_in_46 = NULL; main_Image_4_in_47 = NULL; main_Image_4_in_48 = NULL; main_Image_4_in_49 = NULL; Executive("product version 4 4 0"); $sync main(); elk-9.2.12/examples/PaxHeaders/magnetism-source-free0000644000000000000000000000013214536061314017403 xustar0030 mtime=1702388428.737500276 30 atime=1702388428.736500278 30 ctime=1702388428.737500276 elk-9.2.12/examples/magnetism-source-free/0000755002504400250440000000000014536061314022202 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetism-source-free/PaxHeaders/Ba1220000644000000000000000000000013214536061314020152 xustar0030 mtime=1702388428.744500266 30 atime=1702388428.737500276 30 ctime=1702388428.744500266 elk-9.2.12/examples/magnetism-source-free/Ba122/0000755002504400250440000000000014536061314022751 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetism-source-free/Ba122/PaxHeaders/Ba122-Bxc-field-lines.png0000644000000000000000000000013214536061314024407 xustar0030 mtime=1702388428.742500269 30 atime=1702388428.738500275 30 ctime=1702388428.742500269 elk-9.2.12/examples/magnetism-source-free/Ba122/Ba122-Bxc-field-lines.png0000644002504400250440000124625314536061314027146 0ustar00dewhurstdewhurst00000000000000PNG  IHDRyL] pHYs5ؗtIME 9} IDATxyeOU5wfr bS  VXq]Y*ʱ @A r rMIf&sOYzj{fz!$5:>_!ć;vnFTנQ?cƌVRJ۶Çϵ>|V:SUwwUɤ}և!zݰG5M===ޞ={3Çϵ>|v׏;|YYYSO=nnnϰу={L0AJ)(~+˲0x'׾v'N4?>|\hGWWرcmd2,_nݲen9sևA}E訩)ks<Ϻ=cJ ZЇϵ>|8`H$J+,+ ysc=v{P___>P(4`cצeYӧO1u]K.7j*ևbXEEE vm*RUջ4h4:a„mڵ-K'Jh(B**+++kEٰKJ9^0jjj.yY_>B"дa?h=A ujdooowww{{ԩS'MT¡s>>aض]P?TWWw'h,+W\hQgg(dλ+|\Ç ݊2, )e qGBG"cۿouYضgϞP(k}_"` wuud,+|(][nĉgcSUuԩq Cct'~,ˊD"9EGuuu9>|\ÇYfRӴn:.A*HR& և/D</fM!4Ѳ.uwaصx<u|m'?ٴiև#^|_|ѶbxζCYNKpG[sD"(p/^||\hkk #9_JHiN0*++իWϙ3+Wz7dm|Ga! e9>Rʁ,lH|1Kp ޽{ƌ^xW׿^v?(7nPܱx5?>|\[䚶mH cb$2M3-_~~@׶1cxނhtO?ST >|oG=qD߮Ga"0>zaYVWWWηb5T*o~`i9>T*Urd[[7`|! Wه۷o7oZus7eB"0M@#hYO7toځH=lB-ALÇF'N}1 $!/衇4M8V%YʫVz'?xm(*6LPtG(PNoq"N?[lqث'^=_3d2 }1(Ǿٳg;iF|Vnll<蠃cYV:Y(bؐm=2 ,+}WvwwwRk}$7lٳ۪4m9.ܮ!STjirnƍmO<ٿC|]}ȣר?#msiYQQQYaZE:.!L&sBa{[nks/1\R)0Ju}1UWF nIEbfr" )eEEEʉD}|ݨd2+4EۻxW=\[߇'iv4B]wR޽{B!t:H +oƗ_SL1Fs8B!tz^>mŵ>׎ϐڼys{{-Jm^yt?%I'5i -JRQeywUrnT #HYjÇB~nGyy@` yzC-/K섩e esi^B)ڜ?e |#XfMmZ#t?nڿ%5 ,9뺦i\,)e~:I**t'TWQbn|f%GRԵ^;p"M|>!Lc>9/2y8߶X,f5~bXifY!I)s4J3t,ڵkWGGk/عsg,H$}<yO^d&c3Ny[555wy7t/wN ԓZ#3O{\t".ُ+Г&M~GW e6SwX3zM[$쿓zoiEEE|QCUULD_`RUi%7F㯿v?`Ù~>dkG#Nd5ցsp.'ʶ`08(Jwu;PhܹsSSZOt||wF#Auȼwk} 9DO49\[r?VWWi}/buuoۜrnƺCڣ oPT1HR#u}/>xh'1"\! !n>9oooo]H)+V,Z#W_=R3?'kq9J]Ç~H$9Pr}mM9Nmmm_|qEEmjoo8q St:vO1?qBJ9%,sveYRT*N dtpW?W_}u˖-N6Ν;A>Ng79 Z[[Gp$W|}|M9ZZZQZ)SUuҥ'N&===C9*HE> 6_ P2FJbob/ٵO=ԓO>:%\r9,X`䥗^8s|3۶mkhh8S/_vʔ)wyC=yO.lmmu1q>?C㵏Qe h;s֮֜]_y啎ZJVLiW]u՗bhFօkY-ܲiӦSO=Λ7oǝbZA.YO3|=cf<)YOk\p\z??V~Wy睗^za…;wtf3gμێ<ZhO~K./nʊ Nxdr6P0PUzm9"-}rLIUUs"5 c׮]iΞ=rwK,~pUW-X`Qx衇Os';|.y^&O,;v +s=\x%ӦM[g͚=#4Mz,Xp?~Kwr4߳MVJYPQi߷~_01cYh׿^xȽ?C*//3ρ#vuuEUVyϟ?Μ9ŜI&]wu'O~,YRp\s/*Aեށ/6/h \8*/*SZ8Vض]І(H=܏~K/S@8餓Z[[MJ ObiAcTUQWS]]X .|'s9UUUSN9ꨣg;_}G}?zQxA-3e5k֔pfƍ V~B#(1LC.õ׿q544\z]tQKK3(kN8! ;ص^{׎3.KR/(vx>Ͽ}^#iyO/_> sOY@XHS _HE*LL _~<ӧO߾}{ 'ѱ2A 0 ÷kKgξv@v}W[[}9sLROӦM4MJY__]aÆֳ>8餓&Mxv bgsX΅W%$vuX" ɺw88C"!12k׎T"H6dbLjb| ϝ;בr0yMp8{M<^}էr_?ϮZܹs9眝;w[~[H$O?tv>d+l3i&8|'!cEnRI V/غ.RI(Rʆ+V/&JP@$QLS (++s:I_Gp.OٳJU^߮%GƎ/Yd+W<>"7rsҤIم;vXrGsΝ;wzw޹)Ga_Dorſyr)qA/$ i]ruס[l@o-7^bwYp8-?`Ӵ6Na94v( (2dSX)2Zp?eeeF *!վZji}Ļ)>}{_׮]J&M4nܸ;{g͜9^~G:Rw >.vxf1Oouo47nxG< ,p,N_~y w+86Uwwkۿeڵk֭]wݔ)S [nUD;R,G/ >ˏtC5[k`B RM@G 6wic3#albQ3TM3l<*** 4_x@ co !ls'H)<6Ǯ|5!D0,Dׁ\YYZc=vqǝ~91"ED#؁ua=RP(=+\rʝ;wq+V3gkN;mڴiEv~jժ3g~.\xG.~'vaf-kA!< 5`/ XP163UG3Cr,],+$ԌnY>k'8'ifHucj2lvB1Jeeezk~}-gC Drv4D"@xVOOOA{Tb/ b{5Z04믿s|9{˲F(3p#}>;g> ,Ə;wqW_}uSS 7h۶_|7 'd˖-wq֭[;X,~׶mMƎ{x㍳fr]wݵdɒ:??/??k wttbsp_80l{@ lBZle<9Nee<Β HC R fe|٘nä]"*@;<_72I_x/TryOQ:L#gG0JLAQ~(UU2eO?dɒwygܹŸ 2wuu$m߮da@͘?R.\p…<ַ9s8.|̚5WU_ +uuu]wѼϲt«|%ʱt吮&e`)LC`㖾hEJ딍pVA;]PWMk;vӞU$JN{죨CxQGv=Nhֶ#m4C!Hi6I)Kn&ɣ:ʑn=C֭[Nc̲b#h+kY ;%ھK|ц"fv,Rl( l]}lC9kdz|i-_LŭP-A#\dVJ4S] njqlgnx~q;Ϝ*w4$ 1b )e*Gѷz0 0{ɜʺ!bb$ڹ o'2 +?Z㓁;;S{aB c|ca,}P&`z7\MظJd-I -94w݀sl^ՔA"Wx핲C,7_4CTjHMJL&)?}݉'nܸI$dڡ![%WаCF.#HOTeee}ޅN{{~FLF5NO:uԎxjOnGl_fwWX6?G<9a"LBd#ӶUд#'5 -]ǏoY fK1p)e??峦m9LE:sʜo9"G[!eYR ѓۻ6 WUu/>d3;ۀi !L?D36bFJZcjB.mYBP*r~BNu>UP:-2)H@ & z)q6 ~\#>ؿa7~Dt;)-RlqؑCM+5 IDATv,NUgH9aXuGÖC-ƍipmYV%elɜBq R JfdžNEL̙aNOxgOgy&n꒍9)O_ŋ;::,J.1*cyag6v4b?~LocWg WHBTo6CJ#Z`\QZvp_U͎~ _ *f5?E2I:<8Ѷ ίh}?c㕬~h=q*1 TVSY{c87rH]|kZӴ7x㭷zgM4wH͇mC *v6'PjYĪ'N8fh8=}~R>-D"8ݚ9a+p;_G3pa0}IrͼQ86-؎tlv0kTTSo5ĉ47g\DZpo]ىvKؾ)=<ͻo306΃.'m'sDu:ۘ<!PU˲ !Lo#7t5\3f̘^UU{zzQEfH)Guos Jǫ(Nn%]]bdϋKDe5;84HM3KhGk9]7زeK1UU BCr^UUW\q{;:?${󋪪B>'a^;sLw|&[oeۯHu`}0>GbmlId裖6V[%,0*m4>{o<)k~ i*0DeL?af<6 ]i'p@}\Il3LvJQ^Yb?`?ԕkNXQ֯ew1g|jrƜѽ#Q¶Rl+\4o޺!۶P(Eȳg6 3?eY]vom}ӈ?p}(YL~@uzxUP,]"%2q/g#{ôjeӬSl{[R*w}yY&>kZǻZs539_+p_q%Wc~k6cƌ!wcOUUUYCśi(R JE}G|T9iavбIK q&@R趠9dPq(FyȖVTZ&U VeE~. f mòuKΧujmEVѸZu)[ Kp᝿ab7冀+2B6ؔIDXv"{2*`#+%l*cޥͨۄ&s IN{ҽ曗^z}Z (E"oiyg !pGG k'>)Z_BMjhލh1 tS汯Ht8:Lթ=6bnj\x**FE-=NQ6jj<{OW:hnص!BErm,"2(➓Fb &?_ȒHIDefx{ صģ&4Mrŕhp\NgGWvJGXEQJ̺y-:sO<`0U(jNY)YW6Hmv⟅}`!5?>||U۲D]ALڂ019̚KqPÝVHOɲ_M5 +"; zQ@ 2a6֌"cf?~{c‡+7F'gOvh:cX= 37c!2)@O'ʑ#H,Dk[褺k L=aـ!شdRF;G3e:'iq(Jiq:g+UUA+UU|g/ ST/++Ro(LbG(kYwѵG䞕۞&ڲ'@e &lK47NJSHӯPu')=b}K'0ܣn`盹Dqcw[*^iۢFɄ*ض9l_긔6APWTHT:ǵu764n3e&y>8t6oMtXivoCGiz)e+C&,4(z|Ҫ=TߚY-\.pq/!ӼZA2Ϟ=gęU\-e'^tᮯd'ѷۑ''56~ֶT*)xAW F/8v(lx=yf}Zi !@ b-?1pcJP)4)O9~a[ஓ%gFp8/[Av&2 5!נwzfVfb 䪬,pr zî4'ȡUo:1.z.!Rϳ/eӼT:[M8@H'+$,Zzfܟ9%ݖANjt5=-4p;^#+Mv~ ` 2mB?ߠ =IVT4~ -z|:G^SNN4w.o>-eJ}JPWY0\$F !sc !zzz949eY֐Y}GJi^%\cFw@M*H:6l:W .JXLP7)P:VW@a$cvclV}IMmHT n%쬣jH !swg'!`mmRuT mei웝'Zlys%gK,ׄHSXOUAS{.8$) lKEI*+q:53 D b]G=L~#z)@x79@E  1Q߮q;2lz|e&aA q{Rt\#mTdM: D}AvvK![PWP+>0tg^Կ%1% F2kgK(ElU"!ai``j[LsgBcưmYu"d%7Fz:(Whhc!h3#sJȾ*IjQcGiaL&Nc؂xNU1IUxkkks8l6 d>_#Da5?_`BOmõ˩CB C(OY/*DvV:~tde .,,Yf__k/=CݿflRT@<@BH{쥘zU`wJ$ %H&$*ws +*"\.|;|?F]= 8YrN&aef E2 ~WXZ#ޝ\]+9sRGG=Tw;[:a*4ڊLVUKZa2.D*sOjVƛï;d48#mc2C9SbReDx2@)NOs<7wm%do23yt+J2Qc}hI3̝4{)SI{^N_kGqi-ݑ5f8P;^#kl$4&DDŽqcy_ǢW"D 1 3?jWC{&CEB0Bu=mw9֚ 0s>cJԳ&@ߨ;zN;1mЭu[+a ЉPK_BbV؉/hڅ*q=XoRz :7a wwP sKBBQ:^* )ve_I7XPlĔ)6]shi!3K8"MZ6)tT)jǓn꫒=$g3 bݜt^6tgDdz-'}#F/={?#(:IW9Nnd]׋ib?C3^1zܪ/,)lkG,Yr%|tbכh)MT(˦ ~vmtU{]:~So>_pu_dy6FjYG˙ѣY&m|C_nn:f<SB4 |:gaYM,!X8ms#֭֭7Gd;zM}Ms)3vɺM,@vMU2Gn٤v<̆z~%aA سt\I@ok.@0θ歨(MLk~!ȞiZڽ<vax|Dt:]~ /i4C@'@Qi. 2Cc+ﯘ6X|)! ۏ gZY` ,ߪpKf{: " _E0-~ξRD_!.͞rBVؖg,^Z*$UC!M`xʟdD2ȖDD*پP5fw/;/?9dωeK),c2v tǞE:g|YQbת,4?莝&H=43AVH+xK* ˪D @ŅwaʵksJ Vc9olVжdOk ^GNDJ, -xlBȱGi4a^Hd0%6ԌcD.䩧õ3,ݔ+t и-k(w%_7ި'O^im-랩JR;ʭhl:Tʫt~4]wqW5)`} @H;۳z!A.{n_BI' Ed ! Â?W\qżyʬ=>d6644βѵlǦ'2 r%UaZmr5؊) kqv6 KYJby^S3m>}ڐ>W-]dH 5TMҼn YaL C6vB{XDWI8UP eBiN[@P783Z]AiWx$^%m^$jb8P5B9`DhNϢͶzbCw.3s0,7^L+B8U(JF^;gɟ*]?捥lYO<-{lێC>qE>FOZزe˽{i)3tMӓ~xSZ͚%WIqlZY'@nv2&4rPوmMv_M2IXC 2s-Lact`w[̞}lzZѻ mt6QU+ WG9; W4$&*hBe5>8Ԩ B{ n `Vs4PU ALAd1[Ѣ]!:PC$ҙ&3ر{HniT2R3 Tα1]bʩ_faU+M3+Y's3f]U]js!iKs _pq>nnafjD0c)e1s ذvڳ:3/~𪫮:x1 >Gi= ̙s,k…E-QZ^ 3 vғƂrf 03iW89PACO OW'!iiَ3s":.mZuU)usvSuX)Ma iN`{ۢ;h8 <|Ew+fkTmL'3.`Ri]Tl)|)5fA8L#+cmPh ;'y:#Atg+I4( cP! Ҥ w(]dg.  OŤ(q*($!eO+&NBT4Q2 h 3Ib9hs gɔ{.=N80_7Q]̜ozdwgdpBmjj:ǎ{ 7{?OX,vG#ϵ>-6 _PYYygWTT>S 7״IzO&`cZ⿞|MYSEҠr_m;S_'[U]pR7{$%̋ȶv,8* S L[5SX 69 g0niH2FJk*t -Er9gV$8ƶ0LL:zmIs=:1D IDATG~N*e B *hM`ˌb#@dX!P,8dBURƇdi+,;ør6m[]uo IzbTxԲll 5Q7N`B w$H>p[RzSXX}URv?۷Wq,*EjoL=ֽDz' U)!d'|q@AMf!D~E;wttL0(//w3a„o_?F o\8$jkk}1<>'믯\Ҷi_Ūh} 3T!/> Uο7'% *h!תSb^FJOfքThF( CWQX~{/&AR*RXfamHibZם>v*渔%c.{{4Odw,^rzU>$uRҔЙʸ݄m]&e%Bb%b{PKMC(4B5|k=|=d 'T.Î,@AnlGnfr)zu*9\,lI%<ƟEB:Dݳ朮."**Ab-M׋òiO"nͻvZ`2t"x3rY`~dT]tѬYz-EI3`}|T]GydCCCݛXq O! OO>]08UK'45L) ғ/4f`c֪ڲ׷ |"iii"ǖ.Ɣ!Sef i4(S]fk}a"a41K̴f3-@KL8 z VԖY6ǜȸ))΍T἗?˄>\-HHry]Эu\pFm$ Ǯ P` :mlǵN q/^s~K&{)DfoiBt%t@ 3 *ԍ;3_ۨ`ؘfH˯ia=)Ͻ?ʚ} ˉ&84esl5!DfUVV]xQR d\Q{osF5?3glkkF޳RD7yxw¹9J&'Pv ysB/L]۬Ttuym;v!ͼL]( e҈ˆ^YTk4vqeiil799:䒨r:tR`+"mYy3,TMPb2訦jƌYD@@AP\uT0V/ȼ@=F] 3fỲVqw& ͠vٱ{^HD03^@"PU"2A@Rپ&#RKޕpƙi`,GhBf^HL7!UWrtEǢg?0nSjA %>xrDoʀ˷tѨH$q;]q?~37Rt:]SSSi靝]**mYs7gNۦ9DIE:ѽ xUu-j\NǢfƎŽe N&Tk} YHp۴0HzJ[iR6O-(PiTbNJ٦V"iј,eӾ va{T8ێY[G1kkI HB0"d;&lvo4_I8$!57WYt)|7J.A{"Ǫ˵!((t A-$:2mC r1(=ڒ9$[9G[ @2J.tFmE'Q [ätDa;z)=\'AC8`,5c--nIVr,B`IwOZ6fTbŴMR9F-H$lA?|VVV3 vlݯJkkQGpmEEEYyu+'u-$:g;yݮ(UƖc5*!T6Ѝ),~6&sC$T=Ď%)򹶷.aCuLQg,sZw8=9K34ʠ`"  6 `ۀ66` M46BDIь&OtyW^QU;sSO=TW׮]]z}~?Yw#MX㖬^QH),o?HUc4UaիHE]!toX&$NڧT(?0{q҈:^Uk>s\j% "k;@yak6l%m|/rY^G[[H!߻zHkHc_A>{[R7۶lٲe˖~CCC]wV[1 dol'CIhI9ﱚXmZʄry\iWY\$aR!.@ TH*tuŝq$^Jp5ǹv+7>;V-T Z\'/NQƓju6S*O'Φu)ޱg1F VKbv\js/R}KP4$nvAO bB<'Y[l5 mru`|7E)~r 5Tíf¤hfr4Gdd_OƩR[9mjMr|JgqsuVPSsXPЙʟ% ylC@k)*W=9vގ q 6aw~hz#]ԙYT,5!1ǐIl:I~8iPS|*_el;'_IJa)<-}:Σ!yCi},MvY}{?g>tll?DŽ~/vj3UуR(N7S=UT87Ee MJ6Zͬ!<,0[ =+},e8_ezq(VSݺ%`k 䆣 Zrky8G1E^>?fJ -7E)|fNL4cCo sbX94՞&\B"olw꬛}ڲpsퟂe[هWA3S:?xFFI||zbti Ô۩+8k9)y,` bHoxY* H];891s^Jy InBؼQ$2#@1Iń3!̾,A>w=>ϳv{UsS8z4 *i @%OOc~I;ev|\pnʽ7sۇŸ) 񙺇8.e*hAi*+. bG1ؐ5Z B`*-3: Xjenj=i@G?];%*C:B81p-b ~.xA,iWy,O{4'e!ܶmۮ]#=#6Nu I):G @ K&v#Z{z>$xΓ0w瞳I!ᕼ|V t p[<*-m𓹢 0X/ԓ~𛈸ڳoo/k#q`tePwu#| %6 Ҕ _*d+<=^+BJyXn)<e\_b.9^x7+L~!6G<#B[n߾}ڍzdV(Ȭ$;g3RnClZte7J s/M3dAF% l)"j 4Y-".(IR8pV1@FuDQBDAX&P}*["cge+D2%MifeQ[ &.&1 r& X6>KZ|T`ȾBmHWSa!Dt mEoW'@7KpCEls͖#8Ld *2$b/mT.ek~V2b[gF#U7-o8٭ah Ik<94F*L\f%$PC,#}R4\ddϸ㟈FU[ɾ:Gs/Ru7o^_px<Gk}'N\uU%ˣdj3OebÆ |߼.[!έ!6=Al?: #EuzX "A-U. >lNP>Wb|/U#Wf&-Ychϱ ^zp&vȨwAPיzSހjGބ%;^Z[8υ8uxB)&dDSmQZ.FVc5]}=]M[O~FUN`@C``#%[O3u*[)ZY2Edn/i2VrDt4#B:!DZR?u$+7%Y +uNӵ2J%NC)"#2CV^`7( /z5!)!. RS1P ѼgtM=Hdq1j|P6a=ZNQqչL5>7o~_RǰXl6S%I󑂟'Rbz= 6{ݛp QVoGP1ǟIeSrı r*e $ P H1 ǔ-L,a`ag$W;wAl*r`H !a40bj6x^2 ڱ\[˞qP&ht Fb98IayϧSڍI}IM_ʩNvݕBT(6C4(/s%ȶӝ?R,R`P=nGc[#"la(zX[DV}Ptfv>nʐYBkB)ʫfϐ>LVL \6hh? ;^'m7s!/@qB&+&DZyk~N/BX*9wyX]W (&P۱ s?u*rq :!I<_{ݓ)8t3mA|HНeG27[G 5ɳdJEXC%҆F_IJg~d̝H/T&HZWt92W? C`N58)m2ѳ0lX~IoBEYץxNqS$ ^t9gl*Gh!BDbt9ӟ!qMLߊ('VXvH$$6%?rGf(sDJv LM)u[j-бMa))&. `n;q^5R*e t1/!0,.sϾ>> L#D(J"O (DB:s E8\Yu]_l 0=n{|R槱 Z%AqU㳻3=gaVnk`C] h~o{Y (s_ut4eR燬ZjoPYO;F}]5;m=|#Byǹ!B+8>9",41 Cbm'@K0Lʫ>$w.U\5!0ނݾq@&CṠT[&ƆܘS36Fki%OҮ*,p8v?GcZ_?לeZN^"?!2s8Ϟ#HV;%Z;''$9L$ZWeR5w^&$Na`c2^|wq]^2\>ݲťO[Lߋq[Z]-e`HWDn%[A4=lTOP?ޓuRjICc1prb^̎'SZBFqtBM껱<+sg7Wɾvyr8'AǿcZq<0+~faݍ;`4Zos ΂A_ 7$z%cf88%z qo犧ηa+b*Dwa8CCA[5p'/:eȨDv}dC nXKӱph\bo,cXIν|hZ)p6΄u>jJ[#}:Nb!su y4Oў'lRV¦3Se| !3VYҐ4f L̲aLVko}/7.o_|"`BӽO/OT >/߉h:!R#!=y"vq Dd$ b1b5q= AEbD~_%)lEqZ5DB r %3`e(5lmhȈ5 wi}cԏؙՀ7EOiL8킠S2?>\uٷ 7=3"#< n [C'=24!-!K~1QrX8"bbBOr#t1i˜Ê-\^nM7Gw`--'k.z{_e'`Y#0[ юcZ tga6NT!<ɕ_/B_@ IDAT4t&JY8/GPz2eS:`;V1^R1Ty"MmfY( 8ޣX!FY^6^D9"MVm9|1XpXs2 ={}x':̭}ߟGsFB|N)wkp<ў=Cf6 3SZ\Y/0Ke,R6BU$l5T 5GO7U0q Pq2}/aUZS;?Ɏ8# wEi\uMCH[YOٴ6mR.1b;b55$CGaai % l ǕO)q#Jtg{ j0Zab :s*c0њQ[yPҘ!v(tYpQd,$i%IQp3y 01Q[qy^qy̋Ku&=$!na`l)5o֭5@g(}.vB3UDI$*c>y*vق &Mv[ hAjQRR+51iv S{I"qpM} Ba؜љw,D40$6Nu9 ۟fa[d܌]K%NY*2$ WKI饁l;֛=F+ 9,.w)"|QA:4j A<3j:űw2r~k'L,ODH% P6[ !'gQwf %DhJ˅1hMtV_[j)\u#|D7lÒcEXZiv/ӜZ|%TPFjӱ8VN)+e3+yg&s&jI!MK/~6o7l'n1N.˲*3*Ln2c;u[v1.'NC؞qC1ǗK^v%[N Y5 s8&4M %$QT`F@,s4``'Ʒ0x3 m qԭuH4uK5lĻndbk "n >@7'X#w: ۶ŋזѣ%Uf;Q1V#D/{ڨ/Vܷt(z#Њ ~S ɯڄژ0M#85=$Td D~u1 ̗^!S&e b6.|544Ea`pɶ 0hч|5c&[]Ϟ9fmbqs1#?/RNK}r +=q}YN<,#ŭR,mZwa$D'A7 iJC1~qZҞ$ V^}0,BdSpAY/p(UX)#1:(Kɲ"nKEH ood&JPx8 ~3sB /xK(RS CL@ģ|٩f>e (/f51΢W>= 7_'UZsO:c%}CXSi]S8Xa"_ $צQn{cmN,-NDF"axy+=El>En%2CߏH)2~ԑraq,^ ' Q^VS}IȦ+;1vO+c%9NqlLwvB9hf"`1߂'L&NZ;f](otS8u5f Uu>إےE.ƪ?՝ oFa+2:YaӉ2M6F$Xi k1246h[NpsyRJZyzn: 8FadpgvY8&썕ھ:zdMgf?{x+ R鱂ۑ'4 r3ߘ y,BMl9J҆g8YUx! ´ ǚ+u*ht6V"NX+^2 ŠrnEHjA&8GzZيz@Ӕad5g]J}QcByawPGLZ`^u1S@6MڵBF%HBLHZ\6q9<#ف_d|VI &%F/S+T ڇ'S +<܊0bH Iz5y>x?aɬyDiJSTdv4-ZhqRe>^[P d:w$"Q!$LbO371AC7-a"tC"h$>2^V*YY1YZʰ6Nh{^u>Pa)d'`>5GUə^oڹ6K{J}qE]6\& eGqgٷGB)$&a~Um&g_@7 АKKcݞtfQ;Le:nx;kJ4dn$+Tw=XHmX_ū.adOf 3fn9Fiv%zl|)) CD ~*)=*ĸYZ{tXBǧ'߆55e4H0FtS^R'ꩣӳ\z}ԿQI7t{boSD6xcfamȤwN (8h C⦴5Ζin&?g=veRB^IBhxmN$}A3C`ʁφv;?ܤ$yK'i90f{9m!YBh>44MAx1*0#ڠ&͹.R8;KiWō6ǬN{Y*:ĩf ´OZ_U(!:!fV k &+J9!%rbT|Wn\/Mᅫ/cdNg2YuM&{vg}ss:pѳ{BBê~hJv.[7+A(„оO%iucݝIWd8; CS^jU!4ŝ/L|SyT$p\T~u+cSv6F"*lf-XG5YyG !1 8h-jS<츪{6mcz0%F{wQuE1IBǠt@M1^_`(~k&naBZE#>o $Hq\W]ŇPd؋j:.Q󋸜G [?BO&t^NˁTwjYk0bGߍk2!Il JѸ| ISgޔdtLc FR+@6ۅdY 2FM065 Q-Y%,Ž-LOr%|bJ`C *hX4;Ex a:8(>T্^\Vԗ:C\f}sy7'9Pdv==Jv=;7(O-t? ,Poq *EZS9:3'7>ȓ6RUSߦq3^T۠f= . OF?=V$BJlL5V^$Xe*ґ.] dž0HEi lX`")fKA6v}P'ZNoR Zs=vA&F Cq s yswNP*Hu>98=Ŗ_eϧc^Km hO[ (D$ |24E*N@" j H箖lINpvx_Gfh,1"^w(c?aH%qZB!`ZGX3slM^OiXZf_v"XZIGN H4S-K~cC|$a7kB!:udZ%b@v!6 G  ,ǐ,7N_]l31-IT|MxMpzDLY(:bl,kd5-lbb<%{OGς79z={8dOSPiP( 뼋.` f#v&1LU5AU}:MƘ;G KX)&X}9EVQ$rjn"j 8{,wcTeq'A/4j170wytcolBPh@ "J؎fI3FJ>e}BTV(^N ly/xt! Ef=lIb&1Fx^&M; L-S)ܷ_iͬQؠPH>ded3 2c:E'ֱ8eVv`jFDa9D)OA{\z[.wa8Ȭ:7Y=_ ڣ0慄 mфRJm1(=7 k}bAh/8,)6q/y;bۅl0 @-?ir9J_*ņh}ǻ[H /]~6gDcCD^`JHP-rEAEQD5P'%tMfZmM}NyYNJ;A-f9dzO;NץYf@D!!耙Iv6E\\~t *p'' wӪ0]~UD,ΐ^d}rϽXczbV./sQв,uO9,q?}^>}rAIؕ䩗J'm 1.9io$ý`Qyt:˵Q8bN cDEXFu>kCJ6mxiN\†gDcŒ IDAT a㍯a|^އyxI. aNSmX Csp2jNVC$*m~-F[ uK2U k2 <#8J!xӋi.ZaIںyĨ/a qeuCJJT+@jњ0(ֻR#ݗH0;bB8-Q.dy cBU[ >z9:E_fXUd(p "DC#6YG.Ɲ!y8{^O?Ts%&%.dߠ%: d2J89q/J +LUwe+Yq ?zI/Y";mIj {}Kc~*p9LIf@(+ LCʡx>8{T:ҩ?&)!s->˜}{`pNT_齻:sϾ N@o$ ؟8;tEvM-g/Go7;Fi2_ w0֯|4YIı@$UIU*p*xZkk>gWͪ*Q]xd7y#ss _4ejAۀ +3[y?đl p+udf+4C#s`ocڼ \{-іd q3s./o歽hBzR" iش~:TScc\dnSU׊왼Hso39,R+ay4F2p<2UKphƴB6mXOwb5! zmlcd աy;Dl{^VsPq 9iDž7Thnu&>U76zϿ)A\[g4)@_v&;PAm$ F} }GA`*>Nr}~@p^s BQAy(ۜO'O#;@S0T% TG ù0k` @ w:Tus4 vp|.\5y)mH LHA7&3in\ P]g:u9~#~w & H: T@yopa}YLjdO8~ `$pФeV֨ Nzs6+Vb\ͫ_ϳOH)!贴ŦmA3T* MDz4(a*t-Y:n+ %i'ǶRqlD8+ #I>K`(<P85ɛTkT21'q[8Qz'67u i榳h^]IuΪ1 d`Z<(YY\(aZA8Sɦpޯzh+F1u;iK⒗02ǽ1^$0 ߧOJbv_+tM`A^sAELkd,$y57#dnIH>ٰA$Ǥ ߃m[nZ{Y=MCN\rI a8Y} ե0> ϡ|*0fq{xoзYΐf&k8,%;@ew=a/ETt>8f CQY'FOobBh Z 5'] g'O s!}3`$EX0&\rř?9z^`!tpD^p0"3O1]ֽ6*sXǀ&[UQ +0wҝֲStZH9BKPv- ks?=yxBL4ծax:,D?v@;eiwBERwr/o}Saך]ˑ\x>=o~f_+J+`t+-ιyrP`T+sp0F!M C*.|=.弋w)g[Y1ޖpG9 f%!\ObДU|תvֳ̜OOp^f7 `UA.a$!LNpbA#sa!9AF:i=)v$Rc@ s/:ɉɒ#m@$1w7\ٿid9.>ޚ1uu+DQk]vQsZaIOkeu^s{es:`8>kj~uZK7s&E\!҈2~8.pCmdhq 'QɁEʞyh/ [6v|37}.'81Ͼug%SQ.,P+lR&ՁQ#EE<ذE"nUU;c]zՔN@R'V@.fOKɝj)U 29}$7t Є%8z#6C088 Sg.jl[SWB(v@zxwt,'ATb{⳨4]0[½i\^6DT{pQoNIZlE8Kyaà.cT<^?}p]-)7}OA+@ZͦH+4! ||6*'͜AK^q%Eڨ<^],)Zh<}8Ge4G |8M۹ \q5O}Əu;ð>n2w>F"m5dʺc`d 䉃2P&7D$Yt`{Zw±1,-Ff6Dn0 tLmaeī9 C'!]ct';yiފǓ`"FG %R@d``p\k5Oދ#Pbm4KRdSNJ`nWns``'8\[y i+B)# e[kq~hk-Q%G!@BlY.gUGF^ݮ9PID7?V ^`w$(},k2- ;t ہ9=Ҝb%'}C@T512vN~m+TW.MϩÇF#9G99EKh 3Wݛ{32t% 5'&p*eQs$QIƶ=̊JpT܇+3_ʦ3LZc~mn {>½E^d^VxfWY~ D ZmN]FPY#Yb0T*qoޜ4vkRcLƦ8thh.tjfffZP qAh6D nZm:--~|T v[k?X@¥Ob .d"M?2ՍEaz!**@Z2J%% '*C3Xgdޠzm$[{+ f Wa1Js~MzxU|rz _e8iVv1 iE"sgDJJ(TҤb1[x00)2$Zr /s7IDv!Ͽtē7vCHjW"a{%GVK ɓz&4:Gn1F#L_&>5<+(boC ѢgZ|cȣ۶+Z+7yP 57]Y0>$)h6[YwhcLS^}q)j*jT=Nr^z+x浶#VoO818qÁ?Lo+H% #K;={^ߓ80P1u)* \ t{WqŚkzΉ}b)ROwY3~O}Bҙ (L6P :qg*If 0'%WE%/iaMXW'|)@Q%:Dq\:_qTsa?]#'O!a@5+825&xe 7+r3[M92ZM o`c}zoD0v7(ARuhvT!tI@*tz=&&ղmF*Z+9dWqDetksM9;(:402?=p5xa(ڟ,C‘*.`e?Q4X{*j}*kUag]@V jkPZ4$5m,AqW;Mf(8SMG 7@Ǯdϖv#@#1y& IDAT;'O\90D1/e~ͺ\Yd2iF2O~=}odgq"NkN Vfeqt7v OW9MD7R39-!Ӫ$~ݤ{7ptZBeI=xAr<'ٷā᭨$ GfOѠ49p9u,|V CPA _#afiCALCk W?Y0|+ }*q#ÈG%K?$XXդU$(y␫be{Mqb3Jvc6 })Gpmf#@fe`}4D0<`4[hd_y= s&+Cg/6b5կBN|ގ;ϧ/0-+ C4>108f=gUL82JIRc:n7qVFnEwCDdRN8YW7ޙ#Gܐ.dW J7/G6{5+-' gz(pjrF@B+ױuZ>6ОA9S_ӺUD"iiXJ:ͼH_1薁ց,H8׹! DHjO-SN{By `d Eh! Ū($]0{=h y@(:sb~i+̓"ʽ 0u, U[$^ DZuӃ[d+屦\ղIan('xQS@kF9|W~g_ Nr1wb6Έj8A'Zɻ(Ѕ/OKQȳ~Es.1"fgea/4:D8129 n:qh-B!ҁAh.ƀlFK]Ckx 񤬻N#Y o g=8?\f-JUҶQKR"3;D"as%EXIG030Xaj35gM,M%jűjwbJ =[,A+>K@G $s%VP5nZ;+gzQe4}f~"op@+b䓯48{,ڕkثQk]MXP@:k݂#5؉Q!Yt޷d)2Mg0懿 nʅ! o~ aq6T9p0ʾCg J%D]l{n&9:Hi[3UVI-qQ*/l8?C#tBe<-.JzLM_c,)t>Sr^&c ,#505V|콍|'seŌZV*ǰy'9L~1ܔbŚU~-/S=]9%^Y6`[?#<5oD *;˾w0LːM>'ۓ(0C:6J3{ˋԇy_ff"4JKXCC_Srֹ {^XYJ'4A9Du.oc%FKndN f)!싩TC ndhke{NSKۨ|L Zec78Ee$ |:.7T 0"BiIWs/E&"8n&"g}QI~!\oNeN/-aB)h1?2$p -#<(Qe=B`@bd68>`|jna<8JHLNOlclk0&QY%F$Ҳ/)#Y&ܼ6M.nHWO6HUB6eh%KyǡbW褔Bsk:oƶ3=m18SE=Xqܭ{3Ԁ O@ b54KݶY•E+M"o=kcʐg⃋%Ɵ~)ެ6Ajh\ >dtgg#RE8X 7Żetf~ZUD\[5$D~ 4$em tv$ @E#T1|)`40==fTOېpln.VJ*|S|z^ȉ#͇q=NpOqo Zfus2(I};A pmЦJ^] (U]}AAy :~ ~9_D>%šeRM8~#_oV-!)D054Iy5xQ'?1.{9K5Y4 h~gԥƞ$% gS٨S @8 3*A!Kiw%}c9 " qx^ʼEXH"[X˰[!*&NЭm':&;DPmlW;w)+lu#t"iء;CLt/JwWCPuaq*bB}9N,Xm ,ټ֔S8#xe|n0Ɗ תWpL3}z%Ո[ h qE#utAa0n3ޫm \)W|F21!X&;yKޓd\Iۜ` c_WíAwSU+mD"0mdZ%,SvBx@+UTd_g$(20$U\;WHcΫJ$&Iae|9wxެz,[rI"Cmr<+sq qz|J֭AhISZYjXpZM=PN A'/ۿO/xlڲ(|~ aL{NRt BqX q(H68@)aTdel:<o}V˺GVw{D̴DE`a װ5Z0 4& V6kIua.m_Iq8oxSk@n3ai}%MEdзb zpoI=8G_eD0y-e>2FGJźL09)uhp[νY\ɧX* ֞uM¥֫ җf>o7sp[w,ǰv_`+i+q; {OZٟ~*xΡwJݴVRڥ[Tɺs%u eid"Fx yYcgSH3'kX&%^>7lxb<8vTрט'W(^ظcjͰJ9F81u3eG\ĝw>Y$ZEHNa1Skf) 5_bA?r=V~j=ҀhͮH' .JܻN02% OA{3 )VbpDf8~7 jy9Z_K69bw`87<@|*x0B4,Hml 3x#/X[lvn-`m6uboSU|{ z5WY3; hlx 䳁4J(|-~EG)"`=j XQC-xlS24!GH!&V=_#p&N%T]E5B=@e(H\pSaJfGuZH.; M2ɿaJlzOm8$%?!׳N͖ o_(s oП |sylRr< jξ]s9RξuGI#ZYc1vvb 8U81WA(D|udsk[bx{\L J[E \#(N@}Q#pqE\5iD,ېJU1] u*iMIWE4'kQ0Eu uai4l$ZG$-\ +YK3R/斯 NaJ´7!65ý+̄VU f${Gtz mwi?†ut+TUC-C?A 6>Hk2b#!`?w넚 D8 t>kF\'wR=g"/Yɻz@# aX p #6/9+Rv{_67>G'I1*2w|O⸨E &t swϖN9Vp6Zs2BYL&*0TD %3Jxg8}Dzaɂ?$%W<ʇ6[TdL. >:|1L>Yö 314F:r]^]*\;V g7wS`0?`b|5w*yV%`p)Q#'JH(#y>a'7F9XڸgE,YeQX RќNPvԽkEa(˲BdA,~48'V 4uNIjɜπ%~0y4ǘSU)e@6X>ԫa\J ;l} Y,i/nR"L8HPNB~WL?]t?̈yg8'O=Íƭ6t޵ٱ#!(|ԆiAh6#e+?J^SEz!ʹ;9Q<&H,Z+CHbALG&󶐤!* Y|03"#Q%YPәᬏR?޽;9q3}ɧ袩DCtWu:Kt|LSAOGVyR6 O?ɛP^fKveT7H: w5dJt\!ٸSVaF:-t7uyt[ h͈YӪB rB6l!S{9uD1+Zax4''81w7q-׳}?lx|na8m`Aڶ9i[7eG)iq S`-ީh=nw2Od6>A|^ M̷B[2e6z:g'k6nV6"4D~ pɇǼi M6ʶ%EMyGb@kgřY65C^#S`?LΎIC+(5Jr$[Kq*MgVIE$fgfz=VJ@`mc^=pX^PYS&M.L RbB'AUG+_?4Kh$AFoDvӖ_]z1AMSJ*Kw"4M.a'g2; ßhUˍy?bU3 ȮwqWՙ< zu2JsPg!jRQrH}< !YoT58E9C\FؿI☛"z5.i[e4kc5ymء z /(k!CɇȲhAouV7pvdh<?1 5@h[Oퟔ>Z] ^q#Ϳo@RЕ"DktPΏ&Wɕm+//CS3_U/AXnjo[aDXiR)(p1^IKO)WRڜ+<r h  BemdUE1Sv^de!Y}I3.>B820YvJ#fY16O|*h4/ IDATR3ԒX\y/_H`/LWy$QT:uNmX)ʪ3;۹ض:HrM:ݔKHgbgӜ 3Ɏo0,$=:αqjT"N',4yV# *Ӗ$쫆⟴@%a.1J-u cÏ1H.4s@\[2oG>*+wWG[VN(# " L2A؀3l>a @9 uZsu=i=%q:1R^㸅AeFBhhz)XKϞGbp9=XہRyV߈w"%[zdR,cɊkw,%*%6jU,@Q<I0:xіԬI`R = Q6/\*`x$$KPZxO/wK{H#8~+|+(3|6U3'Du{NpⶻWgj7DKK#]|Zϼ/ь*V@c X>Em'0VdzjtMTQah{` 饪S$X( %.>.^} vьzZj堔*X]Hv8/q Өɟ>Qv*mnG W# egѹCAiutjz*` kQ2orb|Wf@%zIt.^ԓ4Ajα#|o९k:]1vWEc42.]ߥt=aEIqLtcZ. ;k{^=&LMs~'}jR0SJ8\V<9U/0ow+"!GD"o UNҀnu'LBloW[Dgy.>ݰ|4NTbSвqLLdGr*(CjJ . sl7@ڗ2V 24 ,淚O|9M(AF66⓴%×,*a{,z7H#m R);mZ)Y?=իdb-9hN3rMl[LZ?,DY8$wf\V #PYʔD^p0}ny/})Ofؘ1DgZbm2=\]`eޖP_-~r(l@f{5Uv I K|-URu&dz ,eSuS3iVNѐd@26//0^F[ ?C]_gzpNJj+N=JE`a8 /GeLj 0i#7U\1ЯF֟EusFNjMo३c!Tq ASDj N#\U+a6`eI/^JVYњo=4矗2Uzp`Y4撞2n$1 JC%֍Ҝp q67s5Y -S9\.~J6㛩<6B ZJᇫp(wMpY갢'F`T­ dz{X v⩌%VүC3SU=tz/M~%$@89Ob]LJT72& ӞƇ v7!1Q@H o3ZDIũc> J+#l {Hh38:\ukEaRS:^K 7 `*1~2[9 И!"S~:-O4J}qn;pú֔^ćw沫0l^V#?m8dqH]VTkmލT .CWgOW':i>9LMiIMLw1f/\UFv,Z)ɃFw̟YQ>,64 DeocthĿb׭a#NO~iP2pC+rI>I YJ״)ݯ(p8Y"i" 4 /CpkOl|ϐHuVHTK}>.yh'Jckϣa2TVO\ww ~Qica4YkblTeeva/zg׹'#S_JUo uҿaa2ȩr8jdLld@7譀+?E@jatAY0;'iG=2Mò}ɟdd /!]]M AH-& Ɩ`gӉ&)Bjvn|5u>FưBeǟf^M'w 51<4ޭHMƱ!Rh 0408 ).-peXc]tRŚA | &荹P \!węcl ABX)cS4#- "}ԘbW ^MNS#6-)nfGۆi/Uz@'p3Z5T@8nu>&m6vF6* p:HC`JZj4Α]~:Q8)<&wgdV^ QiV ̔d';4N+)U"dJKc,K/ K8 g,qu}4*7--{fKt^%o98 717cin@ G+hf6Eh$&(M% Ո[nk7m[˞-t%>5aE]:נ8\M+iGS3mѯrd_wu|Jp)u}4<+eNd yI4OR]WW~T hFŋ6||/A*kMd~~+Y(Z3$ZSѵPl)=|6毊8TC 1@_Ք_c:*9zI8HZ5BEUtDG lL4z Tk&XDF6yfRp0q g]M$6;gr%HC2 dqTJ1cPͷOy|mФsdSvVJ`l.ʸ5:¨>?䀞DqZΔ1 .s56MJH_ h&a=_'^ 2 C/I}˥)dB•DD*"}ā~8Nk jĊV +1?1&ebV+vcl?s|0R\p{M{ pj0s|kEJbɶ':5m vLđG`q='f6vD V^WI=cr3 f@W2@{GY{K. J9#T 3zK,^|C7ƨK|EcHКBI Vhk< $xJyLZh5xhJe0E%0|"<_`K?[i5vH6^Cé۔1f1?X% cmZ+YW)Zb`8|Sh3 &i1Z)'lj협ELOƎi`(5S_)HsaM'*0ڱ\Ψ^?ܯ-(HBgu]u 6hpr+\^?7)TG'97/ oNN}I簚yW61002Xt/Bl<%1_C˝J $ajZ~ W"F,ꢃ<_s!d H{:,P-6z)+SQ –c;\}`]Fw2薄a VK[P %$]<-W07mI!|5+8qW#-; 9rԳ_RLOjdlnXJWT ^$9wTR,q5zM62E0ǵu EDȗúӢTe!:bBݡ 4neXc~~a~AÎ/#H]fGO+~(lhۍxRϑG)9كI>P,៉aOwa[x94`%fv~3cP"#JmcZdJFcT zxlz KG(9IB,\awWp *35==܄O\im|ɉ !d Q6K`b/.JPC fAy(M\P6Yx9K?KQxJ7^/hxN<3l|;Cz"J`Iv\ZSS!)##¨ l(MÇd|n>2~F 5,ddN$(܌wigLF <Nҭehd}vhMI\3ß}C\W'tm<*BΨ27݀AAǣhcK{7 ,Njk=8{SwCMռ=\&ZsL|IڌZ!> zOEkg%J㨎kYRIH(܎,y?rPbj"2V4F?B<'pV˜wg QeHe37/Q M7gXt,{︜9knkâ) &E!n&MK{1l ;*<Ȭa2 XW\Ǔ[pa#\GY|qq啱1enX% ɬɅWmQP 0bSSbj23U?`BTPpeH .SX\H줢 %haEg|4ATm|h{z2$\.K8j߽VfYD^ˑCSk +錜/VJw&~ 0h/lmc/=ǥ)+ݭ}71ʴ\.e,Ri` Z][ohf+æw6v=]veRFwwV]=7)dByCjs,('LM衩HDp9wM{1NP:3:-)НG9s` ]ۘi>#yjd#;D~=W9Wv,Fu/gAsNzB 9S]^}XK|,.:e c7 }}j'rjAXjt'],(=JY= +.hzW'әhT- ` 퀁QQf0 J٦m&O7X@Q#" IDAT[0(Xa.QL]a C.j"o{',o|2:,a[+ď/08 UfDM^ĭ0'`aVC˔Dͳ(W^γV<58yGN#U,t&C( D]lc oqt?_CWL9)Gf&x/gx3pR۬BHnF M&ZA`aTFdM=rASl~-#ETdf2,K p,MGu!; NC'ClHvF-wj>I}JDisrWrOM ?SڵMOCɾyVˏ&y4c3+=Lm#`N~CAAR#F Md[ UN B9O-%dŋ~ \" h-rvz-gQJZ{75An)vޣ[u1m*aݿ*N˳G[ @~3225Tף%CYuӳ7jyZ8~;.&oVǨ*k.grkZ|d q}$mM[GRM 9^8B^Lq`m!2xHhОhUTXНelKd.00xHAzcLB =e?4~MvH)334ԣk0p~TuE9'Fv=]:a9>"L#0z9;hD!*ွW]iu2pko`)]i9a`B/'.}ˊՖpU7rS|#dAM\bnV^Mz])}Edg'u:,_ђ Z8FyK, Տ9խ2kg9IU?: Z!hwe-Sa־wf2{imq♦Cˊ2ʓOgd=(SO*+awsEqJke )E#[W7+X0PQ66_AOo%K`I6l䖷8W"n5)Fk}Wchzʝ|e^tA1R)7qќugRiC K n[馩)ͮoxn@p(TtHx}S鴀eP!Imog.S.衋-5aYi"Q#'Ȫ2q<3!tSN/&9xd&*el+ toINM&DZO8-}aʛ~(fw9|O2Ws]0fJHΝOF¨d(\@w[;+ y5ܩg|Ly([r;Tfhy3=mcw &&0eTJ8cI6v* i T4ԱU&N}~fUj-J6tsb32Xgo^tˈzw yJ TH`(nS 2ѠpJkЬqݍz di"@ZQ:¦sٶ׿U ~TjTd%B}iHZZC(Gd"(h-q_3W)@)F/5A~̜tfhh= K3.E0\Xh<6H uGYf3i' |Qo`X..u6FV_DHT/u0WEݚ8xB"&E."tQF3u } _a^_}}OdRz[VΈt>J7|w(AŞlŐ9#f_*k\]^s*V~r޹bN*b&7OKTs)qoֿSTT};٧ i/y`l6-KiN?޿>nwhB̈\~^DJPxr\> f<IXg)zgI;SfڨD(%|'`Lc&AUҤ fܪkcTPpEk põ|3]Ծm*xFȃѯ_[@0RfVĨh})CЉLhh`[cSQU+(\8A| ݙ)yI(C_aJXt e FG҄1p9*~eOA]U9yܴ(A#`h)?<*UFXgzQ (<EŞUmQZ*D׀ %B}n&KX" *ʥ0LAa@Œ~79~5CNwcg tUƗQu]?d$WMY5Fa(w& 0&ɉхy>Ź/7XnCa(76xt:(oubWxHjt*2{e`XY]TMz2=gE l=^t&"O  ^S BW ~+j9)kakDb&c՜x IV_ĦpX: orNNޏ4vv8gA7SdY 3XW_G?e**V^3߃fX<ё2A#y3i :mg`cQ!.4x?|bDXhmIfNp2uQG.w8 g/-.EE#7%Z 9򼎋B9,<;݌K7=|j<7P㊛/^"TǛP ~ Q0s:̟VT (T[wx)CяQ eє 6t;Z*T|QΤIw\bRTeDQظZ|Tc3|~:zTWohpOpLgKc*g&$0VD‡Gh6id 1tWMA8F:^ҏ]dd:Op[)CQ4vAq  &qgh xi@KeLTou_Ñ%Q%(RX0K#l'¥nG}=Uly0)|6R<46E[z"uzk\kʋ7;?Weж) ]hEJ=wA \𓬻G?2 ~_eyvb(j2@\br(x)oVS9sG%} ݸe=mz߁Sץy<9~4))[yqC2ƹTsYΧc…MAk`MbAFykIɨ=}@%*U ƪ xe{J)4Іe_0PB{XI V/6<ЭӚ>w\p4,|LX2PFJtP u䧃SMIOK| |j06Р^PkEA1_clv= j (p V&HzK9Tfz-R87奮G?iEhA23bob`J,?P-z-H UTءUVh,,S8Oxv v2} /lw@v0dq-f&ikebĝ0| RUgX[~#4֦cii T5+DaMvscPdm 1~0Ž~K[409 Z(:m&Kl`Ӊ+CIZg2vdi0&P>3:=}FZڥ{&ߟ3S,?\Vm'T6V4t%OB4o!G?00Vu(4j^Oh^?Ş)ʧ96 &3y{Iі0$&ؖ^Tk֌#6t蜡X\Jw:K*|_Bv]fd Fk sx8@4z&M}7ξe/.iĖT Jk߆/q : ,-ig2}'H}RPE!530Mh (@w.O`:ν{1\-4"kf vp`x #z +`s8*=|mS (>%娑a!r W26Cwkn@` lA"8 ƶ] n\wrdr/J B=2 4eFi;Љ:>4|:B\a3`_؍<Ҁ;0Z<"(© *C42:teWU [e6 c6l'*2Z@` BXa}%LkYjl\ڑĉ[I# Ek F􃨙jY湇^)ċVyd.dG*U?fhr,sBbUZYe(op.V*c\;\A"ƿ@g~;\L#Q)׮ˬ]tf&D-AÙ2.g)G=XV,L+ Nŏy'3ɓX[6u n??>"S%= Z}xIإ٭8W5n} o\Gà^, jPkSDR`axضόS: (~+E&[Ql^a;>"2(e-MLa!hS;HIa]ChZeDA4nRšQl _ t]J7 @|JnUj'xnu?Z.-1Cǘ<AF}6c.8P2@02̔R=JUٛyk_^ZRӆ=n5DFfRK*5~0CC>֖YH |"E4 pm6ٻ3VxAvjӽۋ"g\YL߆08\z3ޟ$sxs\qn˧@(ĝڂSD1ʺZGDxSN,˅;2@`) UHE>lW;#a!̨ߧ3)_ G" bJ 9ѓlȆHp+` 5Rkni  "Eo O]fe~zadɳ_fZYP(J!<5{!$}4ۀX¢qMX,l.f5߾K[,xL3ht 0t@ZT_qavi>"=;Uh>VA=X2!yw gk2ԏ{jb3SuL̩Vs[I)*ZFAYl嬴 ZXI2Z߇vo6 ?wHYb B [pH\ EiƕĿ_yO%OY80n> 3zluU7:Nol]l1JYBX#:q߲$ ^P$et>f[P6Z6^ͱ^:3g8}& R7AdWYۡԙ%bUW 4gyO2©DTS;yb?cŨ.&~5 VH cYN IDAT T2TC)CUKb] Q]?P?1Ҋ ((E^M?ϱDxlDdE6UD33O~iH.FR^,+Ym23o UՐE zJfyp _S?C)GePLhekLθ"} ե`08ʙyP-Pŀ{B0w.l1\idI(rN#\}TUjڎ.g (43h@@A{`tmWfUZ2Cx )lxx-qY q=X/PVPC Z 4*U t3f>Wrh+9V|gg89'Ϗ ?JGKS۲,,uxa~z1,%eFO7WQV)u_bC?+opڥ"iMv V~@Qf$OS[4=GaK'rs "Q6(1`XfGe=d/՚C&+iģO{ >-C%!yK7(Ē&@XBa-GZ3L@cN,Qm] T_UCH!Nۊfw\p31YbY٢TF%hOP,e oDX[i긾 jhJŠ`SZU],<ϒݷ|R|*&uaq ̹Q1h;T Q&]6..?J<8k# ƸE$.]ZRuo* |k0nVa0U,|3Vb/bQHg{c[(k{\[H qF"ikҊm}A,0'҄mu\8+kOwq;ߤY9%HwJ }DAkv[~>C/b+;2.L[8MW m݂n ;4VjW ?R1cCӣ?W_ԣxTFҩ6Hi1S&Mծy/M/[˞'۽;. ҄u[<+Q1k8GiAeZAk&He[g,ՓÏb*s¹: (Cy+3 c Q+_M>e+ic PN Dkl(7 qbfAx8'`JJkHf~U˩ѕn ijbJ;xL4{,6U\L1= BΤa5x槃0&\081q~^&sߋ~`8|DbW`4C$~{cbd4Z`4{Ͳ:$GOR^*h'(hGz=-"{(WR|w6]}2 ӺAbtHXbAD"hUX25@r6ڥ!^V޸w-=l+ v>^nڏ^Fg)vF [XJkP$0PA] W|3:EOkATx<:_Vڥ/aR;[Umܫ;+Kq=UZr4'F ˒|H՝:nQ>h m#]VEfBp_Fo1󤾴ym| s 5[ \APA69#"N[JWk-a)T(/sEH} }a,5a#O0~z#n$1NZWB?dw`+$,+๔ ͦ> ApU 0mr=Tv=(.n]-HqiyK`{\ Li,Xed$K+3s7=bl’w.x.xD }m|&\ٓ&?\ "&ꉹ,'p] s$H A廊/\c*ɕ1^IU347b;[ʤ @-ܶD{/>! a"=q"Ovͳuzo (&fŊw/X0n1~R Rh?r?7Ai JshL=Ba?0!{mfꆄj6b5x ٿgmn,d/8k¸c hYX -5SX61en&R!cN8%ZPҬX8GԪb{PfÛXP d Mf"2krp&3I+czr(6@fYVul^h ̜֡qG9U D%``#4.Nk1& Cu(%N x(݊oe} þ>.疛4 wW4PV^oƜd5СSm4T*V$hӔ?<~`:[&/);J{?K3PK bzZ =BqLKm݊mYb^K6UgδkPt*Tn S!}7f`Tt5;֝ӝ8D%҈d_FFG DX p%“K=*wkưOoE'۞5k|Ǚ56%~|HwNZIg0FeIqζӿnMmS@{vf%iڏ`ىd8h`p;9V?{"Pg nV .\A/0d ~v/4K9zd ٗMc!VylDp"kUs݈1wE5wcx`X4iUa { Q)*E}\vԝH)gͺ jBSjw|<\a\*;ר(|LW s C8BBB-${fgp͵ (F4h̬\fvs>=Va=B8l,GkGk! Ϡe <%HZVT&5xWmU{(+)՟rd|,oDKVt}l)Xw:ēHzZWdrp)Q#OtԻriP w!+]FY⧹Dwu}W~w?SnbQYdv"| 1`&Vf/}`q6uΥ x1+Ai,vMk>^;i3'0CmWtki~|7˸8Vm`)DXQTλAiI}XY/`ΡBmWު2p(Z\d ~6rǿA"ւE8RΤ9ocwq,B=K18QNLedMqV"՘37pu",YJ~L/#_(qeq8UӓAgS 0g[_ê[[)D|9T7z'U\I{.& [8TDuJ,3-طvid."H@bzi$،튓3d7hz29tu09dsʩcH֞^U:!ZR`=WmĒ/daT9,:Ord t Gh )9`[82=- i#!IԬ~ZJMzrz-M Mv='kލIyt}F=wq}vBDa5df&{yp9yDSu+dEyk^iO*y)t8j=ٖ n-KU!9:<Ҥ^({i2n N{nt#+?zGtwؼT+r ZZ &N}_QQy/gz8Ie.; S3+x?[`t IpFv?(bU2wOk6x0|q4C;-V^N!D5*>~P&,x071n! R*nۆqZCiX9YiPXG\A foQ1ɹoĩx*gKT4s' NȄE~4hysmɡ'(ÈcglmA{_ 㻀~bΡ0&"ku(aQ< ׳d]l ZCP܈tvgu鎡ItmVȃ|ЂNxe1t%G~>ˊ-ލ–D{uλ!/*PgjzXmГn2߽,P1MBXG?n'Z]Ȃr,N#h)E\vPqBu tlFciKjJct\<&%qfljsW? >X%N&l&=Y8BuJ¶0A$2XJ,8cB~2qk0Vx5%(BYUv2roegۍWbj3\$!ԟvTF#0К&2831?mK@\d{8Ӽ'^⍔`l"kfNVSDb(,)LU|(We}Aa8DiJVnq)yĖI+Ra.7P:^&gh1_@9j7˪uX dq--h޼O!_W~C+05f)|&;ﵓ)O!d<鋅 z%:ǧnaz\4 !o_7mbbk8z`3HwPjU|H)\(y0YugEsMm,BT ,ӕ3rZ^ Y,a3@5zZf+.BFGQ/k+p2uB*!iޡ>&'sRwg3QO;ٽ@ ʳb-u+\1DW`:{.~|)JعG!Td8k\v=j"1yjJ px۽Mr3][@Qw\zP 3p1)ܻLc n'ML, Aȕ X҉&'>v&,LR|ͲXpKxǺע(!W|~1*'DJVp|Vc&L$Q2n@!&e0}NETL!c}ll͓Yņjq3@2~(_a]8SX")*(MST(a ].s0붭4혥f޿#NsS_D jǦv/p} Ɨ`J[04},fZ]{4L6=d5"XÚ5̎s ۴d蘛D!U~Sc]:IRO^q~{,9r&o(7}B]OvW(ZJOJƸ Фd% `DkR+&GmI%XK&ΐ\Cef"YgEi|-˔de(E-l;h)à483U\+iMerLﮄC$MQ S8.‡H7 ;_]i`tCwH[R+z48땜r .gJU8M w' X 8O̪lۚ20 I&b5x+,cϯը8,^B>YFa6-*3}*__EK_>{\2WG3,N^u[y]#.OȳH;{~%֮~WY\ BpP؍+t߸U(C*M&35(A.n(w5 A6G6G_'`#];Rh&=؛d6zL%d^d n3SuCGJBp`ըV*1_v'i &v|(Ыb$Evb{8-Mc U+YEP1V,kxn|ʳTb.-S~ Z[h7xr%~Em vhسX wVdaj U'S#f!QpJbj"J&f.OGg% 2i6Qin: cS41}|;g S)dTTO9KX+&bXP Z* L/)ЗjR:9ViȷLgDTt xk|]`)j]h)*50 ''k4=klǸO<2ǿU/\Ą}Osۿ("bPX>0yuEua&nUD~#lY\ ȫ?-Tp~kBFR,`H* 8+B~;!F lqY{ёWڨ1oh'23f.`GZH5oc5KN"7PJ7\ЊOvc$I5#Ac1*PtKhLJWO5=haۼ䇑bFsSanJ|5 -NN[r}?٫j}0ciy Q;Arݥ{KA t Co3vbV岘m4B*t/Mp 'R+3~4UiMy*xՑ} OXE-1VƇ2G9ta֯e6 U@F";WP-j ZƎ&*oA%,-L?`n.<"vtAt:PYvޘH_r05NμP)L'.2௓ _;o4?I̳;SP1;ȼMA [!p˃41$VSz3>ɁoM$\%&o(naXR&R'Qԟ7 z n=AB[^;Mn8ͽ:$q">MO)|I{ \Ída> ᣚ0aN9lgSb( ye74ssc 6-ı1E:|as^ugd"ݦN tU\ۈs(e .:ȜZ&H;P9h&E70aٜZ:d+_F.XN<O3y84{n2gW0Dr1+"\^3xn[" Ľ{']&6L`:R귍Kf\UkYK_@(#~LqB1jL-ſ`Ȗ̱,]1ASAQ(ӉC'22Ɣ|/OB܁ k^ƽw21?G 7a^ZQ> |EEz#{)$Bp|$.[ C6 x źҷa'?v;Ӓ}+1DZ\aczH"i9b4)0xG.J&&sgޗ"3#c |M0|lsq0t$F%Ճq/ccl38}/)B^Ȇ5ZTd Z` 4ME@$Qe2|x&RP7F~Q/HÐ"{1~u=q >s #lbHQjZH, )͘ssb^J]wDka=y\@0cX,2%T8~3♠\UE0OY*U27K_+p_xԇ%HA="spb5HȀab3NX2;֓Sf ƍ7?]ڊ}b%it(fPargBJh}-kx&VR$~mkælʅWQ.Q)qpw{lIaq-zyNDͽHc:f5%b9 MW?gA.X?yڏ}v?”dR ?[t|+6Je}7bwsKmd7)efRUbn4,;Lv܅PoP(ѕFBs ؃T &xe#8ebTSL %1KFSl ;v9E K3N{`Ȑ#[u' .7`ۨYE2R+E2Y-9Aa93WAsVcUMMaWpi42*- tSI.SǴ@ֳH\Jhp+<$%[hV /g.^r56rWh4㲯G 6د CC\|ON5@mh eLvЮ(i  5sfYiumA{zQ~s\fFnHIܯ+@[XMږ.w8t^:( ս {D|>g2ͦ/ZAX6w}aǟ jvah)id#j*-`̃?ado|'o^йz+`׃Kjx~^ >pS'ߦ8 tBi$M#T(A<7,r{kOZ,SRUؽl|!SjfZ5Zm۩^#2(7H&v2ET^ʷڌD0x3Ξ{ d߉ݣ[ѣvn=ti %E^XX j(ܛ#[3BB3/TLy2ĶHu %3d37|!vl&2-fxMj 0?R1g\S(ڗz&fߺifҌg~Z _C/!2W)jݡ'į~6 |}$+Hf->Ϳ}O +H>ӐH$8 y#)0ZXMy= kR@`Ai=,?J{p;(> M%"Uԫ4z:یqZdf' 'W<c##w[j.E U3a{2!mLM0eZ dc&^~v//7зЅQV4b)od#*㇙纝$ ֚b|Y2C8ņ's[hfQ)7IN:[O=RgGU(A6o-\`zc2Jl7sz>r4]LҎ +ë71罟zTv08%][#d&SdSlqv fQFaa42$Pxɓ0xr#ͦLe$w l=oc̎d* C.;CeՊaOFU,僧sA'psS4'3Aǘ=:v-e2q ^$+־MG9ξVXDSlғҫQfʪ nфsM)w(ĪW_^cl=S$cS؊:;HhٻfH#%8WaW`. pN}*= nVSR"l|34HHӦ M/V "AW' M'lOK/8nB#b7间7&1SЭqpn.. ?W ACeI̙.{9> xWoǂ=k6q&x9BQAQHI AհSm08G%m-RHIB }ذ7!OL;3 NCs⶝b%=RmjnU#P3~ Yfu .P://]l:+_mYmwxh1R6 vY)SƫUr񷀞"'000@y54.)L\"VaT%Fl.: O²ڱ|AMhf-b%x zBK3? E Y@3McyRrğdL85$Nj*K".jm"nI.$}IèYd/_C[dˈe*&0 BOl_!% @@ |%*0CQIO<ʡTuV) >ň+b~\ZP%+Wrg9[KaH6v]z7|NI'_s*Ma[1 VG6hT4@KhIYs",ΡsnAԇ#1=:KUIlV=@z=[a}w!Dp%c~O375'RmAڧT,73;kD̈́mCVxa&u5B-lXM|2vքz fm* iN8HZo/-돋Uzh$a#0a<Ɔqu|(:iEbX"mCR:7<\kO>MEV^el9-[q`'nH5E9*r",XŢv,39ڍ}z1X4LWV$L u3Nz r/{p~4K:zig61aOiX4eMk-ܽx^b[GiQâKv!,䀚9+dքL]>>+cn⩻DV ^{N>M/b32=ۢh.UhTYF1"Gh<2ԛ'#hU*6x:Evbkce7Q߅';qUdEŤarUe À^K1Zbʔ, EX|zȚ$=!ťjP11 .{K=k̐% d \6g aav.^,\ndP^[`H|E|bi&qFQ-9|J F L×8 !Cʏx*:r"5m K ӂ:?dfSvDo6pip冩Qw68쾸 m'鶰hŐٵ:d:-Fil·`p֊}ލ͋n?T ؙ{8`1rP,d LgHOmSy8fP˳vFg`;'l0n0 ) чsR؈ BѢP,ḆO6 } yZ0= zz=EV鏣+M%aDQ9ƎbNy k.jzX'Y$JL ,H=W&)f0~f)4:,+G*/W0{uk7Z+bڷRI5]~`nO<僌G_^y;̄Qn ШRg?jm2I% S|oh4yK8=M]|h]LmҨ0+gcY0YNʇge,s6ef"7JҦKSuхmeP[~w(HCԶ펹ɩt<-o9Z;Kw:[eY{ȿkTϊqEN)2v{;;xtԔc}ৌq=~EB$ #NSHOR"|MB(טJ5!t8,1ׄs1m''* **0_Sq;J2 .#vBc">X-SHrF듬{!}}_Bk>5,[h'+ BMXtSZMY6" wEСp:3žY~<79S,Bwr˟ϦM,%M^g}!v(M&C'˖&tDz`z;SrFs2 wjiZЊUբ%&NO)9@҂Bܪo'_.:2ѣ AN6owegONzB E^׶6,_w׶[YWW׵UXQTH'@Hש<<}fN\/erML{"0{8at(цp}}E4(3d%-x*Ճˊv<2fYMrqѷtT3)%xܒ~ Z(˲oRJ.@Iu$$TU$_ѬT;Yw +W+֩h$Z4 3#O,4 ωXwƱe߉r )V̩g%_!kDO*{oc|VLgG!K֫\ܡZ5Q\T%ne|ƛ"sPI߂H1ࢠ%" Z /Ԅ^l ?Zxgi{{1+)o8)Mt\2'^Z!ȤI$8?噯{48eVmbHf!]jbӷDSu:`ۥjuI 2=E΢(ɫI4-cI؈&U=QBMϴ]s)(h$ԇZ+$(޺>\l"껇]by6Ϻl}ߝ>AY*X&T<{˧e"a{D* ApfNY8[} c܇'||wa-:(E+aZN0=<Ҩ: .o.e v!~_\CO ruL؈l =PjPG=ia"7P _v"<?pggu|8'&Hk^u͋5>-{#I.yuͺ W rqbNf}RR{j4tOgJ◿n {=l76ނrz܁w̘Y+Ws=rγy;($,j0q_ѿD0qGYJɇZXGˡA3Hu6I%M: ݗſ#2ONJlfPU4:ȢRstfstK_v VIX (X a <Ȍq:V='M}uk[*ɘ{|B&K:J|yMA<٩>vS\iqR'/b]D5ەڴ /`Kx7ܗޙ'Ok#,J5}i,Z6w36pWU`B ok]2Ylx>>EѷsR-٘(Oؘ)Ĥ֮g?f2(ŏQa Q+[\lۥ^DŽ!F':>N}u`YҥG6ANN }ߞH%8&z7d?)z=|ULhX`aT_mPsN۫:K5A"EM۷K^FV VroENհVAA+:( 7HˢCv&*lN`|"D!Z95tx5s3h,~gxH@ٻ=e8)zjQoְa9P/1{$oڜVuJZ# ҂?>Ϻ!TfNW8?鱕}`&hfIB'܁49̏JGW-]=QF$B^o#Tgfok>4=ZG`Nl?B;UkVZ)D:ٵP ͜t ]HfU+6̖Z0]{ķZb3Gׄ&j9ooq8f x\! >GţSrY$].%o39awN# F}4tDeq|OɫQFl]M pj~KŴpub\@HatM*L?>.z~CՂ[đ-!O+|ϟ%L,s| C:a8v0T~p^]ElSY'g2hN#Y4m7S,;[@B1/ï^͠}0zi858d)8{= JVFJ} R#Wbi:O3m<6Wa1ICtK4C%N5k,neV!R)қtM̲X|w}Ю+bmI; p,μ'6D]y6݁($ĆZȸM m>:[oe.C4AXUj4$Te4&ILN05Ÿ́tJ) MgccyK̆LQN\Bk.ߢ4˩g?WBOg )f"{0'RAXzW&x)YJSl'3I4FwaPⵖlZL1^po Y:ERʶs~k4/ORN|nP駧Uk95ʳlo70>'C7҂TKNq`PfgQ!`ʓlt4*K䃜X+@~Sh;+:Wg-3g&f(/evꤟ[Y%!\%Ĝj]ۮ@dq\_̝V ԉ\85* ^CK9h.E#ԆyʬG%|_>9(cLLQ=2KSU鰢/͆Uw&b+FJDƎT?[B6#+BIgm;}}5Tb;$gO+io+8:SE*~lJ<Л;r8լo5 0*T*avjRO\:ط rzKJ}w{8ܺgv'LïL5??m㪈9$c׈ /J47}rsdX?jNXO:ӆM+gvԫLĩsAiI\x7/ny'A*< njԻ?O~Ms: 2y[ ;IsQ|Ch[.{Tc)Z1u]ēXگ5 |Twww\>ll~ ]gӧƹg iX%~ ŪN`؃Yòeh"V&zY~K[R$vPX\CQ-s`g̤,e g>dFeX @z9P&nn!:gO#f6㺑)X\_ 2PcMѬ7<]CQ<5or?e5 Nv&c;Ǔ_HCX1Sن-ͽo p"Ew]BoH5,L0})cZуMdret0MX ^.l[>q%^/`C|b]nԚ9ڒb&I#Q/lq=(7Jvj@7) ьY`;W-ι~{OG,4jj <ż~FkklCeK0ӆOY<4H)z̄eb@\= l-5m" (13Ek5}y󢙟tHu`oϽrd}^Jo-JdC j+6Ɖ3)v&D Sw4)V%Ϛ[ILl壯"za`٬._ =UT F~px.+q*z J؃8cJsٽ4܄ W' \476h޿XU.+?X(4צV=õϦtO#2Vȡ9y7݂L!Ғ4h֣q0r6Ȕ(17o[ ū@bwa-&?.ȮDik"; !LH +FQ"g`潊)3Ât/H2ɮG^aRiէ5''_;v/`xIC%"A~>/mWZ6Y34$B$㌱s3S|Xãv3uƨc֩W[ .`jI!-]5eR>q^xS@Ol4ޖ/_~w>!n4-2o7o;n|_xۙ^^.N8M k+k-CikI;N 1P4U,Ͽ"^*j@#~)~Τŧ*Rc[`~*-9aH/Yk~"] !c {SX@'(!wr̃h`BB޴.mBKu A5ӼjLKj9j;XJUR î ˰w,Hм\Ḣο&5d1-_SX,iaQނ1*q]zELvE Wf4*¨sKYvoqM{Gj&vmBL'r4q cil3: )xUu}x3]f[/׳~oB)Ϳ%oZ1ҩ(V'O2S28?Zb?S  ;s Y)n0=Պ+ѵhTXEWso; .' o9)k Sq IDAT^rkM-%Z7n=hwxu'֐>ۺu뮼(4*oC_r%o;x{CImdJryFhAY^=$71?݈nEZ>zu =D*LHGOͱ Ǎ8#O)f|m_amptObSbe;Ԅs%R/J3hrI dWѹil,fd0|,uhWnE;TsTs_ >߁܁:nVz/:q+i)5ޝhyB2RFc${:R?v_cβ#n5$NJPF E^QXDKAF)jDy0jHź O*4=vʽnM&{̤8y ܻѷ1]-ɭb/%.tPbl\V#UMPoa5۶v2`zU,Ç`Ƈ̨F-Rn`#K,Zʕ^FHݜ@ AĂwLut=:Stnsmo|,eGœ},霾ObUgd26l#2Rj`i; 2|8c!=¾ _9JWđ=k͂ݐ։*u6v?酸et0_l6Ц,VJ#u |L Gn'㮟0p ~?y3#jZ9P/Cvra!]Hy .TG<ר@ ]Îm$[:sש ;X=<\[oJ +ljSў>DU—^ʞA~_vmpg*%T~}> _}G[}XAXk4"ᮋZmpb ¬a;b6ZR^kÏSʫ0 WfYz J"?; pDVp[ak>H0wf4ӥ)~gQ) E'd嵥*{wS"@*|WaW\v`nҦwpI Q SB.M,g,(AZgƬJ: {W>e+R8^R=>Ƽ($5䎎c#)v/oo|ϼb#n'?3פ茿Lڑ/ɹ@R%D!O:OyW` 7MyOw7z+EA.,Pad'? {W2|}JK+bH΀FoN"kto缵 jJBH(fX6-Qbzlm:V )$%Rdׁ[K okØ~mSrh+oCU"(`e~7:=9d1 QjWqd0庤p8(1UMizU-%<, g%pFA˲R1X*dKtq2Z_+%y: mxX;pe&eSŮ~"z@2gX&YOSZtݻdZkaZl޽)gxb{'98~@'i@)iP/E=UMu).;|`ZQWOcO`zϿ]֞[}mZm4BQKU/:?L궦iEiM2ij|jm9SSBA{û;VFOS3l@>O ܸqX45_SҼc^`agN3`걤t(Oa4|+4yWGc^]?T z; ΖoGA}ؽy֪T&4ij~;Z7 Nܩh]9@(4*%nοtƾ[wWa1 vL2Gƺ?ZX,MP^&H$6+v'xr`?:+cvDK:MeTA  Y^!&쾤^n L(@\2iui{(Gc0ճHe{oطi-FaT2S03L+1> V#cbZ~.bq«V҉%ABt$#33 qA+[DD! :Y1u@}p͐=cNi.&L&H&H/c>:`gxĭ}CiLnnV pYc zوh;S.e/R"2:֮J¨i (%7b;#S@z%eGeOS- DDlF,Z}Zkl˄@f4T+lyEuDvwd4N_M1IJ)i}Zx06,!޷+EsДEB/V +o!+I!E2#b)NKpbP9{WD 4)tO:1JQٓ]r܌Qiӻm]GmШ5ӔJ)=T'jj:{ `Ei~#рrXj 1J-d84%*ذp:V nus}. v۶m;ӎ@ӄǜj5qiXz__."}ooo&y@J,L羈oi+9᪨죠g.F bsDdi逨\ѦO:߅2숦|Hkթh"^*MQ2Qf`0Y|Ư?#n,؏:Z{&)"ȆS;KJT'/<8oN@`P߃A'V&UˮzZE1 &X^Lgt[v̙DB:8.f!J5 =9 O.oNAyLG/ ""= H-%`W8Up$1j V-߁2YWM',bvnj$&ȵ6ۮ[ZjM PM@ :GUX{xئS-ARfYnFV,َCY#RsPd~f-6R& zC`J 4;rȱ[՞LJ Ÿ߈m 9a1Dz;900ZoԒkc/8 Fp߭l0585vSXTJ7OϷ V ;gN9}F(e89]s\7\e'Ė=i$z]T5+\RB (DD> v J:ߵ jsA>t%}$"Kn-Z@QV: RYrdQRD߮Qazd1?rbӨ6~ro+!i4}-fƩ".NYz{ɮ28#eM'Zg褺1JAz0Fj6nl"wj{SqAY {zMk坦+,-( GO(/61@:}ggӔ6Q;LD5JVdd۳N\G&l\P.<"oK)f|0S*G'k:3׾I9 'mMj2Q.DZm57~|ؒJޅѯu@*v>0)YA_S$AoW:VpzobbJ$d3-]Cc*"-GÎ>G Ě/`pHDQjne;u`rJC뛼&dqpIwɅ{n*xjXӋN^3~Ço͏]6RL鄷imA۲?e~b/˭1iOG =^V 9B\{9>|㵧)W0v8  N}Q*1C$0=3.Sxwm0G0A=i6K>>@}:ZO]Vy1r8t?Ef>H{6\B dom,tFY@lGBw6D}X]cผ%6i%6d+׮w(r҃~bP$TbOwf\ʉMOX%39cEj`Q-1&1Jza@<`lI컝Cw񔫹=)F5j<+z::(OS~ReҤ >CITfl [ Voa_ƈH5:[۴ޟjTG45i`Dl60J4I>)Z[Iy Xm$t8 Tw};Gx<'W𜿞v|cֶnhe! !*E׺f׬%\aq4כvB}n뗶EbV5˯{EK ܿm}n=X* z:6M6*#ens/G?n%LLSѣIo k^"65w^7EA ޼V z 3arrNa :/#DXcg>TaFK)-xMS& %H ) MjĂk8Uʄ\=CIkK-%c. 1IؐʔSt=);c},N씯%+;a܄iǸq`ZmRa#FaqDw I_8X+MNg~BۿVdi -mG;0$QWtD'Ŕw$:vǹp5&Q8ůf燰eץa 2|"Kz~ܘj#v23kScj Iw])/Ihzʥa#)hh!L=JA5ROT D*$W#L;~ ! Mh7һ>ǜOӿ NXG6MHnH,%iΙшV%5jqsg;R-!?fp,?Kd9L0җ8qzժն|tu޲گ=.Ao4`DT8 ?WFQbFfK,5mЛQ\ݷʋV%۸l%Cby4E#b1_0-V]'&LQZF'D Y|Ud/o\.Qa幼c9%Qh'+TbjWs*djԧ^G Ŕebw@%O'{AơC!ڍm(2P/11CMQX;=M~ :;|of4-yC"c-,1AN(xv9. ߘ]=d'\\utg!\CtJLÕQr#`뭯 ~3V%ZEc8ZaЛNqͻڻ/dLMgόVbIJE&PBγ;D)t+,mD e=Uuw+v^1ZZKvV 5PnZMcTG(j$Z;b--~m'eb^ڦՀV\NBvlp#ݖs"tܺtͭgk_oK)˒ۊs}MrfbO 9[OV}YzfJfjߊ5X+8n[r7IJT`y{ˎjenl Kj`ÂyߖK@mF7nj=p;/[v-p\2}:3=5,FC*fԗ\nM8Dl`MoHD4B]GO4H+pihiePXMq5fv8h+ ߈ؕhy C+rl6¨qId'ju/ z/?IqTf0kOpiFoy+ 2ȧޅH_~0 "s_= Lr64)Цk[("ΉM @]=˒i'09P 6sa]V#t=Ծ5INA&I+:2u!f .׾1o~69߱u&''˚TV~RTG R6mjm$xTB|LB IDAT.aA""d]&)1 kn>X~wgN/ײxгwry5QS1DR8u]u.ZOb,VGR\0ն՛JN>S8߃1p (a(&ʍJfLIK0*'oEq9\^\>ȩ͵>DIC2!cr׉S) 8Q^* |ИF MzR1-EOBPky9[t1]I ;lS9uHjڴo=丒f9ѹ=hYAK?+ό8LR!Nڥ==RXh4ڎQ4'|m[~iG=ܨ'V嵭1'A}뺏%SSSS7Mӏodm*yp|;yvHY Tg*r5P7$ڱ->%+*zw_zѢz3[\ѽ$2ޕl4S\n~a | A6_ .z7DhԱP2!S\zH|E 2}Yj# U(a8<6 *3 7И  )WZ|!4n yh$cΥ |4 0=*`n꘶Uesp^){0U qqmz,`ֺ$M'R-9B'3 &xU fHYZ6 1&ub(gډWx`]'"]͉2>5E&M=#䵼m<lώlvUh xijxٺCX)<2VЖJ'`v+4M7ocI|^ 9YԪU6mŏJ)VƸ F87X2d˴ Q%=pRN4 -^puFh,աR/Q-q{\32kl%W/Mo8 LNN=jCMQVm}B4%džȚ-[vl _tuݣSp4iZWWWS2J֭[|n[~}[ᶳr!DWg'^ɑ;x!2^ocD"<[SA?/T9p&xkN\3&熍=Y„)&ٰ{=uHLt^yFfrriEk.g",Fk_oҢ1Amrهa eQh 3pEK Ё-e:p,*3ަII&aշ%ۃJǤ%!e2"( RѨQ0"e[Q֋.}7;D3Ylu+7xWsՎ2ӱ&jNmi7b=G 2YX1S[ ֓O9l|坁WpG9*2a z2ҥ۷ooOMM=ƥR{\V|>ԯ]r{'牵Lӯyܙϴڶɷi333p1LҴuO`|ޙIQ_ަgcfXm`ADQbb 15c/՘D5&d7!AYa٧ٚf癇g鮩nih* |p_t ̛?$.L1|XkL t+( i.!; by[ ")CirHj.L)@c E݊xH>˰ir.'{SZY'~=عŨyу]a|13UO fx~i*X].>sqPiU3,ݲ*[?ӳ@JpZ+~g'_fܗcI/oNsx@uvD !V+P;#1Ê\s쓍b‚YhgzY3H16EPZkPBӧOC]2UUx< NY$g(8WkU#4zlhK$~? PDdYwS"C=4`F~R؝#qqPU*}Fobby N/H؈tݦQ)Ӱg\ aZ`4RxGVG!؁^"?8$.0Tz;ӑsҍ2I4-o.Uy+@(D\6TO*fngKj/=N#2n)rK]$MHɹKjU (dѽ7Iv<r*cjRM5n`FW_Khx 5m]͵Oѿ5nġ(4:Hm}.# :ɭBU sD̈́Exq4M|hjc39hD!^]?WE/JGqɓ5M8ΒLN&z a.x<Ov{aIksx^Az{{$:*|򲲲;v#$ݠ$I8p7>2==^pާpާ`&l\vh:;xt,cX*o1PMC>33I @򪗅ʘf ]鲗rP8Ê!눴aΕ= ;G*sP]D8c=U|[00qL ŠQ H/Bݹ]k#aD?d2gܣd:XRq<}x+q-X nVLTT k\Am*6S8O\9= 5ܪnVNulA\δ(֒IAC3,-ǣz>:_+STD$Tg W'e)3]Smmx6 ؚa[ĘS0} ߎ.zǏߵk]d_Q1cપs=WUU=_s'QZ_^^>\2 D4ы֭%`42b%`ơPwTz̾ =m2xBET@W޻0./$5/l3ubq@n,Oh>2.={dծ#];r#_ȏ/Hv()շyč )jMsKF52 ^%(|(2iΔL.rQ8D[O_/q-*4s̭[3D %\dYeyzK.5jUU5Mn0IliŲV>)S|HϾXA+.ѣG!EђG*lLdԓۇo;U"n^8ЊmZlZ=8){y1~ Bwѐ+z*OCүTfG//U_->_JdT4dc=,1"&f@o/d7 ]VʨdI|#R|v",?)6SU +C4\$񈄐hJBcм8ͱ$n F]EfwkYɚGmE;c-@ 瓙Vrvj^ISshiY1c?B\P:0B{gchmʔ)``T_=6NzusYHkyM> I`744 v%|iii9=c wLïtJ0q"DѲ ױ%7j2BNˎ8c_ R]C8_k]!˺g@{[i86V8/ q5w5䀵Oc)=6̬ċe#crWg @rȺ2*D/kUq]!{!8@ԥ]vi@0T:jޢNx:>ickw0tĻ:+"V;U?"Ap gasQ?wj 8*Gp&'j4VU1-s0^^MQ@YM6G?w3k֬X,6P'Šf xBiii 7߅ Z]Ҟ|ɫ}tf'(4+4`.EU-Oy~+X 9B~b`Ԝ?4 -%|Z|Z.y +^Dg+)$pkxMhB_7 z)Д\%cNv5Uɖu$1͗~ك? ?OB.e?x77<|@EJ-_! ߫̇fx":^'l|WZO[GR._,{!w&,̨'ʞpWtS߲\7wBcx<hɣØ3W݄H7ahmFk ùNqXefdPaRʍf@RÀZe23=#8`$-Z 7xt@wo EoIpR ב)&3Bz(1}NN*aYhN _E`4{sӈ9 F s}<.]ZYDX]]h 9hL,:(NOwI@e1SĢLLbWVV.Xq1󾬬L<^UU5Tvtt+eY%/EPe`.xVÛ[~&vRb'#G!Km__{;nYm*f/>`K*<)_5o#!bI|axZfIgh}njG;dlz{+呪qxD( uZlٸ⌹g7J+:r|j:;iD6?ί>_1r1<5Go}k0u'i`4ۋqSuVxf#` N }OkAƾ',B>vgsK/5уwv#0f)7Sn4Ҹlj7{;:H\xtxkm^\Rv`V#sYg\T,De_@uO[trrc5? 73Zro4|hmM4iϴڹneg0nZr‹.hCZ)#-ZP{24`^7#F U5y////1w8LN!ԃW%cRMcJ4NsZқ  zeCF%cH>X^xv4cA#Ι2 m-hyH"_q>$$􆍡|3xLfw( IDAT2+Č|&| Hv*lkg*Qc^mi ]QیͲZ9k!u9Ǹ< VZ߅y] B|ع8?L9|Q,*b̗t>z^ui@'mm:F*%*B"Ƶ.k#UҰne3$ixڄt,T*5$LMMSӴ~[塺IsW__yc*1v(26ϣmX:/ ʻ!2X1'򅶬 g-k9h}Mw|6C Wo ΡI|)jj;?k{On4ԩ K2?R?k*ulT +16)ٯر\*0#ˀ1oIM N!K4  =%ˉIY`ۀjKb|Fi!D^5N9 <E\P8KJJ,<2XRPZDeanSs@Nzm/jm:~G3uΡnJEņ3=P`YY~Xw %YWC8c}5e4l*7bȼIb7 Hr%em;_v 3&Zf"{=!" eYtc?`Pb0GqO_Ʋ-)^u]־φ:^oSf^CAfXGg|OFwPu9;H]6{zz>zhaդǙ.;2KL]]g?i)Jzzz~_|Ǐ?xKK~nw4=θ&x?nnWՈ"D"uiU{1L>y$ $ddvZozjj0 X&ϬRYzj~{ PWCԱ9e 1.5<Ktq:w#mڈ_V5C,2)ؚp>MsVC pN<JNEtB;B{ζb_eD2(uZU l?dJ}kɥ"!@Q $3_)U5C@ ¼1SC AfRdNq7qĉ' F9Lkɤ؀9NwSX\?qm ,].khh0kqv1gΜ!Ey<"el#6beZu-6Г@S,R0d eWToǢ [7|Y"B"tv^ 0=o|P.^߫0`z()Cjz|8[H%77:)`$oϘw5;ݏ$68䌅 MMd`t?J݅0@J"\MAW߈g|0\{4RSSe˖FXXmXıa=FfiL$gv].W4Mkhh0a38cƍC֓.BygEH aj}k^þCqssF9?;>D(+/bN 76. 3ҹN!ŽbTL_୥6}ض̚7F 5Sb˗=tFQ_FfZ`Ω2+U ߅vKsRƽNC(<iD6 };XՂ끦Ӑ@Ag/A$40\Y0%eVyԙ1c͛7 կ K'a=I$i7púubX 6ԩJeѢEuIE _xᅡjɡPۈO~+c[ۿFԢo\H(wⳁ>IB2`O=?mňpXnOHE0ltf8&SF0!: br[, tA" %b dCn-=H+'+pL1>A_Mi t=Dv>q;䣿9 Kh[__/9ު@V,PwHk>;<묳UU+++h4ZzmEEEmmE/_|eٲeFnwmLncep-:cF0]u B003fs싹1AƍsP? ^| (cP I34_ RVZ8,s.FmC=Iimڲ"oS#VΉ Y5بUB'qZXFh+H{jXp!oGiClcB3BkY/8\cz=OaZ[^^~FPyHyW^yeuӳhѢvm?я~>X_tçzjȑ\s͹{#GcXr;/aX6z!32[7 5К41g#=x]pg|9^"ogoz4=8t\p1~ʹ#>r4M]iڹ{՘2oqX <3IBhۍ-gb2.8pW!̽lL:,Ci+*λCrRORdHW:DOAzf-b"ز;dx<(VNz!v/셩T`Gٳg-L:߸qcSSSQ*&. 67pܹs5?3< D^lR,?m߅6ta[a\O.iu_K{: `~3d.l]-9 _瞮 V̟ivtGFc5FVdޯ69ZKÌavV"?*OMv])0*߇>Cpy􋲻͛ѼAbɒS|F.43>Zˋ=fpzՊVUU}Gt9n041R0k֬u??3o馢$|˗/?tВ%KͺɔY2 msvlǛc؊3 e|JqfEs]Pc6鄱ֈ̢c,rCk$"E46"&w֠? 熠 j5iō#-qA}T3?!xjZgdչR x0bHf dP ~pJY3^{W. BefȷߑQ$(Jq0e f^^ij}G竫CC}G'`!iny0Cp[.\X1P. 8$b8blހ4eT 9Ɯ3+`G(+5#k`NUM$+_r<8~;~PSy(Ěs(7 Lq*Hq24͹6dHt0vpC}XzƸ*7cըS f37\}.5jՑHdE3uuuTuk-_קLrOEEży٦&:e X C`v^yD@ P%$?kD"@ҿvnFg-ĢOFwiX #j@AhLdd^OPd\ >Z.iCa3զǜBdƜcOtADy]VMIgod)H5_.\HwvC((rw\F3f̘1gټyy7[lm,K$a!ڹ>k,8 Q]ZLwGͫ*^zo {-סMBFSf3I5cv\Zs\f G pPza=Tn3*\Gׯr7o޼o|&Lx&%:@gaYwkVa!@Jּ߁??5@ZHD#bDҿ1LP/::rR>|$v|"ƌŝkzis|]ǡd$zi T` { ܭk9`T `K6 g][NC(KD|?8͡Pl2MXQ9Ծݦ .^q c",XYkAfl{6X) JʪGix( 4oč "(V ߖCB4.`d&!"Ԍľm92Kfu(h)D flB LnI=;+!xte;gUGYSK Y c:ZvD7&OD ;ԪW;"NȒUTx  3'N; )Yy`L?yqۏ2*8 \~6.<^|Ռf6^=hW4@ȱ[KD[; =~[zDr&6mmwmV]vZlNQ$jQUSperxX)xMBYz5 9c7^xsK_!AbJ2nw@l@:#ؚ~X옚iCR:j:pR]PfBk!#l73ܯb-T%Ck⩍vOXQ: Z86]4VQ+o Ֆޕw^t,/9NySN0ćpx2Oq$x8ЅQ5ư\V3 գ E >pGƚ )66u_ 0F~g Hk F2_ ?Įm?U Yr!% P9"O<fHcvUżSqgؾ n@{7jF%"%ERzh.co[gg[[&[k9eP>r!>~5gTi]KC<%]0~TM?qx(16li-A@<k!m=m58m2B1x2B˙0l: < Hn2Z*P ?_B2fDi%Hh(cq>|0owڬܶ~dLler|KBlMwiDN[_-Ѽ-м Wd* JCx.3R" }x%;oxJ0.=xz(} fgpeCy-܃MØw;x&מW slJ4UUi͘ %c؈#ۈs/Gmh߇-k^?X_eQ w?@5rbfTQ|! ލ00X.Fېh.5M\47^eRJ@'%)`x,"_کҁ=8MJJ(7}12< %U~-kS(_rU:^7w^BG/x@ aÛf 0 D4JHq@fNF b2Zw^yKnT3U>?9f08q9s!roo/ j%Hk X!WY`9e=#!Æ!%!kT@߽s02!c*MA{־#0uqu0-\͹fSE~#.߾C Y̙st{:d !UDv+***rsr(2־o&V=qA<*}2ڬGȰyZwযƞpJ b@H׍K@iBa^SUabyyy(v _ %cQ"ةT11)D,-/{}a+߂ChÛ"4,|J2)ZGi5C<˄\1 xk9E1i (Zc-\k%S IDAT:AGyyyQvhƔd߈oDAl߄iƞK\ef2Hxx`4ꁩPV;ѓF x\YdH. OÅa>R)IhD8i-Ab _y~!2Zv4jGKP+--mO B襐XF7H'ڪ~$t HH"2OW.^2/alaeqc</Vr,+---ʦDQ<,q aLL}/۹/gɅgq ~ 7甕0n\& -ӡPŒzsJAhb=}*L$|>߄ |#NTN 16XA=p.J WP솧ğ-xl]PEMp#gN*4~|@ P0$'෿_I#j&Lkꮸ ]ci-Qk@ l_^%~8<7ߟ͊5|P^ g=ey4 0_ؼ}t*it{ hXĀr4dȪlJA Џ1d:4v3B|j)n J굿jxKkO !S3%eM_:TM|fL֞b:'6K<4M|gK?V2T1flgY´<ӧ6˅p/bJ|ӈKvNQU_UUUDe- ]z %X,V,!)lҪT*5cʑW'}j[5l};`l\u*kCOk%;,f %$uQ *cC2y~ˢz^{ǟ,DpxŊ]wPwre7 ',֊"e(AoE2e\0k֬bd29(XN$>JJJWd(r KmT?Zp~oaYsN)L  !uUŊoXN* =v':܃D4}#A\!atuuUTTidh4Zd&"}>_;/ĉ =?򓁊bim_6xbh8&~i|qbCu o Ȳ\;*=Szپ}$In{C8+nj{8Aq-A5DQRV"HQj<+ct/2fʔ)9]k @ h4J(i-A0<OQ*~Qt:-Y"HD:PYYyw8y@u\ĵź!c: !Z6 9ʿC1樵(.[rrWwZJ@6!Hk xB- C;Xl𡶣 0vX{XGQktC&V[dXնdm$9FUNwiZa(J* Ջi 9pƘ]DQJcn=K >@$Y]XiӦM6N9؁r1Ifuww+DKP  +C=\z@q|E"U#rUU\(J6cpxZAZKǙ&Iʢl*8V3#ه*uDž.]`IRUU5~AZK' <<$؅Dk +Ms"<pG#Ȋ+f̘Qj/ % MӊUѪjRx/e8nxZ'$Ir vGyr-ZqRSAx:TSUU%U[ ǁk޽ӌ %Sb`q1rVڂq(ƻ믿~̘1tqRG +[vCUMEQ=l߾SOKzB zt'eAPE>{<z7ns gۅ6-\p…|El"Z8FQUXsUhQʬO}bD$ {cn&c1$~(%N(L BJd2Pu}qma:!;!c21UUk %?^oQҘh(y80aJCD"!˲}1Q_0s Hk bȲNJTڨƾ6Lik0;{(q\:?E N|eNbsξο3?D">~eq\"7XqAQgy)Rd2yZ{Сd2SƘ}^(GnC +i-A W;455ӖeN@ PHv Hk " ~+\|<8o?KKK˩ s8n̘1E"Z CQE+(ʢEzi1{S?`0qiz@_P(s{t'3TED"8qַ +S='ꪬ^( ůAZKGd2yq4iR?OPU>)AeY+h2TU"j$I4 Hk hje{,WpA(cA-ZD Hk ⨡(pʭ}5(:jm;P( %bGt-1m_NjСCqC 4 Hk F?oV4xgeYnnnu4qoST?Ȓ$QmA!|CP(uTN;qkD9 (R#''Z uET*ekcXiڦMdY>3(̛7Υx`af:p2۷O8> NX6o|[5j!y0Ȳ\VV6yƌAi-Aݻw`4e IknJZKq?aEmekC5Aq"n+%IJ^w//xb2C&Z81yg"Ɣ$UVmذoς :d8YlYSJ4y~S{'x;0a}AZK'&ZX83{_%\BA1~ߜ={v  p8\RRxy?d Hk bV׿>ctbP2AV:;; Gi-AJ7zF1(L';mmmV0a¸qjjj{カ&:2AZKDqp{zz^/K,:u*(Pfqǣh<555F2AAqFAi-AAAAZKAAAZKAi-AAAi-AAAAZKAi-AAAi-AAAAZKAA x<(  Hk H_zϞ=t %#s=Mǁ Z8R0JKK8AZKG Y^/ Hk HF9@i-AA(Li-AA8AqD$Aq BXKi-AAHh % Z  %  bXIRtZ?-NFlٲ|r 8t=hmm*U1\.PDggw9sqt4Z&ct@$;v!Hk b4-Lq8$G4+_JEEŽA!FAK'oH$|ɲ2: i-A 7 DQ˃X,'D" :::"H:NR<<  n|>H|QF=z)ApSVViI]vX,Dx/---//1b .& UU;;;Dooo<gWZZ:nܸꪪr:Ì,/ү?_2 ~ 'N3fȑ#l bP( zzzٳO=O?ѧp$>֧zj7xԩSqtx嗟zꩊ\y啷~(GBӴD"L&cXKKG}Gڵk ,7oC9|?r-]vcBQ`ݺu>(~yC5K_ҰcLUUX0ܸqڵkW^L&??z1'|rܹ_1hoذ;ꪫAPo|GwW\bŊ֙3g.\p… @.(ʺu~RϧcBF?gy7s87eʔ)SvmPh͚5+W\|رcO;O?$N(ھ}~]v]{7{ϰ&;B^*+ذwP(X^Ph(X(Ez%RH}^'*z4(zŹ;;73Y^k}7/% _ ;㴴i8璒R)'''##?Y^^bmll6lVZߏQ(ikk+//`jjj("2zbccn͂~-tĉ)))lۛQ(_|322D̙3%%%kA@ddd( B#  466~zllo֭}uNNܼyf͚%~-ȟHtqq`0h4xkkk~~~^^^GG9sHz]h4ZjjjdddWWܹs,Yb``0ւyP(UV]rEGG>|>g{{{mmm@hOb={իW"""VrssC  Z?*m۶;veͅVVV溺BBBp8|Z9 D"UUUoܸq)ܯ7Y(D  Q[[C'--Øi4ZWWǏ?~bp8$d``[YZZYUU%**4o<1hkA@B ݻw{{{ϟ?@2 <ɄBt:bt:NPLt{zzFFF ~YPii˗/;::tttf͚y2A@@[ Wd2㓓ݻD"D"p>>> h41>>Nр<"p8 Օ~ooogggqqqUUMLLLnD,\^^pB4އ )))tRtt=* 榦Jbfffll4L&D"Y[[;nY,XWWWIIIyyyww-,,>焄@%%ov c@@x?dQUUuIyyyooo P(ߏsww_zDsssPPPƁJdeeeee555,Yd…+Lq < IDAT8Ǐ Q(w(Sۛ᜜/^9rDJJ{Sv??)Z$,,vss"ҥKjjj>>>RRR@`@@ g7o;;;qSth4ZIIIVVVZZ333C @N511p8Y^^5***:96s{{ʕ+ ӋK.^tIAAa*퍊tpp_^|YTTt׮]_g)))P(^UUUTTtG>|߯kdddnn.))),,,((=eee-C"?ٳG[[󋟒W]xVZEMMMPPTS]]}ȑ/~iRRRjjjdeěf̘14rccҌ3եdeeitGGG߽{{allleec777߿e RQQj=MuQVVjmmiӦ8ÇkjjV\`u{''gxx8777''D"YZZΞ=!$B󋋋kiih4=y &4<<2sիWMMM' 6[nժU] ?mkE0 bLLL֬Y=iӧOLfOOǏ=:EA8.'' H$eee --=0 `/VRRB[322***T*LP(蘚 ~sJ߿#uҥK,Y2aPׯ_G"'>|#ztzcccYYYii)766vuu5,p3fHeeeVVVyy9޶mGBBȑ#+++G6 3g~(Oڲe~aaݻWX!))ǝGegg_ܼ֭[,k…Srxyedd.]f''' *uuu6l[b̙3eeeݻ-$$dkk h?~<11QCCcɒ%ñ!!!㦦/-]BwvkkM\\\o߾EDD$//WOO;wayxxfΜijjV]]zMMͩ^B&&&FFF8<<<--mxxXPPB}]SSSMMͪG %>>}›ʩS^:ְ~d v Fr oiiaiZ[[;vBX,;VTT~$}FGGc0vcssΝ;I$B$.]0L20w\6ʋ/ Ofhh%!!a_]]rgϞCxxɓ'ٗ2>>rUkk'NtwwSJRD"MJJ;w… oݺUWWt:=55G28}||N:ႭuuuEPMMM3B٠MMMD$}JJJddd<8yѣǏm?(ڵk4틣ggg4Fsuu}yҥ/Cyy%KrgϚ?~hh7s988wuuq"`5klذ_297PC|Xp!`xx'k׮Rnd05`oV-t:3؀d2T*8,q'Ha||{\|.< $ق$[D"!L&'_y鉉_};w`Ǐ⦻#G0OСCS$z5k֬X?}А'' --իawwǏG __ߌSNuttܹ3..nxx[A"ׯ-9mmmFDD̙3GYY\_߯JOOχ@ ZZZw%:^TTÇxKKKfffrrȈ*_UUUfffFFFwwhKKKbbbrrٳf̘UTTdddgff*++7;rss333߽{WPP ,,~hhh'**500@&>}V\~}]]],{ C߸qQKK+--رc_ck%$$322ۣ$$$V|r[+..(((zjΏrrrrssO<)$$TSSytx:uT"]vB7/+++))yPAAA^^^nnnaa!nӧ‚†~"3I̒%K W>>>mmKjii544{WYY ZZZVTTdffZYYMS[[ ym빮vƍ+"$$bŊd/_)//g\~|X[[{rx}Z[[Ԥ۷oϝ;}}7...==]BB"..b@ W^yyy%%%m߾p2D @hjj ˻b  .]t)###00?j.))AP( ///[[HR?Zs<e[[ +&&&ƒdWW3fHJJJJJ`Ia,[YYBDYYYoo訂BɉD"BTX,}ڵk7l{h={-Z}UVm޼ʕ+_p:}}}=744+2pM]DDDuܹqqq}Ν;kjjڤ8#8kkkcřGPf9;;X,;w߿MbXW^e2 f޽evٯ`2BUUcǎ!]Ǐg0"""mmmMMM .ܷo{t:;&GMMСCk׮zݻw9a0D"8g{TTRCC`0LMM̾復׿NQ(̼u떀ҥKDDD8Q׬Ysv]]]?~WSSB =66VXX4###ww9sX, B?ڪ®]feeekkkee6PC̙cgg5)C`kjjlmNN !&&e˖+V8::EFFܹQ(V Jbll%4372<< @FFFv9[;|`X8``ϣ6WCZZ*}}}x<^SS󫪪޾}{ѢE֭˫[҂b!JII+d2HdDDݻy/ࠡ644}Dooo@@@mmΝ;,Y sy'x|rr˗/mll<@TUU׬Y .ܼys͋-bWV&|}}o߾ldWWoS<{۷FRL&J[[[m-$%%ELLsYLLLRRRx<IHH 555tNxEE:'@ bbbP(499y·( TSS+((`MXZXBB3dDAAAQQQN[K$~*))ეsѶ k/FK.4'gϞ4m||<<<<;;17qaaaGGŋ~䶶={L^J&''߸q*..nrrʭ[R( yyyWWW)\UUU///OOwժU+V`? KKˀwww33wڵKYYy͚5666BBBS;_fee9? 3444| w'P( AAA111===QgxxXOOHB0NT 7F!"cccXlKK˕+W8WCCCx<7777?f͚Tyyy---i4ZxxxKK Cwwwxx34448ĺzn ƕ+W_ii)pI|u}ݻOp$å ?{j.BPWWח/_9shӦMwiiiLvppxinnndd}V^ݻwGFFvww>())?>))IBBݐH$P$ 6hk!N߹s{ݺu?k.aaӧO ɓ@*!(Z[[[ZZ:::Z\\8===L& {l6lؠsΔr`חN:uȾpB{{;@ `dK7 c2[P(8##c۶mϞ=~Յ ˗ *//ZAWL&ڐA>zzz怱`d2?~,..]n0 >Niiijj괽ccc&a{N'//oL&ӧdk9yuttH$WVmll>|x,{ŕWRR[hQTTԁΞ=_ytttvܙ>L&s||NBBJL[_@z{{;::WXq1> y󦬬L@@:66~ ޾lٲ{`0eeȔ> 1B?~O9r0x&&&d28+++222::bݼyk  ˗===H$L& DDDDEEuwwJIIAP!!! ŋYYYnnn@򥎎`IIIVV0>//^GGGKKKo߾]XX>---@efffhhknݺWSS:00PSSVWWwY@@(!!!88Jc0>z˗;v\@2zٮ.111555ׯ_S(d { ǎp%ϝ;wҥX/^СCq3f H\fggwJJJ$Ғӧd2Y__謢RSS`'y"h4r͚5;>>*&&fddĭႦ^FFH[[Clgg7!XKJJȘqr ijj2J#+---,,SUU1c#UQQA$555͛7TF+..!e _innCGGٳ9otzaaaIIАkh䎎F* BY,B`˗uwwɵ h4AAA###vKKKKwwwoo////Nႂ@Kyyy qqqT*5''_@@@\\|ٜ###eeeJ>FC" n:k֬]v}І~A0LPPPGGǂ at,ϟ?|2׵kDEEWZN*)) 500n`&YVVݽe _sFGG7ox̙K]cccssGhz!H kL&D$99;TNR! 1 `}a2d(,8ήG v1ﻹNr7o888>}_PXk .ZhӦM%%%[nL"RRRV\ hG>}u?񊊊ׯā@StرrqqZϟϝ;kTɓ'&bLLL윢C Bpp0nHm۶ݻwB硡!OOO]̙cdd"G"7z "D"k֬|TT ^x ׿xB[[;<>Kjkk2L(:::' bcc3o<<t_`ZJKKmll6lpEIIsMNz}HH$a\kkk;vRRRkQւp:~s.]E6"""::::V,-----qrr244`0 gdd}BP>Zx< ̩ @xxxa07&^UUQPP`ee7aܐwwŋOu\z5F{gnjj#~h4L P' eA8OǧOT 777ˋ68peooo-[ cǾTVVشiSnn.x葯%b0 tK"H$8P酗B"222 (JNNnsFRRR0̋/FGG8Yښ'44dr:K.={Ʀ&i+d2;::0L__27`xTTTV ӗBuuu W>}p7svB4NzUyyQ*جXbʕ---()!!!!!!"""((@ . e|||xxmppphhJ"H)))999SSә3gN󣥥VPPpm۶988XYYY[[K@J+WB: ޞL&q*aTVVN"`X@ _]]PPP"`0===addЮ655䁀db[ZZ-Zݢx< SRRΜ9cnnb6o̮8d2FǏ-^x޼y} $D"1;;ё <]]]$S +tuum߾{UVVNOOԴd8?ŋܹFϞ={o/aaaqqq===vRPP D"֖S>{4 )==۷^BPW^~j khh\rĉׯ_666]`/8pLJFkjjٍdŵ֭[UUUs PTT߿Ae eeeCC;wX[[oݺu+hpymd*>r䈩iXXʆ\~ҥKܝxPP灴Wf`sΩ Yzjҥ}}}d ֭[;vX==='NPUUUWW߷o_aa!PڅNxb޼y7ns? Hyy;vpNu NNNLjjj7nhjj*//sҥOfeeaXnSNmٲQGGg%/_ R0X,ƍvvv q SNCCϟС<࠯ڵk'xyy>|XXX&x```PPPHH%TRRr۷o3L???oogr)~~Gr0 ,G!umڴiBF&D".^8w>H$nܸq޽ /^rP⌮b2555N5kV{{(ɤP(DOxhh3X}iii YYY4mhh-**OӃ޾}Bpxssŋ^~[U*lhhx!WB<<<<|֬Y7nQ  nݺuٲe[l㔕]t)""bZ?@ff{"""? s뷴;wbmݺG533۶m4 ʕ+7oބ5kxxx|MGbݻw@HHhhhܹsZ$~J^fI5vЎb9 @AVΙL0P(J UUU .ZHYYӷo^dŋ{zzccc]ѣ~ a0o޼^5hkA~8==}||Jq146444..NWWPFnʹ W^%%%]p']=QXXٹn:4nݺ 2L/L&3!!˗;v%@xIII̙3]\\SZ"'''88WOONݽ[QhhhhŊwܹvڪU-Z~9صk׽{TUUKJJ6oliiy޽>ܼysǎ aa0(Lv///qrr211t:ŢQ999O<)((PTTq[T@szϞ=bbb>| ! Fo۶+i׮]333khhpuuBϞ=e%N Xv}]~=돂F_ ())%''[XX`juuu||<םڸ8Bx={؆$((HRRrժUDEE9::l޼pdmmmT[[9s888X[[3cǎ͛7@___GGGCCCAAFeff766tOBBBYY#h`pppyy*((`0KKKNW@@@XX8>>~̙\)4fooBRRRjjj_ hoo~DBBb֬Yʩ:::$Iaa ѣ~S>+W>ydl95<>^WWSÇ ;w#G1,L&XYYYYYq=`F%$$hkkrJvvv޽;%%9s&00 @ P ϵe_vCzyym۶ M @x… >} >4@[ )--ݰaX%Kdggsw2W^ݿ?g;wع(ʶ3gTPP$i…۶m#rZP>x`ɒ%/$H6l055USSz޽{&t^xqkk+F`0,H$H\s}mذaJŭ?jjLLL#""ZI{{;gϞ XDW^]رcw\vmvv3A fǎ Q%%%M> >>>YY٭[yɓ999 ,qEPO*--]|SSF#$3gΌ7o^CC:~B1 qϕå:::xxx˧>aaa3ӆGMM޽{,ӳ|tр7}d́.+--mddnLII}IZZ۷oa0f||׎gnn`0߼y233d޽{>7oz*ϊ+nܸ`0vuׯ_wvv5IPTT|򥒒s}}=иk׮ nݚǕ+!!QRR188ӓçZCѣG\GXX… 'N(((<}O/˗8`'͛/+wg̘npBkk+LvrrjhhذabbbV^E;((F;;;WUUeff !H9sTUUĈfeeIKK|;w.¦CCC=222#_ mTTT6m1z ݭ3c ϟ{xx|iӦ?#ٴi?uٳgj.,Y5'Bp7* 466oٲ/^J'u.\ϯ9%,,ye`ooѡqƲ2* @`0 G"P(L&vAPVVV٭ZZZvvv{F+ ;}_SSӖ-[%%%̀'OΟ?޼yBBB\jՃN8hرF:;;z'm-01`D")**bX^^^&N"""P(… ??  ƙ3gΟ?1()L1TTTlڴHرcVVV ,~8FFFd2ݻzzz_ܒ>ã W7a2=rrrRSS`dd|FFÇ!H{{{nnܹseee_KKKezzz}||rrr֯_/++ ŻqndNN```}}}^^Ȉ-Zdhhn:KKKii隚T #,,P^^^ {KKKH&CBB8+s̱`0 溺t:=++ޞ2B&lByxxz{{!yyy43C|ڵk4//{ hkA@&CXXXBB",,Ą3"%;;{ٲe\іaҢMuuu---NNNܹs|⅞UXXXLL̓'OTUU=<<:$""p8\tttxx8sUVpAPKKK779s%$$<{ZRRRQQq1CCC0<obb3'GTTt,x"77W\\\YY@222,--'? %%%UUU FDDfPXX(!!OP*++Դcff˛3ё#G6l`hhWvtuuH+%%N_<  &ڵkA1mmm\hmm>>>GOOtuutii٭[0Etth]]mFGGo޼bƍΝR_+TXX`edd"""\]]wSRRROOF->>>>| S4cƌݻwy󦮮nt:GJJJHHG HO>]v_ZZZAAg϶m P`傂nnn WWWG –%+qppؽ{sss'CF߿֭7nu!Hgg' < \z8I&>~hmmO9Ǐukkk&qD"q_˙v222Q[[+''"### D"-ZdffݻH`"ۛ122:vعs焄6l0zΝ/a'!!!''0"xǏ8ɴ\pattt׮]GRTjii) `X@))Ac@>,0;{mڴҥ b4ԩS={Ky搐䪪ٳg/\000011qƍBUCBBrss###^cǎ!0mڴYdɮ]ܹ/ۈ#Hqff7^}]\\4Mmm-Nwرɓ'GEEV_x@[[ӧY/F+,,LKKxZB¦&COMMZdɶm~{ aaaoC ٸq4[}M>}ѢE)))L& zxx(MRjɱEIDW |2^`0lh$ēm[l uww'_̕JeVVVN~ Gڵ… 3ok-~Ç_zbyEEEOvppprrj!2zIo7[ ¤|fWyL1PBE_n?ndͩgc/_!-[~|X3gΜ|x׮]zӧ~Ǐc֭.\իצMNpN8|2䣏>ZrQrx5X<m۶. F;v؀,YIBB¥KD"N#](~ bL&ߌ flꫛ)s,~w=<<~>aÆ g6L[l!þ)S̝;s6oLz510ݻ%''=l&tڵ .knРA...`۶m]vRZʊtd0EEEC%sG17)++  1cDDD\z_[ASSL&jz >O Nꆆ9s|g۷ov~mDDT6m|{/:łFy^#f |ݷ4=IFW+ P^"_;ZyaB -ȓWBq \'=%kw}u}2%bX&Mh4˖-3fLsߪK^/_TYY6k֬?<==ݻשSܹs{6lXyyF {wl2HFT*fΜ)H9F寙r/++wrrf9.J1bnn:[ ٜӺ:l^P(Rnnn5t*_rQvg&egg>J[v/V9L:f#>UT)vt" *z%i+`y<ܩ7͸lax󃺳gg|~z?sΟ~Kb߄bIIIr*,ĪT>,((,jjj"+555={RO\ۿ!b2^cc-[/^kaXfݻwo޼IRڶm;x`777''%$L&L&JUUU񹹹B0((?00חfh4fX'܌/_|F;wOP( B~tϞ=#lN غXZZZӂZhh4ϷŤEV|}}Iwȱc>|D+NK.uww?tPBBW_}ݡC___n$oH Rw)B NLLLHHZuC !dxzz]}A:j- ɴX,yyyEEEdÆ ˗////'GdSyLMM *ɏ+Vرc֬Yc)oA gϞU*}ٹsgPPo_J:%Ղ͛7j???@wwwgmm:nE9jR[[K\& ;~v-Y$..w555zf{zz —{J^vãG9 Hp--d܃wfY`;nաTY^@i @Z~c"!X@cB:QW;Tn%>\4w ʪD}g Z T&'%I KJ^e+k&-qE<.d24:NP\]]]nn` Ba۶m8xQM}C0`۷ ֯_G=|Ap\.keed2D"WWWWWW'l6[h}II ;}Fikk[QQl:8~U*NVTL 777JEF555õ-))f/_>w'oK]ok׮]xҥ7|#OUׯŋ;l7 xmN|@{K &Œ8))Ąא]qEX6f#r3}^+$pw:EЋ)ׯ4H. 7Ϛ5%'3fL4iȐ!2ϟIOOߺuk=9B_O>\huf69Bt|>_јL&6霜j5I,d$''S(??oFEEEuuJh4f[YYx<2= իW[nZmhh(++"( o r-(ʩS3={;;;;;rLgϞۿ{Zpggg2ST__+W|w}7nܛzyy՝ѣG߾}˿k6b1L &yӳi&t9ڵkPPPmmmbbbl6@Tx-HMr|/GAf10J# `"8$yHUb _JcP7 [1.``!\Vxr0!CdqTzg7!w…! NX m P;/KqNX])Y\5ߎ '=R!">NtΡCZ biӦ֭[}ccsssnj3f̘+={ܴiӞ={~'1sLZ 444''?%%eРA_ŋ zieeVY,BX,|>F b6|>}khhDf՛`\^^nX"""Ξ=K*,,4u2())t:,񐿂bjӪhlmmZjծ];sppXhъ+ngzqΝKLL,//'VVVK#r_ӧOݻwΝ[  BGDDDUUU\\ܔ)S}@p…7zzzFGG8}0`~8a„7:jeee}%w<oȑ'Nxm޼y֭mڴq-)@};w5xx[¤3١<_hU!ėP@:tbvLjHX{`ϸ6O w*(U]Fߌ"4>SN˗/"Go۶-::Œ:g|d2իWt:JFJ5g ,+%%SNd}֭ȑ#-[#~ƞ;w>,,K.}#ekqd B[nرt֍w3K,Yz?vΝ ~~~:u!?3s͛7۷s\S^FI$'N0ڵkG0am~=ۛdo߾}=ڰaӧgϞfd;2 pBRR눤V>1&R<׭[׺u;:: r*0~9rcbb~-QZZZ[[斗m۶iӦq8d4j\.?{_q4՜njj"cA*j5AZc6zT*e/yYa6KJJRRRn޼Y]]M5|]i> 'hۛ578<ɓ'9ҪU)Su6<Ņg4̙d2~y̙˗/]J޽{O<٫WCO_͵w?LAt:r>vCCCIIIyyy}}L&S(ͦT7,Ng0Zv֬YF̙3ׯ߇~fN>>',*;j5x1DAAAnM5͏?X,}IJJsvv]\RD"Qvvvyy)S^,fUx|WBZ:̠C(εLJ|v,%M_V|8 òC`ťl9ѠJj8D?*  Ղ?=B0,@_?x W,`jmhLZ޽l2(ҳ e˄ Yz5>n4ɧXb< !tDQM {N .\bO :l(.. !!! "66v-ZP|>_.\ooZM~AT*T*bihhX,B/)nܸq…{bFEEiZ''cǮX",,l64b>|$]-[ٱX,ңթ//?6:vرc߿ܹs'NlժСCB_-[`y<^Z777SNWo-{M溺:TP([-lllD".|*++/]t]Fӽ{w6]\\>,vӧT*M6NJNN &μ<A :ܻw!r;;;pl61I`0ܹsѣ*jС_~%pxbmmmΝ7m4wl\޶m[2#BRݻuּ}z~տk-˗f{$2224 $%*nnn?>886>>ѣG7ozZJd2u:ݓ'OtMC!r=p`IJӢLp]6 btfx0%2C\8E#`ზ6'\*DT KUn 0fjD!anIMKã4p1NTPaCƊIc_%Dg EU*\Ə ws[j6 U/0Z@h jK`2;&./S#Ci`S/ H`Ci_.zuySZ%vlq%~C?'sRYkΝ=zt݋Dю?,X5f''dVWWv]D) U(i4T*%{r>|9zh,77Bx{{{yy%$$_u8Npppppps+333//\.8::{{{[]v999/-- _I/3<ʊJZ,rcAT9tttbޞC[[[;vԨQ7o޼|ݻw}||HéT͛Nڳg®RΜ94o޼_\rߊ~aΜ9?ߺ?#$IddD"3 "{{>o߾ߏt]vݲeK|||IIСCCCCKKKKJJnܸ1gD#Zj1r'MxbyAUx)s+ZjѻwWs566*>`׮]iiioB. 88? ` +X,0@EF)Jhh&#:! lBxݞGH1;|$Wn 8P[d3B\fLX@`+J ^H-"tܕ~#MeI\EҒ&BؚfjņN8L 4ty6.]`0Ao&fyNm~(:Rc!g2$Wi _+Q|݃pϦNzFjd%''3L@T*>>~~~O>}IMM/Gk ݺuX,۷oP((@ff]Lӛo\߄lNKK ߅o!$$dD,Av˗/_z;vܿZZڵСCSRR-[PPPpeJբE;nfΜ9s nJ$W ڷoWp-Bh4*fٳϵZ\sVBg+=E%d` 4OΦcmTkg>rl.njĩ<Щ{HŝzmGOLOD  '>8B,f5 a'z6Gt!؁/8b0x,n?TPȈРU  ^ h}IJS gAւR,)L8x : GO\E H80 fc:GV$O4д~ nh)޲3))v3}*邎=к3_eOi) $}}Q({cƌ9r֭[^d2;wlmmI.FX,4l6 +++4NKRXa tR;;ӧOo߾͛3%Jkjj&N+**Ǝ:7FYvd8p޽{) [sΡCݻWTT@@AիAH455斖^pfwЁT5o>''… yϞ=Nqù\5k,K^zLL; b!4Ia6 KR(nbtA ͨEg *ⓆxP kj[.92MM:㍞nz *L\p{,C+OYg\k!N + |a„^h;oSZ|j琖mzЎt#=R+ ع ޽ 3j AC ^Pk3;LZeީ垘D8{Ӧ6EqbT6<~?zƐIO "Ӛ(>_UUuRX(y<^ w^XX؋FC`W I746T*l6[&| RSSCnJ\N:USSTv]t߿Dվpb:ub֭666G-//}Qݺu[d yя?8c A65MɊRNMMݼy :v9mڴaÆm߾=::zQC_~=ҥ?h=W(+WJ֭;_C7t 0`ժUoYɓw~w}]//_|޽{Ϝ9aÆvډD3fYLiӦ/rΜ97n$ ))oJeeeGްa+H1444---""Dy=nܸO0vCܲe˽{ȺźuI… w9gΜUVR(&Ij ?󪪪{-ZG!!!,K.x<bSNO&ÿvc>~800o߾/_ ` 05֪`\Gj_Xp)6|_w0aT(xP܄ 'KoBt uI!W0*!UL@7#@0~e fG|XqA1˄ l@FBPt[h-5/e[QfBoB gLN b,HD$>=*R5rp_oR>W<`P! +*b_.&Ia~-%gl/ZH߉tJKBN,aAmN%[$\D_v绻WTTܿVV:ѣGuuuT*ͭo߾4ˋܷY,L&H6mHRR1DcXJ[ѐq_IIIEEELLLsn011.Y[[ݾ}Yojܹ3$$})))۷ot666>}*ɂD"N啕 eeeW^}yZlٲe>,77ӟ~D"y322yYf }|oZ .ڵa~M>f/^{oڴk׮t̙3y<ŋ-ZԹsٙ7n\TTԓ'OΜ9S[[KAAAN #"HӧO}}}.]:p?^Rr0CSXU=[`VtPhhh hϣ3Or2nhM"ݗ1ZӊA^ltףZe,-|'Oܿtj.GGG.k2W׋bTJ*++ϟ?O:07-tۜCnhhhlllٲT*xA.f/JڷoANp8;v [xi4Y b0PWT۷o=zɩ~ؿ@ ر_sOƠt:7\n\\>|M3Fӭ^zuڟW\9{l֭cbbѢo-[7sڵ}]jji~͐N><44s-,,/ >\$m߾熨Æ {֭[;tЮ]={7.??ɓ'uUVVvZ͛7X,www@(IIIݻwOHHU&5!~ƲT.pz3t`g-jIŸڂb?:R05Nt߅tCGyг%lWؗ6/T#GnK uj4j3Sw HN`8*C;6a6b:'L=p@pJ ZКr!܅>pk1yA~.Ƕ?˄ZB{8e% G7a¨%ƹj|[<[ve5=f_`:}DEE5gTjff _SPVUUرCϘ19cƌ1bę3gN:uҞ% E"_#FHJJxҥK\2k̙֬&&Nb֮];k֬ٮ۷o\.?~?N/k8d2٦M\]]Ǐ~o={Y`ŋ_H$K.֭۲e˲֭[Grs>}|+ äIabƌs TJZ!cLFDDDEE&wurr'=<bw 3 S1꟮> c]Ǘ`/>NT}UYHk<d,%@āIr9>#t%P|ȗj6s MtXlak,$q+͙^ڢf@6 |>`0YhNG9.Ŋinnn~>|HRxQQQ-?~ܶmWVVzyy544~!r#IokRիW~G/nܸcLVB"ꡊs%$$kZr9beffד *jcwxT?L̤7R" EDW"(\AE AAAPQHoRCBHN1i\3399y׻^{Ȇ ;w.-- h]nm= \nwoo޼yPBӧO[9rĉfnw:ϟ_6lܲp  ]wѣfj۶ŋ ZdzP,*f@$ RT,{x.=4)ʩ~[so;.IȭPvXQ}Qie*ruFKWܾ5*Z,7XkɜEPSUU%jC<$*îc*GZ=/dkr'f2fjXÇgddy񩩩 Gرc۶m/nӦѣ t~ƍ-Z4bĈ;cܹ%g:'Ξ=[=_|8p޼yC?? &>f3gܹs/B,:u4}E}ᇧN9sfxxxΝ'M^s5L-Z|ᇽ{^TZڽ{M74~w}_}U~~~HH{왔t1u[w,*R0I2Ja5ܚW!E%4*H d@,Bibh.gu/2R A֣L껀*"?U_! Z= ‡|tu]m:>v>C@ƪh:G)p * V$ʂxE~"j hf`EIYr@I#s2;K[XX-"?;:JoQVԠ5t3fuLxt=I,c|PΏk ·6X8FE3sBNOYEP*2Jx)YDՀHDO3*Z- 8d5 ɦ*#o4㩻HnS;(??..\QI(^/Ijfm۶Vbmnnny#G^xަM]777w׮]O>?lZ-?~JJʲe˂>!Y mڴyN:`uMv2??Μ9ϟ;wnO%:dɒUVǁ6LOӦMrAn̔eyܸql-ǏߴiSvt:$IZ|۷oߺu֭[;6IO{ywϞ=ۻw_~UV.]:wȑ#KKK9"IܹsW\dxݺBCC7n/޽{ş~iFFF-j'L0a„;w~ׯ۷ӯ2pnʔ)cƌyNڠA|(K.ӧO3gNEE7/+**曕+W7W QRR2k֬3f.7C̞={ܸq| |dFF?իWy1[n;vl)^  &<3_}_5%߿+j%I[n7`P?dzEGyUIC'.uk֠ *^Gsth) \9-FPJQLp׀' yr_%{OHS9rD+hȪ 108r6L@\@"H7 #ᶻyK[geD-n X \LZMxQ(b\8=̤jV@"ǝ)aý<-DJ .\ V-X@2=`*Cԇ$_hv㲳W/)`AO؏EW-ݡ`֢(Xe;#GѢt6k֬Fjۋ,XpqVx߮n~.^x%I.cEeggQ:5^TJafd&Kb!CNK=T)TJЏVD/ u JfV*4%-'PeSdC?DQs_ܰvYlNqƻv튌 3g&O'8ۏ}pnXpayyNlwΝ.~k۷sΣG޽[5n83&66ԩSNI&ڵ`ҥˁfϞ]~tlKJX^wҥ 7гgvڥ-{.//o˖-}޿~]m}V;eʔN:=<0q:ƍ/X`ѢE/]wU_]?^QQѷoߑ#G^AO?6lp:HW$I~iN"+gΜ9s+/&M7ok6sgyfʔ)/>[ot:۾}CΘ1#hTp&k׮{ ^u:KtvkJ+v_(QPAKMhʊ,. 4h䀚:Ic> jjT9Ch>)>@9ު UװP@ 5X 8\JTjVÑ,ˆdƁS)ɸHnLj$s75_X|xDDĪUfRѣ `2~ &lڴĉi{イNf?ðkpkp&>n`v:AĪA'bW`T%(\_tt7suo]hQnvݩS[M62Q{9mڴK{ォV=z֭[QQQݻw_bSRR?jԨ]v5sίjiiip{wyQFK-bu2>YUlkY5c^Є >8rhlllyyeA{.x7f͚G .߿lڵNZZN)++ &^t:]BB¬YZjեK_}۶m a]MƱcǮ]pdffرciii z7h-tФt3TŐE%!DYzj~bRI xtx J[@hpd(S숎0 =9W@ji f ,ҏ(+գ\ SE Q_C4APyh;zA@l]4Pa#YébkR)}AS\O:KƏTxw[7Ȯ-wtOdΖ)w1<ݹZUU~hŒi&Be`)ԟCLu` ` ɄO)! d| r0@5bŊ'N9rWF>`֬Y+W{$<"##N_FEEM2eȑ~‚g~7˖-4iҰaVZտovWV_]v޽C O%@HHHtt ry7.Yɓ a}>_ZZZPygz_[/O?tdd3`@>^k/}/G`/hLBŀ@ZgN#!!$8LxvКq(2dt m#lƑୡR%D*( e4oD6e Vյ{B%x ˵9 lҀMr_dstM!:"NgY9>hkW;vؚD LM `Z11:FD,ܬ &zXAIkG6,>,ڙ-{,(լ>1lV5*pzTa`%BP *@[u):Ձa$C2?@ R t%et"64(PR4VpLubPk$2eP=Y14ię.:vpAKIEsz,j =x9Ar-j{쉎~g/9sLaa2eU^M6={ѣGYfɒ%7|sRiҤIݺu[rerrr˖-gϞO[?;;t0eʔ~hbʕ[lm6f̘nݺ]4Kx' S'x'صkׁꫲWЖj[Bbסӧ]._DaÆj-[lَ֬;Ү`UVVdɒl͛7}ݢ(G _~e޽_cSR[Z~z?c>-bиݲJh$}{GЃdAX(HӇkUװ3 }!\ >l|x=;HV\V J)҄ %de=Q6"SV9U@RQjRև[U/ uo{z i&b`B PV# 7a;D ~@'@/OW<[qK4uwJʾsK]xlzFDA+ hބ(^CE#>TR)NO 8ue>'FQƆ2$0Uub TZ[T=uo{nEAn``WnkL ޠ&$ qF "Nm"uN;m)JO8X#i4 e%BlfזZj zqgw;a](1gϞ?~>}bcckmQPPPVVp W?P-twuװa6l|CkfK.;v-tGFFfddu]6mZv /=bĈ?~wo>lذnݺgӦMSN}{K]q~f ?kv٥K?% A*++QF8pԉKjکSN8qO>~ueddWT2m;v_< _>Asnـl9@UOѧC,~SlnMV6n;Gd(~!DSOT2+I S'iw܄$ZTnxP\PU@+Qb5`ksl0,$T_J$hH*5xrZ RFKn|%? O\$P(wù)B\V2:x}~Gh aSuFW'D˸h5ZS{PsXǏ2eʺu2Uƍ={vdd ^z+\n'M4Wz>&&&111!!_ W3g*fJɪm~WA'u={\R$%% 6l…NݦMM7.wy4o}ԛ$s?Ƭ5dաϣK{Pٷ(#^'Qf"8|8yJ1H> 0ǹΝ -0clZz*@ HdH 00\wR"J턚0 ):Ji.7MkjWdEP{,XʲYd D~UXV~s[!BĆ QQU& CA)'*ki># ,YGJQUPM;NbferΡdf/1;KP ')HJhrznvȊ ,Cp4Тf$VGxYLT+9B񫈠THסZAACTTD5'!IPCV1ªr8LKnpo1k0Z)vIZYU(=.HGK,nR3bѤhoҥKO._t*$fszz+psO޽nK/ucvVuذa={駟֬Y_L4{7Gs;:qͻS<Tj0M~v`v<}cy!d¼f4L t*ryUUG+$[7?~+RQQ1jԨ͛75!22rȐ!K.0`iӦOnt:]Vy9s9rooV9cƌ;cϞ=&Mo(&|>mp8:v|Z?;mOSbHdץx׮_? _f5k֋K\Vz{#ѯ/01z'4iƳV%4 U-/ćSKD-x<`SW]p gsx~ȁQ^._Q_kUW(TtZ4>nHաĘaXAW1[q}O!%bRS@|M;S$dbz~DmZT!˛|~'Ydn^cHsۣ&,l+#TGdd*_:Ey*e'Uw)%凛'5u7>s2I Hcs\2@-/)/,@ |`ȠX3I/aPN!LMdW7}t `E*DD E ATABh4o~&LxWx51K/ 4(,,G>u<~뮻W^9rdhh/'GYYɓ'l6 r~os=k׮s;wΜ9Wf۽m|sL:<>_G8*bT\Ef>y9Ee՜H3>f3a6{?8+è*y ~7/Ӓ'" ԑdvï\*$pcָ>:A2owѴI81P {t Y%yh?f>8W؝9]bP<'ȁdtkTdWk"1}@S YJ}(ss ŲY/&F:`!gq~l *Ydí 47YTM3f 8b&6@!Hu!DCY~ھøAMΚwut5>sIllIIwZIqN%F442T3d$iݾ ֊+XBE\tP#JV!AkyNsmJTxDJY!Mtbb y)tIYJ*!dQTueO{s~کgEػKxݖ߸I .UUC@ޜ'֭[[lgECCC711sΟ}Y-ZNs/'2?}||'ߟ)I6W9"gDg}\uVDPQIz:sy $!U#ƞtxY"C}Ck[M!]-bi<NGr_eò3 Y)BUr[/@C?WOBR刃ϱ1|ׂME)-E@"/u4$"Kve "vPKlKLz*$vt Is.(!OXG'z҄ Z.jqۗ-#):nvzw^G!8CmS!A^{5[leR3t;^RszQ竾!CAY=Di(%KUb@qRUe5 ^?*r\#X7ЌJHZUiND;$ďAKcB92RՇOܳ%G/:ֽx≥KK999xa˗/?|>zĉ ^ZiӦXx7/\p0nP(1$$>8s̤I֭[w5Zu8tД)SVZURRrCl'7J?^Veߵ˾Mvwn޼vut5fZ?T>ꭽ b-Qyl={tQI<:9x"c.'V3-SxukĄ"am)UQ 3 Ӣ!kvKraTPTԐ궋F1rJ=خ7#+l r*DZ 4\:kwx휭`g{h`KDk~EG _K6o!S^5C՛slS 4=%g懇 mݹhCc$ ̉m%Vgn wl*{rCȡ t5ހ̀GMLB4)>C!ރM>eq1Cwb!p?l:۴i{o?ȑ#o +55uO6m\wum۶ M&Ӌ/ /Ž'|sΖ-[իYfǏڵ0`E.]ԼysFf֟X@ѣӧOyJF1^mݺhɃ9VD>N"BHD,$"#6^Z7F)@]و2Lr'ʺȸ}ےCWo5ˁaٚWq*)B"2"SpkT~(P t kzGc1WDVQkk˿4 FPG*+ZYDj>zk]\QՅnt]V7k4r6:n8L+"+;vsW|.|$"-'|^o_xR^rf{P( q DF1{27Iih2v"Ll*"!m5p\"En #W_o=w1 _: 䗃en1ZUtFӨb?^?.U6'xCQEA炋b D2:*O洍8#[ RFUPvH0a [%/|QF;zQsZаڑҎ)IQZZZK9]%9slذ?qDFF(I&u>q#m۶z+<|͛;ּysAAkСCmb>QFnݺΝ;q*zpN|{1M]Tdl,N r 0'VaB 0-a2PQUGE-%^ C+TTڒ} i]gׯ ;2q3>[[w@O-RjpV׊]xT++#,δQ`VadbklT"ogHRA\^NcxC1)g 6WN0vC#$< IDAT꣬0\^W(𸡸Q ճ> !gR|yfHKΫMw˰ӷWFMq9S6J^rŽmD_s*D[e+U>zd6%bPѧtWHo2ԱDCwtT:gzɔLzN vDz*`.XP/XET *Bz$9$Ǐ{w׬Y&Ssμ~^$-p^JU՛[w1_yMIvv߱8o>;Jb IHA͚RPA%Ai8f7BY&"(">EV87vv \esC=Ib"eYAP #MZ@ӺsGLnE/Grh+y8مiߏNy5W_]\\+vm=П ;p6mZ[^z?~|7nO;w$xFڸNW;_^Y"7+2 vnGGemdz˪BQsңGMB4*w*{a8D? o[KӗZ*QIܻ}# ]%Bݺ겙N9pBvA%\ }>f )\0ᆞv>o8ьPAǝ& 4FA"&A(SuyԠH1(1Hܻ~#x@w1 Mly}¨ @C(nXߤ5Z<7oKpmT=A 4 *IGQNm 4QWƱlYތ-P|-_~=쳟~ɓދ/Tvv)S,X?찥"ڵ5jTyyU^zcǎ{wLOIF>zCP 8~xܞY־}&''/;;h4ƱV庺kN6m"]RLs*M|@N6Kk9<7sV.d;cRN[H6hh:|g\vp50ta r"WD6Y]7 %?0j}Z;/.m㐟xRFD{kь ?ЌAM4GI|ރ\}UF%c42HK8~nKF {/4:clܞNu9s^dU\4oO\T.gYB0N(Xm$6%|ܻ%}j8{$EsJ׭4QKgNjcLjn#=F~pb'5e[,ko[Z4xMϟsDc\K1*E<:#&tjlsTM?Z)ƣG4!# A$&sU#p +­<{@l & b9DHTg!zZ7WDhy8lm1]C} 2: Qh1I:5ԮHBCCs5e;yv۠lLuMHH曻tcO8'p&馛nJLL|x /4(mVRRf͚|}IOOX,q#G%''w޽W^ (/>pܩwܸq=ؤI~O/Ν;.\8wu566N07>ƱwΗ ksh( ̡Me#y ycHS z m$RA"O^58Cl-E - L Z0iF7Ry"6#./ :+ T]n"6܁eۨɫyFvcխɫvֽ kOzd)M~ѝ1*$Y"!I2DSo0^ET&A$S>#ߞb%Jh6ZF 6IƆ'ܘE U:1 '"L&rxVK4J⣰vy#l{D jO&Zr5?}{-70Q2`g?wٳZsDٻعIy VjA9u=$TH2a3^,E|h3zF@,5㟫|ks+3d D=0I_"($Y +j%0֛vnn\wvV- vKQB V-^PU>-MW_xcg+]?QJ4 Q@Ĵ("ZZWrSxRe+~[wZvw@`OUES,!; 3_}sm.jen"6B9#bx&[jl|G螀Va_(Adޞ>,xЩЫ1dR TaNV1To')|񬥏CEVWV oڇziӦ͜9ql7~C ꪫJKKy_{ͻ~hw߿G}RƏ /tiРA'⭏$|נ79*++kkk?^UUr<`$L `4M&d2f9777.7HJJr8 PcVE&vĊcE9"UYEP7$"6JKwWsn>%Ehp9[Y7l7x4PIklދMN &s$6ed~8J46{į.=6#hAWZ 4Fl4",roKh YVV`FTB|S{8#Ht#\`;QDc0G CSH2Q!n(iL e>u2H?{#| >{'oZY0͌1A<^6`M3x'Yj$GZ/Oit)Q4yxpXQ҆cfő_pd:d110U=ˉ`3Qsy+  ٲP6b;#.[5߇)e4=u4D;^ d=-X |_N4{#rmUV~zEJuM^}gj# ے:QH$F9-'G KJ-xC+r`Ѳ F06 j{|ARV zH4&HT0D5pKd@ #aO#F]Яr@즠+$P>XaU=+QWCjW1?Q??:ը6nHFA;[V:m$Gm]HQ2&uL4Z@Hg|*m=iO! )ٴAH҆ZXglEydw#']hvZ}{'>̦ՠ,o C\aSvOBz &e-XiD9||N0,DajtܥSbx}[ ex.sy `l0[(s7g(y^8ZIǴXJUgĊ7qېV[x I֓$ |wru!FdVw,glby4MڝSЊqxij#JM_i*5LcCT]9/2s4U{E% Q &sT<DA5If?EZ[ kojgG=o^\6j`Z}󍷻UܝK5Ԕ4(JZ̉U4ٗnV2CH3oALX ! w88KɄ*es^!YոѰ>R-4 >V30 (`e?Ro SЮT"zNЉ45L*Ϧ)Ž ?rOMI2!Ls2֞5fLJI;mܾCWaW[fJCV_ſr0>fvaS,z]?^WN\D%ة&1_9&JJi,+ԇH!4C$<1쾚lM_qbp|GwG&ya_:nʔ)~?3G5ko1iҤ3 ǎ;k֬W^y߾Ǝ=G9|pQQQ>}ZMz-[TUU=sx#,ǎ ]a騩=Rk׾9997|àVvs\MMM;vرcǼy{X,xƵkצF&!;65W4XKpM `gA'uܓ%IP>d QxZ $: a0M, 0k͢\ޅ/ Y~#wg c%EOU]Y61 ztaz.jGt1ކ#Ämcfdi0SyI&C%MռۋsZ|N*34h95X F[9'"*CG/ i/W>q+tLғQӣxX(b"txVK}1 xg9-|aO7S0(Q7}8P`@O{/-V=`o4}>L NS:-5 1`us[/I_Qr,/Q4 IF%T O+DL jPK^QeAqMǃ$kcMWuN@V'弲' ]O5jr_|Ɛ2"33}Rx|;Hpʕ26VS#bRŒ5zh럚iX%5d&w~zP/3\”DJ>FZ lmBLHBTH1:cX AnU ¸"D 63N&j-F{9bpVqh#[dǖNKQ2QEqܸq6m֬YvEEEwuO?p8Əb%\ye˖֣ߌΝ;Z*/bꪫ|w瞻=2H?/ r! 7o|]w 4ן=$juRRRRRRaa5\S[[{7O0AeQz.L$DYi+ɞ~稳ͥcsi *hpT]9Q*PN;jMmÆh 3,Wbl(ep&^/B s[[?7qvW BЇY A5%#F0ةi]-g@_0q|MS!~..;ۨ{pG=D$tNyh!zJҼpgZQV92 jXd| 4\>9-6IM-5Q> Fܨݡ3-7M'0 Eō:(bB%By7 U'AC[QʮV:ur sn 2dDHMByT6 f#A9b8 *` {d *U #j+@QnVUM&YGJ$;s``ְ91 zn!dL%ӓf#ϻc\+ .+rj$,yj; d&r(%!ָ2Km2cPiSMw"j!K x>`_d65m:LBTQ^N ՇkX*T h RwUkZ{bSsB^^} IDATngͻ4Ir~[uȑ#}YVglQuvw?SyyyC 9}=~s8lܟ ؿKƛt>l˖-%%%O?w}'9ko8D"555q_X_uuu6 nGd㍍N3o۶t͛7s=7oz9J`tͦ3ͥHPH3pn]fF4텥k) bW#ǨKr^%q3Md93Ar08 %]M;:r|.%hZ !t䕟p9a38ăk3$9۸8t>;HE -+"dIͪӥŢ&Y%VʦLfBcO%h: ȉ^ !Q(>D1 #(D4q6i~-?+e&דo5vU#Qm+[-i .-Ӳl,+· vmȧux$4ZUNJo1qpHDg ߾Te5m ݞXT||ÊѬ DHDQ|FD*ιu<'("(hCȶJ76]!B~?_{㧂 @%!C+qi7rmcߌ.['1KBrӷߥY_&Lý|#8v V+:^A$}R5c"hk#6 .c%/2a:(B2:pcL:"" M;S2Sc;Z@TB@DmS=UU~΀"ZeEޗF>`0K/L?S߿_?}9s朁֭[VVֲe{W\Y8/~ɷ~^k4 /7@  W_>?v=.uu=zt„ EEEoZY}>Ν{w>o_pa}}۷occ'O<3fLιsw./}?3_{vwx~5|˸%D,ܙˏ/L)4' XO@' +ޞD! ABǐ, r]PU;9RI0v+0>:܉9{9\ih/^kVk#Volݺ;vmgĉ;vXn]UUU׮]/'x&7ވD" ,89ͫope^).ބ_;!ǢFRu#מ[~tet*TpqkӃJE\ۗ`;#.ʻ4"X(m]=1>9tCuEC6 ectկGIsI-Z_1x$U;gi×7Iaq.ณt-ߒj M˜-mD=sCqX[ÇXall54i1l^VזKA6Ðd*䦀Έ'U^ Gsi8."5%QU%X7Bca3EnS:1طq! OrtڇYmGwZOl2 sƦUTJyV"{&SŤ';DjcefgbER E$#ZB*AnI4 T5iMA"D"(ŔھXI8|}DM_ Ɩ͊EBԠQ$?;j(Lg0[K~\#40FBnqԷݒbo#F-X _TFBKT*dMMlgx:MD,mu%0gND qD׺)FDh¤hA?'o@۶ݖC)#P+,*]KteO=ܶ/$ r7[ZX Nq>Z2t\sy'ٗ^.(עx`=ٳU?a^/_nݺ`0}=nw}dY^~}nvZgt:M&ӯ;v̘1nj7oV#G6l/jIM6=-m?[ں-Z~@Jw'1rMs,<ӖTyQ/]gZޞp8 ua&aNu{L6.9wQj:f=P$ǹ:%N-CQ |R#9M[Q63Q{):`݅_dBJLJ{zܪ.n0'Z]Tf`@v7ىjH nlNjq\N?G`/Gqhaׁi\lcI-`19x=$jZ8u 4/+ԀJGU$,:R5EQY.6\-oa"f՝'Low6'e񰝏.ަi8KB ZC 3;5 A*,.E MU 'EOIQ6TykiZy}b)ˉ-gEqTO \RЪ`˲%ztZHC!y_A(Y=ё,F>yl/'S33m=l'AU(UODfB^T̒CܷOP~xF%r4(b s,s娋4')-XZ]a#{Cz7e"AdP[ǐK1A(RsO5tp4s#/ l[RV~)NF!W$82Pd\O}kٽv j6kE]InGZ6H{c̙7x[o5iҤ?E+={aNZD"G)**{{ݿ={;vlڴiJ.v{(ʾ}RSSaڄ_lJKK+U͛8~~t_?fڵ+W|G q|Enk29sȽ-fi}.ϵ d"Cy~e5|jC]G j;qe1Nb`#xÚ(3W,29Y'(d$-wM!/_ᒼJ@E\ok). =_OFG4Q#{#T^lw~1w/alT2 ;k/wчV2qtNgOQ~CIPA}T];JY`Az. U4z<&L )yG qk5:{jzf?n}j-Q]|g/h"[| HOdO~g͎'0@ds8{GJ_:Xnv/_o\H̰Lr2mxyF}.8|%GMV74;eE)%HɫI{.yihu-uDtZFwmffOɊ(tx!c^QVnNypRom\AunKjN"]dfX'HA 5E-9R#!p¤LBN̈́ F_5(ˡ)ZVizf#3%VAi:^ONL8[8k-6D$zgL%R^O]{tt67jݧ^}ZZ@jjc p W$a'%^Y2*Jܲ#Qj*av j5a Ū!I%ʂԅY]GYt07~I$_{i*uѣ4ջAoϰbM!7]i0ycΝ'Mku_e?n1c[n{W]u՞={fΜ9a„5k<gx,:t袋.:7|yȑ kX744L<b֭[zΝ;sޟf3_5+?#IS*!5}e/p Xw 'u`#ܷҸ3TgY]twy)ԟ۶ c]<؎Cj{F:.˜Sw48OaXBZ+{WĸnnRny\z';wu!ɇ! z \KqXFSd&a ׵~ }=t5@j&to#XTplnf~f"jm{I|+s^De,QUQjt53I?sLqmwPRsx)Za& g)Ĥ #UlJnU0o軙sk魣fON(ME9o.LEԀQ?Ypl'[xK M,%0!6Ǫ8'*rsaM1p Ovy"dwXc]i~7pԸ)yy?W-exVQoڡ)&?ɦ /ZUJJj\¥Y=6efuxp|v*]1}!T4UcMeژbA}@,H $f3P>[eI) Q #zh;Wqv:ѩco%cEt05ml> KX^ie;Fj`a2j~|U0ښKܬQR=3:x7>3"dA2ģȰTϞ#Rb)CHap %sX"bNef~գˆ4:N/| zGq'A$H jOP3VDQngX|sη~{ƌYMMM4hܹsv{&E/A馛&O ǎ ,]433~j|3/p[oX,={9sԩSۺ tȿ!rx@RiB ekp΅B &&]g) /f5}Y=R\VZЕÑ ٞoOVFnf\MԐ9rL3!QK5Eb(4e Fk ti d|UCnu9kf7[Dȑ:'2gavOzS]Bٓ3k@NOzcq,zgDax.w3#+]w\S7d9M~>/~@F橲n0ǯ8"]'~~pi"5/V8*2dܳW_9{8CZhTg|UkH(DfAQ {APr0rkFڬ֬v`Jvd>ُB@VZ_&:i/ׇDL>@Ei]|}# 1~[Pg ԧ;IjR{ʇL&YKF8363mE=9{V?+I7`q?_5J>kd=0#䶡qц؄P?"%A𲬔7yLmNrQwq9ĽʧށV ("6<[9,KgpFN3]}0l[Y-Pv~i#ghq~W&N{JKKwٓO>١fkjj6l3UUU&M [l5kg\TRR"ŋcbb:{UV]okptx\CSNI|n;;;رcǎlii yw$IPE$d2YDDXZ~akPWiP6W m<~12dr.죭4- %IOuS{Wq-+anbF-܎֚R.6*8vyp-`IsccrZd TB|ˍ mW}5Q4WUxݷڤﬔ18"3s9q;JFJ5 XW[e%FNg3y*ɈV5%= :mioRg{{ҏD-?׍xuODBG93+>/>?c$v'VwbQpL__/]4DdȔ*j5Zm.Q 6 IDAT1#h࠱d`RəMicI3.suAQ:4ՠn؛:|2lѠs n}-Zf/^oSưd+\:˱T#+ $WqnCsDM}.d0F_Ž5F|X3#l$?PYLAt|.VVc] Kos'׻rlȁM\;G,<4* ٷräޡiC=-ٽQ*WݐYX EnM6D0M `KChxn?D<~vcM*_j| !Gr9 AS{샭+p fCR@4R>8V;Z)5?>2!~H32Fl&m<%:|5y/?>!%kT|pm.YaPY&=D.S~b#o[u2;-^R,A؞g/oTȑ ^F )je~w}[7o[[ffx nZXkS%ȼJPJ,/p|µ-]gBi 4M/lm|v|*1:VQ=h0-5_M2z@P2ZjvsJOVQUR pZ&/ⱈ[ɰ0{>c.FF (Tԡs#/L eYoؔgm(N2O;:B PKI&}G1h4Gaj*}*P6U\f0(T5[ImC8e0 #d斻(,/D=W/6IIvsw.l{Es 8\nx3Sُ,,ncD0%SV ܓA(HEZcpDjAfn8}Eaj4Cޅ>C3?|(`Ve`M.!?/q4EyRG_S경VvJ(\J9caunNxbq}Rlj/wxj^?Ly;F'M8xxoR`ҡRrwo 4U_k#=K:&f|VHUPZ{8*9H@m9Qwjbx*FcTN^!_&VvwfX1ST+S>FhVOHHA69~$F3F_)|g5#4 Jdס 9)/r*j枵|9%6DO>97lcE7.o/v2[n#!l 2w~i)NM%zD(y()neyDkI5J 5+ _+cz4c89̩Vj$RC-e.VRJ'P D^ Pz ѥ}O5|X>5 ӧOꫯ,X?| dee͜9_=t2eҁ0}ˡG9991?wZRy k׭[7mڴ?6lZ˖-[lY.]^~)St\{OVЖ吽[(9oP:p_$B'+.@A;!p5i$"˧xPhb+3r&+?Ūr "RG1,+G;$ GdYlNvHzH @qHxGv" iC('Ě̳^}(sh44`o&2jT06 5Jb3p|^nN$B%/}=tNU֏5" ?Ҩ<^k1>{k}-d:A*K(-A*1HNu v.dW zHod7hw- 6`n7v۷mքDżn絖m36J7߸?W YZn|ָ{N Sk$H6Qݵ o(/;G*U>ƣ9ܒ>,E@`ӹj2+;/`x7tzlE3kEEQ.êlʤo@D:i>SoDzّW[~P2|7eausH}&%DC;e%ԯ:vpwzzxdz:Q hH"22rw-](UdZZ] TRQ!\+.`F=^ɪ=䦹 gF\7}y{{Z@`K.ឧxwm-WUaff̵q) d9"cOT7mgh!^FQ"Zu]q{H/t=t !mϜWyet7K+ZRt,5G׵jK K@Y a]?D\j\+sϰXWV΢Z}>^r". 6,T\0%.<1ng׎ZҠ]w:H"&nt!@DW,c|ԡ]iQrf Qlt~G?Z-f]VL'=h#JZ$ A`t{a<5,ooߘA1u *E H OAѠa՛s{Cd &D2ٌqBOj/?P xR* uK{+mZRINHxXhX5a&LaלBLԗ{p :<\cVO|򼣥ť276!z&jmRYopQ?iLUqsl*r ]cE juaQy]،$Sf&=f"Zb D3'"] Ǧ# q;#Dؼy#<]s1---~kZZZZZZz\L\>!!!#G5"'ϗh4?<|?0lr?t:A]bŊ &hcӻ] wȺ|ӱu/X3QFʏ0f81"!0Wn: .2Z}o<DhqKjkXY{h1<XƓy~{RrDpG7JL #r%֖k-]~)xk'XSۼ{ ɽt)O 1"@`Ƈq?^T{[AfnK24Jn;={d_q9kT0@Yv[7ǽiom``ԆhW2Ҫӡdt<=Ϥ1)q91,sœkgC¯j*@Vuo1C޶j%^_xu7uڗڰ5 @+(Ooc!}y'O0HHχ6z`K/\B[|w2lOߑQ% ͔:mT6WW;V^ `$G ~{giؕHd #mP~cJxz{Dvk+~ɆLse?g}d a{SFvŭViq]LvΡ|j5[T^kk a^P,w44# }W5%;LFԂJg(6ciw8sȽh^w?Jn Sd~:PQێN˪ύ%AH^04vtV?K|@NA+R=+PP2e~ gV\Tn<Y@)>ߦNJ7Ji_@&`b8C0\*a%k{Wz10'(&]֘"(A fd(fտȚ I!ϕ~ZƋ.a]%e'WK~ ΐ|ÇOOOǎ[zuGȵX,3f/3ڿ{3gή]t:]BB?MMMnl$11VOϯ@ Rju^^n;vֶh"QW^ :ֽú7q9AJ_=OTS _$^+V&]_nQr1,!_5̍g?=k!it|T,D}5`h]ul/jk Q`T` Yv)1Q*Z`68x;͑y MW[ ߙ)t[[nT5yaϹ6.Sۺ@ /)IY4al9 5*[ƫhq  6I}YR@ڼ7#QA:{hKD D+ --2Ÿ9 ABlr(G^~'ƾL RO#%51_dG tpiscޝ/]Jl>h<;B#|X%  th.XuxJʏ; 34d([eTl F3&- #)ecm\WnB6# Q\D35  ,+KP@.(& IDAT$r@Q$~$(“9dN[w߿nΜ9´K.9rdGn[_LJ޸q !!!gΜ1:$I҆ >11fџX4 ZNdDm۶?~|ӦM 9g<ϱg Eyi|֗ {HPKI`v<~Fx;%^Bp-+<+N/ѤVfwUkKj$o?t%43+ߗ[zar :J%2hod}~Q] Oe3;{"ظ[WgqȢT ݦZ{xX gDv |Ό܃T8%~;gDPJ#Z}D! ͧ }wcnәvd~1>[<%C>1t0*bcN!9\\]p.F:Kg:ak <_,N1lښ{ J=cw?cA ZFoVsk L BTc?ޖ5zy>_dc 32#M\tż6d3{*[gIb_~}2 a4LN tb C{B D|c1?OQ2 $䈣r6<}H$dP2$›?Բ Q_Dk ] Dm v׺3 v'4H+4{c2PawQ[a2(K*#AX"xL }2c1ַw0c)o].[.E~Hݺy ZNeQp8<gZ Q[1چ䔴/7!Ww\v]ZCIƤD+k6xs>]AEF6PT^T&G]}Vnd_x0RMeǟ?SփF^4{ ~9dD% H0̨P'S7?fM Qڭ~;,aϻ% 7EpSIdK cLK+y;VǏ.HNkiMҹ8/IDtFFʎMSNر;sFcgώ=A.].K933sɒ%}z}mmmjjX;uJT*O:zuuuoւ  ϯQdw#ȯZF8s[+R^ 6(FNTFI͆E-´>nnzQU74oJUnLՅ3qO(6VfSmf&Yks(zR̒3 `l)~7p5[w; oI8ldzYPpk62L J/;oI|  TP`4$vo$Ǯt<|[}[ThveZ'_y=|4|lLzW\%83Br[!_=>-'^}UEJC`Y5wo9w$'Y/|IǬOo3-ݧ.i=I隞S9܍^SC!pFJ [:h9Exk]mIfZ>bM =ّ+2="Ò"6܃7u4VXdF{-x5<IB-9?aUw8 \wrc؄Z1V c~w6zA$Pi@ADpaWR"\-#rT YxH5c02 O\Jj^+%IIe'IfPYeˉT1p$#t;(d={M8?[o;;;pUU___[f͍7JF^'gxȢ( 2wy뭷̙-.iƋ/Fˉ Zug瓗ɫe<Βԁ}C4-%l."T&睑kH"qnlW#CQ(e5*lG#^j5[e)9M>p޻荫??1Y6RLs%6.|ΗWxuf m_e(d*ho"$-%`&DMLR^ UN ?.#dR)ΥGqq&f7mWwXDk+e&DΞd΍w yŒp.#@[ZOCzPOWo5B뛙JzC{ػ~)\ єZ9oT+z^(8W. ּ{I$gy1A,ްTiCۊݏ]S$3c#$DMt&]:7TBr#C- ִ8M8Y?Wcm,op1YuRaFvQąEI@kUl͇&K$q#Y%\Q]JAp#`4 47\h$ų_u|a״ v4Ԅ)UׯW./'L<,"cͧD Fv`{#0$L]wÚ`>Lfykd>fIZru4x(JCIȮ>"ZfP9vU?#+p2/="X^y2Z oMCUpUIie~U`7~r=RzW_3M)}Cm>oGK Esgp6o Ҳ_\yQ DfI&<"*b5|`. qNh%5b칷'DzjIUs:9j97F1?WF|)&<" Y_>5VzbTSߎHl~P;B އ] %a+bl\ Dfm"!/V+h&1iLwg4 ǫ^4*$& \Q|;!&eTZbƱ|%'F17+aFՔGj(tt0bOw;Ǐ~Ͻwh"DCj(T <}^ A-cmj-i~j2J9ЯDy晒y;,@LTyԄNj~~ݪ峇;oj\5+ä ˏAa<<2(âdUCg.?aHhPusSVO4OA־2=oy2ۙ 8>fڡ}TX!LbI|SeB X0̸T服\V-@$}u~\`711<71$R_uXa fD0L 6eI:r rJõLNT,g[zYlZ%*|ue=eZܾI7Mp$I:}1cZZZ|>_vvbۓcbb1ݻʕ+~|^P(~~{cƌ-bdhGt+lHU@h#SMezj'! ? ;x %6 M6/443 #5ʸwxpOheI}/SPde 5O8tѽb\=8vYOu{g[bT nW LG}K7-߆7 !ÓH(o.X=7>YS؁)ISlm A։.iN X8g /򊋫R7컶U([(|JǺ@)[G+.5ѕo-Wݟc [f<z RTu5./_ bSm;B@*zD>l6'/ףS(HfA.JZmdՁ md"szf.5cKS>^/}rexNA`ۇU/1TDב]r6j_+;^^M^뭥;NU ߢw',w^nndTdB0*99m+kQs_eiM]1=rq8 #BquW%,pcX:^I5sX65=0J:BJ۸elo5[4FnWqL"14g?zatd]uDBr+cz)K&)W과0 C4)H5pycsV6]۴S72M1㚵M5.HӌGik;˱3Ѩ%ur˾;nZ#tzATG+5e$Fc6^)&?\3NKYUϢKܡ=cMWD1iaC3faK;3ILr_H mh윛DMg3M>ų7b3#){/Χ/:+K~tMyO#mFā |a;ȹCFKh46noW4dDdi$|/DJr=-^qu Z7' W\h:_]ŹhEmWǽ'^:_T!oHnaxVfZ"qEuJWEҌiiza?QB -!'3jou}6aD<~̂M&^H4$vcpNǸ8D37 `.0Qi.u=(34yXyYw_-䧒`H$G➸eH{⋍== cGč.|Ĥ$ZܨzTG!.Goá6u9_-_3&^^Lg4!E+,YF@]ue~RydCx%Z]{ƛ\](̆6*<- #syzg@b^xǞ'+>r )aۼ.@{Znm&1U.d \{8rs>ٱeRɯ譿S x*l#:H8d \6@\yV-H2T%0c}vEcYqOs\J6FoQ`Q1 ?쌳qp8p2?eS˘t7ٻۍP^a߸)YjfGI._K/\}yI祏Rs`Di(6r"-oUnBQشysE2;yle951u\ׇgS);gȑ.+hZgZ.GhŊӧOkŇjk֬y'g̘q_~e޽K,3f_}eeeQykk)((8ˮ#[Z:V6:,5Y0@fw7S/K2Idʥ6mϳ^Qh]84$q7b/(sA0#SPQ#TxθuLyljiz_2ap#TD IDATI|Xʄ4!+9fl7a\"VMs(sq8)/0idW>ՙr˵;|Uwj%`U+sCzeᤢqs*z_D}x "a-KE]m:GW0ԅ6P 0Ca)Zf%2j+& [4 R#~Y3?9EjO83(WnG+[i 1-_Ԉʙ%AQ UtjcTwp&rE>LH0Jrg )sv7KՊۦ*u eƔD:P F M"[Jv&flBQMKogi|W4BtZ>@S QYqS߁5D_Qmdc vrE]8Hjٙ'<}{0~%*a!=g;?(vlZ;ճ a"e"DPWL~#7  *"х)YRysF{d8{") NW*_7Aպ6c3C@ju0}6s<Ĥ#ROG+zABZ,j\[9<)1)^+3'Ѕ3exygE@!At )"q:>|}>}5_c=Ys W5P Af =ַp;h9ϡ3}ž7,F2s7/oVq nAE*akc |"oMR SՕ7l} Fͬ$d0|®lP̞W>yZs0j@d_̰gswPl&ԣ;v=|~1<ۡ$qǩ P1Wmuk.HT.x[S3Ek|RRSSv" bIA#(!hPHӦK*I6d{}}]?L/ zͰ<:rLٖ$iL4 x95Uo~ 4Qr;}*P#5 kv}kt^i~il$+xIiiʤ 5`U^0l:I}N :꠳?!EK}oʴ?dm4`/AVTry^{GYצ]n%94geZ,]U?fPˆDPΞ[E3Z[t'۴׏VDU ubLabLȡ"˞zfݖ2u=aw A &x/y]Kgd]?ck^2a.Fjg{tcn!q'f?S/ $0xYlqk%ʙW6aq65{.2M13u3K qM 5y/.83كX4 y=;#p^<6=h̴ _- ۑd}Itpd<S.)hٸҬH6sƍyyyOE?0bĈ 8pܹqaaaEEڵkjA~'x:PO^Rg :*0QG=LX&$#52&40,`3X`D㢡8Y"@L1 膠y-;yE'^I نyY8/2w_2(?V{p#-C;fx.Qot`i*wRDzUke-j k3LFE7Xzz,o[ y-z@uEMRw K{98-<~={6qdz7Ym{1k.X@N8~93[*jD$ҡcĠ#!0=Kbi皔^785^Zq}k zyQrlO4 b3xqϔb+k=z/>Rg,!g#;ڶ#OLf fweM(qhvsᮗn`HU2/`@KU?G$B9\Yiẗ́!$"QY Æo߰%~%f7&qʋGS`Md\23Ȅi7μV6CNM5Wz6Նǥ9 ͑-棷;=ӿXvb^A|lOẂt@Gi҄ȟmɱ_-VESY#9I1nAkO]4z<^`;֌^I6?vxbJhD 7WlfnHe=p #R~LRb܎\&\ɨSP?ƟP7m^+zFPRy$Kv" yy.s]%wɩYwA%3-Kuc|⍧g%WR2y.Ëv%C#:஀Gyf p3 OZѪ:cANq.9C <|VB"ItARDĻGF5{1Gql+OpoFtW'nIQT=qe| q n`lNt?-6_&ON&„ {w4bsM1% }c^*TJ iƤւEy?SéјA1 =%BZJ '"RK#Q}WO D\]eg OMo1_⁹$ohdJfl5EuSAJ;faN>Bi2(8:k2o㱥5\F]qK֎x]hRzZxIVƶ/-aԣ-4֕Gp58*;GrVs]jς"= 6G I-Rt E"Ph>sb  UcdfDV8V2 8q)a+Lf,ۨ SU ` %If71N׍ܖNy}s}crS磿=)@/ZJ[qxwc +;,32oKp= CK_AQ{Ka&N|c&n88~`LDg2Ećr3Cֿ.&5#  W;(*a!ՎĜL^6k Z.^3. $'bIT Ɋ CٿxDKi2s+q8%Kx | w`ryN< [߯fҧxιar&'[);Σ*BGŸ;bu݆vT nzZ2P`*R 䘹Oֽs:pfL*IV=iH_I7žr:!k7yӸ3?4l:)Tn2Z8vmbW3ǜhes iɿ}z_9u$ DTwݸޚ s[f(69VUo3S׉Nވ׽Q8=Bk9%J֓MFY9C۩?|(C?f<Æ ;xॗ^w6NRm=¡[+'sNtXG9Sw W,P== 'j Lĉ#gn3ͱ9&B9LI‚Wң>J~uQeaV:y?k>'39.m+cb;O _*bJV,NG9;rZWQe} 2RDg uG8b Cʊe2램d4o]'Q +u;Ç:7pǼ t q#p*Ċv/Xw̺ E!ovR(g`J; FE N?~ 786?'4$UM*w Sp7~sOGW0$@oɏz6vTqeŬ.=HoAVUtnz")N$zHANƠWN kji @/aƕǞm}:+ãP_ލqW*4Bs2["ΤC2Ѡt07r&LJ:~sCymSoW\=A*FZdb'vSdꡀb]?Ǐ"0)-~v}O-DDRt,}̤3ë%XsN;n{oz! T0AछJW[U,ԫj8,NF{:^ r-F >a,Ç饗c[WWdr:6mV=~kP,͌G!+e&\ z(8Ry8/ġ;?9& cOFZclǧ H H<oHlB+%Wg9'|T/gTɟ[ft{˹ :)L]bZn[l^9* (wBI2C'bTףwpe9"sjXBus8!̆&wNv !~ɦO-VoUH'tGjX8ATYfuMTKSáO˪ط'?8ODBOnW_U$/Oi:5!BHȉbFcKr0 YDVZ-3]O}'%N.2Z ]qD,s }D`@~O@OBR v-j+YCPA#_蝩0ɜp!Iؽ=[78z{n0(i:jLި 4w:W$5s# j@+JZ{]>vP¹ fQ(%XP9խkCE '\⸋ F9d ˍA.p:ճG0Ӊ˵'"% <ЈO MܙWmLspS -MF>bRx'ߝt &KVx>_S>xQ%D@f~.;0/;$o0)]VS!>` zR{+x ] uzFO%@}cSG;@agt5sb K${>CP0444ȲxUVu]ҥK{CJxxr+tW%AAYhǯpi BZ2Ocb젬Hh`%Djr,k3;[@oKo1 tOn 5 9$Zъ hw Zxx3%/mtk91M7py!}<\nmYu(TF]צsy:&e#ȌH"^:.`]]Dݫgf㰋-hUZ Ut_dxw[0EQAQʲ<>Hc5>H[[6TJ- W$ۈR\;3c!Nx=&h9ax\T9YيumLKB-e^BxU" b[$MhABueR3~ܞ²Vw1=dB9/x XH  +M.~8 **8(' 4wՔȺmpbq4Q3|/zq ?CY6OFetŶ2U0騯 Ff*4pXn:׶#u$i d@ M#UNQ$j_Hj_ f`Fk N>DrWv,Ac($AFH4ĀڎMA"J.QQVB#VCUN$+Ds=Zd .*B+LZ IDATAT|乇ooֲe֬Yc8ɪXԍFT-`2 ݤ&0/_Opyw7vܲG&`1Q^RE3|d >&`700hjDQLAj km=&0/'0B- 3^6KQZEh ~-Ԟ`aR;luqAH%Nt AlZCD,[ /^)MeJib55T{΄WHHt?WRǮ!7[kyͣl 2AI Ϣt~پ"r֢A#Ӓb 2gwt?F#gx1<2:8ax<`S00znec'"$07F'EB~cdICRR4lOԪoxC2UCktmm"FGg^?<gs DeBjG'P5(|ߠK:DppJ x;sv :H %BC_ b%1/:ӛMfO+@";Zzu$}kg'J]@˾kkuxMY8H#d #%݇;A@+ *JtlD*ǹD; wzaΔB ̛Ad!y0$CۭF }HC@BS$n2 ~f+{ݛ;'*LcA&Nu􉇬d9yOܘ)SBxs1}^:3pj6Klwe^бd%酗sY¥vIeN#Kcp+E83 S'm{|v6- ٷ-e7?$skf )iʀ]a[|Bm{8]`hmB%U9<}?{) V-Jfk; D1u&փ'lJ2f̶.F$ )T1#tTYsitw?ɪv2a||.zPɀkXrWhU'%^q(Ոj3N/9h$&#a=,%VfNB`f_EqB.hIHPlvOBUj@wOI}c K U=!%@c~/AG%f\vE%n8+El~`OQr%&z:x8/brFMa8?mo "tcN{{_:S%FSu{ZBOdZO&1:x.)у~nIg2fh"  %89WIѡb,(9x퍻8R2\{*:=>(Gs(۹hр w"27gŔ $ h%{Ww;<.?G^ ^8t+FNMЉFVqMycT M;Y+Zqex'%F5pj%ztւDH3Fsg`(3pɉgN2F&gH GRnԫbQ]fZ,N'xMQuмMSTCii  @$:9{ij  DdNaY%KGt3x$=CGqڿ7>ptFY:OLa!Fr+MH`!XRTTܽj[Ñ>#_[/fuvH : Z-`] 6R6[IQmeϼHN7|*X)W tij<);}`AG@׭`j2ƀA׍5ArZNؘD7e$ LwC'}jfqg2J|D(ȯ v&(]+  ntTv !g03xt HOaB~<OCcfûcWsvZ?A״v2ÖdzHD0XF .A# .T XL|ɜcWhC{G>ϙ?X͂ŏXNCb0`2?u\92;.qw!D !EZ(Nmx-@@ F=kYq#3}kٙs܏QurrՄ@Ob'm>rJ~+l,e <@,q =FCzRJ9˝v("W<@OGA䅑#Q*q5AatHq'u\5+K^NK[jQl̾s=,C2b{ATn7ۦLne5P9ŒJ*;Zi&~&.ovڔL:#E&HIg$h2qQ&A1Y<ج;$ab|Rgn %LLC)t'v&0!_T&i|N)#|K{rb  8 0 NoRrb1-楡=ۈ ց5 =`l^ ?M l&TB;&.V&D,{d`QШp Pd0așFH i: PX\0NO'sŇMi:|A Q"9N @tTB]8  ٽ}3u)W &M\ekH)U~"|w4wvN˘A0Lc %Ԕڵ,x[Uk-bd_aFZvagB,:f3ҹE/Eya4dLÞUW QyZsP0K016\Q"'gL{v6!g<}|%hFNÕp 0с_mϺN [FE!$?dHߚB$U,^|*jh۽T[1!Ї # l3^A![҈{=z:cȊ7x^''Һg Yobx?CHYZNm ɓv7wBP1b##qGkop@( 9a:N$r"dXTu<{3妏,saoIyM&$Q9Stۨం"Д. jh2 F1.u6DÇH(iwg’Edʌ ){:zt Wm-{OWh;d|Wzd0>_DY9gNc5nY ׄ)f"2E<Ag +D~SgU(h JK D\&wbwK bD4!u(5d[fƱ՜5btћwӀI$0Ƽ~4؍8k(,p0Ѥ~~+4 dž7g1qpA.հگW{`}kExlp)NtL 4C{Ⓨy] قu{)) $ |2(n=[nS)U1K'}{|E]Lp<Eh|Px'fPu~GnG#-# LTPG95vI T tk r 58Ag_ P!³6߿8qa1`]8.I%UKݼݒ $)%:h[cGozO ㇔1_uCI.i^-jn1SI/H!K: 8JC''uTMWx6<3>Ii|Ÿ0M47s줘Uf8p I6ƙH.oLFپa3=} xf%zcP<ݝ$5#L%_c=F,t|r4Br775sym?F(z A _")QkX077$ IcDIȁf!Ƙ\ }Z*m( YGuSI$.?$1HE%%M/o`(+:{Zb$cc)w~όF_/|͎U3r\?YN?CQ5.hzouX:;Vq Co>3)-lXQU~jޅV nJGr) %twֶs<,0S[Am-!nm`.h>*I?ǞҵoNWoٖ'qM+ xENP|jA/!?ns'Sx̌1&zҽFK,\dbwh,r^VR1u߅D|Ġ;Ndɩ9dQ$5i#03lfcf'.E96G)>z3`z`{-480Jc* Q8gw_=̣ru> _s섾+d 1IOV}8Ks1QXglN:y;1ip("VGY,ٕ) sb7Jw#3W$c0b2a1QbH0Wn~D//'P.6U5 )׏HX԰ȳL&~/$g0P֢. [Wk""MndGc)s 8!" H"_>idI蟷JUF”E2΁uX,D5~fXݒ-gިI]["5JLaY 6)ЭҠЪ1ˊGJDSO_T91@(zK{XՆGGw9c Io[P.A8a;ƳE4+1 Rɩ$n}amG8j UDC~ <1!*J$Fv4!HX,bHO 8;`0 $qR^_fpF! CHRbؠb1r"Qe\)r-4AA7|ȯos+Hٮm* WgzIs^>^Ofo#S6װ'ƒVyGC ^YVλT?81zO:q/d{#xҮP>3~hSxaCsB4H4L2vMsDtd0QQ?YgC";k"BrNt@}ABᘮl0ws/)ATJ K~|т)vtי|iM&Cf Q nB*NQB@#4;8L.`(oְ-3.k`o),K@6`an$4c$sfR bla8ޟWA~fVEgj#+B 1ډ]fwt9$9%cЊl@Ge#1ϗ_,4'Xw>E(FFÆIF rRDeM IDATA:S A> |Eġ(J8t8Й+E9f &LKz9V MXVn23;o8ɸo~xVJ ;!F .2e f϶nj"3psƯO,a(#+Әc3Jr5PE+N2k8lm<30CAf@hԗ\ŸOزi#[CI_çZ?I84[)ETp<oDAu¬>DCєy| Iz29?|aiRGg1#1 6v>96}aŪ&e5h&j .i bWOK01L3[irJ|'KG0<~GO,9|H.7\}}o|c{<N7)v%<tqd-I$ bC^ pt9Q7>6ݕѢh^9i߰VOP1ThNd33LT. B f2bT2Si$3QK[77FY@(. > !DTn::2tCj- Qd?@G֜miwki,ؾojݨH[Y]#B _QĖ̞X!\TAe|?SǞ\zə'f`/r  I2P a"T䋐D  !YUt b8e 2J|O\A-|GҗdBVL| K G.Tdgޤ0X4QD,ZW|]>m-ؗЩ4D17is?yoڈ5S@,vi %ϚzLI&x4w7rk-"wNfX)5d~|;ie2n&Aq~7x)sM= dM8Nur B :h5X)ғCL 4YF9Ւ(g0glEigL!60 .LvzZGgrmA5.*L{J %F0 $4=xD錹+SPHFO^' lmgkpkHr<195|[ַ ` 1vj|Ӻ#`E䔌+Z3F(tQ`/L(VHjD Dt]UT5,<~o63 StU4:D5IZ5 m=ǜЃ9uvrs]ő? e)ƹ)4RdB'*lNv:o>eyNDMK ׹x&JIyPaBS0ٶ~P`Ч8yHz7+)4#xS'x9)5 ;zy&MO^^"\Y=QlGfG?nVh1f@@Q艒/CȖ͐6X#r!DbSm#aR$@DahĔ>nd|]W鳘>- {Yx7LɌCv f];bM=?=SvԊ 7] Mq!^_'=R:hqZwccGD ?b)|A_w68ӵ\r.3g"ERnpI*)⳩o 9v>BATa ^ "@}'?隣dXEtI(AKu sSdOk0\2|3Αvn?Z#xLT1aИ`e".hAt_vU|dQcQV\fРbH-uoziퟟt5gū$E<ߤYɓY˟(4po~_Kl%T(λ>6G9ǍEt쒈 HDdRXr]  AoJ@@W\efw5^$ ӅέjXaGQN ++[yȿ˗ <2?Ý8Md峦wN!_u8W`3xBkdq6gUsI $^iUA!z!GER1o^ ۻ3N'h޺ e`b plm< Hc HVZvLM4" l6TBqڭZ@USC{Y>M#mř$HdlF [b4F|^_(r69ܸ(rߛ-Ɲ_ʹnu˷GFq癴uZ;6PfdAяԓ4GеlC?MN=3VcO/EV{`-voj dTs׽gH"k9[(">5FcQފb IV&[2ghNڲ=[>@Ggo] 3&<HSHxe_}m3fUbn{+TI*ɫv75'2mLf&ثSeew EEy`5cpUҴX(q4EN,!{:#%V. I#W?ťk{ó+o=u3?ea9& L$G&tOA~|>$ _GfD&e˷aX<& )KHC\E9˼R2B;(x?}Q'1-CJ8}f,#m[j[8lc ϶qLjzlZbIŐj]TK&+d9 Soa 4**;et `R FNL?4r$1r-`rS ҰEX(W6l!ߎ2ﺖ^P<*cT HEhQI|>X4> @ʄ Ci. L9wᄌPxo~PuVkƗ]1;Z:TpŃ ebj mJo 4P6E{J/޺OuDr1|uUD~l4)CvXG*{9|[!ނʷmSB_'yDDBSgOLXף/UaTly&l~$1%G\c" `iT5ԭsw++$ni^^!XsJA8?;hco{vL~ _|NXD4̦9ΣDt\FQf~0JW*KYkBՀF(LxL\}D08j7FcoTIu$n(CZٸ)0V<= P:^&+UbgJDڽ]X>&AOu?!MAUj:ecqd]!߼D^zeKH/ i`wzuJ;DP10( , Zҕ<|peYY,ZG(# dTz)v#W-`d&à)T?ji ފ$ES'V42m3¢*NJ+{{|ZBn6~5RigG8fW{y(x+)52JR 3:|?{:f>ɋNSɩ!Yvh:s]㊥9W.~I =ȷoie0LWry_%C$boiL1Iach80<̖qbrtn:`iMPnBS=?[Ra/ :hfj iDT"uX{1 4ĈLtn>mN-⹩[RQp{DkfGշS#@CkJ8 r0XyM!Hkw[`Xƻ=<]IL]QiZ(_UpYCaFIv5˰rh sj_G',.@7\R*!_.)l[&\199sF\x!HqRƥ* ĺwIs_cF[rGsXE3Y6 XJnlN;m1Npesf]^O Ɗ -7xEX͘_`MbƯV(cV4x.t%3?:qËpR~|L='k؎?"` <P1+2+G. N_+ݭXGFhEeC}<*#&Eg=DS2T2^K$Ufn>$| 4tAC=Q4/ŵOIƴ"7??8ypOwoLy\Gk0J\E'7hKdMUN\+4hHO#sعEK*v/XvVK]EUQ$.yGTǓCre]/"S̲R 0\ Xc W'2D*YrgMڶj՗σ<ū- %{~WJ"PбHkTNjiVʍ\ݦYS^[ty~v.|U^򡧅^QGM/#P P(! D\fA06Ԅ Pi#G1 WWcz]elFƋ f3WvnF`H]heh7X aoE Dz[f-ә"]"[eH_  T.8~#zbeEf# f!;1|fJp#`E<ɟv6LehJ[=xsGb)-AB*#;G)sU$d^i1fn7'?daH` EI$.3#g`-WCHܙ^ʵ} 65 nƘ/gݱ zEr8EEu{})"N6n,⛑B;Vy JlT}^~Dqv&iT9NQ/iӗ N?y>z>eo8×!q@mh=Q]A'߄/QnMa3A8|.h TJ[ *q|’]ssj)f-9ۜdt?a22ӔrKgAQn1c&m||iW0$an| [Ʒa$pzwEŅ̹d( r!0 )&䱭KP12t#sMD`AaBݍQ;6$FШYPSWq|R*mN=HȀ@EeSڤ.97gLqxu&eFO (oq9qg]hLf1hTu2|"(:5pjuML:nUŤaֱ 8䏚4% |2WgRlb.&\]9{zNŧ5o.#Wqը}ع3[r8NALz.狟WiflnʣA_]@enP:KCϒ%pmL|6K [,ܳSb*H9_\_x7*BؑytJUk'*2d Jf7ҷ )1q08!-38I%t+Je5! #+yk:-;O(OBC `me> fΦ!#i?VgJe"92<%OQ8  GGXϦX7i#`8wL41&[%v#0a"$ 22NLE>U@Y|MeIѬJ1s\VY zB9YnnzSabZЂ:-ODTQ㨖z,]2nu8 X9dWμb9uW뙽Bx m)5ùOӛw;(o~wDYGF |4T˒V>)APEՙdrJfLRH+s5rAJF/DMaR@<<׋OYlob},C̦ J+ZrɄdqWG-@|6.Cut'02=7^i1|Y #29d0SPƹi^],kA\#FOGp[pqv.dxf#Y!~Nu:`yVRA1K6Ȉ3ۢt(r=qH1sY}hĖw:ɻ9 ;FPvL~zg\P*s{MX IfPu-iYE""\\3WQpYȳj|QGS(cO;,Rq=VuaTΝJuciҽƺ'S_omI!*v<l NT!#F3[P}>[ IDATq4(!3C&xwtYKR0t;m8%r#Glap*N.o`'̩v .FYM8[70p""8J( sN,-޹,h P@c> ̺=\ݵUnY7qVsf y2|ib,.p@56!8eA >fc0v֬nԼi@TF>|m- ?~hf#-fV0l^Z(x-IZ`;p‚EPh&DŽ#eKX%r\b9Aj eNj5FDRIE#N^+lzI xt!zģíքcEֆFsݚs-q8H*C{l]_" ]qF]b DhO[k#N[HUjrXY/yd F hX c3[8/(pqwE>xE1=[aV7c׌17rpp B1XY876b߳y+ʹ3m"#h=%@*uzvٛO借]x>rdӚ:3͈~ ?yS[3ͥF?]>?UvX'.nyQyĕ]Ie,G|ey{nyyZŲ桶C>]$c߇x7͊XC `X|o:^~K0csr8Cݜ1a6J&Oö֡Aw$!asr@4]XsL义uIa[Meҡ"3W>) OgEb\4;(24Im+_ }E389h"$i{ʻsѨK{`l0`0{B'! JHЛi Ľ&7}4}N13}߻{xO93<7~ʸc-`5w_=w1l"2&xw$¹!d rkT75t`oMFNIA q%lsOf{: Hsc y3ĐK]:-2֫'I&s7ٰ!r \:ջ} ]G9ēh4jM9 }I*  Q@. 2`S)&SJ4$^UVMKKƦsnȇ[bS>FY o7זaIUSK.:PRhfwScgB25eh+Eް35ǒiA1QgD}|!+v7@'CC{ Or~hQLF{I*PnvUǓYP.6L#g!]Qt#zteqʨvNv唤HT}}kdX4/kK`L m4F9:iƞ>^BP!mV jL ӑuA CAA"kt0!,5j#W hڰL!E8לy>`G{ oɈ'veЕ"'9ܰ]=n(b}oZԌLIV+c9 :5d vU]T=%>}9 2Ս `.o> Hm>+x Y0]5Ƴhƙc+z;9,v˕W?eMT=2Q7݊e9cx|*<O F)vP9ޱ9<^*W,+x/|,sYdө<6؃nqp/^Ε Sά>z=f ~%ܻ~Sͼm}Cgx`{)$m>L,Fmbk|AW1F,SecmV0VDR ݙ5\XZ*3L'AI X4(%8vJu@ga]R0[Jhn8BWU۱cvn&"SP[=o1b 樳crܞƀL;W0bkZ0.Uf}4I?qpN$Q's-m7ň"$E9iIJѳ9+=I|!?:S'r}w"<9̨J'63>18L(Em`̔r\0t:c4 'E(8c=Yg +:Ihmܜ;|{:j%"Tf!<&@>wm$1Yǂ {f7 oEbIrm@N0,2& Tٳ'GCa3H@L`AȢr,A#ZR1F Di ;~G_xIiBͺVfW2O MF Y }/;BrNggi-Q̪,8v2B}{r3acsVI+#ةf}0Jj2zk+;]y|2ȜNu"זtةv;vM+;&YFǓV(  '|dzH7> 6;Jo'Ǹ9>ABT5w j (G?:ӱm-Y3Oڹi$ô%XPTbSFifG1G8zCɤ9$4qxcY{SA;l25?3оqEf`-Q.&gYdnGΛ eڈU`+}Z)MD{=`Fj3,(A10/\7CV S䲅ZAP,P1b:9fHHC0}#7~M.OmUK0ڒK# xtdK"HxelN D6l n۶HI1K!͡gFfH1n!rv$<-[ǜJ1ҙ>kf̐H/ ̉@2CR=A"C2CDaEp)tN6=O,-3L:xtIl2^;DŽDY>Se҄W"f@kb7q=\3nmQP[vTmĜO/=I6ur{# gB86\4m752-R]|r>NiٟR[:LuPaFK3<`xu ݰh:i  [ Y1tRɀ3ٷGewTWZ)ɓPWw3ŃMdf1|D7E2η=18vl%:T(#.3K,MY\7_nRVq0c1|EiOχw@d7[HJxȭN痕D/@N.?*/nQJ $j$V"\DfxE`kG2ю`G=uӁ{,e]_5?-`Z5i4EDbc"$ϮKǍҳOxÿb1CẦ^$XXp,W}Ɩ%i2:Kzf&u0mwTq 4;}:x,̹O^/v5D NG2 A)}w|G\K$5Q є*"k+ [ģx^,S# 3abs_Ŏo.j}` Թ9b|>{rw>ƣf31gfш|nj ۶.5Ě|.IԂdސ+ퟒ}2)G`4)rp H%QG,\yҺLyW> Uyjr0v>25 R  r? ~nW?7am-цA:D _w8`6|Qs6ImRz(FP"6 DKd"V_RM FA@ 2aOȒ_>E<'3워*6lͲexۻ9@~ZԇյVz5zm~R˅5DYƉES_`jYb(//Ƶ~ hZ {e jh~me}(0vsN1/tq8+X:|l5)b{16n9ĉ^wnic{m}FTK?،G z9U-c=)_G̗u@Mǖ25GC[lkSƄQ`s^+"@^=+7M fR{Li"}*+:7`0K t┰ DNKCM(WA=ykv!uTV),"ܬ`Wj L׃Q؋W"4ZWpi wP%c(c ;"\5Tx@hV˦Vls4A+9=QgcC6wbpJ-gW(VcB2w.Dbwt~yVjdԹ2G26)Ubtqj'j81.njr?4s0Hvi s9AnA`"3}`Pm(,bdRh !a8fB4d 34u_Vi(n+%xؿJЇ4K=u,C]%;1n46[y7O9Ώaя 5 H0ꊦ,"ZH bQ`xJ2NN v?XP=S*f HΈ<ҙNͨFgR`76i>-!eo:##D99FpDdF7Y6 DT:0uw`s=<1w'R.ȱYqDq.^5Fg8\w[Z󹱖c<<'wVlmSsL-0RdƖ8t ^EIA ;HY61!pLMiv9 \9_VR:/w~/?-筣X h t~5Ҳ>dD057TЈgg}a孂.YCjf)\61` T7,ogaФAF>̭8VujqͰ˄J~~u4x Mc&~ڱM*4@kB8ʅc1P^eE'KWD[CuQtz{ N7E~^k^.W jbozb:苑1ãi @!Y-c+viA!)YYv,_0ݣ%ݬX3LjCB?#Y'z>t_ϝS9bC֗7 9Kz q}]n˒3OK% 7|#{ޢ,sZ=swTKuyENӔϯE-LY"F=v[itp .䎣XR$`BSe;CÑ }dGj#2U^b>)O5 *Քc[n/n!#!X/61B0I! Z7Ҽj{S5O.$;\9??ctWA`+L]MJj5 !MMkcl $vH'@EMo pUQq (p+6pVMn9R"C"4HIG!Br! (ngHa} zHlh(/4*.Mǃ}194GPN@ IDAT$1BM|^A{XTU8k%WGg-n<%UVY>͵eLq%NE03@Uǖvى/:`ѥyKCC[n|,xeunkۉgr Gr!&o:.Bvd4Dd@vgf2$ B2RɚQP<ۯ1w\(Sa=ލ]qnqvJ R,n?$b*VuQm:cI9/)33ɏ4nCmQrt0ƛMx8e&XR]~7(Hu<ڣbL+2Vi2*S:D{]|EM uYw{Yv?L W{oga1ypϭ~dD5 K&.@~peL>xz8X$~FZ a\;osbǕ#BݶO?z:} 3{873o=ݡ3j4sWd zU9yQۂB\:Rģ \"G8Nop>ž^||mOM8 qh7GC4xA|qkԌΏZ_~kդ/݌ݑT'2ƀR &wlҕRdϦآ繡7iI/Z/*)%>V2 }l0M4o&;Yxx+ f ؄Mkǝ7.aHY˾ ,O7Մvg]2GUq縉l2 *rc?Q?;2**zg;k6Ɯa N]1QTb}44#y `R0x-,%&Ӧa$@dܯ`Q : 9ï82kđz8:8DO*yR(16ha_+"i՗Pʼ~ 8g3|3ws} lˀOaU%:yM-0BzQKqZnD 3 hp mۖ+?Кd r:/$κ?[^4eDcGוSZwfM銂S9IG8& @T ݻ?؁3-U|Յ+^4dU8aZ2r){HgoekI>@a|eڔՔ1_}-yk=Ofd@OŐTQcyhQ`q\{'_~D/cw89|5}?] ɵ+Ƣ"8rw?j-auO̭{ܺpIӘZ*):iC#JG^$#]sE~;gV!kyQxɴXg@w W뻭%$R:baXW#)0s!LdP0"3Fg] O&eFȝDC?sz328DL,ѩMbM N0(fq)g"HΪ$D7[̓4Sip""2{øTztiSZQJG+g,u''c&&H՘) k#H[[ۘ1cD?L5˲|W9sfAn  S(uG61̒XDb,[h9$8{ mC ]$zo*QcѴP ד~=?)# Gz &v1&d`wPJ[bmh4v[ETZ0 E Ǭ fx $G0RWU:  I9ġ3lrSI{Hte.X|e%t7'GϻF?|ю.DgT_Ѻ5ͱ.M4>,fCYv}کe7w;ᅡn& C~apX)yaf : *SY߅B zC|Sm/Ie'!䃼 ')ce5H#\; [LX-dq!b,y"qLiG\LNjf-T#h 7fBv2<'~Ela`_y啇zr'/[pʕ+z;c_=yPn*(l;+bnͽL|W*Id+[ dct*r݄ՂEds=݁B(#k'·lWKgƕV14@; iL/FB_Tx&sK5ŧ Hr~gctWfS:@KtR :vSv[A^6..>0a??Hxj2yO/G{έ%}+Zq+/UW<._%pK'{K/yq߭5 ۍy.;h81m I&?姧#,G_y}bS,c5 gӧnE+tk d8`MI09)LX,K[$Y({o>Kw_q3~+pjgeec;3 nRpXLe,R$,R'rJiA+Q.zKzdWUX7ϲ\&MB7HjƵYU1 n@t?;+81~5g|T/<$* @/lB_2u"i:I6؞f{7uc2f2A}9}0ZV[X\AK B,gI#Tl @+<W~NdX'Uu vvĕrK&Cd:߇+J|ޥ.rNc_^kyuE˥wLO΋{Sw3-_U7q+>sևx]*M]Q\^еwm },;Æ6ñAupF[b$ ӹ\ :ȳ$zuqbY5㽤P Pvk'+hQk7CCkھ!CgK== PXb"Z>⎀e"j]AU7j U59R p9fs`r˴s{Bkvdϱd2p K.ݼy35+oP[oap-x<_'V ],ɩc]~40678$}qLa~¤{u4F%/3bɤ3QܠsȑT*c y<=4<@pJ928 6Q`Pa6teT7sb׎b4P3ϰ7Lc?coGl:t:9e+E1+d3Xh3 7#H[(ǻ33u+pN25W͚7߰I|)[YOy7˯ٶB {2Zm+2g}w'E`'׿|#޲H2ž$o_s1cmc_7Ite%IlY1(O=NeY Ȣd7 ERvuPBbMωq958[MhJңDB)&ʐ`]GA4ΙRqVid_6L.1ʭYPżOi`=mzR2h"Z~U(T4"s h%N'Iy]6m7:*~>nDA ^3Rz+G1#2<DkDJF2"gwWy3H2\Pʔ"6b 1N M(ŶonkDgtL΂!U{o+\%D~kҨ:+9 #a]oc< &K&cRLEsmώi.ʪ>>M"=ԙS*_Χ-\{OM!aK+*$0٢{A#Kp)yE'͏O.2lq "!Z4(N?uM{J>].bW2 " DN\9u1Xˉ9nn;CP)dGK#}|~RYt@]B=RB̹ nzqefR !B dd*AEA"i>@BK-3(~~!bp], I_`b uuuQkr)}1[ZaY]{ü9|+w^\9 [:<22wǑuֽЫHԙ/oᆴ2I4[Xtf((3:=0ZJaZ DЉ-X^-1-1>&JKn`)'~5J [ɿ9铿ŋ?O{9BR&],߂_ 'X E௳d6 IDATI'өq@U ~bQ9mΝ@[QbdQbTa Ɨ} F9aGg"4wȇD┉|?SExh0gy{6PmrΫꉼ]48Cf0w5gYsh G{Re,bCTdPG0y+=+8B+ -u,a vnQ+޴|?K+^8׳b((@N 5Ms\+Ul"2h$ÚOܖW?'^꡽+ڛidK k/ cx_ϋ&.9H[-"qiU" ')4Ǫ85ag0c5CD, oǢp @;%t1ZHE=d=> e+3J(m# fpIV~lCTr6l$牭@hgӺ__coAV偁]O3|> Ag>,f_RLDw'W4& qd}V/6Pd"cЋSWm*3›RD#Dm4KHvc cDqӳg Rv a JSe8gEl]uzeݭN56?AjVm]7B?YDe9_ LUCT `FM+Ê 4Kq|b=!vY.PT0O>:cu?oܽE)R 6b6'xe?],Ka(F,Ū>J ~:Ņ|>MM3Վ"`QhpZ i`eh{$HF5TQ戮gq<{pdal!%XoYcK2V N=q1Zw$"$bX`5~ZbtH EBIzꭜTLձ0tS̘x?K9>NJҘ<_0LG]vuKr&I"12b$vY;+?N0YcpG+f` Bz^E(l@&odo1:OXkZfsOOn%cNPYҳIl䐥ʹw)$zJK bQNGT9 DJ! !erqHbճ lht;q^qٞ@^*ΞDŽ3?#{sȹ/hH$6ۼYȹ%.7~^ag3W ʵ|E:^kHe ?U~&xlQƯX~B3opw_hf[x;ճxxng\d3R頻׿FρX2_[/률^6w۸YWU?ns?B< jfPVGQ=ͣ%" :Q0 Z:wb"`3b0-,cS6.䘳Xnf lv'u7 eW'[# qA,%urVP0>ǑH`902B$F(JiMݡXVT*1F!q!QAJSu2Ӗ(?p~D"(?4RZţciolG/ei1p#D,yVD:/Rn"PCf_/s$TRGZg~kZ0 1^DLk-=CSͅJr[UHXJcoY0T&Z@4\ d˼vW\ T msKQ ff色6~>b rR+Tqsd4yC©p6B+p3n{X=\y3^.y$Nwrcumk '¡yVo픊#CU҈QEIbj&c$Drv%sKm/CHƬrAB%E0$ Itbو]/0B`U$Sxq3ܙ;8 XN1 Rϻ12iiC#$$,=U_biQTDHa77>xڹ/DEO~o~ >X3x! ( f 9^Z;O>H{ynVcw9ɓM0g';q Fаy(":!a0U[9c<&H`n'!vOi+ ܱ 'pfUNyiȨsv%g;^721)ݸHrF>O[4a숃Zh;0b}aROFL{Nv6hPT\EB^f_=DL":D^pk 4ulWygf}Bs]}Օ߶.vb1ͳGp#Z>~ۇLn0eE5WTQmc0|@tƹy=&:w_~ʭd# k며qGOqMeLD;:#+ Z|60K}4yɬ5? <% #T|NaWXgDx?/z)KX״udz|%8/쉱6eƂ2Y"NP2Ϯ0aVSygsYi2ld9#ۦ0M8ƒAb'f-TXӓ#%D!!}(oVv4Nڃ^R`8BC/g$ Gh5a,%WH@M$DC ?=a)?M4lf;ya2Ź"renlA6 Rqͩ2[߱6???HKxnY}x &Z'lFNسOmpu5Ka.$ VU'wNZd1X;WCZkBDBE 3v"D 1dhhDIj~(n;9`%â9'LRz*͹ni hP el.͟ 7i]W{ $L=D=y"'y8E>Gs<  %}!ĥv_w%-qW~.F6r5>W񚗤[xY~z-5ը(2 ]ڪ=z8j+߬QKPѧfg$Nd"+e=E o'ycɴ:ĩ)}XQ iH`R2AL5^ˆCH 8BTRz a|`_r4&0ѕRAu` DfvLS& 8yy#ДuO7򖹺s+PoO1pO?έ]L62Ƴzo%N0woJjk#eDB(1Qw  B>zAT aU$l?!B J"E})n&ip1AfOt(n1'(!5`6H2f`ȿq^*x[K9Ll7Zώ m:4H2.n1>mt4 $nlZ۱ǙT$?3y9̵S(}j"Ʌ<"G!F_\ءB3D_͘Lqg ֠ )$*rtmcP@1G 9 F, F1}PgbR>s#)!5 4RdenfK W#i Kb{u&+4I! (&0?'b;BK-a.J2[;&X 5=~Q0|k'q-B]QQκ̡@U=ȿe\[xi6JZS_u70?,K>>љsap)PB{u5R]ܴ>;s5pz#Ev/8s}˪>|łܼe|upRUBYWDIȑy,u-->޲kOt bz#8 ;K*dM QIeNl^?_6Sfe%8d8A 9=\SMi?Ea[Ǔ.@p&omh5vaU#OTK3M\S9[6'|ȞOWqߨH$ Юqis-ljxNS :\[$ć~?_2 ^L"yDT:?evsբ, 2y$%q l:Ïc̔-\ 3ʳYݶ~6Xs&ėsڣ122A:ġA/l-9o7UgwXg\r [L<$<W`sϛm<8sL;w#;8s6PJ(K Yq*Xd{ ¶J49gCQR1PT$fSf$c?9f(D1_ M$tA44LD  : &0tGI(X̜>"?BT&I>(!=&]N3@JSMa_ov1cFOQ=ڍGcMHHv4FFo+uA*@G &԰9=W%{0oVyݘ LTŗ՝'w$ `fqQqs]_^T6_]UlIPN{FbxEtXP@#uEoCKO#Q1N ~;Gxkڂ@01 \ٹ<8^ɓmS2o'Opvޯ$UƳiTPKa,uQm̷kw< _su؜qʜcR+>*/@ĕO|\ZZ:xC* ͜ *Ԋ[y2AAc̘P蚍>7hR;Y5<6''EQ\q9:%_] , 3iN5Dѐ yZ1'@u ʤ%15eל7ߥ y`RdU7DZ5EO/b1~ʡ5 IDATS6jOoz}t!N^ ~}/Ma(tgW"%!PUC ~Yg؆ccS7Rgb_? l[=͔փ"iW/7,(ڸiB4=个GGREAm Z=~m=IVp)'zy(B~¯^s b=A 446bo*)<x.4s *.4˯Ll Z:#Qjbi[ rr!+c*z VH1 DGYmd1%IDM}L>Wi@z I<Z2. Pu"%0aɪeF dfqAOL'kɨI5C1cogLHZz:nGTf )K+3O~JIQۨW_Yt' +(v:` mB.)eN)4G6:|7wx|4Ddx"Zy0h*vFpe 3s{'puqԗ|?b㉩A@efsC-SlYDQ{*|1Br4: 坧h>_)zXvˑW]?m=P`gְ ⓷yN4u,@18ptFy R*NIDPPU)E(xt]^ tN~9_nߏMk]FʱX<y 8ehg.[/~<%儤 ~P. U2: Fe {!'|$?EމQu>fq1JAegQahAfw'w^%3c6}e8eNG$ʷ`#!Tר˘euϘ 1)F {9!C8,`ghM^"6$ ]idpkn>0GXs~dW#K-Lw'Rbh5ׯ[LF55> 2GLN;qu5NIDSl8HB#.Ma]-J\vA,HP|n?jqW~sɇlx A/?!σUIUoՕN]r>WegG`W*'B 5 4eJM:.ͦPwۭͮ(xt8-qDaӦI6OxAFvZYĨإN~8IYDT2A m`wm D]`FFz}qL:2>QW0UmT̈^5&x U+g JQEoQ}#*f )sJFFjQ#D'GO-]8n^h7pde$XH(خ\(-ƬMaӬ,}TR/ǧÜa8Js_^ &fc 13+v%CU},X·],<0 ^ uo=/~sR>+EXcxbmxpxJ- \ƓA_'g밈5v0i& 4%Hq\~$fD;܍ NkfZL#ϙ/ pX(EKIw~5rT6&RPx/xѾ oT#s\O2@3^ ȸxC[=G,K(_?k۶oٿ/^}/&ʬ ƉKвOR9%3ZKQyS^9((D* 7$&;Lᴋ/Ă1 sUnfu7i)Ȓ22C=eHS73LTcV6j҈%1lj&y!Bƭs"ܝk"Kj ®Ah"]!19nb;ԟJ%8겙8&Z_c8⁄7͂ˁ?ARtS>˞ыH0N;(PPEAG[!ܧy+̰&Ũ3lJ*ѡ*Dt8NP0smR"b1P24%aI9fo P~UeE]wMF@(N 5JOn䮽S .9PFgtG0T 띇2"eF9K/9M KXZL^Yd ܾ_lvR@dwHLW^mmtǯV]uXHBd&Zu !TY%9f=EJA}|& ڇ6T,.rͭcv"əfv.S&ID)WHL}| Ɗg`9g9Ê w_? 3?U>pGDHIru&4E`Ichێ??U Yf$^k‰(#FoOu:6Hl.wJf/ɬs%a_Z5u"G2:opJJ)kH#R<&z!ES=nQ'Y'm)Iok];Ρ:.1 zWBLTJ)?z035J J` -00&ܐBX̌N?j¤'v$+zCL̟D0m^"UcfYT4Q,|Vwy=3xzp$ndh29ǘSaMߧMW}P-G Za–ͮ$Zhjxr^RtEd2_~^?.˧އwR??}YHSQ꠴vL-3>>|i{ &yޮ6LfPr8:8ͪ.@_~M )ڂ Z \Y;깧XӗuJ2E#"1o~AQ;+Y N)+>cO~9ǑJcQbׯR^Z8S 4l~_?lMOܞ >rq>f4QXӌyBr<;Kژᡵ F"a^fO`BCqػ|!&U d O+i&va>.~&*Qv" ɜ G7[6J6g~w0aokwv;a7Ά;ٛd/쵭j/ɓ'7֮~_ Lp;>gcdġcWMt HFض} " ڧZp:)*B'TEOxыc$+w#.㒫To1Ķ($fd3hF(;^vޔsndR 0T!D1|Ÿn2c JזTQPvh:%3˂NYeKՅx|4mP̷qHE "Q5l=Kѽ򨺏,1)$f~Aeʛ.DoڞT{*FEupG)/1q. d3[?:L~~u6 5X)NK)N[HX@qh HBf]~ǯk\3g9uv64PPfQXPȞTn,rooExaʌU"0.Kas/1zҵ SKg VH18RGT^[/>2SČ7͜v[߲q~}HLw zؐ@&/榥XHNHh[8a&9 Q%,+q$D1ddBSVdt=[j( ]<,H-vډ+ T9pO540r) Gk˩@bIJ&B5/@$IK=?=^<#'ܰ\'6N(jp Ʀ2ŅdV,'2+=Aly52S \Sksq\:s:ňZ6BG?Dxj{2;$K5Se˻,3#u\?d62 qGHmҨQ!ƀp?H{_νKKeHcy၅g7y-]m\$p->0@a~HeOMbUlmO1~q;}t8%&L &Da>qz4`!eG^H2l8zy~siyէۑ =axy {{8QkcC\{%\}"]+X9a&;ߟoNk$Zoo*̵*hhݰC#4A3@+ئq\;۳'ؚ{rߍ]̓m ,G"K{hܐ)4ngVnuIp8]8#<0%jsCX>o;7SZ>m>zGs-LhCê$Nw u+ȊzT6|GOo*·H$d~EN.U% iX#'(6qՈ'&P5MeWW4"$-a5,$ y&5\/ǥUtC4nƔrcM{}*0G熽9sјו问|˗L*!H{nfVOEȍxf<bisP((E!'fqXٖ:~a\XE\?FrCNQ1AD5lAגk$ګVϖUT8-! l!X5:N}PhC[\u(c ;K? sW!.5j嗑k߮Nusn6|\k)rl )--KBcw.rr)oi# ܺkςBąHT;yd;ۆR(eq麦q#Ur?8k=M0lHؗ=A]+3w]??e$@.^'L2W+ƚ6S);ֺILpn6\' $ >`Alb?OOOF@m?t27ID* |=fzE)@?C##SX&fӵhO"-H "[筕4uJ4 '9Bued"o;I.;!gs =#$P߯e)syyY__(%KlsRۖD;zWS>blԕxX3{?޼F bu`wlvmtei#sآe]J_<;$PìpNjR|mMۆU9jgiT H3EH@n9=PLm#UXU_(Nsв#$hŧobJ-#5aE",bSX2s匝JQ9na_gYggG7.%<}E|^ΡԺ~]U!'qMr '_= "8 GSN:]8`yKRevߝ`o,+?k7<q\z< Н9jQ.FNM.;w˻Q:G؆c9.<zz5SCGeMR7gt[o9Spټ-{@0GFTjZD$u@1Eás]}1Z{D"!dh#A([/Y$ ]] IDAT_1DEЭyv,V l zDIK4  d[QcbL!W|(``/Lvn+jZ˾==_sDYXDl"w9uU\؈ VJEGV %GG01t?gNo(k`^D[i l`M'-gw!i0˳3qN,\I &GN+!sDn)tc-,U,m"g؊ShaH]keXSbwξ?FVW } .QĘ 7qҽE+|5:SzM"dNTbջM߈[DU%x`gO8f'dF0-SgΒyl cY!S`W3@810cΞk8gNE$]&w8`eYKpBbkz"#,,Yu\G9ز Pm&_M"I8Y3!yR| ߓfiQэ3Nyp+7|90|jf"d!=;A~djN.΃'$EB&tS]{Sbcvn}xSk82; HX2$.W G:XRIE9?F~hܕ>4 (.*~:0;ŧcw9?t掳ԟsY5V)yL,HQQUj ]QHoiޅ 9j?]O+)7y?vpj91C/>]&ld"KC8;7^ôĩT~ewqEnV }RυWV aYUtjiجP8ƏCf fNX !ӟ=ȔbwZ"}P补QU5;~Б/_~4*L3y&߂EA !Lō-1cNXsP|w=͊ǣуjXɱqU/?)"O;- O % VMr<6b QtlNAx7hAJYevi%qڰ݇a;E4<ɋ,85ːt!X3QǞ] ߄q҅}&Gg0m>!>Z'>j?IQWU$ʁ ~{o6nbg:oʓCo]sj dPyߞ݃ubgXZ>^uSLCPS_OG_0n(N6| ]CF ?r C}a("{Rz X ĔbADEBVA^H#e<$z:ۛgV*W]۾]`tD̴dbbcsl I`+1Җ!ꓩ8QA"xJ]6L:;Zix 5bt%p IIB/1 gWX}T^N~"x{$g !5woܻ a82(.eFrՠu9" `WolcYEJgBTUPt"(|͎nU9ܶ4vsX+c>kCH`m7:h e$|1Vn+1';b?rOeN΀Ax`?P!BO31AՕo>/..9#5I08 |˨1dumKÒ4!Nw|6S8 @K),S8,{sۂ38בiܧEKNoEc3mq2^1s9?~ $X 2$5ƙ3v݀I!ޮ~Ux}%YtF\,VL NUi7/}Ff e -#ZmH4Z 1g~.[*?%x_bE+++kmm7i.X4F`Ϸ:H ;GAtj7ӖK_alϪAiE<=MD+uS_ 5t5(`@d(AM|)1eиT(*g$$աnI&ymO,B˥&Gﱌ_~MHص[$i WaY&l/>y^!'Y_(yon(f|.yGΚGnBC$N@u'.pϺyf[o+uT91'}樲ZhiU/wH-m*N`pLGr[9oc{/S$v_MQ]/­̺1XKQON-ٍ11Ņ9`gWwlk\ zqvӾb=GF,# r9(Xfc* ( a+nghy:2HJHr`1x=hHbOYsvt@ vXhPFqB#'Jd{ 6 -`A'7MHMUy؄mӤrёvX'5Ie-~>N!Oղ=NP;mZ`Plj.  SOtE3Ѵ9ZY^$k;"Ls]QgaSs ktMDTd+X>t2ցUbߜ\V^Di~ih?yc]tqdTJœh'simdk1Ś>c[Yt49%9F l.ᩛTE9> 9"ܰh>}9: ^ ZlXG4n_ ehtrw [ɍ Lڢy~.|.XQ"O`O5}8nᵾy ~ywT mA#c5"Us|[:4jJ;/֋ iAnɤ̝1sYK #nfOR !L?S9[qz_CCj:u??{샚׎~̨:f)s=űSTf{ j-_1Y@܍ $()f".J-Eml6M9b0nޠmPR1є`Pӆ*`IUݬ~X?LX P>>HoGC7M`H?,w2 q[U<~~esG\Гo/pJκxD\=LrSdcς\ Ԯx{ٿ)sN>'xju 5$ڸuyQ2ЧΛnm1 Ǘpԏ7gB+c(C:jГV,&߿1S=#HTyluY%Qd ~m# HIj!– 6IembzCDvڐ Px|`5A& 8HcmJx]Ȕ.SKD@40CqnfE{ wwgd@[0ЗSÑ[N`48(ԕ0 `SpЇFYvvfyy.pc1c\VH(=m}z=a<|4P6raICg,"h5$1Ut^*'7"D#|CN0u6jK-4]Hp§ro |a]0+xzSଏLIh|[y7若mkCLIYK":z;n=}>jqp5\}'Ih|d㝜$N'/>~97b(nYpҒǷn(ʬҰX9_'6e<8 1 &j8']).fW =}M=n϶~0"u5,?c2܎dIMp6 v RAǽ<VCjX5GqH 4: 8NŚ]SqD.bf v bv Fd1AXS` 3у$0cIZ!G|jsf2(!FˮG%eS3QGwC".GF?C a~W;yǶDOkMy~B̢2.q}/MpݵGL(vnh][7w;OXxq$ $+ff6Z@;v7lsRhA8M PB4 0n6Pa.-8$3 >haKm=UD| !*LH7p Lj]mbB^N$)_~#(vUfR m\o#}Qgd[lZ`Ԅ֣R`X2xsu(2" x`LY6Z SӢsEƓ_^C%ќaIOc1,g2z~`Kmk%/3 8)`Gǩ06p,R©zY͛_gػl8 ' ,ppp9'*f$ƚzԵ|74 7fx≝۷o`„ ---X;~C̀":N-}\ bu!IbX6>A,+Hm=M[:0*}`eL zۈd)[AnP\x,rG 8,v;‷kFC9RƔ9:蚦fپP?=$Rz5\ `Rm|.P6 W..==Ē&jxjXtY(kbhjDy 4,*goH`́8Ju*Cj&ܳs{Q.\0|?Vj1 ǘVyl-Gȸ$Ͼ7oyv m maeL{١Coj5cYskf3  v7Z6H`6x qؙJ'Ƅr)L0>ޭybg\,WON <<^$F?9G5[iXKRUK~Tڞc]JuL%>nﮝ}meռL JC|^Or$i UݻU~_S3~x^r[KURKE67эܽQc]%.ش qP5i1߼ c&INju `F k8XTbeu‰]HT^Ε&Um/B/qt>iFZf!̦"/2s,Vl$Ism!qIam0uyA[J䀈@Ly8ӿe֢#N5k7ݔH+GNb2LzW^yex-//k#v\ϵB߮ě3OvAFQ̉(.0 >N5p8=> #;53:xD?83)xP7BCCC*N˅Õf gD}iY]|ݯ~p~:Y"ߓ@Li IF3XƑ$`2v ]ak݄.F\eDV6LlNLWw )/H6ax"p!j,r/C9q&I*Mw9fyu b5fbjf$lvAIoz1b $q}|8e!ԖM936<ᢷYOnĔآۮ<9%^kX{%\cwz\qܔmM/i+x<nצ;4 ( .&z{,RN#ECWy/vsr.'F6@wpfFbk:ې5oPd ;ʋS8ԉ$+ga^)R@F מO-"U8 0agTgh{No`영!L%~\py_7X傩S}=ѪKgҤi'[W#l?qe/ۙXI "Yb%c NO;G48>xˇ8g)XN9 IDATyOn9zՉK Sr޴l 2-*2x{>vJ'؍yy!g8$*'-[IW_O\4Xd *>&&3$ O0X?cBLzf61o`VAU(t ѰiDM |6,jnưe\b;n-`P1Rcx _r(AБf@Di[wޓlL9;j"IHub&6p›c +PA5IBCP`Js E@p0>~s3~iszvMq>m ,:HJ|NýIGga=B,+Z]Uʪ,oDbGFYmv\Fp - LyC"goZAzGu]o ^,>3fL4χ?YԩSw lWZ_o>pYt.39IT#5-pp|*Fm ~$ZjrPc|sVʪPq`/ OA)ad%'$͡BNxsMI⒑SH-ٵd$LbH lKn c8Wd8#iVK&CB#/->.c,ARSr{=M2<%*/Tg$Id%tܖOy'F m‚e"1iD6s~@e9ɲczM7}p(..&Mڹsph[QQqٳ׷r|5/qU_L^ UC,6dbAL3˳wͻ$bH#oIUHYm5MFr{8H|#B6/ؼA} ʏ_WMGN)vk>G9d!5(,+3LWhڃHs&rfLWx ݤ-IAd(I_ s |mcwO;+Gb_wyxWy2:[ó{=v_Xۭ<ƮƀՔ Q˞ xvGٿ1uũ ssL(IwIg(gul )Lp=-.".3U~y)DMJoQ|л'1ˤr5xo-"~!Eќ$ag(FO^mX1UɄӗwao#<4 ~d\Ă4W;צ˷sWp8#?7'g Dw0"EKղ53DXu6ͳ .,]zygUpT N2Of, HOiй p2~91azx/6Enj| ~y>BVX3͟Z#xO%߄0`~ \^;&gp[>޳fJJ{ })Diqс0Ffq2 + #[M%+uQ1v9dA%&86QMt AÁ!9|:˷=oJ+QŻ8Jt f7Q.go#U&ws޴m^hfD-YM EB`XE$p+GM6֒OZBQ1n{;cXxj:p6{9xׅSAO'-5@w,cwH%r,02'U1b1nAT{Y\M||;;%(9w0|6o(8;ݟ҄ !>y-p3M*c'4k`W'h372'}4;<1$`rA.(!S@sq АLwӚdulRR?y@IM8+l4&LZv ɋ;l adzB} lUeLaX;D!N$Qjy[jl)6R1@_?DL [r=ySfRP:\Ie&W,l! ONiGR3ĮfٱkQP@p)-H$hz"l%C Ĥ\v8<8=na;ׂjģ5?|ĻcQ\,K86M|\r]w5w`08.N$s1k֬JŵMMMX;eʔX,껿]UݤI '1$扝\3'JMowFywMwսwl:cLP P! $'! -PC1&q۸u[ۋua-y'y.]{͎FS$}9#0aiMg5 fD3Ac,-{Kٸʔ4&J43y7<| [/j~ъ1}[]}_БДsdn_Y}4m_k+z o*39,lr:̓p\<+GUjUUSk}ÿoÔ+ 2eb# +9{HP‘gxL9ޯH|7 JjKt@G(.8za" r ')l$ !u )mB؏*_mrдė2'rF]{i-Sw"c7h ņ !zJ~+;ЭDJi4`kaO/#<ƕO2y$^MA]G⩡rNZ5Ol'7=J=DGsHNqh{dki==8zw-}Aw8BN!k TFXqpA&f<(0 VEpj; hɔ+Lή Bnzx+%NH[!4s7J a8\_<7~ZZx!# #?QTWn)NێM,)D2 uo޹{;F,%U33#j>=L:.B*l-e]>~HL7otdx(愒Ghqeh )ĈD=NBJBw IkmɪeG />(p (((D"f+KӁ@`ҤIuuuXt:47|3uTY!bǙGHN[w-fUWAAC"6gtsx5AKSvbaVgnbس`4@'mUaCQ"AB~Zv7oe=rI7b WHքQRZe5MGʞ@,MsK 8},μoySkt2^,j2P_5a $ Rht6s0tDs5F\$x|m@ḙT߯vA(XYY),֮şM)?tB!~Dm- )(U8_֮g3QE>n?{QMz٭()Klks2hJCm"ֽhT|:*ayq=ٝLvsxq a2g+M_zB^( 9dC݈t"bÎvja5 _ r1ǧaYS F9@WoG0|/d `{pg;mEӌwGS Ԁ ^DR328x-liEO :i8(tpri\e=]qˎ⟁CAb?^o,3G6SWx4!ѭ#}sߞ[.9]SPʉ32Cޢr4|kۺ_gR-N,KWP7 t5Jv, fSnw5<ʼ|d/" 4omy]Eh`iNMbF3 Sf_y|:mΧܶQ]e{8 S.)Pu҉Z^ɮ8-i GgC(0.FD2Ҁl+ݎ` # r\%KM66n|-_gHv:Ol(Mm).O1H418t|z杲|؁x;~+4kZ[#ɝDQ4ܶ<ifRǠ0+3n}2`BBGT݁R̖}+Ɂk^nc:8Dү6zl77zr ,ƉfHd@7p}558n,ܭ19 ]QbZ j\Mlpq WjP(k.bC~4+0n9<ہ_nљ`D=l&U:(YB]'rVXwөTu-0H Ra#e>>xN7Ⱥ):\cE(6at8݀dwB禵e^wa9whs(cBK/{Jɔ韼;PErnJNf6j@ HR_-198d*'^b"tw?dgfu3 'ـOcE3PM av-#&Ĩ9wHByyQG%IgeYNmv)UXX%IӧOy\. mwX[SSBiӦjOm]=3owxt+<sq-A2e*0! ~=Rh/A1*b*mÍłU$ N!=T9r;-%gJ3 .ѴBSTٓ t2W<8,>COlK(" W=.XD:eD'H";VFdf\[Vea}~q'&0rzlgYPPsX{VtEڃCo6X -~p&<>5yTLzzz|>#Wޘ BU N'C%jnS0)ElTRF֕TTfc3~ K5<eb8~EDyM IDAT\c"MSb}FvxT_KxsX%Kwle~^mA<rO? wXGOw' |,VTƅ 4xz//Ο]K lT72u"W\'_~W}!ߛ Br'Qq9UROG;ʒhO3ڢ/YO%?U 8У癯4l?ɯ=HFGOY,, n1h Etz.!ՂDgo c̱)+^z1n`-&كan pbmrnxBˋęeL1O\;ιpD =])©{{*q yFӎMŠ9XS G {wD0"_M6䄜3>{=)]OMH4sb?ۖm4/@Na:W^qԊ# &[br!έ8I Y5 H*\‰dh4rb_xN8ᩧzGysכJL6mIII(l'MO 6?kÇoii njs?~Xܳ3I?vo {e&96{}wBwz?rh-ۋNYI%W"ڨ5wBa XDC36$ز>0m|ܗSAB0xY;=Yr׃j EpW3}'cg/懕JP"?f\yߺx֓ @q2L )f:)VTVx'ӫ GS1 C`xա"_ӹ[Q'$⁤fc:ѓC_wg}1)[Ý}x5:B}qE?ŦM1 A&cs:A ,T"_dDFT(NN29 `AhsO>㛧V&^GK*H sQ; !tI~5ۋMAR@::\v"ի?T4<ۖ,otW ēKyu%QFs'ܙ6O܌t ?‰N^UG}@7uFlԒi*]4a[[nznXQhƚ%nYqϾqIģs7eݬ E0׋S$1qyTrJ$X|G7DHx@hb)x6vT6~1w*1VAʏĥ>~8^Ix東w,gQw[r@ݵ->=HF-deNISɤL%&;z~BnB- ;2ve8sK4wkP1:Ls ȱ?$ahZv$p<1[l@:IǨ6mK:9 O> i5XO~DizQfَt4}Ww)ES)R Q_{Ȼ"ɧs@A%-ҜWŵk 6g1,D=+|Б<r_.3g;9眓N:iFf\kE.qfOa\ǿoh_ރ$ cGKLy#3O\wL+C ;/!} gͅtD[ױr)%&-0;1ZF"CzfEL X$&v 4@V\AF0A]/ql4,rᬳO,*b\=~W:pY#A]50q>`; ͠:+[8NE9 8Oy({ 9F+NbE<ϰ8Z,ssQ}>RIzqVhtt&!j|B[шf/[ݴxt0w cGRaF-Ht67ba捀 [n oxB}x<7_w9NYs7}+瞹el2?,ZNb{Js%4w>W|$>m%.DGw": uScf2iRY~x[H|OuLFD+"yN282%Q'Tc3=YHHJoZRˍW/x8cw3H+cHs/ѵr_ҼvT]wu(OV܁bsbQ45Ej'":ua^Fed:֤YV[QS`+8 2G\N%uYu6͊lL!CR`$R"dd 7sͻ}?Ï2{<;;:|>ڂ+nO?_{2?riiZ45_={߉,WVVm:^~}uuuYYٿa )flh1/Sً1}w9s R3X~e¤47F|ן?mĪOQ3٤CYqή95)R⡞9fi@gqF1|'DVA'ol G=2_wǣ<~4G Ue撫cgot L+a#KEdv5KvplYt. "r XKNʽ$-wpD2wuǩ| O/JS&Nd Y TٲƄ#'ቼH{N .)JQ_Oq>@ ѭc& /a5@ uP0bb?j冝%ifЖF:.2KI"4vb GUm3+P_@v-fG?2'nﱏWF4ML6{_u2~Oa3/o:{~syH /uD_嬌^W Ú$o6h8tP7+FhP#U5˼_>Jw2zM͊ ˏ8zI I:?=]Ps]DTkw-{aecX&:{3``VCOܲIpa)ܜo+![𾾾h4D J[N;>sg'áVU$QW|oZQCO0?C}G,(nwŗv\Y/pPtXjijyOx'N7iMgN9 ^B]l:{.@2DA+ѧ@beu\#N@c4^h|\|I{2MыdƜǕf)KaIhb4q$fWUzkjGE_FcЇ=Efh";AAbp;w7XOEDR" $DcĿv[E[Hf]ҍPLy 3E{<Da$ & "`yuȴFo&&.iPX,t\:<{HN5i6̢ӹ\胾&VUN45#G{`nWZMkK.ϛ3KoKɔjd:0H<]G` $FPtb!@:IA='8c|3/-}Lx[x1<.=I0:}֞ѓVE%L\/j O=:cNK QascNǣw__|q/Q^U׬F3}Wq}flSQNy!koVP ]^@YB ƍh$%]YT ~Г>;R7_-;$LlyٗבV L&:L;j2X@!2yE*(s%t4!xК\7ӽ锸rzC錥XǀWRK~ImOP1 9w?7UiW6: ԓ1Ù%Xۄ R9m`ۛL&G=H$D(Bee?</xɒ%@<7t:ݏ6- 68$TcǎtIpr_n{6WǛ;Xq.f4A;e3P;cMG☓I%ؾ$iVXp[jE;(W,Aowx/M19hqғ!lД@F70a*c&W\T1EDp/oC佦37E[eËYN*l6ӧ0 Y-KQvB{>AYT>NЅߟB! ,j4iuY' gY_ M!! J0Lv˟AlDYOR=`UӪuŠ#:. 04d;LqCdXT&hS ݒ+w%SVc{t xO’XNQ \>+$+Z>%-o1GMRA{=. .T4~zŒ*AA)&SPSٌ{d D@G*0e^^d͗~qvfc; irŕwWrNh*J/fヌz_NR plEQ\It/\kKKK^UUW\YYYY^^钢ѨŘLfڴi>On%>~Udp 4|1g7\ϯwq<]}HF0CBDPN5;A+Ǚ\xi# ٞ^VV:|llZsbe-MfɬHJi>fڱG;*dpD6*B)LO{So`> $c {xA.]͋1dF߄RܿEOot(+ D$7n!e G{CA( Nf䝻8b<"\.7 TڻIY}tXͯa>Zv4y^nn^bna>E>x7/^<#Xt^~=ituJq$XPflݕ@]|P3lD$&ⳁŊ`!PxHhN jiEKiĦJ޴}e'ci۞- 91R^߯il vg [tsT$2=K 76yƀe"WgL4lZ9vvvzTYe{H*'^?+^bʹ77m㷫zA[Jp/U蠧G#5~8[, p"1Al30LKK.ϙgxHBUz:yffǪzU` g_/U'qg` 6J ,1le_w"# }4_GaZD'?3Y/F mw[rX5VE!ѥfU:zQ=vyQ!zeфA+HCxҭqEiɟX^ܣƌؔN֥mcScC=`WQ'[jŽ<1n)-ts`|>>)TZj^;yo\=#k}"B`k֜Q ˣT)T(0VQ72=mA MqvFp݅O!i[Xx3:dB03^>D|܅[TRxk;л))0rxS *}NYq#[O:틓g6'"ҽvTcfZJ;X[VM5Ň46g%ޛ]::v#B&E,/H°tlGДZX^%ћk1]$#Y0]g/j Mߍk@ `XR^<䣾///7bYkHΏt:kkk5޽{g͚rdl ?mۦ(?7{Q#ۍ?G<8kc#;6w;г"hPVEo;z`l4aVUuԍ<${0έ&`6Xeu%_ȝ"@FiOW'x 9Ba1eU%7Q&t;[j(t_n׹lAV$sC,[//W "B.&ՎEv:n7}thIFIi![vN"z]^3M&/s_r8fkdHuBo6kLvc7^iJSs'l"dVUZw2P- {-o 3 2t cPM_5b ,Ml؏]b@T~h"9"Izf1t*V2G*n:^Q6Әr>}] K[&ңJ&R\I2$5Y_ IDATM=;!o4LX/҇+\Su, /EQ7`D-kZ#m⎊A>E0o7qL;'Ԕ '^zRI 2zucP{Ih.Sq_ӟZ\" 4VJ ~Jؙ:Wx {ɀXc@~Io1Ł ܚڔ|:HF1hS"x]Eÿχ)BI==ϗ Ę~t~6`( \"lA ڷe^Q`ogx, lQDt4/'Q #G,`lQ5f`4mmmj__t\^TT4iҤh4zw_zs|~ZY?25#EoҥǏ?)h d$I{]~}qqq8N&~ٳΝ{'hmѝ^Ur3e{~ɱsz1eBOPs3%Z |Ep:7"<u\!GMJN \x@2C&caP󛶣>uTȁ2E̚6&磦a /F1r~= 5;%/e].GjGH%xBr6?Md 7I֐p"?c@b)Z73tl.'ӎmu-*E`7oߏ}tbГ!Yc4ir R 8<|>".@p@q5e(N1hZ>CyN /hԺ%]'=Aoܵ_!(E~ka#$;0 H&Q=\{oGYn;(LӇ Rﯨ8(xI5n /|ǟ{l _QXQMA/Zr~vŋ3D \o:E?g̘3\r% ^xB ./s)\y;+_[- }0!@h^d=qtHhypVlZI#A:`~= <+~(VP9:oj`Z+f}˵+۩r:.1yTݩI{V>+N:w0JqvINiGSeb4$)LnߖT ro#ahBBr"ީ;e zIf\H8~LJ*fQB7v@ 9A]* ڜPDP*c5)m,FfΆN*qObN c;er$WgoDuZ\L%B*'j2A2EЏf2bVis1kztR;q'+#+P~#J6cӻKuI$IEn?MrxXt:m6!YXW^ٲe˂ *z_wundTWWk׮Z Kqg.Ց{fp<;;\nNZT"ߑxAKC4** dApksE (McE'HX p;/ڼhbR؝=,ՔwlM '!U3vT:f#Y1| L^Ji1(! =AB>uL]o zT* WFu=8ҒC5R1B22X%غ]'KJ'%6TwW"*㼃tI !Ctwf]1WQ t.n 6Bၴ6{2:Ҕ'j1raزL#y Q].iidH4\Z`Oq Y87%OAavsb)Yյ0 }Gh"4z g~λw4.h_e9^J;(3cHG燨3KySNe b[v$(RlBHFuμw̅\S,SL##*Ӿ=gLf!$t*""6PZ׺W\`]u, X"PB $^&393ޟ̜99>ᆴw.NdE`@S&TEijeu 7s kxQK\@ZOz?6bwljikdKRO6#0VT,M̤j75,$ePsL}#0X:9^ёѓ}е4bMNQn:p{ů5- 7wᆱdeeur]9# (fddtΪsGKKF 僋x㍺zDKaȲ&)))MkժU'N]C:_\\\]]/>쳡>F***!// ]\ѦlżZ bE+"H(Ϋ@f i HNW8WlHS:(aF5۵#hDLF8n{ Gnv4έ AcNpU"p1+K. m$$!ڶga.͢<0X!& uЭUcmvg(X'Y-m " ?7tGq&]FBʏWfi%F ckެb[q~Ə{R8W*5+h;}jJ{T4)(H,vK>!?Ah]Nw+MiZJ|7L RZNdhkg<\w|vnʀXĖmy=XLʓsS{SaeSXimo- &*_AVz%4yͭ3i0݋ӎ  DAEMlf>|TkPw)^<@?f3RnzQɑ2:Ȋ3+Є`͑=ջX`$ "5n$D-؁Wn wwlVb4)ʭ?c^_jR;%8 th4vu=G\AIV/oj.MFCy `@F2zt$ġRn+d_0o JvՄYOiD>A׵mSW+.yW_=|/rk֬ eʲ|N1hvlԗ^z`0w}0 (644\YwZ --n|>|>ߺu뮹AD~zٲecǎl6l--uVVVvm.?=@]]1qs76r%6Eu}1xyduХ4%,)Lk}xV7:jtdYA:D=la.|TͣI ֡R2nVeJ2tB~Vk!i|C̴1*.Joi$?_((К29ZO=;ZLi&sC.u,k8Q8hوZc5b?Yu{+b"<$E8a!:'~X92RU;gD@bAŢ(a[/`@|`޾`Hb76뚙q9*^Ufogp<6CW;Uszd/Gs#,z=[{'ϩ> 2bHΜ-n]adpVl-Mr*?U-22Ɉ jLq9FZYAK\"у1A$eNFGՋxI^b2xEV,+K։ BYv9ݡF(2fDu_ h!y"C -<9#hæh@lӤ1SbCK\.Z_]%s37x<_b钚r%y/3gΜxŲhѢ)S\wuO>… |>Vt8Gѣt:;9kVd5kV~~](z^]fku:iݻwh4vጌ={~OHHߴiӅX{͆?CLH{{xs ޗ ZĎ*YyX{"W0:ptVsYu`qɕj2bk2C BtTra6AҚO #-SZk8,ڢnmX3%ćf;4i9ݗ_kU`k&O0⊄Lv )=RpʦsqK|v8O2$NDtDF/ˋIX#$AlkJ(~ :$b@ ilnGؘ 2*Gh N-@awF6āXI(P5gPK4Qy rYvLEVX[. G/9oGB巚x]³ ƢTF(;Q4%{ѹ9<6FRz^u'j *(`bD`oi+uAVm2ARoho9¬=$A6/BNT &*gxȄ4{U6#pk&Ɇ(̖hRcղ{Z UÞS1q\t-4HJF]3:3D}AIE:#iŜ>D S{TY ՇU$WQyu jM:%rqlݻw>~^۷ѣGw1k֬Yf}G[l9qhkkׯل`0صkhVk'N{dž Og#666???'tKdYv8-A˗r-k4s cƌ駟}+|(ٜVQQQ\\| 6L{g̙3g|g;oѵ\q7N >=QjÐDĥh $;% )j͈lϺOک2!m fF[J k J*AdZYR{myRnBxoY|=\mέ>|h2+s7%%a4krLN߃g=t_1K.=U= ]$Ψ{JՋ1}+75&ŅR^$-A̜ ر{;%HgkpMibmZ>ON4zǑv: YYK~<lap0"Kxj#䫹TW <Х :joe+8!o?~"I_9gZFoy-<ə O"j#ًW^Jkb=rmK,>GK/Xz U`6mCY98s lug% +8(J BNjAHBa/өM`œ, IA" $A:t.Ug{ EE/@|mc1k kw{ ^DWcv-Ŵǿ! }ȸ_'\6ۑ`"Gv|- IЅ,(E@V={XʐVHS5~W;aJ*MiWtjNQH^СCiiiݻw޽ǎ{tfd2ɲiW,WTTX.UАrvOQ'nܸ>t;6666DN_ٷo9rxz>N-?\rӦMݻwazzVaÆ8q^{o,I?eK.ϐO}PӖaQ-BصU:8'FV 'K&: V@QM1"hR I^zNҡiX{S?>Q쮺s҃2sšt9q [3b"׬o3Ee9 [E yI : H -x xӖV-Ed ZMF,3dkk&i*I /\p ?1z-^=y, dNR7pI;Fu0)"`Q\lato?08_uV~< Tlbu%߼ҁޜKey{D:rOziڈMvtтt&z:'U1t<|VĊxn|*ԊmIʙ4Sh#ءx="b/Hk[i (vlATiԝG!ˆe8Q1:ex{CXse16lzYc;@3jƢ JS (~\6#{3bQ Gbse=i30%ߨ>_}FMnMҨ6&~-rg;{1$ikw8nS"vy< 5EIkIi8[ŐɤhlFhɪd IDATe  Nï`ڃGqE8TxemUY9ݹj*]h~3kAA뢮:M2Z#n1x4#'`ț4Zx1AKG@13-cР7@s5gR_0cIb(E:E F1׷lE`9'&Z')ҁ:/逫pTmZ)LL[xQ A/Ml_C@FUoUIؘ6vA!:) BElIn_feșkuBMVwo߾ekjjR}7n\jjn`0_|ݻw:t^9T!oZnjSPPp3Z,VUUu NW^y[#o)))Pyyyo{נժjѼ #>]8K9:KZ *zi$\>/ɴPKs2p% ?,yK[_;+] 7Qvks_KQvmlb!978^U"c%[b p6fw_ JH>6)+AU? 6)5N[͸rRolz6*5Vհ3]+r O(q|Ul? cZ駫ɃOwj2 dd =c>M_j"tTN'P9);еD/0R~]*Ƞ;v ,-q_]mS]m{HK!uΜb/ӯ}:Xe˖kw}+c9{lCH \.U C233^o4|cƍݻwV{t%_)))K.dժUG5kVCCɓ׬Ys6%/:ݻw@ j%\2f̘-[W_{më)HUpPs(`DQ1gs?Ց_'^%UNF>a&Ѩov0i xQx)cg_%6}%XV@D<+J}([{3j|qL@loo9d'|+53|ĸBr)Bxmm(fYĵ#t(Gl&Uןec2AAϾZZCGWIU5Ql]ᎸnBRT4M%.C;V`zUnV"! ]XP%˪ϹJ~j*Y]ŚňK0`VyBN#Klnc|lx<ĩBѫ{ 6A)dH1Pp%%S򢕓eGIGKZ~Rm;kꚃ}zL&FӵGkkk[[[Y,}?:sL'˦(ŋ_}Uud0 A 0`W]uaÆnaڴi$g#(_-n;3|p86oͷ_hϸe¾OpiMAQxVJ/0:ǜG(dHS;p`MeFز\s3= mo@ޓKnw]<}TN`]gJ ӱ˼wƹ1x[{dzR-$EХ{0݂baWUHVr.@ҟײ@Q-E~EUQ""%x%wȿ*(HBYAL_p>v~19iF>D%O^: r5փMi~Jj!Jݦ2l*~Zk{b(ᘁ #}+,zO?@ױTj 8=DҢ (ސȗiҙs;ijv#Ʉ".Հ$}8kZLn5G\\O`-xkݧnMYDD;`C!~'ZD숉3T"K'Pn>Έ.l ųqy B@kƙ!è)DϘSju^|?_p]f̘.Eju~GјtNhg_WWשgٲegAXnݐ!C֬Y /lٲ+;wnuu9C/ ku:]n5ꂟ/ u˝;wjߥ3ٴix|:t֭[nׯСCŋ/!O?TQQqvD:==^ӫ55 VRa{b㒡r"DmeeȯnMfut4E:%tMwl8jb!10 dXVjCv^¬7'P} ~~I(T=_̇lXQau"v1l()U8Ӎd$RuG;?D.sLp`mə2+ɊC]n<%ՍAjrh8 L >Mxv7 AѶMdaۗ*!5q4w( F!BL_᯿:Fj 3s GhpAqG^d0Zc-$zpWA!6u)27u8!6j X(zt@, XMx 5onب5#z#q6-V];֚UX B&`赆f-^ &6̠#6f*ӵzP:-~ \9>W梋.z{=~w۷ow82C 9xAKׯ_?y䐇'̘1l(TR^^>dȐɷvmVZZvO|#F5vE/ܴ|`f|zml yHrdžBBT8:&]ikc)2\M Cr%*J5*-pĉObR7<T;>yN$eL)u? `E 1 036cPט_-,lՆ""=qi勫O}ͫWdsW|~-b;[=QG?{%%3+/ gQ|FJ'" ;}kEztK.`6;;8qbڴiCvt:G [liiim=T_$Id>N:`!vI3Z4Ak_vEF\?i EBRpzaKȎ-d/bXR{eqE:!ÞUɵ@FOŖ%jZC勪Ÿvs &n}yx4Ĉ2(eZ8=15?m4|pcc $vĒ%ʂ6qz%-UQdM< q" 5c񳓵,hTg|PwznI^& Xላ)ԗ=w&b1h1K&kBj0鷊Ūu#0tZ4"z D4b霓\fWG;,=CG9̈&\& !w-b@>;pt/ H [Ϝ9چOF(;-Ԝ{x-&@ Wfx`/:|NףG\KŅhP /RLLL0~AAA>}zeX &m;qW^ov-[,))iСgA~͡8sϞ=woZ,ʲg!w` ǎ0`Xg~?*((:zпqdddx<~nݺā[nW_;OGkhѢ_->޽ܹsgΜ񢢢Gyd7_wYKׇ.w-Ձe?zV[:ţ=J)ЁLGE4yJӇkvM}CMEׅM,iM,9''ѩ~@'pڇEٸ^ cxϬfڀ89!ˎ)m3Pؾ~cSf@~+)m&ቪ)M\yL~xQx%N!^'{w [[V|u+hۦ^%-bwd$98& rdyOyKR"7}8!]כIr#޴_k~ezn"A4ytӐGq)u& 6"e~6Y Q/&vTNI "#x Y߮Nj*Lh¼Ï0+gEnB҂A8zb >>I$/cDBHa1Ccw 1QYЈ-Ltn%$Aj&*AZbCYM;JF $}qb$`ӳC&)H_pXW;N|BwnaW(bRsB=-9)mԨQF-Y[omll7o[[[o3g̜93: xѣeeeoYRRt mJKK̙sUWj-Zhܸq0ӦM7nܮ]~Yf\ bBqct:IZ"11Xt:7Bj1bʕMMM) x>_|qʕ3f̘>}z$s_gdd̜9sӦM .|ײn֜_~yQ=|?%޷ߛ͏]=L>Ui6J&.Hhŭ4K;aC479D:$zSR8ee(IJ=0&r)]%G iwM}Xt`:)*j<{}?}x"W@塎Gz\h A (۞%zt[-;ݎ/D;H/- fV %:]N/p؇CQkI@ p}|Ԁ7 Y]bB43B7#&`ғkfG*DaC Ë= !t &XL:p͉FoLZ,P6h $ 18KQ hCعmY6mhbx}# r(jYM Fd{R3V'k8%{9%,Ql*ӂj) }GzlZaaaUUdꫯB??6l؈#|>_ m߾}Ft:^`08cƌ1cƌ1""xjgҤI "9rU}e9r$111//owyI޲(!P-((ظq$Iќ1qEaZ].@]tх+V8x#:/}ٳg=zg}6eʔRxu߿ڴi~%KnO?q}㍺XT[ =l]_qj"R cv?9U҃;cic cIO J(Z4 !K#r" ծnnl4ڨ0M(VV+nN7SՌUr 9LV>j$V;$ܠd U6\~I2x~4p>/Ͳ], *֣]SvJ;oַZ\tXDq_NL-wCZKWoF?OTH"@?=.ײ!@@ B%^R VT$(4^-eA􀝾KnT{HIZ&{&GH8v;A{QxHIř Piȡ8z(½1D,fd6 kEvMAf0jzoߌQ05W&:tSonTፀքCF6!!s&UUJjʋ=fSmdc$@D"!{_8,));wnff&УGPݻwoݺu޼y7nmkkML&ɔ4o޼Amٲ姟~Z`V5jԸqJKKo6ԩS+V[g޼y999 UiӦŋ/\033s޽s]`h+Z[[CvrΝ O⪪*~v3q={̚5VkuuzAwaۺu}^hƍ@ IDAT|+rO<Đ!CfϞ]QQۧγ>;tMo'|r|^z衢~_~Yti~QoSGM7ogP) KQ;gv9BE֍+HqҾW"4n@E D7-Z r`՝zKV+*jx1\[ ~^! $l]³jr,nuu!g}zn4Pho >wc9m󻙼rb2.]Z*08:+OygϢ#NkI;hilHm_0 Y Va,=UQ諀%F@A *FF|WE/HZZH%ތZHv%"B%Zi<ҖJk5|bx) w@\A5bm-jDG?vFQ+*kE ر4T BF:nÇ?rhZh|G |\SSs>ؘ1cnݺx9sL4i̘1&iO=o=c=t{/?رc̙3~ӧO:uΜ9+W={({1c/+,* ,CӒn(g& Z7 FMP[,pl[M:d'eIdގʼn"Z^z^AlZɤGpku?ՐIHq_stZO*Q#ŗ*3s׉eб!sLM-N_tMxc*]'[s* p9ٳ=w65tWsh?~6)80&?Bs |Ҍp[hu5;iec>XH .gx-SL4avLBrFfr_\ɻYU͓Uw߿jժ>}緵eee۶m۸q;sС1cƬ[o߾~;fO>} U^/REEŠAw^TTi V|֭{FرcǎbŊ7x?M&SH.]T/?kǯ^|zjԨQ#..w!nWY]tG}{ ?N:uʔ)_~'|o߾uiѣGw=\ͭW_}uRRһ;~ G9\[BQ /v!Zf40;%%tw-o=ϧ`dH| X X~9s}sm۶۷o֬YoѣE))))));-[_o՟~ifffZZZAAAnnnNNη~{_z~ذaNKIIILLLLL}wvC$~VWW}ǿ[kz5\s5֭[z]nҥKZÇ_xQX{嗿HU_|j#66wk}n߾W^&iܸq|;`44_5ܹg;w~أG#F >w޿h>|xJJʻ[^^# 0੧ݻw?ÕW^ٻwA{;TVSS3aδr*7zHɁlZ3@ gNJdOw*]E0jD Jae. P.2K*1k\4 Q:#c!@isR4=CZ$"ɐʰ6MލSꀵyW1:\/Ã"S<,N"..-y9+>|se(lf{o$!t5$t+\QA 6Di"HB IH!Bzl6wnv7WO>{ys>.Lюpa[G1|c0`8 : PC6AU8pD7_3[/6K.FnE/ 0Aq`"awfHHà pXcm Css3+#HRzZQ]]W_ojjjN<9cƌq;wϞ={)GG۷?fS>>>,NAAAl$I^o4Yh4AAA ,`>˥[.33G"<3]wbT*}'-[}vX\SS~zGٹk$$$ر!YHMM]@.jժ _:|_0`ذa111I\-[lΝk֬IMM/VZ5{+WO'M5mڴZBVDFF=:V,>CSF,/I}}vt&CI$^C M,[wP:D*Y"B7(|Xhe&CZ0,l PlQgAmK&u~ &C=EL;р'n0ICXc-[uIo,?U\kBoH([ahu nviҤ2' |8;;iZD9))iٲev<-7믿;ollu몫srrN8m۶7z{{?55u|>P~Μ9qqq7n˖-۷oOvr/mY;Ox3^(AadCi>ihbE-_A(ʈ&昘hЛ;4M0J<d^-4ڢ]ȅc';E$dPA[u};m7e VAF SEn໣:au7_VlB\MHiɪl&0-7yϸp;w… gϞm  W_} K޸q^D}L ߵ a3w[ =Zt'F9"{hI x78D!x* 4TFλIW4ZLЃյ qh^6ؾUUiPt zڛh1CN0  qGx V\0AYx3GgĀ>k fRǝN+soUT{ oycXWw.DoDCKH+p1i(go̖]pK1>r4mFj!U" V҄ -ӍdkQ9%c\.Tx1XP$Ad?&aoa h[7x ?YK:n0.ܹXצ~R)426H8Hp tmRSVkiξѷH\nȒc79MHrR2Kh+'5M+߹|$>j$h *jkC-bիmw-AhANP֊~25akM$ 9DVBQO< "IuҤIBhĉߟ&6IQQQ۷oW(`AAAk֬[xq``s=nYTTϾ˃^4}RteeeO?vd1cL>] Nrvvl ?$1mٲ%44i+xXdIll)S=Aeddteye0rN}:7nܨj_z饇l?߿9rȐ!bX p\am۶s۷GFFXo߾j|-Z2k,>lŊ7n7n*0ǚN4WHk`+!|vL"tǐ}HgƧ۹6[+`h&>COa|\9t8U¶ Ri@aFJ0Ŗp$T'h,7/ Mpf+a$ε[ު||QQiWM:,@/x@miġ@8KЦ4 kgZNFX- wS$ ? X'MPG-xwm% 1I[SH 2}sx>kK:`-@l@oN3Q(n=^~3CmO9:S8IN+Mv&z^c!P!T7:)SRR|||B!áizݟ~۷=<<&N*˗/ϟ?&M}LJd?wʕ+/^liaKOZ[[/^7) Jl(7=( :u ؑÿ պcǎZ.Kd߾}zȆg~'OjlD$:F:޽{G9p@DH5$ IDATDɓJK{96ظ}ݻwV}6nܘ3ywy'88XT~7G~ȼ"Ԇ FOd]veddܻwOVF$( 8WQD;7nÇǏߕ'Ls}=c]׷gϞG1cƯn̲'OښyڵݻwǮݻwݻwAAgffM7cƌN= EiiiNN͛7)z7Mx<<]v[wK}H`|(p>^v14Fxhn1UvE- RƊQbͫL,VCP  cs83&yw ⛹9B R4Hw.0i Φ0 'h<8V1ޅ€QH\96d.hil=uުG?5Rdx1 }C#S^ F?m3>: eu=G/)iljOTi#GEWds! hy ZiiWYOwP͎$@!Avz1P¨YHS6e+j-mAjZ300 )ۗ} e!C%  ʔ5e`hp9p0_~r /^pŋ7f̘ .ddd9rd2,"""""Et+gׯmhΟ?iƽ{TWWj__ߧ~z|2IKܺulx#F1bZbg''}}}WTT|G2l+XuGC_^.wgϞ}ѣGw%"wԮE988$%%%%%4]^^~Ν[nm߾}ݺu}_קO^z ֖NRtщvl4X-[ܾ}{ԩ-j7,8d~~ZwUdԤשm`~g )T31uImTF0oHvZ;N0`eka0(F> W/͙dDL4Fp^[|)VtU˧yթ 1 =PC8-Gw:ݦcgGꕥ-m5Rk\&S ЪqCJ oBpt [bV "jKm*D2' v4Ѣ7t@!͢% fDi1|֚NX3xK!06  l+T!ZxmsȖKL@Ɗx쓌K`헫 O8c wݡW\^޾};''g߾}۷owqqIHHHOOWw)((qécsZ!!!{Dlv򼼼ӧOD=z|W<&$$DDDX{PT111^^^/^<}'|B099999޽{yyyEEEla```PPD"r*7n7ouO,zxx=3gt1T0`O??Z2z:qDff빑$8bBXUUuׯ9sV$q\GGGGٳ=..nԨQ^^^...urwss;wN:wޢ/v))={ΑS^^G[ޕ/i ,H˻I@ӵcA{MYwb9ԵB CGѫv+urCAMeq U(M#2˒+] .ơ6)Ç̂rD"Rtht6hI1h@pAW>r!Pxڡ) g# i8ӢZFz 1 1NzuV#Qi6WJ:ᄌ:I9Tm6\!PVI m]IC=jXhX &6R1;g[iw  M1FS`gz-stq }-[Z7:9%%6777//ѣ!!!cƌqwwh4mmm B.WWW;wܾ}pE9::>cެ,L&srrKVY[6mڃ(Ns xudݸǎĚ߼yԩSMMM @ pss ;wntt_{ڀVaÆu=-,&OcǎCvj`7\]]YWJ*JҠ~iZV}4;;;;;;333??_TڢdGdd7oN2`0č70Sqwٓmx<^Mg)'C_~b.rq䞄Fgoq> S%0 p ȖVAycHVuЩ=y^IoE 'd/xx$6ׂNs[E{2Fz$4@V<`Ե?b %B^ԦEpBFh3c-CH($m/Gef)vU7`-bG @YjB cšn@+а0(@SiL{ q¥oX˟|2sŊXzYYR.wTTZh4YYYxlPd4E"` I`0466ܿ%...!!!99Y"x<֊WjzrFQ(3gΔz*yyyyyyٓ3p\PpݽXviiiWLc$''ux=pSR0p3gΔ:9#]\\u T7o߸q]{pppxK0 .fi6 Mjօ788زMQPP&H͟aACw[$1n,ݺ 5:lCwݨJo9CxZd9Qڇo + QD9Y5Y#(ڂ$/5(9dA>@2PW{[;zIV`b,<@clo\e8ƀBpI)Ng?ߎֆc7ebmg "9s /?ӧz_LKKrJHHHWB$D"quuѣKh4eee5553bP(?y䈈///<~QXXx?gz)VAV+])#׿8/++{DXcbb222vwwOMMݽ{Ro9qDxx{Zn6DZkYݳg޽{kjjE"shhD"d2,33o߾oڵk )))''o߾$I=zҥ!!!R8?]1H&we7`àM`7?0@EA{]+aPrW.-fRؿaAjܶ*gWu7,FQV`Q$юvTdz> TӶubڌ 4V!L1qMah4:{`3> f-^KWQp`s-zI1jJD+[ӞuRԋ+*=FBoYKkxgÑD nn884PL1I02Z &aa)hs}YL&wb3ϣ63 pD 9K"x=у(Iwjtt8TF ߸q YA>]v?H|P(={vǧx㍒65w600ВQAEuqA0uԏ>h6Q݃޶m۲e {cǎm۶-33СC2ãuԩ bX( M$ 6O>|ƍrP^ M˛$!yg@Aq&f"KPFK A^ڊ&j m$ v@q[%fʻ`:3086f;F[$Ffw[!j<~mLAJEVx4Ƹpa99͟Ԝ^N>}z)ѓDEB|Z !"AqQ0+ؼh #Nɻ>,HkOFZṅ$٪r$5ˁZpIHzk: (H|B[msv}kXQ|-FuR>cjA㄄'N̘1?s޽{W^ۿx''9s79rABԩS7oX=z;nݺ7=X|GWW׀+Wt=y2`C}+Wf͚6mZ8>}gz_~o4kkkݻ' ÇJeYY 4hPJJJQQQ]]ڵkKKKn) NZZZ\DPUB ;Fh>Fdlw6_ejA [.\ѸiЏ2CdʂAiBB|JWS ]FL wqx9 T/vՁ2Q$ F$RkD5lk H@F[mŎ?ZV= !l@ߝ?{G3ַgvvvbb"JJJnn}ݫW;V(0 ##ѣ=zĉD S֬Yxbk>^߶m.\uK_k]\\Baiip `Gnݎ;v޽s\]%~~'N'0G&ړ2dR/_ϟ4iR}}=ǻxbdd䃺 D"DEEE]ͤI uC`oN;ws`؄ݟ_ Vs+DYN)67T v:6܄jhk%E*D5Jm(WL~=F#b7/z2^wSPo;GܪUsJOsg(h(s/@s-oiו8=q~|]" @Ә_()A+sUVI2ʏW}@xIwړE)-VL3I Wc]";4ʡ@rp:V6oh j*@  5'i[~8Kc%.Y_YwpD#/<ӎEuK JHH(((xg222&L0u &:ҥK۶mرcNj3gάYf#Fx\>h׮]k׮O8q#G1b:~3gFGGwnÇG?qX ͛77lPQQs 6Z37֚FDDDqq#=D{C{+RL <:䫱;, Q9T#]Ts} C6F\(lF}_aI*lM;ڰM ߂pe\]QFk'v H,cZ4@n[0 $)ϹoWu*C) @&;wnڴi&\& IDAT` :U͍pvvNOOOOOڼyszzzbbԩSYsuu֭[.\:nܸѣG$ٕFߚh4_}վ}.]:tPV{ԩ;vܹsgӦM[1=q#=D>}˲߄~~~O?Unڕٳ-Z4f̘Gwk[[[]]] x<ޕ+Wb1jްaC[[[CCCPPйs ~[L&dSL zg,[ۇ7_s^?CIt'FٹrE E7C%؆ -љ;i3a4@RnuF kj1Sg=>uŏ:s@ qǃ"##cccW^Vo޼y…5k888xyyJRDƂ~i߾}^^^cƌٳgOSSSll+Ѻ.*)1~9s*#Ù?{oLQѣ{3gY<{6ÿԇ/Y+줤S_r̙3|>_$wlllښkCh^DcEl>$wsqz{B8y>lV~PklBd`Kњ*DViqa E:䨰Qxy"VE{嚗Dr z\VEN>? 8ew#ԁ'r7B*_,zWZ|9qkK8U b%cf(8Y:5@pi;UCZ!;'{UoL=Env4c's DN"w߰XPPSXXhxн{w$O>ݣGAdn.]TVVfs玣f .;rȑ#Ggee]zʕ+\.ۻW^ӦMJ ݻGp8A~H$xB߬ԌR.)){nYYQBCCSSS{RC{u}#ZÇϝ;ƍ۲eKxxA=<< vĉ޽{?ȎQ^#FJ=zscc#M2A(>t:]UUUUUUIIIQQѭ[Ri^;]k4^oү`;\|1>׾\TC󇹅Y5 *5vb5F j5FpAn&> ;PWCh n-*j7mKޛU9`@HƦc/x4΂Xn{7"GW%ԶUpBAǐtƤִj;tx?ܾck.\QHvXYc A޶J`k`d %h3wZUdo16YJۋ/{%Ef"-J[5~%Kll :bmHHH߾}3fX.?v}5t7n]϶ ]pȑ#*ǧG RukjjjllU(^rEn/))lhh(*..nСQQQ...k9eܹf͚9sfWx,$ׯw .պˈ#.\ք OJosvv=ztWliilBbIIIJ9///??̙3rgϞZi,j+**֮];xNJRUPFH4LB!Kx$zcB$|̟Y P[Wkʼ7 .FZ4C2*;P-Wu>Ā; O>=?cԐn>LY x͛wَOHH8~Çg͚ƑcǎK8WWW߻woƌ]0`.77ܹsAHҀXZ 燵/++C wuuo5sG} ??^z۷oʔ)酎sYtiBB¯J iӦ]6997waGW0LYY@ pvv{nhhhmXݻ K.?~|ݺuC6lXdd\.wuuY/OgggvIhsbРNd 44Me.ih(h¦d<:ˢiu~ W/LBu`MuFL(i{;nPOcQOK2!n5=aλZlɇ.4(jqS%%gP*55$$&R<^'w@фQ1ٵ:`hИCC=#Lbv,$hz`D@@Y"7Fn AuJ40~(T Ml;zв,* n/!8^YAR\]\AyyT*)R՝*;<}駟f"FQ׳EzXl4u:]B{-**Rv '9~ʇbz  (J0()-Ew`h*ޭvaJPCXĕ*l{qR'yGU'\Ó(́(S3 hqGm4c|+1ѢMe44gQMc0H8fWQԣp7(3Y(<%uL2 ڸ=E<? p9x&QAl8mx#FGG_"cnyT*9V,ܿSw} ޿x3BCCz-/Z֭[˟ ?|*{ kn 55?pʕ+9Nnn#^Pj)zc*âJ3 3-+حkX &bbݨXHtw0ߏH" \\ÉsSnFG]))*L^ ނf>/ WHDړk0cb!4^d@Pfi@m9`ί`b8WLY4((L1!u9rR XM0]ç  LAd"WRr ׃x0;^p& D0H6.vT"sM^o8h⁍V#=ڮDv'*?vZ:f{}  ]yhB%&&b099sw!!>'/_f+++ə2e fq܏kKpp)++;{@}?~rooH3---555uuu c=hرc7o|UU[nyyy%$$uZ( qGr0 zA@P}3مbѣGhSSS$[:6l][[c->wՠ۪ڿ)222FXRRRϞ=y>|8$$ѣGٳwхǻ ư""""##kQL&YŋSL133(--=v%gffv ѕxcƌtt ݻf67TaZ8qno f10 EX L4T^J$rO:4Ze-5CEW ~ u CBIkA ?p@ JQmh4Ȓ6'0$(`v`[a`4.,((psss 6EPjjjT*l5o޼{CSSsΝˍW\)--7v-FvtTT5dff*++QEr̙2c 2vĉ-[\t)11k'LӧKth4DcjjjIHH4755׵/F;XápxzI  hj'p {nkPPz+4W͡S 灬 5FbPW lȍ.Ԁ AAסP2Pm7.$N @jخ@s ! jr65@^BiW?0hEwةt%Z Km|ȝd T:@PLdQ@fLWTTdX=lSAAA99F?͛7=<<wޝL&388800p׮]Ӈ"EEE ?kB۰U988TTT;vLZZ/6o޼} Dĭ:Hi2R]uS,+**bXJJJOpvfSgF1K+@D. ش}Ԗխv/n)PrX2`'ـLj" g-[ʮAQQ1;;477)rΜ93gΤ7o~cX|ɵbbb)4t7vvvk?9}C:tL&Q֯_) >dkx|[[&$$YVVf07@7dZ555p\4>踺hĨGkgJggنPKK S*...!!p-% Re@BS-ľW8l@{r'㊑AeYe.$e풇 :0Zx`1 Bk]JsqP,- v+Y0u|xT&A\*f? ;~A\<œcv Wx-ԦyE*v݆ @=YfL:}•]S|x<=F" }= ))Yf-Z977L&+))Y566ጌlv\\v'V"H555uvvx"B2@v}3 77WBB_d"2U ˗/O]]]h4D"IJJN0?xю;ZZZ֯_?q#Gdff"Z< ""B9NF  & :07ח/f sqĥ4VBnv-Iyh~]6 uRmnQP[+30BH/-  \,fP ѡ Fum' QY0sVwnW8+ʆ6:и_3~1^ <({;\b6-ܻwowPBBduuuo*F9+Z4o<$*((8::򉖏9zsssYYYss𖖖 !!q`0gp8w\Zaaᝯ"YYYC,:Dも: ĮbFP4+W,,,$T*ǵ#ɩ7@8qR'm60AuvбAMȓnx`Pzdǡ!>d`H;L,(C,t@tE3@}TechN\"`Ł}ȿ+܍M{]ԗCv)(b`-w3SL˗/}|]xxTLFLfO8q]1>Z---43>1a„ڡ$?޽;88իW#"""""~BSwr[[[ |!&F577wv5d2U\X,vܸqٳ6mîFP{RcX?we*jl8AE8/e=8\jv jHAsc{&3#[|z׸)FTxfІ# IDAT l&  @Ѡ&΄+@\ b VSX )J~\ޥ2YoAKMۮiV\`ͣ=[q55561`KveS+**YSSSBB"==f222D"ϲ>r-gffՍfΜ5A<==n>>>*0N]~]KKK__ft<"%%  Dt:#))inn3s_CC(,,lΜ9/^@a筫ٳUTXslz{+g9y kn73 P_B:V )ۭ ,l:5byPS o 1q\>[?Z cggx,zϘ充i4Tl#=}tBEwuǏYL04_}ϟ[;%K r8@dpPrDj(EDD{GeeeI$ݻw~ȑ#戏ZMMM^^~Ϟ=]ע8q!%Z }[b@%cr/׽U;2 jEy1<&pfj~mNh2I a RC|xm0v0P aiYU6^;[0UEh3%gay~oqqqZZZ/D}}=BQRRήKQQBLX>0cƌ 8ץK>}?ɓ~\XXXHHbCݸqCKKedd466 }X6-,,|Miiid!JE;ڨQoܛ/!իW`tuu.]zܹ*BǏs玻'Op۶msiBΗTGr@g`=ޱt(JrY_6ٝ/6 $V!eByHH@շ`1vY/P "=Ԋ0fC#@rLh k=ׂL?v hZ755h\8#&&62|ggg&9ڠcǎgϞus VVV;w<7=-ZdggiӦaSDD"d .\( r-''WYY;8<6mW^x1o< 9" wޔ87oޫW֯__TT9AB\77p ~@V'*EGyl'hM 'v7y ORWWFr0 8.mW -n"J Yq]à+jt.;yh\EYiNXkk>'UIII+`0P(T>\ f͚5'NɃn޼9$$dWpqqٹs3gnܸя*$$cǎ,.X͛vvv!zSTD|{wb222*//_^^ޛJ333` Lstt\n_LL̢E\\\={(۷oڵK.rrrrU$0΀_I A4ALlEPG h12`tf@(H,k7@  #NM@K AAY 52A$9A` 8񸥥hWUU! h{̴ƛJ]]|Yf555~zĎ:y˗/K ˗'%XLL?P(ʣF\;`pBhDa\`$%%bQQQo544Dr¦MҮ]֏[quu# >||#Gnܸ$vKR-[vI׿i͝ ׶aEp 90f& 'J3j/w07WYШnUX<@qu;#$Z<&, xw`>=!n1s5pۀ!Oľs~zGEEtЉ▖>CFs-|$iڵ.]vi~\SLaXH<@9rFmٲ%++[ܹS^^~۶mÕāFa.?|۷;r EEEDF :^ANN.**txJ@PPPHHѣG:::ҽRLL¢> @^^[q,gjjb;&""2,%%Pϟ>޽{p8111UUU 'Ĭ0ۂqq~dttŋrrLZۨ>R3xTxi286d|hy]^FXrJlLgx@mKۉGkXj@w_GW^O?{m[[ԩSvrrB@绹9A>NPWWw„ W\1FXzuii˗/KkϚ5700pϞ=ߊh(gK());vl={&MMMM3f̸qF $H!0@@Ț}jXYYlbg 133۸q3^:ڊ+[P(@&'Oo˖-SWWP(wܙ>}:P(gΜ-++w^RRRII͛7q8ܹo//9y67%[} {7VUU ˗/Ì3.]D2[s#kk7nHIIM<[@gg={$&&FDD 222<<<444:Y__ܹ , KOO,,,+//?}UUUgϞC-MVnU*zǝET(`N7AW屡5ڻw-(fn{ }8?~ا%77ktW緵)Gzlٲ߇HTVVpႄİM| ⒒GqppR H3f̨:}4VVVFza ɉDޞ={t]>~xΝǏGRԽ{Xl.+UUo= jmmMOO733_lYo !!>h3O.&&VPPɓ&''R(6p~ϟ_pIFFTTT$---f"""""""d2YDDFc04Ғ/^Ԅ]~HkkUVijjnPRLKT[T-Ha*q7ZTB*0(P `9~,Y8H$,'Otuu1[:~-[z,tŋ555r\/_>,J f7[}i``nݺ3gHII!MG...^^^'Nq3hlذŋqqq/G]\\LMM/^knn2;'N6mZ3}Ν;h4t:=,,***[nK\P}G饥zzzUlmm&O8RRRSLA򮳳233o߾`H$2 dɒɓ'"oa͚5O~eNN͖p t:!u4"-- ++K&ťh+W==={޼.C;/Z`2?)yvr˜M_:OXDrpV/ @P b.Xqb0+Brss{wHNNټys_ Ŋ7n܏ Z>sw`ҤIǏzm>>>>>>;{?|bŊ>swz iӦ%\]]͛ghhq͟?1+={2gΜ)S "Ai(`0 c(r˗\䄤I5}tVRRFx ɱYbŷ~(tׯAˋEPmll]\\zl#""6c8NRRR]]i 5jԨʈत$SSNĨ(:H400}veerqqqHH۷kjjdddz{\KN>mooo<<;?G ""u֛7o.Yddܞ'O\>@ **k׮ŋ;wncƌ1cRuPQQQQQY` P([[[8 щr,(( 222+VXbř3g@DMMMQQQXXX\\\BBbwܙ6mԩSutt\]]htUUUXXثW._$&''?|֬YrrrǏζ?̺ϋ/|B&Ǐ?2ӧ%%%8nddӧOjaa1|%%[iӦA.]JPvu;tG>x`NN80zh E 􀲲YΟ?} ߺu\Ⴛ+WBCC UUUT*666>|`0Ǐ]%##hѢE>yԩS4mرw܉=~ŋ{C}} p8رc{GXb2;\TTgGtdJ --ʕ+6m_k$::j>\7ڵkϜ9###3~z4n:sΒϟ?GGGKJJ"]ZP(6.;,h77W^Đ䪪*D_fVUUeffFEEܹSEEELLLVVVUU*80{/_y&%%D"  ~O>eff?@ HII! k4`466(**gee}ɉL&WWW?yDCCCSSs…RWW>ޠR˝޾円bӧOO8S}Op8D4oxO􆺺:9scC PWWґA@TTT__VEEN'$$<~8""YPPpXMbȵBBBD"ݻwRRRϟb0RRR FKK9;;ŋ_r?XVVDXX8))˗^ѱVVVFPչF|||llliiiMM D?ڵk'Mؘ͛Ǐq8R???acc1hKiiidd==QTTTqqٳXl\\ܱc&N8gΜ/ess9s n>۵_,Y$//#((hh߿ΝCo3@011122jlllhhIHHv233311P? b =pk׮ڵɓ'NNNK.UUU$Hϟ?wqqlkkknnNNN~ٵk-Z4cƌanٲ%55>ϏD"! ?A+++RRR綌b0"uر˗/WUUˋ1cƌ;޾O[EEE{ŋ߿$=V#G$bijjN2|0@ׯ_qF?f:th˖-#`0 wpp@333߽{WTTڪ̙$ zʅ4iwrr h/vvv IKK۱crDDD?lii]hAAA;;;[[ۋ/k֬Yrh4"itzdddxxxdd$3003f2Hu JMM}TTT| ӧONڱc1@@uZ[[{{k FRRZoIMM}ի7o۵;x" L?'Npsssvv[R"GiiV64rsrrnݺ/ (ۿDDDrr̙#**KJJlr>]v;vPEEEEFF xi֭4wѢE]VUUFGG'&&tDY]]P[[{]vSXXxȑ+VXXXt&I޾}{mwƍou퍊 ===777___>b8rGw`P\=+^ZZQ^^?wx>ܷoѣ7<r[[۱cɹ}~~~K.uqq?6P(MMMrrrjjjd2kb zjSS̙30===###++VBB%??ժURRRᛘzƊ&++2--u |x؄%|zyy#ֈ***:$ 6h|>RRRϓ'OJKKo'''GFFa0GGGgg޾MHNNx񢡡add >}ZPP@&Lfdd)y׍V^wHeggP(.YEEv --C:mm@yyPRR}v---**,,b޿4=zDھ}رcN:ݹsg͚5W^A|[n}wԨQ#o|\~=66vٲeNNNk18xyyٳw6`---=pկ_>eʔٳg755ǧ988r;vE򒒒l*JP SRRtܥKsuuo߾*t:L7//o޽'OTPPWy5k Pd1;;{̙gϞw㟂z}mo}d ^|o"2ςU||CCjiiӝ;wN:,!!1a„ٳg7nvI$R^^^aarhhhPPnرΝ311IIIqƛ7oq8L&?^WWwq}OQ(QQQ===##"݇_Kee%իh4 "xmIIٳg'%%O:@ ۶m?}t~>s?HK.Y[[QUU544wއƎ sFVVVTTTXXXVVTUU?ŋǎ!""2T[[[ddbPPЕ+Wx<ބ ***p8Pzzz``kX,֨Qx<@EP^^^ߕ5hnn޶mۗ/_Dڶmd^^իW/_bҶo߾m۶ ----عsgovd0Ϟ=,l6̙3'O29>ԖC;~<|Ӹc hhhnjӹ\pǏAb6ӧO>7III)::sٲe+W|ݻwWVVp8 dɒ͛7wxo߾ onn8qC=zr/_>tUUO"ɓ'ϟ|Z[[M=CHHȑ#G-Z|b? ñG!f߾}w^kkk k=x?~<0ҏCUU՞={P(ԪUL/ɓ'ϝ;քuuu'N#H 2tLbcc###SRRZ[[srr&Mzjyyy r%$$G&HҒ+$$`deeziiiaaa\.Ʀիo߾_nnٳg{b.\P]]o߾'w޽}={Ǝ˿s ˗/޾}L^zeaa1s6cx1{lwwos7n{xx$&&~L&)))u ;::VWWYZZZYY))) ?~9`~AMNNzܹsuuuykiiޗN[nҥ8.^XSSallF>\B^^/CwM0aܹ@ΝKNN>wܷ6سgܹs'L4NKKK#M;eTS]6fIIɄLgiiihh>\-yyy޽f2::: ETTtԩg۷|HP֬Y\$Mv~Z>|0<<ۻ4)+++))imm5777113fgϮ\2iҤS奦&&&UTTəX[[ N$===%%%22˗/%%%vvvT*M2`(bccʕ+tzUUUiiiVVϟ߿ooolbbӵ |||h;z Dcbbf̘aeeůϵr444ϛ7GtIZ[[_zu5MMM6¿6mߺuk?l…J'$$feeX[[P'O8;;oذ( JONNNJJɡR∦QB篘fWUU577WVV%'' h4Դ͛7-222z:B```FFݻ:X~M[[[]]====+++??_DDDKKKSSS^^^VV}߾}zzz44###** lmmG4| .ˠU<ǣP(!!! ,XbEg?IIInnndEFF>}СC6"kmmMNNjnnvvv޹sv'Us8.d2YYYyyyHwbq8C.<F#X1c?;ss_~eݿի. y󦷷xT*5---772...//OMMM@@QNVTTTSS355Eܢh~h>L[ooosse˖έ׷b...$?.\6jnn2O>;w.""BSSLOO韃4]G vŵt:)9bx<^\\\JJJAA!777&&Ǐ... ._`>}uΝ]?l]]ݾ}Ǝ;o;o޼˗8|o޸qDGG8qM:^BB6ŋg>{mh4?tYf}L&ĉ>|?~}:455!Mjjjjkk FPX,` V/HE %TUUmݺյw 6fhhO/B>s244;gTTԻwJKK---\w}e```ݿ˃ … kޝ5u~ $@b , D6PF(S!Z-i ֕eJ:uAFՂb)51@JuYpss}̹9'.U}L&Cу\VLPTZ}С\T&%%ر]mllLHH(**z#0=ź{3Q''3gzzzjqҥ +M@ vvvzB Lf2eee/y jjj*,,pnnnoDkjjj:tPeǏyjjC?>%BϷғxhX,ܹs\uR(;w466N>orssY,V``y~`09g,]|ѣor…x ւ377wttLKKB1)S.\А[\\p͍@ZBWknܸq8o#KKr a=Qܹs(܂]VRR2yGzz:N?qD^[[ǏO0A x 7UyR\.ٳ EUU՝;wj̙3N[jבU7D".Nc0ŋ/_|#i4]Kbb{l*wTT/_$wuk>T7nܸo߾Yfك.7!!a  ֎ J2222***&&fXG=zIWg„ ...nnnBP(MuGѨjZRT*RxL&ٳgvvvgà.##cSLyEEEׯ_OMMGq?SSSǎcwwxYYY}_|2111<<\ڱɹsLfrr2Tk1{fee=;T&]|>offF X;)ph4Z7T*{zz4P(dD&BH$|||]dff&%%R0''ӧI"77f͊pww{ܺ]8NVVDڶm#immhk֬yW$ ւ ~Çb7I$.@ E"T* A cƌ177bVVV666x<D"hee5@[[ۮ] j魭_-,..nii>^\Z>{lSSSFFZkd2YVV@ h->WJPg RIDAT*d̘19ɓ #//ϐKBqȑǏ7oZUUu햖ww%KDFGG Fnڴs,kΝ)))AAAF!XOfff&M? 1<C.H& DoJիͻu떱A.|ٳ+V ;rH[[[vUQQvq6Rܦ644T׭Ȑa?gPZ0| X f F":::Mֿ*}`(//SAT;;ãׇ/_r2LZXXX[[D'''' Jw.^hHZkZmKKKOO xv.===;##リcǎ,_?SISyխ[ܹCP6l`xƎn5F  B8ΝIopႹyttW\A_|L.4gΜkr~0+++++b>ŕ500P*>}Wa2iii555aaaW&HV.XYY rc]ɓ555XVL㏈Ox<ޱcjkk#""-ZdooA/h4/^qF ZA Ů]USSˑSFӧO߼ysٱGb0KII9s& QtvvƮXb ~^^\dҥKI$0zfJEw.X 66O'骻DEEYFk>}߆|WEEE?&H3f̘>}!EH$Dp>|Xb [[ہM:u޽0X GWQQqA6cƌ㕗WVVvvv7H$zzz?YZZgVTD,D"@d2Y,VggP( 箮'b-ڵkNRFLyyCCpoo)D&BRTPzK$$j{{{mll<<<&Mdl6;%%ՕJ~Pz1kO?ܹ3$$ĸ{J<O`nRMLLrhRhH$666x<~رF<6Ꚕ4h˸^6/ҥKMMM-,,ۺu̘1κjRVukRB}{Mw^77}-LIIIqq1FP(#sݻw۷]<|l+W\jUbb"1W7o޳gZ ___kk봴4;;'"2WVWWWo߾=,,,99yX!0t  Fjjٳ׭[7LOH,_tdݺuQQQpfX f;JG&?{,//s۶m]Z1I$ .TVVZ 9K.Q(hC B`i4Gc0={8::zڵkΝ mX ! KKK׮]34ԩS!!![l@]CCCZZT*ݿ9W^QThZWƺ|ªJߏ޺u+ 0Bd3gt??p<?ڮ]V]]uVVNb-`Hrʓ'O}||d2DBrykkkmmmUUUGGL^r%DsZF2>_]]]UU%ɐHB1bZkkkkjjr9 ~OTX. M"LMM?tZD:;;ds 0Jdf.doogp8 `tKҞplvss?caabk4Zh4"bl.B@ 0V$...( D" 9՗!rIENDB`elk-9.2.12/examples/magnetism-source-free/Ba122/PaxHeaders/elk.in0000644000000000000000000000013214536061314021332 xustar0030 mtime=1702388428.745500265 30 atime=1702388428.744500266 30 ctime=1702388428.745500265 elk-9.2.12/examples/magnetism-source-free/Ba122/elk.in0000644002504400250440000000474514536061314024066 0ustar00dewhurstdewhurst00000000000000 ! Magnetism in BaFe2As2 using the source-free version of LSDA. ! Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory ! S. Sharma, E. K. U. Gross, A. Sanna and J. K. Dewhurst ! Journal of Chemical Theory and Computation 14 (3), 1247 (2018) tasks 0 ! ground-state run 72 ! 2D plot of magnetisation 82 ! 2D plot of B_xc 83 ! 3D plot of B_xc 92 ! 2D plot of divergence of B_xc 152 ! 2D plot of m(r) x B_xc(r) ! enable source-free B_xc nosource .true. ! spin exchange-correlation scaling factor (see article) sxcscf 1.12 highq .true. ngridk 8 8 6 xctype 3 spinpol .true. spinorb .true. plot2d 0.0 0.0 0.5 1.0 0.0 0.5 0.0 1.0 0.5 600 600 plot3d 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 200 200 200 scale 9.8337 avec 1.078174 0.000000 0.000000 -0.000000 1.096817 0.000000 0.000000 0.000000 2.473656 primcell .true. sppath '../../../species/' atoms 3 "Ba.in" 4 0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.50000 0.50000 0.00000 0.00000 0.00000 0.50000 0.50000 -0.00000 0.00000 0.00000 0.00000 0.50000 -0.00000 0.50000 0.00000 0.00000 0.00000 "Fe.in" 8 0.75000 0.25000 0.25000 0.00000 0.00000 -0.01000 0.75000 0.75000 0.25000 0.00000 0.00000 0.01000 0.25000 0.25000 0.25000 0.00000 0.00000 -0.01000 0.25000 0.75000 0.25000 0.00000 0.00000 0.01000 0.75000 0.25000 0.75000 0.00000 0.00000 0.01000 0.75000 0.75000 0.75000 0.00000 0.00000 -0.01000 0.25000 0.25000 0.75000 0.00000 0.00000 0.01000 0.25000 0.75000 0.75000 0.00000 0.00000 -0.01000 "As.in" 8 0.00000 -0.00000 0.64970 0.00000 0.00000 0.00000 0.00000 -0.00000 0.35030 0.00000 0.00000 0.00000 0.50000 0.50000 0.64970 0.00000 0.00000 0.00000 0.50000 0.50000 0.35030 0.00000 0.00000 0.00000 0.00000 0.50000 0.14970 0.00000 0.00000 0.00000 0.00000 0.50000 0.85030 0.00000 0.00000 0.00000 0.50000 -0.00000 0.14970 0.00000 0.00000 0.00000 0.50000 -0.00000 0.85030 0.00000 0.00000 0.00000 elk-9.2.12/examples/PaxHeaders/molecules0000644000000000000000000000013214536061314015172 xustar0030 mtime=1702388428.750500257 30 atime=1702388428.745500265 30 ctime=1702388428.750500257 elk-9.2.12/examples/molecules/0000755002504400250440000000000014536061314017771 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/molecules/PaxHeaders/C600000644000000000000000000000013214536061314015522 xustar0030 mtime=1702388428.747500262 30 atime=1702388428.746500263 30 ctime=1702388428.747500262 elk-9.2.12/examples/molecules/C60/0000755002504400250440000000000014536061314020321 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/molecules/C60/PaxHeaders/elk.in0000644000000000000000000000013214536061314016702 xustar0030 mtime=1702388428.747500262 30 atime=1702388428.747500262 30 ctime=1702388428.747500262 elk-9.2.12/examples/molecules/C60/elk.in0000644002504400250440000000550714536061314021433 0ustar00dewhurstdewhurst00000000000000 ! C60 buckyball example. This example has high memory and time requirements and ! employs iterative diagonalisation. tasks 0 ! use iterative diagonalisation for the first-variational step tefvit .true. ! molecule calculation molecule .true. ! use very small energy cut-off rgkmax 4.0 sppath '../../../species/' ! use an fcc box to contain the molecule avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 24.0 ! the atomic coordinates are Cartesian with molecule=.true. atoms 1 : nspecies 'C.in' : spfname 60 : natoms; atposc below 4.20790955 1.12423579 5.07240250 5.92255243 0.30577656 3.09053347 2.53625794 -0.58931105 6.15449739 5.89150423 -2.19125067 2.27598598 6.07911622 -2.76287388 -0.40300296 6.14208189 2.34350589 1.26288498 6.32168145 1.79658139 -1.30022597 6.28972619 -0.81331917 -2.15152863 -0.85451519 2.59699373 6.10424958 0.89249869 4.38777367 4.97351314 -0.05102260 0.16353689 6.68186323 3.36781297 3.66786366 4.46912637 4.56285678 4.42127851 2.11483015 -0.49930340 5.89307270 3.14654495 0.64416979 6.61402206 0.89416165 3.23137475 5.86189222 0.36707927 -4.04684820 -1.59965305 5.07597408 -4.88658574 0.94354019 4.47250898 -1.68274430 -1.98120762 6.15625484 -3.32578546 2.99557474 4.97542176 -3.10623709 5.03232141 3.14743312 -6.29775752 0.83554235 2.11927100 -6.08784676 2.78439786 0.37044299 -4.45682426 4.92933134 0.89618365 -0.95746747 -5.66581425 3.40868774 -3.42822750 -5.26727104 2.27991661 -0.10387824 -4.05947157 5.30402621 -4.93898784 -3.27912812 3.09521999 -6.32980727 -1.77424483 1.26783606 -3.23999190 -5.83991471 -0.39909123 -4.57094481 -4.40022696 -2.14742792 -6.15020772 -2.32243545 -1.29533158 4.14416909 -3.98220068 3.40634448 3.25204835 -5.66116553 1.42568487 2.50352789 -3.19913602 5.30279789 0.75764784 -6.48459473 1.42687540 -0.65282474 -6.59204455 -0.92630589 4.44820711 -4.90778847 -0.92840348 3.09860260 -5.01057066 -3.17986082 0.49168780 -5.87162431 -3.17872698 -4.21537397 -1.10412910 -5.10475461 -3.37499392 -3.64732234 -4.50151628 -0.89933950 -4.36660874 -5.00582745 -2.54410030 0.61009804 -6.18628259 -4.15359883 4.00310105 -3.43858320 -5.90029145 2.21167861 -2.30835699 -5.93067825 -0.28551870 -3.12307455 -2.51263637 3.22020647 -5.33473426 0.94767869 5.68830199 -3.44022726 -0.76728544 6.50657224 -1.45864170 -3.26164816 5.68270840 -1.45786691 0.09442961 4.08156247 -5.33543346 4.03843892 1.62287778 -5.10734353 4.93027621 3.30214499 -3.12685400 3.41902454 5.29011783 -2.31168290 1.67416495 2.00384654 -6.18737863 0.84756100 -2.57503512 -6.13588359 3.31858560 -2.97318149 -5.00728254 4.87893235 -0.92061781 -4.50446425 0.04346370 -0.14161607 -6.71310040 elk-9.2.12/examples/molecules/PaxHeaders/H2O-iterative0000644000000000000000000000013114536061314017553 xustar0030 mtime=1702388428.749500259 29 atime=1702388428.74850026 30 ctime=1702388428.749500259 elk-9.2.12/examples/molecules/H2O-iterative/0000755002504400250440000000000014536061314022353 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/molecules/H2O-iterative/PaxHeaders/elk.in0000644000000000000000000000013214536061314020734 xustar0030 mtime=1702388428.749500259 30 atime=1702388428.749500259 30 ctime=1702388428.749500259 elk-9.2.12/examples/molecules/H2O-iterative/elk.in0000644002504400250440000000143514536061314023461 0ustar00dewhurstdewhurst00000000000000 ! Water molecule in a box. This example uses iterative diagonalisation which may ! be used for fine-grained parallelism. tasks 0 maxscl 30 lorbcnd .true. ! solve the first-variational eigenvalue equation iteratively tefvit .true. ! use adaptive linear mixing mixtype 1 ! molecule calculation (atomic positions are in Cartesian coordinates) molecule .true. ! put molecule in a large box avec 6.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 6.0 sppath '../../../species/' ! atomic positions in Cartesian coordinates atoms 2 : nspecies 'O.in' : spfname 1 : natoms; atposc below 0.0 0.0 0.0 'H.in' 2 1.811 0.0 0.0 -0.451907959 1.753710409 0.0 elk-9.2.12/examples/molecules/PaxHeaders/NaCl-monomer0000644000000000000000000000013214536061314017461 xustar0030 mtime=1702388428.751500256 30 atime=1702388428.750500257 30 ctime=1702388428.751500256 elk-9.2.12/examples/molecules/NaCl-monomer/0000755002504400250440000000000014536061314022260 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/molecules/NaCl-monomer/PaxHeaders/elk.in0000644000000000000000000000013214536061314020641 xustar0030 mtime=1702388428.752500254 30 atime=1702388428.751500256 30 ctime=1702388428.752500254 elk-9.2.12/examples/molecules/NaCl-monomer/elk.in0000644002504400250440000000164014536061314023364 0ustar00dewhurstdewhurst00000000000000 ! NaCl monomer in a large box. Note that with 'molecule=.true.' the atomic ! positions are supplied in Cartesian coordinates. Try plotting the 1D ! density along the molcular axis. You can also compute the vibrational ! frequency using task=200. tasks 0 molecule .true. ! large smearing width improves convergence for molecules swidth 0.005 rgkmax 6.0 ! large box containing the molecule avec 10.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 10.0 sppath '../../../species/' ! note that atomic positions are now in Cartesian coordinates atoms 2 : nspecies 'Na.in' : spfname 1 : natoms; atposc below 0.0 0.0 0.0 'Cl.in' : spfname 1 : natoms; atposc below 4.4121 0.0 0.0 plot1d 2 1000 0.0 0.0 0.0 1.0 0.0 0.0 elk-9.2.12/examples/PaxHeaders/structure-factors0000644000000000000000000000013214536061314016701 xustar0030 mtime=1702388428.753500253 30 atime=1702388428.752500254 30 ctime=1702388428.753500253 elk-9.2.12/examples/structure-factors/0000755002504400250440000000000014536061314021500 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/structure-factors/PaxHeaders/MnO0000644000000000000000000000013214536061314017372 xustar0030 mtime=1702388428.754500251 30 atime=1702388428.753500253 30 ctime=1702388428.754500251 elk-9.2.12/examples/structure-factors/MnO/0000755002504400250440000000000014536061314022171 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/structure-factors/MnO/PaxHeaders/elk.in0000644000000000000000000000013214536061314020552 xustar0030 mtime=1702388428.754500251 30 atime=1702388428.754500251 30 ctime=1702388428.754500251 elk-9.2.12/examples/structure-factors/MnO/elk.in0000644002504400250440000000455014536061314023300 0ustar00dewhurstdewhurst00000000000000 ! MnO in AFMII structure with LDA, in analogy with NiO example. Unit cell from ! Transactions and Journal of the British Ceramic Society (1984) 83, 5-9. ! ! This example illustrates the calculation of X-ray and magnetic structure ! factors which are the Fourier transforms of the electron density and ! magnetisation, respectively. ! ! The structure factors are calculated for the reflections whose diffraction ! vectors have lengths up to hmaxvr (given in a.u.). The connection to the ! traditional sin(theta)/lambda ratio is ! ! max|H| = 4*pi*max(sin(theta)/lambda) [wavelength also in a.u.!] ! ! Additionally, the hkl indices of the reflections are transformed by matrix ! vhmat. ! ! Since the primitive magnetic unit cell (given by avec) is bigger than the ! conventional crystallographic unit cell (cubic with a = 8.397946), a ! non-integer hkl indices appears when reflections are reindexed to the latter ! with vhmat. They have zero intensity for X-ray structure factors but are of ! non-zero intensity in case of magnetic structure factors. ! ! Example by Alexey I. Baranov. tasks 0 195 196 spinpol .true. scale 8.397946 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 : nspecies 'Mn.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 ! fairly high number of empty states nempty 8 sppath '../../../species/' ! this grid is too small for accurate magnetic moment ngridk 4 4 4 ! maximum |H| hmaxvr 6.0 ! H-vectors are reduced by the symmorphic crystal symmetries reduceh .true. ! uncomment the following lines to define an energy window for which only the ! orbitals within this window will contribute to the structure factors !wsfac ! -1.0 -0.1 ! H-vector transformation matrix for the conventional cell (cubic, a=8.397946) ! in the usual matrix row-column setting and applied directly as H' = MH but ! only for the output of the structure factor files. vhmat 1.5 -0.5 -0.5 -0.5 1.5 -0.5 -0.5 -0.5 1.5 ! For accurate results fine radial mesh (lradstp=1) should be used. lradstp 1 elk-9.2.12/examples/PaxHeaders/README0000644000000000000000000000013214536061314014137 xustar0030 mtime=1702388428.756500248 30 atime=1702388428.756500248 30 ctime=1702388428.756500248 elk-9.2.12/examples/README0000644002504400250440000000037714536061314016670 0ustar00dewhurstdewhurst00000000000000 Elk Code examples Please note that these examples are simply to demonstrate the features of the code. Any calculations used for production work must be thoroughly checked for convergence with respect to input parameters. elk-9.2.12/examples/PaxHeaders/Bogoliubov0000644000000000000000000000013214536061314015311 xustar0030 mtime=1702388428.760500242 30 atime=1702388428.757500247 30 ctime=1702388428.760500242 elk-9.2.12/examples/Bogoliubov/0000755002504400250440000000000014536061314020110 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Bogoliubov/PaxHeaders/diamond0000644000000000000000000000013214536061314016724 xustar0030 mtime=1702388428.758500245 30 atime=1702388428.757500247 30 ctime=1702388428.758500245 elk-9.2.12/examples/Bogoliubov/diamond/0000755002504400250440000000000014536061314021523 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Bogoliubov/diamond/PaxHeaders/elk.in0000644000000000000000000000013214536061314020104 xustar0030 mtime=1702388428.759500244 30 atime=1702388428.759500244 30 ctime=1702388428.759500244 elk-9.2.12/examples/Bogoliubov/diamond/elk.in0000644002504400250440000000303614536061314022630 0ustar00dewhurstdewhurst00000000000000 ! Renormalisation of the band gap of diamond using coupled electron and phonon ! Bogoliubov equations. See C.-Yu Wang, et al., Phys. Rev. B 105, 174509 (2022). ! This is a very expensive calculation and requires hundreds of cores to run in ! a reasonable time. ! First generate the phonon dynamical matrices tasks 0 : ground-state 205 : compute the dynamical matrices 220 : output phonon dispersion ! Then uncomment the following lines to solve the Bogoliubov equations !tasks ! 1 : ground-state ! 10 : DOS ! 241 : generate electron-phonon coupling matrix elements ! 270 : solve the electron-phonon Bogoliubov equations self-consistently ! 280 : compute the renormalised DOS ! 285 : compute the FACE and BACE (see article) pwxpsn 2 wplot 10000 300 8 -0.8 0.8 epspot 1.e-20 tauefm 0.1 tephde .false. ephscf 8.0 0.02 rgkmax 8.0 nrmtscf 2.0 nempty 16 mixtype 1 broydpm 0.04 0.01 mixsdb 8 beta0 0.1 betamax 1.0 maxscl 2000 ngridq 16 16 16 ngridk 16 16 16 avec 3.3637 3.3637 0.0000 3.3637 0.0000 3.3637 0.0000 3.3637 3.3637 sppath '../../../species/' atoms 1 : nspecies 'C.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 plot1d 7 200 : nvp1d, npp1d 1.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-9.2.12/examples/Bogoliubov/PaxHeaders/MgB20000644000000000000000000000013214536061314016040 xustar0030 mtime=1702388428.761500241 30 atime=1702388428.760500242 30 ctime=1702388428.761500241 elk-9.2.12/examples/Bogoliubov/MgB2/0000755002504400250440000000000014536061314020637 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Bogoliubov/MgB2/PaxHeaders/elk.in0000644000000000000000000000013214536061314017220 xustar0030 mtime=1702388428.761500241 30 atime=1702388428.761500241 30 ctime=1702388428.761500241 elk-9.2.12/examples/Bogoliubov/MgB2/elk.in0000644002504400250440000000356614536061314021754 0ustar00dewhurstdewhurst00000000000000 ! Calculation of the superconducting gap of MgB2 with the coupled ! electron-phonon Bogoliubov equations. See See C.-Yu Wang, et al., ! Phys. Rev. B 105, 174509 (2022). ! Note that this example is computationally very expensive and requires ! hundreds of cores to run in a reasonable time. ! First generate the phonon dynamical matrices tasks 0 : ground state run 205 : compute the dynamical matrices 220 : output phonon dispersion ngridk 24 24 12 ! Then uncomment the following lines to solve the Bogoliubov equations !tasks ! 1 : ground-state ! 10 : DOS ! 241 : generate electron-phonon coupling matrix elements ! 270 : solve the electron-phonon Bogoliubov equations self-consistently ! 280 : compute the renormalised DOS ! 285 : compute the FACE and BACE (see article) ! !ngridk ! 36 36 24 ! !vkloff ! 0.25 0.5 0.625 pwxpsn 2 ecutb 0.001 bdiag .false. ediag .false. tephde .false. ramdisk .true. mixtype 3 broydpm 0.04 0.01 tauefm 0.01 ephscf 8.0 0.02 epspot 1.e-30 wplot 100000 1 1 -0.05 0.05 maxscl 8000 anomalous .true. nxlo 1 nempty 4 ngridq 12 12 6 ! increase the number of muffin-tin points (for accurate gradients) nrmtscf 2 plot1d 5 1000 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 avec 5.83170 0.000000000 0.0000 -2.91585 5.050400347 0.0000 0.00000 0.000000000 6.6594 sppath '../../../species/' atoms 2 : nspecies 'Mg.in' : spfname 1 : natoms; atposl below 0.00000000 0.00000000 0.00000000 'B.in' 2 0.33333333 0.66666667 0.50000000 0.66666667 0.33333333 0.50000000 plot1d 5 1000 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 elk-9.2.12/examples/PaxHeaders/Compton-scattering0000644000000000000000000000013214536061314016762 xustar0030 mtime=1702388428.771500226 30 atime=1702388428.762500239 30 ctime=1702388428.771500226 elk-9.2.12/examples/Compton-scattering/0000755002504400250440000000000014536061314021561 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Compton-scattering/PaxHeaders/Li0000644000000000000000000000013214536061314017326 xustar0030 mtime=1702388428.766500233 30 atime=1702388428.762500239 30 ctime=1702388428.766500233 elk-9.2.12/examples/Compton-scattering/Li/0000755002504400250440000000000014536061314022125 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Compton-scattering/Li/PaxHeaders/elk.in0000644000000000000000000000013214536061314020506 xustar0030 mtime=1702388428.764500237 30 atime=1702388428.764500237 30 ctime=1702388428.764500237 elk-9.2.12/examples/Compton-scattering/Li/elk.in0000644002504400250440000000163214536061314023232 0ustar00dewhurstdewhurst00000000000000 ! Once-integrated electron momentum density (EMD) plot for fcc Li. ! First the EMD is calculated on a regular H+k grid. This is then interpolated ! and integrated perpendicular to the plotting plane given by plot2d. The files ! required for plotting the EMD with OpenDX are included in this directory. ! Example by David Ernsting and Stephen Dugdale. tasks 0 170 172 ! the 2D plotting plane vertices are given in reciprocal lattice coordinates plot2d -2.0 -2.0 0.0 -2.0 2.0 0.0 2.0 -2.0 0.0 100 100 ! maximum length of H+k-vectors for the regular EMD grid hkmax 7.0 ! large k-point grid required ngridk 20 20 20 avec 0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 0.5 scale 6.6226 sppath '../../../species/' atoms 1 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 elk-9.2.12/examples/Compton-scattering/Li/PaxHeaders/emd2d.general0000644000000000000000000000013214536061314021735 xustar0030 mtime=1702388428.765500235 30 atime=1702388428.765500235 30 ctime=1702388428.765500235 elk-9.2.12/examples/Compton-scattering/Li/emd2d.general0000644002504400250440000000027114536061314024457 0ustar00dewhurstdewhurst00000000000000file = EMD2D.OUT grid = 100 x 100 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 2-vector, scalar type = float, float end elk-9.2.12/examples/Compton-scattering/Li/PaxHeaders/emd2d.net0000644000000000000000000000013214536061314021106 xustar0030 mtime=1702388428.767500232 30 atime=1702388428.766500233 30 ctime=1702388428.767500232 elk-9.2.12/examples/Compton-scattering/Li/emd2d.net0000644002504400250440000003741414536061314023641 0ustar00dewhurstdewhurst00000000000000// // time: Mon Jan 26 19:22:44 2015 // // version: 3.2.0 (format), 4.4.4 (DX) // // // MODULE main // workspace: width = 425, height = 581 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Import[2]: x = 199, y = 111, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "emd2d.general" // main_Import_2_out_1 = Import( main_Import_2_in_1, main_Import_2_in_2, main_Import_2_in_3, main_Import_2_in_4, main_Import_2_in_5, main_Import_2_in_6 ) [instance: 2, cache: 1]; // // node RubberSheet[2]: x = 138, y = 249, inputs = 4, label = RubberSheet // main_RubberSheet_2_out_1 = RubberSheet( main_Import_2_out_1, main_RubberSheet_2_in_2, main_RubberSheet_2_in_3, main_RubberSheet_2_in_4 ) [instance: 2, cache: 1]; // // node Colormap[3]: x = 351, y = 266, inputs = 19, label = Colormap // input[1]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.666667] [1.0 0.0] } // input[2]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[3]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[4]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[5]: defaulting = 0, visible = 0, type = 32, value = "Colormap_3" // input[7]: defaulting = 1, visible = 0, type = 5, value = 4.1046274e-06 // input[8]: defaulting = 1, visible = 0, type = 5, value = 0.014571383 // input[9]: defaulting = 1, visible = 0, type = 1, value = 20 // input[12]: defaulting = 0, visible = 0, type = 16777221, value = { 4.1046274e-06 0.014571383 } // input[17]: defaulting = 0, visible = 0, type = 5, value = 4.1046274e-06 // input[18]: defaulting = 0, visible = 0, type = 5, value = 0.014571383 // window: position = (17.0661,30.3398), size = 17.0661x30.3398 // main_Colormap_3_out_1[cache: 2], main_Colormap_3_out_2[cache: 2] = Colormap( main_Colormap_3_in_1, main_Colormap_3_in_2, main_Colormap_3_in_3, main_Colormap_3_in_4, main_Colormap_3_in_5, main_RubberSheet_2_out_1, main_Colormap_3_in_7, main_Colormap_3_in_8, main_Colormap_3_in_9, main_Colormap_3_in_10, main_Colormap_3_in_11, main_Colormap_3_in_12, main_Colormap_3_in_13, main_Colormap_3_in_14, main_Colormap_3_in_15, main_Colormap_3_in_16, main_Colormap_3_in_17, main_Colormap_3_in_18, main_Colormap_3_in_19 ) [instance: 3, cache: 1]; // // node Color[4]: x = 277, y = 387, inputs = 5, label = Color // main_Color_4_out_1 = Color( main_RubberSheet_2_out_1, main_Colormap_3_out_1, main_Color_4_in_3, main_Color_4_in_4, main_Color_4_in_5 ) [instance: 4, cache: 1]; // // node Image[4]: x = 226, y = 519, inputs = 49, label = Image // input[1]: defaulting = 0, visible = 0, type = 32, value = "Image_4" // input[4]: defaulting = 0, visible = 0, type = 1, value = 1 // input[5]: defaulting = 0, visible = 0, type = 8, value = [3.98495 2.30071 0.460402] // input[6]: defaulting = 0, visible = 0, type = 8, value = [3.98495 2.30071 23.7018] // input[7]: defaulting = 0, visible = 0, type = 5, value = 12.455 // input[8]: defaulting = 0, visible = 0, type = 1, value = 826 // input[9]: defaulting = 0, visible = 0, type = 5, value = 0.751 // input[10]: defaulting = 0, visible = 0, type = 8, value = [0 1 0] // input[11]: defaulting = 1, visible = 0, type = 5, value = 29.9999 // input[12]: defaulting = 0, visible = 0, type = 1, value = 0 // input[14]: defaulting = 0, visible = 0, type = 1, value = 1 // input[15]: defaulting = 1, visible = 0, type = 32, value = "none" // input[16]: defaulting = 1, visible = 0, type = 32, value = "none" // input[17]: defaulting = 1, visible = 0, type = 1, value = 1 // input[18]: defaulting = 1, visible = 0, type = 1, value = 1 // input[19]: defaulting = 0, visible = 0, type = 1, value = 0 // input[29]: defaulting = 1, visible = 0, type = 3, value = 0 // input[41]: defaulting = 0, visible = 0, type = 32, value = "rotate" // depth: value = 24 // window: position = (0.2953,0.1796), size = 0.4375x0.6120 // internal caching: 1 // main_Image_4_out_1, main_Image_4_out_2, main_Image_4_out_3 = Image( main_Image_4_in_1, main_Color_4_out_1, main_Image_4_in_3, main_Image_4_in_4, main_Image_4_in_5, main_Image_4_in_6, main_Image_4_in_7, main_Image_4_in_8, main_Image_4_in_9, main_Image_4_in_10, main_Image_4_in_11, main_Image_4_in_12, main_Image_4_in_13, main_Image_4_in_14, main_Image_4_in_15, main_Image_4_in_16, main_Image_4_in_17, main_Image_4_in_18, main_Image_4_in_19, main_Image_4_in_20, main_Image_4_in_21, main_Image_4_in_22, main_Image_4_in_23, main_Image_4_in_24, main_Image_4_in_25, main_Image_4_in_26, main_Image_4_in_27, main_Image_4_in_28, main_Image_4_in_29, main_Image_4_in_30, main_Image_4_in_31, main_Image_4_in_32, main_Image_4_in_33, main_Image_4_in_34, main_Image_4_in_35, main_Image_4_in_36, main_Image_4_in_37, main_Image_4_in_38, main_Image_4_in_39, main_Image_4_in_40, main_Image_4_in_41, main_Image_4_in_42, main_Image_4_in_43, main_Image_4_in_44, main_Image_4_in_45, main_Image_4_in_46, main_Image_4_in_47, main_Image_4_in_48, main_Image_4_in_49 ) [instance: 4, cache: 1]; // network: end of macro body CacheScene(main_Image_4_in_1, main_Image_4_out_1, main_Image_4_out_2); } main_Import_2_in_1 = "emd2d.general"; main_Import_2_in_2 = NULL; main_Import_2_in_3 = NULL; main_Import_2_in_4 = NULL; main_Import_2_in_5 = NULL; main_Import_2_in_6 = NULL; main_Import_2_out_1 = NULL; main_RubberSheet_2_in_2 = NULL; main_RubberSheet_2_in_3 = NULL; main_RubberSheet_2_in_4 = NULL; main_RubberSheet_2_out_1 = NULL; main_Colormap_3_in_1 = { [0.0 0.666667] [1.0 0.0] }; main_Colormap_3_in_2 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_3_in_3 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_3_in_4 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_3_in_5 = "Colormap_3"; main_Colormap_3_in_7 = NULL; main_Colormap_3_in_8 = NULL; main_Colormap_3_in_9 = NULL; main_Colormap_3_in_10 = NULL; main_Colormap_3_in_11 = NULL; main_Colormap_3_in_12 = { 4.1046274e-06 0.014571383 }; main_Colormap_3_in_13 = NULL; main_Colormap_3_in_14 = NULL; main_Colormap_3_in_15 = NULL; main_Colormap_3_in_16 = NULL; main_Colormap_3_in_17 = 4.1046274e-06; main_Colormap_3_in_18 = 0.014571383; main_Colormap_3_in_19 = NULL; main_Colormap_3_out_1 = NULL; main_Color_4_in_3 = NULL; main_Color_4_in_4 = NULL; main_Color_4_in_5 = NULL; main_Color_4_out_1 = NULL; macro Image( id, object, where, useVector, to, from, width, resolution, aspect, up, viewAngle, perspective, options, buttonState = 1, buttonUpApprox = "none", buttonDownApprox = "none", buttonUpDensity = 1, buttonDownDensity = 1, renderMode = 0, defaultCamera, reset, backgroundColor, throttle, RECenable = 0, RECfile, RECformat, RECresolution, RECaspect, AAenable = 0, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, interactionMode, title, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels, webOptions) -> ( object, camera, where) { ImageMessage( id, backgroundColor, throttle, RECenable, RECfile, RECformat, RECresolution, RECaspect, AAenable, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels, interactionMode, title, renderMode, buttonUpApprox, buttonDownApprox, buttonUpDensity, buttonDownDensity) [instance: 1, cache: 1]; autoCamera = AutoCamera( object, "front", object, resolution, aspect, [0,1,0], perspective, viewAngle, backgroundColor) [instance: 1, cache: 1]; realCamera = Camera( to, from, width, resolution, aspect, up, perspective, viewAngle, backgroundColor) [instance: 1, cache: 1]; coloredDefaultCamera = UpdateCamera(defaultCamera, background=backgroundColor) [instance: 1, cache: 1]; nullDefaultCamera = Inquire(defaultCamera, "is null + 1") [instance: 1, cache: 1]; resetCamera = Switch( nullDefaultCamera, coloredDefaultCamera, autoCamera) [instance: 1, cache: 1]; resetNull = Inquire( reset, "is null + 1") [instance: 2, cache: 1]; reset = Switch( resetNull, reset, 0) [instance: 2, cache: 1]; whichCamera = Compute( "($0 != 0 || $1 == 0) ? 1 : 2", reset, useVector) [instance: 1, cache: 1]; camera = Switch( whichCamera, resetCamera, realCamera) [instance: 3, cache: 1]; AAobject = AutoAxes( object, camera, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels) [instance: 1, cache: 1]; switchAAenable = Compute("$0+1", AAenable) [instance: 2, cache: 1]; object = Switch( switchAAenable, object, AAobject) [instance:4, cache: 1]; SWapproximation_options = Switch( buttonState, buttonUpApprox, buttonDownApprox) [instance: 5, cache: 1]; SWdensity_options = Switch( buttonState, buttonUpDensity, buttonDownDensity) [instance: 6, cache: 1]; HWapproximation_options = Format( "%s,%s", buttonDownApprox, buttonUpApprox) [instance: 1, cache: 1]; HWdensity_options = Format( "%d,%d", buttonDownDensity, buttonUpDensity) [instance: 2, cache: 1]; switchRenderMode = Compute( "$0+1", renderMode) [instance: 3, cache: 1]; approximation_options = Switch( switchRenderMode, SWapproximation_options, HWapproximation_options) [instance: 7, cache: 1]; density_options = Switch( switchRenderMode, SWdensity_options, HWdensity_options) [instance: 8, cache: 1]; renderModeString = Switch( switchRenderMode, "software", "hardware")[instance: 9, cache: 1]; object_tag = Inquire( object, "object tag")[instance: 3, cache: 1]; annoted_object = Options( object, "send boxes", 0, "cache", 1, "object tag", object_tag, "ddcamera", whichCamera, "rendering approximation", approximation_options, "render every", density_options, "button state", buttonState, "rendering mode", renderModeString) [instance: 1, cache: 1]; RECresNull = Inquire( RECresolution, "is null + 1") [instance: 4, cache: 1]; ImageResolution = Inquire( camera, "camera resolution") [instance: 5, cache: 1]; RECresolution = Switch( RECresNull, RECresolution, ImageResolution) [instance: 10, cache: 1]; RECaspectNull = Inquire( RECaspect, "is null + 1") [instance: 6, cache: 1]; ImageAspect = Inquire( camera, "camera aspect") [instance: 7, cache: 1]; RECaspect = Switch( RECaspectNull, RECaspect, ImageAspect) [instance: 11, cache: 1]; switchRECenable = Compute( "$0 == 0 ? 1 : (($2 == $3) && ($4 == $5)) ? ($1 == 1 ? 2 : 3) : 4", RECenable, switchRenderMode, RECresolution, ImageResolution, RECaspect, ImageAspect) [instance: 4, cache: 1]; NoRECobject, RECNoRerenderObject, RECNoRerHW, RECRerenderObject = Route(switchRECenable, annoted_object); Display( NoRECobject, camera, where, throttle) [instance: 1, cache: 1]; image = Render( RECNoRerenderObject, camera) [instance: 1, cache: 1]; Display( image, NULL, where, throttle) [instance: 2, cache: 1]; WriteImage( image, RECfile, RECformat) [instance: 1, cache: 1]; rec_where = Display( RECNoRerHW, camera, where, throttle) [instance: 1, cache: 0]; rec_image = ReadImageWindow( rec_where) [instance: 1, cache: 1]; WriteImage( rec_image, RECfile, RECformat) [instance: 1, cache: 1]; RECupdateCamera = UpdateCamera( camera, resolution=RECresolution, aspect=RECaspect) [instance: 2, cache: 1]; Display( RECRerenderObject, camera, where, throttle) [instance: 1, cache: 1]; RECRerenderObject = ScaleScreen( RECRerenderObject, NULL, RECresolution, camera) [instance: 1, cache: 1]; image = Render( RECRerenderObject, RECupdateCamera) [instance: 2, cache: 1]; WriteImage( image, RECfile, RECformat) [instance: 2, cache: 1]; } main_Image_4_in_1 = "Image_4"; main_Image_4_in_3 = "X24,,"; main_Image_4_in_4 = 1; main_Image_4_in_5 = [3.98495 2.30071 0.460402]; main_Image_4_in_6 = [3.98495 2.30071 23.7018]; main_Image_4_in_7 = 12.455; main_Image_4_in_8 = 826; main_Image_4_in_9 = 0.751; main_Image_4_in_10 = [0 1 0]; main_Image_4_in_11 = NULL; main_Image_4_in_12 = 0; main_Image_4_in_13 = NULL; main_Image_4_in_14 = 1; main_Image_4_in_15 = NULL; main_Image_4_in_16 = NULL; main_Image_4_in_17 = NULL; main_Image_4_in_18 = NULL; main_Image_4_in_19 = 0; main_Image_4_in_20 = NULL; main_Image_4_in_21 = NULL; main_Image_4_in_22 = NULL; main_Image_4_in_23 = NULL; main_Image_4_in_25 = NULL; main_Image_4_in_26 = NULL; main_Image_4_in_27 = NULL; main_Image_4_in_28 = NULL; main_Image_4_in_29 = NULL; main_Image_4_in_30 = NULL; main_Image_4_in_31 = NULL; main_Image_4_in_32 = NULL; main_Image_4_in_33 = NULL; main_Image_4_in_34 = NULL; main_Image_4_in_35 = NULL; main_Image_4_in_36 = NULL; main_Image_4_in_37 = NULL; main_Image_4_in_38 = NULL; main_Image_4_in_39 = NULL; main_Image_4_in_40 = NULL; main_Image_4_in_41 = "rotate"; main_Image_4_in_42 = NULL; main_Image_4_in_43 = NULL; main_Image_4_in_44 = NULL; main_Image_4_in_45 = NULL; main_Image_4_in_46 = NULL; main_Image_4_in_47 = NULL; main_Image_4_in_48 = NULL; main_Image_4_in_49 = NULL; Executive("product version 4 4 4"); $sync main(); elk-9.2.12/examples/Compton-scattering/PaxHeaders/Ni0000644000000000000000000000013114536061314017327 xustar0030 mtime=1702388428.770500228 29 atime=1702388428.76850023 30 ctime=1702388428.770500228 elk-9.2.12/examples/Compton-scattering/Ni/0000755002504400250440000000000014536061314022127 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Compton-scattering/Ni/PaxHeaders/EMD1D.OUT0000644000000000000000000000013214536061314020570 xustar0030 mtime=1702388428.769500229 30 atime=1702388428.769500229 30 ctime=1702388428.769500229 elk-9.2.12/examples/Compton-scattering/Ni/EMD1D.OUT0000644002504400250440000001265614536061314023324 0ustar00dewhurstdewhurst00000000000000 0.000000000 13.36944509 0.3808160347E-01 13.36242486 0.7616320694E-01 13.34713589 0.1142448104 13.32147908 0.1523264139 13.27585701 0.1904080173 13.20894159 0.2284896208 13.13144996 0.2665712243 13.05060461 0.3046528277 12.95891882 0.3427344312 12.85570551 0.3808160347 12.73724511 0.4188976382 12.58594259 0.4569792416 12.40646548 0.4950608451 12.20258717 0.5331424486 11.98203209 0.5712240520 11.74982301 0.6093056555 11.50397852 0.6473872590 11.25947488 0.6854688624 11.02068933 0.7235504659 10.79507807 0.7616320694 10.59602405 0.7997136728 10.41950030 0.8377952763 10.24830043 0.8758768798 10.07520866 0.9139584832 9.896749716 0.9520400867 9.714049752 0.9901216902 9.530473138 1.028203294 9.339954965 1.066284897 9.140787720 1.104366501 8.935569331 1.142448104 8.738411330 1.180529708 8.561515588 1.218611311 8.394655152 1.256692914 8.228303536 1.294774518 8.068561140 1.332856121 7.910297932 1.370937725 7.742682296 1.409019328 7.573756340 1.447100932 7.410641772 1.485182535 7.254345570 1.523264139 7.097871593 1.561345742 6.940479426 1.599427346 6.789792236 1.637508949 6.639704472 1.675590553 6.489502153 1.713672156 6.355455259 1.751753760 6.239973890 1.789835363 6.120954124 1.827916966 5.988027446 1.865998570 5.841258977 1.904080173 5.692287515 1.942161777 5.546780416 1.980243380 5.395408983 2.018324984 5.236678739 2.056406587 5.076396106 2.094488191 4.928660100 2.132569794 4.796921137 2.170651398 4.667976134 2.208733001 4.538842525 2.246814605 4.414996074 2.284896208 4.291667931 2.322977812 4.163871229 2.361059415 4.036540109 2.399141019 3.912284859 2.437222622 3.794245903 2.475304225 3.679202305 2.513385829 3.567232516 2.551467432 3.462760945 2.589549036 3.361378745 2.627630639 3.263495724 2.665712243 3.177204176 2.703793846 3.100418825 2.741875450 3.022089438 2.779957053 2.938390805 2.818038657 2.850146442 2.856120260 2.763888755 2.894201864 2.680168113 2.932283467 2.593537368 2.970365071 2.504035903 3.008446674 2.415061089 3.046528277 2.334230769 3.084609881 2.261386065 3.122691484 2.189648361 3.160773088 2.119272318 3.198854691 2.052492680 3.236936295 1.985614800 3.275017898 1.917490125 3.313099502 1.850589025 3.351181105 1.786127365 3.389262709 1.725223654 3.427344312 1.665586690 3.465425916 1.608161480 3.503507519 1.554434647 3.541589123 1.502060642 3.579670726 1.452381398 3.617752329 1.409522582 3.655833933 1.370733010 3.693915536 1.330727243 3.731997140 1.288452971 3.770078743 1.244733351 3.808160347 1.202922648 3.846241950 1.162416103 3.884323554 1.120802947 3.922405157 1.078265333 3.960486761 1.036333665 3.998568364 0.9988444237 4.036649968 0.9649956003 4.074731571 0.9318476569 4.112813175 0.8997748555 4.150894778 0.8695350725 4.188976382 0.8389903421 4.227057985 0.8083465603 4.265139588 0.7786091047 4.303221192 0.7499539424 4.341302795 0.7229939196 4.379384399 0.6965284364 4.417466002 0.6713876299 4.455547606 0.6479272515 4.493629209 0.6251312139 4.531710813 0.6041244525 4.569792416 0.5862059253 4.607874020 0.5694603533 4.645955623 0.5520693813 4.684037227 0.5339913846 4.722118830 0.5158421203 4.760200434 0.4990218240 4.798282037 0.4827316178 4.836363640 0.4659253487 4.874445244 0.4486479322 4.912526847 0.4318071797 4.950608451 0.4171274069 4.988690054 0.4040055540 5.026771658 0.3911671146 5.064853261 0.3788656153 5.102934865 0.3672275819 5.141016468 0.3553093866 5.179098072 0.3434334700 5.217179675 0.3319091178 5.255261279 0.3207857681 5.293342882 0.3100308349 5.331424486 0.2991821951 5.369506089 0.2888413378 5.407587693 0.2790769534 5.445669296 0.2695133828 5.483750899 0.2607814560 5.521832503 0.2533991562 5.559914106 0.2461602714 5.597995710 0.2385604544 5.636077313 0.2307868105 5.674158917 0.2231243759 elk-9.2.12/examples/Compton-scattering/Ni/PaxHeaders/elk.in0000644000000000000000000000013214536061314020510 xustar0030 mtime=1702388428.771500226 30 atime=1702388428.770500228 30 ctime=1702388428.771500226 elk-9.2.12/examples/Compton-scattering/Ni/elk.in0000644002504400250440000000170214536061314023232 0ustar00dewhurstdewhurst00000000000000 ! Twice-integrated electron momentum density (EMD) plot for ferromagnetic Ni. ! First the EMD is calculated on a regular H+k grid. This is then interpolated ! and integrated in directions which are mutually orthogonal to each other and ! along the plotting line. This line is given by plot1d. ! Example by David Ernsting and Stephen Dugdale. tasks 0 170 171 ! define the plotting line in reciprocal lattice coordinates plot1d 2 150 0.0 0.0 0.0 3.0 3.0 0.0 ! maximum length of H+k-vectors for the EMD hkmax 8.d0 ! small swidth to give a sharp profile swidth 0.00016 ngridk 20 20 20 spinpol .true. bfieldc 0.0 0.0 -0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.322 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-9.2.12/examples/Compton-scattering/PaxHeaders/Si-GW0000644000000000000000000000013214536061314017650 xustar0030 mtime=1702388428.772500225 30 atime=1702388428.771500226 30 ctime=1702388428.772500225 elk-9.2.12/examples/Compton-scattering/Si-GW/0000755002504400250440000000000014536061314022447 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Compton-scattering/Si-GW/PaxHeaders/elk.in0000644000000000000000000000013214536061314021030 xustar0030 mtime=1702388428.773500223 30 atime=1702388428.772500225 30 ctime=1702388428.773500223 elk-9.2.12/examples/Compton-scattering/Si-GW/elk.in0000644002504400250440000000244614536061314023560 0ustar00dewhurstdewhurst00000000000000 ! Compton profile determined for silicon from the GW approximation. ! The density matrices are calculated from the interacting Green's function at ! each k-point and the files EVECSV.OUT and OCCSV.OUT are updated. The electron ! momentum density (EMD) is then computed from these. tasks 0 : ground state calculation 600 : determined the GW self-energy 640 : write the natural orbitals and occupaction numbers 170 : write the EMD for each k-point 171 : produce the 1D EMD plot ! use LAPW nxoapwlo 1 ! Matsubara frequency cut-off wmaxgw 20.0 ! response function G-vector cut-off gmaxrf 3.0 ! temperature of many-body system (determines Matsubara frequency spacing) tempk 1000.0 ! define the plotting line in reciprocal lattice coordinates plot1d 2 150 0.0 0.0 0.0 3.0 3.0 0.0 ! maximum length of H+k-vectors for the EMD hkmax 8.d0 ngridk 8 8 8 ! q-point grid can be smaller than (but commensurate with) the k-point set ngridq 2 2 2 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 elk-9.2.12/examples/PaxHeaders/ELNES0000644000000000000000000000013214536061314014050 xustar0030 mtime=1702388428.786500204 30 atime=1702388428.773500223 30 ctime=1702388428.786500204 elk-9.2.12/examples/ELNES/0000755002504400250440000000000014536061314016647 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/ELNES/PaxHeaders/Pu0000644000000000000000000000013214536061314014434 xustar0030 mtime=1702388428.777500217 30 atime=1702388428.774500222 30 ctime=1702388428.777500217 elk-9.2.12/examples/ELNES/Pu/0000755002504400250440000000000014536061314017233 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/ELNES/Pu/PaxHeaders/Pu+.in0000644000000000000000000000013114536061314015477 xustar0030 mtime=1702388428.776500219 29 atime=1702388428.77550022 30 ctime=1702388428.776500219 elk-9.2.12/examples/ELNES/Pu/Pu+.in0000644002504400250440000000472314536061314020230 0ustar00dewhurstdewhurst00000000000000 'Pu' : spsymb 'plutonium' : spname -94.0000 : spzn 444784.7903 : spmass 0.206284E-06 2.2000 42.3450 800 : sprmin, rmt, sprmax, nrmt 27 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 3.50000 T <---- 1/2 electron removed from next lowest state 4 2 2 4.00000 F 4 2 3 6.00000 F 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 3.00000 F 5 3 4 3.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.50000 F <---- and added to highest state 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -1.7999 0 T 1 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -0.7412 0 T 2 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -30.0000 0 T elk-9.2.12/examples/ELNES/Pu/PaxHeaders/elk.in0000644000000000000000000000013214536061314015614 xustar0030 mtime=1702388428.777500217 30 atime=1702388428.777500217 30 ctime=1702388428.777500217 elk-9.2.12/examples/ELNES/Pu/elk.in0000644002504400250440000000140114536061314020332 0ustar00dewhurstdewhurst00000000000000 ! Electron loss near-edge spectroscopy (ELNES) of spin-polarised fcc plutonium. ! Take note of the modified species file, 'Pu+.in', and the requirement of ! spin-orbit coupling. tasks 0 140 spinorb .true. ! maximum allowed energy for the initial state in the double differential ! cross-section formula emaxelnes -20.0 wplot 300 100 6 : nwplot, ngrkf, nswplot 28.0 32.0 : wplot nempty 20 ! q-vector in lattice coordinates vecql 0.0 0.0 0.25 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 9.13730 atoms 1 : nspecies 'Pu+.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.01 : atposl, bfcmt ngridk 4 4 4 elk-9.2.12/examples/ELNES/PaxHeaders/BN0000644000000000000000000000013214536061314014347 xustar0030 mtime=1702388428.785500205 30 atime=1702388428.778500216 30 ctime=1702388428.785500205 elk-9.2.12/examples/ELNES/BN/0000755002504400250440000000000014536061314017146 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/ELNES/BN/PaxHeaders/B.in0000644000000000000000000000013214536061314015135 xustar0030 mtime=1702388428.779500214 30 atime=1702388428.779500214 30 ctime=1702388428.779500214 elk-9.2.12/examples/ELNES/BN/B.in0000644002504400250440000000172214536061314017661 0ustar00dewhurstdewhurst00000000000000 'B' : spsymb 'boron' : spname -5.00000 : spzn 19707.24740 : spmass 0.894427E-06 1.8000 43.3288 300 : sprmin, rmt, sprmax, nrmt 3 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 2 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F elk-9.2.12/examples/ELNES/BN/PaxHeaders/ELNES.OUT0000644000000000000000000000013214536061314015663 xustar0030 mtime=1702388428.781500211 30 atime=1702388428.780500213 30 ctime=1702388428.781500211 elk-9.2.12/examples/ELNES/BN/ELNES.OUT0000644002504400250440000002553414536061314020416 0ustar00dewhurstdewhurst00000000000000 18.00000000 0.000000000 18.01333333 0.000000000 18.02666667 0.000000000 18.04000000 0.000000000 18.05333333 0.000000000 18.06666667 0.000000000 18.08000000 0.000000000 18.09333333 0.000000000 18.10666667 0.000000000 18.12000000 0.000000000 18.13333333 0.000000000 18.14666667 0.000000000 18.16000000 0.000000000 18.17333333 0.000000000 18.18666667 0.000000000 18.20000000 0.000000000 18.21333333 0.000000000 18.22666667 0.000000000 18.24000000 0.000000000 18.25333333 0.000000000 18.26666667 0.000000000 18.28000000 0.000000000 18.29333333 0.000000000 18.30666667 0.000000000 18.32000000 0.000000000 18.33333333 0.000000000 18.34666667 0.000000000 18.36000000 0.000000000 18.37333333 0.000000000 18.38666667 0.000000000 18.40000000 0.000000000 18.41333333 0.000000000 18.42666667 0.000000000 18.44000000 0.000000000 18.45333333 0.000000000 18.46666667 0.000000000 18.48000000 0.000000000 18.49333333 0.000000000 18.50666667 0.000000000 18.52000000 0.000000000 18.53333333 0.000000000 18.54666667 0.000000000 18.56000000 0.000000000 18.57333333 0.000000000 18.58666667 0.000000000 18.60000000 0.000000000 18.61333333 0.000000000 18.62666667 0.000000000 18.64000000 0.4802983991E-10 18.65333333 0.4187232974E-08 18.66666667 0.1166852820E-06 18.68000000 0.1185389883E-05 18.69333333 0.7384946085E-05 18.70666667 0.3045664582E-04 18.72000000 0.9242656802E-04 18.73333333 0.2095808507E-03 18.74666667 0.3736608862E-03 18.76000000 0.5533811122E-03 18.77333333 0.7624387726E-03 18.78666667 0.1130701129E-02 18.80000000 0.1718257455E-02 18.81333333 0.2493497109E-02 18.82666667 0.3185876321E-02 18.84000000 0.3773753388E-02 18.85333333 0.4163071949E-02 18.86666667 0.4417930457E-02 18.88000000 0.4382860113E-02 18.89333333 0.4265167650E-02 18.90666667 0.4274114406E-02 18.92000000 0.4531939553E-02 18.93333333 0.4773633135E-02 18.94666667 0.4692470703E-02 18.96000000 0.4280908391E-02 18.97333333 0.3707009360E-02 18.98666667 0.3231771893E-02 19.00000000 0.2948639963E-02 19.01333333 0.2934893917E-02 19.02666667 0.3219916297E-02 19.04000000 0.3575260703E-02 19.05333333 0.3751330763E-02 19.06666667 0.3327580078E-02 19.08000000 0.2543806713E-02 19.09333333 0.1654728178E-02 19.10666667 0.1150618326E-02 19.12000000 0.9459602807E-03 19.13333333 0.8998660240E-03 19.14666667 0.8176059080E-03 19.16000000 0.7558026853E-03 19.17333333 0.9037873207E-03 19.18666667 0.1321903948E-02 19.20000000 0.1867767255E-02 19.21333333 0.2223600447E-02 19.22666667 0.2224099692E-02 19.24000000 0.1902702475E-02 19.25333333 0.1439482382E-02 19.26666667 0.9722495061E-03 19.28000000 0.5977864035E-03 19.29333333 0.3478918970E-03 19.30666667 0.2213236000E-03 19.32000000 0.1703656489E-03 19.33333333 0.1539137766E-03 19.34666667 0.1451793490E-03 19.36000000 0.1375585069E-03 19.37333333 0.1278149172E-03 19.38666667 0.1195727132E-03 19.40000000 0.1260018751E-03 19.41333333 0.1695476274E-03 19.42666667 0.3183900566E-03 19.44000000 0.5793807268E-03 19.45333333 0.9115068510E-03 19.46666667 0.1130902983E-02 19.48000000 0.1185230847E-02 19.49333333 0.1088279488E-02 19.50666667 0.9753621739E-03 19.52000000 0.8640461661E-03 19.53333333 0.7562832710E-03 19.54666667 0.6414338684E-03 19.56000000 0.5560142899E-03 19.57333333 0.5075797090E-03 19.58666667 0.4777864278E-03 19.60000000 0.4375588173E-03 19.61333333 0.3777842167E-03 19.62666667 0.3123612299E-03 19.64000000 0.2611515503E-03 19.65333333 0.2373966982E-03 19.66666667 0.2324238458E-03 19.68000000 0.2292782226E-03 19.69333333 0.2212538667E-03 19.70666667 0.2174469307E-03 19.72000000 0.2324020016E-03 19.73333333 0.2755053590E-03 19.74666667 0.3373106475E-03 19.76000000 0.4001468611E-03 19.77333333 0.4277098535E-03 19.78666667 0.4056550688E-03 19.80000000 0.3437894304E-03 19.81333333 0.2756163370E-03 19.82666667 0.2317231865E-03 19.84000000 0.2230530902E-03 19.85333333 0.2569834841E-03 19.86666667 0.3246486802E-03 19.88000000 0.4109200279E-03 19.89333333 0.4913710672E-03 19.90666667 0.5572174814E-03 19.92000000 0.6215124056E-03 19.93333333 0.7215388596E-03 19.94666667 0.8783714081E-03 19.96000000 0.1089505958E-02 19.97333333 0.1309540454E-02 19.98666667 0.1506600555E-02 20.00000000 0.1641843699E-02 20.01333333 0.1683875413E-02 20.02666667 0.1608065088E-02 20.04000000 0.1413556994E-02 20.05333333 0.1149511752E-02 20.06666667 0.8333914280E-03 20.08000000 0.5265343190E-03 20.09333333 0.2595013230E-03 20.10666667 0.9703860137E-04 20.12000000 0.2181874162E-04 20.13333333 0.4267836290E-05 20.14666667 0.8728401994E-06 20.16000000 0.4237144268E-07 20.17333333 0.000000000 20.18666667 0.000000000 20.20000000 0.000000000 20.21333333 0.000000000 20.22666667 0.000000000 20.24000000 0.000000000 20.25333333 0.000000000 20.26666667 0.000000000 20.28000000 0.000000000 20.29333333 0.000000000 20.30666667 0.000000000 20.32000000 0.000000000 20.33333333 0.000000000 20.34666667 0.000000000 20.36000000 0.000000000 20.37333333 0.000000000 20.38666667 0.000000000 20.40000000 0.000000000 20.41333333 0.000000000 20.42666667 0.000000000 20.44000000 0.000000000 20.45333333 0.000000000 20.46666667 0.000000000 20.48000000 0.000000000 20.49333333 0.000000000 20.50666667 0.000000000 20.52000000 0.000000000 20.53333333 0.000000000 20.54666667 0.000000000 20.56000000 0.000000000 20.57333333 0.000000000 20.58666667 0.000000000 20.60000000 0.000000000 20.61333333 0.000000000 20.62666667 0.000000000 20.64000000 0.000000000 20.65333333 0.000000000 20.66666667 0.000000000 20.68000000 0.000000000 20.69333333 0.000000000 20.70666667 0.000000000 20.72000000 0.000000000 20.73333333 0.000000000 20.74666667 0.000000000 20.76000000 0.000000000 20.77333333 0.000000000 20.78666667 0.000000000 20.80000000 0.000000000 20.81333333 0.000000000 20.82666667 0.000000000 20.84000000 0.000000000 20.85333333 0.000000000 20.86666667 0.000000000 20.88000000 0.000000000 20.89333333 0.000000000 20.90666667 0.000000000 20.92000000 0.000000000 20.93333333 0.000000000 20.94666667 0.000000000 20.96000000 0.000000000 20.97333333 0.000000000 20.98666667 0.000000000 21.00000000 0.000000000 21.01333333 0.000000000 21.02666667 0.000000000 21.04000000 0.000000000 21.05333333 0.000000000 21.06666667 0.000000000 21.08000000 0.000000000 21.09333333 0.000000000 21.10666667 0.000000000 21.12000000 0.000000000 21.13333333 0.000000000 21.14666667 0.000000000 21.16000000 0.000000000 21.17333333 0.000000000 21.18666667 0.000000000 21.20000000 0.000000000 21.21333333 0.000000000 21.22666667 0.000000000 21.24000000 0.000000000 21.25333333 0.000000000 21.26666667 0.000000000 21.28000000 0.000000000 21.29333333 0.000000000 21.30666667 0.000000000 21.32000000 0.000000000 21.33333333 0.000000000 21.34666667 0.000000000 21.36000000 0.000000000 21.37333333 0.000000000 21.38666667 0.000000000 21.40000000 0.000000000 21.41333333 0.000000000 21.42666667 0.000000000 21.44000000 0.000000000 21.45333333 0.000000000 21.46666667 0.000000000 21.48000000 0.000000000 21.49333333 0.000000000 21.50666667 0.000000000 21.52000000 0.000000000 21.53333333 0.000000000 21.54666667 0.000000000 21.56000000 0.000000000 21.57333333 0.000000000 21.58666667 0.000000000 21.60000000 0.000000000 21.61333333 0.000000000 21.62666667 0.000000000 21.64000000 0.000000000 21.65333333 0.000000000 21.66666667 0.000000000 21.68000000 0.000000000 21.69333333 0.000000000 21.70666667 0.000000000 21.72000000 0.000000000 21.73333333 0.000000000 21.74666667 0.000000000 21.76000000 0.000000000 21.77333333 0.000000000 21.78666667 0.000000000 21.80000000 0.000000000 21.81333333 0.000000000 21.82666667 0.000000000 21.84000000 0.000000000 21.85333333 0.000000000 21.86666667 0.000000000 21.88000000 0.000000000 21.89333333 0.000000000 21.90666667 0.000000000 21.92000000 0.000000000 21.93333333 0.000000000 21.94666667 0.000000000 21.96000000 0.000000000 21.97333333 0.000000000 21.98666667 0.000000000 elk-9.2.12/examples/ELNES/BN/PaxHeaders/N+.in0000644000000000000000000000013114536061314015223 xustar0030 mtime=1702388428.783500208 29 atime=1702388428.78250021 30 ctime=1702388428.783500208 elk-9.2.12/examples/ELNES/BN/N+.in0000644002504400250440000000253414536061314017752 0ustar00dewhurstdewhurst00000000000000 'N+' : spsymb 'nitrogen with pseudo core-hole' : spname -8.00000 : spzn 25532.72506 : spmass 0.755929E-06 1.4500 26.9237 300 : sprmin, rmt, sprmax, nrmt 4 : spnst 1 0 1 2.00000 F : spn, spl, spk, spocc, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 2 1 2 3.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -0.6020 0 T 0 3 0.1500 0 F 0.1500 1 F -20.0000 0 T elk-9.2.12/examples/ELNES/BN/PaxHeaders/N.in0000644000000000000000000000013214536061314015151 xustar0030 mtime=1702388428.784500207 30 atime=1702388428.784500207 30 ctime=1702388428.784500207 elk-9.2.12/examples/ELNES/BN/N.in0000644002504400250440000000222014536061314017667 0ustar00dewhurstdewhurst00000000000000 'N' : spsymb 'nitrogen' : spname -7.00000 : spzn 25532.65213 : spmass 0.755929E-06 1.8000 33.2667 300 : sprmin, rmt, sprmax, nrmt 4 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 2 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -0.6770 0 T elk-9.2.12/examples/ELNES/BN/PaxHeaders/elk.in0000644000000000000000000000013214536061314015527 xustar0030 mtime=1702388428.786500204 30 atime=1702388428.785500205 30 ctime=1702388428.786500204 elk-9.2.12/examples/ELNES/BN/elk.in0000644002504400250440000000356214536061314020257 0ustar00dewhurstdewhurst00000000000000 ! Calculation of the electron loss near-edge spectroscopy (ELNES) for boron ! nitride. Note that a 16 atom supercell has been constructed with a special ! N atom (defined in the species file 'N+.in') for which the nuclear and ! electronic charges have been increased by one, and the 1s core code state has ! been included as a valence state by adding a local-orbital at the appropriate ! energy. This approximates the local core-hole interation. Compare with Phys. ! Rev. B 64, 115107 (2001). ! This example is well converged and is of publication quality. However it is ! fairly time-consuming and is best run on a multi-processor machine. tasks 0 140 ! spin-orbit coupling required to obtain realistic 1s state in valence spinorb .true. ! ELNES q-vector in lattice coordinates vecql 0.0 0.0 0.125 ! energy range for ELNES plot wplot 300 150 3 : nwplot, ngrkf, nswplot 18.0 22.0 : wplot (for the nitrogen K-edge) ! maximum allowed energy for the initial state in the double differential ! cross-section formula emaxelnes -10.0 ! large number of empty states required nempty 30 ngridk 8 8 8 avec 9.674352 0.0 0.0 4.837176 8.378234597 0.0 4.837176 2.792744866 7.899075331 atoms 3 : nspecies 'B.in' : spfname 8 : natoms; atposl below 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.5 0.5 0.5 0.0 0.0 0.5 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 'N+.in' : spfname 1 : natoms; atposl below 0.125 0.125 0.125 'N.in' : spfname 7 0.125 0.125 0.625 0.125 0.625 0.125 0.125 0.625 0.625 0.625 0.125 0.125 0.625 0.125 0.625 0.625 0.625 0.125 0.625 0.625 0.625 elk-9.2.12/examples/ELNES/PaxHeaders/Cu0000644000000000000000000000013214536061314014417 xustar0030 mtime=1702388428.789500199 30 atime=1702388428.786500204 30 ctime=1702388428.789500199 elk-9.2.12/examples/ELNES/Cu/0000755002504400250440000000000014536061314017216 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/ELNES/Cu/PaxHeaders/Cu+.in0000644000000000000000000000013214536061314015446 xustar0030 mtime=1702388428.788500201 30 atime=1702388428.787500202 30 ctime=1702388428.788500201 elk-9.2.12/examples/ELNES/Cu/Cu+.in0000644002504400250440000000373314536061314020176 0ustar00dewhurstdewhurst00000000000000 'Cu+' : spsymb 'copper with pseudo core-hole' : spname -29.0000 : spzn 115837.2717 : spmass 0.371391E-06 2.0000 37.1331 500 : sprmin, rmt, sprmax, nrmt 10 : spnst 1 0 1 1.50000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 F 2 1 1 2.00000 F 2 1 2 4.00000 F 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 1.50000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 8 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -2.6152 0 T 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -4.0000 0 T 1 3 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -34.0000 0 T 0 3 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -41.0000 0 T elk-9.2.12/examples/ELNES/Cu/PaxHeaders/elk.in0000644000000000000000000000013214536061314015577 xustar0030 mtime=1702388428.789500199 30 atime=1702388428.789500199 30 ctime=1702388428.789500199 elk-9.2.12/examples/ELNES/Cu/elk.in0000644002504400250440000000225214536061314020322 0ustar00dewhurstdewhurst00000000000000 ! Electron loss near-edge spectroscopy for fcc Cu. Note that a special species ! file has been constructed to simulate dynamical core-hole effects by removing ! half an electron from the 1s core state (even though we are interested in the ! 2s and 2p transitions). This is a publication-quality calculation and may take ! some time to complete. ! No supercell is required because of the strong metallic screening of copper. ! Compare with Eur. Phys. J. B21, 363 (2001). tasks 0 140 ! spin-orbit coupling required for accurate description of deep valence states spinorb .true. ! maximum allowed energy for the initial state in the double differential ! cross-section formula emaxelnes -30.0 ! energy range for ELNES plot wplot 500 200 1 : nwplot, ngrkf, nswplot 33.0 37.5 : wplot (suitable for the Cu L3 edge) vecql 0.0 0.0 0.1 rgkmax 8.0 gmaxvr 14.0 nempty 20 ngridk 10 10 10 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 6.83117 atoms 1 : nspecies 'Cu+.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-9.2.12/examples/PaxHeaders/Mossbauer0000644000000000000000000000013214536061314015142 xustar0030 mtime=1702388428.804500177 30 atime=1702388428.790500198 30 ctime=1702388428.804500177 elk-9.2.12/examples/Mossbauer/0000755002504400250440000000000014536061314017741 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Mossbauer/PaxHeaders/Mg2SiO40000644000000000000000000000013214536061314016266 xustar0030 mtime=1702388428.795500191 30 atime=1702388428.790500198 30 ctime=1702388428.795500191 elk-9.2.12/examples/Mossbauer/Mg2SiO4/0000755002504400250440000000000014536061314021065 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Mossbauer/Mg2SiO4/PaxHeaders/EFG.OUT0000644000000000000000000000013214536061314017335 xustar0030 mtime=1702388428.792500195 30 atime=1702388428.792500195 30 ctime=1702388428.792500195 elk-9.2.12/examples/Mossbauer/Mg2SiO4/EFG.OUT0000644002504400250440000002127714536061314022070 0ustar00dewhurstdewhurst00000000000000 (electric field gradient tensor is in Cartesian coordinates) Species : 1 (Mg), atom : 1 EFG tensor : 0.4540892586E-01 -0.1763387239E-01 0.6360381772E-01 -0.1763387239E-01 -0.6707466662E-01 0.5324981887E-01 0.6360381772E-01 0.5324981887E-01 0.2166574076E-01 trace : 0.2255140519E-15 eigenvalues : -0.1057174610 0.4640486884E-02 0.1010769741 Species : 1 (Mg), atom : 2 EFG tensor : 0.4540892586E-01 -0.1763387239E-01 -0.6360381772E-01 -0.1763387239E-01 -0.6707466662E-01 -0.5324981887E-01 -0.6360381772E-01 -0.5324981887E-01 0.2166574076E-01 trace : -0.8673617380E-16 eigenvalues : -0.1057174610 0.4640486884E-02 0.1010769741 Species : 1 (Mg), atom : 3 EFG tensor : 0.4540892586E-01 0.1763387239E-01 -0.6360381772E-01 0.1763387239E-01 -0.6707466662E-01 0.5324981887E-01 -0.6360381772E-01 0.5324981887E-01 0.2166574076E-01 trace : -0.2324529458E-15 eigenvalues : -0.1057174610 0.4640486884E-02 0.1010769741 Species : 1 (Mg), atom : 4 EFG tensor : 0.4540892586E-01 0.1763387239E-01 0.6360381772E-01 0.1763387239E-01 -0.6707466662E-01 -0.5324981887E-01 0.6360381772E-01 -0.5324981887E-01 0.2166574076E-01 trace : -0.5204170428E-16 eigenvalues : -0.1057174610 0.4640486884E-02 0.1010769741 Species : 1 (Mg), atom : 5 EFG tensor : -0.8040555871E-01 -0.3650637845E-01 -0.3047653057E-16 -0.3650637845E-01 0.1498274433E-01 -0.1054253974E-15 -0.3047653057E-16 -0.1054253974E-15 0.6542281438E-01 trace : -0.7216449660E-15 eigenvalues : -0.9277343976E-01 0.2735062538E-01 0.6542281438E-01 Species : 1 (Mg), atom : 6 EFG tensor : -0.8040555871E-01 -0.3650637845E-01 -0.8533708916E-16 -0.3650637845E-01 0.1498274433E-01 -0.1268311785E-15 -0.8533708916E-16 -0.1268311785E-15 0.6542281438E-01 trace : 0.2775557562E-16 eigenvalues : -0.9277343976E-01 0.2735062538E-01 0.6542281438E-01 Species : 1 (Mg), atom : 7 EFG tensor : -0.8040555871E-01 0.3650637845E-01 0.6083835430E-16 0.3650637845E-01 0.1498274433E-01 0.8868811951E-16 0.6083835430E-16 0.8868811951E-16 0.6542281438E-01 trace : 0.4163336342E-16 eigenvalues : -0.9277343976E-01 0.2735062538E-01 0.6542281438E-01 Species : 1 (Mg), atom : 8 EFG tensor : -0.8040555871E-01 0.3650637845E-01 -0.2566982641E-16 0.3650637845E-01 0.1498274433E-01 0.1392643800E-15 -0.2566982641E-16 0.1392643800E-15 0.6542281438E-01 trace : 0.9714451465E-16 eigenvalues : -0.9277343976E-01 0.2735062538E-01 0.6542281438E-01 Species : 2 (Si), atom : 1 EFG tensor : 0.1998888880 0.3247854545E-01 0.9705954098E-16 0.3247854545E-01 -0.1762801640 -0.3077944466E-15 0.9705954098E-16 -0.3077944466E-15 -0.2360872399E-01 trace : -0.4787836794E-15 eigenvalues : -0.1790637727 -0.2360872399E-01 0.2026724967 Species : 2 (Si), atom : 2 EFG tensor : 0.1998888880 0.3247854545E-01 0.9050580257E-16 0.3247854545E-01 -0.1762801640 -0.3344693075E-15 0.9050580257E-16 -0.3344693075E-15 -0.2360872399E-01 trace : 0.4336808690E-15 eigenvalues : -0.1790637727 -0.2360872399E-01 0.2026724967 Species : 2 (Si), atom : 3 EFG tensor : 0.1998888880 -0.3247854545E-01 0.1056039611E-15 -0.3247854545E-01 -0.1762801640 0.8244420802E-16 0.1056039611E-15 0.8244420802E-16 -0.2360872399E-01 trace : 0.1151856388E-14 eigenvalues : -0.1790637727 -0.2360872399E-01 0.2026724967 Species : 2 (Si), atom : 4 EFG tensor : 0.1998888880 -0.3247854545E-01 0.1427804355E-16 -0.3247854545E-01 -0.1762801640 0.1160800898E-15 0.1427804355E-16 0.1160800898E-15 -0.2360872399E-01 trace : 0.2775557562E-16 eigenvalues : -0.1790637727 -0.2360872399E-01 0.2026724967 Species : 3 (O), atom : 1 EFG tensor : -0.4883142850 -0.4644265160E-01 -0.2893374241E-15 -0.4644265160E-01 0.1719771655 0.2307362823E-15 -0.2893374241E-15 0.2307362823E-15 0.3163371195 trace : -0.9436895709E-15 eigenvalues : -0.4915649001 0.1752277806 0.3163371195 Species : 3 (O), atom : 2 EFG tensor : -0.4883142850 -0.4644265160E-01 -0.8665332380E-16 -0.4644265160E-01 0.1719771655 0.1921692501E-15 -0.8665332380E-16 0.1921692501E-15 0.3163371195 trace : 0.7216449660E-15 eigenvalues : -0.4915649001 0.1752277806 0.3163371195 Species : 3 (O), atom : 3 EFG tensor : -0.4883142850 0.4644265160E-01 -0.1075299185E-15 0.4644265160E-01 0.1719771655 -0.4737739850E-15 -0.1075299185E-15 -0.4737739850E-15 0.3163371195 trace : 0.3330669074E-14 eigenvalues : -0.4915649001 0.1752277806 0.3163371195 Species : 3 (O), atom : 4 EFG tensor : -0.4883142850 0.4644265160E-01 -0.1908814821E-15 0.4644265160E-01 0.1719771655 -0.3512425491E-15 -0.1908814821E-15 -0.3512425491E-15 0.3163371195 trace : -0.2164934898E-14 eigenvalues : -0.4915649001 0.1752277806 0.3163371195 Species : 3 (O), atom : 5 EFG tensor : -0.5817198967E-01 0.2576542145 0.1269063876E-15 0.2576542145 -0.2568887445 -0.2865787890E-16 0.1269063876E-15 -0.2865787890E-16 0.3150607341 trace : 0.1165734176E-14 eigenvalues : -0.4336784820 0.1186177479 0.3150607341 Species : 3 (O), atom : 6 EFG tensor : -0.5817198967E-01 0.2576542145 0.1229734413E-15 0.2576542145 -0.2568887445 0.1684989048E-15 0.1229734413E-15 0.1684989048E-15 0.3150607341 trace : 0.5551115123E-16 eigenvalues : -0.4336784820 0.1186177479 0.3150607341 Species : 3 (O), atom : 7 EFG tensor : -0.5817198967E-01 -0.2576542145 -0.4353297598E-15 -0.2576542145 -0.2568887445 -0.8050984716E-15 -0.4353297598E-15 -0.8050984716E-15 0.3150607341 trace : -0.5551115123E-16 eigenvalues : -0.4336784820 0.1186177479 0.3150607341 Species : 3 (O), atom : 8 EFG tensor : -0.5817198967E-01 -0.2576542145 -0.3397294856E-15 -0.2576542145 -0.2568887445 -0.6887664005E-15 -0.3397294856E-15 -0.6887664005E-15 0.3150607341 trace : -0.1276756478E-14 eigenvalues : -0.4336784820 0.1186177479 0.3150607341 Species : 3 (O), atom : 9 EFG tensor : 0.3617984671E-01 -0.1046542712 -0.2284590635 -0.1046542712 0.1873139119 -0.1586476054 -0.2284590635 -0.1586476054 -0.2234937586 trace : 0.1165734176E-14 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 Species : 3 (O), atom : 10 EFG tensor : 0.3617984671E-01 -0.1046542712 -0.2284590635 -0.1046542712 0.1873139119 -0.1586476054 -0.2284590635 -0.1586476054 -0.2234937586 trace : 0.3330669074E-15 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 Species : 3 (O), atom : 11 EFG tensor : 0.3617984671E-01 -0.1046542712 0.2284590635 -0.1046542712 0.1873139119 0.1586476054 0.2284590635 0.1586476054 -0.2234937586 trace : 0.8049116929E-15 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 Species : 3 (O), atom : 12 EFG tensor : 0.3617984671E-01 -0.1046542712 0.2284590635 -0.1046542712 0.1873139119 0.1586476054 0.2284590635 0.1586476054 -0.2234937586 trace : -0.4163336342E-15 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 Species : 3 (O), atom : 13 EFG tensor : 0.3617984671E-01 0.1046542712 0.2284590635 0.1046542712 0.1873139119 -0.1586476054 0.2284590635 -0.1586476054 -0.2234937586 trace : -0.5273559367E-15 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 Species : 3 (O), atom : 14 EFG tensor : 0.3617984671E-01 0.1046542712 0.2284590635 0.1046542712 0.1873139119 -0.1586476054 0.2284590635 -0.1586476054 -0.2234937586 trace : 0.9714451465E-15 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 Species : 3 (O), atom : 15 EFG tensor : 0.3617984671E-01 0.1046542712 -0.2284590635 0.1046542712 0.1873139119 0.1586476054 -0.2284590635 0.1586476054 -0.2234937586 trace : 0.000000000 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 Species : 3 (O), atom : 16 EFG tensor : 0.3617984671E-01 0.1046542712 -0.2284590635 0.1046542712 0.1873139119 0.1586476054 -0.2284590635 0.1586476054 -0.2234937586 trace : 0.1665334537E-15 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 elk-9.2.12/examples/Mossbauer/Mg2SiO4/PaxHeaders/elk.in0000644000000000000000000000013214536061314017446 xustar0030 mtime=1702388428.793500194 30 atime=1702388428.793500194 30 ctime=1702388428.793500194 elk-9.2.12/examples/Mossbauer/Mg2SiO4/elk.in0000644002504400250440000000760214536061314022175 0ustar00dewhurstdewhurst00000000000000 ! Electric field gradient of Mg2SiO4. ! See: B. Winkler, P. Blaha and K. Schwarz, Am. Mineralog. 81, 545 (1996). tasks 0 115 lmaxi 2 xctype 20 ngridk 2 2 2 sppath '../../../species/' ! Atomic positions generated by spacegroup version 1.2.01 ! Hermann-Mauguin symbol : Pbnm ! Hall symbol : -P 2c 2ab ! Schoenflies symbol : D2h^16 ! space group number : 62:cab ! lattice constants (a,b,c) : 8.980000000 19.26010000 11.29680000 ! angles in degrees (bc,ac,ab) : 90.00000000 90.00000000 90.00000000 ! number of conventional unit cells : 1 1 1 ! reduction to primitive cell : T ! Wyckoff positions : ! species : 1, Mg ! 0.000000000 0.000000000 0.000000000 ! 0.5084600000 0.7774200000 0.2500000000 ! species : 2, Si ! 0.7353000000E-01 0.5940300000 0.2500000000 ! species : 3, O ! 0.7340800000 0.5915500000 0.2500000000 ! 0.2216000000 0.4470400000 0.2500000000 ! 0.2225300000 0.6631600000 0.4669700000 avec 8.980000000 0.000000000 0.000000000 0.000000000 0.000000000 11.29680000 0.000000000 19.26010000 0.000000000 atoms 3 : nspecies 'Mg.in' : spfname 8 : natoms; atposl, bfcmt below 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.50000000 0.00000000 0.00000000 0.00000000 0.00000000 0.50000000 0.00000000 0.50000000 0.00000000 0.00000000 0.00000000 0.50000000 0.50000000 0.50000000 0.00000000 0.00000000 0.00000000 0.50846000 0.25000000 0.77742000 0.00000000 0.00000000 0.00000000 0.49154000 0.75000000 0.22258000 0.00000000 0.00000000 0.00000000 0.00846000 0.75000000 0.72258000 0.00000000 0.00000000 0.00000000 0.99154000 0.25000000 0.27742000 0.00000000 0.00000000 0.00000000 'Si.in' : spfname 4 : natoms; atposl, bfcmt below 0.07353000 0.25000000 0.59403000 0.00000000 0.00000000 0.00000000 0.92647000 0.75000000 0.40597000 0.00000000 0.00000000 0.00000000 0.57353000 0.75000000 0.90597000 0.00000000 0.00000000 0.00000000 0.42647000 0.25000000 0.09403000 0.00000000 0.00000000 0.00000000 'O.in' : spfname 16 : natoms; atposl, bfcmt below 0.73408000 0.25000000 0.59155000 0.00000000 0.00000000 0.00000000 0.26592000 0.75000000 0.40845000 0.00000000 0.00000000 0.00000000 0.23408000 0.75000000 0.90845000 0.00000000 0.00000000 0.00000000 0.76592000 0.25000000 0.09155000 0.00000000 0.00000000 0.00000000 0.22160000 0.25000000 0.44704000 0.00000000 0.00000000 0.00000000 0.77840000 0.75000000 0.55296000 0.00000000 0.00000000 0.00000000 0.72160000 0.75000000 0.05296000 0.00000000 0.00000000 0.00000000 0.27840000 0.25000000 0.94704000 0.00000000 0.00000000 0.00000000 0.22253000 0.46697000 0.66316000 0.00000000 0.00000000 0.00000000 0.77747000 0.53303000 0.33684000 0.00000000 0.00000000 0.00000000 0.77747000 0.96697000 0.33684000 0.00000000 0.00000000 0.00000000 0.22253000 0.03303000 0.66316000 0.00000000 0.00000000 0.00000000 0.72253000 0.53303000 0.83684000 0.00000000 0.00000000 0.00000000 0.27747000 0.46697000 0.16316000 0.00000000 0.00000000 0.00000000 0.27747000 0.03303000 0.16316000 0.00000000 0.00000000 0.00000000 0.72253000 0.96697000 0.83684000 0.00000000 0.00000000 0.00000000 elk-9.2.12/examples/Mossbauer/Mg2SiO4/PaxHeaders/spacegroup.in0000644000000000000000000000013214536061314021043 xustar0030 mtime=1702388428.795500191 30 atime=1702388428.795500191 30 ctime=1702388428.795500191 elk-9.2.12/examples/Mossbauer/Mg2SiO4/spacegroup.in0000644002504400250440000000113314536061314023563 0ustar00dewhurstdewhurst00000000000000 'Pbnm' : hrmg 8.9800 19.2601 11.2968 : a, b, c 90.0 90.0 90.0 : bc, ac, ab 1 1 1 : ncell .true. : primcell 3 : nspecies 'Mg' : spsymb, spfname 2 : nwpos 0.00000 0.00000 0.00000 : wpos 0.50846 0.77742 0.25000 'Si' 1 0.07353 0.59403 0.25000 'O' 3 0.73408 0.59155 0.25000 0.22160 0.44704 0.25000 0.22253 0.66316 0.46697 elk-9.2.12/examples/Mossbauer/PaxHeaders/Co-hcp0000644000000000000000000000013214536061314016253 xustar0030 mtime=1702388428.797500187 30 atime=1702388428.796500189 30 ctime=1702388428.797500187 elk-9.2.12/examples/Mossbauer/Co-hcp/0000755002504400250440000000000014536061314021052 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Mossbauer/Co-hcp/PaxHeaders/elk.in0000644000000000000000000000013214536061314017433 xustar0030 mtime=1702388428.797500187 30 atime=1702388428.797500187 30 ctime=1702388428.797500187 elk-9.2.12/examples/Mossbauer/Co-hcp/elk.in0000644002504400250440000000406214536061314022157 0ustar00dewhurstdewhurst00000000000000 ! Calculating the Mossbauer effect hyperfine parameters for hcp Co, namely the ! contact charge density, the contact magnetic hyperfine field and the electric ! field gradient (EFG). ! The hyperfine magnetic field is difficult to calculate accurately. This is ! mainly because most of the contact magnetisation arises from the polarised ! core s states. One therefore has to switch on core polarisation with ! 'spincore=.true.', but in addition any semi-core s states should also be moved ! to the core and thus treated with the full Dirac equation. Also note that the ! field is quite sensitive to the number of empty states and k-points. ! Also note that the hyperfine field also depends strongly on the choice of ! functional with GGA functions usually yielding larger values. Try running the ! calculation again with PBE (xctype=20). ! Experimentally the hyperfine field is 21.9 Tesla [J. Phys. Soc. Jpn. 33, 1591 ! (1972)]. tasks 0 110 : isomer shift and hyperfine field 115 : electric field gradient ! enable calculation of the dipole magnetic field tbdip .true. ! enable calculation of the current density (i.e. orbital) contribution to the ! dipole field tjr .true. ! enable spin-orbit coupling spinorb .true. ! switch on core polarisation for hyperfine field spincore .true. ! lmaxi should be at least 2 for the EFG calculation lmaxi 2 ! external field for breaking spin symmetry bfieldc 0.0 0.0 0.001 ! very large number of empty states required for hyperfine field nempty 80 ! conduction local-orbitals required lorbcnd .true. ! large number of k-points required ngridk 14 14 10 avec 2.368866000 4.102996268 0.000000000 4.737732000 0.000000000 0.000000000 0.000000000 0.000000000 7.690240000 sppath '../../../species/' atoms 1 : nspecies 'Co.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.75000000 0.33333333 0.33333333 0.25000000 elk-9.2.12/examples/Mossbauer/PaxHeaders/Fe0000644000000000000000000000013214536061314015474 xustar0030 mtime=1702388428.801500182 30 atime=1702388428.798500186 30 ctime=1702388428.801500182 elk-9.2.12/examples/Mossbauer/Fe/0000755002504400250440000000000014536061314020273 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Mossbauer/Fe/PaxHeaders/elk.in0000644000000000000000000000013214536061314016654 xustar0030 mtime=1702388428.800500183 30 atime=1702388428.799500185 30 ctime=1702388428.800500183 elk-9.2.12/examples/Mossbauer/Fe/elk.in0000644002504400250440000000425214536061314021401 0ustar00dewhurstdewhurst00000000000000 ! Calculating the Mossbauer effect hyperfine parameters for bcc Fe, namely the ! contact charge density, the contact magnetic hyperfine field and the electric ! field gradient (EFG). In this case the EFG is zero because of symmetry. ! The hyperfine magnetic field is difficult to calculate accurately. This is ! partly due to the neglect of the orbital and dipolar contributions, but mainly ! because most of the contact magnetisation arises from the polarised core s ! states. One therefore has to switch on core polarisation with ! 'spincore=.true.', but in addition any semi-core s states should also be moved ! to the core and thus treated with the full Dirac equation. Consequently, this ! example requires a special species file (Fe.in), in which the 3s states are in ! the core. Note that the field is quite sensitive to the number of empty states ! and k-points. ! Also note that the hyperfine field also depends strongly on the choice of ! functional with GGA functions usually yielding larger values. Try running the ! calculation again with PBE (xctype=20). ! Experimentally the hyperfine field is 33.9 Tesla [J. Phys. Soc. Jpn. 33, 159 ! (1972)]. A complete derivation of the formulae can be found in Phys. Rev. B ! 53, 3271 (1987). tasks 0 110 : isomer shift and hyperfine field 115 : electric field gradient ! enable calculation of the dipole field tbdip .true. ! enable calculation of the current density (i.e. orbital) contribution to the ! dipole field tjr .true. ! enable spin-orbit coupling spinorb .true. ! switch on core polarisation for hyperfine field spincore .true. ! lmaxi should be at least 2 for the EFG calculation lmaxi 2 ! external field for breaking spin symmetry bfieldc 0.0 0.0 0.001 ! very large number of empty states required for hyperfine field nempty 80 ! enable conduction local-orbitals lorbcnd .true. ! large number of k-points required ngridk 14 14 14 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-9.2.12/examples/Mossbauer/Fe/PaxHeaders/Fe.in0000644000000000000000000000013214536061314016433 xustar0030 mtime=1702388428.801500182 30 atime=1702388428.801500182 30 ctime=1702388428.801500182 elk-9.2.12/examples/Mossbauer/Fe/Fe.in0000644002504400250440000000311414536061314021154 0ustar00dewhurstdewhurst00000000000000 'Fe' : spsymb 'iron' : spname -26.0000 : spzn 101799.2074 : spmass 0.392232E-06 2.0000 34.5962 500 : sprmin, rmt, sprmax, nrmt 10 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 2.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.1817 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2816 0 T elk-9.2.12/examples/Mossbauer/PaxHeaders/Co-fcc0000644000000000000000000000013114536061314016233 xustar0030 mtime=1702388428.803500179 29 atime=1702388428.80250018 30 ctime=1702388428.803500179 elk-9.2.12/examples/Mossbauer/Co-fcc/0000755002504400250440000000000014536061314021033 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Mossbauer/Co-fcc/PaxHeaders/elk.in0000644000000000000000000000013214536061314017414 xustar0030 mtime=1702388428.803500179 30 atime=1702388428.803500179 30 ctime=1702388428.803500179 elk-9.2.12/examples/Mossbauer/Co-fcc/elk.in0000644002504400250440000000376514536061314022151 0ustar00dewhurstdewhurst00000000000000 ! Calculating the Mossbauer effect hyperfine parameters for fcc Co, namely the ! contact charge density, the contact magnetic hyperfine field and the electric ! field gradient (EFG). ! The hyperfine magnetic field is difficult to calculate accurately. This is ! mainly because most of the contact magnetisation arises from the polarised ! core s states. One therefore has to switch on core polarisation with ! 'spincore=.true.', but in addition any semi-core s states should also be moved ! to the core and thus treated with the full Dirac equation. Also note that the ! field is quite sensitive to the number of empty states and k-points. ! Also note that the hyperfine field also depends strongly on the choice of ! functional, with GGA usually yielding larger values. Try running the ! calculation again with PBE (xctype=20). This may be the better choice of ! functional for Mossbauer related quantities because of the large density ! gradients near the nucleus. tasks 0 110 : isomer shift and hyperfine field 115 : electric field gradient ! uncomment the following lines to enable GGA (PBE) !xctype ! 20 ! enable calculation of the dipole magnetic field tbdip .true. ! enable calculation of the current density (i.e. orbital) contribution to the ! dipole field tjr .true. ! enable spin-orbit coupling spinorb .true. ! switch on core polarisation for hyperfine field spincore .true. ! lmaxi should be at least 2 for the EFG calculation lmaxi 2 ! external field for breaking spin symmetry bfieldc 0.0 0.0 0.001 ! very large number of empty states required for hyperfine field nempty 80 ! conduction local-orbitals required lorbcnd .true. ! large number of k-points required ngridk 14 14 14 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.3448 sppath '../../../species/' atoms 1 : nspecies 'Co.in' : spfname 1 : natoms; atposl, bfcmt below 0.0 0.0 0.0 elk-9.2.12/examples/Mossbauer/PaxHeaders/NiF20000644000000000000000000000013214536061314015700 xustar0030 mtime=1702388428.806500174 30 atime=1702388428.804500177 30 ctime=1702388428.806500174 elk-9.2.12/examples/Mossbauer/NiF2/0000755002504400250440000000000014536061314020477 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Mossbauer/NiF2/PaxHeaders/MOSSBAUER.OUT0000644000000000000000000000013214536061314017706 xustar0030 mtime=1702388428.805500176 30 atime=1702388428.805500176 30 ctime=1702388428.805500176 elk-9.2.12/examples/Mossbauer/NiF2/MOSSBAUER.OUT0000644002504400250440000001013714536061314022432 0ustar00dewhurstdewhurst00000000000000 Species : 1 (Ni), atom : 1 approximate nuclear radius : 0.7325707712E-04 number of mesh points to nuclear radius : 170 density at nuclear center : 27065.61626 density at nuclear surface : 19469.68536 average contact charge density : 21799.30518 contact magnetic moment (mu_B) : 0.3556682277 -0.3250408784E-02 -0.5961585217E-04 contact field : 0.7942691198E-04 -0.7258729125E-06 -0.1331325846E-07 tesla : 18.66943519 -0.1706177033 -0.3129304790E-02 spin and orbital dipole field : -0.6038677809E-05 0.1166101164E-05 0.6342070908E-08 tesla : -1.419401827 0.2740941271 0.1490714908E-02 Species : 1 (Ni), atom : 2 approximate nuclear radius : 0.7325707712E-04 number of mesh points to nuclear radius : 170 density at nuclear center : 27065.62041 density at nuclear surface : 19469.68809 average contact charge density : 21799.30825 contact magnetic moment (mu_B) : 0.3560239771 -0.3179352632E-02 0.3878445782E-04 contact field : 0.7950635701E-04 -0.7100048359E-06 0.8661245165E-08 tesla : 18.68810889 -0.1668878840 0.2035840892E-02 spin and orbital dipole field : -0.6143126486E-05 -0.5623083484E-06 -0.2821446664E-06 tesla : -1.443952673 -0.1321715651 -0.6631859950E-01 Species : 2 (F), atom : 1 approximate nuclear radius : 0.5278478738E-04 number of mesh points to nuclear radius : 89 density at nuclear center : 469.6748179 density at nuclear surface : 458.0181065 average contact charge density : 518.3705591 contact magnetic moment (mu_B) : -0.2076757064 0.1757535181E-02 -0.5037678888E-04 contact field : -0.4637760353E-04 0.3924882270E-06 -0.1125001466E-07 tesla : -10.90113718 0.9225504727E-01 -0.2644335709E-02 spin and orbital dipole field : -0.3840346331E-04 -0.1592687822E-04 -0.2577673716E-07 tesla : -9.026801516 -3.743640704 -0.6058867353E-02 Species : 2 (F), atom : 2 approximate nuclear radius : 0.5278478738E-04 number of mesh points to nuclear radius : 89 density at nuclear center : 469.6746466 density at nuclear surface : 458.0179388 average contact charge density : 518.3703693 contact magnetic moment (mu_B) : -0.2078531243 0.1740868591E-02 -0.1670018648E-04 contact field : -0.4641722404E-04 0.3887662872E-06 -0.3729442605E-08 tesla : -10.91045005 0.9138019878E-01 -0.8766120359E-03 spin and orbital dipole field : -0.3847659363E-04 0.1653003236E-04 -0.5230842188E-08 tesla : -9.043990926 3.885413145 -0.1229518646E-02 Species : 2 (F), atom : 3 approximate nuclear radius : 0.5278478738E-04 number of mesh points to nuclear radius : 89 density at nuclear center : 469.6748179 density at nuclear surface : 458.0181065 average contact charge density : 518.3705591 contact magnetic moment (mu_B) : -0.2076757064 0.1757535181E-02 -0.5037678888E-04 contact field : -0.4637760353E-04 0.3924882270E-06 -0.1125001466E-07 tesla : -10.90113718 0.9225504727E-01 -0.2644335709E-02 spin and orbital dipole field : -0.3840346331E-04 -0.1592687822E-04 -0.2577673716E-07 tesla : -9.026801516 -3.743640704 -0.6058867353E-02 Species : 2 (F), atom : 4 approximate nuclear radius : 0.5278478738E-04 number of mesh points to nuclear radius : 89 density at nuclear center : 469.6746466 density at nuclear surface : 458.0179388 average contact charge density : 518.3703693 contact magnetic moment (mu_B) : -0.2078531243 0.1740868591E-02 -0.1670018648E-04 contact field : -0.4641722404E-04 0.3887662872E-06 -0.3729442605E-08 tesla : -10.91045005 0.9138019878E-01 -0.8766120359E-03 spin and orbital dipole field : -0.3847659363E-04 0.1653003236E-04 -0.5230842188E-08 tesla : -9.043990926 3.885413145 -0.1229518646E-02 Note that the contact term is implicitly included in the spin dipole field but may not match exactly with the directly calculated value. elk-9.2.12/examples/Mossbauer/NiF2/PaxHeaders/elk.in0000644000000000000000000000013214536061314017060 xustar0030 mtime=1702388428.807500173 30 atime=1702388428.806500174 30 ctime=1702388428.807500173 elk-9.2.12/examples/Mossbauer/NiF2/elk.in0000644002504400250440000000403114536061314021600 0ustar00dewhurstdewhurst00000000000000 ! Calculating the zero field resonance frequencies for NiF2. ! The ground state is antiferromagnetic with moments in the a-b plane. ! Nonetheless, the experimentally measured hyperfine field originates from ! domain walls, as explained in R. G. Shulman, Journal of Applied Physics 32, ! S126 (1961). ! The zero field estimate are ~0.7 T and ~1.3 T in good agreement with the ! results provided by this example. ! Example by Pietro Bonfa. tasks 0 ! ground-state calculation 110 ! determine the magnetic hyperfine field lmaxi 2 rgkmax 5.5 gmaxvr 16.0 ! enable calculation of the dipole field tbdip .true. ! enable calculation of the current density (i.e. orbital) contribution to the ! dipole field tjr .true. ! enable spin-orbit coupling spinorb .true. ! switch on core polarisation for hyperfine field spincore .true. sppath '../../../species/' ! external field for breaking spin symmetry bfieldc 0.01 0.0 0.0 reducebf 0.75 ! very large number of empty states required for hyperfine field nempty 40 ! enable conduction local-orbitals lorbcnd .true. ! large number of k-points required ngridk 6 6 6 avec 1.0000000000 0.0000000000 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.6619957537 scale 8.9006099310 atoms 2 : nspecies 'Ni.in' : spfname 2 0.000000000000000 0.000000000000000 0.000000000000000 0.00100000 0.00100000 0.00000000 0.500000000000000 0.500000000000000 0.500000000000000 -0.00100000 -0.00100000 0.00000000 'F.in' : spfname 4 0.303300000000000 0.303300000000000 0.000000000000000 0.00000000 0.00000000 0.00000000 0.196700000000000 0.803300000000000 0.500000000000000 0.00000000 0.00000000 0.00000000 0.696700000000000 0.696700000000000 0.000000000000000 0.00000000 0.00000000 0.00000000 0.803300000000000 0.196700000000000 0.500000000000000 0.00000000 0.00000000 0.00000000 elk-9.2.12/examples/PaxHeaders/TDDFT-optics0000644000000000000000000000013214536061314015346 xustar0030 mtime=1702388428.833500134 30 atime=1702388428.807500173 30 ctime=1702388428.833500134 elk-9.2.12/examples/TDDFT-optics/0000755002504400250440000000000014536061314020145 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-optics/PaxHeaders/Ar-bootstrap-single0000644000000000000000000000013214536061314021202 xustar0030 mtime=1702388428.810500168 30 atime=1702388428.808500171 30 ctime=1702388428.810500168 elk-9.2.12/examples/TDDFT-optics/Ar-bootstrap-single/0000755002504400250440000000000014536061314024001 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-optics/Ar-bootstrap-single/PaxHeaders/Ar_expt_eV.dat0000644000000000000000000000012714536061314024011 xustar0029 mtime=1702388428.80950017 29 atime=1702388428.80950017 29 ctime=1702388428.80950017 elk-9.2.12/examples/TDDFT-optics/Ar-bootstrap-single/Ar_expt_eV.dat0000644002504400250440000000645114536061314026535 0ustar00dewhurstdewhurst00000000000000#Phys. Rev. B 76 161103(R) (2007) 11.6284 0.0621413 11.6956 0.198027 11.7548 0.412014 11.7982 0.723684 11.8416 1.05486 11.885 1.48357 11.9165 1.81486 11.9283 2.10733 11.9401 2.32178 11.9559 2.49718 11.9637 2.88722 11.9754 3.23821 11.9793 3.62829 11.9831 4.01837 11.9832 3.82331 11.9869 4.54499 11.9944 6.22242 11.9945 6.02736 11.9946 5.63724 11.9981 7.39274 11.9982 7.00262 11.9982 6.80756 11.9983 6.6125 12.0017 8.56305 12.0017 8.36799 12.0018 8.17293 12.0019 7.97788 12.002 7.58776 12.0053 9.92843 12.0054 9.53831 12.0054 9.34325 12.0055 9.14819 12.0056 8.75807 12.009 10.7086 12.0091 10.5136 12.0092 10.1234 12.0128 11.5864 12.0129 10.9036 12.0166 11.9764 12.0167 11.7814 12.0205 12.3665 12.0243 12.9516 12.0243 12.7566 12.0244 12.5615 12.0281 13.3417 12.0282 13.1467 12.032 13.7318 12.0357 14.473 12.0358 14.1219 12.0359 13.9268 12.0438 13.7902 12.0479 13.4001 12.0479 13.205 12.0519 13.0099 12.052 12.8148 12.0522 11.9956 12.056 12.4247 12.0643 11.0592 12.0683 10.669 12.0684 10.474 12.0685 10.0839 12.0725 9.88876 12.0726 9.49864 12.0726 9.30358 12.0767 9.10849 12.0769 8.23072 12.085 7.56744 12.089 7.17729 12.0891 6.98223 12.0931 6.59207 12.0932 6.39701 12.0972 6.00685 12.1054 5.10951 12.1094 4.91441 12.1134 4.52425 12.1174 4.32915 12.1255 3.7439 12.1295 3.5488 12.1335 3.3537 12.1375 3.15861 12.1415 2.96351 12.1495 2.49529 12.157 4.17272 12.1571 3.97766 12.1608 4.95292 12.1608 4.75786 12.1609 4.5628 12.1645 5.73312 12.1645 5.53806 12.1646 5.343 12.1647 5.14794 12.1682 6.51331 12.1683 6.31825 12.1684 5.92814 12.1719 7.48857 12.172 7.29351 12.1721 6.90339 12.1721 6.70833 12.1757 8.26877 12.1758 7.87865 12.1758 7.68359 12.1794 9.04897 12.1795 8.85391 12.1796 8.46379 12.1831 9.98521 12.1833 9.43904 12.1868 11.2726 12.1869 10.8239 12.1945 11.7796 12.1946 11.5846 12.1984 12.1697 12.2022 12.5598 12.2023 12.3647 12.2059 13.4375 12.2141 12.6767 12.2181 12.2866 12.2182 12.0915 12.2222 11.7013 12.2264 10.7455 12.2345 10.2578 12.2385 10.0627 12.2425 9.67254 12.2427 8.83378 12.2466 9.22386 12.2546 8.77515 12.2547 8.44355 12.2587 8.24845 12.2628 7.8583 12.2628 7.66324 12.2668 7.46814 12.2708 7.27304 12.2709 7.07798 12.2749 6.88288 12.275 6.43425 12.283 6.1806 12.287 5.9855 12.291 5.59534 12.2911 5.40028 12.2951 5.20518 12.2952 4.67853 12.3191 3.85905 12.339 3.44923 12.3588 3.29299 12.4103 2.98039 12.4262 2.74617 12.45 2.23878 12.4699 1.90699 12.4937 1.51664 12.5214 1.22378 12.5373 0.892029 12.5611 0.755256 12.573 0.540576 12.6007 0.403764 12.6402 0.286344 12.6679 0.149532 12.7035 0.0711618 12.7668 0.0510392 12.8142 0.1286 12.8497 0.245289 12.8932 0.322888 12.9248 0.400603 12.9722 0.49767 13.0078 0.575347 13.0591 0.594352 13.1145 0.593812 13.1896 0.59308 13.2409 0.63159 13.2805 0.611699 13.32 0.708843 13.3634 0.805948 13.4148 0.961494 13.4582 1.07811 13.4819 1.35096 13.4976 1.76043 13.5093 2.03339 13.5211 2.4234 13.5289 2.6769 13.5685 2.44244 13.5884 2.14966 13.6043 1.72037 13.6281 1.2325 13.6598 0.998116 13.6796 0.744347 13.7034 0.705104 13.7231 0.997499 13.7507 1.25081 13.7664 1.42621 13.802 1.26981 13.8219 1.03555 13.8298 0.859917 13.8575 0.742612 13.901 0.878729 13.9128 1.07367 13.9325 1.21002 13.9523 1.09279 13.976 0.917009 14.0077 0.858183 14.0393 0.994416 14.0748 1.07209 14.0867 1.11099 14.1183 1.11068 14.1459 1.16893 14.1776 1.1101 14.1973 1.0709 14.2487 1.0704 14.3199 1.14773 14.3673 1.10825 14.4345 1.1076 14.474 1.10721 elk-9.2.12/examples/TDDFT-optics/Ar-bootstrap-single/PaxHeaders/elk.in0000644000000000000000000000013214536061314022362 xustar0030 mtime=1702388428.811500167 30 atime=1702388428.811500167 30 ctime=1702388428.811500167 elk-9.2.12/examples/TDDFT-optics/Ar-bootstrap-single/elk.in0000644002504400250440000000143114536061314025103 0ustar00dewhurstdewhurst00000000000000 ! This example produces the dielectric function of solid argon using a single ! iteration of the bootstrap kernel [Phys. Rev. Lett. 107, 186401]. This ! approximation works particularly well for calculating excitonic binding ! energies. ! A file with experimental data in units of eV is included in this directory. tasks 0 120 320 scissor 0.22 swidth 0.005 ! bootstrap kernal with single iteration fxctype 211 gmaxrf 0.0 wplot 6000 100 2 0.0 1.0 nempty 10 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 10.030 sppath '../../../species/' atoms 1 : nspecies 'Ar.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 ngridk 8 8 8 elk-9.2.12/examples/TDDFT-optics/PaxHeaders/LiF-bootstrap-single0000644000000000000000000000013214536061314021312 xustar0030 mtime=1702388428.813500164 30 atime=1702388428.812500165 30 ctime=1702388428.813500164 elk-9.2.12/examples/TDDFT-optics/LiF-bootstrap-single/0000755002504400250440000000000014536061314024111 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-optics/LiF-bootstrap-single/PaxHeaders/elk.in0000644000000000000000000000013214536061314022472 xustar0030 mtime=1702388428.813500164 30 atime=1702388428.813500164 30 ctime=1702388428.813500164 elk-9.2.12/examples/TDDFT-optics/LiF-bootstrap-single/elk.in0000644002504400250440000000121614536061314025214 0ustar00dewhurstdewhurst00000000000000 ! Optical response of LiF with the single iteration bootstrap kernel. tasks 0 120 320 ! single iteration bootstrap fxctype 211 scissor 0.1916 swidth 0.008 ! LFE are included gmaxrpa 2.0 lradstp 2 nempty 10 wplot 8000 100 0 0.0 1.0 avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 8 8 8 vkloff 0.625 0.5 0.25 elk-9.2.12/examples/TDDFT-optics/PaxHeaders/Ni-MOKE0000644000000000000000000000013214536061314016445 xustar0030 mtime=1702388428.815500161 30 atime=1702388428.814500163 30 ctime=1702388428.815500161 elk-9.2.12/examples/TDDFT-optics/Ni-MOKE/0000755002504400250440000000000014536061314021244 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-optics/Ni-MOKE/PaxHeaders/elk.in0000644000000000000000000000013214536061314017625 xustar0030 mtime=1702388428.815500161 30 atime=1702388428.815500161 30 ctime=1702388428.815500161 elk-9.2.12/examples/TDDFT-optics/Ni-MOKE/elk.in0000644002504400250440000000121314536061314022344 0ustar00dewhurstdewhurst00000000000000 ! Magneto-optical Kerr effect for ferromagnetic nickel. For good accuracy of the ! Kerr rotation a k-point grid of 20x20x20 is required. tasks 0 120 122 ! the relaxation time is taken to be 1/swidth swidth 0.01 spinpol .true. ! spin-orbit coupling is required for MOKE spinorb .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 10 10 10 elk-9.2.12/examples/TDDFT-optics/PaxHeaders/Ge0000644000000000000000000000013214536061314015701 xustar0030 mtime=1702388428.817500158 30 atime=1702388428.816500159 30 ctime=1702388428.817500158 elk-9.2.12/examples/TDDFT-optics/Ge/0000755002504400250440000000000014536061314020500 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-optics/Ge/PaxHeaders/elk.in0000644000000000000000000000013214536061314017061 xustar0030 mtime=1702388428.817500158 30 atime=1702388428.817500158 30 ctime=1702388428.817500158 elk-9.2.12/examples/TDDFT-optics/Ge/elk.in0000644002504400250440000000141114536061314021600 0ustar00dewhurstdewhurst00000000000000 ! High quality density of states, band structure and linear optical tensor of ! germanium with spin-orbit coupling (Andrew Chizmeshya) tasks 0 10 20 120 121 spinorb .true. xctype 3 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 5.3451 nempty 20 wplot 1000 150 0 -0.5 2.0 lmaxapw 10 lmaxo 8 gmaxvr 12.0 sppath '../../../species/' atoms 1 : nspecies 'Ge.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 10 10 10 vkloff 0.25 0.25 0.75 plot1d 3 200 : nvp1d, npp1d 0.5 0.0 1.0 : vlvp1d 0.0 0.0 1.0 0.5 0.5 1.0 elk-9.2.12/examples/TDDFT-optics/PaxHeaders/LiF-bootstrap0000644000000000000000000000013214536061314020033 xustar0030 mtime=1702388428.819500155 30 atime=1702388428.818500156 30 ctime=1702388428.819500155 elk-9.2.12/examples/TDDFT-optics/LiF-bootstrap/0000755002504400250440000000000014536061314022632 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-optics/LiF-bootstrap/PaxHeaders/elk.in0000644000000000000000000000013214536061314021213 xustar0030 mtime=1702388428.819500155 30 atime=1702388428.819500155 30 ctime=1702388428.819500155 elk-9.2.12/examples/TDDFT-optics/LiF-bootstrap/elk.in0000644002504400250440000000251714536061314023742 0ustar00dewhurstdewhurst00000000000000 ! Time-dependent density functional theory (TDDFT) optical spectrum of lithium ! fluoride. This material has a prominent excitonic peak, which is absent in the ! usual RPA dielectric function. The 'bootstrap' TDDFT kernel is used, see: ! arXiv:1107.0199v1 [cond-mat.mtrl-sci] ! The scissor shift is taken to be the difference between the experimental gap, ! 14.2 eV [Phys. Rev. B 13, 5530 (1976)], and the LDA gap, 8.97 eV. tasks 0 ! ground-state calculation 120 ! compute momentum matrix elements 121 ! compute RPA dielectric function with no local field contributions 320 ! compute TDDFT dielectric function with local field contributions ! scissor shift scissor 0.192 xctype 3 ! bootstrap kernel fxctype 210 ! smearing width swidth 0.01 ! G-vector cut-off of exchange-correlation kernel and response function gmaxrf 0.0 nempty 8 lradstp 2 wplot 800 100 0 : nwplot, ngrkf, nswplot 0.0 1.5 : wplot avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 8 8 8 vkloff 0.25 0.5 0.625 elk-9.2.12/examples/TDDFT-optics/PaxHeaders/TiO20000644000000000000000000000013214536061314016123 xustar0030 mtime=1702388428.821500152 30 atime=1702388428.820500153 30 ctime=1702388428.821500152 elk-9.2.12/examples/TDDFT-optics/TiO2/0000755002504400250440000000000014536061314020722 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-optics/TiO2/PaxHeaders/elk.in0000644000000000000000000000013214536061314017303 xustar0030 mtime=1702388428.822500151 30 atime=1702388428.821500152 30 ctime=1702388428.822500151 elk-9.2.12/examples/TDDFT-optics/TiO2/elk.in0000644002504400250440000000127314536061314022030 0ustar00dewhurstdewhurst00000000000000 ! Linear optical spectrum of titanium dioxide. The inverse lifetime is ! determined by swidth. Note that many more k-points are required for good ! convergence of the optical spectrum. tasks 0 120 121 swidth 0.005 ! use Broyden mixing for fast convergence mixtype 3 avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.6441 scale 8.6806 sppath '../../../species/' atoms 2 : nspecies 'Ti.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.5 0.5 0.5 'O.in' 4 0.3048 0.3048 0.0 0.6952 0.6952 0.0 0.1952 0.8048 0.5 0.8048 0.1952 0.5 ngridk 4 4 4 elk-9.2.12/examples/TDDFT-optics/PaxHeaders/LiF-LRC0000644000000000000000000000013214536061314016436 xustar0030 mtime=1702388428.823500149 30 atime=1702388428.822500151 30 ctime=1702388428.823500149 elk-9.2.12/examples/TDDFT-optics/LiF-LRC/0000755002504400250440000000000014536061314021235 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-optics/LiF-LRC/PaxHeaders/elk.in0000644000000000000000000000013214536061314017616 xustar0030 mtime=1702388428.824500148 30 atime=1702388428.824500148 30 ctime=1702388428.824500148 elk-9.2.12/examples/TDDFT-optics/LiF-LRC/elk.in0000644002504400250440000000242714536061314022345 0ustar00dewhurstdewhurst00000000000000 ! Time-dependent density functional theory (TDDFT) optical spectrum of lithium ! fluoride. This material has a prominent excitonic peak, which is absent in the ! usual RPA dielectric function. The TDDFT kernel fxc is described in ! Phys. Rev. B 69, p155112 (2004) as the 'long-range contribution' and requires ! a material-dependent parameter alpha. tasks 0 ! ground-state calculation 120 ! compute momentum matrix elements 121 ! compute RPA dielectric function with no local field contributions 320 ! compute TDDFT dielectric function with local field contributions ! long-range contribution kernel fxctype 200 ! parameter alpha for long-range contribution kernel fxclrc 5.5 ! G-vector cut-off of exchange-correlation kernel and response function gmaxrf 1.0 swidth 0.01 nempty 8 lradstp 2 wplot 800 100 0 : nwplot, ngrkf, nswplot 0.0 1.5 : wplot avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 4 4 4 vkloff 0.25 0.5 0.625 elk-9.2.12/examples/TDDFT-optics/PaxHeaders/LiF0000644000000000000000000000013214536061314016020 xustar0030 mtime=1702388428.825500146 30 atime=1702388428.824500148 30 ctime=1702388428.825500146 elk-9.2.12/examples/TDDFT-optics/LiF/0000755002504400250440000000000014536061314020617 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-optics/LiF/PaxHeaders/elk.in0000644000000000000000000000013214536061314017200 xustar0030 mtime=1702388428.826500145 30 atime=1702388428.826500145 30 ctime=1702388428.826500145 elk-9.2.12/examples/TDDFT-optics/LiF/elk.in0000644002504400250440000000112214536061314021716 0ustar00dewhurstdewhurst00000000000000 ! Linear optical spectrum of lithium fluoride. tasks 0 120 121 ! the inverse lifetime is determined by swidth swidth 0.01 nempty 10 lradstp 2 wplot 400 100 0 : nwplot, ngrkf, nswplot 0.0 1.5 : wplot avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 10 10 10 elk-9.2.12/examples/TDDFT-optics/PaxHeaders/diamond-ALDA0000644000000000000000000000013214536061314017460 xustar0030 mtime=1702388428.828500142 30 atime=1702388428.827500143 30 ctime=1702388428.828500142 elk-9.2.12/examples/TDDFT-optics/diamond-ALDA/0000755002504400250440000000000014536061314022257 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-optics/diamond-ALDA/PaxHeaders/elk.in0000644000000000000000000000013214536061314020640 xustar0030 mtime=1702388428.828500142 30 atime=1702388428.828500142 30 ctime=1702388428.828500142 elk-9.2.12/examples/TDDFT-optics/diamond-ALDA/elk.in0000644002504400250440000000117414536061314023365 0ustar00dewhurstdewhurst00000000000000 ! Dielectric function of diamond calculated at finite q-vector using ALDA. tasks 0 120 320 ! q-vector in lattice coordinates vecql 0.5 0.5 0.5 xctype 3 fxctype 3 ! G-vector cut-off for the RPA and ALDA response function gmaxrf 3.0 nempty 10 swidth 0.01 wplot 500 100 1 0.0 1.5 avec 3.3637 3.3637 0.0 3.3637 0.0 3.3637 0.0 3.3637 3.3637 sppath '../../../species/' atoms 1 : nspecies 'C.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 8 8 8 elk-9.2.12/examples/TDDFT-optics/PaxHeaders/Al0000644000000000000000000000013114536061314015701 xustar0030 mtime=1702388428.830500139 29 atime=1702388428.82950014 30 ctime=1702388428.830500139 elk-9.2.12/examples/TDDFT-optics/Al/0000755002504400250440000000000014536061314020501 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-optics/Al/PaxHeaders/elk.in0000644000000000000000000000013214536061314017062 xustar0030 mtime=1702388428.830500139 30 atime=1702388428.830500139 30 ctime=1702388428.830500139 elk-9.2.12/examples/TDDFT-optics/Al/elk.in0000644002504400250440000000130414536061314021602 0ustar00dewhurstdewhurst00000000000000 ! Linear optical response of aluminium including intra-band contributions. ! The plasma frequency is also determined and written to PLASMA.OUT. tasks 0 120 121 ! include intra-band excitations intraband .true. swidth 0.01 ! dense k-point set required ngridk 24 24 24 ! larger number of empty states required nempty 8 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 ! lattice constant at room temperature scale 3.8267 ! this is the relative path to the species files sppath '../../../species/' atoms 1 : nspecies 'Al.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 elk-9.2.12/examples/TDDFT-optics/PaxHeaders/LiF-RBO0000644000000000000000000000013214536061314016440 xustar0030 mtime=1702388428.832500136 30 atime=1702388428.831500137 30 ctime=1702388428.832500136 elk-9.2.12/examples/TDDFT-optics/LiF-RBO/0000755002504400250440000000000014536061314021237 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-optics/LiF-RBO/PaxHeaders/elk.in0000644000000000000000000000013214536061314017620 xustar0030 mtime=1702388428.832500136 30 atime=1702388428.832500136 30 ctime=1702388428.832500136 elk-9.2.12/examples/TDDFT-optics/LiF-RBO/elk.in0000644002504400250440000000201214536061314022335 0ustar00dewhurstdewhurst00000000000000 ! Example for the revised bootstrap kernel (RBO) of S. Rigamonti, et al., ! Phys. Rev. Lett. 114, 146402. tasks 0 ! ground-state calculation 120 ! compute momentum matrix elements 121 ! compute RPA dielectric function with no local field contributions 320 ! compute TDDFT dielectric function with local field contributions ! scissor shift scissor 0.192 xctype 3 ! RBO kernel fxctype 212 ! smearing width swidth 0.01 ! G-vector cut-off of exchange-correlation kernel and response function gmaxrf 0.0 nempty 8 lradstp 2 wplot 800 100 0 : nwplot, ngrkf, nswplot 0.0 1.5 : wplot avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 8 8 8 vkloff 0.25 0.5 0.625 elk-9.2.12/examples/TDDFT-optics/PaxHeaders/Ne-RBO0000644000000000000000000000013214536061314016330 xustar0030 mtime=1702388428.835500131 30 atime=1702388428.833500134 30 ctime=1702388428.835500131 elk-9.2.12/examples/TDDFT-optics/Ne-RBO/0000755002504400250440000000000014536061314021127 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-optics/Ne-RBO/PaxHeaders/Ne_expt_eV.dat0000644000000000000000000000013214536061314021133 xustar0030 mtime=1702388428.834500133 30 atime=1702388428.834500133 30 ctime=1702388428.834500133 elk-9.2.12/examples/TDDFT-optics/Ne-RBO/Ne_expt_eV.dat0000644002504400250440000000153414536061314023660 0ustar00dewhurstdewhurst00000000000000#Phys. Rev. B 72 035127 (2005) 16.7861 0.308771 16.8999 0.402363 17.0137 0.464459 17.0863 0.621367 17.1279 0.747024 17.1799 0.904096 17.2318 1.04542 17.2631 1.2184 17.3047 1.3913 17.3154 1.56445 17.3366 1.87924 17.3369 2.05247 17.3478 2.41458 17.3587 2.72946 17.3694 2.9341 17.3697 3.09158 17.3806 3.4222 17.3809 3.59543 17.3812 3.7844 17.3815 3.95763 17.3924 4.2725 17.3927 4.46147 17.3929 4.60321 17.4036 4.80785 17.4039 4.96532 17.4042 5.1543 17.4045 5.32752 17.4158 5.86287 17.478 5.98836 17.4877 5.62608 17.5179 5.12191 17.5279 4.9486 17.5482 4.74371 17.5787 4.46001 17.5884 4.08198 17.597 3.07404 17.6059 2.22358 17.6154 1.75106 17.6653 0.679801 17.7264 0.159635 17.7882 0.0489118 18.0156 0.0628692 18.2223 0.0612415 18.4704 0.0750361 18.7909 0.104009 19.1424 0.164233 19.2354 0.163501 19.4628 0.16171 19.5662 0.176644 19.804 0.206268 20.1245 0.282484 elk-9.2.12/examples/TDDFT-optics/Ne-RBO/PaxHeaders/elk.in0000644000000000000000000000013214536061314017510 xustar0030 mtime=1702388428.835500131 30 atime=1702388428.835500131 30 ctime=1702388428.835500131 elk-9.2.12/examples/TDDFT-optics/Ne-RBO/elk.in0000644002504400250440000000120314536061314022226 0ustar00dewhurstdewhurst00000000000000 ! Example for the revised bootstrap kernel (RBO) of S. Rigamonti, et al., ! Phys. Rev. Lett. 114, 146402. tasks 0 120 320 scissor 0.360 lradstp 2 ! local field effects (LFE) not included gmaxrpa 0.0 swidth 0.005 ! RBO kernel fxctype 212 wplot 5000 100 1 0.0 1.1 nempty 20 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 8.440 sppath '../../../species/' atoms 1 : nspecies 'Ne.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 ngridk 10 10 10 vkloff 0.625 0.5 0.25 elk-9.2.12/examples/PaxHeaders/fractional-species0000644000000000000000000000013114536061314016754 xustar0030 mtime=1702388428.837500128 29 atime=1702388428.83650013 30 ctime=1702388428.837500128 elk-9.2.12/examples/fractional-species/0000755002504400250440000000000014536061314021554 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/fractional-species/PaxHeaders/elk.in0000644000000000000000000000013214536061314020135 xustar0030 mtime=1702388428.838500127 30 atime=1702388428.838500127 30 ctime=1702388428.838500127 elk-9.2.12/examples/fractional-species/elk.in0000644002504400250440000000154114536061314022660 0ustar00dewhurstdewhurst00000000000000 ! In this example the code generates a fractional atomic species file called ! 'A.in' which is then used in a ground-state calculation to find the moment. ! This allows for easy use of the virtual crystal approximation (VCA). tasks 0 ! generate a fractional atomic species charge -26.2 and write to the file 'A.in' fspecies -26.2 'A' spinpol .true. ! small magnetic field in the z-direction bfieldc 0.0 0.0 0.01 ! fairly large number of empty states required for magnetic cases nempty 8 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 ! Now use the file 'A.in' in the atoms block atoms 1 : nspecies 'A.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-9.2.12/examples/PaxHeaders/magnetism0000644000000000000000000000013014536061314015164 xustar0029 mtime=1702388428.86350009 30 atime=1702388428.838500127 29 ctime=1702388428.86350009 elk-9.2.12/examples/magnetism/0000755002504400250440000000000014536061314017765 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetism/PaxHeaders/Fe-FSM-MT-AFM0000644000000000000000000000013214536061314017062 xustar0030 mtime=1702388428.840500124 30 atime=1702388428.839500125 30 ctime=1702388428.840500124 elk-9.2.12/examples/magnetism/Fe-FSM-MT-AFM/0000755002504400250440000000000014536061314021661 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetism/Fe-FSM-MT-AFM/PaxHeaders/elk.in0000644000000000000000000000013214536061314020242 xustar0030 mtime=1702388428.841500122 30 atime=1702388428.840500124 30 ctime=1702388428.841500122 elk-9.2.12/examples/magnetism/Fe-FSM-MT-AFM/elk.in0000644002504400250440000000213414536061314022764 0ustar00dewhurstdewhurst00000000000000 ! Antiferromagnetic bcc iron example with fixed spin moment in muffin-tin. ! Rememeber to put a small magnetic fields on atoms with same symmetry as ! fixed moment. This in order to correctly symmetrize the magnetization. ! Run by Fredrik Bultmark, Francesco Cricchio, Lars Nordstrom. tasks 0 ! antiferromagnetic local fixed spin moment calculation fsmtype 2 mommtfix 1 1 0.0 0.0 1.0 : is, ia, mommtfix 1 2 0.0 0.0 -1.0 : is, ia, mommtfix ! FSM step length: reduce to improve convergence taufsm 0.01 lmaxapw 10 ! fairly large number of empty states required for magnetic cases nempty 8 avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale 6.6 sppath '../../../species/' ! note small magnetic fields on atoms with same symmetry as fixed moment atoms 1 : nspecies 'Fe.in' : spfname 2 : natoms 0.0 0.0 0.0 0.0 0.0 0.001 : atposl, bfcmt 0.5 0.5 0.5 0.0 0.0 -0.001 ! this k-point set is too small for calculation of accurate moments ngridk 4 4 4 elk-9.2.12/examples/magnetism/PaxHeaders/Fe-spiral0000644000000000000000000000013214536061314017010 xustar0030 mtime=1702388428.842500121 30 atime=1702388428.841500122 30 ctime=1702388428.842500121 elk-9.2.12/examples/magnetism/Fe-spiral/0000755002504400250440000000000014536061314021607 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetism/Fe-spiral/PaxHeaders/elk.in0000644000000000000000000000013014536061314020166 xustar0029 mtime=1702388428.84350012 30 atime=1702388428.842500121 29 ctime=1702388428.84350012 elk-9.2.12/examples/magnetism/Fe-spiral/elk.in0000644002504400250440000000135214536061314022713 0ustar00dewhurstdewhurst00000000000000 ! Spin-spiral state for Gamma-Fe. Care should be taken to ensure that the ! calculation is fully converged. tasks 0 spinsprl .true. ! spin-spiral q-vector in lattice coordinates vqlss 0.1 0.1 0.0 ! fairly large large cut-off required rgkmax 8.5 gmaxvr 14.0 nempty 8 ! spiral magnetic field along q with perpendicular component only bfieldc 0.05 0.0 0.0 ! tight convergence required epspot 1.e-7 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.375 sppath '../../../species/' atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 elk-9.2.12/examples/magnetism/PaxHeaders/Cr-mono0000644000000000000000000000013114536061314016477 xustar0030 mtime=1702388428.847500113 29 atime=1702388428.84350012 30 ctime=1702388428.847500113 elk-9.2.12/examples/magnetism/Cr-mono/0000755002504400250440000000000014536061314021277 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetism/Cr-mono/PaxHeaders/elk.in0000644000000000000000000000013214536061314017660 xustar0030 mtime=1702388428.845500116 30 atime=1702388428.845500116 30 ctime=1702388428.845500116 elk-9.2.12/examples/magnetism/Cr-mono/elk.in0000644002504400250440000000236314536061314022406 0ustar00dewhurstdewhurst00000000000000 ! Unsupported monolayer of Cr with the symmetry and lattice constant of a ! monolayer on the Ag(111) surface (see Phys. Rev. B 69, 24415 (2004)), which ! exhibits a non-collinear Neel state. Small magnetic fields 120 degrees apart ! are applied to each of the three atoms. ! Try plotting the 2D magnetisation density in OpenDX (version 4.3.2) using the ! files provided. tasks 0 72 spinpol .true. ! note that the number of empty states should be large because non-collinear ! effects are obtained in the second-variational step nempty 8 avec 1.5 0.86602540378 0.0 1.5 -0.86602540378 0.0 0.0 0.0 1.0 scale1 5.50836 : 7.79/sqrt(2) scale2 5.50836 scale3 7.0 sppath '../../../species/' ! note that the magnetic fields are in Cartesian coordinates atoms 1 : nspecies 'Cr.in' : spfname 3 : natoms 0.0 0.0 0.0 0.0 0.1 0.0 : atposl, bfcmt 0.333333333333 0.333333333333 0.0 -0.086602540378 -0.05 0.0 0.666666666667 0.666666666667 0.0 0.086602540378 -0.05 0.0 ngridk 2 2 1 vkloff 0.5 0.5 0.0 plot2d 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 200 200 elk-9.2.12/examples/magnetism/Cr-mono/PaxHeaders/mag2d.general0000644000000000000000000000013214536061314021106 xustar0030 mtime=1702388428.846500115 30 atime=1702388428.846500115 30 ctime=1702388428.846500115 elk-9.2.12/examples/magnetism/Cr-mono/mag2d.general0000644002504400250440000000027314536061314023632 0ustar00dewhurstdewhurst00000000000000file = MAG2D.OUT grid = 200 x 200 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 2-vector, 3-vector type = float, float end elk-9.2.12/examples/magnetism/Cr-mono/PaxHeaders/mag2d.net0000644000000000000000000000013214536061314020257 xustar0030 mtime=1702388428.848500112 30 atime=1702388428.847500113 30 ctime=1702388428.848500112 elk-9.2.12/examples/magnetism/Cr-mono/mag2d.net0000644002504400250440000002211314536061314023000 0ustar00dewhurstdewhurst00000000000000// // time: Sat Jun 16 15:49:00 2007 // // version: 3.2.0 (format), 4.4.0 (DX) // // // MODULE main // workspace: width = 565, height = 623 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Import[1]: x = 47, y = 39, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "mag2d.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node Sample[1]: x = 216, y = 66, inputs = 2, label = Sample // input[2]: defaulting = 0, visible = 1, type = 1, value = 2000 // main_Sample_1_out_1 = Sample( main_Import_1_out_1, main_Sample_1_in_2 ) [instance: 1, cache: 1]; // // node Compute[1]: x = 84, y = 147, inputs = 3, label = Compute // input[1]: defaulting = 0, visible = 0, type = 32, value = "$0/mag($0)" // expression: value = a/mag(a) // name[2]: value = a // name[3]: value = b // main_Compute_1_out_1 = Compute( main_Compute_1_in_1, main_Sample_1_out_1, main_Compute_1_in_3 ) [instance: 1, cache: 1]; // // node AutoGlyph[1]: x = 44, y = 254, inputs = 7, label = AutoGlyph // input[2]: defaulting = 0, visible = 1, type = 32, value = "rocket2D" // input[3]: defaulting = 0, visible = 1, type = 5, value = 7.0 // input[4]: defaulting = 0, visible = 1, type = 5, value = 0.25 // input[5]: defaulting = 0, visible = 1, type = 5, value = 0.05 // main_AutoGlyph_1_out_1 = AutoGlyph( main_Compute_1_out_1, main_AutoGlyph_1_in_2, main_AutoGlyph_1_in_3, main_AutoGlyph_1_in_4, main_AutoGlyph_1_in_5, main_AutoGlyph_1_in_6, main_AutoGlyph_1_in_7 ) [instance: 1, cache: 1]; // // node Color[1]: x = 108, y = 341, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "black" // main_Color_1_out_1 = Color( main_AutoGlyph_1_out_1, main_Color_1_in_2, main_Color_1_in_3, main_Color_1_in_4, main_Color_1_in_5 ) [instance: 1, cache: 1]; // // node Compute[2]: x = 348, y = 66, inputs = 3, label = Compute // input[1]: defaulting = 0, visible = 0, type = 32, value = "mag($0)" // expression: value = mag(a) // name[2]: value = a // name[3]: value = b // main_Compute_2_out_1 = Compute( main_Compute_2_in_1, main_Import_1_out_1, main_Compute_2_in_3 ) [instance: 2, cache: 1]; // // node RubberSheet[1]: x = 467, y = 146, inputs = 4, label = RubberSheet // main_RubberSheet_1_out_1 = RubberSheet( main_Compute_2_out_1, main_RubberSheet_1_in_2, main_RubberSheet_1_in_3, main_RubberSheet_1_in_4 ) [instance: 1, cache: 1]; // // node Translate[1]: x = 283, y = 189, inputs = 2, label = Translate // input[2]: defaulting = 0, visible = 1, type = 8, value = [0 0 -3] // main_Translate_1_out_1 = Translate( main_RubberSheet_1_out_1, main_Translate_1_in_2 ) [instance: 1, cache: 1]; // // node Colormap[2]: x = 479, y = 260, inputs = 19, label = Colormap // input[1]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.66315789] [0.60691824 0.0] } // input[2]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[3]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[4]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[5]: defaulting = 0, visible = 0, type = 32, value = "Colormap_2" // input[7]: defaulting = 1, visible = 0, type = 5, value = 9.2432623e-05 // input[8]: defaulting = 1, visible = 0, type = 5, value = 0.9849546 // input[9]: defaulting = 1, visible = 0, type = 1, value = 20 // input[12]: defaulting = 0, visible = 0, type = 16777221, value = { 9.2432623e-05 0.9849546 } // input[17]: defaulting = 0, visible = 0, type = 5, value = 9.2432623e-05 // input[18]: defaulting = 0, visible = 0, type = 5, value = 0.9849546 // window: position = (0.2998,0.0000), size = 0.6348x0.5859 // main_Colormap_2_out_1[cache: 2], main_Colormap_2_out_2[cache: 2] = Colormap( main_Colormap_2_in_1, main_Colormap_2_in_2, main_Colormap_2_in_3, main_Colormap_2_in_4, main_Colormap_2_in_5, main_Translate_1_out_1, main_Colormap_2_in_7, main_Colormap_2_in_8, main_Colormap_2_in_9, main_Colormap_2_in_10, main_Colormap_2_in_11, main_Colormap_2_in_12, main_Colormap_2_in_13, main_Colormap_2_in_14, main_Colormap_2_in_15, main_Colormap_2_in_16, main_Colormap_2_in_17, main_Colormap_2_in_18, main_Colormap_2_in_19 ) [instance: 2, cache: 1]; // // node Color[3]: x = 339, y = 334, inputs = 5, label = Color // main_Color_3_out_1 = Color( main_Translate_1_out_1, main_Colormap_2_out_1, main_Color_3_in_3, main_Color_3_in_4, main_Color_3_in_5 ) [instance: 3, cache: 1]; // // node Collect[1]: x = 214, y = 419, inputs = 2, label = Collect // main_Collect_1_out_1 = Collect( main_Color_1_out_1, main_Color_3_out_1 ) [instance: 1, cache: 1]; // // node AutoCamera[1]: x = 363, y = 493, inputs = 9, label = AutoCamera // input[3]: defaulting = 0, visible = 0, type = 5, value = 15.0 // input[4]: defaulting = 0, visible = 0, type = 1, value = 800 // input[5]: defaulting = 0, visible = 0, type = 5, value = 0.6 // input[7]: defaulting = 0, visible = 0, type = 3, value = 0 // input[8]: defaulting = 1, visible = 0, type = 5, value = 20.0 // input[9]: defaulting = 0, visible = 0, type = 32, value = "white" // main_AutoCamera_1_out_1 = AutoCamera( main_Collect_1_out_1, main_AutoCamera_1_in_2, main_AutoCamera_1_in_3, main_AutoCamera_1_in_4, main_AutoCamera_1_in_5, main_AutoCamera_1_in_6, main_AutoCamera_1_in_7, main_AutoCamera_1_in_8, main_AutoCamera_1_in_9 ) [instance: 1, cache: 1]; // // node Render[1]: x = 252, y = 561, inputs = 3, label = Render // main_Render_1_out_1 = Render( main_Collect_1_out_1, main_AutoCamera_1_out_1, main_Render_1_in_3 ) [instance: 1, cache: 1]; // // node Display[2]: x = 139, y = 557, inputs = 8, label = Display // depth: value = 24 // window: position = (0.0869,0.1107), size = 0.7949x0.6797 // main_Display_2_out_1[cache: 2] = Display( main_Render_1_out_1, main_Display_2_in_2, main_Display_2_in_3, main_Display_2_in_4, main_Display_2_in_5, main_Display_2_in_6, main_Display_2_in_7, main_Display_2_in_8 ) [instance: 2, cache: 1]; // network: end of macro body } main_Import_1_in_1 = "mag2d.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_Sample_1_in_2 = 2000; main_Sample_1_out_1 = NULL; main_Compute_1_in_1 = "$0/mag($0)"; main_Compute_1_in_3 = NULL; main_Compute_1_out_1 = NULL; main_AutoGlyph_1_in_2 = "rocket2D"; main_AutoGlyph_1_in_3 = 7.0; main_AutoGlyph_1_in_4 = 0.25; main_AutoGlyph_1_in_5 = 0.05; main_AutoGlyph_1_in_6 = NULL; main_AutoGlyph_1_in_7 = NULL; main_AutoGlyph_1_out_1 = NULL; main_Color_1_in_2 = "black"; main_Color_1_in_3 = NULL; main_Color_1_in_4 = NULL; main_Color_1_in_5 = NULL; main_Color_1_out_1 = NULL; main_Compute_2_in_1 = "mag($0)"; main_Compute_2_in_3 = NULL; main_Compute_2_out_1 = NULL; main_RubberSheet_1_in_2 = NULL; main_RubberSheet_1_in_3 = NULL; main_RubberSheet_1_in_4 = NULL; main_RubberSheet_1_out_1 = NULL; main_Translate_1_in_2 = [0 0 -3]; main_Translate_1_out_1 = NULL; main_Colormap_2_in_1 = { [0.0 0.66315789] [0.60691824 0.0] }; main_Colormap_2_in_2 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_2_in_3 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_2_in_4 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_2_in_5 = "Colormap_2"; main_Colormap_2_in_7 = NULL; main_Colormap_2_in_8 = NULL; main_Colormap_2_in_9 = NULL; main_Colormap_2_in_10 = NULL; main_Colormap_2_in_11 = NULL; main_Colormap_2_in_12 = { 9.2432623e-05 0.9849546 }; main_Colormap_2_in_13 = NULL; main_Colormap_2_in_14 = NULL; main_Colormap_2_in_15 = NULL; main_Colormap_2_in_16 = NULL; main_Colormap_2_in_17 = 9.2432623e-05; main_Colormap_2_in_18 = 0.9849546; main_Colormap_2_in_19 = NULL; main_Colormap_2_out_1 = NULL; main_Color_3_in_3 = NULL; main_Color_3_in_4 = NULL; main_Color_3_in_5 = NULL; main_Color_3_out_1 = NULL; main_Collect_1_out_1 = NULL; main_AutoCamera_1_in_2 = NULL; main_AutoCamera_1_in_3 = 15.0; main_AutoCamera_1_in_4 = 800; main_AutoCamera_1_in_5 = 0.6; main_AutoCamera_1_in_6 = NULL; main_AutoCamera_1_in_7 = 0; main_AutoCamera_1_in_8 = NULL; main_AutoCamera_1_in_9 = "white"; main_AutoCamera_1_out_1 = NULL; main_Render_1_in_3 = NULL; main_Render_1_out_1 = NULL; main_Display_2_in_2 = NULL; main_Display_2_in_3 = "X24,,"; main_Display_2_in_4 = NULL; main_Display_2_in_5 = NULL; main_Display_2_in_6 = NULL; main_Display_2_in_7 = NULL; main_Display_2_in_8 = NULL; Executive("product version 4 4 0"); $sync main(); elk-9.2.12/examples/magnetism/PaxHeaders/Fe-FSM-MT-FM0000644000000000000000000000013214536061314016761 xustar0030 mtime=1702388428.849500111 30 atime=1702388428.848500112 30 ctime=1702388428.849500111 elk-9.2.12/examples/magnetism/Fe-FSM-MT-FM/0000755002504400250440000000000014536061314021560 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetism/Fe-FSM-MT-FM/PaxHeaders/elk.in0000644000000000000000000000013214536061314020141 xustar0030 mtime=1702388428.850500109 30 atime=1702388428.850500109 30 ctime=1702388428.850500109 elk-9.2.12/examples/magnetism/Fe-FSM-MT-FM/elk.in0000644002504400250440000000135214536061314022664 0ustar00dewhurstdewhurst00000000000000 ! Ferromagnetic bcc iron example with fixed spin moment in muffin-tin. ! Run by Fredrik Bultmark, Francesco Cricchio, Lars Nordstrom. tasks 0 ! ferromagnetic local fixed spin moment calculation fsmtype 2 mommtfix 1 1 0.0 0.0 1.0 : ia, is, mommtfix ! FSM step length: reduce to improve convergence taufsm 0.01 lmaxapw 10 ! fairly large number of empty states required for magnetic cases nempty 8 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt sppath '../../../species/' ngridk 6 6 6 elk-9.2.12/examples/magnetism/PaxHeaders/Fe0000644000000000000000000000013214536061314015520 xustar0030 mtime=1702388428.852500106 30 atime=1702388428.851500108 30 ctime=1702388428.852500106 elk-9.2.12/examples/magnetism/Fe/0000755002504400250440000000000014536061314020317 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetism/Fe/PaxHeaders/elk.in0000644000000000000000000000013214536061314016700 xustar0030 mtime=1702388428.852500106 30 atime=1702388428.852500106 30 ctime=1702388428.852500106 elk-9.2.12/examples/magnetism/Fe/elk.in0000644002504400250440000000126614536061314021427 0ustar00dewhurstdewhurst00000000000000 ! Ferromagnetic bcc iron example. Note the small global magnetic field, which ! is needed to break spin symmetry. Check the total moment of the cell in the ! file INFO.OUT. tasks 0 spinpol .true. ! small magnetic field in the z-direction bfieldc 0.0 0.0 0.01 ! fairly large number of empty states required for magnetic cases nempty 8 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 sppath '../../../species/' atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-9.2.12/examples/magnetism/PaxHeaders/Eu0000644000000000000000000000013214536061314015537 xustar0030 mtime=1702388428.854500103 30 atime=1702388428.853500105 30 ctime=1702388428.854500103 elk-9.2.12/examples/magnetism/Eu/0000755002504400250440000000000014536061314020336 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetism/Eu/PaxHeaders/elk.in0000644000000000000000000000013214536061314016717 xustar0030 mtime=1702388428.854500103 30 atime=1702388428.854500103 30 ctime=1702388428.854500103 elk-9.2.12/examples/magnetism/Eu/elk.in0000644002504400250440000000101614536061314021437 0ustar00dewhurstdewhurst00000000000000 ! Ferromagnetic bcc Eu example (thanks to Sandro Massidda for fixing a problem ! with the Eu.in species file). tasks 0 10 spinpol .true. spinorb .true. bfieldc 0.0 0.0 0.01 nempty 8 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 4.30385 sppath '../../../species/' atoms 1 : nspecies 'Eu.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 8 8 8 elk-9.2.12/examples/magnetism/PaxHeaders/Fe-FSM0000644000000000000000000000012614536061314016146 xustar0028 mtime=1702388428.8565001 30 atime=1702388428.855500102 28 ctime=1702388428.8565001 elk-9.2.12/examples/magnetism/Fe-FSM/0000755002504400250440000000000014536061314020742 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetism/Fe-FSM/PaxHeaders/elk.in0000644000000000000000000000012414536061314017324 xustar0028 mtime=1702388428.8565001 28 atime=1702388428.8565001 28 ctime=1702388428.8565001 elk-9.2.12/examples/magnetism/Fe-FSM/elk.in0000644002504400250440000000141614536061314022047 0ustar00dewhurstdewhurst00000000000000 ! Ferromagnetic bcc iron fixed spin moment example. tasks 0 ! small mixing parameter required beta0 0.05 ! FSM step length: reduce to improve convergence taufsm 0.01 spinpol .true. ! total fixed spin moment required fsmtype 1 ! fixed spin moment vector momfix 0.0 0.0 1.0 ! small magnetic field in the z-direction bfieldc 0.0 0.0 0.01 ! fairly large number of empty states required for magnetic cases nempty 8 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 sppath '../../../species/' atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-9.2.12/examples/magnetism/PaxHeaders/FeCo-MAE0000644000000000000000000000013214536061314016402 xustar0030 mtime=1702388428.858500097 30 atime=1702388428.857500099 30 ctime=1702388428.858500097 elk-9.2.12/examples/magnetism/FeCo-MAE/0000755002504400250440000000000014536061314021201 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetism/FeCo-MAE/PaxHeaders/elk.in0000644000000000000000000000013214536061314017562 xustar0030 mtime=1702388428.858500097 30 atime=1702388428.858500097 30 ctime=1702388428.858500097 elk-9.2.12/examples/magnetism/FeCo-MAE/elk.in0000644002504400250440000000261014536061314022303 0ustar00dewhurstdewhurst00000000000000 ! Determination of the magnetic anisotropy energy (MAE) for Fe_(1-x)Co_x where ! x = 1/2 and the unit cell is tetragonal of L1_0 type. ! The MAE is determined from a set of fixed spin moment direction calculations ! performed automatically with task = 28. The number of direction points used is ! given by the parameter 'npmae'. The estimation becomes more accurate as the ! number of points increases, but the calculation takes longer. The MAE is also ! strongly dependent on the number of k-points, the number used in this example ! is insufficient for a reliable result. ! Example updated by James Glasbrenner and others. tasks 28 ! high angular momentum cut-off needed for accurate densities and potentials lmaxapw 14 lmaxo 14 ! number of magnetisation direction points; the estimate of the MAE improves ! with the number of points; in this case, the Cartesian x, y and z directions ! are used npmae 3 ! very tight convergence required epspot 1.e-8 epsengy 1.e-6 rgkmax 8.0 ngridk 4 4 4 swidth 0.01 mixtype 3 ! artificial strained lattice avec 0.5 0.5 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale1 6.8 scale2 6.8 scale3 7.0 sppath '../../../species/' atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'Co.in' 1 0.0 0.5 0.5 elk-9.2.12/examples/magnetism/PaxHeaders/Fe-AFM0000644000000000000000000000013214536061314016121 xustar0030 mtime=1702388428.860500094 30 atime=1702388428.859500096 30 ctime=1702388428.860500094 elk-9.2.12/examples/magnetism/Fe-AFM/0000755002504400250440000000000014536061314020720 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetism/Fe-AFM/PaxHeaders/elk.in0000644000000000000000000000013214536061314017301 xustar0030 mtime=1702388428.860500094 30 atime=1702388428.860500094 30 ctime=1702388428.860500094 elk-9.2.12/examples/magnetism/Fe-AFM/elk.in0000644002504400250440000000116614536061314022027 0ustar00dewhurstdewhurst00000000000000 ! Antiferromagnetic fcc iron example tasks 0 spinpol .true. ! fairly large number of empty states required for magnetic cases nempty 8 avec 0.5 0.5 0.0 0.5 -0.5 0.0 0.0 0.0 1.0 scale 6.82 sppath '../../../species/' ! note the magnetic fields on each atom atoms 1 : nspecies 'Fe.in' : spfname 2 : natoms 0.0 0.0 0.0 0.0 0.0 0.1 : atposl, bfcmt 0.5 0.5 0.5 0.0 0.0 -0.1 ! this k-point set is too small for calculation of accurate moments ngridk 2 2 2 vkloff 0.5 0.5 0.5 elk-9.2.12/examples/magnetism/PaxHeaders/Fe-spiral-supercell0000644000000000000000000000013214536061314021004 xustar0030 mtime=1702388428.862500091 30 atime=1702388428.861500093 30 ctime=1702388428.862500091 elk-9.2.12/examples/magnetism/Fe-spiral-supercell/0000755002504400250440000000000014536061314023603 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetism/Fe-spiral-supercell/PaxHeaders/elk.in0000644000000000000000000000013214536061314022164 xustar0030 mtime=1702388428.862500091 30 atime=1702388428.862500091 30 ctime=1702388428.862500091 elk-9.2.12/examples/magnetism/Fe-spiral-supercell/elk.in0000644002504400250440000000210014536061314024677 0ustar00dewhurstdewhurst00000000000000 ! Spin-spiral state for Gamma-Fe calculated supercells instead of the spiral ! Bloch state anzatz. This is required for functionals which do not preserve ! the anzatz self-consistently. ! The code runs in the same way as the phonon supercell calculations. The ! supercells are generated automatically from the q-points given by ngridq. Like ! phonons, several instances of the code can be started in the same directory, ! allowing for parallel generation of the q-dependent ground-states. ! Note that automatic k-point generation is always enabled for this task. tasks 350 ! q-point set on which the spiral ground-states are to be computed ngridq 2 2 2 highq .true. avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.375 sppath '../../../species/' atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 -0.01 0.0 0.0 : atposl, bfcmt ! define a fixed spin direction in the muffin-tin fsmtype -2 mommtfix 1 1 1.0 0.0 0.0 elk-9.2.12/examples/magnetism/PaxHeaders/Ni0000644000000000000000000000013114536061314015533 xustar0030 mtime=1702388428.864500088 29 atime=1702388428.86350009 30 ctime=1702388428.864500088 elk-9.2.12/examples/magnetism/Ni/0000755002504400250440000000000014536061314020333 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetism/Ni/PaxHeaders/elk.in0000644000000000000000000000013214536061314016714 xustar0030 mtime=1702388428.864500088 30 atime=1702388428.864500088 30 ctime=1702388428.864500088 elk-9.2.12/examples/magnetism/Ni/elk.in0000644002504400250440000000120114536061314021430 0ustar00dewhurstdewhurst00000000000000 ! Ferromagnetic nickel example. A small global magnetic field is required to ! break spin symmetry. Check the total spin moment of the cell in the file ! INFO.OUT. Note that large k-point grids are required for obtaining accurate ! moments. tasks 0 spinpol .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-9.2.12/examples/PaxHeaders/non-linear-optics0000644000000000000000000000013214536061314016543 xustar0030 mtime=1702388428.866500085 30 atime=1702388428.865500087 30 ctime=1702388428.866500085 elk-9.2.12/examples/non-linear-optics/0000755002504400250440000000000014536061314021342 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/non-linear-optics/PaxHeaders/GaAs0000644000000000000000000000013214536061314017356 xustar0030 mtime=1702388428.867500084 30 atime=1702388428.866500085 30 ctime=1702388428.867500084 elk-9.2.12/examples/non-linear-optics/GaAs/0000755002504400250440000000000014536061314022155 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/non-linear-optics/GaAs/PaxHeaders/elk.in0000644000000000000000000000013214536061314020536 xustar0030 mtime=1702388428.867500084 30 atime=1702388428.867500084 30 ctime=1702388428.867500084 elk-9.2.12/examples/non-linear-optics/GaAs/elk.in0000644002504400250440000000206414536061314023262 0ustar00dewhurstdewhurst00000000000000 ! Calculation of the non-linear reponse function χ(-2ω;ω,ω) for GaAs. Note ! that many k-points and empty states are required for good convergence. ! Various contributions to the susceptibility are also written to file. ! See Phys. Rev. B 48, 11705 (1993) and Phys. Rev. B 53, 10751 (1996). tasks 0 120 125 ! large number of empty states required nempty 20 ! scissor correction of Δ=1.243 eV (see Phys. Rev. B 80, 155205 (2009)) scissor 0.0457 ! inverse lifetime is determined by swidth swidth 0.003 ! components of the optical tensor (x,y,z) optcomp 1 2 3 ! dense k-point set required for non-linear optics ngridk 32 32 32 wplot 400 100 0 : nwplot, ngrkf, nswplot 0.0 0.3 : wplot ! use GGA xctype 20 avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-9.2.12/examples/PaxHeaders/tensor-moments0000644000000000000000000000013214536061314016174 xustar0030 mtime=1702388428.874500074 30 atime=1702388428.868500082 30 ctime=1702388428.874500074 elk-9.2.12/examples/tensor-moments/0000755002504400250440000000000014536061314020773 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/tensor-moments/PaxHeaders/NiO-LDA+U-FLL0000644000000000000000000000013214536061314020072 xustar0030 mtime=1702388428.870500079 30 atime=1702388428.868500082 30 ctime=1702388428.870500079 elk-9.2.12/examples/tensor-moments/NiO-LDA+U-FLL/0000755002504400250440000000000014536061314022671 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/tensor-moments/NiO-LDA+U-FLL/PaxHeaders/elk.in0000644000000000000000000000013214536061314021252 xustar0030 mtime=1702388428.871500078 30 atime=1702388428.870500079 30 ctime=1702388428.871500078 elk-9.2.12/examples/tensor-moments/NiO-LDA+U-FLL/elk.in0000644002504400250440000000253414536061314024000 0ustar00dewhurstdewhurst00000000000000 ! NiO in AFMII structure with LDA+U and fully-localised-limit (FLL) double ! counting (dftu=1). Values of Slater parameters for Ni are taken from ! literature. Calculate the tensor moment decomposition of the density ! matrix TENSMOM.OUT with task=400 (see PRB 80, 035121 (2009)). ! Observe the large 011 (spin-polarization), 404 (high multipole of charge) and ! the almost degenerate 413, 414, 415 (high multipoles of magnetization). ! Example by Francesco Cricchio. tasks 0 400 ! DFT+U block ! here FLL double counting is used (dftu=1) with Slater parameters as specified dft+u 1 2 : dftu, inpdftu 1 2 0.29399 0.30078 0.18799 : is, l, f0, f2, f4 spinorb .true. scale 7.893389 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 : nspecies 'Ni.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 ! fairly high number of empty states nempty 8 sppath '../../../species/' ! this grid is too small for accurate magnetic moment ngridk 4 4 4 elk-9.2.12/examples/tensor-moments/PaxHeaders/US-LDA+SOC+U0000644000000000000000000000013214536061314017741 xustar0030 mtime=1702388428.873500075 30 atime=1702388428.871500078 30 ctime=1702388428.873500075 elk-9.2.12/examples/tensor-moments/US-LDA+SOC+U/0000755002504400250440000000000014536061314022540 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/tensor-moments/US-LDA+SOC+U/PaxHeaders/elk.in0000644000000000000000000000013214536061314021121 xustar0030 mtime=1702388428.873500075 30 atime=1702388428.873500075 30 ctime=1702388428.873500075 elk-9.2.12/examples/tensor-moments/US-LDA+SOC+U/elk.in0000644002504400250440000000347514536061314023654 0ustar00dewhurstdewhurst00000000000000 ! US in FM structure with magnetic moment along easy-axis [111] with LDA+SOC+U ! around mean field (AFM) (dftu=2). Values of Slater parameters for Uranium are ! calculated through a Yukawa potential with screening length automatically ! determined such that U=1.0 eV (0.036749 Ha). In this way there is only one ! free parameter to be chosen. ! Check the tensor moment decomposition of the density matrix in TENSMOM.OUT ! (see PRB 80, 035121 (2009)). Observe the large 011 (spin-polarization), ! 110 (SOC-like term) and 615 (large multipole of magnetization density). ! Example by Francesco Cricchio. tasks 0 ! DFT+U block ! around mean field (AFM) is used (dftu=2) ! inpdftu=5 corresponds to determine the Yukawa screening length that produces ! U=1 eV (0.036749 Ha) through a secant algorithm dft+u 2 5 : dftu,inpdftu 1 3 0.0367493060 : is, l, U fixed ! the tensor moments are calculated and written to file at every iteration tmwrite .true. spinorb .true. scale 10.36175041 ! fcc lattice vectors avec 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 atoms 2 : nspecies 'U.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 'S.in' : spfname 1 : natoms 0.5 0.5 0.5 0.0 0.0 0.0 : atposl, bfcmt ! small global magnetic field along easy-axis [111] bfieldc -0.01 -0.01 -0.01 ! this rgkmax is too small for an accurate calculation ! rgkmax for actinides must usually be increased around 9.0-9.5 rgkmax 8.0 ! convergence of magnetic moment with number of empty states ! must be checked nempty 8 sppath '../../../species/' ! this grid is too small for accurate magnetic moment ngridk 4 4 4 elk-9.2.12/examples/tensor-moments/PaxHeaders/FeGd-fixed-tensor-moment0000644000000000000000000000013214536061314022703 xustar0030 mtime=1702388428.875500072 30 atime=1702388428.874500074 30 ctime=1702388428.875500072 elk-9.2.12/examples/tensor-moments/FeGd-fixed-tensor-moment/0000755002504400250440000000000014536061314025502 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/tensor-moments/FeGd-fixed-tensor-moment/PaxHeaders/elk.in0000644000000000000000000000013214536061314024063 xustar0030 mtime=1702388428.875500072 30 atime=1702388428.875500072 30 ctime=1702388428.875500072 elk-9.2.12/examples/tensor-moments/FeGd-fixed-tensor-moment/elk.in0000644002504400250440000000204114536061314026602 0ustar00dewhurstdewhurst00000000000000 ! Example of a fixed tensor moment (FTM) calculation for FeGd. ! See the documentation of the routine tm3todm, and references therein, for the ! theory of tensor moments. tasks 0 ! write out the tensor moments after each iteration tmwrite .true. ! fix the tensor moments ftmtype 1 ! select 3-index tensor moment to fix tm3fix 1 : number of fixed tensor moments 2 1 3 : species, atom and angular momentum (l) 4 1 5 2 : k, p, r, t 0.1 : wkpr(t) spinorb .true. reducebf 0.85 nxoapwlo 1 rgkmax 8.5 dft+u 1 5 : dftu,inpdftu 2 3 0.8 : is, l, U ngridk 8 8 8 nempty 10 avec 3.645171 -3.643374 0.000000 3.644982 3.643193 0.000000 0.000000 0.000000 7.111690 sppath '../../../species/' atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.01 : atposl, bfcmt 'Gd.in' 1 0.5 0.5 0.5 0.0 0.0 -0.01 elk-9.2.12/examples/PaxHeaders/DFT+U0000644000000000000000000000013214536061314014017 xustar0030 mtime=1702388428.885500057 30 atime=1702388428.876500071 30 ctime=1702388428.885500057 elk-9.2.12/examples/DFT+U/0000755002504400250440000000000014536061314016616 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/DFT+U/PaxHeaders/FeAl-LDA0000644000000000000000000000013214536061314015224 xustar0030 mtime=1702388428.878500068 30 atime=1702388428.877500069 30 ctime=1702388428.878500068 elk-9.2.12/examples/DFT+U/FeAl-LDA/0000755002504400250440000000000014536061314020023 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/DFT+U/FeAl-LDA/PaxHeaders/elk.in0000644000000000000000000000013214536061314016404 xustar0030 mtime=1702388428.878500068 30 atime=1702388428.878500068 30 ctime=1702388428.878500068 elk-9.2.12/examples/DFT+U/FeAl-LDA/elk.in0000644002504400250440000000124514536061314021130 0ustar00dewhurstdewhurst00000000000000 ! FeAl in CsCl (B2) structure using LDA. Compare with LDA+U case. ! Example Created by Fredrik Bultmark, Francesco Cricchio and Lars Nordstrom. tasks 0 10 spinpol .true. ! small field along z to break symmetry bfieldc 0.0 0.0 -0.01 scale 5.496 avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 'Al.in' 1 0.5 0.5 0.5 0.0 0.0 0.0 : atposl, bfcmt sppath '../../../species/' ! fair number of empty states nempty 8 ngridk 8 8 8 elk-9.2.12/examples/DFT+U/PaxHeaders/NiO-LDA0000644000000000000000000000013214536061314015102 xustar0030 mtime=1702388428.880500065 30 atime=1702388428.879500066 30 ctime=1702388428.880500065 elk-9.2.12/examples/DFT+U/NiO-LDA/0000755002504400250440000000000014536061314017701 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/DFT+U/NiO-LDA/PaxHeaders/elk.in0000644000000000000000000000013214536061314016262 xustar0030 mtime=1702388428.880500065 30 atime=1702388428.880500065 30 ctime=1702388428.880500065 elk-9.2.12/examples/DFT+U/NiO-LDA/elk.in0000644002504400250440000000147314536061314021011 0ustar00dewhurstdewhurst00000000000000 ! NiO in AFMII structure with LDA for comparison with LDA+U case. ! Example by Fredrik Bultmark, Francesco Cricchio and Lars Nordstrom. tasks 0 10 spinpol .true. scale 7.893389 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 : nspecies 'Ni.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 ! fairly high number of empty states nempty 8 sppath '../../../species/' ! this grid is too small for accurate magnetic moment ngridk 4 4 4 elk-9.2.12/examples/DFT+U/PaxHeaders/NiO-LDA+U-FLL-Ykwa0000644000000000000000000000013214536061314016626 xustar0030 mtime=1702388428.882500062 30 atime=1702388428.881500063 30 ctime=1702388428.882500062 elk-9.2.12/examples/DFT+U/NiO-LDA+U-FLL-Ykwa/0000755002504400250440000000000014536061314021425 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/DFT+U/NiO-LDA+U-FLL-Ykwa/PaxHeaders/elk.in0000644000000000000000000000013214536061314020006 xustar0030 mtime=1702388428.882500062 30 atime=1702388428.882500062 30 ctime=1702388428.882500062 elk-9.2.12/examples/DFT+U/NiO-LDA+U-FLL-Ykwa/elk.in0000644002504400250440000000337214536061314022535 0ustar00dewhurstdewhurst00000000000000 ! NiO in AFMII structure with LDA+U and fully-localised-limit (FLL) double ! counting (dftu=1). With inpdftu=4 the values of Slater parameters are ! conveniently calculated through a screened Yukawa potential with screening ! length lambda provided as input (see PRB 80, 035121 (2009)). Here lambda=1.5 ! gives realistic values of Slater integrals which are printed in FDU.OUT. ! Try to plot the magnetic moments of Ni as function of lambda. ! If inpdftu=5 the code will automatically determine the screening length ! corresponding to the fixed value of U (udufix) provided as input. ! Example by Francesco Cricchio. tasks 0 ! DFT+U block ! here FLL double counting is used (dftu=1) ! inpdftu=4 corresponds to calculate the Slater parameters self-consistently ! through a Yukawa potential with screening length lambda dft+u 1 4 : dftu, inpdftu 1 2 1.5 : is, l, lambda ! alternatively try inpdftu=5; this will determine the screening length ! corresponding to U=0.29399 Ha (8 eV) through a secant algorithm !dft+u ! 1 5 : dftu, inpdftu ! 1 2 0.29399 : is, l, U fixed spinpol .true. scale 7.893389 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 : nspecies 'Ni.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 sppath '../../../species/' ! fairly high number of empty states nempty 8 ! this grid is too small for accurate magnetic moment ngridk 4 4 4 elk-9.2.12/examples/DFT+U/PaxHeaders/FeAl-LDA+U-AMF0000644000000000000000000000013114536061314016024 xustar0030 mtime=1702388428.884500059 29 atime=1702388428.88350006 30 ctime=1702388428.884500059 elk-9.2.12/examples/DFT+U/FeAl-LDA+U-AMF/0000755002504400250440000000000014536061314020624 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/DFT+U/FeAl-LDA+U-AMF/PaxHeaders/elk.in0000644000000000000000000000013214536061314017205 xustar0030 mtime=1702388428.884500059 30 atime=1702388428.884500059 30 ctime=1702388428.884500059 elk-9.2.12/examples/DFT+U/FeAl-LDA+U-AMF/elk.in0000644002504400250440000000251014536061314021725 0ustar00dewhurstdewhurst00000000000000 ! FeAl in CsCl (B2) structure using LDA+U and "around mean field" (AMF) double ! counting (dftu=2). Compare the total DOS and partial DOS with the one calculated ! with bare LDA. Note the opening of a gap and the increased localization of Fe ! d-electrons. Note the non-magnetic solution for U about 0.1837 Ha (5 eV) ! (the exact value of U depends on the muffin-tin (MT) radius used since DFT+U ! is applied only inside mt spheres). Try to plot the magnetic moment as ! function of U for different MT radius. Example created by Fredrik Bultmark, ! Francesco Cricchio and Lars Nordstrom. tasks 0 10 ! DFT+U block ! here AMF double counting is used (dftu=2) ! inpdftu=1 corresponds to provide U and J as input dft+u 2 1 : dftu, inpdftu 1 2 0.183 0.034911967 : is, l, U, J spinpol .true. ! small field along z to break symmetry bfieldc 0.0 0.0 -0.01 scale 5.496 avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 'Al.in' 1 0.5 0.5 0.5 0.0 0.0 0.0 : atposl, bfcmt sppath '../../../species/' ! fair number of empty states nempty 8 ! fair number of k-points ngridk 8 8 8 elk-9.2.12/examples/DFT+U/PaxHeaders/NiO-LDA+U-FLL0000644000000000000000000000013214536061314015715 xustar0030 mtime=1702388428.886500056 30 atime=1702388428.885500057 30 ctime=1702388428.886500056 elk-9.2.12/examples/DFT+U/NiO-LDA+U-FLL/0000755002504400250440000000000014536061314020514 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/DFT+U/NiO-LDA+U-FLL/PaxHeaders/elk.in0000644000000000000000000000013214536061314017075 xustar0030 mtime=1702388428.886500056 30 atime=1702388428.886500056 30 ctime=1702388428.886500056 elk-9.2.12/examples/DFT+U/NiO-LDA+U-FLL/elk.in0000644002504400250440000000304414536061314021620 0ustar00dewhurstdewhurst00000000000000 ! NiO in AFMII structure with LDA+U and fully-localised-limit (FLL) double ! counting (dftu=1). Values of Slater parameters for Ni are taken from ! literature. ! Analyze total and partial DOS (t2g and eg states) and compare with bare LDA. ! Notice the increasing of the gap (~4eV) and of magnetic moment to ~1.69 u_b. ! The increasing of magnetic moment is typical of FLL double counting. ! Example by Francesco Cricchio. tasks 0 10 ! DFT+U block ! here FLL double counting is used (dftu=1) ! inpdftu=1 corresponds to provide U and J in Hartree as input ! inpdftu=2 or 3 corresponds to, respectively, Slater or Racah parameters ! inpdftu=4 or 5 corresponds to calculating the Slater parameters through a ! Yukawa potential (see example NiO-LDA+U-FLL-Ykwa and PRB 80, 035121 (2009)) dft+u 1 2 : dftu,inpdftu 1 2 0.29399 0.30078 0.18799 : is, l, f0, f2, f4 spinpol .true. scale 7.893389 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 : nspecies 'Ni.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 ! fairly high number of empty states nempty 8 sppath '../../../species/' ! this grid is too small for accurate magnetic moment ngridk 4 4 4 elk-9.2.12/examples/PaxHeaders/Fermi-surface0000644000000000000000000000013214536061314015672 xustar0030 mtime=1702388428.902500032 30 atime=1702388428.887500054 30 ctime=1702388428.902500032 elk-9.2.12/examples/Fermi-surface/0000755002504400250440000000000014536061314020471 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Fermi-surface/PaxHeaders/Ni0000644000000000000000000000013214536061314016240 xustar0030 mtime=1702388428.894500044 30 atime=1702388428.888500053 30 ctime=1702388428.894500044 elk-9.2.12/examples/Fermi-surface/Ni/0000755002504400250440000000000014536061314021037 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Fermi-surface/Ni/PaxHeaders/elk.in0000644000000000000000000000013214536061314017420 xustar0030 mtime=1702388428.889500051 30 atime=1702388428.889500051 30 ctime=1702388428.889500051 elk-9.2.12/examples/Fermi-surface/Ni/elk.in0000644002504400250440000000142714536061314022146 0ustar00dewhurstdewhurst00000000000000 ! Ferromagnetic nickel Fermi surface. Note that the spin-up and -down surfaces ! are separated into the files FERMISURF_UP.OUT and FERMISURF_DN.OUT. ! Use OpenDX with the files in this directory to produce the 3D plot. tasks 0 100 ! define box corners and grid size for 3D plot, first point is the origin plot3d 0.0 0.0 0.0 : vclp3d 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 40 40 40 : np3d spinpol .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 8 8 8 elk-9.2.12/examples/Fermi-surface/Ni/PaxHeaders/fermi.net0000644000000000000000000000013114536061314020126 xustar0030 mtime=1702388428.891500048 29 atime=1702388428.89050005 30 ctime=1702388428.891500048 elk-9.2.12/examples/Fermi-surface/Ni/fermi.net0000644002504400250440000003707514536061314022665 0ustar00dewhurstdewhurst00000000000000// // time: Thu Nov 6 12:08:29 2008 // // version: 3.2.0 (format), 4.4.0 (DX) // // // MODULE main // workspace: width = 372, height = 548 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Import[1]: x = 147, y = 71, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "fermi_up.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node Isosurface[1]: x = 146, y = 196, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.0 // main_Isosurface_1_out_1 = Isosurface( main_Import_1_out_1, main_Isosurface_1_in_2, main_Isosurface_1_in_3, main_Isosurface_1_in_4, main_Isosurface_1_in_5, main_Isosurface_1_in_6 ) [instance: 1, cache: 1]; // // node Color[1]: x = 154, y = 315, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "green" // main_Color_1_out_1 = Color( main_Isosurface_1_out_1, main_Color_1_in_2, main_Color_1_in_3, main_Color_1_in_4, main_Color_1_in_5 ) [instance: 1, cache: 1]; // // node Import[2]: x = 291, y = 73, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "fermi_dn.general" // main_Import_2_out_1 = Import( main_Import_2_in_1, main_Import_2_in_2, main_Import_2_in_3, main_Import_2_in_4, main_Import_2_in_5, main_Import_2_in_6 ) [instance: 2, cache: 1]; // // node Isosurface[2]: x = 290, y = 194, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.0 // main_Isosurface_2_out_1 = Isosurface( main_Import_2_out_1, main_Isosurface_2_in_2, main_Isosurface_2_in_3, main_Isosurface_2_in_4, main_Isosurface_2_in_5, main_Isosurface_2_in_6 ) [instance: 2, cache: 1]; // // node Color[2]: x = 300, y = 313, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "yellow" // main_Color_2_out_1 = Color( main_Isosurface_2_out_1, main_Color_2_in_2, main_Color_2_in_3, main_Color_2_in_4, main_Color_2_in_5 ) [instance: 2, cache: 1]; // // node Collect[1]: x = 231, y = 399, inputs = 2, label = Collect // main_Collect_1_out_1 = Collect( main_Color_1_out_1, main_Color_2_out_1 ) [instance: 1, cache: 1]; // // node Image[2]: x = 283, y = 486, inputs = 49, label = Image // input[1]: defaulting = 0, visible = 0, type = 32, value = "Image_2" // input[4]: defaulting = 0, visible = 0, type = 1, value = 1 // input[5]: defaulting = 0, visible = 0, type = 8, value = [0.459851 0.459851 0.459851] // input[6]: defaulting = 0, visible = 0, type = 8, value = [5.36756 3.53923 7.97489] // input[7]: defaulting = 0, visible = 0, type = 5, value = 5.08525 // input[8]: defaulting = 0, visible = 0, type = 1, value = 640 // input[9]: defaulting = 0, visible = 0, type = 5, value = 0.75 // input[10]: defaulting = 0, visible = 0, type = 8, value = [-0.0834371 0.940039 -0.330704] // input[11]: defaulting = 1, visible = 0, type = 5, value = 30.0002 // input[12]: defaulting = 0, visible = 0, type = 1, value = 0 // input[14]: defaulting = 0, visible = 0, type = 1, value = 1 // input[15]: defaulting = 1, visible = 0, type = 32, value = "none" // input[16]: defaulting = 1, visible = 0, type = 32, value = "none" // input[17]: defaulting = 1, visible = 0, type = 1, value = 1 // input[18]: defaulting = 1, visible = 0, type = 1, value = 1 // input[19]: defaulting = 0, visible = 0, type = 1, value = 0 // input[29]: defaulting = 1, visible = 0, type = 3, value = 0 // input[41]: defaulting = 0, visible = 0, type = 32, value = "none" // depth: value = 24 // window: position = (0.0104,0.0600), size = 0.4542x0.5800, screen = 0 // internal caching: 1 // main_Image_2_out_1, main_Image_2_out_2, main_Image_2_out_3 = Image( main_Image_2_in_1, main_Collect_1_out_1, main_Image_2_in_3, main_Image_2_in_4, main_Image_2_in_5, main_Image_2_in_6, main_Image_2_in_7, main_Image_2_in_8, main_Image_2_in_9, main_Image_2_in_10, main_Image_2_in_11, main_Image_2_in_12, main_Image_2_in_13, main_Image_2_in_14, main_Image_2_in_15, main_Image_2_in_16, main_Image_2_in_17, main_Image_2_in_18, main_Image_2_in_19, main_Image_2_in_20, main_Image_2_in_21, main_Image_2_in_22, main_Image_2_in_23, main_Image_2_in_24, main_Image_2_in_25, main_Image_2_in_26, main_Image_2_in_27, main_Image_2_in_28, main_Image_2_in_29, main_Image_2_in_30, main_Image_2_in_31, main_Image_2_in_32, main_Image_2_in_33, main_Image_2_in_34, main_Image_2_in_35, main_Image_2_in_36, main_Image_2_in_37, main_Image_2_in_38, main_Image_2_in_39, main_Image_2_in_40, main_Image_2_in_41, main_Image_2_in_42, main_Image_2_in_43, main_Image_2_in_44, main_Image_2_in_45, main_Image_2_in_46, main_Image_2_in_47, main_Image_2_in_48, main_Image_2_in_49 ) [instance: 2, cache: 1]; // network: end of macro body CacheScene(main_Image_2_in_1, main_Image_2_out_1, main_Image_2_out_2); } main_Import_1_in_1 = "fermi_up.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_Isosurface_1_in_2 = 0.0; main_Isosurface_1_in_3 = NULL; main_Isosurface_1_in_4 = NULL; main_Isosurface_1_in_5 = NULL; main_Isosurface_1_in_6 = NULL; main_Isosurface_1_out_1 = NULL; main_Color_1_in_2 = "green"; main_Color_1_in_3 = NULL; main_Color_1_in_4 = NULL; main_Color_1_in_5 = NULL; main_Color_1_out_1 = NULL; main_Import_2_in_1 = "fermi_dn.general"; main_Import_2_in_2 = NULL; main_Import_2_in_3 = NULL; main_Import_2_in_4 = NULL; main_Import_2_in_5 = NULL; main_Import_2_in_6 = NULL; main_Import_2_out_1 = NULL; main_Isosurface_2_in_2 = 0.0; main_Isosurface_2_in_3 = NULL; main_Isosurface_2_in_4 = NULL; main_Isosurface_2_in_5 = NULL; main_Isosurface_2_in_6 = NULL; main_Isosurface_2_out_1 = NULL; main_Color_2_in_2 = "yellow"; main_Color_2_in_3 = NULL; main_Color_2_in_4 = NULL; main_Color_2_in_5 = NULL; main_Color_2_out_1 = NULL; main_Collect_1_out_1 = NULL; macro Image( id, object, where, useVector, to, from, width, resolution, aspect, up, viewAngle, perspective, options, buttonState = 1, buttonUpApprox = "none", buttonDownApprox = "none", buttonUpDensity = 1, buttonDownDensity = 1, renderMode = 0, defaultCamera, reset, backgroundColor, throttle, RECenable = 0, RECfile, RECformat, RECresolution, RECaspect, AAenable = 0, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, interactionMode, title, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels, webOptions) -> ( object, camera, where) { ImageMessage( id, backgroundColor, throttle, RECenable, RECfile, RECformat, RECresolution, RECaspect, AAenable, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels, interactionMode, title, renderMode, buttonUpApprox, buttonDownApprox, buttonUpDensity, buttonDownDensity) [instance: 1, cache: 1]; autoCamera = AutoCamera( object, "front", object, resolution, aspect, [0,1,0], perspective, viewAngle, backgroundColor) [instance: 1, cache: 1]; realCamera = Camera( to, from, width, resolution, aspect, up, perspective, viewAngle, backgroundColor) [instance: 1, cache: 1]; coloredDefaultCamera = UpdateCamera(defaultCamera, background=backgroundColor) [instance: 1, cache: 1]; nullDefaultCamera = Inquire(defaultCamera, "is null + 1") [instance: 1, cache: 1]; resetCamera = Switch( nullDefaultCamera, coloredDefaultCamera, autoCamera) [instance: 1, cache: 1]; resetNull = Inquire( reset, "is null + 1") [instance: 2, cache: 1]; reset = Switch( resetNull, reset, 0) [instance: 2, cache: 1]; whichCamera = Compute( "($0 != 0 || $1 == 0) ? 1 : 2", reset, useVector) [instance: 1, cache: 1]; camera = Switch( whichCamera, resetCamera, realCamera) [instance: 3, cache: 1]; AAobject = AutoAxes( object, camera, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels) [instance: 1, cache: 1]; switchAAenable = Compute("$0+1", AAenable) [instance: 2, cache: 1]; object = Switch( switchAAenable, object, AAobject) [instance:4, cache: 1]; SWapproximation_options = Switch( buttonState, buttonUpApprox, buttonDownApprox) [instance: 5, cache: 1]; SWdensity_options = Switch( buttonState, buttonUpDensity, buttonDownDensity) [instance: 6, cache: 1]; HWapproximation_options = Format( "%s,%s", buttonDownApprox, buttonUpApprox) [instance: 1, cache: 1]; HWdensity_options = Format( "%d,%d", buttonDownDensity, buttonUpDensity) [instance: 2, cache: 1]; switchRenderMode = Compute( "$0+1", renderMode) [instance: 3, cache: 1]; approximation_options = Switch( switchRenderMode, SWapproximation_options, HWapproximation_options) [instance: 7, cache: 1]; density_options = Switch( switchRenderMode, SWdensity_options, HWdensity_options) [instance: 8, cache: 1]; renderModeString = Switch( switchRenderMode, "software", "hardware")[instance: 9, cache: 1]; object_tag = Inquire( object, "object tag")[instance: 3, cache: 1]; annoted_object = Options( object, "send boxes", 0, "cache", 1, "object tag", object_tag, "ddcamera", whichCamera, "rendering approximation", approximation_options, "render every", density_options, "button state", buttonState, "rendering mode", renderModeString) [instance: 1, cache: 1]; RECresNull = Inquire( RECresolution, "is null + 1") [instance: 4, cache: 1]; ImageResolution = Inquire( camera, "camera resolution") [instance: 5, cache: 1]; RECresolution = Switch( RECresNull, RECresolution, ImageResolution) [instance: 10, cache: 1]; RECaspectNull = Inquire( RECaspect, "is null + 1") [instance: 6, cache: 1]; ImageAspect = Inquire( camera, "camera aspect") [instance: 7, cache: 1]; RECaspect = Switch( RECaspectNull, RECaspect, ImageAspect) [instance: 11, cache: 1]; switchRECenable = Compute( "$0 == 0 ? 1 : (($2 == $3) && ($4 == $5)) ? ($1 == 1 ? 2 : 3) : 4", RECenable, switchRenderMode, RECresolution, ImageResolution, RECaspect, ImageAspect) [instance: 4, cache: 1]; NoRECobject, RECNoRerenderObject, RECNoRerHW, RECRerenderObject = Route(switchRECenable, annoted_object); Display( NoRECobject, camera, where, throttle) [instance: 1, cache: 1]; image = Render( RECNoRerenderObject, camera) [instance: 1, cache: 1]; Display( image, NULL, where, throttle) [instance: 2, cache: 1]; WriteImage( image, RECfile, RECformat) [instance: 1, cache: 1]; rec_where = Display( RECNoRerHW, camera, where, throttle) [instance: 1, cache: 0]; rec_image = ReadImageWindow( rec_where) [instance: 1, cache: 1]; WriteImage( rec_image, RECfile, RECformat) [instance: 1, cache: 1]; RECupdateCamera = UpdateCamera( camera, resolution=RECresolution, aspect=RECaspect) [instance: 2, cache: 1]; Display( RECRerenderObject, camera, where, throttle) [instance: 1, cache: 1]; RECRerenderObject = ScaleScreen( RECRerenderObject, NULL, RECresolution, camera) [instance: 1, cache: 1]; image = Render( RECRerenderObject, RECupdateCamera) [instance: 2, cache: 1]; WriteImage( image, RECfile, RECformat) [instance: 2, cache: 1]; } main_Image_2_in_1 = "Image_2"; main_Image_2_in_3 = "X24,,"; main_Image_2_in_4 = 1; main_Image_2_in_5 = [0.459851 0.459851 0.459851]; main_Image_2_in_6 = [5.36756 3.53923 7.97489]; main_Image_2_in_7 = 5.08525; main_Image_2_in_8 = 640; main_Image_2_in_9 = 0.75; main_Image_2_in_10 = [-0.0834371 0.940039 -0.330704]; main_Image_2_in_11 = NULL; main_Image_2_in_12 = 0; main_Image_2_in_13 = NULL; main_Image_2_in_14 = 1; main_Image_2_in_15 = NULL; main_Image_2_in_16 = NULL; main_Image_2_in_17 = NULL; main_Image_2_in_18 = NULL; main_Image_2_in_19 = 0; main_Image_2_in_20 = NULL; main_Image_2_in_21 = NULL; main_Image_2_in_22 = NULL; main_Image_2_in_23 = NULL; main_Image_2_in_25 = NULL; main_Image_2_in_26 = NULL; main_Image_2_in_27 = NULL; main_Image_2_in_28 = NULL; main_Image_2_in_29 = NULL; main_Image_2_in_30 = NULL; main_Image_2_in_31 = NULL; main_Image_2_in_32 = NULL; main_Image_2_in_33 = NULL; main_Image_2_in_34 = NULL; main_Image_2_in_35 = NULL; main_Image_2_in_36 = NULL; main_Image_2_in_37 = NULL; main_Image_2_in_38 = NULL; main_Image_2_in_39 = NULL; main_Image_2_in_40 = NULL; main_Image_2_in_41 = "none"; main_Image_2_in_42 = NULL; main_Image_2_in_43 = NULL; main_Image_2_in_44 = NULL; main_Image_2_in_45 = NULL; main_Image_2_in_46 = NULL; main_Image_2_in_47 = NULL; main_Image_2_in_48 = NULL; main_Image_2_in_49 = NULL; Executive("product version 4 4 0"); $sync main(); elk-9.2.12/examples/Fermi-surface/Ni/PaxHeaders/fermi_dn.general0000644000000000000000000000013214536061314021437 xustar0030 mtime=1702388428.893500046 30 atime=1702388428.892500047 30 ctime=1702388428.893500046 elk-9.2.12/examples/Fermi-surface/Ni/fermi_dn.general0000644002504400250440000000030514536061314024157 0ustar00dewhurstdewhurst00000000000000file = ./FERMISURF_DN.OUT grid = 40 x 40 x 40 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 3-vector, scalar type = float, float end elk-9.2.12/examples/Fermi-surface/Ni/PaxHeaders/fermi_up.general0000644000000000000000000000013214536061314021462 xustar0030 mtime=1702388428.894500044 30 atime=1702388428.894500044 30 ctime=1702388428.894500044 elk-9.2.12/examples/Fermi-surface/Ni/fermi_up.general0000644002504400250440000000030514536061314024202 0ustar00dewhurstdewhurst00000000000000file = ./FERMISURF_UP.OUT grid = 40 x 40 x 40 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 3-vector, scalar type = float, float end elk-9.2.12/examples/Fermi-surface/PaxHeaders/Al0000644000000000000000000000013214536061314016226 xustar0030 mtime=1702388428.899500036 30 atime=1702388428.895500043 30 ctime=1702388428.899500036 elk-9.2.12/examples/Fermi-surface/Al/0000755002504400250440000000000014536061314021025 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Fermi-surface/Al/PaxHeaders/elk.in0000644000000000000000000000013214536061314017406 xustar0030 mtime=1702388428.896500041 30 atime=1702388428.896500041 30 ctime=1702388428.896500041 elk-9.2.12/examples/Fermi-surface/Al/elk.in0000644002504400250440000000062014536061314022126 0ustar00dewhurstdewhurst00000000000000 ! Fermi surface plot of aluminium. tasks 0 100 ! define box corners and grid size for 3D plot, first point is the origin plot3d 0.0 0.0 0.0 : vclp3d 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 40 40 40 : np3d avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.8267 sppath '../../../species/' atoms 1 'Al.in' 1 0.0 0.0 0.0 ngridk 6 6 6 elk-9.2.12/examples/Fermi-surface/Al/PaxHeaders/fermi.general0000644000000000000000000000013214536061314020744 xustar0030 mtime=1702388428.898500038 30 atime=1702388428.898500038 30 ctime=1702388428.898500038 elk-9.2.12/examples/Fermi-surface/Al/fermi.general0000644002504400250440000000030214536061314023461 0ustar00dewhurstdewhurst00000000000000file = ./FERMISURF.OUT grid = 40 x 40 x 40 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 3-vector, scalar type = float, float end elk-9.2.12/examples/Fermi-surface/Al/PaxHeaders/fermi.net0000644000000000000000000000013214536061314020115 xustar0030 mtime=1702388428.900500035 30 atime=1702388428.899500036 30 ctime=1702388428.900500035 elk-9.2.12/examples/Fermi-surface/Al/fermi.net0000644002504400250440000002203614536061314022642 0ustar00dewhurstdewhurst00000000000000// // time: Fri Jul 15 15:49:55 2011 // // version: 3.2.0 (format), 4.4.4 (DX) // // // MODULE main // workspace: width = 620, height = 667 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Camera[1]: x = 404, y = 490, inputs = 9, label = Camera // input[2]: defaulting = 0, visible = 1, type = 8, value = [1 1 1] // input[3]: defaulting = 0, visible = 1, type = 5, value = 6.0 // input[4]: defaulting = 0, visible = 1, type = 1, value = 800 // input[5]: defaulting = 0, visible = 1, type = 5, value = 0.65 // input[9]: defaulting = 0, visible = 1, type = 32, value = "white" // main_Camera_1_out_1 = Camera( main_Camera_1_in_1, main_Camera_1_in_2, main_Camera_1_in_3, main_Camera_1_in_4, main_Camera_1_in_5, main_Camera_1_in_6, main_Camera_1_in_7, main_Camera_1_in_8, main_Camera_1_in_9 ) [instance: 1, cache: 1]; // // node Caption[1]: x = 46, y = 444, inputs = 9, label = Caption // input[1]: defaulting = 0, visible = 1, type = 32, value = "Aluminium Fermi surface" // input[6]: defaulting = 0, visible = 0, type = 1, value = 25 // main_Caption_1_out_1 = Caption( main_Caption_1_in_1, main_Caption_1_in_2, main_Caption_1_in_3, main_Caption_1_in_4, main_Caption_1_in_5, main_Caption_1_in_6, main_Caption_1_in_7, main_Caption_1_in_8, main_Caption_1_in_9 ) [instance: 1, cache: 1]; // // node Color[6]: x = 141, y = 504, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "black" // main_Color_6_out_1 = Color( main_Caption_1_out_1, main_Color_6_in_2, main_Color_6_in_3, main_Color_6_in_4, main_Color_6_in_5 ) [instance: 6, cache: 1]; // // node Import[1]: x = 258, y = 10, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "fermi.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node Isosurface[3]: x = 57, y = 106, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.0 // main_Isosurface_3_out_1 = Isosurface( main_Import_1_out_1, main_Isosurface_3_in_2, main_Isosurface_3_in_3, main_Isosurface_3_in_4, main_Isosurface_3_in_5, main_Isosurface_3_in_6 ) [instance: 3, cache: 1]; // // node Color[3]: x = 171, y = 194, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "yellow" // input[4]: defaulting = 0, visible = 0, type = 32, value = "front colors" // main_Color_3_out_1 = Color( main_Isosurface_3_out_1, main_Color_3_in_2, main_Color_3_in_3, main_Color_3_in_4, main_Color_3_in_5 ) [instance: 3, cache: 1]; // // node Color[4]: x = 50, y = 286, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "blue" // input[4]: defaulting = 0, visible = 0, type = 32, value = "back colors" // main_Color_4_out_1 = Color( main_Color_3_out_1, main_Color_4_in_2, main_Color_4_in_3, main_Color_4_in_4, main_Color_4_in_5 ) [instance: 4, cache: 1]; // // node Translate[2]: x = 166, y = 364, inputs = 2, label = Translate // input[2]: defaulting = 0, visible = 1, type = 8, value = [0 1.2 2.0] // main_Translate_2_out_1 = Translate( main_Color_4_out_1, main_Translate_2_in_2 ) [instance: 2, cache: 1]; // // node Refine[2]: x = 473, y = 83, inputs = 2, label = Refine // input[2]: defaulting = 0, visible = 1, type = 1, value = 1 // main_Refine_2_out_1 = Refine( main_Import_1_out_1, main_Refine_2_in_2 ) [instance: 2, cache: 1]; // // node MapToPlane[1]: x = 317, y = 129, inputs = 3, label = MapToPlane // input[2]: defaulting = 1, visible = 1, type = 8, value = [1,1,1] // input[3]: defaulting = 0, visible = 1, type = 8, value = [1,1,1] // main_MapToPlane_1_out_1 = MapToPlane( main_Refine_2_out_1, main_MapToPlane_1_in_2, main_MapToPlane_1_in_3 ) [instance: 1, cache: 1]; // // node Isosurface[2]: x = 508, y = 170, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.0 // input[3]: defaulting = 1, visible = 1, type = 1, value = 10 // main_Isosurface_2_out_1 = Isosurface( main_MapToPlane_1_out_1, main_Isosurface_2_in_2, main_Isosurface_2_in_3, main_Isosurface_2_in_4, main_Isosurface_2_in_5, main_Isosurface_2_in_6 ) [instance: 2, cache: 1]; // // node Color[5]: x = 324, y = 241, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "black" // main_Color_5_out_1 = Color( main_Isosurface_2_out_1, main_Color_5_in_2, main_Color_5_in_3, main_Color_5_in_4, main_Color_5_in_5 ) [instance: 5, cache: 1]; // // node Ribbon[1]: x = 500, y = 264, inputs = 2, label = Ribbon // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.01 // main_Ribbon_1_out_1 = Ribbon( main_Color_5_out_1, main_Ribbon_1_in_2 ) [instance: 1, cache: 1]; // // node Shade[1]: x = 492, y = 358, inputs = 8, label = Shade // input[2]: defaulting = 0, visible = 1, type = 3, value = 0 // main_Shade_1_out_1 = Shade( main_Ribbon_1_out_1, main_Shade_1_in_2, main_Shade_1_in_3, main_Shade_1_in_4, main_Shade_1_in_5, main_Shade_1_in_6, main_Shade_1_in_7, main_Shade_1_in_8 ) [instance: 1, cache: 1]; // // node Translate[1]: x = 360, y = 360, inputs = 2, label = Translate // input[2]: defaulting = 0, visible = 1, type = 8, value = [2.0 1.2 0] // main_Translate_1_out_1 = Translate( main_Shade_1_out_1, main_Translate_1_in_2 ) [instance: 1, cache: 1]; // // node Collect[1]: x = 265, y = 458, inputs = 3, label = Collect // main_Collect_1_out_1 = Collect( main_Color_6_out_1, main_Translate_2_out_1, main_Translate_1_out_1 ) [instance: 1, cache: 1]; // // node Display[3]: x = 287, y = 605, inputs = 8, label = Display // depth: value = 24 // main_Display_3_out_1[cache: 2] = Display( main_Collect_1_out_1, main_Camera_1_out_1, main_Display_3_in_3, main_Display_3_in_4, main_Display_3_in_5, main_Display_3_in_6, main_Display_3_in_7, main_Display_3_in_8 ) [instance: 3, cache: 1]; // network: end of macro body } main_Camera_1_in_1 = NULL; main_Camera_1_in_2 = [1 1 1]; main_Camera_1_in_3 = 6.0; main_Camera_1_in_4 = 800; main_Camera_1_in_5 = 0.65; main_Camera_1_in_6 = NULL; main_Camera_1_in_7 = NULL; main_Camera_1_in_8 = NULL; main_Camera_1_in_9 = "white"; main_Camera_1_out_1 = NULL; main_Caption_1_in_1 = "Aluminium Fermi surface"; main_Caption_1_in_2 = NULL; main_Caption_1_in_3 = NULL; main_Caption_1_in_4 = NULL; main_Caption_1_in_5 = NULL; main_Caption_1_in_6 = 25; main_Caption_1_in_7 = NULL; main_Caption_1_in_8 = NULL; main_Caption_1_in_9 = NULL; main_Caption_1_out_1 = NULL; main_Color_6_in_2 = "black"; main_Color_6_in_3 = NULL; main_Color_6_in_4 = NULL; main_Color_6_in_5 = NULL; main_Color_6_out_1 = NULL; main_Import_1_in_1 = "fermi.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_Isosurface_3_in_2 = 0.0; main_Isosurface_3_in_3 = NULL; main_Isosurface_3_in_4 = NULL; main_Isosurface_3_in_5 = NULL; main_Isosurface_3_in_6 = NULL; main_Isosurface_3_out_1 = NULL; main_Color_3_in_2 = "yellow"; main_Color_3_in_3 = NULL; main_Color_3_in_4 = "front colors"; main_Color_3_in_5 = NULL; main_Color_3_out_1 = NULL; main_Color_4_in_2 = "blue"; main_Color_4_in_3 = NULL; main_Color_4_in_4 = "back colors"; main_Color_4_in_5 = NULL; main_Color_4_out_1 = NULL; main_Translate_2_in_2 = [0 1.2 2.0]; main_Translate_2_out_1 = NULL; main_Refine_2_in_2 = 1; main_Refine_2_out_1 = NULL; main_MapToPlane_1_in_2 = NULL; main_MapToPlane_1_in_3 = [1,1,1]; main_MapToPlane_1_out_1 = NULL; main_Isosurface_2_in_2 = 0.0; main_Isosurface_2_in_3 = NULL; main_Isosurface_2_in_4 = NULL; main_Isosurface_2_in_5 = NULL; main_Isosurface_2_in_6 = NULL; main_Isosurface_2_out_1 = NULL; main_Color_5_in_2 = "black"; main_Color_5_in_3 = NULL; main_Color_5_in_4 = NULL; main_Color_5_in_5 = NULL; main_Color_5_out_1 = NULL; main_Ribbon_1_in_2 = 0.01; main_Ribbon_1_out_1 = NULL; main_Shade_1_in_2 = 0; main_Shade_1_in_3 = NULL; main_Shade_1_in_4 = NULL; main_Shade_1_in_5 = NULL; main_Shade_1_in_6 = NULL; main_Shade_1_in_7 = NULL; main_Shade_1_in_8 = NULL; main_Shade_1_out_1 = NULL; main_Translate_1_in_2 = [2.0 1.2 0]; main_Translate_1_out_1 = NULL; main_Collect_1_out_1 = NULL; main_Display_3_in_3 = "X24,,"; main_Display_3_in_4 = NULL; main_Display_3_in_5 = NULL; main_Display_3_in_6 = NULL; main_Display_3_in_7 = NULL; main_Display_3_in_8 = NULL; Executive("product version 4 4 4"); $sync main(); elk-9.2.12/examples/Fermi-surface/PaxHeaders/Fe0000644000000000000000000000013214536061314016224 xustar0030 mtime=1702388428.901500034 30 atime=1702388428.900500035 30 ctime=1702388428.901500034 elk-9.2.12/examples/Fermi-surface/Fe/0000755002504400250440000000000014536061314021023 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Fermi-surface/Fe/PaxHeaders/elk.in0000644000000000000000000000013214536061314017404 xustar0030 mtime=1702388428.902500032 30 atime=1702388428.902500032 30 ctime=1702388428.902500032 elk-9.2.12/examples/Fermi-surface/Fe/elk.in0000644002504400250440000000146114536061314022130 0ustar00dewhurstdewhurst00000000000000 ! Fermi surface of ferromagnetic bcc iron. Use XCrysDen for visualisation. ! Run code and then use ! xcrysden --bxsf FERMISURF(_UP/_DN).bxsf ! to display the spin up and down Fermi surfaces. tasks 0 102 : this generates the XCrysDen Fermi Surface .bxsf file ! 3D Fermi surface box defined in terms of reciprocal lattice vectors plot3d 0.0 0.0 0.0 : origin (first corner) 1.0 0.0 0.0 : second corner, etc. 0.0 1.0 0.0 0.0 0.0 1.0 12 12 12 : number of points in each direction spinpol .true. bfieldc 0.0 0.0 0.01 ! fairly large number of empty states required for magnetic cases nempty 8 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 sppath '../../../species/' atoms 1 'Fe.in' 1 0.0 0.0 0.0 ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-9.2.12/examples/Fermi-surface/PaxHeaders/MgB20000644000000000000000000000013214536061314016421 xustar0030 mtime=1702388428.906500026 30 atime=1702388428.902500032 30 ctime=1702388428.906500026 elk-9.2.12/examples/Fermi-surface/MgB2/0000755002504400250440000000000014536061314021220 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Fermi-surface/MgB2/PaxHeaders/elk.in0000644000000000000000000000013214536061314017601 xustar0030 mtime=1702388428.904500029 30 atime=1702388428.904500029 30 ctime=1702388428.904500029 elk-9.2.12/examples/Fermi-surface/MgB2/elk.in0000644002504400250440000000144414536061314022326 0ustar00dewhurstdewhurst00000000000000 ! Fermi surface of MgB2 plotted with OpenDX. In this example, the surfaces from ! different bands are separated in the 3D plot. tasks 0 101 ngridk 6 6 4 ! plot a 2x2x2 reciprocal space cell plot3d 0.0 0.0 0.0 2.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 2.0 24 24 16 avec 5.8316944 0.0 0.0 -2.9158472 5.050395498 0.0 0.0 0.0 6.65939438 sppath '../../../species/' atoms 2 : nspecies 'Mg.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'B.in' : spfname 2 : natoms; atposl below 0.3333333333 0.6666666667 0.5 0.6666666667 0.3333333333 0.5 elk-9.2.12/examples/Fermi-surface/MgB2/PaxHeaders/fermi.general0000644000000000000000000000013214536061314021137 xustar0030 mtime=1702388428.905500028 30 atime=1702388428.905500028 30 ctime=1702388428.905500028 elk-9.2.12/examples/Fermi-surface/MgB2/fermi.general0000644002504400250440000000035614536061314023665 0ustar00dewhurstdewhurst00000000000000file = FERMISURF.OUT grid = 24 x 24 x 16 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0, field1, field2 structure = 3-vector, scalar, scalar, scalar type = float, float, float, float end elk-9.2.12/examples/Fermi-surface/MgB2/PaxHeaders/fermi.net0000644000000000000000000000013214536061314020310 xustar0030 mtime=1702388428.907500025 30 atime=1702388428.906500026 30 ctime=1702388428.907500025 elk-9.2.12/examples/Fermi-surface/MgB2/fermi.net0000644002504400250440000001624214536061314023037 0ustar00dewhurstdewhurst00000000000000// // time: Mon Sep 3 18:12:53 2012 // // version: 3.2.0 (format), 4.4.4 (DX) // // // MODULE main // workspace: width = 527, height = 582 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Import[1]: x = 151, y = 24, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "fermi.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node Select[1]: x = 240, y = 119, inputs = 3, label = Select // input[2]: defaulting = 0, visible = 1, type = 1, value = 0 // main_Select_1_out_1 = Select( main_Import_1_out_1, main_Select_1_in_2, main_Select_1_in_3 ) [instance: 1, cache: 1]; // // node Isosurface[1]: x = 182, y = 209, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.0 // main_Isosurface_1_out_1 = Isosurface( main_Select_1_out_1, main_Isosurface_1_in_2, main_Isosurface_1_in_3, main_Isosurface_1_in_4, main_Isosurface_1_in_5, main_Isosurface_1_in_6 ) [instance: 1, cache: 1]; // // node Color[1]: x = 199, y = 297, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "red" // main_Color_1_out_1 = Color( main_Isosurface_1_out_1, main_Color_1_in_2, main_Color_1_in_3, main_Color_1_in_4, main_Color_1_in_5 ) [instance: 1, cache: 1]; // // node Select[2]: x = 319, y = 120, inputs = 3, label = Select // input[2]: defaulting = 0, visible = 1, type = 1, value = 1 // main_Select_2_out_1 = Select( main_Import_1_out_1, main_Select_2_in_2, main_Select_2_in_3 ) [instance: 2, cache: 1]; // // node Isosurface[2]: x = 310, y = 211, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.0 // main_Isosurface_2_out_1 = Isosurface( main_Select_2_out_1, main_Isosurface_2_in_2, main_Isosurface_2_in_3, main_Isosurface_2_in_4, main_Isosurface_2_in_5, main_Isosurface_2_in_6 ) [instance: 2, cache: 1]; // // node Color[2]: x = 316, y = 299, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "yellow" // main_Color_2_out_1 = Color( main_Isosurface_2_out_1, main_Color_2_in_2, main_Color_2_in_3, main_Color_2_in_4, main_Color_2_in_5 ) [instance: 2, cache: 1]; // // node Select[3]: x = 409, y = 122, inputs = 3, label = Select // input[2]: defaulting = 0, visible = 1, type = 1, value = 2 // main_Select_3_out_1 = Select( main_Import_1_out_1, main_Select_3_in_2, main_Select_3_in_3 ) [instance: 3, cache: 1]; // // node Isosurface[3]: x = 449, y = 213, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.0 // main_Isosurface_3_out_1 = Isosurface( main_Select_3_out_1, main_Isosurface_3_in_2, main_Isosurface_3_in_3, main_Isosurface_3_in_4, main_Isosurface_3_in_5, main_Isosurface_3_in_6 ) [instance: 3, cache: 1]; // // node Color[3]: x = 444, y = 300, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "green" // main_Color_3_out_1 = Color( main_Isosurface_3_out_1, main_Color_3_in_2, main_Color_3_in_3, main_Color_3_in_4, main_Color_3_in_5 ) [instance: 3, cache: 1]; // // node Collect[1]: x = 299, y = 392, inputs = 3, label = Collect // main_Collect_1_out_1 = Collect( main_Color_1_out_1, main_Color_2_out_1, main_Color_3_out_1 ) [instance: 1, cache: 1]; // // node AutoCamera[2]: x = 422, y = 412, inputs = 9, label = AutoCamera // input[2]: defaulting = 0, visible = 1, type = 8, value = [1.0 -0.25 0.5] // input[3]: defaulting = 0, visible = 0, type = 5, value = 4.0 // input[4]: defaulting = 0, visible = 0, type = 1, value = 800 // input[6]: defaulting = 0, visible = 0, type = 8, value = [0 0 1] // main_AutoCamera_2_out_1 = AutoCamera( main_Collect_1_out_1, main_AutoCamera_2_in_2, main_AutoCamera_2_in_3, main_AutoCamera_2_in_4, main_AutoCamera_2_in_5, main_AutoCamera_2_in_6, main_AutoCamera_2_in_7, main_AutoCamera_2_in_8, main_AutoCamera_2_in_9 ) [instance: 2, cache: 1]; // // node Render[1]: x = 255, y = 507, inputs = 3, label = Render // main_Render_1_out_1 = Render( main_Collect_1_out_1, main_AutoCamera_2_out_1, main_Render_1_in_3 ) [instance: 1, cache: 1]; // // node Display[1]: x = 451, y = 520, inputs = 8, label = Display // depth: value = 24 // window: position = (0.0089,0.0231), size = 0.4240x0.5944, screen = 0 // main_Display_1_out_1[cache: 2] = Display( main_Render_1_out_1, main_Display_1_in_2, main_Display_1_in_3, main_Display_1_in_4, main_Display_1_in_5, main_Display_1_in_6, main_Display_1_in_7, main_Display_1_in_8 ) [instance: 1, cache: 1]; // network: end of macro body } main_Import_1_in_1 = "fermi.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_Select_1_in_2 = 0; main_Select_1_in_3 = NULL; main_Select_1_out_1 = NULL; main_Isosurface_1_in_2 = 0.0; main_Isosurface_1_in_3 = NULL; main_Isosurface_1_in_4 = NULL; main_Isosurface_1_in_5 = NULL; main_Isosurface_1_in_6 = NULL; main_Isosurface_1_out_1 = NULL; main_Color_1_in_2 = "red"; main_Color_1_in_3 = NULL; main_Color_1_in_4 = NULL; main_Color_1_in_5 = NULL; main_Color_1_out_1 = NULL; main_Select_2_in_2 = 1; main_Select_2_in_3 = NULL; main_Select_2_out_1 = NULL; main_Isosurface_2_in_2 = 0.0; main_Isosurface_2_in_3 = NULL; main_Isosurface_2_in_4 = NULL; main_Isosurface_2_in_5 = NULL; main_Isosurface_2_in_6 = NULL; main_Isosurface_2_out_1 = NULL; main_Color_2_in_2 = "yellow"; main_Color_2_in_3 = NULL; main_Color_2_in_4 = NULL; main_Color_2_in_5 = NULL; main_Color_2_out_1 = NULL; main_Select_3_in_2 = 2; main_Select_3_in_3 = NULL; main_Select_3_out_1 = NULL; main_Isosurface_3_in_2 = 0.0; main_Isosurface_3_in_3 = NULL; main_Isosurface_3_in_4 = NULL; main_Isosurface_3_in_5 = NULL; main_Isosurface_3_in_6 = NULL; main_Isosurface_3_out_1 = NULL; main_Color_3_in_2 = "green"; main_Color_3_in_3 = NULL; main_Color_3_in_4 = NULL; main_Color_3_in_5 = NULL; main_Color_3_out_1 = NULL; main_Collect_1_out_1 = NULL; main_AutoCamera_2_in_2 = [1.0 -0.25 0.5]; main_AutoCamera_2_in_3 = 4.0; main_AutoCamera_2_in_4 = 800; main_AutoCamera_2_in_5 = NULL; main_AutoCamera_2_in_6 = [0 0 1]; main_AutoCamera_2_in_7 = NULL; main_AutoCamera_2_in_8 = NULL; main_AutoCamera_2_in_9 = NULL; main_AutoCamera_2_out_1 = NULL; main_Render_1_in_3 = NULL; main_Render_1_out_1 = NULL; main_Display_1_in_2 = NULL; main_Display_1_in_3 = "X24,,"; main_Display_1_in_4 = NULL; main_Display_1_in_5 = NULL; main_Display_1_in_6 = NULL; main_Display_1_in_7 = NULL; main_Display_1_in_8 = NULL; Executive("product version 4 4 4"); $sync main(); elk-9.2.12/examples/PaxHeaders/OEP0000644000000000000000000000013014536061314013623 xustar0029 mtime=1702388428.91050002 30 atime=1702388428.907500025 29 ctime=1702388428.91050002 elk-9.2.12/examples/OEP/0000755002504400250440000000000014536061314016424 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/OEP/PaxHeaders/HEG0000644000000000000000000000013214536061314014230 xustar0030 mtime=1702388428.909500022 30 atime=1702388428.908500023 30 ctime=1702388428.909500022 elk-9.2.12/examples/OEP/HEG/0000755002504400250440000000000014536061314017027 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/OEP/HEG/PaxHeaders/elk.in0000644000000000000000000000013214536061314015410 xustar0030 mtime=1702388428.909500022 30 atime=1702388428.909500022 30 ctime=1702388428.909500022 elk-9.2.12/examples/OEP/HEG/elk.in0000644002504400250440000000070214536061314020131 0ustar00dewhurstdewhurst00000000000000 ! Optimised effetive potential (OEP) ground state of the homogenous electron ! gas. The Wigner radius (r_s) is written to INFO.OUT. Note that the exchange ! energy is only computed during the last iteration. tasks 0 xctype -1 chgexs 10.0 ! use the unit cell of aluminium avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.75 ! note that low density gases require denser k-point grids! ngridk 2 2 2 vkloff 0.5 0.5 0.5 elk-9.2.12/examples/OEP/PaxHeaders/Si0000644000000000000000000000013114536061314014177 xustar0030 mtime=1702388428.911500019 29 atime=1702388428.91050002 30 ctime=1702388428.911500019 elk-9.2.12/examples/OEP/Si/0000755002504400250440000000000014536061314016777 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/OEP/Si/PaxHeaders/elk.in0000644000000000000000000000013214536061314015360 xustar0030 mtime=1702388428.912500017 30 atime=1702388428.911500019 30 ctime=1702388428.912500017 elk-9.2.12/examples/OEP/Si/elk.in0000644002504400250440000000234114536061314020102 0ustar00dewhurstdewhurst00000000000000 ! Optimised effective potential calculation of silicon. An iterative proceedure ! is used to find the optimised potential [Phys. Rev. Lett. 98, 196405 (2007)]. ! Note that the exact exchange energy is calculated only during the last ! self-consistent loop, which is the reason why the final total energy is ! different from those calculated in previous loops. tasks 0 20 ! exact exchange only (no correlation) xctype -1 ! large number of OEP iterations to converge the gap maxitoep 300 ! use adaptive linear mixing mixtype 1 ! set the maximum number of self-consistent loops maxscl 40 ! large number of empty states required nempty 15 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 4 4 4 ! These are the vertices to be joined for the band structure plot plot1d 7 200 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-9.2.12/examples/PaxHeaders/TDDFT-time-evolution0000644000000000000000000000013214536061314017025 xustar0030 mtime=1702388428.927499995 30 atime=1702388428.912500017 30 ctime=1702388428.927499995 elk-9.2.12/examples/TDDFT-time-evolution/0000755002504400250440000000000014536061314021624 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-time-evolution/PaxHeaders/Si-ramp0000644000000000000000000000013214536061314020335 xustar0030 mtime=1702388428.916500011 30 atime=1702388428.913500016 30 ctime=1702388428.916500011 elk-9.2.12/examples/TDDFT-time-evolution/Si-ramp/0000755002504400250440000000000014536061314023134 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-time-evolution/Si-ramp/PaxHeaders/JTOT_TD.OUT0000644000000000000000000000013214536061314022152 xustar0030 mtime=1702388428.915500013 30 atime=1702388428.914500014 30 ctime=1702388428.915500013 elk-9.2.12/examples/TDDFT-time-evolution/Si-ramp/JTOT_TD.OUT0000644002504400250440000021645014536061314024704 0ustar00dewhurstdewhurst00000000000000 0.000000000 0.1967169445E-04 0.000000000 0.000000000 0.5000000000 0.5488511668E-04 0.3469446952E-17 0.000000000 1.000000000 0.4896786069E-04 0.000000000 0.000000000 1.500000000 -0.5199633430E-05 0.3469446952E-17 0.000000000 2.000000000 -0.1012963905E-03 0.000000000 0.000000000 2.500000000 -0.2218195602E-03 0.3469446952E-17 0.000000000 3.000000000 -0.3515228011E-03 0.3469446952E-17 0.000000000 3.500000000 -0.4853140292E-03 -0.3469446952E-17 0.000000000 4.000000000 -0.6224709314E-03 -0.3469446952E-17 0.000000000 4.500000000 -0.7610246421E-03 0.3469446952E-17 0.000000000 5.000000000 -0.9021721268E-03 0.000000000 0.000000000 5.500000000 -0.1052315175E-02 0.6938893904E-17 -0.6938893904E-17 6.000000000 -0.1213257436E-02 0.000000000 0.000000000 6.500000000 -0.1375171054E-02 -0.3469446952E-17 0.6938893904E-17 7.000000000 -0.1526384296E-02 0.3469446952E-17 0.000000000 7.500000000 -0.1666577424E-02 -0.3469446952E-17 0.000000000 8.000000000 -0.1803112510E-02 -0.3469446952E-17 0.000000000 8.500000000 -0.1937144043E-02 0.3469446952E-17 0.000000000 9.000000000 -0.2061297222E-02 -0.3469446952E-17 0.000000000 9.500000000 -0.2170859016E-02 0.3469446952E-17 -0.6938893904E-17 10.00000000 -0.2269775435E-02 0.3469446952E-17 -0.6938893904E-17 10.50000000 -0.2363375174E-02 0.000000000 0.000000000 11.00000000 -0.2450682346E-02 -0.3469446952E-17 0.000000000 11.50000000 -0.2527208244E-02 0.3469446952E-17 0.000000000 12.00000000 -0.2591930551E-02 0.3469446952E-17 0.000000000 12.50000000 -0.2647980259E-02 0.3469446952E-17 0.000000000 13.00000000 -0.2697481680E-02 0.3469446952E-17 0.000000000 13.50000000 -0.2738344846E-02 -0.3469446952E-17 0.000000000 14.00000000 -0.2766041413E-02 0.3469446952E-17 0.000000000 14.50000000 -0.2777271172E-02 0.000000000 0.000000000 15.00000000 -0.2771819802E-02 0.3469446952E-17 0.000000000 15.50000000 -0.2751492004E-02 0.000000000 0.000000000 16.00000000 -0.2717001803E-02 -0.3469446952E-17 0.000000000 16.50000000 -0.2665700832E-02 -0.3469446952E-17 0.000000000 17.00000000 -0.2593037543E-02 0.3469446952E-17 0.000000000 17.50000000 -0.2496909413E-02 -0.3469446952E-17 0.000000000 18.00000000 -0.2379896272E-02 0.3469446952E-17 -0.6938893904E-17 18.50000000 -0.2246465398E-02 -0.3469446952E-17 0.000000000 19.00000000 -0.2098337246E-02 0.3469446952E-17 -0.6938893904E-17 19.50000000 -0.1933527183E-02 0.000000000 0.000000000 20.00000000 -0.1749490249E-02 0.3469446952E-17 0.000000000 20.50000000 -0.1545678184E-02 0.3469446952E-17 -0.6938893904E-17 21.00000000 -0.1322723692E-02 -0.3469446952E-17 0.6938893904E-17 21.50000000 -0.1080729424E-02 0.3469446952E-17 0.000000000 22.00000000 -0.8196855129E-03 0.3469446952E-17 0.000000000 22.50000000 -0.5413002691E-03 -0.3469446952E-17 0.000000000 23.00000000 -0.2489356678E-03 -0.3469446952E-17 0.000000000 23.50000000 0.5492035276E-04 -0.3469446952E-17 0.000000000 24.00000000 0.3708210474E-03 0.3469446952E-17 0.000000000 24.50000000 0.7015199043E-03 0.3469446952E-17 0.000000000 25.00000000 0.1048755022E-02 0.6938893904E-17 -0.6938893904E-17 25.50000000 0.1411242872E-02 0.6938893904E-17 -0.6938893904E-17 26.00000000 0.1785978221E-02 -0.3469446952E-17 0.6938893904E-17 26.50000000 0.2171062908E-02 0.000000000 0.000000000 27.00000000 0.2566687095E-02 -0.3469446952E-17 0.000000000 27.50000000 0.2973490066E-02 -0.3469446952E-17 0.000000000 28.00000000 0.3391222298E-02 0.6938893904E-17 -0.6938893904E-17 28.50000000 0.3819416825E-02 0.3469446952E-17 -0.6938893904E-17 29.00000000 0.4258291715E-02 0.000000000 0.000000000 29.50000000 0.4707854432E-02 0.6938893904E-17 -0.6938893904E-17 30.00000000 0.5166954274E-02 -0.3469446952E-17 0.000000000 30.50000000 0.5634103585E-02 0.3469446952E-17 -0.6938893904E-17 31.00000000 0.6108805781E-02 0.6938893904E-17 0.1387778781E-16 31.50000000 0.6591105818E-02 0.000000000 0.000000000 32.00000000 0.7080465451E-02 0.3469446952E-17 0.000000000 32.50000000 0.7575870871E-02 -0.3469446952E-17 0.6938893904E-17 33.00000000 0.8076600564E-02 0.6938893904E-17 0.1387778781E-16 33.50000000 0.8581783483E-02 0.000000000 0.000000000 34.00000000 0.9089730484E-02 0.000000000 0.000000000 34.50000000 0.9598967494E-02 0.000000000 0.000000000 35.00000000 0.1010975393E-01 0.3469446952E-17 0.000000000 35.50000000 0.1062325238E-01 0.6938893904E-17 0.1387778781E-16 36.00000000 0.1113913126E-01 0.000000000 0.000000000 36.50000000 0.1165536367E-01 0.1387778781E-16 0.6938893904E-17 37.00000000 0.1217042192E-01 0.6938893904E-17 0.6938893904E-17 37.50000000 0.1268459759E-01 0.000000000 0.000000000 38.00000000 0.1319865620E-01 0.6938893904E-17 0.1387778781E-16 38.50000000 0.1371220771E-01 0.000000000 0.000000000 39.00000000 0.1422432140E-01 0.000000000 0.000000000 39.50000000 0.1473499842E-01 0.000000000 0.000000000 40.00000000 0.1524493772E-01 0.6938893904E-17 0.6938893904E-17 40.50000000 0.1575411649E-01 0.3469446952E-17 0.000000000 41.00000000 0.1626143047E-01 0.6938893904E-17 0.1387778781E-16 41.50000000 0.1676569114E-01 0.3469446952E-17 0.000000000 42.00000000 0.1726635148E-01 0.000000000 0.000000000 42.50000000 0.1776355785E-01 0.6938893904E-17 0.1387778781E-16 43.00000000 0.1825836730E-01 0.000000000 0.000000000 43.50000000 0.1875263901E-01 0.000000000 0.000000000 44.00000000 0.1924736726E-01 0.1040834086E-16 0.6938893904E-17 44.50000000 0.1974099580E-01 0.000000000 0.000000000 45.00000000 0.2023085299E-01 0.000000000 0.000000000 45.50000000 0.2071645267E-01 -0.3469446952E-17 0.6938893904E-17 46.00000000 0.2120002711E-01 0.000000000 0.000000000 46.50000000 0.2168326516E-01 0.6938893904E-17 0.1387778781E-16 47.00000000 0.2216523797E-01 0.1040834086E-16 0.6938893904E-17 47.50000000 0.2264450127E-01 0.1040834086E-16 0.6938893904E-17 48.00000000 0.2312164076E-01 0.000000000 0.000000000 48.50000000 0.2359828977E-01 0.1387778781E-16 0.6938893904E-17 49.00000000 0.2407489833E-01 0.6938893904E-17 0.6938893904E-17 49.50000000 0.2455108643E-01 0.1387778781E-16 0.6938893904E-17 50.00000000 0.2502746481E-01 0.1387778781E-16 0.6938893904E-17 50.50000000 0.2550526101E-01 0.6938893904E-17 0.1387778781E-16 51.00000000 0.2598465494E-01 -0.3469446952E-17 0.6938893904E-17 51.50000000 0.2646501418E-01 0.000000000 0.000000000 52.00000000 0.2694669373E-01 0.3469446952E-17 0.000000000 52.50000000 0.2743119843E-01 0.000000000 0.000000000 53.00000000 0.2791957864E-01 0.6938893904E-17 0.6938893904E-17 53.50000000 0.2841182255E-01 0.6938893904E-17 0.6938893904E-17 54.00000000 0.2890775507E-01 0.6938893904E-17 0.6938893904E-17 54.50000000 0.2940780521E-01 0.6938893904E-17 0.1387778781E-16 55.00000000 0.2991260025E-01 0.6938893904E-17 0.6938893904E-17 55.50000000 0.3042238548E-01 0.000000000 0.000000000 56.00000000 0.3093700475E-01 0.3469446952E-17 0.000000000 56.50000000 0.3145624074E-01 0.6938893904E-17 0.1387778781E-16 57.00000000 0.3198043756E-01 0.000000000 0.000000000 57.50000000 0.3251098006E-01 0.6938893904E-17 0.1387778781E-16 58.00000000 0.3304954354E-01 0.3469446952E-17 0.000000000 58.50000000 0.3359634034E-01 0.3469446952E-17 0.000000000 59.00000000 0.3414991518E-01 0.6938893904E-17 0.1387778781E-16 59.50000000 0.3470921913E-01 0.6938893904E-17 0.1387778781E-16 60.00000000 0.3527522746E-01 0.6938893904E-17 0.1387778781E-16 60.50000000 0.3584983234E-01 -0.3469446952E-17 0.6938893904E-17 61.00000000 0.3643382950E-01 0.3469446952E-17 0.000000000 61.50000000 0.3702684386E-01 0.1040834086E-16 0.6938893904E-17 62.00000000 0.3762872583E-01 0.1387778781E-16 0.6938893904E-17 62.50000000 0.3823975601E-01 0.1040834086E-16 0.6938893904E-17 63.00000000 0.3885972196E-01 0.1387778781E-16 0.6938893904E-17 63.50000000 0.3948779882E-01 0.000000000 0.000000000 64.00000000 0.4012358389E-01 0.6938893904E-17 0.1387778781E-16 64.50000000 0.4076761906E-01 0.000000000 0.000000000 65.00000000 0.4142072378E-01 0.3469446952E-17 0.1387778781E-16 65.50000000 0.4208314739E-01 0.6938893904E-17 0.1387778781E-16 66.00000000 0.4275456862E-01 0.3469446952E-17 0.1387778781E-16 66.50000000 0.4343461377E-01 0.000000000 0.000000000 67.00000000 0.4412311350E-01 0.1040834086E-16 0.6938893904E-17 67.50000000 0.4482005035E-01 0.000000000 0.000000000 68.00000000 0.4552537867E-01 0.6938893904E-17 0.6938893904E-17 68.50000000 0.4623896971E-01 0.000000000 0.000000000 69.00000000 0.4696070325E-01 0.000000000 0.000000000 69.50000000 0.4769074276E-01 -0.6938893904E-17 0.6938893904E-17 70.00000000 0.4842960220E-01 -0.6938893904E-17 0.6938893904E-17 70.50000000 0.4917757638E-01 -0.6938893904E-17 0.6938893904E-17 71.00000000 0.4993392237E-01 0.000000000 0.000000000 71.50000000 0.5069711087E-01 0.000000000 0.000000000 72.00000000 0.5146620022E-01 0.000000000 0.000000000 72.50000000 0.5224170029E-01 0.000000000 0.000000000 73.00000000 0.5302444820E-01 0.000000000 0.000000000 73.50000000 0.5381432140E-01 0.000000000 0.000000000 74.00000000 0.5461074947E-01 0.000000000 0.000000000 74.50000000 0.5541400924E-01 0.000000000 0.000000000 75.00000000 0.5622452949E-01 0.000000000 0.000000000 75.50000000 0.5704153438E-01 0.000000000 0.000000000 76.00000000 0.5786348444E-01 0.000000000 0.000000000 76.50000000 0.5869021473E-01 0.000000000 0.000000000 77.00000000 0.5952324942E-01 0.000000000 0.000000000 77.50000000 0.6036351827E-01 0.000000000 0.000000000 78.00000000 0.6121007707E-01 -0.6938893904E-17 0.6938893904E-17 78.50000000 0.6206157102E-01 0.000000000 0.000000000 79.00000000 0.6291802274E-01 0.000000000 0.000000000 79.50000000 0.6378054737E-01 0.000000000 0.000000000 80.00000000 0.6464969874E-01 -0.6938893904E-17 0.6938893904E-17 80.50000000 0.6552513998E-01 0.6938893904E-17 -0.6938893904E-17 81.00000000 0.6640626947E-01 0.000000000 0.000000000 81.50000000 0.6729288598E-01 0.000000000 0.000000000 82.00000000 0.6818518646E-01 -0.6938893904E-17 0.6938893904E-17 82.50000000 0.6908323199E-01 0.000000000 0.000000000 83.00000000 0.6998657401E-01 0.000000000 0.000000000 83.50000000 0.7089452556E-01 0.6938893904E-17 -0.6938893904E-17 84.00000000 0.7180733968E-01 0.000000000 0.000000000 84.50000000 0.7272672139E-01 0.000000000 0.000000000 85.00000000 0.7365429760E-01 0.000000000 0.000000000 85.50000000 0.7458955385E-01 0.000000000 0.000000000 86.00000000 0.7553011111E-01 0.000000000 0.000000000 86.50000000 0.7647425622E-01 -0.6938893904E-17 0.6938893904E-17 87.00000000 0.7742258447E-01 0.000000000 0.000000000 87.50000000 0.7837680307E-01 -0.6938893904E-17 0.6938893904E-17 88.00000000 0.7933740450E-01 -0.6938893904E-17 0.6938893904E-17 88.50000000 0.8030343067E-01 -0.6938893904E-17 0.6938893904E-17 89.00000000 0.8127413863E-01 0.000000000 0.000000000 89.50000000 0.8224996211E-01 -0.6938893904E-17 0.6938893904E-17 90.00000000 0.8323168073E-01 0.000000000 0.000000000 90.50000000 0.8421917665E-01 0.000000000 0.000000000 91.00000000 0.8521145333E-01 0.000000000 0.000000000 91.50000000 0.8620754311E-01 0.000000000 0.000000000 92.00000000 0.8720712801E-01 0.000000000 0.000000000 92.50000000 0.8821059568E-01 0.6938893904E-17 -0.6938893904E-17 93.00000000 0.8921869680E-01 -0.6938893904E-17 0.6938893904E-17 93.50000000 0.9023172812E-01 0.000000000 0.000000000 94.00000000 0.9124882169E-01 0.6938893904E-17 -0.6938893904E-17 94.50000000 0.9226861937E-01 0.000000000 0.000000000 95.00000000 0.9329089521E-01 -0.6938893904E-17 0.6938893904E-17 95.50000000 0.9431661721E-01 0.6938893904E-17 -0.6938893904E-17 96.00000000 0.9534647992E-01 0.000000000 0.000000000 96.50000000 0.9637992686E-01 0.6938893904E-17 -0.6938893904E-17 97.00000000 0.9741634524E-01 -0.6938893904E-17 0.6938893904E-17 97.50000000 0.9845601757E-01 0.000000000 0.000000000 98.00000000 0.9949948557E-01 0.000000000 0.000000000 98.50000000 0.1005466518 0.6938893904E-17 -0.6938893904E-17 99.00000000 0.1015973046 0.6938893904E-17 -0.6938893904E-17 99.50000000 0.1026518012 0.000000000 0.000000000 100.0000000 0.1037108102 0.000000000 0.000000000 100.5000000 0.1047746570 -0.6938893904E-17 0.6938893904E-17 101.0000000 0.1058434283 0.000000000 0.000000000 101.5000000 0.1069172156 0.6938893904E-17 -0.6938893904E-17 102.0000000 0.1079960680 0.000000000 0.000000000 102.5000000 0.1090802337 0.000000000 0.000000000 103.0000000 0.1101701997 0.000000000 0.000000000 103.5000000 0.1112664481 0.000000000 0.000000000 104.0000000 0.1123691158 0.000000000 0.000000000 104.5000000 0.1134784528 0.000000000 0.000000000 105.0000000 0.1145952308 0.000000000 0.000000000 105.5000000 0.1157202492 0.000000000 0.000000000 106.0000000 0.1168534694 0.000000000 0.000000000 106.5000000 0.1179942691 0.000000000 0.000000000 107.0000000 0.1191424392 0.000000000 0.000000000 107.5000000 0.1202983743 0.000000000 0.000000000 108.0000000 0.1214625838 0.000000000 0.000000000 108.5000000 0.1226353491 0.000000000 0.000000000 109.0000000 0.1238168666 0.000000000 0.000000000 109.5000000 0.1250073261 0.000000000 0.000000000 110.0000000 0.1262068488 0.000000000 0.000000000 110.5000000 0.1274156642 0.000000000 0.000000000 111.0000000 0.1286343229 0.6938893904E-17 -0.6938893904E-17 111.5000000 0.1298635284 0.6938893904E-17 -0.6938893904E-17 112.0000000 0.1311036612 0.000000000 0.000000000 112.5000000 0.1323546461 -0.6938893904E-17 0.6938893904E-17 113.0000000 0.1336163192 0.000000000 0.000000000 113.5000000 0.1348889559 0.000000000 0.000000000 114.0000000 0.1361732373 0.000000000 0.000000000 114.5000000 0.1374695460 0.6938893904E-17 -0.6938893904E-17 115.0000000 0.1387776807 0.000000000 0.000000000 115.5000000 0.1400973572 -0.6938893904E-17 0.6938893904E-17 116.0000000 0.1414290253 -0.6938893904E-17 0.6938893904E-17 116.5000000 0.1427734216 -0.6938893904E-17 0.6938893904E-17 117.0000000 0.1441306467 -0.6938893904E-17 0.6938893904E-17 117.5000000 0.1455001669 0.000000000 0.000000000 118.0000000 0.1468817903 0.000000000 0.000000000 118.5000000 0.1482758963 0.000000000 0.000000000 119.0000000 0.1496825197 0.000000000 0.000000000 119.5000000 0.1511010214 0.000000000 0.000000000 120.0000000 0.1525310191 0.000000000 0.000000000 120.5000000 0.1539728277 0.6938893904E-17 -0.6938893904E-17 121.0000000 0.1554267571 0.6938893904E-17 -0.6938893904E-17 121.5000000 0.1568923099 0.000000000 0.000000000 122.0000000 0.1583685047 0.6938893904E-17 -0.6938893904E-17 122.5000000 0.1598546098 0.6938893904E-17 -0.6938893904E-17 123.0000000 0.1613504013 0.000000000 0.000000000 123.5000000 0.1628559715 0.000000000 0.000000000 124.0000000 0.1643714113 0.000000000 0.000000000 124.5000000 0.1658963620 0.6938893904E-17 -0.6938893904E-17 125.0000000 0.1674300911 0.000000000 0.000000000 125.5000000 0.1689722715 0.000000000 0.000000000 126.0000000 0.1705233436 0.000000000 0.000000000 126.5000000 0.1720833543 0.000000000 0.000000000 127.0000000 0.1736511338 0.6938893904E-17 -0.6938893904E-17 127.5000000 0.1752253172 0.6938893904E-17 -0.6938893904E-17 128.0000000 0.1768060917 -0.6938893904E-17 0.3469446952E-17 128.5000000 0.1783946781 0.000000000 0.3469446952E-17 129.0000000 0.1799911487 0.000000000 -0.3469446952E-17 129.5000000 0.1815940602 0.000000000 0.000000000 130.0000000 0.1832024333 0.000000000 0.000000000 130.5000000 0.1848169844 0.000000000 0.000000000 131.0000000 0.1864385886 0.6938893904E-17 -0.6938893904E-17 131.5000000 0.1880667735 0.000000000 0.000000000 132.0000000 0.1897003791 0.000000000 0.000000000 132.5000000 0.1913392393 -0.6938893904E-17 0.6938893904E-17 133.0000000 0.1929842419 0.000000000 -0.3469446952E-17 133.5000000 0.1946360392 0.000000000 0.3469446952E-17 134.0000000 0.1962945825 0.6938893904E-17 -0.6938893904E-17 134.5000000 0.1979596022 0.000000000 -0.3469446952E-17 135.0000000 0.1996310488 0.000000000 0.000000000 135.5000000 0.2013092176 0.000000000 0.000000000 136.0000000 0.2029945196 0.000000000 0.000000000 136.5000000 0.2046872458 -0.6938893904E-17 0.6938893904E-17 137.0000000 0.2063872789 0.000000000 0.000000000 137.5000000 0.2080945325 0.6938893904E-17 -0.6938893904E-17 138.0000000 0.2098094628 0.6938893904E-17 -0.3469446952E-17 138.5000000 0.2115331447 -0.6938893904E-17 0.3469446952E-17 139.0000000 0.2132664298 0.000000000 0.3469446952E-17 139.5000000 0.2150094487 -0.6938893904E-17 0.6938893904E-17 140.0000000 0.2167620041 0.000000000 0.3469446952E-17 140.5000000 0.2185244986 0.6938893904E-17 -0.3469446952E-17 141.0000000 0.2202977122 0.000000000 0.000000000 141.5000000 0.2220818665 0.000000000 0.3469446952E-17 142.0000000 0.2238763219 0.000000000 0.3469446952E-17 142.5000000 0.2256807402 0.000000000 0.000000000 143.0000000 0.2274961028 0.000000000 0.000000000 143.5000000 0.2293236720 0.000000000 -0.3469446952E-17 144.0000000 0.2311636422 0.000000000 -0.3469446952E-17 144.5000000 0.2330154573 0.6938893904E-17 -0.3469446952E-17 145.0000000 0.2348791336 0.000000000 -0.3469446952E-17 145.5000000 0.2367551100 -0.6938893904E-17 0.3469446952E-17 146.0000000 0.2386432328 0.000000000 0.3469446952E-17 146.5000000 0.2405429133 0.6938893904E-17 -0.3469446952E-17 147.0000000 0.2424543800 -0.6938893904E-17 0.6938893904E-17 147.5000000 0.2443784188 0.000000000 0.3469446952E-17 148.0000000 0.2463151397 0.000000000 0.3469446952E-17 148.5000000 0.2482639135 0.000000000 -0.3469446952E-17 149.0000000 0.2502246858 0.000000000 -0.3469446952E-17 149.5000000 0.2521981205 0.000000000 0.3469446952E-17 150.0000000 0.2541843724 0.6938893904E-17 -0.6938893904E-17 150.5000000 0.2561826632 -0.6938893904E-17 0.3469446952E-17 151.0000000 0.2581923037 0.000000000 -0.3469446952E-17 151.5000000 0.2602133073 0.6938893904E-17 -0.3469446952E-17 152.0000000 0.2622457406 0.000000000 -0.3469446952E-17 152.5000000 0.2642893419 0.000000000 0.3469446952E-17 153.0000000 0.2663436402 0.000000000 0.3469446952E-17 153.5000000 0.2684079881 -0.6938893904E-17 0.3469446952E-17 154.0000000 0.2704820478 0.000000000 0.000000000 154.5000000 0.2725665294 0.000000000 0.3469446952E-17 155.0000000 0.2746627490 0.000000000 -0.3469446952E-17 155.5000000 0.2767707109 0.6938893904E-17 -0.3469446952E-17 156.0000000 0.2788885665 0.000000000 -0.3469446952E-17 156.5000000 0.2810145836 0.000000000 0.3469446952E-17 157.0000000 0.2831490778 0.000000000 -0.3469446952E-17 157.5000000 0.2852936995 0.000000000 0.3469446952E-17 158.0000000 0.2874495114 0.000000000 -0.3469446952E-17 158.5000000 0.2896164018 0.000000000 0.3469446952E-17 159.0000000 0.2917938667 0.000000000 -0.3469446952E-17 159.5000000 0.2939819472 -0.6938893904E-17 0.3469446952E-17 160.0000000 0.2961814341 0.000000000 -0.3469446952E-17 160.5000000 0.2983932391 0.6938893904E-17 -0.6938893904E-17 161.0000000 0.3006174945 0.000000000 0.3469446952E-17 161.5000000 0.3028537787 0.000000000 0.3469446952E-17 162.0000000 0.3051022624 -0.6938893904E-17 0.3469446952E-17 162.5000000 0.3073643239 0.000000000 -0.3469446952E-17 163.0000000 0.3096411918 0.6938893904E-17 -0.3469446952E-17 163.5000000 0.3119328083 0.000000000 0.3469446952E-17 164.0000000 0.3142385646 0.000000000 -0.3469446952E-17 164.5000000 0.3165588416 0.000000000 -0.3469446952E-17 165.0000000 0.3188952387 0.000000000 -0.3469446952E-17 165.5000000 0.3212492858 0.000000000 -0.3469446952E-17 166.0000000 0.3236213246 0.000000000 -0.3469446952E-17 166.5000000 0.3260109669 0.000000000 -0.3469446952E-17 167.0000000 0.3284182940 0.000000000 -0.3469446952E-17 167.5000000 0.3308440703 0.000000000 0.000000000 168.0000000 0.3332888333 0.1387778781E-16 0.3469446952E-17 168.5000000 0.3357526462 0.1387778781E-16 0.6938893904E-17 169.0000000 0.3382360444 0.000000000 0.3469446952E-17 169.5000000 0.3407401206 0.000000000 -0.3469446952E-17 170.0000000 0.3432651519 0.1387778781E-16 0.6938893904E-17 170.5000000 0.3458101623 0.1387778781E-16 0.6938893904E-17 171.0000000 0.3483745552 0.1387778781E-16 0.5204170428E-17 171.5000000 0.3509592346 0.000000000 -0.3469446952E-17 172.0000000 0.3535653732 0.1387778781E-16 0.3469446952E-17 172.5000000 0.3561931067 0.000000000 0.1734723476E-17 173.0000000 0.3588421382 0.000000000 0.000000000 173.5000000 0.3615127709 0.1387778781E-16 0.6938893904E-17 174.0000000 0.3642055043 0.1387778781E-16 0.6938893904E-17 174.5000000 0.3669203535 0.1387778781E-16 0.1040834086E-16 175.0000000 0.3696571143 0.000000000 0.3469446952E-17 175.5000000 0.3724161206 0.1387778781E-16 0.3469446952E-17 176.0000000 0.3751982586 0.000000000 0.000000000 176.5000000 0.3780042805 0.1387778781E-16 0.8673617380E-17 177.0000000 0.3808341770 0.1387778781E-16 0.3469446952E-17 177.5000000 0.3836871302 0.000000000 0.3469446952E-17 178.0000000 0.3865626156 0.000000000 0.000000000 178.5000000 0.3894613399 0.000000000 0.3469446952E-17 179.0000000 0.3923842662 0.1387778781E-16 0.3469446952E-17 179.5000000 0.3953310179 0.000000000 0.3469446952E-17 180.0000000 0.3983003731 0.1387778781E-16 0.5204170428E-17 180.5000000 0.4012921445 0.000000000 -0.3469446952E-17 181.0000000 0.4043068972 0.000000000 -0.1734723476E-17 181.5000000 0.4073441475 0.000000000 0.1040834086E-16 182.0000000 0.4104024151 0.000000000 0.000000000 182.5000000 0.4134812422 0.1387778781E-16 0.1040834086E-16 183.0000000 0.4165814151 0.1387778781E-16 0.5204170428E-17 183.5000000 0.4197033918 0.000000000 -0.1734723476E-17 184.0000000 0.4228467246 0.000000000 0.000000000 184.5000000 0.4260107142 0.000000000 -0.1734723476E-17 185.0000000 0.4291944763 0.000000000 -0.1734723476E-17 185.5000000 0.4323968784 0.1387778781E-16 0.6938893904E-17 186.0000000 0.4356172669 0.000000000 0.1040834086E-16 186.5000000 0.4388558891 0.000000000 0.000000000 187.0000000 0.4421127769 0.000000000 -0.1734723476E-17 187.5000000 0.4453866497 0.1387778781E-16 0.5204170428E-17 188.0000000 0.4486761144 0.1387778781E-16 -0.3469446952E-17 188.5000000 0.4519809663 0.000000000 -0.1734723476E-17 189.0000000 0.4553018587 0.1387778781E-16 0.4336808690E-17 189.5000000 0.4586385844 0.1387778781E-16 0.7806255642E-17 190.0000000 0.4619899403 0.000000000 -0.2602085214E-17 190.5000000 0.4653551285 0.1387778781E-16 0.7806255642E-17 191.0000000 0.4687344288 0.1387778781E-16 0.7806255642E-17 191.5000000 0.4721280909 0.1387778781E-16 0.6938893904E-17 192.0000000 0.4755353393 0.1387778781E-16 0.9540979118E-17 192.5000000 0.4789549893 0.000000000 -0.8673617380E-18 193.0000000 0.4823868070 0.1387778781E-16 0.4336808690E-17 193.5000000 0.4858316507 0.1387778781E-16 0.6071532166E-17 194.0000000 0.4892901652 0.000000000 0.3469446952E-17 194.5000000 0.4927618023 0.1387778781E-16 0.7806255642E-17 195.0000000 0.4962454721 0.000000000 0.8673617380E-18 195.5000000 0.4997408204 0.000000000 0.000000000 196.0000000 0.5032482451 0.1387778781E-16 0.6071532166E-17 196.5000000 0.5067679958 0.1387778781E-16 0.9540979118E-17 197.0000000 0.5102999032 0.1387778781E-16 0.9540979118E-17 197.5000000 0.5138443333 0.1387778781E-16 0.7806255642E-17 198.0000000 0.5174020523 0.1387778781E-16 0.6071532166E-17 198.5000000 0.5209732662 0.1387778781E-16 0.8673617380E-17 199.0000000 0.5245574253 0.000000000 -0.2602085214E-17 199.5000000 0.5281546206 0.1387778781E-16 0.3469446952E-17 200.0000000 0.5317657571 0.1387778781E-16 0.1127570259E-16 200.5000000 0.5353912652 0.1387778781E-16 0.6938893904E-17 201.0000000 0.5390308086 0.000000000 0.1734723476E-17 201.5000000 0.5426845477 0.1387778781E-16 0.1040834086E-16 202.0000000 0.5463535568 0.000000000 0.2168404345E-17 202.5000000 0.5500383769 0.1387778781E-16 0.8239936511E-17 203.0000000 0.5537384980 0.000000000 0.4336808690E-18 203.5000000 0.5574538095 0.1387778781E-16 0.6505213035E-17 204.0000000 0.5611852142 0.000000000 0.2602085214E-17 204.5000000 0.5649333173 0.1387778781E-16 0.3035766083E-17 205.0000000 0.5686976564 0.1387778781E-16 0.8239936511E-17 205.5000000 0.5724778672 0.000000000 -0.1301042607E-17 206.0000000 0.5762746737 0.1387778781E-16 0.1084202172E-16 206.5000000 0.5800890727 0.1387778781E-16 0.7806255642E-17 207.0000000 0.5839214406 0.1387778781E-16 0.8673617380E-17 207.5000000 0.5877716420 0.1387778781E-16 0.6505213035E-17 208.0000000 0.5916397217 0.1387778781E-16 0.6938893904E-17 208.5000000 0.5955262011 0.1387778781E-16 0.6071532166E-17 209.0000000 0.5994319270 0.1387778781E-16 0.1734723476E-17 209.5000000 0.6033577127 0.1387778781E-16 0.1019150042E-16 210.0000000 0.6073040426 0.1387778781E-16 0.1951563910E-17 210.5000000 0.6112710270 0.000000000 -0.4336808690E-18 211.0000000 0.6152587021 0.1387778781E-16 0.2818925648E-17 211.5000000 0.6192676556 0.1387778781E-16 0.5637851297E-17 212.0000000 0.6232992042 0.1387778781E-16 0.9540979118E-17 212.5000000 0.6273544969 0.1387778781E-16 0.9974659987E-17 213.0000000 0.6314337643 0.1387778781E-16 0.1149254303E-16 213.5000000 0.6355369901 0.1387778781E-16 0.6288372600E-17 214.0000000 0.6396650384 0.1387778781E-16 0.7264154556E-17 214.5000000 0.6438187510 0.000000000 0.7589415207E-18 215.0000000 0.6479981865 0.1387778781E-16 0.6830473687E-17 215.5000000 0.6522035576 0.1387778781E-16 0.4336808690E-17 216.0000000 0.6564356750 0.1387778781E-16 0.1051676107E-16 216.5000000 0.6606945623 0.1387778781E-16 0.3523657061E-17 217.0000000 0.6649797767 0.1387778781E-16 0.9703609444E-17 217.5000000 0.6692920830 0.000000000 -0.1111307227E-17 218.0000000 0.6736324510 0.000000000 -0.5421010862E-19 218.5000000 0.6779998443 0.1387778781E-16 0.7897735200E-17 219.0000000 0.6823926316 0.1387778781E-16 0.4743384505E-17 219.5000000 0.6868112135 0.1387778781E-16 0.3903127821E-17 220.0000000 0.6912565552 0.1387778781E-16 0.1116728238E-16 220.5000000 0.6957273247 0.1387778781E-16 0.2385244779E-17 221.0000000 0.7002211955 0.1387778781E-16 0.8998878032E-17 221.5000000 0.7047376387 0.1387778781E-16 0.1116728238E-16 222.0000000 0.7092765551 0.000000000 0.7589415207E-18 222.5000000 0.7138365558 0.1387778781E-16 0.7697835425E-17 223.0000000 0.7184164357 0.1387778781E-16 0.2493664997E-17 223.5000000 0.7230156530 0.1387778781E-16 0.5637851297E-17 224.0000000 0.7276322269 0.1387778781E-16 0.4119968255E-17 224.5000000 0.7322630264 0.1387778781E-16 0.2168404345E-17 225.0000000 0.7369072350 0.1387778781E-16 0.6938893904E-17 225.5000000 0.7415656133 0.1387778781E-16 0.3035766083E-17 226.0000000 0.7462362662 0.1387778781E-16 0.9107298249E-17 226.5000000 0.7509155655 0.1387778781E-16 0.8239936511E-17 227.0000000 0.7556028309 0.1387778781E-16 0.1279358564E-16 227.5000000 0.7602993094 0.1387778781E-16 0.1734723476E-17 228.0000000 0.7650035308 0.1387778781E-16 0.8890457814E-17 228.5000000 0.7697117994 0.1387778781E-16 -0.4336808690E-18 229.0000000 0.7744224097 0.1387778781E-16 0.1192622390E-16 229.5000000 0.7791358369 0.1387778781E-16 0.6722053469E-17 230.0000000 0.7838522354 0.1387778781E-16 0.1322726650E-16 230.5000000 0.7885707869 0.1387778781E-16 0.6505213035E-17 231.0000000 0.7932903928 0.1387778781E-16 0.1301042607E-17 231.5000000 0.7980098821 0.1387778781E-16 0.8456776945E-17 232.0000000 0.8027283243 0.1387778781E-16 0.8890457814E-17 232.5000000 0.8074454849 0.1387778781E-16 0.9324138683E-17 233.0000000 0.8121615103 0.1387778781E-16 0.5421010862E-17 233.5000000 0.8168766312 0.1387778781E-16 0.1170938346E-16 234.0000000 0.8215909719 0.1387778781E-16 0.3903127821E-17 234.5000000 0.8263043012 0.1387778781E-16 0.5204170428E-17 235.0000000 0.8310157544 0.1387778781E-16 0.1344410694E-16 235.5000000 0.8357248475 0.1387778781E-16 0.8673617380E-17 236.0000000 0.8404328251 0.1387778781E-16 0.7806255642E-17 236.5000000 0.8451416857 0.1387778781E-16 0.2255140519E-16 237.0000000 0.8498519572 0.1387778781E-16 0.1734723476E-16 237.5000000 0.8545629939 0.1387778781E-16 0.8673617380E-17 238.0000000 0.8592750100 0.1387778781E-16 0.6071532166E-17 238.5000000 0.8639888295 0.1387778781E-16 0.6505213035E-17 239.0000000 0.8687047025 0.000000000 0.000000000 239.5000000 0.8734229644 0.1387778781E-16 0.6938893904E-17 240.0000000 0.8781444294 0.1387778781E-16 0.8673617380E-17 240.5000000 0.8828697158 0.1387778781E-16 0.1647987302E-16 241.0000000 0.8875991980 0.1387778781E-16 0.3903127821E-17 241.5000000 0.8923333114 0.1387778781E-16 0.1604619215E-16 242.0000000 0.8970723456 0.1387778781E-16 0.1821459650E-16 242.5000000 0.9018171371 0.1387778781E-16 0.2125036258E-16 243.0000000 0.9065688497 0.1387778781E-16 0.2602085214E-16 243.5000000 0.9113274614 0.1387778781E-16 0.1734723476E-16 244.0000000 0.9160926004 0.2775557562E-16 0.2732189475E-16 244.5000000 0.9208657803 0.1387778781E-16 0.2558717127E-16 245.0000000 0.9256494053 0.1387778781E-16 0.1517883041E-16 245.5000000 0.9304439124 0.1387778781E-16 0.1908195824E-16 246.0000000 0.9352485497 0.2775557562E-16 0.2818925648E-16 246.5000000 0.9400642363 0.1387778781E-16 0.2688821388E-16 247.0000000 0.9448933908 0.1387778781E-16 0.2125036258E-16 247.5000000 0.9497370550 0.1387778781E-16 0.1951563910E-16 248.0000000 0.9545948090 0.1387778781E-16 0.1561251128E-16 248.5000000 0.9594676447 0.1387778781E-16 0.2341876693E-16 249.0000000 0.9643578224 0.1387778781E-16 0.1864827737E-16 249.5000000 0.9692657959 0.1387778781E-16 0.2168404345E-16 250.0000000 0.9741908752 0.2775557562E-16 0.2667137344E-16 250.5000000 0.9791336499 0.1387778781E-16 0.2298508606E-16 251.0000000 0.9840939633 0.2775557562E-16 0.2732189475E-16 251.5000000 0.9890697607 0.1387778781E-16 0.1647987302E-16 252.0000000 0.9940609774 0.2775557562E-16 0.2753873518E-16 252.5000000 0.9990698852 0.2775557562E-16 0.2818925648E-16 253.0000000 1.004095930 0.2775557562E-16 0.2862293735E-16 253.5000000 1.009135346 0.2775557562E-16 0.2862293735E-16 254.0000000 1.014185922 0.1387778781E-16 0.2081668171E-16 254.5000000 1.019247475 0.1387778781E-16 0.2276824562E-16 255.0000000 1.024318482 0.1387778781E-16 0.1734723476E-16 255.5000000 1.029396031 0.1387778781E-16 0.1843143693E-16 256.0000000 1.034477987 0.1387778781E-16 0.2081668171E-16 256.5000000 1.039562416 0.1387778781E-16 0.2580401171E-16 257.0000000 1.044646325 0.1387778781E-16 0.2558717127E-16 257.5000000 1.049726670 0.1387778781E-16 0.1821459650E-16 258.0000000 1.054801145 0.2775557562E-16 0.2808083627E-16 258.5000000 1.059867109 0.1387778781E-16 0.1626303259E-16 259.0000000 1.064921047 0.1387778781E-16 0.2569559149E-16 259.5000000 1.069959795 0.1387778781E-16 0.1658829324E-16 260.0000000 1.074981107 0.2775557562E-16 0.2699663409E-16 260.5000000 1.079982805 0.2775557562E-16 0.2667137344E-16 261.0000000 1.084961610 0.1387778781E-16 0.2309350627E-16 261.5000000 1.089914055 0.1387778781E-16 0.1810617628E-16 262.0000000 1.094838664 0.2775557562E-16 0.2970713953E-16 262.5000000 1.099735099 0.1387778781E-16 0.1761828530E-16 263.0000000 1.104601062 0.1387778781E-16 0.1784867826E-16 263.5000000 1.109432863 0.2775557562E-16 0.2923957734E-16 264.0000000 1.114229283 0.1387778781E-16 0.2512638535E-16 264.5000000 1.118991124 0.1387778781E-16 0.2146720302E-16 265.0000000 1.123717958 0.2775557562E-16 0.2683400377E-16 265.5000000 1.128408923 0.1387778781E-16 0.1718460443E-16 266.0000000 1.133064861 0.2775557562E-16 0.2786399583E-16 266.5000000 1.137687170 0.1387778781E-16 0.2287666584E-16 267.0000000 1.142276461 0.1387778781E-16 0.2482822975E-16 267.5000000 1.146833260 0.1387778781E-16 0.1788933585E-16 268.0000000 1.151358969 0.2775557562E-16 0.2797241605E-16 268.5000000 1.155856434 0.1387778781E-16 0.1843143693E-16 269.0000000 1.160328865 0.1387778781E-16 0.1713039433E-16 269.5000000 1.164778180 0.1387778781E-16 0.2125036258E-16 270.0000000 1.169205665 0.2775557562E-16 0.2537033084E-16 270.5000000 1.173613734 0.1387778781E-16 0.1691355389E-16 271.0000000 1.178005926 0.2775557562E-16 0.2797241605E-16 271.5000000 1.182385508 0.2775557562E-16 0.2623769257E-16 272.0000000 1.186754409 0.2775557562E-16 0.2732189475E-16 272.5000000 1.191114016 0.1387778781E-16 0.2081668171E-16 273.0000000 1.195466625 0.1387778781E-16 0.1908195824E-16 273.5000000 1.199814789 0.1387778781E-16 0.1864827737E-16 274.0000000 1.204160484 0.1387778781E-16 0.1908195824E-16 274.5000000 1.208505789 0.1387778781E-16 0.2385244779E-16 275.0000000 1.212853358 0.2775557562E-16 0.2992397996E-16 275.5000000 1.217205712 0.1387778781E-16 0.1778091563E-16 276.0000000 1.221564603 0.2775557562E-16 0.2992397996E-16 276.5000000 1.225930625 0.2775557562E-16 0.2818925648E-16 277.0000000 1.230304753 0.2775557562E-16 0.3079134170E-16 277.5000000 1.234689790 0.2775557562E-16 0.2645453301E-16 278.0000000 1.239087448 0.2775557562E-16 0.2905661822E-16 278.5000000 1.243497382 0.5551115123E-16 0.3989863995E-16 279.0000000 1.247920722 0.4857225733E-16 0.4597017211E-16 279.5000000 1.252359969 0.5551115123E-16 0.3903127821E-16 280.0000000 1.256815375 0.4857225733E-16 0.4857225733E-16 280.5000000 1.261286087 0.4163336342E-16 0.4943961907E-16 281.0000000 1.265773007 0.4857225733E-16 0.4683753385E-16 281.5000000 1.270277289 0.4857225733E-16 0.4857225733E-16 282.0000000 1.274798304 0.4163336342E-16 0.3816391647E-16 282.5000000 1.279334835 0.4857225733E-16 0.4510281038E-16 283.0000000 1.283886913 0.4857225733E-16 0.4336808690E-16 283.5000000 1.288454978 0.4857225733E-16 0.4683753385E-16 284.0000000 1.293037829 0.4163336342E-16 0.5030698080E-16 284.5000000 1.297632930 0.5551115123E-16 0.5551115123E-16 285.0000000 1.302238614 0.5551115123E-16 0.5377642776E-16 285.5000000 1.306853804 0.5551115123E-16 0.5551115123E-16 286.0000000 1.311475502 0.4857225733E-16 0.4423544864E-16 286.5000000 1.316099461 0.4857225733E-16 0.4683753385E-16 287.0000000 1.320722998 0.4857225733E-16 0.4683753385E-16 287.5000000 1.325343800 0.4163336342E-16 0.5204170428E-16 288.0000000 1.329957684 0.4163336342E-16 0.5117434254E-16 288.5000000 1.334559989 0.5551115123E-16 0.5204170428E-16 289.0000000 1.339146112 0.4857225733E-16 0.4510281038E-16 289.5000000 1.343711472 0.4857225733E-16 0.4683753385E-16 290.0000000 1.348252613 0.4857225733E-16 0.4163336342E-16 290.5000000 1.352765978 0.4857225733E-16 0.4683753385E-16 291.0000000 1.357246711 0.4163336342E-16 0.3816391647E-16 291.5000000 1.361690700 0.5551115123E-16 0.5551115123E-16 292.0000000 1.366094478 0.4857225733E-16 0.4857225733E-16 292.5000000 1.370453735 0.4857225733E-16 0.5204170428E-16 293.0000000 1.374764554 0.4857225733E-16 0.4163336342E-16 293.5000000 1.379023920 0.4857225733E-16 0.4510281038E-16 294.0000000 1.383229412 0.4857225733E-16 0.4510281038E-16 294.5000000 1.387379297 0.4857225733E-16 0.4336808690E-16 295.0000000 1.391471584 0.5551115123E-16 0.5551115123E-16 295.5000000 1.395504101 0.4857225733E-16 0.4857225733E-16 296.0000000 1.399476826 0.4857225733E-16 0.4683753385E-16 296.5000000 1.403391556 0.4857225733E-16 0.5204170428E-16 297.0000000 1.407249570 0.5551115123E-16 0.5551115123E-16 297.5000000 1.411050984 0.4857225733E-16 0.4163336342E-16 298.0000000 1.414797183 0.4857225733E-16 0.5377642776E-16 298.5000000 1.418491933 0.4857225733E-16 0.4857225733E-16 299.0000000 1.422138306 0.4857225733E-16 0.4510281038E-16 299.5000000 1.425737652 0.4857225733E-16 0.4336808690E-16 300.0000000 1.429292420 0.4857225733E-16 0.5204170428E-16 300.5000000 1.432805943 0.4857225733E-16 0.4510281038E-16 301.0000000 1.436281005 0.4857225733E-16 0.5204170428E-16 301.5000000 1.439721196 0.4857225733E-16 0.4163336342E-16 302.0000000 1.443131165 0.4857225733E-16 0.4163336342E-16 302.5000000 1.446514121 0.4857225733E-16 0.5204170428E-16 303.0000000 1.449871515 0.4857225733E-16 0.4857225733E-16 303.5000000 1.453205749 0.4857225733E-16 0.4163336342E-16 304.0000000 1.456520689 0.4857225733E-16 0.4510281038E-16 304.5000000 1.459818647 0.4857225733E-16 0.4163336342E-16 305.0000000 1.463100845 0.4857225733E-16 0.4510281038E-16 305.5000000 1.466369423 0.5551115123E-16 0.5551115123E-16 306.0000000 1.469625544 0.5551115123E-16 0.5551115123E-16 306.5000000 1.472869438 0.5551115123E-16 0.5551115123E-16 307.0000000 1.476103074 0.5551115123E-16 0.5551115123E-16 307.5000000 1.479327642 0.5551115123E-16 0.5551115123E-16 308.0000000 1.482542145 0.5551115123E-16 0.5551115123E-16 308.5000000 1.485747189 0.5551115123E-16 0.5551115123E-16 309.0000000 1.488944134 0.5551115123E-16 0.5551115123E-16 309.5000000 1.492132596 0.4857225733E-16 0.5898059818E-16 310.0000000 1.495312643 0.5551115123E-16 0.5551115123E-16 310.5000000 1.498483769 0.5551115123E-16 0.5551115123E-16 311.0000000 1.501644262 0.5551115123E-16 0.5551115123E-16 311.5000000 1.504794140 0.5551115123E-16 0.5551115123E-16 312.0000000 1.507932057 0.4857225733E-16 0.5898059818E-16 312.5000000 1.511054754 0.5551115123E-16 0.5551115123E-16 313.0000000 1.514161157 0.5551115123E-16 0.5551115123E-16 313.5000000 1.517248596 0.4857225733E-16 0.5898059818E-16 314.0000000 1.520313667 0.5551115123E-16 0.5551115123E-16 314.5000000 1.523355819 0.5551115123E-16 0.5551115123E-16 315.0000000 1.526371535 0.5551115123E-16 0.5551115123E-16 315.5000000 1.529356824 0.5551115123E-16 0.5551115123E-16 316.0000000 1.532311777 0.4857225733E-16 0.5898059818E-16 316.5000000 1.535234340 0.5551115123E-16 0.5551115123E-16 317.0000000 1.538120278 0.5551115123E-16 0.5551115123E-16 317.5000000 1.540966443 0.4857225733E-16 0.5898059818E-16 318.0000000 1.543770870 0.4857225733E-16 0.5898059818E-16 318.5000000 1.546532244 0.5551115123E-16 0.5551115123E-16 319.0000000 1.549246562 0.5551115123E-16 0.5551115123E-16 319.5000000 1.551911207 0.5551115123E-16 0.5551115123E-16 320.0000000 1.554527815 0.5551115123E-16 0.5551115123E-16 320.5000000 1.557095695 0.5551115123E-16 0.5551115123E-16 321.0000000 1.559614676 0.5551115123E-16 0.5551115123E-16 321.5000000 1.562086242 0.5551115123E-16 0.5204170428E-16 322.0000000 1.564508507 0.5551115123E-16 0.5551115123E-16 322.5000000 1.566881820 0.5551115123E-16 0.5551115123E-16 323.0000000 1.569210601 0.5551115123E-16 0.5551115123E-16 323.5000000 1.571497018 0.5551115123E-16 0.5551115123E-16 324.0000000 1.573741833 0.5551115123E-16 0.5551115123E-16 324.5000000 1.575948284 0.5551115123E-16 0.5898059818E-16 325.0000000 1.578120536 0.5551115123E-16 0.5551115123E-16 325.5000000 1.580259362 0.5551115123E-16 0.5551115123E-16 326.0000000 1.582365312 0.5551115123E-16 0.5551115123E-16 326.5000000 1.584443558 0.5551115123E-16 0.5551115123E-16 327.0000000 1.586497238 0.5551115123E-16 0.5551115123E-16 327.5000000 1.588525484 0.5551115123E-16 0.5551115123E-16 328.0000000 1.590529569 0.5551115123E-16 0.5551115123E-16 328.5000000 1.592512374 0.5898059818E-16 0.5204170428E-16 329.0000000 1.594474018 0.5551115123E-16 0.5551115123E-16 329.5000000 1.596412243 0.5204170428E-16 0.5898059818E-16 330.0000000 1.598326445 0.5204170428E-16 0.5898059818E-16 330.5000000 1.600217105 0.5204170428E-16 0.5898059818E-16 331.0000000 1.602082681 0.5551115123E-16 0.5551115123E-16 331.5000000 1.603921456 0.5204170428E-16 0.5898059818E-16 332.0000000 1.605732025 0.5551115123E-16 0.5551115123E-16 332.5000000 1.607512330 0.5551115123E-16 0.5551115123E-16 333.0000000 1.609260746 0.5898059818E-16 0.5204170428E-16 333.5000000 1.610975302 0.5551115123E-16 0.5551115123E-16 334.0000000 1.612653445 0.5898059818E-16 0.5204170428E-16 334.5000000 1.614293745 0.5898059818E-16 0.5204170428E-16 335.0000000 1.615896224 0.5551115123E-16 0.5551115123E-16 335.5000000 1.617460048 0.5551115123E-16 0.5551115123E-16 336.0000000 1.618984105 0.5551115123E-16 0.5551115123E-16 336.5000000 1.620469317 0.5551115123E-16 0.5551115123E-16 337.0000000 1.621916001 0.5551115123E-16 0.5551115123E-16 337.5000000 1.623322319 0.5551115123E-16 0.5551115123E-16 338.0000000 1.624687006 0.5551115123E-16 0.5551115123E-16 338.5000000 1.626010216 0.5898059818E-16 0.5204170428E-16 339.0000000 1.627292258 0.5551115123E-16 0.5551115123E-16 339.5000000 1.628532243 0.5551115123E-16 0.5551115123E-16 340.0000000 1.629729536 0.5551115123E-16 0.5551115123E-16 340.5000000 1.630883937 0.5551115123E-16 0.5551115123E-16 341.0000000 1.631993304 0.5551115123E-16 0.5551115123E-16 341.5000000 1.633055442 0.5898059818E-16 0.5204170428E-16 342.0000000 1.634069980 0.5551115123E-16 0.5551115123E-16 342.5000000 1.635036015 0.5551115123E-16 0.5551115123E-16 343.0000000 1.635952185 0.5551115123E-16 0.5551115123E-16 343.5000000 1.636819559 0.5551115123E-16 0.5551115123E-16 344.0000000 1.637638735 0.5551115123E-16 0.5551115123E-16 344.5000000 1.638406629 0.5898059818E-16 0.5204170428E-16 345.0000000 1.639122985 0.5898059818E-16 0.5204170428E-16 345.5000000 1.639792688 0.5551115123E-16 0.5551115123E-16 346.0000000 1.640418892 0.5898059818E-16 0.5204170428E-16 346.5000000 1.641003306 0.5204170428E-16 0.5898059818E-16 347.0000000 1.641551226 0.5551115123E-16 0.5551115123E-16 347.5000000 1.642068150 0.5551115123E-16 0.5551115123E-16 348.0000000 1.642556173 0.5551115123E-16 0.5551115123E-16 348.5000000 1.643018072 0.5551115123E-16 0.5551115123E-16 349.0000000 1.643457609 0.5551115123E-16 0.5551115123E-16 349.5000000 1.643876797 0.5204170428E-16 0.5898059818E-16 350.0000000 1.644277794 0.5898059818E-16 0.5204170428E-16 350.5000000 1.644661305 0.5551115123E-16 0.5551115123E-16 351.0000000 1.645027196 0.5898059818E-16 0.5204170428E-16 351.5000000 1.645375976 0.5551115123E-16 0.5551115123E-16 352.0000000 1.645705698 0.5551115123E-16 0.5551115123E-16 352.5000000 1.646014844 0.5204170428E-16 0.5898059818E-16 353.0000000 1.646300627 0.5551115123E-16 0.5551115123E-16 353.5000000 1.646556957 0.5898059818E-16 0.5204170428E-16 354.0000000 1.646780925 0.5551115123E-16 0.5551115123E-16 354.5000000 1.646968083 0.5204170428E-16 0.5898059818E-16 355.0000000 1.647111815 0.5551115123E-16 0.5551115123E-16 355.5000000 1.647208321 0.5551115123E-16 0.5551115123E-16 356.0000000 1.647251244 0.5204170428E-16 0.5898059818E-16 356.5000000 1.647235003 0.5898059818E-16 0.5204170428E-16 357.0000000 1.647157425 0.5551115123E-16 0.5551115123E-16 357.5000000 1.647015124 0.5551115123E-16 0.5551115123E-16 358.0000000 1.646804524 0.5204170428E-16 0.5898059818E-16 358.5000000 1.646525063 0.5551115123E-16 0.5551115123E-16 359.0000000 1.646177288 0.5898059818E-16 0.5204170428E-16 359.5000000 1.645758703 0.5204170428E-16 0.5898059818E-16 360.0000000 1.645269903 0.5551115123E-16 0.5551115123E-16 360.5000000 1.644713091 0.5898059818E-16 0.5204170428E-16 361.0000000 1.644089665 0.5551115123E-16 0.5551115123E-16 361.5000000 1.643403247 0.5551115123E-16 0.5551115123E-16 362.0000000 1.642656850 0.5898059818E-16 0.5204170428E-16 362.5000000 1.641854103 0.5204170428E-16 0.5898059818E-16 363.0000000 1.640998263 0.5898059818E-16 0.5204170428E-16 363.5000000 1.640092331 0.5898059818E-16 0.5204170428E-16 364.0000000 1.639140875 0.5551115123E-16 0.5551115123E-16 364.5000000 1.638149444 0.5551115123E-16 0.5551115123E-16 365.0000000 1.637120368 0.5898059818E-16 0.5204170428E-16 365.5000000 1.636055072 0.5551115123E-16 0.5551115123E-16 366.0000000 1.634958552 0.5551115123E-16 0.5551115123E-16 366.5000000 1.633833633 0.5204170428E-16 0.5898059818E-16 367.0000000 1.632681995 0.5898059818E-16 0.5204170428E-16 367.5000000 1.631507767 0.5551115123E-16 0.5551115123E-16 368.0000000 1.630312947 0.5551115123E-16 0.5551115123E-16 368.5000000 1.629098751 0.5551115123E-16 0.5551115123E-16 369.0000000 1.627866747 0.5551115123E-16 0.5551115123E-16 369.5000000 1.626616663 0.5551115123E-16 0.5551115123E-16 370.0000000 1.625350196 0.5204170428E-16 0.5898059818E-16 370.5000000 1.624068143 0.5551115123E-16 0.5551115123E-16 371.0000000 1.622771857 0.5898059818E-16 0.5204170428E-16 371.5000000 1.621460776 0.5898059818E-16 0.5204170428E-16 372.0000000 1.620131598 0.5551115123E-16 0.5551115123E-16 372.5000000 1.618786928 0.5551115123E-16 0.5551115123E-16 373.0000000 1.617429036 0.5551115123E-16 0.5551115123E-16 373.5000000 1.616055355 0.5898059818E-16 0.5204170428E-16 374.0000000 1.614663989 0.5551115123E-16 0.5551115123E-16 374.5000000 1.613252327 0.5551115123E-16 0.5551115123E-16 375.0000000 1.611818985 0.5204170428E-16 0.5898059818E-16 375.5000000 1.610362058 0.5551115123E-16 0.5551115123E-16 376.0000000 1.608876055 0.5551115123E-16 0.5551115123E-16 376.5000000 1.607358211 0.5551115123E-16 0.5551115123E-16 377.0000000 1.605804481 0.5898059818E-16 0.5204170428E-16 377.5000000 1.604208500 0.5551115123E-16 0.5551115123E-16 378.0000000 1.602564231 0.5204170428E-16 0.5898059818E-16 378.5000000 1.600867672 0.5551115123E-16 0.5551115123E-16 379.0000000 1.599111162 0.5551115123E-16 0.5551115123E-16 379.5000000 1.597288094 0.5898059818E-16 0.5204170428E-16 380.0000000 1.595393885 0.5204170428E-16 0.5898059818E-16 380.5000000 1.593420778 0.5551115123E-16 0.5551115123E-16 381.0000000 1.591363573 0.5204170428E-16 0.5898059818E-16 381.5000000 1.589216343 0.5551115123E-16 0.5551115123E-16 382.0000000 1.586972079 0.5898059818E-16 0.5204170428E-16 382.5000000 1.584628771 0.5551115123E-16 0.5551115123E-16 383.0000000 1.582183330 0.5204170428E-16 0.5898059818E-16 383.5000000 1.579630327 0.5204170428E-16 0.5898059818E-16 384.0000000 1.576972276 0.5898059818E-16 0.5204170428E-16 384.5000000 1.574208463 0.5204170428E-16 0.5898059818E-16 385.0000000 1.571336961 0.5551115123E-16 0.5551115123E-16 385.5000000 1.568361818 0.5551115123E-16 0.5551115123E-16 386.0000000 1.565284991 0.5898059818E-16 0.5204170428E-16 386.5000000 1.562107087 0.5898059818E-16 0.5204170428E-16 387.0000000 1.558829942 0.5551115123E-16 0.5551115123E-16 387.5000000 1.555453203 0.5204170428E-16 0.5898059818E-16 388.0000000 1.551975367 0.5204170428E-16 0.5898059818E-16 388.5000000 1.548396237 0.5551115123E-16 0.5551115123E-16 389.0000000 1.544713359 0.5898059818E-16 0.5204170428E-16 389.5000000 1.540925012 0.5551115123E-16 0.5551115123E-16 390.0000000 1.537029827 0.5551115123E-16 0.5551115123E-16 390.5000000 1.533026725 0.5898059818E-16 0.5204170428E-16 391.0000000 1.528919370 0.5551115123E-16 0.5551115123E-16 391.5000000 1.524708041 0.5551115123E-16 0.5551115123E-16 392.0000000 1.520395778 0.5551115123E-16 0.5551115123E-16 392.5000000 1.515991651 0.5551115123E-16 0.5551115123E-16 393.0000000 1.511501029 0.5898059818E-16 0.5204170428E-16 393.5000000 1.506932546 0.5898059818E-16 0.5204170428E-16 394.0000000 1.502296656 0.5551115123E-16 0.5551115123E-16 394.5000000 1.497599241 0.5551115123E-16 0.5551115123E-16 395.0000000 1.492848513 0.5898059818E-16 0.5204170428E-16 395.5000000 1.488051518 0.5898059818E-16 0.5204170428E-16 396.0000000 1.483214205 0.5551115123E-16 0.5724587471E-16 396.5000000 1.478339807 0.5204170428E-16 0.5724587471E-16 397.0000000 1.473431483 0.5898059818E-16 0.5204170428E-16 397.5000000 1.468493100 0.4510281038E-16 0.4683753385E-16 398.0000000 1.463526395 0.4857225733E-16 0.4683753385E-16 398.5000000 1.458528891 0.4510281038E-16 0.4683753385E-16 399.0000000 1.453502843 0.4857225733E-16 0.4683753385E-16 399.5000000 1.448449960 0.4857225733E-16 0.5030698080E-16 400.0000000 1.443370507 0.5204170428E-16 0.4857225733E-16 400.5000000 1.438262939 0.4857225733E-16 0.4683753385E-16 401.0000000 1.433126526 0.4857225733E-16 0.4683753385E-16 401.5000000 1.427960142 0.4857225733E-16 0.5204170428E-16 402.0000000 1.422761488 0.4857225733E-16 0.4683753385E-16 402.5000000 1.417528634 0.5204170428E-16 0.5030698080E-16 403.0000000 1.412262155 0.4857225733E-16 0.4683753385E-16 403.5000000 1.406962398 0.4510281038E-16 0.4683753385E-16 404.0000000 1.401630433 0.4857225733E-16 0.4683753385E-16 404.5000000 1.396270604 0.5204170428E-16 0.5030698080E-16 405.0000000 1.390887768 0.4857225733E-16 0.4683753385E-16 405.5000000 1.385486110 0.4857225733E-16 0.4683753385E-16 406.0000000 1.380065448 0.4857225733E-16 0.4683753385E-16 406.5000000 1.374629486 0.4857225733E-16 0.4683753385E-16 407.0000000 1.369178166 0.4857225733E-16 0.4683753385E-16 407.5000000 1.363705232 0.4510281038E-16 0.4857225733E-16 408.0000000 1.358202993 0.4857225733E-16 0.5030698080E-16 408.5000000 1.352661651 0.4857225733E-16 0.4510281038E-16 409.0000000 1.347069763 0.4163336342E-16 0.4163336342E-16 409.5000000 1.341417552 0.4163336342E-16 0.4163336342E-16 410.0000000 1.335691893 0.4163336342E-16 0.4163336342E-16 410.5000000 1.329881996 0.4163336342E-16 0.4336808690E-16 411.0000000 1.323980034 0.4163336342E-16 0.4336808690E-16 411.5000000 1.317976522 0.4510281038E-16 0.3989863995E-16 412.0000000 1.311865094 0.4163336342E-16 0.4163336342E-16 412.5000000 1.305639913 0.4163336342E-16 0.4336808690E-16 413.0000000 1.299297237 0.4510281038E-16 0.3989863995E-16 413.5000000 1.292831557 0.3816391647E-16 0.4336808690E-16 414.0000000 1.286240523 0.4163336342E-16 0.4163336342E-16 414.5000000 1.279520903 0.4163336342E-16 0.4163336342E-16 415.0000000 1.272670623 0.3816391647E-16 0.4336808690E-16 415.5000000 1.265688586 0.4510281038E-16 0.3989863995E-16 416.0000000 1.258573581 0.4510281038E-16 0.3989863995E-16 416.5000000 1.251331285 0.3816391647E-16 0.4336808690E-16 417.0000000 1.243967159 0.4163336342E-16 0.4336808690E-16 417.5000000 1.236489074 0.4163336342E-16 0.4163336342E-16 418.0000000 1.228906923 0.4510281038E-16 0.3989863995E-16 418.5000000 1.221232440 0.4163336342E-16 0.4163336342E-16 419.0000000 1.213477144 0.4163336342E-16 0.4163336342E-16 419.5000000 1.205647168 0.4163336342E-16 0.3989863995E-16 420.0000000 1.197748986 0.4163336342E-16 0.4163336342E-16 420.5000000 1.189787414 0.3469446952E-16 0.3469446952E-16 421.0000000 1.181763817 0.3469446952E-16 0.3642919300E-16 421.5000000 1.173676448 0.3122502257E-16 0.3295974604E-16 422.0000000 1.165520516 0.3469446952E-16 0.3295974604E-16 422.5000000 1.157294115 0.3469446952E-16 0.3469446952E-16 423.0000000 1.148995390 0.3122502257E-16 0.3295974604E-16 423.5000000 1.140626738 0.3122502257E-16 0.3382710778E-16 424.0000000 1.132187109 0.3122502257E-16 0.3295974604E-16 424.5000000 1.123680047 0.2775557562E-16 0.2775557562E-16 425.0000000 1.115108870 0.3122502257E-16 0.3122502257E-16 425.5000000 1.106472941 0.3122502257E-16 0.3209238431E-16 426.0000000 1.097772297 0.3122502257E-16 0.3295974604E-16 426.5000000 1.089003824 0.3122502257E-16 0.3382710778E-16 427.0000000 1.080166286 0.3122502257E-16 0.3295974604E-16 427.5000000 1.071254293 0.3122502257E-16 0.3382710778E-16 428.0000000 1.062256879 0.3122502257E-16 0.3209238431E-16 428.5000000 1.053167671 0.3469446952E-16 0.3122502257E-16 429.0000000 1.043971758 0.3122502257E-16 0.2949029909E-16 429.5000000 1.034660441 0.3122502257E-16 0.3469446952E-16 430.0000000 1.025221280 0.3122502257E-16 0.2949029909E-16 430.5000000 1.015641043 0.3122502257E-16 0.3469446952E-16 431.0000000 1.005914204 0.3122502257E-16 0.3122502257E-16 431.5000000 0.9960292865 0.3122502257E-16 0.3209238431E-16 432.0000000 0.9859825741 0.3122502257E-16 0.3122502257E-16 432.5000000 0.9757736669 0.3122502257E-16 0.3382710778E-16 433.0000000 0.9654085437 0.3122502257E-16 0.3295974604E-16 433.5000000 0.9549000674 0.2775557562E-16 0.2775557562E-16 434.0000000 0.9442650985 0.2775557562E-16 0.2688821388E-16 434.5000000 0.9335249536 0.2775557562E-16 0.2688821388E-16 435.0000000 0.9227016787 0.2775557562E-16 0.2775557562E-16 435.5000000 0.9118198402 0.2775557562E-16 0.2688821388E-16 436.0000000 0.9008992472 0.2602085214E-16 0.2949029909E-16 436.5000000 0.8899555836 0.2775557562E-16 0.2688821388E-16 437.0000000 0.8789986318 0.2775557562E-16 0.2862293735E-16 437.5000000 0.8680337565 0.2775557562E-16 0.2775557562E-16 438.0000000 0.8570607223 0.2775557562E-16 0.2862293735E-16 438.5000000 0.8460778522 0.2775557562E-16 0.2775557562E-16 439.0000000 0.8350823415 0.2949029909E-16 0.2688821388E-16 439.5000000 0.8240674354 0.2775557562E-16 0.2775557562E-16 440.0000000 0.8130271318 0.2602085214E-16 0.2862293735E-16 440.5000000 0.8019529737 0.2775557562E-16 0.2775557562E-16 441.0000000 0.7908351153 0.2775557562E-16 0.2688821388E-16 441.5000000 0.7796636397 0.2775557562E-16 0.2775557562E-16 442.0000000 0.7684263708 0.2775557562E-16 0.2862293735E-16 442.5000000 0.7571108906 0.2949029909E-16 0.2602085214E-16 443.0000000 0.7457081259 0.2949029909E-16 0.2602085214E-16 443.5000000 0.7342126755 0.2428612866E-16 0.2602085214E-16 444.0000000 0.7226216222 0.2428612866E-16 0.2515349040E-16 444.5000000 0.7109337745 0.2428612866E-16 0.2341876693E-16 445.0000000 0.6991530017 0.2428612866E-16 0.2255140519E-16 445.5000000 0.6872827785 0.2428612866E-16 0.2515349040E-16 446.0000000 0.6753244053 0.2428612866E-16 0.2341876693E-16 446.5000000 0.6632773985 0.2081668171E-16 0.1994931997E-16 447.0000000 0.6511336301 0.1908195824E-16 0.2168404345E-16 447.5000000 0.6388853328 0.2255140519E-16 0.1994931997E-16 448.0000000 0.6265245270 0.1908195824E-16 0.2168404345E-16 448.5000000 0.6140420535 0.2081668171E-16 0.2168404345E-16 449.0000000 0.6014370165 0.2081668171E-16 0.2168404345E-16 449.5000000 0.5887062861 0.2081668171E-16 0.1994931997E-16 450.0000000 0.5758535858 0.1561251128E-16 0.1734723476E-16 450.5000000 0.5628870190 0.1734723476E-16 0.1734723476E-16 451.0000000 0.5498068807 0.1734723476E-16 0.1734723476E-16 451.5000000 0.5366155248 0.1561251128E-16 0.1647987302E-16 452.0000000 0.5233059880 0.1387778781E-16 0.1387778781E-16 452.5000000 0.5098726484 0.1387778781E-16 0.1387778781E-16 453.0000000 0.4963079190 0.1561251128E-16 0.1301042607E-16 453.5000000 0.4826022858 0.1387778781E-16 0.1387778781E-16 454.0000000 0.4687535365 0.1387778781E-16 0.1387778781E-16 454.5000000 0.4547634931 0.1561251128E-16 0.1301042607E-16 455.0000000 0.4406369909 0.1387778781E-16 0.1387778781E-16 455.5000000 0.4263887322 0.1214306433E-16 0.1474514955E-16 456.0000000 0.4120367806 0.1387778781E-16 0.1387778781E-16 456.5000000 0.3976027973 0.1387778781E-16 0.1387778781E-16 457.0000000 0.3831126153 0.1387778781E-16 0.1387778781E-16 457.5000000 0.3685924455 0.1387778781E-16 0.1387778781E-16 458.0000000 0.3540696511 0.1387778781E-16 0.1387778781E-16 458.5000000 0.3395664388 0.1387778781E-16 0.1387778781E-16 459.0000000 0.3250973964 0.1387778781E-16 0.1387778781E-16 459.5000000 0.3106688544 0.8673617380E-17 0.9540979118E-17 460.0000000 0.2962732227 0.9540979118E-17 0.8673617380E-17 460.5000000 0.2818838442 0.9540979118E-17 0.8673617380E-17 461.0000000 0.2674658896 0.6071532166E-17 0.7806255642E-17 461.5000000 0.2529795225 0.6938893904E-17 0.6938893904E-17 462.0000000 0.2383818803 0.6938893904E-17 0.6938893904E-17 462.5000000 0.2236374467 0.6938893904E-17 0.6938893904E-17 463.0000000 0.2087224230 0.6938893904E-17 0.6938893904E-17 463.5000000 0.1936324061 0.6938893904E-17 0.6938893904E-17 464.0000000 0.1783794027 0.7806255642E-17 0.6071532166E-17 464.5000000 0.1629883110 0.6938893904E-17 0.6938893904E-17 465.0000000 0.1474900871 0.5204170428E-17 0.6071532166E-17 465.5000000 0.1319180048 0.6071532166E-17 0.5204170428E-17 466.0000000 0.1162991736 0.6071532166E-17 0.5204170428E-17 466.5000000 0.1006525015 0.4336808690E-18 0.1734723476E-17 467.0000000 0.8498907818E-01 0.1734723476E-17 0.8673617380E-18 467.5000000 0.6930881135E-01 0.8673617380E-18 0.1734723476E-17 468.0000000 0.5360126484E-01 0.8673617380E-18 0.1734723476E-17 468.5000000 0.3785523328E-01 0.8673617380E-18 0.1734723476E-17 469.0000000 0.2205205860E-01 0.8673617380E-18 0.1734723476E-17 469.5000000 0.6181582994E-02 0.1301042607E-17 0.8673617380E-18 470.0000000 -0.9775307828E-02 -0.4336808690E-18 0.000000000 470.5000000 -0.2582989316E-01 -0.8673617380E-18 -0.1734723476E-17 471.0000000 -0.4199507547E-01 -0.8673617380E-18 -0.1734723476E-17 471.5000000 -0.5828149701E-01 -0.1301042607E-17 -0.8673617380E-18 472.0000000 -0.7469721012E-01 -0.1301042607E-17 -0.8673617380E-18 472.5000000 -0.9124301681E-01 -0.2385244779E-17 -0.1734723476E-17 473.0000000 -0.1079158330 -0.5421010862E-17 -0.5204170428E-17 473.5000000 -0.1247071007 -0.5854691731E-17 -0.6071532166E-17 474.0000000 -0.1416015496 -0.5312590645E-17 -0.5204170428E-17 474.5000000 -0.1585754131 -0.5421010862E-17 -0.6071532166E-17 475.0000000 -0.1756033706 -0.6342582709E-17 -0.6071532166E-17 475.5000000 -0.1926576098 -0.6884683795E-17 -0.6938893904E-17 476.0000000 -0.2097170946 -0.7372574773E-17 -0.6071532166E-17 476.5000000 -0.2267741384 -0.7016820935E-17 -0.6938893904E-17 477.0000000 -0.2438360339 -0.7521652572E-17 -0.7806255642E-17 477.5000000 -0.2609202318 -0.7589415207E-17 -0.7806255642E-17 478.0000000 -0.2780542673 -0.8619407271E-17 -0.8673617380E-17 478.5000000 -0.2952705092 -0.8510987054E-17 -0.8673617380E-17 479.0000000 -0.3125968778 -0.8998878032E-17 -0.8673617380E-17 479.5000000 -0.3300532115 -0.1230569466E-16 -0.1214306433E-16 480.0000000 -0.3476488065 -0.1257674520E-16 -0.1301042607E-16 480.5000000 -0.3653841645 -0.1257674520E-16 -0.1301042607E-16 481.0000000 -0.3832476782 -0.1355252716E-16 -0.1301042607E-16 481.5000000 -0.4012282311 -0.1387778781E-16 -0.1387778781E-16 482.0000000 -0.4193189273 -0.1344410694E-16 -0.1387778781E-16 482.5000000 -0.4375112312 -0.1387778781E-16 -0.1387778781E-16 483.0000000 -0.4558080004 -0.1474514955E-16 -0.1561251128E-16 483.5000000 -0.4742091932 -0.1409462824E-16 -0.1474514955E-16 484.0000000 -0.4927214523 -0.1431146868E-16 -0.1474514955E-16 484.5000000 -0.5113484534 -0.1431146868E-16 -0.1474514955E-16 485.0000000 -0.5300974000 -0.2081668171E-16 -0.2081668171E-16 485.5000000 -0.5489737198 -0.1951563910E-16 -0.1994931997E-16 486.0000000 -0.5679780168 -0.1908195824E-16 -0.1994931997E-16 486.5000000 -0.5871032516 -0.2038300084E-16 -0.1994931997E-16 487.0000000 -0.6063287997 -0.1951563910E-16 -0.1994931997E-16 487.5000000 -0.6256259027 -0.2081668171E-16 -0.2081668171E-16 488.0000000 -0.6449596246 -0.2081668171E-16 -0.2081668171E-16 488.5000000 -0.6642929649 -0.2081668171E-16 -0.2081668171E-16 489.0000000 -0.6835960143 -0.2255140519E-16 -0.2255140519E-16 489.5000000 -0.7028568665 -0.2255140519E-16 -0.2255140519E-16 490.0000000 -0.7220836658 -0.2255140519E-16 -0.2255140519E-16 490.5000000 -0.7413012966 -0.2688821388E-16 -0.2602085214E-16 491.0000000 -0.7605417736 -0.2688821388E-16 -0.2602085214E-16 491.5000000 -0.7798385270 -0.2515349040E-16 -0.2602085214E-16 492.0000000 -0.7992195883 -0.2775557562E-16 -0.2775557562E-16 492.5000000 -0.8187067390 -0.2775557562E-16 -0.2775557562E-16 493.0000000 -0.8383193131 -0.2775557562E-16 -0.2775557562E-16 493.5000000 -0.8580761939 -0.2775557562E-16 -0.2775557562E-16 494.0000000 -0.8779879343 -0.2775557562E-16 -0.2775557562E-16 494.5000000 -0.8980529145 -0.2949029909E-16 -0.2949029909E-16 495.0000000 -0.9182488474 -0.2949029909E-16 -0.2949029909E-16 495.5000000 -0.9385280283 -0.2949029909E-16 -0.2949029909E-16 496.0000000 -0.9588236807 -0.3122502257E-16 -0.3122502257E-16 496.5000000 -0.9790641933 -0.3122502257E-16 -0.3122502257E-16 497.0000000 -0.9991944214 -0.3469446952E-16 -0.3469446952E-16 497.5000000 -1.019190295 -0.3469446952E-16 -0.3469446952E-16 498.0000000 -1.039075479 -0.3469446952E-16 -0.3469446952E-16 498.5000000 -1.058901795 -0.3469446952E-16 -0.3469446952E-16 499.0000000 -1.078734277 -0.3469446952E-16 -0.3469446952E-16 499.5000000 -1.098615734 -0.3469446952E-16 -0.3469446952E-16 elk-9.2.12/examples/TDDFT-time-evolution/Si-ramp/PaxHeaders/elk.in0000644000000000000000000000012714536061314021521 xustar0029 mtime=1702388428.91750001 29 atime=1702388428.91750001 29 ctime=1702388428.91750001 elk-9.2.12/examples/TDDFT-time-evolution/Si-ramp/elk.in0000644002504400250440000000175114536061314024243 0ustar00dewhurstdewhurst00000000000000 ! Silicon exposed to an intense, linearly increasing electric field. See the ! manual for details on the 'ramp' vector potential. This is a computationally ! expensive example that is best run with MPI on a cluster. tasks 0 450 460 ! no shifting of the atomic positions for the ground-state run tshift .false. xctype 20 highq .true. nxoapwlo 1 mixtype 3 nempty 40.0 autokpt .false. tstime 500 dtimes 0.5 ! vector potential ramp parameters ! 1 - 3 : polarisation vector (including amplitude) ! 4 : start time of ramp ! 5 : linear coefficient ! 6 - 8 : quadratic, cubic and quartic coefficients ramp 1 1.0 0.0 0.0 0.0 0.0 0.001 0.0 0.0 ngridk 12 12 12 avec 5.13 5.13 0.0 5.13 0.0 5.13 0.0 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 elk-9.2.12/examples/TDDFT-time-evolution/PaxHeaders/Si-dielectric0000644000000000000000000000013214536061314021505 xustar0030 mtime=1702388428.922500003 30 atime=1702388428.918500008 30 ctime=1702388428.922500003 elk-9.2.12/examples/TDDFT-time-evolution/Si-dielectric/0000755002504400250440000000000014536061314024304 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-time-evolution/Si-dielectric/PaxHeaders/elk.in0000644000000000000000000000013214536061314022665 xustar0030 mtime=1702388428.919500007 30 atime=1702388428.919500007 30 ctime=1702388428.919500007 elk-9.2.12/examples/TDDFT-time-evolution/Si-dielectric/elk.in0000644002504400250440000000414614536061314025414 0ustar00dewhurstdewhurst00000000000000 ! Dielectric function of silicon calculated using real-time evolution. This is ! done with task=481 which assumes that the A-field is constant in time. The ! corresponding electric field is thus proportional to a delta function at t=0 ! and its Fourier transform is a constant in frequency. ! Note that task=480 calculates the same but without assuming that the A-field ! is constant in time. This requires computing J(w)/E(w) which is numerically ! less stable than that obtained with task=481. ! Make a plot of JTOT_TD.OUT to see how the total current in the unit cell ! varies over time. tasks 0 120 121 450 460 481 ! no shifting of the atomic positions for the ground-state run tshift .false. ! enable conduction band local-orbitals lorbcnd .true. ! scissor correction works consistently for time-evolution and linear response scissor 0.0331 nempty 10 ! larger k-point set required for good convergence ngridk 8 8 8 ! the dielectric function should be check for convergence with respect to the ! total simulation time tstime 800 ! likewise convergence should be checked against the time step dtimes 0.2 ! Task 481 requires a constant A-field which should be small enough to remain ! in the linear regime. This can be done by using a laser pulse of zero ! frequency but with a full-width at half-maximum which is much larger than the ! total simulation time (tstime). The phase should be set to 90° to ensure that ! the pulse is of the form cos(ωt). ! laser pulse parameters ! 1 - 3 : polarisation vector (including amplitude) ! 4 : frequency ! 5 : phase in degrees ! 6 : chirp rate ! 7 : peak time ! 8 : full-width at half-maximum pulse 1 : number of laser pulses 0.1 0.0 0.0 0.0 90.0 0.0 0.0 10000.0 wplot 400 100 0 : nwplot, ngrkf, nswplot 0.0 0.5 : wplot avec 5.13 5.13 0.0 5.13 0.0 5.13 0.0 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 elk-9.2.12/examples/TDDFT-time-evolution/Si-dielectric/PaxHeaders/EPSILON_11.OUT0000644000000000000000000000013214536061314023565 xustar0030 mtime=1702388428.921500004 30 atime=1702388428.920500005 30 ctime=1702388428.921500004 elk-9.2.12/examples/TDDFT-time-evolution/Si-dielectric/EPSILON_11.OUT0000644002504400250440000007164114536061314026320 0ustar00dewhurstdewhurst00000000000000 0.000000000 15.18576042 0.1250000000E-02 15.18711126 0.2500000000E-02 15.19116561 0.3750000000E-02 15.19792904 0.5000000000E-02 15.20741081 0.6250000000E-02 15.21962396 0.7500000000E-02 15.23458532 0.8750000000E-02 15.25231561 0.1000000000E-01 15.27283951 0.1125000000E-01 15.29618574 0.1250000000E-01 15.32238719 0.1375000000E-01 15.35148105 0.1500000000E-01 15.38350898 0.1625000000E-01 15.41851724 0.1750000000E-01 15.45655691 0.1875000000E-01 15.49768412 0.2000000000E-01 15.54196026 0.2125000000E-01 15.58945227 0.2250000000E-01 15.64023295 0.2375000000E-01 15.69438127 0.2500000000E-01 15.75198274 0.2625000000E-01 15.81312986 0.2750000000E-01 15.87792251 0.2875000000E-01 15.94646852 0.3000000000E-01 16.01888417 0.3125000000E-01 16.09529485 0.3250000000E-01 16.17583573 0.3375000000E-01 16.26065253 0.3500000000E-01 16.34990236 0.3625000000E-01 16.44375469 0.3750000000E-01 16.54239239 0.3875000000E-01 16.64601292 0.4000000000E-01 16.75482966 0.4125000000E-01 16.86907342 0.4250000000E-01 16.98899413 0.4375000000E-01 17.11486267 0.4500000000E-01 17.24697307 0.4625000000E-01 17.38564497 0.4750000000E-01 17.53122636 0.4875000000E-01 17.68409674 0.5000000000E-01 17.84467082 0.5125000000E-01 18.01340266 0.5250000000E-01 18.19079046 0.5375000000E-01 18.37738223 0.5500000000E-01 18.57378225 0.5625000000E-01 18.78065873 0.5750000000E-01 18.99875276 0.5875000000E-01 19.22888888 0.6000000000E-01 19.47198767 0.6125000000E-01 19.72908078 0.6250000000E-01 20.00132901 0.6375000000E-01 20.29004419 0.6500000000E-01 20.59671590 0.6625000000E-01 20.92304425 0.6750000000E-01 21.27098065 0.6875000000E-01 21.64277870 0.7000000000E-01 22.04105859 0.7125000000E-01 22.46888937 0.7250000000E-01 22.92989536 0.7375000000E-01 23.42839561 0.7500000000E-01 23.96958933 0.7625000000E-01 24.55980653 0.7750000000E-01 25.20685309 0.7875000000E-01 25.92049557 0.8000000000E-01 26.71315894 0.8125000000E-01 27.60095816 0.8250000000E-01 28.60527304 0.8375000000E-01 29.75524511 0.8500000000E-01 31.09192119 0.8625000000E-01 32.67552412 0.8750000000E-01 34.59911094 0.8875000000E-01 37.01633209 0.9000000000E-01 40.20096115 0.9125000000E-01 44.62781928 0.9250000000E-01 49.34554924 0.9375000000E-01 48.07837564 0.9500000000E-01 59.09148051 0.9625000000E-01 64.72041554 0.9750000000E-01 33.17003495 0.9875000000E-01 22.96364847 0.1000000000 -4.440850441 0.1012500000 -1.998381729 0.1025000000 -5.017659658 0.1037500000 4.507270651 0.1050000000 12.72438601 0.1062500000 19.97702812 0.1075000000 24.86519392 0.1087500000 14.20735500 0.1100000000 18.66615919 0.1112500000 24.94703952 0.1125000000 31.20922261 0.1137500000 38.29129467 0.1150000000 37.70949459 0.1162500000 36.52785224 0.1175000000 43.82749780 0.1187500000 55.41124316 0.1200000000 35.41571243 0.1212500000 32.03704059 0.1225000000 50.23304134 0.1237500000 68.69460831 0.1250000000 68.90098795 0.1262500000 31.02066883 0.1275000000 42.17164350 0.1287500000 -7.840473740 0.1300000000 -6.786010378 0.1312500000 -23.87517355 0.1325000000 10.53236996 0.1337500000 12.89858687 0.1350000000 -44.51509793 0.1362500000 -58.43537486 0.1375000000 -45.03220850 0.1387500000 -57.17215656 0.1400000000 -48.84806104 0.1412500000 -45.60952801 0.1425000000 -36.48094636 0.1437500000 -28.94544224 0.1450000000 -23.64636549 0.1462500000 -21.67498301 0.1475000000 -16.86658790 0.1487500000 -14.92473365 0.1500000000 -18.31587152 0.1512500000 -14.59534169 0.1525000000 -10.83844472 0.1537500000 -7.039709941 0.1550000000 -3.135474050 0.1562500000 -9.818557784 0.1575000000 -11.37716890 0.1587500000 -7.290598739 0.1600000000 -3.474139943 0.1612500000 0.5895082265 0.1625000000 1.495901689 0.1637500000 -0.2044481080E-02 0.1650000000 5.296205903 0.1662500000 -7.357181164 0.1675000000 -10.14923499 0.1687500000 -7.049250408 0.1700000000 -4.053531190 0.1712500000 -5.196761482 0.1725000000 -1.018852251 0.1737500000 3.937526856 0.1750000000 -8.175958840 0.1762500000 -7.804291244 0.1775000000 -2.413576667 0.1787500000 0.4802762657 0.1800000000 -0.3245860490 0.1812500000 -0.8030532982 0.1825000000 -3.040966537 0.1837500000 -1.169100669 0.1850000000 1.040043690 0.1862500000 1.165873945 0.1875000000 4.202183624 0.1887500000 1.060659648 0.1900000000 0.6992377670 0.1912500000 3.246250116 0.1925000000 10.52691344 0.1937500000 3.261501871 0.1950000000 -6.479844477 0.1962500000 -13.08372314 0.1975000000 -14.22054720 0.1987500000 -10.48969122 0.2000000000 -19.45288096 0.2012500000 -23.76310491 0.2025000000 -20.68706924 0.2037500000 -18.44815745 0.2050000000 -13.82573164 0.2062500000 -14.19167416 0.2075000000 -12.30886885 0.2087500000 -12.57200150 0.2100000000 -10.08911164 0.2112500000 -8.919545160 0.2125000000 -13.94147521 0.2137500000 -13.06961909 0.2150000000 -10.18998665 0.2162500000 -7.669798134 0.2175000000 -4.872955353 0.2187500000 -3.637273939 0.2200000000 -7.343556723 0.2212500000 -6.049904328 0.2225000000 -10.52670277 0.2237500000 -11.91284481 0.2250000000 -9.072684934 0.2262500000 -11.13829704 0.2275000000 -12.96969014 0.2287500000 -11.53826852 0.2300000000 -9.383075454 0.2312500000 -7.465628874 0.2325000000 -8.780265485 0.2337500000 -9.154074440 0.2350000000 -9.577401818 0.2362500000 -10.14949493 0.2375000000 -8.710937154 0.2387500000 -7.365447664 0.2400000000 -6.227501695 0.2412500000 -7.860408726 0.2425000000 -8.042399567 0.2437500000 -7.195868870 0.2450000000 -6.153133661 0.2462500000 -5.350184196 0.2475000000 -6.141521187 0.2487500000 -6.134581649 0.2500000000 -5.003974642 0.2512500000 -4.178906736 0.2525000000 -4.214079482 0.2537500000 -5.524809135 0.2550000000 -7.239144904 0.2562500000 -6.099475240 0.2575000000 -5.033489615 0.2587500000 -4.573434513 0.2600000000 -4.210835550 0.2612500000 -5.552100652 0.2625000000 -5.626815335 0.2637500000 -4.610304681 0.2650000000 -4.297633032 0.2662500000 -3.804601737 0.2675000000 -3.093441272 0.2687500000 -3.709513514 0.2700000000 -5.169675532 0.2712500000 -6.176152142 0.2725000000 -5.669482346 0.2737500000 -4.863405797 0.2750000000 -4.329283643 0.2762500000 -3.847561963 0.2775000000 -3.565506428 0.2787500000 -3.034106679 0.2800000000 -2.356611307 0.2812500000 -2.017027671 0.2825000000 -2.868561293 0.2837500000 -3.443589375 0.2850000000 -2.593088974 0.2862500000 -3.766194469 0.2875000000 -3.090849971 0.2887500000 -2.314499226 0.2900000000 -2.747866232 0.2912500000 -2.411648314 0.2925000000 -3.455148271 0.2937500000 -4.326180894 0.2950000000 -3.223855630 0.2962500000 -2.260026181 0.2975000000 -2.815506309 0.2987500000 -2.881075708 0.3000000000 -3.106221159 0.3012500000 -2.393560085 0.3025000000 -3.802059710 0.3037500000 -3.101427531 0.3050000000 -2.030087106 0.3062500000 -4.362557483 0.3075000000 -4.158927270 0.3087500000 -3.184646411 0.3100000000 -3.148035370 0.3112500000 -2.839774649 0.3125000000 -3.269988650 0.3137500000 -3.836520342 0.3150000000 -4.648562844 0.3162500000 -3.902324524 0.3175000000 -3.194375473 0.3187500000 -3.323615098 0.3200000000 -3.008789892 0.3212500000 -3.370649804 0.3225000000 -3.387109938 0.3237500000 -3.024315453 0.3250000000 -3.170466465 0.3262500000 -2.960682159 0.3275000000 -2.852622371 0.3287500000 -2.433147774 0.3300000000 -2.281423940 0.3312500000 -2.359995613 0.3325000000 -2.273910865 0.3337500000 -2.280686390 0.3350000000 -2.147702637 0.3362500000 -2.156954393 0.3375000000 -1.837318007 0.3387500000 -1.173583147 0.3400000000 -0.8480916814 0.3412500000 -1.678775093 0.3425000000 -2.632473910 0.3437500000 -2.792493669 0.3450000000 -2.665330536 0.3462500000 -2.341573789 0.3475000000 -2.554600608 0.3487500000 -2.755490321 0.3500000000 -3.678127283 0.3512500000 -3.091437979 0.3525000000 -2.498695925 0.3537500000 -2.195690785 0.3550000000 -2.850363381 0.3562500000 -2.553490778 0.3575000000 -2.757061446 0.3587500000 -2.517373659 0.3600000000 -2.329821339 0.3612500000 -2.657539924 0.3625000000 -2.852188893 0.3637500000 -2.616196146 0.3650000000 -2.441940498 0.3662500000 -2.169312024 0.3675000000 -2.098871221 0.3687500000 -2.465639898 0.3700000000 -2.271788774 0.3712500000 -2.174632634 0.3725000000 -2.069788269 0.3737500000 -1.934582628 0.3750000000 -1.810213962 0.3762500000 -1.691637281 0.3775000000 -1.573493268 0.3787500000 -1.552881621 0.3800000000 -1.506179075 0.3812500000 -1.342140545 0.3825000000 -1.408618836 0.3837500000 -1.408460279 0.3850000000 -1.265511453 0.3862500000 -1.145803752 0.3875000000 -0.9340689510 0.3887500000 -0.9327664760 0.3900000000 -1.126752001 0.3912500000 -0.8658402988 0.3925000000 -0.6330093907 0.3937500000 -0.7673029987 0.3950000000 -1.205283605 0.3962500000 -0.8734114863 0.3975000000 -1.122659469 0.3987500000 -1.897325703 0.4000000000 -1.894970526 0.4012500000 -1.493951988 0.4025000000 -1.302033079 0.4037500000 -1.432012539 0.4050000000 -1.389376558 0.4062500000 -1.331466295 0.4075000000 -1.185416384 0.4087500000 -1.141283045 0.4100000000 -1.294300673 0.4112500000 -1.385390641 0.4125000000 -1.418795350 0.4137500000 -1.340908055 0.4150000000 -1.777271450 0.4162500000 -1.878461728 0.4175000000 -1.575163317 0.4187500000 -1.357088557 0.4200000000 -1.326594843 0.4212500000 -1.336457603 0.4225000000 -1.149328952 0.4237500000 -1.542200308 0.4250000000 -1.450968836 0.4262500000 -1.204393423 0.4275000000 -1.052134173 0.4287500000 -1.268813816 0.4300000000 -1.200622741 0.4312500000 -1.102241525 0.4325000000 -1.055090983 0.4337500000 -1.235867459 0.4350000000 -1.432734985 0.4362500000 -1.247673675 0.4375000000 -1.136016185 0.4387500000 -1.042455215 0.4400000000 -1.135562138 0.4412500000 -1.060056561 0.4425000000 -0.9792761396 0.4437500000 -1.011978951 0.4450000000 -1.041594453 0.4462500000 -0.9661916560 0.4475000000 -1.221619581 0.4487500000 -1.129387982 0.4500000000 -1.002863024 0.4512500000 -0.8897691658 0.4525000000 -0.8196640349 0.4537500000 -0.7526107701 0.4550000000 -0.8155594823 0.4562500000 -0.7089467717 0.4575000000 -0.6011528607 0.4587500000 -0.7583871459 0.4600000000 -0.8238299088 0.4612500000 -0.7737149966 0.4625000000 -1.110372784 0.4637500000 -1.049946082 0.4650000000 -1.033075715 0.4662500000 -0.9320933957 0.4675000000 -0.8357293045 0.4687500000 -0.8000361050 0.4700000000 -0.7348420410 0.4712500000 -0.7290937702 0.4725000000 -0.6929106795 0.4737500000 -0.6407560097 0.4750000000 -0.5662304149 0.4762500000 -0.4935182051 0.4775000000 -0.5210681488 0.4787500000 -0.6965120474 0.4800000000 -0.6772883561 0.4812500000 -0.7505072902 0.4825000000 -0.7980680040 0.4837500000 -0.6845523349 0.4850000000 -0.5947213449 0.4862500000 -0.5173216711 0.4875000000 -0.5385854491 0.4887500000 -0.4565431139 0.4900000000 -0.4521858599 0.4912500000 -0.5242684861 0.4925000000 -0.5297111888 0.4937500000 -0.5802628434 0.4950000000 -0.6164687393 0.4962500000 -0.5075107771 0.4975000000 -0.3949993165 0.4987500000 -0.2727473053 0.000000000 0.000000000 0.1250000000E-02 0.2162216301E-02 0.2500000000E-02 0.4327391851E-02 0.3750000000E-02 0.6498497274E-02 0.5000000000E-02 0.8678526031E-02 0.6250000000E-02 0.1087050606E-01 0.7500000000E-02 0.1307751170E-01 0.8750000000E-02 0.1530267594E-01 0.1000000000E-01 0.1754920321E-01 0.1125000000E-01 0.1982038266E-01 0.1250000000E-01 0.2211960218E-01 0.1375000000E-01 0.2445036323E-01 0.1500000000E-01 0.2681629662E-01 0.1625000000E-01 0.2922117937E-01 0.1750000000E-01 0.3166895285E-01 0.1875000000E-01 0.3416374239E-01 0.2000000000E-01 0.3670987850E-01 0.2125000000E-01 0.3931192007E-01 0.2250000000E-01 0.4197467964E-01 0.2375000000E-01 0.4470325116E-01 0.2500000000E-01 0.4750304063E-01 0.2625000000E-01 0.5037979982E-01 0.2750000000E-01 0.5333966372E-01 0.2875000000E-01 0.5638919216E-01 0.3000000000E-01 0.5953541620E-01 0.3125000000E-01 0.6278589000E-01 0.3250000000E-01 0.6614874903E-01 0.3375000000E-01 0.6963277548E-01 0.3500000000E-01 0.7324747214E-01 0.3625000000E-01 0.7700314603E-01 0.3750000000E-01 0.8091100368E-01 0.3875000000E-01 0.8498326193E-01 0.4000000000E-01 0.8923327015E-01 0.4125000000E-01 0.9367558606E-01 0.4250000000E-01 0.9832631005E-01 0.4375000000E-01 0.1032031040 0.4500000000E-01 0.1083254670 0.4625000000E-01 0.1137149911 0.4750000000E-01 0.1193956540 0.4875000000E-01 0.1253941620 0.5000000000E-01 0.1317403024 0.5125000000E-01 0.1384675558 0.5250000000E-01 0.1456135333 0.5375000000E-01 0.1532206977 0.5500000000E-01 0.1613371789 0.5625000000E-01 0.1700177503 0.5750000000E-01 0.1793250168 0.5875000000E-01 0.1893308640 0.6000000000E-01 0.2001182414 0.6125000000E-01 0.2117833681 0.6250000000E-01 0.2244384850 0.6375000000E-01 0.2382153156 0.6500000000E-01 0.2532694557 0.6625000000E-01 0.2697859960 0.6750000000E-01 0.2879867953 0.6875000000E-01 0.3081399968 0.7000000000E-01 0.3305726269 0.7125000000E-01 0.3556875011 0.7250000000E-01 0.3839862372 0.7375000000E-01 0.4161010930 0.7500000000E-01 0.4528398064 0.7625000000E-01 0.4952500280 0.7750000000E-01 0.5447140347 0.7875000000E-01 0.6030916172 0.8000000000E-01 0.6729422162 0.8125000000E-01 0.7578826610 0.8250000000E-01 0.8631880772 0.8375000000E-01 0.9968544962 0.8500000000E-01 1.171602755 0.8625000000E-01 1.408984477 0.8750000000E-01 1.748782008 0.8875000000E-01 2.274112860 0.9000000000E-01 3.195073816 0.9125000000E-01 5.227640111 0.9250000000E-01 11.32788058 0.9375000000E-01 14.12216418 0.9500000000E-01 18.65120500 0.9625000000E-01 46.39634360 0.9750000000E-01 58.42127538 0.9875000000E-01 62.13988285 0.1000000000 50.00518011 0.1012500000 31.33343190 0.1025000000 18.41485959 0.1037500000 8.986437651 0.1050000000 6.625821604 0.1062500000 7.464223892 0.1075000000 14.98383087 0.1087500000 14.85513494 0.1100000000 6.896206860 0.1112500000 5.326199803 0.1125000000 5.961245140 0.1137500000 9.800918874 0.1150000000 20.20634693 0.1162500000 15.14669420 0.1175000000 16.29886583 0.1187500000 28.04707634 0.1200000000 47.27737355 0.1212500000 24.89811581 0.1225000000 24.19169707 0.1237500000 37.29185238 0.1250000000 83.01053469 0.1262500000 73.61367889 0.1275000000 97.87786642 0.1287500000 88.08035011 0.1300000000 89.53607946 0.1312500000 53.32094992 0.1325000000 48.49271738 0.1337500000 101.0199003 0.1350000000 94.83161627 0.1362500000 60.78507357 0.1375000000 43.88114491 0.1387500000 40.37456737 0.1400000000 23.41319787 0.1412500000 14.53605869 0.1425000000 7.917342706 0.1437500000 6.040713477 0.1450000000 6.890339212 0.1462500000 5.892730566 0.1475000000 5.621530054 0.1487500000 9.836315956 0.1500000000 6.742943026 0.1512500000 3.711996147 0.1525000000 3.187582967 0.1537500000 3.911917558 0.1550000000 7.798274287 0.1562500000 14.00937011 0.1575000000 5.951640593 0.1587500000 3.585524977 0.1600000000 3.473165712 0.1612500000 5.216608871 0.1625000000 11.04394558 0.1637500000 9.251441094 0.1650000000 14.52819263 0.1662500000 23.77385533 0.1675000000 11.26927350 0.1687500000 9.646212018 0.1700000000 8.658264056 0.1712500000 9.169161867 0.1725000000 6.931054322 0.1737500000 12.98149564 0.1750000000 18.52124906 0.1762500000 7.958402894 0.1775000000 6.841874776 0.1787500000 8.957543800 0.1800000000 12.96670142 0.1812500000 11.14647433 0.1825000000 12.41754415 0.1837500000 9.084947551 0.1850000000 11.35118275 0.1862500000 11.54675740 0.1875000000 13.11162554 0.1887500000 15.12023909 0.1900000000 16.82817636 0.1912500000 12.44386613 0.1925000000 20.39124433 0.1937500000 30.44573123 0.1950000000 30.44756660 0.1962500000 30.59365405 0.1975000000 19.39023293 0.1987500000 22.53739682 0.2000000000 28.83485467 0.2012500000 14.26685806 0.2025000000 12.09366414 0.2037500000 6.747749792 0.2050000000 6.833629388 0.2062500000 7.119877269 0.2075000000 7.378768882 0.2087500000 5.644766234 0.2100000000 6.081847234 0.2112500000 8.554815368 0.2125000000 8.525462227 0.2137500000 3.800011601 0.2150000000 2.480586305 0.2162500000 2.493733434 0.2175000000 3.619316253 0.2187500000 7.899518352 0.2200000000 9.228090810 0.2212500000 8.817572987 0.2225000000 12.36299458 0.2237500000 6.693505780 0.2250000000 6.168701872 0.2262500000 9.187464272 0.2275000000 5.289709812 0.2287500000 2.991116414 0.2300000000 2.281518627 0.2312500000 3.490793411 0.2325000000 5.156426981 0.2337500000 3.764195996 0.2350000000 4.509327132 0.2362500000 2.351616449 0.2375000000 1.355273789 0.2387500000 1.329089594 0.2400000000 2.401270665 0.2412500000 3.429669156 0.2425000000 1.886758940 0.2437500000 1.122547888 0.2450000000 1.065924888 0.2462500000 1.723061672 0.2475000000 2.692693727 0.2487500000 1.377163482 0.2500000000 1.233997292 0.2512500000 2.207462883 0.2525000000 2.874892164 0.2537500000 4.654277486 0.2550000000 2.452235621 0.2562500000 1.237326632 0.2575000000 1.234659732 0.2587500000 1.664799213 0.2600000000 2.261761268 0.2612500000 3.129799362 0.2625000000 1.415060134 0.2637500000 1.143131293 0.2650000000 1.590565751 0.2662500000 1.358778923 0.2675000000 2.423669864 0.2687500000 3.069664431 0.2700000000 3.675187344 0.2712500000 2.490712201 0.2725000000 1.064093964 0.2737500000 0.6756297140 0.2750000000 0.6310952214 0.2762500000 0.6158350064 0.2775000000 0.6672569593 0.2787500000 0.6160039382 0.2800000000 0.9623644253 0.2812500000 1.801457395 0.2825000000 3.036841558 0.2837500000 1.763685607 0.2850000000 2.141754871 0.2862500000 2.224489678 0.2875000000 1.382740013 0.2887500000 1.872556135 0.2900000000 2.250887419 0.2912500000 2.696175738 0.2925000000 3.545478274 0.2937500000 1.823984512 0.2950000000 1.175600162 0.2962500000 1.747009713 0.2975000000 2.466299472 0.2987500000 2.314803924 0.3000000000 2.113794018 0.3012500000 2.504849741 0.3025000000 2.719559907 0.3037500000 1.630900134 0.3050000000 2.646917792 0.3062500000 3.554386452 0.3075000000 1.583455891 0.3087500000 1.580697450 0.3100000000 1.889335203 0.3112500000 2.006581345 0.3125000000 2.873035514 0.3137500000 2.557441327 0.3150000000 1.633926161 0.3162500000 0.8551386189 0.3175000000 0.9648118745 0.3187500000 1.275484214 0.3200000000 1.190576811 0.3212500000 1.390357328 0.3225000000 1.046987291 0.3237500000 0.8901064538 0.3250000000 0.9942802076 0.3262500000 0.7640246367 0.3275000000 0.6032124770 0.3287500000 0.5612214474 0.3300000000 0.8876251502 0.3312500000 1.035251065 0.3325000000 0.8178801379 0.3337500000 1.060503064 0.3350000000 0.8455448016 0.3362500000 0.9608345678 0.3375000000 0.6514395393 0.3387500000 0.8707669013 0.3400000000 1.906193364 0.3412500000 2.861363127 0.3425000000 2.418586407 0.3437500000 1.737409347 0.3450000000 1.677656539 0.3462500000 1.587000995 0.3475000000 1.793597542 0.3487500000 2.208038475 0.3500000000 1.348689991 0.3512500000 0.6628963220 0.3525000000 0.6447982172 0.3537500000 1.173066018 0.3550000000 1.203594816 0.3562500000 0.8729122175 0.3575000000 1.013431377 0.3587500000 0.6698935076 0.3600000000 0.9240809722 0.3612500000 1.164999814 0.3625000000 0.6143561947 0.3637500000 0.4517536292 0.3650000000 0.3046963333 0.3662500000 0.3322459736 0.3675000000 0.6670888453 0.3687500000 0.4614103893 0.3700000000 0.2496978561 0.3712500000 0.2317604289 0.3725000000 0.1419836738 0.3737500000 0.1087823246 0.3750000000 0.1030977235 0.3762500000 0.1180073649 0.3775000000 0.1601729885 0.3787500000 0.2649846111 0.3800000000 0.1855848947 0.3812500000 0.2386600631 0.3825000000 0.4206601119 0.3837500000 0.2462379504 0.3850000000 0.2440199183 0.3862500000 0.2372513384 0.3875000000 0.3349159784 0.3887500000 0.6548775664 0.3900000000 0.5253811752 0.3912500000 0.4472477910 0.3925000000 0.7693661626 0.3937500000 1.217439140 0.3950000000 1.071159492 0.3962500000 1.008227377 0.3975000000 1.605906310 0.3987500000 1.391293801 0.4000000000 0.7344249529 0.4012500000 0.5563438701 0.4025000000 0.7297390104 0.4037500000 0.7763873591 0.4050000000 0.6379079285 0.4062500000 0.7147234621 0.4075000000 0.6574695407 0.4087500000 0.8454979747 0.4100000000 0.9426840800 0.4112500000 0.9134234712 0.4125000000 0.8318945975 0.4137500000 0.9691999194 0.4150000000 1.094123266 0.4162500000 0.5342629340 0.4175000000 0.3246947871 0.4187500000 0.4116335274 0.4200000000 0.4495338997 0.4212500000 0.4555457590 0.4225000000 0.5499272980 0.4237500000 0.6711272454 0.4250000000 0.3006216764 0.4262500000 0.2592625003 0.4275000000 0.4682420253 0.4287500000 0.5084896530 0.4300000000 0.4009856029 0.4312500000 0.3902724588 0.4325000000 0.5359638504 0.4337500000 0.7263918966 0.4350000000 0.3957195235 0.4362500000 0.2580061867 0.4375000000 0.2470345226 0.4387500000 0.3481535457 0.4400000000 0.3705910291 0.4412500000 0.2535051169 0.4425000000 0.3496145320 0.4437500000 0.3970259722 0.4450000000 0.3383088578 0.4462500000 0.4491002018 0.4475000000 0.3820606191 0.4487500000 0.1727546991 0.4500000000 0.1287766529 0.4512500000 0.1325757581 0.4525000000 0.1741240652 0.4537500000 0.2629156032 0.4550000000 0.2653438722 0.4562500000 0.2253412116 0.4575000000 0.4051916243 0.4587500000 0.5137610038 0.4600000000 0.4344519658 0.4612500000 0.5785778694 0.4625000000 0.5159963887 0.4637500000 0.2962686688 0.4650000000 0.2283952980 0.4662500000 0.1290187292 0.4675000000 0.1372656751 0.4687500000 0.1269176077 0.4700000000 0.1510437403 0.4712500000 0.1593012531 0.4725000000 0.1534154821 0.4737500000 0.1370310650 0.4750000000 0.1524631511 0.4762500000 0.2564379011 0.4775000000 0.3577008946 0.4787500000 0.4313482732 0.4800000000 0.2925647490 0.4812500000 0.3826289772 0.4825000000 0.1834629512 0.4837500000 0.1119996857 0.4850000000 0.1066294165 0.4862500000 0.1553172407 0.4875000000 0.1801628603 0.4887500000 0.1908028600 0.4900000000 0.2614702715 0.4912500000 0.3251979608 0.4925000000 0.3011390070 0.4937500000 0.2944115558 0.4950000000 0.1717931507 0.4962500000 0.1057583285 0.4975000000 0.1113586153 0.4987500000 0.1945715322 elk-9.2.12/examples/TDDFT-time-evolution/Si-dielectric/PaxHeaders/EPSILON_TDRT_11.OUT0000644000000000000000000000013214536061314024422 xustar0030 mtime=1702388428.923500001 30 atime=1702388428.922500003 30 ctime=1702388428.923500001 elk-9.2.12/examples/TDDFT-time-evolution/Si-dielectric/EPSILON_TDRT_11.OUT0000644002504400250440000007164114536061314027155 0ustar00dewhurstdewhurst00000000000000 0.000000000 25.24192763 0.1250000000E-02 -14.12561790 0.2500000000E-02 -9.674295384 0.3750000000E-02 11.43803842 0.5000000000E-02 25.95688253 0.6250000000E-02 27.11008542 0.7500000000E-02 18.89960887 0.8750000000E-02 10.20599174 0.1000000000E-01 7.699608327 0.1125000000E-01 11.76400599 0.1250000000E-01 17.65246212 0.1375000000E-01 20.16007886 0.1500000000E-01 17.77739765 0.1625000000E-01 13.25811782 0.1750000000E-01 10.71205857 0.1875000000E-01 12.03141762 0.2000000000E-01 15.61853490 0.2125000000E-01 18.15892476 0.2250000000E-01 17.61338282 0.2375000000E-01 14.80443261 0.2500000000E-01 12.41849165 0.2625000000E-01 12.52501394 0.2750000000E-01 14.85616345 0.2875000000E-01 17.24264248 0.3000000000E-01 17.64731453 0.3125000000E-01 15.92054411 0.3250000000E-01 13.78779925 0.3375000000E-01 13.21211881 0.3500000000E-01 14.66493643 0.3625000000E-01 16.81198062 0.3750000000E-01 17.79496754 0.3875000000E-01 16.89258871 0.4000000000E-01 15.08849578 0.4125000000E-01 14.11281594 0.4250000000E-01 14.88053082 0.4375000000E-01 16.72719979 0.4500000000E-01 18.07170995 0.4625000000E-01 17.85395173 0.4750000000E-01 16.44735017 0.4875000000E-01 15.26769363 0.5000000000E-01 15.47965226 0.5125000000E-01 16.97782259 0.5250000000E-01 18.52848099 0.5375000000E-01 18.90164851 0.5500000000E-01 17.95869421 0.5625000000E-01 16.73894830 0.5750000000E-01 16.50424124 0.5875000000E-01 17.61813922 0.6000000000E-01 19.25186891 0.6125000000E-01 20.14953071 0.6250000000E-01 19.74756449 0.6375000000E-01 18.65478798 0.6500000000E-01 18.09007144 0.6625000000E-01 18.79902672 0.6750000000E-01 20.41120729 0.6875000000E-01 21.78774664 0.7000000000E-01 22.03203764 0.7125000000E-01 21.26948806 0.7250000000E-01 20.52642840 0.7375000000E-01 20.83300593 0.7500000000E-01 22.33793750 0.7625000000E-01 24.19200700 0.7750000000E-01 25.28422246 0.7875000000E-01 25.19324552 0.8000000000E-01 24.55391036 0.8125000000E-01 24.54489883 0.8250000000E-01 25.93108639 0.8375000000E-01 28.44211083 0.8500000000E-01 30.98283562 0.8625000000E-01 32.51574126 0.8750000000E-01 32.95237776 0.8875000000E-01 33.39142616 0.9000000000E-01 35.49043623 0.9125000000E-01 40.31122137 0.9250000000E-01 47.29649155 0.9375000000E-01 53.99226089 0.9500000000E-01 56.80142168 0.9625000000E-01 52.58335108 0.9750000000E-01 40.44914487 0.9875000000E-01 22.82454500 0.1000000000 4.986826978 0.1012500000 -7.053177415 0.1025000000 -9.465221747 0.1037500000 -2.718858702 0.1050000000 8.528938264 0.1062500000 18.01547717 0.1075000000 21.54004434 0.1087500000 19.40977439 0.1100000000 15.95093782 0.1112500000 16.28375424 0.1125000000 22.52839198 0.1137500000 32.16078399 0.1150000000 39.81043981 0.1162500000 41.29719014 0.1175000000 36.95442524 0.1187500000 31.66652376 0.1200000000 31.39929601 0.1212500000 38.64323306 0.1225000000 50.12899278 0.1237500000 58.63051789 0.1250000000 57.71830155 0.1262500000 46.13375548 0.1275000000 28.66826573 0.1287500000 12.91472508 0.1300000000 4.196685701 0.1312500000 2.229913078 0.1325000000 1.762730901 0.1337500000 -3.410810184 0.1350000000 -15.97329134 0.1362500000 -33.20189638 0.1375000000 -48.77098751 0.1387500000 -56.76712178 0.1400000000 -55.11778141 0.1412500000 -46.33059651 0.1425000000 -35.44976350 0.1437500000 -26.92600660 0.1450000000 -22.49141480 0.1462500000 -21.09454932 0.1475000000 -20.43748856 0.1487500000 -18.77029856 0.1500000000 -15.79078640 0.1512500000 -12.37841474 0.1525000000 -9.691617320 0.1537500000 -8.369297870 0.1550000000 -8.251497008 0.1562500000 -8.584045489 0.1575000000 -8.447729778 0.1587500000 -7.189075964 0.1600000000 -4.735947936 0.1612500000 -1.706520372 0.1625000000 0.7916715199 0.1637500000 1.683936561 0.1650000000 0.5608507830 0.1662500000 -1.971431635 0.1675000000 -4.534792610 0.1687500000 -5.757010367 0.1700000000 -5.110107205 0.1712500000 -3.224957999 0.1725000000 -1.431469953 0.1737500000 -0.8317227583 0.1750000000 -1.568099271 0.1762500000 -2.808565455 0.1775000000 -3.432073942 0.1787500000 -2.875229502 0.1800000000 -1.502128724 0.1812500000 -0.2502566929 0.1825000000 0.1331096665 0.1837500000 -0.3405935978 0.1850000000 -0.9422771509 0.1862500000 -0.7985885696 0.1875000000 0.4705766464 0.1887500000 2.516239096 0.1900000000 4.536752693 0.1912500000 5.783043539 0.1925000000 5.889141622 0.1937500000 4.839081241 0.1950000000 2.714692667 0.1962500000 -0.4688259793 0.1975000000 -4.660322652 0.1987500000 -9.506457056 0.2000000000 -14.20686614 0.2012500000 -17.70148672 0.2025000000 -19.13713283 0.2037500000 -18.32610667 0.2050000000 -15.88923770 0.2062500000 -12.97763895 0.2075000000 -10.73380220 0.2087500000 -9.795776991 0.2100000000 -10.09088698 0.2112500000 -10.97713714 0.2125000000 -11.60993051 0.2137500000 -11.33707168 0.2150000000 -9.961057174 0.2162500000 -7.795340209 0.2175000000 -5.522844081 0.2187500000 -3.920882889 0.2200000000 -3.552740926 0.2212500000 -4.541836113 0.2225000000 -6.523023412 0.2237500000 -8.797160677 0.2250000000 -10.62197257 0.2262500000 -11.50515125 0.2275000000 -11.36759720 0.2287500000 -10.51584402 0.2300000000 -9.458524943 0.2312500000 -8.666932345 0.2325000000 -8.386917745 0.2337500000 -8.570220945 0.2350000000 -8.938107490 0.2362500000 -9.141269736 0.2375000000 -8.944839657 0.2387500000 -8.351892739 0.2400000000 -7.596714085 0.2412500000 -6.999623717 0.2425000000 -6.759108330 0.2437500000 -6.812139336 0.2450000000 -6.867599706 0.2462500000 -6.608285860 0.2475000000 -5.931227836 0.2487500000 -5.050968603 0.2500000000 -4.375206575 0.2512500000 -4.227267306 0.2525000000 -4.613038256 0.2537500000 -5.209076906 0.2550000000 -5.588510398 0.2562500000 -5.520001679 0.2575000000 -5.115192086 0.2587500000 -4.714032315 0.2600000000 -4.600156753 0.2612500000 -4.771102746 0.2625000000 -4.944626377 0.2637500000 -4.795851482 0.2650000000 -4.237774353 0.2662500000 -3.523254075 0.2675000000 -3.085359394 0.2687500000 -3.233668749 0.2700000000 -3.930404522 0.2712500000 -4.804834050 0.2725000000 -5.385689276 0.2737500000 -5.380395062 0.2750000000 -4.815358123 0.2762500000 -3.969200871 0.2775000000 -3.178197402 0.2787500000 -2.659667526 0.2800000000 -2.451796654 0.2812500000 -2.465540742 0.2825000000 -2.574499826 0.2837500000 -2.674989624 0.2850000000 -2.702757377 0.2862500000 -2.633835309 0.2875000000 -2.491400516 0.2887500000 -2.347886712 0.2900000000 -2.296956229 0.2912500000 -2.394354611 0.2925000000 -2.605867242 0.2937500000 -2.810637755 0.2950000000 -2.871126687 0.2962500000 -2.725540599 0.2975000000 -2.434493177 0.2987500000 -2.145383604 0.3000000000 -2.000585314 0.3012500000 -2.056474772 0.3025000000 -2.266479994 0.3037500000 -2.527844229 0.3050000000 -2.746548710 0.3062500000 -2.873969037 0.3075000000 -2.905383019 0.3087500000 -2.864563005 0.3100000000 -2.798230698 0.3112500000 -2.775680044 0.3125000000 -2.869025157 0.3137500000 -3.105617733 0.3150000000 -3.423371176 0.3162500000 -3.678873382 0.3175000000 -3.727016969 0.3187500000 -3.527345504 0.3200000000 -3.192944575 0.3212500000 -2.927446032 0.3225000000 -2.881558876 0.3237500000 -3.034425633 0.3250000000 -3.199180138 0.3262500000 -3.160652624 0.3275000000 -2.845070197 0.3287500000 -2.387171014 0.3300000000 -2.034544094 0.3312500000 -1.957732820 0.3325000000 -2.114148832 0.3337500000 -2.276319162 0.3350000000 -2.206778163 0.3362500000 -1.844847257 0.3375000000 -1.359573630 0.3387500000 -1.028000040 0.3400000000 -1.034576780 0.3412500000 -1.346501964 0.3425000000 -1.755606856 0.3437500000 -2.044469581 0.3450000000 -2.140747714 0.3462500000 -2.142023530 0.3475000000 -2.203703292 0.3487500000 -2.391795420 0.3500000000 -2.623323739 0.3512500000 -2.738194660 0.3525000000 -2.637089150 0.3537500000 -2.370084913 0.3550000000 -2.106334168 0.3562500000 -2.013160205 0.3575000000 -2.141526929 0.3587500000 -2.402198441 0.3600000000 -2.640441418 0.3612500000 -2.743170141 0.3625000000 -2.698214538 0.3637500000 -2.574046725 0.3650000000 -2.452658917 0.3662500000 -2.375339523 0.3675000000 -2.336043745 0.3687500000 -2.310182457 0.3700000000 -2.281414612 0.3712500000 -2.242936262 0.3725000000 -2.182661229 0.3737500000 -2.078805886 0.3750000000 -1.918162463 0.3762500000 -1.720520350 0.3775000000 -1.540206817 0.3787500000 -1.433975295 0.3800000000 -1.417259041 0.3812500000 -1.446553603 0.3825000000 -1.447359311 0.3837500000 -1.368893492 0.3850000000 -1.222111602 0.3862500000 -1.069303958 0.3875000000 -0.9730546040 0.3887500000 -0.9464396827 0.3900000000 -0.9457532886 0.3912500000 -0.9118027761 0.3925000000 -0.8253072529 0.3937500000 -0.7299587046 0.3950000000 -0.7030474126 0.3962500000 -0.7961930820 0.3975000000 -0.9927003731 0.3987500000 -1.214482653 0.4000000000 -1.372378361 0.4012500000 -1.420982986 0.4025000000 -1.378173174 0.4037500000 -1.299164111 0.4050000000 -1.230073776 0.4062500000 -1.178847717 0.4075000000 -1.123732461 0.4087500000 -1.047505444 0.4100000000 -0.9655885661 0.4112500000 -0.9229758812 0.4125000000 -0.9615476162 0.4137500000 -1.083826431 0.4150000000 -1.242577203 0.4162500000 -1.366111806 0.4175000000 -1.402341058 0.4187500000 -1.350712658 0.4200000000 -1.259892649 0.4212500000 -1.193314322 0.4225000000 -1.186808944 0.4237500000 -1.227162904 0.4250000000 -1.265167955 0.4262500000 -1.252826487 0.4275000000 -1.178431925 0.4287500000 -1.075708880 0.4300000000 -1.001635113 0.4312500000 -0.9988536312 0.4325000000 -1.068191896 0.4337500000 -1.168759101 0.4350000000 -1.243787147 0.4362500000 -1.253699391 0.4375000000 -1.195123592 0.4387500000 -1.096436585 0.4400000000 -0.9971025647 0.4412500000 -0.9270664202 0.4425000000 -0.8983076798 0.4437500000 -0.9086091814 0.4450000000 -0.9485760393 0.4462500000 -1.004022929 0.4475000000 -1.054406681 0.4487500000 -1.074601353 0.4500000000 -1.044825752 0.4512500000 -0.9640074020 0.4525000000 -0.8549712932 0.4537500000 -0.7537218675 0.4550000000 -0.6879968773 0.4562500000 -0.6610658650 0.4575000000 -0.6545711604 0.4587500000 -0.6490420553 0.4600000000 -0.6448041682 0.4612500000 -0.6639069397 0.4625000000 -0.7290002386 0.4637500000 -0.8358930027 0.4650000000 -0.9446057501 0.4662500000 -1.000427963 0.4675000000 -0.9714288306 0.4687500000 -0.8730183907 0.4700000000 -0.7582168872 0.4712500000 -0.6792506387 0.4725000000 -0.6501776640 0.4737500000 -0.6407379276 0.4750000000 -0.6068252870 0.4762500000 -0.5326674622 0.4775000000 -0.4492847070 0.4787500000 -0.4125771700 0.4800000000 -0.4575849141 0.4812500000 -0.5657495067 0.4825000000 -0.6723666767 0.4837500000 -0.7095391295 0.4850000000 -0.6519028198 0.4862500000 -0.5309236619 0.4875000000 -0.4091614279 0.4887500000 -0.3369032168 0.4900000000 -0.3247309972 0.4912500000 -0.3492069004 0.4925000000 -0.3804673659 0.4937500000 -0.4046909512 0.4950000000 -0.4234321713 0.4962500000 -0.4357556507 0.4975000000 -0.4254894775 0.4987500000 -0.3700469062 0.000000000 0.000000000 0.1250000000E-02 9.085554639 0.2500000000E-02 -19.80531937 0.3750000000E-02 -26.28085787 0.5000000000E-02 -16.02391302 0.6250000000E-02 -1.801943239 0.7500000000E-02 5.898474070 0.8750000000E-02 4.115759250 0.1000000000E-01 -2.719456576 0.1125000000E-01 -7.674059736 0.1250000000E-01 -6.924468932 0.1375000000E-01 -1.993932243 0.1500000000E-01 2.463135919 0.1625000000E-01 2.926465645 0.1750000000E-01 -0.3054949531 0.1875000000E-01 -3.909741821 0.2000000000E-01 -4.698434296 0.2125000000E-01 -2.265226257 0.2250000000E-01 1.001127472 0.2375000000E-01 2.250109043 0.2500000000E-01 0.6459410227 0.2625000000E-01 -2.113889967 0.2750000000E-01 -3.490377696 0.2875000000E-01 -2.364409833 0.3000000000E-01 0.1145749480 0.3125000000E-01 1.705074914 0.3250000000E-01 1.103998137 0.3375000000E-01 -0.9857844960 0.3500000000E-01 -2.606324690 0.3625000000E-01 -2.338314008 0.3750000000E-01 -0.5097677695 0.3875000000E-01 1.196735617 0.4000000000E-01 1.299382010 0.4125000000E-01 -0.1913443832 0.4250000000E-01 -1.860691451 0.4375000000E-01 -2.206746118 0.4500000000E-01 -0.9683913803 0.4625000000E-01 0.7024407691 0.4750000000E-01 1.320905411 0.4875000000E-01 0.3948443354 0.5000000000E-01 -1.181344400 0.5125000000E-01 -1.971938776 0.5250000000E-01 -1.289421227 0.5375000000E-01 0.2250406840 0.5500000000E-01 1.214742027 0.5625000000E-01 0.8305245215 0.5750000000E-01 -0.5350211675 0.5875000000E-01 -1.632203613 0.6000000000E-01 -1.482498199 0.6125000000E-01 -0.2343108587 0.6250000000E-01 0.9977743032 0.6375000000E-01 1.139114478 0.6500000000E-01 0.9972117913E-01 0.6625000000E-01 -1.168457439 0.6750000000E-01 -1.528198795 0.6875000000E-01 -0.6561925227 0.7000000000E-01 0.6891978022 0.7125000000E-01 1.346663254 0.7250000000E-01 0.7673211596 0.7375000000E-01 -0.5170715086 0.7500000000E-01 -1.363529634 0.7625000000E-01 -1.003886708 0.7750000000E-01 0.3011573433 0.7875000000E-01 1.485996099 0.8000000000E-01 1.579089664 0.8125000000E-01 0.5205476869 0.8250000000E-01 -0.7707656417 0.8375000000E-01 -1.126053505 0.8500000000E-01 -0.6410898088E-01 0.8625000000E-01 1.799315479 0.8750000000E-01 3.197976218 0.8875000000E-01 3.223936781 0.9000000000E-01 2.221892599 0.9125000000E-01 1.962497251 0.9250000000E-01 4.903579870 0.9375000000E-01 12.83821128 0.9500000000E-01 25.56804571 0.9625000000E-01 40.32021066 0.9750000000E-01 52.40309584 0.9875000000E-01 57.07284249 0.1000000000 51.89232690 0.1012500000 38.35267234 0.1025000000 21.62791063 0.1037500000 8.228317443 0.1050000000 2.633030861 0.1062500000 4.868326272 0.1075000000 10.68064048 0.1087500000 14.40365778 0.1100000000 12.76499669 0.1112500000 7.061567840 0.1125000000 2.107817782 0.1137500000 2.601291105 0.1150000000 9.488704211 0.1162500000 19.05644496 0.1175000000 25.56627853 0.1187500000 25.61896401 0.1200000000 21.02032150 0.1212500000 17.88564833 0.1225000000 22.43471242 0.1237500000 36.42030206 0.1250000000 55.51629982 0.1262500000 71.92235459 0.1275000000 79.41207705 0.1287500000 77.28639251 0.1300000000 70.48742072 0.1312500000 65.88035035 0.1325000000 67.39571422 0.1337500000 73.41821274 0.1350000000 78.09646979 0.1362500000 75.46467848 0.1375000000 63.43415259 0.1387500000 45.03782261 0.1400000000 26.38049270 0.1412500000 12.96373170 0.1425000000 6.887063524 0.1437500000 6.492435424 0.1450000000 8.206550752 0.1462500000 9.005679678 0.1475000000 7.881206980 0.1487500000 5.694118589 0.1500000000 3.966851659 0.1512500000 3.663268340 0.1525000000 4.693361533 0.1537500000 6.197110538 0.1550000000 7.184406241 0.1562500000 7.076356980 0.1575000000 5.940018224 0.1587500000 4.429425943 0.1600000000 3.505467947 0.1612500000 3.999450026 0.1625000000 6.146946463 0.1637500000 9.331548415 0.1650000000 12.27680456 0.1662500000 13.69507701 0.1675000000 13.05548140 0.1687500000 10.95552311 0.1700000000 8.781536987 0.1712500000 7.831242886 0.1725000000 8.487678752 0.1737500000 10.03094535 0.1750000000 11.22071303 0.1762500000 11.21284957 0.1775000000 10.13095761 0.1787500000 8.890206859 0.1800000000 8.447773911 0.1812500000 9.077636552 0.1825000000 10.21497575 0.1837500000 10.94943929 0.1850000000 10.75026236 0.1862500000 9.864683510 0.1875000000 9.126133953 0.1887500000 9.374609972 0.1900000000 10.95180343 0.1912500000 13.60863866 0.1925000000 16.79623126 0.1937500000 20.02375638 0.1950000000 22.98028241 0.1962500000 25.38428889 0.1975000000 26.79127255 0.1987500000 26.62604511 0.2000000000 24.49362642 0.2012500000 20.55387765 0.2025000000 15.65019636 0.2037500000 11.03868988 0.2050000000 7.844415586 0.2062500000 6.560602078 0.2075000000 6.874983283 0.2087500000 7.896473734 0.2100000000 8.625564375 0.2112500000 8.408575333 0.2125000000 7.172922385 0.2137500000 5.384029548 0.2150000000 3.792887027 0.2162500000 3.102500824 0.2175000000 3.679439445 0.2187500000 5.404924017 0.2200000000 7.714537939 0.2212500000 9.814885732 0.2225000000 10.99554327 0.2237500000 10.90542374 0.2250000000 9.670794995 0.2262500000 7.805542661 0.2275000000 5.966024925 0.2287500000 4.673826493 0.2300000000 4.131387113 0.2312500000 4.195878905 0.2325000000 4.498280651 0.2337500000 4.638814745 0.2350000000 4.372037386 0.2362500000 3.707495168 0.2375000000 2.884768050 0.2387500000 2.231330524 0.2400000000 1.969761169 0.2412500000 2.080598515 0.2425000000 2.312279275 0.2437500000 2.348125063 0.2450000000 2.032143620 0.2462500000 1.497820767 0.2475000000 1.094494062 0.2487500000 1.145272520 0.2500000000 1.702273416 0.2512500000 2.482960618 0.2525000000 3.047872581 0.2537500000 3.099459582 0.2550000000 2.683042267 0.2562500000 2.137844760 0.2575000000 1.834250152 0.2587500000 1.898593484 0.2600000000 2.137326300 0.2612500000 2.216634373 0.2625000000 1.952749474 0.2637500000 1.481018395 0.2650000000 1.167337185 0.2662500000 1.327717766 0.2675000000 1.970953571 0.2687500000 2.760542342 0.2700000000 3.224427736 0.2712500000 3.058413355 0.2725000000 2.309785015 0.2737500000 1.327335596 0.2750000000 0.5352393950 0.2762500000 0.1984744101 0.2775000000 0.3250852077 0.2787500000 0.7323974670 0.2800000000 1.192775414 0.2812500000 1.548670717 0.2825000000 1.744594159 0.2837500000 1.798955983 0.2850000000 1.767459495 0.2862500000 1.723398192 0.2875000000 1.741723133 0.2887500000 1.867797247 0.2900000000 2.080718827 0.2912500000 2.287245538 0.2925000000 2.370069895 0.2937500000 2.268485963 0.2950000000 2.032790203 0.2962500000 1.804782403 0.2975000000 1.731557870 0.2987500000 1.873054510 0.3000000000 2.169362290 0.3012500000 2.486693371 0.3025000000 2.701808392 0.3037500000 2.762758865 0.3050000000 2.693003615 0.3062500000 2.554996306 0.3075000000 2.413301159 0.3087500000 2.319921372 0.3100000000 2.310981055 0.3112500000 2.392813161 0.3125000000 2.518567167 0.3137500000 2.585892291 0.3150000000 2.483394260 0.3162500000 2.170979525 0.3175000000 1.733938413 0.3187500000 1.352130845 0.3200000000 1.186102483 0.3212500000 1.256795823 0.3225000000 1.417134970 0.3237500000 1.452418930 0.3250000000 1.243644557 0.3262500000 0.8679090787 0.3275000000 0.5495585606 0.3287500000 0.4909496901 0.3300000000 0.7118660506 0.3312500000 1.027059797 0.3325000000 1.185904303 0.3337500000 1.068590309 0.3350000000 0.7848211801 0.3362500000 0.5952559617 0.3375000000 0.7151198220 0.3387500000 1.151960614 0.3400000000 1.701310358 0.3412500000 2.098719217 0.3425000000 2.205830180 0.3437500000 2.087708172 0.3450000000 1.931187096 0.3462500000 1.881173719 0.3475000000 1.930736178 0.3487500000 1.948091180 0.3500000000 1.807857032 0.3512500000 1.511769890 0.3525000000 1.199420781 0.3537500000 1.043956799 0.3550000000 1.120217309 0.3562500000 1.349626297 0.3575000000 1.559589612 0.3587500000 1.604623769 0.3600000000 1.455261179 0.3612500000 1.195968235 0.3625000000 0.9485397417 0.3637500000 0.7889752327 0.3650000000 0.7170884313 0.3662500000 0.6857870855 0.3675000000 0.6504003069 0.3687500000 0.5942282109 0.3700000000 0.5196510996 0.3712500000 0.4283667876 0.3725000000 0.3182531068 0.3737500000 0.1991561695 0.3750000000 0.1045764402 0.3762500000 0.7759893090E-01 0.3775000000 0.1363082936 0.3787500000 0.2491234276 0.3800000000 0.3475005070 0.3812500000 0.3723779990 0.3825000000 0.3189787406 0.3837500000 0.2419589869 0.3850000000 0.2139992295 0.3862500000 0.2700252586 0.3875000000 0.3824303115 0.3887500000 0.4876879948 0.3900000000 0.5420867664 0.3912500000 0.5598651169 0.3925000000 0.6014528472 0.3937500000 0.7208169197 0.3950000000 0.9147504160 0.3962500000 1.115615036 0.3975000000 1.234198853 0.3987500000 1.219840344 0.4000000000 1.092471454 0.4012500000 0.9245389415 0.4025000000 0.7898018011 0.4037500000 0.7193847253 0.4050000000 0.6960678960 0.4062500000 0.6853550108 0.4075000000 0.6734608382 0.4087500000 0.6798901902 0.4100000000 0.7357013665 0.4112500000 0.8475746663 0.4125000000 0.9792037129 0.4137500000 1.067287126 0.4150000000 1.061783821 0.4162500000 0.9608804651 0.4175000000 0.8145602850 0.4187500000 0.6934317805 0.4200000000 0.6442833880 0.4212500000 0.6628106041 0.4225000000 0.7013901221 0.4237500000 0.7052788860 0.4250000000 0.6515567458 0.4262500000 0.5642821864 0.4275000000 0.4964865386 0.4287500000 0.4924292982 0.4300000000 0.5563436751 0.4312500000 0.6484835200 0.4325000000 0.7100930402 0.4337500000 0.6996164049 0.4350000000 0.6161940830 0.4362500000 0.4967585614 0.4375000000 0.3915954999 0.4387500000 0.3364945619 0.4400000000 0.3388183854 0.4412500000 0.3822493312 0.4425000000 0.4414809991 0.4437500000 0.4940409658 0.4450000000 0.5233361151 0.4462500000 0.5171009109 0.4475000000 0.4689445761 0.4487500000 0.3848284525 0.4500000000 0.2876442762 0.4512500000 0.2112447262 0.4525000000 0.1835236161 0.4537500000 0.2094917222 0.4550000000 0.2684934675 0.4562500000 0.3298951159 0.4575000000 0.3759059123 0.4587500000 0.4125484748 0.4600000000 0.4584313731 0.4612500000 0.5200599924 0.4625000000 0.5757619250 0.4637500000 0.5850892731 0.4650000000 0.5194236651 0.4662500000 0.3897199995 0.4675000000 0.2466727681 0.4687500000 0.1495446932 0.4700000000 0.1261104730 0.4712500000 0.1553719115 0.4725000000 0.1877565978 0.4737500000 0.1872184123 0.4750000000 0.1609844880 0.4762500000 0.1519545065 0.4775000000 0.1992630546 0.4787500000 0.2993696266 0.4800000000 0.4006697460 0.4812500000 0.4379025060 0.4825000000 0.3802535424 0.4837500000 0.2556187440 0.4850000000 0.1323222698 0.4862500000 0.7300411351E-01 0.4875000000 0.9604720333E-01 0.4887500000 0.1716770573 0.4900000000 0.2509121348 0.4912500000 0.3006677157 0.4925000000 0.3175093934 0.4937500000 0.3144052634 0.4950000000 0.2988146702 0.4962500000 0.2655387173 0.4975000000 0.2107236219 0.4987500000 0.1509718547 elk-9.2.12/examples/TDDFT-time-evolution/PaxHeaders/FeCo-Ehrenfest0000644000000000000000000000012514536061314021564 xustar0030 mtime=1702388428.926499997 25 atime=1702388428.9245 30 ctime=1702388428.926499997 elk-9.2.12/examples/TDDFT-time-evolution/FeCo-Ehrenfest/0000755002504400250440000000000014536061314024361 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-time-evolution/FeCo-Ehrenfest/PaxHeaders/elk.in0000644000000000000000000000013214536061314022742 xustar0030 mtime=1702388428.926499997 30 atime=1702388428.926499997 30 ctime=1702388428.926499997 elk-9.2.12/examples/TDDFT-time-evolution/FeCo-Ehrenfest/elk.in0000644002504400250440000000365514536061314025475 0ustar00dewhurstdewhurst00000000000000 ! TDDFT time evolution of FeCo with Ehrenfest nuclear dynamics. This is a ! two-step process: first the forces under the influence of a laser pulse are ! calculated. In the second step, the same calculation is repeated but this time ! the forces are used to find the motion of the nuclei. The back-reaction of ! this nuclear motion is applied to the electronic system. ! This approach is valid only for small amplitude nuclear motion. tasks 0 ! ground-state run 450 ! generate the laser pulse A-field 460 ! time evolution with laser pulse and forces calculated 462 ! same time evolution with Ehrenfest dynamics using the previous forces ! calculate forces at each time step tforce .true. ! total simulation time tstime 400.0 ! Simulation time step, ideally about 1 attosecond. It is critically important ! to make sure that the time evolution is stable, particularly for magnetism ! which can diverge even in the absence of a laser field. Any simulation should ! be run first with a laser field of amplitude zero to make sure that all ! observables remain constant over the total simulation time. Reducing the time ! step can improve stability. dtimes 0.4 ! laser pulse parameters ! 1 - 3 : polarisation vector (including amplitude) ! 4 : frequency ! 5 : phase in degrees ! 6 : chirp rate ! 7 : peak time ! 8 : full-width at half-maximum pulse 1 : number of laser pulses 0.0 0.0 150.0 0.03 0.0 0.0 240.0 120.0 nxoapwlo 1 tshift .false. spinorb .true. bfieldc 0.0 0.0 0.001 nempty 20 ngridk 4 4 4 ! artificial strained lattice avec 0.5 0.5 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale1 6.8 scale2 6.8 scale3 7.0 sppath '../../../species/' atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'Co.in' 1 0.0 0.5 0.5 elk-9.2.12/examples/TDDFT-time-evolution/PaxHeaders/Ni-laser-pulse0000644000000000000000000000013214536061314021625 xustar0030 mtime=1702388428.928499994 30 atime=1702388428.927499995 30 ctime=1702388428.928499994 elk-9.2.12/examples/TDDFT-time-evolution/Ni-laser-pulse/0000755002504400250440000000000014536061314024424 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/TDDFT-time-evolution/Ni-laser-pulse/PaxHeaders/elk.in0000644000000000000000000000013214536061314023005 xustar0030 mtime=1702388428.928499994 30 atime=1702388428.928499994 30 ctime=1702388428.928499994 elk-9.2.12/examples/TDDFT-time-evolution/Ni-laser-pulse/elk.in0000644002504400250440000000476114536061314025537 0ustar00dewhurstdewhurst00000000000000 ! Simulation of an intense ultra-short laser pulse acting on fcc nickel. ! The laser pulse is represented by a time-dependent vector potential which is ! constructed from an arbitrary superposition of planes waves each multiplied ! with a Gaussian envelope function. ! The time-dependent vector potential and laser pulse parameters are written to ! AFIELDT.OUT and TD_INFO.OUT, respectively. The power density of the laser ! pulse is written to AFPDT.OUT. Time units are atomic, one of which is equal to ! 24.18884328 attoseconds. ! The total macroscopic current is written to the file JTOT_TD.OUT and may be ! directly plotted. The total moment magnitude as a function of time is stored ! in the file MOMENTM_TD.OUT. Observe that the moment declines considerably ! after the laser pulse has stopped. ! This example is insufficiently converged for a production run, and all ! observables should be carefully checked for convergence with respect to the ! usual parameters. tasks 0 450 460 ! no shifting of the atomic positions for the ground-state run tshift .false. ! tight ground-state convergence epspot 1.e-7 lradstp 5 rgkmax 8.0 ngridk 8 8 8 ! automatic conversion of species to LAPW + linearised l.o. instead of APW+l.o. nxoapwlo 1 ! large number of empty states required nempty 16 ! total simulation time tstime 500.0 ! Simulation time step, ideally about 1 attosecond. It is critically important ! to make sure that the time evolution is stable, particularly for magnetism ! which can diverge even in the absence of a laser field. Any simulation should ! be run first with a laser field of amplitude zero to make sure that all ! observables remain constant over the total simulation time. Reducing the time ! step can improve stability. dtimes 0.1 ! laser pulse parameters ! 1 - 3 : polarisation vector (including amplitude) ! 4 : frequency ! 5 : phase in degrees ! 6 : chirp rate ! 7 : peak time ! 8 : full-width at half-maximum pulse 1 : number of laser pulses 0.0 0.0 250.0 0.03 0.0 0.0 240.0 120.0 ! plot the 2D magnetisation every ntswrite time steps tdmag2d .true. ntswrite 100 spinpol .true. spinorb .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-9.2.12/examples/PaxHeaders/hybrids0000644000000000000000000000013214536061314014646 xustar0030 mtime=1702388428.932499988 30 atime=1702388428.929499992 30 ctime=1702388428.932499988 elk-9.2.12/examples/hybrids/0000755002504400250440000000000014536061314017445 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/hybrids/PaxHeaders/Si-libxc0000644000000000000000000000013214536061314016320 xustar0030 mtime=1702388428.931499989 30 atime=1702388428.930499991 30 ctime=1702388428.931499989 elk-9.2.12/examples/hybrids/Si-libxc/0000755002504400250440000000000014536061314021117 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/hybrids/Si-libxc/PaxHeaders/elk.in0000644000000000000000000000013214536061314017500 xustar0030 mtime=1702388428.931499989 30 atime=1702388428.931499989 30 ctime=1702388428.931499989 elk-9.2.12/examples/hybrids/Si-libxc/elk.in0000644002504400250440000000112714536061314022223 0ustar00dewhurstdewhurst00000000000000 ! Hybrid functional example using libxc. Note that the DFT step should be run ! separately with task=0. Then the hybrid step should be run with task=5. ! Example by Tyrel McQueen. tasks 0 ! first run task=0 with PBE... xctype 100 101 130 !...then uncomment the following and run with task=5 for hybrid GGA ! (note that only the correlation functional is set) !xctype ! 100 0 406 lmaxo 6 gmaxvr 10.0 ngridk 2 2 2 nempty 8 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 'Si.in' 2 0.00 0.00 0.00 0.25 0.25 0.25 elk-9.2.12/examples/hybrids/PaxHeaders/Si0000644000000000000000000000013214536061314015221 xustar0030 mtime=1702388428.933499986 30 atime=1702388428.932499988 30 ctime=1702388428.933499986 elk-9.2.12/examples/hybrids/Si/0000755002504400250440000000000014536061314020020 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/hybrids/Si/PaxHeaders/elk.in0000644000000000000000000000013214536061314016401 xustar0030 mtime=1702388428.933499986 30 atime=1702388428.933499986 30 ctime=1702388428.933499986 elk-9.2.12/examples/hybrids/Si/elk.in0000644002504400250440000000057414536061314021131 0ustar00dewhurstdewhurst00000000000000 ! Hybrid functional using the native PBE functional. ! Example by Tyrel McQueen. tasks 0 5 xctype 20 hybrid .true. ! hybrid mixing parameter hybmix 0.25 lmaxo 6 gmaxvr 10.0 ngridk 2 2 2 nempty 10 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 'Si.in' 2 0.00 0.00 0.00 0.25 0.25 0.25 elk-9.2.12/examples/PaxHeaders/meta-GGA0000644000000000000000000000013014536061314014522 xustar0029 mtime=1702388428.93749998 30 atime=1702388428.934499985 29 ctime=1702388428.93749998 elk-9.2.12/examples/meta-GGA/0000755002504400250440000000000014536061314017323 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/meta-GGA/PaxHeaders/GaAs-r2SCAN0000644000000000000000000000013214536061314016325 xustar0030 mtime=1702388428.936499982 30 atime=1702388428.935499983 30 ctime=1702388428.936499982 elk-9.2.12/examples/meta-GGA/GaAs-r2SCAN/0000755002504400250440000000000014536061314021124 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/meta-GGA/GaAs-r2SCAN/PaxHeaders/elk.in0000644000000000000000000000013214536061314017505 xustar0030 mtime=1702388428.936499982 30 atime=1702388428.936499982 30 ctime=1702388428.936499982 elk-9.2.12/examples/meta-GGA/GaAs-r2SCAN/elk.in0000644002504400250440000000273614536061314022237 0ustar00dewhurstdewhurst00000000000000 ! Variational meta-GGA example using the strongly constrained and appropriately ! normed (SCAN) functional of J. Sun, A. Ruzsinszky and J. P. Perdew, ! Phys. Rev. Lett. 115, 036402 (2015). ! ! We use the re-regularised version of SCAN [J. W. Furness, A. D. Kaplan, ! J. Ning, J. P. Perdew and J. Sun, J. Phys. Chem. Lett. 2020, 11, 8208 (2020)] ! in order to improve numerical stability. ! ! The exchange-correlation potential is evaluated using so-called 'partial ! deorbitalisation', where the functional derivative δτ(r')/δρ(r) is performed ! using an approximate kinetic energy density functional (determined by ktype). ! See arXiv:2304.02363. ! ! This example requires the Libxc functional library. tasks 0 ! run ground-state 20 ! plot band structure 341 ! plot w_xc(r) = δE_xc/δτ(r) ! Libxc re-regularised SCAN functional xctype 100 497 498 ! This sets several input parameters to ensure good convergence for meta-GGA ! calculations. See the stdout of Elk for the parameters and their values. metagga .true. mixtype 1 ngridk 4 4 4 plot1d 5 500 0.0 0.0 1.0 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-9.2.12/examples/meta-GGA/PaxHeaders/SiO2-deorbitalised0000644000000000000000000000013114536061314020107 xustar0030 mtime=1702388428.938499979 29 atime=1702388428.93749998 30 ctime=1702388428.938499979 elk-9.2.12/examples/meta-GGA/SiO2-deorbitalised/0000755002504400250440000000000014536061314022707 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/meta-GGA/SiO2-deorbitalised/PaxHeaders/elk.in0000644000000000000000000000013214536061314021270 xustar0030 mtime=1702388428.938499979 30 atime=1702388428.938499979 30 ctime=1702388428.938499979 elk-9.2.12/examples/meta-GGA/SiO2-deorbitalised/elk.in0000644002504400250440000000346114536061314024016 0ustar00dewhurstdewhurst00000000000000 ! Fully deorbitalised meta-GGA example. See Daniel Mejia-Rodriguez and S. B. Trickey ! Phys. Rev. B 98, 115161 (2018). ! This example requires the Libxc functional library. tasks 0 20 ! XC_MGGA_X_REVSCANL, XC_MGGA_C_SCANL xctype 100 701 702 ! This sets several input parameters to ensure good convergence for meta-GGA ! calculations. See the stdout of Elk for the parameters and their values. metagga .true. ngridk 2 2 2 mixtype 1 plot1d 5 500 : nvp1d, npp1d 0.5 0.0 0.0 : vlvp1d 0.0 0.0 0.0 0.5 0.5 0.0 0.5 0.5 0.5 0.0 0.0 0.0 avec 4.644946754 8.045283776 0.000000000 9.289893508 0.000000000 0.000000000 0.000000000 0.000000000 10.21472546 sppath '../../../species/' atoms 2 : nspecies 'Si.in' : spfname 3 : natoms; atposl, bfcmt below 0.00000000 0.46970000 0.66666667 0.00000000 0.00000000 0.00000000 0.46970000 0.53030000 0.33333333 0.00000000 0.00000000 0.00000000 0.53030000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 'O.in' : spfname 6 : natoms; atposl, bfcmt below 0.26690000 0.14660000 0.78577000 0.00000000 0.00000000 0.00000000 0.14660000 0.58650000 0.45243667 0.00000000 0.00000000 0.00000000 0.58650000 0.26690000 0.11910333 0.00000000 0.00000000 0.00000000 0.41350000 0.85340000 0.21423000 0.00000000 0.00000000 0.00000000 0.73310000 0.41350000 0.54756333 0.00000000 0.00000000 0.00000000 0.85340000 0.73310000 0.88089667 0.00000000 0.00000000 0.00000000 elk-9.2.12/examples/PaxHeaders/phonons-superconductivity0000644000000000000000000000013214536061315020470 xustar0030 mtime=1702388429.016499863 30 atime=1702388428.939499977 30 ctime=1702388429.016499863 elk-9.2.12/examples/phonons-superconductivity/0000755002504400250440000000000014536061315023267 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/phonons-superconductivity/PaxHeaders/GaAs-DFPT0000644000000000000000000000013214536061314022035 xustar0030 mtime=1702388428.945499969 30 atime=1702388428.940499976 30 ctime=1702388428.945499969 elk-9.2.12/examples/phonons-superconductivity/GaAs-DFPT/0000755002504400250440000000000014536061314024634 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/phonons-superconductivity/GaAs-DFPT/PaxHeaders/PHDISP.OUT0000644000000000000000000000013214536061314023472 xustar0030 mtime=1702388428.942499973 30 atime=1702388428.941499974 30 ctime=1702388428.942499973 elk-9.2.12/examples/phonons-superconductivity/GaAs-DFPT/PHDISP.OUT0000644002504400250440000012662414536061314026227 0ustar00dewhurstdewhurst00000000000000 0.000000000 0.1536768326E-10 0.1588994284E-01 0.1350455454E-04 0.3177988568E-01 0.2703428035E-04 0.4766982851E-01 0.4061314416E-04 0.6355977135E-01 0.5426273974E-04 0.7944971419E-01 0.6800118985E-04 0.9533965703E-01 0.8184215000E-04 0.1112295999 0.9579394125E-04 0.1271195427 0.1098588339E-03 0.1430094855 0.1240324987E-03 0.1588994284 0.1383036361E-03 0.1747893712 0.1526537889E-03 0.1906793141 0.1670573397E-03 0.2065692569 0.1814816874E-03 0.2224591997 0.1958875971E-03 0.2383491426 0.2102297134E-03 0.2542390854 0.2244572224E-03 0.2701290283 0.2385146522E-03 0.2860189711 0.2523427910E-03 0.3019089139 0.2658797097E-03 0.3177988568 0.2790618645E-03 0.3336887996 0.2918252581E-03 0.3495787424 0.3041066308E-03 0.3654686853 0.3158446474E-03 0.3813586281 0.3269810433E-03 0.3972485710 0.3374616830E-03 0.4131385138 0.3472374834E-03 0.4290284566 0.3562651510E-03 0.4449183995 0.3645076847E-03 0.4608083423 0.3719346028E-03 0.4766982851 0.3785218708E-03 0.4925882280 0.3842515242E-03 0.5084781708 0.3891110109E-03 0.5243681137 0.3930923066E-03 0.5402580565 0.3961908851E-03 0.5561479993 0.3984046472E-03 0.5720379422 0.3997329241E-03 0.5879278850 0.4001756680E-03 0.6039174156 0.4028763589E-03 0.6199069461 0.4108045080E-03 0.6358964767 0.4234740900E-03 0.6518860072 0.4401784201E-03 0.6678755378 0.4601015819E-03 0.6838650683 0.4824169885E-03 0.6998545989 0.5063567717E-03 0.7158441294 0.5312512913E-03 0.7318336600 0.5565458692E-03 0.7478231905 0.5818030409E-03 0.7638127211 0.6066967268E-03 0.7798022516 0.6310023339E-03 0.7957917822 0.6545849451E-03 0.8117813127 0.6773866193E-03 0.8277708433 0.6716945882E-03 0.8437603738 0.6366422122E-03 0.8597499044 0.6039116923E-03 0.8757394349 0.5749954450E-03 0.8917289655 0.5513433532E-03 0.9077184961 0.5342994788E-03 0.9237080266 0.5249126663E-03 0.9396975572 0.5236898661E-03 0.9556870877 0.5303413087E-03 0.9716766183 0.5434697864E-03 0.9876661488 0.5598214953E-03 1.003655679 0.5723949441E-03 1.019645210 0.5717049985E-03 1.035634740 0.5576272869E-03 1.051624271 0.5365952268E-03 1.067613802 0.5123777815E-03 1.083603332 0.4865636392E-03 1.099592863 0.4599038630E-03 1.115582393 0.4328260101E-03 1.131571924 0.4056149529E-03 1.147561454 0.3784821208E-03 1.163550985 0.3515945070E-03 1.179540515 0.3250876449E-03 1.195530046 0.2990716344E-03 1.211519577 0.2736339815E-03 1.227509107 0.2488409541E-03 1.243498638 0.2247382916E-03 1.259488168 0.2013517094E-03 1.275477699 0.1786874469E-03 1.291467229 0.1567329992E-03 1.307456760 0.1354581091E-03 1.323446290 0.1148160477E-03 1.339435821 0.9474517726E-04 1.355425351 0.7517076156E-04 1.371414882 0.5600697027E-04 1.387404413 0.3715901639E-04 1.403393943 0.1852536941E-04 1.419383474 0.1536768326E-10 1.435294739 0.1278302379E-04 1.451206004 0.2553441114E-04 1.467117269 0.3822261477E-04 1.483028534 0.5081626546E-04 1.498939799 0.6328426049E-04 1.514851064 0.7559585124E-04 1.530762330 0.8772072986E-04 1.546673595 0.9962911437E-04 1.562584860 0.1112918323E-03 1.578496125 0.1226804020E-03 1.594407390 0.1337671114E-03 1.610318655 0.1445250942E-03 1.626229920 0.1549284020E-03 1.642141185 0.1649520729E-03 1.658052451 0.1745721951E-03 1.673963716 0.1837659659E-03 1.689874981 0.1925117449E-03 1.705786246 0.2007891010E-03 1.721697511 0.2085788534E-03 1.737608776 0.2158631050E-03 1.753520041 0.2226252700E-03 1.769431306 0.2288500938E-03 1.785342572 0.2345236666E-03 1.801253837 0.2396334308E-03 1.817165102 0.2441681828E-03 1.833076367 0.2481180696E-03 1.848987632 0.2514745828E-03 1.864898897 0.2542305487E-03 1.880810162 0.2563801179E-03 1.896721427 0.2579187548E-03 1.912632693 0.2588432274E-03 1.928543958 0.2591515999E-03 1.944455223 0.2596108136E-03 1.960366488 0.2609785784E-03 1.976277753 0.2632258395E-03 1.992189018 0.2663060073E-03 2.008100283 0.2701574505E-03 2.024011548 0.2747065365E-03 2.039922814 0.2798708875E-03 2.055834079 0.2855625640E-03 2.071745344 0.2916909558E-03 2.087656609 0.2981652504E-03 2.103567874 0.3048964240E-03 2.119479139 0.3117987658E-03 2.135390404 0.3187909793E-03 2.151301669 0.3257969280E-03 2.167212935 0.3327460942E-03 2.183124200 0.3395738155E-03 2.199035465 0.3462213535E-03 2.214946730 0.3526358384E-03 2.230857995 0.3587701215E-03 2.246769260 0.3645825591E-03 2.262680525 0.3700367441E-03 2.278591790 0.3751011956E-03 2.294503056 0.3797490169E-03 2.310414321 0.3839575277E-03 2.326325586 0.3877078789E-03 2.342236851 0.3909846582E-03 2.358148116 0.3937754972E-03 2.374059381 0.3960706924E-03 2.389970646 0.3978628515E-03 2.405881911 0.3991465804E-03 2.421793177 0.3999182235E-03 2.437704442 0.4001756680E-03 2.453176228 0.4018541590E-03 2.468648015 0.4068371567E-03 2.484119801 0.4149736908E-03 2.499591588 0.4260318459E-03 2.515063374 0.4397228232E-03 2.530535160 0.4557261304E-03 2.546006947 0.4737115720E-03 2.561478733 0.4933556337E-03 2.576950520 0.5143516144E-03 2.592422306 0.5364139154E-03 2.607894093 0.5592771219E-03 2.623365879 0.5826899485E-03 2.638837666 0.6064025592E-03 2.654309452 0.6301420874E-03 2.669781238 0.6535615835E-03 2.685253025 0.6761192769E-03 2.700724811 0.6921926342E-03 2.716196598 0.6999453049E-03 2.731668384 0.7026367756E-03 2.747065710 0.6914659010E-03 2.762463036 0.6741923307E-03 2.777860361 0.6558633073E-03 2.793257687 0.6369568790E-03 2.808655013 0.6176074688E-03 2.824052339 0.5978879996E-03 2.839449664 0.5778558392E-03 2.854846990 0.5575651559E-03 2.870244316 0.5370716009E-03 2.885641641 0.5164347640E-03 2.901038967 0.4957199475E-03 2.916436293 0.4749998079E-03 2.931833619 0.4543561085E-03 2.947230944 0.4338817115E-03 2.962628270 0.4136828879E-03 2.978025596 0.3938819780E-03 2.993422921 0.3746203719E-03 3.008820247 0.3560616754E-03 3.024217573 0.3383947406E-03 3.039614899 0.3218359623E-03 3.055012224 0.3066298379E-03 3.070409550 0.2930463154E-03 3.085806876 0.2813730876E-03 3.101204201 0.2719010714E-03 3.116601527 0.2649023831E-03 3.131998853 0.2606025030E-03 3.147396179 0.2591515999E-03 0.000000000 0.2057951587E-10 0.1588994284E-01 0.3110564968E-04 0.3177988568E-01 0.6230316667E-04 0.4766982851E-01 0.9368103042E-04 0.6355977135E-01 0.1253210607E-03 0.7944971419E-01 0.1572953703E-03 0.9533965703E-01 0.1896636350E-03 0.1112295999 0.2224707575E-03 0.1271195427 0.2557449738E-03 0.1430094855 0.2894964349E-03 0.1588994284 0.3237162687E-03 0.1747893712 0.3583761139E-03 0.1906793141 0.3934280991E-03 0.2065692569 0.4288052305E-03 0.2224591997 0.4644221450E-03 0.2383491426 0.5001761804E-03 0.2542390854 0.5359487100E-03 0.2701290283 0.5716066927E-03 0.2860189711 0.6070043837E-03 0.3019089139 0.6419851547E-03 0.3177988568 0.6763833667E-03 0.3336887996 0.7100262346E-03 0.3495787424 0.7427356077E-03 0.3654686853 0.7743295674E-03 0.3813586281 0.8046236948E-03 0.3972485710 0.7988229102E-03 0.4131385138 0.7584331479E-03 0.4290284566 0.7165580645E-03 0.4449183995 0.6737949399E-03 0.4608083423 0.6307650378E-03 0.4766982851 0.5881891810E-03 0.4925882280 0.5469396936E-03 0.5084781708 0.5080846446E-03 0.5243681137 0.4729191786E-03 0.5402580565 0.4429603290E-03 0.5561479993 0.4198624858E-03 0.5720379422 0.4052077900E-03 0.5879278850 0.4001756680E-03 0.6039174156 0.4044883437E-03 0.6199069461 0.4170658042E-03 0.6358964767 0.4369304278E-03 0.6518860072 0.4627338675E-03 0.6678755378 0.4930137051E-03 0.6838650683 0.5263700854E-03 0.6998545989 0.5615458684E-03 0.7158441294 0.5974339343E-03 0.7318336600 0.6330367221E-03 0.7478231905 0.6673815004E-03 0.7638127211 0.6993286643E-03 0.7798022516 0.7267043273E-03 0.7957917822 0.7358157616E-03 0.8117813127 0.7071885772E-03 0.8277708433 0.6994132245E-03 0.8437603738 0.7207209567E-03 0.8597499044 0.7414025728E-03 0.8757394349 0.7615732616E-03 0.8917289655 0.7781466716E-03 0.9077184961 0.7644481306E-03 0.9237080266 0.7485495541E-03 0.9396975572 0.7310963524E-03 0.9556870877 0.7127962975E-03 0.9716766183 0.6947696209E-03 0.9876661488 0.6794547302E-03 1.003655679 0.6727193688E-03 1.019645210 0.6828036620E-03 1.035634740 0.7086214213E-03 1.051624271 0.7426378713E-03 1.067613802 0.7801049841E-03 1.083603332 0.7845689880E-03 1.099592863 0.7538843613E-03 1.115582393 0.7218257036E-03 1.131571924 0.6885401191E-03 1.147561454 0.6541606780E-03 1.163550985 0.6188137421E-03 1.179540515 0.5826213488E-03 1.195530046 0.5457014376E-03 1.211519577 0.5081670770E-03 1.227509107 0.4701252398E-03 1.243498638 0.4316754243E-03 1.259488168 0.3929083058E-03 1.275477699 0.3539045465E-03 1.291467229 0.3147338592E-03 1.307456760 0.2754543994E-03 1.323446290 0.2361125396E-03 1.339435821 0.1967430596E-03 1.355425351 0.1573697690E-03 1.371414882 0.1180065534E-03 1.387404413 0.7865881659E-04 1.403393943 0.3932527005E-04 1.419383474 0.2062956135E-10 1.435294739 0.1278302379E-04 1.451206004 0.2553441114E-04 1.467117269 0.3822261477E-04 1.483028534 0.5081626546E-04 1.498939799 0.6328426049E-04 1.514851064 0.7559585124E-04 1.530762330 0.8772072986E-04 1.546673595 0.9962911437E-04 1.562584860 0.1112918323E-03 1.578496125 0.1226804020E-03 1.594407390 0.1337671114E-03 1.610318655 0.1445250942E-03 1.626229920 0.1549284020E-03 1.642141185 0.1649520729E-03 1.658052451 0.1745721951E-03 1.673963716 0.1837659659E-03 1.689874981 0.1925117449E-03 1.705786246 0.2007891010E-03 1.721697511 0.2085788534E-03 1.737608776 0.2158631050E-03 1.753520041 0.2226252700E-03 1.769431306 0.2288500938E-03 1.785342572 0.2345236666E-03 1.801253837 0.2396334308E-03 1.817165102 0.2441681828E-03 1.833076367 0.2481180696E-03 1.848987632 0.2514745828E-03 1.864898897 0.2542305487E-03 1.880810162 0.2563801179E-03 1.896721427 0.2579187548E-03 1.912632693 0.2588432274E-03 1.928543958 0.2591515999E-03 1.944455223 0.2637865572E-03 1.960366488 0.2771826440E-03 1.976277753 0.2980381792E-03 1.992189018 0.3247323342E-03 2.008100283 0.3557154944E-03 2.024011548 0.3896886245E-03 2.039922814 0.4256276570E-03 2.055834079 0.4627404322E-03 2.071745344 0.5004085975E-03 2.087656609 0.5381339233E-03 2.103567874 0.5754904535E-03 2.119479139 0.6120725301E-03 2.135390404 0.6474081977E-03 2.151301669 0.6807272655E-03 2.167212935 0.7100575456E-03 2.183124200 0.7283357327E-03 2.199035465 0.7235382139E-03 2.214946730 0.7034775348E-03 2.230857995 0.6782652923E-03 2.246769260 0.6509205439E-03 2.262680525 0.6225172646E-03 2.278591790 0.5936700152E-03 2.294503056 0.5648771377E-03 2.310414321 0.5366250083E-03 2.326325586 0.5094294701E-03 2.342236851 0.4838548740E-03 2.358148116 0.4605197668E-03 2.374059381 0.4400884339E-03 2.389970646 0.4232439087E-03 2.405881911 0.4106386216E-03 2.421793177 0.4028245931E-03 2.437704442 0.4001756680E-03 2.453176228 0.4023951121E-03 2.468648015 0.4089415919E-03 2.484119801 0.4194978660E-03 2.499591588 0.4335894170E-03 2.515063374 0.4506461070E-03 2.530535160 0.4700606662E-03 2.546006947 0.4912334753E-03 2.561478733 0.5136004590E-03 2.576950520 0.5366457484E-03 2.592422306 0.5599024508E-03 2.607894093 0.5829443978E-03 2.623365879 0.6053702922E-03 2.638837666 0.6267799939E-03 2.654309452 0.6467413484E-03 2.669781238 0.6647462641E-03 2.685253025 0.6801606033E-03 2.700724811 0.6967556747E-03 2.716196598 0.7130121950E-03 2.731668384 0.7197483539E-03 2.747065710 0.7304152402E-03 2.762463036 0.7461789831E-03 2.777860361 0.7619987966E-03 2.793257687 0.7414120412E-03 2.808655013 0.7184687137E-03 2.824052339 0.6946506685E-03 2.839449664 0.6701858322E-03 2.854846990 0.6452212670E-03 2.870244316 0.6198673989E-03 2.885641641 0.5942185036E-03 2.901038967 0.5683634927E-03 2.916436293 0.5423925094E-03 2.931833619 0.5164017391E-03 2.947230944 0.4904976101E-03 2.962628270 0.4648010440E-03 2.978025596 0.4394521784E-03 2.993422921 0.4146158544E-03 3.008820247 0.3904880317E-03 3.024217573 0.3673030771E-03 3.039614899 0.3453414520E-03 3.055012224 0.3249365478E-03 3.070409550 0.3064781372E-03 3.085806876 0.2904081696E-03 3.101204201 0.2772030397E-03 3.116601527 0.2673367064E-03 3.131998853 0.2612237212E-03 3.147396179 0.2591515999E-03 0.000000000 0.2062956135E-10 0.1588994284E-01 0.5515240561E-04 0.3177988568E-01 0.1101136541E-03 0.4766982851E-01 0.1646942073E-03 0.6355977135E-01 0.2187077414E-03 0.7944971419E-01 0.2719726946E-03 0.9533965703E-01 0.3243137444E-03 0.1112295999 0.3755631861E-03 0.1271195427 0.4255621869E-03 0.1430094855 0.4741618799E-03 0.1588994284 0.5212242543E-03 0.1747893712 0.5666227755E-03 0.1906793141 0.6102426289E-03 0.2065692569 0.6519803948E-03 0.2224591997 0.6917427762E-03 0.2383491426 0.7294435767E-03 0.2542390854 0.7649970412E-03 0.2701290283 0.7983026333E-03 0.2860189711 0.8292064747E-03 0.3019089139 0.8573864443E-03 0.3177988568 0.8819205193E-03 0.3336887996 0.8991874613E-03 0.3495787424 0.8967304349E-03 0.3654686853 0.8713912056E-03 0.3813586281 0.8369815720E-03 0.3972485710 0.8334317717E-03 0.4131385138 0.8605655043E-03 0.4290284566 0.8858325282E-03 0.4449183995 0.9090313235E-03 0.4608083423 0.9299405988E-03 0.4766982851 0.9482996507E-03 0.4925882280 0.9637799291E-03 0.5084781708 0.9759797013E-03 0.5243681137 0.9845761935E-03 0.5402580565 0.9897567375E-03 0.5561479993 0.9924110162E-03 0.5720379422 0.9935710983E-03 0.5879278850 0.9938893502E-03 0.6039174156 0.9933177239E-03 0.6199069461 0.9915213567E-03 0.6358964767 0.9882026540E-03 0.6518860072 0.9826567417E-03 0.6678755378 0.9735148719E-03 0.6838650683 0.9592391593E-03 0.6998545989 0.9395561915E-03 0.7158441294 0.9152815229E-03 0.7318336600 0.8872972579E-03 0.7478231905 0.8563581568E-03 0.7638127211 0.8233014314E-03 0.7798022516 0.7899039038E-03 0.7957917822 0.7693259174E-03 0.8117813127 0.7804129148E-03 0.8277708433 0.7918981964E-03 0.8437603738 0.7969795994E-03 0.8597499044 0.7955813442E-03 0.8757394349 0.7888704023E-03 0.8917289655 0.7813558346E-03 0.9077184961 0.8008642845E-03 0.9237080266 0.8201829526E-03 0.9396975572 0.8393329455E-03 0.9556870877 0.8581973903E-03 0.9716766183 0.8762897062E-03 0.9876661488 0.8917888473E-03 1.003655679 0.8978935468E-03 1.019645210 0.8868239288E-03 1.035634740 0.8659199380E-03 1.051624271 0.8410006015E-03 1.067613802 0.8136985113E-03 1.083603332 0.8185270823E-03 1.099592863 0.8561306946E-03 1.115582393 0.8905463565E-03 1.131571924 0.9139627848E-03 1.147561454 0.9077930243E-03 1.163550985 0.8810448618E-03 1.179540515 0.8468468485E-03 1.195530046 0.8081516491E-03 1.211519577 0.7657776486E-03 1.227509107 0.7200989734E-03 1.243498638 0.6713697247E-03 1.259488168 0.6198100212E-03 1.275477699 0.5656345917E-03 1.291467229 0.5090635820E-03 1.307456760 0.4503267512E-03 1.323446290 0.3896648333E-03 1.339435821 0.3273295229E-03 1.355425351 0.2635827142E-03 1.371414882 0.1986952901E-03 1.387404413 0.1329456161E-03 1.403393943 0.6661783166E-04 1.419383474 0.2089859716E-10 1.435294739 0.4999015884E-04 1.451206004 0.9985964513E-04 1.467117269 0.1494880696E-03 1.483028534 0.1987556081E-03 1.498939799 0.2475432817E-03 1.514851064 0.2957332324E-03 1.530762330 0.3432089937E-03 1.546673595 0.3898557550E-03 1.562584860 0.4355606155E-03 1.578496125 0.4802128266E-03 1.594407390 0.5237040174E-03 1.610318655 0.5659283977E-03 1.626229920 0.6067829279E-03 1.642141185 0.6461674423E-03 1.658052451 0.6839846978E-03 1.673963716 0.7201403050E-03 1.689874981 0.7545424581E-03 1.705786246 0.7871013024E-03 1.721697511 0.8177276117E-03 1.737608776 0.8463300413E-03 1.753520041 0.8728091943E-03 1.769431306 0.8970437633E-03 1.785342572 0.9188543107E-03 1.801253837 0.9378938493E-03 1.817165102 0.9532718592E-03 1.833076367 0.9625983076E-03 1.848987632 0.9639316217E-03 1.864898897 0.9611086724E-03 1.880810162 0.9576746910E-03 1.896721427 0.9548520533E-03 1.912632693 0.9530553723E-03 1.928543958 0.9524422393E-03 1.944455223 0.9518748369E-03 1.960366488 0.9501617672E-03 1.976277753 0.9472709582E-03 1.992189018 0.9431506425E-03 2.008100283 0.9377318561E-03 2.024011548 0.9309320996E-03 2.039922814 0.9226606331E-03 2.055834079 0.9128261125E-03 2.071745344 0.9013473585E-03 2.087656609 0.8881682059E-03 2.103567874 0.8732785356E-03 2.119479139 0.8567486396E-03 2.135390404 0.8388033370E-03 2.151301669 0.8200433776E-03 2.167212935 0.8023390149E-03 2.183124200 0.7927090762E-03 2.199035465 0.8031808031E-03 2.214946730 0.8259854172E-03 2.230857995 0.8510890639E-03 2.246769260 0.8755801093E-03 2.262680525 0.8985190924E-03 2.278591790 0.9194520110E-03 2.294503056 0.9380680046E-03 2.310414321 0.9541003250E-03 2.326325586 0.9673037137E-03 2.342236851 0.9774940466E-03 2.358148116 0.9846777967E-03 2.374059381 0.9892153832E-03 2.389970646 0.9917878098E-03 2.405881911 0.9931136746E-03 2.421793177 0.9937178375E-03 2.437704442 0.9938893502E-03 2.453176228 0.9935782877E-03 2.468648015 0.9926283060E-03 2.484119801 0.9909910466E-03 2.499591588 0.9885928534E-03 2.515063374 0.9853455665E-03 2.530535160 0.9811614284E-03 2.546006947 0.9759702237E-03 2.561478733 0.9697353667E-03 2.576950520 0.9624656387E-03 2.592422306 0.9542212730E-03 2.607894093 0.9393557415E-03 2.623365879 0.9217045984E-03 2.638837666 0.9030441286E-03 2.654309452 0.8836105402E-03 2.669781238 0.8637284450E-03 2.685253025 0.8439274424E-03 2.700724811 0.8252614772E-03 2.716196598 0.8101873235E-03 2.731668384 0.8038452601E-03 2.747065710 0.7976432339E-03 2.762463036 0.7825297867E-03 2.777860361 0.7630642809E-03 2.793257687 0.7774075421E-03 2.808655013 0.7922863854E-03 2.824052339 0.8065829971E-03 2.839449664 0.8202660411E-03 2.854846990 0.8333133718E-03 2.870244316 0.8457080427E-03 2.885641641 0.8574367008E-03 2.901038967 0.8684888513E-03 2.916436293 0.8788564770E-03 2.931833619 0.8885338123E-03 2.947230944 0.8975171847E-03 2.962628270 0.9058048845E-03 2.978025596 0.9133970461E-03 2.993422921 0.9202955328E-03 3.008820247 0.9265038203E-03 3.024217573 0.9320268729E-03 3.039614899 0.9368709961E-03 3.055012224 0.9410436407E-03 3.070409550 0.9445531213E-03 3.085806876 0.9474082116E-03 3.101204201 0.9496175938E-03 3.116601527 0.9511891743E-03 3.131998853 0.9521293350E-03 3.147396179 0.9524422393E-03 0.000000000 0.1215508796E-02 0.1588994284E-01 0.1215045359E-02 0.3177988568E-01 0.1213660368E-02 0.4766982851E-01 0.1211369681E-02 0.6355977135E-01 0.1208199405E-02 0.7944971419E-01 0.1204185417E-02 0.9533965703E-01 0.1199372717E-02 0.1112295999 0.1193814626E-02 0.1271195427 0.1187571858E-02 0.1430094855 0.1180711486E-02 0.1588994284 0.1173305831E-02 0.1747893712 0.1165431302E-02 0.1906793141 0.1156295538E-02 0.2065692569 0.1142705128E-02 0.2224591997 0.1127162975E-02 0.2383491426 0.1109574042E-02 0.2542390854 0.1089876206E-02 0.2701290283 0.1068058695E-02 0.2860189711 0.1044203525E-02 0.3019089139 0.1018602973E-02 0.3177988568 0.9921936170E-03 0.3336887996 0.9686579670E-03 0.3495787424 0.9605632952E-03 0.3654686853 0.9712302778E-03 0.3813586281 0.9870651557E-03 0.3972485710 0.1003025032E-02 0.4131385138 0.1017937657E-02 0.4290284566 0.1031479698E-02 0.4449183995 0.1033015405E-02 0.4608083423 0.1028977324E-02 0.4766982851 0.1025826252E-02 0.4925882280 0.1023776420E-02 0.5084781708 0.1023126367E-02 0.5243681137 0.1024108485E-02 0.5402580565 0.1026459359E-02 0.5561479993 0.1029228779E-02 0.5720379422 0.1031340711E-02 0.5879278850 0.1032116111E-02 0.6039174156 0.1030936506E-02 0.6199069461 0.1027353821E-02 0.6358964767 0.1021345467E-02 0.6518860072 0.1013252742E-02 0.6678755378 0.1004211916E-02 0.6838650683 0.9957542780E-03 0.6998545989 0.9883640603E-03 0.7158441294 0.9816085568E-03 0.7318336600 0.9751417077E-03 0.7478231905 0.9689367373E-03 0.7638127211 0.9632389855E-03 0.7798022516 0.9585605508E-03 0.7957917822 0.9557157435E-03 0.8117813127 0.9557851352E-03 0.8277708433 0.9597927194E-03 0.8437603738 0.9680462650E-03 0.8597499044 0.9797375112E-03 0.8757394349 0.9933560783E-03 0.8917289655 0.1007375117E-02 0.9077184961 0.1020560658E-02 0.9237080266 0.1016356759E-02 0.9396975572 0.1001941711E-02 0.9556870877 0.9862562934E-03 0.9716766183 0.9698227389E-03 0.9876661488 0.9544781957E-03 1.003655679 0.9470185628E-03 1.019645210 0.9551970120E-03 1.035634740 0.9716276078E-03 1.051624271 0.9904297361E-03 1.067613802 0.1009898570E-02 1.083603332 0.1023281117E-02 1.099592863 0.1005955624E-02 1.115582393 0.9872802280E-03 1.131571924 0.9744912035E-03 1.147561454 0.9857691278E-03 1.163550985 0.1011841178E-02 1.179540515 0.1039437449E-02 1.195530046 0.1065574564E-02 1.211519577 0.1089503025E-02 1.227509107 0.1111006458E-02 1.243498638 0.1130065776E-02 1.259488168 0.1146759961E-02 1.275477699 0.1161222603E-02 1.291467229 0.1173615229E-02 1.307456760 0.1184107638E-02 1.323446290 0.1192863132E-02 1.339435821 0.1200028417E-02 1.355425351 0.1205727902E-02 1.371414882 0.1210061516E-02 1.387404413 0.1213104840E-02 1.403393943 0.1214910340E-02 1.419383474 0.1215508796E-02 1.435294739 0.1214951550E-02 1.451206004 0.1213283672E-02 1.467117269 0.1210516743E-02 1.483028534 0.1206670068E-02 1.498939799 0.1201770689E-02 1.514851064 0.1195853388E-02 1.530762330 0.1188960702E-02 1.546673595 0.1181142923E-02 1.562584860 0.1172458100E-02 1.578496125 0.1162972029E-02 1.594407390 0.1152758224E-02 1.610318655 0.1141897877E-02 1.626229920 0.1130479793E-02 1.642141185 0.1118600305E-02 1.658052451 0.1106363178E-02 1.673963716 0.1093879528E-02 1.689874981 0.1081267818E-02 1.705786246 0.1068654059E-02 1.721697511 0.1056172539E-02 1.737608776 0.1043967773E-02 1.753520041 0.1032199425E-02 1.769431306 0.1021054921E-02 1.785342572 0.1010784187E-02 1.801253837 0.1001807355E-02 1.817165102 0.9950888210E-03 1.833076367 0.9930911290E-03 1.848987632 0.9978247977E-03 1.864898897 0.1005516105E-02 1.880810162 0.1012675013E-02 1.896721427 0.1018124404E-02 1.912632693 0.1021483302E-02 1.928543958 0.1022614840E-02 1.944455223 0.1022710705E-02 1.960366488 0.1022998736E-02 1.976277753 0.1023479895E-02 1.992189018 0.1024154758E-02 2.008100283 0.1025022388E-02 2.024011548 0.1026079348E-02 2.039922814 0.1027319049E-02 2.055834079 0.1028731449E-02 2.071745344 0.1030302934E-02 2.087656609 0.1032016164E-02 2.103567874 0.1033849542E-02 2.119479139 0.1035775759E-02 2.135390404 0.1037758358E-02 2.151301669 0.1039743754E-02 2.167212935 0.1041642284E-02 2.183124200 0.1043281924E-02 2.199035465 0.1044305511E-02 2.214946730 0.1044081603E-02 2.230857995 0.1042171749E-02 2.246769260 0.1039084597E-02 2.262680525 0.1035637539E-02 2.278591790 0.1032334240E-02 2.294503056 0.1029454130E-02 2.310414321 0.1027200130E-02 2.326325586 0.1025764976E-02 2.342236851 0.1025323860E-02 2.358148116 0.1025929275E-02 2.374059381 0.1027355204E-02 2.389970646 0.1029112226E-02 2.405881911 0.1030690744E-02 2.421793177 0.1031747935E-02 2.437704442 0.1032116111E-02 2.453176228 0.1031486963E-02 2.468648015 0.1029560591E-02 2.484119801 0.1026230634E-02 2.499591588 0.1021353411E-02 2.515063374 0.1014791072E-02 2.530535160 0.1006452493E-02 2.546006947 0.9963153767E-03 2.561478733 0.9844247977E-03 2.576950520 0.9708773539E-03 2.592422306 0.9558035202E-03 2.607894093 0.9451161570E-03 2.623365879 0.9353203575E-03 2.638837666 0.9250680973E-03 2.654309452 0.9146759168E-03 2.669781238 0.9045737552E-03 2.685253025 0.8953447242E-03 2.700724811 0.8877486622E-03 2.716196598 0.8826639240E-03 2.731668384 0.8808627427E-03 2.747065710 0.8864827383E-03 2.762463036 0.8998519360E-03 2.777860361 0.9164165412E-03 2.793257687 0.9340206416E-03 2.808655013 0.9517820555E-03 2.824052339 0.9693022349E-03 2.839449664 0.9863758533E-03 2.854846990 0.1002883787E-02 2.870244316 0.1018749617E-02 2.885641641 0.1033920086E-02 2.901038967 0.1047487540E-02 2.916436293 0.1044568009E-02 2.931833619 0.1041802597E-02 2.947230944 0.1039199953E-02 2.962628270 0.1036768223E-02 2.978025596 0.1034514919E-02 2.993422921 0.1032446775E-02 3.008820247 0.1030569574E-02 3.024217573 0.1028887974E-02 3.039614899 0.1027405350E-02 3.055012224 0.1026123674E-02 3.070409550 0.1025043501E-02 3.085806876 0.1024164093E-02 3.101204201 0.1023483711E-02 3.116601527 0.1023000090E-02 3.131998853 0.1022711005E-02 3.147396179 0.1022614840E-02 0.000000000 0.1215508796E-02 0.1588994284E-01 0.1215232460E-02 0.3177988568E-01 0.1214390359E-02 0.4766982851E-01 0.1212943637E-02 0.6355977135E-01 0.1210828906E-02 0.7944971419E-01 0.1207960252E-02 0.9533965703E-01 0.1204231918E-02 0.1112295999 0.1199521576E-02 0.1271195427 0.1193694056E-02 0.1430094855 0.1186605445E-02 0.1588994284 0.1178107435E-02 0.1747893712 0.1168051879E-02 0.1906793141 0.1157167219E-02 0.2065692569 0.1148594638E-02 0.2224591997 0.1139795211E-02 0.2383491426 0.1130850107E-02 0.2542390854 0.1121839012E-02 0.2701290283 0.1112839228E-02 0.2860189711 0.1103924908E-02 0.3019089139 0.1095166430E-02 0.3177988568 0.1086629952E-02 0.3336887996 0.1078377174E-02 0.3495787424 0.1070465354E-02 0.3654686853 0.1062947647E-02 0.3813586281 0.1055873899E-02 0.3972485710 0.1049292082E-02 0.4131385138 0.1043250773E-02 0.4290284566 0.1037803372E-02 0.4449183995 0.1043566598E-02 0.4608083423 0.1054198839E-02 0.4766982851 0.1063411454E-02 0.4925882280 0.1071253486E-02 0.5084781708 0.1077777963E-02 0.5243681137 0.1083036194E-02 0.5402580565 0.1087074110E-02 0.5561479993 0.1089929746E-02 0.5720379422 0.1091631457E-02 0.5879278850 0.1092196726E-02 0.6039174156 0.1091624661E-02 0.6199069461 0.1090048593E-02 0.6358964767 0.1087834051E-02 0.6518860072 0.1085423808E-02 0.6678755378 0.1083169226E-02 0.6838650683 0.1081244716E-02 0.6998545989 0.1079670328E-02 0.7158441294 0.1078379261E-02 0.7318336600 0.1077273552E-02 0.7478231905 0.1076255416E-02 0.7638127211 0.1075242232E-02 0.7798022516 0.1074173547E-02 0.7957917822 0.1073014570E-02 0.8117813127 0.1071758062E-02 0.8277708433 0.1070425424E-02 0.8437603738 0.1066831607E-02 0.8597499044 0.1059511801E-02 0.8757394349 0.1050872057E-02 0.8917289655 0.1040831451E-02 0.9077184961 0.1029333314E-02 0.9237080266 0.1031957523E-02 0.9396975572 0.1040869556E-02 0.9556870877 0.1047120536E-02 0.9716766183 0.1051321285E-02 0.9876661488 0.1054351121E-02 1.003655679 0.1056584196E-02 1.019645210 0.1057426905E-02 1.035634740 0.1055167141E-02 1.051624271 0.1048507012E-02 1.067613802 0.1037680158E-02 1.083603332 0.1029401678E-02 1.099592863 0.1048590881E-02 1.115582393 0.1067216609E-02 1.131571924 0.1085076255E-02 1.147561454 0.1101999160E-02 1.163550985 0.1117843217E-02 1.179540515 0.1132495277E-02 1.195530046 0.1145872472E-02 1.211519577 0.1157923248E-02 1.227509107 0.1168627562E-02 1.243498638 0.1177951634E-02 1.259488168 0.1185104751E-02 1.275477699 0.1191512810E-02 1.291467229 0.1197118965E-02 1.307456760 0.1201899115E-02 1.323446290 0.1205862095E-02 1.339435821 0.1209045865E-02 1.355425351 0.1211509844E-02 1.371414882 0.1213324504E-02 1.387404413 0.1214559918E-02 1.403393943 0.1215274992E-02 1.419383474 0.1215508796E-02 1.435294739 0.1215386730E-02 1.451206004 0.1215021653E-02 1.467117269 0.1214416915E-02 1.483028534 0.1213578075E-02 1.498939799 0.1212512851E-02 1.514851064 0.1211231065E-02 1.530762330 0.1209744561E-02 1.546673595 0.1208067114E-02 1.562584860 0.1206214316E-02 1.578496125 0.1204203448E-02 1.594407390 0.1202053335E-02 1.610318655 0.1199784188E-02 1.626229920 0.1197417424E-02 1.642141185 0.1194975483E-02 1.658052451 0.1192481620E-02 1.673963716 0.1189959694E-02 1.689874981 0.1187433943E-02 1.705786246 0.1184928754E-02 1.721697511 0.1182468423E-02 1.737608776 0.1180076915E-02 1.753520041 0.1177777625E-02 1.769431306 0.1175593133E-02 1.785342572 0.1173544974E-02 1.801253837 0.1171653409E-02 1.817165102 0.1169937210E-02 1.833076367 0.1168413456E-02 1.848987632 0.1167097352E-02 1.864898897 0.1166002057E-02 1.880810162 0.1165138545E-02 1.896721427 0.1164515479E-02 1.912632693 0.1164139116E-02 1.928543958 0.1164013240E-02 1.944455223 0.1163384047E-02 1.960366488 0.1161511457E-02 1.976277753 0.1158440343E-02 1.992189018 0.1154245086E-02 2.008100283 0.1149028617E-02 2.024011548 0.1142920434E-02 2.039922814 0.1136073055E-02 2.055834079 0.1128656491E-02 2.071745344 0.1120850698E-02 2.087656609 0.1112836596E-02 2.103567874 0.1104787123E-02 2.119479139 0.1096860504E-02 2.135390404 0.1089198439E-02 2.151301669 0.1081932727E-02 2.167212935 0.1075206693E-02 2.183124200 0.1069226842E-02 2.199035465 0.1064372595E-02 2.214946730 0.1061292828E-02 2.230857995 0.1060445777E-02 2.246769260 0.1061351676E-02 2.262680525 0.1063237566E-02 2.278591790 0.1065666018E-02 2.294503056 0.1068451145E-02 2.310414321 0.1071512780E-02 2.326325586 0.1074798148E-02 2.342236851 0.1078235017E-02 2.358148116 0.1081700403E-02 2.374059381 0.1085009279E-02 2.389970646 0.1087930639E-02 2.405881911 0.1090225906E-02 2.421793177 0.1091692443E-02 2.437704442 0.1092196726E-02 2.453176228 0.1091948329E-02 2.468648015 0.1091247608E-02 2.484119801 0.1090217503E-02 2.499591588 0.1089029181E-02 2.515063374 0.1087858681E-02 2.530535160 0.1086845776E-02 2.546006947 0.1086071668E-02 2.561478733 0.1085516184E-02 2.576950520 0.1084981585E-02 2.592422306 0.1084714485E-02 2.607894093 0.1084694469E-02 2.623365879 0.1084877857E-02 2.638837666 0.1085207169E-02 2.654309452 0.1085619572E-02 2.669781238 0.1086053529E-02 2.685253025 0.1086453621E-02 2.700724811 0.1086773898E-02 2.716196598 0.1086952998E-02 2.731668384 0.1086994557E-02 2.747065710 0.1083051786E-02 2.762463036 0.1079125039E-02 2.777860361 0.1075253064E-02 2.793257687 0.1071446368E-02 2.808655013 0.1067715341E-02 2.824052339 0.1064070281E-02 2.839449664 0.1060521394E-02 2.854846990 0.1057078783E-02 2.870244316 0.1053752423E-02 2.885641641 0.1050552135E-02 2.901038967 0.1048355528E-02 2.916436293 0.1062024830E-02 2.931833619 0.1074902608E-02 2.947230944 0.1086967556E-02 2.962628270 0.1098201422E-02 2.978025596 0.1108588362E-02 2.993422921 0.1118114514E-02 3.008820247 0.1126767709E-02 3.024217573 0.1134537273E-02 3.039614899 0.1141413884E-02 3.055012224 0.1147389478E-02 3.070409550 0.1152457168E-02 3.085806876 0.1156611200E-02 3.101204201 0.1159846907E-02 3.116601527 0.1162160686E-02 3.131998853 0.1163549974E-02 3.147396179 0.1164013240E-02 0.000000000 0.1215508796E-02 0.1588994284E-01 0.1215361805E-02 0.3177988568E-01 0.1214920247E-02 0.4766982851E-01 0.1214182418E-02 0.6355977135E-01 0.1213145633E-02 0.7944971419E-01 0.1211806459E-02 0.9533965703E-01 0.1210161035E-02 0.1112295999 0.1208205465E-02 0.1271195427 0.1205936280E-02 0.1430094855 0.1203350961E-02 0.1588994284 0.1200448489E-02 0.1747893712 0.1197229939E-02 0.1906793141 0.1193699057E-02 0.2065692569 0.1189862837E-02 0.2224591997 0.1185732056E-02 0.2383491426 0.1181321744E-02 0.2542390854 0.1176651578E-02 0.2701290283 0.1171746156E-02 0.2860189711 0.1166635160E-02 0.3019089139 0.1161353354E-02 0.3177988568 0.1155940429E-02 0.3336887996 0.1150440667E-02 0.3495787424 0.1144902434E-02 0.3654686853 0.1139377489E-02 0.3813586281 0.1133920146E-02 0.3972485710 0.1128586294E-02 0.4131385138 0.1123432325E-02 0.4290284566 0.1118514010E-02 0.4449183995 0.1113885379E-02 0.4608083423 0.1109597664E-02 0.4766982851 0.1105698346E-02 0.4925882280 0.1102230364E-02 0.5084781708 0.1099231506E-02 0.5243681137 0.1096733988E-02 0.5402580565 0.1094764212E-02 0.5561479993 0.1093342669E-02 0.5720379422 0.1092483936E-02 0.5879278850 0.1092196726E-02 0.6039174156 0.1092208608E-02 0.6199069461 0.1092239466E-02 0.6358964767 0.1092274809E-02 0.6518860072 0.1092290097E-02 0.6678755378 0.1092250215E-02 0.6838650683 0.1092108871E-02 0.6998545989 0.1091808024E-02 0.7158441294 0.1091277501E-02 0.7318336600 0.1090434951E-02 0.7478231905 0.1089186299E-02 0.7638127211 0.1087426807E-02 0.7798022516 0.1085042839E-02 0.7957917822 0.1081914311E-02 0.8117813127 0.1077917764E-02 0.8277708433 0.1072929926E-02 0.8437603738 0.1069067610E-02 0.8597499044 0.1067766700E-02 0.8757394349 0.1066639670E-02 0.8917289655 0.1065846912E-02 0.9077184961 0.1065607649E-02 0.9237080266 0.1066209880E-02 0.9396975572 0.1067928282E-02 0.9556870877 0.1070670977E-02 0.9716766183 0.1073649203E-02 0.9876661488 0.1075856125E-02 1.003655679 0.1076816488E-02 1.019645210 0.1077035751E-02 1.035634740 0.1078145530E-02 1.051624271 0.1081374186E-02 1.067613802 0.1086447053E-02 1.083603332 0.1092810231E-02 1.099592863 0.1100118218E-02 1.115582393 0.1108145275E-02 1.131571924 0.1116709142E-02 1.147561454 0.1125640892E-02 1.163550985 0.1134775216E-02 1.179540515 0.1143948735E-02 1.195530046 0.1153001489E-02 1.211519577 0.1161779776E-02 1.227509107 0.1170139741E-02 1.243498638 0.1177996011E-02 1.259488168 0.1186067784E-02 1.275477699 0.1192907457E-02 1.291467229 0.1198600698E-02 1.307456760 0.1203249031E-02 1.323446290 0.1206963860E-02 1.339435821 0.1209860005E-02 1.355425351 0.1212049067E-02 1.371414882 0.1213632956E-02 1.387404413 0.1214697937E-02 1.403393943 0.1215309563E-02 1.419383474 0.1215508796E-02 1.435294739 0.1215386730E-02 1.451206004 0.1215021653E-02 1.467117269 0.1214416915E-02 1.483028534 0.1213578075E-02 1.498939799 0.1212512851E-02 1.514851064 0.1211231065E-02 1.530762330 0.1209744561E-02 1.546673595 0.1208067114E-02 1.562584860 0.1206214316E-02 1.578496125 0.1204203448E-02 1.594407390 0.1202053335E-02 1.610318655 0.1199784188E-02 1.626229920 0.1197417424E-02 1.642141185 0.1194975483E-02 1.658052451 0.1192481620E-02 1.673963716 0.1189959694E-02 1.689874981 0.1187433943E-02 1.705786246 0.1184928754E-02 1.721697511 0.1182468423E-02 1.737608776 0.1180076915E-02 1.753520041 0.1177777625E-02 1.769431306 0.1175593133E-02 1.785342572 0.1173544974E-02 1.801253837 0.1171653409E-02 1.817165102 0.1169937210E-02 1.833076367 0.1168413456E-02 1.848987632 0.1167097352E-02 1.864898897 0.1166002057E-02 1.880810162 0.1165138545E-02 1.896721427 0.1164515479E-02 1.912632693 0.1164139116E-02 1.928543958 0.1164013240E-02 1.944455223 0.1163839485E-02 1.960366488 0.1163319882E-02 1.976277753 0.1162459397E-02 1.992189018 0.1161266268E-02 2.008100283 0.1159751927E-02 2.024011548 0.1157930914E-02 2.039922814 0.1155820750E-02 2.055834079 0.1153441783E-02 2.071745344 0.1150817014E-02 2.087656609 0.1147971885E-02 2.103567874 0.1144934040E-02 2.119479139 0.1141733066E-02 2.135390404 0.1138400198E-02 2.151301669 0.1134968006E-02 2.167212935 0.1131470060E-02 2.183124200 0.1127940574E-02 2.199035465 0.1124414044E-02 2.214946730 0.1120924877E-02 2.230857995 0.1117507014E-02 2.246769260 0.1114193574E-02 2.262680525 0.1111016494E-02 2.278591790 0.1108006207E-02 2.294503056 0.1105191340E-02 2.310414321 0.1102598440E-02 2.326325586 0.1100251748E-02 2.342236851 0.1098173001E-02 2.358148116 0.1096381277E-02 2.374059381 0.1094892871E-02 2.389970646 0.1093721210E-02 2.405881911 0.1092876786E-02 2.421793177 0.1092367118E-02 2.437704442 0.1092196726E-02 2.453176228 0.1092009082E-02 2.468648015 0.1091466122E-02 2.484119801 0.1090625740E-02 2.499591588 0.1089577513E-02 2.515063374 0.1088432016E-02 2.530535160 0.1087306207E-02 2.546006947 0.1086306945E-02 2.561478733 0.1085560352E-02 2.576950520 0.1085294685E-02 2.592422306 0.1085234883E-02 2.607894093 0.1085332499E-02 2.623365879 0.1085538754E-02 2.638837666 0.1085808709E-02 2.654309452 0.1086103013E-02 2.669781238 0.1086388480E-02 2.685253025 0.1086638162E-02 2.700724811 0.1086831258E-02 2.716196598 0.1086980130E-02 2.731668384 0.1087051244E-02 2.747065710 0.1091027506E-02 2.762463036 0.1095054557E-02 2.777860361 0.1099093130E-02 2.793257687 0.1103131829E-02 2.808655013 0.1107158956E-02 2.824052339 0.1111162432E-02 2.839449664 0.1115129736E-02 2.854846990 0.1119047842E-02 2.870244316 0.1122903174E-02 2.885641641 0.1126681568E-02 2.901038967 0.1130368262E-02 2.916436293 0.1133947906E-02 2.931833619 0.1137404609E-02 2.947230944 0.1140722020E-02 2.962628270 0.1143883446E-02 2.978025596 0.1146872011E-02 2.993422921 0.1149670853E-02 3.008820247 0.1152263344E-02 3.024217573 0.1154633340E-02 3.039614899 0.1156765448E-02 3.055012224 0.1158645295E-02 3.070409550 0.1160259791E-02 3.085806876 0.1161597384E-02 3.101204201 0.1162648283E-02 3.116601527 0.1163404660E-02 3.131998853 0.1163860803E-02 3.147396179 0.1164013240E-02 elk-9.2.12/examples/phonons-superconductivity/GaAs-DFPT/PaxHeaders/PHDLINES.OUT0000644000000000000000000000013014536061314023707 xustar0029 mtime=1702388428.94449997 30 atime=1702388428.943499971 29 ctime=1702388428.94449997 elk-9.2.12/examples/phonons-superconductivity/GaAs-DFPT/PHDLINES.OUT0000644002504400250440000000106014536061314026430 0ustar00dewhurstdewhurst00000000000000 0.000000000 -0.9116315967E-03 0.000000000 0.1823263193E-02 0.5879278850 -0.9116315967E-03 0.5879278850 0.1823263193E-02 1.419383474 -0.9116315967E-03 1.419383474 0.1823263193E-02 1.928543958 -0.9116315967E-03 1.928543958 0.1823263193E-02 2.437704442 -0.9116315967E-03 2.437704442 0.1823263193E-02 2.731668384 -0.9116315967E-03 2.731668384 0.1823263193E-02 3.147396179 -0.9116315967E-03 3.147396179 0.1823263193E-02 elk-9.2.12/examples/phonons-superconductivity/GaAs-DFPT/PaxHeaders/elk.in0000644000000000000000000000013214536061314023215 xustar0030 mtime=1702388428.945499969 30 atime=1702388428.945499969 30 ctime=1702388428.945499969 elk-9.2.12/examples/phonons-superconductivity/GaAs-DFPT/elk.in0000644002504400250440000000177614536061314025752 0ustar00dewhurstdewhurst00000000000000 ! Phonon dispersion of GaAs calculated with density functional perturbation ! theory (DFPT). Note the large number of radial mesh points required for ! convergence. This is because the gradients calculated in the muffin-tin ! have to be particularly accurate. ! Also note that the LO-TO splitting is not included in the dispersion. tasks 0 : ground state calculation 205 : phonon calculation with DFPT 220 : phonon dispersion plot ! scale up the number of radial mesh points nrmtscf 6.0 ngridq 2 2 2 ngridk 4 4 4 plot1d 7 200 0.0 0.0 1.0 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-9.2.12/examples/phonons-superconductivity/PaxHeaders/Nb-DFPT0000644000000000000000000000013214536061314021561 xustar0030 mtime=1702388428.961499945 30 atime=1702388428.946499967 30 ctime=1702388428.961499945 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/0000755002504400250440000000000014536061314024360 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/PaxHeaders/ALPHA2F.OUT0000644000000000000000000000013214536061314023244 xustar0030 mtime=1702388428.947499965 30 atime=1702388428.947499965 30 ctime=1702388428.947499965 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/ALPHA2F.OUT0000644002504400250440000004410414536061314025771 0ustar00dewhurstdewhurst00000000000000 -0.1214788429E-03 0.000000000 -0.1188063098E-03 0.000000000 -0.1161337768E-03 0.000000000 -0.1134612437E-03 0.000000000 -0.1107887107E-03 0.000000000 -0.1081161776E-03 0.000000000 -0.1054436446E-03 0.000000000 -0.1027711115E-03 0.000000000 -0.1000985785E-03 0.000000000 -0.9742604544E-04 0.000000000 -0.9475351239E-04 0.000000000 -0.9208097934E-04 0.000000000 -0.8940844629E-04 0.000000000 -0.8673591325E-04 0.000000000 -0.8406338020E-04 0.000000000 -0.8139084715E-04 0.000000000 -0.7871831410E-04 0.000000000 -0.7604578106E-04 0.000000000 -0.7337324801E-04 0.000000000 -0.7070071496E-04 0.000000000 -0.6802818191E-04 0.000000000 -0.6535564886E-04 0.000000000 -0.6268311582E-04 0.000000000 -0.6001058277E-04 0.000000000 -0.5733804972E-04 0.000000000 -0.5466551667E-04 0.000000000 -0.5199298362E-04 0.000000000 -0.4932045058E-04 0.000000000 -0.4664791753E-04 0.000000000 -0.4397538448E-04 0.000000000 -0.4130285143E-04 0.000000000 -0.3863031839E-04 0.000000000 -0.3595778534E-04 0.000000000 -0.3328525229E-04 0.000000000 -0.3061271924E-04 0.000000000 -0.2794018619E-04 0.000000000 -0.2526765315E-04 0.000000000 -0.2259512010E-04 0.000000000 -0.1992258705E-04 0.000000000 -0.1725005400E-04 0.000000000 -0.1457752095E-04 0.000000000 -0.1190498791E-04 0.000000000 -0.9232454859E-05 0.000000000 -0.6559921811E-05 0.000000000 -0.3887388763E-05 0.3801108487E-34 -0.1214855715E-05 0.3801108487E-34 0.1457677333E-05 0.6197129300E-09 0.4130210381E-05 0.6197129300E-09 0.6802743429E-05 0.1048194789E-07 0.9475276476E-05 0.9862234962E-08 0.1214780952E-04 0.9862234962E-08 0.1482034257E-04 0.4948219052E-07 0.1749287562E-04 0.4974567115E-07 0.2016540867E-04 0.2065159609E-06 0.2283794172E-04 0.2064282313E-06 0.2551047476E-04 0.4700093407E-06 0.2818300781E-04 0.1098097410E-05 0.3085554086E-04 0.1450322615E-05 0.3352807391E-04 0.2249805080E-05 0.3620060696E-04 0.2299490027E-05 0.3887314000E-04 0.2738248309E-05 0.4154567305E-04 0.4184096368E-05 0.4421820610E-04 0.6220368978E-05 0.4689073915E-04 0.7450004557E-05 0.4956327219E-04 0.1217122090E-04 0.5223580524E-04 0.1348206585E-04 0.5490833829E-04 0.1793631065E-04 0.5758087134E-04 0.1201078497E-04 0.6025340439E-04 0.2863514237E-04 0.6292593743E-04 0.2432934426E-04 0.6559847048E-04 0.3380218137E-04 0.6827100353E-04 0.3625309382E-04 0.7094353658E-04 0.4896928584E-04 0.7361606963E-04 0.5640155106E-04 0.7628860267E-04 0.5212492429E-04 0.7896113572E-04 0.7148191658E-04 0.8163366877E-04 0.8023089039E-04 0.8430620182E-04 0.8918821089E-04 0.8697873486E-04 0.9698401649E-04 0.8965126791E-04 0.1248459045E-03 0.9232380096E-04 0.1532548832E-03 0.9499633401E-04 0.1775887565E-03 0.9766886706E-04 0.1651870442E-03 0.1003414001E-03 0.1595840128E-03 0.1030139332E-03 0.2002683335E-03 0.1056864662E-03 0.2432766462E-03 0.1083589992E-03 0.2977323840E-03 0.1110315323E-03 0.2488172994E-03 0.1137040653E-03 0.3042284579E-03 0.1163765984E-03 0.3193929675E-03 0.1190491314E-03 0.4153687199E-03 0.1217216645E-03 0.4162909873E-03 0.1243941975E-03 0.4190759288E-03 0.1270667306E-03 0.5076066717E-03 0.1297392636E-03 0.5643792185E-03 0.1324117967E-03 0.6538184349E-03 0.1350843297E-03 0.6840598363E-03 0.1377568628E-03 0.7125154847E-03 0.1404293958E-03 0.7520137824E-03 0.1431019289E-03 0.7945140122E-03 0.1457744619E-03 0.8334516714E-03 0.1484469950E-03 0.9639524481E-03 0.1511195280E-03 0.9407677873E-03 0.1537920611E-03 0.1105787418E-02 0.1564645941E-03 0.1094633362E-02 0.1591371272E-03 0.1382073439E-02 0.1618096602E-03 0.1510714936E-02 0.1644821933E-03 0.1503748880E-02 0.1671547263E-03 0.1493542777E-02 0.1698272593E-03 0.1426354195E-02 0.1724997924E-03 0.1795407753E-02 0.1751723254E-03 0.2007551769E-02 0.1778448585E-03 0.2364998769E-02 0.1805173915E-03 0.2397984943E-02 0.1831899246E-03 0.2166709217E-02 0.1858624576E-03 0.2295813505E-02 0.1885349907E-03 0.2380975557E-02 0.1912075237E-03 0.2890545885E-02 0.1938800568E-03 0.3021138090E-02 0.1965525898E-03 0.3362073456E-02 0.1992251229E-03 0.3411429583E-02 0.2018976559E-03 0.3676574442E-02 0.2045701890E-03 0.3670684092E-02 0.2072427220E-03 0.3976415244E-02 0.2099152551E-03 0.4042918245E-02 0.2125877881E-03 0.4335465177E-02 0.2152603212E-03 0.4887157290E-02 0.2179328542E-03 0.5265472417E-02 0.2206053873E-03 0.5815736242E-02 0.2232779203E-03 0.5385582407E-02 0.2259504534E-03 0.5798599839E-02 0.2286229864E-03 0.5807222779E-02 0.2312955195E-03 0.6907092080E-02 0.2339680525E-03 0.7309227343E-02 0.2366405855E-03 0.8012009442E-02 0.2393131186E-03 0.7954803591E-02 0.2419856516E-03 0.7821591299E-02 0.2446581847E-03 0.7836098194E-02 0.2473307177E-03 0.8777246007E-02 0.2500032508E-03 0.9704545101E-02 0.2526757838E-03 0.1060571434E-01 0.2553483169E-03 0.1072647748E-01 0.2580208499E-03 0.1102255967E-01 0.2606933830E-03 0.1215533748E-01 0.2633659160E-03 0.1253633775E-01 0.2660384491E-03 0.1289422321E-01 0.2687109821E-03 0.1330075107E-01 0.2713835152E-03 0.1394043649E-01 0.2740560482E-03 0.1444152571E-01 0.2767285813E-03 0.1640975639E-01 0.2794011143E-03 0.1726860966E-01 0.2820736474E-03 0.1896692422E-01 0.2847461804E-03 0.1743672972E-01 0.2874187135E-03 0.1792206139E-01 0.2900912465E-03 0.1938982919E-01 0.2927637796E-03 0.2120087331E-01 0.2954363126E-03 0.2335018978E-01 0.2981088456E-03 0.2438911718E-01 0.3007813787E-03 0.2486007452E-01 0.3034539117E-03 0.2479545003E-01 0.3061264448E-03 0.2608320728E-01 0.3087989778E-03 0.2931329628E-01 0.3114715109E-03 0.3162515556E-01 0.3141440439E-03 0.3303621955E-01 0.3168165770E-03 0.3250297945E-01 0.3194891100E-03 0.3477157241E-01 0.3221616431E-03 0.3587087857E-01 0.3248341761E-03 0.3891490992E-01 0.3275067092E-03 0.4001779060E-01 0.3301792422E-03 0.4200440680E-01 0.3328517753E-03 0.4425786496E-01 0.3355243083E-03 0.4640391288E-01 0.3381968414E-03 0.4765271090E-01 0.3408693744E-03 0.4743674831E-01 0.3435419075E-03 0.4936986665E-01 0.3462144405E-03 0.5363899618E-01 0.3488869736E-03 0.5594309531E-01 0.3515595066E-03 0.5826045873E-01 0.3542320397E-03 0.5930710359E-01 0.3569045727E-03 0.6277595126E-01 0.3595771057E-03 0.6378059226E-01 0.3622496388E-03 0.6562482763E-01 0.3649221718E-03 0.6914307563E-01 0.3675947049E-03 0.7278953692E-01 0.3702672379E-03 0.7499796490E-01 0.3729397710E-03 0.7791020244E-01 0.3756123040E-03 0.7806831823E-01 0.3782848371E-03 0.8275036362E-01 0.3809573701E-03 0.8092061116E-01 0.3836299032E-03 0.8898054424E-01 0.3863024362E-03 0.9040715724E-01 0.3889749693E-03 0.9398954972E-01 0.3916475023E-03 0.9484933384E-01 0.3943200354E-03 0.9533566316E-01 0.3969925684E-03 0.1039066884 0.3996651015E-03 0.1055013963 0.4023376345E-03 0.1101860358 0.4050101676E-03 0.1073569943 0.4076827006E-03 0.1131476057 0.4103552337E-03 0.1170992170 0.4130277667E-03 0.1231283768 0.4157002998E-03 0.1217433843 0.4183728328E-03 0.1242152489 0.4210453658E-03 0.1269776060 0.4237178989E-03 0.1343215863 0.4263904319E-03 0.1372672256 0.4290629650E-03 0.1370632022 0.4317354980E-03 0.1413184658 0.4344080311E-03 0.1453467990 0.4370805641E-03 0.1507673067 0.4397530972E-03 0.1488766473 0.4424256302E-03 0.1539609019 0.4450981633E-03 0.1582496413 0.4477706963E-03 0.1650402630 0.4504432294E-03 0.1629777178 0.4531157624E-03 0.1684302922 0.4557882955E-03 0.1719300701 0.4584608285E-03 0.1812745933 0.4611333616E-03 0.1828809171 0.4638058946E-03 0.1782969942 0.4664784277E-03 0.1849448512 0.4691509607E-03 0.1916399665 0.4718234938E-03 0.2019819946 0.4744960268E-03 0.2010402177 0.4771685599E-03 0.1994405493 0.4798410929E-03 0.2066676925 0.4825136260E-03 0.2135437372 0.4851861590E-03 0.2171768366 0.4878586920E-03 0.2207986965 0.4905312251E-03 0.2211230339 0.4932037581E-03 0.2313735936 0.4958762912E-03 0.2317286698 0.4985488242E-03 0.2381004427 0.5012213573E-03 0.2427764728 0.5038938903E-03 0.2436529986 0.5065664234E-03 0.2524296141 0.5092389564E-03 0.2473656774 0.5119114895E-03 0.2623987259 0.5145840225E-03 0.2646717608 0.5172565556E-03 0.2757509348 0.5199290886E-03 0.2780320578 0.5226016217E-03 0.2758757714 0.5252741547E-03 0.2857883350 0.5279466878E-03 0.2920473763 0.5306192208E-03 0.2990592002 0.5332917539E-03 0.3009050367 0.5359642869E-03 0.3049301612 0.5386368200E-03 0.3165226534 0.5413093530E-03 0.3202720960 0.5439818861E-03 0.3251660549 0.5466544191E-03 0.3255216505 0.5493269521E-03 0.3369994677 0.5519994852E-03 0.3420418147 0.5546720182E-03 0.3538806734 0.5573445513E-03 0.3548220022 0.5600170843E-03 0.3647379743 0.5626896174E-03 0.3684875239 0.5653621504E-03 0.3776358778 0.5680346835E-03 0.3731853237 0.5707072165E-03 0.3939817216 0.5733797496E-03 0.3933171693 0.5760522826E-03 0.4188199621 0.5787248157E-03 0.4105824635 0.5813973487E-03 0.4316033827 0.5840698818E-03 0.4304621177 0.5867424148E-03 0.4438654690 0.5894149479E-03 0.4470284470 0.5920874809E-03 0.4646107440 0.5947600140E-03 0.4726783460 0.5974325470E-03 0.4907477298 0.6001050801E-03 0.4954350476 0.6027776131E-03 0.5070039135 0.6054501462E-03 0.5122571605 0.6081226792E-03 0.5355186415 0.6107952122E-03 0.5476397259 0.6134677453E-03 0.5717653354 0.6161402783E-03 0.5831796272 0.6188128114E-03 0.5989144327 0.6214853444E-03 0.6127570490 0.6241578775E-03 0.6315707160 0.6268304105E-03 0.6556930482 0.6295029436E-03 0.6827056442 0.6321754766E-03 0.7051576177 0.6348480097E-03 0.7385509500 0.6375205427E-03 0.7589178219 0.6401930758E-03 0.8012969822 0.6428656088E-03 0.8434709491 0.6455381419E-03 0.9043850337 0.6482106749E-03 0.9555189678 0.6508832080E-03 1.039483134 0.6535557410E-03 1.198302673 0.6562282741E-03 1.330433549 0.6589008071E-03 1.410226950 0.6615733402E-03 1.400075953 0.6642458732E-03 1.393698961 0.6669184063E-03 1.422295416 0.6695909393E-03 1.435087850 0.6722634723E-03 1.465921975 0.6749360054E-03 1.435054345 0.6776085384E-03 1.401581055 0.6802810715E-03 1.390710068 0.6829536045E-03 1.397865635 0.6856261376E-03 1.415513287 0.6882986706E-03 1.390013872 0.6909712037E-03 1.328049771 0.6936437367E-03 1.234834057 0.6963162698E-03 1.139339604 0.6989888028E-03 1.060964831 0.7016613359E-03 1.040424565 0.7043338689E-03 1.009748699 0.7070064020E-03 0.9836978182 0.7096789350E-03 0.9435322817 0.7123514681E-03 0.9188764339 0.7150240011E-03 0.9166038680 0.7176965342E-03 0.9082401543 0.7203690672E-03 0.8838319721 0.7230416003E-03 0.8663986326 0.7257141333E-03 0.8339612588 0.7283866664E-03 0.8192783905 0.7310591994E-03 0.8011895524 0.7337317325E-03 0.7906379347 0.7364042655E-03 0.7849605620 0.7390767985E-03 0.7846813588 0.7417493316E-03 0.7801081205 0.7444218646E-03 0.7701009651 0.7470943977E-03 0.7610295139 0.7497669307E-03 0.7605096297 0.7524394638E-03 0.7785767961 0.7551119968E-03 0.7865848636 0.7577845299E-03 0.7833013308 0.7604570629E-03 0.7791675893 0.7631295960E-03 0.7704813660 0.7658021290E-03 0.7676567724 0.7684746621E-03 0.7511666722 0.7711471951E-03 0.7499188564 0.7738197282E-03 0.7352130537 0.7764922612E-03 0.7311604909 0.7791647943E-03 0.7184396044 0.7818373273E-03 0.7133594686 0.7845098604E-03 0.7122242387 0.7871823934E-03 0.7214013334 0.7898549265E-03 0.7111458630 0.7925274595E-03 0.7000665206 0.7951999926E-03 0.7002378800 0.7978725256E-03 0.7230918813 0.8005450586E-03 0.7200840918 0.8032175917E-03 0.7102563562 0.8058901247E-03 0.7273084882 0.8085626578E-03 0.7338158860 0.8112351908E-03 0.7411002780 0.8139077239E-03 0.7233228556 0.8165802569E-03 0.7332277474 0.8192527900E-03 0.7098855825 0.8219253230E-03 0.6955255638 0.8245978561E-03 0.6934405186 0.8272703891E-03 0.6972495319 0.8299429222E-03 0.6897723557 0.8326154552E-03 0.6444056507 0.8352879883E-03 0.6171330889 0.8379605213E-03 0.5906650028 0.8406330544E-03 0.5897145780 0.8433055874E-03 0.5814302819 0.8459781205E-03 0.5689990725 0.8486506535E-03 0.5423747917 0.8513231866E-03 0.5205646947 0.8539957196E-03 0.5183550017 0.8566682527E-03 0.5271656642 0.8593407857E-03 0.5155779911 0.8620133187E-03 0.4988970558 0.8646858518E-03 0.4730481307 0.8673583848E-03 0.4843320374 0.8700309179E-03 0.4866108742 0.8727034509E-03 0.4735469427 0.8753759840E-03 0.4582666772 0.8780485170E-03 0.4353765691 0.8807210501E-03 0.4536383972 0.8833935831E-03 0.4413576219 0.8860661162E-03 0.4446697070 0.8887386492E-03 0.4196600318 0.8914111823E-03 0.4248223729 0.8940837153E-03 0.4187493058 0.8967562484E-03 0.4239028291 0.8994287814E-03 0.4189333357 0.9021013145E-03 0.3989226643 0.9047738475E-03 0.4005302367 0.9074463806E-03 0.4005588488 0.9101189136E-03 0.4078645452 0.9127914467E-03 0.3860197496 0.9154639797E-03 0.3829378326 0.9181365128E-03 0.3887746111 0.9208090458E-03 0.3943779298 0.9234815789E-03 0.3901873651 0.9261541119E-03 0.3952848882 0.9288266449E-03 0.4001578096 0.9314991780E-03 0.3969627570 0.9341717110E-03 0.4089410770 0.9368442441E-03 0.4174107664 0.9395167771E-03 0.4285201815 0.9421893102E-03 0.4197015964 0.9448618432E-03 0.4471285176 0.9475343763E-03 0.4584103255 0.9502069093E-03 0.4766426141 0.9528794424E-03 0.4767209631 0.9555519754E-03 0.5149901077 0.9582245085E-03 0.5216695729 0.9608970415E-03 0.5591493003 0.9635695746E-03 0.5721179976 0.9662421076E-03 0.6236149057 0.9689146407E-03 0.6394987348 0.9715871737E-03 0.6584890717 0.9742597068E-03 0.6835154458 0.9769322398E-03 0.7126965147 0.9796047729E-03 0.7487999089 0.9822773059E-03 0.7818140382 0.9849498390E-03 0.8201599442 0.9876223720E-03 0.8790247155 0.9902949050E-03 0.9391473392 0.9929674381E-03 1.043182426 0.9956399711E-03 1.109772721 0.9983125042E-03 1.169400266 0.1000985037E-02 1.192040552 0.1003657570E-02 1.237823939 0.1006330103E-02 1.299862616 0.1009002636E-02 1.337869241 0.1011675169E-02 1.358360615 0.1014347702E-02 1.331886403 0.1017020236E-02 1.319069590 0.1019692769E-02 1.288845428 0.1022365302E-02 1.282806695 0.1025037835E-02 1.254628576 0.1027710368E-02 1.249106660 0.1030382901E-02 1.238733919 0.1033055434E-02 1.252617764 0.1035727967E-02 1.242812453 0.1038400500E-02 1.164393981 0.1041073033E-02 1.028982367 0.1043745566E-02 0.8743320304 0.1046418099E-02 0.7690782054 0.1049090632E-02 0.6923536142 0.1051763165E-02 0.6287611563 0.1054435698E-02 0.5701736492 0.1057108231E-02 0.5063996662 0.1059780764E-02 0.4356629499 0.1062453297E-02 0.3188856820 0.1065125830E-02 0.2070466528 0.1067798363E-02 0.1202692498 0.1070470896E-02 0.9458962199E-01 0.1073143430E-02 0.8381588436E-01 0.1075815963E-02 0.7926804998E-01 0.1078488496E-02 0.7155949018E-01 0.1081161029E-02 0.6567912531E-01 0.1083833562E-02 0.5892432356E-01 0.1086506095E-02 0.5383654684E-01 0.1089178628E-02 0.4839037985E-01 0.1091851161E-02 0.4161728390E-01 0.1094523694E-02 0.3555180480E-01 0.1097196227E-02 0.2900290594E-01 0.1099868760E-02 0.2220027873E-01 0.1102541293E-02 0.1247138479E-01 0.1105213826E-02 0.4897551404E-02 0.1107886359E-02 0.2792628519E-03 0.1110558892E-02 0.000000000 0.1113231425E-02 0.000000000 0.1115903958E-02 0.000000000 0.1118576491E-02 0.000000000 0.1121249024E-02 0.000000000 0.1123921557E-02 0.000000000 0.1126594090E-02 0.000000000 0.1129266624E-02 0.000000000 0.1131939157E-02 0.000000000 0.1134611690E-02 0.000000000 0.1137284223E-02 0.000000000 0.1139956756E-02 0.000000000 0.1142629289E-02 0.000000000 0.1145301822E-02 0.000000000 0.1147974355E-02 0.000000000 0.1150646888E-02 0.000000000 0.1153319421E-02 0.000000000 0.1155991954E-02 0.000000000 0.1158664487E-02 0.000000000 0.1161337020E-02 0.000000000 0.1164009553E-02 0.000000000 0.1166682086E-02 0.000000000 0.1169354619E-02 0.000000000 0.1172027152E-02 0.000000000 0.1174699685E-02 0.000000000 0.1177372218E-02 0.000000000 0.1180044751E-02 0.000000000 0.1182717284E-02 0.000000000 0.1185389818E-02 0.000000000 0.1188062351E-02 0.000000000 0.1190734884E-02 0.000000000 0.1193407417E-02 0.000000000 0.1196079950E-02 0.000000000 0.1198752483E-02 0.000000000 0.1201425016E-02 0.000000000 0.1204097549E-02 0.000000000 0.1206770082E-02 0.000000000 0.1209442615E-02 0.000000000 0.1212115148E-02 0.000000000 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/PaxHeaders/ELIASHBERG_GAP_T.OUT0000644000000000000000000000013214536061314024606 xustar0030 mtime=1702388428.949499962 30 atime=1702388428.949499962 30 ctime=1702388428.949499962 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/ELIASHBERG_GAP_T.OUT0000644002504400250440000000423014536061314027327 0ustar00dewhurstdewhurst00000000000000 4.641895546 0.1120506996E-03 2.101141314 6.592837152 0.1109092731E-03 2.100438923 8.543778758 0.1084305350E-03 2.100870512 10.49472036 0.1034312918E-03 2.103474471 12.44566197 0.9456550699E-04 2.109291107 14.39660358 0.8035593294E-04 2.118670638 16.34754518 0.5548320594E-04 2.132418902 18.29848679 0.6524183979E-07 2.145515563 20.24942840 0.1586296463E-09 2.145522420 22.20037000 0.8747859637E-10 2.145413019 24.15131161 0.8177930128E-10 2.145365447 26.10225321 0.4455281642E-10 2.145429476 28.05319482 0.4018356898E-10 2.145433057 30.00413643 0.3572715852E-10 2.145376528 31.95507803 0.3133564660E-10 2.145503799 33.90601964 0.2711170766E-10 2.145343631 35.85696125 0.2315706998E-10 2.145399025 37.80790285 0.1954084995E-10 2.145423321 39.75884446 0.1630383490E-10 2.145417662 41.70978607 0.1346079432E-10 2.145381783 43.66072767 0.1100581597E-10 2.145313985 45.61166928 0.8917681450E-11 2.145564840 47.56261088 0.7165505735E-11 2.145459957 49.51355249 0.5713685173E-11 2.145317782 51.46449410 0.4519035286E-11 2.145540374 53.41543570 0.3548509285E-11 2.145358556 55.36637731 0.2767949501E-11 2.145562933 57.31731892 0.2145787635E-11 2.145337200 59.26826052 0.1654042659E-11 2.145529720 61.21920213 0.1268288974E-11 2.145251669 63.17014373 0.9678114946E-12 2.145437652 65.12108534 0.7351873113E-12 2.145607235 67.07202695 0.5561825589E-12 2.145277821 69.02296855 0.4191819398E-12 2.145446808 70.97391016 0.3148133141E-12 2.145602106 72.92485177 0.2356776139E-12 2.145206374 74.87579337 0.1759225704E-12 2.145365976 76.82673498 0.1309578187E-12 2.145513623 78.77767658 0.9724010491E-13 2.145650478 80.72861819 0.7204139109E-13 2.145183350 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/PaxHeaders/MCMILLAN.OUT0000644000000000000000000000012714536061314023427 xustar0029 mtime=1702388428.95149996 29 atime=1702388428.95149996 29 ctime=1702388428.95149996 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/MCMILLAN.OUT0000644002504400250440000000053214536061314026145 0ustar00dewhurstdewhurst00000000000000 Electron-phonon coupling constant, lambda : 1.150620532 Logarithmic average frequency : 0.7088838913E-03 RMS average frequency : 0.7567470325E-03 Coulomb pseudopotential, mu* : 0.1500000000 McMillan-Allen-Dynes superconducting critical temperature [Eq. 34, Phys. Rev. B 12, 905 (1975)] (kelvin) : 16.14572364 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/PaxHeaders/PHDISP.OUT0000644000000000000000000000013214536061314023216 xustar0030 mtime=1702388428.953499957 30 atime=1702388428.952499958 30 ctime=1702388428.953499957 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/PHDISP.OUT0000644002504400250440000012660214536061314025747 0ustar00dewhurstdewhurst00000000000000 0.000000000 0.1104284254E-02 0.1640615945E-01 0.1103175681E-02 0.3281231890E-01 0.1099861896E-02 0.4921847835E-01 0.1094378639E-02 0.6562463780E-01 0.1086785263E-02 0.8203079725E-01 0.1077164413E-02 0.9843695670E-01 0.1065621560E-02 0.1148431162 0.1052284392E-02 0.1312492756 0.1037302030E-02 0.1476554351 0.1020844066E-02 0.1640615945 0.1003099378E-02 0.1804677540 0.9842746811E-03 0.1968739134 0.9645927891E-03 0.2132800729 0.9442904960E-03 0.2296862323 0.9236160341E-03 0.2460923918 0.9028260246E-03 0.2624985512 0.8821818547E-03 0.2789047107 0.8619454265E-03 0.2953108701 0.8423742573E-03 0.3117170296 0.8237159658E-03 0.3281231890 0.8062022592E-03 0.3445293485 0.7900426390E-03 0.3609355079 0.7754181559E-03 0.3773416674 0.7624756514E-03 0.3937478268 0.7513229917E-03 0.4101539863 0.7420258100E-03 0.4265601457 0.7346061933E-03 0.4429663052 0.7290435880E-03 0.4593724646 0.7252779673E-03 0.4757786241 0.7232150495E-03 0.4921847835 0.7227331267E-03 0.5085909430 0.7236909085E-03 0.5249971024 0.7259357238E-03 0.5414032619 0.7293114606E-03 0.5578094213 0.7336657305E-03 0.5742155808 0.7388558927E-03 0.5906217402 0.7447537252E-03 0.6070278997 0.7512486679E-03 0.6234340591 0.7582496650E-03 0.6398402186 0.7656857081E-03 0.6562463780 0.7735052235E-03 0.6726525375 0.7816744701E-03 0.6890586969 0.7901751238E-03 0.7054648564 0.7990012271E-03 0.7218710158 0.8081556831E-03 0.7382771753 0.8176464729E-03 0.7546833347 0.8274827744E-03 0.7710894942 0.8376711537E-03 0.7874956536 0.8482119959E-03 0.8039018131 0.8590963228E-03 0.8203079725 0.8703031260E-03 0.8367141320 0.8817973127E-03 0.8531202914 0.8935283273E-03 0.8695264509 0.9054294760E-03 0.8859326103 0.9174179414E-03 0.9023387698 0.9109937499E-03 0.9187449292 0.9037083620E-03 0.9351510887 0.8955474422E-03 0.9515572481 0.8865042980E-03 0.9679634076 0.8765797261E-03 0.9843695670 0.8657817803E-03 1.000775726 0.8541254677E-03 1.017181886 0.8416323767E-03 1.033588045 0.8283302449E-03 1.049994205 0.8142524693E-03 1.066400364 0.7994375669E-03 1.082806524 0.7839285892E-03 1.099212683 0.7677724989E-03 1.115618843 0.7510195117E-03 1.132025002 0.7337224133E-03 1.148431162 0.7159358560E-03 1.164837321 0.6977156438E-03 1.181243480 0.6791180134E-03 1.197649640 0.6601989202E-03 1.214055799 0.6410133383E-03 1.230461959 0.6216145846E-03 1.246868118 0.6020536764E-03 1.263274278 0.5823787347E-03 1.279680437 0.5626344417E-03 1.296086597 0.5428615651E-03 1.312492756 0.5230965582E-03 1.328898916 0.5033712446E-03 1.345305075 0.4837125973E-03 1.361711234 0.4641426156E-03 1.378117394 0.4446783068E-03 1.394523553 0.4253317718E-03 1.410929713 0.4061103935E-03 1.427335872 0.3870171247E-03 1.443742032 0.3680508647E-03 1.460148191 0.3492069166E-03 1.476554351 0.3304775087E-03 1.492960510 0.3118523647E-03 1.509366669 0.2933193051E-03 1.525772829 0.2748648592E-03 1.542178988 0.2564748699E-03 1.558585148 0.2381350713E-03 1.574991307 0.2198316234E-03 1.591397467 0.2015515865E-03 1.607803626 0.1832833250E-03 1.624209786 0.1650168292E-03 1.640615945 0.1467439500E-03 1.657022105 0.1284585419E-03 1.673428264 0.1101565156E-03 1.689834423 0.9183580177E-04 1.706240583 0.7349623257E-04 1.722646742 0.5513934762E-04 1.739052902 0.3676813500E-04 1.755459061 0.1838671793E-04 1.771865221 -0.4874794363E-10 1.788365009 0.1967239359E-04 1.804864797 0.3935006319E-04 1.821364585 0.5903744919E-04 1.837864373 0.7873740873E-04 1.854364161 0.9845063673E-04 1.870863949 0.1181753233E-03 1.887363737 0.1379070963E-03 1.903863525 0.1576392769E-03 1.920363314 0.1773634495E-03 1.936863102 0.1970703267E-03 1.953362890 0.2167508643E-03 1.969862678 0.2363975607E-03 1.986362466 0.2560058606E-03 2.002862254 0.2755755640E-03 2.019362042 0.2951121391E-03 2.035861830 0.3146278277E-03 2.052361618 0.3341424382E-03 2.068861406 0.3536837276E-03 2.085361195 0.3732872922E-03 2.101860983 0.3929959073E-03 2.118360771 0.4128582927E-03 2.134860559 0.4329273133E-03 2.151360347 0.4532576702E-03 2.167860135 0.4739031786E-03 2.184359923 0.4949137691E-03 2.200859711 0.5163323792E-03 2.217359499 0.5381919201E-03 2.233859287 0.5605125070E-03 2.250359076 0.5832991272E-03 2.266858864 0.6065398887E-03 2.283358652 0.6302049554E-03 2.299858440 0.6542462225E-03 2.316358228 0.6785977406E-03 2.332858016 0.7031768501E-03 2.349357804 0.7278859529E-03 2.365857592 0.7526148186E-03 2.382357380 0.7772433083E-03 2.398857168 0.8016443895E-03 2.415356957 0.8256873179E-03 2.431856745 0.8492408658E-03 2.448356533 0.8721764872E-03 2.464856321 0.8943713213E-03 2.481356109 0.9157109461E-03 2.497855897 0.9360918083E-03 2.514355685 0.9554232663E-03 2.530855473 0.9736291928E-03 2.547355261 0.9840986433E-03 2.563855049 0.9909031509E-03 2.580354838 0.9989373266E-03 2.596854626 0.1008074654E-02 2.613354414 0.1018120363E-02 2.629854202 0.1028822404E-02 2.646353990 0.1039885110E-02 2.662853778 0.1050984391E-02 2.679353566 0.1061783345E-02 2.695853354 0.1071947353E-02 2.712353142 0.1081157990E-02 2.728852930 0.1089125284E-02 2.745352719 0.1095598109E-02 2.761852507 0.1100372600E-02 2.778352295 0.1103298609E-02 2.794852083 0.1104284254E-02 2.810926771 0.1103244387E-02 2.827001458 0.1100133044E-02 2.843076146 0.1094974995E-02 2.859150834 0.1087811479E-02 2.875225521 0.1078700140E-02 2.891300209 0.1067714940E-02 2.907374897 0.1054946031E-02 2.923449585 0.1040499593E-02 2.939524272 0.1024497626E-02 2.955598960 0.1007077682E-02 2.971673648 0.9883925183E-03 2.987748335 0.9686096447E-03 3.003823023 0.9479107327E-03 3.019897711 0.9264908344E-03 3.035972399 0.9045573517E-03 3.052047086 0.8823286780E-03 3.068121774 0.8600324180E-03 3.084196462 0.8379030816E-03 3.100271149 0.8161791381E-03 3.116345837 0.7950993268E-03 3.132420525 0.7748981450E-03 3.148495213 0.7558004938E-03 3.164569900 0.7380155478E-03 3.180644588 0.7217300437E-03 3.196719276 0.7071013294E-03 3.212793963 0.6942506646E-03 3.228868651 0.6832573846E-03 3.244943339 0.6741545737E-03 3.261018027 0.6669268336E-03 3.277092714 0.6615105423E-03 3.293167402 0.6577967249E-03 3.309242090 0.6556363361E-03 3.325316777 0.6548474753E-03 3.341391465 0.6552238639E-03 3.357466153 0.6565438508E-03 3.373540841 0.6585792740E-03 3.389615528 0.6611036472E-03 3.405690216 0.6638993300E-03 3.421764904 0.6667635181E-03 3.437839591 0.6695130414E-03 3.453914279 0.6719880610E-03 3.469988967 0.6740548137E-03 3.486063655 0.6756075730E-03 3.502138342 0.6765699872E-03 3.518213030 0.6768959334E-03 3.534197200 0.6769430479E-03 3.550181370 0.6770965372E-03 3.566165539 0.6773922051E-03 3.582149709 0.6778876325E-03 3.598133879 0.6786591075E-03 3.614118048 0.6797974752E-03 3.630102218 0.6814030699E-03 3.646086388 0.6835799628E-03 3.662070558 0.6864298223E-03 3.678054727 0.6900457485E-03 3.694038897 0.6945064779E-03 3.710023067 0.6998713613E-03 3.726007236 0.7061764775E-03 3.741991406 0.7134321582E-03 3.757975576 0.7216220797E-03 3.773959746 0.7307039330E-03 3.789943915 0.7406115454E-03 3.805928085 0.7512582075E-03 3.821912255 0.7625408842E-03 3.837896424 0.7743449503E-03 3.853880594 0.7865491015E-03 3.869864764 0.7990301294E-03 3.885848934 0.8116673096E-03 3.901833103 0.8243462187E-03 3.917817273 0.8369618613E-03 3.933801443 0.8494210475E-03 3.949785613 0.8616440068E-03 3.965769782 0.8735652623E-03 3.981753952 0.8851338189E-03 3.997738122 0.8963127334E-03 4.013722291 0.9070781567E-03 4.029706461 0.9174179414E-03 4.045690631 0.9070781567E-03 4.061674801 0.8963127334E-03 4.077658970 0.8851338189E-03 4.093643140 0.8735652623E-03 4.109627310 0.8616440068E-03 4.125611479 0.8494210475E-03 4.141595649 0.8369618613E-03 4.157579819 0.8243462187E-03 4.173563989 0.8116673096E-03 4.189548158 0.7990301294E-03 4.205532328 0.7865491015E-03 4.221516498 0.7743449503E-03 4.237500668 0.7625408842E-03 4.253484837 0.7512582075E-03 4.269469007 0.7406115454E-03 4.285453177 0.7307039330E-03 4.301437346 0.7216220797E-03 4.317421516 0.7134321582E-03 4.333405686 0.7061764775E-03 4.349389856 0.6998713613E-03 4.365374025 0.6945064779E-03 4.381358195 0.6900457485E-03 4.397342365 0.6864298223E-03 4.413326534 0.6835799628E-03 4.429310704 0.6814030699E-03 4.445294874 0.6797974752E-03 4.461279044 0.6786591075E-03 4.477263213 0.6778876325E-03 4.493247383 0.6773922051E-03 4.509231553 0.6770965372E-03 4.525215722 0.6769430479E-03 4.541199892 0.6768959334E-03 4.557639914 0.6764106948E-03 4.574079935 0.6749578982E-03 4.590519957 0.6725462213E-03 4.606959978 0.6691898632E-03 4.623400000 0.6649081570E-03 4.639840021 0.6597250402E-03 4.656280043 0.6536683990E-03 4.672720064 0.6467693038E-03 4.689160086 0.6390611570E-03 4.705600107 0.6305787798E-03 4.722040129 0.6213574643E-03 4.738480151 0.6114320238E-03 4.754920172 0.6008358704E-03 4.771360194 0.5896001551E-03 4.787800215 0.5757737738E-03 4.804240237 0.5508936274E-03 4.820680258 0.5267076417E-03 4.837120280 0.5034609744E-03 4.853560301 0.4813514494E-03 4.870000323 0.4605190208E-03 4.886440344 0.4410370406E-03 4.902880366 0.4229066368E-03 4.919320387 0.4060554062E-03 4.935760409 0.3903411959E-03 4.952200430 0.3755610468E-03 4.968640452 0.3614645496E-03 4.985080473 0.3477701748E-03 5.001520495 0.3341827625E-03 5.017960517 0.3204103906E-03 5.034400538 0.3061792059E-03 5.050840560 0.2912453438E-03 5.067280581 0.2754036097E-03 5.083720603 0.2584930259E-03 5.100160624 0.2403996188E-03 5.116600646 0.2210569408E-03 5.133040667 0.2004448310E-03 5.149480689 0.1765112085E-03 5.165920710 0.1521156550E-03 5.182360732 0.1273516060E-03 5.198800753 0.1022721489E-03 5.215240775 0.7693478088E-04 5.231680796 0.5140065952E-04 5.248120818 0.2573376568E-04 5.264560839 -0.4874794363E-10 5.281046338 0.1617313168E-04 5.297531837 0.3237096913E-04 5.314017336 0.4861780442E-04 5.330502835 0.6493711182E-04 5.346988334 0.8135116247E-04 5.363473833 0.9788066643E-04 5.379959331 0.1145444492E-03 5.396444830 0.1313591688E-03 5.412930329 0.1483390785E-03 5.429415828 0.1654958371E-03 5.445901327 0.1828383695E-03 5.462386826 0.2003727762E-03 5.478872325 0.2181022918E-03 5.495357823 0.2360272894E-03 5.511843322 0.2541453269E-03 5.528328821 0.2724512328E-03 5.544814320 0.2909372255E-03 5.561299819 0.3095930623E-03 5.577785318 0.3284062121E-03 5.594270817 0.3473620486E-03 5.610756315 0.3664440578E-03 5.627241814 0.3856340551E-03 5.643727313 0.4049124099E-03 5.660212812 0.4242582712E-03 5.676698311 0.4436497921E-03 5.693183810 0.4630643500E-03 5.709669309 0.4824787596E-03 5.726154807 0.5018694752E-03 5.742640306 0.5212127828E-03 5.759125805 0.5404849769E-03 5.775611304 0.5596625238E-03 5.792096803 0.5787222076E-03 5.808582302 0.5976412606E-03 5.825067801 0.6163974754E-03 5.841553299 0.6349692999E-03 5.858038798 0.6510426388E-03 5.874524297 0.6596281489E-03 5.891009796 0.6673382833E-03 5.907495295 0.6741978783E-03 5.923980794 0.6802371930E-03 5.940466292 0.6854913285E-03 5.956951791 0.6899995094E-03 5.973437290 0.6938042211E-03 5.989922789 0.6969501996E-03 6.006408288 0.6994832781E-03 6.022893787 0.7014491053E-03 6.039379286 0.7028917656E-03 6.055864784 0.7038523616E-03 6.072350283 0.7043676544E-03 6.088835782 0.7044689194E-03 6.105321281 0.7041812480E-03 6.121806780 0.7035236165E-03 6.138292279 0.7025101135E-03 6.154777778 0.7011527143E-03 6.171263276 0.6994658059E-03 6.187748775 0.6974722019E-03 6.204234274 0.6952096290E-03 6.220719773 0.6927358502E-03 6.237205272 0.6901302478E-03 6.253690771 0.6874903239E-03 6.270176270 0.6849232012E-03 6.286661768 0.6825340300E-03 6.303147267 0.6804142079E-03 6.319632766 0.6786320470E-03 6.336118265 0.6772273724E-03 6.352603764 0.6762102557E-03 6.369089263 0.6755632070E-03 6.385574762 0.6752457734E-03 6.402060260 0.6752004909E-03 6.418545759 0.6753593175E-03 6.435031258 0.6756499143E-03 6.451516757 0.6760013596E-03 6.468002256 0.6763490570E-03 6.484487755 0.6766387308E-03 6.500973254 0.6768294830E-03 6.517458752 0.6768959334E-03 0.000000000 0.1104284254E-02 0.1640615945E-01 0.1103987669E-02 0.3281231890E-01 0.1103099680E-02 0.4921847835E-01 0.1101625596E-02 0.6562463780E-01 0.1099574289E-02 0.8203079725E-01 0.1096958240E-02 0.9843695670E-01 0.1093793576E-02 0.1148431162 0.1090100133E-02 0.1312492756 0.1085901506E-02 0.1476554351 0.1081225093E-02 0.1640615945 0.1076102128E-02 0.1804677540 0.1070567680E-02 0.1968739134 0.1064660627E-02 0.2132800729 0.1058423575E-02 0.2296862323 0.1051902726E-02 0.2460923918 0.1045147669E-02 0.2624985512 0.1038211108E-02 0.2789047107 0.1031148484E-02 0.2953108701 0.1024017515E-02 0.3117170296 0.1016877621E-02 0.3281231890 0.1009789260E-02 0.3445293485 0.1002813142E-02 0.3609355079 0.9960093573E-03 0.3773416674 0.9894364117E-03 0.3937478268 0.9831501862E-03 0.4101539863 0.9772028507E-03 0.4265601457 0.9716417532E-03 0.4429663052 0.9665083183E-03 0.4593724646 0.9618369923E-03 0.4757786241 0.9576542744E-03 0.4921847835 0.9539778709E-03 0.5085909430 0.9508160119E-03 0.5249971024 0.9481669599E-03 0.5414032619 0.9460187378E-03 0.5578094213 0.9443490904E-03 0.5742155808 0.9431256866E-03 0.5906217402 0.9423065568E-03 0.6070278997 0.9418407521E-03 0.6234340591 0.9416691993E-03 0.6398402186 0.9417257230E-03 0.6562463780 0.9419381982E-03 0.6726525375 0.9422297943E-03 0.6890586969 0.9425202740E-03 0.7054648564 0.9427273088E-03 0.7218710158 0.9427677790E-03 0.7382771753 0.9425590293E-03 0.7546833347 0.9420200554E-03 0.7710894942 0.9410726049E-03 0.7874956536 0.9396421769E-03 0.8039018131 0.9376589127E-03 0.8203079725 0.9350583719E-03 0.8367141320 0.9317821911E-03 0.8531202914 0.9277786270E-03 0.8695264509 0.9230029858E-03 0.8859326103 0.9174179414E-03 0.9023387698 0.9109937499E-03 0.9187449292 0.9037083620E-03 0.9351510887 0.8955474422E-03 0.9515572481 0.8865042980E-03 0.9679634076 0.8765797261E-03 0.9843695670 0.8657817803E-03 1.000775726 0.8541254677E-03 1.017181886 0.8416323767E-03 1.033588045 0.8283302449E-03 1.049994205 0.8142524693E-03 1.066400364 0.7994375669E-03 1.082806524 0.7839285892E-03 1.099212683 0.7677724989E-03 1.115618843 0.7510195117E-03 1.132025002 0.7337224133E-03 1.148431162 0.7159358560E-03 1.164837321 0.6977156438E-03 1.181243480 0.6791180134E-03 1.197649640 0.6601989202E-03 1.214055799 0.6410133383E-03 1.230461959 0.6216145846E-03 1.246868118 0.6020536764E-03 1.263274278 0.5823787347E-03 1.279680437 0.5626344417E-03 1.296086597 0.5428615651E-03 1.312492756 0.5230965582E-03 1.328898916 0.5033712446E-03 1.345305075 0.4837125973E-03 1.361711234 0.4641426156E-03 1.378117394 0.4446783068E-03 1.394523553 0.4253317718E-03 1.410929713 0.4061103935E-03 1.427335872 0.3870171247E-03 1.443742032 0.3680508647E-03 1.460148191 0.3492069166E-03 1.476554351 0.3304775087E-03 1.492960510 0.3118523647E-03 1.509366669 0.2933193051E-03 1.525772829 0.2748648592E-03 1.542178988 0.2564748699E-03 1.558585148 0.2381350713E-03 1.574991307 0.2198316234E-03 1.591397467 0.2015515865E-03 1.607803626 0.1832833250E-03 1.624209786 0.1650168292E-03 1.640615945 0.1467439500E-03 1.657022105 0.1284585419E-03 1.673428264 0.1101565156E-03 1.689834423 0.9183580177E-04 1.706240583 0.7349623257E-04 1.722646742 0.5513934762E-04 1.739052902 0.3676813500E-04 1.755459061 0.1838671793E-04 1.771865221 -0.4874794363E-10 1.788365009 0.1967239359E-04 1.804864797 0.3935006319E-04 1.821364585 0.5903744919E-04 1.837864373 0.7873740873E-04 1.854364161 0.9845063673E-04 1.870863949 0.1181753233E-03 1.887363737 0.1379070963E-03 1.903863525 0.1576392769E-03 1.920363314 0.1773634495E-03 1.936863102 0.1970703267E-03 1.953362890 0.2167508643E-03 1.969862678 0.2363975607E-03 1.986362466 0.2560058606E-03 2.002862254 0.2755755640E-03 2.019362042 0.2951121391E-03 2.035861830 0.3146278277E-03 2.052361618 0.3341424382E-03 2.068861406 0.3536837276E-03 2.085361195 0.3732872922E-03 2.101860983 0.3929959073E-03 2.118360771 0.4128582927E-03 2.134860559 0.4329273133E-03 2.151360347 0.4532576702E-03 2.167860135 0.4739031786E-03 2.184359923 0.4949137691E-03 2.200859711 0.5163323792E-03 2.217359499 0.5381919201E-03 2.233859287 0.5605125070E-03 2.250359076 0.5832991272E-03 2.266858864 0.6065398887E-03 2.283358652 0.6302049554E-03 2.299858440 0.6542462225E-03 2.316358228 0.6785977406E-03 2.332858016 0.7031768501E-03 2.349357804 0.7278859529E-03 2.365857592 0.7526148186E-03 2.382357380 0.7772433083E-03 2.398857168 0.8016443895E-03 2.415356957 0.8256873179E-03 2.431856745 0.8492408658E-03 2.448356533 0.8721764872E-03 2.464856321 0.8943713213E-03 2.481356109 0.9157109461E-03 2.497855897 0.9360918083E-03 2.514355685 0.9554232663E-03 2.530855473 0.9736291928E-03 2.547355261 0.9906490987E-03 2.563855049 0.1006438748E-02 2.580354838 0.1020970248E-02 2.596854626 0.1034231610E-02 2.613354414 0.1046225795E-02 2.629854202 0.1056969271E-02 2.646353990 0.1066490122E-02 2.662853778 0.1074825781E-02 2.679353566 0.1082020451E-02 2.695853354 0.1088122332E-02 2.712353142 0.1093180745E-02 2.728852930 0.1097243288E-02 2.745352719 0.1100353138E-02 2.761852507 0.1102546644E-02 2.778352295 0.1103851306E-02 2.794852083 0.1104284254E-02 2.810926771 0.1103888634E-02 2.827001458 0.1102704368E-02 2.843076146 0.1100739231E-02 2.859150834 0.1098006115E-02 2.875225521 0.1094522942E-02 2.891300209 0.1090312530E-02 2.907374897 0.1085402429E-02 2.923449585 0.1079824718E-02 2.939524272 0.1073615762E-02 2.955598960 0.1066815940E-02 2.971673648 0.1059469331E-02 2.987748335 0.1051623369E-02 3.003823023 0.1043328462E-02 3.019897711 0.1034637582E-02 3.035972399 0.1025605824E-02 3.052047086 0.1016289939E-02 3.068121774 0.1006747840E-02 3.084196462 0.9970380944E-03 3.100271149 0.9872193997E-03 3.116345837 0.9773500524E-03 3.132420525 0.9674874165E-03 3.148495213 0.9576874010E-03 3.164569900 0.9480039537E-03 3.180644588 0.9384885827E-03 3.196719276 0.9291899156E-03 3.212793963 0.9201533065E-03 3.228868651 0.9114205008E-03 3.244943339 0.9030293689E-03 3.261018027 0.8950137150E-03 3.277092714 0.8874031687E-03 3.293167402 0.8802231632E-03 3.309242090 0.8734950018E-03 3.325316777 0.8672360112E-03 3.341391465 0.8614597764E-03 3.357466153 0.8561764495E-03 3.373540841 0.8513931228E-03 3.389615528 0.8471142500E-03 3.405690216 0.8433421029E-03 3.421764904 0.8400772441E-03 3.437839591 0.8373189993E-03 3.453914279 0.8350659104E-03 3.469988967 0.8333161527E-03 3.486063655 0.8320678998E-03 3.502138342 0.8313196234E-03 3.518213030 0.8310703151E-03 3.534197200 0.8307506731E-03 3.550181370 0.8298052427E-03 3.566165539 0.8282743332E-03 3.582149709 0.8262245110E-03 3.598133879 0.8237475958E-03 3.614118048 0.8209591012E-03 3.630102218 0.8179959820E-03 3.646086388 0.8150135381E-03 3.662070558 0.8121813331E-03 3.678054727 0.8096780247E-03 3.694038897 0.8076850789E-03 3.710023067 0.8063794477E-03 3.726007236 0.8059254323E-03 3.741991406 0.8064661073E-03 3.757975576 0.8081148258E-03 3.773959746 0.8109474294E-03 3.789943915 0.8149958171E-03 3.805928085 0.8202434636E-03 3.821912255 0.8266233280E-03 3.837896424 0.8340183655E-03 3.853880594 0.8422646060E-03 3.869864764 0.8511565305E-03 3.885848934 0.8604542993E-03 3.901833103 0.8698922952E-03 3.917817273 0.8791884321E-03 3.933801443 0.8880537322E-03 3.949785613 0.8962017708E-03 3.965769782 0.9033576936E-03 3.981753952 0.9092666177E-03 3.997738122 0.9137013078E-03 4.013722291 0.9164690826E-03 4.029706461 0.9174179414E-03 4.045690631 0.9164690826E-03 4.061674801 0.9137013078E-03 4.077658970 0.9092666177E-03 4.093643140 0.9033576936E-03 4.109627310 0.8962017708E-03 4.125611479 0.8880537322E-03 4.141595649 0.8791884321E-03 4.157579819 0.8698922952E-03 4.173563989 0.8604542993E-03 4.189548158 0.8511565305E-03 4.205532328 0.8422646060E-03 4.221516498 0.8340183655E-03 4.237500668 0.8266233280E-03 4.253484837 0.8202434636E-03 4.269469007 0.8149958171E-03 4.285453177 0.8109474294E-03 4.301437346 0.8081148258E-03 4.317421516 0.8064661073E-03 4.333405686 0.8059254323E-03 4.349389856 0.8063794477E-03 4.365374025 0.8076850789E-03 4.381358195 0.8096780247E-03 4.397342365 0.8121813331E-03 4.413326534 0.8150135381E-03 4.429310704 0.8179959820E-03 4.445294874 0.8209591012E-03 4.461279044 0.8237475958E-03 4.477263213 0.8262245110E-03 4.493247383 0.8282743332E-03 4.509231553 0.8298052427E-03 4.525215722 0.8307506731E-03 4.541199892 0.8310703151E-03 4.557639914 0.8296073445E-03 4.574079935 0.8252376568E-03 4.590519957 0.8180187131E-03 4.606959978 0.8080455738E-03 4.623400000 0.7954498301E-03 4.639840021 0.7803980941E-03 4.656280043 0.7630900281E-03 4.672720064 0.7437558878E-03 4.689160086 0.7226535361E-03 4.705600107 0.7000648709E-03 4.722040129 0.6762915890E-03 4.738480151 0.6516501877E-03 4.754920172 0.6264660893E-03 4.771360194 0.6010667672E-03 4.787800215 0.5777530012E-03 4.804240237 0.5653188606E-03 4.820680258 0.5523180200E-03 4.837120280 0.5387662779E-03 4.853560301 0.5246748084E-03 4.870000323 0.5100502189E-03 4.886440344 0.4948948030E-03 4.902880366 0.4792069797E-03 4.919320387 0.4629819030E-03 4.935760409 0.4462122201E-03 4.952200430 0.4288889467E-03 4.968640452 0.4110024279E-03 4.985080473 0.3925433471E-03 5.001520495 0.3735037457E-03 5.017960517 0.3538780161E-03 5.034400538 0.3336638354E-03 5.050840560 0.3128630064E-03 5.067280581 0.2914821828E-03 5.083720603 0.2695334547E-03 5.100160624 0.2470347813E-03 5.116600646 0.2240102608E-03 5.133040667 0.2004902318E-03 5.149480689 0.1785868633E-03 5.165920710 0.1555468513E-03 5.182360732 0.1314246896E-03 5.198800753 0.1063517415E-03 5.215240775 0.8048591808E-04 5.231680796 0.5400655315E-04 5.248120818 0.2710914290E-04 5.264560839 -0.4874794363E-10 5.281046338 0.1710293184E-04 5.297531837 0.3430846660E-04 5.314017336 0.5171396775E-04 5.330502835 0.6940672583E-04 5.346988334 0.8745988214E-04 5.363473833 0.1059293631E-03 5.379959331 0.1248519586E-03 5.396444830 0.1442445584E-03 5.412930329 0.1641044553E-03 5.429415828 0.1844105506E-03 5.445901327 0.2051252502E-03 5.462386826 0.2261968245E-03 5.478872325 0.2475620130E-03 5.495357823 0.2691486776E-03 5.511843322 0.2908783486E-03 5.528328821 0.3126685477E-03 5.544814320 0.3344348182E-03 5.561299819 0.3560924320E-03 5.577785318 0.3775577763E-03 5.594270817 0.3987494496E-03 5.610756315 0.4195891075E-03 5.627241814 0.4400021095E-03 5.643727313 0.4599180153E-03 5.660212812 0.4792709742E-03 5.676698311 0.4980000424E-03 5.693183810 0.5160494567E-03 5.709669309 0.5333688808E-03 5.726154807 0.5499136353E-03 5.742640306 0.5656449148E-03 5.759125805 0.5805299908E-03 5.775611304 0.5945423958E-03 5.792096803 0.6076620804E-03 5.808582302 0.6198755343E-03 5.825067801 0.6311758607E-03 5.841553299 0.6415627926E-03 5.858038798 0.6533359146E-03 5.874524297 0.6714772924E-03 5.891009796 0.6893742426E-03 5.907495295 0.7070084375E-03 5.923980794 0.7243624247E-03 5.940466292 0.7414196254E-03 5.956951791 0.7581643196E-03 5.973437290 0.7745816203E-03 5.989922789 0.7906574377E-03 6.006408288 0.8063784351E-03 6.022893787 0.8217319786E-03 6.039379286 0.8367060819E-03 6.055864784 0.8512893477E-03 6.072350283 0.8654709086E-03 6.088835782 0.8792403672E-03 6.105321281 0.8925877386E-03 6.121806780 0.9031061025E-03 6.138292279 0.8914959268E-03 6.154777778 0.8803915169E-03 6.171263276 0.8700073172E-03 6.187748775 0.8605297644E-03 6.204234274 0.8521059188E-03 6.220719773 0.8448337745E-03 6.237205272 0.8387566887E-03 6.253690771 0.8338637471E-03 6.270176270 0.8300962573E-03 6.286661768 0.8273586916E-03 6.303147267 0.8255313233E-03 6.319632766 0.8244819675E-03 6.336118265 0.8240752666E-03 6.352603764 0.8241791223E-03 6.369089263 0.8246686625E-03 6.385574762 0.8254284458E-03 6.402060260 0.8263535876E-03 6.418545759 0.8273503312E-03 6.435031258 0.8283363966E-03 6.451516757 0.8292412847E-03 6.468002256 0.8300066063E-03 6.484487755 0.8305864385E-03 6.500973254 0.8309476737E-03 6.517458752 0.8310703151E-03 0.000000000 0.1104284254E-02 0.1640615945E-01 0.1103987669E-02 0.3281231890E-01 0.1103099680E-02 0.4921847835E-01 0.1101625596E-02 0.6562463780E-01 0.1099574289E-02 0.8203079725E-01 0.1096958240E-02 0.9843695670E-01 0.1093793576E-02 0.1148431162 0.1090100133E-02 0.1312492756 0.1085901506E-02 0.1476554351 0.1081225093E-02 0.1640615945 0.1076102128E-02 0.1804677540 0.1070567680E-02 0.1968739134 0.1064660627E-02 0.2132800729 0.1058423575E-02 0.2296862323 0.1051902726E-02 0.2460923918 0.1045147669E-02 0.2624985512 0.1038211108E-02 0.2789047107 0.1031148484E-02 0.2953108701 0.1024017515E-02 0.3117170296 0.1016877621E-02 0.3281231890 0.1009789260E-02 0.3445293485 0.1002813142E-02 0.3609355079 0.9960093573E-03 0.3773416674 0.9894364117E-03 0.3937478268 0.9831501862E-03 0.4101539863 0.9772028507E-03 0.4265601457 0.9716417532E-03 0.4429663052 0.9665083183E-03 0.4593724646 0.9618369923E-03 0.4757786241 0.9576542744E-03 0.4921847835 0.9539778709E-03 0.5085909430 0.9508160119E-03 0.5249971024 0.9481669599E-03 0.5414032619 0.9460187378E-03 0.5578094213 0.9443490904E-03 0.5742155808 0.9431256866E-03 0.5906217402 0.9423065568E-03 0.6070278997 0.9418407521E-03 0.6234340591 0.9416691993E-03 0.6398402186 0.9417257230E-03 0.6562463780 0.9419381982E-03 0.6726525375 0.9422297943E-03 0.6890586969 0.9425202740E-03 0.7054648564 0.9427273088E-03 0.7218710158 0.9427677790E-03 0.7382771753 0.9425590293E-03 0.7546833347 0.9420200554E-03 0.7710894942 0.9410726049E-03 0.7874956536 0.9396421769E-03 0.8039018131 0.9376589127E-03 0.8203079725 0.9350583719E-03 0.8367141320 0.9317821911E-03 0.8531202914 0.9277786270E-03 0.8695264509 0.9230029858E-03 0.8859326103 0.9174179414E-03 0.9023387698 0.9293954435E-03 0.9187449292 0.9412494739E-03 0.9351510887 0.9528550121E-03 0.9515572481 0.9640766202E-03 0.9679634076 0.9747708104E-03 0.9843695670 0.9847885839E-03 1.000775726 0.9939780467E-03 1.017181886 0.1002187023E-02 1.033588045 0.1009265599E-02 1.049994205 0.1015068540E-02 1.066400364 0.1019457555E-02 1.082806524 0.1022303352E-02 1.099212683 0.1023487502E-02 1.115618843 0.1022904065E-02 1.132025002 0.1020461000E-02 1.148431162 0.1016081339E-02 1.164837321 0.1009704139E-02 1.181243480 0.1001285207E-02 1.197649640 0.9907976157E-03 1.214055799 0.9782319981E-03 1.230461959 0.9635966484E-03 1.246868118 0.9469174187E-03 1.263274278 0.9282374290E-03 1.279680437 0.9076165925E-03 1.296086597 0.8851309651E-03 1.312492756 0.8608719245E-03 1.328898916 0.8349451872E-03 1.345305075 0.8074696669E-03 1.361711234 0.7785761840E-03 1.378117394 0.7484060294E-03 1.394523553 0.7171093901E-03 1.410929713 0.6848436417E-03 1.427335872 0.6517715142E-03 1.443742032 0.6180591354E-03 1.460148191 0.5838739598E-03 1.476554351 0.5493825892E-03 1.492960510 0.5147484936E-03 1.509366669 0.4801296433E-03 1.525772829 0.4456760677E-03 1.542178988 0.4115273616E-03 1.558585148 0.3778101675E-03 1.574991307 0.3446356745E-03 1.591397467 0.3120971873E-03 1.607803626 0.2802678370E-03 1.624209786 0.2491985224E-03 1.640615945 0.2189161952E-03 1.657022105 0.1894226150E-03 1.673428264 0.1606937159E-03 1.689834423 0.1326797263E-03 1.706240583 0.1053061691E-03 1.722646742 0.7847583133E-04 1.739052902 0.5207173794E-04 1.755459061 0.2596108484E-04 1.771865221 -0.4874794363E-10 1.788365009 0.3529691598E-04 1.804864797 0.7055922313E-04 1.821364585 0.1057537496E-03 1.837864373 0.1408500488E-03 1.854364161 0.1758214004E-03 1.870863949 0.2106454036E-03 1.887363737 0.2453040693E-03 1.903863525 0.2797833559E-03 1.920363314 0.3140721291E-03 1.936863102 0.3481605776E-03 1.953362890 0.3820381561E-03 1.969862678 0.4156911729E-03 1.986362466 0.4491001742E-03 2.002862254 0.4822373022E-03 2.019362042 0.5150638192E-03 2.035861830 0.5475279851E-03 2.052361618 0.5795634654E-03 2.068861406 0.6110884148E-03 2.085361195 0.6420053479E-03 2.101860983 0.6722018636E-03 2.118360771 0.7015522468E-03 2.134860559 0.7299199260E-03 2.151360347 0.7571607295E-03 2.167860135 0.7831268474E-03 2.184359923 0.8076713826E-03 2.200859711 0.8306533561E-03 2.217359499 0.8519430151E-03 2.233859287 0.8714272858E-03 2.250359076 0.8890152054E-03 2.266858864 0.9046431593E-03 2.283358652 0.9182797437E-03 2.299858440 0.9299300620E-03 2.316358228 0.9396392507E-03 2.332858016 0.9474950127E-03 2.349357804 0.9536289180E-03 2.365857592 0.9582162172E-03 2.382357380 0.9614739026E-03 2.398857168 0.9636567669E-03 2.415356957 0.9650512472E-03 2.431856745 0.9659669345E-03 2.448356533 0.9667257689E-03 2.464856321 0.9676491584E-03 2.481356109 0.9690435187E-03 2.497855897 0.9711850321E-03 2.514355685 0.9743046886E-03 2.530855473 0.9785748559E-03 2.547355261 0.9906490987E-03 2.563855049 0.1006438748E-02 2.580354838 0.1020970248E-02 2.596854626 0.1034231610E-02 2.613354414 0.1046225795E-02 2.629854202 0.1056969271E-02 2.646353990 0.1066490122E-02 2.662853778 0.1074825781E-02 2.679353566 0.1082020451E-02 2.695853354 0.1088122332E-02 2.712353142 0.1093180745E-02 2.728852930 0.1097243288E-02 2.745352719 0.1100353138E-02 2.761852507 0.1102546644E-02 2.778352295 0.1103851306E-02 2.794852083 0.1104284254E-02 2.810926771 0.1104024081E-02 2.827001458 0.1103247574E-02 2.843076146 0.1101966719E-02 2.859150834 0.1100201316E-02 2.875225521 0.1097978705E-02 2.891300209 0.1095333388E-02 2.907374897 0.1092306547E-02 2.923449585 0.1088945441E-02 2.939524272 0.1085302710E-02 2.955598960 0.1081435561E-02 2.971673648 0.1077404865E-02 2.987748335 0.1073274153E-02 3.003823023 0.1069108534E-02 3.019897711 0.1064973543E-02 3.035972399 0.1060933936E-02 3.052047086 0.1057052463E-02 3.068121774 0.1053388633E-02 3.084196462 0.1049997512E-02 3.100271149 0.1046928576E-02 3.116345837 0.1044224664E-02 3.132420525 0.1041921058E-02 3.148495213 0.1040044724E-02 3.164569900 0.1038613735E-02 3.180644588 0.1037636918E-02 3.196719276 0.1037113713E-02 3.212793963 0.1037034269E-02 3.228868651 0.1037379772E-02 3.244943339 0.1038122983E-02 3.261018027 0.1039228981E-02 3.277092714 0.1040656073E-02 3.293167402 0.1042356846E-02 3.309242090 0.1044279323E-02 3.325316777 0.1046368195E-02 3.341391465 0.1048566082E-02 3.357466153 0.1050814804E-02 3.373540841 0.1053056615E-02 3.389615528 0.1055235404E-02 3.405690216 0.1057297801E-02 3.421764904 0.1059194211E-02 3.437839591 0.1060879739E-02 3.453914279 0.1062314998E-02 3.469988967 0.1063466811E-02 3.486063655 0.1064308776E-02 3.502138342 0.1064821715E-02 3.518213030 0.1064993995E-02 3.534197200 0.1064701131E-02 3.550181370 0.1063829314E-02 3.566165539 0.1062398585E-02 3.582149709 0.1060441396E-02 3.598133879 0.1058001221E-02 3.614118048 0.1055130676E-02 3.630102218 0.1051889221E-02 3.646086388 0.1048340525E-02 3.662070558 0.1044549600E-02 3.678054727 0.1040579835E-02 3.694038897 0.1036490047E-02 3.710023067 0.1032331702E-02 3.726007236 0.1028146450E-02 3.741991406 0.1023964078E-02 3.757975576 0.1019801032E-02 3.773959746 0.1015659548E-02 3.789943915 0.1011527480E-02 3.805928085 0.1007378804E-02 3.821912255 0.1003174796E-02 3.837896424 0.9988657956E-03 3.853880594 0.9943934768E-03 3.869864764 0.9896934898E-03 3.885848934 0.9846983549E-03 3.901833103 0.9793404635E-03 3.917817273 0.9735550569E-03 3.933801443 0.9672830620E-03 3.949785613 0.9604736819E-03 3.965769782 0.9530866576E-03 3.981753952 0.9450941355E-03 3.997738122 0.9364820991E-03 4.013722291 0.9272513379E-03 4.029706461 0.9174179414E-03 4.045690631 0.9272513379E-03 4.061674801 0.9364820991E-03 4.077658970 0.9450941355E-03 4.093643140 0.9530866576E-03 4.109627310 0.9604736819E-03 4.125611479 0.9672830620E-03 4.141595649 0.9735550569E-03 4.157579819 0.9793404635E-03 4.173563989 0.9846983549E-03 4.189548158 0.9896934898E-03 4.205532328 0.9943934768E-03 4.221516498 0.9988657956E-03 4.237500668 0.1003174796E-02 4.253484837 0.1007378804E-02 4.269469007 0.1011527480E-02 4.285453177 0.1015659548E-02 4.301437346 0.1019801032E-02 4.317421516 0.1023964078E-02 4.333405686 0.1028146450E-02 4.349389856 0.1032331702E-02 4.365374025 0.1036490047E-02 4.381358195 0.1040579835E-02 4.397342365 0.1044549600E-02 4.413326534 0.1048340525E-02 4.429310704 0.1051889221E-02 4.445294874 0.1055130676E-02 4.461279044 0.1058001221E-02 4.477263213 0.1060441396E-02 4.493247383 0.1062398585E-02 4.509231553 0.1063829314E-02 4.525215722 0.1064701131E-02 4.541199892 0.1064993995E-02 4.557639914 0.1064196355E-02 4.574079935 0.1061803878E-02 4.590519957 0.1057817950E-02 4.606959978 0.1052241084E-02 4.623400000 0.1045077214E-02 4.639840021 0.1036332087E-02 4.656280043 0.1026013746E-02 4.672720064 0.1014133075E-02 4.689160086 0.1000704394E-02 4.705600107 0.9857460654E-03 4.722040129 0.9692811102E-03 4.738480151 0.9513377828E-03 4.754920172 0.9319500990E-03 4.771360194 0.9111582851E-03 4.787800215 0.8890091270E-03 4.804240237 0.8655562019E-03 4.820680258 0.8408599735E-03 4.837120280 0.8149877383E-03 4.853560301 0.7880134120E-03 4.870000323 0.7600171500E-03 4.886440344 0.7310847973E-03 4.902880366 0.7013071698E-03 4.919320387 0.6707791712E-03 4.935760409 0.6395987531E-03 4.952200430 0.6078657327E-03 4.968640452 0.5756804824E-03 4.985080473 0.5431425152E-03 5.001520495 0.5103489894E-03 5.017960517 0.4773931636E-03 5.034400538 0.4443628384E-03 5.050840560 0.4113388221E-03 5.067280581 0.3783934671E-03 5.083720603 0.3455893233E-03 5.100160624 0.3129779603E-03 5.116600646 0.2805990108E-03 5.133040667 0.2484794860E-03 5.149480689 0.2166334110E-03 5.165920710 0.1850618217E-03 5.182360732 0.1537531524E-03 5.198800753 0.1226840318E-03 5.215240775 0.9182048259E-04 5.231680796 0.6111950669E-04 5.248120818 0.3053100919E-04 5.264560839 -0.4874794363E-10 5.281046338 0.3030146633E-04 5.297531837 0.6064703647E-04 5.314017336 0.9107971365E-04 5.330502835 0.1216402785E-03 5.346988334 0.1523661276E-03 5.363473833 0.1832900605E-03 5.379959331 0.2144390148E-03 5.396444830 0.2458327607E-03 5.412930329 0.2774825815E-03 5.429415828 0.3093899838E-03 5.445901327 0.3415454944E-03 5.462386826 0.3739276098E-03 5.478872325 0.4065019713E-03 5.495357823 0.4392208277E-03 5.511843322 0.4720228409E-03 5.528328821 0.5048332650E-03 5.544814320 0.5375645077E-03 5.561299819 0.5701170589E-03 5.577785318 0.6023807486E-03 5.594270817 0.6342362829E-03 5.610756315 0.6655569957E-03 5.627241814 0.6962107522E-03 5.643727313 0.7260619444E-03 5.660212812 0.7549735220E-03 5.676698311 0.7828090150E-03 5.693183810 0.8094345107E-03 5.709669309 0.8347205575E-03 5.726154807 0.8585439752E-03 5.742640306 0.8807895596E-03 5.759125805 0.9013516707E-03 5.775611304 0.9201357016E-03 5.792096803 0.9370594232E-03 5.808582302 0.9520542058E-03 5.825067801 0.9650661173E-03 5.841553299 0.9760568979E-03 5.858038798 0.9850048134E-03 5.874524297 0.9919053885E-03 5.891009796 0.9967720188E-03 5.907495295 0.9996364641E-03 5.923980794 0.1000549221E-02 5.940466292 0.9995797719E-03 5.956951791 0.9968167089E-03 5.973437290 0.9923677202E-03 5.989922789 0.9863594315E-03 6.006408288 0.9789370790E-03 6.022893787 0.9702639837E-03 6.039379286 0.9605207787E-03 6.055864784 0.9499043141E-03 6.072350283 0.9386261286E-03 6.088835782 0.9269103205E-03 6.105321281 0.9149905844E-03 6.121806780 0.9055033965E-03 6.138292279 0.9179780231E-03 6.154777778 0.9300025653E-03 6.171263276 0.9415681974E-03 6.187748775 0.9526662913E-03 6.204234274 0.9632883942E-03 6.220719773 0.9734262158E-03 6.237205272 0.9830716223E-03 6.253690771 0.9922166401E-03 6.270176270 0.1000853467E-02 6.286661768 0.1008974490E-02 6.303147267 0.1016572313E-02 6.319632766 0.1023639785E-02 6.336118265 0.1030170039E-02 6.352603764 0.1036156534E-02 6.369089263 0.1041593092E-02 6.385574762 0.1046473951E-02 6.402060260 0.1050793803E-02 6.418545759 0.1054547844E-02 6.435031258 0.1057731811E-02 6.451516757 0.1060342026E-02 6.468002256 0.1062375427E-02 6.484487755 0.1063829602E-02 6.500973254 0.1064702809E-02 6.517458752 0.1064993995E-02 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/PaxHeaders/PHDLINES.OUT0000644000000000000000000000013214536061314023435 xustar0030 mtime=1702388428.955499954 30 atime=1702388428.954499955 30 ctime=1702388428.955499954 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/PHDLINES.OUT0000644002504400250440000000132014536061314026153 0ustar00dewhurstdewhurst00000000000000 0.000000000 -0.8282132761E-03 0.000000000 0.1656426406E-02 0.8859326103 -0.8282132761E-03 0.8859326103 0.1656426406E-02 1.771865221 -0.8282132761E-03 1.771865221 0.1656426406E-02 2.794852083 -0.8282132761E-03 2.794852083 0.1656426406E-02 3.518213030 -0.8282132761E-03 3.518213030 0.1656426406E-02 4.029706461 -0.8282132761E-03 4.029706461 0.1656426406E-02 4.541199892 -0.8282132761E-03 4.541199892 0.1656426406E-02 5.264560839 -0.8282132761E-03 5.264560839 0.1656426406E-02 6.517458752 -0.8282132761E-03 6.517458752 0.1656426406E-02 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/PaxHeaders/PHDOS.OUT0000644000000000000000000000013214536061314023104 xustar0030 mtime=1702388428.956499952 30 atime=1702388428.956499952 30 ctime=1702388428.956499952 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/PHDOS.OUT0000644002504400250440000004410414536061314025631 0ustar00dewhurstdewhurst00000000000000 -0.1214788429E-03 0.000000000 -0.1188063098E-03 0.000000000 -0.1161337768E-03 0.000000000 -0.1134612437E-03 0.000000000 -0.1107887107E-03 0.000000000 -0.1081161776E-03 0.000000000 -0.1054436446E-03 0.000000000 -0.1027711115E-03 0.000000000 -0.1000985785E-03 0.000000000 -0.9742604544E-04 0.000000000 -0.9475351239E-04 0.000000000 -0.9208097934E-04 0.000000000 -0.8940844629E-04 0.000000000 -0.8673591325E-04 0.000000000 -0.8406338020E-04 0.000000000 -0.8139084715E-04 0.000000000 -0.7871831410E-04 0.000000000 -0.7604578106E-04 0.000000000 -0.7337324801E-04 0.000000000 -0.7070071496E-04 0.000000000 -0.6802818191E-04 0.000000000 -0.6535564886E-04 0.000000000 -0.6268311582E-04 0.000000000 -0.6001058277E-04 0.000000000 -0.5733804972E-04 0.000000000 -0.5466551667E-04 0.000000000 -0.5199298362E-04 0.000000000 -0.4932045058E-04 0.000000000 -0.4664791753E-04 0.000000000 -0.4397538448E-04 0.000000000 -0.4130285143E-04 0.000000000 -0.3863031839E-04 0.000000000 -0.3595778534E-04 0.000000000 -0.3328525229E-04 0.000000000 -0.3061271924E-04 0.000000000 -0.2794018619E-04 0.000000000 -0.2526765315E-04 0.000000000 -0.2259512010E-04 0.000000000 -0.1992258705E-04 0.000000000 -0.1725005400E-04 0.000000000 -0.1457752095E-04 0.000000000 -0.1190498791E-04 0.000000000 -0.9232454859E-05 0.000000000 -0.6559921811E-05 0.000000000 -0.3887388763E-05 0.3741768510 -0.1214855715E-05 0.3741768510 0.1457677333E-05 1.122530553 0.4130210381E-05 0.7483537020 0.6802743429E-05 1.496707404 0.9475276476E-05 0.7483537020 0.1214780952E-04 0.7483537020 0.1482034257E-04 0.7483537020 0.1749287562E-04 1.496707404 0.2016540867E-04 3.741768510 0.2283794172E-04 7.483537020 0.2551047476E-04 12.72201293 0.2818300781E-04 14.21872034 0.3085554086E-04 14.21872034 0.3352807391E-04 11.97365923 0.3620060696E-04 10.22750059 0.3887314000E-04 10.97585430 0.4154567305E-04 14.71762281 0.4421820610E-04 23.19896476 0.4689073915E-04 26.94073327 0.4956327219E-04 31.43085548 0.5223580524E-04 30.68250178 0.5490833829E-04 32.42866042 0.5758087134E-04 22.70006229 0.6025340439E-04 30.18359931 0.6292593743E-04 30.68250178 0.6559847048E-04 44.15286842 0.6827100353E-04 47.14628322 0.7094353658E-04 53.88146654 0.7361606963E-04 49.39134433 0.7628860267E-04 49.89024680 0.7896113572E-04 44.65177088 0.8163366877E-04 56.62543012 0.8430620182E-04 56.87488135 0.8697873486E-04 65.85512577 0.8965126791E-04 71.84195539 0.9232380096E-04 77.82878500 0.9499633401E-04 86.06067573 0.9766886706E-04 74.08701649 0.1003414001E-03 68.84854058 0.1030139332E-03 73.33866279 0.1056864662E-03 86.06067573 0.1083589992E-03 99.53104236 0.1110315323E-03 90.05189547 0.1137040653E-03 105.7673232 0.1163765984E-03 109.2596405 0.1190491314E-03 116.4937263 0.1217216645E-03 102.2750059 0.1243941975E-03 98.78268866 0.1270667306E-03 115.2464701 0.1297392636E-03 127.2201293 0.1324117967E-03 142.9355571 0.1350843297E-03 145.9289719 0.1377568628E-03 143.6839108 0.1404293958E-03 143.6839108 0.1431019289E-03 135.4520201 0.1457744619E-03 148.1740330 0.1484469950E-03 146.6773256 0.1511195280E-03 161.6443996 0.1537920611E-03 170.6246440 0.1564645941E-03 174.8653150 0.1591371272E-03 183.0972057 0.1618096602E-03 189.8323891 0.1644821933E-03 190.8301940 0.1671547263E-03 184.8433644 0.1698272593E-03 175.8631200 0.1724997924E-03 195.5697674 0.1751723254E-03 215.7753174 0.1778448585E-03 242.7160507 0.1805173915E-03 243.9633068 0.1831899246E-03 223.0094032 0.1858624576E-03 217.7709273 0.1885349907E-03 214.0291588 0.1912075237E-03 246.2083679 0.1938800568E-03 256.6853198 0.1965525898E-03 276.6414185 0.1992251229E-03 265.4161130 0.2018976559E-03 276.6414185 0.2045701890E-03 266.4139179 0.2072427220E-03 285.8711142 0.2099152551E-03 275.3941623 0.2125877881E-03 292.6062975 0.2152603212E-03 311.3151400 0.2179328542E-03 326.2822141 0.2206053873E-03 353.2229473 0.2232779203E-03 326.2822141 0.2259504534E-03 336.0108122 0.2286229864E-03 321.0437381 0.2312955195E-03 358.4614232 0.2339680525E-03 373.1790460 0.2366405855E-03 391.3889861 0.2393131186E-03 391.3889861 0.2419856516E-03 372.9295948 0.2446581847E-03 370.4350825 0.2473307177E-03 400.3692306 0.2500032508E-03 421.3231342 0.2526757838E-03 444.5220990 0.2553483169E-03 425.0649027 0.2580208499E-03 431.0517323 0.2606933830E-03 472.2111859 0.2633659160E-03 475.9529544 0.2660384491E-03 483.4364915 0.2687109821E-03 470.7144785 0.2713835152E-03 484.1848452 0.2740560482E-03 489.1738699 0.2767285813E-03 526.5915549 0.2794011143E-03 553.5322882 0.2820736474E-03 580.7224727 0.2847461804E-03 534.3245432 0.2874187135E-03 537.3179580 0.2900912465E-03 569.4971672 0.2927637796E-03 594.1928394 0.2954363126E-03 623.3786337 0.2981088456E-03 629.3654634 0.3007813787E-03 639.8424152 0.3034539117E-03 625.1247924 0.3061264448E-03 649.8204645 0.3087989778E-03 693.9733330 0.3114715109E-03 715.4261391 0.3141440439E-03 711.4349193 0.3168165770E-03 697.9645527 0.3194891100E-03 721.9118712 0.3221616431E-03 731.8899205 0.3248341761E-03 763.3207760 0.3275067092E-03 795.4999852 0.3301792422E-03 815.7055351 0.3328517753E-03 838.1561462 0.3355243083E-03 838.9044999 0.3381968414E-03 860.6067573 0.3408693744E-03 830.6726092 0.3435419075E-03 865.8452332 0.3462144405E-03 914.4882238 0.3488869736E-03 956.3960311 0.3515595066E-03 957.8927385 0.3542320397E-03 956.1465799 0.3569045727E-03 987.5774354 0.3595771057E-03 999.5510946 0.3622496388E-03 988.5752403 0.3649221718E-03 1043.205061 0.3675947049E-03 1079.126038 0.3702672379E-03 1116.543723 0.3729397710E-03 1114.548113 0.3756123040E-03 1107.812930 0.3782848371E-03 1142.237200 0.3809573701E-03 1118.040431 0.3836299032E-03 1194.372508 0.3863024362E-03 1209.339582 0.3889749693E-03 1232.538547 0.3916475023E-03 1233.286901 0.3943200354E-03 1234.035255 0.3969925684E-03 1309.369527 0.3996651015E-03 1315.356357 0.4023376345E-03 1347.535566 0.4050101676E-03 1304.380503 0.4076827006E-03 1351.526786 0.4103552337E-03 1395.679654 0.4130277667E-03 1454.051243 0.4157002998E-03 1426.362156 0.4183728328E-03 1428.607217 0.4210453658E-03 1438.335815 0.4237178989E-03 1503.442587 0.4263904319E-03 1528.138259 0.4290629650E-03 1521.403076 0.4317354980E-03 1561.814176 0.4344080311E-03 1560.317469 0.4370805641E-03 1603.472532 0.4397530972E-03 1582.518628 0.4424256302E-03 1626.671497 0.4450981633E-03 1655.358389 0.4477706963E-03 1701.257416 0.4504432294E-03 1675.065036 0.4531157624E-03 1724.456381 0.4557882955E-03 1736.928942 0.4584608285E-03 1812.512666 0.4611333616E-03 1811.015959 0.4638058946E-03 1745.909187 0.4664784277E-03 1793.803824 0.4691509607E-03 1858.162242 0.4718234938E-03 1937.487734 0.4744960268E-03 1925.514075 0.4771685599E-03 1886.599683 0.4798410929E-03 1934.244868 0.4825136260E-03 1980.642798 0.4851861590E-03 1995.609872 0.4878586920E-03 2022.051703 0.4905312251E-03 2025.793471 0.4932037581E-03 2079.674938 0.4958762912E-03 2085.661767 0.4985488242E-03 2115.595915 0.5012213573E-03 2156.007015 0.5038938903E-03 2158.252076 0.5065664234E-03 2197.166469 0.5092389564E-03 2145.530064 0.5119114895E-03 2253.292997 0.5145840225E-03 2267.511717 0.5172565556E-03 2349.082270 0.5199290886E-03 2345.340502 0.5226016217E-03 2309.419524 0.5252741547E-03 2373.777943 0.5279466878E-03 2404.460444 0.5306192208E-03 2468.818863 0.5332917539E-03 2474.805692 0.5359642869E-03 2484.534291 0.5386368200E-03 2551.137770 0.5413093530E-03 2566.853198 0.5439818861E-03 2596.038992 0.5466544191E-03 2594.542285 0.5493269521E-03 2661.894118 0.5519994852E-03 2696.318388 0.5546720182E-03 2775.643881 0.5573445513E-03 2786.869186 0.5600170843E-03 2840.002299 0.5626896174E-03 2843.744067 0.5653621504E-03 2904.111266 0.5680346835E-03 2855.468275 0.5707072165E-03 3000.648894 0.5733797496E-03 2967.970782 0.5760522826E-03 3153.562500 0.5787248157E-03 3060.766641 0.5813973487E-03 3201.457137 0.5840698818E-03 3158.052622 0.5867424148E-03 3260.577079 0.5894149479E-03 3255.338604 0.5920874809E-03 3378.068611 0.5947600140E-03 3402.015929 0.5974325470E-03 3525.743741 0.6001050801E-03 3533.227278 0.6027776131E-03 3596.088989 0.6054501462E-03 3605.568136 0.6081226792E-03 3741.519059 0.6107952122E-03 3805.877477 0.6134677453E-03 3951.058095 0.6161402783E-03 4008.930781 0.6188128114E-03 4080.772737 0.6214853444E-03 4142.137740 0.6241578775E-03 4240.920429 0.6268304105E-03 4367.392205 0.6295029436E-03 4511.076115 0.6321754766E-03 4618.839049 0.6348480097E-03 4802.934059 0.6375205427E-03 4884.504613 0.6401930758E-03 5103.023894 0.6428656088E-03 5314.807991 0.6455381419E-03 5633.606668 0.6482106749E-03 5862.353450 0.6508832080E-03 6250.749021 0.6535557410E-03 7040.262177 0.6562282741E-03 7678.857336 0.6589008071E-03 8091.200226 0.6615733402E-03 8005.139550 0.6642458732E-03 7987.927415 0.6669184063E-03 8132.359679 0.6695909393E-03 8211.934623 0.6722634723E-03 8393.784572 0.6749360054E-03 8192.477427 0.6776085384E-03 7958.741620 0.6802810715E-03 7821.044539 0.6829536045E-03 7797.097221 0.6856261376E-03 7836.011613 0.6882986706E-03 7692.701879 0.6909712037E-03 7375.524635 0.6936437367E-03 6913.790401 0.6963162698E-03 6383.581803 0.6989888028E-03 5971.862542 0.7016613359E-03 5889.543634 0.7043338689E-03 5750.724023 0.7070064020E-03 5606.665935 0.7096789350E-03 5374.676288 0.7123514681E-03 5250.823750 0.7150240011E-03 5266.165001 0.7176965342E-03 5244.462743 0.7203690672E-03 5121.233834 0.7230416003E-03 5029.435780 0.7257141333E-03 4860.557294 0.7283866664E-03 4766.140002 0.7310591994E-03 4671.223808 0.7337317325E-03 4620.585207 0.7364042655E-03 4603.248346 0.7390767985E-03 4627.070939 0.7417493316E-03 4606.366487 0.7444218646E-03 4547.994898 0.7470943977E-03 4503.093676 0.7497669307E-03 4495.610139 0.7524394638E-03 4623.079720 0.7551119968E-03 4678.208442 0.7577845299E-03 4693.175516 0.7604570629E-03 4656.630910 0.7631295960E-03 4625.075329 0.7658021290E-03 4633.806123 0.7684746621E-03 4587.782370 0.7711471951E-03 4594.642279 0.7738197282E-03 4489.373858 0.7764922612E-03 4508.082701 0.7791647943E-03 4449.461661 0.7818373273E-03 4456.196844 0.7845098604E-03 4465.177088 0.7871823934E-03 4509.579408 0.7898549265E-03 4484.883736 0.7925274595E-03 4442.227575 0.7951999926E-03 4477.400199 0.7978725256E-03 4592.896120 0.8005450586E-03 4588.530724 0.8032175917E-03 4568.948802 0.8058901247E-03 4682.449113 0.8085626578E-03 4745.186099 0.8112351908E-03 4796.198876 0.8139077239E-03 4737.328385 0.8165802569E-03 4794.951620 0.8192527900E-03 4685.941430 0.8219253230E-03 4607.114841 0.8245978561E-03 4610.108255 0.8272703891E-03 4645.031428 0.8299429222E-03 4631.311610 0.8326154552E-03 4357.414155 0.8352879883E-03 4191.279633 0.8379605213E-03 4018.659380 0.8406330544E-03 4043.604503 0.8433055874E-03 4010.676940 0.8459781205E-03 3939.583338 0.8486506535E-03 3767.212536 0.8513231866E-03 3622.031918 0.8539957196E-03 3632.758321 0.8566682527E-03 3698.363995 0.8593407857E-03 3630.513259 0.8620133187E-03 3519.507460 0.8646858518E-03 3358.361963 0.8673583848E-03 3443.424834 0.8700309179E-03 3480.094165 0.8727034509E-03 3397.525807 0.8753759840E-03 3283.776044 0.8780485170E-03 3116.893169 0.8807210501E-03 3260.327628 0.8833935831E-03 3221.787413 0.8860661162E-03 3240.496255 0.8887386492E-03 3062.138623 0.8914111823E-03 3093.195301 0.8940837153E-03 3074.486459 0.8967562484E-03 3132.858048 0.8994287814E-03 3095.190911 0.9021013145E-03 2953.752062 0.9047738475E-03 2951.257549 0.9074463806E-03 2977.699380 0.9101189136E-03 3037.068774 0.9127914467E-03 2902.365107 0.9154639797E-03 2868.689191 0.9181365128E-03 2917.082730 0.9208090458E-03 2963.854837 0.9234815789E-03 2933.920689 0.9261541119E-03 2989.049411 0.9288266449E-03 3014.493437 0.9314991780E-03 3015.241791 0.9341717110E-03 3093.070576 0.9368442441E-03 3167.656495 0.9395167771E-03 3239.248999 0.9421893102E-03 3185.991160 0.9448618432E-03 3403.762088 0.9475343763E-03 3480.343617 0.9502069093E-03 3615.795637 0.9528794424E-03 3600.703837 0.9555519754E-03 3920.999221 0.9582245085E-03 3953.677333 0.9608970415E-03 4210.362653 0.9635695746E-03 4268.235339 0.9662421076E-03 4663.241368 0.9689146407E-03 4794.327992 0.9715871737E-03 4933.646506 0.9742597068E-03 5137.572890 0.9769322398E-03 5388.895008 0.9796047729E-03 5715.177222 0.9822773059E-03 5993.938976 0.9849498390E-03 6335.437715 0.9876223720E-03 6834.839086 0.9902949050E-03 7385.627410 0.9929674381E-03 8308.098074 0.9956399711E-03 8876.722161 0.9983125042E-03 9378.119142 0.1000985037E-02 9482.888660 0.1003657570E-02 9817.028588 0.1006330103E-02 10212.53352 0.1009002636E-02 10434.79457 0.1011675169E-02 10438.16216 0.1014347702E-02 10057.25013 0.1017020236E-02 9732.215168 0.1019692769E-02 9356.666336 0.1022365302E-02 9114.948090 0.1025037835E-02 8779.436180 0.1027710368E-02 8560.043820 0.1030382901E-02 8375.574632 0.1033055434E-02 8349.881155 0.1035727967E-02 8185.118615 0.1038400500E-02 7596.912605 0.1041073033E-02 6648.499014 0.1043745566E-02 5612.029137 0.1046418099E-02 4892.861229 0.1049090632E-02 4363.650436 0.1051763165E-02 3916.883276 0.1054435698E-02 3532.977827 0.1057108231E-02 3120.260760 0.1059780764E-02 2688.834851 0.1062453297E-02 2050.863320 0.1065125830E-02 1493.713989 0.1067798363E-02 1063.909513 0.1070470896E-02 929.5800235 0.1073143430E-02 836.7841644 0.1075815963E-02 805.2285833 0.1078488496E-02 739.3734575 0.1081161029E-02 691.8529975 0.1083833562E-02 630.1138171 0.1086506095E-02 584.4642412 0.1089178628E-02 533.3267383 0.1091851161E-02 465.9749051 0.1094523694E-02 404.6099015 0.1097196227E-02 335.2624585 0.1099868760E-02 260.1776370 0.1102541293E-02 147.5504049 0.1105213826E-02 58.49631437 0.1107886359E-02 3.367591659 0.1110558892E-02 0.000000000 0.1113231425E-02 0.000000000 0.1115903958E-02 0.000000000 0.1118576491E-02 0.000000000 0.1121249024E-02 0.000000000 0.1123921557E-02 0.000000000 0.1126594090E-02 0.000000000 0.1129266624E-02 0.000000000 0.1131939157E-02 0.000000000 0.1134611690E-02 0.000000000 0.1137284223E-02 0.000000000 0.1139956756E-02 0.000000000 0.1142629289E-02 0.000000000 0.1145301822E-02 0.000000000 0.1147974355E-02 0.000000000 0.1150646888E-02 0.000000000 0.1153319421E-02 0.000000000 0.1155991954E-02 0.000000000 0.1158664487E-02 0.000000000 0.1161337020E-02 0.000000000 0.1164009553E-02 0.000000000 0.1166682086E-02 0.000000000 0.1169354619E-02 0.000000000 0.1172027152E-02 0.000000000 0.1174699685E-02 0.000000000 0.1177372218E-02 0.000000000 0.1180044751E-02 0.000000000 0.1182717284E-02 0.000000000 0.1185389818E-02 0.000000000 0.1188062351E-02 0.000000000 0.1190734884E-02 0.000000000 0.1193407417E-02 0.000000000 0.1196079950E-02 0.000000000 0.1198752483E-02 0.000000000 0.1201425016E-02 0.000000000 0.1204097549E-02 0.000000000 0.1206770082E-02 0.000000000 0.1209442615E-02 0.000000000 0.1212115148E-02 0.000000000 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/PaxHeaders/PHLWIDTH.OUT0000644000000000000000000000013214536061314023452 xustar0030 mtime=1702388428.958499949 30 atime=1702388428.958499949 30 ctime=1702388428.958499949 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/PHLWIDTH.OUT0000644002504400250440000012660214536061314026203 0ustar00dewhurstdewhurst00000000000000 0.000000000 0.1054834577E-04 0.1640615945E-01 0.1054426906E-04 0.3281231890E-01 0.1053224948E-04 0.4921847835E-01 0.1051291115E-04 0.6562463780E-01 0.1048726943E-04 0.8203079725E-01 0.1045669506E-04 0.9843695670E-01 0.1042286651E-04 0.1148431162 0.1038771301E-04 0.1312492756 0.1035335081E-04 0.1476554351 0.1032201555E-04 0.1640615945 0.1029599337E-04 0.1804677540 0.1027755320E-04 0.1968739134 0.1026888230E-04 0.2132800729 0.1027202659E-04 0.2296862323 0.1028883686E-04 0.2460923918 0.1032092148E-04 0.2624985512 0.1036960608E-04 0.2789047107 0.1043589994E-04 0.2953108701 0.1052046948E-04 0.3117170296 0.1062361856E-04 0.3281231890 0.1074527583E-04 0.3445293485 0.1088498952E-04 0.3609355079 0.1104193002E-04 0.3773416674 0.1121490100E-04 0.3937478268 0.1140235969E-04 0.4101539863 0.1160244679E-04 0.4265601457 0.1181302643E-04 0.4429663052 0.1203173592E-04 0.4593724646 0.1225604474E-04 0.4757786241 0.1235715223E-04 0.4921847835 0.1232117761E-04 0.5085909430 0.1230211703E-04 0.5249971024 0.1230319825E-04 0.5414032619 0.1232707044E-04 0.5578094213 0.1237573160E-04 0.5742155808 0.1245046998E-04 0.5906217402 0.1255181836E-04 0.6070278997 0.1267952119E-04 0.6234340591 0.1283251463E-04 0.6398402186 0.1300892134E-04 0.6562463780 0.1320606214E-04 0.6726525375 0.1342048754E-04 0.6890586969 0.1364803207E-04 0.7054648564 0.1388389412E-04 0.7218710158 0.1412274272E-04 0.7382771753 0.1435885137E-04 0.7546833347 0.1458625685E-04 0.7710894942 0.1479893888E-04 0.7874956536 0.1499101419E-04 0.8039018131 0.1515693680E-04 0.8203079725 0.1529169463E-04 0.8367141320 0.1534477832E-04 0.8531202914 0.1538531932E-04 0.8695264509 0.1541996037E-04 0.8859326103 0.1544698628E-04 0.9023387698 0.1538058083E-04 0.9187449292 0.1527217934E-04 0.9351510887 0.1512369552E-04 0.9515572481 0.1493797262E-04 0.9679634076 0.1471863602E-04 0.9843695670 0.1446991558E-04 1.000775726 0.1419644783E-04 1.017181886 0.1390306852E-04 1.033588045 0.1359460603E-04 1.049994205 0.1327568534E-04 1.066400364 0.1295055054E-04 1.082806524 0.1262291236E-04 1.099212683 0.1229582502E-04 1.115618843 0.1197159525E-04 1.132025002 0.1165172428E-04 1.148431162 0.1133688276E-04 1.164837321 0.1102691786E-04 1.181243480 0.1072089095E-04 1.197649640 0.1041714488E-04 1.214055799 0.9777600309E-05 1.230461959 0.9099967529E-05 1.246868118 0.8410024987E-05 1.263274278 0.7715588455E-05 1.279680437 0.7024540575E-05 1.296086597 0.6344592768E-05 1.312492756 0.5683056486E-05 1.328898916 0.5046634419E-05 1.345305075 0.4441241004E-05 1.361711234 0.3871859762E-05 1.378117394 0.3342442719E-05 1.394523553 0.2855854678E-05 1.410929713 0.2413862481E-05 1.427335872 0.2017166951E-05 1.443742032 0.1665472985E-05 1.460148191 0.1357591512E-05 1.476554351 0.1091565743E-05 1.492960510 0.8648135035E-06 1.509366669 0.6742772993E-06 1.525772829 0.5165742427E-06 1.542178988 0.3881388419E-06 1.558585148 0.2853529263E-06 1.574991307 0.2046584482E-06 1.591397467 0.1426504762E-06 1.607803626 0.9614923659E-07 1.624209786 0.6225146469E-07 1.640615945 0.3836252037E-07 1.657022105 0.2221164456E-07 1.673428264 0.1185336640E-07 1.689834423 0.5658417901E-08 1.706240583 0.2297598172E-08 1.722646742 0.7218952595E-09 1.739052902 0.1418656213E-09 1.755459061 0.8838830962E-11 1.771865221 0.3660200637E-35 1.788365009 0.8932626533E-10 1.804864797 0.1415136414E-08 1.821364585 0.7047244014E-08 1.837864373 0.2176823466E-07 1.854364161 0.5161263052E-07 1.870863949 0.1032958840E-06 1.887363737 0.1835954396E-06 1.903863525 0.2987489043E-06 1.920363314 0.4539291341E-06 1.936863102 0.6528438813E-06 1.953362890 0.8974905434E-06 1.969862678 0.1188077092E-05 1.986362466 0.1523101129E-05 2.002862254 0.1899562630E-05 2.019362042 0.2313274129E-05 2.035861830 0.2759225805E-05 2.052361618 0.3231962306E-05 2.068861406 0.3725932535E-05 2.085361195 0.4235781728E-05 2.101860983 0.4756565504E-05 2.118360771 0.5283876579E-05 2.134860559 0.5813885136E-05 2.151360347 0.6343302461E-05 2.167860135 0.6869283813E-05 2.184359923 0.7389290391E-05 2.200859711 0.7900931827E-05 2.217359499 0.8401810253E-05 2.233859287 0.8889384889E-05 2.250359076 0.9360872867E-05 2.266858864 0.9813197806E-05 2.283358652 0.1024299286E-04 2.299858440 0.1064665981E-04 2.316358228 0.1102048051E-04 2.332858016 0.1136077214E-04 2.349357804 0.1166407323E-04 2.365857592 0.1192734441E-04 2.382357380 0.1214816579E-04 2.398857168 0.1232491308E-04 2.415356957 0.1245689589E-04 2.431856745 0.1254444546E-04 2.448356533 0.1258894344E-04 2.464856321 0.1259278914E-04 2.481356109 0.1255930810E-04 2.497855897 0.1249261027E-04 2.514355685 0.1239740994E-04 2.530855473 0.1227882220E-04 2.547355261 0.1214215190E-04 2.563855049 0.1199268984E-04 2.580354838 0.1183552954E-04 2.596854626 0.1167541420E-04 2.613354414 0.1151662052E-04 2.629854202 0.1136288209E-04 2.646353990 0.1121735185E-04 2.662853778 0.1108260049E-04 2.679353566 0.1096064543E-04 2.695853354 0.1085300388E-04 2.712353142 0.1076076258E-04 2.728852930 0.1068465674E-04 2.745352719 0.1062515100E-04 2.761852507 0.1058251570E-04 2.778352295 0.1055689268E-04 2.794852083 0.1054834577E-04 2.810926771 0.1053722989E-04 2.827001458 0.1050420196E-04 2.843076146 0.1045021086E-04 2.859150834 0.1037680425E-04 2.875225521 0.1028607971E-04 2.891300209 0.1018062002E-04 2.907374897 0.1006341580E-04 2.923449585 0.9937779442E-05 2.939524272 0.9807254234E-05 2.955598960 0.9675522938E-05 2.971673648 0.9546319337E-05 2.987748335 0.9423346015E-05 3.003823023 0.9310200733E-05 3.019897711 0.9210312918E-05 3.035972399 0.9126890847E-05 3.052047086 0.9062879185E-05 3.068121774 0.9020925735E-05 3.084196462 0.9003355626E-05 3.100271149 0.9012150729E-05 3.116345837 0.9048931959E-05 3.132420525 0.9114942219E-05 3.148495213 0.9211028107E-05 3.164569900 0.9337619132E-05 3.180644588 0.9494703930E-05 3.196719276 0.9681803855E-05 3.212793963 0.9897945252E-05 3.228868651 0.1014163252E-04 3.244943339 0.1041082482E-04 3.261018027 0.1070291978E-04 3.277092714 0.1101474774E-04 3.293167402 0.1134258013E-04 3.309242090 0.1168215497E-04 3.325316777 0.1202872212E-04 3.341391465 0.1237710957E-04 3.357466153 0.1272181122E-04 3.373540841 0.1305709509E-04 3.389615528 0.1337712963E-04 3.405690216 0.1367612453E-04 3.421764904 0.1394848116E-04 3.437839591 0.1356105511E-04 3.453914279 0.1319186101E-04 3.469988967 0.1290028453E-04 3.486063655 0.1268972879E-04 3.502138342 0.1256250599E-04 3.518213030 0.1251995279E-04 3.534197200 0.1254047020E-04 3.550181370 0.1260128515E-04 3.566165539 0.1270021334E-04 3.582149709 0.1283370691E-04 3.598133879 0.1299699598E-04 3.614118048 0.1318429001E-04 3.630102218 0.1338903773E-04 3.646086388 0.1360423938E-04 3.662070558 0.1382279828E-04 3.678054727 0.1403789158E-04 3.694038897 0.1424333450E-04 3.710023067 0.1443390871E-04 3.726007236 0.1460562622E-04 3.741991406 0.1475590390E-04 3.757975576 0.1488363199E-04 3.773959746 0.1498912954E-04 3.789943915 0.1488650472E-04 3.805928085 0.1452024652E-04 3.821912255 0.1425889212E-04 3.837896424 0.1409542607E-04 3.853880594 0.1402087280E-04 3.869864764 0.1402458528E-04 3.885848934 0.1409450734E-04 3.901833103 0.1421744360E-04 3.917817273 0.1437936814E-04 3.933801443 0.1456579301E-04 3.949785613 0.1476220272E-04 3.965769782 0.1495454444E-04 3.981753952 0.1512974832E-04 3.997738122 0.1527624132E-04 4.013722291 0.1538441217E-04 4.029706461 0.1544698628E-04 4.045690631 0.1538441217E-04 4.061674801 0.1527624132E-04 4.077658970 0.1512974832E-04 4.093643140 0.1495454444E-04 4.109627310 0.1476220272E-04 4.125611479 0.1456579301E-04 4.141595649 0.1437936814E-04 4.157579819 0.1421744360E-04 4.173563989 0.1409450734E-04 4.189548158 0.1402458528E-04 4.205532328 0.1402087280E-04 4.221516498 0.1409542607E-04 4.237500668 0.1425889212E-04 4.253484837 0.1452024652E-04 4.269469007 0.1488650472E-04 4.285453177 0.1498912954E-04 4.301437346 0.1488363199E-04 4.317421516 0.1475590390E-04 4.333405686 0.1460562622E-04 4.349389856 0.1443390871E-04 4.365374025 0.1424333450E-04 4.381358195 0.1403789158E-04 4.397342365 0.1382279828E-04 4.413326534 0.1360423938E-04 4.429310704 0.1338903773E-04 4.445294874 0.1318429001E-04 4.461279044 0.1299699598E-04 4.477263213 0.1283370691E-04 4.493247383 0.1270021334E-04 4.509231553 0.1260128515E-04 4.525215722 0.1254047020E-04 4.541199892 0.1251995279E-04 4.557639914 0.1246695510E-04 4.574079935 0.1230996500E-04 4.590519957 0.1205485143E-04 4.606959978 0.1171094311E-04 4.623400000 0.1129039646E-04 4.639840021 0.1080739847E-04 4.656280043 0.1027727909E-04 4.672720064 0.9715611473E-05 4.689160086 0.9137373629E-05 4.705600107 0.8556232231E-05 4.722040129 0.7983990861E-05 4.738480151 0.7430224101E-05 4.754920172 0.6902098424E-05 4.771360194 0.6404363683E-05 4.787800215 0.5939486916E-05 4.804240237 0.5507894145E-05 4.820680258 0.5108285499E-05 4.837120280 0.4737993175E-05 4.853560301 0.4393358514E-05 4.870000323 0.4070111711E-05 4.886440344 0.3763743571E-05 4.902880366 0.3469861771E-05 4.919320387 0.3184524093E-05 4.935760409 0.2904538254E-05 4.952200430 0.2627713723E-05 4.968640452 0.2353046931E-05 4.985080473 0.2080819449E-05 5.001520495 0.1812590507E-05 5.017960517 0.1551071619E-05 5.034400538 0.1299881714E-05 5.050840560 0.1063195205E-05 5.067280581 0.8453105848E-06 5.083720603 0.6501811297E-06 5.100160624 0.4809592438E-06 5.116600646 0.3396098588E-06 5.133040667 0.2266445319E-06 5.149480689 0.1410163558E-06 5.165920710 0.8019748571E-07 5.182360732 0.4043830627E-07 5.198800753 0.1718311419E-07 5.215240775 0.5595247892E-08 5.231680796 0.1128232826E-08 5.248120818 0.7139362773E-10 5.264560839 0.3660200637E-35 5.281046338 0.1157181683E-10 5.297531837 0.1859975642E-09 5.314017336 0.9486846086E-09 5.330502835 0.3029022438E-08 5.346988334 0.7489035783E-08 5.363473833 0.1575965431E-07 5.379959331 0.2968073469E-07 5.396444830 0.5153989973E-07 5.412930329 0.8410430656E-07 5.429415828 0.1306387300E-06 5.445901327 0.1949029760E-06 5.462386826 0.2811217578E-06 5.478872325 0.3939208904E-06 5.495357823 0.5382250678E-06 5.511843322 0.7191146082E-06 5.528328821 0.9416413240E-06 5.544814320 0.1210606980E-05 5.561299819 0.1530311407E-05 5.577785318 0.1904281000E-05 5.594270817 0.2334991631E-05 5.610756315 0.2823602735E-05 5.627241814 0.3369720992E-05 5.643727313 0.3971212468E-05 5.660212812 0.4594868291E-05 5.676698311 0.5153141893E-05 5.693183810 0.5732080910E-05 5.709669309 0.6327286738E-05 5.726154807 0.6934094126E-05 5.742640306 0.7547661040E-05 5.759125805 0.8163058282E-05 5.775611304 0.8775353257E-05 5.792096803 0.9379674969E-05 5.808582302 0.9971211304E-05 5.825067801 0.1054480672E-04 5.841553299 0.1108660120E-04 5.858038798 0.1135240616E-04 5.874524297 0.1149071808E-04 5.891009796 0.1161832377E-04 5.907495295 0.1174174170E-04 5.923980794 0.1186477707E-04 5.940466292 0.1199032710E-04 5.956951791 0.1212054732E-04 5.973437290 0.1225687944E-04 5.989922789 0.1240007008E-04 6.006408288 0.1255020191E-04 6.022893787 0.1270674162E-04 6.039379286 0.1286860490E-04 6.055864784 0.1303423723E-04 6.072350283 0.1320170851E-04 6.088835782 0.1336881836E-04 6.105321281 0.1353320778E-04 6.121806780 0.1369247121E-04 6.138292279 0.1384426075E-04 6.154777778 0.1398637052E-04 6.171263276 0.1411678124E-04 6.187748775 0.1423362492E-04 6.204234274 0.1433496739E-04 6.220719773 0.1441809076E-04 6.237205272 0.1447713426E-04 6.253690771 0.1449564473E-04 6.270176270 0.1444141124E-04 6.286661768 0.1431459175E-04 6.303147267 0.1415178368E-04 6.319632766 0.1397429326E-04 6.336118265 0.1379143575E-04 6.352603764 0.1360867360E-04 6.369089263 0.1343019623E-04 6.385574762 0.1325966868E-04 6.402060260 0.1310044687E-04 6.418545759 0.1295561831E-04 6.435031258 0.1282798085E-04 6.451516757 0.1272000067E-04 6.468002256 0.1263376657E-04 6.484487755 0.1257094849E-04 6.500973254 0.1253276381E-04 6.517458752 0.1251995279E-04 0.000000000 0.1054834577E-04 0.1640615945E-01 0.1054426906E-04 0.3281231890E-01 0.1053224948E-04 0.4921847835E-01 0.1051291115E-04 0.6562463780E-01 0.1048726943E-04 0.8203079725E-01 0.1045669506E-04 0.9843695670E-01 0.1042286651E-04 0.1148431162 0.1038771301E-04 0.1312492756 0.1035335081E-04 0.1476554351 0.1032201555E-04 0.1640615945 0.1029599337E-04 0.1804677540 0.1027755320E-04 0.1968739134 0.1026888230E-04 0.2132800729 0.1027202659E-04 0.2296862323 0.1028883686E-04 0.2460923918 0.1032092148E-04 0.2624985512 0.1036960608E-04 0.2789047107 0.1043589994E-04 0.2953108701 0.1052046948E-04 0.3117170296 0.1062361856E-04 0.3281231890 0.1074527583E-04 0.3445293485 0.1088498952E-04 0.3609355079 0.1104193002E-04 0.3773416674 0.1121490100E-04 0.3937478268 0.1140235969E-04 0.4101539863 0.1160244679E-04 0.4265601457 0.1181302643E-04 0.4429663052 0.1203173592E-04 0.4593724646 0.1225604474E-04 0.4757786241 0.1248332142E-04 0.4921847835 0.1271090646E-04 0.5085909430 0.1293618870E-04 0.5249971024 0.1315668217E-04 0.5414032619 0.1337010003E-04 0.5578094213 0.1357442214E-04 0.5742155808 0.1376795293E-04 0.5906217402 0.1394936641E-04 0.6070278997 0.1411773591E-04 0.6234340591 0.1427254689E-04 0.6398402186 0.1441369162E-04 0.6562463780 0.1454144609E-04 0.6726525375 0.1465642959E-04 0.6890586969 0.1475954901E-04 0.7054648564 0.1485192987E-04 0.7218710158 0.1493483703E-04 0.7382771753 0.1500958826E-04 0.7546833347 0.1507746393E-04 0.7710894942 0.1513961607E-04 0.7874956536 0.1519698017E-04 0.8039018131 0.1525019257E-04 0.8203079725 0.1529951636E-04 0.8367141320 0.1534477832E-04 0.8531202914 0.1538531932E-04 0.8695264509 0.1541996037E-04 0.8859326103 0.1544698628E-04 0.9023387698 0.1546414893E-04 0.9187449292 0.1546869132E-04 0.9351510887 0.1545739405E-04 0.9515572481 0.1542664430E-04 0.9679634076 0.1537252771E-04 0.9843695670 0.1529094174E-04 1.000775726 0.1517772874E-04 1.017181886 0.1502882532E-04 1.033588045 0.1484042350E-04 1.049994205 0.1460913796E-04 1.066400364 0.1433217268E-04 1.082806524 0.1400747923E-04 1.099212683 0.1363389892E-04 1.115618843 0.1321128067E-04 1.132025002 0.1274056742E-04 1.148431162 0.1222384449E-04 1.164837321 0.1166434541E-04 1.181243480 0.1106641231E-04 1.197649640 0.1043541066E-04 1.214055799 0.9777600309E-05 1.230461959 0.9099967529E-05 1.246868118 0.8410024987E-05 1.263274278 0.7715588455E-05 1.279680437 0.7024540575E-05 1.296086597 0.6344592768E-05 1.312492756 0.5683056486E-05 1.328898916 0.5046634419E-05 1.345305075 0.4441241004E-05 1.361711234 0.3871859762E-05 1.378117394 0.3342442719E-05 1.394523553 0.2855854678E-05 1.410929713 0.2413862481E-05 1.427335872 0.2017166951E-05 1.443742032 0.1665472985E-05 1.460148191 0.1357591512E-05 1.476554351 0.1091565743E-05 1.492960510 0.8648135035E-06 1.509366669 0.6742772993E-06 1.525772829 0.5165742427E-06 1.542178988 0.3881388419E-06 1.558585148 0.2853529263E-06 1.574991307 0.2046584482E-06 1.591397467 0.1426504762E-06 1.607803626 0.9614923659E-07 1.624209786 0.6225146469E-07 1.640615945 0.3836252037E-07 1.657022105 0.2221164456E-07 1.673428264 0.1185336640E-07 1.689834423 0.5658417901E-08 1.706240583 0.2297598172E-08 1.722646742 0.7218952595E-09 1.739052902 0.1418656213E-09 1.755459061 0.8838830962E-11 1.771865221 0.3660200637E-35 1.788365009 0.8932626533E-10 1.804864797 0.1415136414E-08 1.821364585 0.7047244014E-08 1.837864373 0.2176823466E-07 1.854364161 0.5161263052E-07 1.870863949 0.1032958840E-06 1.887363737 0.1835954396E-06 1.903863525 0.2987489043E-06 1.920363314 0.4539291341E-06 1.936863102 0.6528438813E-06 1.953362890 0.8974905434E-06 1.969862678 0.1188077092E-05 1.986362466 0.1523101129E-05 2.002862254 0.1899562630E-05 2.019362042 0.2313274129E-05 2.035861830 0.2759225805E-05 2.052361618 0.3231962306E-05 2.068861406 0.3725932535E-05 2.085361195 0.4235781728E-05 2.101860983 0.4756565504E-05 2.118360771 0.5283876579E-05 2.134860559 0.5813885136E-05 2.151360347 0.6343302461E-05 2.167860135 0.6869283813E-05 2.184359923 0.7389290391E-05 2.200859711 0.7900931827E-05 2.217359499 0.8401810253E-05 2.233859287 0.8889384889E-05 2.250359076 0.9360872867E-05 2.266858864 0.9813197806E-05 2.283358652 0.1024299286E-04 2.299858440 0.1064665981E-04 2.316358228 0.1102048051E-04 2.332858016 0.1136077214E-04 2.349357804 0.1166407323E-04 2.365857592 0.1192734441E-04 2.382357380 0.1214816579E-04 2.398857168 0.1232491308E-04 2.415356957 0.1245689589E-04 2.431856745 0.1254444546E-04 2.448356533 0.1258894344E-04 2.464856321 0.1259278914E-04 2.481356109 0.1255930810E-04 2.497855897 0.1249261027E-04 2.514355685 0.1239740994E-04 2.530855473 0.1227882220E-04 2.547355261 0.1214215190E-04 2.563855049 0.1199268984E-04 2.580354838 0.1183552954E-04 2.596854626 0.1167541420E-04 2.613354414 0.1151662052E-04 2.629854202 0.1136288209E-04 2.646353990 0.1121735185E-04 2.662853778 0.1108260049E-04 2.679353566 0.1096064543E-04 2.695853354 0.1085300388E-04 2.712353142 0.1076076258E-04 2.728852930 0.1068465674E-04 2.745352719 0.1062515100E-04 2.761852507 0.1058251570E-04 2.778352295 0.1055689268E-04 2.794852083 0.1054834577E-04 2.810926771 0.1056683174E-04 2.827001458 0.1062226349E-04 2.843076146 0.1071456062E-04 2.859150834 0.1084358265E-04 2.875225521 0.1100911964E-04 2.891300209 0.1121087962E-04 2.907374897 0.1144847348E-04 2.923449585 0.1172139808E-04 2.939524272 0.1202901813E-04 2.955598960 0.1237054801E-04 2.971673648 0.1274503419E-04 2.987748335 0.1315133910E-04 3.003823023 0.1358812738E-04 3.019897711 0.1405385507E-04 3.035972399 0.1454676247E-04 3.052047086 0.1506487097E-04 3.068121774 0.1560598434E-04 3.084196462 0.1616769443E-04 3.100271149 0.1674739147E-04 3.116345837 0.1734227862E-04 3.132420525 0.1794939051E-04 3.148495213 0.1856561536E-04 3.164569900 0.1918772011E-04 3.180644588 0.1981237786E-04 3.196719276 0.2043619703E-04 3.212793963 0.2105575147E-04 3.228868651 0.2134954376E-04 3.244943339 0.2089825959E-04 3.261018027 0.2036670290E-04 3.277092714 0.1976950811E-04 3.293167402 0.1912241958E-04 3.309242090 0.1844173480E-04 3.325316777 0.1774376981E-04 3.341391465 0.1704437363E-04 3.357466153 0.1635851371E-04 3.373540841 0.1569994809E-04 3.389615528 0.1508099252E-04 3.405690216 0.1451238378E-04 3.421764904 0.1400323280E-04 3.437839591 0.1418894696E-04 3.453914279 0.1439276751E-04 3.469988967 0.1455582950E-04 3.486063655 0.1467478843E-04 3.502138342 0.1474717476E-04 3.518213030 0.1477147370E-04 3.534197200 0.1477062742E-04 3.550181370 0.1476833660E-04 3.566165539 0.1476532445E-04 3.582149709 0.1476272833E-04 3.598133879 0.1476200336E-04 3.614118048 0.1476479813E-04 3.630102218 0.1477281176E-04 3.646086388 0.1478764293E-04 3.662070558 0.1481064170E-04 3.678054727 0.1484277451E-04 3.694038897 0.1488451194E-04 3.710023067 0.1493574739E-04 3.726007236 0.1499575329E-04 3.741991406 0.1506317928E-04 3.757975576 0.1513609511E-04 3.773959746 0.1521207796E-04 3.789943915 0.1507399107E-04 3.805928085 0.1514083914E-04 3.821912255 0.1519300574E-04 3.837896424 0.1523417105E-04 3.853880594 0.1526799021E-04 3.869864764 0.1529773828E-04 3.885848934 0.1532600028E-04 3.901833103 0.1535442911E-04 3.917817273 0.1538358874E-04 3.933801443 0.1541289510E-04 3.949785613 0.1544066111E-04 3.965769782 0.1546424724E-04 3.981753952 0.1548031205E-04 3.997738122 0.1547362522E-04 4.013722291 0.1545431222E-04 4.029706461 0.1544698628E-04 4.045690631 0.1545431222E-04 4.061674801 0.1547362522E-04 4.077658970 0.1548031205E-04 4.093643140 0.1546424724E-04 4.109627310 0.1544066111E-04 4.125611479 0.1541289510E-04 4.141595649 0.1538358874E-04 4.157579819 0.1535442911E-04 4.173563989 0.1532600028E-04 4.189548158 0.1529773828E-04 4.205532328 0.1526799021E-04 4.221516498 0.1523417105E-04 4.237500668 0.1519300574E-04 4.253484837 0.1514083914E-04 4.269469007 0.1507399107E-04 4.285453177 0.1521207796E-04 4.301437346 0.1513609511E-04 4.317421516 0.1506317928E-04 4.333405686 0.1499575329E-04 4.349389856 0.1493574739E-04 4.365374025 0.1488451194E-04 4.381358195 0.1484277451E-04 4.397342365 0.1481064170E-04 4.413326534 0.1478764293E-04 4.429310704 0.1477281176E-04 4.445294874 0.1476479813E-04 4.461279044 0.1476200336E-04 4.477263213 0.1476272833E-04 4.493247383 0.1476532445E-04 4.509231553 0.1476833660E-04 4.525215722 0.1477062742E-04 4.541199892 0.1477147370E-04 4.557639914 0.1470901098E-04 4.574079935 0.1452430448E-04 4.590519957 0.1422519394E-04 4.606959978 0.1382408389E-04 4.623400000 0.1333702618E-04 4.639840021 0.1278257482E-04 4.656280043 0.1218052865E-04 4.672720064 0.1155068102E-04 4.689160086 0.1091168418E-04 4.705600107 0.1028011181E-04 4.722040129 0.9669771544E-05 4.738480151 0.9091284989E-05 4.754920172 0.8551921707E-05 4.771360194 0.8055650474E-05 4.787800215 0.7603358265E-05 4.804240237 0.7193185640E-05 4.820680258 0.6820934945E-05 4.837120280 0.6480521436E-05 4.853560301 0.6164452982E-05 4.870000323 0.5864336687E-05 4.886440344 0.5571417287E-05 4.902880366 0.5277150357E-05 4.919320387 0.4973803418E-05 4.935760409 0.4655062135E-05 4.952200430 0.4316600679E-05 4.968640452 0.3956559847E-05 4.985080473 0.3575868257E-05 5.001520495 0.3178344517E-05 5.017960517 0.2770533429E-05 5.034400538 0.2361256315E-05 5.050840560 0.1960891322E-05 5.067280581 0.1580438945E-05 5.083720603 0.1230464449E-05 5.100160624 0.9200360014E-06 5.116600646 0.6557894261E-06 5.133040667 0.4412443202E-06 5.149480689 0.2764710817E-06 5.165920710 0.1581667999E-06 5.182360732 0.8014524257E-07 5.198800753 0.3418980647E-07 5.215240775 0.1116666638E-07 5.231680796 0.2256457924E-08 5.248120818 0.1429677656E-09 5.264560839 0.3660200637E-35 5.281046338 0.2477821740E-10 5.297531837 0.3952335424E-09 5.314017336 0.1990636964E-08 5.330502835 0.6246405822E-08 5.346988334 0.1510998601E-07 5.363473833 0.3098092474E-07 5.379959331 0.5663690360E-07 5.396444830 0.9514791197E-07 5.412930329 0.1497810849E-06 5.429415828 0.2238989951E-06 5.445901327 0.3208543686E-06 5.462386826 0.4438842832E-06 5.478872325 0.5960069044E-06 5.495357823 0.7799237137E-06 5.511843322 0.9979299998E-06 5.528328821 0.1251836110E-05 5.544814320 0.1542901613E-05 5.561299819 0.1871784127E-05 5.577785318 0.2238504086E-05 5.594270817 0.2642426267E-05 5.610756315 0.3082258336E-05 5.627241814 0.3556066227E-05 5.643727313 0.4061305612E-05 5.660212812 0.4624081026E-05 5.676698311 0.5322428285E-05 5.693183810 0.6058506301E-05 5.709669309 0.6822868901E-05 5.726154807 0.7604621301E-05 5.742640306 0.8391761001E-05 5.759125805 0.9171596240E-05 5.775611304 0.9931222326E-05 5.792096803 0.1065803127E-04 5.808582302 0.1087066782E-04 5.825067801 0.1105638559E-04 5.841553299 0.1123163366E-04 5.858038798 0.1164182145E-04 5.874524297 0.1213994627E-04 5.891009796 0.1261085892E-04 5.907495295 0.1304971065E-04 5.923980794 0.1345430427E-04 5.940466292 0.1382321257E-04 5.956951791 0.1415555249E-04 5.973437290 0.1445091343E-04 5.989922789 0.1443179199E-04 6.006408288 0.1438250142E-04 6.022893787 0.1431754103E-04 6.039379286 0.1424904912E-04 6.055864784 0.1418895778E-04 6.072350283 0.1414871540E-04 6.088835782 0.1413906492E-04 6.105321281 0.1416987432E-04 6.121806780 0.1425001080E-04 6.138292279 0.1438724573E-04 6.154777778 0.1458817548E-04 6.171263276 0.1485814341E-04 6.187748775 0.1520115027E-04 6.204234274 0.1520427075E-04 6.220719773 0.1508419235E-04 6.237205272 0.1495917836E-04 6.253690771 0.1484802130E-04 6.270176270 0.1478578931E-04 6.286661768 0.1477565883E-04 6.303147267 0.1478478151E-04 6.319632766 0.1479593408E-04 6.336118265 0.1480412304E-04 6.352603764 0.1480834226E-04 6.369089263 0.1480888454E-04 6.385574762 0.1480648497E-04 6.402060260 0.1480200257E-04 6.418545759 0.1479628468E-04 6.435031258 0.1479010420E-04 6.451516757 0.1478412979E-04 6.468002256 0.1477891260E-04 6.484487755 0.1477488120E-04 6.500973254 0.1477234075E-04 6.517458752 0.1477147370E-04 0.000000000 0.1054834577E-04 0.1640615945E-01 0.1056207525E-04 0.3281231890E-01 0.1060293411E-04 0.4921847835E-01 0.1066993838E-04 0.6562463780E-01 0.1076146428E-04 0.8203079725E-01 0.1087527433E-04 0.9843695670E-01 0.1100855685E-04 0.1148431162 0.1115798135E-04 0.1312492756 0.1131977182E-04 0.1476554351 0.1148979922E-04 0.1640615945 0.1166369312E-04 0.1804677540 0.1183697094E-04 0.1968739134 0.1200518128E-04 0.2132800729 0.1216405636E-04 0.2296862323 0.1230966673E-04 0.2460923918 0.1243857079E-04 0.2624985512 0.1254795083E-04 0.2789047107 0.1263572786E-04 0.2953108701 0.1270064827E-04 0.3117170296 0.1274233693E-04 0.3281231890 0.1276131347E-04 0.3445293485 0.1275897089E-04 0.3609355079 0.1273751772E-04 0.3773416674 0.1269988775E-04 0.3937478268 0.1264962258E-04 0.4101539863 0.1259073417E-04 0.4265601457 0.1252755464E-04 0.4429663052 0.1246458107E-04 0.4593724646 0.1240632213E-04 0.4757786241 0.1248332142E-04 0.4921847835 0.1271090646E-04 0.5085909430 0.1293618870E-04 0.5249971024 0.1315668217E-04 0.5414032619 0.1337010003E-04 0.5578094213 0.1357442214E-04 0.5742155808 0.1376795293E-04 0.5906217402 0.1394936641E-04 0.6070278997 0.1411773591E-04 0.6234340591 0.1427254689E-04 0.6398402186 0.1441369162E-04 0.6562463780 0.1454144609E-04 0.6726525375 0.1465642959E-04 0.6890586969 0.1475954901E-04 0.7054648564 0.1485192987E-04 0.7218710158 0.1493483703E-04 0.7382771753 0.1500958826E-04 0.7546833347 0.1507746393E-04 0.7710894942 0.1513961607E-04 0.7874956536 0.1519698017E-04 0.8039018131 0.1525019257E-04 0.8203079725 0.1529951636E-04 0.8367141320 0.1539099209E-04 0.8531202914 0.1545140810E-04 0.8695264509 0.1547052008E-04 0.8859326103 0.1544698628E-04 0.9023387698 0.1546414893E-04 0.9187449292 0.1546869132E-04 0.9351510887 0.1545739405E-04 0.9515572481 0.1542664430E-04 0.9679634076 0.1537252771E-04 0.9843695670 0.1529094174E-04 1.000775726 0.1517772874E-04 1.017181886 0.1502882532E-04 1.033588045 0.1484042350E-04 1.049994205 0.1460913796E-04 1.066400364 0.1433217268E-04 1.082806524 0.1400747923E-04 1.099212683 0.1363389892E-04 1.115618843 0.1321128067E-04 1.132025002 0.1274056742E-04 1.148431162 0.1222384449E-04 1.164837321 0.1166434541E-04 1.181243480 0.1106641231E-04 1.197649640 0.1043541066E-04 1.214055799 0.1011339914E-04 1.230461959 0.9806871688E-05 1.246868118 0.9494425746E-05 1.263274278 0.9172739135E-05 1.279680437 0.8838492804E-05 1.296086597 0.8488573531E-05 1.312492756 0.8120283992E-05 1.328898916 0.7731551352E-05 1.345305075 0.7321123655E-05 1.361711234 0.6888741821E-05 1.378117394 0.6435274304E-05 1.394523553 0.5962801736E-05 1.410929713 0.5474640284E-05 1.427335872 0.4975295184E-05 1.443742032 0.4470339785E-05 1.460148191 0.3966220397E-05 1.476554351 0.3469992795E-05 1.492960510 0.2989002049E-05 1.509366669 0.2530522848E-05 1.525772829 0.2101382121E-05 1.542178988 0.1707588996E-05 1.558585148 0.1353998581E-05 1.574991307 0.1044035377E-05 1.591397467 0.7794992683E-06 1.607803626 0.5604720197E-06 1.624209786 0.3853354346E-06 1.640615945 0.2509042102E-06 1.657022105 0.1526677470E-06 1.673428264 0.8512646524E-07 1.689834423 0.4220030883E-07 1.706240583 0.1768080138E-07 1.722646742 0.5693860207E-08 1.739052902 0.1138995734E-08 1.755459061 0.7172885624E-10 1.771865221 0.3660200637E-35 1.788365009 0.1659161240E-09 1.804864797 0.2629173768E-08 1.821364585 0.1309806660E-07 1.837864373 0.4047669917E-07 1.854364161 0.9601080077E-07 1.870863949 0.1922068135E-06 1.887363737 0.3416260997E-06 1.903863525 0.5556677803E-06 1.920363314 0.8434544697E-06 1.936863102 0.1210924842E-05 1.953362890 0.1660216454E-05 1.969862678 0.2189393546E-05 1.986362466 0.2792540533E-05 2.002862254 0.3460206128E-05 2.019362042 0.4180149275E-05 2.035861830 0.4938310050E-05 2.052361618 0.5719909311E-05 2.068861406 0.6510572242E-05 2.085361195 0.7297373714E-05 2.101860983 0.8069716696E-05 2.118360771 0.8819976798E-05 2.134860559 0.9543873082E-05 2.151360347 0.1024055372E-04 2.167860135 0.1091241124E-04 2.184359923 0.1156466245E-04 2.200859711 0.1220474128E-04 2.217359499 0.1284155727E-04 2.233859287 0.1348467014E-04 2.250359076 0.1414342402E-04 2.266858864 0.1482607572E-04 2.283358652 0.1553894529E-04 2.299858440 0.1628561389E-04 2.316358228 0.1706619792E-04 2.332858016 0.1787673667E-04 2.349357804 0.1870874229E-04 2.365857592 0.1954897202E-04 2.382357380 0.2037948757E-04 2.398857168 0.2117806265E-04 2.415356957 0.2191898173E-04 2.431856745 0.2257424232E-04 2.448356533 0.2311512991E-04 2.464856321 0.2351408414E-04 2.481356109 0.2374672503E-04 2.497855897 0.2379386642E-04 2.514355685 0.2364331927E-04 2.530855473 0.2329128689E-04 2.547355261 0.2274318046E-04 2.563855049 0.2201373613E-04 2.580354838 0.2112638888E-04 2.596854626 0.2011194376E-04 2.613354414 0.1900667091E-04 2.629854202 0.1785002212E-04 2.646353990 0.1668221388E-04 2.662853778 0.1554193557E-04 2.679353566 0.1446441820E-04 2.695853354 0.1348004232E-04 2.712353142 0.1261358124E-04 2.728852930 0.1188407966E-04 2.745352719 0.1130527477E-04 2.761852507 0.1088639015E-04 2.778352295 0.1063308680E-04 2.794852083 0.1054834577E-04 2.810926771 0.1059201403E-04 2.827001458 0.1072273776E-04 2.843076146 0.1093963969E-04 2.859150834 0.1124114764E-04 2.875225521 0.1162484183E-04 2.891300209 0.1208726497E-04 2.907374897 0.1262371669E-04 2.923449585 0.1322805663E-04 2.939524272 0.1389254165E-04 2.955598960 0.1460772134E-04 2.971673648 0.1536241268E-04 2.987748335 0.1614376971E-04 3.003823023 0.1693745735E-04 3.019897711 0.1772793119E-04 3.035972399 0.1849881677E-04 3.052047086 0.1923337464E-04 3.068121774 0.1991503004E-04 3.084196462 0.2052794083E-04 3.100271149 0.2105757331E-04 3.116345837 0.2149125380E-04 3.132420525 0.2181866453E-04 3.148495213 0.2203225486E-04 3.164569900 0.2212754384E-04 3.180644588 0.2210329629E-04 3.196719276 0.2196156254E-04 3.212793963 0.2170758006E-04 3.228868651 0.2166761086E-04 3.244943339 0.2226837071E-04 3.261018027 0.2285468127E-04 3.277092714 0.2342327500E-04 3.293167402 0.2397099196E-04 3.309242090 0.2449480281E-04 3.325316777 0.2499182932E-04 3.341391465 0.2545936206E-04 3.357466153 0.2589487534E-04 3.373540841 0.2629603955E-04 3.389615528 0.2666073085E-04 3.405690216 0.2698703860E-04 3.421764904 0.2727327082E-04 3.437839591 0.2751795784E-04 3.453914279 0.2771985464E-04 3.469988967 0.2787794215E-04 3.486063655 0.2799142777E-04 3.502138342 0.2805974547E-04 3.518213030 0.2808255576E-04 3.534197200 0.2797669282E-04 3.550181370 0.2766338570E-04 3.566165539 0.2715519339E-04 3.582149709 0.2647212166E-04 3.598133879 0.2564032923E-04 3.614118048 0.2469049377E-04 3.630102218 0.2365598843E-04 3.646086388 0.2257102903E-04 3.662070558 0.2146894229E-04 3.678054727 0.2038068023E-04 3.694038897 0.1933366779E-04 3.710023067 0.1835102680E-04 3.726007236 0.1745117500E-04 3.741991406 0.1664776037E-04 3.757975576 0.1594986263E-04 3.773959746 0.1536237838E-04 3.789943915 0.1528834174E-04 3.805928085 0.1536190223E-04 3.821912255 0.1542976931E-04 3.837896424 0.1548915445E-04 3.853880594 0.1553767911E-04 3.869864764 0.1557356849E-04 3.885848934 0.1559581501E-04 3.901833103 0.1560429724E-04 3.917817273 0.1559984290E-04 3.933801443 0.1558422894E-04 3.949785613 0.1556011645E-04 3.965769782 0.1553092360E-04 3.981753952 0.1550064445E-04 3.997738122 0.1548515049E-04 4.013722291 0.1547509993E-04 4.029706461 0.1544698628E-04 4.045690631 0.1547509993E-04 4.061674801 0.1548515049E-04 4.077658970 0.1550064445E-04 4.093643140 0.1553092360E-04 4.109627310 0.1556011645E-04 4.125611479 0.1558422894E-04 4.141595649 0.1559984290E-04 4.157579819 0.1560429724E-04 4.173563989 0.1559581501E-04 4.189548158 0.1557356849E-04 4.205532328 0.1553767911E-04 4.221516498 0.1548915445E-04 4.237500668 0.1542976931E-04 4.253484837 0.1536190223E-04 4.269469007 0.1528834174E-04 4.285453177 0.1536237838E-04 4.301437346 0.1594986263E-04 4.317421516 0.1664776037E-04 4.333405686 0.1745117500E-04 4.349389856 0.1835102680E-04 4.365374025 0.1933366779E-04 4.381358195 0.2038068023E-04 4.397342365 0.2146894229E-04 4.413326534 0.2257102903E-04 4.429310704 0.2365598843E-04 4.445294874 0.2469049377E-04 4.461279044 0.2564032923E-04 4.477263213 0.2647212166E-04 4.493247383 0.2715519339E-04 4.509231553 0.2766338570E-04 4.525215722 0.2797669282E-04 4.541199892 0.2808255576E-04 4.557639914 0.2796923447E-04 4.574079935 0.2763455254E-04 4.590519957 0.2709393256E-04 4.606959978 0.2637171675E-04 4.623400000 0.2549928623E-04 4.639840021 0.2451272755E-04 4.656280043 0.2345029201E-04 4.672720064 0.2234989619E-04 4.689160086 0.2124688240E-04 4.705600107 0.2017220051E-04 4.722040129 0.1915110114E-04 4.738480151 0.1820235630E-04 4.754920172 0.1733796045E-04 4.771360194 0.1656322304E-04 4.787800215 0.1587714685E-04 4.804240237 0.1527299610E-04 4.820680258 0.1473898725E-04 4.837120280 0.1425907517E-04 4.853560301 0.1381384503E-04 4.870000323 0.1338154649E-04 4.886440344 0.1293931069E-04 4.902880366 0.1246457152E-04 4.919320387 0.1193667037E-04 4.935760409 0.1133856736E-04 4.952200430 0.1065852275E-04 4.968640452 0.9891564474E-05 4.985080473 0.9040533452E-05 5.001520495 0.8116508733E-05 5.017960517 0.7138461737E-05 5.034400538 0.6132071447E-05 5.050840560 0.5127739543E-05 5.067280581 0.4157961125E-05 5.083720603 0.3254314005E-05 5.100160624 0.2444408761E-05 5.116600646 0.1749177352E-05 5.133040667 0.1180860487E-05 5.149480689 0.7419820054E-06 5.165920710 0.4254795286E-06 5.182360732 0.2160102523E-06 5.198800753 0.9229010774E-07 5.215240775 0.3017759525E-07 5.231680796 0.6102964183E-08 5.248120818 0.3868660582E-09 5.264560839 0.3660200637E-35 5.281046338 0.8176172578E-10 5.297531837 0.1298980946E-08 5.314017336 0.6499188863E-08 5.330502835 0.2020548315E-07 5.346988334 0.4829872089E-07 5.363473833 0.9760406135E-07 5.379959331 0.1754104602E-06 5.396444830 0.2889560528E-06 5.412930329 0.4449142619E-06 5.429415828 0.6489148232E-06 5.445901327 0.9051308401E-06 5.462386826 0.1215957744E-05 5.478872325 0.1581803104E-05 5.495357823 0.2000998167E-05 5.511843322 0.2469833459E-05 5.528328821 0.2982712401E-05 5.544814320 0.3532409317E-05 5.561299819 0.4110411930E-05 5.577785318 0.4707323905E-05 5.594270817 0.5313300438E-05 5.610756315 0.5918489338E-05 5.627241814 0.6513451494E-05 5.643727313 0.7089537737E-05 5.660212812 0.7639203650E-05 5.676698311 0.8156249231E-05 5.693183810 0.8635976233E-05 5.709669309 0.9075261788E-05 5.726154807 0.9472552331E-05 5.742640306 0.9827786558E-05 5.759125805 0.1014226014E-04 5.775611304 0.1041844912E-04 5.792096803 0.1065981713E-04 5.808582302 0.1134022694E-04 5.825067801 0.1196731657E-04 5.841553299 0.1253055065E-04 5.858038798 0.1302328567E-04 5.874524297 0.1344124983E-04 5.891009796 0.1378269775E-04 5.907495295 0.1404844805E-04 5.923980794 0.1424180563E-04 5.940466292 0.1436837788E-04 5.956951791 0.1443580106E-04 5.973437290 0.1445339804E-04 5.989922789 0.1470930997E-04 6.006408288 0.1493113688E-04 6.022893787 0.1511712212E-04 6.039379286 0.1526827786E-04 6.055864784 0.1538585064E-04 6.072350283 0.1547127266E-04 6.088835782 0.1552611655E-04 6.105321281 0.1555205632E-04 6.121806780 0.1555083791E-04 6.138292279 0.1552426437E-04 6.154777778 0.1547420309E-04 6.171263276 0.1540263041E-04 6.187748775 0.1531174834E-04 6.204234274 0.1561974464E-04 6.220719773 0.1611489034E-04 6.237205272 0.1668581442E-04 6.253690771 0.1732984569E-04 6.270176270 0.1804225965E-04 6.286661768 0.1881615024E-04 6.303147267 0.1964235125E-04 6.319632766 0.2050943040E-04 6.336118265 0.2140377664E-04 6.352603764 0.2230979618E-04 6.369089263 0.2321022581E-04 6.385574762 0.2408656323E-04 6.402060260 0.2491960447E-04 6.418545759 0.2569006918E-04 6.435031258 0.2637928576E-04 6.451516757 0.2696990138E-04 6.468002256 0.2744657759E-04 6.484487755 0.2779663083E-04 6.500973254 0.2801057838E-04 6.517458752 0.2808255576E-04 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/PaxHeaders/PHLWLINES.OUT0000644000000000000000000000013214536061314023574 xustar0030 mtime=1702388428.960499946 30 atime=1702388428.960499946 30 ctime=1702388428.960499946 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/PHLWLINES.OUT0000644002504400250440000000132014536061314026312 0ustar00dewhurstdewhurst00000000000000 0.000000000 -0.2106191682E-04 0.000000000 0.4212383364E-04 0.8859326103 -0.2106191682E-04 0.8859326103 0.4212383364E-04 1.771865221 -0.2106191682E-04 1.771865221 0.4212383364E-04 2.794852083 -0.2106191682E-04 2.794852083 0.4212383364E-04 3.518213030 -0.2106191682E-04 3.518213030 0.4212383364E-04 4.029706461 -0.2106191682E-04 4.029706461 0.4212383364E-04 4.541199892 -0.2106191682E-04 4.541199892 0.4212383364E-04 5.264560839 -0.2106191682E-04 5.264560839 0.4212383364E-04 6.517458752 -0.2106191682E-04 6.517458752 0.4212383364E-04 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/PaxHeaders/elk.in0000644000000000000000000000013214536061314022741 xustar0030 mtime=1702388428.962499943 30 atime=1702388428.962499943 30 ctime=1702388428.962499943 elk-9.2.12/examples/phonons-superconductivity/Nb-DFPT/elk.in0000644002504400250440000000357014536061314025470 0ustar00dewhurstdewhurst00000000000000 ! This example generates a good quality phonon dispersion for bcc niobium using ! density functional perturbation theory (DFPT). The superconducting critical ! temperature is also computed using McMillan's formula and by solving the ! Eliashberg equations. ! The phonon dispersion and vertex location lines are included with this ! example in the files PHDISP.OUT and PHDLINES.OUT, respectively. tasks 0 : generate the ground-state 205 : generate the dynamical matrices with DFPT ! number of phonon q-points ngridq 4 4 4 ! add extra local-orbitals for accurate electron-phonon coupling nxlo 1 ! larger cut-off required rgkmax 8.0 ngridk 8 8 8 ! larger smearing width required for stable phonon dispersion swidth 0.005 stype 1 ! increase the number of muffin-tin points (for accurate gradients) nrmtscf 2.0 ! after all the dynamical matrix DYN---.OUT files have been calculated then ! uncomment the following lines and run again ! large k-point required for accurate electron-phonon coupling !ngridk ! 24 24 24 !tasks ! 1 : ground state with larger k-point set ! 210 : phonon DOS ! 220 : plot the phonon dispersion ! 240 : electron-phonon matrix elements ! 245 : phonon line-widths ! 250 : Eliashberg function, alpha^2F ! 260 : solving the Eliashberg equations ! number of temperature steps for Eliashberg calculation ntemp 40 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 ! use LDA equilibrium lattice constant scale 3.071 sppath '../../../species/' atoms 1 : nspecies 'Nb.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 plot1d 9 400 0.5 0.5 0.5 0.25 0.25 0.25 0.0 0.0 0.0 -0.5 0.5 0.5 -0.5 0.5 0.0 -0.75 0.25 0.25 -0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.0 elk-9.2.12/examples/phonons-superconductivity/PaxHeaders/Si-DFPT0000644000000000000000000000013014536061314021573 xustar0029 mtime=1702388428.96449994 30 atime=1702388428.962499943 29 ctime=1702388428.96449994 elk-9.2.12/examples/phonons-superconductivity/Si-DFPT/0000755002504400250440000000000014536061314024374 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/phonons-superconductivity/Si-DFPT/PaxHeaders/elk.in0000644000000000000000000000012714536061314022761 xustar0029 mtime=1702388428.96449994 29 atime=1702388428.96449994 29 ctime=1702388428.96449994 elk-9.2.12/examples/phonons-superconductivity/Si-DFPT/elk.in0000644002504400250440000000245714536061314025507 0ustar00dewhurstdewhurst00000000000000 ! Phonon dispersion of silicon. ! You can submit the same job (with task=205) on as many machines as you like, ! but they must be be able to see the same directory. Each machine with compute ! a row of a particular dynamical matrix. When run with task=220, the code ! assembles all the pieces to construct the dynamical matrices throughout the ! Brillouin zone. ! The final output (PHDISP.OUT and PHDLINES.OUT) is included with this example. tasks 0 205 220 ! scale the number of radial mesh points in the muffin-tins; this is so that ! gradients are accurately calculated nrmtscf 4 ! limit the maximum number of self-consistent loops maxscl 30 ! phonon q-point grid ngridq 4 4 4 ! k-point grid should be commensurate with the q-point grid ngridk 4 4 4 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ! These are the vertices to be joined for the phonon dispersion plot plot1d 7 200 : nvp1d, npp1d 1.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-9.2.12/examples/phonons-superconductivity/PaxHeaders/Al-DFPT0000644000000000000000000000013214536061314021556 xustar0030 mtime=1702388428.982499914 30 atime=1702388428.965499939 30 ctime=1702388428.982499914 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/0000755002504400250440000000000014536061314024355 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/PaxHeaders/ALPHA2F.OUT0000644000000000000000000000013214536061314023241 xustar0030 mtime=1702388428.966499937 30 atime=1702388428.966499937 30 ctime=1702388428.966499937 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/ALPHA2F.OUT0000644002504400250440000004410414536061314025766 0ustar00dewhurstdewhurst00000000000000 -0.1808426262E-03 0.1486312544E-03 -0.1768640889E-03 0.2753909944E-03 -0.1728855515E-03 0.3165147133E-03 -0.1689070142E-03 0.2884110037E-03 -0.1649284769E-03 0.2320821422E-03 -0.1609499396E-03 0.2240698940E-03 -0.1569714023E-03 0.2167077218E-03 -0.1529928650E-03 0.2133926103E-03 -0.1490143276E-03 0.2129562529E-03 -0.1450357903E-03 0.2603005795E-03 -0.1410572530E-03 0.3002895587E-03 -0.1370787157E-03 0.3102669636E-03 -0.1331001784E-03 0.2713891658E-03 -0.1291216411E-03 0.2500962101E-03 -0.1251431037E-03 0.2720685095E-03 -0.1211645664E-03 0.2216094825E-03 -0.1171860291E-03 0.2061627561E-03 -0.1132074918E-03 0.1463786740E-03 -0.1092289545E-03 0.1977499514E-03 -0.1052504172E-03 0.1737908679E-03 -0.1012718798E-03 0.1611302992E-03 -0.9729334252E-04 0.2317900946E-03 -0.9331480520E-04 0.2768366039E-03 -0.8933626789E-04 0.2917724209E-03 -0.8535773057E-04 0.2026799998E-03 -0.8137919325E-04 0.1840666610E-03 -0.7740065594E-04 0.2044289657E-03 -0.7342211862E-04 0.2121815827E-03 -0.6944358130E-04 0.2059031140E-03 -0.6546504399E-04 0.1775189099E-03 -0.6148650667E-04 0.1617404912E-03 -0.5750796936E-04 0.1222544583E-03 -0.5352943204E-04 0.1000401154E-03 -0.4955089472E-04 0.9859881892E-04 -0.4557235741E-04 0.1000872450E-03 -0.4159382009E-04 0.8798463219E-04 -0.3761528277E-04 0.9673748333E-04 -0.3363674546E-04 0.1045200063E-03 -0.2965820814E-04 0.1101424008E-03 -0.2567967082E-04 0.5696841541E-04 -0.2170113351E-04 0.3869062916E-04 -0.1772259619E-04 0.1875315966E-04 -0.1374405887E-04 0.1656432473E-04 -0.9765521557E-05 0.2598969075E-04 -0.5786984241E-05 0.2598388555E-04 -0.1808446924E-05 0.1838916113E-04 0.2170090392E-05 0.1994680648E-34 0.6148627709E-05 0.000000000 0.1012716503E-04 0.2218403550E-04 0.1410570234E-04 0.4787310539E-04 0.1808423966E-04 0.6420324930E-04 0.2206277697E-04 0.4916274521E-04 0.2604131429E-04 0.3220684438E-04 0.3001985161E-04 0.4309974714E-04 0.3399838892E-04 0.9650969800E-04 0.3797692624E-04 0.1403258254E-03 0.4195546356E-04 0.1431741251E-03 0.4593400087E-04 0.1034711681E-03 0.4991253819E-04 0.9335027807E-04 0.5389107551E-04 0.1276632621E-03 0.5786961282E-04 0.1766534470E-03 0.6184815014E-04 0.2248696725E-03 0.6582668746E-04 0.2246347252E-03 0.6980522477E-04 0.1787944409E-03 0.7378376209E-04 0.2251448482E-03 0.7776229941E-04 0.2127447560E-03 0.8174083672E-04 0.2535864456E-03 0.8571937404E-04 0.2288816815E-03 0.8969791136E-04 0.2904202352E-03 0.9367644867E-04 0.3200839161E-03 0.9765498599E-04 0.2845678599E-03 0.1016335233E-03 0.3137292230E-03 0.1056120606E-03 0.3180206108E-03 0.1095905979E-03 0.3750613816E-03 0.1135691353E-03 0.3837076242E-03 0.1175476726E-03 0.4491293821E-03 0.1215262099E-03 0.4246863469E-03 0.1255047472E-03 0.3597768359E-03 0.1294832845E-03 0.3297324056E-03 0.1334618218E-03 0.4025997736E-03 0.1374403592E-03 0.4600787617E-03 0.1414188965E-03 0.5094009577E-03 0.1453974338E-03 0.4840432849E-03 0.1493759711E-03 0.6284412188E-03 0.1533545084E-03 0.6679803478E-03 0.1573330457E-03 0.6766543411E-03 0.1613115831E-03 0.6151494974E-03 0.1652901204E-03 0.6643016460E-03 0.1692686577E-03 0.7085920604E-03 0.1732471950E-03 0.6660286656E-03 0.1772257323E-03 0.6654779798E-03 0.1812042696E-03 0.7014597529E-03 0.1851828070E-03 0.7225200558E-03 0.1891613443E-03 0.7378954393E-03 0.1931398816E-03 0.8600541734E-03 0.1971184189E-03 0.1091399779E-02 0.2010969562E-03 0.1014132482E-02 0.2050754935E-03 0.1015129517E-02 0.2090540309E-03 0.1067431675E-02 0.2130325682E-03 0.1168961083E-02 0.2170111055E-03 0.1042104049E-02 0.2209896428E-03 0.9021205989E-03 0.2249681801E-03 0.1012719292E-02 0.2289467174E-03 0.1129863955E-02 0.2329252547E-03 0.1300706611E-02 0.2369037921E-03 0.1427621736E-02 0.2408823294E-03 0.1538465356E-02 0.2448608667E-03 0.1446370985E-02 0.2488394040E-03 0.1482648841E-02 0.2528179413E-03 0.1484611225E-02 0.2567964786E-03 0.1582069839E-02 0.2607750160E-03 0.1632624786E-02 0.2647535533E-03 0.1714429157E-02 0.2687320906E-03 0.1599440907E-02 0.2727106279E-03 0.1750142895E-02 0.2766891652E-03 0.1929977047E-02 0.2806677025E-03 0.2189485375E-02 0.2846462399E-03 0.2211244815E-02 0.2886247772E-03 0.2219822499E-02 0.2926033145E-03 0.2368556009E-02 0.2965818518E-03 0.2135515801E-02 0.3005603891E-03 0.2159421066E-02 0.3045389264E-03 0.2328511436E-02 0.3085174638E-03 0.2732961175E-02 0.3124960011E-03 0.2835254183E-02 0.3164745384E-03 0.2869947978E-02 0.3204530757E-03 0.2769680048E-02 0.3244316130E-03 0.3054715816E-02 0.3284101503E-03 0.3050040907E-02 0.3323886877E-03 0.3458168471E-02 0.3363672250E-03 0.3441137514E-02 0.3403457623E-03 0.3493550465E-02 0.3443242996E-03 0.3516756189E-02 0.3483028369E-03 0.3600129383E-02 0.3522813742E-03 0.3935056926E-02 0.3562599116E-03 0.4226933007E-02 0.3602384489E-03 0.4375147570E-02 0.3642169862E-03 0.4413146248E-02 0.3681955235E-03 0.4605127099E-02 0.3721740608E-03 0.5057373727E-02 0.3761525981E-03 0.5232686880E-02 0.3801311355E-03 0.5319776849E-02 0.3841096728E-03 0.5197525198E-02 0.3880882101E-03 0.5734402925E-02 0.3920667474E-03 0.5831294903E-02 0.3960452847E-03 0.6221608148E-02 0.4000238220E-03 0.6535844309E-02 0.4040023594E-03 0.6871682882E-02 0.4079808967E-03 0.7238239431E-02 0.4119594340E-03 0.7323356675E-02 0.4159379713E-03 0.7599023801E-02 0.4199165086E-03 0.8024245233E-02 0.4238950459E-03 0.8414231803E-02 0.4278735833E-03 0.8942037838E-02 0.4318521206E-03 0.8931046801E-02 0.4358306579E-03 0.9203890298E-02 0.4398091952E-03 0.9428727404E-02 0.4437877325E-03 0.1011251296E-01 0.4477662698E-03 0.1084704921E-01 0.4517448072E-03 0.1118935648E-01 0.4557233445E-03 0.1159552872E-01 0.4597018818E-03 0.1113327044E-01 0.4636804191E-03 0.1223187780E-01 0.4676589564E-03 0.1227517067E-01 0.4716374937E-03 0.1345803737E-01 0.4756160311E-03 0.1294898566E-01 0.4795945684E-03 0.1311446425E-01 0.4835731057E-03 0.1469673749E-01 0.4875516430E-03 0.1529466756E-01 0.4915301803E-03 0.1642395971E-01 0.4955087176E-03 0.1520149124E-01 0.4994872550E-03 0.1543291611E-01 0.5034657923E-03 0.1674337054E-01 0.5074443296E-03 0.1782900470E-01 0.5114228669E-03 0.1881774503E-01 0.5154014042E-03 0.1794071218E-01 0.5193799415E-03 0.1863130449E-01 0.5233584789E-03 0.2006884822E-01 0.5273370162E-03 0.2063862220E-01 0.5313155535E-03 0.2096983475E-01 0.5352940908E-03 0.2116463184E-01 0.5392726281E-03 0.2238200045E-01 0.5432511654E-03 0.2360094328E-01 0.5472297028E-03 0.2338253607E-01 0.5512082401E-03 0.2489123880E-01 0.5551867774E-03 0.2509053463E-01 0.5591653147E-03 0.2653248691E-01 0.5631438520E-03 0.2736793609E-01 0.5671223893E-03 0.2843714857E-01 0.5711009267E-03 0.3014281374E-01 0.5750794640E-03 0.3045490887E-01 0.5790580013E-03 0.3140099968E-01 0.5830365386E-03 0.3232095031E-01 0.5870150759E-03 0.3386776011E-01 0.5909936132E-03 0.3574338830E-01 0.5949721506E-03 0.3682164546E-01 0.5989506879E-03 0.3853152349E-01 0.6029292252E-03 0.3875430179E-01 0.6069077625E-03 0.4097374130E-01 0.6108862998E-03 0.4269065619E-01 0.6148648371E-03 0.4571207272E-01 0.6188433745E-03 0.4685513204E-01 0.6228219118E-03 0.4840474223E-01 0.6268004491E-03 0.4935430712E-01 0.6307789864E-03 0.5314571074E-01 0.6347575237E-03 0.5666719747E-01 0.6387360610E-03 0.6057865782E-01 0.6427145984E-03 0.6337276414E-01 0.6466931357E-03 0.6615064369E-01 0.6506716730E-03 0.7351737953E-01 0.6546502103E-03 0.8495394851E-01 0.6586287476E-03 0.9401315163E-01 0.6626072849E-03 0.9934982598E-01 0.6665858222E-03 0.9931249569E-01 0.6705643596E-03 0.9866897590E-01 0.6745428969E-03 0.1000356873 0.6785214342E-03 0.9820695841E-01 0.6824999715E-03 0.1003124350 0.6864785088E-03 0.9993789894E-01 0.6904570461E-03 0.1013390590 0.6944355835E-03 0.1013055510 0.6984141208E-03 0.1013599617 0.7023926581E-03 0.1025349587 0.7063711954E-03 0.1052821559 0.7103497327E-03 0.1046298997 0.7143282700E-03 0.1038352439 0.7183068074E-03 0.1039809692 0.7222853447E-03 0.1049796447 0.7262638820E-03 0.1070143813 0.7302424193E-03 0.1056572193 0.7342209566E-03 0.1076130716 0.7381994939E-03 0.1073588040 0.7421780313E-03 0.1110851318 0.7461565686E-03 0.1114080943 0.7501351059E-03 0.1138148963 0.7541136432E-03 0.1112376319 0.7580921805E-03 0.1138904212 0.7620707178E-03 0.1150064108 0.7660492552E-03 0.1175893430 0.7700277925E-03 0.1193693357 0.7740063298E-03 0.1186857088 0.7779848671E-03 0.1228244178 0.7819634044E-03 0.1230314153 0.7859419417E-03 0.1263817748 0.7899204791E-03 0.1275278645 0.7938990164E-03 0.1285792735 0.7978775537E-03 0.1322864369 0.8018560910E-03 0.1342809495 0.8058346283E-03 0.1385208960 0.8098131656E-03 0.1430014037 0.8137917030E-03 0.1438504478 0.8177702403E-03 0.1488915840 0.8217487776E-03 0.1511634864 0.8257273149E-03 0.1588005720 0.8297058522E-03 0.1620030724 0.8336843895E-03 0.1626881929 0.8376629269E-03 0.1644354384 0.8416414642E-03 0.1648815495 0.8456200015E-03 0.1695779929 0.8495985388E-03 0.1713657024 0.8535770761E-03 0.1713606293 0.8575556134E-03 0.1698323733 0.8615341508E-03 0.1705420826 0.8655126881E-03 0.1736562887 0.8694912254E-03 0.1795133876 0.8734697627E-03 0.1790268017 0.8774483000E-03 0.1820236860 0.8814268373E-03 0.1831938618 0.8854053747E-03 0.1875852800 0.8893839120E-03 0.1923586788 0.8933624493E-03 0.1957722773 0.8973409866E-03 0.1977402506 0.9013195239E-03 0.2018452446 0.9052980612E-03 0.2066319004 0.9092765986E-03 0.2139487245 0.9132551359E-03 0.2167484516 0.9172336732E-03 0.2211033051 0.9212122105E-03 0.2251974387 0.9251907478E-03 0.2310381146 0.9291692851E-03 0.2317076612 0.9331478225E-03 0.2353180169 0.9371263598E-03 0.2382216661 0.9411048971E-03 0.2421412845 0.9450834344E-03 0.2483303874 0.9490619717E-03 0.2490668583 0.9530405090E-03 0.2525791625 0.9570190464E-03 0.2508793529 0.9609975837E-03 0.2566859204 0.9649761210E-03 0.2619856195 0.9689546583E-03 0.2681458890 0.9729331956E-03 0.2710465786 0.9769117329E-03 0.2703863540 0.9808902703E-03 0.2613794021 0.9848688076E-03 0.2483481155 0.9888473449E-03 0.2344887179 0.9928258822E-03 0.2288416251 0.9968044195E-03 0.2227325632 0.1000782957E-02 0.2194011752 0.1004761494E-02 0.2080731751 0.1008740031E-02 0.2006605170 0.1012718569E-02 0.1910309064 0.1016697106E-02 0.1839813975 0.1020675643E-02 0.1749247443 0.1024654181E-02 0.1732813098 0.1028632718E-02 0.1757118588 0.1032611255E-02 0.1740543929 0.1036589793E-02 0.1740947797 0.1040568330E-02 0.1709899669 0.1044546867E-02 0.1758168492 0.1048525405E-02 0.1761891776 0.1052503942E-02 0.1779508245 0.1056482479E-02 0.1790024020 0.1060461017E-02 0.1813385796 0.1064439554E-02 0.1825473769 0.1068418091E-02 0.1814675107 0.1072396629E-02 0.1807581721 0.1076375166E-02 0.1853673518 0.1080353703E-02 0.1867457737 0.1084332240E-02 0.1869655623 0.1088310778E-02 0.1856120859 0.1092289315E-02 0.1894987356 0.1096267852E-02 0.1911077841 0.1100246390E-02 0.1917944789 0.1104224927E-02 0.1924879828 0.1108203464E-02 0.1924253558 0.1112182002E-02 0.1936426584 0.1116160539E-02 0.1953169230 0.1120139076E-02 0.1965597864 0.1124117614E-02 0.1973668019 0.1128096151E-02 0.2001622165 0.1132074688E-02 0.2007574921 0.1136053226E-02 0.1992229527 0.1140031763E-02 0.1986392473 0.1144010300E-02 0.2028906719 0.1147988838E-02 0.2029594156 0.1151967375E-02 0.2023527120 0.1155945912E-02 0.1991991118 0.1159924449E-02 0.2029245090 0.1163902987E-02 0.2023281927 0.1167881524E-02 0.2008925690 0.1171860061E-02 0.2020783836 0.1175838599E-02 0.1985854804 0.1179817136E-02 0.1974281360 0.1183795673E-02 0.1954981927 0.1187774211E-02 0.1962874992 0.1191752748E-02 0.1965853909 0.1195731285E-02 0.1904580289 0.1199709823E-02 0.1875463461 0.1203688360E-02 0.1858981315 0.1207666897E-02 0.1825039869 0.1211645435E-02 0.1822688813 0.1215623972E-02 0.1763724978 0.1219602509E-02 0.1768565139 0.1223581047E-02 0.1677340098 0.1227559584E-02 0.1665880688 0.1231538121E-02 0.1588844622 0.1235516659E-02 0.1532208807 0.1239495196E-02 0.1445122878 0.1243473733E-02 0.1383919029 0.1247452270E-02 0.1372399777 0.1251430808E-02 0.1338844742 0.1255409345E-02 0.1371080758 0.1259387882E-02 0.1379617535 0.1263366420E-02 0.1439094481 0.1267344957E-02 0.1476638246 0.1271323494E-02 0.1535207268 0.1275302032E-02 0.1576453872 0.1279280569E-02 0.1628440168 0.1283259106E-02 0.1707980298 0.1287237644E-02 0.1829418594 0.1291216181E-02 0.1896015698 0.1295194718E-02 0.1998189510 0.1299173256E-02 0.2066539814 0.1303151793E-02 0.2160904116 0.1307130330E-02 0.2279832237 0.1311108868E-02 0.2390745819 0.1315087405E-02 0.2537601060 0.1319065942E-02 0.2666619982 0.1323044479E-02 0.2752657496 0.1327023017E-02 0.2951972187 0.1331001554E-02 0.3067240221 0.1334980091E-02 0.3245073068 0.1338958629E-02 0.3384719098 0.1342937166E-02 0.3523048840 0.1346915703E-02 0.3771866355 0.1350894241E-02 0.4001234273 0.1354872778E-02 0.4307752699 0.1358851315E-02 0.4591587293 0.1362829853E-02 0.5004092261 0.1366808390E-02 0.5461501132 0.1370786927E-02 0.5836726613 0.1374765465E-02 0.5901836825 0.1378744002E-02 0.5834320238 0.1382722539E-02 0.5682518069 0.1386701077E-02 0.5570240047 0.1390679614E-02 0.5430294693 0.1394658151E-02 0.5353694019 0.1398636688E-02 0.5303436486 0.1402615226E-02 0.5329456414 0.1406593763E-02 0.5317442884 0.1410572300E-02 0.5388568577 0.1414550838E-02 0.5382934827 0.1418529375E-02 0.5438753913 0.1422507912E-02 0.5450922247 0.1426486450E-02 0.5541694744 0.1430464987E-02 0.5676624393 0.1434443524E-02 0.5782366855 0.1438422062E-02 0.5999985072 0.1442400599E-02 0.6106097701 0.1446379136E-02 0.6420668651 0.1450357674E-02 0.6833438147 0.1454336211E-02 0.7212229106 0.1458314748E-02 0.7516990083 0.1462293286E-02 0.7348204976 0.1466271823E-02 0.7081069182 0.1470250360E-02 0.6593678456 0.1474228898E-02 0.6338603324 0.1478207435E-02 0.6141880135 0.1482185972E-02 0.6026401763 0.1486164509E-02 0.5757216947 0.1490143047E-02 0.5458649432 0.1494121584E-02 0.4994360228 0.1498100121E-02 0.4602342753 0.1502078659E-02 0.4274304091 0.1506057196E-02 0.4062400705 0.1510035733E-02 0.3764532731 0.1514014271E-02 0.3423280617 0.1517992808E-02 0.3052712112 0.1521971345E-02 0.2753850627 0.1525949883E-02 0.2579603264 0.1529928420E-02 0.2415304756 0.1533906957E-02 0.2246154773 0.1537885495E-02 0.2075639988 0.1541864032E-02 0.1884399387 0.1545842569E-02 0.1747149108 0.1549821107E-02 0.1510549896 0.1553799644E-02 0.1318714882 0.1557778181E-02 0.1016814986 0.1561756718E-02 0.7592465735E-01 0.1565735256E-02 0.5707736455E-01 0.1569713793E-02 0.5530535482E-01 0.1573692330E-02 0.5070682221E-01 0.1577670868E-02 0.4919879505E-01 0.1581649405E-02 0.4569132903E-01 0.1585627942E-02 0.4625558295E-01 0.1589606480E-02 0.4219434041E-01 0.1593585017E-02 0.3996641807E-01 0.1597563554E-02 0.3616406166E-01 0.1601542092E-02 0.3723839475E-01 0.1605520629E-02 0.3243074884E-01 0.1609499166E-02 0.3236621632E-01 0.1613477704E-02 0.2836988713E-01 0.1617456241E-02 0.2633458359E-01 0.1621434778E-02 0.2473928504E-01 0.1625413316E-02 0.2220849431E-01 0.1629391853E-02 0.1977182607E-01 0.1633370390E-02 0.1575852557E-01 0.1637348927E-02 0.1206676176E-01 0.1641327465E-02 0.7160197122E-02 0.1645306002E-02 0.3107037115E-02 0.1649284539E-02 0.4152109777E-04 0.1653263077E-02 0.000000000 0.1657241614E-02 0.000000000 0.1661220151E-02 0.000000000 0.1665198689E-02 0.000000000 0.1669177226E-02 0.000000000 0.1673155763E-02 0.000000000 0.1677134301E-02 0.000000000 0.1681112838E-02 0.000000000 0.1685091375E-02 0.000000000 0.1689069913E-02 0.000000000 0.1693048450E-02 0.000000000 0.1697026987E-02 0.000000000 0.1701005525E-02 0.000000000 0.1704984062E-02 0.000000000 0.1708962599E-02 0.000000000 0.1712941136E-02 0.000000000 0.1716919674E-02 0.000000000 0.1720898211E-02 0.000000000 0.1724876748E-02 0.000000000 0.1728855286E-02 0.000000000 0.1732833823E-02 0.000000000 0.1736812360E-02 0.000000000 0.1740790898E-02 0.000000000 0.1744769435E-02 0.000000000 0.1748747972E-02 0.000000000 0.1752726510E-02 0.000000000 0.1756705047E-02 0.000000000 0.1760683584E-02 0.000000000 0.1764662122E-02 0.000000000 0.1768640659E-02 0.000000000 0.1772619196E-02 0.000000000 0.1776597734E-02 0.000000000 0.1780576271E-02 0.000000000 0.1784554808E-02 0.000000000 0.1788533346E-02 0.000000000 0.1792511883E-02 0.000000000 0.1796490420E-02 0.000000000 0.1800468957E-02 0.000000000 0.1804447495E-02 0.000000000 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/PaxHeaders/ELIASHBERG_GAP_T.OUT0000644000000000000000000000013214536061314024603 xustar0030 mtime=1702388428.969499933 30 atime=1702388428.968499934 30 ctime=1702388428.969499933 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/ELIASHBERG_GAP_T.OUT0000644002504400250440000001046014536061314027326 0ustar00dewhurstdewhurst00000000000000 0.1165486246 0.4552402555E-05 1.420983284 0.1475569742 0.4552938572E-05 1.420981757 0.1785653239 0.4552717911E-05 1.420979836 0.2095736736 0.4549299004E-05 1.420977344 0.2405820232 0.4541859195E-05 1.420974476 0.2715903729 0.4529830978E-05 1.420971531 0.3025987225 0.4509266570E-05 1.420968891 0.3336070722 0.4478685366E-05 1.420965929 0.3646154218 0.4436646796E-05 1.420963814 0.3956237715 0.4383357043E-05 1.420961579 0.4266321212 0.4317956452E-05 1.420960056 0.4576404708 0.4233422063E-05 1.420958113 0.4886488205 0.4135280324E-05 1.420956880 0.5196571701 0.4019366591E-05 1.420956676 0.5506655198 0.3879118541E-05 1.420955951 0.5816738695 0.3720175841E-05 1.420956102 0.6126822191 0.3524844898E-05 1.420957407 0.6436905688 0.3306251083E-05 1.420958238 0.6746989184 0.3051145288E-05 1.420960166 0.7057072681 0.2736902359E-05 1.420962255 0.7367156177 0.2356544574E-05 1.420964242 0.7677239674 0.1873202066E-05 1.420967109 0.7987323171 0.1135679257E-05 1.420970527 0.8297406667 0.1612068212E-06 1.420973459 0.8607490164 0.1014285074E-08 1.420973018 0.8917573660 0.3090708148E-09 1.420973260 0.9227657157 0.3058819562E-09 1.420973239 0.9537740653 0.1732715892E-09 1.420973456 0.9847824150 0.1704154311E-09 1.420972642 1.015790765 0.1221315618E-09 1.420972960 1.046799114 0.1193788232E-09 1.420973027 1.077807464 0.1164411394E-09 1.420973179 1.108815814 0.8692591807E-10 1.420973751 1.139824163 0.8425204931E-10 1.420973025 1.170832513 0.8150922992E-10 1.420973277 1.201840863 0.7867187104E-10 1.420972679 1.232849212 0.6217049624E-10 1.420973616 1.263857562 0.5964292132E-10 1.420971873 1.294865912 0.5711566594E-10 1.420972114 1.325874261 0.5458352572E-10 1.420972286 1.356882611 0.5205039631E-10 1.420972556 1.387890961 0.4952434538E-10 1.420973091 1.418899310 0.4701509238E-10 1.420974058 1.449907660 0.4453272493E-10 1.420973018 1.480916010 0.4209715523E-10 1.420972633 1.511924359 0.3970688711E-10 1.420973072 1.542932709 0.3737938168E-10 1.420971723 1.573941059 0.3511185225E-10 1.420971422 1.604949408 0.3291913086E-10 1.420972338 1.635957758 0.3079721213E-10 1.420971688 1.666966107 0.2875840157E-10 1.420972478 1.697974457 0.2680536908E-10 1.420971816 1.728982807 0.2493253717E-10 1.420972815 1.759991156 0.2314865216E-10 1.420972475 1.790999506 0.2145413587E-10 1.420974018 1.822007856 0.1984868512E-10 1.420974333 1.853016205 0.1833142660E-10 1.420973422 1.884024555 0.1690098591E-10 1.420971279 1.915032905 0.1555555575E-10 1.420971359 1.946041254 0.1429295777E-10 1.420973826 1.977049604 0.1311073771E-10 1.420971727 2.008057954 0.1200621091E-10 1.420972128 2.039066303 0.1097647484E-10 1.420971522 2.070074653 0.1001848377E-10 1.420973641 2.101083003 0.9132507558E-11 1.420971081 2.132091352 0.8311503069E-11 1.420971357 2.163099702 0.7552136187E-11 1.420974632 2.194108052 0.6851120695E-11 1.420973179 2.225116401 0.6205219904E-11 1.420970828 2.256124751 0.5613524349E-11 1.420971650 2.287133101 0.5070291318E-11 1.420971688 2.318141450 0.4572432423E-11 1.420970944 2.349149800 0.4118744521E-11 1.420973651 2.380158150 0.3704343015E-11 1.420971399 2.411166499 0.3326468409E-11 1.420972710 2.442174849 0.2983837193E-11 1.420973349 2.473183199 0.2672408382E-11 1.420973318 2.504191548 0.2390920329E-11 1.420972617 2.535199898 0.2135846495E-11 1.420971245 2.566208248 0.1905074615E-11 1.420973826 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/PaxHeaders/MCMILLAN.OUT0000644000000000000000000000013214536061314023420 xustar0030 mtime=1702388428.970499931 30 atime=1702388428.970499931 30 ctime=1702388428.970499931 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/MCMILLAN.OUT0000644002504400250440000000053214536061314026142 0ustar00dewhurstdewhurst00000000000000 Electron-phonon coupling constant, lambda : 0.4237123761 Logarithmic average frequency : 0.1068940640E-02 RMS average frequency : 0.1161090651E-02 Coulomb pseudopotential, mu* : 0.1500000000 McMillan-Allen-Dynes superconducting critical temperature [Eq. 34, Phys. Rev. B 12, 905 (1975)] (kelvin) : 0.5132416494 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/PaxHeaders/PHDISP.OUT0000644000000000000000000000013214536061314023213 xustar0030 mtime=1702388428.972499929 30 atime=1702388428.972499929 30 ctime=1702388428.972499929 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/PHDISP.OUT0000644002504400250440000005331214536061314025741 0ustar00dewhurstdewhurst00000000000000 0.000000000 -0.3420208952E-10 0.1367793241E-01 0.1395975825E-04 0.2735586482E-01 0.2811116802E-04 0.4103379724E-01 0.4263638565E-04 0.5471172965E-01 0.5769959260E-04 0.6838966206E-01 0.7344031904E-04 0.8206759447E-01 0.8996898946E-04 0.9574552688E-01 0.1073647223E-03 0.1094234593 0.1256751165E-03 0.1231013917 0.1449175914E-03 0.1367793241 0.1650818093E-03 0.1504572565 0.1861327570E-03 0.1641351889 0.2080141521E-03 0.1778131214 0.2306519397E-03 0.1914910538 0.2539577266E-03 0.2051689862 0.2778320642E-03 0.2188469186 0.3021675364E-03 0.2325248510 0.3268516307E-03 0.2462027834 0.3517693906E-03 0.2598807158 0.3768058469E-03 0.2735586482 0.4018482323E-03 0.2872365807 0.4267879789E-03 0.3009145131 0.4515224963E-03 0.3145924455 0.4759567251E-03 0.3282703779 0.5000044597E-03 0.3419483103 0.5235894294E-03 0.3556262427 0.5466461283E-03 0.3693041751 0.5691203841E-03 0.3829821075 0.5909696551E-03 0.3966600400 0.6121630513E-03 0.4103379724 0.6326810726E-03 0.4240159048 0.6525150689E-03 0.4376938372 0.6716664277E-03 0.4513717696 0.6901455040E-03 0.4650497020 0.7079703165E-03 0.4787276344 0.7251650399E-03 0.4924055668 0.7417583354E-03 0.5060834992 0.7577815682E-03 0.5197614317 0.7732669673E-03 0.5334393641 0.7882457918E-03 0.5471172965 0.8027465676E-03 0.5607952289 0.8167934605E-03 0.5744731613 0.8304048486E-03 0.5881510937 0.8435921480E-03 0.6018290261 0.8563589386E-03 0.6155069585 0.8687004217E-03 0.6291848910 0.8806032273E-03 0.6428628234 0.8920455733E-03 0.6565407558 0.9029977638E-03 0.6702186882 0.9134229989E-03 0.6838966206 0.9232784567E-03 0.6975745530 0.9325165990E-03 0.7112524854 0.9410866446E-03 0.7249304178 0.9489361531E-03 0.7386083503 0.9560126588E-03 0.7522862827 0.9622652970E-03 0.7659642151 0.9676463705E-03 0.7796421475 0.9721128052E-03 0.7933200799 0.9756274546E-03 0.8069980123 0.9781602152E-03 0.8206759447 0.9796889239E-03 0.8343538771 0.9802000156E-03 0.8482356956 0.9800119746E-03 0.8621175141 0.9794484320E-03 0.8759993325 0.9785111233E-03 0.8898811510 0.9772029234E-03 0.9037629694 0.9755278196E-03 0.9176447879 0.9734908747E-03 0.9315266063 0.9710981796E-03 0.9454084248 0.9683567957E-03 0.9592902433 0.9652746882E-03 0.9731720617 0.9618606501E-03 0.9870538802 0.9581242167E-03 1.000935699 0.9540755731E-03 1.014817517 0.9497254534E-03 1.028699336 0.9450850337E-03 1.042581154 0.9401658186E-03 1.056462972 0.9349795237E-03 1.070344791 0.9295379529E-03 1.084226609 0.9238528741E-03 1.098108428 0.9179358925E-03 1.111990246 0.9117983239E-03 1.125872065 0.9054510692E-03 1.139753883 0.8989044905E-03 1.153635702 0.8921682923E-03 1.167517520 0.8852514070E-03 1.181399339 0.8781618880E-03 1.195281157 0.8709068102E-03 1.209162975 0.8634921812E-03 1.223044794 0.8559228627E-03 1.236926612 0.8482025043E-03 1.250808431 0.8403334907E-03 1.264690249 0.8323169032E-03 1.278572068 0.8241524954E-03 1.292453886 0.8158386854E-03 1.306335705 0.8073725629E-03 1.320217523 0.7987499122E-03 1.334099342 0.7899652517E-03 1.347981160 0.7810118872E-03 1.361862979 0.7718819810E-03 1.375744797 0.7625666343E-03 1.389626615 0.7530559821E-03 1.403508434 0.7433392998E-03 1.417390252 0.7334051198E-03 1.431272071 0.7232413569E-03 1.445153889 0.7128354400E-03 1.459035708 0.7021744503E-03 1.472917526 0.6912452620E-03 1.486799345 0.6800346858E-03 1.500681163 0.6685296127E-03 1.514562982 0.6567171566E-03 1.528444800 0.6445847946E-03 1.542326618 0.6321205026E-03 1.556208437 0.6193128872E-03 1.570090255 0.6061513098E-03 1.583972074 0.5926260046E-03 1.597853892 0.5787281877E-03 1.611735711 0.5644501584E-03 1.625617529 0.5497853900E-03 1.639499348 0.5347286120E-03 1.653381166 0.5192758811E-03 1.667262985 0.5034246429E-03 1.681144803 0.4871737824E-03 1.695026621 0.4705236645E-03 1.708908440 0.4534761639E-03 1.722790258 0.4360346849E-03 1.736672077 0.4182041715E-03 1.750553895 0.3999911068E-03 1.764435714 0.3814035037E-03 1.778317532 0.3624508865E-03 1.792199351 0.3431442632E-03 1.806081169 0.3234960901E-03 1.819962988 0.3035202275E-03 1.833844806 0.2832318892E-03 1.847726625 0.2626475838E-03 1.861608443 0.2417850498E-03 1.875490261 0.2206631848E-03 1.889372080 0.1993019688E-03 1.903253898 0.1777223822E-03 1.917135717 0.1559463192E-03 1.931017535 0.1339964970E-03 1.944899354 0.1118963613E-03 1.958781172 0.8966998794E-04 1.972662991 0.6734198276E-04 1.986544809 0.4493737796E-04 2.000426628 0.2248152738E-04 2.014308446 -0.3420208952E-10 2.027941873 0.2370354388E-04 2.041575301 0.4736585954E-04 2.055208728 0.7094588699E-04 2.068842156 0.9440290202E-04 2.082475583 0.1176966823E-03 2.096109011 0.1407876711E-03 2.109742438 0.1636371386E-03 2.123375865 0.1862073390E-03 2.137009293 0.2084616636E-03 2.150642720 0.2303647889E-03 2.164276148 0.2518828185E-03 2.177909575 0.2729834193E-03 2.191543002 0.2936359494E-03 2.205176430 0.3138115788E-03 2.218809857 0.3334834017E-03 2.232443285 0.3526265385E-03 2.246076712 0.3712182287E-03 2.259710140 0.3892379126E-03 2.273343567 0.4066673017E-03 2.286976994 0.4234904369E-03 2.300610422 0.4396937341E-03 2.314243849 0.4552660161E-03 2.327877277 0.4701985311E-03 2.341510704 0.4844849558E-03 2.355144132 0.4981213836E-03 2.368777559 0.5111062973E-03 2.382410986 0.5234405258E-03 2.396044414 0.5351271831E-03 2.409677841 0.5461715923E-03 2.423311269 0.5565811908E-03 2.436944696 0.5663654194E-03 2.450578123 0.5755355941E-03 2.464211551 0.5841047609E-03 2.477844978 0.5920875345E-03 2.491478406 0.5994999209E-03 2.505111833 0.6063591254E-03 2.518745261 0.6126833465E-03 2.532378688 0.6184915582E-03 2.546012115 0.6238032803E-03 2.559645543 0.6286383419E-03 2.573278970 0.6330166366E-03 2.586912398 0.6369578758E-03 2.600545825 0.6404813395E-03 2.614179253 0.6436056306E-03 2.627812680 0.6463484338E-03 2.641446107 0.6487262841E-03 2.655079535 0.6507543468E-03 2.668712962 0.6524462147E-03 2.682346390 0.6538137227E-03 2.695979817 0.6548667865E-03 2.709613245 0.6556132653E-03 2.723246672 0.6560588526E-03 2.736880099 0.6562069967E-03 0.000000000 -0.3420208952E-10 0.1367793241E-01 0.1395975825E-04 0.2735586482E-01 0.2811116802E-04 0.4103379724E-01 0.4263638565E-04 0.5471172965E-01 0.5769959260E-04 0.6838966206E-01 0.7344031904E-04 0.8206759447E-01 0.8996898946E-04 0.9574552688E-01 0.1073647223E-03 0.1094234593 0.1256751165E-03 0.1231013917 0.1449175914E-03 0.1367793241 0.1650818093E-03 0.1504572565 0.1861327570E-03 0.1641351889 0.2080141521E-03 0.1778131214 0.2306519397E-03 0.1914910538 0.2539577266E-03 0.2051689862 0.2778320642E-03 0.2188469186 0.3021675364E-03 0.2325248510 0.3268516307E-03 0.2462027834 0.3517693906E-03 0.2598807158 0.3768058469E-03 0.2735586482 0.4018482323E-03 0.2872365807 0.4267879789E-03 0.3009145131 0.4515224963E-03 0.3145924455 0.4759567251E-03 0.3282703779 0.5000044597E-03 0.3419483103 0.5235894294E-03 0.3556262427 0.5466461283E-03 0.3693041751 0.5691203841E-03 0.3829821075 0.5909696551E-03 0.3966600400 0.6121630513E-03 0.4103379724 0.6326810726E-03 0.4240159048 0.6525150689E-03 0.4376938372 0.6716664277E-03 0.4513717696 0.6901455040E-03 0.4650497020 0.7079703165E-03 0.4787276344 0.7251650399E-03 0.4924055668 0.7417583354E-03 0.5060834992 0.7577815682E-03 0.5197614317 0.7732669673E-03 0.5334393641 0.7882457918E-03 0.5471172965 0.8027465676E-03 0.5607952289 0.8167934605E-03 0.5744731613 0.8304048486E-03 0.5881510937 0.8435921480E-03 0.6018290261 0.8563589386E-03 0.6155069585 0.8687004217E-03 0.6291848910 0.8806032273E-03 0.6428628234 0.8920455733E-03 0.6565407558 0.9029977638E-03 0.6702186882 0.9134229989E-03 0.6838966206 0.9232784567E-03 0.6975745530 0.9325165990E-03 0.7112524854 0.9410866446E-03 0.7249304178 0.9489361531E-03 0.7386083503 0.9560126588E-03 0.7522862827 0.9622652970E-03 0.7659642151 0.9676463705E-03 0.7796421475 0.9721128052E-03 0.7933200799 0.9756274546E-03 0.8069980123 0.9781602152E-03 0.8206759447 0.9796889239E-03 0.8343538771 0.9802000156E-03 0.8482356956 0.9812857104E-03 0.8621175141 0.9845284034E-03 0.8759993325 0.9898854379E-03 0.8898811510 0.9972873991E-03 0.9037629694 0.1006640482E-02 0.9176447879 0.1017829524E-02 0.9315266063 0.1030721476E-02 0.9454084248 0.1045169078E-02 0.9592902433 0.1061014512E-02 0.9731720617 0.1078092876E-02 0.9870538802 0.1096235330E-02 1.000935699 0.1115271842E-02 1.014817517 0.1135033509E-02 1.028699336 0.1155354433E-02 1.042581154 0.1176073193E-02 1.056462972 0.1197033951E-02 1.070344791 0.1218087240E-02 1.084226609 0.1239090495E-02 1.098108428 0.1259908360E-02 1.111990246 0.1280412835E-02 1.125872065 0.1300483298E-02 1.139753883 0.1320006424E-02 1.153635702 0.1338876045E-02 1.167517520 0.1356992958E-02 1.181399339 0.1374261544E-02 1.195281157 0.1355591700E-02 1.209162975 0.1336647769E-02 1.223044794 0.1317465419E-02 1.236926612 0.1298078700E-02 1.250808431 0.1278519808E-02 1.264690249 0.1258818849E-02 1.278572068 0.1239003633E-02 1.292453886 0.1219099474E-02 1.306335705 0.1199129018E-02 1.320217523 0.1179112086E-02 1.334099342 0.1159065554E-02 1.347981160 0.1139003257E-02 1.361862979 0.1118935919E-02 1.375744797 0.1098871125E-02 1.389626615 0.1078813321E-02 1.403508434 0.1058763851E-02 1.417390252 0.1038721029E-02 1.431272071 0.1018680247E-02 1.445153889 0.9986341138E-03 1.459035708 0.9785726288E-03 1.472917526 0.9584833850E-03 1.486799345 0.9383517992E-03 1.500681163 0.9181613655E-03 1.514562982 0.8978939299E-03 1.528444800 0.8775299802E-03 1.542326618 0.8570489479E-03 1.556208437 0.8364295183E-03 1.570090255 0.8156499427E-03 1.583972074 0.7946883499E-03 1.597853892 0.7735230527E-03 1.611735711 0.7521328446E-03 1.625617529 0.7304972840E-03 1.639499348 0.7085969635E-03 1.653381166 0.6864137596E-03 1.667262985 0.6639310623E-03 1.681144803 0.6411339822E-03 1.695026621 0.6180095336E-03 1.708908440 0.5945467927E-03 1.722790258 0.5707370309E-03 1.736672077 0.5465738215E-03 1.750553895 0.5220531222E-03 1.764435714 0.4971733315E-03 1.778317532 0.4719353209E-03 1.792199351 0.4463424441E-03 1.806081169 0.4204005225E-03 1.819962988 0.3941178100E-03 1.833844806 0.3675049373E-03 1.847726625 0.3405748369E-03 1.861608443 0.3133426509E-03 1.875490261 0.2858256218E-03 1.889372080 0.2580429691E-03 1.903253898 0.2300157515E-03 1.917135717 0.2017667173E-03 1.931017535 0.1733201437E-03 1.944899354 0.1447016666E-03 1.958781172 0.1159381014E-03 1.972662991 0.8705725766E-04 1.986544809 0.5808774701E-04 2.000426628 0.2905878676E-04 2.014308446 -0.3420208952E-10 2.027941873 0.2370354388E-04 2.041575301 0.4736585954E-04 2.055208728 0.7094588699E-04 2.068842156 0.9440290202E-04 2.082475583 0.1176966823E-03 2.096109011 0.1407876711E-03 2.109742438 0.1636371386E-03 2.123375865 0.1862073390E-03 2.137009293 0.2084616636E-03 2.150642720 0.2303647889E-03 2.164276148 0.2518828185E-03 2.177909575 0.2729834193E-03 2.191543002 0.2936359494E-03 2.205176430 0.3138115788E-03 2.218809857 0.3334834017E-03 2.232443285 0.3526265385E-03 2.246076712 0.3712182287E-03 2.259710140 0.3892379126E-03 2.273343567 0.4066673017E-03 2.286976994 0.4234904369E-03 2.300610422 0.4396937341E-03 2.314243849 0.4552660161E-03 2.327877277 0.4701985311E-03 2.341510704 0.4844849558E-03 2.355144132 0.4981213836E-03 2.368777559 0.5111062973E-03 2.382410986 0.5234405258E-03 2.396044414 0.5351271831E-03 2.409677841 0.5461715923E-03 2.423311269 0.5565811908E-03 2.436944696 0.5663654194E-03 2.450578123 0.5755355941E-03 2.464211551 0.5841047609E-03 2.477844978 0.5920875345E-03 2.491478406 0.5994999209E-03 2.505111833 0.6063591254E-03 2.518745261 0.6126833465E-03 2.532378688 0.6184915582E-03 2.546012115 0.6238032803E-03 2.559645543 0.6286383419E-03 2.573278970 0.6330166366E-03 2.586912398 0.6369578758E-03 2.600545825 0.6404813395E-03 2.614179253 0.6436056306E-03 2.627812680 0.6463484338E-03 2.641446107 0.6487262841E-03 2.655079535 0.6507543468E-03 2.668712962 0.6524462147E-03 2.682346390 0.6538137227E-03 2.695979817 0.6548667865E-03 2.709613245 0.6556132653E-03 2.723246672 0.6560588526E-03 2.736880099 0.6562069967E-03 0.000000000 -0.3420208952E-10 0.1367793241E-01 0.3823884523E-04 0.2735586482E-01 0.7655998645E-04 0.4103379724E-01 0.1150412827E-03 0.5471172965E-01 0.1537519379E-03 0.6838966206E-01 0.1927487035E-03 0.8206759447E-01 0.2320726719E-03 0.9574552688E-01 0.2717467869E-03 0.1094234593 0.3117741532E-03 0.1231013917 0.3521371737E-03 0.1367793241 0.3927975063E-03 0.1504572565 0.4336967888E-03 0.1641351889 0.4747580608E-03 0.1778131214 0.5158877861E-03 0.1914910538 0.5569783745E-03 0.2051689862 0.5979110955E-03 0.2188469186 0.6385592786E-03 0.2325248510 0.6787916997E-03 0.2462027834 0.7184760577E-03 0.2598807158 0.7574824543E-03 0.2735586482 0.7956867946E-03 0.2872365807 0.8329740310E-03 0.3009145131 0.8692411810E-03 0.3145924455 0.9044000482E-03 0.3282703779 0.9383795843E-03 0.3419483103 0.9711278272E-03 0.3556262427 0.1002613358E-02 0.3693041751 0.1032826223E-02 0.3829821075 0.1061778263E-02 0.3966600400 0.1089502819E-02 0.4103379724 0.1116053772E-02 0.4240159048 0.1141503910E-02 0.4376938372 0.1165942611E-02 0.4513717696 0.1189472885E-02 0.4650497020 0.1212207812E-02 0.4787276344 0.1234266480E-02 0.4924055668 0.1255769519E-02 0.5060834992 0.1276834407E-02 0.5197614317 0.1297570705E-02 0.5334393641 0.1318075430E-02 0.5471172965 0.1338428772E-02 0.5607952289 0.1358690347E-02 0.5744731613 0.1378896178E-02 0.5881510937 0.1399056545E-02 0.6018290261 0.1419154813E-02 0.6155069585 0.1439147272E-02 0.6291848910 0.1458964002E-02 0.6428628234 0.1478510694E-02 0.6565407558 0.1497671319E-02 0.6702186882 0.1516311521E-02 0.6838966206 0.1534282560E-02 0.6975745530 0.1551425638E-02 0.7112524854 0.1567576449E-02 0.7249304178 0.1582569772E-02 0.7386083503 0.1596243986E-02 0.7522862827 0.1608445368E-02 0.7659642151 0.1619032074E-02 0.7796421475 0.1627877728E-02 0.7933200799 0.1634874537E-02 0.8069980123 0.1639935904E-02 0.8206759447 0.1642998481E-02 0.8343538771 0.1644023664E-02 0.8482356956 0.1643523278E-02 0.8621175141 0.1642023593E-02 0.8759993325 0.1639529018E-02 0.8898811510 0.1636046875E-02 0.9037629694 0.1631587366E-02 0.9176447879 0.1626163520E-02 0.9315266063 0.1619791124E-02 0.9454084248 0.1612488649E-02 0.9592902433 0.1604277149E-02 0.9731720617 0.1595180158E-02 0.9870538802 0.1585223561E-02 1.000935699 0.1574435464E-02 1.014817517 0.1562846035E-02 1.028699336 0.1550487351E-02 1.042581154 0.1537393212E-02 1.056462972 0.1523598957E-02 1.070344791 0.1509141263E-02 1.084226609 0.1494057931E-02 1.098108428 0.1478387666E-02 1.111990246 0.1462169841E-02 1.125872065 0.1445444263E-02 1.139753883 0.1428250919E-02 1.153635702 0.1410629725E-02 1.167517520 0.1392620268E-02 1.181399339 0.1374264711E-02 1.195281157 0.1390605367E-02 1.209162975 0.1405935262E-02 1.223044794 0.1420180772E-02 1.236926612 0.1433274069E-02 1.250808431 0.1445152897E-02 1.264690249 0.1455760355E-02 1.278572068 0.1465044687E-02 1.292453886 0.1472959085E-02 1.306335705 0.1479461501E-02 1.320217523 0.1484514475E-02 1.334099342 0.1488084963E-02 1.347981160 0.1490144177E-02 1.361862979 0.1490667441E-02 1.375744797 0.1489634042E-02 1.389626615 0.1487027091E-02 1.403508434 0.1482833397E-02 1.417390252 0.1477043333E-02 1.431272071 0.1469650719E-02 1.445153889 0.1460652698E-02 1.459035708 0.1450049623E-02 1.472917526 0.1437844943E-02 1.486799345 0.1424045092E-02 1.500681163 0.1408659378E-02 1.514562982 0.1391699882E-02 1.528444800 0.1373181350E-02 1.542326618 0.1353121088E-02 1.556208437 0.1331538864E-02 1.570090255 0.1308456807E-02 1.583972074 0.1283899307E-02 1.597853892 0.1257892918E-02 1.611735711 0.1230466265E-02 1.625617529 0.1201649948E-02 1.639499348 0.1171476449E-02 1.653381166 0.1139980042E-02 1.667262985 0.1107196704E-02 1.681144803 0.1073164026E-02 1.695026621 0.1037921130E-02 1.708908440 0.1001508584E-02 1.722790258 0.9639683170E-03 1.736672077 0.9253435454E-03 1.750553895 0.8856786904E-03 1.764435714 0.8450193042E-03 1.778317532 0.8034119960E-03 1.792199351 0.7609043610E-03 1.806081169 0.7175449105E-03 1.819962988 0.6733830052E-03 1.833844806 0.6284687898E-03 1.847726625 0.5828531304E-03 1.861608443 0.5365875529E-03 1.875490261 0.4897241846E-03 1.889372080 0.4423156964E-03 1.903253898 0.3944152475E-03 1.917135717 0.3460764318E-03 1.931017535 0.2973532253E-03 1.944899354 0.2482999353E-03 1.958781172 0.1989711506E-03 1.972662991 0.1494216932E-03 1.986544809 0.9970657006E-04 2.000426628 0.4988092658E-04 2.014308446 -0.3420208952E-10 2.027941873 0.4422954981E-04 2.041575301 0.8842365389E-04 2.055208728 0.1325468703E-03 2.068842156 0.1765637650E-03 2.082475583 0.2204389163E-03 2.096109011 0.2641369200E-03 2.109742438 0.3076223952E-03 2.123375865 0.3508599919E-03 2.137009293 0.3938143989E-03 2.150642720 0.4364503535E-03 2.164276148 0.4787326531E-03 2.177909575 0.5206261685E-03 2.191543002 0.5620958584E-03 2.205176430 0.6031067865E-03 2.218809857 0.6436241411E-03 2.232443285 0.6836132554E-03 2.246076712 0.7230396319E-03 2.259710140 0.7618689670E-03 2.273343567 0.8000671799E-03 2.286976994 0.8376004421E-03 2.300610422 0.8744352099E-03 2.314243849 0.9105382586E-03 2.327877277 0.9458767196E-03 2.341510704 0.9804181181E-03 2.355144132 0.1014130414E-02 2.368777559 0.1046982043E-02 2.382410986 0.1078941962E-02 2.396044414 0.1109979692E-02 2.409677841 0.1140065364E-02 2.423311269 0.1169169768E-02 2.436944696 0.1197264401E-02 2.450578123 0.1224321512E-02 2.464211551 0.1250314155E-02 2.477844978 0.1275216233E-02 2.491478406 0.1299002553E-02 2.505111833 0.1321648869E-02 2.518745261 0.1343131930E-02 2.532378688 0.1363429530E-02 2.546012115 0.1382520552E-02 2.559645543 0.1400385009E-02 2.573278970 0.1417004094E-02 2.586912398 0.1432360212E-02 2.600545825 0.1446437026E-02 2.614179253 0.1459219488E-02 2.627812680 0.1470693877E-02 2.641446107 0.1480847829E-02 2.655079535 0.1489670365E-02 2.668712962 0.1497151916E-02 2.682346390 0.1503284347E-02 2.695979817 0.1508060976E-02 2.709613245 0.1511476589E-02 2.723246672 0.1513527453E-02 2.736880099 0.1514211324E-02 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/PaxHeaders/PHDLINES.OUT0000644000000000000000000000013214536061314023432 xustar0030 mtime=1702388428.974499926 30 atime=1702388428.974499926 30 ctime=1702388428.974499926 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/PHDLINES.OUT0000644002504400250440000000050014536061314026147 0ustar00dewhurstdewhurst00000000000000 0.000000000 -0.1233017808E-02 0.000000000 0.2466035513E-02 0.8343538771 -0.1233017808E-02 0.8343538771 0.2466035513E-02 2.014308446 -0.1233017808E-02 2.014308446 0.2466035513E-02 2.736880099 -0.1233017808E-02 2.736880099 0.2466035513E-02 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/PaxHeaders/PHDOS.OUT0000644000000000000000000000013214536061314023101 xustar0030 mtime=1702388428.976499922 30 atime=1702388428.976499922 30 ctime=1702388428.976499922 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/PHDOS.OUT0000644002504400250440000004410414536061314025626 0ustar00dewhurstdewhurst00000000000000 -0.1808426262E-03 15.08091925 -0.1768640889E-03 30.49697004 -0.1728855515E-03 34.51854850 -0.1689070142E-03 31.66993042 -0.1649284769E-03 26.97808888 -0.1609499396E-03 26.47539157 -0.1569714023E-03 28.48618080 -0.1529928650E-03 23.62677349 -0.1490143276E-03 24.63216811 -0.1450357903E-03 26.14026003 -0.1410572530E-03 35.69150889 -0.1370787157E-03 36.69690351 -0.1331001784E-03 38.20499543 -0.1291216411E-03 32.34019350 -0.1251431037E-03 35.85907466 -0.1211645664E-03 28.31861503 -0.1171860291E-03 26.14026003 -0.1132074918E-03 19.10249772 -0.1092289545E-03 23.12407618 -0.1052504172E-03 25.13486542 -0.1012718798E-03 26.64295734 -0.9729334252E-04 33.17802235 -0.9331480520E-04 37.70229812 -0.8933626789E-04 37.03203505 -0.8535773057E-04 28.98887811 -0.8137919325E-04 24.96729965 -0.7740065594E-04 27.64835196 -0.7342211862E-04 26.64295734 -0.6944358130E-04 25.13486542 -0.6546504399E-04 22.11868157 -0.6148650667E-04 20.61058964 -0.5750796936E-04 20.10789233 -0.5352943204E-04 17.09170848 -0.4955089472E-04 20.94572118 -0.4557235741E-04 18.43223464 -0.4159382009E-04 16.42144540 -0.3761528277E-04 14.07552463 -0.3363674546E-04 14.07552463 -0.2965820814E-04 12.56743271 -0.2567967082E-04 5.529670391 -0.2170113351E-04 5.026973083 -0.1772259619E-04 5.026973083 -0.1374405887E-04 5.529670391 -0.9765521557E-05 4.524275775 -0.5786984241E-05 3.770229812 -0.1808446924E-05 2.262137887 0.2170090392E-05 0.2513486542 0.6148627709E-05 0.000000000 0.1012716503E-04 4.524275775 0.1410570234E-04 9.048551549 0.1808423966E-04 12.56743271 0.2206277697E-04 12.06473540 0.2604131429E-04 8.043156933 0.3001985161E-04 9.551248858 0.3399838892E-04 13.07013002 0.3797692624E-04 17.25927425 0.4195546356E-04 19.27006349 0.4593400087E-04 18.26466887 0.4991253819E-04 19.60519502 0.5389107551E-04 22.62137887 0.5786961282E-04 23.62677349 0.6184815014E-04 26.97808888 0.6582668746E-04 33.51315389 0.6980522477E-04 34.51854850 0.7378376209E-04 38.20499543 0.7776229941E-04 33.68071966 0.8174083672E-04 38.37256120 0.8571937404E-04 37.36716658 0.8969791136E-04 41.38874505 0.9367644867E-04 45.74545506 0.9765498599E-04 48.76163891 0.1016335233E-03 48.76163891 0.1056120606E-03 46.24815236 0.1095905979E-03 55.29670391 0.1135691353E-03 57.81019046 0.1175476726E-03 69.87492585 0.1215262099E-03 64.34525546 0.1255047472E-03 64.84795277 0.1294832845E-03 57.47505892 0.1334618218E-03 63.50742662 0.1374403592E-03 67.02630777 0.1414188965E-03 74.39920163 0.1453974338E-03 74.90189894 0.1493759711E-03 88.47472626 0.1533545084E-03 86.46393703 0.1573330457E-03 89.48012088 0.1613115831E-03 84.28558203 0.1652901204E-03 101.3772905 0.1692686577E-03 104.8961717 0.1732471950E-03 106.2366978 0.1772257323E-03 94.17196242 0.1812042696E-03 95.17735704 0.1851828070E-03 95.00979127 0.1891613443E-03 107.0745267 0.1931398816E-03 121.1500513 0.1971184189E-03 140.2525490 0.2010969562E-03 127.6851163 0.2050754935E-03 125.1716298 0.2090540309E-03 123.6635378 0.2130325682E-03 145.2795221 0.2170111055E-03 144.2741275 0.2209896428E-03 140.9228121 0.2249681801E-03 133.2147867 0.2289467174E-03 139.2471544 0.2329252547E-03 141.5930752 0.2369037921E-03 172.4251767 0.2408823294E-03 185.4953068 0.2448608667E-03 192.5330691 0.2488394040E-03 171.9224794 0.2528179413E-03 162.3712306 0.2567964786E-03 166.3928090 0.2607750160E-03 193.5384637 0.2647535533E-03 211.1328695 0.2687320906E-03 199.7383972 0.2727106279E-03 193.5384637 0.2766891652E-03 190.0195825 0.2806677025E-03 223.0300391 0.2846462399E-03 238.2785241 0.2886247772E-03 250.8459568 0.2926033145E-03 247.8297730 0.2965818518E-03 219.1760264 0.3005603891E-03 216.1598426 0.3045389264E-03 242.3001026 0.3085174638E-03 283.0185846 0.3124960011E-03 288.3806892 0.3164745384E-03 273.4673357 0.3204530757E-03 247.3270757 0.3244316130E-03 284.1915450 0.3284101503E-03 301.1156877 0.3323886877E-03 336.3044993 0.3363672250E-03 319.7154881 0.3403457623E-03 309.6615419 0.3443242996E-03 309.9966735 0.3483028369E-03 323.0668035 0.3522813742E-03 342.1693012 0.3562599116E-03 364.4555485 0.3602384489E-03 366.4663378 0.3642169862E-03 375.1797578 0.3681955235E-03 378.0283758 0.3721740608E-03 412.2117928 0.3761525981E-03 415.0604109 0.3801311355E-03 432.8223825 0.3841096728E-03 414.7252794 0.3880882101E-03 449.9140909 0.3920667474E-03 440.6979736 0.3960452847E-03 461.3085633 0.4000238220E-03 481.4164556 0.4040023594E-03 505.2107948 0.4079808967E-03 533.3618441 0.4119594340E-03 528.3348710 0.4159379713E-03 546.9346714 0.4199165086E-03 555.9832230 0.4238950459E-03 585.1396669 0.4278735833E-03 607.0907827 0.4318521206E-03 607.0907827 0.4358306579E-03 620.6636100 0.4398091952E-03 631.8905165 0.4437877325E-03 668.5874200 0.4477662698E-03 702.1005739 0.4517448072E-03 718.1868878 0.4557233445E-03 749.3541209 0.4597018818E-03 720.5328086 0.4636804191E-03 764.7701717 0.4676589564E-03 769.1268817 0.4716374937E-03 820.2344414 0.4756160311E-03 802.1373383 0.4795945684E-03 797.2779310 0.4835731057E-03 873.1852245 0.4875516430E-03 898.6552215 0.4915301803E-03 948.9249523 0.4955087176E-03 899.6606161 0.4994872550E-03 912.8983119 0.5034657923E-03 956.1302804 0.5074443296E-03 988.4704739 0.5114228669E-03 1034.551060 0.5154014042E-03 1001.875735 0.5193799415E-03 1029.859219 0.5233584789E-03 1070.242569 0.5273370162E-03 1093.869343 0.5313155535E-03 1119.004208 0.5352940908E-03 1125.539273 0.5392726281E-03 1167.095584 0.5432511654E-03 1192.230450 0.5472297028E-03 1186.868345 0.5512082401E-03 1244.846101 0.5551867774E-03 1245.851496 0.5591653147E-03 1292.434780 0.5631438520E-03 1307.515699 0.5671223893E-03 1333.991090 0.5711009267E-03 1412.914568 0.5750794640E-03 1408.390292 0.5790580013E-03 1434.698118 0.5830365386E-03 1432.184631 0.5870150759E-03 1488.989427 0.5909936132E-03 1548.475275 0.5949721506E-03 1578.972245 0.5989506879E-03 1605.615203 0.6029292252E-03 1612.988097 0.6069077625E-03 1674.484734 0.6108862998E-03 1739.332687 0.6148648371E-03 1813.731888 0.6188433745E-03 1826.802018 0.6228219118E-03 1856.796291 0.6268004491E-03 1864.001619 0.6307789864E-03 1985.654368 0.6347575237E-03 2057.204951 0.6387360610E-03 2169.138885 0.6427145984E-03 2197.792632 0.6466931357E-03 2267.667558 0.6506716730E-03 2431.379315 0.6546502103E-03 2677.030732 0.6586287476E-03 2872.915117 0.6626072849E-03 3007.637996 0.6665858222E-03 3034.616084 0.6705643596E-03 3059.080687 0.6745428969E-03 3103.485616 0.6785214342E-03 3095.610025 0.6824999715E-03 3176.879423 0.6864785088E-03 3220.111391 0.6904570461E-03 3289.316054 0.6944355835E-03 3321.488682 0.6984141208E-03 3386.671766 0.7023926581E-03 3458.557481 0.7063711954E-03 3563.286087 0.7103497327E-03 3533.794512 0.7143282700E-03 3500.616489 0.7183068074E-03 3489.054451 0.7222853447E-03 3478.497808 0.7262638820E-03 3530.610762 0.7302424193E-03 3480.676163 0.7342209566E-03 3537.648524 0.7381994939E-03 3507.989383 0.7421780313E-03 3595.961412 0.7461565686E-03 3577.696743 0.7501351059E-03 3630.479961 0.7541136432E-03 3552.059180 0.7580921805E-03 3603.837003 0.7620707178E-03 3603.837003 0.7660492552E-03 3653.604037 0.7700277925E-03 3673.376798 0.7740063298E-03 3632.155618 0.7779848671E-03 3716.608766 0.7819634044E-03 3705.884557 0.7859419417E-03 3776.262180 0.7899204791E-03 3757.159682 0.7938990164E-03 3766.710931 0.7978775537E-03 3828.542700 0.8018560910E-03 3867.250393 0.8058346283E-03 3930.757819 0.8098131656E-03 3994.600378 0.8137917030E-03 3975.497880 0.8177702403E-03 4082.404841 0.8217487776E-03 4117.090955 0.8257273149E-03 4258.851596 0.8297058522E-03 4290.018829 0.8336843895E-03 4269.408239 0.8376629269E-03 4275.943304 0.8416414642E-03 4231.873507 0.8456200015E-03 4276.613568 0.8495985388E-03 4248.462518 0.8535770761E-03 4153.285161 0.8575556134E-03 4025.600045 0.8615341508E-03 3957.233211 0.8655126881E-03 3951.703541 0.8694912254E-03 4009.513731 0.8734697627E-03 3916.012032 0.8774483000E-03 3922.714662 0.8814268373E-03 3877.974602 0.8854053747E-03 3889.033943 0.8893839120E-03 3905.455388 0.8933624493E-03 3901.433810 0.8973409866E-03 3885.347496 0.9013195239E-03 3876.801642 0.9052980612E-03 3893.893350 0.9092765986E-03 3948.687357 0.9132551359E-03 3927.071372 0.9172336732E-03 3917.520124 0.9212122105E-03 3905.120257 0.9251907478E-03 3916.179597 0.9291692851E-03 3857.364012 0.9331478225E-03 3822.510332 0.9371263598E-03 3799.888953 0.9411048971E-03 3772.240602 0.9450834344E-03 3796.370072 0.9490619717E-03 3758.667774 0.9530405090E-03 3718.954687 0.9570190464E-03 3633.998842 0.9609975837E-03 3609.366674 0.9649761210E-03 3629.139434 0.9689546583E-03 3653.771603 0.9729331956E-03 3625.117856 0.9769117329E-03 3557.086154 0.9808902703E-03 3436.941497 0.9848688076E-03 3325.845392 0.9888473449E-03 3195.646789 0.9928258822E-03 3125.771863 0.9968044195E-03 3028.751283 0.1000782957E-02 2974.459973 0.1004761494E-02 2815.607624 0.1008740031E-02 2669.825404 0.1012718569E-02 2516.167594 0.1016697106E-02 2382.450110 0.1020675643E-02 2269.343215 0.1024654181E-02 2223.430195 0.1028632718E-02 2252.083941 0.1032611255E-02 2213.376248 0.1036589793E-02 2212.873551 0.1040568330E-02 2176.176648 0.1044546867E-02 2225.943681 0.1048525405E-02 2220.916708 0.1052503942E-02 2226.949076 0.1056482479E-02 2231.473352 0.1060461017E-02 2247.727231 0.1064439554E-02 2258.786572 0.1068418091E-02 2238.175982 0.1072396629E-02 2225.440984 0.1076375166E-02 2255.100125 0.1080353703E-02 2269.678347 0.1084332240E-02 2255.602822 0.1088310778E-02 2230.467957 0.1092289315E-02 2260.629795 0.1096267852E-02 2266.662163 0.1100246390E-02 2266.662163 0.1104224927E-02 2254.597428 0.1108203464E-02 2242.700258 0.1112182002E-02 2234.657101 0.1116160539E-02 2240.186772 0.1120139076E-02 2244.543482 0.1124117614E-02 2233.986838 0.1128096151E-02 2244.543482 0.1132074688E-02 2230.970654 0.1136053226E-02 2201.814210 0.1140031763E-02 2179.695529 0.1144010300E-02 2197.289935 0.1147988838E-02 2176.679345 0.1151967375E-02 2154.560663 0.1155945912E-02 2104.458498 0.1159924449E-02 2124.566391 0.1163902987E-02 2087.869487 0.1167881524E-02 2053.015807 0.1171860061E-02 2044.469953 0.1175838599E-02 1996.713709 0.1179817136E-02 1965.546475 0.1183795673E-02 1925.833388 0.1187774211E-02 1909.747074 0.1191752748E-02 1900.698523 0.1195731285E-02 1820.769651 0.1199709823E-02 1780.051169 0.1203688360E-02 1744.024528 0.1207666897E-02 1697.273679 0.1211645435E-02 1679.679273 0.1215623972E-02 1608.128689 0.1219602509E-02 1602.599019 0.1223581047E-02 1498.037979 0.1227559584E-02 1477.427389 0.1231538121E-02 1390.963452 0.1235516659E-02 1333.655959 0.1239495196E-02 1240.154260 0.1243473733E-02 1176.814399 0.1247452270E-02 1152.182231 0.1251430808E-02 1114.647498 0.1255409345E-02 1130.231115 0.1259387882E-02 1129.225720 0.1263366420E-02 1169.273939 0.1267344957E-02 1189.381831 0.1271323494E-02 1223.062551 0.1275302032E-02 1249.202811 0.1279280569E-02 1281.375439 0.1283259106E-02 1337.174840 0.1287237644E-02 1421.627988 0.1291216181E-02 1466.535614 0.1295194718E-02 1535.907843 0.1299173256E-02 1574.615535 0.1303151793E-02 1639.798620 0.1307130330E-02 1715.203216 0.1311108868E-02 1795.132088 0.1315087405E-02 1888.131090 0.1319065942E-02 1978.616605 0.1323044479E-02 2021.848574 0.1327023017E-02 2168.133491 0.1331001554E-02 2229.127431 0.1334980091E-02 2354.801758 0.1338958629E-02 2432.719841 0.1342937166E-02 2529.572855 0.1346915703E-02 2685.409021 0.1350894241E-02 2834.710122 0.1354872778E-02 3039.307926 0.1358851315E-02 3220.278957 0.1362829853E-02 3490.394977 0.1366808390E-02 3788.494481 0.1370786927E-02 4033.308070 0.1374765465E-02 4061.291554 0.1378744002E-02 3987.897747 0.1382722539E-02 3865.239604 0.1386701077E-02 3764.700142 0.1390679614E-02 3654.274300 0.1394658151E-02 3589.426347 0.1398636688E-02 3536.643130 0.1402615226E-02 3539.994445 0.1406593763E-02 3511.340699 0.1410572300E-02 3551.053786 0.1414550838E-02 3527.091881 0.1418529375E-02 3550.215957 0.1422507912E-02 3537.648524 0.1426486450E-02 3588.756084 0.1430464987E-02 3656.620221 0.1434443524E-02 3707.057517 0.1438422062E-02 3829.715660 0.1442400599E-02 3879.985391 0.1446379136E-02 4061.291554 0.1450357674E-02 4289.683698 0.1454336211E-02 4507.351632 0.1458314748E-02 4684.971348 0.1462293286E-02 4583.761623 0.1466271823E-02 4427.590326 0.1470250360E-02 4128.317862 0.1474228898E-02 3968.627683 0.1478207435E-02 3836.920989 0.1482185972E-02 3755.148893 0.1486164509E-02 3577.696743 0.1490143047E-02 3387.677161 0.1494121584E-02 3101.642392 0.1498100121E-02 2858.839592 0.1502078659E-02 2653.739091 0.1506057196E-02 2516.670291 0.1510035733E-02 2309.391434 0.1514014271E-02 2050.334755 0.1517992808E-02 1780.553866 0.1521971345E-02 1571.431786 0.1525949883E-02 1464.357259 0.1529928420E-02 1362.309706 0.1533906957E-02 1260.764849 0.1537885495E-02 1161.733479 0.1541864032E-02 1051.642769 0.1545842569E-02 976.2381727 0.1549821107E-02 843.5260833 0.1553799644E-02 740.9758324 0.1557778181E-02 582.1234830 0.1561756718E-02 446.8979071 0.1565735256E-02 348.3692347 0.1569713793E-02 340.3260777 0.1573692330E-02 312.1750285 0.1577670868E-02 302.6237796 0.1581649405E-02 281.0077953 0.1585627942E-02 284.5266765 0.1589606480E-02 259.3918111 0.1593585017E-02 245.8189838 0.1597563554E-02 222.1922103 0.1601542092E-02 228.7272753 0.1605520629E-02 199.0681341 0.1609499166E-02 198.5654368 0.1613477704E-02 173.9332687 0.1617456241E-02 161.3658360 0.1621434778E-02 151.3118898 0.1625413316E-02 135.7282732 0.1629391853E-02 120.6473540 0.1633370390E-02 96.01518589 0.1637348927E-02 73.39380701 0.1641327465E-02 43.48331717 0.1645306002E-02 18.85114906 0.1649284539E-02 0.2513486542 0.1653263077E-02 0.000000000 0.1657241614E-02 0.000000000 0.1661220151E-02 0.000000000 0.1665198689E-02 0.000000000 0.1669177226E-02 0.000000000 0.1673155763E-02 0.000000000 0.1677134301E-02 0.000000000 0.1681112838E-02 0.000000000 0.1685091375E-02 0.000000000 0.1689069913E-02 0.000000000 0.1693048450E-02 0.000000000 0.1697026987E-02 0.000000000 0.1701005525E-02 0.000000000 0.1704984062E-02 0.000000000 0.1708962599E-02 0.000000000 0.1712941136E-02 0.000000000 0.1716919674E-02 0.000000000 0.1720898211E-02 0.000000000 0.1724876748E-02 0.000000000 0.1728855286E-02 0.000000000 0.1732833823E-02 0.000000000 0.1736812360E-02 0.000000000 0.1740790898E-02 0.000000000 0.1744769435E-02 0.000000000 0.1748747972E-02 0.000000000 0.1752726510E-02 0.000000000 0.1756705047E-02 0.000000000 0.1760683584E-02 0.000000000 0.1764662122E-02 0.000000000 0.1768640659E-02 0.000000000 0.1772619196E-02 0.000000000 0.1776597734E-02 0.000000000 0.1780576271E-02 0.000000000 0.1784554808E-02 0.000000000 0.1788533346E-02 0.000000000 0.1792511883E-02 0.000000000 0.1796490420E-02 0.000000000 0.1800468957E-02 0.000000000 0.1804447495E-02 0.000000000 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/PaxHeaders/PHLWIDTH.OUT0000644000000000000000000000013214536061314023447 xustar0030 mtime=1702388428.979499918 30 atime=1702388428.979499918 30 ctime=1702388428.979499918 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/PHLWIDTH.OUT0000644002504400250440000005331214536061314026175 0ustar00dewhurstdewhurst00000000000000 0.000000000 0.1248848272E-35 0.1367793241E-01 0.8178770349E-11 0.2735586482E-01 0.1298112073E-09 0.4103379724E-01 0.6484169145E-09 0.5471172965E-01 0.2011243509E-08 0.6838966206E-01 0.4793427485E-08 0.8206759447E-01 0.9651822037E-08 0.9574552688E-01 0.1727210258E-07 0.1094234593 0.2831326937E-07 0.1231013917 0.4335384407E-07 0.1367793241 0.6284389144E-07 0.1504572565 0.8706650488E-07 0.1641351889 0.1161116194E-06 0.1778131214 0.1498640245E-06 0.1914910538 0.1880063284E-06 0.2051689862 0.2300364665E-06 0.2188469186 0.2752982539E-06 0.2325248510 0.3230225369E-06 0.2462027834 0.3723757861E-06 0.2598807158 0.4225125450E-06 0.2735586482 0.4726280295E-06 0.2872365807 0.5220073730E-06 0.3009145131 0.5700684905E-06 0.3145924455 0.6163962485E-06 0.3282703779 0.6607664880E-06 0.3419483103 0.7031593803E-06 0.3556262427 0.7437624925E-06 0.3693041751 0.7829647183E-06 0.3829821075 0.8213428154E-06 0.3966600400 0.8596426208E-06 0.4103379724 0.8987570722E-06 0.4240159048 0.9397029414E-06 0.4376938372 0.9835977241E-06 0.4513717696 0.1031637489E-05 0.4650497020 0.1085075754E-05 0.4787276344 0.1145202719E-05 0.4924055668 0.1213323559E-05 0.5060834992 0.1290734039E-05 0.5197614317 0.1378691549E-05 0.5334393641 0.1478379811E-05 0.5471172965 0.1590865996E-05 0.5607952289 0.1717049755E-05 0.5744731613 0.1857604748E-05 0.5881510937 0.2012914382E-05 0.6018290261 0.2183004732E-05 0.6155069585 0.2367478712E-05 0.6291848910 0.2565456439E-05 0.6428628234 0.2775527282E-05 0.6565407558 0.2995719149E-05 0.6702186882 0.3223490141E-05 0.6838966206 0.3455746788E-05 0.6975745530 0.3688891637E-05 0.7112524854 0.3918901175E-05 0.7249304178 0.4141433008E-05 0.7386083503 0.4351959045E-05 0.7522862827 0.4545919343E-05 0.7659642151 0.4718889444E-05 0.7796421475 0.4866752651E-05 0.7933200799 0.4985867807E-05 0.8069980123 0.5073223004E-05 0.8206759447 0.5126566119E-05 0.8343538771 0.5144504277E-05 0.8482356956 0.5133400461E-05 0.8621175141 0.5100235552E-05 0.8759993325 0.5045446034E-05 0.8898811510 0.4969749029E-05 0.9037629694 0.4874127082E-05 0.9176447879 0.4759807466E-05 0.9315266063 0.4628236582E-05 0.9454084248 0.4481050180E-05 0.9592902433 0.4320040209E-05 0.9731720617 0.4147119206E-05 0.9870538802 0.3964283167E-05 1.000935699 0.3773573887E-05 1.014817517 0.3577041707E-05 1.028699336 0.3376709608E-05 1.042581154 0.3174539494E-05 1.056462972 0.2972401409E-05 1.070344791 0.2772046359E-05 1.084226609 0.2575083210E-05 1.098108428 0.2382960066E-05 1.111990246 0.2196950325E-05 1.125872065 0.2018143491E-05 1.139753883 0.1847440673E-05 1.153635702 0.1685554560E-05 1.167517520 0.1533013548E-05 1.181399339 0.1390169593E-05 1.195281157 0.1257209272E-05 1.209162975 0.1134167489E-05 1.223044794 0.1020943217E-05 1.236926612 0.9173166592E-06 1.250808431 0.8229672051E-06 1.264690249 0.7374916249E-06 1.278572068 0.6604219478E-06 1.292453886 0.5912425673E-06 1.306335705 0.5294061740E-06 1.320217523 0.4743482055E-06 1.334099342 0.4254995872E-06 1.347981160 0.3822976251E-06 1.361862979 0.3441949952E-06 1.375744797 0.3106668481E-06 1.389626615 0.2812161199E-06 1.403508434 0.2553771899E-06 1.417390252 0.2327180737E-06 1.431272071 0.2128413687E-06 1.445153889 0.1953841823E-06 1.459035708 0.1800172807E-06 1.472917526 0.1664436837E-06 1.486799345 0.1543969131E-06 1.500681163 0.1436390766E-06 1.514562982 0.1339589325E-06 1.528444800 0.1251700481E-06 1.542326618 0.1171091237E-06 1.556208437 0.1096345194E-06 1.570090255 0.1026249882E-06 1.583972074 0.9597858998E-07 1.597853892 0.8961173958E-07 1.611735711 0.8345832740E-07 1.625617529 0.7746884187E-07 1.639499348 0.7160942480E-07 1.653381166 0.6586079597E-07 1.667262985 0.6021699672E-07 1.681144803 0.5468391899E-07 1.695026621 0.4927760730E-07 1.708908440 0.4402234286E-07 1.722790258 0.3894854130E-07 1.736672077 0.3409051591E-07 1.750553895 0.2948417548E-07 1.764435714 0.2516473916E-07 1.778317532 0.2116455819E-07 1.792199351 0.1751113686E-07 1.806081169 0.1422544076E-07 1.819962988 0.1132057077E-07 1.833844806 0.8800866390E-08 1.847726625 0.6661482340E-08 1.861608443 0.4888459901E-08 1.875490261 0.3459289640E-08 1.889372080 0.2343937166E-08 1.903253898 0.1506279255E-08 1.917135717 0.9058759521E-09 1.931017535 0.4999861129E-09 1.944899354 0.2457205189E-09 1.958781172 0.1022188990E-09 1.972662991 0.3273549994E-10 1.986544809 0.6522336193E-11 2.000426628 0.4097646550E-12 2.014308446 0.1248848272E-35 2.027941873 0.8440570852E-12 2.041575301 0.1348520908E-10 2.055208728 0.6810280710E-10 2.068842156 0.2145049900E-09 2.082475583 0.5213966953E-09 2.096109011 0.1075363278E-08 2.109742438 0.1979578242E-08 2.123375865 0.3352246150E-08 2.137009293 0.5324794422E-08 2.150642720 0.8039830475E-08 2.164276148 0.1164888345E-07 2.177909575 0.1630995267E-07 2.191543002 0.2218488789E-07 2.205176430 0.2943662922E-07 2.218809857 0.3822633764E-07 2.232443285 0.4871044962E-07 2.246076712 0.6103769191E-07 2.259710140 0.7534609511E-07 2.273343567 0.9176004636E-07 2.286976994 0.1103874233E-06 2.300610422 0.1313168523E-06 2.314243849 0.1546151351E-06 2.327877277 0.1803248867E-06 2.341510704 0.2084624282E-06 2.355144132 0.2390159747E-06 2.368777559 0.2719441587E-06 2.382410986 0.3071749224E-06 2.396044414 0.3446048130E-06 2.409677841 0.3840987054E-06 2.423311269 0.4254899757E-06 2.436944696 0.4685811383E-06 2.450578123 0.5131449560E-06 2.464211551 0.5589260227E-06 2.477844978 0.6056428115E-06 2.491478406 0.6529901729E-06 2.505111833 0.7006422588E-06 2.518745261 0.7482558407E-06 2.532378688 0.7954739822E-06 2.546012115 0.8419300196E-06 2.559645543 0.8872517943E-06 2.573278970 0.9310660794E-06 2.586912398 0.9730031342E-06 2.600545825 0.1012701318E-05 2.614179253 0.1049811689E-05 2.627812680 0.1084002524E-05 2.641446107 0.1114963667E-05 2.655079535 0.1142410661E-05 2.668712962 0.1166088567E-05 2.682346390 0.1185775430E-05 2.695979817 0.1201285309E-05 2.709613245 0.1212470842E-05 2.723246672 0.1219225280E-05 2.736880099 0.1221483977E-05 0.000000000 0.1248848272E-35 0.1367793241E-01 0.8178770349E-11 0.2735586482E-01 0.1298112073E-09 0.4103379724E-01 0.6484169145E-09 0.5471172965E-01 0.2011243509E-08 0.6838966206E-01 0.4793427485E-08 0.8206759447E-01 0.9651822037E-08 0.9574552688E-01 0.1727210258E-07 0.1094234593 0.2831326937E-07 0.1231013917 0.4335384407E-07 0.1367793241 0.6284389144E-07 0.1504572565 0.8706650488E-07 0.1641351889 0.1161116194E-06 0.1778131214 0.1498640245E-06 0.1914910538 0.1880063284E-06 0.2051689862 0.2300364665E-06 0.2188469186 0.2752982539E-06 0.2325248510 0.3230225369E-06 0.2462027834 0.3723757861E-06 0.2598807158 0.4225125450E-06 0.2735586482 0.4726280295E-06 0.2872365807 0.5220073730E-06 0.3009145131 0.5700684905E-06 0.3145924455 0.6163962485E-06 0.3282703779 0.6607664880E-06 0.3419483103 0.7031593803E-06 0.3556262427 0.7437624925E-06 0.3693041751 0.7829647183E-06 0.3829821075 0.8213428154E-06 0.3966600400 0.8596426208E-06 0.4103379724 0.8987570722E-06 0.4240159048 0.9397029414E-06 0.4376938372 0.9835977241E-06 0.4513717696 0.1031637489E-05 0.4650497020 0.1085075754E-05 0.4787276344 0.1145202719E-05 0.4924055668 0.1213323559E-05 0.5060834992 0.1290734039E-05 0.5197614317 0.1378691549E-05 0.5334393641 0.1478379811E-05 0.5471172965 0.1590865996E-05 0.5607952289 0.1717049755E-05 0.5744731613 0.1857604748E-05 0.5881510937 0.2012914382E-05 0.6018290261 0.2183004732E-05 0.6155069585 0.2367478712E-05 0.6291848910 0.2565456439E-05 0.6428628234 0.2775527282E-05 0.6565407558 0.2995719149E-05 0.6702186882 0.3223490141E-05 0.6838966206 0.3455746788E-05 0.6975745530 0.3688891637E-05 0.7112524854 0.3918901175E-05 0.7249304178 0.4141433008E-05 0.7386083503 0.4351959045E-05 0.7522862827 0.4545919343E-05 0.7659642151 0.4718889444E-05 0.7796421475 0.4866752651E-05 0.7933200799 0.4985867807E-05 0.8069980123 0.5073223004E-05 0.8206759447 0.5126566119E-05 0.8343538771 0.5144504277E-05 0.8482356956 0.5147653980E-05 0.8621175141 0.5157121649E-05 0.8759993325 0.5172962519E-05 0.8898811510 0.5195267152E-05 0.9037629694 0.5224159197E-05 0.9176447879 0.5259792264E-05 0.9315266063 0.5302345898E-05 0.9454084248 0.5352020681E-05 0.9592902433 0.5409032441E-05 0.9731720617 0.5473605583E-05 0.9870538802 0.5545965542E-05 1.000935699 0.5626330356E-05 1.014817517 0.5714901371E-05 1.028699336 0.5811853092E-05 1.042581154 0.5917322202E-05 1.056462972 0.6031395804E-05 1.070344791 0.6154098943E-05 1.084226609 0.6285381529E-05 1.098108428 0.6425104771E-05 1.111990246 0.6272629671E-05 1.125872065 0.6016061340E-05 1.139753883 0.5761430185E-05 1.153635702 0.5509771100E-05 1.167517520 0.5262010121E-05 1.181399339 0.5018962088E-05 1.195281157 0.4781330238E-05 1.209162975 0.4549707594E-05 1.223044794 0.4324579953E-05 1.236926612 0.4106330297E-05 1.250808431 0.3895244406E-05 1.264690249 0.3691517475E-05 1.278572068 0.3495261514E-05 1.292453886 0.3306513328E-05 1.306335705 0.3125242886E-05 1.320217523 0.2951361890E-05 1.334099342 0.2784732392E-05 1.347981160 0.2625175304E-05 1.361862979 0.2472478676E-05 1.375744797 0.2326405639E-05 1.389626615 0.2186701911E-05 1.403508434 0.2053102805E-05 1.417390252 0.1925339669E-05 1.431272071 0.1803145711E-05 1.445153889 0.1686261183E-05 1.459035708 0.1574437881E-05 1.472917526 0.1467442957E-05 1.486799345 0.1365062012E-05 1.500681163 0.1267101478E-05 1.514562982 0.1173390284E-05 1.528444800 0.1083780799E-05 1.542326618 0.9981490754E-06 1.556208437 0.9163944103E-06 1.570090255 0.8384382403E-06 1.583972074 0.7642224199E-06 1.597853892 0.6937069232E-06 1.611735711 0.6268670313E-06 1.625617529 0.5636900752E-06 1.639499348 0.5041718205E-06 1.653381166 0.4483125874E-06 1.667262985 0.3961132120E-06 1.681144803 0.3475709657E-06 1.695026621 0.3026755507E-06 1.708908440 0.2614052978E-06 1.722790258 0.2237236887E-06 1.736672077 0.1895763220E-06 1.750553895 0.1588884345E-06 1.764435714 0.1315630740E-06 1.778317532 0.1074800070E-06 1.792199351 0.8649542086E-07 1.806081169 0.6844245845E-07 1.819962988 0.5313259825E-07 1.833844806 0.4035786319E-07 1.847726625 0.2989381616E-07 1.861608443 0.2150327121E-07 1.875490261 0.1494062425E-07 1.889372080 0.9956683590E-08 1.903253898 0.6303860990E-08 1.917135717 0.3741568514E-08 1.931017535 0.2041656368E-08 1.944899354 0.9937222230E-09 1.958781172 0.4101239176E-09 1.972662991 0.1305347796E-09 1.986544809 0.2589392672E-10 2.000426628 0.1622487919E-11 2.014308446 0.1248848272E-35 2.027941873 0.8440570852E-12 2.041575301 0.1348520908E-10 2.055208728 0.6810280710E-10 2.068842156 0.2145049900E-09 2.082475583 0.5213966953E-09 2.096109011 0.1075363278E-08 2.109742438 0.1979578242E-08 2.123375865 0.3352246150E-08 2.137009293 0.5324794422E-08 2.150642720 0.8039830475E-08 2.164276148 0.1164888345E-07 2.177909575 0.1630995267E-07 2.191543002 0.2218488789E-07 2.205176430 0.2943662922E-07 2.218809857 0.3822633764E-07 2.232443285 0.4871044962E-07 2.246076712 0.6103769191E-07 2.259710140 0.7534609511E-07 2.273343567 0.9176004636E-07 2.286976994 0.1103874233E-06 2.300610422 0.1313168523E-06 2.314243849 0.1546151351E-06 2.327877277 0.1803248867E-06 2.341510704 0.2084624282E-06 2.355144132 0.2390159747E-06 2.368777559 0.2719441587E-06 2.382410986 0.3071749224E-06 2.396044414 0.3446048130E-06 2.409677841 0.3840987054E-06 2.423311269 0.4254899757E-06 2.436944696 0.4685811383E-06 2.450578123 0.5131449560E-06 2.464211551 0.5589260227E-06 2.477844978 0.6056428115E-06 2.491478406 0.6529901729E-06 2.505111833 0.7006422588E-06 2.518745261 0.7482558407E-06 2.532378688 0.7954739822E-06 2.546012115 0.8419300196E-06 2.559645543 0.8872517943E-06 2.573278970 0.9310660794E-06 2.586912398 0.9730031342E-06 2.600545825 0.1012701318E-05 2.614179253 0.1049811689E-05 2.627812680 0.1084002524E-05 2.641446107 0.1114963667E-05 2.655079535 0.1142410661E-05 2.668712962 0.1166088567E-05 2.682346390 0.1185775430E-05 2.695979817 0.1201285309E-05 2.709613245 0.1212470842E-05 2.723246672 0.1219225280E-05 2.736880099 0.1221483977E-05 0.000000000 0.1248848272E-35 0.1367793241E-01 0.3025605838E-10 0.2735586482E-01 0.4786753773E-09 0.4103379724E-01 0.2378325366E-08 0.5471172965E-01 0.7322747245E-08 0.6838966206E-01 0.1728949802E-07 0.8206759447E-01 0.3442280939E-07 0.9574552688E-01 0.6080046791E-07 0.1094234593 0.9821134716E-07 0.1231013917 0.1479681097E-06 0.1367793241 0.2107747816E-06 0.1504572565 0.2866619010E-06 0.1641351889 0.3749937384E-06 0.1778131214 0.4745437755E-06 0.1914910538 0.5836272800E-06 0.2051689862 0.7002742942E-06 0.2188469186 0.8224232453E-06 0.2325248510 0.9481148775E-06 0.2462027834 0.1075668147E-05 0.2598807158 0.1203823596E-05 0.2735586482 0.1331844818E-05 0.2872365807 0.1459574084E-05 0.3009145131 0.1587443260E-05 0.3145924455 0.1716445094E-05 0.3282703779 0.1848072433E-05 0.3419483103 0.1984233806E-05 0.3556262427 0.2127153221E-05 0.3693041751 0.2279260444E-05 0.3829821075 0.2443075907E-05 0.3966600400 0.2621092425E-05 0.4103379724 0.2815654500E-05 0.4240159048 0.3028835565E-05 0.4376938372 0.3262314193E-05 0.4513717696 0.3517251871E-05 0.4650497020 0.3794177131E-05 0.4787276344 0.4092883165E-05 0.4924055668 0.4412347838E-05 0.5060834992 0.4750685919E-05 0.5197614317 0.5105142831E-05 0.5334393641 0.5472137252E-05 0.5471172965 0.5847356436E-05 0.5607952289 0.6225903660E-05 0.5744731613 0.6602492097E-05 0.5881510937 0.6971674469E-05 0.6018290261 0.7328093612E-05 0.6155069585 0.7666736227E-05 0.6291848910 0.7983170989E-05 0.6428628234 0.8273753029E-05 0.6565407558 0.8535779447E-05 0.6702186882 0.8767584749E-05 0.6838966206 0.8968570271E-05 0.6975745530 0.9139167234E-05 0.7112524854 0.9280738373E-05 0.7249304178 0.9395427562E-05 0.7386083503 0.9485970095E-05 0.7522862827 0.9555478087E-05 0.7659642151 0.9607215803E-05 0.7796421475 0.9644378863E-05 0.7933200799 0.9669889473E-05 0.8069980123 0.9686217526E-05 0.8206759447 0.9695234985E-05 0.8343538771 0.9698108709E-05 0.8482356956 0.9686913394E-05 0.8621175141 0.9653424234E-05 0.8759993325 0.9597930021E-05 0.8898811510 0.9520906905E-05 0.9037629694 0.9423010775E-05 0.9176447879 0.9305066833E-05 0.9315266063 0.9168056604E-05 0.9454084248 0.9013102693E-05 0.9592902433 0.8841451611E-05 0.9731720617 0.8654455067E-05 0.9870538802 0.8453550121E-05 1.000935699 0.8240238632E-05 1.014817517 0.8016066415E-05 1.028699336 0.7782602530E-05 1.042581154 0.7541419096E-05 1.056462972 0.7294072003E-05 1.070344791 0.7042082853E-05 1.084226609 0.6786922411E-05 1.098108428 0.6529995806E-05 1.111990246 0.6573027340E-05 1.125872065 0.6728791473E-05 1.139753883 0.6891909311E-05 1.153635702 0.7061749835E-05 1.167517520 0.7237526771E-05 1.181399339 0.7418287944E-05 1.195281157 0.7602906555E-05 1.209162975 0.7790074926E-05 1.223044794 0.7978301240E-05 1.236926612 0.8165909834E-05 1.250808431 0.8351045546E-05 1.264690249 0.8531682607E-05 1.278572068 0.8705638464E-05 1.292453886 0.8870592840E-05 1.306335705 0.9024112199E-05 1.320217523 0.9163679661E-05 1.334099342 0.9286730202E-05 1.347981160 0.9390690839E-05 1.361862979 0.9473025258E-05 1.375744797 0.9531282180E-05 1.389626615 0.9563146546E-05 1.403508434 0.9566492419E-05 1.417390252 0.9539436340E-05 1.431272071 0.9480389753E-05 1.445153889 0.9388108985E-05 1.459035708 0.9261741235E-05 1.472917526 0.9100865014E-05 1.486799345 0.8905523515E-05 1.500681163 0.8676249498E-05 1.514562982 0.8414080439E-05 1.528444800 0.8120562884E-05 1.542326618 0.7797745232E-05 1.556208437 0.7448158461E-05 1.570090255 0.7074784664E-05 1.583972074 0.6681013604E-05 1.597853892 0.6270587914E-05 1.611735711 0.5847537922E-05 1.625617529 0.5416107443E-05 1.639499348 0.4980672255E-05 1.653381166 0.4545653240E-05 1.667262985 0.4115426448E-05 1.681144803 0.3694232498E-05 1.695026621 0.3286087876E-05 1.708908440 0.2894700693E-05 1.722790258 0.2523393417E-05 1.736672077 0.2175034970E-05 1.750553895 0.1851984344E-05 1.764435714 0.1556047587E-05 1.778317532 0.1288449645E-05 1.792199351 0.1049822114E-05 1.806081169 0.8402074748E-06 1.819962988 0.6590798683E-06 1.833844806 0.5053819580E-06 1.847726625 0.3775769006E-06 1.861608443 0.2737139468E-06 1.875490261 0.1915057441E-06 1.889372080 0.1284150082E-06 1.903253898 0.8174790454E-07 1.917135717 0.4875123636E-07 1.931017535 0.2671038609E-07 1.944899354 0.1304490639E-07 1.958781172 0.5398711750E-08 1.972662991 0.1721976962E-08 1.986544809 0.3421030654E-09 2.000426628 0.2145526544E-10 2.014308446 0.1248848272E-35 2.027941873 0.3708983310E-10 2.041575301 0.5903600893E-09 2.055208728 0.2962911867E-08 2.068842156 0.9251341716E-08 2.082475583 0.2223667460E-07 2.096109011 0.4523905914E-07 2.109742438 0.8194317487E-07 2.123375865 0.1362026842E-06 2.137009293 0.2118330367E-06 2.150642720 0.3124024524E-06 2.164276148 0.4410309540E-06 2.177909575 0.6002068834E-06 2.191543002 0.7916294540E-06 2.205176430 0.1016084605E-05 2.218809857 0.1273359798E-05 2.232443285 0.1562201533E-05 2.246076712 0.1880317324E-05 2.259710140 0.2224421792E-05 2.273343567 0.2590324524E-05 2.286976994 0.2973055442E-05 2.300610422 0.3367021791E-05 2.314243849 0.3766189554E-05 2.327877277 0.4164281116E-05 2.341510704 0.4554980502E-05 2.355144132 0.4932137374E-05 2.368777559 0.5289961319E-05 2.382410986 0.5623198651E-05 2.396044414 0.5927285026E-05 2.409677841 0.6198468517E-05 2.423311269 0.6433899326E-05 2.436944696 0.6631684006E-05 2.450578123 0.6790903761E-05 2.464211551 0.6911598023E-05 2.477844978 0.6994716010E-05 2.491478406 0.7042040281E-05 2.505111833 0.7056087264E-05 2.518745261 0.7039990492E-05 2.532378688 0.6997372606E-05 2.546012115 0.6932212216E-05 2.559645543 0.6848711426E-05 2.573278970 0.6751169228E-05 2.586912398 0.6643865132E-05 2.600545825 0.6530956421E-05 2.614179253 0.6416391268E-05 2.627812680 0.6303838836E-05 2.641446107 0.6196636344E-05 2.655079535 0.6097752075E-05 2.668712962 0.6009762480E-05 2.682346390 0.5934840880E-05 2.695979817 0.5874754882E-05 2.709613245 0.5830869496E-05 2.723246672 0.5804153083E-05 2.736880099 0.5795183581E-05 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/PaxHeaders/PHLWLINES.OUT0000644000000000000000000000013214536061314023571 xustar0030 mtime=1702388428.981499915 30 atime=1702388428.981499915 30 ctime=1702388428.981499915 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/PHLWLINES.OUT0000644002504400250440000000050014536061314026306 0ustar00dewhurstdewhurst00000000000000 0.000000000 -0.7273581532E-05 0.000000000 0.1454716306E-04 0.8343538771 -0.7273581532E-05 0.8343538771 0.1454716306E-04 2.014308446 -0.7273581532E-05 2.014308446 0.1454716306E-04 2.736880099 -0.7273581532E-05 2.736880099 0.1454716306E-04 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/PaxHeaders/elk.in0000644000000000000000000000013214536061314022736 xustar0030 mtime=1702388428.983499912 30 atime=1702388428.983499912 30 ctime=1702388428.983499912 elk-9.2.12/examples/phonons-superconductivity/Al-DFPT/elk.in0000644002504400250440000000346414536061314025467 0ustar00dewhurstdewhurst00000000000000 ! Phonon spectrum and solving the Eliashberg equations to find the temperature- ! dependent superconducting gap. This uses density functional perturbation ! theory (DFPT) to calculate the phonon modes. ! You can submit the same phonon job (task=205) on as many machines as you like, ! but they must be be able to see the same directory. Each machine will compute ! a row of a particular dynamical matrix. The code assembles all the pieces to ! construct the dynamical and electron-phonon coupling matrices throughout the ! Brillouin zone. ! Example by Antonio Sanna. tasks 0 205 ! phonon q-point grid ngridq 4 4 4 ! add extra local-orbitals for accurate electron-phonon coupling nxlo 1 ngridk 8 8 8 ! larger smearing width required for stable phonon dispersion swidth 0.005 stype 1 ! increase the number of muffin-tin points (for accurate gradients) nrmtscf 1.5 ! uncomment the following lines for electron-phonon and Eliashberg calculations !ngridk ! 28 28 28 !tasks ! 1 : ground-state run ! 210 : phonon DOS ! 220 : phonon dispersion ! 240 : electron-phonon matrix elements ! 245 : phonon line-widths ! 250 : Eliashberg function, alpha^2F ! 260 : solving the Eliashberg equations ! number of temperature steps for Eliashberg calculation ntemp 80 ! use Broyden mixing mixtype 3 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 ! we use the LDA equilibrium lattice constant scale 3.7653 sppath '../../../species/' atoms 1 : nspecies 'Al.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 plot1d 4 200 : nvp1d, npp1d 0.0 0.0 0.0 : vlvp1d 0.5 0.5 0.0 1.0 0.0 0.0 0.5 0.0 0.0 elk-9.2.12/examples/phonons-superconductivity/PaxHeaders/Nb-supercell0000644000000000000000000000013214536061314023022 xustar0030 mtime=1702388428.985499909 30 atime=1702388428.984499911 30 ctime=1702388428.985499909 elk-9.2.12/examples/phonons-superconductivity/Nb-supercell/0000755002504400250440000000000014536061314025621 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/phonons-superconductivity/Nb-supercell/PaxHeaders/elk.in0000644000000000000000000000013214536061314024202 xustar0030 mtime=1702388428.985499909 30 atime=1702388428.985499909 30 ctime=1702388428.985499909 elk-9.2.12/examples/phonons-superconductivity/Nb-supercell/elk.in0000644002504400250440000000700514536061314026726 0ustar00dewhurstdewhurst00000000000000 ! Example of how to determine the electron-phonon coupling parameters and ! superconducting transition temperature T_c. ! Note that these calculations are very time-consuming and require many ! computers sharing a common directory to run efficiently. It is also important ! to make sure the results are converged with respect to the various input ! parameters and err on the side of caution. Electron-phonon coupling is still ! an experimental feature at this stage. ! Follow the steps below for niobium on a 4x4x4 q-point grid. This is a time- ! consuming example, so the main results are included in this directory. avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 ! LDA equilibrium lattice parameter scale 3.071 sppath '../../../species/' atoms 1 : nspecies 'Nb.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 ! use efficient Broyden mixing mixtype 3 ! larger smearing width required swidth 0.005 stype 1 !--------------------------------------------------------------------------! ! Step 1: Compute the dynamical matrices and potential derivatives ! !--------------------------------------------------------------------------! ! This step should be run on as many computers as possible which share the same ! directory on a networked file system - just keep submitting jobs to the queue ! from the same directory. As usual, each job can be individually parallel ! using OpenMP. ! The code works by determining which DYN_Qqqqq_qqqq_qqqq_Sss_Aaa_Pp.OUT files ! need to be calculated. These files contain a single row of a dynamical matrix. ! If a calculation fails to complete, just delete that particular DYN file and ! re-run the code. All the DYN files must be calculated before proceeding to the ! next step. tasks 200 ! the q-point grid ngridq 4 4 4 ! add extra local-orbitals for accurate electron-phonon coupling nxlo 1 ! larger cut-off required rgkmax 8.0 ! this is an important parameter which fixes the k-point density irrespective ! of the size of the phonon supercell radkpt 40.0 !-----------------------------------------------------------------------! ! Step 2: Phonon dispersion curves and electron-phonon coupling ! !-----------------------------------------------------------------------! ! This should be run on one computer. You can plot the dispersion curves in the ! file PHDISP.OUT along with lines corresponding to high symmetry points stored ! in PHDLINES.OUT. The phonon linewidths along the same directions are in the ! file PHLWIDTH.OUT (PHLWLINES.OUT). The electron-phonon coupling parameter, ! lambda, and the estimated T_c is stored in MCMILLAN.OUT. You can also plot the ! Eliashberg function in ALPHA2F.OUT. Compare with the results of Bauer et al. ! in PRB 57, 11276 (1998). ! Uncomment the tasks below and run. !tasks ! 0 ! ground-state run ! 220 ! plot the phonon dispersion ! 240 ! generate the q-dependent phonon linewidths and coupling constants ! 245 ! plot the phonon linewidths ! 250 ! Eliashberg function, coupling constant, and superconducting T_c ! fine k-point grid required for accurate electron-phonon coupling; it should ! also be commensurate with the q-point grid ngridk 32 32 32 ! vertex location lines for the dispersion curves and phonon linewidths plot1d 9 400 0.5 0.5 0.5 0.25 0.25 0.25 0.0 0.0 0.0 -0.5 0.5 0.5 -0.5 0.5 0.0 -0.75 0.25 0.25 -0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.0 elk-9.2.12/examples/phonons-superconductivity/PaxHeaders/Al-supercell0000644000000000000000000000013214536061314023017 xustar0030 mtime=1702388428.987499906 30 atime=1702388428.986499908 30 ctime=1702388428.987499906 elk-9.2.12/examples/phonons-superconductivity/Al-supercell/0000755002504400250440000000000014536061314025616 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/phonons-superconductivity/Al-supercell/PaxHeaders/elk.in0000644000000000000000000000013214536061314024177 xustar0030 mtime=1702388428.988499905 30 atime=1702388428.988499905 30 ctime=1702388428.988499905 elk-9.2.12/examples/phonons-superconductivity/Al-supercell/elk.in0000644002504400250440000000354714536061314026732 0ustar00dewhurstdewhurst00000000000000 ! Phonon spectrum and solving the Eliashberg equations to find the temperature- ! dependent superconducting gap. This example uses finite displacements and a ! supercell to determine the phonon modes. ! You can submit the same phonon job (task=200) on as many machines as you like, ! but they must be be able to see the same directory. Each machine will compute ! a row of a particular dynamical matrix. The code assembles all the pieces to ! construct the dynamical and electron-phonon coupling matrices throughout the ! Brillouin zone. ! Example by Antonio Sanna. tasks 200 ! phonon q-point grid ngridq 4 4 4 ! add extra local-orbitals for accurate electron-phonon coupling nxlo 1 swidth 0.005 stype 1 ! uncomment the following lines for electron-phonon and Eliashberg calculations !tasks ! 0 : ground-state run ! 210 : phonon DOS ! 220 : phonon dispersion ! 240 : electron-phonon matrix elements ! 245 : phonon line-widths ! 250 : Eliashberg function, alpha^2F ! 260 : solving the Eliashberg equations ! number of temperature steps for Eliashberg calculation ntemp 80 ! k-point grid density is determined by the radius radkpt ! (only used for the phonon calculation) radkpt 40.0 ! fine k-point mesh required for the electron-phonon coupling (must be ! commensurate with q-point mesh) ngridk 24 24 24 ! use Broyden mixing mixtype 3 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 ! we use the LDA equilibrium lattice constant scale 3.7653 sppath '../../../species/' atoms 1 : nspecies 'Al.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 plot1d 4 200 : nvp1d, npp1d 0.0 0.0 0.0 : vlvp1d 0.5 0.5 0.0 1.0 0.0 0.0 0.5 0.0 0.0 elk-9.2.12/examples/phonons-superconductivity/PaxHeaders/Ni-supercell0000644000000000000000000000013214536061314023031 xustar0030 mtime=1702388428.993499897 30 atime=1702388428.988499905 30 ctime=1702388428.993499897 elk-9.2.12/examples/phonons-superconductivity/Ni-supercell/0000755002504400250440000000000014536061314025630 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/phonons-superconductivity/Ni-supercell/PaxHeaders/PHDISP.OUT0000644000000000000000000000013214536061314024466 xustar0030 mtime=1702388428.990499902 30 atime=1702388428.990499902 30 ctime=1702388428.990499902 elk-9.2.12/examples/phonons-superconductivity/Ni-supercell/PHDISP.OUT0000644002504400250440000012660214536061314027217 0ustar00dewhurstdewhurst00000000000000 0.000000000 -0.3394132962E-10 0.1025457845E-01 0.1888579557E-04 0.2050915690E-01 0.3774855680E-04 0.3076373535E-01 0.5656537833E-04 0.4101831380E-01 0.7531361194E-04 0.5127289224E-01 0.9397099299E-04 0.6152747069E-01 0.1125157644E-03 0.7178204914E-01 0.1309267971E-03 0.8203662759E-01 0.1491837067E-03 0.9229120604E-01 0.1672669646E-03 0.1025457845 0.1851580040E-03 0.1128003629 0.2028393184E-03 0.1230549414 0.2202945538E-03 0.1333095198 0.2375085924E-03 0.1435640983 0.2544676267E-03 0.1538186767 0.2711592258E-03 0.1640732552 0.2875723900E-03 0.1743278336 0.3036975955E-03 0.1845824121 0.3195268278E-03 0.1948369905 0.3350536033E-03 0.2050915690 0.3502729785E-03 0.2153461474 0.3651815471E-03 0.2256007259 0.3797774247E-03 0.2358553043 0.3940602199E-03 0.2461098828 0.4080309931E-03 0.2563644612 0.4216922031E-03 0.2666190397 0.4350476401E-03 0.2768736181 0.4481023480E-03 0.2871281966 0.4608625340E-03 0.2973827750 0.4733354689E-03 0.3076373535 0.4855293761E-03 0.3178919319 0.4974533127E-03 0.3281465104 0.5091170432E-03 0.3384010888 0.5205309060E-03 0.3486556673 0.5317056765E-03 0.3589102457 0.5426524259E-03 0.3691648242 0.5533823796E-03 0.3794194026 0.5639067756E-03 0.3896739811 0.5742367252E-03 0.3999285595 0.5843830783E-03 0.4101831380 0.5943562938E-03 0.4204377164 0.6041663188E-03 0.4306922949 0.6138224763E-03 0.4409468733 0.6233333642E-03 0.4512014517 0.6327067665E-03 0.4614560302 0.6419495770E-03 0.4717106086 0.6510677385E-03 0.4819651871 0.6600661954E-03 0.4922197655 0.6689488615E-03 0.5024743440 0.6777186039E-03 0.5127289224 0.6863772404E-03 0.5229835009 0.6949255519E-03 0.5332380793 0.7033633083E-03 0.5434926578 0.7116893071E-03 0.5537472362 0.7199014233E-03 0.5640018147 0.7279966696E-03 0.5742563931 0.7359712654E-03 0.5845109716 0.7438207130E-03 0.5947655500 0.7515398791E-03 0.6050201285 0.7591230814E-03 0.6152747069 0.7665641761E-03 0.6255292854 0.7738566482E-03 0.6357838638 0.7809936999E-03 0.6460384423 0.7879683377E-03 0.6562930207 0.7947734566E-03 0.6665475992 0.8014019204E-03 0.6768021776 0.8078466355E-03 0.6870567561 0.8141006205E-03 0.6973113345 0.8201570684E-03 0.7075659130 0.8260094010E-03 0.7178204914 0.8316513171E-03 0.7280750699 0.8370768322E-03 0.7383296483 0.8422803105E-03 0.7485842268 0.8472564895E-03 0.7588388052 0.8520004965E-03 0.7690933837 0.8565078592E-03 0.7793479621 0.8607745077E-03 0.7896025406 0.8647967719E-03 0.7998571190 0.8685713725E-03 0.8101116975 0.8720954070E-03 0.8203662759 0.8753663316E-03 0.8306208544 0.8783819399E-03 0.8408754328 0.8811403384E-03 0.8511300113 0.8836399205E-03 0.8613845897 0.8858793394E-03 0.8716391682 0.8878574806E-03 0.8818937466 0.8895734352E-03 0.8921483250 0.8910264741E-03 0.9024029035 0.8922160243E-03 0.9126574819 0.8931416479E-03 0.9229120604 0.8938030241E-03 0.9331666388 0.8941999341E-03 0.9434212173 0.8943322513E-03 0.9434212173 0.8943322513E-03 0.9535655315 0.8943189294E-03 0.9637098456 0.8942790429E-03 0.9738541598 0.8942128294E-03 0.9839984740 0.8941206825E-03 0.9941427881 0.8940031484E-03 1.004287102 0.8938609212E-03 1.014431416 0.8936948370E-03 1.024575731 0.8935058665E-03 1.034720045 0.8932951070E-03 1.044864359 0.8930637731E-03 1.055008673 0.8928131868E-03 1.065152987 0.8925447664E-03 1.075297301 0.8922600150E-03 1.085441616 0.8919605092E-03 1.095585930 0.8916478862E-03 1.105730244 0.8913238320E-03 1.115874558 0.8909900687E-03 1.126018872 0.8906483419E-03 1.136163186 0.8903004094E-03 1.146307501 0.8899480289E-03 1.156451815 0.8895929470E-03 1.166596129 0.8892368888E-03 1.176740443 0.8888815480E-03 1.186884757 0.8885285774E-03 1.197029071 0.8881795816E-03 1.207173386 0.8878361087E-03 1.217317700 0.8874996447E-03 1.227462014 0.8871716080E-03 1.237606328 0.8868533448E-03 1.247750642 0.8865461255E-03 1.257894956 0.8862511429E-03 1.268039271 0.8859695098E-03 1.278183585 0.8857022585E-03 1.288327899 0.8854503408E-03 1.298472213 0.8852146283E-03 1.308616527 0.8849959136E-03 1.318760841 0.8847949122E-03 1.328905156 0.8846122641E-03 1.339049470 0.8844485359E-03 1.349193784 0.8843042235E-03 1.359338098 0.8841797544E-03 1.369482412 0.8840754898E-03 1.379626726 0.8839917270E-03 1.389771041 0.8839287014E-03 1.399915355 0.8838865878E-03 1.410059669 0.8838655021E-03 1.420203983 0.8838655021E-03 1.430348297 0.8838865878E-03 1.440492611 0.8839287014E-03 1.450636926 0.8839917270E-03 1.460781240 0.8840754898E-03 1.470925554 0.8841797544E-03 1.481069868 0.8843042235E-03 1.491214182 0.8844485359E-03 1.501358496 0.8846122641E-03 1.511502811 0.8847949122E-03 1.521647125 0.8849959136E-03 1.531791439 0.8852146283E-03 1.541935753 0.8854503408E-03 1.552080067 0.8857022585E-03 1.562224381 0.8859695098E-03 1.572368695 0.8862511429E-03 1.582513010 0.8865461255E-03 1.592657324 0.8868533448E-03 1.602801638 0.8871716080E-03 1.612945952 0.8874996447E-03 1.623090266 0.8878361087E-03 1.633234580 0.8881795816E-03 1.643378895 0.8885285774E-03 1.653523209 0.8888815480E-03 1.663667523 0.8892368888E-03 1.673811837 0.8895929470E-03 1.683956151 0.8899480289E-03 1.694100465 0.8903004094E-03 1.704244780 0.8906483419E-03 1.714389094 0.8909900687E-03 1.724533408 0.8913238320E-03 1.734677722 0.8916478862E-03 1.744822036 0.8919605092E-03 1.754966350 0.8922600150E-03 1.765110665 0.8925447664E-03 1.775254979 0.8928131868E-03 1.785399293 0.8930637731E-03 1.795543607 0.8932951070E-03 1.805687921 0.8935058665E-03 1.815832235 0.8936948370E-03 1.825976550 0.8938609212E-03 1.836120864 0.8940031484E-03 1.846265178 0.8941206825E-03 1.856409492 0.8942128294E-03 1.866553806 0.8942790429E-03 1.876698120 0.8943189294E-03 1.886842435 0.8943322513E-03 1.886842435 0.8943322513E-03 1.897027160 0.8942714923E-03 1.907211886 0.8940892138E-03 1.917396612 0.8937854115E-03 1.927581338 0.8933600781E-03 1.937766064 0.8928132038E-03 1.947950789 0.8921447763E-03 1.958135515 0.8913547813E-03 1.968320241 0.8904432028E-03 1.978504967 0.8894100234E-03 1.988689693 0.8882552249E-03 1.998874418 0.8869787889E-03 2.009059144 0.8855806975E-03 2.019243870 0.8840609337E-03 2.029428596 0.8824194822E-03 2.039613322 0.8806563305E-03 2.049798047 0.8787714693E-03 2.059982773 0.8767648936E-03 2.070167499 0.8746366036E-03 2.080352225 0.8723866054E-03 2.090536951 0.8700149124E-03 2.100721677 0.8675215461E-03 2.110906402 0.8649065370E-03 2.121091128 0.8621699258E-03 2.131275854 0.8593117646E-03 2.141460580 0.8563321177E-03 2.151645306 0.8532310632E-03 2.161830031 0.8500086935E-03 2.172014757 0.8466651168E-03 2.182199483 0.8432004582E-03 2.192384209 0.8396148606E-03 2.202568935 0.8359084861E-03 2.212753660 0.8320815168E-03 2.222938386 0.8281341562E-03 2.233123112 0.8240666297E-03 2.243307838 0.8198791865E-03 2.253492564 0.8155720995E-03 2.263677289 0.8111456673E-03 2.273862015 0.8066002143E-03 2.284046741 0.8019360923E-03 2.294231467 0.7971536806E-03 2.304416193 0.7922533876E-03 2.314600918 0.7872356508E-03 2.324785644 0.7821009381E-03 2.334970370 0.7768497481E-03 2.345155096 0.7714826107E-03 2.355339822 0.7660000880E-03 2.365524547 0.7604027742E-03 2.375709273 0.7546912965E-03 2.385893999 0.7488663152E-03 2.396078725 0.7429285241E-03 2.406263451 0.7368786507E-03 2.416448176 0.7307174561E-03 2.426632902 0.7244457358E-03 2.436817628 0.7180643188E-03 2.447002354 0.7115740682E-03 2.457187080 0.7049758810E-03 2.467371806 0.6982706876E-03 2.477556531 0.6914594519E-03 2.487741257 0.6845431709E-03 2.497925983 0.6775228742E-03 2.508110709 0.6703996238E-03 2.518295435 0.6631745133E-03 2.528480160 0.6558486676E-03 2.538664886 0.6484232422E-03 2.548849612 0.6408994224E-03 2.559034338 0.6332784229E-03 2.569219064 0.6255614865E-03 2.579403789 0.6177498837E-03 2.589588515 0.6098449118E-03 2.599773241 0.6018478937E-03 2.609957967 0.5937601772E-03 2.620142693 0.5855831337E-03 2.630327418 0.5773181576E-03 2.640512144 0.5689666647E-03 2.650696870 0.5605300915E-03 2.660881596 0.5520098939E-03 2.671066322 0.5434075462E-03 2.681251047 0.5347245395E-03 2.691435773 0.5259623811E-03 2.701620499 0.5171225929E-03 2.711805225 0.5082067102E-03 2.721989951 0.4992162808E-03 2.732174676 0.4901528635E-03 2.742359402 0.4810180267E-03 2.752544128 0.4718133480E-03 2.762728854 0.4625404119E-03 2.772913580 0.4532008097E-03 2.783098305 0.4437961373E-03 2.793283031 0.4343279951E-03 2.803467757 0.4247979860E-03 2.813652483 0.4152077148E-03 2.823837209 0.4055587871E-03 2.834021935 0.3958528081E-03 2.844206660 0.3860913817E-03 2.854391386 0.3762761096E-03 2.864576112 0.3664085904E-03 2.874760838 0.3564904186E-03 2.884945564 0.3465231840E-03 2.895130289 0.3365084707E-03 2.905315015 0.3264478566E-03 2.915499741 0.3163429126E-03 2.925684467 0.3061952021E-03 2.935869193 0.2960062803E-03 2.946053918 0.2857776941E-03 2.956238644 0.2755109810E-03 2.966423370 0.2652076694E-03 2.976608096 0.2548692780E-03 2.986792822 0.2444973154E-03 2.996977547 0.2340932802E-03 3.007162273 0.2236586608E-03 3.017346999 0.2131949351E-03 3.027531725 0.2027035709E-03 3.037716451 0.1921860256E-03 3.047901176 0.1816437465E-03 3.058085902 0.1710781707E-03 3.068270628 0.1604907259E-03 3.078455354 0.1498828301E-03 3.088640080 0.1392558919E-03 3.098824805 0.1286113115E-03 3.109009531 0.1179504805E-03 3.119194257 0.1072747825E-03 3.129378983 0.9658559397E-04 3.139563709 0.8588428426E-04 3.149748434 0.7517221653E-04 3.159933160 0.6445074829E-04 3.170117886 0.5372123199E-04 3.180302612 0.4298501573E-04 3.190487338 0.3224344396E-04 3.200672064 0.2149785816E-04 3.210856789 0.1074959759E-04 3.221041515 -0.3394132962E-10 3.221041515 -0.3394132962E-10 3.231254349 0.1251907998E-04 3.241467184 0.2503301127E-04 3.251680018 0.3753664830E-04 3.261892852 0.5002485164E-04 3.272105686 0.6249249112E-04 3.282318521 0.7493444889E-04 3.292531355 0.8734562243E-04 3.302744189 0.9972092760E-04 3.312957023 0.1120553016E-03 3.323169858 0.1243437059E-03 3.333382692 0.1365811293E-03 3.343595526 0.1487625906E-03 3.353808360 0.1608831416E-03 3.364021195 0.1729378697E-03 3.374234029 0.1849219007E-03 3.384446863 0.1968304017E-03 3.394659698 0.2086585833E-03 3.404872532 0.2204017022E-03 3.415085366 0.2320550641E-03 3.425298200 0.2436140256E-03 3.435511035 0.2550739966E-03 3.445723869 0.2664304427E-03 3.455936703 0.2776788874E-03 3.466149537 0.2888149139E-03 3.476362372 0.2998341673E-03 3.486575206 0.3107323565E-03 3.496788040 0.3215052559E-03 3.507000874 0.3321487071E-03 3.517213709 0.3426586210E-03 3.527426543 0.3530309784E-03 3.537639377 0.3632618324E-03 3.547852211 0.3733473094E-03 3.558065046 0.3832836099E-03 3.568277880 0.3930670107E-03 3.578490714 0.4026938649E-03 3.588703548 0.4121606035E-03 3.598916383 0.4214637363E-03 3.609129217 0.4305998523E-03 3.619342051 0.4395656210E-03 3.629554885 0.4483577925E-03 3.639767720 0.4569731982E-03 3.649980554 0.4654087515E-03 3.660193388 0.4736614481E-03 3.670406222 0.4817283658E-03 3.680619057 0.4896066656E-03 3.690831891 0.4972935913E-03 3.701044725 0.5047864695E-03 3.711257560 0.5120827101E-03 3.721470394 0.5191798058E-03 3.731683228 0.5260753323E-03 3.741896062 0.5327669482E-03 3.752108897 0.5392523944E-03 3.762321731 0.5455294943E-03 3.772534565 0.5515961533E-03 3.782747399 0.5574503584E-03 3.792960234 0.5630901781E-03 3.803173068 0.5685137617E-03 3.813385902 0.5737193393E-03 3.823598736 0.5787052206E-03 3.833811571 0.5834697955E-03 3.844024405 0.5880115327E-03 3.854237239 0.5923289796E-03 3.864450073 0.5964207619E-03 3.874662908 0.6002855831E-03 3.884875742 0.6039222236E-03 3.895088576 0.6073295407E-03 3.905301410 0.6105064680E-03 3.915514245 0.6134520149E-03 3.925727079 0.6161652659E-03 3.935939913 0.6186453809E-03 3.946152747 0.6208915938E-03 3.956365582 0.6229032129E-03 3.966578416 0.6246796205E-03 3.976791250 0.6262202719E-03 3.987004084 0.6275246960E-03 3.997216919 0.6285924945E-03 4.007429753 0.6294233417E-03 4.017642587 0.6300169847E-03 4.027855422 0.6303732426E-03 4.038068256 0.6304920073E-03 0.000000000 -0.3394132962E-10 0.1025457845E-01 0.1888579557E-04 0.2050915690E-01 0.3774855680E-04 0.3076373535E-01 0.5656537833E-04 0.4101831380E-01 0.7531361194E-04 0.5127289224E-01 0.9397099299E-04 0.6152747069E-01 0.1125157644E-03 0.7178204914E-01 0.1309267971E-03 0.8203662759E-01 0.1491837067E-03 0.9229120604E-01 0.1672669646E-03 0.1025457845 0.1851580040E-03 0.1128003629 0.2028393184E-03 0.1230549414 0.2202945538E-03 0.1333095198 0.2375085924E-03 0.1435640983 0.2544676267E-03 0.1538186767 0.2711592258E-03 0.1640732552 0.2875723900E-03 0.1743278336 0.3036975955E-03 0.1845824121 0.3195268278E-03 0.1948369905 0.3350536033E-03 0.2050915690 0.3502729785E-03 0.2153461474 0.3651815471E-03 0.2256007259 0.3797774247E-03 0.2358553043 0.3940602199E-03 0.2461098828 0.4080309931E-03 0.2563644612 0.4216922031E-03 0.2666190397 0.4350476401E-03 0.2768736181 0.4481023480E-03 0.2871281966 0.4608625340E-03 0.2973827750 0.4733354689E-03 0.3076373535 0.4855293761E-03 0.3178919319 0.4974533127E-03 0.3281465104 0.5091170432E-03 0.3384010888 0.5205309060E-03 0.3486556673 0.5317056765E-03 0.3589102457 0.5426524259E-03 0.3691648242 0.5533823796E-03 0.3794194026 0.5639067756E-03 0.3896739811 0.5742367252E-03 0.3999285595 0.5843830783E-03 0.4101831380 0.5943562938E-03 0.4204377164 0.6041663188E-03 0.4306922949 0.6138224763E-03 0.4409468733 0.6233333642E-03 0.4512014517 0.6327067665E-03 0.4614560302 0.6419495770E-03 0.4717106086 0.6510677385E-03 0.4819651871 0.6600661954E-03 0.4922197655 0.6689488615E-03 0.5024743440 0.6777186039E-03 0.5127289224 0.6863772404E-03 0.5229835009 0.6949255519E-03 0.5332380793 0.7033633083E-03 0.5434926578 0.7116893071E-03 0.5537472362 0.7199014233E-03 0.5640018147 0.7279966696E-03 0.5742563931 0.7359712654E-03 0.5845109716 0.7438207130E-03 0.5947655500 0.7515398791E-03 0.6050201285 0.7591230814E-03 0.6152747069 0.7665641761E-03 0.6255292854 0.7738566482E-03 0.6357838638 0.7809936999E-03 0.6460384423 0.7879683377E-03 0.6562930207 0.7947734566E-03 0.6665475992 0.8014019204E-03 0.6768021776 0.8078466355E-03 0.6870567561 0.8141006205E-03 0.6973113345 0.8201570684E-03 0.7075659130 0.8260094010E-03 0.7178204914 0.8316513171E-03 0.7280750699 0.8370768322E-03 0.7383296483 0.8422803105E-03 0.7485842268 0.8472564895E-03 0.7588388052 0.8520004965E-03 0.7690933837 0.8565078592E-03 0.7793479621 0.8607745077E-03 0.7896025406 0.8647967719E-03 0.7998571190 0.8685713725E-03 0.8101116975 0.8720954070E-03 0.8203662759 0.8753663316E-03 0.8306208544 0.8783819399E-03 0.8408754328 0.8811403384E-03 0.8511300113 0.8836399205E-03 0.8613845897 0.8858793394E-03 0.8716391682 0.8878574806E-03 0.8818937466 0.8895734352E-03 0.8921483250 0.8910264741E-03 0.9024029035 0.8922160243E-03 0.9126574819 0.8931416479E-03 0.9229120604 0.8938030241E-03 0.9331666388 0.8941999341E-03 0.9434212173 0.8943322513E-03 0.9434212173 0.8943322513E-03 0.9535655315 0.8944054692E-03 0.9637098456 0.8946248999E-03 0.9738541598 0.8949898793E-03 0.9839984740 0.8954993181E-03 0.9941427881 0.8961517261E-03 1.004287102 0.8969452468E-03 1.014431416 0.8978776996E-03 1.024575731 0.8989466297E-03 1.034720045 0.9001493625E-03 1.044864359 0.9014830646E-03 1.055008673 0.9029448051E-03 1.065152987 0.9045316205E-03 1.075297301 0.9062405774E-03 1.085441616 0.9080688342E-03 1.095585930 0.9100136988E-03 1.105730244 0.9120726809E-03 1.115874558 0.9142435382E-03 1.126018872 0.9165243144E-03 1.136163186 0.9189133681E-03 1.146307501 0.9214093923E-03 1.156451815 0.9240114232E-03 1.166596129 0.9267188376E-03 1.176740443 0.9295313399E-03 1.186884757 0.9324489374E-03 1.197029071 0.9354719049E-03 1.207173386 0.9386007387E-03 1.217317700 0.9418361018E-03 1.227462014 0.9451787596E-03 1.237606328 0.9486295090E-03 1.247750642 0.9521891010E-03 1.257894956 0.9558581595E-03 1.268039271 0.9596370964E-03 1.278183585 0.9635260269E-03 1.288327899 0.9675246846E-03 1.298472213 0.9716323399E-03 1.308616527 0.9758477226E-03 1.318760841 0.9801689507E-03 1.328905156 0.9845934676E-03 1.339049470 0.9891179870E-03 1.349193784 0.9937384508E-03 1.359338098 0.9984499962E-03 1.369482412 0.1003246937E-02 1.379626726 0.1008122758E-02 1.389771041 0.1013070122E-02 1.399915355 0.1018080888E-02 1.410059669 0.1023146150E-02 1.420203983 0.1023146150E-02 1.430348297 0.1018080888E-02 1.440492611 0.1013070122E-02 1.450636926 0.1008122758E-02 1.460781240 0.1003246937E-02 1.470925554 0.9984499962E-03 1.481069868 0.9937384508E-03 1.491214182 0.9891179870E-03 1.501358496 0.9845934676E-03 1.511502811 0.9801689507E-03 1.521647125 0.9758477226E-03 1.531791439 0.9716323399E-03 1.541935753 0.9675246846E-03 1.552080067 0.9635260269E-03 1.562224381 0.9596370964E-03 1.572368695 0.9558581595E-03 1.582513010 0.9521891010E-03 1.592657324 0.9486295090E-03 1.602801638 0.9451787596E-03 1.612945952 0.9418361018E-03 1.623090266 0.9386007387E-03 1.633234580 0.9354719049E-03 1.643378895 0.9324489374E-03 1.653523209 0.9295313399E-03 1.663667523 0.9267188376E-03 1.673811837 0.9240114232E-03 1.683956151 0.9214093923E-03 1.694100465 0.9189133681E-03 1.704244780 0.9165243144E-03 1.714389094 0.9142435382E-03 1.724533408 0.9120726809E-03 1.734677722 0.9100136988E-03 1.744822036 0.9080688342E-03 1.754966350 0.9062405774E-03 1.765110665 0.9045316205E-03 1.775254979 0.9029448051E-03 1.785399293 0.9014830646E-03 1.795543607 0.9001493625E-03 1.805687921 0.8989466297E-03 1.815832235 0.8978776996E-03 1.825976550 0.8969452468E-03 1.836120864 0.8961517261E-03 1.846265178 0.8954993181E-03 1.856409492 0.8949898793E-03 1.866553806 0.8946248999E-03 1.876698120 0.8944054692E-03 1.886842435 0.8943322513E-03 1.886842435 0.8943322513E-03 1.897027160 0.8944779425E-03 1.907211886 0.8949145542E-03 1.917396612 0.8956407038E-03 1.927581338 0.8966540951E-03 1.937766064 0.8979515299E-03 1.947950789 0.8995289250E-03 1.958135515 0.9013813328E-03 1.968320241 0.9035029662E-03 1.978504967 0.9058872268E-03 1.988689693 0.9085267373E-03 1.998874418 0.9114133755E-03 2.009059144 0.9145383121E-03 2.019243870 0.9178920491E-03 2.029428596 0.9214644611E-03 2.039613322 0.9252448367E-03 2.049798047 0.9292219212E-03 2.059982773 0.9333839594E-03 2.070167499 0.9377187382E-03 2.080352225 0.9422136294E-03 2.090536951 0.9468556309E-03 2.100721677 0.9516314077E-03 2.110906402 0.9565273315E-03 2.121091128 0.9615295191E-03 2.131275854 0.9666238685E-03 2.141460580 0.9717960949E-03 2.151645306 0.9770317636E-03 2.161830031 0.9823163220E-03 2.172014757 0.9876351296E-03 2.182199483 0.9929734861E-03 2.192384209 0.9983166583E-03 2.202568935 0.1003649905E-02 2.212753660 0.1008958500E-02 2.222938386 0.1014227755E-02 2.233123112 0.1019443037E-02 2.243307838 0.1024589794E-02 2.253492564 0.1029653563E-02 2.263677289 0.1034619997E-02 2.273862015 0.1039474872E-02 2.284046741 0.1044204106E-02 2.294231467 0.1048793774E-02 2.304416193 0.1045990072E-02 2.314600918 0.1040269913E-02 2.324785644 0.1034413404E-02 2.334970370 0.1028420353E-02 2.345155096 0.1022290545E-02 2.355339822 0.1016023740E-02 2.365524547 0.1009619677E-02 2.375709273 0.1003078071E-02 2.385893999 0.9963986186E-03 2.396078725 0.9895809965E-03 2.406263451 0.9826248638E-03 2.416448176 0.9755298640E-03 2.426632902 0.9682956267E-03 2.436817628 0.9609217697E-03 2.447002354 0.9534079015E-03 2.457187080 0.9457536233E-03 2.467371806 0.9379585316E-03 2.477556531 0.9300222213E-03 2.487741257 0.9219442879E-03 2.497925983 0.9137243310E-03 2.508110709 0.9053619571E-03 2.518295435 0.8968567825E-03 2.528480160 0.8882084372E-03 2.538664886 0.8794165676E-03 2.548849612 0.8704808404E-03 2.559034338 0.8614009459E-03 2.569219064 0.8521766016E-03 2.579403789 0.8428075556E-03 2.589588515 0.8332935905E-03 2.599773241 0.8236345270E-03 2.609957967 0.8138302273E-03 2.620142693 0.8038805990E-03 2.630327418 0.7937855988E-03 2.640512144 0.7835452358E-03 2.650696870 0.7731595754E-03 2.660881596 0.7626287425E-03 2.671066322 0.7519529251E-03 2.681251047 0.7411323779E-03 2.691435773 0.7301674251E-03 2.701620499 0.7190584642E-03 2.711805225 0.7078059685E-03 2.721989951 0.6964104906E-03 2.732174676 0.6848726647E-03 2.742359402 0.6731932099E-03 2.752544128 0.6613729324E-03 2.762728854 0.6494127281E-03 2.772913580 0.6373135847E-03 2.783098305 0.6250765839E-03 2.793283031 0.6127029034E-03 2.803467757 0.6001938185E-03 2.813652483 0.5875507037E-03 2.823837209 0.5747750341E-03 2.834021935 0.5618683866E-03 2.844206660 0.5488324408E-03 2.854391386 0.5356689799E-03 2.864576112 0.5223798911E-03 2.874760838 0.5089671659E-03 2.884945564 0.4954329007E-03 2.895130289 0.4817792962E-03 2.905315015 0.4680086575E-03 2.915499741 0.4541233932E-03 2.925684467 0.4401260154E-03 2.935869193 0.4260191380E-03 2.946053918 0.4118054762E-03 2.956238644 0.3974878449E-03 2.966423370 0.3830691570E-03 2.976608096 0.3685524224E-03 2.986792822 0.3539407451E-03 2.996977547 0.3392373218E-03 3.007162273 0.3244454393E-03 3.017346999 0.3095684721E-03 3.027531725 0.2946098798E-03 3.037716451 0.2795732040E-03 3.047901176 0.2644620656E-03 3.058085902 0.2492801614E-03 3.068270628 0.2340312610E-03 3.078455354 0.2187192030E-03 3.088640080 0.2033478918E-03 3.098824805 0.1879212934E-03 3.109009531 0.1724434319E-03 3.119194257 0.1569183854E-03 3.129378983 0.1413502816E-03 3.139563709 0.1257432943E-03 3.149748434 0.1101016382E-03 3.159933160 0.9442956517E-04 3.170117886 0.7873135965E-04 3.180302612 0.6301133401E-04 3.190487338 0.4727382404E-04 3.200672064 0.3152318433E-04 3.210856789 0.1576378360E-04 3.221041515 -0.3394132962E-10 3.221041515 -0.3394132962E-10 3.231254349 0.1251907998E-04 3.241467184 0.2503301127E-04 3.251680018 0.3753664830E-04 3.261892852 0.5002485164E-04 3.272105686 0.6249249112E-04 3.282318521 0.7493444889E-04 3.292531355 0.8734562243E-04 3.302744189 0.9972092760E-04 3.312957023 0.1120553016E-03 3.323169858 0.1243437059E-03 3.333382692 0.1365811293E-03 3.343595526 0.1487625906E-03 3.353808360 0.1608831416E-03 3.364021195 0.1729378697E-03 3.374234029 0.1849219007E-03 3.384446863 0.1968304017E-03 3.394659698 0.2086585833E-03 3.404872532 0.2204017022E-03 3.415085366 0.2320550641E-03 3.425298200 0.2436140256E-03 3.435511035 0.2550739966E-03 3.445723869 0.2664304427E-03 3.455936703 0.2776788874E-03 3.466149537 0.2888149139E-03 3.476362372 0.2998341673E-03 3.486575206 0.3107323565E-03 3.496788040 0.3215052559E-03 3.507000874 0.3321487071E-03 3.517213709 0.3426586210E-03 3.527426543 0.3530309784E-03 3.537639377 0.3632618324E-03 3.547852211 0.3733473094E-03 3.558065046 0.3832836099E-03 3.568277880 0.3930670107E-03 3.578490714 0.4026938649E-03 3.588703548 0.4121606035E-03 3.598916383 0.4214637363E-03 3.609129217 0.4305998523E-03 3.619342051 0.4395656210E-03 3.629554885 0.4483577925E-03 3.639767720 0.4569731982E-03 3.649980554 0.4654087515E-03 3.660193388 0.4736614481E-03 3.670406222 0.4817283658E-03 3.680619057 0.4896066656E-03 3.690831891 0.4972935913E-03 3.701044725 0.5047864695E-03 3.711257560 0.5120827101E-03 3.721470394 0.5191798058E-03 3.731683228 0.5260753323E-03 3.741896062 0.5327669482E-03 3.752108897 0.5392523944E-03 3.762321731 0.5455294943E-03 3.772534565 0.5515961533E-03 3.782747399 0.5574503584E-03 3.792960234 0.5630901781E-03 3.803173068 0.5685137617E-03 3.813385902 0.5737193393E-03 3.823598736 0.5787052206E-03 3.833811571 0.5834697955E-03 3.844024405 0.5880115327E-03 3.854237239 0.5923289796E-03 3.864450073 0.5964207619E-03 3.874662908 0.6002855831E-03 3.884875742 0.6039222236E-03 3.895088576 0.6073295407E-03 3.905301410 0.6105064680E-03 3.915514245 0.6134520149E-03 3.925727079 0.6161652659E-03 3.935939913 0.6186453809E-03 3.946152747 0.6208915938E-03 3.956365582 0.6229032129E-03 3.966578416 0.6246796205E-03 3.976791250 0.6262202719E-03 3.987004084 0.6275246960E-03 3.997216919 0.6285924945E-03 4.007429753 0.6294233417E-03 4.017642587 0.6300169847E-03 4.027855422 0.6303732426E-03 4.038068256 0.6304920073E-03 0.000000000 -0.3394132962E-10 0.1025457845E-01 0.2450379401E-04 0.2050915690E-01 0.4899861705E-04 0.3076373535E-01 0.7347543114E-04 0.4101831380E-01 0.9792506537E-04 0.5127289224E-01 0.1223381526E-03 0.6152747069E-01 0.1467050695E-03 0.7178204914E-01 0.1710158815E-03 0.8203662759E-01 0.1952602932E-03 0.9229120604E-01 0.2194276058E-03 0.1025457845 0.2435066815E-03 0.1128003629 0.2674859161E-03 0.1230549414 0.2913532211E-03 0.1333095198 0.3150960143E-03 0.1435640983 0.3387012196E-03 0.1538186767 0.3621552779E-03 0.1640732552 0.3854441659E-03 0.1743278336 0.4085534262E-03 0.1845824121 0.4314682057E-03 0.1948369905 0.4541733035E-03 0.2050915690 0.4766532275E-03 0.2153461474 0.4988922587E-03 0.2256007259 0.5208745227E-03 0.2358553043 0.5425840684E-03 0.2461098828 0.5640049515E-03 0.2563644612 0.5851213237E-03 0.2666190397 0.6059175246E-03 0.2768736181 0.6263781778E-03 0.2871281966 0.6464882872E-03 0.2973827750 0.6662333351E-03 0.3076373535 0.6855993795E-03 0.3178919319 0.7045731495E-03 0.3281465104 0.7231421390E-03 0.3384010888 0.7412946957E-03 0.3486556673 0.7590201062E-03 0.3589102457 0.7763086753E-03 0.3691648242 0.7931517980E-03 0.3794194026 0.8095420252E-03 0.3896739811 0.8254731193E-03 0.3999285595 0.8409401027E-03 0.4101831380 0.8559392943E-03 0.4204377164 0.8704683376E-03 0.4306922949 0.8845262160E-03 0.4409468733 0.8981132578E-03 0.4512014517 0.9112311295E-03 0.4614560302 0.9238828164E-03 0.4717106086 0.9360725923E-03 0.4819651871 0.9478059764E-03 0.4922197655 0.9590896794E-03 0.5024743440 0.9699315373E-03 0.5127289224 0.9803404355E-03 0.5229835009 0.9903262219E-03 0.5332380793 0.9998996109E-03 0.5434926578 0.1009072079E-02 0.5537472362 0.1017855753E-02 0.5640018147 0.1026263293E-02 0.5742563931 0.1034307769E-02 0.5845109716 0.1042002534E-02 0.5947655500 0.1049361099E-02 0.6050201285 0.1056397002E-02 0.6152747069 0.1063123686E-02 0.6255292854 0.1069554372E-02 0.6357838638 0.1075701942E-02 0.6460384423 0.1081578828E-02 0.6562930207 0.1087196909E-02 0.6665475992 0.1092567415E-02 0.6768021776 0.1097700846E-02 0.6870567561 0.1102606900E-02 0.6973113345 0.1107294416E-02 0.7075659130 0.1111771327E-02 0.7178204914 0.1116044632E-02 0.7280750699 0.1120120383E-02 0.7383296483 0.1124003677E-02 0.7485842268 0.1127698678E-02 0.7588388052 0.1131208635E-02 0.7690933837 0.1134535931E-02 0.7793479621 0.1137682128E-02 0.7896025406 0.1140648033E-02 0.7998571190 0.1143433770E-02 0.8101116975 0.1146038859E-02 0.8203662759 0.1148462305E-02 0.8306208544 0.1150702684E-02 0.8408754328 0.1152758244E-02 0.8511300113 0.1154626990E-02 0.8613845897 0.1156306784E-02 0.8716391682 0.1157795435E-02 0.8818937466 0.1159090782E-02 0.8921483250 0.1160190776E-02 0.9024029035 0.1161093552E-02 0.9126574819 0.1161797493E-02 0.9229120604 0.1162301286E-02 0.9331666388 0.1162603958E-02 0.9434212173 0.1162704916E-02 0.9434212173 0.1162704916E-02 0.9535655315 0.1162659450E-02 0.9637098456 0.1162522668E-02 0.9738541598 0.1162293427E-02 0.9839984740 0.1161969840E-02 0.9941427881 0.1161549316E-02 1.004287102 0.1161028606E-02 1.014431416 0.1160403855E-02 1.024575731 0.1159670681E-02 1.034720045 0.1158824248E-02 1.044864359 0.1157859357E-02 1.055008673 0.1156770539E-02 1.065152987 0.1155552159E-02 1.075297301 0.1154198516E-02 1.085441616 0.1152703957E-02 1.095585930 0.1151062979E-02 1.105730244 0.1149270341E-02 1.115874558 0.1147321165E-02 1.126018872 0.1145211041E-02 1.136163186 0.1142936122E-02 1.146307501 0.1140493210E-02 1.156451815 0.1137879843E-02 1.166596129 0.1135094363E-02 1.176740443 0.1132135981E-02 1.186884757 0.1129004829E-02 1.197029071 0.1125702001E-02 1.207173386 0.1122229581E-02 1.217317700 0.1118590657E-02 1.227462014 0.1114789331E-02 1.237606328 0.1110830706E-02 1.247750642 0.1106720867E-02 1.257894956 0.1102466846E-02 1.268039271 0.1098076579E-02 1.278183585 0.1093558849E-02 1.288327899 0.1088923221E-02 1.298472213 0.1084179962E-02 1.308616527 0.1079339958E-02 1.318760841 0.1074414622E-02 1.328905156 0.1069415793E-02 1.339049470 0.1064355634E-02 1.349193784 0.1059246521E-02 1.359338098 0.1054100936E-02 1.369482412 0.1048931352E-02 1.379626726 0.1043750130E-02 1.389771041 0.1038569407E-02 1.399915355 0.1033400994E-02 1.410059669 0.1028256282E-02 1.420203983 0.1028256282E-02 1.430348297 0.1033400994E-02 1.440492611 0.1038569407E-02 1.450636926 0.1043750130E-02 1.460781240 0.1048931352E-02 1.470925554 0.1054100936E-02 1.481069868 0.1059246521E-02 1.491214182 0.1064355634E-02 1.501358496 0.1069415793E-02 1.511502811 0.1074414622E-02 1.521647125 0.1079339958E-02 1.531791439 0.1084179962E-02 1.541935753 0.1088923221E-02 1.552080067 0.1093558849E-02 1.562224381 0.1098076579E-02 1.572368695 0.1102466846E-02 1.582513010 0.1106720867E-02 1.592657324 0.1110830706E-02 1.602801638 0.1114789331E-02 1.612945952 0.1118590657E-02 1.623090266 0.1122229581E-02 1.633234580 0.1125702001E-02 1.643378895 0.1129004829E-02 1.653523209 0.1132135981E-02 1.663667523 0.1135094363E-02 1.673811837 0.1137879843E-02 1.683956151 0.1140493210E-02 1.694100465 0.1142936122E-02 1.704244780 0.1145211041E-02 1.714389094 0.1147321165E-02 1.724533408 0.1149270341E-02 1.734677722 0.1151062979E-02 1.744822036 0.1152703957E-02 1.754966350 0.1154198516E-02 1.765110665 0.1155552159E-02 1.775254979 0.1156770539E-02 1.785399293 0.1157859357E-02 1.795543607 0.1158824248E-02 1.805687921 0.1159670681E-02 1.815832235 0.1160403855E-02 1.825976550 0.1161028606E-02 1.836120864 0.1161549316E-02 1.846265178 0.1161969840E-02 1.856409492 0.1162293427E-02 1.866553806 0.1162522668E-02 1.876698120 0.1162659450E-02 1.886842435 0.1162704916E-02 1.886842435 0.1162704916E-02 1.897027160 0.1162634620E-02 1.907211886 0.1162423743E-02 1.917396612 0.1162072312E-02 1.927581338 0.1161580373E-02 1.937766064 0.1160947990E-02 1.947950789 0.1160175244E-02 1.958135515 0.1159262232E-02 1.968320241 0.1158209069E-02 1.978504967 0.1157015885E-02 1.988689693 0.1155682823E-02 1.998874418 0.1154210042E-02 2.009059144 0.1152597710E-02 2.019243870 0.1150846009E-02 2.029428596 0.1148955129E-02 2.039613322 0.1146925270E-02 2.049798047 0.1144756636E-02 2.059982773 0.1142449440E-02 2.070167499 0.1140003897E-02 2.080352225 0.1137420223E-02 2.090536951 0.1134698637E-02 2.100721677 0.1131839355E-02 2.110906402 0.1128842591E-02 2.121091128 0.1125708554E-02 2.131275854 0.1122437446E-02 2.141460580 0.1119029461E-02 2.151645306 0.1115484786E-02 2.161830031 0.1111803593E-02 2.172014757 0.1107986042E-02 2.182199483 0.1104032280E-02 2.192384209 0.1099942436E-02 2.202568935 0.1095716622E-02 2.212753660 0.1091354932E-02 2.222938386 0.1086857440E-02 2.233123112 0.1082224198E-02 2.243307838 0.1077455237E-02 2.253492564 0.1072550563E-02 2.263677289 0.1067510160E-02 2.273862015 0.1062333988E-02 2.284046741 0.1057021981E-02 2.294231467 0.1051574047E-02 2.304416193 0.1053230117E-02 2.314600918 0.1057499554E-02 2.324785644 0.1061588700E-02 2.334970370 0.1065484368E-02 2.345155096 0.1069173586E-02 2.355339822 0.1072643604E-02 2.365524547 0.1075881905E-02 2.375709273 0.1078876211E-02 2.385893999 0.1081614497E-02 2.396078725 0.1084084996E-02 2.406263451 0.1086276207E-02 2.416448176 0.1088176907E-02 2.426632902 0.1089776153E-02 2.436817628 0.1091063295E-02 2.447002354 0.1092027982E-02 2.457187080 0.1092660168E-02 2.467371806 0.1092950123E-02 2.477556531 0.1092888433E-02 2.487741257 0.1092466018E-02 2.497925983 0.1091674127E-02 2.508110709 0.1090504354E-02 2.518295435 0.1088948641E-02 2.528480160 0.1086999282E-02 2.538664886 0.1084648935E-02 2.548849612 0.1081890624E-02 2.559034338 0.1078717746E-02 2.569219064 0.1075124078E-02 2.579403789 0.1071103780E-02 2.589588515 0.1066651403E-02 2.599773241 0.1061761894E-02 2.609957967 0.1056430598E-02 2.620142693 0.1050653266E-02 2.630327418 0.1044426060E-02 2.640512144 0.1037745551E-02 2.650696870 0.1030608731E-02 2.660881596 0.1023013013E-02 2.671066322 0.1014956230E-02 2.681251047 0.1006436645E-02 2.691435773 0.9974529505E-03 2.701620499 0.9880042695E-03 2.711805225 0.9780901587E-03 2.721989951 0.9677106099E-03 2.732174676 0.9568660507E-03 2.742359402 0.9455573456E-03 2.752544128 0.9337857958E-03 2.762728854 0.9215531395E-03 2.772913580 0.9088615513E-03 2.783098305 0.8957136408E-03 2.793283031 0.8821124519E-03 2.803467757 0.8680614606E-03 2.813652483 0.8535645726E-03 2.823837209 0.8386261209E-03 2.834021935 0.8232508628E-03 2.844206660 0.8074439759E-03 2.854391386 0.7912110543E-03 2.864576112 0.7745581042E-03 2.874760838 0.7574915390E-03 2.884945564 0.7400181739E-03 2.895130289 0.7221452202E-03 2.905315015 0.7038802791E-03 2.915499741 0.6852313348E-03 2.925684467 0.6662067480E-03 2.935869193 0.6468152477E-03 2.946053918 0.6270659240E-03 2.956238644 0.6069682194E-03 2.966423370 0.5865319202E-03 2.976608096 0.5657671472E-03 2.986792822 0.5446843468E-03 2.996977547 0.5232942803E-03 3.007162273 0.5016080146E-03 3.017346999 0.4796369109E-03 3.027531725 0.4573926141E-03 3.037716451 0.4348870416E-03 3.047901176 0.4121323717E-03 3.058085902 0.3891410316E-03 3.068270628 0.3659256853E-03 3.078455354 0.3424992213E-03 3.088640080 0.3188747398E-03 3.098824805 0.2950655398E-03 3.109009531 0.2710851058E-03 3.119194257 0.2469470943E-03 3.129378983 0.2226653205E-03 3.139563709 0.1982537444E-03 3.149748434 0.1737264566E-03 3.159933160 0.1490976643E-03 3.170117886 0.1243816772E-03 3.180302612 0.9959289295E-04 3.190487338 0.7474578252E-04 3.200672064 0.4985487587E-04 3.210856789 0.2493474715E-04 3.221041515 -0.3394132962E-10 3.221041515 -0.3394132962E-10 3.231254349 0.2795954070E-04 3.241467184 0.5589940460E-04 3.251680018 0.8379994864E-04 3.261892852 0.1116415972E-03 3.272105686 0.1394048755E-03 3.282318521 0.1670704431E-03 3.292531355 0.1946191269E-03 3.302744189 0.2220319537E-03 3.312957023 0.2492901828E-03 3.323169858 0.2763753375E-03 3.333382692 0.3032692364E-03 3.343595526 0.3299540244E-03 3.353808360 0.3564122022E-03 3.364021195 0.3826266559E-03 3.374234029 0.4085806852E-03 3.384446863 0.4342580308E-03 3.394659698 0.4596429013E-03 3.404872532 0.4847199987E-03 3.415085366 0.5094745426E-03 3.425298200 0.5338922937E-03 3.435511035 0.5579595760E-03 3.445723869 0.5816632978E-03 3.455936703 0.6049909708E-03 3.466149537 0.6279307287E-03 3.476362372 0.6504713437E-03 3.486575206 0.6726022415E-03 3.496788040 0.6943135155E-03 3.507000874 0.7155959382E-03 3.517213709 0.7364409719E-03 3.527426543 0.7568407771E-03 3.537639377 0.7767882198E-03 3.547852211 0.7962768758E-03 3.558065046 0.8153010344E-03 3.568277880 0.8338556996E-03 3.578490714 0.8519365893E-03 3.588703548 0.8695401325E-03 3.598916383 0.8866634648E-03 3.609129217 0.9033044218E-03 3.619342051 0.9194615301E-03 3.629554885 0.9351339963E-03 3.639767720 0.9503216946E-03 3.649980554 0.9650251511E-03 3.660193388 0.9792455273E-03 3.670406222 0.9929846003E-03 3.680619057 0.1006244742E-02 3.690831891 0.1019028895E-02 3.701044725 0.1031340550E-02 3.711257560 0.1043183713E-02 3.721470394 0.1054562881E-02 3.731683228 0.1065483012E-02 3.741896062 0.1075949485E-02 3.752108897 0.1085968074E-02 3.762321731 0.1095544906E-02 3.772534565 0.1104686425E-02 3.782747399 0.1113399356E-02 3.792960234 0.1121690661E-02 3.803173068 0.1129567499E-02 3.813385902 0.1137037185E-02 3.823598736 0.1144107146E-02 3.833811571 0.1150784878E-02 3.844024405 0.1157077904E-02 3.854237239 0.1162993726E-02 3.864450073 0.1168539785E-02 3.874662908 0.1173723417E-02 3.884875742 0.1178551808E-02 3.895088576 0.1183031954E-02 3.905301410 0.1187170619E-02 3.915514245 0.1190974296E-02 3.925727079 0.1194449164E-02 3.935939913 0.1197601059E-02 3.946152747 0.1200435434E-02 3.956365582 0.1202957325E-02 3.966578416 0.1205171326E-02 3.976791250 0.1207081557E-02 3.987004084 0.1208691641E-02 3.997216919 0.1210004682E-02 4.007429753 0.1211023246E-02 4.017642587 0.1211749343E-02 4.027855422 0.1212184421E-02 4.038068256 0.1212329350E-02 elk-9.2.12/examples/phonons-superconductivity/Ni-supercell/PaxHeaders/PHDLINES.OUT0000644000000000000000000000013214536061314024705 xustar0030 mtime=1702388428.992499899 30 atime=1702388428.992499899 30 ctime=1702388428.992499899 elk-9.2.12/examples/phonons-superconductivity/Ni-supercell/PHDLINES.OUT0000644002504400250440000000062014536061314027425 0ustar00dewhurstdewhurst00000000000000 0.000000000 -0.9092470720E-03 0.000000000 0.1818494042E-02 0.9434212173 -0.9092470720E-03 0.9434212173 0.1818494042E-02 1.886842435 -0.9092470720E-03 1.886842435 0.1818494042E-02 3.221041515 -0.9092470720E-03 3.221041515 0.1818494042E-02 4.038068256 -0.9092470720E-03 4.038068256 0.1818494042E-02 elk-9.2.12/examples/phonons-superconductivity/Ni-supercell/PaxHeaders/elk.in0000644000000000000000000000013214536061314024211 xustar0030 mtime=1702388428.994499896 30 atime=1702388428.993499897 30 ctime=1702388428.994499896 elk-9.2.12/examples/phonons-superconductivity/Ni-supercell/elk.in0000644002504400250440000000202014536061314026725 0ustar00dewhurstdewhurst00000000000000 ! Ferromagnetic nickel phonon example. Note that 'task=200' can be run on as ! many computers as you like, but within the same network file system (NFS) ! directory. Once all the DYN_Qqqqq_qqqq_qqqq_Sss_Aaa_Pp.OUT files are ! generated, run 'task=220' to generate the phonon dispersion and compare to ! arXiv:cond-mat/0609352v1. A previously calculated dispersion has been included ! in this directory. tasks 200 rgkmax 8.2 lmaxapw 8 beta0 0.01 ! this variable determines the density of k-points for the phonon calculation radkpt 50.0 ngridq 4 4 4 epspot 5.e-7 nempty 8 spinpol .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt plot1d 5 400 0.0 0.0 0.0 0.5 0.5 0.0 0.5 0.0 -0.5 0.0 0.0 0.0 0.5 0.0 0.0 elk-9.2.12/examples/phonons-superconductivity/PaxHeaders/MgB2-DFPT0000644000000000000000000000013214536061315021752 xustar0030 mtime=1702388429.015499865 30 atime=1702388428.995499894 30 ctime=1702388429.015499865 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/0000755002504400250440000000000014536061315024551 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/PaxHeaders/ALPHA2F.OUT0000644000000000000000000000013214536061314023434 xustar0030 mtime=1702388428.996499893 30 atime=1702388428.996499893 30 ctime=1702388428.996499893 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/ALPHA2F.OUT0000644002504400250440000004410414536061314026161 0ustar00dewhurstdewhurst00000000000000 -0.3870828934E-03 0.000000000 -0.3785670705E-03 0.000000000 -0.3700512476E-03 0.000000000 -0.3615354247E-03 0.000000000 -0.3530196018E-03 0.000000000 -0.3445037789E-03 0.000000000 -0.3359879560E-03 0.000000000 -0.3274721331E-03 0.000000000 -0.3189563102E-03 0.000000000 -0.3104404873E-03 0.000000000 -0.3019246644E-03 0.000000000 -0.2934088415E-03 0.000000000 -0.2848930187E-03 0.000000000 -0.2763771958E-03 0.000000000 -0.2678613729E-03 0.000000000 -0.2593455500E-03 0.9285466085E-05 -0.2508297271E-03 0.2126396668E-04 -0.2423139042E-03 0.3495997455E-04 -0.2337980813E-03 0.3793902295E-04 -0.2252822584E-03 0.3711492144E-04 -0.2167664355E-03 0.3729542841E-04 -0.2082506126E-03 0.4003391866E-04 -0.1997347897E-03 0.4574674699E-04 -0.1912189668E-03 0.4371515112E-04 -0.1827031439E-03 0.4207415069E-04 -0.1741873210E-03 0.3260208806E-04 -0.1656714981E-03 0.3691460366E-04 -0.1571556753E-03 0.4233073195E-04 -0.1486398524E-03 0.4243762296E-04 -0.1401240295E-03 0.3929847365E-04 -0.1316082066E-03 0.3921919490E-04 -0.1230923837E-03 0.4578034846E-04 -0.1145765608E-03 0.4433950319E-04 -0.1060607379E-03 0.3645092144E-04 -0.9754491500E-04 0.3985250307E-04 -0.8902909211E-04 0.3676068238E-04 -0.8051326922E-04 0.3330928005E-04 -0.7199744632E-04 0.4316879303E-04 -0.6348162343E-04 0.4751826954E-04 -0.5496580054E-04 0.6621092222E-04 -0.4644997765E-04 0.4237328809E-04 -0.3793415475E-04 0.3448314657E-04 -0.2941833186E-04 0.1162928641E-04 -0.2090250897E-04 0.1022175605E-04 -0.1238668607E-04 0.7157473079E-05 -0.3870863180E-05 0.3959810787E-05 0.4644959713E-05 0.3714245423E-05 0.1316078261E-04 0.4160786944E-05 0.2167660550E-04 0.9434628288E-05 0.3019242839E-04 0.2897411389E-04 0.3870825128E-04 0.4781322638E-04 0.4722407418E-04 0.4975957576E-04 0.5573989707E-04 0.3615425293E-04 0.6425571996E-04 0.2540047426E-04 0.7277154286E-04 0.3514451851E-04 0.8128736575E-04 0.5190804998E-04 0.8980318864E-04 0.5054348123E-04 0.9831901154E-04 0.5815834168E-04 0.1068348344E-03 0.6366240531E-04 0.1153506573E-03 0.8541454641E-04 0.1238664802E-03 0.8095585572E-04 0.1323823031E-03 0.7269124689E-04 0.1408981260E-03 0.7113915108E-04 0.1494139489E-03 0.8947524649E-04 0.1579297718E-03 0.1051438486E-03 0.1664455947E-03 0.1094584464E-03 0.1749614176E-03 0.1168046899E-03 0.1834772405E-03 0.1260344412E-03 0.1919930634E-03 0.1299588608E-03 0.2005088863E-03 0.1460466735E-03 0.2090247091E-03 0.1527159196E-03 0.2175405320E-03 0.1663827477E-03 0.2260563549E-03 0.1742249189E-03 0.2345721778E-03 0.1976130193E-03 0.2430880007E-03 0.2233578679E-03 0.2516038236E-03 0.2440054010E-03 0.2601196465E-03 0.2676280269E-03 0.2686354694E-03 0.2925301059E-03 0.2771512923E-03 0.3035844449E-03 0.2856671152E-03 0.3130748931E-03 0.2941829381E-03 0.3458329047E-03 0.3026987610E-03 0.3731796074E-03 0.3112145839E-03 0.4042166195E-03 0.3197304068E-03 0.4218692204E-03 0.3282462296E-03 0.4586647326E-03 0.3367620525E-03 0.5417414507E-03 0.3452778754E-03 0.6037452099E-03 0.3537936983E-03 0.6472323733E-03 0.3623095212E-03 0.6781854067E-03 0.3708253441E-03 0.7296601380E-03 0.3793411670E-03 0.7800011512E-03 0.3878569899E-03 0.8345553816E-03 0.3963728128E-03 0.9179537293E-03 0.4048886357E-03 0.1013208721E-02 0.4134044586E-03 0.1084112203E-02 0.4219202815E-03 0.1164961282E-02 0.4304361044E-03 0.1284052081E-02 0.4389519273E-03 0.1383270068E-02 0.4474677502E-03 0.1462073207E-02 0.4559835730E-03 0.1528691695E-02 0.4644993959E-03 0.1603630508E-02 0.4730152188E-03 0.1777485379E-02 0.4815310417E-03 0.1989093141E-02 0.4900468646E-03 0.2170460045E-02 0.4985626875E-03 0.2220265489E-02 0.5070785104E-03 0.2384222846E-02 0.5155943333E-03 0.2603548970E-02 0.5241101562E-03 0.2870988631E-02 0.5326259791E-03 0.2879623099E-02 0.5411418020E-03 0.3039080415E-02 0.5496576249E-03 0.3281625062E-02 0.5581734478E-03 0.3746582008E-02 0.5666892707E-03 0.4018655840E-02 0.5752050935E-03 0.4069232594E-02 0.5837209164E-03 0.4249902186E-02 0.5922367393E-03 0.4516999124E-02 0.6007525622E-03 0.4962008861E-02 0.6092683851E-03 0.5229125260E-02 0.6177842080E-03 0.5421319684E-02 0.6263000309E-03 0.5880075780E-02 0.6348158538E-03 0.6299046188E-02 0.6433316767E-03 0.6831632351E-02 0.6518474996E-03 0.6910877479E-02 0.6603633225E-03 0.7166716657E-02 0.6688791454E-03 0.7738482881E-02 0.6773949683E-03 0.8412408587E-02 0.6859107912E-03 0.9014280348E-02 0.6944266141E-03 0.9172913255E-02 0.7029424369E-03 0.9695816007E-02 0.7114582598E-03 0.1028327363E-01 0.7199740827E-03 0.1075435230E-01 0.7284899056E-03 0.1124022513E-01 0.7370057285E-03 0.1182229792E-01 0.7455215514E-03 0.1259124515E-01 0.7540373743E-03 0.1321390564E-01 0.7625531972E-03 0.1390560137E-01 0.7710690201E-03 0.1458026100E-01 0.7795848430E-03 0.1491550399E-01 0.7881006659E-03 0.1587705986E-01 0.7966164888E-03 0.1656771816E-01 0.8051323117E-03 0.1791246418E-01 0.8136481346E-03 0.1817758921E-01 0.8221639574E-03 0.1915718922E-01 0.8306797803E-03 0.1987948675E-01 0.8391956032E-03 0.2131553260E-01 0.8477114261E-03 0.2204237507E-01 0.8562272490E-03 0.2294211570E-01 0.8647430719E-03 0.2374482847E-01 0.8732588948E-03 0.2563529023E-01 0.8817747177E-03 0.2642646966E-01 0.8902905406E-03 0.2713053217E-01 0.8988063635E-03 0.2759118253E-01 0.9073221864E-03 0.2907747974E-01 0.9158380093E-03 0.2972294788E-01 0.9243538322E-03 0.2990021202E-01 0.9328696551E-03 0.3089201941E-01 0.9413854779E-03 0.3233749531E-01 0.9499013008E-03 0.3350875909E-01 0.9584171237E-03 0.3347087208E-01 0.9669329466E-03 0.3492546701E-01 0.9754487695E-03 0.3648436563E-01 0.9839645924E-03 0.3801272302E-01 0.9924804153E-03 0.3769124586E-01 0.1000996238E-02 0.3944629781E-01 0.1009512061E-02 0.4121898143E-01 0.1018027884E-02 0.4288741113E-01 0.1026543707E-02 0.4275275099E-01 0.1035059530E-02 0.4466774620E-01 0.1043575353E-02 0.4635823065E-01 0.1052091176E-02 0.4738019746E-01 0.1060606998E-02 0.4824492080E-01 0.1069122821E-02 0.5115700569E-01 0.1077638644E-02 0.5362737555E-01 0.1086154467E-02 0.5608884533E-01 0.1094670290E-02 0.5844187391E-01 0.1103186113E-02 0.6132717926E-01 0.1111701936E-02 0.6236118727E-01 0.1120217759E-02 0.6352241811E-01 0.1128733582E-02 0.6614760676E-01 0.1137249404E-02 0.6795729286E-01 0.1145765227E-02 0.6683864325E-01 0.1154281050E-02 0.6615672339E-01 0.1162796873E-02 0.6639212223E-01 0.1171312696E-02 0.6730655173E-01 0.1179828519E-02 0.6788790744E-01 0.1188344342E-02 0.6826713723E-01 0.1196860165E-02 0.6835006012E-01 0.1205375988E-02 0.6858231815E-01 0.1213891811E-02 0.6933365915E-01 0.1222407633E-02 0.7024098799E-01 0.1230923456E-02 0.7153066951E-01 0.1239439279E-02 0.7541074847E-01 0.1247955102E-02 0.7903445071E-01 0.1256470925E-02 0.8391093399E-01 0.1264986748E-02 0.8828817208E-01 0.1273502571E-02 0.9517372705E-01 0.1282018394E-02 0.1037362896 0.1290534217E-02 0.1154023308 0.1299050039E-02 0.1316799798 0.1307565862E-02 0.1525455656 0.1316081685E-02 0.1728544807 0.1324597508E-02 0.1721139501 0.1333113331E-02 0.1560162578 0.1341629154E-02 0.1364399428 0.1350144977E-02 0.1310108839 0.1358660800E-02 0.1303800827 0.1367176623E-02 0.1286077010 0.1375692445E-02 0.1330842076 0.1384208268E-02 0.1542946816 0.1392724091E-02 0.2044801863 0.1401239914E-02 0.2783848375 0.1409755737E-02 0.3409359625 0.1418271560E-02 0.3487598574 0.1426787383E-02 0.2862614274 0.1435303206E-02 0.2139858114 0.1443819029E-02 0.1671050995 0.1452334852E-02 0.1684172780 0.1460850674E-02 0.1756516822 0.1469366497E-02 0.1919581860 0.1477882320E-02 0.2181614392 0.1486398143E-02 0.2527359288 0.1494913966E-02 0.2788798513 0.1503429789E-02 0.2823533708 0.1511945612E-02 0.2762530908 0.1520461435E-02 0.2643032028 0.1528977258E-02 0.2585920582 0.1537493080E-02 0.2356193576 0.1546008903E-02 0.2108442322 0.1554524726E-02 0.1751479759 0.1563040549E-02 0.1580357486 0.1571556372E-02 0.1396238187 0.1580072195E-02 0.1326221418 0.1588588018E-02 0.1183948326 0.1597103841E-02 0.1130659294 0.1605619664E-02 0.1095998971 0.1614135487E-02 0.1229649629 0.1622651309E-02 0.1406945963 0.1631167132E-02 0.1563090538 0.1639682955E-02 0.1643724950 0.1648198778E-02 0.1708341022 0.1656714601E-02 0.1793803617 0.1665230424E-02 0.1860226135 0.1673746247E-02 0.1901626095 0.1682262070E-02 0.1957180506 0.1690777893E-02 0.2067676642 0.1699293715E-02 0.2165923021 0.1707809538E-02 0.2210479527 0.1716325361E-02 0.2216654080 0.1724841184E-02 0.2211173614 0.1733357007E-02 0.2233693742 0.1741872830E-02 0.2302514243 0.1750388653E-02 0.2412091263 0.1758904476E-02 0.2509122989 0.1767420299E-02 0.2587762461 0.1775936121E-02 0.2729433882 0.1784451944E-02 0.3044428189 0.1792967767E-02 0.3360622734 0.1801483590E-02 0.3605027030 0.1809999413E-02 0.3470256162 0.1818515236E-02 0.3221323563 0.1827031059E-02 0.2970480501 0.1835546882E-02 0.2913494959 0.1844062705E-02 0.3023405801 0.1852578528E-02 0.3118422008 0.1861094350E-02 0.3227241673 0.1869610173E-02 0.3198752321 0.1878125996E-02 0.3164991615 0.1886641819E-02 0.3164169541 0.1895157642E-02 0.3227842776 0.1903673465E-02 0.3255045253 0.1912189288E-02 0.3219235393 0.1920705111E-02 0.3180594032 0.1929220934E-02 0.3196080064 0.1937736756E-02 0.3189155450 0.1946252579E-02 0.3129121050 0.1954768402E-02 0.3066326076 0.1963284225E-02 0.3080327715 0.1971800048E-02 0.3063464979 0.1980315871E-02 0.3000942248 0.1988831694E-02 0.2931609434 0.1997347517E-02 0.2865369998 0.2005863340E-02 0.2798329137 0.2014379162E-02 0.2774260755 0.2022894985E-02 0.2688251843 0.2031410808E-02 0.2708530405 0.2039926631E-02 0.2578443616 0.2048442454E-02 0.2586618257 0.2056958277E-02 0.2532156472 0.2065474100E-02 0.2477795621 0.2073989923E-02 0.2435969297 0.2082505746E-02 0.2374958437 0.2091021569E-02 0.2424324387 0.2099537391E-02 0.2351888325 0.2108053214E-02 0.2276134614 0.2116569037E-02 0.2112542380 0.2125084860E-02 0.2076653905 0.2133600683E-02 0.1971062380 0.2142116506E-02 0.1959564968 0.2150632329E-02 0.1823642201 0.2159148152E-02 0.1730895968 0.2167663975E-02 0.1593251068 0.2176179797E-02 0.1490470281 0.2184695620E-02 0.1424185642 0.2193211443E-02 0.1341749613 0.2201727266E-02 0.1289294551 0.2210243089E-02 0.1284159644 0.2218758912E-02 0.1271402371 0.2227274735E-02 0.1315632800 0.2235790558E-02 0.1294524547 0.2244306381E-02 0.1325070452 0.2252822203E-02 0.1343762908 0.2261338026E-02 0.1381334192 0.2269853849E-02 0.1459209365 0.2278369672E-02 0.1548559111 0.2286885495E-02 0.1703612017 0.2295401318E-02 0.1889128743 0.2303917141E-02 0.2060183289 0.2312432964E-02 0.2236250427 0.2320948787E-02 0.2588276622 0.2329464610E-02 0.3135874112 0.2337980432E-02 0.3676100192 0.2346496255E-02 0.3993322113 0.2355012078E-02 0.3959386483 0.2363527901E-02 0.3869764964 0.2372043724E-02 0.3805098966 0.2380559547E-02 0.3970319785 0.2389075370E-02 0.3863643300 0.2397591193E-02 0.3648554032 0.2406107016E-02 0.3249261009 0.2414622838E-02 0.3107991468 0.2423138661E-02 0.2931665530 0.2431654484E-02 0.2946639119 0.2440170307E-02 0.3116384939 0.2448686130E-02 0.3267001644 0.2457201953E-02 0.3552210968 0.2465717776E-02 0.3550014806 0.2474233599E-02 0.3771001954 0.2482749422E-02 0.3774364092 0.2491265244E-02 0.3840251447 0.2499781067E-02 0.3920443014 0.2508296890E-02 0.3871493862 0.2516812713E-02 0.3969108932 0.2525328536E-02 0.4013240962 0.2533844359E-02 0.4227918775 0.2542360182E-02 0.4333973092 0.2550876005E-02 0.4383283681 0.2559391828E-02 0.4416782429 0.2567907651E-02 0.4405639215 0.2576423473E-02 0.4472614550 0.2584939296E-02 0.4445130379 0.2593455119E-02 0.4639818817 0.2601970942E-02 0.4829262939 0.2610486765E-02 0.5038409744 0.2619002588E-02 0.5296902885 0.2627518411E-02 0.5527127069 0.2636034234E-02 0.5764264727 0.2644550057E-02 0.5846414045 0.2653065879E-02 0.5888602520 0.2661581702E-02 0.5963027491 0.2670097525E-02 0.6144885540 0.2678613348E-02 0.6274275020 0.2687129171E-02 0.6367956261 0.2695644994E-02 0.6384686209 0.2704160817E-02 0.6644331634 0.2712676640E-02 0.6749804293 0.2721192463E-02 0.6885988138 0.2729708285E-02 0.6923001683 0.2738224108E-02 0.7038030517 0.2746739931E-02 0.7256743820 0.2755255754E-02 0.7228726682 0.2763771577E-02 0.7434925455 0.2772287400E-02 0.7575594663 0.2780803223E-02 0.7609726024 0.2789319046E-02 0.7753751621 0.2797834869E-02 0.7832900076 0.2806350692E-02 0.8043724376 0.2814866514E-02 0.8073706528 0.2823382337E-02 0.8094642698 0.2831898160E-02 0.8349863595 0.2840413983E-02 0.8473351411 0.2848929806E-02 0.8782200895 0.2857445629E-02 0.8926814983 0.2865961452E-02 0.9074557820 0.2874477275E-02 0.9066315560 0.2882993098E-02 0.9176869272 0.2891508920E-02 0.9294644195 0.2900024743E-02 0.9395267425 0.2908540566E-02 0.9432999845 0.2917056389E-02 0.9605225802 0.2925572212E-02 0.9841721576 0.2934088035E-02 1.019802362 0.2942603858E-02 1.066323265 0.2951119681E-02 1.119876945 0.2959635504E-02 1.213778671 0.2968151326E-02 1.324497470 0.2976667149E-02 1.397863203 0.2985182972E-02 1.404990085 0.2993698795E-02 1.300204957 0.3002214618E-02 1.192166504 0.3010730441E-02 1.077209105 0.3019246264E-02 0.9940508298 0.3027762087E-02 0.8884931769 0.3036277910E-02 0.7690221814 0.3044793733E-02 0.6726232263 0.3053309555E-02 0.6016772557 0.3061825378E-02 0.5516392988 0.3070341201E-02 0.5201909841 0.3078857024E-02 0.4956499669 0.3087372847E-02 0.4905071571 0.3095888670E-02 0.4861987913 0.3104404493E-02 0.4943106643 0.3112920316E-02 0.5016903866 0.3121436139E-02 0.5238198791 0.3129951961E-02 0.5448885895 0.3138467784E-02 0.5477029162 0.3146983607E-02 0.5198854484 0.3155499430E-02 0.4866469471 0.3164015253E-02 0.4579157408 0.3172531076E-02 0.4364791992 0.3181046899E-02 0.4193587335 0.3189562722E-02 0.4021437340 0.3198078545E-02 0.3886312091 0.3206594368E-02 0.3671907442 0.3215110190E-02 0.3508011931 0.3223626013E-02 0.3366078903 0.3232141836E-02 0.3292113330 0.3240657659E-02 0.3194072698 0.3249173482E-02 0.3156012044 0.3257689305E-02 0.3092245497 0.3266205128E-02 0.3088409411 0.3274720951E-02 0.2998143582 0.3283236774E-02 0.2963922647 0.3291752596E-02 0.2856516531 0.3300268419E-02 0.2766276362 0.3308784242E-02 0.2624449771 0.3317300065E-02 0.2506619781 0.3325815888E-02 0.2392323806 0.3334331711E-02 0.2335521887 0.3342847534E-02 0.2248600604 0.3351363357E-02 0.2166615265 0.3359879180E-02 0.2031390009 0.3368395002E-02 0.1932051637 0.3376910825E-02 0.1855695933 0.3385426648E-02 0.1788149295 0.3393942471E-02 0.1724642756 0.3402458294E-02 0.1656740259 0.3410974117E-02 0.1610655043 0.3419489940E-02 0.1523605302 0.3428005763E-02 0.1446331764 0.3436521586E-02 0.1314604694 0.3445037409E-02 0.1230870322 0.3453553231E-02 0.1149522803 0.3462069054E-02 0.1124619886 0.3470584877E-02 0.1089146554 0.3479100700E-02 0.1057206218 0.3487616523E-02 0.1006082534 0.3496132346E-02 0.9581145711E-01 0.3504648169E-02 0.8689982202E-01 0.3513163992E-02 0.7324239065E-01 0.3521679815E-02 0.5606891768E-01 0.3530195637E-02 0.4115827124E-01 0.3538711460E-02 0.2803166148E-01 0.3547227283E-02 0.1534203724E-01 0.3555743106E-02 0.5557455435E-02 0.3564258929E-02 0.4528437425E-03 0.3572774752E-02 0.000000000 0.3581290575E-02 0.000000000 0.3589806398E-02 0.000000000 0.3598322221E-02 0.000000000 0.3606838043E-02 0.000000000 0.3615353866E-02 0.000000000 0.3623869689E-02 0.000000000 0.3632385512E-02 0.000000000 0.3640901335E-02 0.000000000 0.3649417158E-02 0.000000000 0.3657932981E-02 0.000000000 0.3666448804E-02 0.000000000 0.3674964627E-02 0.000000000 0.3683480450E-02 0.000000000 0.3691996272E-02 0.000000000 0.3700512095E-02 0.000000000 0.3709027918E-02 0.000000000 0.3717543741E-02 0.000000000 0.3726059564E-02 0.000000000 0.3734575387E-02 0.000000000 0.3743091210E-02 0.000000000 0.3751607033E-02 0.000000000 0.3760122856E-02 0.000000000 0.3768638678E-02 0.000000000 0.3777154501E-02 0.000000000 0.3785670324E-02 0.000000000 0.3794186147E-02 0.000000000 0.3802701970E-02 0.000000000 0.3811217793E-02 0.000000000 0.3819733616E-02 0.000000000 0.3828249439E-02 0.000000000 0.3836765262E-02 0.000000000 0.3845281084E-02 0.000000000 0.3853796907E-02 0.000000000 0.3862312730E-02 0.000000000 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/PaxHeaders/MCMILLAN.OUT0000644000000000000000000000012714536061314023617 xustar0029 mtime=1702388428.99849989 29 atime=1702388428.99849989 29 ctime=1702388428.99849989 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/MCMILLAN.OUT0000644002504400250440000000052614536061314026340 0ustar00dewhurstdewhurst00000000000000 Electron-phonon coupling constant, λ : 0.7517516009 Logarithmic average frequency : 0.2228044595E-02 RMS average frequency : 0.2443047380E-02 Coulomb pseudopotential, μ* : 0.1500000000 McMillan-Allen-Dynes superconducting critical temperature [Eq. 34, Phys. Rev. B 12, 905 (1975)] (kelvin) : 19.67328712 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/PaxHeaders/PHDISP.OUT0000644000000000000000000000013214536061315023407 xustar0030 mtime=1702388429.003499883 30 atime=1702388428.999499888 30 ctime=1702388429.003499883 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/PHDISP.OUT0000644002504400250440000121233214536061315026135 0ustar00dewhurstdewhurst00000000000000 0.000000000 -0.1061101723E-09 0.2347351854E-02 0.2982571869E-05 0.4694703708E-02 0.5978634816E-05 0.7042055561E-02 0.9001551456E-05 0.9389407415E-02 0.1206443158E-04 0.1173675927E-01 0.1518001570E-04 0.1408411112E-01 0.1836056976E-04 0.1643146298E-01 0.2161779360E-04 0.1877881483E-01 0.2496274484E-04 0.2112616668E-01 0.2840577914E-04 0.2347351854E-01 0.3195650673E-04 0.2582087039E-01 0.3562376471E-04 0.2816822225E-01 0.3941560370E-04 0.3051557410E-01 0.4333928745E-04 0.3286292595E-01 0.4740130332E-04 0.3521027781E-01 0.5160738186E-04 0.3755762966E-01 0.5596252345E-04 0.3990498151E-01 0.6047103031E-04 0.4225233337E-01 0.6513654212E-04 0.4459968522E-01 0.6996207402E-04 0.4694703708E-01 0.7495005570E-04 0.4929438893E-01 0.8010237059E-04 0.5164174078E-01 0.8542039454E-04 0.5398909264E-01 0.9090503336E-04 0.5633644449E-01 0.9655675871E-04 0.5868379634E-01 0.1023756423E-03 0.6103114820E-01 0.1083613879E-03 0.6337850005E-01 0.1145133618E-03 0.6572585191E-01 0.1208306202E-03 0.6807320376E-01 0.1273119357E-03 0.7042055561E-01 0.1339558212E-03 0.7276790747E-01 0.1407605518E-03 0.7511525932E-01 0.1477241854E-03 0.7746261117E-01 0.1548445812E-03 0.7980996303E-01 0.1621194171E-03 0.8215731488E-01 0.1695462051E-03 0.8450466674E-01 0.1771223059E-03 0.8685201859E-01 0.1848449424E-03 0.8919937044E-01 0.1927112110E-03 0.9154672230E-01 0.2007180936E-03 0.9389407415E-01 0.2088624671E-03 0.9624142601E-01 0.2171411131E-03 0.9858877786E-01 0.2255507262E-03 0.1009361297 0.2340879218E-03 0.1032834816 0.2427492435E-03 0.1056308334 0.2515311693E-03 0.1079781853 0.2602384399E-03 0.1103255371 0.2660724437E-03 0.1126728890 0.2719167242E-03 0.1150202408 0.2777713891E-03 0.1173675927 0.2836365405E-03 0.1197149445 0.2895122744E-03 0.1220622964 0.2953986807E-03 0.1244096483 0.3012958437E-03 0.1267570001 0.3072038415E-03 0.1291043520 0.3131227463E-03 0.1314517038 0.3190526242E-03 0.1337990557 0.3249935354E-03 0.1361464075 0.3309455339E-03 0.1384937594 0.3369086680E-03 0.1408411112 0.3428829798E-03 0.1431884631 0.3488685052E-03 0.1455358149 0.3548652744E-03 0.1478831668 0.3608733115E-03 0.1502305186 0.3668926345E-03 0.1525778705 0.3729232554E-03 0.1549252223 0.3789651803E-03 0.1572725742 0.3850184094E-03 0.1596199261 0.3910829366E-03 0.1619672779 0.3971587502E-03 0.1643146298 0.4032458323E-03 0.1666619816 0.4093441592E-03 0.1690093335 0.4154537012E-03 0.1713566853 0.4215744227E-03 0.1737040372 0.4277062821E-03 0.1760513890 0.4338492319E-03 0.1783987409 0.4400032190E-03 0.1807460927 0.4461681839E-03 0.1830934446 0.4523440616E-03 0.1854407964 0.4585307809E-03 0.1877881483 0.4647282650E-03 0.1901355002 0.4709364311E-03 0.1924828520 0.4771551903E-03 0.1948302039 0.4833844480E-03 0.1971775557 0.4896241036E-03 0.1995249076 0.4958740506E-03 0.2018722594 0.5021341765E-03 0.2042196113 0.5084043629E-03 0.2065669631 0.5146844852E-03 0.2089143150 0.5209744129E-03 0.2112616668 0.5272740095E-03 0.2136090187 0.5335831322E-03 0.2159563705 0.5399016322E-03 0.2183037224 0.5462293545E-03 0.2206510743 0.5525661376E-03 0.2229984261 0.5589118140E-03 0.2253457780 0.5652662097E-03 0.2276931298 0.5716291441E-03 0.2300404817 0.5780004302E-03 0.2323878335 0.5843798743E-03 0.2347351854 0.5907672761E-03 0.2370825372 0.5971624284E-03 0.2394298891 0.6035651171E-03 0.2417772409 0.6099751210E-03 0.2441245928 0.6163922118E-03 0.2464719446 0.6228161540E-03 0.2488192965 0.6292467043E-03 0.2511666484 0.6356836124E-03 0.2535140002 0.6421266198E-03 0.2558613521 0.6485754603E-03 0.2582087039 0.6550298596E-03 0.2605560558 0.6614895352E-03 0.2629034076 0.6679541960E-03 0.2652507595 0.6744235425E-03 0.2675981113 0.6808972661E-03 0.2699454632 0.6873750492E-03 0.2722928150 0.6938565651E-03 0.2746401669 0.7003414771E-03 0.2769875187 0.7068294392E-03 0.2793348706 0.7133200949E-03 0.2816822225 0.7198130777E-03 0.2840295743 0.7263080102E-03 0.2863769262 0.7328045042E-03 0.2887242780 0.7393021603E-03 0.2910716299 0.7458005674E-03 0.2934189817 0.7522993028E-03 0.2957663336 0.7587979312E-03 0.2981136854 0.7652960051E-03 0.3004610373 0.7717930638E-03 0.3028083891 0.7782886334E-03 0.3051557410 0.7847822264E-03 0.3075030928 0.7912733410E-03 0.3098504447 0.7977614611E-03 0.3121977966 0.8042460557E-03 0.3145451484 0.8107265785E-03 0.3168925003 0.8172024672E-03 0.3192398521 0.8236731438E-03 0.3215872040 0.8301380132E-03 0.3239345558 0.8365964636E-03 0.3262819077 0.8430478655E-03 0.3286292595 0.8494915715E-03 0.3309766114 0.8559269157E-03 0.3333239632 0.8623532134E-03 0.3356713151 0.8687697605E-03 0.3380186669 0.8751758331E-03 0.3403660188 0.8815706870E-03 0.3427133707 0.8879535573E-03 0.3450607225 0.8943236580E-03 0.3474080744 0.9006801816E-03 0.3497554262 0.9070222985E-03 0.3521027781 0.9133491566E-03 0.3544501299 0.9196598814E-03 0.3567974818 0.9259535748E-03 0.3591448336 0.9322293158E-03 0.3614921855 0.9384861592E-03 0.3638395373 0.9447231360E-03 0.3661868892 0.9509392530E-03 0.3685342410 0.9571334927E-03 0.3708815929 0.9633048129E-03 0.3732289448 0.9694521469E-03 0.3755762966 0.9755744034E-03 0.3779236485 0.9816704668E-03 0.3802710003 0.9877391967E-03 0.3826183522 0.9937794290E-03 0.3849657040 0.9997899755E-03 0.3873130559 0.1005769625E-02 0.3896604077 0.1011717142E-02 0.3920077596 0.1017631270E-02 0.3943551114 0.1023510731E-02 0.3967024633 0.1029354226E-02 0.3990498151 0.1035160435E-02 0.4013971670 0.1040928021E-02 0.4037445189 0.1046655630E-02 0.4060918707 0.1052341890E-02 0.4084392226 0.1057985416E-02 0.4107865744 0.1063584811E-02 0.4131339263 0.1069138666E-02 0.4154812781 0.1074645564E-02 0.4178286300 0.1080104081E-02 0.4201759818 0.1085512789E-02 0.4225233337 0.1090870261E-02 0.4248706855 0.1096175067E-02 0.4272180374 0.1101425785E-02 0.4295653892 0.1106620998E-02 0.4319127411 0.1111759301E-02 0.4342600929 0.1116839301E-02 0.4366074448 0.1121859624E-02 0.4389547967 0.1126818917E-02 0.4413021485 0.1131715849E-02 0.4436495004 0.1136549120E-02 0.4459968522 0.1141317460E-02 0.4483442041 0.1146019637E-02 0.4506915559 0.1150654457E-02 0.4530389078 0.1155220770E-02 0.4553862596 0.1159717473E-02 0.4577336115 0.1164143514E-02 0.4600809633 0.1168497894E-02 0.4624283152 0.1172779675E-02 0.4647756670 0.1176987978E-02 0.4671230189 0.1181121986E-02 0.4694703708 0.1185180953E-02 0.4718177226 0.1189164200E-02 0.4741650745 0.1193071118E-02 0.4765124263 0.1196901175E-02 0.4788597782 0.1200653911E-02 0.4812071300 0.1204328945E-02 0.4835544819 0.1207925970E-02 0.4859018337 0.1211444759E-02 0.4882491856 0.1214885162E-02 0.4905965374 0.1218247107E-02 0.4929438893 0.1221530599E-02 0.4952912411 0.1224735718E-02 0.4976385930 0.1227862618E-02 0.4999859449 0.1230911529E-02 0.5023332967 0.1233882748E-02 0.5046806486 0.1236776643E-02 0.5070280004 0.1239593645E-02 0.5093753523 0.1242334251E-02 0.5117227041 0.1244999015E-02 0.5140700560 0.1247588549E-02 0.5164174078 0.1250103516E-02 0.5187647597 0.1252544630E-02 0.5211121115 0.1254912647E-02 0.5234594634 0.1257208367E-02 0.5258068152 0.1259432626E-02 0.5281541671 0.1261586294E-02 0.5305015190 0.1263670268E-02 0.5328488708 0.1265685473E-02 0.5351962227 0.1267632853E-02 0.5375435745 0.1269513369E-02 0.5398909264 0.1271327998E-02 0.5422382782 0.1273077725E-02 0.5445856301 0.1274763539E-02 0.5469329819 0.1276386435E-02 0.5492803338 0.1277120857E-02 0.5516276856 0.1277767984E-02 0.5539750375 0.1278394631E-02 0.5563223893 0.1279000764E-02 0.5586697412 0.1279586341E-02 0.5610170931 0.1280151321E-02 0.5633644449 0.1280695654E-02 0.5657117968 0.1281219290E-02 0.5680591486 0.1281722175E-02 0.5704065005 0.1282204254E-02 0.5727538523 0.1282665468E-02 0.5751012042 0.1283105757E-02 0.5774485560 0.1283525061E-02 0.5797959079 0.1283923320E-02 0.5821432597 0.1284300473E-02 0.5844906116 0.1284656458E-02 0.5868379634 0.1284991216E-02 0.5891853153 0.1285304690E-02 0.5915326672 0.1285596821E-02 0.5938800190 0.1285867555E-02 0.5962273709 0.1286116840E-02 0.5985747227 0.1286344626E-02 0.6009220746 0.1286550867E-02 0.6032694264 0.1286735519E-02 0.6056167783 0.1286898544E-02 0.6079641301 0.1287039906E-02 0.6103114820 0.1287159574E-02 0.6126588338 0.1287257521E-02 0.6150061857 0.1287333725E-02 0.6173535375 0.1287388169E-02 0.6197008894 0.1287420840E-02 0.6220482413 0.1287431732E-02 0.6243952716 0.1287359478E-02 0.6267423020 0.1287290472E-02 0.6290893324 0.1287224808E-02 0.6314363628 0.1287162578E-02 0.6337833932 0.1287103872E-02 0.6361304236 0.1287048779E-02 0.6384774540 0.1286997384E-02 0.6408244844 0.1286949772E-02 0.6431715148 0.1286906023E-02 0.6455185452 0.1286866215E-02 0.6478655756 0.1286830426E-02 0.6502126060 0.1286798727E-02 0.6525596364 0.1286771189E-02 0.6549066668 0.1286747878E-02 0.6572536971 0.1286728858E-02 0.6596007275 0.1286714190E-02 0.6619477579 0.1286703932E-02 0.6642947883 0.1286698136E-02 0.6666418187 0.1286696853E-02 0.6689888491 0.1286700129E-02 0.6713358795 0.1286708009E-02 0.6736829099 0.1286720530E-02 0.6760299403 0.1286737729E-02 0.6783769707 0.1286759638E-02 0.6807240011 0.1286786284E-02 0.6830710315 0.1286817692E-02 0.6854180619 0.1286853881E-02 0.6877650922 0.1286894869E-02 0.6901121226 0.1286940668E-02 0.6924591530 0.1286991286E-02 0.6948061834 0.1287046728E-02 0.6971532138 0.1287106994E-02 0.6995002442 0.1287172082E-02 0.7018472746 0.1287241984E-02 0.7041943050 0.1287316689E-02 0.7065413354 0.1287396183E-02 0.7088883658 0.1287480447E-02 0.7112353962 0.1287569459E-02 0.7135824266 0.1287663192E-02 0.7159294570 0.1287761616E-02 0.7182764874 0.1287864700E-02 0.7206235177 0.1287972406E-02 0.7229705481 0.1288084693E-02 0.7253175785 0.1288201518E-02 0.7276646089 0.1288322834E-02 0.7300116393 0.1288448591E-02 0.7323586697 0.1288578736E-02 0.7347057001 0.1288713212E-02 0.7370527305 0.1288851961E-02 0.7393997609 0.1288994919E-02 0.7417467913 0.1289142023E-02 0.7440938217 0.1289293204E-02 0.7464408521 0.1289448394E-02 0.7487878825 0.1289607519E-02 0.7511349128 0.1289770504E-02 0.7534819432 0.1289937274E-02 0.7558289736 0.1290107749E-02 0.7581760040 0.1290281848E-02 0.7605230344 0.1290459489E-02 0.7628700648 0.1290640587E-02 0.7652170952 0.1290825057E-02 0.7675641256 0.1291012811E-02 0.7699111560 0.1291203760E-02 0.7722581864 0.1291397816E-02 0.7746052168 0.1291594886E-02 0.7769522472 0.1291794880E-02 0.7792992776 0.1291997704E-02 0.7816463080 0.1292203266E-02 0.7839933383 0.1292411472E-02 0.7863403687 0.1292622227E-02 0.7886873991 0.1292835437E-02 0.7910344295 0.1293051008E-02 0.7933814599 0.1293268844E-02 0.7957284903 0.1293488851E-02 0.7980755207 0.1293710935E-02 0.8004225511 0.1293935000E-02 0.8027695815 0.1294160955E-02 0.8051166119 0.1294388704E-02 0.8074636423 0.1294618155E-02 0.8098106727 0.1294849216E-02 0.8121577031 0.1295081796E-02 0.8145047335 0.1295315804E-02 0.8168517638 0.1295551151E-02 0.8191987942 0.1295787748E-02 0.8215458246 0.1296025507E-02 0.8238928550 0.1296264344E-02 0.8262398854 0.1296504172E-02 0.8285869158 0.1296744907E-02 0.8309339462 0.1296986469E-02 0.8332809766 0.1297228775E-02 0.8356280070 0.1297471746E-02 0.8379750374 0.1297715305E-02 0.8403220678 0.1297959375E-02 0.8426690982 0.1298203882E-02 0.8450161286 0.1298448751E-02 0.8473631589 0.1298693913E-02 0.8497101893 0.1298939296E-02 0.8520572197 0.1299184832E-02 0.8544042501 0.1299430455E-02 0.8567512805 0.1299676101E-02 0.8590983109 0.1299921705E-02 0.8614453413 0.1300167206E-02 0.8637923717 0.1300412545E-02 0.8661394021 0.1300657662E-02 0.8684864325 0.1300902502E-02 0.8708334629 0.1301147009E-02 0.8731804933 0.1301391129E-02 0.8755275237 0.1301634810E-02 0.8778745541 0.1301878002E-02 0.8802215844 0.1302120656E-02 0.8825686148 0.1302362723E-02 0.8849156452 0.1302604157E-02 0.8872626756 0.1302844914E-02 0.8896097060 0.1303084947E-02 0.8919567364 0.1303324216E-02 0.8943037668 0.1303562678E-02 0.8966507972 0.1303800292E-02 0.8989978276 0.1304037019E-02 0.9013448580 0.1304272819E-02 0.9036918884 0.1304507654E-02 0.9060389188 0.1304741487E-02 0.9083859492 0.1304974281E-02 0.9107329796 0.1305206000E-02 0.9130800099 0.1305436608E-02 0.9154270403 0.1305666071E-02 0.9177740707 0.1305894352E-02 0.9201211011 0.1306121417E-02 0.9224681315 0.1306347233E-02 0.9248151619 0.1306571763E-02 0.9271621923 0.1306794975E-02 0.9295092227 0.1307016834E-02 0.9318562531 0.1307237305E-02 0.9342032835 0.1307456354E-02 0.9365503139 0.1307673945E-02 0.9388973443 0.1307890043E-02 0.9412443747 0.1308104612E-02 0.9435914050 0.1308317617E-02 0.9459384354 0.1308529021E-02 0.9482854658 0.1308738785E-02 0.9506324962 0.1308946872E-02 0.9529795266 0.1309153244E-02 0.9553265570 0.1309357860E-02 0.9576735874 0.1309560680E-02 0.9600206178 0.1309761664E-02 0.9623676482 0.1309960768E-02 0.9647146786 0.1310157950E-02 0.9670617090 0.1310353165E-02 0.9694087394 0.1310546369E-02 0.9717557698 0.1310737514E-02 0.9741028002 0.1310926555E-02 0.9764498305 0.1311113442E-02 0.9787968609 0.1311298126E-02 0.9811438913 0.1311480557E-02 0.9834909217 0.1311660682E-02 0.9858379521 0.1311838449E-02 0.9881849825 0.1312013804E-02 0.9905320129 0.1312186692E-02 0.9928790433 0.1312357057E-02 0.9952260737 0.1312524841E-02 0.9975731041 0.1312689986E-02 0.9999201345 0.1312852434E-02 1.002267165 0.1313012124E-02 1.004614195 0.1313168994E-02 1.006961226 0.1313322983E-02 1.009308256 0.1313474027E-02 1.011655286 0.1313622064E-02 1.014002317 0.1313767028E-02 1.016349347 0.1313908854E-02 1.018696378 0.1314047478E-02 1.021043408 0.1314182832E-02 1.023390438 0.1314314849E-02 1.025737469 0.1314443463E-02 1.028084499 0.1314568607E-02 1.030431530 0.1314690212E-02 1.032778560 0.1314808211E-02 1.035125590 0.1314922536E-02 1.037472621 0.1315033119E-02 1.039819651 0.1315139893E-02 1.042166682 0.1315242790E-02 1.044513712 0.1315341744E-02 1.046860742 0.1315436688E-02 1.049207773 0.1315527556E-02 1.051554803 0.1315614283E-02 1.053901834 0.1315696805E-02 1.056248864 0.1315775057E-02 1.058595894 0.1315848979E-02 1.060942925 0.1315918508E-02 1.063289955 0.1315983584E-02 1.065636985 0.1316044150E-02 1.067984016 0.1316100148E-02 1.070331046 0.1316151522E-02 1.072678077 0.1316198219E-02 1.075025107 0.1316240188E-02 1.077372137 0.1316277377E-02 1.079719168 0.1316309741E-02 1.082066198 0.1316337234E-02 1.084413229 0.1316359811E-02 1.086760259 0.1316377434E-02 1.089107289 0.1316390064E-02 1.091454320 0.1316397665E-02 1.093801350 0.1316400206E-02 1.096152861 0.1316397008E-02 1.098504372 0.1316387417E-02 1.100855883 0.1316371437E-02 1.103207394 0.1316349070E-02 1.105558905 0.1316320315E-02 1.107910415 0.1316285172E-02 1.110261926 0.1316243637E-02 1.112613437 0.1316195704E-02 1.114964948 0.1316141366E-02 1.117316459 0.1316080615E-02 1.119667970 0.1316013439E-02 1.122019481 0.1315939828E-02 1.124370992 0.1315859766E-02 1.126722503 0.1315773238E-02 1.129074013 0.1315680228E-02 1.131425524 0.1315580716E-02 1.133777035 0.1315474682E-02 1.136128546 0.1315362104E-02 1.138480057 0.1315242960E-02 1.140831568 0.1315117224E-02 1.143183079 0.1314984870E-02 1.145534590 0.1314845870E-02 1.147886101 0.1314700196E-02 1.150237611 0.1314547817E-02 1.152589122 0.1314388700E-02 1.154940633 0.1314222813E-02 1.157292144 0.1314050120E-02 1.159643655 0.1313870586E-02 1.161995166 0.1313684174E-02 1.164346677 0.1313490843E-02 1.166698188 0.1313290555E-02 1.169049699 0.1313083267E-02 1.171401209 0.1312868935E-02 1.173752720 0.1312647516E-02 1.176104231 0.1312418963E-02 1.178455742 0.1312183228E-02 1.180807253 0.1311940262E-02 1.183158764 0.1311690013E-02 1.185510275 0.1311432430E-02 1.187861786 0.1311167457E-02 1.190213296 0.1310895038E-02 1.192564807 0.1310615115E-02 1.194916318 0.1310327628E-02 1.197267829 0.1310032514E-02 1.199619340 0.1309729709E-02 1.201970851 0.1309419148E-02 1.204322362 0.1309100760E-02 1.206673873 0.1308774475E-02 1.209025384 0.1308440219E-02 1.211376894 0.1308097916E-02 1.213728405 0.1307747487E-02 1.216079916 0.1307388850E-02 1.218431427 0.1307021921E-02 1.220782938 0.1306646611E-02 1.223134449 0.1306262830E-02 1.225485960 0.1305870484E-02 1.227837471 0.1305469475E-02 1.230188982 0.1305059702E-02 1.232540492 0.1304641060E-02 1.234892003 0.1304213440E-02 1.237243514 0.1303776730E-02 1.239595025 0.1303330812E-02 1.241946536 0.1302875565E-02 1.244298047 0.1302410865E-02 1.246649558 0.1301936579E-02 1.249001069 0.1301452574E-02 1.251352580 0.1300958709E-02 1.253704090 0.1300454839E-02 1.256055601 0.1299940813E-02 1.258407112 0.1299416475E-02 1.260758623 0.1298881663E-02 1.263110134 0.1298336210E-02 1.265461645 0.1297779942E-02 1.267813156 0.1297212678E-02 1.270164667 0.1296634232E-02 1.272516177 0.1296044411E-02 1.274867688 0.1295443015E-02 1.277219199 0.1294829835E-02 1.279570710 0.1294204658E-02 1.281922221 0.1293567262E-02 1.284273732 0.1292917415E-02 1.286625243 0.1292254882E-02 1.288976754 0.1291579415E-02 1.291328265 0.1290890760E-02 1.293679775 0.1290188653E-02 1.296031286 0.1289472824E-02 1.298382797 0.1288742990E-02 1.300734308 0.1287998861E-02 1.303085819 0.1287240137E-02 1.305437330 0.1286466509E-02 1.307788841 0.1285677657E-02 1.310140352 0.1284873251E-02 1.312491863 0.1284052950E-02 1.314843373 0.1283216404E-02 1.317194884 0.1282363250E-02 1.319546395 0.1281493116E-02 1.321897906 0.1280605618E-02 1.324249417 0.1279700360E-02 1.326600928 0.1278776936E-02 1.328952439 0.1277834925E-02 1.331303950 0.1276873897E-02 1.333655461 0.1275893409E-02 1.336006971 0.1274893005E-02 1.338358482 0.1273872218E-02 1.340709993 0.1272830568E-02 1.343061504 0.1271767561E-02 1.345413015 0.1270682692E-02 1.347764526 0.1269575443E-02 1.350116037 0.1268445281E-02 1.352467548 0.1267291663E-02 1.354819059 0.1266114032E-02 1.357170569 0.1264911817E-02 1.359522080 0.1263684436E-02 1.361873591 0.1262431293E-02 1.364225102 0.1261151780E-02 1.366576613 0.1259845274E-02 1.368928124 0.1258511143E-02 1.371279635 0.1257148740E-02 1.373631146 0.1255757408E-02 1.375982656 0.1254336475E-02 1.378334167 0.1252885259E-02 1.380685678 0.1251403068E-02 1.383037189 0.1249889195E-02 1.385388700 0.1248342926E-02 1.387740211 0.1246763533E-02 1.390091722 0.1244752787E-02 1.392443233 0.1241543554E-02 1.394794744 0.1238289615E-02 1.397146254 0.1234991289E-02 1.399497765 0.1231648894E-02 1.401849276 0.1228262748E-02 1.404200787 0.1224833168E-02 1.406552298 0.1221360469E-02 1.408903809 0.1217844965E-02 1.411255320 0.1214286970E-02 1.413606831 0.1210686796E-02 1.415958342 0.1207044755E-02 1.418309852 0.1203361156E-02 1.420661363 0.1199636309E-02 1.423012874 0.1195870521E-02 1.425364385 0.1192064100E-02 1.427715896 0.1188217352E-02 1.430067407 0.1184330581E-02 1.432418918 0.1180404091E-02 1.434770429 0.1176438184E-02 1.437121940 0.1172433162E-02 1.439473450 0.1168389324E-02 1.441824961 0.1164306968E-02 1.444176472 0.1160186391E-02 1.446527983 0.1156027889E-02 1.448879494 0.1151831755E-02 1.451231005 0.1147598280E-02 1.453582516 0.1143327753E-02 1.455934027 0.1139020463E-02 1.458285537 0.1134676694E-02 1.460637048 0.1130296730E-02 1.462988559 0.1125880849E-02 1.465340070 0.1121429330E-02 1.467691581 0.1116942447E-02 1.470043092 0.1112420471E-02 1.472394603 0.1107863671E-02 1.474746114 0.1103272311E-02 1.477097625 0.1098646653E-02 1.479449135 0.1093986954E-02 1.481800646 0.1089293468E-02 1.484152157 0.1084566446E-02 1.486503668 0.1079806133E-02 1.488855179 0.1075012770E-02 1.491206690 0.1070186597E-02 1.493558201 0.1065327844E-02 1.495909712 0.1060436742E-02 1.498261223 0.1055513513E-02 1.500612733 0.1050558379E-02 1.502964244 0.1045571553E-02 1.505315755 0.1040553246E-02 1.507667266 0.1035503663E-02 1.510018777 0.1030423006E-02 1.512370288 0.1025311469E-02 1.514721799 0.1020169245E-02 1.517073310 0.1014996521E-02 1.519424821 0.1009793477E-02 1.521776331 0.1004560292E-02 1.524127842 0.9992971389E-03 1.526479353 0.9940041857E-03 1.528830864 0.9886815966E-03 1.531182375 0.9833295314E-03 1.533533886 0.9779481457E-03 1.535885397 0.9725375912E-03 1.538236908 0.9670980154E-03 1.540588418 0.9616295623E-03 1.542939929 0.9561323718E-03 1.545291440 0.9506065808E-03 1.547642951 0.9450523224E-03 1.549994462 0.9394697268E-03 1.552345973 0.9338589209E-03 1.554697484 0.9282200289E-03 1.557048995 0.9225531722E-03 1.559400506 0.9168584697E-03 1.561752016 0.9111360379E-03 1.564103527 0.9053859913E-03 1.566455038 0.8996084422E-03 1.568806549 0.8938035011E-03 1.571158060 0.8879712769E-03 1.573509571 0.8821118773E-03 1.575861082 0.8762254083E-03 1.578212593 0.8703119752E-03 1.580564104 0.8643716821E-03 1.582915614 0.8584046327E-03 1.585267125 0.8524109298E-03 1.587618636 0.8463906762E-03 1.589970147 0.8403439742E-03 1.592321658 0.8342709262E-03 1.594673169 0.8281716348E-03 1.597024680 0.8220462028E-03 1.599376191 0.8158947336E-03 1.601727702 0.8097173312E-03 1.604079212 0.8035141002E-03 1.606430723 0.7972851465E-03 1.608782234 0.7910305766E-03 1.611133745 0.7847504987E-03 1.613485256 0.7784450221E-03 1.615836767 0.7721142577E-03 1.618188278 0.7657583180E-03 1.620539789 0.7593773173E-03 1.622891299 0.7529713717E-03 1.625242810 0.7465405994E-03 1.627594321 0.7400851207E-03 1.629945832 0.7336050581E-03 1.632297343 0.7271005365E-03 1.634648854 0.7205716832E-03 1.637000365 0.7140186280E-03 1.639351876 0.7074415036E-03 1.641703387 0.7008404451E-03 1.644054897 0.6942155905E-03 1.646406408 0.6875670809E-03 1.648757919 0.6808950601E-03 1.651109430 0.6741996751E-03 1.653460941 0.6674810761E-03 1.655812452 0.6607394163E-03 1.658163963 0.6539748522E-03 1.660515474 0.6471875437E-03 1.662866985 0.6403776539E-03 1.665218495 0.6335453496E-03 1.667570006 0.6266908005E-03 1.669921517 0.6198141804E-03 1.672273028 0.6129156661E-03 1.674624539 0.6050658907E-03 1.676976050 0.5958106671E-03 1.679327561 0.5865236957E-03 1.681679072 0.5772068659E-03 1.684030583 0.5678620971E-03 1.686382093 0.5584913386E-03 1.688733604 0.5490965693E-03 1.691085115 0.5396797973E-03 1.693436626 0.5302430598E-03 1.695788137 0.5207884229E-03 1.698139648 0.5113179810E-03 1.700491159 0.5018338565E-03 1.702842670 0.4923381999E-03 1.705194180 0.4828331884E-03 1.707545691 0.4733210262E-03 1.709897202 0.4638039437E-03 1.712248713 0.4542841964E-03 1.714600224 0.4447640646E-03 1.716951735 0.4352458521E-03 1.719303246 0.4257318852E-03 1.721654757 0.4162245115E-03 1.724006268 0.4067260984E-03 1.726357778 0.3972390313E-03 1.728709289 0.3877657115E-03 1.731060800 0.3783085545E-03 1.733412311 0.3688699867E-03 1.735763822 0.3594524428E-03 1.738115333 0.3500583622E-03 1.740466844 0.3406901854E-03 1.742818355 0.3313503487E-03 1.745169866 0.3220412798E-03 1.747521376 0.3127653913E-03 1.749872887 0.3035250740E-03 1.752224398 0.2943226892E-03 1.754575909 0.2851605588E-03 1.756927420 0.2760409559E-03 1.759278931 0.2669660913E-03 1.761630442 0.2579381004E-03 1.763981953 0.2489590257E-03 1.766333464 0.2400307981E-03 1.768684974 0.2311552132E-03 1.771036485 0.2223339046E-03 1.773387996 0.2135683115E-03 1.775739507 0.2048596394E-03 1.778091018 0.1962088129E-03 1.780442529 0.1876164180E-03 1.782794040 0.1790826307E-03 1.785145551 0.1706071274E-03 1.787497061 0.1621889722E-03 1.789848572 0.1538264716E-03 1.792200083 0.1455169858E-03 1.794551594 0.1372566778E-03 1.796903105 0.1290401747E-03 1.799254616 0.1208600998E-03 1.801606127 0.1127064105E-03 1.803957638 0.1045654324E-03 1.806309149 0.9641840600E-04 1.808660659 0.8823920761E-04 1.811012170 0.7999060098E-04 1.813363681 0.7161768826E-04 1.815715192 0.6303554121E-04 1.818066703 0.5410324531E-04 1.820418214 0.4456046322E-04 1.822769725 0.3382901437E-04 1.825121236 0.1997461009E-04 1.827472747 -0.1597055913E-04 1.829824257 -0.2867262659E-04 1.832175768 -0.3614581045E-04 1.834527279 -0.4138233122E-04 1.836878790 -0.4521272674E-04 1.839230301 -0.4801688336E-04 1.841581812 -0.5000677643E-04 1.843933323 -0.5131375412E-04 1.846284834 -0.5202373950E-04 1.848636345 -0.5219368690E-04 1.850987855 -0.5185982993E-04 1.853339366 -0.5104167116E-04 1.855690877 -0.4974326064E-04 1.858042388 -0.4795216572E-04 1.860393899 -0.4563565676E-04 1.862745410 -0.4273235964E-04 1.865096921 -0.3913472126E-04 1.867448432 -0.3464897269E-04 1.869799942 -0.2888556485E-04 1.872151453 -0.2083183572E-04 1.874502964 -0.1061101723E-09 1.876849995 -0.2656754926E-04 1.879197025 -0.3652754358E-04 1.881544055 -0.4341020791E-04 1.883891086 -0.4853430490E-04 1.886238116 -0.5241063227E-04 1.888585147 -0.5529533788E-04 1.890932177 -0.5733190596E-04 1.893279207 -0.5860281917E-04 1.895626238 -0.5915174895E-04 1.897973268 -0.5899339465E-04 1.900320299 -0.5811670352E-04 1.902667329 -0.5648309711E-04 1.905014359 -0.5401887926E-04 1.907361390 -0.5059776053E-04 1.909708420 -0.4600153753E-04 1.912055451 -0.3981981083E-04 1.914402481 -0.3111511080E-04 1.916749511 -0.1622851966E-04 1.919096542 0.2300167332E-04 1.921443572 0.3754300083E-04 1.923790603 0.4876575764E-04 1.926137633 0.5861032306E-04 1.928484663 0.6768218147E-04 1.930831694 0.7625858674E-04 1.933178724 0.8449120730E-04 1.935525754 0.9247229848E-04 1.937872785 0.1002621099E-03 1.940219815 0.1079020480E-03 1.942566846 0.1154216803E-03 1.944913876 0.1228427560E-03 1.947260906 0.1301816535E-03 1.949607937 0.1374509414E-03 1.951954967 0.1446604127E-03 1.954301998 0.1518177924E-03 1.956649028 0.1589292348E-03 1.958996058 0.1659996810E-03 1.961343089 0.1730331220E-03 1.963690119 0.1800327944E-03 1.966037150 0.1870013296E-03 1.968384180 0.1939408681E-03 1.970731210 0.2008531495E-03 1.973078241 0.2077395821E-03 1.975425271 0.2146012999E-03 1.977772302 0.2214392071E-03 1.980119332 0.2282540153E-03 1.982466362 0.2350462731E-03 1.984813393 0.2418163912E-03 1.987160423 0.2485646626E-03 1.989507454 0.2552912798E-03 1.991854484 0.2619963497E-03 1.994201514 0.2686799051E-03 1.996548545 0.2753419158E-03 1.998895575 0.2819822969E-03 2.001242605 0.2886009167E-03 2.003589636 0.2951976035E-03 2.005936666 0.3017721509E-03 2.008283697 0.3083243229E-03 2.010630727 0.3148538586E-03 2.012977757 0.3213604754E-03 2.015324788 0.3278438731E-03 2.017671818 0.3343037364E-03 2.020018849 0.3407397374E-03 2.022365879 0.3471515386E-03 2.024712909 0.3535387943E-03 2.027059940 0.3599011531E-03 2.029406970 0.3662382592E-03 2.031754001 0.3725497540E-03 2.034101031 0.3788352776E-03 2.036448061 0.3850944699E-03 2.038795092 0.3913269719E-03 2.041142122 0.3975324266E-03 2.043489153 0.4037104800E-03 2.045836183 0.4098607821E-03 2.048183213 0.4159829874E-03 2.050530244 0.4220767557E-03 2.052877274 0.4281417531E-03 2.055224304 0.4341776520E-03 2.057571335 0.4401841324E-03 2.059918365 0.4461608816E-03 2.062265396 0.4521075953E-03 2.064612426 0.4580239778E-03 2.066959456 0.4639097423E-03 2.069306487 0.4697646115E-03 2.071653517 0.4755883178E-03 2.074000548 0.4813806034E-03 2.076347578 0.4871412210E-03 2.078694608 0.4928699336E-03 2.081041639 0.4985665151E-03 2.083388669 0.5042307504E-03 2.085735700 0.5098624352E-03 2.088082730 0.5154613767E-03 2.090429760 0.5210273934E-03 2.092776791 0.5265603154E-03 2.095123821 0.5320599842E-03 2.097470852 0.5375262530E-03 2.099817882 0.5429589868E-03 2.102164912 0.5483580621E-03 2.104511943 0.5537233672E-03 2.106858973 0.5590548020E-03 2.109206004 0.5643522783E-03 2.111553034 0.5696157191E-03 2.113900064 0.5748450591E-03 2.116247095 0.5800402444E-03 2.118594125 0.5852012322E-03 2.120941155 0.5903279909E-03 2.123288186 0.5954204999E-03 2.125635216 0.6004787491E-03 2.127982247 0.6055027390E-03 2.130329277 0.6104924804E-03 2.132676307 0.6154479940E-03 2.135023338 0.6203693101E-03 2.137370368 0.6252564685E-03 2.139717399 0.6301095177E-03 2.142064429 0.6349285151E-03 2.144411459 0.6397135260E-03 2.146758490 0.6444646235E-03 2.149105520 0.6491818879E-03 2.151452551 0.6538654063E-03 2.153799581 0.6585152718E-03 2.156146611 0.6631315831E-03 2.158493642 0.6677144440E-03 2.160840672 0.6722639623E-03 2.163187703 0.6767802496E-03 2.165534733 0.6812634203E-03 2.167881763 0.6857135907E-03 2.170228794 0.6901308785E-03 2.172575824 0.6945154015E-03 2.174922855 0.6988672772E-03 2.177269885 0.7031866212E-03 2.179616915 0.7074735469E-03 2.181963946 0.7117281637E-03 2.184310976 0.7159505763E-03 2.186658006 0.7201408835E-03 2.189005037 0.7242991769E-03 2.191352067 0.7284255393E-03 2.193699098 0.7325200439E-03 2.196046128 0.7365827523E-03 2.198393158 0.7406137136E-03 2.200740189 0.7446129620E-03 2.203087219 0.7485805162E-03 2.205434250 0.7525163765E-03 2.207781280 0.7564205242E-03 2.210128310 0.7602929187E-03 2.212475341 0.7641334963E-03 2.214822371 0.7679421678E-03 2.217169402 0.7717188162E-03 2.219516432 0.7754632949E-03 2.221863462 0.7791754252E-03 2.224210493 0.7828549939E-03 2.226557523 0.7865017506E-03 2.228904554 0.7901154056E-03 2.231251584 0.7936956267E-03 2.233598614 0.7972420368E-03 2.235945645 0.8007542109E-03 2.238292675 0.8042316727E-03 2.240639706 0.8076738925E-03 2.242986736 0.8110802831E-03 2.245333766 0.8144501970E-03 2.247680797 0.8177829231E-03 2.250027827 0.8210776833E-03 2.252374857 0.8243336289E-03 2.254721888 0.8275498373E-03 2.257068918 0.8307253086E-03 2.259415949 0.8338589618E-03 2.261762979 0.8369496315E-03 2.264110009 0.8399960647E-03 2.266457040 0.8429969172E-03 2.268804070 0.8459507503E-03 2.271151101 0.8488560283E-03 2.273498131 0.8517111152E-03 2.275845161 0.8545142725E-03 2.278192192 0.8572636573E-03 2.280539222 0.8599573202E-03 2.282886253 0.8625932045E-03 2.285233283 0.8651691460E-03 2.287580313 0.8676828727E-03 2.289927344 0.8701320065E-03 2.292274374 0.8725140651E-03 2.294621405 0.8748264655E-03 2.296968435 0.8770665283E-03 2.299315465 0.8792314836E-03 2.301662496 0.8813184786E-03 2.304009526 0.8833245864E-03 2.306356557 0.8852468167E-03 2.308703587 0.8870821286E-03 2.311050617 0.8888274446E-03 2.313397648 0.8904796670E-03 2.315744678 0.8920356960E-03 2.318091708 0.8934924494E-03 2.320438739 0.8948468841E-03 2.322785769 0.8960960191E-03 2.325132800 0.8972369594E-03 2.327479830 0.8982669212E-03 2.329826860 0.8991832573E-03 2.332173891 0.8999834821E-03 2.334520921 0.9006652976E-03 2.336867952 0.9012266164E-03 2.339214982 0.9016655854E-03 2.341562012 0.9019806053E-03 2.343909043 0.9021703496E-03 2.346256073 0.9022337791E-03 0.000000000 -0.7090382357E-10 0.2347351854E-02 0.5565410707E-05 0.4694703708E-02 0.1113110086E-04 0.7042055561E-02 0.1669734973E-04 0.9389407415E-02 0.2226443620E-04 0.1173675927E-01 0.2783263860E-04 0.1408411112E-01 0.3340223452E-04 0.1643146298E-01 0.3897350062E-04 0.1877881483E-01 0.4454671246E-04 0.2112616668E-01 0.5012214428E-04 0.2347351854E-01 0.5570006888E-04 0.2582087039E-01 0.6128075740E-04 0.2816822225E-01 0.6686447912E-04 0.3051557410E-01 0.7245150137E-04 0.3286292595E-01 0.7804208926E-04 0.3521027781E-01 0.8363650558E-04 0.3755762966E-01 0.8923501061E-04 0.3990498151E-01 0.9483786192E-04 0.4225233337E-01 0.1004453143E-03 0.4459968522E-01 0.1060576194E-03 0.4694703708E-01 0.1116750260E-03 0.4929438893E-01 0.1172977793E-03 0.5164174078E-01 0.1229261211E-03 0.5398909264E-01 0.1285602897E-03 0.5633644449E-01 0.1342005197E-03 0.5868379634E-01 0.1398470416E-03 0.6103114820E-01 0.1455000821E-03 0.6337850005E-01 0.1511598637E-03 0.6572585191E-01 0.1568266046E-03 0.6807320376E-01 0.1625005187E-03 0.7042055561E-01 0.1681818153E-03 0.7276790747E-01 0.1738706993E-03 0.7511525932E-01 0.1795673705E-03 0.7746261117E-01 0.1852720243E-03 0.7980996303E-01 0.1909848509E-03 0.8215731488E-01 0.1967060357E-03 0.8450466674E-01 0.2024357588E-03 0.8685201859E-01 0.2081741952E-03 0.8919937044E-01 0.2139215148E-03 0.9154672230E-01 0.2196778818E-03 0.9389407415E-01 0.2254434554E-03 0.9624142601E-01 0.2312183890E-03 0.9858877786E-01 0.2370028306E-03 0.1009361297 0.2427969226E-03 0.1032834816 0.2486008017E-03 0.1056308334 0.2544145991E-03 0.1079781853 0.2604301180E-03 0.1103255371 0.2694424542E-03 0.1126728890 0.2785644940E-03 0.1150202408 0.2877925087E-03 0.1173675927 0.2971227298E-03 0.1197149445 0.3065513526E-03 0.1220622964 0.3160745392E-03 0.1244096483 0.3256884225E-03 0.1267570001 0.3353891084E-03 0.1291043520 0.3451726788E-03 0.1314517038 0.3550351937E-03 0.1337990557 0.3649726936E-03 0.1361464075 0.3749812015E-03 0.1384937594 0.3850567244E-03 0.1408411112 0.3951952550E-03 0.1431884631 0.4053927734E-03 0.1455358149 0.4156452479E-03 0.1478831668 0.4259486368E-03 0.1502305186 0.4362988891E-03 0.1525778705 0.4466919457E-03 0.1549252223 0.4571237403E-03 0.1572725742 0.4675902005E-03 0.1596199261 0.4780872482E-03 0.1619672779 0.4886108011E-03 0.1643146298 0.4991567731E-03 0.1666619816 0.5097210755E-03 0.1690093335 0.5202996175E-03 0.1713566853 0.5308883078E-03 0.1737040372 0.5414830549E-03 0.1760513890 0.5520797688E-03 0.1783987409 0.5626743621E-03 0.1807460927 0.5732627512E-03 0.1830934446 0.5838408578E-03 0.1854407964 0.5944046107E-03 0.1877881483 0.6049499476E-03 0.1901355002 0.6154728168E-03 0.1924828520 0.6259691798E-03 0.1948302039 0.6364350136E-03 0.1971775557 0.6468663129E-03 0.1995249076 0.6572590938E-03 0.2018722594 0.6676093963E-03 0.2042196113 0.6779132880E-03 0.2065669631 0.6881668676E-03 0.2089143150 0.6983662691E-03 0.2112616668 0.7085076657E-03 0.2136090187 0.7185872747E-03 0.2159563705 0.7286013619E-03 0.2183037224 0.7385462470E-03 0.2206510743 0.7484183086E-03 0.2229984261 0.7582139899E-03 0.2253457780 0.7679298047E-03 0.2276931298 0.7775623427E-03 0.2300404817 0.7871082765E-03 0.2323878335 0.7965643672E-03 0.2347351854 0.8059274712E-03 0.2370825372 0.8151945465E-03 0.2394298891 0.8243626590E-03 0.2417772409 0.8334289893E-03 0.2441245928 0.8423908388E-03 0.2464719446 0.8512456358E-03 0.2488192965 0.8599909418E-03 0.2511666484 0.8686244573E-03 0.2535140002 0.8771440267E-03 0.2558613521 0.8855476441E-03 0.2582087039 0.8938334574E-03 0.2605560558 0.9019997727E-03 0.2629034076 0.9100450578E-03 0.2652507595 0.9179679456E-03 0.2675981113 0.9257672359E-03 0.2699454632 0.9334418977E-03 0.2722928150 0.9409910701E-03 0.2746401669 0.9484140623E-03 0.2769875187 0.9557103539E-03 0.2793348706 0.9628795932E-03 0.2816822225 0.9699215958E-03 0.2840295743 0.9768363417E-03 0.2863769262 0.9836239722E-03 0.2887242780 0.9902847862E-03 0.2910716299 0.9968192351E-03 0.2934189817 0.1003227918E-02 0.2957663336 0.1009511577E-02 0.2981136854 0.1015671088E-02 0.3004610373 0.1021707459E-02 0.3028083891 0.1027621818E-02 0.3051557410 0.1033415408E-02 0.3075030928 0.1039089580E-02 0.3098504447 0.1044645786E-02 0.3121977966 0.1050085569E-02 0.3145451484 0.1055410554E-02 0.3168925003 0.1060622444E-02 0.3192398521 0.1065723012E-02 0.3215872040 0.1070714087E-02 0.3239345558 0.1075597555E-02 0.3262819077 0.1080375344E-02 0.3286292595 0.1085049424E-02 0.3309766114 0.1089621793E-02 0.3333239632 0.1094094476E-02 0.3356713151 0.1098469514E-02 0.3380186669 0.1102748964E-02 0.3403660188 0.1106934885E-02 0.3427133707 0.1111029342E-02 0.3450607225 0.1115034393E-02 0.3474080744 0.1118952090E-02 0.3497554262 0.1122784471E-02 0.3521027781 0.1126533559E-02 0.3544501299 0.1130201357E-02 0.3567974818 0.1133789844E-02 0.3591448336 0.1137300974E-02 0.3614921855 0.1140736671E-02 0.3638395373 0.1144098830E-02 0.3661868892 0.1147389313E-02 0.3685342410 0.1150609946E-02 0.3708815929 0.1153762519E-02 0.3732289448 0.1156848787E-02 0.3755762966 0.1159870463E-02 0.3779236485 0.1162829224E-02 0.3802710003 0.1165726705E-02 0.3826183522 0.1168564503E-02 0.3849657040 0.1171344170E-02 0.3873130559 0.1174067223E-02 0.3896604077 0.1176735133E-02 0.3920077596 0.1179349332E-02 0.3943551114 0.1181911213E-02 0.3967024633 0.1184422126E-02 0.3990498151 0.1186883383E-02 0.4013971670 0.1189296256E-02 0.4037445189 0.1191661975E-02 0.4060918707 0.1193981737E-02 0.4084392226 0.1196256696E-02 0.4107865744 0.1198487971E-02 0.4131339263 0.1200676644E-02 0.4154812781 0.1202823762E-02 0.4178286300 0.1204930334E-02 0.4201759818 0.1206997338E-02 0.4225233337 0.1209025716E-02 0.4248706855 0.1211016378E-02 0.4272180374 0.1212970200E-02 0.4295653892 0.1214888029E-02 0.4319127411 0.1216770680E-02 0.4342600929 0.1218618937E-02 0.4366074448 0.1220433558E-02 0.4389547967 0.1222215269E-02 0.4413021485 0.1223964771E-02 0.4436495004 0.1225682735E-02 0.4459968522 0.1227369808E-02 0.4483442041 0.1229026611E-02 0.4506915559 0.1230653740E-02 0.4530389078 0.1232251765E-02 0.4553862596 0.1233821235E-02 0.4577336115 0.1235362674E-02 0.4600809633 0.1236876585E-02 0.4624283152 0.1238363447E-02 0.4647756670 0.1239823720E-02 0.4671230189 0.1241257841E-02 0.4694703708 0.1242666230E-02 0.4718177226 0.1244049284E-02 0.4741650745 0.1245407382E-02 0.4765124263 0.1246740886E-02 0.4788597782 0.1248050137E-02 0.4812071300 0.1249335461E-02 0.4835544819 0.1250597164E-02 0.4859018337 0.1251835537E-02 0.4882491856 0.1253050854E-02 0.4905965374 0.1254243374E-02 0.4929438893 0.1255413339E-02 0.4952912411 0.1256560976E-02 0.4976385930 0.1257686499E-02 0.4999859449 0.1258790105E-02 0.5023332967 0.1259871979E-02 0.5046806486 0.1260932292E-02 0.5070280004 0.1261971199E-02 0.5093753523 0.1262988847E-02 0.5117227041 0.1263985367E-02 0.5140700560 0.1264960879E-02 0.5164174078 0.1265915490E-02 0.5187647597 0.1266849297E-02 0.5211121115 0.1267762384E-02 0.5234594634 0.1268654828E-02 0.5258068152 0.1269526691E-02 0.5281541671 0.1270378028E-02 0.5305015190 0.1271208883E-02 0.5328488708 0.1272019292E-02 0.5351962227 0.1272809281E-02 0.5375435745 0.1273578869E-02 0.5398909264 0.1274328063E-02 0.5422382782 0.1275056868E-02 0.5445856301 0.1275765278E-02 0.5469329819 0.1276453280E-02 0.5492803338 0.1277947406E-02 0.5516276856 0.1279447440E-02 0.5539750375 0.1280887519E-02 0.5563223893 0.1282268615E-02 0.5586697412 0.1283591687E-02 0.5610170931 0.1284857678E-02 0.5633644449 0.1286067514E-02 0.5657117968 0.1287222101E-02 0.5680591486 0.1288322324E-02 0.5704065005 0.1289369041E-02 0.5727538523 0.1290363087E-02 0.5751012042 0.1291305267E-02 0.5774485560 0.1292196358E-02 0.5797959079 0.1293037107E-02 0.5821432597 0.1293828228E-02 0.5844906116 0.1294570403E-02 0.5868379634 0.1295264278E-02 0.5891853153 0.1295910466E-02 0.5915326672 0.1296509543E-02 0.5938800190 0.1297062048E-02 0.5962273709 0.1297568483E-02 0.5985747227 0.1298029311E-02 0.6009220746 0.1298444959E-02 0.6032694264 0.1298815810E-02 0.6056167783 0.1299142213E-02 0.6079641301 0.1299424473E-02 0.6103114820 0.1299662857E-02 0.6126588338 0.1299857589E-02 0.6150061857 0.1300008856E-02 0.6173535375 0.1300116801E-02 0.6197008894 0.1300181526E-02 0.6220482413 0.1300203095E-02 0.6243952716 0.1300119459E-02 0.6267423020 0.1300041761E-02 0.6290893324 0.1299970121E-02 0.6314363628 0.1299904654E-02 0.6337833932 0.1299845473E-02 0.6361304236 0.1299792691E-02 0.6384774540 0.1299746416E-02 0.6408244844 0.1299706753E-02 0.6431715148 0.1299673805E-02 0.6455185452 0.1299647672E-02 0.6478655756 0.1299628448E-02 0.6502126060 0.1299616225E-02 0.6525596364 0.1299611093E-02 0.6549066668 0.1299613135E-02 0.6572536971 0.1299622430E-02 0.6596007275 0.1299639054E-02 0.6619477579 0.1299663079E-02 0.6642947883 0.1299694571E-02 0.6666418187 0.1299733591E-02 0.6689888491 0.1299780196E-02 0.6713358795 0.1299834438E-02 0.6736829099 0.1299896365E-02 0.6760299403 0.1299966017E-02 0.6783769707 0.1300043431E-02 0.6807240011 0.1300128639E-02 0.6830710315 0.1300221666E-02 0.6854180619 0.1300322532E-02 0.6877650922 0.1300431253E-02 0.6901121226 0.1300547838E-02 0.6924591530 0.1300672292E-02 0.6948061834 0.1300804612E-02 0.6971532138 0.1300944791E-02 0.6995002442 0.1301092817E-02 0.7018472746 0.1301248672E-02 0.7041943050 0.1301412332E-02 0.7065413354 0.1301583768E-02 0.7088883658 0.1301762946E-02 0.7112353962 0.1301949825E-02 0.7135824266 0.1302144360E-02 0.7159294570 0.1302346500E-02 0.7182764874 0.1302556190E-02 0.7206235177 0.1302773369E-02 0.7229705481 0.1302997969E-02 0.7253175785 0.1303229921E-02 0.7276646089 0.1303469149E-02 0.7300116393 0.1303715570E-02 0.7323586697 0.1303969100E-02 0.7347057001 0.1304229648E-02 0.7370527305 0.1304497119E-02 0.7393997609 0.1304771415E-02 0.7417467913 0.1305052431E-02 0.7440938217 0.1305340061E-02 0.7464408521 0.1305634192E-02 0.7487878825 0.1305934708E-02 0.7511349128 0.1306241492E-02 0.7534819432 0.1306554419E-02 0.7558289736 0.1306873363E-02 0.7581760040 0.1307198194E-02 0.7605230344 0.1307528780E-02 0.7628700648 0.1307864984E-02 0.7652170952 0.1308206668E-02 0.7675641256 0.1308553689E-02 0.7699111560 0.1308905903E-02 0.7722581864 0.1309263164E-02 0.7746052168 0.1309625323E-02 0.7769522472 0.1309992227E-02 0.7792992776 0.1310363725E-02 0.7816463080 0.1310739661E-02 0.7839933383 0.1311119878E-02 0.7863403687 0.1311504219E-02 0.7886873991 0.1311892523E-02 0.7910344295 0.1312284630E-02 0.7933814599 0.1312680378E-02 0.7957284903 0.1313079605E-02 0.7980755207 0.1313482146E-02 0.8004225511 0.1313887838E-02 0.8027695815 0.1314296515E-02 0.8051166119 0.1314708014E-02 0.8074636423 0.1315122169E-02 0.8098106727 0.1315538816E-02 0.8121577031 0.1315957788E-02 0.8145047335 0.1316378922E-02 0.8168517638 0.1316802052E-02 0.8191987942 0.1317227017E-02 0.8215458246 0.1317653651E-02 0.8238928550 0.1318081793E-02 0.8262398854 0.1318511282E-02 0.8285869158 0.1318941957E-02 0.8309339462 0.1319373659E-02 0.8332809766 0.1319806229E-02 0.8356280070 0.1320239512E-02 0.8379750374 0.1320673352E-02 0.8403220678 0.1321107595E-02 0.8426690982 0.1321542091E-02 0.8450161286 0.1321976688E-02 0.8473631589 0.1322411239E-02 0.8497101893 0.1322845597E-02 0.8520572197 0.1323279619E-02 0.8544042501 0.1323713162E-02 0.8567512805 0.1324146087E-02 0.8590983109 0.1324578256E-02 0.8614453413 0.1325009535E-02 0.8637923717 0.1325439790E-02 0.8661394021 0.1325868891E-02 0.8684864325 0.1326296711E-02 0.8708334629 0.1326723124E-02 0.8731804933 0.1327148009E-02 0.8755275237 0.1327571245E-02 0.8778745541 0.1327992715E-02 0.8802215844 0.1328412305E-02 0.8825686148 0.1328829904E-02 0.8849156452 0.1329245403E-02 0.8872626756 0.1329658696E-02 0.8896097060 0.1330069679E-02 0.8919567364 0.1330478252E-02 0.8943037668 0.1330884319E-02 0.8966507972 0.1331287783E-02 0.8989978276 0.1331688554E-02 0.9013448580 0.1332086542E-02 0.9036918884 0.1332481660E-02 0.9060389188 0.1332873826E-02 0.9083859492 0.1333262959E-02 0.9107329796 0.1333648979E-02 0.9130800099 0.1334031812E-02 0.9154270403 0.1334411386E-02 0.9177740707 0.1334787629E-02 0.9201211011 0.1335160473E-02 0.9224681315 0.1335529855E-02 0.9248151619 0.1335895710E-02 0.9271621923 0.1336257977E-02 0.9295092227 0.1336616600E-02 0.9318562531 0.1336971522E-02 0.9342032835 0.1337322688E-02 0.9365503139 0.1337670047E-02 0.9388973443 0.1338013550E-02 0.9412443747 0.1338353147E-02 0.9435914050 0.1338688794E-02 0.9459384354 0.1339020445E-02 0.9482854658 0.1339348058E-02 0.9506324962 0.1339671592E-02 0.9529795266 0.1339991007E-02 0.9553265570 0.1340306265E-02 0.9576735874 0.1340617329E-02 0.9600206178 0.1340924162E-02 0.9623676482 0.1341226730E-02 0.9647146786 0.1341524999E-02 0.9670617090 0.1341818937E-02 0.9694087394 0.1342108510E-02 0.9717557698 0.1342393688E-02 0.9741028002 0.1342674441E-02 0.9764498305 0.1342950736E-02 0.9787968609 0.1343222546E-02 0.9811438913 0.1343489839E-02 0.9834909217 0.1343752587E-02 0.9858379521 0.1344010761E-02 0.9881849825 0.1344264331E-02 0.9905320129 0.1344513268E-02 0.9928790433 0.1344757543E-02 0.9952260737 0.1344997125E-02 0.9975731041 0.1345231987E-02 0.9999201345 0.1345462096E-02 1.002267165 0.1345687424E-02 1.004614195 0.1345907938E-02 1.006961226 0.1346123607E-02 1.009308256 0.1346334399E-02 1.011655286 0.1346540281E-02 1.014002317 0.1346741221E-02 1.016349347 0.1346937183E-02 1.018696378 0.1347128133E-02 1.021043408 0.1347314034E-02 1.023390438 0.1347494852E-02 1.025737469 0.1347670548E-02 1.028084499 0.1347841083E-02 1.030431530 0.1348006421E-02 1.032778560 0.1348166519E-02 1.035125590 0.1348321338E-02 1.037472621 0.1348470837E-02 1.039819651 0.1348614973E-02 1.042166682 0.1348753703E-02 1.044513712 0.1348886983E-02 1.046860742 0.1349014770E-02 1.049207773 0.1349137017E-02 1.051554803 0.1349253680E-02 1.053901834 0.1349364712E-02 1.056248864 0.1349470067E-02 1.058595894 0.1349569698E-02 1.060942925 0.1349663557E-02 1.063289955 0.1349751596E-02 1.065636985 0.1349833769E-02 1.067984016 0.1349910027E-02 1.070331046 0.1349980322E-02 1.072678077 0.1350044608E-02 1.075025107 0.1350102836E-02 1.077372137 0.1350154959E-02 1.079719168 0.1350200932E-02 1.082066198 0.1350240707E-02 1.084413229 0.1350274241E-02 1.086760259 0.1350301488E-02 1.089107289 0.1350322405E-02 1.091454320 0.1350336951E-02 1.093801350 0.1350345083E-02 1.096152861 0.1350344551E-02 1.098504372 0.1350348899E-02 1.100855883 0.1350358106E-02 1.103207394 0.1350372136E-02 1.105558905 0.1350390937E-02 1.107910415 0.1350414444E-02 1.110261926 0.1350442573E-02 1.112613437 0.1350475228E-02 1.114964948 0.1350512296E-02 1.117316459 0.1350553649E-02 1.119667970 0.1350599145E-02 1.122019481 0.1350648626E-02 1.124370992 0.1350701920E-02 1.126722503 0.1350758838E-02 1.129074013 0.1350819179E-02 1.131425524 0.1350882726E-02 1.133777035 0.1350949246E-02 1.136128546 0.1351018493E-02 1.138480057 0.1351090207E-02 1.140831568 0.1351164111E-02 1.143183079 0.1351239915E-02 1.145534590 0.1351317315E-02 1.147886101 0.1351395991E-02 1.150237611 0.1351475608E-02 1.152589122 0.1351555819E-02 1.154940633 0.1351636259E-02 1.157292144 0.1351716551E-02 1.159643655 0.1351796300E-02 1.161995166 0.1351875100E-02 1.164346677 0.1351952527E-02 1.166698188 0.1352028142E-02 1.169049699 0.1352101491E-02 1.171401209 0.1352172105E-02 1.173752720 0.1352239498E-02 1.176104231 0.1352303168E-02 1.178455742 0.1352362599E-02 1.180807253 0.1352417255E-02 1.183158764 0.1352466585E-02 1.185510275 0.1352510021E-02 1.187861786 0.1352546976E-02 1.190213296 0.1352576849E-02 1.192564807 0.1352599015E-02 1.194916318 0.1352612836E-02 1.197267829 0.1352617653E-02 1.199619340 0.1352612787E-02 1.201970851 0.1352597541E-02 1.204322362 0.1352571199E-02 1.206673873 0.1352533023E-02 1.209025384 0.1352482256E-02 1.211376894 0.1352418121E-02 1.213728405 0.1352339819E-02 1.216079916 0.1352246533E-02 1.218431427 0.1352137423E-02 1.220782938 0.1352011629E-02 1.223134449 0.1351868271E-02 1.225485960 0.1351706449E-02 1.227837471 0.1351525242E-02 1.230188982 0.1351323711E-02 1.232540492 0.1351100897E-02 1.234892003 0.1350855824E-02 1.237243514 0.1350587499E-02 1.239595025 0.1350294913E-02 1.241946536 0.1349977040E-02 1.244298047 0.1349632845E-02 1.246649558 0.1349261277E-02 1.249001069 0.1348861278E-02 1.251352580 0.1348431782E-02 1.253704090 0.1347971716E-02 1.256055601 0.1347480005E-02 1.258407112 0.1346955573E-02 1.260758623 0.1346397347E-02 1.263110134 0.1345804259E-02 1.265461645 0.1345175250E-02 1.267813156 0.1344509269E-02 1.270164667 0.1343805285E-02 1.272516177 0.1343062281E-02 1.274867688 0.1342279264E-02 1.277219199 0.1341455263E-02 1.279570710 0.1340589338E-02 1.281922221 0.1339680579E-02 1.284273732 0.1338728110E-02 1.286625243 0.1337731093E-02 1.288976754 0.1336688729E-02 1.291328265 0.1335600261E-02 1.293679775 0.1334464979E-02 1.296031286 0.1333282217E-02 1.298382797 0.1332051356E-02 1.300734308 0.1330771830E-02 1.303085819 0.1329443118E-02 1.305437330 0.1328064753E-02 1.307788841 0.1326636316E-02 1.310140352 0.1325157441E-02 1.312491863 0.1323627808E-02 1.314843373 0.1322047149E-02 1.317194884 0.1320415242E-02 1.319546395 0.1318731910E-02 1.321897906 0.1316997023E-02 1.324249417 0.1315210491E-02 1.326600928 0.1313372267E-02 1.328952439 0.1311482339E-02 1.331303950 0.1309540735E-02 1.333655461 0.1307547512E-02 1.336006971 0.1305502762E-02 1.338358482 0.1303406604E-02 1.340709993 0.1301259183E-02 1.343061504 0.1299060669E-02 1.345413015 0.1296811254E-02 1.347764526 0.1294511148E-02 1.350116037 0.1292160581E-02 1.352467548 0.1289759796E-02 1.354819059 0.1287309051E-02 1.357170569 0.1284808615E-02 1.359522080 0.1282258769E-02 1.361873591 0.1279659801E-02 1.364225102 0.1277012006E-02 1.366576613 0.1274315688E-02 1.368928124 0.1271571154E-02 1.371279635 0.1268778715E-02 1.373631146 0.1265938686E-02 1.375982656 0.1263051385E-02 1.378334167 0.1260117130E-02 1.380685678 0.1257136242E-02 1.383037189 0.1254109042E-02 1.385388700 0.1251035852E-02 1.387740211 0.1247916993E-02 1.390091722 0.1245150282E-02 1.392443233 0.1243502424E-02 1.394794744 0.1241819204E-02 1.397146254 0.1240099859E-02 1.399497765 0.1238343614E-02 1.401849276 0.1236549690E-02 1.404200787 0.1234717297E-02 1.406552298 0.1232845640E-02 1.408903809 0.1230933918E-02 1.411255320 0.1228981324E-02 1.413606831 0.1226987046E-02 1.415958342 0.1224950265E-02 1.418309852 0.1222870162E-02 1.420661363 0.1220745912E-02 1.423012874 0.1218576689E-02 1.425364385 0.1216361663E-02 1.427715896 0.1214100003E-02 1.430067407 0.1211790879E-02 1.432418918 0.1209433458E-02 1.434770429 0.1207026909E-02 1.437121940 0.1204570402E-02 1.439473450 0.1202063107E-02 1.441824961 0.1199504198E-02 1.444176472 0.1196892850E-02 1.446527983 0.1194228241E-02 1.448879494 0.1191509554E-02 1.451231005 0.1188735974E-02 1.453582516 0.1185906692E-02 1.455934027 0.1183020903E-02 1.458285537 0.1180077808E-02 1.460637048 0.1177076613E-02 1.462988559 0.1174016530E-02 1.465340070 0.1170896779E-02 1.467691581 0.1167716584E-02 1.470043092 0.1164475179E-02 1.472394603 0.1161171802E-02 1.474746114 0.1157805703E-02 1.477097625 0.1154376136E-02 1.479449135 0.1150882366E-02 1.481800646 0.1147323665E-02 1.484152157 0.1143699316E-02 1.486503668 0.1140008609E-02 1.488855179 0.1136250844E-02 1.491206690 0.1132425334E-02 1.493558201 0.1128531399E-02 1.495909712 0.1124568372E-02 1.498261223 0.1120535597E-02 1.500612733 0.1116432430E-02 1.502964244 0.1112258238E-02 1.505315755 0.1108012404E-02 1.507667266 0.1103694322E-02 1.510018777 0.1099303401E-02 1.512370288 0.1094839067E-02 1.514721799 0.1090300759E-02 1.517073310 0.1085687935E-02 1.519424821 0.1081000068E-02 1.521776331 0.1076236651E-02 1.524127842 0.1071397197E-02 1.526479353 0.1066481237E-02 1.528830864 0.1061488325E-02 1.531182375 0.1056418035E-02 1.533533886 0.1051269967E-02 1.535885397 0.1046043742E-02 1.538236908 0.1040739010E-02 1.540588418 0.1035355444E-02 1.542939929 0.1029892747E-02 1.545291440 0.1024350648E-02 1.547642951 0.1018728908E-02 1.549994462 0.1013027317E-02 1.552345973 0.1007245697E-02 1.554697484 0.1001383903E-02 1.557048995 0.9954418235E-03 1.559400506 0.9894193823E-03 1.561752016 0.9833165376E-03 1.564103527 0.9771332849E-03 1.566455038 0.9708696564E-03 1.568806549 0.9645257228E-03 1.571158060 0.9581015932E-03 1.573509571 0.9515974164E-03 1.575861082 0.9450133812E-03 1.578212593 0.9383497169E-03 1.580564104 0.9316066940E-03 1.582915614 0.9247846246E-03 1.585267125 0.9178838626E-03 1.587618636 0.9109048041E-03 1.589970147 0.9038478876E-03 1.592321658 0.8967135944E-03 1.594673169 0.8895024483E-03 1.597024680 0.8822150161E-03 1.599376191 0.8748519073E-03 1.601727702 0.8674137739E-03 1.604079212 0.8599013109E-03 1.606430723 0.8523152556E-03 1.608782234 0.8446563874E-03 1.611133745 0.8369255278E-03 1.613485256 0.8291235402E-03 1.615836767 0.8212513290E-03 1.618188278 0.8133098399E-03 1.620539789 0.8053000593E-03 1.622891299 0.7972230134E-03 1.625242810 0.7890797687E-03 1.627594321 0.7808714307E-03 1.629945832 0.7725991438E-03 1.632297343 0.7642640909E-03 1.634648854 0.7558674928E-03 1.637000365 0.7474106077E-03 1.639351876 0.7388947306E-03 1.641703387 0.7303211931E-03 1.644054897 0.7216913629E-03 1.646406408 0.7130066428E-03 1.648757919 0.7042684711E-03 1.651109430 0.6954783204E-03 1.653460941 0.6866376977E-03 1.655812452 0.6777481435E-03 1.658163963 0.6688112318E-03 1.660515474 0.6598285695E-03 1.662866985 0.6508017963E-03 1.665218495 0.6417325839E-03 1.667570006 0.6326226362E-03 1.669921517 0.6234736884E-03 1.672273028 0.6142875073E-03 1.674624539 0.6059954382E-03 1.676976050 0.5990536809E-03 1.679327561 0.5920905817E-03 1.681679072 0.5851063319E-03 1.684030583 0.5781011263E-03 1.686382093 0.5710751635E-03 1.688733604 0.5640286453E-03 1.691085115 0.5569617772E-03 1.693436626 0.5498747685E-03 1.695788137 0.5427678316E-03 1.698139648 0.5356411827E-03 1.700491159 0.5284950411E-03 1.702842670 0.5213296299E-03 1.705194180 0.5141451750E-03 1.707545691 0.5069419060E-03 1.709897202 0.4997200555E-03 1.712248713 0.4924798589E-03 1.714600224 0.4852215549E-03 1.716951735 0.4779453850E-03 1.719303246 0.4706515932E-03 1.721654757 0.4633404262E-03 1.724006268 0.4560121331E-03 1.726357778 0.4486669653E-03 1.728709289 0.4413051760E-03 1.731060800 0.4339270203E-03 1.733412311 0.4265327550E-03 1.735763822 0.4191226381E-03 1.738115333 0.4116969284E-03 1.740466844 0.4042558856E-03 1.742818355 0.3967997697E-03 1.745169866 0.3893288404E-03 1.747521376 0.3818433570E-03 1.749872887 0.3743435776E-03 1.752224398 0.3668297590E-03 1.754575909 0.3593021554E-03 1.756927420 0.3517610182E-03 1.759278931 0.3442065951E-03 1.761630442 0.3366391292E-03 1.763981953 0.3290588580E-03 1.766333464 0.3214660122E-03 1.768684974 0.3138608145E-03 1.771036485 0.3062434784E-03 1.773387996 0.2986142058E-03 1.775739507 0.2909731858E-03 1.778091018 0.2833205923E-03 1.780442529 0.2756565810E-03 1.782794040 0.2679812869E-03 1.785145551 0.2602948207E-03 1.787497061 0.2525972643E-03 1.789848572 0.2448886663E-03 1.792200083 0.2371690358E-03 1.794551594 0.2294383359E-03 1.796903105 0.2216964743E-03 1.799254616 0.2139432941E-03 1.801606127 0.2061785604E-03 1.803957638 0.1984019447E-03 1.806309149 0.1906130062E-03 1.808660659 0.1828111663E-03 1.811012170 0.1749956785E-03 1.813363681 0.1671655877E-03 1.815715192 0.1593196790E-03 1.818066703 0.1514564089E-03 1.820418214 0.1435738141E-03 1.822769725 0.1356693876E-03 1.825121236 0.1277399072E-03 1.827472747 0.1197811939E-03 1.829824257 0.1117877626E-03 1.832175768 0.1037523050E-03 1.834527279 0.9566489919E-04 1.836878790 0.8751175573E-04 1.839230301 0.7927314109E-04 1.841581812 0.7091974395E-04 1.843933323 0.6240586284E-04 1.846284834 0.5365540982E-04 1.848636345 0.4452922468E-04 1.850987855 0.3473222089E-04 1.853339366 0.2343713188E-04 1.855690877 0.3423387189E-05 1.858042388 -0.2016129656E-04 1.860393899 -0.2655894124E-04 1.862745410 -0.2975030149E-04 1.865096921 -0.3075232742E-04 1.867448432 -0.2978905049E-04 1.869799942 -0.2665096627E-04 1.872151453 -0.2035957783E-04 1.874502964 -0.7090382357E-10 1.876849995 -0.2656754926E-04 1.879197025 -0.3652754358E-04 1.881544055 -0.4341020791E-04 1.883891086 -0.4853430490E-04 1.886238116 -0.5241063226E-04 1.888585147 -0.5529533788E-04 1.890932177 -0.5733190596E-04 1.893279207 -0.5860281917E-04 1.895626238 -0.5915174894E-04 1.897973268 -0.5899339464E-04 1.900320299 -0.5811670352E-04 1.902667329 -0.5648309711E-04 1.905014359 -0.5401887925E-04 1.907361390 -0.5059776052E-04 1.909708420 -0.4600153753E-04 1.912055451 -0.3981981083E-04 1.914402481 -0.3111511079E-04 1.916749511 -0.1622851966E-04 1.919096542 0.2300167332E-04 1.921443572 0.3754300083E-04 1.923790603 0.4876575764E-04 1.926137633 0.5861032306E-04 1.928484663 0.6768218147E-04 1.930831694 0.7625858674E-04 1.933178724 0.8449120730E-04 1.935525754 0.9247229848E-04 1.937872785 0.1002621099E-03 1.940219815 0.1079020480E-03 1.942566846 0.1154216803E-03 1.944913876 0.1228427560E-03 1.947260906 0.1301816535E-03 1.949607937 0.1374509414E-03 1.951954967 0.1446604127E-03 1.954301998 0.1518177924E-03 1.956649028 0.1589292348E-03 1.958996058 0.1659996810E-03 1.961343089 0.1730331220E-03 1.963690119 0.1800327944E-03 1.966037150 0.1870013296E-03 1.968384180 0.1939408682E-03 1.970731210 0.2008531495E-03 1.973078241 0.2077395821E-03 1.975425271 0.2146012999E-03 1.977772302 0.2214392071E-03 1.980119332 0.2282540153E-03 1.982466362 0.2350462732E-03 1.984813393 0.2418163912E-03 1.987160423 0.2485646626E-03 1.989507454 0.2552912798E-03 1.991854484 0.2619963497E-03 1.994201514 0.2686799051E-03 1.996548545 0.2753419158E-03 1.998895575 0.2819822969E-03 2.001242605 0.2886009168E-03 2.003589636 0.2951976036E-03 2.005936666 0.3017721509E-03 2.008283697 0.3083243229E-03 2.010630727 0.3148538586E-03 2.012977757 0.3213604754E-03 2.015324788 0.3278438732E-03 2.017671818 0.3343037364E-03 2.020018849 0.3407397374E-03 2.022365879 0.3471515386E-03 2.024712909 0.3535387943E-03 2.027059940 0.3599011532E-03 2.029406970 0.3662382593E-03 2.031754001 0.3725497541E-03 2.034101031 0.3788352776E-03 2.036448061 0.3850944699E-03 2.038795092 0.3913269719E-03 2.041142122 0.3975324266E-03 2.043489153 0.4037104800E-03 2.045836183 0.4098607821E-03 2.048183213 0.4159829874E-03 2.050530244 0.4220767557E-03 2.052877274 0.4281417531E-03 2.055224304 0.4341776521E-03 2.057571335 0.4401841324E-03 2.059918365 0.4461608816E-03 2.062265396 0.4521075953E-03 2.064612426 0.4580239778E-03 2.066959456 0.4639097423E-03 2.069306487 0.4697646116E-03 2.071653517 0.4755883178E-03 2.074000548 0.4813806034E-03 2.076347578 0.4871412210E-03 2.078694608 0.4928699336E-03 2.081041639 0.4985665152E-03 2.083388669 0.5042307504E-03 2.085735700 0.5098624352E-03 2.088082730 0.5154613767E-03 2.090429760 0.5210273934E-03 2.092776791 0.5265603154E-03 2.095123821 0.5320599842E-03 2.097470852 0.5375262530E-03 2.099817882 0.5429589868E-03 2.102164912 0.5483580621E-03 2.104511943 0.5537233672E-03 2.106858973 0.5590548020E-03 2.109206004 0.5643522783E-03 2.111553034 0.5696157191E-03 2.113900064 0.5748450591E-03 2.116247095 0.5800402444E-03 2.118594125 0.5852012322E-03 2.120941155 0.5903279910E-03 2.123288186 0.5954204999E-03 2.125635216 0.6004787491E-03 2.127982247 0.6055027390E-03 2.130329277 0.6104924804E-03 2.132676307 0.6154479940E-03 2.135023338 0.6203693102E-03 2.137370368 0.6252564685E-03 2.139717399 0.6301095178E-03 2.142064429 0.6349285152E-03 2.144411459 0.6397135260E-03 2.146758490 0.6444646235E-03 2.149105520 0.6491818880E-03 2.151452551 0.6538654063E-03 2.153799581 0.6585152718E-03 2.156146611 0.6631315831E-03 2.158493642 0.6677144440E-03 2.160840672 0.6722639623E-03 2.163187703 0.6767802497E-03 2.165534733 0.6812634203E-03 2.167881763 0.6857135908E-03 2.170228794 0.6901308785E-03 2.172575824 0.6945154016E-03 2.174922855 0.6988672772E-03 2.177269885 0.7031866213E-03 2.179616915 0.7074735469E-03 2.181963946 0.7117281637E-03 2.184310976 0.7159505763E-03 2.186658006 0.7201408836E-03 2.189005037 0.7242991769E-03 2.191352067 0.7284255393E-03 2.193699098 0.7325200439E-03 2.196046128 0.7365827524E-03 2.198393158 0.7406137136E-03 2.200740189 0.7446129621E-03 2.203087219 0.7485805162E-03 2.205434250 0.7525163765E-03 2.207781280 0.7564205242E-03 2.210128310 0.7602929188E-03 2.212475341 0.7641334964E-03 2.214822371 0.7679421678E-03 2.217169402 0.7717188162E-03 2.219516432 0.7754632949E-03 2.221863462 0.7791754253E-03 2.224210493 0.7828549939E-03 2.226557523 0.7865017506E-03 2.228904554 0.7901154056E-03 2.231251584 0.7936956268E-03 2.233598614 0.7972420369E-03 2.235945645 0.8007542109E-03 2.238292675 0.8042316728E-03 2.240639706 0.8076738926E-03 2.242986736 0.8110802831E-03 2.245333766 0.8144501970E-03 2.247680797 0.8177829232E-03 2.250027827 0.8210776833E-03 2.252374857 0.8243336289E-03 2.254721888 0.8275498374E-03 2.257068918 0.8307253086E-03 2.259415949 0.8338589618E-03 2.261762979 0.8369496316E-03 2.264110009 0.8399960648E-03 2.266457040 0.8429969172E-03 2.268804070 0.8459507504E-03 2.271151101 0.8488560283E-03 2.273498131 0.8517111152E-03 2.275845161 0.8545142726E-03 2.278192192 0.8572636573E-03 2.280539222 0.8599573202E-03 2.282886253 0.8625932046E-03 2.285233283 0.8651691460E-03 2.287580313 0.8676828727E-03 2.289927344 0.8701320065E-03 2.292274374 0.8725140652E-03 2.294621405 0.8748264656E-03 2.296968435 0.8770665284E-03 2.299315465 0.8792314837E-03 2.301662496 0.8813184787E-03 2.304009526 0.8833245864E-03 2.306356557 0.8852468168E-03 2.308703587 0.8870821287E-03 2.311050617 0.8888274447E-03 2.313397648 0.8904796671E-03 2.315744678 0.8920356961E-03 2.318091708 0.8934924494E-03 2.320438739 0.8948468841E-03 2.322785769 0.8960960191E-03 2.325132800 0.8972369594E-03 2.327479830 0.8982669213E-03 2.329826860 0.8991832573E-03 2.332173891 0.8999834822E-03 2.334520921 0.9006652976E-03 2.336867952 0.9012266165E-03 2.339214982 0.9016655854E-03 2.341562012 0.9019806054E-03 2.343909043 0.9021703497E-03 2.346256073 0.9022337791E-03 0.000000000 -0.7013009195E-10 0.2347351854E-02 0.1265861216E-04 0.4694703708E-02 0.2531787432E-04 0.7042055561E-02 0.3797843223E-04 0.9389407415E-02 0.5064092329E-04 0.1173675927E-01 0.6330597227E-04 0.1408411112E-01 0.7597418727E-04 0.1643146298E-01 0.8864615563E-04 0.1877881483E-01 0.1013224399E-03 0.2112616668E-01 0.1140035740E-03 0.2347351854E-01 0.1266900594E-03 0.2582087039E-01 0.1393823613E-03 0.2816822225E-01 0.1520809052E-03 0.3051557410E-01 0.1647860735E-03 0.3286292595E-01 0.1774982019E-03 0.3521027781E-01 0.1902175764E-03 0.3755762966E-01 0.2029444305E-03 0.3990498151E-01 0.2156789421E-03 0.4225233337E-01 0.2284212306E-03 0.4459968522E-01 0.2411713550E-03 0.4694703708E-01 0.2539293110E-03 0.4929438893E-01 0.2666950289E-03 0.5164174078E-01 0.2794683719E-03 0.5398909264E-01 0.2922491341E-03 0.5633644449E-01 0.3050370386E-03 0.5868379634E-01 0.3178317363E-03 0.6103114820E-01 0.3306328045E-03 0.6337850005E-01 0.3434397457E-03 0.6572585191E-01 0.3562519867E-03 0.6807320376E-01 0.3690688776E-03 0.7042055561E-01 0.3818896910E-03 0.7276790747E-01 0.3947136220E-03 0.7511525932E-01 0.4075397871E-03 0.7746261117E-01 0.4203672243E-03 0.7980996303E-01 0.4331948931E-03 0.8215731488E-01 0.4460216741E-03 0.8450466674E-01 0.4588463692E-03 0.8685201859E-01 0.4716677022E-03 0.8919937044E-01 0.4844843187E-03 0.9154672230E-01 0.4972947867E-03 0.9389407415E-01 0.5100975973E-03 0.9624142601E-01 0.5228911653E-03 0.9858877786E-01 0.5356738296E-03 0.1009361297 0.5484438548E-03 0.1032834816 0.5611994317E-03 0.1056308334 0.5739386782E-03 0.1079781853 0.5866596412E-03 0.1103255371 0.5993602973E-03 0.1126728890 0.6120385544E-03 0.1150202408 0.6246922534E-03 0.1173675927 0.6373191697E-03 0.1197149445 0.6499170150E-03 0.1220622964 0.6624834395E-03 0.1244096483 0.6750160337E-03 0.1267570001 0.6875123308E-03 0.1291043520 0.6999698093E-03 0.1314517038 0.7123858953E-03 0.1337990557 0.7247579655E-03 0.1361464075 0.7370833502E-03 0.1384937594 0.7493593364E-03 0.1408411112 0.7615831715E-03 0.1431884631 0.7737520669E-03 0.1455358149 0.7858632018E-03 0.1478831668 0.7979137275E-03 0.1502305186 0.8099007719E-03 0.1525778705 0.8218214445E-03 0.1549252223 0.8336728407E-03 0.1572725742 0.8454520479E-03 0.1596199261 0.8571561506E-03 0.1619672779 0.8687822367E-03 0.1643146298 0.8803274030E-03 0.1666619816 0.8917887623E-03 0.1690093335 0.9031634497E-03 0.1713566853 0.9144486294E-03 0.1737040372 0.9256415023E-03 0.1760513890 0.9367393127E-03 0.1783987409 0.9477393561E-03 0.1807460927 0.9586389867E-03 0.1830934446 0.9694356250E-03 0.1854407964 0.9801267654E-03 0.1877881483 0.9907099841E-03 0.1901355002 0.1001182946E-02 0.1924828520 0.1011543414E-02 0.1948302039 0.1021789252E-02 0.1971775557 0.1031918438E-02 0.1995249076 0.1041929065E-02 0.2018722594 0.1051819352E-02 0.2042196113 0.1061587644E-02 0.2065669631 0.1071232425E-02 0.2089143150 0.1080752315E-02 0.2112616668 0.1090146081E-02 0.2136090187 0.1099412634E-02 0.2159563705 0.1108551038E-02 0.2183037224 0.1117560508E-02 0.2206510743 0.1126440412E-02 0.2229984261 0.1135190272E-02 0.2253457780 0.1143809765E-02 0.2276931298 0.1152298719E-02 0.2300404817 0.1160657115E-02 0.2323878335 0.1168885081E-02 0.2347351854 0.1176982890E-02 0.2370825372 0.1184950958E-02 0.2394298891 0.1192789837E-02 0.2417772409 0.1200500210E-02 0.2441245928 0.1208082889E-02 0.2464719446 0.1215538803E-02 0.2488192965 0.1222868996E-02 0.2511666484 0.1230074619E-02 0.2535140002 0.1237156923E-02 0.2558613521 0.1244117250E-02 0.2582087039 0.1250957029E-02 0.2605560558 0.1257677766E-02 0.2629034076 0.1264281038E-02 0.2652507595 0.1270768482E-02 0.2675981113 0.1277141794E-02 0.2699454632 0.1283402715E-02 0.2722928150 0.1289553031E-02 0.2746401669 0.1295594558E-02 0.2769875187 0.1301529143E-02 0.2793348706 0.1307358655E-02 0.2816822225 0.1313084976E-02 0.2840295743 0.1318710002E-02 0.2863769262 0.1324235629E-02 0.2887242780 0.1329663759E-02 0.2910716299 0.1334996283E-02 0.2934189817 0.1340235089E-02 0.2957663336 0.1345382049E-02 0.2981136854 0.1350439020E-02 0.3004610373 0.1355407838E-02 0.3028083891 0.1360290318E-02 0.3051557410 0.1365088251E-02 0.3075030928 0.1369803400E-02 0.3098504447 0.1374437497E-02 0.3121977966 0.1378992247E-02 0.3145451484 0.1383469320E-02 0.3168925003 0.1387870352E-02 0.3192398521 0.1392196946E-02 0.3215872040 0.1396450670E-02 0.3239345558 0.1400633054E-02 0.3262819077 0.1404745593E-02 0.3286292595 0.1408789745E-02 0.3309766114 0.1412766932E-02 0.3333239632 0.1416678537E-02 0.3356713151 0.1420525909E-02 0.3380186669 0.1424310358E-02 0.3403660188 0.1428033159E-02 0.3427133707 0.1431695551E-02 0.3450607225 0.1435298738E-02 0.3474080744 0.1438843888E-02 0.3497554262 0.1442332137E-02 0.3521027781 0.1445764586E-02 0.3544501299 0.1449142302E-02 0.3567974818 0.1452466322E-02 0.3591448336 0.1455737650E-02 0.3614921855 0.1458957260E-02 0.3638395373 0.1462126096E-02 0.3661868892 0.1465245072E-02 0.3685342410 0.1468315076E-02 0.3708815929 0.1471336965E-02 0.3732289448 0.1474311573E-02 0.3755762966 0.1477239705E-02 0.3779236485 0.1480122141E-02 0.3802710003 0.1482959640E-02 0.3826183522 0.1485752933E-02 0.3849657040 0.1488502730E-02 0.3873130559 0.1491209720E-02 0.3896604077 0.1493874569E-02 0.3920077596 0.1496497923E-02 0.3943551114 0.1499080407E-02 0.3967024633 0.1501622629E-02 0.3990498151 0.1504125176E-02 0.4013971670 0.1506588618E-02 0.4037445189 0.1509013508E-02 0.4060918707 0.1511400381E-02 0.4084392226 0.1513749758E-02 0.4107865744 0.1516062143E-02 0.4131339263 0.1518338024E-02 0.4154812781 0.1520577877E-02 0.4178286300 0.1522782162E-02 0.4201759818 0.1524951326E-02 0.4225233337 0.1527085804E-02 0.4248706855 0.1529186017E-02 0.4272180374 0.1531252376E-02 0.4295653892 0.1533285278E-02 0.4319127411 0.1535285111E-02 0.4342600929 0.1537252249E-02 0.4366074448 0.1539187060E-02 0.4389547967 0.1541089899E-02 0.4413021485 0.1542961111E-02 0.4436495004 0.1544801034E-02 0.4459968522 0.1546609994E-02 0.4483442041 0.1548388311E-02 0.4506915559 0.1550136295E-02 0.4530389078 0.1551854247E-02 0.4553862596 0.1553542464E-02 0.4577336115 0.1555201230E-02 0.4600809633 0.1556830826E-02 0.4624283152 0.1558431524E-02 0.4647756670 0.1560003588E-02 0.4671230189 0.1561547279E-02 0.4694703708 0.1563062848E-02 0.4718177226 0.1564550540E-02 0.4741650745 0.1566010596E-02 0.4765124263 0.1567443249E-02 0.4788597782 0.1568848728E-02 0.4812071300 0.1570227255E-02 0.4835544819 0.1571579048E-02 0.4859018337 0.1572904317E-02 0.4882491856 0.1574203270E-02 0.4905965374 0.1575476108E-02 0.4929438893 0.1576723028E-02 0.4952912411 0.1577944222E-02 0.4976385930 0.1579139878E-02 0.4999859449 0.1580310177E-02 0.5023332967 0.1581455297E-02 0.5046806486 0.1582575414E-02 0.5070280004 0.1583670696E-02 0.5093753523 0.1584741309E-02 0.5117227041 0.1585787414E-02 0.5140700560 0.1586809168E-02 0.5164174078 0.1587806724E-02 0.5187647597 0.1588780231E-02 0.5211121115 0.1589729836E-02 0.5234594634 0.1590655679E-02 0.5258068152 0.1591557898E-02 0.5281541671 0.1592436628E-02 0.5305015190 0.1593291998E-02 0.5328488708 0.1594124137E-02 0.5351962227 0.1594933166E-02 0.5375435745 0.1595719207E-02 0.5398909264 0.1596482375E-02 0.5422382782 0.1597222783E-02 0.5445856301 0.1597940541E-02 0.5469329819 0.1598635755E-02 0.5492803338 0.1599308527E-02 0.5516276856 0.1599958957E-02 0.5539750375 0.1600587140E-02 0.5563223893 0.1601193171E-02 0.5586697412 0.1601777137E-02 0.5610170931 0.1602339125E-02 0.5633644449 0.1602879219E-02 0.5657117968 0.1603397497E-02 0.5680591486 0.1603894037E-02 0.5704065005 0.1604368912E-02 0.5727538523 0.1604822191E-02 0.5751012042 0.1605253943E-02 0.5774485560 0.1605664230E-02 0.5797959079 0.1606053113E-02 0.5821432597 0.1606420651E-02 0.5844906116 0.1606766896E-02 0.5868379634 0.1607091900E-02 0.5891853153 0.1607395713E-02 0.5915326672 0.1607678377E-02 0.5938800190 0.1607939936E-02 0.5962273709 0.1608180427E-02 0.5985747227 0.1608399887E-02 0.6009220746 0.1608598349E-02 0.6032694264 0.1608775840E-02 0.6056167783 0.1608932389E-02 0.6079641301 0.1609068017E-02 0.6103114820 0.1609182746E-02 0.6126588338 0.1609276591E-02 0.6150061857 0.1609349568E-02 0.6173535375 0.1609401686E-02 0.6197008894 0.1609432954E-02 0.6220482413 0.1609443376E-02 0.6243952716 0.1609469693E-02 0.6267423020 0.1609480351E-02 0.6290893324 0.1609475326E-02 0.6314363628 0.1609454604E-02 0.6337833932 0.1609418183E-02 0.6361304236 0.1609366074E-02 0.6384774540 0.1609298297E-02 0.6408244844 0.1609214885E-02 0.6431715148 0.1609115880E-02 0.6455185452 0.1609001338E-02 0.6478655756 0.1608871322E-02 0.6502126060 0.1608725910E-02 0.6525596364 0.1608565187E-02 0.6549066668 0.1608389250E-02 0.6572536971 0.1608198206E-02 0.6596007275 0.1607992170E-02 0.6619477579 0.1607771269E-02 0.6642947883 0.1607535637E-02 0.6666418187 0.1607285419E-02 0.6689888491 0.1607020766E-02 0.6713358795 0.1606741839E-02 0.6736829099 0.1606448807E-02 0.6760299403 0.1606141846E-02 0.6783769707 0.1605821137E-02 0.6807240011 0.1605486872E-02 0.6830710315 0.1605139247E-02 0.6854180619 0.1604778464E-02 0.6877650922 0.1604404730E-02 0.6901121226 0.1604018260E-02 0.6924591530 0.1603619270E-02 0.6948061834 0.1603207986E-02 0.6971532138 0.1602784632E-02 0.6995002442 0.1602349440E-02 0.7018472746 0.1601902645E-02 0.7041943050 0.1601444483E-02 0.7065413354 0.1600975196E-02 0.7088883658 0.1600495025E-02 0.7112353962 0.1600004215E-02 0.7135824266 0.1599503014E-02 0.7159294570 0.1598991670E-02 0.7182764874 0.1598470431E-02 0.7206235177 0.1597939548E-02 0.7229705481 0.1597399273E-02 0.7253175785 0.1596849857E-02 0.7276646089 0.1596291550E-02 0.7300116393 0.1595724606E-02 0.7323586697 0.1595149274E-02 0.7347057001 0.1594565806E-02 0.7370527305 0.1593974451E-02 0.7393997609 0.1593375459E-02 0.7417467913 0.1592769077E-02 0.7440938217 0.1592155553E-02 0.7464408521 0.1591535130E-02 0.7487878825 0.1590908053E-02 0.7511349128 0.1590274563E-02 0.7534819432 0.1589634901E-02 0.7558289736 0.1588989304E-02 0.7581760040 0.1588338009E-02 0.7605230344 0.1587681249E-02 0.7628700648 0.1587019255E-02 0.7652170952 0.1586352257E-02 0.7675641256 0.1585680482E-02 0.7699111560 0.1585004153E-02 0.7722581864 0.1584323493E-02 0.7746052168 0.1583638720E-02 0.7769522472 0.1582950051E-02 0.7792992776 0.1582257700E-02 0.7816463080 0.1581561877E-02 0.7839933383 0.1580862792E-02 0.7863403687 0.1580160649E-02 0.7886873991 0.1579455652E-02 0.7910344295 0.1578748001E-02 0.7933814599 0.1578037894E-02 0.7957284903 0.1577325524E-02 0.7980755207 0.1576611084E-02 0.8004225511 0.1575894764E-02 0.8027695815 0.1575176749E-02 0.8051166119 0.1574457223E-02 0.8074636423 0.1573736368E-02 0.8098106727 0.1573014363E-02 0.8121577031 0.1572291382E-02 0.8145047335 0.1571567600E-02 0.8168517638 0.1570843188E-02 0.8191987942 0.1570118313E-02 0.8215458246 0.1569393141E-02 0.8238928550 0.1568667837E-02 0.8262398854 0.1567942560E-02 0.8285869158 0.1567217470E-02 0.8309339462 0.1566492724E-02 0.8332809766 0.1565768475E-02 0.8356280070 0.1565044875E-02 0.8379750374 0.1564322075E-02 0.8403220678 0.1563600222E-02 0.8426690982 0.1562879461E-02 0.8450161286 0.1562159938E-02 0.8473631589 0.1561441793E-02 0.8497101893 0.1560725167E-02 0.8520572197 0.1560010197E-02 0.8544042501 0.1559297020E-02 0.8567512805 0.1558585771E-02 0.8590983109 0.1557876582E-02 0.8614453413 0.1557169586E-02 0.8637923717 0.1556464911E-02 0.8661394021 0.1555762687E-02 0.8684864325 0.1555063039E-02 0.8708334629 0.1554366093E-02 0.8731804933 0.1553671974E-02 0.8755275237 0.1552980805E-02 0.8778745541 0.1552292706E-02 0.8802215844 0.1551607798E-02 0.8825686148 0.1550926200E-02 0.8849156452 0.1550248031E-02 0.8872626756 0.1549573407E-02 0.8896097060 0.1548902444E-02 0.8919567364 0.1548235258E-02 0.8943037668 0.1547571962E-02 0.8966507972 0.1546912670E-02 0.8989978276 0.1546257495E-02 0.9013448580 0.1545606547E-02 0.9036918884 0.1544959938E-02 0.9060389188 0.1544317777E-02 0.9083859492 0.1543680175E-02 0.9107329796 0.1543047240E-02 0.9130800099 0.1542419080E-02 0.9154270403 0.1541795803E-02 0.9177740707 0.1541177516E-02 0.9201211011 0.1540564325E-02 0.9224681315 0.1539956336E-02 0.9248151619 0.1539353655E-02 0.9271621923 0.1538756387E-02 0.9295092227 0.1538164636E-02 0.9318562531 0.1537578506E-02 0.9342032835 0.1536998101E-02 0.9365503139 0.1536423525E-02 0.9388973443 0.1535854879E-02 0.9412443747 0.1535292267E-02 0.9435914050 0.1534735791E-02 0.9459384354 0.1534185552E-02 0.9482854658 0.1533641652E-02 0.9506324962 0.1533104191E-02 0.9529795266 0.1532573271E-02 0.9553265570 0.1532048990E-02 0.9576735874 0.1531531449E-02 0.9600206178 0.1531020747E-02 0.9623676482 0.1530516982E-02 0.9647146786 0.1530020254E-02 0.9670617090 0.1529530659E-02 0.9694087394 0.1529048296E-02 0.9717557698 0.1528573260E-02 0.9741028002 0.1528105649E-02 0.9764498305 0.1527645557E-02 0.9787968609 0.1527193080E-02 0.9811438913 0.1526748312E-02 0.9834909217 0.1526311346E-02 0.9858379521 0.1525882277E-02 0.9881849825 0.1525461194E-02 0.9905320129 0.1525048191E-02 0.9928790433 0.1524643356E-02 0.9952260737 0.1524246781E-02 0.9975731041 0.1523858552E-02 0.9999201345 0.1523478758E-02 1.002267165 0.1523107486E-02 1.004614195 0.1522744819E-02 1.006961226 0.1522390843E-02 1.009308256 0.1522045640E-02 1.011655286 0.1521709291E-02 1.014002317 0.1521381877E-02 1.016349347 0.1521063476E-02 1.018696378 0.1520754166E-02 1.021043408 0.1520454022E-02 1.023390438 0.1520163118E-02 1.025737469 0.1519881527E-02 1.028084499 0.1519609318E-02 1.030431530 0.1519346561E-02 1.032778560 0.1519093323E-02 1.035125590 0.1518849667E-02 1.037472621 0.1518615658E-02 1.039819651 0.1518391355E-02 1.042166682 0.1518176817E-02 1.044513712 0.1517972101E-02 1.046860742 0.1517777261E-02 1.049207773 0.1517592347E-02 1.051554803 0.1517417411E-02 1.053901834 0.1517252497E-02 1.056248864 0.1517097651E-02 1.058595894 0.1516952913E-02 1.060942925 0.1516818324E-02 1.063289955 0.1516693919E-02 1.065636985 0.1516579731E-02 1.067984016 0.1516475792E-02 1.070331046 0.1516382129E-02 1.072678077 0.1516298767E-02 1.075025107 0.1516225728E-02 1.077372137 0.1516163031E-02 1.079719168 0.1516110691E-02 1.082066198 0.1516068721E-02 1.084413229 0.1516037132E-02 1.086760259 0.1516015929E-02 1.089107289 0.1516005117E-02 1.091454320 0.1516004694E-02 1.093801350 0.1516014659E-02 1.096152861 0.1515995770E-02 1.098504372 0.1515957470E-02 1.100855883 0.1515899785E-02 1.103207394 0.1515822751E-02 1.105558905 0.1515726411E-02 1.107910415 0.1515610819E-02 1.110261926 0.1515476037E-02 1.112613437 0.1515322133E-02 1.114964948 0.1515149187E-02 1.117316459 0.1514957287E-02 1.119667970 0.1514746528E-02 1.122019481 0.1514517015E-02 1.124370992 0.1514268863E-02 1.126722503 0.1514002192E-02 1.129074013 0.1513717136E-02 1.131425524 0.1513413833E-02 1.133777035 0.1513092434E-02 1.136128546 0.1512753097E-02 1.138480057 0.1512395989E-02 1.140831568 0.1512021290E-02 1.143183079 0.1511629185E-02 1.145534590 0.1511219870E-02 1.147886101 0.1510793554E-02 1.150237611 0.1510350452E-02 1.152589122 0.1509890791E-02 1.154940633 0.1509414810E-02 1.157292144 0.1508922757E-02 1.159643655 0.1508414890E-02 1.161995166 0.1507891482E-02 1.164346677 0.1507352813E-02 1.166698188 0.1506799179E-02 1.169049699 0.1506230886E-02 1.171401209 0.1505648252E-02 1.173752720 0.1505051611E-02 1.176104231 0.1504441305E-02 1.178455742 0.1503817695E-02 1.180807253 0.1503181153E-02 1.183158764 0.1502532066E-02 1.185510275 0.1501870835E-02 1.187861786 0.1501197877E-02 1.190213296 0.1500513625E-02 1.192564807 0.1499818526E-02 1.194916318 0.1499113046E-02 1.197267829 0.1498397665E-02 1.199619340 0.1497672882E-02 1.201970851 0.1496939212E-02 1.204322362 0.1496197187E-02 1.206673873 0.1495447361E-02 1.209025384 0.1494690300E-02 1.211376894 0.1493926594E-02 1.213728405 0.1493156848E-02 1.216079916 0.1492381686E-02 1.218431427 0.1491601752E-02 1.220782938 0.1490817707E-02 1.223134449 0.1490030231E-02 1.225485960 0.1489240020E-02 1.227837471 0.1488447790E-02 1.230188982 0.1487654272E-02 1.232540492 0.1486860215E-02 1.234892003 0.1486066380E-02 1.237243514 0.1485273545E-02 1.239595025 0.1484482500E-02 1.241946536 0.1483694047E-02 1.244298047 0.1482908996E-02 1.246649558 0.1482128169E-02 1.249001069 0.1481352390E-02 1.251352580 0.1480582490E-02 1.253704090 0.1479819299E-02 1.256055601 0.1479063648E-02 1.258407112 0.1478316362E-02 1.260758623 0.1477578261E-02 1.263110134 0.1476850154E-02 1.265461645 0.1476132836E-02 1.267813156 0.1475427086E-02 1.270164667 0.1474733663E-02 1.272516177 0.1474053301E-02 1.274867688 0.1473386707E-02 1.277219199 0.1472734557E-02 1.279570710 0.1472097492E-02 1.281922221 0.1471476115E-02 1.284273732 0.1470870986E-02 1.286625243 0.1470282624E-02 1.288976754 0.1469711495E-02 1.291328265 0.1469158019E-02 1.293679775 0.1468622561E-02 1.296031286 0.1468105432E-02 1.298382797 0.1467606884E-02 1.300734308 0.1467127111E-02 1.303085819 0.1466666250E-02 1.305437330 0.1466224374E-02 1.307788841 0.1465801496E-02 1.310140352 0.1465397568E-02 1.312491863 0.1465012481E-02 1.314843373 0.1464646065E-02 1.317194884 0.1464298091E-02 1.319546395 0.1463968270E-02 1.321897906 0.1463656257E-02 1.324249417 0.1463361648E-02 1.326600928 0.1463083988E-02 1.328952439 0.1462822766E-02 1.331303950 0.1462577422E-02 1.333655461 0.1462347346E-02 1.336006971 0.1462131880E-02 1.338358482 0.1461930321E-02 1.340709993 0.1461741923E-02 1.343061504 0.1461565896E-02 1.345413015 0.1461401411E-02 1.347764526 0.1461247601E-02 1.350116037 0.1461103561E-02 1.352467548 0.1460968349E-02 1.354819059 0.1460840989E-02 1.357170569 0.1460720473E-02 1.359522080 0.1460605758E-02 1.361873591 0.1460495770E-02 1.364225102 0.1460389405E-02 1.366576613 0.1460285525E-02 1.368928124 0.1460182965E-02 1.371279635 0.1460080529E-02 1.373631146 0.1459976990E-02 1.375982656 0.1459871094E-02 1.378334167 0.1459761554E-02 1.380685678 0.1459647056E-02 1.383037189 0.1459526254E-02 1.385388700 0.1459397773E-02 1.387740211 0.1459260208E-02 1.390091722 0.1459112124E-02 1.392443233 0.1458952053E-02 1.394794744 0.1458778498E-02 1.397146254 0.1458589931E-02 1.399497765 0.1458384793E-02 1.401849276 0.1458161492E-02 1.404200787 0.1457918407E-02 1.406552298 0.1457653885E-02 1.408903809 0.1457366243E-02 1.411255320 0.1457053766E-02 1.413606831 0.1456714711E-02 1.415958342 0.1456347306E-02 1.418309852 0.1455949749E-02 1.420661363 0.1455520212E-02 1.423012874 0.1455056842E-02 1.425364385 0.1454557761E-02 1.427715896 0.1454021067E-02 1.430067407 0.1453444839E-02 1.432418918 0.1452827137E-02 1.434770429 0.1452166006E-02 1.437121940 0.1451459477E-02 1.439473450 0.1450705569E-02 1.441824961 0.1449902296E-02 1.444176472 0.1449047667E-02 1.446527983 0.1448139690E-02 1.448879494 0.1447176377E-02 1.451231005 0.1446155746E-02 1.453582516 0.1445075829E-02 1.455934027 0.1443934669E-02 1.458285537 0.1442730330E-02 1.460637048 0.1441460900E-02 1.462988559 0.1440124493E-02 1.465340070 0.1438719254E-02 1.467691581 0.1437243365E-02 1.470043092 0.1435695046E-02 1.472394603 0.1434072557E-02 1.474746114 0.1432374208E-02 1.477097625 0.1430598353E-02 1.479449135 0.1428743400E-02 1.481800646 0.1426807810E-02 1.484152157 0.1424790097E-02 1.486503668 0.1422688834E-02 1.488855179 0.1420502651E-02 1.491206690 0.1418230235E-02 1.493558201 0.1415870332E-02 1.495909712 0.1413421746E-02 1.498261223 0.1410883339E-02 1.500612733 0.1408254028E-02 1.502964244 0.1405532784E-02 1.505315755 0.1402718633E-02 1.507667266 0.1399810650E-02 1.510018777 0.1396807961E-02 1.512370288 0.1393709735E-02 1.514721799 0.1390515186E-02 1.517073310 0.1387223569E-02 1.519424821 0.1383834175E-02 1.521776331 0.1380346334E-02 1.524127842 0.1376759403E-02 1.526479353 0.1373072773E-02 1.528830864 0.1369285860E-02 1.531182375 0.1365398105E-02 1.533533886 0.1361408972E-02 1.535885397 0.1357317946E-02 1.538236908 0.1353124531E-02 1.540588418 0.1348828248E-02 1.542939929 0.1344428635E-02 1.545291440 0.1339925245E-02 1.547642951 0.1335317649E-02 1.549994462 0.1330605430E-02 1.552345973 0.1325788188E-02 1.554697484 0.1320865538E-02 1.557048995 0.1315837111E-02 1.559400506 0.1310702557E-02 1.561752016 0.1305461542E-02 1.564103527 0.1300113754E-02 1.566455038 0.1294658903E-02 1.568806549 0.1289096719E-02 1.571158060 0.1283426960E-02 1.573509571 0.1277649412E-02 1.575861082 0.1271763888E-02 1.578212593 0.1265770234E-02 1.580564104 0.1259668332E-02 1.582915614 0.1253458097E-02 1.585267125 0.1247139484E-02 1.587618636 0.1240712488E-02 1.589970147 0.1234177149E-02 1.592321658 0.1227533548E-02 1.594673169 0.1220781818E-02 1.597024680 0.1213922134E-02 1.599376191 0.1206954727E-02 1.601727702 0.1199879876E-02 1.604079212 0.1192697913E-02 1.606430723 0.1185409225E-02 1.608782234 0.1178014253E-02 1.611133745 0.1170513491E-02 1.613485256 0.1162907491E-02 1.615836767 0.1155196861E-02 1.618188278 0.1147382261E-02 1.620539789 0.1139464409E-02 1.622891299 0.1131444079E-02 1.625242810 0.1123322095E-02 1.627594321 0.1115099337E-02 1.629945832 0.1106776736E-02 1.632297343 0.1098355277E-02 1.634648854 0.1089835989E-02 1.637000365 0.1081219955E-02 1.639351876 0.1072508301E-02 1.641703387 0.1063702198E-02 1.644054897 0.1054802863E-02 1.646406408 0.1045811551E-02 1.648757919 0.1036729558E-02 1.651109430 0.1027558217E-02 1.653460941 0.1018298898E-02 1.655812452 0.1008953004E-02 1.658163963 0.9995219672E-03 1.660515474 0.9900072533E-03 1.662866985 0.9804103537E-03 1.665218495 0.9707327866E-03 1.667570006 0.9609760940E-03 1.669921517 0.9511418406E-03 1.672273028 0.9412316117E-03 1.674624539 0.9312470118E-03 1.676976050 0.9211896628E-03 1.679327561 0.9110612027E-03 1.681679072 0.9008632839E-03 1.684030583 0.8905975723E-03 1.686382093 0.8802657455E-03 1.688733604 0.8698694919E-03 1.691085115 0.8594105093E-03 1.693436626 0.8488905042E-03 1.695788137 0.8383111904E-03 1.698139648 0.8276742881E-03 1.700491159 0.8169815232E-03 1.702842670 0.8062346263E-03 1.705194180 0.7954353318E-03 1.707545691 0.7845853774E-03 1.709897202 0.7736865028E-03 1.712248713 0.7627404498E-03 1.714600224 0.7517489607E-03 1.716951735 0.7407137784E-03 1.719303246 0.7296366452E-03 1.721654757 0.7185193023E-03 1.724006268 0.7073634889E-03 1.726357778 0.6961709419E-03 1.728709289 0.6849433947E-03 1.731060800 0.6736825767E-03 1.733412311 0.6623902125E-03 1.735763822 0.6510680207E-03 1.738115333 0.6397177134E-03 1.740466844 0.6283409949E-03 1.742818355 0.6169395609E-03 1.745169866 0.6055150970E-03 1.747521376 0.5940692780E-03 1.749872887 0.5826037661E-03 1.752224398 0.5711202098E-03 1.754575909 0.5596202423E-03 1.756927420 0.5481054799E-03 1.759278931 0.5365775202E-03 1.761630442 0.5250379405E-03 1.763981953 0.5134882954E-03 1.766333464 0.5019301152E-03 1.768684974 0.4903649034E-03 1.771036485 0.4787941342E-03 1.773387996 0.4672192503E-03 1.775739507 0.4556416603E-03 1.778091018 0.4440627355E-03 1.780442529 0.4324838072E-03 1.782794040 0.4209061639E-03 1.785145551 0.4093310473E-03 1.787497061 0.3977596496E-03 1.789848572 0.3861931095E-03 1.792200083 0.3746325083E-03 1.794551594 0.3630788660E-03 1.796903105 0.3515331370E-03 1.799254616 0.3399962054E-03 1.801606127 0.3284688800E-03 1.803957638 0.3169518889E-03 1.806309149 0.3054458735E-03 1.808660659 0.2939513822E-03 1.811012170 0.2824688622E-03 1.813363681 0.2709986517E-03 1.815715192 0.2595409690E-03 1.818066703 0.2480959005E-03 1.820418214 0.2366633859E-03 1.822769725 0.2252431993E-03 1.825121236 0.2138349253E-03 1.827472747 0.2024379274E-03 1.829824257 0.1910513062E-03 1.832175768 0.1796738420E-03 1.834527279 0.1683039149E-03 1.836878790 0.1569393898E-03 1.839230301 0.1455774488E-03 1.841581812 0.1342143364E-03 1.843933323 0.1228449639E-03 1.846284834 0.1114622674E-03 1.848636345 0.1000561213E-03 1.850987855 0.8861139681E-04 1.853339366 0.7710424641E-04 1.855690877 0.6549434520E-04 1.858042388 0.5370662500E-04 1.860393899 0.4158003248E-04 1.862745410 0.2867461800E-04 1.865096921 0.1279518726E-04 1.867448432 -0.1572440195E-04 1.869799942 -0.2027825643E-04 1.872151453 -0.1812683746E-04 1.874502964 -0.7013009195E-10 1.876849995 -0.2597002625E-04 1.879197025 -0.3360005076E-04 1.881544055 -0.3691439561E-04 1.883891086 -0.3707729365E-04 1.886238116 -0.3412223129E-04 1.888585147 -0.2703199757E-04 1.890932177 -0.8557834238E-05 1.893279207 0.2843930835E-04 1.895626238 0.4377161241E-04 1.897973268 0.5699806151E-04 1.900320299 0.6933793884E-04 1.902667329 0.8119907804E-04 1.905014359 0.9276727263E-04 1.907361390 0.1041416691E-03 1.909708420 0.1153806723E-03 1.912055451 0.1265211107E-03 1.914402481 0.1375873885E-03 1.916749511 0.1485962926E-03 1.919096542 0.1595597046E-03 1.921443572 0.1704862210E-03 1.923790603 0.1813821643E-03 1.926137633 0.1922522393E-03 1.928484663 0.2030999729E-03 1.930831694 0.2139280166E-03 1.933178724 0.2247383591E-03 1.935525754 0.2355324801E-03 1.937872785 0.2463114625E-03 1.940219815 0.2570760761E-03 1.942566846 0.2678268408E-03 1.944913876 0.2785640752E-03 1.947260906 0.2892879343E-03 1.949607937 0.2999984386E-03 1.951954967 0.3106954981E-03 1.954301998 0.3213789307E-03 1.956649028 0.3320484772E-03 1.958996058 0.3427038143E-03 1.961343089 0.3533445640E-03 1.963690119 0.3639703022E-03 1.966037150 0.3745805662E-03 1.968384180 0.3851748599E-03 1.970731210 0.3957526592E-03 1.973078241 0.4063134161E-03 1.975425271 0.4168565623E-03 1.977772302 0.4273815125E-03 1.980119332 0.4378876668E-03 1.982466362 0.4483744134E-03 1.984813393 0.4588411304E-03 1.987160423 0.4692871877E-03 1.989507454 0.4797119485E-03 1.991854484 0.4901147711E-03 1.994201514 0.5004950097E-03 1.996548545 0.5108520159E-03 1.998895575 0.5211851394E-03 2.001242605 0.5314937293E-03 2.003589636 0.5417771346E-03 2.005936666 0.5520347052E-03 2.008283697 0.5622657925E-03 2.010630727 0.5724697501E-03 2.012977757 0.5826459344E-03 2.015324788 0.5927937049E-03 2.017671818 0.6029124252E-03 2.020018849 0.6130014629E-03 2.022365879 0.6230601905E-03 2.024712909 0.6330879856E-03 2.027059940 0.6430842311E-03 2.029406970 0.6530483162E-03 2.031754001 0.6629796358E-03 2.034101031 0.6728775915E-03 2.036448061 0.6827415919E-03 2.038795092 0.6925710524E-03 2.041142122 0.7023653958E-03 2.043489153 0.7121240526E-03 2.045836183 0.7218464609E-03 2.048183213 0.7315320673E-03 2.050530244 0.7411803261E-03 2.052877274 0.7507907006E-03 2.055224304 0.7603626623E-03 2.057571335 0.7698956918E-03 2.059918365 0.7793892788E-03 2.062265396 0.7888429219E-03 2.064612426 0.7982561294E-03 2.066959456 0.8076284189E-03 2.069306487 0.8169593176E-03 2.071653517 0.8262483626E-03 2.074000548 0.8354951011E-03 2.076347578 0.8446990900E-03 2.078694608 0.8538598966E-03 2.081041639 0.8629770987E-03 2.083388669 0.8720502841E-03 2.085735700 0.8810790516E-03 2.088082730 0.8900630102E-03 2.090429760 0.8990017802E-03 2.092776791 0.9078949922E-03 2.095123821 0.9167422882E-03 2.097470852 0.9255433210E-03 2.099817882 0.9342977546E-03 2.102164912 0.9430052644E-03 2.104511943 0.9516655369E-03 2.106858973 0.9602782700E-03 2.109206004 0.9688431733E-03 2.111553034 0.9773599678E-03 2.113900064 0.9858283860E-03 2.116247095 0.9942481725E-03 2.118594125 0.1002619083E-02 2.120941155 0.1010940886E-02 2.123288186 0.1019213361E-02 2.125635216 0.1027436299E-02 2.127982247 0.1035609505E-02 2.130329277 0.1043732794E-02 2.132676307 0.1051805994E-02 2.135023338 0.1059828945E-02 2.137370368 0.1067801500E-02 2.139717399 0.1075723521E-02 2.142064429 0.1083594887E-02 2.144411459 0.1091415485E-02 2.146758490 0.1099185218E-02 2.149105520 0.1106903997E-02 2.151452551 0.1114571750E-02 2.153799581 0.1122188413E-02 2.156146611 0.1129753936E-02 2.158493642 0.1137268283E-02 2.160840672 0.1144731429E-02 2.163187703 0.1152143359E-02 2.165534733 0.1159504074E-02 2.167881763 0.1166813584E-02 2.170228794 0.1174071913E-02 2.172575824 0.1181279097E-02 2.174922855 0.1188435184E-02 2.177269885 0.1195540233E-02 2.179616915 0.1202594315E-02 2.181963946 0.1209597514E-02 2.184310976 0.1216549925E-02 2.186658006 0.1223451655E-02 2.189005037 0.1230302822E-02 2.191352067 0.1237103556E-02 2.193699098 0.1243853997E-02 2.196046128 0.1250554297E-02 2.198393158 0.1257204620E-02 2.200740189 0.1263805139E-02 2.203087219 0.1270356038E-02 2.205434250 0.1276857514E-02 2.207781280 0.1283309770E-02 2.210128310 0.1289713022E-02 2.212475341 0.1296067496E-02 2.214822371 0.1302373425E-02 2.217169402 0.1306778646E-02 2.219516432 0.1303862381E-02 2.221863462 0.1300951400E-02 2.224210493 0.1298046588E-02 2.226557523 0.1295148858E-02 2.228904554 0.1292259155E-02 2.231251584 0.1289378459E-02 2.233598614 0.1286507784E-02 2.235945645 0.1283648187E-02 2.238292675 0.1280800761E-02 2.240639706 0.1277966647E-02 2.242986736 0.1275147028E-02 2.245333766 0.1272343138E-02 2.247680797 0.1269556264E-02 2.250027827 0.1266787743E-02 2.252374857 0.1264038974E-02 2.254721888 0.1261311414E-02 2.257068918 0.1258606582E-02 2.259415949 0.1255926067E-02 2.261762979 0.1253271523E-02 2.264110009 0.1250644682E-02 2.266457040 0.1248047345E-02 2.268804070 0.1245481397E-02 2.271151101 0.1242948800E-02 2.273498131 0.1240451601E-02 2.275845161 0.1237991932E-02 2.278192192 0.1235572012E-02 2.280539222 0.1233194150E-02 2.282886253 0.1230860743E-02 2.285233283 0.1228574279E-02 2.287580313 0.1226337335E-02 2.289927344 0.1224152576E-02 2.292274374 0.1222022752E-02 2.294621405 0.1219950698E-02 2.296968435 0.1217939323E-02 2.299315465 0.1215991611E-02 2.301662496 0.1214110610E-02 2.304009526 0.1212299422E-02 2.306356557 0.1210561196E-02 2.308703587 0.1208899112E-02 2.311050617 0.1207316368E-02 2.313397648 0.1205816166E-02 2.315744678 0.1204401690E-02 2.318091708 0.1203076090E-02 2.320438739 0.1201842459E-02 2.322785769 0.1200703810E-02 2.325132800 0.1199663054E-02 2.327479830 0.1198722973E-02 2.329826860 0.1197886196E-02 2.332173891 0.1197155175E-02 2.334520921 0.1196532157E-02 2.336867952 0.1196019164E-02 2.339214982 0.1195617968E-02 2.341562012 0.1195330074E-02 2.343909043 0.1195156697E-02 2.346256073 0.1195098753E-02 0.000000000 0.1545687920E-02 0.2347351854E-02 0.1545667686E-02 0.4694703708E-02 0.1545607073E-02 0.7042055561E-02 0.1545506352E-02 0.9389407415E-02 0.1545365972E-02 0.1173675927E-01 0.1545186558E-02 0.1408411112E-01 0.1544968905E-02 0.1643146298E-01 0.1544713977E-02 0.1877881483E-01 0.1544422895E-02 0.2112616668E-01 0.1544096935E-02 0.2347351854E-01 0.1543737518E-02 0.2582087039E-01 0.1543346199E-02 0.2816822225E-01 0.1542924665E-02 0.3051557410E-01 0.1542474716E-02 0.3286292595E-01 0.1541998263E-02 0.3521027781E-01 0.1541497311E-02 0.3755762966E-01 0.1540973953E-02 0.3990498151E-01 0.1540430358E-02 0.4225233337E-01 0.1539868761E-02 0.4459968522E-01 0.1539291451E-02 0.4694703708E-01 0.1538700760E-02 0.4929438893E-01 0.1538099057E-02 0.5164174078E-01 0.1537488738E-02 0.5398909264E-01 0.1536872210E-02 0.5633644449E-01 0.1536251893E-02 0.5868379634E-01 0.1535630203E-02 0.6103114820E-01 0.1535009550E-02 0.6337850005E-01 0.1534392330E-02 0.6572585191E-01 0.1533780916E-02 0.6807320376E-01 0.1533177655E-02 0.7042055561E-01 0.1532584864E-02 0.7276790747E-01 0.1532004822E-02 0.7511525932E-01 0.1531439769E-02 0.7746261117E-01 0.1530891901E-02 0.7980996303E-01 0.1530363371E-02 0.8215731488E-01 0.1529856279E-02 0.8450466674E-01 0.1529372681E-02 0.8685201859E-01 0.1528914578E-02 0.8919937044E-01 0.1528483921E-02 0.9154672230E-01 0.1528082609E-02 0.9389407415E-01 0.1527712490E-02 0.9624142601E-01 0.1527375359E-02 0.9858877786E-01 0.1527072961E-02 0.1009361297 0.1526806994E-02 0.1032834816 0.1526579103E-02 0.1056308334 0.1526390890E-02 0.1079781853 0.1526243910E-02 0.1103255371 0.1526139676E-02 0.1126728890 0.1526079660E-02 0.1150202408 0.1526065294E-02 0.1173675927 0.1526097975E-02 0.1197149445 0.1526179063E-02 0.1220622964 0.1526309888E-02 0.1244096483 0.1526491751E-02 0.1267570001 0.1526725925E-02 0.1291043520 0.1527013659E-02 0.1314517038 0.1527356178E-02 0.1337990557 0.1527754690E-02 0.1361464075 0.1528210384E-02 0.1384937594 0.1528724433E-02 0.1408411112 0.1529298001E-02 0.1431884631 0.1529932236E-02 0.1455358149 0.1530628283E-02 0.1478831668 0.1531387276E-02 0.1502305186 0.1532210347E-02 0.1525778705 0.1533098624E-02 0.1549252223 0.1534053235E-02 0.1572725742 0.1535075305E-02 0.1596199261 0.1536165965E-02 0.1619672779 0.1537326346E-02 0.1643146298 0.1538557583E-02 0.1666619816 0.1539860816E-02 0.1690093335 0.1541237192E-02 0.1713566853 0.1542687861E-02 0.1737040372 0.1544213981E-02 0.1760513890 0.1545816715E-02 0.1783987409 0.1547497232E-02 0.1807460927 0.1549256709E-02 0.1830934446 0.1551096323E-02 0.1854407964 0.1553017260E-02 0.1877881483 0.1555020706E-02 0.1901355002 0.1557107848E-02 0.1924828520 0.1559279874E-02 0.1948302039 0.1561537967E-02 0.1971775557 0.1563883309E-02 0.1995249076 0.1566317070E-02 0.2018722594 0.1568840411E-02 0.2042196113 0.1571454480E-02 0.2065669631 0.1574160406E-02 0.2089143150 0.1576959297E-02 0.2112616668 0.1579852233E-02 0.2136090187 0.1582840266E-02 0.2159563705 0.1585924409E-02 0.2183037224 0.1589105638E-02 0.2206510743 0.1592384878E-02 0.2229984261 0.1595763005E-02 0.2253457780 0.1599240834E-02 0.2276931298 0.1602819115E-02 0.2300404817 0.1606498528E-02 0.2323878335 0.1610279673E-02 0.2347351854 0.1614163066E-02 0.2370825372 0.1618149132E-02 0.2394298891 0.1622238193E-02 0.2417772409 0.1626430469E-02 0.2441245928 0.1630726065E-02 0.2464719446 0.1635124968E-02 0.2488192965 0.1639627038E-02 0.2511666484 0.1644232002E-02 0.2535140002 0.1648939450E-02 0.2558613521 0.1653748827E-02 0.2582087039 0.1658659429E-02 0.2605560558 0.1663670399E-02 0.2629034076 0.1668780720E-02 0.2652507595 0.1673989217E-02 0.2675981113 0.1679294546E-02 0.2699454632 0.1684695199E-02 0.2722928150 0.1690189500E-02 0.2746401669 0.1691268974E-02 0.2769875187 0.1690529736E-02 0.2793348706 0.1689802439E-02 0.2816822225 0.1689087565E-02 0.2840295743 0.1688385607E-02 0.2863769262 0.1687697066E-02 0.2887242780 0.1687022454E-02 0.2910716299 0.1686362288E-02 0.2934189817 0.1685717099E-02 0.2957663336 0.1685087426E-02 0.2981136854 0.1684473818E-02 0.3004610373 0.1683876835E-02 0.3028083891 0.1683297049E-02 0.3051557410 0.1682735041E-02 0.3075030928 0.1682191405E-02 0.3098504447 0.1681666748E-02 0.3121977966 0.1681161687E-02 0.3145451484 0.1680676853E-02 0.3168925003 0.1680212890E-02 0.3192398521 0.1679770456E-02 0.3215872040 0.1679350220E-02 0.3239345558 0.1678952868E-02 0.3262819077 0.1678579100E-02 0.3286292595 0.1678229629E-02 0.3309766114 0.1677905187E-02 0.3333239632 0.1677606517E-02 0.3356713151 0.1677334381E-02 0.3380186669 0.1677089557E-02 0.3403660188 0.1676872839E-02 0.3427133707 0.1676685037E-02 0.3450607225 0.1676526981E-02 0.3474080744 0.1676399516E-02 0.3497554262 0.1676303506E-02 0.3521027781 0.1676239834E-02 0.3544501299 0.1676209399E-02 0.3567974818 0.1676213121E-02 0.3591448336 0.1676251938E-02 0.3614921855 0.1676326807E-02 0.3638395373 0.1676438702E-02 0.3661868892 0.1676588620E-02 0.3685342410 0.1676777574E-02 0.3708815929 0.1677006597E-02 0.3732289448 0.1677276740E-02 0.3755762966 0.1677589075E-02 0.3779236485 0.1677944691E-02 0.3802710003 0.1678344693E-02 0.3826183522 0.1678790208E-02 0.3849657040 0.1679282377E-02 0.3873130559 0.1679822358E-02 0.3896604077 0.1680411326E-02 0.3920077596 0.1681050469E-02 0.3943551114 0.1681740991E-02 0.3967024633 0.1682484106E-02 0.3990498151 0.1683281044E-02 0.4013971670 0.1684133040E-02 0.4037445189 0.1685041341E-02 0.4060918707 0.1686007199E-02 0.4084392226 0.1687031873E-02 0.4107865744 0.1688116622E-02 0.4131339263 0.1689262707E-02 0.4154812781 0.1690471389E-02 0.4178286300 0.1691743921E-02 0.4201759818 0.1693081552E-02 0.4225233337 0.1694485518E-02 0.4248706855 0.1695957044E-02 0.4272180374 0.1697497335E-02 0.4295653892 0.1699107580E-02 0.4319127411 0.1700788941E-02 0.4342600929 0.1702542552E-02 0.4366074448 0.1704369516E-02 0.4389547967 0.1706270900E-02 0.4413021485 0.1708247730E-02 0.4436495004 0.1710300987E-02 0.4459968522 0.1712431604E-02 0.4483442041 0.1714640459E-02 0.4506915559 0.1716928372E-02 0.4530389078 0.1719296098E-02 0.4553862596 0.1721744328E-02 0.4577336115 0.1724273678E-02 0.4600809633 0.1726884688E-02 0.4624283152 0.1729577816E-02 0.4647756670 0.1732353434E-02 0.4671230189 0.1735211827E-02 0.4694703708 0.1738153182E-02 0.4718177226 0.1741177590E-02 0.4741650745 0.1744285040E-02 0.4765124263 0.1747475416E-02 0.4788597782 0.1750748492E-02 0.4812071300 0.1754103931E-02 0.4835544819 0.1757541283E-02 0.4859018337 0.1761059977E-02 0.4882491856 0.1764659326E-02 0.4905965374 0.1768338516E-02 0.4929438893 0.1772096613E-02 0.4952912411 0.1775932555E-02 0.4976385930 0.1779845149E-02 0.4999859449 0.1783833076E-02 0.5023332967 0.1787894883E-02 0.5046806486 0.1792028981E-02 0.5070280004 0.1796233648E-02 0.5093753523 0.1800507022E-02 0.5117227041 0.1804847102E-02 0.5140700560 0.1809251743E-02 0.5164174078 0.1813718653E-02 0.5187647597 0.1818245392E-02 0.5211121115 0.1822829365E-02 0.5234594634 0.1827467820E-02 0.5258068152 0.1832157837E-02 0.5281541671 0.1836896330E-02 0.5305015190 0.1841680033E-02 0.5328488708 0.1846505491E-02 0.5351962227 0.1851369057E-02 0.5375435745 0.1856266871E-02 0.5398909264 0.1861194856E-02 0.5422382782 0.1866148696E-02 0.5445856301 0.1871123826E-02 0.5469329819 0.1876115407E-02 0.5492803338 0.1881118311E-02 0.5516276856 0.1886127094E-02 0.5539750375 0.1891135971E-02 0.5563223893 0.1896138789E-02 0.5586697412 0.1901128994E-02 0.5610170931 0.1906099602E-02 0.5633644449 0.1911043156E-02 0.5657117968 0.1915951692E-02 0.5680591486 0.1920816700E-02 0.5704065005 0.1925629077E-02 0.5727538523 0.1930379089E-02 0.5751012042 0.1935056324E-02 0.5774485560 0.1939649658E-02 0.5797959079 0.1944147215E-02 0.5821432597 0.1948536336E-02 0.5844906116 0.1952803568E-02 0.5868379634 0.1956934650E-02 0.5891853153 0.1960914535E-02 0.5915326672 0.1964727425E-02 0.5938800190 0.1968356845E-02 0.5962273709 0.1971785744E-02 0.5985747227 0.1974996653E-02 0.6009220746 0.1977971876E-02 0.6032694264 0.1980693745E-02 0.6056167783 0.1983144916E-02 0.6079641301 0.1985308718E-02 0.6103114820 0.1987169534E-02 0.6126588338 0.1988713212E-02 0.6150061857 0.1989927469E-02 0.6173535375 0.1990802281E-02 0.6197008894 0.1991330218E-02 0.6220482413 0.1991506712E-02 0.6243952716 0.1991522662E-02 0.6267423020 0.1991570502E-02 0.6290893324 0.1991650201E-02 0.6314363628 0.1991761708E-02 0.6337833932 0.1991904957E-02 0.6361304236 0.1992079860E-02 0.6384774540 0.1992286313E-02 0.6408244844 0.1992524195E-02 0.6431715148 0.1992793365E-02 0.6455185452 0.1993093665E-02 0.6478655756 0.1993424922E-02 0.6502126060 0.1993786942E-02 0.6525596364 0.1994179519E-02 0.6549066668 0.1994602428E-02 0.6572536971 0.1995055428E-02 0.6596007275 0.1995538264E-02 0.6619477579 0.1996050665E-02 0.6642947883 0.1996592345E-02 0.6666418187 0.1997163005E-02 0.6689888491 0.1997762331E-02 0.6713358795 0.1998389996E-02 0.6736829099 0.1999045662E-02 0.6760299403 0.1999728976E-02 0.6783769707 0.2000439574E-02 0.6807240011 0.2001177083E-02 0.6830710315 0.2001941115E-02 0.6854180619 0.2002731277E-02 0.6877650922 0.2003547161E-02 0.6901121226 0.2004388354E-02 0.6924591530 0.2005254431E-02 0.6948061834 0.2006144961E-02 0.6971532138 0.2007059506E-02 0.6995002442 0.2007997618E-02 0.7018472746 0.2008958844E-02 0.7041943050 0.2009942726E-02 0.7065413354 0.2010948798E-02 0.7088883658 0.2011976591E-02 0.7112353962 0.2013025629E-02 0.7135824266 0.2014095434E-02 0.7159294570 0.2015185522E-02 0.7182764874 0.2016295407E-02 0.7206235177 0.2017424601E-02 0.7229705481 0.2018572611E-02 0.7253175785 0.2019738944E-02 0.7276646089 0.2020923103E-02 0.7300116393 0.2022124591E-02 0.7323586697 0.2023342912E-02 0.7347057001 0.2024577564E-02 0.7370527305 0.2025828051E-02 0.7393997609 0.2027093871E-02 0.7417467913 0.2028374527E-02 0.7440938217 0.2029669519E-02 0.7464408521 0.2030978351E-02 0.7487878825 0.2032300526E-02 0.7511349128 0.2033635548E-02 0.7534819432 0.2034982924E-02 0.7558289736 0.2036342162E-02 0.7581760040 0.2037712773E-02 0.7605230344 0.2039094269E-02 0.7628700648 0.2040486165E-02 0.7652170952 0.2041887979E-02 0.7675641256 0.2043299232E-02 0.7699111560 0.2044719446E-02 0.7722581864 0.2046148148E-02 0.7746052168 0.2047584868E-02 0.7769522472 0.2049029139E-02 0.7792992776 0.2050480497E-02 0.7816463080 0.2051938484E-02 0.7839933383 0.2053402643E-02 0.7863403687 0.2054872522E-02 0.7886873991 0.2056347673E-02 0.7910344295 0.2057827653E-02 0.7933814599 0.2059312020E-02 0.7957284903 0.2060800339E-02 0.7980755207 0.2062292179E-02 0.8004225511 0.2063787113E-02 0.8027695815 0.2065284719E-02 0.8051166119 0.2066784576E-02 0.8074636423 0.2068286273E-02 0.8098106727 0.2069789400E-02 0.8121577031 0.2071293551E-02 0.8145047335 0.2072798328E-02 0.8168517638 0.2074303334E-02 0.8191987942 0.2075808180E-02 0.8215458246 0.2077312479E-02 0.8238928550 0.2078815849E-02 0.8262398854 0.2080317915E-02 0.8285869158 0.2081818305E-02 0.8309339462 0.2083316651E-02 0.8332809766 0.2084812592E-02 0.8356280070 0.2086305771E-02 0.8379750374 0.2087795834E-02 0.8403220678 0.2089282435E-02 0.8426690982 0.2090765230E-02 0.8450161286 0.2092243881E-02 0.8473631589 0.2093718055E-02 0.8497101893 0.2094475669E-02 0.8520572197 0.2094546678E-02 0.8544042501 0.2094618744E-02 0.8567512805 0.2094691850E-02 0.8590983109 0.2094765980E-02 0.8614453413 0.2094841115E-02 0.8637923717 0.2094917235E-02 0.8661394021 0.2094994321E-02 0.8684864325 0.2095072351E-02 0.8708334629 0.2095151304E-02 0.8731804933 0.2095231156E-02 0.8755275237 0.2095311882E-02 0.8778745541 0.2095393459E-02 0.8802215844 0.2095475861E-02 0.8825686148 0.2095559059E-02 0.8849156452 0.2095643028E-02 0.8872626756 0.2095727737E-02 0.8896097060 0.2095813157E-02 0.8919567364 0.2095899259E-02 0.8943037668 0.2095986011E-02 0.8966507972 0.2096073380E-02 0.8989978276 0.2096161335E-02 0.9013448580 0.2096249841E-02 0.9036918884 0.2096338864E-02 0.9060389188 0.2096428368E-02 0.9083859492 0.2096518319E-02 0.9107329796 0.2096608679E-02 0.9130800099 0.2096699411E-02 0.9154270403 0.2096790478E-02 0.9177740707 0.2096881840E-02 0.9201211011 0.2096973459E-02 0.9224681315 0.2097065295E-02 0.9248151619 0.2097157308E-02 0.9271621923 0.2097249456E-02 0.9295092227 0.2097341699E-02 0.9318562531 0.2097433995E-02 0.9342032835 0.2097526301E-02 0.9365503139 0.2097618576E-02 0.9388973443 0.2097710776E-02 0.9412443747 0.2097802857E-02 0.9435914050 0.2097894777E-02 0.9459384354 0.2097986491E-02 0.9482854658 0.2098077956E-02 0.9506324962 0.2098169126E-02 0.9529795266 0.2098259957E-02 0.9553265570 0.2098350405E-02 0.9576735874 0.2098440424E-02 0.9600206178 0.2098529970E-02 0.9623676482 0.2098618997E-02 0.9647146786 0.2098707462E-02 0.9670617090 0.2098795318E-02 0.9694087394 0.2098882520E-02 0.9717557698 0.2098969024E-02 0.9741028002 0.2099054786E-02 0.9764498305 0.2099139759E-02 0.9787968609 0.2099223901E-02 0.9811438913 0.2099307166E-02 0.9834909217 0.2099389511E-02 0.9858379521 0.2099470893E-02 0.9881849825 0.2099551266E-02 0.9905320129 0.2099630589E-02 0.9928790433 0.2099708820E-02 0.9952260737 0.2099785915E-02 0.9975731041 0.2099861832E-02 0.9999201345 0.2099936532E-02 1.002267165 0.2100009972E-02 1.004614195 0.2100082112E-02 1.006961226 0.2100152914E-02 1.009308256 0.2100222337E-02 1.011655286 0.2100290344E-02 1.014002317 0.2100356896E-02 1.016349347 0.2100421957E-02 1.018696378 0.2100485490E-02 1.021043408 0.2100547459E-02 1.023390438 0.2100607831E-02 1.025737469 0.2100666570E-02 1.028084499 0.2100723643E-02 1.030431530 0.2100779019E-02 1.032778560 0.2100832666E-02 1.035125590 0.2100884554E-02 1.037472621 0.2100934652E-02 1.039819651 0.2100982933E-02 1.042166682 0.2101029368E-02 1.044513712 0.2101073932E-02 1.046860742 0.2101116598E-02 1.049207773 0.2101157342E-02 1.051554803 0.2101196141E-02 1.053901834 0.2101232972E-02 1.056248864 0.2101267814E-02 1.058595894 0.2101300647E-02 1.060942925 0.2101331452E-02 1.063289955 0.2101360211E-02 1.065636985 0.2101386907E-02 1.067984016 0.2101411525E-02 1.070331046 0.2101434050E-02 1.072678077 0.2101454471E-02 1.075025107 0.2101472773E-02 1.077372137 0.2101488948E-02 1.079719168 0.2101502985E-02 1.082066198 0.2101514876E-02 1.084413229 0.2101524615E-02 1.086760259 0.2101532196E-02 1.089107289 0.2101537614E-02 1.091454320 0.2101540865E-02 1.093801350 0.2101541950E-02 1.096152861 0.2101576387E-02 1.098504372 0.2101679612E-02 1.100855883 0.2101851362E-02 1.103207394 0.2102091203E-02 1.105558905 0.2102398524E-02 1.107910415 0.2102772546E-02 1.110261926 0.2103212318E-02 1.112613437 0.2103716720E-02 1.114964948 0.2104284467E-02 1.117316459 0.2104914111E-02 1.119667970 0.2105604042E-02 1.122019481 0.2106352494E-02 1.124370992 0.2107157547E-02 1.126722503 0.2108017131E-02 1.129074013 0.2108929031E-02 1.131425524 0.2109890890E-02 1.133777035 0.2110900215E-02 1.136128546 0.2111954381E-02 1.138480057 0.2113050639E-02 1.140831568 0.2114186116E-02 1.143183079 0.2115357826E-02 1.145534590 0.2116562675E-02 1.147886101 0.2117797465E-02 1.150237611 0.2119058899E-02 1.152589122 0.2120343595E-02 1.154940633 0.2121648084E-02 1.157292144 0.2122968821E-02 1.159643655 0.2124302192E-02 1.161995166 0.2125644522E-02 1.164346677 0.2125930696E-02 1.166698188 0.2123137374E-02 1.169049699 0.2120323289E-02 1.171401209 0.2117490001E-02 1.173752720 0.2114638911E-02 1.176104231 0.2111771282E-02 1.178455742 0.2108888246E-02 1.180807253 0.2105990816E-02 1.183158764 0.2103079902E-02 1.185510275 0.2100156315E-02 1.187861786 0.2097220781E-02 1.190213296 0.2094273945E-02 1.192564807 0.2091316380E-02 1.194916318 0.2088348597E-02 1.197267829 0.2085371045E-02 1.199619340 0.2082384123E-02 1.201970851 0.2079388182E-02 1.204322362 0.2076383530E-02 1.206673873 0.2073370436E-02 1.209025384 0.2070349138E-02 1.211376894 0.2067319840E-02 1.213728405 0.2064282723E-02 1.216079916 0.2061237941E-02 1.218431427 0.2058185630E-02 1.220782938 0.2055125906E-02 1.223134449 0.2052058870E-02 1.225485960 0.2048984612E-02 1.227837471 0.2045903208E-02 1.230188982 0.2042814726E-02 1.232540492 0.2039719230E-02 1.234892003 0.2036616773E-02 1.237243514 0.2033507410E-02 1.239595025 0.2030391189E-02 1.241946536 0.2027268160E-02 1.244298047 0.2024138373E-02 1.246649558 0.2021001880E-02 1.249001069 0.2017858734E-02 1.251352580 0.2014708995E-02 1.253704090 0.2011552725E-02 1.256055601 0.2008389992E-02 1.258407112 0.2005220874E-02 1.260758623 0.2002045453E-02 1.263110134 0.1998863821E-02 1.265461645 0.1995676078E-02 1.267813156 0.1992482334E-02 1.270164667 0.1989282710E-02 1.272516177 0.1986077337E-02 1.274867688 0.1982866358E-02 1.277219199 0.1979649928E-02 1.279570710 0.1976428212E-02 1.281922221 0.1973201392E-02 1.284273732 0.1969969661E-02 1.286625243 0.1966733223E-02 1.288976754 0.1963492301E-02 1.291328265 0.1960247129E-02 1.293679775 0.1956997956E-02 1.296031286 0.1953745046E-02 1.298382797 0.1950488678E-02 1.300734308 0.1947229146E-02 1.303085819 0.1943966762E-02 1.305437330 0.1940701849E-02 1.307788841 0.1937434749E-02 1.310140352 0.1934165821E-02 1.312491863 0.1930895436E-02 1.314843373 0.1927623986E-02 1.317194884 0.1924351876E-02 1.319546395 0.1921079530E-02 1.321897906 0.1917807386E-02 1.324249417 0.1914535900E-02 1.326600928 0.1911265545E-02 1.328952439 0.1907996811E-02 1.331303950 0.1904730204E-02 1.333655461 0.1901466247E-02 1.336006971 0.1898205481E-02 1.338358482 0.1894948463E-02 1.340709993 0.1891695767E-02 1.343061504 0.1888447985E-02 1.345413015 0.1885205726E-02 1.347764526 0.1881969615E-02 1.350116037 0.1878740296E-02 1.352467548 0.1875518428E-02 1.354819059 0.1872304690E-02 1.357170569 0.1869099777E-02 1.359522080 0.1865904399E-02 1.361873591 0.1862719288E-02 1.364225102 0.1859545191E-02 1.366576613 0.1856382870E-02 1.368928124 0.1853233109E-02 1.371279635 0.1850096707E-02 1.373631146 0.1846974479E-02 1.375982656 0.1843867260E-02 1.378334167 0.1840775900E-02 1.380685678 0.1837701269E-02 1.383037189 0.1834644250E-02 1.385388700 0.1831605746E-02 1.387740211 0.1828586676E-02 1.390091722 0.1825587974E-02 1.392443233 0.1822610592E-02 1.394794744 0.1819655498E-02 1.397146254 0.1816723672E-02 1.399497765 0.1813816112E-02 1.401849276 0.1810933829E-02 1.404200787 0.1808077847E-02 1.406552298 0.1805249204E-02 1.408903809 0.1802448948E-02 1.411255320 0.1799678137E-02 1.413606831 0.1796937841E-02 1.415958342 0.1794229135E-02 1.418309852 0.1791553101E-02 1.420661363 0.1788910826E-02 1.423012874 0.1786303399E-02 1.425364385 0.1783731910E-02 1.427715896 0.1781197445E-02 1.430067407 0.1778701087E-02 1.432418918 0.1776243912E-02 1.434770429 0.1773826984E-02 1.437121940 0.1771451355E-02 1.439473450 0.1769118058E-02 1.441824961 0.1766828108E-02 1.444176472 0.1764582493E-02 1.446527983 0.1762382173E-02 1.448879494 0.1760228078E-02 1.451231005 0.1758121099E-02 1.453582516 0.1756062086E-02 1.455934027 0.1754051843E-02 1.458285537 0.1752091128E-02 1.460637048 0.1750180640E-02 1.462988559 0.1748321022E-02 1.465340070 0.1746512856E-02 1.467691581 0.1744756653E-02 1.470043092 0.1743052858E-02 1.472394603 0.1741401838E-02 1.474746114 0.1739803887E-02 1.477097625 0.1738259213E-02 1.479449135 0.1736767946E-02 1.481800646 0.1735330127E-02 1.484152157 0.1733945713E-02 1.486503668 0.1732384184E-02 1.488855179 0.1728449004E-02 1.491206690 0.1724560085E-02 1.493558201 0.1720717323E-02 1.495909712 0.1716920586E-02 1.498261223 0.1713169711E-02 1.500612733 0.1709464516E-02 1.502964244 0.1705804793E-02 1.505315755 0.1702190318E-02 1.507667266 0.1698620849E-02 1.510018777 0.1695096129E-02 1.512370288 0.1691615892E-02 1.514721799 0.1688179860E-02 1.517073310 0.1684787748E-02 1.519424821 0.1681439265E-02 1.521776331 0.1678134118E-02 1.524127842 0.1674872011E-02 1.526479353 0.1671652645E-02 1.528830864 0.1668475727E-02 1.531182375 0.1665340961E-02 1.533533886 0.1662248058E-02 1.535885397 0.1659196732E-02 1.538236908 0.1656186702E-02 1.540588418 0.1653217694E-02 1.542939929 0.1650289439E-02 1.545291440 0.1647401678E-02 1.547642951 0.1644554156E-02 1.549994462 0.1641746629E-02 1.552345973 0.1638978860E-02 1.554697484 0.1636250618E-02 1.557048995 0.1633561683E-02 1.559400506 0.1630911843E-02 1.561752016 0.1628300892E-02 1.564103527 0.1625728632E-02 1.566455038 0.1623194874E-02 1.568806549 0.1620699435E-02 1.571158060 0.1618242137E-02 1.573509571 0.1615822813E-02 1.575861082 0.1613441297E-02 1.578212593 0.1611097431E-02 1.580564104 0.1608791061E-02 1.582915614 0.1606522038E-02 1.585267125 0.1604290217E-02 1.587618636 0.1602095456E-02 1.589970147 0.1599937617E-02 1.592321658 0.1597816565E-02 1.594673169 0.1595732166E-02 1.597024680 0.1593684287E-02 1.599376191 0.1591672799E-02 1.601727702 0.1589697573E-02 1.604079212 0.1587758480E-02 1.606430723 0.1585855392E-02 1.608782234 0.1583988182E-02 1.611133745 0.1582156720E-02 1.613485256 0.1580360879E-02 1.615836767 0.1578600530E-02 1.618188278 0.1576875542E-02 1.620539789 0.1575185786E-02 1.622891299 0.1573531130E-02 1.625242810 0.1571911442E-02 1.627594321 0.1570326587E-02 1.629945832 0.1568776432E-02 1.632297343 0.1567260839E-02 1.634648854 0.1565779673E-02 1.637000365 0.1564332793E-02 1.639351876 0.1562920063E-02 1.641703387 0.1561541340E-02 1.644054897 0.1560196483E-02 1.646406408 0.1558885351E-02 1.648757919 0.1557607800E-02 1.651109430 0.1556363686E-02 1.653460941 0.1555152865E-02 1.655812452 0.1553975192E-02 1.658163963 0.1552830520E-02 1.660515474 0.1551718705E-02 1.662866985 0.1550639599E-02 1.665218495 0.1549593056E-02 1.667570006 0.1548578931E-02 1.669921517 0.1547597074E-02 1.672273028 0.1546647340E-02 1.674624539 0.1545729582E-02 1.676976050 0.1544843652E-02 1.679327561 0.1543989402E-02 1.681679072 0.1543166685E-02 1.684030583 0.1542375353E-02 1.686382093 0.1541615258E-02 1.688733604 0.1540886251E-02 1.691085115 0.1540188181E-02 1.693436626 0.1539520898E-02 1.695788137 0.1538884251E-02 1.698139648 0.1538278086E-02 1.700491159 0.1537702247E-02 1.702842670 0.1537156578E-02 1.705194180 0.1536640917E-02 1.707545691 0.1536155103E-02 1.709897202 0.1535698968E-02 1.712248713 0.1535272340E-02 1.714600224 0.1534875044E-02 1.716951735 0.1534506898E-02 1.719303246 0.1534167714E-02 1.721654757 0.1533857296E-02 1.724006268 0.1533575442E-02 1.726357778 0.1533321938E-02 1.728709289 0.1533096561E-02 1.731060800 0.1532899079E-02 1.733412311 0.1532729244E-02 1.735763822 0.1532586795E-02 1.738115333 0.1532471459E-02 1.740466844 0.1532382943E-02 1.742818355 0.1532320938E-02 1.745169866 0.1532285113E-02 1.747521376 0.1532275119E-02 1.749872887 0.1532290583E-02 1.752224398 0.1532331105E-02 1.754575909 0.1532396262E-02 1.756927420 0.1532485600E-02 1.759278931 0.1532598637E-02 1.761630442 0.1532734855E-02 1.763981953 0.1532893705E-02 1.766333464 0.1533074600E-02 1.768684974 0.1533276915E-02 1.771036485 0.1533499983E-02 1.773387996 0.1533743097E-02 1.775739507 0.1534005502E-02 1.778091018 0.1534286400E-02 1.780442529 0.1534584942E-02 1.782794040 0.1534900231E-02 1.785145551 0.1535231315E-02 1.787497061 0.1535577193E-02 1.789848572 0.1535936807E-02 1.792200083 0.1536309045E-02 1.794551594 0.1536692737E-02 1.796903105 0.1537086659E-02 1.799254616 0.1537489530E-02 1.801606127 0.1537900013E-02 1.803957638 0.1538316714E-02 1.806309149 0.1538738188E-02 1.808660659 0.1539162936E-02 1.811012170 0.1539589410E-02 1.813363681 0.1540016014E-02 1.815715192 0.1540441111E-02 1.818066703 0.1540863022E-02 1.820418214 0.1541280036E-02 1.822769725 0.1541690412E-02 1.825121236 0.1542092388E-02 1.827472747 0.1542484186E-02 1.829824257 0.1542864017E-02 1.832175768 0.1543230097E-02 1.834527279 0.1543580647E-02 1.836878790 0.1543913908E-02 1.839230301 0.1544228149E-02 1.841581812 0.1544521677E-02 1.843933323 0.1544792847E-02 1.846284834 0.1545040074E-02 1.848636345 0.1545261841E-02 1.850987855 0.1545456715E-02 1.853339366 0.1545623352E-02 1.855690877 0.1545760509E-02 1.858042388 0.1545867055E-02 1.860393899 0.1545941980E-02 1.862745410 0.1545984401E-02 1.865096921 0.1545993571E-02 1.867448432 0.1545968887E-02 1.869799942 0.1545909893E-02 1.872151453 0.1545816287E-02 1.874502964 0.1545687920E-02 1.876849995 0.1545918203E-02 1.879197025 0.1546127367E-02 1.881544055 0.1546315138E-02 1.883891086 0.1546481242E-02 1.886238116 0.1546625403E-02 1.888585147 0.1546747347E-02 1.890932177 0.1546846798E-02 1.893279207 0.1546923480E-02 1.895626238 0.1546977120E-02 1.897973268 0.1547007443E-02 1.900320299 0.1547014177E-02 1.902667329 0.1546997051E-02 1.905014359 0.1546955796E-02 1.907361390 0.1546890145E-02 1.909708420 0.1546799833E-02 1.912055451 0.1546684600E-02 1.914402481 0.1546544186E-02 1.916749511 0.1546378337E-02 1.919096542 0.1546186800E-02 1.921443572 0.1545969327E-02 1.923790603 0.1545725675E-02 1.926137633 0.1545455605E-02 1.928484663 0.1545158881E-02 1.930831694 0.1544835274E-02 1.933178724 0.1544484559E-02 1.935525754 0.1544106516E-02 1.937872785 0.1543700932E-02 1.940219815 0.1543267598E-02 1.942566846 0.1542806312E-02 1.944913876 0.1542316878E-02 1.947260906 0.1541799106E-02 1.949607937 0.1541252814E-02 1.951954967 0.1540677825E-02 1.954301998 0.1540073969E-02 1.956649028 0.1539441084E-02 1.958996058 0.1538779015E-02 1.961343089 0.1538087615E-02 1.963690119 0.1537366742E-02 1.966037150 0.1536616265E-02 1.968384180 0.1535836060E-02 1.970731210 0.1535026008E-02 1.973078241 0.1534186002E-02 1.975425271 0.1533315942E-02 1.977772302 0.1532415735E-02 1.980119332 0.1531485297E-02 1.982466362 0.1530524554E-02 1.984813393 0.1529533439E-02 1.987160423 0.1528511894E-02 1.989507454 0.1527459870E-02 1.991854484 0.1526377326E-02 1.994201514 0.1525264232E-02 1.996548545 0.1524120565E-02 1.998895575 0.1522946312E-02 2.001242605 0.1521741468E-02 2.003589636 0.1520506038E-02 2.005936666 0.1519240036E-02 2.008283697 0.1517943486E-02 2.010630727 0.1516616420E-02 2.012977757 0.1515258879E-02 2.015324788 0.1513870915E-02 2.017671818 0.1512452587E-02 2.020018849 0.1511003965E-02 2.022365879 0.1509525127E-02 2.024712909 0.1508016162E-02 2.027059940 0.1506477166E-02 2.029406970 0.1504908247E-02 2.031754001 0.1503309519E-02 2.034101031 0.1501681107E-02 2.036448061 0.1500023146E-02 2.038795092 0.1498335778E-02 2.041142122 0.1496619155E-02 2.043489153 0.1494873439E-02 2.045836183 0.1493098799E-02 2.048183213 0.1491295414E-02 2.050530244 0.1489463473E-02 2.052877274 0.1487603171E-02 2.055224304 0.1485714715E-02 2.057571335 0.1483798318E-02 2.059918365 0.1481854202E-02 2.062265396 0.1479882598E-02 2.064612426 0.1477883747E-02 2.066959456 0.1475857894E-02 2.069306487 0.1473805298E-02 2.071653517 0.1471726220E-02 2.074000548 0.1469620934E-02 2.076347578 0.1467489719E-02 2.078694608 0.1465332863E-02 2.081041639 0.1463150662E-02 2.083388669 0.1460943418E-02 2.085735700 0.1458711441E-02 2.088082730 0.1456455051E-02 2.090429760 0.1454174572E-02 2.092776791 0.1451870335E-02 2.095123821 0.1449542682E-02 2.097470852 0.1447191957E-02 2.099817882 0.1444818513E-02 2.102164912 0.1442422712E-02 2.104511943 0.1440004918E-02 2.106858973 0.1437565504E-02 2.109206004 0.1435104850E-02 2.111553034 0.1432623341E-02 2.113900064 0.1430121369E-02 2.116247095 0.1427599331E-02 2.118594125 0.1425057630E-02 2.120941155 0.1422496677E-02 2.123288186 0.1419916886E-02 2.125635216 0.1417318678E-02 2.127982247 0.1414702479E-02 2.130329277 0.1412068723E-02 2.132676307 0.1409417846E-02 2.135023338 0.1406750292E-02 2.137370368 0.1404066510E-02 2.139717399 0.1401366954E-02 2.142064429 0.1398652083E-02 2.144411459 0.1395922363E-02 2.146758490 0.1393178264E-02 2.149105520 0.1390420263E-02 2.151452551 0.1387648841E-02 2.153799581 0.1384864487E-02 2.156146611 0.1382067693E-02 2.158493642 0.1379258960E-02 2.160840672 0.1376438792E-02 2.163187703 0.1373607702E-02 2.165534733 0.1370766209E-02 2.167881763 0.1367914837E-02 2.170228794 0.1365054119E-02 2.172575824 0.1362184595E-02 2.174922855 0.1359306812E-02 2.177269885 0.1356421325E-02 2.179616915 0.1353528700E-02 2.181963946 0.1350629509E-02 2.184310976 0.1347724335E-02 2.186658006 0.1344813771E-02 2.189005037 0.1341898420E-02 2.191352067 0.1338978897E-02 2.193699098 0.1336055830E-02 2.196046128 0.1333129858E-02 2.198393158 0.1330201636E-02 2.200740189 0.1327271832E-02 2.203087219 0.1324341130E-02 2.205434250 0.1321410232E-02 2.207781280 0.1318479855E-02 2.210128310 0.1315550739E-02 2.212475341 0.1312623642E-02 2.214822371 0.1309699343E-02 2.217169402 0.1306778646E-02 2.219516432 0.1303862381E-02 2.221863462 0.1300951400E-02 2.224210493 0.1298046588E-02 2.226557523 0.1295148858E-02 2.228904554 0.1292259155E-02 2.231251584 0.1289378459E-02 2.233598614 0.1286507785E-02 2.235945645 0.1283648187E-02 2.238292675 0.1280800761E-02 2.240639706 0.1277966647E-02 2.242986736 0.1275147028E-02 2.245333766 0.1272343139E-02 2.247680797 0.1269556264E-02 2.250027827 0.1266787744E-02 2.252374857 0.1264038974E-02 2.254721888 0.1261311414E-02 2.257068918 0.1258606582E-02 2.259415949 0.1255926067E-02 2.261762979 0.1253271524E-02 2.264110009 0.1250644682E-02 2.266457040 0.1248047345E-02 2.268804070 0.1245481397E-02 2.271151101 0.1242948800E-02 2.273498131 0.1240451601E-02 2.275845161 0.1237991932E-02 2.278192192 0.1235572012E-02 2.280539222 0.1233194150E-02 2.282886253 0.1230860743E-02 2.285233283 0.1228574279E-02 2.287580313 0.1226337335E-02 2.289927344 0.1224152576E-02 2.292274374 0.1222022752E-02 2.294621405 0.1219950698E-02 2.296968435 0.1217939323E-02 2.299315465 0.1215991611E-02 2.301662496 0.1214110610E-02 2.304009526 0.1212299422E-02 2.306356557 0.1210561196E-02 2.308703587 0.1208899112E-02 2.311050617 0.1207316368E-02 2.313397648 0.1205816166E-02 2.315744678 0.1204401690E-02 2.318091708 0.1203076090E-02 2.320438739 0.1201842459E-02 2.322785769 0.1200703810E-02 2.325132800 0.1199663054E-02 2.327479830 0.1198722973E-02 2.329826860 0.1197886196E-02 2.332173891 0.1197155175E-02 2.334520921 0.1196532157E-02 2.336867952 0.1196019164E-02 2.339214982 0.1195617968E-02 2.341562012 0.1195330074E-02 2.343909043 0.1195156697E-02 2.346256073 0.1195098753E-02 0.000000000 0.1545687920E-02 0.2347351854E-02 0.1545716805E-02 0.4694703708E-02 0.1545803472E-02 0.7042055561E-02 0.1545947951E-02 0.9389407415E-02 0.1546150299E-02 0.1173675927E-01 0.1546410590E-02 0.1408411112E-01 0.1546728922E-02 0.1643146298E-01 0.1547105413E-02 0.1877881483E-01 0.1547540205E-02 0.2112616668E-01 0.1548033459E-02 0.2347351854E-01 0.1548585358E-02 0.2582087039E-01 0.1549196104E-02 0.2816822225E-01 0.1549865924E-02 0.3051557410E-01 0.1550595062E-02 0.3286292595E-01 0.1551383785E-02 0.3521027781E-01 0.1552232380E-02 0.3755762966E-01 0.1553141155E-02 0.3990498151E-01 0.1554110437E-02 0.4225233337E-01 0.1555140574E-02 0.4459968522E-01 0.1556231935E-02 0.4694703708E-01 0.1557384909E-02 0.4929438893E-01 0.1558599905E-02 0.5164174078E-01 0.1559877352E-02 0.5398909264E-01 0.1561217701E-02 0.5633644449E-01 0.1562621421E-02 0.5868379634E-01 0.1564089004E-02 0.6103114820E-01 0.1565620960E-02 0.6337850005E-01 0.1567217823E-02 0.6572585191E-01 0.1568880147E-02 0.6807320376E-01 0.1570608506E-02 0.7042055561E-01 0.1572403497E-02 0.7276790747E-01 0.1574265740E-02 0.7511525932E-01 0.1576195875E-02 0.7746261117E-01 0.1578194566E-02 0.7980996303E-01 0.1580262501E-02 0.8215731488E-01 0.1582400390E-02 0.8450466674E-01 0.1584608968E-02 0.8685201859E-01 0.1586888995E-02 0.8919937044E-01 0.1589241253E-02 0.9154672230E-01 0.1591666554E-02 0.9389407415E-01 0.1594165731E-02 0.9624142601E-01 0.1596739646E-02 0.9858877786E-01 0.1599389188E-02 0.1009361297 0.1602115271E-02 0.1032834816 0.1604918837E-02 0.1056308334 0.1607800857E-02 0.1079781853 0.1610762328E-02 0.1103255371 0.1613804276E-02 0.1126728890 0.1616927754E-02 0.1150202408 0.1620133845E-02 0.1173675927 0.1623423658E-02 0.1197149445 0.1626798330E-02 0.1220622964 0.1630259027E-02 0.1244096483 0.1633806938E-02 0.1267570001 0.1637443282E-02 0.1291043520 0.1641169300E-02 0.1314517038 0.1644986260E-02 0.1337990557 0.1648895451E-02 0.1361464075 0.1652898182E-02 0.1384937594 0.1656995785E-02 0.1408411112 0.1661189606E-02 0.1431884631 0.1665481009E-02 0.1455358149 0.1669871370E-02 0.1478831668 0.1674362073E-02 0.1502305186 0.1678954511E-02 0.1525778705 0.1683650080E-02 0.1549252223 0.1688450175E-02 0.1572725742 0.1693356187E-02 0.1596199261 0.1698369497E-02 0.1619672779 0.1703491474E-02 0.1643146298 0.1708723466E-02 0.1666619816 0.1714066800E-02 0.1690093335 0.1719522772E-02 0.1713566853 0.1725092640E-02 0.1737040372 0.1728525496E-02 0.1760513890 0.1727645219E-02 0.1783987409 0.1726761252E-02 0.1807460927 0.1725873884E-02 0.1830934446 0.1724983405E-02 0.1854407964 0.1724090110E-02 0.1877881483 0.1723194293E-02 0.1901355002 0.1722296255E-02 0.1924828520 0.1721396295E-02 0.1948302039 0.1720494720E-02 0.1971775557 0.1719591834E-02 0.1995249076 0.1718687949E-02 0.2018722594 0.1717783376E-02 0.2042196113 0.1716878432E-02 0.2065669631 0.1715973434E-02 0.2089143150 0.1715068705E-02 0.2112616668 0.1714164568E-02 0.2136090187 0.1713261353E-02 0.2159563705 0.1712359391E-02 0.2183037224 0.1711459016E-02 0.2206510743 0.1710560567E-02 0.2229984261 0.1709664386E-02 0.2253457780 0.1708770818E-02 0.2276931298 0.1707880214E-02 0.2300404817 0.1706992927E-02 0.2323878335 0.1706109314E-02 0.2347351854 0.1705229737E-02 0.2370825372 0.1704354564E-02 0.2394298891 0.1703484165E-02 0.2417772409 0.1702618915E-02 0.2441245928 0.1701759194E-02 0.2464719446 0.1700905389E-02 0.2488192965 0.1700057890E-02 0.2511666484 0.1699217092E-02 0.2535140002 0.1698383397E-02 0.2558613521 0.1697557212E-02 0.2582087039 0.1696738949E-02 0.2605560558 0.1695929029E-02 0.2629034076 0.1695127876E-02 0.2652507595 0.1694335922E-02 0.2675981113 0.1693553605E-02 0.2699454632 0.1692781372E-02 0.2722928150 0.1692019675E-02 0.2746401669 0.1695775601E-02 0.2769875187 0.1701451489E-02 0.2793348706 0.1707214978E-02 0.2816822225 0.1713063718E-02 0.2840295743 0.1718995192E-02 0.2863769262 0.1725006723E-02 0.2887242780 0.1731095472E-02 0.2910716299 0.1737258449E-02 0.2934189817 0.1743492512E-02 0.2957663336 0.1749794377E-02 0.2981136854 0.1756160621E-02 0.3004610373 0.1762587689E-02 0.3028083891 0.1769071901E-02 0.3051557410 0.1775609460E-02 0.3075030928 0.1782196460E-02 0.3098504447 0.1788828890E-02 0.3121977966 0.1795502648E-02 0.3145451484 0.1802213542E-02 0.3168925003 0.1808957306E-02 0.3192398521 0.1815729601E-02 0.3215872040 0.1822526028E-02 0.3239345558 0.1829342134E-02 0.3262819077 0.1836173419E-02 0.3286292595 0.1843015348E-02 0.3309766114 0.1849863353E-02 0.3333239632 0.1856712846E-02 0.3356713151 0.1863559223E-02 0.3380186669 0.1870397870E-02 0.3403660188 0.1877224175E-02 0.3427133707 0.1884033530E-02 0.3450607225 0.1890821339E-02 0.3474080744 0.1897583025E-02 0.3497554262 0.1904314033E-02 0.3521027781 0.1911009841E-02 0.3544501299 0.1917665962E-02 0.3567974818 0.1924277950E-02 0.3591448336 0.1930841404E-02 0.3614921855 0.1937351977E-02 0.3638395373 0.1943805377E-02 0.3661868892 0.1950197377E-02 0.3685342410 0.1956523811E-02 0.3708815929 0.1962780590E-02 0.3732289448 0.1968963696E-02 0.3755762966 0.1975069195E-02 0.3779236485 0.1981093236E-02 0.3802710003 0.1987032059E-02 0.3826183522 0.1992881996E-02 0.3849657040 0.1998639480E-02 0.3873130559 0.2004301045E-02 0.3896604077 0.2009863334E-02 0.3920077596 0.2015323101E-02 0.3943551114 0.2020677217E-02 0.3967024633 0.2025922672E-02 0.3990498151 0.2031056584E-02 0.4013971670 0.2036076197E-02 0.4037445189 0.2040978891E-02 0.4060918707 0.2045762184E-02 0.4084392226 0.2050423734E-02 0.4107865744 0.2054961347E-02 0.4131339263 0.2059372978E-02 0.4154812781 0.2063656735E-02 0.4178286300 0.2067810884E-02 0.4201759818 0.2071833852E-02 0.4225233337 0.2075724230E-02 0.4248706855 0.2079480774E-02 0.4272180374 0.2083102412E-02 0.4295653892 0.2086588241E-02 0.4319127411 0.2089937535E-02 0.4342600929 0.2093149742E-02 0.4366074448 0.2096224487E-02 0.4389547967 0.2099161575E-02 0.4413021485 0.2101960987E-02 0.4436495004 0.2104622885E-02 0.4459968522 0.2107147612E-02 0.4483442041 0.2109535685E-02 0.4506915559 0.2111787803E-02 0.4530389078 0.2113904837E-02 0.4553862596 0.2115887835E-02 0.4577336115 0.2117738017E-02 0.4600809633 0.2119456770E-02 0.4624283152 0.2121045649E-02 0.4647756670 0.2122506372E-02 0.4671230189 0.2123840813E-02 0.4694703708 0.2125051004E-02 0.4718177226 0.2126139123E-02 0.4741650745 0.2127107497E-02 0.4765124263 0.2127958588E-02 0.4788597782 0.2128694995E-02 0.4812071300 0.2129319444E-02 0.4835544819 0.2129834782E-02 0.4859018337 0.2130243975E-02 0.4882491856 0.2130550095E-02 0.4905965374 0.2130756317E-02 0.4929438893 0.2130865914E-02 0.4952912411 0.2130882245E-02 0.4976385930 0.2130808753E-02 0.4999859449 0.2130648956E-02 0.5023332967 0.2130406440E-02 0.5046806486 0.2130084852E-02 0.5070280004 0.2129687892E-02 0.5093753523 0.2129219309E-02 0.5117227041 0.2128682890E-02 0.5140700560 0.2128082457E-02 0.5164174078 0.2127421858E-02 0.5187647597 0.2126704960E-02 0.5211121115 0.2125935644E-02 0.5234594634 0.2125117799E-02 0.5258068152 0.2124255311E-02 0.5281541671 0.2123352063E-02 0.5305015190 0.2122411926E-02 0.5328488708 0.2121438751E-02 0.5351962227 0.2120436367E-02 0.5375435745 0.2119408574E-02 0.5398909264 0.2118359136E-02 0.5422382782 0.2117291777E-02 0.5445856301 0.2116210176E-02 0.5469329819 0.2115117963E-02 0.5492803338 0.2114018709E-02 0.5516276856 0.2112915928E-02 0.5539750375 0.2111813068E-02 0.5563223893 0.2110713508E-02 0.5586697412 0.2109620553E-02 0.5610170931 0.2108537433E-02 0.5633644449 0.2107467291E-02 0.5657117968 0.2106413190E-02 0.5680591486 0.2105378099E-02 0.5704065005 0.2104364898E-02 0.5727538523 0.2103376368E-02 0.5751012042 0.2102415191E-02 0.5774485560 0.2101483946E-02 0.5797959079 0.2100585105E-02 0.5821432597 0.2099721034E-02 0.5844906116 0.2098893983E-02 0.5868379634 0.2098106091E-02 0.5891853153 0.2097359379E-02 0.5915326672 0.2096655750E-02 0.5938800190 0.2095996983E-02 0.5962273709 0.2095384735E-02 0.5985747227 0.2094820539E-02 0.6009220746 0.2094305798E-02 0.6032694264 0.2093841788E-02 0.6056167783 0.2093429654E-02 0.6079641301 0.2093070411E-02 0.6103114820 0.2092764939E-02 0.6126588338 0.2092513986E-02 0.6150061857 0.2092318163E-02 0.6173535375 0.2092177949E-02 0.6197008894 0.2092093683E-02 0.6220482413 0.2092065572E-02 0.6243952716 0.2092065643E-02 0.6267423020 0.2092065857E-02 0.6290893324 0.2092066213E-02 0.6314363628 0.2092066715E-02 0.6337833932 0.2092067365E-02 0.6361304236 0.2092068165E-02 0.6384774540 0.2092069120E-02 0.6408244844 0.2092070234E-02 0.6431715148 0.2092071513E-02 0.6455185452 0.2092072963E-02 0.6478655756 0.2092074590E-02 0.6502126060 0.2092076401E-02 0.6525596364 0.2092078404E-02 0.6549066668 0.2092080609E-02 0.6572536971 0.2092083024E-02 0.6596007275 0.2092085659E-02 0.6619477579 0.2092088524E-02 0.6642947883 0.2092091631E-02 0.6666418187 0.2092094992E-02 0.6689888491 0.2092098618E-02 0.6713358795 0.2092102522E-02 0.6736829099 0.2092106718E-02 0.6760299403 0.2092111220E-02 0.6783769707 0.2092116041E-02 0.6807240011 0.2092121197E-02 0.6830710315 0.2092126702E-02 0.6854180619 0.2092132574E-02 0.6877650922 0.2092138827E-02 0.6901121226 0.2092145478E-02 0.6924591530 0.2092152545E-02 0.6948061834 0.2092160045E-02 0.6971532138 0.2092167994E-02 0.6995002442 0.2092176412E-02 0.7018472746 0.2092185315E-02 0.7041943050 0.2092194724E-02 0.7065413354 0.2092204656E-02 0.7088883658 0.2092215131E-02 0.7112353962 0.2092226167E-02 0.7135824266 0.2092237785E-02 0.7159294570 0.2092250002E-02 0.7182764874 0.2092262840E-02 0.7206235177 0.2092276317E-02 0.7229705481 0.2092290453E-02 0.7253175785 0.2092305268E-02 0.7276646089 0.2092320781E-02 0.7300116393 0.2092337013E-02 0.7323586697 0.2092353983E-02 0.7347057001 0.2092371710E-02 0.7370527305 0.2092390214E-02 0.7393997609 0.2092409514E-02 0.7417467913 0.2092429629E-02 0.7440938217 0.2092450578E-02 0.7464408521 0.2092472380E-02 0.7487878825 0.2092495054E-02 0.7511349128 0.2092518617E-02 0.7534819432 0.2092543087E-02 0.7558289736 0.2092568483E-02 0.7581760040 0.2092594820E-02 0.7605230344 0.2092622116E-02 0.7628700648 0.2092650388E-02 0.7652170952 0.2092679650E-02 0.7675641256 0.2092709919E-02 0.7699111560 0.2092741210E-02 0.7722581864 0.2092773536E-02 0.7746052168 0.2092806913E-02 0.7769522472 0.2092841353E-02 0.7792992776 0.2092876868E-02 0.7816463080 0.2092913472E-02 0.7839933383 0.2092951175E-02 0.7863403687 0.2092989989E-02 0.7886873991 0.2093029923E-02 0.7910344295 0.2093070987E-02 0.7933814599 0.2093113190E-02 0.7957284903 0.2093156539E-02 0.7980755207 0.2093201042E-02 0.8004225511 0.2093246705E-02 0.8027695815 0.2093293533E-02 0.8051166119 0.2093341532E-02 0.8074636423 0.2093390705E-02 0.8098106727 0.2093441056E-02 0.8121577031 0.2093492586E-02 0.8145047335 0.2093545296E-02 0.8168517638 0.2093599188E-02 0.8191987942 0.2093654261E-02 0.8215458246 0.2093710512E-02 0.8238928550 0.2093767941E-02 0.8262398854 0.2093826543E-02 0.8285869158 0.2093886314E-02 0.8309339462 0.2093947249E-02 0.8332809766 0.2094009341E-02 0.8356280070 0.2094072584E-02 0.8379750374 0.2094136969E-02 0.8403220678 0.2094202487E-02 0.8426690982 0.2094269127E-02 0.8450161286 0.2094336880E-02 0.8473631589 0.2094405731E-02 0.8497101893 0.2095187424E-02 0.8520572197 0.2096651665E-02 0.8544042501 0.2098110458E-02 0.8567512805 0.2099563489E-02 0.8590983109 0.2101010450E-02 0.8614453413 0.2102451036E-02 0.8637923717 0.2103884948E-02 0.8661394021 0.2105311890E-02 0.8684864325 0.2106731574E-02 0.8708334629 0.2108143713E-02 0.8731804933 0.2109548027E-02 0.8755275237 0.2110944240E-02 0.8778745541 0.2112332081E-02 0.8802215844 0.2113711284E-02 0.8825686148 0.2115081588E-02 0.8849156452 0.2116442734E-02 0.8872626756 0.2117794471E-02 0.8896097060 0.2119136551E-02 0.8919567364 0.2120468730E-02 0.8943037668 0.2121790770E-02 0.8966507972 0.2123102437E-02 0.8989978276 0.2124403502E-02 0.9013448580 0.2125693739E-02 0.9036918884 0.2126972927E-02 0.9060389188 0.2128240852E-02 0.9083859492 0.2129497300E-02 0.9107329796 0.2130742066E-02 0.9130800099 0.2131974945E-02 0.9154270403 0.2133195740E-02 0.9177740707 0.2134404256E-02 0.9201211011 0.2135600305E-02 0.9224681315 0.2136783699E-02 0.9248151619 0.2137954258E-02 0.9271621923 0.2139111805E-02 0.9295092227 0.2140256167E-02 0.9318562531 0.2141387174E-02 0.9342032835 0.2142504664E-02 0.9365503139 0.2143608474E-02 0.9388973443 0.2144698449E-02 0.9412443747 0.2145774437E-02 0.9435914050 0.2146836288E-02 0.9459384354 0.2147883858E-02 0.9482854658 0.2148917007E-02 0.9506324962 0.2149935598E-02 0.9529795266 0.2150939499E-02 0.9553265570 0.2151928580E-02 0.9576735874 0.2152902716E-02 0.9600206178 0.2153861785E-02 0.9623676482 0.2154805670E-02 0.9647146786 0.2155734256E-02 0.9670617090 0.2156647434E-02 0.9694087394 0.2157545095E-02 0.9717557698 0.2158427137E-02 0.9741028002 0.2159293460E-02 0.9764498305 0.2160143966E-02 0.9787968609 0.2160978563E-02 0.9811438913 0.2161797161E-02 0.9834909217 0.2162599674E-02 0.9858379521 0.2163386017E-02 0.9881849825 0.2164156112E-02 0.9905320129 0.2164909881E-02 0.9928790433 0.2165647250E-02 0.9952260737 0.2166368148E-02 0.9975731041 0.2167072508E-02 0.9999201345 0.2167760265E-02 1.002267165 0.2168431358E-02 1.004614195 0.2169085726E-02 1.006961226 0.2169723314E-02 1.009308256 0.2170344069E-02 1.011655286 0.2170947939E-02 1.014002317 0.2171534877E-02 1.016349347 0.2172104837E-02 1.018696378 0.2172657776E-02 1.021043408 0.2173193654E-02 1.023390438 0.2173712432E-02 1.025737469 0.2174214075E-02 1.028084499 0.2174698550E-02 1.030431530 0.2175165825E-02 1.032778560 0.2175615873E-02 1.035125590 0.2176048665E-02 1.037472621 0.2176464179E-02 1.039819651 0.2176862391E-02 1.042166682 0.2177243280E-02 1.044513712 0.2177606830E-02 1.046860742 0.2177953023E-02 1.049207773 0.2178281844E-02 1.051554803 0.2178593281E-02 1.053901834 0.2178887323E-02 1.056248864 0.2179163960E-02 1.058595894 0.2179423186E-02 1.060942925 0.2179664993E-02 1.063289955 0.2179889377E-02 1.065636985 0.2180096337E-02 1.067984016 0.2180285870E-02 1.070331046 0.2180457976E-02 1.072678077 0.2180612657E-02 1.075025107 0.2180749916E-02 1.077372137 0.2180869758E-02 1.079719168 0.2180972186E-02 1.082066198 0.2181057210E-02 1.084413229 0.2181124835E-02 1.086760259 0.2181175072E-02 1.089107289 0.2181207931E-02 1.091454320 0.2181223424E-02 1.093801350 0.2181221562E-02 1.096152861 0.2181137902E-02 1.098504372 0.2180874918E-02 1.100855883 0.2180434875E-02 1.103207394 0.2179821467E-02 1.105558905 0.2179039680E-02 1.107910415 0.2178095610E-02 1.110261926 0.2176996254E-02 1.112613437 0.2175749297E-02 1.114964948 0.2174362895E-02 1.117316459 0.2172845473E-02 1.119667970 0.2171205550E-02 1.122019481 0.2169451581E-02 1.124370992 0.2167591833E-02 1.126722503 0.2165634289E-02 1.129074013 0.2163586571E-02 1.131425524 0.2161455895E-02 1.133777035 0.2159249040E-02 1.136128546 0.2156972328E-02 1.138480057 0.2154631632E-02 1.140831568 0.2152232373E-02 1.143183079 0.2149779542E-02 1.145534590 0.2147277714E-02 1.147886101 0.2144731077E-02 1.150237611 0.2142143447E-02 1.152589122 0.2139518303E-02 1.154940633 0.2136858803E-02 1.157292144 0.2134167816E-02 1.159643655 0.2131447939E-02 1.161995166 0.2128701524E-02 1.164346677 0.2126992077E-02 1.166698188 0.2128341078E-02 1.169049699 0.2129687704E-02 1.171401209 0.2131028101E-02 1.173752720 0.2132358390E-02 1.176104231 0.2133674673E-02 1.178455742 0.2134973040E-02 1.180807253 0.2136249580E-02 1.183158764 0.2137500384E-02 1.185510275 0.2138721557E-02 1.187861786 0.2139909220E-02 1.190213296 0.2141059522E-02 1.192564807 0.2142168647E-02 1.194916318 0.2143232819E-02 1.197267829 0.2144248307E-02 1.199619340 0.2145211440E-02 1.201970851 0.2146118604E-02 1.204322362 0.2146966256E-02 1.206673873 0.2147750927E-02 1.209025384 0.2148469229E-02 1.211376894 0.2149117860E-02 1.213728405 0.2149693613E-02 1.216079916 0.2150193378E-02 1.218431427 0.2150614148E-02 1.220782938 0.2150953027E-02 1.223134449 0.2151207231E-02 1.225485960 0.2151374095E-02 1.227837471 0.2151451077E-02 1.230188982 0.2151435759E-02 1.232540492 0.2151325854E-02 1.234892003 0.2151119210E-02 1.237243514 0.2150813809E-02 1.239595025 0.2150407772E-02 1.241946536 0.2149899360E-02 1.244298047 0.2149286978E-02 1.246649558 0.2148569175E-02 1.249001069 0.2147744645E-02 1.251352580 0.2146812229E-02 1.253704090 0.2145770914E-02 1.256055601 0.2144619833E-02 1.258407112 0.2143358269E-02 1.260758623 0.2141985649E-02 1.263110134 0.2140501544E-02 1.265461645 0.2138905674E-02 1.267813156 0.2137197897E-02 1.270164667 0.2135378217E-02 1.272516177 0.2133446773E-02 1.274867688 0.2131403846E-02 1.277219199 0.2129249847E-02 1.279570710 0.2126985323E-02 1.281922221 0.2124610950E-02 1.284273732 0.2122127527E-02 1.286625243 0.2119535982E-02 1.288976754 0.2116837357E-02 1.291328265 0.2114032814E-02 1.293679775 0.2111123627E-02 1.296031286 0.2108111179E-02 1.298382797 0.2104996957E-02 1.300734308 0.2101782551E-02 1.303085819 0.2098469647E-02 1.305437330 0.2095060026E-02 1.307788841 0.2091555556E-02 1.310140352 0.2087958192E-02 1.312491863 0.2084269968E-02 1.314843373 0.2080492997E-02 1.317194884 0.2076629463E-02 1.319546395 0.2072681620E-02 1.321897906 0.2068651784E-02 1.324249417 0.2064542334E-02 1.326600928 0.2060355703E-02 1.328952439 0.2056094378E-02 1.331303950 0.2051760892E-02 1.333655461 0.2047357823E-02 1.336006971 0.2042887789E-02 1.338358482 0.2038353444E-02 1.340709993 0.2033757474E-02 1.343061504 0.2029102594E-02 1.345413015 0.2024391543E-02 1.347764526 0.2019627080E-02 1.350116037 0.2014811982E-02 1.352467548 0.2009949040E-02 1.354819059 0.2005041052E-02 1.357170569 0.2000090825E-02 1.359522080 0.1995101166E-02 1.361873591 0.1990074883E-02 1.364225102 0.1985014777E-02 1.366576613 0.1979923645E-02 1.368928124 0.1974804269E-02 1.371279635 0.1969659417E-02 1.373631146 0.1964491842E-02 1.375982656 0.1959304271E-02 1.378334167 0.1954099410E-02 1.380685678 0.1948879937E-02 1.383037189 0.1943648500E-02 1.385388700 0.1938407711E-02 1.387740211 0.1933160147E-02 1.390091722 0.1927908347E-02 1.392443233 0.1922654807E-02 1.394794744 0.1917401975E-02 1.397146254 0.1912152256E-02 1.399497765 0.1906908003E-02 1.401849276 0.1901671515E-02 1.404200787 0.1896445039E-02 1.406552298 0.1891230762E-02 1.408903809 0.1886030813E-02 1.411255320 0.1880847260E-02 1.413606831 0.1875682107E-02 1.415958342 0.1870537294E-02 1.418309852 0.1865414693E-02 1.420661363 0.1860316108E-02 1.423012874 0.1855243276E-02 1.425364385 0.1850197861E-02 1.427715896 0.1845181456E-02 1.430067407 0.1840195582E-02 1.432418918 0.1835241686E-02 1.434770429 0.1830321144E-02 1.437121940 0.1825435255E-02 1.439473450 0.1820585246E-02 1.441824961 0.1815772271E-02 1.444176472 0.1810997410E-02 1.446527983 0.1806261667E-02 1.448879494 0.1801565979E-02 1.451231005 0.1796911207E-02 1.453582516 0.1792298145E-02 1.455934027 0.1787727514E-02 1.458285537 0.1783199971E-02 1.460637048 0.1778716104E-02 1.462988559 0.1774276439E-02 1.465340070 0.1769881435E-02 1.467691581 0.1765531496E-02 1.470043092 0.1761226963E-02 1.472394603 0.1756968122E-02 1.474746114 0.1752755206E-02 1.477097625 0.1748588396E-02 1.479449135 0.1744467824E-02 1.481800646 0.1740393577E-02 1.484152157 0.1736365696E-02 1.486503668 0.1732614569E-02 1.488855179 0.1731336473E-02 1.491206690 0.1730111113E-02 1.493558201 0.1728938086E-02 1.495909712 0.1727816899E-02 1.498261223 0.1726746974E-02 1.500612733 0.1725727641E-02 1.502964244 0.1724758147E-02 1.505315755 0.1723837657E-02 1.507667266 0.1722965254E-02 1.510018777 0.1722139941E-02 1.512370288 0.1721360647E-02 1.514721799 0.1720626232E-02 1.517073310 0.1719935481E-02 1.519424821 0.1719287120E-02 1.521776331 0.1718679809E-02 1.524127842 0.1718112149E-02 1.526479353 0.1717582689E-02 1.528830864 0.1717089923E-02 1.531182375 0.1716632297E-02 1.533533886 0.1716208210E-02 1.535885397 0.1715816019E-02 1.538236908 0.1715454039E-02 1.540588418 0.1715120545E-02 1.542939929 0.1714813776E-02 1.545291440 0.1714531933E-02 1.547642951 0.1714273184E-02 1.549994462 0.1714035663E-02 1.552345973 0.1713817467E-02 1.554697484 0.1713616662E-02 1.557048995 0.1713431275E-02 1.559400506 0.1713259302E-02 1.561752016 0.1713098696E-02 1.564103527 0.1712947375E-02 1.566455038 0.1712803211E-02 1.568806549 0.1712664035E-02 1.571158060 0.1712527627E-02 1.573509571 0.1712391716E-02 1.575861082 0.1712253975E-02 1.578212593 0.1712112018E-02 1.580564104 0.1711963393E-02 1.582915614 0.1711805579E-02 1.585267125 0.1711635980E-02 1.587618636 0.1711451921E-02 1.589970147 0.1711250644E-02 1.592321658 0.1711029301E-02 1.594673169 0.1710784955E-02 1.597024680 0.1710514572E-02 1.599376191 0.1710215023E-02 1.601727702 0.1709883086E-02 1.604079212 0.1709515444E-02 1.606430723 0.1709108696E-02 1.608782234 0.1708659362E-02 1.611133745 0.1708163896E-02 1.613485256 0.1707618709E-02 1.615836767 0.1707020184E-02 1.618188278 0.1706364715E-02 1.620539789 0.1705648734E-02 1.622891299 0.1704868762E-02 1.625242810 0.1704021451E-02 1.627594321 0.1703103646E-02 1.629945832 0.1702112441E-02 1.632297343 0.1701045248E-02 1.634648854 0.1699899859E-02 1.637000365 0.1698674518E-02 1.639351876 0.1697367973E-02 1.641703387 0.1695979537E-02 1.644054897 0.1694509128E-02 1.646406408 0.1692957300E-02 1.648757919 0.1691325252E-02 1.651109430 0.1689614825E-02 1.653460941 0.1687828482E-02 1.655812452 0.1685969261E-02 1.658163963 0.1684040728E-02 1.660515474 0.1682046901E-02 1.662866985 0.1679992180E-02 1.665218495 0.1677881260E-02 1.667570006 0.1675719050E-02 1.669921517 0.1673510592E-02 1.672273028 0.1671260984E-02 1.674624539 0.1668975312E-02 1.676976050 0.1666658587E-02 1.679327561 0.1664315696E-02 1.681679072 0.1661951362E-02 1.684030583 0.1659570107E-02 1.686382093 0.1657176232E-02 1.688733604 0.1654773802E-02 1.691085115 0.1652366632E-02 1.693436626 0.1649958289E-02 1.695788137 0.1647552091E-02 1.698139648 0.1645151109E-02 1.700491159 0.1642758179E-02 1.702842670 0.1640375910E-02 1.705194180 0.1638006695E-02 1.707545691 0.1635652724E-02 1.709897202 0.1633315993E-02 1.712248713 0.1630998322E-02 1.714600224 0.1628701365E-02 1.716951735 0.1626426621E-02 1.719303246 0.1624175450E-02 1.721654757 0.1621949077E-02 1.724006268 0.1619748611E-02 1.726357778 0.1617575049E-02 1.728709289 0.1615429290E-02 1.731060800 0.1613312137E-02 1.733412311 0.1611224313E-02 1.735763822 0.1609166463E-02 1.738115333 0.1607139161E-02 1.740466844 0.1605142920E-02 1.742818355 0.1603178193E-02 1.745169866 0.1601245381E-02 1.747521376 0.1599344838E-02 1.749872887 0.1597476873E-02 1.752224398 0.1595641755E-02 1.754575909 0.1593839718E-02 1.756927420 0.1592070961E-02 1.759278931 0.1590335654E-02 1.761630442 0.1588633939E-02 1.763981953 0.1586965931E-02 1.766333464 0.1585331724E-02 1.768684974 0.1583731389E-02 1.771036485 0.1582164977E-02 1.773387996 0.1580632520E-02 1.775739507 0.1579134035E-02 1.778091018 0.1577669522E-02 1.780442529 0.1576238965E-02 1.782794040 0.1574842336E-02 1.785145551 0.1573479593E-02 1.787497061 0.1572150684E-02 1.789848572 0.1570855542E-02 1.792200083 0.1569594092E-02 1.794551594 0.1568366250E-02 1.796903105 0.1567171920E-02 1.799254616 0.1566010998E-02 1.801606127 0.1564883373E-02 1.803957638 0.1563788926E-02 1.806309149 0.1562727530E-02 1.808660659 0.1561699054E-02 1.811012170 0.1560703359E-02 1.813363681 0.1559740302E-02 1.815715192 0.1558809735E-02 1.818066703 0.1557911508E-02 1.820418214 0.1557045466E-02 1.822769725 0.1556211454E-02 1.825121236 0.1555409314E-02 1.827472747 0.1554638890E-02 1.829824257 0.1553900024E-02 1.832175768 0.1553192560E-02 1.834527279 0.1552516348E-02 1.836878790 0.1551871237E-02 1.839230301 0.1551257083E-02 1.841581812 0.1550673747E-02 1.843933323 0.1550121099E-02 1.846284834 0.1549599014E-02 1.848636345 0.1549107376E-02 1.850987855 0.1548646082E-02 1.853339366 0.1548215037E-02 1.855690877 0.1547814159E-02 1.858042388 0.1547443380E-02 1.860393899 0.1547102643E-02 1.862745410 0.1546791908E-02 1.865096921 0.1546511150E-02 1.867448432 0.1546260357E-02 1.869799942 0.1546039537E-02 1.872151453 0.1545848711E-02 1.874502964 0.1545687920E-02 1.876849995 0.1545918203E-02 1.879197025 0.1546127367E-02 1.881544055 0.1546315138E-02 1.883891086 0.1546481242E-02 1.886238116 0.1546625403E-02 1.888585147 0.1546747347E-02 1.890932177 0.1546846798E-02 1.893279207 0.1546923481E-02 1.895626238 0.1546977120E-02 1.897973268 0.1547007443E-02 1.900320299 0.1547014177E-02 1.902667329 0.1546997051E-02 1.905014359 0.1546955796E-02 1.907361390 0.1546890145E-02 1.909708420 0.1546799833E-02 1.912055451 0.1546684600E-02 1.914402481 0.1546544187E-02 1.916749511 0.1546378337E-02 1.919096542 0.1546186800E-02 1.921443572 0.1545969327E-02 1.923790603 0.1545725675E-02 1.926137633 0.1545455605E-02 1.928484663 0.1545158881E-02 1.930831694 0.1544835274E-02 1.933178724 0.1544484559E-02 1.935525754 0.1544106516E-02 1.937872785 0.1543700932E-02 1.940219815 0.1543267598E-02 1.942566846 0.1542806312E-02 1.944913876 0.1542316878E-02 1.947260906 0.1541799107E-02 1.949607937 0.1541252814E-02 1.951954967 0.1540677825E-02 1.954301998 0.1540073969E-02 1.956649028 0.1539441084E-02 1.958996058 0.1538779015E-02 1.961343089 0.1538087615E-02 1.963690119 0.1537366742E-02 1.966037150 0.1536616266E-02 1.968384180 0.1535836060E-02 1.970731210 0.1535026008E-02 1.973078241 0.1534186002E-02 1.975425271 0.1533315942E-02 1.977772302 0.1532415735E-02 1.980119332 0.1531485297E-02 1.982466362 0.1530524554E-02 1.984813393 0.1529533439E-02 1.987160423 0.1528511894E-02 1.989507454 0.1527459870E-02 1.991854484 0.1526377326E-02 1.994201514 0.1525264232E-02 1.996548545 0.1524120565E-02 1.998895575 0.1522946312E-02 2.001242605 0.1521741468E-02 2.003589636 0.1520506038E-02 2.005936666 0.1519240037E-02 2.008283697 0.1517943486E-02 2.010630727 0.1516616420E-02 2.012977757 0.1515258879E-02 2.015324788 0.1513870915E-02 2.017671818 0.1512452587E-02 2.020018849 0.1511003965E-02 2.022365879 0.1509525127E-02 2.024712909 0.1508016162E-02 2.027059940 0.1506477167E-02 2.029406970 0.1504908247E-02 2.031754001 0.1503309519E-02 2.034101031 0.1501681107E-02 2.036448061 0.1500023146E-02 2.038795092 0.1498335778E-02 2.041142122 0.1496619155E-02 2.043489153 0.1494873439E-02 2.045836183 0.1493098799E-02 2.048183213 0.1491295414E-02 2.050530244 0.1489463473E-02 2.052877274 0.1487603172E-02 2.055224304 0.1485714715E-02 2.057571335 0.1483798318E-02 2.059918365 0.1481854202E-02 2.062265396 0.1479882598E-02 2.064612426 0.1477883747E-02 2.066959456 0.1475857894E-02 2.069306487 0.1473805298E-02 2.071653517 0.1471726220E-02 2.074000548 0.1469620934E-02 2.076347578 0.1467489719E-02 2.078694608 0.1465332863E-02 2.081041639 0.1463150662E-02 2.083388669 0.1460943418E-02 2.085735700 0.1458711441E-02 2.088082730 0.1456455051E-02 2.090429760 0.1454174572E-02 2.092776791 0.1451870335E-02 2.095123821 0.1449542682E-02 2.097470852 0.1447191957E-02 2.099817882 0.1444818513E-02 2.102164912 0.1442422712E-02 2.104511943 0.1440004918E-02 2.106858973 0.1437565504E-02 2.109206004 0.1435104850E-02 2.111553034 0.1432623342E-02 2.113900064 0.1430121369E-02 2.116247095 0.1427599331E-02 2.118594125 0.1425057630E-02 2.120941155 0.1422496677E-02 2.123288186 0.1419916886E-02 2.125635216 0.1417318678E-02 2.127982247 0.1414702479E-02 2.130329277 0.1412068723E-02 2.132676307 0.1409417846E-02 2.135023338 0.1406750292E-02 2.137370368 0.1404066510E-02 2.139717399 0.1401366954E-02 2.142064429 0.1398652083E-02 2.144411459 0.1395922363E-02 2.146758490 0.1393178264E-02 2.149105520 0.1390420263E-02 2.151452551 0.1387648841E-02 2.153799581 0.1384864487E-02 2.156146611 0.1382067693E-02 2.158493642 0.1379258960E-02 2.160840672 0.1376438792E-02 2.163187703 0.1373607702E-02 2.165534733 0.1370766209E-02 2.167881763 0.1367914837E-02 2.170228794 0.1365054119E-02 2.172575824 0.1362184595E-02 2.174922855 0.1359306812E-02 2.177269885 0.1356421325E-02 2.179616915 0.1353528700E-02 2.181963946 0.1350629509E-02 2.184310976 0.1347724335E-02 2.186658006 0.1344813771E-02 2.189005037 0.1341898420E-02 2.191352067 0.1338978897E-02 2.193699098 0.1336055830E-02 2.196046128 0.1333129859E-02 2.198393158 0.1330201636E-02 2.200740189 0.1327271832E-02 2.203087219 0.1324341131E-02 2.205434250 0.1321410232E-02 2.207781280 0.1318479856E-02 2.210128310 0.1315550739E-02 2.212475341 0.1312623642E-02 2.214822371 0.1309699343E-02 2.217169402 0.1308631055E-02 2.219516432 0.1314840638E-02 2.221863462 0.1321002435E-02 2.224210493 0.1327116719E-02 2.226557523 0.1333183768E-02 2.228904554 0.1339203868E-02 2.231251584 0.1345177315E-02 2.233598614 0.1351104410E-02 2.235945645 0.1356985462E-02 2.238292675 0.1362820787E-02 2.240639706 0.1368610706E-02 2.242986736 0.1374355547E-02 2.245333766 0.1380055643E-02 2.247680797 0.1385711333E-02 2.250027827 0.1391322960E-02 2.252374857 0.1396890871E-02 2.254721888 0.1402415417E-02 2.257068918 0.1407896953E-02 2.259415949 0.1413335836E-02 2.261762979 0.1418732426E-02 2.264110009 0.1424087086E-02 2.266457040 0.1429400179E-02 2.268804070 0.1434672070E-02 2.271151101 0.1439903123E-02 2.273498131 0.1445093705E-02 2.275845161 0.1450244181E-02 2.278192192 0.1455354913E-02 2.280539222 0.1460426266E-02 2.282886253 0.1465458598E-02 2.285233283 0.1470452270E-02 2.287580313 0.1475407634E-02 2.289927344 0.1480325044E-02 2.292274374 0.1485204846E-02 2.294621405 0.1490047383E-02 2.296968435 0.1494852993E-02 2.299315465 0.1499622007E-02 2.301662496 0.1504354750E-02 2.304009526 0.1509051542E-02 2.306356557 0.1513712692E-02 2.308703587 0.1518338503E-02 2.311050617 0.1522929268E-02 2.313397648 0.1527485271E-02 2.315744678 0.1532006784E-02 2.318091708 0.1536494066E-02 2.320438739 0.1540947362E-02 2.322785769 0.1545366900E-02 2.325132800 0.1549752887E-02 2.327479830 0.1554105498E-02 2.329826860 0.1558424869E-02 2.332173891 0.1562711063E-02 2.334520921 0.1566964020E-02 2.336867952 0.1571183405E-02 2.339214982 0.1575368184E-02 2.341562012 0.1579514910E-02 2.343909043 0.1583605986E-02 2.346256073 0.1587002619E-02 0.000000000 0.1766814039E-02 0.2347351854E-02 0.1766805900E-02 0.4694703708E-02 0.1766781486E-02 0.7042055561E-02 0.1766740805E-02 0.9389407415E-02 0.1766683871E-02 0.1173675927E-01 0.1766610703E-02 0.1408411112E-01 0.1766521326E-02 0.1643146298E-01 0.1766415771E-02 0.1877881483E-01 0.1766294072E-02 0.2112616668E-01 0.1766156272E-02 0.2347351854E-01 0.1766002416E-02 0.2582087039E-01 0.1765832557E-02 0.2816822225E-01 0.1765646751E-02 0.3051557410E-01 0.1765445063E-02 0.3286292595E-01 0.1765227559E-02 0.3521027781E-01 0.1764994312E-02 0.3755762966E-01 0.1764745402E-02 0.3990498151E-01 0.1764480911E-02 0.4225233337E-01 0.1764200928E-02 0.4459968522E-01 0.1763905547E-02 0.4694703708E-01 0.1763594867E-02 0.4929438893E-01 0.1763268991E-02 0.5164174078E-01 0.1762928028E-02 0.5398909264E-01 0.1762572091E-02 0.5633644449E-01 0.1762201299E-02 0.5868379634E-01 0.1761815774E-02 0.6103114820E-01 0.1761415645E-02 0.6337850005E-01 0.1761001042E-02 0.6572585191E-01 0.1760572104E-02 0.6807320376E-01 0.1760128970E-02 0.7042055561E-01 0.1759671788E-02 0.7276790747E-01 0.1759200706E-02 0.7511525932E-01 0.1758715878E-02 0.7746261117E-01 0.1758217465E-02 0.7980996303E-01 0.1757705626E-02 0.8215731488E-01 0.1757180530E-02 0.8450466674E-01 0.1756642347E-02 0.8685201859E-01 0.1756091251E-02 0.8919937044E-01 0.1755527420E-02 0.9154672230E-01 0.1754951037E-02 0.9389407415E-01 0.1754362287E-02 0.9624142601E-01 0.1753761360E-02 0.9858877786E-01 0.1753148448E-02 0.1009361297 0.1752523747E-02 0.1032834816 0.1751887459E-02 0.1056308334 0.1751239785E-02 0.1079781853 0.1750580933E-02 0.1103255371 0.1749911111E-02 0.1126728890 0.1749230534E-02 0.1150202408 0.1748539416E-02 0.1173675927 0.1747837978E-02 0.1197149445 0.1747126440E-02 0.1220622964 0.1746405028E-02 0.1244096483 0.1745673970E-02 0.1267570001 0.1744933497E-02 0.1291043520 0.1744183841E-02 0.1314517038 0.1743425240E-02 0.1337990557 0.1742657932E-02 0.1361464075 0.1741882158E-02 0.1384937594 0.1741098164E-02 0.1408411112 0.1740306195E-02 0.1431884631 0.1739506502E-02 0.1455358149 0.1738699335E-02 0.1478831668 0.1737884950E-02 0.1502305186 0.1737063604E-02 0.1525778705 0.1736235555E-02 0.1549252223 0.1735401065E-02 0.1572725742 0.1734560399E-02 0.1596199261 0.1733713823E-02 0.1619672779 0.1732861607E-02 0.1643146298 0.1732004021E-02 0.1666619816 0.1731141339E-02 0.1690093335 0.1730273838E-02 0.1713566853 0.1729401797E-02 0.1737040372 0.1730777625E-02 0.1760513890 0.1736578897E-02 0.1783987409 0.1742497571E-02 0.1807460927 0.1748534703E-02 0.1830934446 0.1754691278E-02 0.1854407964 0.1760968209E-02 0.1877881483 0.1767366324E-02 0.1901355002 0.1773886364E-02 0.1924828520 0.1780528975E-02 0.1948302039 0.1787294700E-02 0.1971775557 0.1794183973E-02 0.1995249076 0.1801197114E-02 0.2018722594 0.1808334325E-02 0.2042196113 0.1815595678E-02 0.2065669631 0.1822981118E-02 0.2089143150 0.1830490454E-02 0.2112616668 0.1838123358E-02 0.2136090187 0.1845879359E-02 0.2159563705 0.1853757843E-02 0.2183037224 0.1861758051E-02 0.2206510743 0.1869879076E-02 0.2229984261 0.1878119867E-02 0.2253457780 0.1886479223E-02 0.2276931298 0.1894955803E-02 0.2300404817 0.1903548119E-02 0.2323878335 0.1912254545E-02 0.2347351854 0.1921073319E-02 0.2370825372 0.1930002546E-02 0.2394298891 0.1939040203E-02 0.2417772409 0.1948184146E-02 0.2441245928 0.1957432112E-02 0.2464719446 0.1966781730E-02 0.2488192965 0.1976230525E-02 0.2511666484 0.1985775925E-02 0.2535140002 0.1995415269E-02 0.2558613521 0.2005145812E-02 0.2582087039 0.2014964737E-02 0.2605560558 0.2024869160E-02 0.2629034076 0.2034856137E-02 0.2652507595 0.2044922671E-02 0.2675981113 0.2055065723E-02 0.2699454632 0.2065282215E-02 0.2722928150 0.2075569042E-02 0.2746401669 0.2085923072E-02 0.2769875187 0.2096341160E-02 0.2793348706 0.2106820148E-02 0.2816822225 0.2117356877E-02 0.2840295743 0.2127948188E-02 0.2863769262 0.2138590927E-02 0.2887242780 0.2149281954E-02 0.2910716299 0.2160018147E-02 0.2934189817 0.2170796401E-02 0.2957663336 0.2181613638E-02 0.2981136854 0.2192466808E-02 0.3004610373 0.2203352893E-02 0.3028083891 0.2214268908E-02 0.3051557410 0.2225211906E-02 0.3075030928 0.2236178980E-02 0.3098504447 0.2247167264E-02 0.3121977966 0.2258173935E-02 0.3145451484 0.2269196214E-02 0.3168925003 0.2280231369E-02 0.3192398521 0.2291276715E-02 0.3215872040 0.2302329615E-02 0.3239345558 0.2313387480E-02 0.3262819077 0.2324447770E-02 0.3286292595 0.2335507994E-02 0.3309766114 0.2346565713E-02 0.3333239632 0.2357618535E-02 0.3356713151 0.2368664117E-02 0.3380186669 0.2379700168E-02 0.3403660188 0.2390724445E-02 0.3427133707 0.2401734752E-02 0.3450607225 0.2412728943E-02 0.3474080744 0.2423704920E-02 0.3497554262 0.2434660631E-02 0.3521027781 0.2445594072E-02 0.3544501299 0.2456503284E-02 0.3567974818 0.2467386354E-02 0.3591448336 0.2478241414E-02 0.3614921855 0.2489066638E-02 0.3638395373 0.2499860246E-02 0.3661868892 0.2510620499E-02 0.3685342410 0.2521345700E-02 0.3708815929 0.2532034193E-02 0.3732289448 0.2542684362E-02 0.3755762966 0.2553294631E-02 0.3779236485 0.2563863464E-02 0.3802710003 0.2574389361E-02 0.3826183522 0.2584870861E-02 0.3849657040 0.2595306539E-02 0.3873130559 0.2605695006E-02 0.3896604077 0.2616034909E-02 0.3920077596 0.2626324930E-02 0.3943551114 0.2636563782E-02 0.3967024633 0.2646750217E-02 0.3990498151 0.2656883015E-02 0.4013971670 0.2666960991E-02 0.4037445189 0.2676982991E-02 0.4060918707 0.2686947891E-02 0.4084392226 0.2696854601E-02 0.4107865744 0.2706702057E-02 0.4131339263 0.2716489227E-02 0.4154812781 0.2726215109E-02 0.4178286300 0.2735878729E-02 0.4201759818 0.2745479140E-02 0.4225233337 0.2755015424E-02 0.4248706855 0.2753739840E-02 0.4272180374 0.2747912525E-02 0.4295653892 0.2742048355E-02 0.4319127411 0.2736147873E-02 0.4342600929 0.2730211637E-02 0.4366074448 0.2724240221E-02 0.4389547967 0.2718234218E-02 0.4413021485 0.2712194237E-02 0.4436495004 0.2706120902E-02 0.4459968522 0.2700014859E-02 0.4483442041 0.2693876770E-02 0.4506915559 0.2687707317E-02 0.4530389078 0.2681507204E-02 0.4553862596 0.2675277153E-02 0.4577336115 0.2669017909E-02 0.4600809633 0.2662730239E-02 0.4624283152 0.2656414933E-02 0.4647756670 0.2650072806E-02 0.4671230189 0.2643704698E-02 0.4694703708 0.2637311475E-02 0.4718177226 0.2630894032E-02 0.4741650745 0.2624453293E-02 0.4765124263 0.2617990211E-02 0.4788597782 0.2611505773E-02 0.4812071300 0.2605000999E-02 0.4835544819 0.2598476946E-02 0.4859018337 0.2591934708E-02 0.4882491856 0.2585375419E-02 0.4905965374 0.2578800258E-02 0.4929438893 0.2572210445E-02 0.4952912411 0.2565607252E-02 0.4976385930 0.2558992000E-02 0.4999859449 0.2552366067E-02 0.5023332967 0.2545730888E-02 0.5046806486 0.2539087961E-02 0.5070280004 0.2532438852E-02 0.5093753523 0.2525785197E-02 0.5117227041 0.2519128711E-02 0.5140700560 0.2512471193E-02 0.5164174078 0.2505814532E-02 0.5187647597 0.2499160713E-02 0.5211121115 0.2492511826E-02 0.5234594634 0.2485870074E-02 0.5258068152 0.2479237786E-02 0.5281541671 0.2472617419E-02 0.5305015190 0.2466011580E-02 0.5328488708 0.2459423031E-02 0.5351962227 0.2452854703E-02 0.5375435745 0.2446309717E-02 0.5398909264 0.2439791395E-02 0.5422382782 0.2433303279E-02 0.5445856301 0.2426849155E-02 0.5469329819 0.2420433070E-02 0.5492803338 0.2414059359E-02 0.5516276856 0.2407732672E-02 0.5539750375 0.2401457999E-02 0.5563223893 0.2395240705E-02 0.5586697412 0.2389086562E-02 0.5610170931 0.2383001784E-02 0.5633644449 0.2376993067E-02 0.5657117968 0.2371067629E-02 0.5680591486 0.2365233253E-02 0.5704065005 0.2359498330E-02 0.5727538523 0.2353871907E-02 0.5751012042 0.2348363723E-02 0.5774485560 0.2342984259E-02 0.5797959079 0.2337744770E-02 0.5821432597 0.2332657318E-02 0.5844906116 0.2327734791E-02 0.5868379634 0.2322990906E-02 0.5891853153 0.2318440202E-02 0.5915326672 0.2314097992E-02 0.5938800190 0.2309980303E-02 0.5962273709 0.2306103763E-02 0.5985747227 0.2302485455E-02 0.6009220746 0.2299142716E-02 0.6032694264 0.2296092893E-02 0.6056167783 0.2293353038E-02 0.6079641301 0.2290939567E-02 0.6103114820 0.2288867870E-02 0.6126588338 0.2287151913E-02 0.6150061857 0.2285803822E-02 0.6173535375 0.2284833501E-02 0.6197008894 0.2284248293E-02 0.6220482413 0.2284052716E-02 0.6243952716 0.2284109988E-02 0.6267423020 0.2284183198E-02 0.6290893324 0.2284272263E-02 0.6314363628 0.2284377086E-02 0.6337833932 0.2284497559E-02 0.6361304236 0.2284633565E-02 0.6384774540 0.2284784974E-02 0.6408244844 0.2284951646E-02 0.6431715148 0.2285133430E-02 0.6455185452 0.2285330165E-02 0.6478655756 0.2285541680E-02 0.6502126060 0.2285767793E-02 0.6525596364 0.2286008314E-02 0.6549066668 0.2286263041E-02 0.6572536971 0.2286531764E-02 0.6596007275 0.2286814264E-02 0.6619477579 0.2287110313E-02 0.6642947883 0.2287419674E-02 0.6666418187 0.2287742101E-02 0.6689888491 0.2288077340E-02 0.6713358795 0.2288425131E-02 0.6736829099 0.2288785204E-02 0.6760299403 0.2289157282E-02 0.6783769707 0.2289541082E-02 0.6807240011 0.2289936312E-02 0.6830710315 0.2290342675E-02 0.6854180619 0.2290759867E-02 0.6877650922 0.2291187579E-02 0.6901121226 0.2291625494E-02 0.6924591530 0.2292073291E-02 0.6948061834 0.2292530645E-02 0.6971532138 0.2292997222E-02 0.6995002442 0.2293472688E-02 0.7018472746 0.2293956701E-02 0.7041943050 0.2294448917E-02 0.7065413354 0.2294948987E-02 0.7088883658 0.2295456560E-02 0.7112353962 0.2295971279E-02 0.7135824266 0.2296492787E-02 0.7159294570 0.2297020723E-02 0.7182764874 0.2297554723E-02 0.7206235177 0.2298094422E-02 0.7229705481 0.2298639453E-02 0.7253175785 0.2299189448E-02 0.7276646089 0.2299744036E-02 0.7300116393 0.2300302848E-02 0.7323586697 0.2300865511E-02 0.7347057001 0.2301431654E-02 0.7370527305 0.2302000905E-02 0.7393997609 0.2302572893E-02 0.7417467913 0.2303147248E-02 0.7440938217 0.2303723599E-02 0.7464408521 0.2304301576E-02 0.7487878825 0.2304880814E-02 0.7511349128 0.2305460945E-02 0.7534819432 0.2306041605E-02 0.7558289736 0.2306622433E-02 0.7581760040 0.2307203070E-02 0.7605230344 0.2307783159E-02 0.7628700648 0.2308362346E-02 0.7652170952 0.2308940281E-02 0.7675641256 0.2309516617E-02 0.7699111560 0.2310091010E-02 0.7722581864 0.2310663123E-02 0.7746052168 0.2311232619E-02 0.7769522472 0.2311799169E-02 0.7792992776 0.2312362446E-02 0.7816463080 0.2312922130E-02 0.7839933383 0.2313477906E-02 0.7863403687 0.2314029462E-02 0.7886873991 0.2314576495E-02 0.7910344295 0.2315118706E-02 0.7933814599 0.2315655801E-02 0.7957284903 0.2316187494E-02 0.7980755207 0.2316713505E-02 0.8004225511 0.2317233560E-02 0.8027695815 0.2317747392E-02 0.8051166119 0.2318254741E-02 0.8074636423 0.2318755355E-02 0.8098106727 0.2319248986E-02 0.8121577031 0.2319735399E-02 0.8145047335 0.2320214360E-02 0.8168517638 0.2320685649E-02 0.8191987942 0.2321149049E-02 0.8215458246 0.2321604353E-02 0.8238928550 0.2322051362E-02 0.8262398854 0.2322489885E-02 0.8285869158 0.2322919740E-02 0.8309339462 0.2323340752E-02 0.8332809766 0.2323752757E-02 0.8356280070 0.2324155595E-02 0.8379750374 0.2324549120E-02 0.8403220678 0.2324933191E-02 0.8426690982 0.2325307678E-02 0.8450161286 0.2325672457E-02 0.8473631589 0.2326027418E-02 0.8497101893 0.2326372454E-02 0.8520572197 0.2326707471E-02 0.8544042501 0.2327032382E-02 0.8567512805 0.2327347111E-02 0.8590983109 0.2327651589E-02 0.8614453413 0.2327945758E-02 0.8637923717 0.2328229566E-02 0.8661394021 0.2328502974E-02 0.8684864325 0.2328765948E-02 0.8708334629 0.2329018467E-02 0.8731804933 0.2329260517E-02 0.8755275237 0.2329492091E-02 0.8778745541 0.2329713195E-02 0.8802215844 0.2329923840E-02 0.8825686148 0.2330124049E-02 0.8849156452 0.2330313851E-02 0.8872626756 0.2330493286E-02 0.8896097060 0.2330662401E-02 0.8919567364 0.2330821252E-02 0.8943037668 0.2330969904E-02 0.8966507972 0.2331108429E-02 0.8989978276 0.2331236907E-02 0.9013448580 0.2331355429E-02 0.9036918884 0.2331464091E-02 0.9060389188 0.2331562999E-02 0.9083859492 0.2331652264E-02 0.9107329796 0.2331732007E-02 0.9130800099 0.2331802356E-02 0.9154270403 0.2331863446E-02 0.9177740707 0.2331915418E-02 0.9201211011 0.2331958424E-02 0.9224681315 0.2331992618E-02 0.9248151619 0.2332018163E-02 0.9271621923 0.2332035229E-02 0.9295092227 0.2332043992E-02 0.9318562531 0.2332044633E-02 0.9342032835 0.2332037341E-02 0.9365503139 0.2332022309E-02 0.9388973443 0.2331999737E-02 0.9412443747 0.2331969829E-02 0.9435914050 0.2331932795E-02 0.9459384354 0.2331888850E-02 0.9482854658 0.2331838214E-02 0.9506324962 0.2331781112E-02 0.9529795266 0.2331717771E-02 0.9553265570 0.2331648426E-02 0.9576735874 0.2331573312E-02 0.9600206178 0.2331492669E-02 0.9623676482 0.2331406743E-02 0.9647146786 0.2331315779E-02 0.9670617090 0.2331220029E-02 0.9694087394 0.2331119743E-02 0.9717557698 0.2331015179E-02 0.9741028002 0.2330906592E-02 0.9764498305 0.2330794244E-02 0.9787968609 0.2330678394E-02 0.9811438913 0.2330559305E-02 0.9834909217 0.2330437242E-02 0.9858379521 0.2330312468E-02 0.9881849825 0.2330185250E-02 0.9905320129 0.2330055852E-02 0.9928790433 0.2329924542E-02 0.9952260737 0.2329791585E-02 0.9975731041 0.2329657247E-02 0.9999201345 0.2329521792E-02 1.002267165 0.2329385484E-02 1.004614195 0.2329248586E-02 1.006961226 0.2329111360E-02 1.009308256 0.2328974065E-02 1.011655286 0.2328836958E-02 1.014002317 0.2328700295E-02 1.016349347 0.2328564328E-02 1.018696378 0.2328429308E-02 1.021043408 0.2328295481E-02 1.023390438 0.2328163091E-02 1.025737469 0.2328032377E-02 1.028084499 0.2327903575E-02 1.030431530 0.2327776918E-02 1.032778560 0.2327652632E-02 1.035125590 0.2327530941E-02 1.037472621 0.2327412061E-02 1.039819651 0.2327296207E-02 1.042166682 0.2327183584E-02 1.044513712 0.2327074394E-02 1.046860742 0.2326968833E-02 1.049207773 0.2326867091E-02 1.051554803 0.2326769349E-02 1.053901834 0.2326675785E-02 1.056248864 0.2326586568E-02 1.058595894 0.2326501861E-02 1.060942925 0.2326421818E-02 1.063289955 0.2326346587E-02 1.065636985 0.2326276308E-02 1.067984016 0.2326211114E-02 1.070331046 0.2326151127E-02 1.072678077 0.2326096464E-02 1.075025107 0.2326047231E-02 1.077372137 0.2326003528E-02 1.079719168 0.2325965445E-02 1.082066198 0.2325933061E-02 1.084413229 0.2325906449E-02 1.086760259 0.2325885672E-02 1.089107289 0.2325870782E-02 1.091454320 0.2325861824E-02 1.093801350 0.2325858832E-02 1.096152861 0.2325963995E-02 1.098504372 0.2326278705E-02 1.100855883 0.2326800633E-02 1.103207394 0.2327525985E-02 1.105558905 0.2328449646E-02 1.107910415 0.2329565356E-02 1.110261926 0.2330865921E-02 1.112613437 0.2332343430E-02 1.114964948 0.2333989467E-02 1.117316459 0.2335795315E-02 1.119667970 0.2337752136E-02 1.122019481 0.2339851121E-02 1.124370992 0.2342083621E-02 1.126722503 0.2344441245E-02 1.129074013 0.2346915928E-02 1.131425524 0.2349499987E-02 1.133777035 0.2352186151E-02 1.136128546 0.2354967573E-02 1.138480057 0.2357837837E-02 1.140831568 0.2360790949E-02 1.143183079 0.2363821322E-02 1.145534590 0.2366923762E-02 1.147886101 0.2370093443E-02 1.150237611 0.2373325883E-02 1.152589122 0.2376616924E-02 1.154940633 0.2379962705E-02 1.157292144 0.2383359639E-02 1.159643655 0.2386804390E-02 1.161995166 0.2390293856E-02 1.164346677 0.2393825142E-02 1.166698188 0.2397395548E-02 1.169049699 0.2401002549E-02 1.171401209 0.2404643781E-02 1.173752720 0.2408317024E-02 1.176104231 0.2412020191E-02 1.178455742 0.2415751316E-02 1.180807253 0.2419508544E-02 1.183158764 0.2423290120E-02 1.185510275 0.2427094381E-02 1.187861786 0.2430919746E-02 1.190213296 0.2434764713E-02 1.192564807 0.2438627851E-02 1.194916318 0.2442507791E-02 1.197267829 0.2446403226E-02 1.199619340 0.2450312902E-02 1.201970851 0.2454235616E-02 1.204322362 0.2458170214E-02 1.206673873 0.2462115583E-02 1.209025384 0.2466070651E-02 1.211376894 0.2470034386E-02 1.213728405 0.2474005789E-02 1.216079916 0.2477983895E-02 1.218431427 0.2481967771E-02 1.220782938 0.2485956513E-02 1.223134449 0.2489949245E-02 1.225485960 0.2493945116E-02 1.227837471 0.2497943304E-02 1.230188982 0.2501943007E-02 1.232540492 0.2505943449E-02 1.234892003 0.2509943873E-02 1.237243514 0.2513943547E-02 1.239595025 0.2517941755E-02 1.241946536 0.2521937805E-02 1.244298047 0.2525931020E-02 1.246649558 0.2529920743E-02 1.249001069 0.2533906335E-02 1.251352580 0.2537887172E-02 1.253704090 0.2541862649E-02 1.256055601 0.2545832173E-02 1.258407112 0.2549795170E-02 1.260758623 0.2553751076E-02 1.263110134 0.2557699345E-02 1.265461645 0.2561639441E-02 1.267813156 0.2565570841E-02 1.270164667 0.2569493032E-02 1.272516177 0.2573405514E-02 1.274867688 0.2577307792E-02 1.277219199 0.2581199383E-02 1.279570710 0.2585079807E-02 1.281922221 0.2588948591E-02 1.284273732 0.2592805263E-02 1.286625243 0.2596649353E-02 1.288976754 0.2600480387E-02 1.291328265 0.2604297889E-02 1.293679775 0.2608101371E-02 1.296031286 0.2611890332E-02 1.298382797 0.2615664253E-02 1.300734308 0.2619422590E-02 1.303085819 0.2623164765E-02 1.305437330 0.2626890156E-02 1.307788841 0.2630598087E-02 1.310140352 0.2634287810E-02 1.312491863 0.2637958486E-02 1.314843373 0.2641609162E-02 1.317194884 0.2645238735E-02 1.319546395 0.2648845915E-02 1.321897906 0.2652429161E-02 1.324249417 0.2655986616E-02 1.326600928 0.2659515996E-02 1.328952439 0.2663014452E-02 1.331303950 0.2666478374E-02 1.333655461 0.2669903098E-02 1.336006971 0.2673282495E-02 1.338358482 0.2676608340E-02 1.340709993 0.2679869349E-02 1.343061504 0.2683049657E-02 1.345413015 0.2686126345E-02 1.347764526 0.2689065307E-02 1.350116037 0.2691814139E-02 1.352467548 0.2694289760E-02 1.354819059 0.2696357081E-02 1.357170569 0.2697795669E-02 1.359522080 0.2698264312E-02 1.361873591 0.2697322906E-02 1.364225102 0.2694620827E-02 1.366576613 0.2690169270E-02 1.368928124 0.2684329094E-02 1.371279635 0.2677534348E-02 1.373631146 0.2670116532E-02 1.375982656 0.2662289235E-02 1.378334167 0.2654183904E-02 1.380685678 0.2645882092E-02 1.383037189 0.2637435889E-02 1.385388700 0.2628879780E-02 1.387740211 0.2620237453E-02 1.390091722 0.2611525768E-02 1.392443233 0.2602757135E-02 1.394794744 0.2593940987E-02 1.397146254 0.2585084703E-02 1.399497765 0.2576194219E-02 1.401849276 0.2567274434E-02 1.404200787 0.2558329481E-02 1.406552298 0.2549362924E-02 1.408903809 0.2540377895E-02 1.411255320 0.2531377189E-02 1.413606831 0.2522363338E-02 1.415958342 0.2513338668E-02 1.418309852 0.2504305332E-02 1.420661363 0.2495265350E-02 1.423012874 0.2486220622E-02 1.425364385 0.2477172957E-02 1.427715896 0.2468124081E-02 1.430067407 0.2459075647E-02 1.432418918 0.2450029251E-02 1.434770429 0.2440986434E-02 1.437121940 0.2431948688E-02 1.439473450 0.2422917466E-02 1.441824961 0.2413894178E-02 1.444176472 0.2404880205E-02 1.446527983 0.2395876892E-02 1.448879494 0.2386885556E-02 1.451231005 0.2377907490E-02 1.453582516 0.2368943961E-02 1.455934027 0.2359996215E-02 1.458285537 0.2351065475E-02 1.460637048 0.2342152950E-02 1.462988559 0.2333259829E-02 1.465340070 0.2324387289E-02 1.467691581 0.2315536493E-02 1.470043092 0.2306708590E-02 1.472394603 0.2297904725E-02 1.474746114 0.2289126030E-02 1.477097625 0.2280373633E-02 1.479449135 0.2271648657E-02 1.481800646 0.2262952224E-02 1.484152157 0.2254285453E-02 1.486503668 0.2245649463E-02 1.488855179 0.2237045378E-02 1.491206690 0.2228474324E-02 1.493558201 0.2219937435E-02 1.495909712 0.2211435850E-02 1.498261223 0.2202970719E-02 1.500612733 0.2194543202E-02 1.502964244 0.2186154472E-02 1.505315755 0.2177805716E-02 1.507667266 0.2169498136E-02 1.510018777 0.2161232952E-02 1.512370288 0.2153011400E-02 1.514721799 0.2144834739E-02 1.517073310 0.2136704247E-02 1.519424821 0.2128621223E-02 1.521776331 0.2120586993E-02 1.524127842 0.2112602904E-02 1.526479353 0.2104670329E-02 1.528830864 0.2096790668E-02 1.531182375 0.2088965349E-02 1.533533886 0.2081195824E-02 1.535885397 0.2073483579E-02 1.538236908 0.2065830124E-02 1.540588418 0.2058237003E-02 1.542939929 0.2050705788E-02 1.545291440 0.2043238083E-02 1.547642951 0.2035835524E-02 1.549994462 0.2028499779E-02 1.552345973 0.2021232550E-02 1.554697484 0.2014035573E-02 1.557048995 0.2006910616E-02 1.559400506 0.1999859486E-02 1.561752016 0.1992884026E-02 1.564103527 0.1985986117E-02 1.566455038 0.1979167681E-02 1.568806549 0.1972430678E-02 1.571158060 0.1965777116E-02 1.573509571 0.1959209046E-02 1.575861082 0.1952728566E-02 1.578212593 0.1946337827E-02 1.580564104 0.1940039032E-02 1.582915614 0.1933834440E-02 1.585267125 0.1927726371E-02 1.587618636 0.1921717205E-02 1.589970147 0.1915809388E-02 1.592321658 0.1910005436E-02 1.594673169 0.1904307930E-02 1.597024680 0.1898719525E-02 1.599376191 0.1893242945E-02 1.601727702 0.1887880985E-02 1.604079212 0.1882636502E-02 1.606430723 0.1877512413E-02 1.608782234 0.1872511684E-02 1.611133745 0.1867637316E-02 1.613485256 0.1862892328E-02 1.615836767 0.1858279733E-02 1.618188278 0.1853802506E-02 1.620539789 0.1849463553E-02 1.622891299 0.1845265667E-02 1.625242810 0.1841211478E-02 1.627594321 0.1837303398E-02 1.629945832 0.1833543565E-02 1.632297343 0.1829933774E-02 1.634648854 0.1826475415E-02 1.637000365 0.1823169411E-02 1.639351876 0.1820016154E-02 1.641703387 0.1817015457E-02 1.644054897 0.1814166511E-02 1.646406408 0.1811467858E-02 1.648757919 0.1808917380E-02 1.651109430 0.1806512309E-02 1.653460941 0.1804249245E-02 1.655812452 0.1802124207E-02 1.658163963 0.1800132683E-02 1.660515474 0.1798269705E-02 1.662866985 0.1796529922E-02 1.665218495 0.1794907691E-02 1.667570006 0.1793397156E-02 1.669921517 0.1791992336E-02 1.672273028 0.1790687196E-02 1.674624539 0.1789475727E-02 1.676976050 0.1788352000E-02 1.679327561 0.1787310221E-02 1.681679072 0.1786344777E-02 1.684030583 0.1785450267E-02 1.686382093 0.1784621523E-02 1.688733604 0.1783853635E-02 1.691085115 0.1783141955E-02 1.693436626 0.1782482104E-02 1.695788137 0.1781869970E-02 1.698139648 0.1781301706E-02 1.700491159 0.1780773721E-02 1.702842670 0.1780282672E-02 1.705194180 0.1779825452E-02 1.707545691 0.1779399180E-02 1.709897202 0.1779001187E-02 1.712248713 0.1778629006E-02 1.714600224 0.1778280355E-02 1.716951735 0.1777953130E-02 1.719303246 0.1777645390E-02 1.721654757 0.1777355345E-02 1.724006268 0.1777081349E-02 1.726357778 0.1776821885E-02 1.728709289 0.1776575559E-02 1.731060800 0.1776341090E-02 1.733412311 0.1776117300E-02 1.735763822 0.1775903110E-02 1.738115333 0.1775697528E-02 1.740466844 0.1775499645E-02 1.742818355 0.1775308630E-02 1.745169866 0.1775123722E-02 1.747521376 0.1774944225E-02 1.749872887 0.1774769504E-02 1.752224398 0.1774598980E-02 1.754575909 0.1774432126E-02 1.756927420 0.1774268464E-02 1.759278931 0.1774107558E-02 1.761630442 0.1773949016E-02 1.763981953 0.1773792483E-02 1.766333464 0.1773637640E-02 1.768684974 0.1773484200E-02 1.771036485 0.1773331906E-02 1.773387996 0.1773180532E-02 1.775739507 0.1773029876E-02 1.778091018 0.1772879760E-02 1.780442529 0.1772730029E-02 1.782794040 0.1772580549E-02 1.785145551 0.1772431206E-02 1.787497061 0.1772281902E-02 1.789848572 0.1772132557E-02 1.792200083 0.1771983106E-02 1.794551594 0.1771833497E-02 1.796903105 0.1771683694E-02 1.799254616 0.1771533668E-02 1.801606127 0.1771383406E-02 1.803957638 0.1771232902E-02 1.806309149 0.1771082160E-02 1.808660659 0.1770931193E-02 1.811012170 0.1770780021E-02 1.813363681 0.1770628672E-02 1.815715192 0.1770477180E-02 1.818066703 0.1770325583E-02 1.820418214 0.1770173928E-02 1.822769725 0.1770022262E-02 1.825121236 0.1769870640E-02 1.827472747 0.1769719118E-02 1.829824257 0.1769567757E-02 1.832175768 0.1769416620E-02 1.834527279 0.1769265771E-02 1.836878790 0.1769115280E-02 1.839230301 0.1768965214E-02 1.841581812 0.1768815644E-02 1.843933323 0.1768666642E-02 1.846284834 0.1768518278E-02 1.848636345 0.1768370627E-02 1.850987855 0.1768223761E-02 1.853339366 0.1768077752E-02 1.855690877 0.1767932673E-02 1.858042388 0.1767788597E-02 1.860393899 0.1767645595E-02 1.862745410 0.1767503737E-02 1.865096921 0.1767363095E-02 1.867448432 0.1767223737E-02 1.869799942 0.1767085730E-02 1.872151453 0.1766949142E-02 1.874502964 0.1766814039E-02 1.876849995 0.1767048999E-02 1.879197025 0.1767309890E-02 1.881544055 0.1767596392E-02 1.883891086 0.1767908159E-02 1.886238116 0.1768244823E-02 1.888585147 0.1768605989E-02 1.890932177 0.1768991240E-02 1.893279207 0.1769400136E-02 1.895626238 0.1769832213E-02 1.897973268 0.1770286988E-02 1.900320299 0.1770763955E-02 1.902667329 0.1771262588E-02 1.905014359 0.1771782340E-02 1.907361390 0.1772322646E-02 1.909708420 0.1772882922E-02 1.912055451 0.1773462566E-02 1.914402481 0.1774060958E-02 1.916749511 0.1774677464E-02 1.919096542 0.1775311430E-02 1.921443572 0.1775962191E-02 1.923790603 0.1776629064E-02 1.926137633 0.1777311355E-02 1.928484663 0.1778008353E-02 1.930831694 0.1778719340E-02 1.933178724 0.1779443581E-02 1.935525754 0.1780180333E-02 1.937872785 0.1780928841E-02 1.940219815 0.1781688342E-02 1.942566846 0.1782458062E-02 1.944913876 0.1783237219E-02 1.947260906 0.1784025025E-02 1.949607937 0.1784820683E-02 1.951954967 0.1785623390E-02 1.954301998 0.1786432339E-02 1.956649028 0.1787246716E-02 1.958996058 0.1788065703E-02 1.961343089 0.1788888479E-02 1.963690119 0.1789714219E-02 1.966037150 0.1790542095E-02 1.968384180 0.1791371279E-02 1.970731210 0.1792200941E-02 1.973078241 0.1793030248E-02 1.975425271 0.1793858370E-02 1.977772302 0.1794684476E-02 1.980119332 0.1795507737E-02 1.982466362 0.1796327323E-02 1.984813393 0.1797142409E-02 1.987160423 0.1797952171E-02 1.989507454 0.1798755790E-02 1.991854484 0.1799552448E-02 1.994201514 0.1800341334E-02 1.996548545 0.1801121640E-02 1.998895575 0.1801892562E-02 2.001242605 0.1802653306E-02 2.003589636 0.1803403079E-02 2.005936666 0.1804141098E-02 2.008283697 0.1804866586E-02 2.010630727 0.1805578773E-02 2.012977757 0.1806276897E-02 2.015324788 0.1806960205E-02 2.017671818 0.1807627952E-02 2.020018849 0.1808279402E-02 2.022365879 0.1808913829E-02 2.024712909 0.1809530515E-02 2.027059940 0.1810128754E-02 2.029406970 0.1810707849E-02 2.031754001 0.1811267116E-02 2.034101031 0.1811805879E-02 2.036448061 0.1812323476E-02 2.038795092 0.1812819254E-02 2.041142122 0.1813292573E-02 2.043489153 0.1813742807E-02 2.045836183 0.1814169339E-02 2.048183213 0.1814571567E-02 2.050530244 0.1814948901E-02 2.052877274 0.1815300764E-02 2.055224304 0.1815626591E-02 2.057571335 0.1815925833E-02 2.059918365 0.1816197951E-02 2.062265396 0.1816442424E-02 2.064612426 0.1816658742E-02 2.066959456 0.1816846408E-02 2.069306487 0.1817004941E-02 2.071653517 0.1817133873E-02 2.074000548 0.1817232752E-02 2.076347578 0.1817301138E-02 2.078694608 0.1817338606E-02 2.081041639 0.1817344746E-02 2.083388669 0.1817319162E-02 2.085735700 0.1817261472E-02 2.088082730 0.1817171309E-02 2.090429760 0.1817048320E-02 2.092776791 0.1816892167E-02 2.095123821 0.1816702525E-02 2.097470852 0.1816479084E-02 2.099817882 0.1816221548E-02 2.102164912 0.1815929636E-02 2.104511943 0.1815603080E-02 2.106858973 0.1815241627E-02 2.109206004 0.1814845036E-02 2.111553034 0.1814413080E-02 2.113900064 0.1813945548E-02 2.116247095 0.1813442239E-02 2.118594125 0.1812902967E-02 2.120941155 0.1812327559E-02 2.123288186 0.1811715853E-02 2.125635216 0.1811067703E-02 2.127982247 0.1810382972E-02 2.130329277 0.1809661537E-02 2.132676307 0.1808903285E-02 2.135023338 0.1808108118E-02 2.137370368 0.1807275945E-02 2.139717399 0.1806406690E-02 2.142064429 0.1805500284E-02 2.144411459 0.1804556673E-02 2.146758490 0.1803575809E-02 2.149105520 0.1802557656E-02 2.151452551 0.1801502186E-02 2.153799581 0.1800409383E-02 2.156146611 0.1799279236E-02 2.158493642 0.1798111746E-02 2.160840672 0.1796906921E-02 2.163187703 0.1795664774E-02 2.165534733 0.1794385329E-02 2.167881763 0.1793068616E-02 2.170228794 0.1791714670E-02 2.172575824 0.1790323535E-02 2.174922855 0.1788895258E-02 2.177269885 0.1787429893E-02 2.179616915 0.1785927499E-02 2.181963946 0.1784388138E-02 2.184310976 0.1782811878E-02 2.186658006 0.1781198791E-02 2.189005037 0.1779548949E-02 2.191352067 0.1777862432E-02 2.193699098 0.1776139319E-02 2.196046128 0.1774379691E-02 2.198393158 0.1772583633E-02 2.200740189 0.1770751229E-02 2.203087219 0.1768882566E-02 2.205434250 0.1766977729E-02 2.207781280 0.1765036806E-02 2.210128310 0.1763059881E-02 2.212475341 0.1761047042E-02 2.214822371 0.1758998371E-02 2.217169402 0.1756913952E-02 2.219516432 0.1754793866E-02 2.221863462 0.1752638192E-02 2.224210493 0.1750447007E-02 2.226557523 0.1748220384E-02 2.228904554 0.1745958393E-02 2.231251584 0.1743661101E-02 2.233598614 0.1741328572E-02 2.235945645 0.1738960864E-02 2.238292675 0.1736558033E-02 2.240639706 0.1734120129E-02 2.242986736 0.1731647196E-02 2.245333766 0.1729139275E-02 2.247680797 0.1726596401E-02 2.250027827 0.1724018603E-02 2.252374857 0.1721405905E-02 2.254721888 0.1718758324E-02 2.257068918 0.1716075873E-02 2.259415949 0.1713358556E-02 2.261762979 0.1710606374E-02 2.264110009 0.1707819319E-02 2.266457040 0.1704997377E-02 2.268804070 0.1702140528E-02 2.271151101 0.1699248747E-02 2.273498131 0.1696321999E-02 2.275845161 0.1693360244E-02 2.278192192 0.1690363437E-02 2.280539222 0.1687331523E-02 2.282886253 0.1684264445E-02 2.285233283 0.1681162135E-02 2.287580313 0.1678024521E-02 2.289927344 0.1674851525E-02 2.292274374 0.1671643062E-02 2.294621405 0.1668399042E-02 2.296968435 0.1665119367E-02 2.299315465 0.1661803937E-02 2.301662496 0.1658452645E-02 2.304009526 0.1655065377E-02 2.306356557 0.1651642018E-02 2.308703587 0.1648182447E-02 2.311050617 0.1644686539E-02 2.313397648 0.1641154167E-02 2.315744678 0.1637585203E-02 2.318091708 0.1633979514E-02 2.320438739 0.1630336974E-02 2.322785769 0.1626657455E-02 2.325132800 0.1622940842E-02 2.327479830 0.1619187031E-02 2.329826860 0.1615395949E-02 2.332173891 0.1611567580E-02 2.334520921 0.1607702018E-02 2.336867952 0.1603799615E-02 2.339214982 0.1599861412E-02 2.341562012 0.1595890847E-02 2.343909043 0.1591905496E-02 2.346256073 0.1588544114E-02 0.000000000 0.2436086047E-02 0.2347351854E-02 0.2436189210E-02 0.4694703708E-02 0.2436498619E-02 0.7042055561E-02 0.2437014035E-02 0.9389407415E-02 0.2437735059E-02 0.1173675927E-01 0.2438661136E-02 0.1408411112E-01 0.2439791553E-02 0.1643146298E-01 0.2441125442E-02 0.1877881483E-01 0.2442661783E-02 0.2112616668E-01 0.2444399403E-02 0.2347351854E-01 0.2446336983E-02 0.2582087039E-01 0.2448473058E-02 0.2816822225E-01 0.2450806019E-02 0.3051557410E-01 0.2453334122E-02 0.3286292595E-01 0.2456055484E-02 0.3521027781E-01 0.2458968094E-02 0.3755762966E-01 0.2462069812E-02 0.3990498151E-01 0.2465358377E-02 0.4225233337E-01 0.2468831410E-02 0.4459968522E-01 0.2472486416E-02 0.4694703708E-01 0.2476320796E-02 0.4929438893E-01 0.2480331842E-02 0.5164174078E-01 0.2484516753E-02 0.5398909264E-01 0.2488872630E-02 0.5633644449E-01 0.2493396488E-02 0.5868379634E-01 0.2498085257E-02 0.6103114820E-01 0.2502935792E-02 0.6337850005E-01 0.2507944872E-02 0.6572585191E-01 0.2513109209E-02 0.6807320376E-01 0.2518425453E-02 0.7042055561E-01 0.2523890196E-02 0.7276790747E-01 0.2529499979E-02 0.7511525932E-01 0.2535251292E-02 0.7746261117E-01 0.2541140585E-02 0.7980996303E-01 0.2547164270E-02 0.8215731488E-01 0.2553318723E-02 0.8450466674E-01 0.2559600293E-02 0.8685201859E-01 0.2566005304E-02 0.8919937044E-01 0.2572530060E-02 0.9154672230E-01 0.2579170848E-02 0.9389407415E-01 0.2585923944E-02 0.9624142601E-01 0.2592785613E-02 0.9858877786E-01 0.2599752118E-02 0.1009361297 0.2606819720E-02 0.1032834816 0.2613984680E-02 0.1056308334 0.2621243269E-02 0.1079781853 0.2628591761E-02 0.1103255371 0.2636026445E-02 0.1126728890 0.2643543623E-02 0.1150202408 0.2651139615E-02 0.1173675927 0.2658810759E-02 0.1197149445 0.2666454242E-02 0.1220622964 0.2673617850E-02 0.1244096483 0.2680803436E-02 0.1267570001 0.2688007164E-02 0.1291043520 0.2695225271E-02 0.1314517038 0.2702454072E-02 0.1337990557 0.2709689958E-02 0.1361464075 0.2716929396E-02 0.1384937594 0.2724168928E-02 0.1408411112 0.2731405171E-02 0.1431884631 0.2738634818E-02 0.1455358149 0.2745854635E-02 0.1478831668 0.2753061464E-02 0.1502305186 0.2760252218E-02 0.1525778705 0.2767423884E-02 0.1549252223 0.2774573522E-02 0.1572725742 0.2781698263E-02 0.1596199261 0.2788795309E-02 0.1619672779 0.2795861934E-02 0.1643146298 0.2802895479E-02 0.1666619816 0.2809893357E-02 0.1690093335 0.2816853049E-02 0.1713566853 0.2823772103E-02 0.1737040372 0.2830648138E-02 0.1760513890 0.2837478836E-02 0.1783987409 0.2844261948E-02 0.1807460927 0.2850995289E-02 0.1830934446 0.2857676742E-02 0.1854407964 0.2864304254E-02 0.1877881483 0.2870875834E-02 0.1901355002 0.2877389560E-02 0.1924828520 0.2883843568E-02 0.1948302039 0.2890236062E-02 0.1971775557 0.2896565305E-02 0.1995249076 0.2902829625E-02 0.2018722594 0.2909027410E-02 0.2042196113 0.2915157113E-02 0.2065669631 0.2921217245E-02 0.2089143150 0.2927206378E-02 0.2112616668 0.2933123149E-02 0.2136090187 0.2938966251E-02 0.2159563705 0.2944734440E-02 0.2183037224 0.2950426531E-02 0.2206510743 0.2956041400E-02 0.2229984261 0.2961577983E-02 0.2253457780 0.2967035274E-02 0.2276931298 0.2972412329E-02 0.2300404817 0.2977708262E-02 0.2323878335 0.2982922247E-02 0.2347351854 0.2988053517E-02 0.2370825372 0.2993101365E-02 0.2394298891 0.2998065142E-02 0.2417772409 0.3002944261E-02 0.2441245928 0.3007738190E-02 0.2464719446 0.3012446462E-02 0.2488192965 0.3017068664E-02 0.2511666484 0.3021604444E-02 0.2535140002 0.3026053512E-02 0.2558613521 0.3030415635E-02 0.2582087039 0.3034690639E-02 0.2605560558 0.3038878410E-02 0.2629034076 0.3042978896E-02 0.2652507595 0.3046338683E-02 0.2675981113 0.3043605659E-02 0.2699454632 0.3040827021E-02 0.2722928150 0.3038002556E-02 0.2746401669 0.3035132058E-02 0.2769875187 0.3032215330E-02 0.2793348706 0.3029252187E-02 0.2816822225 0.3026242449E-02 0.2840295743 0.3023185947E-02 0.2863769262 0.3020082522E-02 0.2887242780 0.3016932024E-02 0.2910716299 0.3013734310E-02 0.2934189817 0.3010489250E-02 0.2957663336 0.3007196721E-02 0.2981136854 0.3003856611E-02 0.3004610373 0.3000468817E-02 0.3028083891 0.2997033244E-02 0.3051557410 0.2993549811E-02 0.3075030928 0.2990018443E-02 0.3098504447 0.2986439076E-02 0.3121977966 0.2982811656E-02 0.3145451484 0.2979136140E-02 0.3168925003 0.2975412493E-02 0.3192398521 0.2971640692E-02 0.3215872040 0.2967820723E-02 0.3239345558 0.2963952582E-02 0.3262819077 0.2960036277E-02 0.3286292595 0.2956071824E-02 0.3309766114 0.2952059250E-02 0.3333239632 0.2947998594E-02 0.3356713151 0.2943889902E-02 0.3380186669 0.2939733235E-02 0.3403660188 0.2935528660E-02 0.3427133707 0.2931276258E-02 0.3450607225 0.2926976119E-02 0.3474080744 0.2922628343E-02 0.3497554262 0.2918233042E-02 0.3521027781 0.2913790339E-02 0.3544501299 0.2909300366E-02 0.3567974818 0.2904763268E-02 0.3591448336 0.2900179199E-02 0.3614921855 0.2895548324E-02 0.3638395373 0.2890870822E-02 0.3661868892 0.2886146878E-02 0.3685342410 0.2881376693E-02 0.3708815929 0.2876560477E-02 0.3732289448 0.2871698450E-02 0.3755762966 0.2866790846E-02 0.3779236485 0.2861837908E-02 0.3802710003 0.2856839892E-02 0.3826183522 0.2851797065E-02 0.3849657040 0.2846709706E-02 0.3873130559 0.2841578105E-02 0.3896604077 0.2836402564E-02 0.3920077596 0.2831183398E-02 0.3943551114 0.2825920932E-02 0.3967024633 0.2820615505E-02 0.3990498151 0.2815267468E-02 0.4013971670 0.2809877184E-02 0.4037445189 0.2804445029E-02 0.4060918707 0.2798971390E-02 0.4084392226 0.2793456669E-02 0.4107865744 0.2787901281E-02 0.4131339263 0.2782305653E-02 0.4154812781 0.2776670227E-02 0.4178286300 0.2770995456E-02 0.4201759818 0.2765281811E-02 0.4225233337 0.2759529773E-02 0.4248706855 0.2764486692E-02 0.4272180374 0.2773892079E-02 0.4295653892 0.2783230749E-02 0.4319127411 0.2792501893E-02 0.4342600929 0.2801704725E-02 0.4366074448 0.2810838488E-02 0.4389547967 0.2819902449E-02 0.4413021485 0.2828895899E-02 0.4436495004 0.2837818156E-02 0.4459968522 0.2846668561E-02 0.4483442041 0.2855446479E-02 0.4506915559 0.2864151299E-02 0.4530389078 0.2872782436E-02 0.4553862596 0.2881339323E-02 0.4577336115 0.2889821422E-02 0.4600809633 0.2898228214E-02 0.4624283152 0.2906559202E-02 0.4647756670 0.2914813914E-02 0.4671230189 0.2922991897E-02 0.4694703708 0.2931092721E-02 0.4718177226 0.2939115977E-02 0.4741650745 0.2947061275E-02 0.4765124263 0.2954928249E-02 0.4788597782 0.2962716549E-02 0.4812071300 0.2970425846E-02 0.4835544819 0.2978055832E-02 0.4859018337 0.2985606214E-02 0.4882491856 0.2993076720E-02 0.4905965374 0.3000467093E-02 0.4929438893 0.3007777095E-02 0.4952912411 0.3015006502E-02 0.4976385930 0.3022155108E-02 0.4999859449 0.3029222717E-02 0.5023332967 0.3036209151E-02 0.5046806486 0.3043114242E-02 0.5070280004 0.3049937833E-02 0.5093753523 0.3056679777E-02 0.5117227041 0.3063339937E-02 0.5140700560 0.3069918180E-02 0.5164174078 0.3076414381E-02 0.5187647597 0.3082828416E-02 0.5211121115 0.3089160162E-02 0.5234594634 0.3095409494E-02 0.5258068152 0.3101576283E-02 0.5281541671 0.3107660390E-02 0.5305015190 0.3113661668E-02 0.5328488708 0.3119579950E-02 0.5351962227 0.3125415051E-02 0.5375435745 0.3131166758E-02 0.5398909264 0.3136834828E-02 0.5422382782 0.3142418977E-02 0.5445856301 0.3147918873E-02 0.5469329819 0.3153334130E-02 0.5492803338 0.3158664293E-02 0.5516276856 0.3163908827E-02 0.5539750375 0.3169067102E-02 0.5563223893 0.3174138378E-02 0.5586697412 0.3179121784E-02 0.5610170931 0.3184016297E-02 0.5633644449 0.3188820710E-02 0.5657117968 0.3193533608E-02 0.5680591486 0.3198153323E-02 0.5704065005 0.3202677896E-02 0.5727538523 0.3207105022E-02 0.5751012042 0.3211431988E-02 0.5774485560 0.3215655604E-02 0.5797959079 0.3219772110E-02 0.5821432597 0.3223777080E-02 0.5844906116 0.3227665301E-02 0.5868379634 0.3231430633E-02 0.5891853153 0.3235065847E-02 0.5915326672 0.3238562447E-02 0.5938800190 0.3241910469E-02 0.5962273709 0.3245098267E-02 0.5985747227 0.3248112305E-02 0.6009220746 0.3250936977E-02 0.6032694264 0.3253554491E-02 0.6056167783 0.3255944878E-02 0.6079641301 0.3258086206E-02 0.6103114820 0.3259955081E-02 0.6126588338 0.3261527515E-02 0.6150061857 0.3262780211E-02 0.6173535375 0.3263692208E-02 0.6197008894 0.3264246710E-02 0.6220482413 0.3264432806E-02 0.6243952716 0.3264434723E-02 0.6267423020 0.3264440475E-02 0.6290893324 0.3264450063E-02 0.6314363628 0.3264463492E-02 0.6337833932 0.3264480768E-02 0.6361304236 0.3264501901E-02 0.6384774540 0.3264526901E-02 0.6408244844 0.3264555782E-02 0.6431715148 0.3264588558E-02 0.6455185452 0.3264625250E-02 0.6478655756 0.3264665875E-02 0.6502126060 0.3264710457E-02 0.6525596364 0.3264759019E-02 0.6549066668 0.3264811589E-02 0.6572536971 0.3264868195E-02 0.6596007275 0.3264928867E-02 0.6619477579 0.3264993638E-02 0.6642947883 0.3265062542E-02 0.6666418187 0.3265135616E-02 0.6689888491 0.3265212898E-02 0.6713358795 0.3265294427E-02 0.6736829099 0.3265380246E-02 0.6760299403 0.3265470397E-02 0.6783769707 0.3265564926E-02 0.6807240011 0.3265663879E-02 0.6830710315 0.3265767303E-02 0.6854180619 0.3265875248E-02 0.6877650922 0.3265987765E-02 0.6901121226 0.3266104904E-02 0.6924591530 0.3266226718E-02 0.6948061834 0.3266353262E-02 0.6971532138 0.3266099582E-02 0.6995002442 0.3265552624E-02 0.7018472746 0.3264991865E-02 0.7041943050 0.3264417658E-02 0.7065413354 0.3263830369E-02 0.7088883658 0.3263230366E-02 0.7112353962 0.3262618031E-02 0.7135824266 0.3261993748E-02 0.7159294570 0.3261357912E-02 0.7182764874 0.3260710923E-02 0.7206235177 0.3260053188E-02 0.7229705481 0.3259385119E-02 0.7253175785 0.3258707135E-02 0.7276646089 0.3258019660E-02 0.7300116393 0.3257323122E-02 0.7323586697 0.3256617955E-02 0.7347057001 0.3255904597E-02 0.7370527305 0.3255183489E-02 0.7393997609 0.3254455075E-02 0.7417467913 0.3253719805E-02 0.7440938217 0.3252978129E-02 0.7464408521 0.3252230499E-02 0.7487878825 0.3251477372E-02 0.7511349128 0.3250719202E-02 0.7534819432 0.3249956449E-02 0.7558289736 0.3249189570E-02 0.7581760040 0.3248419023E-02 0.7605230344 0.3247645268E-02 0.7628700648 0.3246868763E-02 0.7652170952 0.3246089964E-02 0.7675641256 0.3245309327E-02 0.7699111560 0.3244527306E-02 0.7722581864 0.3243744355E-02 0.7746052168 0.3242960922E-02 0.7769522472 0.3242177454E-02 0.7792992776 0.3241394394E-02 0.7816463080 0.3240612183E-02 0.7839933383 0.3239831257E-02 0.7863403687 0.3239052046E-02 0.7886873991 0.3238274979E-02 0.7910344295 0.3237500475E-02 0.7933814599 0.3236728953E-02 0.7957284903 0.3235960822E-02 0.7980755207 0.3235196485E-02 0.8004225511 0.3234436342E-02 0.8027695815 0.3233680783E-02 0.8051166119 0.3232930192E-02 0.8074636423 0.3232184944E-02 0.8098106727 0.3231445409E-02 0.8121577031 0.3230711946E-02 0.8145047335 0.3229984908E-02 0.8168517638 0.3229264639E-02 0.8191987942 0.3228551472E-02 0.8215458246 0.3227845733E-02 0.8238928550 0.3227147738E-02 0.8262398854 0.3226457794E-02 0.8285869158 0.3225776195E-02 0.8309339462 0.3225103230E-02 0.8332809766 0.3224439174E-02 0.8356280070 0.3223784291E-02 0.8379750374 0.3223138838E-02 0.8403220678 0.3222503058E-02 0.8426690982 0.3221877184E-02 0.8450161286 0.3221261438E-02 0.8473631589 0.3220656031E-02 0.8497101893 0.3220061161E-02 0.8520572197 0.3219477017E-02 0.8544042501 0.3218903775E-02 0.8567512805 0.3218341598E-02 0.8590983109 0.3217790641E-02 0.8614453413 0.3217251044E-02 0.8637923717 0.3216722936E-02 0.8661394021 0.3216206435E-02 0.8684864325 0.3215701646E-02 0.8708334629 0.3215208664E-02 0.8731804933 0.3214727569E-02 0.8755275237 0.3214258433E-02 0.8778745541 0.3213801313E-02 0.8802215844 0.3213356257E-02 0.8825686148 0.3212923299E-02 0.8849156452 0.3212502462E-02 0.8872626756 0.3212093760E-02 0.8896097060 0.3211697193E-02 0.8919567364 0.3211312750E-02 0.8943037668 0.3210940410E-02 0.8966507972 0.3210580141E-02 0.8989978276 0.3210231898E-02 0.9013448580 0.3209895629E-02 0.9036918884 0.3209571268E-02 0.9060389188 0.3209258741E-02 0.9083859492 0.3208957963E-02 0.9107329796 0.3208668840E-02 0.9130800099 0.3208391268E-02 0.9154270403 0.3208125132E-02 0.9177740707 0.3207870310E-02 0.9201211011 0.3207626670E-02 0.9224681315 0.3207394072E-02 0.9248151619 0.3207172366E-02 0.9271621923 0.3206961395E-02 0.9295092227 0.3206760995E-02 0.9318562531 0.3206570993E-02 0.9342032835 0.3206391210E-02 0.9365503139 0.3206221457E-02 0.9388973443 0.3206061542E-02 0.9412443747 0.3205911264E-02 0.9435914050 0.3205770419E-02 0.9459384354 0.3205638792E-02 0.9482854658 0.3205516169E-02 0.9506324962 0.3205402325E-02 0.9529795266 0.3205297034E-02 0.9553265570 0.3205200065E-02 0.9576735874 0.3205111181E-02 0.9600206178 0.3205030143E-02 0.9623676482 0.3204956707E-02 0.9647146786 0.3204890629E-02 0.9670617090 0.3204831658E-02 0.9694087394 0.3204779545E-02 0.9717557698 0.3204734034E-02 0.9741028002 0.3204694872E-02 0.9764498305 0.3204661801E-02 0.9787968609 0.3204634565E-02 0.9811438913 0.3204612905E-02 0.9834909217 0.3204596561E-02 0.9858379521 0.3204585277E-02 0.9881849825 0.3204578792E-02 0.9905320129 0.3204576849E-02 0.9928790433 0.3204579192E-02 0.9952260737 0.3204585565E-02 0.9975731041 0.3204595713E-02 0.9999201345 0.3204609384E-02 1.002267165 0.3204626329E-02 1.004614195 0.3204646300E-02 1.006961226 0.3204669052E-02 1.009308256 0.3204694343E-02 1.011655286 0.3204721936E-02 1.014002317 0.3204751596E-02 1.016349347 0.3204783091E-02 1.018696378 0.3204816196E-02 1.021043408 0.3204850689E-02 1.023390438 0.3204886352E-02 1.025737469 0.3204922973E-02 1.028084499 0.3204960344E-02 1.030431530 0.3204998265E-02 1.032778560 0.3205036538E-02 1.035125590 0.3205074974E-02 1.037472621 0.3205113388E-02 1.039819651 0.3205151602E-02 1.042166682 0.3205189445E-02 1.044513712 0.3205226753E-02 1.046860742 0.3205263366E-02 1.049207773 0.3205299134E-02 1.051554803 0.3205333913E-02 1.053901834 0.3205367567E-02 1.056248864 0.3205399965E-02 1.058595894 0.3205430986E-02 1.060942925 0.3205460515E-02 1.063289955 0.3205488447E-02 1.065636985 0.3205514683E-02 1.067984016 0.3205539131E-02 1.070331046 0.3205561710E-02 1.072678077 0.3205582344E-02 1.075025107 0.3205600967E-02 1.077372137 0.3205617520E-02 1.079719168 0.3205631953E-02 1.082066198 0.3205644225E-02 1.084413229 0.3205654302E-02 1.086760259 0.3205662157E-02 1.089107289 0.3205667774E-02 1.091454320 0.3205671144E-02 1.093801350 0.3205672266E-02 1.096152861 0.3205659453E-02 1.098504372 0.3205621027E-02 1.100855883 0.3205557041E-02 1.103207394 0.3205467582E-02 1.105558905 0.3205352773E-02 1.107910415 0.3205212774E-02 1.110261926 0.3205047778E-02 1.112613437 0.3204858014E-02 1.114964948 0.3204643746E-02 1.117316459 0.3204405274E-02 1.119667970 0.3204142928E-02 1.122019481 0.3203857073E-02 1.124370992 0.3203548108E-02 1.126722503 0.3203216462E-02 1.129074013 0.3202862596E-02 1.131425524 0.3202487000E-02 1.133777035 0.3202090196E-02 1.136128546 0.3201672733E-02 1.138480057 0.3201235186E-02 1.140831568 0.3200778159E-02 1.143183079 0.3200302280E-02 1.145534590 0.3199808200E-02 1.147886101 0.3199296595E-02 1.150237611 0.3198768160E-02 1.152589122 0.3198223611E-02 1.154940633 0.3197663681E-02 1.157292144 0.3197089122E-02 1.159643655 0.3196500699E-02 1.161995166 0.3195899191E-02 1.164346677 0.3195285387E-02 1.166698188 0.3194660088E-02 1.169049699 0.3194024100E-02 1.171401209 0.3193378236E-02 1.173752720 0.3192723312E-02 1.176104231 0.3192060146E-02 1.178455742 0.3191389553E-02 1.180807253 0.3190712348E-02 1.183158764 0.3190029339E-02 1.185510275 0.3189341326E-02 1.187861786 0.3188649099E-02 1.190213296 0.3187953437E-02 1.192564807 0.3187255104E-02 1.194916318 0.3186554847E-02 1.197267829 0.3185853392E-02 1.199619340 0.3185151447E-02 1.201970851 0.3183992524E-02 1.204322362 0.3179300473E-02 1.206673873 0.3174547589E-02 1.209025384 0.3169733362E-02 1.211376894 0.3164857307E-02 1.213728405 0.3159918958E-02 1.216079916 0.3154917873E-02 1.218431427 0.3149853634E-02 1.220782938 0.3144725850E-02 1.223134449 0.3139534151E-02 1.225485960 0.3134278195E-02 1.227837471 0.3128957666E-02 1.230188982 0.3123572275E-02 1.232540492 0.3118121761E-02 1.234892003 0.3112605889E-02 1.237243514 0.3107024454E-02 1.239595025 0.3101377279E-02 1.241946536 0.3095664217E-02 1.244298047 0.3089885149E-02 1.246649558 0.3084039988E-02 1.249001069 0.3078128677E-02 1.251352580 0.3072151190E-02 1.253704090 0.3066107535E-02 1.256055601 0.3059997748E-02 1.258407112 0.3053821902E-02 1.260758623 0.3047580101E-02 1.263110134 0.3041272485E-02 1.265461645 0.3034899227E-02 1.267813156 0.3028460538E-02 1.270164667 0.3021956663E-02 1.272516177 0.3015387889E-02 1.274867688 0.3008754536E-02 1.277219199 0.3002056969E-02 1.279570710 0.2995295591E-02 1.281922221 0.2988470850E-02 1.284273732 0.2981583240E-02 1.286625243 0.2974633298E-02 1.288976754 0.2967621615E-02 1.291328265 0.2960548832E-02 1.293679775 0.2953415649E-02 1.296031286 0.2946222823E-02 1.298382797 0.2938971179E-02 1.300734308 0.2931661615E-02 1.303085819 0.2924295107E-02 1.305437330 0.2916872722E-02 1.307788841 0.2909395629E-02 1.310140352 0.2901865110E-02 1.312491863 0.2894282588E-02 1.314843373 0.2886649644E-02 1.317194884 0.2878968049E-02 1.319546395 0.2871239813E-02 1.321897906 0.2863467231E-02 1.324249417 0.2855652965E-02 1.326600928 0.2847800142E-02 1.328952439 0.2839912493E-02 1.331303950 0.2831994557E-02 1.333655461 0.2824051962E-02 1.336006971 0.2816091842E-02 1.338358482 0.2808123464E-02 1.340709993 0.2800159192E-02 1.343061504 0.2792216009E-02 1.345413015 0.2784317984E-02 1.347764526 0.2776500409E-02 1.350116037 0.2768816907E-02 1.352467548 0.2761351809E-02 1.354819059 0.2754241487E-02 1.357170569 0.2747707683E-02 1.359522080 0.2742092949E-02 1.361873591 0.2737838754E-02 1.364225102 0.2735297113E-02 1.366576613 0.2734458247E-02 1.368928124 0.2734962734E-02 1.371279635 0.2736377985E-02 1.373631146 0.2738373976E-02 1.375982656 0.2740738617E-02 1.378334167 0.2743341972E-02 1.380685678 0.2746104018E-02 1.383037189 0.2748974205E-02 1.385388700 0.2751919600E-02 1.387740211 0.2754918081E-02 1.390091722 0.2757954358E-02 1.392443233 0.2761017599E-02 1.394794744 0.2764099958E-02 1.397146254 0.2767195643E-02 1.399497765 0.2770300306E-02 1.401849276 0.2773410643E-02 1.404200787 0.2776524109E-02 1.406552298 0.2779638729E-02 1.408903809 0.2782752955E-02 1.411255320 0.2785865571E-02 1.413606831 0.2788975617E-02 1.415958342 0.2792082334E-02 1.418309852 0.2795185123E-02 1.420661363 0.2798283511E-02 1.423012874 0.2801377129E-02 1.425364385 0.2804465693E-02 1.427715896 0.2807548984E-02 1.430067407 0.2810626840E-02 1.432418918 0.2813699146E-02 1.434770429 0.2816765821E-02 1.437121940 0.2819826817E-02 1.439473450 0.2822882110E-02 1.441824961 0.2825931696E-02 1.444176472 0.2828975587E-02 1.446527983 0.2832013807E-02 1.448879494 0.2835046391E-02 1.451231005 0.2838073377E-02 1.453582516 0.2841094810E-02 1.455934027 0.2844110738E-02 1.458285537 0.2847121205E-02 1.460637048 0.2850126258E-02 1.462988559 0.2853125936E-02 1.465340070 0.2856120277E-02 1.467691581 0.2859109311E-02 1.470043092 0.2862093058E-02 1.472394603 0.2865071532E-02 1.474746114 0.2868044734E-02 1.477097625 0.2871012656E-02 1.479449135 0.2873975274E-02 1.481800646 0.2876932552E-02 1.484152157 0.2879884438E-02 1.486503668 0.2882830862E-02 1.488855179 0.2885771739E-02 1.491206690 0.2888706962E-02 1.493558201 0.2891636408E-02 1.495909712 0.2894559929E-02 1.498261223 0.2897477357E-02 1.500612733 0.2900388502E-02 1.502964244 0.2903293146E-02 1.505315755 0.2906191049E-02 1.507667266 0.2909081942E-02 1.510018777 0.2911965530E-02 1.512370288 0.2914841489E-02 1.514721799 0.2917709464E-02 1.517073310 0.2920569070E-02 1.519424821 0.2923419889E-02 1.521776331 0.2926261469E-02 1.524127842 0.2929093326E-02 1.526479353 0.2931914935E-02 1.528830864 0.2934725740E-02 1.531182375 0.2937525139E-02 1.533533886 0.2940312495E-02 1.535885397 0.2943087126E-02 1.538236908 0.2945848307E-02 1.540588418 0.2948595266E-02 1.542939929 0.2951327183E-02 1.545291440 0.2954043189E-02 1.547642951 0.2956742358E-02 1.549994462 0.2959423712E-02 1.552345973 0.2962086209E-02 1.554697484 0.2964728747E-02 1.557048995 0.2967350152E-02 1.559400506 0.2969949181E-02 1.561752016 0.2972524510E-02 1.564103527 0.2975074730E-02 1.566455038 0.2977598343E-02 1.568806549 0.2980093747E-02 1.571158060 0.2982559232E-02 1.573509571 0.2984992967E-02 1.575861082 0.2987392989E-02 1.578212593 0.2989757186E-02 1.580564104 0.2992083285E-02 1.582915614 0.2994368831E-02 1.585267125 0.2996611166E-02 1.587618636 0.2998807403E-02 1.589970147 0.3000954404E-02 1.592321658 0.3003048744E-02 1.594673169 0.3005086673E-02 1.597024680 0.3007064084E-02 1.599376191 0.3008976458E-02 1.601727702 0.3010818819E-02 1.604079212 0.3012585673E-02 1.606430723 0.3014270946E-02 1.608782234 0.3015867916E-02 1.611133745 0.3017369139E-02 1.613485256 0.3018766371E-02 1.615836767 0.3020050490E-02 1.618188278 0.3021211422E-02 1.620539789 0.3022238077E-02 1.622891299 0.3023118300E-02 1.625242810 0.3023838847E-02 1.627594321 0.3024385414E-02 1.629945832 0.3024742706E-02 1.632297343 0.3024894597E-02 1.634648854 0.3024824365E-02 1.637000365 0.3024515037E-02 1.639351876 0.3023949833E-02 1.641703387 0.3022171674E-02 1.644054897 0.3018434031E-02 1.646406408 0.3014575719E-02 1.648757919 0.3010595892E-02 1.651109430 0.3006493816E-02 1.653460941 0.3002268872E-02 1.655812452 0.2997920561E-02 1.658163963 0.2993448504E-02 1.660515474 0.2988852444E-02 1.662866985 0.2984132249E-02 1.665218495 0.2979287914E-02 1.667570006 0.2974319564E-02 1.669921517 0.2969227454E-02 1.672273028 0.2964011970E-02 1.674624539 0.2958673634E-02 1.676976050 0.2953213104E-02 1.679327561 0.2947631176E-02 1.681679072 0.2941928783E-02 1.684030583 0.2936107000E-02 1.686382093 0.2930167045E-02 1.688733604 0.2924110276E-02 1.691085115 0.2917938198E-02 1.693436626 0.2911652461E-02 1.695788137 0.2905254861E-02 1.698139648 0.2898747342E-02 1.700491159 0.2892131996E-02 1.702842670 0.2885411064E-02 1.705194180 0.2878586939E-02 1.707545691 0.2871662162E-02 1.709897202 0.2864639428E-02 1.712248713 0.2857521583E-02 1.714600224 0.2850311624E-02 1.716951735 0.2843012703E-02 1.719303246 0.2835628125E-02 1.721654757 0.2828161346E-02 1.724006268 0.2820615977E-02 1.726357778 0.2812995784E-02 1.728709289 0.2805304684E-02 1.731060800 0.2797546748E-02 1.733412311 0.2789726201E-02 1.735763822 0.2781847420E-02 1.738115333 0.2773914934E-02 1.740466844 0.2765933423E-02 1.742818355 0.2757907720E-02 1.745169866 0.2749842806E-02 1.747521376 0.2741743811E-02 1.749872887 0.2733616014E-02 1.752224398 0.2725464839E-02 1.754575909 0.2717295855E-02 1.756927420 0.2709114775E-02 1.759278931 0.2700927452E-02 1.761630442 0.2692739878E-02 1.763981953 0.2684558181E-02 1.766333464 0.2676388624E-02 1.768684974 0.2668237598E-02 1.771036485 0.2660111623E-02 1.773387996 0.2652017342E-02 1.775739507 0.2643961518E-02 1.778091018 0.2635951027E-02 1.780442529 0.2627992857E-02 1.782794040 0.2620094099E-02 1.785145551 0.2612261944E-02 1.787497061 0.2604503673E-02 1.789848572 0.2596826656E-02 1.792200083 0.2589238338E-02 1.794551594 0.2581746235E-02 1.796903105 0.2574357923E-02 1.799254616 0.2567081030E-02 1.801606127 0.2559923227E-02 1.803957638 0.2552892211E-02 1.806309149 0.2545995703E-02 1.808660659 0.2539241425E-02 1.811012170 0.2532619374E-02 1.813363681 0.2526086064E-02 1.815715192 0.2519731683E-02 1.818066703 0.2513563153E-02 1.820418214 0.2507587279E-02 1.822769725 0.2501810735E-02 1.825121236 0.2496240049E-02 1.827472747 0.2490881590E-02 1.829824257 0.2485741552E-02 1.832175768 0.2480825941E-02 1.834527279 0.2476140561E-02 1.836878790 0.2471690999E-02 1.839230301 0.2467482611E-02 1.841581812 0.2463520508E-02 1.843933323 0.2459809543E-02 1.846284834 0.2456354300E-02 1.848636345 0.2453159076E-02 1.850987855 0.2450227875E-02 1.853339366 0.2447564393E-02 1.855690877 0.2445172009E-02 1.858042388 0.2443053773E-02 1.860393899 0.2441212401E-02 1.862745410 0.2439650262E-02 1.865096921 0.2438369373E-02 1.867448432 0.2437371395E-02 1.869799942 0.2436657624E-02 1.872151453 0.2436228988E-02 1.874502964 0.2436086047E-02 1.876849995 0.2436220886E-02 1.879197025 0.2436625232E-02 1.881544055 0.2437298579E-02 1.883891086 0.2438240085E-02 1.886238116 0.2439448574E-02 1.888585147 0.2440922536E-02 1.890932177 0.2442660136E-02 1.893279207 0.2444659214E-02 1.895626238 0.2446917292E-02 1.897973268 0.2449431578E-02 1.900320299 0.2452198974E-02 1.902667329 0.2455216083E-02 1.905014359 0.2458479216E-02 1.907361390 0.2461984398E-02 1.909708420 0.2465727381E-02 1.912055451 0.2469703652E-02 1.914402481 0.2473908439E-02 1.916749511 0.2478336724E-02 1.919096542 0.2482983256E-02 1.921443572 0.2487842554E-02 1.923790603 0.2492908927E-02 1.926137633 0.2498176478E-02 1.928484663 0.2503639119E-02 1.930831694 0.2509290580E-02 1.933178724 0.2515124424E-02 1.935525754 0.2521134056E-02 1.937872785 0.2527312734E-02 1.940219815 0.2533653583E-02 1.942566846 0.2540149604E-02 1.944913876 0.2546793689E-02 1.947260906 0.2553578628E-02 1.949607937 0.2560497122E-02 1.951954967 0.2567541794E-02 1.954301998 0.2574705203E-02 1.956649028 0.2581979848E-02 1.958996058 0.2589358182E-02 1.961343089 0.2596832625E-02 1.963690119 0.2604395567E-02 1.966037150 0.2612039385E-02 1.968384180 0.2619756445E-02 1.970731210 0.2627539117E-02 1.973078241 0.2635379780E-02 1.975425271 0.2643270832E-02 1.977772302 0.2651204699E-02 1.980119332 0.2659173839E-02 1.982466362 0.2667170752E-02 1.984813393 0.2675187990E-02 1.987160423 0.2683218157E-02 1.989507454 0.2691253920E-02 1.991854484 0.2699288017E-02 1.994201514 0.2707313258E-02 1.996548545 0.2715322533E-02 1.998895575 0.2723308818E-02 2.001242605 0.2731265180E-02 2.003589636 0.2739184781E-02 2.005936666 0.2747060881E-02 2.008283697 0.2754886847E-02 2.010630727 0.2762656151E-02 2.012977757 0.2770362380E-02 2.015324788 0.2777999235E-02 2.017671818 0.2785560536E-02 2.020018849 0.2793040225E-02 2.022365879 0.2800432371E-02 2.024712909 0.2807731168E-02 2.027059940 0.2814930943E-02 2.029406970 0.2822026155E-02 2.031754001 0.2829011397E-02 2.034101031 0.2835881403E-02 2.036448061 0.2842631043E-02 2.038795092 0.2849255329E-02 2.041142122 0.2855749417E-02 2.043489153 0.2862108607E-02 2.045836183 0.2868328345E-02 2.048183213 0.2874404224E-02 2.050530244 0.2880331985E-02 2.052877274 0.2886107520E-02 2.055224304 0.2891726871E-02 2.057571335 0.2897186233E-02 2.059918365 0.2902481951E-02 2.062265396 0.2907610526E-02 2.064612426 0.2912568612E-02 2.066959456 0.2917353017E-02 2.069306487 0.2921960705E-02 2.071653517 0.2926388796E-02 2.074000548 0.2930634567E-02 2.076347578 0.2934695450E-02 2.078694608 0.2938569036E-02 2.081041639 0.2942253071E-02 2.083388669 0.2945745461E-02 2.085735700 0.2949044267E-02 2.088082730 0.2952147712E-02 2.090429760 0.2955054174E-02 2.092776791 0.2957762189E-02 2.095123821 0.2960270454E-02 2.097470852 0.2962577821E-02 2.099817882 0.2964683303E-02 2.102164912 0.2966586069E-02 2.104511943 0.2968285448E-02 2.106858973 0.2969780925E-02 2.109206004 0.2971072144E-02 2.111553034 0.2972158908E-02 2.113900064 0.2973041174E-02 2.116247095 0.2973719059E-02 2.118594125 0.2974192835E-02 2.120941155 0.2974462932E-02 2.123288186 0.2974529936E-02 2.125635216 0.2974394588E-02 2.127982247 0.2974057785E-02 2.130329277 0.2973520578E-02 2.132676307 0.2972784175E-02 2.135023338 0.2971849935E-02 2.137370368 0.2970719371E-02 2.139717399 0.2969394151E-02 2.142064429 0.2967876093E-02 2.144411459 0.2966167166E-02 2.146758490 0.2964269491E-02 2.149105520 0.2962185338E-02 2.151452551 0.2959917128E-02 2.153799581 0.2957467426E-02 2.156146611 0.2954838949E-02 2.158493642 0.2952034557E-02 2.160840672 0.2949057255E-02 2.163187703 0.2945910194E-02 2.165534733 0.2942596667E-02 2.167881763 0.2939120106E-02 2.170228794 0.2935484087E-02 2.172575824 0.2931692321E-02 2.174922855 0.2927748659E-02 2.177269885 0.2923657085E-02 2.179616915 0.2919421719E-02 2.181963946 0.2915046810E-02 2.184310976 0.2910536740E-02 2.186658006 0.2905896016E-02 2.189005037 0.2901129274E-02 2.191352067 0.2896241270E-02 2.193699098 0.2891236885E-02 2.196046128 0.2886121114E-02 2.198393158 0.2880899073E-02 2.200740189 0.2875575987E-02 2.203087219 0.2870157194E-02 2.205434250 0.2864648137E-02 2.207781280 0.2859054364E-02 2.210128310 0.2853381524E-02 2.212475341 0.2847635363E-02 2.214822371 0.2841821718E-02 2.217169402 0.2835946517E-02 2.219516432 0.2830015774E-02 2.221863462 0.2824035582E-02 2.224210493 0.2818012111E-02 2.226557523 0.2811951604E-02 2.228904554 0.2805860370E-02 2.231251584 0.2799744778E-02 2.233598614 0.2793611256E-02 2.235945645 0.2787466283E-02 2.238292675 0.2781316381E-02 2.240639706 0.2775168113E-02 2.242986736 0.2769028076E-02 2.245333766 0.2762902892E-02 2.247680797 0.2756799205E-02 2.250027827 0.2750723673E-02 2.252374857 0.2744682958E-02 2.254721888 0.2738683724E-02 2.257068918 0.2732732627E-02 2.259415949 0.2726836306E-02 2.261762979 0.2721001380E-02 2.264110009 0.2715234433E-02 2.266457040 0.2709542012E-02 2.268804070 0.2703930618E-02 2.271151101 0.2698406693E-02 2.273498131 0.2692976617E-02 2.275845161 0.2687646697E-02 2.278192192 0.2682423158E-02 2.280539222 0.2677312134E-02 2.282886253 0.2672319660E-02 2.285233283 0.2667451664E-02 2.287580313 0.2662713954E-02 2.289927344 0.2658112215E-02 2.292274374 0.2653651995E-02 2.294621405 0.2649338697E-02 2.296968435 0.2645177574E-02 2.299315465 0.2641173716E-02 2.301662496 0.2637332041E-02 2.304009526 0.2633657291E-02 2.306356557 0.2630154020E-02 2.308703587 0.2626826587E-02 2.311050617 0.2623679148E-02 2.313397648 0.2620715650E-02 2.315744678 0.2617939819E-02 2.318091708 0.2615355160E-02 2.320438739 0.2612964945E-02 2.322785769 0.2610772208E-02 2.325132800 0.2608779740E-02 2.327479830 0.2606990084E-02 2.329826860 0.2605405528E-02 2.332173891 0.2604028103E-02 2.334520921 0.2602859576E-02 2.336867952 0.2601901450E-02 2.339214982 0.2601154957E-02 2.341562012 0.2600621060E-02 2.343909043 0.2600300445E-02 2.346256073 0.2600193528E-02 0.000000000 0.2436086048E-02 0.2347351854E-02 0.2436199115E-02 0.4694703708E-02 0.2436538162E-02 0.7042055561E-02 0.2437102726E-02 0.9389407415E-02 0.2437892038E-02 0.1173675927E-01 0.2438905024E-02 0.1408411112E-01 0.2440140315E-02 0.1643146298E-01 0.2441596251E-02 0.1877881483E-01 0.2443270885E-02 0.2112616668E-01 0.2445161997E-02 0.2347351854E-01 0.2447267103E-02 0.2582087039E-01 0.2449583462E-02 0.2816822225E-01 0.2452108092E-02 0.3051557410E-01 0.2454837780E-02 0.3286292595E-01 0.2457769095E-02 0.3521027781E-01 0.2460898404E-02 0.3755762966E-01 0.2464221882E-02 0.3990498151E-01 0.2467735527E-02 0.4225233337E-01 0.2471435177E-02 0.4459968522E-01 0.2475316522E-02 0.4694703708E-01 0.2479375116E-02 0.4929438893E-01 0.2483606395E-02 0.5164174078E-01 0.2488005689E-02 0.5398909264E-01 0.2492568234E-02 0.5633644449E-01 0.2497289187E-02 0.5868379634E-01 0.2502163637E-02 0.6103114820E-01 0.2507186616E-02 0.6337850005E-01 0.2512353116E-02 0.6572585191E-01 0.2517658091E-02 0.6807320376E-01 0.2523096476E-02 0.7042055561E-01 0.2528663189E-02 0.7276790747E-01 0.2534353148E-02 0.7511525932E-01 0.2540161273E-02 0.7746261117E-01 0.2546082495E-02 0.7980996303E-01 0.2552111768E-02 0.8215731488E-01 0.2558244069E-02 0.8450466674E-01 0.2564474410E-02 0.8685201859E-01 0.2570797839E-02 0.8919937044E-01 0.2577209450E-02 0.9154672230E-01 0.2583704382E-02 0.9389407415E-01 0.2590277828E-02 0.9624142601E-01 0.2596925036E-02 0.9858877786E-01 0.2603641314E-02 0.1009361297 0.2610422032E-02 0.1032834816 0.2617262624E-02 0.1056308334 0.2624158591E-02 0.1079781853 0.2631105505E-02 0.1103255371 0.2638099005E-02 0.1126728890 0.2645134806E-02 0.1150202408 0.2652208693E-02 0.1173675927 0.2659316526E-02 0.1197149445 0.2666553414E-02 0.1220622964 0.2674363966E-02 0.1244096483 0.2682238824E-02 0.1267570001 0.2690174426E-02 0.1291043520 0.2698167240E-02 0.1314517038 0.2706213766E-02 0.1337990557 0.2714310536E-02 0.1361464075 0.2722454117E-02 0.1384937594 0.2730641114E-02 0.1408411112 0.2738868166E-02 0.1431884631 0.2747131953E-02 0.1455358149 0.2755429194E-02 0.1478831668 0.2763756647E-02 0.1502305186 0.2772111114E-02 0.1525778705 0.2780489437E-02 0.1549252223 0.2788888503E-02 0.1572725742 0.2797305240E-02 0.1596199261 0.2805736624E-02 0.1619672779 0.2814179672E-02 0.1643146298 0.2822631449E-02 0.1666619816 0.2831089065E-02 0.1690093335 0.2839549675E-02 0.1713566853 0.2848010482E-02 0.1737040372 0.2856468733E-02 0.1760513890 0.2864921724E-02 0.1783987409 0.2873366799E-02 0.1807460927 0.2881801345E-02 0.1830934446 0.2890222800E-02 0.1854407964 0.2898628646E-02 0.1877881483 0.2907016416E-02 0.1901355002 0.2915383687E-02 0.1924828520 0.2923728084E-02 0.1948302039 0.2932047280E-02 0.1971775557 0.2940338993E-02 0.1995249076 0.2948600990E-02 0.2018722594 0.2956831083E-02 0.2042196113 0.2965027132E-02 0.2065669631 0.2973187041E-02 0.2089143150 0.2981308764E-02 0.2112616668 0.2989390297E-02 0.2136090187 0.2997429684E-02 0.2159563705 0.3005425015E-02 0.2183037224 0.3013374423E-02 0.2206510743 0.3021276088E-02 0.2229984261 0.3029128234E-02 0.2253457780 0.3036929130E-02 0.2276931298 0.3044677088E-02 0.2300404817 0.3052370465E-02 0.2323878335 0.3060007662E-02 0.2347351854 0.3067587123E-02 0.2370825372 0.3075107334E-02 0.2394298891 0.3073461157E-02 0.2417772409 0.3071213340E-02 0.2441245928 0.3068922817E-02 0.2464719446 0.3066589283E-02 0.2488192965 0.3064212441E-02 0.2511666484 0.3061792003E-02 0.2535140002 0.3059327687E-02 0.2558613521 0.3056819222E-02 0.2582087039 0.3054266341E-02 0.2605560558 0.3051668788E-02 0.2629034076 0.3049026315E-02 0.2652507595 0.3046992102E-02 0.2675981113 0.3050918093E-02 0.2699454632 0.3054756996E-02 0.2722928150 0.3058508995E-02 0.2746401669 0.3062174337E-02 0.2769875187 0.3065753327E-02 0.2793348706 0.3069246330E-02 0.2816822225 0.3072653772E-02 0.2840295743 0.3075976140E-02 0.2863769262 0.3079213979E-02 0.2887242780 0.3082367897E-02 0.2910716299 0.3085438560E-02 0.2934189817 0.3088426695E-02 0.2957663336 0.3091333088E-02 0.2981136854 0.3094158587E-02 0.3004610373 0.3096904098E-02 0.3028083891 0.3099570587E-02 0.3051557410 0.3102159081E-02 0.3075030928 0.3104670664E-02 0.3098504447 0.3107106480E-02 0.3121977966 0.3109467731E-02 0.3145451484 0.3111755678E-02 0.3168925003 0.3113971638E-02 0.3192398521 0.3116116987E-02 0.3215872040 0.3118193156E-02 0.3239345558 0.3120201631E-02 0.3262819077 0.3122143956E-02 0.3286292595 0.3124021725E-02 0.3309766114 0.3125836587E-02 0.3333239632 0.3127590245E-02 0.3356713151 0.3129284448E-02 0.3380186669 0.3130920998E-02 0.3403660188 0.3132501745E-02 0.3427133707 0.3134028583E-02 0.3450607225 0.3135503454E-02 0.3474080744 0.3136928340E-02 0.3497554262 0.3138305265E-02 0.3521027781 0.3139636294E-02 0.3544501299 0.3140923525E-02 0.3567974818 0.3142169093E-02 0.3591448336 0.3143375164E-02 0.3614921855 0.3144543932E-02 0.3638395373 0.3145677617E-02 0.3661868892 0.3146778463E-02 0.3685342410 0.3147848733E-02 0.3708815929 0.3148890706E-02 0.3732289448 0.3149906675E-02 0.3755762966 0.3150898940E-02 0.3779236485 0.3151869806E-02 0.3802710003 0.3152821581E-02 0.3826183522 0.3153756568E-02 0.3849657040 0.3154677061E-02 0.3873130559 0.3155585345E-02 0.3896604077 0.3156483686E-02 0.3920077596 0.3157374328E-02 0.3943551114 0.3158259490E-02 0.3967024633 0.3159141358E-02 0.3990498151 0.3160022083E-02 0.4013971670 0.3160903774E-02 0.4037445189 0.3161788492E-02 0.4060918707 0.3162678248E-02 0.4084392226 0.3163574996E-02 0.4107865744 0.3164480629E-02 0.4131339263 0.3165396971E-02 0.4154812781 0.3166325776E-02 0.4178286300 0.3167268723E-02 0.4201759818 0.3168227408E-02 0.4225233337 0.3169203343E-02 0.4248706855 0.3170197950E-02 0.4272180374 0.3171212557E-02 0.4295653892 0.3172248397E-02 0.4319127411 0.3173306601E-02 0.4342600929 0.3174388196E-02 0.4366074448 0.3175494104E-02 0.4389547967 0.3176625137E-02 0.4413021485 0.3177781997E-02 0.4436495004 0.3178965273E-02 0.4459968522 0.3180175441E-02 0.4483442041 0.3181412861E-02 0.4506915559 0.3182677777E-02 0.4530389078 0.3183970322E-02 0.4553862596 0.3185290508E-02 0.4577336115 0.3186638239E-02 0.4600809633 0.3188013301E-02 0.4624283152 0.3189415372E-02 0.4647756670 0.3190844019E-02 0.4671230189 0.3192298702E-02 0.4694703708 0.3193778777E-02 0.4718177226 0.3195283499E-02 0.4741650745 0.3196812022E-02 0.4765124263 0.3198363409E-02 0.4788597782 0.3199936630E-02 0.4812071300 0.3201530570E-02 0.4835544819 0.3203144031E-02 0.4859018337 0.3204775737E-02 0.4882491856 0.3206424338E-02 0.4905965374 0.3208088417E-02 0.4929438893 0.3209766493E-02 0.4952912411 0.3211457026E-02 0.4976385930 0.3213158422E-02 0.4999859449 0.3214869039E-02 0.5023332967 0.3216587191E-02 0.5046806486 0.3218311154E-02 0.5070280004 0.3220039167E-02 0.5093753523 0.3221769445E-02 0.5117227041 0.3223500174E-02 0.5140700560 0.3225229524E-02 0.5164174078 0.3226955647E-02 0.5187647597 0.3228676687E-02 0.5211121115 0.3230390780E-02 0.5234594634 0.3232096060E-02 0.5258068152 0.3233790663E-02 0.5281541671 0.3235472731E-02 0.5305015190 0.3237140416E-02 0.5328488708 0.3238791880E-02 0.5351962227 0.3240425303E-02 0.5375435745 0.3242038885E-02 0.5398909264 0.3243630848E-02 0.5422382782 0.3245199437E-02 0.5445856301 0.3246742927E-02 0.5469329819 0.3248259623E-02 0.5492803338 0.3249747862E-02 0.5516276856 0.3251206017E-02 0.5539750375 0.3252632495E-02 0.5563223893 0.3254025746E-02 0.5586697412 0.3255384256E-02 0.5610170931 0.3256706558E-02 0.5633644449 0.3257991226E-02 0.5657117968 0.3259236878E-02 0.5680591486 0.3260442181E-02 0.5704065005 0.3261605849E-02 0.5727538523 0.3262726644E-02 0.5751012042 0.3263803377E-02 0.5774485560 0.3264834911E-02 0.5797959079 0.3265820161E-02 0.5821432597 0.3266758092E-02 0.5844906116 0.3267647723E-02 0.5868379634 0.3268488126E-02 0.5891853153 0.3269278429E-02 0.5915326672 0.3270017810E-02 0.5938800190 0.3270705507E-02 0.5962273709 0.3271340811E-02 0.5985747227 0.3271923066E-02 0.6009220746 0.3272451677E-02 0.6032694264 0.3272926102E-02 0.6056167783 0.3273345856E-02 0.6079641301 0.3273710510E-02 0.6103114820 0.3274019692E-02 0.6126588338 0.3274273090E-02 0.6150061857 0.3274470444E-02 0.6173535375 0.3274611554E-02 0.6197008894 0.3274696278E-02 0.6220482413 0.3274724528E-02 0.6243952716 0.3274743875E-02 0.6267423020 0.3274743833E-02 0.6290893324 0.3274724385E-02 0.6314363628 0.3274685525E-02 0.6337833932 0.3274627262E-02 0.6361304236 0.3274549617E-02 0.6384774540 0.3274452623E-02 0.6408244844 0.3274336329E-02 0.6431715148 0.3274200793E-02 0.6455185452 0.3274046090E-02 0.6478655756 0.3273872305E-02 0.6502126060 0.3273679537E-02 0.6525596364 0.3273467897E-02 0.6549066668 0.3273237510E-02 0.6572536971 0.3272988513E-02 0.6596007275 0.3272721055E-02 0.6619477579 0.3272435298E-02 0.6642947883 0.3272131417E-02 0.6666418187 0.3271809598E-02 0.6689888491 0.3271470040E-02 0.6713358795 0.3271112952E-02 0.6736829099 0.3270738558E-02 0.6760299403 0.3270347090E-02 0.6783769707 0.3269938793E-02 0.6807240011 0.3269513924E-02 0.6830710315 0.3269072750E-02 0.6854180619 0.3268615549E-02 0.6877650922 0.3268142609E-02 0.6901121226 0.3267654229E-02 0.6924591530 0.3267150717E-02 0.6948061834 0.3266632392E-02 0.6971532138 0.3266484589E-02 0.6995002442 0.3266620755E-02 0.7018472746 0.3266761817E-02 0.7041943050 0.3266907831E-02 0.7065413354 0.3267058855E-02 0.7088883658 0.3267214946E-02 0.7112353962 0.3267376163E-02 0.7135824266 0.3267542564E-02 0.7159294570 0.3267714207E-02 0.7182764874 0.3267891151E-02 0.7206235177 0.3268073454E-02 0.7229705481 0.3268261175E-02 0.7253175785 0.3268454372E-02 0.7276646089 0.3268653101E-02 0.7300116393 0.3268857421E-02 0.7323586697 0.3269067386E-02 0.7347057001 0.3269283053E-02 0.7370527305 0.3269504476E-02 0.7393997609 0.3269731708E-02 0.7417467913 0.3269964803E-02 0.7440938217 0.3270203810E-02 0.7464408521 0.3270448780E-02 0.7487878825 0.3270699762E-02 0.7511349128 0.3270956801E-02 0.7534819432 0.3271219942E-02 0.7558289736 0.3271489229E-02 0.7581760040 0.3271764703E-02 0.7605230344 0.3272046403E-02 0.7628700648 0.3272334366E-02 0.7652170952 0.3272628625E-02 0.7675641256 0.3272929213E-02 0.7699111560 0.3273236160E-02 0.7722581864 0.3273549493E-02 0.7746052168 0.3273869235E-02 0.7769522472 0.3274195408E-02 0.7792992776 0.3274528030E-02 0.7816463080 0.3274867117E-02 0.7839933383 0.3275212680E-02 0.7863403687 0.3275564728E-02 0.7886873991 0.3275923267E-02 0.7910344295 0.3276288298E-02 0.7933814599 0.3276659820E-02 0.7957284903 0.3277037827E-02 0.7980755207 0.3277422311E-02 0.8004225511 0.3277813259E-02 0.8027695815 0.3278210654E-02 0.8051166119 0.3278614475E-02 0.8074636423 0.3279024697E-02 0.8098106727 0.3279441293E-02 0.8121577031 0.3279864228E-02 0.8145047335 0.3280293465E-02 0.8168517638 0.3280728964E-02 0.8191987942 0.3281170678E-02 0.8215458246 0.3281618556E-02 0.8238928550 0.3282072544E-02 0.8262398854 0.3282532583E-02 0.8285869158 0.3282998608E-02 0.8309339462 0.3283470553E-02 0.8332809766 0.3283948342E-02 0.8356280070 0.3284431900E-02 0.8379750374 0.3284921143E-02 0.8403220678 0.3285415986E-02 0.8426690982 0.3285916335E-02 0.8450161286 0.3286422095E-02 0.8473631589 0.3286933165E-02 0.8497101893 0.3287449439E-02 0.8520572197 0.3287970808E-02 0.8544042501 0.3288497155E-02 0.8567512805 0.3289028361E-02 0.8590983109 0.3289564302E-02 0.8614453413 0.3290104849E-02 0.8637923717 0.3290649869E-02 0.8661394021 0.3291199222E-02 0.8684864325 0.3291752767E-02 0.8708334629 0.3292310357E-02 0.8731804933 0.3292871839E-02 0.8755275237 0.3293437058E-02 0.8778745541 0.3294005854E-02 0.8802215844 0.3294578062E-02 0.8825686148 0.3295153513E-02 0.8849156452 0.3295732034E-02 0.8872626756 0.3296313449E-02 0.8896097060 0.3296897576E-02 0.8919567364 0.3297484230E-02 0.8943037668 0.3298073223E-02 0.8966507972 0.3298664362E-02 0.8989978276 0.3299257452E-02 0.9013448580 0.3299852292E-02 0.9036918884 0.3300448679E-02 0.9060389188 0.3301046408E-02 0.9083859492 0.3301645268E-02 0.9107329796 0.3302245046E-02 0.9130800099 0.3302845528E-02 0.9154270403 0.3303446493E-02 0.9177740707 0.3304047722E-02 0.9201211011 0.3304648989E-02 0.9224681315 0.3305250068E-02 0.9248151619 0.3305850731E-02 0.9271621923 0.3306450746E-02 0.9295092227 0.3307049880E-02 0.9318562531 0.3307647898E-02 0.9342032835 0.3308244562E-02 0.9365503139 0.3308839635E-02 0.9388973443 0.3309432876E-02 0.9412443747 0.3310024044E-02 0.9435914050 0.3310612896E-02 0.9459384354 0.3311199187E-02 0.9482854658 0.3311782675E-02 0.9506324962 0.3312363112E-02 0.9529795266 0.3312940254E-02 0.9553265570 0.3313513853E-02 0.9576735874 0.3314083664E-02 0.9600206178 0.3314649440E-02 0.9623676482 0.3315210933E-02 0.9647146786 0.3315767899E-02 0.9670617090 0.3316320090E-02 0.9694087394 0.3316867262E-02 0.9717557698 0.3317409170E-02 0.9741028002 0.3317945571E-02 0.9764498305 0.3318476221E-02 0.9787968609 0.3319000880E-02 0.9811438913 0.3319519309E-02 0.9834909217 0.3320031268E-02 0.9858379521 0.3320536522E-02 0.9881849825 0.3321034836E-02 0.9905320129 0.3321525978E-02 0.9928790433 0.3322009717E-02 0.9952260737 0.3322485827E-02 0.9975731041 0.3322954083E-02 0.9999201345 0.3323414261E-02 1.002267165 0.3323866144E-02 1.004614195 0.3324309515E-02 1.006961226 0.3324744161E-02 1.009308256 0.3325169872E-02 1.011655286 0.3325586444E-02 1.014002317 0.3325993673E-02 1.016349347 0.3326391362E-02 1.018696378 0.3326779316E-02 1.021043408 0.3327157346E-02 1.023390438 0.3327525265E-02 1.025737469 0.3327882893E-02 1.028084499 0.3328230054E-02 1.030431530 0.3328566574E-02 1.032778560 0.3328892287E-02 1.035125590 0.3329207031E-02 1.037472621 0.3329510648E-02 1.039819651 0.3329802989E-02 1.042166682 0.3330083905E-02 1.044513712 0.3330353256E-02 1.046860742 0.3330610906E-02 1.049207773 0.3330856727E-02 1.051554803 0.3331090594E-02 1.053901834 0.3331312389E-02 1.056248864 0.3331521999E-02 1.058595894 0.3331719320E-02 1.060942925 0.3331904250E-02 1.063289955 0.3332076697E-02 1.065636985 0.3332236573E-02 1.067984016 0.3332383797E-02 1.070331046 0.3332518293E-02 1.072678077 0.3332639995E-02 1.075025107 0.3332748840E-02 1.077372137 0.3332844773E-02 1.079719168 0.3332927745E-02 1.082066198 0.3332997716E-02 1.084413229 0.3333054649E-02 1.086760259 0.3333098516E-02 1.089107289 0.3333129295E-02 1.091454320 0.3333146972E-02 1.093801350 0.3333151539E-02 1.096152861 0.3332926437E-02 1.098504372 0.3332262420E-02 1.100855883 0.3331196578E-02 1.103207394 0.3329779738E-02 1.105558905 0.3328066243E-02 1.107910415 0.3326106726E-02 1.110261926 0.3323944587E-02 1.112613437 0.3321615191E-02 1.114964948 0.3319146515E-02 1.117316459 0.3316560325E-02 1.119667970 0.3313873418E-02 1.122019481 0.3311098714E-02 1.124370992 0.3308246135E-02 1.126722503 0.3305323304E-02 1.129074013 0.3302336068E-02 1.131425524 0.3299288908E-02 1.133777035 0.3296185240E-02 1.136128546 0.3293027647E-02 1.138480057 0.3289818060E-02 1.140831568 0.3286557889E-02 1.143183079 0.3283248130E-02 1.145534590 0.3279889450E-02 1.147886101 0.3276482248E-02 1.150237611 0.3273026706E-02 1.152589122 0.3269522834E-02 1.154940633 0.3265970498E-02 1.157292144 0.3262369448E-02 1.159643655 0.3258719343E-02 1.161995166 0.3255019763E-02 1.164346677 0.3251270229E-02 1.166698188 0.3247470214E-02 1.169049699 0.3243619150E-02 1.171401209 0.3239716444E-02 1.173752720 0.3235761476E-02 1.176104231 0.3231753615E-02 1.178455742 0.3227692216E-02 1.180807253 0.3223576630E-02 1.183158764 0.3219406208E-02 1.185510275 0.3215180299E-02 1.187861786 0.3210898261E-02 1.190213296 0.3206559458E-02 1.192564807 0.3202163264E-02 1.194916318 0.3197709065E-02 1.197267829 0.3193196262E-02 1.199619340 0.3188624271E-02 1.201970851 0.3184449693E-02 1.204322362 0.3183748787E-02 1.206673873 0.3183049358E-02 1.209025384 0.3182352003E-02 1.211376894 0.3181657289E-02 1.213728405 0.3180965748E-02 1.216079916 0.3180277877E-02 1.218431427 0.3179594133E-02 1.220782938 0.3178914937E-02 1.223134449 0.3178240667E-02 1.225485960 0.3177571663E-02 1.227837471 0.3176908218E-02 1.230188982 0.3176250585E-02 1.232540492 0.3175598969E-02 1.234892003 0.3174953533E-02 1.237243514 0.3174314394E-02 1.239595025 0.3173681624E-02 1.241946536 0.3173055247E-02 1.244298047 0.3172435245E-02 1.246649558 0.3171821554E-02 1.249001069 0.3171214066E-02 1.251352580 0.3170612631E-02 1.253704090 0.3170017056E-02 1.256055601 0.3169427107E-02 1.258407112 0.3168842511E-02 1.260758623 0.3168262958E-02 1.263110134 0.3167688101E-02 1.265461645 0.3167117561E-02 1.267813156 0.3166550926E-02 1.270164667 0.3165987755E-02 1.272516177 0.3165427580E-02 1.274867688 0.3164869909E-02 1.277219199 0.3164314228E-02 1.279570710 0.3163760004E-02 1.281922221 0.3163206689E-02 1.284273732 0.3162653720E-02 1.286625243 0.3162100525E-02 1.288976754 0.3161546524E-02 1.291328265 0.3160991134E-02 1.293679775 0.3160433768E-02 1.296031286 0.3159873843E-02 1.298382797 0.3159310779E-02 1.300734308 0.3158744005E-02 1.303085819 0.3158172958E-02 1.305437330 0.3157597091E-02 1.307788841 0.3157015869E-02 1.310140352 0.3156428778E-02 1.312491863 0.3155835324E-02 1.314843373 0.3155235036E-02 1.317194884 0.3154627469E-02 1.319546395 0.3154012204E-02 1.321897906 0.3153388854E-02 1.324249417 0.3152757061E-02 1.326600928 0.3152116502E-02 1.328952439 0.3151466888E-02 1.331303950 0.3150807965E-02 1.333655461 0.3150139519E-02 1.336006971 0.3149461372E-02 1.338358482 0.3148773388E-02 1.340709993 0.3148075470E-02 1.343061504 0.3147367562E-02 1.345413015 0.3146649650E-02 1.347764526 0.3145921761E-02 1.350116037 0.3145183965E-02 1.352467548 0.3144436375E-02 1.354819059 0.3143679143E-02 1.357170569 0.3142912465E-02 1.359522080 0.3142136580E-02 1.361873591 0.3141351763E-02 1.364225102 0.3140558335E-02 1.366576613 0.3139756651E-02 1.368928124 0.3138947108E-02 1.371279635 0.3138130139E-02 1.373631146 0.3137306213E-02 1.375982656 0.3136475834E-02 1.378334167 0.3135639541E-02 1.380685678 0.3134797902E-02 1.383037189 0.3133951517E-02 1.385388700 0.3133101015E-02 1.387740211 0.3132247050E-02 1.390091722 0.3131390301E-02 1.392443233 0.3130531472E-02 1.394794744 0.3129671284E-02 1.397146254 0.3128810479E-02 1.399497765 0.3127949814E-02 1.401849276 0.3127090058E-02 1.404200787 0.3126231994E-02 1.406552298 0.3125376413E-02 1.408903809 0.3124524111E-02 1.411255320 0.3123675887E-02 1.413606831 0.3122832543E-02 1.415958342 0.3121994877E-02 1.418309852 0.3121163684E-02 1.420661363 0.3120339751E-02 1.423012874 0.3119523852E-02 1.425364385 0.3118716751E-02 1.427715896 0.3117919195E-02 1.430067407 0.3117131911E-02 1.432418918 0.3116355605E-02 1.434770429 0.3115590957E-02 1.437121940 0.3114838619E-02 1.439473450 0.3114099213E-02 1.441824961 0.3113373328E-02 1.444176472 0.3112661513E-02 1.446527983 0.3111964280E-02 1.448879494 0.3111282098E-02 1.451231005 0.3110615392E-02 1.453582516 0.3109964537E-02 1.455934027 0.3109329857E-02 1.458285537 0.3108711625E-02 1.460637048 0.3108110056E-02 1.462988559 0.3107525309E-02 1.465340070 0.3106957479E-02 1.467691581 0.3106406600E-02 1.470043092 0.3105872641E-02 1.472394603 0.3105355502E-02 1.474746114 0.3104855015E-02 1.477097625 0.3104370940E-02 1.479449135 0.3103902965E-02 1.481800646 0.3103450703E-02 1.484152157 0.3103013691E-02 1.486503668 0.3102591388E-02 1.488855179 0.3102183176E-02 1.491206690 0.3101788356E-02 1.493558201 0.3101406152E-02 1.495909712 0.3101035703E-02 1.498261223 0.3100676071E-02 1.500612733 0.3100326233E-02 1.502964244 0.3099985086E-02 1.505315755 0.3099651446E-02 1.507667266 0.3099324048E-02 1.510018777 0.3099001544E-02 1.512370288 0.3098682509E-02 1.514721799 0.3098365436E-02 1.517073310 0.3098048743E-02 1.519424821 0.3097730768E-02 1.521776331 0.3097409776E-02 1.524127842 0.3097083957E-02 1.526479353 0.3096751429E-02 1.528830864 0.3096410239E-02 1.531182375 0.3096058368E-02 1.533533886 0.3095693730E-02 1.535885397 0.3095314177E-02 1.538236908 0.3094917498E-02 1.540588418 0.3094501427E-02 1.542939929 0.3094063642E-02 1.545291440 0.3093601769E-02 1.547642951 0.3093113387E-02 1.549994462 0.3092596026E-02 1.552345973 0.3092047179E-02 1.554697484 0.3091464299E-02 1.557048995 0.3090844802E-02 1.559400506 0.3090186076E-02 1.561752016 0.3089485481E-02 1.564103527 0.3088740355E-02 1.566455038 0.3087948016E-02 1.568806549 0.3087105766E-02 1.571158060 0.3086210897E-02 1.573509571 0.3085260696E-02 1.575861082 0.3084252443E-02 1.578212593 0.3083183423E-02 1.580564104 0.3082050925E-02 1.582915614 0.3080852250E-02 1.585267125 0.3079584710E-02 1.587618636 0.3078245638E-02 1.589970147 0.3076832388E-02 1.592321658 0.3075342342E-02 1.594673169 0.3073772911E-02 1.597024680 0.3072121543E-02 1.599376191 0.3070385724E-02 1.601727702 0.3068562984E-02 1.604079212 0.3066650899E-02 1.606430723 0.3064647098E-02 1.608782234 0.3062549264E-02 1.611133745 0.3060355139E-02 1.613485256 0.3058062528E-02 1.615836767 0.3055669301E-02 1.618188278 0.3053173402E-02 1.620539789 0.3050572845E-02 1.622891299 0.3047865722E-02 1.625242810 0.3045050208E-02 1.627594321 0.3042124559E-02 1.629945832 0.3039087121E-02 1.632297343 0.3035936328E-02 1.634648854 0.3032670711E-02 1.637000365 0.3029288896E-02 1.639351876 0.3025789607E-02 1.641703387 0.3023112703E-02 1.644054897 0.3021988922E-02 1.646406408 0.3020565705E-02 1.648757919 0.3018832779E-02 1.651109430 0.3016782833E-02 1.653460941 0.3014411817E-02 1.655812452 0.3011719021E-02 1.658163963 0.3008706952E-02 1.660515474 0.3005381024E-02 1.662866985 0.3001749109E-02 1.665218495 0.2997821008E-02 1.667570006 0.2993607905E-02 1.669921517 0.2989121858E-02 1.672273028 0.2984375346E-02 1.674624539 0.2979380909E-02 1.676976050 0.2974150870E-02 1.679327561 0.2968697141E-02 1.681679072 0.2963031098E-02 1.684030583 0.2957163516E-02 1.686382093 0.2951104545E-02 1.688733604 0.2944863719E-02 1.691085115 0.2938449983E-02 1.693436626 0.2931871743E-02 1.695788137 0.2925136911E-02 1.698139648 0.2918252961E-02 1.700491159 0.2911226985E-02 1.702842670 0.2904065744E-02 1.705194180 0.2896775718E-02 1.707545691 0.2889363155E-02 1.709897202 0.2881834105E-02 1.712248713 0.2874194469E-02 1.714600224 0.2866450025E-02 1.716951735 0.2858606462E-02 1.719303246 0.2850669404E-02 1.721654757 0.2842644438E-02 1.724006268 0.2834537132E-02 1.726357778 0.2826353055E-02 1.728709289 0.2818097790E-02 1.731060800 0.2809776954E-02 1.733412311 0.2801396201E-02 1.735763822 0.2792961241E-02 1.738115333 0.2784477843E-02 1.740466844 0.2775951847E-02 1.742818355 0.2767389163E-02 1.745169866 0.2758795785E-02 1.747521376 0.2750177789E-02 1.749872887 0.2741541334E-02 1.752224398 0.2732892673E-02 1.754575909 0.2724238144E-02 1.756927420 0.2715584177E-02 1.759278931 0.2706937290E-02 1.761630442 0.2698304093E-02 1.763981953 0.2689691279E-02 1.766333464 0.2681105629E-02 1.768684974 0.2672554004E-02 1.771036485 0.2664043343E-02 1.773387996 0.2655580660E-02 1.775739507 0.2647173039E-02 1.778091018 0.2638827626E-02 1.780442529 0.2630551629E-02 1.782794040 0.2622352305E-02 1.785145551 0.2614236956E-02 1.787497061 0.2606212924E-02 1.789848572 0.2598287579E-02 1.792200083 0.2590468313E-02 1.794551594 0.2582762529E-02 1.796903105 0.2575177634E-02 1.799254616 0.2567721026E-02 1.801606127 0.2560400087E-02 1.803957638 0.2553222168E-02 1.806309149 0.2546194581E-02 1.808660659 0.2539324585E-02 1.811012170 0.2532637095E-02 1.813363681 0.2526190409E-02 1.815715192 0.2519909026E-02 1.818066703 0.2513800553E-02 1.820418214 0.2507872527E-02 1.822769725 0.2502132402E-02 1.825121236 0.2496587525E-02 1.827472747 0.2491245121E-02 1.829824257 0.2486112270E-02 1.832175768 0.2481195894E-02 1.834527279 0.2476502726E-02 1.836878790 0.2472039300E-02 1.839230301 0.2467811920E-02 1.841581812 0.2463826646E-02 1.843933323 0.2460089269E-02 1.846284834 0.2456605292E-02 1.848636345 0.2453379905E-02 1.850987855 0.2450417970E-02 1.853339366 0.2447724000E-02 1.855690877 0.2445302136E-02 1.858042388 0.2443156137E-02 1.860393899 0.2441289356E-02 1.862745410 0.2439704732E-02 1.865096921 0.2438404771E-02 1.867448432 0.2437391539E-02 1.869799942 0.2436666648E-02 1.872151453 0.2436231254E-02 1.874502964 0.2436086048E-02 1.876849995 0.2436220886E-02 1.879197025 0.2436625232E-02 1.881544055 0.2437298579E-02 1.883891086 0.2438240086E-02 1.886238116 0.2439448574E-02 1.888585147 0.2440922536E-02 1.890932177 0.2442660136E-02 1.893279207 0.2444659214E-02 1.895626238 0.2446917292E-02 1.897973268 0.2449431578E-02 1.900320299 0.2452198974E-02 1.902667329 0.2455216083E-02 1.905014359 0.2458479216E-02 1.907361390 0.2461984398E-02 1.909708420 0.2465727381E-02 1.912055451 0.2469703652E-02 1.914402481 0.2473908439E-02 1.916749511 0.2478336724E-02 1.919096542 0.2482983256E-02 1.921443572 0.2487842555E-02 1.923790603 0.2492908928E-02 1.926137633 0.2498176478E-02 1.928484663 0.2503639119E-02 1.930831694 0.2509290580E-02 1.933178724 0.2515124424E-02 1.935525754 0.2521134056E-02 1.937872785 0.2527312734E-02 1.940219815 0.2533653583E-02 1.942566846 0.2540149604E-02 1.944913876 0.2546793689E-02 1.947260906 0.2553578628E-02 1.949607937 0.2560497122E-02 1.951954967 0.2567541795E-02 1.954301998 0.2574705203E-02 1.956649028 0.2581979848E-02 1.958996058 0.2589358182E-02 1.961343089 0.2596832625E-02 1.963690119 0.2604395568E-02 1.966037150 0.2612039385E-02 1.968384180 0.2619756445E-02 1.970731210 0.2627539117E-02 1.973078241 0.2635379780E-02 1.975425271 0.2643270832E-02 1.977772302 0.2651204699E-02 1.980119332 0.2659173839E-02 1.982466362 0.2667170753E-02 1.984813393 0.2675187990E-02 1.987160423 0.2683218157E-02 1.989507454 0.2691253920E-02 1.991854484 0.2699288017E-02 1.994201514 0.2707313258E-02 1.996548545 0.2715322533E-02 1.998895575 0.2723308818E-02 2.001242605 0.2731265181E-02 2.003589636 0.2739184781E-02 2.005936666 0.2747060881E-02 2.008283697 0.2754886847E-02 2.010630727 0.2762656151E-02 2.012977757 0.2770362380E-02 2.015324788 0.2777999235E-02 2.017671818 0.2785560536E-02 2.020018849 0.2793040226E-02 2.022365879 0.2800432371E-02 2.024712909 0.2807731168E-02 2.027059940 0.2814930943E-02 2.029406970 0.2822026155E-02 2.031754001 0.2829011398E-02 2.034101031 0.2835881403E-02 2.036448061 0.2842631043E-02 2.038795092 0.2849255329E-02 2.041142122 0.2855749418E-02 2.043489153 0.2862108608E-02 2.045836183 0.2868328345E-02 2.048183213 0.2874404224E-02 2.050530244 0.2880331985E-02 2.052877274 0.2886107520E-02 2.055224304 0.2891726871E-02 2.057571335 0.2897186233E-02 2.059918365 0.2902481951E-02 2.062265396 0.2907610526E-02 2.064612426 0.2912568612E-02 2.066959456 0.2917353017E-02 2.069306487 0.2921960705E-02 2.071653517 0.2926388797E-02 2.074000548 0.2930634567E-02 2.076347578 0.2934695451E-02 2.078694608 0.2938569036E-02 2.081041639 0.2942253071E-02 2.083388669 0.2945745461E-02 2.085735700 0.2949044267E-02 2.088082730 0.2952147712E-02 2.090429760 0.2955054174E-02 2.092776791 0.2957762189E-02 2.095123821 0.2960270454E-02 2.097470852 0.2962577821E-02 2.099817882 0.2964683303E-02 2.102164912 0.2966586069E-02 2.104511943 0.2968285448E-02 2.106858973 0.2969780925E-02 2.109206004 0.2971072145E-02 2.111553034 0.2972158908E-02 2.113900064 0.2973041174E-02 2.116247095 0.2973719059E-02 2.118594125 0.2974192835E-02 2.120941155 0.2974462932E-02 2.123288186 0.2974529936E-02 2.125635216 0.2974394588E-02 2.127982247 0.2974057785E-02 2.130329277 0.2973520578E-02 2.132676307 0.2972784175E-02 2.135023338 0.2971849935E-02 2.137370368 0.2970719372E-02 2.139717399 0.2969394152E-02 2.142064429 0.2967876093E-02 2.144411459 0.2966167166E-02 2.146758490 0.2964269491E-02 2.149105520 0.2962185339E-02 2.151452551 0.2959917128E-02 2.153799581 0.2957467426E-02 2.156146611 0.2954838949E-02 2.158493642 0.2952034557E-02 2.160840672 0.2949057255E-02 2.163187703 0.2945910194E-02 2.165534733 0.2942596667E-02 2.167881763 0.2939120106E-02 2.170228794 0.2935484087E-02 2.172575824 0.2931692321E-02 2.174922855 0.2927748659E-02 2.177269885 0.2923657086E-02 2.179616915 0.2919421719E-02 2.181963946 0.2915046810E-02 2.184310976 0.2910536740E-02 2.186658006 0.2905896016E-02 2.189005037 0.2901129274E-02 2.191352067 0.2896241270E-02 2.193699098 0.2891236885E-02 2.196046128 0.2886121115E-02 2.198393158 0.2880899073E-02 2.200740189 0.2875575987E-02 2.203087219 0.2870157194E-02 2.205434250 0.2864648137E-02 2.207781280 0.2859054364E-02 2.210128310 0.2853381525E-02 2.212475341 0.2847635363E-02 2.214822371 0.2841821718E-02 2.217169402 0.2835946517E-02 2.219516432 0.2830015774E-02 2.221863462 0.2824035582E-02 2.224210493 0.2818012111E-02 2.226557523 0.2811951604E-02 2.228904554 0.2805860370E-02 2.231251584 0.2799744778E-02 2.233598614 0.2793611256E-02 2.235945645 0.2787466283E-02 2.238292675 0.2781316381E-02 2.240639706 0.2775168113E-02 2.242986736 0.2769028076E-02 2.245333766 0.2762902892E-02 2.247680797 0.2756799205E-02 2.250027827 0.2750723673E-02 2.252374857 0.2744682958E-02 2.254721888 0.2738683724E-02 2.257068918 0.2732732627E-02 2.259415949 0.2726836307E-02 2.261762979 0.2721001380E-02 2.264110009 0.2715234433E-02 2.266457040 0.2709542012E-02 2.268804070 0.2703930618E-02 2.271151101 0.2698406693E-02 2.273498131 0.2692976617E-02 2.275845161 0.2687646697E-02 2.278192192 0.2682423158E-02 2.280539222 0.2677312134E-02 2.282886253 0.2672319661E-02 2.285233283 0.2667451664E-02 2.287580313 0.2662713955E-02 2.289927344 0.2658112215E-02 2.292274374 0.2653651995E-02 2.294621405 0.2649338698E-02 2.296968435 0.2645177575E-02 2.299315465 0.2641173716E-02 2.301662496 0.2637332041E-02 2.304009526 0.2633657291E-02 2.306356557 0.2630154020E-02 2.308703587 0.2626826587E-02 2.311050617 0.2623679149E-02 2.313397648 0.2620715650E-02 2.315744678 0.2617939819E-02 2.318091708 0.2615355160E-02 2.320438739 0.2612964945E-02 2.322785769 0.2610772208E-02 2.325132800 0.2608779740E-02 2.327479830 0.2606990084E-02 2.329826860 0.2605405528E-02 2.332173891 0.2604028103E-02 2.334520921 0.2602859577E-02 2.336867952 0.2601901450E-02 2.339214982 0.2601154957E-02 2.341562012 0.2600621060E-02 2.343909043 0.2600300445E-02 2.346256073 0.2600193528E-02 0.000000000 0.3152590182E-02 0.2347351854E-02 0.3152586778E-02 0.4694703708E-02 0.3152576560E-02 0.7042055561E-02 0.3152559510E-02 0.9389407415E-02 0.3152535597E-02 0.1173675927E-01 0.3152504779E-02 0.1408411112E-01 0.3152467000E-02 0.1643146298E-01 0.3152422195E-02 0.1877881483E-01 0.3152370283E-02 0.2112616668E-01 0.3152311175E-02 0.2347351854E-01 0.3152244766E-02 0.2582087039E-01 0.3152170943E-02 0.2816822225E-01 0.3152089580E-02 0.3051557410E-01 0.3152000537E-02 0.3286292595E-01 0.3151903665E-02 0.3521027781E-01 0.3151798804E-02 0.3755762966E-01 0.3151685780E-02 0.3990498151E-01 0.3151564410E-02 0.4225233337E-01 0.3151434498E-02 0.4459968522E-01 0.3151295840E-02 0.4694703708E-01 0.3151148219E-02 0.4929438893E-01 0.3150991407E-02 0.5164174078E-01 0.3150825166E-02 0.5398909264E-01 0.3150649249E-02 0.5633644449E-01 0.3150463397E-02 0.5868379634E-01 0.3150267341E-02 0.6103114820E-01 0.3150060805E-02 0.6337850005E-01 0.3149843500E-02 0.6572585191E-01 0.3149615129E-02 0.6807320376E-01 0.3149375386E-02 0.7042055561E-01 0.3149123957E-02 0.7276790747E-01 0.3148860515E-02 0.7511525932E-01 0.3148584731E-02 0.7746261117E-01 0.3148296261E-02 0.7980996303E-01 0.3147994758E-02 0.8215731488E-01 0.3147679865E-02 0.8450466674E-01 0.3147351216E-02 0.8685201859E-01 0.3147008441E-02 0.8919937044E-01 0.3146651160E-02 0.9154672230E-01 0.3146278987E-02 0.9389407415E-01 0.3145891530E-02 0.9624142601E-01 0.3145488389E-02 0.9858877786E-01 0.3145069159E-02 0.1009361297 0.3144633430E-02 0.1032834816 0.3144180784E-02 0.1056308334 0.3143710800E-02 0.1079781853 0.3143223049E-02 0.1103255371 0.3142717101E-02 0.1126728890 0.3142192518E-02 0.1150202408 0.3141648859E-02 0.1173675927 0.3141085679E-02 0.1197149445 0.3140502530E-02 0.1220622964 0.3139898959E-02 0.1244096483 0.3139274510E-02 0.1267570001 0.3138628725E-02 0.1291043520 0.3137961142E-02 0.1314517038 0.3137271297E-02 0.1337990557 0.3136558725E-02 0.1361464075 0.3135822957E-02 0.1384937594 0.3135063523E-02 0.1408411112 0.3134279953E-02 0.1431884631 0.3133471774E-02 0.1455358149 0.3132638513E-02 0.1478831668 0.3131779697E-02 0.1502305186 0.3130894851E-02 0.1525778705 0.3129983500E-02 0.1549252223 0.3129045171E-02 0.1572725742 0.3128079390E-02 0.1596199261 0.3127085684E-02 0.1619672779 0.3126063579E-02 0.1643146298 0.3125012606E-02 0.1666619816 0.3123932295E-02 0.1690093335 0.3122822176E-02 0.1713566853 0.3121681783E-02 0.1737040372 0.3120510653E-02 0.1760513890 0.3119308322E-02 0.1783987409 0.3118074332E-02 0.1807460927 0.3116808225E-02 0.1830934446 0.3115509547E-02 0.1854407964 0.3114177848E-02 0.1877881483 0.3112812679E-02 0.1901355002 0.3111413597E-02 0.1924828520 0.3109980163E-02 0.1948302039 0.3108511939E-02 0.1971775557 0.3107008494E-02 0.1995249076 0.3105469400E-02 0.2018722594 0.3103894234E-02 0.2042196113 0.3102282578E-02 0.2065669631 0.3100634019E-02 0.2089143150 0.3098948149E-02 0.2112616668 0.3097224564E-02 0.2136090187 0.3095462868E-02 0.2159563705 0.3093662668E-02 0.2183037224 0.3091823578E-02 0.2206510743 0.3089945220E-02 0.2229984261 0.3088027218E-02 0.2253457780 0.3086069205E-02 0.2276931298 0.3084070821E-02 0.2300404817 0.3082031711E-02 0.2323878335 0.3079951526E-02 0.2347351854 0.3077829927E-02 0.2370825372 0.3075666580E-02 0.2394298891 0.3082566825E-02 0.2417772409 0.3089964168E-02 0.2441245928 0.3097297978E-02 0.2464719446 0.3104566910E-02 0.2488192965 0.3111769662E-02 0.2511666484 0.3118904973E-02 0.2535140002 0.3125971623E-02 0.2558613521 0.3132968431E-02 0.2582087039 0.3139894259E-02 0.2605560558 0.3146748005E-02 0.2629034076 0.3153528611E-02 0.2652507595 0.3160235056E-02 0.2675981113 0.3166866357E-02 0.2699454632 0.3173421571E-02 0.2722928150 0.3179899793E-02 0.2746401669 0.3186300155E-02 0.2769875187 0.3192621828E-02 0.2793348706 0.3198864019E-02 0.2816822225 0.3205025973E-02 0.2840295743 0.3211106970E-02 0.2863769262 0.3217106328E-02 0.2887242780 0.3223023399E-02 0.2910716299 0.3228857572E-02 0.2934189817 0.3234608270E-02 0.2957663336 0.3240274951E-02 0.2981136854 0.3245857109E-02 0.3004610373 0.3251354270E-02 0.3028083891 0.3256765995E-02 0.3051557410 0.3262091878E-02 0.3075030928 0.3267331544E-02 0.3098504447 0.3272484655E-02 0.3121977966 0.3277550901E-02 0.3145451484 0.3282530007E-02 0.3168925003 0.3287421727E-02 0.3192398521 0.3292225847E-02 0.3215872040 0.3296942185E-02 0.3239345558 0.3301570587E-02 0.3262819077 0.3306110932E-02 0.3286292595 0.3310563125E-02 0.3309766114 0.3314927103E-02 0.3333239632 0.3319202831E-02 0.3356713151 0.3323390300E-02 0.3380186669 0.3327489534E-02 0.3403660188 0.3331500579E-02 0.3427133707 0.3335423511E-02 0.3450607225 0.3339258433E-02 0.3474080744 0.3343005472E-02 0.3497554262 0.3346664784E-02 0.3521027781 0.3350236547E-02 0.3544501299 0.3353720966E-02 0.3567974818 0.3357118269E-02 0.3591448336 0.3360428710E-02 0.3614921855 0.3363652564E-02 0.3638395373 0.3366790131E-02 0.3661868892 0.3369841732E-02 0.3685342410 0.3372807710E-02 0.3708815929 0.3375688432E-02 0.3732289448 0.3378484284E-02 0.3755762966 0.3381195671E-02 0.3779236485 0.3383823022E-02 0.3802710003 0.3386366781E-02 0.3826183522 0.3388827416E-02 0.3849657040 0.3391205408E-02 0.3873130559 0.3393501259E-02 0.3896604077 0.3395715488E-02 0.3920077596 0.3397848632E-02 0.3943551114 0.3399901240E-02 0.3967024633 0.3401873881E-02 0.3990498151 0.3403767137E-02 0.4013971670 0.3405581605E-02 0.4037445189 0.3407317896E-02 0.4060918707 0.3408976633E-02 0.4084392226 0.3410558452E-02 0.4107865744 0.3412064004E-02 0.4131339263 0.3413493947E-02 0.4154812781 0.3414848953E-02 0.4178286300 0.3416129702E-02 0.4201759818 0.3417336886E-02 0.4225233337 0.3418471204E-02 0.4248706855 0.3419533363E-02 0.4272180374 0.3420524080E-02 0.4295653892 0.3421444077E-02 0.4319127411 0.3422294083E-02 0.4342600929 0.3423074832E-02 0.4366074448 0.3423787064E-02 0.4389547967 0.3424431524E-02 0.4413021485 0.3425008958E-02 0.4436495004 0.3425520119E-02 0.4459968522 0.3425965759E-02 0.4483442041 0.3426346634E-02 0.4506915559 0.3426663500E-02 0.4530389078 0.3426917115E-02 0.4553862596 0.3427108235E-02 0.4577336115 0.3427237617E-02 0.4600809633 0.3427306015E-02 0.4624283152 0.3427314183E-02 0.4647756670 0.3427262872E-02 0.4671230189 0.3427152829E-02 0.4694703708 0.3426984799E-02 0.4718177226 0.3426759521E-02 0.4741650745 0.3426477732E-02 0.4765124263 0.3426140161E-02 0.4788597782 0.3425747534E-02 0.4812071300 0.3425300570E-02 0.4835544819 0.3424799982E-02 0.4859018337 0.3424246476E-02 0.4882491856 0.3423640753E-02 0.4905965374 0.3422983504E-02 0.4929438893 0.3422275415E-02 0.4952912411 0.3421517165E-02 0.4976385930 0.3420709423E-02 0.4999859449 0.3419852855E-02 0.5023332967 0.3418948117E-02 0.5046806486 0.3417995858E-02 0.5070280004 0.3416996724E-02 0.5093753523 0.3415951351E-02 0.5117227041 0.3414860374E-02 0.5140700560 0.3413724421E-02 0.5164174078 0.3412544118E-02 0.5187647597 0.3411320090E-02 0.5211121115 0.3410052961E-02 0.5234594634 0.3408743356E-02 0.5258068152 0.3407391906E-02 0.5281541671 0.3405999247E-02 0.5305015190 0.3404566025E-02 0.5328488708 0.3403092899E-02 0.5351962227 0.3401580544E-02 0.5375435745 0.3400029659E-02 0.5398909264 0.3398440969E-02 0.5422382782 0.3396815233E-02 0.5445856301 0.3395153251E-02 0.5469329819 0.3393455875E-02 0.5492803338 0.3391724014E-02 0.5516276856 0.3389958652E-02 0.5539750375 0.3388160858E-02 0.5563223893 0.3386331802E-02 0.5586697412 0.3384472777E-02 0.5610170931 0.3382585219E-02 0.5633644449 0.3380670734E-02 0.5657117968 0.3378731128E-02 0.5680591486 0.3376768448E-02 0.5704065005 0.3374785019E-02 0.5727538523 0.3372783501E-02 0.5751012042 0.3370766949E-02 0.5774485560 0.3368738882E-02 0.5797959079 0.3366703375E-02 0.5821432597 0.3364665155E-02 0.5844906116 0.3362629723E-02 0.5868379634 0.3360603492E-02 0.5891853153 0.3358593948E-02 0.5915326672 0.3356609828E-02 0.5938800190 0.3354661326E-02 0.5962273709 0.3352760298E-02 0.5985747227 0.3350920475E-02 0.6009220746 0.3349157642E-02 0.6032694264 0.3347489755E-02 0.6056167783 0.3345936928E-02 0.6079641301 0.3344521222E-02 0.6103114820 0.3343266144E-02 0.6126588338 0.3342195777E-02 0.6150061857 0.3341333497E-02 0.6173535375 0.3340700325E-02 0.6197008894 0.3340313101E-02 0.6220482413 0.3340182760E-02 0.6243952716 0.3340172891E-02 0.6267423020 0.3340176188E-02 0.6290893324 0.3340192660E-02 0.6314363628 0.3340222303E-02 0.6337833932 0.3340265105E-02 0.6361304236 0.3340321041E-02 0.6384774540 0.3340390079E-02 0.6408244844 0.3340472174E-02 0.6431715148 0.3340567272E-02 0.6455185452 0.3340675310E-02 0.6478655756 0.3340796212E-02 0.6502126060 0.3340929895E-02 0.6525596364 0.3341076264E-02 0.6549066668 0.3341235213E-02 0.6572536971 0.3341406630E-02 0.6596007275 0.3341590390E-02 0.6619477579 0.3341786359E-02 0.6642947883 0.3341994394E-02 0.6666418187 0.3342214342E-02 0.6689888491 0.3342446041E-02 0.6713358795 0.3342689320E-02 0.6736829099 0.3342943998E-02 0.6760299403 0.3343209887E-02 0.6783769707 0.3343486788E-02 0.6807240011 0.3343774496E-02 0.6830710315 0.3344072796E-02 0.6854180619 0.3344381466E-02 0.6877650922 0.3344700273E-02 0.6901121226 0.3345028981E-02 0.6924591530 0.3345367344E-02 0.6948061834 0.3345715107E-02 0.6971532138 0.3346072013E-02 0.6995002442 0.3346437792E-02 0.7018472746 0.3346812173E-02 0.7041943050 0.3347194875E-02 0.7065413354 0.3347585612E-02 0.7088883658 0.3347984094E-02 0.7112353962 0.3348390023E-02 0.7135824266 0.3348803097E-02 0.7159294570 0.3349223010E-02 0.7182764874 0.3349649449E-02 0.7206235177 0.3350082099E-02 0.7229705481 0.3350520639E-02 0.7253175785 0.3350964747E-02 0.7276646089 0.3351414094E-02 0.7300116393 0.3351868351E-02 0.7323586697 0.3352327185E-02 0.7347057001 0.3352790260E-02 0.7370527305 0.3353257238E-02 0.7393997609 0.3353727781E-02 0.7417467913 0.3354201547E-02 0.7440938217 0.3354678194E-02 0.7464408521 0.3355157378E-02 0.7487878825 0.3355638757E-02 0.7511349128 0.3356121986E-02 0.7534819432 0.3356606721E-02 0.7558289736 0.3357092620E-02 0.7581760040 0.3357579339E-02 0.7605230344 0.3358066537E-02 0.7628700648 0.3358553874E-02 0.7652170952 0.3359041011E-02 0.7675641256 0.3359527611E-02 0.7699111560 0.3360013342E-02 0.7722581864 0.3360497870E-02 0.7746052168 0.3360980867E-02 0.7769522472 0.3361462008E-02 0.7792992776 0.3361940971E-02 0.7816463080 0.3362417438E-02 0.7839933383 0.3362891095E-02 0.7863403687 0.3363361632E-02 0.7886873991 0.3363828744E-02 0.7910344295 0.3364292132E-02 0.7933814599 0.3364751500E-02 0.7957284903 0.3365206559E-02 0.7980755207 0.3365657025E-02 0.8004225511 0.3366102622E-02 0.8027695815 0.3366543076E-02 0.8051166119 0.3366978124E-02 0.8074636423 0.3367407507E-02 0.8098106727 0.3367830974E-02 0.8121577031 0.3368248280E-02 0.8145047335 0.3368659187E-02 0.8168517638 0.3369063468E-02 0.8191987942 0.3369460898E-02 0.8215458246 0.3369851265E-02 0.8238928550 0.3370234363E-02 0.8262398854 0.3370609993E-02 0.8285869158 0.3370977967E-02 0.8309339462 0.3371338102E-02 0.8332809766 0.3371690227E-02 0.8356280070 0.3372034178E-02 0.8379750374 0.3372369801E-02 0.8403220678 0.3372696948E-02 0.8426690982 0.3373015484E-02 0.8450161286 0.3373325281E-02 0.8473631589 0.3373626220E-02 0.8497101893 0.3373918193E-02 0.8520572197 0.3374201098E-02 0.8544042501 0.3374474847E-02 0.8567512805 0.3374739357E-02 0.8590983109 0.3374994558E-02 0.8614453413 0.3375240387E-02 0.8637923717 0.3375476791E-02 0.8661394021 0.3375703728E-02 0.8684864325 0.3375921163E-02 0.8708334629 0.3376129072E-02 0.8731804933 0.3376327441E-02 0.8755275237 0.3376516263E-02 0.8778745541 0.3376695543E-02 0.8802215844 0.3376865294E-02 0.8825686148 0.3377025537E-02 0.8849156452 0.3377176305E-02 0.8872626756 0.3377317637E-02 0.8896097060 0.3377449582E-02 0.8919567364 0.3377572200E-02 0.8943037668 0.3377685555E-02 0.8966507972 0.3377789725E-02 0.8989978276 0.3377884791E-02 0.9013448580 0.3377970848E-02 0.9036918884 0.3378047993E-02 0.9060389188 0.3378116337E-02 0.9083859492 0.3378175994E-02 0.9107329796 0.3378227088E-02 0.9130800099 0.3378269751E-02 0.9154270403 0.3378304121E-02 0.9177740707 0.3378330343E-02 0.9201211011 0.3378348569E-02 0.9224681315 0.3378358960E-02 0.9248151619 0.3378361679E-02 0.9271621923 0.3378356900E-02 0.9295092227 0.3378344799E-02 0.9318562531 0.3378325561E-02 0.9342032835 0.3378299374E-02 0.9365503139 0.3378266433E-02 0.9388973443 0.3378226938E-02 0.9412443747 0.3378181093E-02 0.9435914050 0.3378129108E-02 0.9459384354 0.3378071194E-02 0.9482854658 0.3378007570E-02 0.9506324962 0.3377938457E-02 0.9529795266 0.3377864080E-02 0.9553265570 0.3377784666E-02 0.9576735874 0.3377700447E-02 0.9600206178 0.3377611656E-02 0.9623676482 0.3377518529E-02 0.9647146786 0.3377421305E-02 0.9670617090 0.3377320223E-02 0.9694087394 0.3377215525E-02 0.9717557698 0.3377107455E-02 0.9741028002 0.3376996257E-02 0.9764498305 0.3376882175E-02 0.9787968609 0.3376765455E-02 0.9811438913 0.3376646342E-02 0.9834909217 0.3376525083E-02 0.9858379521 0.3376401921E-02 0.9881849825 0.3376277102E-02 0.9905320129 0.3376150870E-02 0.9928790433 0.3376023466E-02 0.9952260737 0.3375895133E-02 0.9975731041 0.3375766109E-02 0.9999201345 0.3375636632E-02 1.002267165 0.3375506936E-02 1.004614195 0.3375377256E-02 1.006961226 0.3375247821E-02 1.009308256 0.3375118857E-02 1.011655286 0.3374990590E-02 1.014002317 0.3374863239E-02 1.016349347 0.3374737020E-02 1.018696378 0.3374612148E-02 1.021043408 0.3374488830E-02 1.023390438 0.3374367271E-02 1.025737469 0.3374247670E-02 1.028084499 0.3374130223E-02 1.030431530 0.3374015120E-02 1.032778560 0.3373902545E-02 1.035125590 0.3373792678E-02 1.037472621 0.3373685693E-02 1.039819651 0.3373581758E-02 1.042166682 0.3373481036E-02 1.044513712 0.3373383682E-02 1.046860742 0.3373289847E-02 1.049207773 0.3373199675E-02 1.051554803 0.3373113303E-02 1.053901834 0.3373030861E-02 1.056248864 0.3372952474E-02 1.058595894 0.3372878258E-02 1.060942925 0.3372808324E-02 1.063289955 0.3372742774E-02 1.065636985 0.3372681705E-02 1.067984016 0.3372625206E-02 1.070331046 0.3372573356E-02 1.072678077 0.3372526231E-02 1.075025107 0.3372483897E-02 1.077372137 0.3372446413E-02 1.079719168 0.3372413829E-02 1.082066198 0.3372386191E-02 1.084413229 0.3372363534E-02 1.086760259 0.3372345886E-02 1.089107289 0.3372333268E-02 1.091454320 0.3372325695E-02 1.093801350 0.3372323170E-02 1.096152861 0.3372532649E-02 1.098504372 0.3373147345E-02 1.100855883 0.3374130037E-02 1.103207394 0.3375429675E-02 1.105558905 0.3376991606E-02 1.107910415 0.3378764797E-02 1.110261926 0.3380705362E-02 1.112613437 0.3382777358E-02 1.114964948 0.3384952151E-02 1.117316459 0.3387207227E-02 1.119667970 0.3389524958E-02 1.122019481 0.3391891514E-02 1.124370992 0.3394295978E-02 1.126722503 0.3396729656E-02 1.129074013 0.3399185548E-02 1.131425524 0.3401657950E-02 1.133777035 0.3404142147E-02 1.136128546 0.3406634183E-02 1.138480057 0.3409130692E-02 1.140831568 0.3411628755E-02 1.143183079 0.3414125807E-02 1.145534590 0.3416619549E-02 1.147886101 0.3419107894E-02 1.150237611 0.3421588911E-02 1.152589122 0.3424060793E-02 1.154940633 0.3426521826E-02 1.157292144 0.3428970362E-02 1.159643655 0.3431404804E-02 1.161995166 0.3433823590E-02 1.164346677 0.3436225182E-02 1.166698188 0.3438608057E-02 1.169049699 0.3440970697E-02 1.171401209 0.3443311590E-02 1.173752720 0.3445629219E-02 1.176104231 0.3447922064E-02 1.178455742 0.3450188599E-02 1.180807253 0.3452427288E-02 1.183158764 0.3454636591E-02 1.185510275 0.3456814956E-02 1.187861786 0.3458960825E-02 1.190213296 0.3461072634E-02 1.192564807 0.3463148814E-02 1.194916318 0.3465187791E-02 1.197267829 0.3467187989E-02 1.199619340 0.3469147833E-02 1.201970851 0.3471065750E-02 1.204322362 0.3472940169E-02 1.206673873 0.3474769529E-02 1.209025384 0.3476552274E-02 1.211376894 0.3478286862E-02 1.213728405 0.3479971766E-02 1.216079916 0.3481605471E-02 1.218431427 0.3483186485E-02 1.220782938 0.3484713336E-02 1.223134449 0.3486184577E-02 1.225485960 0.3487598785E-02 1.227837471 0.3488954570E-02 1.230188982 0.3490250569E-02 1.232540492 0.3491485458E-02 1.234892003 0.3492657944E-02 1.237243514 0.3493766778E-02 1.239595025 0.3494810747E-02 1.241946536 0.3495788685E-02 1.244298047 0.3496699468E-02 1.246649558 0.3497542021E-02 1.249001069 0.3498315317E-02 1.251352580 0.3499018383E-02 1.253704090 0.3499650294E-02 1.256055601 0.3500210183E-02 1.258407112 0.3500697237E-02 1.260758623 0.3501110703E-02 1.263110134 0.3501449884E-02 1.265461645 0.3501714145E-02 1.267813156 0.3501902913E-02 1.270164667 0.3502015676E-02 1.272516177 0.3502051987E-02 1.274867688 0.3502011462E-02 1.277219199 0.3501893784E-02 1.279570710 0.3501698700E-02 1.281922221 0.3501426027E-02 1.284273732 0.3501075644E-02 1.286625243 0.3500647504E-02 1.288976754 0.3500141622E-02 1.291328265 0.3499558084E-02 1.293679775 0.3498897044E-02 1.296031286 0.3498158724E-02 1.298382797 0.3497343414E-02 1.300734308 0.3496451472E-02 1.303085819 0.3495483323E-02 1.305437330 0.3494439460E-02 1.307788841 0.3493320444E-02 1.310140352 0.3492126899E-02 1.312491863 0.3490859518E-02 1.314843373 0.3489519057E-02 1.317194884 0.3488106336E-02 1.319546395 0.3486622239E-02 1.321897906 0.3485067712E-02 1.324249417 0.3483443761E-02 1.326600928 0.3481751454E-02 1.328952439 0.3479991917E-02 1.331303950 0.3478166330E-02 1.333655461 0.3476275935E-02 1.336006971 0.3474322024E-02 1.338358482 0.3472305943E-02 1.340709993 0.3470229091E-02 1.343061504 0.3468092914E-02 1.345413015 0.3465898908E-02 1.347764526 0.3463648614E-02 1.350116037 0.3461343619E-02 1.352467548 0.3458985550E-02 1.354819059 0.3456576075E-02 1.357170569 0.3454116902E-02 1.359522080 0.3451609772E-02 1.361873591 0.3449056462E-02 1.364225102 0.3446458781E-02 1.366576613 0.3443818566E-02 1.368928124 0.3441137681E-02 1.371279635 0.3438418015E-02 1.373631146 0.3435661481E-02 1.375982656 0.3432870009E-02 1.378334167 0.3430045546E-02 1.380685678 0.3427190055E-02 1.383037189 0.3424305511E-02 1.385388700 0.3421393897E-02 1.387740211 0.3418457203E-02 1.390091722 0.3415497423E-02 1.392443233 0.3412516550E-02 1.394794744 0.3409516578E-02 1.397146254 0.3406499493E-02 1.399497765 0.3403467276E-02 1.401849276 0.3400421897E-02 1.404200787 0.3397365309E-02 1.406552298 0.3394299453E-02 1.408903809 0.3391226247E-02 1.411255320 0.3388147590E-02 1.413606831 0.3385065351E-02 1.415958342 0.3381981373E-02 1.418309852 0.3378897468E-02 1.420661363 0.3375815412E-02 1.423012874 0.3372736944E-02 1.425364385 0.3369663761E-02 1.427715896 0.3366597520E-02 1.430067407 0.3363539827E-02 1.432418918 0.3360492241E-02 1.434770429 0.3357456269E-02 1.437121940 0.3354433362E-02 1.439473450 0.3351424913E-02 1.441824961 0.3348432255E-02 1.444176472 0.3345456657E-02 1.446527983 0.3342499321E-02 1.448879494 0.3339561384E-02 1.451231005 0.3336643909E-02 1.453582516 0.3333747887E-02 1.455934027 0.3330874233E-02 1.458285537 0.3328023786E-02 1.460637048 0.3325197303E-02 1.462988559 0.3322395462E-02 1.465340070 0.3319618857E-02 1.467691581 0.3316867996E-02 1.470043092 0.3314143303E-02 1.472394603 0.3311445113E-02 1.474746114 0.3308773673E-02 1.477097625 0.3306129141E-02 1.479449135 0.3303511583E-02 1.481800646 0.3300920976E-02 1.484152157 0.3298357206E-02 1.486503668 0.3295820064E-02 1.488855179 0.3293309253E-02 1.491206690 0.3290824384E-02 1.493558201 0.3288364976E-02 1.495909712 0.3285930459E-02 1.498261223 0.3283520171E-02 1.500612733 0.3281133366E-02 1.502964244 0.3278769207E-02 1.505315755 0.3276426773E-02 1.507667266 0.3274105058E-02 1.510018777 0.3271802976E-02 1.512370288 0.3269519361E-02 1.514721799 0.3267252967E-02 1.517073310 0.3265002478E-02 1.519424821 0.3262766503E-02 1.521776331 0.3260543583E-02 1.524127842 0.3258332196E-02 1.526479353 0.3256130758E-02 1.528830864 0.3253937628E-02 1.531182375 0.3251751111E-02 1.533533886 0.3249569466E-02 1.535885397 0.3247390907E-02 1.538236908 0.3245213610E-02 1.540588418 0.3243035720E-02 1.542939929 0.3240855354E-02 1.545291440 0.3238670611E-02 1.547642951 0.3236479573E-02 1.549994462 0.3234280320E-02 1.552345973 0.3232070930E-02 1.554697484 0.3229849495E-02 1.557048995 0.3227614121E-02 1.559400506 0.3225362946E-02 1.561752016 0.3223094146E-02 1.564103527 0.3220805946E-02 1.566455038 0.3218496636E-02 1.568806549 0.3216164579E-02 1.571158060 0.3213808229E-02 1.573509571 0.3211426145E-02 1.575861082 0.3209017012E-02 1.578212593 0.3206579656E-02 1.580564104 0.3204113068E-02 1.582915614 0.3201616427E-02 1.585267125 0.3199089126E-02 1.587618636 0.3196530802E-02 1.589970147 0.3193941370E-02 1.592321658 0.3191321057E-02 1.594673169 0.3188670445E-02 1.597024680 0.3185990517E-02 1.599376191 0.3183282706E-02 1.601727702 0.3180548951E-02 1.604079212 0.3177791765E-02 1.606430723 0.3175014295E-02 1.608782234 0.3172220403E-02 1.611133745 0.3169414739E-02 1.613485256 0.3166602827E-02 1.615836767 0.3163791145E-02 1.618188278 0.3160987205E-02 1.620539789 0.3158199623E-02 1.622891299 0.3155438173E-02 1.625242810 0.3152713808E-02 1.627594321 0.3150038648E-02 1.629945832 0.3147425901E-02 1.632297343 0.3144889718E-02 1.634648854 0.3142444959E-02 1.637000365 0.3140106847E-02 1.639351876 0.3137890535E-02 1.641703387 0.3135810569E-02 1.644054897 0.3133880295E-02 1.646406408 0.3132111251E-02 1.648757919 0.3130512596E-02 1.651109430 0.3129090664E-02 1.653460941 0.3127848669E-02 1.655812452 0.3126786626E-02 1.658163963 0.3125901479E-02 1.660515474 0.3125187415E-02 1.662866985 0.3124636313E-02 1.665218495 0.3124238278E-02 1.667570006 0.3123982186E-02 1.669921517 0.3123856199E-02 1.672273028 0.3123848218E-02 1.674624539 0.3123946243E-02 1.676976050 0.3124138661E-02 1.679327561 0.3124414431E-02 1.681679072 0.3124763217E-02 1.684030583 0.3125175456E-02 1.686382093 0.3125642377E-02 1.688733604 0.3126156001E-02 1.691085115 0.3126709106E-02 1.693436626 0.3127295187E-02 1.695788137 0.3127908408E-02 1.698139648 0.3128543544E-02 1.700491159 0.3129195932E-02 1.702842670 0.3129861413E-02 1.705194180 0.3130536289E-02 1.707545691 0.3131217272E-02 1.709897202 0.3131901445E-02 1.712248713 0.3132586221E-02 1.714600224 0.3133269312E-02 1.716951735 0.3133948695E-02 1.719303246 0.3134622587E-02 1.721654757 0.3135289419E-02 1.724006268 0.3135947812E-02 1.726357778 0.3136596563E-02 1.728709289 0.3137234622E-02 1.731060800 0.3137861080E-02 1.733412311 0.3138475152E-02 1.735763822 0.3139076171E-02 1.738115333 0.3139663569E-02 1.740466844 0.3140236872E-02 1.742818355 0.3140795692E-02 1.745169866 0.3141339717E-02 1.747521376 0.3141868703E-02 1.749872887 0.3142382470E-02 1.752224398 0.3142880896E-02 1.754575909 0.3143363909E-02 1.756927420 0.3143831488E-02 1.759278931 0.3144283650E-02 1.761630442 0.3144720456E-02 1.763981953 0.3145141999E-02 1.766333464 0.3145548405E-02 1.768684974 0.3145939829E-02 1.771036485 0.3146316454E-02 1.773387996 0.3146678484E-02 1.775739507 0.3147026144E-02 1.778091018 0.3147359681E-02 1.780442529 0.3147679355E-02 1.782794040 0.3147985443E-02 1.785145551 0.3148278235E-02 1.787497061 0.3148558029E-02 1.789848572 0.3148825137E-02 1.792200083 0.3149079876E-02 1.794551594 0.3149322570E-02 1.796903105 0.3149553547E-02 1.799254616 0.3149773141E-02 1.801606127 0.3149981687E-02 1.803957638 0.3150179521E-02 1.806309149 0.3150366979E-02 1.808660659 0.3150544396E-02 1.811012170 0.3150712106E-02 1.813363681 0.3150870438E-02 1.815715192 0.3151019719E-02 1.818066703 0.3151160269E-02 1.820418214 0.3151292403E-02 1.822769725 0.3151416431E-02 1.825121236 0.3151532652E-02 1.827472747 0.3151641361E-02 1.829824257 0.3151742839E-02 1.832175768 0.3151837363E-02 1.834527279 0.3151925195E-02 1.836878790 0.3152006590E-02 1.839230301 0.3152081788E-02 1.841581812 0.3152151019E-02 1.843933323 0.3152214501E-02 1.846284834 0.3152272438E-02 1.848636345 0.3152325021E-02 1.850987855 0.3152372427E-02 1.853339366 0.3152414818E-02 1.855690877 0.3152452344E-02 1.858042388 0.3152485138E-02 1.860393899 0.3152513317E-02 1.862745410 0.3152536987E-02 1.865096921 0.3152556233E-02 1.867448432 0.3152571127E-02 1.869799942 0.3152581726E-02 1.872151453 0.3152588070E-02 1.874502964 0.3152590182E-02 1.876849995 0.3152584354E-02 1.879197025 0.3152566862E-02 1.881544055 0.3152537688E-02 1.883891086 0.3152496798E-02 1.886238116 0.3152444150E-02 1.888585147 0.3152379684E-02 1.890932177 0.3152303331E-02 1.893279207 0.3152215008E-02 1.895626238 0.3152114620E-02 1.897973268 0.3152002058E-02 1.900320299 0.3151877205E-02 1.902667329 0.3151739927E-02 1.905014359 0.3151590082E-02 1.907361390 0.3151427515E-02 1.909708420 0.3151252058E-02 1.912055451 0.3151063536E-02 1.914402481 0.3150861758E-02 1.916749511 0.3150646527E-02 1.919096542 0.3150417632E-02 1.921443572 0.3150174854E-02 1.923790603 0.3149917964E-02 1.926137633 0.3149646722E-02 1.928484663 0.3149360881E-02 1.930831694 0.3149060185E-02 1.933178724 0.3148744367E-02 1.935525754 0.3148413155E-02 1.937872785 0.3148066268E-02 1.940219815 0.3147703417E-02 1.942566846 0.3147324309E-02 1.944913876 0.3146928641E-02 1.947260906 0.3146516106E-02 1.949607937 0.3146086392E-02 1.951954967 0.3145639180E-02 1.954301998 0.3145174147E-02 1.956649028 0.3144690967E-02 1.958996058 0.3144189309E-02 1.961343089 0.3143668840E-02 1.963690119 0.3143129223E-02 1.966037150 0.3142570120E-02 1.968384180 0.3141991189E-02 1.970731210 0.3141392090E-02 1.973078241 0.3140772481E-02 1.975425271 0.3140132019E-02 1.977772302 0.3139470362E-02 1.980119332 0.3138787169E-02 1.982466362 0.3138082101E-02 1.984813393 0.3137354819E-02 1.987160423 0.3136604990E-02 1.989507454 0.3135832281E-02 1.991854484 0.3135036364E-02 1.994201514 0.3134216914E-02 1.996548545 0.3133373612E-02 1.998895575 0.3132506145E-02 2.001242605 0.3131614203E-02 2.003589636 0.3130697484E-02 2.005936666 0.3129755694E-02 2.008283697 0.3128788544E-02 2.010630727 0.3127795755E-02 2.012977757 0.3126777056E-02 2.015324788 0.3125732184E-02 2.017671818 0.3124660888E-02 2.020018849 0.3123562923E-02 2.022365879 0.3122438058E-02 2.024712909 0.3121286073E-02 2.027059940 0.3120106757E-02 2.029406970 0.3118899915E-02 2.031754001 0.3117665360E-02 2.034101031 0.3116402922E-02 2.036448061 0.3115112443E-02 2.038795092 0.3113793779E-02 2.041142122 0.3112446799E-02 2.043489153 0.3111071391E-02 2.045836183 0.3109667454E-02 2.048183213 0.3108234905E-02 2.050530244 0.3106773677E-02 2.052877274 0.3105283719E-02 2.055224304 0.3103764998E-02 2.057571335 0.3102217498E-02 2.059918365 0.3100641220E-02 2.062265396 0.3099036184E-02 2.064612426 0.3097402428E-02 2.066959456 0.3095740009E-02 2.069306487 0.3094049004E-02 2.071653517 0.3092329508E-02 2.074000548 0.3090581636E-02 2.076347578 0.3088805523E-02 2.078694608 0.3087001326E-02 2.081041639 0.3085169220E-02 2.083388669 0.3083309402E-02 2.085735700 0.3081422090E-02 2.088082730 0.3079507522E-02 2.090429760 0.3077565961E-02 2.092776791 0.3075597686E-02 2.095123821 0.3073603002E-02 2.097470852 0.3071582234E-02 2.099817882 0.3069535728E-02 2.102164912 0.3067463856E-02 2.104511943 0.3065367007E-02 2.106858973 0.3063245595E-02 2.109206004 0.3061100055E-02 2.111553034 0.3058930847E-02 2.113900064 0.3056738449E-02 2.116247095 0.3054523364E-02 2.118594125 0.3052286116E-02 2.120941155 0.3050027253E-02 2.123288186 0.3047747342E-02 2.125635216 0.3045446975E-02 2.127982247 0.3043126763E-02 2.130329277 0.3040787341E-02 2.132676307 0.3038429365E-02 2.135023338 0.3036053511E-02 2.137370368 0.3033660478E-02 2.139717399 0.3031250986E-02 2.142064429 0.3028825773E-02 2.144411459 0.3026385602E-02 2.146758490 0.3023931252E-02 2.149105520 0.3021463524E-02 2.151452551 0.3018983238E-02 2.153799581 0.3016491234E-02 2.156146611 0.3013988371E-02 2.158493642 0.3011475525E-02 2.160840672 0.3008953592E-02 2.163187703 0.3006423484E-02 2.165534733 0.3003886131E-02 2.167881763 0.3001342480E-02 2.170228794 0.2998793496E-02 2.172575824 0.2996240155E-02 2.174922855 0.2993683454E-02 2.177269885 0.2991124401E-02 2.179616915 0.2988564019E-02 2.181963946 0.2986003346E-02 2.184310976 0.2983443432E-02 2.186658006 0.2980885338E-02 2.189005037 0.2978330140E-02 2.191352067 0.2975778923E-02 2.193699098 0.2973232782E-02 2.196046128 0.2970692823E-02 2.198393158 0.2968160161E-02 2.200740189 0.2965635919E-02 2.203087219 0.2963121228E-02 2.205434250 0.2960617224E-02 2.207781280 0.2958125051E-02 2.210128310 0.2955645859E-02 2.212475341 0.2953180801E-02 2.214822371 0.2950731033E-02 2.217169402 0.2948297715E-02 2.219516432 0.2945882010E-02 2.221863462 0.2943485081E-02 2.224210493 0.2941108091E-02 2.226557523 0.2938752202E-02 2.228904554 0.2936418577E-02 2.231251584 0.2934108374E-02 2.233598614 0.2931822750E-02 2.235945645 0.2929562856E-02 2.238292675 0.2927329839E-02 2.240639706 0.2925124841E-02 2.242986736 0.2922948994E-02 2.245333766 0.2920803426E-02 2.247680797 0.2918689254E-02 2.250027827 0.2916607587E-02 2.252374857 0.2914559521E-02 2.254721888 0.2912546144E-02 2.257068918 0.2910568528E-02 2.259415949 0.2908627734E-02 2.261762979 0.2906724809E-02 2.264110009 0.2904860784E-02 2.266457040 0.2903036674E-02 2.268804070 0.2901253478E-02 2.271151101 0.2899512175E-02 2.273498131 0.2897813729E-02 2.275845161 0.2896159081E-02 2.278192192 0.2894549154E-02 2.280539222 0.2892984848E-02 2.282886253 0.2891467043E-02 2.285233283 0.2889996594E-02 2.287580313 0.2888574334E-02 2.289927344 0.2887201072E-02 2.292274374 0.2885877589E-02 2.294621405 0.2884604643E-02 2.296968435 0.2883382965E-02 2.299315465 0.2882213257E-02 2.301662496 0.2881096194E-02 2.304009526 0.2880032424E-02 2.306356557 0.2879022563E-02 2.308703587 0.2878067199E-02 2.311050617 0.2877166888E-02 2.313397648 0.2876322158E-02 2.315744678 0.2875533502E-02 2.318091708 0.2874801383E-02 2.320438739 0.2874126232E-02 2.322785769 0.2873508445E-02 2.325132800 0.2872948388E-02 2.327479830 0.2872446390E-02 2.329826860 0.2872002749E-02 2.332173891 0.2871617727E-02 2.334520921 0.2871291551E-02 2.336867952 0.2871024416E-02 2.339214982 0.2870816480E-02 2.341562012 0.2870667866E-02 2.343909043 0.2870578662E-02 2.346256073 0.2870548921E-02 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/PaxHeaders/PHDLINES.OUT0000644000000000000000000000012714536061315023632 xustar0029 mtime=1702388429.00549988 29 atime=1702388429.00549988 29 ctime=1702388429.00549988 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/PHDLINES.OUT0000644002504400250440000000057414536061315026356 0ustar00dewhurstdewhurst00000000000000 0.000000000 -0.2730054551E-02 0.000000000 0.5282653855E-02 0.6220482413 -0.2730054551E-02 0.6220482413 0.5282653855E-02 1.093801350 -0.2730054551E-02 1.093801350 0.5282653855E-02 1.874502964 -0.2730054551E-02 1.874502964 0.5282653855E-02 2.346256073 -0.2730054551E-02 2.346256073 0.5282653855E-02 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/PaxHeaders/PHDOS.OUT0000644000000000000000000000013214536061315023275 xustar0030 mtime=1702388429.007499877 30 atime=1702388429.006499878 30 ctime=1702388429.007499877 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/PHDOS.OUT0000644002504400250440000004410414536061315026022 0ustar00dewhurstdewhurst00000000000000 -0.3870828934E-03 0.000000000 -0.3785670705E-03 0.000000000 -0.3700512476E-03 0.000000000 -0.3615354247E-03 0.000000000 -0.3530196018E-03 0.000000000 -0.3445037789E-03 0.000000000 -0.3359879560E-03 0.000000000 -0.3274721331E-03 0.000000000 -0.3189563102E-03 0.000000000 -0.3104404873E-03 0.000000000 -0.3019246644E-03 0.000000000 -0.2934088415E-03 0.000000000 -0.2848930187E-03 0.000000000 -0.2763771958E-03 0.000000000 -0.2678613729E-03 0.000000000 -0.2593455500E-03 2.661711845 -0.2508297271E-03 6.341137043 -0.2423139042E-03 9.863990956 -0.2337980813E-03 10.41199045 -0.2252822584E-03 10.02056224 -0.2167664355E-03 10.56856174 -0.2082506126E-03 11.11656124 -0.1997347897E-03 11.66456073 -0.1912189668E-03 11.82113202 -0.1827031439E-03 11.50798945 -0.1741873210E-03 10.33370481 -0.1656714981E-03 10.09884788 -0.1571556753E-03 11.74284638 -0.1486398524E-03 11.82113202 -0.1401240295E-03 11.19484688 -0.1316082066E-03 11.03827559 -0.1230923837E-03 13.38684487 -0.1145765608E-03 13.38684487 -0.1060607379E-03 12.05598895 -0.9754491500E-04 10.72513302 -0.8902909211E-04 10.09884788 -0.8051326922E-04 9.237705816 -0.7199744632E-04 9.081134531 -0.6348162343E-04 9.081134531 -0.5496580054E-04 7.828564251 -0.4644997765E-04 5.675709082 -0.3793415475E-04 4.423138802 -0.2941833186E-04 4.344853159 -0.2090250897E-04 3.522853913 -0.1238668607E-04 2.622569024 -0.3870863180E-05 1.213427459 0.4644959713E-05 1.604855671 0.1316078261E-04 2.113712348 0.2167660550E-04 4.266567517 0.3019242839E-04 6.184565758 0.3870825128E-04 7.397993217 0.4722407418E-04 8.885420425 0.5573989707E-04 10.02056224 0.6425571996E-04 12.21256023 0.7277154286E-04 13.38684487 0.8128736575E-04 14.95255772 0.8980318864E-04 15.50055722 0.9831901154E-04 18.82769702 0.1068348344E-03 20.62826680 0.1153506573E-03 24.22940636 0.1238664802E-03 25.83426203 0.1323823031E-03 28.69168798 0.1408981260E-03 29.00483055 0.1494139489E-03 31.39254265 0.1579297718E-03 34.36739706 0.1664455947E-03 38.75139304 0.1749614176E-03 38.98624997 0.1834772405E-03 42.03939003 0.1919930634E-03 44.77938751 0.2005088863E-03 49.63309735 0.2090247091E-03 50.10281121 0.2175405320E-03 52.17738073 0.2260563549E-03 55.19137797 0.2345721778E-03 57.85308981 0.2430880007E-03 61.57165783 0.2516038236E-03 65.56422560 0.2601196465E-03 72.49250496 0.2686354694E-03 74.56707449 0.2771512923E-03 77.11135787 0.2856671152E-03 77.18964351 0.2941829381E-03 82.94363824 0.3026987610E-03 84.47020827 0.3112145839E-03 86.34906369 0.3197304068E-03 91.59420173 0.3282462296E-03 95.89991207 0.3367620525E-03 104.0024761 0.3452778754E-03 106.1553312 0.3537936983E-03 110.5001844 0.3623095212E-03 113.9838955 0.3708253441E-03 119.3464620 0.3793411670E-03 122.9476016 0.3878569899E-03 126.6270268 0.3963728128E-03 131.4415938 0.4048886357E-03 137.1564457 0.4134044586E-03 141.5404417 0.4219202815E-03 144.9458671 0.4304361044E-03 154.7315724 0.4389519273E-03 159.7418535 0.4474677502E-03 165.6132767 0.4559835730E-03 166.1612762 0.4644993959E-03 169.0578450 0.4730152188E-03 177.7084085 0.4815310417E-03 185.3412586 0.4900468646E-03 194.5398216 0.4985626875E-03 198.8455320 0.5070785104E-03 206.4392393 0.5155943333E-03 214.1112323 0.5241101562E-03 219.6695129 0.5326259791E-03 221.7832252 0.5411418020E-03 231.1775023 0.5496576249E-03 238.2232102 0.5581734478E-03 250.7880558 0.5666892707E-03 258.6557628 0.5752050935E-03 263.3920442 0.5837209164E-03 273.8431775 0.5922367393E-03 276.8963176 0.6007525622E-03 285.5468810 0.6092683851E-03 291.2617330 0.6177842080E-03 305.0008632 0.6263000309E-03 320.7362774 0.6348158538E-03 328.3691275 0.6433316767E-03 337.0979766 0.6518474996E-03 340.5816877 0.6603633225E-03 351.0328210 0.6688791454E-03 361.4839543 0.6773949683E-03 381.9556498 0.6859107912E-03 395.8904942 0.6944266141E-03 406.7330556 0.7029424369E-03 412.9176214 0.7114582598E-03 426.7741801 0.7199740827E-03 436.4424570 0.7284899056E-03 452.7650134 0.7370057285E-03 467.4827142 0.7455215514E-03 491.6729778 0.7540373743E-03 506.1166788 0.7625531972E-03 525.8446607 0.7710690201E-03 534.2995101 0.7795848430E-03 557.7069172 0.7881006659E-03 576.3389001 0.7966164888E-03 603.7780178 0.8051323117E-03 629.4557086 0.8136481346E-03 649.3402618 0.8221639574E-03 675.2919523 0.8306797803E-03 696.7813611 0.8391956032E-03 728.8784746 0.8477114261E-03 756.7481633 0.8562272490E-03 787.5144208 0.8647430719E-03 817.4586791 0.8732588948E-03 843.1363698 0.8817747177E-03 868.7357749 0.8902905406E-03 900.0891747 0.8988063635E-03 917.5468730 0.9073221864E-03 929.3288622 0.9158380093E-03 931.9905741 0.9243538322E-03 948.0782736 0.9328696551E-03 971.2508238 0.9413854779E-03 984.4028117 0.9499013008E-03 1010.471931 0.9584171237E-03 1028.790771 0.9669329466E-03 1059.791885 0.9754487695E-03 1083.708149 0.9839645924E-03 1107.154699 0.9924804153E-03 1132.284390 0.1000996238E-02 1165.360074 0.1009512061E-02 1197.418045 0.1018027884E-02 1237.226294 0.1026543707E-02 1268.149123 0.1035059530E-02 1307.135373 0.1043575353E-02 1351.014476 0.1052091176E-02 1386.360443 0.1060606998E-02 1428.243262 0.1069122821E-02 1488.053493 0.1077638644E-02 1542.540300 0.1086154467E-02 1609.474524 0.1094670290E-02 1660.790763 0.1103186113E-02 1735.357837 0.1111701936E-02 1807.967771 0.1120217759E-02 1894.355977 0.1128733582E-02 1981.213898 0.1137249404E-02 2089.404656 0.1145765227E-02 2176.536576 0.1154281050E-02 2303.124460 0.1162796873E-02 2426.737489 0.1171312696E-02 2588.397341 0.1179828519E-02 2745.281769 0.1188344342E-02 2975.519843 0.1196860165E-02 3292.380981 0.1205375988E-02 3683.652623 0.1213891811E-02 4037.112298 0.1222407633E-02 4354.678007 0.1230923456E-02 4664.062867 0.1239439279E-02 5023.511394 0.1247955102E-02 5405.701901 0.1256470925E-02 5863.946909 0.1264986748E-02 6413.864405 0.1273502571E-02 7157.382295 0.1282018394E-02 8194.784486 0.1290534217E-02 9479.647594 0.1299050039E-02 10786.74382 0.1307565862E-02 11783.16348 0.1316081685E-02 12101.47290 0.1324597508E-02 11837.72857 0.1333113331E-02 11906.85480 0.1341629154E-02 11896.44281 0.1350144977E-02 10494.38609 0.1358660800E-02 7868.959642 0.1367176623E-02 5231.085775 0.1375692445E-02 4199.829006 0.1384208268E-02 4046.780575 0.1392724091E-02 4459.776482 0.1401239914E-02 5149.668707 0.1409755737E-02 5748.201587 0.1418271560E-02 5967.244815 0.1426787383E-02 5608.187715 0.1435303206E-02 5083.165054 0.1443819029E-02 4638.659176 0.1452334852E-02 4519.234428 0.1460850674E-02 4500.759016 0.1469366497E-02 4745.205935 0.1477882320E-02 5572.920033 0.1486398143E-02 6789.400632 0.1494913966E-02 7889.470481 0.1503429789E-02 8318.749801 0.1511945612E-02 7936.207009 0.1520461435E-02 7177.540848 0.1528977258E-02 6315.889923 0.1537493080E-02 5528.140646 0.1546008903E-02 4748.219932 0.1554524726E-02 3961.684082 0.1563040549E-02 3395.718029 0.1571556372E-02 2933.128168 0.1580072195E-02 2574.423354 0.1588588018E-02 2201.548839 0.1597103841E-02 1836.737745 0.1605619664E-02 1445.074675 0.1614135487E-02 1325.884784 0.1622651309E-02 1433.018686 0.1631167132E-02 1698.093872 0.1639682955E-02 1857.209440 0.1648198778E-02 1999.102167 0.1656714601E-02 2151.172028 0.1665230424E-02 2345.790135 0.1673746247E-02 2570.156786 0.1682262070E-02 2860.635663 0.1690777893E-02 3313.870390 0.1699293715E-02 3949.001808 0.1707809538E-02 4469.209902 0.1716325361E-02 4442.553641 0.1724841184E-02 3972.291786 0.1733357007E-02 3444.724842 0.1741872830E-02 3278.798422 0.1750388653E-02 3267.486147 0.1758904476E-02 3320.328956 0.1767420299E-02 3296.256121 0.1775936121E-02 3347.180931 0.1784451944E-02 3465.901108 0.1792967767E-02 3596.168417 0.1801483590E-02 3625.956104 0.1809999413E-02 3409.457160 0.1818515236E-02 3163.718528 0.1827031059E-02 2916.609897 0.1835546882E-02 2814.681991 0.1844062705E-02 2772.212030 0.1852578528E-02 2764.187751 0.1861094350E-02 2765.831750 0.1869610173E-02 2738.157775 0.1878125996E-02 2699.602096 0.1886641819E-02 2696.431528 0.1895157642E-02 2714.789511 0.1903673465E-02 2734.400064 0.1912189288E-02 2718.703793 0.1920705111E-02 2710.053230 0.1929220934E-02 2724.849216 0.1937736756E-02 2734.830635 0.1946252579E-02 2727.236928 0.1954768402E-02 2718.116651 0.1963284225E-02 2743.402913 0.1971800048E-02 2747.082338 0.1980315871E-02 2747.082338 0.1988831694E-02 2738.940632 0.1997347517E-02 2744.655484 0.2005863340E-02 2714.711225 0.2014379162E-02 2719.643221 0.2022894985E-02 2720.034649 0.2031410808E-02 2774.169171 0.2039926631E-02 2737.727204 0.2048442454E-02 2773.816885 0.2056958277E-02 2812.920564 0.2065474100E-02 2880.715930 0.2073989923E-02 2925.417032 0.2082505746E-02 3023.508942 0.2091021569E-02 3215.113052 0.2099537391E-02 3276.567282 0.2108053214E-02 3190.961931 0.2116569037E-02 2976.615842 0.2125084860E-02 2831.317690 0.2133600683E-02 2653.178710 0.2142116506E-02 2494.650284 0.2150632329E-02 2290.872757 0.2159148152E-02 2146.279175 0.2167663975E-02 1979.021900 0.2176179797E-02 1813.408623 0.2184695620E-02 1665.566187 0.2193211443E-02 1572.954272 0.2201727266E-02 1514.396611 0.2210243089E-02 1489.423492 0.2218758912E-02 1422.724124 0.2227274735E-02 1408.162995 0.2235790558E-02 1419.670984 0.2244306381E-02 1431.531259 0.2252822203E-02 1430.904974 0.2261338026E-02 1432.862115 0.2269853849E-02 1492.085203 0.2278369672E-02 1587.084831 0.2286885495E-02 1677.035034 0.2295401318E-02 1779.589225 0.2303917141E-02 1916.393386 0.2312432964E-02 2054.215259 0.2320948787E-02 2242.570515 0.2329464610E-02 2515.278551 0.2337980432E-02 2787.477730 0.2346496255E-02 3019.046660 0.2355012078E-02 3021.121230 0.2363527901E-02 2971.488133 0.2372043724E-02 2886.900496 0.2380559547E-02 3028.871509 0.2389075370E-02 2965.225281 0.2397591193E-02 2865.254516 0.2406107016E-02 2591.567910 0.2414622838E-02 2524.124829 0.2423138661E-02 2456.681748 0.2431654484E-02 2443.647188 0.2440170307E-02 2373.150967 0.2448686130E-02 2304.611887 0.2457201953E-02 2314.162735 0.2465717776E-02 2285.471047 0.2474233599E-02 2331.346434 0.2482749422E-02 2181.977428 0.2491265244E-02 2230.436241 0.2499781067E-02 2163.736873 0.2508296890E-02 2136.102041 0.2516812713E-02 2046.464981 0.2525328536E-02 2096.763506 0.2533844359E-02 2136.571755 0.2542360182E-02 2209.690545 0.2550876005E-02 2225.347674 0.2559391828E-02 2211.960829 0.2567907651E-02 2162.562589 0.2576423473E-02 2132.109474 0.2584939296E-02 2161.936303 0.2593455119E-02 2184.247712 0.2601970942E-02 2166.907442 0.2610486765E-02 2141.660322 0.2619002588E-02 2170.939152 0.2627518411E-02 2226.991672 0.2636034234E-02 2265.625637 0.2644550057E-02 2252.434506 0.2653065879E-02 2171.643723 0.2661581702E-02 2168.786297 0.2670097525E-02 2131.326617 0.2678613348E-02 2144.322034 0.2687129171E-02 2134.379757 0.2695644994E-02 2176.888861 0.2704160817E-02 2175.714577 0.2712676640E-02 2196.695129 0.2721192463E-02 2207.733404 0.2729708285E-02 2275.567914 0.2738224108E-02 2340.427568 0.2746739931E-02 2395.697232 0.2755255754E-02 2386.929240 0.2763771577E-02 2437.814908 0.2772287400E-02 2455.742320 0.2780803223E-02 2467.367738 0.2789319046E-02 2496.685711 0.2797834869E-02 2498.329709 0.2806350692E-02 2591.567910 0.2814866514E-02 2567.416789 0.2823382337E-02 2631.728444 0.2831898160E-02 2669.696981 0.2840413983E-02 2725.397215 0.2848929806E-02 2763.718037 0.2857445629E-02 2789.121728 0.2865961452E-02 2903.340481 0.2874477275E-02 2980.882410 0.2882993098E-02 3135.770553 0.2891508920E-02 3155.263678 0.2900024743E-02 3201.334779 0.2908540566E-02 3184.346795 0.2917056389E-02 3169.589951 0.2925572212E-02 3066.096332 0.2934088035E-02 2909.564189 0.2942603858E-02 2839.498539 0.2951119681E-02 2823.215126 0.2959635504E-02 2885.021641 0.2968151326E-02 2932.423597 0.2976667149E-02 3033.451219 0.2985182972E-02 3079.013463 0.2993698795E-02 2981.430409 0.3002214618E-02 2867.485657 0.3010730441E-02 2818.165702 0.3019246264E-02 2854.803383 0.3027762087E-02 2862.044804 0.3036277910E-02 2831.983118 0.3044793733E-02 2856.408238 0.3053309555E-02 2884.865069 0.3061825378E-02 2960.371571 0.3070341201E-02 3097.019160 0.3078857024E-02 3284.121846 0.3087372847E-02 3449.891694 0.3095888670E-02 3649.598368 0.3104404493E-02 3932.248680 0.3112920316E-02 4292.675778 0.3121436139E-02 4630.086898 0.3129951961E-02 4875.199244 0.3138467784E-02 5109.273315 0.3146983607E-02 5254.532325 0.3155499430E-02 5307.570848 0.3164015253E-02 5292.305148 0.3172531076E-02 5094.829614 0.3181046899E-02 4963.662020 0.3189562722E-02 4800.201599 0.3198078545E-02 4764.699060 0.3206594368E-02 4538.844981 0.3215110190E-02 4281.989788 0.3223626013E-02 4047.837432 0.3232141836E-02 3990.454056 0.3240657659E-02 4029.831734 0.3249173482E-02 4116.259083 0.3257689305E-02 4231.926120 0.3266205128E-02 4325.046892 0.3274720951E-02 4359.336003 0.3283236774E-02 4507.609010 0.3291752596E-02 4650.715164 0.3300268419E-02 4694.281125 0.3308784242E-02 4551.057542 0.3317300065E-02 4368.925994 0.3325815888E-02 4270.129513 0.3334331711E-02 4284.181786 0.3342847534E-02 4362.271715 0.3351363357E-02 4508.431009 0.3359879180E-02 4657.173730 0.3368395002E-02 4978.536292 0.3376910825E-02 5250.735471 0.3385426648E-02 5367.733364 0.3393942471E-02 5151.821562 0.3402458294E-02 5004.683697 0.3410974117E-02 4937.514616 0.3419489940E-02 4953.876315 0.3428005763E-02 4848.738697 0.3436521586E-02 4601.904066 0.3445037409E-02 4331.662028 0.3453553231E-02 4059.423707 0.3462069054E-02 3979.924637 0.3470584877E-02 3848.678757 0.3479100700E-02 3775.246824 0.3487616523E-02 3565.793588 0.3496132346E-02 3432.473139 0.3504648169E-02 3126.180562 0.3513163992E-02 2704.808091 0.3521679815E-02 2151.798313 0.3530195637E-02 1668.423613 0.3538711460E-02 1221.804023 0.3547227283E-02 693.6890783 0.3555743106E-02 271.6511795 0.3564258929E-02 20.35426705 0.3572774752E-02 0.000000000 0.3581290575E-02 0.000000000 0.3589806398E-02 0.000000000 0.3598322221E-02 0.000000000 0.3606838043E-02 0.000000000 0.3615353866E-02 0.000000000 0.3623869689E-02 0.000000000 0.3632385512E-02 0.000000000 0.3640901335E-02 0.000000000 0.3649417158E-02 0.000000000 0.3657932981E-02 0.000000000 0.3666448804E-02 0.000000000 0.3674964627E-02 0.000000000 0.3683480450E-02 0.000000000 0.3691996272E-02 0.000000000 0.3700512095E-02 0.000000000 0.3709027918E-02 0.000000000 0.3717543741E-02 0.000000000 0.3726059564E-02 0.000000000 0.3734575387E-02 0.000000000 0.3743091210E-02 0.000000000 0.3751607033E-02 0.000000000 0.3760122856E-02 0.000000000 0.3768638678E-02 0.000000000 0.3777154501E-02 0.000000000 0.3785670324E-02 0.000000000 0.3794186147E-02 0.000000000 0.3802701970E-02 0.000000000 0.3811217793E-02 0.000000000 0.3819733616E-02 0.000000000 0.3828249439E-02 0.000000000 0.3836765262E-02 0.000000000 0.3845281084E-02 0.000000000 0.3853796907E-02 0.000000000 0.3862312730E-02 0.000000000 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/PaxHeaders/PHLWIDTH.OUT0000644000000000000000000000013214536061315023643 xustar0030 mtime=1702388429.012499869 30 atime=1702388429.008499875 30 ctime=1702388429.012499869 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/PHLWIDTH.OUT0000644002504400250440000121233214536061315026371 0ustar00dewhurstdewhurst00000000000000 0.000000000 0.2102677135E-11 0.2347351854E-02 0.1897946235E-11 0.4694703708E-02 0.1286806037E-11 0.7042055561E-02 0.4189900392E-12 0.9389407415E-02 0.2674875088E-13 0.1173675927E-01 0.1763864666E-11 0.1408411112E-01 0.8026212026E-11 0.1643146298E-01 0.2169518187E-10 0.1877881483E-01 0.4606825740E-10 0.2112616668E-01 0.8485803328E-10 0.2347351854E-01 0.1421902942E-09 0.2582087039E-01 0.2225926672E-09 0.2816822225E-01 0.3309765305E-09 0.3051557410E-01 0.4726145000E-09 0.3286292595E-01 0.6531147525E-09 0.3521027781E-01 0.8783928452E-09 0.3755762966E-01 0.1154641410E-08 0.3990498151E-01 0.1488297972E-08 0.4225233337E-01 0.1886011073E-08 0.4459968522E-01 0.2354604873E-08 0.4694703708E-01 0.2901042366E-08 0.4929438893E-01 0.3532387367E-08 0.5164174078E-01 0.4255765408E-08 0.5398909264E-01 0.5078323694E-08 0.5633644449E-01 0.6007190276E-08 0.5868379634E-01 0.7049432575E-08 0.6103114820E-01 0.8212015435E-08 0.6337850005E-01 0.9501758851E-08 0.6572585191E-01 0.1092529553E-07 0.6807320376E-01 0.1248902846E-07 0.7042055561E-01 0.1419908863E-07 0.7276790747E-01 0.1606129312E-07 0.7511525932E-01 0.1808110361E-07 0.7746261117E-01 0.2026358563E-07 0.7980996303E-01 0.2261336857E-07 0.8215731488E-01 0.2513460675E-07 0.8450466674E-01 0.2783094160E-07 0.8685201859E-01 0.3070546510E-07 0.8919937044E-01 0.3376068485E-07 0.9154672230E-01 0.3699849062E-07 0.9389407415E-01 0.4042012274E-07 0.9624142601E-01 0.4402614243E-07 0.9858877786E-01 0.4781640423E-07 0.1009361297 0.5179003058E-07 0.1032834816 0.5594538882E-07 0.1056308334 0.6028007064E-07 0.1079781853 0.6479087416E-07 0.1103255371 0.6947378869E-07 0.1126728890 0.7432398241E-07 0.1150202408 0.7933579290E-07 0.1173675927 0.8450272077E-07 0.1197149445 0.8981742638E-07 0.1220622964 0.9527172979E-07 0.1244096483 0.1008566140E-06 0.1267570001 0.1065622313E-06 0.1291043520 0.1123779136E-06 0.1314517038 0.1182921856E-06 0.1337990557 0.1242927816E-06 0.1361464075 0.1303666658E-06 0.1384937594 0.1365000564E-06 0.1408411112 0.1426784531E-06 0.1431884631 0.1488866675E-06 0.1455358149 0.1551088579E-06 0.1478831668 0.1613285674E-06 0.1502305186 0.1675287646E-06 0.1525778705 0.1736918889E-06 0.1549252223 0.1797998983E-06 0.1572725742 0.1858343209E-06 0.1596199261 0.1917763092E-06 0.1619672779 0.1976066982E-06 0.1643146298 0.2033060655E-06 0.1666619816 0.2088547952E-06 0.1690093335 0.2142331444E-06 0.1713566853 0.2194213120E-06 0.1737040372 0.2243995101E-06 0.1760513890 0.2291480384E-06 0.1783987409 0.2336473601E-06 0.1807460927 0.2378781800E-06 0.1830934446 0.2418215249E-06 0.1854407964 0.2454588254E-06 0.1877881483 0.2487719991E-06 0.1901355002 0.2517435357E-06 0.1924828520 0.2543565823E-06 0.1948302039 0.2565950310E-06 0.1971775557 0.2584436055E-06 0.1995249076 0.2598879499E-06 0.2018722594 0.2609147166E-06 0.2042196113 0.2615116549E-06 0.2065669631 0.2616676990E-06 0.2089143150 0.2613730558E-06 0.2112616668 0.2606192923E-06 0.2136090187 0.2593994217E-06 0.2159563705 0.2577079881E-06 0.2183037224 0.2555411511E-06 0.2206510743 0.2528967674E-06 0.2229984261 0.2497744709E-06 0.2253457780 0.2461757516E-06 0.2276931298 0.2421040308E-06 0.2300404817 0.2375647344E-06 0.2323878335 0.2325653638E-06 0.2347351854 0.2271155629E-06 0.2370825372 0.2212271823E-06 0.2394298891 0.2149143398E-06 0.2417772409 0.2081934773E-06 0.2441245928 0.2010834136E-06 0.2464719446 0.1936053931E-06 0.2488192965 0.1857831300E-06 0.2511666484 0.1776428482E-06 0.2535140002 0.1692133156E-06 0.2558613521 0.1605258746E-06 0.2582087039 0.1516144661E-06 0.2605560558 0.1425156492E-06 0.2629034076 0.1332686145E-06 0.2652507595 0.1239151919E-06 0.2675981113 0.1144998521E-06 0.2699454632 0.1050697026E-06 0.2722928150 0.9567447565E-07 0.2746401669 0.8636651081E-07 0.2769875187 0.7720072880E-07 0.2793348706 0.6823459787E-07 0.2816822225 0.5952809084E-07 0.2840295743 0.5114363155E-07 0.2863769262 0.4314602814E-07 0.2887242780 0.3560238954E-07 0.2910716299 0.2858201807E-07 0.2934189817 0.2215626659E-07 0.2957663336 0.1639833805E-07 0.2981136854 0.1138298548E-07 0.3004610373 0.7186027644E-08 0.3028083891 0.3883502426E-08 0.3051557410 0.1550067609E-08 0.3075030928 0.2557792250E-09 0.3098504447 0.5939634676E-10 0.3121977966 0.4284253736E-09 0.3145451484 0.5170614498E-09 0.3168925003 0.6156657041E-09 0.3192398521 0.7249497510E-09 0.3215872040 0.8454704362E-09 0.3239345558 0.9777541717E-09 0.3262819077 0.1122318373E-08 0.3286292595 0.1279677049E-08 0.3309766114 0.1450342309E-08 0.3333239632 0.1634824495E-08 0.3356713151 0.1833631782E-08 0.3380186669 0.2047269523E-08 0.3403660188 0.2276239469E-08 0.3427133707 0.2521038924E-08 0.3450607225 0.2782159847E-08 0.3474080744 0.3060087927E-08 0.3497554262 0.3355301649E-08 0.3521027781 0.8824923847E-09 0.3544501299 0.5236764394E-08 0.3567974818 0.2962033538E-07 0.3591448336 0.7252332177E-07 0.3614921855 0.1323471660E-06 0.3638395373 0.2074525062E-06 0.3661868892 0.2961925335E-06 0.3685342410 0.3969365719E-06 0.3708815929 0.5080869580E-06 0.3732289448 0.6280912431E-06 0.3755762966 0.7554510664E-06 0.3779236485 0.8887286131E-06 0.3802710003 0.1026551286E-05 0.3826183522 0.1167615025E-05 0.3849657040 0.1310686600E-05 0.3873130559 0.1454605074E-05 0.3896604077 0.1598282638E-05 0.3920077596 0.1740704905E-05 0.3943551114 0.1880930774E-05 0.3967024633 0.2018091939E-05 0.3990498151 0.2151392077E-05 0.4013971670 0.2280105787E-05 0.4037445189 0.2403577291E-05 0.4060918707 0.2521218941E-05 0.4084392226 0.2632509555E-05 0.4107865744 0.2736992599E-05 0.4131339263 0.2834274229E-05 0.4154812781 0.2924021232E-05 0.4178286300 0.3005958843E-05 0.4201759818 0.3079868491E-05 0.4225233337 0.3145585458E-05 0.4248706855 0.3202996473E-05 0.4272180374 0.3252037252E-05 0.4295653892 0.3292689998E-05 0.4319127411 0.3324980855E-05 0.4342600929 0.3348977341E-05 0.4366074448 0.3364785770E-05 0.4389547967 0.3372548652E-05 0.4413021485 0.3372442100E-05 0.4436495004 0.3364673242E-05 0.4459968522 0.3349477645E-05 0.4483442041 0.3327116764E-05 0.4506915559 0.3297875412E-05 0.4530389078 0.3262059274E-05 0.4553862596 0.3219992448E-05 0.4577336115 0.3172015047E-05 0.4600809633 0.3118480846E-05 0.4624283152 0.3059754982E-05 0.4647756670 0.2996211725E-05 0.4671230189 0.2928232315E-05 0.4694703708 0.2856202863E-05 0.4718177226 0.2780512335E-05 0.4741650745 0.2701550617E-05 0.4765124263 0.2619706655E-05 0.4788597782 0.2535366688E-05 0.4812071300 0.2448912570E-05 0.4835544819 0.2360720177E-05 0.4859018337 0.2271157919E-05 0.4882491856 0.2180585334E-05 0.4905965374 0.2089351790E-05 0.4929438893 0.1997795285E-05 0.4952912411 0.1906241334E-05 0.4976385930 0.1815001974E-05 0.4999859449 0.1724374856E-05 0.5023332967 0.1634642439E-05 0.5046806486 0.1546071291E-05 0.5070280004 0.1458911480E-05 0.5093753523 0.1373396070E-05 0.5117227041 0.1289740708E-05 0.5140700560 0.1208143314E-05 0.5164174078 0.1128783857E-05 0.5187647597 0.1051824226E-05 0.5211121115 0.9774081929E-06 0.5234594634 0.9056614592E-06 0.5258068152 0.8366917855E-06 0.5281541671 0.7705892056E-06 0.5305015190 0.7074263170E-06 0.5328488708 0.6472586456E-06 0.5351962227 0.5901250822E-06 0.5375435745 0.5360483853E-06 0.5398909264 0.4850357486E-06 0.5422382782 0.4370794261E-06 0.5445856301 0.3921574140E-06 0.5469329819 0.3502341820E-06 0.5492803338 0.3112614518E-06 0.5516276856 0.2751790163E-06 0.5539750375 0.2419155967E-06 0.5563223893 0.2113897311E-06 0.5586697412 0.1835106906E-06 0.5610170931 0.1581794167E-06 0.5633644449 0.1352894766E-06 0.5657117968 0.1147280288E-06 0.5680591486 0.9637679478E-07 0.5704065005 0.8011303068E-07 0.5727538523 0.6581049213E-07 0.5751012042 0.5334038649E-07 0.5774485560 0.4257230529E-07 0.5797959079 0.3337512933E-07 0.5821432597 0.2561789903E-07 0.5844906116 0.1917064167E-07 0.5868379634 0.1390514727E-07 0.5891853153 0.9695685036E-08 0.5915326672 0.6419653203E-08 0.5938800190 0.3958157227E-08 0.5962273709 0.2196515520E-08 0.5985747227 0.1024698755E-08 0.6009220746 0.3377197295E-09 0.6032694264 0.3600633379E-10 0.6056167783 0.2581020364E-10 0.6079641301 0.2197255201E-09 0.6103114820 0.5374092214E-09 0.6126588338 0.9065930717E-09 0.6150061857 0.1264442769E-08 0.6173535375 0.1559236034E-08 0.6197008894 0.1752204972E-08 0.6220482413 0.1819255391E-08 0.6243952716 0.1819985410E-08 0.6267423020 0.1822176676E-08 0.6290893324 0.1825832818E-08 0.6314363628 0.1830959890E-08 0.6337833932 0.1837566378E-08 0.6361304236 0.1845663207E-08 0.6384774540 0.1855263758E-08 0.6408244844 0.1866383879E-08 0.6431715148 0.1879041906E-08 0.6455185452 0.1893258684E-08 0.6478655756 0.1909057587E-08 0.6502126060 0.1926464545E-08 0.6525596364 0.1945508076E-08 0.6549066668 0.1966219309E-08 0.6572536971 0.1988632024E-08 0.6596007275 0.2012782683E-08 0.6619477579 0.2038710468E-08 0.6642947883 0.2066457319E-08 0.6666418187 0.2096067976E-08 0.6689888491 0.2127590020E-08 0.6713358795 0.2161073919E-08 0.6736829099 0.2196573071E-08 0.6760299403 0.2234143851E-08 0.6783769707 0.2273845660E-08 0.6807240011 0.2315740970E-08 0.6830710315 0.2359895376E-08 0.6854180619 0.2406377643E-08 0.6877650922 0.2455259759E-08 0.6901121226 0.2506616977E-08 0.6924591530 0.2560527873E-08 0.6948061834 0.2617074389E-08 0.6971532138 0.2676341881E-08 0.6995002442 0.2738419167E-08 0.7018472746 0.2803398572E-08 0.7041943050 0.2871375972E-08 0.7065413354 0.2942450832E-08 0.7088883658 0.3016726251E-08 0.7112353962 0.3094308993E-08 0.7135824266 0.3175309524E-08 0.7159294570 0.3259842041E-08 0.7182764874 0.3348024499E-08 0.7206235177 0.3439978632E-08 0.7229705481 0.3535829974E-08 0.7253175785 0.3635707869E-08 0.7276646089 0.3739745481E-08 0.7300116393 0.3848079798E-08 0.7323586697 0.3960851625E-08 0.7347057001 0.4078205577E-08 0.7370527305 0.4200290064E-08 0.7393997609 0.4327257262E-08 0.7417467913 0.4459263089E-08 0.7440938217 0.4596467162E-08 0.7464408521 0.4739032751E-08 0.7487878825 0.4887126723E-08 0.7511349128 0.5040919478E-08 0.7534819432 0.5200584876E-08 0.7558289736 0.5366300151E-08 0.7581760040 0.5538245817E-08 0.7605230344 0.5716605567E-08 0.7628700648 0.5901566156E-08 0.7652170952 0.6093317275E-08 0.7675641256 0.6292051414E-08 0.7699111560 0.6497963714E-08 0.7722581864 0.6711251805E-08 0.7746052168 0.6932115636E-08 0.7769522472 0.7160757285E-08 0.7792992776 0.7397380767E-08 0.7816463080 0.7642191823E-08 0.7839933383 0.7895397695E-08 0.7863403687 0.8157206891E-08 0.7886873991 0.8427828939E-08 0.7910344295 0.8707474124E-08 0.7933814599 0.8996353212E-08 0.7957284903 0.9294677168E-08 0.7980755207 0.9602656851E-08 0.8004225511 0.9920502703E-08 0.8027695815 0.1024842442E-07 0.8051166119 0.1058663063E-07 0.8074636423 0.1093532852E-07 0.8098106727 0.1129472349E-07 0.8121577031 0.1166501876E-07 0.8145047335 0.1204641503E-07 0.8168517638 0.1243911003E-07 0.8191987942 0.1284329814E-07 0.8215458246 0.1325916999E-07 0.8238928550 0.1368691198E-07 0.8262398854 0.1412670591E-07 0.8285869158 0.1457872850E-07 0.8309339462 0.1504315094E-07 0.8332809766 0.1552013844E-07 0.8356280070 0.1600984977E-07 0.8379750374 0.1651243677E-07 0.8403220678 0.1702804391E-07 0.8426690982 0.1755680775E-07 0.8450161286 0.1809885654E-07 0.8473631589 0.1865430966E-07 0.8497101893 0.1922327717E-07 0.8520572197 0.1980585935E-07 0.8544042501 0.2040214614E-07 0.8567512805 0.2101221674E-07 0.8590983109 0.2163613905E-07 0.8614453413 0.2227396927E-07 0.8637923717 0.2292575137E-07 0.8661394021 0.2359151665E-07 0.8684864325 0.2427128327E-07 0.8708334629 0.2496505580E-07 0.8731804933 0.2567282480E-07 0.8755275237 0.2639456636E-07 0.8778745541 0.2713024170E-07 0.8802215844 0.2787979675E-07 0.8825686148 0.2864316177E-07 0.8849156452 0.2942025097E-07 0.8872626756 0.3021096217E-07 0.8896097060 0.3101517642E-07 0.8919567364 0.3183275771E-07 0.8943037668 0.3266355265E-07 0.8966507972 0.3350739019E-07 0.8989978276 0.3436408138E-07 0.9013448580 0.3523341911E-07 0.9036918884 0.3611517793E-07 0.9060389188 0.3700911382E-07 0.9083859492 0.3791496407E-07 0.9107329796 0.3883244713E-07 0.9130800099 0.3976126250E-07 0.9154270403 0.4070109070E-07 0.9177740707 0.4165159316E-07 0.9201211011 0.4261241225E-07 0.9224681315 0.4358317130E-07 0.9248151619 0.4456347462E-07 0.9271621923 0.4555290760E-07 0.9295092227 0.4655103684E-07 0.9318562531 0.4755741028E-07 0.9342032835 0.4857155738E-07 0.9365503139 0.4959298936E-07 0.9388973443 0.5062119943E-07 0.9412443747 0.5165566308E-07 0.9435914050 0.5269583843E-07 0.9459384354 0.5374116655E-07 0.9482854658 0.5479107186E-07 0.9506324962 0.5584496258E-07 0.9529795266 0.5690223117E-07 0.9553265570 0.5796225482E-07 0.9576735874 0.5902439600E-07 0.9600206178 0.6008800300E-07 0.9623676482 0.6115241055E-07 0.9647146786 0.6221694042E-07 0.9670617090 0.6328090211E-07 0.9694087394 0.6434359351E-07 0.9717557698 0.6540430164E-07 0.9741028002 0.6646230339E-07 0.9764498305 0.6751686630E-07 0.9787968609 0.6856724937E-07 0.9811438913 0.6961270387E-07 0.9834909217 0.7065247423E-07 0.9858379521 0.7168579887E-07 0.9881849825 0.7271191114E-07 0.9905320129 0.7373004024E-07 0.9928790433 0.7473941211E-07 0.9952260737 0.7573925045E-07 0.9975731041 0.7672877765E-07 0.9999201345 0.7770721580E-07 1.002267165 0.7867378769E-07 1.004614195 0.7962771778E-07 1.006961226 0.8056823327E-07 1.009308256 0.8149456512E-07 1.011655286 0.8240594904E-07 1.014002317 0.8330162657E-07 1.016349347 0.8375840541E-07 1.018696378 0.8171552954E-07 1.021043408 0.7973958405E-07 1.023390438 0.7783071220E-07 1.025737469 0.7598898264E-07 1.028084499 0.7421439321E-07 1.030431530 0.7250687521E-07 1.032778560 0.7086629777E-07 1.035125590 0.6929247246E-07 1.037472621 0.6778515811E-07 1.039819651 0.6634406579E-07 1.042166682 0.6496886385E-07 1.044513712 0.6365918316E-07 1.046860742 0.6241462239E-07 1.049207773 0.6123475325E-07 1.051554803 0.6011912586E-07 1.053901834 0.5906727401E-07 1.056248864 0.5807872040E-07 1.058595894 0.5715298179E-07 1.060942925 0.5628957398E-07 1.063289955 0.5548801675E-07 1.065636985 0.5474783854E-07 1.067984016 0.5406858093E-07 1.070331046 0.5344980292E-07 1.072678077 0.5289108494E-07 1.075025107 0.5239203261E-07 1.077372137 0.5195228016E-07 1.079719168 0.5157149356E-07 1.082066198 0.5124937329E-07 1.084413229 0.5098565681E-07 1.086760259 0.5078012063E-07 1.089107289 0.5063258199E-07 1.091454320 0.5054290019E-07 1.093801350 0.5051097756E-07 1.096152861 0.5059721813E-07 1.098504372 0.5085253419E-07 1.100855883 0.5127781539E-07 1.103207394 0.5187451750E-07 1.105558905 0.5264464448E-07 1.107910415 0.5359072323E-07 1.110261926 0.5471577083E-07 1.112613437 0.5602325424E-07 1.114964948 0.5751704221E-07 1.117316459 0.5578480093E-07 1.119667970 0.4848219038E-07 1.122019481 0.4117626204E-07 1.124370992 0.3401664992E-07 1.126722503 0.2715429752E-07 1.129074013 0.2074044684E-07 1.131425524 0.1492581555E-07 1.133777035 0.9859923291E-08 1.136128546 0.5690530115E-08 1.138480057 0.2563155004E-08 1.140831568 0.6206473840E-09 1.143183079 0.2790334262E-11 1.145534590 0.8459192976E-09 1.147886101 0.3282544666E-08 1.150237611 0.7440970487E-08 1.152589122 0.1344490468E-07 1.154940633 0.2141305865E-07 1.157292144 0.3145873606E-07 1.159643655 0.4368941206E-07 1.161995166 0.5820630522E-07 1.164346677 0.7510394521E-07 1.166698188 0.9446973974E-07 1.169049699 0.1163835445E-06 1.171401209 0.1409172403E-06 1.173752720 0.1681343207E-06 1.176104231 0.1980894954E-06 1.178455742 0.2308283112E-06 1.180807253 0.2663867964E-06 1.183158764 0.3047911300E-06 1.185510275 0.3460573405E-06 1.187861786 0.3901910363E-06 1.190213296 0.4371871705E-06 1.192564807 0.4870298429E-06 1.194916318 0.5396921407E-06 1.197267829 0.5951360206E-06 1.199619340 0.6533122329E-06 1.201970851 0.7141602891E-06 1.204322362 0.7776084749E-06 1.206673873 0.8435739078E-06 1.209025384 0.9119626410E-06 1.211376894 0.9826698128E-06 1.213728405 0.1055579843E-05 1.216079916 0.1130566672E-05 1.218431427 0.1207494049E-05 1.220782938 0.1286215862E-05 1.223134449 0.1366576508E-05 1.225485960 0.1448411310E-05 1.227837471 0.1531546972E-05 1.230188982 0.1615802073E-05 1.232540492 0.1700987594E-05 1.234892003 0.1786907487E-05 1.237243514 0.1873359270E-05 1.239595025 0.1960134654E-05 1.241946536 0.2047020198E-05 1.244298047 0.2133797992E-05 1.246649558 0.2220246356E-05 1.249001069 0.2306140562E-05 1.251352580 0.2391253575E-05 1.253704090 0.2475356806E-05 1.256055601 0.2558220873E-05 1.258407112 0.2639616374E-05 1.260758623 0.2719314662E-05 1.263110134 0.2797088629E-05 1.265461645 0.2872713476E-05 1.267813156 0.2945967494E-05 1.270164667 0.3016632825E-05 1.272516177 0.3084496226E-05 1.274867688 0.3149349808E-05 1.277219199 0.3210991772E-05 1.279570710 0.3269227120E-05 1.281922221 0.3323868348E-05 1.284273732 0.3374736117E-05 1.286625243 0.3421659900E-05 1.288976754 0.3464478605E-05 1.291328265 0.3503041159E-05 1.293679775 0.3537207080E-05 1.296031286 0.3566846999E-05 1.298382797 0.3591843160E-05 1.300734308 0.3612089881E-05 1.303085819 0.3627493984E-05 1.305437330 0.3637975179E-05 1.307788841 0.3643466423E-05 1.310140352 0.3643914233E-05 1.312491863 0.3639278963E-05 1.314843373 0.3629535040E-05 1.317194884 0.3614671169E-05 1.319546395 0.3594690492E-05 1.321897906 0.3569610713E-05 1.324249417 0.3539464183E-05 1.326600928 0.3504297949E-05 1.328952439 0.3464173769E-05 1.331303950 0.3419168091E-05 1.333655461 0.3369371995E-05 1.336006971 0.3314891101E-05 1.338358482 0.3255845455E-05 1.340709993 0.3192369374E-05 1.343061504 0.3124611266E-05 1.345413015 0.3052733423E-05 1.347764526 0.2976911794E-05 1.350116037 0.2897335720E-05 1.352467548 0.2814207663E-05 1.354819059 0.2727742907E-05 1.357170569 0.2638169239E-05 1.359522080 0.2545726620E-05 1.361873591 0.2450666836E-05 1.364225102 0.2353253138E-05 1.366576613 0.2253759872E-05 1.368928124 0.2152472099E-05 1.371279635 0.2049685206E-05 1.373631146 0.1945704515E-05 1.375982656 0.1840844882E-05 1.378334167 0.1735430296E-05 1.380685678 0.1629793473E-05 1.383037189 0.1524275452E-05 1.385388700 0.1419225182E-05 1.387740211 0.1314999120E-05 1.390091722 0.1211960813E-05 1.392443233 0.1110480488E-05 1.394794744 0.1010934640E-05 1.397146254 0.9137056002E-06 1.399497765 0.8191811170E-06 1.401849276 0.7277539087E-06 1.404200787 0.6398212081E-06 1.406552298 0.5557842833E-06 1.408903809 0.4760479290E-06 1.411255320 0.4010199177E-06 1.413606831 0.3311104001E-06 1.415958342 0.2667312379E-06 1.418309852 0.2082952494E-06 1.420661363 0.1562153435E-06 1.423012874 0.1109035084E-06 1.425364385 0.7276961327E-07 1.427715896 0.4221996607E-07 1.430067407 0.1965555298E-07 1.432418918 0.5469855676E-08 1.434770429 0.4610302716E-10 1.437121940 0.3753751264E-08 1.439473450 0.1694389020E-07 1.441824961 0.3994311695E-07 1.444176472 0.7304515886E-07 1.446527983 0.1164990783E-06 1.448879494 0.1704920875E-06 1.451231005 0.2351235019E-06 1.453582516 0.3103634578E-06 1.455934027 0.3959841869E-06 1.458285537 0.4914396331E-06 1.460637048 0.5956445343E-06 1.462988559 0.7065581050E-06 1.465340070 0.8204276069E-06 1.467691581 0.9307141595E-06 1.470043092 0.1027957609E-05 1.472394603 0.1103817654E-05 1.474746114 0.1157388690E-05 1.477097625 0.1194108748E-05 1.479449135 0.1219929204E-05 1.481800646 0.1238888399E-05 1.484152157 0.1253370799E-05 1.486503668 0.1264760905E-05 1.488855179 0.1273883533E-05 1.491206690 0.1281248766E-05 1.493558201 0.1287184250E-05 1.495909712 0.1291907959E-05 1.498261223 0.1295569550E-05 1.500612733 0.1298274740E-05 1.502964244 0.1300100167E-05 1.505315755 0.1301102772E-05 1.507667266 0.1301325880E-05 1.510018777 0.1300803255E-05 1.512370288 0.1299561864E-05 1.514721799 0.1297623816E-05 1.517073310 0.1295007722E-05 1.519424821 0.1291729694E-05 1.521776331 0.1287804066E-05 1.524127842 0.1283243938E-05 1.526479353 0.1242369970E-05 1.528830864 0.1192781597E-05 1.531182375 0.1142913732E-05 1.533533886 0.1093001354E-05 1.535885397 0.1043242299E-05 1.538236908 0.9938063040E-06 1.540588418 0.9448414125E-06 1.542939929 0.8964785154E-06 1.545291440 0.8488345799E-06 1.547642951 0.8020149566E-06 1.549994462 0.7561150366E-06 1.552345973 0.7112214466E-06 1.554697484 0.6674129161E-06 1.557048995 0.6247609087E-06 1.559400506 0.5833300847E-06 1.561752016 0.5431786431E-06 1.564103527 0.5043585770E-06 1.566455038 0.4669158681E-06 1.568806549 0.4308906392E-06 1.571158060 0.3963172794E-06 1.573509571 0.3632245508E-06 1.575861082 0.3316356867E-06 1.578212593 0.3015684856E-06 1.580564104 0.2730354071E-06 1.582915614 0.2460436718E-06 1.585267125 0.2205953694E-06 1.587618636 0.1966875746E-06 1.589970147 0.1743124751E-06 1.592321658 0.1534575100E-06 1.594673169 0.1341055211E-06 1.597024680 0.1162349165E-06 1.599376191 0.9981984599E-07 1.601727702 0.8483039021E-07 1.604079212 0.7123276047E-07 1.606430723 0.5898951093E-07 1.608782234 0.4805976143E-07 1.611133745 0.3839943057E-07 1.613485256 0.2996147814E-07 1.615836767 0.2269615601E-07 1.618188278 0.1655126645E-07 1.620539789 0.1147242694E-07 1.622891299 0.7403340107E-08 1.625242810 0.4286068001E-08 1.627594321 0.2061309164E-08 1.629945832 0.6686775428E-09 1.632297343 0.4698188318E-10 1.634648854 0.1345044247E-09 1.637000365 0.8692776384E-09 1.639351876 0.2189357787E-08 1.641703387 0.4033094091E-08 1.644054897 0.6339392301E-08 1.646406408 0.9047971515E-08 1.648757919 0.1209961311E-07 1.651109430 0.1543640070E-07 1.653460941 0.1900195003E-07 1.655812452 0.2274162790E-07 1.658163963 0.2660275915E-07 1.660515474 0.3053482070E-07 1.662866985 0.3448962213E-07 1.665218495 0.3842147173E-07 1.667570006 0.4228732766E-07 1.669921517 0.4604693338E-07 1.672273028 0.4966293710E-07 1.674624539 0.5310099454E-07 1.676976050 0.5632985501E-07 1.679327561 0.5932143027E-07 1.681679072 0.6205084620E-07 1.684030583 0.6449647706E-07 1.686382093 0.6663996257E-07 1.688733604 0.6846620773E-07 1.691085115 0.6996336563E-07 1.693436626 0.7112280360E-07 1.695788137 0.7193905302E-07 1.698139648 0.7240974319E-07 1.700491159 0.7253551992E-07 1.702842670 0.7231994932E-07 1.705194180 0.7176940751E-07 1.707545691 0.7089295708E-07 1.709897202 0.6970221095E-07 1.712248713 0.6821118471E-07 1.714600224 0.6643613814E-07 1.716951735 0.6439540711E-07 1.719303246 0.6210922669E-07 1.721654757 0.5959954672E-07 1.724006268 0.5688984079E-07 1.726357778 0.5400490977E-07 1.728709289 0.5097068114E-07 1.731060800 0.4781400518E-07 1.733412311 0.4456244919E-07 1.735763822 0.4124409094E-07 1.738115333 0.3788731255E-07 1.740466844 0.3452059585E-07 1.742818355 0.3117232045E-07 1.745169866 0.2787056559E-07 1.747521376 0.2464291685E-07 1.749872887 0.2151627877E-07 1.752224398 0.1851669444E-07 1.754575909 0.1566917294E-07 1.756927420 0.1299752553E-07 1.759278931 0.1052421156E-07 1.761630442 0.8270194762E-08 1.763981953 0.6254810677E-08 1.766333464 0.4495645886E-08 1.768684974 0.3008429587E-08 1.771036485 0.1806937989E-08 1.773387996 0.9029119008E-09 1.775739507 0.3059877584E-09 1.778091018 0.2364219463E-10 1.780442529 0.6115002486E-10 1.782794040 0.4215551944E-09 1.785145551 0.1105653618E-08 1.787497061 0.2111985590E-08 1.789848572 0.3436832511E-08 1.792200083 0.5074204815E-08 1.794551594 0.7015782958E-08 1.796903105 0.9250674819E-08 1.799254616 0.1065030419E-07 1.801606127 0.9606627859E-08 1.803957638 0.8646330093E-08 1.806309149 0.7764606958E-08 1.808660659 0.6956810745E-08 1.811012170 0.6218450102E-08 1.813363681 0.5545189793E-08 1.815715192 0.4932850141E-08 1.818066703 0.4377406239E-08 1.820418214 0.3874987000E-08 1.822769725 0.3421874110E-08 1.825121236 0.3014500965E-08 1.827472747 0.2649451658E-08 1.829824257 0.2323460084E-08 1.832175768 0.2033409218E-08 1.834527279 0.1776330631E-08 1.836878790 0.1549404267E-08 1.839230301 0.1289266707E-08 1.841581812 0.1000665103E-08 1.843933323 0.7640508841E-09 1.846284834 0.5727608148E-09 1.848636345 0.4205553972E-09 1.850987855 0.3016326786E-09 1.853339366 0.2106410688E-09 1.855690877 0.1426908741E-09 1.858042388 0.9336410096E-10 1.860393899 0.5872204372E-10 1.862745410 0.3531077621E-10 1.865096921 0.2016817964E-10 1.867448432 0.1084949671E-10 1.869799942 0.5501363283E-11 1.872151453 0.2876497883E-11 1.874502964 0.2102677135E-11 1.876849995 0.4676626375E-11 1.879197025 0.1823481556E-10 1.881544055 0.6120827696E-10 1.883891086 0.1653773880E-09 1.886238116 0.3757614241E-09 1.888585147 0.4080945310E-09 1.890932177 0.4478956647E-09 1.893279207 0.4959590121E-09 1.895626238 0.5531884146E-09 1.897973268 0.6205925028E-09 1.900320299 0.6992792940E-09 1.902667329 0.7904502929E-09 1.905014359 0.8953941402E-09 1.907361390 0.1015479858E-08 1.909708420 0.1152149742E-08 1.912055451 0.1306911964E-08 1.914402481 0.1481332933E-08 1.916749511 0.1677029485E-08 1.919096542 0.1895660967E-08 1.921443572 0.2138921277E-08 1.923790603 0.2408530930E-08 1.926137633 0.2706229216E-08 1.928484663 0.3033766527E-08 1.930831694 0.3392896912E-08 1.933178724 0.3785370926E-08 1.935525754 0.4212928841E-08 1.937872785 0.4677294278E-08 1.940219815 0.5180168311E-08 1.942566846 0.5723224097E-08 1.944913876 0.6308102066E-08 1.947260906 0.6936405724E-08 1.949607937 0.7609698077E-08 1.951954967 0.8329498701E-08 1.954301998 0.9097281475E-08 1.956649028 0.9914472960E-08 1.958996058 0.1078245142E-07 1.961343089 0.1170254650E-07 1.963690119 0.1267603939E-07 1.966037150 0.1370416371E-07 1.968384180 0.1478810672E-07 1.970731210 0.1592901109E-07 1.973078241 0.1712797701E-07 1.975425271 0.1838606463E-07 1.977772302 0.1970429676E-07 1.980119332 0.2108366169E-07 1.982466362 0.2252511620E-07 1.984813393 0.2402958857E-07 1.987160423 0.2559798154E-07 1.989507454 0.2723117521E-07 1.991854484 0.2893002977E-07 1.994201514 0.3069538810E-07 1.996548545 0.3252807802E-07 1.998895575 0.3247559820E-07 2.001242605 0.3122646621E-07 2.003589636 0.3003687560E-07 2.005936666 0.2890715551E-07 2.008283697 0.2783749872E-07 2.010630727 0.2682797655E-07 2.012977757 0.2587855473E-07 2.015324788 0.2498911038E-07 2.017671818 0.2415944980E-07 2.020018849 0.2338932717E-07 2.022365879 0.2267846394E-07 2.024712909 0.2202656893E-07 2.027059940 0.2143335895E-07 2.029406970 0.2089857992E-07 2.031754001 0.2042202830E-07 2.034101031 0.2000357286E-07 2.036448061 0.1964317647E-07 2.038795092 0.1934091810E-07 2.041142122 0.1909701454E-07 2.043489153 0.1891184212E-07 2.045836183 0.1878595799E-07 2.048183213 0.1872012106E-07 2.050530244 0.1871531238E-07 2.052877274 0.1877275486E-07 2.055224304 0.1889393226E-07 2.057571335 0.1908060728E-07 2.059918365 0.1933483869E-07 2.062265396 0.1965899738E-07 2.064612426 0.2005578117E-07 2.066959456 0.2052822841E-07 2.069306487 0.2107973011E-07 2.071653517 0.2171404069E-07 2.074000548 0.2243528705E-07 2.076347578 0.2324797608E-07 2.078694608 0.2415700046E-07 2.081041639 0.2516764259E-07 2.083388669 0.2628557673E-07 2.085735700 0.2751686925E-07 2.088082730 0.2886797685E-07 2.090429760 0.3034574284E-07 2.092776791 0.3195739137E-07 2.095123821 0.3371051961E-07 2.097470852 0.3561308782E-07 2.099817882 0.3767340739E-07 2.102164912 0.3990012677E-07 2.104511943 0.4230221525E-07 2.106858973 0.4488894481E-07 2.109206004 0.4766986983E-07 2.111553034 0.5065480480E-07 2.113900064 0.5385380011E-07 2.116247095 0.5727711589E-07 2.118594125 0.6093519402E-07 2.120941155 0.6483862830E-07 2.123288186 0.6899813295E-07 2.125635216 0.7342450946E-07 2.127982247 0.7812861192E-07 2.130329277 0.8312131087E-07 2.132676307 0.8841345583E-07 2.135023338 0.9401583658E-07 2.137370368 0.9993914342E-07 2.139717399 0.1061939263E-06 2.142064429 0.1127905532E-06 2.144411459 0.1197391679E-06 2.146758490 0.1270496467E-06 2.149105520 0.1347315554E-06 2.151452551 0.1427941056E-06 2.153799581 0.1512461107E-06 2.156146611 0.1600959423E-06 2.158493642 0.1693514866E-06 2.160840672 0.1790201011E-06 2.163187703 0.1840975021E-06 2.165534733 0.1816241451E-06 2.167881763 0.1790672292E-06 2.170228794 0.1764316069E-06 2.172575824 0.1737222171E-06 2.174922855 0.1709440736E-06 2.177269885 0.1681022525E-06 2.179616915 0.1652018798E-06 2.181963946 0.1622481182E-06 2.184310976 0.1592461540E-06 2.186658006 0.1562011841E-06 2.189005037 0.1531184026E-06 2.191352067 0.1500029879E-06 2.193699098 0.1468600894E-06 2.196046128 0.1436948153E-06 2.198393158 0.1405122196E-06 2.200740189 0.1373172904E-06 2.203087219 0.1341149377E-06 2.205434250 0.1309099825E-06 2.207781280 0.1277071456E-06 2.210128310 0.1245110370E-06 2.212475341 0.1213261467E-06 2.214822371 0.1181568349E-06 2.217169402 0.1150073234E-06 2.219516432 0.1118816877E-06 2.221863462 0.1087838492E-06 2.224210493 0.1057175692E-06 2.226557523 0.1026864420E-06 2.228904554 0.9969389013E-07 2.231251584 0.9674315971E-07 2.233598614 0.9383731632E-07 2.235945645 0.9097924204E-07 2.238292675 0.8817163301E-07 2.240639706 0.8541699776E-07 2.242986736 0.8271765629E-07 2.245333766 0.8007573990E-07 2.247680797 0.7749319168E-07 2.250027827 0.7497176780E-07 2.252374857 0.7251303942E-07 2.254721888 0.7011839532E-07 2.257068918 0.6778904517E-07 2.259415949 0.6552602346E-07 2.261762979 0.6333019401E-07 2.264110009 0.6120225510E-07 2.266457040 0.5914274514E-07 2.268804070 0.5715204883E-07 2.271151101 0.5523040389E-07 2.273498131 0.5337790814E-07 2.275845161 0.5159452711E-07 2.278192192 0.4988010192E-07 2.280539222 0.4823435759E-07 2.282886253 0.4665691158E-07 2.285233283 0.4514728265E-07 2.287580313 0.4370489983E-07 2.289927344 0.4232911171E-07 2.292274374 0.4101919567E-07 2.294621405 0.3977436739E-07 2.296968435 0.3859379023E-07 2.299315465 0.3747658466E-07 2.301662496 0.3642183769E-07 2.304009526 0.3542861212E-07 2.306356557 0.3449595570E-07 2.308703587 0.3362291009E-07 2.311050617 0.3280851960E-07 2.313397648 0.3205183968E-07 2.315744678 0.3135194509E-07 2.318091708 0.3070793773E-07 2.320438739 0.3011895410E-07 2.322785769 0.2958417238E-07 2.325132800 0.2910281903E-07 2.327479830 0.2867417492E-07 2.329826860 0.2829758097E-07 2.332173891 0.2797244332E-07 2.334520921 0.2769823785E-07 2.336867952 0.2747451420E-07 2.339214982 0.2730089920E-07 2.341562012 0.2717709971E-07 2.343909043 0.2710290479E-07 2.346256073 0.2707818729E-07 0.000000000 0.1291668591E-10 0.2347351854E-02 0.1232772350E-10 0.4694703708E-02 0.1081516424E-10 0.7042055561E-02 0.9000142028E-11 0.9389407415E-02 0.7430943093E-11 0.1173675927E-01 0.6237643086E-11 0.1408411112E-01 0.5302691200E-11 0.1643146298E-01 0.4506151637E-11 0.1877881483E-01 0.3781356915E-11 0.2112616668E-01 0.3099727435E-11 0.2347351854E-01 0.2454198561E-11 0.2582087039E-01 0.1849805306E-11 0.2816822225E-01 0.1298815006E-11 0.3051557410E-01 0.8181669453E-12 0.3286292595E-01 0.4280492819E-12 0.3521027781E-01 0.1510481115E-12 0.3755762966E-01 0.1159380789E-13 0.3990498151E-01 0.3556688317E-13 0.4225233337E-01 0.2499918004E-12 0.4459968522E-01 0.6827802679E-12 0.4694703708E-01 0.1362502707E-11 0.4929438893E-01 0.2318175816E-11 0.5164174078E-01 0.3579059305E-11 0.5398909264E-01 0.5174457805E-11 0.5633644449E-01 0.7133525740E-11 0.5868379634E-01 0.9485073984E-11 0.6103114820E-01 0.1225737782E-10 0.6337850005E-01 0.1547798609E-10 0.6572585191E-01 0.1917353183E-10 0.6807320376E-01 0.2336954467E-10 0.7042055561E-01 0.2809026559E-10 0.7276790747E-01 0.3335846467E-10 0.7511525932E-01 0.3919526243E-10 0.7746261117E-01 0.4561995560E-10 0.7980996303E-01 0.5264984801E-10 0.8215731488E-01 0.6030008745E-10 0.8450466674E-01 0.6858350945E-10 0.8685201859E-01 0.7751048885E-10 0.8919937044E-01 0.8708880036E-10 0.9154672230E-01 0.9732348934E-10 0.9389407415E-01 0.1082167546E-09 0.9624142601E-01 0.1197678453E-09 0.9858877786E-01 0.1319729763E-09 0.1009361297 0.1448252675E-09 0.1032834816 0.1583147187E-09 0.1056308334 0.1724282440E-09 0.1079781853 0.1871498180E-09 0.1103255371 0.2024608625E-09 0.1126728890 0.2183412427E-09 0.1150202408 0.2347721180E-09 0.1173675927 0.2517461535E-09 0.1197149445 0.2693233696E-09 0.1220622964 0.2886481145E-09 0.1244096483 0.5823810965E-09 0.1267570001 0.1202328700E-08 0.1291043520 0.2043188076E-08 0.1314517038 0.3101498447E-08 0.1337990557 0.4373223148E-08 0.1361464075 0.5853454662E-08 0.1384937594 0.7536393107E-08 0.1408411112 0.9415351679E-08 0.1431884631 0.1148277002E-07 0.1455358149 0.1373023227E-07 0.1478831668 0.1614848889E-07 0.1502305186 0.1872748214E-07 0.1525778705 0.2145637492E-07 0.1549252223 0.2432358302E-07 0.1572725742 0.2731681067E-07 0.1596199261 0.3042308936E-07 0.1619672779 0.3362881978E-07 0.1643146298 0.3691981696E-07 0.1666619816 0.4028135836E-07 0.1690093335 0.4369823494E-07 0.1713566853 0.4715480505E-07 0.1737040372 0.5063505104E-07 0.1760513890 0.5412263851E-07 0.1783987409 0.5760097802E-07 0.1807460927 0.6105328917E-07 0.1830934446 0.6446266689E-07 0.1854407964 0.6781214980E-07 0.1877881483 0.7108479046E-07 0.1901355002 0.7426372739E-07 0.1924828520 0.7733225866E-07 0.1948302039 0.8027391689E-07 0.1971775557 0.8307254544E-07 0.1995249076 0.8571237567E-07 0.2018722594 0.8817810499E-07 0.2042196113 0.9045497564E-07 0.2065669631 0.9252885385E-07 0.2089143150 0.9438630919E-07 0.2112616668 0.9601469409E-07 0.2136090187 0.9740222305E-07 0.2159563705 0.9853805153E-07 0.2183037224 0.9941235419E-07 0.2206510743 0.1000164023E-06 0.2229984261 0.1003426403E-06 0.2253457780 0.1003847606E-06 0.2276931298 0.1001377776E-06 0.2300404817 0.9959809944E-07 0.2323878335 0.9876359821E-07 0.2347351854 0.9763367779E-07 0.2370825372 0.9620933958E-07 0.2394298891 0.9449324557E-07 0.2417772409 0.9248977874E-07 0.2441245928 0.9020510053E-07 0.2464719446 0.8764720518E-07 0.2488192965 0.8482597083E-07 0.2511666484 0.8175320705E-07 0.2535140002 0.7844269889E-07 0.2558613521 0.7491024698E-07 0.2582087039 0.7117370381E-07 0.2605560558 0.6725300596E-07 0.2629034076 0.6317020213E-07 0.2652507595 0.5894947698E-07 0.2675981113 0.5461717066E-07 0.2699454632 0.5020179415E-07 0.2722928150 0.4573404031E-07 0.2746401669 0.4124679101E-07 0.2769875187 0.3677512041E-07 0.2793348706 0.3235629514E-07 0.2816822225 0.2802977205E-07 0.2840295743 0.2383719502E-07 0.2863769262 0.1982239310E-07 0.2887242780 0.1603138374E-07 0.2910716299 0.1251238798E-07 0.2934189817 0.9315869020E-08 0.2957663336 0.6494616106E-08 0.2981136854 0.4103914845E-08 0.3004610373 0.2201885995E-08 0.3028083891 0.8501592145E-09 0.3051557410 0.1151970498E-09 0.3075030928 0.6981398417E-10 0.3098504447 0.3479834419E-09 0.3121977966 0.9957650617E-09 0.3145451484 0.3057505040E-08 0.3168925003 0.6197235283E-08 0.3192398521 0.1037430164E-07 0.3215872040 0.1560059832E-07 0.3239345558 0.2193086389E-07 0.3262819077 0.2943646651E-07 0.3286292595 0.3819258268E-07 0.3309766114 0.4827466406E-07 0.3333239632 0.5975784407E-07 0.3356713151 0.7271697146E-07 0.3380186669 0.8722669435E-07 0.3403660188 0.1033614895E-06 0.3427133707 0.1211956362E-06 0.3450607225 0.1200496293E-06 0.3474080744 0.5740636066E-07 0.3497554262 0.1790899735E-07 0.3521027781 0.3668271327E-08 0.3544501299 0.3999458144E-08 0.3567974818 0.4349313176E-08 0.3591448336 0.4718276411E-08 0.3614921855 0.5106775775E-08 0.3638395373 0.5515226148E-08 0.3661868892 0.5944028388E-08 0.3685342410 0.6393568363E-08 0.3708815929 0.6864215980E-08 0.3732289448 0.7356324232E-08 0.3755762966 0.7870228254E-08 0.3779236485 0.8406244384E-08 0.3802710003 0.8964669250E-08 0.3826183522 0.9545778865E-08 0.3849657040 0.1014982774E-07 0.3873130559 0.1077704804E-07 0.3896604077 0.1142764870E-07 0.3920077596 0.1210181466E-07 0.3943551114 0.1279970604E-07 0.3967024633 0.1352145738E-07 0.3990498151 0.1426717691E-07 0.4013971670 0.1503694585E-07 0.4037445189 0.1583081773E-07 0.4060918707 0.1664881777E-07 0.4084392226 0.1749094226E-07 0.4107865744 0.1835715802E-07 0.4131339263 0.1924740182E-07 0.4154812781 0.2016158000E-07 0.4178286300 0.2109956790E-07 0.4201759818 0.2206120959E-07 0.4225233337 0.2304631740E-07 0.4248706855 0.2405467169E-07 0.4272180374 0.2508602056E-07 0.4295653892 0.2614007962E-07 0.4319127411 0.2721653184E-07 0.4342600929 0.2831502743E-07 0.4366074448 0.2943518379E-07 0.4389547967 0.3057658544E-07 0.4413021485 0.3173878410E-07 0.4436495004 0.3292129878E-07 0.4459968522 0.3412361587E-07 0.4483442041 0.3534518938E-07 0.4506915559 0.3658544116E-07 0.4530389078 0.3784376120E-07 0.4553862596 0.3911950797E-07 0.4577336115 0.4041200883E-07 0.4600809633 0.4172056048E-07 0.4624283152 0.4304442949E-07 0.4647756670 0.4438285279E-07 0.4671230189 0.4573503838E-07 0.4694703708 0.4710016590E-07 0.4718177226 0.4847738738E-07 0.4741650745 0.4986582802E-07 0.4765124263 0.5126458695E-07 0.4788597782 0.5267273814E-07 0.4812071300 0.5408933126E-07 0.4835544819 0.5551339266E-07 0.4859018337 0.5694392636E-07 0.4882491856 0.5837991507E-07 0.4905965374 0.5982032128E-07 0.4929438893 0.6126408839E-07 0.4952912411 0.6271014187E-07 0.4976385930 0.6415739043E-07 0.4999859449 0.6560472727E-07 0.5023332967 0.6705103137E-07 0.5046806486 0.6849516874E-07 0.5070280004 0.6993599379E-07 0.5093753523 0.7137235064E-07 0.5117227041 0.7280307458E-07 0.5140700560 0.7422699339E-07 0.5164174078 0.7564292882E-07 0.5187647597 0.7704969803E-07 0.5211121115 0.7844611504E-07 0.5234594634 0.7983099224E-07 0.5258068152 0.8120314186E-07 0.5281541671 0.8256137749E-07 0.5305015190 0.8390451557E-07 0.5328488708 0.8523137694E-07 0.5351962227 0.8654078835E-07 0.5375435745 0.8783158397E-07 0.5398909264 0.8910260694E-07 0.5422382782 0.9035271086E-07 0.5445856301 0.9158076132E-07 0.5469329819 0.9278563739E-07 0.5492803338 0.9396623314E-07 0.5516276856 0.9512145908E-07 0.5539750375 0.9625024364E-07 0.5563223893 0.9735153463E-07 0.5586697412 0.9842430064E-07 0.5610170931 0.9946753243E-07 0.5633644449 0.1004802443E-06 0.5657117968 0.1014614756E-06 0.5680591486 0.9381394322E-07 0.5704065005 0.8488441324E-07 0.5727538523 0.7671966018E-07 0.5751012042 0.6927599489E-07 0.5774485560 0.6251036095E-07 0.5797959079 0.5638050359E-07 0.5821432597 0.5084513602E-07 0.5844906116 0.4586410273E-07 0.5868379634 0.4139853972E-07 0.5891853153 0.3741103086E-07 0.5915326672 0.3386576017E-07 0.5938800190 0.3072865916E-07 0.5962273709 0.2796754877E-07 0.5985747227 0.2555227509E-07 0.6009220746 0.2345483807E-07 0.6032694264 0.2164951258E-07 0.6056167783 0.2011296088E-07 0.6079641301 0.1882433582E-07 0.6103114820 0.1776537396E-07 0.6126588338 0.1692047793E-07 0.6150061857 0.1627678729E-07 0.6173535375 0.1582423744E-07 0.6197008894 0.1555560592E-07 0.6220482413 0.1546654582E-07 0.6243952716 0.1551941837E-07 0.6267423020 0.1568290982E-07 0.6290893324 0.1595859546E-07 0.6314363628 0.1634910580E-07 0.6337833932 0.1685811273E-07 0.6361304236 0.1749031016E-07 0.6384774540 0.1825138922E-07 0.6408244844 0.1914800821E-07 0.6431715148 0.2018775724E-07 0.6455185452 0.2137911785E-07 0.6478655756 0.2273141772E-07 0.6502126060 0.2425478058E-07 0.6525596364 0.2596007167E-07 0.6549066668 0.2785883878E-07 0.6572536971 0.2996324923E-07 0.6596007275 0.3228602300E-07 0.6619477579 0.3484036222E-07 0.6642947883 0.3763987738E-07 0.6666418187 0.4069851044E-07 0.6689888491 0.4403045527E-07 0.6713358795 0.4765007555E-07 0.6736829099 0.5157182059E-07 0.6760299403 0.5581013930E-07 0.6783769707 0.6037939261E-07 0.6807240011 0.6529376474E-07 0.6830710315 0.7056717352E-07 0.6854180619 0.7621318008E-07 0.6877650922 0.8224489829E-07 0.6901121226 0.8867490399E-07 0.6924591530 0.9551514451E-07 0.6948061834 0.1027768484E-06 0.6971532138 0.1093298216E-06 0.6995002442 0.1121426207E-06 0.7018472746 0.1150528249E-06 0.7041943050 0.1180604576E-06 0.7065413354 0.1211654259E-06 0.7088883658 0.1243675138E-06 0.7112353962 0.1276663763E-06 0.7135824266 0.1310615334E-06 0.7159294570 0.1345523643E-06 0.7182764874 0.1381381028E-06 0.7206235177 0.1418178319E-06 0.7229705481 0.1455904799E-06 0.7253175785 0.1494548161E-06 0.7276646089 0.1534094479E-06 0.7300116393 0.1574528170E-06 0.7323586697 0.1615831978E-06 0.7347057001 0.1657986946E-06 0.7370527305 0.1700972406E-06 0.7393997609 0.1744765967E-06 0.7417467913 0.1789343514E-06 0.7440938217 0.1834679204E-06 0.7464408521 0.1880745475E-06 0.7487878825 0.1927513060E-06 0.7511349128 0.1974951002E-06 0.7534819432 0.2023026677E-06 0.7558289736 0.2071705824E-06 0.7581760040 0.2115099676E-06 0.7605230344 0.2143997838E-06 0.7628700648 0.2172789009E-06 0.7652170952 0.2201431806E-06 0.7675641256 0.2229884117E-06 0.7699111560 0.2258103168E-06 0.7722581864 0.2286045595E-06 0.7746052168 0.2313667517E-06 0.7769522472 0.2340924620E-06 0.7792992776 0.2367772234E-06 0.7816463080 0.2394165424E-06 0.7839933383 0.2420059079E-06 0.7863403687 0.2445408006E-06 0.7886873991 0.2470167027E-06 0.7910344295 0.2494291079E-06 0.7933814599 0.2517735317E-06 0.7957284903 0.2540455223E-06 0.7980755207 0.2562406708E-06 0.8004225511 0.2583546228E-06 0.8027695815 0.2603830895E-06 0.8051166119 0.2623218592E-06 0.8074636423 0.2641668089E-06 0.8098106727 0.2659139160E-06 0.8121577031 0.2675592702E-06 0.8145047335 0.2690990857E-06 0.8168517638 0.2705297129E-06 0.8191987942 0.2718476504E-06 0.8215458246 0.2730495575E-06 0.8238928550 0.2741322657E-06 0.8262398854 0.2750927906E-06 0.8285869158 0.2759283441E-06 0.8309339462 0.2766363456E-06 0.8332809766 0.2772144333E-06 0.8356280070 0.2776604759E-06 0.8379750374 0.2779725823E-06 0.8403220678 0.2781491131E-06 0.8426690982 0.2781886894E-06 0.8450161286 0.2780902028E-06 0.8473631589 0.2778528236E-06 0.8497101893 0.2774760089E-06 0.8520572197 0.2769595094E-06 0.8544042501 0.2763033759E-06 0.8567512805 0.2755079636E-06 0.8590983109 0.2745739368E-06 0.8614453413 0.2735022707E-06 0.8637923717 0.2722942531E-06 0.8661394021 0.2709514835E-06 0.8684864325 0.2694758718E-06 0.8708334629 0.2678696339E-06 0.8731804933 0.2661352869E-06 0.8755275237 0.2642756412E-06 0.8778745541 0.2622937918E-06 0.8802215844 0.2601931069E-06 0.8825686148 0.2579772150E-06 0.8849156452 0.2556499903E-06 0.8872626756 0.2532155362E-06 0.8896097060 0.2506781668E-06 0.8919567364 0.2480423876E-06 0.8943037668 0.2453128748E-06 0.8966507972 0.2424944528E-06 0.8989978276 0.2395920722E-06 0.9013448580 0.2366107862E-06 0.9036918884 0.2335557269E-06 0.9060389188 0.2304320824E-06 0.9083859492 0.2272450734E-06 0.9107329796 0.2239999309E-06 0.9130800099 0.2207018747E-06 0.9154270403 0.2173560930E-06 0.9177740707 0.2139677237E-06 0.9201211011 0.2105418370E-06 0.9224681315 0.2070834197E-06 0.9248151619 0.2035973613E-06 0.9271621923 0.2000884425E-06 0.9295092227 0.1965613247E-06 0.9318562531 0.1930205424E-06 0.9342032835 0.1894704963E-06 0.9365503139 0.1859154490E-06 0.9388973443 0.1823595217E-06 0.9412443747 0.1788066927E-06 0.9435914050 0.1752607965E-06 0.9459384354 0.1717255250E-06 0.9482854658 0.1682044286E-06 0.9506324962 0.1647009183E-06 0.9529795266 0.1612182684E-06 0.9553265570 0.1577596197E-06 0.9576735874 0.1543279826E-06 0.9600206178 0.1509262402E-06 0.9623676482 0.1475571519E-06 0.9647146786 0.1442233562E-06 0.9670617090 0.1409273740E-06 0.9694087394 0.1376716110E-06 0.9717557698 0.1344583600E-06 0.9741028002 0.1312898036E-06 0.9764498305 0.1281680153E-06 0.9787968609 0.1250949615E-06 0.9811438913 0.1220725030E-06 0.9834909217 0.1191023952E-06 0.9858379521 0.1161862902E-06 0.9881849825 0.1133257366E-06 0.9905320129 0.1105221807E-06 0.9928790433 0.1077769670E-06 0.9952260737 0.1050913390E-06 0.9975731041 0.1024664399E-06 0.9999201345 0.9990331327E-07 1.002267165 0.9740290449E-07 1.004614195 0.9496606151E-07 1.006961226 0.9259353650E-07 1.009308256 0.9028598745E-07 1.011655286 0.8804398006E-07 1.014002317 0.8586799002E-07 1.016349347 0.8418084609E-07 1.018696378 0.8504286388E-07 1.021043408 0.8588694512E-07 1.023390438 0.8671236496E-07 1.025737469 0.8751840952E-07 1.028084499 0.8830437688E-07 1.030431530 0.8906957814E-07 1.032778560 0.8981333839E-07 1.035125590 0.9053499767E-07 1.037472621 0.9123391193E-07 1.039819651 0.9190945402E-07 1.042166682 0.9256101458E-07 1.044513712 0.9318800293E-07 1.046860742 0.9378984798E-07 1.049207773 0.9436599908E-07 1.051554803 0.9491592681E-07 1.053901834 0.9543912383E-07 1.056248864 0.9593510562E-07 1.058595894 0.9640341122E-07 1.060942925 0.9684360392E-07 1.063289955 0.9725527197E-07 1.065636985 0.9763802915E-07 1.067984016 0.9799151542E-07 1.070331046 0.9831539743E-07 1.072678077 0.9860936906E-07 1.075025107 0.9887315191E-07 1.077372137 0.9910649568E-07 1.079719168 0.9930917861E-07 1.082066198 0.9948100779E-07 1.084413229 0.9962181949E-07 1.086760259 0.9973147940E-07 1.089107289 0.9980988282E-07 1.091454320 0.9985695486E-07 1.093801350 0.9987265054E-07 1.096152861 0.9934684571E-07 1.098504372 0.9778073976E-07 1.100855883 0.9520789103E-07 1.103207394 0.9168304170E-07 1.105558905 0.8728045596E-07 1.107910415 0.8209181246E-07 1.110261926 0.7622382456E-07 1.112613437 0.6979575970E-07 1.114964948 0.6293700624E-07 1.117316459 0.5920134914E-07 1.119667970 0.6108067078E-07 1.122019481 0.6315971108E-07 1.124370992 0.6544330008E-07 1.126722503 0.6793630198E-07 1.129074013 0.7064351288E-07 1.131425524 0.7356954717E-07 1.133777035 0.7671871165E-07 1.136128546 0.8009486611E-07 1.138480057 0.8370126880E-07 1.140831568 0.8754040504E-07 1.143183079 0.9161379694E-07 1.145534590 0.9592179163E-07 1.147886101 0.1004633254E-06 1.150237611 0.1052356605E-06 1.152589122 0.1102340904E-06 1.154940633 0.1154516115E-06 1.157292144 0.1208785545E-06 1.159643655 0.1265021748E-06 1.161995166 0.1323061957E-06 1.164346677 0.1382703050E-06 1.166698188 0.1443696038E-06 1.169049699 0.1505740141E-06 1.171401209 0.1568476543E-06 1.173752720 0.1631482071E-06 1.176104231 0.1694263134E-06 1.178455742 0.1756250518E-06 1.180807253 0.1816795864E-06 1.183158764 0.1875171043E-06 1.185510275 0.1930572021E-06 1.187861786 0.1982129181E-06 1.190213296 0.2028926299E-06 1.192564807 0.2070030187E-06 1.194916318 0.2104532142E-06 1.197267829 0.2131600479E-06 1.199619340 0.2150540625E-06 1.201970851 0.2160855972E-06 1.204322362 0.2162300086E-06 1.206673873 0.2154910401E-06 1.209025384 0.2139015994E-06 1.211376894 0.2115217124E-06 1.213728405 0.2084340266E-06 1.216079916 0.2047377044E-06 1.218431427 0.2005417423E-06 1.220782938 0.1959586544E-06 1.223134449 0.1910991682E-06 1.225485960 0.1860682420E-06 1.227837471 0.1809624291E-06 1.230188982 0.1758684252E-06 1.232540492 0.1708625558E-06 1.234892003 0.1660109443E-06 1.237243514 0.1613701330E-06 1.239595025 0.1569879760E-06 1.241946536 0.1529046696E-06 1.244298047 0.1491538286E-06 1.246649558 0.1457635480E-06 1.249001069 0.1427574146E-06 1.251352580 0.1401554474E-06 1.253704090 0.1379749589E-06 1.256055601 0.1362313332E-06 1.258407112 0.1349387229E-06 1.260758623 0.1341106676E-06 1.263110134 0.1337606371E-06 1.265461645 0.1339025050E-06 1.267813156 0.1345509545E-06 1.270164667 0.1357218205E-06 1.272516177 0.1374323704E-06 1.274867688 0.1397015261E-06 1.277219199 0.1425500272E-06 1.279570710 0.1460005384E-06 1.281922221 0.1500776992E-06 1.284273732 0.1548081180E-06 1.286625243 0.1602203087E-06 1.288976754 0.1663445703E-06 1.291328265 0.1732128076E-06 1.293679775 0.1808582929E-06 1.296031286 0.1893153667E-06 1.298382797 0.1986190760E-06 1.300734308 0.2088047499E-06 1.303085819 0.2199075089E-06 1.305437330 0.2319617094E-06 1.307788841 0.2450003199E-06 1.310140352 0.2590542290E-06 1.312491863 0.2741514861E-06 1.314843373 0.2903164732E-06 1.317194884 0.3075690110E-06 1.319546395 0.3259234020E-06 1.321897906 0.3453874143E-06 1.324249417 0.3659612147E-06 1.326600928 0.3876362601E-06 1.328952439 0.4103941605E-06 1.331303950 0.4342055328E-06 1.333655461 0.4590288667E-06 1.336006971 0.4848094335E-06 1.338358482 0.5114782728E-06 1.340709993 0.5389513017E-06 1.343061504 0.5671285994E-06 1.345413015 0.5958939310E-06 1.347764526 0.6171367358E-06 1.350116037 0.6293893477E-06 1.352467548 0.6418588064E-06 1.354819059 0.6545393124E-06 1.357170569 0.6674246208E-06 1.359522080 0.6805080415E-06 1.361873591 0.6937824400E-06 1.364225102 0.7072402410E-06 1.366576613 0.7208734321E-06 1.368928124 0.7346735713E-06 1.371279635 0.7486317941E-06 1.373631146 0.7627388245E-06 1.375982656 0.7769849870E-06 1.378334167 0.7913602214E-06 1.380685678 0.8058540999E-06 1.383037189 0.8204558473E-06 1.385388700 0.8351543634E-06 1.387740211 0.8499382496E-06 1.390091722 0.8647958385E-06 1.392443233 0.8797152283E-06 1.394794744 0.8946843215E-06 1.397146254 0.9096908699E-06 1.399497765 0.9247225251E-06 1.401849276 0.9397668979E-06 1.404200787 0.9548116266E-06 1.406552298 0.9698444568E-06 1.408903809 0.9848533354E-06 1.411255320 0.9998265225E-06 1.413606831 0.1014752725E-05 1.415958342 0.1029621261E-05 1.418309852 0.1044422256E-05 1.420661363 0.1059146897E-05 1.423012874 0.1073787739E-05 1.425364385 0.1088339112E-05 1.427715896 0.1102797636E-05 1.430067407 0.1117162903E-05 1.432418918 0.1131438401E-05 1.434770429 0.1145632755E-05 1.437121940 0.1159761467E-05 1.439473450 0.1173849375E-05 1.441824961 0.1187934222E-05 1.444176472 0.1202071953E-05 1.446527983 0.1216344803E-05 1.448879494 0.1230873999E-05 1.451231005 0.1245840395E-05 1.453582516 0.1261519205E-05 1.455934027 0.1278340821E-05 1.458285537 0.1297001640E-05 1.460637048 0.1318673483E-05 1.462988559 0.1345406110E-05 1.465340070 0.1380867192E-05 1.467691581 0.1431397035E-05 1.470043092 0.1506120993E-05 1.472394603 0.1528409963E-05 1.474746114 0.1542106554E-05 1.477097625 0.1555464226E-05 1.479449135 0.1568377623E-05 1.481800646 0.1580715281E-05 1.484152157 0.1592310895E-05 1.486503668 0.1602951232E-05 1.488855179 0.1612359584E-05 1.491206690 0.1620173801E-05 1.493558201 0.1625919082E-05 1.495909712 0.1628979329E-05 1.498261223 0.1628579734E-05 1.500612733 0.1623808806E-05 1.502964244 0.1613722273E-05 1.505315755 0.1597552962E-05 1.507667266 0.1574965572E-05 1.510018777 0.1546198229E-05 1.512370288 0.1511977277E-05 1.514721799 0.1473275170E-05 1.517073310 0.1431077272E-05 1.519424821 0.1386249936E-05 1.521776331 0.1339501623E-05 1.524127842 0.1291394038E-05 1.526479353 0.1278061579E-05 1.528830864 0.1272268738E-05 1.531182375 0.1265876876E-05 1.533533886 0.1258897351E-05 1.535885397 0.1251341551E-05 1.538236908 0.1243221008E-05 1.540588418 0.1234547479E-05 1.542939929 0.1225333003E-05 1.545291440 0.1215589958E-05 1.547642951 0.1205331084E-05 1.549994462 0.1194569518E-05 1.552345973 0.1183318801E-05 1.554697484 0.1171592892E-05 1.557048995 0.1159406165E-05 1.559400506 0.1146773414E-05 1.561752016 0.1133709839E-05 1.564103527 0.1120231040E-05 1.566455038 0.1106352999E-05 1.568806549 0.1092092068E-05 1.571158060 0.1077464951E-05 1.573509571 0.1062488675E-05 1.575861082 0.1047180577E-05 1.578212593 0.1031558274E-05 1.580564104 0.1015639637E-05 1.582915614 0.9994427686E-06 1.585267125 0.9829859692E-06 1.587618636 0.9662877117E-06 1.589970147 0.9493666105E-06 1.592321658 0.9322413916E-06 1.594673169 0.9149308612E-06 1.597024680 0.8974538750E-06 1.599376191 0.8798293063E-06 1.601727702 0.8620760146E-06 1.604079212 0.8442128135E-06 1.606430723 0.8262584394E-06 1.608782234 0.8082315195E-06 1.611133745 0.7901505408E-06 1.613485256 0.7720338190E-06 1.615836767 0.7538994678E-06 1.618188278 0.7357653688E-06 1.620539789 0.7176491423E-06 1.622891299 0.6995681181E-06 1.625242810 0.6815393075E-06 1.627594321 0.6635793764E-06 1.629945832 0.6457046185E-06 1.632297343 0.6279309304E-06 1.634648854 0.6102737870E-06 1.637000365 0.5927482183E-06 1.639351876 0.5753687879E-06 1.641703387 0.5581495718E-06 1.644054897 0.5411041389E-06 1.646406408 0.5242455335E-06 1.648757919 0.5075862580E-06 1.651109430 0.4911382582E-06 1.653460941 0.4749129091E-06 1.655812452 0.4589210030E-06 1.658163963 0.4431727387E-06 1.660515474 0.4276777126E-06 1.662866985 0.4124449107E-06 1.665218495 0.3974827034E-06 1.667570006 0.3827988408E-06 1.669921517 0.3684004500E-06 1.672273028 0.3542940341E-06 1.674624539 0.3404854730E-06 1.676976050 0.3269800251E-06 1.679327561 0.3137823311E-06 1.681679072 0.3008964195E-06 1.684030583 0.2883257130E-06 1.686382093 0.2760730365E-06 1.688733604 0.2641406271E-06 1.691085115 0.2525301447E-06 1.693436626 0.2412426843E-06 1.695788137 0.2302787894E-06 1.698139648 0.2196384667E-06 1.700491159 0.2093212019E-06 1.702842670 0.1993259760E-06 1.705194180 0.1896512837E-06 1.707545691 0.1802951513E-06 1.709897202 0.1712551566E-06 1.712248713 0.1625284486E-06 1.714600224 0.1541117681E-06 1.716951735 0.1460014694E-06 1.719303246 0.1381935414E-06 1.721654757 0.1306836299E-06 1.724006268 0.1234670596E-06 1.726357778 0.1165388566E-06 1.728709289 0.1098937713E-06 1.731060800 0.1035263003E-06 1.733412311 0.9743070902E-07 1.735763822 0.9160105423E-07 1.738115333 0.8603120583E-07 1.740466844 0.8071486862E-07 1.742818355 0.7564560369E-07 1.745169866 0.7081684931E-07 1.747521376 0.6622194127E-07 1.749872887 0.6185413279E-07 1.752224398 0.5770661365E-07 1.754575909 0.5377252881E-07 1.756927420 0.5004499618E-07 1.759278931 0.4651712371E-07 1.761630442 0.4318202573E-07 1.763981953 0.4003283839E-07 1.766333464 0.3706273432E-07 1.768684974 0.3426493645E-07 1.771036485 0.3163273085E-07 1.773387996 0.2915947882E-07 1.775739507 0.2683862803E-07 1.778091018 0.2466372272E-07 1.780442529 0.2262841312E-07 1.782794040 0.2072646389E-07 1.785145551 0.1895176175E-07 1.787497061 0.1729832220E-07 1.789848572 0.1576029554E-07 1.792200083 0.1433197187E-07 1.794551594 0.1300778554E-07 1.796903105 0.1178231869E-07 1.799254616 0.1176431509E-07 1.801606127 0.1453050673E-07 1.803957638 0.1706067229E-07 1.806309149 0.1535936757E-07 1.808660659 0.1346552082E-07 1.811012170 0.1173746414E-07 1.813363681 0.1017545221E-07 1.815715192 0.8771131214E-08 1.818066703 0.7514820206E-08 1.820418214 0.6396608355E-08 1.822769725 0.5406649109E-08 1.825121236 0.4535272882E-08 1.827472747 0.3773044351E-08 1.829824257 0.3110799052E-08 1.832175768 0.2539670876E-08 1.834527279 0.2051114974E-08 1.836878790 0.1636928013E-08 1.839230301 0.1349958539E-08 1.841581812 0.1175470745E-08 1.843933323 0.1023567829E-08 1.846284834 0.8920274658E-09 1.848636345 0.7787794672E-09 1.850987855 0.6819074728E-09 1.853339366 0.5996508826E-09 1.855690877 0.5304069815E-09 1.858042388 0.4286223108E-09 1.860393899 0.2572115540E-09 1.862745410 0.1462138182E-09 1.865096921 0.7896555101E-10 1.867448432 0.4156110751E-10 1.869799942 0.2293519666E-10 1.872151453 0.1498577437E-10 1.874502964 0.1291668591E-10 1.876849995 0.1954245666E-10 1.879197025 0.4801929533E-10 1.881544055 0.1224831516E-09 1.883891086 0.2819442963E-09 1.886238116 0.3757614241E-09 1.888585147 0.4080945311E-09 1.890932177 0.4478956648E-09 1.893279207 0.4959590122E-09 1.895626238 0.5531884147E-09 1.897973268 0.6205925029E-09 1.900320299 0.6992792941E-09 1.902667329 0.7904502931E-09 1.905014359 0.8953941404E-09 1.907361390 0.1015479858E-08 1.909708420 0.1152149742E-08 1.912055451 0.1306911964E-08 1.914402481 0.1481332933E-08 1.916749511 0.1677029485E-08 1.919096542 0.1895660967E-08 1.921443572 0.2138921278E-08 1.923790603 0.2408530930E-08 1.926137633 0.2706229216E-08 1.928484663 0.3033766528E-08 1.930831694 0.3392896913E-08 1.933178724 0.3785370927E-08 1.935525754 0.4212928842E-08 1.937872785 0.4677294279E-08 1.940219815 0.5180168312E-08 1.942566846 0.5723224098E-08 1.944913876 0.6308102067E-08 1.947260906 0.6936405725E-08 1.949607937 0.7609698078E-08 1.951954967 0.8329498703E-08 1.954301998 0.9097281477E-08 1.956649028 0.9914472962E-08 1.958996058 0.1078245143E-07 1.961343089 0.1170254650E-07 1.963690119 0.1267603939E-07 1.966037150 0.1370416371E-07 1.968384180 0.1478810672E-07 1.970731210 0.1592901109E-07 1.973078241 0.1712797701E-07 1.975425271 0.1838606464E-07 1.977772302 0.1970429676E-07 1.980119332 0.2108366169E-07 1.982466362 0.2252511621E-07 1.984813393 0.2402958858E-07 1.987160423 0.2559798155E-07 1.989507454 0.2723117521E-07 1.991854484 0.2893002978E-07 1.994201514 0.3069538810E-07 1.996548545 0.3252807803E-07 1.998895575 0.3442891440E-07 2.001242605 0.3639870082E-07 2.003589636 0.3843823108E-07 2.005936666 0.4054829020E-07 2.008283697 0.4272965525E-07 2.010630727 0.4498309567E-07 2.012977757 0.4730937341E-07 2.015324788 0.4970924261E-07 2.017671818 0.5218344909E-07 2.020018849 0.5473272940E-07 2.022365879 0.5735780972E-07 2.024712909 0.6005940440E-07 2.027059940 0.6283821431E-07 2.029406970 0.6569492490E-07 2.031754001 0.6863020408E-07 2.034101031 0.7164469990E-07 2.036448061 0.7473903799E-07 2.038795092 0.7791381882E-07 2.041142122 0.8116961476E-07 2.043489153 0.8450696690E-07 2.045836183 0.8792638165E-07 2.048183213 0.9142832700E-07 2.050530244 0.9501322855E-07 2.052877274 0.9868146493E-07 2.055224304 0.1024333628E-06 2.057571335 0.1062691913E-06 2.059918365 0.1101891548E-06 2.062265396 0.1141933854E-06 2.064612426 0.1182819328E-06 2.066959456 0.1224547522E-06 2.069306487 0.1267116878E-06 2.071653517 0.1310524522E-06 2.074000548 0.1354765977E-06 2.076347578 0.1399834757E-06 2.078694608 0.1445721794E-06 2.081041639 0.1492414582E-06 2.083388669 0.1539895872E-06 2.085735700 0.1588141600E-06 2.088082730 0.1637117490E-06 2.090429760 0.1686773190E-06 2.092776791 0.1737031677E-06 2.095123821 0.1787768894E-06 2.097470852 0.1838771921E-06 2.099817882 0.1889646439E-06 2.102164912 0.1939597725E-06 2.104511943 0.1986910247E-06 2.106858973 0.2028040877E-06 2.109206004 0.2058208503E-06 2.111553034 0.2076488036E-06 2.113900064 0.2086604239E-06 2.116247095 0.2091875617E-06 2.118594125 0.2093994208E-06 2.120941155 0.2093755163E-06 2.123288186 0.2091555504E-06 2.125635216 0.2087612372E-06 2.127982247 0.2082056365E-06 2.130329277 0.2074973871E-06 2.132676307 0.2066427664E-06 2.135023338 0.2056467592E-06 2.137370368 0.2045136443E-06 2.139717399 0.2032473305E-06 2.142064429 0.2018515576E-06 2.144411459 0.2003300180E-06 2.146758490 0.1986864329E-06 2.149105520 0.1969245988E-06 2.151452551 0.1950484162E-06 2.153799581 0.1930619058E-06 2.156146611 0.1909692164E-06 2.158493642 0.1887746270E-06 2.160840672 0.1864825452E-06 2.163187703 0.1840975022E-06 2.165534733 0.1816241452E-06 2.167881763 0.1790672292E-06 2.170228794 0.1764316069E-06 2.172575824 0.1737222171E-06 2.174922855 0.1709440736E-06 2.177269885 0.1681022525E-06 2.179616915 0.1652018799E-06 2.181963946 0.1622481182E-06 2.184310976 0.1592461540E-06 2.186658006 0.1562011841E-06 2.189005037 0.1531184026E-06 2.191352067 0.1500029879E-06 2.193699098 0.1468600894E-06 2.196046128 0.1436948153E-06 2.198393158 0.1405122196E-06 2.200740189 0.1373172904E-06 2.203087219 0.1341149378E-06 2.205434250 0.1309099826E-06 2.207781280 0.1277071456E-06 2.210128310 0.1245110370E-06 2.212475341 0.1213261468E-06 2.214822371 0.1181568350E-06 2.217169402 0.1150073235E-06 2.219516432 0.1118816877E-06 2.221863462 0.1087838493E-06 2.224210493 0.1057175692E-06 2.226557523 0.1026864420E-06 2.228904554 0.9969389015E-07 2.231251584 0.9674315973E-07 2.233598614 0.9383731634E-07 2.235945645 0.9097924206E-07 2.238292675 0.8817163303E-07 2.240639706 0.8541699778E-07 2.242986736 0.8271765631E-07 2.245333766 0.8007573991E-07 2.247680797 0.7749319169E-07 2.250027827 0.7497176781E-07 2.252374857 0.7251303943E-07 2.254721888 0.7011839533E-07 2.257068918 0.6778904518E-07 2.259415949 0.6552602347E-07 2.261762979 0.6333019402E-07 2.264110009 0.6120225511E-07 2.266457040 0.5914274515E-07 2.268804070 0.5715204885E-07 2.271151101 0.5523040390E-07 2.273498131 0.5337790815E-07 2.275845161 0.5159452712E-07 2.278192192 0.4988010193E-07 2.280539222 0.4823435760E-07 2.282886253 0.4665691159E-07 2.285233283 0.4514728266E-07 2.287580313 0.4370489984E-07 2.289927344 0.4232911171E-07 2.292274374 0.4101919568E-07 2.294621405 0.3977436740E-07 2.296968435 0.3859379024E-07 2.299315465 0.3747658467E-07 2.301662496 0.3642183770E-07 2.304009526 0.3542861213E-07 2.306356557 0.3449595571E-07 2.308703587 0.3362291009E-07 2.311050617 0.3280851961E-07 2.313397648 0.3205183969E-07 2.315744678 0.3135194510E-07 2.318091708 0.3070793773E-07 2.320438739 0.3011895410E-07 2.322785769 0.2958417239E-07 2.325132800 0.2910281904E-07 2.327479830 0.2867417492E-07 2.329826860 0.2829758098E-07 2.332173891 0.2797244333E-07 2.334520921 0.2769823785E-07 2.336867952 0.2747451420E-07 2.339214982 0.2730089921E-07 2.341562012 0.2717709972E-07 2.343909043 0.2710290479E-07 2.346256073 0.2707818730E-07 0.000000000 0.3064847410E-09 0.2347351854E-02 0.3104374017E-09 0.4694703708E-02 0.3224464917E-09 0.7042055561E-02 0.3429651867E-09 0.9389407415E-02 0.3727482878E-09 0.1173675927E-01 0.4128514946E-09 0.1408411112E-01 0.4646304061E-09 0.1643146298E-01 0.5297392658E-09 0.1877881483E-01 0.6101294711E-09 0.2112616668E-01 0.7080478642E-09 0.2347351854E-01 0.8260348238E-09 0.2582087039E-01 0.9669221723E-09 0.2816822225E-01 0.1133830911E-08 0.3051557410E-01 0.1330168787E-08 0.3286292595E-01 0.1559627708E-08 0.3521027781E-01 0.1826180976E-08 0.3755762966E-01 0.2134080375E-08 0.3990498151E-01 0.2487853060E-08 0.4225233337E-01 0.2892298274E-08 0.4459968522E-01 0.3352483848E-08 0.4694703708E-01 0.3873742491E-08 0.4929438893E-01 0.4461667839E-08 0.5164174078E-01 0.5122110251E-08 0.5398909264E-01 0.5861172333E-08 0.5633644449E-01 0.6685204176E-08 0.5868379634E-01 0.7600798280E-08 0.6103114820E-01 0.8614784160E-08 0.6337850005E-01 0.9734222603E-08 0.6572585191E-01 0.1096639958E-07 0.6807320376E-01 0.1231881976E-07 0.7042055561E-01 0.1379919965E-07 0.7276790747E-01 0.1541546035E-07 0.7511525932E-01 0.1717571982E-07 0.7746261117E-01 0.1908828474E-07 0.7980996303E-01 0.2116164198E-07 0.8215731488E-01 0.2340444946E-07 0.8450466674E-01 0.2241873469E-07 0.8685201859E-01 0.1967182852E-07 0.8919937044E-01 0.1706737883E-07 0.9154672230E-01 0.1461572198E-07 0.9389407415E-01 0.1232664084E-07 0.9624142601E-01 0.1020932432E-07 0.9858877786E-01 0.8272328639E-08 0.1009361297 0.6523540541E-08 0.1032834816 0.4970142518E-08 0.1056308334 0.3618580150E-08 0.1079781853 0.2474531669E-08 0.1103255371 0.1542879731E-08 0.1126728890 0.8276851454E-09 0.1150202408 0.3321614202E-09 0.1173675927 0.5864474248E-10 0.1197149445 0.8521195339E-11 0.1220622964 0.1811958288E-09 0.1244096483 0.3036497267E-09 0.1267570001 0.3228029251E-09 0.1291043520 0.3417647515E-09 0.1314517038 0.3608812178E-09 0.1337990557 0.3801549750E-09 0.1361464075 0.3995456359E-09 0.1384937594 0.4190000216E-09 0.1408411112 0.4384588655E-09 0.1431884631 0.4578590040E-09 0.1455358149 0.4771343363E-09 0.1478831668 0.4962163702E-09 0.1502305186 0.5150346128E-09 0.1525778705 0.5335169008E-09 0.1549252223 0.5515897085E-09 0.1572725742 0.5691784509E-09 0.1596199261 0.5862077918E-09 0.1619672779 0.6026019591E-09 0.1643146298 0.6182850698E-09 0.1666619816 0.6331814667E-09 0.1690093335 0.6472160650E-09 0.1713566853 0.6603147103E-09 0.1737040372 0.6724045470E-09 0.1760513890 0.6834143962E-09 0.1783987409 0.6932751433E-09 0.1807460927 0.7019201332E-09 0.1830934446 0.7092855742E-09 0.1854407964 0.7153109478E-09 0.1877881483 0.7199394243E-09 0.1901355002 0.7231182839E-09 0.1924828520 0.7247993407E-09 0.1948302039 0.7249393704E-09 0.1971775557 0.7235005384E-09 0.1995249076 0.7204508303E-09 0.2018722594 0.7157644801E-09 0.2042196113 0.7094223974E-09 0.2065669631 0.7014125922E-09 0.2089143150 0.6917305951E-09 0.2112616668 0.6803798720E-09 0.2136090187 0.6673722333E-09 0.2159563705 0.6527282344E-09 0.2183037224 0.6364775682E-09 0.2206510743 0.6186594470E-09 0.2229984261 0.5993229732E-09 0.2253457780 0.5785274977E-09 0.2276931298 0.5563429643E-09 0.2300404817 0.5328502398E-09 0.2323878335 0.5081414271E-09 0.2347351854 0.4823201623E-09 0.2370825372 0.4555018923E-09 0.2394298891 0.4278141341E-09 0.2417772409 0.3993967124E-09 0.2441245928 0.3704019769E-09 0.2464719446 0.3409949961E-09 0.2488192965 0.3113537282E-09 0.2511666484 0.2816691669E-09 0.2535140002 0.2521454628E-09 0.2558613521 0.2230000178E-09 0.2582087039 0.1944635532E-09 0.2605560558 0.1667801500E-09 0.2629034076 0.1402072609E-09 0.2652507595 0.1150156942E-09 0.2675981113 0.9148956794E-10 0.2699454632 0.6992623583E-10 0.2722928150 0.5063618330E-10 0.2746401669 0.3394289559E-10 0.2769875187 0.2018269822E-10 0.2793348706 0.9704572288E-11 0.2816822225 0.2869948472E-11 0.2840295743 0.5248683627E-13 0.2863769262 0.1637856011E-11 0.2887242780 0.8023537970E-11 0.2910716299 0.1961871300E-10 0.2934189817 0.3684434680E-10 0.2957663336 0.6013377987E-10 0.2981136854 0.8993465521E-10 0.3004610373 0.1267149447E-09 0.3028083891 0.1709847544E-09 0.3051557410 0.2234089099E-09 0.3075030928 0.2863356034E-09 0.3098504447 0.8154994365E-09 0.3121977966 0.2448853729E-08 0.3145451484 0.5142221862E-08 0.3168925003 0.9098203488E-08 0.3192398521 0.1451613417E-07 0.3215872040 0.2154511869E-07 0.3239345558 0.3029336351E-07 0.3262819077 0.4085411381E-07 0.3286292595 0.5331820382E-07 0.3309766114 0.6777731482E-07 0.3333239632 0.8432428667E-07 0.3356713151 0.1030527952E-06 0.3380186669 0.1240569726E-06 0.3403660188 0.1474310754E-06 0.3427133707 0.1732692027E-06 0.3450607225 0.1408031500E-06 0.3474080744 0.1622576893E-06 0.3497554262 0.1856324433E-06 0.3521027781 0.2110000085E-06 0.3544501299 0.2384322555E-06 0.3567974818 0.2680001915E-06 0.3591448336 0.2997738170E-06 0.3614921855 0.3338219802E-06 0.3638395373 0.3702122299E-06 0.3661868892 0.4090106656E-06 0.3685342410 0.4502817883E-06 0.3708815929 0.4940883500E-06 0.3732289448 0.5404912035E-06 0.3755762966 0.5895491537E-06 0.3779236485 0.6413188081E-06 0.3802710003 0.6958544302E-06 0.3826183522 0.7532077938E-06 0.3849657040 0.8134280392E-06 0.3873130559 0.8765615322E-06 0.3896604077 0.9426517250E-06 0.3920077596 0.1011739021E-05 0.3943551114 0.1083860641E-05 0.3967024633 0.1159050496E-05 0.3990498151 0.1237339062E-05 0.4013971670 0.1318753256E-05 0.4037445189 0.1403316325E-05 0.4060918707 0.1491047727E-05 0.4084392226 0.1565289768E-05 0.4107865744 0.1538758531E-05 0.4131339263 0.1511855001E-05 0.4154812781 0.1484607165E-05 0.4178286300 0.1457044088E-05 0.4201759818 0.1429195717E-05 0.4225233337 0.1401092711E-05 0.4248706855 0.1372766274E-05 0.4272180374 0.1344248014E-05 0.4295653892 0.1315569803E-05 0.4319127411 0.1286763651E-05 0.4342600929 0.1257861594E-05 0.4366074448 0.1228895580E-05 0.4389547967 0.1199897371E-05 0.4413021485 0.1170898449E-05 0.4436495004 0.1141929923E-05 0.4459968522 0.1113022452E-05 0.4483442041 0.1084206164E-05 0.4506915559 0.1055510586E-05 0.4530389078 0.1026964576E-05 0.4553862596 0.9985962591E-06 0.4577336115 0.9704329729E-06 0.4600809633 0.9425012115E-06 0.4624283152 0.9148265770E-06 0.4647756670 0.8874337348E-06 0.4671230189 0.8603463723E-06 0.4694703708 0.8335871621E-06 0.4718177226 0.8071777294E-06 0.4741650745 0.7811386225E-06 0.4765124263 0.7554892877E-06 0.4788597782 0.7302480477E-06 0.4812071300 0.7054320837E-06 0.4835544819 0.6810574215E-06 0.4859018337 0.6571389200E-06 0.4882491856 0.6336902647E-06 0.4905965374 0.6107239632E-06 0.4929438893 0.5882513449E-06 0.4952912411 0.5662825638E-06 0.4976385930 0.5448266037E-06 0.4999859449 0.5238912878E-06 0.5023332967 0.5034832899E-06 0.5046806486 0.4836081494E-06 0.5070280004 0.4642702885E-06 0.5093753523 0.4454730327E-06 0.5117227041 0.4272186329E-06 0.5140700560 0.4095082908E-06 0.5164174078 0.3923421862E-06 0.5187647597 0.3757195067E-06 0.5211121115 0.3596384788E-06 0.5234594634 0.3440964021E-06 0.5258068152 0.3290896842E-06 0.5281541671 0.3146138778E-06 0.5305015190 0.3006637189E-06 0.5328488708 0.2872331673E-06 0.5351962227 0.2743154470E-06 0.5375435745 0.2619030888E-06 0.5398909264 0.2499879736E-06 0.5422382782 0.2385613762E-06 0.5445856301 0.2276140103E-06 0.5469329819 0.2158917134E-06 0.5492803338 0.1980956290E-06 0.5516276856 0.1814568598E-06 0.5539750375 0.1659340582E-06 0.5563223893 0.1514848629E-06 0.5586697412 0.1380660971E-06 0.5610170931 0.1256339618E-06 0.5633644449 0.1141442237E-06 0.5657117968 0.1035524006E-06 0.5680591486 0.1024102917E-06 0.5704065005 0.1033257857E-06 0.5727538523 0.1042070791E-06 0.5751012042 0.1050533238E-06 0.5774485560 0.1058637025E-06 0.5797959079 0.1066374305E-06 0.5821432597 0.1073737561E-06 0.5844906116 0.1040931573E-06 0.5868379634 0.9984070942E-07 0.5891853153 0.9585450027E-07 0.5915326672 0.9212691661E-07 0.5938800190 0.8865175308E-07 0.5962273709 0.8542449741E-07 0.5985747227 0.8244263715E-07 0.6009220746 0.7970596787E-07 0.6032694264 0.7721686730E-07 0.6056167783 0.7498048042E-07 0.6079641301 0.7300473843E-07 0.6103114820 0.7130011825E-07 0.6126588338 0.6987905019E-07 0.6150061857 0.6875491687E-07 0.6173535375 0.6794067007E-07 0.6197008894 0.6744721895E-07 0.6220482413 0.6728187611E-07 0.6243952716 0.6730337017E-07 0.6267423020 0.6740330289E-07 0.6290893324 0.6758176512E-07 0.6314363628 0.6783892085E-07 0.6337833932 0.6817500610E-07 0.6361304236 0.6859032729E-07 0.6384774540 0.6908525915E-07 0.6408244844 0.6966024220E-07 0.6431715148 0.7031577969E-07 0.6455185452 0.7105243414E-07 0.6478655756 0.7187082346E-07 0.6502126060 0.7277161659E-07 0.6525596364 0.7375552880E-07 0.6549066668 0.7482331658E-07 0.6572536971 0.7597577215E-07 0.6596007275 0.7721371765E-07 0.6619477579 0.7853799903E-07 0.6642947883 0.7994947957E-07 0.6666418187 0.8144903321E-07 0.6689888491 0.8303753759E-07 0.6713358795 0.8471586692E-07 0.6736829099 0.8648488457E-07 0.6760299403 0.8834543562E-07 0.6783769707 0.9029833918E-07 0.6807240011 0.9234438069E-07 0.6830710315 0.9448430408E-07 0.6854180619 0.9671880393E-07 0.6877650922 0.9904851766E-07 0.6901121226 0.1014740177E-06 0.6924591530 0.1039958035E-06 0.6948061834 0.1066142945E-06 0.6971532138 0.1104704358E-06 0.6995002442 0.1186054291E-06 0.7018472746 0.1271903642E-06 0.7041943050 0.1362327022E-06 0.7065413354 0.1457387412E-06 0.7088883658 0.1546518463E-06 0.7112353962 0.1569873636E-06 0.7135824266 0.1593750382E-06 0.7159294570 0.1618130379E-06 0.7182764874 0.1642994163E-06 0.7206235177 0.1668321109E-06 0.7229705481 0.1694089415E-06 0.7253175785 0.1720276086E-06 0.7276646089 0.1746856929E-06 0.7300116393 0.1773806547E-06 0.7323586697 0.1801098333E-06 0.7347057001 0.1828704475E-06 0.7370527305 0.1856595964E-06 0.7393997609 0.1884742599E-06 0.7417467913 0.1913113006E-06 0.7440938217 0.1941674651E-06 0.7464408521 0.1970393869E-06 0.7487878825 0.1999235887E-06 0.7511349128 0.2028164858E-06 0.7534819432 0.2057143896E-06 0.7558289736 0.2086135114E-06 0.7581760040 0.2120952577E-06 0.7605230344 0.2170729507E-06 0.7628700648 0.2220997661E-06 0.7652170952 0.2271716619E-06 0.7675641256 0.2322844544E-06 0.7699111560 0.2374338240E-06 0.7722581864 0.2426153223E-06 0.7746052168 0.2478243784E-06 0.7769522472 0.2530563064E-06 0.7792992776 0.2583063134E-06 0.7816463080 0.2635695074E-06 0.7839933383 0.2688409060E-06 0.7863403687 0.2741154451E-06 0.7886873991 0.2793879887E-06 0.7910344295 0.2846533379E-06 0.7933814599 0.2899062409E-06 0.7957284903 0.2951414031E-06 0.7980755207 0.3003534978E-06 0.8004225511 0.3055371760E-06 0.8027695815 0.3106870779E-06 0.8051166119 0.3157978432E-06 0.8074636423 0.3208641222E-06 0.8098106727 0.3258805869E-06 0.8121577031 0.3308419424E-06 0.8145047335 0.3357429373E-06 0.8168517638 0.3346933393E-06 0.8191987942 0.3298018051E-06 0.8215458246 0.3252260203E-06 0.8238928550 0.3209657682E-06 0.8262398854 0.3170206397E-06 0.8285869158 0.3133900900E-06 0.8309339462 0.3100734874E-06 0.8332809766 0.3070701552E-06 0.8356280070 0.3043794098E-06 0.8379750374 0.3020005924E-06 0.8403220678 0.2999330982E-06 0.8426690982 0.2981764014E-06 0.8450161286 0.2967300765E-06 0.8473631589 0.2955938175E-06 0.8497101893 0.2947674529E-06 0.8520572197 0.2942509593E-06 0.8544042501 0.2940444711E-06 0.8567512805 0.2941482880E-06 0.8590983109 0.2945628804E-06 0.8614453413 0.2952888911E-06 0.8637923717 0.2963271359E-06 0.8661394021 0.2976786007E-06 0.8684864325 0.2993444366E-06 0.8708334629 0.3013259528E-06 0.8731804933 0.3036246070E-06 0.8755275237 0.3062419933E-06 0.8778745541 0.3091798284E-06 0.8802215844 0.3124399356E-06 0.8825686148 0.3160242257E-06 0.8849156452 0.3199346773E-06 0.8872626756 0.3241733144E-06 0.8896097060 0.3287421813E-06 0.8919567364 0.3336433168E-06 0.8943037668 0.3388787259E-06 0.8966507972 0.3444503490E-06 0.8989978276 0.3503600305E-06 0.9013448580 0.3566094835E-06 0.9036918884 0.3632002538E-06 0.9060389188 0.3701336807E-06 0.9083859492 0.3774108552E-06 0.9107329796 0.3850325745E-06 0.9130800099 0.3929992931E-06 0.9154270403 0.4013110674E-06 0.9177740707 0.4099674946E-06 0.9201211011 0.4189676415E-06 0.9224681315 0.4283099606E-06 0.9248151619 0.4341033933E-06 0.9271621923 0.4330649494E-06 0.9295092227 0.4319307955E-06 0.9318562531 0.4307055570E-06 0.9342032835 0.4293939440E-06 0.9365503139 0.4280007327E-06 0.9388973443 0.4265307452E-06 0.9412443747 0.4249888295E-06 0.9435914050 0.4233798390E-06 0.9459384354 0.4217086130E-06 0.9482854658 0.4199799564E-06 0.9506324962 0.4181986207E-06 0.9529795266 0.4163692862E-06 0.9553265570 0.4144965441E-06 0.9576735874 0.4125848813E-06 0.9600206178 0.4106386661E-06 0.9623676482 0.4086621354E-06 0.9647146786 0.4066593846E-06 0.9670617090 0.4046343592E-06 0.9694087394 0.4025908479E-06 0.9717557698 0.4005324793E-06 0.9741028002 0.3984627197E-06 0.9764498305 0.3963848731E-06 0.9787968609 0.3943020841E-06 0.9811438913 0.3922173417E-06 0.9834909217 0.3901334855E-06 0.9858379521 0.3880532131E-06 0.9881849825 0.3859790890E-06 0.9905320129 0.3839135540E-06 0.9928790433 0.3818589365E-06 0.9952260737 0.3798174625E-06 0.9975731041 0.3777912678E-06 0.9999201345 0.3757824080E-06 1.002267165 0.3737928703E-06 1.004614195 0.3718245831E-06 1.006961226 0.3698794255E-06 1.009308256 0.3679592364E-06 1.011655286 0.3626264267E-06 1.014002317 0.3520477921E-06 1.016349347 0.3417985104E-06 1.018696378 0.3318814354E-06 1.021043408 0.3222986855E-06 1.023390438 0.3130516972E-06 1.025737469 0.3041412741E-06 1.028084499 0.2955676348E-06 1.030431530 0.2873304590E-06 1.032778560 0.2794289325E-06 1.035125590 0.2718617917E-06 1.037472621 0.2646273677E-06 1.039819651 0.2577236299E-06 1.042166682 0.2511482296E-06 1.044513712 0.2448985423E-06 1.046860742 0.2389717107E-06 1.049207773 0.2333646865E-06 1.051554803 0.2280742714E-06 1.053901834 0.2230971577E-06 1.056248864 0.2184299680E-06 1.058595894 0.2140692930E-06 1.060942925 0.2100117296E-06 1.063289955 0.2062539158E-06 1.065636985 0.2027925657E-06 1.067984016 0.1996245016E-06 1.070331046 0.1967466851E-06 1.072678077 0.1941562458E-06 1.075025107 0.1918505080E-06 1.077372137 0.1898270153E-06 1.079719168 0.1880835529E-06 1.082066198 0.1866181670E-06 1.084413229 0.1854291827E-06 1.086760259 0.1845152181E-06 1.089107289 0.1838751967E-06 1.091454320 0.1835083565E-06 1.093801350 0.1834142564E-06 1.096152861 0.1834611548E-06 1.098504372 0.1836529574E-06 1.100855883 0.1839896969E-06 1.103207394 0.1844714392E-06 1.105558905 0.1850982817E-06 1.107910415 0.1858703510E-06 1.110261926 0.1867878007E-06 1.112613437 0.1878508082E-06 1.114964948 0.1890595715E-06 1.117316459 0.1904143054E-06 1.119667970 0.1919152377E-06 1.122019481 0.1935626047E-06 1.124370992 0.1953566470E-06 1.126722503 0.1972976045E-06 1.129074013 0.1993857117E-06 1.131425524 0.2016211923E-06 1.133777035 0.2040042546E-06 1.136128546 0.2065350851E-06 1.138480057 0.2092138439E-06 1.140831568 0.2120406579E-06 1.143183079 0.2150156154E-06 1.145534590 0.2181387590E-06 1.147886101 0.2214100785E-06 1.150237611 0.2248295029E-06 1.152589122 0.2283968915E-06 1.154940633 0.2321120227E-06 1.157292144 0.2359745820E-06 1.159643655 0.2399841468E-06 1.161995166 0.2441401680E-06 1.164346677 0.2484419488E-06 1.166698188 0.2528886192E-06 1.169049699 0.2574791065E-06 1.171401209 0.2622121036E-06 1.173752720 0.2670860366E-06 1.176104231 0.2720990374E-06 1.178455742 0.2772489269E-06 1.180807253 0.2825332221E-06 1.183158764 0.2879491791E-06 1.185510275 0.2934938866E-06 1.187861786 0.2991644213E-06 1.190213296 0.3006024348E-06 1.192564807 0.3001138202E-06 1.194916318 0.2996936379E-06 1.197267829 0.2993464593E-06 1.199619340 0.2990768536E-06 1.201970851 0.2988893851E-06 1.204322362 0.2987886106E-06 1.206673873 0.2987790770E-06 1.209025384 0.2988653190E-06 1.211376894 0.2990518580E-06 1.213728405 0.2993432000E-06 1.216079916 0.2997438351E-06 1.218431427 0.3002582359E-06 1.220782938 0.3008908570E-06 1.223134449 0.3016461346E-06 1.225485960 0.3025284857E-06 1.227837471 0.3035423076E-06 1.230188982 0.3046919778E-06 1.232540492 0.3059818535E-06 1.234892003 0.3074162710E-06 1.237243514 0.3089995452E-06 1.239595025 0.3107359690E-06 1.241946536 0.3126298120E-06 1.244298047 0.3146853200E-06 1.246649558 0.3169067128E-06 1.249001069 0.3192981830E-06 1.251352580 0.3218638936E-06 1.253704090 0.3246079757E-06 1.256055601 0.3275345251E-06 1.258407112 0.3306475993E-06 1.260758623 0.3339512133E-06 1.263110134 0.3374493350E-06 1.265461645 0.3411458808E-06 1.267813156 0.3450447090E-06 1.270164667 0.3491496144E-06 1.272516177 0.3534643215E-06 1.274867688 0.3579924765E-06 1.277219199 0.3627376399E-06 1.279570710 0.3677032780E-06 1.281922221 0.3728927534E-06 1.284273732 0.3783093152E-06 1.286625243 0.3839560892E-06 1.288976754 0.3898360670E-06 1.291328265 0.3959520943E-06 1.293679775 0.4023068596E-06 1.296031286 0.4089028818E-06 1.298382797 0.4157424976E-06 1.300734308 0.4228278486E-06 1.303085819 0.4301608684E-06 1.305437330 0.4377432684E-06 1.307788841 0.4455765251E-06 1.310140352 0.4536618654E-06 1.312491863 0.4620002535E-06 1.314843373 0.4705923764E-06 1.317194884 0.4794386308E-06 1.319546395 0.4885391089E-06 1.321897906 0.4978935851E-06 1.324249417 0.5075015030E-06 1.326600928 0.5173619622E-06 1.328952439 0.5274737063E-06 1.331303950 0.5378351107E-06 1.333655461 0.5484441714E-06 1.336006971 0.5592984940E-06 1.338358482 0.5703952843E-06 1.340709993 0.5817313383E-06 1.343061504 0.5933030346E-06 1.345413015 0.6051063265E-06 1.347764526 0.6251145894E-06 1.350116037 0.6546416499E-06 1.352467548 0.6843107650E-06 1.354819059 0.7139436639E-06 1.357170569 0.7433505849E-06 1.359522080 0.7723339457E-06 1.361873591 0.8006936317E-06 1.364225102 0.8282342885E-06 1.366576613 0.8547748381E-06 1.368928124 0.8801599279E-06 1.371279635 0.9042721116E-06 1.373631146 0.9270424542E-06 1.375982656 0.9484566063E-06 1.378334167 0.9685539743E-06 1.380685678 0.9874196038E-06 1.383037189 0.1005170852E-05 1.385388700 0.1021942402E-05 1.387740211 0.1037872948E-05 1.390091722 0.1053095462E-05 1.392443233 0.1067731390E-05 1.394794744 0.1081888093E-05 1.397146254 0.1095658514E-05 1.399497765 0.1109122131E-05 1.401849276 0.1122346494E-05 1.404200787 0.1135388928E-05 1.406552298 0.1148298148E-05 1.408903809 0.1161115688E-05 1.411255320 0.1173877114E-05 1.413606831 0.1186613007E-05 1.415958342 0.1199349764E-05 1.418309852 0.1212110220E-05 1.420661363 0.1224914145E-05 1.423012874 0.1237778609E-05 1.425364385 0.1250718269E-05 1.427715896 0.1263745567E-05 1.430067407 0.1276870868E-05 1.432418918 0.1290102544E-05 1.434770429 0.1303447012E-05 1.437121940 0.1316908728E-05 1.439473450 0.1330490145E-05 1.441824961 0.1344191641E-05 1.444176472 0.1358011404E-05 1.446527983 0.1371945286E-05 1.448879494 0.1385986627E-05 1.451231005 0.1400126025E-05 1.453582516 0.1414351073E-05 1.455934027 0.1428646029E-05 1.458285537 0.1442991427E-05 1.460637048 0.1457363587E-05 1.462988559 0.1471734017E-05 1.465340070 0.1486068641E-05 1.467691581 0.1500326806E-05 1.470043092 0.1514459975E-05 1.472394603 0.1612882287E-05 1.474746114 0.1663209593E-05 1.477097625 0.1678415946E-05 1.479449135 0.1693983645E-05 1.481800646 0.1709902650E-05 1.484152157 0.1726158411E-05 1.486503668 0.1742731274E-05 1.488855179 0.1759595524E-05 1.491206690 0.1776717716E-05 1.493558201 0.1794053567E-05 1.495909712 0.1811541841E-05 1.498261223 0.1829091631E-05 1.500612733 0.1846553771E-05 1.502964244 0.1863650540E-05 1.505315755 0.1879786658E-05 1.507667266 0.1893549645E-05 1.510018777 0.1902122775E-05 1.512370288 0.1903982568E-05 1.514721799 0.1902243196E-05 1.517073310 0.1899752828E-05 1.519424821 0.1897309837E-05 1.521776331 0.1894878893E-05 1.524127842 0.1892227886E-05 1.526479353 0.1889123902E-05 1.528830864 0.1885383857E-05 1.531182375 0.1880880575E-05 1.533533886 0.1875535598E-05 1.535885397 0.1869308858E-05 1.538236908 0.1862188665E-05 1.540588418 0.1854183118E-05 1.542939929 0.1845313262E-05 1.545291440 0.1835607889E-05 1.547642951 0.1825099780E-05 1.549994462 0.1813823114E-05 1.552345973 0.1801811770E-05 1.554697484 0.1789098308E-05 1.557048995 0.1775713409E-05 1.559400506 0.1761685645E-05 1.561752016 0.1747041462E-05 1.564103527 0.1731805288E-05 1.566455038 0.1715999722E-05 1.568806549 0.1699645755E-05 1.571158060 0.1682763005E-05 1.573509571 0.1665369950E-05 1.575861082 0.1647484142E-05 1.578212593 0.1629122408E-05 1.580564104 0.1610301032E-05 1.582915614 0.1591035908E-05 1.585267125 0.1571342682E-05 1.587618636 0.1551236867E-05 1.589970147 0.1530733947E-05 1.592321658 0.1509849457E-05 1.594673169 0.1488599057E-05 1.597024680 0.1466998583E-05 1.599376191 0.1445064098E-05 1.601727702 0.1422811920E-05 1.604079212 0.1400258650E-05 1.606430723 0.1377421188E-05 1.608782234 0.1354316738E-05 1.611133745 0.1330962819E-05 1.613485256 0.1307377253E-05 1.615836767 0.1283578162E-05 1.618188278 0.1259583952E-05 1.620539789 0.1235413297E-05 1.622891299 0.1211085122E-05 1.625242810 0.1186618574E-05 1.627594321 0.1162032999E-05 1.629945832 0.1137347915E-05 1.632297343 0.1112582978E-05 1.634648854 0.1087757954E-05 1.637000365 0.1062892683E-05 1.639351876 0.1038007046E-05 1.641703387 0.1013120927E-05 1.644054897 0.9882541836E-06 1.646406408 0.9634266021E-06 1.648757919 0.9386578669E-06 1.651109430 0.9139675219E-06 1.653460941 0.8893749337E-06 1.655812452 0.8648992558E-06 1.658163963 0.8405593921E-06 1.660515474 0.8163739624E-06 1.662866985 0.7923612670E-06 1.665218495 0.7685392533E-06 1.667570006 0.7449254828E-06 1.669921517 0.7215370991E-06 1.672273028 0.6983907975E-06 1.674624539 0.6755027953E-06 1.676976050 0.6528888037E-06 1.679327561 0.6305640010E-06 1.681679072 0.6085430070E-06 1.684030583 0.5868398599E-06 1.686382093 0.5654679932E-06 1.688733604 0.5444402157E-06 1.691085115 0.5237686924E-06 1.693436626 0.5034649271E-06 1.695788137 0.4835397470E-06 1.698139648 0.4640032890E-06 1.700491159 0.4448649877E-06 1.702842670 0.4261335648E-06 1.705194180 0.4078170212E-06 1.707545691 0.3899226300E-06 1.709897202 0.3724569318E-06 1.712248713 0.3554257313E-06 1.714600224 0.3388340963E-06 1.716951735 0.3226863576E-06 1.719303246 0.3069861115E-06 1.721654757 0.2917362231E-06 1.724006268 0.2769388321E-06 1.726357778 0.2625953594E-06 1.728709289 0.2487065156E-06 1.731060800 0.2352723111E-06 1.733412311 0.2222920680E-06 1.735763822 0.2097644320E-06 1.738115333 0.1976873878E-06 1.740466844 0.1860582738E-06 1.742818355 0.1748737993E-06 1.745169866 0.1641300626E-06 1.747521376 0.1538225699E-06 1.749872887 0.1439462553E-06 1.752224398 0.1344955026E-06 1.754575909 0.1254641669E-06 1.756927420 0.1168455980E-06 1.759278931 0.1086326639E-06 1.761630442 0.1008177755E-06 1.763981953 0.9339291216E-07 1.766333464 0.8634964718E-07 1.768684974 0.7967917459E-07 1.771036485 0.7337233614E-07 1.773387996 0.6741964894E-07 1.775739507 0.6181133356E-07 1.778091018 0.5653734283E-07 1.780442529 0.5158739141E-07 1.782794040 0.4695098656E-07 1.785145551 0.4261746098E-07 1.787497061 0.3857600961E-07 1.789848572 0.3481573509E-07 1.792200083 0.3132571373E-07 1.794551594 0.2809511853E-07 1.796903105 0.2511353245E-07 1.799254616 0.2237212047E-07 1.801606127 0.1987164755E-07 1.803957638 0.1807324569E-07 1.806309149 0.2094280209E-07 1.808660659 0.2440927731E-07 1.811012170 0.2807803574E-07 1.813363681 0.3190112387E-07 1.815715192 0.3577415816E-07 1.818066703 0.3783432577E-07 1.820418214 0.3306666608E-07 1.822769725 0.2812090472E-07 1.825121236 0.2368243990E-07 1.827472747 0.1976043297E-07 1.829824257 0.1632676381E-07 1.832175768 0.1334640596E-07 1.834527279 0.1078264645E-07 1.836878790 0.8598633880E-08 1.839230301 0.6758040419E-08 1.841581812 0.5225433034E-08 1.843933323 0.3966524374E-08 1.846284834 0.2948364607E-08 1.848636345 0.2139502211E-08 1.850987855 0.1510130387E-08 1.853339366 0.1032230787E-08 1.855690877 0.6797227354E-09 1.858042388 0.4727331959E-09 1.860393899 0.4253494179E-09 1.862745410 0.3871403269E-09 1.865096921 0.3571576434E-09 1.867448432 0.3346222488E-09 1.869799942 0.3189261121E-09 1.872151453 0.3096339730E-09 1.874502964 0.3064847410E-09 1.876849995 0.3092866820E-09 1.879197025 0.3173590961E-09 1.881544055 0.3308959652E-09 1.883891086 0.3502161037E-09 1.886238116 0.3762735082E-09 1.888585147 0.7531767632E-09 1.890932177 0.1368954109E-08 1.893279207 0.2309821655E-08 1.895626238 0.3675054325E-08 1.897973268 0.5576650080E-08 1.900320299 0.8138951790E-08 1.902667329 0.1149822873E-07 1.905014359 0.1580221932E-07 1.907361390 0.2120963669E-07 1.909708420 0.2788963874E-07 1.912055451 0.3581586767E-07 1.914402481 0.3646902127E-07 1.916749511 0.3716757834E-07 1.919096542 0.3791248431E-07 1.921443572 0.3870471928E-07 1.923790603 0.3954529399E-07 1.926137633 0.4043524549E-07 1.928484663 0.4137563225E-07 1.930831694 0.4236752894E-07 1.933178724 0.4341202071E-07 1.935525754 0.4451019698E-07 1.937872785 0.4566314480E-07 1.940219815 0.4687194168E-07 1.942566846 0.4813764798E-07 1.944913876 0.4946129877E-07 1.947260906 0.5084389532E-07 1.949607937 0.5228639603E-07 1.951954967 0.5378970708E-07 1.954301998 0.5535467264E-07 1.956649028 0.5698206477E-07 1.958996058 0.5867257307E-07 1.961343089 0.5959845763E-07 1.963690119 0.5759106324E-07 1.966037150 0.5561214344E-07 1.968384180 0.5366518773E-07 1.970731210 0.5175348888E-07 1.973078241 0.4988013647E-07 1.975425271 0.4804801165E-07 1.977772302 0.4625978335E-07 1.980119332 0.4451790574E-07 1.982466362 0.4282461721E-07 1.984813393 0.4118194063E-07 1.987160423 0.3959168516E-07 1.989507454 0.3805544935E-07 1.991854484 0.3657462573E-07 1.994201514 0.3515040679E-07 1.996548545 0.3378379235E-07 1.998895575 0.3442891440E-07 2.001242605 0.3639870083E-07 2.003589636 0.3843823108E-07 2.005936666 0.4054829021E-07 2.008283697 0.4272965526E-07 2.010630727 0.4498309568E-07 2.012977757 0.4730937342E-07 2.015324788 0.4970924262E-07 2.017671818 0.5218344910E-07 2.020018849 0.5473272941E-07 2.022365879 0.5735780973E-07 2.024712909 0.6005940441E-07 2.027059940 0.6283821432E-07 2.029406970 0.6569492491E-07 2.031754001 0.6863020409E-07 2.034101031 0.7164469991E-07 2.036448061 0.7473903801E-07 2.038795092 0.7791381884E-07 2.041142122 0.8116961478E-07 2.043489153 0.8450696692E-07 2.045836183 0.8792638166E-07 2.048183213 0.9142832702E-07 2.050530244 0.9501322857E-07 2.052877274 0.9868146495E-07 2.055224304 0.1024333629E-06 2.057571335 0.1062691913E-06 2.059918365 0.1101891548E-06 2.062265396 0.1141933854E-06 2.064612426 0.1182819329E-06 2.066959456 0.1224547522E-06 2.069306487 0.1267116878E-06 2.071653517 0.1310524522E-06 2.074000548 0.1354765977E-06 2.076347578 0.1399834757E-06 2.078694608 0.1445721794E-06 2.081041639 0.1492414582E-06 2.083388669 0.1539895872E-06 2.085735700 0.1588141601E-06 2.088082730 0.1637117490E-06 2.090429760 0.1686773191E-06 2.092776791 0.1737031678E-06 2.095123821 0.1787768894E-06 2.097470852 0.1838771922E-06 2.099817882 0.1889646439E-06 2.102164912 0.1939597725E-06 2.104511943 0.1986910247E-06 2.106858973 0.2028040877E-06 2.109206004 0.2058208504E-06 2.111553034 0.2076488036E-06 2.113900064 0.2086604239E-06 2.116247095 0.2091875618E-06 2.118594125 0.2093994209E-06 2.120941155 0.2093755163E-06 2.123288186 0.2091555505E-06 2.125635216 0.2087612373E-06 2.127982247 0.2082056366E-06 2.130329277 0.2074973872E-06 2.132676307 0.2066427665E-06 2.135023338 0.2056467593E-06 2.137370368 0.2045136443E-06 2.139717399 0.2032473305E-06 2.142064429 0.2018515576E-06 2.144411459 0.2003300181E-06 2.146758490 0.1986864329E-06 2.149105520 0.1969245988E-06 2.151452551 0.1950484163E-06 2.153799581 0.1930619058E-06 2.156146611 0.1909692164E-06 2.158493642 0.1887746270E-06 2.160840672 0.1864825453E-06 2.163187703 0.1891085719E-06 2.165534733 0.1996230716E-06 2.167881763 0.2105691180E-06 2.170228794 0.2219515339E-06 2.172575824 0.2337744080E-06 2.174922855 0.2460410566E-06 2.177269885 0.2587539879E-06 2.179616915 0.2719148665E-06 2.181963946 0.2855244810E-06 2.184310976 0.2995827121E-06 2.186658006 0.3140885042E-06 2.189005037 0.3290398378E-06 2.191352067 0.3444337053E-06 2.193699098 0.3602660885E-06 2.196046128 0.3765319388E-06 2.198393158 0.3932251602E-06 2.200740189 0.4103385950E-06 2.203087219 0.4278640120E-06 2.205434250 0.4457920982E-06 2.207781280 0.4641124531E-06 2.210128310 0.4828135856E-06 2.212475341 0.5018829153E-06 2.214822371 0.5213067757E-06 2.217169402 0.5295564368E-06 2.219516432 0.5366026349E-06 2.221863462 0.5436026763E-06 2.224210493 0.5505528313E-06 2.226557523 0.5574493653E-06 2.228904554 0.5642885429E-06 2.231251584 0.5710666303E-06 2.233598614 0.5777798986E-06 2.235945645 0.5844246273E-06 2.238292675 0.5909971069E-06 2.240639706 0.5974936430E-06 2.242986736 0.6039105586E-06 2.245333766 0.6102441980E-06 2.247680797 0.6164909298E-06 2.250027827 0.6226471501E-06 2.252374857 0.6287092860E-06 2.254721888 0.6346737986E-06 2.257068918 0.6405371862E-06 2.259415949 0.6462959880E-06 2.261762979 0.6519467866E-06 2.264110009 0.6574862117E-06 2.266457040 0.6629109430E-06 2.268804070 0.6682177134E-06 2.271151101 0.6734033123E-06 2.273498131 0.6784645882E-06 2.275845161 0.6833984520E-06 2.278192192 0.6882018800E-06 2.280539222 0.6928719165E-06 2.282886253 0.6974056770E-06 2.285233283 0.7018003509E-06 2.287580313 0.7060532042E-06 2.289927344 0.7101615820E-06 2.292274374 0.7141229113E-06 2.294621405 0.7179347037E-06 2.296968435 0.7215945574E-06 2.299315465 0.7251001598E-06 2.301662496 0.7284492900E-06 2.304009526 0.7316398206E-06 2.306356557 0.7346697203E-06 2.308703587 0.7375370552E-06 2.311050617 0.7402399917E-06 2.313397648 0.7427767975E-06 2.315744678 0.7451458437E-06 2.318091708 0.7473456065E-06 2.320438739 0.7493746686E-06 2.322785769 0.7512317206E-06 2.325132800 0.7529155625E-06 2.327479830 0.7544251047E-06 2.329826860 0.7557593693E-06 2.332173891 0.7569174910E-06 2.334520921 0.7578987179E-06 2.336867952 0.7587024124E-06 2.339214982 0.7593280518E-06 2.341562012 0.7597752288E-06 2.343909043 0.7600436520E-06 2.346256073 0.7601331459E-06 0.000000000 0.3064847411E-09 0.2347351854E-02 0.3240447195E-09 0.4694703708E-02 0.3795480997E-09 0.7042055561E-02 0.4813822817E-09 0.9389407415E-02 0.6432532253E-09 0.1173675927E-01 0.8837881043E-09 0.1408411112E-01 0.1226004413E-08 0.1643146298E-01 0.1696672718E-08 0.1877881483E-01 0.2325609491E-08 0.2112616668E-01 0.3144944988E-08 0.2347351854E-01 0.4188417088E-08 0.2582087039E-01 0.5490743150E-08 0.2816822225E-01 0.7087116413E-08 0.3051557410E-01 0.9012860446E-08 0.3286292595E-01 0.1130325595E-07 0.3521027781E-01 0.1399353192E-07 0.3755762966E-01 0.1711899265E-07 0.3990498151E-01 0.2071523735E-07 0.4225233337E-01 0.2481842335E-07 0.4459968522E-01 0.2946552714E-07 0.4694703708E-01 0.3469456742E-07 0.4929438893E-01 0.4054476732E-07 0.5164174078E-01 0.4705664646E-07 0.5398909264E-01 0.5427204372E-07 0.5633644449E-01 0.6216888751E-07 0.5868379634E-01 0.5865919422E-07 0.6103114820E-01 0.5514120771E-07 0.6337850005E-01 0.5162831994E-07 0.6572585191E-01 0.4813393585E-07 0.6807320376E-01 0.4467142389E-07 0.7042055561E-01 0.4125406655E-07 0.7276790747E-01 0.3789501081E-07 0.7511525932E-01 0.3460721882E-07 0.7746261117E-01 0.3140341894E-07 0.7980996303E-01 0.2829605718E-07 0.8215731488E-01 0.2529724949E-07 0.8450466674E-01 0.2582552666E-07 0.8685201859E-01 0.2843384450E-07 0.8919937044E-01 0.3123851481E-07 0.9154672230E-01 0.3424877921E-07 0.9389407415E-01 0.3747399738E-07 0.9624142601E-01 0.4092363486E-07 0.9858877786E-01 0.4460725021E-07 0.1009361297 0.4853448153E-07 0.1032834816 0.5271503240E-07 0.1056308334 0.5715865718E-07 0.1079781853 0.6187514562E-07 0.1103255371 0.6687430682E-07 0.1126728890 0.7216595250E-07 0.1150202408 0.7775987950E-07 0.1173675927 0.8366585168E-07 0.1197149445 0.8989358097E-07 0.1220622964 0.9645270773E-07 0.1244096483 0.1033527803E-06 0.1267570001 0.1106032339E-06 0.1291043520 0.1182133684E-06 0.1314517038 0.1261923258E-06 0.1337990557 0.1345490668E-06 0.1361464075 0.1432923457E-06 0.1384937594 0.1524306860E-06 0.1408411112 0.1619723541E-06 0.1431884631 0.1719253322E-06 0.1455358149 0.1822972910E-06 0.1478831668 0.1930955612E-06 0.1502305186 0.2043271042E-06 0.1525778705 0.2159984821E-06 0.1549252223 0.2281158268E-06 0.1572725742 0.2406848089E-06 0.1596199261 0.2537106050E-06 0.1619672779 0.2671978648E-06 0.1643146298 0.2811506778E-06 0.1666619816 0.2955725389E-06 0.1690093335 0.3104663136E-06 0.1713566853 0.3258342027E-06 0.1737040372 0.3416777064E-06 0.1760513890 0.3579975885E-06 0.1783987409 0.3747938393E-06 0.1807460927 0.3920656390E-06 0.1830934446 0.4098113206E-06 0.1854407964 0.4280283330E-06 0.1877881483 0.4467132032E-06 0.1901355002 0.4658614997E-06 0.1924828520 0.4854677951E-06 0.1948302039 0.5055256295E-06 0.1971775557 0.5260274740E-06 0.1995249076 0.5469646947E-06 0.2018722594 0.5683275169E-06 0.2042196113 0.5901049906E-06 0.2065669631 0.6122849562E-06 0.2089143150 0.6348540109E-06 0.2112616668 0.6577974763E-06 0.2136090187 0.6810993665E-06 0.2159563705 0.7047423577E-06 0.2183037224 0.7287077575E-06 0.2206510743 0.7529754767E-06 0.2229984261 0.7775240000E-06 0.2253457780 0.8023303591E-06 0.2276931298 0.8273701043E-06 0.2300404817 0.8526172778E-06 0.2323878335 0.8780443854E-06 0.2347351854 0.9036223678E-06 0.2370825372 0.9293205699E-06 0.2394298891 0.9551067077E-06 0.2417772409 0.9809468316E-06 0.2441245928 0.1006805283E-05 0.2464719446 0.1032644647E-05 0.2488192965 0.1058425692E-05 0.2511666484 0.1084107297E-05 0.2535140002 0.1109646370E-05 0.2558613521 0.1134997733E-05 0.2582087039 0.1160113997E-05 0.2605560558 0.1184945388E-05 0.2629034076 0.1209439542E-05 0.2652507595 0.1233541244E-05 0.2675981113 0.1257192092E-05 0.2699454632 0.1280330085E-05 0.2722928150 0.1302889090E-05 0.2746401669 0.1324798168E-05 0.2769875187 0.1345980713E-05 0.2793348706 0.1366353350E-05 0.2816822225 0.1385824513E-05 0.2840295743 0.1404292594E-05 0.2863769262 0.1421643540E-05 0.2887242780 0.1437747674E-05 0.2910716299 0.1452455496E-05 0.2934189817 0.1465592044E-05 0.2957663336 0.1476949278E-05 0.2981136854 0.1486275682E-05 0.3004610373 0.1493261895E-05 0.3028083891 0.1497520701E-05 0.3051557410 0.1498558859E-05 0.3075030928 0.1495737272E-05 0.3098504447 0.1488214618E-05 0.3121977966 0.1474868509E-05 0.3145451484 0.1454188973E-05 0.3168925003 0.1424146603E-05 0.3192398521 0.1382064496E-05 0.3215872040 0.1324593758E-05 0.3239345558 0.1248029538E-05 0.3262819077 0.1149333756E-05 0.3286292595 0.1027988609E-05 0.3309766114 0.8877852715E-06 0.3333239632 0.7367916153E-06 0.3356713151 0.5850458307E-06 0.3380186669 0.4417816567E-06 0.3403660188 0.3139142611E-06 0.3427133707 0.2058693274E-06 0.3450607225 0.2016650479E-06 0.3474080744 0.2327116739E-06 0.3497554262 0.2665013007E-06 0.3521027781 0.3031251027E-06 0.3544501299 0.3426730100E-06 0.3567974818 0.3852335136E-06 0.3591448336 0.4308934725E-06 0.3614921855 0.4797379223E-06 0.3638395373 0.5318498853E-06 0.3661868892 0.5873101812E-06 0.3685342410 0.6461972400E-06 0.3708815929 0.7085869151E-06 0.3732289448 0.7745522995E-06 0.3755762966 0.8441635422E-06 0.3779236485 0.9174876686E-06 0.3802710003 0.9945884021E-06 0.3826183522 0.1075525989E-05 0.3849657040 0.1160357026E-05 0.3873130559 0.1249134294E-05 0.3896604077 0.1341906589E-05 0.3920077596 0.1438718568E-05 0.3943551114 0.1539610588E-05 0.3967024633 0.1644618556E-05 0.3990498151 0.1667182599E-05 0.4013971670 0.1642390735E-05 0.4037445189 0.1617130128E-05 0.4060918707 0.1591422020E-05 0.4084392226 0.1581963033E-05 0.4107865744 0.1676073815E-05 0.4131339263 0.1673231529E-05 0.4154812781 0.1643768320E-05 0.4178286300 0.1619992139E-05 0.4201759818 0.1601586456E-05 0.4225233337 0.1588236846E-05 0.4248706855 0.1579623704E-05 0.4272180374 0.1575412933E-05 0.4295653892 0.1575244260E-05 0.4319127411 0.1578716712E-05 0.4342600929 0.1585370892E-05 0.4366074448 0.1594667866E-05 0.4389547967 0.1605965169E-05 0.4413021485 0.1618491740E-05 0.4436495004 0.1631326107E-05 0.4459968522 0.1643385957E-05 0.4483442041 0.1653441944E-05 0.4506915559 0.1660171517E-05 0.4530389078 0.1662264574E-05 0.4553862596 0.1658575733E-05 0.4577336115 0.1648289675E-05 0.4600809633 0.1631043156E-05 0.4624283152 0.1606954223E-05 0.4647756670 0.1576549947E-05 0.4671230189 0.1540629595E-05 0.4694703708 0.1500117597E-05 0.4718177226 0.1455946050E-05 0.4741650745 0.1408980550E-05 0.4765124263 0.1359984382E-05 0.4788597782 0.1309609010E-05 0.4812071300 0.1258399430E-05 0.4835544819 0.1206806242E-05 0.4859018337 0.1155199635E-05 0.4882491856 0.1103882811E-05 0.4905965374 0.1053103802E-05 0.4929438893 0.1003065405E-05 0.4952912411 0.9539333297E-06 0.4976385930 0.9058427724E-06 0.4999859449 0.8589036970E-06 0.5023332967 0.8132050574E-06 0.5046806486 0.7688181824E-06 0.5070280004 0.7257994955E-06 0.5093753523 0.6841927111E-06 0.5117227041 0.6440306203E-06 0.5140700560 0.6053365511E-06 0.5164174078 0.5681255743E-06 0.5187647597 0.5324055064E-06 0.5211121115 0.4981777521E-06 0.5234594634 0.4654380197E-06 0.5258068152 0.4341769339E-06 0.5281541671 0.4043805666E-06 0.5305015190 0.3760309018E-06 0.5328488708 0.3491062475E-06 0.5351962227 0.3235816036E-06 0.5375435745 0.2994289954E-06 0.5398909264 0.2766177774E-06 0.5422382782 0.2551149144E-06 0.5445856301 0.2348852422E-06 0.5469329819 0.2171360740E-06 0.5492803338 0.2071172963E-06 0.5516276856 0.1975469835E-06 0.5539750375 0.1884140673E-06 0.5563223893 0.1797071528E-06 0.5586697412 0.1714145681E-06 0.5610170931 0.1635244147E-06 0.5633644449 0.1560246202E-06 0.5657117968 0.1489029932E-06 0.5680591486 0.1421472810E-06 0.5704065005 0.1357452326E-06 0.5727538523 0.1296846666E-06 0.5751012042 0.1239535475E-06 0.5774485560 0.1185400719E-06 0.5797959079 0.1134327680E-06 0.5821432597 0.1086206105E-06 0.5844906116 0.1080719622E-06 0.5868379634 0.1087313673E-06 0.5891853153 0.1093513260E-06 0.5915326672 0.1099312302E-06 0.5938800190 0.1104705100E-06 0.5962273709 0.1109686345E-06 0.5985747227 0.1114251123E-06 0.6009220746 0.1118394925E-06 0.6032694264 0.1122113651E-06 0.6056167783 0.1125403618E-06 0.6079641301 0.1128261564E-06 0.6103114820 0.1130684650E-06 0.6126588338 0.1132670470E-06 0.6150061857 0.1134217050E-06 0.6173535375 0.1135322851E-06 0.6197008894 0.1135986772E-06 0.6220482413 0.1136208152E-06 0.6243952716 0.1134810866E-06 0.6267423020 0.1134116714E-06 0.6290893324 0.1134126300E-06 0.6314363628 0.1134840155E-06 0.6337833932 0.1136258731E-06 0.6361304236 0.1138382402E-06 0.6384774540 0.1141211457E-06 0.6408244844 0.1144746092E-06 0.6431715148 0.1148986396E-06 0.6455185452 0.1153932343E-06 0.6478655756 0.1159583771E-06 0.6502126060 0.1165940363E-06 0.6525596364 0.1173001629E-06 0.6549066668 0.1180766879E-06 0.6572536971 0.1189235201E-06 0.6596007275 0.1198405427E-06 0.6619477579 0.1208276110E-06 0.6642947883 0.1218845484E-06 0.6666418187 0.1230111440E-06 0.6689888491 0.1242071480E-06 0.6713358795 0.1254722689E-06 0.6736829099 0.1268061693E-06 0.6760299403 0.1282084620E-06 0.6783769707 0.1296787062E-06 0.6807240011 0.1312164032E-06 0.6830710315 0.1328209925E-06 0.6854180619 0.1344918476E-06 0.6877650922 0.1362282717E-06 0.6901121226 0.1380294941E-06 0.6924591530 0.1398946654E-06 0.6948061834 0.1418228542E-06 0.6971532138 0.1438130425E-06 0.6995002442 0.1458641226E-06 0.7018472746 0.1479748927E-06 0.7041943050 0.1501440538E-06 0.7065413354 0.1523702062E-06 0.7088883658 0.1557135271E-06 0.7112353962 0.1661607633E-06 0.7135824266 0.1770827177E-06 0.7159294570 0.1884801246E-06 0.7182764874 0.2003520800E-06 0.7206235177 0.2126959241E-06 0.7229705481 0.2255071069E-06 0.7253175785 0.2387790277E-06 0.7276646089 0.2525028340E-06 0.7300116393 0.2666671619E-06 0.7323586697 0.2812577855E-06 0.7347057001 0.2962571283E-06 0.7370527305 0.3116435570E-06 0.7393997609 0.3273903284E-06 0.7417467913 0.3434639683E-06 0.7440938217 0.3598216878E-06 0.7464408521 0.3764071195E-06 0.7487878825 0.3931430019E-06 0.7511349128 0.4099181026E-06 0.7534819432 0.4265628499E-06 0.7558289736 0.4428023194E-06 0.7581760040 0.4581649639E-06 0.7605230344 0.4718207363E-06 0.7628700648 0.4824056077E-06 0.7652170952 0.4882784104E-06 0.7675641256 0.4887666700E-06 0.7699111560 0.4849347111E-06 0.7722581864 0.4784465605E-06 0.7746052168 0.4705297798E-06 0.7769522472 0.4618984328E-06 0.7792992776 0.4529495495E-06 0.7816463080 0.4439096604E-06 0.7839933383 0.4349140911E-06 0.7863403687 0.4260476158E-06 0.7886873991 0.4173656708E-06 0.7910344295 0.4089058606E-06 0.7933814599 0.4006944722E-06 0.7957284903 0.3927503225E-06 0.7980755207 0.3850871205E-06 0.8004225511 0.3777149707E-06 0.8027695815 0.3706413632E-06 0.8051166119 0.3638718452E-06 0.8074636423 0.3574104916E-06 0.8098106727 0.3512602423E-06 0.8121577031 0.3454231525E-06 0.8145047335 0.3399005813E-06 0.8168517638 0.3405783755E-06 0.8191987942 0.3453431272E-06 0.8215458246 0.3500321396E-06 0.8238928550 0.3546404482E-06 0.8262398854 0.3591631875E-06 0.8285869158 0.3635956016E-06 0.8309339462 0.3679330551E-06 0.8332809766 0.3721710430E-06 0.8356280070 0.3763052010E-06 0.8379750374 0.3803313156E-06 0.8403220678 0.3842453333E-06 0.8426690982 0.3880433702E-06 0.8450161286 0.3917217211E-06 0.8473631589 0.3952768680E-06 0.8497101893 0.3987054886E-06 0.8520572197 0.4020044641E-06 0.8544042501 0.4051708872E-06 0.8567512805 0.4082020690E-06 0.8590983109 0.4110955457E-06 0.8614453413 0.4138490854E-06 0.8637923717 0.4164606938E-06 0.8661394021 0.4189286194E-06 0.8684864325 0.4212513591E-06 0.8708334629 0.4234276620E-06 0.8731804933 0.4254565339E-06 0.8755275237 0.4273372406E-06 0.8778745541 0.4290693104E-06 0.8802215844 0.4306525371E-06 0.8825686148 0.4320869811E-06 0.8849156452 0.4333729706E-06 0.8872626756 0.4345111022E-06 0.8896097060 0.4355022406E-06 0.8919567364 0.4363475171E-06 0.8943037668 0.4370483286E-06 0.8966507972 0.4376063344E-06 0.8989978276 0.4380234528E-06 0.9013448580 0.4383018572E-06 0.9036918884 0.4384439705E-06 0.9060389188 0.4384524588E-06 0.9083859492 0.4383302246E-06 0.9107329796 0.4380803980E-06 0.9130800099 0.4377063276E-06 0.9154270403 0.4372115699E-06 0.9177740707 0.4365998778E-06 0.9201211011 0.4358751878E-06 0.9224681315 0.4350416060E-06 0.9248151619 0.4379921874E-06 0.9271621923 0.4480112114E-06 0.9295092227 0.4583629080E-06 0.9318562531 0.4690419107E-06 0.9342032835 0.4800412911E-06 0.9365503139 0.4913520921E-06 0.9388973443 0.5029626201E-06 0.9412443747 0.5148573252E-06 0.9435914050 0.5270149505E-06 0.9459384354 0.5394053175E-06 0.9482854658 0.5519834225E-06 0.9506324962 0.5646778629E-06 0.9529795266 0.5773663694E-06 0.9553265570 0.5898194543E-06 0.9576735874 0.6015592601E-06 0.9600206178 0.6114978113E-06 0.9623676482 0.6172746709E-06 0.9647146786 0.6159557045E-06 0.9670617090 0.6079933984E-06 0.9694087394 0.5964212588E-06 0.9717557698 0.5832570996E-06 0.9741028002 0.5694048479E-06 0.9764498305 0.5552722623E-06 0.9787968609 0.5410636945E-06 0.9811438913 0.5268937061E-06 0.9834909217 0.5128332518E-06 0.9858379521 0.4989301362E-06 0.9881849825 0.4852188586E-06 0.9905320129 0.4717257051E-06 0.9928790433 0.4584715507E-06 0.9952260737 0.4454734842E-06 0.9975731041 0.4327457954E-06 0.9999201345 0.4203006006E-06 1.002267165 0.4081482537E-06 1.004614195 0.3962976276E-06 1.006961226 0.3847563135E-06 1.009308256 0.3735307683E-06 1.011655286 0.3660658216E-06 1.014002317 0.3642009604E-06 1.016349347 0.3623664111E-06 1.018696378 0.3605639150E-06 1.021043408 0.3587951994E-06 1.023390438 0.3570619794E-06 1.025737469 0.3553659587E-06 1.028084499 0.3537088295E-06 1.030431530 0.3520922707E-06 1.032778560 0.3505179469E-06 1.035125590 0.3489875045E-06 1.037472621 0.3475025696E-06 1.039819651 0.3460647433E-06 1.042166682 0.3446755979E-06 1.044513712 0.3433366725E-06 1.046860742 0.3420494684E-06 1.049207773 0.3408154439E-06 1.051554803 0.3396360103E-06 1.053901834 0.3385125267E-06 1.056248864 0.3374462954E-06 1.058595894 0.3364385579E-06 1.060942925 0.3354904900E-06 1.063289955 0.3346031985E-06 1.065636985 0.3337777167E-06 1.067984016 0.3330150016E-06 1.070331046 0.3323159302E-06 1.072678077 0.3316812966E-06 1.075025107 0.3311118094E-06 1.077372137 0.3306080895E-06 1.079719168 0.3301706676E-06 1.082066198 0.3297999828E-06 1.084413229 0.3294963809E-06 1.086760259 0.3292601128E-06 1.089107289 0.3290913342E-06 1.091454320 0.3289901042E-06 1.093801350 0.3289563854E-06 1.096152861 0.3289281520E-06 1.098504372 0.3288435403E-06 1.100855883 0.3287028032E-06 1.103207394 0.3285063552E-06 1.105558905 0.3282547759E-06 1.107910415 0.3279488144E-06 1.110261926 0.3275893920E-06 1.112613437 0.3271776059E-06 1.114964948 0.3267147300E-06 1.117316459 0.3262022157E-06 1.119667970 0.3256416901E-06 1.122019481 0.3250349546E-06 1.124370992 0.3243839810E-06 1.126722503 0.3236909087E-06 1.129074013 0.3229580397E-06 1.131425524 0.3221878348E-06 1.133777035 0.3213829085E-06 1.136128546 0.3205460241E-06 1.138480057 0.3196800890E-06 1.140831568 0.3187881487E-06 1.143183079 0.3178733819E-06 1.145534590 0.3169390949E-06 1.147886101 0.3159887154E-06 1.150237611 0.3150257871E-06 1.152589122 0.3140539632E-06 1.154940633 0.3130770003E-06 1.157292144 0.3120987523E-06 1.159643655 0.3111231637E-06 1.161995166 0.3101542630E-06 1.164346677 0.3091961568E-06 1.166698188 0.3082530224E-06 1.169049699 0.3073291022E-06 1.171401209 0.3064286966E-06 1.173752720 0.3055561581E-06 1.176104231 0.3047158851E-06 1.178455742 0.3039123155E-06 1.180807253 0.3031499217E-06 1.183158764 0.3024332042E-06 1.185510275 0.3017666869E-06 1.187861786 0.3011549119E-06 1.190213296 0.3049580639E-06 1.192564807 0.3108725559E-06 1.194916318 0.3169063542E-06 1.197267829 0.3230588219E-06 1.199619340 0.3293302919E-06 1.201970851 0.3357219653E-06 1.204322362 0.3422356519E-06 1.206673873 0.3488734109E-06 1.209025384 0.3556371790E-06 1.211376894 0.3625284661E-06 1.213728405 0.3695481717E-06 1.216079916 0.3766965266E-06 1.218431427 0.3839731381E-06 1.220782938 0.3913770970E-06 1.223134449 0.3989071108E-06 1.225485960 0.4065616326E-06 1.227837471 0.4143389720E-06 1.230188982 0.4222373801E-06 1.232540492 0.4302551101E-06 1.234892003 0.4383904562E-06 1.237243514 0.4466417760E-06 1.239595025 0.4550074998E-06 1.241946536 0.4634861321E-06 1.244298047 0.4720762463E-06 1.246649558 0.4807764761E-06 1.249001069 0.4895855046E-06 1.251352580 0.4985020513E-06 1.253704090 0.5075248596E-06 1.256055601 0.5166526830E-06 1.258407112 0.5258842714E-06 1.260758623 0.5352183586E-06 1.263110134 0.5446536489E-06 1.265461645 0.5541888055E-06 1.267813156 0.5638224386E-06 1.270164667 0.5735530957E-06 1.272516177 0.5833792518E-06 1.274867688 0.5932993018E-06 1.277219199 0.6033115543E-06 1.279570710 0.6134142272E-06 1.281922221 0.6236054454E-06 1.284273732 0.6338832415E-06 1.286625243 0.6442455583E-06 1.288976754 0.6546902560E-06 1.291328265 0.6652151210E-06 1.293679775 0.6758178806E-06 1.296031286 0.6864962208E-06 1.298382797 0.6972478093E-06 1.300734308 0.7080703240E-06 1.303085819 0.7189614875E-06 1.305437330 0.7299191082E-06 1.307788841 0.7409411280E-06 1.310140352 0.7520256797E-06 1.312491863 0.7631711521E-06 1.314843373 0.7743762661E-06 1.317194884 0.7856401631E-06 1.319546395 0.7969625064E-06 1.321897906 0.8083435981E-06 1.324249417 0.8197845155E-06 1.326600928 0.8312872677E-06 1.328952439 0.8428549787E-06 1.331303950 0.8544920995E-06 1.333655461 0.8662046556E-06 1.336006971 0.8780005355E-06 1.338358482 0.8898898255E-06 1.340709993 0.9018851963E-06 1.343061504 0.9140023430E-06 1.345413015 0.9262604749E-06 1.347764526 0.9386828395E-06 1.350116037 0.9512972415E-06 1.352467548 0.9641364824E-06 1.354819059 0.9772385881E-06 1.357170569 0.9906466010E-06 1.359522080 0.1004407607E-05 1.361873591 0.1018570549E-05 1.364225102 0.1033182325E-05 1.366576613 0.1048281797E-05 1.368928124 0.1063891823E-05 1.371279635 0.1080010298E-05 1.373631146 0.1096602323E-05 1.375982656 0.1113596291E-05 1.378334167 0.1130886133E-05 1.380685678 0.1148340065E-05 1.383037189 0.1165813770E-05 1.385388700 0.1183164527E-05 1.387740211 0.1200263098E-05 1.390091722 0.1217001593E-05 1.392443233 0.1233297156E-05 1.394794744 0.1249092269E-05 1.397146254 0.1264352855E-05 1.399497765 0.1279065203E-05 1.401849276 0.1293232484E-05 1.404200787 0.1306871339E-05 1.406552298 0.1320008777E-05 1.408903809 0.1332679498E-05 1.411255320 0.1344923670E-05 1.413606831 0.1356785109E-05 1.415958342 0.1368309835E-05 1.418309852 0.1379544942E-05 1.420661363 0.1390537720E-05 1.423012874 0.1401334991E-05 1.425364385 0.1411982613E-05 1.427715896 0.1422525117E-05 1.430067407 0.1433005444E-05 1.432418918 0.1443464767E-05 1.434770429 0.1453942372E-05 1.437121940 0.1464475585E-05 1.439473450 0.1475099735E-05 1.441824961 0.1485848136E-05 1.444176472 0.1496752091E-05 1.446527983 0.1507840901E-05 1.448879494 0.1519141875E-05 1.451231005 0.1530680337E-05 1.453582516 0.1542479625E-05 1.455934027 0.1554561073E-05 1.458285537 0.1566943969E-05 1.460637048 0.1579645488E-05 1.462988559 0.1592680595E-05 1.465340070 0.1606061916E-05 1.467691581 0.1619799564E-05 1.470043092 0.1633900946E-05 1.472394603 0.1648370530E-05 1.474746114 0.1751898083E-05 1.477097625 0.1916819346E-05 1.479449135 0.2100529687E-05 1.481800646 0.2297543315E-05 1.484152157 0.2288058842E-05 1.486503668 0.2249032624E-05 1.488855179 0.2209318611E-05 1.491206690 0.2169538442E-05 1.493558201 0.2130338311E-05 1.495909712 0.2092467000E-05 1.498261223 0.2056827141E-05 1.500612733 0.2024492626E-05 1.502964244 0.1996681176E-05 1.505315755 0.1974737611E-05 1.507667266 0.1960382251E-05 1.510018777 0.1956160040E-05 1.512370288 0.1962832409E-05 1.514721799 0.1976279702E-05 1.517073310 0.1992643116E-05 1.519424821 0.2010245459E-05 1.521776331 0.2028418284E-05 1.524127842 0.2046856866E-05 1.526479353 0.2065397618E-05 1.528830864 0.2083938404E-05 1.531182375 0.2102406672E-05 1.533533886 0.2120745253E-05 1.535885397 0.2138905454E-05 1.538236908 0.2156843420E-05 1.540588418 0.2174518118E-05 1.542939929 0.2191890155E-05 1.545291440 0.2208921081E-05 1.547642951 0.2225572960E-05 1.549994462 0.2241808122E-05 1.552345973 0.2257589026E-05 1.554697484 0.2272878196E-05 1.557048995 0.2287638207E-05 1.559400506 0.2301831715E-05 1.561752016 0.2315421497E-05 1.564103527 0.2328370525E-05 1.566455038 0.2340642035E-05 1.568806549 0.2352199622E-05 1.571158060 0.2363007325E-05 1.573509571 0.2373029725E-05 1.575861082 0.2382232043E-05 1.578212593 0.2390580240E-05 1.580564104 0.2398041115E-05 1.582915614 0.2404582403E-05 1.585267125 0.2410172878E-05 1.587618636 0.2414782451E-05 1.589970147 0.2418382262E-05 1.592321658 0.2420944780E-05 1.594673169 0.2422443897E-05 1.597024680 0.2422855013E-05 1.599376191 0.2422155134E-05 1.601727702 0.2420322949E-05 1.604079212 0.2417338920E-05 1.606430723 0.2413185357E-05 1.608782234 0.2407846495E-05 1.611133745 0.2401308567E-05 1.613485256 0.2393559870E-05 1.615836767 0.2384590825E-05 1.618188278 0.2374394040E-05 1.620539789 0.2362964360E-05 1.622891299 0.2350298911E-05 1.625242810 0.2336397145E-05 1.627594321 0.2321260873E-05 1.629945832 0.2304894293E-05 1.632297343 0.2287304014E-05 1.634648854 0.2268499067E-05 1.637000365 0.2248490920E-05 1.639351876 0.2227293473E-05 1.641703387 0.2204923056E-05 1.644054897 0.2181398414E-05 1.646406408 0.2155585862E-05 1.648757919 0.2091901154E-05 1.651109430 0.2029141577E-05 1.653460941 0.1967335373E-05 1.655812452 0.1906508572E-05 1.658163963 0.1846685042E-05 1.660515474 0.1787886540E-05 1.662866985 0.1730132758E-05 1.665218495 0.1673441379E-05 1.667570006 0.1617828126E-05 1.669921517 0.1563306815E-05 1.672273028 0.1509889409E-05 1.674624539 0.1457586076E-05 1.676976050 0.1406405235E-05 1.679327561 0.1356353622E-05 1.681679072 0.1307436335E-05 1.684030583 0.1259656897E-05 1.686382093 0.1213017313E-05 1.688733604 0.1167518117E-05 1.691085115 0.1123158440E-05 1.693436626 0.1079936056E-05 1.695788137 0.1037847444E-05 1.698139648 0.9968878419E-06 1.700491159 0.9570512991E-06 1.702842670 0.9183307342E-06 1.705194180 0.8807179877E-06 1.707545691 0.8442038753E-06 1.709897202 0.8087782409E-06 1.712248713 0.7744300082E-06 1.714600224 0.7411472322E-06 1.716951735 0.7089171491E-06 1.719303246 0.6777262260E-06 1.721654757 0.6475602088E-06 1.724006268 0.6184041702E-06 1.726357778 0.5902425555E-06 1.728709289 0.5630592286E-06 1.731060800 0.5368375160E-06 1.733412311 0.5115602500E-06 1.735763822 0.4872098114E-06 1.738115333 0.4637681703E-06 1.740466844 0.4412169264E-06 1.742818355 0.4195373479E-06 1.745169866 0.3987104098E-06 1.747521376 0.3787168309E-06 1.749872887 0.3595371094E-06 1.752224398 0.3411515585E-06 1.754575909 0.3235403398E-06 1.756927420 0.3066834967E-06 1.759278931 0.2905609864E-06 1.761630442 0.2751527109E-06 1.763981953 0.2604385478E-06 1.766333464 0.2463983789E-06 1.768684974 0.2330121194E-06 1.771036485 0.2202597453E-06 1.773387996 0.2081213203E-06 1.775739507 0.1965770222E-06 1.778091018 0.1856071677E-06 1.780442529 0.1751922377E-06 1.782794040 0.1653129007E-06 1.785145551 0.1559500361E-06 1.787497061 0.1470847570E-06 1.789848572 0.1386984317E-06 1.792200083 0.1307727050E-06 1.794551594 0.1232895188E-06 1.796903105 0.1162311320E-06 1.799254616 0.1095801397E-06 1.801606127 0.9881544966E-07 1.803957638 0.8789151854E-07 1.806309149 0.7781274307E-07 1.808660659 0.6855546421E-07 1.811012170 0.6009580092E-07 1.813363681 0.5241734137E-07 1.815715192 0.4556510044E-07 1.818066703 0.4133781122E-07 1.820418214 0.4031870723E-07 1.822769725 0.3465525927E-07 1.825121236 0.2957924322E-07 1.827472747 0.2506237007E-07 1.829824257 0.2107039224E-07 1.832175768 0.1756808274E-07 1.834527279 0.1451966027E-07 1.836878790 0.1188900615E-07 1.839230301 0.9639894591E-08 1.841581812 0.7736263878E-08 1.843933323 0.6142526658E-08 1.846284834 0.4823908964E-08 1.848636345 0.3746803647E-08 1.850987855 0.2879122259E-08 1.853339366 0.2190629721E-08 1.855690877 0.1653248451E-08 1.858042388 0.1241322663E-08 1.860393899 0.9318383793E-09 1.862745410 0.7045992396E-09 1.865096921 0.5423612846E-09 1.867448432 0.4309310050E-09 1.869799942 0.3592306415E-09 1.872151453 0.3193347813E-09 1.874502964 0.3064847411E-09 1.876849995 0.3092866820E-09 1.879197025 0.3173590962E-09 1.881544055 0.3308959652E-09 1.883891086 0.3502161038E-09 1.886238116 0.5796548616E-09 1.888585147 0.1082788914E-08 1.890932177 0.1872191930E-08 1.893279207 0.3042116978E-08 1.895626238 0.4699926097E-08 1.897973268 0.6965751477E-08 1.900320299 0.9972115444E-08 1.902667329 0.1386350966E-07 1.905014359 0.1879593449E-07 1.907361390 0.2493639986E-07 1.909708420 0.3246238893E-07 1.912055451 0.3581586768E-07 1.914402481 0.3646902128E-07 1.916749511 0.3716757835E-07 1.919096542 0.3791248432E-07 1.921443572 0.3870471928E-07 1.923790603 0.3954529400E-07 1.926137633 0.4043524550E-07 1.928484663 0.4137563226E-07 1.930831694 0.4236752895E-07 1.933178724 0.4341202072E-07 1.935525754 0.4451019699E-07 1.937872785 0.4566314481E-07 1.940219815 0.4687194169E-07 1.942566846 0.4813764799E-07 1.944913876 0.4946129878E-07 1.947260906 0.5084389533E-07 1.949607937 0.5228639604E-07 1.951954967 0.5378970709E-07 1.954301998 0.5535467265E-07 1.956649028 0.5698206478E-07 1.958996058 0.5867257309E-07 1.961343089 0.6042679417E-07 1.963690119 0.6224522102E-07 1.966037150 0.6412823219E-07 1.968384180 0.6607608125E-07 1.970731210 0.6808888622E-07 1.973078241 0.7016661930E-07 1.975425271 0.7230909689E-07 1.977772302 0.7451597015E-07 1.980119332 0.7678671594E-07 1.982466362 0.7912062849E-07 1.984813393 0.8151681180E-07 1.987160423 0.8397417273E-07 1.989507454 0.8649141508E-07 1.991854484 0.8906703460E-07 1.994201514 0.9169931491E-07 1.996548545 0.9438632461E-07 1.998895575 0.9712591541E-07 2.001242605 0.9991572134E-07 2.003589636 0.1027531592E-06 2.005936666 0.1056354301E-06 2.008283697 0.1085595222E-06 2.010630727 0.1115222143E-06 2.012977757 0.1145200809E-06 2.015324788 0.1175494986E-06 2.017671818 0.1206066524E-06 2.020018849 0.1236875444E-06 2.022365879 0.1267880024E-06 2.024712909 0.1299036903E-06 2.027059940 0.1330301185E-06 2.029406970 0.1361626560E-06 2.031754001 0.1392965422E-06 2.034101031 0.1424269007E-06 2.036448061 0.1455487529E-06 2.038795092 0.1486570321E-06 2.041142122 0.1517465991E-06 2.043489153 0.1548122573E-06 2.045836183 0.1578487694E-06 2.048183213 0.1608508734E-06 2.050530244 0.1638133003E-06 2.052877274 0.1667307920E-06 2.055224304 0.1695981193E-06 2.057571335 0.1724101014E-06 2.059918365 0.1751616260E-06 2.062265396 0.1778476709E-06 2.064612426 0.1804633271E-06 2.066959456 0.1830038241E-06 2.069306487 0.1854645592E-06 2.071653517 0.1878411309E-06 2.074000548 0.1901293804E-06 2.076347578 0.1923254434E-06 2.078694608 0.1944258201E-06 2.081041639 0.1964274711E-06 2.083388669 0.1983279595E-06 2.085735700 0.2001256676E-06 2.088082730 0.2018201470E-06 2.090429760 0.2034127134E-06 2.092776791 0.2049075157E-06 2.095123821 0.2063135788E-06 2.097470852 0.2076489946E-06 2.099817882 0.2089501822E-06 2.102164912 0.2102937932E-06 2.104511943 0.2118487584E-06 2.106858973 0.2139669699E-06 2.109206004 0.2171243238E-06 2.111553034 0.2214113221E-06 2.113900064 0.2264536915E-06 2.116247095 0.2319179958E-06 2.118594125 0.2376336571E-06 2.120941155 0.2435199971E-06 2.123288186 0.2495363600E-06 2.125635216 0.2556602858E-06 2.127982247 0.2618781738E-06 2.130329277 0.2681810452E-06 2.132676307 0.2745624794E-06 2.135023338 0.2810175401E-06 2.137370368 0.2875421833E-06 2.139717399 0.2941329138E-06 2.142064429 0.3007865783E-06 2.144411459 0.3075002350E-06 2.146758490 0.3142710701E-06 2.149105520 0.3210963412E-06 2.151452551 0.3279733403E-06 2.153799581 0.3348993670E-06 2.156146611 0.3418717107E-06 2.158493642 0.3488876373E-06 2.160840672 0.3559443803E-06 2.163187703 0.3630391339E-06 2.165534733 0.3701690492E-06 2.167881763 0.3773312305E-06 2.170228794 0.3845227334E-06 2.172575824 0.3917405641E-06 2.174922855 0.3989816784E-06 2.177269885 0.4062429820E-06 2.179616915 0.4135213311E-06 2.181963946 0.4208135329E-06 2.184310976 0.4281163469E-06 2.186658006 0.4354264862E-06 2.189005037 0.4427406191E-06 2.191352067 0.4500553707E-06 2.193699098 0.4573673250E-06 2.196046128 0.4646730267E-06 2.198393158 0.4719689837E-06 2.200740189 0.4792516689E-06 2.203087219 0.4865175230E-06 2.205434250 0.4937629567E-06 2.207781280 0.5009843537E-06 2.210128310 0.5081780726E-06 2.212475341 0.5153404504E-06 2.214822371 0.5224678046E-06 2.217169402 0.5295564369E-06 2.219516432 0.5366026350E-06 2.221863462 0.5436026765E-06 2.224210493 0.5505528314E-06 2.226557523 0.5574493654E-06 2.228904554 0.5642885431E-06 2.231251584 0.5710666304E-06 2.233598614 0.5777798987E-06 2.235945645 0.5844246274E-06 2.238292675 0.5909971071E-06 2.240639706 0.5974936431E-06 2.242986736 0.6039105587E-06 2.245333766 0.6102441981E-06 2.247680797 0.6164909299E-06 2.250027827 0.6226471502E-06 2.252374857 0.6287092861E-06 2.254721888 0.6346737987E-06 2.257068918 0.6405371864E-06 2.259415949 0.6462959881E-06 2.261762979 0.6519467867E-06 2.264110009 0.6574862118E-06 2.266457040 0.6629109431E-06 2.268804070 0.6682177136E-06 2.271151101 0.6734033125E-06 2.273498131 0.6784645884E-06 2.275845161 0.6833984522E-06 2.278192192 0.6882018801E-06 2.280539222 0.6928719166E-06 2.282886253 0.6974056771E-06 2.285233283 0.7018003511E-06 2.287580313 0.7060532043E-06 2.289927344 0.7101615821E-06 2.292274374 0.7141229115E-06 2.294621405 0.7179347038E-06 2.296968435 0.7215945575E-06 2.299315465 0.7251001599E-06 2.301662496 0.7284492901E-06 2.304009526 0.7316398208E-06 2.306356557 0.7346697204E-06 2.308703587 0.7375370554E-06 2.311050617 0.7402399919E-06 2.313397648 0.7427767976E-06 2.315744678 0.7451458438E-06 2.318091708 0.7473456066E-06 2.320438739 0.7493746687E-06 2.322785769 0.7512317207E-06 2.325132800 0.7529155626E-06 2.327479830 0.7544251048E-06 2.329826860 0.7557593695E-06 2.332173891 0.7569174911E-06 2.334520921 0.7578987181E-06 2.336867952 0.7587024126E-06 2.339214982 0.7593280520E-06 2.341562012 0.7597752290E-06 2.343909043 0.7600436521E-06 2.346256073 0.7601331461E-06 0.000000000 0.3094723531E-07 0.2347351854E-02 0.3103985100E-07 0.4694703708E-02 0.3131849212E-07 0.7042055561E-02 0.3178553915E-07 0.9389407415E-02 0.3244495389E-07 0.1173675927E-01 0.3330227103E-07 0.1408411112E-01 0.3436458630E-07 0.1643146298E-01 0.3564054128E-07 0.1877881483E-01 0.3714030482E-07 0.2112616668E-01 0.3887555124E-07 0.2347351854E-01 0.4085943508E-07 0.2582087039E-01 0.4310656273E-07 0.2816822225E-01 0.4563296077E-07 0.3051557410E-01 0.4845604128E-07 0.3286292595E-01 0.5159456397E-07 0.3521027781E-01 0.5506859538E-07 0.3755762966E-01 0.5889946529E-07 0.3990498151E-01 0.6310972018E-07 0.4225233337E-01 0.6772307423E-07 0.4459968522E-01 0.7276435764E-07 0.4694703708E-01 0.7586007548E-07 0.4929438893E-01 0.7251550939E-07 0.5164174078E-01 0.6911018514E-07 0.5398909264E-01 0.6565695760E-07 0.5633644449E-01 0.6223407867E-07 0.5868379634E-01 0.7098706298E-07 0.6103114820E-01 0.8057637413E-07 0.6337850005E-01 0.9104830230E-07 0.6572585191E-01 0.1024498799E-06 0.6807320376E-01 0.1148287008E-06 0.7042055561E-01 0.1282327343E-06 0.7276790747E-01 0.1427101381E-06 0.7511525932E-01 0.1583090711E-06 0.7746261117E-01 0.1750775096E-06 0.7980996303E-01 0.1930630658E-06 0.8215731488E-01 0.2123128096E-06 0.8450466674E-01 0.2328730947E-06 0.8685201859E-01 0.2547893879E-06 0.8919937044E-01 0.2781061025E-06 0.9154672230E-01 0.3028664347E-06 0.9389407415E-01 0.3291122047E-06 0.9624142601E-01 0.3523395330E-06 0.9858877786E-01 0.3757224739E-06 0.1009361297 0.4003001247E-06 0.1032834816 0.4261041584E-06 0.1056308334 0.4531656457E-06 0.1079781853 0.4815149963E-06 0.1103255371 0.5111819016E-06 0.1126728890 0.5421952806E-06 0.1150202408 0.5745832268E-06 0.1173675927 0.6083729595E-06 0.1197149445 0.6435907756E-06 0.1220622964 0.6802620065E-06 0.1244096483 0.7184109757E-06 0.1267570001 0.7580609612E-06 0.1291043520 0.7992341600E-06 0.1314517038 0.8419516563E-06 0.1337990557 0.8862333924E-06 0.1361464075 0.9320981440E-06 0.1384937594 0.9795634979E-06 0.1408411112 0.1028645834E-05 0.1431884631 0.1079360310E-05 0.1455358149 0.1131720850E-05 0.1478831668 0.1185740139E-05 0.1502305186 0.1241429614E-05 0.1525778705 0.1298799468E-05 0.1549252223 0.1357858651E-05 0.1572725742 0.1418614878E-05 0.1596199261 0.1481074633E-05 0.1619672779 0.1545243191E-05 0.1643146298 0.1611124626E-05 0.1666619816 0.1678721835E-05 0.1690093335 0.1748036560E-05 0.1713566853 0.1819069410E-05 0.1737040372 0.1891819890E-05 0.1760513890 0.1966286430E-05 0.1783987409 0.2042466418E-05 0.1807460927 0.2120356232E-05 0.1830934446 0.2199951274E-05 0.1854407964 0.2281246004E-05 0.1877881483 0.2364233979E-05 0.1901355002 0.2448907886E-05 0.1924828520 0.2535259578E-05 0.1948302039 0.2623280106E-05 0.1971775557 0.2712959752E-05 0.1995249076 0.2804288055E-05 0.2018722594 0.2897253841E-05 0.2042196113 0.2991845235E-05 0.2065669631 0.3088049681E-05 0.2089143150 0.3185853946E-05 0.2112616668 0.3285244114E-05 0.2136090187 0.3386205574E-05 0.2159563705 0.3488722995E-05 0.2183037224 0.3592780276E-05 0.2206510743 0.3698360489E-05 0.2229984261 0.3805445791E-05 0.2253457780 0.3914017310E-05 0.2276931298 0.4024055007E-05 0.2300404817 0.4135537483E-05 0.2323878335 0.4248441756E-05 0.2347351854 0.4362742972E-05 0.2370825372 0.4478414045E-05 0.2394298891 0.4595425224E-05 0.2417772409 0.4713743541E-05 0.2441245928 0.4833332145E-05 0.2464719446 0.4954149461E-05 0.2488192965 0.5076148161E-05 0.2511666484 0.5158633153E-05 0.2535140002 0.5231337254E-05 0.2558613521 0.5301896182E-05 0.2582087039 0.5370210070E-05 0.2605560558 0.5436180712E-05 0.2629034076 0.5499711650E-05 0.2652507595 0.5560708246E-05 0.2675981113 0.5619077734E-05 0.2699454632 0.5674729256E-05 0.2722928150 0.5727573871E-05 0.2746401669 0.5777524540E-05 0.2769875187 0.5824496080E-05 0.2793348706 0.5868405083E-05 0.2816822225 0.5909169792E-05 0.2840295743 0.5946709930E-05 0.2863769262 0.5980946474E-05 0.2887242780 0.6011801355E-05 0.2910716299 0.6039197086E-05 0.2934189817 0.6063056286E-05 0.2957663336 0.6083301095E-05 0.2981136854 0.6099852440E-05 0.3004610373 0.6112629136E-05 0.3028083891 0.6121546773E-05 0.3051557410 0.6126516344E-05 0.3075030928 0.6127442550E-05 0.3098504447 0.6124221708E-05 0.3121977966 0.5992825633E-05 0.3145451484 0.5463238662E-05 0.3168925003 0.4931080752E-05 0.3192398521 0.4424095592E-05 0.3215872040 0.3960838982E-05 0.3239345558 0.3553524850E-05 0.3262819077 0.3209522150E-05 0.3286292595 0.2931127895E-05 0.3309766114 0.2714765369E-05 0.3333239632 0.2551610074E-05 0.3356713151 0.2430258050E-05 0.3380186669 0.2339726302E-05 0.3403660188 0.2271111270E-05 0.3427133707 0.2217854542E-05 0.3450607225 0.2175340166E-05 0.3474080744 0.2140367416E-05 0.3497554262 0.2110712082E-05 0.3521027781 0.2084811737E-05 0.3544501299 0.2061552746E-05 0.3567974818 0.2040128943E-05 0.3591448336 0.2019947957E-05 0.3614921855 0.2000568595E-05 0.3638395373 0.1981658441E-05 0.3661868892 0.1962964703E-05 0.3685342410 0.1944293855E-05 0.3708815929 0.1925497188E-05 0.3732289448 0.1906460402E-05 0.3755762966 0.1887095989E-05 0.3779236485 0.1867337583E-05 0.3802710003 0.1847135712E-05 0.3826183522 0.1826454557E-05 0.3849657040 0.1805269453E-05 0.3873130559 0.1783564933E-05 0.3896604077 0.1761333188E-05 0.3920077596 0.1738572825E-05 0.3943551114 0.1715287868E-05 0.3967024633 0.1691486944E-05 0.3990498151 0.1753773786E-05 0.4013971670 0.1867102855E-05 0.4037445189 0.1854630490E-05 0.4060918707 0.1799047117E-05 0.4084392226 0.1750527702E-05 0.4107865744 0.1708705992E-05 0.4131339263 0.1773387559E-05 0.4154812781 0.1873907570E-05 0.4178286300 0.1977632887E-05 0.4201759818 0.2084558209E-05 0.4225233337 0.2194673816E-05 0.4248706855 0.2307965511E-05 0.4272180374 0.2424414558E-05 0.4295653892 0.2543997632E-05 0.4319127411 0.2666686770E-05 0.4342600929 0.2792449343E-05 0.4366074448 0.2921248017E-05 0.4389547967 0.3053040737E-05 0.4413021485 0.3187780711E-05 0.4436495004 0.3134679787E-05 0.4459968522 0.3084539379E-05 0.4483442041 0.3043271123E-05 0.4506915559 0.3012295631E-05 0.4530389078 0.2993023202E-05 0.4553862596 0.2986699051E-05 0.4577336115 0.2994235443E-05 0.4600809633 0.3016087111E-05 0.4624283152 0.3052219364E-05 0.4647756670 0.3102177550E-05 0.4671230189 0.3165220819E-05 0.4694703708 0.3240465755E-05 0.4718177226 0.3326999909E-05 0.4741650745 0.3423951168E-05 0.4765124263 0.3530517486E-05 0.4788597782 0.3645968317E-05 0.4812071300 0.3769628034E-05 0.4835544819 0.3900847532E-05 0.4859018337 0.4038965467E-05 0.4882491856 0.4183255600E-05 0.4905965374 0.4332850064E-05 0.4929438893 0.4486617148E-05 0.4952912411 0.4642949585E-05 0.4976385930 0.4799371391E-05 0.4999859449 0.4951769706E-05 0.5023332967 0.5092877434E-05 0.5046806486 0.5209586343E-05 0.5070280004 0.5280480595E-05 0.5093753523 0.5282255798E-05 0.5117227041 0.5210847894E-05 0.5140700560 0.5086572264E-05 0.5164174078 0.4933117485E-05 0.5187647597 0.4765981716E-05 0.5211121115 0.4593691508E-05 0.5234594634 0.4420853234E-05 0.5258068152 0.4250034084E-05 0.5281541671 0.4082721273E-05 0.5305015190 0.3919803575E-05 0.5328488708 0.3761821067E-05 0.5351962227 0.3609100646E-05 0.5375435745 0.3461833051E-05 0.5398909264 0.3320118593E-05 0.5422382782 0.3183995424E-05 0.5445856301 0.3053457680E-05 0.5469329819 0.2928467545E-05 0.5492803338 0.2808963522E-05 0.5516276856 0.2694866313E-05 0.5539750375 0.2586083100E-05 0.5563223893 0.2482510777E-05 0.5586697412 0.2384038448E-05 0.5610170931 0.2290549419E-05 0.5633644449 0.2201922817E-05 0.5657117968 0.2118034949E-05 0.5680591486 0.2038760458E-05 0.5704065005 0.1963973328E-05 0.5727538523 0.1893547771E-05 0.5751012042 0.1827359021E-05 0.5774485560 0.1765284046E-05 0.5797959079 0.1707202202E-05 0.5821432597 0.1652995824E-05 0.5844906116 0.1602550780E-05 0.5868379634 0.1555756968E-05 0.5891853153 0.1512508782E-05 0.5915326672 0.1472705541E-05 0.5938800190 0.1436251879E-05 0.5962273709 0.1403058108E-05 0.5985747227 0.1373040544E-05 0.6009220746 0.1346121812E-05 0.6032694264 0.1322231106E-05 0.6056167783 0.1301304443E-05 0.6079641301 0.1283284867E-05 0.6103114820 0.1268122645E-05 0.6126588338 0.1255775422E-05 0.6150061857 0.1246208363E-05 0.6173535375 0.1239394257E-05 0.6197008894 0.1235313609E-05 0.6220482413 0.1233954697E-05 0.6243952716 0.1233661078E-05 0.6267423020 0.1232741873E-05 0.6290893324 0.1231198733E-05 0.6314363628 0.1229034407E-05 0.6337833932 0.1226252734E-05 0.6361304236 0.1222858632E-05 0.6384774540 0.1218858084E-05 0.6408244844 0.1214258125E-05 0.6431715148 0.1209066823E-05 0.6455185452 0.1203293254E-05 0.6478655756 0.1196947483E-05 0.6502126060 0.1190040534E-05 0.6525596364 0.1182584362E-05 0.6549066668 0.1174591822E-05 0.6572536971 0.1166076636E-05 0.6596007275 0.1157053357E-05 0.6619477579 0.1147537332E-05 0.6642947883 0.1137544660E-05 0.6666418187 0.1127092158E-05 0.6689888491 0.1116197310E-05 0.6713358795 0.1104878229E-05 0.6736829099 0.1093153611E-05 0.6760299403 0.1081042690E-05 0.6783769707 0.1068565189E-05 0.6807240011 0.1055741276E-05 0.6830710315 0.1042591516E-05 0.6854180619 0.1029136822E-05 0.6877650922 0.1015398411E-05 0.6901121226 0.1001397754E-05 0.6924591530 0.9871565355E-06 0.6948061834 0.9726966032E-06 0.6971532138 0.9580399291E-06 0.6995002442 0.9432085674E-06 0.7018472746 0.9282246163E-06 0.7041943050 0.9131101836E-06 0.7065413354 0.8978873556E-06 0.7088883658 0.8825781720E-06 0.7112353962 0.8672046065E-06 0.7135824266 0.8517885563E-06 0.7159294570 0.8363518422E-06 0.7182764874 0.8209162225E-06 0.7206235177 0.8055034254E-06 0.7229705481 0.7901352060E-06 0.7253175785 0.7748334371E-06 0.7276646089 0.7596202484E-06 0.7300116393 0.7445182317E-06 0.7323586697 0.7295507461E-06 0.7347057001 0.7147423696E-06 0.7370527305 0.7001195770E-06 0.7393997609 0.6857117734E-06 0.7417467913 0.6715529053E-06 0.7440938217 0.6576840426E-06 0.7464408521 0.6441576504E-06 0.7487878825 0.6310449217E-06 0.7511349128 0.6184488800E-06 0.7534819432 0.6065287831E-06 0.7558289736 0.5955471802E-06 0.7581760040 0.5859612345E-06 0.7605230344 0.5785846619E-06 0.7628700648 0.5747632821E-06 0.7652170952 0.5761182531E-06 0.7675641256 0.5833003243E-06 0.7699111560 0.5952218229E-06 0.7722581864 0.6101938506E-06 0.7746052168 0.6269625564E-06 0.7769522472 0.6447862812E-06 0.7792992776 0.6632392109E-06 0.7816463080 0.6820649645E-06 0.7839933383 0.7010974262E-06 0.7863403687 0.7202202222E-06 0.7886873991 0.7393456408E-06 0.7910344295 0.7584032627E-06 0.7933814599 0.7773335846E-06 0.7957284903 0.7960843109E-06 0.7980755207 0.8146081317E-06 0.8004225511 0.8328613588E-06 0.8027695815 0.8508030750E-06 0.8051166119 0.8683945990E-06 0.8074636423 0.8855991513E-06 0.8098106727 0.9023816480E-06 0.8121577031 0.9187085809E-06 0.8145047335 0.9345479525E-06 0.8168517638 0.9498692494E-06 0.8191987942 0.9646434407E-06 0.8215458246 0.9788429922E-06 0.8238928550 0.9924418905E-06 0.8262398854 0.1005415674E-05 0.8285869158 0.1017741465E-05 0.8309339462 0.1029398003E-05 0.8332809766 0.1040365678E-05 0.8356280070 0.1050626555E-05 0.8379750374 0.1060164406E-05 0.8403220678 0.1068964724E-05 0.8426690982 0.1077014745E-05 0.8450161286 0.1084303456E-05 0.8473631589 0.1090821601E-05 0.8497101893 0.1096561683E-05 0.8520572197 0.1101517957E-05 0.8544042501 0.1105686420E-05 0.8567512805 0.1109064794E-05 0.8590983109 0.1111652506E-05 0.8614453413 0.1113450664E-05 0.8637923717 0.1114462022E-05 0.8661394021 0.1114690948E-05 0.8684864325 0.1114143383E-05 0.8708334629 0.1112826799E-05 0.8731804933 0.1110750151E-05 0.8755275237 0.1107923832E-05 0.8778745541 0.1104359613E-05 0.8802215844 0.1100070593E-05 0.8825686148 0.1095071142E-05 0.8849156452 0.1089376841E-05 0.8872626756 0.1083004420E-05 0.8896097060 0.1075971701E-05 0.8919567364 0.1068297533E-05 0.8943037668 0.1060001730E-05 0.8966507972 0.1051105009E-05 0.8989978276 0.1041628930E-05 0.9013448580 0.1031595832E-05 0.9036918884 0.1021028775E-05 0.9060389188 0.1009951483E-05 0.9083859492 0.9983882867E-06 0.9107329796 0.9863640749E-06 0.9130800099 0.9739042440E-06 0.9154270403 0.9610346584E-06 0.9177740707 0.9477816163E-06 0.9201211011 0.9341718271E-06 0.9224681315 0.9202324024E-06 0.9248151619 0.9059908671E-06 0.9271621923 0.8914751995E-06 0.9295092227 0.8767139122E-06 0.9318562531 0.8617361950E-06 0.9342032835 0.8465721522E-06 0.9365503139 0.8312531896E-06 0.9388973443 0.8158126459E-06 0.9412443747 0.8002868384E-06 0.9435914050 0.7847168438E-06 0.9459384354 0.7691516451E-06 0.9482854658 0.7536539728E-06 0.9506324962 0.7383118188E-06 0.9529795266 0.7232628489E-06 0.9553265570 0.7087507037E-06 0.9576735874 0.6952661023E-06 0.9600206178 0.6839085495E-06 0.9623676482 0.6770486401E-06 0.9647146786 0.6776292634E-06 0.9670617090 0.6852052556E-06 0.9694087394 0.6967489783E-06 0.9717557698 0.7102470123E-06 0.9741028002 0.7247983399E-06 0.9764498305 0.7399966174E-06 0.9787968609 0.7556374125E-06 0.9811438913 0.7716045897E-06 0.9834909217 0.7878241350E-06 0.9858379521 0.8042437126E-06 0.9881849825 0.8208228395E-06 0.9905320129 0.8375278161E-06 0.9928790433 0.8543289542E-06 0.9952260737 0.8711989857E-06 0.9975731041 0.8881121150E-06 0.9999201345 0.9050434374E-06 1.002267165 0.9219685770E-06 1.004614195 0.9388634587E-06 1.006961226 0.9557041669E-06 1.009308256 0.9724668604E-06 1.011655286 0.9891277263E-06 1.014002317 0.1005662959E-05 1.016349347 0.1022048761E-05 1.018696378 0.1038261354E-05 1.021043408 0.1054276999E-05 1.023390438 0.1050523494E-05 1.025737469 0.1046630288E-05 1.028084499 0.1043083663E-05 1.030431530 0.1039862300E-05 1.032778560 0.1036945523E-05 1.035125590 0.1034313299E-05 1.037472621 0.1031946233E-05 1.039819651 0.1029825573E-05 1.042166682 0.1027933209E-05 1.044513712 0.1026251685E-05 1.046860742 0.1024764203E-05 1.049207773 0.1023454634E-05 1.051554803 0.1022307530E-05 1.053901834 0.1021308136E-05 1.056248864 0.1020442403E-05 1.058595894 0.1019697002E-05 1.060942925 0.1019059338E-05 1.063289955 0.1018517565E-05 1.065636985 0.1018060601E-05 1.067984016 0.1017678142E-05 1.070331046 0.1017360676E-05 1.072678077 0.1017099497E-05 1.075025107 0.1016886718E-05 1.077372137 0.1016715280E-05 1.079719168 0.1016578968E-05 1.082066198 0.1016472417E-05 1.084413229 0.1016391124E-05 1.086760259 0.1016331452E-05 1.089107289 0.1016290638E-05 1.091454320 0.1016266797E-05 1.093801350 0.1016258925E-05 1.096152861 0.1016925648E-05 1.098504372 0.1018918951E-05 1.100855883 0.1022218606E-05 1.103207394 0.1026792016E-05 1.105558905 0.1032595755E-05 1.107910415 0.1039577498E-05 1.110261926 0.1047678178E-05 1.112613437 0.1056834200E-05 1.114964948 0.1066979562E-05 1.117316459 0.1078047774E-05 1.119667970 0.1089973500E-05 1.122019481 0.1102693897E-05 1.124370992 0.1116149636E-05 1.126722503 0.1130285635E-05 1.129074013 0.1145051532E-05 1.131425524 0.1160401942E-05 1.133777035 0.1176296533E-05 1.136128546 0.1192699969E-05 1.138480057 0.1209581752E-05 1.140831568 0.1226915989E-05 1.143183079 0.1239800343E-05 1.145534590 0.1214676535E-05 1.147886101 0.1189068352E-05 1.150237611 0.1163084588E-05 1.152589122 0.1136831443E-05 1.154940633 0.1110413917E-05 1.157292144 0.1083936732E-05 1.159643655 0.1057504971E-05 1.161995166 0.1031224595E-05 1.164346677 0.1005202880E-05 1.166698188 0.9795488411E-06 1.169049699 0.9543736644E-06 1.171401209 0.9297911478E-06 1.173752720 0.9059181455E-06 1.176104231 0.8828749830E-06 1.178455742 0.8607857857E-06 1.180807253 0.8397786285E-06 1.183158764 0.8199853798E-06 1.185510275 0.8015410654E-06 1.187861786 0.7845825498E-06 1.190213296 0.7692463164E-06 1.192564807 0.7556651662E-06 1.194916318 0.7439637668E-06 1.197267829 0.7342531848E-06 1.199619340 0.7266248179E-06 1.201970851 0.7211444456E-06 1.204322362 0.7178473306E-06 1.206673873 0.7167353004E-06 1.209025384 0.7177764618E-06 1.211376894 0.7209076976E-06 1.213728405 0.7260395210E-06 1.216079916 0.7330624392E-06 1.218431427 0.7418538118E-06 1.220782938 0.7522843065E-06 1.223134449 0.7642233369E-06 1.225485960 0.7775432024E-06 1.227837471 0.7921219177E-06 1.230188982 0.8078448997E-06 1.232540492 0.8246057533E-06 1.234892003 0.8423064095E-06 1.237243514 0.8608568362E-06 1.239595025 0.8801744969E-06 1.241946536 0.9001836853E-06 1.244298047 0.9208148218E-06 1.246649558 0.9420037686E-06 1.249001069 0.9636911940E-06 1.251352580 0.9858220046E-06 1.253704090 0.1008344849E-05 1.256055601 0.1031211696E-05 1.258407112 0.1054377481E-05 1.260758623 0.1077799812E-05 1.263110134 0.1101438741E-05 1.265461645 0.1125256578E-05 1.267813156 0.1149217750E-05 1.270164667 0.1173288705E-05 1.272516177 0.1197437843E-05 1.274867688 0.1221635480E-05 1.277219199 0.1245853836E-05 1.279570710 0.1270067047E-05 1.281922221 0.1294251199E-05 1.284273732 0.1318384375E-05 1.286625243 0.1342446723E-05 1.288976754 0.1366420536E-05 1.291328265 0.1390290344E-05 1.293679775 0.1414043024E-05 1.296031286 0.1437667916E-05 1.298382797 0.1461156951E-05 1.300734308 0.1484504792E-05 1.303085819 0.1507708976E-05 1.305437330 0.1530770079E-05 1.307788841 0.1553691868E-05 1.310140352 0.1576481480E-05 1.312491863 0.1599149582E-05 1.314843373 0.1621710555E-05 1.317194884 0.1644182654E-05 1.319546395 0.1666588171E-05 1.321897906 0.1688953582E-05 1.324249417 0.1711309667E-05 1.326600928 0.1733691603E-05 1.328952439 0.1756138997E-05 1.331303950 0.1778695864E-05 1.333655461 0.1801410514E-05 1.336006971 0.1824335329E-05 1.338358482 0.1847526394E-05 1.340709993 0.1871042957E-05 1.343061504 0.1894946679E-05 1.345413015 0.1919300631E-05 1.347764526 0.1944168015E-05 1.350116037 0.1969610573E-05 1.352467548 0.1995686670E-05 1.354819059 0.2022449066E-05 1.357170569 0.2049942394E-05 1.359522080 0.2078200434E-05 1.361873591 0.2107243265E-05 1.364225102 0.2137074466E-05 1.366576613 0.2167678524E-05 1.368928124 0.2199018665E-05 1.371279635 0.2231035302E-05 1.373631146 0.2263645273E-05 1.375982656 0.2296742009E-05 1.378334167 0.2330196675E-05 1.380685678 0.2363860276E-05 1.383037189 0.2397566608E-05 1.385388700 0.2431135884E-05 1.387740211 0.2464378792E-05 1.390091722 0.2497100753E-05 1.392443233 0.2529106102E-05 1.394794744 0.2560201989E-05 1.397146254 0.2590201810E-05 1.399497765 0.2618928038E-05 1.401849276 0.2646214387E-05 1.404200787 0.2671907261E-05 1.406552298 0.2695866489E-05 1.408903809 0.2717965320E-05 1.411255320 0.2738089636E-05 1.413606831 0.2756136180E-05 1.415958342 0.2772009333E-05 1.418309852 0.2785615217E-05 1.420661363 0.2796850050E-05 1.423012874 0.2805574203E-05 1.425364385 0.2811545500E-05 1.427715896 0.2814219069E-05 1.430067407 0.2812096494E-05 1.432418918 0.2801623720E-05 1.434770429 0.2781419306E-05 1.437121940 0.2756643108E-05 1.439473450 0.2730969251E-05 1.441824961 0.2705618216E-05 1.444176472 0.2680982473E-05 1.446527983 0.2657193692E-05 1.448879494 0.2634287334E-05 1.451231005 0.2612256985E-05 1.453582516 0.2591074477E-05 1.455934027 0.2570697201E-05 1.458285537 0.2551069117E-05 1.460637048 0.2532116809E-05 1.462988559 0.2513738935E-05 1.465340070 0.2495783403E-05 1.467691581 0.2477998517E-05 1.470043092 0.2459927331E-05 1.472394603 0.2440696512E-05 1.474746114 0.2418764729E-05 1.477097625 0.2392324217E-05 1.479449135 0.2360901938E-05 1.481800646 0.2325680558E-05 1.484152157 0.2405099805E-05 1.486503668 0.2392859043E-05 1.488855179 0.2381843838E-05 1.491206690 0.2371862513E-05 1.493558201 0.2362822484E-05 1.495909712 0.2354686789E-05 1.498261223 0.2347452788E-05 1.500612733 0.2341141105E-05 1.502964244 0.2335789253E-05 1.505315755 0.2331447278E-05 1.507667266 0.2328174019E-05 1.510018777 0.2326033252E-05 1.512370288 0.2325089331E-05 1.514721799 0.2325402256E-05 1.517073310 0.2327022359E-05 1.519424821 0.2329985064E-05 1.521776331 0.2334306322E-05 1.524127842 0.2339979386E-05 1.526479353 0.2346973378E-05 1.528830864 0.2355233860E-05 1.531182375 0.2364685200E-05 1.533533886 0.2375234271E-05 1.535885397 0.2386774847E-05 1.538236908 0.2399192075E-05 1.540588418 0.2412366556E-05 1.542939929 0.2426177724E-05 1.545291440 0.2440506431E-05 1.547642951 0.2455236760E-05 1.549994462 0.2470257157E-05 1.552345973 0.2485461043E-05 1.554697484 0.2500747029E-05 1.557048995 0.2516018864E-05 1.559400506 0.2531185216E-05 1.561752016 0.2546159358E-05 1.564103527 0.2560858819E-05 1.566455038 0.2575205021E-05 1.568806549 0.2589122946E-05 1.571158060 0.2602540831E-05 1.573509571 0.2615389900E-05 1.575861082 0.2627604143E-05 1.578212593 0.2639120127E-05 1.580564104 0.2649876859E-05 1.582915614 0.2659815673E-05 1.585267125 0.2668880154E-05 1.587618636 0.2677016094E-05 1.589970147 0.2684171464E-05 1.592321658 0.2690296419E-05 1.594673169 0.2695343311E-05 1.597024680 0.2699266723E-05 1.599376191 0.2702023518E-05 1.601727702 0.2703572892E-05 1.604079212 0.2703876439E-05 1.606430723 0.2702898226E-05 1.608782234 0.2700604864E-05 1.611133745 0.2696965592E-05 1.613485256 0.2691952354E-05 1.615836767 0.2685539879E-05 1.618188278 0.2677705767E-05 1.620539789 0.2668430558E-05 1.622891299 0.2657697815E-05 1.625242810 0.2645494189E-05 1.627594321 0.2631809489E-05 1.629945832 0.2616636735E-05 1.632297343 0.2555249821E-05 1.634648854 0.2486737163E-05 1.637000365 0.2418931122E-05 1.639351876 0.2351874188E-05 1.641703387 0.2285606361E-05 1.644054897 0.2220165200E-05 1.646406408 0.2156740686E-05 1.648757919 0.2130973380E-05 1.651109430 0.2104122335E-05 1.653460941 0.2076215679E-05 1.655812452 0.2047283777E-05 1.658163963 0.2017359177E-05 1.660515474 0.1986476544E-05 1.662866985 0.1954672587E-05 1.665218495 0.1921985980E-05 1.667570006 0.1888457280E-05 1.669921517 0.1854128830E-05 1.672273028 0.1819044666E-05 1.674624539 0.1783250408E-05 1.676976050 0.1746793153E-05 1.679327561 0.1709721358E-05 1.681679072 0.1672084721E-05 1.684030583 0.1633934052E-05 1.686382093 0.1595321150E-05 1.688733604 0.1556298664E-05 1.691085115 0.1516919958E-05 1.693436626 0.1477238971E-05 1.695788137 0.1437310075E-05 1.698139648 0.1397187930E-05 1.700491159 0.1356927340E-05 1.702842670 0.1316583103E-05 1.705194180 0.1276209863E-05 1.707545691 0.1235861966E-05 1.709897202 0.1195593311E-05 1.712248713 0.1155457201E-05 1.714600224 0.1115506206E-05 1.716951735 0.1075792009E-05 1.719303246 0.1036365277E-05 1.721654757 0.9972755189E-06 1.724006268 0.9585709514E-06 1.726357778 0.9202983724E-06 1.728709289 0.8825030347E-06 1.731060800 0.8452285272E-06 1.733412311 0.8085166604E-06 1.735763822 0.7724073585E-06 1.738115333 0.7369385578E-06 1.740466844 0.7021461121E-06 1.742818355 0.6680637057E-06 1.745169866 0.6347227747E-06 1.747521376 0.6021524371E-06 1.749872887 0.5703794329E-06 1.752224398 0.5394280755E-06 1.754575909 0.5093202157E-06 1.756927420 0.4800752218E-06 1.759278931 0.4517099769E-06 1.761630442 0.4242388998E-06 1.763981953 0.3976739935E-06 1.766333464 0.3720249285E-06 1.768684974 0.3472991678E-06 1.771036485 0.3235021422E-06 1.773387996 0.3006374776E-06 1.775739507 0.2787072733E-06 1.778091018 0.2577124143E-06 1.780442529 0.2376528841E-06 1.782794040 0.2185280218E-06 1.785145551 0.2003366563E-06 1.787497061 0.1830770513E-06 1.789848572 0.1667466261E-06 1.792200083 0.1513414717E-06 1.794551594 0.1368557415E-06 1.796903105 0.1232810321E-06 1.799254616 0.1106058779E-06 1.801606127 0.1033194921E-06 1.803957638 0.9743251212E-07 1.806309149 0.8870653512E-07 1.808660659 0.7877187267E-07 1.811012170 0.6963022158E-07 1.813363681 0.6124862729E-07 1.815715192 0.5359473067E-07 1.818066703 0.4663956807E-07 1.820418214 0.4471978532E-07 1.822769725 0.4894115271E-07 1.825121236 0.5328778538E-07 1.827472747 0.5574479889E-07 1.829824257 0.5299011785E-07 1.832175768 0.5044368101E-07 1.834527279 0.4809497626E-07 1.836878790 0.4593403896E-07 1.839230301 0.4395145799E-07 1.841581812 0.4213838080E-07 1.843933323 0.4048651766E-07 1.846284834 0.3898814498E-07 1.848636345 0.3763610785E-07 1.850987855 0.3642382184E-07 1.853339366 0.3534527406E-07 1.855690877 0.3439502369E-07 1.858042388 0.3356820191E-07 1.860393899 0.3286051143E-07 1.862745410 0.3226822568E-07 1.865096921 0.3178818768E-07 1.867448432 0.3141780877E-07 1.869799942 0.3115506724E-07 1.872151453 0.3099850682E-07 1.874502964 0.3094723531E-07 1.876849995 0.3096373299E-07 1.879197025 0.3101727306E-07 1.881544055 0.3110794532E-07 1.883891086 0.3123590096E-07 1.886238116 0.3140135223E-07 1.888585147 0.3160457208E-07 1.890932177 0.3184589353E-07 1.893279207 0.3212570900E-07 1.895626238 0.3244446946E-07 1.897973268 0.3280268338E-07 1.900320299 0.3320091557E-07 1.902667329 0.3363978576E-07 1.905014359 0.3411996701E-07 1.907361390 0.3464218390E-07 1.909708420 0.3520721041E-07 1.912055451 0.3602126439E-07 1.914402481 0.4579283769E-07 1.916749511 0.5740134189E-07 1.919096542 0.7105176515E-07 1.921443572 0.8695642016E-07 1.923790603 0.9214267473E-07 1.926137633 0.9027208432E-07 1.928484663 0.8835693497E-07 1.930831694 0.8640212712E-07 1.933178724 0.8441259839E-07 1.935525754 0.8239330487E-07 1.937872785 0.8034920252E-07 1.940219815 0.7828522883E-07 1.942566846 0.7620628477E-07 1.944913876 0.7411721722E-07 1.947260906 0.7202280179E-07 1.949607937 0.6992772641E-07 1.951954967 0.6783657540E-07 1.954301998 0.6575381450E-07 1.956649028 0.6368377653E-07 1.958996058 0.6163064819E-07 1.961343089 0.6042679419E-07 1.963690119 0.6224522103E-07 1.966037150 0.6412823220E-07 1.968384180 0.6607608127E-07 1.970731210 0.6808888624E-07 1.973078241 0.7016661931E-07 1.975425271 0.7230909691E-07 1.977772302 0.7451597017E-07 1.980119332 0.7678671595E-07 1.982466362 0.7912062851E-07 1.984813393 0.8151681181E-07 1.987160423 0.8397417274E-07 1.989507454 0.8649141510E-07 1.991854484 0.8906703461E-07 1.994201514 0.9169931493E-07 1.996548545 0.9438632463E-07 1.998895575 0.9712591543E-07 2.001242605 0.9991572136E-07 2.003589636 0.1027531592E-06 2.005936666 0.1056354302E-06 2.008283697 0.1085595222E-06 2.010630727 0.1115222143E-06 2.012977757 0.1145200810E-06 2.015324788 0.1175494986E-06 2.017671818 0.1206066525E-06 2.020018849 0.1236875444E-06 2.022365879 0.1267880024E-06 2.024712909 0.1299036903E-06 2.027059940 0.1330301186E-06 2.029406970 0.1361626560E-06 2.031754001 0.1392965422E-06 2.034101031 0.1424269008E-06 2.036448061 0.1455487529E-06 2.038795092 0.1486570322E-06 2.041142122 0.1517465991E-06 2.043489153 0.1548122574E-06 2.045836183 0.1578487694E-06 2.048183213 0.1608508734E-06 2.050530244 0.1638133004E-06 2.052877274 0.1667307921E-06 2.055224304 0.1695981194E-06 2.057571335 0.1724101014E-06 2.059918365 0.1751616260E-06 2.062265396 0.1778476710E-06 2.064612426 0.1804633271E-06 2.066959456 0.1830038242E-06 2.069306487 0.1854645592E-06 2.071653517 0.1878411309E-06 2.074000548 0.1901293804E-06 2.076347578 0.1923254435E-06 2.078694608 0.1944258201E-06 2.081041639 0.1964274712E-06 2.083388669 0.1983279596E-06 2.085735700 0.2001256676E-06 2.088082730 0.2018201470E-06 2.090429760 0.2034127135E-06 2.092776791 0.2049075157E-06 2.095123821 0.2063135788E-06 2.097470852 0.2076489946E-06 2.099817882 0.2089501822E-06 2.102164912 0.2102937932E-06 2.104511943 0.2118487585E-06 2.106858973 0.2139669700E-06 2.109206004 0.2171243238E-06 2.111553034 0.2214113221E-06 2.113900064 0.2264536915E-06 2.116247095 0.2319179958E-06 2.118594125 0.2376336571E-06 2.120941155 0.2435199971E-06 2.123288186 0.2495363600E-06 2.125635216 0.2556602859E-06 2.127982247 0.2618781739E-06 2.130329277 0.2681810452E-06 2.132676307 0.2745624794E-06 2.135023338 0.2810175402E-06 2.137370368 0.2875421833E-06 2.139717399 0.2941329139E-06 2.142064429 0.3007865783E-06 2.144411459 0.3075002351E-06 2.146758490 0.3142710701E-06 2.149105520 0.3210963413E-06 2.151452551 0.3279733403E-06 2.153799581 0.3348993671E-06 2.156146611 0.3418717108E-06 2.158493642 0.3488876374E-06 2.160840672 0.3559443803E-06 2.163187703 0.3630391340E-06 2.165534733 0.3701690493E-06 2.167881763 0.3773312306E-06 2.170228794 0.3845227335E-06 2.172575824 0.3917405642E-06 2.174922855 0.3989816785E-06 2.177269885 0.4062429821E-06 2.179616915 0.4135213312E-06 2.181963946 0.4208135330E-06 2.184310976 0.4281163470E-06 2.186658006 0.4354264863E-06 2.189005037 0.4427406192E-06 2.191352067 0.4500553708E-06 2.193699098 0.4573673251E-06 2.196046128 0.4646730268E-06 2.198393158 0.4719689838E-06 2.200740189 0.4792516690E-06 2.203087219 0.4865175230E-06 2.205434250 0.4937629568E-06 2.207781280 0.5009843538E-06 2.210128310 0.5081780727E-06 2.212475341 0.5153404505E-06 2.214822371 0.5224678047E-06 2.217169402 0.5410704210E-06 2.219516432 0.5611580363E-06 2.221863462 0.5815527509E-06 2.224210493 0.6022366549E-06 2.226557523 0.6231908186E-06 2.228904554 0.6443953159E-06 2.231251584 0.6658292499E-06 2.233598614 0.6874707829E-06 2.235945645 0.7092971679E-06 2.238292675 0.7312847846E-06 2.240639706 0.7534091777E-06 2.242986736 0.7756450978E-06 2.245333766 0.7979665456E-06 2.247680797 0.8203468188E-06 2.250027827 0.8427585611E-06 2.252374857 0.8651738140E-06 2.254721888 0.8875640711E-06 2.257068918 0.9099003339E-06 2.259415949 0.9321531707E-06 2.261762979 0.9542927762E-06 2.264110009 0.9762890340E-06 2.266457040 0.9981115796E-06 2.268804070 0.1019729866E-05 2.271151101 0.1041113228E-05 2.273498131 0.1062230952E-05 2.275845161 0.1083052343E-05 2.278192192 0.1103546792E-05 2.280539222 0.1123683846E-05 2.282886253 0.1143433276E-05 2.285233283 0.1162765152E-05 2.287580313 0.1181649902E-05 2.289927344 0.1200058393E-05 2.292274374 0.1217961988E-05 2.294621405 0.1235332622E-05 2.296968435 0.1252142864E-05 2.299315465 0.1268365986E-05 2.301662496 0.1283976022E-05 2.304009526 0.1298947837E-05 2.306356557 0.1313257182E-05 2.308703587 0.1326880758E-05 2.311050617 0.1339796269E-05 2.313397648 0.1351982480E-05 2.315744678 0.1363419265E-05 2.318091708 0.1374087661E-05 2.320438739 0.1383969914E-05 2.322785769 0.1393049519E-05 2.325132800 0.1401311268E-05 2.327479830 0.1408741281E-05 2.329826860 0.1415327047E-05 2.332173891 0.1421057448E-05 2.334520921 0.1425922795E-05 2.336867952 0.1429914846E-05 2.339214982 0.1433026829E-05 2.341562012 0.1435253460E-05 2.343909043 0.1436590955E-05 2.346256073 0.1437037040E-05 0.000000000 0.3094723531E-07 0.2347351854E-02 0.3114210246E-07 0.4694703708E-02 0.3173118691E-07 0.7042055561E-02 0.3272800040E-07 0.9389407415E-02 0.3415526825E-07 0.1173675927E-01 0.3604522589E-07 0.1408411112E-01 0.3844000900E-07 0.1643146298E-01 0.4139211031E-07 0.1877881483E-01 0.4496486708E-07 0.2112616668E-01 0.4923293481E-07 0.2347351854E-01 0.5428269686E-07 0.2582087039E-01 0.6021255858E-07 0.2816822225E-01 0.6713308023E-07 0.3051557410E-01 0.7516691608E-07 0.3286292595E-01 0.8444854624E-07 0.3521027781E-01 0.9124175860E-07 0.3755762966E-01 0.8838342589E-07 0.3990498151E-01 0.8540472789E-07 0.4225233337E-01 0.8231681945E-07 0.4459968522E-01 0.7913128064E-07 0.4694703708E-01 0.7825946263E-07 0.4929438893E-01 0.8423528714E-07 0.5164174078E-01 0.9071967647E-07 0.5398909264E-01 0.9774136285E-07 0.5633644449E-01 0.1053299033E-06 0.5868379634E-01 0.1135156158E-06 0.6103114820E-01 0.1223295139E-06 0.6337850005E-01 0.1318032399E-06 0.6572585191E-01 0.1419689975E-06 0.6807320376E-01 0.1528594822E-06 0.7042055561E-01 0.1645078123E-06 0.7276790747E-01 0.1769474582E-06 0.7511525932E-01 0.1902121716E-06 0.7746261117E-01 0.2043359148E-06 0.7980996303E-01 0.2193527886E-06 0.8215731488E-01 0.2352969622E-06 0.8450466674E-01 0.2522026012E-06 0.8685201859E-01 0.2701037980E-06 0.8919937044E-01 0.2890345010E-06 0.9154672230E-01 0.3090284461E-06 0.9389407415E-01 0.3301190879E-06 0.9624142601E-01 0.3568837011E-06 0.9858877786E-01 0.3862195287E-06 0.1009361297 0.4171564614E-06 0.1032834816 0.4497292985E-06 0.1056308334 0.4839707250E-06 0.1079781853 0.5199111772E-06 0.1103255371 0.5575787129E-06 0.1126728890 0.5969988855E-06 0.1150202408 0.6381946247E-06 0.1173675927 0.6811861218E-06 0.1197149445 0.7259907203E-06 0.1220622964 0.7726228132E-06 0.1244096483 0.8210937460E-06 0.1267570001 0.8714117254E-06 0.1291043520 0.9235817359E-06 0.1314517038 0.9776054614E-06 0.1337990557 0.1033481215E-05 0.1361464075 0.1091203875E-05 0.1384937594 0.1150764830E-05 0.1408411112 0.1212151927E-05 0.1431884631 0.1275349433E-05 0.1455358149 0.1340337999E-05 0.1478831668 0.1407094637E-05 0.1502305186 0.1475592696E-05 0.1525778705 0.1545801858E-05 0.1549252223 0.1617688132E-05 0.1572725742 0.1691213859E-05 0.1596199261 0.1766337728E-05 0.1619672779 0.1843014795E-05 0.1643146298 0.1921196516E-05 0.1666619816 0.2000830780E-05 0.1690093335 0.2081861956E-05 0.1713566853 0.2164230948E-05 0.1737040372 0.2247875252E-05 0.1760513890 0.2332729028E-05 0.1783987409 0.2418723172E-05 0.1807460927 0.2505785402E-05 0.1830934446 0.2593840347E-05 0.1854407964 0.2682809643E-05 0.1877881483 0.2772612038E-05 0.1901355002 0.2863163501E-05 0.1924828520 0.2954377341E-05 0.1948302039 0.3046164326E-05 0.1971775557 0.3138432814E-05 0.1995249076 0.3231088883E-05 0.2018722594 0.3324036474E-05 0.2042196113 0.3417177532E-05 0.2065669631 0.3510412152E-05 0.2089143150 0.3603638737E-05 0.2112616668 0.3696754145E-05 0.2136090187 0.3789653856E-05 0.2159563705 0.3882232128E-05 0.2183037224 0.3974382164E-05 0.2206510743 0.4065996277E-05 0.2229984261 0.4156966059E-05 0.2253457780 0.4247182548E-05 0.2276931298 0.4336536397E-05 0.2300404817 0.4424918044E-05 0.2323878335 0.4512217881E-05 0.2347351854 0.4598326421E-05 0.2370825372 0.4683134461E-05 0.2394298891 0.4766533247E-05 0.2417772409 0.4848414634E-05 0.2441245928 0.4928671241E-05 0.2464719446 0.5007196602E-05 0.2488192965 0.5083885309E-05 0.2511666484 0.5199273859E-05 0.2535140002 0.5323463494E-05 0.2558613521 0.5448643268E-05 0.2582087039 0.5574726035E-05 0.2605560558 0.5701607934E-05 0.2629034076 0.5829164041E-05 0.2652507595 0.5957242656E-05 0.2675981113 0.6085657748E-05 0.2699454632 0.6214178804E-05 0.2722928150 0.6342517025E-05 0.2746401669 0.6470306253E-05 0.2769875187 0.6597076190E-05 0.2793348706 0.6722214137E-05 0.2816822225 0.6844909251E-05 0.2840295743 0.6964069726E-05 0.2863769262 0.7078197096E-05 0.2887242780 0.7185191472E-05 0.2910716299 0.7282043977E-05 0.2934189817 0.7364344638E-05 0.2957663336 0.7425496122E-05 0.2981136854 0.7455502460E-05 0.3004610373 0.7439330159E-05 0.3028083891 0.7355560671E-05 0.3051557410 0.7178151782E-05 0.3075030928 0.6886350358E-05 0.3098504447 0.6481443793E-05 0.3121977966 0.6116739152E-05 0.3145451484 0.6104866011E-05 0.3168925003 0.6088455202E-05 0.3192398521 0.6067336428E-05 0.3215872040 0.6041309951E-05 0.3239345558 0.6010138831E-05 0.3262819077 0.5973539303E-05 0.3286292595 0.5931168942E-05 0.3309766114 0.5882612348E-05 0.3333239632 0.5827364293E-05 0.3356713151 0.5764810891E-05 0.3380186669 0.5694210535E-05 0.3403660188 0.5614678674E-05 0.3427133707 0.5525184473E-05 0.3450607225 0.5424573391E-05 0.3474080744 0.5311636863E-05 0.3497554262 0.5185254349E-05 0.3521027781 0.5044624435E-05 0.3544501299 0.4889567731E-05 0.3567974818 0.4720824035E-05 0.3591448336 0.4540213291E-05 0.3614921855 0.4350546648E-05 0.3638395373 0.4155284250E-05 0.3661868892 0.3958066593E-05 0.3685342410 0.3762289579E-05 0.3708815929 0.3570831333E-05 0.3732289448 0.3385944754E-05 0.3755762966 0.3209271204E-05 0.3779236485 0.3041918972E-05 0.3802710003 0.2884563755E-05 0.3826183522 0.2737546658E-05 0.3849657040 0.2600958954E-05 0.3873130559 0.2474710828E-05 0.3896604077 0.2358585067E-05 0.3920077596 0.2252278053E-05 0.3943551114 0.2155430596E-05 0.3967024633 0.2067650830E-05 0.3990498151 0.1988531036E-05 0.4013971670 0.1917659787E-05 0.4037445189 0.1984627472E-05 0.4060918707 0.2106364347E-05 0.4084392226 0.2232325073E-05 0.4107865744 0.2362516005E-05 0.4131339263 0.2496938159E-05 0.4154812781 0.2635587106E-05 0.4178286300 0.2778452883E-05 0.4201759818 0.2925519906E-05 0.4225233337 0.3076766893E-05 0.4248706855 0.3232166796E-05 0.4272180374 0.3391686739E-05 0.4295653892 0.3555287972E-05 0.4319127411 0.3477747242E-05 0.4342600929 0.3399892927E-05 0.4366074448 0.3325893056E-05 0.4389547967 0.3256440046E-05 0.4413021485 0.3192369558E-05 0.4436495004 0.3325416404E-05 0.4459968522 0.3465891537E-05 0.4483442041 0.3609145101E-05 0.4506915559 0.3755111370E-05 0.4530389078 0.3903719930E-05 0.4553862596 0.4054895710E-05 0.4577336115 0.4208559024E-05 0.4600809633 0.4364625623E-05 0.4624283152 0.4523006753E-05 0.4647756670 0.4683609216E-05 0.4671230189 0.4846335451E-05 0.4694703708 0.5011083611E-05 0.4718177226 0.5177747655E-05 0.4741650745 0.5346217446E-05 0.4765124263 0.5516378855E-05 0.4788597782 0.5688113875E-05 0.4812071300 0.5861300741E-05 0.4835544819 0.6035814058E-05 0.4859018337 0.6211524934E-05 0.4882491856 0.6388301124E-05 0.4905965374 0.6566007177E-05 0.4929438893 0.6744504591E-05 0.4952912411 0.6923651973E-05 0.4976385930 0.7103305209E-05 0.4999859449 0.6978290013E-05 0.5023332967 0.6773578638E-05 0.5046806486 0.6606303071E-05 0.5070280004 0.6497620738E-05 0.5093753523 0.6470556607E-05 0.5117227041 0.6528873093E-05 0.5140700560 0.6651930192E-05 0.5164174078 0.6815691352E-05 0.5187647597 0.7004287013E-05 0.5211121115 0.7208796008E-05 0.5234594634 0.7424194575E-05 0.5258068152 0.7647476002E-05 0.5281541671 0.7876692247E-05 0.5305015190 0.8110473383E-05 0.5328488708 0.8347778971E-05 0.5351962227 0.8587763790E-05 0.5375435745 0.8829702157E-05 0.5398909264 0.9072943659E-05 0.5422382782 0.9316886401E-05 0.5445856301 0.9560960482E-05 0.5469329819 0.9804617597E-05 0.5492803338 0.1004732449E-04 0.5516276856 0.1028855886E-04 0.5539750375 0.1052780688E-04 0.5563223893 0.1076456178E-04 0.5586697412 0.1099832327E-04 0.5610170931 0.1122859735E-04 0.5633644449 0.1145489664E-04 0.5657117968 0.1167674082E-04 0.5680591486 0.1189365741E-04 0.5704065005 0.1207397369E-04 0.5727538523 0.1218777719E-04 0.5751012042 0.1229712232E-04 0.5774485560 0.1240189456E-04 0.5797959079 0.1250198386E-04 0.5821432597 0.1259728476E-04 0.5844906116 0.1268769660E-04 0.5868379634 0.1277312360E-04 0.5891853153 0.1285347506E-04 0.5915326672 0.1292866549E-04 0.5938800190 0.1299861469E-04 0.5962273709 0.1306324795E-04 0.5985747227 0.1312249608E-04 0.6009220746 0.1317629556E-04 0.6032694264 0.1322458864E-04 0.6056167783 0.1326732339E-04 0.6079641301 0.1330445383E-04 0.6103114820 0.1333593996E-04 0.6126588338 0.1336174781E-04 0.6150061857 0.1338184954E-04 0.6173535375 0.1339622346E-04 0.6197008894 0.1340485402E-04 0.6220482413 0.1340773192E-04 0.6243952716 0.1340732784E-04 0.6267423020 0.1340611588E-04 0.6290893324 0.1340409702E-04 0.6314363628 0.1340127292E-04 0.6337833932 0.1339764596E-04 0.6361304236 0.1339321922E-04 0.6384774540 0.1338799647E-04 0.6408244844 0.1338198221E-04 0.6431715148 0.1337518159E-04 0.6455185452 0.1336760049E-04 0.6478655756 0.1335924544E-04 0.6502126060 0.1335012367E-04 0.6525596364 0.1334024305E-04 0.6549066668 0.1332961215E-04 0.6572536971 0.1331824017E-04 0.6596007275 0.1330613695E-04 0.6619477579 0.1329331297E-04 0.6642947883 0.1327977934E-04 0.6666418187 0.1326554778E-04 0.6689888491 0.1325063060E-04 0.6713358795 0.1323504072E-04 0.6736829099 0.1321713251E-04 0.6760299403 0.1309322009E-04 0.6783769707 0.1296512056E-04 0.6807240011 0.1283299090E-04 0.6830710315 0.1269699181E-04 0.6854180619 0.1255728746E-04 0.6877650922 0.1241404512E-04 0.6901121226 0.1226743488E-04 0.6924591530 0.1211762934E-04 0.6948061834 0.1196480324E-04 0.6971532138 0.1180913319E-04 0.6995002442 0.1165079732E-04 0.7018472746 0.1148997494E-04 0.7041943050 0.1132684625E-04 0.7065413354 0.1116159199E-04 0.7088883658 0.1099439313E-04 0.7112353962 0.1082543055E-04 0.7135824266 0.1065488473E-04 0.7159294570 0.1048293544E-04 0.7182764874 0.1030976143E-04 0.7206235177 0.1013554013E-04 0.7229705481 0.9960447373E-05 0.7253175785 0.9784657112E-05 0.7276646089 0.9608341128E-05 0.7300116393 0.9431668779E-05 0.7323586697 0.9254806736E-05 0.7347057001 0.9077918741E-05 0.7370527305 0.8901165368E-05 0.7393997609 0.8724703800E-05 0.7417467913 0.8548687611E-05 0.7440938217 0.8373266567E-05 0.7464408521 0.8198586437E-05 0.7487878825 0.8024788812E-05 0.7511349128 0.7852010941E-05 0.7534819432 0.7680385580E-05 0.7558289736 0.7510040853E-05 0.7581760040 0.7341100123E-05 0.7605230344 0.7173681884E-05 0.7628700648 0.7007899658E-05 0.7652170952 0.6843861911E-05 0.7675641256 0.6681671983E-05 0.7699111560 0.6521428021E-05 0.7722581864 0.6363222944E-05 0.7746052168 0.6207144400E-05 0.7769522472 0.6053274754E-05 0.7792992776 0.5901691076E-05 0.7816463080 0.5752465146E-05 0.7839933383 0.5605663474E-05 0.7863403687 0.5461347330E-05 0.7886873991 0.5319572778E-05 0.7910344295 0.5180390736E-05 0.7933814599 0.5043847031E-05 0.7957284903 0.4909982476E-05 0.7980755207 0.4778832953E-05 0.8004225511 0.4650429499E-05 0.8027695815 0.4524798413E-05 0.8051166119 0.4401961360E-05 0.8074636423 0.4281935490E-05 0.8098106727 0.4164733560E-05 0.8121577031 0.4050364066E-05 0.8145047335 0.3938831375E-05 0.8168517638 0.3830135873E-05 0.8191987942 0.3724274107E-05 0.8215458246 0.3621238937E-05 0.8238928550 0.3521019690E-05 0.8262398854 0.3423602319E-05 0.8285869158 0.3328969563E-05 0.8309339462 0.3237101108E-05 0.8332809766 0.3147973752E-05 0.8356280070 0.3061561569E-05 0.8379750374 0.2977836072E-05 0.8403220678 0.2896766383E-05 0.8426690982 0.2818319392E-05 0.8450161286 0.2742459921E-05 0.8473631589 0.2669150888E-05 0.8497101893 0.2598353463E-05 0.8520572197 0.2530027229E-05 0.8544042501 0.2464130335E-05 0.8567512805 0.2400619645E-05 0.8590983109 0.2339450891E-05 0.8614453413 0.2280578814E-05 0.8637923717 0.2223957307E-05 0.8661394021 0.2169539550E-05 0.8684864325 0.2117278145E-05 0.8708334629 0.2067125243E-05 0.8731804933 0.2019032666E-05 0.8755275237 0.1972952031E-05 0.8778745541 0.1928834857E-05 0.8802215844 0.1886632680E-05 0.8825686148 0.1846297156E-05 0.8849156452 0.1807780156E-05 0.8872626756 0.1771033866E-05 0.8896097060 0.1736010867E-05 0.8919567364 0.1702664224E-05 0.8943037668 0.1670947559E-05 0.8966507972 0.1640815122E-05 0.8989978276 0.1612221855E-05 0.9013448580 0.1585123451E-05 0.9036918884 0.1559476405E-05 0.9060389188 0.1535238056E-05 0.9083859492 0.1512366632E-05 0.9107329796 0.1490821274E-05 0.9130800099 0.1470562067E-05 0.9154270403 0.1451550052E-05 0.9177740707 0.1433747244E-05 0.9201211011 0.1417116631E-05 0.9224681315 0.1401622174E-05 0.9248151619 0.1387228799E-05 0.9271621923 0.1373902384E-05 0.9295092227 0.1361609739E-05 0.9318562531 0.1350318579E-05 0.9342032835 0.1339997496E-05 0.9365503139 0.1330615925E-05 0.9388973443 0.1322144105E-05 0.9412443747 0.1314553041E-05 0.9435914050 0.1307814453E-05 0.9459384354 0.1301900736E-05 0.9482854658 0.1296784911E-05 0.9506324962 0.1292440573E-05 0.9529795266 0.1288841841E-05 0.9553265570 0.1285963311E-05 0.9576735874 0.1283780004E-05 0.9600206178 0.1282267318E-05 0.9623676482 0.1281400977E-05 0.9647146786 0.1281156990E-05 0.9670617090 0.1281511603E-05 0.9694087394 0.1282441256E-05 0.9717557698 0.1276539379E-05 0.9741028002 0.1258024077E-05 0.9764498305 0.1240543323E-05 0.9787968609 0.1224053043E-05 0.9811438913 0.1208510798E-05 0.9834909217 0.1193875716E-05 0.9858379521 0.1180108422E-05 0.9881849825 0.1167170970E-05 0.9905320129 0.1155026777E-05 0.9928790433 0.1143640554E-05 0.9952260737 0.1132978242E-05 0.9975731041 0.1123006948E-05 0.9999201345 0.1113694884E-05 1.002267165 0.1105011310E-05 1.004614195 0.1096926478E-05 1.006961226 0.1089411583E-05 1.009308256 0.1082438711E-05 1.011655286 0.1075980802E-05 1.014002317 0.1070011605E-05 1.016349347 0.1064505647E-05 1.018696378 0.1059438200E-05 1.021043408 0.1054785253E-05 1.023390438 0.1070072033E-05 1.025737469 0.1085622896E-05 1.028084499 0.1100906179E-05 1.030431530 0.1115898660E-05 1.032778560 0.1130577354E-05 1.035125590 0.1144919558E-05 1.037472621 0.1158902900E-05 1.039819651 0.1172505389E-05 1.042166682 0.1185705463E-05 1.044513712 0.1198482040E-05 1.046860742 0.1210814568E-05 1.049207773 0.1222683070E-05 1.051554803 0.1234068200E-05 1.053901834 0.1244951281E-05 1.056248864 0.1255314360E-05 1.058595894 0.1265140244E-05 1.060942925 0.1274412553E-05 1.063289955 0.1283115751E-05 1.065636985 0.1291235195E-05 1.067984016 0.1298757167E-05 1.070331046 0.1305668910E-05 1.072678077 0.1311958662E-05 1.075025107 0.1317615688E-05 1.077372137 0.1322630306E-05 1.079719168 0.1326993911E-05 1.082066198 0.1330699001E-05 1.084413229 0.1333739196E-05 1.086760259 0.1336109251E-05 1.089107289 0.1337805076E-05 1.091454320 0.1338823743E-05 1.093801350 0.1339163493E-05 1.096152861 0.1339988217E-05 1.098504372 0.1342457827E-05 1.100855883 0.1346557244E-05 1.103207394 0.1352256216E-05 1.105558905 0.1359499353E-05 1.107910415 0.1368185841E-05 1.110261926 0.1378127003E-05 1.112613437 0.1388953106E-05 1.114964948 0.1399902776E-05 1.117316459 0.1409390812E-05 1.119667970 0.1414581803E-05 1.122019481 0.1412645197E-05 1.124370992 0.1403657317E-05 1.126722503 0.1389777578E-05 1.129074013 0.1372785522E-05 1.131425524 0.1353678427E-05 1.133777035 0.1333000800E-05 1.136128546 0.1311078502E-05 1.138480057 0.1288131492E-05 1.140831568 0.1264326120E-05 1.143183079 0.1244681116E-05 1.145534590 0.1262859594E-05 1.147886101 0.1281437590E-05 1.150237611 0.1300404661E-05 1.152589122 0.1319753441E-05 1.154940633 0.1339479345E-05 1.157292144 0.1359580281E-05 1.159643655 0.1380056393E-05 1.161995166 0.1400909809E-05 1.164346677 0.1422144418E-05 1.166698188 0.1443765662E-05 1.169049699 0.1465780348E-05 1.171401209 0.1488196478E-05 1.173752720 0.1511023089E-05 1.176104231 0.1534270119E-05 1.178455742 0.1557948276E-05 1.180807253 0.1582068929E-05 1.183158764 0.1606644000E-05 1.185510275 0.1631685875E-05 1.187861786 0.1657207322E-05 1.190213296 0.1683221414E-05 1.192564807 0.1709741463E-05 1.194916318 0.1736780958E-05 1.197267829 0.1764353513E-05 1.199619340 0.1792472810E-05 1.201970851 0.1821152561E-05 1.204322362 0.1850406460E-05 1.206673873 0.1880248147E-05 1.209025384 0.1910691170E-05 1.211376894 0.1941748952E-05 1.213728405 0.1973434759E-05 1.216079916 0.2005761671E-05 1.218431427 0.2038742550E-05 1.220782938 0.2072390015E-05 1.223134449 0.2106716412E-05 1.225485960 0.2141733790E-05 1.227837471 0.2177453875E-05 1.230188982 0.2213888040E-05 1.232540492 0.2251047286E-05 1.234892003 0.2288942208E-05 1.237243514 0.2327582978E-05 1.239595025 0.2366979312E-05 1.241946536 0.2407140446E-05 1.244298047 0.2448075113E-05 1.246649558 0.2489791510E-05 1.249001069 0.2532297276E-05 1.251352580 0.2575599460E-05 1.253704090 0.2619704497E-05 1.256055601 0.2664618180E-05 1.258407112 0.2710345628E-05 1.260758623 0.2756891259E-05 1.263110134 0.2804258762E-05 1.265461645 0.2852451066E-05 1.267813156 0.2901470312E-05 1.270164667 0.2951317823E-05 1.272516177 0.3001994075E-05 1.274867688 0.3053498666E-05 1.277219199 0.3105830289E-05 1.279570710 0.3158986701E-05 1.281922221 0.3212964695E-05 1.284273732 0.3267760073E-05 1.286625243 0.3323367617E-05 1.288976754 0.3379781062E-05 1.291328265 0.3436993069E-05 1.293679775 0.3494995204E-05 1.296031286 0.3553777907E-05 1.298382797 0.3613330475E-05 1.300734308 0.3673641037E-05 1.303085819 0.3734696537E-05 1.305437330 0.3796482709E-05 1.307788841 0.3858984069E-05 1.310140352 0.3922183893E-05 1.312491863 0.3986064210E-05 1.314843373 0.4050605788E-05 1.317194884 0.4115788127E-05 1.319546395 0.4181589455E-05 1.321897906 0.4247986726E-05 1.324249417 0.4314955619E-05 1.326600928 0.4382470546E-05 1.328952439 0.4450504655E-05 1.331303950 0.4519029843E-05 1.333655461 0.4588016775E-05 1.336006971 0.4657434897E-05 1.338358482 0.4727252465E-05 1.340709993 0.4797436570E-05 1.343061504 0.4867953173E-05 1.345413015 0.4938767143E-05 1.347764526 0.5009842299E-05 1.350116037 0.5029771784E-05 1.352467548 0.4943423189E-05 1.354819059 0.4854297604E-05 1.357170569 0.4763789704E-05 1.359522080 0.4672969154E-05 1.361873591 0.4582635111E-05 1.364225102 0.4493375669E-05 1.366576613 0.4405619256E-05 1.368928124 0.4319675054E-05 1.371279635 0.4235763425E-05 1.373631146 0.4154038359E-05 1.375982656 0.4074603966E-05 1.378334167 0.3997526575E-05 1.380685678 0.3922843688E-05 1.383037189 0.3850570643E-05 1.385388700 0.3780705641E-05 1.387740211 0.3713233557E-05 1.390091722 0.3648128885E-05 1.392443233 0.3585358035E-05 1.394794744 0.3524881150E-05 1.397146254 0.3466653573E-05 1.399497765 0.3410627063E-05 1.401849276 0.3356750836E-05 1.404200787 0.3304972503E-05 1.406552298 0.3255238990E-05 1.408903809 0.3207497540E-05 1.411255320 0.3161696959E-05 1.413606831 0.3117789399E-05 1.415958342 0.3075733268E-05 1.418309852 0.3035498571E-05 1.420661363 0.2997077858E-05 1.423012874 0.2960511377E-05 1.425364385 0.2925952970E-05 1.427715896 0.2893869434E-05 1.430067407 0.2865690627E-05 1.432418918 0.2844910900E-05 1.434770429 0.2832860259E-05 1.437121940 0.2824335194E-05 1.439473450 0.2815625302E-05 1.441824961 0.2805480905E-05 1.444176472 0.2793487193E-05 1.446527983 0.2779496891E-05 1.448879494 0.2763465633E-05 1.451231005 0.2745397674E-05 1.453582516 0.2725325907E-05 1.455934027 0.2703304792E-05 1.458285537 0.2679409693E-05 1.460637048 0.2653741300E-05 1.462988559 0.2626436814E-05 1.465340070 0.2597693606E-05 1.467691581 0.2567819174E-05 1.470043092 0.2537338225E-05 1.472394603 0.2507205728E-05 1.474746114 0.2479061082E-05 1.477097625 0.2454830009E-05 1.479449135 0.2435128105E-05 1.481800646 0.2418946364E-05 1.484152157 0.2503725492E-05 1.486503668 0.2715633263E-05 1.488855179 0.2930093409E-05 1.491206690 0.3144008050E-05 1.493558201 0.3354311479E-05 1.495909712 0.3558025083E-05 1.498261223 0.3752372462E-05 1.500612733 0.3934919756E-05 1.502964244 0.4103705892E-05 1.505315755 0.4257331774E-05 1.507667266 0.4394989448E-05 1.510018777 0.4516429056E-05 1.512370288 0.4621876768E-05 1.514721799 0.4711925370E-05 1.517073310 0.4787419442E-05 1.519424821 0.4849351533E-05 1.521776331 0.4898778227E-05 1.524127842 0.4936758470E-05 1.526479353 0.4964312327E-05 1.528830864 0.4982396284E-05 1.531182375 0.4991890841E-05 1.533533886 0.4993596545E-05 1.535885397 0.4988235432E-05 1.538236908 0.4976455631E-05 1.540588418 0.4958837591E-05 1.542939929 0.4935900923E-05 1.545291440 0.4908111242E-05 1.547642951 0.4875886637E-05 1.549994462 0.4839603605E-05 1.552345973 0.4799602364E-05 1.554697484 0.4756191540E-05 1.557048995 0.4709652265E-05 1.559400506 0.4660241720E-05 1.561752016 0.4608196205E-05 1.564103527 0.4553733761E-05 1.566455038 0.4497056430E-05 1.568806549 0.4438352184E-05 1.571158060 0.4377796576E-05 1.573509571 0.4315554150E-05 1.575861082 0.4251779647E-05 1.578212593 0.4186619036E-05 1.580564104 0.4120210392E-05 1.582915614 0.4052684651E-05 1.585267125 0.3984166252E-05 1.587618636 0.3914773690E-05 1.589970147 0.3844619984E-05 1.592321658 0.3773813085E-05 1.594673169 0.3702456220E-05 1.597024680 0.3630648188E-05 1.599376191 0.3558483618E-05 1.601727702 0.3486053186E-05 1.604079212 0.3413443809E-05 1.606430723 0.3340738803E-05 1.608782234 0.3268018029E-05 1.611133745 0.3195358014E-05 1.613485256 0.3122832062E-05 1.615836767 0.3050510347E-05 1.618188278 0.2978459998E-05 1.620539789 0.2906745175E-05 1.622891299 0.2835427136E-05 1.625242810 0.2764564302E-05 1.627594321 0.2694212311E-05 1.629945832 0.2624424072E-05 1.632297343 0.2599972222E-05 1.634648854 0.2581815554E-05 1.637000365 0.2562169695E-05 1.639351876 0.2541040987E-05 1.641703387 0.2518439180E-05 1.644054897 0.2494377442E-05 1.646406408 0.2468872358E-05 1.648757919 0.2441943924E-05 1.651109430 0.2413615529E-05 1.653460941 0.2383913926E-05 1.655812452 0.2352869192E-05 1.658163963 0.2320514677E-05 1.660515474 0.2286886942E-05 1.662866985 0.2252025686E-05 1.665218495 0.2215973664E-05 1.667570006 0.2178776589E-05 1.669921517 0.2140483031E-05 1.672273028 0.2101144295E-05 1.674624539 0.2060814300E-05 1.676976050 0.2019549438E-05 1.679327561 0.1977408432E-05 1.681679072 0.1934452178E-05 1.684030583 0.1890743581E-05 1.686382093 0.1846347384E-05 1.688733604 0.1801329985E-05 1.691085115 0.1755759253E-05 1.693436626 0.1709704333E-05 1.695788137 0.1663235446E-05 1.698139648 0.1616423683E-05 1.700491159 0.1569340801E-05 1.702842670 0.1522059006E-05 1.705194180 0.1474650739E-05 1.707545691 0.1427188461E-05 1.709897202 0.1379744433E-05 1.712248713 0.1332390499E-05 1.714600224 0.1285197870E-05 1.716951735 0.1238236905E-05 1.719303246 0.1191576904E-05 1.721654757 0.1145285893E-05 1.724006268 0.1099430423E-05 1.726357778 0.1054075370E-05 1.728709289 0.1009283739E-05 1.731060800 0.9651164828E-06 1.733412311 0.9216323210E-06 1.735763822 0.8788875710E-06 1.738115333 0.8369359887E-06 1.740466844 0.7958286186E-06 1.742818355 0.7556136551E-06 1.745169866 0.7163363145E-06 1.747521376 0.6780387187E-06 1.749872887 0.6407597899E-06 1.752224398 0.6045351560E-06 1.754575909 0.5693970663E-06 1.756927420 0.5353743155E-06 1.759278931 0.5024921726E-06 1.761630442 0.4707723124E-06 1.763981953 0.4402327437E-06 1.766333464 0.4108877285E-06 1.768684974 0.3827476832E-06 1.771036485 0.3558190572E-06 1.773387996 0.3301041832E-06 1.775739507 0.3056011015E-06 1.778091018 0.2823033758E-06 1.780442529 0.2601999313E-06 1.782794040 0.2392749719E-06 1.785145551 0.2195080415E-06 1.787497061 0.2008742958E-06 1.789848572 0.1833450157E-06 1.792200083 0.1668883425E-06 1.794551594 0.1514701548E-06 1.796903105 0.1370549682E-06 1.799254616 0.1236067385E-06 1.801606127 0.1110894849E-06 1.803957638 0.9946769663E-07 1.806309149 0.9190291290E-07 1.808660659 0.8671481463E-07 1.811012170 0.8185276044E-07 1.813363681 0.7730173173E-07 1.815715192 0.7304716281E-07 1.818066703 0.6907495474E-07 1.820418214 0.6537148842E-07 1.822769725 0.6192363690E-07 1.825121236 0.5871877680E-07 1.827472747 0.5767875011E-07 1.829824257 0.6207529639E-07 1.832175768 0.6644546795E-07 1.834527279 0.7075578131E-07 1.836878790 0.7483145209E-07 1.839230301 0.6964506170E-07 1.841581812 0.6371174458E-07 1.843933323 0.5843785609E-07 1.846284834 0.5377383612E-07 1.848636345 0.4966840423E-07 1.850987855 0.4607414141E-07 1.853339366 0.4294808955E-07 1.855690877 0.4025178824E-07 1.858042388 0.3795119550E-07 1.860393899 0.3601658072E-07 1.862745410 0.3442241543E-07 1.865096921 0.3314727169E-07 1.867448432 0.3217373216E-07 1.869799942 0.3148831417E-07 1.872151453 0.3108140876E-07 1.874502964 0.3094723531E-07 1.876849995 0.3096373300E-07 1.879197025 0.3101727307E-07 1.881544055 0.3110794533E-07 1.883891086 0.3123590096E-07 1.886238116 0.3140135224E-07 1.888585147 0.3160457209E-07 1.890932177 0.3184589353E-07 1.893279207 0.3212570901E-07 1.895626238 0.3244446946E-07 1.897973268 0.3280268339E-07 1.900320299 0.3320091558E-07 1.902667329 0.3363978577E-07 1.905014359 0.3411996702E-07 1.907361390 0.3464218390E-07 1.909708420 0.3520721042E-07 1.912055451 0.4156128638E-07 1.914402481 0.5242977284E-07 1.916749511 0.6527318751E-07 1.919096542 0.8030486079E-07 1.921443572 0.9396386175E-07 1.923790603 0.1053342396E-06 1.926137633 0.1264100496E-06 1.928484663 0.1504138236E-06 1.930831694 0.1775799189E-06 1.933178724 0.2081462974E-06 1.935525754 0.2423537347E-06 1.937872785 0.2804450179E-06 1.940219815 0.3226641359E-06 1.942566846 0.3692554642E-06 1.944913876 0.4204629463E-06 1.947260906 0.4765292752E-06 1.949607937 0.5376950763E-06 1.951954967 0.6041980942E-06 1.954301998 0.6762723876E-06 1.956649028 0.7541475314E-06 1.958996058 0.8380478323E-06 1.961343089 0.9281915564E-06 1.963690119 0.1024790174E-05 1.966037150 0.1128047624E-05 1.968384180 0.1238159592E-05 1.970731210 0.1355312825E-05 1.973078241 0.1479684452E-05 1.975425271 0.1611441347E-05 1.977772302 0.1750739514E-05 1.980119332 0.1897723499E-05 1.982466362 0.2052525840E-05 1.984813393 0.2215266546E-05 1.987160423 0.2386052612E-05 1.989507454 0.2564977572E-05 1.991854484 0.2752121086E-05 1.994201514 0.2947548565E-05 1.996548545 0.3151310844E-05 1.998895575 0.3363443881E-05 2.001242605 0.3583968510E-05 2.003589636 0.3812890226E-05 2.005936666 0.4050199023E-05 2.008283697 0.4295869261E-05 2.010630727 0.4549859587E-05 2.012977757 0.4812112893E-05 2.015324788 0.5082556318E-05 2.017671818 0.5361101293E-05 2.020018849 0.5647643629E-05 2.022365879 0.5942063646E-05 2.024712909 0.6244226341E-05 2.027059940 0.6553981603E-05 2.029406970 0.6871164459E-05 2.031754001 0.7195595369E-05 2.034101031 0.7527080552E-05 2.036448061 0.7865412348E-05 2.038795092 0.8210369624E-05 2.041142122 0.8561718205E-05 2.043489153 0.8919211344E-05 2.045836183 0.9282590221E-05 2.048183213 0.9651584470E-05 2.050530244 0.1002591274E-04 2.052877274 0.1040528328E-04 2.055224304 0.1078939454E-04 2.057571335 0.1117793581E-04 2.059918365 0.1157058789E-04 2.062265396 0.1196702370E-04 2.064612426 0.1236690905E-04 2.066959456 0.1276990329E-04 2.069306487 0.1317566006E-04 2.071653517 0.1358382796E-04 2.074000548 0.1399405136E-04 2.076347578 0.1440597111E-04 2.078694608 0.1481922528E-04 2.081041639 0.1523344990E-04 2.083388669 0.1564827975E-04 2.085735700 0.1606334909E-04 2.088082730 0.1647829240E-04 2.090429760 0.1689274511E-04 2.092776791 0.1730634437E-04 2.095123821 0.1771872973E-04 2.097470852 0.1812954389E-04 2.099817882 0.1853843338E-04 2.102164912 0.1894504923E-04 2.104511943 0.1934904767E-04 2.106858973 0.1975009075E-04 2.109206004 0.2014784700E-04 2.111553034 0.2054199201E-04 2.113900064 0.2093220903E-04 2.116247095 0.2131818953E-04 2.118594125 0.2169963376E-04 2.120941155 0.2207625121E-04 2.123288186 0.2244776114E-04 2.125635216 0.2281389303E-04 2.127982247 0.2317438700E-04 2.130329277 0.2352899418E-04 2.132676307 0.2387747715E-04 2.135023338 0.2421961020E-04 2.137370368 0.2455517968E-04 2.139717399 0.2488398428E-04 2.142064429 0.2520583524E-04 2.144411459 0.2552055657E-04 2.146758490 0.2582798527E-04 2.149105520 0.2612797140E-04 2.151452551 0.2642037829E-04 2.153799581 0.2670508252E-04 2.156146611 0.2698197407E-04 2.158493642 0.2725095628E-04 2.160840672 0.2751194585E-04 2.163187703 0.2776487281E-04 2.165534733 0.2800968048E-04 2.167881763 0.2824632531E-04 2.170228794 0.2847477682E-04 2.172575824 0.2869501741E-04 2.174922855 0.2890704220E-04 2.177269885 0.2911085882E-04 2.179616915 0.2930648719E-04 2.181963946 0.2949395928E-04 2.184310976 0.2967331884E-04 2.186658006 0.2984462107E-04 2.189005037 0.3000793237E-04 2.191352067 0.3016332999E-04 2.193699098 0.3031090166E-04 2.196046128 0.3045074525E-04 2.198393158 0.3058296841E-04 2.200740189 0.3070768816E-04 2.203087219 0.3082503050E-04 2.205434250 0.3093512999E-04 2.207781280 0.3103812933E-04 2.210128310 0.3113417897E-04 2.212475341 0.3122343660E-04 2.214822371 0.3130606679E-04 2.217169402 0.3138224049E-04 2.219516432 0.3145213461E-04 2.221863462 0.3151593154E-04 2.224210493 0.3157381874E-04 2.226557523 0.3162598828E-04 2.228904554 0.3167263634E-04 2.231251584 0.3171396284E-04 2.233598614 0.3175017094E-04 2.235945645 0.3178146662E-04 2.238292675 0.3180805825E-04 2.240639706 0.3183015614E-04 2.242986736 0.3184797216E-04 2.245333766 0.3186171926E-04 2.247680797 0.3187161112E-04 2.250027827 0.3187786174E-04 2.252374857 0.3188068502E-04 2.254721888 0.3188029442E-04 2.257068918 0.3187690256E-04 2.259415949 0.3187072089E-04 2.261762979 0.3186195929E-04 2.264110009 0.3185082582E-04 2.266457040 0.3183752630E-04 2.268804070 0.3182226406E-04 2.271151101 0.3180523959E-04 2.273498131 0.3178665032E-04 2.275845161 0.3176669024E-04 2.278192192 0.3174554973E-04 2.280539222 0.3172341524E-04 2.282886253 0.3170046907E-04 2.285233283 0.3167688915E-04 2.287580313 0.3165284877E-04 2.289927344 0.3162851643E-04 2.292274374 0.3160405559E-04 2.294621405 0.3157962450E-04 2.296968435 0.3155537604E-04 2.299315465 0.3153145751E-04 2.301662496 0.3150801046E-04 2.304009526 0.3148517060E-04 2.306356557 0.3146306758E-04 2.308703587 0.3144182487E-04 2.311050617 0.3142155965E-04 2.313397648 0.3140238263E-04 2.315744678 0.3138439790E-04 2.318091708 0.3136770282E-04 2.320438739 0.3135238783E-04 2.322785769 0.3133853618E-04 2.325132800 0.3132622369E-04 2.327479830 0.3131551828E-04 2.329826860 0.3130647919E-04 2.332173891 0.3129915557E-04 2.334520921 0.3129358360E-04 2.336867952 0.3128977974E-04 2.339214982 0.3128772297E-04 2.341562012 0.3128729893E-04 2.343909043 0.3128809422E-04 2.346256073 0.3128880618E-04 0.000000000 0.1137957376E-06 0.2347351854E-02 0.1136882525E-06 0.4694703708E-02 0.1133661955E-06 0.7042055561E-02 0.1128307597E-06 0.9389407415E-02 0.1120839293E-06 0.1173675927E-01 0.1111284725E-06 0.1408411112E-01 0.1099679316E-06 0.1643146298E-01 0.1086066114E-06 0.1877881483E-01 0.1070495632E-06 0.2112616668E-01 0.1053025681E-06 0.2347351854E-01 0.1033721164E-06 0.2582087039E-01 0.1012653849E-06 0.2816822225E-01 0.9899021194E-07 0.3051557410E-01 0.9655507003E-07 0.3286292595E-01 0.9396903586E-07 0.3521027781E-01 0.9512381028E-07 0.3755762966E-01 0.1073492723E-06 0.3990498151E-01 0.1212914620E-06 0.4225233337E-01 0.1371260412E-06 0.4459968522E-01 0.1550369445E-06 0.4694703708E-01 0.1752155298E-06 0.4929438893E-01 0.1978597632E-06 0.5164174078E-01 0.2231734501E-06 0.5398909264E-01 0.2513655126E-06 0.5633644449E-01 0.2826493057E-06 0.5868379634E-01 0.3172419653E-06 0.6103114820E-01 0.3553637749E-06 0.6337850005E-01 0.3972375433E-06 0.6572585191E-01 0.4430879853E-06 0.6807320376E-01 0.4931410996E-06 0.7042055561E-01 0.5476235419E-06 0.7276790747E-01 0.6067619905E-06 0.7511525932E-01 0.6707825035E-06 0.7746261117E-01 0.7399098701E-06 0.7980996303E-01 0.8143669551E-06 0.8215731488E-01 0.8943740387E-06 0.8450466674E-01 0.9801481551E-06 0.8685201859E-01 0.1071902428E-05 0.8919937044E-01 0.1169845410E-05 0.9154672230E-01 0.1274180424E-05 0.9389407415E-01 0.1385104906E-05 0.9624142601E-01 0.1502809764E-05 0.9858877786E-01 0.1627478736E-05 0.1009361297 0.1759287764E-05 0.1032834816 0.1898404379E-05 0.1056308334 0.2044987099E-05 0.1079781853 0.2199184843E-05 0.1103255371 0.2361136366E-05 0.1126728890 0.2530969703E-05 0.1150202408 0.2708801642E-05 0.1173675927 0.2894737216E-05 0.1197149445 0.3088869212E-05 0.1220622964 0.3291277712E-05 0.1244096483 0.3502029656E-05 0.1267570001 0.3721178423E-05 0.1291043520 0.3948763454E-05 0.1314517038 0.4184809893E-05 0.1337990557 0.4429328254E-05 0.1361464075 0.4682314130E-05 0.1384937594 0.4943747920E-05 0.1408411112 0.5213594596E-05 0.1431884631 0.5491803496E-05 0.1455358149 0.5778308151E-05 0.1478831668 0.6073026150E-05 0.1502305186 0.6375859028E-05 0.1525778705 0.6686692200E-05 0.1549252223 0.7005394915E-05 0.1572725742 0.7331820256E-05 0.1596199261 0.7665805170E-05 0.1619672779 0.8007170526E-05 0.1643146298 0.8355721216E-05 0.1666619816 0.8711246286E-05 0.1690093335 0.9073519096E-05 0.1713566853 0.9442297522E-05 0.1737040372 0.9817324181E-05 0.1760513890 0.1019832669E-04 0.1783987409 0.1058501798E-04 0.1807460927 0.1097709658E-04 0.1830934446 0.1137424701E-04 0.1854407964 0.1177614013E-04 0.1877881483 0.1218243356E-04 0.1901355002 0.1259277214E-04 0.1924828520 0.1300678835E-04 0.1948302039 0.1342410280E-04 0.1971775557 0.1384432476E-04 0.1995249076 0.1426705268E-04 0.2018722594 0.1469187469E-04 0.2042196113 0.1511836920E-04 0.2065669631 0.1554610547E-04 0.2089143150 0.1597464417E-04 0.2112616668 0.1640353796E-04 0.2136090187 0.1683233211E-04 0.2159563705 0.1726056506E-04 0.2183037224 0.1768776902E-04 0.2206510743 0.1811347052E-04 0.2229984261 0.1853719097E-04 0.2253457780 0.1895844721E-04 0.2276931298 0.1937675195E-04 0.2300404817 0.1979161424E-04 0.2323878335 0.2020253984E-04 0.2347351854 0.2060903154E-04 0.2370825372 0.2101058931E-04 0.2394298891 0.2140671040E-04 0.2417772409 0.2179688927E-04 0.2441245928 0.2218061720E-04 0.2464719446 0.2255738180E-04 0.2488192965 0.2292666601E-04 0.2511666484 0.2328794673E-04 0.2535140002 0.2364069282E-04 0.2558613521 0.2398436231E-04 0.2582087039 0.2431839846E-04 0.2605560558 0.2464222441E-04 0.2629034076 0.2495523577E-04 0.2652507595 0.2525679021E-04 0.2675981113 0.2554619307E-04 0.2699454632 0.2582267688E-04 0.2722928150 0.2608537187E-04 0.2746401669 0.2633326299E-04 0.2769875187 0.2656512574E-04 0.2793348706 0.2677942819E-04 0.2816822225 0.2683302738E-04 0.2840295743 0.2476357319E-04 0.2863769262 0.2281875537E-04 0.2887242780 0.2099745541E-04 0.2910716299 0.1929944913E-04 0.2934189817 0.1772591064E-04 0.2957663336 0.1628021243E-04 0.2981136854 0.1496915299E-04 0.3004610373 0.1380461606E-04 0.3028083891 0.1280494395E-04 0.3051557410 0.1199321000E-04 0.3075030928 0.1138735122E-04 0.3098504447 0.1098347857E-04 0.3121977966 0.1074989546E-04 0.3145451484 0.1064196623E-04 0.3168925003 0.1061994707E-04 0.3192398521 0.1065542810E-04 0.3215872040 0.1072989614E-04 0.3239345558 0.1083157700E-04 0.3262819077 0.1095292007E-04 0.3286292595 0.1108897576E-04 0.3309766114 0.1123641240E-04 0.3333239632 0.1139292612E-04 0.3356713151 0.1155688236E-04 0.3380186669 0.1135745479E-04 0.3403660188 0.1069687429E-04 0.3427133707 0.1008670609E-04 0.3450607225 0.9526277895E-05 0.3474080744 0.9014969168E-05 0.3497554262 0.8552086992E-05 0.3521027781 0.8136648232E-05 0.3544501299 0.7767086524E-05 0.3567974818 0.7440962599E-05 0.3591448336 0.7154809020E-05 0.3614921855 0.6904223466E-05 0.3638395373 0.6684214241E-05 0.3661868892 0.6489671391E-05 0.3685342410 0.6315793463E-05 0.3708815929 0.6158361950E-05 0.3732289448 0.6013849545E-05 0.3755762966 0.5879406877E-05 0.3779236485 0.5752784126E-05 0.3802710003 0.5632230335E-05 0.3826183522 0.5516394931E-05 0.3849657040 0.5404242270E-05 0.3873130559 0.5294981972E-05 0.3896604077 0.5188014133E-05 0.3920077596 0.5082887043E-05 0.3943551114 0.4979264936E-05 0.3967024633 0.4876903497E-05 0.3990498151 0.4775631336E-05 0.4013971670 0.4675336012E-05 0.4037445189 0.4575953551E-05 0.4060918707 0.4477460667E-05 0.4084392226 0.4379869150E-05 0.4107865744 0.4283221992E-05 0.4131339263 0.4187591036E-05 0.4154812781 0.4093075961E-05 0.4178286300 0.3999804581E-05 0.4201759818 0.3907934486E-05 0.4225233337 0.3817656143E-05 0.4248706855 0.3729197686E-05 0.4272180374 0.3642831687E-05 0.4295653892 0.3558884303E-05 0.4319127411 0.3722925822E-05 0.4342600929 0.3894549662E-05 0.4366074448 0.4070102891E-05 0.4389547967 0.4249522912E-05 0.4413021485 0.4432741135E-05 0.4436495004 0.4619682973E-05 0.4459968522 0.4810267863E-05 0.4483442041 0.5004409288E-05 0.4506915559 0.5202014810E-05 0.4530389078 0.5402986114E-05 0.4553862596 0.5607219061E-05 0.4577336115 0.5814603755E-05 0.4600809633 0.6025024611E-05 0.4624283152 0.6238360443E-05 0.4647756670 0.6454484555E-05 0.4671230189 0.6673264844E-05 0.4694703708 0.6894563912E-05 0.4718177226 0.7118239189E-05 0.4741650745 0.7344143064E-05 0.4765124263 0.7572123025E-05 0.4788597782 0.7802021808E-05 0.4812071300 0.8033677559E-05 0.4835544819 0.8266923998E-05 0.4859018337 0.8501590594E-05 0.4882491856 0.8268230326E-05 0.4905965374 0.7986543834E-05 0.4929438893 0.7714785620E-05 0.4952912411 0.7454368065E-05 0.4976385930 0.7207568101E-05 0.4999859449 0.7283317636E-05 0.5023332967 0.7463540216E-05 0.5046806486 0.7643821727E-05 0.5070280004 0.7824008947E-05 0.5093753523 0.8003946848E-05 0.5117227041 0.8183478796E-05 0.5140700560 0.8362446749E-05 0.5164174078 0.8540691467E-05 0.5187647597 0.8718052718E-05 0.5211121115 0.8894369490E-05 0.5234594634 0.9069480208E-05 0.5258068152 0.9243222950E-05 0.5281541671 0.9415435664E-05 0.5305015190 0.9585956395E-05 0.5328488708 0.9754623499E-05 0.5351962227 0.9921275872E-05 0.5375435745 0.1008575317E-04 0.5398909264 0.1024789604E-04 0.5422382782 0.1040754633E-04 0.5445856301 0.1056454732E-04 0.5469329819 0.1071874395E-04 0.5492803338 0.1086998303E-04 0.5516276856 0.1101811346E-04 0.5539750375 0.1116298647E-04 0.5563223893 0.1130445577E-04 0.5586697412 0.1144237785E-04 0.5610170931 0.1157661212E-04 0.5633644449 0.1170702113E-04 0.5657117968 0.1183347081E-04 0.5680591486 0.1195583060E-04 0.5704065005 0.1210518257E-04 0.5727538523 0.1231086209E-04 0.5751012042 0.1251025233E-04 0.5774485560 0.1270292131E-04 0.5797959079 0.1288844979E-04 0.5821432597 0.1306643229E-04 0.5844906116 0.1323647824E-04 0.5868379634 0.1339821298E-04 0.5891853153 0.1355127878E-04 0.5915326672 0.1369533590E-04 0.5938800190 0.1383006352E-04 0.5962273709 0.1395516064E-04 0.5985747227 0.1407034697E-04 0.6009220746 0.1417536375E-04 0.6032694264 0.1426997448E-04 0.6056167783 0.1435396564E-04 0.6079641301 0.1442714731E-04 0.6103114820 0.1448935374E-04 0.6126588338 0.1454044383E-04 0.6150061857 0.1458030155E-04 0.6173535375 0.1460883630E-04 0.6197008894 0.1462598317E-04 0.6220482413 0.1463170313E-04 0.6243952716 0.1462861917E-04 0.6267423020 0.1461937145E-04 0.6290893324 0.1460397251E-04 0.6314363628 0.1458244320E-04 0.6337833932 0.1455481262E-04 0.6361304236 0.1452111806E-04 0.6384774540 0.1448140486E-04 0.6408244844 0.1443572632E-04 0.6431715148 0.1438414353E-04 0.6455185452 0.1432672520E-04 0.6478655756 0.1426354753E-04 0.6502126060 0.1419469399E-04 0.6525596364 0.1412025514E-04 0.6549066668 0.1404032840E-04 0.6572536971 0.1395501786E-04 0.6596007275 0.1386443406E-04 0.6619477579 0.1376869373E-04 0.6642947883 0.1366791954E-04 0.6666418187 0.1356223991E-04 0.6689888491 0.1345178868E-04 0.6713358795 0.1333670490E-04 0.6736829099 0.1321879162E-04 0.6760299403 0.1320189733E-04 0.6783769707 0.1318437245E-04 0.6807240011 0.1316623210E-04 0.6830710315 0.1314749192E-04 0.6854180619 0.1312816804E-04 0.6877650922 0.1310827708E-04 0.6901121226 0.1308783611E-04 0.6924591530 0.1306686267E-04 0.6948061834 0.1304537471E-04 0.6971532138 0.1302339057E-04 0.6995002442 0.1300092900E-04 0.7018472746 0.1297800910E-04 0.7041943050 0.1295465031E-04 0.7065413354 0.1293087239E-04 0.7088883658 0.1290669539E-04 0.7112353962 0.1288213962E-04 0.7135824266 0.1285722567E-04 0.7159294570 0.1283197430E-04 0.7182764874 0.1280640648E-04 0.7206235177 0.1278054335E-04 0.7229705481 0.1275440619E-04 0.7253175785 0.1272801635E-04 0.7276646089 0.1270139530E-04 0.7300116393 0.1267456452E-04 0.7323586697 0.1264754553E-04 0.7347057001 0.1262035981E-04 0.7370527305 0.1259302881E-04 0.7393997609 0.1256557387E-04 0.7417467913 0.1253801624E-04 0.7440938217 0.1251037700E-04 0.7464408521 0.1248267705E-04 0.7487878825 0.1245493705E-04 0.7511349128 0.1242717742E-04 0.7534819432 0.1239941828E-04 0.7558289736 0.1237167941E-04 0.7581760040 0.1234398023E-04 0.7605230344 0.1231633973E-04 0.7628700648 0.1228877648E-04 0.7652170952 0.1226130856E-04 0.7675641256 0.1223395354E-04 0.7699111560 0.1220672842E-04 0.7722581864 0.1217964961E-04 0.7746052168 0.1215273291E-04 0.7769522472 0.1212599344E-04 0.7792992776 0.1209944563E-04 0.7816463080 0.1207310320E-04 0.7839933383 0.1204697908E-04 0.7863403687 0.1202108543E-04 0.7886873991 0.1199543361E-04 0.7910344295 0.1189568151E-04 0.7933814599 0.1156447450E-04 0.7957284903 0.1123892271E-04 0.7980755207 0.1091913098E-04 0.8004225511 0.1060519360E-04 0.8027695815 0.1029719442E-04 0.8051166119 0.9995206997E-05 0.8074636423 0.9699294802E-05 0.8098106727 0.9409511393E-05 0.8121577031 0.9125900631E-05 0.8145047335 0.8848496906E-05 0.8168517638 0.8577325374E-05 0.8191987942 0.8312402212E-05 0.8215458246 0.8053734879E-05 0.8238928550 0.7801322395E-05 0.8262398854 0.7555155623E-05 0.8285869158 0.7315217565E-05 0.8309339462 0.7081483669E-05 0.8332809766 0.6853922132E-05 0.8356280070 0.6632494220E-05 0.8379750374 0.6417154589E-05 0.8403220678 0.6207851607E-05 0.8426690982 0.6004527688E-05 0.8450161286 0.5807119613E-05 0.8473631589 0.5615558870E-05 0.8497101893 0.5429771980E-05 0.8520572197 0.5249680829E-05 0.8544042501 0.5075202997E-05 0.8567512805 0.4906252084E-05 0.8590983109 0.4742738033E-05 0.8614453413 0.4584567450E-05 0.8637923717 0.4431643915E-05 0.8661394021 0.4283868294E-05 0.8684864325 0.4141139041E-05 0.8708334629 0.4003352491E-05 0.8731804933 0.3870403149E-05 0.8755275237 0.3742183969E-05 0.8778745541 0.3618586629E-05 0.8802215844 0.3499501789E-05 0.8825686148 0.3384819346E-05 0.8849156452 0.3274428677E-05 0.8872626756 0.3168218872E-05 0.8896097060 0.3066078959E-05 0.8919567364 0.2967898113E-05 0.8943037668 0.2873565862E-05 0.8966507972 0.2782972272E-05 0.8989978276 0.2696008136E-05 0.9013448580 0.2612565136E-05 0.9036918884 0.2532536005E-05 0.9060389188 0.2455814672E-05 0.9083859492 0.2382296405E-05 0.9107329796 0.2311877933E-05 0.9130800099 0.2244457561E-05 0.9154270403 0.2179935281E-05 0.9177740707 0.2118212867E-05 0.9201211011 0.2059193959E-05 0.9224681315 0.2002784143E-05 0.9248151619 0.1948891017E-05 0.9271621923 0.1897424254E-05 0.9295092227 0.1848295650E-05 0.9318562531 0.1801419166E-05 0.9342032835 0.1756710965E-05 0.9365503139 0.1714089439E-05 0.9388973443 0.1673475226E-05 0.9412443747 0.1634791227E-05 0.9435914050 0.1597962605E-05 0.9459384354 0.1562916791E-05 0.9482854658 0.1529583474E-05 0.9506324962 0.1497894585E-05 0.9529795266 0.1467784282E-05 0.9553265570 0.1439188923E-05 0.9576735874 0.1412047032E-05 0.9600206178 0.1386299271E-05 0.9623676482 0.1361888393E-05 0.9647146786 0.1338759198E-05 0.9670617090 0.1316858486E-05 0.9694087394 0.1296135002E-05 0.9717557698 0.1283922547E-05 0.9741028002 0.1285932192E-05 0.9764498305 0.1288446993E-05 0.9787968609 0.1291443806E-05 0.9811438913 0.1294899514E-05 0.9834909217 0.1298791003E-05 0.9858379521 0.1303095142E-05 0.9881849825 0.1307788764E-05 0.9905320129 0.1312848657E-05 0.9928790433 0.1318251549E-05 0.9952260737 0.1323974107E-05 0.9975731041 0.1329992928E-05 0.9999201345 0.1336284550E-05 1.002267165 0.1342825445E-05 1.004614195 0.1349592038E-05 1.006961226 0.1356560710E-05 1.009308256 0.1363707819E-05 1.011655286 0.1371009712E-05 1.014002317 0.1378442752E-05 1.016349347 0.1385983338E-05 1.018696378 0.1393607930E-05 1.021043408 0.1401293084E-05 1.023390438 0.1409015476E-05 1.025737469 0.1416751943E-05 1.028084499 0.1424479511E-05 1.030431530 0.1432175441E-05 1.032778560 0.1439817258E-05 1.035125590 0.1447382802E-05 1.037472621 0.1454850262E-05 1.039819651 0.1462198219E-05 1.042166682 0.1469405696E-05 1.044513712 0.1476452192E-05 1.046860742 0.1483317735E-05 1.049207773 0.1489982920E-05 1.051554803 0.1496428954E-05 1.053901834 0.1502637702E-05 1.056248864 0.1508591728E-05 1.058595894 0.1514274337E-05 1.060942925 0.1519669614E-05 1.063289955 0.1524762467E-05 1.065636985 0.1529538663E-05 1.067984016 0.1533984865E-05 1.070331046 0.1538088665E-05 1.072678077 0.1541838619E-05 1.075025107 0.1545224273E-05 1.077372137 0.1548236196E-05 1.079719168 0.1550866002E-05 1.082066198 0.1553106371E-05 1.084413229 0.1554951074E-05 1.086760259 0.1556394986E-05 1.089107289 0.1557434098E-05 1.091454320 0.1558065536E-05 1.093801350 0.1558287560E-05 1.096152861 0.1557552778E-05 1.098504372 0.1555377929E-05 1.100855883 0.1551791010E-05 1.103207394 0.1546843722E-05 1.105558905 0.1540621365E-05 1.107910415 0.1533263027E-05 1.110261926 0.1525003891E-05 1.112613437 0.1516268278E-05 1.114964948 0.1507880051E-05 1.117316459 0.1501494597E-05 1.119667970 0.1500024983E-05 1.122019481 0.1506386641E-05 1.124370992 0.1520595076E-05 1.126722503 0.1540589381E-05 1.129074013 0.1564694886E-05 1.131425524 0.1592025248E-05 1.133777035 0.1622152638E-05 1.136128546 0.1654873285E-05 1.138480057 0.1690094417E-05 1.140831568 0.1727781627E-05 1.143183079 0.1767933355E-05 1.145534590 0.1810567761E-05 1.147886101 0.1855715573E-05 1.150237611 0.1903415965E-05 1.152589122 0.1953714045E-05 1.154940633 0.2006659258E-05 1.157292144 0.2062304303E-05 1.159643655 0.2120704367E-05 1.161995166 0.2181916554E-05 1.164346677 0.2245999435E-05 1.166698188 0.2313012673E-05 1.169049699 0.2383016694E-05 1.171401209 0.2456072395E-05 1.173752720 0.2532240857E-05 1.176104231 0.2611583075E-05 1.178455742 0.2694159679E-05 1.180807253 0.2780030647E-05 1.183158764 0.2869255012E-05 1.185510275 0.2961890533E-05 1.187861786 0.3057993352E-05 1.190213296 0.3157617601E-05 1.192564807 0.3260814967E-05 1.194916318 0.3367634186E-05 1.197267829 0.3478120456E-05 1.199619340 0.3592314736E-05 1.201970851 0.3710252896E-05 1.204322362 0.3831964657E-05 1.206673873 0.3957472253E-05 1.209025384 0.4086788693E-05 1.211376894 0.4219915438E-05 1.213728405 0.4356839235E-05 1.216079916 0.4497527638E-05 1.218431427 0.4641922503E-05 1.220782938 0.4789930159E-05 1.223134449 0.4941406002E-05 1.225485960 0.5096129234E-05 1.227837471 0.5253759377E-05 1.230188982 0.5413757153E-05 1.232540492 0.5575231448E-05 1.234892003 0.5736623257E-05 1.237243514 0.5895013068E-05 1.239595025 0.6044578106E-05 1.241946536 0.6173705538E-05 1.244298047 0.6264038837E-05 1.246649558 0.6303953600E-05 1.249001069 0.6303871370E-05 1.251352580 0.6281525044E-05 1.253704090 0.6248265556E-05 1.256055601 0.6209781078E-05 1.258407112 0.6168907900E-05 1.260758623 0.6127151160E-05 1.263110134 0.6085369005E-05 1.265461645 0.6044084120E-05 1.267813156 0.6003633765E-05 1.270164667 0.5964246649E-05 1.272516177 0.5926084633E-05 1.274867688 0.5889266515E-05 1.277219199 0.5853882185E-05 1.279570710 0.5820001342E-05 1.281922221 0.5787678999E-05 1.284273732 0.5756959002E-05 1.286625243 0.5727876256E-05 1.288976754 0.5700458065E-05 1.291328265 0.5674724810E-05 1.293679775 0.5650690082E-05 1.296031286 0.5628360323E-05 1.298382797 0.5607733944E-05 1.300734308 0.5588799873E-05 1.303085819 0.5571535380E-05 1.305437330 0.5555902985E-05 1.307788841 0.5541846151E-05 1.310140352 0.5529283310E-05 1.312491863 0.5518099606E-05 1.314843373 0.5508135485E-05 1.317194884 0.5499170893E-05 1.319546395 0.5490903497E-05 1.321897906 0.5482918931E-05 1.324249417 0.5474651058E-05 1.326600928 0.5465331391E-05 1.328952439 0.5453930891E-05 1.331303950 0.5439107805E-05 1.333655461 0.5419195656E-05 1.336006971 0.5392293514E-05 1.338358482 0.5356530107E-05 1.340709993 0.5310506471E-05 1.343061504 0.5253755469E-05 1.345413015 0.5186934628E-05 1.347764526 0.5111607227E-05 1.350116037 0.5081141462E-05 1.352467548 0.5152626505E-05 1.354819059 0.5224258421E-05 1.357170569 0.5295997387E-05 1.359522080 0.5367802837E-05 1.361873591 0.5439633549E-05 1.364225102 0.5511447730E-05 1.366576613 0.5583203119E-05 1.368928124 0.5654857089E-05 1.371279635 0.5726366766E-05 1.373631146 0.5797689156E-05 1.375982656 0.5868781276E-05 1.378334167 0.5939600312E-05 1.380685678 0.6010103771E-05 1.383037189 0.6080249660E-05 1.385388700 0.6149996675E-05 1.387740211 0.6219304403E-05 1.390091722 0.6288133551E-05 1.392443233 0.6356446183E-05 1.394794744 0.6424205990E-05 1.397146254 0.6491378579E-05 1.399497765 0.6557931785E-05 1.401849276 0.6623836029E-05 1.404200787 0.6689064693E-05 1.406552298 0.6753594551E-05 1.408903809 0.6817406237E-05 1.411255320 0.6880484768E-05 1.413606831 0.6942820133E-05 1.415958342 0.7004407945E-05 1.418309852 0.7065250184E-05 1.420661363 0.7125356031E-05 1.423012874 0.7184742820E-05 1.425364385 0.7243437120E-05 1.427715896 0.7301475976E-05 1.430067407 0.7358908339E-05 1.432418918 0.7415796716E-05 1.434770429 0.7472219083E-05 1.437121940 0.7528271123E-05 1.439473450 0.7584068830E-05 1.441824961 0.7639751581E-05 1.444176472 0.7695485752E-05 1.446527983 0.7751468986E-05 1.448879494 0.7807935272E-05 1.451231005 0.7865160972E-05 1.453582516 0.7923472006E-05 1.455934027 0.7983252429E-05 1.458285537 0.8044954663E-05 1.460637048 0.8109111704E-05 1.462988559 0.8176351635E-05 1.465340070 0.8247414826E-05 1.467691581 0.8323174139E-05 1.470043092 0.8404658407E-05 1.472394603 0.8493079251E-05 1.474746114 0.8589860938E-05 1.477097625 0.8696672359E-05 1.479449135 0.8815459252E-05 1.481800646 0.8948473406E-05 1.484152157 0.9098293828E-05 1.486503668 0.9267832860E-05 1.488855179 0.9460318713E-05 1.491206690 0.9679245658E-05 1.493558201 0.9928285629E-05 1.495909712 0.1021116125E-04 1.498261223 0.1053149006E-04 1.500612733 0.1089262049E-04 1.502964244 0.1129748737E-04 1.505315755 0.1174851399E-04 1.507667266 0.1224757747E-04 1.510018777 0.1279603824E-04 1.512370288 0.1339481986E-04 1.514721799 0.1404451700E-04 1.517073310 0.1474550926E-04 1.519424821 0.1549806439E-04 1.521776331 0.1630242182E-04 1.524127842 0.1715885401E-04 1.526479353 0.1806770751E-04 1.528830864 0.1902942746E-04 1.531182375 0.2004456983E-04 1.533533886 0.2111380517E-04 1.535885397 0.2223791695E-04 1.538236908 0.2341779668E-04 1.540588418 0.2465443732E-04 1.542939929 0.2594892605E-04 1.545291440 0.2730243694E-04 1.547642951 0.2821496113E-04 1.549994462 0.2794424034E-04 1.552345973 0.2766222343E-04 1.554697484 0.2736963273E-04 1.557048995 0.2706713012E-04 1.559400506 0.2675532812E-04 1.561752016 0.2643479874E-04 1.564103527 0.2610608052E-04 1.566455038 0.2576968422E-04 1.568806549 0.2542609746E-04 1.571158060 0.2507578831E-04 1.573509571 0.2471920835E-04 1.575861082 0.2435679500E-04 1.578212593 0.2398897347E-04 1.580564104 0.2361615829E-04 1.582915614 0.2323875455E-04 1.585267125 0.2285715885E-04 1.587618636 0.2247176010E-04 1.589970147 0.2208294007E-04 1.592321658 0.2169107386E-04 1.594673169 0.2129653023E-04 1.597024680 0.2089967181E-04 1.599376191 0.2050085527E-04 1.601727702 0.2010043140E-04 1.604079212 0.1969874512E-04 1.606430723 0.1929613549E-04 1.608782234 0.1889293561E-04 1.611133745 0.1848947261E-04 1.613485256 0.1808606744E-04 1.615836767 0.1768303484E-04 1.618188278 0.1728068313E-04 1.620539789 0.1687931408E-04 1.622891299 0.1647922278E-04 1.625242810 0.1608069740E-04 1.627594321 0.1568401910E-04 1.629945832 0.1528946183E-04 1.632297343 0.1489729214E-04 1.634648854 0.1450776907E-04 1.637000365 0.1412114396E-04 1.639351876 0.1373766029E-04 1.641703387 0.1335755357E-04 1.644054897 0.1298105117E-04 1.646406408 0.1260837222E-04 1.648757919 0.1223972747E-04 1.651109430 0.1187531919E-04 1.653460941 0.1151534110E-04 1.655812452 0.1115997823E-04 1.658163963 0.1080940688E-04 1.660515474 0.1046379458E-04 1.662866985 0.1012329997E-04 1.665218495 0.9788072841E-05 1.667570006 0.9458254039E-05 1.669921517 0.9133975494E-05 1.672273028 0.8815360202E-05 1.674624539 0.8502522234E-05 1.676976050 0.8195566758E-05 1.679327561 0.7894590075E-05 1.681679072 0.7599679660E-05 1.684030583 0.7310914223E-05 1.686382093 0.7028363772E-05 1.688733604 0.6752089697E-05 1.691085115 0.6482144856E-05 1.693436626 0.6218573677E-05 1.695788137 0.5961412273E-05 1.698139648 0.5710688556E-05 1.700491159 0.5466422373E-05 1.702842670 0.5228625646E-05 1.705194180 0.4997302517E-05 1.707545691 0.4772449510E-05 1.709897202 0.4554055696E-05 1.712248713 0.4342102865E-05 1.714600224 0.4136565709E-05 1.716951735 0.3937412011E-05 1.719303246 0.3744602837E-05 1.721654757 0.3558092738E-05 1.724006268 0.3377829960E-05 1.726357778 0.3203756650E-05 1.728709289 0.3035809078E-05 1.731060800 0.2873917856E-05 1.733412311 0.2718008164E-05 1.735763822 0.2567999976E-05 1.738115333 0.2423808296E-05 1.740466844 0.2285343390E-05 1.742818355 0.2152511023E-05 1.745169866 0.2025212697E-05 1.747521376 0.1903345891E-05 1.749872887 0.1786804300E-05 1.752224398 0.1675478080E-05 1.754575909 0.1569254084E-05 1.756927420 0.1468016104E-05 1.759278931 0.1371645112E-05 1.761630442 0.1280019497E-05 1.763981953 0.1193015299E-05 1.766333464 0.1110506450E-05 1.768684974 0.1032364999E-05 1.771036485 0.9584613432E-06 1.773387996 0.8886644578E-06 1.775739507 0.8228421146E-06 1.778091018 0.7608611047E-06 1.780442529 0.7025874543E-06 1.782794040 0.6478866391E-06 1.785145551 0.5966237964E-06 1.787497061 0.5486639349E-06 1.789848572 0.5038721452E-06 1.792200083 0.4621138108E-06 1.794551594 0.4232548220E-06 1.796903105 0.3871617951E-06 1.799254616 0.3537023000E-06 1.801606127 0.3227450976E-06 1.803957638 0.2941603904E-06 1.806309149 0.2678200894E-06 1.808660659 0.2435980973E-06 1.811012170 0.2213706098E-06 1.813363681 0.2010164337E-06 1.815715192 0.1824173180E-06 1.818066703 0.1654582943E-06 1.820418214 0.1500280190E-06 1.822769725 0.1360191113E-06 1.825121236 0.1233284814E-06 1.827472747 0.1118576569E-06 1.829824257 0.1015131562E-06 1.832175768 0.9220718771E-07 1.834527279 0.8386098269E-07 1.836878790 0.7654344668E-07 1.839230301 0.7918222675E-07 1.841581812 0.8316848762E-07 1.843933323 0.8700826579E-07 1.846284834 0.9066963281E-07 1.848636345 0.9412851573E-07 1.850987855 0.9736311698E-07 1.853339366 0.1003533045E-06 1.855690877 0.1030805556E-06 1.858042388 0.1055280123E-06 1.860393899 0.1076805619E-06 1.862745410 0.1095249200E-06 1.865096921 0.1110497074E-06 1.867448432 0.1122455181E-06 1.869799942 0.1131049762E-06 1.872151453 0.1136227806E-06 1.874502964 0.1137957376E-06 1.876849995 0.1137411921E-06 1.879197025 0.1135777134E-06 1.881544055 0.1133057739E-06 1.883891086 0.1129261587E-06 1.886238116 0.1124399625E-06 1.888585147 0.1118485851E-06 1.890932177 0.1111537253E-06 1.893279207 0.1103573742E-06 1.895626238 0.1094618068E-06 1.897973268 0.1084695728E-06 1.900320299 0.1073834859E-06 1.902667329 0.1062066123E-06 1.905014359 0.1049422586E-06 1.907361390 0.1035939575E-06 1.909708420 0.1021654541E-06 1.912055451 0.1006606905E-06 1.914402481 0.9908378993E-07 1.916749511 0.9743903995E-07 1.919096542 0.9573087564E-07 1.921443572 0.9774541904E-07 1.923790603 0.1178220637E-06 1.926137633 0.1407678266E-06 1.928484663 0.1668208050E-06 1.930831694 0.1962233762E-06 1.933178724 0.2292213978E-06 1.935525754 0.2660633924E-06 1.937872785 0.3069997219E-06 1.940219815 0.3522817526E-06 1.942566846 0.4021610145E-06 1.944913876 0.4568883563E-06 1.947260906 0.5167131005E-06 1.949607937 0.5818821987E-06 1.951954967 0.6526393926E-06 1.954301998 0.7292243806E-06 1.956649028 0.8118719940E-06 1.958996058 0.9008113860E-06 1.961343089 0.9962652331E-06 1.963690119 0.1098448955E-05 1.966037150 0.1207569954E-05 1.968384180 0.1323826872E-05 1.970731210 0.1447408876E-05 1.973078241 0.1578494966E-05 1.975425271 0.1717253313E-05 1.977772302 0.1863840624E-05 1.980119332 0.2018401540E-05 1.982466362 0.2181068070E-05 1.984813393 0.2351959054E-05 1.987160423 0.2531179668E-05 1.989507454 0.2718820964E-05 1.991854484 0.2914959451E-05 1.994201514 0.3119656715E-05 1.996548545 0.3332959079E-05 1.998895575 0.3554897310E-05 2.001242605 0.3785486365E-05 2.003589636 0.4024725181E-05 2.005936666 0.4272596511E-05 2.008283697 0.4529066807E-05 2.010630727 0.4794086136E-05 2.012977757 0.5067588157E-05 2.015324788 0.5349490135E-05 2.017671818 0.5639692994E-05 2.020018849 0.5938081425E-05 2.022365879 0.6244524032E-05 2.024712909 0.6558873521E-05 2.027059940 0.6880966935E-05 2.029406970 0.7210625925E-05 2.031754001 0.7547657068E-05 2.034101031 0.7891852221E-05 2.036448061 0.8242988915E-05 2.038795092 0.8600830783E-05 2.041142122 0.8965128029E-05 2.043489153 0.9335617928E-05 2.045836183 0.9712025357E-05 2.048183213 0.1009406336E-04 2.050530244 0.1048143375E-04 2.052877274 0.1087382771E-04 2.055224304 0.1127092646E-04 2.057571335 0.1167240192E-04 2.059918365 0.1207791738E-04 2.062265396 0.1248712826E-04 2.064612426 0.1289968278E-04 2.066959456 0.1331522275E-04 2.069306487 0.1373338430E-04 2.071653517 0.1415379866E-04 2.074000548 0.1457609292E-04 2.076347578 0.1499989083E-04 2.078694608 0.1542481358E-04 2.081041639 0.1585048059E-04 2.083388669 0.1627651028E-04 2.085735700 0.1670252089E-04 2.088082730 0.1712813122E-04 2.090429760 0.1755296146E-04 2.092776791 0.1797663391E-04 2.095123821 0.1839877372E-04 2.097470852 0.1881900972E-04 2.099817882 0.1923697504E-04 2.102164912 0.1965230790E-04 2.104511943 0.2006465229E-04 2.106858973 0.2047365861E-04 2.109206004 0.2087898435E-04 2.111553034 0.2128029474E-04 2.113900064 0.2167726331E-04 2.116247095 0.2206957252E-04 2.118594125 0.2245691428E-04 2.120941155 0.2283899047E-04 2.123288186 0.2321551349E-04 2.125635216 0.2358620667E-04 2.127982247 0.2395080472E-04 2.130329277 0.2430905417E-04 2.132676307 0.2466071369E-04 2.135023338 0.2500555448E-04 2.137370368 0.2534336054E-04 2.139717399 0.2567392897E-04 2.142064429 0.2599707017E-04 2.144411459 0.2631260810E-04 2.146758490 0.2662038042E-04 2.149105520 0.2692023864E-04 2.151452551 0.2721204820E-04 2.153799581 0.2749568857E-04 2.156146611 0.2777105329E-04 2.158493642 0.2803804995E-04 2.160840672 0.2829660019E-04 2.163187703 0.2854663963E-04 2.165534733 0.2878811780E-04 2.167881763 0.2902099798E-04 2.170228794 0.2924525710E-04 2.172575824 0.2946088555E-04 2.174922855 0.2966788697E-04 2.177269885 0.2986627803E-04 2.179616915 0.3005608820E-04 2.181963946 0.3023735941E-04 2.184310976 0.3041014582E-04 2.186658006 0.3057451349E-04 2.189005037 0.3073054000E-04 2.191352067 0.3087831411E-04 2.193699098 0.3101793543E-04 2.196046128 0.3114951394E-04 2.198393158 0.3127316968E-04 2.200740189 0.3138903226E-04 2.203087219 0.3149724045E-04 2.205434250 0.3159794175E-04 2.207781280 0.3169129192E-04 2.210128310 0.3177745453E-04 2.212475341 0.3185660050E-04 2.214822371 0.3192890761E-04 2.217169402 0.3199456005E-04 2.219516432 0.3205374792E-04 2.221863462 0.3210666675E-04 2.224210493 0.3215351705E-04 2.226557523 0.3219450377E-04 2.228904554 0.3222983591E-04 2.231251584 0.3225972597E-04 2.233598614 0.3228438950E-04 2.235945645 0.3230404465E-04 2.238292675 0.3231891172E-04 2.240639706 0.3232921266E-04 2.242986736 0.3233517066E-04 2.245333766 0.3233700974E-04 2.247680797 0.3233495424E-04 2.250027827 0.3232922848E-04 2.252374857 0.3232005632E-04 2.254721888 0.3230766078E-04 2.257068918 0.3229226361E-04 2.259415949 0.3227408496E-04 2.261762979 0.3225334302E-04 2.264110009 0.3223025363E-04 2.266457040 0.3220502999E-04 2.268804070 0.3217788230E-04 2.271151101 0.3214901746E-04 2.273498131 0.3211863877E-04 2.275845161 0.3208694568E-04 2.278192192 0.3205413344E-04 2.280539222 0.3202039292E-04 2.282886253 0.3198591032E-04 2.285233283 0.3195086695E-04 2.287580313 0.3191543901E-04 2.289927344 0.3187979738E-04 2.292274374 0.3184410744E-04 2.294621405 0.3180852884E-04 2.296968435 0.3177321542E-04 2.299315465 0.3173831495E-04 2.301662496 0.3170396908E-04 2.304009526 0.3167031312E-04 2.306356557 0.3163747601E-04 2.308703587 0.3160558013E-04 2.311050617 0.3157474127E-04 2.313397648 0.3154506855E-04 2.315744678 0.3151666434E-04 2.318091708 0.3148962425E-04 2.320438739 0.3146403715E-04 2.322785769 0.3143998523E-04 2.325132800 0.3141754419E-04 2.327479830 0.3139678353E-04 2.329826860 0.3137776725E-04 2.332173891 0.3136055516E-04 2.334520921 0.3134520566E-04 2.336867952 0.3133178244E-04 2.339214982 0.3132037219E-04 2.341562012 0.3131114039E-04 2.343909043 0.3130453697E-04 2.346256073 0.3130188653E-04 0.000000000 0.8592837553E-03 0.2347351854E-02 0.8591246041E-03 0.4694703708E-02 0.8586473029E-03 0.7042055561E-02 0.8578523091E-03 0.9389407415E-02 0.8567403846E-03 0.1173675927E-01 0.8553125942E-03 0.1408411112E-01 0.8535703046E-03 0.1643146298E-01 0.8515151824E-03 0.1877881483E-01 0.8491491917E-03 0.2112616668E-01 0.8464745915E-03 0.2347351854E-01 0.8434939324E-03 0.2582087039E-01 0.8402100535E-03 0.2816822225E-01 0.8366260781E-03 0.3051557410E-01 0.8327454096E-03 0.3286292595E-01 0.8285717267E-03 0.3521027781E-01 0.8241089786E-03 0.3755762966E-01 0.8193613794E-03 0.3990498151E-01 0.8143334024E-03 0.4225233337E-01 0.8090297740E-03 0.4459968522E-01 0.8034554674E-03 0.4694703708E-01 0.7976156954E-03 0.4929438893E-01 0.7915159040E-03 0.5164174078E-01 0.7851617646E-03 0.5398909264E-01 0.7785591663E-03 0.5633644449E-01 0.7717142082E-03 0.5868379634E-01 0.7646331911E-03 0.6103114820E-01 0.7573226090E-03 0.6337850005E-01 0.7497891407E-03 0.6572585191E-01 0.7420396403E-03 0.6807320376E-01 0.7340811289E-03 0.7042055561E-01 0.7259207845E-03 0.7276790747E-01 0.7175659331E-03 0.7511525932E-01 0.7090240389E-03 0.7746261117E-01 0.7003026944E-03 0.7980996303E-01 0.6914096106E-03 0.8215731488E-01 0.6823526070E-03 0.8450466674E-01 0.6731396014E-03 0.8685201859E-01 0.6637785997E-03 0.8919937044E-01 0.6542776857E-03 0.9154672230E-01 0.6446450109E-03 0.9389407415E-01 0.6348887836E-03 0.9624142601E-01 0.6250172595E-03 0.9858877786E-01 0.6150387302E-03 0.1009361297 0.6049615139E-03 0.1032834816 0.5947939444E-03 0.1056308334 0.5845443610E-03 0.1079781853 0.5742210985E-03 0.1103255371 0.5638324769E-03 0.1126728890 0.5533867914E-03 0.1150202408 0.5428923024E-03 0.1173675927 0.5323572260E-03 0.1197149445 0.5217897241E-03 0.1220622964 0.5111978949E-03 0.1244096483 0.5005897637E-03 0.1267570001 0.4899732738E-03 0.1291043520 0.4793562773E-03 0.1314517038 0.4687465267E-03 0.1337990557 0.4581516662E-03 0.1361464075 0.4475792233E-03 0.1384937594 0.4370366010E-03 0.1408411112 0.4265310701E-03 0.1431884631 0.4160697611E-03 0.1455358149 0.4056596577E-03 0.1478831668 0.3953075895E-03 0.1502305186 0.3850202250E-03 0.1525778705 0.3748040661E-03 0.1549252223 0.3646654411E-03 0.1572725742 0.3546104996E-03 0.1596199261 0.3446452068E-03 0.1619672779 0.3347753387E-03 0.1643146298 0.3250064769E-03 0.1666619816 0.3153440046E-03 0.1690093335 0.3057931025E-03 0.1713566853 0.2963587447E-03 0.1737040372 0.2870456958E-03 0.1760513890 0.2778585076E-03 0.1783987409 0.2688015167E-03 0.1807460927 0.2598788417E-03 0.1830934446 0.2510943819E-03 0.1854407964 0.2424518151E-03 0.1877881483 0.2339545969E-03 0.1901355002 0.2256059592E-03 0.1924828520 0.2174089102E-03 0.1948302039 0.2093662339E-03 0.1971775557 0.2014804905E-03 0.1995249076 0.1937540166E-03 0.2018722594 0.1861889260E-03 0.2042196113 0.1787871114E-03 0.2065669631 0.1715502452E-03 0.2089143150 0.1644797818E-03 0.2112616668 0.1575769595E-03 0.2136090187 0.1508428031E-03 0.2159563705 0.1442781265E-03 0.2183037224 0.1378835359E-03 0.2206510743 0.1316594330E-03 0.2229984261 0.1256060187E-03 0.2253457780 0.1197232972E-03 0.2276931298 0.1140110800E-03 0.2300404817 0.1084689904E-03 0.2323878335 0.1030964683E-03 0.2347351854 0.9789277541E-04 0.2370825372 0.9285700026E-04 0.2394298891 0.8798806400E-04 0.2417772409 0.8328472624E-04 0.2441245928 0.7874559125E-04 0.2464719446 0.7436911444E-04 0.2488192965 0.7015360930E-04 0.2511666484 0.6609725463E-04 0.2535140002 0.6219810235E-04 0.2558613521 0.5845408576E-04 0.2582087039 0.5486302857E-04 0.2605560558 0.5142265474E-04 0.2629034076 0.4813059947E-04 0.2652507595 0.4498442162E-04 0.2675981113 0.4198161811E-04 0.2699454632 0.3911964100E-04 0.2722928150 0.3639591847E-04 0.2746401669 0.3380788106E-04 0.2769875187 0.3135299591E-04 0.2793348706 0.2902881272E-04 0.2816822225 0.2697417751E-04 0.2840295743 0.2714667240E-04 0.2863769262 0.2729309122E-04 0.2887242780 0.2740778425E-04 0.2910716299 0.2748202203E-04 0.2934189817 0.2750174604E-04 0.2957663336 0.2744362070E-04 0.2981136854 0.2726904794E-04 0.3004610373 0.2691986877E-04 0.3028083891 0.2633230677E-04 0.3051557410 0.2548547548E-04 0.3075030928 0.2443436990E-04 0.3098504447 0.2326857433E-04 0.3121977966 0.2206085157E-04 0.3145451484 0.2085609135E-04 0.3168925003 0.1967937627E-04 0.3192398521 0.1854430745E-04 0.3215872040 0.1745811822E-04 0.3239345558 0.1642447854E-04 0.3262819077 0.1544501940E-04 0.3286292595 0.1452018456E-04 0.3309766114 0.1364972696E-04 0.3333239632 0.1283301259E-04 0.3356713151 0.1206921649E-04 0.3380186669 0.1172709332E-04 0.3403660188 0.1190267665E-04 0.3427133707 0.1208296336E-04 0.3450607225 0.1226743652E-04 0.3474080744 0.1245568946E-04 0.3497554262 0.1264739677E-04 0.3521027781 0.1284229374E-04 0.3544501299 0.1304016155E-04 0.3567974818 0.1324081646E-04 0.3591448336 0.1344410176E-04 0.3614921855 0.1364988173E-04 0.3638395373 0.1385803704E-04 0.3661868892 0.1406846120E-04 0.3685342410 0.1428105781E-04 0.3708815929 0.1449573842E-04 0.3732289448 0.1471242078E-04 0.3755762966 0.1493102750E-04 0.3779236485 0.1515148495E-04 0.3802710003 0.1537372238E-04 0.3826183522 0.1559767118E-04 0.3849657040 0.1582326430E-04 0.3873130559 0.1605043580E-04 0.3896604077 0.1627912039E-04 0.3920077596 0.1650925315E-04 0.3943551114 0.1674076926E-04 0.3967024633 0.1697360375E-04 0.3990498151 0.1720769132E-04 0.4013971670 0.1744296623E-04 0.4037445189 0.1767936210E-04 0.4060918707 0.1791681190E-04 0.4084392226 0.1815524777E-04 0.4107865744 0.1839460104E-04 0.4131339263 0.1863480212E-04 0.4154812781 0.1887578049E-04 0.4178286300 0.1911746468E-04 0.4201759818 0.1889278932E-04 0.4225233337 0.1849111169E-04 0.4248706855 0.1808868010E-04 0.4272180374 0.1768590717E-04 0.4295653892 0.1728319988E-04 0.4319127411 0.1688095898E-04 0.4342600929 0.1647957841E-04 0.4366074448 0.1607944481E-04 0.4389547967 0.1568093697E-04 0.4413021485 0.1528442546E-04 0.4436495004 0.1489027213E-04 0.4459968522 0.1449882987E-04 0.4483442041 0.1411044223E-04 0.4506915559 0.1372544326E-04 0.4530389078 0.1334415739E-04 0.4553862596 0.1296689934E-04 0.4577336115 0.1259397428E-04 0.4600809633 0.1222567806E-04 0.4624283152 0.1186229767E-04 0.4647756670 0.1150411196E-04 0.4671230189 0.1115139271E-04 0.4694703708 0.1080440621E-04 0.4718177226 0.1046341547E-04 0.4741650745 0.1012868341E-04 0.4765124263 0.9800477510E-05 0.4788597782 0.9479076543E-05 0.4812071300 0.9164780592E-05 0.4835544819 0.8857926336E-05 0.4859018337 0.8558910901E-05 0.4882491856 0.8737502752E-05 0.4905965374 0.8974482005E-05 0.4929438893 0.9212346209E-05 0.4952912411 0.9450909758E-05 0.4976385930 0.9689983789E-05 0.4999859449 0.9929376413E-05 0.5023332967 0.1016889294E-04 0.5046806486 0.1040833609E-04 0.5070280004 0.1064750629E-04 0.5093753523 0.1088620186E-04 0.5117227041 0.1112421928E-04 0.5140700560 0.1136135347E-04 0.5164174078 0.1159739802E-04 0.5187647597 0.1183214546E-04 0.5211121115 0.1206538755E-04 0.5234594634 0.1229691551E-04 0.5258068152 0.1252652032E-04 0.5281541671 0.1275399299E-04 0.5305015190 0.1297912483E-04 0.5328488708 0.1320170774E-04 0.5351962227 0.1342153449E-04 0.5375435745 0.1363839895E-04 0.5398909264 0.1385209645E-04 0.5422382782 0.1406242400E-04 0.5445856301 0.1426918059E-04 0.5469329819 0.1447216745E-04 0.5492803338 0.1467118836E-04 0.5516276856 0.1486604986E-04 0.5539750375 0.1505656158E-04 0.5563223893 0.1524253648E-04 0.5586697412 0.1542379111E-04 0.5610170931 0.1560014588E-04 0.5633644449 0.1577142527E-04 0.5657117968 0.1593745816E-04 0.5680591486 0.1609807799E-04 0.5704065005 0.1625312305E-04 0.5727538523 0.1640243668E-04 0.5751012042 0.1654586752E-04 0.5774485560 0.1668326971E-04 0.5797959079 0.1681450309E-04 0.5821432597 0.1693943342E-04 0.5844906116 0.1705793259E-04 0.5868379634 0.1716987874E-04 0.5891853153 0.1727515652E-04 0.5915326672 0.1737365718E-04 0.5938800190 0.1746527881E-04 0.5962273709 0.1754992640E-04 0.5985747227 0.1762751203E-04 0.6009220746 0.1769795501E-04 0.6032694264 0.1776118194E-04 0.6056167783 0.1781712689E-04 0.6079641301 0.1786573144E-04 0.6103114820 0.1790694478E-04 0.6126588338 0.1794072380E-04 0.6150061857 0.1796703314E-04 0.6173535375 0.1798584525E-04 0.6197008894 0.1799714040E-04 0.6220482413 0.1800090677E-04 0.6243952716 0.1800353441E-04 0.6267423020 0.1800701360E-04 0.6290893324 0.1801134178E-04 0.6314363628 0.1801651656E-04 0.6337833932 0.1802253573E-04 0.6361304236 0.1802939732E-04 0.6384774540 0.1803709956E-04 0.6408244844 0.1804564101E-04 0.6431715148 0.1805502051E-04 0.6455185452 0.1806523727E-04 0.6478655756 0.1807629088E-04 0.6502126060 0.1808818135E-04 0.6525596364 0.1810090912E-04 0.6549066668 0.1811447509E-04 0.6572536971 0.1812888063E-04 0.6596007275 0.1814412761E-04 0.6619477579 0.1816021837E-04 0.6642947883 0.1817715575E-04 0.6666418187 0.1819494309E-04 0.6689888491 0.1821358419E-04 0.6713358795 0.1823308336E-04 0.6736829099 0.1825344536E-04 0.6760299403 0.1827467540E-04 0.6783769707 0.1829677913E-04 0.6807240011 0.1831976265E-04 0.6830710315 0.1834363246E-04 0.6854180619 0.1836839545E-04 0.6877650922 0.1839405892E-04 0.6901121226 0.1842063051E-04 0.6924591530 0.1844811822E-04 0.6948061834 0.1847653041E-04 0.6971532138 0.1850587574E-04 0.6995002442 0.1853616317E-04 0.7018472746 0.1856740199E-04 0.7041943050 0.1859960172E-04 0.7065413354 0.1863277217E-04 0.7088883658 0.1866692339E-04 0.7112353962 0.1870206568E-04 0.7135824266 0.1873820952E-04 0.7159294570 0.1877536562E-04 0.7182764874 0.1881354487E-04 0.7206235177 0.1885275833E-04 0.7229705481 0.1889301721E-04 0.7253175785 0.1893433286E-04 0.7276646089 0.1897671677E-04 0.7300116393 0.1902018050E-04 0.7323586697 0.1906473574E-04 0.7347057001 0.1911039424E-04 0.7370527305 0.1915716778E-04 0.7393997609 0.1920506822E-04 0.7417467913 0.1925410740E-04 0.7440938217 0.1930429720E-04 0.7464408521 0.1904437573E-04 0.7487878825 0.1864002159E-04 0.7511349128 0.1823729199E-04 0.7534819432 0.1783649012E-04 0.7558289736 0.1743791021E-04 0.7581760040 0.1704183726E-04 0.7605230344 0.1664854674E-04 0.7628700648 0.1625830433E-04 0.7652170952 0.1587136569E-04 0.7675641256 0.1548797626E-04 0.7699111560 0.1510837106E-04 0.7722581864 0.1473277455E-04 0.7746052168 0.1436140049E-04 0.7769522472 0.1399445183E-04 0.7792992776 0.1363212063E-04 0.7816463080 0.1327458802E-04 0.7839933383 0.1292202413E-04 0.7863403687 0.1257458812E-04 0.7886873991 0.1223242817E-04 0.7910344295 0.1197003409E-04 0.7933814599 0.1194489653E-04 0.7957284903 0.1192002967E-04 0.7980755207 0.1189544135E-04 0.8004225511 0.1187113848E-04 0.8027695815 0.1184712706E-04 0.8051166119 0.1182341212E-04 0.8074636423 0.1179999775E-04 0.8098106727 0.1177688709E-04 0.8121577031 0.1175408232E-04 0.8145047335 0.1173158467E-04 0.8168517638 0.1170939444E-04 0.8191987942 0.1168751099E-04 0.8215458246 0.1166593277E-04 0.8238928550 0.1164465734E-04 0.8262398854 0.1162368141E-04 0.8285869158 0.1160300082E-04 0.8309339462 0.1158261064E-04 0.8332809766 0.1156250513E-04 0.8356280070 0.1154267784E-04 0.8379750374 0.1152312165E-04 0.8403220678 0.1150382875E-04 0.8426690982 0.1148479079E-04 0.8450161286 0.1146599885E-04 0.8473631589 0.1144744353E-04 0.8497101893 0.1142911499E-04 0.8520572197 0.1141100303E-04 0.8544042501 0.1139309714E-04 0.8567512805 0.1137538656E-04 0.8590983109 0.1135786032E-04 0.8614453413 0.1134050733E-04 0.8637923717 0.1132331645E-04 0.8661394021 0.1130627652E-04 0.8684864325 0.1128937642E-04 0.8708334629 0.1127260515E-04 0.8731804933 0.1125595190E-04 0.8755275237 0.1123940604E-04 0.8778745541 0.1122295726E-04 0.8802215844 0.1120659554E-04 0.8825686148 0.1119031127E-04 0.8849156452 0.1117409522E-04 0.8872626756 0.1115793864E-04 0.8896097060 0.1114183327E-04 0.8919567364 0.1112577139E-04 0.8943037668 0.1110974583E-04 0.8966507972 0.1109374999E-04 0.8989978276 0.1107777792E-04 0.9013448580 0.1106182426E-04 0.9036918884 0.1104588431E-04 0.9060389188 0.1102995401E-04 0.9083859492 0.1101402998E-04 0.9107329796 0.1099810949E-04 0.9130800099 0.1098219048E-04 0.9154270403 0.1096627154E-04 0.9177740707 0.1095035193E-04 0.9201211011 0.1093443154E-04 0.9224681315 0.1091851090E-04 0.9248151619 0.1090259116E-04 0.9271621923 0.1088667405E-04 0.9295092227 0.1087076191E-04 0.9318562531 0.1085485762E-04 0.9342032835 0.1083896459E-04 0.9365503139 0.1082308673E-04 0.9388973443 0.1080722847E-04 0.9412443747 0.1079139466E-04 0.9435914050 0.1077559059E-04 0.9459384354 0.1075982193E-04 0.9482854658 0.1074409473E-04 0.9506324962 0.1072841539E-04 0.9529795266 0.1071279059E-04 0.9553265570 0.1069722730E-04 0.9576735874 0.1068173273E-04 0.9600206178 0.1066631431E-04 0.9623676482 0.1065097966E-04 0.9647146786 0.1063573656E-04 0.9670617090 0.1062059290E-04 0.9694087394 0.1060555670E-04 0.9717557698 0.1059063605E-04 0.9741028002 0.1057583909E-04 0.9764498305 0.1056117399E-04 0.9787968609 0.1054664892E-04 0.9811438913 0.1053227206E-04 0.9834909217 0.1051805152E-04 0.9858379521 0.1050399539E-04 0.9881849825 0.1049011166E-04 0.9905320129 0.1047640825E-04 0.9928790433 0.1046289296E-04 0.9952260737 0.1044957349E-04 0.9975731041 0.1043645739E-04 0.9999201345 0.1042355209E-04 1.002267165 0.1041086486E-04 1.004614195 0.1039840279E-04 1.006961226 0.1038617283E-04 1.009308256 0.1037418173E-04 1.011655286 0.1036243606E-04 1.014002317 0.1035094221E-04 1.016349347 0.1033970639E-04 1.018696378 0.1032873457E-04 1.021043408 0.1031803258E-04 1.023390438 0.1030760601E-04 1.025737469 0.1029746025E-04 1.028084499 0.1028760052E-04 1.030431530 0.1027803181E-04 1.032778560 0.1026875892E-04 1.035125590 0.1025978644E-04 1.037472621 0.1025111880E-04 1.039819651 0.1024276018E-04 1.042166682 0.1023471462E-04 1.044513712 0.1022698593E-04 1.046860742 0.1021957776E-04 1.049207773 0.1021249355E-04 1.051554803 0.1020573659E-04 1.053901834 0.1019930998E-04 1.056248864 0.1019321662E-04 1.058595894 0.1018745929E-04 1.060942925 0.1018204056E-04 1.063289955 0.1017696285E-04 1.065636985 0.1017222842E-04 1.067984016 0.1016783939E-04 1.070331046 0.1016379768E-04 1.072678077 0.1016010512E-04 1.075025107 0.1015676333E-04 1.077372137 0.1015377382E-04 1.079719168 0.1015113795E-04 1.082066198 0.1014885694E-04 1.084413229 0.1014693185E-04 1.086760259 0.1014536363E-04 1.089107289 0.1014415306E-04 1.091454320 0.1014330081E-04 1.093801350 0.1014280740E-04 1.096152861 0.1014150214E-04 1.098504372 0.1013720881E-04 1.100855883 0.1012993508E-04 1.103207394 0.1011969381E-04 1.105558905 0.1010650300E-04 1.107910415 0.1009038577E-04 1.110261926 0.1007137028E-04 1.112613437 0.1004948963E-04 1.114964948 0.1002478178E-04 1.117316459 0.9997289427E-05 1.119667970 0.9967059879E-05 1.122019481 0.9934144922E-05 1.124370992 0.9898600665E-05 1.126722503 0.9860487378E-05 1.129074013 0.9819869320E-05 1.131425524 0.9776814558E-05 1.133777035 0.9731394772E-05 1.136128546 0.9683685058E-05 1.138480057 0.9633763719E-05 1.140831568 0.9581712057E-05 1.143183079 0.9527614149E-05 1.145534590 0.9471556632E-05 1.147886101 0.9413628471E-05 1.150237611 0.9353920738E-05 1.152589122 0.9292526381E-05 1.154940633 0.9229539999E-05 1.157292144 0.9165057614E-05 1.159643655 0.9099176449E-05 1.161995166 0.9031994707E-05 1.164346677 0.8963611358E-05 1.166698188 0.8894125930E-05 1.169049699 0.8823638311E-05 1.171401209 0.8752248554E-05 1.173752720 0.8680056701E-05 1.176104231 0.8607162615E-05 1.178455742 0.8533665827E-05 1.180807253 0.8459665407E-05 1.183158764 0.8385259848E-05 1.185510275 0.8310546981E-05 1.187861786 0.8235623917E-05 1.190213296 0.8160587031E-05 1.192564807 0.8085531987E-05 1.194916318 0.8010553825E-05 1.197267829 0.7935747117E-05 1.199619340 0.7861206231E-05 1.201970851 0.7787025717E-05 1.204322362 0.7713300876E-05 1.206673873 0.7640128579E-05 1.209025384 0.7567608446E-05 1.211376894 0.7495844541E-05 1.213728405 0.7424947869E-05 1.216079916 0.7355040067E-05 1.218431427 0.7286259046E-05 1.220782938 0.7218767797E-05 1.223134449 0.7152768616E-05 1.225485960 0.7088526964E-05 1.227837471 0.7026413275E-05 1.230188982 0.6966980047E-05 1.232540492 0.6911112406E-05 1.234892003 0.6860341097E-05 1.237243514 0.6817531296E-05 1.239595025 0.6788420577E-05 1.241946536 0.6784499624E-05 1.244298047 0.6823958087E-05 1.246649558 0.6918198714E-05 1.249001069 0.7056510433E-05 1.251352580 0.7220785769E-05 1.253704090 0.7399191448E-05 1.256055601 0.7585419028E-05 1.258407112 0.7775833792E-05 1.260758623 0.7967900444E-05 1.263110134 0.8159428108E-05 1.265461645 0.8348166793E-05 1.267813156 0.8531542311E-05 1.270164667 0.8706446084E-05 1.272516177 0.8869062962E-05 1.274867688 0.9014773318E-05 1.277219199 0.9138224832E-05 1.279570710 0.9233718499E-05 1.281922221 0.9296021433E-05 1.284273732 0.9321508188E-05 1.286625243 0.9309186316E-05 1.288976754 0.9261019546E-05 1.291328265 0.9181333091E-05 1.293679775 0.9075679857E-05 1.296031286 0.8949760285E-05 1.298382797 0.8808736474E-05 1.300734308 0.8656951315E-05 1.303085819 0.8497911326E-05 1.305437330 0.8334393293E-05 1.307788841 0.8168587192E-05 1.310140352 0.8002234010E-05 1.312491863 0.7836744404E-05 1.314843373 0.7673297182E-05 1.317194884 0.7512921791E-05 1.319546395 0.7356570538E-05 1.321897906 0.7205186373E-05 1.324249417 0.7059771371E-05 1.326600928 0.6921459203E-05 1.328952439 0.6791590144E-05 1.331303950 0.6671776299E-05 1.333655461 0.6563923886E-05 1.336006971 0.6470151156E-05 1.338358482 0.6392530882E-05 1.340709993 0.6332653114E-05 1.343061504 0.6291170111E-05 1.345413015 0.6267607213E-05 1.347764526 0.6260584828E-05 1.350116037 0.6268291510E-05 1.352467548 0.6288924906E-05 1.354819059 0.6320948502E-05 1.357170569 0.6363175620E-05 1.359522080 0.6414753744E-05 1.361873591 0.6475110409E-05 1.364225102 0.6543893723E-05 1.366576613 0.6620920494E-05 1.368928124 0.6706134925E-05 1.371279635 0.6799576878E-05 1.373631146 0.6901357744E-05 1.375982656 0.7011641944E-05 1.378334167 0.7130632547E-05 1.380685678 0.7258559876E-05 1.383037189 0.7395672305E-05 1.385388700 0.7542228745E-05 1.387740211 0.7698492462E-05 1.390091722 0.7864726022E-05 1.392443233 0.8041187215E-05 1.394794744 0.8228125858E-05 1.397146254 0.8425781420E-05 1.399497765 0.8634381370E-05 1.401849276 0.8854140199E-05 1.404200787 0.9085259025E-05 1.406552298 0.9327925684E-05 1.408903809 0.9582315229E-05 1.411255320 0.9848590727E-05 1.413606831 0.1012690427E-04 1.415958342 0.1041739812E-04 1.418309852 0.1072020587E-04 1.420661363 0.1103545357E-04 1.423012874 0.1136326084E-04 1.425364385 0.1170374172E-04 1.427715896 0.1205700541E-04 1.430067407 0.1242315675E-04 1.432418918 0.1280229638E-04 1.434770429 0.1319452067E-04 1.437121940 0.1359992117E-04 1.439473450 0.1401858368E-04 1.441824961 0.1445058684E-04 1.444176472 0.1489600010E-04 1.446527983 0.1535488092E-04 1.448879494 0.1582727121E-04 1.451231005 0.1631319265E-04 1.453582516 0.1681264069E-04 1.455934027 0.1732557690E-04 1.458285537 0.1785191926E-04 1.460637048 0.1839152976E-04 1.462988559 0.1894419864E-04 1.465340070 0.1950962428E-04 1.467691581 0.2008738740E-04 1.470043092 0.2067691805E-04 1.472394603 0.2127745329E-04 1.474746114 0.2188798276E-04 1.477097625 0.2250717929E-04 1.479449135 0.2313331060E-04 1.481800646 0.2376412881E-04 1.484152157 0.2439673552E-04 1.486503668 0.2502742384E-04 1.488855179 0.2565150739E-04 1.491206690 0.2626316211E-04 1.493558201 0.2685533259E-04 1.495909712 0.2741978796E-04 1.498261223 0.2794743813E-04 1.500612733 0.2842900470E-04 1.502964244 0.2885603745E-04 1.505315755 0.2922207595E-04 1.507667266 0.2952357982E-04 1.510018777 0.2976026294E-04 1.512370288 0.2993472291E-04 1.514721799 0.3005158091E-04 1.517073310 0.3011649810E-04 1.519424821 0.3013535775E-04 1.521776331 0.3011372926E-04 1.524127842 0.3005659395E-04 1.526479353 0.2996825633E-04 1.528830864 0.2985236325E-04 1.531182375 0.2971197441E-04 1.533533886 0.2954964969E-04 1.535885397 0.2936753518E-04 1.538236908 0.2916743991E-04 1.540588418 0.2895090088E-04 1.542939929 0.2871923639E-04 1.545291440 0.2847358923E-04 1.547642951 0.2871622390E-04 1.549994462 0.3019161410E-04 1.552345973 0.3173000189E-04 1.554697484 0.3333284330E-04 1.557048995 0.3500165094E-04 1.559400506 0.3673798940E-04 1.561752016 0.3854347104E-04 1.564103527 0.4041975203E-04 1.566455038 0.4236852871E-04 1.568806549 0.4439153409E-04 1.571158060 0.4649053457E-04 1.573509571 0.4866732670E-04 1.575861082 0.5092373408E-04 1.578212593 0.5326160426E-04 1.580564104 0.5568280566E-04 1.582915614 0.5818922446E-04 1.585267125 0.6078276152E-04 1.587618636 0.6346532921E-04 1.589970147 0.6623884814E-04 1.592321658 0.6910524389E-04 1.594673169 0.7206644362E-04 1.597024680 0.7512437258E-04 1.599376191 0.7828095051E-04 1.601727702 0.8153808798E-04 1.604079212 0.8489768258E-04 1.606430723 0.8836161502E-04 1.608782234 0.9193174508E-04 1.611133745 0.9560990751E-04 1.613485256 0.9939790779E-04 1.615836767 0.1032975177E-03 1.618188278 0.1073104710E-03 1.620539789 0.1114384585E-03 1.622891299 0.1156831240E-03 1.625242810 0.1200460589E-03 1.627594321 0.1245287976E-03 1.629945832 0.1291328126E-03 1.632297343 0.1338595094E-03 1.634648854 0.1387102212E-03 1.637000365 0.1436862041E-03 1.639351876 0.1487886317E-03 1.641703387 0.1540185896E-03 1.644054897 0.1593770706E-03 1.646406408 0.1648649687E-03 1.648757919 0.1704830744E-03 1.651109430 0.1762320690E-03 1.653460941 0.1821125192E-03 1.655812452 0.1881248721E-03 1.658163963 0.1942694495E-03 1.660515474 0.2005464430E-03 1.662866985 0.2069559087E-03 1.665218495 0.2134977621E-03 1.667570006 0.2201717730E-03 1.669921517 0.2269775608E-03 1.672273028 0.2339145895E-03 1.674624539 0.2409821632E-03 1.676976050 0.2481794218E-03 1.679327561 0.2555053360E-03 1.681679072 0.2629587039E-03 1.684030583 0.2705381467E-03 1.686382093 0.2782421049E-03 1.688733604 0.2860688352E-03 1.691085115 0.2940164066E-03 1.693436626 0.3020826979E-03 1.695788137 0.3102653949E-03 1.698139648 0.3185619878E-03 1.700491159 0.3269697691E-03 1.702842670 0.3354858318E-03 1.705194180 0.3441070682E-03 1.707545691 0.3528301682E-03 1.709897202 0.3616516188E-03 1.712248713 0.3705677039E-03 1.714600224 0.3795745038E-03 1.716951735 0.3886678959E-03 1.719303246 0.3978435551E-03 1.721654757 0.4070969554E-03 1.724006268 0.4164233708E-03 1.726357778 0.4258178779E-03 1.728709289 0.4352753581E-03 1.731060800 0.4447905002E-03 1.733412311 0.4543578039E-03 1.735763822 0.4639715833E-03 1.738115333 0.4736259713E-03 1.740466844 0.4833149240E-03 1.742818355 0.4930322256E-03 1.745169866 0.5027714942E-03 1.747521376 0.5125261872E-03 1.749872887 0.5222896079E-03 1.752224398 0.5320549124E-03 1.754575909 0.5418151164E-03 1.756927420 0.5515631026E-03 1.759278931 0.5612916294E-03 1.761630442 0.5709933385E-03 1.763981953 0.5806607638E-03 1.766333464 0.5902863408E-03 1.768684974 0.5998624156E-03 1.771036485 0.6093812548E-03 1.773387996 0.6188350559E-03 1.775739507 0.6282159572E-03 1.778091018 0.6375160486E-03 1.780442529 0.6467273828E-03 1.782794040 0.6558419862E-03 1.785145551 0.6648518703E-03 1.787497061 0.6737490434E-03 1.789848572 0.6825255223E-03 1.792200083 0.6911733443E-03 1.794551594 0.6996845791E-03 1.796903105 0.7080513410E-03 1.799254616 0.7162658012E-03 1.801606127 0.7243202000E-03 1.803957638 0.7322068590E-03 1.806309149 0.7399181937E-03 1.808660659 0.7474467253E-03 1.811012170 0.7547850934E-03 1.813363681 0.7619260677E-03 1.815715192 0.7688625602E-03 1.818066703 0.7755876369E-03 1.820418214 0.7820945296E-03 1.822769725 0.7883766477E-03 1.825121236 0.7944275886E-03 1.827472747 0.8002411496E-03 1.829824257 0.8058113380E-03 1.832175768 0.8111323821E-03 1.834527279 0.8161987407E-03 1.836878790 0.8210051132E-03 1.839230301 0.8255464487E-03 1.841581812 0.8298179554E-03 1.843933323 0.8338151087E-03 1.846284834 0.8375336593E-03 1.848636345 0.8409696412E-03 1.850987855 0.8441193784E-03 1.853339366 0.8469794919E-03 1.855690877 0.8495469055E-03 1.858042388 0.8518188516E-03 1.860393899 0.8537928761E-03 1.862745410 0.8554668430E-03 1.865096921 0.8568389382E-03 1.867448432 0.8579076727E-03 1.869799942 0.8586718857E-03 1.872151453 0.8591307463E-03 1.874502964 0.8592837553E-03 1.876849995 0.8591794219E-03 1.879197025 0.8588665400E-03 1.881544055 0.8583454635E-03 1.883891086 0.8576167820E-03 1.886238116 0.8566813193E-03 1.888585147 0.8555401318E-03 1.890932177 0.8541945068E-03 1.893279207 0.8526459601E-03 1.895626238 0.8508962329E-03 1.897973268 0.8489472890E-03 1.900320299 0.8468013109E-03 1.902667329 0.8444606960E-03 1.905014359 0.8419280522E-03 1.907361390 0.8392061931E-03 1.909708420 0.8362981326E-03 1.912055451 0.8332070801E-03 1.914402481 0.8299364343E-03 1.916749511 0.8264897772E-03 1.919096542 0.8228708674E-03 1.921443572 0.8190836342E-03 1.923790603 0.8151321697E-03 1.926137633 0.8110207225E-03 1.928484663 0.8067536896E-03 1.930831694 0.8023356092E-03 1.933178724 0.7977711525E-03 1.935525754 0.7930651162E-03 1.937872785 0.7882224139E-03 1.940219815 0.7832480682E-03 1.942566846 0.7781472017E-03 1.944913876 0.7729250295E-03 1.947260906 0.7675868497E-03 1.949607937 0.7621380352E-03 1.951954967 0.7565840252E-03 1.954301998 0.7509303163E-03 1.956649028 0.7451824539E-03 1.958996058 0.7393460239E-03 1.961343089 0.7334266437E-03 1.963690119 0.7274299539E-03 1.966037150 0.7213616101E-03 1.968384180 0.7152272742E-03 1.970731210 0.7090326068E-03 1.973078241 0.7027832585E-03 1.975425271 0.6964848626E-03 1.977772302 0.6901430271E-03 1.980119332 0.6837633270E-03 1.982466362 0.6773512978E-03 1.984813393 0.6709124273E-03 1.987160423 0.6644521497E-03 1.989507454 0.6579758384E-03 1.991854484 0.6514887997E-03 1.994201514 0.6449962670E-03 1.996548545 0.6385033948E-03 1.998895575 0.6320152529E-03 2.001242605 0.6255368214E-03 2.003589636 0.6190729858E-03 2.005936666 0.6126285321E-03 2.008283697 0.6062081424E-03 2.010630727 0.5998163911E-03 2.012977757 0.5934577410E-03 2.015324788 0.5871365396E-03 2.017671818 0.5808570164E-03 2.020018849 0.5746232799E-03 2.022365879 0.5684393147E-03 2.024712909 0.5623089800E-03 2.027059940 0.5562360072E-03 2.029406970 0.5502239982E-03 2.031754001 0.5442764244E-03 2.034101031 0.5383966256E-03 2.036448061 0.5325878090E-03 2.038795092 0.5268530490E-03 2.041142122 0.5211952869E-03 2.043489153 0.5156173308E-03 2.045836183 0.5101218561E-03 2.048183213 0.5047114059E-03 2.050530244 0.4993883917E-03 2.052877274 0.4941550945E-03 2.055224304 0.4890136660E-03 2.057571335 0.4839661297E-03 2.059918365 0.4790143828E-03 2.062265396 0.4741601976E-03 2.064612426 0.4694052236E-03 2.066959456 0.4647509894E-03 2.069306487 0.4601989049E-03 2.071653517 0.4557502634E-03 2.074000548 0.4514062442E-03 2.076347578 0.4471679149E-03 2.078694608 0.4430362339E-03 2.081041639 0.4390120533E-03 2.083388669 0.4350961211E-03 2.085735700 0.4312890842E-03 2.088082730 0.4275914909E-03 2.090429760 0.4240037939E-03 2.092776791 0.4205263530E-03 2.095123821 0.4171594376E-03 2.097470852 0.4139032294E-03 2.099817882 0.4107578256E-03 2.102164912 0.4077232410E-03 2.104511943 0.4047994108E-03 2.106858973 0.4019861933E-03 2.109206004 0.3992833721E-03 2.111553034 0.3966906588E-03 2.113900064 0.3942076952E-03 2.116247095 0.3918340556E-03 2.118594125 0.3895692490E-03 2.120941155 0.3874127212E-03 2.123288186 0.3853638568E-03 2.125635216 0.3834219808E-03 2.127982247 0.3815863611E-03 2.130329277 0.3798562092E-03 2.132676307 0.3782306828E-03 2.135023338 0.3767088866E-03 2.137370368 0.3752898738E-03 2.139717399 0.3739726476E-03 2.142064429 0.3727561621E-03 2.144411459 0.3716393234E-03 2.146758490 0.3706209909E-03 2.149105520 0.3696999777E-03 2.151452551 0.3688750517E-03 2.153799581 0.3681449361E-03 2.156146611 0.3675083101E-03 2.158493642 0.3669638097E-03 2.160840672 0.3665100277E-03 2.163187703 0.3661455142E-03 2.165534733 0.3658687774E-03 2.167881763 0.3656782835E-03 2.170228794 0.3655724568E-03 2.172575824 0.3655496803E-03 2.174922855 0.3656082960E-03 2.177269885 0.3657466044E-03 2.179616915 0.3659628655E-03 2.181963946 0.3662552982E-03 2.184310976 0.3666220811E-03 2.186658006 0.3670613524E-03 2.189005037 0.3675712100E-03 2.191352067 0.3681497120E-03 2.193699098 0.3687948767E-03 2.196046128 0.3695046830E-03 2.198393158 0.3702770712E-03 2.200740189 0.3711099427E-03 2.203087219 0.3720011609E-03 2.205434250 0.3729485520E-03 2.207781280 0.3739499053E-03 2.210128310 0.3750029739E-03 2.212475341 0.3761054759E-03 2.214822371 0.3772550952E-03 2.217169402 0.3784494824E-03 2.219516432 0.3796862561E-03 2.221863462 0.3809630040E-03 2.224210493 0.3822772847E-03 2.226557523 0.3836266287E-03 2.228904554 0.3850085404E-03 2.231251584 0.3864204995E-03 2.233598614 0.3878599631E-03 2.235945645 0.3893243679E-03 2.238292675 0.3908111316E-03 2.240639706 0.3923176561E-03 2.242986736 0.3938413288E-03 2.245333766 0.3953795261E-03 2.247680797 0.3969296152E-03 2.250027827 0.3984889573E-03 2.252374857 0.4000549100E-03 2.254721888 0.4016248307E-03 2.257068918 0.4031960789E-03 2.259415949 0.4047660203E-03 2.261762979 0.4063320289E-03 2.264110009 0.4078914910E-03 2.266457040 0.4094418086E-03 2.268804070 0.4109804020E-03 2.271151101 0.4125047142E-03 2.273498131 0.4140122140E-03 2.275845161 0.4155003994E-03 2.278192192 0.4169668015E-03 2.280539222 0.4184089878E-03 2.282886253 0.4198245663E-03 2.285233283 0.4212111885E-03 2.287580313 0.4225665534E-03 2.289927344 0.4238884113E-03 2.292274374 0.4251745666E-03 2.294621405 0.4264228823E-03 2.296968435 0.4276312828E-03 2.299315465 0.4287977575E-03 2.301662496 0.4299203643E-03 2.304009526 0.4309972328E-03 2.306356557 0.4320265674E-03 2.308703587 0.4330066504E-03 2.311050617 0.4339358453E-03 2.313397648 0.4348125992E-03 2.315744678 0.4356354459E-03 2.318091708 0.4364030082E-03 2.320438739 0.4371140008E-03 2.322785769 0.4377672322E-03 2.325132800 0.4383616070E-03 2.327479830 0.4388961281E-03 2.329826860 0.4393698982E-03 2.332173891 0.4397821216E-03 2.334520921 0.4401321058E-03 2.336867952 0.4404192626E-03 2.339214982 0.4406431091E-03 2.341562012 0.4408032690E-03 2.343909043 0.4408994728E-03 2.346256073 0.4409315587E-03 0.000000000 0.8592837555E-03 0.2347351854E-02 0.8591346080E-03 0.4694703708E-02 0.8586873050E-03 0.7042055561E-02 0.8579422646E-03 0.9389407415E-02 0.8569001828E-03 0.1173675927E-01 0.8555620328E-03 0.1408411112E-01 0.8539290635E-03 0.1643146298E-01 0.8520027980E-03 0.1877881483E-01 0.8497850311E-03 0.2112616668E-01 0.8472778272E-03 0.2347351854E-01 0.8444835173E-03 0.2582087039E-01 0.8414046958E-03 0.2816822225E-01 0.8380442169E-03 0.3051557410E-01 0.8344051910E-03 0.3286292595E-01 0.8304909798E-03 0.3521027781E-01 0.8263051924E-03 0.3755762966E-01 0.8218516799E-03 0.3990498151E-01 0.8171345305E-03 0.4225233337E-01 0.8121580634E-03 0.4459968522E-01 0.8069268235E-03 0.4694703708E-01 0.8014455751E-03 0.4929438893E-01 0.7957192950E-03 0.5164174078E-01 0.7897531666E-03 0.5398909264E-01 0.7835525720E-03 0.5633644449E-01 0.7771230855E-03 0.5868379634E-01 0.7704704658E-03 0.6103114820E-01 0.7636006481E-03 0.6337850005E-01 0.7565197368E-03 0.6572585191E-01 0.7492339967E-03 0.6807320376E-01 0.7417498452E-03 0.7042055561E-01 0.7340738434E-03 0.7276790747E-01 0.7262126881E-03 0.7511525932E-01 0.7181732022E-03 0.7746261117E-01 0.7099623264E-03 0.7980996303E-01 0.7015871102E-03 0.8215731488E-01 0.6930547021E-03 0.8450466674E-01 0.6843723412E-03 0.8685201859E-01 0.6755473476E-03 0.8919937044E-01 0.6665871127E-03 0.9154672230E-01 0.6574990905E-03 0.9389407415E-01 0.6482907877E-03 0.9624142601E-01 0.6389697544E-03 0.9858877786E-01 0.6295435746E-03 0.1009361297 0.6200198572E-03 0.1032834816 0.6104062260E-03 0.1056308334 0.6007103109E-03 0.1079781853 0.5909397384E-03 0.1103255371 0.5811021226E-03 0.1126728890 0.5712050558E-03 0.1150202408 0.5612560997E-03 0.1173675927 0.5512627768E-03 0.1197149445 0.5412325611E-03 0.1220622964 0.5311728700E-03 0.1244096483 0.5210910556E-03 0.1267570001 0.5109943965E-03 0.1291043520 0.5008900897E-03 0.1314517038 0.4907852428E-03 0.1337990557 0.4806868661E-03 0.1361464075 0.4706018656E-03 0.1384937594 0.4605370351E-03 0.1408411112 0.4504990497E-03 0.1431884631 0.4404944587E-03 0.1455358149 0.4305296794E-03 0.1478831668 0.4206109906E-03 0.1502305186 0.4107445269E-03 0.1525778705 0.4009362725E-03 0.1549252223 0.3911920563E-03 0.1572725742 0.3815175466E-03 0.1596199261 0.3719182462E-03 0.1619672779 0.3623994877E-03 0.1643146298 0.3529664299E-03 0.1666619816 0.3436240531E-03 0.1690093335 0.3343771561E-03 0.1713566853 0.3252303526E-03 0.1737040372 0.3161880684E-03 0.1760513890 0.3072545387E-03 0.1783987409 0.2984338055E-03 0.1807460927 0.2897297164E-03 0.1830934446 0.2811459219E-03 0.1854407964 0.2726858748E-03 0.1877881483 0.2643528290E-03 0.1901355002 0.2561498385E-03 0.1924828520 0.2480797573E-03 0.1948302039 0.2401452394E-03 0.1971775557 0.2323487387E-03 0.1995249076 0.2246925098E-03 0.2018722594 0.2171786087E-03 0.2042196113 0.2098088944E-03 0.2065669631 0.2025850295E-03 0.2089143150 0.1955084830E-03 0.2112616668 0.1885805313E-03 0.2136090187 0.1818022614E-03 0.2159563705 0.1751745729E-03 0.2183037224 0.1686981814E-03 0.2206510743 0.1623736210E-03 0.2229984261 0.1562012484E-03 0.2253457780 0.1501812462E-03 0.2276931298 0.1443136270E-03 0.2300404817 0.1385982375E-03 0.2323878335 0.1330347630E-03 0.2347351854 0.1276227326E-03 0.2370825372 0.1223615234E-03 0.2394298891 0.1172503669E-03 0.2417772409 0.1122883537E-03 0.2441245928 0.1074744403E-03 0.2464719446 0.1028074551E-03 0.2488192965 0.9828610544E-04 0.2511666484 0.9390898534E-04 0.2535140002 0.8967458335E-04 0.2558613521 0.8558129185E-04 0.2582087039 0.8162741729E-04 0.2605560558 0.7781119198E-04 0.2629034076 0.7413078802E-04 0.2652507595 0.7058433416E-04 0.2675981113 0.6716993679E-04 0.2699454632 0.6388570702E-04 0.2722928150 0.6072979668E-04 0.2746401669 0.5770044790E-04 0.2769875187 0.5479606389E-04 0.2793348706 0.5201531343E-04 0.2816822225 0.4935729088E-04 0.2840295743 0.4682177024E-04 0.2863769262 0.4440962354E-04 0.2887242780 0.4212353496E-04 0.2910716299 0.3996925894E-04 0.2934189817 0.3795787589E-04 0.2957663336 0.3610974655E-04 0.2981136854 0.3446050379E-04 0.3004610373 0.3306535750E-04 0.3028083891 0.3198515748E-04 0.3051557410 0.3123789264E-04 0.3075030928 0.3076570619E-04 0.3098504447 0.3047619473E-04 0.3121977966 0.3029382626E-04 0.3145451484 0.3017099942E-04 0.3168925003 0.3007998579E-04 0.3192398521 0.3000461332E-04 0.3215872040 0.2993516263E-04 0.3239345558 0.2986557399E-04 0.3262819077 0.2979193594E-04 0.3286292595 0.2971164853E-04 0.3309766114 0.2962294418E-04 0.3333239632 0.2952460338E-04 0.3356713151 0.2941577997E-04 0.3380186669 0.2929589050E-04 0.3403660188 0.2916454180E-04 0.3427133707 0.2902148255E-04 0.3450607225 0.2886656992E-04 0.3474080744 0.2869974607E-04 0.3497554262 0.2852102138E-04 0.3521027781 0.2833046201E-04 0.3544501299 0.2812818068E-04 0.3567974818 0.2791432962E-04 0.3591448336 0.2768909510E-04 0.3614921855 0.2745269303E-04 0.3638395373 0.2720536551E-04 0.3661868892 0.2694737788E-04 0.3685342410 0.2667901632E-04 0.3708815929 0.2640058577E-04 0.3732289448 0.2611240809E-04 0.3755762966 0.2581482048E-04 0.3779236485 0.2550817401E-04 0.3802710003 0.2519283230E-04 0.3826183522 0.2486917029E-04 0.3849657040 0.2453757311E-04 0.3873130559 0.2419843496E-04 0.3896604077 0.2385215808E-04 0.3920077596 0.2349915177E-04 0.3943551114 0.2313983140E-04 0.3967024633 0.2277461753E-04 0.3990498151 0.2240393493E-04 0.4013971670 0.2202821175E-04 0.4037445189 0.2164787865E-04 0.4060918707 0.2126336794E-04 0.4084392226 0.2087511276E-04 0.4107865744 0.2048354632E-04 0.4131339263 0.2008910103E-04 0.4154812781 0.1969220783E-04 0.4178286300 0.1929329537E-04 0.4201759818 0.1935978221E-04 0.4225233337 0.1960265962E-04 0.4248706855 0.1984602245E-04 0.4272180374 0.2008979523E-04 0.4295653892 0.2033390151E-04 0.4319127411 0.2057826387E-04 0.4342600929 0.2082280392E-04 0.4366074448 0.2106744232E-04 0.4389547967 0.2131209885E-04 0.4413021485 0.2155669236E-04 0.4436495004 0.2180114089E-04 0.4459968522 0.2204536161E-04 0.4483442041 0.2228927094E-04 0.4506915559 0.2253278453E-04 0.4530389078 0.2277581733E-04 0.4553862596 0.2301828364E-04 0.4577336115 0.2326009709E-04 0.4600809633 0.2350117079E-04 0.4624283152 0.2374141727E-04 0.4647756670 0.2398074861E-04 0.4671230189 0.2421907644E-04 0.4694703708 0.2445631201E-04 0.4718177226 0.2469236625E-04 0.4741650745 0.2492714979E-04 0.4765124263 0.2516057305E-04 0.4788597782 0.2539254628E-04 0.4812071300 0.2562297960E-04 0.4835544819 0.2585178308E-04 0.4859018337 0.2607886680E-04 0.4882491856 0.2630414087E-04 0.4905965374 0.2652751552E-04 0.4929438893 0.2674890114E-04 0.4952912411 0.2696820837E-04 0.4976385930 0.2718534811E-04 0.4999859449 0.2740023162E-04 0.5023332967 0.2761277056E-04 0.5046806486 0.2782287703E-04 0.5070280004 0.2803046369E-04 0.5093753523 0.2823544375E-04 0.5117227041 0.2843773106E-04 0.5140700560 0.2863724019E-04 0.5164174078 0.2883388644E-04 0.5187647597 0.2902758594E-04 0.5211121115 0.2921825568E-04 0.5234594634 0.2940581358E-04 0.5258068152 0.2959017858E-04 0.5281541671 0.2977127061E-04 0.5305015190 0.2994901073E-04 0.5328488708 0.3012332117E-04 0.5351962227 0.3029412533E-04 0.5375435745 0.3046134790E-04 0.5398909264 0.3062491489E-04 0.5422382782 0.3078475367E-04 0.5445856301 0.3094079302E-04 0.5469329819 0.3109296323E-04 0.5492803338 0.3124119607E-04 0.5516276856 0.3138542490E-04 0.5539750375 0.3152558469E-04 0.5563223893 0.3166161209E-04 0.5586697412 0.3179344545E-04 0.5610170931 0.3192102486E-04 0.5633644449 0.3204429222E-04 0.5657117968 0.3216319127E-04 0.5680591486 0.3227766762E-04 0.5704065005 0.3238766880E-04 0.5727538523 0.3249314429E-04 0.5751012042 0.3259404557E-04 0.5774485560 0.3269032613E-04 0.5797959079 0.3278194152E-04 0.5821432597 0.3286884939E-04 0.5844906116 0.3295100949E-04 0.5868379634 0.3302838373E-04 0.5891853153 0.3310093619E-04 0.5915326672 0.3316863315E-04 0.5938800190 0.3323144311E-04 0.5962273709 0.3328933681E-04 0.5985747227 0.3334228727E-04 0.6009220746 0.3339026978E-04 0.6032694264 0.3343326192E-04 0.6056167783 0.3347124363E-04 0.6079641301 0.3350419713E-04 0.6103114820 0.3353210701E-04 0.6126588338 0.3355496021E-04 0.6150061857 0.3357274604E-04 0.6173535375 0.3358545615E-04 0.6197008894 0.3359308460E-04 0.6220482413 0.3359562781E-04 0.6243952716 0.3358919914E-04 0.6267423020 0.3356912950E-04 0.6290893324 0.3353544346E-04 0.6314363628 0.3348818221E-04 0.6337833932 0.3342740353E-04 0.6361304236 0.3335318162E-04 0.6384774540 0.3326560700E-04 0.6408244844 0.3316478633E-04 0.6431715148 0.3305084218E-04 0.6455185452 0.3292391281E-04 0.6478655756 0.3278415189E-04 0.6502126060 0.3263172823E-04 0.6525596364 0.3246682542E-04 0.6549066668 0.3228964150E-04 0.6572536971 0.3210038857E-04 0.6596007275 0.3189929239E-04 0.6619477579 0.3168659197E-04 0.6642947883 0.3146253904E-04 0.6666418187 0.3122739769E-04 0.6689888491 0.3098144376E-04 0.6713358795 0.3072496440E-04 0.6736829099 0.3045825749E-04 0.6760299403 0.3018163111E-04 0.6783769707 0.2989540293E-04 0.6807240011 0.2959989970E-04 0.6830710315 0.2929545655E-04 0.6854180619 0.2898241647E-04 0.6877650922 0.2866112963E-04 0.6901121226 0.2833195278E-04 0.6924591530 0.2799524859E-04 0.6948061834 0.2765138503E-04 0.6971532138 0.2730073471E-04 0.6995002442 0.2694367422E-04 0.7018472746 0.2658058348E-04 0.7041943050 0.2621184511E-04 0.7065413354 0.2583784374E-04 0.7088883658 0.2545896541E-04 0.7112353962 0.2507559688E-04 0.7135824266 0.2468812503E-04 0.7159294570 0.2429693620E-04 0.7182764874 0.2390241560E-04 0.7206235177 0.2350494666E-04 0.7229705481 0.2310491048E-04 0.7253175785 0.2270268520E-04 0.7276646089 0.2229864545E-04 0.7300116393 0.2189316179E-04 0.7323586697 0.2148660014E-04 0.7347057001 0.2107932132E-04 0.7370527305 0.2067168048E-04 0.7393997609 0.2026402664E-04 0.7417467913 0.1985670223E-04 0.7440938217 0.1945004262E-04 0.7464408521 0.1935564944E-04 0.7487878825 0.1940817595E-04 0.7511349128 0.1946188846E-04 0.7534819432 0.1951679866E-04 0.7558289736 0.1957291812E-04 0.7581760040 0.1963025831E-04 0.7605230344 0.1968883054E-04 0.7628700648 0.1974864599E-04 0.7652170952 0.1980971564E-04 0.7675641256 0.1987205027E-04 0.7699111560 0.1993566043E-04 0.7722581864 0.2000055643E-04 0.7746052168 0.2006674830E-04 0.7769522472 0.2013424578E-04 0.7792992776 0.2020305828E-04 0.7816463080 0.2027319488E-04 0.7839933383 0.2034466427E-04 0.7863403687 0.2041747476E-04 0.7886873991 0.2049163424E-04 0.7910344295 0.2056715014E-04 0.7933814599 0.2064402943E-04 0.7957284903 0.2072227857E-04 0.7980755207 0.2080190351E-04 0.8004225511 0.2088290963E-04 0.8027695815 0.2096530175E-04 0.8051166119 0.2104908405E-04 0.8074636423 0.2113426011E-04 0.8098106727 0.2122083284E-04 0.8121577031 0.2130880445E-04 0.8145047335 0.2139817644E-04 0.8168517638 0.2148894957E-04 0.8191987942 0.2158112383E-04 0.8215458246 0.2167469840E-04 0.8238928550 0.2176967164E-04 0.8262398854 0.2186604107E-04 0.8285869158 0.2196380331E-04 0.8309339462 0.2206295408E-04 0.8332809766 0.2216348819E-04 0.8356280070 0.2226539946E-04 0.8379750374 0.2236868074E-04 0.8403220678 0.2247332388E-04 0.8426690982 0.2257931970E-04 0.8450161286 0.2268665794E-04 0.8473631589 0.2279532729E-04 0.8497101893 0.2290531532E-04 0.8520572197 0.2301660848E-04 0.8544042501 0.2312919210E-04 0.8567512805 0.2324305031E-04 0.8590983109 0.2335816608E-04 0.8614453413 0.2347452118E-04 0.8637923717 0.2359209616E-04 0.8661394021 0.2371087033E-04 0.8684864325 0.2383082176E-04 0.8708334629 0.2395192727E-04 0.8731804933 0.2407416237E-04 0.8755275237 0.2419750134E-04 0.8778745541 0.2432191712E-04 0.8802215844 0.2444738137E-04 0.8825686148 0.2457386444E-04 0.8849156452 0.2470133535E-04 0.8872626756 0.2482976184E-04 0.8896097060 0.2495911029E-04 0.8919567364 0.2508934578E-04 0.8943037668 0.2522043208E-04 0.8966507972 0.2535233161E-04 0.8989978276 0.2548500552E-04 0.9013448580 0.2561841363E-04 0.9036918884 0.2575251446E-04 0.9060389188 0.2588726526E-04 0.9083859492 0.2602262200E-04 0.9107329796 0.2615853937E-04 0.9130800099 0.2629497084E-04 0.9154270403 0.2643186863E-04 0.9177740707 0.2656918376E-04 0.9201211011 0.2670686605E-04 0.9224681315 0.2684486417E-04 0.9248151619 0.2698312563E-04 0.9271621923 0.2712159684E-04 0.9295092227 0.2726022311E-04 0.9318562531 0.2739894870E-04 0.9342032835 0.2753771684E-04 0.9365503139 0.2767646978E-04 0.9388973443 0.2781514881E-04 0.9412443747 0.2795369430E-04 0.9435914050 0.2809204574E-04 0.9459384354 0.2823014178E-04 0.9482854658 0.2836792030E-04 0.9506324962 0.2850531839E-04 0.9529795266 0.2864227248E-04 0.9553265570 0.2877871831E-04 0.9576735874 0.2891459103E-04 0.9600206178 0.2904982523E-04 0.9623676482 0.2918435499E-04 0.9647146786 0.2931811395E-04 0.9670617090 0.2945103533E-04 0.9694087394 0.2958305205E-04 0.9717557698 0.2971409672E-04 0.9741028002 0.2984410171E-04 0.9764498305 0.2997299926E-04 0.9787968609 0.3010072149E-04 0.9811438913 0.3022720047E-04 0.9834909217 0.3035236828E-04 0.9858379521 0.3047615711E-04 0.9881849825 0.3059849927E-04 0.9905320129 0.3071932729E-04 0.9928790433 0.3083857396E-04 0.9952260737 0.3095617242E-04 0.9975731041 0.3107205620E-04 0.9999201345 0.3118615932E-04 1.002267165 0.3129841632E-04 1.004614195 0.3140876232E-04 1.006961226 0.3151713315E-04 1.009308256 0.3162346532E-04 1.011655286 0.3172769618E-04 1.014002317 0.3182976391E-04 1.016349347 0.3192960762E-04 1.018696378 0.3202716743E-04 1.021043408 0.3212238447E-04 1.023390438 0.3221520102E-04 1.025737469 0.3230556053E-04 1.028084499 0.3239340766E-04 1.030431530 0.3247868841E-04 1.032778560 0.3256135008E-04 1.035125590 0.3264134143E-04 1.037472621 0.3271861266E-04 1.039819651 0.3279311550E-04 1.042166682 0.3286480325E-04 1.044513712 0.3293363084E-04 1.046860742 0.3299955488E-04 1.049207773 0.3306253371E-04 1.051554803 0.3312252741E-04 1.053901834 0.3317949792E-04 1.056248864 0.3323340900E-04 1.058595894 0.3328422633E-04 1.060942925 0.3333191752E-04 1.063289955 0.3337645215E-04 1.065636985 0.3341780180E-04 1.067984016 0.3345594012E-04 1.070331046 0.3349084279E-04 1.072678077 0.3352248760E-04 1.075025107 0.3355085447E-04 1.077372137 0.3357592543E-04 1.079719168 0.3359768472E-04 1.082066198 0.3361611870E-04 1.084413229 0.3363121597E-04 1.086760259 0.3364296731E-04 1.089107289 0.3365136573E-04 1.091454320 0.3365640643E-04 1.093801350 0.3365808686E-04 1.096152861 0.3365198789E-04 1.098504372 0.3363369799E-04 1.100855883 0.3360323855E-04 1.103207394 0.3356064558E-04 1.105558905 0.3350596954E-04 1.107910415 0.3343927532E-04 1.110261926 0.3336064208E-04 1.112613437 0.3327016309E-04 1.114964948 0.3316794559E-04 1.117316459 0.3305411056E-04 1.119667970 0.3292879248E-04 1.122019481 0.3279213912E-04 1.124370992 0.3264431121E-04 1.126722503 0.3248548217E-04 1.129074013 0.3231583779E-04 1.131425524 0.3213557586E-04 1.133777035 0.3194490583E-04 1.136128546 0.3174404840E-04 1.138480057 0.3153323512E-04 1.140831568 0.3131270799E-04 1.143183079 0.3108271899E-04 1.145534590 0.3084352966E-04 1.147886101 0.3059541059E-04 1.150237611 0.3033864098E-04 1.152589122 0.3007350814E-04 1.154940633 0.2980030698E-04 1.157292144 0.2951933949E-04 1.159643655 0.2923091426E-04 1.161995166 0.2893534595E-04 1.164346677 0.2863295474E-04 1.166698188 0.2832406585E-04 1.169049699 0.2800900900E-04 1.171401209 0.2768811785E-04 1.173752720 0.2736172956E-04 1.176104231 0.2703018422E-04 1.178455742 0.2669382438E-04 1.180807253 0.2635299454E-04 1.183158764 0.2600804067E-04 1.185510275 0.2565930980E-04 1.187861786 0.2530714949E-04 1.190213296 0.2495190749E-04 1.192564807 0.2459393130E-04 1.194916318 0.2423356781E-04 1.197267829 0.2387116299E-04 1.199619340 0.2350706156E-04 1.201970851 0.2314160679E-04 1.204322362 0.2277514024E-04 1.206673873 0.2240800168E-04 1.209025384 0.2204052899E-04 1.211376894 0.2167305822E-04 1.213728405 0.2130592362E-04 1.216079916 0.2093945794E-04 1.218431427 0.2057399278E-04 1.220782938 0.2020985910E-04 1.223134449 0.1984738795E-04 1.225485960 0.1948691147E-04 1.227837471 0.1912876418E-04 1.230188982 0.1877328460E-04 1.232540492 0.1842081746E-04 1.234892003 0.1807171638E-04 1.237243514 0.1772634750E-04 1.239595025 0.1738509393E-04 1.241946536 0.1704836172E-04 1.244298047 0.1671658735E-04 1.246649558 0.1639024775E-04 1.249001069 0.1606987315E-04 1.251352580 0.1575606426E-04 1.253704090 0.1544951484E-04 1.256055601 0.1515104189E-04 1.258407112 0.1486162582E-04 1.260758623 0.1458246403E-04 1.263110134 0.1431504184E-04 1.265461645 0.1406122452E-04 1.267813156 0.1382337244E-04 1.270164667 0.1360447447E-04 1.272516177 0.1340827867E-04 1.274867688 0.1323936650E-04 1.277219199 0.1310306712E-04 1.279570710 0.1300506286E-04 1.281922221 0.1295057113E-04 1.284273732 0.1294319989E-04 1.286625243 0.1298392013E-04 1.288976754 0.1307074164E-04 1.291328265 0.1319930743E-04 1.293679775 0.1336402770E-04 1.296031286 0.1355916077E-04 1.298382797 0.1377950030E-04 1.300734308 0.1402065804E-04 1.303085819 0.1427908365E-04 1.305437330 0.1455196173E-04 1.307788841 0.1483707374E-04 1.310140352 0.1513266674E-04 1.312491863 0.1543734370E-04 1.314843373 0.1574997705E-04 1.317194884 0.1606964279E-04 1.319546395 0.1639557079E-04 1.321897906 0.1672710764E-04 1.324249417 0.1706368872E-04 1.326600928 0.1740481732E-04 1.328952439 0.1775004877E-04 1.331303950 0.1809897839E-04 1.333655461 0.1845123229E-04 1.336006971 0.1880646029E-04 1.338358482 0.1916433040E-04 1.340709993 0.1952452456E-04 1.343061504 0.1988673529E-04 1.345413015 0.2025066307E-04 1.347764526 0.2061601428E-04 1.350116037 0.2098249960E-04 1.352467548 0.2134983271E-04 1.354819059 0.2171772936E-04 1.357170569 0.2208590658E-04 1.359522080 0.2245408211E-04 1.361873591 0.2282197403E-04 1.364225102 0.2318930040E-04 1.366576613 0.2355577915E-04 1.368928124 0.2392112794E-04 1.371279635 0.2428506414E-04 1.373631146 0.2464730494E-04 1.375982656 0.2500756739E-04 1.378334167 0.2536556860E-04 1.380685678 0.2572102593E-04 1.383037189 0.2607365725E-04 1.385388700 0.2642318122E-04 1.387740211 0.2676931762E-04 1.390091722 0.2711178770E-04 1.392443233 0.2745031459E-04 1.394794744 0.2778462368E-04 1.397146254 0.2811444312E-04 1.399497765 0.2843950430E-04 1.401849276 0.2875954236E-04 1.404200787 0.2907429677E-04 1.406552298 0.2938351189E-04 1.408903809 0.2968693768E-04 1.411255320 0.2998433031E-04 1.413606831 0.3027545298E-04 1.415958342 0.3056007667E-04 1.418309852 0.3083798101E-04 1.420661363 0.3110895530E-04 1.423012874 0.3137279947E-04 1.425364385 0.3162932530E-04 1.427715896 0.3187835767E-04 1.430067407 0.3211973606E-04 1.432418918 0.3235331613E-04 1.434770429 0.3257897163E-04 1.437121940 0.3279659653E-04 1.439473450 0.3300610749E-04 1.441824961 0.3320744681E-04 1.444176472 0.3340058582E-04 1.446527983 0.3358552896E-04 1.448879494 0.3376231863E-04 1.451231005 0.3393104109E-04 1.453582516 0.3409183360E-04 1.455934027 0.3424489314E-04 1.458285537 0.3439048723E-04 1.460637048 0.3452896735E-04 1.462988559 0.3466078567E-04 1.465340070 0.3478651622E-04 1.467691581 0.3490688153E-04 1.470043092 0.3502278659E-04 1.472394603 0.3513536210E-04 1.474746114 0.3524601970E-04 1.477097625 0.3535652229E-04 1.479449135 0.3546907306E-04 1.481800646 0.3558642678E-04 1.484152157 0.3571202555E-04 1.486503668 0.3585015744E-04 1.488855179 0.3600612820E-04 1.491206690 0.3618642016E-04 1.493558201 0.3639878646E-04 1.495909712 0.3665219590E-04 1.498261223 0.3695651712E-04 1.500612733 0.3732184832E-04 1.502964244 0.3775750122E-04 1.505315755 0.3827083993E-04 1.507667266 0.3886635107E-04 1.510018777 0.3954530994E-04 1.512370288 0.4030615135E-04 1.514721799 0.4114533005E-04 1.517073310 0.4205830455E-04 1.519424821 0.4304035508E-04 1.521776331 0.4408711977E-04 1.524127842 0.4519486881E-04 1.526479353 0.4636059323E-04 1.528830864 0.4758198564E-04 1.531182375 0.4885736953E-04 1.533533886 0.5018561179E-04 1.535885397 0.5156603638E-04 1.538236908 0.5299834714E-04 1.540588418 0.5448256244E-04 1.542939929 0.5601896126E-04 1.545291440 0.5760803942E-04 1.547642951 0.5925047438E-04 1.549994462 0.6094709697E-04 1.552345973 0.6269886862E-04 1.554697484 0.6450686304E-04 1.557048995 0.6637225127E-04 1.559400506 0.6829628950E-04 1.561752016 0.7028030890E-04 1.564103527 0.7232570720E-04 1.566455038 0.7443394151E-04 1.568806549 0.7660652210E-04 1.571158060 0.7884500704E-04 1.573509571 0.8115099732E-04 1.575861082 0.8352613257E-04 1.578212593 0.8597208699E-04 1.580564104 0.8849056562E-04 1.582915614 0.9108330077E-04 1.585267125 0.9375204853E-04 1.587618636 0.9649858546E-04 1.589970147 0.9932470519E-04 1.592321658 0.1022322151E-03 1.594673169 0.1052229331E-03 1.597024680 0.1082986840E-03 1.599376191 0.1114612963E-03 1.601727702 0.1147125985E-03 1.604079212 0.1180544156E-03 1.606430723 0.1214885655E-03 1.608782234 0.1250168550E-03 1.611133745 0.1286410760E-03 1.613485256 0.1323630015E-03 1.615836767 0.1361843815E-03 1.618188278 0.1401069390E-03 1.620539789 0.1441323650E-03 1.622891299 0.1482623150E-03 1.625242810 0.1524984036E-03 1.627594321 0.1568422002E-03 1.629945832 0.1612952244E-03 1.632297343 0.1658589410E-03 1.634648854 0.1705347547E-03 1.637000365 0.1753240057E-03 1.639351876 0.1802279642E-03 1.641703387 0.1852478253E-03 1.644054897 0.1903847036E-03 1.646406408 0.1956396282E-03 1.648757919 0.2010135373E-03 1.651109430 0.2065072725E-03 1.653460941 0.2121215739E-03 1.655812452 0.2178570743E-03 1.658163963 0.2237142941E-03 1.660515474 0.2296936357E-03 1.662866985 0.2357953783E-03 1.665218495 0.2420196726E-03 1.667570006 0.2483665355E-03 1.669921517 0.2548358449E-03 1.672273028 0.2614273348E-03 1.674624539 0.2681405902E-03 1.676976050 0.2749750422E-03 1.679327561 0.2819299636E-03 1.681679072 0.2890044640E-03 1.684030583 0.2961974856E-03 1.686382093 0.3035077990E-03 1.688733604 0.3109339991E-03 1.691085115 0.3184745017E-03 1.693436626 0.3261275393E-03 1.695788137 0.3338911588E-03 1.698139648 0.3417632174E-03 1.700491159 0.3497413809E-03 1.702842670 0.3578231206E-03 1.705194180 0.3660057114E-03 1.707545691 0.3742862303E-03 1.709897202 0.3826615545E-03 1.712248713 0.3911283609E-03 1.714600224 0.3996831248E-03 1.716951735 0.4083221204E-03 1.719303246 0.4170414199E-03 1.721654757 0.4258368949E-03 1.724006268 0.4347042169E-03 1.726357778 0.4436388586E-03 1.728709289 0.4526360957E-03 1.731060800 0.4616910095E-03 1.733412311 0.4707984891E-03 1.735763822 0.4799532346E-03 1.738115333 0.4891497608E-03 1.740466844 0.4983824012E-03 1.742818355 0.5076453124E-03 1.745169866 0.5169324791E-03 1.747521376 0.5262377195E-03 1.749872887 0.5355546911E-03 1.752224398 0.5448768969E-03 1.754575909 0.5541976924E-03 1.756927420 0.5635102926E-03 1.759278931 0.5728077793E-03 1.761630442 0.5820831099E-03 1.763981953 0.5913291248E-03 1.766333464 0.6005385572E-03 1.768684974 0.6097040416E-03 1.771036485 0.6188181236E-03 1.773387996 0.6278732698E-03 1.775739507 0.6368618783E-03 1.778091018 0.6457762886E-03 1.780442529 0.6546087932E-03 1.782794040 0.6633516483E-03 1.785145551 0.6719970852E-03 1.787497061 0.6805373220E-03 1.789848572 0.6889645754E-03 1.792200083 0.6972710727E-03 1.794551594 0.7054490639E-03 1.796903105 0.7134908340E-03 1.799254616 0.7213887154E-03 1.801606127 0.7291351002E-03 1.803957638 0.7367224530E-03 1.806309149 0.7441433232E-03 1.808660659 0.7513903573E-03 1.811012170 0.7584563119E-03 1.813363681 0.7653340655E-03 1.815715192 0.7720166313E-03 1.818066703 0.7784971688E-03 1.820418214 0.7847689963E-03 1.822769725 0.7908256026E-03 1.825121236 0.7966606582E-03 1.827472747 0.8022680271E-03 1.829824257 0.8076417776E-03 1.832175768 0.8127761932E-03 1.834527279 0.8176657829E-03 1.836878790 0.8223052914E-03 1.839230301 0.8266897084E-03 1.841581812 0.8308142786E-03 1.843933323 0.8346745099E-03 1.846284834 0.8382661819E-03 1.848636345 0.8415853540E-03 1.850987855 0.8446283727E-03 1.853339366 0.8473918785E-03 1.855690877 0.8498728122E-03 1.858042388 0.8520684208E-03 1.860393899 0.8539762626E-03 1.862745410 0.8555942119E-03 1.865096921 0.8569204632E-03 1.867448432 0.8579535345E-03 1.869799942 0.8586922700E-03 1.872151453 0.8591358426E-03 1.874502964 0.8592837555E-03 1.876849995 0.8591794221E-03 1.879197025 0.8588665401E-03 1.881544055 0.8583454637E-03 1.883891086 0.8576167822E-03 1.886238116 0.8566813194E-03 1.888585147 0.8555401320E-03 1.890932177 0.8541945070E-03 1.893279207 0.8526459602E-03 1.895626238 0.8508962330E-03 1.897973268 0.8489472891E-03 1.900320299 0.8468013110E-03 1.902667329 0.8444606962E-03 1.905014359 0.8419280524E-03 1.907361390 0.8392061932E-03 1.909708420 0.8362981328E-03 1.912055451 0.8332070803E-03 1.914402481 0.8299364345E-03 1.916749511 0.8264897773E-03 1.919096542 0.8228708676E-03 1.921443572 0.8190836343E-03 1.923790603 0.8151321699E-03 1.926137633 0.8110207227E-03 1.928484663 0.8067536898E-03 1.930831694 0.8023356093E-03 1.933178724 0.7977711527E-03 1.935525754 0.7930651164E-03 1.937872785 0.7882224141E-03 1.940219815 0.7832480683E-03 1.942566846 0.7781472019E-03 1.944913876 0.7729250297E-03 1.947260906 0.7675868498E-03 1.949607937 0.7621380354E-03 1.951954967 0.7565840254E-03 1.954301998 0.7509303164E-03 1.956649028 0.7451824541E-03 1.958996058 0.7393460241E-03 1.961343089 0.7334266438E-03 1.963690119 0.7274299540E-03 1.966037150 0.7213616102E-03 1.968384180 0.7152272744E-03 1.970731210 0.7090326069E-03 1.973078241 0.7027832587E-03 1.975425271 0.6964848628E-03 1.977772302 0.6901430272E-03 1.980119332 0.6837633272E-03 1.982466362 0.6773512979E-03 1.984813393 0.6709124275E-03 1.987160423 0.6644521498E-03 1.989507454 0.6579758385E-03 1.991854484 0.6514887998E-03 1.994201514 0.6449962672E-03 1.996548545 0.6385033949E-03 1.998895575 0.6320152530E-03 2.001242605 0.6255368215E-03 2.003589636 0.6190729859E-03 2.005936666 0.6126285322E-03 2.008283697 0.6062081425E-03 2.010630727 0.5998163913E-03 2.012977757 0.5934577411E-03 2.015324788 0.5871365397E-03 2.017671818 0.5808570165E-03 2.020018849 0.5746232800E-03 2.022365879 0.5684393148E-03 2.024712909 0.5623089801E-03 2.027059940 0.5562360073E-03 2.029406970 0.5502239983E-03 2.031754001 0.5442764245E-03 2.034101031 0.5383966257E-03 2.036448061 0.5325878091E-03 2.038795092 0.5268530491E-03 2.041142122 0.5211952870E-03 2.043489153 0.5156173309E-03 2.045836183 0.5101218562E-03 2.048183213 0.5047114060E-03 2.050530244 0.4993883918E-03 2.052877274 0.4941550946E-03 2.055224304 0.4890136661E-03 2.057571335 0.4839661298E-03 2.059918365 0.4790143829E-03 2.062265396 0.4741601977E-03 2.064612426 0.4694052237E-03 2.066959456 0.4647509895E-03 2.069306487 0.4601989050E-03 2.071653517 0.4557502635E-03 2.074000548 0.4514062443E-03 2.076347578 0.4471679150E-03 2.078694608 0.4430362340E-03 2.081041639 0.4390120534E-03 2.083388669 0.4350961212E-03 2.085735700 0.4312890842E-03 2.088082730 0.4275914910E-03 2.090429760 0.4240037940E-03 2.092776791 0.4205263531E-03 2.095123821 0.4171594376E-03 2.097470852 0.4139032295E-03 2.099817882 0.4107578257E-03 2.102164912 0.4077232411E-03 2.104511943 0.4047994109E-03 2.106858973 0.4019861934E-03 2.109206004 0.3992833721E-03 2.111553034 0.3966906588E-03 2.113900064 0.3942076952E-03 2.116247095 0.3918340557E-03 2.118594125 0.3895692491E-03 2.120941155 0.3874127213E-03 2.123288186 0.3853638568E-03 2.125635216 0.3834219809E-03 2.127982247 0.3815863611E-03 2.130329277 0.3798562093E-03 2.132676307 0.3782306829E-03 2.135023338 0.3767088867E-03 2.137370368 0.3752898739E-03 2.139717399 0.3739726477E-03 2.142064429 0.3727561621E-03 2.144411459 0.3716393235E-03 2.146758490 0.3706209910E-03 2.149105520 0.3696999778E-03 2.151452551 0.3688750517E-03 2.153799581 0.3681449361E-03 2.156146611 0.3675083102E-03 2.158493642 0.3669638098E-03 2.160840672 0.3665100277E-03 2.163187703 0.3661455143E-03 2.165534733 0.3658687775E-03 2.167881763 0.3656782835E-03 2.170228794 0.3655724568E-03 2.172575824 0.3655496804E-03 2.174922855 0.3656082961E-03 2.177269885 0.3657466045E-03 2.179616915 0.3659628655E-03 2.181963946 0.3662552983E-03 2.184310976 0.3666220812E-03 2.186658006 0.3670613525E-03 2.189005037 0.3675712101E-03 2.191352067 0.3681497121E-03 2.193699098 0.3687948767E-03 2.196046128 0.3695046831E-03 2.198393158 0.3702770713E-03 2.200740189 0.3711099427E-03 2.203087219 0.3720011610E-03 2.205434250 0.3729485521E-03 2.207781280 0.3739499054E-03 2.210128310 0.3750029740E-03 2.212475341 0.3761054760E-03 2.214822371 0.3772550953E-03 2.217169402 0.3784494825E-03 2.219516432 0.3796862561E-03 2.221863462 0.3809630041E-03 2.224210493 0.3822772848E-03 2.226557523 0.3836266288E-03 2.228904554 0.3850085405E-03 2.231251584 0.3864204996E-03 2.233598614 0.3878599632E-03 2.235945645 0.3893243680E-03 2.238292675 0.3908111317E-03 2.240639706 0.3923176561E-03 2.242986736 0.3938413289E-03 2.245333766 0.3953795262E-03 2.247680797 0.3969296153E-03 2.250027827 0.3984889574E-03 2.252374857 0.4000549101E-03 2.254721888 0.4016248307E-03 2.257068918 0.4031960790E-03 2.259415949 0.4047660203E-03 2.261762979 0.4063320289E-03 2.264110009 0.4078914911E-03 2.266457040 0.4094418086E-03 2.268804070 0.4109804021E-03 2.271151101 0.4125047143E-03 2.273498131 0.4140122141E-03 2.275845161 0.4155003995E-03 2.278192192 0.4169668016E-03 2.280539222 0.4184089879E-03 2.282886253 0.4198245664E-03 2.285233283 0.4212111886E-03 2.287580313 0.4225665535E-03 2.289927344 0.4238884113E-03 2.292274374 0.4251745667E-03 2.294621405 0.4264228824E-03 2.296968435 0.4276312829E-03 2.299315465 0.4287977576E-03 2.301662496 0.4299203644E-03 2.304009526 0.4309972329E-03 2.306356557 0.4320265674E-03 2.308703587 0.4330066505E-03 2.311050617 0.4339358454E-03 2.313397648 0.4348125993E-03 2.315744678 0.4356354459E-03 2.318091708 0.4364030083E-03 2.320438739 0.4371140009E-03 2.322785769 0.4377672322E-03 2.325132800 0.4383616071E-03 2.327479830 0.4388961282E-03 2.329826860 0.4393698983E-03 2.332173891 0.4397821217E-03 2.334520921 0.4401321059E-03 2.336867952 0.4404192627E-03 2.339214982 0.4406431092E-03 2.341562012 0.4408032691E-03 2.343909043 0.4408994729E-03 2.346256073 0.4409315588E-03 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/PaxHeaders/PHLWLINES.OUT0000644000000000000000000000013214536061315023765 xustar0030 mtime=1702388429.014499866 30 atime=1702388429.014499866 30 ctime=1702388429.014499866 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/PHLWLINES.OUT0000644002504400250440000000057414536061315026515 0ustar00dewhurstdewhurst00000000000000 0.000000000 -0.6444628166E-03 0.000000000 0.1288925633E-02 0.6220482413 -0.6444628166E-03 0.6220482413 0.1288925633E-02 1.093801350 -0.6444628166E-03 1.093801350 0.1288925633E-02 1.874502964 -0.6444628166E-03 1.874502964 0.1288925633E-02 2.346256073 -0.6444628166E-03 2.346256073 0.1288925633E-02 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/PaxHeaders/elk.in0000644000000000000000000000013214536061315023132 xustar0030 mtime=1702388429.015499865 30 atime=1702388429.015499865 30 ctime=1702388429.015499865 elk-9.2.12/examples/phonons-superconductivity/MgB2-DFPT/elk.in0000644002504400250440000000304014536061315025651 0ustar00dewhurstdewhurst00000000000000 ! This example generates a phonon dispersion for the superconductor MgB2 using ! density functional perturbation theory (DFPT). The superconducting critical ! temperature is also computed using McMillan's formula and by solving the ! Eliashberg equations. tasks 0 : ground state run 205 : compute the dynamical matrices ! number of phonon q-points ngridq 4 4 4 ! the k-point grid has to be commensurate with the q-point grid ngridk 8 8 8 ! larger smearing width required for stable phonon dispersion swidth 0.005 stype 1 ! increase the number of muffin-tin points (for accurate gradients) nrmtscf 2 ! after all the dynamical matrix DYN---.OUT files have been calculated then ! uncomment the following lines and run again !ngridk ! 24 24 24 !tasks ! 1 : ground state with larger k-point set ! 210 : phonon DOS ! 220 : plot the phonon dispersion ! 240 : electron-phonon matrix elements ! 245 : phonon line-widths ! 250 : Eliashberg function, alpha^2F plot1d 5 1000 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 avec 5.83170 0.000000000 0.0000 -2.91585 5.050400347 0.0000 0.00000 0.000000000 6.6594 sppath '../../../species/' atoms 2 : nspecies 'Mg.in' : spfname 1 : natoms; atposl below 0.00000000 0.00000000 0.00000000 'B.in' 2 0.33333333 0.66666667 0.50000000 0.66666667 0.33333333 0.50000000 elk-9.2.12/examples/phonons-superconductivity/PaxHeaders/Pb-DFPT0000644000000000000000000000013214536061315021564 xustar0030 mtime=1702388429.029499844 30 atime=1702388429.016499863 30 ctime=1702388429.029499844 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/0000755002504400250440000000000014536061315024363 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/PaxHeaders/ALPHA2F.OUT0000644000000000000000000000013014536061315023245 xustar0029 mtime=1702388429.01849986 30 atime=1702388429.017499862 29 ctime=1702388429.01849986 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/ALPHA2F.OUT0000644002504400250440000004410414536061315025774 0ustar00dewhurstdewhurst00000000000000 -0.3676951211E-04 0.000000000 -0.3596058284E-04 0.000000000 -0.3515165358E-04 0.000000000 -0.3434272431E-04 0.000000000 -0.3353379504E-04 0.000000000 -0.3272486578E-04 0.000000000 -0.3191593651E-04 0.000000000 -0.3110700725E-04 0.000000000 -0.3029807798E-04 0.000000000 -0.2948914871E-04 0.000000000 -0.2868021945E-04 0.000000000 -0.2787129018E-04 0.000000000 -0.2706236091E-04 0.000000000 -0.2625343165E-04 0.000000000 -0.2544450238E-04 0.000000000 -0.2463557311E-04 0.000000000 -0.2382664385E-04 0.000000000 -0.2301771458E-04 0.000000000 -0.2220878531E-04 0.000000000 -0.2139985605E-04 0.000000000 -0.2059092678E-04 0.000000000 -0.1978199752E-04 0.000000000 -0.1897306825E-04 0.000000000 -0.1816413898E-04 0.000000000 -0.1735520972E-04 0.000000000 -0.1654628045E-04 0.000000000 -0.1573735118E-04 0.000000000 -0.1492842192E-04 0.000000000 -0.1411949265E-04 0.000000000 -0.1331056338E-04 0.000000000 -0.1250163412E-04 0.000000000 -0.1169270485E-04 0.000000000 -0.1088377558E-04 0.000000000 -0.1007484632E-04 0.000000000 -0.9265917052E-05 0.000000000 -0.8456987785E-05 0.000000000 -0.7648058519E-05 0.000000000 -0.6839129253E-05 0.000000000 -0.6030199986E-05 0.000000000 -0.5221270720E-05 0.000000000 -0.4412341453E-05 0.000000000 -0.3603412187E-05 0.000000000 -0.2794482920E-05 0.000000000 -0.1985553654E-05 0.000000000 -0.1176624388E-05 0.9449296139E-34 -0.3676951211E-06 0.9449296139E-34 0.4412341453E-06 0.9449296139E-34 0.1250163412E-05 0.000000000 0.2059092678E-05 0.000000000 0.2868021945E-05 0.000000000 0.3676951211E-05 0.1271576402E-08 0.4485880477E-05 0.5517778063E-08 0.5294809744E-05 0.5517778063E-08 0.6103739010E-05 0.4246201661E-08 0.6912668277E-05 0.4025466980E-08 0.7721597543E-05 0.1087326668E-07 0.8530526810E-05 0.8513967300E-07 0.9339456076E-05 0.9268436776E-07 0.1014838534E-04 0.1899608995E-06 0.1095731461E-04 0.1754159728E-06 0.1176624388E-04 0.2748928049E-06 0.1257517314E-04 0.4901579966E-06 0.1338410241E-04 0.1096441933E-05 0.1419303167E-04 0.9863410526E-06 0.1500196094E-04 0.1662692145E-05 0.1581089021E-04 0.2106305984E-05 0.1661981947E-04 0.2245755800E-05 0.1742874874E-04 0.3727909640E-05 0.1823767801E-04 0.5955295749E-05 0.1904660727E-04 0.8583947013E-05 0.1985553654E-04 0.7631633101E-05 0.2066446581E-04 0.8955876936E-05 0.2147339507E-04 0.1071157166E-04 0.2228232434E-04 0.1723810392E-04 0.2309125361E-04 0.2228750423E-04 0.2390018287E-04 0.2955175555E-04 0.2470911214E-04 0.2675707063E-04 0.2551804140E-04 0.3159828775E-04 0.2632697067E-04 0.4324746355E-04 0.2713589994E-04 0.5532575357E-04 0.2794482920E-04 0.7113541270E-04 0.2875375847E-04 0.6528271666E-04 0.2956268774E-04 0.6861668660E-04 0.3037161700E-04 0.1050891487E-03 0.3118054627E-04 0.1288490401E-03 0.3198947554E-04 0.1467378254E-03 0.3279840480E-04 0.1396489898E-03 0.3360733407E-04 0.1579001415E-03 0.3441626334E-04 0.2120013225E-03 0.3522519260E-04 0.2621350502E-03 0.3603412187E-04 0.3128960695E-03 0.3684305113E-04 0.3094942356E-03 0.3765198040E-04 0.2933876430E-03 0.3846090967E-04 0.3958837732E-03 0.3926983893E-04 0.4308302977E-03 0.4007876820E-04 0.5788934329E-03 0.4088769747E-04 0.5468781799E-03 0.4169662673E-04 0.6364106668E-03 0.4250555600E-04 0.6809142160E-03 0.4331448527E-04 0.8313043975E-03 0.4412341453E-04 0.8987781261E-03 0.4493234380E-04 0.9469151321E-03 0.4574127307E-04 0.9862481825E-03 0.4655020233E-04 0.1245092070E-02 0.4735913160E-04 0.1328056544E-02 0.4816806086E-04 0.1434312131E-02 0.4897699013E-04 0.1496424196E-02 0.4978591940E-04 0.1711216217E-02 0.5059484866E-04 0.1947372171E-02 0.5140377793E-04 0.2225769023E-02 0.5221270720E-04 0.2272611436E-02 0.5302163646E-04 0.2413440643E-02 0.5383056573E-04 0.2544829691E-02 0.5463949500E-04 0.3105072132E-02 0.5544842426E-04 0.3251424827E-02 0.5625735353E-04 0.3561594167E-02 0.5706628280E-04 0.3683698586E-02 0.5787521206E-04 0.4240093712E-02 0.5868414133E-04 0.4327707962E-02 0.5949307059E-04 0.4939293237E-02 0.6030199986E-04 0.5234904089E-02 0.6111092913E-04 0.5718570073E-02 0.6191985839E-04 0.6073486662E-02 0.6272878766E-04 0.6578062441E-02 0.6353771693E-04 0.7181906107E-02 0.6434664619E-04 0.7596015328E-02 0.6515557546E-04 0.8212095816E-02 0.6596450473E-04 0.8794368801E-02 0.6677343399E-04 0.9732209080E-02 0.6758236326E-04 0.1031309318E-01 0.6839129253E-04 0.1082273332E-01 0.6920022179E-04 0.1167414778E-01 0.7000915106E-04 0.1253894918E-01 0.7081808032E-04 0.1338951226E-01 0.7162700959E-04 0.1450405805E-01 0.7243593886E-04 0.1590981505E-01 0.7324486812E-04 0.1751891830E-01 0.7405379739E-04 0.1719587485E-01 0.7486272666E-04 0.1956057113E-01 0.7567165592E-04 0.2081204687E-01 0.7648058519E-04 0.2323499588E-01 0.7728951446E-04 0.2446333871E-01 0.7809844372E-04 0.2642681748E-01 0.7890737299E-04 0.2821853881E-01 0.7971630226E-04 0.3182467873E-01 0.8052523152E-04 0.3607935352E-01 0.8133416079E-04 0.4577873662E-01 0.8214309005E-04 0.5509802386E-01 0.8295201932E-04 0.6893477683E-01 0.8376094859E-04 0.7693009076E-01 0.8456987785E-04 0.8614821961E-01 0.8537880712E-04 0.9128146082E-01 0.8618773639E-04 0.9469198096E-01 0.8699666565E-04 0.9733108981E-01 0.8780559492E-04 0.9927244134E-01 0.8861452419E-04 0.1051747250 0.8942345345E-04 0.1117489051 0.9023238272E-04 0.1193480664 0.9104131199E-04 0.1269377244 0.9185024125E-04 0.1337025368 0.9265917052E-04 0.1507301424 0.9346809978E-04 0.1642355704 0.9427702905E-04 0.1805405269 0.9508595832E-04 0.1889606022 0.9589488758E-04 0.2007469547 0.9670381685E-04 0.2017099359 0.9751274612E-04 0.2031194906 0.9832167538E-04 0.2056282837 0.9913060465E-04 0.2091154681 0.9993953392E-04 0.2096887846 0.1007484632E-03 0.2094539244 0.1015573924E-03 0.2078197347 0.1023663217E-03 0.2169256989 0.1031752510E-03 0.2170379097 0.1039841802E-03 0.2200753053 0.1047931095E-03 0.2158726498 0.1056020388E-03 0.2161689851 0.1064109680E-03 0.2211723317 0.1072198973E-03 0.2252461614 0.1080288266E-03 0.2261213653 0.1088377558E-03 0.2279599236 0.1096466851E-03 0.2273864489 0.1104556144E-03 0.2317339886 0.1112645436E-03 0.2272272315 0.1120734729E-03 0.2287208682 0.1128824022E-03 0.2354452752 0.1136913314E-03 0.2381509313 0.1145002607E-03 0.2384657850 0.1153091900E-03 0.2335407091 0.1161181192E-03 0.2392655222 0.1169270485E-03 0.2422353363 0.1177359778E-03 0.2406812929 0.1185449070E-03 0.2410989255 0.1193538363E-03 0.2488484853 0.1201627656E-03 0.2553142509 0.1209716948E-03 0.2537758886 0.1217806241E-03 0.2513793487 0.1225895534E-03 0.2466598964 0.1233984826E-03 0.2571989254 0.1242074119E-03 0.2543666375 0.1250163412E-03 0.2652366738 0.1258252704E-03 0.2620330910 0.1266341997E-03 0.2669213102 0.1274431290E-03 0.2664844654 0.1282520582E-03 0.2685757309 0.1290609875E-03 0.2707249797 0.1298699168E-03 0.2708957529 0.1306788460E-03 0.2803272610 0.1314877753E-03 0.2788325665 0.1322967046E-03 0.2885086616 0.1331056338E-03 0.2844860955 0.1339145631E-03 0.2925684122 0.1347234924E-03 0.2936394168 0.1355324216E-03 0.2983179191 0.1363413509E-03 0.2978066228 0.1371502802E-03 0.3063532655 0.1379592094E-03 0.3074891937 0.1387681387E-03 0.3168607071 0.1395770680E-03 0.3163400841 0.1403859972E-03 0.3241651880 0.1411949265E-03 0.3272331741 0.1420038558E-03 0.3301205262 0.1428127850E-03 0.3345344360 0.1436217143E-03 0.3432994502 0.1444306436E-03 0.3531491801 0.1452395728E-03 0.3608297433 0.1460485021E-03 0.3630321815 0.1468574314E-03 0.3695908392 0.1476663606E-03 0.3783542228 0.1484752899E-03 0.3892847653 0.1492842192E-03 0.3971019837 0.1500931484E-03 0.4101594678 0.1509020777E-03 0.4195054863 0.1517110070E-03 0.4347834318 0.1525199362E-03 0.4421819772 0.1533288655E-03 0.4579721063 0.1541377948E-03 0.4657817811 0.1549467240E-03 0.4838887620 0.1557556533E-03 0.4992102502 0.1565645826E-03 0.5088206955 0.1573735118E-03 0.5389646800 0.1581824411E-03 0.5611034459 0.1589913704E-03 0.5890090122 0.1598002996E-03 0.5982304251 0.1606092289E-03 0.6115368184 0.1614181582E-03 0.6251532139 0.1622270874E-03 0.6172376522 0.1630360167E-03 0.6022158278 0.1638449460E-03 0.5976958831 0.1646538752E-03 0.6070006017 0.1654628045E-03 0.6092890139 0.1662717338E-03 0.6133973724 0.1670806630E-03 0.6069582870 0.1678895923E-03 0.6270579339 0.1686985216E-03 0.6318074042 0.1695074508E-03 0.6521783052 0.1703163801E-03 0.6523741595 0.1711253094E-03 0.6731674457 0.1719342386E-03 0.6852639476 0.1727431679E-03 0.7003268297 0.1735520972E-03 0.7128563892 0.1743610264E-03 0.7269569711 0.1751699557E-03 0.7497655786 0.1759788850E-03 0.7758008651 0.1767878142E-03 0.8113629641 0.1775967435E-03 0.8430780740 0.1784056728E-03 0.8600173944 0.1792146020E-03 0.8905065142 0.1800235313E-03 0.9393984971 0.1808324606E-03 1.009805007 0.1816413898E-03 1.069697079 0.1824503191E-03 1.070119450 0.1832592484E-03 1.018669684 0.1840681776E-03 0.9481734469 0.1848771069E-03 0.8956993676 0.1856860362E-03 0.8595506561 0.1864949654E-03 0.8197553573 0.1873038947E-03 0.8011922937 0.1881128240E-03 0.7804988965 0.1889217532E-03 0.7625830712 0.1897306825E-03 0.7450929157 0.1905396118E-03 0.7185628607 0.1913485410E-03 0.7077744818 0.1921574703E-03 0.7024859763 0.1929663996E-03 0.6939562958 0.1937753288E-03 0.6734616348 0.1945842581E-03 0.6435860809 0.1953931874E-03 0.6160179026 0.1962021166E-03 0.6019630772 0.1970110459E-03 0.5771656872 0.1978199752E-03 0.5732652489 0.1986289044E-03 0.5575834135 0.1994378337E-03 0.5417843486 0.2002467630E-03 0.5362717354 0.2010556922E-03 0.5188302861 0.2018646215E-03 0.5126047751 0.2026735508E-03 0.5032504094 0.2034824800E-03 0.5050254403 0.2042914093E-03 0.4970093018 0.2051003386E-03 0.4875411861 0.2059092678E-03 0.4729763157 0.2067181971E-03 0.4823012825 0.2075271264E-03 0.4710261835 0.2083360556E-03 0.4612314292 0.2091449849E-03 0.4515751124 0.2099539141E-03 0.4520572408 0.2107628434E-03 0.4492741854 0.2115717727E-03 0.4538258517 0.2123807019E-03 0.4397849723 0.2131896312E-03 0.4430781053 0.2139985605E-03 0.4329673938 0.2148074897E-03 0.4301490304 0.2156164190E-03 0.4243887542 0.2164253483E-03 0.4192891326 0.2172342775E-03 0.4282612053 0.2180432068E-03 0.4315413334 0.2188521361E-03 0.4214660066 0.2196610653E-03 0.4149111696 0.2204699946E-03 0.4093214054 0.2212789239E-03 0.4128443658 0.2220878531E-03 0.4113176824 0.2228967824E-03 0.4067863591 0.2237057117E-03 0.4084245704 0.2245146409E-03 0.4119081871 0.2253235702E-03 0.4081243973 0.2261324995E-03 0.4006862341 0.2269414287E-03 0.3937236243 0.2277503580E-03 0.3978957377 0.2285592873E-03 0.3988671903 0.2293682165E-03 0.4064580981 0.2301771458E-03 0.4093330390 0.2309860751E-03 0.4069129457 0.2317950043E-03 0.3980422788 0.2326039336E-03 0.4034784345 0.2334128629E-03 0.3978321925 0.2342217921E-03 0.4006889413 0.2350307214E-03 0.3966509954 0.2358396507E-03 0.3979763803 0.2366485799E-03 0.3955581594 0.2374575092E-03 0.3808557256 0.2382664385E-03 0.3853555095 0.2390753677E-03 0.3790739192 0.2398842970E-03 0.3810114425 0.2406932263E-03 0.3728280441 0.2415021555E-03 0.3681570478 0.2423110848E-03 0.3573614826 0.2431200141E-03 0.3484911132 0.2439289433E-03 0.3364580973 0.2447378726E-03 0.3224640029 0.2455468019E-03 0.3037696814 0.2463557311E-03 0.2994910323 0.2471646604E-03 0.2914065836 0.2479735897E-03 0.2861732601 0.2487825189E-03 0.2705403562 0.2495914482E-03 0.2651229503 0.2504003775E-03 0.2617272571 0.2512093067E-03 0.2634887908 0.2520182360E-03 0.2580257504 0.2528271653E-03 0.2525423485 0.2536360945E-03 0.2428373288 0.2544450238E-03 0.2415491484 0.2552539531E-03 0.2406165053 0.2560628823E-03 0.2352367754 0.2568718116E-03 0.2409082874 0.2576807409E-03 0.2385256466 0.2584896701E-03 0.2391426611 0.2592985994E-03 0.2326135047 0.2601075287E-03 0.2345473470 0.2609164579E-03 0.2388492321 0.2617253872E-03 0.2417648563 0.2625343165E-03 0.2516376803 0.2633432457E-03 0.2520047822 0.2641521750E-03 0.2565119510 0.2649611043E-03 0.2531256769 0.2657700335E-03 0.2644044284 0.2665789628E-03 0.2714988152 0.2673878921E-03 0.2877036865 0.2681968213E-03 0.2950527057 0.2690057506E-03 0.3016857321 0.2698146799E-03 0.2992348148 0.2706236091E-03 0.3110723677 0.2714325384E-03 0.3332443073 0.2722414677E-03 0.3538722305 0.2730503969E-03 0.3701378120 0.2738593262E-03 0.3763250261 0.2746682555E-03 0.3925667378 0.2754771847E-03 0.4265792373 0.2762861140E-03 0.4586128276 0.2770950433E-03 0.4808785598 0.2779039725E-03 0.5027697800 0.2787129018E-03 0.5239768129 0.2795218311E-03 0.5624547950 0.2803307603E-03 0.6008511168 0.2811396896E-03 0.6440750100 0.2819486189E-03 0.6787230314 0.2827575481E-03 0.7274283455 0.2835664774E-03 0.7849373165 0.2843754067E-03 0.8612515368 0.2851843359E-03 0.9141126581 0.2859932652E-03 1.003226878 0.2868021945E-03 1.099338908 0.2876111237E-03 1.266370284 0.2884200530E-03 1.460503478 0.2892289823E-03 2.134078970 0.2900379115E-03 2.759348096 0.2908468408E-03 3.203687343 0.2916557701E-03 3.040431620 0.2924646993E-03 2.822502562 0.2932736286E-03 2.628005892 0.2940825579E-03 2.469177030 0.2948914871E-03 2.308066874 0.2957004164E-03 2.173531701 0.2965093457E-03 2.050124485 0.2973182749E-03 1.927531659 0.2981272042E-03 1.782270105 0.2989361335E-03 1.672209971 0.2997450627E-03 1.519697279 0.3005539920E-03 1.438247322 0.3013629213E-03 1.321816300 0.3021718505E-03 1.279704914 0.3029807798E-03 1.203365066 0.3037897091E-03 1.141594746 0.3045986383E-03 1.084912850 0.3054075676E-03 1.036957672 0.3062164969E-03 0.9999361884 0.3070254261E-03 0.9378495113 0.3078343554E-03 0.8850262311 0.3086432847E-03 0.8314826780 0.3094522139E-03 0.7557175435 0.3102611432E-03 0.6971147012 0.3110700725E-03 0.6554919240 0.3118790017E-03 0.6182942604 0.3126879310E-03 0.5939640066 0.3134968603E-03 0.5630067945 0.3143057895E-03 0.5529660783 0.3151147188E-03 0.5193797393 0.3159236481E-03 0.4992096144 0.3167325773E-03 0.4826911358 0.3175415066E-03 0.4713177735 0.3183504359E-03 0.4525876611 0.3191593651E-03 0.4349310679 0.3199682944E-03 0.4303581800 0.3207772236E-03 0.4125294691 0.3215861529E-03 0.4015484102 0.3223950822E-03 0.3781115360 0.3232040114E-03 0.3749209036 0.3240129407E-03 0.3582658375 0.3248218700E-03 0.3557400366 0.3256307992E-03 0.3412728765 0.3264397285E-03 0.3318957281 0.3272486578E-03 0.3210672627 0.3280575870E-03 0.3081564385 0.3288665163E-03 0.3031277172 0.3296754456E-03 0.2852046810 0.3304843748E-03 0.2820795992 0.3312933041E-03 0.2725943620 0.3321022334E-03 0.2676504909 0.3329111626E-03 0.2567534308 0.3337200919E-03 0.2424778086 0.3345290212E-03 0.2208016691 0.3353379504E-03 0.2025876460 0.3361468797E-03 0.1763596631 0.3369558090E-03 0.1613661342 0.3377647382E-03 0.1408896484 0.3385736675E-03 0.1275193012 0.3393825968E-03 0.1164642993 0.3401915260E-03 0.1021756679 0.3410004553E-03 0.9185823400E-01 0.3418093846E-03 0.7601820473E-01 0.3426183138E-03 0.6313615260E-01 0.3434272431E-03 0.4063215072E-01 0.3442361724E-03 0.1939584315E-01 0.3450451016E-03 0.4375550264E-02 0.3458540309E-03 0.000000000 0.3466629602E-03 0.000000000 0.3474718894E-03 0.000000000 0.3482808187E-03 0.000000000 0.3490897480E-03 0.000000000 0.3498986772E-03 0.000000000 0.3507076065E-03 0.000000000 0.3515165358E-03 0.000000000 0.3523254650E-03 0.000000000 0.3531343943E-03 0.000000000 0.3539433236E-03 0.000000000 0.3547522528E-03 0.000000000 0.3555611821E-03 0.000000000 0.3563701114E-03 0.000000000 0.3571790406E-03 0.000000000 0.3579879699E-03 0.000000000 0.3587968992E-03 0.000000000 0.3596058284E-03 0.000000000 0.3604147577E-03 0.000000000 0.3612236870E-03 0.000000000 0.3620326162E-03 0.000000000 0.3628415455E-03 0.000000000 0.3636504748E-03 0.000000000 0.3644594040E-03 0.000000000 0.3652683333E-03 0.000000000 0.3660772626E-03 0.000000000 0.3668861918E-03 0.000000000 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/PaxHeaders/MCMILLAN.OUT0000644000000000000000000000013214536061315023426 xustar0030 mtime=1702388429.020499857 30 atime=1702388429.020499857 30 ctime=1702388429.020499857 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/MCMILLAN.OUT0000644002504400250440000000053214536061315026150 0ustar00dewhurstdewhurst00000000000000 Electron-phonon coupling constant, lambda : 1.300391767 Logarithmic average frequency : 0.1973053899E-03 RMS average frequency : 0.2216534818E-03 Coulomb pseudopotential, mu* : 0.1500000000 McMillan-Allen-Dynes superconducting critical temperature [Eq. 34, Phys. Rev. B 12, 905 (1975)] (kelvin) : 5.458024982 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/PaxHeaders/PHDISP.OUT0000644000000000000000000000013214536061315023221 xustar0030 mtime=1702388429.021499856 30 atime=1702388429.021499856 30 ctime=1702388429.021499856 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/PHDISP.OUT0000644002504400250440000005331214536061315025747 0ustar00dewhurstdewhurst00000000000000 0.000000000 0.4369966343E-10 0.1815415904E-01 0.1235050197E-04 0.3630831809E-01 0.2452237058E-04 0.5446247713E-01 0.3634506762E-04 0.7261663618E-01 0.4766399921E-04 0.9077079522E-01 0.5834786129E-04 0.1089249543 0.6829519893E-04 0.1270791133 0.7743985703E-04 0.1452332724 0.8575494396E-04 0.1633874314 0.9325486435E-04 0.1815415904 0.9999491923E-04 0.1996957495 0.1060679597E-03 0.2178499085 0.1115976761E-03 0.2360040676 0.1167283845E-03 0.2541582266 0.1216116868E-03 0.2723123857 0.1263911062E-03 0.2904665447 0.1311865587E-03 0.3086207037 0.1360810123E-03 0.3267748628 0.1411116026E-03 0.3449290218 0.1462667096E-03 0.3630831809 0.1514892779E-03 0.3812373399 0.1566854370E-03 0.3993914990 0.1617366657E-03 0.4175456580 0.1665135274E-03 0.4356998171 0.1708892556E-03 0.4538539761 0.1747519526E-03 0.4720081351 0.1780146482E-03 0.4901622942 0.1806228210E-03 0.5083164532 0.1825591862E-03 0.5264706123 0.1838456305E-03 0.5446247713 0.1845421862E-03 0.5627789304 0.1847429368E-03 0.5809330894 0.1845688093E-03 0.5990872485 0.1841573830E-03 0.6172414075 0.1836501843E-03 0.6353955665 0.1831784313E-03 0.6535497256 0.1828487454E-03 0.6717038846 0.1827307766E-03 0.6899718220 0.1832638862E-03 0.7082397594 0.1847374455E-03 0.7265076968 0.1868072062E-03 0.7447756341 0.1889958852E-03 0.7630435715 0.1907995534E-03 0.7813115089 0.1917848387E-03 0.7995794463 0.1916596310E-03 0.8178473836 0.1903122836E-03 0.8361153210 0.1878205529E-03 0.8543832584 0.1844326788E-03 0.8726511958 0.1805223741E-03 0.8909191331 0.1765202360E-03 0.9091870705 0.1728285189E-03 0.9274550079 0.1697344268E-03 0.9457229453 0.1673449250E-03 0.9639908826 0.1655656473E-03 0.9822588200 0.1641330476E-03 1.000526757 0.1626885976E-03 1.018794695 0.1608698550E-03 1.037062632 0.1583930323E-03 1.055330570 0.1551110177E-03 1.073598507 0.1510407869E-03 1.091866444 0.1463597888E-03 1.110134382 0.1413725390E-03 1.128402319 0.1364495383E-03 1.146670256 0.1319445824E-03 1.164938194 0.1281055295E-03 1.183206131 0.1250042097E-03 1.201474069 0.1225131760E-03 1.219742006 0.1203420092E-03 1.238009943 0.1181204174E-03 1.256277881 0.1154980530E-03 1.274545818 0.1122322305E-03 1.292813755 0.1082474075E-03 1.311081693 0.1036613696E-03 1.329349630 0.9877622352E-04 1.347617568 0.9402918117E-04 1.365885505 0.8989597445E-04 1.384153442 0.8675090023E-04 1.402421380 0.8472022791E-04 1.420689317 0.8359883565E-04 1.438957254 0.8288331944E-04 1.457225192 0.8190269178E-04 1.475493129 0.7997363535E-04 1.493761067 0.7652014835E-04 1.512029004 0.7114095681E-04 1.530296941 0.6363527998E-04 1.548564879 0.5400221146E-04 1.566832816 0.4242434540E-04 1.585100753 0.2924141908E-04 1.603368691 0.1491698274E-04 1.621636628 0.4369966343E-10 1.639815148 0.7467044959E-05 1.657993667 0.1488244295E-04 1.676172187 0.2219514851E-04 1.694350707 0.2935531458E-04 1.712529226 0.3631488053E-04 1.730707746 0.4302814663E-04 1.748886266 0.4945233096E-04 1.767064785 0.5554810429E-04 1.785243305 0.6128009929E-04 1.803421824 0.6661738973E-04 1.821600344 0.7153393619E-04 1.839778864 0.7600899401E-04 1.857957383 0.8002747954E-04 1.876135903 0.8358028988E-04 1.894314422 0.8666457049E-04 1.912492942 0.8928392387E-04 1.930671462 0.9144855000E-04 1.948849981 0.9317530684E-04 1.967028501 0.9448767494E-04 1.985207021 0.9541560554E-04 2.003385540 0.9599522589E-04 2.021564060 0.9626836945E-04 2.039742579 0.9628189351E-04 2.057921099 0.9608674436E-04 2.076099619 0.9573673297E-04 2.094278138 0.9528699644E-04 2.112456658 0.9479214470E-04 2.130635178 0.9430413151E-04 2.148813697 0.9386994114E-04 2.166992217 0.9352924086E-04 2.185170736 0.9331220086E-04 2.203349256 0.9323770987E-04 2.221527776 0.9382657966E-04 2.239706295 0.9555823233E-04 2.257884815 0.9833430039E-04 2.276063335 0.1020097964E-03 2.294241854 0.1064139410E-03 2.312420374 0.1113690507E-03 2.330598893 0.1167042660E-03 2.348777413 0.1222637130E-03 2.366955933 0.1279102707E-03 2.385134452 0.1335264911E-03 2.403312972 0.1390139602E-03 2.421491492 0.1442919616E-03 2.439670011 0.1492959367E-03 2.457848531 0.1539759828E-03 2.476027050 0.1582954820E-03 2.494205570 0.1622298733E-03 2.512384090 0.1657655424E-03 2.530562609 0.1688987889E-03 2.548741129 0.1716348294E-03 2.566919649 0.1739867949E-03 2.585098168 0.1759746909E-03 2.603276688 0.1776242939E-03 2.621455207 0.1789659665E-03 2.639633727 0.1800333856E-03 2.657812247 0.1808621869E-03 2.675990766 0.1814885445E-03 2.694169286 0.1819477152E-03 2.712347805 0.1822725907E-03 2.730526325 0.1824923144E-03 2.748704845 0.1826310240E-03 2.766883364 0.1827067846E-03 2.785061884 0.1827307766E-03 2.802738302 0.1832452628E-03 2.820414720 0.1847507815E-03 2.838091138 0.1871389704E-03 2.855767556 0.1902459341E-03 2.873443974 0.1938728303E-03 2.891120392 0.1978077587E-03 2.908796810 0.2018453933E-03 2.926473228 0.2058023007E-03 2.944149646 0.2095272846E-03 2.961826064 0.2129069990E-03 2.979502482 0.2158674697E-03 2.997178900 0.2183722522E-03 3.014855318 0.2204178966E-03 3.032531736 0.2220273345E-03 3.050208154 0.2232417927E-03 3.067884572 0.2241118927E-03 3.085560990 0.2246886833E-03 3.103237408 0.2250154267E-03 3.120913826 0.2251209695E-03 3.138505173 0.2231853456E-03 3.156096520 0.2187632498E-03 3.173687868 0.2133540482E-03 3.191279215 0.2075212692E-03 3.208870562 0.2014674299E-03 3.226461909 0.1952803449E-03 3.244053256 0.1890065859E-03 3.261644603 0.1826760917E-03 3.279235950 0.1763118471E-03 3.296827297 0.1699343235E-03 3.314418644 0.1635638512E-03 3.332009992 0.1572221053E-03 3.349601339 0.1509331933E-03 3.367192686 0.1447245634E-03 3.384784033 0.1386278352E-03 3.402375380 0.1326795923E-03 3.419966727 0.1269221311E-03 3.437558074 0.1214041163E-03 3.455149421 0.1161810432E-03 3.472740768 0.1113153370E-03 3.490332115 0.1068758500E-03 3.507923463 0.1029364574E-03 3.525514810 0.9957344221E-04 3.543106157 0.9686147430E-04 3.560697504 0.9486826774E-04 3.578288851 0.9364845436E-04 3.595880198 0.9323770987E-04 0.000000000 0.4369966343E-10 0.1815415904E-01 0.1235050197E-04 0.3630831809E-01 0.2452237058E-04 0.5446247713E-01 0.3634506762E-04 0.7261663618E-01 0.4766399921E-04 0.9077079522E-01 0.5834786129E-04 0.1089249543 0.6829519893E-04 0.1270791133 0.7743985703E-04 0.1452332724 0.8575494396E-04 0.1633874314 0.9325486435E-04 0.1815415904 0.9999491923E-04 0.1996957495 0.1060679597E-03 0.2178499085 0.1115976761E-03 0.2360040676 0.1167283845E-03 0.2541582266 0.1216116868E-03 0.2723123857 0.1263911062E-03 0.2904665447 0.1311865587E-03 0.3086207037 0.1360810123E-03 0.3267748628 0.1411116026E-03 0.3449290218 0.1462667096E-03 0.3630831809 0.1514892779E-03 0.3812373399 0.1566854370E-03 0.3993914990 0.1617366657E-03 0.4175456580 0.1665135274E-03 0.4356998171 0.1708892556E-03 0.4538539761 0.1747519526E-03 0.4720081351 0.1780146482E-03 0.4901622942 0.1806228210E-03 0.5083164532 0.1825591862E-03 0.5264706123 0.1838456305E-03 0.5446247713 0.1845421862E-03 0.5627789304 0.1847429368E-03 0.5809330894 0.1845688093E-03 0.5990872485 0.1841573830E-03 0.6172414075 0.1836501843E-03 0.6353955665 0.1831784313E-03 0.6535497256 0.1828487454E-03 0.6717038846 0.1827307766E-03 0.6899718220 0.1840116887E-03 0.7082397594 0.1876503446E-03 0.7265076968 0.1931050786E-03 0.7447756341 0.1996664034E-03 0.7630435715 0.2066398883E-03 0.7813115089 0.2134788234E-03 0.7995794463 0.2198494346E-03 0.8178473836 0.2256397227E-03 0.8361153210 0.2309289454E-03 0.8543832584 0.2359309264E-03 0.8726511958 0.2409206034E-03 0.8909191331 0.2461509918E-03 0.9091870705 0.2517528371E-03 0.9274550079 0.2578306036E-03 0.9457229453 0.2606277665E-03 0.9639908826 0.2556461766E-03 0.9822588200 0.2514452140E-03 1.000526757 0.2478364915E-03 1.018794695 0.2445176276E-03 1.037062632 0.2411452192E-03 1.055330570 0.2374052882E-03 1.073598507 0.2330659007E-03 1.091866444 0.2280045960E-03 1.110134382 0.2222102815E-03 1.128402319 0.2157638045E-03 1.146670256 0.2088039636E-03 1.164938194 0.2014872095E-03 1.183206131 0.1939500468E-03 1.201474069 0.1862827882E-03 1.219742006 0.1785210897E-03 1.238009943 0.1706574354E-03 1.256277881 0.1626693818E-03 1.274545818 0.1545566520E-03 1.292813755 0.1463765344E-03 1.311081693 0.1382666913E-03 1.329349630 0.1304456782E-03 1.347617568 0.1231838915E-03 1.365885505 0.1167428238E-03 1.384153442 0.1112913073E-03 1.402421380 0.1068233955E-03 1.420689317 0.1031134454E-03 1.438957254 0.9973425197E-04 1.457225192 0.9613358060E-04 1.475493129 0.9173688032E-04 1.493761067 0.8604068920E-04 1.512029004 0.7867730001E-04 1.530296941 0.6944834078E-04 1.548564879 0.5833334433E-04 1.566832816 0.4548053309E-04 1.585100753 0.3118535554E-04 1.603368691 0.1586050128E-04 1.621636628 0.4369966343E-10 1.639815148 0.7467044959E-05 1.657993667 0.1488244295E-04 1.676172187 0.2219514851E-04 1.694350707 0.2935531458E-04 1.712529226 0.3631488053E-04 1.730707746 0.4302814663E-04 1.748886266 0.4945233096E-04 1.767064785 0.5554810429E-04 1.785243305 0.6128009929E-04 1.803421824 0.6661738973E-04 1.821600344 0.7153393619E-04 1.839778864 0.7600899401E-04 1.857957383 0.8002747954E-04 1.876135903 0.8358028988E-04 1.894314422 0.8666457049E-04 1.912492942 0.8928392387E-04 1.930671462 0.9144855000E-04 1.948849981 0.9317530684E-04 1.967028501 0.9448767494E-04 1.985207021 0.9541560554E-04 2.003385540 0.9599522589E-04 2.021564060 0.9626836945E-04 2.039742579 0.9628189351E-04 2.057921099 0.9608674436E-04 2.076099619 0.9573673297E-04 2.094278138 0.9528699644E-04 2.112456658 0.9479214470E-04 2.130635178 0.9430413151E-04 2.148813697 0.9386994114E-04 2.166992217 0.9352924086E-04 2.185170736 0.9331220086E-04 2.203349256 0.9323770987E-04 2.221527776 0.9476465322E-04 2.239706295 0.9916688724E-04 2.257884815 0.1059822990E-03 2.276063335 0.1146233456E-03 2.294241854 0.1245124229E-03 2.312420374 0.1351493810E-03 2.330598893 0.1461260598E-03 2.348777413 0.1571158560E-03 2.366955933 0.1678564638E-03 2.385134452 0.1781334646E-03 2.403312972 0.1877667952E-03 2.421491492 0.1965999867E-03 2.439670011 0.2044916446E-03 2.457848531 0.2113090824E-03 2.476027050 0.2169250450E-03 2.494205570 0.2212199339E-03 2.512384090 0.2240930415E-03 2.530562609 0.2254846693E-03 2.548741129 0.2254040503E-03 2.566919649 0.2239487273E-03 2.585098168 0.2213010134E-03 2.603276688 0.2177019737E-03 2.621455207 0.2134183642E-03 2.639633727 0.2087175124E-03 2.657812247 0.2038544448E-03 2.675990766 0.1990675932E-03 2.694169286 0.1945777935E-03 2.712347805 0.1905868825E-03 2.730526325 0.1872741901E-03 2.748704845 0.1847907357E-03 2.766883364 0.1832519945E-03 2.785061884 0.1827307766E-03 2.802738302 0.1833678462E-03 2.820414720 0.1852167285E-03 2.838091138 0.1881019245E-03 2.855767556 0.1917654460E-03 2.873443974 0.1959076176E-03 2.891120392 0.2002282496E-03 2.908796810 0.2044613996E-03 2.926473228 0.2084007952E-03 2.944149646 0.2119157336E-03 2.961826064 0.2149584227E-03 2.979502482 0.2175637473E-03 2.997178900 0.2198419985E-03 3.014855318 0.2219647202E-03 3.032531736 0.2241438786E-03 3.050208154 0.2266052550E-03 3.067884572 0.2295582801E-03 3.085560990 0.2331660970E-03 3.103237408 0.2375207114E-03 3.120913826 0.2426278486E-03 3.138505173 0.2422780226E-03 3.156096520 0.2412302553E-03 3.173687868 0.2394896897E-03 3.191279215 0.2370649313E-03 3.208870562 0.2339681029E-03 3.226461909 0.2302149270E-03 3.244053256 0.2258248428E-03 3.261644603 0.2208211688E-03 3.279235950 0.2152313228E-03 3.296827297 0.2090871190E-03 3.314418644 0.2024251668E-03 3.332009992 0.1952874051E-03 3.349601339 0.1877218160E-03 3.367192686 0.1797833787E-03 3.384784033 0.1715353400E-03 3.402375380 0.1630508979E-03 3.419966727 0.1544154142E-03 3.437558074 0.1457292734E-03 3.455149421 0.1371114687E-03 3.472740768 0.1287038610E-03 3.490332115 0.1206757260E-03 3.507923463 0.1132275155E-03 3.525514810 0.1065915654E-03 3.543106157 0.1010258976E-03 3.560697504 0.9679621575E-04 3.578288851 0.9414299364E-04 3.595880198 0.9323770987E-04 0.000000000 0.4369966343E-10 0.1815415904E-01 0.1949397745E-04 0.3630831809E-01 0.3877023166E-04 0.5446247713E-01 0.5762116465E-04 0.7261663618E-01 0.7585898369E-04 0.9077079522E-01 0.9332448163E-04 0.1089249543 0.1098944486E-03 0.1270791133 0.1254872299E-03 0.1452332724 0.1400659423E-03 0.1633874314 0.1536388834E-03 0.1815415904 0.1662567560E-03 0.1996957495 0.1780064975E-03 0.2178499085 0.1890017939E-03 0.2360040676 0.1993707631E-03 0.2541582266 0.2092417772E-03 0.2723123857 0.2187288560E-03 0.2904665447 0.2279183693E-03 0.3086207037 0.2368587962E-03 0.3267748628 0.2455549376E-03 0.3449290218 0.2539673323E-03 0.3630831809 0.2620168347E-03 0.3812373399 0.2695936005E-03 0.3993914990 0.2765692375E-03 0.4175456580 0.2828106898E-03 0.4356998171 0.2881944726E-03 0.4538539761 0.2926200828E-03 0.4720081351 0.2960216580E-03 0.4901622942 0.2983771745E-03 0.5083164532 0.2997146218E-03 0.5264706123 0.3001146723E-03 0.5446247713 0.2997093949E-03 0.5627789304 0.2986766085E-03 0.5809330894 0.2972295996E-03 0.5990872485 0.2956022314E-03 0.6172414075 0.2940300332E-03 0.6353955665 0.2927286644E-03 0.6535497256 0.2918720802E-03 0.6717038846 0.2915734567E-03 0.6899718220 0.2921718228E-03 0.7082397594 0.2938416635E-03 0.7265076968 0.2962315946E-03 0.7447756341 0.2988305485E-03 0.7630435715 0.3010593122E-03 0.7813115089 0.3023670432E-03 0.7995794463 0.3023157608E-03 0.8178473836 0.3006418407E-03 0.8361153210 0.2972894671E-03 0.8543832584 0.2924152378E-03 0.8726511958 0.2863657948E-03 0.8909191331 0.2796340879E-03 0.9091870705 0.2728187891E-03 0.9274550079 0.2664089591E-03 0.9457229453 0.2644914452E-03 0.9639908826 0.2715619079E-03 0.9822588200 0.2787585899E-03 1.000526757 0.2857436724E-03 1.018794695 0.2921821331E-03 1.037062632 0.2977883863E-03 1.055330570 0.3023555564E-03 1.073598507 0.3057655762E-03 1.091866444 0.3079818959E-03 1.110134382 0.3090289487E-03 1.128402319 0.3089640462E-03 1.146670256 0.3078481909E-03 1.164938194 0.3057222115E-03 1.183206131 0.3025933900E-03 1.201474069 0.2984353574E-03 1.219742006 0.2932009432E-03 1.238009943 0.2868446435E-03 1.256277881 0.2793492200E-03 1.274545818 0.2707500541E-03 1.292813755 0.2611512271E-03 1.311081693 0.2507285392E-03 1.329349630 0.2397165416E-03 1.347617568 0.2283790913E-03 1.365885505 0.2169661611E-03 1.384153442 0.2056636590E-03 1.402421380 0.1945470687E-03 1.420689317 0.1835518523E-03 1.438957254 0.1724713637E-03 1.457225192 0.1609857975E-03 1.475493129 0.1487160901E-03 1.493761067 0.1352894610E-03 1.512029004 0.1204017562E-03 1.530296941 0.1038654166E-03 1.548564879 0.8563765910E-04 1.566832816 0.6582840253E-04 1.585100753 0.4469043025E-04 1.603368691 0.2259546411E-04 1.621636628 0.4369966343E-10 1.639815148 0.1951841901E-04 1.657993667 0.3894844965E-04 1.676172187 0.5820266705E-04 1.694350707 0.7719556138E-04 1.712529226 0.9584446544E-04 1.730707746 0.1140704463E-03 1.748886266 0.1317991495E-03 1.767064785 0.1489615833E-03 1.785243305 0.1654948328E-03 1.803421824 0.1813426907E-03 1.821600344 0.1964561953E-03 1.839778864 0.2107940638E-03 1.857957383 0.2243230109E-03 1.876135903 0.2370179435E-03 1.894314422 0.2488620210E-03 1.912492942 0.2598465760E-03 1.930671462 0.2699708859E-03 1.948849981 0.2792417938E-03 1.967028501 0.2876731759E-03 1.985207021 0.2952852553E-03 2.003385540 0.3021037706E-03 2.021564060 0.3081590062E-03 2.039742579 0.3134847012E-03 2.057921099 0.3181168578E-03 2.076099619 0.3220924770E-03 2.094278138 0.3254482536E-03 2.112456658 0.3282192722E-03 2.130635178 0.3304377447E-03 2.148813697 0.3321318372E-03 2.166992217 0.3333246322E-03 2.185170736 0.3340332673E-03 2.203349256 0.3342682919E-03 2.221527776 0.3341499762E-03 2.239706295 0.3337937916E-03 2.257884815 0.3331961748E-03 2.276063335 0.3323516851E-03 2.294241854 0.3312537529E-03 2.312420374 0.3298957358E-03 2.330598893 0.3282722933E-03 2.348777413 0.3263811055E-03 2.366955933 0.3242249714E-03 2.385134452 0.3218143380E-03 2.403312972 0.3191703004E-03 2.421491492 0.3163280610E-03 2.439670011 0.3133406466E-03 2.457848531 0.3102822410E-03 2.476027050 0.3072496067E-03 2.494205570 0.3043587526E-03 2.512384090 0.3017330302E-03 2.530562609 0.2994805578E-03 2.548741129 0.2976658831E-03 2.566919649 0.2962900897E-03 2.585098168 0.2952935865E-03 2.603276688 0.2945809947E-03 2.621455207 0.2940525195E-03 2.639633727 0.2936266008E-03 2.657812247 0.2932492665E-03 2.675990766 0.2928935446E-03 2.694169286 0.2925539217E-03 2.712347805 0.2922393497E-03 2.730526325 0.2919665727E-03 2.748704845 0.2917544807E-03 2.766883364 0.2916197002E-03 2.785061884 0.2915734567E-03 2.802738302 0.2918166565E-03 2.820414720 0.2925060755E-03 2.838091138 0.2935261823E-03 2.855767556 0.2947001494E-03 2.873443974 0.2958103915E-03 2.891120392 0.2966222544E-03 2.908796810 0.2969076694E-03 2.926473228 0.2964663455E-03 2.944149646 0.2951430150E-03 2.961826064 0.2928400630E-03 2.979502482 0.2895253943E-03 2.997178900 0.2852356232E-03 3.014855318 0.2800746851E-03 3.032531736 0.2742078668E-03 3.050208154 0.2678511363E-03 3.067884572 0.2612556580E-03 3.085560990 0.2546876372E-03 3.103237408 0.2484042942E-03 3.120913826 0.2426278486E-03 3.138505173 0.2444847879E-03 3.156096520 0.2486704879E-03 3.173687868 0.2536845903E-03 3.191279215 0.2589620235E-03 3.208870562 0.2642983423E-03 3.226461909 0.2696036479E-03 3.244053256 0.2748294220E-03 3.261644603 0.2799442719E-03 3.279235950 0.2849246669E-03 3.296827297 0.2897509768E-03 3.314418644 0.2944056378E-03 3.332009992 0.2988722695E-03 3.349601339 0.3031352530E-03 3.367192686 0.3071795495E-03 3.384784033 0.3109906507E-03 3.402375380 0.3145546028E-03 3.419966727 0.3178580739E-03 3.437558074 0.3208884427E-03 3.455149421 0.3236338992E-03 3.472740768 0.3260835481E-03 3.490332115 0.3282275095E-03 3.507923463 0.3300570133E-03 3.525514810 0.3315644856E-03 3.543106157 0.3327436234E-03 3.560697504 0.3335894574E-03 3.578288851 0.3340984022E-03 3.595880198 0.3342682919E-03 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/PaxHeaders/PHDLINES.OUT0000644000000000000000000000013214536061315023440 xustar0030 mtime=1702388429.023499853 30 atime=1702388429.023499853 30 ctime=1702388429.023499853 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/PHDLINES.OUT0000644002504400250440000000106014536061315026157 0ustar00dewhurstdewhurst00000000000000 0.000000000 -0.2507012189E-03 0.000000000 0.5014024379E-03 0.6717038846 -0.2507012189E-03 0.6717038846 0.5014024379E-03 1.621636628 -0.2507012189E-03 1.621636628 0.5014024379E-03 2.203349256 -0.2507012189E-03 2.203349256 0.5014024379E-03 2.785061884 -0.2507012189E-03 2.785061884 0.5014024379E-03 3.120913826 -0.2507012189E-03 3.120913826 0.5014024379E-03 3.595880198 -0.2507012189E-03 3.595880198 0.5014024379E-03 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/PaxHeaders/PHDOS.OUT0000644000000000000000000000013214536061315023107 xustar0030 mtime=1702388429.024499852 30 atime=1702388429.024499852 30 ctime=1702388429.024499852 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/PHDOS.OUT0000644002504400250440000004410414536061315025634 0ustar00dewhurstdewhurst00000000000000 -0.3676951211E-04 0.000000000 -0.3596058284E-04 0.000000000 -0.3515165358E-04 0.000000000 -0.3434272431E-04 0.000000000 -0.3353379504E-04 0.000000000 -0.3272486578E-04 0.000000000 -0.3191593651E-04 0.000000000 -0.3110700725E-04 0.000000000 -0.3029807798E-04 0.000000000 -0.2948914871E-04 0.000000000 -0.2868021945E-04 0.000000000 -0.2787129018E-04 0.000000000 -0.2706236091E-04 0.000000000 -0.2625343165E-04 0.000000000 -0.2544450238E-04 0.000000000 -0.2463557311E-04 0.000000000 -0.2382664385E-04 0.000000000 -0.2301771458E-04 0.000000000 -0.2220878531E-04 0.000000000 -0.2139985605E-04 0.000000000 -0.2059092678E-04 0.000000000 -0.1978199752E-04 0.000000000 -0.1897306825E-04 0.000000000 -0.1816413898E-04 0.000000000 -0.1735520972E-04 0.000000000 -0.1654628045E-04 0.000000000 -0.1573735118E-04 0.000000000 -0.1492842192E-04 0.000000000 -0.1411949265E-04 0.000000000 -0.1331056338E-04 0.000000000 -0.1250163412E-04 0.000000000 -0.1169270485E-04 0.000000000 -0.1088377558E-04 0.000000000 -0.1007484632E-04 0.000000000 -0.9265917052E-05 0.000000000 -0.8456987785E-05 0.000000000 -0.7648058519E-05 0.000000000 -0.6839129253E-05 0.000000000 -0.6030199986E-05 0.000000000 -0.5221270720E-05 0.000000000 -0.4412341453E-05 0.000000000 -0.3603412187E-05 0.000000000 -0.2794482920E-05 0.000000000 -0.1985553654E-05 0.000000000 -0.1176624388E-05 1.236202028 -0.3676951211E-06 1.236202028 0.4412341453E-06 1.236202028 0.1250163412E-05 0.000000000 0.2059092678E-05 0.000000000 0.2868021945E-05 0.000000000 0.3676951211E-05 4.944808114 0.4485880477E-05 7.417212170 0.5294809744E-05 7.417212170 0.6103739010E-05 2.472404057 0.6912668277E-05 2.472404057 0.7721597543E-05 4.944808114 0.8530526810E-05 19.77923245 0.9339456076E-05 19.77923245 0.1014838534E-04 22.25163651 0.1095731461E-04 17.30682840 0.1176624388E-04 26.37230994 0.1257517314E-04 31.31711805 0.1338410241E-04 46.15154239 0.1419303167E-04 35.43779148 0.1500196094E-04 50.27221582 0.1581089021E-04 47.79981177 0.1661981947E-04 51.92048519 0.1742874874E-04 56.86529331 0.1823767801E-04 64.28250548 0.1904660727E-04 93.95135416 0.1985553654E-04 71.69971765 0.2066446581E-04 74.17212170 0.2147339507E-04 71.69971765 0.2228232434E-04 98.89616227 0.2309125361E-04 120.3236641 0.2390018287E-04 140.1028966 0.2470911214E-04 125.2684722 0.2551804140E-04 111.2581826 0.2632697067E-04 128.5650110 0.2713589994E-04 153.2890515 0.2794482920E-04 187.9027083 0.2875375847E-04 151.6407822 0.2956268774E-04 156.5855903 0.3037161700E-04 181.3096308 0.3118054627E-04 215.0991529 0.3198947554E-04 222.5163651 0.3279840480E-04 195.3199205 0.3360733407E-04 192.8475164 0.3441626334E-04 244.7680016 0.3522519260E-04 273.6127156 0.3603412187E-04 313.1711805 0.3684305113E-04 276.0851197 0.3765198040E-04 259.6024260 0.3846090967E-04 301.6332949 0.3926983893E-04 331.3021436 0.4007876820E-04 390.6398410 0.4088769747E-04 336.2469517 0.4169662673E-04 363.4433964 0.4250555600E-04 361.7951270 0.4331448527E-04 423.6052284 0.4412341453E-04 396.4087838 0.4493234380E-04 400.5294572 0.4574127307E-04 412.0673428 0.4655020233E-04 493.6566767 0.4735913160E-04 506.0186970 0.4816806086E-04 489.5360033 0.4897699013E-04 506.8428317 0.4978591940E-04 558.7633168 0.5059484866E-04 588.4321655 0.5140377793E-04 593.3769736 0.5221270720E-04 573.5977412 0.5302163646E-04 630.4630345 0.5383056573E-04 630.4630345 0.5463949500E-04 677.4387116 0.5544842426E-04 676.6145769 0.5625735353E-04 709.5799643 0.5706628280E-04 736.7764089 0.5787521206E-04 806.8278572 0.5868414133E-04 788.6968941 0.5949307059E-04 843.0897834 0.6030199986E-04 843.0897834 0.6111092913E-04 914.7895010 0.6191985839E-04 919.7343091 0.6272878766E-04 919.7343091 0.6353771693E-04 988.1374880 0.6434664619E-04 1012.861529 0.6515557546E-04 1059.837206 0.6596450473E-04 1050.771724 0.6677343399E-04 1147.195482 0.6758236326E-04 1174.391927 0.6839129253E-04 1194.171159 0.6920022179E-04 1239.498567 0.7000915106E-04 1293.891456 0.7081808032E-04 1352.405019 0.7162700959E-04 1393.611753 0.7243593886E-04 1462.839067 0.7324486812E-04 1515.583687 0.7405379739E-04 1466.135606 0.7486272666E-04 1614.479849 0.7567165592E-04 1696.069183 0.7648058519E-04 1804.030827 0.7728951446E-04 1806.503231 0.7809844372E-04 1897.982181 0.7890737299E-04 2000.174882 0.7971630226E-04 2148.519125 0.8052523152E-04 2326.532217 0.8133416079E-04 2744.368503 0.8214309005E-04 3124.294593 0.8295201932E-04 3709.430220 0.8376094859E-04 4010.239380 0.8456987785E-04 4369.562103 0.8537880712E-04 4517.906347 0.8618773639E-04 4600.319815 0.8699666565E-04 4635.757607 0.8780559492E-04 4621.747317 0.8861452419E-04 4793.991466 0.8942345345E-04 4956.345999 0.9023238272E-04 5228.310446 0.9104131199E-04 5411.268346 0.9185024125E-04 5648.619135 0.9265917052E-04 6159.582640 0.9346809978E-04 6605.439505 0.9427702905E-04 7122.996088 0.9508595832E-04 7368.588224 0.9589488758E-04 7692.473155 0.9670381685E-04 7736.152294 0.9751274612E-04 7807.852011 0.9832167538E-04 7937.241157 0.9913060465E-04 8080.640592 0.9993953392E-04 8033.664915 0.1007484632E-03 8074.871650 0.1015573924E-03 8045.202801 0.1023663217E-03 8416.063409 0.1031752510E-03 8401.228985 0.1039841802E-03 8440.787450 0.1047931095E-03 8331.177537 0.1056020388E-03 8375.680810 0.1064109680E-03 8556.166306 0.1072198973E-03 8717.696704 0.1080288266E-03 8716.872570 0.1088377558E-03 8813.296328 0.1096466851E-03 8850.382389 0.1104556144E-03 9086.084909 0.1112645436E-03 8910.544221 0.1120734729E-03 8930.323453 0.1128824022E-03 9142.950202 0.1136913314E-03 9290.470311 0.1145002607E-03 9330.028776 0.1153091900E-03 9156.960492 0.1161181192E-03 9459.417921 0.1169270485E-03 9501.448790 0.1177359778E-03 9538.534851 0.1185449070E-03 9543.479659 0.1193538363E-03 9877.254207 0.1201627656E-03 10207.73222 0.1209716948E-03 10054.44316 0.1217806241E-03 10004.17095 0.1225895534E-03 9775.885641 0.1233984826E-03 10265.42164 0.1242074119E-03 10271.19059 0.1250163412E-03 10631.33744 0.1258252704E-03 10539.85849 0.1266341997E-03 10714.57505 0.1274431290E-03 10776.38515 0.1282520582E-03 10845.61246 0.1290609875E-03 10942.03622 0.1298699168E-03 10929.67420 0.1306788460E-03 11330.20366 0.1314877753E-03 11329.37952 0.1322967046E-03 11650.79205 0.1331056338E-03 11536.23733 0.1339145631E-03 11898.85659 0.1347234924E-03 12022.47679 0.1355324216E-03 12181.53479 0.1363413509E-03 12104.06613 0.1371502802E-03 12393.33740 0.1379592094E-03 12595.25040 0.1387681387E-03 12875.45619 0.1395770680E-03 12965.28687 0.1403859972E-03 13158.95853 0.1411949265E-03 13354.27845 0.1420038558E-03 13426.80230 0.1428127850E-03 13613.88087 0.1436217143E-03 13984.74148 0.1444306436E-03 14363.84344 0.1452395728E-03 14658.88365 0.1460485021E-03 14817.11751 0.1468574314E-03 15089.90609 0.1476663606E-03 15505.26998 0.1484752899E-03 15956.07165 0.1492842192E-03 16317.04264 0.1500931484E-03 16941.73673 0.1509020777E-03 17343.91446 0.1517110070E-03 17807.90229 0.1525199362E-03 17976.84990 0.1533288655E-03 18182.05943 0.1541377948E-03 18308.15204 0.1549467240E-03 18473.80311 0.1557556533E-03 18735.87794 0.1565645826E-03 19025.14922 0.1573735118E-03 19772.63938 0.1581824411E-03 20482.21934 0.1589913704E-03 21078.06872 0.1598002996E-03 21126.69267 0.1606092289E-03 21322.01259 0.1614181582E-03 21376.40548 0.1622270874E-03 20857.20062 0.1630360167E-03 19895.43545 0.1638449460E-03 19247.66558 0.1646538752E-03 19195.74510 0.1654628045E-03 18748.23996 0.1662717338E-03 18608.13707 0.1670806630E-03 18140.85270 0.1678895923E-03 18563.63379 0.1686985216E-03 18261.17636 0.1695074508E-03 18229.03511 0.1703163801E-03 17969.43269 0.1711253094E-03 18140.02856 0.1719342386E-03 18182.05943 0.1727431679E-03 17974.37749 0.1735520972E-03 17868.06412 0.1743610264E-03 17791.41959 0.1751699557E-03 17814.49536 0.1759788850E-03 17787.29892 0.1767878142E-03 18113.65626 0.1775967435E-03 18229.03511 0.1784056728E-03 17873.00893 0.1792146020E-03 17694.99583 0.1800235313E-03 18177.11463 0.1808324606E-03 18607.31293 0.1816413898E-03 18562.80966 0.1824503191E-03 18031.24279 0.1832592484E-03 17596.09967 0.1840681776E-03 17494.73111 0.1848771069E-03 17013.43645 0.1856860362E-03 16699.44113 0.1864949654E-03 16106.06416 0.1873038947E-03 16164.57772 0.1881128240E-03 16132.43647 0.1889217532E-03 15993.98184 0.1897306825E-03 15679.98653 0.1905396118E-03 15363.51881 0.1913485410E-03 15294.29150 0.1921574703E-03 15430.27372 0.1929663996E-03 15299.23630 0.1937753288E-03 14906.12406 0.1945842581E-03 14459.44306 0.1953931874E-03 14219.61987 0.1962021166E-03 14039.13437 0.1970110459E-03 13615.52914 0.1978199752E-03 13350.98191 0.1986289044E-03 13165.55160 0.1994378337E-03 12994.95572 0.2002467630E-03 12990.01091 0.2010556922E-03 12643.87435 0.2018646215E-03 12485.64049 0.2026735508E-03 12250.76210 0.2034824800E-03 12381.79952 0.2042914093E-03 12246.64143 0.2051003386E-03 12194.72094 0.2059092678E-03 11796.66389 0.2067181971E-03 11919.45996 0.2075271264E-03 11736.50206 0.2083360556E-03 11637.60590 0.2091449849E-03 11420.03434 0.2099539141E-03 11251.91086 0.2107628434E-03 11286.52452 0.2115717727E-03 11424.97915 0.2123807019E-03 11229.65923 0.2131896312E-03 11120.87345 0.2139985605E-03 10926.37766 0.2148074897E-03 10802.75746 0.2156164190E-03 10745.89217 0.2164253483E-03 10656.06148 0.2172342775E-03 10754.95765 0.2180432068E-03 10801.93332 0.2188521361E-03 10532.44128 0.2196610653E-03 10465.68637 0.2204699946E-03 10339.59377 0.2212789239E-03 10290.14568 0.2220878531E-03 10262.94924 0.2228967824E-03 10112.13259 0.2237057117E-03 10147.57038 0.2245146409E-03 10150.04279 0.2253235702E-03 10001.69854 0.2261324995E-03 9790.720065 0.2269414287E-03 9634.958609 0.2277503580E-03 9723.965156 0.2285592873E-03 9857.474975 0.2293682165E-03 9973.677965 0.2301771458E-03 10015.70883 0.2309860751E-03 9919.285076 0.2317950043E-03 9751.161600 0.2326039336E-03 9869.836995 0.2334128629E-03 9742.096119 0.2342217921E-03 9749.513331 0.2350307214E-03 9648.144764 0.2358396507E-03 9573.148508 0.2366485799E-03 9503.921194 0.2374575092E-03 9098.446929 0.2382664385E-03 9115.753758 0.2390753677E-03 8880.875372 0.2398842970E-03 8851.206523 0.2406932263E-03 8655.886603 0.2415021555E-03 8507.542360 0.2423110848E-03 8199.315987 0.2431200141E-03 7850.707015 0.2439289433E-03 7536.711700 0.2447378726E-03 7160.082149 0.2455468019E-03 6727.411439 0.2463557311E-03 6499.950265 0.2471646604E-03 6218.096203 0.2479735897E-03 6064.807151 0.2487825189E-03 5689.001735 0.2495914482E-03 5548.074704 0.2504003775E-03 5362.644399 0.2512093067E-03 5274.461988 0.2520182360E-03 5111.283320 0.2528271653E-03 4975.301097 0.2536360945E-03 4793.991466 0.2544450238E-03 4653.064435 0.2552539531E-03 4544.278656 0.2560628823E-03 4376.155181 0.2568718116E-03 4519.554616 0.2576807409E-03 4450.327302 0.2584896701E-03 4395.934413 0.2592985994E-03 4174.242183 0.2601075287E-03 4196.493819 0.2609164579E-03 4283.027961 0.2617253872E-03 4353.903544 0.2625343165E-03 4509.665000 0.2633432457E-03 4502.247787 0.2641521750E-03 4551.695869 0.2649611043E-03 4489.885767 0.2657700335E-03 4707.457324 0.2665789628E-03 4888.766955 0.2673878921E-03 5163.203805 0.2681968213E-03 5309.075645 0.2690057506E-03 5412.092480 0.2698146799E-03 5389.840844 0.2706236091E-03 5567.853936 0.2714325384E-03 5958.493777 0.2722414677E-03 6307.102749 0.2730503969E-03 6561.760367 0.2738593262E-03 6584.836138 0.2746682555E-03 6794.990483 0.2754771847E-03 7324.084951 0.2762861140E-03 7815.269224 0.2770950433E-03 8126.792135 0.2779039725E-03 8317.167247 0.2787129018E-03 8559.462845 0.2795218311E-03 9019.329999 0.2803307603E-03 9566.555431 0.2811396896E-03 10046.20182 0.2819486189E-03 10426.95204 0.2827575481E-03 10782.15409 0.2835664774E-03 11474.42723 0.2843754067E-03 12248.28970 0.2851843359E-03 12715.57406 0.2859932652E-03 13368.28874 0.2868021945E-03 14056.44120 0.2876111237E-03 15401.42900 0.2884200530E-03 16494.23160 0.2892289823E-03 19786.64967 0.2900379115E-03 22788.14819 0.2908468408E-03 25308.76413 0.2916557701E-03 25605.45261 0.2924646993E-03 25846.09994 0.2932736286E-03 26010.51481 0.2940825579E-03 25795.41566 0.2948914871E-03 25230.88340 0.2957004164E-03 24795.74029 0.2965093457E-03 24283.95265 0.2973182749E-03 23670.79644 0.2981272042E-03 22559.03875 0.2989361335E-03 21592.32876 0.2997450627E-03 20269.59259 0.3005539920E-03 19455.34752 0.3013629213E-03 18439.18946 0.3021718505E-03 18075.74606 0.3029807798E-03 17559.83775 0.3037897091E-03 16986.24001 0.3045986383E-03 16568.40372 0.3054075676E-03 16164.57772 0.3062164969E-03 15900.03049 0.3070254261E-03 15276.98467 0.3078343554E-03 14802.28309 0.3086432847E-03 14249.28871 0.3094522139E-03 13213.35141 0.3102611432E-03 12296.08951 0.3110700725E-03 11610.40945 0.3118790017E-03 11073.89777 0.3126879310E-03 10705.50957 0.3134968603E-03 10273.66299 0.3143057895E-03 10085.76028 0.3151147188E-03 9603.641491 0.3159236481E-03 9278.932425 0.3167325773E-03 9046.526444 0.3175415066E-03 8856.975466 0.3183504359E-03 8597.373040 0.3191593651E-03 8320.463786 0.3199682944E-03 8285.025994 0.3207772236E-03 8000.699528 0.3215861529E-03 7879.551729 0.3223950822E-03 7484.791215 0.3232040114E-03 7420.508709 0.3240129407E-03 7173.268304 0.3248218700E-03 7125.468492 0.3256307992E-03 6953.224342 0.3264397285E-03 6760.376826 0.3272486578E-03 6644.173835 0.3280575870E-03 6396.109295 0.3288665163E-03 6312.047557 0.3296754456E-03 5998.876377 0.3304843748E-03 5969.207528 0.3312933041E-03 5833.225305 0.3321022334E-03 5746.691163 0.3329111626E-03 5571.150475 0.3337200919E-03 5253.034486 0.3345290212E-03 4789.046658 0.3353379504E-03 4313.520944 0.3361468797E-03 3733.330126 0.3369558090E-03 3275.935375 0.3377647382E-03 2777.333891 0.3385736675E-03 2444.383478 0.3393825968E-03 2222.691247 0.3401915260E-03 1945.781993 0.3410004553E-03 1740.572456 0.3418093846E-03 1451.301181 0.3426183138E-03 1209.005584 0.3434272431E-03 781.2796820 0.3442361724E-03 373.3330126 0.3450451016E-03 84.06173793 0.3458540309E-03 0.000000000 0.3466629602E-03 0.000000000 0.3474718894E-03 0.000000000 0.3482808187E-03 0.000000000 0.3490897480E-03 0.000000000 0.3498986772E-03 0.000000000 0.3507076065E-03 0.000000000 0.3515165358E-03 0.000000000 0.3523254650E-03 0.000000000 0.3531343943E-03 0.000000000 0.3539433236E-03 0.000000000 0.3547522528E-03 0.000000000 0.3555611821E-03 0.000000000 0.3563701114E-03 0.000000000 0.3571790406E-03 0.000000000 0.3579879699E-03 0.000000000 0.3587968992E-03 0.000000000 0.3596058284E-03 0.000000000 0.3604147577E-03 0.000000000 0.3612236870E-03 0.000000000 0.3620326162E-03 0.000000000 0.3628415455E-03 0.000000000 0.3636504748E-03 0.000000000 0.3644594040E-03 0.000000000 0.3652683333E-03 0.000000000 0.3660772626E-03 0.000000000 0.3668861918E-03 0.000000000 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/PaxHeaders/PHLWIDTH.OUT0000644000000000000000000000013214536061315023455 xustar0030 mtime=1702388429.027499847 30 atime=1702388429.026499848 30 ctime=1702388429.027499847 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/PHLWIDTH.OUT0000644002504400250440000005331214536061315026203 0ustar00dewhurstdewhurst00000000000000 0.000000000 0.5290416243E-12 0.1815415904E-01 0.2978788816E-10 0.3630831809E-01 0.3728506999E-09 0.5446247713E-01 0.1704853346E-08 0.7261663618E-01 0.4877086012E-08 0.9077079522E-01 0.1059684951E-07 0.1089249543 0.1913157002E-07 0.1270791133 0.3013078114E-07 0.1452332724 0.4262365003E-07 0.1633874314 0.5519640890E-07 0.1815415904 0.6630010576E-07 0.1996957495 0.7460122216E-07 0.2178499085 0.7927735877E-07 0.2360040676 0.8018003602E-07 0.2541582266 0.7782994189E-07 0.2723123857 0.7326278030E-07 0.2904665447 0.6778962830E-07 0.3086207037 0.6276024235E-07 0.3267748628 0.5941361576E-07 0.3449290218 0.5886863367E-07 0.3630831809 0.6225845056E-07 0.3812373399 0.7095997733E-07 0.3993914990 0.8683016104E-07 0.4175456580 0.1123454840E-06 0.4356998171 0.1505553598E-06 0.4538539761 0.2048009044E-06 0.4720081351 0.2782079765E-06 0.4901622942 0.3730233458E-06 0.5083164532 0.4899108095E-06 0.5264706123 0.6273485914E-06 0.5446247713 0.7812645298E-06 0.5627789304 0.9450121104E-06 0.5809330894 0.1109734998E-05 0.5990872485 0.1265101257E-05 0.6172414075 0.1400323506E-05 0.6353955665 0.1505329553E-05 0.6535497256 0.1571918573E-05 0.6717038846 0.1594735234E-05 0.6899718220 0.1547262429E-05 0.7082397594 0.1414104030E-05 0.7265076968 0.1220079341E-05 0.7447756341 0.9979605118E-06 0.7630435715 0.7793805906E-06 0.7813115089 0.5876965695E-06 0.7995794463 0.4349200496E-06 0.8178473836 0.3227604406E-06 0.8361153210 0.2461710552E-06 0.8543832584 0.1972853668E-06 0.8726511958 0.1682452589E-06 0.8909191331 0.1525184627E-06 0.9091870705 0.1451472049E-06 0.9274550079 0.1426000855E-06 0.9457229453 0.1426380325E-06 0.9639908826 0.1442357065E-06 0.9822588200 0.1474229114E-06 1.000526757 0.1529620777E-06 1.018794695 0.1618991572E-06 1.037062632 0.1750688844E-06 1.055330570 0.1926010211E-06 1.073598507 0.2134683072E-06 1.091866444 0.2352031954E-06 1.110134382 0.2540137150E-06 1.128402319 0.2654918670E-06 1.146670256 0.2658535634E-06 1.164938194 0.2532923043E-06 1.183206131 0.2288233750E-06 1.201474069 0.1961418962E-06 1.219742006 0.1604864241E-06 1.238009943 0.1270189798E-06 1.256277881 0.9946971525E-07 1.274545818 0.7959377468E-07 1.292813755 0.6748557925E-07 1.311081693 0.6232510384E-07 1.329349630 0.6298706751E-07 1.347617568 0.6818449133E-07 1.365885505 0.7623873176E-07 1.384153442 0.8486359720E-07 1.402421380 0.9028946620E-07 1.420689317 0.9201616894E-07 1.438957254 0.8846164910E-07 1.457225192 0.7794004514E-07 1.475493129 0.6269492873E-07 1.493761067 0.4557892881E-07 1.512029004 0.2944154295E-07 1.530296941 0.1644738087E-07 1.548564879 0.7585241762E-08 1.566832816 0.2643466086E-08 1.585100753 0.5725370481E-09 1.603368691 0.4393785056E-10 1.621636628 0.5290416243E-12 1.639815148 0.9984275847E-11 1.657993667 0.1079003572E-09 1.676172187 0.4930251722E-09 1.694350707 0.1464893613E-08 1.712529226 0.3380632376E-08 1.730707746 0.6602624936E-08 1.748886266 0.1144384717E-07 1.767064785 0.1811794290E-07 1.785243305 0.2670043610E-07 1.803421824 0.3710597643E-07 1.821600344 0.4908440231E-07 1.839778864 0.6223597681E-07 1.857957383 0.7604373854E-07 1.876135903 0.8991883558E-07 1.894314422 0.1032532419E-06 1.912492942 0.1154735681E-06 1.930671462 0.1260898347E-06 1.948849981 0.1347340125E-06 1.967028501 0.1411846960E-06 1.985207021 0.1453762037E-06 2.003385540 0.1473924166E-06 2.021564060 0.1474474849E-06 2.039742579 0.1458569080E-06 2.057921099 0.1430032694E-06 2.076099619 0.1393010102E-06 2.094278138 0.1351641045E-06 2.112456658 0.1309794797E-06 2.130635178 0.1270877152E-06 2.148813697 0.1237711879E-06 2.166992217 0.1212486393E-06 2.185170736 0.1196743162E-06 2.203349256 0.1191394887E-06 2.221527776 0.1178332358E-06 2.239706295 0.1140761749E-06 2.257884815 0.1083288565E-06 2.276063335 0.1012829754E-06 2.294241854 0.9376701794E-07 2.312420374 0.8664883051E-07 2.330598893 0.8076047772E-07 2.348777413 0.7686651026E-07 2.366955933 0.7568675277E-07 2.385134452 0.7797032089E-07 2.403312972 0.8460107426E-07 2.421491492 0.9669912311E-07 2.439670011 0.1117045343E-06 2.457848531 0.1302614756E-06 2.476027050 0.1560248004E-06 2.494205570 0.1904814737E-06 2.512384090 0.2351730010E-06 2.530562609 0.2915401672E-06 2.548741129 0.3607271001E-06 2.566919649 0.4433644089E-06 2.585098168 0.5393574678E-06 2.603276688 0.6477090848E-06 2.621455207 0.7664050784E-06 2.639633727 0.8923864859E-06 2.657812247 0.1021623643E-05 2.675990766 0.1149296131E-05 2.694169286 0.1270069980E-05 2.712347805 0.1378451175E-05 2.730526325 0.1469184075E-05 2.748704845 0.1537656337E-05 2.766883364 0.1580269321E-05 2.785061884 0.1594735234E-05 2.802738302 0.1567544308E-05 2.820414720 0.1489365187E-05 2.838091138 0.1369685321E-05 2.855767556 0.1222198453E-05 2.873443974 0.1062237708E-05 2.891120392 0.9041958379E-06 2.908796810 0.7595388886E-06 2.926473228 0.6357807437E-06 2.944149646 0.5323552096E-06 2.961826064 0.4354376668E-06 2.979502482 0.3587073608E-06 2.997178900 0.3000716179E-06 3.014855318 0.2567114828E-06 3.032531736 0.2256639805E-06 3.050208154 0.2041899393E-06 3.067884572 0.1899611050E-06 3.085560990 0.1811344252E-06 3.103237408 0.1763774038E-06 3.120913826 0.1748821027E-06 3.138505173 0.1738758331E-06 3.156096520 0.1709793351E-06 3.173687868 0.1665215617E-06 3.191279215 0.1609477729E-06 3.208870562 0.1547244053E-06 3.226461909 0.1482722327E-06 3.244053256 0.1419341196E-06 3.261644603 0.1359681493E-06 3.279235950 0.1305544783E-06 3.296827297 0.1258075553E-06 3.314418644 0.1217890757E-06 3.332009992 0.1185195777E-06 3.349601339 0.1159879733E-06 3.367192686 0.1141589910E-06 3.384784033 0.1129788149E-06 3.402375380 0.1123793298E-06 3.419966727 0.1122814101E-06 3.437558074 0.1125976708E-06 3.455149421 0.1132350296E-06 3.472740768 0.1140973481E-06 3.490332115 0.1150883071E-06 3.507923463 0.1161145626E-06 3.525514810 0.1170891206E-06 3.543106157 0.1179347797E-06 3.560697504 0.1185874270E-06 3.578288851 0.1189989446E-06 3.595880198 0.1191394887E-06 0.000000000 0.5290416243E-12 0.1815415904E-01 0.2978788816E-10 0.3630831809E-01 0.3728506999E-09 0.5446247713E-01 0.1704853346E-08 0.7261663618E-01 0.4877086012E-08 0.9077079522E-01 0.1059684951E-07 0.1089249543 0.1913157002E-07 0.1270791133 0.3013078114E-07 0.1452332724 0.4262365003E-07 0.1633874314 0.5519640890E-07 0.1815415904 0.6630010576E-07 0.1996957495 0.7460122216E-07 0.2178499085 0.7927735877E-07 0.2360040676 0.8018003602E-07 0.2541582266 0.7782994189E-07 0.2723123857 0.7326278030E-07 0.2904665447 0.6778962830E-07 0.3086207037 0.6276024235E-07 0.3267748628 0.5941361576E-07 0.3449290218 0.5886863367E-07 0.3630831809 0.6225845056E-07 0.3812373399 0.7095997733E-07 0.3993914990 0.8683016104E-07 0.4175456580 0.1123454840E-06 0.4356998171 0.1505553598E-06 0.4538539761 0.2048009044E-06 0.4720081351 0.2782079765E-06 0.4901622942 0.3730233458E-06 0.5083164532 0.4899108095E-06 0.5264706123 0.6273485914E-06 0.5446247713 0.7812645298E-06 0.5627789304 0.9450121104E-06 0.5809330894 0.1109734998E-05 0.5990872485 0.1265101257E-05 0.6172414075 0.1400323506E-05 0.6353955665 0.1505329553E-05 0.6535497256 0.1571918573E-05 0.6717038846 0.1594735234E-05 0.6899718220 0.1548691669E-05 0.7082397594 0.1419718463E-05 0.7265076968 0.1232360221E-05 0.7447756341 0.1019024770E-05 0.7630435715 0.8109911985E-06 0.7813115089 0.6313750607E-06 0.7995794463 0.4921783087E-06 0.8178473836 0.3954746128E-06 0.8361153210 0.3370390980E-06 0.8543832584 0.3101190216E-06 0.8726511958 0.3076895761E-06 0.8909191331 0.3229123557E-06 0.9091870705 0.3486895954E-06 0.9274550079 0.3797699817E-06 0.9457229453 0.4131131737E-06 0.9639908826 0.4457406495E-06 0.9822588200 0.4521825500E-06 1.000526757 0.4212629751E-06 1.018794695 0.3906904434E-06 1.037062632 0.3637547193E-06 1.055330570 0.3427155231E-06 1.073598507 0.3282282764E-06 1.091866444 0.3192558221E-06 1.110134382 0.3133092272E-06 1.128402319 0.3069591780E-06 1.146670256 0.2966316529E-06 1.164938194 0.2796048865E-06 1.183206131 0.2549170024E-06 1.201474069 0.2237808825E-06 1.219742006 0.1892463055E-06 1.238009943 0.1552086895E-06 1.256277881 0.1252105910E-06 1.274545818 0.1015738158E-06 1.292813755 0.8516907639E-07 1.311081693 0.7573755029E-07 1.329349630 0.7239264118E-07 1.347617568 0.7392930745E-07 1.365885505 0.7882016846E-07 1.384153442 0.8507753552E-07 1.402421380 0.9133168116E-07 1.420689317 0.9309920350E-07 1.438957254 0.8862279675E-07 1.457225192 0.7910936637E-07 1.475493129 0.6497908976E-07 1.493761067 0.4833730639E-07 1.512029004 0.3196061426E-07 1.530296941 0.1825622810E-07 1.548564879 0.8587967217E-08 1.566832816 0.3041303217E-08 1.585100753 0.6654594928E-09 1.603368691 0.5082743795E-10 1.621636628 0.5290416243E-12 1.639815148 0.9984275847E-11 1.657993667 0.1079003572E-09 1.676172187 0.4930251722E-09 1.694350707 0.1464893613E-08 1.712529226 0.3380632376E-08 1.730707746 0.6602624936E-08 1.748886266 0.1144384717E-07 1.767064785 0.1811794290E-07 1.785243305 0.2670043610E-07 1.803421824 0.3710597643E-07 1.821600344 0.4908440231E-07 1.839778864 0.6223597681E-07 1.857957383 0.7604373854E-07 1.876135903 0.8991883558E-07 1.894314422 0.1032532419E-06 1.912492942 0.1154735681E-06 1.930671462 0.1260898347E-06 1.948849981 0.1347340125E-06 1.967028501 0.1411846960E-06 1.985207021 0.1453762037E-06 2.003385540 0.1473924166E-06 2.021564060 0.1474474849E-06 2.039742579 0.1458569080E-06 2.057921099 0.1430032694E-06 2.076099619 0.1393010102E-06 2.094278138 0.1351641045E-06 2.112456658 0.1309794797E-06 2.130635178 0.1270877152E-06 2.148813697 0.1237711879E-06 2.166992217 0.1212486393E-06 2.185170736 0.1196743162E-06 2.203349256 0.1191394887E-06 2.221527776 0.1182287293E-06 2.239706295 0.1155952128E-06 2.257884815 0.1115231962E-06 2.276063335 0.1064489229E-06 2.294241854 0.1009128611E-06 2.312420374 0.9550814052E-07 2.330598893 0.9083676600E-07 2.348777413 0.8748392038E-07 2.366955933 0.8601714319E-07 2.385134452 0.8701193326E-07 2.403312972 0.9109926785E-07 2.421491492 0.9902473425E-07 2.439670011 0.1156720352E-06 2.457848531 0.1431678782E-06 2.476027050 0.1808971076E-06 2.494205570 0.2303303136E-06 2.512384090 0.2923468522E-06 2.530562609 0.3669792834E-06 2.548741129 0.4533956978E-06 2.566919649 0.5501233772E-06 2.585098168 0.6553337383E-06 2.603276688 0.7669870775E-06 2.621455207 0.8827993136E-06 2.639633727 0.1000137646E-05 2.657812247 0.1115960446E-05 2.675990766 0.1226853412E-05 2.694169286 0.1329160952E-05 2.712347805 0.1419188076E-05 2.730526325 0.1493441696E-05 2.748704845 0.1548880336E-05 2.766883364 0.1583143442E-05 2.785061884 0.1594735234E-05 2.802738302 0.1570240848E-05 2.820414720 0.1499334649E-05 2.838091138 0.1389294264E-05 2.855767556 0.1250847217E-05 2.873443974 0.1096417551E-05 2.891120392 0.9382651622E-06 2.908796810 0.7869031744E-06 2.926473228 0.6500688870E-06 2.944149646 0.5364631976E-06 2.961826064 0.4618965011E-06 2.979502482 0.4102532891E-06 2.997178900 0.3786124965E-06 3.014855318 0.3636913434E-06 3.032531736 0.3622059532E-06 3.050208154 0.3709746323E-06 3.067884572 0.3869571938E-06 3.085560990 0.4073932123E-06 3.103237408 0.4300966901E-06 3.120913826 0.4538486565E-06 3.138505173 0.4523534284E-06 3.156096520 0.4479026507E-06 3.173687868 0.4405997793E-06 3.191279215 0.4306130878E-06 3.208870562 0.4181696446E-06 3.226461909 0.4035472810E-06 3.244053256 0.3870649287E-06 3.261644603 0.3690717726E-06 3.279235950 0.3499357210E-06 3.296827297 0.3300317139E-06 3.314418644 0.3097303903E-06 3.332009992 0.2893876055E-06 3.349601339 0.2693352357E-06 3.367192686 0.2498736284E-06 3.384784033 0.2312659685E-06 3.402375380 0.2137347189E-06 3.419966727 0.1974601851E-06 3.437558074 0.1825811372E-06 3.455149421 0.1691973173E-06 3.472740768 0.1573735612E-06 3.490332115 0.1471451830E-06 3.507923463 0.1385242145E-06 3.525514810 0.1315060505E-06 3.543106157 0.1260760442E-06 3.560697504 0.1222156119E-06 3.578288851 0.1199074443E-06 3.595880198 0.1191394887E-06 0.000000000 0.5290416243E-12 0.1815415904E-01 0.4386461697E-10 0.3630831809E-01 0.5827356268E-09 0.5446247713E-01 0.2784369683E-08 0.7261663618E-01 0.8400346379E-08 0.9077079522E-01 0.1949147714E-07 0.1089249543 0.3807765056E-07 0.1270791133 0.6575406806E-07 0.1452332724 0.1033304936E-06 0.1633874314 0.1505599224E-06 0.1815415904 0.2060213869E-06 0.1996957495 0.2672039909E-06 0.2178499085 0.3308053212E-06 0.2360040676 0.3932124823E-06 0.2541582266 0.4510890275E-06 0.2723123857 0.5019598676E-06 0.2904665447 0.5446811449E-06 0.3086207037 0.5797086924E-06 0.3267748628 0.6091322889E-06 0.3449290218 0.6365078676E-06 0.3630831809 0.6665735912E-06 0.3812373399 0.7049563003E-06 0.3993914990 0.7579497519E-06 0.4175456580 0.8323791105E-06 0.4356998171 0.9354791245E-06 0.4538539761 0.1074640855E-05 0.4720081351 0.1256859722E-05 0.4901622942 0.1487769527E-05 0.5083164532 0.1770272363E-05 0.5264706123 0.2102943993E-05 0.5446247713 0.2478556398E-05 0.5627789304 0.2883154074E-05 0.5809330894 0.3296100843E-05 0.5990872485 0.3691362400E-05 0.6172414075 0.4040030383E-05 0.6353955665 0.4313787866E-05 0.6535497256 0.4488747082E-05 0.6717038846 0.4548938379E-05 0.6899718220 0.4427389382E-05 0.7082397594 0.4085193105E-05 0.7265076968 0.3582782030E-05 0.7447756341 0.3000717734E-05 0.7630435715 0.2418137597E-05 0.7813115089 0.1895460125E-05 0.7995794463 0.1466368503E-05 0.8178473836 0.1139391157E-05 0.8361153210 0.9055623576E-06 0.8543832584 0.7474128406E-06 0.8726511958 0.6458476872E-06 0.8909191331 0.5838420763E-06 0.9091870705 0.5477296689E-06 0.9274550079 0.5247272973E-06 0.9457229453 0.5039732049E-06 0.9639908826 0.4802718441E-06 0.9822588200 0.4766169574E-06 1.000526757 0.5065564807E-06 1.018794695 0.5375564138E-06 1.037062632 0.5718033898E-06 1.055330570 0.6106559975E-06 1.073598507 0.6538361053E-06 1.091866444 0.6990001045E-06 1.110134382 0.7418432493E-06 1.128402319 0.7768364671E-06 1.146670256 0.7985205436E-06 1.164938194 0.8030201304E-06 1.183206131 0.7892487674E-06 1.201474069 0.7593210322E-06 1.219742006 0.7179935776E-06 1.238009943 0.6713655992E-06 1.256277881 0.6253458849E-06 1.274545818 0.5843937778E-06 1.292813755 0.5508099053E-06 1.311081693 0.5245753231E-06 1.329349630 0.5035921850E-06 1.347617568 0.4842053389E-06 1.365885505 0.4619763698E-06 1.384153442 0.4326954929E-06 1.402421380 0.3934997563E-06 1.420689317 0.3438022988E-06 1.438957254 0.2856770052E-06 1.457225192 0.2234780153E-06 1.475493129 0.1627611427E-06 1.493761067 0.1088623384E-06 1.512029004 0.6561971002E-07 1.530296941 0.3463897826E-07 1.548564879 0.1526079753E-07 1.566832816 0.5126519426E-08 1.585100753 0.1074924417E-08 1.603368691 0.7787725621E-10 1.621636628 0.5290416243E-12 1.639815148 0.6522583335E-10 1.657993667 0.8935857227E-09 1.676172187 0.4289662910E-08 1.694350707 0.1294480580E-07 1.712529226 0.3001080994E-07 1.730707746 0.5858816636E-07 1.748886266 0.1012005956E-06 1.767064785 0.1593288612E-06 1.785243305 0.2330685469E-06 1.803421824 0.3209593167E-06 1.821600344 0.4200096692E-06 1.839778864 0.5259147140E-06 1.857957383 0.6334388010E-06 1.876135903 0.7369134939E-06 1.894314422 0.8307872913E-06 1.912492942 0.9101584541E-06 1.930671462 0.9712267579E-06 1.948849981 0.1011613028E-05 1.967028501 0.1030514805E-05 1.985207021 0.1028689414E-05 2.003385540 0.1008278685E-05 2.021564060 0.9725092402E-06 2.039742579 0.9253159754E-06 2.057921099 0.8709423764E-06 2.076099619 0.8135691100E-06 2.094278138 0.7570127379E-06 2.112456658 0.7045212418E-06 2.130635178 0.6586750351E-06 2.148813697 0.6213842627E-06 2.166992217 0.5939583686E-06 2.185170736 0.5772144346E-06 2.203349256 0.5715880252E-06 2.221527776 0.5700686257E-06 2.239706295 0.5656657315E-06 2.257884815 0.5588344154E-06 2.276063335 0.5502989175E-06 2.294241854 0.5410077067E-06 2.312420374 0.5320822337E-06 2.330598893 0.5247687209E-06 2.348777413 0.5204022703E-06 2.366955933 0.5203912784E-06 2.385134452 0.5262280593E-06 2.403312972 0.5395292106E-06 2.421491492 0.5621070387E-06 2.439670011 0.5960710364E-06 2.457848531 0.6439540473E-06 2.476027050 0.7088462326E-06 2.494205570 0.7944929300E-06 2.512384090 0.9052658700E-06 2.530562609 0.1045874423E-05 2.548741129 0.1220715417E-05 2.566919649 0.1432925238E-05 2.585098168 0.1683401129E-05 2.603276688 0.1970089313E-05 2.621455207 0.2287670477E-05 2.639633727 0.2627611773E-05 2.657812247 0.2978517500E-05 2.675990766 0.3326736623E-05 2.694169286 0.3657196726E-05 2.712347805 0.3954417260E-05 2.730526325 0.4203627303E-05 2.748704845 0.4391890268E-05 2.766883364 0.4509127679E-05 2.785061884 0.4548938379E-05 2.802738302 0.4477792022E-05 2.820414720 0.4272005885E-05 2.838091138 0.3953165560E-05 2.855767556 0.3553005403E-05 2.873443974 0.3108121168E-05 2.891120392 0.2654391319E-05 2.908796810 0.2222280582E-05 2.926473228 0.1833851822E-05 2.944149646 0.1501785929E-05 2.961826064 0.1230179116E-05 2.979502482 0.1016510934E-05 2.997178900 0.8540431890E-06 3.014855318 0.7340164692E-06 3.032531736 0.6472740214E-06 3.050208154 0.5852401154E-06 3.067884572 0.5404005782E-06 3.085560990 0.5065173666E-06 3.103237408 0.4787635053E-06 3.120913826 0.4538486565E-06 3.138505173 0.4555160690E-06 3.156096520 0.4603639162E-06 3.173687868 0.4679691788E-06 3.191279215 0.4777368804E-06 3.208870562 0.4890051874E-06 3.226461909 0.5011250282E-06 3.244053256 0.5135068877E-06 3.261644603 0.5256428403E-06 3.279235950 0.5371143052E-06 3.296827297 0.5475928236E-06 3.314418644 0.5568376104E-06 3.332009992 0.5646913647E-06 3.349601339 0.5710747351E-06 3.367192686 0.5759794649E-06 3.384784033 0.5794602198E-06 3.402375380 0.5816252119E-06 3.419966727 0.5826258688E-06 3.437558074 0.5826458977E-06 3.455149421 0.5818901534E-06 3.472740768 0.5805737235E-06 3.490332115 0.5789116099E-06 3.507923463 0.5771093161E-06 3.525514810 0.5753545674E-06 3.543106157 0.5738103016E-06 3.560697504 0.5726089918E-06 3.578288851 0.5718482999E-06 3.595880198 0.5715880252E-06 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/PaxHeaders/PHLWLINES.OUT0000644000000000000000000000013214536061315023577 xustar0030 mtime=1702388429.028499845 30 atime=1702388429.028499845 30 ctime=1702388429.028499845 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/PHLWLINES.OUT0000644002504400250440000000106014536061315026316 0ustar00dewhurstdewhurst00000000000000 0.000000000 -0.3411702858E-05 0.000000000 0.6823407304E-05 0.6717038846 -0.3411702858E-05 0.6717038846 0.6823407304E-05 1.621636628 -0.3411702858E-05 1.621636628 0.6823407304E-05 2.203349256 -0.3411702858E-05 2.203349256 0.6823407304E-05 2.785061884 -0.3411702858E-05 2.785061884 0.6823407304E-05 3.120913826 -0.3411702858E-05 3.120913826 0.6823407304E-05 3.595880198 -0.3411702858E-05 3.595880198 0.6823407304E-05 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/PaxHeaders/elk.in0000644000000000000000000000013214536061315022744 xustar0030 mtime=1702388429.030499843 30 atime=1702388429.030499843 30 ctime=1702388429.030499843 elk-9.2.12/examples/phonons-superconductivity/Pb-DFPT/elk.in0000644002504400250440000000232114536061315025464 0ustar00dewhurstdewhurst00000000000000 ! Calculation of electron-phonon coupling and superconductivity in lead using ! density functional perturbation theory (DFPT). tasks 0 : ground-state run 205 : dynamical matrices and density derivatives with DFPT ngridq 4 4 4 ! large number of muffin-tin points required for accurate derivatives nrmtscf 3 ! large cut-off required for lead rgkmax 8.0 ! add extra local-orbitals for accurate electron-phonon coupling nxlo 2 ngridk 12 12 12 ! larger smearing width required for stable phonon dispersion swidth 0.005 stype 1 ! Uncomment the following lines and run to determine the electron-phonon ! coupling and superconducting T_c. !ngridk ! 24 24 24 !tasks ! 1 ! 210 ! 220 ! 240 ! 245 ! 250 avec 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 scale 9.3541 sppath '../../../species/' atoms 1 : nspecies 'Pb.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 plot1d 7 200 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-9.2.12/examples/PaxHeaders/piezoelectric0000644000000000000000000000013014536061315016042 xustar0029 mtime=1702388429.03249984 30 atime=1702388429.031499841 29 ctime=1702388429.03249984 elk-9.2.12/examples/piezoelectric/0000755002504400250440000000000014536061315020643 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/piezoelectric/PaxHeaders/hBN0000644000000000000000000000013114536061315016512 xustar0030 mtime=1702388429.033499838 29 atime=1702388429.03249984 30 ctime=1702388429.033499838 elk-9.2.12/examples/piezoelectric/hBN/0000755002504400250440000000000014536061315021312 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/piezoelectric/hBN/PaxHeaders/elk.in0000644000000000000000000000013214536061315017673 xustar0030 mtime=1702388429.034499837 30 atime=1702388429.033499838 30 ctime=1702388429.034499837 elk-9.2.12/examples/piezoelectric/hBN/elk.in0000644002504400250440000000304214536061315022414 0ustar00dewhurstdewhurst00000000000000 ! This generates the piezoelectric tensor of hexagonal boron nitride. tasks 380 highq .true. ! Atomic positions generated by spacegroup version 1.2.01 ! Hermann-Mauguin symbol : P63/mmc ! Hall symbol : -P 6c 2c ! Schoenflies symbol : D6h^4 ! space group number : 194 ! lattice constants (a,b,c) : 4.743210000 4.743210000 12.64227000 ! angles in degrees (bc,ac,ab) : 90.00000000 90.00000000 120.0000000 ! number of conventional unit cells : 1 1 1 ! reduction to primitive cell : T ! Wyckoff positions : ! species : 1, B ! 0.3333333333 0.6666666667 0.2500000000 ! species : 2, N ! 0.3333333333 0.6666666667 0.7500000000 avec 2.371605000 4.107740355 0.000000000 4.743210000 0.000000000 0.000000000 0.000000000 0.000000000 12.64227000 sppath '../../../species/' atoms 2 : nspecies 'B.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.25000000 0.00000000 0.00000000 0.00000000 0.33333333 0.33333333 0.75000000 0.00000000 0.00000000 0.00000000 'N.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.75000000 0.00000000 0.00000000 0.00000000 0.33333333 0.33333333 0.25000000 0.00000000 0.00000000 0.00000000 elk-9.2.12/examples/PaxHeaders/batch-calculations0000644000000000000000000000013214536061315016743 xustar0030 mtime=1702388429.038499831 30 atime=1702388429.035499835 30 ctime=1702388429.038499831 elk-9.2.12/examples/batch-calculations/0000755002504400250440000000000014536061315021542 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/batch-calculations/PaxHeaders/DFT+U0000644000000000000000000000013214536061315017560 xustar0030 mtime=1702388429.037499832 30 atime=1702388429.035499835 30 ctime=1702388429.037499832 elk-9.2.12/examples/batch-calculations/DFT+U/0000755002504400250440000000000014536061315022357 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/batch-calculations/DFT+U/PaxHeaders/elk.in0000644000000000000000000000013214536061315020740 xustar0030 mtime=1702388429.037499832 30 atime=1702388429.037499832 30 ctime=1702388429.037499832 elk-9.2.12/examples/batch-calculations/DFT+U/elk.in0000644002504400250440000000272314536061315023466 0ustar00dewhurstdewhurst00000000000000 ! Batch calculation of muffin-tin moment vs U for NiO. ! See examples/DFT+U/NiO-LDA+U-FLL-Ykwa/elk.in for details. ! Relevant output variables are stored in the file VARIABLES.OUT. ! To extract the set of U values use: ! ! sed -n '/udufix/{n;n;p}' VARIABLES.OUT > udufix ! ! and to extract the corresponding Ni muffin-tin moment use: ! ! sed -n '/mommt/{n;n;p}' VARIABLES.OUT > mommt ! ! These can be combined into a single file using: ! ! paste udufix mommt > mom_vs_U ! ! which can be plotted. ! run several consecutive ground-state calculations tasks 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ! enable batch mode batch .true. ! the U is changed between each batch calculation dft+u 1 5 : dftu, inpdftu 1 2 0.1 0.01 : is, l, U, change in U between calculations spinpol .true. scale 7.893389 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 : nspecies 'Ni.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 sppath '../../../species/' ! fairly high number of empty states nempty 8 ! this grid is too small for accurate magnetic moment ngridk 4 4 4 elk-9.2.12/examples/batch-calculations/PaxHeaders/energy-volume0000644000000000000000000000013214536061315021541 xustar0030 mtime=1702388429.040499828 30 atime=1702388429.038499831 30 ctime=1702388429.040499828 elk-9.2.12/examples/batch-calculations/energy-volume/0000755002504400250440000000000014536061315024340 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/batch-calculations/energy-volume/PaxHeaders/e_vs_v0000644000000000000000000000013214536061315023022 xustar0030 mtime=1702388429.039499829 30 atime=1702388429.039499829 30 ctime=1702388429.039499829 elk-9.2.12/examples/batch-calculations/energy-volume/e_vs_v0000644002504400250440000000056014536061315025545 0ustar00dewhurstdewhurst00000000000000 250.000000000 -2504.04279252 265.302000000 -2504.05460812 281.216000000 -2504.06255590 297.754000000 -2504.06722608 314.928000000 -2504.06895995 332.750000000 -2504.06852612 351.232000000 -2504.06610012 370.386000000 -2504.06199043 elk-9.2.12/examples/batch-calculations/energy-volume/PaxHeaders/elk.in0000644000000000000000000000013214536061315022721 xustar0030 mtime=1702388429.041499826 30 atime=1702388429.041499826 30 ctime=1702388429.041499826 elk-9.2.12/examples/batch-calculations/energy-volume/elk.in0000644002504400250440000000263314536061315025447 0ustar00dewhurstdewhurst00000000000000 ! Elk can run a batch of calculations while varying a particular input ! parameter. ! In this example, we use this feature to generate an energy-volume curve of ! AlAs. Only certain variables can be varied but more can be added on request. ! The output data is stored in a standard format in the file VARIABLES.OUT. ! To extract the set of volumes use: ! ! sed -n '/omega/{n;n;p}' VARIABLES.OUT > omega ! ! and to extract the corresponding total energies use: ! ! sed -n '/engytot/{n;n;p}' VARIABLES.OUT > engytot ! ! These can be combined into a single file using: ! ! paste omega engytot > e_vs_v ! ! which can be plotted or fitted to an equation of state. ! run several consecutive ground-state calculations tasks 0 1 1 1 1 1 1 1 ! enable a batch calculation batch .true. ! improve smoothness of the energy-volume curve by *not* trimming the Kohn-Sham ! potential Vₛ(G) for |G| > 2*gkmax trimvg .false. ! GGA exchange-correlation functional xctype 20 ! these are the lattice vectors and their changes between each calculation avec 5.0 5.0 0.0 0.1 0.1 0.0 5.0 0.0 5.0 0.1 0.0 0.1 0.0 5.0 5.0 0.0 0.1 0.1 ngridk 8 8 8 sppath '../../../species/' atoms 2 : nspecies 'Al.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-9.2.12/examples/PaxHeaders/ultra-long-range0000644000000000000000000000013214536061315016361 xustar0030 mtime=1702388429.042499825 30 atime=1702388429.042499825 30 ctime=1702388429.042499825 elk-9.2.12/examples/ultra-long-range/0000755002504400250440000000000014536061315021160 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/ultra-long-range/PaxHeaders/Cr-SDW0000644000000000000000000000013214536061315017360 xustar0030 mtime=1702388429.043499823 30 atime=1702388429.042499825 30 ctime=1702388429.043499823 elk-9.2.12/examples/ultra-long-range/Cr-SDW/0000755002504400250440000000000014536061315022157 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/ultra-long-range/Cr-SDW/PaxHeaders/elk.in0000644000000000000000000000013214536061315020540 xustar0030 mtime=1702388429.044499822 30 atime=1702388429.044499822 30 ctime=1702388429.044499822 elk-9.2.12/examples/ultra-long-range/Cr-SDW/elk.in0000644002504400250440000000347314536061315023271 0ustar00dewhurstdewhurst00000000000000 ! Ultracell simulation of the spin density wave in bcc Cr. ! See: T. Muller, S. Sharma, E. K. U. Gross, and J. K. Dewhurst, ! Phys. Rev. Lett. 125, 256402 (2020) or arXiv:2008.12573 ! First run a ground state calculation with a single unit cell while keeping ! the moments in each muffin-tin fixed to zero. tasks 0 ngridk 6 6 6 mixtype 1 beta0 0.01 ! Now uncomment the following lines and run the ultracell calculation. !tasks ! 700 ! ultracell ground-state calculation ! 771 ! 1D magnetisation density plot ! !beta0 ! 0.001 ! very small mixing parameter required for ultra long-range calculations ! !ngridk ! 1 6 6 ! reduce k-points to prevent kappa-point overlap maxthd1 -4 nxlo 1 lorbcnd .true. nempty 10 tplotq0 .false. plot1d 2 10000 0.0 0.0 0.0 21.0 0.0 0.0 taufsm 0.001 ! start with a random magnetic field in the ultracell rndbfcu 1.0 ! reduce the magnetic field at each step reducebf 0.85 ! Fix the moment in each muffin-tin to zero. This is done for both the unit cell ! and the Q=0 term of the ultracell. fsmtype 2 mommtfix 1 1 0.0 0.0 0.0 1 2 0.0 0.0 0.0 maxscl 2000 epspot 1.e-8 ! switch on spin-orbit coupling spinorb .true. ! keep the magnetisation collinear along the z-axis cmagz .true. avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale 5.4897 ! ultracell lattice parameters avecu 21.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scaleu 5.4897 ! ultracell Q-point grid (see article for description). ngridq 21 1 1 sppath '../../../species/' ! single antiferromagnetic unit cell atoms 1 : nspecies 'Cr.in' : spfname 2 : natoms 0.0 0.0 0.0 0.0 0.0 0.01 : atposl, bfcmt 0.5 0.5 0.5 0.0 0.0 -0.01 elk-9.2.12/examples/PaxHeaders/magnetoelectric0000644000000000000000000000013114536061315016347 xustar0030 mtime=1702388429.048499816 29 atime=1702388429.04549982 30 ctime=1702388429.048499816 elk-9.2.12/examples/magnetoelectric/0000755002504400250440000000000014536061315021147 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetoelectric/PaxHeaders/GaAs0000644000000000000000000000013114536061315017162 xustar0030 mtime=1702388429.046499819 29 atime=1702388429.04549982 30 ctime=1702388429.046499819 elk-9.2.12/examples/magnetoelectric/GaAs/0000755002504400250440000000000014536061315021762 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetoelectric/GaAs/PaxHeaders/elk.in0000644000000000000000000000013214536061315020343 xustar0030 mtime=1702388429.047499817 30 atime=1702388429.047499817 30 ctime=1702388429.047499817 elk-9.2.12/examples/magnetoelectric/GaAs/elk.in0000644002504400250440000000174714536061315023076 0ustar00dewhurstdewhurst00000000000000 ! Magnetoelectric (ME) tensor of GaAs. ! Note that the linear ME tensor is zero for time-reversal symmetric sytems. ! Therefore we have to apply an external magnetic field to break this symmetry. ! The second-order ME tensor can be determined by calculating the linear tensor ! for at least two different external magnetic fields. tasks 390 ! high-quality calculation highq .true. spinpol .true. spinorb .true. ! large external magnetic field bfieldc 0.0 0.0 0.1 ! small change in magnetic field used for calculating the magnetoelectric tensor deltabf 0.05 ! k-point grid ngridk 8 8 8 ! scaling factor of k-points when calculating the polarisation nkspolar 4 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 10.6826 sppath '../../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-9.2.12/examples/magnetoelectric/PaxHeaders/NiO-AFM0000644000000000000000000000013214536061315017436 xustar0030 mtime=1702388429.048499816 30 atime=1702388429.048499816 30 ctime=1702388429.048499816 elk-9.2.12/examples/magnetoelectric/NiO-AFM/0000755002504400250440000000000014536061315022235 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/magnetoelectric/NiO-AFM/PaxHeaders/elk.in0000644000000000000000000000013214536061315020616 xustar0030 mtime=1702388429.049499814 30 atime=1702388429.049499814 30 ctime=1702388429.049499814 elk-9.2.12/examples/magnetoelectric/NiO-AFM/elk.in0000644002504400250440000000253314536061315023343 0ustar00dewhurstdewhurst00000000000000 ! Calculation of the magnetoelectric (ME) tensor for NiO in the AFMII structure. ! Note that the linear ME tensor is non-zero only for systems with broken ! time-reversal symmetry. NiO is an anti-ferromagnetic insulator and thus has a ! finite ME tensor. tasks 390 wrtdsk .false. highq .true. ngridk 8 8 8 nempty 8 ! limit the number of self-consistent loops maxscl 50 ! small change in magnetic field used for calculating the magnetoelectric tensor deltabf 0.5 ! scaling factor of k-points when calculating the polarisation nkspolar 4 spinpol .true. spinorb .true. ! DFT+U block ! the screening length corresponding to U=0.29399 Ha (8 eV) will be determined ! with a secant algorithm and therefore J does not need to be specified dft+u 1 5 : dftu, inpdftu 1 2 0.29399 : is, l, U fixed scale 7.893389 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 sppath '../../../species/' atoms 2 : nspecies 'Ni.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 elk-9.2.12/examples/PaxHeaders/Wannier900000644000000000000000000000013214536061315014757 xustar0030 mtime=1702388429.053499809 30 atime=1702388429.050499813 30 ctime=1702388429.053499809 elk-9.2.12/examples/Wannier90/0000755002504400250440000000000014536061315017556 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Wannier90/PaxHeaders/Ge0000644000000000000000000000013014536061315015310 xustar0029 mtime=1702388429.05249981 30 atime=1702388429.051499811 29 ctime=1702388429.05249981 elk-9.2.12/examples/Wannier90/Ge/0000755002504400250440000000000014536061315020111 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Wannier90/Ge/PaxHeaders/elk.in0000644000000000000000000000012714536061315016476 xustar0029 mtime=1702388429.05249981 29 atime=1702388429.05249981 29 ctime=1702388429.05249981 elk-9.2.12/examples/Wannier90/Ge/elk.in0000644002504400250440000000203414536061315021213 0ustar00dewhurstdewhurst00000000000000 ! Interpolation of the Ge band structure using Wannier90. tasks 0 20 550 highq .true. ngridk 4 4 4 plot1d 6 200 : nvp1d, npp1d 0.25 0.75 0.5 : vlvp1d 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.25 0.75 0.5 0.375 0.75 0.375 ! bands to be used for the Wannier functions idxw90 1-25 ! extra lines to be included in the .win file xlwin bands_plot = true kpath = true kpath_task = bands kpath_num_points = 500 begin kpoint_path W 0.25 0.75 0.5 L 0.5 0.5 0.5 L 0.5 0.5 0.5 G 0.0 0.0 0.0 G 0.0 0.0 0.0 X 0.0 0.5 0.5 X 0.0 0.5 0.5 W 0.25 0.75 0.5 W 0.25 0.75 0.5 K 0.375 0.75 0.375 end kpoint_path avec 5.3460 5.3460 0.0000 5.3460 0.0000 5.3460 0.0000 5.3460 5.3460 sppath '../../../species/' atoms 1 : nspecies 'Ge.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 elk-9.2.12/examples/Wannier90/PaxHeaders/Si-Hartree-Fock0000644000000000000000000000013214536061315017602 xustar0030 mtime=1702388429.054499807 30 atime=1702388429.053499809 30 ctime=1702388429.054499807 elk-9.2.12/examples/Wannier90/Si-Hartree-Fock/0000755002504400250440000000000014536061315022401 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Wannier90/Si-Hartree-Fock/PaxHeaders/elk.in0000644000000000000000000000013214536061315020762 xustar0030 mtime=1702388429.054499807 30 atime=1702388429.054499807 30 ctime=1702388429.054499807 elk-9.2.12/examples/Wannier90/Si-Hartree-Fock/elk.in0000644002504400250440000000230414536061315023503 0ustar00dewhurstdewhurst00000000000000 ! Interpolation of the Si Hartree-Fock band structure using Wannier90. tasks 0 : LDA ground state 20 : LDA band structure 5 : Hartree-Fock calculation 550 : Wannier90 interpolated band structure ! large number of empty states nempty 10 ngridk 4 4 4 plot1d 6 200 : nvp1d, npp1d 0.25 0.75 0.5 : vlvp1d 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.25 0.75 0.5 0.375 0.75 0.375 ! bands to be used for the Wannier functions idxw90 1-16 ! extra lines to be included in the .win file xlwin bands_plot = true kpath = true kpath_task = bands kpath_num_points = 500 begin kpoint_path W 0.25 0.75 0.5 L 0.5 0.5 0.5 L 0.5 0.5 0.5 G 0.0 0.0 0.0 G 0.0 0.0 0.0 X 0.0 0.5 0.5 X 0.0 0.5 0.5 W 0.25 0.75 0.5 W 0.25 0.75 0.5 K 0.375 0.75 0.375 end kpoint_path avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 elk-9.2.12/examples/PaxHeaders/Born-effective-charge0000644000000000000000000000013214536061315017270 xustar0030 mtime=1702388429.058499801 30 atime=1702388429.055499806 30 ctime=1702388429.058499801 elk-9.2.12/examples/Born-effective-charge/0000755002504400250440000000000014536061315022067 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Born-effective-charge/PaxHeaders/GaAs0000644000000000000000000000013214536061315020103 xustar0030 mtime=1702388429.057499803 30 atime=1702388429.056499804 30 ctime=1702388429.057499803 elk-9.2.12/examples/Born-effective-charge/GaAs/0000755002504400250440000000000014536061315022702 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Born-effective-charge/GaAs/PaxHeaders/elk.in0000644000000000000000000000013214536061315021263 xustar0030 mtime=1702388429.057499803 30 atime=1702388429.057499803 30 ctime=1702388429.057499803 elk-9.2.12/examples/Born-effective-charge/GaAs/elk.in0000644002504400250440000000110714536061315024004 0ustar00dewhurstdewhurst00000000000000 ! Calculation of the Born effective charges for GaAs using the method of ! R. D. King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651(R) (1993). tasks 208 deltaph 0.01 ngridk 4 4 4 ! number of k-point subdivisions for the phase sum along k‖ nkspolar 8 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 10.6826 sppath '../../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-9.2.12/examples/Born-effective-charge/PaxHeaders/hBN-dynBEC0000644000000000000000000000012614536061315021044 xustar0028 mtime=1702388429.0594998 30 atime=1702388429.058499801 28 ctime=1702388429.0594998 elk-9.2.12/examples/Born-effective-charge/hBN-dynBEC/0000755002504400250440000000000014536061315023640 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Born-effective-charge/hBN-dynBEC/PaxHeaders/elk.in0000644000000000000000000000012414536061315022222 xustar0028 mtime=1702388429.0594998 28 atime=1702388429.0594998 28 ctime=1702388429.0594998 elk-9.2.12/examples/Born-effective-charge/hBN-dynBEC/elk.in0000644002504400250440000000366714536061315024757 0ustar00dewhurstdewhurst00000000000000 ! This generates the dynamical Born effective charge of hexagonal boron nitride. ! See C.-Yu Wang, et al., Phys. Rev. B 106, L180303 (2022). tasks 0 478 ! avoid writing direct access files to disk wrtdsk .false. isgkmax -2 epspot 1.e-8 autolinengy .true. nxlo 1 swidth 0.005 rgkmax 8.0 gmaxvr 16.0 nrmtscf 2.0 lmaxi 4 lmaxo 8 lmaxapw 10 lorbcnd .false. nxoapwlo 1 nempty 20 ngridk 8 8 8 wplot 20000 100 0 0.0 5.0 tstime 800.0 dtimes 0.1 ! Atomic positions generated by spacegroup version 1.2.01 ! Hermann-Mauguin symbol : P63/mmc ! Hall symbol : -P 6c 2c ! Schoenflies symbol : D6h^4 ! space group number : 194 ! lattice constants (a,b,c) : 4.743210000 4.743210000 12.64227000 ! angles in degrees (bc,ac,ab) : 90.00000000 90.00000000 120.0000000 ! number of conventional unit cells : 1 1 1 ! reduction to primitive cell : T ! Wyckoff positions : ! species : 1, B ! 0.3333333333 0.6666666667 0.2500000000 ! species : 2, N ! 0.3333333333 0.6666666667 0.7500000000 avec 2.371605000 4.107740355 0.000000000 4.743210000 0.000000000 0.000000000 0.000000000 0.000000000 12.64227000 sppath '../../../species/' atoms 2 : nspecies 'B.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.25000000 0.00000000 0.00000000 0.00000000 0.33333333 0.33333333 0.75000000 0.00000000 0.00000000 0.00000000 'N.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.75000000 0.00000000 0.00000000 0.00000000 0.33333333 0.33333333 0.25000000 0.00000000 0.00000000 0.00000000 elk-9.2.12/examples/PaxHeaders/molecular-dynamics0000644000000000000000000000013214536061315016773 xustar0030 mtime=1702388429.067499788 30 atime=1702388429.060499798 30 ctime=1702388429.067499788 elk-9.2.12/examples/molecular-dynamics/0000755002504400250440000000000014536061315021572 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/molecular-dynamics/PaxHeaders/NaCl-rotation0000644000000000000000000000013214536061315021445 xustar0030 mtime=1702388429.063499794 30 atime=1702388429.061499797 30 ctime=1702388429.063499794 elk-9.2.12/examples/molecular-dynamics/NaCl-rotation/0000755002504400250440000000000014536061315024244 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/molecular-dynamics/NaCl-rotation/PaxHeaders/elk.in0000644000000000000000000000013214536061315022625 xustar0030 mtime=1702388429.062499795 30 atime=1702388429.062499795 30 ctime=1702388429.062499795 elk-9.2.12/examples/molecular-dynamics/NaCl-rotation/elk.in0000644002504400250440000000256314536061315025355 0ustar00dewhurstdewhurst00000000000000 ! Molecular dynamics example of a NaCl monomer in a large box. The code reads in ! the atomic displacements and velocities in Cartesian coordinates from the file ! ATDVC.OUT. This file is updated during the molecular dynamics run. ! The file crystal.axsf is written during the run and can be used to produce an ! animation of the atomic motion using XCrySDen. tasks 420 ! read the initial displacements and velocities from ATDVC.OUT trdatdv .true. ! time step in atomic units dtimes 10.0 ! total simulation time tstime 200000.0 ! calculate the forces every 100 time steps ntsforce 100 rgkmax 6.0 ! larger smearing width for molecules swidth 0.05 sppath '../../../species/' ! atomic positions are in Cartesian coordinates molecule .true. avec 14.00000000 0.000000000 0.000000000 0.000000000 14.00000000 0.000000000 0.000000000 0.000000000 14.00000000 atoms 2 : nspecies 'Na.in' : spfname 1 : natoms; atpos, bfcmt below 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 'Cl.in' : spfname 1 : natoms; atpos, bfcmt below 4.99885462 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 elk-9.2.12/examples/molecular-dynamics/NaCl-rotation/PaxHeaders/ATDVC.OUT0000644000000000000000000000013214536061315022754 xustar0030 mtime=1702388429.064499792 30 atime=1702388429.063499794 30 ctime=1702388429.064499792 elk-9.2.12/examples/molecular-dynamics/NaCl-rotation/ATDVC.OUT0000644002504400250440000000012314536061315025472 0ustar00dewhurstdewhurst00000000000000 1 1 0.0 0.0 0.0 0.0 0.0003 0.0 2 1 0.0 0.0 0.0 0.0 -0.0003 0.0 elk-9.2.12/examples/molecular-dynamics/PaxHeaders/Si-phonon-mode0000644000000000000000000000013214536061315021567 xustar0030 mtime=1702388429.066499789 30 atime=1702388429.065499791 30 ctime=1702388429.066499789 elk-9.2.12/examples/molecular-dynamics/Si-phonon-mode/0000755002504400250440000000000014536061315024366 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/molecular-dynamics/Si-phonon-mode/PaxHeaders/elk.in0000644000000000000000000000013214536061315022747 xustar0030 mtime=1702388429.066499789 30 atime=1702388429.066499789 30 ctime=1702388429.066499789 elk-9.2.12/examples/molecular-dynamics/Si-phonon-mode/elk.in0000644002504400250440000000224214536061315025471 0ustar00dewhurstdewhurst00000000000000 ! Molecular dynamics run of the optical phonon mode in Si. The initial ! conditions are determined by the displacement of the atoms away from ! equilibrium, with the atomic velocities set to zero. ! Atomic displacements are written to the file ATDISPL_TD.OUT and ! ATDISPC_TD.OUT in lattice and Cartesian coordinates, respectively. ! Forces as a function of time are written to the file FORCETOT_TD.OUT. These ! forces may be used in a subsequent TDDFT Ehrenfest calculation with task=462, ! and will produce a back-reaction on the electronic system. ! The file crystal.axsf is written during the run and can be used to produce an ! animation of the atomic motion using XCrySDen. tasks 420 ! time step in atomic units dtimes 1.0 ! total simulation time tstime 20000.0 ! calculate the forces every 100 time steps ntsforce 100 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' ! atoms are displaced along the diagonal atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.23 0.23 0.23 ngridk 4 4 4 elk-9.2.12/examples/molecular-dynamics/PaxHeaders/annealing0000644000000000000000000000013214536061315020727 xustar0030 mtime=1702388429.068499786 30 atime=1702388429.067499788 30 ctime=1702388429.068499786 elk-9.2.12/examples/molecular-dynamics/annealing/0000755002504400250440000000000014536061315023526 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/molecular-dynamics/annealing/PaxHeaders/elk.in0000644000000000000000000000013214536061315022107 xustar0030 mtime=1702388429.068499786 30 atime=1702388429.068499786 30 ctime=1702388429.068499786 elk-9.2.12/examples/molecular-dynamics/annealing/elk.in0000644002504400250440000000716114536061315024636 0ustar00dewhurstdewhurst00000000000000 ! Simulated annealing example for silicon with a vacancy. ! The initial positions are randomised and then a molecular dynamics calculation ! is performed with a force damping term included in the equations of motion. ! The crystal is then slowly 'cooled down', simulating a physical annealing ! process albeit on much shorted time scales. The rate of cooling is controlled ! with the atomic damping force coefficient (atdfc). ! The total energy as a function of time is stored in the file TOTENERGY_TD.OUT. ! and the maximum force magnitude is stored in the file FORCEMAX_TD.OUT. ! An animation of the atomic motion can be produced with XCrySDen using: ! ! xcrysden --xsf crystal.axsf ! ! Note that you may have to change the 'ANIMSTEPS' parameter in crystal.axsf to ! match the number of completed time steps. ! ! Molecular dynamics calculations can be restarted with task=241. tasks 420 stable .true. maxscl 40 ! use the PBE exchange-correlation functional xctype 20 ! atomic damping force coefficient controls the rate of annealing atdfc 0.0001 ! time step in atomic units dtimes 1.0 ! total simulation time tstime 2000000.0 ! number of time steps between force calculations ntsforce 100 ! don't write direct access files to disk wrtdsk .false. ! randomise the initial atomic positions rndatposc 1.0 isgkmax -2 rgkmax 6.5 nxoapwlo 1 ngridk 1 2 2 ! Atomic positions generated by spacegroup version 1.2.01 ! Hermann-Mauguin symbol : Fd-3m:1 ! Hall symbol : F 4d 2 3 -1d ! Schoenflies symbol : Oh^7 ! space group number : 227:1 ! lattice constants (a,b,c) : 10.26314134 10.26314134 10.26314134 ! angles in degrees (bc,ac,ab) : 90.00000000 90.00000000 90.00000000 ! number of conventional unit cells : 2 1 1 ! reduction to primitive cell : F ! Wyckoff positions : ! species : 1, Si ! 0.000000000 0.000000000 0.000000000 avec 20.52628269 0.000000000 0.000000000 0.000000000 10.26314134 0.000000000 0.000000000 0.000000000 10.26314134 sppath '../../../species/' ! two conventional unit cells with one atom removed atoms 1 : nspecies 'Si.in' : spfname 15 : natoms; atposl, bfcmt below 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.50000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.50000000 0.50000000 0.00000000 0.00000000 0.00000000 0.50000000 0.50000000 0.50000000 0.00000000 0.00000000 0.00000000 0.25000000 0.00000000 0.50000000 0.00000000 0.00000000 0.00000000 0.75000000 0.00000000 0.50000000 0.00000000 0.00000000 0.00000000 0.25000000 0.50000000 0.00000000 0.00000000 0.00000000 0.00000000 0.75000000 0.50000000 0.00000000 0.00000000 0.00000000 0.00000000 0.12500000 0.25000000 0.25000000 0.00000000 0.00000000 0.00000000 0.62500000 0.25000000 0.25000000 0.00000000 0.00000000 0.00000000 0.37500000 0.25000000 0.75000000 0.00000000 0.00000000 0.00000000 0.87500000 0.25000000 0.75000000 0.00000000 0.00000000 0.00000000 0.12500000 0.75000000 0.75000000 0.00000000 0.00000000 0.00000000 0.62500000 0.75000000 0.75000000 0.00000000 0.00000000 0.00000000 0.37500000 0.75000000 0.25000000 0.00000000 0.00000000 0.00000000 ! 0.87500000 0.75000000 0.25000000 0.00000000 0.00000000 0.00000000 elk-9.2.12/examples/PaxHeaders/Delta-value0000644000000000000000000000013014536061315015344 xustar0029 mtime=1702388429.07249978 30 atime=1702388429.069499785 29 ctime=1702388429.07249978 elk-9.2.12/examples/Delta-value/0000755002504400250440000000000014536061315020145 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Delta-value/PaxHeaders/H0000644000000000000000000000013214536061315015535 xustar0030 mtime=1702388429.070499783 30 atime=1702388429.069499785 30 ctime=1702388429.070499783 elk-9.2.12/examples/Delta-value/H/0000755002504400250440000000000014536061315020334 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Delta-value/H/PaxHeaders/elk.in0000644000000000000000000000013214536061315016715 xustar0030 mtime=1702388429.071499782 30 atime=1702388429.071499782 30 ctime=1702388429.071499782 elk-9.2.12/examples/Delta-value/H/elk.in0000644002504400250440000000130314536061315021434 0ustar00dewhurstdewhurst00000000000000 ! Dense metallic hydrogen is surprisingly difficult for LAPW codes because the ! muffin-tin radii are so small. This requires that the cut-off rgkmax is also ! small to keep the matrix sizes reasonable. tasks 0 mixtype 3 xctype 20 rgkmax 5.0 autolinengy .true. gmaxvr 24.0 nxlo 3 lorbcnd .true. rmtdelta 0.0 avec 7.57324755 0.00000000 0.00000000 -3.78662378 6.55862477 0.00000000 0.00000000 0.00000000 9.45443212 sppath '../../../species/' atoms 1 'H.in' 4 0.3333333333 0.6666666667 0.17498 0.6666666667 0.3333333333 0.82502 0.6666666667 0.3333333333 0.67498 0.3333333333 0.6666666667 0.32502 ngridk 10 10 8 elk-9.2.12/examples/Delta-value/PaxHeaders/Os0000644000000000000000000000013114536061315015726 xustar0030 mtime=1702388429.073499779 29 atime=1702388429.07249978 30 ctime=1702388429.073499779 elk-9.2.12/examples/Delta-value/Os/0000755002504400250440000000000014536061315020526 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/Delta-value/Os/PaxHeaders/elk.in0000644000000000000000000000013214536061315017107 xustar0030 mtime=1702388429.073499779 30 atime=1702388429.073499779 30 ctime=1702388429.073499779 elk-9.2.12/examples/Delta-value/Os/elk.in0000644002504400250440000000227214536061315021634 0ustar00dewhurstdewhurst00000000000000 ! Input file for a very well convered hcp osmium calculation. This is the result ! of very careful comparisons with Wien2k to determine the true GGA equilibrium ! volume and bulk modulus. With thanks to Maric Dulak. ! See: https://sourceforge.net/p/elk/discussion/897820/thread/aecdbcf1/#cb4d ! This is also part of the effort to systematically compare solid state codes, ! basis sets and potentials and encapsulate the results in a single number, the ! Delta-value. See https://molmod.ugent.be/deltacodesdft . tasks 0 mixtype 3 xctype 20 ! set very high-quality options vhighq .true. ! parameters from Delta-value dataset avec 5.21365989 0.0 0.0 2.60682995 4.51516191 0.0 0.0 0.0 8.23342334 atoms 1 'Os.in' 2 0.0 0.0 0.0 0.33333333333333 0.33333333333333 0.5 ecvcut -3.5 species 76 'Os' 'osmium' 190.23 2.4 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 2 6 0 1 2 elk-9.2.12/examples/PaxHeaders/GW0000644000000000000000000000013214536061315013520 xustar0030 mtime=1702388429.104499733 30 atime=1702388429.074499778 30 ctime=1702388429.104499733 elk-9.2.12/examples/GW/0000755002504400250440000000000014536061315016317 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/GW/PaxHeaders/Si-GW-band-structure0000644000000000000000000000013214536061315017346 xustar0030 mtime=1702388429.081499767 30 atime=1702388429.074499778 30 ctime=1702388429.081499767 elk-9.2.12/examples/GW/Si-GW-band-structure/0000755002504400250440000000000014536061315022145 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/GW/Si-GW-band-structure/PaxHeaders/elk.in0000644000000000000000000000013214536061315020526 xustar0030 mtime=1702388429.076499774 30 atime=1702388429.075499776 30 ctime=1702388429.076499774 elk-9.2.12/examples/GW/Si-GW-band-structure/elk.in0000644002504400250440000000205614536061315023253 0ustar00dewhurstdewhurst00000000000000 ! GW spectral function band structure of silicon. ! This is an extremely expensive calculation and requires about 3 days on 200 CPU cores. tasks 0 20 620 ! type of analytic continuation used for the self-energy actype 10 ! use LAPW nxoapwlo 1 ! Matsubara frequency cut-off wmaxgw 5.0 ! response function G-vector cut-off gmaxrf 3.0 ! temperature of many-body system (determines Matsubara frequency spacing) tempk 2000.0 ! large number of empty states required nempty 40 plot1d 7 400 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 wplot 800 100 0 -1.5 2.0 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 4 4 4 ngridq 4 4 4 elk-9.2.12/examples/GW/Si-GW-band-structure/PaxHeaders/Si-GW.jpg0000644000000000000000000000013014536061315021011 xustar0029 mtime=1702388429.07949977 30 atime=1702388429.077499773 29 ctime=1702388429.07949977 elk-9.2.12/examples/GW/Si-GW-band-structure/Si-GW.jpg0000644002504400250440000040251614536061315023545 0ustar00dewhurstdewhurst00000000000000JFIF##C     C    _{!nR2)5pڶJUiȪ1CfJ[`Y䖜+=dU=^Ur5NDT7f2&S -tƳ <*5Νvf]7NsT߉Vij(Z22xk>W|bk ZE7|Ҫ1*c}e00.6A]He̕lMqQVnJyNdu rAVN4rNn^*@Z:fތn#.)2VeL۵uny۔xW|orJˎN-KV껫M$lnjț&/@y+p٥K"5fR%5vCUΫ7kNdM)JS3f0ʫڝ"Q)AUې ꍂCtcc|g]+r͑{F%n+M%#}9c/6SUJwV-jn<ҳ+'w˲lJKn];K^g_:ir|rʫp{^^ End%i[i]չʲ+V&yJwwƮL觚YYA3)Mm}z_B>Ce4I9^M~qU0@Cm3~YWg4opʔʭNҲu,OtdOMxNGMm5]ivc7c;ӧ]V+Ku] *;ʺ.(e+NȆKG9y31 ]vrUqz=cg!Y+r9dU]`Dhت[JnP7td+Mf&&B֮,RtЩET6 TiHDh N(WRKf2P -<<.WFxS!Ole.n4]S,c抪ubPŪinAZLUUpڶʕ0H+o2`&FW%gkM%t,TBey/O8}/jhцUm)m)dJ֦HuVHiIMe9M*ɺ6w gVgTld EMŔdºVS(i7+wsӥ[]W3)H]]܃̫UyoCt7^[>c7ӔJX 9>o|NN"B2ّ&ZY:7ю6ChȧDGZWYWl6ғJGIwdF|<Yshj\]3Nl姞iջkJ5&ˆ4iRe:qxN1w.쎝KLLU2D5^2>cNʽtӾmwZrјSW6WnM+պIuce6DH@ ѽuJ޼0CdEj6kD*ЃJnSUj,ztjmGJ*J:38J͂ӆy_Gz~ў;y <'W^."yJV,W{-UmGP:[,G;>@Y3vynZiWlfuZF!"5c:5϶uj7~ym>NRMsy3Ѧ])숮--)k>S־2^?ʭRUSzjkZh*r5eߔ7NѦ]]{'II3a"QmjymHC%ɔѥ4!H@@JtզY)&2&lb)TL[vD"(Du!"]o1dºGPKG>5m` MZh*~+UdC)AYun4֛JҴeѦ^o3l· @duWJ)B ;Y dfɖS]]0+"tTWm[@h+':IJM%;s΍t򞗿+V+&]l3ӎ^Ra(ZGlCrWZ<5ӮRoJJth؈m*bW)ϮiU~yYZ*WPڷ"wdJyѼg)-J3S=Ѿ2?+y>C,3ͻ=8u=`+p%uM -xYz5,m/ +(Xm%Vі{ybo^v%jwҩ]2ɥC/><ݖe.ȋ;[iYһKo6xzt^a*u-ўPJ2jz+sώm,\f=@}]ծ~Co<~|}:imm WdCHs;om<<άpm;3Ӟ3$OV* =nq,dVjRR5cӭWU֖ƹv&n*EoFYn›FTVOtxIn ǾHe:1Fjў?GhX5]dxnϡǻkO]U[%,newL5hHmcG@]WFu^rw.7g*No}\\1OZS2"f UMͮT:rɎ'#ʣ])*oLmՎ^J6#;F?Mdꪯl]mU]73V9j5ͧYڍuib5ڭ>s]jXtDcK7rɾz<((pcֻ/.}t`~7M嗣NˏOR*'^|喜pOӟ[cW>E%uM:jiܙWlo]Tg;&-l]ݑO89O>[rz]~~L,Cm[ӓz:\y;6TӣZz9=\NJsգϮyre?۪)s]*6yiUtssr{8y>[UmkWZszKk X᳛Yfn1oG9o՛MN;ӭ+h[-1?'o%-sJVLi}4L5SҪWvxG:,ګwim]\rqr p6.nutt7m\}o;ݲ]d}4gX5j<9 Ϻyә٬2˧˿r;(kfsnIՎ Zty5tkҔ+&-y+ʕ/z:dnIcaߵ@Sŷ+z-e%u"x֍*ŧUwh$O2_?yw_Wxܒv-_=vqlkvi6V{vӅw˺7e].E\pVNk6c) s43^̛tJ[1e/3|eתpy9=}YKf%)Um.s3NL<|}~4b|;5ϯV.kUxMe-sY1<{\o#oC.9}gi uv9ZwU(б(]zéÍ:խr;eKfcӢJg׿6R:DcÇg,;$qۏVip- ]9r6G@XiyyzNV=G}t޷c y6ޝ5e=^NW|>N 4K>zއ/^m*1ϓppuygӛ^^u1j8x^/ϷmrtڣZϟÏ/o^GC%&Sn-[󝾕wjDv0<.Q.勨8kKBPi}K7uu:{qѓnIKnlE=a^g>k..v'kyopzCݼOnWd羪tda{@nRc󞇩aˑ:LR_V}^W^k/ǗW΁M*cVבu9kM9ϣr;:g;?_Ş.x>Rkwb]=o|5rz{veӢtP)3ݏ7ouw_*y[yۡJZzyn?tC:>MZ؋$т7d ite\ξkUh"tV:ɷJRϊvszy?Sm۫,UgZtSg;:n_ïnݕק޺MU+#;>?'<tQ[_2ϗ?v=9W/{ޯ#pp2Wg|]m9]]G?י[Fz= |Z (Y1xKr7]tF:1*gϠz\hUzYљ?:=}[ǽ {vo{|ҺnϽ'G]<ҭnI#ȭy]{sz:rmo.O̳޵rϜuˬ_35p#6#] +ǃz5gg)h+c;g>'pɯWsusvϧ4珷[?i?ޞ}gOJe>] /Gy->/Z0=/͛Wd|a|q7䯟uy;~~g yṣI׷F}tpAcۥ[-X|_7{MNXx}k ~j#.z+x>l'rvtRqg<^ vvGy~ޛb_Ƿ&\~׃>27&sÂɼhʸ}'?s>e JO?qkMNz߃@[j+{67{|V=^Nn~ݞ3כӳ,V4tMߥcx{//|w\7)2'~oD_wnO׋}-x@wxs>v.-oMßy_c^3jӯ_E:ە׷ؕ`û ߟMti ) KFyt9=wgz|Gq~Ow}WǷ&~[ö|ݛ]Ҩtgۗ?wΎ6[>mk] Knޫ}wy77w]Yoj:ܛ1us:K~n^Nv\ޞ `܄lcï k/KUўpqq}8OtSz+{1ûq{;oԭj!m椣zxywezEl.7=<[<;|5^vw{&8it=<!ZVIU+VZ4u4i^<ޞo3:GyOVYoy|ϮbNnxG[qñƵ|~ή~Tފ꺨mݞ}~N7=jk/%Ϯ^97.zIf}#ӫFVuںt2R8F]:9]t^]N9mUںe6jCz_3qjMwVt1r5t{m=nO=Ji-s-m2뵄tymz]nsWG^b(ݔVݨHJL2Nh ͔15+]_]~klNW'>#/?/L<͓F}NnMsyGwY1޴*Ԋɍ9g;+iG1\ן]2k;yګҺtn6R2Rbꩭ*vҩ[D Ѧ<ͳZc a>/uyO9[3ZoMYgcW:<ގkEȄH)@@wIVlMWZۏ5,o/?_ϝ9Fh* :SužtiU:Vp4GUUvRu/3dR(wtiu`2O1tE.fSGKy|=~jms:xg?5m]Z nL6Ò +\tfmYÇ^j^^OU^4yܾTmU JZ3EMkKjDҭY *<Τ/ ,v4i^% hXƚh _1)^ hSFP:Ro㹧ƞ$HYEQE!4q%-"Fi6%^,"Ӏxu5oz\#g l:8bHee/t 0,zti"9(MP]~rHC 8װ1̰O-^d/+ZSXl>WV,"o.xZB{K2"Јbmd;^%=&⁲!'Cc'U/ӹ 9q,S1OsnȦ'B`&hlv@rMq٩opˍ* i*iv.Q,Vs:ٽJY͗KdS:&k#G"}@ (' \{؋%8@ l.z$7eh/BD-`Prs-O-af3H@'@ d'e,B4ZM"ҋyP:k tRߤk. pW6 26 eM_'cr; vܦa_ |'@,裈;;3c$Q/--)rZcH\$k|F+57V@X7YZ8ȹ__{8ŧTUxDYSYbkM tqo8gfɨˇw9ܹۥZ%eb8Z lN!$ot^ ak(ԛ"tv!S.0嚾"PIu4My=Y_<t&V28IR'NŒ5ı\HLp,gy%Sn m,ta*?zjXSew&T%Vd,lr{` %\#&HȌξ1@`ۡݘ얬V7RFc_%|=>(Vo:@aGΕ]i|/k>Q9ÛY"Dzn7dbSʲcL1d=@w=.R1rc3[tG({\#kZe4ϝm={kd; ⬏'TuM:Me7i<]ýq+w \܋". G..ibcx[z֯G]=䀏~-ВOn 84bFBiXY&ӏR VE{+(ME)Nκ_*ɩ#nmȺȶɃ"O_ _k.zJ)7y@-_(쮊(;%{ ubӏKgXyXdP<XuOwyo`ȫ.r.Dҭi_۠ *Y)%]5wvV[~EYy]=/\ˡDݠpg_7E~û-Odk7.=6knBF6Xq~2WWVAfQ/ JNGu\z4~I4+ 1G[D^0XbrWDaRt?yC \yܲM&/A"X`|-7X ,m@pd_:;cmiz<')#)(JI- 7(G9]sʈ3Ovmd{,JXIsCn)f9njg<7KGls ɍLjŬ ,$,sOj-D &36b'g`Wot.AbW@suito9 q,t4Z@&F8?%l\{( pA7DZeA2#p]6ƞF#fp(t _dhߎpI寺xĞ&vSٶAEڐYY8ns{d<:Y5޾A<4p/.d"^Ҝ.Sw@YYjXK^bSw%բڝBVOƘH[ BAhbt9YM <2vJׄntL96$r |Ӧ'#w1=ᵢZWqL,7cs,md:r ^ut&FK@P`)SLZ#rWA17I1'QdҀc[-u$Ro]F2&/0LZ6Oix&uM@f{UE5>:܌-E2bHp6:KByύKi*@@&3 [*z&Ә$}#beD>[&*9M?) tn^j2р1 A+y)mHc2HJ/s!ߣ#GaRKw59ZZdXO8+%ut,d#_<7lxC -z|9:IDa?!0'FHdQ\l\n&KeM⒵vՆ>#et iT `ُe3ƴ92BT:̍w64`.kWl#V_7S)JގL *Bk6-'ENi15(݅.j jw.EM<9ɓwܶ2U&="n=I[.+" :D!OPe'eePR:k&dќqLdjS`W(+]SApzy!) W>k&bt"9쬃nEt'Ǧii`Pu;$jʙVJ}M9Pc4zr) jp-^,IMJ:Xԙ ύ!-X+"YuGRȴWMTU=+FfSjr׼4v##n(0\PHWjlTQmN[KƇq'1;LF(ᄘi!QޡENsSe r[t-N8b7 B2SiC(P1mzWM^I'̤J&s'*W869TU9Ҕ]t\=KTl*0EY,NNQ??|@ĶЎ)t~>=6Bd o܂OHc,$A &FNZSn*LeUjq^=xwTQd$yU.j5vƺ3|Өmhx 8)(ʮn2Vn};ON]6(qAzlLzuEЦt9N}=B~HˠYF%5L :Ѧjyvkp1SjѼJZkMf6++f54k\G$ϧ=#XՊ@EW$yTq:WF:'o:[^!>:LƸӪQyk/q KtHKg[ ԕSIU F}՚ڥ;c6mvp*St(Wtb5rVWQjj5gY_yr\ET4S^K&E[M%4z{&ktP#m%3Xu薥].7@bl%-3!AS3d?oPt;2:Fd ֚朽RjRS-3St4q}42HU斉oѲY69)fLwvʦ>'1\ud#.4z tx{􌤗v4aLt0TkU5rii2(.6+SkmI)hi30Y~PT>R=a`y4W_zLiN6IC\ԵE JN~I.EjI4iڳdsdv#*_& l&3NO?L~ri#DJRO'@dIS2-~C"lu74tO]Px{N0Qӹ}kDglkJ9k$t"yq>@* JJ!KN#$1eQU4| gӮAKS'إiD97nj3HV*tY⦆:* *K6z]6:NRovMw4b)?tJ-VJ4MsSxt08xJjpR>4J+qo*mrk^M"¢)[be|ш)oުëԂ&f diIzWya)}RMPti)R4P:q6r 񪺗J(eS&izSu-rj':{\ cBM7PM V/[L~3(%FȟKO*SP>dhҺW(kl*MEO J}E<,ruQښ>>ʟR} V))XHQa c5 Y`X, ĬJ`X&JKEOIJ}i <j]SJمsEQ. ~x Cc6LG9DFUTjm-tu[ƭo` zs#Y@ǿ"^&5uDj=Aҏ M:vNrAxIcP/mR,R4=2y>tJF 5eJʊJtS 7G؝j*:.MyiP%Ne2ot cl8 QNve&Q34-_ (YAR\ WLjlйJI dUAR"Hm -t2qqAGI$iN`RątNbd v1}MUgd%#5ZRΚ~O_*uM>R=麃i)2b^̭ŸY&BS5|1+0lt$QԖ(5Yas(54MvN5E ]V7)5YQ).r2#"YY`X"(S"4-Xud븷!3mY jNLCXiQWи(ZS:Io.7*:TNYi*MEFcRi1:">KEfYx[#ĭ#B2Si>G&[g@Tp(i>CNFK5J ZSj7'N\->Pҽl9lVX+"ł̬uK5&ȺݮAX3qrBb:}iDRh)tױ:F"b"mma)Ozne hC:NuQӹnl*zLY(k\œ*D$*Vv&! ZHߣ[K*'QȤZPWb!Ay\۬ ХyLӞ4Š%:'ṰzѨ2;&k BUjIۣz:9GGr:Ktt!D֭j5ѱ?QyNsy+2*;p).̬Б2R hx89%̭· )jQ)6T+W݅j'Bҍx!9}F:[kmm"Lszux٤NM\)(+xDbBwn0MkR/9 d*xIhrPaMs(IB(dh5BM_dȠtj6jWFQEdVe dQVqȶbx$)\c-[}1h9 e V7!QI*H;Jx_lz jrPSVDk"צBі0WWA:17Q(UD[4mS uKޛP+l:9IHѫ[t *\r3]]]dBbju)}BuXsPyOD5Ĵ"wFJZEIOe(@SiIB f~ixԗ'HJ%9iku%!҅ 4-fڼCV 9vd`!m-V[xr +`LPB/[L axV *t 2lƶc[q-ՀGdp"o@$! A^!xҳ%_(]05Ҷc[Qb ,YFe$HN.NsqY[oW*ωX X`)XR(L+} r,cфŊ-X,JbA-+el B-Ѩ[oV[oV(LP[૰-`[m[` )2*/dWY $M(J \1"ł-Nb`X, `A,V+#B$ A+n t-зyoeE$\WY,J%fLyn M[Kildt,{+z!2ri[ #NV۲[kmm]l %l VdYK%[,&/uuuuufS3fFrVE%t]eϋZyu[[ofd.\[o-庌4\~WYeWWD~W~3Y ?o]]]]]_<f庺dY,K%t\Аz= Y%76Yzzd^E4 \9 VB+ܟf.]/MwL||tdZAdY 7qD[0o&c>{p [ddMV"nOlxe?շ@..EA"|]ck:9[teoOLU=-v,6 ާ:8XqXn,o)m;[{c ǀ-竐g~]ԋEo6磅jod[eldpGyߣxns߭ueo6 Zyt;ӿKl7v(tߨDrCeeo5yVVV[q}ؿ{DtR䓺*6NC;_~yG_ߡ<,7KsY s_Cu~w o u'|#K>[=Ơn{uotKpKt `&G[{; [Iɦ~:||7Vc<ݲI;VDYk+ :[$:]_]K] onnX+"=[KucdKYZKM(,9[bÌy,Xk :%_uu>RU]]]]MtYY[uH.Yq߭釥_ Z U]|z+ςn2Ew%dPzϜhAȬ o{u'(u~WA]_zYW@r'E.AV_DܡY",.w鑰69u%]]_MFk"Autdf?&5!1A "02QR3aq@B#P`b?v/Y~LY~Ldś'e3g'Oɏ.Oɒϓg{'Oɝ쿓;?&w~Ly~LyrL6_ɝ3wrLd11?;?&w~OOɝȗ_ɝ;?&w~Ld3gw/_ɝ쟓Lv3g'Oɝ쟓l?;&<'g{7eeȿُ6Oɒ?wLe3w_ŗ/ŗ#u快gw/y~LY~Ldw~L3bϓG{/_ɒ͓g{'J?\;W3:R73~Կ:P.FQVi{V<=%_c-sB{>YgJOsTyCHJɵй+qO:!c"Ք]&e77K(&pj-9*=/qP՚lkqb\/ PȺ$図NŽ>_o %dO=,H,̃qoK$1=.,ybW҅WfEOLߵ/譄 v$"dHƷMbϱg5㢑%KcvQbcUtzV/^zx ҶOĢ6$[&-4Rb+bK?_ۗR .X&h[1I%^-CZRHPCpi%GF54U4U2FƊDQ&],BWҊ'oۗnēn)F9il! KK%+NKBQ/oa#L({ n/Sƫ]3QhOcd]xGMe"N)>Yccv>Mt'c<[fPOJv9J\Q;oSl/YhIط\tHIBJO~ć 9YjMF9V7r݉o)S#+/܎ǒx9V%7L66DltH%LrhH]c୺%҇ˤ-z44F'lr< ]ziaLD*Lllz߁PCձtYb}>=W҇B&.zҬӎܛ|{>ȟM\L{7>l!+"O=GWNNHhgDrxy.%E> .B(qэPŋ+ϱt[zLC,nQ$5"2BkhamBEѨ,:7FDQ" z[ űtQhKbʶ4QtUģe2ѻ$z/LDʶF {e8_1Hƍ6( I8YcKRKa+EUrf 1-J+a{BC5Gszrt-ؿw# h;w}N‰(Y,?amr D7NЧy= Ս}2} &;YfNbtN0hn^_\u 4mC;B,9Qer$85&l/1;ߧfXƒC!ɡKQgm-$ȅL؊F.[MLJdbI!P-F*Lckljcvб8&$FY %pIGf"f9bp$j(nF7ۣI4zJoٻ4Ѥf@<Бq4qߧoQq3DSQIn9mNDgJ̙"8rChD2RPŎCr7DIt)S,LS-˴.])XPfѻ BQPoɨ\}=ǦU 祉l8]9!2Ujě[WM78ղ6eoq"\cVKhE4QŹ,_7*'wP%hKHK^O1KӰJT,>,OZ]D1kvo&hhؽ,5|<Dwѡ8Y DBJDx4Em!GPeZbLQh)T8ۡhK}"ѨsܕG}i4 $d|:=cIpi4e%p[ʵn'z+hNT|Lwlq޳^7i1i!zCi%x"vܧ:wcH #<*Jb7r\'$ce%*bMHؤZ,)[;g~#W-tC*eʇ&759X=t}Q mpz9cw8KNKr9$nJTIŵHJ T2-YդY=TbpKc[S1rzkrMc)t^> SܷE%rFǏSb%vm:|L_6ÏBqZ(O#CBRӦQ\V%#&%lkNQE6iy5#XTð;q0G!Eqԗdj5-ri2c%lc\rN&;}qbQحD!p[}}[)N|sӲrtb=20*YUgkVCK)Q fNOCRG0_ֈCS"v8 jD 㬧vK#"3z6-ru[IE'䢊%x ydžMĭY(94,"dَjjПK"G[A,vK WGi_؎4RCFiix45吟D"_(A#,W&΍obggbXģTG:=ErO:(d.c4Q()-zxR[,2ŽTuHzgú=j$̸Iы e/ب˅r95.OCVT},+r8QcFL$0J{~iDF?Q%SC"cd(w'vD1(nZ2篆+sӼ y~ʤj%4{D{jF-rfʖ [,gf\ \/}O,,{%Ew17.IG18^ޏ1e܄۷&?Oyƒ$Eq.LrО{$ŃW<Q HSM)!MHD5YeTd"G^inc£6u y/Ov#_ 1,^e#F)+c/V}TyyIɣHk58.hԱ~zuOzV3|O#[g2-CGkT$INŪVvm!zW_M4GEx4)8Gc%D梷'hօN\, szmNmnv`X|15BKe?D)'"cs*hY~QVG>'< *Q()V}.9"^?+[/sѭ0iBĬЊ4Pm\KEezxE$O4bY;DKslB7ǙH&j/-J,2ʮ"dڎ'{fK"ԢhǓF^^^UV/K[T6j̞x59o2 ҢG 2^N8E t8v*FYBsvOꊥ,LxQڊ螷JQUDqpُ:~#WkRL҇DE(X4#AFMNm9;$.-1G$̎*Ўgb#g`CXWc'9Z%ɨJ'U1ZfF)/8ɡcx}\ɚ1sǎikU#1Q@hm .ֈ)ˑ!*O2XeEO]_R4L Q䬆[1愅lɞ1,̄TVPcfXF|d)!r?*HxFEyV~"0BRܖ5#zY^Y,ke~=K%3&Elr},*ĖwFȎX14l4ӧdjDDb^LlxcQj5#QjD'rtGI)O ȥ3#2NSġ1 2Mn\?~35]2^Fɥ/Oҍ.\D^5R| E˙E[#JcB$2c$M,3s(\#;呎8nG󿰧9+44̬d|$wayr3(18S'/PSD(oBw5_ϒX\d3)Y2D^b/~y&i"/e=2} Њ$| <9IXD"2f7C(,TG%k?~$ /"?Oꇂ^ۙ&?cGG;yb5e_TE c;PgTM4D]?P HjCd#x2kJfOS'nY`\Di4LGKKY/M%Q!,LQ0IpiFv;?ao5;q/V^%ۙ,+b(LY%"Khl>G<I#GA#I^4i4B4Ii1?K?K~.Y~Gc"c;_">y#;C(~,8g$>/V&9YTGY藑zX#CSGlE ~spL5|#G,H#+#a"~1r͛ջ@wdaFIM2gb |3#%"4M(ЍK dOѯ%XBXdvez.Eգq?YT>)Yk5dF< ͓uo6#&^vF?K1^$eёY0E&v~?H?H,ȇkHh^.,zygo!O1O3܎:Q_O Y.iE#J4c!ygs,9G~yj^ԥE&~?Hd4,Ds*gpwQGywQCΏgvl6wf3 A駮7F6Nd; y y "؍]D9thpLxQGehFW]DKܗrgs!yS4ӐO#J4B;H#hԍCs%2'mv;Hh(7Yj52FFk;#wNFk>&v$vGmvGm x𝦸>4k;t#`wFj,P<7b 4QEQEGxr}ŐR5#Qj5#Q6Yfyrlhl C;bvбM&(((#4Gk;#<9v(X }+8pgčmedw vk5#YsC!@i4M&IF+E2JOEi4M&5Knifv4#I#I]ZFA#v ѦVS&hgmvРh4ҽi[JUҊf˭ui4%WHi4QEWDW(IQEWDE#OfHVi+EUQV&IQ.ǦIE/?VlHNʳQn][Kk5'~߳R5 }/9d˱*%W Ѩ'| ^Ln禢z-oK~ߨ_$˿je|WF7}|{bq/bۢؾ]%2丹K5u؞LxR" ~߶5l7*]X.Y~_ȲȊ%]kW~诐W{1]4%|Ҋ Ij"TWJkغÏ2C_#HgҺ/>C%~&?6KJ~cɗK9|4>=y侖_Ktx-X׵ÏՏn}dK>m{KetE{LY./_DUu(֊Ïebt]jYBC]keYf5c#QekE{+QEt鏎YeH"&"UKQ]+{,,5n)ҽu/n(H({)M&H՚QE}cUt|{EJ(Kb~E lQ]PJ(cB((q4/+!OF(QEJNI_ (j&@!1"2AQ 0aq#3@BPR$CbSr4`p?,I|$OO܆fkKɋ4Oe9Ky%kɮ_&?s\OWɮ_$䃚^iis$S/\OߨI&ЧUjf:2%*lӃPdPIWG&j\jk~Y;ɥ.?29f'5$Mr:N?K$ŗ.dOc̿ɭqW<\C5%#4\d9,dJ55;Tq哶77hҩ--QVxnc$Z?#I w.Í OcCV烓{| Fkʞ9IU["[#.eأ<8l,4%ݢenUih҉Jۑ4 Q(jT"(LP~̒q-Âۥ(oBsC4XtlO$&Y2n.SjxZvhd%{ cŪ@g)%F[!w'##_d.2&o[,Pd}Ξ-'nCfK"TIU!ZtcLJX݉#4W,PPa? RFihO·yE1]-!7+Bwۂ_LGg33<}3ˏTF.R^ݲSQT^¢*ٻ.J[mz]vkblxuwn!ZmneJ8*={>(Qtc~9 *RJ3Rt2?wly)$d{_iI> Dו/,~oۑIԏ7DTJMWfK([5oFOl߻x n٢^bR9Fl.SirC#Ǖ"]N1Ey=M˲А<4(%Ҕw8,bqFUS#jm 52<:RHڈ®Sہ<;2l=j=JQ-ic4kaI-.{$(6r%fl7(TUCll̯,Mjd(\Of&#^̉Mo3O-VQ7{&j5NX["*WuٗY&[[P jp7Jw EH;d^'lN~BQNI:vݎpG%7rn0RxidztR#kJZxjwe[?_DFJ'У# ܋Q'KazBz^y=Du_Oو\v]9l9RzlOP-ZP|==$/*[%"BiH-HutN wtiމ%f8حI*92=cmr[Q%u()JбK-ڪBDcɶA_gɭH2 ^Í3ܕEo}ӖӾvM}zjDkd;Pnj! ^N4!Cr&'w1{i㲫4vʾ؏C*+=q ) Wձ‘nG_گ}meDPtޗ~&:" {P"߷B_$W=~j$a_f:5'1 ?$0Gg[NQum[ao{Fi]E{ڻUTu]ژ-cquތE]+55tI[Dd(5fkZ))$FEQc4[<= <9qܖ=J P$څ(Bӻ8"mweeY]٢ʡ6<֐{!}KbD/߶;KZB'ShUzX32ɨFRGc&X㎩Bj vj{$}бcK~˒K&hi*6- INQFEk%ئObw%sxԮKⓒܴm6< (j)DJʢixyTB(я5Y']*[CQCǩQnn >s_tIQkEU {QT$,Pҩq-6;Bߎ"y,`r8dթ % 3`M*wde\z1DQJE48Ǫ譅Ѥҍ&xh"QTr{$yēi(q$4B^$u<69??rOJB^&7JtfTpčHQk/R$j$4KJn8֔z*(SubkI[5gEl9R:_Gg)ԑMTE1Gj)]qH_,F(4mCt:[i Wsɗj%DiVp%( j-d*D7VvH3ODu$I4Fv(r-Xc) M4rxn~ ?K[+qSMLs#kkc1e{'"iYvԨHpLJBmXJvdģm?Em.ո}|rX{+rQ7kqrYci5E+ߵz}E?,hBY4TQ2Ųv,vW>=wډ _y~BپAVݜgow7H|{> l?1NȻV&+ttǴ/,1#w|gGP]F&i>P\]K~Ԕvbw%vev/{Âj˳բ%7/vJ/(CC[{]We LC[j.+7l(ʿ1!L}Qr#ߵPVܮ9(g:*ƍ.Hx(V/:4ܵQTi#,ܫReg(K%n(DDQ(Pj^5-ˑvt:rW](o}b$Tj=P|mUf&x݊o0tWm/DcEM| ;nmg'v-m[\ĩ Q]-Kt,FVK-#YlY[jUMpV;ج]摒RJ6v(iһw*XerR]Yز?q4Jy8ob;# @Vjӹٸˡ^Ğ|#MCӻ1t^lĉR^R7TFqݜ<"9~a*7>bc*VZpcMTx< T·A|evpz`ϋ5 ukInn+J<~#*>y2,$jZPg&2+&ι%xM-;.\/&ה̅w(QtM54ɖXyOaJY7X~xn^N:Tɖ1rmcI.7JXNXá3^de 9ቮ,~fetu;f<U)iE o'UU#FOGEl:oQxIr.hsIɒ8fLs75!KbGb8,DFw)N5"\%.)Apj}K<1 uq쾦dIJ*brv{9c5hL8Q1Gݍ~2Zj/rvB[fO8]Ajw"qR*8ovIm#o$XR^ġzXx%.e,y8,Rh]EEFr%IʹLݚRJ16o!/aK$0uXx^'rhr7Vкll5=^n5_T85!%ip(ݢ'2T> <%=Ze1#Iy~%=#,\nXg!usߡuDzdbۑ' jJr1k.> y#=Ї Mu匸c/^„ȠC}Rqr$/R#vi4L vy:DžTiQĺlMzE/mm(WY`VW ~.KR=fW&e4jvAlK>5-E\w[饒Pj,r΢rd'txw͝zO$axikʊ:pĜڼ;a?&> ; QB+8J2tT 1%x5RB-8C4U j,7Q>Nk|8':!̅ԕ3Fn~Q4r+T)p1uXW|vC [3{< &G B. 1iE}f,RǶ6k%|͌]DۄC>vO%f7kYh)|˗u.ȞM]b=PߞjCЎO؎$,jL]6UHSܬ}ɹ..-b=_S\[D~Ǫ^IKu #D̒Ǐ%VrK>5ΧgˎWo< ?T,Ҕn,_q%V^L2П}d UO:&?0"h_itVpcu)1c9.J#$Vj?l8G>9^cQ>,e&}4~σIF^lQO4/.? p1T$^Vz4HcļTd ~K͖7C:N-7JRD&K/͑tѽLQ*.Rҷet?E}$/!<_Q'/1M.Bԫt>Cɍc\c.~gf>'qIÃlv}.X~]MV`:lVxP|q`R}.9ָ}Tdp}#=MY*`))5<V)m>ԏ6ݏ.{'giZ:nM 8.j5)%xqLjуR֫Q57b㏎J/])GN\vBh3tGW,qmo xzRaV6cȦ}F\RrbĢ%]IaxrC/tZ%`t_RM_mk,F14Y9xWIEC3]{| ۷S1N1`%_N̽^ٝOI qSqr+?0FQ㛒*J=fOŸ>`5fl7KZ"uɍcܡ>ώukuZa=W.&r,P%蛄V_b9 5hћ40ngB.|t,0J)} Yt2j(xe^W*[2qMhŕIYǍԥDNo"L8%3c^l/L_oGd&=/M4t䍏/cYJiarjcka:3ux5=,y5hGN(+Z2`;2X-g=>Uz~azjfugF?0M[ud,2u񫛢}d74LmُǏҍ&I:%G_ftG=lxUB4iG#\]69q>ㅻ} U \ lnC3OL5teB:,>i"?2N)f3tVNPٮWsgW.$Ү$eTPp'(Ê8*ΣR-u[Mc޾ec2e :WCT<]?S ʌ[tOPx_)G=8\?,'ٗAAR}M#rgB=2- E4ӄ7KU 𤎫y#̽|=:u?x_T^'M鷊bB_9)e/T4:xd"_gi_/YZ1~2ۼF[O&Vhφj,yYyszvF<k5EYeDGos&\n?лt欸?y!8Z) Y#YVǃ\[?k_pST>j5ߴKP,p՞v.WQoTX1UĦGgEѓ"SHƅ3'O'#s1lbK2B}O1ddcɿ њ>Y}G4g28 K>]X+/&/K렯Kt/r?27KJ"?^c(Â'X,[>E/rXB^/ȇٙxhNwKQƐ }6XqȾk}b=n#z>,߹/m.O۞:dz?qM2ǹ ,{LR/C-:2lY1DQh2})z=O!/>;> 4GQQ> ycY{nxIrubfYwc|Mo0z5XCsGg> fr4.N؎E. c\>¥i|#͞k=,1zQP4M%IП(ө(ipkFF'K"|!> 'uldc7M#rqs6Ck>|ɑ`Ƒi)w7}j5j5QYeQEIi4EC}-'uI-&OM/:E(Q@Q* GbQ_;[uH};d1s[Y(i+IKQ9χ)HqKC\MQ S5FYT{.o}>UI/A5N!0M&x8&K.b>c.&}:H:x=QEg$zB,Qj/NCQ~O#WW?cYI4K< 4K;uD>(C]f?xO,PloG#8ϸًpȼ_̨UlllljǑ/J<7/SaG ?Kgg}HR4$&hq%Xz}.Pb걿sOW^x+.0 (+K+QEQEWt#OeoIYi#+h) i4WtiQ_YbwUjW{5'MX_٫Qc(E_ BC>{lgvh-q/QeV6_ҘWٲC/c}d˾} {ǿ"?ezoWG?C>,{?/tH_]~ W/F6(%_K%hST% _c!~+]_X _=Bc\G,ıj_U~8,E5RVWYeYF5vw"(QJ][veYe }:J(% }QiH*GϏQEW}4Q_CB_CE8v|Wj(hH/+ ڊ(EPtW;J+E!1 "AQa2q#03Rr@BbP$CS`4c5s?KSL/dϢjL/dϵGsO^ɟjlWo{&}3菢gڽ>7轓>^ͿEQ`jLWgڽ>fϵDϢM^͟jL3P,P,Uʒ=gڲLGqdߵ{&}3^͟jL/dϵL4 fϵ{6}3^͟jLWfϵ{6}ԙh^͟jLP-/`g{&}wlQlWg{&}?;rfϵf*R`wl4^ɟjlWg{&}ù~9g{&}3^ɟEdWid!05 k nE !LF}Dm .A8tO$d@B s&5. 'J+[PPFs ,gU5ǓTvg逞(qhq+gÅ-ۺUd]鎰!A,%$ [~숟0~xʲ<ӽ ~R%yckp$rW/44;?0.6%n`2P~JS\&/ekJ-@qꉀ%JT~4B> [hGg)'Pjۚ%C^F1Of. n`jB%Y*xF ʲd'*xC#bו& ny0s/%*xIAd]JlO8_he(D<,X<Lχ Cey9ƵhNJ>#z|-~dp`ɰ8مaS!4^!nTsVie'uS&N{Dx(h#P3p 6l7+NyxlJ[9jFת$pA2qٓiXjio$Nqv\V@b7/p \y( ll3`o0Iʈ[}X;>)|As( uVfmLP@u %Giٛ62#cm'8S di?b}}R,) I1nqpkCc8_S~)Cfm7/ET6JCn#*6m˭j~)CqzFK_r5,5??߇ _dlJwTU CtBɒٶZȏYTaVv yiY%3FUL)ETT/l8m.&83v'溣OQm[\P|8 4SN  Ǩy(Qy&83z1԰lXPQ6儆tnpm+.v د`߇y\G:u>.uCo0'椕#""gſ [m\ŦTl6&: ef+$lQ=N3' QBQlIexķ)E.?4RKjⵚQflv VTa :zH sU>&@Ɗv TkCn/9N]uAʵG沊 \GqU`꽫RZlBseyk,^)eQRi'K.MBg"N5дL+vQU̹ss`enfeӿŽQx|`+C+qNQNmG=ݝAuzπ B+cg4Gi o}Sوt~N+)q#:*fzELm:˝cc䁩Ok.*.vVggWiiGRQM:@L5_-aDǮ#ګَF7s\'WDa#Ov{?4Cbڮn7:e` 9IMhj(w}i}h֨9;>m{}G;r=AaNh#oj|V".'k%?pvjNeK;-^J.sBd[#ߙ>\i9s 8t׼tN%0ڦ]p Yk7wŔ}=}8 {胏mgilLvr A i|P:b2tN5/Gk{|\5MSi1'D@DN8 |7}r{i Yr9Aߥ%Ce3;i}VvS.#h9CSGSdH#HG>,Q.ER&vQŦRU?NmUl.o}LiiU\9SBJB=nhڍWfS]8Sk?, n^oת}[ZIL~GDE;DF7j{Kvnkn3LߢhZ(M K3'iiPG%%k&d/KG ѫWvZYȳ5-h5*=:p0ߚpU{U"Wq8 Yٽ:;ӛs۳H~ID>KZ(.Zu@.jsيl%5DܱUiV\srˏ\ujq{RN^t k&Y2=T1 TMA*S\sE??0:) -.?I>&o;`*Κᦎ~Sɭ{NcŹq\V^?r.s'n֢FvNNz=E Yrzm@~^*_^//JnþjosWS̮ fYG5o?%1+w~KvlUڴ۰5ѻ0ISPcWyy!nPn/^"-yg^0oe_8|{?ף)0~ y<[[k \v [5S9uo"Sm;ƮvULgq)s˼kUy?5$r+~[>NW\PX ss~#YSCR4+S>+/ID;MD`hېg]F:! 1H y2AxA #,wAZ>X\֫_]Z㫣/ ~v1i%z*^ s*N"@x$(=Jd;渷 bGE^@^&ɫWpK1_5` |M[n_. ¼+´Z-?5Z7 zXiZ-ja U߷N+ѳUw-v/pV~7[Ԙ~J~x]_jVuZhphh5;2^KaCޥJng? ^ ^jxk{r[Ky(r S2Uu\AZ>C 6tV ^rI^ܵ:AWxW[QuJ)\W'zjg/+_x[Z跩[|ղ#EW2nUK[O5pSbuvYF2Jc*bVU/Z/ սuoÖi:-Mط୆\0:qk?u+k-ꇗy~:߉?X:-o`I8R?Gs?(0?A0?c[h5;Gc`",!1AQaq 0@P`?!bX>WbX<W> `/'B/x_ c?+Ù(7Y~fTHc/!*Y@ZWJ͜LTP7oZrV^KǨR[7ׄ_ (%\;:G)T &M$qa ['0O8{D .P|HHgJٿ"j_Dx1:<&[rɈ༘}ʇ~=b]5h'$CS*?jj޴z.XS y$E<+iXvee;!UXxy~?w3̌n8*`E,evOx/Q DĥK$5@6L5S OIț0E/%c/gT[&%GfL#h&c*u(2(,ҪE9~ ٚ H f#_S#?RkmY~H+Z4}fp 7Rċua`Zl@ʜX_oyTHp. *R6|mԸD'})#C=Eoy ]C![ڠlY0r9Tpb; K|F8E]1kmjRå/z-~f)̲h-Z`W jNq$n0EPu4) #YCkggs$y2NR 1#Ϙ"i"ь1uWQ!;*3ʿŬ `C)dL^$%Q- c\!.m 4,;d@ЇYG3{a \pZEi02 %EG‹-g (@7&cwX4aF͜¨Fmj1* nCzM`M$V@L> 11ú9껝G0sT Ѓh-0!ijԭK%p i\Mokka^*jb%0V8lɄ< lfU(n].[;u-v &n8'@>%̃s3R"^O7;pCatuXrXhıkLO껕@טa GIJX#*ZG4Y- !D Q`xnP1̥!s̺2 ^Yy53Q"11P\"^J Kļs)ڏS#M,hרmZs R%Ƅ3AD8@S"Vźr\ʋOspǴ7692~bΣZBqaf7I ssJ4B$6-FK&R*;`xT]CA= |@**ܬM_!Vs'C.sLz^euC9&ֆR2qVuG]!`*\ >挲\0 ~͆.wE~!PN-nfp+O12Q+?{1 .NP)zNe+O0fL&&8OQ1  ^ߏT+={@W1xmGΈR1E.3cCFKVxäeq KM"LyLs98F̘<1M1s)6AԫbҺp0| /+xj^h[3Ya-f~y 3 1NQ yf5 O~_ߙf)9YrW%]t/K . ݑn`_pυ\/)v fr\ø-`QwD10j{W.!r 6VW}b$xyI 5n*\O7dT&9kYA5?i.T;a4/9~?w 4-ZĪ7K\/ڦxV9JP[?qa̫c{#Pt:* V~bwԬ|Haj]S 9:<ƧJQu>w}@#(2jpn.1Jˈ 3qwSp E/"p3,yj-| /8My/2{K:Ľ&Uw DdЗߗ_)c :( 3 #L/c38wa[)2Ay,NjQr>7134 ]W% ,D?є郂YdQ,FY~&`TN5ŋ=|mZe"˝E9KM@Q_ O9q %^PUlj ?35. z5_0|&\=s,7(BV!G^#VZV!hj4Nnd8>kPb R=oTق l ]'HU yNj&W9Q1ct?^k7-ul!& We9 \:!8#,U Jbfe+ X)PW0[t1wjJy{C#/o|C$|) ŵyδ| rPncq-DXQ/, ?*h1qp9שQ%&2&ܑxwYjh`"@M`ʬ܅MrL@@/gSu8XAP~-J̰,h5c&chR馞#uL,f͙sp7,cN{16n:gv k]C{4RGR/-mASDc0/+ aQDhЊ/5EOaP3x|rn% s`+O^YoWȨRFdf8Q@f-X4 ehbcM|Lɖ,N2Ň/ب_KP=%?2(̲+0΅2e lp-@ѨWѕR&RE6#̿<{ԱMbY/Is qbwPF!&6K3ڸMxo|.c06Z13M*]=Ƥ-@Cy~\ L1 7O¨b+ SgQ^H?4:u҇YC_U 26j(&/P{&.\)S~e%h`5PNb@^xhPngjwfF ܣSK&g&n-C\8=Nlw(9m+;ewٔ/Ѣ W-;`L9XIĵ0ٷpVSQZ `<ʰs* Qy}Eff8s$^ШT2 !Ř8B={d%u21\#Cmiw+~UT}A1:R!L 20N t6,vSn!hZD7V}ew<16G; _0T;XhZvr«Qn rYZ]M[l?տeרmbj02:FrYT3@]s1bJJrd,Wnĵo8#u L~4ÙP^vdn/HC{&O o%N@2jvgTet6VQvq[,RO/Kr$=A[ X%3ͣOQ  Zc/<Ƣ$^ /5w eQ:_ZT9!m}CIFwrјU}vlwp i-Z2d2A9hw Kfڗ/⛋sJ k3G UVćY5aC:YD@MKFe(0MƼ A0c 7%+9C] .ν/B`Yeob;/s'%%w RSB̢Y%\vKQZȕV%2q0IVQN҂3&av-ShxuE7`0_j@g+ m0BPYv0kp!fJ"j'^ P^Za`ۅ`*YԽGlYFtи #㘶veM^__frEkjI^(`+y¾%SvH]''.Rf?\69q*&2u klSiFD[J X`@w G2_f.[b(ṣ[2&X;Ù˩fA,b``M^xĬzmt0KeKj"3Wo19ԣ1OsyNP*[jr|;"%P] s'h JỆfj[m:c߸V9t 9JSZX\}Ι1]MbiK'F\njJsW>/ʫ[ˆBu(;Xl%.X!QfX[M9q.{F03R<&qh 31K‚l_*&e(Py.YВ[8oï|q&qs-C~ uPYWf7Rb1SwcWU< ;wD+ ϳqH̷^lwmԬS:Ll]H5ԫf|LŃ P,Jy(q23/wwXo38[M#Pk2fX!^=B/*`ġ;P*8re\,LED+{;LWZfY6Zc\Q-BQQeYŀ*&"X傈uM©LF+Tk-[*lG >+p#4jvϺuGQ* 4=&>WMQn6{)ZRZ/q~w&]VcĻYFT+W./ye+%Fgcʗ <ͱ2#{W-g'*mQ+nfQ+HWಢјEI\u Vq1*Q2 n)&8&H"bBs p" ,=BAܽo\b2S.ᝢ=A6}3acAx.,9m2#zf Ȼ.ƪy`جHRP 1O @ܲ[Əp -}Q њ`Ĥ8KxXSh@[dw3uT#;@)ωO{8xe5,cbt!:f_"  H4-Lo Sv!-;A'- J.K ^%P[%;[ 孬8f^3͑zG=C9CYa 39)sUbنd^r"񎣪L2[[c V-5C^,ykKh](eKM9¢,_zSGux)&*4"'RdO oW Z<4:1aQ(3^_24f}]bqEx jy!nyܬ% MQH& (\xiGL1\c̪\_ N<,îRDnB2c ,gUA{l:)Sp) 7! *!/VZatPӲ{BGeJ(9nziTnt=5o6@S-/;X8kqʰ#l\29ġK d?(-~ R^R5 B^-rͥpO?!FJ(C.iyCpc OJ-%o'VHtKC7PލTA9]AUV*eAi`I mdK@en?Sp| .C^ BUqE^ep(y~2vW/evΈHXP耧QtX!<KNqeMF:beZX/r5o3StUDycR2ACʽĩȢt"ZbnhI)pWc`1eiT# ]\'9.0ݘb|L$2xT4jjXJwKj\eZ*/PP}Ap5X_nb&]NM"yIp|Gm c2~c`m{TAtg')vph@R"72ˡ?"8$WQ @.X.B|~dd.ۨ6ÊL1V9f}W\3z_F҄Q 61>8%b,fP%ܪzpK1$Gk%ne"saC^ )REZN)%m8=BaDFh}(E!7"T; auUlM489\Lx!p;}%'R̽vsR2e[ZM39%Hƣ 8<0JJkqFRA/٢=`}fDyB^RySSps)G-zA*Ȧy#v($טӺR8DwPo7CQ0Z6= Hf?z(S2A4qzcU,\@‡(?t>q=Z˕*:8&e@{h ]TFLJc /k'2vY r+`pG 3 PjYh^Or? qW5EҮ\׳{qL&8,~&lxd‡]QsH/zZL:NO& %D`ddȮ##A/G1\t_23̗ૌ0Hˋ9Tx3S4m# azcOV¶X ]0U ,"0@rjeoi[3Mк/:+.1uٱ.g˲싼\kqpX5P|⎦]T=AR߂7KWz18.q(a5ߚ^ʖ@^+fS:Hͺe v ?B ]]>_< R,7d.΁#_S&TX=MS?sL%,e#d1}舏z}ŵ YBS| kHǮl2:xZ/n˟"N9%Z1T~~/4o (GجEDZyb"\%&^x"ünگlyR5W;N=#qqaQ`Rm`U2eޗHD{e\?4ܳ 6?1= 5+(cx' ዁@]"!A;S%??zo29n EQb#wڗv=#}.!M&gP]̎}X \8s&^y#gm50/ 9nz>s"^A)-֢& ZThvh&VRSO4JhvDCkJ001*"l`=(.ҿ*(% z)VۚM>5t˞>1٣q爴i¿U"5끠4$Gn.U/GS+ p{p$ L^SB}~z ˆ,@Ȑ ;>jOmD~/,ڿaj[WLOՉ1;J)pCSޔ%δc0ZQ7q+"Y̱?]G* oXWEl IFO{{!q[,™RUgZ,4}rʹ*載{1\>KX%1>r ]|Yrȏ膎b{e_9~ ?#\YɿFq0bbo,ywga .q2ͫHԿ- S<2%-wU i_kQ#Rḏ'rU;Ilӯ3 ++-іSďFB.ۗA5a?PhИ SPxB0/R-- 6u4qX #|EOHʇU r) %i22Z>zxL8A4팅:s=on`n^CV#TC-b݄Ko!O1cV>;x /D۝J6Q{]`$c~ذDg\s*ջ Ye Ax?ɑO"sc⡟Jc㨌d|$t?Aq/|p ?x1Fk> i[n\Pf*# =L4>&ʜ~%W @ZO=\bmúqe4_d*fkr(wV|h>φYw72|2V'C՜!uup/s4 6$.EKꙘX1;#M'rZ#T4+q) = O4 \N0}…^  g?r#&\'@eo*5sHC)EGk0sb[:)G*1y#+e"tWc郖p{'D|XS=0.\&#+Of$}sUNCkCu3A!Jz-HlyY sNĉ+߅* g($ZK&CX|dy؏ 3)b+q˝:fܾCsypO| DO\M㜢!^7Kw/---.-uG9<*1O 5&JuU6ܷ DS#)B>3VS8nzm4sjU|\rn9"_8fW56s/?hA~/nKV#&%L!ҪKɧo gv {C9] %y̏CE*/!00<4eZ?1AЂ`%@ ka\:,Hj5\>0š[KKJE +#_9+k&1fXc=FBs q\y~/sV7 "<_Dg6KܷS/r qxi;Iyyio\p.B r'~ ?w&zx-|ϼ`|%ZC̫G*,#/#u9FW>?P֢bvtÌ\SJ3ۛf}9CQ]"MRV 1}(4H%c rݳ< 10(^x3y6|#'$?''#&vZ&zlr#]ojvftFhŲRqg#;FNېIX2AG|ǗGuK+Z4"tA ~"CZ39ɦ.q^Z ֹ̿3Gue6 WemiSئcV/I8cetKeLmW.($@puJ}sw>&q*kq&{üJuA8a"D"\l[/qO3ٞQ 51SpR2+w~D8hk D7;Yf?4NvVLD`6|x' \0TsS_w'3a||cKs.#S3n#S*foKg̶ܶ%Ŷ*\| $]hEw ̿g0Z4*o1ع卉s4ωEE)mYbm69Hܶ-S/2_!:K|~^_[68B)o |hc7 ^Z+U<̾RnX gB-hf/1´5/5PpR^+;/@c+oQ"&\`kZK+NxtZq)nPsQ:MxsO.,nXRT*73 !l8?;_Pnp'D |ϸ5o~(wҦwswO_*sElޓqهƦlnbu1>h .RCA!W.9R- Q08D~o5?+/Yéj/_d4=,S=)c7)).'p+_;[a+Y3Ӹk:D?S=* Q騕+/cw5s6Fh/iQWGfU~!\¾̩i4*b%0+r59^g[eemuk TA?@0 7_Ə_2/엚3]HkUV}ŷRB%6s/X% \\mpaHkh^#u,?xQmotB /$n+s9 WѢ TShW?HjO)_h3r aM}vu+uyUgS+V>S>B4~IFaTK+2vybbZ{ JiY#M~T+DѣIeJ|M?E|Mt>t&C1 !|37LO.sb8ͩ~qp"q]pq |Ç:XÙl?Cn@VaA &LX1K? (~eP2 *6?.ρ*sM!FdS\W2.]p 1&X? eM@N1W5Kbq"ļKHri_zG8g9۩q~(刢V/nq0l0Qg2^`\XJq7/ ̠@bK@C@]RsQQS2R*[{PZ2ۙ!e2R&jPi*4\J^eMs2棂*T@ .} xLT[eNeOS/ /~%Xs0/Q_SLka39tmarÇ?k Z(AϨ P#"S#Ԝlfm UPIaq<`%w)̯i;kF0C }2(-#Q7J&ñ숋Txp#RưɦBpd+7sL euT&0 ِhOFX$N^^!ǂatb86% WTA"T>}h9:,7cށ ' `޹q(H%o3^.e.KP{%VbDYۇ}Ru願w }Q2c{/^ܑ@ֳnnveW@VAsK$j ЭGQacWxE+i_Lg| Ϳx@ŝب-Zmr(8CV57-9nj-u\V hӳKo2>r¢u7#$aڅ"cOhM*l=r6ザ$~Z`{u*{9n+7\W y4k'O*L:՚K0KjO)Q'4ywC_ QOǨVnA͎~ܟrsp?ybo݉+ƞ>/AfsyQ}c;33?yv6r/sOֿf*L]G^`# R xvH\(7̾slU+#3 =iO¸4|ic]̅0'^9cvGc6s3aܻhEb N{5Jbsltmf"2!G\1r.:?/ِ8]ÛCۻuQ;\g0D̓' I ]x ]x&l#·moV| a|Yyvwvaip9,t$#xM.DQPX-& \liǽ@DDx\9%&g.obp1y6ܞb\fX>[L U `m) 2pBn̈́hrdn1,y,ɷ9Gp(^,v`8ߛa&Tnrm 09Z5ptn6%˒Oj7ܻ< NI8AȄP8Bz~]c-^g;"2хK0x23ϖKF#`lh̜vᒎN"'I!.^m[<IzxCëHxvވYpj[h7/y" e'Rl4\ujZx0_}ǛF1ѕq #X|߳g<㒇 a3ԹH!a&ᇼ<,t+GI>qnɷzޭ2r2xpl=1Nn@S8[`S. .R^..YXG='+sˉs%p|o{E'|Bd Dg!ϙ6.a:l5Nғpc!xO(ydvT09;B<a-rX3*x'Ԍ[a2~m2 \a03n>q_0 ,)`q8Sob@/=7!o[㨃2qcr-1. =Tݞr0~3y`=?@. BWqj $NEF^;(laIդդ [͋xzL3^P {ipnpл ,m7ŴP3.-'#zGQ 9|dN&fJ\xGV#q~c$)U?1`>/t_ [:,iP`BLJr_K#u',x`WlA]2^fr#)4;N@Jq7}ץIa;>S 8 ȹgf}jZ7%v!&ڲy7zx ՕnFMϥq0⩳t2 FPdיcB y8$VDHR0d5,RӍ8?tq!n3ɐi2 5̓!6xHl{8A`z6 pwr9\//7'GFGs!\!m= >mpm0gq-:8s8u (ł⟉-V']ڈiLs V5y{b8p p<܁L)aoXm na<05af3`Ia$t%7wwħSX.P}EWe=9jް62Cc' ND$;9`s))029ýpECK-R>\1o>a .v7[le42ňGHaymmQזKIL뭾C:e"Uw'8-bqg$MFω$0!ySL=;#ĽzKg wX< nUY=sɧ &s(!\m8c /5|. !OP l)7L{a͂L]͚xƟCB{p1j68m2cY$Qzca yFetH6Ď#dV%y"^c ˴,`leSR^ 0ݱp8mt\~8h> n׽PeyYd_/Ǝ{Žcs2&0<DHŢ`:]?kFpp'~fI\xmdJ⻜rT/8-8`CiBk~$[o}DڃM.w!Osra &y (r\a2Lr(/ۋaò˶zq, r^G xq+$iyPT;~!6p9y0ɇ<#}xdnd]6~ ^Eu|kI5@t=``[_G^yi~!O3.iLc0hnx^TB7ȇLȱ@IJ {qierdR2`e5k'nlW@,Og~3X(umfy'`o4m*Y}Ώi&Jya#:C[9!8cO:Alxˀn9Ͻg'td"/i_֚1]s>q$u4toC_! y Kf&Kpe3NB8.ǠwIInŶa0L/>v,m!W{?X#)1*ޟt:Ov3˞|G q%fq޿ղy}fӬ7ȡO`;tI`@xvƜq[>,OSϙțڠ<0|pssnJIdwE6lqparN5{3f&/_6Bɱ8"ĶOh|BxG8$,PԛiOĸo^J9 x^'n 8ZŜxxCj 2ϥWzd~Rs! epnNDQ>dl-Znek9upy:*صa)uNl qgQdK7Fءqp=?׽ mP|?6;V,Jq8*!v nf>Zh?ц#߼8lR{܇p6C鋊<\#b+, Dw9{~wc}> "|J˗FL'ϰX{}1S#xriX1|kE|ap$<-7nA@vAH>rNV>?\<o/O aU9ë6!`\n''F`}}w}Aqhn]:@{Cz jNc@䜠æAqmmɩ'G_fa13\2rzE3}~ ?[ .P9ݏԁp`" {Nܡey_6f Փ;$ܸ]w '7-] ]XhgFuq2 O}ԯ_è@݄gQKi|2L>׋!xrop#6gNc (L [{gQ"|t}\!hs$fw =2NW!xzݠ[h@@p/:$:.'wR1~$k,#ϡq&zGGvwşpq>"0sq/3 d=\3,OIo$Պ63LI⑞߂6~Pd9g 98u[//#&7'Œo 5+^a,lYcOK97>lb/)gS%7y9!^a~dŞ>)Ǣ ;wW0xo-/G$'9ŹU{I|{ق1GT9t},nnMtK^A'_?ED  7_̆7_̟~Vdh>^K|Gx[x:9n2w؞޾nV^X5r? |7|Ő şiȑ}H>8pL]|oh.0_/7 !e Gi,/Qf@c y1 A3pw8.$v' WKO$KApjW|]+ =w ע;^'+(yy[q-v`!>9pI:=ރY{$f/'~~ ѱKV?&w\t D 2P|x:;mI6gOO0<@iabś6 s-yW^ 3~K?;)aY_7?ăADhW2bzn' `6=c6l C|Guꗙ>$w~uU>Spvi48,o.$ВM0^o7 o>=K)fŘƃO^7ONjK ^Dĺt0X-KOQً֗̾n۰*wc?%ʦ,{I3du{%p~R;Oww|>]juy݀gP{73erJ2G3%\/;cyOAbIϜb;7y]sC (OУ_r{vpv},ʉ_z 4lYg1- ;ᆛKW~PH}*d]1.XV5j7yC+0>^r!̧ܸωvw>߽w3`,z$ջ:t= ԛOW0ݗ0.'c/R} f&ޡW#9\3o|L+G.!;Aof 9sok, 7 K ǒxf̖;o&rW{r,aI\j'Ggp]lسbCv:'|:`:i.Mt@nӞ,t7~<i?s=<6Cu% >Ng޾x0-r b cש)d<{`c7Ğ;C"=?Y/| %pO7J}Ԕo'܁}@s=:/"EAHt^4A=6l"i q@eqg݂Nd𽹜{?vY|˗)oA`SωR|=^/GnI,a^jǒ=wb̿Vba,ٸ=,Xc%u u.n A_J<$#,,ZϢϤI$CNޘS$CV@y'xB& -ujݻYfY^ wy- ς{2He̋^z_OP6Zߣ>6{r:-i {AYd1%L,&Ha 8w=LlxXǼ@Gޒ6ra;уHI/ pgswvz6> 7 x,;, ,B텁lz%OfXYq*b:Yͧ,iw['0"vcţ,ǼLKAXu!wVX67`|Hu+5b5p,YhtK>N 9G?Aqb-aXr̰M1yν:0.$N3pg6s}pe|\ 2Pzmcaݠ200 vے xIU$c.s0*짹4?y8H:l.Pl~\^_Nu!6Xcrr=-BPrp,y\\ˆ ,={8p97*9-2 Bt$ϱ9<ɶ+Go2[]ͣbaיQ! vNQyۃ!KMgShgӠ.Ofg҇ے~Ɯ=ku2~=9|Ʉ̀)yZij&FEx-:öm 6.F[zoTu]!8 .%[Ϧ_b62raUeFJp3:M<^qtKkͤ͏FPlA߫l9x3?tMϣ^'Iur[BZu"=Y}̵rOxߣ.:OM=ME]VK&gI5~.7.%,KŮGV}avm7>ϠC7l!E}W}PwvgK9Kiv-epxxwK.Co6u 9sأS}10ͼ'kqs<[o< uxj c}ſLe;;BPxSضA} -rIOM#OˏX`=ZnXx s R<-x萳` Pd:tϮyQi4YY[2hexyt.n^tc +za ag2T]Clv Bq8SyZ{v5eid ISl`#G`ձyysb#Y:xmϦXC W'i8z;_@!< LZ2O>|]pl.Ɍ6%s@nN2J-!$,A΃gtj9NCd-M1Œv7}vNٍó{睁oYťY`L>$ X̳vdXH]X;,!1AQaq 0@P`?Μ"?r ,:eV2Ʀ#|4b_ YoYRUX%ojw21 b,evY/ve7Scx\%.M{z,`D51~XޛTVp3dXA<2ĮTk- Z4EYY݆Y>vmߖC - fU@3X0W,虃^Xَ.|s(Ua1W,cזZR5\˫+w,Lfk߬2ʼX0{Pα~c  fAݏM-ze}t* /@Hqz_Z&!8nչs7Ig x74FHP3*mosX1*7Q6]WXc9XaTؑR߈[/ & "2fڷZEc0'H A"8 K1Y*!9u/ºLwT8,ZFqиy /z!UP2TM*%&9D,N~K D I|\*Zv̻NꭁijyƲaS5<*PRxGw0#)bBRyjJ^nZ(n`vL9XF7u@"Dp Y }9^RgLc:CaWBzàh]R*K觬t_y k7*W  _j\Q1 Y SVToYN~Z6gc}XJNfV5@<"%jRK/g2fV)1] .ܢ/-L+ +x ɢ:B`9p@wZ=ԯ;U b+FXET` wH]̠ x=EV1>e9|ʐA D3g SU)1(f?No>!Gͺ2 *.R#"!놫iN^oP89``EHөfl((7/E6Sq-S/2H(q .X. .eV b0Q +l0eR9J--;ghc8%AW)pl9PP`(C,$f(DƵDYjäm+,{IE̼<芀a_>=bĿV Ӭsы%d 00Z)`I=fh 0PMH9 (bZTEC6҆c ZWL@wBRJRȍ+OAf~ SVZØhbrkQAt!Q!bi|D.\8%Bڔ\#RL(&X̲CdbJqyہL*5a̕BbR– " `ʅaX!jCtJ a nVub9Q 5,Di(p+Y|C46v*w%R.j6 _SKNh:?Ҏ~!=#5W #mh%kWA6YyfPK^u;iCrB\BZR.Q.>!0D&n  +|\`pZe@%q7Y-˙JcW|VA]&Ubb ES D5.60+F [$cRgRN駴"0GXRDļȂÈFNK_?ĢXFө/+,p AW,^#`-t.(/M£*ًm)px*8LF˿2,L( B鸴AǠ`AZ`ALE9UXSCufK+xƺZi]M8_R!P-s!j aAUJ1zDV+ `85m|9OpvU -̊觱GmhK9w+Qe ,+0TV˳c, ʅ,N^p1*JEIB]aEFUң ɕGRe:LUfqԱ•wo[}7,#n(.%E]`V * $ZH X]Ĕ%C1S4$=Tocp**UW(ĮbX)̆ApV.9 #%po c5/NZ2FѹFrRLGpW/X+2wq*)^"3CYE0mU+yP9a1 Wbs6~(^q,ve'DEjGBqؼeݗ*!9cp .J<ܹs:Es pKW+1U4 Qz}-"FF'! h J5Q1^:RwHhXJ] bħL*`e)wlqD@b]Иw/e^",t TP6[ϲ_GYR0Jj`Aȴ_hH69Ub6YT-LXY)26Dtdd̨2ĺEf MƷ D;z} m AP"l4ˊFa, ksi0zJee9)}R1HH:@1^˪cXlZۊH H2ṤAwJFU *Zb~bUzLll˫boRF#UD5D$!qSUBR7*(D*spb=/OQf)F&f"lLnUU[7q[$iC%o^"n q.`BضL zM&T2s .6ᅠ-]jsм}N/]V^ <0 $`AK!QlHŎ'G[An%5j 3 =[ɨX.ZiiNg Hp#Bf@ 59Pmb F` و,#9YJJb0PfWITAz P.-CkqpX goP e]J̺rbi-fysjD9_YZZB, sm}1(T L}G"T:Ef]q`T0cCQybl(*PWp$@#/? vK-& Ql#3rlWIԢUB e1 *[*2F6j7)`b)FF%­ˑ[+)7+ؚI1/Qc IUDRvfOh%^1CUnWoJj9b0Yhb )U pw`7p60"h6fnAQV̥&XBzЄ)cp9+AXm\vD.fD8*6&/ӽ@E R&TU_2 ^Caٔ2X\eTd+w_/*l5 #@VCg\jPTc IT-IzGZ&*`;%2(ƹD%x"Ss33iEm&m(sM2V_xra)ޡ A.Y"kEzGt *0ˆ5@ eDdH gZ||5* (9A%-bIi UqB=YWe̺c xPϏ",B3=Ƒ A&F6i*vV]#B㬺[nbRί~mvǢT|oW.3TrT^5q [12Ab hA0 z!W)Hgq~H)`a Y?T\) .BҺ}"-:7.[,2ővϼ 3 VB`D/ɦY/1ln֙+V\K0aQEu7`*lEarK%S& B + mJ !xA2CND3g,aꊃ6<Ύ'_jQs݄].̧֡-~z: *8+ 7QoV_xBr_/2Ta7FF Vj\Z8Y/fP\; &|Np1o3g+Iivl9\;~3秘ӯ[8W# z<5a+AV~;%|Ppt59_쎶ty| uZY0\:$TĚDmWɸr,,YwfZ.ucLyGnce3]Z3! H{N@ѣPrqb591U{bDnܿye?t"{_Rr}E AA7JM 8<%+JT4:}Y8 5JoLZdqce3p8RۅD__ڕ8* S  gJV0a}980XryV jЀ|L"q3 GK !s9Ҽm6٧1>UU7Pz\=\:^ F7+pmDh2̣c慔UUP1}c F@1HZzv|Bb`)Z΋/{xAϵ%mͽTUX+(.{etzj-Uu(b)YTy'~)Q7t&{f$8ǐ"BJA5 Dor!]h]^ JNz_%s%*dL~ ~4Nm-rx>2\_l?@ڣtx=D|DTIc! TMڠWCB3wϷ [YS0|Ln=px*ب][Ћ_?lH*g9MmuHhe|ưuqeQ/W:1/^-^KThp1YChRD\4T^k}X ү~T}ۍoȽv}-0w!G@5 t^M8qs @E:ϴc:BH%u+w}))%i@| 1Gpqmmv}"y+{G26By\_kB]/)%l~dj~ p*‚4f$$;v{O.`^ WS,󘳏mC! ǁZ:P \l:&fJ{:`}%3|_B6=u#ׅ8|xA_rYFa 1D Rk!e{үz"F,6ZXCcC rZ$٠/7 jS,Ζ DvžmM~OO\~b '%EnЩR8BnW*_dC,1m^k>`Z>;췆v,ye# Y }.2t(/uK-{D@GUJ XJOǹ)ǵ]=g*)w}ߢQ͌F{TBmŸK*Kӳ^ Nj%k(t:J%oAF@ D:~Ro({+?wr KWZG8sq9T=vA |T0`i;f 2X&ߛ-wZÊl>+1W=>h.h*Cyhݸ&!}A:0hqSP;-vr8, PAqϷ`t1 Jq׿ ":T1q֏3f*-x,oIk41!OW1߶iQ_m]?۷ڈ=J58T7 q4Xeh|[S2$vQyE<lBUdvVյ{S9'{e_v /ӣ)YncYJwEHU˃QaƥW[_~iQhf?;>~̨,l|z1{}DjN=`gegtLs;2}x2K;|x ̻a%DZ' .BOb@Wh>TPWyEKMJ7v4 ]A;E?>2w=T#h(!LG_=@@j[=u@Úrdp1Dw'䚦;yu-EJ#X /z:kه'3YC?q?/zU"N_2=\0׃8Xpw(nt!]},s=NvrEuOƦSr~WȅYʚ|˚}A& 7dx 6t=Jj_l"iF`nd:?z^'Am谐@:AL? ~xb]Eu ֫W/O* hjԼ~GUMJ懁 ߳GWP^#Da0FQ=:A2_/h X:x0Ōp Όt2ħHvj[zȆ2fzևw b~DbP!~uܨjF~>0_l7ҷ堖Xx0-A;` R*TY)Dߥ\aK9MK\-VWxyp̣b"Rȩ^)s@DFcֱqpˉkZy@ cAQRP(TʔKJFQ-d rIXIIRiUL\|@*@ QRJ%Rp(QF4+3B4 .x%9=")(De`7)RZP(zhʘHeef6*R fgx҃(M4%UrG#iJ`C0+=2nI\@M XBϫ"ѴZ;\A56 PncX؍ ]*]pEqQ =n$.R_U:)%@(Ř\P. kfzSKeZQ] Z@H=BXKZ6z7Jڏ.]CDCI n&LXcz MEMM}ZzO\eJ% t7 $zIA K%/ V M(mdt}`ߠZ.j_jilGooqٴ\\ԷPZZ諿QDUxXj,]ܿEz0s4KE> qbg˃/F3G?1-._2ˋȨ`%Jc%J%G^ME%YoïJJkЕe@@J[Z#+֞TS3oSϮD2(Nc\ʕ(0"J~cM1誮ZEfVcTKQW+Ҡ\]}yDi+鯠n$u$(gЗ T0%G>?"~QףxGPGmMz~J愵\>_~x N ¾?ZeYd[^.[PEMe澰"Iw*ߣg0bs.\~r^*\C6D3eY2R25Yyf8/` w&}uRjs^0u7zj<m͇s qm an#yX#=/M}Rc#[bĻe1.UʩR@QuE5 uu6@TY~_EJTEF*6"J+*3PץKD..6, B} \ j"n'Dyqu0Īi#/5)jm40 n%FnªTY3Rs\B`r¤pJ`WHSIAAOK%LC^z= I!3kx-K+Jf* Jb\8\b0%L2-qj1AEzlm*46),%?)w,̤c̽:ҁK^k K"JJ*,!1AQaq 0@`P?`\h,Ja*(_pO.O+Yib6b^ڼ/u;W7mƫ c7"u#yK񋶌,\o#;?qyLBF$8v.Tߨ[hߟ`Amf-smJ7OzK 'YLv^j^m0{%0Y? 0U[?񋯱imh ˛"&jm"]V!~?R*ȭ~! :k&p//!&x a+vR\ UxQ)Bjcb+_n%;98g%3K[QC ?`"D(/.cn"ɢ rĵG_!ZAC-j&% >/HSLRa9*vlb7nK hBRXl Y`5EJSnu27e Kp˨W"r.P64$$(@siC,hV#S*R."٣)_od}JhGR]g21L,Dx-~{.fl.(pG _dg+is)otj̫@ *oE-X h2[SKV(BR:A*ͻ[R-31F%II+e\qȆk/ 1) -OUܴD=)R&_jelXp.6 erYP3fC!k 0iTz3yPN VD(P1}$Աcep4Lmh¥EYx Ȼ2 )Q-}c|!wIf`\;i1~hK\kW1- Bs3,jX"+|PU QĬ) c(Xw T b_AV9l.L& \p )Up/(3R̜*GU ^j!p!Z.*)rmKעRw4F_luAV,Jp"`[ 1}ȽmL<(ȰdRo?'00:%ϥ_qhU"j]l/hVƔDArAv̬@#* ;lXơw0)T` }vմv/=].MjUyF[Al\![QԼm d [' a (N1`ɷm꽱f&99K޳[k [>˨RMð;^bXtX JMY3qcx],tq91%QGRc9V7|TIh!CC*P/Ro95R#K)ycZh*EI%m@gܶPş[u,,)Ws%p3 रG/1몀U c!@vnFx%클7R8,oF0x[en9)% J輲SB'CauQh/Z( *x-%Y J(x(43>(_S#R*'ė}MBkKј)B iiT}aYS@J·+Z c5@7^9{c~K CnaJHSԩ.Tht2K@"sep@_ rpz9= *n/a.-\ҟ a8 EqDZ(qPuY+rdQJeg~>1!jE?PQQ QN̚ Ƭ y_4r(LuX԰'7̬1]@e܄ms#QW '1c64.:(*;k@NMK5a1-5YcF(9ƖWp¡K;M-t.mPdE%bX ~JTzh^@Ga378;e@"yĢve@ Dbǐn+,[p8 J3~ mؾ"Q%0qLfCmBnfd LZ/L`U(e6kÌ (/ݸBbQ)р&.e1ebǘ+Qb*j B`S J") t%eE5m%PV-. m/#[6qI^Z;nU0U8^Vmqĺ:еSC2b}~-eU6,%\ ,DK1,NRF"b€Vޑ# PDT[ BEL UQpYqqP@1i6(C9b•XykPe/ap&x^OPT8KB' Y2+pЗer`Vq(Lz;f`[r_yU^#VG7`P8D]r>/ehUVKDXP,v} d͐DnWZ`Up-F] d,%&jb9*u 9Q' uy35{Rs#ȖAy tS6KFuD}zVgL &QU/n⫘ϓԘZJnu:[kyJjqʍ7|po$56{`K=ˮWVhye U7CxU}0_*Kp ;rB" ߘbK`r' k# &|ĒUOh%s3rUebU..Tw˂1>%zZ/C\\_ZyxGhvDR,pJa$ Rz-[ESv%K@ )5hR8Ns#c ol?Zics P0`{V9P&}JgKP dmռJGq\Ѻ0%sm1lvG1]@ \:%5CK7+< +-X` %G ifbȪ4z13%B޻IB^b-zۙ+ 9*_0nİULc,!.!UEJ"Jm3Wʘ\,9 s˱%(-0pFoZejT]O1S'AqՅ̸p 4TCH%oS^&-_ iL"<@VSeYR3S+q;FqгQqn7ͦ"[bM@Jdk8Z5("ܡQom=:kDFh`f Xm9aAl HʩP@%S71/x#\ =FQBDER 5`$[ .U[^fa4&S^.Џ/2P}BRyB R' ˪\%x2`Ȧ 冱5!mHS.S="稉Xc礛- r"7X!1-k+JC^WK2siKV9 aBuڵ>!w:5D*BPn=I`*Wmw)V`\vc[z~x+-PV*H+Q@2ܨE YZΟn(9\*>r*swAiCHP%.ZiCh ̩ V[8g]QW䫲7ɘp+FJ6%.H EL"ƪ "RRϨthr-iQD;m%mhT t8c.]*6%|Z/k7f{kw)A u@p-7aSmg Z Bb&v1េؿhf[$qޖ%Ҿ*;QqME<\ҶTMiDHUUQ)vG*bk2ۉAQtt5B 2p썬&)9#{ Badeyk aq@vLVe8S|>ArxGeM*jWsT4wBpT_qɧ8AXj*#Ĭ,dU=$Vs.zl~,g}+!BR%VZ5|(PSTZ dNJ>]Z(ęVpHS@t3t5-B"G` UK,?QK/ĽлDK hcE-9\s.7V;ۍ䁧b:A[0f dO;_p9d?^Fr`S,z7'mcA>@VR!, E8\ZnXSA+QS^kmܭfrFc_V^YAd"x`,eVhJЖ0e 8.g|^ŃQ )۸.` Kb`Ы EN6l0 ]3/@_XӶW"Xi JmVәnFmI6¢3 f Hݠ*1`^&o%E-WB!yp@|(WԴش[DJ }*)6Bn D(S&*dyhu] *d.~vTE PdKt/R;Xp ';;G&t STd4XR[a 7G{ZƐ Ȗ7*ca`=9<#qTIH(ЭS)xeKJbQ& r٬JFj1vW֯QʳhLT ;qE"у1/ܫ;!A[a4)"@A7a-$3^EL(hEJud.aKRR|?P.AН\|\L(*8]WxАqy'Е4ܔ*mpA% ж*KR%M;/XR/1 d} bty`nw*_3Sj[ 99ew/g,Ck==M"٨ \ KVe i F.aaOnA;t_@f 4tq.Vi($rCJ2)MaCgebKtVXTaJ^(QĥNp˺wDYB1X טKv1;k֣MLj-A `>@ȂQ\E5[e.^Dhz7`[M WmPN/NIdPY 2]bkJ]\*tMY. RU\2m2!غA܎ف a{UTP0bTl` V6dSE86 P%Mxp}9ə*)=2-]pP-jj)IbE ptP16DGD h '3ӹz-v̙+H׸ 6DEӢ/e]9(ы kV4E̴`62Cw 4 = , ̏1r6 vyrF%G_I8`K̖y;e:R-[b61Kn tL@x\~aUupz#=S+~FޥbXޯJ**(xwνG>BѬ^ |Gy"`[PZʈ5BWfZ嚜@v@uQB#s n<@ m BY@q,R1M%W\_TjPA_*)*jèRpu-o!YDEh7 N"-B%R&0{Ι_s1Ái`No/vP$-jU+GG;UD8&G$CB˛/J[4hdfD`Ic]ۥJiX0[k!+QQxo̱] ?wS|_z‚쨹\,䵱8"Lr`U%EQ|On%aW- qTh8 3@r穠( UD#b] {~RbG,#2Y,(Րʭ>Z 㲫RAx( dUlCXSܱ-\1v2D 0&/(eE[ +V42ܭpf+EY2kn یAP5t$CL.SGpʔPq6 >c3mY?YnB"5]V)]oP\ /u僈cNKE4i4 1*WD qsaE\pC ::ǘhIE5Zhڻs~U.3tmZ/ԡ).}` -Wܨ% -SqQQ5]A\eDl9`qw@ub38usT ¿ 1.I{^aB9n1EJjq*6+nvQNU-kymkQ 2قY|[Kf~q*GtYÙxț^bPQQՃ!h3-ЫdGJ w0ɑ.Y ŒUpZDv@D[2 rZWPA8bn] !"#V,P297̳xEEk.M<,<#LIh] ̲ sUPQ2 BPԫJ = 2esy^fI VI2rE `7 6Avp3>VlslmNM*puEKh K~ t0@:"Ƚ/j錈,U\mQL axԺQ*(Z[:w{QTe֔5*+1xۖJSSYxVY"l󕉇*P\-B *g VpOTZ:Qϸ ZZ-cjPc"G^23PS!]*oPlP/Jnls` &mL#USfIPPrt?0e"Vg1n!wVL8x\zX ~ `G8l]z ^=C*1ڙ_ B+WP"+ g|MpT.b4.ɼ Tf-:fm4Pw#p!{YZl-Wx1~g[Q +5Wc g$U!ZHKyYoQZ ~ڮ*3vU)r-Kc`TCES9l{Yn5" -pƼ Pg-tĺW"2E䖅\v%E6pa,<@@呗ۛ춏pb]Vm7`<U )6\voQ$+@D BVIE eD'*\C Qo.H 4J8@gR"LZ^wDp @EUϨ`a"ljQuslMes0T Or`vb5Yo %qJɡO03m]pah%,tC7F [s2S,JNy.0q2aPԨ9E׈:!v&NPoP a>60/G@!ġDD檎I@A)]TO{`9/L DK }0⯅iݟr̪أTkbU|DhDQ8(h~EzrpgfX+JCcJ/AL\@{AH l*xP )Mg&0Kh\1/-<"qRSoAT7 ?H Aq jVNaj_c;eRc#ox)u C㓣.g2ZPO)L3"']kVU6AFv**S6xa]p^*+kJsX_,J`%)a0-v,kKn2Œ'-Oi(?#և,\6ڳ`Z?qSϘ]8BiVk"hBW.VCo@'UĶ*#̩[ssJYG5սFgW0c zW9+3\*~ 1RvKad+D^߅rxl> ʃR*Tgu;V;2݇ 8).I5. lsx}n@CmD O?*'z;V,hcߘ`ejAgwHrqr\#5+)\NLgF(BE USn] =D.9]Lr}#lޮo[Q—g`݇AՉOU kyV E)6b=*ށǧ'_α]MţTZ]#\Uܱ@L>,ƱWϸAĨRD\BdzL4<)&a` "n'ܰTacm2*h r!}-Lsec2eUiszĵxت Zw6*z u;ˏe<75o| J +;l|1Bj@x[e%DDEoEnSUϰXԻbݰigw"EFן*vz"F)V,Z]}%kD8cҼNP]QM+ZNBpkڡTD1 节4Ę[w?jb:wc'@g' 16CbRU& o;  )|Ų6XsP<If !4Ȯ;,o4y<\Ws_ƼBRsYRq e') (Fo@Q\!DWUX`r wbJTWEg !.[_n rzBUcmMo Ej^{4EŌ&\kkZ<> a߸͕ YQtaj8Wj85 (T^a-n(:*, [Z,vm{mr $Ǒv#ySKF]x*/!$@tS)M/2EwJ{H*,NnG#pjeBݐj,N\媝:,|+]C4^f)ULJ!Ա=rB yb3 >)ʸS <DZ|X]b̞\=[*FX>Ny\FTy(([TkJp nVq3I LkXJE3|7+ 7ӫ$/>} h*AiT.d4߀[< R<Ʊ-6~IMʃGRRWR hKħ]^%<γŽJnZ&Go4iir{~y/GWumCq{ ݅Bˋ;\Alܴ2q1vUI遫+/@ 8>`=*mb5͖yP .Ls:W#Z*ẛ~7X(4)Q{ybč`cc] [-!kPח Q %f&\{_Fd%Z"^YRYGf[oPs4H1-૮z_E5B=ڢՠ_b)WnY(^M=m.}B\)O5 xL<מ^ ڠ9@HUE C4 +]j]GTJ-?R7a9c@<ьgY2z 96uR7MW.У-3%"\ 1wtƍ D-uBZJߓK"*ss)k]SaT\ 'cc 7PFmĮ0qr ܶA4{vySbiqy+{7 ȈmXޡ%Ac(ZެB4-(FIKE ) rCMv \zG+j8w F.xw*tf1)|m/ mrQ{* 4֗䔈QQl-vZAAɳ*8]VR֗OQ&){cMt7*fX,K~芅캜qĵ;5V)D2)95<(P%-pFo TEƥmuQq UE<\fj8@Bİh?@QΕΌТ].Rċľ_#m.XVQ-Ѻ8#Az`[Fr] z2DP"lCCky&!/Rň>0ecޥ3_89 +/E_5*)6W^ h?xeU3F):ヨXI l%<  \Z\'1O WTW$)oϜpFJA { JXϗB;7X.g\8d/8ĥnl^j_jhh<1ZH!a%XK g|4J ^ٿ|+Aj[y\f`P4׸bຊFb7GEZK kJj-\6;o뀊n wP Z2P1pl&fsd1a';T6\ (n $}<I`f0X]p kADN\2)@x,WnO]P•x0&m,/򖄅zvЪL_/$]u.m3BXE5ܻ% / j=00fc`^[c1"UA7~  iVu]zi34-Z\-vYSQN# /6vXLe6[Yfb`l@\NRz&O[=|Ui.\f3\2;huuq"zj?Pt@YQ}ĩ]nT BUu+zOH@@7t`Bŗ}Z0ļ\ yV4\eJ6`zܸ28ҩ]7Ar YI!qjRb;e<8Jƌ/moѠt-[сR VʝajJߪCe\RDgT`b$eES, ƨ'W(r/0qH8 oFs5qacgP5-nISc]sPa*$ҙ  rI{ZR>e8mUCb=Hy'X R@v:0Xw)i.zwٔ {\%u:6պZ~X%Kpo!ߕ(4`2+o"u @Wq?E_>92ej'Z]?f  8%aW 1cBtTXt,+Wx#Lv mhj0o ^A1%`l*'JPoVRګļ|o"t^""X H)T܀6#V59!NcY jKɚK-iVo# lJD OKx P3M=\RLr/e8V)e(ՀW/ -T6~H?@@+?Ji=R9Kj)qP)7kU Z:QN|,ċ˥7C#`cxj8oA9/ȯd0P0B)ij,Tz"% n`1q:{-v?0`"/Y܆wR1i b=@5:sR4m#l]Ol F$3gꃫohD |\GUA 7Ua2JP} |aP0 ݥav>bPE.ڼb'^7K%K\x=dH>l:g~>)؈̗k&T}bħ>Kjeg*`6^tп0X_r7]3`>Ώݰ.Xp|-2T_,?\[nC pY_@Ǜ@fk|أ fiP]ݻ+Y2zToGvJ% VfOGKV m{Y3@ѠEe=Jn`5{˃-hc.^K·b9!?T IctƃV{S Pe/}E2Ŋ1rӓe7MTw}51T (ô]dl!)D `K*Bȭa]H yRS]"L<9D+%y,_p ?{鞦>؊_zܗs!`GWv,@I/_KX'Ǟyg+Vt^%r9Om,eILUdPkп.Wh) qZTp`G(ȣDKDOa&Ҷ6W|F"".iTe RZҷD<$l[q=ΙljFf"QQzA&Y@c0CkPJBg^&>bd-J޸%Hgs2cgg1 &!1 61x0ͥ{Yp`sJSzv9IqӚ1">߇kC!^ߧ_QKVˊٸtbaqnHJp#KW W:z~d'Ϣ׶NQF"qkQPGKlfJ|gע F[ᄩ^ rqv.bDZ0J2 QcCqebz-VGx 5Zf(?t\43+2O' _X)S&i4&"*?֭ W_xN'lDl©hA# =Y$%ba+Zt2C!Um*o?d&fOqMy=[/()Fw~ofjB<,eYeJC"j!3!0 8ԅY1Z4.<<_`IP dCD y3~a gBtX*EEL;z!0 RtGK /3}ƼLG!tN O'IKXҾ>#2.8eJbgEyH}/D4[ eHbnYs:/? S^g@@"eEx~&n;XS71v`SygԽo9{G~?E[UU2/pȿjTN% Dze\1|)郚1`z)࣊H $oRsW&. ӵJ>yRj'mŶܿC9 u 1^bPGZGWTNkqMJd0__940ӨgxZawi*vKj2{bX(fs^%)CԬ6x{zF)B@YGo,IT2a-aA"J|B^[A 1(^#^GԷof0G~&ݿ=e~"I\Kcev^ng,vNݹKeEݗzj IJC5&qgsS꺹[ nx j%w66D9S#eF'f f!'f@|Bp$0H|}\sJVF j7 E:[7?gBP`5A9 50 a[/[ ^%QUw((% bT\- )SVYFe< OB,iU1̑lO3J *.٪!U{*س+ܫ̦ `jȫz#pb+DsA{"Dn-i720lw/AoRvo7,OPH,zQ ZR,[0p Ě$E%dA)YfG c59Z]5q:~eh2䊀"l%Z hA"jQ8,.]agǘYu`\8ExQ\\F Pu`L+wlEMq*T)~ӪL^Q?Q62+T{kB!7'V5Qbt;glwebF~礋7 o:7QK:Ej(6hVR˫Q8)\(!Xg^_q~$jYmwU4Ef*^P/lzw Q151ZzO"FTԴisb4ǸWźm V15i^?ȨkO;_hB8[D ,Sx)ͺ3l|-蘖^37E=ʻ]¸ /"]do?̮vEe/&CM'S9F& Tj[gQ֮Pxy U t." m`o#eժTQL^e1Cf.x7`X ?:*!xp]ռʥ c!]|Jn=E5UǸwAtPTˈ+\ZպĠS=q#m?<5W)+s 4x<- B-Щ遢%-f kSnRu Wu cp(@4q%9UP@= 7(SBv56.űe-e%R)iF\ [*P؜TU׊(\:Π6|JK &cQ* X:yi^e^'P}+⠁p1U[?!|C|\,J9fVj$Giy)T-+ Zg~"sXH+-a5s4 ısZl4x^ynh;4riJ A .U7PI t ӞOb>hWDi- (wZ \(4˺bF֥,Nj&n5 S&a$2p0Kc`h#e gI=V0- ψZP-+^+1-\ vZ*i'Ĵ^%P77rsss$D? q0ᤍQ|uXlF޹*+#e%S 4oP6BODCw|ElG&l%T i)+ܰ*o㉊; 杸bz&O)*PJҥjcfP[~"SN%xqH;;h 1+Y@jy"o1B1-~s4QG̴V|UWK\昷/Lx#VBܫ-2xgRst{*[.> Q(㬶~̱2ze^!)\J^_( w}5LY#h0-a0T&VjfNgDi6n՗B&Š]TZR+˪Y jeiNs,QDqwÔ &)T]0ɜ-b8 C4.^:g̢s9iDp#k (N*"9Jsbbo>) WxS<͕Wߏ"^ յΥr&XmWlWDU.0Sqj2&,zS0.~ f* c7C EJ% bAK_.ұFSO sbۭD5=U__yCm矂P_,=Acx(l| D[A),"(髬|V4àXqR;q(i0YnVBi\Ɨd-TAWЁ%#y5eC:.MGQ}b(l*hJ+ޢVCW(G h& kMZ(Ĥ# %H(d<Q= l9uY7d|GAfA$ۺ1͞"Vi ̸AiY-zTy"DF?; ) &n6s 8Ơdδ D( bB'2ن8 vq60iˁ\>e.(!W9 `xW#^< HU r?\w2٩| ),RATpGx]PFF@Cr\R- .v| CSi u d$xoL2Ò[k*5 ,V9'?+fL Qӗ(ەk7F_Fs^Y.KҢGvf{5/fs%0 XЮٚhIAN%9PRU0i L]DU]ei{]sZ`W3Fb[1JA^"ZYPT1}xkIu :om53 k,kff]*=b"*V uP߹Tұ_RYZ]F#2eP7 W#MT-TSxjZ-kB;/'Pb\eL Bܱ^Yϸ&uTqRsU)w ev&sbDӎ+;34{[{26sUPQvS'LQG&+ֈ_:j J 4v Ӷ+/\ph` #{Mn=&809۴sOp(D[[JԵBch \x#/!8B|@\/LneZq.:0Tr (#8yuBiYMӋ0o@ BVܹ b_62䥄ŕA ?(Q\ۙaY6pf_{%KmuC*M:mS|jae! C˨NZ1l'Q arD5x |HR Uw) ( ) { // // node Import[1]: x = 56, y = 47, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "plot2d.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node RubberSheet[1]: x = 276, y = 45, inputs = 4, label = RubberSheet // main_RubberSheet_1_out_1 = RubberSheet( main_Import_1_out_1, main_RubberSheet_1_in_2, main_RubberSheet_1_in_3, main_RubberSheet_1_in_4 ) [instance: 1, cache: 1]; // // node Colormap[1]: x = 387, y = 153, inputs = 19, label = Colormap // input[1]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.35833333] [0.056847545 0.16666667] } // input[2]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[3]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.0] [0.037634409 1.0] } // input[4]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[5]: defaulting = 0, visible = 0, type = 32, value = "Colormap_1" // input[7]: defaulting = 1, visible = 0, type = 5, value = 0.094054289 // input[8]: defaulting = 1, visible = 0, type = 5, value = 6684.0454 // input[9]: defaulting = 1, visible = 0, type = 1, value = 20 // input[12]: defaulting = 0, visible = 0, type = 16777221, value = { 0.094054289 6684.0454 } // input[17]: defaulting = 0, visible = 0, type = 5, value = 0.094054289 // input[18]: defaulting = 0, visible = 0, type = 5, value = 6684.0454 // window: position = (0.0200,0.0744), size = 0.9706x0.5844 // main_Colormap_1_out_1[cache: 2], main_Colormap_1_out_2[cache: 2] = Colormap( main_Colormap_1_in_1, main_Colormap_1_in_2, main_Colormap_1_in_3, main_Colormap_1_in_4, main_Colormap_1_in_5, main_RubberSheet_1_out_1, main_Colormap_1_in_7, main_Colormap_1_in_8, main_Colormap_1_in_9, main_Colormap_1_in_10, main_Colormap_1_in_11, main_Colormap_1_in_12, main_Colormap_1_in_13, main_Colormap_1_in_14, main_Colormap_1_in_15, main_Colormap_1_in_16, main_Colormap_1_in_17, main_Colormap_1_in_18, main_Colormap_1_in_19 ) [instance: 1, cache: 1]; // // node Color[3]: x = 142, y = 190, inputs = 5, label = Color // main_Color_3_out_1 = Color( main_RubberSheet_1_out_1, main_Colormap_1_out_1, main_Color_3_in_3, main_Color_3_in_4, main_Color_3_in_5 ) [instance: 3, cache: 1]; // // node Shade[1]: x = 320, y = 256, inputs = 8, label = Shade // input[2]: defaulting = 0, visible = 1, type = 3, value = 0 // main_Shade_1_out_1 = Shade( main_Color_3_out_1, main_Shade_1_in_2, main_Shade_1_in_3, main_Shade_1_in_4, main_Shade_1_in_5, main_Shade_1_in_6, main_Shade_1_in_7, main_Shade_1_in_8 ) [instance: 1, cache: 1]; // // node AutoCamera[1]: x = 440, y = 352, inputs = 9, label = AutoCamera // input[3]: defaulting = 0, visible = 0, type = 5, value = 3.35 // input[4]: defaulting = 0, visible = 0, type = 1, value = 2048 // input[5]: defaulting = 0, visible = 0, type = 5, value = 1.07 // main_AutoCamera_1_out_1 = AutoCamera( main_Shade_1_out_1, main_AutoCamera_1_in_2, main_AutoCamera_1_in_3, main_AutoCamera_1_in_4, main_AutoCamera_1_in_5, main_AutoCamera_1_in_6, main_AutoCamera_1_in_7, main_AutoCamera_1_in_8, main_AutoCamera_1_in_9 ) [instance: 1, cache: 1]; // // node Render[1]: x = 251, y = 352, inputs = 3, label = Render // main_Render_1_out_1 = Render( main_Shade_1_out_1, main_AutoCamera_1_out_1, main_Render_1_in_3 ) [instance: 1, cache: 1]; // // node Display[1]: x = 204, y = 461, inputs = 8, label = Display // depth: value = 24 // window: position = (0.5225,-0.8433), size = 1.2888x2.4800 // main_Display_1_out_1[cache: 2] = Display( main_Render_1_out_1, main_Display_1_in_2, main_Display_1_in_3, main_Display_1_in_4, main_Display_1_in_5, main_Display_1_in_6, main_Display_1_in_7, main_Display_1_in_8 ) [instance: 1, cache: 1]; // // node WriteImage[1]: x = 431, y = 514, inputs = 4, label = WriteImage // input[3]: defaulting = 0, visible = 1, type = 32, value = "tiff" // WriteImage( main_Render_1_out_1, main_WriteImage_1_in_2, main_WriteImage_1_in_3, main_WriteImage_1_in_4 ) [instance: 1, cache: 1]; // network: end of macro body } main_Import_1_in_1 = "plot2d.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_RubberSheet_1_in_2 = NULL; main_RubberSheet_1_in_3 = NULL; main_RubberSheet_1_in_4 = NULL; main_RubberSheet_1_out_1 = NULL; main_Colormap_1_in_1 = { [0.0 0.35833333] [0.056847545 0.16666667] }; main_Colormap_1_in_2 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_1_in_3 = { [0.0 0.0] [0.037634409 1.0] }; main_Colormap_1_in_4 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_1_in_5 = "Colormap_1"; main_Colormap_1_in_7 = NULL; main_Colormap_1_in_8 = NULL; main_Colormap_1_in_9 = NULL; main_Colormap_1_in_10 = NULL; main_Colormap_1_in_11 = NULL; main_Colormap_1_in_12 = { 0.094054289 6684.0454 }; main_Colormap_1_in_13 = NULL; main_Colormap_1_in_14 = NULL; main_Colormap_1_in_15 = NULL; main_Colormap_1_in_16 = NULL; main_Colormap_1_in_17 = 0.094054289; main_Colormap_1_in_18 = 6684.0454; main_Colormap_1_in_19 = NULL; main_Colormap_1_out_1 = NULL; main_Color_3_in_3 = NULL; main_Color_3_in_4 = NULL; main_Color_3_in_5 = NULL; main_Color_3_out_1 = NULL; main_Shade_1_in_2 = 0; main_Shade_1_in_3 = NULL; main_Shade_1_in_4 = NULL; main_Shade_1_in_5 = NULL; main_Shade_1_in_6 = NULL; main_Shade_1_in_7 = NULL; main_Shade_1_in_8 = NULL; main_Shade_1_out_1 = NULL; main_AutoCamera_1_in_2 = NULL; main_AutoCamera_1_in_3 = 3.35; main_AutoCamera_1_in_4 = 2048; main_AutoCamera_1_in_5 = 1.07; main_AutoCamera_1_in_6 = NULL; main_AutoCamera_1_in_7 = NULL; main_AutoCamera_1_in_8 = NULL; main_AutoCamera_1_in_9 = NULL; main_AutoCamera_1_out_1 = NULL; main_Render_1_in_3 = NULL; main_Render_1_out_1 = NULL; main_Display_1_in_2 = NULL; main_Display_1_in_3 = "X24,,"; main_Display_1_in_4 = NULL; main_Display_1_in_5 = NULL; main_Display_1_in_6 = NULL; main_Display_1_in_7 = NULL; main_Display_1_in_8 = NULL; main_WriteImage_1_in_2 = NULL; main_WriteImage_1_in_3 = "tiff"; main_WriteImage_1_in_4 = NULL; Executive("product version 4 4 4"); $sync main(); elk-9.2.12/examples/GW/PaxHeaders/sc-rho-GW0000644000000000000000000000013214536061315015226 xustar0030 mtime=1702388429.083499764 30 atime=1702388429.082499766 30 ctime=1702388429.083499764 elk-9.2.12/examples/GW/sc-rho-GW/0000755002504400250440000000000014536061315020025 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/GW/sc-rho-GW/PaxHeaders/elk.in0000644000000000000000000000013214536061315016406 xustar0030 mtime=1702388429.084499763 30 atime=1702388429.083499764 30 ctime=1702388429.084499763 elk-9.2.12/examples/GW/sc-rho-GW/elk.in0000644002504400250440000000240314536061315021127 0ustar00dewhurstdewhurst00000000000000 ! Self-consistent density GW example. First the density is calculated from the ! GW Green's function, then the Kohn-Sham equations are inverted to find a new ! exchange-correlation potential and Kohn-Sham orbitals. This processes is ! repeated until self-consistency is reached. tasks 0 630 20 ! take the screened interaction W to be diagonal twdiag .true. ! Matsubara frequency cut-off wmaxgw 30.0 ! response function G-vector cut-off gmaxrf 2.0 ! temperature of many-body system (determines Matsubara frequency spacing) tempk 1500.0 ! use LAPW nxoapwlo 1 ! large number of empty states required nempty 20 ! use adaptive linear mixing mixtype 1 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 4 4 4 ngridq 2 2 2 ! These are the vertices to be joined for the band structure plot plot1d 7 200 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-9.2.12/examples/GW/PaxHeaders/Cu0000644000000000000000000000013214536061315014067 xustar0030 mtime=1702388429.087499758 30 atime=1702388429.085499761 30 ctime=1702388429.087499758 elk-9.2.12/examples/GW/Cu/0000755002504400250440000000000014536061315016666 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/GW/Cu/PaxHeaders/elk.in0000644000000000000000000000012714536061315015253 xustar0029 mtime=1702388429.08649976 29 atime=1702388429.08649976 29 ctime=1702388429.08649976 elk-9.2.12/examples/GW/Cu/elk.in0000644002504400250440000000152214536061315017771 0ustar00dewhurstdewhurst00000000000000 ! GW approximation applied to copper. Note that this calculation uses more ! k-points than q-points. tasks 0 600 610 ! switch on spin-coupling spinorb .true. ! temperature of the electronic system (determines Matsubara frequency spacing) tempk 1500.0 nempty 8 ! Matsubara frequency cut-off wmaxgw 6.0 ! G-vector cut-off for response functions gmaxrf 3.0 wplot 1000 100 0 : nwplot, ngrkf, nswplot -0.5 0.5 : wplot avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 6.83117 ngridk 12 12 12 ! q-point grid smaller but commensurate with the k-point grid ngridq 4 4 4 sppath '../../../species/' atoms 1 : nspecies 'Cu.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-9.2.12/examples/GW/Cu/PaxHeaders/GWTSF.OUT0000644000000000000000000000013214536061315015427 xustar0030 mtime=1702388429.088499757 30 atime=1702388429.087499758 30 ctime=1702388429.088499757 elk-9.2.12/examples/GW/Cu/GWTSF.OUT0000644002504400250440000011021014536061315020144 0ustar00dewhurstdewhurst00000000000000 -0.5000000000 1.824301379 -0.4990000000 1.858733095 -0.4980000000 1.894652577 -0.4970000000 1.881545001 -0.4960000000 1.885725810 -0.4950000000 1.896416216 -0.4940000000 1.906538765 -0.4930000000 1.948783662 -0.4920000000 1.940545496 -0.4910000000 1.911214233 -0.4900000000 1.943414329 -0.4890000000 1.979079144 -0.4880000000 1.966975776 -0.4870000000 1.975660865 -0.4860000000 1.954034829 -0.4850000000 1.987496531 -0.4840000000 1.985981863 -0.4830000000 1.990621853 -0.4820000000 1.973709207 -0.4810000000 1.984131510 -0.4800000000 1.974721729 -0.4790000000 1.949946186 -0.4780000000 1.927193453 -0.4770000000 1.942874762 -0.4760000000 1.920629055 -0.4750000000 1.932931741 -0.4740000000 1.947159926 -0.4730000000 1.897853380 -0.4720000000 1.901676484 -0.4710000000 1.888057303 -0.4700000000 1.826150143 -0.4690000000 1.830563933 -0.4680000000 1.807247173 -0.4670000000 1.828849365 -0.4660000000 1.803964693 -0.4650000000 1.802756576 -0.4640000000 1.799428032 -0.4630000000 1.787414853 -0.4620000000 1.772837956 -0.4610000000 1.788826563 -0.4600000000 1.752298242 -0.4590000000 1.777745060 -0.4580000000 1.714158508 -0.4570000000 1.746942483 -0.4560000000 1.736456447 -0.4550000000 1.703930855 -0.4540000000 1.704459329 -0.4530000000 1.718164049 -0.4520000000 1.703780991 -0.4510000000 1.757487497 -0.4500000000 1.634487572 -0.4490000000 1.603115695 -0.4480000000 1.618201128 -0.4470000000 1.579752055 -0.4460000000 1.601013667 -0.4450000000 1.586478901 -0.4440000000 1.552705758 -0.4430000000 1.566139471 -0.4420000000 1.540358970 -0.4410000000 1.551575847 -0.4400000000 1.549041515 -0.4390000000 1.550852367 -0.4380000000 1.548506697 -0.4370000000 1.551524406 -0.4360000000 1.528811918 -0.4350000000 1.553973852 -0.4340000000 1.543903954 -0.4330000000 1.540870365 -0.4320000000 1.548448370 -0.4310000000 1.540286715 -0.4300000000 1.522833632 -0.4290000000 1.523629269 -0.4280000000 1.514300360 -0.4270000000 1.536403608 -0.4260000000 1.549657328 -0.4250000000 1.557880902 -0.4240000000 1.560783697 -0.4230000000 1.570349765 -0.4220000000 1.560563619 -0.4210000000 1.578748362 -0.4200000000 1.566551097 -0.4190000000 1.585427101 -0.4180000000 1.582327305 -0.4170000000 1.584654118 -0.4160000000 1.583757824 -0.4150000000 1.594596234 -0.4140000000 1.597077155 -0.4130000000 1.607215796 -0.4120000000 1.613585819 -0.4110000000 1.643852581 -0.4100000000 1.663370920 -0.4090000000 1.686190830 -0.4080000000 1.741252523 -0.4070000000 1.718760093 -0.4060000000 1.701658841 -0.4050000000 1.723552602 -0.4040000000 1.736949522 -0.4030000000 1.735784729 -0.4020000000 1.754654715 -0.4010000000 1.759892479 -0.4000000000 1.806559455 -0.3990000000 1.791921506 -0.3980000000 1.848912591 -0.3970000000 1.851792914 -0.3960000000 1.838308096 -0.3950000000 1.861145740 -0.3940000000 1.867528489 -0.3930000000 1.877375278 -0.3920000000 1.913102105 -0.3910000000 1.919315812 -0.3900000000 1.972401635 -0.3890000000 1.997793604 -0.3880000000 2.022326557 -0.3870000000 1.987275403 -0.3860000000 2.003936362 -0.3850000000 2.049582059 -0.3840000000 2.074606273 -0.3830000000 2.090585085 -0.3820000000 2.136123560 -0.3810000000 2.143072203 -0.3800000000 2.150982570 -0.3790000000 2.161331202 -0.3780000000 2.157754623 -0.3770000000 2.198342579 -0.3760000000 2.246027255 -0.3750000000 2.312593499 -0.3740000000 2.321561372 -0.3730000000 2.340958888 -0.3720000000 2.450613684 -0.3710000000 2.378245076 -0.3700000000 2.415929047 -0.3690000000 2.407399107 -0.3680000000 2.465994586 -0.3670000000 2.431417120 -0.3660000000 2.456425467 -0.3650000000 2.512991995 -0.3640000000 2.519504313 -0.3630000000 2.545345783 -0.3620000000 2.573993719 -0.3610000000 2.555908518 -0.3600000000 2.567294286 -0.3590000000 2.609311245 -0.3580000000 2.625977200 -0.3570000000 2.607536645 -0.3560000000 2.601178139 -0.3550000000 2.559506832 -0.3540000000 2.567995811 -0.3530000000 2.592291020 -0.3520000000 2.567633638 -0.3510000000 2.537350057 -0.3500000000 2.532998140 -0.3490000000 2.527546214 -0.3480000000 2.503728628 -0.3470000000 2.528743075 -0.3460000000 2.465325307 -0.3450000000 2.521930652 -0.3440000000 2.549652417 -0.3430000000 2.522601774 -0.3420000000 2.484825230 -0.3410000000 2.484197344 -0.3400000000 2.475249992 -0.3390000000 2.493109212 -0.3380000000 2.506696207 -0.3370000000 2.453715998 -0.3360000000 2.448482714 -0.3350000000 2.445918029 -0.3340000000 2.448624135 -0.3330000000 2.416506426 -0.3320000000 2.443909676 -0.3310000000 2.467024140 -0.3300000000 2.460161303 -0.3290000000 2.440380408 -0.3280000000 2.439656059 -0.3270000000 2.432236818 -0.3260000000 2.449826591 -0.3250000000 2.471418638 -0.3240000000 2.476077667 -0.3230000000 2.552124680 -0.3220000000 2.517722763 -0.3210000000 2.542384581 -0.3200000000 2.595839441 -0.3190000000 2.654737985 -0.3180000000 2.604060081 -0.3170000000 2.707578580 -0.3160000000 2.691434376 -0.3150000000 2.720622223 -0.3140000000 2.757492083 -0.3130000000 2.804516453 -0.3120000000 2.823426884 -0.3110000000 2.809755210 -0.3100000000 2.840149337 -0.3090000000 2.970139616 -0.3080000000 2.964473577 -0.3070000000 2.952362425 -0.3060000000 2.962746194 -0.3050000000 3.037887653 -0.3040000000 3.069811767 -0.3030000000 3.180922403 -0.3020000000 3.138610711 -0.3010000000 3.227641049 -0.3000000000 3.216584008 -0.2990000000 3.316355695 -0.2980000000 3.379846432 -0.2970000000 3.412631690 -0.2960000000 3.447416841 -0.2950000000 3.477438310 -0.2940000000 3.444201281 -0.2930000000 3.499438389 -0.2920000000 3.602785052 -0.2910000000 3.648098010 -0.2900000000 3.702128694 -0.2890000000 3.701399058 -0.2880000000 3.702764868 -0.2870000000 3.756779118 -0.2860000000 3.863505180 -0.2850000000 4.041595869 -0.2840000000 4.118489159 -0.2830000000 4.091314645 -0.2820000000 4.126985003 -0.2810000000 4.355781210 -0.2800000000 4.249370217 -0.2790000000 4.432297581 -0.2780000000 4.554176180 -0.2770000000 4.431465337 -0.2760000000 4.602779120 -0.2750000000 4.643531479 -0.2740000000 4.690024755 -0.2730000000 4.783385767 -0.2720000000 4.862197583 -0.2710000000 4.860152784 -0.2700000000 4.874011533 -0.2690000000 4.975602626 -0.2680000000 4.931077554 -0.2670000000 4.979516049 -0.2660000000 5.021829247 -0.2650000000 5.111906924 -0.2640000000 5.098016996 -0.2630000000 5.018988873 -0.2620000000 4.987198326 -0.2610000000 5.128923451 -0.2600000000 5.256627468 -0.2590000000 5.123004222 -0.2580000000 5.067873630 -0.2570000000 5.100312627 -0.2560000000 5.000291045 -0.2550000000 5.220199546 -0.2540000000 5.165040083 -0.2530000000 5.164526873 -0.2520000000 5.076767812 -0.2510000000 5.006091482 -0.2500000000 5.290552051 -0.2490000000 5.125205186 -0.2480000000 5.071316430 -0.2470000000 5.046963030 -0.2460000000 5.051462711 -0.2450000000 5.118594473 -0.2440000000 5.120591326 -0.2430000000 5.115746745 -0.2420000000 5.157434153 -0.2410000000 5.113510139 -0.2400000000 5.106531075 -0.2390000000 5.214623586 -0.2380000000 5.222066506 -0.2370000000 5.247154297 -0.2360000000 5.403306389 -0.2350000000 5.539292551 -0.2340000000 5.634267714 -0.2330000000 5.772772270 -0.2320000000 5.906612063 -0.2310000000 5.964377208 -0.2300000000 6.033953081 -0.2290000000 6.159702923 -0.2280000000 6.301076775 -0.2270000000 6.243042152 -0.2260000000 6.218906625 -0.2250000000 6.367086350 -0.2240000000 6.384798553 -0.2230000000 6.363885903 -0.2220000000 6.307868875 -0.2210000000 6.328114521 -0.2200000000 6.377410487 -0.2190000000 6.406671037 -0.2180000000 6.668572853 -0.2170000000 6.700831919 -0.2160000000 6.749186520 -0.2150000000 6.820953421 -0.2140000000 6.829888887 -0.2130000000 6.741797398 -0.2120000000 6.929712989 -0.2110000000 6.920917291 -0.2100000000 6.984373300 -0.2090000000 7.175694063 -0.2080000000 7.216699604 -0.2070000000 7.316071704 -0.2060000000 7.350512510 -0.2050000000 7.465774418 -0.2040000000 7.531929387 -0.2030000000 7.610419613 -0.2020000000 7.857020742 -0.2010000000 7.945975626 -0.2000000000 8.210831727 -0.1990000000 8.539140436 -0.1980000000 8.783157374 -0.1970000000 8.833611394 -0.1960000000 9.190617383 -0.1950000000 9.562471043 -0.1940000000 9.763903619 -0.1930000000 10.24986650 -0.1920000000 10.27621122 -0.1910000000 10.80668846 -0.1900000000 10.75369035 -0.1890000000 10.88094180 -0.1880000000 11.34367423 -0.1870000000 11.65757479 -0.1860000000 11.42437944 -0.1850000000 11.67783313 -0.1840000000 11.69687986 -0.1830000000 11.79558358 -0.1820000000 11.97055012 -0.1810000000 12.02561829 -0.1800000000 12.51737942 -0.1790000000 12.62917071 -0.1780000000 12.87035483 -0.1770000000 12.91318355 -0.1760000000 13.44756421 -0.1750000000 13.54671944 -0.1740000000 14.04316244 -0.1730000000 14.08900791 -0.1720000000 14.52286161 -0.1710000000 14.99378288 -0.1700000000 15.48819062 -0.1690000000 16.63114559 -0.1680000000 17.27273923 -0.1670000000 18.03832859 -0.1660000000 19.10531402 -0.1650000000 20.02908064 -0.1640000000 21.01553388 -0.1630000000 21.72169770 -0.1620000000 22.29815018 -0.1610000000 22.57148369 -0.1600000000 22.15526416 -0.1590000000 23.06511847 -0.1580000000 23.86157824 -0.1570000000 22.92787900 -0.1560000000 24.05443629 -0.1550000000 24.65139826 -0.1540000000 25.30175453 -0.1530000000 25.75020140 -0.1520000000 27.12949781 -0.1510000000 27.92565136 -0.1500000000 28.66738635 -0.1490000000 30.02109081 -0.1480000000 31.72068594 -0.1470000000 33.68698380 -0.1460000000 34.80356411 -0.1450000000 35.82285577 -0.1440000000 38.65123168 -0.1430000000 37.80279765 -0.1420000000 39.81096832 -0.1410000000 41.04020744 -0.1400000000 41.87412830 -0.1390000000 42.20743466 -0.1380000000 44.17701776 -0.1370000000 45.83032651 -0.1360000000 46.42364766 -0.1350000000 47.13381221 -0.1340000000 47.61323504 -0.1330000000 48.52657472 -0.1320000000 49.60347023 -0.1310000000 49.27234210 -0.1300000000 48.11300883 -0.1290000000 47.57122213 -0.1280000000 46.74859077 -0.1270000000 46.29146194 -0.1260000000 44.55796951 -0.1250000000 44.37314696 -0.1240000000 44.80213046 -0.1230000000 45.81955118 -0.1220000000 46.93142425 -0.1210000000 47.11166277 -0.1200000000 49.99913678 -0.1190000000 50.46967028 -0.1180000000 51.24804643 -0.1170000000 52.85964503 -0.1160000000 54.80482725 -0.1150000000 56.99847821 -0.1140000000 58.19558948 -0.1130000000 59.90351570 -0.1120000000 62.36056991 -0.1110000000 64.59297199 -0.1100000000 68.06318041 -0.1090000000 69.57941279 -0.1080000000 72.09129136 -0.1070000000 73.93832767 -0.1060000000 75.46199484 -0.1050000000 73.86653882 -0.1040000000 70.85440054 -0.1030000000 67.64028892 -0.1020000000 65.51257509 -0.1010000000 63.57960431 -0.1000000000 62.16490148 -0.9900000000E-01 60.90941491 -0.9800000000E-01 59.84463743 -0.9700000000E-01 59.06588001 -0.9600000000E-01 58.96119285 -0.9500000000E-01 57.27958240 -0.9400000000E-01 56.56950391 -0.9300000000E-01 55.21777146 -0.9200000000E-01 54.42779536 -0.9100000000E-01 53.53574469 -0.9000000000E-01 53.65696230 -0.8900000000E-01 53.94286994 -0.8800000000E-01 54.24460148 -0.8700000000E-01 54.28970265 -0.8600000000E-01 55.24698911 -0.8500000000E-01 55.88244227 -0.8400000000E-01 58.45634603 -0.8300000000E-01 60.13191027 -0.8200000000E-01 60.71038618 -0.8100000000E-01 60.05762028 -0.8000000000E-01 56.58087225 -0.7900000000E-01 53.26817640 -0.7800000000E-01 50.49839559 -0.7700000000E-01 48.01936633 -0.7600000000E-01 47.57945792 -0.7500000000E-01 47.15012068 -0.7400000000E-01 47.64318193 -0.7300000000E-01 49.38464294 -0.7200000000E-01 52.48811811 -0.7100000000E-01 54.49994367 -0.7000000000E-01 56.24245144 -0.6900000000E-01 57.72474032 -0.6800000000E-01 59.59921907 -0.6700000000E-01 61.41333008 -0.6600000000E-01 63.04035819 -0.6500000000E-01 64.40176758 -0.6400000000E-01 65.23990698 -0.6300000000E-01 64.55495875 -0.6200000000E-01 61.55456664 -0.6100000000E-01 57.33466824 -0.6000000000E-01 53.27432002 -0.5900000000E-01 48.69041120 -0.5800000000E-01 43.08376334 -0.5700000000E-01 37.06876840 -0.5600000000E-01 31.67191241 -0.5500000000E-01 26.83695800 -0.5400000000E-01 23.05438008 -0.5300000000E-01 19.86289777 -0.5200000000E-01 17.56175142 -0.5100000000E-01 15.97854434 -0.5000000000E-01 14.95543451 -0.4900000000E-01 14.33145818 -0.4800000000E-01 14.02843805 -0.4700000000E-01 13.63114111 -0.4600000000E-01 12.70942311 -0.4500000000E-01 11.29743329 -0.4400000000E-01 10.11652053 -0.4300000000E-01 9.421961628 -0.4200000000E-01 9.253417042 -0.4100000000E-01 9.480776309 -0.4000000000E-01 9.728454333 -0.3900000000E-01 9.561708581 -0.3800000000E-01 9.093848401 -0.3700000000E-01 8.769841063 -0.3600000000E-01 8.575916143 -0.3500000000E-01 8.206309807 -0.3400000000E-01 7.481007066 -0.3300000000E-01 6.583117927 -0.3200000000E-01 5.772556933 -0.3100000000E-01 5.186254162 -0.3000000000E-01 4.829308418 -0.2900000000E-01 4.680179360 -0.2800000000E-01 4.714383869 -0.2700000000E-01 4.932743523 -0.2600000000E-01 5.276241071 -0.2500000000E-01 5.563227485 -0.2400000000E-01 5.617779600 -0.2300000000E-01 5.511906606 -0.2200000000E-01 5.470351713 -0.2100000000E-01 5.634924000 -0.2000000000E-01 5.998743356 -0.1900000000E-01 6.392550566 -0.1800000000E-01 6.621393101 -0.1700000000E-01 6.613561759 -0.1600000000E-01 6.414607022 -0.1500000000E-01 6.167824829 -0.1400000000E-01 6.129703823 -0.1300000000E-01 6.440454417 -0.1200000000E-01 7.177106622 -0.1100000000E-01 8.295688894 -0.1000000000E-01 9.572630982 -0.9000000000E-02 10.62917209 -0.8000000000E-02 11.17988289 -0.7000000000E-02 11.06729641 -0.6000000000E-02 10.32283017 -0.5000000000E-02 9.208983211 -0.4000000000E-02 8.079370847 -0.3000000000E-02 7.065745590 -0.2000000000E-02 6.085799250 -0.1000000000E-02 5.183803809 0.000000000 4.454987035 0.1000000000E-02 3.939446956 0.2000000000E-02 3.622453517 0.3000000000E-02 3.476186637 0.4000000000E-02 3.495564752 0.5000000000E-02 3.664606708 0.6000000000E-02 3.935114558 0.7000000000E-02 4.159182952 0.8000000000E-02 4.158178920 0.9000000000E-02 3.971924378 0.1000000000E-01 3.810708227 0.1100000000E-01 3.781445389 0.1200000000E-01 3.916621181 0.1300000000E-01 4.197812418 0.1400000000E-01 4.654235974 0.1500000000E-01 5.217626863 0.1600000000E-01 5.576269094 0.1700000000E-01 5.357934461 0.1800000000E-01 4.673180533 0.1900000000E-01 3.913393976 0.2000000000E-01 3.327487036 0.2100000000E-01 2.938827560 0.2200000000E-01 2.715011693 0.2300000000E-01 2.621146418 0.2400000000E-01 2.644807165 0.2500000000E-01 2.789324221 0.2600000000E-01 3.078098530 0.2700000000E-01 3.549859232 0.2800000000E-01 4.228975152 0.2900000000E-01 5.045222131 0.3000000000E-01 5.700201989 0.3100000000E-01 5.842473427 0.3200000000E-01 5.558639224 0.3300000000E-01 5.183870298 0.3400000000E-01 4.824946481 0.3500000000E-01 4.312408067 0.3600000000E-01 3.707108852 0.3700000000E-01 3.181986404 0.3800000000E-01 2.806255469 0.3900000000E-01 2.587650731 0.4000000000E-01 2.500305820 0.4100000000E-01 2.514546263 0.4200000000E-01 2.671063124 0.4300000000E-01 2.939527472 0.4400000000E-01 3.397447053 0.4500000000E-01 4.014567499 0.4600000000E-01 4.703447673 0.4700000000E-01 5.182136034 0.4800000000E-01 5.257020709 0.4900000000E-01 4.963728893 0.5000000000E-01 4.533207117 0.5100000000E-01 4.237500050 0.5200000000E-01 4.216894586 0.5300000000E-01 4.536873528 0.5400000000E-01 5.101825157 0.5500000000E-01 5.692855087 0.5600000000E-01 5.846762519 0.5700000000E-01 5.407792503 0.5800000000E-01 4.782479500 0.5900000000E-01 4.304419882 0.6000000000E-01 4.122584785 0.6100000000E-01 4.254280068 0.6200000000E-01 4.717846160 0.6300000000E-01 5.527802343 0.6400000000E-01 6.615741272 0.6500000000E-01 7.660249075 0.6600000000E-01 8.241964409 0.6700000000E-01 8.141369129 0.6800000000E-01 7.900714255 0.6900000000E-01 7.735487281 0.7000000000E-01 7.464045245 0.7100000000E-01 6.749931248 0.7200000000E-01 5.738827070 0.7300000000E-01 4.871940265 0.7400000000E-01 4.388377694 0.7500000000E-01 4.299639790 0.7600000000E-01 4.584192735 0.7700000000E-01 4.816629571 0.7800000000E-01 4.834822092 0.7900000000E-01 4.539764769 0.8000000000E-01 4.389523454 0.8100000000E-01 4.634345989 0.8200000000E-01 5.336960399 0.8300000000E-01 6.158473946 0.8400000000E-01 6.496828022 0.8500000000E-01 5.879809132 0.8600000000E-01 5.026034417 0.8700000000E-01 4.515850374 0.8800000000E-01 4.512495217 0.8900000000E-01 5.021885984 0.9000000000E-01 5.740109136 0.9100000000E-01 8.928123562 0.9200000000E-01 5.334368601 0.9300000000E-01 4.262890499 0.9400000000E-01 3.377523393 0.9500000000E-01 2.813579034 0.9600000000E-01 2.508493232 0.9700000000E-01 2.439228114 0.9800000000E-01 2.583544357 0.9900000000E-01 2.962271610 0.1000000000 3.438061154 0.1010000000 3.561441488 0.1020000000 3.122796808 0.1030000000 2.547095402 0.1040000000 2.132034368 0.1050000000 1.973485793 0.1060000000 1.956280488 0.1070000000 2.033293624 0.1080000000 2.310728472 0.1090000000 2.680279408 0.1100000000 3.635022566 0.1110000000 4.872064665 0.1120000000 5.825988946 0.1130000000 6.585406440 0.1140000000 6.548923812 0.1150000000 5.341886390 0.1160000000 4.195462228 0.1170000000 3.559177831 0.1180000000 3.339610673 0.1190000000 3.554222307 0.1200000000 4.275840455 0.1210000000 5.599622958 0.1220000000 7.129593016 0.1230000000 7.480894364 0.1240000000 6.550711155 0.1250000000 5.503441972 0.1260000000 4.328488857 0.1270000000 3.241849129 0.1280000000 2.443242769 0.1290000000 1.998098475 0.1300000000 1.758556631 0.1310000000 1.582890686 0.1320000000 1.529443015 0.1330000000 1.560491477 0.1340000000 1.820620622 0.1350000000 2.175213634 0.1360000000 2.296177287 0.1370000000 1.990093576 0.1380000000 1.638937107 0.1390000000 1.530257828 0.1400000000 1.407194347 0.1410000000 1.580394747 0.1420000000 1.518397318 0.1430000000 1.687389872 0.1440000000 1.964192770 0.1450000000 2.371611044 0.1460000000 2.979172176 0.1470000000 3.693322819 0.1480000000 4.305969287 0.1490000000 5.114652254 0.1500000000 5.922629410 0.1510000000 6.096989519 0.1520000000 5.606900204 0.1530000000 5.197318529 0.1540000000 5.405990078 0.1550000000 6.255537812 0.1560000000 7.208443898 0.1570000000 7.042289446 0.1580000000 5.104508499 0.1590000000 3.603378641 0.1600000000 2.833218983 0.1610000000 2.652726114 0.1620000000 2.757538226 0.1630000000 3.232119684 0.1640000000 3.636022290 0.1650000000 3.745784071 0.1660000000 3.634538415 0.1670000000 3.244380752 0.1680000000 2.781008044 0.1690000000 1.978681739 0.1700000000 1.865497582 0.1710000000 2.025013721 0.1720000000 2.556737565 0.1730000000 3.861607108 0.1740000000 6.669196279 0.1750000000 8.171301930 0.1760000000 6.211594831 0.1770000000 6.163320722 0.1780000000 7.450189661 0.1790000000 5.693648087 0.1800000000 2.467535867 0.1810000000 1.868001108 0.1820000000 1.810760028 0.1830000000 2.108543730 0.1840000000 2.587069209 0.1850000000 3.734521883 0.1860000000 5.052190274 0.1870000000 10.33624942 0.1880000000 14.05362704 0.1890000000 9.416019064 0.1900000000 4.692583015 0.1910000000 3.152036967 0.1920000000 3.119810076 0.1930000000 3.226740231 0.1940000000 5.567267562 0.1950000000 10.97111379 0.1960000000 9.830825633 0.1970000000 4.407084380 0.1980000000 2.868273564 0.1990000000 2.791822838 0.2000000000 4.106956313 0.2010000000 10.33019088 0.2020000000 21.36173054 0.2030000000 11.67993069 0.2040000000 4.969709073 0.2050000000 2.672080551 0.2060000000 1.987456526 0.2070000000 2.515156955 0.2080000000 2.680740156 0.2090000000 10.13344391 0.2100000000 3.204056934 0.2110000000 1.310314487 0.2120000000 0.9362583122 0.2130000000 0.8501808582 0.2140000000 1.036800422 0.2150000000 2.543871172 0.2160000000 10.78486495 0.2170000000 6.061179109 0.2180000000 1.563639427 0.2190000000 1.057027367 0.2200000000 0.9612742151 0.2210000000 0.9838979982 0.2220000000 1.113894453 0.2230000000 1.414176925 0.2240000000 2.114588629 0.2250000000 5.097844543 0.2260000000 20.30931141 0.2270000000 7.625661067 0.2280000000 2.851110625 0.2290000000 1.921856307 0.2300000000 1.979314081 0.2310000000 3.942726664 0.2320000000 54.04569475 0.2330000000 17.14655122 0.2340000000 1.838564117 0.2350000000 0.9828352175 0.2360000000 0.8669671792 0.2370000000 0.9870793100 0.2380000000 1.108145624 0.2390000000 1.009661054 0.2400000000 0.8944813850 0.2410000000 0.9342640473 0.2420000000 1.028188905 0.2430000000 1.165126941 0.2440000000 1.720175499 0.2450000000 5.628346527 0.2460000000 31.97674215 0.2470000000 7.008932983 0.2480000000 6.526289164 0.2490000000 6.973960962 0.2500000000 3.464253168 0.2510000000 2.731750313 0.2520000000 2.899196906 0.2530000000 1.479026941 0.2540000000 1.643678707 0.2550000000 2.887472478 0.2560000000 1.762478835 0.2570000000 1.688785307 0.2580000000 1.748265418 0.2590000000 1.751946157 0.2600000000 1.788745893 0.2610000000 1.930514745 0.2620000000 2.313428311 0.2630000000 2.367736973 0.2640000000 2.585242629 0.2650000000 2.911852292 0.2660000000 3.746948431 0.2670000000 5.125951413 0.2680000000 7.685806445 0.2690000000 11.82079963 0.2700000000 13.90989517 0.2710000000 14.02694424 0.2720000000 13.57206490 0.2730000000 9.997877245 0.2740000000 10.10053279 0.2750000000 6.447001067 0.2760000000 5.551610267 0.2770000000 8.543511023 0.2780000000 9.700541301 0.2790000000 9.772820120 0.2800000000 4.629527332 0.2810000000 3.674902564 0.2820000000 3.638522717 0.2830000000 4.288685589 0.2840000000 4.698516361 0.2850000000 4.255264535 0.2860000000 3.379321151 0.2870000000 2.987018660 0.2880000000 3.182332858 0.2890000000 4.074684275 0.2900000000 5.382380173 0.2910000000 4.626357817 0.2920000000 3.399819965 0.2930000000 2.841939573 0.2940000000 2.696321620 0.2950000000 2.898824589 0.2960000000 3.312277944 0.2970000000 4.107920423 0.2980000000 4.984800539 0.2990000000 5.405542833 0.3000000000 5.657715448 0.3010000000 5.963308167 0.3020000000 6.067751643 0.3030000000 5.795259409 0.3040000000 5.594960553 0.3050000000 5.237531240 0.3060000000 4.802981830 0.3070000000 4.690949790 0.3080000000 4.910909631 0.3090000000 5.541043340 0.3100000000 6.419255783 0.3110000000 7.223223059 0.3120000000 7.547932505 0.3130000000 6.357885172 0.3140000000 5.293349440 0.3150000000 5.220987246 0.3160000000 5.325238914 0.3170000000 5.137831051 0.3180000000 5.556817175 0.3190000000 5.091845653 0.3200000000 5.573343613 0.3210000000 5.545629260 0.3220000000 4.891881000 0.3230000000 4.345546010 0.3240000000 4.287160844 0.3250000000 4.652027241 0.3260000000 5.016664653 0.3270000000 4.683976438 0.3280000000 4.282864288 0.3290000000 4.235229753 0.3300000000 4.541442970 0.3310000000 5.088922429 0.3320000000 5.861363370 0.3330000000 6.411810587 0.3340000000 6.728270441 0.3350000000 7.269147432 0.3360000000 7.743747623 0.3370000000 7.942936308 0.3380000000 7.449546026 0.3390000000 6.188980635 0.3400000000 4.952866702 0.3410000000 4.099795752 0.3420000000 3.683945629 0.3430000000 3.564935710 0.3440000000 3.582869039 0.3450000000 3.695280798 0.3460000000 3.849399940 0.3470000000 4.330466774 0.3480000000 4.741716712 0.3490000000 5.812499261 0.3500000000 6.361572883 0.3510000000 6.769070981 0.3520000000 6.583121667 0.3530000000 6.727755216 0.3540000000 6.986547794 0.3550000000 7.268091300 0.3560000000 7.163849285 0.3570000000 8.063649141 0.3580000000 11.03167018 0.3590000000 7.100073980 0.3600000000 7.050338692 0.3610000000 7.266460393 0.3620000000 7.729518587 0.3630000000 8.248496470 0.3640000000 8.517325317 0.3650000000 8.560411699 0.3660000000 8.453456856 0.3670000000 8.841594463 0.3680000000 8.268675059 0.3690000000 8.191692167 0.3700000000 8.210376280 0.3710000000 8.361906142 0.3720000000 8.578908753 0.3730000000 8.224769446 0.3740000000 7.638723408 0.3750000000 7.331855967 0.3760000000 7.107040431 0.3770000000 6.930295817 0.3780000000 6.583687788 0.3790000000 6.070456262 0.3800000000 5.601289913 0.3810000000 6.219666672 0.3820000000 6.226227960 0.3830000000 6.208047856 0.3840000000 5.978244299 0.3850000000 6.345652418 0.3860000000 6.652906460 0.3870000000 6.947154040 0.3880000000 7.439536841 0.3890000000 7.462600245 0.3900000000 8.163649379 0.3910000000 8.658346032 0.3920000000 8.906701193 0.3930000000 6.918323246 0.3940000000 8.212522579 0.3950000000 8.829458730 0.3960000000 8.743411708 0.3970000000 8.112000115 0.3980000000 7.741453707 0.3990000000 7.442534103 0.4000000000 9.593802327 0.4010000000 7.515192555 0.4020000000 7.384505405 0.4030000000 7.334270706 0.4040000000 7.353205206 0.4050000000 7.726965721 0.4060000000 7.146795698 0.4070000000 7.399181663 0.4080000000 7.069100946 0.4090000000 7.099678412 0.4100000000 7.001050877 0.4110000000 6.811483998 0.4120000000 8.107037116 0.4130000000 6.418773690 0.4140000000 6.326365754 0.4150000000 6.086840728 0.4160000000 5.861474003 0.4170000000 5.647330499 0.4180000000 5.429043209 0.4190000000 5.607524618 0.4200000000 5.494813570 0.4210000000 5.838624365 0.4220000000 6.388163313 0.4230000000 5.982127523 0.4240000000 6.262960515 0.4250000000 6.469619716 0.4260000000 6.518412232 0.4270000000 6.886477276 0.4280000000 7.264649635 0.4290000000 7.574240746 0.4300000000 7.861834366 0.4310000000 8.095926891 0.4320000000 8.106916668 0.4330000000 7.918829814 0.4340000000 7.649132039 0.4350000000 7.338772383 0.4360000000 7.995432951 0.4370000000 7.120692064 0.4380000000 6.776562989 0.4390000000 6.653550696 0.4400000000 6.530312246 0.4410000000 6.414948404 0.4420000000 6.513434919 0.4430000000 6.560860172 0.4440000000 6.794314673 0.4450000000 7.005376375 0.4460000000 7.033860570 0.4470000000 6.822275677 0.4480000000 6.663583382 0.4490000000 6.812468846 0.4500000000 7.401929084 0.4510000000 8.143097618 0.4520000000 8.704275201 0.4530000000 8.275394951 0.4540000000 8.663193553 0.4550000000 7.933315810 0.4560000000 7.485759551 0.4570000000 7.395437841 0.4580000000 7.217237392 0.4590000000 7.508813584 0.4600000000 7.800673069 0.4610000000 7.897362755 0.4620000000 8.941079122 0.4630000000 8.084513355 0.4640000000 8.062609790 0.4650000000 8.088200911 0.4660000000 7.823917894 0.4670000000 7.623340885 0.4680000000 7.406428381 0.4690000000 7.122547903 0.4700000000 7.798422727 0.4710000000 8.793900187 0.4720000000 8.166138996 0.4730000000 7.745081458 0.4740000000 7.563817961 0.4750000000 7.263355883 0.4760000000 6.794822729 0.4770000000 6.366449121 0.4780000000 6.197978587 0.4790000000 6.244912348 0.4800000000 6.741929883 0.4810000000 6.724658143 0.4820000000 6.766111663 0.4830000000 6.952481707 0.4840000000 6.993472459 0.4850000000 7.031681944 0.4860000000 7.130220592 0.4870000000 7.410078705 0.4880000000 7.716552287 0.4890000000 8.426977069 0.4900000000 8.058825934 0.4910000000 8.139458324 0.4920000000 8.299426586 0.4930000000 8.338038236 0.4940000000 8.362398726 0.4950000000 8.826504153 0.4960000000 8.591906881 0.4970000000 8.385221839 0.4980000000 8.205248976 0.4990000000 8.292365405 elk-9.2.12/examples/GW/PaxHeaders/Si0000644000000000000000000000013214536061315014073 xustar0030 mtime=1702388429.092499751 30 atime=1702388429.089499755 30 ctime=1702388429.092499751 elk-9.2.12/examples/GW/Si/0000755002504400250440000000000014536061315016672 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/GW/Si/PaxHeaders/GWSF_K000001.OUT0000644000000000000000000000013214536061315016222 xustar0030 mtime=1702388429.091499752 30 atime=1702388429.090499754 30 ctime=1702388429.091499752 elk-9.2.12/examples/GW/Si/GWSF_K000001.OUT0000644002504400250440000010066614536061315020755 0ustar00dewhurstdewhurst00000000000000 -0.8000000000 1.233645995 -0.7983750000 1.234174789 -0.7967500000 1.082149685 -0.7951250000 1.052030490 -0.7935000000 1.322191902 -0.7918750000 1.557510429 -0.7902500000 1.805241092 -0.7886250000 2.093871872 -0.7870000000 2.446310307 -0.7853750000 2.895651872 -0.7837500000 3.420703366 -0.7821250000 4.072064806 -0.7805000000 4.946048548 -0.7788750000 6.048673689 -0.7772500000 7.598366858 -0.7756250000 9.699416375 -0.7740000000 12.53349555 -0.7723750000 16.13107096 -0.7707500000 18.14959514 -0.7691250000 16.42342744 -0.7675000000 12.64425931 -0.7658750000 9.801527119 -0.7642500000 9.341045938 -0.7626250000 9.983502760 -0.7610000000 9.893469598 -0.7593750000 8.529133893 -0.7577500000 6.754611882 -0.7561250000 5.685335598 -0.7545000000 4.987129003 -0.7528750000 4.424231971 -0.7512500000 4.065725912 -0.7496250000 4.102841109 -0.7480000000 4.317742439 -0.7463750000 3.984125121 -0.7447500000 3.572598359 -0.7431250000 3.243673378 -0.7415000000 3.016243379 -0.7398750000 2.733133886 -0.7382500000 2.430960225 -0.7366250000 2.269961265 -0.7350000000 2.171591561 -0.7333750000 2.182219901 -0.7317500000 2.078968705 -0.7301250000 2.334622917 -0.7285000000 2.736027983 -0.7268750000 2.353793285 -0.7252500000 2.148712809 -0.7236250000 4.137178349 -0.7220000000 3.732123430 -0.7203750000 3.607432655 -0.7187500000 1.566334339 -0.7171250000 1.199443030 -0.7155000000 1.306590599 -0.7138750000 1.099981379 -0.7122500000 1.066199340 -0.7106250000 0.9535726450 -0.7090000000 1.019606033 -0.7073750000 1.025092663 -0.7057500000 0.9857759820 -0.7041250000 1.009249479 -0.7025000000 1.035346419 -0.7008750000 1.083592848 -0.6992500000 1.234511200 -0.6976250000 1.039922461 -0.6960000000 0.9783661125 -0.6943750000 0.9294540482 -0.6927500000 0.9254229847 -0.6911250000 0.9470869120 -0.6895000000 0.9607108157 -0.6878750000 1.010698836 -0.6862500000 0.9337524166 -0.6846250000 0.8883658587 -0.6830000000 0.8352754710 -0.6813750000 0.7995445680 -0.6797500000 0.7553268398 -0.6781250000 0.7069977389 -0.6765000000 0.6868709786 -0.6748750000 0.6766995188 -0.6732500000 0.6802556356 -0.6716250000 0.7284599988 -0.6700000000 0.7876219477 -0.6683750000 0.8309171467 -0.6667500000 0.8506946696 -0.6651250000 0.8411708941 -0.6635000000 0.8098471661 -0.6618750000 0.8065834328 -0.6602500000 0.8271119589 -0.6586250000 0.8371924088 -0.6570000000 0.8350046722 -0.6553750000 0.8289684693 -0.6537500000 0.8299786618 -0.6521250000 0.8449440703 -0.6505000000 0.8512573372 -0.6488750000 0.8588548275 -0.6472500000 0.8657762923 -0.6456250000 0.8740824508 -0.6440000000 0.8900581388 -0.6423750000 0.9108157074 -0.6407500000 0.9394712372 -0.6391250000 0.9928343115 -0.6375000000 1.006815980 -0.6358750000 1.032572294 -0.6342500000 1.055540304 -0.6326250000 1.107537771 -0.6310000000 1.173102812 -0.6293750000 1.142576253 -0.6277500000 1.126997457 -0.6261250000 1.102377237 -0.6245000000 1.062452561 -0.6228750000 1.015569262 -0.6212500000 1.016770355 -0.6196250000 1.016943201 -0.6180000000 1.001309186 -0.6163750000 0.9134445869 -0.6147500000 0.8507184760 -0.6131250000 0.9256717690 -0.6115000000 0.9892081108 -0.6098750000 1.040976022 -0.6082500000 1.086863909 -0.6066250000 1.127669249 -0.6050000000 1.162829033 -0.6033750000 1.192808101 -0.6017500000 1.215655837 -0.6001250000 1.238834724 -0.5985000000 1.285131114 -0.5968750000 1.321563638 -0.5952500000 1.358962201 -0.5936250000 1.399576574 -0.5920000000 1.437998531 -0.5903750000 1.434648990 -0.5887500000 1.481143883 -0.5871250000 1.377274406 -0.5855000000 1.373908300 -0.5838750000 1.334283395 -0.5822500000 1.387051852 -0.5806250000 1.434873222 -0.5790000000 1.448473189 -0.5773750000 1.711601416 -0.5757500000 1.493970365 -0.5741250000 1.435434279 -0.5725000000 1.407542722 -0.5708750000 1.447678946 -0.5692500000 1.440328869 -0.5676250000 1.438416360 -0.5660000000 1.410905753 -0.5643750000 1.519215625 -0.5627500000 1.455752890 -0.5611250000 1.494886379 -0.5595000000 1.512123602 -0.5578750000 1.493698077 -0.5562500000 1.497250878 -0.5546250000 1.524087146 -0.5530000000 1.522763329 -0.5513750000 1.541304415 -0.5497500000 1.560716269 -0.5481250000 1.580557873 -0.5465000000 1.597440531 -0.5448750000 1.630269535 -0.5432500000 1.679986866 -0.5416250000 1.734923060 -0.5400000000 1.795449733 -0.5383750000 1.856355363 -0.5367500000 1.921779587 -0.5351250000 1.989331189 -0.5335000000 2.067493353 -0.5318750000 2.165246560 -0.5302500000 2.280472737 -0.5286250000 2.419310696 -0.5270000000 2.542194260 -0.5253750000 2.581120950 -0.5237500000 2.634260541 -0.5221250000 2.764514480 -0.5205000000 3.100829970 -0.5188750000 4.221628081 -0.5172500000 2.381019714 -0.5156250000 2.462858350 -0.5140000000 2.614964290 -0.5123750000 2.635501612 -0.5107500000 2.743317861 -0.5091250000 2.970727890 -0.5075000000 3.234372781 -0.5058750000 3.498878260 -0.5042500000 3.709503204 -0.5026250000 3.839432376 -0.5010000000 3.904086934 -0.4993750000 4.025471105 -0.4977500000 4.196687871 -0.4961250000 4.338153650 -0.4945000000 4.476666247 -0.4928750000 4.629833009 -0.4912500000 4.822418939 -0.4896250000 5.055991266 -0.4880000000 5.329442504 -0.4863750000 5.668697960 -0.4847500000 6.046587828 -0.4831250000 6.475058612 -0.4815000000 6.962859111 -0.4798750000 7.496899614 -0.4782500000 8.062844914 -0.4766250000 8.638793673 -0.4750000000 9.175247962 -0.4733750000 9.643601540 -0.4717500000 9.952635703 -0.4701250000 10.04724457 -0.4685000000 9.879931873 -0.4668750000 9.682777281 -0.4652500000 9.856646824 -0.4636250000 10.39232236 -0.4620000000 11.21627874 -0.4603750000 12.00547669 -0.4587500000 12.97348115 -0.4571250000 13.97567288 -0.4555000000 14.96647592 -0.4538750000 15.89275501 -0.4522500000 16.67693684 -0.4506250000 17.27945284 -0.4490000000 17.63054288 -0.4473750000 17.70127807 -0.4457500000 17.59716246 -0.4441250000 17.29098672 -0.4425000000 17.00879126 -0.4408750000 16.77879620 -0.4392500000 16.52247133 -0.4376250000 16.08694359 -0.4360000000 15.38722552 -0.4343750000 14.42386067 -0.4327500000 13.36422602 -0.4311250000 12.22139602 -0.4295000000 11.06925532 -0.4278750000 10.03402783 -0.4262500000 9.130065801 -0.4246250000 8.159403830 -0.4230000000 7.334667565 -0.4213750000 6.595843045 -0.4197500000 6.033594792 -0.4181250000 5.713102341 -0.4165000000 5.516007018 -0.4148750000 5.224479787 -0.4132500000 4.974508108 -0.4116250000 4.715829295 -0.4100000000 4.457419102 -0.4083750000 4.159130762 -0.4067500000 3.825250217 -0.4051250000 3.536916887 -0.4035000000 3.277738124 -0.4018750000 3.102207449 -0.4002500000 2.857070405 -0.3986250000 2.626281225 -0.3970000000 2.442525254 -0.3953750000 2.282279070 -0.3937500000 2.148743260 -0.3921250000 2.045395258 -0.3905000000 1.956368870 -0.3888750000 1.884801954 -0.3872500000 1.848561943 -0.3856250000 1.743075429 -0.3840000000 1.586351220 -0.3823750000 1.446276435 -0.3807500000 1.291352717 -0.3791250000 1.069692068 -0.3775000000 0.9386810728 -0.3758750000 1.313867253 -0.3742500000 1.305368686 -0.3726250000 1.256408440 -0.3710000000 1.182757033 -0.3693750000 1.127578957 -0.3677500000 1.080533350 -0.3661250000 1.052812986 -0.3645000000 1.080658363 -0.3628750000 1.081193565 -0.3612500000 1.059847110 -0.3596250000 1.022276503 -0.3580000000 0.9687916276 -0.3563750000 0.9274912069 -0.3547500000 0.8914918842 -0.3531250000 0.8644440308 -0.3515000000 0.8497591687 -0.3498750000 0.8279646570 -0.3482500000 0.8261230445 -0.3466250000 0.8511352746 -0.3450000000 0.8784249638 -0.3433750000 0.9205401498 -0.3417500000 0.8381129633 -0.3401250000 0.7463547540 -0.3385000000 0.7087708420 -0.3368750000 0.6718457274 -0.3352500000 0.6567580715 -0.3336250000 0.6645462784 -0.3320000000 0.6987356090 -0.3303750000 0.6481813911 -0.3287500000 0.6566070158 -0.3271250000 0.6076837925 -0.3255000000 0.5826202415 -0.3238750000 0.5844371565 -0.3222500000 0.5764516323 -0.3206250000 0.5622386815 -0.3190000000 0.5489126731 -0.3173750000 0.5413759464 -0.3157500000 0.5477448381 -0.3141250000 0.5923387325 -0.3125000000 0.5755928869 -0.3108750000 0.6202886841 -0.3092500000 0.6560515473 -0.3076250000 0.6747001313 -0.3060000000 0.6923734596 -0.3043750000 0.7609351036 -0.3027500000 0.6312652151 -0.3011250000 0.6004425191 -0.2995000000 0.5592183739 -0.2978750000 0.5593312932 -0.2962500000 0.4904959605 -0.2946250000 0.4375036468 -0.2930000000 0.4258657702 -0.2913750000 0.4490348746 -0.2897500000 0.4114058181 -0.2881250000 0.3978577618 -0.2865000000 0.4022370268 -0.2848750000 0.3855556296 -0.2832500000 0.3715351536 -0.2816250000 0.3315160429 -0.2800000000 0.2967524246 -0.2783750000 0.3228707103 -0.2767500000 0.3060293839 -0.2751250000 0.2984848897 -0.2735000000 0.2846012719 -0.2718750000 0.2768485816 -0.2702500000 0.2423416731 -0.2686250000 0.2851768057 -0.2670000000 0.2971084640 -0.2653750000 0.2898620945 -0.2637500000 0.2872724161 -0.2621250000 0.3084663251 -0.2605000000 0.2939573788 -0.2588750000 0.2937200244 -0.2572500000 0.2964852887 -0.2556250000 0.3064056499 -0.2540000000 0.3020957902 -0.2523750000 0.3101561374 -0.2507500000 0.2948596459 -0.2491250000 0.3091821727 -0.2475000000 0.3300629500 -0.2458750000 0.2880027291 -0.2442500000 0.3187592598 -0.2426250000 0.3119947689 -0.2410000000 0.3094171270 -0.2393750000 0.3118591543 -0.2377500000 0.3127170211 -0.2361250000 0.3234636188 -0.2345000000 0.3202181308 -0.2328750000 0.3131887483 -0.2312500000 0.3263352593 -0.2296250000 0.3597637741 -0.2280000000 0.3461509673 -0.2263750000 0.3596932249 -0.2247500000 0.3877036009 -0.2231250000 0.4150217294 -0.2215000000 0.3777384734 -0.2198750000 0.3970662611 -0.2182500000 0.4297445147 -0.2166250000 0.4117412855 -0.2150000000 0.4119243494 -0.2133750000 0.4155184408 -0.2117500000 0.4158429903 -0.2101250000 0.3993406703 -0.2085000000 0.4044223280 -0.2068750000 0.3924243231 -0.2052500000 0.3853717201 -0.2036250000 0.3561362780 -0.2020000000 0.3719698354 -0.2003750000 0.3722555825 -0.1987500000 0.3640783412 -0.1971250000 0.3540215793 -0.1955000000 0.3396462804 -0.1938750000 0.3377683475 -0.1922500000 0.3555337813 -0.1906250000 0.3612931479 -0.1890000000 0.3621747646 -0.1873750000 0.3532286884 -0.1857500000 0.3624536299 -0.1841250000 0.3641565759 -0.1825000000 0.3644079137 -0.1808750000 0.3634390685 -0.1792500000 0.3785658194 -0.1776250000 0.3806075089 -0.1760000000 0.3886157965 -0.1743750000 0.3955045974 -0.1727500000 0.4064837150 -0.1711250000 0.4150428114 -0.1695000000 0.4261183169 -0.1678750000 0.4326207701 -0.1662500000 0.4416299270 -0.1646250000 0.4577031390 -0.1630000000 0.4773543330 -0.1613750000 0.4711457627 -0.1597500000 0.4762123194 -0.1581250000 0.5540824415 -0.1565000000 0.4878365448 -0.1548750000 0.5071181383 -0.1532500000 0.5143395153 -0.1516250000 0.5335619871 -0.1500000000 0.5429506548 -0.1483750000 0.5685414170 -0.1467500000 0.6035251621 -0.1451250000 0.6166860581 -0.1435000000 0.6075198977 -0.1418750000 0.6509163620 -0.1402500000 0.6589714123 -0.1386250000 0.6778881061 -0.1370000000 0.6011338271 -0.1353750000 0.7143798169 -0.1337500000 0.7252924392 -0.1321250000 0.7118303263 -0.1305000000 0.6674211308 -0.1288750000 0.6859255241 -0.1272500000 0.6828246411 -0.1256250000 0.6886261882 -0.1240000000 0.7093714032 -0.1223750000 0.7057709012 -0.1207500000 0.7092400623 -0.1191250000 0.7125117994 -0.1175000000 0.7424229028 -0.1158750000 0.7643590312 -0.1142500000 0.7889689500 -0.1126250000 0.8142089383 -0.1110000000 0.8398482401 -0.1093750000 0.8573103791 -0.1077500000 0.8821178679 -0.1061250000 0.8916601639 -0.1045000000 0.9071733320 -0.1028750000 0.9337121629 -0.1012500000 0.9559136458 -0.9962500000E-01 0.9867304325 -0.9800000000E-01 1.019811867 -0.9637500000E-01 1.035368722 -0.9475000000E-01 1.087031036 -0.9312500000E-01 1.111996675 -0.9150000000E-01 1.141749211 -0.8987500000E-01 1.177627819 -0.8825000000E-01 1.214675755 -0.8662500000E-01 1.271771822 -0.8500000000E-01 1.300582765 -0.8337500000E-01 1.361891832 -0.8175000000E-01 1.424334405 -0.8012500000E-01 1.483499848 -0.7850000000E-01 1.537611006 -0.7687500000E-01 1.600991970 -0.7525000000E-01 1.668820407 -0.7362500000E-01 1.780664719 -0.7200000000E-01 1.923501470 -0.7037500000E-01 2.113146093 -0.6875000000E-01 2.240179283 -0.6712500000E-01 2.736138092 -0.6550000000E-01 2.796025377 -0.6387500000E-01 2.560687896 -0.6225000000E-01 2.372753995 -0.6062500000E-01 2.384002788 -0.5900000000E-01 2.495913264 -0.5737500000E-01 2.588478454 -0.5575000000E-01 2.741572287 -0.5412500000E-01 2.871439951 -0.5250000000E-01 3.111678856 -0.5087500000E-01 3.340784307 -0.4925000000E-01 3.597869331 -0.4762500000E-01 3.888088496 -0.4600000000E-01 4.217889714 -0.4437500000E-01 4.596114382 -0.4275000000E-01 5.026214075 -0.4112500000E-01 5.526746139 -0.3950000000E-01 6.112348679 -0.3787500000E-01 6.803189637 -0.3625000000E-01 7.626367501 -0.3462500000E-01 8.618784879 -0.3300000000E-01 9.832641578 -0.3137500000E-01 11.34056198 -0.2975000000E-01 13.24949236 -0.2812500000E-01 15.72108100 -0.2650000000E-01 19.00868618 -0.2487500000E-01 23.52931083 -0.2325000000E-01 30.00969765 -0.2162500000E-01 39.80395009 -0.2000000000E-01 55.62154138 -0.1837500000E-01 83.12983075 -0.1675000000E-01 132.3183983 -0.1512500000E-01 197.5877094 -0.1350000000E-01 224.9260793 -0.1187500000E-01 285.9924798 -0.1025000000E-01 85.30694486 -0.8625000000E-02 3.671201094 -0.7000000000E-02 162.4176827 -0.5375000000E-02 245.9500598 -0.3750000000E-02 288.8156348 -0.2125000000E-02 212.9691149 -0.5000000000E-03 129.5249901 0.1125000000E-02 81.87328852 0.2750000000E-02 55.85691160 0.4375000000E-02 40.60642799 0.6000000000E-02 30.97940990 0.7625000000E-02 24.52285837 0.9250000000E-02 19.98215836 0.1087500000E-01 16.66647552 0.1250000000E-01 14.17343135 0.1412500000E-01 12.25433655 0.1575000000E-01 10.74146307 0.1737500000E-01 9.531459533 0.1900000000E-01 8.555637007 0.2062500000E-01 7.751210953 0.2225000000E-01 7.085294890 0.2387500000E-01 6.523344970 0.2550000000E-01 6.060232477 0.2712500000E-01 5.664285113 0.2875000000E-01 5.307790652 0.3037500000E-01 5.035835293 0.3200000000E-01 4.795019363 0.3362500000E-01 4.590870610 0.3525000000E-01 4.417411327 0.3687500000E-01 4.278443356 0.3850000000E-01 4.163551237 0.4012500000E-01 4.075287756 0.4175000000E-01 4.009445065 0.4337500000E-01 3.959060873 0.4500000000E-01 3.926666857 0.4662500000E-01 3.926892569 0.4825000000E-01 3.936888916 0.4987500000E-01 3.966733627 0.5150000000E-01 4.012851811 0.5312500000E-01 4.081705736 0.5475000000E-01 4.172755663 0.5637500000E-01 4.286390053 0.5800000000E-01 4.423503877 0.5962500000E-01 4.571227140 0.6125000000E-01 4.777088246 0.6287500000E-01 5.008360595 0.6450000000E-01 5.275498041 0.6612500000E-01 5.589189112 0.6775000000E-01 5.970389636 0.6937500000E-01 6.419649270 0.7100000000E-01 6.948796777 0.7262500000E-01 7.615794842 0.7425000000E-01 8.339629296 0.7587500000E-01 9.233612422 0.7750000000E-01 10.14203990 0.7912500000E-01 11.74484803 0.8075000000E-01 12.89049991 0.8237500000E-01 13.00290982 0.8400000000E-01 6.533766224 0.8562500000E-01 6.038647276 0.8725000000E-01 4.715143905 0.8887500000E-01 9.749790167 0.9050000000E-01 15.16837632 0.9212500000E-01 23.92483687 0.9375000000E-01 35.65079034 0.9537500000E-01 52.74977070 0.9700000000E-01 79.12623032 0.9862500000E-01 127.7721667 0.1002500000 211.7244301 0.1018750000 308.5887367 0.1035000000 354.8008682 0.1051250000 330.3708040 0.1067500000 250.0746949 0.1083750000 161.9228045 0.1100000000 102.9615314 0.1116250000 69.41164219 0.1132500000 49.96569947 0.1148750000 37.94128904 0.1165000000 30.16315597 0.1181250000 25.11320914 0.1197500000 21.69453043 0.1213750000 19.16296174 0.1230000000 17.67070945 0.1246250000 17.14876625 0.1262500000 18.02827036 0.1278750000 19.95070881 0.1295000000 23.63584791 0.1311250000 30.48432963 0.1327500000 43.53322626 0.1343750000 63.03821025 0.1360000000 95.10526971 0.1376250000 139.3846623 0.1392500000 142.9325975 0.1408750000 99.09262728 0.1425000000 57.47468169 0.1441250000 36.90150927 0.1457500000 26.09035012 0.1473750000 18.84691654 0.1490000000 13.88038296 0.1506250000 10.66278001 0.1522500000 8.618397214 0.1538750000 7.347016452 0.1555000000 6.256327372 0.1571250000 5.229526294 0.1587500000 4.712336033 0.1603750000 4.352893316 0.1620000000 3.968997399 0.1636250000 3.568584940 0.1652500000 3.301211450 0.1668750000 2.965244492 0.1685000000 2.761553111 0.1701250000 2.663228159 0.1717500000 2.495876430 0.1733750000 2.398385244 0.1750000000 2.329317843 0.1766250000 2.165254801 0.1782500000 2.045402383 0.1798750000 1.968130479 0.1815000000 1.884178543 0.1831250000 1.904250026 0.1847500000 1.761632674 0.1863750000 1.742768482 0.1880000000 1.689974121 0.1896250000 1.607053276 0.1912500000 1.575166304 0.1928750000 1.528169590 0.1945000000 1.461381724 0.1961250000 1.477506911 0.1977500000 1.486235829 0.1993750000 1.418696934 0.2010000000 1.384788075 0.2026250000 1.399416222 0.2042500000 1.389195372 0.2058750000 1.303514500 0.2075000000 1.359069628 0.2091250000 1.364404567 0.2107500000 1.365585987 0.2123750000 1.263862776 0.2140000000 1.267720607 0.2156250000 1.317686777 0.2172500000 1.283527790 0.2188750000 1.293262353 0.2205000000 1.383950528 0.2221250000 1.352750667 0.2237500000 1.373311424 0.2253750000 1.402624165 0.2270000000 1.400416457 0.2286250000 1.434334353 0.2302500000 1.518711724 0.2318750000 1.491252805 0.2335000000 1.493386084 0.2351250000 1.527866124 0.2367500000 1.616390337 0.2383750000 1.433700214 0.2400000000 1.406369100 0.2416250000 1.469279079 0.2432500000 1.357593958 0.2448750000 1.497208357 0.2465000000 1.417357503 0.2481250000 1.734137843 0.2497500000 2.315548817 0.2513750000 1.802914656 0.2530000000 1.631495261 0.2546250000 1.611069967 0.2562500000 1.837738787 0.2578750000 2.752979537 0.2595000000 1.910586414 0.2611250000 3.656167563 0.2627500000 1.537020248 0.2643750000 1.638940418 0.2660000000 3.113717255 0.2676250000 1.200343801 0.2692500000 1.647966741 0.2708750000 2.536259602 0.2725000000 3.690303542 0.2741250000 5.794971781 0.2757500000 15.83421465 0.2773750000 12.22589538 0.2790000000 11.47943742 0.2806250000 10.68415622 0.2822500000 15.52998970 0.2838750000 31.81482462 0.2855000000 605.2559892 0.2871250000 81.41688130 0.2887500000 38.56012664 0.2903750000 28.65320807 0.2920000000 40.81990965 0.2936250000 74.21750093 0.2952500000 157.2132802 0.2968750000 311.2399557 0.2985000000 177.3413822 0.3001250000 142.1055123 0.3017500000 64.49910739 0.3033750000 35.05980488 0.3050000000 29.32492676 0.3066250000 19.41811557 0.3082500000 10.68474122 0.3098750000 6.938832325 0.3115000000 5.166535560 0.3131250000 10.06221336 0.3147500000 3.830943699 0.3163750000 3.790425683 0.3180000000 2.839748602 0.3196250000 2.026227603 0.3212500000 2.013797442 0.3228750000 1.650698645 0.3245000000 1.888107912 0.3261250000 1.520298242 0.3277500000 1.347253393 0.3293750000 2.619396060 0.3310000000 0.9018385344 0.3326250000 0.8832667182 0.3342500000 0.8565585689 0.3358750000 0.9954099362 0.3375000000 1.233894425 0.3391250000 1.540413885 0.3407500000 3.057499187 0.3423750000 1.658812131 0.3440000000 1.414833028 0.3456250000 1.254069909 0.3472500000 1.660696094 0.3488750000 1.894661819 0.3505000000 2.111420739 0.3521250000 2.376092265 0.3537500000 2.660252305 0.3553750000 2.659840761 0.3570000000 2.833102053 0.3586250000 2.992591420 0.3602500000 2.908690353 0.3618750000 3.339033117 0.3635000000 4.417426267 0.3651250000 4.000119803 0.3667500000 5.085818340 0.3683750000 4.484758726 0.3700000000 4.047073140 0.3716250000 3.932068022 0.3732500000 4.501613244 0.3748750000 6.565232054 0.3765000000 9.501522693 0.3781250000 8.626529949 0.3797500000 10.44047172 0.3813750000 10.28329947 0.3830000000 7.991488159 0.3846250000 11.58878644 0.3862500000 16.61819193 0.3878750000 24.13660214 0.3895000000 25.76852343 0.3911250000 30.71424402 0.3927500000 40.51142341 0.3943750000 58.97296096 0.3960000000 77.77894772 0.3976250000 106.9231858 0.3992500000 183.3090670 0.4008750000 109.9870598 0.4025000000 151.4182416 0.4041250000 239.7831576 0.4057500000 224.4923457 0.4073750000 201.4927646 0.4090000000 281.0298055 0.4106250000 347.7077363 0.4122500000 244.7484073 0.4138750000 146.2596851 0.4155000000 86.08806822 0.4171250000 62.65561342 0.4187500000 53.38070839 0.4203750000 43.01333445 0.4220000000 34.88786312 0.4236250000 37.56776732 0.4252500000 35.71306817 0.4268750000 28.87161138 0.4285000000 17.45356246 0.4301250000 13.56150406 0.4317500000 14.12036679 0.4333750000 12.91028213 0.4350000000 11.76303977 0.4366250000 10.66747181 0.4382500000 9.579208511 0.4398750000 8.580800642 0.4415000000 7.850298873 0.4431250000 7.703482797 0.4447500000 6.866150293 0.4463750000 6.150321216 0.4480000000 5.620706184 0.4496250000 6.039247869 0.4512500000 6.060103436 0.4528750000 6.882720474 0.4545000000 6.977903104 0.4561250000 5.702774510 0.4577500000 4.590788089 0.4593750000 4.742108513 0.4610000000 5.959436892 0.4626250000 4.361682197 0.4642500000 5.751934614 0.4658750000 3.709682661 0.4675000000 2.636925558 0.4691250000 2.432392367 0.4707500000 2.549257781 0.4723750000 2.673988226 0.4740000000 2.722321569 0.4756250000 2.657313761 0.4772500000 2.570848433 0.4788750000 2.530018475 0.4805000000 2.564924757 0.4821250000 3.191469845 0.4837500000 2.991905089 0.4853750000 2.733508574 0.4870000000 2.547840564 0.4886250000 2.405592954 0.4902500000 2.605873081 0.4918750000 2.677796930 0.4935000000 2.672249847 0.4951250000 2.616822391 0.4967500000 3.266705386 0.4983750000 3.260215422 -0.4490921551 0.000000000 -0.4490921551 210.5166950 -0.8880371772E-02 0.000000000 -0.8880371772E-02 210.5166950 -0.8880371694E-02 0.000000000 -0.8880371694E-02 210.5166950 -0.8880371694E-02 0.000000000 -0.8880371694E-02 210.5166950 0.8347326035E-01 0.000000000 0.8347326035E-01 210.5166950 0.8347326043E-01 0.000000000 0.8347326043E-01 210.5166950 0.8347326043E-01 0.000000000 0.8347326043E-01 210.5166950 0.1082471941 0.000000000 0.1082471941 210.5166950 0.2722011482 0.000000000 0.2722011482 210.5166950 0.2751215087 0.000000000 0.2751215087 210.5166950 0.2751215087 0.000000000 0.2751215087 210.5166950 0.3985573554 0.000000000 0.3985573554 210.5166950 0.3985573556 0.000000000 0.3985573556 210.5166950 0.3985573556 0.000000000 0.3985573556 210.5166950 0.5441096240 0.000000000 0.5441096240 210.5166950 0.8291470074 0.000000000 0.8291470074 210.5166950 0.8291470074 0.000000000 0.8291470074 210.5166950 0.8291470075 0.000000000 0.8291470075 210.5166950 0.8700428382 0.000000000 0.8700428382 210.5166950 0.8700428382 0.000000000 0.8700428382 210.5166950 0.9259938135 0.000000000 0.9259938135 210.5166950 0.9259938154 0.000000000 0.9259938154 210.5166950 0.9259938154 0.000000000 0.9259938154 210.5166950 1.070509290 0.000000000 1.070509290 210.5166950 1.070509299 0.000000000 1.070509299 210.5166950 1.070509299 0.000000000 1.070509299 210.5166950 1.246855885 0.000000000 1.246855885 210.5166950 1.246855886 0.000000000 1.246855886 210.5166950 1.246855886 0.000000000 1.246855886 210.5166950 1.385428722 0.000000000 1.385428722 210.5166950 1.385428722 0.000000000 1.385428722 210.5166950 1.392200748 0.000000000 1.392200748 210.5166950 1.470137005 0.000000000 1.470137005 210.5166950 1.470137005 0.000000000 1.470137005 210.5166950 1.534907205 0.000000000 1.534907205 210.5166950 1.534907205 0.000000000 1.534907205 210.5166950 1.534907218 0.000000000 1.534907218 210.5166950 1.608859956 0.000000000 1.608859956 210.5166950 1.608859956 0.000000000 1.608859956 210.5166950 1.608859957 0.000000000 1.608859957 210.5166950 1.633749355 0.000000000 1.633749355 210.5166950 1.645568484 0.000000000 1.645568484 210.5166950 1.645568484 0.000000000 1.645568484 210.5166950 1.645568486 0.000000000 1.645568486 210.5166950 1.650509122 0.000000000 1.650509122 210.5166950 elk-9.2.12/examples/GW/Si/PaxHeaders/elk.in0000644000000000000000000000013214536061315015253 xustar0030 mtime=1702388429.092499751 30 atime=1702388429.092499751 30 ctime=1702388429.092499751 elk-9.2.12/examples/GW/Si/elk.in0000644002504400250440000000130214536061315017771 0ustar00dewhurstdewhurst00000000000000 ! GW spectral function of silicon. tasks 0 600 610 ! use LAPW nxoapwlo 1 ! add conduction local-orbitals lorbcnd .true. ! Matsubara frequency cut-off wmaxgw 5.0 ! response function G-vector cut-off gmaxrf 3.0 ! temperature of many-body system (determines Matsubara frequency spacing) tempk 1500.0 wplot 800 100 0 -0.8 0.5 ! large number of empty states required nempty 20 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 4 4 4 elk-9.2.12/examples/GW/PaxHeaders/HEG0000644000000000000000000000013214536061315014123 xustar0030 mtime=1702388429.103499735 30 atime=1702388429.093499749 30 ctime=1702388429.103499735 elk-9.2.12/examples/GW/HEG/0000755002504400250440000000000014536061315016722 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/GW/HEG/PaxHeaders/elk.in0000644000000000000000000000013214536061315015303 xustar0030 mtime=1702388429.094499748 30 atime=1702388429.094499748 30 ctime=1702388429.094499748 elk-9.2.12/examples/GW/HEG/elk.in0000644002504400250440000000143614536061315020031 0ustar00dewhurstdewhurst00000000000000 ! Hartree-Fock ground state of the homogenous electron gas. The Wigner radius ! (r_s) is written to INFO.OUT. Note that the exact exchange energy is only ! computed during the last iteration. tasks 0 20 620 actype 10 plot1d 2 50 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 ! Matsubara frequency cut-off wmaxgw 5.0 ! response function G-vector cut-off gmaxrf 3.0 ! temperature of many-body system (determines Matsubara frequency spacing) tempk 2000.0 wplot 800 100 0 -1.5 2.0 nempty 40 chgexs 10.0 ! use the unit cell of aluminium avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.75 ! note that low density gases require denser k-point grids! ngridk 8 8 8 ngridq 4 4 4 elk-9.2.12/examples/GW/HEG/PaxHeaders/HEG.png0000644000000000000000000000013014536061315015307 xustar0029 mtime=1702388429.09949974 30 atime=1702388429.096499745 29 ctime=1702388429.09949974 elk-9.2.12/examples/GW/HEG/HEG.png0000644002504400250440000125745314536061315020054 0ustar00dewhurstdewhurst00000000000000PNG  IHDR v pHYstt;(tIME &1 IDATxk++){`}?v#]X2vIcJb(################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################ע|ow /7|'|Exp|ݦTwׁg'>V_flk5ӫnk/D;~sd[7j 6oڎ50qCbUE%<ͮc1v!E1!XeUzq kxTWTbFjq,cjEB,Τs2 :KmNBHTl|{o&ο }߯}py#ϸϝsTl!b!buam`OwU~ FvΣf8R5Q Xw0NJEQ1e+>W ߰zwn1t<)-7TtƪTwO}SŘ"Tٴh [Pqk8&Ah)UA‚jwXXW*D0MLݶ(1u9hP֩ pJU̺G#8 UoN[ WeԔ;8]ŀ84ת6XJ5o˨ U\Fvu>ۑrH{눱|ǧab&7¡ )!/ Lٟck_Ѯ5MyY<[`,[f9=Ml0d-i̲AUc 2xdCc+>Q4DSզ5N2i.WXpBa%1cxG1ذSiz?gcVxe*M0}" &MEy4Ы6շg+Xi AG"#ݡ!XX}ʰ%+1:ŦDf$a2o-)6uhTSrl>MLLe>c)Ԩ gH?6V0i|,ߦW\@}Jyc TյiP,f.;cxjfWUbc6o"W+*A%JwVGYꅖ1lj| m8RZHST֫UH"<}E(Ndxb;ِJYejMM14ϭV㸖E3YtHWk}Xjp#UAcsM_1&l[i{t5<n@S# Wfն<$`oML"A oYu&wX$ɩ9>W0h6iYPu[ƭP٦I]MpXE+v7qdoCFݽ_a q5hq>a>*\CwܹoV"TfXk@_l_y3_X*!=[;m R~UsTvyf 7θ(G-IɶE, 0cM%Dj?!¹j4Ŋa9 cWHq~= uSVf7up5nph#{U{(YUs c.Y|QePt5heI!rl 1̰H(Dϳvp*\ѣJ;JZ 噖\?ANEpO8T5vͯҀZ1@˘+A6@r gR9Xs8GX9FRb6IGWV< [R W.;=XGMpDsh+YҝWIeH]'t%ٍa%KǢ5B,U![h!]]V !HW2XuņiK^GmusΩ Xa w$]f?a5!"w 4[Q{AVq⩑P#(tUxǀvj"-[ )B=%2 c'%)]EHZ398Q]Eo6v)_Uc*vs>,pOrXjkua F+2rh5FHT&G8鼠ݏBngi`Ld9hQjZOEod-&Š0A-XdlN~d?b֊OH S$Ég_D>u:uӡS"QU'ꨢ>ENX-rU~BXEuDNQNR#$Qu>ۑ:U誺G9̝d_ GYE[I\ U^9Ss(M☤ueRocHZ)kg˅_UȺ}%a} g mL/EϒSOlG*oZ8D_ZJτtEƏ8ԝ?d8~q: lEBUrQpN'JHW>PdV! y^T>Ե'5MTTN_l`GWc͡UmJI`Ȱs&4$>\@ dXꏄ1Rc6(7DFfY茯EAy 2& X`My }ZQdsrtuUȁG|s>\c *_ WsgB&֧"CW!Uu}.)p8؁?4w<>l-7GWdHD9C (ުAWu&53ѕ?ur1G5Ck"KsMoohq*JSO`\14f [hp !]0k?c!/, TkrVjKs@I5f5;[5r/<͗+jʹ-E,\2 1F@F怯SʐW2> ä5v~u$~p58S5Y|58mrօt;w o_AV]qMءUY?hV FVF4aixA9'tEkѲ u5i 'nQroJNGjBlsT 6n ކnZE@sέ; U X@"ߠ~K9=lC" ß*^lc:g*Hy$Pwd :BNuBP5,-\_ZUi7LHY/P"p}nr|97O[ \\s;;銴jm+t(O .2ТE_#*[}FqQFdd)~lyFX~kZ>)NbM!b.B+r'[_GB#`X@n)?Wzu\ }¡JmT{;2b$U4 bX<\Wt)\Ty3mO*Wdhy>dCRRґ:_ f$rg3u%3SbUSV \%5sH BHgHX^ a5\q[y \ţ4s+ž5[ Wxc s`+̈́zY)EV:in"tEQЙ)``Žsoԍ} (T a"UHpi.;v9Ou򽮤 {ZڕmʈG#YיִiCM5n*N8U 7޽}X4{2:Bq9r()bsp*se|5M=R05~[|oPFJYlx}@cuͳ}ggE|]V`Ż9]ۻSZX,*2Q5P e[ ѱZWQSc i=:19}ezKgk6l!!g:]W]w?Cs7$`ݡ` u. 凢xfΈ^Uq]v%ӭȘ1 l8PD%gtRnl2V4j}g06 4,)|[nTXlp 6R,0YQ v٥EM3.X&[QW[|e%ZBgmiP=9%<Uh -RZuo ժ,VYR{ezl,$'i<SV(zq܂аNÔf~]uJq䠆ł7h>.WRmp\IoCYcx ,Wu83|y@لkeYbTJ&QE kvzjǥ,u4*bB{Nv\YN]WFq,@mb:]B)f"g:#5>`ψ+$7GիC|P >Z p n,~e M*lD,=-y}y~ RꛖK*@+u@q6gNJ j:验SF?pr,.2ʏA30^*:(]J@+*x2k_U(}+d.Mj N ,A> 0&sT*=$ KXtq@R4/{u?璅=R9j NZpBgQRWqVd,z، &Xp\҈ЪۓF9Ve-CJT Je,d]d N0bZPXspWV) 'bks/C|6tac}VD@ 6ԡcNکk hR*@VбT=D+t֛ZtT #b0V C6rPŕE2n?dra.Ulqb۴+ ^Shi4%A-7,ыc^>XaUMb;++(uR[6/#Rf<أ׆U!T|6fGբ <!QôO? ٕ{ > %%3hUafp,WrluZ}*`U/vwXixetHWdVg2YX!#Ym>E;-tEW3E1:~ykhUf 2xh Q䇧 nIwْPIfjUja3M0,4Xjcf ,[SrȕNr&5Ғ-/Ҿw͑5*q7S݋+N jVS#bwwrBMddGЕ?Z]Dő\a>AW f9a^E KBOWF*A+'GkHr[$?o v`>Εc#T~j-bېz][x&۠,IZZ9L\ Xִʨi$.v*5&&?Hgu})XdvmbjZh*qgd::HWl`ZjO..zu9y)M2'ܰg[Td8JXf "0)!Vq_bw>1\# JTz.i#Qu-GzsSw]E ~kEOrRjg!)n^5 kjSݰ:)lz64w'Wp̙Wni-<d]9Ou!wi IUd{x:oN8b.d61_ٰ7+D+d:AW,5q8z#ΈZ IDAT u( Րpd6}KFσpYږ~}db"\_+,*@)'8Rk \N}‹(vdj2X'vҾrYG3uhu9UKـ pE!]VhO&n1R{A6#Uo8X.nڣfQ \WWÜfBB%_ σs1`_g+ҧOUvP,;B9Xhw'XG3 \-bAWQVjSeN95 +m}Qp ]i5|(\Z1uE,נ0wl$>ΙqER@?[#ujX,,װDiJMe :?z #f n8[-\ Xe@Sǁ=& z`#h»Ձ+nCO#yZK~5hk|: ;ŸE ӂj9I53^x Dպ{ ۶fXCkk1 8Eo9:9H6ȶC|DSVBgKgѺg'ls9qg)b^zhSG+UIbCflƺPT bdbpءU~6D] V2eq$XU7XZģcf3N?prSFPB7N bam5 U,Z! NVƕ`%bh$4yV&ZRN}I1|z-t~1UgUd;D]5YY%8YbMXecl0P[?}x^*"o좫iJkeX˜IE0qGrHE[=E @F^T#7Xd. [U A`6xH[vkϡa9@.i}.e7bmIq@雞[pj?aՋƯ@!j:¿?f|'`)F[0 82 *Ga BWW3ݚBjQ3݀ӻmY\ Z=Nm{ϰTw~ۜ߷!?8`PE?Yst]>"ku`5^;;|3]pnJvJҐˋHKgu5b՜.lmSfIG[qrU CE؋vpU0֑`'=cY1߸;ZV0'i*a 2zT"mƊ/|'j js Bm)3bӻ"zq}b?ܰ1"j-,< gl"C Ɖb|,K,6De*yp"w.bqʪb-tK3P -*Ъ+M!cUi ҢV+2N5`W*C-t%rˬS[9kx G+ Yyقtt2KbhKeX*L;ǻ%?{h0ԨwaWՐ,'y@rι(5Eb5!ְEI=B5I@nҰ ]Ɇ\uĻfhbFǓƞ{9jζ!J]'zɫpxjZl5PSdz~t̤S.XB4r+OWN lo\ jB1m;;Ye$-{qh:AR_<pmvkaBG-"{ՋDsc.:jNƵ5,cK\QRpNE$kh VHaN*Y-~rfoϪleI?pM02Vڦ",O,ܼ dˁz̓֟&, mPC;1%~! :׵6 n8Qc] ў/^ w4TO+V+ʣ`9;2IEe^ #UTx$eTnnӆsE;_f(X*Z)B!jUCb39ņK4Wė_sK(Xt0,ґe <7N/Bn5T'jbϻ.[M&:$H?!ז8'MClz8Pz M;-R!}@7|_@ R9+ 緁=hFnvF-V7;r:-+,+qcb*nY:!K,(LtX况'iUqIrl),UkBݾlVL]Y[x򅫨9E9>O6h5mD!}+Th̸x 4͹¡btW@ӾO>{ڢQW4Vmrn˿}o>I Q*U"MI 2H]=ҡjvYQmv\Eؓ3^vC;8|BzQob&T5+v+QHvfmϯ-P]߷רmPH ]⅓*Tr쑺7QEtx ۓ"Q+ Uurz'U<;]Ns~Zuy4<]$-Pԑ:\̾'8Wk϶=x$N5a WE?NM).kM;d:%lcso{q3pՌ+_}Ǣ]AԟkT1L򨆁e~p+▼+nh~u[o*n%] VUdws߱g/,DG\ۍ&uCժġ !*P/jO4:/t;<O~s&``Ȅ;2PX|NȏdZTjemi-,*r6GhXI,e v8A3ȎPud2k.wy+{jkAmcR%'G_Ol_dN%/J$Vm\8\Ho4+Bj8Z蜓%,~uUFY'<4۹sT!Va,pSvF3lT{DRUpm#i9۬tOEܤ-yF=q'!ؓ#.J+[%VcO\lq {6HO g9?q=%HY7N?YJkl֖U"Tsۭ{::.T| FƫgG٧UoPx)9E^\Vy`hjiISF}Uh/&`a}~*E(UPig/:Q՝Xֵu1ao-&gi0Y~;uɄ3|3Z4QWRkX`ٱ'?ugTuwWspompiF`Ť5\9_ZrfScY.F*[v>.Ó{ 3[@\lr&ʕu0y(PO#WsqꦲIʲtY9q֯U\Ԯ*XEU;;0{z?])t rKK=\`u|D<蟇Y$,ar-=mopo+_!GmWW8Ӿ-=6$=*Yf:C#b>r.M_Å ,7TKT:S-r 7\{bG"T' mPuWV.*QYAE1˫{ t^bz+^\;*]C3j*GHMppu4xf|*`r}Cq.MCpLaꏡQuȫQUu-Nl!5G'P: jbU5D PYj=2z3!uPh&YYn,%teRŬ6k>&x7Tb:K 0od;h`_Ti:[("Z1i0'JZr/XCmd5ڈ;UJD /6kv%wCm:kr *XF#,T"RV0.Ҷ΄0sVӦ+t,׆a [H.kV5DojULDbY9U5G#M x;{Qj[0$*6(ۘG4<]Mԃ%#B"V3JΥZ8մ5bX--AE&kag:;xO3ާutv;ȯ;/<~:SHРd p^IX7)VuBzϳgGB71ӳnB+!]TFņ";$q喂N6\$ ܏w!UhYULd{@8ՙ,>f sV &pW}Lp}t倅Z'3]|!Չ<-c HC[`Cʲ4Jyxq?\GG٦* 𦥷! KM+tU{QřZ5K:Ώ+sQ>yX8#-B\EZ*Cl쏥4X F+sDen^%AˑXW8Nϟoyvb4Ő A۽#yc4(sts+&U1kt[to^X1߇N|*g:1kv%wR" *=0Q("~,v^s B#ͪ9mtz=3PT$Ǭ'եdU;rx1ܕJdڝF90W'E4$sXTB>eU#bUdo dm^#xAWW>XT:~1>_j(hhBсx UmB" fo+ռH >e4xv}_MڎbqWYȢ-|isT^F\LT*KjlҚr3VMwiAڌNWWMvGM(f'Db/uTP6oTYֹg(#]:\2$FWu.m  8,(V[Zeq:U矢C\ :s03kŕݎ0aNmF%iњњZѼiB^5!]GW4К\Eg(WJTWۺIźGhO 6O3h잜fPujWEtlܿGbcaАp-ozu,R*[ZY3&{fkJ܂4-HA\MR c#E' ?yS'*TNDVAÖٕ0>kPzIJ; vWs%Z mݹf Rb`QùcEڞe4-Ti᎚w!q{/)p5m T`?|O)c2L?;sҰ^.폰jUYӈ!Jظްu{~&(j Zue6mU}(,}XKf``DbmnhEL eucUeT+YCxA]wR+_%$mӚ"QUH#t.Nd8)NwXJVxc2]K^"U]uT"bD/,^"c@IY1ju$ΜWOVtBKT+p!D3%:aXUC"T*\r _r/7nۓy{5d VhU5x Upy?}P cmDs5]vp=#de ~u KXN,[D+̈ R;VZDnavP 6N :"@:`'эpyUAʷ|#U67U~/uƣmFV@$`]EE$W-DbԱ\d]~jrbW^?k| cTv7{,#BZC wTY+E2QHc;VZ-~OcS=QM`NW)jY6[PׯB8j_JhknV~ˈk{6XNcS Xӌuu  :>< ީ2{&pՈEr])qY[l(OD%'xUvhcjՄ!A:l?>vm9[ (تUڧ>mk׾ uW_t,8t3o3l)W/xƁt-]a5UjRpg]GvոTH*XU˯H\5UB*o8UtFF\E\ 'f?M_6}TIW_XrSghnQ-DDzӮ$WQzhY- E:;A~L{W,MUXٱPLȆ|&f0;C}{ɚm-]~@bb߁ pIig*`!\5EcȉjK&,oB en9UT9g8T֪#']'ս梈+6UWV[l8t,_SϷD986֠W6uXljoAz[jd^mkj(I\ǔ"U?]yhj!xRsUü<jQ\g>oFЊ=kODͩU50L~+iPgj~+,FJ;UE{Mz2Ҕm/~\Gd#POvJ %bFYEl"GƝ:fy]UL2ʒ84' _b@d'h?9,_RM3@ 6`j2 dWmL`_5^O_wrRO# i)>Kxdh,(8VHwl퍂趪*VQ uD$*Ʌ!13.FǀpI=KYV;NW ̭ -g;A2VIq+X귷ԞVQ9VネQW\PLWǐ,ҏ}v>܁_t&,?F YSmtfXu)~յQK96KRSpg~A]mG+ڔ5Ԯ|XtJ@Xl# gpHaYl Ĭ-UuŪv@+uP{t&qYh}QzP_#Gb@,%ge5SS.HqD+k4MȁմСdgWzo[ e5*Rz e-YmvldO[v&s"lF~}~0/UBD*@Ti8B=N+`ˆCWY]&`>a@J0],T7#D51:6!NW$D,@U0”R BB:5x OUCb5D[+ Պ|vW4$<ժ&,TH3p "lBK)5*XȤ+l5q6Ūjey _uw(bmpEn$ AuЂ}a_U(P|Z$-Cuq+D&l*AZ+rSݧ㼆YG9A.GڕVݛ%ȘK2>U]+V$-W?.DHuo@ -] IxPfp g˂-}ރ8M+!kW0*etOn BUP+I"!\YN֚]uj#j(4 W 4삆E]hX(v-xYoYzN WB:5w3 E] r%CVߝS8Q!'FM!T!•^U{KшTց[O~s.5P]) L՜kpZ䯬 }2pT@"R$ u ES,nEuVf }[SWƖ"Ћ %EjHW'Y}<`|DEQ搮3)eκv5AW K;_~oH%RE;K=3ìv=T #t5׾߀VQIf,>aUjg[*$ҭ<?"YVN9KB ׶n0-@, H+t éWhJnP߲fJܶΒHoh5܈/b &eY^jxWW?C˼eӈr!++똹p,繐T2R:bMf 9wFf6kӜ ?g|'`5Ql'.JS(&i sE]bXM Ls:f mcqHW-o6=5W4m+cbPjIE~HR QY-{z+~BEQ5$RJer԰Hw(LD#VK,kc -gذ,2 Z,A幵 Q~l 2fGqįZ3q*v}j: hU Z*h#XWb6Pu,r::\Ac.f_Rv 1EZ ]M0x"e.fU֒ŀ9 J->»i-c2a~= ؛2FЊFdj-a圙jln${} Pjȼa3JWf X+.+>6ۊ1U!T vZ+<Ѿmȼuz;r2Z oy$zTƢTDiM ,X첂]ZKVQX@DaJ o s qՊO IDATҤ,΍-:o$Y(&ף񀹊G8iv$$8]LEYPYf1n@Wse$`Qȭ!sB2{AUX` Bg?Nc]I} 7& ;} Zgn?RJus;IH+I fRJP% 'kA6,[:V3}9P,c+4$㯶Byc&̊U8٭k#u弄+OV++$@6̩sUI++kg.RGrZbSr%75TUievR&fhUd2\[+Xvr1kbvshE[WD}:.K}˹!,2X΢Ûrg9^bJԩyjpL`P5ޏca U<{`YFPכjSآ%v- N 5!{m8Ŏm 5+WE(bo1,Ȇ_\2}[5bhC)4N}[CQLi˟HjJ+k:"wU"PTqKPvx?<2BWSPܝ%>^dC`,a-/ii`u7 14실 d#5CLo'}^e~-j-mgfeyf` ]!B~&2 }q'sQ^t%"ϗboߩ=3>{^gmPm[ejԶbwf)6 heuTktGCiPj|B;(cf n# )_hRV93jL< cYBy867]~6NcQ1q*/2ank(XTQͰa YUӄn嶚q]M5( +?a4-{3+:.e,LƲf -j!-S\!u]ŕs\ ! ǟNr9^wJD[h~]z&$`-(.] +5K6ͽZ.6~6 c@ YFw .֢ sv5[[];#46Kr֞ zx2K6CkQ6e8uI?Z0k(5,%Tu 'T=2M,[ D=1 FCpEL,6x蠪äbhZ4|IZAhf qES?7s v_XO;ezNIըd1$7v2˅gtH::8=EHl jk+=_ѩ< _7%Z5{HՆd2YX f`;CaXuSS'=|.oU/bR' `h,2Rб|ʈ%h8|+ӂP5"V4 -D2׎?߉b;Sgu ' Evֿ"M*#vOZ[yŔ躲%`ݪs|:y`x l+[844JmZV<Ju@8~]ZPAܹb_+o滮{B_Z4(e[U`bcVz. C]~[SֶTXGrw*XJa!ŦT)v>ɝ 1ҐqirUFs(6fUQ~%QVf3[ pjC!nP:![e$h.i`0^esV㲦[KS!W݀U!WMQl( Aq!(_/Ҋ!Ⱥshi8z."خ,?ڲYϿd$9tU0N/:"P:f#~ey(tu^jUN4@io΍hc l! 0⻮ ID™XȶÙì+9{ŒESOirPzt Rs Xt.PhUwHk 3V|MԜ,x=HV3ٰ_yN)Ehبp_a&fڕs5]M`VZ,nyBIOWE2"sq|e4TpKzI-Zy+ci+^!nz"VE7'"|`,t!jV<0v;L*~Jo#/Z99`i/m[/3xBq@Us+omEusGTQ[!v5jXƋ8Q iZJHkbV*X` ~Lz 8-]58u r9<ս,4.m'@UZKU[[t/i|ښE3DnUΩWB,Z:IãXKYIc0RuVx䂾 ׺alJ-rT+N|6|(zzX#.vuq?iXƕ [~oiBgTO1:ZS77@;` 1˚(SIM hUgkW5,&{%+WȠ+)b9{4*vBd" ڛa]*gb g&`o%cm<߭X`:5hEZoʙ+,T+Rf~RjJ0*ӱlŰ^,@&h.1 VqYi}hp`v%\.#RA( 뺻bKve)%)Uo5UP)„k+}b i n .?%}TOiTj@ªERב'aOc==Wvշ[z?cBW{=ڦ^RϿ~t:YW;rR΍Oel/ϝϼrFU'뾒8Y/na9)7n_7CTޑ ]f=QŕĊ7JX>ŐȮ<ܱΫ:`.$q]*\E%~uouvFKG[3c)1d<~]b[V L2{/v$S;O!]yrc,|GTVC م]y|lRTԻv{Hmwr-+ѨLcE#UjR ;"MgrR ,Zfɞjn;-"T9jTs%q/1ߌ3R m: )ɩ+:V]ZtՊ(YL\ooQ:"ORB'Q`b7_Ξ~"eؚ9~$wVX_vZ$q7:E|psjM|fI <@Ub*t핚7 w)E^)& ]/+5$߁Y芭:6C,r5btSz}tH.WQfWiXASܯbյ5;Ns0jX.-V2"i]1S0cx+߾|7;_#\}y_rB혍үe(_P <cq[}a-GսbG 6Q>X+^ WuSc,:A!1'WȻPUH;t0|f_6~z<`B;[|WzN. 5=N j?e;<]=LbhÇv.!آ%'˪\FWКA{#&Ⱦ@dJKזc҃:3WmdX['r49 oծ~ WR}Ĥ%bMWpϟ%,\IT+UJЫ޶{_4SBZ#sZN˲!d:Ω 4Qw~޲iݶ1:ZK6Zv}RK./Sojţdu 3|ժ^Y sά-O_p 6r`4/k#N@r.,kB {kVobް~iNzPup _U+j-ڭC^jFeh7xWVQ<.]&w~Xa}~ӂ2&ʠ׏*R׵YE@~"]=vjs޽CE9՝e-Y+qka4JE@޷o3Ws# j!!Pk10Ff^oSWw'tErA--?ޯpu=mKgwL}:JZɇw5tЮdIW 6}[l.mOѾZz>$`ͷV.}h\U ͺzMF7eXw JL\0ى隀ϋiY^ful2W ;wP4 8ƺOus_y`BLQE{}zG |}qW"(cx~$|q*t$Fܢ0F }G'^GW:mԡ6o%lvȰ)~귨둥 DsĚ Ẑ2AuZȶfPw*e3\w@| e$k=}"隆hVxkņkVFͥ) qnHsZ=cwm b?e ӴALBJ-w9 FUmX13ِ&l{Ğ_[G5Z]*:~-ҊꐋVl(U]L*\3D ԛUd^\&}Սr+琖9ڸ\+ UV p҆qM~`jSS䋷{rϟT;mHbˬI@{beBbFV~Q\ 'QևޯA%8IioUy Nc(G{{+lWU^Ω>W]ҭgN ]bvd.n]Kj̹T!ygy K1^y ]thW*H˂LW45QX0"`Dׅ8Fy7Ixo4-!dK]Yx& ۾ t,K"#}`= S+XGD8Osms[m,Orh]BYWO l|bxʖu6o()}h_i wPz1"̓&,oPh菥yW9GqWQS9*lՑ R1"4alab^ٝcio˽.mD3pj% ,e-,Z}'`hT";hWvI9  e1^r [k.V] y<&Kg汏n8"K-h7DgXY,FE3̓/H~vDuJţo|,ߘt5J~n3?/IKNriA-5^{SA] G-[1pk;Yz,UCjWߪN,oEg9 >KX RHi }'& o"${!a7Q(Hb#~yM/:\X:RMMF ޹Ѭ!HԐbUhdliI+!^KHbdj1l |تBοXwM~3BMTȦ+\C歓KZ*NHCT6d[vڡOShZβm'7vfmǶw|V}0}Rke̸:C+scS9gMun@[y뼁4zۯ?~7W}`95իMT(Y9o9/˹Ej*)YI<*H FtBUոv1|Hj&̽.MD}`F*sXdj j͠ ѶhL"I TVZ3dz;sZr*XUvLsXUSH+FkF=HYf`pM/Vұ{<5 D yY>]0XlzcՄ|̸j'2h>~ IDATu 5s\u=VXrxS =e0ߕufuUD; :ǗѪMT$T \#TKmʁKFUaل$v^'r` 3FioV˯ǞdUҚ-$kJ6"??FLjXz5cÑV 힃'O>5/,PY*@KC[l h s6 xZ 0րV۝/ŗN`J<})jA"YBYS.VBRv"(X&%=1||%Y~p\S?zD6X-3չB6l\PYX k-E.@iO-rY9MO`2laTp{J eu}E_ jNyZ[ rVdPVQ_$*K%! |tG䢫+z'X߃G#rc,a8LލZ*85[va}|;kWl+lIR݅jc%Ne9Ń*%+b&B.bev1q2,;'WPUCrղ7:v|{u^1j2,hwB9_(D%V+ af>> `@g[6{2Ĭ~㭼h]wd&T;՜Y$?Udcʱ.LIviSYK:ogiS5~Be.}wȱRONyGHQUSou'[ }Wׄ7LުLEn:u5crDim8`?k|U̻f &TKa@pN$&PTTc9*54TIt/6E\7ܣRg}V$X |.6 [*TuAC ,h~|el\:Fsxg6h#@[`O& 9WjC׸ܑ`#.s2ӭ`(L΂Y8՛URFd< W%Y@W5CRql0SQDi&eE=x"!ٱj̖ʟVE!hjq*S TڞJr*ܴsf9e Fd|U~`3ns* *'|SZM\eMq {cg/FW4瀬F,",k;)&0a]b0˻?Sya&C=o/}V7̢̂R<>9H㈻E4)v11ৃlz\"xV! t6YVM:鱟z@bZ-!~izz1$[y7)VXIk|vV2M+uvGWvKq5F`PJO5o*\GۡTwĈ=̏8~]ǣ/ݿ'LN<$8ʁv}]Y( 4@.Q$o7ZbO.W|o6jg*d{WyzGk%Z9xV6 B9Bb,q5U)TzDSB/$=gtmkkSW/OLr>Ɲhnk2=BnB[EZnXKt.=y]cm¿=r4YnRWDJy%;mХU#Hϕ}o'<ȃ0o]n )xaRp *@A+l)ǩ "ܕWG)c, ?gA_\WT؊`T[è)>?Z.{Iwgv@[8׋"$UN\}ʻ\~ߓf9p`M_RSR˪1:KFHFb XMKJ_EVԃ"o tZjF=aAbqXcMX`\QHb,5e [pR8fF7@W ,[5?> *f"BJ%.Kw̦a( W;69 3QN?ȶ&XɖT%TJu^5cO9~蒇o?*'@ +[W*rR_ݓޒ0l"|Z9Њ^ ZM<ȫGe ,!HkrOM_BbUr*x)IBUkIk vpFcq*~B%g?2'x{EuoK1}D!$rJaWej9 H1>&`眇1W* `BGZ$V(;̊1T\D8V%nU%[ l9&Bۙ('(;)>^Ns%ʠW8+sɘ`SUy!^t)LHU}O2lꛪ %KMeʼnLD5j=*`` uU[Z&?R;G;NmiU iA9p;H64q߄qhƂ*koqt//9i̗>KxHg!˘N]{_xㅍsw_4#=` *`wPAfg0g cuϼ$aNF<|pԟ;6tbRά|7y|7}>Hlڦˇo'B~G'Fgժ`j=zFba,[E"X5$ ƚ " T9:h[Ko_rc+Tܕ3Qh:,%`v+Cse7+47Q^M2rB2vS Nujg:*gḓ#0@+>r*9B(&ޥ#dT׬_9[#`mi]DદA@<#=oUOa{sn xgs]X+ Ś!-ޓ 7(&Xyy`UYr?g calKTa*r(3d}_tԖzb{1 F~ m_a?f%aH +%)Y- %Uu!_Џ$Ph4'C9 /򇚅pU3бum;_C5G9@Xdy'9ȡ]q-{vMb,XVX3._)B}9㽜UL&X Wꔟ$UHby]Rb6a0?gd3}8IX ,@bErYn5A2p c'Zцkr;gr^kdquD,kZb[A5Hl<(<f!Z^xO1(`w/aOK[ el'+a[Mrz| lFnV~{vOj6&c;k@$bbT%0+2KhqT0+%O`^;̳PqM퀻6f{,Ű#R JaTIaX-lk6ea6-0ڃ繯0bß'tVQtIr +Jf_KhMq\l,es H99cK{)OWAvH'N&1 Kb%-0`Ɩ@.ެM칛r9Z;_o|[vr=#e`,$`w^)_a-WƪB k¬Tu[LΠs5I5s' Z/v*"hT4E0~tm^g/dzp9[ʧ>|brIKh|@CZjacf9S=Bkɑ̞U\vp+ĩGc}40Wx$1n c駻;.pzuI)C~d,IbUW2Kzh.h^h[@+GK]lVc᜵= j?qs$NX}VIp_ՄShcA#xހ|g՛^Lﴯ?'y䢡G`P4*J(ى͉  B<5' S63SM]ǹC}mW\z݂2 ԂY4!nS)Vg,iƒC0"XWH+^K$( 1k|P};r@i$wrfcԅ+\ۜwp]7:Nyw57@Uɾj)sИ"D;y +iRIk9y] 7]lcHTxO0"?۝ÜՈӢJ.lFTP2KB5 [lM 7}6EZue79-A`ɓOaBZ>%+ 1epW`\&f(A5gHϖ86)!;6mibUNBT 9M.N1 bs>SXB.Z5Q(}ԅgCYy;q̚a,*kert'Æ=*.30oH!@HmhlH0K˗z^Orz/=V]>S+)ifVm= 0@R8T֔AdWul4\@v]`ˉdtnݫ)f&{qr2WX)U%8r~ uNwX&U{6*Yr@C-ҽ{yU5u` *2Mf &ι2tzC2%g*j , .%-= MG88>n~0{*oui;[+w*ŝўM"#` #c숕k~x)nf_vSTQkŊTaC@EZOz!8g{iqz@^W8:?4-o!un҆Կڞv~;lFz}{=8e> f(َc>B'u_LN^9~{^._r cf[pĩJT$ֈ_w@ƚW΁\ ]06X~]`Q`K^!v }ԏ;8KcTsy60Vqp`̢⾐]%عBNfKeWUH %T,\2 qUr,,iA8ł1jֶcm`u}\t35Å$X`\/va\WB"qd*\GAJ[*qb:^"\*<ݟŸEM d?z..Rk$2 "'Mn [4EW~危9AŲ$Z͵p9;,JaM̅6X]N#d*J?%o1@CTc#\ Acc֟h˿\,e@z+>9'*$C!?:1Vr-/n˟݋k b;}ZZC/eqtoeh%&`QTZw# I*aO @N.[y<ڼUE>r@UpgxwςsXk7)cjQj8{Wgz&Nc2 KGQ]+fPY@EW${ {aD0. Ւ'm; `l-^˖,8*6h+.U;/ǧA_ɥJr;+HY%Q\V0%#5h+ yr`9~_j 0֯AXpbV{Pb\YZld`JiXP~wRAU~E諭;jY]K>EoR٬ G%כEt),0\iTeI=w[} o DCRĂT-\eV1>U̪OI*UL"(fQTDA)4>fbEۭ6zkVb~Eb,D[jC0ZcYJ҇QV~JqoIJr:X[]աwNh{D: 5(B`nT ^}Uj;h ɍhUd:d56TUf2=W-Yvo4"@s(IwRi*e;FMr ]]fz5D|ydn bKm$A>; e@Wywʚ,</U/"{ g+9CHc(0$Т.vup>z^CW! YSثEl(ruA&?&4Vq=j]/h|$ּĞ{F֙:̃0i7x R^\OiR"ee9jr_Sc)c:6GMx IX'QeZgs-YmVO\%i-)Ӑ<`妫zf*Wb -ì.הX`z ZNW{mf˂#IL]`i *i*|0㱖|ɮW,h;ػf #K©d0RhZZAUb4yWTʴtWWJNz[X?TNvg:̖ebњPvJBJVZ]P(k~;!N3GRjo' (ŹM8W5~1K4iUMelA+H n9dgH5 if܈ wI#$³ޥlGfݴT 5.j$m܊@M (,Lӕ…+ja ϡP]t `tgye _K޽@]I4(D+[efF$_U&6'XsOlc9Xa,u9:9泮;sGt{g# B!Z>TP&lOpZYECoyJ A6qA E| cݔ-Kh4X `!ϏFْ]2"IN%V g\ժolzMte=$vy}I!#*r&Z9ްRCcRfy/Jn$!tXAla~/(pT|u9KZMuجݪS_) #U@]UT"=E'~+`MoG%\C1 ]]5$ # V2Tŭ+ߎ"Am3;` ^/㋺"x<ҜU^aXr4$`H!Q0BZW?\+81'a#v,lݿi}9EևVtaTb",QlM6ƒN-ٮ3&ހeCkv3SNBl~0n$isA9M'w'ٖb0K%]գerӴ TXtQtwHoS<ʐvJ2jWUg@؂XVh fT. Xoһ @Wq%x S #Q˥PLBE*v㙺r7UJ=QLq ˋh ire2b;< WA8M?Z-Sfy{F, F+C?Z4H,}@XK)ZaD}UnqffC2 ^cȜP3Ԗ8SKN:dv{XI&qp4 }k}r?ukv1T*`U*nߜJd}R:*E+3\5?Ot?V  &w[WRa+F-egVVd3e_gMՋsvt}]URX:䀑kEvQZaJyRZR`.,y=nYl Q]'3ZZ`-hjl*omKP~?nI. 2ɦT0T PջR:<9;>˥X+dјAVWᒾh{uIr_ya%,9f'}8輟/Li/uG6h9DfT`%Tke_rPCF^JcC5\d~-ܞ\o*iA$ۛ3VycU>l0U pեWKp Uְn {ƹ}a.*~抣!1+Peӂ21ZYR P?X F\~EMlRJf{;;헜wG$o&RxTVN_Y\ib{E%C,MB S2$+1ג;ctԨ\oGe`r+=/7T͠Lwv&NPNb^:% OV1&24ž}AU0m$T}JKEo2ɏnPLW0O*ʄ5Xnro{G .'#K*gX1vux֩p [Aؠ,QAzK#r :DUQʪvcuzu:.~=ǿ~z؜*Ӝ+pSݫȇɽƅY_}lVJ-xLUv bVdBWXWWc-v2W+US,'dPc*v4Xɨ0rDK]}0ݤ1U>Ʋ9_*uU$/j86,]EkY ESg]b,WQQtP" Yrh\Ə%q?,$^rPcfq93r+ 5FVU#izs8dA%ǮCT6X}LRjHlQk(d~b{Q5$+jqڹ")iihie>G᱇& z[}Uq\HWƨo:b]T\9bxUªxl ~w2M)͸k}'= J5>Dk@BV z5>>}Of&#^kp? yNY.*mVլ\DEBNb2n }&bcVϯY1ǃ-T q(3i [s&\֫IĸFLUZfyo;( 6A v~iv Xet| 5ʝC*3u.1:waC JeT~c@$Vi]VMAGqr^~;фp#Glwx* 7婲%&W wf5 j_'h|lA(4˪?(ꚮzDsK*]݁#hB(ӗM#Uj[Ho'4f*fCt"ncm<)U(lU&{~"ho UIdUlMk` kh|n89AWKN%Fsmlvʲʗl\ _͒̂V`HөXeqMIwczuZ]/a8v@<8[1h*8ttuLlhsCW/r@U V}m|[x숚] jO3G8*՚ZR<wQ0鵭س!PےW؋;E+~IdB's+i(U4f}^kЁdjXY1* [m#4rCy=,A6jھ<;k"C ܳ & 惰$qxX+18xwjU՛L1Q2ΖD]Ag(Ώmڄ`#xWM/XӼiU%*L˷B;Тyp4y~>BkŃfZ;,d96qZʜ}a Iw17H%#a9h(,ѐ7A&JKAKAvAU:(qh r,uA+T"3-(ܡ;Toi-YCEc+7o`Y# q1:X~h\g obl`% Tailm=\S\x k[34mJVP _} T?S;RĪ JْqQ39rciz)9"pj7TN!XPVƒ.l̴m#6f-*V:z1z@S@+ ^e {0{xxlX(=+:_Yfs(Ě|c#at1 [⭡տU xicVWW)EvB(.+]y>Ng#dr NI^9kc4hӔy]wԗj* ]d"Zn<ߴXyY= UT@x~$C=_9o( T%<5Ra adž|sR ߈!9%A]T٭}=2 ,oj)Xං>7QeEA@H,W5V,HKIƲ\'r]a]mg1۴g? ] w-UfHKϡlU>˃K3N0e~>j1IeYwt): Kb`C r-P%ۊj0K)X!@JTrVDW2 cU@J==Oyo;'QT[XˬJhtր!ZW.H IDAT`qhtࡨkL*# y,u ^'U JDU{fM"E fus, |# z>?;-밯]aEn3X4J{Y+F=J]#,=`=8 b, Zɗ`2:@W0VV²-"إcx~[q>L;\I)ajZ)`U.TcI;sMh r"2P7X9,c=N'd>3 /3/x#7RUA9dp[âFafUQf`&h(48޷ڿ3僪&Nq9? aDgaXgĈ7 g2} bs2 TmʡVuYJI-tʐ Gt0q6sN^̠ŜgX/eϻZK++vT}rlT$ЩGV8Z`/K+O?(G=i~LZ?I%oz3gRRKb=-$xbw$;ICm!Rh*B)(`ld2GgTB7w.{4Eb9GYc6H~ډZНQYôszԩP h,y e9i/#` TbIYѿܚ_eFe |N b=.qԏ~s8‚Pc}Qq(`֡ol"ao!Lr>ԤC+j pMkQn6w` YПEbueҞ4ZLQɪ+XI{ZHhg4iLETV!:">3s_g>D#dnM/Vw\ҞxDB2gW8IEZPFMVX OcE>*Z*WzWy ز?WqRo@VUWg (TD,Jxc롾]vK~MRs') Udz.w X{&/i4q2׫E@sM6.PM#!G˴0 NZz5&ݬ}/& ^ĂIJ{eC4<8kh)')]aZU{r/AuU%᤮7TѺ{;[,xʭtƭg R!qpXDYQFK_,3ʢ1UVxշ8Cuibm*TfKb,V`qR_:SDanM1 \d$Yw=U|9Y"kHqQ?KZWPFV, ܲ2I"VY로Հ7m_5ߴ c,#]@J*rfҲ ɖϩe6+j Yp9miWx`sn6Q>sdVX-Y8,N6IP!X`h Y4CmTJ"5\T0AW%bBF4+K./A[A%ރ]hUtۮ𬞪_`_99maYIUUS=bP&&q0 -f[t@U2+=4ݬ`rD<'NY~$1g,:yYb)++iWY4 V9*24pjN 9OuP4ʪX~b2vW` KWFeP*V=p92Ufw(6kaVK5٬51"-)`)AHX&G#qvz9 DUڌג#'GQ|X!>D*q/gODu( m$WfϒDl#c)nV9ǠJ-T gorf<y `V*j&ŤsiDE$ƒ+К t#[hw ?˼@Cu$1DAcA Ĕ+teATrmX,fd}$it%v0#5& O:"}cue\]*l r:yhcJQU/I*o]CGK8UV3p苬{sWX?]%eE鰯:aS/ƲX\u]sǷkHB|ʏ5PUyp"1Y`ܸތhxvj'mD}Z۪^McNU "sU57@b,ЦTtUZRA:pe3$Cn hوd^d eK"۹bl錜pU=s6҃[1ej$hUv$-yRbĿnDὖBW$zeC&)W9_i.$wVV}\1I-titwe`uyIi.~ NS8i@n{evmR^X6Es~8v=' a~tyZn!aˬޘiT{}J8% r1Vӕ9JXIK݂\NGD`<8?5`u#8ڏX*˂M4R.WK-tl& I1Rleѩ{6 xډ% +vUٔak}Ta-l.8 cI(Cb2/k̂OeQ$jDrE8vm~TxbWԏpXy<,kSr$RZ% YUМ.ij7 ZUǴE%%IF6ԨYàRQYBqyJo90pEQNUrN2C%+<А*a%i&"T@%dL:WzN-m^y E0XWΤHǍݲ5y_JQtXӁNJY9`33jM"-`"[bIL;fTE mKJEX&'m¶WZZ{|G 8r%9΃YKSA (4u`,+܄^ 6H,hUevj.&Zx)Bu* ]Ǐ{K#*- ޲s8u>ƣ4tuJr] u=&18YnL*eGTqk.8B9(î NMJ{\VUZuaܛb#iN(T(jg8ط$DJ#3Q`ٱj*v͞'Cid<cA)eQV.7lx(#ʎIh5ǩ*4Nڇ__A73j&E-b\ɥJv dvGA#Bݾ-qi"1*z騸 N7]`_~.-qj LjX [kD%0!t0}ZV5߷QVg60U4ml[=sdd 8AhDWjCՁǂVZ<YBqV("uߋFWLoq5yt {CWYʙJ]Rt4TɕH,P "Kp= OWѕT]b &"IW!q$BԦA)a$3-зڿ<q?h'pTڧ@^@Z,srQ _rkU]y|UFM- mguzWA+`KB뀡ZߒZtdf8l 9 /ҺXsdJh38;~XrW]卽X2UhC?] DCT9dTIHt"XPi \5,HO07(ja; z)B%i=lGeZ6D}KyثKUkJt J*D[*ځ KݢQ@Tʸ'.J-bֲY0k?fБ[=E?@nvtxQHU+ңEJEoB"I_q)E$Щ\Ap8u&frnb%fK*kw,"4 XQ"\zڅn9..%٬ ?dv$Mu9%IwəAIk%-2,󀬩9V;v9-C?pC 7QޏϾW/1ew,E@I3f[`+b-Fd o{OCφ+M$$}Sݍ1j"-ËZFDeMhB*BΦO\h+|mdߞBWVcx|3pA5}>"c3Ʈ/`,x!*O 52R#T:X+UAUDQ1\2U՜`"g,_ w~Ti`1~]IvhZXW{8l˕Z* /HG2MF'FP{}B.tgS.jëI^g7$eT3r຾>MuiUr;23#+J^QpO?X12"hu0,I(cYZ-`c9'?  'tjxIh2cd9BBp)o#FozWV3qAdX Fz,MRuB=8t|Ѩ  -I].pITaY@T{gسx.cW-wنGTh%wWHۧ@TcrckItEYe߅ 4ftty~=p5<9X8=魷yF6z9x.E&,hl[C"GWZN{374,s?>> p LbQ)GBY|* Y%}u[KYq& /]#nqt=MX߼ Y8@3-s^3/:/UltXH5T}hyD5sxJC{bJ]SVu H4=l`e%\VyR.eH+ii^ {IeMB(@ԙ ?.6 SrY8|ܖJrEe <M=n:.0s|7tݔG+UX9,OshHqMJ%7 ]a`Y4[GF{`@'#A̧&ȣ횣9Os^|3vζ8 #Yd+/>GVΰBue_a7J `AX=@(R#LT7 ܅JTm@ErKNsߧaQXy[0 . chu0崦,qJp;=T`,V*U)wWui _r5]۟F#B_qGœjj$Ml,*x1y/?7ۈ.}u4m%[vDg-WQr2GZ=૚|r4URYQꚂVcY7"$_Q]p _XĊ'g@W)kوPma2i k")6TjuPu)4mYLtPTųҋ-dK\BWw'\,r4^[k$HiZa0Nw\C+?+]=kIJP| bOޞ@Re T(U !&!хf(LhYl%|73`ěW9Wi:b?Cj^u0x1\RT2j mrƢ45ya -?[n,fwWn,j cާdxꊤxRԠ= P*̍GzP?[&߾2X͙AlaG&cWh5ɝ +1PsDUVehu-y5eUd**6h!c?d?U6I^XK0D [A+t6* c h|Vy<=i^oU`IbTçwf(y_wZ[Q鈆  BTТEj & Ys'dQԴCL²1!,)UJ5tU-kW0`^ȃe8p@jС}m&g%PyTI2Ww*M%7DXA97"=X3yI.llyPd傭Za\3 F.zk|=l+V9|H7[Hga+v\Lir˒!e.Nry2\3rGrq=,uBH zV޹z/?ɦ/| ndFi~@cP*a?c<hq9h` ,WU[(`_W!4CXfIs B9'Ih*xծYLd͉I10WʙU<{gptǟg,`$ɝZաԦVY4.TE#taQX6$3]>E{PKqFb??Ԗc$EsHR.o lrMoYL bCCuį4:щB&,P%b8qZ  eTF5w W0"R'b2J)`NƖ&k(ǽ,9. !FPĩSr`nRQS8F_'ƆcIƺ,4{J',֓Ǣ]s0^td&1YX94vVR JUJb}YW.ĂRcU YHgYȮKp4M*-jv髊"s* trjdo'CGdb>3-iN:zOqQ_OZ?B+l&G~Ӕ0>9XkCg]Pe@[S\ 'V/}j Ac0i2ä1+U3ZJX$ZCzUxO-PJiVj=$m&wp9ٯgz= cg[?B]qJj:'-ay@՟sEǻng+hUZH3`?~@~?% PMr&ƪ~8UY7fyW ZT%T%Q;E h4$4 ܩ1XGQd.[8&*IT05KgɡKQ(~mj5mb&Ʋ: C]Y7WXg[^Z= 'nSp2-nXIw )Kzo,nC<`YU ӭdp/eUa}gZw3!iق29i\v8f>0w\յlVOFqoNXAW]zkFNΦd՞{UuP`2<"L-H,֮B FfIxg.sG &Ƃpt} @]( c0&Dx5!S]DFNW]ᩌ.m<+2J(pFW_<Wgޫ$@Gx.)$8\ [8jaπu+ #'G,K=M~s-#<&>8} 0KTU];]}ɸwV B0uye> $Z :AuVI"LJb?Y1v1=Vp_e=Kr!H3 mu7+mEPȴz}WnV_T&'|cX>g@E֎l~m)]}ݕ ïRX~&^h iwM&]%MEJlk*>H2pTiWݏgdW/WI2-PGrʯdWK6ϡXGTH&DW|Xn5OP[0K@VK4i!(7ud1(|+ގ<'rz9RaWU& YVcV<=)IQ'$zcrkƐ9j r j ]m,2rrF zGZ ]@[eOX^lŢARc*NN ,oĒٖL884a4b'O{CoEWOg&! YAsz~ chP!*/H4Ȧ,1K6!IF(s(t '(RsĹ2j&]8b^W>ozy)=k=AHKo,TBFzm%򑟄*LJEd1p&eݱ|DZ=;zg ڟ>fE03]|)fD^~c%2Jg uDqd/7m9zmp-6p /p>Mq&آufѕ'C+b~EwQ c0 Fr>_Ov ՉB*ɐ+'⛏L]"I?o\;fn;ߛ_z!d*kY%_vD:Z]KelT $۳[wRT ,T׵ |MS@]1ѥ*`KD>}<垾i.]Dzxl^2ӝ%3-(+T@ d +Yq|z6́N< ~ƿ7{Ký٬rjYKl pɂ/OWY+?}j+%#fd,^+S:{$ &PTM| M&c_VڷI_oh` 'GZo7Mv s(e C_:˲c-QQ.\B[c/J\g.Y#6* ,~q棛|h([%Z5[T*Pr%u Z >8-8ùz>!]J)(S";l}2+spe,Wl;J9ŏ5X]l<`}ϲ 1K"JoZfY.\^"UHPB"|h8IgR`A^tk_7l΁YcFJv!->3ժQuN"*2خ"m6b,WK}vF~MNh–=ku?GXMfeqO>Vo1EW2Zw2n眴\"+AS҂F+)/Mw rY0s;X16*8)W lٌ%G$,/Oڳ-#課}KM6`(=**fO90+pʵFMc)Ũ8`T,!過G/lSBxqBٮTu+up֑0ZU~/P, YgTt%wZHY^Y itv K:tX<eeҠkƘlf.-m*498JX4Qo5vo?縊R+d,P vPD4 éԜ@I0#DF2i'4yE'+!ޞ%I̖V Dv̎eISAݠ| 'R$i88x;oXÖ ݫ_6hxj2ten*Ȫf*"t` LF[eh>(+UkLn4r<߅uiAVU+I JO8 +k> }\+@k/Wc4VJ3+\S+|< bA'}AzKp_.똾417 fR@x#*stA%p[." i'r%i#Ě"髦mvUU)BbuY}de2HÕ09cرhq7~vaNiړj$p+Ku'up_܋4,he,TqgS XeYmJ|>(&Ȫ^p? ՜Dۥ*C)"!tr*0+NVT繕\ Յ61<<2;%!2XК+Q+JsK$ x l뽑m)K.Rq2 1}%d9UfrKIw(dXlrc*v2=<#?frtel`lx:|t%%s6ydpI146`f wAeP@ƂN#9>R~~aiv: .r5nScxZQGC9[F8ZvohQ _Ug^|"DPW߫1#7NxzkH;|0=o-A+BN/TreTmTj-L JjdVi]6N*_*O[繺sC~*8noDgd2̋VĖ0n Gjc]C)oy)X|"luJY=1?d"G^D~‚V߈)'C}SPˢEEy&dU1BUr{"cU&G2w"?a'EW L&Ax٪e6T0{P|T UE~dyjq:3x3dqO5|asim2~&c5Ҵ;Z<!(>.LIyTY$+YÓ ?S^(Lv߸NE!-VOFppStf7ȩ́v-J5ޭ*!`OHoŘW_tQkt5kUkoswM3YYħFMR% ߖWFf@ *%#U E05s9^N%_TRԄ~83On~W+ڙ:SX;{׫+ZUY|['u jDNN_ iEqUQ1ak8=eլoc m򮃳f%EHEYƢSl+|'iX"1B=tJUSogL0Xu2V~rZQDj鴖\rT:4O2Z֫ƾ(46~Jd_-RNC(+Cu+ְixm~&曤x{D3rӚj95+ڂv 'ܼV?~}'p h&z'~yjhB[os==`rMi T\`z_CcmfR}Dk#v\Me`\kwA.bC w9d$<"cp7{L4lo[XT2U#.߀~,۞f_D76V<(+Ux@dC`X=ltXd:U!mjR.TQ-YX-vdL M࿦p &L{d's7~Ň{ŬVfBfĕ?i}x\ Wjûm\ .TTnGq|M{>ߓxNIp25`~JV~&8f5j|ua$P?SXOcmNkQ8-gk~.KOg-up*r ЫW2_St8Vvϡ餻Qsh3u,^l o,b=`]bk,_vw6s-p%hͭ6a d3&O.89v\=Bбrc ;)wZQd!|i;jic;;?8tu9f)X&cmξZWiV-]IM3gYYBOp |{H Xƺz"֥UxtܼhU;ZymM"v Sa9Xj}VLS37۽*UyWTXn%~lg'8zly|R>V{ퟣK3E 8&`^8}BNdvX7]WĨN$>&^'L*6թƟySߧXI/ɻ.>HQS:Q%]l.vcFfQZVEAӃ1~ڤnBUHbur!ڃ\|vF+ʗ'{?W|DqBצnPW /\u{ur2SU+gKk$ O3͜ E)ad%'̍ͤ ́I^2V X;ݶx'̾ Gj}eEpN s+UmUBW@{ꅶ2q^]nbi$U)s5EIݹV`g>HrWO Xw9֝u,鵪tcR! s* "##J^if8Xujs0aA5'0L< jb-dV7~,ǽ㱑Z)[;m`?mUどoXsdhe1 6괉ж}+ ' ꎄ>3oS– ~E Xd>L1]:~gNfw`7mW޲@&9f "Ɨx `c6A YY.47hZGB{(|o`uPy`REPZN_Y !P6b=9RbYi VN{u]eJ]z֋}CVMREŏ 2^WJ^rjÎS|r1+1* :h4EHG4BJ>_HcP"3&خ>9cm!XSsVdz!T}qhk  !_g(.Y=؁XRӾPHqMڜ; &g+ݢA(aU9Xy <*XýB<:kJ؋ "K Uf>~5ICѷIYxx6X_f"1?  EE`:4gSt.ì䪓?9Z gt裡G'c'`WZ2+:Y1YxSˬx%ҍu="+HlS'Sx=׳"ЮGC:U-[X'K*O ViEoz)T`mpk3EYuk\A7V>S"ԝ46M"$'2( ! =v2V'ccU'Ԯ|n/ -Սr[*6JdAYRSt:" g Z{SGmzyzp)XQE|;_e.V*N=(#֎>d>r rz\ `OYg?=CB6Zsv:Zvj2w9`Vvs^妳Gb][puYئTtjXᖢFB҇WBµ;)<\}؜2,9PkΧy]~N:0o6gHaVٚrP} +/NώI/[\%3G}D+8gޚ~ֹcC՗ IDATM~YY)>h緗R\A?_C{Yq%g#pאxJ u/&WӄH^^>|:]J-;Zì^ʞrT3L߅w]/IDE =?qZ) ֻ 8//*pƢCZ"¯c,=$YRe2c Q:k roK?<oOLt!Wk!U(YMmoj G_@9۝xAif'볌[zBW+iTG r V<7!ǰJVygYY3AvPlz߇CЈ3Qi3+X9AP4C{xHMFa3ɚ <UH52 ;trxr9٪1eu/ת=0{Fw8HH'ߑ5~%i llSaWA}D@I+UYtLJ#LQfMVWМ˖|)nzP̐2 |Ɂ'eRUL捛8eMO0vCmyС؏<{28k zQklvhΝ,q0_k똵Mrt4%iǓt=s"jh M\W :59S+Lɐp2{䫞) GWP4Z6WZ+"CV7E>>cX|X3=ɧZ ֵh " l`vc)Yzź4F4yS}v}罖h .X6F!7i N@fwpzhE+Nd [.OSO~x>r|g]e=!\:<;XPqNgP=JjE>zC*+F%mf.K t1]M}Q 6W0^AȚ7]{3hg ֢ڏx>d4FVtHU@jQ:w}Q5@Ṳ-3mƳN\%Η|JY2{}hTg ϘP}q= ʒ B ?#G%VJoR/"4Gtcu!T OWDy~`f)86cmO*&ղi K2gdt V(X%lz9VZъ/yNtհjj#S4rr8z:6O|xI€ubii֞kBJ мtMY4ZE%cBH;J6WEj>cmf&=\U?v4 fiwlman!he,-6.&: GqѤ3u|ozU4B:Kn)\ )m :/>xfrlF蕮# S4=UxuBp2~,RF9cõ'9r`mEn(OjgJ )#gdʣ `pϏp~Vj*mjltڶN#ߜǃY*;)T 2:*xb ́0gѪaXڸ-K w$3!>iy,(aRzz#s(XCzm0})Y%aAn'?e0^1=8sk-yvGsܩcE /Y5/YV/ /#'XcWd90'x-jO [{-G.ċOItR`b**ZѯZmN[簹H#=Յ=if7s҂ccn*_vj1siă_| [U^6*_Ee?u408!º%\Z[㒵|?P؎!z v:!29"^6;_4-xYb&;JN|%qyLF5)X` B62L2-Ո)/X\fyt,s5&TK"&ZuNJV6,LJÖm`z@l}U7?rxȬ~KjT,FgL⯹:i-t/n&:xsQaNm`}m::Xuqԋn%xo?)b7f&ߙ_g <a*K{WБ߀2(c$R _~iV\@!Y.C-&.;iʻg*-Ă'('a~,:Fh`8k|q}m_BYtr::-SFCrR~ "Y:ɲ)|i,bv>PٚC7 ʿ>8ZAEƬU?MT ߩZpv=>ff!!8FIx%{X˔l]75y]J{x6-TlF/Xæ8uMcEvj{QR{rIWkO`\iy#9Rgfb@:Zݯ8}KOTbߟ=1J/gU=|peyco5wt'bpxh{Wq! Ch [ oYbqEf70EN5^??x+z isyx* z3PdXQDqC= z:V91U== YkR- o;嫢v?ӳx9N{pf{;<~&؏4(u!Y&: aUcqju+jd>ϼӃ}?]~G3a,jF;֩ל|")UKh\z-Z: z_'S!}EPb 5JG'g檞eyKvA=$XM[*f!QЯSOJ=q芫TZ-N}yNO2MOi!z[zK>ek<[EP~~/"܌zkOUr&Y-3V b6uzI<,uݜ9Qe57dt;k[v1YQ* tag?{<~pg, UXۛ l6:A=/ـ*vʴj" ~S~7T/S…=_cgPg\|[|=aThힱ>p=*YUz?`Yx{!MsJTpEVn{qoxf:&<>uϹ=)Y0nyb۲ՓrӉЏр΄I)^D=2%!HW9:J(Z;2]ԫvgf2bj/ѧ|+2 >fG dKµּ\gwh&z_3AZǦ|]^SJn6Gv0h W,zswiXx)ZM-,uϊهl7C.YPU9T/ }+2v ZN/[ <O.+ :X='Nmޠ{z=-Pe%0_ / gG 7A2$wUD}B=vuhUgJڒUԍNA睊uH1D`BIpwKo* RvZ!.8㑶<^oV,ŴAWѪ'V(Y p6@)Z-/L8W%(XGTD9U{D/_-H-\i4JQoZ<~nXrUh WRWUp~\.@?`izf.ʌ:Zcϻ9EΏw )Yk]&hY ׫afUu!vc%cZ`E<9wps*{^λ=#gEM*tuv3S0:4c&GKaׄ ^twD߈ݾR-]'4{F^t<kl}r\O(VU)x o`HQUZHBe/TM[m̀njH1pQ_zEWjU?\W)2ƚ5̧΂S6V;3V(̏UHW 5@aB$!3etx b5kl8?X8VW!JeR5qr;Loa9jm-:Y\ՐMꔯ:|zz.9U慴˕w>r+@.8Z}#z7`Uyb^* I5f0{v7JC5gUN?Xd6=X és> lUxwoxuBZ3J+1 Z\[YSK t>OZ;.ٛhX4j& 2/ePpjKQ&&o/oDU_B<>QcXc{Ps=]7} mBpЁKSf'j%xxb\@$ `sLF\ITGW,ӕ !7?`ʘC>IjbIl<;Ԥj7$om*Xm,!q6elq#U^|t%(|#f:S,a 5®t$1' ڜkZ<O;`+8o^`Rgjd_-5\l_niOqJSWcbgr#ȼ֡rR~YeLN[۸C LT_oʩG` AcZAdDdO^LQp@IZ@p}"IWQ}"SBW >NQ͈%Ys57r8MYKV Stq.qԠ T}#rVFJAuy/H3 tMHX VխK@!v~iưu2^E sghT]q+]UGD+3܄-Sb VA!~F_Uo>x_ 뗚RHVL6EQB=`$_DN-;~^$UmGVԬ"݀\6}+N+"XsFKN8w24RC{(nPqK7߉~'+OxEe٩<$7 ` Y*-҅7-@S3&OyE}{7k6OqN Mk"ۼLjWur"ءFΗJL z]c}|Z+ [*BM}g(U71KG+BU6u|yP1\3hh.N5SQ|(w=0siڙ;fH]|iX+3yv,t%4Byde6{[/>h$`ǘT-]9qTP}G!ߞUH%]ZDix6U6{`.гENNt:R}*Y]"kNNs_/ǝ/vX(?Erz%\"!8qChdẹ)'rgȍOD*,33`܃YL׫ B YWkOP#~;U??dJr2d!!)'!.cogwOCnC IDATNgF#YPcZtJk}`=`=|->;,MWQLi"eՃ\thN:ä+Tɝ|cza?g)YO, 4RTsmRYr,Ǝ\jClʍѫ}Դ-Y93 F-Zҳjzb>bWnI" fgrd%`hR O jg5 Dd! wa%4JPQꋎp{TJIZ:[ǎQ͞=Cyk譨HGjpWGry_P' 9gM'͘ӕj2\p[IS0ҚȕU.Q :HZZ#ѷP_i)YQ*T,ENUN2mET#$|vyLjsi+Θ,̾B6+31THie]}͠-E3ﰥ=tUB42ŰF"{ԮqՅv1{ic*R=uz(6ӆ{#x,!\D+Z(H Ɋ "Ke?*[7T{U3[k4l6Uy/*XE 2Ij 1`ywm4C7ty5!eT5)k3 4Hݧ Vk53YPb݌<Άۄ<( ѭ,mj{aS"[ڦ+lXsK|. ͌m,3?OB]ѷBAà4!.E^S|sF& @tNݯ{77f2Ќ.QD"GSOIJYa]4fB_|6͎oQOQ3LQQsDNFkyT{|woDoPLAyy9VuRP٧+qf}9k55`>;=_d# ,0u Cφ%e#+(*h#MdEE"db1Z̸"?pl*z؞WÍAU1䃢~,\%j<=~*)Y>,_`tۚd''0@bqQH#?ʯ)_eE7U<. N" MTxEWRC)JDcq fzƺXdukTgoDe~NWo ]}y'$ ~ؐj V~~[R1[䝌u)_=k`N^(k*}2qZԾ^2,:>a$YR7Lg)@4:goͯMWl-OBv^AW\qYYc&D\?s*=2g8ƽfõXmTw1Gu50늵d5Ei5+Z3u~F<:Uχ3d^Uud%LUZ\LMj4 >ZFV?L*g!vϤWSIX1?ցnߖ/˪t X0Q"\,Ό$H:Mz$ugF4*k{='DXyO@r  U|gB.,L톏t],^ҘUc1z`~;0c8ȩT #N"zDpYdUU3 5HeLK=`m0֝s:c|TzGu|W\U ѣp@ j'lyIwUT"Vc}9ϲe(1lnvVRT4s\"8Hexr)޹A]mxD'<1+v6kl/Xt4\xcy6qC`S)MũV eGt T>z~p)|0U>aP b-L;?M%IR"(RjX^ӕGũU:qP z]^elw[ØK{i-Zgʻ4X]m; |-\h𩿮`V']a&#ޜGGutw_\'ce%bj%? ŦaⰅJ䷺z[0ٹϤZKm2 )9aA!q^P "|o}hx|c_-'qaX IQ!{suGPZvO}tVnnA)[>lQWQ,݈nUsŦd2snP?:\^9-MjT_uc?B׿;t A&E,MWtwOQbb j f>&E囏+众KL#gbU>5Cs1_rjQµ}>8E~*eYQ=].&lu23UK tZx= bhRRVV➕/v;|RƲMgrH"I9lUo>|ua@ U7iX\P3B_a6ޟylia׸="VcmG6 qXǞ2^9S*(g᪸`%GJNq煪ًbf7zanj@-Ⱦ<k""bn1VTГHy.U ԯy&'ô̪bx[Y\UįWeX='Uy-aZ5Ěy3ZUTb-^a`XxsN~WjWucԴPc{n,7z=ܓL,@""ؑD(9ဏ~3MU!).~}dI՝0no6u3 -}囤3yg PM3N9ӌFjXK2=<)V%nEGkev +1t(Z2߼a**C3UuZxY]>H+oa>Cvr=?ajyO╭xWG$eE^U )f@A)9P":#!7-'h],?t/AMk抱A/ (iX 5n(2]$*hԼVf*XG 5,_CCS-RSڃ܅)e@ɘ ΐ?J4po37RϪZP8`}7KT̆fRR֨`]X4…ݍoXOؘdYc(6A-#"T}w,ewP6f b35|ՊOFz~_N=7d ?߉~$\gT䁼tˬYR0Ƭ]naؠ&615!R?;x_fը,R4f8x:>u[ !ZC6ӍvLM xk洌/-Vͪaq\O7mJR0)sg O}ҧL˜* lT*gB(UQԴ" k`Guh¢Lj0!:S{:_pҼP@ʸ~=T\gAXI2X|E[u=ϛQALU?,/]c ma|!ɟE)8&]U4> vv&6RNQfx1 -OArCU/* YşHY"\WWĬ+aOmHdyӒ OMZ!f'J2^qޱ3}Q)q 쐈ē(gToqOjuXe?0=ȴ>?ρ l;5X͘,a.ҾN9`҅cYb{i2F_~~3GbS[ic7337a{\~`?TOB*cLh+]j 9}HU#z͹}sbϫ%>wЇ\ f9:><)\KiitN FaΠa c6;.dY6ԭ@b $ v2-vfw$9̦'т﨧#To!!b=v_>-7,AiݢuF sP77D²nlMRe~5$~t#sN7qo^\ПaLO(Y*kr{l \7rʖ}U5cŧofgnVU9N‹c$EpguVy-t_ ?ž[OpuM[cU{U)MJĊVWu42M2N{JKEܾz`א%PcZּ*4V=6TNP:JKS(9ԆJPE ^İ8O8`={@=u,S2o4:&DJ˸(*TN +&i>5:֫`;":d4~6\UUk¤thN ^+<Ӫzj!jj&?qO-\["0e1L*\xB'!>u 3Z5?fkOqPʊO;mǬR_ Y^Q"5`Cfb8+DnhffVF\~8 c&y<SXOVK})1D7 ꖪnj0Ʈ 4aؤ~DS!x'qioojG'X;c]DWYcq^'m4t,Dsj[IY",x/XDpZ&'g}z'!#2Vǚ:NHϨ%\O H]iS$6.2 -ߚo;p μqfM*X0kd?6w0Vc:nLoYQ7͢$Z&0lgw26*s#UP kmekjǥuRmƺ'MApz Fe:.` m9ݱʻ!3 U 1o.XyZpHYfunC{y׆/.}RVT~6`;s`V򓢪r]/Fi֦5YZC*SĊ~DZӕu,o6r+;>sC`Ts/Շ*pun̥Yxo^;9{Wa=BXQ@\9DύțoT ,">dP[xzj݀*ψڦ6?u6=Wz^O>ob7K*k) i Jh`.28CZ{G)[,*}5P{K6cyը\BiE559X]H /߼Z]mkrL"RN Ugҡ]uM/GQwmh0||NCjUF^^4&"LhOT^ۓXהNd, "r镫t–ve0UC_'޼,z603szB{UNsM^f'虬 5WgJ848*m݅÷%eY/U7Et'Աŧ#X*_D#x/峗i#K{VDXe'@2WV$^x<&/}`Q,|@:~HEZWgCoZTm z`_ .aiK"տLp]- * O^X'b.I-l0^Io2VOnX{O_n/R=4ʊl- Op\D_D%X)C?AmIQPyj/:8.^f扶; Rkq;n,3B;+:`Qd,"=}mLܛT7oܪ27^&E3 OfJꢎԝYUϦyZ53pd,[LxsEKHV3O"zikdWQȲZSJT,ӫ>^c}Ĭw+i`M 5th$Wiz-E;dp3,RV@{Vŷi +žZ=9!鯥Xiz [\ lRB޴<6#Xc{8);3aۺYI&EWHZ&mhF' H(6z9zH6ޒ%qK< :_Y{A1ކ6YՊ,U6r-}ĀdR>o`6`(mCeKuDY|&JVB!+G w*U-fy.B v,{&YL~e9?MRVq0'7kǍb!:Z ** %op=FE2_kGj٣ m!b}Y깤=.q+,kb2j _5n6{t%$焵ByxB/'?SL̢qc=`ўJoCP5OJ۝ iE]z!˚!s3yjD6L?=1Palc{ ][kb_袃72Gռ8"fG3X$VT"qYNp\I1Z_rRSozt>J2q*/*Hܤ}0[k0_; zmxߧvuo7y?^A(IZ IB{e~y+ClAYzhřcPv۝&f) >Ъ1=Z:@`&E 3\pUmaud|He=֒o>'a{xSB4`VC-OSm>hPtxkPE*'𵻩Q*4 *U)CsۦA]G+[#4v0B|h$ V6TJjN NbN[ 7s^\%_gvnHMzUШ6rc9 ~"}-j+(Ӟq2Xp% o5o)X8`n<<gDP`{ ۃ>regiRUs*ͪZo(Tc;B"hL_=gu~mVlIZykYgk EVmZTT Cr*{ZBs?feuF,MN簇exgW{V fBw]H`;eA#KdK_C)y66%5[tv0=kL7@i[tb,zWUU3'3ъDdi%buJYX'҇ cX9N"G+I7Utpx[=D~^fʝCWY Zzgufyx{={9wP':nb )ʄYrfBRز]Ĭ+<LZcnQtQ!kd|5]LIqp7Ix8 ZNh5k93V蟪7Ѫa`%奮A'j4!U+hv'(պ&]wIQmj3؉h5E{X:1T.ܮh}'YE W)R`1AXVo% ݙ6p)*R:zQLjmlj6;[)SҫFYf )n _]Zy6#[>O-~q'@FϾ>vwV"9]$P&e[3 * ~Xc+_ H=_S:=xU$`_o9_A~Fo?R~ogGiו rXGb8W`ϯM G%'5eG x{ftoޔȲq'I|,/:-y,GN|락!WRlS|AM~O?,JW?o-T)NO;4iP j{U` )ӱD퍢OױR8&Z$_g#q]PyK޼LVQ9`iJdg~fDFUW<:VQvYO"ꗸlt/VC^3VVtL)-W~~~3OK~`RtE4fDr: } 1x;S R[Vqʓܳ]!`e2''6~#Dh5-UutD  tuS}n93-eN-sMԑNkeR uy/4/+RU^h R{u5ӥ/RE fճ HJI_to %3Ӷ#5FՉcfSImձ&:2`3q&L706jOd%Ud Wђ7'תqK,oIVVD巢.3x%a+ ojdym+Ɔ~{zN7X 8aa4,{꒵6uƦ7²S0NK3j[Ux]5`}-kt:a+=lx┷fUt[P؆uC3]f*WiOъXAY!Q౅NCgtQܙϾ.f=ptfvr 9/|ڥg~^ S޴NMG/GPNgH 4( gtPt$]YAc_$1vwN(U|ObkNG9luh_rG<NjT.J[P I+4cqƚү5>u'}3}׹$XwjE[y aT說WjG5ߕf=lTnX>_qB/0]<6;(*^.`RD>Cݻ/1E Hb8`c}:7n^0@—5+w0ɇ*S!Z)#R&9uj9<^5a1wE{l鬙{V/iXtqNX&ϺԪ&N>x{3N}&)2AFcM9DsH EF߲ᑳouRg2o'fpV0Lk AJ% oDʜ`NRۿ̟'M0WP[ħ,#N鐃YErh%Ć 44~}[<{,$E)݅!'r(j]xHyD7Xd-W$456c;|Fhu cS| Bv394Bd{fS]Չ*ȧ>uSЪOLj+X {ڬ d5rV!!Yخj`dhubtX:X\(Jv@VQ5iCDDĝDofΌΤpJt!4E<o+PhX묚)kzf~;lY(~$ǮmrI򁉭uj2klcR1Me+Z +sM@kiA#HZcEE U', "ca阅U9f5,zֳigYizT)g]o biՑY q-*$/  :,ʑNUgn ؞oHkzK'&kLZxn\G$Pˍ/T1`PD.XE:+U0"i*Sj3^1t{߯#aϦOlB/2X3ȺQ2$3\-6GG`]vOm>ukWjLIҳr b(.Ö(_"'$()@!eo2XZE~v1]ݩ}ajl.8[~d5D_DyY$pLV̛oRK2klc}=Ƕf-pg׊[EtUsʹ(vaU,u'}aa`<*'6 !d\ˑt[\۷Α~!d6": w>F;pU+20@cnd]Sv]݃ҁ&AWQI۴)=6ЅyF)w2>]u–+E_^q"nQ]{KUŌ,2H_(! UaX[W*D ]vf8RQā:Y'TČE{+uC('DJ+(U+opuothIYCW森әPlxE{sa+EHUZ9B%ThbIe85H%MS^cSdS!^Ej8NR 8]iZWK~Z@ÈUu{8lҼnH\XXeJY{] XW@6{vr%H{ y"=goIBCXUlvK%Ahɲ,K毟zMTB'Y vjPzCaS7T2ߕVcJ)ìX3iQ Wh0&F"S#/6ǖ:Z]9^&r +#(쯜N)^!DCrm}_.Y-Ͻ/k;Y⾓`Hy`?pN󥛀5cDEaҍU-g'91X9MeQ0k=kWA[ q6Ÿp05F( (Tt4>߱usn+[VƐMf #VX%3&]=nWsbh3J'hYD ۈ_NӊQ$ܳTf.2i^&OgKPk izM58@ ]-WAJAuYH_ûX鎴O3KzS.3h~*]OEG:VUGCp!^=ęt5&`%TkAtu=cɚ~JREZYekG˪)0j*X3>9jc+dުi&rb1ҕ,l'mFBiT5UQwKC|3 Mi/f-^i5R Z4Unz&—XNx$:ŧQwJFxˋ8Jvֹetdu͚45QZEsfA X{-'ˣZ3t%>ID`%Wy[ٳmaDאd1d8kb9 , ;=՜6Jh:55]G Jc_Ҵ4v]mi  c5ƼNB׈od3l"~]O "d(:X"]F+d|`9^iVPE:{:^9{N_FFC_c'c}u}s|W2([VyfDyR*Ff̸)"/[a4k@ "1Vx`7ܨ ƊZV|4J%1BoVf X0UxSȠl}*W799g2edpf$#`  Q߬}|NtʳmS銺C S 1"ZnnVߎeg}c]q{ߗ,뀏ݭX#VCN[֣DDpU( XYf|I?@RZā8te*ŬdEbςTk3DŽ} P'rx/dg_c=J(H=oLIIcht0kӹM=`zgh~ڛo;zVk#D Q#\M5c+ؚx**JkCg=ы6AIVDd@UD&UƓvY ]$A S2?eYRn뤯¬{@].ͦFptk^ˤa\'`͘qøy~"ކBWw&X KUJU6|YֿgsK6{1J ڃHYNCd TW ~7f*[Y E+5 +vmi un7kƌw_d/R* GyOɐ"Zj*o\RJ.tꢕ7VJ))j*ҲlN?HZ5kx4DQ2JF sGT^o=8ubfUJ[E[`o="jRT(c-{ixɠ?'A_ҝ4W"8cY?=aQƽFی4N77r([-D+6~_k2 +}?Y#hsx4푅HxXn\DU"DڈN G?ѹ> 6J}ށ9}q\REoHWˡ7mfӨqk2֌f,z,uzKУWEnI F * uLr`Pt)'*a E~3NAJʓJv[gY۾)h9T5TSwU/_Q0O2w 5|֌:nʒfe4Ila׮24czU|!I,?w|׫ _P5R}ǠBN1܁oc]{RڦhI^Kl,/ߨ XSĚ1 >._.Z%MW4`hŠ#N8v6Txe.ew'%sfIߌNk˛jح˳3ցl U$n:{ASAyL{p3\*ߛSF+r$`%u[ּ.6śxE7` %i\8m-:k' ?9~6qbo=[Z9l}z%L5 sU?xL .T4u`MkC'a}hiA^5jVZI0m-gC>Oʑ.DLH59cencQd 56s ]UԬ~XJoȒl`&*=Uj ˜.f̘e*M WbUgsզJUX˫Qg%F$=n~0 Z(=XTs(< ,y)pe7Yxs}B14U&?H|*.7=@զ)b͘u^#sKQZސa\'HyƼH6uZsrX4p)Yq |mAt#6_'hWΑ>.TWSsAf×_Yfx6̢+ZNIn6š@X0g,+dH"q*sɪ0d57'R%$) 㗷kȟL[ei!c} z@L0+kU/+\ pM1iI 'q*'p|McUL32SVq'J%`5(c Uܛwρ iSqa%@x: #.c]C]q e a8TyqP:V2Q"5cSSvb٧^崛Ĺjbb2m Pg5$*ߝRd܉/ {Pb9'TF'5HfPl.*QmWЮJz:QMx˰k5cƔcԂfPiA]PxY]4@xA yHbjM:\%]W,a'?awokGe1Svw@{9C*d꼙1w&;?kƌ/U3  vrm˰|BT2:R͂*}U+U F?: w]OA=OBŕxuJTqǟ6@0tC  @2Rq[pCԥ,f brx4~.{irކ0&pTvI.WMzVX3%n(z1]8 u)N đ\!sHAΞ& Ix:10U+Z>C AK\LFpdSA%P]cNcuW;\nPj-i&'JL1cc[~eբqҀɒ;;cTy,t_-U.VMiT[ `exj{e[2V_fm>cXĸ0v:V3ʢ+2nPl.( w\|;5E"n%<э&FH[ꉬ\A4"TtE[4bV(#hԈvR#>m)nT5'x_d eqO_Jzߕ5YX#sFtc<7moLlMfJ# \&`͘q{ɀBKЉCU܁ݽktY𮞬[:V'W"<+wBWk0`H@Sؔ #7: w}dqLڻjnz]б+9#̽CTH`qf̸8 -ROu~2AZ5mر&KQު◮Td"JldE%~@W X:+V}Ն @ߥ_I,YX9m`^[\U*MzY&_?Е=)V"Xwzb,?v:w8̨Z#f!T%_3nSbe1G/_S5IFu=z sj۝!s(OMR\JS1cW Wv &JC8x.7/]r=NWz)j:%3dj kC%fs惟ɐ\?uPkNL6$%kHc$lO~aݿsսYWgF*_m^,%L+-j֌3v vEAS}J]=a,]nr"LhPShxﺳ53kF>*"aYMi ,s׏кT)}fţ1t5?h/&:+`k&cHœI "fg%phٟL^hW9c4X2 j %4 9 vե38_;~YxR3ޏ@խ’6;V0wXPEbzŸ'Uy[ޜ4J:n֌3>vuDZ S})J&YGdzs͓ Efazܳ"ֺ-SzyỈbx%)=\n ޖ?Ew6[ڕu=X15aq?K)s]X 9u]wks V4"1X1[Q,~m#g+[Ubw9 BLͅy (ĢmǃجWR+ygEf9mPt3͐NYz2% h}-o90G`ցu: X?}vif]:t7^+bs=TR*d**'(V]ա.լ< Uo<2?I .\#3HN 4Dbuq`b`#?u?q}t^&cy!t19+o-i%723(ܳS8 1k֌yoO@W/D +Z-p`UCW}j<3vހ Q}UG s@QMdUQ\և5Z_v_Ǯ:-6t UF,;RPnzv:!:^LwNc֌ߝ:uڣZno/vz|L̓Id GM"mN/9ړH[HZ%JYhFrx W]9hWָaRq"q$|Pe4L[+=ٝm Xtp -v5C;u׎hpQ(0re{&Ł{°dR5O֝d*Amj.2mr2BCBMVFQ\셃CvHcNC7qkPF?nNu/ n/gocn^t{ͦ'UwLh5cW_.cwz8+| |{eIWK{&ҕ&AVh*VoN8DUe%tJbe"T>Z,>rn[>`ChVnXw|kAs%9WjI3N&Y] c%IW3&].U(8JttʉT"DÛǵMJcŽaVP%銸Jb7>,X&)4YV<%c!UW]X@#GN'*}hG>'a X^3rו'N'&URVfP`}誶Q(,2: iFy Nx\=dAeE^Vبhu"cBY- ,Q%>*%ai>[c{usXh)81OWja|ARɀ4!V<*TiIl\ANԬ4|ܟ n @wBg]WH3 gH者ƦQRF0K]Ǚ,*VeN% 5&f}x,Fҽck3ץ1"M9LҠ0($yѸ&Dk=N0x'C=8qO!N*Lާϊ1iR9Adm&4qGMQn<,GO ]N J*Ne9nm'' C-N\D6&͸[ʡ.N;Dʃ`J.޸R~T2Hle,V9q y'èG(juWx(=,M9В$-ڬpֶK]{VȨjd*M*qK!䚰\zPk^Bpi *cѰq E&7PՄ:ZNi.o,T?sfX*]Ӣ=m&`=F5IWw'nAǸ9DZW2C.6{#CDM;X ܵՋj'χj7e^;i94BB)χxQ9fI;VYτދ;W^Xw`ЗFKE\S+趐JƺR'`x}kzXzF V$N.IZp j"+-]:hOZ`,9Pi|yTrZ5X6X-5ki6bC^sQ<C Z! xxI# IDAT+aـ)XxqC_g|.mU=`Zi% @Z9QPЊH@|KN,VCL]mTլ~pEK_qS//d7UK _hUdf[-_u*3<$; pW>o5 Kҕ%j8<f30u^e ALi:Pю/ٶHV*c C|ƹ$n/!0ϕi 6 ) 3.lx=Qu5%)b}-c5ӝO7ځ~P"* NDX'#?H˰$Z0VЖknKAR"X(y1@sx'quq&_6+]xVY5n{IJ{ě>V@jD/+,g3V>[_E'`xqq6Tj2(T<\̕- [#w|(/%&r;6HWK 3|ZZpKމވ~ /p 4qA%7ʸүR:JFAC'J "omԪuN3{oj۽iHQ|$*<_;=%ikNyd$<ܓ،⑃Afl"< gwwg3(f_8l5;JaD?H7Cy{\Hu\6ʫUM6|P X3%֕1j3kw]> ;kʃ! 7V#Ek&WZ {Kc9w`>'ܳvDV_.-On*2iߒH@ĬΗ&N71a#c#PrfgssJmD(ƒԊAM`$Қq0 ZeH±%99AWIo+,JZ%VQ93>f|8Ǭ`)sU|V'J6kWX̓7+-t.ď#i?Eܸ –W^.s?hǨVKY̊{p]~tHS TIK2`SUe(k4O,kEc# oX ?['T*Z 3`UoZvkYMiM1cƧix_ J.$ha1=**rW-ޙEYVk֕@UĊ.:֩{;_qe#bEռ##4%~L|:kQXa9GT+Urf#bAK9[Ƭz ֌gu?\5"_u,p[jQ$S4ivJd]}]}c5먬\a?nN R1 ߇ZT{v ,Z)Vy=g? b&fcc5NHqaT&]5-j}pj njTf<c,->ԩ:+ Jx.8{6Pe9#tu~bA"˝+3Ъ^.]#-"Q6T5y$+]Jfa#kkD0 ;4N  ;۪| ^_/p if6M,H[6&`F5կRFUjzmnY*UQlɮ|'Q`TߖM5DheM0z:qd*ۗ ;fiQPT|wnXzcq75:tѡ=wu3x1 uvN"wz '`8Lwl `rU=E ^JMHnBWTʃ%2L[!4EUwTr[ՉJVriĊϧ90 #tF"t;jϻ̮s&ߔd9m[jWNsWrQk%_Ep|i5iÿd6]{E+_'?%:%;2q"h+Wfŵ`T_ׯ\2$$\bP6b( cRY}90Pe./S:*Sm#0Tmx_Y|WW/1Atg+}%PE JS<2Ykшڬdx&aEP9"ZL":%k*c& @ax+< sגe0 v2׼Vm;jJAi֌5q"0nZ9ZtWbw4>B'PBV~ }1I*;hk&n$E k "eEK?k'0+u}Uu ɚϻ,ꐍiw[|LJԗFJ" (lXf>m+y=)Ya="y~SnFe慎) +I`2V0Q1 lDnݕzT\!+a _E(`CZfv\+N[﷋vmodiEG1Ю"\UqƢ0|GД"E@~. yx˧0-ÂY>geˏK_ǵd8NZYPr&_Xw&LVqRp2t:n+Ky!v,ijͨDϰ>/ǫ2p7z H b3n# E4w4YƮީb>OIl4wʾh\V("hp1kƽĜcH[EWA;%L\pIݺ>]_w@jdeR5،af$sa+N XzLx꫺fruOD( 0 K$WudEU3ǡUSY} V B.$lfMj<2g,"~\5cxPz}uhA1)*" ZE#Zj=*}aS/NywnN٫sM`됴amƎ#u#3xHui ZABb>#tu5kuhO|nēAG Q+HR6TaG6ܓVfpƌIW]-Z*ցcw66gJx_'PCB2t RUZ\Ƽj*vnlx>+o5ZJ Suտ˚`{{:kYWe{99?)]Mq/JW5tYTμlƢrH﫽*Zr)a\Jm`kQ zI_AJރE68' M"tg]b#X{%ս.>$JK1rS vfH{ ~:S3f|x5fR vd K`"jhWUI|YQز֭_e+:θ=,ê ̇.≵Zr@$jZҸ&эSS 6]%øiy{[?eWaqNDinXNȖY,^x#/fL.4 Wċ/T _T*IRQ@|qúu |aA+\G]MBJ:w)[UUՆ#{v! ץd,[)`lFj$N f QCӅ4P,%q "9hQd46eɖ,qS'N1cƍ:z$HBjdb@hXVdfc.$QؙyDP`da TEEBU2&,Hvp/Fdk/kts/fm`Q28Kp|"(ZT'TaSi]5c-fEQ1ȂWyH8~(Ժpqu;Kl7;e4hIEA,,"J1,rJ\;=/b´=s̚OjP{MTV&-XUEELMBU=!GW*W%`I X3f0 "\Np[1KjiWW}I1V3k5uTs<⥸XVeAvDMU:Ȭ!:4Qd P;;i]^MhV ̛c%I´= Qig X3f<^`9##9)Cժ`tgdu[X9HWwkSˮ1Wa\U !t7A0&;_e))WԼ #9`N =PhGzU,\CԅVN f欏IQ!y `]T}> E(ml6W;N5%M=2o|¦*9k֌3z1hͰ@U3r:w׃T,i+GQ1 WM,ԾB2fy^tbɒY:{[lt-IԪ;@K,d$]WhgxlcwTdzi 2 W#:N1Qw.K?ӭiġjy#c 5>ؠ̓M2XxOnZ}Am5CKfAR I|:S,ϭؓ9hua,QkHZ}V_Z~}1+@[eہ8hAtrB\]'1e&\<[G˶ܘ X3f8HW*prIbʯ L_EWEEÓYBUc$Zj;Vb IDAT!F_o X3fH5\Z+VXe ,,C -oRh>yY^qp#Da8ICd0t*c캷Gq\M1cUMhHO e N,d`mWIW뿹zh &fEKV_(]o\>h!qUwc^-%4L݉DU{3#(0r;ol·A+.K "J$KΦ+JG䴜Qw%|ip憎/| ja\:o:2g1yV#a W)k֌MoZk'F>·|,$HYz*%* $rܬ)/qMphoD?މ$OwZIj|uaZD!\!.դV඼2@g "Yy+@=Y+e~]6 HX$fLiioXz~'lIs=Z*ke!5W5cƤۄzl{Yk;ՅJUDfr>w2ָ: ~ds6\Շ*QLt.UʼQ]#Pug#]M_|$ ὐѴ0x"NuZ"`x1YmD%"))@iPOĚ5ag|XwW:0pR:Ajp GHI+`6RXʗ\ll" :\% n:IާN<+tjZzf;[*iEFCU٨Z5FK<`0Xtm5cƧBթ~Two^e+GFdGGgұdo dWTB@1RKI;rfԗNL2ݺ\ch?0yw:-c(=#IRJFX@\ŸD{Wq#S|k`Yɮau蠗P|" [E>sLJ;Ȟ+. Շ'<#3RGC~S#q,"!AW.d̝\.jDj֌߻?M{ᲭװK;4uʎ1hV|BYy:EЃ V%ԅOW/%N8!$MR+"@3+n-\npqMl\4ʃ]!XIPZs-jjϘu*ϡ+.I@1AY:X79&v+rmX!Ymz)*73|s/K`7#Oʍ E(8UP`$mgIV_g0i"g&iG+QMARlg (ExDPus-B ^ps԰ i,p,*j\3+tBj`cx@U8m0WG.AqdaSf UQզpt5kcDR. r]Yf2_w$*$VmT#y=A?Vuȼj>CqZEj|LE5DWfT+XO'kǢAڤk'5=N Qr ]thuX46BgWk fTj:/xQHJmtL'K!s(Ҹ9 Fw!p uƋ,k N(U"DSJT^IZFYuuR2󨹐Kt&c ;veWV_+D%Pu7jBA:7PefUh5VȖWf̸=_BcPG:vـN]'f-]D|@}ʧ&7+ENNeU^]Vqn}NT E2̘KE'jq8^ʏ)X|@z) J ڿNJs߄q3fwZztF,e`Jna|Ñad-mO['s 3N~ǚPXY4\.?,6q37 DZ *Xj jD{AJm>HpŸm2ɃfX֑bW[3;^?e7|ye a7툆 V4ѴYX4n#X$RZVNXD8ᩜ6.Bi|á_૎g+^&Pu;i* W(vAڬp[^Ѩ|SOB]0Ъ.kQ93fX`.D\yCjeaW>TZUY؝E&QV hx1BtJUR_ j U3?֜Zr$ʚ9CզU^:h5`yAW(GaϠCUY,Pz AjWqCEЊ+i8kƌ/^~Jl7N]rz8ۜ܏ӳa}-cY4"3ĻqNQ-$mTK.+/^)BʻXT#稖~dzqIKSAUF+#'te54suCPh+o8kƌ{vjK\YU &=uy18 Z-lq82}̸C6өO6Z(eMOU rʑ?ESRl`1%_!c9QAǒdd; /ZaZF@5FƊj֌_mA'y Ibw0]}gZ7<=TnUZAPYEc #lc[T#NU?Uu,+,#-4{`HYǪ#ZE>(c+:TtEϒ:5cg]Ͷ/ /@ b|X=5JoGTLQ0?z䧷=.KL! ˠT70hj@7֋xx X3A %X m"jaȨW,m^ cK ZS3F">.]M1k"p@ϷwUˉ;GkDz{ҏnxSb,-c`)ۗw_4 ,ɉKa([l9:`9͆>koNhԬ>QMq ޒ%x2Wqf5w*7)3fTNFuM֜{)N?gM"MV9m Ю: JW^ ^|L2x6WzZ)9WujD:9yƌk7փ ޕ7*^D t6׏US˪U_Nt ֡޾`]"RLzZ*wꆲӓ\11Z<@+kXX-Ҳ+ H xrf{e!$)i6H"%$>i ifIg"T:m6aN2I3z3pR d1bzvOyQk:5A@SjU{AI݈;l|1ߩ`͘i)˫&5F uj},ta.BT6c(4p=ӋZ:Mc^ydsK_ WDo|,tZ h%3[aG^%z㚄FFql}2EUVcׄ1|7U͜ӴO5cnxݿ_-:!orgmmSg$r.u*U|§p?&S`m|GQDd˘"?y|_NK/?I)Pʑ֩PxQ9ZNu6 rchNqKm (?p!?A uҸJ*sm}֌Nj/p'kIjV*T,%Ate'QyyOaS ݻke(zZm] 69wC+7j{y!9/<#<#ڼ֎w{lbS RVרdԅħ"u9?eсfz8䚀5cm6k/;8n, uJZ5偄b^k'hHYd jT^e?gNH*5d:;rsdD"6 ]DV:%Wa"*>"kI||楟MFUag&`xBku?uJWNyk i.v nZzzլ;!񪬽ETXP{[%Z:Yف SC~5WPkܗ]-%9 5XNu'v6GSЗi+Zc@ 0x9VՔ'8ymi 9G1k]`YioDD ;qRʡmpL\u֮7ߗ" h =i)p7kw_? W̕ E4&/:6BQVF5P:1dP2V3{;R$qQʢsf]}ƌWHЕPOp IF T-c*XoX{0 ̒|Ь^A܉hwuo](oJg9Zj~+$#d6g6ks+,"p*]P/Zi,LAe49HvO_1&`͘q3ZuMʫF:=MOIWX‚=LF~ٜS,4 n эeT Y3kA*>&(7&Pa,"FQGiKc%אy}BN,@?X}ƌ]ἿEpv,WbǬ3gè}C=PfqX ly ]%{FY JEj&RՔuGSqDrY3z-Pu.{\v$CZX CZ}K0>tme-Ɗ`* KV# V|#3vfԣIv6ÊzZ (GuW-_=:cìU}j!0,'ꜹfX;s" #naqKGۧ1 qZ7$]yi&  'HQU l^:=rl"'xHI3nLW]$}7c}!cŬWN^,q6J9E7eq>i,*KBo,F4&>: #\A+UW/bVG%gUUA)>5kƌtu`h4Dڻ*o̓cu#UShHYM0ixUBI#BT_Е,/ :*x "TG, 8s:Қz㹪Uן|̍ӥN'$ͺ=^!b=zݾԌ {}R `5"<قu#5~=c%eY_t~9܋JTV=gmrY4wU0TPurڸ/PƁf㉕ſKR=n8n&W(& р5bN$A*l ~+05c>\5esuY=?Ǹm~t0(w :` ~eF̪ )ǡ v'0ϔEє8` eWx^O߄9 6cQ,qJ*<6[pa!bֿ5YbOn].J$]<`׫huS7هLJ3;[IO?Ixūj5cƎ8mEנy`sfyz4r,u@?Ԯv|c%"msm>$oU%ٷ`ӿN?JBZZNZN_Vrgʑ⻒%L8J'GwgZ^0nxr56sk쒮j0]=3ZXu'ٕ;,fU,Ns:ֹ{;87Z T"AEuuG`XZz.D?:'6މ]MJe%L [j$2lȒl+Yk|̲ETjmxx3ǿ:sF"~JNBC2x4QZKy";y2l&OKK3I٪|mOI]ӝa֌V2. S'h\z/ jն.RSoLzKO :`b,*Qص#`!|EK%֟A3d 7Z7:D_P՘D3MRo7R38䃜 D'觀$x+U1s äcd X3f|p9SE,D@ ֩H!Z8Tt5cܻa<2oʐnʙ(LRq+?oWZ~P^W]7+A\j:9]Q.({Υy=PԦݨGQ X3f<']5B=qڅS4)B*\:;Јpuv5Y"֠^ue|9!/[^ f.e%VD;Fh_i+^Bم37ro~RLjVS?@UI%^(f9[UV}ɃJLΘtu}`t䪦j R莏de1Қ1kqD(+Ka\$ij?&_( -PAU~B Q&F{r+h噓E"a {44T5T:bUsjTc睞jXjչOHۧ|bunh&Wwp.rdW37Dpm&$4eTn^ryiSw~%8R"ZԞ̎ 6:Dfn\n1m Aop4hlG"YxQTxf: ԎjSY2\8kĥ j5.Q%)P4*ČtZ~Yֿ/Li1Q7=xgg!~#L\? i==}+ 'zLoo4ĶBR=`ڂ17=AVZ{% b24ú#ղ;1#!c]Vd,,>Q 2&CN-3O7o+_U9HxfyUOr[_U߱wW 952"Z<c\I&MFRRJ-?;Fx,0kO?<]/ҡq*FBZyĂ!Uw"%Êm|paΛ8Q͵cSp4,:Iڪ*6(xeֈ+[ x -šGySaڃVsD>bĵ*c>זUT)ڨjJn_I+@7wP3O@t!ΈqN{G7?(EӔŠkj%G*J[p&}ֈ=IW`jsXrPTx:}Zio\wՈ$z"ڰ>А狙RHW}.غ'-yPп@}>t;M{7oL[WU3Z|ׁAkֈU3`gLަCvZ>ժ")00D#>d\:Ax7^ vz`MylCWsTw?/{(w5je Ыc',"ױ׍1?ŬKU>{U/RPw”9Q <:jW#N۽L՟(?Ggkb햻Zc'WCg};O!y=X`-6GT1PAU蓔sjU: `tk}#ddIL.mTrh5 F|@RBZbhHGzҍ0@,' 0tSOX{p :xݼex5W [F:N-_4*:Y4.5FVFk*N.U{U> i#v[&*7nj3b80Ps/#i$ QT'Q-N{l4u8k;z>Jf 3fMIxz#4:]p`^~wNXTm>|&i\z15{1W)1%4>as tY~5:TD `RoK|L֣Ztuv5#nR:\ =? pYHOBC?ӵ('GԠdc5:jWXuX/GZVvؒ`.?z~!_/_$]E Wh-Y] jMejCprN ȭ Xvulq'}W %*p*p=)P gtwP !3fnu1N=?d,r(*/J0Jh=#SᙌqAO'(E;wlU+Tz)0,ZsZ.;gB IDATI_S~+jpuTk#^Eԩr*M.Xt[]Ni#k]sZȈ`UE,?bz/uW4O* hNNF wG({Ka10K%3_&rʯ|*e [8U<k>]W/ˌ#ޛ|e} DUd[kmU5uxkts›`k3=xM5Jȩ<]m;lzD2)ߡXx#7PXRk(i2 )9E[w5bϑzզf\DҭPg۫؞o]:˞BzS"deTHG//ߠ,@O:[(ļL;Daj*Eeu̳|HTd*c*Ꮞ#~tء A+Њ^FG2Lq*:ʝUc߸xJ*x?*yoT"X-F>T3"w/ 1av/NED6cRcr3>HLħWv𨁔 D+ߦ|cF\jz,Qu:)zM"xaFۄn} DPjKSI,=x&PyCx!$2xܧ%+&bIx2Aqf B*>"Z6j9ݡ*v%x X#IXU93hH@jl9QI"ꧫγGՇ^{7]t}xKɒm.W)~<^[ҋ!_1АtAhWkp\ ߊn+2~0œx \Ѓ414oX4TZ GKymL#`q܅{G&U:-YaKjfNUa(ŬX#FvD+:GC7W$=G "V_ _] ::$Q  G 5@MW2hU$#tW{CZ򕙢 SH.3\(E*X-ƒ_2%):G *ZAΐۮ݅҂AWW{8)_I* ZjW`"狫X@&]5ּttd]1vI]ϵDrtM mQX#ߕ d++%V"E)jNKk n#FR!_OѼRJhζ9N&-f-ә<)*P ?C F{:7ْ4fOFi6W˒U/hE|_BWV|% E5QNˆ/PX +i^E5(_-%WirDMX Q'hCSҵJt ǵ9-)',/kQjzk7;th`WPOM v K3%?wx_1ѕI iRܲ$3 ij05Ʈ=p- S4tUWZFXZ`CZt՚P<\%i*lTI|mO/jFcZyvСm[JWhFԵ&wi:`9|jf UWqPcD,,ѵ8՛Y,fm9-/z+4 :}7G2G,e-_#IT {U/ERQy Y=8Nmw\R0}qQ 'Y5YWYB]18.7|*"telWiB./)ңɌ/4o0\Cs\qֈ눟r"/N*!i4b((ZiwٳڮX8ObTΞ*49Md{.dVV? U-:ALZhl^:#"v)b,+Vj9;` lb.]:zE$(-Ci[ooprc$Z'"c^4)#X^UIhrh7vBG2 :Wȷ1""&]. D*u>5p$ҍgrB6xkֈ됯$cU`͏L |;>6;;n.=E%J?}jOZe7\G|R{CЪ%ȧ˕wrst1cq =sӥ?j&Uɔh թsutLCX#FP5O %yQ1md o^^G]CjNW=+ )g7 )Ti2so+:p([ kjOej&X PF7T**:,"6 ˰` 5ܥ7\DJ]*XC\u3tuԡ<_&:jC-mriaL TU: R{b% uͧ4SVEۇƌ;u#58Uq#Ղ=d"1򧨩6]ikP%=&J0֜i>c\LHi%*3T>ժjAIWZӕ's@"pRr%_~zO̻g"jHe|x^,1=AT#w [F\Ӊ`,jּM[idҪI#q$3x+^ WeE|8EIRmpj]Vb)>[Ј.BR㫉J@yH;X<3 )Ub#zz/Td"~"v5Pf?yš?5#nOTIV+f5‘~ Wc RtWdK@ E YMvzD:Mڎ:X ~, tUdZL!tV ,k".?t&LQQ9.e+|L_KPҙU4b-%2Eh]x0nw0g)Ti9U})NqJ< /Zݾ5WYB*O {]ڛ] !_}(•ɣ;(*XӕoRGz.0jS9xTfU~1x]Yw ĭ+n^h1NPPM`3G 󰀳f?DHb51BR!e,\F׍[!񻩭] QL 9.tpAj|GÈ+ 95{UEUy2 E~+tW'b:O!aaВ$o=Y`-,]lGo?m U='B#%3(5H_k]Y1rv>ծ69p+JW#F܀t+4i.K -U2}DUE+Kߧ|s[1g MKq8NҒ`;f߄+7_1dRw-It5%Z-:4ִE0htuiWfQZ} *f&1ș}HZOt풩@au~+Z_:%8AӼQj<)DNJo"36 zqcjw3/FgPPZ^1 e2ְfեNK \*/Șҏ4D iAK}xCW#?8 Gj'Cr *XAêE8pѣ`kYTڐ=h?<jXa|3d#P@oa' T׶n tv/VO/AKP%ۚ}WM%Q*:I>0D:|hs͡0ڧ`\{0a>AAo5k|^=#OsO0caVH<6=4H](&h~yTyi>qJVP[Oo`ֈwKWhwzQynӵ"9h8]UVЕPE/f2 ۋ+/\#i"ZAW7P  E&/FsF <&։ /_a?CACm7~V; 03}roFXEDP~DWrqT9(C@ ઩}HYC8]ً]L`dFmY+U+): *욠Us J&vY ƂZ }Ȋ $\jECӿ jJ\etea岖UTikUw`$Qxnk UwY/҅3ωE8'jWkoeU!_xک"/Bm6nqU] ZN]UW(BcLA0\PPDd #\ pl"àr;8s=3x;ȅë7uyz n۾fk+2u]|p[BesE^=t5U2]'Zh\(fӠ@ W_ZA7Ы Ccs?]a1K`C*5p* 9!˞'[m@PYJ[A cv_;'/Y 5W;'g +uzRo:U~82Gl>3^`NuqJ3 㹭X,LBUܢOU[j`zRwP' IyVΒ]@ Ftq(lTzG{n)[t]^>:` z΂vUFWI/ZŻr0C\CZ%KlLLCj\Hjܐ[k D òbÖ~@=_ bV B{k uC+LM{WƬ)}|w{x#|Dp{`M&j5V;80#8wO3wG? H"_ՑG3~=>|UP. ۭ/8e 9(C@AW9X.O?o1*I +jU\e!lɡfU:=/ w>Ђ7ra{_Xejg$y;GþĩÚ+EĽn O;/UFT9l V̺:mtEwW^VRNJB+{ߘ)r2Z]5ZKWX)%N)V [fr"WDZ1{OK4e) s"̤y 'uӀ?wփ\V3;.AUP\okF뤷y''mҕѪTZ 7Vӕi?@WfQC&.Zj*X YX0XE} %]^#X4kzULYTut|2djCT_oZ>=R ^(`+C,\F1ht5 v'eUKwl h/%C?EPbN HYyv4|t-/v&M) 0L,lm6>yP+i1jQ8gU]uͦYr h 39Pb]cgNX; gZJ}R j=\'MJ®ժ|(rZ`,VXUZ. RE]HGc):1RP;̄10f_xsp-r#kOvwHWedߘP9.]]u6'RZWMT-BCYIp5pu/  rTKB#;+P'1@.]Ѯ ٓ[H6+10Frn.DK 7wFcaٛVr?|7mDH#, Aյ_x9!Gaks˪t68C^{ yf' )eJ>GiZ N"y,C 5'r&}>S7 0f@Wi T?ohe'/"չ^g`;wҠA^^IPPSEetkW~pYKڜb4&>ZPպ\gǫbU(i_~؉V] ~5"F*R_M&6JlTq '5<0m@mado幅hn^>|Rĩgtx_u]'KҲ Qn% tUĘ$8ꨟ=] •JZ%tO."tܨ= WU~jTG_pRzEU>!,Ce,:j';q:_x-ՈATu^l: 4 PTzj^Xik\EC*cړmIpa(>p|UݖJUr"bNV"v' ٘/|Lm*K~,?_ Ěpj7}8nWo2b 2ZNz9;q|t5ʏނaW 5qy4(.i(r8B<0ho]ڞ:! âKբ+4-p W-Vͧ,&sKP^Cu^q<;; 3dO|W}Dƚ.|D.R/i<|h$*ׅ^~ \{iQޮxVndv-XmWz^ڍ뮛}>3\@I`Vh"y^a?ĕS*zXF~,o cq;g78 欽!08\01?.}~ G\ŵE1kBOP}AW1]+k^% bU9͌?jP>I,bQШe ,Kvd[rkS;,-{ ظh8#2ӵǙAꔸY{﷤ѓah/péaĐ>ves]fR8- g%CB+ gRNT_9zD.r᤿d Ր(,s^8f̯W2i/BD2O6ֺ M RWj5z {7+[[ً%zPnX.O6@AWY{~ W-keW"$jWx]mJ vՏPLjZ 56 &[Qc\2q*Cjp9jwceۨĚvv$Z6j}WѢ(F 3tgZ'HdQnkW-[|Ea/@U+$COUՑ;F7B2E'&5PU/uoD<6 C:pfI &diMȡD5F|5]0ȏ3*N|GudNP% dJUVK6S*քh_ؾ L=]5& ̪jW:-UL"0\NGPED[0՝#w2< Cbf |i e AWnk9GZ8;Ⴎ OZae:;-LD BM͒2UX|JXVg{r[0) yPԦj}Ծ U+d|NN$#`2T]ޕ^uy3i{P::~tˑ{4wd ?TL,n֞Yҫ"=} ,QN} q+z͉qAEK:-/@GRQȵ ULz"]J6273-N%z:X࡞mW\u^S*i!H,B U~$ jX 3TY2'Gևo~ҙx1˾O]|A}//2Jg\U PeIWPx*cPW?TE~LPu:;angO),-=`}wܾ%[ha&} te\ op^Yy_0Z-oBG049N ZUprJWS>e⹁?ۺ?VzgBG&3*b?9!}(DNKA}?G@Fb_`.9Hh2dP9e4G ˫k<.Z5j0Ɍ"o]5̴f0gһtSCRT. &tmi. `hD&ָlՈ׈Վ_֟4rH+9F"E푪5[`ɳ>}&ZAOysG*eKU5WL' ]ܚ um*빞94t?cCՈr`~ Qm/]]tu|V g,*+˳,-IV;s*Su"5e k~WXd,8^ړrD^Q,iъx/fODu\ӎB ՊVYb 4.HW#1hK`~j=Y Ͳ.U՝^5QXj D%( SP?YjHSe3oxU~|@3+%ն5XCa&#:LÈD!=#]Kk4Bj\t|Ut*]JS (5u58t"uuW öI" PǼU$pűb]q\Ү>j6j`xo,,٦VAe V[;K[|8 8"R%nlUkL͙_D,–:㷊m, /F|m˗iZMWH@XjĠXc-L=J GSQnkTT9X[dI2]_T{+AZqGTEZ+X$6qK|X(I_|B+ Y~Ԡ+aU:y]>P :$Z% >bL-?e/:k JퟠZZ-\ .i/m=ku:6ӋTIW*-!] &m(^1ojňo5Br ԥZDӉܓho3΢4xQ[lѾz;,r|wjȽRQ%HjtU˼|>\\ ˒{SkI:,aO A|h4쯆|E=fIE]/fATT9X3.u_p8]~E3(NZ#&z}~xJ]n5-jZ#*בNXuZ*/)O2d綁#]͚^yE}yATɲ8jQ[ijC=H.RU^-ǡEW Y@GX ZV1̣_naĿ~pQx6۫?G,*z`Gul*[i٢̓ibQ}5[\|yKsft'b:>Ռ! S1gp&9sޫ \uz `kmhAWy%HҢNKʴU+j4a0VVX3<Ӌa^"f;Þg [)s.2D]½S/(ռOq3RyVDO' ߁#j. b[KiW'28DZPԔe)BSյ6.Mt8-\j[4 ʉ%CUhͮ0 ]Vkm՟VȩVPA/z`'>'x tQE={uW\JA\%P) ʶ%\iҵ]մP Xw%8ȕks` Z8cUkCpZhe/㢨b3l7c*;G]# 笼GMȩVV@Br;ߥ74wCJTPмKtUF ~ ^{DN_\e* 0"fJ").SMmgWXw>U֔+[`gY jц7C&"KDvH Yt55ߌOXOek'ci. r,o9Hڜ-"(bw~G2)K*,UWLV|˿ebsUQ(ucV P2BO/Tfk[`}k&勻,:ZQTTPk-݋*fnt5΄-wSf zB+MiN K'AzԷ4ˆtcv+֗I`-k(j\cꮐ`i\ gJW ǹ3h7r$k%EW ^h5D[ 5"!k^+Gs"Rsfb˒!R, m?CO_oJW 屫ɽt\hu`hnkil8`D,=Y(Hj<+Զ6.x|e eF+Ws=IPZI(ELU|s /P_>$V83Wb},/7@ tus] +][EQ UY]4Xc]$noa0=ӺuK+˰gYe-2PJCh ! ;8`&XK 3Iqi:Jҧ>;j1VmXoQKR s05|{0_?ACBo6MY@!/hg| o=srJLwCx^umȁE"mA^x>eDCW#n2nW* 2IPmcƒ׷FimG Q2F/P ױݩ:l7bUfM0zUTr`f scҝ(QbĵQ=2Z=z*ZI1,aIzy 7QO~AIZ$Y >8M-[aN2kĵ2tҾRѵ顴05W6ҙVkcVaР暜ŋDޓb'2z~){-EWog(I@d-cCnA+#3pôfd1YXd`5 ּH0#xCp3Yڑqkԑbqnص]@+Z}uX.[5sb."h5l^-n%1vt0)jҤSya{92xV߼o-W^WѪڻH/QAt_֦QuU.a<,>h yRN cTΈet^e+W_&V S.8W!*يDMP\:ZӶ'՞d-ҫ6Wx5J' h¬ܩFaffRek*`ݢl*{Z" q4JWW\2]g g@AW$ޕѨiedAWVycIK9*?Zs8SG8&ǯ(`=V'7UgXOlq0K]@^ZNKW5#-ŽW%8kI1gqfpY:a}/_u,*匶ɪ݈,!iq}8ec*N ¢V3eTڪz V|E_%EڷjU$ '>gP rNՓh5튖Q>b5vW]EM۩AMC\ޢ%\ ׫7'3nd#S挶BQoTZwKWO(LzL~'@jNlB@8Zņ3 aPtZ,8Lֿ= koTy0`ŬwEZ1+! YY^+;Ոۋ3*]k ZmӉ֦ShTTy:WOeq2QᬡYni_CkKUYF@h`Q#}{NX*?kiڌu99T.ꢶ}9c\o71`[wlZ(<X 'fCWL| $F~ާ"]8ӎ*,8㴽 UHR$iQjo`;|d,7\7sjϷ M˭5Cvj릭ZE cWhGwKT7qOAZRJ,Ciܪ"IyLQ$4rQo+?F}*@W]C%XQƾݦ3EBQt mƢ6kONc4wkJF\F7:ko؃VXzxcJ>H0 IͤCe{2K| 5BUkN \uZv%pu.dZUs$En}G4 N, Tfaa.*rF\XETH=_^оt5j UnNF mqDusZ#3=7q(MW=~z e`&}mVtm +^?inTMY'7`A64]5 ܝI$uxٳ(tuY8L,Vq<`͒y?0fnM n'4\3jb S2*ִN턶_ K;4L=3q`) O$J얗qHj}"7u{R:bvìcO-Ϥtu}_Sζtv8lsm̫کt8>'IW 5 'IUX,UVJ@w‚a"&F PE Zkm:kqJvÑ>ˉ{8QXt:ބr5X =BFX|r{!VEe__6]VM/g8?՜-mī=r| g+o|z^MDˤ$Z)EM޻Z(]@ĪbNXA@Vh( dQ!ں9ԽvTt%5v1Ͱ3NRX\,7+& /P[\tPt5?0% EOq& t;U[=O/KS~3_eҪrUѸWL,6h=(|tUAk%iV=W+Z?-*Z qձ{JWՀc)uI*qCqlL.e=-Z,` ?Ϭ(`: [}$ŜO`Z=Zx|ôٳEЊVvB0I#E8juȝ)Tjp:Qا%8f\^#]83iU}tVM.xU4PK@/ v;_|*ڍC™Əa>:%h%Y3+ *-* Ut9HpG* ؔS2X5\O9۟DKgU/FWEwBW0VjIRGѕ^f4gRn)'6,`=a0dfG;p;Z`hU Ш4A+:4^W7 h W8NQUW 8˦ct#7oO|)OV r?+Z7F8*P@i[R JAia|?`2EQLɪ`}LJl.U+œE}6IG3dhE˪F?lH+4+ϧzNT!_qQG-OK鰤VWu}yx gs"rrndB,jJNχA'  !kqD<$ڞ7zܫ-YPȏ {{`o=c:yF_>\f-4$:U3"}%3mohmu:80nA 81]gp/e~ 9NvUXCj]{XH&pڈsV !=4iC~O(*4oI מcOau "ݪteHU/@,7j#ϻZ \jM֠J;O‰lOX@U#%U:gX߉ӕ̋O5H搻TUZ;zq8t[j9] UUV,u/Tdw'Sg޾@j&EUj=X#. rܝ`d\*3W܏l)hc;~aþW&fHkkeq+?R=77Gj/R*\v႟Q/3 h2(f@X3PfbDxzމOU41;E펯3pGcM$C\X#:Frp]hD*ߋe(:mF ilR{Cځglv\R#1zLڃh!|%ǼaGjWp-0 |!mJTQ'M'JY҂{^'{qV 5 jxӱ(]-Tny?֎D`u5:/g<;<=UO/>&N7/ipCNHR9fUOLOqs>N/Z OꔡQ\Q> TmpeyEqnQ/e,ǹ[EW}S䅱VRF\SL=`*DILtMVayoXHZ%|Zg{b[4/eO𰑹JN'Tg&~Hyh,Z+a:5hQo.+߂ٚU9*{(Ds,LezёKBղj5k|E6mֵ%zƑ5w "tucd߭|uAʈ@(QIù)=/U,N=ή˳qQVu5SpWO0[-L$u[ )It E(Ъ0b i.:b\P$TgMÈw}j#p(G2c4Sq6(Uҟ*cQ#ꞔ *D|NH.'lE9g>~10ԞVU]ٶUJDݘ'&mZc`NPj0}NvG|כEjU*f>{S{^$lJAOys.dM]ԏZxN76(QY>F^iRnY`I_+n{d]5bM=Vuh5Vo\Z%?P{|ֱLiZDH%_tŇU?UX TI9{ސ? Y N-_]z~V/~tUbT3d OVV=6 + IҕAUӁvPAW#fbS;p8 |D3}=h_/)])[%E6s(r\z ۰%OxUIz=尿Oŧ,+ym,聪;nvb<ᣘg80)" ;9Q& ŵ>ҫvhd]U^ӑ@P+Wo.ٶ=ԼsnV1 2F <u/ooDW8]?2k~[ʮ"9džphuV^n)5BUM)E+ 7p?n    kDvivwe{DR|I*IS9ڸۇ|u?D6ӚϹ3?7_1-IM -¢>t,]ŗ-ձEtU(Uʐfܠ]͘Qg/ПWY؀O'_zZlJ_J٣Zըt&_Uc"?U@ IDAT\eup*"Ȏ V#FFV"=?C/oWkm7{7=So>̝} < :HjNNlhdE 2h1.Vӯ@d콁2{1?b]`)f2̋ߧe}EX(\OUVLxYt|UAÈ:W_@;"P?!>"<"@ؗݭs29xsUJ?VMPW5!uL`пDo='V^Lku2Z6 3{'cVW+)$+z-u >^Lc9vUq]TU_7PB}=Ĭ=Gty#Έ3~{WLCνwUSR Q[h_aw!@n@PZGtԧTU쉙!f_  91#@L&wK 3kOG+@̈TA)b%GK 9фhJ8%& WSL)הkŒ#ſ6]{*X]ei8֨=q6Tex3lo 7>QRAYl2Q!5TX pzj`Mjsޒ]hZmgoX=Oezr+3UOcknOې/Q"Wqzo-\/6ҹ.kI\t6d$t5YZT&2px $duN]RFf9nt\6JrNv\T͞te8ָ=ig+; :Lab<F)_3 D]z;_Fz%8~0AO` ⊰V7jjMdafbddy5ןZUѭ]U3V>/qRhLD y %?W o{.)VҔ l 6.Xa\<2ߘtMڷEkܞV(fTz4PJL`KZnFEgT5U{#m$.8;5N(KQղ RT%,?sݴ`mӂ+kr|Bڋ{KͲ#{HqVK%$N'Da)OqEJRd)EA!_s6J,XL?U6ʂ+kCwv:c3˿']lFK8[hg,=x5aԩ rE-ќhN8BUFD1aL+)2\]JƱ=(s5BKtV!rbS#`3]w6&]L[JUJ:G *ᯕ)qވVgbUMZu6zC{HSeu lO=ޣ,u@ډ\QF+:HyZOgz-hJoѪ0$'T  )*<(B"&/6)Bܙn1Z\夫stOl~#>'>}Xk \nR#C\/]-]-}Ό,.eU%PIS EɌghwYgغ}]Ծh]g=K lк1ǡ%@~׾r;659ٝB{blp*+ԙnqU@nI=:W5VvXg R,SGsԱF:m6F*й VSrN7=}%:TCi~{J6箆_t>a3y#j8ZeЕUe P1 ŸwyBـV)GVj(;ÃS 6+uqaۋ,cG>&0Ǿ[ԭ]xZS&Oϣo13UAm9-Yu(cScd=j/һ- 1C8 (\ us=ӑ׳³vJA?5&(+#-QX[,gU9\\q0 M氺*X,D@7d!\U=;;ʰcTIW(J} .n E$L$!$ NE1~_­©Vq BؾqsNjT8 s҅VUo1h55֙opu~JZjiu>My"Zȫv`pa-Uʷ*puūˈ Cf!ӀD)YQi5`YvUNयs1_X=hep15!D2ιh5ӄit$`$> &H+xэ?Rߖf]U.|a=9BX-X! rjkS5X~.[{Ez/HW#]QE&c| o^E\f0 L'߲TyMyE^UdUe͑@ɪtuCħF+h`?ٔi$d0 H|&W_ GZ'dd[bs ];*8&q{Z_پH b a7.ǾKWZ=w8cErlpg2?o񾆷0/>PDwbWS NhV\f~k%Yz5оzT86OEp + xZLeFqC-;jʕ.υ1 l.6֋yUw]10X JQplD)bt2H ڃ1]*|oJ^MZ5ۍ,*#w#kpPQ]VET=71v'rz &F .ThFO#2XKA޴ ֔hi ֽX_ոuU"ڶ*P3AEIGckQ:XEE~00N|U7F׊.Th{٭W^j֯+K=WvBNUÝBn@0 M` _WCJ*U!hpMWη]dU l<X ,/ B|)lEp8f3v-dJ*=}5+K 9=מdi7kXRnu2G+.(ݟzEl@N|]2 "]ź ־O! mp)0&H|"bMX/)no?}"ek]cVa[Qš]nőn_WXXZ˟lP Xn׾Sz+Cvߘu"[wh+s5{/&o-Պ*Ul\Rh5zEaeAۼʩZju,PΠw)k5^\4U-ʌ,eZI ,805.pվhL9lgOWɮ1k]={0\[u@HO$ν),BU좫:09 Gz2F:[ Y0FKJ.0\\<GjNAglrvd˖P?s tf-V׬>.wb;OUD4˳AmW)%/DWFs_}K /m5k.v\R]S-79Y&#-HS6),6ִ`; ~wg ;P)|X#`u%_CxS}G7}߲8gCY<jTP/(d\XNzg6Xw6=Tm:EZqjW5x|[j^(D*[ⷄWTAxx>^@\ST/+Ҕ4%]ِpgj%7.\%BwUj?5nOnKvkLD$V IYЪ%X#Z=V΅5=R, 4Y"4rkj7+26e4iki&YupvnL`9*ge$N ST] f)`TfnjEt='ev{ZE8ֻ\\UY;t5ТtY`j=-XpN" Dτ%chE)jbu%\J5n4K`4^f>X| l`>,'ZV{`qlC7~A%H/D A !UAZt\P}Dd;蒕)Z t#Xh夫p$bYg/fD+hl`ՙ3]jf˳9KI@7|"W{b-ڣkuFkUHMQ}|=&VT9 qOe@/ٗ@_OR@,r(MY98ePWdad92ѽ^YV^%qu@MS =]uV[/Uк.uLx 9f!;XtwqFb/C?W.yT?Gb`Pe CXE%\8=RVgoZuUX,%KvܲZz]ΟZ JwRfU P"%-*RQD*JsT l.*Jts]U~Tp*XC?׻v(>'?!92:RuΈDzou2.rЬdڠ+vN: Z!C^#QW6c:^VZ6qBש#Jw*)s򜬺\_oe0N!zʨhb^hx5>xYm 5Sjbohtl k*Lw\\00 z @f_C>3%F`C}v5]f=teHV`Q4qG_3lv% W:N!Po`M^S_SRlvHve8a\˨ u>bFdbV %2sTQ>nv-p,rgAeWop9c3'ā ӜUz:;YZΦ24:{z%+ 4FV=oUvr3K=2#HӻTVN#CauWz`oW:N]%h%]RVlUg+cOSm %/x5bEDdf 'U]te|w']$f`YpG9Y*%;gZU5P@ŋl<,<51{솫|ß]⽆+.۰ˁrI]SwiyCxמ}[=Bu0*|V+.^s1a6a>a3L"&XqT4P/+[O?Qﰩ m{agPo /]9#x\ IDATʏ[(F{9|Fbi6P*5딲|tVPϧ^~q?g$Y}O tL%\"8^ [+Wx/AoVH &J$8HUU`1XV3O \5HBU3]UNUg?Q3{3CPܴ͹K_!c(KۉVAWϷf2irSA}m(z^ۃyh B͎=nH:ݺ:EJvZG]Ϻqm՘Au\YMy(]UBh^7 0eT^f"uBP$5VʜF5|&[ސbi%R8bh%Z Nsz(jo.2csg f#`RQzJa>݅V=;^!vxYD8샞<}hqεlyðw D~p$Ԭ㡑v[j=mCprju6ca}KzRȬ[{2jR>+wm#Gzvt_`;sP*r @'6eK!#^lRՒՒ-kn,w|7>ܾBEս&Td:JG8 d@sU RcrErA2#>4!O&RjMؐdYJ!ݐIlnY`\唬rkSܨ2O\5koežsN[hp5=w>srQ$ZJWUZ|OhtUxe1耪E%xFӕr 釻!`uՂO|, lWUwh]םj'Qё{'&OCc5wt/Cj5|/ėlU + ՆzE%_֤k[k/ YdU x+(*)!Aj*cj}z W_$huf/[@&Ή$t+S- ]t*tAmJ`v\pU}(sXͯYαC댃N1.!Bj;3\ Z!^?IģUTk jEBqCvM׎6u)+2 {};7d`j*_C^YZ}RoUtwu :Cb̺:XOG9 |oJ64V{J]21]LҫƷrd'VCv! GE--ƨ5PeS(|DBl*_VO˿|M+K&sɔxJ<%l*KskJpg YIV|mWBV)`Rnۅ:V?H yHW#`]ыVodu% 37Qڒïa_Tq_tc/JoOArսwG WFU]yJj}/@e%߅֥꯴\o3}r'✔lꃓ?eLa+&L.H$se0% <Şv¥gkViAll2L08U%zWYKg^t#;X3jNd=q>ڞ] ?O4 #Z=w_[;ɑau Z=`3GQ\ AGb;/H[nDl#&ʨ}BSXQzM}K /s,SW)bKe@Ri@ehW^"=7D|i4b8zֵSU p7"(ƋO@P'./5k sVL(˾$%;į^" )xT77w(]c۸pqzOQj((JU+'Lgx*E2H*s*NSzI LmHoԗ_a9ce.}0nWVhuL'ɨ`=}bC{Ԫw/?bf+7ndu-lƊ]2T.1yKhNxA8#5ފjE8T Vzj5 h2O6dHU>3]/7~oxu%/ϙI&[J7,,ފe0rո=M*:"_;,eVU>I_y2$]yf˄ U)LC&Sc0_z[$/ɋ;*Ѫ5bl]ɪ]rT=pHjl pAY#c9ӿox+^+..h51%+EW\X>~_3F`de7!* G 9G}9ՆrEXR.)n)n( O~$/kWӑ%@m˄ Z`0 $L jyyIn؇l_[˅9{ixa{r>x.]_8agFj7ϸX~V*}nn'>㏼G8ߐ@<#_)bkȾII[H i.-RziY׮7Ir_Q?`=#Ӿ3ޕe|mj.ug?G>~l2kO.Fj5Dګ=řnϧ@y Dj,pNЅ$@\0J&H#dsl*"]IMQá U[ l}у9` ⽃*BR~CqK~M~C^dyNlt2 yW)7`CmmXt5n[^+58ˢf_w>ȡB?=m12ֈV,[' :nK uHi'b?0\m?m}j]2nHj@2jT5[ۼ͝j")B|E"[WyM^KJ~\eZI~+uCW^\UxP]9nAoR? 92x;SFuUJrOrojpoLW +_ d@IY $?D\L{#mFe^TUڸWUYC$.oȡHOZ0t_ϙ^ݥL$S ("6%ŊbI6]/?$O: {[\A#pUBY;GFzNк视mV,\⥺Cq,YJOm.wc>fc|t|| #] ͯ@%jbEEP+_-]R Y"*X @~2 @ rlII$n_Q_ H}C&]NAKu-Vj J1iWR:. 9Zz֓uj0>QaUUTq/n lAc-Nq2nKzO8{ኃ+C,݉Y+i~*D`s z`UK򻿔b%#'.jDդ &Lwp %,eym*-/eepUmr}9Ūvվ-#]Z-ZhtR_sLIuXmX޲a%\T[R~veo]i;U,Bgnvwda k@6F}^P%,պ:eVC誕 C!ixHW#`YOz߃P-=v|!V\콵!%]}llmJOTU{)_\x2EL&Vi:ghURlT)ܱ ڇm+cX>8α6P5>G)~I2:崫;%Qս{qHW#`~mh1]vgΐW4'T,y t;L:GEW~~w9p-%W\N0EbM^DPCVl .xX6-Ew}|~ow-VjKt5+f@u" ,"_l%Zk*t8u7T/^5HHcPYIL66]ރĪtkUׂsPW/}|Qv5uyI;pp9aoj1 $oH])*ʒ*7)KOdL'M} y;&лZ l*iO\.ﴷG~hi_QfpQmrՖ2XK(\uЛFzTYL{||Ҁ5EW]|UڼgL^롫hXDK1jd0 {^+S͙5gZF^%*ދ-Ab WlA7-`͔^5&$cwxo_]'PuKEy\)j-\*ʴU욁UYB)Y\%%+_g.N<OG:#i#RҕsBǬrՃ£|d0zЪ[\:?I357\+U?kt8K[3냥u%~ [WDeO"%BrUkݞ*DD+7W/._)7Z[U[u -[peKB⪺cW oF:t7U|5֙u5`Ghm1~V} iUՂH(Rn Q0; Ż»{xsf0aMZqAvQ-^-UΧz |qOg$!xC`N0#O=5|eg4F.@îbHߒ۸s`:Y;Cfz39"[ \audpg?UHWO@A5pm*+pu_">!qMs߭)p%ˀlu=f8Zymi8hfOԠhޜA^3E` ,XNQ 9ʩN=duOL6n#`=#^-Jр޷BN]tܞκJA+:*"adpF$÷ZcD@KT zxz"?*N*0j\XUPX+\hE/`aM Vb}tXdtvU%̲}' _uqU9ZpV.-aV #pl,j;=׵ݥ0ѹvlUBN4 j5F홪4$|U5@:FDCWao@**= ]̾3'O_F: rj0lr9zJv Azu ' ~C|P ,B80؊ı/ UAXQܒRR,?DJ$ VU[:,zԝjY *Kz hu*r{Gz[zvAtbj{HJ6Y:|,~E֔p`֦h%=>UzihBIMtKp+0m1Nz:݌q`ߒ/gkb2:уA'W%o! n~ad0vu5@l*{TWXfW!&cK)]FJzOKSڏS;Ѫ7X•DPX(-_>kx2XUʸSUoB'hc%G5|7nud_+0+]reyꕳxpj<u_6y݉P5. zF:ՑCѝtՏVFSs3)*֯Ft_}^h{nmѕ8זX.Ƣ[B*dYS ig¿J'=wv6?[8 g +7p lFjk轛TK+Q._nUuGPz3 TA0v] *Kw 'ZѼQߐ鮥W UU W.<z06ݪ|&h"=֙S ncBIy!f IDAT9|\…r6ro~,B`+yng<qppҕ?|Dmޜ݆0o+x6.UF'j]؈( \Xv̛C+sZ[A:CVp%%Tpc9mFK:~rU/}Q4'k0pKWN*$Nf%6kͶ'5%PUvD8rή)\GHW#`Z!/[kjxR'+q| j.'ܱX E+O_I~z>QO84pUTЕVuXu o̠?'%;_ )lLHLe㔯O,k+H#C7D /zU4%*J's,ؐ{dGAdۭ_;eV ʎWtX0<"]ݷj5XxD ]Cn{RV^5-TM5 .ʼnαŞ:3: =s @2d?\tuJ wܢT$M'<}k鐾C{O5-\ݰs7F83@v2ZPv g0[,Uӕ_YwV',E NjgXQ- TupzBWCj3)um L5CjheϞ-*,5rrU,ŪB+[2$\ xEW'1/ }<+U'Bd˵)g&N8UVM+g ZIz#nq:2QY#^2\ dyVZn5a={A/`<ʧFN'#@}X#-RW5TV)'\  PFQ2X>y+O%]}hf,g+Hb#? JSnnlF Vzlt2S J< ݶgEWC@85Z#outruAkFwX#2V*Wtqj_ z P W <*¯kj{aMRm(SuYS)הK[kʏkzrj2VFKm$$1$bB( :܊ )o{dZ껁~m+Zu[9jgJ][c=`>s]Gz)tu7K;Ѹ` (=IX#]I5/%*-V@hT#mY4 7KkǾT7=$*ZSXɃ6PCA@v.fxͽyjM+ ŚbIy۫ Sk]jUJz J"p8=ָ%_@`-?M ƺmJQt(cNq$<0lt+BxE$Gb } GyA&X߉aw[ T>a 2sWBaUIMΈgxҤ!VC˕V3"H͢g;&TJUS$T:WծrS`#& U]3}q9嫓'h.X|zT=eND-'~XgUcM !A{=wNN*pR:Snׄg:'_j"(sHE{c\U+[y OP`0h86GzҚG~ФU+%\*E^|BoHW', ӕsZIWЫ$]]m5Dn*Mҝ-X[wP ^;ˇWVg[& O'D1qLFQTE"#S |E~M;+#Hc5zK2n+pm'WZg#`=ixhtUB9VHVNh}I|tuz=[ΐ@o\ ,*QƙU4*ԻwnuFu8&e7H_]P +l#*wJFZUKFj_:Z̯6a(U_V^W{~/W{/׻gw=};|˔K^ -2-[$"Eݬ]I;;nCO' L7GF. D w eVΕV f"_HW-ZD`tl7.Hp=/.TT&lo>SwM9VlF0/b "~W. B^J-UbU]auw,e_t{xkH I*xaNh?ճ)wS{]d^>Zպ~*g'^%&"7pZ͕lxY ĵtF^f:>^xqp${ :LHWS|+40ETӦу] ^Khu _`I\Sϓ ڶA;6jtCDcn+ ohJ(Y,25EJҲEiNRъ6u'du92 D.bgXV,b5ո̞@>|{P? /k%bejy:R*NG*wȣK1DeյUx˙z11D5^w-nLQhNR쾒Oz+jkg*h`CX+~j.Lz$^ BFRf[ɞYӼ\]z`x4o )ޯ_b 3='j!nX: *bsUsX('!T1-!{2EWi'$x]E0Y08#"3D\bj*l/XR^S,(~0u ]>;x//‹J"(srCQ Od=S^4\;kj(y.s}U{N >/sQ]1=e}>i`tu#)\(aK:䗞pၵCso[+ V+uR ՚!\PHzEY(za o؊4ʾ^CTb/bJэ`iGX 3y0 u_+'ZUhEQp:x+h' {}T{^f[{]`U`EɌXA}c?s wNB'ܝ txKP_ jPim0R`=7j:+[TinluǩAidR f-TR[ALYngwRjAh-\w6]TumHepկ8N4@zRV/Y?]CXDu*0{ j8]9e'8 D.%RU}o*U=b)b @HOwP[ʏPT=S-W5ż[BUwSeSz -)_fq;Jک]:fٌ85'EV;E}xHW{ }nX@b&*>!/m^b?}s CWULtUtExA8{7Wh5Qhmjҧ% g&ZIJ.>jo%B@+NvD&"NPՅV6]mgzj#=a.D HWg'?gC=OPKz+_^SgT9uuwCUn=Xk z]hEw|Eo, >mhZIƲ˂p U{ℳ?F߀.Vt5(cl+(J@ywRJr"Aa&Jp% W`UET!,y!\uEtAD TE>Q@xS DY>!-+`)uNUPft0*=XDX ?_tVrTPvLЮU{Ta0?Iy{Ղ^zE o^nv|+uN҉,NO*/+~.TLxBm~%Lov^ɶi`X0Ċ("t!a)}Z2Ф;K:.KVL]O)5\hz+gA _BT$T z[H Ӌ.ſT҄iw+AWKgwieI^gfAPV7#CsU:KωVCt `jOgyL|7yUO٠XvȰ$YUZ3QY>rz\SЮdpCWM$"VST\j@օZT}鎋КkK/ ^\,ΐ6b8Е[&fՆrMQ4EAQRhP{"#_]5>Z}J iX^H y W]I?|<ן(]u#w(J@,@ 䎻VC[~;7S<]< Z紽97Q׮Yt"ʵ!0OZ4sŔt &IIfL$dNpajJ012YѸP%UIUP׼BQ*~mzѪ*6]}}}#` ZvB41\ՠUh0+{[ ?û_1+9}uu3c|q\=젫{(Xzk!eŶKV gT}EpI kPX@U_HL"&$1@W01ūPeAV;-jwDtoA I]JְkZuW%#>聧O bl~v# IDAT4֧FɀrUnvd.:.b(||JWG/8[(Vbxt586Qtٓ*0H2yHRD 2Ֆۛ 5tJF5TLB&1$f%Vq&lTNQfw\Um(o~@cj;%퍂UvL=<9UUQ=gd{ǏsX=d^#UZ셵#b5:-h]g)M(No2z*9]%zPOďV^Xeo``(DP8CT⛑|1t5Rs.ԛ!(XSA~iG`A8#l J:yig_ w N۪߯vB-je0bЃG*3yҫO@Z>F498Mѭ5U3VU98+L/'=I<iAUhTth n''-(!L 1kd3_3,|j^}b7kg_fpP^YkiAYYU:AJv ZN휊Y;COFzbo"U)iGDy*vH5G!F*:]fЪET-Ғv "W:kB8#-h"ȨjoOrK%%͓ *5RY T{YzwT,:0|0#\v!LJ{oչ7bi[h5`fd=VzL=k|yqF&9v1Ÿ>YTV_B'_YP9%"ψShBG9xyU"Ms}]i[Be,iΡcHuQrU88F=o xJ&HH9VcќHn 4M5W\DP .aN@*qjB%"u6UXn6un؟՘;V EjjҩZt.Q>ޢ[¬auݥϒKGhHT' hIWLXQkWʩꚇzFa Əյ[Lr$2${U4@&˭dWJ\K3N\gU *RDi~xMP2ԏ_O ^\d0Z ˜0qemgUX;ص-|Y\w[6{\U-\ȩg ݉.:Z-!eY .q&k<&"K״ylLW/Vhcp*`>2 򑃜%fZ\,L pKA!QAH DZ4Jkm>0gT@U!&ʡBҊJQ6Qy{b#Ps+7Q*yt W]WYwHWBF3s}M&k }v88U$IeNWO:uS+~Oqj;AWպs)$;&1Id+$ NKmۙgTk ~ /Q שQ"7c ثU9-:VUNY){5VW|AufzKzJF,UFĬcg=Ι,eV$Cb1p0V#^^7~ԝ0 C8]{wi1Vpn DLSGߊ!TpLکѧ.4P5A _ cNԆ 1vapvՖj0\nP)ʜjO\S}I>}E7ZyV^+}v#*>چRX#s}/}@ ѢScZ>g6]fAffƚ`ETqD}vG'rU=ӟЕuw`Kpb_IBI$)dJ'ı Uӗ.pۊWd%1mT%Ju“h:H̘ݫTIzU3[%ϻ8uWyt%y=Xgi"gj2[W P2QAGyI{O*b vKEfO*rdsr7;&+ &) Ʉ$%IH8&l)cZבH:Nmױ[߈˵^ ZJt/ C _6=o W@EeEhO(\D@UG+/<4rXJU+xPBٙ\Avr|sهl-1hrYjx o0I*tjcAW8!nFDDaNSW/| C[(k%SIjd=Lb%,)5Ԕ ,(_p-MμՀT NkT){ BYQVh5[t%tV07ʁ.9:<|/SҮ?zN>Qdku3Xog~>+a9}u7PZcb }\KTrsƜH-/ ̜AkjFz֡z WjyEn7-vާRKq|AWYgXʏ LG骕l㎒V`m A8Ze6f*U| |bEMAeU@sqd3UagЊG>p3W4֧UÂHBUسiCCgw]^;98ĥYT*~q,^4@޹Q^ [h+3vƾ'>rB'3KwmBTmam:WwQ)se"+t4,m>Sko=6\dOFSӮ!~+ǿ{*GOßiׄyW~U؁P=OK:JW==Y&9(%W%B84Dp'Ī)vz)juM:3 Tn׃ҩOqUNUka {JGV#]Qk>o3VU) g NWg߱gx2U?]Ljʫ`:dq l9itUMs79e!&mjeo((49\C r3a`r *RxJܔ'l`0TWnr𨦮i2Ƅ#`}^Ѵ93ჲ+\9%$\%þGn?tA=v2I"V9]*WrUe K%Bb*X TIbwPEA* Tؔ>鐇(YUnZhUrtᆟ$FD8h_Vr> cN}f."-|{؃Z `M}Uӫsq jWbk{ 9)jړ)vd9deפJPri4%}zLqѪkf n]rvz#Z SsijrݓH/]:Dg];tSGolAUQ>g_=~S](kj.nJ & " L}{P/Kk/jk$n(ߢ MI]) CrG nM2%onQ\U٣#X^(ZcTCpz ij}sƝ'%M J`#t-a0>W=^G?æ!:&J --*춑 Kl` &WLS"&$$ZΉ3љe ˊ,(w(m*uH9Ş=2r%1*썫Xj%պnѕ[}5dչ-c@/#]1֓F+75#fbXYGjEP 3;'>6Z}{U Vf[P%*Go> LIL') 55%Q) tI(sʌrR7EF)ޓ/CirgVlbU=%sҕ.|a|iFcGA137jX#Ɣ%T;`1|սWЇ]EC+VV}JBZuZWLϙ͘NNH҄IBff1*K6\3=\oP(^{JU;YU.[PK!YӮ86Ek84gEW2E8X?.f^|[剸L@wSN?.8>>Gw.Եjj}ӕFA *Z]՚96T SDHZ3P=u UP3=YվWfU_vHl㢕P(W0o/t4'+ >jW5Sx /4+Ot{cD5<3U<6dCg=JW Ti{س.z^nQ77duՆlCTBkrvf >aO]U(]=pWl#B13.ZaB0{ U_ʝ!w<]aO _ \qCcGV.Sӕkl-J5W\g̮-.ΙH)tJ|I !8G*G W+_ߵ"x+0IJ>UU4PUן ^bæ|1F4#*6IW!T` bHsAgMһ-:@}>V#CUsvU8Rbs/_1]021IIS&sN.u)P;AoP }ZnP?sWwke>E+"2(Q8}l󏁮c'+G0!hmR-ZsG '/EWaVssyx -ԍM;cOS%j+҅cשL^>v61?CVou WWv ^ U]սSyEh[#&pڦB R}=xT,azFxf5x_l`W9"TI9/\yڡZ W_1_0#/"yArMrIrIrA<'̠244{ !: FݢwoV޲vZV 㪆;.[\u?c3D@M3:i0.5E.: U[NZgܽ'UOٓG[UCTpfћ^ ŪBUxfU1̾قٔل%ɂdN<'h[[J[r +3g )[;\ hkm̪~Kk]C!m=NW#]+R#`}HgkB%*95f?8ǭcDy7>R/O}ؓ&kApS:GדvrK rS|5Kssff iL $ ,n|S_7&6 ZU{ tǪ{҂] "t1kB"31~nt<}cuN:rCP9tjڌvm;^8_&ҥg]) FZ."JYc!$ħTɜ4}n/B=l6E׾xB:쁡Ǧ*f2Vv: (I8ʉ7MmҜ&( IDATsW=P*rIy~CTΧdZsq{CT[v;kKY=Ƚr*Q>蕬ck]1^p8]=c-1XU&Noy`JgF˃᪲cBEV_t>;ٰ;Csa=p젗^}hȅR c-_(055sImw&W$?#4 e5ܠהo\;gl7lo.;7vm9A|bj1P7#MZѱ>.7d1:ֈAcɪV9Th:hոVF*Jvmszj51ꙬgtLznt~ 0VKjʷQLQg"apLKB@Y G(w]wS%mrK}Cŕ[%c.V׻g*z;`c>V^jr}c>5{zZ}3 S}N)5Q$ͩx%YGEtoЕvL١NP&hK;}0u5s*m4Ob3"yIrM|ydOsJQ ZDiߡm'GE s{`fВ{T+űq4CЪYr=vյ1T5Rc| ֐ha}^ڳƴű3ZaG>L!9AYnia8hGW]P従Й'>?c% fsfs zK=Rה+Sk-G;IR*.I;3GaoUwEWjQE+R)-t^dHW㤑c;7zVHV3s^_rsiVeu*E%OmO5 svUr*p=G-7qhCWk .._2321MN$W$WDS-wrQe(GW+r%])=zǝnsnzWfPN'9{%Zj؎)j1h0e *mjĖm 4; f}\tgV0 WP &aVSV%/o6T_r+/ϘϘNLSҔYJ:!PT@ʨT[QmTKߢE+W +#6W*zM,Wun%lH=HWc1cU+*0S.ww?l)VםBOr;}w5dr 7/<*SE$ָ 펿wnbQse1DDu{ix'T;Ⱦ&<5OX|Nzc,K7ސm%L zc|+pϲ}8jeD1J.ł)S.baMs`]YTĪ6Xɱ)pXJUtX%Y Z!,V-If_"v'4WLbM"[ga5)6W/%k& K ͚͊lyxºJa*duyz! DGaj1F:g\~O"*rEEf^ #xWŧsUO%VOvINJRV|E%g6_Xw Ŗ|K!+tY~7roӿd5T]1<@dN:'(Jm;\ nWrZ}p s<:&gؽc ~vOJN6hH<& rŶ` 993my⏯y$y!&N*st-@ XEJWAdxXtoL*Cip3_I9+k+ChN4'4ΠՆ|MvK"{߱ 7O%5% 9ɜɜ,c)tN zNP)ŌbN69pvU'XTJSUma3 Wc1yAUXm:gθ-Xyl` OSTu3hO⥫hղNf[\庮>QkPr*GRV/~FztN:#3WD ahs l` +~?Ry>2[AŔqʪ`r˛ j <*Y^RVk{|ʙ=Wc1XK~m{V{n,3)?bVkz)1jq\jѕd) 6]EH~sW 3 ҔtJ2 zAtE|IC[l![r.(ΕjcL C$K뛄e`qUUPMa{تpذd5LQy( h<G1Q5k6ڮJ:yW_1{bfջt=\Zctu?:I*}8%v"\r嫰Z / + 33T՞ ɄIBjGQ\Zk]5BH/Fՙ ex(*m#V"ʋVGek.iH1c,[uBvȱ,a lΧ3=H c݊zD4쿭Qqs ]hEWLoBY|YdqMY##{s9!(LT@Մ4a2!Ṅy8#!{K}Ʈ`lیM:gffuTU.'{v[vk6k6+6+7n}o-_rx2pꄆ3η1비6;9#Fﻏ8b䃮I{x~0W+촠5Y#۳ߒmm/پf{vKϜ7ὓl.Yۿ>lq@(m(9fpϢwkz1|t\#K]"HC]klajkR|2լi)|Ud;^"B983 }_ .j RuTL8y.ibsU"2ؒ6d[ ٚ-[7޲S;_BE&1Z Oܤu}"o{Aȏ}?&!=ezlj1F?[}BU AK= Z:0QǍЄB ViUéV_Tɧ:JV"a9XM>2Pp̑&*#ŖbKXmدVnؿc=?I0} TEu222T OekJW1N=EɆ1g-P5#`}NYt |ņОzžN?utIo5 ]>a(墕kLլ!Ո{XM.4Of"#s$!j MTM>S)ف-+UUBؑ=pUXߒ/ٿgkvݿ9HJRUj%%Jd9)Pwt/mn %CjȠS7mv8e'ڝ|{)1C1}Uc1֓Z!}#R&J[2(Lk{S:]cn|&:t%PƶHK",Irq-# ]hV79^,0id~pR$L&1I$bD$ .-*-,) jZSPK{w?P|Mؿ>fǸHHizV03pXSn HVcS8j Czj1Fz.t F%;ua~/.{=z8iuXML=!ƠJ\cj\ Ҧ^ hL&aa;#w7 v| UiB32H#& &s&SIJ2!]|a*u-5mk3f Kx?77_v2Wiś++3m֏݉Y;hq ^ o;#Z=St5#`=;B+#%N9?n,EDSRfDŽVKDpėSg\j+Tݲv+@h~ZM5ӖZĆ4b&LB&ɔdF2%z Bh4l᝘P2S%T7_5w#loJy׽.ʼ= 2ax7jCph0c #߁@tt4!MHW%IH2Wpm"6Xbf!n"ߑoɔК2ϤqnS^8Up+ B%Ϙdztq=jM"=>lG:qmqj1 @+ת[ҕ{c~gt:|/N 窰C8캥Ny[\l̠;b-ONMHjJHc&AJ&I5ITҿ*1PJokސg{rU{J'2J9?f%x fW/-^0[03TbKUͦ}V#Q1#`=5]|/]fao;1ַ5 sgTnZ D䍱eX򮼂kнN/رm p$%*d1EӺ*6%fDU87ɹAp-(z'ۓ3- %v߳TnNkJ0c)OI^$&$$ Z_ g3x/5fx~#j1F0%|n1M).>*Deogǽ. așC^;:Ԭ~ʫⅪб: 9kZ,`0I8 _pO/9C!i}HC&!!'TMTbƞr誆)twp -6wCvʯTِvfTe/]_nAl̮.R'] Fc>d4tb5As>R4U)sxPZ '}k}?c [^jͨA+^UEӂ*WyjK2e y 1%+ ~/n&mGM@_H&!i$4#;*LA =Ŏ|'jM&_ݰ_ݰ{o:QkلZI* |]#C_q#uZf_ԥԼ͜ ¨&#U yq*W\BkStx-w!}U|儞;#zUv~F+٪/Ŋ[-͊{Vu8ґ'IVƬ1cg_\@QRSB*lq  v&Pr cPPv@UJMOU{`C \zj4^Vmkkalf71Dc0 2RP U T.(n?PU.\kJ`SKjUtsD+R;,]IJ7ܼa3h.oY~\;\cם_8̴f)dvpme @Qi%Jz䫞wuSP:c= KS}2׼hq0uQȧ* 1ym{R BM9C@D(9*G=jڢ7TKȖh宫=$ V,{U^[ {ux,@̄Az̖#]1X;lKɆ1nvBX6sb>]8l!Sz:<;:jV^%ËYRͯ0#kkj55V##thLc=-5*GjS>bOn%o=Z5hL(2oFQk7v#qNm[)=U4 q!R޶"/ {'@GшVc1騜_k`/?J@Ud]nX'L? A>r*[Jjxl\jf׸r_dJRm4 TasiF`J{(`ϝ356`%*3P#P[ԆCW/T[x ;9HGJ."X_+ԖbMB%#\e& zoZk'?o `ҠU6:Ĺ(yn뢗?y׽t=cQVf#I (c*ve+ta]Ǭ>UlUt;ML5b1o",$JdF!TF{& jCFݢޣn(AxX,Y2M_w`iW |jlU _Sr ;<4S|v=fUi|]E/'iӣN-#1XO(SWihYasuo\=\ժWܣpG,zBl*U(* ?s/͘$8VG0 L1Tf55SJȷ7A* jXRE}CRi5J 6Ъ IDATVc XRXXw>_IVt4 )6sAJزw=D0X PN"']~<c{ p3W:DGG.'*2:Pm $@B _"}BѴŽ7f/b~ٌiB ԮJ%&(65-- X߷sj-^zJ ^[T|(}PU9# إNmJV B۸)SJ4ZzpIH?c1' XhLѝ^ AiRINiKXU*o0v*5ε^5g\k..X0`>c:c6c2MIDTsܖ"W^ϊR@&ߐߒݒ/nkT‘cPx>o V= WMxv J69i_Ui޶j] l=*]P5c(+z* ©cEjxyhE/ZE`P{n7*nѡ/S.>cq% fsSf3SS)iJ w]UfŊbC%7Sb[d߰?}Mful҇5ac(U:vtOKZ~g\ghn $W7V߲VA[fsXӇc1Dk.[mN*yE[D]'N]5ę'n*IV]OBDUS~a{6(!Khuf,T勇TXQܢ(~俿T-$%(퓑4$&m2݀nm.h+o⪖b*X_^s)H-`%7U]ew0|>X#Z1?FĪRMZ x*ނ8CYCK:t?mUvuvk\`d#ԙ=gL \$hy^]ëZRT[TUk5--zIqC #ݡ/|jʭ UVV<8VЭZy+Z2_PJX.xVJz8vzvq2Zh[ +Z[Fc1~U:P TۭD }f4[@\zѪU[8[UTm3m~>Y_|A23m.}3mRJMZPZQzG[o)~}gUp`H;.Z`x!iSK_g%W´S2Ve'y5_kK_=y~ _\ Pm+7;>'_eOKj1 `a[lMN놓6,qq}bNH.GM,{@*&U9'S얾3''+V609`F,_-lTR-Qws7܊9ܚ!\e^ š=즓[e}Ro҂AjcUOn̯-mL~'QZQQ.=M;EЪ둱c+JǑ&&k JQli`*k/Z7_ Ⲕ'NmMM-Jm9ƿ$gWpMpp!jN,zg'9ԯ?;ʿTSh6bFdd*aСEUcwvR;Un͋CJ\|??:,sj%zNˤVc1#`,m6Ev%;dn$ $[S.WlRR*׎T}ETqMp 3PU6Tl{seP庙 Bm0$-*|""tBIelKW_dK3o[V5+ߞj0ij졫Y=|5cpa={a6WIy$KP9 DGzfvN65ÕPR%_B>#>2w Ly'f7b{7-ߑʂx7Цi=+w)zн5P;(tN$ _KWLH|K!ߒmo6VVllnXE-tՠUkFc1F:s{[˪'6,RC5hA4!J"V)]۾Kj>j2ä\Fe ?&ׂNPVnي|>?HV;,V}Ti \ w2D.--+G$%[o]Uv]J.<-ozߘ[k+6޳a77~s3r]:< rl2-CtBIU/',;tl&b1.^td3lcDU&~ezpUܗFTc1Fzwao*ЙCRZPȹ*^S/eA)|C=Un߰{[v%u_YUX5WӿPO|BX媳@eZfӢ"D8#&p+~xQh5cAC$!G >qDy/#J+ Ua}J2%Ūoo~u7(8UЮQr/G3+얈zHEh5ҮX"=: U> yA+k6&]i7>JUq22c1ֳ*_u|AUhvmL%6Q%"1G,%@sTړ-nؿa#k&7Lddt"L5/n5P|CU-:ux j*LsG胪F:XsU U}:Sw5ܗac9\]b8Yc{:SVqsx,PUSnp*Cg=jڡvK'w`G vp0dbe[t԰͎0ֽRWXVW cG.}>jȼ5)]F;MW]_lc:xmU!ZM]#^˦ Yk"!OLI<v`X8CD֫K5zxM̼FMWQЪ5ڥF+!ڒʺ5dm]hU#*B_/cKG֫r>l/q{m\'kоID-RڮFj1{G_g2IEb*m lYWPDGQmaK hJY{_L6zzCJrUsJuc'b */Z?IQHW&߳ bM}\W?e\ I6nfo//Z1cw4YϦ2SH6T\E︛ "!9k] OV{6U=O LN]FK[_)Gܴ*ի^XJz)-k+ztLB;5tL^7ITޔ0GϹ|⚋+.waٰYmo=F^j1cvwTI-'޹PU KX%#J \,$3L} j [xO~# 3F׻ JN /TP%+|t֧WhZq/$p"!Y5]9?|3^~KY\b fsfsf3fee=0NxWe|u3XA5ckKJOE̤HrN AA!pOaB8ӻL5zCyXd=L]FT;PT]Ât[f뉁x.Ҿ+/tcUϱg};!>Oy[;pr-wN}ILf$ qB1qtpO!QC%[xC$xKQFc1Fz7|]\G* X]@Y<\+BE;龻8Ha6Ԯj%;xCG߷ !2A qXjkw6S)ӂNuUYl{&1{%b|U= '266ja Ae<̠V`{y{/?1cw`#/ Jm HrN- sZ0+mzH_PTAjk$[^Y>r<'9(6BX{m*䨓(i;s7$T\v;Q'o:!sc1q*Q%qZBйٳ,EnCHPEo}X"3 Hp^ڕLu:兎n<1vvT+ =\å=0AAS)2|Keffdw{ֿ1+-=(_1#`?h3Z&,X奫>w!)r)'ؗX@^B-j .EoV]Ņ3ǍVav*[ VԁVEIǪkAJ@|$뚨OC+l"mvח{mBmo3; YPsfrhEo{]Ǒ4;ōw&.]33Ҍ4^<,X+`7~0],kw%z.=U;qCč 2ɼ!@D2YL2Ysw(*XOZZ5]ƪEWQj$:EgF,6('*ie*T3T(TɄJӂYjNI#vӠ?q]6TmtKAY*d ֋Tu[nj$$>m+U+EQT.˴bH45*S-Ҫu,NJW+OU}6"װ*H̝dOw˥"OsG!'UishBA{z~˓9ieL¯)(oa-r:xUzI+ ) U+EQT4۽R64@NtA27紸9u\s%UR,>KQZJ*MX8<9S׉1`W{WyƋ{FY'+[-oajkWؕ(+zxUVOcU=I^?CRUí!:VR ]R4~TmQKo0m "U*,4i׮yQ%g,$:bҦ1}rD^5Fޣƅ(*Xg#.`{VIʚb+NĻ{>ɫj;UJ+PIQ-vev`l`,ʖҗͲݰZrN)qL4˻jCUN"nkmKXUK]\5|*tW/0U{-yXZ׾IjUҫMkJUXZk=^ ۾EjR9^%5~3i]v WɤTbbĺ?Gt,oWٝ+zvێ!2@%PbeD*u/vծEQz+X ٝԣ< SRlŅʯkH[].XƴI~R,TC&c sU쵫> 1lRM DVU,%N|+EQ!XiQl iv9O_ayL+HĊҺ+cl7v8j:9$U%UQ=gn%bSUŮvxRuOlLk9]pUuAaaAA@Z5ͮifKTx[,γoP)'@Qo~T~PJQ&wZBdʶ)VZl7r(`6<F<[R+*Nd{jVp牢{UzR7ͅ^%vUU;}=FÀaOg:& Ťqa1id+n՝TL+EQA()U=.KN9ҲTvrfNKJ[(]ZXIsf0>UM|zUt jf]nS>\Yfr;aCУ{DYB%d iDƤ>q@DלWiݟ{h)])lH<;6iP&j8I=vDm FUZV\wB|oo9VR7P,uhkc^õY/ ~-O7)YJJQ$X,=:MɫBQ$XS顿k+5+ϸbYRU z$ ΄z6o/x{OŃuLEZڝ_ i0eáKl'/YB]#1{JQEy9_֐ڬ R)#RQ]^26UmȪΰ{;}I՞0UIj*>$8RpI͊*?4+;^]%.u:ډ&0iwrL,&PY`ɱN@'(lXBdƆCG4:nu^bKjY%t{temsRuH IDATExhV?z[MjEXu\Į(t3}3pf ڗd X G?.6s,EQzOh#;ƫtW5^Ebo]_嘥d t CҾoWwPl/K|gC!q@n.X!,ܫ 氀%Y\&ΜMJEQzNy go㺦Yu6{ ?+;_%d5;Pj6߹_ZfU*>jVA]P_=p#N Kb+Ά09La ؐS!;tUWRujW`=-ːӽFU7?c5?+uAH||K n9]-=Ӊt7vH7t`w_'ĹL>%ݻUʚH?G+EQT`R)5*$uӲɷ:BWV I>pΣJUtI-EeNЫ8-s[1^L/M$tS:^D\p*dffbb`6r +XG Vfڕ(*XOKU^~*>-_X{Hz^LSmBD6ƮLwxmumOI,pbrb(Aı՞@pjRJQKulj)^i+(U{$Aiӽkx%n;y}_"<~C{U|APCҫd{)-[$6 \YgnζxVg(:c(*XO]~c|qr+Bc9$ǿ9W'ֵSZJ3}{ɃUbJF|Xk6 |ǁ5w^e;ṋ̏ h,EQT̬ M4O'UIjV \|(ǜ'=~WS`gaT-1 \A1LUYZӶ(Uy5,'Į"+EQ#XكvԳoqiy{/k-$nvGҽA|>_VO<*&f<38(69mL b͉Dq{ ݮ4?( 3cߞ{Wrp|2-!!Ǫz[:oЫU=7^7xjDoaJs#UYUҌdK(MYI}TWS[?xQ = Kxrz_w$]/yO[;W6/̊V/i4|(yu+jJd%ÙѩLLJ:j V\Y'Rm4Xj2|Ԙ+?k :v~c7&c\ h;#WuW6-(vpڕ(KFph+ji(ߦ+j28)~ U?!Ѧb~*:m3'aαK\U_ !ȥ`?I]Xլ=yҷEs:?.X^,4ܝiɼvZ)ݧyiڕ(*X/RepkI\|!; yW**VSک~ v( K?~VKĶcZ,٢_K݋ZGu)\>_m 6Gy SDaޚAjxɠj(y VECUݺ$V9bH{A?:dZS=8{gznͪ}C1Iu7}֢]"j>X%K/ Mˆ; v(dC̬7_L ɿFEl/m-|8ߦGE9\pQ4LR}JL~+%Y]mX/Y/Y/X-XXMY0LoȐUҠg+ _)].DCA( ps?M9VNjr̥Bjm?P~NaZ6oQMSlYXNY޲V\6(`=^ j3q%{ousrSxN=SigX~CJ]uuV^qGEm,jg< Ὠ])`\KBɽ*O}>oMfkT˵{3_J'NZ"5ūt̊>tWI:f݈P+Uyo"Ѣ+EQǨ>T&6XK[/:":9Ϛ>T˯ܶ; O/Y wvWTlŰ&pc[Tj=Ɖ(\=|4ɚR/fd}>:T?nQ:68H~م5M@:f@S 49ЩTm"ړ3[ަ Ct3YJQ3, : &6EP qi\6 qũMLs]*ٕW*hZ~cdg_pK-N~j~mBn>w|l=؞; jF( ֞id/VB+ߊ^S1Y [Uի{&3-׌'q;JXY̘MYw}neºdWICMԖEWjT(*XREbWɃK)n񒘞_=jƮ\!:-?狯x+&'ƌF  )5%*Wt?. ӹS])`_67GN^~\NbsA<׳߫vdW-yG~5 +#C#}͚8,-FlZ>OYlj(uP #ZŗQ9\:z.t8@eTJn9N1IDf>[w?*).a$o67ŋsiGNS'|& Jk8(Jf D ,xE(5U͚:( !h*{&]oNx__KNY 3#;--24eEʆP:( ñ?$U[^5?d/G6bV(vêڕgD#AGH SYښqq NTV'DUEQTv| o|o{`:]q,+kLJƫvW W?ܨtk ˜?u"];AS(*XOjt^OG 2ؘ1'MG)~,&~_3f4$ɮa>e6w+kՊZi_&G*(u/ǢY^G^0 a *O:<{^<.Q! ؑvoxGz kW  wjrbA4/]b~REQTfY'|ڌ jFeP2Ѓ0&5dWL//_10b4f8b8d0d0?'IجXY-2Rt YLy )xVR+*9VW(`=MӒf2kjiF` +X.|6X}28%(/MkORQGܖ$1N[ʜ% &| lլԫ𕪕( s"laVwMN0[6 Z8ՄWcIrrڀ fBV{RYEQAp{?s˭SԡHP֥vO2\+"XaֱؘbX 6ah G` \+Z(8q F0hԶ(i5,a7G+f+Q=+6S\7R1^;ĬD[Vkk++8)7|ovU~0vt EQG&37 r`fN-x0Q X%>9AK>X5h&'19᜙Q(db``>ez>w'ڬL+C/Qtv(Tdb7]m/Tj2i*+>uv *]'֟$n ׻8yUbzƢKVI*<7EQEQ:qF.|b݉ED/%{?COtcU\)S(&SqŠTڕTEy8/5q쥺/AUǢ20iHD#$X&lVf`Gsz&pecTVȌi*h5D/ Ԯ,v֮((<EUX\5@R-jT N:K ܫ0X3j˷QE9{1:( #Kid.XSʭ,bt'-VT[VIWuhgķbsED*MiV{53(BX@E,&x蚫Gk] ^uZ5ٕ\`971;& |'X~;J{EGdVHĮ4(uAd/-ZT ~1zvuƓ{r{`dD|QG?fk׸ݝ.' ,o~` CR hY*x++EQsbVGԕKUiNTA, ȱJR[ة߇_s3&e|p7V+V sY=4c+ZZgdW( yhXl4Vʹ*(U*=VuOx#&ozhш'ܰ^Z^WQ1F6bUR4G/>EQ\Ѩ l"'z㕗g塬TF|Ql/ϓ`v[r,W4ˣV?1y5+F#F#}z-AL%d #Ⱦ!}O?xNGHB(u5Kq^TtĊ3ZeYb,eNrTE웊u$6W=wc#9>n7u qB ױiՍQzDEQ XլH\YsI'OzƫkzU [+U%B| Wh`2tBxqbF6 S'>cLbs#u( /Q=`BVAk1Q'S 과|'[jQUO=v;,x j{p_|upnz8㓺D)QL%lmEl"- NJvnhnQEQTάY)WҤ6/&..?T!7z57^q>`G, m<ܷ0hn % Y (ceزXD762!4 XGFú&UWREQ5'W]&W0A߿.a3w3s==O`5K ]"_&W؅db|3;XF,67nOw+C06Q\R~9TEQTPIxNx\UF>C! #࿇&|U\|0xN:ae"_EL&Ӕv꫞ Elu#Whckֽ  X, ͖GVeJ6m_TQEK)\K~{INbB &䁫E!)ShUj/׬6;o^3"j X«rMUZ]9 b)`=XGhWKX,aݔ:* b'UBԟ=_N5Ruoys&f|h?͊͂Ղ.(wf?A 3bhḁUxA;lQREQ:~"ok'HLPt}au_;e#YUrb5Nl"6N0OٔlFm̦,14eR=W- }n+(*XGsձWb4^_oDoF9>+"JWiӰg 1D" 8),$+09U,Ҕ2pUV*>OMG3Rἤ=1Wbr9w+fu6 ^;ʼnp&} F"ې$Μb=O.T^5=ҴԫEQTSN ;ؐJq궤;Cr6{Uiy JjՃ-l\>A?Vl JXoX6,,W̗Lg[f bQEgӂ@[Ux)z+(*Xm.#'V202uW-=W=ɮj*\1_gR` Cӟݮ?b  YXX./Ϙp-oZ^ UJD0֮"?FQE;ԇM/t ƱbU/^;KSR~)FGV lt3n?(_ Y̘0>X$mUDܲWԮEQ>g^Լɽժw(/%u%~nk: IDAT3*;p0λ;"NيꫭNѫJ+[uЮZ~SEyK"TA9|NͲ.UmTUGV{j[\V6L2S,a`X CCѱ=I^)U+EQE 1}!J֏U頗*K<4SL''ԕ^2jhhȰGPQ,cffda/xUVRA*WhZPQEyaXʶDǒ;7C?#ZCEWͲ?k^]3jxȨǰϰϠˠo:daaM٘EK+*JUYCZgWMWtXQEQz59u+~;&2Q*`nXhج<S'|S޾ɘ!>>>...lB6[b# (`u;WKDa{RҎgw+fۣAEQyMk?qݑ+&AQ&C#wy8n]cZ9]+JuBH6%!vV"z%ZԼxݧXoj(r,ڕx|JCA\ \,WG[ :%۝\^\\F=g*-يtA2'ޭ̽k],;-ZR!U^^U(*XjW"jWIJB\5nE;wrU!\Vd+EH+#֮Rhg? KQEy%*a3v쥽v]j?H|g^ɮJVtx=.^ 2%%ՂՂ՜-f}k.V?Q}IJQE3UdXT&iľ+ #Yl#'Qj=jWR/m -'֟v;ӐՌՔ ˏ,e_YgV*vcOJh7,:( #sUaQ8R&MphLwR=Pl1uBȪAzF|s;:apƦƮ,rU~';9S2cQtƨJ"HRZQy2+(*Xωrd X7 3U+âzбru+٧+"#R`U.pEa[E]{ZjبdTUz8jW(*Xcl+)3*۳i( D&Pю{^'O +;tDVViM3  +-~72Ivj(`+R+ kh۔tgBf0'?+~\Nh _ʪU`ҮX-0b1-9,Djkj\Y04U'(4 #nNIL[N(W)ܚBoqac==l`vv cHMsizҙ5ryU$gڕV-JJQEQ:υprH8y ־yF4bo[#"CQGO h`o+j6”۶`0TM{\,5X4+,(`6=b`!rR6kjUnmw+S61jUQ˳_sU'-Y׻NWi]UZFdݕ( Җ~l!v4p 31Yfs^70Gj4{hJNVv,5 70ٜ#wK%-]*np-:YQEQm&1Mc6DO[n+^U?pc*h}Vy𧢡ŵê,9ٔtZӠV$Rv+EQ'NjӦ%榎)VFrJE6٣t<(v ; 翃%W&Y8EXE"[-r,LԪ֟jcREQ%Xr޴Z6I_w)Eڣ@ԭC6DYJbrIӺ[]W8 K5q8cn`EٜlF6%!H=?]+93;i](Ll[KW\ӽPHvWknbԑLV4=3]VmCƟjMEQKzb|WRg֭kc5Xj%#|lx5|?7d ̠]kQ.Z)`@^^r"(}BXgq˭^Qim!/-^ͯ&4\M/ GXJQE+\tƲJoJibWRnqs~]:"u GʴcZiB?ӆ7fZڕ(u_3SpЮeLI3D{sAeu[IiS6g6ܳ0ju 7XVY-ئ9 ^u]Z)`}.D&{anpZ,A @/]HEͲ950@ ([lf9oMҤXv BW( S $n0&r,v%i]o`-&3fv`DbTvt1RREQTN޲A72 ̗6Fşu&WN1 bP速ý>zPUEQ5]]N(?U%GIQ!:rlo}j6E'R]_2%迥5+:c:#`?cnѬHU)9?x} wEQ,^t*m}FSyB'n>;׻vm1O8M%d+aW;f"'7®Ny8:( r)lVD+n+Ooӄ>}ou#y6غ@(Lzj?:KQVU|Z4KKQEQzfxZoK&)=ߧ'ժU nsj*4%MHc҄4!Ic$"W+]KQEK93;2yTԎw$E=Q+W%XR˜- d19[}`7_39,ZH}G`)(*XIUnKNn5"-KYTޯ/ykrMr9!qî?t ,g_YgV{VyaM( r)Suib'6qWf߫4jcZx (tWu̷rms7~CT- fl`Sg +EQEQjchɓb)}C'<kBSoΪ*1Sm K n`pJUB(`}^$=Ҩu4 9~q #)B;'7<2tm,lWZ-LmYX|MvuTW)(*X$jQH`"(U+^04R7]ynV,-vj+hQR(`E)~1H^^uZ fW02vUuZu{I`^/?A]QEKyOBUJ҅%,+IϪ+;ʶh͊bxEs7:eMk`6eovvHnMmV.a2U BRky- ( r)$iNUʫ&jWM#19@\f|phȠϠG٩Vkk6KƥB˪U+/5ix c)`)=c؟׳Î!薴USJAzj8yj ^erxxhȰǰGˠKKbNu:dIbTr bMHQEQTZIob *Ѧ"+V.EZUuK\jՐQQaAV]zc.-QD5ۆG'ِ GWlS*5Eشڕ(0 ev|z8o\,/,#ۚtN ݕƻH$i0SH)(*X/Թ->OH8S&9f#_YHѮ|{_9#^5L Z EtyL #SҞ4]5aų}u(*X Z6Vd03 ՁWp4)CѤv% xEp{x]^/pXCK50%Gd?ސ|,`ٺ8: k](9((*XO'!ۄ@v2N~i>mC525m,wR|/3^'mHdr@KzU\)odWREQRΦV4ĮJ+v0:ޘIk^e'%>/kWvb*sv's-Lnq`fj!نti$;ƧyFծEQTyUZ5yr?/LW!+;koZ1$)L6e \(locNw]$ 8$[Hݰ]~S**I m>eRREQRUδJѦ'|Qjwc~ [T1r|'[8u@<V!5 %[~M^.ZHķڨa)(*XW5V 2*_!VfJ* H=VƊ튼]ҘՊՂŌ_5l+YBVi%9H^L*(*X*Ug֬5FJƖJE+QG԰+'*b={q}`J8%H8Ɇ?B(*3i!Q*r2,u,EQEЩ*A-.+ mWwvK`ZQZak~|b>d0]׳4+ 1UUroREQHU'o׹1^>4ĴqOMJmoZ恱j-CWf'^`alM( JuKcW( g!Umj1|igiS5y25?†G& l ҆rӲsb`9woWREQRٮ'5?F.sLUbL+Regz}hdv(m[yD8V\뜜Zzv(`]]#I,D=*^lA".ض춰]F2L+:&EQ,!?[ElIܷ|!RV+UM­h eREQ,Ue(maK1z`z_EwW+\]{l~4wJD׫*ZV+;~P󃊢(*XCUWi#[ҺFzhWs7+z|0[R`ZiVɮ]K]F֚JJQEKyٕ[gN%QD$8"wB-тXl)X+XۆQM3ѮEQ,jѯUWԡ'tK = +kF)!& 焷o,vmKJv[kJQEKZŇnmalWnEjtzr=7k2^52:Fb%%uX've˳~ -> ڕ(u6jdǮJ^U+n5qygscp8C>΀'Y]w$sr`\,g$b3USr%>RREQT.V}["Eq 3L|I6dFlm{\)ߚB]vUνW9nWV( 㨕M+Jk+oOTqE&ڱjWsڕ(yyҫZ?*ܥd(jQF"RiΡy86v(`p:M^5ٕ[ PyƱ]F±\ 'lI"[-s[ ])d IDAT[:A*+`zFv((`qcٕkUg,5s;ƴvŻř^),`S |a[ fOiq I4v/(YUzlT^]n3u+@ -XJٳΟ]K74^%K(`6]HhgJKSHU)CpN8xdYLFIFn1qx:W-REQ^`5FW6^y7>}.3RҐ0d I:beeڰذܰX0js <.ފ`z< 0QSEQ^`=զ)%j%.7;&l7lLT^A7V,,&蛜`Ue풀yQXO}( ֥%^ݾ VyuWC3f`"URƫtvu'U-NX*HWWt"#g.TEQT^iӝɮvv\&^076-ٲ hGv^ŷw1 ` ^1%SU!X~b~7˹֫b7+r>hBoNթ٠AJQE]B9Zqh v8gzv'2z`nOZelVlll)ι`E^`av2tSՔېF[ܣ^(`}GdnN W5k~ ^1f4f8f0b0?m>͊p3 Z-NZcsT~Q9jQ( ֳ훶+`]t?߼fWY1OC!H]ź_jOX|o b Ͷ[BkHD+_?qծEQ3g{쪔(zum@\pbQ{WHnٖ'v$i 5U>V/Ο$Ě>WHUɱz%jW( Ž[mJc]gDvp֮2#q #|ZZR6&hLN Rq3-GJQEQzdcWKD:ŨU 걬`>nLq=\' -Ֆerbbl [XVr kْCXk oMx\)|}l(uqzvYqEݜRWO_ 5}.tR )#q ː ^[393;iQ;cr`mLyd 16~ Ӳk ' )®EQUmԪjWn]!WYWZg]kk| &IY.Y-X~/%4"eosyrMvKx.lC5UA]-MXcUS2씈]"Dʭ+^+e(GMŐ>GW(g*Xw+Vnrq(`=W|rԊCWvL{G’ӝqʽcPiab-O]ժU$"Xv_mH5t=O;vj}#liV>VV+(*Xz-iqUۜ]ڕ5*O tE]x>n2lcF.[JH#S$n] YHESқezE숮Wiީ;KQEQTT /J'˵{}!𮗨Ӄ.Nή2۵S(1;1ۘmL/$Ji;6;/֫l3vpN~ hQEQEEA*U2ʫ]ѱW Zu HWg |n|?nHӻT`R>䠴+_ڡ.&7O95u0[`հPkPQEQzQj6|m.fatDŕo҂`- 0^>nI;0XU&Ԫ,7ypc.&/CYㄉNڄ4(`=ᵸm*yguD=눐 L9Nvn`JnI `\l7SYQJB٨$5L*/=)4#RaT-~|G^c)(*XOWhqۃ/J. *5{o {ٱ&sҥnY%A a`~` Ȃ 7QߤsNfƕM?0εI#/"̌ yʦ6 &)&)XXXXṉv nn3Zte{w>]t5v.*i,uN_EQEY) ]t1Ξ&{RCIAgz5忕LαZpG.nVmf'^6H CIkAV7Q߀zZd,(uhQ͝t&\dA{Z\\eX3v,,X`]FTZ$X㪪2'On`n9g n=<ҾTJNJW s(X,@Uh_tt3[-X]gkޟފEy#j{4֌>p#2&ϬVQ NۛE("`=9BG+UYkLE5&Z^X(X/`+e:9qʪDze@&}`%SrA4F L\T[ 0a EQTh`'`iͩ u;|ϑ}GvgT5 kl>︤BrqSWuAjoMv= ;+f?ap7o0]!qga2QE]\`Y>YFZ`c\!IZ!f7~X W`qdy)bEQE:&WߵBOMpq_ic5' g_aw]!@vYVsL̑LQ?7OH.ȫR%f]Q't"[ sekF3tG|iŲ2> -3E+("`=K:(a);&ۧ=F| *nn`.<_&]D`YuHHTvJy+Y=Up џU -%2{ąEQԛ=XËo\"X -.U5C mR%2@-*lpAp|UP)I#/Sz""u$[U+[.LJ7Þw(ulƎ}$`f2g/T"`rS6h ʎ*8MD{!thQQ_$l3/CXEQԛ{EQU o&jnTMC,aV@zzzzܠ>O6( r| UoCWHU2m(z`ZJ\MfRy- ("`= Q+3ZheԜD% 8WMW]M(EYU~=@YZV(D#X?8WU*wT[XcX׺jVRp,i׺Ltf,( 9X!NuNvVqweTpgVϾ5L'5#=Ϩ-l [ޭRBz*w.j\NWP2=(>[tY=g(Y1+d,ʢ(XHT!]E+Fj 8΃8S)0 Q(ى?(+yĶD^a[aSaz]hkN~k}P qSaf3)S!B("`=WuvT}שPԐ-ҟb01-20LH)(nP~B#[K,V[,6]nKSKeTt}՘)5y͈Tby0OS5q gT(JlXldsl>DrՙU*-堍D4((aՉY?BXo&T旘͑e͐MwTADc{@jR7((X-^`_b~U!Fu|geiղRe1]eAݷT=YPFF=TNDגeUjCSZnv"h+7'PXREQ+Hs(E#^4\gDˍ\QPwicwAKT{Wk- #r9 383՜cIrk]cQEQ!uH uj-G X;c% zho- tWU#N%aBm3(VJhOʼ(Y-V|ޭۥAw0`.a`af0s &7(77خYaf-XwXî=W]nu z":Nܻr(CjjzAgH(#bƢEQEzXVyyNCv9fh3`fU[TQl`6 l>c Ŏr+j ]AqD5pTI/[tj:A.뱋.cĢ(X`Ehq|sLfcvlllii&P5QPUaW+O|J*҇*W:J?8E+Du-( >u]#Ž}EQԫħ(n_K~kg瘝a6G6Tja:L̪jz { {ztk jf}ac(>)U{|CՌ0+V% SʬzА; ͑0VrIQENHq?Z0':g. ~կ֨Fqg IDATQKjYcE[㚫l5ΠyVK\7RX\KGlEQE*+Ѫ/** BFߜҵC  ]ypwVV k?KW{Q8ØU&>5,++bުh8(z뀕!IвL *@FBWtθXUj`g?{KaP{:j2!Fqj&4ߨ4ܯeMjkkX Ҿ(^`Mz*VVcY> {rT00q}WLHbؠ\X!_"_"_E~g䟰w|wyTY3pCW%jTX2IsC@D *ś+·Z+QokEQEiJ{vU3dϫ Ihg>kTkKl6wZª&~ 8.7 |wͭc @O}С,(V3U\Dr$f5ݠ"/jj%I+f\ٮW 3oU-[KGnėҮd$V&:[5Ъ:ee++ )(V[3eVMt 9 Qh(C4A4A4E(s9vmJl,6  ]W֟3XvGWteb}WeTE_2Tw )7 XSU +Yi=ss$s$S$SS$-ZllYcf%V_6ZT[GWAj2VBXe{X s(^ `})e-iʕUm_٠D.>^Ap;T.h?:#EB+FM\9-j=XEQwB]6av} V]}e<.]D0'.Y\JpJn'G?``k$L-{Jxlz>fgVk Lg ZV-p4cLaQEQn`4誏*ٖU?}'B}Ym;EcWiykt7πse\6hDtKO>WXlâ( `EmV%p w *RV뀫ZޕFа=?jUU'Qij ɀ/w$cו<ikx}cvX(XJv,jjտo'7 ` ,5 *} m}(t*2u9Բ]Ū+"1@Hu(`͔!WP6wFUz\wq. pj t5RUV,V뮟#z*˧0#cQEQo滙PU2wj%4T GRIVּYIpu`뀥q ʾ M,)(Lˈ TWM}UBNxcwUe}PKZC$u.S5.b;EQk@ -{6):l5E0 0֡tueϻOGus,6\Ń+鷻ne2R@ *U"lQ*!(WX6h̵*Z#{$1 utղpO&sO5[!fj8 )(֝S5@TeozIr{HT Jf~t,*`%Ku{"; 8Z#+Y5 ( XuY#6ƗjZ==jf (?JU.y nHRU* ZgӁZ(uvq wn.')w[-)c ݃WV>ǏPIl2T*j*\~sSܡu.NQE!j*)_pteBf8zt}s(c qiǍbhpw_uZUݾFƢ(^9` *l6QoaWr=7QЅczUځa}P5S)TmNXMJ?{"d R#gߪ 96@ӣ^(p jo 9:Lv5kӪN)UH_} si˅apF-oŻ(ҿ'ݎTuhiEQEjOUg0mDըs ]367`W7lo=ܬ 1Vy}U*k*V^TG<3XGEQE^߁ @dkpsa [Ĺ7P֫2bEgZ!|ҪNyU,o5l5'šEQԛ_s`Uw\5AL)-GT& -_Ur[}*J齎FܦXq ЕQU~b+9I0w(emژ]`h|+Wpޕ=ZğdTDŖz%ݺa7]jTuQeXaÜQEa XMDehz|((3QI׈? y\ps/=Z,/I'BZ<" 'XVH˪7&0ѿ "ս @N,(k" /.sA9pF5 nRfBO>XAYN,duT;rD߲j%frREQ,2$)A#Ĉ $"*7D&07,͝{᪈XNsWw8V3:ñ*eDtޚS ]LXHRl&EQkL&@j1-14U7۹ fdiޭHwYˍcU'4~BL@*ulBB(bć*`hd 0ά*qӂo^J(mֱ׳d0S@*Y.D0(ɐ(X  6MQ' l QX 55Bl D D7}#o#f@.ӠM)MJ"+ٯNmO]ZWnuB)IG'xhTucFKHvuJHQE*›s7 E|yXKK Էo`?#0; r3r)7(JXaEe;Ƃ jլ^~].W7 ͫXd,(F*ψ?joPBGAf9j+168XϾJ1 >0+΁sV5HneCsޣAe(zU ZUV_~GEY@T&k |0/>DӧDf5Ewp)h3A2YE`EQV{oQj-PԉS,ߵa3tyW ]ýƩt\5_MH[\Vd<8Y-UB(k Ud S_# 9(F]dHe{t# U+F] TV`4,REQr`"wXX M'+?'H?HwPFZk J/_q|{ZnN/***dlGd,(ȁt۸5o&_~}{ { {{9ll-QAW~2x j=!J4u1bu*ɘ(]4tct\lQEQ/JY`o$=AJVe$A&~V-1rtʾm$&c' W;U.Y $,[6@!>,D:mXEQkBFEF 4TAZ*R\']{ڿ#}.;ZK[ f|jbhÿӏwb+U.T)?ί[-κ;kU]Q[EQEQr=R펷n0ZpOLT]90s` ,zڝ) Xo>lh4gJTVV"# #Jur)(V+M3DXjA7&E/tvOQw/a/P_>C=G=5 koe_EaUTZ#y-2 "tyZs%NQEQ//G<}Wrj{ ?R5.TiL Ga>Uj !TbȚT|K[ |$(jl%]c~3=&s1V0phEW TeM\Vi)( NZIݧ)ˎvN!NcR'2 >pSEQ3W+ZЧV T@۩@ n%3Bv~b53 cE |O$͵,Ԏ>EQrVuceq:V\ :@}5p+P#=7 Xf,rShDxDV4ȟeYZEQ+,ebeۧ (,hBa |P5X32V.O38Sh#[4PEQ0$Mqտ}UF $Wc*ìO+JZ.]RSk("}9ybCV-y$Rr! i$YKՃ1N)өXyk@`Sc~އrm4"cQEQx^i AБ"MݬeMDZh6ƿC[*})gSo39EWVB((nW׷FGdY5PA*7@, DEK`-8 aj+L gY]MD2/|hbQEQ/K_U>i+}@K K6 7lqM^o۳Ra{cTvrb5JFZ&pØ(Ƭ~/[V;JM:h Y\GԵmcAU./[u)ZQEQԫ,Yla=j.MԔDKI5P=?U]sxGao3L9V S?mِ4(X/X}ptЊQW+ta)4븸vwJH=uͶ{Y(eV"ʅNS]{thE+n{,d#h  R n&ZICOI("1 Dg(Xe8UR*eFW͏D*۽1/WhVii/uo%ǟ'(ګŽϸZ^ ( sm0{]^L٦BTnJF5VSX<|mEQEB Ik#ubB)0f>ZR:[ךb{|hb1%"WQEQ"VyK:W$0 v: S m"5?Z滟DzP#u*ʨ RiMDc˵EQoAɽ-7 ƿ?˖IUjqnи)|*k{˩ebPEQoZw>jw᳗Utg9p&hlBz ,wTX(<р EQ<<,trVQAAPdcj =鹨Ģ("`bkܺT-gpqs\|lU )S9-Ln0T߳k TW(ziHQ+Աuب6p \g*ҐK#K&։22EQv # z3 {W%pzK?ɿSXOabF^6OAWd,(֛,3t֨>.}:SI%.1dSRP,(^[n3Uì+o?I"օb]Z5-p|>?! >1ի~df8(jDhA^/"[@ܢ b]5hu |~V;e׉))|,z>EQE: z0= U+,^7YȨT j`hNrB@z#cQENZO[883IsobcY0i]Q8h QԗUd2U,Q  PT2O. },kb,XEQWEZ.Wf- I,Tq`uxTOu3 SEQOŽ'>V&#*?**WjFWz;N+hn+G92(XGN z oAF""W4ZfBNt*NNѧgdEQEz[>V,ߊdqSO ڰ yAlLdׁYt ?!`QEY}5Q#BX R ZcO@*W+ }cP+UX~D>EQKcAX +'Zij,+VRjXÀucሌX#EQE: iոV"3*J^4`X/0V<)`Ģ(:q7]°"؀esjFo,aee+=ўai~#pzQEޜՉG8++Q0+>ԋJK-lAL/z杕5=,+kJ?cQEN0b+r<+;VjTE];uW{ σN1U +}i=`EQE:eXu'tXZ--ӽ_N8lb2ӳ` bdܿlB(mWl0P=Xx6=ؕ(>lƢ(z)sFU^ -98e֕ |)} PX c`ܒ(ްX"lSΘ#WuP*E**j?#tQo \o~?ar ]i⓲PHQu>Vt5Fչ_ Nd9xO‹u ^(kb~z+9Bl.Kݣh^.f%uZ!(ta/3=d6^^-]YQh$tu?Vڻ>s*꤆TC)Əm7kz\n0 \\d>B3-YEQeR1f,N‰ S5OdЮ{+Fx0iOXxJF*냉:鮪[9(["li|Pa9'9ps`̀L[j ])fp |5DNV&‰ZHjԾir?CQ;cU`'[S: Jr` 7bPDd7h.E1/SW d'rr%|-LGk(u5F<K, ө Y$9BA|kZuBB0 f=EȒ~7mMe]BAy[/Bd,(30Zq!E\ \!:WM%"[U 0F VثP#IەD9,fX?!'$TbBZM: \g@ieQEFv1{WUW~Mm7Ǎ|N}b(ӏY阞wC^pWvƓVdv Ilp{bEQ8jU =kு ZkU=Qh 䈶0[D+*7Zme~~պq܉XY%iT09v+9gK`!Z5:ӆVEQe%Idsnk3p ӠU[rskUWtᐊb%j:YOu`h>Dcײzx 8cEQE:zZ` D@l }Z ZlWHY$ZOUP2]\*B޸,6%TS95ᮅVZ GP>;f(XOp-cRh%쭪Rs Lc-U=XtLrϘL?ca\{u/7?S\\EqFf]%+ɻ܉+q. Eǣ1ՕJpgx b@m%ʵa5U}P<,EQEzU:aQ]-(+ cEO(Cݏj*;q9TAVh_YY¬'=P X%c"Gire U[>WcX`bB(t?jv T j`3V:ZIT$=@}Y?cmORTKD03[ ]\1D (XQtaicҾ)^tּ>Ba׵B},x6a\VHTGe5s+t;ΥC*P1:)1(jV@ 1bյҺ7fV>QDV!ŞF`cbs+L1(ҍd2Lq"["JMռk,Wm+5#tBF UYeea/ĩ:F5c9jsB!1(De'2}c[g²d/MUdi&wBK?50=H|nCgp <@>$x}AM. xjx3XZY;<EQDMtV̧BcA~XoWR&ci]\V"Cu\~4CemӘ.C oɃHЪɏe2zDݕuZ9nEQ,Jg!W 9F5E8|w].fiJTFžb{kw>t;A,5,]|H:ʯ6Qwet{aqz^REk`-as l'UR8fk{o U:ӺJeTƂbaVu=ܩzRj~0`尻G?qC#1cVEQuY g4~Dݸһa,꿅 C|#1'L%ANi%c՗z_c,*G )e!Ho=V;i=cS% A+(X^[i3 ҆DWK=p\k5&[bMJ'^*5 9n-bh%"o'^ixzZan'>X4ET]\)(Z5rV<$=?CU9p&"Z/,q* L RrcuiJ0c0 ]֘@S3V3PܳuC9'"cQEސ}]hkT?)װaP_@} |0kD 60&fsb#1ƿ۞م#1k|nfʞ_niW:[[$w^h>V@̢(E=jr,9 VhĈb*ݛ{ZU iKO־@3re3ޭUh?F÷5O"5@+(4r.[oѪPO_$.#4ЇX]Zi*o9C+QP=[1)ϓ鑋 bNp_LU0w.[Gv~gt2YEf674KJl(BlvdH%Fp)Gjz :+crp8*[ xw$›5} q괲("`Qc ҠXePEQ˗5PoPoP,%%[5kD?"1 0S@YeY:e:@ճZ+ ڳZ}oI[FNkBM- KsiP7 ?HF?oĿޥU"UM]I(mwJr*(8ՙi5Wn5YU6XK؜B+UXG} IDATo>ǔP ,XubYǻ[@e3KĿ%pgtv_너TR~RӴ4=` 5T! ]XD/r;FU/S X/b2,Xu?'XngמD Tߣ?TjGi5`wW ܗ`> Z &NM#_7]W5*NNzbKqxB1J멠URbɏTbTg#yEƢ("`['[IV[lY׻s˦r-S/~ W`ޢE} Z6^$)`kxV8Cu:l#r#̣SoJn)[zbEQS#SWFV^F2ν2"y 3s$s$F]n`UVu k[sva_=a7k.L-eϾ>VʸN(TY9[`;zcI@̢("`=oGB,H  lz!3Cz id$C2E!J ®aK ګK5QwbXI'>t-D:0ogথ*G0T̀+O F*ġ/;(XLZOYU*BQ R[ @rɟz{;G=PeSSTSK0SD9"lm`)uh, @O{zuyD?iu.E*ϡuhJV.l&^P<ʺ"`-IfgM`91( -h\K{3+- W09p.cs$7ȮaJrS/[R*U=l4?УdFkQwB r|TJ`ʅwZ&VklWC'Q3W!Cu]P4_W7,#ȁ5C"[UƽV+ \fHQaVA[ Ӟ\XMXs̿B3_\D}93ss`+Q8GEEAFFDrߡr1QZ\tPVXnN1]xҾjŖ%鄪֗xwӕ[HXe5*$U~|,ZYEQGƬG%ݗIAFu[%PX}>?!]!]77 UXK`l-PTe}^wqd9~IVUw>HGHkc/X/6`6ah=Y[i$[wuׅdfDQodD&,VuuwHY,Lz7g3CYt-dDhL)?.όє6]053}"ZGUZjU褬Aٽ& &bpE~ gqoRGKzru^4+m/*#<+, -x%?0O}* ' u!C^?#D~ȇޫQHVqDڒVoāvFiLlg,7)YjժIY'f 'c9we+^ ӖF=YlM*ODKK=1ql iTS3~8UGɎI ˅qu-ZJ>|ө2$5%j?aìfժUXr=OSq`6f9Wؿ~=Ýq˝Moq :l[n5|VwoXꯇfZN'J*0BU./)e •ݸLKσm`.]ёa#څ7pzqJfsљU1VZ>liF"D˃dU݆ў̿D)g282eni^xvg7jG%'tv[wr^1R$i 5pE)م۠GJPa"Ѕ[Pì2`VŬZjUz)0k < xq7ޡ;xӍ6amZmn&^7蟢-T} /Ù55+xebl{IB4|+ H !*=U(:ͼ:ֆ"[/ЪώF%>9cQ1VZ*`[)+.$r<;KDΰՂ%חwEonXc>o ^ oGoC#]VYF`Yv܈{~"c П$`Y۵!ٲ͸s0MbVZ*`}R̳K#m#NvrfxEm) ۫6莶)~W6W*AxsЊ}$e0|rD uIIq]X1VZ>(SF؎|D2"|Fvj6Ӊ;F\u,c(Li¯P= Kvy.ME AT3k,T'G+v $TMfz:p(WT5Y7 \T)`Y1w#WIYjժUԱrƲ$jjbZ|;.m"=ڞ6[n-`n7k- 5;W_OSb0q%ߕmN \p:]J2da"TPK6tHϬ\et"Zϸ1 UVZUMR0PuΔ*vB!~ /QCsLĪ}Ƽ}]QN\EY]A>{:x褛`}.7ʚX{HNv:c)T f)[1,ƟA#ʪUV XZ D, D%7kѯi^#v  P__s8/x; u:.Ā:RRn*ՑSV0b#n5RM+I3U~E.uP%C#v{{<ţe,|Z*`ۚ%\GӄqҲ345+l^IL:ӂ/eD+c9V* pk`ZcV4d&nFdE@0l3ao@TBpp$y2GZN!Ig3#:Xtp}*cժUև bd$d6sR$ӧ#P51F3 A ֨N[چ5}kX9Կn$3nt@e6U._.k5'cm۵g V@Zd,vaeZjUz"Ғq.1Q‚ҧ~KbdK ΂ ڭ3x0E[pp=JeQwJr^UyXìjfuLEby)=KINwo9 cQ'kժUՠK8FZ-ͼ#df62T}NVO|9;`h?%OBYh;2~SM`|Q!?Qii^Ut?(Qy^@c^]Kn(¸A=fXUʪUVZ!b r IsHM)ַgPSӑH`1e:;h^|G}O s3s\`gѱk W | ϰq7z50-,?Mnj3ZL"D+DVcNW: Fȁ)t,;E`gaL2t mhMy;g`JYjժU]`llJGv3l& E Ug,QKi_C>V8; LUODܡAsB 9t5_MxQL}֐Fq[!>)JZjժkLBH dЉi&V%`Zĭ-c-֜Bu.eZs:EfEœ Wr}91yF/I]dP:BՄUbVZ*`u:a&S{[1/: X;8Ks %Ĵڄb ϦRPjդft%OuZ ӉAGUc1c8+35-[9<)1qm`U #pw;N~{8ƢbVZ*`:yI*Xf‡%i2>YN0Y1fW[I  ŀ6ǾDYB Q#61C"KښGj{0uV:dCZslrT2C;e5n&:lVrH",xVZ*`=k̬({D(LIJ/ƳxS#hm#`9]A2 fm9[X: s7uiȢ TBҩdr=U@=lS: 6\}4ZP*"qD諔UIVZ> K+RJ :ìM`8# eZKܩAgA: 'e@a0/FP0kQ 5| _k[*H@=vܗB͝ǦP4$J2⌟a9iHi֞U.Ia^Z$/+UU\UʪUVeܛ#~G_]q:ZPats%g_nW࿁!@ swܠnh.]Zh~c#YM3+Q2pWhf0l$cp ЧhS*|9,RFt#cLĪRVZ*`'~>38M.UWÍproĄu[>k~/ņxlJ߃O%6hV4E765ι[C^$Ք>TVB ж4]7~ٗDo'^38sXҚ5[: 7,;1bVZ*`:Jz7 HFdAڴ5p@P E.ys!.p_ڦwiC*+i8v&M=6۝blU"2 cX5?S7DZjժUʻ5Ȝ-suɯ<|ԇIeQ Ri40l=_ThоQAEҟ܉ͦOa0+fDL<,>;%ƚ ekݟ3gDp=tމՠiV8)L7߉#*x%Z*`պ{D.R4:7%5Od31wsA/c4(v͚zxzO݇Ʊk43Po B} '!} [K% 7iB6<'${Tf-A|5TަOy~0mլMxg300ǃY$jժUjlf)kژTQR0œ:z\*+CP- wW^d\g7omJ P] )rBO2`K|[AƄy؛0s։@hUZ8xf=ۻĬPeZ*`*Tq-F!cV&|V]gwYth_Igk__NNmmzt KgCHSS; YjUuJO_ƌ  uzȄ s4Zx`Kؖ-:`۩2{ O3X?$Pe:*ŗ:!yb`ˊ!e IDATWhڴ+ڥj*@'$B{ cBu*fժUVPK;XBJNZ)1R˸P~ R"%J\cİu9}NhB),F¼嗻Piqb%?RF5+bm~C[pqEV<.1rh򎦲 7UV Xvv&<څ:T&LJ%o<@++VJEv - U7BjuI7?v UUv`W4״ofĹK,WgZ('A+n:,h%q֔^SL!7~9éYC[jUk4ca Ǯ㪁3XBx۠RX \ i%d'?d|q:ѽuC`Ew<_>יOUCkNIaloE&4(IUAٳȳ$95ppx)bVjժUkT.f4,JYi Z:=Y*lN\Z:дz4[Y=K ss3 w?CӜ@((hҠQ 4,zom ߧuW2?6V2n_N73 *#iTyaѧZ]ڎIYӌŻ*fE [jUk[#Y͈I}0ebӧ*f-V[mS5Nе]B@z[LJ^ }dgM4i*Q O ^1=lLg:AIIX멬YG[jժkktK8&b#vcE}^Ys+(/J(ta=O&8zh1t%[ l` V5Z % JcAC]M w?FDq/I$?Փ].$.VԺ)_ցeb,ޝiŬPWZ*`5(1FY)"#UOgL}4i,F?Rik`1fM[-Qר+kO!]N~u#z*+9sEgώXAV"IL"672xcN[jժU\lzaQ;6 i68z1Ө&\`, MhMvpW!5|_zgQ'<{a~ ohKRR=U..,ⷔ˜,tJW&b`om]Kq܌ {%pC3VŬ([yUUֻV*JYcEYE̿Hl`蠅5|PGV X>#^{XG0DUT&f bH~KNuUUdM5 .VEͧ/11pv=+,.Yrh>?0YvJ\(;wWGZ.Z2<v|sԓN0^fXrXZj@wynk&a|@ʯ/9"ʥqtG4cTIU1s !\0{>A}N|/Eh]ua`3s[/ vA.f@90 ;n腯N~ї|wq*G.@zdҪ~VZ_槳AK&ܸQއėjw}Ot{%G5*m $c1b^`^ 9q77Kx o؍ϛRe^XJ?,wCz1&-iaZRYPxіtJ\Ecȱㆴ*iU1VZe,su8Vn0Qca2ZMpoV:_Ɏ7,6MiRvZXea^\:ޤEJ!2K'9pp(Gx]Yn{[TkD_U9GiSDwK >΢]jp4f5NhUgZjU"C18l8?Y\qo+Jx~C{[b[lk 5؆łv6:_ h[b|z8+Bu'>T޺HݔP2v\b Cgn^t~‡֦ Y'VS,lh]h͎| PU1^̪UV03uDU eR>[QGˋqLJozTEjrA_c}x[5ꔨ4f7m8^lTC-b ! 2NBR)`yqmyLDDt8hƪUV XBL$<ž1טň9#:gxG7.RgN5j-Jh{k~yI]lx9ǜa0K ¯k ޑS+R;1+&ǶLx`>iFD+_±3jJ mMY4f5YtŬXjU$!S QϷ'Y6T褥/qXae\gALF8?gςE6\d,a1b͚~AsFsFsNsNk yمÛ:?|6kpM$KE6zJLɉ1uIXb 1zf9.ySYO UIVZe=cE/W>?aO[N\+!\'>ǡIg,_><"\F^n`}uS-fEώg V>J_=rb=BU#lTK*s[spF_Ȥ5m>W11JYfVŬZ*cXw5}dn{3v"c`DZ8|[\姘YPt:P74W,ޢB>%p;*SN*=t9KCK+.x|tnsimڈ++Jע(GI)7pumU>VZqA:s|HZ3I]z~uq(v:[ {d3~! 8_Ak`CuuJ;VbJPUOebS>5.2 L:#JI+:G ۇOVZtXIY{=i.e&Nӥ)=d~ /wS @/ @7h0k|P7k }~57Ҿ;[ '+/̜;%ˇz|S!q!p[tgCMoK|)㦲4ͰVZxVpTK )݋Yit(mOK^9N̞ka@anz .o0 VT ~aᢔBiPF5fDNeS͹SXtD~N `(O=d2fbV?㞔+i%*lUU]Xn$kMdlBf8FzPbi1;}{cw\ ˴xW,:5~SHFDmB  m8XE؋ހ?䬺O78lVJ?EP-NIn{\Jl܄b=?TVNZ>bUwS{f NWŤ&=ܸEɏT6vP;Pv_54w7 +XoPbFdHl[|_݉mѕކsT3oV1\K2Sl)rZR7JCv\: TJz452VŬw.?2~1AX$k)Y#gj> '֩jFl-XKw=m[ _`㛻IbbgeFEwKNOdK} JUڽ4x@vff;bÏPyuy8MC_~r[GXy!ovYJ*qNH -:0A'u;Zk_ῃSOy~1MUw.sEMdPY:hsX6tmpZ;#UjXpL`fM|3>U1+b^~hUg,N.֨{Q[& l ,vt9o__!N\ 3 9 }^x5 dJn&.AOǤ&j.SVXZ0nէt kuVZO3j'tsxjSsCZ@Z}UwS wvᡤ5H)/Ӷ$.M16LY[EՐtjig?A\g(ЛZ39}~y+WIpq[g/y:4CڮΩXSiS/tLYkINa8`Srr/ ZE9daE]lXQ@{M*Uuk۱# )%IY2 ٧018=M6}B q@~0P(KYDwRtv֘7,.іδf[/DT*nIv`r#BE/dtaUiEB dfn}>&fUҪGFUU 1GaO0#&z\* *򣀴nיECKb>)ς;w0bioPf-ҀԦ#pzv$Zӗ\56d[/+1,,Zg SI4{B?)̢iUتU{Xav7ȧje1nbއo!&v`U1Ng!\s~:9lmGoI ĕO'ٽ*wF*)]مڕP^$}"FA"Hlݳ܏*iժU{XY{oP$cwi~lC#!#[.]6 G0kpp + by{^yNĭnB f#dg8׼ V*Dno@}?b [g>׎|EUV3$56k},˼ө?ܼX'E& ՑtEK`u:꼂W{ cp A0tpu¥GjL?W)f)M.TDlA/1:xzT*V-)_r8]8GY![jժU񤬃,Yߋanޯ֩ѨP|x&u{NιlhƏ5з m?uvuHDQU><-D(20+p N+ԂV#/J[qyOAkZʚh)rZjUuz:Z+3`?\*4:f#mv@,^?-qK[|5t-Guһ*lժU֓CIk{2V^Y"P]jiQ P6CP1^‹ѣW4oY^_2lɊk,SfpIW4mZMq@^+ŸĦKb^.k څcU HOGcV$|Z>:;ȉC" ƳƸjTV˧D0 pϧto?rbojժT! O"eu& {Q:;鎹d45g*I]0iIҳ0K9ȡ= "T{Vpf#Y&D:)X!7B"ugթ^e?_zu8ol=4YRhOC`G|ժU֓NywAAGU.('‹^] jЪ:eF$,=KG3PRI9m_grBxJ _JjCKty߷)T91&P$f t~/wQ͚1JZ*`Ղ5S{3[b,d'~~ %:<ѡ'l[̭m5\KkOF7,_^a~ӱK>DE'Vl&^oM8}I/La3L|CIX*lժUY8HNX 6i\L'GXenJpMs=kx__/߅Iy:-5\n' J|*_0Rp˼Zslmm}KYyMC3u5)eU5V X\O=|nG幪_XsKg12.ȓB+dLa,5;f ~ ? "py4zMsEܵ:ѵYqݖ@jY.UT7A& j"G%0h+J 5TȐHI㨎!f'ͰbI`V XK=Bp0Yd~l0ifdq4Sh77,3uIE%|/Y Ugp9Y,Q ZK5Z K}g/9-µ yD-I>Èt" cv*.[q`,ޅ{*iժUcѱBК12Z3Y0ӑ[.;4"Q'fm]7p+ċ F ~b^1gXa.c ^<]K &*feW'"Mz|X>kemT՘;#JZ'$Y*`:cnUrR2'RJTͩ]o+RЄí 䄮_`hddSz))\(z7l:?d'T 0Y޳:P5 6p%#z㪱!) M,jbV X&1_}[ n:v۱Po_:l~ # -*h\-v].v]bo7 :8tg})$'MWB?rmnZ).'v\ FNܷ%nWOθ},5wTkhSU}v<iu'ӱ翱DJ.YKɵhi&3T§ !] MV?vIlq1f暦 RkOm:Ǧcӱ`&]Q jE$6#]0a#.^RWҙ_9}É1TnyZ1VZ"'>Uĩ½:Buɇ֙.S,*Na dE4 Oh 1%b}mpЮzC/# E)7 X* xm!>=^9A#3v99fqbÃ8WĬX*`պf=٬~½:ؖ7:ҳ>anMVME ⎷ _>?ggh6-2}L:WgIwAo,E+FitnP-E/Pghp_YXgP1&Ԋ7akL*3.YMc#&vi:N$QWeZ޳v_~Ͻ;5c/X.*d}#ўTgiMI7C'oQ[pɊFY[goB2'b-.)TξĽJ6ewu Y5%,nM =MC 'ʍYoxIVLG#cF`]X{YOOlsBJv)Kc}J: #Tiqշ$c-=X C~"tUjWh0,pq9NV>LoēB ˡjLdM!u;髖9x:Yiw?x$?C>UVgR\d3XdYd;^6"/BX}`,#~W/f\b`]%Zҳo !~/8 S }↋r:aܑ+ 0hFtz+aVr˦3'Wgt8chTNn{a̖#jɪ6 OT1fM.0lqE2PzOlQ23xzСEP?/S4q+[%5W]ܹveRN,v܈8uH^)m֣Yk𩕃aц3BPx)h`T VUĒXGd1Έ`M("n_7*^*N>_>ݗq>)g;GSҐ`{F:M][xڠ,| xDF ̆{{jEJKv!V 9E-2k9 OJц)I;'Z:wHZUߺ᪀Ui1֡vcT.6|י!]@++\IۋcMPtkVb^\u('MGsC0k2K^z  8+^%A v]?T.\>7=?s0ˌXG}RIzRI?{?Zz?VXak/o"ԲAO ~۾K[)U\#\i`\Ѿq47\cI%,QrIJ) i6 n=\B8`,JуTi+$AՀwKuf'(ԴiC31~}0kWH}ԪU뤌S0֠7007&n鴓 )5QÆ4nwxEG,jQ/PQv?]mP jڠV5}#/^c_2通N$4e}86XoXVJTP[5L4w PNF;?'%F,^qV''b D^a,F"I-h ,Drb{х5:Z=[oƥ@DD?1~'M T ^b)S .q;Y',B NyžԍWE#>ؚC|^c9i]AV˧>9STS:KwDҎ*C4r<"QXf;deYb-T>%>E}\U)Ezgs a72EX] XNm M =O U̋nH:5OdiM|GW}wժU0c`,F!- !:9m2lD&Rh,wCmL L'>GD}zzz@_.KqRVb-GELms_E#֊VlxġW=+j^Śsp5f1CӚ9 73q0\58YanioV*}:nR0:r!D t .Ua&Dr"zͩ9ݽ{l@ZjU1~,huXLv)eRZ`8l7b]0pzJ[>3[0w RBwn] _ï3>;ȗt| ڽĝX5,;n֨B66m倀?Or㘕3iWU{nO2V Xf=*c )vL "v<⊹Aw)+Z}\JUt=nb*?H[ `v WW3 sx`n%xDUϪGwbX1PKi[U&ڗ/1'kPLvfqT <}*N>BZj}W8?Lb]HZ u5}ZNJ^X9 3wx%0+㬥ahEz aޢA1U.A>Ї'c֘5O.nb~mY;ZBPt5l*AbOn밷&us`RXV0d2\tHw$f0`~9-E5 *Le16^ )6ʥۧ::vw;&џ/|7CpV뭘~Ք6FX eF ؚ|siQ>umo^ZzcXOe\ 0քk;Ȏɖ=:FV-?yZ|4}5\6YУ-z>*,TN$Lty*±\dTigE+&2V0HY\~s^-y :>==O]lXVe&߫ccHi9!{5Feԩ\ \GqYLxxI[Z߭Ci`;hڪPZ6C^&ey]42lFC5]6zil@$Wit|cDeKL–R-fQJߪNZT{+`UzXco~X)+'|5bZɕ҈Pe<=,uGFV%_xӬhV4Ƅd/@}y;yH }×| XǬiWU|ڄgݧ:T XNg~ ʦ4.J;Ȼo]ᘬ%)hN26%[kʣ[i/L+گFa`ōw Ao0 tnn3MhPbDbow[zNݥ8MQ" 6!zvRLlh&JRUR&})NQ*:>cCCXCb0~1STZuHݟ(b1`U+F<ƌ'4 ^DDZ}pYTCciiw JmҦυM!q0 ΛZ{䶔؉n|E|X63 9ޢ<줤+5PFmJM){1Z2Y*㳟Nf}(`f1wnRW4OOvdCc@;kw,/Ҳ  ]я^$'JlnKL4iTcӘu*䬶wȬb*`:6/%,'1ԥsWTYeNcV4x j M߃'ÉyOBbnYޭ.3R+rx; |UI.I#(J'y<{zŎ`5;~{ :T:V X*c=ue噸6ξCFKNYvB_ qȽ U5U:Z 3430|p>IS lww+ }\'*rYx ^H}>iqO^@3ﳛ/kgkGe!j=>=5og_GoIғs4TH=;)MNݧ17,ЦF E-0wawߣnWaJjsԧТ4ʠ4AA7o MÇDReא%ߒX3g?sM?~ywfr⾮N!meUj`9>[7XbVT{+dl'o>BcQ4.D#%/ ÆK9Yo|*ln^^(X}fJ)ݳz1z0 %ꎪ$X"oS2z8T(:[jtwu՟C(?T~2Wx/*|{YeZfTQ: &mz@tB1L$ņ\ذe< |z첞ݭ7Eh2J 73"^U˻]mFZ9K{ ^;y+#l5=OyL9glZ k:m>t{XNs *.$?IO ̸Ø.ݲiLø-a tg~?>Oy@(\6FҮ;ECTL%dsS܃ƓN ә9sxN1}_~p Au4+XoY wW6H{BViɏ,P4Ha]: ?qegT3\*`ժuLmE9핵$1bErObpS+zʳzA2bЭLOsKi֘H8uآU`Y2]tz l0k.I,l:_twzԥjn0Sr$եtp><|U=mWUE'!bř֡BfC3Y.Ț~бrWFUK.uxKS ɿt€hNV u^ϰKD-r0* C9zV  -M{A{tC&NV:U|ELU=@UF Zn2pHz>ܐ˨1 qUVw,h#qdŁRWB- -TV&]KQӃ򩣩DP-V1Ұ V&\^Y4w?RV6a%\ڭ0th>r@Ӓ S*g@h [Zh5kT/uU\GVYa|P) U3T1=[1yPN_91>_Ȇ_FĒAvމG~=Ȗ!̬Yӷqgлpط}  paƽ]U!' 24# p$ccI 0;bM3#: tE9eғ霞Ki*.]-R!ۖD0¬=.o(% Z GеtJ ihN[ CVWю.,Ct*+@v@@j~L^+L1|0˟xv-f]ithKtZ^UKяIp ucY-Ak]㈗ةzHK@C{-ֲ x1K\l;>sB_R5FþcQRO z-|本/L# `apqm|~~~wz8cvphVq_ W-JIN\$+[-3-,8,2=fҗH]}簾ֈ8*Jv1E Yk8sO%o0#:onS@Ӧ: Ub,i;m8(Alࡕo_W oJWp_~z#:feG$_U&:j?砫qj$6H]a ($j|WkiWv*rZz,#c>qFR1Vk ɆL8JʭJ;Fe-(PTX % I <0Au 7X[0/I🁏dq𪼹g|S{rO+9ǧwɖ)zBx!Qaۛiz8YkWXW@m"sYg?U#E,nE:(ǧ~;H.alo+AUX,|EugbCʛI C ^zH[f pl Yx2qNu.2b9s*ܬ b=hНaO[hUaV_gX.98Ýa?v~Lk X*bfeڝZyoKY94g,t05-KHJ t*t>& TMf׿.H,~ ϩᇤWLp{g=G%mUtk2JrC$lu*Q*-Utz0SRfpÖUq4[J:^bwX XXYWXa3f `R67ߏ%TӰu,\Li)rƐJ3VNɼ2>n)@pX(la0 =u8;c Xa@xmV$ĘTh>0!*HWdN)rNe~H8vHB}p[Ζa#Gv 4NXXqq(Q]E ]:@S,6h‹an,Su#tbBLPgH`_Y}+1q,Qr =v` R "`QDj(NBp:b;%(NRpGǴ9N]n8TRƺ(c.c!ey:cQ=HUb?KL}.ͮ\ipOmhgv8kK ӭv`u<c~C@&~-F)}MfKe-[n/HZ|:c-G+h*vHւX5bpI묪m*{ RҸ%Ƃ X8f.D|YrJZUć*Eŧ .e/wn˚0NW/-E4u!Xh`pϘ)۟RW韁oo  «|6\j&f +Z%5˲Ec(<4k%[[D)V_c8Y?t.34^0I,ƽaUݣ:wmWi[2v1ɂyɩo"d4qsiΐ|#P7ỢtAW_ _OCEH3SleI_հsX#pKeMt}\iB2m~0Myn@ٺplbt[-,JZTRHwfaW˜XR98t{&iXjp{H8!6Ҟd$^v.1҃~ .Ah"7|>~-frx\JBfVJ5V1 *-,a U:ZD4nFhUF-FcNzs;D,)`i(fmsX8f3Gb$ATh ej-bTYX6d*iYx*g<C.~~'{iŃO+C=;g< Jjիr>ѕgsoUպDWh+R(?DV:[RBc U)[%_]bxs*=\koZ䮡quu .m},jO#4A kUyNcikY*[Ȫ!X} -s3j1է/?`# qB|FtpqsS{g~Rc?GC,>`7_^:U_Zϥd6f1(G.;ZBZ|Qi 45R: AAH&_9G V(]nE,%k]w᪲rX?P};3%V~ߋ)쀤!37Q=]}ϊiUy]>c7c頠Db-q߁̿5(}gx@]Fo,˅a$պ/(B{iqBCk+؁51.᜜ܥt*`i6u]9~=]D:f 5S a3#P5Y"cU-!`=t&VeXhEN fXۢ_ N$Sa~ WiaWpaaw$wL Kze{('D3dNqy+.qHB蹬&ESnXNXO˄=?#-,3b NNN^7AVK)Q񅃞jGjR^܁H׃&gݟËif`0)ݨas1gj.s XKӈױ8s< ew~7k#Z{IgmsX XP.. b͛-O)<->ش =J4(캳'Ol3D%_VӆHf}=̯`>|xyy,0TUyM~0!XFX $DLϘ ^b,:2ѕ&[qi#ڧZ e{ ^PG! Kj˧Ϊ)`iuR֑ekKU )Y"cآ+]5۲N)#r-ZF`P6[<0bpϘӜ4Z{=#<<הQF\Eՙ'=Wcsi7RVh}~JD5>v+\ QVb{a㕭Ab4DAZ­0˗X=WҶe,ސf>Af`e^rbE`6C hV 5~+`ݡN 9NG4ru>8*~X^X7NegR5a䗓 QNmgqZC3ltTҸ[̺*q:mԯp\Z,t oyJ[e\EÚ}:֔zLտE}Ҍl0La; xB 9v6z-.44I3v6[3N09o/4K{AD/pÈ"Qxukc0Pf޸j8,ӫڃ!}S)7^5!QK6ró Bv~ `ihܥu85pеQvK[.Y)"NFeА8O3-DS}T,b<+f^0a]j=*}^ |M?RbÔlb"O/z /X Ӏ*e%Ѩyfl6͗*QV(;dD^J~ɨt&}!>} a.M`<tv;ޙQKC2 'U%Yv6䤅n?itJr,2)ܘ}2oNR&RUJ3k/L h !y:@l|:v,;$':4]b3TeML[B4RR;VgdNX77li,/x@+t3za쀜Њrfmp9fP8 c:0|x>ړc`k^|L[|6Rr@.%]jKgè+G~ߕ%ԦҦ(9Sz!G?og~=L 0,Da` yw5Wj,kaYKju#ܰ= -.V C+W}~FxMy2 [>#VC( LW.kd/G 3 :k\X X+eu.TY]+hBJ&:-Z'U$} opIzH;t,'eKw%ٔA תޖfdFL{L{L-FDkL>6TmyX\ QsO=w/g x.N;/:V72VAPfQ6r$$03,J3;jΩQ7RP[p,,5FF R2q1Z!Xi2zO˳&vɷ]ρfIۨ< |IEeۗf _/)==vnΒt'؏0`>H} -+^m?@^lp61HmN/gCbq̈K, 1ь.٤yeO'җ: 薜L0(QBJlMW(`i\ccf) +3XtMox1i=iWަ;rzӹAW6I|KSPL|u`Is a =>zFBFb 2i f`;}DgD̈@ bvW9AUgwER%]c)s'Z̃ IDATe)lltHht0R+V6, ;Ĭ딲>l-hIЩ Eg{!=7n{ Lk b45|  &p*Brn4cKQ-)w%QUUKl|ڳdܷ0~~ +v?ß@~6-+K-,*ƭh(ck6zouujIYG8p3V/ [۲g83&KAbۿMYޞpU^Lr^c\f~~3|t%}SUa=D6qP拲hő璐|}t @*6`+!5Ik&TV5Xd4n,gn*8RnnĨ؋ TUfRD+Oh\XҖY|*0`q@'7eT-;&rle*"U~Zseur'`,FWAWmLf)FVlST 3ъ,6Lʟc_m=+UHWf44]]LI $N',4?uzr>KS떓@øc9i*UIi7+=BSi0uW8 G͋+w2GR)w҄I*|҄b6†e$2+3>`͵\U9D+ThX-]vu΂m.T444nIZEc#[,H3 6;"~[GPgɬC_RLKgQK ^IrzRĬ@(Z3#Myupu7 ](Zi|\|]>1Vc85tǰB%oSjY 7ϯ'Ob+c/OG{b I'^cF);l8eۗʈ 4KXNbu>JwzɂӜ+V{CL>T 3|boҴ ^*qُ׮[X}]uu*:S!LF?!$D G}f3*KsN!ʖ) a@܇TeKJ\%Q`U(7Deє\!lp3 .>pշtિ'S>+ޔs2 +_ۏZGCKN[,K~E,StQ)`i4c=Yb[1VKKY`Y xD͢EHs9;"1r&,;OSoV") ք453Rq*F$39$J nǽŒÖgv}kU6L>WU V80fU3X))`i4\`gc0 R!hoCF@ʂ!%@:x r+*G1#ylSi] WEMhʲQBW gmK_/q8!qB"^`-)u%EZ `axXꯀ}C{(`VAn#*'XU]q/lŶ?}5t1ffC U(~}( b"ca. ڬfxSK,[fxHJ#ܕe-lE[]PjU}QZ>q.آ]KYYOɖ“*n~YҨzh` u10*,,̈{=sAHN0z,vVkQj 1R},B9WtUPJcf]N☵AA*[lߟK+'8@x`A#ΊǖDS识.C +Te4:o~Otwh TiLI"/WDz8VGX 3R/B /}9?0ĄqfY"S<&bE2AN}dW 5,7 G[k3bv>VM+EKCCEkNY8 y$ ݪ,42tODDZw`G\j3$⯚C_ [V,9PVt-Ǩ̠*O9tcUa?Xؐސ_ZD,uZ2'q2/1G_!~BZ_zWQ(\ ^2ĩ}Z4U2VиjIakMp*Kܠ²PnS~5 *3sjV#hNG}bY (2d5˔P/Ǒfk%Y.og%~>Myd0{K^D;'/_F7F`Һ{JLwmJ -Ѫ/޳?)`ihuŘu*MH{ҵ~cA3nȒ;VjO\ѕ/S!TE ht+6\b RTQ-l]]m(4yHMN0ŕ]'Yܖ|sr3Uf&vs'1*[Z\SF/ Qq2crl>'؏;B, {Rnk!i_CcAJAZ(@Lé$*󚎋s UӦz/TFYU%D؞[\K!7|Ewp+`eoW}H7fNPIBڿp8 Z`F|% efE:UY; hX7$e:m.~G[7ùzN˜`Ű'bǜֹl'A ZOR<<B(ZR 1#i3*jC4tpy#ߗ `q/h T˿ZxbaI%灟w೬5֣XB>3[{S `?XfdKp*7י% Yf~,d b~'DŽS eKʣm cnӕcdUpG&ZxK\ =d%ʁ#9MeTHC9BWmeQh(q#>}mef|>$kߚ)dH¡?Ԕ]Wg|-IPL/LOT ~jelP~_U44TʺؿiyÈ74S}B ;HH]:9ƦEUK,'s\d( c` Öb*O&/o.r\Ual˖8hI E}*'f@roM ~ӫpQ~Km K<,s@ߕKIUdGw*ځ'23r7U#Y`\yEІM2x, ޜglA*?oIz D5_V;́ Qg-CCY/тvжU~̌k]ܻV抪Yl5%Yӟ0=Z^M9,YMal|IgqZ`h݌?$-]͐ᇦHTHoN*~J->O vDU\2(YU444n$.fMmf,zHG[$M9pr!J/r:P$weųz%]KuW"&\OU*Z]Xg %-Ֆ[v=+3+9ܔ"Q* dW>8{Y ft̫'DUAD4iN~鄲-lq:0#Tdղxf q1mYȶq0Ӗ j+sFJMTUd ݣǮXTh\V^Um"TXsB&N>>)gO%D>M+o|,*JWq_pIIU~o5Q}L_TiR X+hǬT444FdO eU?-(4قiOYڅWV|qBW⯅[͎[QYi8cfUN ߥ|ZCc̎Sf]3yuM4`g,UK-\Eqg3%sKPL Eϗ0DKCCCWUutMc9YKq\ΆDTU*З}1Yv9]Lf~ qMf XOX`ăjVUi03\ːʔW*%Su+ISж؄UPr\Yt#Uӌ-%Ck:(UK[akRc *U})+OQx]2}HU.G U&}Te-V ȵ*6WgU>ُFΦ4ZaSX>׶>S7z}>e(矀twY.*'Ds.kNsIOgVm}(`ihhu0`HuկdL9 Y((ffXab)G@RcU*a-qaeXlŒM+HJe!P88қ01آ&/}|K/VE/y v RH˳_/rKUy|=AɔX XX'æ~Cк,qd\1i+sQnAUhrryӧ?**OfkҪ![6q%Tі/>}ԦSL5z$v֟O!/h'ǺQMjftUBU٧ IV6MkJ\`/#qpt%QRZ[+s)(2x m$1Xě9n O,dmB^SDj-Q+v2lDS ]]e!]KsQCUa=??Q~/OyB|+=?m(}/F Uи:^81k:]=Plr嘅GGwqRZXiۯԮQq$U\DΊlrЊnRչ^1ĔK?K}{3F@ 8ngѐB˕V(9h 2b:<دm] KFeN`B=aK6muXW2VZ`w ]q拄\B钕+9L"m-$ Lz|"$,V$+eE#k!$k(MU\9WQE+BUXYoXiMc+OBZ M{esj])V~NE(7.’jWcVd*bJd`Ϯ7\BYeg:`ǰ)k\Ç֖&f jVG?Us9  K}Im)(Yq oqόU.\#,ĿZѱNJIaNvJ4꘴g-#& E`o-|h EyR^-(T&:i/FfFE0k1;Y)XաG BCmwjΫ -[RĪF*`ihh\o'.KW@QH JPGC<2}ָPAaiJtXeO^v(ai)cIZ(ePeeb[`ɓ{n%HZ ̕O` AcDXx٭*i!qIN+f` #Dբ+#AXdQL̹*wncDVفx_M XXs1!=5nK(id/d!\UÇhW&Mq_v:}ZTj*"RV`\EqѴ {hE|n0X'h,,JcU͗劮ZQ1V(s^Ija RNPKCCm*oTg:\E]DJ#BzP\KhTSn4,S4D@pתn޸SU9f偟&J̷Z~2m VPjWf@2IJԍ'pJ,RPBq5XeDی!(uq e+NTѕ); W~ IDAT[k&8EGƪ<-+:`ڲW;-ZeKff$ 2i|Ϧ@+1w&(AU*tz򰳺PЯҪʓ3̒mD i\} W$f8hTt5VaV;==HTu0+_qHlNRL:V$H0K+t To' ,!窊F0sQ^x  0H>uc `iZ*i&P"xh[`)TU~JEJl<l?HKCJ㑭ݤӵf O[F4>!:&w"g;XFr ]鄓 ֞U `'I pD4^ȓ;lѪOThVN3Ǭ PfcdRLC2RBqՊs҈pR򭕂_;@,;{sKPI׸בceJdKj>!!xcX6C"-v-V TEYKڮ*1RW=XnHKaUi:J U}$T[RxwtqӘ5XB2 m!d&UmJ5; |c54 KDթKte%s1+2bD,HH3~ V`\'8^?D54+(vo}B*kW12}V=)ˡ%jV hZQ`:Gֳ}<.WY1QVĨ Lв*Kd&,  /Cl@R8/*`ih\V=QE~smNUK1MsfҺrj2hFR5~Lr#>״Tr|U"N[>GNM$΅4lMmGحW8faD!V\CVB*}y`ncDd`JBl%Ol5%LThHw8쯩 F4YBbH}Xl?1VG mGZ}ᣤ͵Qxwq"և? "z?9>Q\I^a"3тTb asDxW38NZv`_$TZ~ޢ+ItgJZuj,ICKCKb_p=X(isZDP$ꢦJ) +y>gē5h%bVK COzqm|Sð:x CK2f+Ş•KYoe:*wbա\~po'."Z2mnjTgy9W`hъoj{NZI-"Y9Ute}W, [ŬmYz:-cWw-2V՗3%W}$@dÑM9 Ѯqg}}g9vPx-CW# ]ґmK\ MK.R^QB, S2NǍ0k5$↕©XZ%Q!z=WHQa202گs{AfAj*x=9Jobh߀=A/xNSXz߲-2f[!b- $t^sYUIյ& X4ҡ{Ը4b%\k P%Lw=bJF· :cxˌAͪ,, qƚj6c*jAʌaI1-jKA},m=Uo꓃aP!d=c?WH-l%?L/VWy1tNu}QxD`%ͥW8s,, wXOm>Kƹ1kZZ4ll@}ctO.W Cc۴&vVQţ7m{uBߠ4a8no XXta<.f`֢E٫SJ.τ[A 4>TYҥ+`6_y+Gؚf\>Vӻu`RPkoXl^81V P5<$xt+ʚ-# 0 m8M+*l`y2K#i֬Xg}bɀk!fU\U1VZfq'_+ e%-M|:g6M<7LWc@S1P8444+yvEg,: SC,ŎUHTYm(hUǜҫD;T ]pï%}'(`ih,n}<: ;s;ICX\V ˴9@`5H,EET\U1^p$I*</3ӑ'Ew謹*ow_)@ԔIڸ6f6c1KBtlN!o8H3UZ~y.k44NF 䏇 EIk`,D/(fs$H{S2Xt ;u)`ihhS6X$m5fqKd,O幤 aP^FRPz@TQZ)B{w"8 MUf,fuQkP{WL=qXpTTg*9QM6_#Xp9*7d6witg~s: XU¬BHf 3%˱H| K7C*;_M$Q*Z*S`_(#Gl?&!yz0M07S*c$H;풥 Ԥ L IrD貤/"\ƺ$% zO{-u׃:khܽ#_{\[O=\#eU,;=rM$-i< 츑uO4CHGm_OD cݓ*u}yUPRB{0?UuԩzP7J \51lGPAٲ0HçЪ-z+YZ:gq, eu͘ud7EƢk,7dvenZP,3SNe'ĊS@["i]%!i{XBKCC\u farmO=!#q":@w+SMW<_0|50b Y@\OK544&q\I5`:Tm ќLڲ*R҂( iZV}fꜼ(~>'|kr>n\?,wMo(`ihh {khxuZ|)3\gV&oK򉥸M%*_ci'.Z_ @We%}~;|')B [Ŏ.XV?6QUeXMC9ِa%DeYu|,Kʔ'fqQBbi9jn>q'$%$4Eqx|ORV5W ctEj[AęMeXxȳIʪ KS9De3~(6NcNL-|xPKC⣾ kⴢWk[Ca"K*I:H,Jġ [Rzg;Zd*,u`,޷鄫34>TZڤYf,ŬubF1RpUv0`%5UhP0 %fҴ XΈ%qi( Ubۛӥ^Ն*XPAK kSטɔs@\e6;+̢iTc@ ] e: S:wÑ-u=VHn{444E(`]GXhؾMrd@MeRZEd *bE9ûa5oN$t5`ihhhg<]kumY%VX˕rb.&KCqUUem*ݳ*KRْ̕D=cѸa:wUuVM7r XgE=UIěR.:,8m\B+$ <,*;ƴA,E;K^( =NOȤ8uxLpK_bۜh`LIK-sv޸DVFj}Lm?2yw, wOXc\U=w-f-2"FY-#.S%S)U 5ɏt"W);Xҡb U |FPPzEŪWa* xA}sߌ8 IDAT$2Sa N9tU ](<§_KK-Z5XGšq; Og>x>4Lu8ydY˧UY}XrKV&Z3 'R X$fm>7M Ig4aS Kc~T5[՟H:r{0z5[*i(`ihhh/U" +Y%)J!s5P밐a:~ՙbwk'5X'm}].n-Q~!IS( ɒR$V[jXjRo{~>lE.ևߚDg")t\FHPE%W5ѝXZU]`~a&,,, g8F/x+Òi,[ R3 MIK(.ۘUFj'z,՝.W)j94448st92WwK3~:!|Fk[!Blyh5a3'B444A+k`,f/0D<';@MAa&ZJruZTQ D Tl%QTDeDŚw,+,, EkX\D6 O)b)YEiZ')7P5P"VšODCK54446o;xbUT5^4̱!: ؄ݗ3V5З952 cBƙ+WḇUi)gxe`zO+i>xzo\huǾ J" iVf")RdKʖRJLVG $E1kboXF+PҸFpg"J Ekoqhu/fxwQM'TYt#LʢBOUeb,ΰTkb yaIuԖ6wri1Ƶ0OpO2Ħ>P-w@,CT4e[ԁ\0x0AmtKSgAM?/a)4< :?zBDz)s#'K E9Uͤ=ѱ0V hf|Wh㰻_H'ڋPCCCCmkw"fN՚|DM_`cZ\=ɽ=8yCoG~Q*Ŭ[}R۹_WwjʷͰ-ڤm a[V},ᘒ(Œ"VDŽhZP"V5(ᬘչ]CCCCc{Rju eWDBVTCKCCQ IL"PvYE3ᙘѩ|?J+4444 ǬzctY+4j@LMK:ֻvԷ\l ZYU`taP54444¬+B8oECLjvZX3G\ZDG創HW1WX`ihh㪏Zeu8wxbqFj*G#N'U[%N0ǰ;7eA:TMnkhyh/B E`GnÛvsx8+,IMV`=\B9202%Tтz!(+, i7c)`ihhghZ+ߎ9ÀeLa,-2cU(Sumy E1()-̺cRиxTĺZ[~`+ 3kӕ%P) I5 'Jtd3-,ATWR =ۍEL0P"Nted} u0 Z 48S.Tĺ8&iڷsgt pQIF:Gޔt2KH++?HRficنneX`ihhhhpPLB,i0D( $H$樞JMu*U(K*kd؞TKKCCthָ~qk*a`!޲&Բm! w^1KKCCCKGE]QZ{b"ծrFd唜h֜X_rmZLa-xWhU-l؃5hWz~V9A!AM]NOk^CgG^ Ze, sfTRz??c+Bٯ0ʞT$*I#2VAx c),B wV|cj*yWN5NtG?h, Vs !ٸtƢ'! mig(}(5鄫g&O~Eq]XxJV4ZjIf(UMěD)-Eɛ֕Q;l{ּ=oX3!f)`ihPx icj^?,fql&JdWSU°DTo%+;, Ӑakp5w5 ¬ԧ\!nmeю0i{wiabQHwAb8v(ZKEAE;\esX8 ;.T5s0 AV:cYTq1*Jőkgxn`a[!%v,QmU-B!a HAlWVm48-kdWj55YVR|Й%Ɠ^>39`ԎXA*V'8īJ ;5 W):h%Zsa V.Do+KDe)Mxjq t ߌBر@WUzW~ ̳s"L o\;+ìhzA4=P) m%Qj?O5Xi h̪cŊƭ=㐏%b71ĩd9w~~Z:[g,iBP5[ZXd2`utd Yjp Υ!jcYrGmf,QB h'Jo),f `'ݞmάIѶRZkU^A<Z-O뿃eIٰ -R}sn쯊в31 ]!cR2 Sc Rc0%e2q ZdiܓZ:F Ρ<`AK?0b]CĬT*ګ){a볅%,l֩!aqՆhŁ(`/\ -ŠE/ċO,A`w, l)XscWr Aj h{˳`V}]k 1I| ?V2tf1P `z-o}Пr#1X8?{&?AC⅄q,IK6pK086X^?o i]R!:aVrB6S\$BR,j"MV-֬*SX,nIZ`kb'k"Z`rI [ՀTջt8ֈKAСZ|xcמ>SzA8Thr!i 6CPYf5.Y.䅽 3o%X$kV' ::Qh59=UN0J! Z%8By%R̅ɖS |ϮX,!KX0 G-Y.LF3@ƿSe [['gR6f{` $u-i|l,Z 7b CP~Q1TC0qka% 3iIC`pBnXaUS.5.ܦ b!!$M+rL!Łeؘ8=W-QUr!At=-ADBe ,ɜAm9Bx!81X[p3f5A3/S\mU=,N~䷐Ed0+׾iaѥ`Y…13ULܑI\/LCR)7k" # ~G ʐQ^k >Dgxܚed|b*S0|c6D&|cвc, +62sz-# VWcm2Xa^0^ rrAZ`]+tp*`%A]lL YZd1>b `6ޥI°x 6P4,!t7O|1*s! YKι f4tM4 s Tt̺2c%+; H%j3QًSLPZ'نíϰUR[y 5܇ .B.4#Bw:ueN6$K*x+8+ĐsAU>h5Ե?q&_Oq\3;'J;EA.LҕLYsX )Kȃ0h\fcFE-b]:D-NN<rM < ,4zZTZO=s+ʕN2v\BID!0\Q@WIVt.ͣLbۘ*r/2b)`AДӺ#tM=Xs.z-؎ܤp6[|8/gY!Y6 %X.1{Bw K,XO)vGt)#ToǢ\5NEXMhGo /{,4Qj+Z-1-ʕl] v,Ag`Z[Fl],cqUplX'[wql{XC3ɫ|r)N|>ɫD*erf̲$CW2\Aūgb߭;nja(Y8MY_!=K@oIQV?t,v> {߶Crk ?bǠK-:U;^V`A=śj#ሣdp8']',b3ĆE$9)1kTYj oHrʆP`oYoer`AiƢH)kSt,Lvj3(BH /!oXaXYboKZY\UY,b,`(ڽXNE.C‎%J3SeJ= 3i (&p}+)RXAY` 21Ǭ5WJٱA3\ y؜l'sqb$)3~:|DBt *fmp9&s0+eE,ԝ7j}v/$bR<ח@x@)+Y)%jƬټr+ 2L cYrbA6k' 5䠊Xw$p+syEĔtaƚN1XABv2WQ,Rs&F)8f(}1v UDR,HXCuI4C IDATAЛKX%0`a,4n5"ՔE1P.`OxbIK۾ܳ3]n.N52%qk!?A Y?%2Xޜ! UJB cXIQ& iih<Za;>*x0%6U >c%e'-'2Ć $tE B$eHX$zƝ85Qۂ1=( *30cYzEpnļSMŹx,}U]C` ],QS.]XAX cĬ*"{ڱ5ɆIw\:'.qkx,[{!8tL< jc,`ǬW1ϡն rlah=JR^Co{mD5?81p|݂DgKY~Q H*}A0V3fB^@+Y/ 5)XAPwJ@|^X$ر)R>!H$ >QpL*H%abyJRj L`.>)'uj"lsܽAP78ȅY&g!©>Wyq$]F%8ӛ+N},,=d~,Xcx54 {>+ i H&ү{3r+3QР1ZlxRufJ{YXAwՇ 0X"0%! ePORUJ\uR5WЈY+[Hbd m,!o+|Q̆CWAXHiĩ<[XXؓ(\.& :h|q7;i{ ~,6 G6R9ɎļSlF 3KR]Xp0#\41\\ w,&QO W#թb, +г(GT! l (ct5KIh9* 8'E^!Afj>JDʤ¾^0lg)B Fp:1!QdîM XyJ޲29HJBYK1CH=I [W 3 ? >XA1Vfy$[ 3IJXw$.c Uk Q3f\4#'' G?%lfmR!KDqd 'Q.Qš +>DT嬬W[rS)7`AAP}s_l(O!\Yig^:;Kc%*2H"X`AA7FQ/D-Ĩ%YbZl FqOt:V9'dŔYV!W- >Dl$S$lA6Z-q*bv)'y2/pJ&ICUFq0 iaX;%z/G1,qtU.H+[X/CyܰLH\IMِAfk+~u—\.~k$.f$gfOJVƪ-;hBW[5W0xt:P僣1NePj`AAб\uQbg'_TZ⪅-I\7aa*~s_%y.@`2 5XAt*Z) 8oRwJ-̒c%`.^U[;+:1l3z9&AP?zHU."[$ kl!6Z%8, z=tŽ p mZ:]-A!h$ MB tq=M 7&z`AAZh+}Xc'FZ4ƵCl(GW3Vì TQL~>0z A 3ѻخXAK;0*Ft%3 oVxddR= _ gހXA1upO[bƲS j8 L25m8@*$![s> Pۢ)&ЙK N T6K՘%;]=wA4Y)V+ @W8!V[DBY#2Uk RNȕ_8#|hJp w KwaS($+lZQsq$;7wYN*_YlUthf 7\9VmD_c,ʙƀr윫 W Z 16-Z9% :IH1zR9>욄891XcSɾ.jJvɔj5bQ\zKv/V[ K s'"+\r,luoDqC@E[06+$y_cf5ǖ >]v'`Efe32P=VIJ ƀ…0h} ro\tZ"5 Ǭ^:cQ fmš׸`UK] EB4XRQg-[I9bE SXA<[9X;8ƢfaXg\F{X-RG5SUtwc ' #Ua,.){H$m8)gjIBC=uQގ4 AV`}Kh'cBbWu^s=WAA侲;z XAtƂ0y]Hq"'@U6VU0Iѕq Ӂܢsc9A{ )|һX [C9FQ䟶-=IlmS3] 쏂Xm B,4rA56ȒXE ɳ9ﶕɻ\ki[9MD_DZ腂 ] E2_ͥЖQvvaSE%I <''=/*@$ ̂ǔR u`V(.LO%򹠫CXzK"A)Z}߶s=cq-^-bCbTZs-b}>h%qc, tVtuZ$PmZE-&tS‰[0KT&\MUɖ`A@W՞:RՒi8Eg ] [ Z& RNXr8 AMw\  E$ξA 7S% YNZ9`A},⠐#WפZ7e5dϪ܄ujs AAVK$kPu]1Zʼn>86MVY dRVCWUT%UJy6P51_aRPA)tUܸ#i!bk:`Z bPmi`;3xk]\z"`ABWɎ?/v5VmBfg?\fy+KNoxdQ-γ V}tung368% !l؋s,렶>98 VF~Pw׎]**z5.ΆUEW<9ORWHA:YjJ*[0J³•a -/Ϫ!x%+AtuuXB+W)UUI!*2C\TAl>UXc9~ȁ AWk}Sl`A@W}j:eW'_$YU%R"TlZٻYX –GaQ+U.P1D%1V@̸[x; pUpXo0]Nt5 P"WBT$5#épe?nka`A] e<)Z:팥Y C`6-\n{" zJ8cejb4=1֫FOEr% K8:弁VN\fBZgj']d윎D%^m櫎W]Y| a0T,uXd,AбhuNЦb\Utw{Y+BTY*R`lZew`AtW]O8ъbvg*Ms'n{c f/)=.+rn876S1S<e%VƾDW 2 u2c~w7TGo`/Zw=+#372՘$MfR4U6NBWnrΏ&hBYݫsGUc h;bX[<Ŷ?Z?(W.1wdڠ*ъ,)K dtf] JDK :UC%W3VHT_OS(Ye?_sR TQ HmAE t]YEqd1^p>ƌ#N+ch|6bWA{hRr.,*@|peI z k-[_G; 2ŗ-d+J+4;1`[IDYÕp y TA/pj8m!K fJ.k&yЫ T&A jpKBjfa賓H]r R`ؾgy=fZwA'k݅ hU$A һ!lyUB4ЕB jP֕ždmA&wdՀVoU,zs<ٷ;⑑Nvfof+cA(,uNny| уXC0[Е`A0ԖktuG=I:Pe+KN]}J)LA6pZfh&`s~5tK 263 ?X{kVI' C1>c[ʗ`+zAhro ^ʈ]zV [P@R5y7+RJi?kIW[Z:KlWs\lC=;/^Kf_.JT΢Ƃ@W]a~u4_ǸۍVʡ]cH{Q}Z7Պ8 IDAT7N@/ Z9!BB6jsX%0.5* WUV)|eHWzJwNBXT0V>V%b,=h{Y (0P0*peԟ_s)$p||eQ]; Z|MZdcՍtGgq.QkP q CG\`b }sY*R3WI/kj?T ]*|2V8ʶlD^Xq $%yeb.GF*A\oU, ~]v]t5j,qc2`BZъR! ϸjϲ=XX25/ԟ뻉^ס+ Z+|02ZI||k)gd/9Oa&VE˅:;utMTV,USkwҕ`A[!\U,?\ c 9W)6AOg)\HKD7XAw73_=ƤZBWc cqIӇm5_Aޱ6VmjG+EJ%̒?cN:vz!FZV~XtW!)S5_| n$ϹmR6JE=8 hսXfg, ]*Yk_! :5U|XRujTynH'$_jn-]%/`X]veidjmW5>W*l5W9$2ZQ]KvtT/) ptWfDSlBbʗ83Ka:]y$AʔeIў8W pto2 sx5>tc1*y])aU TeXX:t RE*Yj8`A Z5|W\N) |XSrt'ӉS_R(&Up6ƢRpI޺Z @Wjװf>l!DwعB6X,]%*[mPe`}ma<뽓!, @W*WciW῅!Q٢Xْ/kk-g[[W"C.w5b t éj!Z%ƒtUU,tS6^X",{u&!K9?dЅAѢ*CvEŝdš7 [EW6WZF"/uu1ԧ  6Q.sxF"QV vn˭"#?Mo\ t:hJ) U߭t՗U3]͆}I)0  *UJB6Sf P'{0cACʈYSiP4oICl+YXrr$r2xX hE*ZR"8%NZ\%Z+n*Cg@WUۘѶ$͑pmb B+:]9E%fÕHWFҒ(ݟe/zz{ E*ON2QxTHW Z95rTEW&9rTo PXS Taj tuZLWSzmX%.Aq5`VZѾɃEZ -w+w1 議i?!},]Q< ˜*cVق9K|,t XPVgΧd2x9B[B]Iʰ<+b<s1!% A/C+0tΤY]-Nϱui,U.7Gbj)z(ZeR(=\!c}S WTSgAt}1_],GPeD+mWY:z.*3eю;`p*d$Ѩe X ~*V9NFJWB9tfsDC2aXPN QR.v=,cVG1𼘰Uvo o˕b[+^ yc%NW=XԶ hRRRPj4VZ%P5P5=Y*,O4>u hT[tBSzz-f2{Xt"t5ռ;,V+*1+ le6m9ٍ}^e, |[+;fB],V+U@bOƭخ5eHsYf jc,ŎU*Z,PxN^rZԋi)D~A\T][ֳ3$>< ]-*!r= *EZjP AViHRc@+pЊ*L0h,znKBr`kV]ً4{[@Xf) A& tuQa2mtLѱ_`mAXf,w׸W +4E*x阵vRAoEW|ϋI|turdk T*Nek㪁qr\dt6J(jx2Md{+U}*ƘXol2;ѕ&ToTeܸiB{$e4 1iQ7»VFNF;x|-*臠 7{ЕƸ' ]`{[}a4z#RyܭçU/*,qb*rc12r8a$ϠDBUte`j>>LmN|?ң"#E.)՘)nr?ex4eaX,XCسbpUZq"m9j[x`A7\dD'Sy\ WhUD IcIčaFڬ*R-^GUmk څ@Z%z(^3 FS ]Uq2ZQ.*dM^*֦?hIP*"X- zRjL璽zЍWc d@9锣N+T $L+7S:Wj/UtU#m0 svХ]jPU;VOcKXY0'iBoz*t^FBbFE:pUsYC뫊BZ2 ]q1J0K+AU^BXd+#N|E:Ԛ}1Um?r]]t4 ih5V.QƩ"]IXĞ^<"7,骊`P{]a<X.݂]՛.tFbl`@5)/X\ U,tU]:Q8'="}:U_fU<{\$ V"8h73Z؁內R iɂUqӕWwj~B ƺSWXkheW.J2\H6STv2`Q +8l"Ѝ4U CO hE)ԎNW`e f"Y⑬Y4W:]-7 骣[}"]X{h$ZQp6crDҕX| `)@bsJj!ůЍL)hՑ~_3~}p:(ЊWøxc93WU%a7]]ι,Tp.1%xYzm++ Vq5neA$̜o_BZt5rF6hE'q?]j?-X+Ѫj9Х}B@hUDbhED f Jh5~͖]Yf| 9v$a?}oDW w"S#忮_eqJjb]ƕ O^!Yvr*XxJRgX h,@]e݂;p+.334kg*}tMJteZ=N4^aYN!T,[F"*a`u1cm65b>֞is@WX{cֿNϹ]_F6ڃV](req5%KU,ƭø<|'JbՍm]#߫+Ôp :Fñ,he+=+AJ f7pc0|b"Ts-h 1k}l3.c;OF}#]phkU EFU ġᡇ(mcQdrHWY6l 9v+R"SW~m3ZqUV:Qb"Mڲ'֋%7fe_]nozx eh5޽v>he*/ % BRbvewڹ1\`V f_C+Xqx^{>.g`&FWǵ3VT3Z)t˗Z̾-dK5g#8f,`#PE F*(gtX9XVNw 771֪ hU̘"8Z9TQ$ʗ 3 CvʲQKXKW6FJTx `wÖUhW>q6-ḣ3qU,*`BWxh*\l;v+GWE+<rJݿ22\`.ثY)0R]d2+fr*l!VC,\UZvo_t MwNBp D'} ]UCm`3T)C4ъZ-X.XYl$7NWۖJ@./͊tE,V}]W L. ߻u|zkOƓ݅dt06`r!]†VcLW̴\*Kn;#9Q)K=M8Ul ֫ >y-ec€V%`tŖ,ZwSm\mhnmH]* XCXtjZYtEڂ+X_^?[ʕ1|՗ѯCjA} KQ! ]Det9n(c%%giEHjSZT2P3{]v Lsk2^K'W+sJ}tjfKTsa$>z*^-d"`3_ߙn,"T +\G|EtdjhY+֩H&i] j1\VXvjSgmf #>k jU.^)1VhښZsN!hP,ŭ%"v.ὒ2@ 0>׎]y06;nڊmPUP 3Rq(hR-HZCTV eU/ꓹJ{W@m|jrMx!\ WnAzRy!.ƋX ]9`-r%f2 }tUU$ҺKfZ{oq_s~Y֑!$1Vqnp  âg%~ tY֫i3QuT_H. W]w>M ZM~|=:f*QW9—M˕ȯJGlUR9% n[O.f ,g0`DԟEW]v` t@@nL+({Lz=&8OtD+>ZsߤypL~{[hi,VJU^pUezӬ`@W@ϙw >720@,դho5JלiUъvDW 9vvҽ{sGV0 f\X܉V#7>tU=q: cKPLq(ޠfa+ThX}L:"@teG+~ ]lЕ}maޕQ7;U,}c2٫tDȟHG+-v_z_Fa2*l }qx)\ 3;ꆫL$ xHvz؀V{U[lrxnk.}K+ 1k>>nY]`} ciUMNǒSiTM,ΜR2wơ^ho!NmJJʳWqʒV~8E*Qn-C1 C*\}ܰTԁiSr`>oƍow8K=LWv[N25=]#*4b1c) :Qe{UܥJc|ݝ _`,z.lSNZ`4 II+wtzsɶ!׾٨}YQr[)Ape;%R/ѵAWXk79#[ F]3ij򼐮>1Te hچct%M<;tyaqk|؇q#!;]}`}_VMy9!_Ţ^)`<(E'iөG9 Zc 7IpJT|eB+W [ i , iNW}]tg?8]Y<٨6c#1v NJZc"[bBKػ7a9-#&3i.b`wm}{tѯ3JF%Ĺ[YTYp!V7 y!ku.IGjdsň+$A;ZjĚ !0`l`?Y~/"eu'մc)c+ף( WX$gY0;j78ȝU ՂSUc)tUnQwo ]Y~}o׹UUhE6ەkXk"9k qT!3 OϠ AeZlkc'3Uk u-}v>u?;dx,tU "ì=N]!omEC{`×6ANl$g*VS5Ǎu8x݉nPn<~𒔵Ѫ#I+kg+Ml%No teRoQn|~EЧj=7 >jţslbyAM0 \Ej6=LY x8>&^E؞l\-WcRy7h3\XW&}AVwn,;]% Co~J?ǹĐQЂUm8*A/4Kr)cUEBKHv5țB :H?cf oӉt<҈^~]}.X:RtiBC%(r`aaqʗX$V3]!Ue fïVY7 t!`)FAWg|^՚9W`*nɜ Raer{%G| + "t2 I ЧVL}W{>CRwvÄ^52m+Ev#E]+)&a_ 3VmF+#T% UtESp(njaz ߽p락GMutOة_ӎmp- c+ZQek,8(epf!cզ0)]E=a_NϴiX!gLRC="psUlohbF<zeMV|rI^cDb4H " {ʩJڊմSFXE;y 6U{8iU!d>:J_Õ3eɘE9Y6U1m'e d? *Rc5  UO~=0oiAJ͍${R!=kڱz/ҕc]rf6rWdcm[_@+{UA{ .R]ѧrޏz= T}549_UqdW_,fM6Uƚz{Erদ(qZ١8J.ŧYVMyAL_s\#l)F)W;nr}qw.ϯ&yս썞] eZM}uujmMMPqʮk"ZP:T /V<U$η|+;Ƴ TE~)q u;7u }cɈVFÕk諸0[G%Ij-( ߍ&495_)ZYaCֆ^pNtEr޹Klܫϵ; W%G_t%ŏ7p*橢{̺ *`K*VHU_ bXÉJV7@==s;@j8ai|%{lKS}qyUܵ歄FU `g*jJuZNc1\CS'"yJZ pjzo0Z{"+`dj0.b2v~ɧ]Kɐss mp%pUՄfW[D_ҕшeA+2,UۄG?lVXs6d` ] jI߮i2̑ -wv@+aT螿;8bǢis}̫h/ *9>Τ+R'z\e$ LPgsoAhڼ߹ o7s»Vf| untC$;=y˙F"- ŞZ;KeʘP:r^r\뮘uM8*>&GBl꜋6\wKhe!*pNNgZ'Qm k>gĒJP^HBuG[}M AW,_MﰾuTv2лl_? Q CCK,+'UVyԣOsίk\-=܉zS/L팪G?eZeQj H³v{<;%$Гpʈo *z1&E/~p1>9kl[QzXoG%}3)^zbO̪3w+~},ټw-aXKiΠk;38itRL)/TȹʳYW5& ;J!8i~ XSM/ö~:붜FӒM~mcyWޛκ8L~> [ђI',Ʊl$}]$IH[m@@K3BWgW'5o]>*z7FX޵3o[6$YKdm/tƅh(q+u,2c-DBU.Γ =6Rs. l{]tGw䱾mc z%]Uc7]9X]Ъ8]ejTK窇g"b9n1lm}eUT%%A-K (yAZjf =mĶ>Ll'w {i:\f[_>a:;t#cM̥^yv&QsbtͻONW9V0'D=6")NSHtz#T/`㿅_쳱q"sOYƲ@t>n4-cs4@R.Y'-$3]d>ժKy\}p.Xw?KT߈g,#b6t!ɧCd6w9٭VF \5kəX\k"_⪪'^= 3btd?lǶw$ߟO)H8΃˚"Eݲea cz6H.V 9>0swm k磔aR9u$;pOSO!uXP {r'fu x:c86u,;W!eUU}G3Ni՘WV{zr-5,uHk33ZiIL6ma֘T0֤!*ANEr4lXUy+֖2֞l'TsaĆ!FZ/7_6ƂXꞩvm)vRp_tRzYoqOXӷQ=զk?,J˭ ;XtM_- ^] NqW|<Ӌf1r;FTK1cg\ {hDaFTH h`I!Kx(cM 'C a#:1$ !N%hGݕV Sj儏8\t _Fe`5m.*r*47[Ԍ\h:RM1tzR;B^o~ƪ@#4wa㫯o|'*#]96s=ArbzÒAg]1!_ݯU\-O&-`uq'Z]MCBW- K4ӗ.J9T ! P7ȡu[OX&a,1K+:E)\;W_]O0_އE.ܔ[!hz쾤TCo#To,18% ]k~s%rՊwL{eI>) 8r5pBW^ t`oב}Z2$? }5eU'[$(7W9PG ]W:]QH\e ՞$Uc]-b{|@w)]4W=Joٯph y_y̺%B xx<."NW L?_t&ZahJ_| N+Nec' 9k엇m߬+P銚KDbIZ&[{sCgq*D䥾󺩬 p5q`xݮ52tcb]r-'2^& r9v"UWZX* yqF]vv'k4U>cC1 `A]/;NGvRw>vt_;]S9eԹlD'UYҕ3ˡ9MeNQXгHWF EZzyR[`9ui]I(':#|3$lHo5f*kĒ`e*c'DUd) H DS6.v]A 2֗3cȤcX#ơ*oWZW ^at9W-,JfrfӍ.fcCqYЩ7%5bJϭH;^.Q wƽOc[3G6kq$K@@Õ^HWdgNWY#nJA;_K1X˾+ŧtѐȂV+itE7+0i 3fLWG5.6{$n8aa tUu 25\X ĕSȆٔnGƯ]<@wQVtL f=<߫G0 UlPƕE%ex@;nGv9N;@XʬC,m.Y W }(rS~iv:BKPѫpeA~}NakREn>Nko"]-4+ɩW74Jdvh—טx3U_KvmZz~XkE9Gb= vR<C8K,t'EKRrVf7;1F— ɔC 3䪱L*0(IҚ*Jqh%mnӄE' Vtiz~Mڱ\tOIUɚ)NSZs4@"sv ]+ף44%"lQOzɗ.щW``݉vUϱvm/ڷ\*c 6tEãv'llL07i(z]$R¹-Y|/Uv6>E*ܚ uwb=+c~,}x\n-o.Eh%**N{9ղB{uN{ 7x#h) D.kz(PWh=N" , s]RNۇ+* I*&/y*]˹JlEH%PJr->G_dxi&UN'ǹhe1 ׼;y C$X %VkRxJz;ƖСymddVe)F_QgC(G{^**U}>3$:W٫~Wu乾hUX4 X7<;Z:{r-qg7zǿj:ĺ 6c.S4^}֓cA&f-% բK,n/t_WKki# V z7ثq*Mu4Πv3tSMS˱[7ݢ*zV, IDATIgKﹰ>蔚>>FUB՘cI55UÿqhTi ]I@Og/VԎyÁXK5%b~\E јkiEO^"鏥+x .hWՆVT:KYBl{P5Y ęvgxKJ%%AUk]qyRգ\=7arC˖5'>Y߽[ui;NL%TXkثb'/sVr]a1Wƕ.ZG/;Z=/!^ YPݑ^*yZ+WIO%Te[,|oh-cWWخO,c۞GFj9 V`qЕJ5&*g;iyeWGӐ$g\ z$j j]gV ЀVbOsIٱfCcrPT:˜ag5Hrm:O۩}]DQvUr'yS?`R ;+֬%n\)orjmz{nVz, Rq"Y L 4UbJqr- DEXc%rDZsY t5DgXc7a* uVmOLd5ӣ&RiF1'5iv}OR1'6,Ip3VG711ϠkJ7k^룯t*U5t,^WŪ8Fܫ@ ^BU1`/z )yj;P` =PTKmPNQ)LÞtmUh;ex#Y*N0L6nK2.EUxX{z˼` `~teaڨ=4|j|v^-DJ\Mi5}(Ury9wmT!Ceⶫ7#{*?,KAUw /KXECw+-1[n/q "._[˕4v ܓJJm(>.B­Qh!s(Qt5g.QBU8i;RB6 v}|f*&e)=үFFJ3K,HGCB [Y˩o~шpHJhjgfX8NoVߗD4"Ҍu Z%#OdO`C_s6*+Z J\"fV sUmafm? T5ʮ-mj*vkcLk|@3+}Siv^3pi:)b@9(G+V_Ħt+/2Vr։lJ h%ZfC 餗Jyi'P/vWҳSX.Nڙ}^-M)k+tdjMDS,}y=+]z씶,R]{dA.M+ǰ ʸowl?djė/پ\OG4oWKK]%aޜwwZ W83c. G\~3ٳtf㮚* |U-t{0=9We> ^e" ca!Xrn) Xr1 /1C𔅪G^yJ4_\5t߲΀AٸQ`mnL_ U:]dp?NQq+u$nVY8"S>\=ZG;)T8DbQ}ΓHWN%D빪=g7ȑf0'%9*j\lFf"]-︂F_lOuv~YW k +VzuޅH1 +SNBudWb_¬6#NO/Cv;9C4(7gj;5RRQ,hC 񽊌 bQ~U8mݕ\KKF;m1?x|7JKxωuU (&;- t;{L[6z\屚Gr#%onE4q77H:Q;]}Ve]]Xm F4թ ʫL<8)ױ?%vzNӘ&Iӣ1~+If.dNiEN!5Į,UzHeIZޜ}^ξ.7"̻4kuoW\U%YvX+=6 l&N 3R>ʢ^ :g7/$W^ Vbhj7 U88$CrX*N8ZY_ 7Ojĉؒ]N_ ӪfP`~|t~V5])/Nb$r!T+es mEj7JHMݘ=ɽ8dn;ΥZFUڍ1K2>(Ʈvㆺ>VȔmʮn!Ub."RC{K=.LjajW+庬8|84[JDt !f?d+g$%X̮&W Jxh?6VHytj]>߱l'j|眦|NgS:}# Kd㲱nm2 epm\9Ζ++ǺNlW7gT4@S]Λ^un3ѻn3ή .4bJW0ƿ~Wp([ᛵr;8mW BX,3lt[޶VEZ Z [-g{wUvTcW"Uu5W-~oj~,YVTp֫c\;߳9X2 )cnuRC%~)Ub׳.&#lNIGAY6焇j_ &T%H\6;݆NK:M_:,4$߿;j7zq*Y\4Wuz&F :Ӳ:U : G.Pۜ3"N.cis 78nߞm;\c]f 񃗾5E;V VÙjT0&X>[{eH+$Q8}4+_UYy,7ohb:c;UO,7CYZuV=U]?.omOj"q,.m]CwU+`WsaU>KRVJ,?c?EI6E[[4RsU X8j&0`T^.GlRY]VĻa' &S:>~ žsj-/$O20}%*V=YXc~D{X V/Q̓?i~u5 *z+5O?Қr浫xFJȺס^Lw"\jw,$jXڕ6nO_fWrJi-/x22N2s:τvS:Kmmd9K n^\!Y.u'mtE9ݗts,Z]&E@1usYxĮ&._/B٫v*;}1A )Vff=;>q%ͦV.KҽJWsR'S$_ũ"V^uۢ~OOEoeߍl vg[VlBbWVQPVU_ѩ+OOV}f2^V-_dNc5&ҵĭؕA=}a嬒[Հ< Щ\V\K=K~$f9}sS\A7*`c,rY`WGN6dyfث!'lք-N,a?%fLeNbgb搻®n,HC5k2s&I nWJfWM¶Nve孱֫j=nNժ9`z_r]$hý,%fBJ=Ab/^i(t:f9vjWƮ̃9|1 vZ,P'Zga+Z}ed*TH_XP`ɧi;;jL n q-IN3W V-۠]A4Hi%.}Ȑ;NVvR3/n"庩V2RIK:0zEXuzj*8s:cW+QiQ˧Bn1j\P+x`)c m,c GyV: \R6堔jƩQ 4""t]KZl ORbtXsFj2j!cUPM M_(W~?Q*i. /lnQTj5mj{P83ֱ~Q՘1[w?G~J۫jI_3b5sn9Qo_ʱ +>m@DQv,{wAr%:Noi;8JY@'z/W~~F%H&urv3lEj!u\î1s3 r|fR6vJ5J6ߎ6/˄ŷVMS0OXA==_<.uf?N$J7+IV9t9QwG28(3UMj%$`XDOJXUrUg1UXlT!hRǗC O6l#XPl%+JcWwKupNeNTtgL |}o5:Uo7xN;ZMR]B12Gc/9mgR_&tj[Q}SF`BfIʱy|؎ e('B@̊siДje8iSAڃ]r3X’U. Fe6SvjS2M4ms_mUmuR+`˃5h%^:.c+gςm*Te^eDje,;h]P5qi'OQt%oN1fIjBLӪqPGn[Ru:JbḆJg뎡Ʃϖg )؂;$ñlk'Qs\BR'oXfߒؕd ,u&@3uhrKe9ԙr-߇ele>,Qg9*$#rKg[:L:XvH"ɦ ARYC6#9hvTtP9Ѩ.o[Ԫјz Xs h;NRŢjgHNj "rXJ_u:g5\8z燂b<߫YoJ%DDRe:jvjNvDטquh<_b2W,ڟG\.i$]Zvu ):Xv5 f-A pһ]A5%@bv̓i]єN ">s>gת3q\ NK_; ]̱{[bJQO92u%űFWu`ᜓXxUK|[q6x,T]J;:ڕ, ,Gt6p4Yho5hpJ_CnWUξO6)VOV$֥]ݒRW ЮJ@zqq6| *J`-Wɛx[dcE(sKMG}wԑf9XC\j_]PB~q:ؕ˿h&ϨJoVX*C_ΤJ9MU8-ep[(})K}kV{y!r:unKt2Шڜ5 $-0yoA>jWlnVvuن9!U3b[a%1C KVAXJlW٨cMPTRkn4p2ֺlCYZ9Zy:j$ٕHՍLXgLR&',[P^Ŷ,k2WSP% qJ:.B[2VYJV\4vWm{WN.JVsf? +HrAM_Xc=fLUfJ.) ܭWhKKNSe4Fafn{sn XYtì,aͽ-1B`^UD CӥQjB +e4*ux|rZ<5]Yic.#4WYILl'6s~ nj[X«r*î.K@*,EuZc N%bv,!ql$_汔&vc>Z<akWy.,T-P㡝`g;yۢYu J[o9e BMv üUAE_[fg N*C?$&qI@! 孩P`-WZ:'cMwvuL\}&Ӓ΂rTf{r 3g֊hb籰+@;XmYjV{6]}*֫Nmz`ΓAIu^eWUX&M2z+$5Ɍqص0}] X5ؕN Cf A$Ǜ ] Lŏ rؕa˻ -?1Fq'L] ^Q %r.oWX`fWǻ@y^l[(r6IBR!–we%Pv*KJ:qTUlG7r4m/O>bw r㧸/'QrΖmssdrND^iZYS?]Btk8r.!*8VXauł=^bKئmv0mQӮT} zsŰ+uU%ul+#ueE RepmLƧ6'?4L^V4XL2_?V"vLzPi8I9]rs;Z&=R.PWlgo* 2Xe@i F$B㞮c6GYo$B)1($CQ˼]Bdk^-C@ە0]|fex='~ ʱRJ΢9uVuy<8hwu/c X9ڕ}%`ֳбr.V{ WBij:Ofי?GcŻ'ThF'O1/ Wp 9F*[s#u]%Ɛ>Ǡ˵ +x6RfE.Oevj@MtuwlP_y|KO|VNg"N y#u,Kx^gCNVvk(5)*/p]JX˧CE;"8yEu]I\jNϨ6:gj[7;[J1cEeʲ 9*otqj `u up.Tn1b=s U]MWfG*M-¨xg{KfWEMU6ј=1 tu6zy5;]gO]$*j,ۈVq։0ZYtzM5%^C˒W;}-|t,CK{gu~C(njq3u*X F0.&2P紗5xPΥY&+\Z_ K@"ֽ@oV kxJUԯiET+/y~ d IGmH8~vY--ɉgZ6ԡY@vڎ9<Ǯ>ϟ4^/]E8x72^yd]挓q6 Δ<^hxUoٿsC-o9FOl9 v5 i?U3;rv^ӛQyv3V^2Z>9XP<^ VW_ڔĨ$C=&%51uyTM_eMSMmgSu>e602;/iǻfcWVm̛ZݻNcۇ'{> =ErecgZuFȽ0֮(K ye3`N!Uı\nMK>`fgA͡&lc'5ÓMpgc?ƶuCO@zkOqQ0 9Y&;Kea)4]av3Ĝ^A +<@$GIP/jJWߡa<4`-+zߪv+~۟<}O߿1Rk7dg %C} )f7SI:qz M !0b*3TAb՘sovu\ij[A˺TܪFݙn$υiO1D;ϑ*+]L+]MN\0|@*@Iݧ,wevLJ^E]69FQ>6όLFwuL2S^@AM¹yv3h v`#w@ fv2V1'ݧ'2pXJcE%F+;~>.`̖5CcWHpUf5Jd5tH zf0 `fbĊt+\+=] XepWe99WAx֩Ǯ3jOQzkspm8]u'CH=?aGcM]RG4+%[_xis ABtbݚ2< X:?9 4`LpjL땥]৸gmp 17^t>|_%x?DC Dl2Bz$.kJL_* r8P^(NV+չ͸Uc)4 ¨ ei;%\c X*OT_ w aP5м3>`=H0߉ӝ_E*>`=.EV߁3^`$ƱP+뉁ICQ't(ͮOSTXE%n*c X:]!a t0-(W +ey`@Ӯn gd,W @tP)!mY4Fַ X]wf9rrIDAT޲Ol 㙁p[f{QpfOp|1b'`h$I0+wi{]j@Z>7A~_/ˇ!շN: XHU}d5ʔTD"oV\>k~wf,超xۇʠVvxQ·x"cjk= ޝCpLYxUl(H^]c Xەƨ0Z:>|'N0GP_S*Ii824lXYPSlHuQjn@ߴ{xkoE uh ]t٦<@v8VR>s˿ְ8Fai%Ujy2;zwL.ry#%6hw=+N_&Vt ]M/H+a͘э=iuv`Ն||i@ !)VyV]PDzғ8}9@/P(G#A* *ZkbT^7 @2Y@jk' ]0@J+Ȋ2X$9`|ꓭ"L ^E1b5նhرMFU$H_vf<:`{ "S]ۜF .Oj«Em`|Fj`m N:<@0 FQ?̾460@&~%ó{(U[<G@C%w Kăa2Dp `Mϯ/w5>5U0 `eWa_@\<ܓc XkV#q1( ~rjaj%23X:X>^#F6yҒY^M+F:]1>x֞de9J4d`@WaDuoƘv`=*! 6rЬN}R%"xWJ5£`;@<:#`C@2T&+c>l a~w}U.HV8#}5x?®F&X9Uњ5p@]PDcU`,4f]N,@W$X;VF5>LsD/}2I'X ZFЧc`WO$^0x3C 6U] X9(!T2*ȟ`m-C!@nZ;/+!su]`U;vUoYd*n; =e51rYBb1i@JVvg#,xlWS-* }G(3ŋ ] XVA5dܶ/lO(v`=α*hp]x<$9 HHF|fkqs8=w:0 }Vw9}kN9ϩ̺'<TAñ*>kdEx!}`IWUnN3C@!H7VVbMgYr ;Co֮N4rvǮ&ߗJ?8oc Ů%Bw@*Q+ڇ@!xl|h|mH$zWUGlWLu `Cz[V&V^s,qzQ5u Ҷ*/B^`Uy~ 5Bl!cOc7e _q޹?U]ŋ4#3&+P|3,H ,J ++lᘓW.OƱ ʽo@WsTgX`ԣ7ls"$7QP!<Hs!1BWJŞ՛ XLkQ:+u"e}삋Ѯ]e=GH*O⢺W`R[c %u"n{) E_]U|(JΣoɱhWcsY\S#O^+/4 ᧸W C}kd*Z<;僧>/Ʊ `M7ЮT3ߟ9>]},2-n*d(s>~ {]!sG^?oGZU~>K_ζg6Rް+x`M,ܨ\~Os^]UMr7NuP\>nSP7Ue˜UDtd2n ~g@*,)`]eHգL rd&D3|6sh*HA>=]_P9+]Ad&7ٟX/t &X.p /TBiE]oi;v2:wᑱCHQuQj,8]IiL/xi[P!vU]>χ({*6rEn "+9K (xO4W)yZ XJqC=y;HQ,㴛d #9]yUj?az˞dw$bKX柏*w^Lf/C{xmp*UBR)OS;==ߩbbSuo4B,>jﵖ64Qaڀl+dc7lno[M+{#'$AjXxkk2VI,> karKuP+ 2Aj˘<jŗc-Lijn,oN2΍TUT`doM9,5+Ws VzHx YO%L =﫯U8*s o7xǘZTZ2D Pf&<\};lDIW6J9d n]_xc]1󫘷ֽjֽc ")p#މ,@C޶8+\_Ut5PNSq k*VٻEW XP] E֬&u|XPx%X89srQun/]Jߌ/Ln Q2>oIe[_qv3w5*t^ڹW5jU= ZY2o1{tcN{yL.C˧JNP+ ȣ.W#fAOUc UM2Kī†.DvئǷsJ BefUJtZ 4tV/sЍ_nm.scyTTg>okq~ʖMF#X@p}ή潺;v7jdѐUfUj9w'X]"*CgK}>2>m5sݔsϖLOx܍fxj: \riWVb j+wcv>A)F:J~!@DVӶXVvUM>ۯ;s3z!nё*=^ J5<^^e|=Sc vYn'DZ;]s nQY*v2^|<@ *0DP5r" nC%÷0re"XDj8 >?[G#ÌE\k6.}|Bmaȸ%Fzd[_7{h2$R ew\宆 Ã=cNe}NlL"qC9An= 7 {-!X(^^5JTֱ4LOFnx̰dFԉ_e~Ջ;{={r0L")0>'ck뜱CaV5gpͅ<';=xU]d xJq4s$%Fz-{[]Ge>;^W/.8_Gʚd<<$ىc1>[1-KГS߭cgE 3۳>vnqң,B{^u53[yR6[5r>qC~r-Lx|zY)˟.%fMO!K\gp?ܮl[;ǜE/w'̂#9uְɓEZf`Ÿ?Z4B"|ndOîv㾹}y;Ma<@([3 r8\F*hÀ[)x;>#ȀbFC$\㉳^}8kW1 7>9joDŽu#oo|1#Yno:>i[R!ˆwcL-&[k샕]]>A"[XyF.B}9wP}9S.R"XiqO^8B_+piT \[ f?uoWN&XVR̳iH1d6CJ+h]=v VaCź2 9)hVScFs8xUܕ쭄`yCd,oViVZQ!eЬX|*`WN{{Xa'/:UofNh!X\XAo8{:%Aq/uO]Gж{'U6g/j`zi[n%gcpdZQT]>!Ɂ?*u?坟ZYy CK-o. x>DkHYl2I'7Wu,P%@m<CQn^f]n-ce)gck5kk+:12CAvNN#d u8a0̎b kW*;:6?'`q3$[֥OK˸bFN1f ǂ;G}דnAL?o1ᴥ64X*s`A xXS6eV%iL 0*J5j^ֳW}6{s̾Ex2Gu#3xc1*s2ZE*jI*~.l9s,g*p0f-{B9꯽X#Nx!W)Z5ZÂTVsueklƱw熙P_G6 OPk~,=5_+q,yH*TuN䨚oZ'N{F3Z6ji\at-Ʊ c4Q Ӆx`nXxI!l93y!ZJ \B#pP!vOOyc#fY^r,e寎+.?\ K.O׊p1$OF2jj]YQ`1D!Xu}Wٜ=4o:eoN}eMQ;VO U^& L(sCLR5yVÝE sb6IENDB`elk-9.2.12/examples/GW/HEG/PaxHeaders/plot2d.general0000644000000000000000000000013214536061315016743 xustar0030 mtime=1702388429.102499736 30 atime=1702388429.102499736 30 ctime=1702388429.102499736 elk-9.2.12/examples/GW/HEG/plot2d.general0000644002504400250440000000027214536061315021466 0ustar00dewhurstdewhurst00000000000000file = GWBAND.OUT grid = 800 x 50 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 2-vector, scalar type = float, float end elk-9.2.12/examples/GW/HEG/PaxHeaders/plot2d.net0000644000000000000000000000013214536061315016114 xustar0030 mtime=1702388429.103499735 30 atime=1702388429.103499735 30 ctime=1702388429.103499735 elk-9.2.12/examples/GW/HEG/plot2d.net0000644002504400250440000001457214536061315020647 0ustar00dewhurstdewhurst00000000000000// // time: Fri Apr 27 18:31:27 2018 // // version: 3.2.0 (format), 4.4.4 (DX) // // // MODULE main // workspace: width = 462, height = 562 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Import[1]: x = 56, y = 47, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "plot2d.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node RubberSheet[1]: x = 276, y = 45, inputs = 4, label = RubberSheet // main_RubberSheet_1_out_1 = RubberSheet( main_Import_1_out_1, main_RubberSheet_1_in_2, main_RubberSheet_1_in_3, main_RubberSheet_1_in_4 ) [instance: 1, cache: 1]; // // node Colormap[1]: x = 388, y = 153, inputs = 19, label = Colormap // input[1]: defaulting = 0, visible = 0, type = 16777224, value = { [0.091397849 0.0] [0.18010753 0.16589862] } // input[2]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[3]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.0] [0.077956989 1.0] } // input[4]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[5]: defaulting = 0, visible = 0, type = 32, value = "Colormap_1" // input[7]: defaulting = 1, visible = 0, type = 5, value = 0.037809622 // input[8]: defaulting = 1, visible = 0, type = 5, value = 1896.2094 // input[9]: defaulting = 1, visible = 0, type = 1, value = 20 // input[12]: defaulting = 0, visible = 0, type = 16777221, value = { 0.037809622 1896.2094 } // input[17]: defaulting = 0, visible = 0, type = 5, value = 0.037809622 // input[18]: defaulting = 0, visible = 0, type = 5, value = 1896.2094 // window: position = (0.1088,0.0511), size = 0.8838x0.5656 // main_Colormap_1_out_1[cache: 2], main_Colormap_1_out_2[cache: 2] = Colormap( main_Colormap_1_in_1, main_Colormap_1_in_2, main_Colormap_1_in_3, main_Colormap_1_in_4, main_Colormap_1_in_5, main_RubberSheet_1_out_1, main_Colormap_1_in_7, main_Colormap_1_in_8, main_Colormap_1_in_9, main_Colormap_1_in_10, main_Colormap_1_in_11, main_Colormap_1_in_12, main_Colormap_1_in_13, main_Colormap_1_in_14, main_Colormap_1_in_15, main_Colormap_1_in_16, main_Colormap_1_in_17, main_Colormap_1_in_18, main_Colormap_1_in_19 ) [instance: 1, cache: 1]; // // node Color[3]: x = 142, y = 190, inputs = 5, label = Color // main_Color_3_out_1 = Color( main_RubberSheet_1_out_1, main_Colormap_1_out_1, main_Color_3_in_3, main_Color_3_in_4, main_Color_3_in_5 ) [instance: 3, cache: 1]; // // node Shade[1]: x = 320, y = 256, inputs = 8, label = Shade // input[2]: defaulting = 0, visible = 1, type = 3, value = 0 // main_Shade_1_out_1 = Shade( main_Color_3_out_1, main_Shade_1_in_2, main_Shade_1_in_3, main_Shade_1_in_4, main_Shade_1_in_5, main_Shade_1_in_6, main_Shade_1_in_7, main_Shade_1_in_8 ) [instance: 1, cache: 1]; // // node AutoCamera[1]: x = 356, y = 371, inputs = 9, label = AutoCamera // input[3]: defaulting = 0, visible = 0, type = 5, value = 1.0 // input[4]: defaulting = 0, visible = 0, type = 1, value = 200 // input[5]: defaulting = 0, visible = 0, type = 5, value = 3.8 // main_AutoCamera_1_out_1 = AutoCamera( main_Shade_1_out_1, main_AutoCamera_1_in_2, main_AutoCamera_1_in_3, main_AutoCamera_1_in_4, main_AutoCamera_1_in_5, main_AutoCamera_1_in_6, main_AutoCamera_1_in_7, main_AutoCamera_1_in_8, main_AutoCamera_1_in_9 ) [instance: 1, cache: 1]; // // node Render[1]: x = 217, y = 445, inputs = 3, label = Render // main_Render_1_out_1 = Render( main_Shade_1_out_1, main_AutoCamera_1_out_1, main_Render_1_in_3 ) [instance: 1, cache: 1]; // // node Display[1]: x = 373, y = 500, inputs = 8, label = Display // depth: value = 24 // window: position = (0.0063,0.0000), size = 0.1338x0.9156 // main_Display_1_out_1[cache: 2] = Display( main_Render_1_out_1, main_Display_1_in_2, main_Display_1_in_3, main_Display_1_in_4, main_Display_1_in_5, main_Display_1_in_6, main_Display_1_in_7, main_Display_1_in_8 ) [instance: 1, cache: 1]; // network: end of macro body } main_Import_1_in_1 = "plot2d.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_RubberSheet_1_in_2 = NULL; main_RubberSheet_1_in_3 = NULL; main_RubberSheet_1_in_4 = NULL; main_RubberSheet_1_out_1 = NULL; main_Colormap_1_in_1 = { [0.091397849 0.0] [0.18010753 0.16589862] }; main_Colormap_1_in_2 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_1_in_3 = { [0.0 0.0] [0.077956989 1.0] }; main_Colormap_1_in_4 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_1_in_5 = "Colormap_1"; main_Colormap_1_in_7 = NULL; main_Colormap_1_in_8 = NULL; main_Colormap_1_in_9 = NULL; main_Colormap_1_in_10 = NULL; main_Colormap_1_in_11 = NULL; main_Colormap_1_in_12 = { 0.037809622 1896.2094 }; main_Colormap_1_in_13 = NULL; main_Colormap_1_in_14 = NULL; main_Colormap_1_in_15 = NULL; main_Colormap_1_in_16 = NULL; main_Colormap_1_in_17 = 0.037809622; main_Colormap_1_in_18 = 1896.2094; main_Colormap_1_in_19 = NULL; main_Colormap_1_out_1 = NULL; main_Color_3_in_3 = NULL; main_Color_3_in_4 = NULL; main_Color_3_in_5 = NULL; main_Color_3_out_1 = NULL; main_Shade_1_in_2 = 0; main_Shade_1_in_3 = NULL; main_Shade_1_in_4 = NULL; main_Shade_1_in_5 = NULL; main_Shade_1_in_6 = NULL; main_Shade_1_in_7 = NULL; main_Shade_1_in_8 = NULL; main_Shade_1_out_1 = NULL; main_AutoCamera_1_in_2 = NULL; main_AutoCamera_1_in_3 = 1.0; main_AutoCamera_1_in_4 = 200; main_AutoCamera_1_in_5 = 3.8; main_AutoCamera_1_in_6 = NULL; main_AutoCamera_1_in_7 = NULL; main_AutoCamera_1_in_8 = NULL; main_AutoCamera_1_in_9 = NULL; main_AutoCamera_1_out_1 = NULL; main_Render_1_in_3 = NULL; main_Render_1_out_1 = NULL; main_Display_1_in_2 = NULL; main_Display_1_in_3 = "X24,,"; main_Display_1_in_4 = NULL; main_Display_1_in_5 = NULL; main_Display_1_in_6 = NULL; main_Display_1_in_7 = NULL; main_Display_1_in_8 = NULL; Executive("product version 4 4 4"); $sync main(); elk-9.2.12/examples/GW/PaxHeaders/LiF0000644000000000000000000000013214536061315014172 xustar0030 mtime=1702388429.108499727 30 atime=1702388429.104499733 30 ctime=1702388429.108499727 elk-9.2.12/examples/GW/LiF/0000755002504400250440000000000014536061315016771 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/GW/LiF/PaxHeaders/TSFGW.OUT0000644000000000000000000000012714536061315015536 xustar0029 mtime=1702388429.10649973 29 atime=1702388429.10649973 29 ctime=1702388429.10649973 elk-9.2.12/examples/GW/LiF/TSFGW.OUT0000644002504400250440000007164014536061315020264 0ustar00dewhurstdewhurst00000000000000 -0.8000000000 0.5906911149 -0.7983750000 0.5880266918 -0.7967500000 0.6193611392 -0.7951250000 0.5834818331 -0.7935000000 0.5811520267 -0.7918750000 0.5803867603 -0.7902500000 0.5802233591 -0.7886250000 0.5806138160 -0.7870000000 0.5825534987 -0.7853750000 0.5913061310 -0.7837500000 0.5889172332 -0.7821250000 0.5920163276 -0.7805000000 0.6006279506 -0.7788750000 0.6103558029 -0.7772500000 0.5990402281 -0.7756250000 0.5975721164 -0.7740000000 0.6124301015 -0.7723750000 0.6329314205 -0.7707500000 0.6066111755 -0.7691250000 0.6084249992 -0.7675000000 0.6125810523 -0.7658750000 0.6177669896 -0.7642500000 0.6240607623 -0.7626250000 0.6318472441 -0.7610000000 0.6420719378 -0.7593750000 0.6558468608 -0.7577500000 0.6710758844 -0.7561250000 0.6900624951 -0.7545000000 0.7146413561 -0.7528750000 0.7461524742 -0.7512500000 0.7859855507 -0.7496250000 0.8357451544 -0.7480000000 0.8967145822 -0.7463750000 0.9689144841 -0.7447500000 1.049116666 -0.7431250000 1.128426569 -0.7415000000 1.191647052 -0.7398750000 1.221922828 -0.7382500000 1.210959625 -0.7366250000 1.165658944 -0.7350000000 1.101948627 -0.7333750000 1.034658571 -0.7317500000 0.9727569146 -0.7301250000 0.9200467725 -0.7285000000 0.8777508589 -0.7268750000 0.8452131199 -0.7252500000 0.8216042938 -0.7236250000 0.8068962301 -0.7220000000 0.8050183918 -0.7203750000 0.8156078851 -0.7187500000 0.8533691642 -0.7171250000 1.006385080 -0.7155000000 1.830858403 -0.7138750000 1.535344907 -0.7122500000 0.9966819429 -0.7106250000 0.9379624351 -0.7090000000 0.9695280440 -0.7073750000 1.048011070 -0.7057500000 1.149858031 -0.7041250000 1.236430512 -0.7025000000 1.261545290 -0.7008750000 1.225518247 -0.6992500000 1.182158199 -0.6976250000 1.173667645 -0.6960000000 1.209982937 -0.6943750000 1.266814480 -0.6927500000 1.301616438 -0.6911250000 1.324637582 -0.6895000000 1.373633725 -0.6878750000 1.447686947 -0.6862500000 1.506496056 -0.6846250000 1.503743176 -0.6830000000 1.445651229 -0.6813750000 1.387797927 -0.6797500000 1.408594882 -0.6781250000 1.422160413 -0.6765000000 1.280516572 -0.6748750000 1.298336072 -0.6732500000 1.957893336 -0.6716250000 1.167352290 -0.6700000000 0.8799174137 -0.6683750000 0.7905911640 -0.6667500000 0.7544739553 -0.6651250000 0.7485562218 -0.6635000000 0.7785298052 -0.6618750000 0.8874809951 -0.6602500000 1.240533116 -0.6586250000 2.063353423 -0.6570000000 2.025498329 -0.6553750000 1.612369335 -0.6537500000 0.9133923350 -0.6521250000 0.7083945110 -0.6505000000 0.6324511940 -0.6488750000 0.5905657194 -0.6472500000 0.5559684547 -0.6456250000 0.5230971590 -0.6440000000 0.4956202648 -0.6423750000 0.4747201875 -0.6407500000 0.4576922687 -0.6391250000 0.4437991940 -0.6375000000 0.4324397318 -0.6358750000 0.4255833922 -0.6342500000 0.4165596973 -0.6326250000 0.4067926952 -0.6310000000 0.3976045835 -0.6293750000 0.3922379738 -0.6277500000 0.3879671515 -0.6261250000 0.3848364771 -0.6245000000 0.3841139902 -0.6228750000 0.3825790042 -0.6212500000 0.3789717494 -0.6196250000 0.3781089698 -0.6180000000 0.3790904230 -0.6163750000 0.3799482257 -0.6147500000 0.3825503515 -0.6131250000 0.3869088111 -0.6115000000 0.3942089321 -0.6098750000 0.4050330025 -0.6082500000 0.4193739693 -0.6066250000 0.4370692848 -0.6050000000 0.4610445206 -0.6033750000 0.4911267690 -0.6017500000 0.5272706620 -0.6001250000 0.5666616780 -0.5985000000 0.6041248351 -0.5968750000 0.6298280129 -0.5952500000 0.6367231526 -0.5936250000 0.6247388084 -0.5920000000 0.6057634911 -0.5903750000 0.5971471724 -0.5887500000 0.6350036306 -0.5871250000 0.8592506649 -0.5855000000 0.8625803506 -0.5838750000 0.5925272202 -0.5822500000 0.4906520776 -0.5806250000 0.4389955941 -0.5790000000 0.4106797339 -0.5773750000 0.3939805346 -0.5757500000 0.3827805715 -0.5741250000 0.3703203994 -0.5725000000 0.3574739966 -0.5708750000 0.3446764355 -0.5692500000 0.3305510320 -0.5676250000 0.3090051911 -0.5660000000 0.2826657787 -0.5643750000 0.2613167551 -0.5627500000 0.2500419578 -0.5611250000 0.2519345297 -0.5595000000 0.2735720826 -0.5578750000 0.3127872782 -0.5562500000 0.3750384605 -0.5546250000 0.3846501939 -0.5530000000 0.2341048518 -0.5513750000 0.1963799469 -0.5497500000 0.1826087994 -0.5481250000 0.1771815812 -0.5465000000 0.1765378666 -0.5448750000 0.1804838496 -0.5432500000 0.1930683173 -0.5416250000 0.2265039942 -0.5400000000 0.3241205712 -0.5383750000 0.4154228628 -0.5367500000 0.2657272581 -0.5351250000 0.2069793642 -0.5335000000 0.1804236609 -0.5318750000 0.1640257127 -0.5302500000 0.1594154735 -0.5286250000 0.1570400822 -0.5270000000 0.1558923005 -0.5253750000 0.1555333390 -0.5237500000 0.1557170003 -0.5221250000 0.1562656845 -0.5205000000 0.1570278626 -0.5188750000 0.1579273166 -0.5172500000 0.1589754360 -0.5156250000 0.1602060771 -0.5140000000 0.1616359412 -0.5123750000 0.1632607368 -0.5107500000 0.1650674590 -0.5091250000 0.1670428683 -0.5075000000 0.1691765975 -0.5058750000 0.1714617518 -0.5042500000 0.1738944604 -0.5026250000 0.1764681645 -0.5010000000 0.1791742721 -0.4993750000 0.1820136299 -0.4977500000 0.1849934190 -0.4961250000 0.1881150594 -0.4945000000 0.1913817956 -0.4928750000 0.1947939164 -0.4912500000 0.1983522120 -0.4896250000 0.2020588339 -0.4880000000 0.2059168020 -0.4863750000 0.2099297470 -0.4847500000 0.2141018515 -0.4831250000 0.2184379951 -0.4815000000 0.2229438119 -0.4798750000 0.2276254718 -0.4782500000 0.2324890657 -0.4766250000 0.2375426628 -0.4750000000 0.2427939590 -0.4733750000 0.2482516433 -0.4717500000 0.2539249958 -0.4701250000 0.2598246016 -0.4685000000 0.2659617750 -0.4668750000 0.2723480926 -0.4652500000 0.2789958701 -0.4636250000 0.2859202615 -0.4620000000 0.2931364272 -0.4603750000 0.3006606801 -0.4587500000 0.3085106136 -0.4571250000 0.3167064337 -0.4555000000 0.3252682279 -0.4538750000 0.3342189675 -0.4522500000 0.3435833353 -0.4506250000 0.3533882463 -0.4490000000 0.3636630673 -0.4473750000 0.3744399353 -0.4457500000 0.3857538974 -0.4441250000 0.3976431786 -0.4425000000 0.4101498960 -0.4408750000 0.4233206209 -0.4392500000 0.4372075647 -0.4376250000 0.4518681464 -0.4360000000 0.4673562686 -0.4343750000 0.4837521870 -0.4327500000 0.5011311528 -0.4311250000 0.5195802440 -0.4295000000 0.5391977244 -0.4278750000 0.5600944906 -0.4262500000 0.5823962716 -0.4246250000 0.6062462848 -0.4230000000 0.6318081416 -0.4213750000 0.6592695077 -0.4197500000 0.6888493245 -0.4181250000 0.7208025397 -0.4165000000 0.7554233518 -0.4148750000 0.7930644408 -0.4132500000 0.8341440694 -0.4116250000 0.8791648496 -0.4100000000 0.9287382124 -0.4083750000 0.9836171757 -0.4067500000 1.044741103 -0.4051250000 1.113300043 -0.4035000000 1.190828801 -0.4018750000 1.279347547 -0.4002500000 1.381578173 -0.3986250000 1.501287660 -0.3970000000 1.643853050 -0.3953750000 1.817229167 -0.3937500000 2.033722797 -0.3921250000 2.312979518 -0.3905000000 2.688191991 -0.3888750000 3.217640391 -0.3872500000 4.004645901 -0.3856250000 5.213695882 -0.3840000000 6.955842811 -0.3823750000 8.641489562 -0.3807500000 8.776115800 -0.3791250000 7.696186591 -0.3775000000 6.886472984 -0.3758750000 6.739500476 -0.3742500000 7.186303351 -0.3726250000 8.206157814 -0.3710000000 9.923060176 -0.3693750000 12.65653796 -0.3677500000 17.04034950 -0.3661250000 24.20443855 -0.3645000000 35.59752347 -0.3628750000 50.13234286 -0.3612500000 57.82723457 -0.3596250000 51.64318364 -0.3580000000 40.92574411 -0.3563750000 32.86385497 -0.3547500000 29.19520637 -0.3531250000 27.35889246 -0.3515000000 23.88372271 -0.3498750000 20.25637273 -0.3482500000 18.71754351 -0.3466250000 19.62192690 -0.3450000000 22.22542144 -0.3433750000 23.81848075 -0.3417500000 23.01063008 -0.3401250000 22.93192910 -0.3385000000 25.85783448 -0.3368750000 31.39891067 -0.3352500000 34.87696167 -0.3336250000 32.06562656 -0.3320000000 27.85786306 -0.3303750000 26.65194643 -0.3287500000 28.43585334 -0.3271250000 30.34677832 -0.3255000000 30.63390614 -0.3238750000 32.47304582 -0.3222500000 38.74003687 -0.3206250000 50.25341129 -0.3190000000 64.83142023 -0.3173750000 78.32843921 -0.3157500000 85.25940228 -0.3141250000 78.44294466 -0.3125000000 62.29425209 -0.3108750000 48.94595501 -0.3092500000 40.58043486 -0.3076250000 35.62394810 -0.3060000000 32.90891830 -0.3043750000 31.73950095 -0.3027500000 33.21777491 -0.3011250000 36.79092146 -0.2995000000 40.15974709 -0.2978750000 45.39334223 -0.2962500000 56.62180214 -0.2946250000 71.62620918 -0.2930000000 76.87668851 -0.2913750000 66.81539294 -0.2897500000 52.51606016 -0.2881250000 40.24151453 -0.2865000000 32.42887616 -0.2848750000 29.15500616 -0.2832500000 29.84156307 -0.2816250000 34.28045137 -0.2800000000 41.90093953 -0.2783750000 51.93031143 -0.2767500000 63.15475407 -0.2751250000 67.15012463 -0.2735000000 60.33955537 -0.2718750000 49.34026554 -0.2702500000 37.89761750 -0.2686250000 28.42336469 -0.2670000000 21.44481401 -0.2653750000 16.28523563 -0.2637500000 12.47977584 -0.2621250000 9.811294720 -0.2605000000 7.949662769 -0.2588750000 6.612922890 -0.2572500000 5.618928905 -0.2556250000 4.857629925 -0.2540000000 4.258167248 -0.2523750000 3.775811259 -0.2507500000 3.380495154 -0.2491250000 3.051538003 -0.2475000000 2.774066129 -0.2458750000 2.537290045 -0.2442500000 2.333256339 -0.2426250000 2.155700765 -0.2410000000 2.000134183 -0.2393750000 1.862861384 -0.2377500000 1.740917231 -0.2361250000 1.631958519 -0.2345000000 1.534111915 -0.2328750000 1.445840004 -0.2312500000 1.365870207 -0.2296250000 1.293138439 -0.2280000000 1.226760168 -0.2263750000 1.165991568 -0.2247500000 1.110145218 -0.2231250000 1.058753840 -0.2215000000 1.011265255 -0.2198750000 0.9673001002 -0.2182500000 0.9265035235 -0.2166250000 0.8885781559 -0.2150000000 0.8532035648 -0.2133750000 0.8201967944 -0.2117500000 0.7893099901 -0.2101250000 0.7603530037 -0.2085000000 0.7331224470 -0.2068750000 0.7075023740 -0.2052500000 0.6833512349 -0.2036250000 0.6605662987 -0.2020000000 0.6390193292 -0.2003750000 0.6186571316 -0.1987500000 0.5993931821 -0.1971250000 0.5811446950 -0.1955000000 0.5638338457 -0.1938750000 0.5474158044 -0.1922500000 0.5318299653 -0.1906250000 0.5170022942 -0.1890000000 0.5028768233 -0.1873750000 0.4894245733 -0.1857500000 0.4766153318 -0.1841250000 0.4643705903 -0.1825000000 0.4526774640 -0.1808750000 0.4414883980 -0.1792500000 0.4306751842 -0.1776250000 0.4192889027 -0.1760000000 0.4108002268 -0.1743750000 0.4013874714 -0.1727500000 0.3923366047 -0.1711250000 0.3836318530 -0.1695000000 0.3752398356 -0.1678750000 0.3675723998 -0.1662500000 0.3599187903 -0.1646250000 0.3524847366 -0.1630000000 0.3453197955 -0.1613750000 0.3383488853 -0.1597500000 0.3316225286 -0.1581250000 0.3253419917 -0.1565000000 0.3192179457 -0.1548750000 0.3132572142 -0.1532500000 0.3074884796 -0.1516250000 0.3019281649 -0.1500000000 0.2965684487 -0.1483750000 0.2913943557 -0.1467500000 0.2863972328 -0.1451250000 0.2815703158 -0.1435000000 0.2769066347 -0.1418750000 0.2723471512 -0.1402500000 0.2679760153 -0.1386250000 0.2637385453 -0.1370000000 0.2596215846 -0.1353750000 0.2556335082 -0.1337500000 0.2517699180 -0.1321250000 0.2480252646 -0.1305000000 0.2443989199 -0.1288750000 0.2408852580 -0.1272500000 0.2374820946 -0.1256250000 0.2341887395 -0.1240000000 0.2309975291 -0.1223750000 0.2278943268 -0.1207500000 0.2248721770 -0.1191250000 0.2219175739 -0.1175000000 0.2190420026 -0.1158750000 0.2162268376 -0.1142500000 0.2134911609 -0.1126250000 0.2108247830 -0.1110000000 0.2082044204 -0.1093750000 0.2057687156 -0.1077500000 0.2033767788 -0.1061250000 0.2010514934 -0.1045000000 0.1988019788 -0.1028750000 0.1966520914 -0.1012500000 0.1945278076 -0.9962500000E-01 0.1923289123 -0.9800000000E-01 0.1901817685 -0.9637500000E-01 0.1880807133 -0.9475000000E-01 0.1862631403 -0.9312500000E-01 0.1843823591 -0.9150000000E-01 0.1824980273 -0.8987500000E-01 0.1806794086 -0.8825000000E-01 0.1789979653 -0.8662500000E-01 0.1772947004 -0.8500000000E-01 0.1756246098 -0.8337500000E-01 0.1739963775 -0.8175000000E-01 0.1723986750 -0.8012500000E-01 0.1708898656 -0.7850000000E-01 0.1694046598 -0.7687500000E-01 0.1679161109 -0.7525000000E-01 0.1664624049 -0.7362500000E-01 0.1650748016 -0.7200000000E-01 0.1637219805 -0.7037500000E-01 0.1623864266 -0.6875000000E-01 0.1611060850 -0.6712500000E-01 0.1598618337 -0.6550000000E-01 0.1586536269 -0.6387500000E-01 0.1574734692 -0.6225000000E-01 0.1563163505 -0.6062500000E-01 0.1551730967 -0.5900000000E-01 0.1540588506 -0.5737500000E-01 0.1529174662 -0.5575000000E-01 0.1518703565 -0.5412500000E-01 0.1508613061 -0.5250000000E-01 0.1499080428 -0.5087500000E-01 0.1490171903 -0.4925000000E-01 0.1480965820 -0.4762500000E-01 0.1469799321 -0.4600000000E-01 0.1461907528 -0.4437500000E-01 0.1452988585 -0.4275000000E-01 0.1443552895 -0.4112500000E-01 0.1436001853 -0.3950000000E-01 0.1428082898 -0.3787500000E-01 0.1420237125 -0.3625000000E-01 0.1412572787 -0.3462500000E-01 0.1405206143 -0.3300000000E-01 0.1397891521 -0.3137500000E-01 0.1390996221 -0.2975000000E-01 0.1383629640 -0.2812500000E-01 0.1377041942 -0.2650000000E-01 0.1370650271 -0.2487500000E-01 0.1364454347 -0.2325000000E-01 0.1358451482 -0.2162500000E-01 0.1352410335 -0.2000000000E-01 0.1346540891 -0.1837500000E-01 0.1340593370 -0.1675000000E-01 0.1335597302 -0.1512500000E-01 0.1331918089 -0.1350000000E-01 0.1334311568 -0.1187500000E-01 0.1320587933 -0.1025000000E-01 0.1314884112 -0.8625000000E-02 0.1310957421 -0.7000000000E-02 0.1306502134 -0.5375000000E-02 0.1302229798 -0.3750000000E-02 0.1297864385 -0.2125000000E-02 0.1293789818 -0.5000000000E-03 0.1289960733 0.1125000000E-02 0.1286398971 0.2750000000E-02 0.1282676628 0.4375000000E-02 0.1279011218 0.6000000000E-02 0.1275938797 0.7625000000E-02 0.1272886928 0.9250000000E-02 0.1270879750 0.1087500000E-01 0.1266846377 0.1250000000E-01 0.1264058361 0.1412500000E-01 0.1261359377 0.1575000000E-01 0.1258898838 0.1737500000E-01 0.1256641298 0.1900000000E-01 0.1254257001 0.2062500000E-01 0.1252363715 0.2225000000E-01 0.1250083208 0.2387500000E-01 0.1248237883 0.2550000000E-01 0.1246559301 0.2712500000E-01 0.1245010174 0.2875000000E-01 0.1243479301 0.3037500000E-01 0.1241900872 0.3200000000E-01 0.1240818128 0.3362500000E-01 0.1239430390 0.3525000000E-01 0.1238866002 0.3687500000E-01 0.1237938142 0.3850000000E-01 0.1237916117 0.4012500000E-01 0.1237903147 0.4175000000E-01 0.1236774821 0.4337500000E-01 0.1235443722 0.4500000000E-01 0.1235149128 0.4662500000E-01 0.1234985819 0.4825000000E-01 0.1234552111 0.4987500000E-01 0.1234741182 0.5150000000E-01 0.1235076620 0.5312500000E-01 0.1235382899 0.5475000000E-01 0.1235756230 0.5637500000E-01 0.1236213598 0.5800000000E-01 0.1236820420 0.5962500000E-01 0.1238094558 0.6125000000E-01 0.1238525339 0.6287500000E-01 0.1239640434 0.6450000000E-01 0.1240703082 0.6612500000E-01 0.1241947847 0.6775000000E-01 0.1243360686 0.6937500000E-01 0.1244833957 0.7100000000E-01 0.1246424306 0.7262500000E-01 0.1248039631 0.7425000000E-01 0.1249912443 0.7587500000E-01 0.1251975444 0.7750000000E-01 0.1254139020 0.7912500000E-01 0.1256536544 0.8075000000E-01 0.1258892275 0.8237500000E-01 0.1261383907 0.8400000000E-01 0.1264379449 0.8562500000E-01 0.1267770271 0.8725000000E-01 0.1271690386 0.8887500000E-01 0.1274042964 0.9050000000E-01 0.1276609002 0.9212500000E-01 0.1279832471 0.9375000000E-01 0.1282811971 0.9537500000E-01 0.1286363473 0.9700000000E-01 0.1290119491 0.9862500000E-01 0.1293960081 0.1002500000 0.1298169977 0.1018750000 0.1303366389 0.1035000000 0.1306635838 0.1051250000 0.1311078721 0.1067500000 0.1315674060 0.1083750000 0.1320445827 0.1100000000 0.1325314330 0.1116250000 0.1330463266 0.1132500000 0.1335862771 0.1148750000 0.1341478524 0.1165000000 0.1347330927 0.1181250000 0.1354711626 0.1197500000 0.1359316874 0.1213750000 0.1365523054 0.1230000000 0.1371983510 0.1246250000 0.1378607906 0.1262500000 0.1385519650 0.1278750000 0.1392612901 0.1295000000 0.1399883990 0.1311250000 0.1407337746 0.1327500000 0.1415001138 0.1343750000 0.1422958008 0.1360000000 0.1431154877 0.1376250000 0.1439664689 0.1392500000 0.1448461548 0.1408750000 0.1457835582 0.1425000000 0.1467350999 0.1441250000 0.1476165518 0.1457500000 0.1485878964 0.1473750000 0.1496035608 0.1490000000 0.1506561697 0.1506250000 0.1517868304 0.1522500000 0.1529463313 0.1538750000 0.1542171230 0.1555000000 0.1553837818 0.1571250000 0.1564877078 0.1587500000 0.1577123067 0.1603750000 0.1589877242 0.1620000000 0.1603045705 0.1636250000 0.1616574406 0.1652500000 0.1630494785 0.1668750000 0.1642749832 0.1685000000 0.1660032945 0.1701250000 0.1675742660 0.1717500000 0.1691914422 0.1733750000 0.1708624206 0.1750000000 0.1725898256 0.1766250000 0.1743838025 0.1782500000 0.1762361742 0.1798750000 0.1781366362 0.1815000000 0.1800870749 0.1831250000 0.1821127112 0.1847500000 0.1842198130 0.1863750000 0.1864154426 0.1880000000 0.1887105750 0.1896250000 0.1911211978 0.1912500000 0.1936354266 0.1928750000 0.1962676683 0.1945000000 0.1990015363 0.1961250000 0.2018529709 0.1977500000 0.2048298141 0.1993750000 0.2079413168 0.2010000000 0.2112051475 0.2026250000 0.2146362845 0.2042500000 0.2182643504 0.2058750000 0.2223541290 0.2075000000 0.2258708162 0.2091250000 0.2301096631 0.2107500000 0.2345953178 0.2123750000 0.2393501064 0.2140000000 0.2444075049 0.2156250000 0.2498085545 0.2172500000 0.2555996952 0.2188750000 0.2618271482 0.2205000000 0.2685266277 0.2221250000 0.2758898185 0.2237500000 0.2838787030 0.2253750000 0.2926785480 0.2270000000 0.3023701531 0.2286250000 0.3132524645 0.2302500000 0.3255252179 0.2318750000 0.3394739711 0.2335000000 0.3555467384 0.2351250000 0.3743960876 0.2367500000 0.3968516486 0.2383750000 0.4241099356 0.2400000000 0.4579839376 0.2416250000 0.5012188172 0.2432500000 0.5581652468 0.2448750000 0.6358649515 0.2465000000 0.7461344998 0.2481250000 0.9089207168 0.2497500000 1.156511961 0.2513750000 1.529931805 0.2530000000 2.015825718 0.2546250000 2.377833050 0.2562500000 2.269411027 0.2578750000 1.830329193 0.2595000000 1.419435135 0.2611250000 1.143021567 0.2627500000 0.9745740962 0.2643750000 0.8759433017 0.2660000000 0.8215155335 0.2676250000 0.7962856661 0.2692500000 0.7917598128 0.2708750000 0.8032766129 0.2725000000 0.8285007020 0.2741250000 0.8667128075 0.2757500000 0.9182960935 0.2773750000 0.9847781109 0.2790000000 1.068846416 0.2806250000 1.174653174 0.2822500000 1.308437275 0.2838750000 1.479416076 0.2855000000 1.701482641 0.2871250000 1.996105574 0.2887500000 2.397169539 0.2903750000 2.959892980 0.2920000000 3.778741274 0.2936250000 5.011707776 0.2952500000 6.918479616 0.2968750000 9.836925024 0.2985000000 13.73664699 0.3001250000 16.82144090 0.3017500000 16.08008451 0.3033750000 12.49388039 0.3050000000 9.113648570 0.3066250000 6.889018738 0.3082500000 5.628593995 0.3098750000 5.058429751 0.3115000000 5.044562143 0.3131250000 5.589903084 0.3147500000 6.772786456 0.3163750000 8.458210232 0.3180000000 9.616668714 0.3196250000 8.910168976 0.3212500000 7.030623042 0.3228750000 5.348032239 0.3245000000 4.226670414 0.3261250000 3.553220641 0.3277500000 3.185009236 0.3293750000 3.033456830 0.3310000000 3.059308243 0.3326250000 3.262058618 0.3342500000 3.679858954 0.3358750000 4.402064420 0.3375000000 5.593545991 0.3391250000 7.499828440 0.3407500000 10.24031997 0.3423750000 12.90199279 0.3440000000 13.10960358 0.3456250000 10.66980363 0.3472500000 7.965048879 0.3488750000 6.084413826 0.3505000000 4.958466313 0.3521250000 4.342904894 0.3537500000 4.071795329 0.3553750000 4.061129550 0.3570000000 4.286207766 0.3586250000 4.771540128 0.3602500000 5.596705357 0.3618750000 6.921616460 0.3635000000 9.032559681 0.3651250000 12.38234006 0.3667500000 17.38608426 0.3683750000 23.13296679 0.3700000000 25.45556319 0.3716250000 21.75047898 0.3732500000 16.05656151 0.3748750000 11.65711948 0.3765000000 8.857862760 0.3781250000 7.175365964 0.3797500000 6.207304500 0.3813750000 5.715862922 0.3830000000 5.578216403 0.3846250000 5.746181285 0.3862500000 6.227537220 0.3878750000 7.086839148 0.3895000000 8.463685840 0.3911250000 10.61491454 0.3927500000 13.99559909 0.3943750000 19.36939264 0.3960000000 27.74666532 0.3976250000 39.09531900 0.3992500000 48.12471215 0.4008750000 45.68107665 0.4025000000 34.56689371 0.4041250000 23.96495233 0.4057500000 16.67387835 0.4073750000 12.01352951 0.4090000000 9.008139019 0.4106250000 7.007367068 0.4122500000 5.628193433 0.4138750000 4.645464788 0.4155000000 3.924820424 0.4171250000 3.383353005 0.4187500000 2.968139737 0.4203750000 2.644342020 0.4220000000 2.388379957 0.4236250000 2.183894042 0.4252500000 2.019279228 0.4268750000 1.886156811 0.4285000000 1.778356974 0.4301250000 1.691279506 0.4317500000 1.621428616 0.4333750000 1.566355365 0.4350000000 1.524512296 0.4366250000 1.494529270 0.4382500000 1.474995544 0.4398750000 1.465228616 0.4415000000 1.465010922 0.4431250000 1.474322906 0.4447500000 1.493380868 0.4463750000 1.522635762 0.4480000000 1.562846239 0.4496250000 1.615162390 0.4512500000 1.680906135 0.4528750000 1.763309789 0.4545000000 1.864544626 0.4561250000 1.989208660 0.4577500000 2.143235625 0.4593750000 2.334970553 0.4610000000 2.576391165 0.4626250000 2.885153052 0.4642500000 3.287981352 0.4658750000 3.826644981 0.4675000000 4.568975065 0.4691250000 5.628299519 0.4707500000 7.196116381 0.4723750000 9.575855501 0.4740000000 13.10170366 0.4756250000 17.60796373 0.4772500000 22.00387188 0.4788750000 25.21275929 0.4805000000 26.04759895 0.4821250000 24.34537336 0.4837500000 20.18902898 0.4853750000 15.44592808 0.4870000000 11.99640403 0.4886250000 9.972890507 0.4902500000 8.985028018 0.4918750000 8.746110349 0.4935000000 9.137994561 0.4951250000 10.18852330 0.4967500000 12.07803969 0.4983750000 15.18692724 elk-9.2.12/examples/GW/LiF/PaxHeaders/elk.in0000644000000000000000000000013214536061315015352 xustar0030 mtime=1702388429.108499727 30 atime=1702388429.108499727 30 ctime=1702388429.108499727 elk-9.2.12/examples/GW/LiF/elk.in0000644002504400250440000000132114536061315020071 0ustar00dewhurstdewhurst00000000000000 ! GW band gap calculation of LiF. Plot the total spectral function TSFGW.OUT to ! find the indirect gap. tasks 0 600 610 ! G-vector cut-off of local contribution to RPA gmaxrf 3.0 ! temperature of system (determines the Matsubara frequency spacing) tempk 1500.0 nempty 8 wplot 800 100 0 : nwplot, ngrkf, nswplot -1.5 1.5 : wplot avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 4 4 4 elk-9.2.12/examples/PaxHeaders/RDMFT0000644000000000000000000000013214536061315014057 xustar0030 mtime=1702388429.110499724 30 atime=1702388429.109499726 30 ctime=1702388429.110499724 elk-9.2.12/examples/RDMFT/0000755002504400250440000000000014536061315016656 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/RDMFT/PaxHeaders/NiO0000644000000000000000000000013014536061315014542 xustar0029 mtime=1702388429.11349972 30 atime=1702388429.110499724 29 ctime=1702388429.11349972 elk-9.2.12/examples/RDMFT/NiO/0000755002504400250440000000000014536061315017343 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/RDMFT/NiO/PaxHeaders/TDOS.OUT0000644000000000000000000000013214536061315015763 xustar0030 mtime=1702388429.111499723 30 atime=1702388429.111499723 30 ctime=1702388429.111499723 elk-9.2.12/examples/RDMFT/NiO/TDOS.OUT0000644002504400250440000004411214536061315020507 0ustar00dewhurstdewhurst00000000000000 -0.6000000000 0.000000000 -0.5976000000 0.000000000 -0.5952000000 0.000000000 -0.5928000000 0.000000000 -0.5904000000 0.000000000 -0.5880000000 0.000000000 -0.5856000000 0.000000000 -0.5832000000 0.000000000 -0.5808000000 0.000000000 -0.5784000000 0.000000000 -0.5760000000 0.000000000 -0.5736000000 0.000000000 -0.5712000000 0.000000000 -0.5688000000 0.000000000 -0.5664000000 0.000000000 -0.5640000000 0.000000000 -0.5616000000 0.000000000 -0.5592000000 0.000000000 -0.5568000000 0.000000000 -0.5544000000 0.000000000 -0.5520000000 0.000000000 -0.5496000000 0.000000000 -0.5472000000 0.000000000 -0.5448000000 0.000000000 -0.5424000000 0.000000000 -0.5400000000 0.000000000 -0.5376000000 0.000000000 -0.5352000000 0.000000000 -0.5328000000 0.000000000 -0.5304000000 0.000000000 -0.5280000000 0.000000000 -0.5256000000 0.000000000 -0.5232000000 0.000000000 -0.5208000000 0.000000000 -0.5184000000 0.000000000 -0.5160000000 0.000000000 -0.5136000000 0.000000000 -0.5112000000 0.000000000 -0.5088000000 0.000000000 -0.5064000000 0.000000000 -0.5040000000 0.000000000 -0.5016000000 0.000000000 -0.4992000000 0.000000000 -0.4968000000 0.000000000 -0.4944000000 0.000000000 -0.4920000000 0.000000000 -0.4896000000 0.000000000 -0.4872000000 0.000000000 -0.4848000000 0.000000000 -0.4824000000 0.000000000 -0.4800000000 0.000000000 -0.4776000000 0.000000000 -0.4752000000 0.000000000 -0.4728000000 0.000000000 -0.4704000000 0.000000000 -0.4680000000 0.000000000 -0.4656000000 0.000000000 -0.4632000000 0.000000000 -0.4608000000 0.000000000 -0.4584000000 0.000000000 -0.4560000000 0.000000000 -0.4536000000 0.000000000 -0.4512000000 0.000000000 -0.4488000000 0.000000000 -0.4464000000 0.000000000 -0.4440000000 0.000000000 -0.4416000000 0.000000000 -0.4392000000 0.000000000 -0.4368000000 0.000000000 -0.4344000000 0.000000000 -0.4320000000 0.000000000 -0.4296000000 0.000000000 -0.4272000000 0.000000000 -0.4248000000 0.000000000 -0.4224000000 0.000000000 -0.4200000000 0.000000000 -0.4176000000 0.000000000 -0.4152000000 0.000000000 -0.4128000000 0.000000000 -0.4104000000 0.000000000 -0.4080000000 0.000000000 -0.4056000000 0.000000000 -0.4032000000 0.000000000 -0.4008000000 0.000000000 -0.3984000000 0.000000000 -0.3960000000 0.000000000 -0.3936000000 0.000000000 -0.3912000000 0.000000000 -0.3888000000 0.000000000 -0.3864000000 0.000000000 -0.3840000000 0.000000000 -0.3816000000 0.000000000 -0.3792000000 0.000000000 -0.3768000000 0.000000000 -0.3744000000 0.000000000 -0.3720000000 0.000000000 -0.3696000000 0.000000000 -0.3672000000 0.000000000 -0.3648000000 0.000000000 -0.3624000000 0.000000000 -0.3600000000 0.000000000 -0.3576000000 0.000000000 -0.3552000000 0.000000000 -0.3528000000 0.000000000 -0.3504000000 0.000000000 -0.3480000000 0.000000000 -0.3456000000 0.000000000 -0.3432000000 0.000000000 -0.3408000000 0.000000000 -0.3384000000 0.000000000 -0.3360000000 0.000000000 -0.3336000000 0.000000000 -0.3312000000 0.000000000 -0.3288000000 0.000000000 -0.3264000000 0.000000000 -0.3240000000 0.000000000 -0.3216000000 0.000000000 -0.3192000000 0.000000000 -0.3168000000 0.000000000 -0.3144000000 0.000000000 -0.3120000000 0.000000000 -0.3096000000 0.000000000 -0.3072000000 0.5000000000E-02 -0.3048000000 0.3000000000E-01 -0.3024000000 0.9250000000E-01 -0.3000000000 0.2283333333 -0.2976000000 0.4933333333 -0.2952000000 1.117500000 -0.2928000000 2.766666667 -0.2904000000 4.701666667 -0.2880000000 7.144166667 -0.2856000000 10.30000000 -0.2832000000 13.95333333 -0.2808000000 17.38833333 -0.2784000000 21.02750000 -0.2760000000 25.13833333 -0.2736000000 30.23166667 -0.2712000000 36.84500000 -0.2688000000 44.63916667 -0.2664000000 55.30333333 -0.2640000000 64.51750000 -0.2616000000 63.58416667 -0.2592000000 62.81083333 -0.2568000000 59.07416667 -0.2544000000 60.90333333 -0.2520000000 49.95250000 -0.2496000000 30.64166667 -0.2472000000 16.46666667 -0.2448000000 12.35666667 -0.2424000000 10.50833333 -0.2400000000 9.368333333 -0.2376000000 8.535833333 -0.2352000000 7.745000000 -0.2328000000 7.157500000 -0.2304000000 6.755000000 -0.2280000000 6.605833333 -0.2256000000 6.664166667 -0.2232000000 6.903333333 -0.2208000000 7.150000000 -0.2184000000 7.500833333 -0.2160000000 8.049166667 -0.2136000000 8.775000000 -0.2112000000 9.829166667 -0.2088000000 11.62750000 -0.2064000000 14.42166667 -0.2040000000 18.79083333 -0.2016000000 28.45083333 -0.1992000000 39.21583333 -0.1968000000 43.05166667 -0.1944000000 48.15583333 -0.1920000000 50.43666667 -0.1896000000 50.36833333 -0.1872000000 47.97750000 -0.1848000000 46.61500000 -0.1824000000 46.09750000 -0.1800000000 42.42833333 -0.1776000000 38.73583333 -0.1752000000 38.59000000 -0.1728000000 46.66500000 -0.1704000000 70.25000000 -0.1680000000 113.7491667 -0.1656000000 143.1591667 -0.1632000000 137.0108333 -0.1608000000 110.3133333 -0.1584000000 89.18750000 -0.1560000000 73.68750000 -0.1536000000 61.62750000 -0.1512000000 51.12083333 -0.1488000000 42.87166667 -0.1464000000 35.61333333 -0.1440000000 27.83750000 -0.1416000000 22.23000000 -0.1392000000 18.26583333 -0.1368000000 15.33083333 -0.1344000000 13.24333333 -0.1320000000 11.39833333 -0.1296000000 10.01083333 -0.1272000000 8.640000000 -0.1248000000 7.035000000 -0.1224000000 5.234166667 -0.1200000000 4.196666667 -0.1176000000 3.587500000 -0.1152000000 3.172500000 -0.1128000000 2.641666667 -0.1104000000 1.547500000 -0.1080000000 0.9366666667 -0.1056000000 0.5733333333 -0.1032000000 0.3300000000 -0.1008000000 0.1841666667 -0.9840000000E-01 0.9000000000E-01 -0.9600000000E-01 0.8750000000E-01 -0.9360000000E-01 0.1241666667 -0.9120000000E-01 0.2441666667 -0.8880000000E-01 0.4075000000 -0.8640000000E-01 0.6375000000 -0.8400000000E-01 0.9583333333 -0.8160000000E-01 1.426666667 -0.7920000000E-01 2.545833333 -0.7680000000E-01 8.681666667 -0.7440000000E-01 16.60916667 -0.7200000000E-01 25.36166667 -0.6960000000E-01 38.49333333 -0.6720000000E-01 46.55583333 -0.6480000000E-01 46.96916667 -0.6240000000E-01 48.48500000 -0.6000000000E-01 50.50750000 -0.5760000000E-01 53.47750000 -0.5520000000E-01 59.41000000 -0.5280000000E-01 69.00083333 -0.5040000000E-01 74.81583333 -0.4800000000E-01 75.96000000 -0.4560000000E-01 61.30083333 -0.4320000000E-01 49.10750000 -0.4080000000E-01 36.69500000 -0.3840000000E-01 26.27916667 -0.3600000000E-01 18.62500000 -0.3360000000E-01 26.51333333 -0.3120000000E-01 51.33083333 -0.2880000000E-01 84.43583333 -0.2640000000E-01 130.9466667 -0.2400000000E-01 166.8525000 -0.2160000000E-01 162.2741667 -0.1920000000E-01 126.8108333 -0.1680000000E-01 109.1391667 -0.1440000000E-01 133.9591667 -0.1200000000E-01 148.8750000 -0.9600000000E-02 162.2250000 -0.7200000000E-02 120.1783333 -0.4800000000E-02 52.86083333 -0.2400000000E-02 24.80500000 0.000000000 18.98416667 0.2400000000E-02 16.21416667 0.4800000000E-02 14.11916667 0.7200000000E-02 12.29333333 0.9600000000E-02 10.97250000 0.1200000000E-01 9.826666667 0.1440000000E-01 8.863333333 0.1680000000E-01 7.803333333 0.1920000000E-01 7.035833333 0.2160000000E-01 6.377500000 0.2400000000E-01 5.737500000 0.2640000000E-01 5.217500000 0.2880000000E-01 4.827500000 0.3120000000E-01 4.567500000 0.3360000000E-01 4.225000000 0.3600000000E-01 3.974166667 0.3840000000E-01 3.765000000 0.4080000000E-01 3.490833333 0.4320000000E-01 3.353333333 0.4560000000E-01 3.245833333 0.4800000000E-01 2.984166667 0.5040000000E-01 2.853333333 0.5280000000E-01 2.719166667 0.5520000000E-01 2.573333333 0.5760000000E-01 2.452500000 0.6000000000E-01 2.347500000 0.6240000000E-01 2.251666667 0.6480000000E-01 2.046666667 0.6720000000E-01 2.026666667 0.6960000000E-01 1.899166667 0.7200000000E-01 1.780000000 0.7440000000E-01 1.825000000 0.7680000000E-01 1.665000000 0.7920000000E-01 1.655000000 0.8160000000E-01 1.626666667 0.8400000000E-01 1.630833333 0.8640000000E-01 1.645000000 0.8880000000E-01 1.642500000 0.9120000000E-01 1.710000000 0.9360000000E-01 1.698333333 0.9600000000E-01 1.778333333 0.9840000000E-01 1.815833333 0.1008000000 1.867500000 0.1032000000 2.005833333 0.1056000000 2.066666667 0.1080000000 2.250000000 0.1104000000 2.281666667 0.1128000000 2.470000000 0.1152000000 2.684166667 0.1176000000 2.829166667 0.1200000000 3.201666667 0.1224000000 3.572500000 0.1248000000 4.046666667 0.1272000000 4.617500000 0.1296000000 5.293333333 0.1320000000 6.230833333 0.1344000000 7.167500000 0.1368000000 8.099166667 0.1392000000 9.271666667 0.1416000000 10.45583333 0.1440000000 11.88666667 0.1464000000 13.62083333 0.1488000000 15.69833333 0.1512000000 18.12916667 0.1536000000 20.17250000 0.1560000000 21.28166667 0.1584000000 20.88750000 0.1608000000 21.06500000 0.1632000000 21.71583333 0.1656000000 22.15833333 0.1680000000 23.17250000 0.1704000000 24.49166667 0.1728000000 25.87166667 0.1752000000 27.76416667 0.1776000000 27.84750000 0.1800000000 28.56750000 0.1824000000 29.92000000 0.1848000000 29.90166667 0.1872000000 29.06833333 0.1896000000 28.52500000 0.1920000000 28.03000000 0.1944000000 26.81916667 0.1968000000 26.46583333 0.1992000000 26.02333333 0.2016000000 25.66583333 0.2040000000 25.35333333 0.2064000000 24.06583333 0.2088000000 22.77750000 0.2112000000 22.38666667 0.2136000000 21.71833333 0.2160000000 20.79833333 0.2184000000 20.47916667 0.2208000000 21.32500000 0.2232000000 25.78416667 0.2256000000 29.91500000 0.2280000000 32.03916667 0.2304000000 32.59833333 0.2328000000 35.02500000 0.2352000000 37.57500000 0.2376000000 41.52083333 0.2400000000 47.47083333 0.2424000000 54.15916667 0.2448000000 58.76916667 0.2472000000 54.77333333 0.2496000000 50.47416667 0.2520000000 46.33500000 0.2544000000 40.97000000 0.2568000000 36.45583333 0.2592000000 34.82916667 0.2616000000 33.63833333 0.2640000000 30.99750000 0.2664000000 26.14083333 0.2688000000 24.17833333 0.2712000000 20.91083333 0.2736000000 4.166666667 0.2760000000 0.3941666667 0.2784000000 0.2000000000E-01 0.2808000000 0.000000000 0.2832000000 0.000000000 0.2856000000 0.000000000 0.2880000000 0.000000000 0.2904000000 0.000000000 0.2928000000 0.000000000 0.2952000000 0.000000000 0.2976000000 0.000000000 0.3000000000 0.000000000 0.3024000000 0.000000000 0.3048000000 0.000000000 0.3072000000 0.000000000 0.3096000000 0.000000000 0.3120000000 0.000000000 0.3144000000 0.000000000 0.3168000000 0.000000000 0.3192000000 0.000000000 0.3216000000 0.000000000 0.3240000000 0.000000000 0.3264000000 0.000000000 0.3288000000 0.000000000 0.3312000000 0.000000000 0.3336000000 0.000000000 0.3360000000 0.000000000 0.3384000000 0.000000000 0.3408000000 0.000000000 0.3432000000 0.000000000 0.3456000000 0.000000000 0.3480000000 0.000000000 0.3504000000 0.1666666667E-02 0.3528000000 0.3333333333E-02 0.3552000000 0.1000000000E-01 0.3576000000 0.1750000000E-01 0.3600000000 0.4000000000E-01 0.3624000000 0.5083333333E-01 0.3648000000 0.8833333333E-01 0.3672000000 0.1325000000 0.3696000000 0.1975000000 0.3720000000 0.2658333333 0.3744000000 0.3725000000 0.3768000000 0.5266666667 0.3792000000 0.7341666667 0.3816000000 1.002500000 0.3840000000 1.197500000 0.3864000000 1.330833333 0.3888000000 1.442500000 0.3912000000 1.556666667 0.3936000000 1.656666667 0.3960000000 1.745833333 0.3984000000 1.846666667 0.4008000000 1.980000000 0.4032000000 2.038333333 0.4056000000 2.154166667 0.4080000000 2.285833333 0.4104000000 2.280000000 0.4128000000 2.505000000 0.4152000000 2.525000000 0.4176000000 2.727500000 0.4200000000 2.743333333 0.4224000000 2.944166667 0.4248000000 3.066666667 0.4272000000 3.070833333 0.4296000000 3.365833333 0.4320000000 3.349166667 0.4344000000 3.649166667 0.4368000000 3.679166667 0.4392000000 3.880000000 0.4416000000 4.067500000 0.4440000000 4.232500000 0.4464000000 4.469166667 0.4488000000 4.579166667 0.4512000000 4.845833333 0.4536000000 5.067500000 0.4560000000 5.258333333 0.4584000000 5.612500000 0.4608000000 5.894166667 0.4632000000 6.262500000 0.4656000000 6.585000000 0.4680000000 7.224166667 0.4704000000 7.792500000 0.4728000000 8.760833333 0.4752000000 9.805000000 0.4776000000 11.11083333 0.4800000000 12.32250000 0.4824000000 13.92666667 0.4848000000 14.54166667 0.4872000000 15.01250000 0.4896000000 15.34416667 0.4920000000 15.54000000 0.4944000000 15.74250000 0.4968000000 15.73250000 0.4992000000 15.54333333 0.5016000000 15.60583333 0.5040000000 15.61750000 0.5064000000 15.71166667 0.5088000000 16.04250000 0.5112000000 16.30000000 0.5136000000 16.60750000 0.5160000000 16.77500000 0.5184000000 17.21166667 0.5208000000 17.42083333 0.5232000000 17.94083333 0.5256000000 18.24583333 0.5280000000 19.04500000 0.5304000000 19.45000000 0.5328000000 20.21833333 0.5352000000 21.29416667 0.5376000000 22.06500000 0.5400000000 22.17333333 0.5424000000 23.15583333 0.5448000000 23.98750000 0.5472000000 22.43500000 0.5496000000 18.89666667 0.5520000000 16.63333333 0.5544000000 15.11333333 0.5568000000 13.59583333 0.5592000000 12.42333333 0.5616000000 11.14750000 0.5640000000 10.05500000 0.5664000000 8.917500000 0.5688000000 7.934166667 0.5712000000 6.838333333 0.5736000000 5.934166667 0.5760000000 5.045000000 0.5784000000 4.368333333 0.5808000000 3.731666667 0.5832000000 3.260833333 0.5856000000 2.792500000 0.5880000000 2.370000000 0.5904000000 1.945833333 0.5928000000 1.700000000 0.5952000000 1.330833333 0.5976000000 1.141666667 elk-9.2.12/examples/RDMFT/NiO/PaxHeaders/elk.in0000644000000000000000000000012714536061315015730 xustar0029 mtime=1702388429.11349972 29 atime=1702388429.11349972 29 ctime=1702388429.11349972 elk-9.2.12/examples/RDMFT/NiO/elk.in0000644002504400250440000000150314536061315020445 0ustar00dewhurstdewhurst00000000000000 ! Reduced density matrix functional theory (RDMFT) example for NiO. tasks 0 300 10 swidth 0.001 dosocc .false. dos 500 100 0 -0.6 0.6 ! maximum number of RDMFT self-consistent loops rdmmaxscl 2 ! maximum number of iterations per self-consistent loop for determining the ! natural orbitals via steepest-descent maxitc 10 ! maximum number of iterations per self-consistent loop for determining the ! occupation numbers via steepest-descent maxitn 100 ! RDMFT exchange-correlation functional, in this case the 'power functional' rdmxctype 2 ! coefficient of the power functional rdmalpha 0.65 nempty 10 ngridk 4 4 4 vkloff 0.25 0.5 0.625 avec 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 scale 3.9468 sppath '../../../species/' atoms 2 'Ni.in' 1 0.0 0.0 0.0 'O.in' 1 0.5 0.5 0.5 elk-9.2.12/examples/PaxHeaders/XMCD0000644000000000000000000000013214536061315013736 xustar0030 mtime=1702388429.115499717 30 atime=1702388429.114499718 30 ctime=1702388429.115499717 elk-9.2.12/examples/XMCD/0000755002504400250440000000000014536061315016535 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/XMCD/PaxHeaders/Fe0000644000000000000000000000013214536061315014270 xustar0030 mtime=1702388429.117499714 30 atime=1702388429.115499717 30 ctime=1702388429.117499714 elk-9.2.12/examples/XMCD/Fe/0000755002504400250440000000000014536061315017067 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/XMCD/Fe/PaxHeaders/Fe_lo.in0000644000000000000000000000013214536061315015721 xustar0030 mtime=1702388429.116499715 30 atime=1702388429.116499715 30 ctime=1702388429.116499715 elk-9.2.12/examples/XMCD/Fe/Fe_lo.in0000644002504400250440000000366014536061315020450 0ustar00dewhurstdewhurst00000000000000 'Fe_lo' : spsymb 'iron' : spname -26.0000 : spzn 101799.2074 : spmass 0.392232E-06 2.0000 35.6837 500 : sprmin, rmt, sprmax, nrmt 10 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 T 2 1 1 2.00000 F 2 1 2 4.00000 F 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 2.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -26.0000 0 T 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -3.6844 0 T 1 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -2.4317 0 T 2 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -0.5316 0 T elk-9.2.12/examples/XMCD/Fe/PaxHeaders/elk.in0000644000000000000000000000013214536061315015450 xustar0030 mtime=1702388429.118499712 30 atime=1702388429.118499712 30 ctime=1702388429.118499712 elk-9.2.12/examples/XMCD/Fe/elk.in0000644002504400250440000000252014536061315020171 0ustar00dewhurstdewhurst00000000000000 ! Soft x-ray absorption spectroscopy example for bcc Fe, including XAS, XMCD, ! and XMLD. Species file Fe_lo.in has an additional local orbital at the 2p ! energy. Spin-orbit coupling has to be included for 2p 1/2 - 2p 3/2 splitting. ! XAS, XMCD, and XMLD are computed via first order optical response. Fe is ! cubic, hence the following relations hold for B || z: ! ! XAS = 1/3 * Im[ 2*eps_xx + eps_zz ] = 1/3 * Tr(Im[eps]) ! XMCD = Im[ sigma_xy ] = -2*Re[ eps_xy ] ! XMLD = Im[ eps_xx - eps_zz ] ! ! Similarly, the real parts of the epsilon and sigma tensor are related to the ! Faraday effect. A much larger number of k-points is necessary for a well ! converged spectrum. ! Example by Markus Meinert. tasks 0 120 121 wplot 400 200 0 25.0 26.5 ! compute the xx, xy, and zz components optcomp 1 1 1 2 3 3 spinpol .true. spinorb .true. ! use GGA xctype 20 ngridk 8 8 8 bfieldc 0.0 0.0 0.01 ! large number of empty states necessary for "continuum" absorption nempty 20 ! a Lorentzian broadening is applied to the spectrum swidth 0.01 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 atoms 1 : nspecies 'Fe_lo.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-9.2.12/examples/PaxHeaders/libxc0000644000000000000000000000013214536061315014304 xustar0030 mtime=1702388429.119499711 30 atime=1702388429.119499711 30 ctime=1702388429.119499711 elk-9.2.12/examples/libxc/0000755002504400250440000000000014536061315017103 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/libxc/PaxHeaders/Al0000644000000000000000000000013214536061315014640 xustar0030 mtime=1702388429.120499709 30 atime=1702388429.119499711 30 ctime=1702388429.120499709 elk-9.2.12/examples/libxc/Al/0000755002504400250440000000000014536061315017437 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/libxc/Al/PaxHeaders/elk.in0000644000000000000000000000013214536061315016020 xustar0030 mtime=1702388429.121499708 30 atime=1702388429.121499708 30 ctime=1702388429.121499708 elk-9.2.12/examples/libxc/Al/elk.in0000644002504400250440000000161614536061315020546 0ustar00dewhurstdewhurst00000000000000 ! Test of libxc (http://www.tddft.org/programs/octopus/wiki/index.php/Libxc). ! The library must be downloaded and compiled separately. Follow the ! instructions in the Elk manual for installation of libxc. tasks 0 ! libxc is selected with xctype(1)=100. The remaining two numbers are the ! exchange and correlation functionals, respectively - in this case Slater ! exchange and Perdew-Wang correlation. Refer to the file ! 'elk/src/libxc_funcs.f90' for the complete list of functionals and ! associated numbers. xctype 100 1 13 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.8267 ! this is the relative path to the species files sppath '../../../species/' atoms 1 : nspecies 'Al.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-9.2.12/examples/PaxHeaders/miscellaneous0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.130499694 30 atime=1702388429.121499708 30 ctime=1702388429.130499694 elk-9.2.12/examples/miscellaneous/0000755002504400250440000000000014536061315020645 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/miscellaneous/PaxHeaders/GaAs-effective-mass0000644000000000000000000000013214536061315021560 xustar0030 mtime=1702388429.123499705 30 atime=1702388429.122499706 30 ctime=1702388429.123499705 elk-9.2.12/examples/miscellaneous/GaAs-effective-mass/0000755002504400250440000000000014536061315024357 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/miscellaneous/GaAs-effective-mass/PaxHeaders/elk.in0000644000000000000000000000013214536061315022740 xustar0030 mtime=1702388429.124499704 30 atime=1702388429.123499705 30 ctime=1702388429.124499704 elk-9.2.12/examples/miscellaneous/GaAs-effective-mass/elk.in0000644002504400250440000000120514536061315025460 0ustar00dewhurstdewhurst00000000000000 ! Effective mass tensors of GaAs using the Perdew-Burke-Ernzerhof GGA functional. ! Try recalculating the tensors with spin-orbit coupling switched on. tasks 0 25 ! k-point at which the effective mass is to be calculated for all states vklem 0.5 0.0 0.0 xctype 20 avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-9.2.12/examples/miscellaneous/PaxHeaders/Al-STM0000644000000000000000000000013214536061315017043 xustar0030 mtime=1702388429.128499697 30 atime=1702388429.125499702 30 ctime=1702388429.128499697 elk-9.2.12/examples/miscellaneous/Al-STM/0000755002504400250440000000000014536061315021642 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/miscellaneous/Al-STM/PaxHeaders/elk.in0000644000000000000000000000013214536061315020223 xustar0030 mtime=1702388429.126499701 30 atime=1702388429.126499701 30 ctime=1702388429.126499701 elk-9.2.12/examples/miscellaneous/Al-STM/elk.in0000644002504400250440000000142014536061315022742 0ustar00dewhurstdewhurst00000000000000 ! STM image of the surface of aluminium with an embedded oygen atom. Try using ! OpenDX to plot the image. tasks 0 162 ! the z-coordinate of the plotting plane is the 'height' of the STM tip plot2d 0.0 0.0 0.25 2.0 0.0 0.25 0.0 2.0 0.25 200 200 ! use small cut-off just for testing rgkmax 6.0 avec 15.0 0.0 0.0 0.0 15.0 0.0 0.0 0.0 7.5 sppath '../../../species/' atoms 2 : nspecies 'Al.in' : spfname 7 : natoms; atposl below 0.0 0.0 0.0 0.0 0.5 0.0 0.50 0.0 0.0 0.25 0.25 0.0 0.25 0.75 0.0 0.75 0.25 0.0 0.75 0.75 0.0 'O.in' 1 0.5 0.5 0.0 ngridk 1 1 1 vkloff 0.25 0.625 0.0 elk-9.2.12/examples/miscellaneous/Al-STM/PaxHeaders/stm2d.general0000644000000000000000000000013214536061315021510 xustar0030 mtime=1702388429.127499699 30 atime=1702388429.127499699 30 ctime=1702388429.127499699 elk-9.2.12/examples/miscellaneous/Al-STM/stm2d.general0000644002504400250440000000027314536061315024234 0ustar00dewhurstdewhurst00000000000000file = ./STM2D.OUT grid = 200 x 200 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 2-vector, scalar type = float, float end elk-9.2.12/examples/miscellaneous/Al-STM/PaxHeaders/stm2d.net0000644000000000000000000000013214536061315020661 xustar0030 mtime=1702388429.129499696 30 atime=1702388429.129499696 30 ctime=1702388429.129499696 elk-9.2.12/examples/miscellaneous/Al-STM/stm2d.net0000644002504400250440000001263514536061315023412 0ustar00dewhurstdewhurst00000000000000// // time: Sun Oct 15 18:48:57 2006 // // version: 3.2.0 (format), 4.3.2 (DX) // // // MODULE main // workspace: width = 392, height = 525 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Import[1]: x = 40, y = 40, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "stm2d.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node Colormap[1]: x = 245, y = 132, inputs = 19, label = Colormap // input[1]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.0] [1.0 0.0] } // input[2]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.0] [1.0 0.0] } // input[3]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.0] [1.0 1.0] } // input[4]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[5]: defaulting = 0, visible = 0, type = 32, value = "Colormap_1" // input[7]: defaulting = 1, visible = 0, type = 5, value = 0.0043241107 // input[8]: defaulting = 1, visible = 0, type = 5, value = 0.045520809 // input[9]: defaulting = 1, visible = 0, type = 1, value = 20 // input[12]: defaulting = 0, visible = 0, type = 16777221, value = { 0.0043241107 0.045520809 } // input[17]: defaulting = 0, visible = 0, type = 5, value = 0.0043241107 // input[18]: defaulting = 0, visible = 0, type = 5, value = 0.045520809 // window: position = (0.0000,0.0000), size = 0.6348x0.5859 // main_Colormap_1_out_1[cache: 2], main_Colormap_1_out_2[cache: 2] = Colormap( main_Colormap_1_in_1, main_Colormap_1_in_2, main_Colormap_1_in_3, main_Colormap_1_in_4, main_Colormap_1_in_5, main_Import_1_out_1, main_Colormap_1_in_7, main_Colormap_1_in_8, main_Colormap_1_in_9, main_Colormap_1_in_10, main_Colormap_1_in_11, main_Colormap_1_in_12, main_Colormap_1_in_13, main_Colormap_1_in_14, main_Colormap_1_in_15, main_Colormap_1_in_16, main_Colormap_1_in_17, main_Colormap_1_in_18, main_Colormap_1_in_19 ) [instance: 1, cache: 1]; // // node Color[1]: x = 81, y = 206, inputs = 5, label = Color // main_Color_1_out_1 = Color( main_Import_1_out_1, main_Colormap_1_out_1, main_Color_1_in_3, main_Color_1_in_4, main_Color_1_in_5 ) [instance: 1, cache: 1]; // // node AutoCamera[1]: x = 300, y = 292, inputs = 9, label = AutoCamera // input[3]: defaulting = 0, visible = 0, type = 5, value = 35.0 // input[4]: defaulting = 0, visible = 0, type = 1, value = 512 // input[5]: defaulting = 0, visible = 0, type = 5, value = 1.0 // input[9]: defaulting = 0, visible = 0, type = 32, value = "white" // main_AutoCamera_1_out_1 = AutoCamera( main_Color_1_out_1, main_AutoCamera_1_in_2, main_AutoCamera_1_in_3, main_AutoCamera_1_in_4, main_AutoCamera_1_in_5, main_AutoCamera_1_in_6, main_AutoCamera_1_in_7, main_AutoCamera_1_in_8, main_AutoCamera_1_in_9 ) [instance: 1, cache: 1]; // // node Render[1]: x = 174, y = 347, inputs = 3, label = Render // main_Render_1_out_1 = Render( main_Color_1_out_1, main_AutoCamera_1_out_1, main_Render_1_in_3 ) [instance: 1, cache: 1]; // // node Display[1]: x = 142, y = 463, inputs = 8, label = Display // depth: value = 24 // window: position = (0.0000,0.0000), size = 0.5137x0.7214 // main_Display_1_out_1[cache: 2] = Display( main_Render_1_out_1, main_Display_1_in_2, main_Display_1_in_3, main_Display_1_in_4, main_Display_1_in_5, main_Display_1_in_6, main_Display_1_in_7, main_Display_1_in_8 ) [instance: 1, cache: 1]; // network: end of macro body } main_Import_1_in_1 = "stm2d.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_Colormap_1_in_1 = { [0.0 0.0] [1.0 0.0] }; main_Colormap_1_in_2 = { [0.0 0.0] [1.0 0.0] }; main_Colormap_1_in_3 = { [0.0 0.0] [1.0 1.0] }; main_Colormap_1_in_4 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_1_in_5 = "Colormap_1"; main_Colormap_1_in_7 = NULL; main_Colormap_1_in_8 = NULL; main_Colormap_1_in_9 = NULL; main_Colormap_1_in_10 = NULL; main_Colormap_1_in_11 = NULL; main_Colormap_1_in_12 = { 0.0043241107 0.045520809 }; main_Colormap_1_in_13 = NULL; main_Colormap_1_in_14 = NULL; main_Colormap_1_in_15 = NULL; main_Colormap_1_in_16 = NULL; main_Colormap_1_in_17 = 0.0043241107; main_Colormap_1_in_18 = 0.045520809; main_Colormap_1_in_19 = NULL; main_Colormap_1_out_1 = NULL; main_Color_1_in_3 = NULL; main_Color_1_in_4 = NULL; main_Color_1_in_5 = NULL; main_Color_1_out_1 = NULL; main_AutoCamera_1_in_2 = NULL; main_AutoCamera_1_in_3 = 35.0; main_AutoCamera_1_in_4 = 512; main_AutoCamera_1_in_5 = 1.0; main_AutoCamera_1_in_6 = NULL; main_AutoCamera_1_in_7 = NULL; main_AutoCamera_1_in_8 = NULL; main_AutoCamera_1_in_9 = "white"; main_AutoCamera_1_out_1 = NULL; main_Render_1_in_3 = NULL; main_Render_1_out_1 = NULL; main_Display_1_in_2 = NULL; main_Display_1_in_3 = "X24,,"; main_Display_1_in_4 = NULL; main_Display_1_in_5 = NULL; main_Display_1_in_6 = NULL; main_Display_1_in_7 = NULL; main_Display_1_in_8 = NULL; Executive("product version 4 3 2"); $sync main(); elk-9.2.12/examples/miscellaneous/PaxHeaders/Al-exp[iq.r]0000644000000000000000000000013214536061315020256 xustar0030 mtime=1702388429.131499693 30 atime=1702388429.130499694 30 ctime=1702388429.131499693 elk-9.2.12/examples/miscellaneous/Al-exp[iq.r]/0000755002504400250440000000000014536061315023055 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/miscellaneous/Al-exp[iq.r]/PaxHeaders/elk.in0000644000000000000000000000013214536061315021436 xustar0030 mtime=1702388429.131499693 30 atime=1702388429.131499693 30 ctime=1702388429.131499693 elk-9.2.12/examples/miscellaneous/Al-exp[iq.r]/elk.in0000644002504400250440000000114714536061315024163 0ustar00dewhurstdewhurst00000000000000 ! Computes < i,k+q | exp(iq.r) | j,k > matrix elements. The q-vector is ! stored in vecql and the outputted k-points are selected with kstlist. ! Note that q should be chosen commensurate with the k-point grid. tasks 0 130 vecql 0.0 0.0 0.125 kstlist 1 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.8267 ! this is the relative path to the species files sppath '../../../species/' atoms 1 : nspecies 'Al.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 ngridk 8 8 8 elk-9.2.12/examples/PaxHeaders/structural-optimisation0000644000000000000000000000013014536061315020126 xustar0029 mtime=1702388429.14049968 30 atime=1702388429.132499692 29 ctime=1702388429.14049968 elk-9.2.12/examples/structural-optimisation/0000755002504400250440000000000014536061315022727 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/structural-optimisation/PaxHeaders/Si-atom-opt0000644000000000000000000000013114536061315022240 xustar0030 mtime=1702388429.134499689 29 atime=1702388429.13349969 30 ctime=1702388429.134499689 elk-9.2.12/examples/structural-optimisation/Si-atom-opt/0000755002504400250440000000000014536061315025040 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/structural-optimisation/Si-atom-opt/PaxHeaders/elk.in0000644000000000000000000000013214536061315023421 xustar0030 mtime=1702388429.135499687 30 atime=1702388429.135499687 30 ctime=1702388429.135499687 elk-9.2.12/examples/structural-optimisation/Si-atom-opt/elk.in0000644002504400250440000000107714536061315026150 0ustar00dewhurstdewhurst00000000000000 ! Silicon geometry optimisation example. The equilibrium atomic positions are ! found using tasks=2. Updated positions are written to GEOMETRY_OPT.OUT for ! each optimisation step. tasks 2 ! use Broyden mixing of the potential mixtype 3 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.27 0.27 0.27 ngridk 2 2 2 vkloff 0.5 0.5 0.5 elk-9.2.12/examples/structural-optimisation/PaxHeaders/BaTiO3-lattice-opt0000644000000000000000000000013214536061315023374 xustar0030 mtime=1702388429.137499684 30 atime=1702388429.136499686 30 ctime=1702388429.137499684 elk-9.2.12/examples/structural-optimisation/BaTiO3-lattice-opt/0000755002504400250440000000000014536061315026173 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/structural-optimisation/BaTiO3-lattice-opt/PaxHeaders/elk.in0000644000000000000000000000013214536061315024554 xustar0030 mtime=1702388429.137499684 30 atime=1702388429.137499684 30 ctime=1702388429.137499684 elk-9.2.12/examples/structural-optimisation/BaTiO3-lattice-opt/elk.in0000644002504400250440000000136614536061315027304 0ustar00dewhurstdewhurst00000000000000 ! Example taken from the Elk forum demonstrating the lattice optimisation of ! BaTiO3 using the PBEsol functional. With thanks to David Tompsett. ! See: http://sourceforge.net/p/elk/discussion/897820/thread/db2127bd/#24b6 tasks 2 latvopt 1 epspot 1.e-7 epsstress 1.e-3 mixtype 3 xctype 22 isgkmax -2 lmaxapw 8 rgkmax 8.0 gmaxvr 18.0 ngridk 10 10 10 avec 7.576 0.0 0.0 0.0 7.576 0.0 0.0 0.0 7.576 sppath '../../../species/' atoms 3 : nspecies 'Ba.in' : spfname 1 : natoms; atpos below 0.0 0.0 0.0 'Ti.in' 1 0.5 0.5 0.5 'O.in' 3 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 elk-9.2.12/examples/structural-optimisation/PaxHeaders/Ge-lattice-opt0000644000000000000000000000013214536061315022706 xustar0030 mtime=1702388429.139499681 30 atime=1702388429.138499683 30 ctime=1702388429.139499681 elk-9.2.12/examples/structural-optimisation/Ge-lattice-opt/0000755002504400250440000000000014536061315025505 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/structural-optimisation/Ge-lattice-opt/PaxHeaders/elk.in0000644000000000000000000000013014536061315024064 xustar0029 mtime=1702388429.14049968 30 atime=1702388429.139499681 29 ctime=1702388429.14049968 elk-9.2.12/examples/structural-optimisation/Ge-lattice-opt/elk.in0000644002504400250440000000273214536061315026614 0ustar00dewhurstdewhurst00000000000000 ! Unit cell optimisation for Ge with the PBE functional. This is performed with ! geometric optimisation in which the lattice vectors are changed. ! Setting 'latvopt' to 1 performs full unconstrained optimisation of the lattice ! vectors. Setting it to 2 results in an iso-volumetric optimisation. In both ! cases, the atomic positions are also optimised. To constrain the atomic ! positions, set the nuclear mass to be a negative number in the species file. ! As the calculation progresses, you can plot the files TOTENERGY_OPT.OUT and ! STRESSMAX.OUT to see the change in the total energy and stress tensor. The ! modulus of the maximum force on the atoms is written to FORCEMAX.OUT. ! The updated unit cell geometry is written to GEOMETRY_OPT.OUT. The last entry ! in this file contains the final lattice parameters and atomic positions. tasks 2 ! unconstrained optimisation of the lattice vectors latvopt 1 ! no atomic position optimisation atpopt 0 mixtype 3 ! switch on high-quality parameters for accurate stress tensors highq .true. ! switch off automatic determination of the k-point grid autokpt .false. ngridk 4 4 4 ! PBE exchange-correlation functional xctype 20 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 5.3451 sppath '../../../species/' atoms 1 : nspecies 'Ge.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 elk-9.2.12/examples/structural-optimisation/PaxHeaders/MgB2-lattice-opt0000644000000000000000000000013114536061315023101 xustar0030 mtime=1702388429.141499678 29 atime=1702388429.14049968 30 ctime=1702388429.141499678 elk-9.2.12/examples/structural-optimisation/MgB2-lattice-opt/0000755002504400250440000000000014536061315025701 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/examples/structural-optimisation/MgB2-lattice-opt/PaxHeaders/elk.in0000644000000000000000000000013214536061315024262 xustar0030 mtime=1702388429.142499677 30 atime=1702388429.142499677 30 ctime=1702388429.142499677 elk-9.2.12/examples/structural-optimisation/MgB2-lattice-opt/elk.in0000644002504400250440000000336214536061315027010 0ustar00dewhurstdewhurst00000000000000 ! Automatic determination of the c/a ratio of MgB2. This is performed with ! geometric optimisation which involves changing of the lattice vectors whilst ! maintaining the unit cell volume. ! Setting 'latvopt' to 1 performs full unconstrained optimisation of the lattice ! vectors. Setting it to 2 results in an optimisation over all strain tensors ! except isotropic scaling. In both cases, the atomic positions are also ! optimised. To constrain the atomic positions, set 'atpopt' to 0 or change the ! nuclear mass to be a negative number in a particular species file. In the case ! of MgB2, the atomic positions remain fixed because of symmetry. ! As the calculation progresses, you can plot the files TOTENERGY_OPT.OUT and ! STRESSMAX.OUT to see the change in the total energy and stress tensor. The ! modulus of the maximum force on the atoms is written to FORCEMAX.OUT. ! The updated unit cell geometry is written to GEOMETRY_OPT.OUT. The last entry ! in this file contains the final lattice parameters and atomic positions. tasks 2 ! lattice vector optimisation while maintaining the unit cell volume latvopt 2 ! no atomic position optimisation atpopt 0 ! high-quality calculation for precise total energies highq .true. ! speed the calculation up with Broyden mixing mixtype 3 avec 5.8316944 0.0 0.0 -2.9158472 5.050395498 0.0 0.0 0.0 6.659394380 ! decrease the unit cell volume to increase the pressure scale 0.9 sppath '../../../species/' atoms 2 : nspecies 'Mg.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'B.in' 2 0.33333333 0.66666667 0.5 0.66666667 0.33333333 0.5 elk-9.2.12/PaxHeaders/tests0000644000000000000000000000013214536061315012527 xustar0030 mtime=1702388429.625498962 30 atime=1702388429.155499657 30 ctime=1702388429.625498962 elk-9.2.12/tests/0000755002504400250440000000000014536061315015326 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/PaxHeaders/test0000644000000000000000000000013214536061315013506 xustar0030 mtime=1702388429.156499656 30 atime=1702388429.156499656 30 ctime=1702388429.156499656 elk-9.2.12/tests/test0000755002504400250440000000064414536061315016237 0ustar00dewhurstdewhurst00000000000000#! /bin/sh # Test suite script for the Elk Code for i in test_* do cd $i echo echo "Running test in directory $i..." \rm -f *.OUT gmon.out fort.* OMP_NUM_THREADS=8 OMP_STACKSIZE=20M ../../src/elk > test.log NERROR=`grep -c Error test.log` if test $NERROR -gt 0 then echo " Failed! See test.log and output files" else echo " Passed" \rm -f *.OUT test.log fort.* gmon.out fi cd .. done elk-9.2.12/tests/PaxHeaders/test_0310000644000000000000000000000013214536061315014071 xustar0030 mtime=1702388429.170499635 30 atime=1702388429.157499654 30 ctime=1702388429.170499635 elk-9.2.12/tests/test_031/0000755002504400250440000000000014536061315016670 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_031/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.159499652 30 atime=1702388429.158499653 30 ctime=1702388429.159499652 elk-9.2.12/tests/test_031/TEST_705.OUT_0000644002504400250440000000010114536061315020562 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 8 elk-9.2.12/tests/test_031/PaxHeaders/TEST_900.OUT_0000644000000000000000000000012714536061315016051 xustar0029 mtime=1702388429.16049965 29 atime=1702388429.16049965 29 ctime=1702388429.16049965 elk-9.2.12/tests/test_031/TEST_900.OUT_0000644002504400250440000000007014536061315020564 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 3383 elk-9.2.12/tests/test_031/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.161499649 30 atime=1702388429.161499649 30 ctime=1702388429.161499649 elk-9.2.12/tests/test_031/TEST_910.OUT_0000644002504400250440000000160414536061315020571 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 27 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.271443785498 5 0.271443785498 6 -0.271443785498 7 0.542887570996 8 0.542887570996 9 -0.542887570996 10 0.542887570996 11 0.219392771266E-16 12 -0.219392771266E-16 13 0.814331356494 14 0.271443785498 15 -0.271443785498 16 1.08577514199 17 0.438785542532E-16 18 -0.438785542532E-16 19 -0.219392771266E-16 20 0.542887570996 21 0.219392771266E-16 22 0.271443785498 23 0.814331356494 24 -0.271443785498 25 0.542887570996 26 0.542887570996 27 -0.335718741046E-16 elk-9.2.12/tests/test_031/PaxHeaders/elk.in0000644000000000000000000000013214536061315015251 xustar0030 mtime=1702388429.163499646 30 atime=1702388429.162499647 30 ctime=1702388429.163499646 elk-9.2.12/tests/test_031/elk.in0000644002504400250440000000115714536061315017777 0ustar00dewhurstdewhurst00000000000000 tasks 0 478 500 test .true. epspot 1.e-8 nxlo 1 swidth 0.01 deltaph 0.02 rgkmax 7.0 gmaxvr 12.0 lmaxi 2 lmaxo 7 lmaxapw 8 lorbcnd .false. nxoapwlo 1 nempty 8 ngridk 3 3 3 wplot 200 100 0 0.0 4.0 tstime 50.0 dtimes 0.5 avec 3.85788 3.85788 0.0 3.85788 0.0 3.85788 0.0 3.85788 3.85788 sppath '../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'H.in' 1 0.5 0.5 0.5 elk-9.2.12/tests/test_031/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016041 xustar0030 mtime=1702388429.164499644 30 atime=1702388429.164499644 30 ctime=1702388429.164499644 elk-9.2.12/tests/test_031/TEST_500.OUT_0000644002504400250440000000013514536061315020562 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.491833313864E-02 elk-9.2.12/tests/test_031/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.165499643 30 atime=1702388429.165499643 30 ctime=1702388429.165499643 elk-9.2.12/tests/test_031/TEST_510.OUT_0000644002504400250440000000014514536061315020564 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.209924691828 elk-9.2.12/tests/test_031/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013014536061315016036 xustar0029 mtime=1702388429.16749964 30 atime=1702388429.166499641 29 ctime=1702388429.16749964 elk-9.2.12/tests/test_031/TEST_400.OUT_0000644002504400250440000000014114536061315020556 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 4.00200332394 elk-9.2.12/tests/test_031/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016034 xustar0030 mtime=1702388429.168499638 30 atime=1702388429.168499638 30 ctime=1702388429.168499638 elk-9.2.12/tests/test_031/TEST_000.OUT_0000644002504400250440000000012614536061315020555 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -7.62104575275 elk-9.2.12/tests/test_031/PaxHeaders/TEST_460.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.169499637 30 atime=1702388429.169499637 30 ctime=1702388429.169499637 elk-9.2.12/tests/test_031/TEST_460.OUT_0000644002504400250440000000024714536061315020573 0ustar00dewhurstdewhurst00000000000000'total current of last time step' 2 3 0.500000000000E-03 1 0.144185097625E-01 2 0.173472347598E-17 3 -0.173472347598E-17 elk-9.2.12/tests/test_031/PaxHeaders/TEST_478.OUT_0000644000000000000000000000013214536061315016057 xustar0030 mtime=1702388429.171499634 30 atime=1702388429.170499635 30 ctime=1702388429.171499634 elk-9.2.12/tests/test_031/TEST_478.OUT_0000644002504400250440000002466214536061315020613 0ustar00dewhurstdewhurst00000000000000'dynamical Born effective charge' 3 200 0.100000000000E-01 1 1.31764940088 0.00000000000 2 1.25981204641 0.997813139510E-01 3 1.14456600484 0.997645834192E-01 4 1.08764597797 0.204796771093E-02 5 1.14338647167 -0.899196017942E-01 6 1.24472592064 -0.765696856626E-01 7 1.26575007196 0.299588710804E-01 8 1.15112550364 0.104722796491 9 0.987105405601 0.251917098219E-01 10 0.938063851924 -0.201690849727 11 1.09825211657 -0.424083087334 12 1.39366333457 -0.466341993463 13 1.63056646865 -0.283619208663 14 1.65588375128 -0.914723444457E-02 15 1.48915776475 0.154841225364 16 1.30558345262 0.110388610625 17 1.28090558308 -0.528052999734E-01 18 1.43478344492 -0.140937019406 19 1.61401977602 -0.340967499395E-01 20 1.63323014804 0.201088966411 21 1.44788402057 0.367951966210 22 1.20256149489 0.317670315851 23 1.10715024911 0.894364966018E-01 24 1.24868357490 -0.115695468363 25 1.50726277153 -0.108533832654 26 1.65469279918 0.118970851095 27 1.55258788743 0.380141525753 28 1.27675807830 0.451215337523 29 1.05742963336 0.264784872232 30 1.08536228124 -0.287926089893E-01 31 1.35053957547 -0.185146681114 32 1.65066156206 -0.677491644903E-01 33 1.75873114687 0.244181716444 34 1.60383423906 0.528794249753 35 1.31395399207 0.605727616622 36 1.09443835445 0.470937876876 37 1.05677268920 0.274024432593 38 1.14607497075 0.172127946070 39 1.21856232447 0.197708088085 40 1.18524108513 0.253297635844 41 1.08711147468 0.224001606801 42 1.04047631483 0.935299358175E-01 43 1.11464614117 -0.444459316342E-01 44 1.26268870462 -0.828943711935E-01 45 1.36872607425 -0.745260915918E-02 46 1.36141411385 0.908613790450E-01 47 1.28177241460 0.105806787477 48 1.24061261337 0.193136480487E-01 49 1.30863169556 -0.823993103191E-01 50 1.44665636026 -0.946768348127E-01 51 1.54364992543 0.188094392789E-02 52 1.52534028026 0.120927727365 53 1.42778006305 0.153390425623 54 1.36372404716 0.738286766158E-01 55 1.41328273562 -0.334659810440E-01 56 1.54441060961 -0.555301853576E-01 57 1.64160712424 0.379508297952E-01 58 1.61764685204 0.161031430612 59 1.50189768349 0.190770268461 60 1.41856963451 0.861271795402E-01 61 1.47205621805 -0.671288392060E-01 62 1.64639068917 -0.131211039924 63 1.81523113598 -0.431298975531E-01 64 1.85573585910 0.125389116004 65 1.76085383031 0.232648388013 66 1.64442593883 0.196875879179 67 1.63391235678 0.694098798472E-01 68 1.75215699613 -0.176703609923E-01 69 1.90038516177 0.210533867251E-01 70 1.95783658869 0.144432746715 71 1.90079309243 0.229317631048 72 1.82426783915 0.195590394205 73 1.84425777704 0.878021241359E-01 74 1.97713854468 0.303656728992E-01 75 2.11875974175 0.982472136558E-01 76 2.14943988322 0.232971830031 77 2.06309910049 0.294441160380 78 1.98662729631 0.204718781907 79 2.05866114822 0.403509676287E-01 80 2.28116701044 -0.306146859098E-01 81 2.49893802445 0.805610872505E-01 82 2.54781429200 0.272010931335 83 2.44089163553 0.328963154928 84 2.40089333377 0.143045294028 85 2.67305748820 -0.129437209936 86 3.26564517598 -0.147148757888 87 3.86480504307 0.328868779316 88 4.04235090210 1.18053505504 89 3.61147583240 1.96011573488 90 2.82206317644 2.21947684762 91 2.19390655548 1.88041084789 92 2.09708867916 1.31298122386 93 2.43688022951 1.01960716709 94 2.74514192353 1.17764412268 95 2.63560887892 1.45581901494 96 2.23206693853 1.31445776147 97 2.14978681186 0.570487324627 98 2.96956505050 -0.275953422536 99 4.61113729429 -0.315055176328 100 6.17639012725 1.03220219521 101 6.50400708178 3.38893573613 102 5.08386784112 5.49139547714 103 2.60925141026 6.02005225772 104 0.645155088099 4.62277116409 105 0.555534588225 2.32412140101 106 2.45153904446 0.919490843843 107 4.98192867358 1.72175086780 108 6.19466342735 4.56470579435 109 4.88870187561 7.82669263414 110 1.47783391391 9.49782392092 111 -2.27100540545 8.53397678084 112 -4.43343888418 5.52376795623 113 -4.18311034134 2.21105358395 114 -2.21622631354 0.264014090110 115 -0.101523108410 0.210183029399 116 0.891808318735 1.27631381213 117 0.599982308048 2.15402486006 118 -0.133192913039 2.03268564145 119 -0.272985830277 1.11239876917 120 0.569754766653 0.285302634820 121 1.91328798130 0.335417550380 122 2.88050321024 1.32937359273 123 2.91745506038 2.63908982774 124 2.16965493626 3.49323969907 125 1.27483992983 3.55875909490 126 0.819024966813 3.10037411177 127 0.929902179223 2.66313846048 128 1.29990238896 2.60808996729 129 1.54071539743 2.89544851631 130 1.51751088471 3.24366684465 131 1.38486035736 3.45913250596 132 1.34307449272 3.61663882542 133 1.37577714740 3.94334257583 134 1.21895401611 4.53790056243 135 0.586697482364 5.19309171714 136 -0.546697034163 5.48519664459 137 -1.84669409702 5.06154271446 138 -2.78104566759 3.90355388016 139 -2.92372083873 2.37796454324 140 -2.19516941472 1.05536641110 141 -0.904981841750 0.424299405268 142 0.400445607422 0.662177093621 143 1.19046374313 1.55962268310 144 1.19295130967 2.61379132936 145 0.537120061213 3.25657051917 146 -0.276076613620 3.14619023319 147 -0.610878449752 2.39839432224 148 -0.770985973277E-01 1.59984083548 149 1.14493785293 1.51222760713 150 2.28876119891 2.56694266881 151 2.41180892216 4.45862430755 152 1.04763851211 6.17984980334 153 -1.33748680427 6.59225187384 154 -3.48584566728 5.22375244125 155 -4.10846963280 2.72483811171 156 -2.79721427918 0.567470399123 157 -0.414567868243 0.916568181920E-01 158 1.41202545838 1.53450163505 159 1.41752331304 3.78039932330 160 -0.343143523327 5.10170264117 161 -2.45327339101 4.42134099898 162 -3.11934836853 2.18194875379 163 -1.51568327046 0.131963121413 164 1.49967673232 0.115067529292 165 3.86970916892 2.70757202075 166 3.72361495652 6.70155727774 167 0.685345696624 9.83787342917 168 -3.83275861372 10.2844679022 169 -7.55485669323 7.81477400264 170 -8.81079015812 3.87366090538 171 -7.51184787617 0.539027212732 172 -5.00116822727 -0.831892448719 173 -2.98734920402 -0.318066129507 174 -2.39783274600 0.903197091989 175 -2.95416411529 1.57066873918 176 -3.65546724962 1.21687059479 177 -3.67435599046 0.306560220513 178 -2.94047619648 -0.335023262285 179 -2.03261826230 -0.249930973849 180 -1.58621571829 0.352850905260 181 -1.76473759660 0.884394119044 182 -2.20496906312 0.920251296107 183 -2.40146528292 0.519133074820 184 -2.14374102527 0.917409250292E-01 185 -1.63574578988 0.111435817502E-02 186 -1.24909635905 0.272798528106 187 -1.17965441157 0.643277780397 188 -1.32102806258 0.849554668409 189 -1.43336825012 0.863842381808 190 -1.40921409799 0.865254147880 191 -1.37071344761 1.00721497254 192 -1.51611558815 1.22766364302 193 -1.88059213921 1.29269097591 194 -2.25481084391 1.03046790391 195 -2.34936427116 0.526931792126 196 -2.05671237079 0.888253043009E-01 197 -1.56642959420 -0.337247510998E-02 198 -1.22083531852 0.266277768618 199 -1.23355026920 0.634295031638 200 -1.51777209787 0.781783351883 elk-9.2.12/tests/PaxHeaders/test.sh0000644000000000000000000000013214536061315014117 xustar0030 mtime=1702388429.173499631 30 atime=1702388429.172499632 30 ctime=1702388429.173499631 elk-9.2.12/tests/test.sh0000755002504400250440000000064414536061315016650 0ustar00dewhurstdewhurst00000000000000#! /bin/sh # Test suite script for the Elk Code for i in test_* do cd $i echo echo "Running test in directory $i..." \rm -f *.OUT gmon.out fort.* OMP_NUM_THREADS=8 OMP_STACKSIZE=20M ../../src/elk > test.log NERROR=`grep -c Error test.log` if test $NERROR -gt 0 then echo " Failed! See test.log and output files" else echo " Passed" \rm -f *.OUT test.log fort.* gmon.out fi cd .. done elk-9.2.12/tests/PaxHeaders/test_0330000644000000000000000000000013214536061315014073 xustar0030 mtime=1702388429.184499615 30 atime=1702388429.173499631 30 ctime=1702388429.184499615 elk-9.2.12/tests/test_033/0000755002504400250440000000000014536061315016672 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_033/PaxHeaders/elk.in0000644000000000000000000000013214536061315015253 xustar0030 mtime=1702388429.175499628 30 atime=1702388429.174499629 30 ctime=1702388429.175499628 elk-9.2.12/tests/test_033/elk.in0000644002504400250440000000165514536061315020004 0ustar00dewhurstdewhurst00000000000000 ! Test of the piezoelectric tensor of hexagonal boron nitride. tasks 0 380 500 test .true. ngridk 4 4 4 avec 2.371605000 4.107740355 0.000000000 4.743210000 0.000000000 0.000000000 0.000000000 0.000000000 12.64227000 sppath '../../species/' atoms 2 : nspecies 'B.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.25000000 0.00000000 0.00000000 0.00000000 0.33333333 0.33333333 0.75000000 0.00000000 0.00000000 0.00000000 'N.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.75000000 0.00000000 0.00000000 0.00000000 0.33333333 0.33333333 0.25000000 0.00000000 0.00000000 0.00000000 elk-9.2.12/tests/test_033/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016052 xustar0030 mtime=1702388429.176499626 30 atime=1702388429.176499626 30 ctime=1702388429.176499626 elk-9.2.12/tests/test_033/TEST_705.OUT_0000644002504400250440000000010114536061315020564 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 24 elk-9.2.12/tests/test_033/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.177499625 30 atime=1702388429.177499625 30 ctime=1702388429.177499625 elk-9.2.12/tests/test_033/TEST_900.OUT_0000644002504400250440000000007014536061315020566 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 7159 elk-9.2.12/tests/test_033/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.178499623 30 atime=1702388429.178499623 30 ctime=1702388429.178499623 elk-9.2.12/tests/test_033/TEST_910.OUT_0000644002504400250440000000652314536061315020600 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 108 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.00000000000 5 0.382147504865 6 0.00000000000 7 0.00000000000 8 0.764295009731 9 0.00000000000 10 0.330949447167 11 0.573221257298 12 0.00000000000 13 0.00000000000 14 0.00000000000 15 0.310681460208E-01 16 0.00000000000 17 0.382147504865 18 0.310681460208E-01 19 0.00000000000 20 0.764295009731 21 0.310681460208E-01 22 0.330949447167 23 0.573221257298 24 0.310681460208E-01 25 0.00000000000 26 0.00000000000 27 0.621362920417E-01 28 0.00000000000 29 0.382147504865 30 0.621362920417E-01 31 0.00000000000 32 0.764295009731 33 0.621362920417E-01 34 0.330949447167 35 0.573221257298 36 0.621362920417E-01 37 0.00000000000 38 0.00000000000 39 0.932044380625E-01 40 0.00000000000 41 0.382147504865 42 0.932044380625E-01 43 0.00000000000 44 0.764295009731 45 0.932044380625E-01 46 0.330949447167 47 0.573221257298 48 0.932044380625E-01 49 0.00000000000 50 0.00000000000 51 0.124272584083 52 0.00000000000 53 0.382147504865 54 0.124272584083 55 0.00000000000 56 0.764295009731 57 0.124272584083 58 0.330949447167 59 0.573221257298 60 0.124272584083 61 0.00000000000 62 0.00000000000 63 0.155340730104 64 0.00000000000 65 0.382147504865 66 0.155340730104 67 0.00000000000 68 0.764295009731 69 0.155340730104 70 0.330949447167 71 0.573221257298 72 0.155340730104 73 0.00000000000 74 0.00000000000 75 0.186408876125 76 0.00000000000 77 0.382147504865 78 0.186408876125 79 0.00000000000 80 0.764295009731 81 0.186408876125 82 0.330949447167 83 0.573221257298 84 0.186408876125 85 0.00000000000 86 0.00000000000 87 0.217477022146 88 0.00000000000 89 0.382147504865 90 0.217477022146 91 0.00000000000 92 0.764295009731 93 0.217477022146 94 0.330949447167 95 0.573221257298 96 0.217477022146 97 0.00000000000 98 0.00000000000 99 0.248545168167 100 0.00000000000 101 0.382147504865 102 0.248545168167 103 0.00000000000 104 0.764295009731 105 0.248545168167 106 0.330949447167 107 0.573221257298 108 0.248545168167 elk-9.2.12/tests/test_033/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.179499622 30 atime=1702388429.179499622 30 ctime=1702388429.179499622 elk-9.2.12/tests/test_033/TEST_500.OUT_0000644002504400250440000000013514536061315020564 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.167359315056E-11 elk-9.2.12/tests/test_033/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013114536061315016043 xustar0030 mtime=1702388429.181499619 29 atime=1702388429.18049962 30 ctime=1702388429.181499619 elk-9.2.12/tests/test_033/TEST_510.OUT_0000644002504400250440000000014514536061315020566 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.166158032563 elk-9.2.12/tests/test_033/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.182499618 30 atime=1702388429.182499618 30 ctime=1702388429.182499618 elk-9.2.12/tests/test_033/TEST_400.OUT_0000644002504400250440000000014114536061315020560 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 23.9897071715 elk-9.2.12/tests/test_033/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016036 xustar0030 mtime=1702388429.183499616 30 atime=1702388429.183499616 30 ctime=1702388429.183499616 elk-9.2.12/tests/test_033/TEST_000.OUT_0000644002504400250440000000012614536061315020557 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -158.225751814 elk-9.2.12/tests/test_033/PaxHeaders/TEST_380.OUT_0000644000000000000000000000013214536061315016051 xustar0030 mtime=1702388429.185499613 30 atime=1702388429.184499615 30 ctime=1702388429.185499613 elk-9.2.12/tests/test_033/TEST_380.OUT_0000644002504400250440000000037114536061315020574 0ustar00dewhurstdewhurst00000000000000'Piezoelectric tensor' 2 6 0.100000000000E-04 1 0.589948916942E-04 2 -0.275692642566E-06 3 -0.690166230079E-09 4 0.118150787759E-03 5 -0.399330599143E-06 6 -0.125067891554E-07 elk-9.2.12/tests/PaxHeaders/test-mpi.sh0000644000000000000000000000013214536061315014702 xustar0030 mtime=1702388429.186499612 30 atime=1702388429.186499612 30 ctime=1702388429.186499612 elk-9.2.12/tests/test-mpi.sh0000755002504400250440000000066014536061315017431 0ustar00dewhurstdewhurst00000000000000#! /bin/sh # Test suite script for the Elk Code for i in test_* do cd $i echo echo "Running test in directory $i..." \rm -f *.OUT gmon.out fort.* OMP_NUM_THREADS=2 OMP_STACKSIZE=64M mpirun -n 4 ../../src/elk > test.log NERROR=`grep -c Error test.log` if test $NERROR -gt 0 then echo " Failed! See test.log and output files" else echo " Passed" \rm -f *.OUT test.log fort.* gmon.out fi cd .. done elk-9.2.12/tests/PaxHeaders/test_0040000644000000000000000000000013114536061315014070 xustar0030 mtime=1702388429.202499588 29 atime=1702388429.18749961 30 ctime=1702388429.202499588 elk-9.2.12/tests/test_004/0000755002504400250440000000000014536061315016670 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_004/PaxHeaders/TEST_187.OUT_0000644000000000000000000000013214536061315016054 xustar0030 mtime=1702388429.189499607 30 atime=1702388429.188499609 30 ctime=1702388429.189499607 elk-9.2.12/tests/test_004/TEST_187.OUT_0000644002504400250440000012274314536061315020607 0ustar00dewhurstdewhurst00000000000000'BSE optical conductivity' 3 800 0.100000000000E-02 1 0.301479005069E-03 0.00000000000 2 -0.206060929572E-05 0.00000000000 3 -0.115610458723E-05 0.00000000000 4 -0.206061304204E-05 0.00000000000 5 0.301473411738E-03 0.00000000000 6 -0.824932057917E-06 0.00000000000 7 -0.115610315779E-05 0.00000000000 8 -0.824929750711E-06 0.00000000000 9 0.303146578429E-03 0.00000000000 10 0.301490408649E-03 -0.113035775973E-03 11 -0.206076890673E-05 0.772464350151E-06 12 -0.115624141211E-05 0.433313117920E-06 13 -0.206077212699E-05 0.772467159285E-06 14 0.301484806524E-03 -0.113033693015E-03 15 -0.825053224385E-06 0.309149366913E-06 16 -0.115624018330E-05 0.433312046131E-06 17 -0.825051241011E-06 0.309147636998E-06 18 0.303158013812E-03 -0.113661063416E-03 19 0.301524622750E-03 -0.226080099076E-03 20 -0.206124780700E-05 0.154504809959E-05 21 -0.115665195019E-05 0.866728825041E-06 22 -0.206124944882E-05 0.154505371928E-05 23 0.301518994235E-03 -0.226075926574E-03 24 -0.825416782245E-06 0.618389633843E-06 25 -0.115665132344E-05 0.866726680770E-06 26 -0.825415770580E-06 0.618386172865E-06 27 0.303192323324E-03 -0.227330697809E-03 28 0.301581657450E-03 -0.339141518957E-03 29 -0.206204619832E-05 0.231787069786E-05 30 -0.115733639192E-05 0.130034975812E-05 31 -0.206204520852E-05 0.231787913095E-05 32 0.301575984933E-03 -0.339135243733E-03 33 -0.826022906919E-06 0.927811744644E-06 34 -0.115733676902E-05 0.130034653997E-05 35 -0.826023515484E-06 0.927806550309E-06 36 0.303249517055E-03 -0.341017476675E-03 37 0.301661529557E-03 -0.452228590295E-03 38 -0.206316441722E-05 0.309105169501E-05 39 -0.115829505484E-05 0.173427864904E-05 40 -0.206315974128E-05 0.309106294577E-05 41 0.301655795399E-03 -0.452220192573E-03 42 -0.826871890946E-06 0.123750673089E-05 43 -0.115829683825E-05 0.173427435494E-05 44 -0.826874769338E-06 0.123749979975E-05 45 0.303329611831E-03 -0.454729978548E-03 46 0.301764262619E-03 -0.565349875324E-03 47 -0.206460293522E-05 0.386471079200E-05 48 -0.115952838393E-05 0.216861837252E-05 49 -0.206459351677E-05 0.386472486612E-05 50 0.301758449139E-03 -0.565339328714E-03 51 -0.827964144244E-06 0.154756575581E-05 52 -0.115953197701E-05 0.216861299970E-05 53 -0.827969943562E-06 0.154755708328E-05 54 0.303432631222E-03 -0.568476789522E-03 55 0.301889886936E-03 -0.678513946357E-03 56 -0.206636235924E-05 0.463896789116E-05 57 -0.116103695197E-05 0.260347199390E-05 58 -0.206634713949E-05 0.463898479578E-05 59 0.301883976404E-03 -0.678501217841E-03 60 -0.829300194465E-06 0.185808015839E-05 61 -0.116104275925E-05 0.260346553886E-05 62 -0.829309567746E-06 0.185806973871E-05 63 0.303558605562E-03 -0.682266505784E-03 64 0.302038439585E-03 -0.791729388318E-03 65 -0.206844343210E-05 0.541394314690E-05 66 -0.116282146002E-05 0.303894281707E-05 67 -0.206842134935E-05 0.541396289059E-05 68 0.302032414207E-03 -0.791714438229E-03 69 -0.830880687464E-06 0.216914149757E-05 70 -0.116282988746E-05 0.303893527565E-05 71 -0.830894290114E-06 0.216912932383E-05 72 0.303707571966E-03 -0.796107736145E-03 73 0.302209964443E-03 -0.905004801289E-03 74 -0.207084703316E-05 0.618975701654E-05 75 -0.116488273802E-05 0.347513443270E-05 76 -0.207081702222E-05 0.618977960931E-05 77 0.302203806353E-03 -0.904987583282E-03 78 -0.832706387863E-06 0.248084159666E-05 79 -0.116489419330E-05 0.347512580002E-05 80 -0.832724878094E-06 0.248082766079E-05 81 0.303879574355E-03 -0.910009104585E-03 82 0.302404512218E-03 -0.101834880305E-02 83 -0.207357417907E-05 0.696653031146E-05 84 -0.116722174559E-05 0.391215076662E-05 85 -0.207353517072E-05 0.696655576478E-05 86 0.302398203462E-03 -0.101832926408E-02 87 -0.834778179733E-06 0.279327258801E-05 88 -0.116723663831E-05 0.391214103708E-05 89 -0.834802218997E-06 0.279325688076E-05 90 0.304074663491E-03 -0.102397925281E-02 91 0.302622140482E-03 -0.113177003166E-02 92 -0.207662602460E-05 0.774438424853E-05 93 -0.116983957275E-05 0.435009612852E-05 94 -0.207657694505E-05 0.774441257533E-05 95 0.302615663011E-03 -0.113174811193E-02 96 -0.837097067366E-06 0.310652695792E-05 97 -0.116985831476E-05 0.435008529582E-05 98 -0.837127320798E-06 0.310650946887E-05 99 0.304292897006E-03 -0.113802684281E-02 100 0.302862913710E-03 -0.124527714801E-02 101 -0.208000386361E-05 0.852344050188E-05 102 -0.117273744097E-05 0.478907526104E-05 103 -0.207994363398E-05 0.852347171657E-05 104 0.302856249364E-03 -0.124525278096E-02 105 -0.839664176170E-06 0.342069759188E-05 106 -0.117276044661E-05 0.478906331817E-05 107 -0.839701313028E-06 0.342067830941E-05 108 0.304534339440E-03 -0.125216055945E-02 109 0.303126903327E-03 -0.135887883845E-02 110 -0.208370913020E-05 0.930382125504E-05 111 -0.117591670417E-05 0.522919338914E-05 112 -0.208363666592E-05 0.930385537352E-05 113 0.303120033827E-03 -0.135885195068E-02 114 -0.842480753662E-06 0.373587782014E-05 115 -0.117594439054E-05 0.522918032835E-05 116 -0.842525447775E-06 0.373585673145E-05 117 0.304799062293E-03 -0.136638911306E-02 118 0.303414187753E-03 -0.147258381735E-02 119 -0.208774339985E-05 0.100856492535E-04 120 -0.117937884994E-05 0.567055626997E-05 121 -0.208765761012E-05 0.100856862932E-04 122 0.303407094685E-03 -0.147255432862E-02 123 -0.845548170578E-06 0.405216146371E-05 124 -0.117941163717E-05 0.567054208281E-05 125 -0.845601100791E-06 0.405213855479E-05 126 0.305087144064E-03 -0.148072124205E-02 127 0.303724852457E-03 -0.158640082978E-02 128 -0.209210839082E-05 0.108690478580E-04 129 -0.118312550084E-05 0.611327024318E-05 130 -0.209200817806E-05 0.108690878378E-04 131 0.303717517264E-03 -0.158636865290E-02 132 -0.848867922089E-06 0.436964288078E-05 133 -0.118316381237E-05 0.611325492044E-05 134 -0.848929772720E-06 0.436961813640E-05 135 0.305398670311E-03 -0.159516571552E-02 136 0.304058990018E-03 -0.170033865413E-02 137 -0.209680596558E-05 0.116541410977E-04 138 -0.118715841580E-05 0.655744228172E-05 139 -0.209669022484E-05 0.116541840380E-04 140 0.304051393984E-03 -0.170030369495E-02 141 -0.852441629136E-06 0.468841701358E-05 142 -0.118720267866E-05 0.655742581348E-05 143 -0.852513090430E-06 0.468839041730E-05 144 0.305733733708E-03 -0.170973133595E-02 145 0.304416700188E-03 -0.181440610480E-02 146 -0.210183813243E-05 0.124410537246E-04 147 -0.119147949171E-05 0.700318004323E-05 148 -0.210170575081E-05 0.124410996474E-04 149 0.304408824428E-03 -0.181436826212E-02 150 -0.856271039877E-06 0.500857943584E-05 151 -0.119153013677E-05 0.700316241879E-05 152 -0.856352808470E-06 0.500855096996E-05 153 0.306092434107E-03 -0.182442694187E-02 154 0.304798089957E-03 -0.192861203488E-02 155 -0.210720704716E-05 0.132299112685E-04 156 -0.119609076507E-05 0.745059192200E-05 157 -0.210705690327E-05 0.132299601973E-04 158 0.304789915403E-03 -0.192857120040E-02 159 -0.860358031254E-06 0.533022640073E-05 160 -0.119614822734E-05 0.745057312993E-05 161 -0.860450810636E-06 0.533019604632E-05 162 0.306474878608E-03 -0.193926141052E-02 163 0.305203273633E-03 -0.204296533887E-02 164 -0.211291501497E-05 0.140208400919E-04 165 -0.120099441377E-05 0.789978710161E-05 166 -0.211274597829E-05 0.140208920519E-04 167 0.305194781022E-03 -0.204292139713E-02 168 -0.864704610676E-06 0.565345488949E-05 169 -0.120105913270E-05 0.789976712971E-05 170 -0.864809111665E-06 0.565342262632E-05 171 0.306881181635E-03 -0.205424366062E-02 172 0.305632372916E-03 -0.215747495547E-02 173 -0.211896449242E-05 0.148139674466E-04 174 -0.120619275909E-05 0.835087560826E-05 175 -0.211877542271E-05 0.148140224646E-04 176 0.305623542775E-03 -0.215742778374E-02 177 -0.869312917831E-06 0.597836266060E-05 178 -0.120626517883E-05 0.835085444356E-05 179 -0.869429859049E-06 0.597832846720E-05 180 0.307311465009E-03 -0.216938265511E-02 181 0.306085516984E-03 -0.227214987034E-02 182 -0.212535808953E-05 0.156094215306E-04 183 -0.121168826769E-05 0.880396836482E-05 184 -0.212514783627E-05 0.156094796349E-04 185 0.306076329620E-03 -0.227209933855E-02 186 -0.874185226616E-06 0.630504829979E-05 187 -0.121176883740E-05 0.880394599358E-05 188 -0.874315334971E-06 0.630501215336E-05 189 0.307765858040E-03 -0.228468740393E-02 190 0.306562842583E-03 -0.238699911888E-02 191 -0.213209857209E-05 0.164073315456E-04 192 -0.121748355388E-05 0.925917724574E-05 193 -0.213186597381E-05 0.164073927662E-04 194 0.306553278068E-03 -0.238694508957E-02 195 -0.879323947198E-06 0.663361127071E-05 196 -0.121757272801E-05 0.925915365340E-05 197 -0.879467958377E-06 0.663357314714E-05 198 0.308244497610E-03 -0.240016696686E-02 199 0.307064494126E-03 -0.250203178917E-02 200 -0.213918886404E-05 0.172078277557E-04 201 -0.122358138192E-05 0.971661513273E-05 202 -0.213893274772E-05 0.172078921243E-04 203 0.307054532280E-03 -0.250197411736E-02 204 -0.884731628210E-06 0.696415196636E-05 205 -0.122367962051E-05 0.971659030396E-05 206 -0.884890287171E-06 0.696411184022E-05 207 0.308747528275E-03 -0.251583045634E-02 208 0.307590623786E-03 -0.261725702475E-02 209 -0.214663204999E-05 0.180110415469E-04 210 -0.122998466852E-05 0.101763959714E-04 211 -0.214635123044E-05 0.180111090971E-04 212 0.307580244169E-03 -0.261719555786E-02 213 -0.890410959072E-06 0.729677176152E-05 214 -0.123009243752E-05 0.101763698901E-04 215 -0.890585020549E-06 0.729672960600E-05 216 0.309275102362E-03 -0.263168704040E-02 217 0.308141391613E-03 -0.273268402764E-02 218 -0.215443137799E-05 0.188171054880E-04 219 -0.123669648550E-05 0.106386348289E-04 220 -0.215412465719E-05 0.188171762547E-04 221 0.308130573504E-03 -0.273261860538E-02 222 -0.896364772460E-06 0.763157306587E-05 223 -0.123681425705E-05 0.106386074780E-04 224 -0.896555001476E-06 0.763152885281E-05 225 0.309827380076E-03 -0.274774594555E-02 226 0.308716965639E-03 -0.284832206126E-02 227 -0.216259026233E-05 0.196261533913E-04 228 -0.124372006254E-05 0.111034479524E-04 229 -0.216225642878E-05 0.196262274115E-04 230 0.308705688028E-03 -0.284825251552E-02 231 -0.902596046912E-06 0.796865937823E-05 232 -0.124384831528E-05 0.111034193141E-04 233 -0.902803219292E-06 0.796861307806E-05 234 0.310404529615E-03 -0.286401645978E-02 235 0.309317522001E-03 -0.296418045343E-02 236 -0.217111228659E-05 0.204383203762E-04 237 -0.125105879013E-05 0.115709528289E-04 238 -0.217075011464E-05 0.204383976886E-04 239 0.309305763569E-03 -0.296410660820E-02 240 -0.909107909573E-06 0.830813534172E-05 241 -0.125119800956E-05 0.115709228845E-04 242 -0.909332812478E-06 0.830808692345E-05 243 0.311006727289E-03 -0.298050793556E-02 244 0.309943245069E-03 -0.308026859946E-02 245 -0.218000120680E-05 0.212537429323E-04 246 -0.125871622269E-05 0.120412682459E-04 247 -0.217960945598E-05 0.212538235774E-04 248 0.309930984175E-03 -0.308019027069E-02 249 -0.915903639104E-06 0.865010679998E-05 250 -0.125886690143E-05 0.120412369759E-04 251 -0.916147071562E-06 0.865005623117E-05 252 0.311634157646E-03 -0.309722979290E-02 253 0.310594327570E-03 -0.319659596526E-02 254 -0.218926095480E-05 0.220725589846E-04 255 -0.126669608181E-05 0.125145143535E-04 256 -0.218883836911E-05 0.220726430049E-04 257 0.310581542234E-03 -0.319651296071E-02 258 -0.922986668732E-06 0.899468085454E-05 259 -0.126685871998E-05 0.125144817375E-04 260 -0.923249442184E-06 0.899462810130E-05 261 0.312287013601E-03 -0.321419152246E-02 262 0.311270970736E-03 -0.331317209044E-02 263 -0.219889564174E-05 0.228949079602E-04 264 -0.127500225971E-05 0.129908127274E-04 265 -0.219844094898E-05 0.228949953998E-04 266 0.311257638625E-03 -0.331308420959E-02 267 -0.930360589466E-06 0.934196592333E-05 268 -0.127517736523E-05 0.129907787441E-04 269 -0.930643528325E-06 0.934191095025E-05 270 0.312965496578E-03 -0.333140268871E-02 271 0.311973384442E-03 -0.343000659157E-02 272 -0.220890956181E-05 0.237209308551E-04 273 -0.128363882284E-05 0.134702864340E-04 274 -0.220842147283E-05 0.237210217604E-04 275 0.311959482850E-03 -0.342991362548E-02 276 -0.938029153475E-06 0.969207180040E-05 277 -0.128382691176E-05 0.134702510612E-04 278 -0.938333095685E-06 0.969201457056E-05 279 0.313669816653E-03 -0.344887293315E-02 280 0.312701787362E-03 -0.354710916545E-02 281 -0.221930719612E-05 0.245507703042E-04 282 -0.129261001566E-05 0.139530600956E-04 283 -0.221878440410E-05 0.245508647234E-04 284 0.312687293198E-03 -0.354701089660E-02 285 -0.945996277634E-06 0.100451097171E-04 286 -0.129281161254E-05 0.139530233101E-04 287 -0.946322075249E-06 0.100450501920E-04 288 0.314400192708E-03 -0.356661197753E-02 289 0.313456407128E-03 -0.366448959239E-02 290 -0.223009321675E-05 0.253845706510E-04 291 -0.130192026463E-05 0.144392599585E-04 292 -0.222953439645E-05 0.253846686344E-04 293 0.313441296894E-03 -0.366438579453E-02 294 -0.954266047244E-06 0.104011924042E-04 295 -0.130213590286E-05 0.144392217362E-04 296 -0.954614567016E-06 0.104011305438E-04 297 0.315156852588E-03 -0.368462962726E-02 298 0.314237480496E-03 -0.378215773961E-02 299 -0.224127249105E-05 0.262224780205E-04 300 -0.131157418238E-05 0.149290139613E-04 301 -0.224067629803E-05 0.262225796202E-04 302 0.314221730272E-03 -0.378204817764E-02 303 -0.962842719938E-06 0.107604341561E-04 304 -0.131180440453E-05 0.149289742773E-04 305 -0.963214843914E-06 0.107603699187E-04 306 0.315940033272E-03 -0.380293577471E-02 307 0.315045253521E-03 -0.390012356472E-02 308 -0.225285008608E-05 0.270646403920E-04 309 -0.132157657207E-05 0.154224518060E-04 310 -0.225221515595E-05 0.270647456626E-04 311 0.315028838946E-03 -0.390000799448E-02 312 -0.971730729767E-06 0.111229508958E-04 313 -0.132182193029E-05 0.154224106341E-04 314 -0.972127355901E-06 0.111228842382E-04 315 0.316749981045E-03 -0.392154040272E-02 316 0.315879981741E-03 -0.401839711918E-02 317 -0.226483127336E-05 0.279112076754E-04 318 -0.133193243197E-05 0.159197050296E-04 319 -0.226415622095E-05 0.279113166735E-04 320 0.315862877993E-03 -0.401827528731E-02 321 -0.980934691483E-06 0.114888602423E-04 322 -0.133219348832E-05 0.159196623429E-04 323 -0.981356734256E-06 0.114887911194E-04 324 0.317586951677E-03 -0.404045358808E-02 325 0.316741930364E-03 -0.413698855192E-02 326 -0.227722153371E-05 0.287623317880E-04 327 -0.134264696024E-05 0.164209070786E-04 328 -0.227650495225E-05 0.287624445724E-04 329 0.316724112142E-03 -0.413686019570E-02 330 -0.990459405019E-06 0.118582815784E-04 331 -0.134292428711E-05 0.164208628490E-04 332 -0.990907796082E-06 0.118582099434E-04 333 0.318451210622E-03 -0.415968550513E-02 334 0.317631374470E-03 -0.425590811300E-02 335 -0.229002656239E-05 0.296181667336E-04 336 -0.135372555998E-05 0.169261933843E-04 337 -0.228926702270E-05 0.296182833653E-04 338 0.317612815975E-03 -0.425577296013E-02 339 -0.100030986018E-05 0.122313361215E-04 340 -0.135401974042E-05 0.169261475827E-04 341 -0.100078554900E-05 0.122312619261E-04 342 0.319343033207E-03 -0.427924642943E-02 343 0.318548599217E-03 -0.437516615730E-02 344 -0.230325227451E-05 0.304788686835E-04 345 -0.136517384439E-05 0.174357014407E-04 346 -0.230244832412E-05 0.304789892259E-04 347 0.318529274129E-03 -0.437502392573E-02 348 -0.101049124156E-05 0.126081469957E-04 349 -0.136548547257E-05 0.174356540371E-04 350 -0.101099519608E-05 0.126080701894E-04 351 0.320262704850E-03 -0.439914674148E-02 352 0.319493900058E-03 -0.449477314839E-02 353 -0.231690481057E-05 0.313445960597E-04 354 -0.137699764232E-05 0.179495708844E-04 355 -0.231605497285E-05 0.313447205787E-04 356 0.319473781518E-03 -0.449462354612E-02 357 -0.102100893363E-05 0.129888393052E-04 358 -0.137732732387E-05 0.179495218473E-04 359 -0.102154214098E-05 0.129887598360E-04 360 0.321210521266E-03 -0.451939693053E-02 361 0.320467582967E-03 -0.461473966238E-02 362 -0.233099054239E-05 0.322155096204E-04 363 -0.138920300397E-05 0.184679435757E-04 364 -0.233009331563E-05 0.322156381841E-04 365 0.320446643552E-03 -0.461458238725E-02 366 -0.103186852617E-05 0.133735402106E-04 367 -0.138955135644E-05 0.184678928729E-04 368 -0.103243199329E-05 0.133734580245E-04 369 0.322186788699E-03 -0.464000759850E-02 370 0.321469964673E-03 -0.473507639193E-02 371 -0.234551607917E-05 0.330917725467E-04 372 -0.140179620685E-05 0.189909636833E-04 373 -0.234456993566E-05 0.330919052259E-04 374 0.321448176375E-03 -0.473491113141E-02 375 -0.104307581977E-05 0.137623790070E-04 376 -0.140216386010E-05 0.189909112813E-04 377 -0.104367057422E-05 0.137622940480E-04 378 0.323191824157E-03 -0.476098946394E-02 379 0.322501372906E-03 -0.485579415028E-02 380 -0.236048827390E-05 0.339735505333E-04 381 -0.141478376205E-05 0.195187777702E-04 382 -0.235949165899E-05 0.339736874012E-04 383 0.322478707111E-03 -0.485562058125E-02 384 -0.105463683178E-05 0.141554872033E-04 385 -0.141517135869E-05 0.195187236344E-04 386 -0.105526392240E-05 0.141553994135E-04 387 0.324225955654E-03 -0.488235336612E-02 388 0.323562146654E-03 -0.497690387547E-02 389 -0.237591423005E-05 0.348610118800E-04 390 -0.142817242076E-05 0.200515348823E-04 391 -0.237486556119E-05 0.348611530126E-04 392 0.323538574114E-03 -0.497672166396E-02 393 -0.106655780236E-05 0.145529986054E-04 394 -0.142858061659E-05 0.200514789769E-04 395 -0.106721830002E-05 0.145529079250E-04 396 0.325289522470E-03 -0.500411026916E-02 397 0.324652636425E-03 -0.509841663454E-02 398 -0.239180130852E-05 0.357543275869E-04 399 -0.144196918106E-05 0.205893866398E-04 400 -0.239069897423E-05 0.357544730629E-04 401 0.324628127237E-03 -0.509822543555E-02 402 -0.107884520087E-05 0.149550494003E-04 403 -0.144239864554E-05 0.205893289275E-04 404 -0.107954019927E-05 0.149549557673E-04 405 0.326382875412E-03 -0.512627126637E-02 406 0.325773204529E-03 -0.522034362795E-02 407 -0.240815713493E-05 0.366536714516E-04 408 -0.145618129508E-05 0.211324873303E-04 409 -0.240699949377E-05 0.366538213524E-04 410 0.325747728106E-03 -0.522014308514E-02 411 -0.109150573254E-05 0.153617782434E-04 412 -0.145663271174E-05 0.211324277731E-04 413 -0.109223634897E-05 0.153616815936E-04 414 0.327506377092E-03 -0.524884758451E-02 415 0.326924225360E-03 -0.534269619401E-02 416 -0.242498960720E-05 0.375592201696E-04 417 -0.147081627636E-05 0.216809940063E-04 418 -0.242377498673E-05 0.375593745795E-04 419 0.326897750409E-03 -0.534248593945E-02 420 -0.110454634543E-05 0.157733263481E-04 421 -0.147129034332E-05 0.216809325645E-04 422 -0.110531372158E-05 0.157732266152E-04 423 0.328660402221E-03 -0.537185058837E-02 424 0.328106085704E-03 -0.546548581346E-02 425 -0.244230690346E-05 0.384711534371E-04 426 -0.148588190764E-05 0.222350665833E-04 427 -0.244103359916E-05 0.384713124434E-04 428 0.328078580195E-03 -0.546526546740E-02 429 -0.111797423768E-05 0.161898375778E-04 430 -0.148637933808E-05 0.222350032160E-04 431 -0.111877954045E-05 0.161897346934E-04 432 0.329845337900E-03 -0.549529178526E-02 433 0.329319185046E-03 -0.558872411420E-02 434 -0.246011749034E-05 0.393896540575E-04 435 -0.150138624895E-05 0.227948679429E-04 436 -0.245878376447E-05 0.393898177504E-04 437 0.329290616185E-03 -0.558849328474E-02 438 -0.113179686508E-05 0.166114585416E-04 439 -0.150190777158E-05 0.227948026079E-04 440 -0.113264128744E-05 0.166113524348E-04 441 0.331061583940E-03 -0.561918282975E-02 442 0.330563935895E-03 -0.571242287603E-02 443 -0.247843013160E-05 0.403149080502E-04 444 -0.151733764600E-05 0.233605640376E-04 445 -0.247703421206E-05 0.403150765232E-04 446 0.330534270097E-03 -0.571218115886E-02 447 -0.114602194900E-05 0.170383386915E-04 448 -0.151788400561E-05 0.233604966913E-04 449 -0.114690671088E-05 0.170382292892E-04 450 0.332309553184E-03 -0.574353552849E-02 451 0.331840764128E-03 -0.583659403568E-02 452 -0.249725389710E-05 0.412471047634E-04 453 -0.153374473905E-05 0.239323239999E-04 454 -0.249579397626E-05 0.412472781131E-04 455 0.331809966983E-03 -0.583634101377E-02 456 -0.116065748463E-05 0.174706304240E-04 457 -0.153431669700E-05 0.239322545973E-04 458 -0.116158383376E-05 0.174705176506E-04 459 0.333589671846E-03 -0.586836184513E-02 460 0.333150109335E-03 -0.596124969177E-02 461 -0.251659817223E-05 0.421864369902E-04 462 -0.155061647208E-05 0.245103202535E-04 463 -0.251507240568E-05 0.421866153165E-04 464 0.333118145581E-03 -0.596098493506E-02 465 -0.117571174962E-05 0.179084891839E-04 466 -0.155121480684E-05 0.245102487481E-04 467 -0.117668096248E-05 0.179083729613E-04 468 0.334902379863E-03 -0.599367390539E-02 469 0.334492425192E-03 -0.608640211012E-02 470 -0.253647266767E-05 0.431331010876E-04 471 -0.156796210234E-05 0.250947286292E-04 472 -0.253487917300E-05 0.431332844939E-04 473 0.334459258678E-03 -0.608612517517E-02 474 -0.119119331303E-05 0.183520735717E-04 475 -0.156858761004E-05 0.250946549732E-04 476 -0.119220669579E-05 0.183519538194E-04 477 0.336248131260E-03 -0.611948400225E-02 478 0.335868179837E-03 -0.621206372898E-02 479 -0.255688742967E-05 0.440872971005E-04 480 -0.158579121042E-05 0.256857284840E-04 481 -0.255522428514E-05 0.440874856935E-04 482 0.335833773495E-03 -0.621177415869E-02 483 -0.120711104475E-05 0.188015454547E-04 484 -0.158644470543E-05 0.256856526278E-04 485 -0.120816993422E-05 0.188014220894E-04 486 0.337627394537E-03 -0.624580460134E-02 487 0.337277856273E-03 -0.633824716460E-02 488 -0.257785285066E-05 0.450492288882E-04 489 -0.160411371068E-05 0.262835028236E-04 490 -0.257611809391E-05 0.450494227785E-04 491 0.337242172078E-03 -0.633794448779E-02 492 -0.122347412529E-05 0.192570700812E-04 493 -0.160479602613E-05 0.262834247164E-04 494 -0.122457988992E-05 0.192569430171E-04 495 0.339040653058E-03 -0.637264834635E-02 496 0.338721952775E-03 -0.646496521683E-02 497 -0.259937968045E-05 0.460191042561E-04 498 -0.162293986213E-05 0.268882384298E-04 499 -0.259757130707E-05 0.460193035578E-04 500 0.338684951713E-03 -0.646464894791E-02 501 -0.124029205601E-05 0.197188161988E-04 502 -0.162365185056E-05 0.268881580188E-04 503 -0.124144609691E-05 0.197186853472E-04 504 0.340488405471E-03 -0.650002806475E-02 505 0.340200983325E-03 -0.659223087489E-02 506 -0.262147903777E-05 0.469971350908E-04 507 -0.164228027984E-05 0.275001259911E-04 508 -0.261959499996E-05 0.469973399220E-04 509 0.340162625353E-03 -0.659190051349E-02 510 -0.125757466977E-05 0.201869561764E-04 511 -0.164302281378E-05 0.275000432222E-04 512 -0.125877842176E-05 0.201868214458E-04 513 0.341971166134E-03 -0.662795677351E-02 514 0.341715478055E-03 -0.672005732336E-02 515 -0.264416242250E-05 0.479835375002E-04 516 -0.166214594678E-05 0.281193602384E-04 517 -0.264220062752E-05 0.479837479829E-04 518 0.341675722063E-03 -0.671971235395E-02 519 -0.127533214211E-05 0.206616661308E-04 520 -0.166291991940E-05 0.281192750555E-04 521 -0.127658707479E-05 0.206615274267E-04 522 0.343489465562E-03 -0.675644768512E-02 523 0.343265983716E-03 -0.684845794833E-02 524 -0.266744172822E-05 0.489785319582E-04 525 -0.168254822628E-05 0.287461400847E-04 526 -0.266540003696E-05 0.489787482185E-04 527 0.343224787489E-03 -0.684809783976E-02 528 -0.129357500284E-05 0.211431260562E-04 529 -0.168335455198E-05 0.287460524302E-04 530 -0.129488262173E-05 0.211429832812E-04 531 0.345043850896E-03 -0.688551421367E-02 532 0.344853064162E-03 -0.697744634363E-02 533 -0.269132925553E-05 0.499823434534E-04 534 -0.170349887494E-05 0.293806687699E-04 535 -0.268920548088E-05 0.499825656217E-04 536 0.344810384334E-03 -0.697707054876E-02 537 -0.131231414824E-05 0.216315199600E-04 538 -0.170433849006E-05 0.293805785844E-04 539 -0.131367599590E-05 0.216313730135E-04 540 0.346634886382E-03 -0.701516998119E-02 541 0.346477300852E-03 -0.710703631738E-02 542 -0.271583772576E-05 0.509952016441E-04 543 -0.172501005613E-05 0.300231540105E-04 544 -0.271362963107E-05 0.509954298551E-04 545 0.346433092866E-03 -0.710664427263E-02 546 -0.133156085370E-05 0.221270360018E-04 547 -0.172588391960E-05 0.300230612327E-04 548 -0.133297851090E-05 0.221268847801E-04 549 0.348263153882E-03 -0.714542882415E-02 550 0.348139293379E-03 -0.723724189866E-02 551 -0.274098029542E-05 0.520173410176E-04 552 -0.174709435418E-05 0.306738081541E-04 553 -0.273868559280E-05 0.520175754105E-04 554 0.348093511440E-03 -0.723683302353E-02 555 -0.135132678701E-05 0.226298666381E-04 556 -0.174800344820E-05 0.306737127207E-04 557 -0.135280187396E-05 0.226297110341E-04 558 0.349929253392E-03 -0.727630480009E-02 559 0.349839660012E-03 -0.736807734438E-02 560 -0.276677057124E-05 0.530490010552E-04 561 -0.176976478902E-05 0.313328483395E-04 562 -0.276438691985E-05 0.530492417740E-04 563 0.349792257043E-03 -0.736765104103E-02 564 -0.137162402214E-05 0.231402087712E-04 565 -0.177071011984E-05 0.313327501855E-04 566 -0.137315819973E-05 0.231400486745E-04 567 0.351633803595E-03 -0.740781219457E-02 568 0.351579038271E-03 -0.749955714637E-02 569 -0.279322262586E-05 0.540904264034E-04 570 -0.179303483169E-05 0.320004966630E-04 571 -0.279074763013E-05 0.540906735968E-04 572 0.351529965860E-03 -0.749911279908E-02 573 -0.139246505378E-05 0.236582639043E-04 574 -0.179401743027E-05 0.320003957212E-04 575 -0.139406002486E-05 0.236580992010E-04 576 0.353377442424E-03 -0.753996552821E-02 577 0.353358085512E-03 -0.763169603869E-02 578 -0.282035101427E-05 0.551418670503E-04 579 -0.181691842034E-05 0.326769803494E-04 580 -0.281778222208E-05 0.551421208719E-04 581 0.353307293865E-03 -0.763123301339E-02 582 -0.141386281237E-05 0.241842383016E-04 583 -0.181793934315E-05 0.326768765507E-04 584 -0.141552032307E-05 0.241840688743E-04 585 0.355160827660E-03 -0.767277956403E-02 586 0.355177479553E-03 -0.776450900519E-02 587 -0.284817079090E-05 0.562035785086E-04 588 -0.184142997711E-05 0.333625319304E-04 589 -0.284550569168E-05 0.562038391175E-04 590 0.355124917440E-03 -0.776402664890E-02 591 -0.143583067990E-05 0.247183431546E-04 592 -0.184249030689E-05 0.333624252035E-04 593 -0.143755252104E-05 0.247181688819E-04 594 0.356984637543E-03 -0.780626931498E-02 595 0.357037919309E-03 -0.789801128723E-02 596 -0.287669752759E-05 0.572758220057E-04 597 -0.186658442566E-05 0.340573894283E-04 598 -0.287393355036E-05 0.572760895660E-04 599 0.356983534008E-03 -0.789750892753E-02 600 -0.145838250645E-05 0.252607947533E-04 601 -0.186768527223E-05 0.340572796997E-04 602 -0.146017051489E-05 0.252606155103E-04 603 0.358849571421E-03 -0.794045005168E-02 604 0.358940125466E-03 -0.803221839172E-02 605 -0.290594733228E-05 0.583588646797E-04 606 -0.189239720952E-05 0.347617965471E-04 607 -0.290308184361E-05 0.583591393611E-04 608 0.358883862709E-03 -0.803169533620E-02 609 -0.148153262739E-05 0.258118146654E-04 610 -0.189353971062E-05 0.347616837411E-04 611 -0.148338868750E-05 0.258116303231E-04 612 0.360756350416E-03 -0.807533731049E-02 613 0.360884841179E-03 -0.816714609939E-02 614 -0.293593686859E-05 0.594529797827E-04 615 -0.191888431136E-05 0.354760028706E-04 616 -0.293296717052E-05 0.594532617607E-04 617 0.360826645090E-03 -0.816660163503E-02 618 -0.150529588142E-05 0.263716299209E-04 619 -0.192006963345E-05 0.354758869093E-04 620 -0.150722192660E-05 0.263714403461E-04 621 0.362705718119E-03 -0.821094690172E-02 622 0.362872832797E-03 -0.830281047330E-02 623 -0.296668337625E-05 0.605584468923E-04 624 -0.194606227296E-05 0.362002640675E-04 625 -0.296360670409E-05 0.605587363482E-04 626 0.362812645829E-03 -0.830224386589E-02 627 -0.152968762943E-05 0.269404732035E-04 628 -0.194729161215E-05 0.362001448705E-04 629 -0.153168564364E-05 0.269402782591E-04 630 0.364698441323E-03 -0.834729491821E-02 631 0.364904890620E-03 -0.843922786770E-02 632 -0.299820469252E-05 0.616755521301E-04 633 -0.197394821629E-05 0.369348421042E-04 634 -0.299501821262E-05 0.616758492515E-04 635 0.364842653495E-03 -0.843863836116E-02 636 -0.155472377424E-05 0.275185830502E-04 637 -0.197522279920E-05 0.369347195888E-04 638 -0.155679579357E-05 0.275183825947E-04 639 0.366735310774E-03 -0.848439774413E-02 640 0.366981829692E-03 -0.857641493707E-02 641 -0.303051927456E-05 0.628045883884E-04 642 -0.200255986542E-05 0.376800054662E-04 643 -0.302722008197E-05 0.628048933691E-04 644 0.366917481330E-03 -0.857580175284E-02 645 -0.158042078118E-05 0.281062040576E-04 646 -0.200388095014E-05 0.376798795470E-04 647 -0.158256889554E-05 0.281059979448E-04 648 0.368817141966E-03 -0.862227206407E-02 649 0.369104490623E-03 -0.871438864558E-02 650 -0.306364622279E-05 0.639458555660E-04 651 -0.203191556953E-05 0.384360293868E-04 652 -0.306023133885E-05 0.639461686065E-04 653 0.369037968072E-03 -0.871375098189E-02 654 -0.160679569973E-05 0.287035870962E-04 655 -0.203328444653E-05 0.384358999758E-04 656 -0.160902205452E-05 0.287033751755E-04 657 0.370944775960E-03 -0.876093487244E-02 658 0.371273740445E-03 -0.885316627675E-02 659 -0.309760530545E-05 0.650996608124E-04 660 -0.206203432691E-05 0.392031960855E-04 661 -0.309407167528E-05 0.650999821200E-04 662 0.371204978811E-03 -0.885250330793E-02 663 -0.163386618608E-05 0.293109895330E-04 664 -0.206345232007E-05 0.392030630923E-04 665 -0.163617298394E-05 0.293107716490E-04 666 0.373119080244E-03 -0.890040348321E-02 667 0.373490473513E-03 -0.899276544352E-02 668 -0.313241698416E-05 0.662663187814E-04 669 -0.209293581015E-05 0.399817950155E-04 670 -0.312876147408E-05 0.662666485703E-04 671 0.373419405881E-03 -0.899207631928E-02 672 -0.166165052681E-05 0.299286754632E-04 673 -0.209440427774E-05 0.399816583467E-04 674 -0.166404002944E-05 0.299284514555E-04 675 0.375340949629E-03 -0.904069553994E-02 676 0.375755612434E-03 -0.913320409865E-02 677 -0.316810244078E-05 0.674461518944E-04 678 -0.212464039250E-05 0.407721231201E-04 679 -0.316432183559E-05 0.674464903863E-04 680 0.375682169789E-03 -0.913248794326E-02 681 -0.169016766362E-05 0.305569159501E-04 682 -0.212616072824E-05 0.407719826796E-04 683 -0.169264219365E-05 0.305566856533E-04 684 0.377611307180E-03 -0.918182902615E-02 685 0.378070109046E-03 -0.927450054543E-02 686 -0.320468360550E-05 0.686394906143E-04 687 -0.215716917543E-05 0.415744850999E-04 688 -0.320077460573E-05 0.686398380385E-04 689 0.377994220191E-03 -0.927375645696E-02 690 -0.171943721930E-05 0.311959892751E-04 691 -0.215874280956E-05 0.415743407886E-04 692 -0.172199916222E-05 0.311957525185E-04 693 0.379931105196E-03 -0.932382227610E-02 694 0.380434945432E-03 -0.941667344880E-02 695 -0.324218318626E-05 0.698466737299E-04 696 -0.219054401755E-05 0.423891936905E-04 697 -0.323814240522E-05 0.698470303235E-04 698 0.380356536899E-03 -0.941590049828E-02 699 -0.174947952486E-05 0.318461811973E-04 700 -0.219217241795E-05 0.423890454063E-04 701 -0.175213133103E-05 0.318459378049E-04 702 0.382301326218E-03 -0.946669398584E-02 703 0.382851134983E-03 -0.955974184685E-02 704 -0.328062469953E-05 0.710680486510E-04 705 -0.222478756488E-05 0.432165699504E-04 706 -0.327644866037E-05 0.710684146595E-04 707 0.382770130946E-03 -0.955893907740E-02 708 -0.178031564807E-05 0.325077852237E-04 709 -0.222647223820E-05 0.432164175881E-04 710 -0.178305983475E-05 0.325075350137E-04 711 0.384722984099E-03 -0.961046322478E-02 712 0.385319723508E-03 -0.970372516273E-02 713 -0.332003250266E-05 0.723039717163E-04 714 -0.225992328259E-05 0.440569435617E-04 715 -0.331571763520E-05 0.723043473934E-04 716 0.385236045687E-03 -0.970289158867E-02 717 -0.181196742321E-05 0.331811028901E-04 718 -0.226166577544E-05 0.440567870130E-04 719 -0.181480657674E-05 0.331808456750E-04 720 0.387197125108E-03 -0.975514944753E-02 721 0.387841790391E-03 -0.984864321699E-02 722 -0.336043182769E-05 0.735548085125E-04 723 -0.229597548825E-05 0.449106531419E-04 724 -0.335597446521E-05 0.735551941209E-04 725 0.387755357951E-03 -0.984777782288E-02 726 -0.184445748242E-05 0.338664440535E-04 727 -0.229777738841E-05 0.449104922950E-04 728 -0.184739426039E-05 0.338661796397E-04 729 0.389724829088E-03 -0.990077250628E-02 730 0.390418449800E-03 -0.999451624031E-02 731 -0.340184881685E-05 0.748209342069E-04 732 -0.233296938672E-05 0.457780465690E-04 733 -0.339724519272E-05 0.748213300186E-04 734 0.390329179252E-03 -0.999361798001E-02 735 -0.187780928849E-05 0.345641271962E-04 736 -0.233483232440E-05 0.457778813088E-04 737 -0.188084642204E-05 0.345638553840E-04 738 0.392307210664E-03 -0.100473526635E-01 739 0.393050851954E-03 -0.101413648868E-01 740 -0.344431055974E-05 0.761027338936E-04 741 -0.237093110673E-05 0.466594813197E-04 742 -0.343955680393E-05 0.761031401900E-04 743 0.392958657041E-03 -0.101404326824E-01 744 -0.191204716925E-05 0.352744797432E-04 745 -0.237285675586E-05 0.466593115276E-04 746 -0.191518746542E-05 0.352742003264E-04 747 0.394945420510E-03 -0.101949106053E-01 748 0.395740184438E-03 -0.102892102475E-01 749 -0.348784513243E-05 0.774006029537E-04 750 -0.240988773923E-05 0.475553248213E-04 751 -0.348293726787E-05 0.774010200260E-04 752 0.395644976029E-03 -0.102882429884E-01 753 -0.194719635369E-05 0.359978383915E-04 754 -0.241187781881E-05 0.475551503750E-04 755 -0.195044269787E-05 0.359975511573E-04 756 0.397640646664E-03 -0.103434674550E-01 757 0.398487673590E-03 -0.104380738650E-01 758 -0.353248163835E-05 0.787149474300E-04 759 -0.244986737771E-05 0.484659548191E-04 760 -0.352741557717E-05 0.787153755799E-04 761 0.398389359557E-03 -0.104370704067E-01 762 -0.198328300988E-05 0.367345494545E-04 763 -0.245192365317E-05 0.484657755926E-04 764 -0.198663836833E-05 0.367342541833E-04 765 0.400394115910E-03 -0.104930447874E-01 766 0.401294585940E-03 -0.105879777478E-01 767 -0.357825025132E-05 0.800461844180E-04 768 -0.249089916044E-05 0.493917597580E-04 769 -0.357302179094E-05 0.800466239579E-04 770 0.401193071036E-03 -0.105869369108E-01 771 -0.202033428470E-05 0.374849692201E-04 772 -0.249302344506E-05 0.493915756216E-04 773 -0.202380170717E-05 0.374846656850E-04 774 0.403207095224E-03 -0.106436646435E-01 775 0.404162229725E-03 -0.107389443858E-01 776 -0.362518226070E-05 0.813947424731E-04 777 -0.253301331486E-05 0.503331391816E-04 778 -0.361978707970E-05 0.813951937264E-04 779 0.404057415453E-03 -0.107378649543E-01 780 -0.205837834564E-05 0.382494643241E-04 781 -0.253520747128E-05 0.503329500013E-04 782 -0.206196096809E-05 0.382491522910E-04 783 0.406080893279E-03 -0.107953495459E-01 784 0.407091956464E-03 -0.108909967660E-01 785 -0.367331011874E-05 0.827610620345E-04 786 -0.257624120422E-05 0.512905041469E-04 787 -0.366774377268E-05 0.827615253362E-04 788 0.406983740944E-03 -0.108898774868E-01 789 -0.209744442471E-05 0.390284121399E-04 790 -0.257850714592E-05 0.512903097847E-04 791 -0.210114547210E-05 0.390280913668E-04 792 0.409016862025E-03 -0.109481225144E-01 793 0.410085162616E-03 -0.110441583893E-01 794 -0.372266749044E-05 0.841455958677E-04 795 -0.262061537658E-05 0.522642776577E-04 796 -0.371692540741E-05 0.841460715649E-04 797 0.409973440441E-03 -0.110429979705E-01 798 -0.213756286453E-05 0.398222011844E-04 799 -0.262295506944E-05 0.522640779714E-04 800 -0.214138565372E-05 0.398218714218E-04 elk-9.2.12/tests/test_004/PaxHeaders/TEST_121.OUT_0000644000000000000000000000013214536061315016040 xustar0030 mtime=1702388429.191499604 30 atime=1702388429.190499606 30 ctime=1702388429.191499604 elk-9.2.12/tests/test_004/TEST_121.OUT_0000644002504400250440000012273714536061315020576 0ustar00dewhurstdewhurst00000000000000'optical conductivity' 3 800 0.100000000000E-01 1 0.324753757193E-03 0.00000000000 2 0.324759260058E-03 -0.121773563136E-03 3 0.324775769455E-03 -0.243551252102E-03 4 0.324803287776E-03 -0.365337193327E-03 5 0.324841819015E-03 -0.487135514437E-03 6 0.324891368763E-03 -0.608950344850E-03 7 0.324951944210E-03 -0.730785816381E-03 8 0.325023554151E-03 -0.852646063841E-03 9 0.325106208988E-03 -0.974535225634E-03 10 0.325199920732E-03 -0.109645744437E-02 11 0.325304703008E-03 -0.121841686744E-02 12 0.325420571059E-03 -0.134041764768E-02 13 0.325547541756E-03 -0.146246394391E-02 14 0.325685633596E-03 -0.158455992159E-02 15 0.325834866715E-03 -0.170670975341E-02 16 0.325995262894E-03 -0.182891761993E-02 17 0.326166845563E-03 -0.195118771015E-02 18 0.326349639813E-03 -0.207352422218E-02 19 0.326543672404E-03 -0.219593136386E-02 20 0.326748971775E-03 -0.231841335332E-02 21 0.326965568052E-03 -0.244097441972E-02 22 0.327193493062E-03 -0.256361880378E-02 23 0.327432780340E-03 -0.268635075850E-02 24 0.327683465144E-03 -0.280917454973E-02 25 0.327945584471E-03 -0.293209445689E-02 26 0.328219177060E-03 -0.305511477358E-02 27 0.328504283418E-03 -0.317823980822E-02 28 0.328800945826E-03 -0.330147388477E-02 29 0.329109208358E-03 -0.342482134336E-02 30 0.329429116897E-03 -0.354828654096E-02 31 0.329760719149E-03 -0.367187385209E-02 32 0.330104064665E-03 -0.379558766947E-02 33 0.330459204854E-03 -0.391943240474E-02 34 0.330826193007E-03 -0.404341248917E-02 35 0.331205084311E-03 -0.416753237432E-02 36 0.331595935875E-03 -0.429179653282E-02 37 0.331998806746E-03 -0.441620945903E-02 38 0.332413757937E-03 -0.454077566982E-02 39 0.332840852443E-03 -0.466549970528E-02 40 0.333280155268E-03 -0.479038612949E-02 41 0.333731733451E-03 -0.491543953125E-02 42 0.334195656089E-03 -0.504066452486E-02 43 0.334671994363E-03 -0.516606575092E-02 44 0.335160821565E-03 -0.529164787708E-02 45 0.335662213130E-03 -0.541741559884E-02 46 0.336176246657E-03 -0.554337364038E-02 47 0.336703001947E-03 -0.566952675537E-02 48 0.337242561029E-03 -0.579587972777E-02 49 0.337795008194E-03 -0.592243737272E-02 50 0.338360430025E-03 -0.604920453736E-02 51 0.338938915435E-03 -0.617618610170E-02 52 0.339530555700E-03 -0.630338697950E-02 53 0.340135444493E-03 -0.643081211917E-02 54 0.340753677926E-03 -0.655846650468E-02 55 0.341385354584E-03 -0.668635515645E-02 56 0.342030575567E-03 -0.681448313232E-02 57 0.342689444530E-03 -0.694285552846E-02 58 0.343362067724E-03 -0.707147748040E-02 59 0.344048554043E-03 -0.720035416392E-02 60 0.344749015063E-03 -0.732949079613E-02 61 0.345463565095E-03 -0.745889263645E-02 62 0.346192321225E-03 -0.758856498762E-02 63 0.346935403368E-03 -0.771851319678E-02 64 0.347692934318E-03 -0.784874265656E-02 65 0.348465039795E-03 -0.797925880610E-02 66 0.349251848507E-03 -0.811006713220E-02 67 0.350053492195E-03 -0.824117317048E-02 68 0.350870105697E-03 -0.837258250644E-02 69 0.351701827005E-03 -0.850430077671E-02 70 0.352548797321E-03 -0.863633367021E-02 71 0.353411161124E-03 -0.876868692936E-02 72 0.354289066229E-03 -0.890136635134E-02 73 0.355182663860E-03 -0.903437778932E-02 74 0.356092108706E-03 -0.916772715378E-02 75 0.357017559003E-03 -0.930142041380E-02 76 0.357959176596E-03 -0.943546359842E-02 77 0.358917127018E-03 -0.956986279797E-02 78 0.359891579566E-03 -0.970462416551E-02 79 0.360882707377E-03 -0.983975391824E-02 80 0.361890687508E-03 -0.997525833892E-02 81 0.362915701023E-03 -0.101111437774E-01 82 0.363957933076E-03 -0.102474166521E-01 83 0.365017573000E-03 -0.103840834516E-01 84 0.366094814394E-03 -0.105211507362E-01 85 0.367189855226E-03 -0.106586251395E-01 86 0.368302897917E-03 -0.107965133700E-01 87 0.369434149453E-03 -0.109348222131E-01 88 0.370583821477E-03 -0.110735585324E-01 89 0.371752130401E-03 -0.112127292717E-01 90 0.372939297512E-03 -0.113523414568E-01 91 0.374145549087E-03 -0.114924021974E-01 92 0.375371116504E-03 -0.116329186886E-01 93 0.376616236366E-03 -0.117738982136E-01 94 0.377881150621E-03 -0.119153481447E-01 95 0.379166106692E-03 -0.120572759463E-01 96 0.380471357603E-03 -0.121996891762E-01 97 0.381797162119E-03 -0.123425954881E-01 98 0.383143784882E-03 -0.124860026338E-01 99 0.384511496557E-03 -0.126299184653E-01 100 0.385900573977E-03 -0.127743509371E-01 101 0.387311300300E-03 -0.129193081085E-01 102 0.388743965163E-03 -0.130647981462E-01 103 0.390198864848E-03 -0.132108293264E-01 104 0.391676302451E-03 -0.133574100377E-01 105 0.393176588050E-03 -0.135045487834E-01 106 0.394700038893E-03 -0.136522541844E-01 107 0.396246979575E-03 -0.138005349816E-01 108 0.397817742236E-03 -0.139494000390E-01 109 0.399412666756E-03 -0.140988583462E-01 110 0.401032100958E-03 -0.142489190219E-01 111 0.402676400824E-03 -0.143995913162E-01 112 0.404345930708E-03 -0.145508846143E-01 113 0.406041063565E-03 -0.147028084394E-01 114 0.407762181184E-03 -0.148553724559E-01 115 0.409509674430E-03 -0.150085864729E-01 116 0.411283943490E-03 -0.151624604477E-01 117 0.413085398138E-03 -0.153170044890E-01 118 0.414914457996E-03 -0.154722288609E-01 119 0.416771552814E-03 -0.156281439866E-01 120 0.418657122758E-03 -0.157847604518E-01 121 0.420571618701E-03 -0.159420890094E-01 122 0.422515502534E-03 -0.161001405829E-01 123 0.424489247484E-03 -0.162589262709E-01 124 0.426493338442E-03 -0.164184573514E-01 125 0.428528272305E-03 -0.165787452860E-01 126 0.430594558328E-03 -0.167398017248E-01 127 0.432692718494E-03 -0.169016385108E-01 128 0.434823287889E-03 -0.170642676850E-01 129 0.436986815102E-03 -0.172277014909E-01 130 0.439183862628E-03 -0.173919523804E-01 131 0.441415007295E-03 -0.175570330182E-01 132 0.443680840702E-03 -0.177229562879E-01 133 0.445981969679E-03 -0.178897352974E-01 134 0.448319016757E-03 -0.180573833844E-01 135 0.450692620661E-03 -0.182259141230E-01 136 0.453103436821E-03 -0.183953413291E-01 137 0.455552137905E-03 -0.185656790675E-01 138 0.458039414368E-03 -0.187369416578E-01 139 0.460565975024E-03 -0.189091436814E-01 140 0.463132547646E-03 -0.190822999887E-01 141 0.465739879583E-03 -0.192564257059E-01 142 0.468388738403E-03 -0.194315362428E-01 143 0.471079912566E-03 -0.196076473003E-01 144 0.473814212121E-03 -0.197847748783E-01 145 0.476592469431E-03 -0.199629352840E-01 146 0.479415539932E-03 -0.201421451404E-01 147 0.482284302915E-03 -0.203224213949E-01 148 0.485199662351E-03 -0.205037813286E-01 149 0.488162547747E-03 -0.206862425655E-01 150 0.491173915030E-03 -0.208698230824E-01 151 0.494234747485E-03 -0.210545412186E-01 152 0.497346056716E-03 -0.212404156869E-01 153 0.500508883662E-03 -0.214274655836E-01 154 0.503724299650E-03 -0.216157104002E-01 155 0.506993407498E-03 -0.218051700351E-01 156 0.510317342662E-03 -0.219958648048E-01 157 0.513697274441E-03 -0.221878154572E-01 158 0.517134407231E-03 -0.223810431838E-01 159 0.520629981834E-03 -0.225755696336E-01 160 0.524185276838E-03 -0.227714169266E-01 161 0.527801610044E-03 -0.229686076681E-01 162 0.531480339974E-03 -0.231671649641E-01 163 0.535222867439E-03 -0.233671124362E-01 164 0.539030637188E-03 -0.235684742382E-01 165 0.542905139633E-03 -0.237712750725E-01 166 0.546847912651E-03 -0.239755402076E-01 167 0.550860543486E-03 -0.241812954963E-01 168 0.554944670728E-03 -0.243885673943E-01 169 0.559101986405E-03 -0.245973829798E-01 170 0.563334238164E-03 -0.248077699737E-01 171 0.567643231572E-03 -0.250197567614E-01 172 0.572030832526E-03 -0.252333724140E-01 173 0.576498969791E-03 -0.254486467119E-01 174 0.581049637666E-03 -0.256656101685E-01 175 0.585684898784E-03 -0.258842940553E-01 176 0.590406887065E-03 -0.261047304277E-01 177 0.595217810824E-03 -0.263269521526E-01 178 0.600119956036E-03 -0.265509929362E-01 179 0.605115689789E-03 -0.267768873541E-01 180 0.610207463915E-03 -0.270046708819E-01 181 0.615397818824E-03 -0.272343799276E-01 182 0.620689387550E-03 -0.274660518655E-01 183 0.626084900017E-03 -0.276997250713E-01 184 0.631587187558E-03 -0.279354389593E-01 185 0.637199187679E-03 -0.281732340207E-01 186 0.642923949105E-03 -0.284131518645E-01 187 0.648764637115E-03 -0.286552352598E-01 188 0.654724539191E-03 -0.288995281802E-01 189 0.660807071008E-03 -0.291460758504E-01 190 0.667015782775E-03 -0.293949247952E-01 191 0.673354365968E-03 -0.296461228909E-01 192 0.679826660468E-03 -0.298997194191E-01 193 0.686436662151E-03 -0.301557651234E-01 194 0.693188530946E-03 -0.304143122688E-01 195 0.700086599410E-03 -0.306754147048E-01 196 0.707135381844E-03 -0.309391279308E-01 197 0.714339584017E-03 -0.312055091657E-01 198 0.721704113506E-03 -0.314746174212E-01 199 0.729234090746E-03 -0.317465135785E-01 200 0.736934860805E-03 -0.320212604701E-01 201 0.744812005972E-03 -0.322989229653E-01 202 0.752871359207E-03 -0.325795680608E-01 203 0.761119018534E-03 -0.328632649768E-01 204 0.769561362449E-03 -0.331500852581E-01 205 0.778205066432E-03 -0.334401028813E-01 206 0.787057120658E-03 -0.337333943685E-01 207 0.796124849010E-03 -0.340300389072E-01 208 0.805415929516E-03 -0.343301184785E-01 209 0.814938416318E-03 -0.346337179923E-01 210 0.824700763342E-03 -0.349409254308E-01 211 0.834711849792E-03 -0.352518320020E-01 212 0.844981007670E-03 -0.355665323019E-01 213 0.855518051490E-03 -0.358851244882E-01 214 0.866333310412E-03 -0.362077104644E-01 215 0.877437663025E-03 -0.365343960773E-01 216 0.888842575046E-03 -0.368652913268E-01 217 0.900560140232E-03 -0.372005105910E-01 218 0.912603124822E-03 -0.375401728663E-01 219 0.924985015895E-03 -0.378844020251E-01 220 0.937720074049E-03 -0.382333270916E-01 221 0.950823390868E-03 -0.385870825382E-01 222 0.964310951701E-03 -0.389458086033E-01 223 0.978199704354E-03 -0.393096516342E-01 224 0.992507634367E-03 -0.396787644551E-01 225 0.100725384762E-02 -0.400533067648E-01 226 0.102245866118E-02 -0.404334455659E-01 227 0.103814370330E-02 -0.408193556285E-01 228 0.105433202379E-02 -0.412112199927E-01 229 0.107104821600E-02 -0.416092305129E-01 230 0.108831855190E-02 -0.420135884493E-01 231 0.110617113192E-02 -0.424245051105E-01 232 0.112463605170E-02 -0.428422025543E-01 233 0.114374558775E-02 -0.432669143512E-01 234 0.116353440492E-02 -0.436988864206E-01 235 0.118403978863E-02 -0.441383779442E-01 236 0.120530190545E-02 -0.445856623703E-01 237 0.122736409635E-02 -0.450410285161E-01 238 0.125027320743E-02 -0.455047817829E-01 239 0.127407996412E-02 -0.459772454971E-01 240 0.129883939568E-02 -0.464587623940E-01 241 0.132461131825E-02 -0.469496962636E-01 242 0.135146088630E-02 -0.474504337799E-01 243 0.137945922421E-02 -0.479613865407E-01 244 0.140868415215E-02 -0.484829933459E-01 245 0.143922102346E-02 -0.490157227531E-01 246 0.147116369412E-02 -0.495600759492E-01 247 0.150461564996E-02 -0.501165899890E-01 248 0.153969132246E-02 -0.506858414593E-01 249 0.157651763176E-02 -0.512684506396E-01 250 0.161523580425E-02 -0.518650862418E-01 251 0.165600352437E-02 -0.524764708318E-01 252 0.169899749483E-02 -0.531033870562E-01 253 0.174441649962E-02 -0.537466848217E-01 254 0.179248508933E-02 -0.544072896127E-01 255 0.184345804203E-02 -0.550862121705E-01 256 0.189762579755E-02 -0.557845598129E-01 257 0.195532112214E-02 -0.565035497428E-01 258 0.201692734080E-02 -0.572445247779E-01 259 0.208288858333E-02 -0.580089720520E-01 260 0.215372263961E-02 -0.587985453823E-01 261 0.223003722718E-02 -0.596150921926E-01 262 0.231255076566E-02 -0.604606861377E-01 263 0.240211916584E-02 -0.613376669135E-01 264 0.249977073628E-02 -0.622486891917E-01 265 0.260675217736E-02 -0.631967832295E-01 266 0.272458991397E-02 -0.641854305335E-01 267 0.285517294287E-02 -0.652186590789E-01 268 0.300086630702E-02 -0.663011641155E-01 269 0.316466887066E-02 -0.674384626675E-01 270 0.335043628871E-02 -0.686370926173E-01 271 0.356320172537E-02 -0.699048709166E-01 272 0.380964612441E-02 -0.712512300005E-01 273 0.409880234539E-02 -0.726876564120E-01 274 0.444313375108E-02 -0.742282589888E-01 275 0.486022772161E-02 -0.758904895393E-01 276 0.537552645346E-02 -0.776960089472E-01 277 0.602685647599E-02 -0.796715861375E-01 278 0.687216162571E-02 -0.818495951584E-01 279 0.800306635658E-02 -0.842667301746E-01 280 0.956911925957E-02 -0.869567890198E-01 281 0.118208715603E-01 -0.899251859164E-01 282 0.151801993943E-01 -0.930687855776E-01 283 0.203127904320E-01 -0.959401219740E-01 284 0.279561507899E-01 -0.971533393641E-01 285 0.374752332749E-01 -0.936380970090E-01 286 0.435851521616E-01 -0.830541547244E-01 287 0.401582774981E-01 -0.712685597101E-01 288 0.312819393805E-01 -0.661824250737E-01 289 0.234744508255E-01 -0.669571071639E-01 290 0.182799389222E-01 -0.702050250922E-01 291 0.150951438198E-01 -0.741562982765E-01 292 0.132050552429E-01 -0.782074984875E-01 293 0.121408168132E-01 -0.822137024541E-01 294 0.116291863205E-01 -0.861823593422E-01 295 0.115167599028E-01 -0.901672141109E-01 296 0.117216049460E-01 -0.942347906362E-01 297 0.122068186348E-01 -0.984555608643E-01 298 0.129673491639E-01 -0.102903534202 299 0.140248945864E-01 -0.107658892061 300 0.154285342174E-01 -0.112811982129 301 0.172607082797E-01 -0.118468222027 302 0.196498702131E-01 -0.124753750490 303 0.227932971765E-01 -0.131821296911 304 0.269970911971E-01 -0.139854205531 305 0.327468559168E-01 -0.149061911671 306 0.408342204663E-01 -0.159646548805 307 0.525824025011E-01 -0.171680105414 308 0.702207641681E-01 -0.184712879904 309 0.973142645685E-01 -0.196609706936 310 0.138127971833 -0.200532811472 311 0.190854856623 -0.180516545008 312 0.229612120909 -0.121296368073 313 0.217595567189 -0.497827412988E-01 314 0.171629058463 -0.130506904711E-01 315 0.130337141141 -0.110263683209E-01 316 0.105617001734 -0.245604267518E-01 317 0.960206768215E-01 -0.424650671956E-01 318 0.997351720830E-01 -0.594184267411E-01 319 0.116692415684 -0.698303336663E-01 320 0.143885794183 -0.630973020108E-01 321 0.163218586151 -0.295485364282E-01 322 0.150272334165 0.128228311257E-01 323 0.115841048356 0.335664358566E-01 324 0.842965283379E-01 0.329815223860E-01 325 0.624702251443E-01 0.233609594854E-01 326 0.483555040053E-01 0.115722811611E-01 327 0.392326683975E-01 0.776182548554E-05 328 0.332685252956E-01 -0.107396760130E-01 329 0.293746127005E-01 -0.206703345059E-01 330 0.269249727532E-01 -0.299551685333E-01 331 0.255724650029E-01 -0.388001816804E-01 332 0.251506733252E-01 -0.474063716210E-01 333 0.256310772767E-01 -0.559565507652E-01 334 0.271164052386E-01 -0.645968064839E-01 335 0.298473097880E-01 -0.733800328065E-01 336 0.341387161946E-01 -0.821491671598E-01 337 0.401056417716E-01 -0.905690471498E-01 338 0.478178508108E-01 -0.987276715081E-01 339 0.586543075502E-01 -0.106455071078 340 0.738864530076E-01 -0.110566593455 341 0.892778773597E-01 -0.106309042267 342 0.955696681883E-01 -0.977149490910E-01 343 0.952044689067E-01 -0.972997519950E-01 344 0.100577670580 -0.106658630110 345 0.119393015828 -0.118300104852 346 0.154987804200 -0.120860787580 347 0.201316987860 -0.959065805790E-01 348 0.226682138411 -0.329461021241E-01 349 0.201015271554 0.323018792242E-01 350 0.150437625335 0.608160089095E-01 351 0.107674506370 0.603318683251E-01 352 0.790354229275E-01 0.485237037006E-01 353 0.609317701266E-01 0.341065261864E-01 354 0.496354140867E-01 0.199915201065E-01 355 0.428124764504E-01 0.689220568096E-02 356 0.392312418619E-01 -0.512598528151E-02 357 0.383900933079E-01 -0.159867719847E-01 358 0.401165853218E-01 -0.250998228335E-01 359 0.434959081574E-01 -0.310326991296E-01 360 0.452745191658E-01 -0.333292747458E-01 361 0.430254919065E-01 -0.358955700813E-01 362 0.396295609495E-01 -0.421925972676E-01 363 0.380916212805E-01 -0.514223804750E-01 364 0.391572663407E-01 -0.621653873173E-01 365 0.429757843824E-01 -0.737599442364E-01 366 0.498702393711E-01 -0.858239538759E-01 367 0.602241707571E-01 -0.980103118319E-01 368 0.749195689115E-01 -0.110478263031 369 0.969814852913E-01 -0.122652683950 370 0.130497805988 -0.130045702257 371 0.177379552338 -0.122112153663 372 0.226974126264 -0.804376279006E-01 373 0.241016897283 -0.431698004977E-02 374 0.202101749295 0.581552641978E-01 375 0.148587837521 0.788425879244E-01 376 0.107882082104 0.736844498536E-01 377 0.821933209465E-01 0.594957477731E-01 378 0.674336389449E-01 0.435298093815E-01 379 0.604562445754E-01 0.282232522661E-01 380 0.597750540180E-01 0.146108713445E-01 381 0.651145931064E-01 0.398453380641E-02 382 0.764612105761E-01 -0.349169611337E-03 383 0.893305000086E-01 0.776321788014E-02 384 0.904036152607E-01 0.273461953286E-01 385 0.752241376900E-01 0.420598698625E-01 386 0.565269656573E-01 0.439763738182E-01 387 0.422829340437E-01 0.385575674676E-01 388 0.327588510835E-01 0.309171718211E-01 389 0.264661364622E-01 0.231617228791E-01 390 0.222097569338E-01 0.159132802327E-01 391 0.192455356920E-01 0.927127300773E-02 392 0.171302012999E-01 0.317726453913E-02 393 0.155974895296E-01 -0.246362464430E-02 394 0.144842489952E-01 -0.774546300150E-02 395 0.136891952638E-01 -0.127521768188E-01 396 0.131501770839E-01 -0.175571851866E-01 397 0.128318893101E-01 -0.222256676368E-01 398 0.127198983690E-01 -0.268173773603E-01 399 0.128191615087E-01 -0.313892864185E-01 400 0.131567882315E-01 -0.359975911755E-01 401 0.137902789325E-01 -0.406980287073E-01 402 0.148244231313E-01 -0.455413391024E-01 403 0.164425157678E-01 -0.505543204432E-01 404 0.189568840780E-01 -0.556782073975E-01 405 0.228538598264E-01 -0.605872390714E-01 406 0.286245373920E-01 -0.642469000177E-01 407 0.355968811890E-01 -0.644811116325E-01 408 0.397891634196E-01 -0.601739849937E-01 409 0.377016784728E-01 -0.561006844441E-01 410 0.330064131185E-01 -0.570877605660E-01 411 0.299966137673E-01 -0.620461582353E-01 412 0.297817669058E-01 -0.687111987932E-01 413 0.325099222935E-01 -0.757053496189E-01 414 0.384922569250E-01 -0.816284050351E-01 415 0.473961083576E-01 -0.838016995378E-01 416 0.551321210832E-01 -0.792096927603E-01 417 0.546955908074E-01 -0.715297314989E-01 418 0.477191780148E-01 -0.696428263623E-01 419 0.413525981042E-01 -0.746613790197E-01 420 0.383139583262E-01 -0.833259702933E-01 421 0.385536865730E-01 -0.936672520737E-01 422 0.418816243278E-01 -0.105058172524 423 0.487125631918E-01 -0.117355096664 424 0.603223585444E-01 -0.130259027949 425 0.791072394296E-01 -0.142393967396 426 0.108249192600 -0.149169558003 427 0.147405387089 -0.139273092806 428 0.179420496986 -0.996044794984E-01 429 0.174358292942 -0.459004149091E-01 430 0.139407791242 -0.160025086272E-01 431 0.105017736189 -0.140852918286E-01 432 0.821582865918E-01 -0.255813862894E-01 433 0.694796872495E-01 -0.414588364071E-01 434 0.642980537094E-01 -0.584511421785E-01 435 0.652425487705E-01 -0.756074308724E-01 436 0.723888083291E-01 -0.923535181474E-01 437 0.869245014658E-01 -0.107041557075 438 0.109459054404 -0.115256675478 439 0.135287102946 -0.111131838752 440 0.155872454918 -0.963052993200E-01 441 0.170534898420 -0.747139614811E-01 442 0.173515359987 -0.450637612623E-01 443 0.157503921684 -0.199735667563E-01 444 0.133635784959 -0.132301509775E-01 445 0.117845324169 -0.218307076869E-01 446 0.116309221720 -0.344142336260E-01 447 0.127175723130 -0.394307098650E-01 448 0.138810574236 -0.280488020908E-01 449 0.134484848739 -0.872287614663E-02 450 0.118889482077 0.163992478899E-04 451 0.106615600104 -0.237350976511E-03 452 0.970892329625E-01 -0.221666353440E-03 453 0.843496394093E-01 -0.201058241831E-02 454 0.717993394623E-01 -0.105945703825E-01 455 0.642214625220E-01 -0.239758991297E-01 456 0.625739290054E-01 -0.388766029296E-01 457 0.667813080052E-01 -0.530505569052E-01 458 0.764590941546E-01 -0.638594736163E-01 459 0.888110177634E-01 -0.685436549871E-01 460 0.100086935550 -0.685687310845E-01 461 0.112243814972 -0.650508506215E-01 462 0.122563151762 -0.517948594786E-01 463 0.118655536383 -0.328459345438E-01 464 0.101988988383 -0.238251387538E-01 465 0.854101886916E-01 -0.282319808943E-01 466 0.758958521210E-01 -0.400380765633E-01 467 0.743377756684E-01 -0.530360857502E-01 468 0.786766578616E-01 -0.621100633868E-01 469 0.826063493385E-01 -0.642949079798E-01 470 0.793075938603E-01 -0.652446952410E-01 471 0.724237560180E-01 -0.731382597950E-01 472 0.686444730733E-01 -0.875913632732E-01 473 0.701473231198E-01 -0.105518823979 474 0.774811914007E-01 -0.125245893977 475 0.919017087359E-01 -0.145648249259 476 0.115834659163 -0.164182964622 477 0.150954608621 -0.173964935672 478 0.189807566244 -0.163880003638 479 0.210890672986 -0.137216299924 480 0.212391479302 -0.121597021427 481 0.221519704782 -0.123254286289 482 0.250798031368 -0.119221977554 483 0.282792080590 -0.883356512442E-01 484 0.290352906875 -0.403606959097E-01 485 0.272212721792 0.122767199806E-02 486 0.238236182877 0.238735587668E-01 487 0.205093375323 0.213095886531E-01 488 0.189477864944 0.369006078707E-02 489 0.193717268867 -0.111040339142E-01 490 0.205735037163 -0.100983262468E-01 491 0.208553887338 0.240520816265E-02 492 0.199437587823 0.124951600129E-01 493 0.185632165070 0.109216679245E-01 494 0.180928820844 -0.193799128134E-02 495 0.192155306117 -0.116958149366E-01 496 0.207485935787 -0.364420754351E-02 497 0.205625760433 0.135775389985E-01 498 0.192716349696 0.163180942401E-01 499 0.190642827242 0.730576612626E-02 500 0.202122302118 0.621860856292E-02 501 0.208239756582 0.223666864706E-01 502 0.193517549144 0.383138489919E-01 503 0.169554983183 0.348150195139E-01 504 0.154343509161 0.133669391099E-01 505 0.155319563647 -0.162287767312E-01 506 0.174839228435 -0.458169022416E-01 507 0.214821463510 -0.652280708532E-01 508 0.269253840536 -0.570701042144E-01 509 0.309362891681 -0.124073774213E-01 510 0.312469251812 0.391156354375E-01 511 0.298616983558 0.744180620224E-01 512 0.278431762750 0.100827421610 513 0.251793570491 0.114584403815 514 0.227283849464 0.115985736858 515 0.205733877514 0.106875092368 516 0.194417487105 0.849861546806E-01 517 0.202693213089 0.583801621781E-01 518 0.231907676204 0.400914561790E-01 519 0.276437773398 0.426428272341E-01 520 0.321480547675 0.782372991155E-01 521 0.337257309926 0.140655833604 522 0.318765536873 0.196512026186 523 0.285388156378 0.234815325217 524 0.247737584073 0.255730853093 525 0.215606347450 0.265933098602 526 0.185394783910 0.274913618682 527 0.150108830713 0.278252114627 528 0.116083416442 0.269136820712 529 0.908728718840E-01 0.252057455373 530 0.747134724655E-01 0.233122903118 531 0.656354855233E-01 0.215301447472 532 0.622007266927E-01 0.200182421324 533 0.629166300027E-01 0.189762071021 534 0.640141071399E-01 0.185584103376 535 0.614297058154E-01 0.184699981762 536 0.562597435471E-01 0.183492774826 537 0.495013118380E-01 0.181885908146 538 0.411160151718E-01 0.178476637768 539 0.332491258146E-01 0.172432966400 540 0.272823159976E-01 0.165130406486 541 0.230294589868E-01 0.157792345629 542 0.199591221370E-01 0.150894512152 543 0.176660376902E-01 0.144537373177 544 0.158932111546E-01 0.138694247191 545 0.144814556637E-01 0.133305996148 546 0.133300231257E-01 0.128311647808 547 0.123729645917E-01 0.123656908092 548 0.115655792102E-01 0.119295532672 549 0.108765795735E-01 0.115188584714 550 0.102834431683E-01 0.111303227521 551 0.976956836305E-02 0.107611563919 552 0.932248058062E-02 0.104089653214 553 0.893266865628E-02 0.100716713241 554 0.859281137876E-02 0.974744800855E-01 555 0.829725331857E-02 0.943466925429E-01 556 0.804164513385E-02 0.913186718346E-01 557 0.782269625556E-02 0.883769723202E-01 558 0.763800757796E-02 0.855090837164E-01 559 0.748596415878E-02 0.827031690160E-01 560 0.736567613784E-02 0.799478248714E-01 561 0.727696198682E-02 0.772318527616E-01 562 0.722037300878E-02 0.745440298932E-01 563 0.719726260610E-02 0.718728685333E-01 564 0.720990905579E-02 0.692063513025E-01 565 0.726170735043E-02 0.665316277435E-01 566 0.735745547049E-02 0.638346540470E-01 567 0.750377545940E-02 0.610997529215E-01 568 0.770973362675E-02 0.583090640668E-01 569 0.798776370962E-02 0.554418478145E-01 570 0.835506387557E-02 0.524735968256E-01 571 0.883575543663E-02 0.493749088549E-01 572 0.946430081027E-02 0.461100940693E-01 573 0.102910637682E-01 0.426355803544E-01 574 0.113916191691E-01 0.388984724570E-01 575 0.128827936807E-01 0.348364963019E-01 576 0.149509766905E-01 0.303831328074E-01 577 0.179024974698E-01 0.254893463177E-01 578 0.222496909139E-01 0.201958290234E-01 579 0.288283266836E-01 0.148533849516E-01 580 0.387794797322E-01 0.107273704110E-01 581 0.524775563578E-01 0.111423813668E-01 582 0.655342968180E-01 0.207433255817E-01 583 0.680588777566E-01 0.363279716216E-01 584 0.604064369938E-01 0.451909219414E-01 585 0.534088072248E-01 0.442696123270E-01 586 0.527393998616E-01 0.390298880950E-01 587 0.592400554815E-01 0.352192597016E-01 588 0.703920725057E-01 0.391133591555E-01 589 0.764712231759E-01 0.539329718930E-01 590 0.686062244435E-01 0.693054385179E-01 591 0.543011437204E-01 0.740056886666E-01 592 0.429443939130E-01 0.702392761055E-01 593 0.364508202374E-01 0.629861334675E-01 594 0.340851775072E-01 0.546590244575E-01 595 0.353406722556E-01 0.460980422924E-01 596 0.405294456753E-01 0.378216942009E-01 597 0.508199447248E-01 0.310977867834E-01 598 0.674644029979E-01 0.296233763561E-01 599 0.875466463987E-01 0.408967212016E-01 600 0.969329412496E-01 0.681107110215E-01 601 0.844349683300E-01 0.945597072093E-01 602 0.626844193470E-01 0.105097540415 603 0.447447440337E-01 0.104077135094 604 0.326670400791E-01 0.987886139603E-01 605 0.248258410668E-01 0.926709659201E-01 606 0.196460851031E-01 0.868556425001E-01 607 0.161166566296E-01 0.816113936148E-01 608 0.136362565356E-01 0.769323083623E-01 609 0.118472269244E-01 0.727389916446E-01 610 0.105322028004E-01 0.689426622199E-01 611 0.955591263970E-02 0.654633387846E-01 612 0.883288275486E-02 0.622330572686E-01 613 0.830946411718E-02 0.591945139053E-01 614 0.795399627491E-02 0.562985968822E-01 615 0.775200560073E-02 0.535019396517E-01 616 0.770513803359E-02 0.507649381741E-01 617 0.783381475386E-02 0.480507503503E-01 618 0.818489911403E-02 0.453267178413E-01 619 0.884724677997E-02 0.425725875433E-01 620 0.997872736922E-02 0.398086151119E-01 621 0.118381758321E-01 0.371805084350E-01 622 0.147417748740E-01 0.351817640677E-01 623 0.185726039568E-01 0.349905853849E-01 624 0.214303544598E-01 0.377890546148E-01 625 0.204825778011E-01 0.416514138934E-01 626 0.168583655430E-01 0.429781687448E-01 627 0.134660562382E-01 0.416821049090E-01 628 0.111940057614E-01 0.391980874416E-01 629 0.984506483862E-02 0.363485655588E-01 630 0.912228076544E-02 0.334182799417E-01 631 0.883514143516E-02 0.304718202672E-01 632 0.889105442615E-02 0.275016818607E-01 633 0.927002970288E-02 0.244877675121E-01 634 0.100092352992E-01 0.214382716383E-01 635 0.111663697013E-01 0.184528664900E-01 636 0.126522856089E-01 0.157706315514E-01 637 0.139686046104E-01 0.134446017104E-01 638 0.147834159317E-01 0.107520604118E-01 639 0.157230816333E-01 0.704374142689E-02 640 0.174868435481E-01 0.240021421819E-02 641 0.204854786193E-01 -0.299684648622E-02 642 0.252203351998E-01 -0.906675061302E-02 643 0.325856346051E-01 -0.156176306750E-01 644 0.440993299411E-01 -0.218362974617E-01 645 0.617849766856E-01 -0.250388665727E-01 646 0.857980203341E-01 -0.184860234100E-01 647 0.106450805421 0.635643489911E-02 648 0.104810731027 0.414717460472E-01 649 0.832923632313E-01 0.630286006559E-01 650 0.610017008823E-01 0.668765839063E-01 651 0.455812199487E-01 0.620250251677E-01 652 0.363469734232E-01 0.544474595264E-01 653 0.314936691408E-01 0.463865716995E-01 654 0.299336551636E-01 0.385259559358E-01 655 0.313834516520E-01 0.312051784227E-01 656 0.361690393315E-01 0.252160160414E-01 657 0.444374710622E-01 0.227695138147E-01 658 0.533395347456E-01 0.274172040743E-01 659 0.554240385512E-01 0.379668290041E-01 660 0.493636487749E-01 0.453450054531E-01 661 0.424009518066E-01 0.467110532690E-01 662 0.371664808873E-01 0.459329645038E-01 663 0.320512288652E-01 0.440708034486E-01 664 0.274549467353E-01 0.400282566883E-01 665 0.246286446052E-01 0.343182357664E-01 666 0.237778327177E-01 0.278504972441E-01 667 0.248136284398E-01 0.210223814735E-01 668 0.279240133192E-01 0.139780107202E-01 669 0.337560619807E-01 0.702841876722E-02 670 0.434036950018E-01 0.132070516849E-02 671 0.574584648155E-01 0.467871166796E-04 672 0.721203952787E-01 0.819966652413E-02 673 0.772238592159E-01 0.238348444845E-01 674 0.717315884733E-01 0.339773127142E-01 675 0.672824567657E-01 0.347750599507E-01 676 0.703428242070E-01 0.337763738571E-01 677 0.781152195552E-01 0.399204305230E-01 678 0.795309495674E-01 0.549479279224E-01 679 0.694513324517E-01 0.671548316787E-01 680 0.570843225559E-01 0.700400492041E-01 681 0.482040862801E-01 0.679610551441E-01 682 0.427274942564E-01 0.641004132737E-01 683 0.409214122179E-01 0.601089420592E-01 684 0.420298806989E-01 0.590364718449E-01 685 0.416050709122E-01 0.624324113255E-01 686 0.360746350670E-01 0.657896376982E-01 687 0.287062116543E-01 0.649232800403E-01 688 0.229412419961E-01 0.610332180858E-01 689 0.192284366879E-01 0.560803855871E-01 690 0.170643517182E-01 0.509385814065E-01 691 0.160152449845E-01 0.458366293386E-01 692 0.158588197895E-01 0.407622734255E-01 693 0.165546617187E-01 0.356265867553E-01 694 0.182337000590E-01 0.303294568606E-01 695 0.212378263337E-01 0.248184828610E-01 696 0.262147169797E-01 0.192266826225E-01 697 0.342096038678E-01 0.142613312792E-01 698 0.463078297105E-01 0.121359716581E-01 699 0.612253700905E-01 0.174299217349E-01 700 0.712367464579E-01 0.325950316140E-01 701 0.698608763158E-01 0.494253941330E-01 702 0.624772395704E-01 0.605793006418E-01 703 0.536711300617E-01 0.676630235389E-01 704 0.433007259754E-01 0.711718947777E-01 705 0.334274211867E-01 0.699760139114E-01 706 0.263753923686E-01 0.657847490339E-01 707 0.222383719481E-01 0.606521453186E-01 708 0.204434951075E-01 0.555824701651E-01 709 0.206507391645E-01 0.510896906825E-01 710 0.227688219568E-01 0.478866601822E-01 711 0.261155073955E-01 0.473872799048E-01 712 0.279936356459E-01 0.502783600667E-01 713 0.261290724506E-01 0.537960066613E-01 714 0.219975410935E-01 0.550886993694E-01 715 0.178441959270E-01 0.538892244982E-01 716 0.148800276092E-01 0.512038378908E-01 717 0.131979083116E-01 0.480504160169E-01 718 0.124592769932E-01 0.448763172610E-01 719 0.124894480074E-01 0.416874038178E-01 720 0.134702856127E-01 0.384918694751E-01 721 0.157705018409E-01 0.355870841925E-01 722 0.197834607480E-01 0.338284439949E-01 723 0.251019022624E-01 0.350760796770E-01 724 0.285167644495E-01 0.408053977888E-01 725 0.261811441235E-01 0.475192184871E-01 726 0.204722993732E-01 0.502898015708E-01 727 0.154335991943E-01 0.495371317556E-01 728 0.120766920505E-01 0.473481259413E-01 729 0.100757967580E-01 0.448493436702E-01 730 0.904181253432E-02 0.424967220253E-01 731 0.868961150871E-02 0.405789522385E-01 732 0.858049682895E-02 0.393643182116E-01 733 0.803823162212E-02 0.386474786841E-01 734 0.700383515394E-02 0.376897335380E-01 735 0.600634278746E-02 0.362933484310E-01 736 0.527344270960E-02 0.347034480650E-01 737 0.477174234153E-02 0.330932028804E-01 738 0.442888515865E-02 0.315224370213E-01 739 0.419225523191E-02 0.300013578338E-01 740 0.402917673840E-02 0.285239938964E-01 741 0.391983554383E-02 0.270801923905E-01 742 0.385214704625E-02 0.256593819002E-01 743 0.381874657459E-02 0.242515495929E-01 744 0.381530345635E-02 0.228473157372E-01 745 0.383959164075E-02 0.214377296176E-01 746 0.389100023721E-02 0.200139863600E-01 747 0.397032081737E-02 0.185671200933E-01 748 0.407973633687E-02 0.170876787134E-01 749 0.422299174234E-02 0.155653669617E-01 750 0.440577024236E-02 0.139886365829E-01 751 0.463634782935E-02 0.123441987291E-01 752 0.492666918002E-02 0.106164355314E-01 753 0.529410691285E-02 0.878670438568E-02 754 0.576438133227E-02 0.683258913850E-02 755 0.637652125228E-02 0.472734000504E-02 756 0.719151061460E-02 0.244029758994E-02 757 0.830766569206E-02 -0.592807114400E-04 758 0.988795831691E-02 -0.278777439392E-02 759 0.122053580116E-01 -0.570076962641E-02 760 0.156952216138E-01 -0.855464021340E-02 761 0.208819564141E-01 -0.105473989937E-01 762 0.275789375922E-01 -0.979184659193E-02 763 0.327673993334E-01 -0.447344069313E-02 764 0.321583509541E-01 0.230471101012E-02 765 0.276402831015E-01 0.516394674066E-02 766 0.234522852521E-01 0.402564376430E-02 767 0.210348870294E-01 0.775485090380E-03 768 0.204926779966E-01 -0.323011939316E-02 769 0.213951680802E-01 -0.712159368608E-02 770 0.230381563150E-01 -0.105937968921E-01 771 0.247478147640E-01 -0.141017785908E-01 772 0.268780191413E-01 -0.187664660203E-01 773 0.309368327851E-01 -0.248326737429E-01 774 0.383964322210E-01 -0.314669646478E-01 775 0.507355323154E-01 -0.368868517030E-01 776 0.687779178746E-01 -0.370999468469E-01 777 0.887224464457E-01 -0.258123121060E-01 778 0.989103017624E-01 -0.264790370171E-02 779 0.931693583134E-01 0.193614792474E-01 780 0.809173076028E-01 0.304187256203E-01 781 0.714582727782E-01 0.347943850071E-01 782 0.630834054623E-01 0.384349837759E-01 783 0.529632748424E-01 0.389500600255E-01 784 0.445572701302E-01 0.343898454616E-01 785 0.405355931522E-01 0.271487578948E-01 786 0.412414261643E-01 0.197978209354E-01 787 0.463480340357E-01 0.147105595891E-01 788 0.540956954194E-01 0.147217918918E-01 789 0.599810636958E-01 0.212750782185E-01 790 0.586181093582E-01 0.309632241685E-01 791 0.504210446783E-01 0.362846849382E-01 792 0.416305039395E-01 0.346299133062E-01 793 0.361162815191E-01 0.286397061353E-01 794 0.344685607944E-01 0.208916399438E-01 795 0.366035039600E-01 0.126395855314E-01 796 0.430221412708E-01 0.477257090685E-02 797 0.549069959398E-01 -0.820837917168E-03 798 0.725679248712E-01 0.514882557739E-03 799 0.902202746975E-01 0.152752992134E-01 800 0.949255847153E-01 0.411038374650E-01 elk-9.2.12/tests/test_004/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.193499601 30 atime=1702388429.193499601 30 ctime=1702388429.193499601 elk-9.2.12/tests/test_004/TEST_800.OUT_0000644002504400250440000000051714536061315020571 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 8 0.100000000000E-07 1 867.855963688 2 112.499817004 3 25.5315015099 4 79.0562837272 5 27.5430274822 6 39.9023686609 7 18.7274424851 8 14.7204937058 elk-9.2.12/tests/test_004/PaxHeaders/TEST_500.OUT_0000644000000000000000000000012414536061315016042 xustar0028 mtime=1702388429.1944996 28 atime=1702388429.1944996 28 ctime=1702388429.1944996 elk-9.2.12/tests/test_004/TEST_500.OUT_0000644002504400250440000000013514536061315020562 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.508689366102E-12 elk-9.2.12/tests/test_004/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.195499598 30 atime=1702388429.195499598 30 ctime=1702388429.195499598 elk-9.2.12/tests/test_004/TEST_510.OUT_0000644002504400250440000000014514536061315020564 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.324618597169 elk-9.2.12/tests/test_004/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016040 xustar0030 mtime=1702388429.197499595 30 atime=1702388429.196499597 30 ctime=1702388429.197499595 elk-9.2.12/tests/test_004/TEST_400.OUT_0000644002504400250440000000014114536061315020556 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 12.0280763859 elk-9.2.12/tests/test_004/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016034 xustar0030 mtime=1702388429.198499594 30 atime=1702388429.198499594 30 ctime=1702388429.198499594 elk-9.2.12/tests/test_004/TEST_000.OUT_0000644002504400250440000000012614536061315020555 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -106.907629060 elk-9.2.12/tests/test_004/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.199499592 30 atime=1702388429.199499592 30 ctime=1702388429.199499592 elk-9.2.12/tests/test_004/TEST_705.OUT_0000644002504400250440000000010114536061315020562 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-9.2.12/tests/test_004/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.200499591 30 atime=1702388429.200499591 30 ctime=1702388429.200499591 elk-9.2.12/tests/test_004/TEST_900.OUT_0000644002504400250440000000007014536061315020564 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 3215 elk-9.2.12/tests/test_004/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.202499588 30 atime=1702388429.201499589 30 ctime=1702388429.202499588 elk-9.2.12/tests/test_004/TEST_910.OUT_0000644002504400250440000000144714536061315020576 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.206465308646 5 0.206465308646 6 -0.206465308646 7 0.412930617293 8 0.412930617293 9 -0.412930617293 10 0.412930617293 11 0.00000000000 12 0.00000000000 13 0.619395925939 14 0.206465308646 15 -0.206465308646 16 0.825861234586 17 0.412930617293 18 -0.412930617293 19 0.825861234586 20 0.00000000000 21 0.00000000000 22 0.825861234586 23 0.412930617293 24 0.00000000000 elk-9.2.12/tests/test_004/PaxHeaders/elk.in0000644000000000000000000000013214536061315015251 xustar0030 mtime=1702388429.203499586 30 atime=1702388429.203499586 30 ctime=1702388429.203499586 elk-9.2.12/tests/test_004/elk.in0000644002504400250440000000134214536061315017773 0ustar00dewhurstdewhurst00000000000000 tasks 0 120 121 180 185 186 187 500 test .true. mixtype 3 nxoapwlo 1 scissor 0.21 lmaxo 5 nvbse 3 ncbse 3 gmaxrf 2.0 swidth 0.005 nempty 8 wplot 800 100 0 0.0 1.5 avec 3.80402 3.80402 0.00000 3.80402 0.00000 3.80402 0.00000 3.80402 3.80402 sppath '../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms 0.0000 0.0000 0.0000 0.0 0.0 0.0 : atposl, bfcmt 'F.in' : spfname 1 : natoms 0.5000 0.5000 0.5000 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 elk-9.2.12/tests/PaxHeaders/test_0080000644000000000000000000000013214536061315014075 xustar0030 mtime=1702388429.215499569 30 atime=1702388429.203499586 30 ctime=1702388429.215499569 elk-9.2.12/tests/test_008/0000755002504400250440000000000014536061315016674 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_008/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016051 xustar0030 mtime=1702388429.205499584 30 atime=1702388429.204499585 30 ctime=1702388429.205499584 elk-9.2.12/tests/test_008/TEST_450.OUT_0000644002504400250440000000014014536061315020566 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.527028504666E-17 elk-9.2.12/tests/test_008/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.206499582 30 atime=1702388429.206499582 30 ctime=1702388429.206499582 elk-9.2.12/tests/test_008/TEST_400.OUT_0000644002504400250440000000014114536061315020562 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 51.9943490066 elk-9.2.12/tests/test_008/PaxHeaders/TEST_000.OUT_0000644000000000000000000000012714536061315016044 xustar0029 mtime=1702388429.20749958 29 atime=1702388429.20749958 29 ctime=1702388429.20749958 elk-9.2.12/tests/test_008/TEST_000.OUT_0000644002504400250440000000012614536061315020561 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -2540.92553106 elk-9.2.12/tests/test_008/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.208499579 30 atime=1702388429.208499579 30 ctime=1702388429.208499579 elk-9.2.12/tests/test_008/TEST_500.OUT_0000644002504400250440000000013514536061315020566 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 238.639965906 elk-9.2.12/tests/test_008/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.210499576 30 atime=1702388429.209499577 30 ctime=1702388429.210499576 elk-9.2.12/tests/test_008/TEST_510.OUT_0000644002504400250440000000014514536061315020570 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.141901385174E-02 elk-9.2.12/tests/test_008/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016054 xustar0030 mtime=1702388429.211499575 30 atime=1702388429.211499575 30 ctime=1702388429.211499575 elk-9.2.12/tests/test_008/TEST_705.OUT_0000644002504400250440000000010114536061315020566 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 96 elk-9.2.12/tests/test_008/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016051 xustar0030 mtime=1702388429.213499572 30 atime=1702388429.212499573 30 ctime=1702388429.213499572 elk-9.2.12/tests/test_008/TEST_900.OUT_0000644002504400250440000000007014536061315020570 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 8385 elk-9.2.12/tests/test_008/PaxHeaders/TEST_910.OUT_0000644000000000000000000000012714536061315016056 xustar0029 mtime=1702388429.21449957 29 atime=1702388429.21449957 29 ctime=1702388429.21449957 elk-9.2.12/tests/test_008/TEST_910.OUT_0000644002504400250440000000174114536061315020577 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 30 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.237999443454 5 0.00000000000 6 0.00000000000 7 0.475998886908 8 0.00000000000 9 0.00000000000 10 0.237999443454 11 0.237999443454 12 0.00000000000 13 0.475998886908 14 0.237999443454 15 0.00000000000 16 0.475998886908 17 0.475998886908 18 0.00000000000 19 0.237999443454 20 0.237999443454 21 0.237999443454 22 0.475998886908 23 0.237999443454 24 0.237999443454 25 0.475998886908 26 0.475998886908 27 0.237999443454 28 0.475998886908 29 0.475998886908 30 0.475998886908 elk-9.2.12/tests/test_008/PaxHeaders/elk.in0000644000000000000000000000013214536061315015255 xustar0030 mtime=1702388429.215499569 30 atime=1702388429.215499569 30 ctime=1702388429.215499569 elk-9.2.12/tests/test_008/elk.in0000644002504400250440000000114314536061315017776 0ustar00dewhurstdewhurst00000000000000 ! Antiferromagnetic bcc iron example with fixed spin moment in muffin-tin. tasks 0 500 test .true. mixtype 1 fsmtype 2 mommtfix 1 1 0.0 0.0 1.0 : is, ia, mommtfix 1 2 0.0 0.0 -1.0 : is, ia, mommtfix swidth 0.01 rgkmax 6.0 avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale 6.6 sppath '../../species/' atoms 1 : nspecies 'Fe.in' : spfname 2 : natoms 0.0 0.0 0.0 0.0 0.0 0.001 : atposl, bfcmt 0.5 0.5 0.5 0.0 0.0 -0.001 ngridk 4 4 4 elk-9.2.12/tests/PaxHeaders/test_0120000644000000000000000000000013214536061315014070 xustar0030 mtime=1702388429.229499548 30 atime=1702388429.216499567 30 ctime=1702388429.229499548 elk-9.2.12/tests/test_012/0000755002504400250440000000000014536061315016667 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_012/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016037 xustar0030 mtime=1702388429.218499564 30 atime=1702388429.218499564 30 ctime=1702388429.218499564 elk-9.2.12/tests/test_012/TEST_400.OUT_0000644002504400250440000000014114536061315020555 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 25.9808139623 elk-9.2.12/tests/test_012/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016033 xustar0030 mtime=1702388429.219499563 30 atime=1702388429.219499563 30 ctime=1702388429.219499563 elk-9.2.12/tests/test_012/TEST_000.OUT_0000644002504400250440000000012614536061315020554 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -483.830347536 elk-9.2.12/tests/test_012/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016040 xustar0030 mtime=1702388429.220499561 30 atime=1702388429.220499561 30 ctime=1702388429.220499561 elk-9.2.12/tests/test_012/TEST_500.OUT_0000644002504400250440000000013514536061315020561 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 126.871475643 elk-9.2.12/tests/test_012/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013114536061315016040 xustar0030 mtime=1702388429.222499558 29 atime=1702388429.22149956 30 ctime=1702388429.222499558 elk-9.2.12/tests/test_012/TEST_510.OUT_0000644002504400250440000000014514536061315020563 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.361959500059E-01 elk-9.2.12/tests/test_012/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.223499557 30 atime=1702388429.223499557 30 ctime=1702388429.223499557 elk-9.2.12/tests/test_012/TEST_705.OUT_0000644002504400250440000000010114536061315020561 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-9.2.12/tests/test_012/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.224499555 30 atime=1702388429.224499555 30 ctime=1702388429.224499555 elk-9.2.12/tests/test_012/TEST_900.OUT_0000644002504400250440000000007014536061315020563 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 3287 elk-9.2.12/tests/test_012/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.225499554 30 atime=1702388429.225499554 30 ctime=1702388429.225499554 elk-9.2.12/tests/test_012/TEST_910.OUT_0000644002504400250440000000144714536061315020575 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.205241634672 5 0.205241634672 6 -0.205241634672 7 0.410483269343 8 0.410483269343 9 -0.410483269343 10 0.410483269343 11 0.00000000000 12 0.00000000000 13 0.615724904015 14 0.205241634672 15 -0.205241634672 16 0.820966538686 17 0.410483269343 18 -0.410483269343 19 0.820966538686 20 0.00000000000 21 0.00000000000 22 0.820966538686 23 0.410483269343 24 0.00000000000 elk-9.2.12/tests/test_012/PaxHeaders/TEST_750.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.226499552 30 atime=1702388429.226499552 30 ctime=1702388429.226499552 elk-9.2.12/tests/test_012/TEST_750.OUT_0000644002504400250440000000036114536061315020571 0ustar00dewhurstdewhurst00000000000000'total forces' 2 6 0.100000000000E-02 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.00000000000 5 0.00000000000 6 0.00000000000 elk-9.2.12/tests/test_012/PaxHeaders/elk.in0000644000000000000000000000013214536061315015250 xustar0030 mtime=1702388429.228499549 30 atime=1702388429.228499549 30 ctime=1702388429.228499549 elk-9.2.12/tests/test_012/elk.in0000644002504400250440000000126014536061315017771 0ustar00dewhurstdewhurst00000000000000 ! Phonon and electron-phonon coupling test for Nb. tasks 0 200 220 240 245 250 500 test .true. mixtype 3 wplot 50 100 2 0.0 1.0 ngridq 2 2 2 radkpt 20.0 ngridk 4 4 4 rgkmax 6.0 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.8267 sppath '../../species/' atoms 1 : nspecies 'Al.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt plot1d 9 400 0.5 0.5 0.5 0.25 0.25 0.25 0.0 0.0 0.0 -0.5 0.5 0.5 -0.5 0.5 0.0 -0.75 0.25 0.25 -0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.0 elk-9.2.12/tests/test_012/PaxHeaders/TEST_251.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.229499548 30 atime=1702388429.229499548 30 ctime=1702388429.229499548 elk-9.2.12/tests/test_012/TEST_251.OUT_0000644002504400250440000000016314536061315020565 0ustar00dewhurstdewhurst00000000000000'electron-phonon coupling constant, lambda' 2 1 0.500000000000E-01 1 11.8815590731 elk-9.2.12/tests/PaxHeaders/test_0160000644000000000000000000000013214536061315014074 xustar0030 mtime=1702388429.244499526 30 atime=1702388429.230499546 30 ctime=1702388429.244499526 elk-9.2.12/tests/test_016/0000755002504400250440000000000014536061315016673 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_016/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016037 xustar0030 mtime=1702388429.231499545 30 atime=1702388429.231499545 30 ctime=1702388429.231499545 elk-9.2.12/tests/test_016/TEST_000.OUT_0000644002504400250440000000012614536061315020560 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -28308.8794010 elk-9.2.12/tests/test_016/PaxHeaders/TEST_820.OUT_0000644000000000000000000000013214536061315016051 xustar0030 mtime=1702388429.232499544 30 atime=1702388429.232499544 30 ctime=1702388429.232499544 elk-9.2.12/tests/test_016/TEST_820.OUT_0000644002504400250440000000210014536061315020564 0ustar00dewhurstdewhurst00000000000000'Coupled tensor moments' 2 33 0.500000000000E-03 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.00000000000 5 0.00000000000 6 0.00000000000 7 0.00000000000 8 0.00000000000 9 0.00000000000 10 0.761024995100E-03 11 -0.285514589377E-02 12 -0.463285733046E-03 13 -0.781142868638E-02 14 -0.420534104094E-02 15 -0.117330835350E-02 16 0.527877624614E-03 17 0.425649685564E-02 18 0.592524012343E-02 19 0.333733539883E-02 20 0.214608552835E-02 21 -0.781142868631E-02 22 -0.150644176940E-01 23 0.129404288333E-02 24 -0.142164837490E-02 25 0.00000000000 26 0.00000000000 27 0.00000000000 28 0.00000000000 29 0.00000000000 30 0.00000000000 31 0.00000000000 32 0.00000000000 33 0.00000000000 elk-9.2.12/tests/test_016/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.233499542 30 atime=1702388429.233499542 30 ctime=1702388429.233499542 elk-9.2.12/tests/test_016/TEST_400.OUT_0000644002504400250440000000014114536061315020561 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 107.994703140 elk-9.2.12/tests/test_016/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.235499539 30 atime=1702388429.234499541 30 ctime=1702388429.235499539 elk-9.2.12/tests/test_016/TEST_450.OUT_0000644002504400250440000000014014536061315020565 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 4.01747505116 elk-9.2.12/tests/test_016/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.236499538 30 atime=1702388429.236499538 30 ctime=1702388429.236499538 elk-9.2.12/tests/test_016/TEST_800.OUT_0000644002504400250440000000014414536061315020570 0ustar00dewhurstdewhurst00000000000000'DFT+U energy for each atom' 2 1 0.100000000000E-03 1 0.507071414860E-02 elk-9.2.12/tests/test_016/PaxHeaders/TEST_810.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.237499536 30 atime=1702388429.237499536 30 ctime=1702388429.237499536 elk-9.2.12/tests/test_016/TEST_810.OUT_0000644002504400250440000000017314536061315020573 0ustar00dewhurstdewhurst00000000000000'U and J parameters' 2 2 0.100000000000E-03 1 0.146997200004 2 0.226190643052E-01 elk-9.2.12/tests/test_016/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.238499535 30 atime=1702388429.238499535 30 ctime=1702388429.238499535 elk-9.2.12/tests/test_016/TEST_500.OUT_0000644002504400250440000000013514536061315020565 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 23.8077270054 elk-9.2.12/tests/test_016/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.239499533 30 atime=1702388429.239499533 30 ctime=1702388429.239499533 elk-9.2.12/tests/test_016/TEST_510.OUT_0000644002504400250440000000014514536061315020567 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.108270738008E-01 elk-9.2.12/tests/test_016/PaxHeaders/TEST_705.OUT_0000644000000000000000000000012714536061315016057 xustar0029 mtime=1702388429.24149953 29 atime=1702388429.24149953 29 ctime=1702388429.24149953 elk-9.2.12/tests/test_016/TEST_705.OUT_0000644002504400250440000000010114536061315020565 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 6 elk-9.2.12/tests/test_016/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.242499529 30 atime=1702388429.242499529 30 ctime=1702388429.242499529 elk-9.2.12/tests/test_016/TEST_900.OUT_0000644002504400250440000000007014536061315020567 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 7991 elk-9.2.12/tests/test_016/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016051 xustar0030 mtime=1702388429.244499526 30 atime=1702388429.243499527 30 ctime=1702388429.244499526 elk-9.2.12/tests/test_016/TEST_910.OUT_0000644002504400250440000000144714536061315020601 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.265292393961 2 0.113696740269 3 0.378989134229E-01 4 -0.378989134229E-01 5 0.416888047652 6 0.341090220806 7 0.568483701344 8 -0.189494567115 9 0.341090220806 10 0.265292393961 11 0.113696740269 12 0.644281528190 13 0.568483701344 14 0.416888047652 15 -0.265292393961 16 0.265292393961 17 0.720079355036 18 0.378989134229E-01 19 0.871675008728 20 0.113696740269 21 0.378989134229E-01 22 0.568483701344 23 0.416888047652 24 0.341090220806 elk-9.2.12/tests/test_016/PaxHeaders/elk.in0000644000000000000000000000013214536061315015254 xustar0030 mtime=1702388429.245499524 30 atime=1702388429.245499524 30 ctime=1702388429.245499524 elk-9.2.12/tests/test_016/elk.in0000644002504400250440000000132614536061315020000 0ustar00dewhurstdewhurst00000000000000 ! DFT+U test tasks 0 400 500 maxscl 10 test .true. swidth 0.01 dft+u 1 5 : dftu,inpdftu 1 3 0.1469972 : is, l, U fixed spinpol .true. spinorb .true. scale 10.36175041 avec 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 atoms 2 : nspecies 'U.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 'S.in' : spfname 1 : natoms 0.5 0.5 0.5 0.0 0.0 0.0 : atposl, bfcmt bfieldc -2.0 -2.0 -2.0 reducebf 0.5 sppath '../../species/' ngridk 2 2 2 vkloff 0.25 0.5 0.625 elk-9.2.12/tests/PaxHeaders/test_0200000644000000000000000000000013214536061315014067 xustar0030 mtime=1702388429.258499505 30 atime=1702388429.246499523 30 ctime=1702388429.258499505 elk-9.2.12/tests/test_020/0000755002504400250440000000000014536061315016666 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_020/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.247499521 30 atime=1702388429.247499521 30 ctime=1702388429.247499521 elk-9.2.12/tests/test_020/TEST_800.OUT_0000644002504400250440000000026414536061315020566 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 3 0.100000000000E-07 1 216.963990922 2 28.1249542511 3 19.7640709318 elk-9.2.12/tests/test_020/PaxHeaders/TEST_500.OUT_0000644000000000000000000000012714536061315016043 xustar0029 mtime=1702388429.24849952 29 atime=1702388429.24849952 29 ctime=1702388429.24849952 elk-9.2.12/tests/test_020/TEST_500.OUT_0000644002504400250440000000013514536061315020560 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.935181238167E-03 elk-9.2.12/tests/test_020/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016040 xustar0030 mtime=1702388429.249499518 30 atime=1702388429.249499518 30 ctime=1702388429.249499518 elk-9.2.12/tests/test_020/TEST_510.OUT_0000644002504400250440000000014514536061315020562 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.330143484426 elk-9.2.12/tests/test_020/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016036 xustar0030 mtime=1702388429.251499515 30 atime=1702388429.250499517 30 ctime=1702388429.251499515 elk-9.2.12/tests/test_020/TEST_400.OUT_0000644002504400250440000000014114536061315020554 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 12.0277004366 elk-9.2.12/tests/test_020/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016032 xustar0030 mtime=1702388429.252499514 30 atime=1702388429.252499514 30 ctime=1702388429.252499514 elk-9.2.12/tests/test_020/TEST_000.OUT_0000644002504400250440000000012614536061315020553 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -107.002994835 elk-9.2.12/tests/test_020/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.253499512 30 atime=1702388429.253499512 30 ctime=1702388429.253499512 elk-9.2.12/tests/test_020/TEST_705.OUT_0000644002504400250440000000010114536061315020560 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-9.2.12/tests/test_020/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.254499511 30 atime=1702388429.254499511 30 ctime=1702388429.254499511 elk-9.2.12/tests/test_020/TEST_900.OUT_0000644002504400250440000000007014536061315020562 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 3215 elk-9.2.12/tests/test_020/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.256499508 30 atime=1702388429.256499508 30 ctime=1702388429.256499508 elk-9.2.12/tests/test_020/TEST_910.OUT_0000644002504400250440000000144714536061315020574 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.206465308646 5 0.206465308646 6 -0.206465308646 7 0.412930617293 8 0.412930617293 9 -0.412930617293 10 0.412930617293 11 0.00000000000 12 0.00000000000 13 0.619395925939 14 0.206465308646 15 -0.206465308646 16 0.825861234586 17 0.412930617293 18 -0.412930617293 19 0.825861234586 20 0.00000000000 21 0.00000000000 22 0.825861234586 23 0.412930617293 24 0.00000000000 elk-9.2.12/tests/test_020/PaxHeaders/elk.in0000644000000000000000000000013214536061315015247 xustar0030 mtime=1702388429.257499506 30 atime=1702388429.257499506 30 ctime=1702388429.257499506 elk-9.2.12/tests/test_020/elk.in0000644002504400250440000000054414536061315017774 0ustar00dewhurstdewhurst00000000000000 tasks 0 600 610 500 test .true. xctype 30 gmaxrf 3.0 tempk 5000.0 nempty 6 wplot 200 100 0 -0.1 0.3 avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../species/' atoms 2 'Li.in' 1 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 4 4 4 ngridq 2 2 2 elk-9.2.12/tests/test_020/PaxHeaders/TEST_610.OUT_0000644000000000000000000000013214536061315016041 xustar0030 mtime=1702388429.258499505 30 atime=1702388429.258499505 30 ctime=1702388429.258499505 elk-9.2.12/tests/test_020/TEST_610.OUT_0000644002504400250440000001417514536061315020573 0ustar00dewhurstdewhurst00000000000000'total GW spectral function' 2 200 0.500000000000E-01 1 0.591980484369 2 0.584736781023 3 0.577709851810 4 0.570915903362 5 0.564338502934 6 0.557970742492 7 0.551805495909 8 0.545835287458 9 0.540054391610 10 0.534456594209 11 0.529035113492 12 0.523784730955 13 0.518700808423 14 0.513777635792 15 0.509009522029 16 0.504392683827 17 0.499922875568 18 0.495595799056 19 0.491406136193 20 0.487350977855 21 0.483428826358 22 0.479632168070 23 0.475958267815 24 0.472399621432 25 0.468970069055 26 0.465648393190 27 0.462437179707 28 0.459336372451 29 0.456341876573 30 0.453449660819 31 0.450658897678 32 0.447967210846 33 0.445370773456 34 0.442868123900 35 0.440462907419 36 0.438143149086 37 0.435912946830 38 0.433770252203 39 0.431713931091 40 0.429738009041 41 0.427847185313 42 0.426036936843 43 0.424306746868 44 0.422655530982 45 0.421078868504 46 0.419581748371 47 0.418156475041 48 0.416806727197 49 0.415529513672 50 0.414325633864 51 0.413191240362 52 0.412125913184 53 0.411133613162 54 0.410207955441 55 0.409351252271 56 0.408562049270 57 0.407840328484 58 0.407184599065 59 0.406595143816 60 0.406071607792 61 0.405613282797 62 0.405220334331 63 0.404893626787 64 0.404629452809 65 0.404431156471 66 0.404297031861 67 0.404225871699 68 0.404220244638 69 0.404281102065 70 0.404401960259 71 0.404592346252 72 0.404845715801 73 0.405162558792 74 0.405547229664 75 0.405995872692 76 0.406515241716 77 0.407093653043 78 0.407743030326 79 0.408460764292 80 0.409245912838 81 0.410101124037 82 0.411024661430 83 0.412021115835 84 0.413088099446 85 0.414228088606 86 0.415443267452 87 0.416732372271 88 0.418097758241 89 0.419541728440 90 0.421064315703 91 0.422667667501 92 0.424352718625 93 0.426122587760 94 0.427978144743 95 0.429921200557 96 0.431953735477 97 0.434078300855 98 0.436297679904 99 0.438613627845 100 0.441028787809 101 0.443547212145 102 0.446170262759 103 0.448902548306 104 0.451745267169 105 0.454702881142 106 0.457781795887 107 0.460983643484 108 0.464313012524 109 0.467774553534 110 0.471372274377 111 0.475114997370 112 0.479005374191 113 0.483048699760 114 0.487255340612 115 0.491628549607 116 0.496176887478 117 0.500909686786 118 0.505834192632 119 0.510956661738 120 0.516294857733 121 0.521853771545 122 0.527648918535 123 0.533692610429 124 0.539996462004 125 0.546570505461 126 0.553450434702 127 0.560633628448 128 0.568154434373 129 0.576027541402 130 0.584273744223 131 0.592933512338 132 0.602033598212 133 0.611589603852 134 0.621663076219 135 0.632288375694 136 0.643509095948 137 0.655378634950 138 0.667966624153 139 0.681346078162 140 0.695599914036 141 0.710814700961 142 0.727103425451 143 0.744603815766 144 0.763459977231 145 0.783851904869 146 0.806002073486 147 0.830165606236 148 0.856684109003 149 0.885852163275 150 0.918199922573 151 0.954248992369 152 0.994639966407 153 1.04016095841 154 1.09170210424 155 1.15018912932 156 1.21653132382 157 1.29126385138 158 1.37429652562 159 1.46403802351 160 1.55664367827 161 1.64559977030 162 1.72255997717 163 1.78003699442 164 1.81500739242 165 1.83080008151 166 1.83566038446 167 1.83914241241 168 1.84927085957 169 1.87153322372 170 1.90926681211 171 1.96450860710 172 2.03881741634 173 2.13383797107 174 2.25158926126 175 2.39482827727 176 2.56717724608 177 2.77328884670 178 3.01890539845 179 3.31083477615 180 3.65665064520 181 4.06378920043 182 4.53767266949 183 5.07816863298 184 5.67410016701 185 6.29661170577 186 6.89519235080 187 7.40339056997 188 7.75933612651 189 7.93357474740 190 7.94285424849 191 7.83556123262 192 7.66052765460 193 7.44425068212 194 7.19028658702 195 6.89581168788 196 6.56918308825 197 6.23466275298 198 5.92410179230 199 5.66600157558 200 5.48008971392 elk-9.2.12/tests/PaxHeaders/test_0240000644000000000000000000000013214536061315014073 xustar0030 mtime=1702388429.269499489 30 atime=1702388429.259499503 30 ctime=1702388429.269499489 elk-9.2.12/tests/test_024/0000755002504400250440000000000014536061315016672 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_024/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016052 xustar0030 mtime=1702388429.260499502 30 atime=1702388429.260499502 30 ctime=1702388429.260499502 elk-9.2.12/tests/test_024/TEST_705.OUT_0000644002504400250440000000010114536061315020564 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 2 elk-9.2.12/tests/test_024/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.262499499 30 atime=1702388429.261499501 30 ctime=1702388429.262499499 elk-9.2.12/tests/test_024/TEST_900.OUT_0000644002504400250440000000007014536061315020566 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 22257 elk-9.2.12/tests/test_024/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.263499498 30 atime=1702388429.263499498 30 ctime=1702388429.263499498 elk-9.2.12/tests/test_024/TEST_910.OUT_0000644002504400250440000000052614536061315020575 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 9 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.338173181022 5 -0.195244417682 6 0.00000000000 7 0.676346362044 8 0.00000000000 9 0.00000000000 elk-9.2.12/tests/test_024/PaxHeaders/elk.in0000644000000000000000000000013214536061315015253 xustar0030 mtime=1702388429.265499495 30 atime=1702388429.264499496 30 ctime=1702388429.265499495 elk-9.2.12/tests/test_024/elk.in0000644002504400250440000000100514536061315017771 0ustar00dewhurstdewhurst00000000000000 tasks 0 500 test .true. rgkmax 6.0 lmaxi 3 maxscl 2 ngridk 2 2 1 avec 4.644946479927 -8.045281629256 0.0 4.644946479927 8.045281629256 0.0 0.0 0.0 10.21472485866 sppath '../../species/' atoms 2 'Si.in' 3 0.4650 0.0000 0.0000 0.0000 0.4650 0.666666667 0.5350 0.5350 0.333333333 'O.in' 6 0.415 0.272 0.1200 0.728 0.143 0.786666667 0.857 0.585 0.453333333 0.272 0.415 0.546666667 0.143 0.728 0.8800 0.585 0.857 0.213333333 elk-9.2.12/tests/test_024/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.266499493 30 atime=1702388429.266499493 30 ctime=1702388429.266499493 elk-9.2.12/tests/test_024/TEST_500.OUT_0000644002504400250440000000013514536061315020564 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.551687336395E-11 elk-9.2.12/tests/test_024/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.267499492 30 atime=1702388429.267499492 30 ctime=1702388429.267499492 elk-9.2.12/tests/test_024/TEST_510.OUT_0000644002504400250440000000014514536061315020566 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.287221680212 elk-9.2.12/tests/test_024/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013114536061315016041 xustar0030 mtime=1702388429.269499489 29 atime=1702388429.26849949 30 ctime=1702388429.269499489 elk-9.2.12/tests/test_024/TEST_400.OUT_0000644002504400250440000000014114536061315020560 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 89.9132297484 elk-9.2.12/tests/test_024/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016036 xustar0030 mtime=1702388429.270499487 30 atime=1702388429.270499487 30 ctime=1702388429.270499487 elk-9.2.12/tests/test_024/TEST_000.OUT_0000644002504400250440000000012614536061315020557 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1334.11020656 elk-9.2.12/tests/PaxHeaders/test_0260000644000000000000000000000013214536061315014075 xustar0030 mtime=1702388429.284499467 30 atime=1702388429.271499486 30 ctime=1702388429.284499467 elk-9.2.12/tests/test_026/0000755002504400250440000000000014536061315016674 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_026/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016054 xustar0030 mtime=1702388429.272499484 30 atime=1702388429.272499484 30 ctime=1702388429.272499484 elk-9.2.12/tests/test_026/TEST_705.OUT_0000644002504400250440000000010114536061315020566 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-9.2.12/tests/test_026/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016051 xustar0030 mtime=1702388429.273499483 30 atime=1702388429.273499483 30 ctime=1702388429.273499483 elk-9.2.12/tests/test_026/TEST_900.OUT_0000644002504400250440000000007014536061315020570 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2109 elk-9.2.12/tests/test_026/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013014536061315016050 xustar0029 mtime=1702388429.27549948 30 atime=1702388429.274499481 29 ctime=1702388429.27549948 elk-9.2.12/tests/test_026/TEST_910.OUT_0000644002504400250440000000531014536061315020573 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 87 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.118211644100 5 0.118211644100 6 -0.118211644100 7 0.236423288199 8 0.236423288199 9 -0.236423288199 10 0.354634932299 11 0.354634932299 12 -0.354634932299 13 0.472846576398 14 0.472846576398 15 -0.472846576398 16 0.236423288199 17 0.00000000000 18 0.00000000000 19 0.354634932299 20 0.118211644100 21 -0.118211644100 22 0.472846576398 23 0.236423288199 24 -0.236423288199 25 0.591058220498 26 0.354634932299 27 -0.354634932299 28 0.709269864597 29 0.472846576398 30 -0.472846576398 31 0.827481508697 32 0.591058220498 33 -0.591058220498 34 0.945693152796 35 0.709269864597 36 -0.709269864597 37 0.472846576398 38 0.00000000000 39 0.00000000000 40 0.591058220498 41 0.118211644100 42 -0.118211644100 43 0.709269864597 44 0.236423288199 45 -0.236423288199 46 0.827481508697 47 0.354634932299 48 -0.354634932299 49 0.945693152796 50 0.472846576398 51 -0.472846576398 52 0.709269864597 53 0.138777878078E-16 54 -0.138777878078E-16 55 0.827481508697 56 0.118211644100 57 -0.118211644100 58 0.945693152796 59 0.236423288199 60 -0.236423288199 61 0.945693152796 62 0.00000000000 63 0.00000000000 64 0.472846576398 65 0.236423288199 66 0.00000000000 67 0.591058220498 68 0.354634932299 69 -0.118211644100 70 0.709269864597 71 0.472846576398 72 -0.236423288199 73 0.709269864597 74 0.236423288199 75 -0.138777878078E-16 76 0.827481508697 77 0.354634932299 78 -0.118211644100 79 0.945693152796 80 0.472846576398 81 -0.236423288199 82 0.945693152796 83 0.236423288199 84 0.00000000000 85 0.945693152796 86 0.472846576398 87 0.00000000000 elk-9.2.12/tests/test_026/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.276499478 30 atime=1702388429.276499478 30 ctime=1702388429.276499478 elk-9.2.12/tests/test_026/TEST_500.OUT_0000644002504400250440000000013514536061315020566 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 50.8032293605 elk-9.2.12/tests/test_026/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.277499477 30 atime=1702388429.277499477 30 ctime=1702388429.277499477 elk-9.2.12/tests/test_026/TEST_510.OUT_0000644002504400250440000000014514536061315020570 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.137844901758E-02 elk-9.2.12/tests/test_026/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.278499475 30 atime=1702388429.278499475 30 ctime=1702388429.278499475 elk-9.2.12/tests/test_026/TEST_400.OUT_0000644002504400250440000000014114536061315020562 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9938370153 elk-9.2.12/tests/test_026/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016051 xustar0030 mtime=1702388429.280499472 30 atime=1702388429.279499474 30 ctime=1702388429.280499472 elk-9.2.12/tests/test_026/TEST_450.OUT_0000644002504400250440000000014014536061315020566 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.698965619590 elk-9.2.12/tests/test_026/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016040 xustar0030 mtime=1702388429.281499471 30 atime=1702388429.281499471 30 ctime=1702388429.281499471 elk-9.2.12/tests/test_026/TEST_000.OUT_0000644002504400250440000000012614536061315020561 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1518.39244484 elk-9.2.12/tests/test_026/PaxHeaders/TEST_170.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.282499469 30 atime=1702388429.282499469 30 ctime=1702388429.282499469 elk-9.2.12/tests/test_026/TEST_170.OUT_0000644002504400250440000000516014536061315020574 0ustar00dewhurstdewhurst00000000000000'electron momentum density' 2 84 0.100000000000E-03 1 0.628155227109 2 0.152156326404 3 0.628155078283 4 0.398370943223 5 0.152153804938 6 0.398370955229 7 0.228536907203 8 0.628155009213 9 0.228536028498 10 0.228538242656 11 0.113953004154 12 0.228534890343 13 0.628155022653 14 0.398370956842 15 0.182033938887 16 0.597159086839E-01 17 0.182033929796 18 0.426971880524E-01 19 0.228534654176 20 0.946583126009E-01 21 0.228538177484 22 0.597162837918E-01 23 0.956073707246E-01 24 0.152155558351 25 0.398370950340 26 0.946598474232E-01 27 0.152154386837 28 0.597167217745E-01 29 0.152153860479 30 0.392638016315E-01 31 0.496020841428E-01 32 0.113953006332 33 0.781273769120E-01 34 0.946580464962E-01 35 0.496018489285E-01 36 0.388402053272E-01 37 0.388410035525E-01 38 0.113953014596 39 0.228536931038 40 0.152156133512 41 0.956073718446E-01 42 0.956073691258E-01 43 0.182033931042 44 0.392637251948E-01 45 0.182033947103 46 0.946600267928E-01 47 0.228536091377 48 0.597154319108E-01 49 0.781273783036E-01 50 0.152154485279 51 0.496021330475E-01 52 0.496017171916E-01 53 0.152155721428 54 0.946582817378E-01 55 0.946597655292E-01 56 0.392641108245E-01 57 0.781273751618E-01 58 0.113953014983 59 0.392634285343E-01 60 0.946580495171E-01 61 0.426971978642E-01 62 0.388409815711E-01 63 0.496017574796E-01 64 0.496020626659E-01 65 0.426971937545E-01 66 0.388402097774E-01 67 0.597154381144E-01 68 0.946600670819E-01 69 0.597167481602E-01 70 0.392641018015E-01 71 0.388409728531E-01 72 0.426971955346E-01 73 0.388402148476E-01 74 0.392634118442E-01 75 0.781273755063E-01 76 0.597158342041E-01 77 0.597163126358E-01 78 0.956073629729E-01 79 0.388402235737E-01 80 0.496021664533E-01 81 0.496017345445E-01 82 0.388409952477E-01 83 0.392637943868E-01 84 0.392637323771E-01 elk-9.2.12/tests/test_026/PaxHeaders/TEST_171.OUT_0000644000000000000000000000013214536061315016051 xustar0030 mtime=1702388429.283499468 30 atime=1702388429.283499468 30 ctime=1702388429.283499468 elk-9.2.12/tests/test_026/TEST_171.OUT_0000644002504400250440000000573114536061315020601 0ustar00dewhurstdewhurst00000000000000'integrated EMD' 2 96 0.100000000000E-03 1 0.220450188966E-01 2 0.632822736079E-01 3 0.101418092319 4 0.134024627071 5 0.165793396471 6 0.196798804493 7 0.228647537225 8 0.259312813369 9 0.286260427901 10 0.310402684616 11 0.336895491263 12 0.366555334169 13 0.399440404884 14 0.433417190825 15 0.470217953828 16 0.516556624979 17 0.571068771624 18 0.631663657141 19 0.698729761839 20 0.775592035969 21 0.859946485672 22 0.946926754507 23 1.03539601073 24 1.11971033387 25 1.20491933051 26 1.29394257517 27 1.38907919300 28 1.48575766088 29 1.57748264892 30 1.64724954945 31 1.71426855245 32 1.78646037952 33 1.87576582484 34 1.97764164151 35 2.07410414027 36 2.16699884633 37 2.28049745166 38 2.47844706528 39 2.74661558258 40 3.05487156133 41 3.32859093939 42 3.58952255163 43 3.82725393856 44 3.97780905522 45 4.09759777493 46 4.18996578277 47 4.27143765666 48 4.35528864360 49 4.35528864164 50 4.27143757287 51 4.18996515294 52 4.09759636393 53 3.97780768401 54 3.82725359914 55 3.58952261387 56 3.32859110107 57 3.05487190477 58 2.74661572596 59 2.47844713270 60 2.28049743066 61 2.16699888121 62 2.07410410363 63 1.97764169035 64 1.87576593162 65 1.78646046204 66 1.71426820927 67 1.64724935190 68 1.57748260763 69 1.48575819972 70 1.38908198614 71 1.29394805204 72 1.20492212250 73 1.11971117362 74 1.03539655484 75 0.946927610026 76 0.859947095566 77 0.775592026835 78 0.698729689588 79 0.631663547668 80 0.571068706503 81 0.516556590277 82 0.470217955946 83 0.433417200063 84 0.399440416189 85 0.366555354474 86 0.336895510023 87 0.310402713165 88 0.286260327368 89 0.259312499939 90 0.228647226555 91 0.196798669159 92 0.165793249132 93 0.134024303954 94 0.101417771795 95 0.632821322910E-01 96 0.220449912645E-01 elk-9.2.12/tests/test_026/PaxHeaders/elk.in0000644000000000000000000000013214536061315015255 xustar0030 mtime=1702388429.285499465 30 atime=1702388429.284499467 30 ctime=1702388429.285499465 elk-9.2.12/tests/test_026/elk.in0000644002504400250440000000104414536061315017776 0ustar00dewhurstdewhurst00000000000000 ! Twice-integrated electron momentum density (EMD) plot for ferromagnetic Ni. tasks 0 170 171 500 test .true. plot1d 2 10 0.0 0.0 0.0 1.0 1.0 0.0 hkmax 4.d0 ngridk 8 8 8 spinpol .true. bfieldc 0.0 0.0 -0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.322 sppath '../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-9.2.12/tests/PaxHeaders/test_0300000644000000000000000000000013214536061315014070 xustar0030 mtime=1702388429.298499446 30 atime=1702388429.285499465 30 ctime=1702388429.298499446 elk-9.2.12/tests/test_030/0000755002504400250440000000000014536061315016667 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_030/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.287499462 30 atime=1702388429.286499463 30 ctime=1702388429.287499462 elk-9.2.12/tests/test_030/TEST_910.OUT_0000644002504400250440000000331114536061315020565 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 54 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.192059413696 5 0.192059413696 6 -0.192059413696 7 0.384118827392 8 0.384118827392 9 -0.384118827392 10 0.576178241088 11 0.576178241088 12 -0.576178241088 13 0.384118827392 14 0.00000000000 15 0.00000000000 16 0.576178241088 17 0.192059413696 18 -0.192059413696 19 0.768237654784 20 0.384118827392 21 -0.384118827392 22 0.576178241088 23 -0.192059413696 24 0.192059413696 25 0.768237654784 26 0.00000000000 27 0.00000000000 28 0.768237654784 29 -0.384118827392 30 0.384118827392 31 0.00000000000 32 0.00000000000 33 0.384118827392 34 0.384118827392 35 0.384118827392 36 0.00000000000 37 0.576178241088 38 0.576178241088 39 -0.192059413696 40 0.768237654784 41 0.384118827392 42 0.00000000000 43 0.768237654784 44 -0.277555756156E-16 45 0.384118827392 46 0.00000000000 47 0.00000000000 48 0.768237654784 49 0.576178241088 50 0.576178241088 51 0.192059413696 52 0.277555756156E-16 53 -0.277555756156E-16 54 1.15235648218 elk-9.2.12/tests/test_030/PaxHeaders/TEST_705.OUT_0000644000000000000000000000012714536061315016053 xustar0029 mtime=1702388429.28849946 29 atime=1702388429.28849946 29 ctime=1702388429.28849946 elk-9.2.12/tests/test_030/TEST_705.OUT_0000644002504400250440000000010114536061315020561 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 8 elk-9.2.12/tests/test_030/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.289499459 30 atime=1702388429.289499459 30 ctime=1702388429.289499459 elk-9.2.12/tests/test_030/TEST_900.OUT_0000644002504400250440000000007014536061315020563 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 3943 elk-9.2.12/tests/test_030/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016040 xustar0030 mtime=1702388429.290499458 30 atime=1702388429.290499458 30 ctime=1702388429.290499458 elk-9.2.12/tests/test_030/TEST_500.OUT_0000644002504400250440000000013514536061315020561 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 76.5199307682 elk-9.2.12/tests/test_030/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016041 xustar0030 mtime=1702388429.291499456 30 atime=1702388429.291499456 30 ctime=1702388429.291499456 elk-9.2.12/tests/test_030/TEST_510.OUT_0000644002504400250440000000014514536061315020563 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.196786382869E-02 elk-9.2.12/tests/test_030/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016037 xustar0030 mtime=1702388429.293499453 30 atime=1702388429.292499455 30 ctime=1702388429.293499453 elk-9.2.12/tests/test_030/TEST_400.OUT_0000644002504400250440000000014114536061315020555 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 28.0028447594 elk-9.2.12/tests/test_030/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.294499452 30 atime=1702388429.294499452 30 ctime=1702388429.294499452 elk-9.2.12/tests/test_030/TEST_800.OUT_0000644002504400250440000000014414536061315020564 0ustar00dewhurstdewhurst00000000000000'DFT+U energy for each atom' 2 1 0.100000000000E-03 1 0.160964472194E-01 elk-9.2.12/tests/test_030/PaxHeaders/TEST_810.OUT_0000644000000000000000000000012714536061315016050 xustar0029 mtime=1702388429.29549945 29 atime=1702388429.29549945 29 ctime=1702388429.29549945 elk-9.2.12/tests/test_030/TEST_810.OUT_0000644002504400250440000000017314536061315020567 0ustar00dewhurstdewhurst00000000000000'U and J parameters' 2 2 0.100000000000E-03 1 0.183000000000 2 0.349119670000E-01 elk-9.2.12/tests/test_030/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016033 xustar0030 mtime=1702388429.296499449 30 atime=1702388429.296499449 30 ctime=1702388429.296499449 elk-9.2.12/tests/test_030/TEST_000.OUT_0000644002504400250440000000012614536061315020554 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -884.069609247 elk-9.2.12/tests/test_030/PaxHeaders/TEST_460.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.298499446 30 atime=1702388429.297499447 30 ctime=1702388429.298499446 elk-9.2.12/tests/test_030/TEST_460.OUT_0000644002504400250440000000024714536061315020572 0ustar00dewhurstdewhurst00000000000000'total current of last time step' 2 3 0.500000000000E-03 1 0.00000000000 2 -0.346944695195E-17 3 -0.722975536625E-01 elk-9.2.12/tests/test_030/PaxHeaders/elk.in0000644000000000000000000000013214536061315015250 xustar0030 mtime=1702388429.299499444 30 atime=1702388429.299499444 30 ctime=1702388429.299499444 elk-9.2.12/tests/test_030/elk.in0000644002504400250440000000114614536061315017774 0ustar00dewhurstdewhurst00000000000000 ! Spin-unpolarised TDDFT+U time evolution test tasks 0 450 460 500 test .true. dft+u 1 1 1 2 0.183 0.034911967 tshift .false. rgkmax 7.5 epspot 1.d-7 ngridk 4 4 4 nempty 8 tstime 40.0 dtimes 0.2 pulse 1 0.0 0.0 250.0 0.03 0.0 0.0 20.0 10.0 ntswrite 0 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 8.1787 sppath '../../species/' atoms 2 : nspecies 'Ti.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'C.in' 1 0.5 0.5 0.5 elk-9.2.12/tests/PaxHeaders/test_0320000644000000000000000000000013214536061315014072 xustar0030 mtime=1702388429.312499425 30 atime=1702388429.300499443 30 ctime=1702388429.312499425 elk-9.2.12/tests/test_032/0000755002504400250440000000000014536061315016671 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_032/PaxHeaders/TEST_028.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.301499441 30 atime=1702388429.301499441 30 ctime=1702388429.301499441 elk-9.2.12/tests/test_032/TEST_028.OUT_0000644002504400250440000000014414536061315020570 0ustar00dewhurstdewhurst00000000000000'magnetic anisotropy energy' 2 1 0.100000000000E-04 1 0.155565403475E-04 elk-9.2.12/tests/test_032/PaxHeaders/TEST_705.OUT_0000644000000000000000000000012714536061315016055 xustar0029 mtime=1702388429.30249944 29 atime=1702388429.30249944 29 ctime=1702388429.30249944 elk-9.2.12/tests/test_032/TEST_705.OUT_0000644002504400250440000000010114536061315020563 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 4 elk-9.2.12/tests/test_032/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.303499438 30 atime=1702388429.303499438 30 ctime=1702388429.303499438 elk-9.2.12/tests/test_032/TEST_900.OUT_0000644002504400250440000000007014536061315020565 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 4735 elk-9.2.12/tests/test_032/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.305499435 30 atime=1702388429.304499437 30 ctime=1702388429.305499435 elk-9.2.12/tests/test_032/TEST_910.OUT_0000644002504400250440000000544514536061315020601 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 90 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.461998919646 5 0.00000000000 6 0.00000000000 7 0.923997839291 8 0.00000000000 9 0.00000000000 10 -0.230999459823 11 0.230999459823 12 0.00000000000 13 0.230999459823 14 0.230999459823 15 0.00000000000 16 0.692998379468 17 0.230999459823 18 0.00000000000 19 1.15499729911 20 0.230999459823 21 0.00000000000 22 -0.461998919646 23 0.461998919646 24 0.00000000000 25 0.00000000000 26 0.461998919646 27 0.00000000000 28 0.461998919646 29 0.461998919646 30 0.00000000000 31 0.00000000000 32 0.00000000000 33 0.224399475256 34 0.461998919646 35 0.00000000000 36 0.224399475256 37 0.923997839291 38 0.00000000000 39 0.224399475256 40 -0.230999459823 41 0.230999459823 42 0.224399475256 43 0.230999459823 44 0.230999459823 45 0.224399475256 46 0.692998379468 47 0.230999459823 48 0.224399475256 49 1.15499729911 50 0.230999459823 51 0.224399475256 52 -0.461998919646 53 0.461998919646 54 0.224399475256 55 0.00000000000 56 0.461998919646 57 0.224399475256 58 0.461998919646 59 0.461998919646 60 0.224399475256 61 0.00000000000 62 0.00000000000 63 0.448798950513 64 0.461998919646 65 0.00000000000 66 0.448798950513 67 0.923997839291 68 0.00000000000 69 0.448798950513 70 -0.230999459823 71 0.230999459823 72 0.448798950513 73 0.230999459823 74 0.230999459823 75 0.448798950513 76 0.692998379468 77 0.230999459823 78 0.448798950513 79 1.15499729911 80 0.230999459823 81 0.448798950513 82 -0.461998919646 83 0.461998919646 84 0.448798950513 85 0.00000000000 86 0.461998919646 87 0.448798950513 88 0.461998919646 89 0.461998919646 90 0.448798950513 elk-9.2.12/tests/test_032/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.306499434 30 atime=1702388429.306499434 30 ctime=1702388429.306499434 elk-9.2.12/tests/test_032/TEST_500.OUT_0000644002504400250440000000013514536061315020563 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 94.7399972950 elk-9.2.12/tests/test_032/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.307499432 30 atime=1702388429.307499432 30 ctime=1702388429.307499432 elk-9.2.12/tests/test_032/TEST_510.OUT_0000644002504400250440000000014514536061315020565 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.355211920181E-03 elk-9.2.12/tests/test_032/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016041 xustar0030 mtime=1702388429.308499431 30 atime=1702388429.308499431 30 ctime=1702388429.308499431 elk-9.2.12/tests/test_032/TEST_400.OUT_0000644002504400250440000000014114536061315020557 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 52.9928739538 elk-9.2.12/tests/test_032/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.310499428 30 atime=1702388429.309499429 30 ctime=1702388429.310499428 elk-9.2.12/tests/test_032/TEST_450.OUT_0000644002504400250440000000014014536061315020563 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 3.19534484024 elk-9.2.12/tests/test_032/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016035 xustar0030 mtime=1702388429.311499427 30 atime=1702388429.311499427 30 ctime=1702388429.311499427 elk-9.2.12/tests/test_032/TEST_000.OUT_0000644002504400250440000000012614536061315020556 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -2661.73430227 elk-9.2.12/tests/test_032/PaxHeaders/elk.in0000644000000000000000000000013214536061315015252 xustar0030 mtime=1702388429.312499425 30 atime=1702388429.312499425 30 ctime=1702388429.312499425 elk-9.2.12/tests/test_032/elk.in0000644002504400250440000000122614536061315017775 0ustar00dewhurstdewhurst00000000000000 ! Test of the magnetic anisotropy energy (MAE) for Fe_(1-x)Co_x where x = 1/2 ! and the unit cell is tetragonal of L1_0 type. tasks 28 500 test .true. npmae 3 ! very tight convergence required epspot 1.e-8 epsengy 1.e-6 rgkmax 8.0 ngridk 4 4 4 swidth 0.01 mixtype 3 ! artificial strained lattice avec 0.5 0.5 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale1 6.8 scale2 6.8 scale3 7.0 sppath '../../species/' atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'Co.in' 1 0.0 0.5 0.5 elk-9.2.12/tests/PaxHeaders/test_0220000644000000000000000000000013214536061315014071 xustar0030 mtime=1702388429.327499403 30 atime=1702388429.313499424 30 ctime=1702388429.327499403 elk-9.2.12/tests/test_022/0000755002504400250440000000000014536061315016670 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_022/PaxHeaders/elk.in0000644000000000000000000000013214536061315015251 xustar0030 mtime=1702388429.314499422 30 atime=1702388429.314499422 30 ctime=1702388429.314499422 elk-9.2.12/tests/test_022/elk.in0000644002504400250440000000110514536061315017770 0ustar00dewhurstdewhurst00000000000000 ! Magnetic response of fcc nickel. tasks 0 330 500 test .true. nempty 10 lorbcnd .true. emaxrf 1.5 gmaxrf 2.0 wplot 60 100 1 0 0.020 ! q-vector of response function vecql 0.1 0.3 0.0 ngridk 10 10 10 spinpol .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-9.2.12/tests/test_022/PaxHeaders/TEST_330.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.316499419 30 atime=1702388429.316499419 30 ctime=1702388429.316499419 elk-9.2.12/tests/test_022/TEST_330.OUT_0000644002504400250440000000626314536061315020573 0ustar00dewhurstdewhurst00000000000000'transverse response function' 3 60 0.100000000000E-01 1 0.996575344454 -0.469416043871E-01 2 0.983388984402 -0.497241521626E-01 3 0.971173142720 -0.523158405753E-01 4 0.959250474657 -0.539796564760E-01 5 0.946498547284 -0.552510254986E-01 6 0.932993164173 -0.573236050640E-01 7 0.919464661198 -0.606748700433E-01 8 0.906439034547 -0.655764407592E-01 9 0.895164057964 -0.724962075583E-01 10 0.887963066039 -0.801900928285E-01 11 0.884886592900 -0.847013074615E-01 12 0.881833101375 -0.844519440085E-01 13 0.877005405969 -0.820249375283E-01 14 0.871217096345 -0.777112322168E-01 15 0.862758032720 -0.711724930958E-01 16 0.850488025025 -0.647989827911E-01 17 0.835691536497 -0.604362872532E-01 18 0.819734898970 -0.583241922929E-01 19 0.803284390988 -0.582752465584E-01 20 0.786661188847 -0.602703160407E-01 21 0.770222747708 -0.645635660110E-01 22 0.754747661288 -0.715804765232E-01 23 0.741873314705 -0.813887473841E-01 24 0.733788813809 -0.922299349154E-01 25 0.730236367787 -0.100060797432 26 0.727223210245 -0.103100347043 27 0.721989004536 -0.103024672603 28 0.712973829766 -0.101696390410 29 0.699619874997 -0.102598681667 30 0.684514754254 -0.108773779235 31 0.671131273152 -0.120756503038 32 0.662669648769 -0.137869852450 33 0.662700727158 -0.157643785825 34 0.673290036190 -0.175171287461 35 0.694352030304 -0.183283112817 36 0.717440287586 -0.173011357736 37 0.726975130991 -0.148579645749 38 0.720122819192 -0.124504412495 39 0.704018140592 -0.108193183920 40 0.684882976204 -0.100282931355 41 0.666526664205 -0.995679208485E-01 42 0.651925265187 -0.104187743544 43 0.643040179964 -0.110584675182 44 0.638471384734 -0.114553811922 45 0.634301046100 -0.115228261179 46 0.629023670868 -0.114934431310 47 0.623552880135 -0.114401325073 48 0.617582706605 -0.113393187276 49 0.611239571784 -0.112813542818 50 0.605610630397 -0.111895750867 51 0.599069490266 -0.109462385321 52 0.590239214934 -0.107556647214 53 0.580702111235 -0.107784746690 54 0.571985946673 -0.109490879421 55 0.563950959933 -0.111737510923 56 0.556465044944 -0.115143976053 57 0.551437579756 -0.119348991216 58 0.548604392139 -0.121128099269 59 0.544147622274 -0.120217936883 60 0.537116623966 -0.120062613643 elk-9.2.12/tests/test_022/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016040 xustar0030 mtime=1702388429.317499418 30 atime=1702388429.317499418 30 ctime=1702388429.317499418 elk-9.2.12/tests/test_022/TEST_400.OUT_0000644002504400250440000000014114536061315020556 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9937748968 elk-9.2.12/tests/test_022/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.319499415 30 atime=1702388429.318499416 30 ctime=1702388429.319499415 elk-9.2.12/tests/test_022/TEST_450.OUT_0000644002504400250440000000014014536061315020562 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.721296356516 elk-9.2.12/tests/test_022/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016034 xustar0030 mtime=1702388429.320499413 30 atime=1702388429.320499413 30 ctime=1702388429.320499413 elk-9.2.12/tests/test_022/TEST_000.OUT_0000644002504400250440000000012614536061315020555 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1518.39249446 elk-9.2.12/tests/test_022/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.321499412 30 atime=1702388429.321499412 30 ctime=1702388429.321499412 elk-9.2.12/tests/test_022/TEST_800.OUT_0000644002504400250440000000301014536061315020560 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 47 0.100000000000E-07 1 4156.52649632 2 538.808845910 3 122.281077681 4 53.2067305730 5 29.7036699563 6 18.9436528129 7 378.633726982 8 131.915119909 9 59.6996144004 10 33.1294509551 11 20.8866383293 12 24.1480573225 13 39.8247961001 14 76.6221168207 15 191.109192697 16 89.6935829837 17 52.8305196423 18 32.3142045935 19 21.1792161666 20 18.7172333061 21 28.0029635091 22 44.9516730037 23 39.4977235641 24 27.8283415094 25 19.6878350783 26 14.3061427077 27 19.7706217330 28 22.1479831303 29 17.0639418646 30 13.1063464662 31 14.1544228910 32 70.5026233452 33 40.4627055245 34 25.3002738051 35 17.0626173734 36 35.3392864088 37 23.9798340158 38 16.8448151671 39 18.9724996792 40 27.4485942715 41 20.7913378523 42 15.5388968693 43 14.2001311974 44 13.5917268552 45 17.6443345168 46 13.2018441244 47 12.1733944017 elk-9.2.12/tests/test_022/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013114536061315016040 xustar0030 mtime=1702388429.323499409 29 atime=1702388429.32249941 30 ctime=1702388429.323499409 elk-9.2.12/tests/test_022/TEST_500.OUT_0000644002504400250440000000013514536061315020562 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 52.6834232497 elk-9.2.12/tests/test_022/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.324499407 30 atime=1702388429.324499407 30 ctime=1702388429.324499407 elk-9.2.12/tests/test_022/TEST_510.OUT_0000644002504400250440000000014514536061315020564 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.728570619425E-03 elk-9.2.12/tests/test_022/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.325499406 30 atime=1702388429.325499406 30 ctime=1702388429.325499406 elk-9.2.12/tests/test_022/TEST_705.OUT_0000644002504400250440000000010114536061315020562 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-9.2.12/tests/test_022/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.326499404 30 atime=1702388429.326499404 30 ctime=1702388429.326499404 elk-9.2.12/tests/test_022/TEST_900.OUT_0000644002504400250440000000007014536061315020564 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2109 elk-9.2.12/tests/test_022/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.328499401 30 atime=1702388429.327499403 30 ctime=1702388429.328499401 elk-9.2.12/tests/test_022/TEST_910.OUT_0000644002504400250440000001052214536061315020570 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 141 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.943421217294E-01 5 0.943421217294E-01 6 -0.943421217294E-01 7 0.188684243459 8 0.188684243459 9 -0.188684243459 10 0.283026365188 11 0.283026365188 12 -0.283026365188 13 0.377368486918 14 0.377368486918 15 -0.377368486918 16 0.471710608647 17 0.471710608647 18 -0.471710608647 19 0.188684243459 20 -0.308963289789E-17 21 0.308963289789E-17 22 0.283026365188 23 0.943421217294E-01 24 -0.943421217294E-01 25 0.377368486918 26 0.188684243459 27 -0.188684243459 28 0.471710608647 29 0.283026365188 30 -0.283026365188 31 0.566052730377 32 0.377368486918 33 -0.377368486918 34 0.660394852106 35 0.471710608647 36 -0.471710608647 37 0.754736973835 38 0.566052730377 39 -0.566052730377 40 0.849079095565 41 0.660394852106 42 -0.660394852106 43 0.943421217294 44 0.754736973835 45 -0.754736973835 46 0.377368486918 47 -0.617926579578E-17 48 0.617926579578E-17 49 0.471710608647 50 0.943421217294E-01 51 -0.943421217294E-01 52 0.566052730377 53 0.188684243459 54 -0.188684243459 55 0.660394852106 56 0.283026365188 57 -0.283026365188 58 0.754736973835 59 0.377368486918 60 -0.377368486918 61 0.849079095565 62 0.471710608647 63 -0.471710608647 64 0.943421217294 65 0.566052730377 66 -0.566052730377 67 0.566052730377 68 -0.215763098199E-16 69 0.215763098199E-16 70 0.660394852106 71 0.943421217294E-01 72 -0.943421217294E-01 73 0.754736973835 74 0.188684243459 75 -0.188684243459 76 0.849079095565 77 0.283026365188 78 -0.283026365188 79 0.943421217294 80 0.377368486918 81 -0.377368486918 82 0.754736973835 83 -0.123585315916E-16 84 0.123585315916E-16 85 0.849079095565 86 0.943421217294E-01 87 -0.943421217294E-01 88 0.943421217294 89 0.188684243459 90 -0.188684243459 91 0.943421217294 92 0.00000000000 93 0.00000000000 94 0.377368486918 95 0.188684243459 96 0.385437305256E-16 97 0.471710608647 98 0.283026365188 99 -0.943421217294E-01 100 0.566052730377 101 0.377368486918 102 -0.188684243459 103 0.660394852106 104 0.471710608647 105 -0.283026365188 106 0.566052730377 107 0.188684243459 108 -0.308963289789E-17 109 0.660394852106 110 0.283026365188 111 -0.943421217294E-01 112 0.754736973835 113 0.377368486918 114 -0.188684243459 115 0.849079095565 116 0.471710608647 117 -0.283026365188 118 0.943421217294 119 0.566052730377 120 -0.377368486918 121 0.754736973835 122 0.188684243459 123 0.385437305256E-16 124 0.849079095565 125 0.283026365188 126 -0.943421217294E-01 127 0.943421217294 128 0.377368486918 129 -0.188684243459 130 0.943421217294 131 0.188684243459 132 0.246659427177E-16 133 0.754736973835 134 0.377368486918 135 0.770874610511E-16 136 0.849079095565 137 0.471710608647 138 -0.943421217294E-01 139 0.943421217294 140 0.377368486918 141 0.493318854355E-16 elk-9.2.12/tests/PaxHeaders/test_0340000644000000000000000000000013214536061315014074 xustar0030 mtime=1702388429.341499382 30 atime=1702388429.328499401 30 ctime=1702388429.341499382 elk-9.2.12/tests/test_034/0000755002504400250440000000000014536061315016673 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_034/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013014536061315016041 xustar0030 mtime=1702388429.330499398 28 atime=1702388429.3294994 30 ctime=1702388429.330499398 elk-9.2.12/tests/test_034/TEST_400.OUT_0000644002504400250440000000014114536061315020561 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 102.043779710 elk-9.2.12/tests/test_034/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.331499397 30 atime=1702388429.331499397 30 ctime=1702388429.331499397 elk-9.2.12/tests/test_034/TEST_450.OUT_0000644002504400250440000000014014536061315020565 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.294844231014E-04 elk-9.2.12/tests/test_034/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016037 xustar0030 mtime=1702388429.332499395 30 atime=1702388429.332499395 30 ctime=1702388429.332499395 elk-9.2.12/tests/test_034/TEST_000.OUT_0000644002504400250440000000012614536061315020560 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -9209.85384098 elk-9.2.12/tests/test_034/PaxHeaders/TEST_390.OUT_0000644000000000000000000000013214536061315016053 xustar0030 mtime=1702388429.333499394 30 atime=1702388429.333499394 30 ctime=1702388429.333499394 elk-9.2.12/tests/test_034/TEST_390.OUT_0000644002504400250440000000053014536061315020573 0ustar00dewhurstdewhurst00000000000000'Magnetoelectric tensor' 2 9 0.100000000000E-04 1 0.289374339223E-09 2 0.697766059472E-09 3 0.118816193272E-08 4 0.463337091415E-06 5 0.719952942604E-07 6 -0.137266757471E-05 7 -0.174887228122E-05 8 0.135080409146E-05 9 -0.887845784897E-06 elk-9.2.12/tests/test_034/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016053 xustar0030 mtime=1702388429.335499391 30 atime=1702388429.335499391 30 ctime=1702388429.335499391 elk-9.2.12/tests/test_034/TEST_705.OUT_0000644002504400250440000000010114536061315020565 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 6 elk-9.2.12/tests/test_034/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.336499389 30 atime=1702388429.336499389 30 ctime=1702388429.336499389 elk-9.2.12/tests/test_034/TEST_900.OUT_0000644002504400250440000000007014536061315020567 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 101505 elk-9.2.12/tests/test_034/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016051 xustar0030 mtime=1702388429.337499388 30 atime=1702388429.337499388 30 ctime=1702388429.337499388 elk-9.2.12/tests/test_034/TEST_910.OUT_0000644002504400250440000000144714536061315020601 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.207338480306 2 0.207338480306 3 0.103669240153 4 0.622015440917 5 0.207338480306 6 0.103669240153 7 0.207338480306 8 0.622015440917 9 0.103669240153 10 0.622015440917 11 0.622015440917 12 0.103669240153 13 0.207338480306 14 0.207338480306 15 0.311007720458 16 0.622015440917 17 0.207338480306 18 0.311007720458 19 0.207338480306 20 0.622015440917 21 0.311007720458 22 0.622015440917 23 0.622015440917 24 0.311007720458 elk-9.2.12/tests/test_034/PaxHeaders/elk.in0000644000000000000000000000013214536061315015254 xustar0030 mtime=1702388429.338499386 30 atime=1702388429.338499386 30 ctime=1702388429.338499386 elk-9.2.12/tests/test_034/elk.in0000644002504400250440000000103014536061315017770 0ustar00dewhurstdewhurst00000000000000 ! Test of the magnetoelectric tensor for BaTiO3. tasks 0 390 500 test .true. spinorb .true. lowq .true. nkspolar 2 stable .true. ngridk 2 2 2 avec 7.576 0.0 0.0 0.0 7.576 0.0 0.0 0.0 7.576 sppath '../../species/' atoms 3 : nspecies 'Ba.in' : spfname 1 : natoms; atpos below 0.0 0.0 0.0 'Ti.in' 1 0.5 0.5 0.5 'O.in' 3 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 elk-9.2.12/tests/test_034/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.340499384 30 atime=1702388429.340499384 30 ctime=1702388429.340499384 elk-9.2.12/tests/test_034/TEST_500.OUT_0000644002504400250440000000013514536061315020565 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.133033548856E-10 elk-9.2.12/tests/test_034/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.341499382 30 atime=1702388429.341499382 30 ctime=1702388429.341499382 elk-9.2.12/tests/test_034/TEST_510.OUT_0000644002504400250440000000014514536061315020567 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.125664674345 elk-9.2.12/tests/PaxHeaders/test_0010000644000000000000000000000013214536061315014066 xustar0030 mtime=1702388429.352499366 30 atime=1702388429.342499381 30 ctime=1702388429.352499366 elk-9.2.12/tests/test_001/0000755002504400250440000000000014536061315016665 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_001/PaxHeaders/elk.in0000644000000000000000000000013214536061315015246 xustar0030 mtime=1702388429.343499379 30 atime=1702388429.343499379 30 ctime=1702388429.343499379 elk-9.2.12/tests/test_001/elk.in0000644002504400250440000000222314536061315017767 0ustar00dewhurstdewhurst00000000000000 tasks 0 1 115 500 test .true. lmaxi 2 stype 1 swidth 0.01 mixtype 3 ! small cut-off for testing purposes rgkmax 6.0 maxscl 4 avec 7.2246 0.0 0.0 0.0 7.3442 0.0 0.0 0.0 22.0733 sppath '../../species/' atoms 4 : nspecies 'Y.in' : spfname 1 : natoms 0.5 0.5 0.5 0.0 0.0 0.0 : atposl, bfcmt 'Ba.in' 2 : natoms 0.5 0.5 0.1843 0.0 0.0 0.0 : atposl, bfcmt 0.5 0.5 0.8157 0.0 0.0 0.0 'Cu.in' 3 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 0.0 0.0 0.3556 0.0 0.0 0.0 0.0 0.0 0.6444 0.0 0.0 0.0 'O.in' 7 : natoms 0.0 0.5 0.0 0.0 0.0 0.0 : atposl, bfcmt 0.5 0.0 0.3773 0.0 0.0 0.0 0.5 0.0 0.6227 0.0 0.0 0.0 0.0 0.5 0.3789 0.0 0.0 0.0 0.0 0.5 0.6211 0.0 0.0 0.0 0.0 0.0 0.1584 0.0 0.0 0.0 0.0 0.0 0.8416 0.0 0.0 0.0 ngridk 2 2 1 vkloff 0.25 0.5 0.5 elk-9.2.12/tests/test_001/PaxHeaders/TEST_115.OUT_0000644000000000000000000000013214536061315016040 xustar0030 mtime=1702388429.344499378 30 atime=1702388429.344499378 30 ctime=1702388429.344499378 elk-9.2.12/tests/test_001/TEST_115.OUT_0000644002504400250440000000053114536061315020561 0ustar00dewhurstdewhurst00000000000000'electric field gradient' 2 9 0.100000000000E-02 1 0.375596494836 2 0.668950486377E-16 3 0.224919942018E-15 4 0.668950486377E-16 5 0.495525131571 6 -0.740858348516E-17 7 0.224919942018E-15 8 -0.740858348516E-17 9 -0.871121626407 elk-9.2.12/tests/test_001/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016031 xustar0030 mtime=1702388429.345499376 30 atime=1702388429.345499376 30 ctime=1702388429.345499376 elk-9.2.12/tests/test_001/TEST_000.OUT_0000644002504400250440000000012614536061315020552 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -25089.4686956 elk-9.2.12/tests/test_001/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016035 xustar0030 mtime=1702388429.346499375 30 atime=1702388429.346499375 30 ctime=1702388429.346499375 elk-9.2.12/tests/test_001/TEST_400.OUT_0000644002504400250440000000014114536061315020553 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 294.004371530 elk-9.2.12/tests/test_001/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.348499372 30 atime=1702388429.347499373 30 ctime=1702388429.348499372 elk-9.2.12/tests/test_001/TEST_910.OUT_0000644002504400250440000000037114536061315020566 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 6 0.100000000000E-07 1 0.108711646790 2 0.213882564036 3 0.142325463505 4 0.543558233949 5 0.213882564036 6 0.142325463505 elk-9.2.12/tests/test_001/PaxHeaders/TEST_500.OUT_0000644000000000000000000000012714536061315016042 xustar0029 mtime=1702388429.34949937 29 atime=1702388429.34949937 29 ctime=1702388429.34949937 elk-9.2.12/tests/test_001/TEST_500.OUT_0000644002504400250440000000013514536061315020557 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 32.4724642300 elk-9.2.12/tests/test_001/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016037 xustar0030 mtime=1702388429.350499369 30 atime=1702388429.350499369 30 ctime=1702388429.350499369 elk-9.2.12/tests/test_001/TEST_510.OUT_0000644002504400250440000000014514536061315020561 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.216262785430E-01 elk-9.2.12/tests/test_001/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.351499367 30 atime=1702388429.351499367 30 ctime=1702388429.351499367 elk-9.2.12/tests/test_001/TEST_705.OUT_0000644002504400250440000000010114536061315020557 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 8 elk-9.2.12/tests/test_001/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.352499366 30 atime=1702388429.352499366 30 ctime=1702388429.352499366 elk-9.2.12/tests/test_001/TEST_900.OUT_0000644002504400250440000000007014536061315020561 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 34171 elk-9.2.12/tests/PaxHeaders/test_0050000644000000000000000000000013214536061315014072 xustar0030 mtime=1702388429.364499348 30 atime=1702388429.353499364 30 ctime=1702388429.364499348 elk-9.2.12/tests/test_005/0000755002504400250440000000000014536061315016671 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_005/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016041 xustar0030 mtime=1702388429.355499361 30 atime=1702388429.354499363 30 ctime=1702388429.355499361 elk-9.2.12/tests/test_005/TEST_400.OUT_0000644002504400250440000000014114536061315020557 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 25.9973369932 elk-9.2.12/tests/test_005/PaxHeaders/TEST_450.OUT_0000644000000000000000000000012714536061315016052 xustar0029 mtime=1702388429.35649936 29 atime=1702388429.35649936 29 ctime=1702388429.35649936 elk-9.2.12/tests/test_005/TEST_450.OUT_0000644002504400250440000000014014536061315020563 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 2.46697520890 elk-9.2.12/tests/test_005/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016051 xustar0030 mtime=1702388429.357499358 30 atime=1702388429.357499358 30 ctime=1702388429.357499358 elk-9.2.12/tests/test_005/TEST_705.OUT_0000644002504400250440000000010114536061315020563 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 8 elk-9.2.12/tests/test_005/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.358499357 30 atime=1702388429.358499357 30 ctime=1702388429.358499357 elk-9.2.12/tests/test_005/TEST_900.OUT_0000644002504400250440000000007014536061315020565 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2229 elk-9.2.12/tests/test_005/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.359499355 30 atime=1702388429.359499355 30 ctime=1702388429.359499355 elk-9.2.12/tests/test_005/TEST_910.OUT_0000644002504400250440000000144714536061315020577 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.581776417331E-01 2 0.174532925199 3 0.407243492132 4 0.523598775598 5 0.639954059065 6 -0.581776417331E-01 7 0.523598775598 8 -0.290888208666 9 0.872664625997 10 0.989019909463 11 0.174532925199 12 0.407243492132 13 -0.407243492132 14 0.639954059065 15 0.872664625997 16 0.581776417331E-01 17 1.10537519293 18 0.407243492132 19 0.581776417331E-01 20 0.174532925199 21 1.33808575986 22 0.523598775598 23 0.639954059065 24 0.872664625997 elk-9.2.12/tests/test_005/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.361499352 30 atime=1702388429.360499354 30 ctime=1702388429.361499352 elk-9.2.12/tests/test_005/TEST_500.OUT_0000644002504400250440000000013514536061315020563 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 33.8210410795 elk-9.2.12/tests/test_005/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.362499351 30 atime=1702388429.362499351 30 ctime=1702388429.362499351 elk-9.2.12/tests/test_005/TEST_510.OUT_0000644002504400250440000000014514536061315020565 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.374459363500E-02 elk-9.2.12/tests/test_005/PaxHeaders/TEST_000.OUT_0000644000000000000000000000012714536061315016041 xustar0029 mtime=1702388429.36349935 29 atime=1702388429.36349935 29 ctime=1702388429.36349935 elk-9.2.12/tests/test_005/TEST_000.OUT_0000644002504400250440000000012614536061315020556 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1270.46613782 elk-9.2.12/tests/test_005/PaxHeaders/elk.in0000644000000000000000000000013214536061315015252 xustar0030 mtime=1702388429.364499348 30 atime=1702388429.364499348 30 ctime=1702388429.364499348 elk-9.2.12/tests/test_005/elk.in0000644002504400250440000000076514536061315020004 0ustar00dewhurstdewhurst00000000000000 ! Spin-spiral state for Gamma-Fe. tasks 0 500 test .true. maxscl 5 spinsprl .true. vqlss 0.1 0.1 0.0 rgkmax 6.5 bfieldc 0.05 0.0 0.0 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.375 sppath '../../species/' atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 2 2 2 vkloff 0.25 0.5 0.625 elk-9.2.12/tests/PaxHeaders/test_0090000644000000000000000000000013214536061315014076 xustar0030 mtime=1702388429.380499324 30 atime=1702388429.365499347 30 ctime=1702388429.380499324 elk-9.2.12/tests/test_009/0000755002504400250440000000000014536061315016675 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_009/PaxHeaders/elk.in0000644000000000000000000000013214536061315015256 xustar0030 mtime=1702388429.366499345 30 atime=1702388429.366499345 30 ctime=1702388429.366499345 elk-9.2.12/tests/test_009/elk.in0000644002504400250440000000064614536061315020006 0ustar00dewhurstdewhurst00000000000000 ! Electron loss near-edge spectroscopy (ELNES) for boron nitride. tasks 0 140 500 test .true. xctype 5 maxscl 6 rgkmax 6.0 lradstp 2 spinorb .true. vecql 0.0 0.0 0.5 wplot 50 100 3 18.5 19.0 emaxelnes -10.0 ngridk 2 2 2 avec 3.4204 3.4204 0.0000 3.4204 0.0000 3.4204 0.0000 3.4204 3.4204 atoms 2 'B.in' 1 0.00 0.00 0.00 0.0 0.0 0.0 'N+.in' 1 0.25 0.25 0.25 0.0 0.0 0.0 elk-9.2.12/tests/test_009/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.368499342 30 atime=1702388429.367499344 30 ctime=1702388429.368499342 elk-9.2.12/tests/test_009/TEST_400.OUT_0000644002504400250440000000014114536061315020563 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 12.5000314213 elk-9.2.12/tests/test_009/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016052 xustar0030 mtime=1702388429.369499341 30 atime=1702388429.369499341 30 ctime=1702388429.369499341 elk-9.2.12/tests/test_009/TEST_450.OUT_0000644002504400250440000000014014536061315020567 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.110342563412E-25 elk-9.2.12/tests/test_009/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016041 xustar0030 mtime=1702388429.370499339 30 atime=1702388429.370499339 30 ctime=1702388429.370499339 elk-9.2.12/tests/test_009/TEST_000.OUT_0000644002504400250440000000012614536061315020562 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -99.9816724970 elk-9.2.12/tests/test_009/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016055 xustar0030 mtime=1702388429.371499338 30 atime=1702388429.371499338 30 ctime=1702388429.371499338 elk-9.2.12/tests/test_009/TEST_705.OUT_0000644002504400250440000000010114536061315020567 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 24 elk-9.2.12/tests/test_009/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016052 xustar0030 mtime=1702388429.373499335 30 atime=1702388429.372499336 30 ctime=1702388429.373499335 elk-9.2.12/tests/test_009/TEST_900.OUT_0000644002504400250440000000007014536061315020571 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2277 elk-9.2.12/tests/test_009/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016053 xustar0030 mtime=1702388429.374499333 30 atime=1702388429.374499333 30 ctime=1702388429.374499333 elk-9.2.12/tests/test_009/TEST_910.OUT_0000644002504400250440000000052614536061315020600 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 9 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.459243458892 5 0.459243458892 6 -0.459243458892 7 0.918486917784 8 0.00000000000 9 0.00000000000 elk-9.2.12/tests/test_009/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.375499332 30 atime=1702388429.375499332 30 ctime=1702388429.375499332 elk-9.2.12/tests/test_009/TEST_500.OUT_0000644002504400250440000000013514536061315020567 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 166.666666676 elk-9.2.12/tests/test_009/PaxHeaders/TEST_510.OUT_0000644000000000000000000000012714536061315016053 xustar0029 mtime=1702388429.37649933 29 atime=1702388429.37649933 29 ctime=1702388429.37649933 elk-9.2.12/tests/test_009/TEST_510.OUT_0000644002504400250440000000014514536061315020571 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.484306017189E-01 elk-9.2.12/tests/test_009/PaxHeaders/TEST_140.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.378499327 30 atime=1702388429.377499329 30 ctime=1702388429.378499327 elk-9.2.12/tests/test_009/TEST_140.OUT_0000644002504400250440000000311414536061315020567 0ustar00dewhurstdewhurst00000000000000'ELNES cross-section' 2 50 0.100000000000E-01 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.00000000000 5 0.00000000000 6 0.00000000000 7 0.00000000000 8 0.00000000000 9 0.00000000000 10 0.00000000000 11 0.119955737552E-10 12 0.296035148117E-09 13 0.314274617984E-08 14 0.160129709690E-07 15 0.589467660054E-07 16 0.176259078931E-06 17 0.478896816194E-06 18 0.139546856224E-05 19 0.377658002637E-05 20 0.789545099619E-05 21 0.125242028308E-04 22 0.148947676654E-04 23 0.134749669526E-04 24 0.917979614130E-05 25 0.473294838765E-05 26 0.187000700280E-05 27 0.621109776232E-06 28 0.204699943636E-06 29 0.536838200249E-07 30 0.183398356302E-07 31 0.278337298476E-06 32 0.220712412930E-05 33 0.134279026551E-04 34 0.856203269293E-04 35 0.221408788378E-03 36 0.402754610488E-03 37 0.480338463887E-03 38 0.448076142724E-03 39 0.327815730279E-03 40 0.273030316601E-03 41 0.295985213640E-03 42 0.394269105172E-03 43 0.528618660320E-03 44 0.699587992018E-03 45 0.891704471866E-03 46 0.106304262255E-02 47 0.118816988134E-02 48 0.128673385194E-02 49 0.140576017529E-02 50 0.155992040513E-02 elk-9.2.12/tests/test_009/PaxHeaders/B.in0000644000000000000000000000013214536061315014664 xustar0030 mtime=1702388429.379499326 30 atime=1702388429.379499326 30 ctime=1702388429.379499326 elk-9.2.12/tests/test_009/B.in0000644002504400250440000000172214536061315017410 0ustar00dewhurstdewhurst00000000000000 'B' : spsymb 'boron' : spname -5.00000 : spzn 19707.24740 : spmass 0.894427E-06 1.8000 43.3288 300 : sprmin, rmt, sprmax, nrmt 3 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 2 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F elk-9.2.12/tests/test_009/PaxHeaders/N+.in0000644000000000000000000000013214536061315014753 xustar0030 mtime=1702388429.380499324 30 atime=1702388429.380499324 30 ctime=1702388429.380499324 elk-9.2.12/tests/test_009/N+.in0000644002504400250440000000253414536061315017501 0ustar00dewhurstdewhurst00000000000000 'N+' : spsymb 'nitrogen with pseudo core-hole' : spname -8.00000 : spzn 25532.72506 : spmass 0.755929E-06 1.4500 26.9237 300 : sprmin, rmt, sprmax, nrmt 4 : spnst 1 0 1 2.00000 F : spn, spl, spk, spocc, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 2 1 2 2.50000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -0.6020 0 T 0 3 0.1500 0 F 0.1500 1 F -20.0000 0 T elk-9.2.12/tests/PaxHeaders/test_0130000644000000000000000000000013214536061315014071 xustar0030 mtime=1702388429.394499304 30 atime=1702388429.381499323 30 ctime=1702388429.394499304 elk-9.2.12/tests/test_013/0000755002504400250440000000000014536061315016670 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_013/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013014536061315016036 xustar0029 mtime=1702388429.38349932 30 atime=1702388429.382499321 29 ctime=1702388429.38349932 elk-9.2.12/tests/test_013/TEST_400.OUT_0000644002504400250440000000014114536061315020556 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 38.9880861498 elk-9.2.12/tests/test_013/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.384499319 30 atime=1702388429.384499319 30 ctime=1702388429.384499319 elk-9.2.12/tests/test_013/TEST_450.OUT_0000644002504400250440000000014014536061315020562 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 1.37800867953 elk-9.2.12/tests/test_013/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016034 xustar0030 mtime=1702388429.385499317 30 atime=1702388429.385499317 30 ctime=1702388429.385499317 elk-9.2.12/tests/test_013/TEST_000.OUT_0000644002504400250440000000012614536061315020555 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1515.93867012 elk-9.2.12/tests/test_013/PaxHeaders/TEST_750.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.386499315 30 atime=1702388429.386499315 30 ctime=1702388429.386499315 elk-9.2.12/tests/test_013/TEST_750.OUT_0000644002504400250440000000036114536061315020572 0ustar00dewhurstdewhurst00000000000000'total forces' 2 6 0.100000000000E-02 1 -0.168645160471E-01 2 -0.383560695167E-01 3 0.295291795551E-01 4 0.168645160471E-01 5 0.383560695167E-01 6 -0.295291795551E-01 elk-9.2.12/tests/test_013/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016041 xustar0030 mtime=1702388429.388499312 30 atime=1702388429.388499312 30 ctime=1702388429.388499312 elk-9.2.12/tests/test_013/TEST_500.OUT_0000644002504400250440000000013514536061315020562 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 117.907739142 elk-9.2.12/tests/test_013/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.389499311 30 atime=1702388429.389499311 30 ctime=1702388429.389499311 elk-9.2.12/tests/test_013/TEST_510.OUT_0000644002504400250440000000014514536061315020564 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.416311297179E-04 elk-9.2.12/tests/test_013/PaxHeaders/TEST_910.OUT_0000644000000000000000000000012714536061315016052 xustar0029 mtime=1702388429.39049931 29 atime=1702388429.39049931 29 ctime=1702388429.39049931 elk-9.2.12/tests/test_013/TEST_910.OUT_0000644002504400250440000001357714536061315020605 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 192 0.100000000000E-07 1 0.714517979801E-01 2 0.142903595960 3 0.178629494950 4 0.357258989901 5 0.142903595960 6 0.178629494950 7 0.643066181821 8 0.142903595960 9 0.178629494950 10 0.928873373742 11 0.142903595960 12 0.178629494950 13 0.714517979801E-01 14 0.428710787881 15 0.178629494950 16 0.357258989901 17 0.428710787881 18 0.178629494950 19 0.643066181821 20 0.428710787881 21 0.178629494950 22 0.928873373742 23 0.428710787881 24 0.178629494950 25 0.714517979801E-01 26 0.714517979801 27 0.178629494950 28 0.357258989901 29 0.714517979801 30 0.178629494950 31 0.643066181821 32 0.714517979801 33 0.178629494950 34 0.928873373742 35 0.714517979801 36 0.178629494950 37 0.714517979801E-01 38 1.00032517172 39 0.178629494950 40 0.357258989901 41 1.00032517172 42 0.178629494950 43 0.643066181821 44 1.00032517172 45 0.178629494950 46 0.928873373742 47 1.00032517172 48 0.178629494950 49 0.714517979801E-01 50 0.142903595960 51 0.464436686871 52 0.357258989901 53 0.142903595960 54 0.464436686871 55 0.643066181821 56 0.142903595960 57 0.464436686871 58 0.928873373742 59 0.142903595960 60 0.464436686871 61 0.714517979801E-01 62 0.428710787881 63 0.464436686871 64 0.357258989901 65 0.428710787881 66 0.464436686871 67 0.643066181821 68 0.428710787881 69 0.464436686871 70 0.928873373742 71 0.428710787881 72 0.464436686871 73 0.714517979801E-01 74 0.714517979801 75 0.464436686871 76 0.357258989901 77 0.714517979801 78 0.464436686871 79 0.643066181821 80 0.714517979801 81 0.464436686871 82 0.928873373742 83 0.714517979801 84 0.464436686871 85 0.714517979801E-01 86 1.00032517172 87 0.464436686871 88 0.357258989901 89 1.00032517172 90 0.464436686871 91 0.643066181821 92 1.00032517172 93 0.464436686871 94 0.928873373742 95 1.00032517172 96 0.464436686871 97 0.714517979801E-01 98 0.142903595960 99 0.750243878791 100 0.357258989901 101 0.142903595960 102 0.750243878791 103 0.643066181821 104 0.142903595960 105 0.750243878791 106 0.928873373742 107 0.142903595960 108 0.750243878791 109 0.714517979801E-01 110 0.428710787881 111 0.750243878791 112 0.357258989901 113 0.428710787881 114 0.750243878791 115 0.643066181821 116 0.428710787881 117 0.750243878791 118 0.928873373742 119 0.428710787881 120 0.750243878791 121 0.714517979801E-01 122 0.714517979801 123 0.750243878791 124 0.357258989901 125 0.714517979801 126 0.750243878791 127 0.643066181821 128 0.714517979801 129 0.750243878791 130 0.928873373742 131 0.714517979801 132 0.750243878791 133 0.714517979801E-01 134 1.00032517172 135 0.750243878791 136 0.357258989901 137 1.00032517172 138 0.750243878791 139 0.643066181821 140 1.00032517172 141 0.750243878791 142 0.928873373742 143 1.00032517172 144 0.750243878791 145 0.714517979801E-01 146 0.142903595960 147 1.03605107071 148 0.357258989901 149 0.142903595960 150 1.03605107071 151 0.643066181821 152 0.142903595960 153 1.03605107071 154 0.928873373742 155 0.142903595960 156 1.03605107071 157 0.714517979801E-01 158 0.428710787881 159 1.03605107071 160 0.357258989901 161 0.428710787881 162 1.03605107071 163 0.643066181821 164 0.428710787881 165 1.03605107071 166 0.928873373742 167 0.428710787881 168 1.03605107071 169 0.714517979801E-01 170 0.714517979801 171 1.03605107071 172 0.357258989901 173 0.714517979801 174 1.03605107071 175 0.643066181821 176 0.714517979801 177 1.03605107071 178 0.928873373742 179 0.714517979801 180 1.03605107071 181 0.714517979801E-01 182 1.00032517172 183 1.03605107071 184 0.357258989901 185 1.00032517172 186 1.03605107071 187 0.643066181821 188 1.00032517172 189 1.03605107071 190 0.928873373742 191 1.00032517172 192 1.03605107071 elk-9.2.12/tests/test_013/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.392499307 30 atime=1702388429.391499308 30 ctime=1702388429.392499307 elk-9.2.12/tests/test_013/TEST_705.OUT_0000644002504400250440000000010114536061315020562 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 1 elk-9.2.12/tests/test_013/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.393499305 30 atime=1702388429.393499305 30 ctime=1702388429.393499305 elk-9.2.12/tests/test_013/TEST_900.OUT_0000644002504400250440000000007014536061315020564 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 4945 elk-9.2.12/tests/test_013/PaxHeaders/elk.in0000644000000000000000000000013214536061315015251 xustar0030 mtime=1702388429.394499304 30 atime=1702388429.394499304 30 ctime=1702388429.394499304 elk-9.2.12/tests/test_013/elk.in0000644002504400250440000000125014536061315017771 0ustar00dewhurstdewhurst00000000000000 ! Force test with spin-orbit coupling, removal of the source term from B_xc and ! application of a constanst A-field tasks 0 500 test .true. spinorb .true. nosource .true. tforce .true. bfieldc 0.0 0.0 0.1 afieldc 0.0 0.5 0.0 rgkmax 6.0 maxscl 4 scale 5.496 avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.1 0.2 0.3 : atposl, bfcmt 'Al.in' 1 0.51 0.52 0.485 0.4 0.4 -0.4 : atposl, bfcmt sppath '../../species/' ngridk 4 4 4 vkloff 0.25 0.5 0.625 elk-9.2.12/tests/PaxHeaders/test_0170000644000000000000000000000013214536061315014075 xustar0030 mtime=1702388429.407499284 30 atime=1702388429.395499302 30 ctime=1702388429.407499284 elk-9.2.12/tests/test_017/0000755002504400250440000000000014536061315016674 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_017/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.396499301 30 atime=1702388429.396499301 30 ctime=1702388429.396499301 elk-9.2.12/tests/test_017/TEST_800.OUT_0000644002504400250440000000022514536061315020571 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 2 0.100000000000E-07 1 159.645293857 2 40.1466806379 elk-9.2.12/tests/test_017/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016040 xustar0030 mtime=1702388429.397499299 30 atime=1702388429.397499299 30 ctime=1702388429.397499299 elk-9.2.12/tests/test_017/TEST_000.OUT_0000644002504400250440000000012614536061315020561 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -4199.45149260 elk-9.2.12/tests/test_017/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.399499296 30 atime=1702388429.398499298 30 ctime=1702388429.399499296 elk-9.2.12/tests/test_017/TEST_500.OUT_0000644002504400250440000000013514536061315020566 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.188737914117E-11 elk-9.2.12/tests/test_017/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.400499295 30 atime=1702388429.400499295 30 ctime=1702388429.400499295 elk-9.2.12/tests/test_017/TEST_510.OUT_0000644002504400250440000000014514536061315020570 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.117164643531 elk-9.2.12/tests/test_017/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.401499293 30 atime=1702388429.401499293 30 ctime=1702388429.401499293 elk-9.2.12/tests/test_017/TEST_400.OUT_0000644002504400250440000000014114536061315020562 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 63.9848896137 elk-9.2.12/tests/test_017/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016054 xustar0030 mtime=1702388429.402499292 30 atime=1702388429.402499292 30 ctime=1702388429.402499292 elk-9.2.12/tests/test_017/TEST_705.OUT_0000644002504400250440000000010114536061315020566 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 24 elk-9.2.12/tests/test_017/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013114536061315016050 xustar0030 mtime=1702388429.404499289 29 atime=1702388429.40349929 30 ctime=1702388429.404499289 elk-9.2.12/tests/test_017/TEST_900.OUT_0000644002504400250440000000007014536061315020570 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 725 elk-9.2.12/tests/test_017/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016052 xustar0030 mtime=1702388429.405499287 30 atime=1702388429.405499287 30 ctime=1702388429.405499287 elk-9.2.12/tests/test_017/TEST_910.OUT_0000644002504400250440000000037114536061315020575 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 6 0.100000000000E-07 1 -0.138777878078E-16 2 0.146981971254 3 0.587927885017 4 0.293963942509 5 0.440945913763 6 0.293963942509 elk-9.2.12/tests/test_017/PaxHeaders/elk.in0000644000000000000000000000013214536061315015255 xustar0030 mtime=1702388429.406499286 30 atime=1702388429.406499286 30 ctime=1702388429.406499286 elk-9.2.12/tests/test_017/elk.in0000644002504400250440000000120314536061315017773 0ustar00dewhurstdewhurst00000000000000 ! RDMFT test tasks 0 300 500 test .true. rdmmaxscl 1 maxitn 2 maxitc 2 mixtype 3 rgkmax 6.0 lmaxo 5 gmaxvr 0.0 avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms 0.00 0.00 0.00 0.0 0.0 0.0 : atposl, bfcmt 'As.in' : spfname 1 : natoms 0.25 0.25 0.25 0.0 0.0 0.0 : atposl, bfcmt ngridk 2 1 1 vkloff 0.25 0.5 0.625 elk-9.2.12/tests/test_017/PaxHeaders/TEST_300.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.407499284 30 atime=1702388429.407499284 30 ctime=1702388429.407499284 elk-9.2.12/tests/test_017/TEST_300.OUT_0000644002504400250440000000013414536061315020563 0ustar00dewhurstdewhurst00000000000000'RDMFT total energy' 2 1 0.100000000000E-05 1 -4060.82279671 elk-9.2.12/tests/PaxHeaders/test_0210000644000000000000000000000013214536061315014070 xustar0030 mtime=1702388429.422499262 30 atime=1702388429.408499283 30 ctime=1702388429.422499262 elk-9.2.12/tests/test_021/0000755002504400250440000000000014536061315016667 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_021/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.409499281 30 atime=1702388429.409499281 30 ctime=1702388429.409499281 elk-9.2.12/tests/test_021/TEST_450.OUT_0000644002504400250440000000014014536061315020561 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.709321368797E-16 elk-9.2.12/tests/test_021/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013114536061315016036 xustar0030 mtime=1702388429.411499278 29 atime=1702388429.41049928 30 ctime=1702388429.411499278 elk-9.2.12/tests/test_021/TEST_400.OUT_0000644002504400250440000000014114536061315020555 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 66.0189750690 elk-9.2.12/tests/test_021/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016033 xustar0030 mtime=1702388429.412499277 30 atime=1702388429.412499277 30 ctime=1702388429.412499277 elk-9.2.12/tests/test_021/TEST_000.OUT_0000644002504400250440000000012614536061315020554 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -2462.70042304 elk-9.2.12/tests/test_021/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016040 xustar0030 mtime=1702388429.413499276 30 atime=1702388429.413499276 30 ctime=1702388429.413499276 elk-9.2.12/tests/test_021/TEST_500.OUT_0000644002504400250440000000013514536061315020561 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.364761304452E-04 elk-9.2.12/tests/test_021/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016041 xustar0030 mtime=1702388429.414499274 30 atime=1702388429.414499274 30 ctime=1702388429.414499274 elk-9.2.12/tests/test_021/TEST_510.OUT_0000644002504400250440000000014514536061315020563 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.297118873854E-01 elk-9.2.12/tests/test_021/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.415499273 30 atime=1702388429.415499273 30 ctime=1702388429.415499273 elk-9.2.12/tests/test_021/TEST_705.OUT_0000644002504400250440000000010114536061315020561 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 24 elk-9.2.12/tests/test_021/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.417499269 30 atime=1702388429.416499271 30 ctime=1702388429.417499269 elk-9.2.12/tests/test_021/TEST_900.OUT_0000644002504400250440000000007014536061315020563 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 8623 elk-9.2.12/tests/test_021/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.418499268 30 atime=1702388429.418499268 30 ctime=1702388429.418499268 elk-9.2.12/tests/test_021/TEST_910.OUT_0000644002504400250440000000237014536061315020571 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 39 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.280567949614 5 -0.935226498715E-01 6 -0.935226498715E-01 7 0.561135899229 8 -0.187045299743 9 -0.187045299743 10 0.187045299743 11 0.187045299743 12 -0.187045299743 13 0.467613249357 14 0.935226498715E-01 15 -0.280567949614 16 0.748181198972 17 0.416333634234E-16 18 -0.374090599486 19 0.374090599486 20 0.374090599486 21 -0.374090599486 22 0.935226498715E-01 23 0.935226498715E-01 24 0.935226498715E-01 25 0.374090599486 26 0.416333634234E-16 27 0.555111512313E-16 28 0.654658549100 29 -0.935226498715E-01 30 -0.935226498715E-01 31 0.280567949614 32 0.280567949614 33 -0.935226498715E-01 34 0.561135899229 35 0.187045299743 36 -0.187045299743 37 0.187045299743 38 0.187045299743 39 0.187045299743 elk-9.2.12/tests/test_021/PaxHeaders/TEST_195.OUT_0000644000000000000000000000013214536061315016052 xustar0030 mtime=1702388429.419499267 30 atime=1702388429.419499267 30 ctime=1702388429.419499267 elk-9.2.12/tests/test_021/TEST_195.OUT_0000644002504400250440000000477714536061315020613 0ustar00dewhurstdewhurst00000000000000'density structure factors' 3 47 0.100000000000E-04 1 0.222781435220 -0.402294370090E-18 2 0.275815234521E-16 0.100613961607E-15 3 -0.175114278730E-16 0.763278329430E-16 4 0.897769008683E-01 0.180150825661E-15 5 0.897007448850E-01 -0.409044587545E-16 6 0.159095637832 -0.818747805988E-16 7 -0.217912097008E-16 -0.693889390391E-16 8 -0.379402887333E-16 0.131838984174E-15 9 0.403163194665E-16 -0.147451495458E-15 10 0.129015042924 -0.131756036673E-15 11 0.128978012062 -0.348021392935E-16 12 0.190101283975E-16 -0.728583859910E-16 13 -0.695150774089E-17 -0.346944695195E-16 14 0.709477772117E-01 -0.132276418829E-15 15 0.709436664690E-01 0.309012800987E-16 16 0.709341105957E-01 0.272320003318E-15 17 0.110367566625 -0.224520750959E-16 18 0.110427103260 0.252076281928E-15 19 0.251475606153E-16 0.954097911787E-16 20 -0.126133241328E-16 0.520417042793E-16 21 -0.565063300947E-16 -0.248065457065E-15 22 0.259069297327E-16 -0.111022302463E-15 23 0.980833900216E-01 0.245886325269E-15 24 -0.807399189918E-16 0.355618312575E-15 25 0.116958815703E-16 0.537764277553E-16 26 0.150256045879E-16 0.641847686111E-16 27 0.582951481884E-01 0.465442540362E-15 28 0.583608607929E-01 0.428258485983E-16 29 0.583174084690E-01 0.873448595961E-16 30 0.886390713657E-01 -0.464861911253E-15 31 0.886603914846E-01 -0.466643095403E-16 32 0.169727389030E-16 0.780625564190E-16 33 -0.367549472150E-16 0.168268177170E-15 34 0.198568313913E-16 -0.919403442268E-16 35 0.816397396140E-01 -0.868344003574E-16 36 0.816176026341E-01 0.172820187636E-15 37 0.816032034679E-01 -0.464241417373E-16 38 0.101444544622E-16 0.468375338514E-16 39 -0.126676069703E-16 -0.650521303491E-16 40 -0.102181017348E-16 0.121430643318E-16 41 0.105125114080E-16 0.537764277553E-16 42 -0.582680934570E-16 0.274953670942E-15 43 0.502376966305E-01 -0.156622654592E-15 44 0.505039326473E-01 0.301775673869E-15 45 0.505015257031E-01 -0.203903328096E-15 46 0.504649553592E-01 -0.171856536781E-15 47 0.502809230417E-01 -0.899598822379E-16 elk-9.2.12/tests/test_021/PaxHeaders/TEST_196.OUT_0000644000000000000000000000013214536061315016053 xustar0030 mtime=1702388429.421499264 30 atime=1702388429.420499265 30 ctime=1702388429.421499264 elk-9.2.12/tests/test_021/TEST_196.OUT_0000644002504400250440000000500014536061315020570 0ustar00dewhurstdewhurst00000000000000'magnetic structure factors' 3 47 0.100000000000E-03 1 0.362412261985E-17 0.769127070269E-20 2 0.268159754176E-01 -0.173084048356E-16 3 0.204349361687E-01 -0.113701330526E-16 4 0.176612619537E-17 -0.270915017850E-16 5 -0.114107815731E-18 0.601223985961E-17 6 0.166503642473E-17 0.111401773223E-16 7 0.158944879365E-01 0.921486872462E-17 8 0.125662646208E-01 -0.156683580165E-16 9 0.123650427775E-01 0.166490022687E-16 10 0.679313637272E-18 0.137287100091E-16 11 0.101175482889E-17 0.389786014903E-17 12 0.101549475052E-01 0.704111977415E-17 13 0.837997839547E-02 0.344426010154E-17 14 0.828943663359E-19 0.114213922608E-16 15 -0.126781248458E-18 -0.251907598513E-17 16 0.226682870158E-18 -0.239405392212E-16 17 -0.462852252539E-19 0.228868302348E-17 18 0.144841806854E-17 -0.208708918203E-16 19 0.692620770444E-02 -0.656866801252E-17 20 0.648560805092E-02 -0.359077017616E-17 21 0.542642231824E-02 0.168549744010E-16 22 0.583535034013E-02 0.732857079021E-17 23 -0.111265018538E-17 -0.152940268956E-16 24 0.450095425846E-02 -0.207353340892E-16 25 0.391282219676E-02 -0.328725969754E-17 26 0.406516440792E-02 -0.303238504452E-17 27 0.578385071529E-18 -0.238524477947E-16 28 0.464766663963E-18 -0.234628126389E-17 29 0.168810396270E-18 -0.407931067398E-17 30 -0.182264157104E-18 0.222735783810E-16 31 0.222132000869E-18 0.218873313571E-17 32 0.328095043637E-02 -0.312437624347E-17 33 0.329522459826E-02 -0.779496157590E-17 34 0.277976839616E-02 0.336309841414E-17 35 0.108621783796E-18 0.307642366443E-17 36 -0.430918648387E-19 -0.624093875537E-17 37 0.250492951131E-18 0.182535600133E-17 38 0.234877820923E-02 -0.171333994456E-17 39 0.221389453121E-02 0.202218261896E-17 40 0.239281723704E-02 -0.482928014902E-18 41 0.198785703331E-02 -0.142069058430E-17 42 0.179402268361E-02 -0.810309439502E-17 43 0.408276789466E-18 0.479759461325E-17 44 0.568903478480E-18 -0.858552595337E-17 45 0.644498452269E-20 0.588179678573E-17 46 0.530263016523E-18 0.462818802380E-17 47 0.340754363809E-19 0.278673839647E-17 elk-9.2.12/tests/test_021/PaxHeaders/elk.in0000644000000000000000000000013214536061315015250 xustar0030 mtime=1702388429.422499262 30 atime=1702388429.422499262 30 ctime=1702388429.422499262 elk-9.2.12/tests/test_021/elk.in0000644002504400250440000000060314536061315017771 0ustar00dewhurstdewhurst00000000000000 tasks 0 195 196 500 test .true. spinpol .true. scale 8.397946 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 'Mn.in' 2 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' 2 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 sppath '../../species/' ngridk 4 4 4 hmaxvr 4.0 reduceh .true. elk-9.2.12/tests/PaxHeaders/test_0230000644000000000000000000000013214536061315014072 xustar0030 mtime=1702388429.443499231 30 atime=1702388429.423499261 30 ctime=1702388429.443499231 elk-9.2.12/tests/test_023/0000755002504400250440000000000014536061315016671 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_023/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016051 xustar0030 mtime=1702388429.424499259 30 atime=1702388429.424499259 30 ctime=1702388429.424499259 elk-9.2.12/tests/test_023/TEST_705.OUT_0000644002504400250440000000010114536061315020563 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-9.2.12/tests/test_023/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.425499258 30 atime=1702388429.425499258 30 ctime=1702388429.425499258 elk-9.2.12/tests/test_023/TEST_900.OUT_0000644002504400250440000000007014536061315020565 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 3215 elk-9.2.12/tests/test_023/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.427499255 30 atime=1702388429.427499255 30 ctime=1702388429.427499255 elk-9.2.12/tests/test_023/TEST_910.OUT_0000644002504400250440000000531014536061315020570 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 87 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.103232654323 5 0.103232654323 6 -0.103232654323 7 0.206465308646 8 0.206465308646 9 -0.206465308646 10 0.309697962970 11 0.309697962970 12 -0.309697962970 13 0.412930617293 14 0.412930617293 15 -0.412930617293 16 0.206465308646 17 0.00000000000 18 0.00000000000 19 0.309697962970 20 0.103232654323 21 -0.103232654323 22 0.412930617293 23 0.206465308646 24 -0.206465308646 25 0.516163271616 26 0.309697962970 27 -0.309697962970 28 0.619395925939 29 0.412930617293 30 -0.412930617293 31 0.722628580263 32 0.516163271616 33 -0.516163271616 34 0.825861234586 35 0.619395925939 36 -0.619395925939 37 0.412930617293 38 0.00000000000 39 0.00000000000 40 0.516163271616 41 0.103232654323 42 -0.103232654323 43 0.619395925939 44 0.206465308646 45 -0.206465308646 46 0.722628580263 47 0.309697962970 48 -0.309697962970 49 0.825861234586 50 0.412930617293 51 -0.412930617293 52 0.619395925939 53 -0.277555756156E-16 54 0.277555756156E-16 55 0.722628580263 56 0.103232654323 57 -0.103232654323 58 0.825861234586 59 0.206465308646 60 -0.206465308646 61 0.825861234586 62 0.00000000000 63 0.00000000000 64 0.412930617293 65 0.206465308646 66 0.00000000000 67 0.516163271616 68 0.309697962970 69 -0.103232654323 70 0.619395925939 71 0.412930617293 72 -0.206465308646 73 0.619395925939 74 0.206465308646 75 0.277555756156E-16 76 0.722628580263 77 0.309697962970 78 -0.103232654323 79 0.825861234586 80 0.412930617293 81 -0.206465308646 82 0.825861234586 83 0.206465308646 84 0.00000000000 85 0.825861234586 86 0.412930617293 87 0.00000000000 elk-9.2.12/tests/test_023/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.428499253 30 atime=1702388429.428499253 30 ctime=1702388429.428499253 elk-9.2.12/tests/test_023/TEST_500.OUT_0000644002504400250440000000013514536061315020563 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.192540375316E-05 elk-9.2.12/tests/test_023/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.429499252 30 atime=1702388429.429499252 30 ctime=1702388429.429499252 elk-9.2.12/tests/test_023/TEST_510.OUT_0000644002504400250440000000014514536061315020565 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.323126315162 elk-9.2.12/tests/test_023/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013114536061315016040 xustar0030 mtime=1702388429.431499249 29 atime=1702388429.43049925 30 ctime=1702388429.431499249 elk-9.2.12/tests/test_023/TEST_400.OUT_0000644002504400250440000000014114536061315020557 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 12.0281690167 elk-9.2.12/tests/test_023/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.432499247 30 atime=1702388429.432499247 30 ctime=1702388429.432499247 elk-9.2.12/tests/test_023/TEST_450.OUT_0000644002504400250440000000014014536061315020563 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.212291342803E-23 elk-9.2.12/tests/test_023/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016035 xustar0030 mtime=1702388429.433499246 30 atime=1702388429.433499246 30 ctime=1702388429.433499246 elk-9.2.12/tests/test_023/TEST_000.OUT_0000644002504400250440000000012614536061315020556 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -106.905945855 elk-9.2.12/tests/test_023/PaxHeaders/TEST_121.OUT_0000644000000000000000000000013214536061315016041 xustar0030 mtime=1702388429.434499244 30 atime=1702388429.434499244 30 ctime=1702388429.434499244 elk-9.2.12/tests/test_023/TEST_121.OUT_0000644002504400250440000000523114536061315020564 0ustar00dewhurstdewhurst00000000000000'optical conductivity' 3 50 0.100000000000E-01 1 0.580602037548E-03 0.00000000000 2 0.583360013906E-03 -0.174394344266E-02 3 0.591744905968E-03 -0.350452166851E-02 4 0.606098509374E-03 -0.529903985214E-02 5 0.627028290147E-03 -0.714620989663E-02 6 0.655470516540E-03 -0.906702967299E-02 7 0.692796987850E-03 -0.110859110125E-01 8 0.740987854055E-03 -0.132322149246E-01 9 0.802915417463E-03 -0.155424506112E-01 10 0.882823544024E-03 -0.180635774718E-01 11 0.987172239731E-03 -0.208582061957E-01 12 0.112621460813E-02 -0.240132411607E-01 13 0.131716654743E-02 -0.276551704507E-01 14 0.159123804766E-02 -0.319793472100E-01 15 0.201151940275E-02 -0.373123001225E-01 16 0.272902268905E-02 -0.442659895269E-01 17 0.423822543560E-02 -0.542232983676E-01 18 0.102332656802E-01 -0.709409151855E-01 19 0.322594404938E-01 -0.853734356638E-01 20 0.651085018531E-01 -0.952925695980E-01 21 0.981858723047E-01 -0.784054759993E-01 22 0.769866582981E-01 -0.630845555910E-02 23 0.784852724505E-01 -0.116295645603E-01 24 0.493340996812E-01 -0.616033222035E-02 25 0.453311556300E-01 -0.214179751451E-01 26 0.363505791095E-01 -0.352990737942E-01 27 0.609881560941E-01 -0.644139244517E-01 28 0.124505999384 -0.230163851758E-01 29 0.754441604382E-01 -0.149204226352E-01 30 0.104801347820 -0.740888462258E-01 31 0.193499498846 -0.138582794620E-01 32 0.145549431809 0.408364511459E-01 33 0.164607685574 0.985172525384E-01 34 0.675811177514E-01 0.133528010788 35 0.286453119487E-01 0.101780624648 36 0.286455435520E-01 0.698003062570E-01 37 0.202342487467E-01 0.588956368726E-01 38 0.184717944913E-01 0.455354793761E-01 39 0.333892129430E-01 0.381548934780E-01 40 0.232588609951E-01 0.505097680017E-01 41 0.144278358319E-01 0.361255011629E-01 42 0.299203353296E-01 0.360913199546E-01 43 0.166582352086E-01 0.346532314773E-01 44 0.245061665943E-01 0.298293686918E-01 45 0.206225369427E-01 0.331456120104E-01 46 0.232748562758E-01 0.330117029760E-01 47 0.174502204309E-01 0.298999474337E-01 48 0.160139481205E-01 0.269734597212E-01 49 0.178178746029E-01 0.234669435893E-01 50 0.170695783464E-01 0.231148741257E-01 elk-9.2.12/tests/test_023/PaxHeaders/TEST_125.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.436499242 30 atime=1702388429.435499243 30 ctime=1702388429.436499242 elk-9.2.12/tests/test_023/TEST_125.OUT_0000644002504400250440000000523614536061315020575 0ustar00dewhurstdewhurst00000000000000'non-linear susceptibility' 3 50 0.100000000000E-01 1 0.872967039972E-06 0.860886386491E-06 2 0.644006842239E-06 0.107361147695E-06 3 0.415029240895E-06 -0.666651113553E-06 4 0.170009602193E-06 -0.151562383078E-05 5 -0.115250513355E-06 -0.251575420377E-05 6 -0.485876133661E-06 -0.379384020574E-05 7 -0.104466377703E-05 -0.559776565264E-05 8 -0.209111397168E-05 -0.850779341216E-05 9 -0.490270907261E-05 -0.142441454036E-04 10 -0.197595108008E-04 -0.281205878263E-04 11 -0.451543048133E-04 0.470188102116E-04 12 -0.577053273558E-05 0.236628907098E-04 13 0.679717760960E-06 0.164844266496E-04 14 0.439364701607E-05 0.149108103560E-04 15 0.350985257203E-05 0.227031730600E-05 16 0.653799656075E-05 -0.375402912753E-05 17 -0.142791848859E-05 -0.272287542789E-05 18 -0.288564249610E-05 -0.552480257228E-05 19 -0.676658838299E-05 -0.118084011735E-04 20 -0.388382317490E-04 -0.283614912755E-04 21 -0.232786611146E-04 0.512069719322E-04 22 -0.573042585178E-05 0.198557813365E-04 23 -0.274484591469E-05 0.233861756520E-04 24 0.212151861561E-04 0.424671479095E-05 25 -0.781964200740E-05 0.777422694946E-05 26 0.553451768833E-05 0.148177154495E-04 27 -0.102906841370E-04 0.311996278910E-04 28 0.579606445854E-04 -0.224815636503E-04 29 0.555608898688E-05 0.378461228736E-05 30 -0.109113017637E-04 -0.520160990824E-05 31 0.143612653352E-04 0.560816903423E-05 32 0.271044543066E-05 0.152396923056E-05 33 0.550914536630E-05 -0.162263893067E-05 34 -0.708176350180E-06 -0.477095311834E-05 35 0.942098920378E-05 0.148187140377E-05 36 0.141598083607E-05 -0.898081288045E-05 37 0.784057758366E-05 -0.809098972517E-05 38 -0.142589276844E-04 0.114972366517E-04 39 -0.154283110321E-04 0.741862885638E-05 40 0.658093472212E-06 0.302215558502E-05 41 0.669703359518E-06 0.378521293737E-05 42 -0.118168357152E-05 0.150888752629E-05 43 -0.383708862408E-07 0.378520061243E-05 44 -0.163240201734E-06 0.605823013039E-06 45 0.429833274634E-05 -0.128186750408E-05 46 0.691582716294E-05 0.317855378969E-05 47 -0.127585618450E-04 -0.576744602580E-05 48 0.240789930807E-04 0.149621237027E-04 49 0.247042926437E-05 0.109045619866E-05 50 -0.384050832228E-05 0.128672561501E-05 elk-9.2.12/tests/test_023/PaxHeaders/TEST_800.OUT_0000644000000000000000000000012714536061315016051 xustar0029 mtime=1702388429.43749924 29 atime=1702388429.43749924 29 ctime=1702388429.43749924 elk-9.2.12/tests/test_023/TEST_800.OUT_0000644002504400250440000000173214536061315020572 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 29 0.100000000000E-07 1 3471.42385475 2 449.999268017 3 102.126006040 4 44.4368907338 5 24.8077399615 6 316.225134909 7 110.172109929 8 49.8595800454 9 27.6688640011 10 33.2606437898 11 63.9928181320 12 159.609474644 13 74.9097699406 14 44.1226890559 15 26.9879912411 16 23.3873537479 17 37.5424793079 18 32.9874812327 19 23.2415139523 20 16.4427726861 21 18.4974249639 22 58.8819748233 23 33.7934093072 24 21.1301369304 25 29.5144616450 26 20.0273396337 27 22.9243588415 28 17.3643897759 29 14.7360936588 elk-9.2.12/tests/test_023/PaxHeaders/TEST_320.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.442499233 30 atime=1702388429.438499238 30 ctime=1702388429.442499233 elk-9.2.12/tests/test_023/TEST_320.OUT_0000644002504400250440000116230414536061315020573 0ustar00dewhurstdewhurst00000000000000'inverse epsilon' 3 6050 0.100000000000E-01 1 0.447756642202 -0.100703924599E-07 2 -0.307609490257E-05 -0.206856579679E-11 3 0.200737979369E-05 0.384088705353E-12 4 -0.381865246028E-01 0.537824266482E-05 5 0.381865246242E-01 0.537511216017E-05 6 0.381935007079E-01 0.173704927653E-05 7 0.381856327704E-01 -0.809968276928E-05 8 -0.381935006905E-01 0.174016719229E-05 9 -0.381856327723E-01 -0.809656861251E-05 10 0.381753711365E-01 -0.584441377909E-05 11 -0.381753711276E-01 -0.584127320544E-05 12 -0.307595330434E-05 0.248743336406E-11 13 0.447757094141 -0.100703879311E-07 14 0.535228403624E-06 0.154808825677E-11 15 -0.381900067699E-01 0.398879942764E-05 16 0.381900067687E-01 0.398569457236E-05 17 -0.381828821333E-01 -0.720905987081E-05 18 -0.381904837763E-01 0.453858840501E-05 19 0.381828821118E-01 -0.721218850950E-05 20 0.381904837720E-01 0.453547508327E-05 21 0.381812400896E-01 -0.534914665888E-05 22 -0.381812401037E-01 -0.534602294910E-05 23 0.200725263276E-05 -0.596794722017E-12 24 0.535285931447E-06 -0.140645968521E-11 25 0.447754887774 -0.100703553864E-07 26 -0.381761416533E-01 0.287812788708E-05 27 0.381761416528E-01 0.287499139879E-05 28 0.381928020237E-01 0.626330502167E-06 29 -0.381880957854E-01 0.475718571560E-06 30 -0.381928020181E-01 0.629468341617E-06 31 0.381880957743E-01 0.472581754166E-06 32 -0.381702382970E-01 -0.612666633568E-05 33 0.381702382971E-01 -0.612980147593E-05 34 -0.381865246038E-01 -0.537539200928E-05 35 -0.381900067711E-01 -0.398588787604E-05 36 -0.381761416586E-01 -0.287475100169E-05 37 0.819710237652 0.611768182004E-08 38 -0.366284645322E-01 -0.168518160881E-04 39 -0.493516381684E-01 0.299889167421E-06 40 -0.639503479478E-01 0.650681295301E-05 41 -0.639570807082E-01 0.148187642686E-04 42 -0.493578843082E-01 -0.711787328532E-05 43 -0.494013220653E-01 -0.609788026403E-05 44 -0.639125523255E-01 0.167421062234E-04 45 0.381865246244E-01 -0.537851646973E-05 46 0.381900067688E-01 -0.398903881075E-05 47 0.381761416573E-01 -0.287786876716E-05 48 -0.366284645317E-01 0.168529054844E-04 49 0.819710237627 -0.258086303904E-08 50 -0.639570807030E-01 -0.148169818324E-04 51 -0.493578843284E-01 0.711929914751E-05 52 -0.493516381688E-01 -0.298461947290E-06 53 -0.639503479646E-01 -0.650499809989E-05 54 -0.639125523390E-01 -0.167403014285E-04 55 -0.494013220803E-01 0.609930363593E-05 56 0.381935006908E-01 -0.173918916074E-05 57 -0.381828821242E-01 0.721263843477E-05 58 0.381928020279E-01 -0.629987089175E-06 59 -0.493516381273E-01 -0.299014331973E-06 60 -0.639570806750E-01 0.148205892466E-04 61 0.819782833562 0.179748697835E-08 62 -0.639878785882E-01 -0.124785770404E-06 63 -0.367180750146E-01 0.323505832864E-04 64 -0.493283341918E-01 0.737350372397E-06 65 -0.493318382596E-01 -0.316613515104E-04 66 -0.639679631159E-01 -0.105567942457E-04 67 0.381856327673E-01 0.809619747394E-05 68 -0.381904837984E-01 -0.453509238160E-05 69 -0.381880957741E-01 -0.473157214366E-06 70 -0.639503480401E-01 -0.650682711093E-05 71 -0.493578843906E-01 -0.711776570502E-05 72 -0.639878785733E-01 0.128338311860E-06 73 0.819799507343 -0.640993961557E-09 74 -0.493283341437E-01 0.738319621325E-06 75 -0.367227004274E-01 -0.445200249329E-04 76 -0.639806577604E-01 0.276033157638E-04 77 -0.493284101445E-01 0.251235371610E-04 78 -0.381935006736E-01 -0.173604931612E-05 79 0.381828821038E-01 0.720951191551E-05 80 -0.381928020225E-01 -0.626868553505E-06 81 -0.639570806809E-01 -0.148187721629E-04 82 -0.493516381277E-01 0.300429783232E-06 83 -0.367180750154E-01 -0.323494915881E-04 84 -0.493283341673E-01 -0.735935048058E-06 85 0.819782833582 0.173740787493E-08 86 -0.639878785941E-01 0.126594792045E-06 87 -0.639679631034E-01 0.105585882153E-04 88 -0.493318382641E-01 0.316627817773E-04 89 -0.381856327683E-01 0.809933825119E-05 90 0.381904837933E-01 -0.453823498919E-05 91 0.381880957627E-01 -0.476274950485E-06 92 -0.493578843701E-01 0.711918255012E-05 93 -0.639503480566E-01 0.650861077003E-05 94 -0.493283341680E-01 -0.736893855544E-06 95 -0.367227004263E-01 0.445211164725E-04 96 -0.639878785791E-01 -0.126546392904E-06 97 0.819799507316 0.417534881014E-08 98 -0.493284101549E-01 -0.251221168870E-04 99 -0.639806577648E-01 -0.276015159711E-04 100 0.381753711512E-01 0.584170807422E-05 101 0.381812400601E-01 0.534590149437E-05 102 -0.381702382977E-01 0.613045022131E-05 103 -0.494013220392E-01 0.609874025362E-05 104 -0.639125523889E-01 0.167484581245E-04 105 -0.493318382519E-01 0.316644241152E-04 106 -0.639806577911E-01 -0.275967435592E-04 107 -0.639679630595E-01 -0.105533532213E-04 108 -0.493284102597E-01 0.251238185030E-04 109 0.819636118639 -0.474410747308E-08 110 -0.365685274019E-01 -0.258779666057E-04 111 -0.381753711418E-01 0.584482130831E-05 112 -0.381812400733E-01 0.534903246913E-05 113 0.381702382988E-01 0.612733010006E-05 114 -0.639125523761E-01 -0.167466663592E-04 115 -0.494013220546E-01 -0.609731886582E-05 116 -0.639679630716E-01 0.105551587050E-04 117 -0.493284102504E-01 -0.251223980363E-04 118 -0.493318382579E-01 -0.316630128931E-04 119 -0.639806577942E-01 0.275985438709E-04 120 -0.365685274012E-01 0.258790543305E-04 121 0.819636118609 0.828245768021E-08 122 0.447087988828 -0.446814363169E-03 123 -0.307263607312E-05 0.222130090370E-08 124 0.201084393057E-05 0.240069044776E-08 125 -0.382094337827E-01 -0.987092209414E-05 126 0.382094088878E-01 0.206603965654E-04 127 0.382164022424E-01 0.170216682670E-04 128 0.382085104794E-01 0.714196288357E-05 129 -0.382164131665E-01 -0.135234360494E-04 130 -0.382084993712E-01 -0.233565033065E-04 131 0.381982466727E-01 0.939598577890E-05 132 -0.381982339359E-01 -0.210984588401E-04 133 -0.307267114862E-05 0.228377798676E-08 134 0.447088441443 -0.446813908278E-03 135 0.539215355005E-06 0.264264110633E-08 136 -0.382129248025E-01 -0.112808394812E-04 137 0.382129134172E-01 0.192714347672E-04 138 -0.382057421781E-01 -0.224654277035E-04 139 -0.382133993522E-01 -0.107275164595E-04 140 0.382057558028E-01 0.802590904913E-05 141 0.382133873720E-01 0.198210723521E-04 142 0.382041178111E-01 0.989049568255E-05 143 -0.382041042368E-01 -0.206062678294E-04 144 0.201087665149E-05 0.234474506507E-08 145 0.539203957527E-06 0.265708973169E-08 146 0.447086231422 -0.446816357929E-03 147 -0.381990049129E-01 -0.123588692887E-04 148 0.381989983183E-01 0.181232760745E-04 149 0.382157042770E-01 0.158852560637E-04 150 -0.382110009800E-01 -0.147843850595E-04 151 -0.382156943356E-01 -0.146467784468E-04 152 0.382109878238E-01 0.157494826396E-04 153 -0.381930896911E-01 -0.213837141692E-04 154 0.381931095793E-01 0.910030401152E-05 155 -0.382094096227E-01 -0.206606787393E-04 156 -0.382129140361E-01 -0.192716089247E-04 157 -0.381989973618E-01 -0.181230362241E-04 158 0.819598349356 -0.747024568257E-04 159 -0.366684928305E-01 -0.435812340316E-04 160 -0.494036757142E-01 -0.344504180659E-04 161 -0.639998698594E-01 -0.265432803166E-04 162 -0.640066063364E-01 -0.182328360697E-04 163 -0.494099197137E-01 -0.418761414415E-04 164 -0.494533875250E-01 -0.408808375859E-04 165 -0.639620470678E-01 -0.162950709199E-04 166 0.382094330479E-01 0.987065055506E-05 167 0.382129241913E-01 0.112805808060E-04 168 0.381990058737E-01 0.123591254542E-04 169 -0.366684901824E-01 -0.988046887057E-05 170 0.819598322909 -0.747111592590E-04 171 -0.640065874139E-01 -0.478885887788E-04 172 -0.494099252316E-01 -0.276299409705E-04 173 -0.494036718173E-01 -0.350519363968E-04 174 -0.639998516637E-01 -0.395739834630E-04 175 -0.639620241272E-01 -0.497826259069E-04 176 -0.494533966480E-01 -0.286675306483E-04 177 0.382164162962E-01 0.135244130371E-04 178 -0.382057543820E-01 -0.802550567433E-05 179 0.382156926817E-01 0.146462838620E-04 180 -0.494036735584E-01 -0.350526105173E-04 181 -0.640066007466E-01 -0.182310918793E-04 182 0.819670972599 -0.746797711683E-04 183 -0.640374216684E-01 -0.332031893724E-04 184 -0.367581608395E-01 0.559260367930E-05 185 -0.493803447213E-01 -0.339991532241E-04 186 -0.493838574721E-01 -0.664302874530E-04 187 -0.640174859623E-01 -0.436258586191E-04 188 0.382084982470E-01 0.233561407112E-04 189 -0.382133863321E-01 -0.198206604686E-04 190 -0.382109897359E-01 -0.157500535631E-04 191 -0.639998573350E-01 -0.395755302322E-04 192 -0.494099192666E-01 -0.418758434978E-04 193 -0.640374188978E-01 -0.329542396562E-04 194 0.819687653351 -0.746725856681E-04 195 -0.493803417192E-01 -0.339982573361E-04 196 -0.367627742090E-01 -0.713065704602E-04 197 -0.640301800143E-01 -0.545156004799E-05 198 -0.493804502570E-01 -0.961403734119E-05 199 -0.382163990988E-01 -0.170206661559E-04 200 0.382057435753E-01 0.224659264959E-04 201 -0.382157059258E-01 -0.158858186782E-04 202 -0.640065929479E-01 -0.478904607834E-04 203 -0.494036738912E-01 -0.344499992230E-04 204 -0.367581491018E-01 -0.591250616975E-04 205 -0.493803438830E-01 -0.354692338395E-04 206 0.819670972415 -0.746798311654E-04 207 -0.640374242966E-01 -0.329559377471E-04 208 -0.640174814745E-01 -0.225014295051E-04 209 -0.493838868628E-01 -0.306991515730E-05 210 -0.382085115975E-01 -0.714231423933E-05 211 0.382134004209E-01 0.107278427282E-04 212 0.382109990586E-01 0.147838259370E-04 213 -0.494099258027E-01 -0.276298663564E-04 214 -0.639998643724E-01 -0.265411994368E-04 215 -0.493803468369E-01 -0.354702670028E-04 216 -0.367627962697E-01 0.177676243094E-04 217 -0.640374270382E-01 -0.332049963857E-04 218 0.819687668006 -0.746677673958E-04 219 -0.493804333821E-01 -0.598835292147E-04 220 -0.640301800897E-01 -0.606781911885E-04 221 0.381982354523E-01 0.210989029400E-04 222 0.382041040085E-01 0.206061999727E-04 223 -0.381931077156E-01 -0.909963793823E-05 224 -0.494533982690E-01 -0.286681694796E-04 225 -0.639620276100E-01 -0.162885577431E-04 226 -0.493838816621E-01 -0.306829006837E-05 227 -0.640301654950E-01 -0.606733233135E-04 228 -0.640174753899E-01 -0.436225499541E-04 229 -0.493804494012E-01 -0.961343190484E-05 230 0.819524163261 -0.747360606509E-04 231 -0.366085224375E-01 -0.526141845287E-04 232 -0.381982451651E-01 -0.939558889695E-05 233 -0.382041179940E-01 -0.989066548216E-05 234 0.381930915627E-01 0.213843629695E-04 235 -0.639620436858E-01 -0.497888329656E-04 236 -0.494533858519E-01 -0.408803508761E-04 237 -0.640174919574E-01 -0.225049934379E-04 238 -0.493804344477E-01 -0.598834860148E-04 239 -0.493838626601E-01 -0.664319668869E-04 240 -0.640301946701E-01 -0.545623924486E-05 241 -0.366085465886E-01 -0.821000988990E-06 242 0.819524202857 -0.747230284721E-04 243 0.445068854241 -0.902467488313E-03 244 -0.306244909536E-05 0.453347724853E-08 245 0.202159619181E-05 0.484737720510E-08 246 -0.382781633519E-01 -0.250999578647E-04 247 0.382781128628E-01 0.359988001410E-04 248 0.382851445067E-01 0.323443182087E-04 249 0.382771585919E-01 0.223811352400E-04 250 -0.382851667947E-01 -0.287824039499E-04 251 -0.382771360599E-01 -0.386510009482E-04 252 0.382668865568E-01 0.246353838259E-04 253 -0.382668608010E-01 -0.363886520925E-04 254 -0.306249888996E-05 0.456798721854E-08 255 0.445069308937 -0.902466543682E-03 256 0.551262414197E-06 0.542652459802E-08 257 -0.382816947843E-01 -0.265509841768E-04 258 0.382816717120E-01 0.345903354284E-04 259 -0.382743615784E-01 -0.377562260984E-04 260 -0.382821613169E-01 -0.259906744332E-04 261 0.382743891521E-01 0.232614477747E-04 262 0.382821370277E-01 0.351432135636E-04 263 0.382727634285E-01 0.251252264524E-04 264 -0.382727358865E-01 -0.359033791924E-04 265 0.202164225277E-05 0.481415780109E-08 266 0.551245304505E-06 0.542480033866E-08 267 0.445067087785 -0.902471554830E-03 268 -0.382676138350E-01 -0.276002419558E-04 269 0.382676004083E-01 0.333988512866E-04 270 0.382844278727E-01 0.311430611846E-04 271 -0.382797302807E-01 -0.300439711787E-04 272 -0.382844076151E-01 -0.299571151485E-04 273 0.382797036329E-01 0.310599841900E-04 274 -0.382616892462E-01 -0.366839732596E-04 275 0.382617295211E-01 0.243190038452E-04 276 -0.382781143534E-01 -0.359990844367E-04 277 -0.382816729446E-01 -0.345904921702E-04 278 -0.382675985021E-01 -0.333986143606E-04 279 0.819261313966 -0.150311359719E-03 280 -0.367891584094E-01 -0.706974531657E-04 281 -0.495605531381E-01 -0.697126023960E-04 282 -0.641490528963E-01 -0.599999788396E-04 283 -0.641557998646E-01 -0.516899463145E-04 284 -0.495668000914E-01 -0.771585757176E-04 285 -0.496103620601E-01 -0.761954343348E-04 286 -0.641111433501E-01 -0.497524511818E-04 287 0.382781618613E-01 0.250996882105E-04 288 0.382816935598E-01 0.265507076664E-04 289 0.382676157450E-01 0.276004904012E-04 290 -0.367891530276E-01 -0.370086848574E-04 291 0.819261261073 -0.150320073810E-03 292 -0.641557618292E-01 -0.814060058038E-04 293 -0.495668111784E-01 -0.628851881337E-04 294 -0.495605453150E-01 -0.703236653297E-04 295 -0.641490163033E-01 -0.730876298020E-04 296 -0.641110974418E-01 -0.832554507091E-04 297 -0.496103804707E-01 -0.639334867350E-04 298 0.382851730487E-01 0.287833859631E-04 299 -0.382743863000E-01 -0.232610891630E-04 300 0.382844043021E-01 0.299566411192E-04 301 -0.495605488386E-01 -0.703244614352E-04 302 -0.641557887153E-01 -0.516882820309E-04 303 0.819334045998 -0.150261278288E-03 304 -0.641866894098E-01 -0.667033689000E-04 305 -0.368789906364E-01 -0.215390196856E-04 306 -0.495371437745E-01 -0.692536966377E-04 307 -0.495407130213E-01 -0.101750772698E-03 308 -0.641666855066E-01 -0.771297279790E-04 309 0.382771338211E-01 0.386506489247E-04 310 -0.382821349218E-01 -0.351427668162E-04 311 -0.382797074461E-01 -0.310605521816E-04 312 -0.641490275733E-01 -0.730888950336E-04 313 -0.495667991171E-01 -0.771580881423E-04 314 -0.641866838519E-01 -0.664668976046E-04 315 0.819350762736 -0.150244343437E-03 316 -0.495371378156E-01 -0.692528729270E-04 317 -0.368836015976E-01 -0.985176926862E-04 318 -0.641793824386E-01 -0.389102176173E-04 319 -0.495373224525E-01 -0.448426816554E-04 320 -0.382851382403E-01 -0.323433178391E-04 321 0.382743644063E-01 0.377567703063E-04 322 -0.382844311794E-01 -0.311436455605E-04 323 -0.641557729226E-01 -0.814079603684E-04 324 -0.495605495325E-01 -0.697123056198E-04 325 -0.368789670635E-01 -0.863096008518E-04 326 -0.495371421476E-01 -0.707141198445E-04 327 0.819334045612 -0.150261338045E-03 328 -0.641866946323E-01 -0.664685509976E-04 329 -0.641666766180E-01 -0.559780378776E-04 330 -0.495407721159E-01 -0.382812136604E-04 331 -0.382771608245E-01 -0.223814919654E-04 332 0.382821634505E-01 0.259909720499E-04 333 0.382797264591E-01 0.300434146498E-04 334 -0.495668122767E-01 -0.628849213381E-04 335 -0.641490418108E-01 -0.599976139239E-04 336 -0.495371480582E-01 -0.707152281080E-04 337 -0.368836459387E-01 -0.934401115012E-05 338 -0.641867001611E-01 -0.667052234629E-04 339 0.819350792083 -0.150239519318E-03 340 -0.495372884988E-01 -0.951839759574E-04 341 -0.641793824387E-01 -0.942024786832E-04 342 0.382668638161E-01 0.363890992168E-04 343 0.382727354612E-01 0.359033666143E-04 344 -0.382617257837E-01 -0.243183192552E-04 345 -0.496103837561E-01 -0.639342018786E-04 346 -0.641111043595E-01 -0.497457733966E-04 347 -0.495407617234E-01 -0.382796053836E-04 348 -0.641793532134E-01 -0.941975128244E-04 349 -0.641666644121E-01 -0.771265494603E-04 350 -0.495373206268E-01 -0.448417520058E-04 351 0.819186992243 -0.150367983790E-03 352 -0.367291145855E-01 -0.797775107302E-04 353 -0.382668835488E-01 -0.246349942632E-04 354 -0.382727638094E-01 -0.251254575963E-04 355 0.382616929921E-01 0.366846107344E-04 356 -0.641111365332E-01 -0.832615034001E-04 357 -0.496103587224E-01 -0.761950215792E-04 358 -0.641666976229E-01 -0.559817381267E-04 359 -0.495372905344E-01 -0.951836077676E-04 360 -0.495407234011E-01 -0.101752471300E-03 361 -0.641794117249E-01 -0.389148070755E-04 362 -0.367291632505E-01 -0.278752986852E-04 363 0.819187071500 -0.150354934681E-03 364 0.441659012825 -0.137631388355E-02 365 -0.304525009354E-05 0.693146758322E-08 366 0.203995819829E-05 0.747897724529E-08 367 -0.383927816006E-01 -0.403150681878E-04 368 0.383927041144E-01 0.513996218588E-04 369 0.383997961365E-01 0.477139481604E-04 370 0.383916431496E-01 0.376244011215E-04 371 -0.383998306635E-01 -0.440437373999E-04 372 -0.383916085445E-01 -0.539880374986E-04 373 0.383813566207E-01 0.398803279256E-04 374 -0.383813172425E-01 -0.517197461734E-04 375 -0.304530348325E-05 0.695474191763E-08 376 0.441659471165 -0.137631237585E-02 377 0.571976799821E-06 0.847082699874E-08 378 -0.383963863533E-01 -0.418290606773E-04 379 0.383963509671E-01 0.499512044700E-04 380 -0.383888055449E-01 -0.530892959476E-04 381 -0.383968391587E-01 -0.412581839259E-04 382 0.383888476944E-01 0.385008904060E-04 383 0.383968018707E-01 0.505107477613E-04 384 0.383872427151E-01 0.403613680787E-04 385 -0.383872004194E-01 -0.512454377253E-04 386 0.204000754817E-05 0.745326754907E-08 387 0.571958335934E-06 0.845935093368E-08 388 0.441657230895 -0.137632018213E-02 389 -0.383820334524E-01 -0.428525127625E-04 390 0.383820127004E-01 0.487092808416E-04 391 0.383990408910E-01 0.464066088969E-04 392 -0.383943520189E-01 -0.453100428294E-04 393 -0.383990095279E-01 -0.453101508352E-04 394 0.383943111611E-01 0.464126943498E-04 395 -0.383761019249E-01 -0.520356883620E-04 396 0.383761636185E-01 0.395322980633E-04 397 -0.383927063605E-01 -0.513999083041E-04 398 -0.383963528137E-01 -0.499513437364E-04 399 -0.383820098652E-01 -0.487090510896E-04 400 0.818695046028 -0.227756816575E-03 401 -0.369922361141E-01 -0.986078514477E-04 402 -0.498246094138E-01 -0.106023854965E-03 403 -0.643998286065E-01 -0.943054895875E-04 404 -0.644065929699E-01 -0.859947773829E-04 405 -0.498308644572E-01 -0.113502611312E-03 406 -0.498745859652E-01 -0.112579668652E-03 407 -0.643617713540E-01 -0.840723553471E-04 408 0.383927793547E-01 0.403148003140E-04 409 0.383963845149E-01 0.418287660130E-04 410 0.383820362911E-01 0.428527501659E-04 411 -0.369922278240E-01 -0.649395102384E-04 412 0.818694966640 -0.227765550187E-03 413 -0.644065354218E-01 -0.115812318143E-03 414 -0.498308812587E-01 -0.991835638272E-04 415 -0.498245976058E-01 -0.106650970010E-03 416 -0.643997732398E-01 -0.107488969534E-03 417 -0.643617024503E-01 -0.117601107135E-03 418 -0.498746140308E-01 -0.100235736226E-03 419 0.383998400496E-01 0.440447248256E-04 420 -0.383888434090E-01 -0.385005766845E-04 421 0.383990045531E-01 0.453096978007E-04 422 -0.498246029122E-01 -0.106651888379E-03 423 -0.644065762551E-01 -0.859931923655E-04 424 0.818767970084 -0.227678537660E-03 425 -0.644376146201E-01 -0.101068182679E-03 426 -0.370823414587E-01 -0.494521462797E-04 427 -0.498010691505E-01 -0.105563336193E-03 428 -0.498047437435E-01 -0.138160788175E-03 429 -0.644174934572E-01 -0.111511274923E-03 430 0.383916052020E-01 0.539876979864E-04 431 -0.383967986863E-01 -0.505102646323E-04 432 -0.383943168652E-01 -0.464132570366E-04 433 -0.643997901142E-01 -0.107489953725E-03 434 -0.498308629602E-01 -0.113501934771E-03 435 -0.644376062126E-01 -0.100852633778E-03 436 0.818784752393 -0.227651595301E-03 437 -0.498010602290E-01 -0.105562583695E-03 438 -0.370869597264E-01 -0.126562023307E-03 439 -0.644301968534E-01 -0.732149919004E-04 440 -0.498013657268E-01 -0.810991963272E-04 441 -0.383997867382E-01 -0.477129476073E-04 442 0.383888098061E-01 0.530898861818E-04 443 -0.383990458592E-01 -0.464072163163E-04 444 -0.644065520805E-01 -0.115814356379E-03 445 -0.498246040251E-01 -0.106023680616E-03 446 -0.370823058536E-01 -0.114311407036E-03 447 -0.498010667860E-01 -0.107007521575E-03 448 0.818767969496 -0.227678597011E-03 449 -0.644376223809E-01 -0.100854243445E-03 450 -0.644174803204E-01 -0.903137406133E-04 451 -0.498048331910E-01 -0.745076645340E-04 452 -0.383916464859E-01 -0.376247614013E-04 453 0.383968423706E-01 0.412584557909E-04 454 0.383943463063E-01 0.453094904741E-04 455 -0.498308828799E-01 -0.991831037461E-04 456 -0.643998119169E-01 -0.943028394635E-04 457 -0.498010756593E-01 -0.107008705909E-03 458 -0.370870267946E-01 -0.372214287624E-04 459 -0.644376307593E-01 -0.101070085712E-03 460 0.818784796458 -0.227646761378E-03 461 -0.498013142992E-01 -0.131561138572E-03 462 -0.644301964791E-01 -0.128617418521E-03 463 0.383813217501E-01 0.517201959810E-04 464 0.383871997855E-01 0.512454778915E-04 465 -0.383761579928E-01 -0.395315919367E-04 466 -0.498746189854E-01 -0.100236528782E-03 467 -0.643617128080E-01 -0.840655095187E-04 468 -0.498048176012E-01 -0.745060723481E-04 469 -0.644301526053E-01 -0.128612351916E-03 470 -0.644174618271E-01 -0.111508224810E-03 471 -0.498013629324E-01 -0.810979424561E-04 472 0.818620518879 -0.227837020267E-03 473 -0.369320777925E-01 -0.107776186989E-03 474 -0.383813521197E-01 -0.398799483565E-04 475 -0.383872433046E-01 -0.403616622886E-04 476 0.383761075593E-01 0.520363165602E-04 477 -0.643617610971E-01 -0.117607008856E-03 478 -0.498745809581E-01 -0.112579329328E-03 479 -0.644175118607E-01 -0.903175795531E-04 480 -0.498013173037E-01 -0.131560444817E-03 481 -0.498047593205E-01 -0.138162506728E-03 482 -0.644302407883E-01 -0.732194943433E-04 483 -0.369321517127E-01 -0.556904348037E-04 484 0.818620637868 -0.227823942779E-03 485 0.436788674556 -0.187884970628E-02 486 -0.302067348850E-05 0.947507595033E-08 487 0.206661103384E-05 0.103972065761E-07 488 -0.385533503839E-01 -0.554990222122E-04 489 0.385532436702E-01 0.668510341715E-04 490 0.385604199568E-01 0.631179840523E-04 491 0.385520222075E-01 0.528554588406E-04 492 -0.385604681159E-01 -0.592914583162E-04 493 -0.385519744993E-01 -0.693537672065E-04 494 0.385417145510E-01 0.551145137070E-04 495 -0.385416605900E-01 -0.670777869685E-04 496 -0.302072890215E-05 0.949204960120E-08 497 0.436789138391 -0.187884751588E-02 498 0.602383854710E-06 0.119409877481E-07 499 -0.385570638499E-01 -0.570997535704E-04 500 0.385570151539E-01 0.653411380082E-04 501 -0.385491308765E-01 -0.684506284385E-04 502 -0.385574969380E-01 -0.565145374865E-04 503 0.385491885970E-01 0.537278250862E-04 504 0.385574455557E-01 0.659108716046E-04 505 0.385476132333E-01 0.555822266960E-04 506 -0.385475549342E-01 -0.666188186832E-04 507 0.206666226880E-05 0.103744173298E-07 508 0.602364670239E-06 0.119215278741E-07 509 0.436786870109 -0.187885849463E-02 510 -0.385423200832E-01 -0.580994382170E-04 511 0.385422912201E-01 0.640401430835E-04 512 0.385596049092E-01 0.616598265554E-04 513 -0.385549282379E-01 -0.605667283381E-04 514 -0.385595611828E-01 -0.606928674110E-04 515 0.385548720253E-01 0.617945479484E-04 516 -0.385363841704E-01 -0.674255753927E-04 517 0.385364689211E-01 0.547229861622E-04 518 -0.385532466711E-01 -0.668513226772E-04 519 -0.385570176148E-01 -0.653412600340E-04 520 -0.385422874881E-01 -0.640399250369E-04 521 0.817892553523 -0.308050372099E-03 522 -0.372807685297E-01 -0.127754446504E-03 523 -0.501998553811E-01 -0.143967655553E-03 524 -0.647555026568E-01 -0.129937325450E-03 525 -0.647622915416E-01 -0.121624827048E-03 526 -0.502061237601E-01 -0.151492131808E-03 527 -0.502500724161E-01 -0.150618198871E-03 528 -0.647172344594E-01 -0.119732671615E-03 529 0.385533473833E-01 0.554987559817E-04 530 0.385570613969E-01 0.570994407564E-04 531 0.385423238185E-01 0.580996607825E-04 532 -0.372807570632E-01 -0.941156245565E-04 533 0.817892447568 -0.308059133266E-03 534 -0.647622138563E-01 -0.151586528418E-03 535 -0.502061465013E-01 -0.137108415270E-03 536 -0.501998394989E-01 -0.144617550596E-03 537 -0.647554279337E-01 -0.143256926065E-03 538 -0.647171425168E-01 -0.153297504331E-03 539 -0.502501107097E-01 -0.138157517273E-03 540 0.385604806471E-01 0.592924524374E-04 541 -0.385491828745E-01 -0.537275562029E-04 542 0.385595545412E-01 0.606924354196E-04 543 -0.501998465884E-01 -0.144618591654E-03 544 -0.647622692522E-01 -0.121623320780E-03 545 0.817965755900 -0.307942644605E-03 546 -0.647935051816E-01 -0.136776068235E-03 547 -0.373712596754E-01 -0.785892994511E-04 548 -0.501761296930E-01 -0.143511481337E-03 549 -0.501799603538E-01 -0.176245160210E-03 550 -0.647732158478E-01 -0.147249111686E-03 551 0.385519700699E-01 0.693534424855E-04 552 -0.385574412728E-01 -0.659103498895E-04 553 -0.385548796050E-01 -0.617951033332E-04 554 -0.647554504212E-01 -0.143257629522E-03 555 -0.502061217473E-01 -0.151491266904E-03 556 -0.647934938305E-01 -0.136590120115E-03 557 0.817982634350 -0.307905292077E-03 558 -0.501761177999E-01 -0.143510799038E-03 559 -0.373758952084E-01 -0.155883374249E-03 560 -0.647859294111E-01 -0.108843572927E-03 561 -0.501765909008E-01 -0.118966398594E-03 562 -0.385604074130E-01 -0.631169820414E-04 563 0.385491365747E-01 0.684512651810E-04 564 -0.385596115440E-01 -0.616604579765E-04 565 -0.647622360894E-01 -0.151588651532E-03 566 -0.501998482090E-01 -0.143967604200E-03 567 -0.373712117330E-01 -0.143573753159E-03 568 -0.501761266669E-01 -0.144932635575E-03 569 0.817965755111 -0.307942703375E-03 570 -0.647935153960E-01 -0.136591687003E-03 571 -0.647731987010E-01 -0.125986516896E-03 572 -0.501800811642E-01 -0.112331639325E-03 573 -0.385520266305E-01 -0.528558207417E-04 574 0.385575012484E-01 0.565147862399E-04 575 0.385549206495E-01 0.605661825012E-04 576 -0.502061486386E-01 -0.137107760621E-03 577 -0.647554803544E-01 -0.129934388768E-03 578 -0.501761385117E-01 -0.144933896912E-03 579 -0.373759856978E-01 -0.663067385954E-04 580 -0.647935267180E-01 -0.136778020687E-03 581 0.817982693169 -0.307900444321E-03 582 -0.501765213853E-01 -0.169599344561E-03 583 -0.647859281972E-01 -0.164401908418E-03 584 0.385416665800E-01 0.670782384269E-04 585 0.385475540741E-01 0.666189095317E-04 586 -0.385364613853E-01 -0.547222553042E-04 587 -0.502501173404E-01 -0.138158388484E-03 588 -0.647171563239E-01 -0.119725654317E-03 589 -0.501800603691E-01 -0.112330062633E-03 590 -0.647858696478E-01 -0.164396738349E-03 591 -0.647731736619E-01 -0.147246188321E-03 592 -0.501765871396E-01 -0.118964820336E-03 593 0.817817749025 -0.308155022300E-03 594 -0.372204532413E-01 -0.137053805423E-03 595 -0.385417085675E-01 -0.551141463497E-04 596 -0.385476140486E-01 -0.555825865230E-04 597 0.385363917152E-01 0.674261966144E-04 598 -0.647172207531E-01 -0.153303258482E-03 599 -0.502500657324E-01 -0.150617932560E-03 600 -0.647732407968E-01 -0.125990496998E-03 601 -0.501765253569E-01 -0.169598324432E-03 602 -0.501799811361E-01 -0.176246899537E-03 603 -0.647859880216E-01 -0.108847991134E-03 604 -0.372205535722E-01 -0.847071727811E-04 605 0.817817907850 -0.308141904751E-03 606 0.430354035945 -0.242246270111E-02 607 -0.298818383263E-05 0.122288431101E-07 608 0.210259412510E-05 0.137330674941E-07 609 -0.387598376852E-01 -0.705948518224E-04 610 0.387596985156E-01 0.823041828918E-04 611 0.387669856154E-01 0.785063829653E-04 612 0.387582581249E-01 0.680189052916E-04 613 -0.387670494274E-01 -0.744704049489E-04 614 -0.387581958272E-01 -0.846964665846E-04 615 0.387479221528E-01 0.702825422270E-04 616 -0.387478522164E-01 -0.824109082289E-04 617 -0.298824104254E-05 0.122415213062E-07 618 0.430354507566 -0.242245964852E-02 619 0.644054257599E-06 0.160442536567E-07 620 -0.387636990782E-01 -0.723088544153E-04 621 0.387636356314E-01 0.807095471362E-04 622 -0.387552981501E-01 -0.837882943058E-04 623 -0.387641060304E-01 -0.717052528878E-04 624 0.387553728795E-01 0.688867193438E-04 625 0.387640389695E-01 0.812931576813E-04 626 0.387538365742E-01 0.707318262837E-04 627 -0.387537604614E-01 -0.819721547436E-04 628 0.210264706240E-05 0.137112051423E-07 629 0.644034462119E-06 0.160173785976E-07 630 0.430352200991 -0.242247435814E-02 631 -0.387484334953E-01 -0.732857701850E-04 632 0.387483953809E-01 0.793389354944E-04 633 0.387660875428E-01 0.768474804259E-04 634 -0.387614272735E-01 -0.757590797842E-04 635 -0.387660296246E-01 -0.760546327719E-04 636 0.387613540431E-01 0.771548221948E-04 637 -0.387424960832E-01 -0.828028099036E-04 638 0.387426062601E-01 0.698343669512E-04 639 -0.387597022702E-01 -0.823044732451E-04 640 -0.387636387074E-01 -0.807096522907E-04 641 -0.387483907969E-01 -0.793387343115E-04 642 0.816843645815 -0.392325302512E-03 643 -0.376592011238E-01 -0.158635400025E-03 644 -0.506921536329E-01 -0.184202403399E-03 645 -0.652208928751E-01 -0.167430202157E-03 646 -0.652277137397E-01 -0.159114768278E-03 647 -0.506984407794E-01 -0.191786115599E-03 648 -0.507426874655E-01 -0.190971029235E-03 649 -0.651823471834E-01 -0.157268760855E-03 650 0.387598339311E-01 0.705945871132E-04 651 0.387636960099E-01 0.723085236382E-04 652 0.387484380824E-01 0.732859735876E-04 653 -0.376591861124E-01 -0.125036141454E-03 654 0.816843513196 -0.392334099516E-03 655 -0.652276150362E-01 -0.189265521897E-03 656 -0.506984697745E-01 -0.177317940284E-03 657 -0.506921335540E-01 -0.184882122160E-03 658 -0.652207979845E-01 -0.180928265584E-03 659 -0.651822321395E-01 -0.190880041098E-03 660 -0.507427367936E-01 -0.178356752280E-03 661 0.387670651220E-01 0.744714075265E-04 662 -0.387553657150E-01 -0.688864952186E-04 663 0.387660213093E-01 0.760542218150E-04 664 -0.506921424269E-01 -0.184883286461E-03 665 -0.652276858635E-01 -0.159113340387E-03 666 0.816917217303 -0.392186365085E-03 667 -0.652591821973E-01 -0.174362984224E-03 668 -0.377501962845E-01 -0.109449191578E-03 669 -0.506681850852E-01 -0.183756512852E-03 670 -0.506722253206E-01 -0.216664250507E-03 671 -0.652386711093E-01 -0.184879535029E-03 672 0.387581903346E-01 0.846961593820E-04 673 -0.387640335599E-01 -0.812925947336E-04 674 -0.387613634770E-01 -0.771553682254E-04 675 -0.652208260967E-01 -0.180928688417E-03 676 -0.506984382603E-01 -0.191785062898E-03 677 -0.652591677775E-01 -0.174215644093E-03 678 0.816934223908 -0.392138036100E-03 679 -0.506681702086E-01 -0.183755899696E-03 680 -0.377548594661E-01 -0.186982320051E-03 681 -0.652513986704E-01 -0.146330909797E-03 682 -0.506688605019E-01 -0.159101720006E-03 683 -0.387669699077E-01 -0.785053783132E-04 684 0.387553052903E-01 0.837889780934E-04 685 -0.387660958510E-01 -0.768481368546E-04 686 -0.652276428555E-01 -0.189267731200E-03 687 -0.506921446768E-01 -0.184202475831E-03 688 -0.377501355790E-01 -0.174596442217E-03 689 -0.506681814981E-01 -0.185147545758E-03 690 0.816917216314 -0.392186423077E-03 691 -0.652591947528E-01 -0.174217169151E-03 692 -0.652386502882E-01 -0.163531737187E-03 693 -0.506723789125E-01 -0.152409905990E-03 694 -0.387582636109E-01 -0.680192666184E-04 695 0.387641114675E-01 0.717054813834E-04 696 0.387614178305E-01 0.757585433471E-04 697 -0.506984724184E-01 -0.177317089580E-03 698 -0.652208649485E-01 -0.167426977389E-03 699 -0.506681963265E-01 -0.185148885007E-03 700 -0.377549743499E-01 -0.970980281926E-04 701 -0.652592091435E-01 -0.174364987050E-03 702 0.816934297532 -0.392133170379E-03 703 -0.506687720376E-01 -0.209958232370E-03 704 -0.652513959641E-01 -0.202092659863E-03 705 0.387478596744E-01 0.824113600754E-04 706 0.387537593511E-01 0.819722942413E-04 707 -0.387425967834E-01 -0.698336077244E-04 708 -0.507427451101E-01 -0.178357703557E-03 709 -0.651822494128E-01 -0.157261568671E-03 710 -0.506723529015E-01 -0.152408344312E-03 711 -0.652513227028E-01 -0.202087383639E-03 712 -0.652386183405E-01 -0.184876736871E-03 713 -0.506688557766E-01 -0.159099817078E-03 714 0.816768488936 -0.392455616893E-03 715 -0.375986844150E-01 -0.168110879374E-03 716 -0.387479147012E-01 -0.702821894178E-04 717 -0.387538376393E-01 -0.707322548475E-04 718 0.387425055693E-01 0.828034266568E-04 719 -0.651823300108E-01 -0.190885651074E-03 720 -0.507426790956E-01 -0.190970835625E-03 721 -0.652387029664E-01 -0.163535861056E-03 722 -0.506687769737E-01 -0.209956884826E-03 723 -0.506722513186E-01 -0.216666011419E-03 724 -0.652514719926E-01 -0.146335246591E-03 725 -0.375988127842E-01 -0.115421876665E-03 726 0.816768687741 -0.392442447259E-03 727 0.422210188191 -0.302246345989E-02 728 -0.294703789299E-05 0.152704709266E-07 729 0.214939776342E-05 0.176583687668E-07 730 -0.390119688541E-01 -0.854803362890E-04 731 0.390117927341E-01 0.976483177862E-04 732 0.390192209503E-01 0.937666803198E-04 733 0.390100683708E-01 0.829948426466E-04 734 -0.390193032355E-01 -0.894608630219E-04 735 -0.390099894223E-01 -0.999014232982E-04 736 0.389996961036E-01 0.852645172772E-04 737 -0.389996082492E-01 -0.976042142107E-04 738 -0.294709704651E-05 0.152798031423E-07 739 0.422210670542 -0.302245928398E-02 740 0.699271528549E-06 0.210572834364E-07 741 -0.390160228670E-01 -0.873379795027E-04 742 0.390159426656E-01 0.959431612129E-04 743 -0.390070223665E-01 -0.989873143463E-04 744 -0.390163966518E-01 -0.867115700927E-04 745 0.390071161024E-01 0.838575099893E-04 746 0.390163117095E-01 0.965445675066E-04 747 0.390056290813E-01 0.856894595189E-04 748 -0.390055326330E-01 -0.971912533352E-04 749 0.214945256200E-05 0.176363277519E-07 750 0.699251092902E-06 0.210230847091E-07 751 0.422208313385 -0.302247852347E-02 752 -0.390000875088E-01 -0.882918589691E-04 753 0.390000385501E-01 0.944899080396E-04 754 0.390182136411E-01 0.918497880547E-04 755 -0.390135750244E-01 -0.907677145652E-04 756 -0.390181389738E-01 -0.912821964802E-04 757 0.390134824514E-01 0.923801269572E-04 758 -0.389941520548E-01 -0.980539891437E-04 759 0.389942909497E-01 0.847447382846E-04 760 -0.390117972404E-01 -0.976486096075E-04 761 -0.390159463570E-01 -0.959432499670E-04 762 -0.390000331738E-01 -0.944897298070E-04 763 0.815534485878 -0.481895437614E-03 764 -0.381335892344E-01 -0.191832131395E-03 765 -0.513094942793E-01 -0.227497625708E-03 766 -0.658025408071E-01 -0.207403761259E-03 767 -0.658094015775E-01 -0.199084157292E-03 768 -0.513158059083E-01 -0.235154867813E-03 769 -0.513604259777E-01 -0.234409797514E-03 770 -0.657636465799E-01 -0.197301194579E-03 771 0.390119643484E-01 0.854800730328E-04 772 0.390160191828E-01 0.873376311312E-04 773 0.390000928879E-01 0.882920381360E-04 774 -0.381335702008E-01 -0.158283745930E-03 775 0.815534326470 -0.481904279078E-03 776 -0.658092806695E-01 -0.229471894208E-03 777 -0.513158415742E-01 -0.220581386112E-03 778 -0.513094698462E-01 -0.228214630147E-03 779 -0.658024246765E-01 -0.221125402569E-03 780 -0.657635083476E-01 -0.230969356375E-03 781 -0.513604874222E-01 -0.221602231462E-03 782 0.390193221179E-01 0.894618763111E-04 783 -0.390071074891E-01 -0.838573305347E-04 784 0.390181289757E-01 0.912818065516E-04 785 -0.513094805026E-01 -0.228215918364E-03 786 -0.658093680997E-01 -0.199082807569E-03 787 0.815608523408 -0.481722928281E-03 788 -0.658411917103E-01 -0.214450198271E-03 789 -0.382252141619E-01 -0.142613860023E-03 790 -0.512852214767E-01 -0.227067974648E-03 791 -0.512895286127E-01 -0.260190254838E-03 792 -0.658204016753E-01 -0.225024321568E-03 793 0.390099828987E-01 0.999011369605E-04 794 -0.390163051359E-01 -0.965439601518E-04 795 -0.390134937108E-01 -0.923806613452E-04 796 -0.658024584277E-01 -0.221125544686E-03 797 -0.513158028953E-01 -0.235153627869E-03 798 -0.658411740669E-01 -0.214350894521E-03 799 0.815625692160 -0.481662864170E-03 800 -0.512852036016E-01 -0.227067429537E-03 801 -0.382299160080E-01 -0.220443421966E-03 802 -0.658331472047E-01 -0.186296942634E-03 803 -0.512861645178E-01 -0.202273363857E-03 804 -0.390192020542E-01 -0.937656717516E-04 805 0.390070309555E-01 0.989880458376E-04 806 -0.390182236319E-01 -0.918504706579E-04 807 -0.658093140900E-01 -0.229474191107E-03 808 -0.513094835391E-01 -0.227497822958E-03 809 -0.382251401284E-01 -0.207962989561E-03 810 -0.512852174516E-01 -0.228421419096E-03 811 0.815608522223 -0.481722985274E-03 812 -0.658412064676E-01 -0.214352378706E-03 813 -0.658203776311E-01 -0.203569914196E-03 814 -0.512897168840E-01 -0.195509751148E-03 815 -0.390100748875E-01 -0.829952007767E-04 816 0.390164032530E-01 0.867117816137E-04 817 0.390135637550E-01 0.907671910222E-04 818 -0.513158447124E-01 -0.220580337630E-03 819 -0.658025072421E-01 -0.207400246702E-03 820 -0.512852352787E-01 -0.228422837138E-03 821 -0.382300565876E-01 -0.130176468016E-03 822 -0.658412240821E-01 -0.214452252430E-03 823 0.815625780651 -0.481657976208E-03 824 -0.512860559554E-01 -0.253409012038E-03 825 -0.658331421327E-01 -0.242312010436E-03 826 0.389996171562E-01 0.976046650113E-04 827 0.390055312406E-01 0.971914393098E-04 828 -0.389942794918E-01 -0.847439464070E-04 829 -0.513604974366E-01 -0.221603264405E-03 830 -0.657635291171E-01 -0.197293824108E-03 831 -0.512896856444E-01 -0.195508204139E-03 832 -0.658330541142E-01 -0.242306625396E-03 833 -0.658203382898E-01 -0.225021647202E-03 834 -0.512861588321E-01 -0.202271135882E-03 835 0.815458897334 -0.482053050424E-03 836 -0.380728239642E-01 -0.201532059332E-03 837 -0.389996872028E-01 -0.852641816628E-04 838 -0.390056304276E-01 -0.856899605695E-04 839 0.389941635225E-01 0.980546042308E-04 840 -0.657636259111E-01 -0.230974825569E-03 841 -0.513604159092E-01 -0.234409676405E-03 842 -0.658204409254E-01 -0.203574184588E-03 843 -0.512860618525E-01 -0.253407335793E-03 844 -0.512895598391E-01 -0.260192038105E-03 845 -0.658332352841E-01 -0.186301200889E-03 846 -0.380729825569E-01 -0.148413514812E-03 847 0.815459136299 -0.482039816205E-03 848 0.412160310913 -0.369859065619E-02 849 -0.289623229965E-05 0.186986052523E-07 850 0.220911243682E-05 0.224073917477E-07 851 -0.393089823567E-01 -0.999269185122E-04 852 0.393087631154E-01 0.112670705260E-03 853 0.393163679486E-01 0.108683773528E-03 854 0.393066806123E-01 0.975579881884E-04 855 -0.393164725911E-01 -0.104037706341E-03 856 -0.393065821974E-01 -0.114750478667E-03 857 0.392962629619E-01 0.998351389223E-04 858 -0.392961545155E-01 -0.112439313898E-03 859 -0.289629371562E-05 0.187050487853E-07 860 0.412160807881 -0.369858497940E-02 861 0.771295695242E-06 0.273670840898E-07 862 -0.393132813245E-01 -0.101963844012E-03 863 0.393131816208E-01 0.110825741346E-03 864 -0.393035277968E-01 -0.113829175296E-03 865 -0.393136140573E-01 -0.101309693117E-03 866 0.393036432747E-01 0.984146866840E-04 867 0.393135082131E-01 0.111449180369E-03 868 0.393022168111E-01 0.100228710765E-03 869 -0.393020965623E-01 -0.112058684434E-03 870 0.220916941967E-05 0.223844269791E-07 871 0.771274525641E-06 0.273253831362E-07 872 0.412158384995 -0.369860988225E-02 873 -0.392965047724E-01 -0.102892757331E-03 874 0.392964427735E-01 0.109273523912E-03 875 0.393152209743E-01 0.106441530240E-03 876 -0.393106107570E-01 -0.105367973019E-03 877 -0.393151260270E-01 -0.106159394180E-03 878 0.393104956338E-01 0.107254101139E-03 879 -0.392905755966E-01 -0.112962789738E-03 880 0.392907477199E-01 0.992263427053E-04 881 -0.393087683703E-01 -0.112670997931E-03 882 -0.393131859279E-01 -0.110825814263E-03 883 -0.392964366825E-01 -0.109273376024E-03 884 0.813946939367 -0.578334054200E-03 885 -0.387118985287E-01 -0.228045500788E-03 886 -0.520623956260E-01 -0.274782400493E-03 887 -0.665090191526E-01 -0.250599753710E-03 888 -0.665159284002E-01 -0.242274592446E-03 889 -0.520687378621E-01 -0.282528476614E-03 890 -0.521138125554E-01 -0.281866309204E-03 891 -0.664696994501E-01 -0.240572958541E-03 892 0.393089771026E-01 0.999266567502E-04 893 0.393132770241E-01 0.101963478639E-03 894 0.392965108658E-01 0.102892906112E-03 895 -0.387118748780E-01 -0.194560903742E-03 896 0.813946753021 -0.578342949212E-03 897 -0.665157837247E-01 -0.272951287529E-03 898 -0.520687807377E-01 -0.267827457486E-03 899 -0.520623666431E-01 -0.275544681270E-03 900 -0.665088804020E-01 -0.264593700035E-03 901 -0.664695379070E-01 -0.274308556306E-03 902 -0.521138875333E-01 -0.268821996453E-03 903 0.393164946931E-01 0.104038733239E-03 904 -0.393036332037E-01 -0.984145517930E-04 905 0.393151143346E-01 0.106159025279E-03 906 -0.520623790829E-01 -0.275546094188E-03 907 -0.665158893029E-01 -0.242273320863E-03 908 0.814021548000 -0.578124880669E-03 909 -0.665481123789E-01 -0.257781563669E-03 910 -0.388042888991E-01 -0.178784873905E-03 911 -0.520377519602E-01 -0.274374971283E-03 912 -0.520423883477E-01 -0.307755756296E-03 913 -0.665269814990E-01 -0.268428015316E-03 914 0.393065746852E-01 0.114750217408E-03 915 -0.393135004272E-01 -0.111448524698E-03 916 -0.393105086819E-01 -0.107254621194E-03 917 -0.665089198096E-01 -0.264593561139E-03 918 -0.520687343708E-01 -0.282527049994E-03 919 -0.665480913313E-01 -0.257740230255E-03 920 0.814038915497 -0.578052088275E-03 921 -0.520377310685E-01 -0.274374493059E-03 922 -0.388090413104E-01 -0.256971565252E-03 923 -0.665397491200E-01 -0.229483797660E-03 924 -0.520390210539E-01 -0.249408652205E-03 925 -0.393163458321E-01 -0.108682759534E-03 926 0.393035378433E-01 0.113829955333E-03 927 -0.393152326591E-01 -0.106442240426E-03 928 -0.665158227642E-01 -0.272953673526E-03 929 -0.520623831016E-01 -0.274782723868E-03 930 -0.388042008058E-01 -0.244376897680E-03 931 -0.520377476372E-01 -0.275682913179E-03 932 0.814021546621 -0.578124936412E-03 933 -0.665481291766E-01 -0.257741674536E-03 934 -0.665269548234E-01 -0.246843926517E-03 935 -0.520426137798E-01 -0.242557274587E-03 936 -0.393066881173E-01 -0.975583398470E-04 937 0.393136218711E-01 0.101309891586E-03 938 0.393105976982E-01 0.105367466657E-03 939 -0.520687843546E-01 -0.267826209231E-03 940 -0.665089799319E-01 -0.250595947489E-03 941 -0.520377684810E-01 -0.275684410859E-03 942 -0.388092092859E-01 -0.166242472142E-03 943 -0.665481501951E-01 -0.257783670123E-03 944 0.814039018931 -0.578047173603E-03 945 -0.520388908964E-01 -0.300882962370E-03 946 -0.665397405418E-01 -0.285805236687E-03 947 0.392961648475E-01 0.112439762026E-03 948 0.393020948473E-01 0.112058914435E-03 949 -0.392907342289E-01 -0.992255130028E-04 950 -0.521138992606E-01 -0.268823112869E-03 951 -0.664695622263E-01 -0.240565406417E-03 952 -0.520425772968E-01 -0.242555742069E-03 953 -0.665396377114E-01 -0.285799740213E-03 954 -0.665269074559E-01 -0.268425463466E-03 955 -0.520390144128E-01 -0.249406098740E-03 956 0.813870834243 -0.578521114033E-03 957 -0.386508339834E-01 -0.238022461351E-03 958 -0.392962526359E-01 -0.998348236007E-04 959 -0.393022184791E-01 -0.100229288848E-03 960 0.392905890981E-01 0.112963406399E-03 961 -0.664696752312E-01 -0.274313888119E-03 962 -0.521138007733E-01 -0.281866260510E-03 963 -0.665270287746E-01 -0.246848346349E-03 964 -0.520388977496E-01 -0.300880955864E-03 965 -0.520424248173E-01 -0.307757562618E-03 966 -0.665398520111E-01 -0.229487980312E-03 967 -0.386510256670E-01 -0.184379677709E-03 968 0.813871113589 -0.578507802086E-03 969 0.399939291183 -0.447733044393E-02 970 -0.283442522430E-05 0.226439019445E-07 971 0.228466246223E-05 0.283123491158E-07 972 -0.396492283696E-01 -0.113530781371E-03 973 0.396489575241E-01 0.126989237382E-03 974 0.396567816592E-01 0.122872336188E-03 975 0.396464302935E-01 0.111309048878E-03 976 -0.396569140176E-01 -0.117801819293E-03 977 -0.396463085662E-01 -0.128854062698E-03 978 0.396359566198E-01 0.113595049112E-03 979 -0.396358238953E-01 -0.126526345121E-03 980 -0.283448934514E-05 0.226476277980E-07 981 0.399939808018 -0.447732271612E-02 982 0.864782111723E-06 0.355376376996E-07 983 -0.396538352110E-01 -0.115789893345E-03 984 0.396537122346E-01 0.124970385444E-03 985 -0.396431451835E-01 -0.127923824785E-03 986 -0.396541178281E-01 -0.115102370931E-03 987 0.396432861529E-01 0.112158623047E-03 988 0.396539869362E-01 0.125620522478E-03 989 0.396419329114E-01 0.113948693491E-03 990 -0.396417840960E-01 -0.126185885823E-03 991 0.228472207494E-05 0.282878632318E-07 992 0.864760074426E-06 0.354880477936E-07 993 0.399937300197 -0.447735490005E-02 994 -0.396360138657E-01 -0.116689581294E-03 995 0.396359357933E-01 0.123298371837E-03 996 0.396554587211E-01 0.120223425953E-03 997 -0.396508857817E-01 -0.119161365734E-03 998 -0.396553386107E-01 -0.120299435444E-03 999 0.396507436751E-01 0.121389689834E-03 1000 -0.396300965238E-01 -0.127142181501E-03 1001 0.396303080598E-01 0.112876488171E-03 1002 -0.396489635223E-01 -0.126989529927E-03 1003 -0.396537171570E-01 -0.124970443169E-03 1004 -0.396359290874E-01 -0.123298263534E-03 1005 0.812057644146 -0.683585108457E-03 1006 -0.394044332243E-01 -0.268146383695E-03 1007 -0.529644760146E-01 -0.327213225448E-03 1008 -0.673513712299E-01 -0.297934531340E-03 1009 -0.673583384158E-01 -0.289602165355E-03 1010 -0.529708555696E-01 -0.335064729296E-03 1011 -0.530164737423E-01 -0.334500562493E-03 1012 -0.673115414881E-01 -0.288001965541E-03 1013 0.396492223727E-01 0.113530521348E-03 1014 0.396538302946E-01 0.115789511870E-03 1015 0.396360205735E-01 0.116689691977E-03 1016 -0.394044042399E-01 -0.234740457510E-03 1017 0.812057430681 -0.683594066725E-03 1018 -0.673581679286E-01 -0.320625101282E-03 1019 -0.529709063443E-01 -0.320212163458E-03 1020 -0.529644422471E-01 -0.328029419881E-03 1021 -0.673512081103E-01 -0.312254121416E-03 1022 -0.673113564562E-01 -0.321815771062E-03 1023 -0.530165640900E-01 -0.321171151932E-03 1024 0.396569393800E-01 0.117802863605E-03 1025 -0.396432746128E-01 -0.112158532561E-03 1026 0.396553252093E-01 0.120299087548E-03 1027 -0.529644564693E-01 -0.328030958395E-03 1028 -0.673582936784E-01 -0.289600972098E-03 1029 0.812132939512 -0.683335263628E-03 1030 -0.673909952861E-01 -0.305276145804E-03 1031 -0.394977375628E-01 -0.218833931469E-03 1032 -0.529393881281E-01 -0.326833995351E-03 1033 -0.529444225870E-01 -0.360521778941E-03 1034 -0.673694556465E-01 -0.316010566626E-03 1035 0.396463001207E-01 0.128853831969E-03 1036 -0.396539778758E-01 -0.125619813515E-03 1037 -0.396507584641E-01 -0.121390192256E-03 1038 -0.673512531943E-01 -0.312253700996E-03 1039 -0.529708516193E-01 -0.335063116611E-03 1040 -0.673909706396E-01 -0.305303285443E-03 1041 0.812150545749 -0.683248453645E-03 1042 -0.529393641987E-01 -0.326833582780E-03 1043 -0.395025536435E-01 -0.297442748783E-03 1044 -0.673822496481E-01 -0.276808293246E-03 1045 -0.529410481408E-01 -0.301661783105E-03 1046 -0.396567562811E-01 -0.122871314837E-03 1047 0.396431566989E-01 0.127924654477E-03 1048 -0.396554721146E-01 -0.120224165465E-03 1049 -0.673582126075E-01 -0.320627577956E-03 1050 -0.529644617068E-01 -0.327213676567E-03 1051 -0.394976344717E-01 -0.284712352277E-03 1052 -0.529393836535E-01 -0.328088026292E-03 1053 0.812132937942 -0.683335317823E-03 1054 -0.673910139515E-01 -0.305304690810E-03 1055 -0.673694271071E-01 -0.294271567561E-03 1056 -0.529446883934E-01 -0.294705069114E-03 1057 -0.396464387313E-01 -0.111309389802E-03 1058 0.396541269166E-01 0.115102561187E-03 1059 0.396508709809E-01 0.119160881907E-03 1060 -0.529709104208E-01 -0.320210713124E-03 1061 -0.673513263337E-01 -0.297930431407E-03 1062 -0.529394075353E-01 -0.328089604401E-03 1063 -0.395027512204E-01 -0.206166227356E-03 1064 -0.673910385692E-01 -0.305278305521E-03 1065 0.812150664217 -0.683243507529E-03 1066 -0.529408944581E-01 -0.353539402682E-03 1067 -0.673822360876E-01 -0.333493230468E-03 1068 0.396358356220E-01 0.126526788706E-03 1069 0.396417820068E-01 0.126186156953E-03 1070 -0.396302924702E-01 -0.112875614234E-03 1071 -0.530165775481E-01 -0.321172353861E-03 1072 -0.673113844231E-01 -0.287994228450E-03 1073 -0.529446466508E-01 -0.294703551116E-03 1074 -0.673821183812E-01 -0.333487620001E-03 1075 -0.673693708980E-01 -0.316008136165E-03 1076 -0.529410405507E-01 -0.301658903667E-03 1077 0.811980930154 -0.683804424150E-03 1078 -0.393430139591E-01 -0.278458439637E-03 1079 -0.396359448987E-01 -0.113594757784E-03 1080 -0.396419349524E-01 -0.113949354198E-03 1081 0.396301121249E-01 0.127142803624E-03 1082 -0.673115136215E-01 -0.321820968906E-03 1083 -0.530164602286E-01 -0.334500586253E-03 1084 -0.673695117631E-01 -0.294276139928E-03 1085 -0.529409022608E-01 -0.353537064057E-03 1086 -0.529444643160E-01 -0.360523608912E-03 1087 -0.673823674150E-01 -0.276812403315E-03 1088 -0.393432424617E-01 -0.224186903358E-03 1089 0.811981250142 -0.683791020474E-03 1090 0.385188527663 -0.539567857914E-02 1091 -0.275981690714E-05 0.272865988972E-07 1092 0.238017759339E-05 0.358633054592E-07 1093 -0.400294981164E-01 -0.125592480756E-03 1094 0.400291638637E-01 0.139934462143E-03 1095 0.400372600184E-01 0.135658554231E-03 1096 0.400260883856E-01 0.123554813991E-03 1097 -0.400374275792E-01 -0.130060276469E-03 1098 -0.400259380361E-01 -0.141532310431E-03 1099 0.400155458515E-01 0.125850871419E-03 1100 -0.400153837047E-01 -0.139185076032E-03 1101 -0.275988430297E-05 0.272875672336E-07 1102 0.385189071624 -0.539566798428E-02 1103 0.986460874947E-06 0.464244746598E-07 1104 -0.400344904947E-01 -0.128126818311E-03 1105 0.400343390115E-01 0.137701093748E-03 1106 -0.400226388908E-01 -0.140590724732E-03 1107 -0.400347122958E-01 -0.127399331961E-03 1108 0.400228105516E-01 0.124395593826E-03 1109 0.400345505967E-01 0.138383170751E-03 1110 0.400215450519E-01 0.126153920119E-03 1111 -0.400213610341E-01 -0.138894388870E-03 1112 0.238024041521E-05 0.358367401767E-07 1113 0.986437795013E-06 0.463664036967E-07 1114 0.385186453829 -0.539570979642E-02 1115 -0.400153763084E-01 -0.128989568972E-03 1116 0.400152779198E-01 0.135882092687E-03 1117 0.400357166223E-01 0.132502227559E-03 1118 -0.400311929112E-01 -0.131455787277E-03 1119 -0.400355645123E-01 -0.133026428738E-03 1120 0.400310176184E-01 0.134110657237E-03 1121 -0.400094780843E-01 -0.139915824563E-03 1122 0.400097376124E-01 0.124997239186E-03 1123 -0.400291705966E-01 -0.139934753033E-03 1124 -0.400343445476E-01 -0.137701136988E-03 1125 -0.400152707269E-01 -0.135882035849E-03 1126 0.809836676200 -0.800127604486E-03 1127 -0.402244466871E-01 -0.313249361505E-03 1128 -0.540332708280E-01 -0.386273296393E-03 1129 -0.683437414242E-01 -0.350576839793E-03 1130 -0.683507772519E-01 -0.342235187398E-03 1131 -0.540396952621E-01 -0.394248457850E-03 1132 -0.540859555511E-01 -0.393800246905E-03 1133 -0.683033072797E-01 -0.340758862370E-03 1134 0.400294913851E-01 0.125592223082E-03 1135 0.400344849635E-01 0.128126422079E-03 1136 0.400153835026E-01 0.128989631551E-03 1137 -0.402244115380E-01 -0.279939316961E-03 1138 0.809836435406 -0.800136636549E-03 1139 -0.683505782716E-01 -0.373668601403E-03 1140 -0.540397548167E-01 -0.379218062799E-03 1141 -0.540332320023E-01 -0.387152809521E-03 1142 -0.683435517322E-01 -0.365281241369E-03 1143 -0.683030984864E-01 -0.374662045523E-03 1144 -0.540860636434E-01 -0.380131063297E-03 1145 0.400374562552E-01 0.130061343341E-03 1146 -0.400227975278E-01 -0.124395547470E-03 1147 0.400355493834E-01 0.133026101753E-03 1148 -0.540332480052E-01 -0.387154474632E-03 1149 -0.683507268513E-01 -0.342234072904E-03 1150 0.809912787602 -0.799831902852E-03 1151 -0.683839948886E-01 -0.358106215049E-03 1152 -0.403188300592E-01 -0.263876565949E-03 1153 -0.540076566750E-01 -0.385928134407E-03 1154 -0.540131662565E-01 -0.419977327288E-03 1155 -0.683619709560E-01 -0.368945335329E-03 1156 0.400259287301E-01 0.141532117489E-03 1157 -0.400345401825E-01 -0.138382401935E-03 1158 -0.400310340873E-01 -0.134111137817E-03 1159 -0.683436025156E-01 -0.365280538701E-03 1160 -0.540396908764E-01 -0.394246659775E-03 1161 -0.683839664579E-01 -0.358212913156E-03 1162 0.809930676985 -0.799729397921E-03 1163 -0.540076296835E-01 -0.385927786150E-03 1164 -0.403237245365E-01 -0.342978078360E-03 1165 -0.683747958020E-01 -0.329439751316E-03 1166 -0.540097806784E-01 -0.360512942605E-03 1167 -0.400372313254E-01 -0.135657522882E-03 1168 0.400226518898E-01 0.140591605590E-03 1169 -0.400357317430E-01 -0.132502998610E-03 1170 -0.683506286129E-01 -0.373671170393E-03 1171 -0.540332547385E-01 -0.386273877231E-03 1172 -0.403187107668E-01 -0.330088072828E-03 1173 -0.540076521784E-01 -0.387119352353E-03 1174 0.809912785847 -0.799831955145E-03 1175 -0.683840152623E-01 -0.358214280633E-03 1176 -0.683619415459E-01 -0.347023422789E-03 1177 -0.540134766021E-01 -0.353431217557E-03 1178 -0.400260976833E-01 -0.123555138402E-03 1179 0.400347227387E-01 0.127399520167E-03 1180 0.400311764292E-01 0.131455332815E-03 1181 -0.540397593294E-01 -0.379216407723E-03 1182 -0.683436908295E-01 -0.350572443934E-03 1183 -0.540076791224E-01 -0.387121011602E-03 1184 -0.403239545850E-01 -0.251061297236E-03 1185 -0.683840436641E-01 -0.358108429012E-03 1186 0.809930810593 -0.799724415281E-03 1187 -0.540096009852E-01 -0.412865111671E-03 1188 -0.683747753475E-01 -0.386550558147E-03 1189 0.400153967887E-01 0.139185512895E-03 1190 0.400213585060E-01 0.138894697560E-03 1191 -0.400097198411E-01 -0.124996312863E-03 1192 -0.540860788532E-01 -0.380132353039E-03 1193 -0.683031302813E-01 -0.340750937076E-03 1194 -0.540134295823E-01 -0.353429714360E-03 1195 -0.683746426913E-01 -0.386544831215E-03 1196 -0.683618754468E-01 -0.368943025297E-03 1197 -0.540097721480E-01 -0.360509736703E-03 1198 0.809759251398 -0.800382867717E-03 1199 -0.401626109435E-01 -0.323961539335E-03 1200 -0.400155327727E-01 -0.125850608578E-03 1201 -0.400215475302E-01 -0.126154670464E-03 1202 0.400094958682E-01 0.139916456994E-03 1203 -0.683032755849E-01 -0.374667112837E-03 1204 -0.540859402849E-01 -0.393800343300E-03 1205 -0.683620369616E-01 -0.347028150975E-03 1206 -0.540096097291E-01 -0.412862438726E-03 1207 -0.540132132625E-01 -0.419979181345E-03 1208 -0.683749285183E-01 -0.329443791940E-03 1209 -0.401628811137E-01 -0.268943984642E-03 1210 0.809759612336 -0.800369357153E-03 1211 0.367416053489 -0.650758027344E-02 1212 -0.266996218707E-05 0.328862446971E-07 1213 0.250160315602E-05 0.458147775609E-07 1214 -0.404438720249E-01 -0.134896997263E-03 1215 0.404434575843E-01 0.150333501406E-03 1216 0.404518927652E-01 0.145863593988E-03 1217 0.404397069820E-01 0.133088926760E-03 1218 -0.404521062247E-01 -0.139607288488E-03 1219 -0.404395205332E-01 -0.151597467497E-03 1220 0.404290795759E-01 0.135395883239E-03 1221 -0.404288806718E-01 -0.149227288889E-03 1222 -0.267003358587E-05 0.328842153982E-07 1223 0.367416634845 -0.650756556830E-02 1224 0.114627680139E-05 0.613828103178E-07 1225 -0.404493484755E-01 -0.137774061671E-03 1226 0.404491610645E-01 0.147835964028E-03 1227 -0.404360515116E-01 -0.150641152991E-03 1228 -0.404494964601E-01 -0.136998657026E-03 1229 0.404362612305E-01 0.133918409267E-03 1230 0.404492957771E-01 0.148556010771E-03 1231 0.404351004948E-01 0.135634696906E-03 1232 -0.404348718356E-01 -0.148998398342E-03 1233 0.250166993507E-05 0.457855404949E-07 1234 0.114625246270E-05 0.613154251164E-07 1235 0.367413873471 -0.650762050318E-02 1236 -0.404286309738E-01 -0.138586771616E-03 1237 0.404285061994E-01 0.145833479939E-03 1238 0.404500728092E-01 0.142071508584E-03 1239 -0.404456148003E-01 -0.141046506572E-03 1240 -0.404498789209E-01 -0.143158475789E-03 1241 0.404453974533E-01 0.144234672534E-03 1242 -0.404227615440E-01 -0.150100928344E-03 1243 0.404230812210E-01 0.134375530667E-03 1244 -0.404434650379E-01 -0.150333788210E-03 1245 -0.404491672110E-01 -0.147835993501E-03 1246 -0.404284986849E-01 -0.145833490337E-03 1247 0.807245604693 -0.931230565844E-03 1248 -0.411890231542E-01 -0.364824548115E-03 1249 -0.552914158075E-01 -0.453924076471E-03 1250 -0.695042957756E-01 -0.410069101384E-03 1251 -0.695114127304E-01 -0.401715360994E-03 1252 -0.552978939361E-01 -0.462043205798E-03 1253 -0.553449075533E-01 -0.461732627407E-03 1254 -0.694631502537E-01 -0.400388299222E-03 1255 0.404438645734E-01 0.134896743218E-03 1256 0.404493423328E-01 0.137773652717E-03 1257 0.404286384889E-01 0.138586772627E-03 1258 -0.411889809365E-01 -0.331630223144E-03 1259 0.807245336324 -0.931239683371E-03 1260 -0.695111817004E-01 -0.433632668165E-03 1261 -0.552979634041E-01 -0.446805782691E-03 1262 -0.552913716198E-01 -0.454877191810E-03 1263 -0.695040767403E-01 -0.425224823118E-03 1264 -0.694629172552E-01 -0.434392771825E-03 1265 -0.553450364732E-01 -0.447660813983E-03 1266 0.404521382837E-01 0.139608385140E-03 1267 -0.404362467035E-01 -0.133918406530E-03 1268 0.404498620406E-01 0.143158169437E-03 1269 -0.552913894002E-01 -0.454878984630E-03 1270 -0.695113566411E-01 -0.401714326015E-03 1271 0.807322679166 -0.930882261775E-03 1272 -0.695452903430E-01 -0.417818836004E-03 1273 -0.412846719578E-01 -0.315383961707E-03 1274 -0.552651821414E-01 -0.453618511834E-03 1275 -0.552712543139E-01 -0.488091327057E-03 1276 -0.695226969854E-01 -0.428780678902E-03 1277 0.404395104631E-01 0.151597322333E-03 1278 -0.404492839065E-01 -0.148555173114E-03 1279 -0.404454155238E-01 -0.144235125700E-03 1280 -0.695041332488E-01 -0.425223837260E-03 1281 -0.552978891433E-01 -0.462041223090E-03 1282 -0.695452580065E-01 -0.418016665848E-03 1283 0.807340901862 -0.930761855056E-03 1284 -0.552651520604E-01 -0.453618226411E-03 1285 -0.412896617593E-01 -0.395056026246E-03 1286 -0.695355573124E-01 -0.388921303918E-03 1287 -0.552678536464E-01 -0.427919618768E-03 1288 -0.404518606873E-01 -0.145862548787E-03 1289 0.404360660135E-01 0.150642087158E-03 1290 -0.404500896806E-01 -0.142072314074E-03 1291 -0.695112377294E-01 -0.433635331132E-03 1292 -0.552913979392E-01 -0.453924789414E-03 1293 -0.412845349052E-01 -0.381979346654E-03 1294 -0.552651776881E-01 -0.454737620775E-03 1295 0.807322677232 -0.930882311738E-03 1296 -0.695453123325E-01 -0.418017996506E-03 1297 -0.695226679925E-01 -0.406644281476E-03 1298 -0.552716146417E-01 -0.420690431747E-03 1299 -0.404397170432E-01 -0.133089226494E-03 1300 0.404495083599E-01 0.136998851304E-03 1301 0.404455967150E-01 0.141046090408E-03 1302 -0.552979683245E-01 -0.446803919815E-03 1303 -0.695042394568E-01 -0.410064407219E-03 1304 -0.552652077221E-01 -0.454739361749E-03 1305 -0.412899280654E-01 -0.302396283318E-03 1306 -0.695453446402E-01 -0.417821105231E-03 1307 0.807341050733 -0.930756830331E-03 1308 -0.552676447225E-01 -0.480826086511E-03 1309 -0.695355274652E-01 -0.446527135775E-03 1310 0.404288950669E-01 0.149227716473E-03 1311 0.404348687869E-01 0.148998740022E-03 1312 -0.404230611628E-01 -0.134374541288E-03 1313 -0.553450534587E-01 -0.447662194122E-03 1314 -0.694629532178E-01 -0.400380182592E-03 1315 -0.552715623269E-01 -0.420688943945E-03 1316 -0.695353797757E-01 -0.446521290028E-03 1317 -0.695225906531E-01 -0.428778488532E-03 1318 -0.552678441867E-01 -0.427916085938E-03 1319 0.807167354371 -0.931526703550E-03 1320 -0.411267006050E-01 -0.376010658267E-03 1321 -0.404290651854E-01 -0.135395654416E-03 1322 -0.404351034919E-01 -0.135635545883E-03 1323 0.404227816164E-01 0.150101577370E-03 1324 -0.694631143909E-01 -0.434397712096E-03 1325 -0.553448905101E-01 -0.461732796787E-03 1326 -0.695227742304E-01 -0.406649168982E-03 1327 -0.552676543966E-01 -0.480823076658E-03 1328 -0.552713066146E-01 -0.488093205426E-03 1329 -0.695357050616E-01 -0.388925278391E-03 1330 -0.411270187962E-01 -0.320113185552E-03 1331 0.807167756617 -0.931513069360E-03 1332 0.345930768885 -0.789565622617E-02 1333 -0.256146424140E-05 0.398352357797E-07 1334 0.265774728505E-05 0.593876756433E-07 1335 -0.408816640859E-01 -0.139288850034E-03 1336 0.408811448299E-01 0.156091677281E-03 1337 0.408900069929E-01 0.151384525784E-03 1338 0.408765593168E-01 0.137768155348E-03 1339 -0.408902821434E-01 -0.144300849596E-03 1340 -0.408763259209E-01 -0.156932881552E-03 1341 0.408658263022E-01 0.140086093224E-03 1342 -0.408655798499E-01 -0.154535735021E-03 1343 -0.256154058371E-05 0.398297276899E-07 1344 0.345931402575 -0.789563544651E-02 1345 0.135939206554E-05 0.826704540354E-07 1346 -0.408877534402E-01 -0.142597452400E-03 1347 0.408875192449E-01 0.153267663096E-03 1348 -0.408726421739E-01 -0.155957012265E-03 1349 -0.408878113125E-01 -0.141764182736E-03 1350 0.408729007199E-01 0.138582423367E-03 1351 0.408875596585E-01 0.154032816540E-03 1352 0.408718652184E-01 0.140242723085E-03 1353 -0.408715780572E-01 -0.154384070661E-03 1354 0.265781901033E-05 0.593550722582E-07 1355 0.135936619319E-05 0.825926031744E-07 1356 0.345928451049 -0.789570889685E-02 1357 -0.408650321387E-01 -0.143338134438E-03 1358 0.408648720076E-01 0.151030954479E-03 1359 0.408878375231E-01 0.146787998065E-03 1360 -0.408834685657E-01 -0.145792867768E-03 1361 -0.408875874290E-01 -0.148587886165E-03 1362 0.408831960852E-01 0.149653536112E-03 1363 -0.408592044749E-01 -0.155588006295E-03 1364 0.408596020753E-01 0.138858309040E-03 1365 -0.408811529816E-01 -0.156091956030E-03 1366 -0.408875259945E-01 -0.153267679403E-03 1367 -0.408648643875E-01 -0.151031053846E-03 1368 0.804234573994 -0.108137086095E-02 1369 -0.423203795361E-01 -0.424874708373E-03 1370 -0.567684024745E-01 -0.532847765300E-03 1371 -0.708566075568E-01 -0.478527691436E-03 1372 -0.708638207775E-01 -0.470157863189E-03 1373 -0.567749450389E-01 -0.541133845438E-03 1374 -0.568228394748E-01 -0.540987472905E-03 1375 -0.708146273456E-01 -0.469009117345E-03 1376 0.408816559368E-01 0.139288602149E-03 1377 0.408877466925E-01 0.142597033907E-03 1378 0.408650397585E-01 0.143338055007E-03 1379 -0.423203293972E-01 -0.391818646587E-03 1380 0.804234277766 -0.108138007719E-02 1381 -0.708635528871E-01 -0.502644777628E-03 1382 -0.567750259030E-01 -0.525656408321E-03 1383 -0.567683526171E-01 -0.533885710439E-03 1384 -0.708563556866E-01 -0.494210491204E-03 1385 -0.708143693679E-01 -0.503128206326E-03 1386 -0.568229932582E-01 -0.526439522443E-03 1387 0.408903176785E-01 0.144301986604E-03 1388 -0.408728846633E-01 -0.138582463264E-03 1389 0.408875687666E-01 0.148587599775E-03 1390 -0.567683721703E-01 -0.533887632216E-03 1391 -0.708637589722E-01 -0.470156908875E-03 1392 0.804312781748 -0.108096108477E-02 1393 -0.708984722021E-01 -0.486536635908E-03 1394 -0.424175079125E-01 -0.375359988783E-03 1395 -0.567414415061E-01 -0.532586516277E-03 1396 -0.567481768822E-01 -0.567555630263E-03 1397 -0.708752122301E-01 -0.497640687452E-03 1398 0.408763152166E-01 0.156932798477E-03 1399 -0.408875461977E-01 -0.154031897180E-03 1400 -0.408832156552E-01 -0.149653954200E-03 1401 -0.708564179488E-01 -0.494209221010E-03 1402 -0.567749398729E-01 -0.541131678912E-03 1403 -0.708984360194E-01 -0.486837325644E-03 1404 0.804331395574 -0.108081981172E-02 1405 -0.567414083047E-01 -0.532586292008E-03 1406 -0.424226129927E-01 -0.455690182577E-03 1407 -0.708881128190E-01 -0.457370201868E-03 1408 -0.567447573254E-01 -0.506558662163E-03 1409 -0.408899714366E-01 -0.151383460758E-03 1410 0.408726582048E-01 0.155958002929E-03 1411 -0.408878561759E-01 -0.146788841938E-03 1412 -0.708636146310E-01 -0.502647536187E-03 1413 -0.567683828319E-01 -0.532848613196E-03 1414 -0.424173510383E-01 -0.442395406547E-03 1415 -0.567414369987E-01 -0.533624130231E-03 1416 0.804312779640 -0.108096113187E-02 1417 -0.708984959000E-01 -0.486838620633E-03 1418 -0.708751853354E-01 -0.475253623471E-03 1419 -0.567485944228E-01 -0.499155836333E-03 1420 -0.408765700113E-01 -0.137768418324E-03 1421 0.408878248038E-01 0.141764394237E-03 1422 0.408834489788E-01 0.145792501951E-03 1423 -0.567750311974E-01 -0.525654334166E-03 1424 -0.708565454854E-01 -0.478522696421E-03 1425 -0.567414701536E-01 -0.533625953328E-03 1426 -0.424229206726E-01 -0.362171615525E-03 1427 -0.708985320540E-01 -0.486538961491E-03 1428 0.804331559851 -0.108081473868E-02 1429 -0.567445149442E-01 -0.560110264987E-03 1430 -0.708880702543E-01 -0.515549106184E-03 1431 0.408655954993E-01 0.154536150337E-03 1432 0.408715743840E-01 0.154384439247E-03 1433 -0.408595795952E-01 -0.138857242158E-03 1434 -0.568230120471E-01 -0.526440995855E-03 1435 -0.708144101558E-01 -0.469000806379E-03 1436 -0.567485367952E-01 -0.499154364895E-03 1437 -0.708879074377E-01 -0.515543139449E-03 1438 -0.708750950046E-01 -0.497638616203E-03 1439 -0.567447469507E-01 -0.506554801993E-03 1440 0.804155366200 -0.108171462346E-02 1441 -0.422574879075E-01 -0.436619564431E-03 1442 -0.408658106566E-01 -0.140085905302E-03 1443 -0.408718688374E-01 -0.140243682547E-03 1444 0.408592269713E-01 0.155588680423E-03 1445 -0.708145866570E-01 -0.503133023127E-03 1446 -0.568228206269E-01 -0.540987715860E-03 1447 -0.708753024653E-01 -0.475258674032E-03 1448 -0.567445255344E-01 -0.560106915189E-03 1449 -0.567482344952E-01 -0.567557532882E-03 1450 -0.708882756947E-01 -0.457374113717E-03 1451 -0.422578625653E-01 -0.379686338026E-03 1452 0.804155810165 -0.108170084670E-02 1453 0.319727805430 -0.969423685397E-02 1454 -0.242944668190E-05 0.487625848916E-07 1455 0.286218752930E-05 0.786832120952E-07 1456 -0.413235586848E-01 -0.134790338025E-03 1457 0.413228968317E-01 0.153322379750E-03 1458 0.413323058987E-01 0.148323067362E-03 1459 0.413172687648E-01 0.133632551323E-03 1460 -0.413326671561E-01 -0.140183779266E-03 1461 -0.413169720079E-01 -0.153617957218E-03 1462 0.413064020873E-01 0.135960005372E-03 1463 -0.413060915111E-01 -0.151189014687E-03 1464 -0.242952921188E-05 0.487527656449E-07 1465 0.319728513939 -0.969420674092E-02 1466 0.164992224508E-05 0.114291740670E-06 1467 -0.413304353254E-01 -0.138652104912E-03 1468 0.413301377437E-01 0.150091385351E-03 1469 -0.413130123900E-01 -0.152615437485E-03 1470 -0.413303819576E-01 -0.137747980821E-03 1471 0.413133362120E-01 0.134425157636E-03 1472 0.413300609501E-01 0.150910409249E-03 1473 0.413124513027E-01 0.136009965759E-03 1474 -0.413120843591E-01 -0.151134961151E-03 1475 0.286226554790E-05 0.786463612930E-07 1476 0.164989448785E-05 0.114201812161E-06 1477 0.319725305217 -0.969430744303E-02 1478 -0.413051750310E-01 -0.139283196892E-03 1479 0.413049656626E-01 0.147546582699E-03 1480 0.413296886155E-01 0.142691955852E-03 1481 -0.413254429704E-01 -0.141739379230E-03 1482 -0.413293600984E-01 -0.145408453363E-03 1483 0.413250952161E-01 0.146460541090E-03 1484 -0.412994065870E-01 -0.152467189692E-03 1485 0.412999092691E-01 0.134470625865E-03 1486 -0.413229056440E-01 -0.153322643653E-03 1487 -0.413301450828E-01 -0.150091388653E-03 1488 -0.413049582257E-01 -0.147546802409E-03 1489 0.800737739781 -0.125696520663E-02 1490 -0.436478478444E-01 -0.496229333776E-03 1491 -0.585032730833E-01 -0.626857026327E-03 1492 -0.724318364296E-01 -0.558997581480E-03 1493 -0.724391652208E-01 -0.550605643312E-03 1494 -0.585098939323E-01 -0.635336545420E-03 1495 -0.585588180167E-01 -0.635387471188E-03 1496 -0.723888768271E-01 -0.549668710003E-03 1497 0.413235498759E-01 0.134790101300E-03 1498 0.413304279858E-01 0.138651682118E-03 1499 0.413051824664E-01 0.139283009234E-03 1500 -0.436477893194E-01 -0.463336244914E-03 1501 0.800737415367 -0.125697453711E-02 1502 -0.724388537677E-01 -0.583764764899E-03 1503 -0.585099881867E-01 -0.619581080309E-03 1504 -0.585032173195E-01 -0.627991904915E-03 1505 -0.724315473125E-01 -0.575294901526E-03 1506 -0.723885924187E-01 -0.583918529416E-03 1507 -0.585590020090E-01 -0.620275870703E-03 1508 0.413327062957E-01 0.140184972986E-03 1509 -0.413133185891E-01 -0.134425238202E-03 1510 0.413293396126E-01 0.145408185437E-03 1511 -0.585032386383E-01 -0.627993957101E-03 1512 -0.724390976708E-01 -0.550604771362E-03 1513 0.800817281723 -0.125648211030E-02 1514 -0.724747233386E-01 -0.567313290195E-03 1515 -0.437467065397E-01 -0.446634992374E-03 1516 -0.584754579168E-01 -0.626643058771E-03 1517 -0.584829736229E-01 -0.662195527243E-03 1518 -0.724506845008E-01 -0.578580553802E-03 1519 0.413169608495E-01 0.153617957798E-03 1520 -0.413300457196E-01 -0.150909388809E-03 1521 -0.413251161508E-01 -0.146460913090E-03 1522 -0.724316153601E-01 -0.575293345679E-03 1523 -0.585098884333E-01 -0.635334195842E-03 1524 -0.724746838200E-01 -0.567727857232E-03 1525 0.800836354931 -0.125631585521E-02 1526 -0.584754215612E-01 -0.626642893679E-03 1527 -0.437519511252E-01 -0.527724282898E-03 1528 -0.724636301867E-01 -0.537832509720E-03 1529 -0.584795318539E-01 -0.600235316043E-03 1530 -0.413322667345E-01 -0.148321972634E-03 1531 0.413130299865E-01 0.152616489699E-03 1532 -0.413297090906E-01 -0.142692843745E-03 1533 -0.724389212552E-01 -0.583767620506E-03 1534 -0.585032516733E-01 -0.626858012529E-03 1535 -0.437465270232E-01 -0.514173796625E-03 1536 -0.584754528825E-01 -0.627590438354E-03 1537 0.800817279451 -0.125648215389E-02 1538 -0.724747492925E-01 -0.567729117838E-03 1539 -0.724506619153E-01 -0.555900639906E-03 1540 -0.584834582270E-01 -0.592627537606E-03 1541 -0.413172799124E-01 -0.133632758647E-03 1542 0.413303972205E-01 0.137748225642E-03 1543 0.413254220160E-01 0.141739080636E-03 1544 -0.585099938152E-01 -0.619578791020E-03 1545 -0.724317685741E-01 -0.558992282905E-03 1546 -0.584754891925E-01 -0.627592343674E-03 1547 -0.437523073599E-01 -0.433212939402E-03 1548 -0.724747887824E-01 -0.567315673401E-03 1549 0.800836534774 -0.125631072666E-02 1550 -0.584792503535E-01 -0.654537575795E-03 1551 -0.724635703506E-01 -0.596674458420E-03 1552 0.413061083452E-01 0.151189414355E-03 1553 0.413120799276E-01 0.151135348242E-03 1554 -0.412998841913E-01 -0.134469461114E-03 1555 -0.585590226322E-01 -0.620277440535E-03 1556 -0.723886393544E-01 -0.549660201835E-03 1557 -0.584833952703E-01 -0.592626083931E-03 1558 -0.724633923026E-01 -0.596668368768E-03 1559 -0.724505563041E-01 -0.578578601398E-03 1560 -0.584795205823E-01 -0.600231128176E-03 1561 0.800657418506 -0.125736622258E-02 1562 -0.435842875492E-01 -0.508631355366E-03 1563 -0.413063852557E-01 -0.135959866964E-03 1564 -0.413124556767E-01 -0.136011051849E-03 1565 0.412994316842E-01 0.152467900980E-03 1566 -0.723888299901E-01 -0.583923226490E-03 1567 -0.585587973328E-01 -0.635387788669E-03 1568 -0.724507900151E-01 -0.555905857535E-03 1569 -0.584792618417E-01 -0.654533882502E-03 1570 -0.584830365646E-01 -0.662197453678E-03 1571 -0.724638082931E-01 -0.537836362832E-03 1572 -0.435847301478E-01 -0.450477088185E-03 1573 0.800657904667 -0.125735228109E-02 1574 0.287273371896 -0.121393154416E-01 1575 -0.226657674370E-05 0.607548571235E-07 1576 0.313702575489E-05 0.107624124655E-06 1577 -0.417338212423E-01 -0.113586088635E-03 1578 0.417329551013E-01 0.134354048572E-03 1579 0.417430824964E-01 0.128990737632E-03 1580 0.417260040821E-01 0.112893256787E-03 1581 -0.417435701585E-01 -0.119473828316E-03 1582 -0.417256175926E-01 -0.133925102518E-03 1583 0.417149637307E-01 0.115225570030E-03 1584 -0.417145619948E-01 -0.131458326184E-03 1585 -0.226666715603E-05 0.607392950406E-07 1586 0.287274190619 -0.121392702136E-01 1587 0.205848171433E-05 0.163957614249E-06 1588 -0.417417314231E-01 -0.118176352699E-03 1589 0.417413434089E-01 0.130608563922E-03 1590 -0.417212949759E-01 -0.132885004330E-03 1591 -0.417415384087E-01 -0.117183480528E-03 1592 0.417217107994E-01 0.113652929383E-03 1593 0.417411180016E-01 0.131492776465E-03 1594 0.417210090495E-01 0.115133778811E-03 1595 -0.417205275182E-01 -0.131529856620E-03 1596 0.313711199355E-05 0.107581831477E-06 1597 0.205845161992E-05 0.163853265694E-06 1598 0.287270623458 -0.121394133025E-01 1599 -0.417131845558E-01 -0.118630731129E-03 1600 0.417129030371E-01 0.127641156262E-03 1601 0.417398791039E-01 0.121995716087E-03 1602 -0.417358094046E-01 -0.121105791374E-03 1603 -0.417394358570E-01 -0.125917213051E-03 1604 0.417353534464E-01 0.126952576569E-03 1605 -0.417074986123E-01 -0.133027779035E-03 1606 0.417081505393E-01 0.113399348643E-03 1607 -0.417329645097E-01 -0.134354285222E-03 1608 -0.417413513111E-01 -0.130608553093E-03 1609 -0.417128961813E-01 -0.127641544474E-03 1610 0.796665702473 -0.146776909569E-02 1611 -0.452110164395E-01 -0.583058889906E-03 1612 -0.605489549593E-01 -0.741635980300E-03 1613 -0.742723728377E-01 -0.656139266741E-03 1614 -0.742798435209E-01 -0.647715702515E-03 1615 -0.605556733027E-01 -0.750340197935E-03 1616 -0.606058043593E-01 -0.750630286461E-03 1617 -0.742282607625E-01 -0.647029160739E-03 1618 0.417338118380E-01 0.113585873286E-03 1619 0.417417235165E-01 0.118175934913E-03 1620 0.417131914086E-01 0.118630391683E-03 1621 -0.452109503696E-01 -0.550353446315E-03 1622 0.796665349492 -0.146777855939E-02 1623 -0.742794787543E-01 -0.681673657074E-03 1624 -0.605557837540E-01 -0.734261769056E-03 1625 -0.605488933257E-01 -0.742880337445E-03 1626 -0.742720409016E-01 -0.673153337707E-03 1627 -0.742279469666E-01 -0.681431574659E-03 1628 -0.606060257322E-01 -0.734848870515E-03 1629 0.417436130882E-01 0.119475105844E-03 1630 -0.417216915555E-01 -0.113653046503E-03 1631 0.417394134904E-01 0.125916960269E-03 1632 -0.605489164008E-01 -0.742882521901E-03 1633 -0.742797701975E-01 -0.647714915419E-03 1634 0.796746820919 -0.146719652233E-02 1635 -0.743164662861E-01 -0.664822024991E-03 1636 -0.453119055555E-01 -0.533379177849E-03 1637 -0.605201332001E-01 -0.741468581485E-03 1638 -0.605285668117E-01 -0.777711896825E-03 1639 -0.742915178495E-01 -0.676274757316E-03 1640 0.417256062392E-01 0.133925221493E-03 1641 -0.417411007534E-01 -0.131491623756E-03 1642 -0.417353755629E-01 -0.126952885830E-03 1643 -0.742721147692E-01 -0.673151494826E-03 1644 -0.605556675170E-01 -0.750337665650E-03 1645 -0.743164250528E-01 -0.665358655878E-03 1646 0.796766436574 -0.146699927344E-02 1647 -0.605200936529E-01 -0.741468473109E-03 1648 -0.453173201198E-01 -0.615347936813E-03 1649 -0.743045132893E-01 -0.634970147789E-03 1650 -0.605251007249E-01 -0.714622906789E-03 1651 -0.417430395373E-01 -0.128989595605E-03 1652 0.417213141920E-01 0.132886126783E-03 1653 -0.417399014586E-01 -0.121996656638E-03 1654 -0.742795520138E-01 -0.681676610797E-03 1655 -0.605489317909E-01 -0.741637108623E-03 1656 -0.453116993123E-01 -0.601494821073E-03 1657 -0.605201262979E-01 -0.742319334013E-03 1658 0.796746818493 -0.146719656159E-02 1659 -0.743164961594E-01 -0.665359883638E-03 1660 -0.742915024978E-01 -0.653251934781E-03 1661 -0.605291324185E-01 -0.706771485197E-03 1662 -0.417260154236E-01 -0.112893376736E-03 1663 0.417415556927E-01 0.117183783485E-03 1664 0.417357872643E-01 0.121105584867E-03 1665 -0.605557896704E-01 -0.734259260651E-03 1666 -0.742722991635E-01 -0.656133661704E-03 1667 -0.605201658007E-01 -0.742321321163E-03 1668 -0.453177355933E-01 -0.519683800353E-03 1669 -0.743165373641E-01 -0.664824467488E-03 1670 0.796766632172 -0.146699408070E-02 1671 -0.605247722860E-01 -0.769801286750E-03 1672 -0.743044296555E-01 -0.694581692858E-03 1673 0.417145799290E-01 0.131458706798E-03 1674 0.417205221526E-01 0.131530250176E-03 1675 -0.417081226285E-01 -0.113398055826E-03 1676 -0.606060482238E-01 -0.734850540036E-03 1677 -0.742280028645E-01 -0.647020452561E-03 1678 -0.605290641188E-01 -0.706770051091E-03 1679 -0.743042362602E-01 -0.694575478685E-03 1680 -0.742913785954E-01 -0.676272923794E-03 1681 -0.605250885793E-01 -0.714618390820E-03 1682 0.796584076440 -0.146824196136E-02 1683 -0.451466614026E-01 -0.596232734903E-03 1684 -0.417149457969E-01 -0.115225491800E-03 1685 -0.417210143529E-01 -0.115135014467E-03 1686 0.417075265474E-01 0.133028545491E-03 1687 -0.742282049626E-01 -0.681436156110E-03 1688 -0.606057818051E-01 -0.750630680074E-03 1689 -0.742916416532E-01 -0.653257323827E-03 1690 -0.605247846495E-01 -0.769797245855E-03 1691 -0.605286350961E-01 -0.777713846220E-03 1692 -0.743047067415E-01 -0.634973946679E-03 1693 -0.451471880273E-01 -0.536631548647E-03 1694 0.796584605347 -0.146822782812E-02 1695 0.246057540866 -0.156929237491E-01 1696 -0.206107482013E-05 0.778917206255E-07 1697 0.352113232938E-05 0.154431287568E-06 1698 -0.420429490409E-01 -0.587342854892E-04 1699 0.420417681977E-01 0.824896029072E-04 1700 0.420528749180E-01 0.766653959520E-04 1701 0.420330960813E-01 0.586491806836E-04 1702 -0.420535622808E-01 -0.652873057806E-04 1703 -0.420325735015E-01 -0.810558237333E-04 1704 0.420218210028E-01 0.609748227602E-04 1705 -0.420212799842E-01 -0.785429018860E-04 1706 -0.206117546905E-05 0.778677753652E-07 1707 0.246058529134 -0.156928521042E-01 1708 0.265917250516E-05 0.248343662598E-06 1709 -0.420522602888E-01 -0.643243216505E-04 1710 0.420517334014E-01 0.780805880530E-04 1711 -0.420277564245E-01 -0.799599998583E-04 1712 -0.420518879936E-01 -0.632163639794E-04 1713 0.420283118106E-01 0.593546222815E-04 1714 0.420513142099E-01 0.790457478779E-04 1715 0.420278370178E-01 0.606871807868E-04 1716 -0.420271783589E-01 -0.787805292451E-04 1717 0.352122971364E-05 0.154381831515E-06 1718 0.265913952548E-05 0.248221251049E-06 1719 0.246054440373 -0.156930664855E-01 1720 -0.420193184068E-01 -0.644721126728E-04 1721 0.420189230993E-01 0.744960214413E-04 1722 0.420488798233E-01 0.678030741053E-04 1723 -0.420450723253E-01 -0.670102799047E-04 1724 -0.420482571673E-01 -0.733618459590E-04 1725 0.420444494102E-01 0.743788625467E-04 1726 -0.420137444362E-01 -0.804998563959E-04 1727 0.420146243685E-01 0.587007351034E-04 1728 -0.420417780857E-01 -0.824897872222E-04 1729 -0.420517418147E-01 -0.780805581792E-04 1730 -0.420189173989E-01 -0.744966588043E-04 1731 0.791891882747 -0.172989110087E-02 1732 -0.470649490492E-01 -0.691818367146E-03 1733 -0.629796837556E-01 -0.886203217670E-03 1734 -0.764384859774E-01 -0.777733779245E-03 1735 -0.764461379042E-01 -0.769262830209E-03 1736 -0.629865289415E-01 -0.895170362258E-03 1737 -0.630380833435E-01 -0.895753300427E-03 1738 -0.763930102538E-01 -0.768870035730E-03 1739 0.420429391581E-01 0.587341140289E-04 1740 0.420522518646E-01 0.643239273943E-04 1741 0.420193241020E-01 0.644715468836E-04 1742 -0.470648802904E-01 -0.659318327287E-03 1743 0.791891500754 -0.172990072233E-02 1744 -0.764457046675E-01 -0.804182292472E-03 1745 -0.629866598537E-01 -0.878713921233E-03 1746 -0.629796171642E-01 -0.887568568569E-03 1747 -0.764381043041E-01 -0.795585433811E-03 1748 -0.763926603773E-01 -0.803459626483E-03 1749 -0.630383517964E-01 -0.879170767646E-03 1750 0.420536092857E-01 0.652887164551E-04 1751 -0.420282908588E-01 -0.593547665648E-04 1752 0.420482328345E-01 0.733616006492E-04 1753 -0.629796419842E-01 -0.887570888168E-03 1754 -0.764460587805E-01 -0.769262131709E-03 1755 0.791974877170 -0.172920646682E-02 1756 -0.764840165356E-01 -0.786863974220E-03 1757 -0.471682374186E-01 -0.642043506899E-03 1758 -0.629496683884E-01 -0.886073805853E-03 1759 -0.629591815456E-01 -0.923145860952E-03 1760 -0.764580064457E-01 -0.798524594956E-03 1761 0.420325623481E-01 0.810561226264E-04 1762 -0.420512945831E-01 -0.790444078500E-04 1763 -0.420444724514E-01 -0.743790821943E-04 1764 -0.764381840303E-01 -0.795583302744E-03 1765 -0.629865229199E-01 -0.895167646028E-03 1766 -0.764839781258E-01 -0.787522680319E-03 1767 0.791995140772 -0.172896869974E-02 1768 -0.629496256093E-01 -0.886073750830E-03 1769 -0.471738619988E-01 -0.725042583006E-03 1770 -0.764710555481E-01 -0.756566287067E-03 1771 -0.629556920710E-01 -0.858723063530E-03 1772 -0.420528278765E-01 -0.766641720753E-04 1773 0.420277773458E-01 0.799612093108E-04 1774 -0.420489041424E-01 -0.678040819228E-04 1775 -0.764457837258E-01 -0.804185344524E-03 1776 -0.629796588396E-01 -0.886204492050E-03 1777 -0.471679979290E-01 -0.710824693424E-03 1778 -0.629496561416E-01 -0.886827920792E-03 1779 0.791974874603 -0.172920650071E-02 1780 -0.764840549158E-01 -0.787523877312E-03 1781 -0.764580021634E-01 -0.775098450678E-03 1782 -0.629598490768E-01 -0.850578035466E-03 1783 -0.420331072223E-01 -0.586491544564E-04 1784 0.420519076633E-01 0.632167670782E-04 1785 0.420450492543E-01 0.670102047780E-04 1786 -0.629866660074E-01 -0.878711190549E-03 1787 -0.764384064458E-01 -0.777727864553E-03 1788 -0.629496988784E-01 -0.886829988507E-03 1789 -0.471743541444E-01 -0.628025241077E-03 1790 -0.764840932965E-01 -0.786866478689E-03 1791 0.791995352341 -0.172896343180E-02 1792 -0.629553053694E-01 -0.914931143401E-03 1793 -0.764709380362E-01 -0.817078409462E-03 1794 0.420212989190E-01 0.785432615710E-04 1795 0.420271718215E-01 0.787809114825E-04 1796 -0.420145932981E-01 -0.586992664339E-04 1797 -0.630383761920E-01 -0.879172539727E-03 1798 -0.763927317726E-01 -0.768861124376E-03 1799 -0.629597754231E-01 -0.850576622815E-03 1800 -0.764707291650E-01 -0.817072069510E-03 1801 -0.764578560394E-01 -0.798522880633E-03 1802 -0.629556790794E-01 -0.858718218540E-03 1803 0.791808704908 -0.173046015141E-02 1804 -0.469996294105E-01 -0.705895868179E-03 1805 -0.420218020653E-01 -0.609748170349E-04 1806 -0.420278434855E-01 -0.606886004053E-04 1807 0.420137755388E-01 0.805007066181E-04 1808 -0.763929389554E-01 -0.803464097343E-03 1809 -0.630380588830E-01 -0.895753773176E-03 1810 -0.764581524692E-01 -0.775104015982E-03 1811 -0.629553185806E-01 -0.914926750335E-03 1812 -0.629592551837E-01 -0.923147832183E-03 1813 -0.764712644742E-01 -0.756570037548E-03 1814 -0.470002636775E-01 -0.644563779244E-03 1815 0.791809277208 -0.173044579147E-02 1816 0.191513672031 -0.214263698708E-01 1817 -0.179204466801E-05 0.104835910778E-06 1818 0.409140233520E-05 0.239790917317E-06 1819 -0.421028032167E-01 0.730389271339E-04 1820 0.421010783891E-01 -0.450777679466E-04 1821 0.421136002196E-01 -0.514962239985E-04 1822 0.420900788968E-01 -0.723121056824E-04 1823 -0.421146435260E-01 0.655334211040E-04 1824 -0.420893256191E-01 0.480098010301E-04 1825 0.420784666031E-01 -0.700208249766E-04 1826 -0.420776877779E-01 0.505833343698E-04 1827 -0.179215857879E-05 0.104797842719E-06 1828 0.191514939190 -0.214262460265E-01 1829 0.360442512133E-05 0.410679177821E-06 1830 -0.421141087473E-01 0.659812463744E-04 1831 0.421133415122E-01 -0.503643259174E-04 1832 -0.420837990448E-01 0.491957688447E-04 1833 -0.421135002688E-01 0.672462762545E-04 1834 0.420845921261E-01 -0.717059189448E-04 1835 0.421126599847E-01 -0.492932984082E-04 1836 0.420844071865E-01 -0.705987280222E-04 1837 -0.420834402831E-01 0.501158551332E-04 1838 0.409151567565E-05 0.239731726335E-06 1839 0.360438881296E-05 0.410532287513E-06 1840 0.191510039163 -0.214265962341E-01 1841 -0.420749756469E-01 0.664289733719E-04 1842 0.420743780071E-01 -0.549495770770E-04 1843 0.421084849067E-01 -0.630778290701E-04 1844 -0.421050956146E-01 0.637059933713E-04 1845 -0.421075506252E-01 0.551774749322E-04 1846 0.421041852039E-01 -0.541713329143E-04 1847 -0.420695414109E-01 0.480828165283E-04 1848 0.420708126324E-01 -0.729226076698E-04 1849 -0.421010885251E-01 0.450776954783E-04 1850 -0.421133503232E-01 0.503643925391E-04 1851 -0.420743743545E-01 0.549485356014E-04 1852 0.786224720768 -0.207361168332E-02 1853 -0.492892676553E-01 -0.832960028407E-03 1854 -0.659048672950E-01 -0.107615643178E-02 1855 -0.790220867882E-01 -0.938630969095E-03 1856 -0.790299872494E-01 -0.930085321083E-03 1857 -0.659118905866E-01 -0.108543655448E-02 1858 -0.659651403090E-01 -0.108638133579E-02 1859 -0.789749855441E-01 -0.930029807805E-03 1860 0.421027930868E-01 -0.730389977462E-04 1861 0.421140999117E-01 -0.659815731718E-04 1862 0.420749792910E-01 -0.664299118257E-04 1863 -0.492892145505E-01 -0.800654600969E-03 1864 0.786224309227 -0.207362149692E-02 1865 -0.790294592200E-01 -0.966187787400E-03 1866 -0.659120494281E-01 -0.106853066461E-02 1867 -0.659047996394E-01 -0.107764850485E-02 1868 -0.790216475498E-01 -0.957463508206E-03 1869 -0.789745818311E-01 -0.964872584222E-03 1870 -0.659654686384E-01 -0.106883256456E-02 1871 0.421146950858E-01 -0.655317736669E-04 1872 -0.420845693109E-01 0.717057724993E-04 1873 0.421075241869E-01 -0.551777327127E-04 1874 -0.659048261946E-01 -0.107765096562E-02 1875 -0.790299023040E-01 -0.930084717138E-03 1876 0.786309971544 -0.207278271646E-02 1877 -0.790693562711E-01 -0.948325097604E-03 1878 -0.493954251488E-01 -0.783063243835E-03 1879 -0.658734239374E-01 -0.107603837620E-02 1880 -0.658842009435E-01 -0.111412506500E-02 1881 -0.790421138700E-01 -0.960213056180E-03 1882 0.420893153231E-01 -0.480091958902E-04 1883 -0.421126374124E-01 0.492949380040E-04 1884 -0.421042087867E-01 0.541712502496E-04 1885 -0.790217331786E-01 -0.957461089004E-03 1886 -0.659118843767E-01 -0.108543364738E-02 1887 -0.790693341216E-01 -0.949082805121E-03 1888 0.786331026328 -0.207248704379E-02 1889 -0.658733778825E-01 -0.107603836911E-02 1890 -0.494013150583E-01 -0.867298325167E-03 1891 -0.790552183989E-01 -0.917475512123E-03 1892 -0.658806971938E-01 -0.104810291609E-02 1893 -0.421135486104E-01 0.514976080563E-04 1894 0.420838218238E-01 -0.491944338229E-04 1895 -0.421085113289E-01 0.630767250247E-04 1896 -0.790295440983E-01 -0.966190936094E-03 1897 -0.659048406405E-01 -0.107615785464E-02 1898 -0.493951399255E-01 -0.852624932989E-03 1899 -0.658733968226E-01 -0.107671275054E-02 1900 0.786309968853 -0.207278274372E-02 1901 -0.790694166551E-01 -0.949083974817E-03 1902 -0.790421253088E-01 -0.936309939495E-03 1903 -0.658850051699E-01 -0.103959525340E-02 1904 -0.420900891826E-01 0.723124050931E-04 1905 0.421135229009E-01 -0.672456907276E-04 1906 0.421050719905E-01 -0.637058680433E-04 1907 -0.659120557722E-01 -0.106852771291E-02 1908 -0.790220013546E-01 -0.938624740820E-03 1909 -0.658734428394E-01 -0.107671489579E-02 1910 -0.494019172008E-01 -0.768656857154E-03 1911 -0.790694387743E-01 -0.948327669677E-03 1912 0.786331254128 -0.207248168560E-02 1913 -0.658802343809E-01 -0.110553642739E-02 1914 -0.790550491438E-01 -0.979058954270E-03 1915 0.420777076067E-01 -0.505829895704E-04 1916 0.420834322404E-01 -0.501155102541E-04 1917 -0.420707779266E-01 0.729243346906E-04 1918 -0.659654949702E-01 -0.106883443971E-02 1919 -0.789746863013E-01 -0.930020687878E-03 1920 -0.658849261531E-01 -0.103959386255E-02 1921 -0.790548246510E-01 -0.979052487148E-03 1922 -0.790419522063E-01 -0.960211461125E-03 1923 -0.658806833881E-01 -0.104809773873E-02 1924 0.786139644479 -0.207432457074E-02 1925 -0.492227323411E-01 -0.848081398006E-03 1926 -0.420784467667E-01 0.700207488276E-04 1927 -0.420844151448E-01 0.705970691142E-04 1928 0.420695761646E-01 -0.480818338709E-04 1929 -0.789748811694E-01 -0.964876952484E-03 1930 -0.659651139093E-01 -0.108638189444E-02 1931 -0.790422868699E-01 -0.936315686982E-03 1932 -0.658802484092E-01 -0.110553167796E-02 1933 -0.658842799447E-01 -0.111412705789E-02 1934 -0.790554429426E-01 -0.917479223485E-03 1935 -0.492235116039E-01 -0.784646315308E-03 1936 0.786140260946 -0.207430993519E-02 1937 0.113683785614 -0.327666090490E-01 1938 -0.141566712779E-05 0.155879136170E-06 1939 0.503383894397E-05 0.437647795020E-06 1940 -0.415382058222E-01 0.434491794860E-03 1941 0.415352998279E-01 -0.400022002131E-03 1942 0.415500880917E-01 -0.407201903167E-03 1943 0.415209610780E-01 -0.432702168444E-03 1944 -0.415519425858E-01 0.425450338648E-03 1945 -0.415197157242E-01 0.405542206263E-03 1946 0.415088092191E-01 -0.430518895067E-03 1947 -0.415075275874E-01 0.408217854898E-03 1948 -0.141579199368E-05 0.155809294854E-06 1949 0.113685568835 -0.327663538708E-01 1950 0.527760808309E-05 0.808590424827E-06 1951 -0.415525866602E-01 0.424978994899E-03 1952 0.415512881707E-01 -0.406480086690E-03 1953 -0.415130793998E-01 0.406904008595E-03 1954 -0.415516632144E-01 0.426472377964E-03 1955 0.415143814004E-01 -0.432311752828E-03 1956 0.415502350730E-01 -0.405251243261E-03 1957 0.415145898947E-01 -0.431597434073E-03 1958 -0.415129412964E-01 0.407406867665E-03 1959 0.503397602012E-05 0.437575610752E-06 1960 0.527757102062E-05 0.808404429356E-06 1961 0.113679250909 -0.327670347830E-01 1962 -0.415038679974E-01 0.426878067218E-03 1963 0.415028111309E-01 -0.413079509832E-03 1964 0.415432880967E-01 -0.423244781466E-03 1965 -0.415406514309E-01 0.423535781808E-03 1966 -0.415416899489E-01 0.411682426835E-03 1967 0.415391294097E-01 -0.410626339137E-03 1968 -0.414985215642E-01 0.404872730181E-03 1969 0.415006399357E-01 -0.434393236078E-03 1970 -0.415353096710E-01 0.400022230507E-03 1971 -0.415512970857E-01 0.406480266627E-03 1972 -0.415028111024E-01 0.413077677740E-03 1973 0.779338119128 -0.257165553703E-02 1974 -0.520035221161E-01 -0.102189566342E-02 1975 -0.694982936279E-01 -0.134185691094E-02 1976 -0.821816287608E-01 -0.117485965825E-02 1977 -0.821899215198E-01 -0.116619199095E-02 1978 -0.695056053899E-01 -0.135152929224E-02 1979 -0.695609078172E-01 -0.135291933910E-02 1980 -0.821325833030E-01 -0.116649015184E-02 1981 0.415381959849E-01 -0.434491576372E-03 1982 0.415525776792E-01 -0.424979112653E-03 1983 0.415038680105E-01 -0.426879750394E-03 1984 -0.520035637882E-01 -0.989665436524E-03 1985 0.779337677374 -0.257166559684E-02 1986 -0.821892412572E-01 -0.120381055524E-02 1987 -0.695058100474E-01 -0.133407003649E-02 1988 -0.694982423325E-01 -0.134345785296E-02 1989 -0.821811283788E-01 -0.119483788759E-02 1990 -0.821320620008E-01 -0.120174637612E-02 1991 -0.695613085266E-01 -0.133419729492E-02 1992 0.415519996380E-01 -0.425448174603E-03 1993 -0.415143563839E-01 0.432311694060E-03 1994 0.415416611373E-01 -0.411682763787E-03 1995 -0.694982706300E-01 -0.134346047431E-02 1996 -0.821898307453E-01 -0.116619149210E-02 1997 0.779426122406 -0.257063784463E-02 1998 -0.822310602808E-01 -0.118531791855E-02 1999 -0.521131885769E-01 -0.971779199623E-03 2000 -0.694651282557E-01 -0.134167547140E-02 2001 -0.694773423710E-01 -0.138104204147E-02 2002 -0.822024330560E-01 -0.119744408312E-02 2003 0.415197075632E-01 -0.405540953340E-03 2004 -0.415502085415E-01 0.405253482629E-03 2005 -0.415391529066E-01 0.410626489813E-03 2006 -0.821812199661E-01 -0.119483518593E-02 2007 -0.695055990047E-01 -0.135152616214E-02 2008 -0.822311052992E-01 -0.118607745602E-02 2009 0.779448188694 -0.257024162160E-02 2010 -0.694650788789E-01 -0.134167550035E-02 2011 -0.521194203432E-01 -0.105758386224E-02 2012 -0.822155897627E-01 -0.115374888680E-02 2013 -0.694738615285E-01 -0.131305029937E-02 2014 -0.415500309619E-01 0.407203676414E-03 2015 0.415131043630E-01 -0.406902426937E-03 2016 -0.415433168913E-01 0.423243504263E-03 2017 -0.821893319633E-01 -0.120381379418E-02 2018 -0.694982652261E-01 -0.134185847430E-02 2019 -0.521128222605E-01 -0.104229458178E-02 2020 -0.694650536343E-01 -0.134233717644E-02 2021 0.779426119610 -0.257063786375E-02 2022 -0.822311936620E-01 -0.118607860697E-02 2023 -0.822024626636E-01 -0.117297648072E-02 2024 -0.694783554432E-01 -0.130407193119E-02 2025 -0.415209692500E-01 0.432703103455E-03 2026 0.415516898679E-01 -0.426471396884E-03 2027 0.415406278582E-01 -0.423535308572E-03 2028 -0.695058165704E-01 -0.133406688760E-02 2029 -0.821815373678E-01 -0.117485310907E-02 2030 -0.694651029852E-01 -0.134233939171E-02 2031 -0.521202202810E-01 -0.956894991053E-03 2032 -0.822311486067E-01 -0.118532057516E-02 2033 0.779448433038 -0.257023615086E-02 2034 -0.694732880701E-01 -0.137197635566E-02 2035 -0.822153257091E-01 -0.121665302689E-02 2036 0.415075482505E-01 -0.408217479089E-03 2037 0.415129312564E-01 -0.407406588105E-03 2038 -0.415006008544E-01 0.434395382121E-03 2039 -0.695613368057E-01 -0.133419926147E-02 2040 -0.821322630808E-01 -0.116648080494E-02 2041 -0.694782710441E-01 -0.130407055213E-02 2042 -0.822150854168E-01 -0.121664642636E-02 2043 -0.822022600135E-01 -0.119744260278E-02 2044 -0.694738469344E-01 -0.131304477394E-02 2045 0.779250577160 -0.257264097917E-02 2046 -0.519353396528E-01 -0.103814228589E-02 2047 -0.415087885473E-01 0.430518762982E-03 2048 -0.415145998063E-01 0.431595439293E-03 2049 0.414985607354E-01 -0.404871527608E-03 2050 -0.821323823169E-01 -0.120175066352E-02 2051 -0.695608794660E-01 -0.135292000507E-02 2052 -0.822026356021E-01 -0.117298242114E-02 2053 -0.694733028945E-01 -0.137197125178E-02 2054 -0.694774267550E-01 -0.138104406467E-02 2055 -0.822158300953E-01 -0.115375258246E-02 2056 -0.519363325665E-01 -0.972084420467E-03 2057 0.779251238751 -0.257262599171E-02 2058 -0.130700456256E-01 -0.758512507461E-01 2059 -0.845528297311E-06 0.338497524228E-06 2060 0.683346214061E-05 0.140938735214E-05 2061 -0.392836596441E-01 0.231436958601E-02 2062 0.392755149670E-01 -0.226816780296E-02 2063 0.392947778911E-01 -0.227574169345E-02 2064 0.392574475249E-01 -0.231294921083E-02 2065 -0.393006170468E-01 0.230179990531E-02 2066 -0.392539636298E-01 0.228083684523E-02 2067 0.392441757033E-01 -0.231125122698E-02 2068 -0.392408222083E-01 0.228386427063E-02 2069 -0.845569898157E-06 0.338667761520E-06 2070 -0.130671376076E-01 -0.758503139920E-01 2071 0.875691499955E-05 0.282987768272E-05 2072 -0.393029909113E-01 0.229887640953E-02 2073 0.392991307455E-01 -0.227519493921E-02 2074 -0.392453322177E-01 0.228280994873E-02 2075 -0.393016499030E-01 0.230061515567E-02 2076 0.392488809555E-01 -0.231333081709E-02 2077 0.392974741808E-01 -0.227353318339E-02 2078 0.392499306749E-01 -0.231359418398E-02 2079 -0.392450637618E-01 0.228270832522E-02 2080 0.683363156891E-05 0.140917993845E-05 2081 0.875693678527E-05 0.282969378584E-05 2082 -0.130763804948E-01 -0.758526837052E-01 2083 -0.392369381834E-01 0.230808497859E-02 2084 0.392336367436E-01 -0.228996653077E-02 2085 0.392865034537E-01 -0.230171337631E-02 2086 -0.392854567635E-01 0.230069375483E-02 2087 -0.392822471854E-01 0.228349255285E-02 2088 0.392814350408E-01 -0.228167288855E-02 2089 -0.392300237912E-01 0.227901440147E-02 2090 0.392359609912E-01 -0.231691416596E-02 2091 -0.392755227352E-01 0.226816946438E-02 2092 -0.392991386203E-01 0.227519588224E-02 2093 -0.392336437136E-01 0.228996192615E-02 2094 0.770562844484 -0.357216955955E-02 2095 -0.554170157107E-01 -0.118906763071E-02 2096 -0.740847652297E-01 -0.173456239135E-02 2097 -0.862531581811E-01 -0.164721633661E-02 2098 -0.862622977316E-01 -0.163847743981E-02 2099 -0.740926719282E-01 -0.174493190383E-02 2100 -0.741505901667E-01 -0.174682989857E-02 2101 -0.862019950609E-01 -0.163889636314E-02 2102 0.392836518969E-01 -0.231436789402E-02 2103 0.393029826834E-01 -0.229887545089E-02 2104 0.392369311707E-01 -0.230808934778E-02 2105 -0.554178755868E-01 -0.115642507209E-02 2106 0.770562371673 -0.357217997961E-02 2107 -0.862612078841E-01 -0.167820167730E-02 2108 -0.740930304455E-01 -0.172673852293E-02 2109 -0.740848921213E-01 -0.173617318724E-02 2110 -0.862526711877E-01 -0.166849994891E-02 2111 -0.862008297500E-01 -0.167501886209E-02 2112 -0.741509883317E-01 -0.172668564852E-02 2113 0.393006820118E-01 -0.230179587854E-02 2114 -0.392488526742E-01 0.231333147686E-02 2115 0.392822153312E-01 -0.228349335673E-02 2116 -0.740849222524E-01 -0.173617610724E-02 2117 -0.862622011390E-01 -0.163847707722E-02 2118 0.770654269435 -0.357097998886E-02 2119 -0.863053210529E-01 -0.165898897189E-02 2120 -0.555314602999E-01 -0.113831304934E-02 2121 -0.740496303425E-01 -0.173411266815E-02 2122 -0.740631740537E-01 -0.177497898897E-02 2123 -0.862754676245E-01 -0.167154177765E-02 2124 0.392539609971E-01 -0.228083303153E-02 2125 -0.392974416463E-01 0.227353748924E-02 2126 -0.392814572465E-01 0.228167370937E-02 2127 -0.862527688212E-01 -0.166849702030E-02 2128 -0.740926652141E-01 -0.174492829305E-02 2129 -0.863058620649E-01 -0.165941731535E-02 2130 0.770677756041 -0.357023507332E-02 2131 -0.740495776182E-01 -0.173411270344E-02 2132 -0.555379049798E-01 -0.122648232204E-02 2133 -0.862887059769E-01 -0.162656838174E-02 2134 -0.740599513445E-01 -0.170446108739E-02 2135 -0.392947127627E-01 0.227574507874E-02 2136 0.392453603416E-01 -0.228280735467E-02 2137 -0.392865353420E-01 0.230171149966E-02 2138 -0.862613044114E-01 -0.167820497786E-02 2139 -0.740847349801E-01 -0.173456397657E-02 2140 -0.555307299129E-01 -0.121009605123E-02 2141 -0.740492742617E-01 -0.173498929733E-02 2142 0.770654266557 -0.357097999420E-02 2143 -0.863059564498E-01 -0.165941851283E-02 2144 -0.862754617936E-01 -0.164641886514E-02 2145 -0.740647149163E-01 -0.169478164700E-02 2146 -0.392574504956E-01 0.231295276352E-02 2147 0.393016832437E-01 -0.230061242359E-02 2148 0.392854341367E-01 -0.230069242457E-02 2149 -0.740930373135E-01 -0.172673542096E-02 2150 -0.862530607258E-01 -0.164720941638E-02 2151 -0.740493270537E-01 -0.173499156852E-02 2152 -0.555394722638E-01 -0.112293785745E-02 2153 -0.863054153239E-01 -0.165899179682E-02 2154 0.770678017307 -0.357022944985E-02 2155 -0.740591136164E-01 -0.176528172249E-02 2156 -0.862880821471E-01 -0.169122441752E-02 2157 0.392408442808E-01 -0.228386345529E-02 2158 0.392450510483E-01 -0.228270809641E-02 2159 -0.392359165473E-01 0.231691708563E-02 2160 -0.741510184695E-01 -0.172668757178E-02 2161 -0.862016535014E-01 -0.163888663767E-02 2162 -0.740646250346E-01 -0.169478016601E-02 2163 -0.862878257314E-01 -0.169121758482E-02 2164 -0.862752830250E-01 -0.167154035412E-02 2165 -0.740599359566E-01 -0.170445509872E-02 2166 0.770471702160 -0.357427859230E-02 2167 -0.553464703681E-01 -0.120575925449E-02 2168 -0.392441538518E-01 0.231125127969E-02 2169 -0.392499428650E-01 0.231359172053E-02 2170 0.392300686468E-01 -0.227901275906E-02 2171 -0.862011714063E-01 -0.167502322520E-02 2172 -0.741505599421E-01 -0.174683082111E-02 2173 -0.862756463058E-01 -0.164642506594E-02 2174 -0.740591293134E-01 -0.176527636623E-02 2175 -0.740632639105E-01 -0.177498114283E-02 2176 -0.862889623401E-01 -0.162657218735E-02 2177 -0.553478916692E-01 -0.113627156692E-02 2178 0.770472410086 -0.357426310643E-02 2179 -0.121045515143 -0.220176176141 2180 -0.137045415488E-06 0.701973838425E-06 2181 0.752981289752E-05 0.452481501983E-05 2182 -0.392428182060E-01 0.907904899501E-02 2183 0.392161665245E-01 -0.902612565759E-02 2184 0.392411214294E-01 -0.902933934816E-02 2185 0.392086951433E-01 -0.908713467075E-02 2186 -0.392602693982E-01 0.905781037275E-02 2187 -0.391984003474E-01 0.905261466441E-02 2188 0.391948425795E-01 -0.908801937254E-02 2189 -0.391839315345E-01 0.905680802388E-02 2190 -0.137396216551E-06 0.702213834467E-06 2191 -0.121042474192 -0.220172724718 2192 0.960208026734E-05 0.996149619925E-05 2193 -0.392613041898E-01 0.905066892096E-02 2194 0.392494033151E-01 -0.902518319211E-02 2195 -0.391872193141E-01 0.905731904910E-02 2196 -0.392587737229E-01 0.905306317631E-02 2197 0.391983479685E-01 -0.909082387147E-02 2198 0.392454272427E-01 -0.902326672254E-02 2199 0.392024814570E-01 -0.909124727117E-02 2200 -0.391870478367E-01 0.905766432100E-02 2201 0.753009617294E-05 0.452421592045E-05 2202 0.960226052201E-05 0.996139363256E-05 2203 -0.121052214587 -0.220181016460 2204 -0.391855371965E-01 0.908636611445E-02 2205 0.391748750143E-01 -0.906690570077E-02 2206 0.392438945413E-01 -0.906886859857E-02 2207 -0.392424034912E-01 0.906371030557E-02 2208 -0.392290898600E-01 0.904535132529E-02 2209 0.392288053556E-01 -0.904009065733E-02 2210 -0.391692530823E-01 0.905173666382E-02 2211 0.391881780517E-01 -0.909389195946E-02 2212 -0.392161829718E-01 0.902613634605E-02 2213 -0.392494171041E-01 0.902518957080E-02 2214 -0.391748858379E-01 0.906688668209E-02 2215 0.759398179169 -0.685752850006E-02 2216 -0.609847925838E-01 -0.198780228063E-02 2217 -0.807603875344E-01 -0.312525904033E-02 2218 -0.917355016472E-01 -0.348544027278E-02 2219 -0.917457015722E-01 -0.347772615982E-02 2220 -0.807684824721E-01 -0.313739705805E-02 2221 -0.808301653510E-01 -0.314023683448E-02 2222 -0.916823361988E-01 -0.347807779582E-02 2223 0.392428011090E-01 -0.907903869158E-02 2224 0.392612896196E-01 -0.905066411594E-02 2225 0.391855260960E-01 -0.908638562973E-02 2226 -0.609886481990E-01 -0.195669187569E-02 2227 0.759397672638 -0.685753995234E-02 2228 -0.917432236127E-01 -0.351981922837E-02 2229 -0.807693155212E-01 -0.311855422229E-02 2230 -0.807611844191E-01 -0.312731486665E-02 2231 -0.917354140489E-01 -0.350864653334E-02 2232 -0.916789273572E-01 -0.351383736706E-02 2233 -0.808303403253E-01 -0.311780405858E-02 2234 0.392603336195E-01 -0.905779211919E-02 2235 -0.391983240713E-01 0.909083152601E-02 2236 0.392290580784E-01 -0.904535868340E-02 2237 -0.807612153439E-01 -0.312731895641E-02 2238 -0.917455999720E-01 -0.347772598473E-02 2239 0.759494585972 -0.685616594198E-02 2240 -0.917902823313E-01 -0.349929658493E-02 2241 -0.611070807320E-01 -0.193759726928E-02 2242 -0.807231843525E-01 -0.312486860860E-02 2243 -0.807386562613E-01 -0.316626829139E-02 2244 -0.917585251446E-01 -0.351404669929E-02 2245 0.391983928416E-01 -0.905259605415E-02 2246 -0.392453954530E-01 0.902328105978E-02 2247 -0.392288212591E-01 0.904009225009E-02 2248 -0.917355173727E-01 -0.350864340208E-02 2249 -0.807684771564E-01 -0.313739149128E-02 2250 -0.917926312022E-01 -0.350041677631E-02 2251 0.759519331752 -0.685425885579E-02 2252 -0.807231286142E-01 -0.312486817791E-02 2253 -0.611122713594E-01 -0.202824187949E-02 2254 -0.917721424397E-01 -0.346741907166E-02 2255 -0.807361625609E-01 -0.309314222964E-02 2256 -0.392410569895E-01 0.902935796309E-02 2257 0.391872422582E-01 -0.905730946305E-02 2258 -0.392439265641E-01 0.906886038626E-02 2259 -0.917433250315E-01 -0.351982266222E-02 2260 -0.807603565142E-01 -0.312525969434E-02 2261 -0.611054245946E-01 -0.201004736451E-02 2262 -0.807216288313E-01 -0.312552864041E-02 2263 0.759494582963 -0.685616590713E-02 2264 -0.917927313194E-01 -0.350041880653E-02 2265 -0.917582978560E-01 -0.348781858953E-02 2266 -0.807417387854E-01 -0.308252172185E-02 2267 -0.392087038168E-01 0.908715206970E-02 2268 0.392588059658E-01 -0.905304914999E-02 2269 0.392423869240E-01 -0.906370954029E-02 2270 -0.807693208864E-01 -0.311855269475E-02 2271 -0.917353985452E-01 -0.348543287981E-02 2272 -0.807216848364E-01 -0.312553165556E-02 2273 -0.611162962581E-01 -0.192251552318E-02 2274 -0.917903822953E-01 -0.349930008427E-02 2275 0.759519611306 -0.685425325207E-02 2276 -0.807347791209E-01 -0.315599499678E-02 2277 -0.917704628400E-01 -0.353354848500E-02 2278 0.391839454273E-01 -0.905680232852E-02 2279 0.391870246705E-01 -0.905766525395E-02 2280 -0.391881217511E-01 0.909389837096E-02 2281 -0.808303731510E-01 -0.311780522973E-02 2282 -0.916819751093E-01 -0.347806665479E-02 2283 -0.807416448666E-01 -0.308251872712E-02 2284 -0.917701919312E-01 -0.353354041146E-02 2285 -0.917583301669E-01 -0.351404472959E-02 2286 -0.807361474890E-01 -0.309313506846E-02 2287 0.759304573633 -0.686329151182E-02 2288 -0.609139683520E-01 -0.200378201703E-02 2289 -0.391948278010E-01 0.908802429677E-02 2290 -0.392025038363E-01 0.909124514238E-02 2291 0.391693104145E-01 -0.905173261786E-02 2292 -0.916792885844E-01 -0.351384283783E-02 2293 -0.808301323673E-01 -0.314023869357E-02 2294 -0.917584926886E-01 -0.348782578840E-02 2295 -0.807347943766E-01 -0.315599020937E-02 2296 -0.807387503233E-01 -0.316627180689E-02 2297 -0.917724132925E-01 -0.346742382118E-02 2298 -0.609165664106E-01 -0.192993426563E-02 2299 0.759305331867 -0.686327494304E-02 2300 -0.230521344799 -0.383911591102 2301 0.997306359989E-06 0.196203934893E-05 2302 0.760869620125E-05 0.728088980884E-05 2303 -0.416381015528E-01 0.146920054189E-01 2304 0.415976306168E-01 -0.146378352947E-01 2305 0.416259652933E-01 -0.146366323967E-01 2306 0.415995103080E-01 -0.147071022936E-01 2307 -0.416523648800E-01 0.146632603015E-01 2308 -0.415841484806E-01 0.146700753695E-01 2309 0.415870994554E-01 -0.147094172560E-01 2310 -0.415690573777E-01 0.146761529613E-01 2311 0.997014473891E-06 0.196184671876E-05 2312 -0.230519113178 -0.383906168168 2313 0.809098483449E-05 0.162464800171E-04 2314 -0.416527996176E-01 0.146539860478E-01 2315 0.416362599006E-01 -0.146280360844E-01 2316 -0.415714546141E-01 0.146790460755E-01 2317 -0.416491303316E-01 0.146582944907E-01 2318 0.415884136301E-01 -0.147138728327E-01 2319 0.416298832942E-01 -0.146283170947E-01 2320 0.415950137236E-01 -0.147123933912E-01 2321 -0.415727838802E-01 0.146783489116E-01 2322 0.760954641371E-05 0.728027493489E-05 2323 0.809047541253E-05 0.162463003661E-04 2324 -0.230527424866 -0.383918786948 2325 -0.415739888018E-01 0.147092838542E-01 2326 0.415590519112E-01 -0.146905919468E-01 2327 0.416415663942E-01 -0.146811092241E-01 2328 -0.416372269258E-01 0.146740818777E-01 2329 -0.416165459078E-01 0.146555393057E-01 2330 0.416147181462E-01 -0.146485568217E-01 2331 -0.415505500830E-01 0.146726278586E-01 2332 0.415787432721E-01 -0.147159270290E-01 2333 -0.415976285363E-01 0.146378474474E-01 2334 -0.416362684084E-01 0.146280393734E-01 2335 -0.415590728834E-01 0.146905675330E-01 2336 0.747768447203 -0.108532765270E-01 2337 -0.669463483182E-01 -0.372799234103E-02 2338 -0.878130740402E-01 -0.493395055893E-02 2339 -0.967334619328E-01 -0.498704083500E-02 2340 -0.967437086817E-01 -0.498025110594E-02 2341 -0.878205582987E-01 -0.494751008466E-02 2342 -0.878865435581E-01 -0.495265626948E-02 2343 -0.966760014235E-01 -0.498094889944E-02 2344 0.416381034094E-01 -0.146919938236E-01 2345 0.416527917930E-01 -0.146539852601E-01 2346 0.415739682463E-01 -0.147093073844E-01 2347 -0.669506413204E-01 -0.370070679085E-02 2348 0.747767910066 -0.108532897933E-01 2349 -0.967396415299E-01 -0.502465990705E-02 2350 -0.878215651541E-01 -0.492817012506E-02 2351 -0.878140229104E-01 -0.493707900190E-02 2352 -0.967330704683E-01 -0.501319827587E-02 2353 -0.966719110338E-01 -0.501495956998E-02 2354 -0.878875506671E-01 -0.492694367548E-02 2355 0.416524566675E-01 -0.146632343750E-01 2356 -0.415883792783E-01 0.147138777060E-01 2357 0.416165069874E-01 -0.146555415086E-01 2358 -0.878140560357E-01 -0.493708300740E-02 2359 -0.967435996203E-01 -0.498025085685E-02 2360 0.747871486995 -0.108501111469E-01 2361 -0.967914326985E-01 -0.500317511521E-02 2362 -0.670766205971E-01 -0.368127983263E-02 2363 -0.877723409693E-01 -0.493349767259E-02 2364 -0.877918682501E-01 -0.497703118795E-02 2365 -0.967552332308E-01 -0.501940408979E-02 2366 0.415841620899E-01 -0.146700502478E-01 2367 -0.416298340920E-01 0.146283399557E-01 2368 -0.416147379891E-01 0.146485652556E-01 2369 -0.967331801845E-01 -0.501319523023E-02 2370 -0.878205522091E-01 -0.494750397017E-02 2371 -0.967944965221E-01 -0.500612770405E-02 2372 0.747897171543 -0.108474554855E-01 2373 -0.877722810525E-01 -0.493349762372E-02 2374 -0.670814567525E-01 -0.377339995142E-02 2375 -0.967692791177E-01 -0.497095780166E-02 2376 -0.877898344238E-01 -0.490061840133E-02 2377 -0.416258732080E-01 0.146366578092E-01 2378 0.415714894755E-01 -0.146790415020E-01 2379 -0.416416050244E-01 0.146811041202E-01 2380 -0.967397505901E-01 -0.502466349543E-02 2381 -0.878130408976E-01 -0.493395157408E-02 2382 -0.670752708818E-01 -0.375399756870E-02 2383 -0.877700363736E-01 -0.493311654488E-02 2384 0.747871483683 -0.108501121710E-01 2385 -0.967946030485E-01 -0.500612979226E-02 2386 -0.967551334833E-01 -0.499160584102E-02 2387 -0.877965171961E-01 -0.488935358180E-02 2388 -0.415994945448E-01 0.147071254221E-01 2389 0.416491802368E-01 -0.146582732583E-01 2390 0.416372088079E-01 -0.146740722441E-01 2391 -0.878215716292E-01 -0.492816879165E-02 2392 -0.967333521763E-01 -0.498703274662E-02 2393 -0.877700962076E-01 -0.493311974174E-02 2394 -0.670865222061E-01 -0.366625067222E-02 2395 -0.967915392225E-01 -0.500317882427E-02 2396 0.747897467727 -0.108474483133E-01 2397 -0.877879936297E-01 -0.496600405089E-02 2398 -0.967673120406E-01 -0.503845119506E-02 2399 0.415690878859E-01 -0.146761495349E-01 2400 0.415727654228E-01 -0.146783581937E-01 2401 -0.415786801456E-01 0.147159490244E-01 2402 -0.878875857916E-01 -0.492694551676E-02 2403 -0.966756163430E-01 -0.498093805640E-02 2404 -0.877964165624E-01 -0.488935082816E-02 2405 -0.967670226773E-01 -0.503844360019E-02 2406 -0.967550248385E-01 -0.501940346661E-02 2407 -0.877898180841E-01 -0.490061059890E-02 2408 0.747673460488 -0.108611705361E-01 2409 -0.668753435860E-01 -0.374662549732E-02 2410 -0.415870673112E-01 0.147094194417E-01 2411 -0.415950339605E-01 0.147123815106E-01 2412 0.415506149729E-01 -0.146726051169E-01 2413 -0.966722961986E-01 -0.501496453034E-02 2414 -0.878865085598E-01 -0.495265778169E-02 2415 -0.967553416233E-01 -0.499161194288E-02 2416 -0.877880104278E-01 -0.496599899219E-02 2417 -0.877919693601E-01 -0.497703508307E-02 2418 -0.967695686259E-01 -0.497096187536E-02 2419 -0.668798687213E-01 -0.366759701480E-02 2420 0.747674264708 -0.108611497432E-01 2421 -0.244820327569 -0.597827303297 2422 0.955800331866E-06 0.426406777400E-05 2423 0.696335446284E-05 0.978209886015E-05 2424 -0.475162848405E-01 0.197126832848E-01 2425 0.474646829349E-01 -0.196603556185E-01 2426 0.474942051752E-01 -0.196548870727E-01 2427 0.474744821886E-01 -0.197331786334E-01 2428 -0.475242367912E-01 0.196793719386E-01 2429 -0.474541096673E-01 0.196937203002E-01 2430 0.474641226100E-01 -0.197358071048E-01 2431 -0.474391230572E-01 0.197026076219E-01 2432 0.955897879913E-06 0.426370441807E-05 2433 -0.244819703995 -0.597820940791 2434 0.383043154781E-05 0.204585623129E-04 2435 -0.475246560323E-01 0.196689193473E-01 2436 0.475041729088E-01 -0.196421520453E-01 2437 -0.474418479348E-01 0.197075603712E-01 2438 -0.475208779879E-01 0.196760889314E-01 2439 0.474638862870E-01 -0.197429022387E-01 2440 0.474966370188E-01 -0.196464163557E-01 2441 0.474711935249E-01 -0.197381127137E-01 2442 -0.474447032666E-01 0.197042907930E-01 2443 0.696428622875E-05 0.978231701849E-05 2444 0.383008385715E-05 0.204579363631E-04 2445 -0.244825449060 -0.597836186641 2446 -0.474468056285E-01 0.197395137480E-01 2447 0.474291603452E-01 -0.197217529525E-01 2448 0.475211131958E-01 -0.196967608176E-01 2449 -0.475137828324E-01 0.196903234746E-01 2450 -0.474877673044E-01 0.196733445792E-01 2451 0.474832839604E-01 -0.196665321914E-01 2452 -0.474182780587E-01 0.197027014402E-01 2453 0.474530500720E-01 -0.197453653346E-01 2454 -0.474646965014E-01 0.196604071431E-01 2455 -0.475041814824E-01 0.196421750989E-01 2456 -0.474291754587E-01 0.197217208214E-01 2457 0.730464421828 -0.213197215454E-01 2458 -0.765993138094E-01 -0.113714470912E-01 2459 -0.993459423452E-01 -0.124887218989E-01 2460 -0.104500341232 -0.111866428524E-01 2461 -0.104510094939 -0.111802704145E-01 2462 -0.993521425151E-01 -0.125032984640E-01 2463 -0.994245391308E-01 -0.125132083295E-01 2464 -0.104434839329 -0.111814145447E-01 2465 0.475162719247E-01 -0.197126326890E-01 2466 0.475246481721E-01 -0.196688941431E-01 2467 0.474467902708E-01 -0.197395444114E-01 2468 -0.766018129410E-01 -0.113494173137E-01 2469 0.730463848336 -0.213197358784E-01 2470 -0.104503979820 -0.112280960565E-01 2471 -0.993533807997E-01 -0.124830713120E-01 2472 -0.993463437408E-01 -0.124931315581E-01 2473 -0.104498682027 -0.112172280840E-01 2474 -0.104431504235 -0.112127604976E-01 2475 -0.994275144575E-01 -0.124823406641E-01 2476 0.475243128556E-01 -0.196793105208E-01 2477 -0.474638592174E-01 0.197429038112E-01 2478 0.474877305341E-01 -0.196733470081E-01 2479 -0.993463762011E-01 -0.124931355781E-01 2480 -0.104509981689 -0.111802707426E-01 2481 0.730577814776 -0.213122780227E-01 2482 -0.104563520639 -0.112061291343E-01 2483 -0.767404319087E-01 -0.113314290822E-01 2484 -0.992989224017E-01 -0.124872887055E-01 2485 -0.993249291411E-01 -0.125360539929E-01 2486 -0.104519354477 -0.112225979610E-01 2487 0.474541085188E-01 -0.196936531173E-01 2488 -0.474965985506E-01 0.196464402518E-01 2489 -0.474833042050E-01 0.196665491634E-01 2490 -0.104498797225 -0.112172248015E-01 2491 -0.993521419622E-01 -0.125032925653E-01 2492 -0.104566083047 -0.112117540825E-01 2493 0.730605043212 -0.213089331579E-01 2494 -0.992988596231E-01 -0.124872890777E-01 2495 -0.767454001065E-01 -0.114254836542E-01 2496 -0.104534496039 -0.111714813971E-01 2497 -0.993237752651E-01 -0.124540259400E-01 2498 -0.474941279066E-01 0.196549472752E-01 2499 0.474418762408E-01 -0.197075547148E-01 2500 -0.475211489313E-01 0.196967576632E-01 2501 -0.104504093089 -0.112280993930E-01 2502 -0.993459098650E-01 -0.124887233805E-01 2503 -0.767398973111E-01 -0.114054625350E-01 2504 -0.992965535732E-01 -0.124852941161E-01 2505 0.730577812960 -0.213122793674E-01 2506 -0.104566194236 -0.112117574849E-01 2507 -0.104520322912 -0.111922446606E-01 2508 -0.993320705654E-01 -0.124422291686E-01 2509 -0.474744816322E-01 0.197332459806E-01 2510 0.475209182656E-01 -0.196760651941E-01 2511 0.475137619271E-01 -0.196903046145E-01 2512 -0.993533815761E-01 -0.124830692244E-01 2513 -0.104500226117 -0.111866342295E-01 2514 -0.992966162364E-01 -0.124852964046E-01 2515 -0.767514104246E-01 -0.113159864752E-01 2516 -0.104563632003 -0.112061341319E-01 2517 0.730605358840 -0.213089257599E-01 2518 -0.993209816492E-01 -0.125238300879E-01 2519 -0.104532290048 -0.112413845413E-01 2520 0.474391413687E-01 -0.197025703728E-01 2521 0.474446831860E-01 -0.197042835244E-01 2522 -0.474529930405E-01 0.197453866915E-01 2523 -0.994275525762E-01 -0.124823424934E-01 2524 -0.104434434786 -0.111814022779E-01 2525 -0.993319694208E-01 -0.124422277888E-01 2526 -0.104531985728 -0.112413767373E-01 2527 -0.104519134375 -0.112225972137E-01 2528 -0.993237608600E-01 -0.124540189118E-01 2529 0.730367183596 -0.213287729517E-01 2530 -0.765259459974E-01 -0.113966929672E-01 2531 -0.474641033215E-01 0.197358438609E-01 2532 -0.474712142355E-01 0.197381144998E-01 2533 0.474183351058E-01 -0.197026818647E-01 2534 -0.104431908710 -0.112127666248E-01 2535 -0.994245009085E-01 -0.125132101980E-01 2536 -0.104520542861 -0.111922513414E-01 2537 -0.993209965092E-01 -0.125238238165E-01 2538 -0.993250301328E-01 -0.125360566019E-01 2539 -0.104534800194 -0.111714859991E-01 2540 -0.765341514478E-01 -0.113094166337E-01 2541 0.730368040590 -0.213287499851E-01 2542 0.335865251286 -0.986620009642 2543 -0.413346782402E-05 0.290982028841E-05 2544 -0.480891966801E-05 0.970960916786E-05 2545 -0.753321607893E-01 0.315437883861E-01 2546 0.752440078705E-01 -0.315451912862E-01 2547 0.752623951354E-01 -0.315130222861E-01 2548 0.753067535254E-01 -0.315959661548E-01 2549 -0.753106073546E-01 0.315078626821E-01 2550 -0.752694380469E-01 0.315792676277E-01 2551 0.753040167943E-01 -0.315995720329E-01 2552 -0.752591332103E-01 0.315946551614E-01 2553 -0.413335582655E-05 0.291031865779E-05 2554 0.335857642936 -0.986617090801 2555 -0.226770346941E-04 0.105063119480E-04 2556 -0.752953317696E-01 0.314937865557E-01 2557 0.752622682545E-01 -0.314882375106E-01 2558 -0.752697142783E-01 0.316040238784E-01 2559 -0.753005009323E-01 0.315050474622E-01 2560 0.753104091611E-01 -0.316144745573E-01 2561 0.752616806960E-01 -0.315003287515E-01 2562 0.753134517685E-01 -0.316033860496E-01 2563 -0.752662506003E-01 0.315972006925E-01 2564 -0.480888952600E-05 0.970910264255E-05 2565 -0.226765134373E-04 0.105069877984E-04 2566 0.335870455722 -0.986628266337 2567 -0.752925109059E-01 0.316182615504E-01 2568 0.752652472541E-01 -0.316186868297E-01 2569 0.753302859761E-01 -0.315312389846E-01 2570 -0.753142436687E-01 0.315258000934E-01 2571 -0.752700194859E-01 0.315429525812E-01 2572 0.752617749866E-01 -0.315333332126E-01 2573 -0.752386510113E-01 0.316006160930E-01 2574 0.753003142681E-01 -0.316071509172E-01 2575 -0.752440170300E-01 0.315451359843E-01 2576 -0.752622711377E-01 0.314882186793E-01 2577 -0.752652335200E-01 0.316186060807E-01 2578 0.736097185074 -0.296577877845E-01 2579 -0.679802627045E-01 -0.140717950253E-01 2580 -0.959981214358E-01 -0.168050381492E-01 2581 -0.963295266957E-01 -0.134372214199E-01 2582 -0.963380554459E-01 -0.134338832416E-01 2583 -0.960009002483E-01 -0.168212368703E-01 2584 -0.960785718763E-01 -0.168379966593E-01 2585 -0.962583999973E-01 -0.134331392296E-01 2586 0.753321532260E-01 -0.315438445969E-01 2587 0.752953242000E-01 -0.314938067870E-01 2588 0.752925226813E-01 -0.316183435807E-01 2589 -0.679835669455E-01 -0.140586565262E-01 2590 0.736096588238 -0.296578165201E-01 2591 -0.963276462313E-01 -0.134811876302E-01 2592 -0.960025932045E-01 -0.168006407876E-01 2593 -0.959983061721E-01 -0.168103819557E-01 2594 -0.963267586359E-01 -0.134716764174E-01 2595 -0.962534116437E-01 -0.134575380708E-01 2596 -0.960842371816E-01 -0.168014027187E-01 2597 0.753106727829E-01 -0.315078932214E-01 2598 -0.753103763181E-01 0.316144913525E-01 2599 0.752699777418E-01 -0.315429708960E-01 2600 -0.959983386363E-01 -0.168103862521E-01 2601 -0.963379303445E-01 -0.134338896428E-01 2602 0.736220063525 -0.296435687674E-01 2603 -0.963935560878E-01 -0.134602190926E-01 2604 -0.681327030341E-01 -0.140412772645E-01 2605 -0.959470326396E-01 -0.168017015960E-01 2606 -0.959778055373E-01 -0.168533512335E-01 2607 -0.963399187017E-01 -0.134786878786E-01 2608 0.752694178714E-01 -0.315792865711E-01 2609 -0.752616589116E-01 0.315003755372E-01 2610 -0.752618193653E-01 0.315333605470E-01 2611 -0.963268804792E-01 -0.134716715720E-01 2612 -0.960009009417E-01 -0.168212334148E-01 2613 -0.963971471892E-01 -0.134731954379E-01 2614 0.736246737402 -0.296385505733E-01 2615 -0.959469662794E-01 -0.168017016326E-01 2616 -0.681341861814E-01 -0.141377672886E-01 2617 -0.963587614272E-01 -0.134249983407E-01 2618 -0.959799691221E-01 -0.167673119206E-01 2619 -0.752623261988E-01 0.315129951064E-01 2620 0.752697444010E-01 -0.316040049255E-01 2621 -0.753303259880E-01 0.315312211339E-01 2622 -0.963277713350E-01 -0.134811851548E-01 2623 -0.959980885757E-01 -0.168050397739E-01 2624 -0.681310845152E-01 -0.141193922178E-01 2625 -0.959432804572E-01 -0.167959254242E-01 2626 0.736220058987 -0.296435627548E-01 2627 -0.963972661408E-01 -0.134731931993E-01 2628 -0.963422940282E-01 -0.134458153996E-01 2629 -0.959903271938E-01 -0.167568064746E-01 2630 -0.753067724571E-01 0.315959499058E-01 2631 0.753005212582E-01 -0.315049995334E-01 2632 0.753141968348E-01 -0.315257735215E-01 2633 -0.960025925838E-01 -0.168006357774E-01 2634 -0.963294046996E-01 -0.134372133174E-01 2635 -0.959433468646E-01 -0.167959282145E-01 2636 -0.681443100974E-01 -0.140302019618E-01 2637 -0.963936750856E-01 -0.134602188401E-01 2638 0.736247065557 -0.296385350259E-01 2639 -0.959743225946E-01 -0.168422302824E-01 2640 -0.963537530675E-01 -0.134970483802E-01 2641 0.752591703459E-01 -0.315947365483E-01 2642 0.752662545411E-01 -0.315972509232E-01 2643 -0.753002851889E-01 0.316071905784E-01 2644 -0.960842790458E-01 -0.168014021970E-01 2645 -0.962579674215E-01 -0.134331330538E-01 2646 -0.959902187600E-01 -0.167568077054E-01 2647 -0.963534277490E-01 -0.134970433120E-01 2648 -0.963396840829E-01 -0.134786864950E-01 2649 -0.959799546136E-01 -0.167673040493E-01 2650 0.736005667292 -0.296717196893E-01 2651 -0.679097448042E-01 -0.141000439242E-01 2652 -0.753039785014E-01 0.315994927490E-01 2653 -0.753134431317E-01 0.316033319462E-01 2654 0.752386808431E-01 -0.316005789955E-01 2655 -0.962538442658E-01 -0.134575376426E-01 2656 -0.960785295997E-01 -0.168380008381E-01 2657 -0.963425283627E-01 -0.134458230832E-01 2658 -0.959743374977E-01 -0.168422245640E-01 2659 -0.959779135761E-01 -0.168533509077E-01 2660 -0.963590863936E-01 -0.134249994435E-01 2661 -0.679242083897E-01 -0.140078237222E-01 2662 0.736006560393 -0.296716839330E-01 2663 0.317992445680 -0.917152291781 2664 -0.344550159855E-05 0.318512674811E-05 2665 -0.220511362979E-05 0.106756589155E-04 2666 -0.779125739042E-01 0.218708800464E-01 2667 0.778365080326E-01 -0.218641861266E-01 2668 0.778512857427E-01 -0.218348145127E-01 2669 0.778751970921E-01 -0.219127847386E-01 2670 -0.778895556021E-01 0.218399507632E-01 2671 -0.778449851082E-01 0.218872154732E-01 2672 0.778754302211E-01 -0.219130536829E-01 2673 -0.778357332139E-01 0.219065292011E-01 2674 -0.344551890403E-05 0.318507140923E-05 2675 0.317987096492 -0.917149107998 2676 -0.160636175496E-04 0.112978008302E-04 2677 -0.778794721922E-01 0.218287542479E-01 2678 0.778522616270E-01 -0.218143430215E-01 2679 -0.778472611141E-01 0.219124490831E-01 2680 -0.778874638202E-01 0.218399521916E-01 2681 0.778810968725E-01 -0.219280004483E-01 2682 0.778538347646E-01 -0.218287035006E-01 2683 0.778799694389E-01 -0.219176301492E-01 2684 -0.778431699071E-01 0.219022745324E-01 2685 -0.220502152590E-05 0.106761624903E-04 2686 -0.160629323428E-04 0.112975223361E-04 2687 0.317995263957 -0.917161374407 2688 -0.778627689465E-01 0.219348432488E-01 2689 0.778408898190E-01 -0.219294307228E-01 2690 0.779061579225E-01 -0.218474703866E-01 2691 -0.778921606560E-01 0.218447800297E-01 2692 -0.778527838741E-01 0.218598147428E-01 2693 0.778448330254E-01 -0.218527587025E-01 2694 -0.778165995304E-01 0.219119702331E-01 2695 0.778670533004E-01 -0.219277619857E-01 2696 -0.778365251572E-01 0.218642142340E-01 2697 -0.778522844084E-01 0.218143573237E-01 2698 -0.778408589715E-01 0.219293519919E-01 2699 0.708283447715 -0.482741057337E-01 2700 -0.822858516444E-01 -0.239370843805E-01 2701 -0.113771652507 -0.336646380106E-01 2702 -0.108428831209 -0.194636306603E-01 2703 -0.108437134506 -0.194577663823E-01 2704 -0.113773479825 -0.336794653099E-01 2705 -0.113856125514 -0.337127936649E-01 2706 -0.108338854309 -0.194499228795E-01 2707 0.779125567596E-01 -0.218708534864E-01 2708 0.778794508717E-01 -0.218287441756E-01 2709 0.778627978124E-01 -0.219349212177E-01 2710 -0.822756748977E-01 -0.239284498012E-01 2711 0.708282809220 -0.482741345551E-01 2712 -0.108420719509 -0.195113347990E-01 2713 -0.113775487010 -0.336569443092E-01 2714 -0.113770158283 -0.336715021662E-01 2715 -0.108419864433 -0.195047658868E-01 2716 -0.108343736795 -0.194726535894E-01 2717 -0.113874474034 -0.336688343741E-01 2718 0.778896261693E-01 -0.218399090244E-01 2719 -0.778810793905E-01 0.219280039409E-01 2720 0.778527569235E-01 -0.218598397475E-01 2721 -0.113770189475 -0.336715027090E-01 2722 -0.108437003898 -0.194577684363E-01 2723 0.708421562011 -0.482365309802E-01 2724 -0.108504200097 -0.194979074714E-01 2725 -0.824508218550E-01 -0.239311114990E-01 2726 -0.113709052818 -0.336512367235E-01 2727 -0.113746452861 -0.337243819759E-01 2728 -0.108433787790 -0.195033398326E-01 2729 0.778449592133E-01 -0.218871559708E-01 2730 -0.778538177140E-01 0.218287360757E-01 2731 -0.778448611410E-01 0.218527729423E-01 2732 -0.108419992017 -0.195047613313E-01 2733 -0.113773485083 -0.336794642869E-01 2734 -0.108498897785 -0.195128696592E-01 2735 0.708451895946 -0.482301884910E-01 2736 -0.113708982859 -0.336512379101E-01 2737 -0.824530882002E-01 -0.240326240885E-01 2738 -0.108456900504 -0.194458188169E-01 2739 -0.113756679089 -0.336269046774E-01 2740 -0.778512136447E-01 0.218348585503E-01 2741 0.778472784391E-01 -0.219124442280E-01 2742 -0.779061843605E-01 0.218474461427E-01 2743 -0.108420849897 -0.195113368111E-01 2744 -0.113771621031 -0.336646443661E-01 2745 -0.824473371320E-01 -0.240127510896E-01 2746 -0.113707709664 -0.336438675113E-01 2747 0.708421557899 -0.482365316075E-01 2748 -0.108499022781 -0.195128723780E-01 2749 -0.108441922036 -0.194671413077E-01 2750 -0.113768884475 -0.336165111358E-01 2751 -0.778752231853E-01 0.219128462836E-01 2752 0.778874818405E-01 -0.218399210899E-01 2753 0.778921291169E-01 -0.218447648471E-01 2754 -0.113775482039 -0.336569359043E-01 2755 -0.108428704043 -0.194636220329E-01 2756 -0.113707779694 -0.336438685584E-01 2757 -0.824628689236E-01 -0.239187143836E-01 2758 -0.108504324998 -0.194979128978E-01 2759 0.708452245781 -0.482301755513E-01 2760 -0.113742870354 -0.337097408527E-01 2761 -0.108450359109 -0.195235375579E-01 2762 0.778357619572E-01 -0.219065199575E-01 2763 0.778431504951E-01 -0.219022883429E-01 2764 -0.778669966806E-01 0.219277843467E-01 2765 -0.113874520736 -0.336688386055E-01 2766 -0.108338403268 -0.194499117174E-01 2767 -0.113768775318 -0.336165160320E-01 2768 -0.108450019012 -0.195235299072E-01 2769 -0.108433543178 -0.195033403729E-01 2770 -0.113756667457 -0.336269022152E-01 2771 0.708183881800 -0.482845837341E-01 2772 -0.821967601781E-01 -0.239788921151E-01 2773 -0.778754006515E-01 0.219130650796E-01 2774 -0.778799857601E-01 0.219176148881E-01 2775 0.778166581256E-01 -0.219119495533E-01 2776 -0.108344187519 -0.194726581184E-01 2777 -0.113856078383 -0.337127936116E-01 2778 -0.108442165898 -0.194671475153E-01 2779 -0.113742881879 -0.337097290506E-01 2780 -0.113746561765 -0.337243774728E-01 2781 -0.108457240045 -0.194458222186E-01 2782 -0.822279755594E-01 -0.238731195139E-01 2783 0.708184838285 -0.482845403019E-01 2784 0.659940120086 -0.679527238025 2785 -0.252558782347E-05 0.772361682249E-06 2786 -0.682026047606E-05 0.491873550891E-05 2787 -0.934530593208E-01 0.127387244025E-01 2788 0.933898273102E-01 -0.127703434549E-01 2789 0.933818696720E-01 -0.127460162814E-01 2790 0.934431488473E-01 -0.128046359269E-01 2791 -0.934226221029E-01 0.127322381540E-01 2792 -0.934045666054E-01 0.127971459110E-01 2793 0.934388811488E-01 -0.127939790668E-01 2794 -0.934092281179E-01 0.128095733334E-01 2795 -0.252560645457E-05 0.772326914214E-06 2796 0.659934710333 -0.679527906645 2797 -0.157528150863E-04 -0.123935885317E-05 2798 -0.934057911385E-01 0.127220277602E-01 2799 0.933726334396E-01 -0.127216106568E-01 2800 -0.934230058795E-01 0.128136134826E-01 2801 -0.934165452985E-01 0.127233362766E-01 2802 0.934538617961E-01 -0.128097038285E-01 2803 0.933857540971E-01 -0.127287910776E-01 2804 0.934514739749E-01 -0.128056757299E-01 2805 -0.934094038525E-01 0.128109666482E-01 2806 -0.682026809419E-05 0.491888148167E-05 2807 -0.157529273235E-04 -0.123910019817E-05 2808 0.659946623647 -0.679531291607 2809 -0.934433933130E-01 0.128182095630E-01 2810 0.934198854867E-01 -0.128243261012E-01 2811 0.934388415247E-01 -0.127332003146E-01 2812 -0.934241178654E-01 0.127356310962E-01 2813 -0.934009056798E-01 0.127728560705E-01 2814 0.933902421940E-01 -0.127667887248E-01 2815 -0.933880631213E-01 0.128171167575E-01 2816 0.934384918094E-01 -0.128057566996E-01 2817 -0.933898937589E-01 0.127703351444E-01 2818 -0.933726648370E-01 0.127216014175E-01 2819 -0.934198388226E-01 0.128242940826E-01 2820 0.719085205860 -0.605797779565E-01 2821 -0.829323240198E-01 -0.269102943758E-01 2822 -0.103981171487 -0.449669115756E-01 2823 -0.114196661246 -0.195172721693E-01 2824 -0.114205314099 -0.195128945058E-01 2825 -0.103982171468 -0.449795757396E-01 2826 -0.104042588767 -0.450187992327E-01 2827 -0.114118393472 -0.194851906934E-01 2828 0.934529940657E-01 -0.127387308320E-01 2829 0.934057594784E-01 -0.127220366966E-01 2830 0.934434387721E-01 -0.128182444350E-01 2831 -0.829139591000E-01 -0.268949375843E-01 2832 0.719084540645 -0.605798110180E-01 2833 -0.114183590259 -0.195551408709E-01 2834 -0.103984702180 -0.449572104308E-01 2835 -0.103977200134 -0.449732069217E-01 2836 -0.114180689612 -0.195545830953E-01 2837 -0.114129140707 -0.195146237259E-01 2838 -0.104071058855 -0.449902578859E-01 2839 0.934226395536E-01 -0.127322243521E-01 2840 -0.934538339030E-01 0.128096997018E-01 2841 0.934008726843E-01 -0.127728442995E-01 2842 -0.103977234494 -0.449732050738E-01 2843 -0.114205180214 -0.195128933065E-01 2844 0.719192075189 -0.605225292811E-01 2845 -0.114256711040 -0.195627182688E-01 2846 -0.830662720350E-01 -0.269256538020E-01 2847 -0.103932285307 -0.449428989157E-01 2848 -0.103947146436 -0.450206514883E-01 2849 -0.114198687544 -0.195472519737E-01 2850 0.934044831915E-01 -0.127971306467E-01 2851 -0.933857483020E-01 0.127288220561E-01 2852 -0.933902913191E-01 0.127668343793E-01 2853 -0.114180822048 -0.195545799073E-01 2854 -0.103982177993 -0.449795798589E-01 2855 -0.114245118213 -0.195710873115E-01 2856 0.719219523258 -0.605141687436E-01 2857 -0.103932211563 -0.449429013540E-01 2858 -0.830603286037E-01 -0.270226703988E-01 2859 -0.114226516302 -0.194984774992E-01 2860 -0.103969865654 -0.449368321189E-01 2861 -0.933818522778E-01 0.127460307759E-01 2862 0.934230320906E-01 -0.128136157421E-01 2863 -0.934388734939E-01 0.127332115581E-01 2864 -0.114183724668 -0.195551467325E-01 2865 -0.103981135919 -0.449669200463E-01 2866 -0.830571392067E-01 -0.270018314671E-01 2867 -0.103933652918 -0.449332637869E-01 2868 0.719192074444 -0.605225283721E-01 2869 -0.114245246341 -0.195710902323E-01 2870 -0.114211299268 -0.195181549899E-01 2871 -0.103981581337 -0.449293753417E-01 2872 -0.934432332681E-01 0.128046492338E-01 2873 0.934165502148E-01 -0.127233045919E-01 2874 0.934240671580E-01 -0.127355885139E-01 2875 -0.103984696672 -0.449571978971E-01 2876 -0.114196529188 -0.195172612262E-01 2877 -0.103933728155 -0.449332651805E-01 2878 -0.830745695757E-01 -0.269149110411E-01 2879 -0.114256838098 -0.195627225019E-01 2880 0.719219888125 -0.605141518280E-01 2881 -0.103945182220 -0.450068089790E-01 2882 -0.114213550786 -0.195695873541E-01 2883 0.934092227890E-01 -0.128096061124E-01 2884 0.934093896455E-01 -0.128110092351E-01 2885 -0.934384592574E-01 0.128058141873E-01 2886 -0.104071106671 -0.449902634095E-01 2887 -0.114117922922 -0.194851778826E-01 2888 -0.103981464079 -0.449293843411E-01 2889 -0.114213195579 -0.195695785137E-01 2890 -0.114198428622 -0.195472517046E-01 2891 -0.103969850873 -0.449368310560E-01 2892 0.718988414563 -0.605931018007E-01 2893 -0.828354990036E-01 -0.269371797931E-01 2894 -0.934388869311E-01 0.127939455811E-01 2895 -0.934514858651E-01 0.128056318181E-01 2896 0.933880973132E-01 -0.128170586836E-01 2897 -0.114129611507 -0.195146296924E-01 2898 -0.104042540600 -0.450187982375E-01 2899 -0.114211557395 -0.195181619731E-01 2900 -0.103945196779 -0.450067948792E-01 2901 -0.103947264515 -0.450206444157E-01 2902 -0.114226871980 -0.194984823863E-01 2903 -0.828818485372E-01 -0.268555357167E-01 2904 0.718989405374 -0.605930520602E-01 2905 0.546028459468 -0.512304770319 2906 -0.110639337790E-05 0.117319383170E-05 2907 -0.399421566356E-05 0.529177311441E-05 2908 -0.972952908484E-01 0.564015570456E-02 2909 0.972486120609E-01 -0.566924171900E-02 2910 0.972317299100E-01 -0.564775690616E-02 2911 0.972716242448E-01 -0.569833013197E-02 2912 -0.972628166604E-01 0.564226760471E-02 2913 -0.972432434041E-01 0.568037817426E-02 2914 0.972708053869E-01 -0.568283310942E-02 2915 -0.972504510897E-01 0.569757137702E-02 2916 -0.110644548994E-05 0.117319346960E-05 2917 0.546024469022 -0.512304492784 2918 -0.110192868151E-04 0.138391961326E-05 2919 -0.972483247757E-01 0.563709017334E-02 2920 0.972237967959E-01 -0.562722557461E-02 2921 -0.972651592186E-01 0.569775274733E-02 2922 -0.972646096357E-01 0.563575508804E-02 2923 0.972883547147E-01 -0.569586554912E-02 2924 0.972423726115E-01 -0.563462176721E-02 2925 0.972803717208E-01 -0.569595716485E-02 2926 -0.972485578395E-01 0.569308365814E-02 2927 -0.399407333113E-05 0.529175886866E-05 2928 -0.110192178361E-04 0.138385938989E-05 2929 0.546032814767 -0.512309282286 2930 -0.972718994753E-01 0.570731079891E-02 2931 0.972557511422E-01 -0.570607146519E-02 2932 0.972779399108E-01 -0.562905735713E-02 2933 -0.972639476926E-01 0.563485383023E-02 2934 -0.972500970629E-01 0.567419037599E-02 2935 0.972410940529E-01 -0.566658835004E-02 2936 -0.972253062746E-01 0.570316761800E-02 2937 0.972634932216E-01 -0.569804477266E-02 2938 -0.972486242444E-01 0.566922041767E-02 2939 -0.972238070606E-01 0.562721671308E-02 2940 -0.972557086423E-01 0.570602488373E-02 2941 0.729137620632 -0.697438481073E-01 2942 -0.595591623163E-01 -0.365744522253E-01 2943 -0.873762494037E-01 -0.526302946173E-01 2944 -0.937453248923E-01 -0.268668586598E-01 2945 -0.937529771924E-01 -0.268614505759E-01 2946 -0.873780318373E-01 -0.526418183250E-01 2947 -0.874454604747E-01 -0.526860337277E-01 2948 -0.936545130420E-01 -0.268338587755E-01 2949 0.972952797230E-01 -0.564017622714E-02 2950 0.972483141685E-01 -0.563710000997E-02 2951 0.972719430716E-01 -0.570735715650E-02 2952 -0.595344293901E-01 -0.365571334049E-01 2953 0.729136928706 -0.697438870162E-01 2954 -0.937304211158E-01 -0.269079463785E-01 2955 -0.873815913081E-01 -0.526165329792E-01 2956 -0.873723994652E-01 -0.526338489844E-01 2957 -0.937256913103E-01 -0.269076806599E-01 2958 -0.936677450698E-01 -0.268625325103E-01 2959 -0.874772059005E-01 -0.526508646464E-01 2960 0.972628848352E-01 -0.564227432604E-02 2961 -0.972883237064E-01 0.569587079226E-02 2962 0.972500611408E-01 -0.567419949648E-02 2963 -0.873724361784E-01 -0.526338450290E-01 2964 -0.937528301834E-01 -0.268614530612E-01 2965 0.729257397733 -0.696820991138E-01 2966 -0.938124160842E-01 -0.269155300839E-01 2967 -0.597013086468E-01 -0.365899845579E-01 2968 -0.873179044539E-01 -0.526022494511E-01 2969 -0.873398207356E-01 -0.526883217521E-01 2970 -0.937458777918E-01 -0.268977231715E-01 2971 0.972432117696E-01 -0.568037911102E-02 2972 -0.972423625127E-01 0.563465077496E-02 2973 -0.972411542281E-01 0.566660672401E-02 2974 -0.937258321445E-01 -0.269076745029E-01 2975 -0.873780365216E-01 -0.526418262064E-01 2976 -0.937994539481E-01 -0.269243563337E-01 2977 0.729287581905 -0.696732956885E-01 2978 -0.873178266993E-01 -0.526022516302E-01 2979 -0.597003031064E-01 -0.366928487675E-01 2980 -0.937749110290E-01 -0.268443019627E-01 2981 -0.873628231303E-01 -0.525955655449E-01 2982 -0.972316623650E-01 0.564775232995E-02 2983 0.972651897123E-01 -0.569774711275E-02 2984 -0.972779765344E-01 0.562904860719E-02 2985 -0.937305677170E-01 -0.269079484376E-01 2986 -0.873762115434E-01 -0.526303043819E-01 2987 -0.596927824824E-01 -0.366744236598E-01 2988 -0.873219089826E-01 -0.525929957679E-01 2989 0.729257392833 -0.696820945685E-01 2990 -0.937995911437E-01 -0.269243576020E-01 2991 -0.937594310545E-01 -0.268676197655E-01 2992 -0.873749043132E-01 -0.525893531808E-01 2993 -0.972716562236E-01 0.569832855526E-02 2994 0.972646193539E-01 -0.563572590275E-02 2995 0.972638883651E-01 -0.563483702214E-02 2996 -0.873815863066E-01 -0.526165151303E-01 2997 -0.937451843296E-01 -0.268668492567E-01 2998 -0.873219869472E-01 -0.525929974389E-01 2999 -0.597117181631E-01 -0.365801456262E-01 3000 -0.938125534964E-01 -0.269155324461E-01 3001 0.729287963044 -0.696732781169E-01 3002 -0.873376827906E-01 -0.526735120854E-01 3003 -0.937627210929E-01 -0.269233008964E-01 3004 0.972505011490E-01 -0.569761182743E-02 3005 0.972485709748E-01 -0.569310952076E-02 3006 -0.972634728816E-01 0.569807063670E-02 3007 -0.874772570712E-01 -0.526508694263E-01 3008 -0.936540090919E-01 -0.268338466794E-01 3009 -0.873747780239E-01 -0.525893646775E-01 3010 -0.937623403291E-01 -0.269232914942E-01 3011 -0.937456023052E-01 -0.268977199939E-01 3012 -0.873628064457E-01 -0.525955643927E-01 3013 0.729033483416 -0.697564172710E-01 3014 -0.594479792979E-01 -0.366074576165E-01 3015 -0.972707565882E-01 0.568279230153E-02 3016 -0.972803580054E-01 0.569592992509E-02 3017 0.972253281220E-01 -0.570314241077E-02 3018 -0.936682483751E-01 -0.268625369044E-01 3019 -0.874454086203E-01 -0.526860330151E-01 3020 -0.937597058758E-01 -0.268676298935E-01 3021 -0.873376995616E-01 -0.526734971573E-01 3022 -0.873399469720E-01 -0.526883119046E-01 3023 -0.937752913938E-01 -0.268443075559E-01 3024 -0.594976409138E-01 -0.365152718608E-01 3025 0.729034518937 -0.697563668824E-01 3026 0.474456210367 -0.351029619853 3027 -0.252573922006E-06 0.122363650976E-05 3028 -0.317290243746E-05 0.397488819089E-05 3029 -0.990166064886E-01 0.137629306665E-02 3030 0.989843764912E-01 -0.140317829716E-02 3031 0.989632014441E-01 -0.139520952478E-02 3032 0.990073485757E-01 -0.143707652121E-02 3033 -0.989940799395E-01 0.138887341047E-02 3034 -0.989770929678E-01 0.142631816135E-02 3035 0.989984550147E-01 -0.141755941470E-02 3036 -0.989887238031E-01 0.143537100626E-02 3037 -0.252619517461E-06 0.122362975509E-05 3038 0.474452570446 -0.351029266621 3039 -0.948214432658E-05 0.160860842631E-05 3040 -0.989804484711E-01 0.138249933427E-02 3041 0.989523397428E-01 -0.137555554621E-02 3042 -0.990019590540E-01 0.143351406023E-02 3043 -0.989913000211E-01 0.137444273771E-02 3044 0.990172277043E-01 -0.142956769713E-02 3045 0.989716405361E-01 -0.137409758098E-02 3046 0.990146531335E-01 -0.143459179205E-02 3047 -0.989840829401E-01 0.143639363758E-02 3048 -0.317276705988E-05 0.397488712446E-05 3049 -0.948211147471E-05 0.160853510365E-05 3050 0.474459969221 -0.351032776515 3051 -0.990073739449E-01 0.144077358475E-02 3052 0.989891665779E-01 -0.144267907998E-02 3053 0.990021831234E-01 -0.137295569043E-02 3054 -0.989911659341E-01 0.137870774695E-02 3055 -0.989897185173E-01 0.141591550294E-02 3056 0.989779061560E-01 -0.140979404450E-02 3057 -0.989614407821E-01 0.144241952927E-02 3058 0.989934151636E-01 -0.143558499661E-02 3059 -0.989844136010E-01 0.140316467181E-02 3060 -0.989523684132E-01 0.137554702829E-02 3061 -0.989891158769E-01 0.144265409058E-02 3062 0.684268733206 -0.719115571875E-01 3063 -0.104170001209 -0.360698937436E-01 3064 -0.120270564667 -0.455152785288E-01 3065 -0.139459210238 -0.170409690039E-01 3066 -0.139468877736 -0.170363975056E-01 3067 -0.120273684053 -0.455294440357E-01 3068 -0.120328755364 -0.455706002676E-01 3069 -0.139377487499 -0.169977500186E-01 3070 0.990165700982E-01 -0.137630642388E-02 3071 0.989804201970E-01 -0.138250798090E-02 3072 0.990074247485E-01 -0.144079725216E-02 3073 -0.104142630343 -0.360494126717E-01 3074 0.684267998224 -0.719115987680E-01 3075 -0.139444237199 -0.170791098489E-01 3076 -0.120279230679 -0.455040754995E-01 3077 -0.120267915257 -0.455227670083E-01 3078 -0.139436082239 -0.170819592189E-01 3079 -0.139394892353 -0.170348782419E-01 3080 -0.120365370460 -0.455489115412E-01 3081 0.989941304584E-01 -0.138887417665E-02 3082 -0.990172073621E-01 0.142956383379E-02 3083 0.989896886457E-01 -0.141591116908E-02 3084 -0.120267951443 -0.455227620146E-01 3085 -0.139468730917 -0.170363959745E-01 3086 0.684364951634 -0.718424646159E-01 3087 -0.139517086556 -0.170965807672E-01 3088 -0.104293366270 -0.360957605841E-01 3089 -0.120224051166 -0.454854959104E-01 3090 -0.120232955548 -0.455721748045E-01 3091 -0.139465639513 -0.170691888152E-01 3092 0.989770403690E-01 -0.142631652869E-02 3093 -0.989716380491E-01 0.137411177699E-02 3094 -0.989779513619E-01 0.140980905043E-02 3095 -0.139436226212 -0.170819548507E-01 3096 -0.120273692887 -0.455294535598E-01 3097 -0.139505018809 -0.170981837019E-01 3098 0.684396376791 -0.718327169400E-01 3099 -0.120223970044 -0.454854989237E-01 3100 -0.104291690085 -0.361950152399E-01 3101 -0.139493092448 -0.170210788010E-01 3102 -0.120259327431 -0.454874598632E-01 3103 -0.989631513403E-01 0.139520959977E-02 3104 0.990019799880E-01 -0.143351593206E-02 3105 -0.990022132838E-01 0.137295691321E-02 3106 -0.139444384253 -0.170791164062E-01 3107 -0.120270528514 -0.455152898941E-01 3108 -0.104286292077 -0.361693819065E-01 3109 -0.120228048100 -0.454747903683E-01 3110 0.684364944985 -0.718424633875E-01 3111 -0.139505159577 -0.170981873380E-01 3112 -0.139478503635 -0.170429195487E-01 3113 -0.120271176266 -0.454797535584E-01 3114 -0.990074016169E-01 0.143707763054E-02 3115 0.989913024565E-01 -0.137442851900E-02 3116 0.989911207191E-01 -0.137869146607E-02 3117 -0.120279222612 -0.455040555321E-01 3118 -0.139459067423 -0.170409576037E-01 3119 -0.120228129816 -0.454747910953E-01 3120 -0.104299944261 -0.360807525435E-01 3121 -0.139517228081 -0.170965858896E-01 3122 0.684396779697 -0.718326968692E-01 3123 -0.120231495978 -0.455545223814E-01 3124 -0.139479173396 -0.170942098384E-01 3125 0.989887541472E-01 -0.143539670964E-02 3126 0.989840731785E-01 -0.143641889224E-02 3127 -0.989933704056E-01 0.143560733621E-02 3128 -0.120365427354 -0.455489192869E-01 3129 -0.139376975384 -0.169977301751E-01 3130 -0.120271047533 -0.454797660457E-01 3131 -0.139478786173 -0.170941937163E-01 3132 -0.139465359739 -0.170691818556E-01 3133 -0.120259315008 -0.454874610550E-01 3134 0.684158347757 -0.719271058804E-01 3135 -0.104057465020 -0.360916565580E-01 3136 -0.989984249069E-01 0.141753388240E-02 3137 -0.990146623655E-01 0.143456420679E-02 3138 0.989614865204E-01 -0.144239577469E-02 3139 -0.139395404104 -0.170348903621E-01 3140 -0.120328698398 -0.455705974267E-01 3141 -0.139478782195 -0.170429338391E-01 3142 -0.120231508413 -0.455545049841E-01 3143 -0.120233083882 -0.455721646734E-01 3144 -0.139493478857 -0.170210909438E-01 3145 -0.104114030585 -0.360140987725E-01 3146 0.684159451341 -0.719270458834E-01 3147 0.193473063284 -0.415506475859 3148 0.104566395375E-05 0.239881404996E-05 3149 -0.516938572985E-06 0.816161175769E-05 3150 -0.107275773233 0.181571121932E-03 3151 0.107251180323 -0.186191997466E-03 3152 0.107226758234 -0.191824359691E-03 3153 0.107248585648 -0.248249581045E-03 3154 -0.107260147894 0.202858018629E-03 3155 -0.107213169536 0.218700082401E-03 3156 0.107233608411 -0.222261654514E-03 3157 -0.107230736273 0.228430915432E-03 3158 0.104559625837E-05 0.239874551227E-05 3159 0.193469460199 -0.415504458137 3160 -0.848312154527E-05 0.657257668471E-05 3161 -0.107253199112 0.194454285666E-03 3162 0.107219369893 -0.171180544290E-03 3163 -0.107242333147 0.223656715632E-03 3164 -0.107263038509 0.181836632663E-03 3165 0.107253826485 -0.231455141209E-03 3166 0.107242712936 -0.166171184528E-03 3167 0.107252722451 -0.243983894872E-03 3168 -0.107220603485 0.228504126036E-03 3169 -0.516729215676E-06 0.816159974881E-05 3170 -0.848289231091E-05 0.657252494710E-05 3171 0.193474559021 -0.415513046208 3172 -0.107236880663 0.250977661857E-03 3173 0.107216085893 -0.241321928340E-03 3174 0.107258036068 -0.170175044909E-03 3175 -0.107250515068 0.178584775233E-03 3176 -0.107256733047 0.205627742792E-03 3177 0.107244075099 -0.199331411581E-03 3178 -0.107192273328 0.242151464941E-03 3179 0.107223253895 -0.254623517471E-03 3180 -0.107251196738 0.186178017845E-03 3181 -0.107219375770 0.171174411031E-03 3182 -0.107216073054 0.241290129577E-03 3183 0.672188090193 -0.781116906932E-01 3184 -0.823316597202E-01 -0.414885357025E-01 3185 -0.131747973713 -0.543787213184E-01 3186 -0.132338014636 -0.259379552926E-01 3187 -0.132346472037 -0.259316796981E-01 3188 -0.131747993041 -0.543957954329E-01 3189 -0.131838655787 -0.544469126449E-01 3190 -0.132223169469 -0.259017902402E-01 3191 0.107275757288 -0.181584717239E-03 3192 0.107253192943 -0.194461648010E-03 3193 0.107236891879 -0.251008868898E-03 3194 -0.823018991524E-01 -0.414785034449E-01 3195 0.672187320147 -0.781117361582E-01 3196 -0.132321315545 -0.259897273351E-01 3197 -0.131755021812 -0.543641295707E-01 3198 -0.131744911071 -0.543861117734E-01 3199 -0.132313578371 -0.259911985943E-01 3200 -0.132241463125 -0.259347029775E-01 3201 -0.131875591776 -0.544006395131E-01 3202 0.107260223801 -0.202863840056E-03 3203 -0.107253779256 0.231447430494E-03 3204 0.107256678794 -0.205628556663E-03 3205 -0.131744948865 -0.543861057664E-01 3206 -0.132346315646 -0.259316767527E-01 3207 0.672334728504 -0.780425250575E-01 3208 -0.132423863202 -0.259946126921E-01 3209 -0.825068019395E-01 -0.415087164411E-01 3210 -0.131671179449 -0.543511313618E-01 3211 -0.131711473603 -0.544515303683E-01 3212 -0.132339652363 -0.259795481858E-01 3213 0.107213146706 -0.218698519656E-03 3214 -0.107242675476 0.166181831114E-03 3215 -0.107244127833 0.199352714655E-03 3216 -0.132313731636 -0.259911931139E-01 3217 -0.131748005957 -0.543958095824E-01 3218 -0.132412950824 -0.260072283879E-01 3219 0.672373437050 -0.780324384085E-01 3220 -0.131671091131 -0.543511356633E-01 3221 -0.825135043948E-01 -0.416294694140E-01 3222 -0.132370983840 -0.259125505589E-01 3223 -0.131736329126 -0.543376981434E-01 3224 -0.107226682807 0.191819494244E-03 3225 0.107242380699 -0.223663344925E-03 3226 -0.107258088638 0.170172055610E-03 3227 -0.132321472798 -0.259897361966E-01 3228 -0.131747936636 -0.543787351915E-01 3229 -0.825020483736E-01 -0.416070454587E-01 3230 -0.131676761929 -0.543345787877E-01 3231 0.672334728984 -0.780425213614E-01 3232 -0.132413096876 -0.260072343752E-01 3233 -0.132352418795 -0.259392565765E-01 3234 -0.131750351817 -0.543283724314E-01 3235 -0.107248608492 0.248249316298E-03 3236 0.107263074954 -0.181825138009E-03 3237 0.107250460396 -0.178564567080E-03 3238 -0.131755010340 -0.543641055970E-01 3239 -0.132337863437 -0.259379448698E-01 3240 -0.131676850339 -0.543345790859E-01 3241 -0.825195270144E-01 -0.414965168146E-01 3242 -0.132424009909 -0.259946206352E-01 3243 0.672373855726 -0.780324158255E-01 3244 -0.131709182054 -0.544313546858E-01 3245 -0.132356550401 -0.260095924282E-01 3246 0.107230779844 -0.228455744514E-03 3247 0.107220609924 -0.228527288962E-03 3248 -0.107223217134 0.254650903674E-03 3249 -0.131875648473 -0.544006488009E-01 3250 -0.132222625079 -0.259017691806E-01 3251 -0.131750218936 -0.543283892270E-01 3252 -0.132356138629 -0.260095752083E-01 3253 -0.132339351989 -0.259795428796E-01 3254 -0.131736315292 -0.543377009675E-01 3255 0.672064408546 -0.781290471604E-01 3256 -0.822060359251E-01 -0.415346680077E-01 3257 -0.107233565193 0.222236141473E-03 3258 -0.107252714907 0.243958436374E-03 3259 0.107192309759 -0.242123912443E-03 3260 -0.132242006995 -0.259347161576E-01 3261 -0.131838598224 -0.544469092434E-01 3262 -0.132352717802 -0.259392690448E-01 3263 -0.131709194907 -0.544313345672E-01 3264 -0.131711605120 -0.544515156663E-01 3265 -0.132371394092 -0.259125634149E-01 3266 -0.822633755121E-01 -0.414190666267E-01 3267 0.672065553246 -0.781289821556E-01 3268 0.773839406845E-01 -0.926218881200 3269 -0.435147367192E-06 0.486222668647E-05 3270 -0.230312101495E-04 0.281227979106E-04 3271 -0.117931833633 0.290405973612E-02 3272 0.117842201393 -0.289201357903E-02 3273 0.117817484162 -0.293025299084E-02 3274 0.117920800078 -0.309801709045E-02 3275 -0.117941687418 0.294729223550E-02 3276 -0.117787271973 0.307438564639E-02 3277 0.117865160879 -0.304939216680E-02 3278 -0.117848508602 0.305324105934E-02 3279 -0.435289022258E-06 0.486212348772E-05 3280 0.773671757741E-01 -0.926208764751 3281 -0.441932331798E-04 0.294923972840E-04 3282 -0.117931597082 0.289814784561E-02 3283 0.117806329720 -0.287543660041E-02 3284 -0.117848648053 0.305552119246E-02 3285 -0.117919676471 0.285851346721E-02 3286 0.117891078120 -0.306807492762E-02 3287 0.117845201063 -0.283794457412E-02 3288 0.117923442047 -0.310644228508E-02 3289 -0.117802252518 0.309095199670E-02 3290 -0.230309926828E-04 0.281232073418E-04 3291 -0.441943267658E-04 0.294920632240E-04 3292 0.774032683753E-01 -0.926241860538 3293 -0.117913414821 0.310823007913E-02 3294 0.117831428603 -0.310123369905E-02 3295 0.117864406746 -0.293037180863E-02 3296 -0.117866457034 0.293344037726E-02 3297 -0.117858364519 0.295557332254E-02 3298 0.117837931998 -0.294873790002E-02 3299 -0.117799406486 0.309407301541E-02 3300 0.117912815341 -0.311423139668E-02 3301 -0.117842248469 0.289200333898E-02 3302 -0.117806356797 0.287543244915E-02 3303 -0.117831393875 0.310114807852E-02 3304 0.624911532900 -0.145940724389 3305 -0.148261731099 -0.682609030551E-01 3306 -0.165022835583 -0.119055489293 3307 -0.204174353868 -0.533098022814E-01 3308 -0.204191003999 -0.533076940524E-01 3309 -0.165021124068 -0.119067248332 3310 -0.165043074737 -0.119158963831 3311 -0.204095610805 -0.531958919031E-01 3312 0.117931787341 -0.290406863456E-02 3313 0.117931571364 -0.289815250051E-02 3314 0.117913448804 -0.310831507980E-02 3315 -0.148198401815 -0.682247226746E-01 3316 0.624910724638 -0.145940793696 3317 -0.204137958913 -0.533409450642E-01 3318 -0.165036873407 -0.119044470097 3319 -0.165015148619 -0.119071253408 3320 -0.204121717255 -0.533534202136E-01 3321 -0.204127464901 -0.532592242027E-01 3322 -0.165125922960 -0.119165524628 3323 0.117941731855 -0.294728174306E-02 3324 -0.117891055378 0.306809804172E-02 3325 0.117858337010 -0.295559476017E-02 3326 -0.165015186983 -0.119071239330 3327 -0.204190856371 -0.533076972084E-01 3328 0.624963468906 -0.145782035143 3329 -0.204217305460 -0.534220653565E-01 3330 -0.148349235176 -0.683776722801E-01 3331 -0.164985197832 -0.118980554281 3332 -0.164951965649 -0.119121702091 3333 -0.204168943132 -0.533324891350E-01 3334 0.117787218084 -0.307435057551E-02 3335 -0.117845187823 0.283800056537E-02 3336 -0.117837975300 0.294877450564E-02 3337 -0.204121866639 -0.533534146056E-01 3338 -0.165021139020 -0.119067272595 3339 -0.204190245676 -0.534162295742E-01 3340 0.624999442642 -0.145760184832 3341 -0.164985104498 -0.118980558384 3342 -0.148324326698 -0.684992828945E-01 3343 -0.204223124939 -0.532910412321E-01 3344 -0.165028415141 -0.119039776060 3345 -0.117817440160 0.293026416153E-02 3346 0.117848672874 -0.305549475025E-02 3347 -0.117864433605 0.293035036486E-02 3348 -0.204138106192 -0.533409490051E-01 3349 -0.165022796579 -0.119055512016 3350 -0.148319624557 -0.684550060446E-01 3351 -0.165004605208 -0.118964209216 3352 0.624963468773 -0.145782028654 3353 -0.204190390426 -0.534162308702E-01 3354 -0.204207009804 -0.533096339826E-01 3355 -0.165044452347 -0.119036765609 3356 -0.117920853949 0.309804997860E-02 3357 0.117919688580 -0.285845686954E-02 3358 0.117866412367 -0.293340446964E-02 3359 -0.165036858291 -0.119044435279 3360 -0.204174205901 -0.533097917967E-01 3361 -0.165004698444 -0.118964208834 3362 -0.148350788344 -0.683602520997E-01 3363 -0.204217451631 -0.534220683788E-01 3364 0.624999883154 -0.145760156547 3365 -0.164959210891 -0.119096741273 3366 -0.204177394925 -0.533638921528E-01 3367 0.117848515722 -0.305327116401E-02 3368 0.117802229084 -0.309098952848E-02 3369 -0.117912776175 0.311427410276E-02 3370 -0.165125985999 -0.119165536702 3371 -0.204095076189 -0.531958707685E-01 3372 -0.165044315046 -0.119036793933 3373 -0.204176988362 -0.533638747506E-01 3374 -0.204168646382 -0.533324781574E-01 3375 -0.165028403348 -0.119039788507 3376 0.624783505574 -0.145983410005 3377 -0.148094500030 -0.682497818681E-01 3378 -0.117865154844 0.304936016862E-02 3379 -0.117923464812 0.310640266796E-02 3380 0.117799445773 -0.309403166964E-02 3381 -0.204127998808 -0.532592373635E-01 3382 -0.165043009570 -0.119158957398 3383 -0.204207306207 -0.533096523871E-01 3384 -0.164959221574 -0.119096710767 3385 -0.164952101663 -0.119121675630 3386 -0.204223529864 -0.532910538899E-01 3387 -0.148222278261 -0.682011353125E-01 3388 0.624784713350 -0.145983315014 3389 0.493687133311 -0.716923260400 3390 0.240627447306E-05 0.388834097063E-06 3391 -0.220976668021E-04 -0.653719784343E-05 3392 -0.148547716814 0.143664260964E-02 3393 0.148474516441 -0.149326781731E-02 3394 0.148494149119 -0.154413834582E-02 3395 0.148691393692 -0.154847577306E-02 3396 -0.148592962212 0.144982110294E-02 3397 -0.148604603255 0.164798992344E-02 3398 0.148612672914 -0.156797128106E-02 3399 -0.148610045120 0.158099539237E-02 3400 0.240605279437E-05 0.389069122096E-06 3401 0.493673265679 -0.716931950798 3402 -0.344563815650E-04 -0.219178356192E-04 3403 -0.148531550025 0.141679610079E-02 3404 0.148437215475 -0.150599889517E-02 3405 -0.148621302419 0.158851281729E-02 3406 -0.148489915883 0.141834043908E-02 3407 0.148649954998 -0.156575010814E-02 3408 0.148430135475 -0.145632263755E-02 3409 0.148709567585 -0.155636790893E-02 3410 -0.148628323066 0.165276757984E-02 3411 -0.220974929713E-04 -0.653729073050E-05 3412 -0.344562291436E-04 -0.219179085604E-04 3413 0.493707727742 -0.716919579925 3414 -0.148678620426 0.157396117068E-02 3415 0.148622253982 -0.164244329283E-02 3416 0.148553742152 -0.148919941629E-02 3417 -0.148547647615 0.148296209827E-02 3418 -0.148552603885 0.151390006543E-02 3419 0.148534262679 -0.151781176414E-02 3420 -0.148588992751 0.164944170174E-02 3421 0.148673998903 -0.156981199058E-02 3422 -0.148474521053 0.149322350746E-02 3423 -0.148437222443 0.150598539196E-02 3424 -0.148622205526 0.164238548505E-02 3425 0.643582248983 -0.204348192986 3426 -0.100872621642 -0.139335326793 3427 -0.125764809848 -0.172137855807 3428 -0.163895364985 -0.125273181120 3429 -0.163905043711 -0.125275695468 3430 -0.125761543201 -0.172153598471 3431 -0.125809063718 -0.172221870272 3432 -0.163813477657 -0.125200146666 3433 0.148547714621 -0.143668584114E-02 3434 0.148531543077 -0.141680849008E-02 3435 0.148678667239 -0.157401753958E-02 3436 -0.100818997513 -0.139306323267 3437 0.643581416192 -0.204348272527 3438 -0.163865972067 -0.125320527264 3439 -0.125770962454 -0.172123863404 3440 -0.125747536322 -0.172149845398 3441 -0.163842010303 -0.125324092069 3442 -0.163821469704 -0.125258725647 3443 -0.125857927152 -0.172215922544 3444 0.148593050048 -0.144984867691E-02 3445 -0.148649928625 0.156575277587E-02 3446 0.148552560938 -0.151390721750E-02 3447 -0.125747576119 -0.172149828535 3448 -0.163904876987 -0.125275712343 3449 0.643655353753 -0.204249533673 3450 -0.163943117686 -0.125367465833 3451 -0.100981124938 -0.139404809805 3452 -0.125706160527 -0.172088677552 3453 -0.125699123695 -0.172206165524 3454 -0.163888491913 -0.125316576632 3455 0.148604575046 -0.164800117555E-02 3456 -0.148430123542 0.145635004210E-02 3457 -0.148534329508 0.151783718697E-02 3458 -0.163842170346 -0.125324078248 3459 -0.125761559496 -0.172153632120 3460 -0.163928450934 -0.125370224682 3461 0.643698189659 -0.204226890188 3462 -0.125706062325 -0.172088681151 3463 -0.100959284045 -0.139528087225 3464 -0.163932678480 -0.125268676607 3465 -0.125754693081 -0.172115279524 3466 -0.148494062321 0.154410901800E-02 3467 0.148621328736 -0.158850619445E-02 3468 -0.148553785846 0.148918960971E-02 3469 -0.163866138096 -0.125320518711 3470 -0.125764769159 -0.172137883191 3471 -0.100964779059 -0.139491822508 3472 -0.125731360502 -0.172073947155 3473 0.643655348729 -0.204249522967 3474 -0.163928604670 -0.125370219549 3475 -0.163920243779 -0.125295827674 3476 -0.125772336918 -0.172109998334 3477 -0.148691419612 0.154846430177E-02 3478 0.148489926442 -0.141831074329E-02 3479 0.148547579291 -0.148293653435E-02 3480 -0.125770947609 -0.172123819291 3481 -0.163895206908 -0.125273179539 3482 -0.125731459365 -0.172073947167 3483 -0.100995377393 -0.139383970024 3484 -0.163943273356 -0.125367463529 3485 0.643698644474 -0.204226858937 3486 -0.125706843560 -0.172180618459 3487 -0.163900241139 -0.125348864322 3488 0.148610108773 -0.158105522171E-02 3489 0.148628340126 -0.165281191236E-02 3490 -0.148673972868 0.156984079195E-02 3491 -0.125857994066 -0.172215939867 3492 -0.163812904778 -0.125200150570 3493 -0.125772185688 -0.172110040891 3494 -0.163899804760 -0.125348862727 3495 -0.163888174506 -0.125316577680 3496 -0.125754676774 -0.172115300967 3497 0.643452254749 -0.204404444703 3498 -0.100723694121 -0.139341541444 3499 -0.148612609583 0.156790912100E-02 3500 -0.148709550443 0.155632079338E-02 3501 0.148589020994 -0.164941274895E-02 3502 -0.163822042719 -0.125258714102 3503 -0.125808995791 -0.172221859458 3504 -0.163920561364 -0.125295834768 3505 -0.125706858449 -0.172180578170 3506 -0.125699273973 -0.172206124723 3507 -0.163933113007 -0.125268672313 3508 -0.100812276485 -0.139278045096 3509 0.643453497411 -0.204404330021 3510 0.753629632040E-01 -0.534644922457 3511 0.933425167660E-05 0.376538269069E-05 3512 -0.200495757718E-04 -0.133678188201E-05 3513 -0.184542730214 -0.166960259894E-01 3514 0.184479987953 0.166436035390E-01 3515 0.184517539509 0.166092870387E-01 3516 0.184657170662 0.166481262225E-01 3517 -0.184582323030 -0.167059279814E-01 3518 -0.184622244858 -0.165528268872E-01 3519 0.184606714319 0.166077490875E-01 3520 -0.184605181585 -0.166004469678E-01 3521 0.933386792747E-05 0.376540561653E-05 3522 0.753467739254E-01 -0.534650957078 3523 -0.371950099346E-04 -0.132882722766E-04 3524 -0.184513313436 -0.167191632165E-01 3525 0.184457109663 0.166286036272E-01 3526 -0.184619247926 -0.165990923148E-01 3527 -0.184487397334 -0.166973258861E-01 3528 0.184637768224 0.166169262421E-01 3529 0.184439995366 0.166629569982E-01 3530 0.184684926337 0.166451864207E-01 3531 -0.184648503173 -0.165526064998E-01 3532 -0.200492651018E-04 -0.133695992840E-05 3533 -0.371953549215E-04 -0.132879349777E-04 3534 0.753836933863E-01 -0.534644592333 3535 -0.184667682960 -0.166116068428E-01 3536 0.184639049689 0.165419427379E-01 3537 0.184546111013 0.166731514066E-01 3538 -0.184534097487 -0.166787834174E-01 3539 -0.184540166812 -0.166489970052E-01 3540 0.184525744459 0.166473185580E-01 3541 -0.184603635012 -0.165370616866E-01 3542 0.184655994451 0.166133192119E-01 3543 -0.184479990080 -0.166436049071E-01 3544 -0.184457120916 -0.166286153507E-01 3545 -0.184639019329 -0.165419908290E-01 3546 0.668625613687 -0.250201999419 3547 -0.872480931779E-01 -0.133590400329 3548 -0.784713371722E-01 -0.196759333206 3549 -0.166598036565 -0.117754841043 3550 -0.166614215537 -0.117759618225 3551 -0.784677251053E-01 -0.196768944513 3552 -0.784504510566E-01 -0.196869766324 3553 -0.166542021864 -0.117612359166 3554 0.184542728919 0.166960271320E-01 3555 0.184513301870 0.167191527082E-01 3556 0.184667713192 0.166115591095E-01 3557 -0.871501500288E-01 -0.133519015592 3558 0.668624767957 -0.250202101158 3559 -0.166538327837 -0.117781708589 3560 -0.784898146510E-01 -0.196741885044 3561 -0.784492150308E-01 -0.196769429121 3562 -0.166509111177 -0.117787617401 3563 -0.166557512420 -0.117690846731 3564 -0.785398842089E-01 -0.196909047737 3565 0.184582417356 0.167059461859E-01 3566 -0.184637742488 -0.166169319956E-01 3567 0.184540135874 0.166489993224E-01 3568 -0.784492631128E-01 -0.196769395992 3569 -0.166614043056 -0.117759628306 3570 0.668619692770 -0.250029004151 3571 -0.166601787432 -0.117897098522 3572 -0.872664117250E-01 -0.133735866873 3573 -0.784455268576E-01 -0.196656075652 3574 -0.783669909998E-01 -0.196816738882 3575 -0.166576623158 -0.117773953065 3576 0.184622230866 0.165528535651E-01 3577 -0.184439974813 -0.166629299510E-01 3578 -0.184525784760 -0.166472912947E-01 3579 -0.166509272870 -0.117787605372 3580 -0.784677314363E-01 -0.196768997475 3581 -0.166564159622 -0.117881941566 3582 0.668659648174 -0.249988574712 3583 -0.784454183615E-01 -0.196656087384 3584 -0.872162914825E-01 -0.133857785714 3585 -0.166635603799 -0.117747042708 3586 -0.784703369064E-01 -0.196753762034 3587 -0.184517444886 -0.166092698767E-01 3588 0.184619273256 0.165990895047E-01 3589 -0.184546142814 -0.166731520157E-01 3590 -0.166538496271 -0.117781706451 3591 -0.784712848131E-01 -0.196759375616 3592 -0.872283374015E-01 -0.133809915318 3593 -0.784829751853E-01 -0.196654089433 3594 0.668619687622 -0.250029003394 3595 -0.166564314893 -0.117881938381 3596 -0.166620448741 -0.117779340446 3597 -0.784891291365E-01 -0.196757332471 3598 -0.184657184565 -0.166481005778E-01 3599 0.184487415646 0.166973537728E-01 3600 0.184534058540 0.166788097388E-01 3601 -0.784898075869E-01 -0.196741821970 3602 -0.166597875061 -0.117754837301 3603 -0.784830852319E-01 -0.196654081919 3604 -0.872754304780E-01 -0.133712652793 3605 -0.166601945628 -0.117897099303 3606 0.668660112096 -0.249988531611 3607 -0.783905496695E-01 -0.196788238880 3608 -0.166580072920 -0.117813782985 3609 0.184605231255 0.166004267976E-01 3610 0.184648502699 0.165525721278E-01 3611 -0.184655937122 -0.166132821480E-01 3612 -0.785399499098E-01 -0.196909069844 3613 -0.166541443142 -0.117612354387 3614 -0.784889517602E-01 -0.196757382993 3615 -0.166579631127 -0.117813773794 3616 -0.166576302976 -0.117773949402 3617 -0.784703086357E-01 -0.196753790864 3618 0.668502878471 -0.250285282178 3619 -0.870493536955E-01 -0.133536413360 3620 -0.184606664212 -0.166077722069E-01 3621 -0.184684925920 -0.166452252103E-01 3622 0.184603693930 0.165370985547E-01 3623 -0.166558088041 -0.117690844068 3624 -0.784503811189E-01 -0.196869750028 3625 -0.166620768277 -0.117779352912 3626 -0.783905755184E-01 -0.196788189248 3627 -0.783671671296E-01 -0.196816689712 3628 -0.166636043110 -0.117747045629 3629 -0.871961343607E-01 -0.133530997417 3630 0.668504137872 -0.250285139208 3631 -0.229074872750 -0.939166839643 3632 0.121963088726E-04 0.156474219027E-04 3633 -0.207340139464E-04 -0.176284456682E-04 3634 -0.221078563337 -0.678988146882E-01 3635 0.221071703919 0.678163007518E-01 3636 0.221129125090 0.677880341142E-01 3637 0.221210513147 0.679310764401E-01 3638 -0.221121791254 -0.679262156350E-01 3639 -0.221238609554 -0.678207886952E-01 3640 0.221192569448 0.678676825744E-01 3641 -0.221200603997 -0.678617862824E-01 3642 0.121967337882E-04 0.156461746341E-04 3643 -0.229091073167 -0.939189353093 3644 -0.353786025606E-04 -0.497122290490E-04 3645 -0.221047234357 -0.678997921109E-01 3646 0.221053214180 0.677768988984E-01 3647 -0.221210729771 -0.678626412027E-01 3648 -0.221040545036 -0.678565528337E-01 3649 0.221207568790 0.678941871099E-01 3650 0.221021019687 0.677976740977E-01 3651 0.221243662274 0.679492112962E-01 3652 -0.221273244326 -0.678388876667E-01 3653 -0.207343444988E-04 -0.176264217474E-04 3654 -0.353782284336E-04 -0.497151841070E-04 3655 -0.229049770312 -0.939149779189 3656 -0.221242304210 -0.679086447662E-01 3657 0.221256282344 0.678221004624E-01 3658 0.221107660819 0.678780529541E-01 3659 -0.221092148154 -0.678752808545E-01 3660 -0.221129160324 -0.678587844619E-01 3661 0.221106546777 0.678554761618E-01 3662 -0.221231345526 -0.677921183153E-01 3663 0.221221948632 0.678928555573E-01 3664 -0.221071758225 -0.678162912060E-01 3665 -0.221053276018 -0.677768712334E-01 3666 -0.221256281006 -0.678221668722E-01 3667 0.676333784597 -0.208117365207 3668 -0.576814104430E-01 -0.109883047737 3669 -0.361393185098E-01 -0.122245415258 3670 -0.145429948160 -0.980774117107E-01 3671 -0.145444684107 -0.980930111587E-01 3672 -0.361411251345E-01 -0.122267955365 3673 -0.361262486762E-01 -0.122304659306 3674 -0.145413423738 -0.979740062065E-01 3675 0.221078508671 0.678988254689E-01 3676 0.221047171851 0.678998218381E-01 3677 0.221242304953 0.679085816139E-01 3678 -0.576539605425E-01 -0.109771302797 3679 0.676332919767 -0.208117444515 3680 -0.145386553183 -0.980947056160E-01 3681 -0.361684276349E-01 -0.122238633197 3682 -0.361250817108E-01 -0.122243007725 3683 -0.145363396471 -0.980877837839E-01 3684 -0.145398513965 -0.980449202761E-01 3685 -0.361668888626E-01 -0.122360229898 3686 0.221121832607 0.679262371830E-01 3687 -0.221207546154 -0.678941953508E-01 3688 0.221129138958 0.678587892229E-01 3689 -0.361251397193E-01 -0.122242986101 3690 -0.145444489527 -0.980930146957E-01 3691 0.676302615886 -0.208028433908 3692 -0.145402930105 -0.981850797481E-01 3693 -0.576897137749E-01 -0.109925745686 3694 -0.361465912646E-01 -0.122167125151 3695 -0.360451441449E-01 -0.122258141762 3696 -0.145423614251 -0.981016252468E-01 3697 0.221238557178 0.678208373029E-01 3698 -0.221020998492 -0.677976379575E-01 3699 -0.221106553721 -0.678554380302E-01 3700 -0.145363570409 -0.980877661492E-01 3701 -0.361411324911E-01 -0.122267990351 3702 -0.145395868259 -0.981547826564E-01 3703 0.676335432973 -0.207981082489 3704 -0.361464654841E-01 -0.122167125321 3705 -0.576330830827E-01 -0.110038641095 3706 -0.145472263722 -0.980778350489E-01 3707 -0.361271089420E-01 -0.122222923922 3708 -0.221129082602 -0.677880132759E-01 3709 0.221210751201 0.678626348920E-01 3710 -0.221107679770 -0.678780536660E-01 3711 -0.145386746284 -0.980947089688E-01 3712 -0.361392590392E-01 -0.122245444966 3713 -0.576563107817E-01 -0.109998788666 3714 -0.361599966185E-01 -0.122178533565 3715 0.676302614925 -0.208028427767 3716 -0.145396043937 -0.981547755417E-01 3717 -0.145432932857 -0.981169442694E-01 3718 -0.361397993270E-01 -0.122222975818 3719 -0.221210564858 -0.679310307949E-01 3720 0.221040561143 0.678565913257E-01 3721 0.221092140478 0.678753206480E-01 3722 -0.361684197736E-01 -0.122238585747 3723 -0.145429774300 -0.980774107617E-01 3724 -0.361601211829E-01 -0.122178536804 3725 -0.577084989370E-01 -0.109909517986 3726 -0.145403104670 -0.981850766443E-01 3727 0.676335909027 -0.207981052419 3728 -0.360730392547E-01 -0.122248055785 3729 -0.145407661054 -0.981448284970E-01 3730 0.221200565222 0.678617679271E-01 3731 0.221273187147 0.678388740836E-01 3732 -0.221221868245 -0.678928222538E-01 3733 -0.361669623422E-01 -0.122360249540 3734 -0.145412786735 -0.979740075011E-01 3735 -0.361396047123E-01 -0.122223001163 3736 -0.145407177161 -0.981448187879E-01 3737 -0.145423263741 -0.981016221117E-01 3738 -0.361270761711E-01 -0.122222940442 3739 0.676231165763 -0.208216708408 3740 -0.575379368208E-01 -0.109772413046 3741 -0.221192606430 -0.678677047562E-01 3742 -0.221243717113 -0.679492289527E-01 3743 0.221231426729 0.677921515933E-01 3744 -0.145399149228 -0.980449095533E-01 3745 -0.361261731782E-01 -0.122304644036 3746 -0.145433281328 -0.981169556696E-01 3747 -0.360730716335E-01 -0.122248017579 3748 -0.360453367989E-01 -0.122258117819 3749 -0.145472747193 -0.980778377513E-01 3750 -0.576330052635E-01 -0.109787673369 3751 0.676232454384 -0.208216600553 3752 0.656159963197E-01 -1.31143762784 3753 0.541513616602E-05 0.186470031526E-04 3754 -0.448367002757E-05 -0.137736107127E-04 3755 -0.227185827120 -0.122470112102 3756 0.227219351979 0.122445574350 3757 0.227302866109 0.122439012870 3758 0.227227118937 0.122555905086 3759 -0.227230063008 -0.122518012558 3760 -0.227296367668 -0.122512209767 3761 0.227241532462 0.122510118339 3762 -0.227248183810 -0.122534522638 3763 0.541514776684E-05 0.186472160907E-04 3764 0.656169549750E-01 -1.31145729742 3765 0.493470665701E-05 -0.387430120483E-04 3766 -0.227189724758 -0.122471841412 3767 0.227241419001 0.122396623359 3768 -0.227261665326 -0.122526920703 3769 -0.227223391695 -0.122434874762 3770 0.227230959111 0.122530208958 3771 0.227225865550 0.122395416290 3772 0.227233016212 0.122586239701 3773 -0.227315359636 -0.122548804380 3774 -0.448318299477E-05 -0.137736819339E-04 3775 0.493490634949E-05 -0.387431926338E-04 3776 0.656261615023E-01 -1.31141802216 3777 -0.227256856420 -0.122564273491 3778 0.227303625167 0.122515173949 3779 0.227207447952 0.122471732724 3780 -0.227206977925 -0.122464081695 3781 -0.227230902663 -0.122501982409 3782 0.227214800888 0.122485515787 3783 -0.227308027725 -0.122498055113 3784 0.227253231562 0.122538324657 3785 -0.227219331471 -0.122445598799 3786 -0.227241413190 -0.122396650839 3787 -0.227303599388 -0.122515257800 3788 0.639820949706 -0.312202365539 3789 -0.485420797009E-01 -0.197918288288 3790 -0.661040339578E-01 -0.181285695125 3791 -0.187080891268 -0.193176630399 3792 -0.187080461435 -0.193208826247 3793 -0.660893650237E-01 -0.181306140451 3794 -0.661032791320E-01 -0.181318188347 3795 -0.187075790113 -0.193118690092 3796 0.227185848008 0.122470087636 3797 0.227189725794 0.122471813708 3798 0.227256877410 0.122564189017 3799 -0.485428895461E-01 -0.197834692626 3800 0.639820033500 -0.312202457614 3801 -0.187040056858 -0.193192432274 3802 -0.661126441628E-01 -0.181289934890 3803 -0.660831299346E-01 -0.181286595266 3804 -0.187019473335 -0.193196220172 3805 -0.187043881148 -0.193177793545 3806 -0.661001345478E-01 -0.181367867319 3807 0.227230166783 0.122517977407 3808 -0.227230878890 -0.122530244490 3809 0.227230838319 0.122501992534 3810 -0.660831810868E-01 -0.181286571111 3811 -0.187080268505 -0.193208838056 3812 0.639791703917 -0.312180737574 3813 -0.187038713136 -0.193254154087 3814 -0.485576792830E-01 -0.197922098604 3815 -0.661164005780E-01 -0.181253004366 3816 -0.660433739664E-01 -0.181287582425 3817 -0.187067751283 -0.193216961176 3818 0.227296368721 0.122512234969 3819 -0.227225808162 -0.122395407502 3820 -0.227214872984 -0.122485427920 3821 -0.187019647910 -0.193196194624 3822 -0.660893851763E-01 -0.181306200202 3823 -0.187048239831 -0.193232232931 3824 0.639807808478 -0.312130039478 3825 -0.661162796171E-01 -0.181252994098 3826 -0.484986366425E-01 -0.198010678046 3827 -0.187100491982 -0.193196843783 3828 -0.660958545778E-01 -0.181264982017 3829 -0.227302761855 -0.122439046443 3830 0.227261743955 0.122526886215 3831 -0.227207509518 -0.122471722368 3832 -0.187040247120 -0.193192429339 3833 -0.661039806133E-01 -0.181285729944 3834 -0.485343921135E-01 -0.197996000542 3835 -0.661244274953E-01 -0.181242147174 3836 0.639791692126 -0.312180727462 3837 -0.187048419194 -0.193232220843 3838 -0.187058535821 -0.193215657629 3839 -0.661119666738E-01 -0.181270338173 3840 -0.227227115082 -0.122555881468 3841 0.227223444113 0.122434881606 3842 0.227206903200 0.122464169100 3843 -0.661126242110E-01 -0.181289863299 3844 -0.187080717666 -0.193176638061 3845 -0.661245505355E-01 -0.181242159530 3846 -0.485781832371E-01 -0.197906159210 3847 -0.187038893480 -0.193254144108 3848 0.639808308450 -0.312130006203 3849 -0.660634345405E-01 -0.181290354638 3850 -0.187046823443 -0.193235290234 3851 0.227248265001 0.122534455141 3852 0.227315384323 0.122548742649 3853 -0.227253225954 -0.122538264380 3854 -0.661002179609E-01 -0.181367895358 3855 -0.187075163485 -0.193118714658 3856 -0.661117802275E-01 -0.181270374441 3857 -0.187046355125 -0.193235294677 3858 -0.187067416432 -0.193216967627 3859 -0.660958296097E-01 -0.181265005411 3860 0.639748668987 -0.312300780361 3861 -0.484711447325E-01 -0.197827348884 3862 -0.227241446804 -0.122510187601 3863 -0.227232986448 -0.122586302461 3864 0.227308035655 0.122498115157 3865 -0.187044504694 -0.193177760674 3866 -0.661031940065E-01 -0.181318167313 3867 -0.187058869888 -0.193215660157 3868 -0.660634578480E-01 -0.181290309252 3869 -0.660435587202E-01 -0.181287547180 3870 -0.187100958861 -0.193196833648 3871 -0.485206512747E-01 -0.197855209169 3872 0.639750041834 -0.312300655014 3873 -0.345935739006 -1.66229516888 3874 0.146259310486E-04 0.404089904427E-04 3875 -0.207752987706E-04 -0.216373995685E-04 3876 -0.305619204500 -0.215350839605 3877 0.305597666240 0.215384463607 3878 0.305727395852 0.215419773354 3879 0.305621132267 0.215415351330 3880 -0.305672958126 -0.215464383606 3881 -0.305672148370 -0.215359443347 3882 0.305630779548 0.215368187546 3883 -0.305608760884 -0.215396053023 3884 0.146259708368E-04 0.404081011365E-04 3885 -0.345946514981 -1.66232848578 3886 -0.242991682803E-04 -0.601681097662E-04 3887 -0.305622478171 -0.215447975999 3888 0.305658036747 0.215351748099 3889 -0.305641872021 -0.215389511690 3890 -0.305662633438 -0.215437035720 3891 0.305609476023 0.215348667002 3892 0.305648770045 0.215384572136 3893 0.305628045802 0.215407723117 3894 -0.305686968167 -0.215410415555 3895 -0.207752091189E-04 -0.216356219419E-04 3896 -0.242986624365E-04 -0.601688483071E-04 3897 -0.345913269926 -1.66225863758 3898 -0.305644649276 -0.215438684715 3899 0.305678562922 0.215370815971 3900 0.305640248007 0.215339379030 3901 -0.305645138148 -0.215367474929 3902 -0.305593971636 -0.215417385156 3903 0.305581479302 0.215390602339 3904 -0.305676383743 -0.215389087411 3905 0.305650433535 0.215396030761 3906 -0.305597780806 -0.215384355239 3907 -0.305658068853 -0.215351713141 3908 -0.305678575532 -0.215370949874 3909 0.669787408987 -0.464170502836 3910 0.771075480702E-01 -0.250615051794 3911 0.667799558812E-02 -0.274240635477 3912 -0.137693099249 -0.329884186947 3913 -0.137664800385 -0.329927832830 3914 0.668926591606E-02 -0.274244022050 3915 0.668043760053E-02 -0.274259230502 3916 -0.137674666485 -0.329855572222 3917 0.305619090633 0.215350951467 3918 0.305622444065 0.215448012216 3919 0.305644634137 0.215438553383 3920 0.771323418649E-01 -0.250523983216 3921 0.669786522873 -0.464170636012 3922 -0.137646048675 -0.329884053125 3923 0.668554186644E-02 -0.274215138021 3924 0.670937849112E-02 -0.274223582372 3925 -0.137603003321 -0.329910504612 3926 -0.137633770479 -0.329883967001 3927 0.670346013070E-02 -0.274295686507 3928 0.305672943305 0.215464476527 3929 -0.305609454871 -0.215348651303 3930 0.305593915445 0.215417389940 3931 0.670932022817E-02 -0.274223527623 3932 -0.137664562925 -0.329927879342 3933 0.669766519766 -0.464180893936 3934 -0.137624747828 -0.329946017178 3935 0.771269200114E-01 -0.250599522352 3936 0.668481179964E-02 -0.274224908088 3937 0.672389215635E-02 -0.274250823488 3938 -0.137647300096 -0.329918063673 3939 0.305672047617 0.215359616871 3940 -0.305648736582 -0.215384490415 3941 -0.305581519547 -0.215390520516 3942 -0.137603192556 -0.329910452962 3943 0.668926409301E-02 -0.274244147086 3944 -0.137642969020 -0.329932536880 3945 0.669772449007 -0.464139115371 3946 0.668494072948E-02 -0.274224895936 3947 0.771668183739E-01 -0.250667686116 3948 -0.137666508605 -0.329900173901 3949 0.668670458823E-02 -0.274239323897 3950 -0.305727411451 -0.215419681538 3951 0.305641893795 0.215389526657 3952 -0.305640303053 -0.215339380117 3953 -0.137646280907 -0.329884017062 3954 0.667805868153E-02 -0.274240701040 3955 0.771560969591E-01 -0.250670604177 3956 0.665090495424E-02 -0.274196148943 3957 0.669766493706 -0.464180867888 3958 -0.137643159219 -0.329932498087 3959 -0.137644226681 -0.329911857703 3960 0.668237027705E-02 -0.274256567763 3961 -0.305621231895 -0.215415179342 3962 0.305662661654 0.215437118155 3963 0.305645096954 0.215367558059 3964 0.668554526789E-02 -0.274215001737 3965 -0.137692908381 -0.329884220482 3966 0.665077219169E-02 -0.274196163489 3967 0.771082576380E-01 -0.250579618896 3968 -0.137624940020 -0.329945981823 3969 0.669772942339 -0.464139070773 3970 0.671658480308E-02 -0.274252792742 3971 -0.137641149099 -0.329921611070 3972 0.305608670407 0.215396087983 3973 0.305686924631 0.215410381264 3974 -0.305650392787 -0.215395978034 3975 0.670336500776E-02 -0.274295737912 3976 -0.137673961083 -0.329855680317 3977 0.668260219582E-02 -0.274256652662 3978 -0.137640615694 -0.329921677032 3979 -0.137646919751 -0.329918102128 3980 0.668674113379E-02 -0.274239379025 3981 0.669745012399 -0.464257287650 3982 0.771826429474E-01 -0.250558871159 3983 -0.305630867881 -0.215368154933 3984 -0.305628089156 -0.215407756089 3985 0.305676426765 0.215389143636 3986 -0.137634469219 -0.329883850353 3987 0.668053802933E-02 -0.274259187799 3988 -0.137644604855 -0.329911828348 3989 0.671655062191E-02 -0.274252714175 3990 0.672366274267E-02 -0.274250740083 3991 -0.137667038622 -0.329900102546 3992 0.771652147301E-01 -0.250588793670 3993 0.669746351058 -0.464257125009 3994 0.607540142970 -4.03157268086 3995 -0.113553268557E-03 0.605106794751E-04 3996 0.528736084533E-04 -0.305314030221E-04 3997 -0.980778627495E-01 -0.660684816757 3998 0.978829115016E-01 0.660661970730 3999 0.979486605935E-01 0.660905549088 4000 0.978592001851E-01 0.660711446957 4001 -0.979068494966E-01 -0.660915729944 4002 -0.980657799292E-01 -0.660729832547 4003 0.980086470705E-01 0.660688811915 4004 -0.979774860394E-01 -0.660683200753 4005 -0.113550937049E-03 0.605113806031E-04 4006 0.607641403382 -4.03160973891 4007 0.178083969201E-03 -0.699830741017E-04 4008 -0.978044974761E-01 -0.660816373327 4009 0.980297262993E-01 0.660728403819 4010 -0.979346594004E-01 -0.660713062409 4011 -0.978423795033E-01 -0.660840087448 4012 0.980206390627E-01 0.660604073552 4013 0.979277763739E-01 0.660744495749 4014 0.980035078620E-01 0.660733086033 4015 -0.980080653559E-01 -0.660826025680 4016 0.528696278653E-04 -0.305327579841E-04 4017 0.178086393866E-03 -0.699831657175E-04 4018 0.607440257599 -4.03153000696 4019 -0.978611803249E-01 -0.660749850516 4020 0.980469353196E-01 0.660702667682 4021 0.981285755345E-01 0.660721776383 4022 -0.979960604571E-01 -0.660762463477 4023 -0.978688176116E-01 -0.660712705678 4024 0.979001739898E-01 0.660662020292 4025 -0.980153167006E-01 -0.660788314775 4026 0.980439122299E-01 0.660752591742 4027 -0.978828363075E-01 -0.660662027772 4028 -0.980296895121E-01 -0.660728438669 4029 -0.980468545614E-01 -0.660702986864 4030 1.03102668742 -0.734172167414 4031 0.204671771626 -0.411771988949E-01 4032 0.178403534835 -0.206927694623 4033 0.128145212249 -0.429161755385 4034 0.128270674110 -0.429158590180 4035 0.178426513195 -0.206939490192 4036 0.178378201570 -0.206972469436 4037 0.128242990867 -0.429099153992 4038 0.980779325799E-01 0.660684759724 4039 0.978045244826E-01 0.660816335029 4040 0.978612512619E-01 0.660749529990 4041 0.204632144011 -0.410690175431E-01 4042 1.03102573415 -0.734172209466 4043 0.128188687697 -0.429133405644 4044 0.178344913864 -0.206881709425 4045 0.178412709811 -0.206894160532 4046 0.128338836591 -0.429108922650 4047 0.128231779519 -0.429100946524 4048 0.178414509579 -0.206945277497 4049 0.979070147034E-01 0.660915602150 4050 -0.980205579002E-01 -0.660604138951 4051 0.978687784880E-01 0.660712742891 4052 0.178412623391 -0.206894093628 4053 0.128270888846 -0.429158572774 4054 1.03107511038 -0.734234079579 4055 0.128258104691 -0.429153034298 4056 0.204613932868 -0.411073725914E-01 4057 0.178452104893 -0.206894097731 4058 0.178443879701 -0.206979102749 4059 0.128234669682 -0.429130771553 4060 0.980657898654E-01 0.660729926660 4061 -0.979277332990E-01 -0.660744411252 4062 -0.979002915500E-01 -0.660661801983 4063 0.128338613274 -0.429108866303 4064 0.178426560770 -0.206939674513 4065 0.128245957552 -0.429180149949 4066 1.03107488656 -0.734174697799 4067 0.178452223360 -0.206894039779 4068 0.204668820488 -0.411856587188E-01 4069 0.128216008517 -0.429103364138 4070 0.178435252837 -0.206946471678 4071 -0.979484900827E-01 -0.660905676737 4072 0.979347459534E-01 0.660712998868 4073 -0.981286043578E-01 -0.660721741238 4074 0.128188485572 -0.429133431159 4075 0.178403628589 -0.206927772260 4076 0.204657224382 -0.411512313876E-01 4077 0.178311375707 -0.206896700580 4078 1.03107511682 -0.734234057922 4079 0.128245762928 -0.429180107981 4080 0.128232951949 -0.429113166435 4081 0.178440477054 -0.206938775684 4082 -0.978591833576E-01 -0.660711351612 4083 0.978424104051E-01 0.660840167899 4084 0.979959342802E-01 0.660762683500 4085 0.178344868336 -0.206881510592 4086 0.128145437237 -0.429161791399 4087 0.178311247949 -0.206896762254 4088 0.204546632160 -0.410796138664E-01 4089 0.128257906255 -0.429152993035 4090 1.03107543823 -0.734174698322 4091 0.178427182225 -0.206958256212 4092 0.128218605145 -0.429123898629 4093 0.979776467767E-01 0.660682926212 4094 0.980081331533E-01 0.660825825719 4095 -0.980439174602E-01 -0.660752480770 4096 0.178414451916 -0.206945388180 4097 0.128243732120 -0.429099215737 4098 0.178440716705 -0.206938810435 4099 0.128219149604 -0.429123911613 4100 0.128235073416 -0.429130762396 4101 0.178435327869 -0.206946529673 4102 1.03099538399 -0.734266547898 4103 0.204729780894 -0.411052162792E-01 4104 -0.980084761750E-01 -0.660689083074 4105 -0.980034396548E-01 -0.660733287716 4106 0.980153095262E-01 0.660788430779 4107 0.128231047763 -0.429100868100 4108 0.178378268587 -0.206972360926 4109 0.128232548928 -0.429113180027 4110 0.178427112095 -0.206958170722 4111 0.178443641335 -0.206979062134 4112 0.128215470811 -0.429103340359 4113 0.204730566527 -0.411031164164E-01 4114 1.03099681634 -0.734266519982 4115 3.29181755287 -1.92252349394 4116 -0.130059257038E-04 -0.397959113150E-04 4117 0.751427919769E-05 0.668679495788E-05 4118 0.325725648959 -0.271543668037 4119 -0.325740438715 0.271410412506 4120 -0.325838154121 0.271521178241 4121 -0.325744180197 0.271411036985 4122 0.325892453580 -0.271504941707 4123 0.325712938359 -0.271538074388 4124 -0.325717879429 0.271495649128 4125 0.325749357579 -0.271477265016 4126 -0.130063889421E-04 -0.397932061378E-04 4127 3.29181781668 -1.92248099216 4128 0.488501146276E-05 0.738582109458E-04 4129 0.325842098612 -0.271391510137 4130 -0.325739260159 0.271522802353 4131 0.325723247118 -0.271449149553 4132 0.325820523737 -0.271421664013 4133 -0.325659098241 0.271494959615 4134 -0.325765758983 0.271464746851 4135 -0.325772964237 0.271532369960 4136 0.325793844898 -0.271532277464 4137 0.751540455870E-05 0.668332705075E-05 4138 0.488535919093E-05 0.738588127565E-04 4139 3.29181586145 -1.92255087764 4140 0.325764452727 -0.271423202796 4141 -0.325694822283 0.271531675656 4142 -0.325742117185 0.271582309484 4143 0.325760943019 -0.271499600596 4144 0.325784201780 -0.271410854812 4145 -0.325747344574 0.271425144972 4146 0.325782779057 -0.271504325527 4147 -0.325780702115 0.271528565392 4148 0.325740438327 -0.271410486301 4149 0.325739239516 -0.271522858449 4150 0.325695117447 -0.271531750827 4151 1.27828534564 -0.296647190171 4152 0.655517378632E-01 -0.454794752797E-01 4153 0.152201074187 -0.914717331144E-01 4154 0.240058294258 -0.168196637730 4155 0.240097338964 -0.168119136707 4156 0.152220620605 -0.914649728921E-01 4157 0.152198385511 -0.915008510967E-01 4158 0.240089239867 -0.168109800113 4159 -0.325725650114 0.271543592504 4160 -0.325842125196 0.271391444966 4161 -0.325764160939 0.271423119711 4162 0.655148065684E-01 -0.454560806577E-01 4163 1.27828435955 -0.296647214997 4164 0.240074757244 -0.168185493133 4165 0.152174527442 -0.914976387450E-01 4166 0.152197757436 -0.914601145852E-01 4167 0.240102175238 -0.168077601840 4168 0.240086982168 -0.168148979935 4169 0.152191629999 -0.914821440118E-01 4170 -0.325892277817 0.271504835652 4171 0.325659167183 -0.271495052780 4172 -0.325784281893 0.271410929642 4173 0.152197622979 -0.914601006776E-01 4174 0.240097556312 -0.168119124570 4175 1.27838074511 -0.296658571804 4176 0.240077665473 -0.168150762898 4177 0.654721066661E-01 -0.454586956299E-01 4178 0.152218317633 -0.914196903546E-01 4179 0.152267678668 -0.914933249031E-01 4180 0.240063948024 -0.168158668722 4181 -0.325713075511 0.271538064427 4182 0.325765694230 -0.271464757955 4183 0.325747114711 -0.271425000209 4184 0.240101918057 -0.168077573045 4185 0.152220777895 -0.914650223197E-01 4186 0.240079766198 -0.168164943510 4187 1.27834812509 -0.296622542354 4188 0.152218408519 -0.914196604503E-01 4189 0.655065023010E-01 -0.455075798200E-01 4190 0.240043981827 -0.168119185753 4191 0.152245936405 -0.914555677691E-01 4192 0.325838331538 -0.271521282675 4193 -0.325723178719 0.271449059559 4194 0.325742040770 -0.271582228408 4195 0.240074547190 -0.168185503797 4196 0.152201214316 -0.914717510280E-01 4197 0.654763695344E-01 -0.455059515567E-01 4198 0.152188880418 -0.915072727342E-01 4199 1.27838072968 -0.296658548280 4200 0.240079536577 -0.168164930102 4201 0.240076092423 -0.168138000999 4202 0.152236348741 -0.914528033499E-01 4203 0.325744045666 -0.271411042560 4204 -0.325820594740 0.271421640287 4205 -0.325761174851 0.271499739776 4206 0.152174372938 -0.914975726066E-01 4207 0.240058552973 -0.168196643226 4208 0.152188785437 -0.915073148952E-01 4209 0.654469049428E-01 -0.454894456184E-01 4210 0.240077433931 -0.168150755460 4211 1.27834870162 -0.296622546202 4212 0.152252506948 -0.915010294170E-01 4213 0.240053575679 -0.168168489027 4214 -0.325749123920 0.271477099383 4215 -0.325793720380 0.271532138242 4216 0.325780673536 -0.271528470057 4217 0.152191637021 -0.914821754072E-01 4218 0.240090073029 -0.168109783625 4219 0.152236608298 -0.914527997828E-01 4220 0.240054175687 -0.168168460806 4221 0.240064368585 -0.168158639248 4222 0.152246044037 -0.914555693929E-01 4223 1.27829318714 -0.296698351288 4224 0.655757318924E-01 -0.454592516647E-01 4225 0.325718115084 -0.271495807457 4226 0.325773089316 -0.271532511952 4227 -0.325782809513 0.271504419928 4228 0.240086152197 -0.168148977827 4229 0.152198382656 -0.915008191459E-01 4230 0.240075670422 -0.168138041300 4231 0.152252398414 -0.915009997038E-01 4232 0.152267418004 -0.914933284611E-01 4233 0.240043382781 -0.168119201725 4234 0.655794181024E-01 -0.454295650813E-01 4235 1.27829468712 -0.296698348240 4236 2.14003407796 -0.887279484851 4237 -0.109391029353E-04 -0.502903286437E-05 4238 0.362356136629E-05 -0.442725046778E-05 4239 0.154420991523 -0.102648132691 4240 -0.154408658005 0.102550303517 4241 -0.154494923276 0.102585586969 4242 -0.154391116150 0.102539279065 4243 0.154507934957 -0.102588254206 4244 0.154407742677 -0.102616619406 4245 -0.154402985573 0.102591082172 4246 0.154411272860 -0.102577645133 4247 -0.109392905939E-04 -0.502860360098E-05 4248 2.14003497812 -0.887274009524 4249 0.336912422309E-05 0.815884388624E-05 4250 0.154465650740 -0.102541745196 4251 -0.154460072762 0.102612087616 4252 0.154379294002 -0.102580280204 4253 0.154467250756 -0.102566553918 4254 -0.154366377059 0.102602804444 4255 -0.154466657507 0.102585148084 4256 -0.154425957381 0.102597713661 4257 0.154432547289 -0.102594734237 4258 0.362396831804E-05 -0.442740319420E-05 4259 0.336886644566E-05 0.816019460812E-05 4260 2.14003268240 -0.887279803022 4261 0.154398257928 -0.102553528216 4262 -0.154394379470 0.102613545896 4263 -0.154443651459 0.102651595359 4264 0.154439861816 -0.102612349478 4265 0.154423107180 -0.102530106692 4266 -0.154424635955 0.102549283629 4267 0.154436529165 -0.102568967409 4268 -0.154434469442 0.102589347878 4269 0.154408698996 -0.102550366721 4270 0.154460101828 -0.102612144825 4271 0.154394548982 -0.102613572636 4272 1.04838727410 -0.116684143855 4273 0.199937297020E-01 -0.261117503961E-01 4274 0.594118682781E-01 -0.424481017772E-01 4275 0.101157363089 -0.577450921410E-01 4276 0.101156043133 -0.576868989831E-01 4277 0.594145822497E-01 -0.424430064293E-01 4278 0.593907936707E-01 -0.424776815857E-01 4279 0.101189394452 -0.576733152365E-01 4280 -0.154420950660 0.102648069016 4281 -0.154465623637 0.102541681710 4282 -0.154398090939 0.102553498666 4283 0.199987291691E-01 -0.260791636133E-01 4284 1.04838620902 -0.116684156597 4285 0.101167661791 -0.577413694730E-01 4286 0.594008185098E-01 -0.424504742524E-01 4287 0.594132120124E-01 -0.424381466077E-01 4288 0.101167146817 -0.576773904584E-01 4289 0.101186875860 -0.577108623282E-01 4290 0.593747055903E-01 -0.424574317734E-01 4291 -0.154507725565 0.102588181317 4292 0.154366492186 -0.102602874377 4293 -0.154423213360 0.102530154994 4294 0.594131130465E-01 -0.424381482937E-01 4295 0.101156265500 -0.576868877936E-01 4296 1.04848586113 -0.116653326087 4297 0.101135645395 -0.577270325625E-01 4298 0.199118606415E-01 -0.261048705221E-01 4299 0.594295168734E-01 -0.423990840013E-01 4300 0.594688462386E-01 -0.424747129711E-01 4301 0.101149515829 -0.577210145974E-01 4302 -0.154407795530 0.102616592297 4303 0.154466680380 -0.102585172030 4304 0.154424430763 -0.102549196522 4305 0.101166901897 -0.576773776279E-01 4306 0.594146699488E-01 -0.424430196116E-01 4307 0.101146078848 -0.577397444854E-01 4308 1.04847472634 -0.116638705792 4309 0.594296187022E-01 -0.423990710348E-01 4310 0.199217545246E-01 -0.261727388427E-01 4311 0.101122304887 -0.576811357528E-01 4312 0.594460479396E-01 -0.424244397909E-01 4313 0.154495132564 -0.102585657708 4314 -0.154379178882 0.102580214431 4315 0.154443547130 -0.102651545207 4316 0.101167441918 -0.577413812122E-01 4317 0.594119692998E-01 -0.424481059157E-01 4318 0.199190313650E-01 -0.261662352020E-01 4319 0.594286227852E-01 -0.424522911257E-01 4320 1.04848583840 -0.116653312961 4321 0.101145849884 -0.577397396676E-01 4322 0.101148148219 -0.576977001241E-01 4323 0.594401679207E-01 -0.424185931989E-01 4324 0.154391065652 -0.102539305086 4325 -0.154467230699 0.102566522599 4326 -0.154440069369 0.102612433518 4327 0.594007317121E-01 -0.424504448452E-01 4328 0.101157607862 -0.577450814037E-01 4329 0.594285197756E-01 -0.424523142599E-01 4330 0.199023604314E-01 -0.261143156991E-01 4331 0.101135415867 -0.577270342873E-01 4332 1.04847533245 -0.116638704870 4333 0.594616525433E-01 -0.424744041781E-01 4334 0.101137754267 -0.577371905821E-01 4335 -0.154411057301 0.102577543840 4336 -0.154432413232 0.102594636309 4337 0.154434442523 -0.102589280075 4338 0.593746710497E-01 -0.424574427239E-01 4339 0.101190205747 -0.576732792146E-01 4340 0.594404083334E-01 -0.424185896504E-01 4341 0.101138348926 -0.577371579691E-01 4342 0.101149930992 -0.577209887582E-01 4343 0.594461184576E-01 -0.424244271343E-01 4344 1.04835761035 -0.116697162976 4345 0.200658154135E-01 -0.261137195295E-01 4346 0.154403201620 -0.102591181807 4347 0.154426092771 -0.102597815729 4348 -0.154436556730 0.102569034111 4349 0.101186066005 -0.577108830204E-01 4350 0.593908295091E-01 -0.424776729589E-01 4351 0.101147733155 -0.576977378817E-01 4352 0.594615815849E-01 -0.424743896401E-01 4353 0.594686058043E-01 -0.424747188120E-01 4354 0.101121710384 -0.576811584395E-01 4355 0.200456251576E-01 -0.260696500975E-01 4356 1.04835922535 -0.116697159133 4357 1.92070455705 -0.507536673810 4358 -0.919134226080E-05 -0.192433105346E-05 4359 0.510894223267E-05 -0.450301878151E-05 4360 0.108153568271 -0.569379858457E-01 4361 -0.108144963516 0.568665679026E-01 4362 -0.108207394800 0.568803241913E-01 4363 -0.108105027765 0.568519935458E-01 4364 0.108204556085 -0.568860808427E-01 4365 0.108130286548 -0.568982404177E-01 4366 -0.108130004168 0.568853342790E-01 4367 0.108135139986 -0.568752716909E-01 4368 -0.919254711586E-05 -0.192390182886E-05 4369 1.92070598442 -0.507535347927 4370 0.350509924918E-05 0.118416038869E-05 4371 0.108175320008 -0.568589598061E-01 4372 -0.108187803324 0.569043749911E-01 4373 0.108109587877 -0.568813361626E-01 4374 0.108183608542 -0.568786319813E-01 4375 -0.108098506821 0.568977686084E-01 4376 -0.108193635015 0.568902771082E-01 4377 -0.108137233757 0.568893714279E-01 4378 0.108149410982 -0.568798749427E-01 4379 0.510912799797E-05 -0.450318182271E-05 4380 0.350570349350E-05 0.118451069743E-05 4381 1.92070172979 -0.507534087029 4382 0.108118715863 -0.568605612414E-01 4383 -0.108127889560 0.569015615445E-01 4384 -0.108167275163 0.569292067982E-01 4385 0.108160113669 -0.569038453966E-01 4386 0.108137710484 -0.568405357790E-01 4387 -0.108142571116 0.568572231398E-01 4388 0.108154794385 -0.568627653593E-01 4389 -0.108148041612 0.568835516445E-01 4390 0.108144942557 -0.568665768538E-01 4391 0.108187792194 -0.569043782356E-01 4392 0.108128062031 -0.569016035447E-01 4393 1.02438036575 -0.985338243169E-01 4394 0.480661775056E-01 -0.386288532565E-01 4395 0.753362351581E-01 -0.472311939262E-01 4396 0.899813724498E-01 -0.466059101226E-01 4397 0.899716875220E-01 -0.465599673786E-01 4398 0.753341002392E-01 -0.472248205256E-01 4399 0.753250031544E-01 -0.472447510093E-01 4400 0.899985359192E-01 -0.465396909324E-01 4401 -0.108153587431 0.569379764748E-01 4402 -0.108175332742 0.568589512126E-01 4403 -0.108118544888 0.568605145741E-01 4404 0.480807874381E-01 -0.385803921956E-01 4405 1.02437928628 -0.985338624272E-01 4406 0.899856480427E-01 -0.465980671959E-01 4407 0.753246906901E-01 -0.472315325188E-01 4408 0.753381978245E-01 -0.472223075211E-01 4409 0.899861085548E-01 -0.465518552773E-01 4410 0.899907526390E-01 -0.465858526613E-01 4411 0.753096655430E-01 -0.472418413420E-01 4412 -0.108204416252 0.568860680645E-01 4413 0.108098593764 -0.568977747941E-01 4414 -0.108137798988 0.568405315152E-01 4415 0.753380860987E-01 -0.472222982365E-01 4416 0.899719284917E-01 -0.465599621140E-01 4417 1.02444307683 -0.985035885260E-01 4418 0.899652581678E-01 -0.465925301720E-01 4419 0.480258441111E-01 -0.386056066901E-01 4420 0.753384839377E-01 -0.471897771108E-01 4421 0.753895599759E-01 -0.472537038546E-01 4422 0.899610307767E-01 -0.465835880500E-01 4423 -0.108130395495 0.568982500699E-01 4424 0.108193629592 -0.568902538134E-01 4425 0.108142390977 -0.568571952716E-01 4426 0.899858534086E-01 -0.465518420287E-01 4427 0.753341951074E-01 -0.472248389275E-01 4428 0.899759341108E-01 -0.465954368482E-01 4429 1.02443504984 -0.984955650858E-01 4430 0.753386023981E-01 -0.471897786288E-01 4431 0.480218694747E-01 -0.386768993257E-01 4432 0.899416568125E-01 -0.465466921170E-01 4433 0.753760634650E-01 -0.472113601568E-01 4434 0.108207533752 -0.568803360315E-01 4435 -0.108109501439 0.568813326299E-01 4436 0.108167187597 -0.569292081211E-01 4437 0.899854084938E-01 -0.465980746437E-01 4438 0.753363481501E-01 -0.472312100247E-01 4439 0.480207524276E-01 -0.386696068975E-01 4440 0.753407422563E-01 -0.472321860433E-01 4441 1.02444305388 -0.985035893957E-01 4442 0.899756927499E-01 -0.465954350247E-01 4443 0.899623601139E-01 -0.465639028293E-01 4444 0.753703332515E-01 -0.472094031066E-01 4445 0.108104920567 -0.568519818232E-01 4446 -0.108183616393 0.568786496433E-01 4447 -0.108160294983 0.569038689587E-01 4448 0.753245964740E-01 -0.472314962852E-01 4449 0.899816275857E-01 -0.466058988274E-01 4450 0.753406229202E-01 -0.472321935061E-01 4451 0.480183836563E-01 -0.386075404587E-01 4452 0.899650168883E-01 -0.465925338339E-01 4453 1.02443566427 -0.984955493567E-01 4454 0.753820044968E-01 -0.472543889591E-01 4455 0.899479475738E-01 -0.465992283695E-01 4456 -0.108134986850 0.568752400132E-01 4457 -0.108149329141 0.568798567872E-01 4458 0.108148038309 -0.568835302624E-01 4459 0.753096248039E-01 -0.472418532142E-01 4460 0.899993922378E-01 -0.465396735992E-01 4461 0.753705968870E-01 -0.472094113167E-01 4462 0.899485755348E-01 -0.465992116048E-01 4463 0.899614740767E-01 -0.465835832863E-01 4464 0.753761434788E-01 -0.472113581724E-01 4465 1.02433718090 -0.985348426855E-01 4466 0.481487737063E-01 -0.386212077528E-01 4467 0.108130158299 -0.568853632613E-01 4468 0.108137317531 -0.568893915360E-01 4469 -0.108154797660 0.568627845670E-01 4470 0.899898979787E-01 -0.465858526136E-01 4471 0.753250445898E-01 -0.472447412377E-01 4472 0.899619172189E-01 -0.465639180637E-01 4473 0.753819240682E-01 -0.472543627149E-01 4474 0.753892969447E-01 -0.472536961750E-01 4475 0.899410286157E-01 -0.465466989090E-01 4476 0.481319376226E-01 -0.385945018206E-01 4477 1.02433881971 -0.985347900500E-01 4478 1.62704731702 -0.361501274751 4479 -0.919433278761E-05 -0.412457750299E-06 4480 0.606821936273E-05 -0.232571525549E-05 4481 0.670372400530E-01 -0.378049722523E-01 4482 -0.670139916233E-01 0.377310816884E-01 4483 -0.670677934713E-01 0.377372762023E-01 4484 -0.669701962365E-01 0.377500457748E-01 4485 0.670773728303E-01 -0.377574848592E-01 4486 0.669874730158E-01 -0.377827613172E-01 4487 -0.669931911837E-01 0.377696097456E-01 4488 0.669966559129E-01 -0.377603078835E-01 4489 -0.919538850858E-05 -0.411590098716E-06 4490 1.62705036654 -0.361500621849 4491 0.666924642479E-05 0.952270364448E-06 4492 0.670526207585E-01 -0.377313725808E-01 4493 -0.670604626318E-01 0.377579662220E-01 4494 0.669703214037E-01 -0.377704687619E-01 4495 0.670639713590E-01 -0.377404256035E-01 4496 -0.669676686343E-01 0.377859060876E-01 4497 -0.670703387404E-01 0.377404380956E-01 4498 -0.670009375302E-01 0.377818904014E-01 4499 0.669975983147E-01 -0.377649503426E-01 4500 0.606865154183E-05 -0.232616178227E-05 4501 0.666914155824E-05 0.952404133507E-06 4502 1.62704255808 -0.361499572409 4503 0.669785049384E-01 -0.377563058852E-01 4504 -0.669840970563E-01 0.377822734979E-01 4505 -0.670390975604E-01 0.377992598495E-01 4506 0.670343468568E-01 -0.377784299710E-01 4507 0.670024849287E-01 -0.377206590047E-01 4508 -0.670128006269E-01 0.377326724646E-01 4509 0.670053320529E-01 -0.377438932139E-01 4510 -0.670121910134E-01 0.377712997235E-01 4511 0.670139710742E-01 -0.377310784256E-01 4512 0.670604500152E-01 -0.377579600576E-01 4513 0.669842579091E-01 -0.377823058015E-01 4514 0.956876664499 -0.776003580486E-01 4515 0.348019553613E-01 -0.228458236765E-01 4516 0.563674711009E-01 -0.249862693810E-01 4517 0.657453973827E-01 -0.875171111527E-02 4518 0.657293711909E-01 -0.870820644508E-02 4519 0.563648791030E-01 -0.249869363561E-01 4520 0.563339089946E-01 -0.250258793285E-01 4521 0.657875489896E-01 -0.867288369726E-02 4522 -0.670372597461E-01 0.378049765213E-01 4523 -0.670526327768E-01 0.377313747275E-01 4524 -0.669783444120E-01 0.377562697226E-01 4525 0.348176576001E-01 -0.227975208612E-01 4526 0.956875525227 -0.776004085889E-01 4527 0.657544828552E-01 -0.875615845891E-02 4528 0.563524168654E-01 -0.249821243130E-01 4529 0.563670935347E-01 -0.249783951947E-01 4530 0.657512360901E-01 -0.871462114577E-02 4531 0.657795111296E-01 -0.872187288737E-02 4532 0.563059107070E-01 -0.250117323231E-01 4533 -0.670772263529E-01 0.377574940973E-01 4534 0.669677424233E-01 -0.377859021679E-01 4535 -0.670025616142E-01 0.377206565152E-01 4536 0.563669846611E-01 -0.249783872662E-01 4537 0.657296227878E-01 -0.870819740565E-02 4538 0.956968045507 -0.775393422175E-01 4539 0.657033574638E-01 -0.876155734128E-02 4540 0.347124703634E-01 -0.228422478610E-01 4541 0.563868256545E-01 -0.249309496378E-01 4542 0.564288363368E-01 -0.250177565352E-01 4543 0.657284696996E-01 -0.873973568808E-02 4544 -0.669875708580E-01 0.377827814950E-01 4545 0.670703308606E-01 -0.377404153973E-01 4546 0.670126378557E-01 -0.377326542035E-01 4547 0.657509751421E-01 -0.871461292150E-02 4548 0.563649611506E-01 -0.249869516120E-01 4549 0.657191017097E-01 -0.877029883274E-02 4550 0.956972017711 -0.775280861376E-01 4551 0.563869553771E-01 -0.249309510720E-01 4552 0.347196964236E-01 -0.229424998635E-01 4553 0.656931675109E-01 -0.869428048070E-02 4554 0.563976375587E-01 -0.249522866742E-01 4555 0.670679406551E-01 -0.377372669210E-01 4556 -0.669702457957E-01 0.377704751721E-01 4557 0.670390205440E-01 -0.377992619905E-01 4558 0.657542325786E-01 -0.875617173005E-02 4559 0.563675811979E-01 -0.249862855764E-01 4560 0.347251518033E-01 -0.229254677202E-01 4561 0.563921207700E-01 -0.249663821420E-01 4562 0.956968030196 -0.775393397940E-01 4563 0.657188546091E-01 -0.877030120123E-02 4564 0.657226823408E-01 -0.871357128841E-02 4565 0.563911561771E-01 -0.249467315052E-01 4566 0.669700999863E-01 -0.377500240124E-01 4567 -0.670639807643E-01 0.377404414165E-01 4568 -0.670345086024E-01 0.377784445734E-01 4569 0.563523351431E-01 -0.249820914741E-01 4570 0.657456580575E-01 -0.875169416256E-02 4571 0.563919904285E-01 -0.249663895876E-01 4572 0.347043832764E-01 -0.228442670926E-01 4573 0.657031107014E-01 -0.876156515880E-02 4574 0.956972660898 -0.775280639523E-01 4575 0.564225177718E-01 -0.250151357596E-01 4576 0.657189178321E-01 -0.876545711245E-02 4577 -0.669965168178E-01 0.377602939884E-01 4578 -0.669975362405E-01 0.377649347904E-01 4579 0.670122055803E-01 -0.377712820722E-01 4580 0.563058573854E-01 -0.250117478525E-01 4581 0.657884351817E-01 -0.867285082083E-02 4582 0.563914226528E-01 -0.249467449933E-01 4583 0.657195721059E-01 -0.876543141951E-02 4584 0.657289341532E-01 -0.873972503811E-02 4585 0.563977116923E-01 -0.249522867128E-01 4586 0.956809641181 -0.776115532671E-01 4587 0.349094823400E-01 -0.228355764710E-01 4588 0.669933307564E-01 -0.377696212427E-01 4589 0.670010004459E-01 -0.377819090153E-01 4590 -0.670053152251E-01 0.377439099722E-01 4591 0.657786254048E-01 -0.872188923895E-02 4592 0.563339624633E-01 -0.250258676547E-01 4593 0.657222179978E-01 -0.871359363462E-02 4594 0.564224432937E-01 -0.250151067951E-01 4595 0.564285699606E-01 -0.250177439404E-01 4596 0.656925127103E-01 -0.869429638760E-02 4597 0.348705323121E-01 -0.227860622280E-01 4598 0.956811362559 -0.776114800757E-01 4599 1.39975771218 -0.544787533089 4600 -0.101419953647E-04 0.126496293065E-05 4601 0.386212543213E-05 -0.444728573786E-05 4602 0.380056363228E-01 -0.579909177622E-01 4603 -0.379825090625E-01 0.579213516536E-01 4604 -0.380274323331E-01 0.579132633753E-01 4605 -0.379316534579E-01 0.579246387023E-01 4606 0.380316731541E-01 -0.579449198159E-01 4607 0.379609975149E-01 -0.579472381798E-01 4608 -0.379591317029E-01 0.579437362058E-01 4609 0.379609176625E-01 -0.579368650499E-01 4610 -0.101424932396E-04 0.126477548869E-05 4611 1.39976050419 -0.544788582681 4612 0.526537887701E-05 -0.312139971496E-05 4613 0.380096059358E-01 -0.579333092522E-01 4614 -0.380256506747E-01 0.579425370897E-01 4615 0.379426707136E-01 -0.579449674708E-01 4616 0.380271988166E-01 -0.579393078193E-01 4617 -0.379404477233E-01 0.579555970723E-01 4618 -0.380347404412E-01 0.579301855477E-01 4619 -0.379575581952E-01 0.579495231550E-01 4620 0.379629767383E-01 -0.579309971377E-01 4621 0.386138185399E-05 -0.444867998181E-05 4622 0.526541648222E-05 -0.312084090301E-05 4623 1.39975358950 -0.544784264834 4624 0.379388635989E-01 -0.579330693712E-01 4625 -0.379524787612E-01 0.579483002905E-01 4626 -0.380029492021E-01 0.579768542084E-01 4627 0.379984262374E-01 -0.579622843385E-01 4628 0.379681699250E-01 -0.579127211223E-01 4629 -0.379809574521E-01 0.579213070607E-01 4630 0.379723794180E-01 -0.579127085024E-01 4631 -0.379671385747E-01 0.579380474942E-01 4632 0.379824694076E-01 -0.579213556301E-01 4633 0.380256349922E-01 -0.579425337674E-01 4634 0.379526401059E-01 -0.579483378527E-01 4635 0.909287094347 -0.716812147578E-01 4636 0.176819636620E-01 -0.579188344370E-02 4637 0.282068358986E-01 -0.169315635673E-01 4638 0.247219194207E-01 -0.838456341950E-02 4639 0.247027525410E-01 -0.834630092859E-02 4640 0.282048962302E-01 -0.169304515981E-01 4641 0.281726235074E-01 -0.169733736826E-01 4642 0.247657228903E-01 -0.830679636377E-02 4643 -0.380056750803E-01 0.579909140582E-01 4644 -0.380096232705E-01 0.579333089536E-01 4645 -0.379387038174E-01 0.579330298779E-01 4646 0.177015717040E-01 -0.573607755782E-02 4647 0.909285908311 -0.716812529660E-01 4648 0.247311795689E-01 -0.838939967686E-02 4649 0.281925776940E-01 -0.169212331292E-01 4650 0.282082246812E-01 -0.169222221898E-01 4651 0.247263357874E-01 -0.835780999133E-02 4652 0.247592539525E-01 -0.835544382382E-02 4653 0.281416527181E-01 -0.169594917729E-01 4654 -0.380315501002E-01 0.579449082379E-01 4655 0.379405041480E-01 -0.579556083955E-01 4656 -0.379682399555E-01 0.579127305790E-01 4657 0.282081156022E-01 -0.169222172792E-01 4658 0.247030122145E-01 -0.834629031027E-02 4659 0.909377462375 -0.716130169230E-01 4660 0.246759121386E-01 -0.840241058485E-02 4661 0.175893583170E-01 -0.579500455311E-02 4662 0.282271727368E-01 -0.168773515699E-01 4663 0.282704637570E-01 -0.169656196659E-01 4664 0.247044295759E-01 -0.837103916038E-02 4665 -0.379611076897E-01 0.579472520874E-01 4666 0.380347246580E-01 -0.579301754059E-01 4667 0.379808066997E-01 -0.579212715572E-01 4668 0.247260712348E-01 -0.835780076753E-02 4669 0.282049712487E-01 -0.169304635702E-01 4670 0.246972142846E-01 -0.840726818828E-02 4671 0.909384625028 -0.716017312391E-01 4672 0.282273110134E-01 -0.168773483652E-01 4673 0.176029264832E-01 -0.589876694539E-02 4674 0.246677170722E-01 -0.832836780491E-02 4675 0.282351260089E-01 -0.168991708953E-01 4676 0.380275552217E-01 -0.579132745418E-01 4677 -0.379426141842E-01 0.579449602467E-01 4678 0.380028796743E-01 -0.579768454128E-01 4679 0.247309209779E-01 -0.838941512928E-02 4680 0.282069462167E-01 -0.169315777876E-01 4681 0.176083801410E-01 -0.588162412117E-02 4682 0.282329725076E-01 -0.169068118125E-01 4683 0.909377447171 -0.716130157118E-01 4684 0.246969615751E-01 -0.840726883722E-02 4685 0.246961341752E-01 -0.834621744333E-02 4686 0.282264697937E-01 -0.168934628230E-01 4687 0.379315451052E-01 -0.579246221046E-01 4688 -0.380272159515E-01 0.579393124074E-01 4689 -0.379985764398E-01 0.579623182335E-01 4690 0.281925028869E-01 -0.169212032039E-01 4691 0.247221836046E-01 -0.838454681803E-02 4692 0.282328337326E-01 -0.169068237869E-01 4693 0.175821185181E-01 -0.579235176097E-02 4694 0.246756604741E-01 -0.840241639753E-02 4695 0.909385292524 -0.716017146972E-01 4696 0.282653623161E-01 -0.169624587147E-01 4697 0.246945687447E-01 -0.839828322107E-02 4698 -0.379608028475E-01 0.579368321984E-01 4699 -0.379629197382E-01 0.579309751910E-01 4700 0.379671504376E-01 -0.579380324223E-01 4701 0.281415945471E-01 -0.169595079291E-01 4702 0.247666337306E-01 -0.830676384555E-02 4703 0.282267493764E-01 -0.168934662130E-01 4704 0.246952443089E-01 -0.839825575888E-02 4705 0.247049107506E-01 -0.837102727567E-02 4706 0.282352014726E-01 -0.168991640296E-01 4707 0.909211555871 -0.716882748935E-01 4708 0.177976063612E-01 -0.578636924836E-02 4709 0.379592471055E-01 -0.579437661179E-01 4710 0.379576161916E-01 -0.579495481564E-01 4711 -0.379723669350E-01 0.579127250658E-01 4712 0.247583435586E-01 -0.835546012075E-02 4713 0.281726812030E-01 -0.169733623336E-01 4714 0.246956539178E-01 -0.834624194429E-02 4715 0.282652860554E-01 -0.169624352790E-01 4716 0.282701840757E-01 -0.169656175292E-01 4717 0.246670411336E-01 -0.832838556280E-02 4718 0.177553798390E-01 -0.573352137905E-02 4719 0.909213342001 -0.716882211644E-01 4720 1.64816006982 -0.439209318274 4721 -0.947929174895E-05 -0.175243024958E-05 4722 0.702476304942E-05 -0.185568064011E-05 4723 0.603253543364E-01 -0.461554352996E-01 4724 -0.602785494910E-01 0.461068813975E-01 4725 -0.603149675380E-01 0.460833885835E-01 4726 -0.602363803441E-01 0.461309110797E-01 4727 0.603335208794E-01 -0.460999642013E-01 4728 0.602636415440E-01 -0.461409234938E-01 4729 -0.602662921459E-01 0.461369381681E-01 4730 0.602688127631E-01 -0.461288391990E-01 4731 -0.947964198931E-05 -0.175226180090E-05 4732 1.64816433676 -0.439207746294 4733 0.913532333220E-05 0.404077547973E-05 4734 0.603134740482E-01 -0.460840223047E-01 4735 -0.603273011319E-01 0.460932067686E-01 4736 0.602499720260E-01 -0.461510096462E-01 4737 0.603207647236E-01 -0.460822798759E-01 4738 -0.602495799656E-01 0.461613517391E-01 4739 -0.603314202748E-01 0.460766625262E-01 4740 -0.602730912856E-01 0.461547680397E-01 4741 0.602626708233E-01 -0.461393844738E-01 4742 0.702441186204E-05 -0.185568489058E-05 4743 0.913576990429E-05 0.404089853015E-05 4744 1.64815485542 -0.439207749925 4745 0.602509584689E-01 -0.461329475059E-01 4746 -0.602621447551E-01 0.461440962709E-01 4747 -0.603236163118E-01 0.461447102333E-01 4748 0.603128246059E-01 -0.461299082913E-01 4749 0.602550938025E-01 -0.460968604794E-01 4750 -0.602716658481E-01 0.460991447291E-01 4751 0.602641538661E-01 -0.461038537193E-01 4752 -0.602795967313E-01 0.461295195729E-01 4753 0.602785184726E-01 -0.461068913548E-01 4754 0.603272747319E-01 -0.460932090891E-01 4755 0.602623268849E-01 -0.461441479695E-01 4756 0.907315595836 -0.821869810261E-01 4757 0.694757208285E-02 -0.237499656914E-01 4758 0.249511685853E-01 -0.308334067513E-01 4759 0.179195231704E-01 -0.209307386543E-01 4760 0.178947010986E-01 -0.209044551700E-01 4761 0.249428498349E-01 -0.308386910509E-01 4762 0.249269528040E-01 -0.308511731036E-01 4763 0.179363765208E-01 -0.208692561944E-01 4764 -0.603253852453E-01 0.461554272154E-01 4765 -0.603135023088E-01 0.460840152868E-01 4766 -0.602507764277E-01 0.461328917976E-01 4767 0.695391523069E-02 -0.236898351488E-01 4768 0.907314362995 -0.821870243878E-01 4769 0.179145568745E-01 -0.209379056585E-01 4770 0.249344303242E-01 -0.308351289003E-01 4771 0.249466821581E-01 -0.308293481189E-01 4772 0.179130378708E-01 -0.209074948595E-01 4773 0.179289940262E-01 -0.209276425580E-01 4774 0.249049552603E-01 -0.308571593791E-01 4775 -0.603333789945E-01 0.460999680386E-01 4776 0.602496534686E-01 -0.461613510677E-01 4777 -0.602551739420E-01 0.460968563094E-01 4778 0.249465652720E-01 -0.308293371181E-01 4779 0.178949605775E-01 -0.209044461931E-01 4780 0.907364643419 -0.821421734877E-01 4781 0.178849286526E-01 -0.209428128762E-01 4782 0.688986135746E-02 -0.237178741098E-01 4783 0.249471156889E-01 -0.307968013817E-01 4784 0.250028257146E-01 -0.308548042389E-01 4785 0.178807264158E-01 -0.209293857612E-01 4786 -0.602637598458E-01 0.461409411290E-01 4787 0.603314042068E-01 -0.460766285209E-01 4788 0.602714941174E-01 -0.460991160982E-01 4789 0.179127636213E-01 -0.209074829383E-01 4790 0.249429323622E-01 -0.308387132108E-01 4791 0.178959026833E-01 -0.209398073340E-01 4792 0.907371103385 -0.821342033574E-01 4793 0.249472580033E-01 -0.307968039602E-01 4794 0.689321239032E-02 -0.238208435977E-01 4795 0.178555751988E-01 -0.208905894102E-01 4796 0.249856201263E-01 -0.308056795334E-01 4797 0.603151098316E-01 -0.460833843916E-01 4798 -0.602498991222E-01 0.461510144254E-01 4799 0.603235371167E-01 -0.461447144265E-01 4800 0.179142985453E-01 -0.209379199468E-01 4801 0.249512865780E-01 -0.308334279594E-01 4802 0.689420075109E-02 -0.237929285442E-01 4803 0.249605256056E-01 -0.308208964969E-01 4804 0.907364627284 -0.821421727012E-01 4805 0.178956410363E-01 -0.209398092850E-01 4806 0.178807021319E-01 -0.209077016442E-01 4807 0.249782970910E-01 -0.307985983539E-01 4808 0.602362630507E-01 -0.461308915299E-01 4809 -0.603207825130E-01 0.460823079965E-01 4810 -0.603129967071E-01 0.461299346261E-01 4811 0.249343473808E-01 -0.308350878985E-01 4812 0.179197966979E-01 -0.209307236287E-01 4813 0.249603827411E-01 -0.308209029332E-01 4814 0.688863113100E-02 -0.237144106316E-01 4815 0.178846672354E-01 -0.209428194313E-01 4816 0.907371796461 -0.821341844318E-01 4817 0.249999823363E-01 -0.308541200037E-01 4818 0.178746310059E-01 -0.209478633106E-01 4819 -0.602686668538E-01 0.461288055484E-01 4820 -0.602626058759E-01 0.461393529935E-01 4821 0.602796112163E-01 -0.461294846730E-01 4822 0.249048999741E-01 -0.308571769947E-01 4823 0.179373113096E-01 -0.208692262752E-01 4824 0.249785849669E-01 -0.307986148443E-01 4825 0.178753219779E-01 -0.209478381045E-01 4826 0.178812185029E-01 -0.209293750498E-01 4827 0.249857008707E-01 -0.308056810067E-01 4828 0.907233947878 -0.821914269202E-01 4829 0.704592267173E-02 -0.237194182180E-01 4830 0.602664379694E-01 -0.461369712809E-01 4831 0.602731583730E-01 -0.461548014395E-01 4832 -0.602641389954E-01 0.461038889293E-01 4833 0.179280596687E-01 -0.209276557844E-01 4834 0.249270084713E-01 -0.308511616490E-01 4835 0.178802108590E-01 -0.209077242506E-01 4836 0.249999016143E-01 -0.308540872156E-01 4837 0.250025381603E-01 -0.308547894164E-01 4838 0.178548837280E-01 -0.208906053357E-01 4839 0.701822672712E-02 -0.236905111512E-01 4840 0.907235805800 -0.821913664074E-01 4841 1.43344954459 -0.223880779549 4842 -0.804759320684E-05 -0.610883590494E-07 4843 0.492079300260E-05 -0.104270953177E-05 4844 0.326897520137E-01 -0.270492059822E-01 4845 -0.326700213588E-01 0.270066257713E-01 4846 -0.326935222105E-01 0.269992992717E-01 4847 -0.326228598425E-01 0.270276143689E-01 4848 0.326983317022E-01 -0.270180315930E-01 4849 0.326359188366E-01 -0.270341994762E-01 4850 -0.326466122226E-01 0.270312582591E-01 4851 0.326472960329E-01 -0.270238806193E-01 4852 -0.804771974217E-05 -0.610703495267E-07 4853 1.43345206383 -0.223880415888 4854 0.443705372750E-05 0.112277738322E-05 4855 0.326842141775E-01 -0.270066426170E-01 4856 -0.326932978291E-01 0.270093744678E-01 4857 0.326338076130E-01 -0.270377590961E-01 4858 0.326944706321E-01 -0.270076650904E-01 4859 -0.326327095734E-01 0.270446897625E-01 4860 -0.327016690879E-01 0.269972062215E-01 4861 -0.326495363013E-01 0.270415483162E-01 4862 0.326452007651E-01 -0.270278168376E-01 4863 0.492082186336E-05 -0.104284997301E-05 4864 0.443717277212E-05 0.112301461117E-05 4865 1.43344516057 -0.223879714795 4866 0.326330641661E-01 -0.270295948717E-01 4867 -0.326394805993E-01 0.270371243935E-01 4868 -0.326800306807E-01 0.270383564516E-01 4869 0.326761536013E-01 -0.270309356488E-01 4870 0.326464086951E-01 -0.270025222946E-01 4871 -0.326551176829E-01 0.270054622130E-01 4872 0.326488959304E-01 -0.270122037018E-01 4873 -0.326544310855E-01 0.270311477519E-01 4874 0.326699882153E-01 -0.270066328795E-01 4875 0.326932735486E-01 -0.270093766840E-01 4876 0.326396484932E-01 -0.270371480142E-01 4877 0.873576432951 -0.835517322651E-01 4878 -0.338107238613E-02 -0.215776517186E-01 4879 0.152349551509E-01 -0.282141424491E-01 4880 -0.111277576556E-01 -0.143951789500E-02 4881 -0.111518153755E-01 -0.141291807783E-02 4882 0.152291887549E-01 -0.282177045052E-01 4883 0.152228370489E-01 -0.282442841648E-01 4884 -0.111119200709E-01 -0.135392913399E-02 4885 -0.326897852658E-01 0.270491996632E-01 4886 -0.326842386911E-01 0.270066351845E-01 4887 -0.326328964347E-01 0.270295699362E-01 4888 -0.336233283434E-02 -0.215101158715E-01 4889 0.873575155651 -0.835517951210E-01 4890 -0.111239252645E-01 -0.144314340599E-02 4891 0.152185891626E-01 -0.282119570796E-01 4892 0.152338593308E-01 -0.282131990589E-01 4893 -0.111195441393E-01 -0.141789731054E-02 4894 -0.111214254045E-01 -0.142367054082E-02 4895 0.151909753175E-01 -0.282625925548E-01 4896 -0.326981917519E-01 0.270180290858E-01 4897 0.326327805567E-01 -0.270446894576E-01 4898 -0.326464874832E-01 0.270025181593E-01 4899 0.152337393526E-01 -0.282131896965E-01 4900 -0.111515503084E-01 -0.141290380577E-02 4901 0.873605703092 -0.834834307804E-01 4902 -0.111547187660E-01 -0.146806753540E-02 4903 -0.342808050865E-02 -0.215728814793E-01 4904 0.152274675905E-01 -0.281645501234E-01 4905 0.152967332650E-01 -0.282404937012E-01 4906 -0.111619270849E-01 -0.143358869754E-02 4907 -0.326360324252E-01 0.270342030185E-01 4908 0.327016595706E-01 -0.269971914847E-01 4909 0.326549525115E-01 -0.270054463627E-01 4910 -0.111198223004E-01 -0.141789151456E-02 4911 0.152292699644E-01 -0.282177248178E-01 4912 -0.111361260227E-01 -0.146253066360E-02 4913 0.873614936279 -0.834716975644E-01 4914 0.152276200345E-01 -0.281645529904E-01 4915 -0.340995472552E-02 -0.216818920551E-01 4916 -0.111926382539E-01 -0.139895406152E-02 4917 0.152666236110E-01 -0.281902475855E-01 4918 0.326936623730E-01 -0.269993003114E-01 4919 -0.326337372631E-01 0.270377623069E-01 4920 0.326799526121E-01 -0.270383614202E-01 4921 -0.111241894531E-01 -0.144316372984E-02 4922 0.152350766230E-01 -0.282141626164E-01 4923 -0.341232092599E-02 -0.216486529051E-01 4924 0.152324120279E-01 -0.281865771487E-01 4925 0.873605688332 -0.834834303723E-01 4926 -0.111363920892E-01 -0.146253853787E-02 4927 -0.111692598235E-01 -0.141361527341E-02 4928 0.152584170808E-01 -0.281853258766E-01 4929 0.326227466629E-01 -0.270276088652E-01 4930 -0.326944810922E-01 0.270076735520E-01 4931 -0.326763188249E-01 0.270309506476E-01 4932 0.152185075998E-01 -0.282119181780E-01 4933 -0.111274805118E-01 -0.143949631482E-02 4934 0.152322593752E-01 -0.281865832131E-01 4935 -0.342676172500E-02 -0.215603788202E-01 4936 -0.111549848939E-01 -0.146808014344E-02 4937 0.873615651946 -0.834716684536E-01 4938 0.152931148312E-01 -0.282349955196E-01 4939 -0.111680885735E-01 -0.145402900613E-02 4940 -0.326471627426E-01 0.270238635676E-01 4941 -0.326451422229E-01 0.270278026313E-01 4942 0.326544505268E-01 -0.270311318361E-01 4943 0.151909124795E-01 -0.282626090183E-01 4944 -0.111109701092E-01 -0.135387948608E-02 4945 0.152587210693E-01 -0.281853436362E-01 4946 -0.111673840009E-01 -0.145399006277E-02 4947 -0.111614248745E-01 -0.143357038367E-02 4948 0.152667056828E-01 -0.281902474708E-01 4949 0.873485963729 -0.835642898561E-01 4950 -0.326816879292E-02 -0.215364519755E-01 4951 0.326467459173E-01 -0.270312747148E-01 4952 0.326495957083E-01 -0.270415641992E-01 4953 -0.326488762270E-01 0.270122203905E-01 4954 -0.111223751070E-01 -0.142370443947E-02 4955 0.152229000252E-01 -0.282442747057E-01 4956 -0.111697612251E-01 -0.141364645530E-02 4957 0.152930315960E-01 -0.282349638548E-01 4958 0.152964297339E-01 -0.282404783028E-01 4959 -0.111933431266E-01 -0.139898405388E-02 4960 -0.331345857347E-02 -0.215206695650E-01 4961 0.873487885432 -0.835641995702E-01 4962 1.36137677157 -0.432767653123 4963 -0.922237187452E-05 0.503138089366E-06 4964 0.368808155080E-05 -0.269002145778E-05 4965 0.236325954082E-01 -0.526588064834E-01 4966 -0.236051547742E-01 0.526195418301E-01 4967 -0.236407125802E-01 0.525936888453E-01 4968 -0.235599070291E-01 0.526166315064E-01 4969 0.236350191320E-01 -0.526087676580E-01 4970 0.235963443884E-01 -0.526295270302E-01 4971 -0.235953992017E-01 0.526268965986E-01 4972 0.235934552162E-01 -0.526213092037E-01 4973 -0.922243500307E-05 0.503072956052E-06 4974 1.36137947323 -0.432768384928 4975 0.467323874071E-05 -0.119074453013E-05 4976 0.236201264089E-01 -0.526109997404E-01 4977 -0.236478956825E-01 0.526187251852E-01 4978 0.235806153727E-01 -0.526408094301E-01 4979 0.236338071766E-01 -0.526118824442E-01 4980 -0.235787480187E-01 0.526412928384E-01 4981 -0.236474373146E-01 0.526072103365E-01 4982 -0.235877112738E-01 0.526270211439E-01 4983 0.235956864648E-01 -0.526181259959E-01 4984 0.368850205622E-05 -0.268933335316E-05 4985 0.467336819425E-05 -0.119074121522E-05 4986 1.36137325709 -0.432765806471 4987 0.235729388278E-01 -0.526219335322E-01 4988 -0.235939847763E-01 0.526330326703E-01 4989 -0.236345313306E-01 0.526474405653E-01 4990 0.236275784347E-01 -0.526388987377E-01 4991 0.235851489968E-01 -0.526017285097E-01 4992 -0.235994875629E-01 0.526069042847E-01 4993 0.236019498984E-01 -0.525964788245E-01 4994 -0.235956716423E-01 0.526146056730E-01 4995 0.236051171544E-01 -0.526195434384E-01 4996 0.236478724132E-01 -0.526187257951E-01 4997 0.235941544104E-01 -0.526330748997E-01 4998 0.845269197673 -0.911703405720E-01 4999 -0.160759939540E-01 -0.168848865051E-01 5000 0.352287371795E-02 -0.207195967608E-01 5001 -0.334692453577E-01 -0.117034844217E-01 5002 -0.335024053999E-01 -0.116782594479E-01 5003 0.351927265786E-02 -0.207236607189E-01 5004 0.350507020706E-02 -0.207484611946E-01 5005 -0.334580433710E-01 -0.116269505189E-01 5006 -0.236326321705E-01 0.526588062515E-01 5007 -0.236201497080E-01 0.526109941261E-01 5008 -0.235727704725E-01 0.526218893568E-01 5009 -0.160518842186E-01 -0.168202069059E-01 5010 0.845267864193 -0.911703954526E-01 5011 -0.334698585722E-01 -0.117100064282E-01 5012 0.350943605384E-02 -0.207170469875E-01 5013 0.352856287848E-02 -0.207220942186E-01 5014 -0.334707618610E-01 -0.116860738525E-01 5015 -0.334612501997E-01 -0.116968141102E-01 5016 0.347940692191E-02 -0.207643825652E-01 5017 -0.236348774814E-01 0.526087708563E-01 5018 0.235788138861E-01 -0.526412980441E-01 5019 -0.235852259010E-01 0.526017342417E-01 5020 0.352844262899E-02 -0.207220842529E-01 5021 -0.335021339492E-01 -0.116782482679E-01 5022 0.845304408405 -0.911094235290E-01 5023 -0.335126797693E-01 -0.117307032612E-01 5024 -0.161318351490E-01 -0.168854355348E-01 5025 0.352006057262E-02 -0.206789095622E-01 5026 0.358980803394E-02 -0.207530708778E-01 5027 -0.335096715537E-01 -0.117014893598E-01 5028 -0.235964578894E-01 0.526295473934E-01 5029 0.236474277909E-01 -0.526071819078E-01 5030 0.235993201841E-01 -0.526068751790E-01 5031 -0.334710462791E-01 -0.116860631456E-01 5032 0.351934992609E-02 -0.207236861213E-01 5033 -0.334862268148E-01 -0.117275132587E-01 5034 0.845317818965 -0.910971098564E-01 5035 0.352021986143E-02 -0.206789095045E-01 5036 -0.161098187730E-01 -0.169934627099E-01 5037 -0.335405244596E-01 -0.116628874511E-01 5038 0.355630364472E-02 -0.206968091437E-01 5039 0.236408531632E-01 -0.525936848129E-01 5040 -0.235805492419E-01 0.526408079775E-01 5041 0.236344559632E-01 -0.526474363849E-01 5042 -0.334701286291E-01 -0.117100242659E-01 5043 0.352299605519E-02 -0.207196184294E-01 5044 -0.161207678497E-01 -0.169597687959E-01 5045 0.353042198818E-02 -0.206999463406E-01 5046 0.845304392568 -0.911094187081E-01 5047 -0.334864997670E-01 -0.117275172134E-01 5048 -0.335197817982E-01 -0.116783396511E-01 5049 0.354526620746E-02 -0.206878397456E-01 5050 0.235597930609E-01 -0.526166103462E-01 5051 -0.236338176434E-01 0.526119051770E-01 5052 -0.236277461303E-01 0.526389245885E-01 5053 0.350935901036E-02 -0.207170025285E-01 5054 -0.334689616780E-01 -0.117034669748E-01 5055 0.353026173832E-02 -0.206999552417E-01 5056 -0.161364811809E-01 -0.168635859794E-01 5057 -0.335129527911E-01 -0.117307126822E-01 5058 0.845318565793 -0.910970881158E-01 5059 0.358285335503E-02 -0.207465141088E-01 5060 -0.335170348325E-01 -0.117225892381E-01 5061 -0.235933219035E-01 0.526212754777E-01 5062 -0.235956312752E-01 0.526180942212E-01 5063 0.235956939007E-01 -0.526145839859E-01 5064 0.347933825762E-02 -0.207644066734E-01 5065 -0.334570648514E-01 -0.116269152577E-01 5066 0.354557945467E-02 -0.206878522632E-01 5067 -0.335163076242E-01 -0.117225640500E-01 5068 -0.335091503202E-01 -0.117014793963E-01 5069 0.355638509048E-02 -0.206968099583E-01 5070 0.845173144998 -0.911784953191E-01 5071 -0.159674786624E-01 -0.168623266288E-01 5072 0.235955332500E-01 -0.526269298387E-01 5073 0.235877669226E-01 -0.526270563549E-01 5074 -0.236019263578E-01 0.525965006566E-01 5075 -0.334622269224E-01 -0.116968331795E-01 5076 0.350513948479E-02 -0.207484450464E-01 5077 -0.335203024584E-01 -0.116783626771E-01 5078 0.358277125628E-02 -0.207464808476E-01 5079 0.358949566859E-02 -0.207530603407E-01 5080 -0.335412509497E-01 -0.116629032659E-01 5081 -0.160032968409E-01 -0.168395089263E-01 5082 0.845175153112 -0.911784255412E-01 5083 1.38344711335 -0.237643706988 5084 -0.819668407567E-05 0.304291229402E-07 5085 0.514682962547E-05 -0.157421717895E-05 5086 0.278423573688E-01 -0.349114135067E-01 5087 -0.278268723292E-01 0.348643564740E-01 5088 -0.278460580653E-01 0.348485357338E-01 5089 -0.277612636772E-01 0.348901820932E-01 5090 0.278435252247E-01 -0.348801127060E-01 5091 0.277793997779E-01 -0.348802026130E-01 5092 -0.277901289908E-01 0.348857874486E-01 5093 0.277894622814E-01 -0.348756647910E-01 5094 -0.819673850116E-05 0.303274723569E-07 5095 1.38345035790 -0.237643790169 5096 0.571639014003E-05 0.821617227808E-07 5097 0.278438122177E-01 -0.348726087674E-01 5098 -0.278590793703E-01 0.348604234384E-01 5099 0.277796380951E-01 -0.348921148495E-01 5100 0.278537145812E-01 -0.348683569471E-01 5101 -0.277729581938E-01 0.348992861386E-01 5102 -0.278647883180E-01 0.348527145298E-01 5103 -0.277799770494E-01 0.349007449494E-01 5104 0.277814140231E-01 -0.348757638092E-01 5105 0.514698461503E-05 -0.157415108906E-05 5106 0.571650057608E-05 0.823150670294E-07 5107 1.38344286489 -0.237642276315 5108 0.277713277306E-01 -0.348860219457E-01 5109 -0.277817876680E-01 0.348822155153E-01 5110 -0.278349560615E-01 0.348995505631E-01 5111 0.278333955245E-01 -0.348930131808E-01 5112 0.277958485743E-01 -0.348579656043E-01 5113 -0.278062319659E-01 0.348608430874E-01 5114 0.277898209362E-01 -0.348541857905E-01 5115 -0.277898263114E-01 0.348871007328E-01 5116 0.278268279018E-01 -0.348643667139E-01 5117 0.278590422312E-01 -0.348604232581E-01 5118 0.277819793257E-01 -0.348822357907E-01 5119 0.796608240496 -0.108681049406 5120 -0.434333974713E-01 -0.356011823452E-01 5121 -0.186914974848E-01 -0.357936382863E-01 5122 -0.538391468898E-01 -0.278965208768E-01 5123 -0.538652810099E-01 -0.278820016861E-01 5124 -0.186985858844E-01 -0.358022891932E-01 5125 -0.187390093697E-01 -0.358103824856E-01 5126 -0.538080024698E-01 -0.278477054521E-01 5127 -0.278424013806E-01 0.349114051850E-01 5128 -0.278438493341E-01 0.348726041398E-01 5129 -0.277711371956E-01 0.348859995597E-01 5130 -0.434195453047E-01 -0.355309301762E-01 5131 0.796606824506 -0.108681120139 5132 -0.538462155446E-01 -0.279222705860E-01 5133 -0.187054913116E-01 -0.357891406347E-01 5134 -0.186860526073E-01 -0.357930673072E-01 5135 -0.538359197664E-01 -0.278984432077E-01 5136 -0.538044618115E-01 -0.279211688743E-01 5137 -0.187494944201E-01 -0.358159540376E-01 5138 -0.278433900093E-01 0.348801039103E-01 5139 0.277730236920E-01 -0.348992919450E-01 5140 -0.277959240896E-01 0.348579671485E-01 5141 -0.186861810528E-01 -0.357930564977E-01 5142 -0.538650040921E-01 -0.278819965161E-01 5143 0.796665810828 -0.108654541831 5144 -0.538931212566E-01 -0.279254199938E-01 5145 -0.435134409686E-01 -0.355571609005E-01 5146 -0.186744416938E-01 -0.357704821013E-01 5147 -0.186311248895E-01 -0.358320665793E-01 5148 -0.538875755476E-01 -0.279176600016E-01 5149 -0.277795255515E-01 0.348802063187E-01 5150 0.278647619291E-01 -0.348527040797E-01 5151 0.278060686131E-01 -0.348608238414E-01 5152 -0.538362141832E-01 -0.278984297754E-01 5153 -0.186985063333E-01 -0.358023113619E-01 5154 -0.538777648620E-01 -0.279158437935E-01 5155 0.796685988537 -0.108642757215 5156 -0.186742677988E-01 -0.357704829457E-01 5157 -0.435016293266E-01 -0.356798142284E-01 5158 -0.539106622502E-01 -0.278676574185E-01 5159 -0.186450978408E-01 -0.357612546433E-01 5160 0.278461937891E-01 -0.348485445393E-01 5161 -0.277795731799E-01 0.348921124002E-01 5162 0.278348817311E-01 -0.348995494490E-01 5163 -0.538464908643E-01 -0.279222833949E-01 5164 -0.186913670037E-01 -0.357936611698E-01 5165 -0.435120485280E-01 -0.356473116782E-01 5166 -0.186689083431E-01 -0.357842691473E-01 5167 0.796665798645 -0.108654543326 5168 -0.538780464035E-01 -0.279158457000E-01 5169 -0.538908884966E-01 -0.278907304209E-01 5170 -0.186587437671E-01 -0.357515330139E-01 5171 0.277611377064E-01 -0.348901778652E-01 5172 -0.278537423616E-01 0.348683619065E-01 5173 -0.278335593556E-01 0.348930310444E-01 5174 -0.187055713637E-01 -0.357890976475E-01 5175 -0.538388539330E-01 -0.278965048029E-01 5176 -0.186690824594E-01 -0.357842777476E-01 5177 -0.435262477283E-01 -0.355323422785E-01 5178 -0.538934032604E-01 -0.279254271243E-01 5179 0.796686777231 -0.108642724865 5180 -0.186335109713E-01 -0.358233608478E-01 5181 -0.538983569189E-01 -0.279386184331E-01 5182 -0.277893198555E-01 0.348756459332E-01 5183 -0.277813551192E-01 0.348757505826E-01 5184 0.277898563694E-01 -0.348870840483E-01 5185 -0.187495606077E-01 -0.358159754559E-01 5186 -0.538069853417E-01 -0.278476709455E-01 5187 -0.186584164302E-01 -0.357515474101E-01 5188 -0.538975975056E-01 -0.279385869011E-01 5189 -0.538870311738E-01 -0.279176453320E-01 5190 -0.186450103281E-01 -0.357612558084E-01 5191 0.796485145889 -0.108695581702 5192 -0.433162046942E-01 -0.355841257469E-01 5193 0.277902723486E-01 -0.348858056336E-01 5194 0.277800359675E-01 -0.349007597398E-01 5195 -0.277897909964E-01 0.348542036908E-01 5196 -0.538054777802E-01 -0.279211868088E-01 5197 -0.187389417693E-01 -0.358103703661E-01 5198 -0.538914319397E-01 -0.278907592276E-01 5199 -0.186335991255E-01 -0.358233261250E-01 5200 -0.186314513259E-01 -0.358320549392E-01 5201 -0.539114199555E-01 -0.278676795534E-01 5202 -0.433338722280E-01 -0.355372691433E-01 5203 0.796487271655 -0.108695477491 5204 1.28947732078 -0.315378154759 5205 -0.867665386318E-05 0.230737535731E-06 5206 0.587885940042E-05 -0.175558676707E-05 5207 0.196824516835E-01 -0.410637973937E-01 5208 -0.196374861632E-01 0.410048649672E-01 5209 -0.196574411404E-01 0.409701862046E-01 5210 -0.195733217746E-01 0.410614190681E-01 5211 0.196719783764E-01 -0.410197473427E-01 5212 0.195820049646E-01 -0.410470487532E-01 5213 -0.196061364049E-01 0.410497953632E-01 5214 0.195928845788E-01 -0.410459498221E-01 5215 -0.867666941162E-05 0.230814414134E-06 5216 1.28948124781 -0.315378181558 5217 0.776661975637E-05 0.231109470964E-06 5218 0.196689929887E-01 -0.410048986839E-01 5219 -0.196759681305E-01 0.409823184073E-01 5220 0.195857498691E-01 -0.410638299105E-01 5221 0.196864823153E-01 -0.409933340938E-01 5222 -0.195878452114E-01 0.410768128412E-01 5223 -0.196897224487E-01 0.409711337948E-01 5224 -0.195950694792E-01 0.410799662609E-01 5225 0.195791567497E-01 -0.410430327897E-01 5226 0.587890925051E-05 -0.175583461207E-05 5227 0.776680569287E-05 0.231336529285E-06 5228 1.28947227581 -0.315376452189 5229 0.195813510588E-01 -0.410618089900E-01 5230 -0.195856860035E-01 0.410539116448E-01 5231 -0.196652502898E-01 0.410460025843E-01 5232 0.196614187514E-01 -0.410363768425E-01 5233 0.195973527121E-01 -0.410088692850E-01 5234 -0.196116011571E-01 0.410105366304E-01 5235 0.195886464549E-01 -0.410110709803E-01 5236 -0.196064830297E-01 0.410530337307E-01 5237 0.196374504549E-01 -0.410048757931E-01 5238 0.196759385878E-01 -0.409823303488E-01 5239 0.195858546862E-01 -0.410539264749E-01 5240 0.779082457684 -0.191054095898 5241 -0.453163946108E-01 -0.732607210850E-01 5242 -0.319724475027E-01 -0.770951491683E-01 5243 -0.699318160879E-01 -0.603408737589E-01 5244 -0.699648007963E-01 -0.603246355939E-01 5245 -0.319742215699E-01 -0.771033260280E-01 5246 -0.319886079158E-01 -0.771503728680E-01 5247 -0.699106515468E-01 -0.602295846037E-01 5248 -0.196824885507E-01 0.410637881151E-01 5249 -0.196690205754E-01 0.410048825372E-01 5250 -0.195811835460E-01 0.410617912987E-01 5251 -0.452910787323E-01 -0.731691595215E-01 5252 0.779080998252 -0.191054217256 5253 -0.699193452196E-01 -0.603578033814E-01 5254 -0.319928456768E-01 -0.770892878008E-01 5255 -0.319627009691E-01 -0.770975450674E-01 5256 -0.699076081420E-01 -0.603344480196E-01 5257 -0.699090467161E-01 -0.603243476725E-01 5258 -0.320270266564E-01 -0.771819904801E-01 5259 -0.196718235731E-01 0.410197353700E-01 5260 0.195879198159E-01 -0.410768223275E-01 5261 -0.195974383947E-01 0.410088813661E-01 5262 -0.319628274290E-01 -0.770975304161E-01 5263 -0.699645161161E-01 -0.603246380776E-01 5264 0.779097453079 -0.190957572305 5265 -0.699712579265E-01 -0.604112592796E-01 5266 -0.453741907289E-01 -0.732868666673E-01 5267 -0.319701167248E-01 -0.770298947452E-01 5268 -0.318760648334E-01 -0.771325219173E-01 5269 -0.699705142314E-01 -0.603527576763E-01 5270 -0.195821231820E-01 0.410470546525E-01 5271 0.196897159479E-01 -0.409711285457E-01 5272 0.196114227577E-01 -0.410105108138E-01 5273 -0.699079098547E-01 -0.603344321515E-01 5274 -0.319741476865E-01 -0.771033642360E-01 5275 -0.699413716540E-01 -0.603974089644E-01 5276 0.779121223293 -0.190931896984 5277 -0.319699413723E-01 -0.770298889598E-01 5278 -0.453229469858E-01 -0.734260601047E-01 5279 -0.700178611821E-01 -0.603112874369E-01 5280 -0.319350173304E-01 -0.770647675734E-01 5281 0.196575969326E-01 -0.409701983341E-01 5282 -0.195856749219E-01 0.410638246605E-01 5283 0.196651661337E-01 -0.410459902018E-01 5284 -0.699196267650E-01 -0.603578084719E-01 5285 -0.319723175085E-01 -0.770951768887E-01 5286 -0.453452630648E-01 -0.733813261855E-01 5287 -0.319704015786E-01 -0.770477926954E-01 5288 0.779097441666 -0.190957561101 5289 -0.699416653316E-01 -0.603974114572E-01 5290 -0.699924480758E-01 -0.603331205952E-01 5291 -0.319532004371E-01 -0.770594022577E-01 5292 0.195732051653E-01 -0.410614138178E-01 5293 -0.196864907845E-01 0.409933330384E-01 5294 -0.196615972003E-01 0.410364004924E-01 5295 -0.319929200733E-01 -0.770892305772E-01 5296 -0.699315152199E-01 -0.603408606419E-01 5297 -0.319705780056E-01 -0.770478088486E-01 5298 -0.453895567687E-01 -0.732578321309E-01 5299 -0.699715514702E-01 -0.604112684241E-01 5300 0.779122036823 -0.190931843558 5301 -0.318881297384E-01 -0.771199539581E-01 5302 -0.699762657923E-01 -0.603827959871E-01 5303 -0.195927457871E-01 0.410459275101E-01 5304 -0.195790988657E-01 0.410430076398E-01 5305 0.196065089871E-01 -0.410530161941E-01 5306 -0.320271003565E-01 -0.771820140605E-01 5307 -0.699096198186E-01 -0.602295566874E-01 5308 -0.319528671462E-01 -0.770594248653E-01 5309 -0.699754997709E-01 -0.603827683633E-01 5310 -0.699699688798E-01 -0.603527469983E-01 5311 -0.319349328647E-01 -0.770647738443E-01 5312 0.778947585294 -0.191099185409 5313 -0.451611850837E-01 -0.732010147180E-01 5314 0.196062767018E-01 -0.410498168625E-01 5315 0.195951263197E-01 -0.410799954785E-01 5316 -0.195886208815E-01 0.410110888605E-01 5317 -0.699100749710E-01 -0.603243596101E-01 5318 -0.319885304505E-01 -0.771503584917E-01 5319 -0.699929919282E-01 -0.603331473555E-01 5320 -0.318882141019E-01 -0.771199133514E-01 5321 -0.318763962010E-01 -0.771325026509E-01 5322 -0.700186251242E-01 -0.603113029067E-01 5323 -0.452330404216E-01 -0.731845432671E-01 5324 0.778949775825 -0.191099021579 5325 1.33432151018 -0.269547321661 5326 -0.803399126100E-05 -0.165360082087E-06 5327 0.411157520704E-05 0.396266494767E-06 5328 0.220749691564E-01 -0.403611660258E-01 5329 -0.220330569624E-01 0.403427615686E-01 5330 -0.220415732238E-01 0.403219076967E-01 5331 -0.220160026540E-01 0.403752555376E-01 5332 0.220654379755E-01 -0.403334728253E-01 5333 0.220216889258E-01 -0.403826538463E-01 5334 -0.220374634905E-01 0.403699787931E-01 5335 0.220339506569E-01 -0.403737993804E-01 5336 -0.803404596600E-05 -0.165317712596E-06 5337 1.33432417995 -0.269546354548 5338 0.396923560793E-05 0.298169349214E-05 5339 0.220554275472E-01 -0.403245624823E-01 5340 -0.220540666611E-01 0.403267398201E-01 5341 0.220269961438E-01 -0.403890115942E-01 5342 0.220566101698E-01 -0.403149846254E-01 5343 -0.220303287128E-01 0.403843531916E-01 5344 -0.220551720526E-01 0.403115036822E-01 5345 -0.220424371449E-01 0.403856138159E-01 5346 0.220245096607E-01 -0.403825516789E-01 5347 0.411149981785E-05 0.396294735333E-06 5348 0.396941685996E-05 0.298197702607E-05 5349 1.33431798101 -0.269547648621 5350 0.220281663603E-01 -0.403763820297E-01 5351 -0.220300131204E-01 0.403844265847E-01 5352 -0.220659375637E-01 0.403642089304E-01 5353 0.220604671652E-01 -0.403566209310E-01 5354 0.220163893690E-01 -0.403420490666E-01 5355 -0.220268469481E-01 0.403441563788E-01 5356 0.220235871319E-01 -0.403556090947E-01 5357 -0.220428987899E-01 0.403691121425E-01 5358 0.220330182881E-01 -0.403427877027E-01 5359 0.220540295564E-01 -0.403267452439E-01 5360 0.220301966766E-01 -0.403844491306E-01 5361 0.838581584545 -0.199364438812 5362 -0.281269380328E-02 -0.838119633099E-01 5363 0.228187612747E-01 -0.856622351378E-01 5364 -0.317640843059E-01 -0.877306480864E-01 5365 -0.317887260935E-01 -0.877198331061E-01 5366 0.228174897348E-01 -0.856666333353E-01 5367 0.228186063326E-01 -0.856803370532E-01 5368 -0.317798803640E-01 -0.876544128576E-01 5369 -0.220750077258E-01 0.403611412399E-01 5370 -0.220554645988E-01 0.403245533897E-01 5371 -0.220279837711E-01 0.403763571620E-01 5372 -0.280616914404E-02 -0.837276230222E-01 5373 0.838580114904 -0.199364560625 5374 -0.317546062329E-01 -0.877377757150E-01 5375 0.228004993697E-01 -0.856617384890E-01 5376 0.228322475485E-01 -0.856595129315E-01 5377 -0.317426049362E-01 -0.877043633277E-01 5378 -0.317530057850E-01 -0.877329299351E-01 5379 0.228142439875E-01 -0.857183914960E-01 5380 -0.220652742687E-01 0.403334477731E-01 5381 0.220304071081E-01 -0.403843658253E-01 5382 -0.220164781834E-01 0.403420494693E-01 5383 0.228320979249E-01 -0.856594952545E-01 5384 -0.317884239453E-01 -0.877198334681E-01 5385 0.838572099772 -0.199338375486 5386 -0.317683012199E-01 -0.877711563646E-01 5387 -0.282728490936E-02 -0.838014437384E-01 5388 0.228013336940E-01 -0.856226322892E-01 5389 0.229008048964E-01 -0.856733885066E-01 5390 -0.318008205466E-01 -0.877489838655E-01 5391 -0.220218091562E-01 0.403826435506E-01 5392 0.220551667538E-01 -0.403114981969E-01 5393 0.220266726206E-01 -0.403441380428E-01 5394 -0.317429231392E-01 -0.877043450868E-01 5395 0.228175960234E-01 -0.856666731970E-01 5396 -0.317529767042E-01 -0.877527809411E-01 5397 0.838579044910 -0.199310540168 5398 0.228015223786E-01 -0.856226290936E-01 5399 -0.277753566823E-02 -0.838920834292E-01 5400 -0.318277048798E-01 -0.877157471286E-01 5401 0.228619916673E-01 -0.856340815693E-01 5402 0.220417377625E-01 -0.403219311347E-01 5403 -0.220269178830E-01 0.403890030787E-01 5404 0.220658495452E-01 -0.403642084097E-01 5405 -0.317549068941E-01 -0.877377829295E-01 5406 0.228189126276E-01 -0.856622662355E-01 5407 -0.281286438263E-02 -0.838675245800E-01 5408 0.228024798328E-01 -0.856477832398E-01 5409 0.838572082979 -0.199338370113 5410 -0.317532799677E-01 -0.877527847459E-01 5411 -0.318050871113E-01 -0.877362170197E-01 5412 0.228464102590E-01 -0.856335781432E-01 5413 0.220158834481E-01 -0.403752644672E-01 5414 -0.220566166485E-01 0.403149828200E-01 5415 -0.220606420852E-01 0.403566389520E-01 5416 0.228003952560E-01 -0.856616767402E-01 5417 -0.317637669822E-01 -0.877306351657E-01 5418 0.228022931487E-01 -0.856477952765E-01 5419 -0.285184898235E-02 -0.837724725860E-01 5420 -0.317686032666E-01 -0.877711644307E-01 5421 0.838579868708 -0.199310485559 5422 0.228842393667E-01 -0.856659108631E-01 5423 -0.318037899312E-01 -0.877675250775E-01 5424 -0.220338048213E-01 0.403737629757E-01 5425 -0.220244540946E-01 0.403825332631E-01 5426 0.220429371560E-01 -0.403690988821E-01 5427 0.228141761875E-01 -0.857184175984E-01 5428 -0.317787930011E-01 -0.876543867351E-01 5429 0.228467840689E-01 -0.856336024869E-01 5430 -0.318029849214E-01 -0.877675008198E-01 5431 -0.318002431406E-01 -0.877489773786E-01 5432 0.228620971229E-01 -0.856340914339E-01 5433 0.838486993388 -0.199421222328 5434 -0.271118638674E-02 -0.837443596553E-01 5435 0.220376102939E-01 -0.403700139693E-01 5436 0.220424926400E-01 -0.403856360223E-01 5437 -0.220235490939E-01 0.403556238631E-01 5438 -0.317540894679E-01 -0.877329373648E-01 5439 0.228186783094E-01 -0.856803193340E-01 5440 -0.318056609553E-01 -0.877362383621E-01 5441 0.228841332593E-01 -0.856658657384E-01 5442 0.229004347493E-01 -0.856733658996E-01 5443 -0.318285095251E-01 -0.877157598757E-01 5444 -0.273572987492E-02 -0.837525603181E-01 5445 0.838489204093 -0.199421052557 5446 1.31674203840 -0.295237617264 5447 -0.837375207368E-05 0.187945258387E-06 5448 0.463346713432E-05 -0.131817448047E-05 5449 0.228031485953E-01 -0.513040843280E-01 5450 -0.227812057467E-01 0.512704375300E-01 5451 -0.227810879594E-01 0.512413928521E-01 5452 -0.227214781108E-01 0.512974273109E-01 5453 0.227830983583E-01 -0.512790717930E-01 5454 0.227419469798E-01 -0.512835093246E-01 5455 -0.227473878243E-01 0.512825346139E-01 5456 0.227478076206E-01 -0.512818769638E-01 5457 -0.837365272455E-05 0.188027974538E-06 5458 1.31674505374 -0.295237444311 5459 0.455614094967E-05 0.721635554167E-06 5460 0.227799846598E-01 -0.512751310125E-01 5461 -0.227984070024E-01 0.512528996348E-01 5462 0.227516416901E-01 -0.512948468299E-01 5463 0.227877232151E-01 -0.512668737072E-01 5464 -0.227433336649E-01 0.513017413694E-01 5465 -0.228018988235E-01 0.512444157162E-01 5466 -0.227436938187E-01 0.513030013033E-01 5467 0.227415215962E-01 -0.512811051188E-01 5468 0.463358881858E-05 -0.131840930647E-05 5469 0.455619934971E-05 0.721800673092E-06 5470 1.31673771527 -0.295236148287 5471 0.227276667896E-01 -0.512925384264E-01 5472 -0.227442225891E-01 0.512845366475E-01 5473 -0.227946138261E-01 0.512824168916E-01 5474 0.227887557395E-01 -0.512793745351E-01 5475 0.227393176884E-01 -0.512712893905E-01 5476 -0.227552199424E-01 0.512739578158E-01 5477 0.227368076971E-01 -0.512554657975E-01 5478 -0.227426362684E-01 0.512867745774E-01 5479 0.227811697064E-01 -0.512704486053E-01 5480 0.227983779341E-01 -0.512529114453E-01 5481 0.227444070230E-01 -0.512845604702E-01 5482 0.888445493609 -0.264168823667 5483 0.389556382163E-01 -0.115222208028 5484 0.438134622007E-01 -0.971659067283E-01 5485 0.745304936279E-02 -0.110968776788 5486 0.742771554306E-02 -0.110957621513 5487 0.438135872554E-01 -0.971661385080E-01 5488 0.437753247704E-01 -0.971954398323E-01 5489 0.749009970260E-02 -0.110901288877 5490 -0.228031861251E-01 0.513040742834E-01 5491 -0.227800144464E-01 0.512751159582E-01 5492 -0.227274838693E-01 0.512925128469E-01 5493 0.389894694191E-01 -0.115135479187 5494 0.888443997922 -0.264168979994 5495 0.746661601919E-02 -0.110987401728 5496 0.438001391613E-01 -0.971545628352E-01 5497 0.438305428467E-01 -0.971540439422E-01 5498 0.746927845819E-02 -0.110958157267 5499 0.750270548230E-02 -0.110972415037 5500 0.437618944589E-01 -0.972001104381E-01 5501 -0.227829314358E-01 0.512790661331E-01 5502 0.227434126441E-01 -0.513017461018E-01 5503 -0.227394061073E-01 0.512712926361E-01 5504 0.438303920350E-01 -0.971540222042E-01 5505 0.742803970793E-02 -0.110957624332 5506 0.888507374068 -0.264125097373 5507 0.740587007061E-02 -0.111017705710 5508 0.388971775646E-01 -0.115201781113 5509 0.438328978433E-01 -0.971205131624E-01 5510 0.438984706367E-01 -0.971961735568E-01 5511 0.742966411399E-02 -0.110994108950 5512 -0.227420747023E-01 0.512835185800E-01 5513 0.228018899984E-01 -0.512444029856E-01 5514 0.227550377766E-01 -0.512739315062E-01 5515 0.746894333856E-02 -0.110958136882 5516 0.438136929772E-01 -0.971661885935E-01 5517 0.743657963156E-02 -0.111003944960 5518 0.888519046092 -0.264102503021 5519 0.438330871288E-01 -0.971205040914E-01 5520 0.389231895084E-01 -0.115320229190 5521 0.739357375064E-02 -0.110937265581 5522 0.438612054136E-01 -0.971196202655E-01 5523 0.227812562177E-01 -0.512413978840E-01 5524 -0.227515634602E-01 0.512948452680E-01 5525 0.227945265459E-01 -0.512824148475E-01 5526 0.746629803239E-02 -0.110987405159 5527 0.438136197784E-01 -0.971659401961E-01 5528 0.388957787306E-01 -0.115310749843 5529 0.438372877976E-01 -0.971401192898E-01 5530 0.888507355932 -0.264125091118 5531 0.743626631656E-02 -0.111003949066 5532 0.741712672649E-02 -0.110967130394 5533 0.438407665981E-01 -0.971222235470E-01 5534 0.227213522285E-01 -0.512974163764E-01 5535 -0.227877330198E-01 0.512668798629E-01 5536 -0.227889400620E-01 0.512793996862E-01 5537 0.438000339225E-01 -0.971544888433E-01 5538 0.745338379181E-02 -0.110968764705 5539 0.438370945146E-01 -0.971401384760E-01 5540 0.388596456763E-01 -0.115183603245 5541 0.740555324918E-02 -0.111017715667 5542 0.888519887487 -0.264102433663 5543 0.438820076077E-01 -0.971914657721E-01 5544 0.741209721620E-02 -0.111018324156 5545 -0.227476578288E-01 0.512818566047E-01 5546 -0.227414613455E-01 0.512810794049E-01 5547 0.227426697353E-01 -0.512867494817E-01 5548 0.437618256260E-01 -0.972001395814E-01 5549 0.749124755235E-02 -0.110901263861 5550 0.438411441002E-01 -0.971222490325E-01 5551 0.741294904114E-02 -0.111018299816 5552 0.743027598230E-02 -0.110994099640 5553 0.438613189624E-01 -0.971196327564E-01 5554 0.888334217315 -0.264204579319 5555 0.391008487183E-01 -0.115195542759 5556 0.227475395520E-01 -0.512825532263E-01 5557 0.227437548641E-01 -0.513030317865E-01 5558 -0.227367758272E-01 0.512554918104E-01 5559 0.750156393995E-02 -0.110972419365 5560 0.437754010291E-01 -0.971954177430E-01 5561 0.741651754698E-02 -0.110967154503 5562 0.438818971488E-01 -0.971914162772E-01 5563 0.438980948934E-01 -0.971961494555E-01 5564 0.739272528392E-02 -0.110937278816 5565 0.390689989133E-01 -0.115152440614 5566 0.888336471781 -0.264204362250 5567 1.29024318487 -0.210077518901 5568 -0.785110180934E-05 -0.870098935417E-07 5569 0.431042565064E-05 0.267901126683E-06 5570 0.251181504060E-01 -0.332435276562E-01 5571 -0.250764280957E-01 0.332076269365E-01 5572 -0.250810868705E-01 0.331931224787E-01 5573 -0.250454502399E-01 0.332582526651E-01 5574 0.251122314673E-01 -0.332225229208E-01 5575 0.250418273003E-01 -0.332586255819E-01 5576 -0.250628552458E-01 0.332487200080E-01 5577 0.250586810660E-01 -0.332513053253E-01 5578 -0.785110777969E-05 -0.869678157780E-07 5579 1.29024595174 -0.210076667066 5580 0.439730514839E-05 0.217663679987E-05 5581 0.251081268818E-01 -0.332035909206E-01 5582 -0.250982998746E-01 0.331945446568E-01 5583 0.250505912249E-01 -0.332590018322E-01 5584 0.251106429084E-01 -0.331948922101E-01 5585 -0.250529429356E-01 0.332648649743E-01 5586 -0.251056653805E-01 0.331816071665E-01 5587 -0.250666961318E-01 0.332750963293E-01 5588 0.250435785680E-01 -0.332583046210E-01 5589 0.431028694092E-05 0.267882191434E-06 5590 0.439734428735E-05 0.217678185091E-05 5591 1.29023934469 -0.210077519546 5592 0.250506210080E-01 -0.332606088016E-01 5593 -0.250490240829E-01 0.332600931086E-01 5594 -0.251023488766E-01 0.332382631280E-01 5595 0.250989576415E-01 -0.332298997218E-01 5596 0.250503833065E-01 -0.332160540730E-01 5597 -0.250656799996E-01 0.332193163906E-01 5598 0.250428894850E-01 -0.332315644307E-01 5599 -0.250722695941E-01 0.332594150104E-01 5600 0.250763953329E-01 -0.332076483907E-01 5601 0.250982703964E-01 -0.331945594628E-01 5602 0.250492216604E-01 -0.332600964377E-01 5603 0.920023661251 -0.250647092330 5604 0.643352076568E-01 -0.110846693448 5605 0.822659614878E-01 -0.801374231560E-01 5606 0.435193762863E-01 -0.847336276523E-01 5607 0.435004040826E-01 -0.847165746463E-01 5608 0.822656963181E-01 -0.801300603505E-01 5609 0.822435038783E-01 -0.802043812425E-01 5610 0.435527644971E-01 -0.846205351647E-01 5611 -0.251181836087E-01 0.332435071933E-01 5612 -0.251081561029E-01 0.332035719144E-01 5613 -0.250504247617E-01 0.332606045432E-01 5614 0.643604938378E-01 -0.110747645748 5615 0.920022112977 -0.250647257222 5616 0.435539775166E-01 -0.847402118590E-01 5617 0.822404662507E-01 -0.801270858601E-01 5618 0.822834968238E-01 -0.801170560220E-01 5619 0.435601361067E-01 -0.847016124881E-01 5620 0.435777981432E-01 -0.846872973659E-01 5621 0.822146252204E-01 -0.802098766119E-01 5622 -0.251120650553E-01 0.332225026611E-01 5623 0.250530192157E-01 -0.332648792348E-01 5624 -0.250504716885E-01 0.332160615928E-01 5625 0.822833260234E-01 -0.801170431649E-01 5626 0.435007459317E-01 -0.847165732268E-01 5627 0.920083821564 -0.250560067805 5628 0.434935383116E-01 -0.848111617549E-01 5629 0.642854741618E-01 -0.110879763848 5630 0.822836526489E-01 -0.800522912934E-01 5631 0.823784592952E-01 -0.801530881851E-01 5632 0.435148301008E-01 -0.847522043674E-01 5633 -0.250419534870E-01 0.332586107126E-01 5634 0.251056490805E-01 -0.331816134996E-01 5635 0.250654964167E-01 -0.332192978912E-01 5636 0.435597828267E-01 -0.847016007414E-01 5637 0.822658244850E-01 -0.801300985010E-01 5638 0.435261157078E-01 -0.847911497940E-01 5639 0.920084484413 -0.250523728529 5640 0.822838553877E-01 -0.800522794648E-01 5641 0.643399684311E-01 -0.110991752903 5642 0.434559227198E-01 -0.847000701061E-01 5643 0.822968503044E-01 -0.800829907693E-01 5644 0.250812534630E-01 -0.331931411907E-01 5645 -0.250505136178E-01 0.332589909694E-01 5646 0.251022618570E-01 -0.332382573089E-01 5647 0.435536389211E-01 -0.847402166545E-01 5648 0.822661365785E-01 -0.801374456949E-01 5649 0.643229189325E-01 -0.110988442950 5650 0.822798583566E-01 -0.800831575000E-01 5651 0.920083803677 -0.250560056476 5652 0.435257878380E-01 -0.847911550478E-01 5653 0.434891924204E-01 -0.847238704835E-01 5654 0.822806211513E-01 -0.800958284920E-01 5655 0.250453244287E-01 -0.332582660907E-01 5656 -0.251106590407E-01 0.331948798228E-01 5657 -0.250991424074E-01 0.332299165957E-01 5658 0.822403361215E-01 -0.801270236562E-01 5659 0.435197267001E-01 -0.847336058936E-01 5660 0.822796538797E-01 -0.800831833677E-01 5661 0.642272825782E-01 -0.110877204922 5662 0.434932099724E-01 -0.848111764661E-01 5663 0.920085359497 -0.250523654676 5664 0.823540005456E-01 -0.801532255115E-01 5665 0.435041018094E-01 -0.847809790636E-01 5666 -0.250585182691E-01 0.332512838893E-01 5667 -0.250435108717E-01 0.332582904426E-01 5668 0.250722976668E-01 -0.332594059613E-01 5669 0.822145563334E-01 -0.802098968989E-01 5670 0.435539647344E-01 -0.846204752535E-01 5671 0.822810380503E-01 -0.800958419779E-01 5672 0.435049932291E-01 -0.847809284226E-01 5673 0.435154706664E-01 -0.847521721741E-01 5674 0.822969793052E-01 -0.800829882494E-01 5675 0.919924160892 -0.250723434974 5676 0.645021972424E-01 -0.110783242952 5677 0.250630184381E-01 -0.332487396565E-01 5678 0.250667637059E-01 -0.332751144501E-01 5679 -0.250428629049E-01 0.332315742247E-01 5680 0.435766022720E-01 -0.846873322161E-01 5681 0.822435790369E-01 -0.802043637137E-01 5682 0.434885559944E-01 -0.847239167806E-01 5683 0.823538746790E-01 -0.801531856759E-01 5684 0.823780465817E-01 -0.801530762485E-01 5685 0.434550355579E-01 -0.847001058368E-01 5686 0.644373216860E-01 -0.110748987686 5687 0.919926498110 -0.250723203724 5688 1.25417348705 -0.181508521761 5689 -0.752807267819E-05 -0.395671374532E-07 5690 0.439925533794E-05 -0.308107784687E-06 5691 0.197483449921E-01 -0.232577011356E-01 5692 -0.197073178739E-01 0.232264241247E-01 5693 -0.197046556630E-01 0.232000221721E-01 5694 -0.196529495240E-01 0.232811088346E-01 5695 0.197280420764E-01 -0.232359950326E-01 5696 0.196609404258E-01 -0.232606650275E-01 5697 -0.196788552444E-01 0.232604983564E-01 5698 0.196794726689E-01 -0.232611001695E-01 5699 -0.752802841858E-05 -0.392024544168E-07 5700 1.25417614662 -0.181508062947 5701 0.439636397398E-05 0.140996210590E-05 5702 0.197248163964E-01 -0.232244760448E-01 5703 -0.197276691973E-01 0.231998450608E-01 5704 0.196701696626E-01 -0.232755940239E-01 5705 0.197342689250E-01 -0.232105612535E-01 5706 -0.196734595886E-01 0.232829102094E-01 5707 -0.197379583779E-01 0.231906125508E-01 5708 -0.196789533735E-01 0.232896008761E-01 5709 0.196588456268E-01 -0.232629989773E-01 5710 0.439895959658E-05 -0.309049740027E-06 5711 0.439648290147E-05 0.141002619116E-05 5712 1.25416965461 -0.181508030947 5713 0.196666665327E-01 -0.232756679130E-01 5714 -0.196716194568E-01 0.232630270370E-01 5715 -0.197236161431E-01 0.232474938267E-01 5716 0.197163082843E-01 -0.232444180475E-01 5717 0.196682416934E-01 -0.232398876812E-01 5718 -0.196839326997E-01 0.232369218198E-01 5719 0.196613117082E-01 -0.232365702583E-01 5720 -0.196867956843E-01 0.232652751174E-01 5721 0.197072810105E-01 -0.232264329477E-01 5722 0.197276454166E-01 -0.231998502532E-01 5723 0.196717999500E-01 -0.232630487518E-01 5724 0.935866100052 -0.166542794137 5725 0.731321218928E-01 -0.501678562620E-01 5726 0.779043990588E-01 -0.214455729880E-01 5727 0.269443133771E-01 -0.382818978393E-01 5728 0.269141075753E-01 -0.382688187935E-01 5729 0.778777323610E-01 -0.214415134830E-01 5730 0.778973521249E-01 -0.214279360277E-01 5731 0.269138464053E-01 -0.382111574684E-01 5732 -0.197483822095E-01 0.232576933730E-01 5733 -0.197248407364E-01 0.232244664069E-01 5734 -0.196664881470E-01 0.232756413426E-01 5735 0.731228833893E-01 -0.500251658340E-01 5736 0.935864520059 -0.166542914344 5737 0.269291745806E-01 -0.382724294650E-01 5738 0.778711662094E-01 -0.214398577340E-01 5739 0.779040698496E-01 -0.214204398816E-01 5740 0.269440338618E-01 -0.382448971699E-01 5741 0.269331765472E-01 -0.382993851283E-01 5742 0.779028717168E-01 -0.214730343251E-01 5743 -0.197278598737E-01 0.232359994599E-01 5744 0.196735524406E-01 -0.232829095871E-01 5745 -0.196683458067E-01 0.232398804304E-01 5746 0.779038987507E-01 -0.214204408605E-01 5747 0.269144583208E-01 -0.382688134018E-01 5748 0.935837973756 -0.166533880767 5749 0.269456361967E-01 -0.383109588091E-01 5750 0.731617811885E-01 -0.500597987584E-01 5751 0.778686170757E-01 -0.214072704814E-01 5752 0.779839061065E-01 -0.214297634165E-01 5753 0.268837090064E-01 -0.382817749393E-01 5754 -0.196610637206E-01 0.232606675220E-01 5755 0.197379649436E-01 -0.231905958121E-01 5756 0.196837369582E-01 -0.232369074411E-01 5757 0.269436763396E-01 -0.382448889370E-01 5758 0.778778645961E-01 -0.214415237507E-01 5759 0.269498926165E-01 -0.382573397920E-01 5760 0.935840820024 -0.166526383459 5761 0.778688201689E-01 -0.214072619985E-01 5762 0.731764962080E-01 -0.501680186255E-01 5763 0.268558481622E-01 -0.382478215145E-01 5764 0.779627044668E-01 -0.214038389755E-01 5765 0.197048379703E-01 -0.232000171898E-01 5766 -0.196700758788E-01 0.232755972340E-01 5767 0.197235133603E-01 -0.232474990158E-01 5768 0.269288244318E-01 -0.382724393252E-01 5769 0.779045738920E-01 -0.214455844111E-01 5770 0.731746361116E-01 -0.501517970388E-01 5771 0.778776601431E-01 -0.214420253745E-01 5772 0.935837946917 -0.166533881777 5773 0.269495517785E-01 -0.382573453200E-01 5774 0.268751615772E-01 -0.382810461945E-01 5775 0.779640235081E-01 -0.214104136937E-01 5776 0.196528266595E-01 -0.232811041682E-01 5777 -0.197342626532E-01 0.232105693466E-01 5778 -0.197165049043E-01 0.232444291555E-01 5779 0.778710316635E-01 -0.214398219533E-01 5780 0.269446707146E-01 -0.382818741237E-01 5781 0.778774570153E-01 -0.214420475253E-01 5782 0.731322559631E-01 -0.500600084809E-01 5783 0.269452955387E-01 -0.383109710157E-01 5784 0.935841714811 -0.166526326301 5785 0.779752229224E-01 -0.214385304837E-01 5786 0.268708826815E-01 -0.383157670477E-01 5787 -0.196793167774E-01 0.232610819588E-01 5788 -0.196587831984E-01 0.232629797474E-01 5789 0.196868361962E-01 -0.232652494040E-01 5790 0.779027936749E-01 -0.214730532320E-01 5791 0.269150555103E-01 -0.382111114710E-01 5792 0.779644464554E-01 -0.214104072351E-01 5793 0.268717775790E-01 -0.383157285822E-01 5794 0.268843426863E-01 -0.382817574348E-01 5795 0.779628266740E-01 -0.214038253606E-01 5796 0.935749425415 -0.166574828971 5797 0.732683996667E-01 -0.500625245220E-01 5798 0.196790116951E-01 -0.232605148660E-01 5799 0.196790171922E-01 -0.232896239407E-01 5800 -0.196612719480E-01 0.232365941453E-01 5801 0.269319692839E-01 -0.382994063185E-01 5802 0.778974321805E-01 -0.214279224721E-01 5803 0.268745284237E-01 -0.382810767844E-01 5804 0.779750983647E-01 -0.214384984042E-01 5805 0.779834864584E-01 -0.214297701635E-01 5806 0.268549549075E-01 -0.382478446211E-01 5807 0.732631194586E-01 -0.500695384684E-01 5808 0.935751813593 -0.166574656997 5809 1.20771632415 -0.188460104555 5810 -0.734368839149E-05 0.235356927263E-06 5811 0.491644214997E-05 -0.637058194158E-06 5812 0.685843700502E-02 -0.204142340101E-01 5813 -0.682542892639E-02 0.203757484116E-01 5814 -0.680699338177E-02 0.203624057477E-01 5815 -0.676179154402E-02 0.204548102315E-01 5816 0.683837214559E-02 -0.204123786255E-01 5817 0.674918120036E-02 -0.204174394044E-01 5818 -0.677839357810E-02 0.204272443290E-01 5819 0.677623409996E-02 -0.204216746142E-01 5820 -0.734344643933E-05 0.235471272686E-06 5821 1.20771923410 -0.188460011991 5822 0.482563377847E-05 0.378923795989E-06 5823 0.684389472315E-02 -0.204000148240E-01 5824 -0.682825935479E-02 0.203573545931E-01 5825 0.677461047789E-02 -0.204269457569E-01 5826 0.685173069436E-02 -0.203823050521E-01 5827 -0.677734274546E-02 0.204393301907E-01 5828 -0.684454668433E-02 0.203489836609E-01 5829 -0.677812241259E-02 0.204594461084E-01 5830 0.675292424734E-02 -0.204233061791E-01 5831 0.491602958596E-05 -0.637164986157E-06 5832 0.482561963091E-05 0.379146023776E-06 5833 1.20771191984 -0.188459224603 5834 0.676687316722E-02 -0.204457943140E-01 5835 -0.676055050511E-02 0.204224846487E-01 5836 -0.682192303605E-02 0.204047164934E-01 5837 0.682026248009E-02 -0.204062622958E-01 5838 0.678585363499E-02 -0.204041276918E-01 5839 -0.679646937099E-02 0.204003430942E-01 5840 0.675324741846E-02 -0.204022220857E-01 5841 -0.678035606734E-02 0.204397564472E-01 5842 0.682537978014E-02 -0.203757642143E-01 5843 0.682822240684E-02 -0.203573639876E-01 5844 0.676074446505E-02 -0.204224932430E-01 5845 0.911171824588 -0.159779288791 5846 0.602345048267E-01 -0.140689414859E-01 5847 0.384873724331E-01 0.110513335905E-02 5848 -0.336044820080E-02 -0.273660247102E-01 5849 -0.339046882889E-02 -0.273584635659E-01 5850 0.384623447456E-01 0.109643518571E-02 5851 0.384356582034E-01 0.108234810065E-02 5852 -0.335459774639E-02 -0.272755465086E-01 5853 -0.685848535574E-02 0.204142190979E-01 5854 -0.684392829029E-02 0.204000011614E-01 5855 -0.676668117017E-02 0.204457824987E-01 5856 0.601943997642E-01 -0.139249216754E-01 5857 0.911170201065 -0.159779409642 5858 -0.337079960851E-02 -0.273818791175E-01 5859 0.384486924381E-01 0.111182639156E-02 5860 0.384817225277E-01 0.112346809441E-02 5861 -0.334577259859E-02 -0.273562719209E-01 5862 -0.331855474914E-02 -0.273800297406E-01 5863 0.384349035954E-01 0.105589465236E-02 5864 -0.683820482853E-02 0.204123719418E-01 5865 0.677742311418E-02 -0.204393388710E-01 5866 -0.678594804373E-02 0.204041304199E-01 5867 0.384815488858E-01 0.112345650835E-02 5868 -0.339011741843E-02 -0.273584484572E-01 5869 0.911189299761 -0.159747099246 5870 -0.338686168781E-02 -0.274281274717E-01 5871 0.601506291009E-01 -0.139748218240E-01 5872 0.384828639695E-01 0.115387449552E-02 5873 0.385779383789E-01 0.110022644203E-02 5874 -0.341916063481E-02 -0.273887063614E-01 5875 -0.674931756611E-02 0.204174337278E-01 5876 0.684453687354E-02 -0.203489800477E-01 5877 0.679628229439E-02 -0.204003289178E-01 5878 -0.334613401704E-02 -0.273562680008E-01 5879 0.384624681712E-01 0.109644026616E-02 5880 -0.339629287291E-02 -0.273797369590E-01 5881 0.911213265269 -0.159732144471 5882 0.384830797437E-01 0.115388942612E-02 5883 0.602068946917E-01 -0.141279627794E-01 5884 -0.346991564390E-02 -0.273407746460E-01 5885 0.385355707138E-01 0.117179206961E-02 5886 0.680716000672E-02 -0.203624120922E-01 5887 -0.677452719363E-02 0.204269419046E-01 5888 0.682182922387E-02 -0.204047140758E-01 5889 -0.337115128667E-02 -0.273819009771E-01 5890 0.384875473242E-01 0.110513371184E-02 5891 0.602017949083E-01 -0.140993417432E-01 5892 0.384880768553E-01 0.112839512702E-02 5893 0.911189277517 -0.159747098320 5894 -0.339663571871E-02 -0.273797508683E-01 5895 -0.343461683171E-02 -0.273808072663E-01 5896 0.385323199155E-01 0.117244985224E-02 5897 0.676165480348E-02 -0.204548161058E-01 5898 -0.685173807047E-02 0.203823024662E-01 5899 -0.682045006794E-02 0.204062738168E-01 5900 0.384485683514E-01 0.111184414002E-02 5901 -0.336008744726E-02 -0.273659927426E-01 5902 0.384878636815E-01 0.112836673907E-02 5903 0.601227986247E-01 -0.139659303708E-01 5904 -0.338720300215E-02 -0.274281491576E-01 5905 0.911214178593 -0.159732083151 5906 0.385732830274E-01 0.110262523882E-02 5907 -0.342401155998E-02 -0.274413457691E-01 5908 -0.677608190740E-02 0.204216539818E-01 5909 -0.675286313936E-02 0.204232869275E-01 5910 0.678039479043E-02 -0.204397375274E-01 5911 0.384348243934E-01 0.105587932785E-02 5912 -0.335335588585E-02 -0.272754765043E-01 5913 0.385327487860E-01 0.117247531623E-02 5914 -0.342309024713E-02 -0.274412904692E-01 5915 -0.341850004412E-02 -0.273886815541E-01 5916 0.385356936450E-01 0.117181658180E-02 5917 0.911008514576 -0.159847664640 5918 0.603907113673E-01 -0.139491408852E-01 5919 0.677854589626E-02 -0.204272643248E-01 5920 0.677818068118E-02 -0.204594680528E-01 5921 -0.675320768272E-02 0.204022404214E-01 5922 -0.331979613683E-02 -0.273800763447E-01 5923 0.384357394331E-01 0.108235695178E-02 5924 -0.343527626898E-02 -0.273808497438E-01 5925 0.385731564561E-01 0.110264177874E-02 5926 0.385775114666E-01 0.110020111688E-02 5927 -0.347083838710E-02 -0.273408135070E-01 5928 0.603530579977E-01 -0.139158451194E-01 5929 0.911010963638 -0.159847489407 5930 1.19912011555 -0.173748709070 5931 -0.694131741079E-05 0.108272847897E-06 5932 0.429553616965E-05 0.480686223783E-06 5933 -0.783206448483E-02 -0.157511812995E-01 5934 0.786935430258E-02 0.157285701127E-01 5935 0.788162893219E-02 0.157204294124E-01 5936 0.790051249515E-02 0.157968957964E-01 5937 -0.784460463347E-02 -0.157467080575E-01 5938 -0.791900232656E-02 -0.157819085393E-01 5939 0.789075593273E-02 0.157768793287E-01 5940 -0.789431475230E-02 -0.157742314620E-01 5941 -0.694125056367E-05 0.108086518504E-06 5942 1.19912262635 -0.173747950152 5943 0.390126391169E-05 0.219303237118E-05 5944 -0.785011501680E-02 -0.157311448164E-01 5945 0.787107931199E-02 0.157110999454E-01 5946 -0.789565024683E-02 -0.157832033550E-01 5947 -0.784961771959E-02 -0.157169100831E-01 5948 0.789064750102E-02 0.157890200824E-01 5949 0.785900624791E-02 0.156945285475E-01 5950 0.787783061772E-02 0.158044650955E-01 5951 -0.790930315397E-02 -0.157889590299E-01 5952 0.429521481396E-05 0.481097754655E-06 5953 0.390137045719E-05 0.219307274975E-05 5954 1.19911614929 -0.173748487496 5955 -0.789735401629E-02 -0.157916624844E-01 5956 0.790672936875E-02 0.157803350916E-01 5957 0.786158774622E-02 0.157496347794E-01 5958 -0.786188799138E-02 -0.157511888426E-01 5959 -0.789924230445E-02 -0.157537259370E-01 5960 0.788802862837E-02 0.157501049217E-01 5961 -0.791448653442E-02 -0.157645574456E-01 5962 0.788226707225E-02 0.157831438391E-01 5963 -0.786940877851E-02 -0.157285824620E-01 5964 -0.787111615661E-02 -0.157111069949E-01 5965 -0.790652896837E-02 -0.157803484646E-01 5966 0.891132943482 -0.152711422354 5967 0.359848213776E-01 -0.256054070390E-01 5968 0.124345574013E-02 -0.182832500101E-03 5969 -0.362584016314E-01 -0.252387104508E-01 5970 -0.362894106313E-01 -0.252265185425E-01 5971 0.122366245654E-02 -0.198184352888E-03 5972 0.119559382722E-02 -0.208305385967E-03 5973 -0.362619335092E-01 -0.251678279245E-01 5974 0.783201004076E-02 0.157511701155E-01 5975 0.785007890010E-02 0.157311356839E-01 5976 0.789755438241E-02 0.157916459032E-01 5977 0.359382089863E-01 -0.255033252636E-01 5978 0.891131257651 -0.152711542538 5979 -0.362724912973E-01 -0.252637492759E-01 5980 0.120858641176E-02 -0.181339106421E-03 5981 0.124074566265E-02 -0.172670087299E-03 5982 -0.362484146051E-01 -0.252281613722E-01 5983 -0.362184842900E-01 -0.252506850337E-01 5984 0.120515920928E-02 -0.227564469643E-03 5985 0.784476286764E-02 0.157467044904E-01 5986 -0.789057088899E-02 -0.157890241209E-01 5987 0.789915147016E-02 0.157537262296E-01 5988 0.124058063735E-02 -0.172679975864E-03 5989 -0.362890481536E-01 -0.252265110435E-01 5990 0.891154248104 -0.152696075155 5991 -0.362835252274E-01 -0.252861733671E-01 5992 0.358868351207E-01 -0.255422387617E-01 5993 0.123940771353E-02 -0.145080199310E-03 5994 0.132530181597E-02 -0.188845781273E-03 5995 -0.363165964037E-01 -0.252620589451E-01 5996 0.791885381117E-02 0.157819061423E-01 5997 -0.785902034020E-02 -0.156945187465E-01 5998 -0.788822159562E-02 -0.157500904679E-01 5999 -0.362487816045E-01 -0.252281534316E-01 6000 0.122376770420E-02 -0.198185837523E-03 6001 -0.362943851067E-01 -0.252588754977E-01 6002 0.891183214093 -0.152679042250 6003 0.123962808252E-02 -0.145064134227E-03 6004 0.359517769004E-01 -0.256608234472E-01 6005 -0.363624099706E-01 -0.252295768076E-01 6006 0.128501559263E-02 -0.127007880682E-03 6007 -0.788147056288E-02 -0.157204306753E-01 6008 0.789572767051E-02 0.157832056360E-01 6009 -0.786167874817E-02 -0.157496358784E-01 6010 -0.362728537790E-01 -0.252637664584E-01 6011 0.124362294734E-02 -0.182837470621E-03 6012 0.359365045867E-01 -0.256309071242E-01 6013 0.124643535364E-02 -0.173396131595E-03 6014 0.891154230961 -0.152696077569 6015 -0.362947404967E-01 -0.252588880570E-01 6016 -0.363312290588E-01 -0.252621864635E-01 6017 0.127866905151E-02 -0.117638766184E-03 6018 -0.790066017526E-02 -0.157968966732E-01 6019 0.784960456747E-02 0.157169156014E-01 6020 0.786169701080E-02 0.157512010776E-01 6021 0.120847941503E-02 -0.181312843898E-03 6022 -0.362580361174E-01 -0.252386826305E-01 6023 0.124621672597E-02 -0.173423556067E-03 6024 0.358586361661E-01 -0.255257344281E-01 6025 -0.362838808393E-01 -0.252861899971E-01 6026 0.891184156639 -0.152678984847 6027 0.132067564855E-02 -0.181475323123E-03 6028 -0.363126497156E-01 -0.253072515865E-01 6029 0.789446110142E-02 0.157742135960E-01 6030 0.790936296679E-02 0.157889451596E-01 6031 -0.788223135907E-02 -0.157831239527E-01 6032 0.120507098839E-02 -0.227582852589E-03 6033 -0.362606613418E-01 -0.251677669003E-01 6034 0.127909133702E-02 -0.117617479172E-03 6035 -0.363117042473E-01 -0.253072027511E-01 6036 -0.363159177975E-01 -0.252620382526E-01 6037 0.128513005654E-02 -0.126989471758E-03 6038 0.890990818389 -0.152785617207 6039 0.361029592740E-01 -0.255054801103E-01 6040 -0.789060904241E-02 -0.157768960545E-01 6041 -0.787777168567E-02 -0.158044844912E-01 6042 0.791452453657E-02 0.157645780629E-01 6043 -0.362197551998E-01 -0.252507230945E-01 6044 0.119568334404E-02 -0.208294923801E-03 6045 -0.363319052869E-01 -0.252622236628E-01 6046 0.132055942586E-02 -0.181453131185E-03 6047 0.132488065397E-02 -0.188867179751E-03 6048 -0.363633571373E-01 -0.252296128131E-01 6049 0.360755030769E-01 -0.254778606474E-01 6050 0.890993352410 -0.152785441561 elk-9.2.12/tests/test_023/PaxHeaders/elk.in0000644000000000000000000000012714536061315015256 xustar0029 mtime=1702388429.44449923 29 atime=1702388429.44449923 29 ctime=1702388429.44449923 elk-9.2.12/tests/test_023/elk.in0000644002504400250440000000123714536061315017777 0ustar00dewhurstdewhurst00000000000000 ! Time-dependent density functional theory (TDDFT) optical spectrum of lithium ! fluoride. tasks 0 120 121 125 320 500 test .true. spinorb .true. scissor 0.192 xctype 3 ! bootstrap kernel fxctype 210 lmaxi 2 swidth 0.01 gmaxrf 1.5 nempty 10 ngridk 8 8 8 wplot 50 100 0 0.0 1.5 avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 elk-9.2.12/tests/PaxHeaders/test_0290000644000000000000000000000013214536061315014100 xustar0030 mtime=1702388429.459499207 30 atime=1702388429.445499228 30 ctime=1702388429.459499207 elk-9.2.12/tests/test_029/0000755002504400250440000000000014536061315016677 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_029/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016057 xustar0030 mtime=1702388429.446499227 30 atime=1702388429.446499227 30 ctime=1702388429.446499227 elk-9.2.12/tests/test_029/TEST_705.OUT_0000644002504400250440000000010114536061315020571 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 96 elk-9.2.12/tests/test_029/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016055 xustar0030 mtime=1702388429.447499225 30 atime=1702388429.447499225 30 ctime=1702388429.447499225 elk-9.2.12/tests/test_029/TEST_910.OUT_0000644002504400250440000002727714536061315020616 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 384 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.545019400590E-01 5 0.00000000000 6 0.00000000000 7 0.00000000000 8 0.143067592655 9 0.00000000000 10 0.545019400590E-01 11 0.143067592655 12 0.00000000000 13 0.00000000000 14 0.286135185310 15 0.00000000000 16 0.545019400590E-01 17 0.286135185310 18 0.00000000000 19 0.00000000000 20 0.429202777965 21 0.00000000000 22 0.545019400590E-01 23 0.429202777965 24 0.00000000000 25 0.00000000000 26 0.572270370619 27 0.00000000000 28 0.545019400590E-01 29 0.572270370619 30 0.00000000000 31 0.00000000000 32 0.715337963274 33 0.00000000000 34 0.545019400590E-01 35 0.715337963274 36 0.00000000000 37 0.00000000000 38 0.858405555929 39 0.00000000000 40 0.545019400590E-01 41 0.858405555929 42 0.00000000000 43 0.00000000000 44 1.00147314858 45 0.00000000000 46 0.545019400590E-01 47 1.00147314858 48 0.00000000000 49 0.00000000000 50 0.00000000000 51 0.143067592655 52 0.545019400590E-01 53 0.00000000000 54 0.143067592655 55 0.00000000000 56 0.143067592655 57 0.143067592655 58 0.545019400590E-01 59 0.143067592655 60 0.143067592655 61 0.00000000000 62 0.286135185310 63 0.143067592655 64 0.545019400590E-01 65 0.286135185310 66 0.143067592655 67 0.00000000000 68 0.429202777965 69 0.143067592655 70 0.545019400590E-01 71 0.429202777965 72 0.143067592655 73 0.00000000000 74 0.572270370619 75 0.143067592655 76 0.545019400590E-01 77 0.572270370619 78 0.143067592655 79 0.00000000000 80 0.715337963274 81 0.143067592655 82 0.545019400590E-01 83 0.715337963274 84 0.143067592655 85 0.00000000000 86 0.858405555929 87 0.143067592655 88 0.545019400590E-01 89 0.858405555929 90 0.143067592655 91 0.00000000000 92 1.00147314858 93 0.143067592655 94 0.545019400590E-01 95 1.00147314858 96 0.143067592655 97 0.00000000000 98 0.00000000000 99 0.286135185310 100 0.545019400590E-01 101 0.00000000000 102 0.286135185310 103 0.00000000000 104 0.143067592655 105 0.286135185310 106 0.545019400590E-01 107 0.143067592655 108 0.286135185310 109 0.00000000000 110 0.286135185310 111 0.286135185310 112 0.545019400590E-01 113 0.286135185310 114 0.286135185310 115 0.00000000000 116 0.429202777965 117 0.286135185310 118 0.545019400590E-01 119 0.429202777965 120 0.286135185310 121 0.00000000000 122 0.572270370619 123 0.286135185310 124 0.545019400590E-01 125 0.572270370619 126 0.286135185310 127 0.00000000000 128 0.715337963274 129 0.286135185310 130 0.545019400590E-01 131 0.715337963274 132 0.286135185310 133 0.00000000000 134 0.858405555929 135 0.286135185310 136 0.545019400590E-01 137 0.858405555929 138 0.286135185310 139 0.00000000000 140 1.00147314858 141 0.286135185310 142 0.545019400590E-01 143 1.00147314858 144 0.286135185310 145 0.00000000000 146 0.00000000000 147 0.429202777965 148 0.545019400590E-01 149 0.00000000000 150 0.429202777965 151 0.00000000000 152 0.143067592655 153 0.429202777965 154 0.545019400590E-01 155 0.143067592655 156 0.429202777965 157 0.00000000000 158 0.286135185310 159 0.429202777965 160 0.545019400590E-01 161 0.286135185310 162 0.429202777965 163 0.00000000000 164 0.429202777965 165 0.429202777965 166 0.545019400590E-01 167 0.429202777965 168 0.429202777965 169 0.00000000000 170 0.572270370619 171 0.429202777965 172 0.545019400590E-01 173 0.572270370619 174 0.429202777965 175 0.00000000000 176 0.715337963274 177 0.429202777965 178 0.545019400590E-01 179 0.715337963274 180 0.429202777965 181 0.00000000000 182 0.858405555929 183 0.429202777965 184 0.545019400590E-01 185 0.858405555929 186 0.429202777965 187 0.00000000000 188 1.00147314858 189 0.429202777965 190 0.545019400590E-01 191 1.00147314858 192 0.429202777965 193 0.00000000000 194 0.00000000000 195 0.572270370619 196 0.545019400590E-01 197 0.00000000000 198 0.572270370619 199 0.00000000000 200 0.143067592655 201 0.572270370619 202 0.545019400590E-01 203 0.143067592655 204 0.572270370619 205 0.00000000000 206 0.286135185310 207 0.572270370619 208 0.545019400590E-01 209 0.286135185310 210 0.572270370619 211 0.00000000000 212 0.429202777965 213 0.572270370619 214 0.545019400590E-01 215 0.429202777965 216 0.572270370619 217 0.00000000000 218 0.572270370619 219 0.572270370619 220 0.545019400590E-01 221 0.572270370619 222 0.572270370619 223 0.00000000000 224 0.715337963274 225 0.572270370619 226 0.545019400590E-01 227 0.715337963274 228 0.572270370619 229 0.00000000000 230 0.858405555929 231 0.572270370619 232 0.545019400590E-01 233 0.858405555929 234 0.572270370619 235 0.00000000000 236 1.00147314858 237 0.572270370619 238 0.545019400590E-01 239 1.00147314858 240 0.572270370619 241 0.00000000000 242 0.00000000000 243 0.715337963274 244 0.545019400590E-01 245 0.00000000000 246 0.715337963274 247 0.00000000000 248 0.143067592655 249 0.715337963274 250 0.545019400590E-01 251 0.143067592655 252 0.715337963274 253 0.00000000000 254 0.286135185310 255 0.715337963274 256 0.545019400590E-01 257 0.286135185310 258 0.715337963274 259 0.00000000000 260 0.429202777965 261 0.715337963274 262 0.545019400590E-01 263 0.429202777965 264 0.715337963274 265 0.00000000000 266 0.572270370619 267 0.715337963274 268 0.545019400590E-01 269 0.572270370619 270 0.715337963274 271 0.00000000000 272 0.715337963274 273 0.715337963274 274 0.545019400590E-01 275 0.715337963274 276 0.715337963274 277 0.00000000000 278 0.858405555929 279 0.715337963274 280 0.545019400590E-01 281 0.858405555929 282 0.715337963274 283 0.00000000000 284 1.00147314858 285 0.715337963274 286 0.545019400590E-01 287 1.00147314858 288 0.715337963274 289 0.00000000000 290 0.00000000000 291 0.858405555929 292 0.545019400590E-01 293 0.00000000000 294 0.858405555929 295 0.00000000000 296 0.143067592655 297 0.858405555929 298 0.545019400590E-01 299 0.143067592655 300 0.858405555929 301 0.00000000000 302 0.286135185310 303 0.858405555929 304 0.545019400590E-01 305 0.286135185310 306 0.858405555929 307 0.00000000000 308 0.429202777965 309 0.858405555929 310 0.545019400590E-01 311 0.429202777965 312 0.858405555929 313 0.00000000000 314 0.572270370619 315 0.858405555929 316 0.545019400590E-01 317 0.572270370619 318 0.858405555929 319 0.00000000000 320 0.715337963274 321 0.858405555929 322 0.545019400590E-01 323 0.715337963274 324 0.858405555929 325 0.00000000000 326 0.858405555929 327 0.858405555929 328 0.545019400590E-01 329 0.858405555929 330 0.858405555929 331 0.00000000000 332 1.00147314858 333 0.858405555929 334 0.545019400590E-01 335 1.00147314858 336 0.858405555929 337 0.00000000000 338 0.00000000000 339 1.00147314858 340 0.545019400590E-01 341 0.00000000000 342 1.00147314858 343 0.00000000000 344 0.143067592655 345 1.00147314858 346 0.545019400590E-01 347 0.143067592655 348 1.00147314858 349 0.00000000000 350 0.286135185310 351 1.00147314858 352 0.545019400590E-01 353 0.286135185310 354 1.00147314858 355 0.00000000000 356 0.429202777965 357 1.00147314858 358 0.545019400590E-01 359 0.429202777965 360 1.00147314858 361 0.00000000000 362 0.572270370619 363 1.00147314858 364 0.545019400590E-01 365 0.572270370619 366 1.00147314858 367 0.00000000000 368 0.715337963274 369 1.00147314858 370 0.545019400590E-01 371 0.715337963274 372 1.00147314858 373 0.00000000000 374 0.858405555929 375 1.00147314858 376 0.545019400590E-01 377 0.858405555929 378 1.00147314858 379 0.00000000000 380 1.00147314858 381 1.00147314858 382 0.545019400590E-01 383 1.00147314858 384 1.00147314858 elk-9.2.12/tests/test_029/PaxHeaders/Cr.in0000644000000000000000000000013214536061315015051 xustar0030 mtime=1702388429.449499222 30 atime=1702388429.449499222 30 ctime=1702388429.449499222 elk-9.2.12/tests/test_029/Cr.in0000644002504400250440000000335214536061315017576 0ustar00dewhurstdewhurst00000000000000 'Cr' : spsymb 'chromium' : spname -24.0000 : spzn 94783.09194 : spmass 0.408248E-06 2.4000 51.1100 500 : rminsp, rmt, rmaxsp, nrmt 10 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 3.00000 F 3 2 3 2.00000 F 4 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.7020 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6530 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1134 0 T elk-9.2.12/tests/test_029/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016054 xustar0030 mtime=1702388429.450499221 30 atime=1702388429.450499221 30 ctime=1702388429.450499221 elk-9.2.12/tests/test_029/TEST_900.OUT_0000644002504400250440000000007014536061315020573 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 4801 elk-9.2.12/tests/test_029/PaxHeaders/elk.in0000644000000000000000000000013214536061315015260 xustar0030 mtime=1702388429.452499218 30 atime=1702388429.451499219 30 ctime=1702388429.452499218 elk-9.2.12/tests/test_029/elk.in0000644002504400250440000000070214536061315020001 0ustar00dewhurstdewhurst00000000000000 ! Ultra long-range non-collinear calculation of bcc-Cr. tasks 0 700 500 test .true. maxscl 4 mixtype 0 ngridk 1 8 8 nempty 4 rndbfcu 0.2 spinorb .true. cmagz .true. avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale 5.4897 avecu 21.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scaleu 5.4897 ngridq 3 1 1 atoms 1 'Cr.in' 2 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.0 0.0 0.0 elk-9.2.12/tests/test_029/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.453499216 30 atime=1702388429.453499216 30 ctime=1702388429.453499216 elk-9.2.12/tests/test_029/TEST_500.OUT_0000644002504400250440000000013514536061315020571 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 79.8722898793 elk-9.2.12/tests/test_029/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016051 xustar0030 mtime=1702388429.454499215 30 atime=1702388429.454499215 30 ctime=1702388429.454499215 elk-9.2.12/tests/test_029/TEST_510.OUT_0000644002504400250440000000014514536061315020573 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.756127567537E-02 elk-9.2.12/tests/test_029/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016054 xustar0030 mtime=1702388429.455499213 30 atime=1702388429.455499213 30 ctime=1702388429.455499213 elk-9.2.12/tests/test_029/TEST_450.OUT_0000644002504400250440000000014014536061315020571 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.738853444978E-25 elk-9.2.12/tests/test_029/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.456499212 30 atime=1702388429.456499212 30 ctime=1702388429.456499212 elk-9.2.12/tests/test_029/TEST_400.OUT_0000644002504400250440000000014114536061315020565 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 48.0029203554 elk-9.2.12/tests/test_029/PaxHeaders/TEST_000.OUT_0000644000000000000000000000012714536061315016047 xustar0029 mtime=1702388429.45749921 29 atime=1702388429.45749921 29 ctime=1702388429.45749921 elk-9.2.12/tests/test_029/TEST_000.OUT_0000644002504400250440000000012614536061315020564 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -2090.79946716 elk-9.2.12/tests/test_029/PaxHeaders/TEST_730.OUT_0000644000000000000000000000013214536061315016055 xustar0030 mtime=1702388429.459499207 30 atime=1702388429.458499209 30 ctime=1702388429.459499207 elk-9.2.12/tests/test_029/TEST_730.OUT_0000644002504400250440000000037314536061315020602 0ustar00dewhurstdewhurst00000000000000'ULR muffin-tin charges' 2 6 0.500000000000E-04 1 22.7586593868 2 22.7579252119 3 22.7582561636 4 22.7578127997 5 22.7596025130 6 22.7590624046 elk-9.2.12/tests/test_029/PaxHeaders/TEST_770.OUT_0000644000000000000000000000013214536061315016061 xustar0030 mtime=1702388429.460499206 30 atime=1702388429.460499206 30 ctime=1702388429.460499206 elk-9.2.12/tests/test_029/TEST_770.OUT_0000644002504400250440000000037314536061315020606 0ustar00dewhurstdewhurst00000000000000'ULR muffin-tin moments' 2 6 0.100000000000E-01 1 0.669319719536E-03 2 0.891069242206E-03 3 0.441734270011E-02 4 -0.857753990399E-03 5 -0.778064924729E-03 6 0.223578212669E-02 elk-9.2.12/tests/PaxHeaders/test_0250000644000000000000000000000013214536061315014074 xustar0030 mtime=1702388429.473499187 30 atime=1702388429.461499204 30 ctime=1702388429.473499187 elk-9.2.12/tests/test_025/0000755002504400250440000000000014536061315016673 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_025/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016053 xustar0030 mtime=1702388429.462499203 30 atime=1702388429.462499203 30 ctime=1702388429.462499203 elk-9.2.12/tests/test_025/TEST_705.OUT_0000644002504400250440000000010114536061315020565 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 8 elk-9.2.12/tests/test_025/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.463499202 30 atime=1702388429.463499202 30 ctime=1702388429.463499202 elk-9.2.12/tests/test_025/TEST_900.OUT_0000644002504400250440000000007014536061315020567 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2133 elk-9.2.12/tests/test_025/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013014536061315016047 xustar0030 mtime=1702388429.465499198 28 atime=1702388429.4644992 30 ctime=1702388429.465499198 elk-9.2.12/tests/test_025/TEST_910.OUT_0000644002504400250440000001622514536061315020601 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 234 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.117405848391 5 0.117405848391 6 -0.117405848391 7 0.234811696782 8 0.234811696782 9 -0.234811696782 10 0.352217545173 11 0.352217545173 12 -0.352217545173 13 0.469623393565 14 0.469623393565 15 -0.469623393565 16 0.234811696782 17 0.00000000000 18 0.00000000000 19 0.352217545173 20 0.117405848391 21 -0.117405848391 22 0.469623393565 23 0.234811696782 24 -0.234811696782 25 0.587029241956 26 0.352217545173 27 -0.352217545173 28 0.704435090347 29 0.469623393565 30 -0.469623393565 31 0.821840938738 32 0.587029241956 33 -0.587029241956 34 0.939246787129 35 0.704435090347 36 -0.704435090347 37 0.352217545173 38 -0.117405848391 39 0.117405848391 40 0.469623393565 41 0.00000000000 42 0.00000000000 43 0.587029241956 44 0.117405848391 45 -0.117405848391 46 0.704435090347 47 0.234811696782 48 -0.234811696782 49 0.821840938738 50 0.352217545173 51 -0.352217545173 52 0.939246787129 53 0.469623393565 54 -0.469623393565 55 1.05665263552 56 0.587029241956 57 -0.587029241956 58 0.469623393565 59 -0.234811696782 60 0.234811696782 61 0.587029241956 62 -0.117405848391 63 0.117405848391 64 0.704435090347 65 -0.277555756156E-16 66 0.277555756156E-16 67 0.821840938738 68 0.117405848391 69 -0.117405848391 70 0.939246787129 71 0.234811696782 72 -0.234811696782 73 1.05665263552 74 0.352217545173 75 -0.352217545173 76 1.17405848391 77 0.469623393565 78 -0.469623393565 79 0.587029241956 80 -0.352217545173 81 0.352217545173 82 0.704435090347 83 -0.234811696782 84 0.234811696782 85 0.821840938738 86 -0.117405848391 87 0.117405848391 88 0.939246787129 89 0.00000000000 90 0.00000000000 91 0.00000000000 92 0.00000000000 93 0.234811696782 94 0.234811696782 95 0.234811696782 96 0.00000000000 97 0.352217545173 98 0.352217545173 99 -0.117405848391 100 0.469623393565 101 0.469623393565 102 -0.234811696782 103 0.587029241956 104 0.587029241956 105 -0.352217545173 106 0.704435090347 107 0.704435090347 108 -0.469623393565 109 0.821840938738 110 0.821840938738 111 -0.587029241956 112 0.469623393565 113 0.234811696782 114 0.00000000000 115 0.587029241956 116 0.352217545173 117 -0.117405848391 118 0.704435090347 119 0.469623393565 120 -0.234811696782 121 0.821840938738 122 0.587029241956 123 -0.352217545173 124 0.939246787129 125 0.704435090347 126 -0.469623393565 127 0.469623393565 128 -0.277555756156E-16 129 0.234811696782 130 0.704435090347 131 0.234811696782 132 0.277555756156E-16 133 0.821840938738 134 0.352217545173 135 -0.117405848391 136 0.939246787129 137 0.469623393565 138 -0.234811696782 139 1.05665263552 140 0.587029241956 141 -0.352217545173 142 0.587029241956 143 -0.117405848391 144 0.352217545173 145 0.704435090347 146 0.00000000000 147 0.234811696782 148 0.939246787129 149 0.234811696782 150 0.00000000000 151 1.05665263552 152 0.352217545173 153 -0.117405848391 154 1.17405848391 155 0.469623393565 156 -0.234811696782 157 0.704435090347 158 -0.234811696782 159 0.469623393565 160 0.821840938738 161 -0.117405848391 162 0.352217545173 163 0.939246787129 164 0.277555756156E-16 165 0.234811696782 166 1.17405848391 167 0.234811696782 168 -0.277555756156E-16 169 1.29146433230 170 0.352217545173 171 -0.117405848391 172 0.821840938738 173 -0.352217545173 174 0.587029241956 175 0.939246787129 176 -0.234811696782 177 0.469623393565 178 1.05665263552 179 -0.117405848391 180 0.352217545173 181 1.40887018069 182 0.234811696782 183 0.555111512313E-16 184 0.00000000000 185 0.00000000000 186 0.469623393565 187 0.469623393565 188 0.469623393565 189 0.00000000000 190 0.587029241956 191 0.587029241956 192 -0.117405848391 193 0.704435090347 194 0.704435090347 195 -0.234811696782 196 0.821840938738 197 0.821840938738 198 -0.352217545173 199 0.704435090347 200 0.469623393565 201 0.277555756156E-16 202 0.821840938738 203 0.587029241956 204 -0.117405848391 205 0.939246787129 206 0.704435090347 207 -0.234811696782 208 0.939246787129 209 0.469623393565 210 0.00000000000 211 1.05665263552 212 0.587029241956 213 -0.117405848391 214 1.17405848391 215 0.469623393565 216 -0.277555756156E-16 217 0.939246787129 218 -0.555111512313E-16 219 0.469623393565 220 0.277555756156E-16 221 -0.277555756156E-16 222 0.704435090347 223 0.704435090347 224 0.704435090347 225 0.277555756156E-16 226 0.821840938738 227 0.821840938738 228 -0.117405848391 229 0.939246787129 230 0.704435090347 231 -0.277555756156E-16 232 0.00000000000 233 0.00000000000 234 0.939246787129 elk-9.2.12/tests/test_025/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.466499197 30 atime=1702388429.466499197 30 ctime=1702388429.466499197 elk-9.2.12/tests/test_025/TEST_500.OUT_0000644002504400250440000000013514536061315020565 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 54.5620341252 elk-9.2.12/tests/test_025/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.467499195 30 atime=1702388429.467499195 30 ctime=1702388429.467499195 elk-9.2.12/tests/test_025/TEST_510.OUT_0000644002504400250440000000014514536061315020567 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.762250691006E-03 elk-9.2.12/tests/test_025/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.468499194 30 atime=1702388429.468499194 30 ctime=1702388429.468499194 elk-9.2.12/tests/test_025/TEST_450.OUT_0000644002504400250440000000014014536061315020565 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 1.69601933219 elk-9.2.12/tests/test_025/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.470499191 30 atime=1702388429.469499192 30 ctime=1702388429.470499191 elk-9.2.12/tests/test_025/TEST_400.OUT_0000644002504400250440000000014114536061315020561 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 26.9957254855 elk-9.2.12/tests/test_025/PaxHeaders/TEST_000.OUT_0000644000000000000000000000012714536061315016043 xustar0029 mtime=1702388429.47149919 29 atime=1702388429.47149919 29 ctime=1702388429.47149919 elk-9.2.12/tests/test_025/TEST_000.OUT_0000644002504400250440000000012614536061315020560 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1391.14531353 elk-9.2.12/tests/test_025/PaxHeaders/TEST_110.OUT_0000644000000000000000000000013214536061315016041 xustar0030 mtime=1702388429.472499188 30 atime=1702388429.472499188 30 ctime=1702388429.472499188 elk-9.2.12/tests/test_025/TEST_110.OUT_0000644002504400250440000000022714536061315020564 0ustar00dewhurstdewhurst00000000000000'hyperfine field' 2 3 0.100000000000E-03 1 -0.423845257787E-20 2 0.363034146506E-20 3 0.115859346902E-03 elk-9.2.12/tests/test_025/PaxHeaders/elk.in0000644000000000000000000000013214536061315015254 xustar0030 mtime=1702388429.474499185 30 atime=1702388429.473499187 30 ctime=1702388429.474499185 elk-9.2.12/tests/test_025/elk.in0000644002504400250440000000111014536061315017767 0ustar00dewhurstdewhurst00000000000000 ! Mossbauer hyperfine field for fcc Co including spin and orbital dipole terms. tasks 0 110 500 test .true. tbdip .true. tjr .true. spinorb .true. spincore .true. lorbcnd .true. bfieldc 0.0 0.0 0.01 nempty 10 ! large number of k-points required ngridk 8 8 8 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.3448 sppath '../../species/' atoms 1 : nspecies 'Co.in' : spfname 1 : natoms; atposl, bfcmt below 0.0 0.0 0.0 elk-9.2.12/tests/PaxHeaders/test_0020000644000000000000000000000013214536061315014067 xustar0030 mtime=1702388429.485499169 30 atime=1702388429.474499185 30 ctime=1702388429.485499169 elk-9.2.12/tests/test_002/0000755002504400250440000000000014536061315016666 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_002/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016036 xustar0030 mtime=1702388429.475499184 30 atime=1702388429.475499184 30 ctime=1702388429.475499184 elk-9.2.12/tests/test_002/TEST_400.OUT_0000644002504400250440000000014114536061315020554 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 25.9972158453 elk-9.2.12/tests/test_002/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.477499181 30 atime=1702388429.477499181 30 ctime=1702388429.477499181 elk-9.2.12/tests/test_002/TEST_450.OUT_0000644002504400250440000000014014536061315020560 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 2.73291280113 elk-9.2.12/tests/test_002/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016032 xustar0030 mtime=1702388429.478499179 30 atime=1702388429.478499179 30 ctime=1702388429.478499179 elk-9.2.12/tests/test_002/TEST_000.OUT_0000644002504400250440000000012614536061315020553 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1270.54887909 elk-9.2.12/tests/test_002/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.479499178 30 atime=1702388429.479499178 30 ctime=1702388429.479499178 elk-9.2.12/tests/test_002/TEST_705.OUT_0000644002504400250440000000010114536061315020560 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-9.2.12/tests/test_002/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.480499176 30 atime=1702388429.480499176 30 ctime=1702388429.480499176 elk-9.2.12/tests/test_002/TEST_900.OUT_0000644002504400250440000000007014536061315020562 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2315 elk-9.2.12/tests/test_002/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.482499173 30 atime=1702388429.481499175 30 ctime=1702388429.482499173 elk-9.2.12/tests/test_002/TEST_910.OUT_0000644002504400250440000000144714536061315020574 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.290028863884 5 0.290028863884 6 -0.652074116947E-17 7 0.580057727768 8 0.580057727768 9 -0.130414823389E-16 10 0.580057727768 11 0.290028863884 12 0.290028863884 13 0.580057727768 14 0.580057727768 15 0.580057727768 16 1.16011545554 17 1.16011545554 18 0.580057727768 19 1.16011545554 20 0.870086591652 21 0.870086591652 22 1.16011545554 23 1.16011545554 24 1.16011545554 elk-9.2.12/tests/test_002/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016037 xustar0030 mtime=1702388429.483499172 30 atime=1702388429.483499172 30 ctime=1702388429.483499172 elk-9.2.12/tests/test_002/TEST_500.OUT_0000644002504400250440000000013514536061315020560 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 26.9548182054 elk-9.2.12/tests/test_002/PaxHeaders/TEST_510.OUT_0000644000000000000000000000012714536061315016044 xustar0029 mtime=1702388429.48449917 29 atime=1702388429.48449917 29 ctime=1702388429.48449917 elk-9.2.12/tests/test_002/TEST_510.OUT_0000644002504400250440000000014514536061315020562 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.434909656680E-02 elk-9.2.12/tests/test_002/PaxHeaders/elk.in0000644000000000000000000000013214536061315015247 xustar0030 mtime=1702388429.486499167 30 atime=1702388429.486499167 30 ctime=1702388429.486499167 elk-9.2.12/tests/test_002/elk.in0000644002504400250440000000064214536061315017773 0ustar00dewhurstdewhurst00000000000000 tasks 0 500 test .true. maxscl 5 rgkmax 6.5 spinpol .true. bfieldc 0.0 0.0 0.5 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 sppath '../../species/' atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 elk-9.2.12/tests/PaxHeaders/test_0060000644000000000000000000000013214536061315014073 xustar0030 mtime=1702388429.505499139 30 atime=1702388429.487499166 30 ctime=1702388429.505499139 elk-9.2.12/tests/test_006/0000755002504400250440000000000014536061315016672 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_006/PaxHeaders/elk.in0000644000000000000000000000013214536061315015253 xustar0030 mtime=1702388429.488499164 30 atime=1702388429.488499164 30 ctime=1702388429.488499164 elk-9.2.12/tests/test_006/elk.in0000644002504400250440000000143414536061315017777 0ustar00dewhurstdewhurst00000000000000 ! GaAs using the Perdew-Burke-Ernzerhof GGA functional and spin-orbit coupling. tasks 0 10 25 120 121 125 180 185 186 187 500 test .true. bsefull .true. swidth 0.01 optcomp 1 2 2 wplot 50 100 4 0.0 0.5 rgkmax 6.0 xctype 20 mixtype 1 epspot 1.e-6 spinorb .true. avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms 0.00 0.00 0.00 0.0 0.0 0.0 : atposl, bfcmt 'As.in' : spfname 1 : natoms 0.25 0.25 0.25 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 vkloff 0.25 0.5 0.625 elk-9.2.12/tests/test_006/PaxHeaders/TEST_187.OUT_0000644000000000000000000000013214536061315016056 xustar0030 mtime=1702388429.489499163 30 atime=1702388429.489499163 30 ctime=1702388429.489499163 elk-9.2.12/tests/test_006/TEST_187.OUT_0000644002504400250440000000523514536061315020605 0ustar00dewhurstdewhurst00000000000000'BSE optical conductivity' 3 50 0.100000000000E-02 1 0.608639785477E-02 0.00000000000 2 -0.288647181622E-02 0.00000000000 3 -0.495713542383E-02 0.00000000000 4 -0.343974990579E-03 0.00000000000 5 0.822368762942E-02 0.00000000000 6 -0.208024865184E-02 0.00000000000 7 0.464370399917E-02 0.00000000000 8 -0.625622256505E-04 0.00000000000 9 0.398966186034E-02 0.00000000000 10 0.624723705963E-02 -0.602868482403E-02 11 -0.297343244966E-02 0.156762829541E-02 12 -0.502495429721E-02 0.139323011595E-04 13 -0.411819643671E-03 0.160539068172E-02 14 0.847953882185E-02 -0.813103132363E-02 15 -0.212817696515E-02 0.104361877402E-02 16 0.470932951023E-02 0.298966364087E-03 17 -0.971523311895E-04 0.106908084428E-02 18 0.406225037307E-02 -0.396417040796E-02 19 0.676700943581E-02 -0.123640890158E-01 20 -0.326084747108E-02 0.327964869434E-02 21 -0.523694421825E-02 0.773481003998E-05 22 -0.641851594397E-03 0.335367454884E-02 23 0.931412120656E-02 -0.167464961120E-01 24 -0.228344213560E-02 0.216659729543E-02 25 0.491655519471E-02 0.623329561330E-03 26 -0.213135120039E-03 0.221415446358E-02 27 0.429176564569E-02 -0.806899795096E-02 28 0.778062911552E-02 -0.193763043847E-01 29 -0.384905884640E-02 0.532492913689E-02 30 -0.562070595521E-02 -0.500235084226E-04 31 -0.113517819841E-02 0.542788164666E-02 32 0.109734133877E-01 -0.264430431387E-01 33 -0.258809734750E-02 0.347066619628E-02 34 0.530093569943E-02 0.100752027402E-02 35 -0.455826631007E-03 0.352834501685E-02 36 0.471895281030E-02 -0.124761534815E-01 37 0.962087518596E-02 -0.275891688492E-01 38 -0.500699533741E-02 0.800572222817E-02 39 -0.622820420938E-02 -0.224383982551E-03 40 -0.216548446555E-02 0.810832407027E-02 41 0.140788692665E-01 -0.380925187933E-01 42 -0.314846034057E-02 0.511623046475E-02 43 0.594076270111E-02 0.151330535573E-02 44 -0.940949098680E-03 0.514405560670E-02 45 0.543595983357E-02 -0.173969163276E-01 46 0.131629536570E-01 -0.378154767794E-01 47 -0.752773932276E-02 0.118437893099E-01 48 -0.713322020833E-02 -0.675608875306E-03 49 -0.453878081367E-02 0.118337324880E-01 50 0.203139355024E-01 -0.530865481485E-01 elk-9.2.12/tests/test_006/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016036 xustar0030 mtime=1702388429.490499161 30 atime=1702388429.490499161 30 ctime=1702388429.490499161 elk-9.2.12/tests/test_006/TEST_000.OUT_0000644002504400250440000000012614536061315020557 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -4205.36345946 elk-9.2.12/tests/test_006/PaxHeaders/TEST_010.OUT_0000644000000000000000000000013114536061315016036 xustar0030 mtime=1702388429.492499159 29 atime=1702388429.49149916 30 ctime=1702388429.492499159 elk-9.2.12/tests/test_006/TEST_010.OUT_0000644002504400250440000000612014536061315020560 0ustar00dewhurstdewhurst00000000000000'total DOS' 2 100 0.200000000000E-01 1 0.00000000000 2 0.309182304055E-01 3 0.233111292609 4 0.985129960467 5 2.71482491495 6 5.43136653833 7 8.24792420340 8 9.93994764790 9 9.98100856073 10 9.27051859703 11 9.11407276437 12 9.90172745839 13 10.6260961455 14 10.2195804252 15 8.70568393215 16 7.25800117758 17 6.88812998843 18 7.61214139585 19 8.60727032065 20 9.10168560303 21 8.93855442132 22 8.41931473495 23 7.94842815043 24 7.71058319960 25 7.69323679904 26 7.71994090529 27 7.67916691266 28 7.67193970611 29 8.07177985625 30 9.11837113897 31 10.5449462904 32 11.5336529374 33 11.4337748743 34 10.4055176338 35 9.40870534111 36 9.33998740327 37 10.2796061469 38 11.5192753343 39 12.2475967645 40 12.1551269550 41 11.4886300907 42 10.7210984753 43 10.2610390864 44 10.3082290131 45 10.8596144892 46 11.6759975340 47 12.4224781587 48 12.8225370190 49 12.8340426887 50 12.6021632281 51 0.00000000000 52 0.309710094165E-01 53 0.234576086215 54 0.991001063653 55 2.72632396448 56 5.44423697029 57 8.25121699868 58 9.92842119790 59 9.95903981305 60 9.25321655146 61 9.10880524352 62 9.90735674696 63 10.6330524530 64 10.2228326691 65 8.70435405346 66 7.25571958772 67 6.88988623228 68 7.62290981927 69 8.62788009954 70 9.12615005292 71 8.95612095124 72 8.41931860385 73 7.92768868137 74 7.67315389551 75 7.65489725818 76 7.69377607457 77 7.67394768128 78 7.67994696498 79 8.08633707877 80 9.13394515110 81 10.5623015427 82 11.5495112784 83 11.4441629684 84 10.4103427141 85 9.41179151542 86 9.34479009874 87 10.2844891549 88 11.5208491027 89 12.2440812909 90 12.1476353973 91 11.4805597778 92 10.7151562465 93 10.2588744326 94 10.3086191159 95 10.8611868288 96 11.6781392494 97 12.4264176897 98 12.8289690084 99 12.8422280661 100 12.6107552927 elk-9.2.12/tests/test_006/PaxHeaders/TEST_025.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.493499157 30 atime=1702388429.493499157 30 ctime=1702388429.493499157 elk-9.2.12/tests/test_006/TEST_025.OUT_0000644002504400250440000000022614536061315020567 0ustar00dewhurstdewhurst00000000000000'effective mass' 2 3 0.100000000000E-04 1 0.709362367709 2 0.709363581245 3 0.709364090021 elk-9.2.12/tests/test_006/PaxHeaders/TEST_121.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.494499156 30 atime=1702388429.494499156 30 ctime=1702388429.494499156 elk-9.2.12/tests/test_006/TEST_121.OUT_0000644002504400250440000000523114536061315020565 0ustar00dewhurstdewhurst00000000000000'optical conductivity' 3 50 0.100000000000E-01 1 -0.913488311752E-03 0.00000000000 2 -0.980340155710E-03 0.107047426194E-02 3 -0.101992621064E-02 0.215868713695E-02 4 -0.115286121806E-02 0.356635959057E-02 5 -0.162033670569E-02 0.523270260747E-02 6 -0.244560094663E-02 0.730462946641E-02 7 -0.418120506111E-02 0.101803287314E-01 8 -0.871152829776E-02 0.139317175153E-01 9 -0.197747569024E-01 0.125071397940E-01 10 -0.187330906379E-01 0.256291171794E-02 11 -0.219931638323E-01 0.407988753011E-02 12 -0.269192300853E-01 -0.706762850213E-02 13 -0.123960486120E-01 -0.135551664666E-01 14 -0.485442775083E-02 -0.335638747124E-02 15 -0.259384602648E-01 0.772399519152E-02 16 -0.380285853541E-01 -0.163454411162E-01 17 -0.244731144532E-01 -0.427491119769E-01 18 0.125034894288E-01 -0.390083373551E-01 19 0.149069935572E-01 -0.150119867494E-01 20 0.664536069427E-02 -0.584065546182E-02 21 -0.186536027324E-03 -0.652971644138E-02 22 0.198307817063E-03 -0.129763121876E-01 23 0.436047044687E-02 -0.130532329690E-01 24 0.862892446951E-02 -0.106163920699E-01 25 0.101487140600E-01 -0.547541506791E-02 26 0.881752679781E-02 -0.891251446654E-03 27 0.485211516168E-02 0.827650934017E-03 28 0.281993604839E-02 -0.697682021492E-03 29 0.536225411775E-02 0.115272260513E-02 30 0.882230704259E-03 0.373932515004E-02 31 -0.209763413696E-03 0.208699950207E-02 32 -0.199889637873E-02 0.455726630343E-02 33 -0.695873524470E-02 0.114453265210E-02 34 -0.671185968616E-02 -0.246382313786E-02 35 -0.544124185294E-02 -0.491643577523E-02 36 -0.328989723363E-02 -0.726258652081E-02 37 0.474898554596E-04 -0.609456781938E-02 38 0.158214205765E-03 -0.451249874492E-02 39 0.813134233322E-03 -0.445511269665E-02 40 0.112973360406E-02 -0.276882677855E-02 41 -0.295734119386E-03 -0.213465515603E-02 42 -0.667208109486E-03 -0.353834759999E-02 43 0.370301974375E-03 -0.351366469808E-02 44 0.729067608182E-03 -0.293541767448E-02 45 0.710725132825E-03 -0.278804499167E-02 46 0.873950916013E-03 -0.191612524847E-02 47 0.263184921506E-03 -0.172307607545E-02 48 -0.111916063477E-03 -0.208285313827E-02 49 0.429368478411E-03 -0.204776168713E-02 50 0.211849001545E-04 -0.160604506058E-02 elk-9.2.12/tests/test_006/PaxHeaders/TEST_125.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.496499153 30 atime=1702388429.495499154 30 ctime=1702388429.496499153 elk-9.2.12/tests/test_006/TEST_125.OUT_0000644002504400250440000000523614536061315020576 0ustar00dewhurstdewhurst00000000000000'non-linear susceptibility' 3 50 0.100000000000E-01 1 106.982715335 0.122455544858E-14 2 65.0038182261 -59.4662659967 3 23.6854463849 -49.0214649433 4 14.2130086870 -37.3015065994 5 11.4042060673 -37.7116082212 6 -8.31359594092 -36.7743262442 7 -14.2324409428 -18.1471146357 8 -6.62772932510 -5.47416693380 9 5.74832003415 -10.0620000693 10 -5.64031514364 -17.5941681411 11 -8.73702552701 -6.84006170970 12 -6.33809688118 0.267519937970 13 3.69548672206 -0.107932620715 14 3.80685182281 -4.08593133024 15 2.43459061474 -7.06518112598 16 0.506758215630 -4.38102274630 17 2.76492112819 -4.51319386564 18 2.58605192211 -6.84839135917 19 -0.366712587033 -7.03913958879 20 -0.721272057774 -4.46952052836 21 0.452565559552E-01 -4.08791325485 22 0.352771372895 -4.00084980843 23 0.420695466172 -3.89700401357 24 0.573881009112 -3.90713580950 25 0.401963972889 -4.12987995302 26 -0.107151170264E-01 -3.77173753759 27 0.536211503342E-01 -3.39161937827 28 0.240567359063 -3.30801575417 29 0.197146970613 -3.29984029774 30 0.132543699706 -3.18848901298 31 0.897439536949E-01 -3.05652122660 32 0.854936064851E-01 -2.91476515530 33 0.116522850425 -2.81607594775 34 0.146330340814 -2.75270189308 35 0.104934790620 -2.70021093626 36 0.930545774377E-01 -2.60203151678 37 0.109385751853 -2.52081454864 38 0.114269878656 -2.48336017985 39 0.861403250936E-01 -2.41693290450 40 0.898301779926E-01 -2.35308869519 41 0.754203459384E-01 -2.30129804567 42 0.692168585132E-01 -2.23645646286 43 0.716700419345E-01 -2.18123108007 44 0.714290815714E-01 -2.13301311072 45 0.665492411465E-01 -2.09087223394 46 0.593485845000E-01 -2.04201829757 47 0.577556591604E-01 -1.99599211942 48 0.554276568433E-01 -1.95304038383 49 0.543777705563E-01 -1.91083924268 50 0.560580417253E-01 -1.87347213753 elk-9.2.12/tests/test_006/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.497499151 30 atime=1702388429.497499151 30 ctime=1702388429.497499151 elk-9.2.12/tests/test_006/TEST_800.OUT_0000644002504400250440000000061514536061315020572 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 10 0.100000000000E-07 1 1712.43342568 2 221.982051261 3 50.3781715177 4 221.982051260 5 155.992040644 6 54.3472682978 7 78.7344360286 8 36.9525587541 9 54.3472682979 10 29.0461395875 elk-9.2.12/tests/test_006/PaxHeaders/TEST_400.OUT_0000644000000000000000000000012714536061315016046 xustar0029 mtime=1702388429.49849915 29 atime=1702388429.49849915 29 ctime=1702388429.49849915 elk-9.2.12/tests/test_006/TEST_400.OUT_0000644002504400250440000000014114536061315020560 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 63.9849331228 elk-9.2.12/tests/test_006/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.499499148 30 atime=1702388429.499499148 30 ctime=1702388429.499499148 elk-9.2.12/tests/test_006/TEST_450.OUT_0000644002504400250440000000014014536061315020564 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.435453955995E-20 elk-9.2.12/tests/test_006/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.501499145 30 atime=1702388429.501499145 30 ctime=1702388429.501499145 elk-9.2.12/tests/test_006/TEST_900.OUT_0000644002504400250440000000007014536061315020566 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 8873 elk-9.2.12/tests/test_006/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.502499144 30 atime=1702388429.502499144 30 ctime=1702388429.502499144 elk-9.2.12/tests/test_006/TEST_910.OUT_0000644002504400250440000001357714536061315020607 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 192 0.100000000000E-07 1 0.183727464068E-01 2 0.551182392204E-01 3 0.128609224848 4 0.165354717661 5 0.202100210475 6 -0.183727464068E-01 7 0.312336688915 8 0.349082181729 9 -0.165354717661 10 0.459318660170 11 0.496064152983 12 -0.312336688915 13 0.165354717661 14 -0.918637320339E-01 15 0.275591196102 16 0.312336688915 17 0.551182392204E-01 18 0.128609224848 19 0.459318660170 20 0.202100210475 21 -0.183727464068E-01 22 0.606300631424 23 0.349082181729 24 -0.165354717661 25 0.312336688915 26 -0.238845703288 27 0.422573167356 28 0.459318660170 29 -0.918637320339E-01 30 0.275591196102 31 0.606300631424 32 0.551182392204E-01 33 0.128609224848 34 0.753282602678 35 0.202100210475 36 -0.183727464068E-01 37 0.459318660170 38 -0.385827674543 39 0.569555138610 40 0.606300631424 41 -0.238845703288 42 0.422573167356 43 0.753282602678 44 -0.918637320339E-01 45 0.275591196102 46 0.900264573933 47 0.551182392204E-01 48 0.128609224848 49 -0.128609224848 50 0.202100210475 51 0.275591196102 52 0.183727464068E-01 53 0.349082181729 54 0.128609224848 55 0.165354717661 56 0.496064152983 57 -0.183727464068E-01 58 0.312336688915 59 0.643046124238 60 -0.165354717661 61 0.183727464068E-01 62 0.551182392204E-01 63 0.422573167356 64 0.165354717661 65 0.202100210475 66 0.275591196102 67 0.312336688915 68 0.349082181729 69 0.128609224848 70 0.459318660170 71 0.496064152983 72 -0.183727464068E-01 73 0.165354717661 74 -0.918637320339E-01 75 0.569555138610 76 0.312336688915 77 0.551182392204E-01 78 0.422573167356 79 0.459318660170 80 0.202100210475 81 0.275591196102 82 0.606300631424 83 0.349082181729 84 0.128609224848 85 0.312336688915 86 -0.238845703288 87 0.716537109865 88 0.459318660170 89 -0.918637320339E-01 90 0.569555138610 91 0.606300631424 92 0.551182392204E-01 93 0.422573167356 94 0.753282602678 95 0.202100210475 96 0.275591196102 97 -0.275591196102 98 0.349082181729 99 0.422573167356 100 -0.128609224848 101 0.496064152983 102 0.275591196102 103 0.183727464068E-01 104 0.643046124238 105 0.128609224848 106 0.165354717661 107 0.790028095492 108 -0.183727464068E-01 109 -0.128609224848 110 0.202100210475 111 0.569555138610 112 0.183727464068E-01 113 0.349082181729 114 0.422573167356 115 0.165354717661 116 0.496064152983 117 0.275591196102 118 0.312336688915 119 0.643046124238 120 0.128609224848 121 0.183727464068E-01 122 0.551182392204E-01 123 0.716537109865 124 0.165354717661 125 0.202100210475 126 0.569555138610 127 0.312336688915 128 0.349082181729 129 0.422573167356 130 0.459318660170 131 0.496064152983 132 0.275591196102 133 0.165354717661 134 -0.918637320339E-01 135 0.863519081119 136 0.312336688915 137 0.551182392204E-01 138 0.716537109865 139 0.459318660170 140 0.202100210475 141 0.569555138610 142 0.606300631424 143 0.349082181729 144 0.422573167356 145 -0.422573167356 146 0.496064152983 147 0.569555138610 148 -0.275591196102 149 0.643046124238 150 0.422573167356 151 -0.128609224848 152 0.790028095492 153 0.275591196102 154 0.183727464068E-01 155 0.937010066746 156 0.128609224848 157 -0.275591196102 158 0.349082181729 159 0.716537109865 160 -0.128609224848 161 0.496064152983 162 0.569555138610 163 0.183727464068E-01 164 0.643046124238 165 0.422573167356 166 0.165354717661 167 0.790028095492 168 0.275591196102 169 -0.128609224848 170 0.202100210475 171 0.863519081119 172 0.183727464068E-01 173 0.349082181729 174 0.716537109865 175 0.165354717661 176 0.496064152983 177 0.569555138610 178 0.312336688915 179 0.643046124238 180 0.422573167356 181 0.183727464068E-01 182 0.551182392204E-01 183 1.01050105237 184 0.165354717661 185 0.202100210475 186 0.863519081119 187 0.312336688915 188 0.349082181729 189 0.716537109865 190 0.459318660170 191 0.496064152983 192 0.569555138610 elk-9.2.12/tests/test_006/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016052 xustar0030 mtime=1702388429.503499142 30 atime=1702388429.503499142 30 ctime=1702388429.503499142 elk-9.2.12/tests/test_006/TEST_705.OUT_0000644002504400250440000000010114536061315020564 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 24 elk-9.2.12/tests/test_006/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.505499139 30 atime=1702388429.504499141 30 ctime=1702388429.505499139 elk-9.2.12/tests/test_006/TEST_500.OUT_0000644002504400250440000000013514536061315020564 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 1.11338916486 elk-9.2.12/tests/test_006/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.506499138 30 atime=1702388429.506499138 30 ctime=1702388429.506499138 elk-9.2.12/tests/test_006/TEST_510.OUT_0000644002504400250440000000014514536061315020566 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.683325266712E-01 elk-9.2.12/tests/PaxHeaders/test_0100000644000000000000000000000013214536061315014066 xustar0030 mtime=1702388429.516499123 30 atime=1702388429.507499136 30 ctime=1702388429.516499123 elk-9.2.12/tests/test_010/0000755002504400250440000000000014536061315016665 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_010/PaxHeaders/elk.in0000644000000000000000000000013214536061315015246 xustar0030 mtime=1702388429.508499135 30 atime=1702388429.508499135 30 ctime=1702388429.508499135 elk-9.2.12/tests/test_010/elk.in0000644002504400250440000000103614536061315017770 0ustar00dewhurstdewhurst00000000000000 ! Water molecule in a box. tasks 0 500 test .true. xctype 2 tefvit .true. maxscl 2 molecule .true. avec 5.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 5.0 rgkmax 7.0 gmaxvr 14.0 sppath '../../species/' atoms 2 : nspecies 'O.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atpos, bfcmt 'H.in' 2 1.811 0.0 0.0 0.0 0.0 0.0 -0.451907959 1.753710409 0.0 0.0 0.0 0.0 elk-9.2.12/tests/test_010/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016035 xustar0030 mtime=1702388429.509499133 30 atime=1702388429.509499133 30 ctime=1702388429.509499133 elk-9.2.12/tests/test_010/TEST_400.OUT_0000644002504400250440000000014114536061315020553 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 9.99660565443 elk-9.2.12/tests/test_010/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016031 xustar0030 mtime=1702388429.510499132 30 atime=1702388429.510499132 30 ctime=1702388429.510499132 elk-9.2.12/tests/test_010/TEST_000.OUT_0000644002504400250440000000012614536061315020552 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -79.0782174524 elk-9.2.12/tests/test_010/PaxHeaders/TEST_705.OUT_0000644000000000000000000000012714536061315016051 xustar0029 mtime=1702388429.51149913 29 atime=1702388429.51149913 29 ctime=1702388429.51149913 elk-9.2.12/tests/test_010/TEST_705.OUT_0000644002504400250440000000010114536061315020557 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 2 elk-9.2.12/tests/test_010/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.513499127 30 atime=1702388429.512499129 30 ctime=1702388429.513499127 elk-9.2.12/tests/test_010/TEST_900.OUT_0000644002504400250440000000007014536061315020561 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 9771 elk-9.2.12/tests/test_010/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.514499126 30 atime=1702388429.514499126 30 ctime=1702388429.514499126 elk-9.2.12/tests/test_010/TEST_910.OUT_0000644002504400250440000000023414536061315020564 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 3 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 elk-9.2.12/tests/test_010/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016036 xustar0030 mtime=1702388429.515499125 30 atime=1702388429.515499125 30 ctime=1702388429.515499125 elk-9.2.12/tests/test_010/TEST_500.OUT_0000644002504400250440000000013514536061315020557 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.666133815123E-12 elk-9.2.12/tests/test_010/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016037 xustar0030 mtime=1702388429.516499123 30 atime=1702388429.516499123 30 ctime=1702388429.516499123 elk-9.2.12/tests/test_010/TEST_510.OUT_0000644002504400250440000000014514536061315020561 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.184259173453 elk-9.2.12/tests/PaxHeaders/test_0140000644000000000000000000000013214536061315014072 xustar0030 mtime=1702388429.527499107 30 atime=1702388429.517499121 30 ctime=1702388429.527499107 elk-9.2.12/tests/test_014/0000755002504400250440000000000014536061315016671 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_014/PaxHeaders/elk.in0000644000000000000000000000012714536061315015256 xustar0029 mtime=1702388429.51849912 29 atime=1702388429.51849912 29 ctime=1702388429.51849912 elk-9.2.12/tests/test_014/elk.in0000644002504400250440000000072614536061315020001 0ustar00dewhurstdewhurst00000000000000 ! Optimised effective potential (OEP) test tasks 0 500 test .true. xctype -1 maxscl 2 maxitoep 20 nempty 8 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 0.25 0.25 0.25 0.0 0.0 0.0 ngridk 4 4 4 ngridq 2 2 2 elk-9.2.12/tests/test_014/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016041 xustar0030 mtime=1702388429.520499117 30 atime=1702388429.519499118 30 ctime=1702388429.520499117 elk-9.2.12/tests/test_014/TEST_400.OUT_0000644002504400250440000000014114536061315020557 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9762758549 elk-9.2.12/tests/test_014/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016035 xustar0030 mtime=1702388429.521499116 30 atime=1702388429.520499117 30 ctime=1702388429.521499116 elk-9.2.12/tests/test_014/TEST_000.OUT_0000644002504400250440000000012614536061315020556 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -515.458934243 elk-9.2.12/tests/test_014/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.522499114 30 atime=1702388429.522499114 30 ctime=1702388429.522499114 elk-9.2.12/tests/test_014/TEST_500.OUT_0000644002504400250440000000013514536061315020563 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 134.107457656 elk-9.2.12/tests/test_014/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.523499113 30 atime=1702388429.523499113 30 ctime=1702388429.523499113 elk-9.2.12/tests/test_014/TEST_510.OUT_0000644002504400250440000000014514536061315020565 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.403529075049E-02 elk-9.2.12/tests/test_014/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016051 xustar0030 mtime=1702388429.524499111 30 atime=1702388429.524499111 30 ctime=1702388429.524499111 elk-9.2.12/tests/test_014/TEST_705.OUT_0000644002504400250440000000010114536061315020563 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-9.2.12/tests/test_014/PaxHeaders/TEST_900.OUT_0000644000000000000000000000012714536061315016052 xustar0029 mtime=1702388429.52549911 29 atime=1702388429.52549911 29 ctime=1702388429.52549911 elk-9.2.12/tests/test_014/TEST_900.OUT_0000644002504400250440000000007014536061315020565 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 7799 elk-9.2.12/tests/test_014/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.527499107 30 atime=1702388429.526499108 30 ctime=1702388429.527499107 elk-9.2.12/tests/test_014/TEST_910.OUT_0000644002504400250440000000144714536061315020577 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.153099057192 5 0.153099057192 6 -0.153099057192 7 0.306198114385 8 0.306198114385 9 -0.306198114385 10 0.306198114385 11 0.00000000000 12 0.00000000000 13 0.459297171577 14 0.153099057192 15 -0.153099057192 16 0.612396228770 17 0.306198114385 18 -0.306198114385 19 0.612396228770 20 0.00000000000 21 0.00000000000 22 0.612396228770 23 0.306198114385 24 0.00000000000 elk-9.2.12/tests/test_014/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.528499105 30 atime=1702388429.528499105 30 ctime=1702388429.528499105 elk-9.2.12/tests/test_014/TEST_800.OUT_0000644002504400250440000000026414536061315020571 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 3 0.100000000000E-07 1 394.581580334 2 51.1494504119 3 35.9439292598 elk-9.2.12/tests/PaxHeaders/test_0180000644000000000000000000000013214536061315014076 xustar0030 mtime=1702388429.540499087 30 atime=1702388429.529499104 30 ctime=1702388429.540499087 elk-9.2.12/tests/test_018/0000755002504400250440000000000014536061315016675 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_018/PaxHeaders/TEST_210.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.530499102 30 atime=1702388429.530499102 30 ctime=1702388429.530499102 elk-9.2.12/tests/test_018/TEST_210.OUT_0000644002504400250440000001415514536061315020574 0ustar00dewhurstdewhurst00000000000000'phonon DOS' 2 200 0.100000000000E-01 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.00000000000 5 0.00000000000 6 0.00000000000 7 0.00000000000 8 0.759329181343E-05 9 0.759329181343E-04 10 0.448004216993E-03 11 0.192869612061E-02 12 0.673524983851E-02 13 0.201070367220E-01 14 0.531935402504E-01 15 0.127304068349 16 0.279101564992 17 0.563710797646 18 1.05263526422 19 1.82340753633 20 2.94694895950 21 4.47922209441 22 6.46634100223 23 8.95122549940 24 11.9740162575 25 15.5543976201 26 19.6835664308 27 24.3353106463 28 29.5053020903 29 35.2278725661 30 41.5568256085 31 48.5074667626 32 56.0286779879 33 64.0261910977 34 72.4358680872 35 81.2755278811 36 90.6406029709 37 100.643291836 38 111.355163784 39 122.805336557 40 135.030885668 41 148.125147860 42 162.208137642 43 177.335842884 44 193.416556870 45 210.240370643 46 227.597830839 47 245.404641797 48 263.712883372 49 282.632010336 50 302.242430587 51 322.603564164 52 343.829715420 53 366.156883865 54 389.907419922 55 415.361576806 56 442.595064698 57 471.412877741 58 501.443450855 59 532.387679213 60 564.243811296 61 597.348832332 62 632.171461038 63 669.042780124 64 708.035047356 65 749.091697770 66 792.254372980 67 837.779786995 68 886.040841314 69 937.328546314 70 991.739296305 71 1049.26159504 72 1109.99004988 73 1174.32359212 74 1243.02233558 75 1317.14294757 76 1397.94024993 77 1486.86951223 78 1585.73783667 79 1696.91502888 80 1823.27461828 81 1967.42307317 82 2130.06712144 83 2308.12455991 84 2493.92097002 85 2676.64270948 86 2845.88795056 87 2995.50001176 88 3125.38487294 89 3240.33885207 90 3346.97682506 91 3450.97404858 92 3556.07485076 93 3664.75452323 94 3779.31182373 95 3902.43482819 96 4037.00248256 97 4185.39420052 98 4348.28961713 99 4522.66829807 100 4699.12683733 101 4859.92973508 102 4980.34181286 103 5034.88883207 104 5007.12906830 105 4897.88587739 106 4726.62013730 107 4524.28890397 108 4321.81791864 109 4140.74704182 110 3990.51305965 111 3871.55367477 112 3780.33953022 113 3712.69702884 114 3664.86914144 115 3633.51174689 116 3616.00004669 117 3610.86831784 118 3617.88488395 119 3637.38165288 120 3669.55049190 121 3714.22858567 122 3771.52046343 123 3842.72475021 124 3931.21175895 125 4042.73866274 126 4184.92526413 127 4365.15704170 128 4586.72936263 129 4844.09744323 130 5119.92674998 131 5386.70362785 132 5613.79581379 133 5777.18827969 134 5867.06779943 135 5889.14134939 136 5859.30604790 137 5794.83160707 138 5706.86407062 139 5597.70794439 140 5463.58485448 141 5300.64898334 142 5110.56986299 143 4902.50141933 144 4690.60987472 145 4489.07575733 146 4307.72936551 147 4150.47143654 148 4016.35794455 149 3901.72035511 150 3801.85441134 151 3712.00854507 152 3628.17706201 153 3548.01493091 154 3471.54427104 155 3401.11421148 156 3340.50062796 157 3293.66467253 158 3263.92722073 159 3253.99169200 160 3266.62867097 161 3305.32571101 162 3374.23064779 163 3477.20285791 164 3616.58524650 165 3792.57426722 166 4003.60753445 167 4246.83855091 168 4516.87357361 169 4801.45176488 170 5075.52877781 171 5298.41419657 172 5419.41700714 173 5393.16576216 174 5198.47573939 175 4849.69541032 176 4392.45879835 177 3885.23396698 178 3377.27714227 179 2895.02002632 180 2442.50055453 181 2012.45312613 182 1599.75991813 183 1209.64607204 184 857.467441148 185 561.764788820 186 335.407954972 187 179.875151035 188 85.2655597437 189 35.0453804529 190 12.1814472722 191 3.45576785063 192 0.756489290205 193 0.115083930724 194 0.940049526503E-02 195 0.00000000000 196 0.00000000000 197 0.00000000000 198 0.00000000000 199 0.00000000000 200 0.00000000000 elk-9.2.12/tests/test_018/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214536061315016051 xustar0030 mtime=1702388429.531499101 30 atime=1702388429.531499101 30 ctime=1702388429.531499101 elk-9.2.12/tests/test_018/TEST_800.OUT_0000644002504400250440000000026414536061315020575 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 3 0.100000000000E-07 1 231.402239370 2 29.8969231706 3 12.8329633332 elk-9.2.12/tests/test_018/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.532499099 30 atime=1702388429.532499099 30 ctime=1702388429.532499099 elk-9.2.12/tests/test_018/TEST_400.OUT_0000644002504400250440000000014114536061315020563 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 41.0025904470 elk-9.2.12/tests/test_018/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016041 xustar0030 mtime=1702388429.534499096 30 atime=1702388429.533499098 30 ctime=1702388429.534499096 elk-9.2.12/tests/test_018/TEST_000.OUT_0000644002504400250440000000012614536061315020562 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -3816.44181119 elk-9.2.12/tests/test_018/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016055 xustar0030 mtime=1702388429.535499095 30 atime=1702388429.535499095 30 ctime=1702388429.535499095 elk-9.2.12/tests/test_018/TEST_705.OUT_0000644002504400250440000000010114536061315020567 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-9.2.12/tests/test_018/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016052 xustar0030 mtime=1702388429.536499093 30 atime=1702388429.536499093 30 ctime=1702388429.536499093 elk-9.2.12/tests/test_018/TEST_900.OUT_0000644002504400250440000000007014536061315020571 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 3511 elk-9.2.12/tests/test_018/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016053 xustar0030 mtime=1702388429.537499092 30 atime=1702388429.537499092 30 ctime=1702388429.537499092 elk-9.2.12/tests/test_018/TEST_910.OUT_0000644002504400250440000000144714536061315020603 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.251891649582 5 0.251891649582 6 0.384969705319E-17 7 0.503783299164 8 0.503783299164 9 0.769939410638E-17 10 0.503783299164 11 0.251891649582 12 0.251891649582 13 0.503783299164 14 0.503783299164 15 0.503783299164 16 1.00756659833 17 1.00756659833 18 0.503783299164 19 1.00756659833 20 0.755674948747 21 0.755674948747 22 1.00756659833 23 1.00756659833 24 1.00756659833 elk-9.2.12/tests/test_018/PaxHeaders/TEST_500.OUT_0000644000000000000000000000012714536061315016052 xustar0029 mtime=1702388429.53849909 29 atime=1702388429.53849909 29 ctime=1702388429.53849909 elk-9.2.12/tests/test_018/TEST_500.OUT_0000644002504400250440000000013514536061315020567 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 25.5287073048 elk-9.2.12/tests/test_018/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.540499087 30 atime=1702388429.539499089 30 ctime=1702388429.540499087 elk-9.2.12/tests/test_018/TEST_510.OUT_0000644002504400250440000000014514536061315020571 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.157006827256E-01 elk-9.2.12/tests/test_018/PaxHeaders/elk.in0000644000000000000000000000013214536061315015256 xustar0030 mtime=1702388429.541499086 30 atime=1702388429.541499086 30 ctime=1702388429.541499086 elk-9.2.12/tests/test_018/elk.in0000644002504400250440000000066314536061315020005 0ustar00dewhurstdewhurst00000000000000 tasks 0 205 210 500 test .true. wplot 200 100 10 0.0 1.0 swidth 0.01 rgkmax 6.5 ngridq 2 2 2 ngridk 4 4 4 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 3.118 sppath '../../species/' atoms 1 : nspecies 'Nb.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-9.2.12/tests/PaxHeaders/test_0280000644000000000000000000000013214536061315014077 xustar0030 mtime=1702388429.555499065 30 atime=1702388429.541499086 30 ctime=1702388429.555499065 elk-9.2.12/tests/test_028/0000755002504400250440000000000014536061315016676 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_028/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.543499083 30 atime=1702388429.543499083 30 ctime=1702388429.543499083 elk-9.2.12/tests/test_028/TEST_400.OUT_0000644002504400250440000000014114536061315020564 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 155.997879269 elk-9.2.12/tests/test_028/PaxHeaders/TEST_000.OUT_0000644000000000000000000000012714536061315016046 xustar0029 mtime=1702388429.54549908 29 atime=1702388429.54549908 29 ctime=1702388429.54549908 elk-9.2.12/tests/test_028/TEST_000.OUT_0000644002504400250440000000012614536061315020563 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -20455.5640301 elk-9.2.12/tests/test_028/PaxHeaders/TEST_750.OUT_0000644000000000000000000000013214536061315016056 xustar0030 mtime=1702388429.546499079 30 atime=1702388429.546499079 30 ctime=1702388429.546499079 elk-9.2.12/tests/test_028/TEST_750.OUT_0000644002504400250440000000051614536061315020602 0ustar00dewhurstdewhurst00000000000000'total forces' 2 9 0.100000000000E-02 1 0.355308782031E-02 2 0.315312183662E-18 3 0.00000000000 4 -0.177654391016E-02 5 0.307706430345E-02 6 0.401235405081E-35 7 -0.177654391016E-02 8 -0.307706430345E-02 9 -0.401235405081E-35 elk-9.2.12/tests/test_028/PaxHeaders/TEST_440.OUT_0000644000000000000000000000013214536061315016052 xustar0030 mtime=1702388429.547499077 30 atime=1702388429.547499077 30 ctime=1702388429.547499077 elk-9.2.12/tests/test_028/TEST_440.OUT_0000644002504400250440000000020114536061315020565 0ustar00dewhurstdewhurst00000000000000'Stress tensor components' 2 2 0.100000000000E-01 1 0.217126755160E-01 2 0.538347449037E-02 elk-9.2.12/tests/test_028/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016056 xustar0030 mtime=1702388429.548499076 30 atime=1702388429.548499076 30 ctime=1702388429.548499076 elk-9.2.12/tests/test_028/TEST_705.OUT_0000644002504400250440000000010114536061315020570 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 6 elk-9.2.12/tests/test_028/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016053 xustar0030 mtime=1702388429.550499073 30 atime=1702388429.549499074 30 ctime=1702388429.550499073 elk-9.2.12/tests/test_028/TEST_900.OUT_0000644002504400250440000000007014536061315020572 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 20599 elk-9.2.12/tests/test_028/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016054 xustar0030 mtime=1702388429.551499071 30 atime=1702388429.551499071 30 ctime=1702388429.551499071 elk-9.2.12/tests/test_028/TEST_910.OUT_0000644002504400250440000000301714536061315020577 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 48 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.184209741270 5 -0.106353544083 6 0.00000000000 7 0.368419482539 8 -0.212707088167 9 0.00000000000 10 0.368419482539 11 0.00000000000 12 0.00000000000 13 0.921048706349 14 -0.106353544083 15 0.00000000000 16 0.00000000000 17 0.00000000000 18 0.139678490521 19 0.184209741270 20 -0.106353544083 21 0.139678490521 22 0.368419482539 23 -0.212707088167 24 0.139678490521 25 0.552629223809 26 -0.319060632250 27 0.139678490521 28 0.368419482539 29 0.00000000000 30 0.139678490521 31 0.921048706349 32 -0.106353544083 33 0.139678490521 34 0.00000000000 35 0.00000000000 36 0.279356981042 37 0.184209741270 38 -0.106353544083 39 0.279356981042 40 0.368419482539 41 -0.212707088167 42 0.279356981042 43 0.368419482539 44 0.00000000000 45 0.279356981042 46 0.921048706349 47 -0.106353544083 48 0.279356981042 elk-9.2.12/tests/test_028/PaxHeaders/elk.in0000644000000000000000000000013114536061315015256 xustar0030 mtime=1702388429.553499068 29 atime=1702388429.55249907 30 ctime=1702388429.553499068 elk-9.2.12/tests/test_028/elk.in0000644002504400250440000000122414536061315020000 0ustar00dewhurstdewhurst00000000000000 ! Stress tensor of hexagonal tellurium. tasks 0 440 500 test .true. tforce .true. epsengy 1.e-6 lradstp 2 ptnucl .false. maxlatvstp 1 lorbcnd .true. autolinengy .true. ngridk 4 4 4 swidth 0.01 avec 4.2636082 -7.3847860 0.0000000 4.2636082 7.3847860 0.0000000 0.0000000 0.0000000 11.2457997 sppath '../../species/' atoms 1 : nspecies 'Te.in' : spfname 3 : natoms; atposl below -0.268334780 -0.268334780 0.000000000 0.268334780 0.000000000 0.333333333 0.000000000 0.268334780 0.666666666 elk-9.2.12/tests/test_028/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.554499067 30 atime=1702388429.554499067 30 ctime=1702388429.554499067 elk-9.2.12/tests/test_028/TEST_500.OUT_0000644002504400250440000000013514536061315020570 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 26.5971486661 elk-9.2.12/tests/test_028/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.555499065 30 atime=1702388429.555499065 30 ctime=1702388429.555499065 elk-9.2.12/tests/test_028/TEST_510.OUT_0000644002504400250440000000014514536061315020572 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.215162107580E-01 elk-9.2.12/tests/PaxHeaders/test_0270000644000000000000000000000013214536061315014076 xustar0030 mtime=1702388429.567499047 30 atime=1702388429.556499064 30 ctime=1702388429.567499047 elk-9.2.12/tests/test_027/0000755002504400250440000000000014536061315016675 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_027/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016055 xustar0030 mtime=1702388429.557499062 30 atime=1702388429.557499062 30 ctime=1702388429.557499062 elk-9.2.12/tests/test_027/TEST_705.OUT_0000644002504400250440000000010114536061315020567 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 4 elk-9.2.12/tests/test_027/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016052 xustar0030 mtime=1702388429.559499059 30 atime=1702388429.558499061 30 ctime=1702388429.559499059 elk-9.2.12/tests/test_027/TEST_900.OUT_0000644002504400250440000000007014536061315020571 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 8873 elk-9.2.12/tests/test_027/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016053 xustar0030 mtime=1702388429.560499058 30 atime=1702388429.560499058 30 ctime=1702388429.560499058 elk-9.2.12/tests/test_027/TEST_910.OUT_0000644002504400250440000001052214536061315020575 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 141 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.294085021773 5 0.294085021773 6 -0.294085021773 7 0.588170043546 8 0.00000000000 9 0.00000000000 10 -0.367606277216E-01 11 0.367606277216E-01 12 0.367606277216E-01 13 0.257324394051 14 0.330845649494 15 -0.257324394051 16 0.551409415824 17 0.367606277216E-01 18 0.367606277216E-01 19 -0.735212554432E-01 20 0.735212554432E-01 21 0.735212554432E-01 22 0.220563766330 23 0.367606277216 24 -0.220563766330 25 0.514648788102 26 0.735212554432E-01 27 0.735212554432E-01 28 -0.110281883165 29 0.110281883165 30 0.110281883165 31 0.183803138608 32 0.404366904938 33 -0.183803138608 34 0.477888160381 35 0.110281883165 36 0.110281883165 37 -0.147042510886 38 0.147042510886 39 0.147042510886 40 0.147042510886 41 0.441127532659 42 -0.147042510886 43 0.441127532659 44 0.147042510886 45 0.147042510886 46 -0.183803138608 47 0.183803138608 48 0.183803138608 49 0.110281883165 50 0.477888160381 51 -0.110281883165 52 0.404366904938 53 0.183803138608 54 0.183803138608 55 -0.220563766330 56 0.220563766330 57 0.220563766330 58 0.735212554432E-01 59 0.514648788102 60 -0.735212554432E-01 61 0.367606277216 62 0.220563766330 63 0.220563766330 64 -0.257324394051 65 0.257324394051 66 0.257324394051 67 0.367606277216E-01 68 0.551409415824 69 -0.367606277216E-01 70 0.330845649494 71 0.257324394051 72 0.257324394051 73 -0.294085021773 74 0.294085021773 75 0.294085021773 76 0.00000000000 77 0.588170043546 78 0.00000000000 79 -0.330845649494 80 0.330845649494 81 0.330845649494 82 -0.367606277216E-01 83 0.624930671267 84 0.367606277216E-01 85 0.257324394051 86 0.330845649494 87 0.330845649494 88 -0.367606277216 89 0.367606277216 90 0.367606277216 91 -0.735212554432E-01 92 0.661691298989 93 0.735212554432E-01 94 0.220563766330 95 0.367606277216 96 0.367606277216 97 -0.404366904938 98 0.404366904938 99 0.404366904938 100 -0.110281883165 101 0.698451926710 102 0.110281883165 103 0.183803138608 104 0.404366904938 105 0.404366904938 106 -0.441127532659 107 0.441127532659 108 0.441127532659 109 -0.147042510886 110 0.735212554432 111 0.147042510886 112 0.147042510886 113 0.441127532659 114 0.441127532659 115 -0.477888160381 116 0.477888160381 117 0.477888160381 118 -0.183803138608 119 0.771973182154 120 0.183803138608 121 0.110281883165 122 0.477888160381 123 0.477888160381 124 -0.514648788102 125 0.514648788102 126 0.514648788102 127 -0.220563766330 128 0.808733809875 129 0.220563766330 130 0.735212554432E-01 131 0.514648788102 132 0.514648788102 133 -0.551409415824 134 0.551409415824 135 0.551409415824 136 -0.257324394051 137 0.845494437597 138 0.257324394051 139 0.367606277216E-01 140 0.551409415824 141 0.551409415824 elk-9.2.12/tests/test_027/PaxHeaders/elk.in0000644000000000000000000000013214536061315015256 xustar0030 mtime=1702388429.561499056 30 atime=1702388429.561499056 30 ctime=1702388429.561499056 elk-9.2.12/tests/test_027/elk.in0000644002504400250440000000052114536061315017776 0ustar00dewhurstdewhurst00000000000000 ! Calculation of the Born effective charges for GaAs. tasks 208 500 test .true. deltaph 0.01 mixtype 1 ngridk 2 2 2 lradstp 2 nkspolar 8 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 10.6826 sppath '../../species/' atoms 2 'Ga.in' 1 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-9.2.12/tests/test_027/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.563499053 30 atime=1702388429.562499055 30 ctime=1702388429.563499053 elk-9.2.12/tests/test_027/TEST_500.OUT_0000644002504400250440000000013514536061315020567 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 5.16877167560 elk-9.2.12/tests/test_027/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.564499052 30 atime=1702388429.564499052 30 ctime=1702388429.564499052 elk-9.2.12/tests/test_027/TEST_510.OUT_0000644002504400250440000000014514536061315020571 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.569868318113E-02 elk-9.2.12/tests/test_027/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.565499051 30 atime=1702388429.565499051 30 ctime=1702388429.565499051 elk-9.2.12/tests/test_027/TEST_400.OUT_0000644002504400250440000000014114536061315020563 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 63.9976531882 elk-9.2.12/tests/test_027/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016041 xustar0030 mtime=1702388429.566499049 30 atime=1702388429.566499049 30 ctime=1702388429.566499049 elk-9.2.12/tests/test_027/TEST_000.OUT_0000644002504400250440000000012614536061315020562 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -4198.64850230 elk-9.2.12/tests/test_027/PaxHeaders/TEST_208.OUT_0000644000000000000000000000013214536061315016053 xustar0030 mtime=1702388429.568499046 30 atime=1702388429.567499047 30 ctime=1702388429.568499046 elk-9.2.12/tests/test_027/TEST_208.OUT_0000644002504400250440000000023514536061315020575 0ustar00dewhurstdewhurst00000000000000'Born effective charge' 2 3 0.100000000000E-02 1 -2.18841746345 2 -0.408295452363E-03 3 -0.920668155135E-03 elk-9.2.12/tests/PaxHeaders/test_0030000644000000000000000000000013014536061315014066 xustar0029 mtime=1702388429.57949903 30 atime=1702388429.568499046 29 ctime=1702388429.57949903 elk-9.2.12/tests/test_003/0000755002504400250440000000000014536061315016667 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_003/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.570499043 30 atime=1702388429.569499044 30 ctime=1702388429.570499043 elk-9.2.12/tests/test_003/TEST_705.OUT_0000644002504400250440000000010114536061315020561 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 12 elk-9.2.12/tests/test_003/PaxHeaders/elk.in0000644000000000000000000000013214536061315015250 xustar0030 mtime=1702388429.571499042 30 atime=1702388429.571499042 30 ctime=1702388429.571499042 elk-9.2.12/tests/test_003/elk.in0000644002504400250440000000067314536061315020000 0ustar00dewhurstdewhurst00000000000000 tasks 0 500 test .true. xctype 21 maxscl 10 tforce .true. mixtype 3 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 0.27 0.27 0.27 0.0 0.0 0.0 ngridk 2 2 2 vkloff 0.5 0.5 0.5 elk-9.2.12/tests/test_003/PaxHeaders/TEST_900.OUT_0000644000000000000000000000012714536061315016050 xustar0029 mtime=1702388429.57249904 29 atime=1702388429.57249904 29 ctime=1702388429.57249904 elk-9.2.12/tests/test_003/TEST_900.OUT_0000644002504400250440000000007014536061315020563 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 7799 elk-9.2.12/tests/test_003/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.573499039 30 atime=1702388429.573499039 30 ctime=1702388429.573499039 elk-9.2.12/tests/test_003/TEST_910.OUT_0000644002504400250440000000037114536061315020570 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 6 0.100000000000E-07 1 0.153099057192 2 0.153099057192 3 0.153099057192 4 0.459297171577 5 0.459297171577 6 -0.153099057192 elk-9.2.12/tests/test_003/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016040 xustar0030 mtime=1702388429.575499036 30 atime=1702388429.574499037 30 ctime=1702388429.575499036 elk-9.2.12/tests/test_003/TEST_500.OUT_0000644002504400250440000000013514536061315020561 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.555112133303E-12 elk-9.2.12/tests/test_003/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016041 xustar0030 mtime=1702388429.576499034 30 atime=1702388429.576499034 30 ctime=1702388429.576499034 elk-9.2.12/tests/test_003/TEST_510.OUT_0000644002504400250440000000014514536061315020563 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.843634487013E-01 elk-9.2.12/tests/test_003/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016037 xustar0030 mtime=1702388429.577499033 30 atime=1702388429.577499033 30 ctime=1702388429.577499033 elk-9.2.12/tests/test_003/TEST_400.OUT_0000644002504400250440000000014114536061315020555 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9922880849 elk-9.2.12/tests/test_003/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016033 xustar0030 mtime=1702388429.578499031 30 atime=1702388429.578499031 30 ctime=1702388429.578499031 elk-9.2.12/tests/test_003/TEST_000.OUT_0000644002504400250440000000012614536061315020554 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -580.315441324 elk-9.2.12/tests/test_003/PaxHeaders/TEST_750.OUT_0000644000000000000000000000012714536061315016053 xustar0029 mtime=1702388429.57949903 29 atime=1702388429.57949903 29 ctime=1702388429.57949903 elk-9.2.12/tests/test_003/TEST_750.OUT_0000644002504400250440000000036114536061315020571 0ustar00dewhurstdewhurst00000000000000'total forces' 2 6 0.100000000000E-02 1 0.152879403910E-01 2 0.152879403910E-01 3 0.152879403910E-01 4 -0.152879403910E-01 5 -0.152879403910E-01 6 -0.152879403910E-01 elk-9.2.12/tests/PaxHeaders/test_0070000644000000000000000000000013214536061315014074 xustar0030 mtime=1702388429.596499004 30 atime=1702388429.580499028 30 ctime=1702388429.596499004 elk-9.2.12/tests/test_007/0000755002504400250440000000000014536061315016673 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_007/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016053 xustar0030 mtime=1702388429.581499027 30 atime=1702388429.581499027 30 ctime=1702388429.581499027 elk-9.2.12/tests/test_007/TEST_705.OUT_0000644002504400250440000000010114536061315020565 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-9.2.12/tests/test_007/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.583499024 30 atime=1702388429.582499025 30 ctime=1702388429.583499024 elk-9.2.12/tests/test_007/TEST_900.OUT_0000644002504400250440000000007014536061315020567 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2801 elk-9.2.12/tests/test_007/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016051 xustar0030 mtime=1702388429.584499022 30 atime=1702388429.584499022 30 ctime=1702388429.584499022 elk-9.2.12/tests/test_007/TEST_910.OUT_0000644002504400250440000000174114536061315020576 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 30 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.285807191920 5 0.00000000000 6 0.00000000000 7 0.571614383841 8 0.00000000000 9 0.00000000000 10 0.285807191920 11 0.285807191920 12 0.00000000000 13 0.571614383841 14 0.285807191920 15 0.00000000000 16 0.571614383841 17 0.571614383841 18 0.00000000000 19 0.285807191920 20 0.285807191920 21 0.285807191920 22 0.571614383841 23 0.285807191920 24 0.285807191920 25 0.571614383841 26 0.571614383841 27 0.285807191920 28 0.571614383841 29 0.571614383841 30 0.571614383841 elk-9.2.12/tests/test_007/PaxHeaders/elk.in0000644000000000000000000000013214536061315015254 xustar0030 mtime=1702388429.585499021 30 atime=1702388429.585499021 30 ctime=1702388429.585499021 elk-9.2.12/tests/test_007/elk.in0000644002504400250440000000135414536061315020001 0ustar00dewhurstdewhurst00000000000000 ! FeAl in CsCl (B2) structure using GGA+U and interpolation between AMF and ! FLL double counting. tasks 0 15 16 500 test .true. kstlist 4 8 mixtype 1 wplot 50 100 2 0.0 0.25 gmaxvr 10.0 xctype 20 dft+u 2 1 : dftu, inpdftu 1 2 0.183 0.034911967 : is, l, U, J spinpol .true. bfieldc 0.0 0.0 -0.01 scale 5.496 avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 'Al.in' 1 0.5 0.5 0.5 0.0 0.0 0.0 : atposl, bfcmt sppath '../../species/' ngridk 4 4 4 elk-9.2.12/tests/test_007/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.586499019 30 atime=1702388429.586499019 30 ctime=1702388429.586499019 elk-9.2.12/tests/test_007/TEST_500.OUT_0000644002504400250440000000013514536061315020565 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 85.3142717528 elk-9.2.12/tests/test_007/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.587499018 30 atime=1702388429.587499018 30 ctime=1702388429.587499018 elk-9.2.12/tests/test_007/TEST_510.OUT_0000644002504400250440000000014514536061315020567 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.110194238120E-02 elk-9.2.12/tests/test_007/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.589499015 30 atime=1702388429.588499016 30 ctime=1702388429.589499015 elk-9.2.12/tests/test_007/TEST_450.OUT_0000644002504400250440000000014014536061315020565 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.530631168283 elk-9.2.12/tests/test_007/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.590499013 30 atime=1702388429.590499013 30 ctime=1702388429.590499013 elk-9.2.12/tests/test_007/TEST_400.OUT_0000644002504400250440000000014114536061315020561 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 38.9880113798 elk-9.2.12/tests/test_007/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.591499012 30 atime=1702388429.591499012 30 ctime=1702388429.591499012 elk-9.2.12/tests/test_007/TEST_800.OUT_0000644002504400250440000000014414536061315020570 0ustar00dewhurstdewhurst00000000000000'DFT+U energy for each atom' 2 1 0.100000000000E-03 1 0.123517412107E-01 elk-9.2.12/tests/test_007/PaxHeaders/TEST_810.OUT_0000644000000000000000000000012714536061315016054 xustar0029 mtime=1702388429.59249901 29 atime=1702388429.59249901 29 ctime=1702388429.59249901 elk-9.2.12/tests/test_007/TEST_810.OUT_0000644002504400250440000000017314536061315020573 0ustar00dewhurstdewhurst00000000000000'U and J parameters' 2 2 0.100000000000E-03 1 0.183000000000 2 0.349119670000E-01 elk-9.2.12/tests/test_007/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016037 xustar0030 mtime=1702388429.594499008 30 atime=1702388429.593499009 30 ctime=1702388429.594499008 elk-9.2.12/tests/test_007/TEST_000.OUT_0000644002504400250440000000012614536061315020560 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1515.75051984 elk-9.2.12/tests/test_007/PaxHeaders/TEST_015.OUT_0000644000000000000000000000013214536061315016045 xustar0030 mtime=1702388429.595499006 30 atime=1702388429.595499006 30 ctime=1702388429.595499006 elk-9.2.12/tests/test_007/TEST_015.OUT_0000644002504400250440000000040614536061315020567 0ustar00dewhurstdewhurst00000000000000'total muffin-tin angular momentum' 2 6 0.100000000000E-02 1 -0.101316010358E-16 2 0.304795495258E-17 3 0.256898833077 4 -0.305751613929E-17 5 -0.138420844121E-17 6 -0.459494888275E-02 elk-9.2.12/tests/test_007/PaxHeaders/TEST_016.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.597499003 30 atime=1702388429.596499004 30 ctime=1702388429.597499003 elk-9.2.12/tests/test_007/TEST_016.OUT_0000644002504400250440000000041614536061315020571 0ustar00dewhurstdewhurst00000000000000'muffin-tin angular momentum for one state' 2 6 0.100000000000E-02 1 0.102468652735E-06 2 0.337672612277E-06 3 0.132697915340 4 -0.947794107960E-06 5 0.927761403461E-06 6 0.156228532078 elk-9.2.12/tests/PaxHeaders/test_0110000644000000000000000000000013214536061315014067 xustar0030 mtime=1702388429.608498987 30 atime=1702388429.597499003 30 ctime=1702388429.608498987 elk-9.2.12/tests/test_011/0000755002504400250440000000000014536061315016666 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_011/PaxHeaders/TEST_910.OUT_0000644000000000000000000000012114536061315016042 xustar0027 mtime=1702388429.599499 27 atime=1702388429.599499 27 ctime=1702388429.599499 elk-9.2.12/tests/test_011/TEST_910.OUT_0000644002504400250440000000037114536061315020567 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 6 0.100000000000E-07 1 0.153099057192 2 0.153099057192 3 0.153099057192 4 0.459297171577 5 0.459297171577 6 -0.153099057192 elk-9.2.12/tests/test_011/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.600498999 30 atime=1702388429.600498999 30 ctime=1702388429.600498999 elk-9.2.12/tests/test_011/TEST_705.OUT_0000644002504400250440000000010114536061315020560 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-9.2.12/tests/test_011/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.601498997 30 atime=1702388429.601498997 30 ctime=1702388429.601498997 elk-9.2.12/tests/test_011/TEST_900.OUT_0000644002504400250440000000007014536061315020562 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 7799 elk-9.2.12/tests/test_011/PaxHeaders/elk.in0000644000000000000000000000013214536061315015247 xustar0030 mtime=1702388429.602498996 30 atime=1702388429.602498996 30 ctime=1702388429.602498996 elk-9.2.12/tests/test_011/elk.in0000644002504400250440000000066714536061315020002 0ustar00dewhurstdewhurst00000000000000 ! Hartree-Fock calculation of silicon. tasks 0 5 500 test .true. maxscl 2 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 0.25 0.25 0.25 0.0 0.0 0.0 ngridk 2 2 2 vkloff 0.5 0.5 0.5 elk-9.2.12/tests/test_011/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016037 xustar0030 mtime=1702388429.604498993 30 atime=1702388429.603498994 30 ctime=1702388429.604498993 elk-9.2.12/tests/test_011/TEST_500.OUT_0000644002504400250440000000013514536061315020560 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.698536415996E-12 elk-9.2.12/tests/test_011/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016040 xustar0030 mtime=1702388429.605498991 30 atime=1702388429.605498991 30 ctime=1702388429.605498991 elk-9.2.12/tests/test_011/TEST_510.OUT_0000644002504400250440000000014514536061315020562 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.348469416228 elk-9.2.12/tests/test_011/PaxHeaders/TEST_400.OUT_0000644000000000000000000000012714536061315016042 xustar0029 mtime=1702388429.60649899 29 atime=1702388429.60649899 29 ctime=1702388429.60649899 elk-9.2.12/tests/test_011/TEST_400.OUT_0000644002504400250440000000014114536061315020554 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9921675577 elk-9.2.12/tests/test_011/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016032 xustar0030 mtime=1702388429.607498988 30 atime=1702388429.607498988 30 ctime=1702388429.607498988 elk-9.2.12/tests/test_011/TEST_000.OUT_0000644002504400250440000000012614536061315020553 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -579.532888025 elk-9.2.12/tests/test_011/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.609498985 30 atime=1702388429.608498987 30 ctime=1702388429.609498985 elk-9.2.12/tests/test_011/TEST_800.OUT_0000644002504400250440000000026414536061315020566 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 3 0.100000000000E-07 1 394.581580334 2 51.1494504119 3 35.9439292598 elk-9.2.12/tests/PaxHeaders/test_0150000644000000000000000000000013214536061315014073 xustar0030 mtime=1702388429.624498963 30 atime=1702388429.610498984 30 ctime=1702388429.624498963 elk-9.2.12/tests/test_015/0000755002504400250440000000000014536061315016672 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_015/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.611498982 30 atime=1702388429.611498982 30 ctime=1702388429.611498982 elk-9.2.12/tests/test_015/TEST_910.OUT_0000644002504400250440000000052614536061315020575 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 9 0.100000000000E-07 1 0.995007547959E-01 2 0.995007547959E-01 3 0.995007547959E-01 4 0.696505283571 5 -0.995007547959E-01 6 -0.995007547959E-01 7 0.497503773979 8 0.497503773979 9 -0.298502264388 elk-9.2.12/tests/test_015/PaxHeaders/elk.in0000644000000000000000000000013214536061315015253 xustar0030 mtime=1702388429.612498981 30 atime=1702388429.612498981 30 ctime=1702388429.612498981 elk-9.2.12/tests/test_015/elk.in0000644002504400250440000000135314536061315017777 0ustar00dewhurstdewhurst00000000000000 ! DFT+U test tasks 0 400 500 test .true. mixtype 1 dft+u 1 5 : dftu, inpdftu 1 2 0.29399 : is, l, U fixed spinpol .true. spinorb .true. scale 7.893389 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 : nspecies 'Ni.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -2.0 0.5 0.5 0.5 0.0 0.0 2.0 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 reducebf 0.5 sppath '../../species/' ngridk 2 2 2 vkloff 0.5 0.5 0.5 elk-9.2.12/tests/test_015/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.613498979 30 atime=1702388429.613498979 30 ctime=1702388429.613498979 elk-9.2.12/tests/test_015/TEST_900.OUT_0000644002504400250440000000007014536061315020566 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 7247 elk-9.2.12/tests/test_015/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315016052 xustar0030 mtime=1702388429.614498978 30 atime=1702388429.614498978 30 ctime=1702388429.614498978 elk-9.2.12/tests/test_015/TEST_705.OUT_0000644002504400250440000000010114536061315020564 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 4 elk-9.2.12/tests/test_015/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016043 xustar0030 mtime=1702388429.616498975 30 atime=1702388429.615498976 30 ctime=1702388429.616498975 elk-9.2.12/tests/test_015/TEST_500.OUT_0000644002504400250440000000013514536061315020564 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.610820048353E-11 elk-9.2.12/tests/test_015/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016044 xustar0030 mtime=1702388429.617498973 30 atime=1702388429.617498973 30 ctime=1702388429.617498973 elk-9.2.12/tests/test_015/TEST_510.OUT_0000644002504400250440000000014514536061315020566 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.165155896864 elk-9.2.12/tests/test_015/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.618498972 30 atime=1702388429.618498972 30 ctime=1702388429.618498972 elk-9.2.12/tests/test_015/TEST_400.OUT_0000644002504400250440000000014114536061315020560 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 72.0053120779 elk-9.2.12/tests/test_015/PaxHeaders/TEST_450.OUT_0000644000000000000000000000012714536061315016053 xustar0029 mtime=1702388429.61949897 29 atime=1702388429.61949897 29 ctime=1702388429.61949897 elk-9.2.12/tests/test_015/TEST_450.OUT_0000644002504400250440000000014014536061315020564 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.148403440582E-03 elk-9.2.12/tests/test_015/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214536061315016046 xustar0030 mtime=1702388429.621498967 30 atime=1702388429.620498969 30 ctime=1702388429.621498967 elk-9.2.12/tests/test_015/TEST_800.OUT_0000644002504400250440000000020314536061315020563 0ustar00dewhurstdewhurst00000000000000'DFT+U energy for each atom' 2 2 0.100000000000E-03 1 0.948408354581 2 0.948408354581 elk-9.2.12/tests/test_015/PaxHeaders/TEST_810.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.622498966 30 atime=1702388429.622498966 30 ctime=1702388429.622498966 elk-9.2.12/tests/test_015/TEST_810.OUT_0000644002504400250440000000017314536061315020572 0ustar00dewhurstdewhurst00000000000000'U and J parameters' 2 2 0.100000000000E-03 1 0.293989998021 2 0.458606321315E-01 elk-9.2.12/tests/test_015/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016036 xustar0030 mtime=1702388429.623498965 30 atime=1702388429.623498965 30 ctime=1702388429.623498965 elk-9.2.12/tests/test_015/TEST_000.OUT_0000644002504400250440000000012614536061315020557 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -3186.18768305 elk-9.2.12/tests/test_015/PaxHeaders/TEST_820.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.624498963 30 atime=1702388429.624498963 30 ctime=1702388429.624498963 elk-9.2.12/tests/test_015/TEST_820.OUT_0000644002504400250440000000210014536061315020563 0ustar00dewhurstdewhurst00000000000000'Coupled tensor moments' 2 33 0.500000000000E-03 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.00000000000 5 0.00000000000 6 0.00000000000 7 0.00000000000 8 0.00000000000 9 0.00000000000 10 0.00000000000 11 0.00000000000 12 0.311077233000E-04 13 0.157624743313 14 0.266942417531E-02 15 -0.268559496987E-02 16 -0.258023392621E-05 17 0.437028793537 18 -0.414917478722E-02 19 0.265213284448E-02 20 0.219758709539E-04 21 0.157611677001 22 -0.167457107830E-02 23 0.00000000000 24 0.00000000000 25 0.00000000000 26 0.00000000000 27 0.00000000000 28 0.00000000000 29 0.00000000000 30 0.00000000000 31 0.00000000000 32 0.00000000000 33 0.00000000000 elk-9.2.12/tests/PaxHeaders/test_0190000644000000000000000000000013214536061315014077 xustar0030 mtime=1702388429.640498939 30 atime=1702388429.625498962 30 ctime=1702388429.640498939 elk-9.2.12/tests/test_019/0000755002504400250440000000000014536061315016676 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests/test_019/PaxHeaders/TEST_705.OUT_0000644000000000000000000000012714536061315016062 xustar0029 mtime=1702388429.62649896 29 atime=1702388429.62649896 29 ctime=1702388429.62649896 elk-9.2.12/tests/test_019/TEST_705.OUT_0000644002504400250440000000010114536061315020570 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 4 elk-9.2.12/tests/test_019/PaxHeaders/elk.in0000644000000000000000000000013214536061315015257 xustar0030 mtime=1702388429.627498959 30 atime=1702388429.627498959 30 ctime=1702388429.627498959 elk-9.2.12/tests/test_019/elk.in0000644002504400250440000000101214536061315017773 0ustar00dewhurstdewhurst00000000000000 ! TDDFT+U time evolution test tasks 0 450 460 500 test .true. dft+u 1 5 1 2 0.2 ramdisk .true. tshift .false. tforce .true. ntsforce 10 lradstp 5 rgkmax 6.0 ngridk 4 4 4 nempty 6 tstime 50.0 dtimes 1.0 pulse 1 0.0 0.0 250.0 0.03 0.0 0.0 30.0 10.0 ntswrite 0 spinpol .true. spinorb .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../species/' atoms 1 'Ni.in' 1 0.0 0.0 0.0 elk-9.2.12/tests/test_019/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315016053 xustar0030 mtime=1702388429.629498956 30 atime=1702388429.628498957 30 ctime=1702388429.629498956 elk-9.2.12/tests/test_019/TEST_900.OUT_0000644002504400250440000000007014536061315020572 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2109 elk-9.2.12/tests/test_019/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315016054 xustar0030 mtime=1702388429.630498954 30 atime=1702388429.630498954 30 ctime=1702388429.630498954 elk-9.2.12/tests/test_019/TEST_910.OUT_0000644002504400250440000000360314536061315020600 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 60 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.235855304324 5 0.235855304324 6 -0.235855304324 7 0.471710608647 8 0.471710608647 9 -0.471710608647 10 0.707565912971 11 0.707565912971 12 -0.707565912971 13 0.471710608647 14 0.00000000000 15 0.00000000000 16 0.707565912971 17 0.235855304324 18 -0.235855304324 19 0.943421217294 20 0.471710608647 21 -0.471710608647 22 0.707565912971 23 -0.235855304324 24 0.235855304324 25 0.943421217294 26 0.00000000000 27 0.00000000000 28 1.17927652162 29 0.235855304324 30 -0.235855304324 31 0.943421217294 32 -0.471710608647 33 0.471710608647 34 1.17927652162 35 -0.235855304324 36 0.235855304324 37 0.00000000000 38 0.00000000000 39 0.471710608647 40 0.471710608647 41 0.471710608647 42 0.00000000000 43 0.707565912971 44 0.707565912971 45 -0.235855304324 46 0.943421217294 47 0.471710608647 48 0.00000000000 49 0.943421217294 50 0.00000000000 51 0.471710608647 52 0.00000000000 53 0.00000000000 54 0.943421217294 55 0.707565912971 56 0.707565912971 57 0.235855304324 58 0.00000000000 59 0.00000000000 60 1.41513182594 elk-9.2.12/tests/test_019/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315016047 xustar0030 mtime=1702388429.631498953 30 atime=1702388429.631498953 30 ctime=1702388429.631498953 elk-9.2.12/tests/test_019/TEST_500.OUT_0000644002504400250440000000013514536061315020570 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 33.6607367697 elk-9.2.12/tests/test_019/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315016050 xustar0030 mtime=1702388429.632498951 30 atime=1702388429.632498951 30 ctime=1702388429.632498951 elk-9.2.12/tests/test_019/TEST_510.OUT_0000644002504400250440000000014514536061315020572 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.328315827750E-02 elk-9.2.12/tests/test_019/PaxHeaders/TEST_400.OUT_0000644000000000000000000000012714536061315016052 xustar0029 mtime=1702388429.63349895 29 atime=1702388429.63349895 29 ctime=1702388429.63349895 elk-9.2.12/tests/test_019/TEST_400.OUT_0000644002504400250440000000014114536061315020564 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9995619104 elk-9.2.12/tests/test_019/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315016053 xustar0030 mtime=1702388429.635498947 30 atime=1702388429.634498948 30 ctime=1702388429.635498947 elk-9.2.12/tests/test_019/TEST_450.OUT_0000644002504400250440000000014014536061315020570 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.582810214738 elk-9.2.12/tests/test_019/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214536061315016052 xustar0030 mtime=1702388429.636498945 30 atime=1702388429.636498945 30 ctime=1702388429.636498945 elk-9.2.12/tests/test_019/TEST_800.OUT_0000644002504400250440000000014414536061315020573 0ustar00dewhurstdewhurst00000000000000'DFT+U energy for each atom' 2 1 0.100000000000E-03 1 0.553023170870 elk-9.2.12/tests/test_019/PaxHeaders/TEST_810.OUT_0000644000000000000000000000013214536061315016053 xustar0030 mtime=1702388429.637498944 30 atime=1702388429.637498944 30 ctime=1702388429.637498944 elk-9.2.12/tests/test_019/TEST_810.OUT_0000644002504400250440000000017314536061315020576 0ustar00dewhurstdewhurst00000000000000'U and J parameters' 2 2 0.100000000000E-03 1 0.199999996878 2 0.403520818167E-01 elk-9.2.12/tests/test_019/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315016042 xustar0030 mtime=1702388429.638498942 30 atime=1702388429.638498942 30 ctime=1702388429.638498942 elk-9.2.12/tests/test_019/TEST_000.OUT_0000644002504400250440000000012614536061315020563 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1492.20759451 elk-9.2.12/tests/test_019/PaxHeaders/TEST_750.OUT_0000644000000000000000000000013214536061315016056 xustar0030 mtime=1702388429.639498941 30 atime=1702388429.639498941 30 ctime=1702388429.639498941 elk-9.2.12/tests/test_019/TEST_750.OUT_0000644002504400250440000000022414536061315020576 0ustar00dewhurstdewhurst00000000000000'total forces' 2 3 0.100000000000E-02 1 0.459279633578E-18 2 -0.459279633578E-18 3 -0.256792267071E-01 elk-9.2.12/tests/test_019/PaxHeaders/TEST_460.OUT_0000644000000000000000000000013214536061315016054 xustar0030 mtime=1702388429.641498938 30 atime=1702388429.640498939 30 ctime=1702388429.641498938 elk-9.2.12/tests/test_019/TEST_460.OUT_0000644002504400250440000000024714536061315020601 0ustar00dewhurstdewhurst00000000000000'total current of last time step' 2 3 0.500000000000E-03 1 0.00000000000 2 0.00000000000 3 0.118405226704 elk-9.2.12/PaxHeaders/tests-libxc0000644000000000000000000000013114536061315013625 xustar0030 mtime=1702388429.717498825 29 atime=1702388429.65349892 30 ctime=1702388429.717498825 elk-9.2.12/tests-libxc/0000755002504400250440000000000014536061315016425 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests-libxc/PaxHeaders/test_0040000644000000000000000000000013214536061315015170 xustar0030 mtime=1702388429.665498902 30 atime=1702388429.654498919 30 ctime=1702388429.665498902 elk-9.2.12/tests-libxc/test_004/0000755002504400250440000000000014536061315017767 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests-libxc/test_004/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315017147 xustar0030 mtime=1702388429.655498917 30 atime=1702388429.655498917 30 ctime=1702388429.655498917 elk-9.2.12/tests-libxc/test_004/TEST_705.OUT_0000644002504400250440000000010114536061315021661 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 8 elk-9.2.12/tests-libxc/test_004/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315017144 xustar0030 mtime=1702388429.657498914 30 atime=1702388429.656498916 30 ctime=1702388429.657498914 elk-9.2.12/tests-libxc/test_004/TEST_900.OUT_0000644002504400250440000000007014536061315021663 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 34171 elk-9.2.12/tests-libxc/test_004/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315017145 xustar0030 mtime=1702388429.658498913 30 atime=1702388429.658498913 30 ctime=1702388429.658498913 elk-9.2.12/tests-libxc/test_004/TEST_910.OUT_0000644002504400250440000000037114536061315021670 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 6 0.100000000000E-07 1 0.108711646790 2 0.213882564036 3 0.142325463505 4 0.543558233949 5 0.213882564036 6 0.142325463505 elk-9.2.12/tests-libxc/test_004/PaxHeaders/elk.in0000644000000000000000000000013214536061315016350 xustar0030 mtime=1702388429.659498911 30 atime=1702388429.659498911 30 ctime=1702388429.659498911 elk-9.2.12/tests-libxc/test_004/elk.in0000644002504400250440000000154014536061315021072 0ustar00dewhurstdewhurst00000000000000 ! Test of the finite temperature exchange-correlation functional KSDT. ! See Karasiev, et al., Phys. Rev. Lett. 112, 076403 (2014) tasks 0 500 test .true. xctype 100 259 0 ! temperature in Kelvin tempk 500.0 rgkmax 6.0 maxscl 10 tforce .true. avec 7.2246 0.0 0.0 0.0 7.3442 0.0 0.0 0.0 22.0733 sppath '../../species/' atoms 4 : nspecies 'Y.in' : spfname 1 : natoms; atposl below 0.5 0.5 0.5 'Ba.in' 2 0.5 0.5 0.1843 0.5 0.5 0.8157 'Cu.in' 3 0.0 0.0 0.0 0.0 0.0 0.3556 0.0 0.0 0.6444 'O.in' 7 0.0 0.5 0.0 0.5 0.0 0.3773 0.5 0.0 0.6227 0.0 0.5 0.3789 0.0 0.5 0.6211 0.0 0.0 0.1584 0.0 0.0 0.8416 ngridk 2 2 1 vkloff 0.25 0.5 0.5 elk-9.2.12/tests-libxc/test_004/PaxHeaders/TEST_500.OUT_0000644000000000000000000000012714536061315017144 xustar0029 mtime=1702388429.66049891 29 atime=1702388429.66049891 29 ctime=1702388429.66049891 elk-9.2.12/tests-libxc/test_004/TEST_500.OUT_0000644002504400250440000000013514536061315021661 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 4.08410734053 elk-9.2.12/tests-libxc/test_004/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315017141 xustar0030 mtime=1702388429.662498907 30 atime=1702388429.661498908 30 ctime=1702388429.662498907 elk-9.2.12/tests-libxc/test_004/TEST_510.OUT_0000644002504400250440000000014514536061315021663 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.188592531590E-01 elk-9.2.12/tests-libxc/test_004/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315017137 xustar0030 mtime=1702388429.663498905 30 atime=1702388429.663498905 30 ctime=1702388429.663498905 elk-9.2.12/tests-libxc/test_004/TEST_400.OUT_0000644002504400250440000000014114536061315021655 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 294.001987638 elk-9.2.12/tests-libxc/test_004/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315017133 xustar0030 mtime=1702388429.664498904 30 atime=1702388429.664498904 30 ctime=1702388429.664498904 elk-9.2.12/tests-libxc/test_004/TEST_000.OUT_0000644002504400250440000000012614536061315021654 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -25129.0089543 elk-9.2.12/tests-libxc/test_004/PaxHeaders/TEST_750.OUT_0000644000000000000000000000013214536061315017147 xustar0030 mtime=1702388429.666498901 30 atime=1702388429.665498902 30 ctime=1702388429.666498901 elk-9.2.12/tests-libxc/test_004/TEST_750.OUT_0000644002504400250440000000236014536061315021672 0ustar00dewhurstdewhurst00000000000000'total forces' 2 39 0.100000000000E-02 1 0.00000000000 2 -0.105214410799E-48 3 0.00000000000 4 0.00000000000 5 -0.105214410799E-48 6 0.350976736657E-01 7 0.00000000000 8 0.126324112077E-47 9 -0.350976736657E-01 10 0.00000000000 11 -0.105214410799E-48 12 0.00000000000 13 0.00000000000 14 -0.105882601977E-48 15 0.146751419628E-01 16 0.00000000000 17 -0.105214410799E-48 18 -0.146751419628E-01 19 0.00000000000 20 -0.105214410799E-48 21 0.00000000000 22 0.00000000000 23 -0.447328293691E-48 24 -0.221742267223E-02 25 0.00000000000 26 0.236899472093E-48 27 0.221742267223E-02 28 0.00000000000 29 0.236899472093E-48 30 0.770733214263E-02 31 0.00000000000 32 -0.447328293691E-48 33 -0.770733214263E-02 34 0.00000000000 35 -0.105214410799E-48 36 0.397499232385E-02 37 0.00000000000 38 -0.105214410799E-48 39 -0.397499232385E-02 elk-9.2.12/tests-libxc/PaxHeaders/test_0050000644000000000000000000000013214536061315015171 xustar0030 mtime=1702388429.679498882 30 atime=1702388429.666498901 30 ctime=1702388429.679498882 elk-9.2.12/tests-libxc/test_005/0000755002504400250440000000000014536061315017770 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests-libxc/test_005/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315017150 xustar0030 mtime=1702388429.668498898 30 atime=1702388429.668498898 30 ctime=1702388429.668498898 elk-9.2.12/tests-libxc/test_005/TEST_705.OUT_0000644002504400250440000000010114536061315021662 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-9.2.12/tests-libxc/test_005/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315017145 xustar0030 mtime=1702388429.669498896 30 atime=1702388429.669498896 30 ctime=1702388429.669498896 elk-9.2.12/tests-libxc/test_005/TEST_900.OUT_0000644002504400250440000000007014536061315021664 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 7799 elk-9.2.12/tests-libxc/test_005/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315017146 xustar0030 mtime=1702388429.671498893 30 atime=1702388429.670498895 30 ctime=1702388429.671498893 elk-9.2.12/tests-libxc/test_005/TEST_910.OUT_0000644002504400250440000000301714536061315021671 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 48 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.102066038128 5 0.102066038128 6 -0.102066038128 7 0.204132076257 8 0.204132076257 9 -0.204132076257 10 0.306198114385 11 0.306198114385 12 -0.306198114385 13 0.204132076257 14 0.358605526043E-17 15 -0.358605526043E-17 16 0.306198114385 17 0.102066038128 18 -0.102066038128 19 0.408264152513 20 0.204132076257 21 -0.204132076257 22 0.510330190642 23 0.306198114385 24 -0.306198114385 25 0.612396228770 26 0.408264152513 27 -0.408264152513 28 0.408264152513 29 0.717211052085E-17 30 -0.717211052085E-17 31 0.510330190642 32 0.102066038128 33 -0.102066038128 34 0.612396228770 35 0.204132076257 36 -0.204132076257 37 0.612396228770 38 0.00000000000 39 0.00000000000 40 0.408264152513 41 0.204132076257 42 -0.241695203552E-16 43 0.510330190642 44 0.306198114385 45 -0.102066038128 46 0.612396228770 47 0.204132076257 48 0.174638430682E-16 elk-9.2.12/tests-libxc/test_005/PaxHeaders/elk.in0000644000000000000000000000013214536061315016351 xustar0030 mtime=1702388429.672498892 30 atime=1702388429.672498892 30 ctime=1702388429.672498892 elk-9.2.12/tests-libxc/test_005/elk.in0000644002504400250440000000043314536061315021073 0ustar00dewhurstdewhurst00000000000000 ! Hybrid functional test. tasks 0 5 500 test .true. xctype 100 0 406 ngridk 6 6 6 ngridq 3 3 3 nempty 8 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../species/' atoms 1 'Si.in' 2 0.00 0.00 0.00 0.25 0.25 0.25 elk-9.2.12/tests-libxc/test_005/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315017141 xustar0030 mtime=1702388429.674498889 30 atime=1702388429.674498889 30 ctime=1702388429.674498889 elk-9.2.12/tests-libxc/test_005/TEST_500.OUT_0000644002504400250440000000013514536061315021662 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.391148825236E-11 elk-9.2.12/tests-libxc/test_005/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315017142 xustar0030 mtime=1702388429.675498888 30 atime=1702388429.675498888 30 ctime=1702388429.675498888 elk-9.2.12/tests-libxc/test_005/TEST_510.OUT_0000644002504400250440000000014514536061315021664 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.825172438226E-01 elk-9.2.12/tests-libxc/test_005/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315017140 xustar0030 mtime=1702388429.677498885 30 atime=1702388429.676498886 30 ctime=1702388429.677498885 elk-9.2.12/tests-libxc/test_005/TEST_400.OUT_0000644002504400250440000000014114536061315021656 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9912911819 elk-9.2.12/tests-libxc/test_005/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315017134 xustar0030 mtime=1702388429.678498883 30 atime=1702388429.678498883 30 ctime=1702388429.678498883 elk-9.2.12/tests-libxc/test_005/TEST_000.OUT_0000644002504400250440000000012614536061315021655 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -580.219623011 elk-9.2.12/tests-libxc/test_005/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214536061315017144 xustar0030 mtime=1702388429.679498882 30 atime=1702388429.679498882 30 ctime=1702388429.679498882 elk-9.2.12/tests-libxc/test_005/TEST_800.OUT_0000644002504400250440000000032314536061315021664 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 4 0.100000000000E-07 1 887.808555744 2 115.086263427 3 80.8738408354 4 40.8197509399 elk-9.2.12/tests-libxc/PaxHeaders/test_0060000644000000000000000000000013114536061315015171 xustar0030 mtime=1702388429.689498867 29 atime=1702388429.68049888 30 ctime=1702388429.689498867 elk-9.2.12/tests-libxc/test_006/0000755002504400250440000000000014536061315017771 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests-libxc/test_006/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315017142 xustar0030 mtime=1702388429.681498879 30 atime=1702388429.681498879 30 ctime=1702388429.681498879 elk-9.2.12/tests-libxc/test_006/TEST_500.OUT_0000644002504400250440000000013514536061315021663 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 21.9312190828 elk-9.2.12/tests-libxc/test_006/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315017143 xustar0030 mtime=1702388429.682498877 30 atime=1702388429.682498877 30 ctime=1702388429.682498877 elk-9.2.12/tests-libxc/test_006/TEST_510.OUT_0000644002504400250440000000014514536061315021665 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.267840899055E-01 elk-9.2.12/tests-libxc/test_006/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315017141 xustar0030 mtime=1702388429.683498876 30 atime=1702388429.683498876 30 ctime=1702388429.683498876 elk-9.2.12/tests-libxc/test_006/TEST_400.OUT_0000644002504400250440000000014114536061315021657 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 63.9836094643 elk-9.2.12/tests-libxc/test_006/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315017135 xustar0030 mtime=1702388429.685498873 30 atime=1702388429.684498874 30 ctime=1702388429.685498873 elk-9.2.12/tests-libxc/test_006/TEST_000.OUT_0000644002504400250440000000012614536061315021656 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -4207.93567931 elk-9.2.12/tests-libxc/test_006/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315017151 xustar0030 mtime=1702388429.686498871 30 atime=1702388429.686498871 30 ctime=1702388429.686498871 elk-9.2.12/tests-libxc/test_006/TEST_705.OUT_0000644002504400250440000000010114536061315021663 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 24 elk-9.2.12/tests-libxc/test_006/PaxHeaders/TEST_900.OUT_0000644000000000000000000000012714536061315017152 xustar0029 mtime=1702388429.68749887 29 atime=1702388429.68749887 29 ctime=1702388429.68749887 elk-9.2.12/tests-libxc/test_006/TEST_900.OUT_0000644002504400250440000000007014536061315021665 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 8873 elk-9.2.12/tests-libxc/test_006/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315017147 xustar0030 mtime=1702388429.688498868 30 atime=1702388429.688498868 30 ctime=1702388429.688498868 elk-9.2.12/tests-libxc/test_006/TEST_910.OUT_0000644002504400250440000000174114536061315021674 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 30 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.146981971254 5 0.146981971254 6 -0.146981971254 7 0.293963942509 8 0.293963942509 9 -0.293963942509 10 0.440945913763 11 0.440945913763 12 -0.440945913763 13 0.293963942509 14 0.00000000000 15 0.00000000000 16 0.440945913763 17 0.146981971254 18 -0.146981971254 19 0.587927885017 20 0.293963942509 21 -0.293963942509 22 0.587927885017 23 0.00000000000 24 0.00000000000 25 0.734909856272 26 0.146981971254 27 -0.146981971254 28 0.587927885017 29 0.293963942509 30 0.00000000000 elk-9.2.12/tests-libxc/test_006/PaxHeaders/elk.in0000644000000000000000000000013214536061315016352 xustar0030 mtime=1702388429.690498865 30 atime=1702388429.689498867 30 ctime=1702388429.690498865 elk-9.2.12/tests-libxc/test_006/elk.in0000644002504400250440000000072514536061315021100 0ustar00dewhurstdewhurst00000000000000 ! meta-GGA test using the deorbitalised SCAN functional tasks 0 500 test .true. ! deorbitalised SCAN xctype 100 700 702 ngridk 4 4 4 avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-9.2.12/tests-libxc/PaxHeaders/test_0010000644000000000000000000000013214536061315015165 xustar0030 mtime=1702388429.700498851 30 atime=1702388429.690498865 30 ctime=1702388429.700498851 elk-9.2.12/tests-libxc/test_001/0000755002504400250440000000000014536061315017764 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests-libxc/test_001/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315017134 xustar0030 mtime=1702388429.691498864 30 atime=1702388429.691498864 30 ctime=1702388429.691498864 elk-9.2.12/tests-libxc/test_001/TEST_400.OUT_0000644002504400250440000000014114536061315021652 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 63.9847293173 elk-9.2.12/tests-libxc/test_001/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315017135 xustar0030 mtime=1702388429.693498861 30 atime=1702388429.692498862 30 ctime=1702388429.693498861 elk-9.2.12/tests-libxc/test_001/TEST_500.OUT_0000644002504400250440000000013514536061315021656 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.569004872490E-04 elk-9.2.12/tests-libxc/test_001/PaxHeaders/TEST_510.OUT_0000644000000000000000000000012714536061315017142 xustar0029 mtime=1702388429.69449886 29 atime=1702388429.69449886 29 ctime=1702388429.69449886 elk-9.2.12/tests-libxc/test_001/TEST_510.OUT_0000644002504400250440000000014514536061315021660 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.289173558004E-01 elk-9.2.12/tests-libxc/test_001/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315017144 xustar0030 mtime=1702388429.696498856 30 atime=1702388429.695498858 30 ctime=1702388429.696498856 elk-9.2.12/tests-libxc/test_001/TEST_705.OUT_0000644002504400250440000000010114536061315021656 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 24 elk-9.2.12/tests-libxc/test_001/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315017141 xustar0030 mtime=1702388429.697498855 30 atime=1702388429.697498855 30 ctime=1702388429.697498855 elk-9.2.12/tests-libxc/test_001/TEST_900.OUT_0000644002504400250440000000007014536061315021660 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 8873 elk-9.2.12/tests-libxc/test_001/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315017142 xustar0030 mtime=1702388429.698498853 30 atime=1702388429.698498853 30 ctime=1702388429.698498853 elk-9.2.12/tests-libxc/test_001/TEST_910.OUT_0000644002504400250440000000174114536061315021667 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 30 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.146981971254 5 0.146981971254 6 -0.146981971254 7 0.293963942509 8 0.293963942509 9 -0.293963942509 10 0.440945913763 11 0.440945913763 12 -0.440945913763 13 0.293963942509 14 0.00000000000 15 0.00000000000 16 0.440945913763 17 0.146981971254 18 -0.146981971254 19 0.587927885017 20 0.293963942509 21 -0.293963942509 22 0.587927885017 23 0.00000000000 24 0.00000000000 25 0.734909856272 26 0.146981971254 27 -0.146981971254 28 0.587927885017 29 0.293963942509 30 0.00000000000 elk-9.2.12/tests-libxc/test_001/PaxHeaders/elk.in0000644000000000000000000000013214536061315016345 xustar0030 mtime=1702388429.699498852 30 atime=1702388429.699498852 30 ctime=1702388429.699498852 elk-9.2.12/tests-libxc/test_001/elk.in0000644002504400250440000000070514536061315021071 0ustar00dewhurstdewhurst00000000000000 ! meta-GGA test using the SCAN functional tasks 0 500 test .true. maxscl 2 ! SCAN xctype 100 263 267 ngridk 4 4 4 avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-9.2.12/tests-libxc/test_001/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315017130 xustar0030 mtime=1702388429.701498849 30 atime=1702388429.700498851 30 ctime=1702388429.701498849 elk-9.2.12/tests-libxc/test_001/TEST_000.OUT_0000644002504400250440000000012614536061315021651 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -4226.48166055 elk-9.2.12/tests-libxc/PaxHeaders/test_0020000644000000000000000000000013214536061315015166 xustar0030 mtime=1702388429.716498827 30 atime=1702388429.701498849 30 ctime=1702388429.716498827 elk-9.2.12/tests-libxc/test_002/0000755002504400250440000000000014536061315017765 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests-libxc/test_002/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315017145 xustar0030 mtime=1702388429.703498846 30 atime=1702388429.702498848 30 ctime=1702388429.703498846 elk-9.2.12/tests-libxc/test_002/TEST_705.OUT_0000644002504400250440000000010114536061315021657 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-9.2.12/tests-libxc/test_002/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315017142 xustar0030 mtime=1702388429.704498845 30 atime=1702388429.704498845 30 ctime=1702388429.704498845 elk-9.2.12/tests-libxc/test_002/TEST_900.OUT_0000644002504400250440000000007014536061315021661 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2109 elk-9.2.12/tests-libxc/test_002/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315017143 xustar0030 mtime=1702388429.705498843 30 atime=1702388429.705498843 30 ctime=1702388429.705498843 elk-9.2.12/tests-libxc/test_002/TEST_910.OUT_0000644002504400250440000001052214536061315021665 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 141 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.943421217294E-01 5 0.943421217294E-01 6 -0.943421217294E-01 7 0.188684243459 8 0.188684243459 9 -0.188684243459 10 0.283026365188 11 0.283026365188 12 -0.283026365188 13 0.377368486918 14 0.377368486918 15 -0.377368486918 16 0.471710608647 17 0.471710608647 18 -0.471710608647 19 0.188684243459 20 -0.308963289789E-17 21 0.308963289789E-17 22 0.283026365188 23 0.943421217294E-01 24 -0.943421217294E-01 25 0.377368486918 26 0.188684243459 27 -0.188684243459 28 0.471710608647 29 0.283026365188 30 -0.283026365188 31 0.566052730377 32 0.377368486918 33 -0.377368486918 34 0.660394852106 35 0.471710608647 36 -0.471710608647 37 0.754736973835 38 0.566052730377 39 -0.566052730377 40 0.849079095565 41 0.660394852106 42 -0.660394852106 43 0.943421217294 44 0.754736973835 45 -0.754736973835 46 0.377368486918 47 -0.617926579578E-17 48 0.617926579578E-17 49 0.471710608647 50 0.943421217294E-01 51 -0.943421217294E-01 52 0.566052730377 53 0.188684243459 54 -0.188684243459 55 0.660394852106 56 0.283026365188 57 -0.283026365188 58 0.754736973835 59 0.377368486918 60 -0.377368486918 61 0.849079095565 62 0.471710608647 63 -0.471710608647 64 0.943421217294 65 0.566052730377 66 -0.566052730377 67 0.566052730377 68 -0.215763098199E-16 69 0.215763098199E-16 70 0.660394852106 71 0.943421217294E-01 72 -0.943421217294E-01 73 0.754736973835 74 0.188684243459 75 -0.188684243459 76 0.849079095565 77 0.283026365188 78 -0.283026365188 79 0.943421217294 80 0.377368486918 81 -0.377368486918 82 0.754736973835 83 -0.123585315916E-16 84 0.123585315916E-16 85 0.849079095565 86 0.943421217294E-01 87 -0.943421217294E-01 88 0.943421217294 89 0.188684243459 90 -0.188684243459 91 0.943421217294 92 0.00000000000 93 0.00000000000 94 0.377368486918 95 0.188684243459 96 0.385437305256E-16 97 0.471710608647 98 0.283026365188 99 -0.943421217294E-01 100 0.566052730377 101 0.377368486918 102 -0.188684243459 103 0.660394852106 104 0.471710608647 105 -0.283026365188 106 0.566052730377 107 0.188684243459 108 -0.308963289789E-17 109 0.660394852106 110 0.283026365188 111 -0.943421217294E-01 112 0.754736973835 113 0.377368486918 114 -0.188684243459 115 0.849079095565 116 0.471710608647 117 -0.283026365188 118 0.943421217294 119 0.566052730377 120 -0.377368486918 121 0.754736973835 122 0.188684243459 123 0.385437305256E-16 124 0.849079095565 125 0.283026365188 126 -0.943421217294E-01 127 0.943421217294 128 0.377368486918 129 -0.188684243459 130 0.943421217294 131 0.188684243459 132 0.246659427177E-16 133 0.754736973835 134 0.377368486918 135 0.770874610511E-16 136 0.849079095565 137 0.471710608647 138 -0.943421217294E-01 139 0.943421217294 140 0.377368486918 141 0.493318854355E-16 elk-9.2.12/tests-libxc/test_002/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013014536061315017134 xustar0029 mtime=1702388429.70749884 30 atime=1702388429.706498842 29 ctime=1702388429.70749884 elk-9.2.12/tests-libxc/test_002/TEST_500.OUT_0000644002504400250440000000013514536061315021657 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 53.6679045980 elk-9.2.12/tests-libxc/test_002/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315017137 xustar0030 mtime=1702388429.708498839 30 atime=1702388429.708498839 30 ctime=1702388429.708498839 elk-9.2.12/tests-libxc/test_002/TEST_510.OUT_0000644002504400250440000000014514536061315021661 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.735335264392E-03 elk-9.2.12/tests-libxc/test_002/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315017135 xustar0030 mtime=1702388429.709498837 30 atime=1702388429.709498837 30 ctime=1702388429.709498837 elk-9.2.12/tests-libxc/test_002/TEST_400.OUT_0000644002504400250440000000014114536061315021653 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9937806972 elk-9.2.12/tests-libxc/test_002/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214536061315017142 xustar0030 mtime=1702388429.710498836 30 atime=1702388429.710498836 30 ctime=1702388429.710498836 elk-9.2.12/tests-libxc/test_002/TEST_450.OUT_0000644002504400250440000000014014536061315021657 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.717128191571 elk-9.2.12/tests-libxc/test_002/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315017131 xustar0030 mtime=1702388429.712498833 30 atime=1702388429.712498833 30 ctime=1702388429.712498833 elk-9.2.12/tests-libxc/test_002/TEST_000.OUT_0000644002504400250440000000012614536061315021652 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1517.12685486 elk-9.2.12/tests-libxc/test_002/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214536061315017141 xustar0030 mtime=1702388429.713498831 30 atime=1702388429.713498831 30 ctime=1702388429.713498831 elk-9.2.12/tests-libxc/test_002/TEST_800.OUT_0000644002504400250440000000301014536061315021655 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 47 0.100000000000E-07 1 4156.52649632 2 538.808845910 3 122.281077681 4 53.2067305730 5 29.7036699563 6 18.9436528129 7 378.633726982 8 131.915119909 9 59.6996144004 10 33.1294509551 11 20.8866383293 12 24.1480573225 13 39.8247961001 14 76.6221168207 15 191.109192697 16 89.6935829837 17 52.8305196423 18 32.3142045935 19 21.1792161666 20 18.7172333061 21 28.0029635091 22 44.9516730037 23 39.4977235641 24 27.8283415094 25 19.6878350783 26 14.3061427077 27 19.7706217330 28 22.1479831303 29 17.0639418646 30 13.1063464662 31 14.1544228910 32 70.5026233452 33 40.4627055245 34 25.3002738051 35 17.0626173734 36 35.3392864088 37 23.9798340158 38 16.8448151671 39 18.9724996792 40 27.4485942715 41 20.7913378523 42 15.5388968693 43 14.2001311974 44 13.5917268552 45 17.6443345168 46 13.2018441244 47 12.1733944017 elk-9.2.12/tests-libxc/test_002/PaxHeaders/TEST_330.OUT_0000644000000000000000000000013214536061315017137 xustar0030 mtime=1702388429.715498828 30 atime=1702388429.715498828 30 ctime=1702388429.715498828 elk-9.2.12/tests-libxc/test_002/TEST_330.OUT_0000644002504400250440000000626314536061315021670 0ustar00dewhurstdewhurst00000000000000'transverse response function' 3 60 0.100000000000E-01 1 0.998454572118 -0.467157225222E-01 2 0.985254295756 -0.486202134049E-01 3 0.971915975682 -0.502998164699E-01 4 0.958113442203 -0.523470471077E-01 5 0.944212609173 -0.553652990133E-01 6 0.930737263722 -0.595232154872E-01 7 0.918173487954 -0.650745398295E-01 8 0.907947144628 -0.721515848342E-01 9 0.901864889759 -0.786961881796E-01 10 0.898379038031 -0.811851222668E-01 11 0.893712562043 -0.800277566581E-01 12 0.887721005435 -0.774406571429E-01 13 0.880635378571 -0.728118070600E-01 14 0.870489515266 -0.666700666030E-01 15 0.857085441761 -0.614212461557E-01 16 0.841839395126 -0.582001440816E-01 17 0.825782606288 -0.569736243025E-01 18 0.809343804837 -0.575818301699E-01 19 0.792744490269 -0.601029741665E-01 20 0.776329826898 -0.648862386677E-01 21 0.760942330699 -0.724281599319E-01 22 0.748359903108 -0.827667939319E-01 23 0.740827640897 -0.939037007609E-01 24 0.737768197311 -0.101625836820 25 0.735025372979 -0.104453744154 26 0.729976730005 -0.104028477962 27 0.720781188729 -0.102283584107 28 0.707003294927 -0.103106397663 29 0.691588801943 -0.109598665865 30 0.678356108836 -0.122163970523 31 0.670825733903 -0.139607747590 32 0.672188389147 -0.158453460660 33 0.682702761149 -0.173696431428 34 0.701563015727 -0.180576911070 35 0.722834044750 -0.171325924781 36 0.732223583850 -0.148133111387 37 0.725738931079 -0.124480700745 38 0.709840399489 -0.108117759602 39 0.690651997153 -0.999890629192E-01 40 0.671966043546 -0.990688839806E-01 41 0.656802712838 -0.103746880753 42 0.647504814613 -0.110649753464 43 0.643058843121 -0.115151267618 44 0.639168329154 -0.115912084803 45 0.633911105287 -0.115571430841 46 0.628500924038 -0.115082813578 47 0.622598354392 -0.113854276528 48 0.615849165101 -0.113042754369 49 0.609737764674 -0.112527329116 50 0.603395061709 -0.110650264085 51 0.594956450755 -0.108753113687 52 0.585504800900 -0.108827057466 53 0.576823248261 -0.110496700879 54 0.568883403877 -0.112598699637 55 0.561221350020 -0.115762883804 56 0.555841016762 -0.120150172816 57 0.553198817448 -0.122392933356 58 0.549319209040 -0.121394913689 59 0.542466371049 -0.120696115546 60 0.534992439237 -0.122650885473 elk-9.2.12/tests-libxc/test_002/PaxHeaders/elk.in0000644000000000000000000000013214536061315016346 xustar0030 mtime=1702388429.716498827 30 atime=1702388429.716498827 30 ctime=1702388429.716498827 elk-9.2.12/tests-libxc/test_002/elk.in0000644002504400250440000000116414536061315021072 0ustar00dewhurstdewhurst00000000000000 ! Magnetic response of fcc nickel. tasks 0 330 500 test .true. xctype 100 532 12 fxctype 100 532 12 nempty 10 lorbcnd .true. emaxrf 1.5 gmaxrf 2.0 wplot 60 100 1 0 0.020 ! q-vector of response function vecql 0.1 0.3 0.0 ngridk 10 10 10 spinpol .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-9.2.12/tests-libxc/PaxHeaders/test_0030000644000000000000000000000013214536061315015167 xustar0030 mtime=1702388429.730498806 30 atime=1702388429.717498825 30 ctime=1702388429.730498806 elk-9.2.12/tests-libxc/test_003/0000755002504400250440000000000014536061315017766 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/tests-libxc/test_003/PaxHeaders/elk.in0000644000000000000000000000013214536061315016347 xustar0030 mtime=1702388429.718498824 30 atime=1702388429.718498824 30 ctime=1702388429.718498824 elk-9.2.12/tests-libxc/test_003/elk.in0000644002504400250440000000111314536061315021065 0ustar00dewhurstdewhurst00000000000000 ! Test of Libxc GGA, spin-polarised and with forces. tasks 0 500 test .true. mixtype 1 xctype 100 101 130 tforce .true. ngridk 4 4 4 autoswidth .true. autolinengy .true. spinorb .true. cmagz .true. bfieldc 0.0 0.0 0.1 avec 0.5 0.5 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale1 6.8 scale2 6.8 scale3 7.0 sppath '../../species/' atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'Co.in' 1 0.1 0.51 0.48 elk-9.2.12/tests-libxc/test_003/PaxHeaders/TEST_750.OUT_0000644000000000000000000000013214536061315017146 xustar0030 mtime=1702388429.720498821 30 atime=1702388429.719498822 30 ctime=1702388429.720498821 elk-9.2.12/tests-libxc/test_003/TEST_750.OUT_0000644002504400250440000000036114536061315021670 0ustar00dewhurstdewhurst00000000000000'total forces' 2 6 0.100000000000E-02 1 0.107842460625E-01 2 0.130383395332E-01 3 -0.112310515578E-01 4 -0.107842460625E-01 5 -0.130383395332E-01 6 0.112310515578E-01 elk-9.2.12/tests-libxc/test_003/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214536061315017146 xustar0030 mtime=1702388429.721498819 30 atime=1702388429.721498819 30 ctime=1702388429.721498819 elk-9.2.12/tests-libxc/test_003/TEST_705.OUT_0000644002504400250440000000010114536061315021660 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 1 elk-9.2.12/tests-libxc/test_003/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214536061315017143 xustar0030 mtime=1702388429.722498818 30 atime=1702388429.722498818 30 ctime=1702388429.722498818 elk-9.2.12/tests-libxc/test_003/TEST_900.OUT_0000644002504400250440000000007014536061315021662 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 4735 elk-9.2.12/tests-libxc/test_003/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214536061315017144 xustar0030 mtime=1702388429.723498817 30 atime=1702388429.723498817 30 ctime=1702388429.723498817 elk-9.2.12/tests-libxc/test_003/TEST_910.OUT_0000644002504400250440000001357714536061315021703 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 192 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.461998919646 5 0.00000000000 6 0.00000000000 7 0.923997839291 8 0.00000000000 9 0.00000000000 10 1.38599675894 11 0.00000000000 12 0.00000000000 13 -0.230999459823 14 0.230999459823 15 0.00000000000 16 0.230999459823 17 0.230999459823 18 0.00000000000 19 0.692998379468 20 0.230999459823 21 0.00000000000 22 1.15499729911 23 0.230999459823 24 0.00000000000 25 -0.461998919646 26 0.461998919646 27 0.00000000000 28 0.00000000000 29 0.461998919646 30 0.00000000000 31 0.461998919646 32 0.461998919646 33 0.00000000000 34 0.923997839291 35 0.461998919646 36 0.00000000000 37 -0.692998379468 38 0.692998379468 39 0.00000000000 40 -0.230999459823 41 0.692998379468 42 0.00000000000 43 0.230999459823 44 0.692998379468 45 0.00000000000 46 0.692998379468 47 0.692998379468 48 0.00000000000 49 0.00000000000 50 0.00000000000 51 0.224399475256 52 0.461998919646 53 0.00000000000 54 0.224399475256 55 0.923997839291 56 0.00000000000 57 0.224399475256 58 1.38599675894 59 0.00000000000 60 0.224399475256 61 -0.230999459823 62 0.230999459823 63 0.224399475256 64 0.230999459823 65 0.230999459823 66 0.224399475256 67 0.692998379468 68 0.230999459823 69 0.224399475256 70 1.15499729911 71 0.230999459823 72 0.224399475256 73 -0.461998919646 74 0.461998919646 75 0.224399475256 76 0.00000000000 77 0.461998919646 78 0.224399475256 79 0.461998919646 80 0.461998919646 81 0.224399475256 82 0.923997839291 83 0.461998919646 84 0.224399475256 85 -0.692998379468 86 0.692998379468 87 0.224399475256 88 -0.230999459823 89 0.692998379468 90 0.224399475256 91 0.230999459823 92 0.692998379468 93 0.224399475256 94 0.692998379468 95 0.692998379468 96 0.224399475256 97 0.00000000000 98 0.00000000000 99 0.448798950513 100 0.461998919646 101 0.00000000000 102 0.448798950513 103 0.923997839291 104 0.00000000000 105 0.448798950513 106 1.38599675894 107 0.00000000000 108 0.448798950513 109 -0.230999459823 110 0.230999459823 111 0.448798950513 112 0.230999459823 113 0.230999459823 114 0.448798950513 115 0.692998379468 116 0.230999459823 117 0.448798950513 118 1.15499729911 119 0.230999459823 120 0.448798950513 121 -0.461998919646 122 0.461998919646 123 0.448798950513 124 0.00000000000 125 0.461998919646 126 0.448798950513 127 0.461998919646 128 0.461998919646 129 0.448798950513 130 0.923997839291 131 0.461998919646 132 0.448798950513 133 -0.692998379468 134 0.692998379468 135 0.448798950513 136 -0.230999459823 137 0.692998379468 138 0.448798950513 139 0.230999459823 140 0.692998379468 141 0.448798950513 142 0.692998379468 143 0.692998379468 144 0.448798950513 145 0.00000000000 146 0.00000000000 147 0.673198425769 148 0.461998919646 149 0.00000000000 150 0.673198425769 151 0.923997839291 152 0.00000000000 153 0.673198425769 154 1.38599675894 155 0.00000000000 156 0.673198425769 157 -0.230999459823 158 0.230999459823 159 0.673198425769 160 0.230999459823 161 0.230999459823 162 0.673198425769 163 0.692998379468 164 0.230999459823 165 0.673198425769 166 1.15499729911 167 0.230999459823 168 0.673198425769 169 -0.461998919646 170 0.461998919646 171 0.673198425769 172 0.00000000000 173 0.461998919646 174 0.673198425769 175 0.461998919646 176 0.461998919646 177 0.673198425769 178 0.923997839291 179 0.461998919646 180 0.673198425769 181 -0.692998379468 182 0.692998379468 183 0.673198425769 184 -0.230999459823 185 0.692998379468 186 0.673198425769 187 0.230999459823 188 0.692998379468 189 0.673198425769 190 0.692998379468 191 0.692998379468 192 0.673198425769 elk-9.2.12/tests-libxc/test_003/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214536061315017137 xustar0030 mtime=1702388429.725498813 30 atime=1702388429.724498815 30 ctime=1702388429.725498813 elk-9.2.12/tests-libxc/test_003/TEST_500.OUT_0000644002504400250440000000013514536061315021660 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 89.6947555861 elk-9.2.12/tests-libxc/test_003/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214536061315017140 xustar0030 mtime=1702388429.726498812 30 atime=1702388429.726498812 30 ctime=1702388429.726498812 elk-9.2.12/tests-libxc/test_003/TEST_510.OUT_0000644002504400250440000000014514536061315021662 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.260021462097E-03 elk-9.2.12/tests-libxc/test_003/PaxHeaders/TEST_450.OUT_0000644000000000000000000000012714536061315017147 xustar0029 mtime=1702388429.72749881 29 atime=1702388429.72749881 29 ctime=1702388429.72749881 elk-9.2.12/tests-libxc/test_003/TEST_450.OUT_0000644002504400250440000000014014536061315021660 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 2.91874277182 elk-9.2.12/tests-libxc/test_003/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214536061315017136 xustar0030 mtime=1702388429.729498808 30 atime=1702388429.728498809 30 ctime=1702388429.729498808 elk-9.2.12/tests-libxc/test_003/TEST_400.OUT_0000644002504400250440000000014114536061315021654 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 52.9968860696 elk-9.2.12/tests-libxc/test_003/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214536061315017132 xustar0030 mtime=1702388429.730498806 30 atime=1702388429.730498806 30 ctime=1702388429.730498806 elk-9.2.12/tests-libxc/test_003/TEST_000.OUT_0000644002504400250440000000012614536061315021653 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -2666.40030332 elk-9.2.12/PaxHeaders/species0000644000000000000000000000013214536061315013020 xustar0030 mtime=1702388429.925498517 30 atime=1702388429.742498788 30 ctime=1702388429.925498517 elk-9.2.12/species/0000755002504400250440000000000014536061315015617 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/species/PaxHeaders/Ac.in0000644000000000000000000000013214536061315013750 xustar0030 mtime=1702388429.755498769 30 atime=1702388429.755498769 30 ctime=1702388429.755498769 elk-9.2.12/species/Ac.in0000644002504400250440000000425214536061315016475 0ustar00dewhurstdewhurst00000000000000 'Ac' : spsymb 'actinium' : spname -89.0000 : spzn 413795.6860 : spmass 0.212000E-06 3.0000 58.5155 800 : rminsp, rmt, rmaxsp, nrmt 26 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 1.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.8323 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.4862 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6749 0 T elk-9.2.12/species/PaxHeaders/Ag.in0000644000000000000000000000013214536061315013754 xustar0030 mtime=1702388429.757498766 30 atime=1702388429.756498768 30 ctime=1702388429.757498766 elk-9.2.12/species/Ag.in0000644002504400250440000000356614536061315016510 0ustar00dewhurstdewhurst00000000000000 'Ag' : spsymb 'silver' : spname -47.0000 : spzn 196631.6997 : spmass 0.291730E-06 2.6000 49.0510 600 : rminsp, rmt, rmaxsp, nrmt 15 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.4920 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0961 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2735 0 T elk-9.2.12/species/PaxHeaders/Al.in0000644000000000000000000000013214536061315013761 xustar0030 mtime=1702388429.758498765 30 atime=1702388429.758498765 30 ctime=1702388429.758498765 elk-9.2.12/species/Al.in0000644002504400250440000000227614536061315016512 0ustar00dewhurstdewhurst00000000000000 'Al' : spsymb 'aluminium' : spname -13.0000 : spzn 49184.33492 : spmass 0.554700E-06 2.2000 57.4918 400 : rminsp, rmt, rmaxsp, nrmt 6 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 F 2 1 2 4.00000 F 3 0 1 2.00000 F 3 1 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.5562 0 T elk-9.2.12/species/PaxHeaders/Am.in0000644000000000000000000000013214536061315013762 xustar0030 mtime=1702388429.760498762 30 atime=1702388429.760498762 30 ctime=1702388429.760498762 elk-9.2.12/species/Am.in0000644002504400250440000000453214536061315016510 0ustar00dewhurstdewhurst00000000000000 'Am' : spsymb 'americium' : spname -95.0000 : spzn 442961.9018 : spmass 0.205196E-06 3.0000 51.9446 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 3.00000 F 5 3 4 4.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.0774 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8674 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7549 0 T elk-9.2.12/species/PaxHeaders/Ar.in0000644000000000000000000000013214536061315013767 xustar0030 mtime=1702388429.762498759 30 atime=1702388429.762498759 30 ctime=1702388429.762498759 elk-9.2.12/species/Ar.in0000644002504400250440000000233214536061315016511 0ustar00dewhurstdewhurst00000000000000 'Ar' : spsymb 'argon' : spname -18.0000 : spzn 72820.74919 : spmass 0.471405E-06 2.0000 28.6848 400 : rminsp, rmt, rmaxsp, nrmt 7 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8916 0 T elk-9.2.12/species/PaxHeaders/As.in0000644000000000000000000000013214536061315013770 xustar0030 mtime=1702388429.764498756 30 atime=1702388429.764498756 30 ctime=1702388429.764498756 elk-9.2.12/species/As.in0000644002504400250440000000321614536061315016514 0ustar00dewhurstdewhurst00000000000000 'As' : spsymb 'arsenic' : spname -33.0000 : spzn 136573.7219 : spmass 0.348155E-06 2.4000 42.0399 500 : rminsp, rmt, rmaxsp, nrmt 12 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 2.00000 F 4 1 1 1.00000 F 4 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.4917 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5401 0 T elk-9.2.12/species/PaxHeaders/At.in0000644000000000000000000000013214536061315013771 xustar0030 mtime=1702388429.765498754 30 atime=1702388429.765498754 30 ctime=1702388429.765498754 elk-9.2.12/species/At.in0000644002504400250440000000373614536061315016524 0ustar00dewhurstdewhurst00000000000000 'At' : spsymb 'astatine' : spname -85.0000 : spzn 382806.5818 : spmass 0.216930E-06 2.8000 39.4078 700 : rminsp, rmt, rmaxsp, nrmt 24 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 3.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.3831 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7106 0 T elk-9.2.12/species/PaxHeaders/Au.in0000644000000000000000000000013214536061315013772 xustar0030 mtime=1702388429.767498751 30 atime=1702388429.767498751 30 ctime=1702388429.767498751 elk-9.2.12/species/Au.in0000644002504400250440000000431614536061315016520 0ustar00dewhurstdewhurst00000000000000 'Au' : spsymb 'gold' : spname -79.0000 : spzn 359048.0559 : spmass 0.225018E-06 2.8000 39.2245 700 : rminsp, rmt, rmaxsp, nrmt 22 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 T 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.9275 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0422 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2406 0 T elk-9.2.12/species/PaxHeaders/Ba.in0000644000000000000000000000013114536061315013746 xustar0030 mtime=1702388429.769498748 29 atime=1702388429.76849875 30 ctime=1702388429.769498748 elk-9.2.12/species/Ba.in0000644002504400250440000000371214536061315016474 0ustar00dewhurstdewhurst00000000000000 'Ba' : spsymb 'barium' : spname -56.0000 : spzn 250331.8069 : spmass 0.267261E-06 2.8000 55.5566 700 : rminsp, rmt, rmaxsp, nrmt 18 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.2515 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.2408 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6670 0 T elk-9.2.12/species/PaxHeaders/Be.in0000644000000000000000000000013214536061315013753 xustar0030 mtime=1702388429.770498747 30 atime=1702388429.770498747 30 ctime=1702388429.770498747 elk-9.2.12/species/Be.in0000644002504400250440000000167214536061315016503 0ustar00dewhurstdewhurst00000000000000 'Be' : spsymb 'beryllium' : spname -4.00000 : spzn 16428.20279 : spmass 0.100000E-05 1.8000 44.5601 300 : rminsp, rmt, rmaxsp, nrmt 2 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 2 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F elk-9.2.12/species/PaxHeaders/Bi.in0000644000000000000000000000013214536061315013757 xustar0030 mtime=1702388429.772498744 30 atime=1702388429.772498744 30 ctime=1702388429.772498744 elk-9.2.12/species/Bi.in0000644002504400250440000000373614536061315016512 0ustar00dewhurstdewhurst00000000000000 'Bi' : spsymb 'bismuth' : spname -83.0000 : spzn 380947.9282 : spmass 0.219529E-06 2.8000 45.2810 700 : rminsp, rmt, rmaxsp, nrmt 24 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 1.00000 F 6 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9498 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5393 0 T elk-9.2.12/species/PaxHeaders/B.in0000644000000000000000000000013214536061315013606 xustar0030 mtime=1702388429.773498743 30 atime=1702388429.773498743 30 ctime=1702388429.773498743 elk-9.2.12/species/B.in0000644002504400250440000000172614536061315016336 0ustar00dewhurstdewhurst00000000000000 'B' : spsymb 'boron' : spname -5.00000 : spzn 19707.24741 : spmass 0.894427E-06 1.8000 50.1216 300 : rminsp, rmt, rmaxsp, nrmt 3 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 2 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F elk-9.2.12/species/PaxHeaders/Bk.in0000644000000000000000000000013214536061315013761 xustar0030 mtime=1702388429.775498739 30 atime=1702388429.775498739 30 ctime=1702388429.775498739 elk-9.2.12/species/Bk.in0000644002504400250440000000453214536061315016507 0ustar00dewhurstdewhurst00000000000000 'Bk' : spsymb 'berkelium' : spname -97.0000 : spzn 450253.4557 : spmass 0.203069E-06 3.0000 52.0199 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 5.00000 F 5 3 4 4.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1057 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.9965 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7758 0 T elk-9.2.12/species/PaxHeaders/Br.in0000644000000000000000000000013214536061315013770 xustar0030 mtime=1702388429.777498736 30 atime=1702388429.777498736 30 ctime=1702388429.777498736 elk-9.2.12/species/Br.in0000644002504400250440000000321614536061315016514 0ustar00dewhurstdewhurst00000000000000 'Br' : spsymb 'bromine' : spname -35.0000 : spzn 145656.0815 : spmass 0.338062E-06 2.4000 34.9262 500 : rminsp, rmt, rmaxsp, nrmt 12 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 3.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.4430 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7453 0 T elk-9.2.12/species/PaxHeaders/Ca.in0000644000000000000000000000013214536061315013750 xustar0030 mtime=1702388429.778498735 30 atime=1702388429.778498735 30 ctime=1702388429.778498735 elk-9.2.12/species/Ca.in0000644002504400250440000000261214536061315016473 0ustar00dewhurstdewhurst00000000000000 'Ca' : spsymb 'calcium' : spname -20.0000 : spzn 73057.72469 : spmass 0.447214E-06 2.4000 50.3684 500 : rminsp, rmt, rmaxsp, nrmt 8 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7208 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0235 0 T elk-9.2.12/species/PaxHeaders/Cd.in0000644000000000000000000000013214536061315013753 xustar0030 mtime=1702388429.780498732 30 atime=1702388429.780498732 30 ctime=1702388429.780498732 elk-9.2.12/species/Cd.in0000644002504400250440000000334214536061315016477 0ustar00dewhurstdewhurst00000000000000 'Cd' : spsymb 'cadmium' : spname -48.0000 : spzn 204912.7175 : spmass 0.288675E-06 2.6000 41.8471 600 : rminsp, rmt, rmaxsp, nrmt 15 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.3934 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4270 0 T elk-9.2.12/species/PaxHeaders/Ce.in0000644000000000000000000000013214536061315013754 xustar0030 mtime=1702388429.782498729 30 atime=1702388429.781498731 30 ctime=1702388429.782498729 elk-9.2.12/species/Ce.in0000644002504400250440000000374614536061315016510 0ustar00dewhurstdewhurst00000000000000 'Ce' : spsymb 'cerium' : spname -58.0000 : spzn 255415.8429 : spmass 0.262613E-06 2.8000 75.2635 700 : rminsp, rmt, rmaxsp, nrmt 19 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 2.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.3797 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7361 0 T elk-9.2.12/species/PaxHeaders/Cf.in0000644000000000000000000000013214536061315013755 xustar0030 mtime=1702388429.783498728 30 atime=1702388429.783498728 30 ctime=1702388429.783498728 elk-9.2.12/species/Cf.in0000644002504400250440000000453214536061315016503 0ustar00dewhurstdewhurst00000000000000 'Cf' : spsymb 'californium' : spname -98.0000 : spzn 457545.0097 : spmass 0.202031E-06 3.0000 52.0569 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 6.00000 F 5 3 4 4.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1183 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0620 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7850 0 T elk-9.2.12/species/PaxHeaders/C.in0000644000000000000000000000013214536061315013607 xustar0030 mtime=1702388429.785498725 30 atime=1702388429.785498725 30 ctime=1702388429.785498725 elk-9.2.12/species/C.in0000644002504400250440000000220614536061315016331 0ustar00dewhurstdewhurst00000000000000 'C' : spsymb 'carbon' : spname -6.00000 : spzn 21894.16672 : spmass 0.816497E-06 1.8000 39.9481 300 : rminsp, rmt, rmaxsp, nrmt 4 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 2 1 2 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5012 0 T elk-9.2.12/species/PaxHeaders/Cl.in0000644000000000000000000000013214536061315013763 xustar0030 mtime=1702388429.786498723 30 atime=1702388429.786498723 30 ctime=1702388429.786498723 elk-9.2.12/species/Cl.in0000644002504400250440000000233214536061315016505 0ustar00dewhurstdewhurst00000000000000 'Cl' : spsymb 'chlorine' : spname -17.0000 : spzn 64626.86545 : spmass 0.485071E-06 2.2000 33.0920 400 : rminsp, rmt, rmaxsp, nrmt 7 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 3.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7601 0 T elk-9.2.12/species/PaxHeaders/Cm.in0000644000000000000000000000012714536061315013770 xustar0029 mtime=1702388429.78849872 29 atime=1702388429.78849872 29 ctime=1702388429.78849872 elk-9.2.12/species/Cm.in0000644002504400250440000000456614536061315016521 0ustar00dewhurstdewhurst00000000000000 'Cm' : spsymb 'curium' : spname -96.0000 : spzn 450253.4557 : spmass 0.204124E-06 3.0000 55.3054 800 : rminsp, rmt, rmaxsp, nrmt 28 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 3.00000 F 5 3 4 4.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 1.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2184 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0481 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8489 0 T elk-9.2.12/species/PaxHeaders/Co.in0000644000000000000000000000013214536061315013766 xustar0030 mtime=1702388429.790498717 30 atime=1702388429.789498719 30 ctime=1702388429.790498717 elk-9.2.12/species/Co.in0000644002504400250440000000312614536061315016512 0ustar00dewhurstdewhurst00000000000000 'Co' : spsymb 'cobalt' : spname -27.0000 : spzn 107428.6517 : spmass 0.384900E-06 2.4000 40.1486 500 : rminsp, rmt, rmaxsp, nrmt 10 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 3.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.3834 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.3072 0 T elk-9.2.12/species/PaxHeaders/Cr.in0000644000000000000000000000013214536061315013771 xustar0030 mtime=1702388429.791498716 30 atime=1702388429.791498716 30 ctime=1702388429.791498716 elk-9.2.12/species/Cr.in0000644002504400250440000000335214536061315016516 0ustar00dewhurstdewhurst00000000000000 'Cr' : spsymb 'chromium' : spname -24.0000 : spzn 94783.09194 : spmass 0.408248E-06 2.4000 51.1100 500 : rminsp, rmt, rmaxsp, nrmt 10 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 3.00000 F 3 2 3 2.00000 F 4 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.7020 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6530 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1134 0 T elk-9.2.12/species/PaxHeaders/Cs.in0000644000000000000000000000013214536061315013772 xustar0030 mtime=1702388429.793498713 30 atime=1702388429.792498714 30 ctime=1702388429.793498713 elk-9.2.12/species/Cs.in0000644002504400250440000000371214536061315016517 0ustar00dewhurstdewhurst00000000000000 'Cs' : spsymb 'caesium' : spname -55.0000 : spzn 242271.8144 : spmass 0.269680E-06 2.8000 68.3104 700 : rminsp, rmt, rmaxsp, nrmt 18 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.6912 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9872 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4810 0 T elk-9.2.12/species/PaxHeaders/Cu.in0000644000000000000000000000013014536061315013772 xustar0029 mtime=1702388429.79549871 30 atime=1702388429.794498711 29 ctime=1702388429.79549871 elk-9.2.12/species/Cu.in0000644002504400250440000000312614536061315016520 0ustar00dewhurstdewhurst00000000000000 'Cu' : spsymb 'copper' : spname -29.0000 : spzn 115837.2717 : spmass 0.371391E-06 2.4000 42.9740 500 : rminsp, rmt, rmaxsp, nrmt 10 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.6152 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1918 0 T elk-9.2.12/species/PaxHeaders/Dy.in0000644000000000000000000000013214536061315014001 xustar0030 mtime=1702388429.796498708 30 atime=1702388429.796498708 30 ctime=1702388429.796498708 elk-9.2.12/species/Dy.in0000644002504400250440000000422614536061315016527 0ustar00dewhurstdewhurst00000000000000 'Dy' : spsymb 'dysprosium' : spname -66.0000 : spzn 296219.3788 : spmass 0.246183E-06 2.8000 48.9249 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 4.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1037 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7987 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8849 0 T elk-9.2.12/species/PaxHeaders/elk.in0000644000000000000000000000013214536061315014200 xustar0030 mtime=1702388429.798498705 30 atime=1702388429.798498705 30 ctime=1702388429.798498705 elk-9.2.12/species/elk.in0000644002504400250440000006662314536061315016737 0ustar00dewhurstdewhurst00000000000000 ! This is a special input file for Elk which generates the default species ! files. No task is required: the code generates the file as soon as it ! encounters a 'species' block. Note the masses are the 'standard atomic weight' ! and are in relative atomic mass units (i.e. multiples of 1/12 times the mass ! of carbon-12); taken from J. S. Coursey, D. J. Schwab, and R. A. Dragoset ! (2005), Atomic Weights and Isotopic Compositions (version 2.4.1). species 1 : atomic number 'H' 'hydrogen' : symbol, name 1.00794 : standard atomic weight (units of 1/12 carbon-12) 1.4 : muffin-tin radius 1 : number of occupied states 1 0 1 1 : n, l, k, occupancy for each state species 2 'He' 'helium' 4.002602 1.4 1 1 0 1 2 species 3 'Li' 'lithium' 6.941 1.8 2 1 0 1 2 2 0 1 1 species 4 'Be' 'beryllium' 9.012182 1.8 2 1 0 1 2 2 0 1 2 species 5 'B' 'boron' 10.811 1.8 3 1 0 1 2 2 0 1 2 2 1 1 1 species 6 'C' 'carbon' 12.0107 1.8 4 1 0 1 2 2 0 1 2 2 1 1 1 2 1 2 1 species 7 'N' 'nitrogen' 14.0067 1.8 4 1 0 1 2 2 0 1 2 2 1 1 1 2 1 2 2 species 8 'O' 'oxygen' 15.9994 1.8 4 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 2 species 9 'F' 'fluorine' 18.9984032 2.0 4 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 3 species 10 'Ne' 'neon' 20.1797 1.6 4 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 species 11 'Na' 'sodium' 22.989770 2.2 5 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 1 species 12 'Mg' 'magnesium' 24.3050 2.2 5 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 species 13 'Al' 'aluminium' 26.981538 2.2 6 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 1 species 14 'Si' 'silicon' 28.0855 2.2 7 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 1 3 1 2 1 species 15 'P' 'phosphorus' 30.973761 2.2 7 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 1 3 1 2 2 species 16 'S' 'sulphur' 32.065 2.2 7 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 2 species 17 'Cl' 'chlorine' 35.453 2.2 7 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 3 species 18 'Ar' 'argon' 39.948 2.0 7 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 species 19 'K' 'potassium' 39.0983 2.4 8 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 4 0 1 1 species 20 'Ca' 'calcium' 40.078 2.4 8 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 4 0 1 2 species 21 'Sc' 'scandium' 44.955910 2.4 9 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 1 4 0 1 2 species 22 'Ti' 'titanium' 47.867 2.4 9 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 2 4 0 1 2 species 23 'V' 'vanadium' 50.9415 2.4 9 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 3 4 0 1 2 species 24 'Cr' 'chromium' 51.9961 2.4 10 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 3 3 2 3 2 4 0 1 1 species 25 'Mn' 'manganese' 54.938049 2.4 10 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 3 3 2 3 2 4 0 1 2 species 26 'Fe' 'iron' 55.845 2.4 10 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 2 4 0 1 2 species 27 'Co' 'cobalt' 58.933200 2.4 10 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 3 4 0 1 2 species 28 'Ni' 'nickel' 58.6934 2.4 10 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 4 4 0 1 2 species 29 'Cu' 'copper' 63.546 2.4 10 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 1 species 30 'Zn' 'zinc' 65.409 2.4 10 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 species 31 'Ga' 'gallium' 69.723 2.4 11 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 1 species 32 'Ge' 'germanium' 72.64 2.4 12 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 1 4 1 2 1 species 33 'As' 'arsenic' 74.92160 2.4 12 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 1 4 1 2 2 species 34 'Se' 'selenium' 78.96 2.4 12 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 2 species 35 'Br' 'bromine' 79.904 2.4 12 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 3 species 36 'Kr' 'krypton' 83.798 2.2 12 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 species 37 'Rb' 'rubidium' 85.4678 2.6 13 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 5 0 1 1 species 38 'Sr' 'strontium' 87.62 2.6 13 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 5 0 1 2 species 39 'Y' 'yttrium' 88.90585 2.6 14 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 1 5 0 1 2 species 40 'Zr' 'zirconium' 91.224 2.6 14 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 2 5 0 1 2 species 41 'Nb' 'niobium' 92.90638 2.6 15 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 3 4 2 3 1 5 0 1 1 species 42 'Mo' 'molybdenum' 95.94 2.6 15 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 3 4 2 3 2 5 0 1 1 species 43 'Tc' 'technetium' 98.0 2.6 15 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 2 5 0 1 1 species 44 'Ru' 'ruthenium' 101.07 2.6 15 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 3 5 0 1 1 species 45 'Rh' 'rhodium' 102.90550 2.6 15 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 4 5 0 1 1 species 46 'Pd' 'palladium' 106.42 2.6 14 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 species 47 'Ag' 'silver' 107.8682 2.6 15 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 1 species 48 'Cd' 'cadmium' 112.411 2.6 15 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 species 49 'In' 'indium' 114.818 2.6 16 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 1 species 50 'Sn' 'tin' 118.710 2.6 17 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 1 5 1 2 1 species 51 'Sb' 'antimony' 121.760 2.6 17 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 1 5 1 2 2 species 52 'Te' 'tellurium' 127.60 2.6 17 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 2 5 1 2 2 species 53 'I' 'iodine' 126.90447 2.6 17 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 2 5 1 2 3 species 54 'Xe' 'xenon' 131.293 2.4 17 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 2 5 1 2 4 species 55 'Cs' 'caesium' 132.90545 2.8 18 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 1 species 56 'Ba' 'barium' 137.327 2.8 18 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 57 'La' 'lanthanum' 138.9055 2.8 19 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 1 6 0 1 2 species 58 'Ce' 'cerium' 140.116 2.8 19 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 2 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 59 'Pr' 'praseodymium' 140.90765 2.8 19 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 3 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 60 'Nd' 'neodymium' 144.24 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 3 4 3 4 1 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 61 'Pm' 'promethium' 145.0 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 3 4 3 4 2 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 62 'Sm' 'samarium' 150.36 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 3 4 3 4 3 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 63 'Eu' 'europium' 151.964 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 3 4 3 4 4 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 64 'Gd' 'gadolinium' 157.25 2.8 21 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 3 4 3 4 4 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 1 6 0 1 2 species 65 'Tb' 'terbium' 158.92534 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 5 4 3 4 4 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 66 'Dy' 'dysprosium' 162.500 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 4 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 67 'Ho' 'holmium' 164.93032 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 5 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 68 'Er' 'erbium' 167.259 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 6 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 69 'Tm' 'thulium' 168.93421 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 7 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 70 'Yb' 'ytterbium' 173.04 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 71 'Lu' 'lutetium' 174.967 2.8 21 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 1 6 0 1 2 species 72 'Hf' 'hafnium' 178.49 2.8 21 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 2 6 0 1 2 species 73 'Ta' 'tantalum' 180.9479 2.8 21 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 3 6 0 1 2 species 74 'W' 'tungsten' 183.84 2.8 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 3 5 2 3 1 6 0 1 2 species 75 'Re' 'rhenium' 186.207 2.8 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 3 5 2 3 2 6 0 1 2 species 76 'Os' 'osmium' 190.23 2.8 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 2 6 0 1 2 species 77 'Ir' 'iridium' 192.217 2.8 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 3 6 0 1 2 species 78 'Pt' 'platinum' 195.078 2.8 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 5 6 0 1 1 species 79 'Au' 'gold' 196.96655 2.8 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 1 species 80 'Hg' 'mercury' 200.59 2.8 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 species 81 'Tl' 'thallium' 204.3833 2.8 23 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 1 species 82 'Pb' 'lead' 207.2 2.8 24 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 1 6 1 2 1 species 83 'Bi' 'bismuth' 208.98038 2.8 24 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 1 6 1 2 2 species 84 'Po' 'polonium' 209.0 2.8 24 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 2 6 1 2 2 species 85 'At' 'astatine' 210.0 2.8 24 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 2 6 1 2 3 species 86 'Rn' 'radon' 222.0 2.6 24 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 2 6 1 2 4 species 87 'Fr' 'francium' 223.0 3.0 25 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 1 species 88 'Ra' 'radium' 226.0 3.0 25 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 89 'Ac' 'actinium' 227.0 3.0 26 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 1 7 0 1 2 species 90 'Th' 'thorium' 232.0381 3.0 26 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 2 7 0 1 2 species 91 'Pa' 'protactinium' 231.03588 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 2 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 1 7 0 1 2 species 92 'U' 'uranium' 238.02891 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 3 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 1 7 0 1 2 species 93 'Np' 'neptunium' 237.0 3.0 28 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 3 5 3 4 1 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 1 7 0 1 2 species 94 'Pu' 'plutonium' 244.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 3 5 3 4 3 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 95 'Am' 'americium' 243.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 3 5 3 4 4 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 96 'Cm' 'curium' 247.0 3.0 28 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 3 5 3 4 4 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 1 7 0 1 2 species 97 'Bk' 'berkelium' 247.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 5 5 3 4 4 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 98 'Cf' 'californium' 251.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 6 5 3 4 4 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 99 'Es' 'einsteinium' 252.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 6 5 3 4 5 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 100 'Fm' 'fermium' 257.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 6 5 3 4 6 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 101 'Md' 'mendelevium' 258.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 6 5 3 4 7 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 102 'No' 'nobelium' 259.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 6 5 3 4 8 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 103 'Lr' 'lawrencium' 262.0 3.0 28 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 6 5 3 4 8 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 1 7 0 1 2 species 104 'Rf' 'rutherfordium' 261.0 3.0 28 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 6 5 3 4 8 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 2 7 0 1 2 elk-9.2.12/species/PaxHeaders/Er.in0000644000000000000000000000013214536061315013773 xustar0030 mtime=1702388429.800498702 30 atime=1702388429.800498702 30 ctime=1702388429.800498702 elk-9.2.12/species/Er.in0000644002504400250440000000422614536061315016521 0ustar00dewhurstdewhurst00000000000000 'Er' : spsymb 'erbium' : spname -68.0000 : spzn 304894.5051 : spmass 0.242536E-06 2.8000 49.0284 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 6.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1037 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.9077 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9177 0 T elk-9.2.12/species/PaxHeaders/Es.in0000644000000000000000000000013214536061315013774 xustar0030 mtime=1702388429.801498701 30 atime=1702388429.801498701 30 ctime=1702388429.801498701 elk-9.2.12/species/Es.in0000644002504400250440000000453214536061315016522 0ustar00dewhurstdewhurst00000000000000 'Es' : spsymb 'einsteinium' : spname -99.0000 : spzn 459367.8982 : spmass 0.201008E-06 3.0000 51.0277 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 6.00000 F 5 3 4 5.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1339 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.1315 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7952 0 T elk-9.2.12/species/PaxHeaders/Eu.in0000644000000000000000000000013214536061315013776 xustar0030 mtime=1702388429.803498698 30 atime=1702388429.803498698 30 ctime=1702388429.803498698 elk-9.2.12/species/Eu.in0000644002504400250440000000422614536061315016524 0ustar00dewhurstdewhurst00000000000000 'Eu' : spsymb 'europium' : spname -63.0000 : spzn 277013.4257 : spmass 0.251976E-06 2.8000 52.2803 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 3.00000 F 4 3 4 4.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.0972 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6436 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8355 0 T elk-9.2.12/species/PaxHeaders/Fe.in0000644000000000000000000000013214536061315013757 xustar0030 mtime=1702388429.805498695 30 atime=1702388429.804498697 30 ctime=1702388429.805498695 elk-9.2.12/species/Fe.in0000644002504400250440000000335214536061315016504 0ustar00dewhurstdewhurst00000000000000 'Fe' : spsymb 'iron' : spname -26.0000 : spzn 101799.2074 : spmass 0.392232E-06 2.4000 42.6274 500 : rminsp, rmt, rmaxsp, nrmt 10 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 2.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.4344 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.1817 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2816 0 T elk-9.2.12/species/PaxHeaders/F.in0000644000000000000000000000013214536061315013612 xustar0030 mtime=1702388429.806498694 30 atime=1702388429.806498694 30 ctime=1702388429.806498694 elk-9.2.12/species/F.in0000644002504400250440000000243214536061315016335 0ustar00dewhurstdewhurst00000000000000 'F' : spsymb 'fluorine' : spname -9.00000 : spzn 34631.97042 : spmass 0.666667E-06 2.0000 27.0542 300 : rminsp, rmt, rmaxsp, nrmt 4 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 2.00000 F 2 1 2 3.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0894 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4142 0 T elk-9.2.12/species/PaxHeaders/Fm.in0000644000000000000000000000013214536061315013767 xustar0030 mtime=1702388429.808498691 30 atime=1702388429.807498692 30 ctime=1702388429.808498691 elk-9.2.12/species/Fm.in0000644002504400250440000000453214536061315016515 0ustar00dewhurstdewhurst00000000000000 'Fm' : spsymb 'fermium' : spname -100.000 : spzn 468482.3406 : spmass 0.200000E-06 3.0000 55.4667 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 6.00000 F 5 3 4 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1486 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.2021 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8046 0 T elk-9.2.12/species/PaxHeaders/Fr.in0000644000000000000000000000013214536061315013774 xustar0030 mtime=1702388429.809498689 30 atime=1702388429.809498689 30 ctime=1702388429.809498689 elk-9.2.12/species/Fr.in0000644002504400250440000000421614536061315016521 0ustar00dewhurstdewhurst00000000000000 'Fr' : spsymb 'francium' : spname -87.0000 : spzn 406504.1321 : spmass 0.214423E-06 3.0000 70.3136 800 : rminsp, rmt, rmaxsp, nrmt 25 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0328 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0471 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4089 0 T elk-9.2.12/species/PaxHeaders/Ga.in0000644000000000000000000000013214536061315013754 xustar0030 mtime=1702388429.811498686 30 atime=1702388429.811498686 30 ctime=1702388429.811498686 elk-9.2.12/species/Ga.in0000644002504400250440000000273614536061315016506 0ustar00dewhurstdewhurst00000000000000 'Ga' : spsymb 'gallium' : spname -31.0000 : spzn 127097.2538 : spmass 0.359211E-06 2.4000 55.5610 500 : rminsp, rmt, rmaxsp, nrmt 11 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 2.00000 F 4 1 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7036 0 T elk-9.2.12/species/PaxHeaders/Gd.in0000644000000000000000000000013214536061315013757 xustar0030 mtime=1702388429.813498683 30 atime=1702388429.812498685 30 ctime=1702388429.813498683 elk-9.2.12/species/Gd.in0000644002504400250440000000426214536061315016505 0ustar00dewhurstdewhurst00000000000000 'Gd' : spsymb 'gadolinium' : spname -64.0000 : spzn 286649.2142 : spmass 0.250000E-06 2.8000 51.1390 700 : rminsp, rmt, rmaxsp, nrmt 21 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 3.00000 F 4 3 4 4.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 1.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.3108 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8262 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9546 0 T elk-9.2.12/species/PaxHeaders/Ge.in0000644000000000000000000000013214536061315013760 xustar0030 mtime=1702388429.814498682 30 atime=1702388429.814498682 30 ctime=1702388429.814498682 elk-9.2.12/species/Ge.in0000644002504400250440000000321614536061315016504 0ustar00dewhurstdewhurst00000000000000 'Ge' : spsymb 'germanium' : spname -32.0000 : spzn 132414.6195 : spmass 0.353553E-06 2.4000 46.1060 500 : rminsp, rmt, rmaxsp, nrmt 12 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 2.00000 F 4 1 1 1.00000 F 4 1 2 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0759 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4380 0 T elk-9.2.12/species/PaxHeaders/He.in0000644000000000000000000000013214536061315013761 xustar0030 mtime=1702388429.816498679 30 atime=1702388429.816498679 30 ctime=1702388429.816498679 elk-9.2.12/species/He.in0000644002504400250440000000206214536061315016503 0ustar00dewhurstdewhurst00000000000000 'He' : spsymb 'helium' : spname -2.00000 : spzn 7296.297095 : spmass 0.141421E-05 1.4000 24.1776 200 : rminsp, rmt, rmaxsp, nrmt 1 : nstsp 1 0 1 2.00000 F : nsp, lsp, ksp, occsp, spcore 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5703 0 T elk-9.2.12/species/PaxHeaders/Hf.in0000644000000000000000000000013214536061315013762 xustar0030 mtime=1702388429.817498677 30 atime=1702388429.817498677 30 ctime=1702388429.817498677 elk-9.2.12/species/Hf.in0000644002504400250440000000426214536061315016510 0ustar00dewhurstdewhurst00000000000000 'Hf' : spsymb 'hafnium' : spname -72.0000 : spzn 325367.3656 : spmass 0.235702E-06 2.8000 49.2272 700 : rminsp, rmt, rmaxsp, nrmt 21 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 2.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5852 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.4529 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.2221 0 T elk-9.2.12/species/PaxHeaders/Hg.in0000644000000000000000000000013214536061315013763 xustar0030 mtime=1702388429.819498674 30 atime=1702388429.819498674 30 ctime=1702388429.819498674 elk-9.2.12/species/Hg.in0000644002504400250440000000364614536061315016516 0ustar00dewhurstdewhurst00000000000000 'Hg' : spsymb 'mercury' : spname -80.0000 : spzn 365653.2012 : spmass 0.223607E-06 2.8000 37.4626 700 : rminsp, rmt, rmaxsp, nrmt 22 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.2710 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.3442 0 T elk-9.2.12/species/PaxHeaders/H.in0000644000000000000000000000013214536061315013614 xustar0030 mtime=1702388429.821498671 30 atime=1702388429.820498673 30 ctime=1702388429.821498671 elk-9.2.12/species/H.in0000644002504400250440000000163614536061315016344 0ustar00dewhurstdewhurst00000000000000 'H' : spsymb 'hydrogen' : spname -1.00000 : spzn 1837.362219 : spmass 0.200000E-05 1.4000 36.6488 200 : rminsp, rmt, rmaxsp, nrmt 1 : nstsp 1 0 1 1.00000 F : nsp, lsp, ksp, occsp, spcore 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 2 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F elk-9.2.12/species/PaxHeaders/Ho.in0000644000000000000000000000012714536061315013777 xustar0029 mtime=1702388429.82249867 29 atime=1702388429.82249867 29 ctime=1702388429.82249867 elk-9.2.12/species/Ho.in0000644002504400250440000000422614536061315016521 0ustar00dewhurstdewhurst00000000000000 'Ho' : spsymb 'holmium' : spname -67.0000 : spzn 300649.5811 : spmass 0.244339E-06 2.8000 51.3086 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 5.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1044 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8527 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9014 0 T elk-9.2.12/species/PaxHeaders/I.in0000644000000000000000000000013214536061315013615 xustar0030 mtime=1702388429.824498667 30 atime=1702388429.823498668 30 ctime=1702388429.824498667 elk-9.2.12/species/I.in0000644002504400250440000000343214536061315016341 0ustar00dewhurstdewhurst00000000000000 'I' : spsymb 'iodine' : spname -53.0000 : spzn 231332.6970 : spmass 0.274721E-06 2.6000 41.0205 600 : rminsp, rmt, rmaxsp, nrmt 17 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 3.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8184 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6456 0 T elk-9.2.12/species/PaxHeaders/In.in0000644000000000000000000000013214536061315013773 xustar0030 mtime=1702388429.825498666 30 atime=1702388429.825498666 30 ctime=1702388429.825498666 elk-9.2.12/species/In.in0000644002504400250440000000337614536061315016526 0ustar00dewhurstdewhurst00000000000000 'In' : spsymb 'indium' : spname -49.0000 : spzn 209300.4100 : spmass 0.285714E-06 2.6000 56.2447 600 : rminsp, rmt, rmaxsp, nrmt 16 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.7840 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6687 0 T elk-9.2.12/species/PaxHeaders/Ir.in0000644000000000000000000000013214536061315013777 xustar0030 mtime=1702388429.827498662 30 atime=1702388429.827498662 30 ctime=1702388429.827498662 elk-9.2.12/species/Ir.in0000644002504400250440000000431614536061315016525 0ustar00dewhurstdewhurst00000000000000 'Ir' : spsymb 'iridium' : spname -77.0000 : spzn 350390.1559 : spmass 0.227921E-06 2.8000 41.0330 700 : rminsp, rmt, rmaxsp, nrmt 22 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 T 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 4.00000 F 5 2 3 3.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.2294 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8716 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2478 0 T elk-9.2.12/species/PaxHeaders/K.in0000644000000000000000000000013214536061315013617 xustar0030 mtime=1702388429.829498659 30 atime=1702388429.829498659 30 ctime=1702388429.829498659 elk-9.2.12/species/K.in0000644002504400250440000000261214536061315016342 0ustar00dewhurstdewhurst00000000000000 'K' : spsymb 'potassium' : spname -19.0000 : spzn 71271.84084 : spmass 0.458831E-06 2.4000 62.3191 500 : rminsp, rmt, rmaxsp, nrmt 8 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 4 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.2928 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6889 0 T elk-9.2.12/species/PaxHeaders/Kr.in0000644000000000000000000000013214536061315014001 xustar0030 mtime=1702388429.830498658 30 atime=1702388429.830498658 30 ctime=1702388429.830498658 elk-9.2.12/species/Kr.in0000644002504400250440000000321614536061315016525 0ustar00dewhurstdewhurst00000000000000 'Kr' : spsymb 'krypton' : spname -36.0000 : spzn 152754.4092 : spmass 0.333333E-06 2.2000 31.7038 500 : rminsp, rmt, rmaxsp, nrmt 12 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.9818 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8532 0 T elk-9.2.12/species/PaxHeaders/La.in0000644000000000000000000000013214536061315013761 xustar0030 mtime=1702388429.832498655 30 atime=1702388429.832498655 30 ctime=1702388429.832498655 elk-9.2.12/species/La.in0000644002504400250440000000352214536061315016505 0ustar00dewhurstdewhurst00000000000000 'La' : spsymb 'lanthanum' : spname -57.0000 : spzn 253209.2364 : spmass 0.264906E-06 2.8000 50.7129 700 : rminsp, rmt, rmaxsp, nrmt 19 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 1.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.4321 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7953 0 T elk-9.2.12/species/PaxHeaders/Li.in0000644000000000000000000000013214536061315013771 xustar0030 mtime=1702388429.834498652 30 atime=1702388429.834498652 30 ctime=1702388429.834498652 elk-9.2.12/species/Li.in0000644002504400250440000000211614536061315016513 0ustar00dewhurstdewhurst00000000000000 'Li' : spsymb 'lithium' : spname -3.00000 : spzn 12652.66897 : spmass 0.115470E-05 1.8000 57.7730 300 : rminsp, rmt, rmaxsp, nrmt 2 : nstsp 1 0 1 2.00000 F : nsp, lsp, ksp, occsp, spcore 2 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8784 0 T elk-9.2.12/species/PaxHeaders/Lr.in0000644000000000000000000000013214536061315014002 xustar0030 mtime=1702388429.835498651 30 atime=1702388429.835498651 30 ctime=1702388429.835498651 elk-9.2.12/species/Lr.in0000644002504400250440000000456614536061315016537 0ustar00dewhurstdewhurst00000000000000 'Lr' : spsymb 'lawrencium' : spname -103.000 : spzn 477596.7830 : spmass 0.197066E-06 3.0000 68.3662 800 : rminsp, rmt, rmaxsp, nrmt 28 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 6.00000 F 5 3 4 8.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 1.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.3668 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.5853 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9447 0 T elk-9.2.12/species/PaxHeaders/Lu.in0000644000000000000000000000013214536061315014005 xustar0030 mtime=1702388429.837498648 30 atime=1702388429.837498648 30 ctime=1702388429.837498648 elk-9.2.12/species/Lu.in0000644002504400250440000000426214536061315016533 0ustar00dewhurstdewhurst00000000000000 'Lu' : spsymb 'lutetium' : spname -71.0000 : spzn 318945.3295 : spmass 0.237356E-06 2.8000 60.6496 700 : rminsp, rmt, rmaxsp, nrmt 21 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 1.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.3291 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.2383 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0908 0 T elk-9.2.12/species/PaxHeaders/Md.in0000644000000000000000000000013214536061315013765 xustar0030 mtime=1702388429.839498645 30 atime=1702388429.839498645 30 ctime=1702388429.839498645 elk-9.2.12/species/Md.in0000644002504400250440000000453214536061315016513 0ustar00dewhurstdewhurst00000000000000 'Md' : spsymb 'mendelevium' : spname -101.000 : spzn 470305.2291 : spmass 0.199007E-06 3.0000 49.0271 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 6.00000 F 5 3 4 7.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1623 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.2742 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8134 0 T elk-9.2.12/species/PaxHeaders/Mg.in0000644000000000000000000000013214536061315013770 xustar0030 mtime=1702388429.840498643 30 atime=1702388429.840498643 30 ctime=1702388429.840498643 elk-9.2.12/species/Mg.in0000644002504400250440000000246614536061315016522 0ustar00dewhurstdewhurst00000000000000 'Mg' : spsymb 'magnesium' : spname -12.0000 : spzn 44305.30462 : spmass 0.577350E-06 2.2000 45.4518 400 : rminsp, rmt, rmaxsp, nrmt 5 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 2.00000 F 2 1 2 4.00000 F 3 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.9139 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7134 0 T elk-9.2.12/species/PaxHeaders/Mn.in0000644000000000000000000000012714536061315014003 xustar0029 mtime=1702388429.84249864 29 atime=1702388429.84249864 29 ctime=1702388429.84249864 elk-9.2.12/species/Mn.in0000644002504400250440000000335214536061315016524 0ustar00dewhurstdewhurst00000000000000 'Mn' : spsymb 'manganese' : spname -25.0000 : spzn 100145.9369 : spmass 0.400000E-06 2.4000 41.1948 500 : rminsp, rmt, rmaxsp, nrmt 10 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 3.00000 F 3 2 3 2.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.1372 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.9857 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2553 0 T elk-9.2.12/species/PaxHeaders/Mo.in0000644000000000000000000000013214536061315014000 xustar0030 mtime=1702388429.843498639 30 atime=1702388429.843498639 30 ctime=1702388429.843498639 elk-9.2.12/species/Mo.in0000644002504400250440000000356614536061315016534 0ustar00dewhurstdewhurst00000000000000 'Mo' : spsymb 'molybdenum' : spname -42.0000 : spzn 174887.9212 : spmass 0.308607E-06 2.6000 48.6428 600 : rminsp, rmt, rmaxsp, nrmt 15 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 3.00000 F 4 2 3 2.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.3643 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.3863 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1404 0 T elk-9.2.12/species/PaxHeaders/Na.in0000644000000000000000000000013214536061315013763 xustar0030 mtime=1702388429.845498636 30 atime=1702388429.845498636 30 ctime=1702388429.845498636 elk-9.2.12/species/Na.in0000644002504400250440000000246614536061315016515 0ustar00dewhurstdewhurst00000000000000 'Na' : spsymb 'sodium' : spname -11.0000 : spzn 41907.78700 : spmass 0.603023E-06 2.2000 56.6436 400 : rminsp, rmt, rmaxsp, nrmt 5 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 2.00000 F 2 1 2 4.00000 F 3 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0701 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0570 0 T elk-9.2.12/species/PaxHeaders/Nb.in0000644000000000000000000000013214536061315013764 xustar0030 mtime=1702388429.847498633 30 atime=1702388429.846498634 30 ctime=1702388429.847498633 elk-9.2.12/species/Nb.in0000644002504400250440000000356614536061315016520 0ustar00dewhurstdewhurst00000000000000 'Nb' : spsymb 'niobium' : spname -41.0000 : spzn 169357.9703 : spmass 0.312348E-06 2.6000 49.8649 600 : rminsp, rmt, rmaxsp, nrmt 15 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 3.00000 F 4 2 3 1.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.1446 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.2440 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1141 0 T elk-9.2.12/species/PaxHeaders/Nd.in0000644000000000000000000000013214536061315013766 xustar0030 mtime=1702388429.848498631 30 atime=1702388429.848498631 30 ctime=1702388429.848498631 elk-9.2.12/species/Nd.in0000644002504400250440000000422614536061315016514 0ustar00dewhurstdewhurst00000000000000 'Nd' : spsymb 'neodymium' : spname -60.0000 : spzn 262933.4350 : spmass 0.258199E-06 2.8000 57.1546 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 3.00000 F 4 3 4 1.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.0620 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.4878 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7795 0 T elk-9.2.12/species/PaxHeaders/Ne.in0000644000000000000000000000013214536061315013767 xustar0030 mtime=1702388429.850498628 30 atime=1702388429.850498628 30 ctime=1702388429.850498628 elk-9.2.12/species/Ne.in0000644002504400250440000000243214536061315016512 0ustar00dewhurstdewhurst00000000000000 'Ne' : spsymb 'neon' : spname -10.0000 : spzn 36785.34276 : spmass 0.632456E-06 1.6000 24.5143 300 : rminsp, rmt, rmaxsp, nrmt 4 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 2.00000 F 2 1 2 4.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.3272 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4961 0 T elk-9.2.12/species/PaxHeaders/Ni.in0000644000000000000000000000013214536061315013773 xustar0030 mtime=1702388429.851498627 30 atime=1702388429.851498627 30 ctime=1702388429.851498627 elk-9.2.12/species/Ni.in0000644002504400250440000000312614536061315016517 0ustar00dewhurstdewhurst00000000000000 'Ni' : spsymb 'nickel' : spname -28.0000 : spzn 106991.5230 : spmass 0.377964E-06 2.4000 42.8623 500 : rminsp, rmt, rmaxsp, nrmt 10 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 4.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.5905 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.3317 0 T elk-9.2.12/species/PaxHeaders/N.in0000644000000000000000000000013214536061315013622 xustar0030 mtime=1702388429.853498624 30 atime=1702388429.853498624 30 ctime=1702388429.853498624 elk-9.2.12/species/N.in0000644002504400250440000000220614536061315016344 0ustar00dewhurstdewhurst00000000000000 'N' : spsymb 'nitrogen' : spname -7.00000 : spzn 25532.65214 : spmass 0.755929E-06 1.8000 34.9411 300 : rminsp, rmt, rmaxsp, nrmt 4 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 2 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6770 0 T elk-9.2.12/species/PaxHeaders/No.in0000644000000000000000000000013214536061315014001 xustar0030 mtime=1702388429.855498621 30 atime=1702388429.854498623 30 ctime=1702388429.855498621 elk-9.2.12/species/No.in0000644002504400250440000000453214536061315016527 0ustar00dewhurstdewhurst00000000000000 'No' : spsymb 'nobelium' : spname -102.000 : spzn 472128.1176 : spmass 0.198030E-06 3.0000 49.0598 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 6.00000 F 5 3 4 8.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1751 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.3481 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8216 0 T elk-9.2.12/species/PaxHeaders/Np.in0000644000000000000000000000013214536061315014002 xustar0030 mtime=1702388429.856498619 30 atime=1702388429.856498619 30 ctime=1702388429.856498619 elk-9.2.12/species/Np.in0000644002504400250440000000456614536061315016537 0ustar00dewhurstdewhurst00000000000000 'Np' : spsymb 'neptunium' : spname -93.0000 : spzn 432024.5709 : spmass 0.207390E-06 3.0000 54.0533 800 : rminsp, rmt, rmaxsp, nrmt 28 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 3.00000 F 5 3 4 1.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 1.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1316 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8240 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7920 0 T elk-9.2.12/species/PaxHeaders/O.in0000644000000000000000000000013214536061315013623 xustar0030 mtime=1702388429.858498616 30 atime=1702388429.857498618 30 ctime=1702388429.858498616 elk-9.2.12/species/O.in0000644002504400250440000000220614536061315016345 0ustar00dewhurstdewhurst00000000000000 'O' : spsymb 'oxygen' : spname -8.00000 : spzn 29165.12202 : spmass 0.707107E-06 1.8000 30.4661 300 : rminsp, rmt, rmaxsp, nrmt 4 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 2.00000 F 2 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8728 0 T elk-9.2.12/species/PaxHeaders/Os.in0000644000000000000000000000013214536061315014006 xustar0030 mtime=1702388429.859498615 30 atime=1702388429.859498615 30 ctime=1702388429.859498615 elk-9.2.12/species/Os.in0000644002504400250440000000454214536061315016535 0ustar00dewhurstdewhurst00000000000000 'Os' : spsymb 'osmium' : spname -76.0000 : spzn 346768.0765 : spmass 0.229416E-06 2.8000 47.1620 700 : rminsp, rmt, rmaxsp, nrmt 22 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 4.00000 F 5 2 3 2.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 8 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8559 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.3540 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7397 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2159 0 T elk-9.2.12/species/PaxHeaders/Pa.in0000644000000000000000000000013214536061315013765 xustar0030 mtime=1702388429.861498612 30 atime=1702388429.861498612 30 ctime=1702388429.861498612 elk-9.2.12/species/Pa.in0000644002504400250440000000430614536061315016512 0ustar00dewhurstdewhurst00000000000000 'Pa' : spsymb 'protactinium' : spname -91.0000 : spzn 421152.6452 : spmass 0.209657E-06 3.0000 62.3511 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 2.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 1.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6682 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7444 0 T elk-9.2.12/species/PaxHeaders/Pb.in0000644000000000000000000000013214536061315013766 xustar0030 mtime=1702388429.862498611 30 atime=1702388429.862498611 30 ctime=1702388429.862498611 elk-9.2.12/species/Pb.in0000644002504400250440000000373614536061315016521 0ustar00dewhurstdewhurst00000000000000 'Pb' : spsymb 'lead' : spname -82.0000 : spzn 377702.4940 : spmass 0.220863E-06 2.8000 53.2955 700 : rminsp, rmt, rmaxsp, nrmt 24 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 1.00000 F 6 1 2 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7322 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4439 0 T elk-9.2.12/species/PaxHeaders/Pd.in0000644000000000000000000000013214536061315013770 xustar0030 mtime=1702388429.865498606 30 atime=1702388429.864498608 30 ctime=1702388429.865498606 elk-9.2.12/species/Pd.in0000644002504400250440000000353214536061315016515 0ustar00dewhurstdewhurst00000000000000 'Pd' : spsymb 'palladium' : spname -46.0000 : spzn 193991.7925 : spmass 0.294884E-06 2.6000 41.5324 500 : rminsp, rmt, rmaxsp, nrmt 14 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 6.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.1380 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8352 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1522 0 T elk-9.2.12/species/PaxHeaders/P.in0000644000000000000000000000013214536061315013624 xustar0030 mtime=1702388429.866498605 30 atime=1702388429.866498605 30 ctime=1702388429.866498605 elk-9.2.12/species/P.in0000644002504400250440000000233214536061315016346 0ustar00dewhurstdewhurst00000000000000 'P' : spsymb 'phosphorus' : spname -15.0000 : spzn 56461.71226 : spmass 0.516398E-06 2.2000 39.7177 400 : rminsp, rmt, rmaxsp, nrmt 7 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 1.00000 F 3 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5151 0 T elk-9.2.12/species/PaxHeaders/Pm.in0000644000000000000000000000013214536061315014001 xustar0030 mtime=1702388429.868498602 30 atime=1702388429.868498602 30 ctime=1702388429.868498602 elk-9.2.12/species/Pm.in0000644002504400250440000000422614536061315016527 0ustar00dewhurstdewhurst00000000000000 'Pm' : spsymb 'promethium' : spname -61.0000 : spzn 264318.8303 : spmass 0.256074E-06 2.8000 52.1574 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 3.00000 F 4 3 4 2.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.0768 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.5401 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7991 0 T elk-9.2.12/species/PaxHeaders/Po.in0000644000000000000000000000013014536061315014001 xustar0030 mtime=1702388429.870498599 28 atime=1702388429.8694986 30 ctime=1702388429.870498599 elk-9.2.12/species/Po.in0000644002504400250440000000373614536061315016536 0ustar00dewhurstdewhurst00000000000000 'Po' : spsymb 'polonium' : spname -84.0000 : spzn 380983.6933 : spmass 0.218218E-06 2.8000 43.2445 700 : rminsp, rmt, rmaxsp, nrmt 24 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.1481 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6144 0 T elk-9.2.12/species/PaxHeaders/Pr.in0000644000000000000000000000013214536061315014006 xustar0030 mtime=1702388429.871498597 30 atime=1702388429.871498597 30 ctime=1702388429.871498597 elk-9.2.12/species/Pr.in0000644002504400250440000000374614536061315016542 0ustar00dewhurstdewhurst00000000000000 'Pr' : spsymb 'praseodymium' : spname -59.0000 : spzn 256858.9326 : spmass 0.260378E-06 2.8000 55.7748 700 : rminsp, rmt, rmaxsp, nrmt 19 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 3.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.4342 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7585 0 T elk-9.2.12/species/PaxHeaders/Pt.in0000644000000000000000000000013214536061315014010 xustar0030 mtime=1702388429.873498594 30 atime=1702388429.873498594 30 ctime=1702388429.873498594 elk-9.2.12/species/Pt.in0000644002504400250440000000431614536061315016536 0ustar00dewhurstdewhurst00000000000000 'Pt' : spsymb 'platinum' : spname -78.0000 : spzn 355605.4398 : spmass 0.226455E-06 2.8000 40.1191 700 : rminsp, rmt, rmaxsp, nrmt 22 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 T 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 4.00000 F 5 2 3 5.00000 F 6 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.5235 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.9151 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2143 0 T elk-9.2.12/species/PaxHeaders/Pu.in0000644000000000000000000000013214536061315014011 xustar0030 mtime=1702388429.875498592 30 atime=1702388429.874498593 30 ctime=1702388429.875498592 elk-9.2.12/species/Pu.in0000644002504400250440000000453214536061315016537 0ustar00dewhurstdewhurst00000000000000 'Pu' : spsymb 'plutonium' : spname -94.0000 : spzn 444784.7903 : spmass 0.206284E-06 3.0000 57.5498 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 3.00000 F 5 3 4 3.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.0579 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7999 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7412 0 T elk-9.2.12/species/PaxHeaders/Ra.in0000644000000000000000000000012714536061315013773 xustar0029 mtime=1702388429.87649859 29 atime=1702388429.87649859 29 ctime=1702388429.87649859 elk-9.2.12/species/Ra.in0000644002504400250440000000421614536061315016514 0ustar00dewhurstdewhurst00000000000000 'Ra' : spsymb 'radium' : spname -88.0000 : spzn 411972.7976 : spmass 0.213201E-06 3.0000 54.9631 800 : rminsp, rmt, rmaxsp, nrmt 25 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.4469 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.2846 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5588 0 T elk-9.2.12/species/PaxHeaders/Rb.in0000644000000000000000000000013214536061315013770 xustar0030 mtime=1702388429.878498587 30 atime=1702388429.878498587 30 ctime=1702388429.878498587 elk-9.2.12/species/Rb.in0000644002504400250440000000302614536061315016513 0ustar00dewhurstdewhurst00000000000000 'Rb' : spsymb 'rubidium' : spname -37.0000 : spzn 155798.2684 : spmass 0.328798E-06 2.6000 62.8187 600 : rminsp, rmt, rmaxsp, nrmt 13 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.1744 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5784 0 T elk-9.2.12/species/PaxHeaders/Re.in0000644000000000000000000000013214536061315013773 xustar0030 mtime=1702388429.879498585 30 atime=1702388429.879498585 30 ctime=1702388429.879498585 elk-9.2.12/species/Re.in0000644002504400250440000000454214536061315016522 0ustar00dewhurstdewhurst00000000000000 'Re' : spsymb 'rhenium' : spname -75.0000 : spzn 339434.5961 : spmass 0.230940E-06 2.8000 40.0180 700 : rminsp, rmt, rmaxsp, nrmt 22 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 3.00000 F 5 2 3 2.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 8 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.5110 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.1270 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6149 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1881 0 T elk-9.2.12/species/PaxHeaders/Rf.in0000644000000000000000000000013214536061315013774 xustar0030 mtime=1702388429.881498583 30 atime=1702388429.881498583 30 ctime=1702388429.881498583 elk-9.2.12/species/Rf.in0000644002504400250440000000456614536061315016531 0ustar00dewhurstdewhurst00000000000000 'Rf' : spsymb 'rutherfordium' : spname -104.000 : spzn 475773.8945 : spmass 0.196116E-06 3.0000 53.3658 800 : rminsp, rmt, rmaxsp, nrmt 28 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 6.00000 F 5 3 4 8.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 2.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5604 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.8179 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0541 0 T elk-9.2.12/species/PaxHeaders/Rh.in0000644000000000000000000000013014536061315013774 xustar0029 mtime=1702388429.88349858 30 atime=1702388429.882498581 29 ctime=1702388429.88349858 elk-9.2.12/species/Rh.in0000644002504400250440000000356614536061315016532 0ustar00dewhurstdewhurst00000000000000 'Rh' : spsymb 'rhodium' : spname -45.0000 : spzn 187585.2510 : spmass 0.298142E-06 2.6000 45.1320 600 : rminsp, rmt, rmaxsp, nrmt 15 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 4.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.0301 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8089 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2190 0 T elk-9.2.12/species/PaxHeaders/Rn.in0000644000000000000000000000013214536061315014004 xustar0030 mtime=1702388429.884498578 30 atime=1702388429.884498578 30 ctime=1702388429.884498578 elk-9.2.12/species/Rn.in0000644002504400250440000000373614536061315016537 0ustar00dewhurstdewhurst00000000000000 'Rn' : spsymb 'radon' : spname -86.0000 : spzn 404681.2436 : spmass 0.215666E-06 2.6000 38.0087 700 : rminsp, rmt, rmaxsp, nrmt 24 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6273 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8085 0 T elk-9.2.12/species/PaxHeaders/Ru.in0000644000000000000000000000013214536061315014013 xustar0030 mtime=1702388429.886498575 30 atime=1702388429.885498577 30 ctime=1702388429.886498575 elk-9.2.12/species/Ru.in0000644002504400250440000000356614536061315016547 0ustar00dewhurstdewhurst00000000000000 'Ru' : spsymb 'ruthenium' : spname -44.0000 : spzn 184239.3392 : spmass 0.301511E-06 2.6000 48.8112 600 : rminsp, rmt, rmaxsp, nrmt 15 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 3.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.8048 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6670 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1922 0 T elk-9.2.12/species/PaxHeaders/Sb.in0000644000000000000000000000013214536061315013771 xustar0030 mtime=1702388429.887498574 30 atime=1702388429.887498574 30 ctime=1702388429.887498574 elk-9.2.12/species/Sb.in0000644002504400250440000000343214536061315016515 0ustar00dewhurstdewhurst00000000000000 'Sb' : spsymb 'antimony' : spname -51.0000 : spzn 221954.9019 : spmass 0.280056E-06 2.6000 44.3358 600 : rminsp, rmt, rmaxsp, nrmt 17 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 1.00000 F 5 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.2137 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4804 0 T elk-9.2.12/species/PaxHeaders/Sc.in0000644000000000000000000000013214536061315013772 xustar0030 mtime=1702388429.889498571 30 atime=1702388429.888498572 30 ctime=1702388429.889498571 elk-9.2.12/species/Sc.in0000644002504400250440000000307214536061315016516 0ustar00dewhurstdewhurst00000000000000 'Sc' : spsymb 'scandium' : spname -21.0000 : spzn 81949.61066 : spmass 0.436436E-06 2.4000 55.5111 500 : rminsp, rmt, rmaxsp, nrmt 9 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 1.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0100 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.2267 0 T elk-9.2.12/species/PaxHeaders/Se.in0000644000000000000000000000013214536061315013774 xustar0030 mtime=1702388429.890498569 30 atime=1702388429.890498569 30 ctime=1702388429.890498569 elk-9.2.12/species/Se.in0000644002504400250440000000321614536061315016520 0ustar00dewhurstdewhurst00000000000000 'Se' : spsymb 'selenium' : spname -34.0000 : spzn 143935.2748 : spmass 0.342997E-06 2.4000 38.3229 500 : rminsp, rmt, rmaxsp, nrmt 12 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.9444 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6402 0 T elk-9.2.12/species/PaxHeaders/Si.in0000644000000000000000000000013214536061315014000 xustar0030 mtime=1702388429.892498566 30 atime=1702388429.892498566 30 ctime=1702388429.892498566 elk-9.2.12/species/Si.in0000644002504400250440000000210614536061315016521 0ustar00dewhurstdewhurst00000000000000 'Si' : spsymb 'silicon' : spname -14.0000 : spzn 51196.73454 : spmass 0.534522E-06 2.2000 47.8169 400 : rminsp, rmt, rmaxsp, nrmt 7 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 1.00000 F 3 1 2 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 2 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F elk-9.2.12/species/PaxHeaders/S.in0000644000000000000000000000013214536061315013627 xustar0030 mtime=1702388429.893498565 30 atime=1702388429.893498565 30 ctime=1702388429.893498565 elk-9.2.12/species/S.in0000644002504400250440000000233214536061315016351 0ustar00dewhurstdewhurst00000000000000 'S' : spsymb 'sulphur' : spname -16.0000 : spzn 58450.91926 : spmass 0.500000E-06 2.2000 36.9680 400 : rminsp, rmt, rmaxsp, nrmt 7 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6346 0 T elk-9.2.12/species/PaxHeaders/Sm.in0000644000000000000000000000013214536061315014004 xustar0030 mtime=1702388429.895498562 30 atime=1702388429.895498562 30 ctime=1702388429.895498562 elk-9.2.12/species/Sm.in0000644002504400250440000000422614536061315016532 0ustar00dewhurstdewhurst00000000000000 'Sm' : spsymb 'samarium' : spname -62.0000 : spzn 274089.5126 : spmass 0.254000E-06 2.8000 52.2193 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 3.00000 F 4 3 4 3.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.0883 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.5919 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8177 0 T elk-9.2.12/species/PaxHeaders/Sn.in0000644000000000000000000000012714536061315014011 xustar0029 mtime=1702388429.89649856 29 atime=1702388429.89649856 29 ctime=1702388429.89649856 elk-9.2.12/species/Sn.in0000644002504400250440000000343214536061315016531 0ustar00dewhurstdewhurst00000000000000 'Sn' : spsymb 'tin' : spname -50.0000 : spzn 216395.0920 : spmass 0.282843E-06 2.6000 49.2770 600 : rminsp, rmt, rmaxsp, nrmt 17 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 1.00000 F 5 1 2 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.1993 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9327 0 T elk-9.2.12/species/PaxHeaders/Sr.in0000644000000000000000000000013214536061315014011 xustar0030 mtime=1702388429.898498557 30 atime=1702388429.898498557 30 ctime=1702388429.898498557 elk-9.2.12/species/Sr.in0000644002504400250440000000302614536061315016534 0ustar00dewhurstdewhurst00000000000000 'Sr' : spsymb 'strontium' : spname -38.0000 : spzn 159721.4890 : spmass 0.324443E-06 2.6000 52.2837 600 : rminsp, rmt, rmaxsp, nrmt 13 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 5 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.5031 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8259 0 T elk-9.2.12/species/PaxHeaders/Ta.in0000644000000000000000000000013214536061315013771 xustar0030 mtime=1702388429.900498554 30 atime=1702388429.899498556 30 ctime=1702388429.900498554 elk-9.2.12/species/Ta.in0000644002504400250440000000426214536061315016517 0ustar00dewhurstdewhurst00000000000000 'Ta' : spsymb 'tantalum' : spname -73.0000 : spzn 329847.8433 : spmass 0.234082E-06 2.8000 43.8533 700 : rminsp, rmt, rmaxsp, nrmt 21 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 3.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8655 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.6690 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.3498 0 T elk-9.2.12/species/PaxHeaders/Tb.in0000644000000000000000000000013214536061315013772 xustar0030 mtime=1702388429.902498551 30 atime=1702388429.902498551 30 ctime=1702388429.902498551 elk-9.2.12/species/Tb.in0000644002504400250440000000422614536061315016520 0ustar00dewhurstdewhurst00000000000000 'Tb' : spsymb 'terbium' : spname -65.0000 : spzn 289703.1722 : spmass 0.248069E-06 2.8000 52.3997 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 5.00000 F 4 3 4 4.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1036 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7464 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8687 0 T elk-9.2.12/species/PaxHeaders/Tc.in0000644000000000000000000000013214536061315013773 xustar0030 mtime=1702388429.904498549 30 atime=1702388429.904498549 30 ctime=1702388429.904498549 elk-9.2.12/species/Tc.in0000644002504400250440000000356614536061315016527 0ustar00dewhurstdewhurst00000000000000 'Tc' : spsymb 'technetium' : spname -43.0000 : spzn 178643.0715 : spmass 0.304997E-06 2.6000 48.7280 600 : rminsp, rmt, rmaxsp, nrmt 15 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 2.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.5825 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.5257 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1656 0 T elk-9.2.12/species/PaxHeaders/Te.in0000644000000000000000000000013214536061315013775 xustar0030 mtime=1702388429.905498547 30 atime=1702388429.905498547 30 ctime=1702388429.905498547 elk-9.2.12/species/Te.in0000644002504400250440000000343214536061315016521 0ustar00dewhurstdewhurst00000000000000 'Te' : spsymb 'tellurium' : spname -52.0000 : spzn 232600.5707 : spmass 0.277350E-06 2.6000 40.9670 600 : rminsp, rmt, rmaxsp, nrmt 17 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.5022 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5594 0 T elk-9.2.12/species/PaxHeaders/Th.in0000644000000000000000000000013214536061315014000 xustar0030 mtime=1702388429.907498544 30 atime=1702388429.907498544 30 ctime=1702388429.907498544 elk-9.2.12/species/Th.in0000644002504400250440000000425214536061315016525 0ustar00dewhurstdewhurst00000000000000 'Th' : spsymb 'thorium' : spname -90.0000 : spzn 422979.5805 : spmass 0.210819E-06 3.0000 51.7499 800 : rminsp, rmt, rmaxsp, nrmt 26 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 2.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.2122 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6772 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7795 0 T elk-9.2.12/species/PaxHeaders/Ti.in0000644000000000000000000000013214536061315014001 xustar0030 mtime=1702388429.908498542 30 atime=1702388429.908498542 30 ctime=1702388429.908498542 elk-9.2.12/species/Ti.in0000644002504400250440000000307214536061315016525 0ustar00dewhurstdewhurst00000000000000 'Ti' : spsymb 'titanium' : spname -22.0000 : spzn 87256.20310 : spmass 0.426401E-06 2.4000 46.2267 500 : rminsp, rmt, rmaxsp, nrmt 9 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 2.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.2872 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.4164 0 T elk-9.2.12/species/PaxHeaders/Tl.in0000644000000000000000000000012714536061315014010 xustar0029 mtime=1702388429.91049854 29 atime=1702388429.91049854 29 ctime=1702388429.91049854 elk-9.2.12/species/Tl.in0000644002504400250440000000370214536061315016530 0ustar00dewhurstdewhurst00000000000000 'Tl' : spsymb 'thallium' : spname -81.0000 : spzn 372567.9640 : spmass 0.222222E-06 2.8000 57.1183 700 : rminsp, rmt, rmaxsp, nrmt 23 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.5798 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5217 0 T elk-9.2.12/species/PaxHeaders/Tm.in0000644000000000000000000000013214536061315014005 xustar0030 mtime=1702388429.912498537 30 atime=1702388429.911498538 30 ctime=1702388429.912498537 elk-9.2.12/species/Tm.in0000644002504400250440000000422614536061315016533 0ustar00dewhurstdewhurst00000000000000 'Tm' : spsymb 'thulium' : spname -69.0000 : spzn 307948.2261 : spmass 0.240772E-06 2.8000 53.8678 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 7.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1016 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.9638 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9340 0 T elk-9.2.12/species/PaxHeaders/U.in0000644000000000000000000000013214536061315013631 xustar0030 mtime=1702388429.913498535 30 atime=1702388429.913498535 30 ctime=1702388429.913498535 elk-9.2.12/species/U.in0000644002504400250440000000430614536061315016356 0ustar00dewhurstdewhurst00000000000000 'U' : spsymb 'uranium' : spname -92.0000 : spzn 433900.1591 : spmass 0.208514E-06 3.0000 56.2869 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 3.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 1.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7461 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7688 0 T elk-9.2.12/species/PaxHeaders/V.in0000644000000000000000000000013214536061315013632 xustar0030 mtime=1702388429.915498532 30 atime=1702388429.915498532 30 ctime=1702388429.915498532 elk-9.2.12/species/V.in0000644002504400250440000000307214536061315016356 0ustar00dewhurstdewhurst00000000000000 'V' : spsymb 'vanadium' : spname -23.0000 : spzn 92860.67375 : spmass 0.417029E-06 2.4000 46.3855 500 : rminsp, rmt, rmaxsp, nrmt 9 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 3.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.5646 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6038 0 T elk-9.2.12/species/PaxHeaders/W.in0000644000000000000000000000013214536061315013633 xustar0030 mtime=1702388429.917498529 30 atime=1702388429.917498529 30 ctime=1702388429.917498529 elk-9.2.12/species/W.in0000644002504400250440000000454214536061315016362 0ustar00dewhurstdewhurst00000000000000 'W' : spsymb 'tungsten' : spname -74.0000 : spzn 335119.8190 : spmass 0.232495E-06 2.8000 47.0748 700 : rminsp, rmt, rmaxsp, nrmt 22 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 3.00000 F 5 2 3 1.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 8 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.1774 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.8962 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.4828 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1560 0 T elk-9.2.12/species/PaxHeaders/Xe.in0000644000000000000000000000013214536061315014001 xustar0030 mtime=1702388429.919498526 30 atime=1702388429.918498528 30 ctime=1702388429.919498526 elk-9.2.12/species/Xe.in0000644002504400250440000000343214536061315016525 0ustar00dewhurstdewhurst00000000000000 'Xe' : spsymb 'xenon' : spname -54.0000 : spzn 239332.4978 : spmass 0.272166E-06 2.4000 34.6139 600 : rminsp, rmt, rmaxsp, nrmt 17 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.1523 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7334 0 T elk-9.2.12/species/PaxHeaders/Yb.in0000644000000000000000000000013214536061315013777 xustar0030 mtime=1702388429.920498525 30 atime=1702388429.920498525 30 ctime=1702388429.920498525 elk-9.2.12/species/Yb.in0000644002504400250440000000422614536061315016525 0ustar00dewhurstdewhurst00000000000000 'Yb' : spsymb 'ytterbium' : spname -70.0000 : spzn 315432.6234 : spmass 0.239046E-06 2.8000 49.1291 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.0982 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0212 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9503 0 T elk-9.2.12/species/PaxHeaders/Y.in0000644000000000000000000000013214536061315013635 xustar0030 mtime=1702388429.922498522 30 atime=1702388429.922498522 30 ctime=1702388429.922498522 elk-9.2.12/species/Y.in0000644002504400250440000000330614536061315016361 0ustar00dewhurstdewhurst00000000000000 'Y' : spsymb 'yttrium' : spname -39.0000 : spzn 162065.4502 : spmass 0.320256E-06 2.6000 53.7982 600 : rminsp, rmt, rmaxsp, nrmt 14 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 1.00000 F 5 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7619 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0082 0 T elk-9.2.12/species/PaxHeaders/Zn.in0000644000000000000000000000013114536061315014013 xustar0030 mtime=1702388429.924498519 29 atime=1702388429.92349852 30 ctime=1702388429.924498519 elk-9.2.12/species/Zn.in0000644002504400250440000000312614536061315016540 0ustar00dewhurstdewhurst00000000000000 'Zn' : spsymb 'zinc' : spname -30.0000 : spzn 119233.3129 : spmass 0.365148E-06 2.4000 39.2020 500 : rminsp, rmt, rmaxsp, nrmt 10 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.0221 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.3778 0 T elk-9.2.12/species/PaxHeaders/Zr.in0000644000000000000000000000013214536061315014020 xustar0030 mtime=1702388429.925498517 30 atime=1702388429.925498517 30 ctime=1702388429.925498517 elk-9.2.12/species/Zr.in0000644002504400250440000000330614536061315016544 0ustar00dewhurstdewhurst00000000000000 'Zr' : spsymb 'zirconium' : spname -40.0000 : spzn 166291.1791 : spmass 0.316228E-06 2.6000 48.4669 600 : rminsp, rmt, rmaxsp, nrmt 14 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 2.00000 F 5 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0002 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.1708 0 T elk-9.2.12/PaxHeaders/utilities0000644000000000000000000000013214536061315013400 xustar0030 mtime=1702388429.949498482 30 atime=1702388429.938498498 30 ctime=1702388429.949498482 elk-9.2.12/utilities/0000755002504400250440000000000014536061315016177 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/utilities/PaxHeaders/elk-bands0000644000000000000000000000013214536061315015240 xustar0030 mtime=1702388429.940498495 30 atime=1702388429.939498497 30 ctime=1702388429.940498495 elk-9.2.12/utilities/elk-bands/0000755002504400250440000000000014536061315020037 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/utilities/elk-bands/PaxHeaders/elk-bands0000644000000000000000000000013214536061315017100 xustar0030 mtime=1702388429.940498495 30 atime=1702388429.940498495 30 ctime=1702388429.940498495 elk-9.2.12/utilities/elk-bands/elk-bands0000755002504400250440000001572614536061315021640 0ustar00dewhurstdewhurst00000000000000#!/bin/bash # # Copyright (C) 2010 M. G. Blaber # This file is distributed under the terms of the GNU General Public License. # See the file COPYING for license details. # # http://elk.sourceforge.net/ # # Marty's plotting program for elk band structures. # Changelog: # v0.2 - Fixed a bug regarding white space noticed by Kay Dewhurst # # Description: # -Plots the bands from elk, including labels that you have specified in your # elk.in file (see below for details) # -Notes on the necessary files and programs and Usage are given below. # -I recommend adding this script to your "path", a guide is given in the # Installation Notes below. # # A sample plot1d block is given below: # ------------- # plot1d # 3 100 : nvp1d, npp1d # 0.0 0.0 1.0 !G : vlvp1d # 0.5 0.5 1.0 !X # 0.0 0.0 0.0 !G # -------------- # #Some user defineable plot parameters (You may always change the parameters of #individual plots by editing elk-bands.gps) plot_width="15 cm" #For publication, change to 8.5 cm plot_height="10 cm" #For publication, change to 6 - 10 cm plot_font="Times, 18" #For publication, change to 12 border_linewidth="2" band_linewidth="1" #This number is scaled by border_linewidth internally by gnuplot # # # REQUIRED FILES: # elk.in BAND.OUT BANDLINES.OUT # # REQUIRED PROGRAMS: # awk gnuplot # # USAGE: # elk-bands # OR (energies in eV) # elk-bands [min_energy] [max_energy] # eg: elk-bands -5 10 # # INSTALLATION NOTES: # HOW TO ADD elk-bands TO YOUR PATH # -Make a new directory in your home folder named bin: # mkdir /home/username/bin # -Add this new directory to your path by editing your bashrc file, # /home/username/.bashrc # and add the following line: # export PATH=$PATH:/home/username/bin # To update the path variable for the terminal you are currently in, type: # source ~/.bashrc # ########### me="elk-bands" version="0.2" input_file=elk.in band_file=BAND.OUT bandlines_file=BANDLINES.OUT #Output: gps_file=$me.gps eps_file=$me.eps echo "- Welcome to $me version $version" echo "- Use ~ in front of any character in the labels list to make that letter greek!" echo "---------------------------------------------" ######### # Check Dependencies # Error Message dependencies_usage="ERROR - Programs required by $me not found. $me requires the following programs: - awk - gnuplot Your local package manager should have them, alternatively you can grab them from: http://www.gnu.org/software/gawk/ http://www.gnuplot.info/ " # awk check check=$(which awk 2>&1) if [ ! $? -eq 0 ]; then echo "Ahhhhhhhhhhhhhh - No awk found" echo "$dependencies_usage" exit 1 fi # gnuplot check check=$(which gnuplot 2>&1) if [ ! $? -eq 0 ]; then echo "Ahhhhhhhhhhhhhh - No gnuplot found" echo "$dependencies_usage" exit 1 fi echo "- Found awk and gnuplot" ######### # Check for input files # Error message inputfiles_usage="ERROR - Some file required by $me not found. $me requires the following files: $input_file $band_file $bandlines_file" # Check for f in $input_file $band_file $bandlines_file; do if [ ! -f $f ]; then echo "Ooops, can't find $f" echo "$inputfiles_usage" exit 1 fi done echo "- Found $input_file $band_file $bandlines_file" ######### # Check Parameters # Error message usage="Welcome to $me $version Usage (energies in eV): $me [min energy] [max energy] eg: elk-bands -5.5 10.0 " # Check if [ $1 ]; then if [ $2 ]; then min_energy=$1 max_energy=$2 else echo "ERROR - Please provide both energies" exit 1 fi else #no parameters provided min_energy="-15" max_energy="15" fi ######### # Get the labels and check them # Error for when someone forgets the labels in elk.in label_usage="ERROR - Labels not found. All tildes ~ convert the following letter to a greek symbol. $me requires the plot1d block in $input_file to look like: ------------------------ plot1d 7 400 : nvp1d, npp1d 0.0 0.0 1.0 ~G : vlvp1d 0.5 0.5 1.0 X 0.0 0.0 0.0 ~G 0.5 0.0 0.0 L 0.5 0.5 0.0 Merry Christmas 0.5 0.25 -0.25 W 0.5 0.0 0.0 L ------------------------- ERROR - Labels not defined correctly - scroll back up to see what went wrong " # Read the labels from elk.in and put them in a file label_names.tmp cat $input_file | awk '{ if($1=="plot1d"){go=1} if(go==2){number_of_labels=$1} if(go>number_of_labels+2){go=0} if(go>2){ for (i = 4; i <= NF; i++){printf("%s ", $i)} printf("\n") } if(go>0){go=go+1} }' | sed 's/://g' | sed 's/vlvp1d//g' | sed 's/ / /g' > label_names.tmp #Check the labels. no_label_line=$(cat label_names.tmp | awk '{if($1==""){print NR; exit}}') if [ $no_label_line ]; then echo "ERROR - No label found on line $((no_label_line+2)) of plot1d block" echo "$label_usage" exit 1 fi # Get the positions of the labels from bandlines file cat $bandlines_file | awk 'BEGIN{last=-1}{ if($1!=""){ if($1!=last){last=$1;print $1} } }' > label_positions.tmp # Match up the labels with their positions and remove the exclamation marks if they exist paste label_positions.tmp label_names.tmp | sed 's/!//' > labels.tmp rm label_names.tmp label_positions.tmp #this thing joins all the labels together into a format gnuplot can understand. labels=$(cat labels.tmp | awk '{ for (i = 2; i <= NF; i++){if (i==2){label=$i}else{label=label " " $i}} printf("%s%s%s %f, ",q,label,q,$1) label="" }' q=\" ) #Replace all instances of capital G with the gamma symbol labels=$(echo $labels | sed 's/~\(.\)/\{\/Symbol \1\}/g' ) if [[ $labels == *"{/Symbol }"* ]] then echo "WARNING -> There is a space after a \"~\" in the labels block... get rid of it."; fi echo "- Found labels" ######### # Write elk-bands.gps, the file which gnuplot uses. #this is a neat trick to spew out a file without having to use quotes. the end of the file is labeled _EOF cat > bands.tmp << _EOF set terminal postscript enhanced eps colour lw $border_linewidth dashlength 2 font "$plot_font" size $plot_width, $plot_height set style data lines set output "$eps_file" set ylabel "Energy (eV)" set grid noytics xtics #this puts vertical lines on the band structure according to xtics below set xtics( $labels ) set mytics 5 #minor y tics, the number of little tics in between labeled tics. unset key #change this to "set key top left" or something if you want the key in the plot #if you use "set key" then the title "Bands" will appear in the key plot [:][$min_energy:$max_energy] \ "BAND.OUT" using 1:((\$2)*27.21138386) title "Bands" lw $band_linewidth lt 1 lc rgb "black",\ 0.0 lt -1 notitle _EOF #this thing just removes the final comma from the end of the "set xtics ( )" line. cat bands.tmp | sed 's/, )/)/' > $gps_file rm bands.tmp rm labels.tmp echo "- Plotting file written to $gps_file" gnuplot $gps_file if [ ! $? -eq 0 ]; then echo "Unfortunately, some sort of unforseen error has occurred, try posting a message on the forum at http://sourceforge.net/projects/elk/forums/ " else echo "- Band plot is ready in $eps_file" fi echo "" exit 0 elk-9.2.12/utilities/PaxHeaders/elk-optics0000644000000000000000000000013214536061315015452 xustar0030 mtime=1702388429.942498492 30 atime=1702388429.941498494 30 ctime=1702388429.942498492 elk-9.2.12/utilities/elk-optics/0000755002504400250440000000000014536061315020251 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/utilities/elk-optics/PaxHeaders/elk-optics.py0000644000000000000000000000013214536061315020153 xustar0030 mtime=1702388429.943498491 30 atime=1702388429.942498492 30 ctime=1702388429.943498491 elk-9.2.12/utilities/elk-optics/elk-optics.py0000644002504400250440000000726514536061315022707 0ustar00dewhurstdewhurst00000000000000#!/usr/bin/python # # Copyright (C) 2015 by Markus Meinert # This file is distributed under the terms of the GNU General Public License. # See the file COPYING for license details. # # http://elk.sourceforge.net/ # # elk-optics.py v1.0 # # This script comes with no warranty. Check the results # carefully for production use. # # Description: # Reads all EPSILON_ii.OUT files in the present directory # and computes optical quantities. Diagonal components only. # # Input: EPSILON_ii.OUT # # Output: energy (eV), Re(eps), Im(eps), # refractive index Re(n), Im(n), # normal incidence reflectivity R, # absorption coefficient alpha (m^-1), # EELS -1/Im(eps) # # Output is written to optics_ii.out # import sys, os, math, cmath # check which files of type EPSILON_ii.OUT exist and # return a list of present components def get_components(): possible = ['11', '22', '33'] present = [] for p in possible: testfilename = 'EPSILON_%s.OUT' % p if os.path.isfile(testfilename): present.append(p) return present # read the EPSILON_ii.OUT file # return lists of energies and complex eps def read_epsilon(filename): handle = open(filename, 'r') content = handle.readlines() handle.close() data = [[],[]] for line in content: l = line.split() if l == []: continue data[0].append(float(l[0])) data[1].append(float(l[1])) # energies are read from first column of the first data block # real part of epsilon is read from the second column of the first data block (first half of the data) # imaginary part of epsilon is read from the second column of the second data block (second half of the data) datalength = int( len( data[0] ) / 2.) energies = data[0][0:datalength] eps_cplx = [complex(a,b) for a,b in zip(data[1][0:datalength], data[1][datalength:])] return energies, eps_cplx # compute optical properties from energies and complex epsilon def write_optical_properties(energies, eps_cplx, component): # complex refractive index N and extinction coefficient kappa # complex refractive index: N = n_r + ik N = [cmath.sqrt(x1) for x1 in eps_cplx] k = [cmath.sqrt(x1).imag for x1 in eps_cplx] # normal incidence reflectivity from complex refractive index R = [abs((1.-x1)/(1.+x1))**2 for x1 in N] # absorption coefficient in SI units from extinction coefficient and energy Ha_to_J = 27.21138602 * 1.6021766208E-19 hbar = 6.626070040E-34 / (2 * math.pi) c = 2.99792458E8 Ha_to_omegaSI = Ha_to_J / hbar alpha = [2 * (x1 * Ha_to_omegaSI) / c * x2 for x1, x2 in zip(energies, k)] # format data and write to file optics_ii.out data = zip(energies, eps_cplx, N, R, alpha) output = '%14s %14s %14s %14s %14s %14s %14s %14s\n' % ('# energy (eV)', 'Re(eps)', 'Im(eps)', 'Re(n)', 'Im(n)', 'R', 'alpha (m^-1)', 'EELS') for line in data: output += '%14.6e %14.6e %14.6e %14.6e %14.6e %14.6e %14.6e %14.6e\n' % (line[0]*27.21138602, line[1].real, line[1].imag, line[2].real, line[2].imag, line[3], line[4], -(1/line[1]).imag) outfilename = 'optics_%s.out' % component outfile = open(outfilename, 'w') outfile.write(output) outfile.close() # main loop over diagonal components of the epsilon tensor print('===================') print('| elk-optics v1.0 |') print('===================') print print('Looking for EPSILON_ii.OUT files...') components = get_components() if components == []: sys.exit('No EPSILON_ii.OUT files found. Exit.\n') else: print('Files found:') for c in components: print(' EPSILON_%s.OUT') % c print for c in components: filename = 'EPSILON_%s.OUT' % c print('Working on %s ...') % filename energies, eps_cplx = read_epsilon(filename) write_optical_properties(energies, eps_cplx, c) print('Optical properties written to optics_%s.out') % c print elk-9.2.12/utilities/PaxHeaders/wien2k-elk0000644000000000000000000000013214536061315015350 xustar0030 mtime=1702388429.945498488 30 atime=1702388429.944498489 30 ctime=1702388429.945498488 elk-9.2.12/utilities/wien2k-elk/0000755002504400250440000000000014536061315020147 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/utilities/wien2k-elk/PaxHeaders/se.pl0000644000000000000000000000013214536061315016371 xustar0030 mtime=1702388429.946498486 30 atime=1702388429.946498486 30 ctime=1702388429.946498486 elk-9.2.12/utilities/wien2k-elk/se.pl0000755002504400250440000000221614536061315021117 0ustar00dewhurstdewhurst00000000000000#!/usr/bin/perl if (@ARGV<1) { print "Script for conversion Wien2K struct files to spacegroup.in files used in exciting/elk\n"; print "The only argument is the name of the struct file, spacegroup.in is written to standard output\n"; print "Use at your own risk. \n Jerzy Goraus 2009\n"; exit; }; open(STR,$ARGV[0]) or die "can't open ",$ARGV[0]," file\n "; @STRUCT=; ($TMP,$GROUP)=split(/\_/,$STRUCT[1]); ($GROUP,$TMP)=split(/\n/,$GROUP); ($GROUP,$TMP)=split(/\ /,$GROUP); ($TMP,$LA,$LB,$LC,$AA,$AB,$AG)=split(/\s+/,$STRUCT[3]); $ATCNT=0; print " '",$GROUP,"\'\n ",$LA," ",$LB," ",$LC,"\n ",$AA," ",$AB," ",$AG,"\n 1 1 1\n .false.\n "; foreach (@STRUCT) { $BUF=$_; if (/ATOM/) { ($TMP,$X,$Y,$Z)=split(/=/,$BUF); ($X,$TMP)=split(/\ /,$X); ($Y,$TMP)=split(/\ /,$Y); $ATCNT+=1; # print "\n",$X, " ", $Y," ", $Z; $RESULT = sprintf(" %lf %lf %lf\n", $X,$Y,$Z); }; if (/NPT/) { $ATL=substr($_,0,2); $_=$ATL; s/\s//g; $ATL=$_; # print $ATL; $TAB{$ATL}=$TAB{$ATL}.$RESULT; $TABN{$ATL}+=1; }; }; $NUM=keys(TAB); print " ",$NUM ,"\n"; foreach (keys(TAB)) { print " '",$_,"' '",$_,".in'\n"; print " ",$TABN{$_},"\n"; print $TAB{$_}; } elk-9.2.12/utilities/PaxHeaders/blocks2columns0000644000000000000000000000013214536061315016340 xustar0030 mtime=1702388429.948498483 30 atime=1702388429.947498485 30 ctime=1702388429.948498483 elk-9.2.12/utilities/blocks2columns/0000755002504400250440000000000014536061315021137 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/utilities/blocks2columns/PaxHeaders/blocks2columns.py0000644000000000000000000000013214536061315021727 xustar0030 mtime=1702388429.948498483 30 atime=1702388429.948498483 30 ctime=1702388429.948498483 elk-9.2.12/utilities/blocks2columns/blocks2columns.py0000644002504400250440000000400714536061315024452 0ustar00dewhurstdewhurst00000000000000#!/usr/bin/python # elk blocks to columns by Markus Meinert # update January 2015, fixed a bug related to blank lines # Usage: blocks2columns.py PDOS_S01_A0001.OUT # blocks2columns.py TDOS.OUT # blocks2columns.py BAND.OUT import sys, os print("\n =========================\n | elk blocks to columns |\n =========================\n") # Read the file. filename = sys.argv[1] f = open(filename, 'r') data = f.readlines() f.close() # Analyze the file. # Number of lines. nlines = len(data) print(" Number of lines: %i " % nlines) # Count blank lines to determine number of datasets. ndatasets = 0 for line in data: if line.split() == []: ndatasets += 1 # If last line is not blank, add one to ndatasets and nlines. if data[-1].split() != []: ndatasets += 1 nlines += 1 print(" Number of datasets: %i " % ndatasets) # Number of lines per block is: nlinesperblock = (nlines - ndatasets)/ndatasets print(" Number of lines per block: %i " % nlinesperblock) # Collect the datasets into a list of lists with a double-loop over datasets and lines. datasets = [] for i in range(0,ndatasets): currentset = [] for j in range(i*nlinesperblock + i, (i*nlinesperblock + i) + nlinesperblock): currentset.append(data[j].split()) # Split each line by empty spaces. datasets.append(currentset) output = "" # Generate a head line output += "#%21s" % "x-axis" for i in range(1,ndatasets+1): blockname = "block_%i" % i output += "%22s" % blockname output += "\n" # Merge the datasets line-wise. for i in range(0,nlinesperblock): # x-axis as first column, read from first block line = '%22.13e' % (float(datasets[0][i][0])) # Append the block values as columns. for j in range(0, ndatasets): line += '%22.13e' % (float(datasets[j][i][1])) line += "\n" output += line filename = filename + ".columns" if os.path.exists(filename): print("\n Output file %s exists. Exit.\n" % filename) else: f = open(filename, 'w') f.write(output) f.close() print("\n Output filename: %s\n Done.\n" % filename) elk-9.2.12/utilities/PaxHeaders/xps0000644000000000000000000000013214536061315014212 xustar0030 mtime=1702388429.953498476 30 atime=1702388429.949498482 30 ctime=1702388429.953498476 elk-9.2.12/utilities/xps/0000755002504400250440000000000014536061315017011 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/utilities/xps/PaxHeaders/CROSEC0000644000000000000000000000012714536061315015174 xustar0029 mtime=1702388429.95049848 29 atime=1702388429.95049848 29 ctime=1702388429.95049848 elk-9.2.12/utilities/xps/CROSEC0000644002504400250440000000307614536061315017720 0ustar00dewhurstdewhurst00000000000000Crossection data for elements, E=1486eV ATOM=Xx 1.00E-0, 1.00E-0, 1.00E-0, 1.0 ATOM=Es 0.00E-0, 0.00E-0, 0.00E-0, 0.0 ATOM=Ag 0.29E-3, 0.77E-3, 0.21E-1, 0.0 ATOM=Al 0.78E-3, 0.59E-4, 0.53E-4, 0.0 ATOM=Bi 0.13E-2, 0.13E-2, 0.72E-3, 0.3632 ATOM=Ti 0.50E-3, 0.74E-3, 0.17E-3, 0.0 ATOM=V 0.51E-3, 0.74E-3, 0.42E-3, 0.0 ATOM=Cr 0.18E-3, 0.74E-3, 0.88E-3, 0.0 ATOM=Mn 0.58E-3, 0.74E-3, 0.14E-2, 0.0 ATOM=Fe 0.70E-3, 0.74E-3, 0.22E-2, 0.0 ATOM=Co 0.71E-3, 0.74E-3, 0.37E-2, 0.0 ATOM=Ni 0.83E-3, 0.74E-3, 0.59E-2, 0.0 ATOM=Cu 0.27E-3, 0.74E-3, 0.12E-1, 0.0 ATOM=La 0.29E-3, 0.21E-3, 0.76E-3, 0.22E-2 ATOM=Ce 0.31E-3, 0.21E-3, 0.94E-3, 0.22E-2 ATOM=Gd 0.43E-3, 0.21E-3, 0.94E-3, 0.21E-1 ATOM=Tb 0.36E-3, 0.21E-3, 0.94E-3, 0.29E-1 ATOM=Dy 0.31E-3, 0.21E-3, 0.94E-3, 0.37E-1 ATOM=Ho 0.27E-3, 0.21E-3, 0.94E-3, 0.46E-1 ATOM=Ge 0.15E-2, 0.75E-3, 0.19E-1, 0.0 ATOM=Ga 0.12E-2, 0.74E-3, 0.45E-3, 0.0 ATOM=In 0.10E-2, 0.77E-3, 0.94E-3, 0.0 ATOM=Pb 0.11E-2, 0.61E-3, 0.72E-3, 0.3330 ATOM=Pd 0.29E-3, 0.77E-3, 0.16E-1, 0.0 ATOM=Sb 0.14E-2, 0.16E-2, 0.76E-3, 0.0 ATOM=Si 0.10E-2, 0.17E-3, 0.53E-4, 0.0 ATOM=Sn 0.12E-2, 0.77E-3, 0.76E-3, 0.0 ATOM=Y 0.48E-3, 0.77E-3, 0.45E-3, 0.0 ATOM=Bi 0.13E-2, 0.14E-2, 0.43E-1, 0.3632 ATOM=Rh 0.23E-3, 0.77e-3, 0.12e-1, 0 ATOM=Ir 0.58e-3, 0.21e-3, 0.16e-1, 0 ATOM=Eu 0.35e-3, 0.11e-1, 0.94e-3, 0.17e-1 elk-9.2.12/utilities/xps/PaxHeaders/conv.c0000644000000000000000000000013214536061315015400 xustar0030 mtime=1702388429.952498477 30 atime=1702388429.952498477 30 ctime=1702388429.952498477 elk-9.2.12/utilities/xps/conv.c0000644002504400250440000000335714536061315020132 0ustar00dewhurstdewhurst00000000000000#include #include #include #include #include #define N 100000 // Convolution with Lorentz and Fermi function, // compile with: gcc conv.c -oconv -lm // modify the N above if needed. // Use at your own risk. // Jerzy Goraus (2003) typedef struct { double x,y; } pT; pT p1[N],p2[N]; double a_lor,Ef; int cmp1(pT *t1, pT *t2) { double t=t1->x-t2->x; return (int)(2*t/fabs(t)); } inline double lor(double x) { return (1/(1+x*x*a_lor)); } inline double fermi(double x) { return 1/(1+exp((x-Ef)/0.02569)); } main (int argc, char **argv) { int m=4,i1; double *tabl=malloc(1600); FILE *f; double dE=0.4,Ef=0,DE=0.2; char *buffer=malloc(256); if (!((argc==2)||(argc==4))) { printf("\nconv: convolution with Lorentz and Fermi function\n\ conv [{ FWHM Ef }]\nfilename is xy ascii data file,\ FWHM - Full Width at Half Maximum default : 0.4eV \n \ Ef - Fermi Energy default : 0 eV n\n");exit(0); } if (argc==4) { sscanf(argv[2],"%lf",&dE); sscanf(argv[3],"%lf",&Ef); if (dE>20) {printf("%i value too high\n",m);exit(1);} }; a_lor=4/(dE*dE); srand (time (NULL)); double y,sum; int i=0,k,n1=0,n2=0; f = fopen (argv[1], "r"); if (f==NULL) { printf("can't open for reading %s\n",argv[1]); exit(1);} while (!feof(f)) { fgets(buffer,255,f); sscanf(buffer,"%lf %lf",&(p1[n1].x),&(p1[n1].y)); n1++; assert(n1; close(STR); $atcnt=0; print "\nElements : "; for ($i=0; $i<$#str; $i++) { $_=$str[$i]; if (/atoms\n/) { $i++; $_=$str[$i]; s/\s//g; ($ATCNT,$TMP)=split(/:/); } if (/spinpol/) { $i++; $_=$str[$i]; if (/true/) { $SPOL=1;} } if (/in\'/) { ($ELNAME,$TMP)=split(/\./); $_=$ELNAME; s/\'//; $ELNAME=$_; #print "\n",$ELNAME; $_=$str[$i+1]; s/\s//g; ($MULT,$TMP)=split(/:/); push @atoms, $ELNAME; print $ELNAME," (",$MULT,") "; $mtab{$ELNAME}=$MULT; $idxtab{$ELNAME}=$atidx; $atidx++; #print "|",$MULT,"|"; } } if ($SPOL ) { print "\nMagnetic case\n"; } else { print "\nNon-magnetic case\n";} #print $ATCNT; open(CRS,"./CROSEC") or die "Can't open CROSEC"; # Here enter the position of CROSEC print "\nRead CROSEC"; @crs=; close(CRS); foreach ($i=1 ; $i<@crs; $i++) { $_=$crs[$i]; if (/ATOM=/) { $A=substr($_,5); $A=~s/\s//g; } else { $CR{$A}=$_; } } print "\n"; $NDOS=0; foreach (@atoms) { $ELNAME=$_; for ($i=1; $i<=$mtab{$_}; $i++) { $fname=sprintf("PDOS_S%02d_A%04d.OUT", $idxtab{$_}, $i); print "\nRead : ",$fname ; open(pdos, $fname) or die "Can't open $fname\n"; @pdos=; close(pdos); if ($NDOS==0) { foreach (@pdos) { if (/\d/) {$NDOS++}; } $NDOS/=32; $NDOS++; #- init to 0 for ($j=0; $j<$NDOS-1; $j++) { $atw_su[$j]=0; $atw_pu[$j]=0; $atw_du[$j]=0; $atw_fu[$j]=0; $atw_sd[$j]=0; $atw_pd[$j]=0; $atw_dd[$j]=0; $atw_fd[$j]=0; $att_su[$j]=0; $att_pu[$j]=0; $att_du[$j]=0; $att_fu[$j]=0; $att_sd[$j]=0; $att_pd[$j]=0; $att_dd[$j]=0; $att_fd[$j]=0; $attc_su[$j]=0; $attc_pu[$j]=0; $attc_du[$j]=0; $attc_fu[$j]=0; $attc_sd[$j]=0; $attc_pd[$j]=0; $attc_dd[$j]=0; $attc_fd[$j]=0; } } $atfout=sprintf("_%s_%04d.dat",$ELNAME,$i); open(atpart, ">".$atfout) or die "Can't open output file $atfout\n"; if ($SPOL ) { print atpart "# spin up - s,p,d,f and spin down s,p,d,f\n"; } else { print atpart "# s, p, d, f\n";} for ($q=0; $q<$#pdos; $q++) { ($TMP,$pdosx[$q],$pdosy[$q])=split(/\s+/,$pdos[$q]); $pdosx[$q]*=$FACTOR; $pdosy[$q]/=$FACTOR; } for ($j=0; $j<$NDOS-1; $j++) { $at_su[$j]=$pdosy[$j]; if ($SPOL ) {$at_sd[$j]=$pdosy[$j+16*$NDOS];} $at_pu[$j]=0; $at_pd[$j]=0; $at_du[$j]=0; $at_dd[$j]=0; $at_fu[$j]=0; $at_fd[$j]=0; for ($q=1; $q<4; $q++) { $at_pu[$j]+=$pdosy[$j+$q*$NDOS]; if ($SPOL ) {$at_pd[$j]+=$pdosy[$j+16*$NDOS+$q*$NDOS];} } for ($q=4; $q<9; $q++) { $at_du[$j]+=$pdosy[$j+$q*$NDOS]; if ($SPOL ) {$at_dd[$j]+=$pdosy[$j+16*$NDOS+$q*$NDOS];} } for ($q=9; $q<16; $q++) { $at_fu[$j]+=$pdosy[$j+$q*$NDOS]; if ($SPOL ) {$at_fd[$j]+=$pdosy[$j+16*$NDOS+$q*$NDOS];} } print atpart $pdosx[$j], " ",$at_su[$j]," ",$at_pu[$j]," ",$at_du[$j]," ",$at_fu[$j]; if ($SPOL ) { print atpart " ",$at_sd[$j]," ",$at_pd[$j]," ",$at_dd[$j]," ",$at_fd[$j],"\n";} else {print atpart "\n";} $atw_su[$j]+=$at_su[$j]; $atw_pu[$j]+=$at_pu[$j]; $atw_du[$j]+=$at_du[$j]; $atw_fu[$j]+=$at_fu[$j]; $atw_sd[$j]+=$at_sd[$j]; $atw_pd[$j]+=$at_pd[$j]; $atw_dd[$j]+=$at_dd[$j]; $atw_fd[$j]+=$at_fd[$j]; } close atpart; print "\nWritten ",$atfout; #-- $gatfout=sprintf("_g_%s_%04d",$ELNAME,$i); open(GNU,">".$gatfout.".gnu") or die "can't open $gatfout\n"; print GNU $TERM,"\n",$OPT,"\n"; print GNU "set output \"$gatfout.$SUF\"\n"; print GNU "set xlabel \"Eb [eV]\"\n"; print GNU "set ylabel \"DOS [st/eV f.u.]\"\n"; print GNU "set title \"$ELNAME - $i\"\n"; print GNU "plot \"$atfout\" using 1:2 smooth uniq t 's' "; printf GNU ", \"$atfout\" using 1:3 smooth uniq t \'p\' "; printf GNU ", \"$atfout\" using 1:4 smooth uniq t \'d\' "; printf GNU ", \"$atfout\" using 1:5 smooth uniq t \'f\' "; if ($SPOL ) { print GNU ", \"$atfout\" using 1:6 smooth uniq t \'s\' "; print GNU ", \"$atfout\" using 1:7 smooth uniq t \'p\' "; print GNU ", \"$atfout\" using 1:8 smooth uniq t \'d\' "; print GNU ", \"$atfout\" using 1:9 smooth uniq t \'f\' "; } close(GNU); print "\nWritten ",$gatfout,".gnu"; #-- } $atwfout=sprintf("_%s.dat",$ELNAME); #at - atomic DOS, atw - given specie dos, att - total dos , attc - total dos with crossection open(atwpart, ">".$atwfout) or die "Can't open output file $atwfout \n"; if ($SPOL ) { print atwpart "# spin up - s,p,d,f and spin down s,p,d,f\n"; } else { print atwpart "# s, p, d, f\n";} if ($CR{$ELNAME} ne "") { ($Ks,$Kp,$Kd,$Kf)=split(/\,/,$CR{$ELNAME}); } else {$Ks=$Kp=$Kd=$Kf=0; print "\n----------------- No $ELNAME in CROSEC, Using 0 as crossection\n";}; for ($j=0; $j<$NDOS-1; $j++) { $att_su[$j]+=$atw_su[$j]; $att_pu[$j]+=$atw_pu[$j]; $att_du[$j]+=$atw_du[$j]; $att_fu[$j]+=$atw_fu[$j]; $att_sd[$j]+=$atw_sd[$j]; $att_pd[$j]+=$atw_pd[$j]; $att_dd[$j]+=$atw_dd[$j]; $att_fd[$j]+=$atw_fd[$j]; $attc_su[$j]+=$atw_su[$j]*$Ks; $attc_pu[$j]+=$atw_pu[$j]*$Kp; $attc_du[$j]+=$atw_du[$j]*$Kd; $attc_fu[$j]+=$atw_fu[$j]*$Kf; $attc_sd[$j]+=$atw_sd[$j]*$Ks; $attc_pd[$j]+=$atw_pd[$j]*$Kp; $attc_dd[$j]+=$atw_dd[$j]*$Kd; $attc_fd[$j]+=$atw_fd[$j]*$Kf; print atwpart $pdosx[$j], " ",$atw_su[$j]," ",$atw_pu[$j]," ",$atw_du[$j]," ",$atw_fu[$j]; if ($SPOL ) { print atwpart " ",$atw_sd[$j]," ",$atw_pd[$j]," ",$atw_dd[$j]," ",$atw_fd[$j],"\n";} else {print atwpart "\n";} } close atwpart; #- $gatwfout=sprintf("_g_%s",$ELNAME); open(GNU,">".$gatwfout.".gnu") or die "can't open $gatwfout\n"; print GNU $TERM,"\n",$OPT,"\n"; print GNU "set output \"$gatwfout.$SUF\"\n"; print GNU "set xlabel \"Eb [eV]\"\n"; print GNU "set ylabel \"DOS [st/eV f.u.]\"\n"; print GNU "set title \"$ELNAME \"\n"; print GNU "plot \"$atwfout\" using 1:2 smooth uniq t 's' "; printf GNU ", \"$atwfout\" using 1:3 smooth uniq t \'p\' "; printf GNU ", \"$atwfout\" using 1:4 smooth uniq t \'d\' "; printf GNU ", \"$atwfout\" using 1:5 smooth uniq t \'f\' "; if ($SPOL ) { print GNU ", \"$atwfout\" using 1:6 smooth uniq t \'s\' "; print GNU ", \"$atwfout\" using 1:7 smooth uniq t \'p\' "; print GNU ", \"$atwfout\" using 1:8 smooth uniq t \'d\' "; print GNU ", \"$atwfout\" using 1:9 smooth uniq t \'f\' "; } close(GNU); print "\nWritten ",$gatwfout,".gnu"; #- print "\nWritten ",$atwfout; for ($j=0; $j<$NDOS-1; $j++) { $atw_su[$j]=0; $atw_pu[$j]=0; $atw_du[$j]=0; $atw_fu[$j]=0; $atw_sd[$j]=0; $atw_pd[$j]=0; $atw_dd[$j]=0; $atw_fd[$j]=0; } } open(att, ">_TDOS.dat") or die "Can't open output file TDOS.dat \n"; open(attc, ">_cTDOS.dat") or die "Can't open output file cTDOS.dat \n"; for ($j=0; $j<$NDOS-1; $j++) { $u=$att_su[$j]+$att_pu[$j]+$att_du[$j]+$att_fu[$j]; $d=$att_sd[$j]+$att_pd[$j]+$att_dd[$j]+$att_fd[$j]; $uc=$attc_su[$j]+$attc_pu[$j]+$attc_du[$j]+$attc_fu[$j]; $dc=$attc_sd[$j]+$attc_pd[$j]+$attc_dd[$j]+$attc_fd[$j]; if ($SPOL ) { print att $pdosx[$j], " ",$u-$d," ",$u," ",$d,"\n"; print attc $pdosx[$j], " ",$uc-$dc," ",$uc," ",$dc,"\n"; } else { print att $pdosx[$j], " ",$u,"\n"; print attc $pdosx[$j], " ",$u,"\n"; } } close att; print "\nWritten _TDOS.dat"; close attc; print "\nWritten _cTDOS.dat"; print "\n"; elk-9.2.12/PaxHeaders/COPYING0000644000000000000000000000013214536061315012475 xustar0030 mtime=1702388429.968498454 30 atime=1702388429.966498457 30 ctime=1702388429.968498454 elk-9.2.12/COPYING0000644002504400250440000012356414536061315015232 0ustar00dewhurstdewhurst00000000000000 GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: Copyright (C) This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read . -------------------------------------------------------------------------------- GNU LESSER GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below. 0. Additional Definitions. As used herein, "this License" refers to version 3 of the GNU Lesser General Public License, and the "GNU GPL" refers to version 3 of the GNU General Public License. "The Library" refers to a covered work governed by this License, other than an Application or a Combined Work as defined below. An "Application" is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library. A "Combined Work" is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the "Linked Version". The "Minimal Corresponding Source" for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version. The "Corresponding Application Code" for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work. 1. Exception to Section 3 of the GNU GPL. You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL. 2. Conveying Modified Versions. If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version: a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy. 3. Object Code Incorporating Material from Library Header Files. The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following: a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License. b) Accompany the object code with a copy of the GNU GPL and this license document. 4. Combined Works. You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following: a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License. b) Accompany the Combined Work with a copy of the GNU GPL and this license document. c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document. d) Do one of the following: 0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source. 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version. e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.) 5. Combined Libraries. You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License. b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 6. Revised Versions of the GNU Lesser General Public License. The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation. If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library. elk-9.2.12/PaxHeaders/README0000644000000000000000000000013214536061315012322 xustar0030 mtime=1702388429.981498434 30 atime=1702388429.981498434 30 ctime=1702388429.981498434 elk-9.2.12/README0000644002504400250440000000366514536061315015056 0ustar00dewhurstdewhurst00000000000000 +------------------------------+ | The Elk FP-LAPW Code | +------------------------------+ This code is distributed under the terms of the GNU General Public License. See the file COPYING for license details. Elk is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Elk is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Elk. If not, see http://www.gnu.org/licenses/. Elk can be compiled by first editing the file 'make.inc' in this directory to suit your compiler and available libraries, followed by running 'make all'. This will compile the main code as well as several auxiliary programs. A test suite is available: entering 'make test' will check the output of your executable against a standard set. This may take some time to complete. If Elk was compiled with MPI then use 'make test-mpi' instead. The Libxc package can also be tested using 'make test-libxc' (or 'make test-libxc-mpi' with MPI). Auxiliary programs include 'spacegroup' for producing crystal geometries from spacegroup data, and 'eos' for fitting equations of state to energy-volume data. Elk is updated regularly with new features and bug fixes. Features not listed as 'experimental' may be used for production but, as with any code, please check the consistency of your results carefully. -------------------------------------------------------------------------------- J. K. Dewhurst, S. Sharma L. Nordstrom, F. Cricchio, O. Granas E. K. U. Gross elk-9.2.12/PaxHeaders/release_notes.txt0000644000000000000000000000013214536061315015033 xustar0030 mtime=1702388429.996498412 30 atime=1702388429.994498415 30 ctime=1702388429.996498412 elk-9.2.12/release_notes.txt0000644002504400250440000015630514536061315017567 0ustar00dewhurstdewhurst00000000000000elk-9.2.12 -fixed intialisation issue with writing tensor moments via task=400 with DFT+U and inpdftu=5; thanks to Marjana Lezaic for pointing this out -added a new feature for averaging the muffin-tin radii in order to stabilise some calculations with large variation in radii; set the variable 'mrmtav' to the order of averaging of the radii; see the manual for details -made improvements to the GW code -adjusted the parameter settings used for 'stable' and 'metagga' options -added documentation to code elk-9.2.5 -further improved meta-GGA partial deorbitalisation; re-enabled the 'metagga' option; set this to .true. when running meta-GGA calculations and the code sets several input variables to improve convergence; see examples for details -setting 'trimvg' to .true. (which is the default) causes only the exchange-correlation potential to be trimmed for |G| > 2 gkmax instead of the full Kohn-Sham potential; this improves the smoothness of energy-volume curves -calculation of the BSE dielectric function (task=187) is now considerably faster and runs in parallel -added the constant term associated with a static A-field to the total energy -modified the findsymcrys routine so that all symmetries are found even when tshift=.false. elk-9.1.15 -added piezoelectric and magnetoelectric tensors as tasks 380 and 390, respectively; see the examples for details; these are currently experimental features -exchange-correlation functionals with Laplacian terms now working; this includes the deorbitalised functionals of Mejia-Rodriguez and Trickey, Phys. Rev. B 98, 115161 (2018) -improved the meta-GGA partial deorbitalisation: it now works with the complete range of kinetic energy density functionals in Libxc (see arXiv:2304.02363) -improved the interface to Libxc -removed potential-only meta-GGA functionals -time-dependent Kohn-Sham states are now orthogonlised using a singular value decomposition every 'ntsorth' time-steps in order to improve stability; the default is 1000 time-steps -new task 485 outputs the Fourier transform of the time-dependent total current J(ω) -new input variable 'jtconst0' will, when set to .true., zero the constant part of J(t) before the dielectric function is calculated with tasks 480 and 481 -changed large parts of the code to single-precision arithmetic including Hartree-Fock, RDMFT, OEP, GW and the linear-response functions; as a consequence the code is considerably faster -changed relational operator symbols such as .le., .gt., etc. to '<=', '>', etc. in line with modern Fortran style -increased maximum allowed number of files on the RAM disk to 32 -many optimisations and minor bug fixes -added more and improved existing OpenMP parallelism -Elk has been recognized with a Community Leader Award by SourceForge; thanks to all the users and contributors for making the code as useful as it is, as well as for making the forums a congenial place for everyone elk-8.8.26 -molecular dynamics now available with task=420/421; see the examples in the elk/examples/molecular-dynamics directory -simulated annealing calculations for crystal structure discovery are now possible; see the example in elk/examples/molecular-dynamics/annealing; note that this is an experimental feature -removed the 'msmooth' option -restored the 'trimvg' option and enabled it by default; this makes calculations more stable -changed the 'stable' options -structural optimisation is now more reliable -muffin-tin radii can now increase as well as decrease during structural optimisation or molecular dynamics runs -added examples of the coupled electron-phonon Bogoliubov equations; see elk/examples/Bogoliubov -added a 'step' type A-field; this corresponds to a vector potential which is switched on and off at given times -improved the iterative eigenvalue method for the first-variational step -minor optimisations and improvements elk-8.7.10 -fixed a problem with calculating the current density for spin-spirals; thanks to Zhiwei Li for finding this -minor optimisations elk-8.7.6 -fixed an issue which affects thread creation in OpenMP nested loops with libgomp; this should give a considerable increase in speed for Elk compiled with GFortran -minor optimisations and bug fixes elk-8.7.2 -fixed problem of writing TDDFT density of states with wrtdsk=.false., discovered by Eddie Harris-Lee -fixed problem of restarting from TDDFT backup files, found by Mila Adamska -removed an OpenMP regression which caused substantial slow-down of TDDFT -added more documentation -minor optimisations and bug fixes elk-8.6.7 -added dynamical Born effective charges (dynBEC); see Phys. Rev. B 106, L180303 (2022) -included a dynBEC example of hexagonal boron nitride; see the elk/examples/Born-effective-charge/hBN-dynBEC/ directory -fixed a problem with spin-unpolarised DFT+U calculations; thanks to Mike Bruckhoff for discovering this -updated to Libxc version 6 -changed to single-precision orbitals in many routines; this should reduce memory requirements and improve speed -removed the bundled BLAS/LAPACK and FFTPACK libraries -removed the 'setup' script and modified the 'make.inc' file elk-8.5.10 -improved OpenMP parallelism -added variables to VARIABLES.OUT which are written on completion of geometry optimisation, for example 'engytot (geomopt)' -adjusted several default parameters elk-8.5.2 -created an interface to the kinetic energy functionals of Libxc -further optimisation of the code -added magnetic anisotropy energy (MAE) test -fixed a problem of using wrtdsk=.false. with TDDFT -various minor bug fixes elk-8.4.30 -included the Libxc interface (libxcf90.f90) again with Elk; thanks to Michael Banck for pointing out a problem with its omission -fixed a minor problem with electron localisation function (ELF) plots -several small changes and optimisations elk-8.4.21 -fixed problem with Ehrenfest TDDFT restarts (task 463); thanks to Peter Elliott for discovering this bug -added option to avoid writing some direct access files to disk; this can be done by setting 'wrtdsk=.false.' and can speed the code up dramatically, particularly on networked filesystems; however, this can result in the code crashing for some tasks and should be used carefully! -made some small changes (particularly to the RAM disk feature) to improve portability; tested the code with Intel, GNU, PGI, NAG and NVIDIA Fortran compilers -parallelised the RPA dielectric function calculation (task 121) with MPI -many optimisations and small bug fixes -the coupled electron-phonon Bogoliubov equations method (task 270) has been published as Editors' Suggestion in Physical Review B: https://doi.org/10.1103/PhysRevB.105.174509 elk-8.4.6 -fixed problem with real-time TDDFT restarts (tasks 461 and 463); this problem occurred only very rarely for systems with particular symmetries; thanks to Antonio Sanna for finding this -added batch calculations as a new feature; with this Elk can perform multiple runs while adjusting a particular parameter -- for example producing an energy vs volume plot; see the examples in elk/examples/batch-calculations -input and output variables will be added to batch calculations upon request -Yunfan Liang and Xavier Gonze discovered a problem in the non-linear optical response formalism of our work in Phys. Rev. B 67, 165332 (2003); consequently, the non-linear optics code has been completely re-written and throughly tested; see the example in /elk/examples/non-linear-optics -the speed ultra long-range calculations has been greatly improved thanks to changes in the generation of the long-range density and magnetisation -several minor bug fixes, optimisations and improvements -Elk has been recognized with a Community Choice award by SourceForge; thanks to all the users and contributors for making the code as useful as it is, as well as for making the forums a congenial place for everyone elk-8.3.22 -fixed a bug which occured when using the OpenBLAS library with Elk's RAM disk feature; thanks to Marcin Dulak for finding this elk-8.3.20 -included missing BLAS and LAPACK files in the package; thanks to Jagdish Kumar for pointing out the omissions elk-8.3.15 -considerable speed-up and optimisations throughout the entire code; spin-polarised calculations in particular are substantially faster -greatly improved the meta-GGA calculations; these no longer require a large number of empty states for good convergence and consequently run much faster; removed the 'metagga' flag; thanks to Pietro Bonfa for the careful testing -checked and highly optimised the TDDFT+U calculations -removed the DFT+U scheme which interpolated between FLL and AFM -rearranged the order of phonon line width plots to match that of the phonon dispersion plots -further improved the electron-phonon Bogoliubov method; thanks to Chung-Yu Wang for the careful testing -rewrote much of the tensor moment code; the tensor moments are now real and exclusively of the 3-index type; the corresponding matrices Gamma_t^kpr are now Hermitian and orthonormal; see the documentation of the routines 'tm2todm' and 'tm3todm' and references therein; thanks to Leon Kerber for extensive testing -writing out the old convention of complex 3-index tensor moments can be enabled with 'tm3old=.true.' -Leon Kerber also fixed a problem with the fixed tensor moment (FTM) code -the input block 'tmomfix' has been removed; use 'tm3fix' instead -included a FTM example in elk/examples/FeGd-fixed-tensor-moment -the RAM disk is now enabled by default; if problems are encountered with this then set 'ramdisk=.false.' -included an example for calculating the dielectric function using time evolution; see elk/examples/TDDFT-time-evolution/Si-dielectric -added more LaTeX documentation to the code -many small improvements and minor bug fixes elk-7.2.42 -added new RAM disk feature which allows Elk to store direct-access files in memory and can dramatically speed up calculations; enable this by setting 'ramdisk' to .true. in elk.in -many optimisations throughout the code -fixed an issue with the scissors operator in optical response code (task=320, 330, 331) for materials which are nearly metallic; thanks to Peter Elliott for pointing this out -further improved the electron-phonon mean-field code -added variables 'scalex', 'scaley' and 'scalez' to the input file; these allow scaling of the unit cell in the Cartesian directions elk-7.1.14 -optimised the second-variational procedure by changing the muffin-tin dot products to single-precision arithmetic; this speeds up this step by at least a factor of two for large systems without losing overall precision or stability -removed 'mixpack', 'phmixpack' and 'mixpacku' routines; Kohn-Sham potentials and fields are now stored in a single array accessed by pointer arrays; this removes the need for packing before and unpacking after mixing -increased speed of direct access reads by removing unnecessary 'close' statements -added an example for the ultra long-range method; see the input file in elk/examples/ultra-long-range/Cr-SDW/ -changed the Wannier90 .win file to improve the wannierisation convergence rate -fixed several bugs in the electron-phonon mean-field method -updated BLAS and LAPACK to version 3.9.0 -minor improvements and bug fixes elk-7.0.12 -Chung-Yu Wang added electron-phonon mean-field theory; this is a new method and still highly experimental -Alyn James wrote an interface for Elk to the DMFT code TRIQS; this interface is maintained in a separate branch of the Elk code: https://github.com/AlynJ/Elk_interface-TRIQS -fixed serious problem with DFT+U for dftu=3 (interpolation of FLL and AFM); this bug was introduced some time ago; we recommend that you check any previous calculations which use dftu=3 -lots of optimisations throughout the code -further improved Ehrenfest dynamics -added the calculation of Born effective charges using Ehrenfest dynamics (task=478); this is intended as a test for the method; Born effective charges are more accurately calculated with the King-Smith and Vanderbilt method (task=208) -Pietro Bonfa found and fixed several problems with the calculation of Mössbauer hyperfine fields -PB also added a new Mössbauer example: antiferromagnetic NiF2; see the examples/Mossbauer/NiF2 directory -Ronald Cohen fixed a bug in iso-volumetric lattice optimisation -RC also discovered a problem with the Wu-Cohen '06 GGA functional which has now been fixed -RC also suggested an efficiency improvement to the non-linear optics code -added tests for non-linear optics -Antonio Sanna helped fix a bug with TD forces -Karel Carva discovered that lmaxo should be at least 7 for phonopy calculations -change the default ntswrite from 10 to 500 time steps in order to reduce I/O -confirmed compatibility with Libxc version 5.1.0 -Further improved the ultra long-range code; the method has now been published: T. Müller, S. Sharma, E. K. U. Gross, and J. K. Dewhurst, Phys. Rev. Lett. 125, 256402 (2020). elk-6.8.4 -Born effective charges using the method of R. D. King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651(R) (1993) are now available; see the directory elk/examples/Born-effective-charge -added Ehrenfest dynamics to the code; see the directory elk/examples/TDDFT-time-evolution/FeCo-Ehrenfest (highly experimental) -upgraded code to be compatible with Libxc version 5; note changes to the make.inc file -the Libxc SCAN functional no longer works with Elk, the regularised version of A. P. Bartók and J. R. Yates, J. Chem. Phys. 150, 161101 (2019) works and should be used instead; see the meta-GGA examples -Aldo Romero and his group interfaced PyProcar to Elk and confirmed that it worked with non-collinear magnetism; PyProcar is a robust, open-source Python library used for pre- and post-processing of the electronic structure data from DFT calculations -implemented a great many optimisations throughout the entire code; more aggressive use of the stack instead of the heap, this may require the user to increase the stack space -added the incomplete basis set (IBS) correction to forces from time-dependent vector potential, A(t) -fixed bug related to lattice optimisation with non-symmorphic symmetries thanks to Andrew Shyichuk and Jack Whaley-Baldwin -added several new tests, including one for the stress tensor -updated physical constants to CODATA 2018 -fixed wavefunction and STM plotting thanks to Andrew Shyichuk -fixed bug in GW band structure code thanks to Antik Sihi -fixed problem with fixed tensor moment calculations -fixed problem in TDDFT real-time restart thanks to Peter Elliott -Peter Elliott and JKD also added Maxwell's equations for the macroscopic induced vector potential -updated and improved the ultra long-range code -forces are now written during a TDDFT run every 'ntsforce' time steps -matrix sizes larger than those addressable with four byte integers can now be used with BSE and MPI -Hartree-Fock information is now written to HF_INFO.OUT rather than INFO.OUT -parallelised the Brillouin zone integration (brzint) which considerably speeds up DOS calculations -modified how the potential of the optimised effective potential (OEP) iteration scheme is initialised -removed obsolete command from ProTex Perl script -added tests for Libxc and MPI; run 'make test-libxc' and 'make test-MPI' respectively, or 'make test-all' to test everything -fixed problem with hybrid functionals introduced a few versions back; also added a test for hybrids elk-6.3.2 -very large speedup of the first-variational Hamiltonian and overlap matrix setup; this is particularly apparent for large systems -made all of the numerical radial integrals much more efficient by storing the spline integration weights; this speeds up most of the code -switched radial integral infinitesimal from 1/3 d(r^3) to r^2dr; this improves numerical accuracy and returns to the convention of version 5.2.14 -added full (l,m) and spin characters for plotting the band structure with so-called 'fat bands'; these are performed with new tasks 22 and 23; thanks to Jagdish Kumar for the suggestion -Jagdish Kumar also fixed a problem with the phonon thermodynamic quantities which had an unnecessary prefactor of the number of atoms; see here -fixed a problem with occurs with constant electric fields (when efieldc is made finite) and crystals with non-symmorphic symmetries -Michael Fechner improved the fixed spin moment code by removing the requirement that unspecified muffin-tin fixed moments are checked for symmetry compliance -added 1D plotting of the magnetisation density, exchange-correlation magnetic field, electric field and m(r) x B_xc(r) with tasks 71, 81, 141 and 151, respectively -added density, potential and magnetisation plotting for ultra long-range calculations with tasks 731, 732, 733, 741, 742, 743, 771, 772 and 773 -constant electric fields can now be included in ultra long-range calculations; this can be done by setting the vector efielduc -an arbitrary external Coulomb potential can now be read in for use in the ultra long-range calculations; set trdvclr=.true. and the potential is read from the file VCLR.OUT elk-6.2.8 -Wannier90 interface added thanks to Arsenii Gerasimov, Yaroslav Kvashnin and Lars Nordström; and based on the original work of Duc Le and Jon Lafuente Bartolomé -the Wannier90 interface can be used to produce Hartree-Fock band structures (see example) and also works with non-collinear spin-polarised calculations -ultra long-range (ULR) calculations now available thanks to Tristan Müller (experimental) -self-consistent density GW calculations now available thanks to Arkardy Davydov and others; this is a new method still undergoing testing and is thus experimental -GW density matrix can now be written to file with task=640; the natural orbitals and occupation numbers are written to EVECSV.OUT and OCCSV.OUT, respectively -classical spin and orbital dipole magnetic fields can now be calculated and added to the Kohn-Sham field (set tbdip=.true. and tcden=.true.) -extensive optimisations throughout the code: every task should be noticeably faster -improved OpenMP parallelism -improved accuracy of the Mössbauer hyperfine field calculations -added spin and orbital dipole terms to the hyperfine field -updated constants and conversion factors to CODATA 2018 -added Andrew Shyichuk's improved check for requirement of the Tran-Blaha constant -variational meta-GGA functionals (like SCAN) now work with forces -added Roger Mason's fix to make FFTW thread-safe -René Wirnata has created the Elk Optics Analyzer that helps to visualize and post-process optics output data -regenerated species files with lower order local-orbitals -improved k-point convergence of the electron-phonon coupling constant for calculation of superconducting properties -upgraded to LAPACK 3.8.0 -changed default 'radkpt' from 30 to 40 -many minor improvements and bug fixes elk-5.2.14 -Youzhao Lan found a bug which prevented potential-only meta-GGA functionals (like Tran-Blaha) from being used; this has now been fixed -fixed meta-GGA atomic forces; thanks to Michael Porer for pointing out the problem -Eike Schwier discovered a conflicting MPI variable name and also reported that the code crashes when generating species files; both problems are now fixed -linear-response TDDFT off-diagonal components for q=0 now available (experimental) elk-5.2.10 -GW code is much improved and also faster; the Pade analytic continuation of the self-energy is more stable and reliable -OpenMP parallelism greatly improved; nesting is now permanently switched on and the number of threads is controlled by Elk itself; this should improve scaling on hundreds of CPU cores; please report any problems you have with parallelism on the forum -GW spectral function band-structures are now possible; this feature is still experimental -Yaroslav Kvashnin and Lars Nordström found and fixed a bug in the fixed spin moment direction code -fully variational meta-GGA (in the generalised Kohn-Sham sense) is now running in conjunction with Libxc (experimental) -variational meta-GGA works only with collinear magnetism; let us know if you have an idea on how to extend it to the non-collinear case -Elk now interfaces to Libxc version 4 -- please update your library from version 2 -gauge invariant current density plots in 2D and 3D now available (tasks 372 and 373) -the entire code is much faster, particularly advanced methods like Hartree-Fock, RDMFT, BSE and GW; this is in part due to a 'coarse' Fourier grid for the wavefunctions -the lmaxi has been changed from 3 to 1 and several optimisations based on this have been hard-coded into Elk -Broyden mixing (mixtype=3) is now the default; magnetic calculations will now converge using a small bfieldc or bfcmt thanks to an improved magnetisation initialisation scheme -real-time TDDFT calculations no longer require 'nosym=.true.' but rather 'tshift=.false.' and are much faster as a consequence -2D and 3D current density plotting now available with tasks 272 and 273, respectively -task 480 generates a linear-response dielectric function calculation from a time-evolution run -lots of optimisations everywhere in the code, including additional OpenMP directives -lots of minor improvements and bug fixes -cleaned up and improved examples -several direct access files are not closed after reading which speeds up file I/O; please report any problems with this on the forum elk-4.3.6 -GW approximation now available thanks to Arkadiy Davydov; this is a finite temperature Matsubara implementation; currently it only calculates the k-point resolved spectral function on the real axis; see the 'examples/GW' directory (experimental) -the GW approximation works with spin-orbit coupling and non-collinear magnetism; it can also be run after the optimized effective potential (OEP) method -significant optimisations for Hartree-Fock, OEP, RDMFT and BSE -fixed an minor bug in BSE -greatly improved the stability of lattice optimisation; also reduced the variable 'deltast' to 0.001 -improved the convergence of the electron-phonon coupling parameter with respect to k-points; thanks to Xianxin Wu for the careful testing -removed the variable 'epseph' which determined the sampling window for electron-phonon coupling -added new automatic test for TDDFT time-evolution -upgraded to LAPACK 3.7.0 -Elk now uses the LAPACK routine zheevd for diagonalisation which is faster than zheev -changed the variable 'rstsf' to 'ssxc' -the smearing width 'swidth' can now be set with temperature in kelvin using the variable 'tempk' elk-4.0.15 -changed muffin-tin functions to a 'packed' convention; this improves the memory efficiency and speed for the whole code; completely backward and forward compatible -Michael Fechner found a serious bug in DFT+U which has now been fixed; may affect systems with atoms to which DFT+U is applied and which have symmetric equivalents; MF added to list of contributors -fixed a problem with the laser pulse power density plot (AFPDT.OUT) thanks to Peter Elliot and Tristan Mueller -added the ability to randomize the orbitals at the start of a time-evolution run; use the variable 'rndevt0' to set the random amplitude -improved the accuracy of the Hellmann-Feynman force on the atoms; this also improves the supercell phonon calculations -added the reduced Stoner theory (RST) modification to the exchange-correlation functionals, see: L. Ortenzi, I. I. Mazin, P. Blaha, and L. Boeri, Phys. Rev. B 86, 064437 (2012); use the parameter `rstsf´ to adjust the spin scaling -removed the Pulay mixer (mixtype=2) as it was consistently inferior to Broyden -changed the variables 'lmaxinr' and 'lmaxvr' to 'lmaxi' and 'lmaxo', respectively; the old variables still work in elk.in elk-3.3.15 -lots of optimisations of both speed and memory; many tasks should be noticeably faster -added new 'robust adaptive mixer' (mixtype=4) which should be able to converge almost anything; there are no mixing parameters for this mixer; useful for materials searches when you have to be guaranteed convergence; slower to converge than the default mixing and Broyden mixing -added missing term to DFPT phonons corresponding to the first-order change in occupancies and the Fermi energy for q=0; the phonon dispersion for MgB2 is now in excellent agreement with experiment and previous calculations -the electron-phonon coupling code was greatly improved; produces very good coupling constants for Al, Nb, Pb and MgB2; all of which are in the 'examples/phonons-superconductivity' directory -new variable 'epseph' controls the Fermi surface sampling of the electron-phonon coupling matrix elements -Markus Meinert created a script for calculating optical constants from the diagonal components of the dielectric tensor; it calculates the complex refractive index, reflectivity, absorption coefficient and EELS spectrum; available in the utilities directory -real-time TDDFT now outputs a time-dependent DOS and effective temperature at each time step -setting 'uhighq=.true.' results in an ultra-high-quality calculation; when you absolutely have to have the best elk-3.1.12 -Important: fixed an inaccuracy in the scalar relativistic part of the code which has existed for around 12 years; this may slightly affect calculations of heavy elements; special thanks to Stefaan Cottenier, José A. Flores Livas and Marcin Dulak for the extensive calculations -real-time evolution now works with DFT+U (experimental) -added 'ramp' vector potential to time evolution code; this can simulate constant and constantly increasing electric fields; see manual for details; see the example Si-ramp -lots of optimisations everywhere: code should be noticeably faster -José made some changes to the 'highq' and 'vhighq' options -fixed bug with non-collinear optimised effective potential (OEP) -new task (150) writes out the Kohn-Sham-Dirac eigenvalues of the atomic species -SS added two new f_xc kernels: single iteration bootstrap (fxctype=211) and revised bootstrap (RBO) (fxctype=212), see S. Rigamonti, et al., Phys. Rev. Lett. 114, 146402; added two examples: Ne-RBO and LiF-RBO -improved the accuracy of the magnetic anisotropy energy (MAE) calculation by rotating the spherical coverings of the spherical harmonic transform; thanks to James Glasbrenner for testing -David Ernsting found and fixed a bug in the Compton interpolation routine -improved the stability of structural optimisation -removed the smoothing option from the exchange-correlation magnetic field source projection routine -the number of first-variational states for magnetic systems was twice as large as it needed to be: now fixed -improved the vim syntax highlighting generator; run 'make vim' again -organised the examples into categories -minor bug fixes and improvements -note for developers: changed some of the variable names related to atomic species (purely cosmetic) elk-3.0.18 -fixed electron-phonon coupling again; thanks to Karel Carva and Elie Moujaes for the careful testing and discussion -DFPT phonons now work with MPI -SS added the 'single-iteration bootstrap kernel' for linear optics calculations; this is selected with fxctype=211; see the example 'Ar-bootstrap-single' -SS fixed a problem with RDMFT which had appeared in recent versions -SS made minor changes to the non-linear optics code -Important: fixed problem with the option 'cmagz' for forcing spin-orbit calculations to be collinear; this may affect MAE calculations; thanks to Martin Gmitra for finding this and the careful testing -Important: fixed a problem with the magnetisation directions selected for MAE calculations -reworked the 'ncgga' option for non-collinear GGA calculations; should be much more reliable now -several important optimisations; the Hamiltonian matrix setup and density symmetrisation are now faster -magnetic anisotropy energy (MAE) calculation now outputs the direction vectors; thanks to Galya Madzharova and Yu-ichiro Matsushita for the suggestion -added option 'vhighq' for very high quality calculations;see example 'Os-Delta' -'highq' and 'vhighq' options now write out the parameters which are changed -increased default 'lmaxmat' from 6 to 7 -added new option 'nxlo'; this adds extra local-orbitals to the species in order to make the APW functions smoother; this can make calculations, particularly of excited state properties, more accurate -syntax highlighting now available for the vim editor; just run 'make vim' and highlighting will be enabled elk-3.0.4 -real-time propagation for solids now available thanks to the considerable efforts of Kevin Krieger over the past three years; see the example 'Ni-laser-pulse'; this feature is highly experimental -1D, 2D and 3D integrated electron momentum density (EMD) plots now available thanks to David Ernsting and Stephen Dugdale; these plots can be compared directly to Compton scattering profiles; see the examples 'Li-Compton' and 'Ni-Compton'; still experimental -electron-phonon coupling has now been fixed and is also available for linear-response phonons -large number of optimizations made throughout code -code is more memory efficient in many areas -Arkardy Davydov found a bug in OpenMP nested parallelism for BSE which has now been fixed -fixed bug in magnetic anisotropy energy (MAE) calculation found by José A. Flores Livas -added option for automatically converting species from APW+l.o. to LAPW; see option 'nxapwlo' in manual -greatly improved unit cell optimisation algorithm; now should be very stable; see example 'Ge-lattice-opt' -Markus Meinert updated his 'blocks2columns.py' python code which should now work correctly with EPSILON_xx.OUT files -modified the 'highq' defaults thanks to testest performed by Don Hamann described here -full charge and spin response function can be written to file using task=331 -supercell phonons calculation now work with MPI -removed use of OpenMP ATOMIC directive because of bug in ifort version 11 elk-2.3.22 -Lars Nordström, Francesco Cricchio and JKD added fixed tensor moment (FTM) calculations (experimental) -LN made changes to the mixer routine which makes restarts smoother -the Hamiltonian is now made real for systems with inversion symmetry; this was removed in the previous release because of a bug; the FV step is now up to four times faster -fixed problem with symmetry breaking of tetragonal systems during lattice optimisation pointed out by various users -further improved and stabilised lattice optimisation -fixed a long-standing bug related to electron-phonon coupling pointed out by Matthieu Verstraete and Ryotaro Arita -fixed a problem with electron-phonon coupling introduced in a previous version, discovered by user 'wuhuagumu' and Heung-Sik Kim -TDDFT reponse code for both charge and magnetism has been made faster and more memory efficient -creating a STOP file in the running directory now cleanly stops a structural optimisation run; as requested by James Mudd -problem with nested OpenMP has now been fixed -more OpenMP parallel loops have been added -extended the use of BLAS throughout the code -fixed bug which affected the running of task=120 -removed the 'frozencr' option for the moment because the core energy was incorrectly calculated; this will be restored in a later release -various optimisations and minor bug fixes elk-2.3.16 -DFT+U now works with multiple entries per atom; every mention of LDA+U has now changed to DFT+U to reflect the generality of the method, and to give it an air of respectibility; for example, the block 'lda+u' is now 'dft+u'; old input files will still work fine -greatly improved the magnetic anisotropy energy (MAE) calculations, thanks to suggestions by various users; the crystal is now rotated instead of the magnetisation direction -fractional atomic species can now be generated on the fly using the 'fspecies' block; see the example 'fractional-species'; note that the atomic mass is only an estimate in these species files; this is useful for the virtual crystal approximation (VCA) -spin-orbit coupling can now be used with strictly collinear calculations by using 'cmagz=.true.'; this will speed up the calculation considerably; use only when the system is genuinely collinear -unstable non-collinear GGA calculations can now be stabilised by setting 'ncgga=.true.' -improved the speed and stability of the lattice vector optimisation; thanks to forum discussions regarding BaTiO3 -added the lattice optimisation of BaTiO3 to the examples directory; thanks to David Tompsett -geometry optimisation should now work fine with MPI -added highly converged osmium example 'Os-convergence' thanks to a lengthy discussion on the forum started by Marcin Dulak; also increased the value of 'lmaxmat' for the 'highq' option thanks to Marcin's careful testing -Important: greatly improved the code setup and compilation thanks to suggestions by Marcin Dulak; all compiler options are now in the file 'elk/make.inc'; the Makefile in 'elk/src' no longer requires modification -new variable 'rotavec' available in elk.in; this is a rotation specified in axis-angle convention which allows the rotation of the crystal axes -thanks go to Rich Martin and collaborator Wen for useful testing and suggestions -improved the DFPT phonon calculations and added the example 'Nb-phonon-DFPT' -decreased the chance of accidentally triggering the convergence indicator in the self-consistent loop thanks to a suggestion from Markus Meinert -fixed problem with the routine 'nonlinopt', pointed out by user Sabrina and Koichi Kitahara -improved the OpenMP efficiency in parts by using '$OMP ATOMIC' instead of '$OMP CRITICAL' -changed the names of various internal subroutines; for example 'seceqnfv' is now 'eveqnfv' -thanks go to Igor Mazin, Konrad Bussmann and James Glasbrenner for some very useful improvments -fixed problem with species generation and MPI pointed out by Marcin Dulak -fixed problem with use of Fortran 'APPEND' flag thanks to user Alaska -updated the fundamental constants and conversion factors to CODATA 2008 recommended values -Important: updated code for compatibility with Libxc version 2.2.0; see the manual and note the change in compilation instructions -fixed problem with the routine 'energyfdu' which affected DFT+U calculations with 'inpdftu=4' (input of Yukawa screening length) -Important: temporarily switched of the conversion of the Hamiltonian to a real symmetric problem because of possible bug; the only effect of this is that the code is slower for systems with inversion symmetry; this will be fixed in the next release -minor bug fixes and optimisations elk-2.2.10 -fixed problem reported by Sonu Sharma and Michael Fechner with calculation of expectation values L, S and J -slightly improved the magnetic anisotropy energy (MAE) calculation -added new variable 'socscf' which scales the spin-orbit interaction term in the Hamiltonian; this allows calculation by interpolation of the MAE for cases where the MAE is small -added new variables to VARIABLES.OUT elk-2.2.9 -fixed problem with fixed spin moment (FSM) calculations pointed out by Jagdish Kumar -added new output file VARIABLES.OUT; this is for developers wanting to interface their codes to Elk; it contains most of the useful variables required for reading the Elk binary files; if you would like a variable added then just send me a mail; enabled when 'wrtvars' is set to .true. -minor cosmetic changes elk-2.2.8 -Important: fixed serious bug discovered by Jan Balluff and Markus Meinert which produced erroneous magnetic moments with GGA; this only affects version 2.2.5; sorry about that -even more substantial speed-ups for most parts of the code -fixed MPI problem with the magnetic anisotropy energy (MAE) routine reported by Konrad Bussmann and José A. Flores-Livas -minor bug fixes and improvements elk-2.2.5 -dramatic speed-up for most parts of the code thanks to some (fairly obvious) optimisations -greatly improved lattice vector optimisation -automatic determination of the magnetic anisotropy energy (MAE) with 'task=28' (experimental); see the example 'FeCo-MAE' -the variable 'nempty' is now a real number; see manual entry -magnitude of total magnetisation vector written to MOMENTM.OUT -improved the species files -made the linearisation energy search more reliable -reduced the annoying 'linearisation energy not found' warning elk-2.2.1 -added full structural optimisation; setting 'latvopt=1' performs unconstrained optimisation of the lattice vectors; 'latvopt=2' performs iso-volumetric optimisation; see the example 'MgB2-lattice-opt' -minor bug fixes and optimisations -all tests should now report 'Passed' elk-2.1.25 -fixed several problems with the previous (beta) release; thanks to Markus Meinert for the exhaustive checking -magnetic hyperfine fields are now correctly calculated thanks to MM -added missing items to the manual -added the example 'Si-phonon-DFPT' -thanks to Kari Ruotsalainen, Aleksay Golovchan and Vladimir Nazarov for pointing out bugs in 2.1.22 - now fixed -added estimation of direct gap to INFO.OUT; thanks to user Sean for the idea -this is the version that will be used for the Elk Turorial -see you in Lausanne! elk-2.1.22 (beta) -Important: this is a beta version and should not be used for production work; a production release will be made in a few weeks -Important: this version is not backwards compatible; calculations will have to be converged from scratch -density functional perturbation theory (DFPT) phonons now available; only for spin-unpolarised calculations at the moment; spin-polarisation will be added for the next release; use with task=205; still experimental and generates incorrect results for certain symmetries - we're still working on this; see the example 'Al-phonon-DFPT' -full frequency-dependent magnetic response function now available; works with non-collinear magnetism, etc.; use task=330; see example 'Ni-magnetic-response' -iterative diagonalisation greatly improved; now uses the method of P. Blaha, et al., J. Comp. Phys. 229, p453 (2010) -upgraded code to handle libxc version 2 -hybrid functionals should now work with libxc (experimental) -upgraded LAPACK to version 3.4.2 -block name dos changed to wplot; changed variable 'nwdos' to 'nwplot' -variable 'gmaxrpa' changed to 'gmaxrf'; this is the response function G-vector cut-off -BSE and TDDFT now faster, more accurate and memory efficient; thanks to M. Meinert for discussions -task 188 changed to 320 -reintroduced the variables 'lmaxinr' and 'fracinr'; this improves stability -lots of optimisations -added more MPI parallelism -various minor bug fixes -conduction state local-orbitals can now be switched on; use 'lorbcnd=.true.'; this can improve both ground-state and response function calculations; this is switched on automatically when 'highq=.true.' -most species files have been changed; mostly larger muffin-tin radii -Important: Markus Meinert suggested a change to 'nempty'; this variable now represents the number of states per atom and spin; this scales automatically as the number of atoms is increased -default 'nempty' is now 4 -M. Meinert changed the default Broyden parameters after extensive testing -LN fixed bug in XCrysDen Fermi surface plotting -LN also reduced the number of states which contribution to the Fermi surface plot to the minimum -supercell phonon calculations can now be restarted with 'task=202' -Frank Wagner discovered a bug which affects certain types of symmetries in rare instances; this has now been fixed -Important: default smearing function is now Fermi-Dirac (stype=3) -entropy contribution now added to the total energy -default smearing width reduced to 0.001 Ha, corresponding to room temperature -M. Meinert added a blocks-to-columns script; this is in the 'utilities' directory -Oscar Grånäs added to list of main authors elk-1.4.22 -Important:fixed bug in BSE calculations owing to incorrect rotation of dielectric function matrix elements; thanks to Arkardy Davydov for pointing this out -BSE is now three separate tasks: 185 writes the BSE Hamiltonian to file, 186 diagonalises the Hamiltonian and 187 produces the BSE dielectric function; thanks to Markus Meinert for suggesting this -adiabatic local density approximation (ALDA) for linear-response TDDFT now available; see example 'diamond-TDDFT-ALDA' -added Markus' suggestion that the Tran-Blaha constant can now be read in with the variable 'c_tb09' -added new variable 'highq'; set this to .true. and the most important parameters are set for a high-quality, well-converged calculation; see the settings in the file 'readinput.f90'; thanks to Igor Mazin for all the testing -removed the variables 'lmaxinr' and 'fracinr' as they were unnecessary -simplified TDDFT routines -Important: the variable 'radkpt' has been redefined and should be made larger by 2π ; (sorry about this, the original scale for this variable was correct!) -fixed problem with MPI that caused some LDA+U runs to crash; thanks to Alaska Subedi for pointing this out -added documentation -several minor bug fixes and optimisations elk-1.4.18 -Important:fixed severe bug affecting spin-unpolarised native GGA functionals, thanks to Jiji Pulikkotil for pointing out a problem with Mg3Sb2 which led to its discovery; this now makes structural optimisation truly variational for PBE -Important:fixed severe bug affecting spin-polarised 'libxc' GGA functionals -thanks to Miguel Marques and Silvana Botti for the week-long collaboration at Université Lyon where, amongst other things, we rewrote the meta-GGA interface to 'libxc' -thanks to Markus Meinert for careful testing of meta-GGA with various systems -MM also added questions and answers to the FAQ -meta-GGA now works for collinear magnetism only: it is inconsistent with non-collinearity -Henning Glawe pointed out a bug affecting the generation of the k-point set when 'autokpt=.true.' -Important: the variable 'radkpt' has been redefined and should be made smaller by a factor of 2π -SS fixed a bug in the plotting of spin-polarised Fermi surfaces -electron momentum density now available with 'task=170'; thanks to S. Dugdale and D. Ernsting for discussions -lattice vectors, atomic positions and muffin-tin magnetic fields can now be randomised by setting the random amplitudes 'rndavec', 'rndatposc' and 'rndbfcmt' to positive values; this is useful for checking stability of a calculation -the k-points corresponding to the indirect band-gap are now reported to 'INFO.OUT' -lots of optimisations and simplifications elk-1.4.5 -potential-only meta-GGA now available in conjunction with Libxc as an experimental feature; see the example 'Si-meta-GGA'; thanks to Miguel Marques for discussions -finite q-vector linear response TDDFT now available thanks to SS -Important: variable 'autormt' has been removed and automatic scaling of the muffin-tin radii is now always on; a new simpler algorithm for computing the radii was implemented; non-overlapping muffin-tins will not be rescaled; calculations may need to be reconverged -changed parameter for estimation of the nuclear radius from Z to A; thanks to Giorgio Concas for pointing this out -Kohn-Sham band gap written to 'GAP.OUT' after each iteration -3D nesting function plot now available; use 'task=105' -fixed problem with a constant in the BSE exchange term -fixed problem of TDDFT freezing with MPI -lots of optimisations and simplifications elk-1.3.31 -fixed problem with OpenMP 'reduction' clause in calculation of dielectric function -no other changes elk-1.3.30 -removed factor of 2 from the BSE exchange term, this has little effect on spectra in the optical range; spotted by Markus Meinert after careful investigation of core-state BSE spectra -M. Meinert also improved the 'CaO-BSE-core' and 'Fe-XMCD' examples -fixed problem with symmetry discovered by Alexey Baranov -calculation of the partial DOS is now parallel, thanks to suggestions from Anton Filanovich -various optimisations; including some ideas from Anton Kozhevnikov -iterative diagonalisation is now much faster -improved the adaptive mixing scheme -improved the initial stability of the self-consistent loop, thanks to discussions with Lars Nordstrom Notes for developers -inverse indices from 'idxis', 'idxia', 'idxil' and 'idxim' for species, atoms and angular momenta are now available, thanks to A. Kozhevnikov -the arguments to hmlaa, hmlalo, hmllolo, olpaa, olpalo, olplolo have changed elk-1.3.22 -fixed a problem which occurs with version 10 of the Intel compiler -simplified the 'setup' script and added OpenMP compiler options by default -no other changes elk-1.3.20 -added directionality to the TDDFT code; thanks also to Vladimir Nazarov for discussions -a pre-print is now available for the new TDDFT 'bootstrap' kernel: arXiv:1107.0199v1 [cond-mat.mtrl-sci] -added the scissor correction to the RPA inverse dielectric function in EPSINV_RPA.OUT -fixed a problem with running geometry optimisation with MPI; thanks to Arkady Davydov and Antonio Sanna for discussions -geometry optmimisation has changed: now the geometry, interatomic distances, final total energies and forces are stored for each optimisation step in GEOMETRY_OPT.OUT, IADIST_OPT.OUT, TOTENERGY_OPT.OUT and FORCES_OPT.OUT -removed geometry optmisation from the ground-state calculation and put it in a separate subroutine -reduced pseudocharge density constant (lnpsd) because the spherical bessel function order could be too large; may change total energies slightly -q-points and weights written to QPOINTS.OUT -minor changes and optimisations elk-1.3.15 -fixed serious bug introduced in the last version affecting some tasks (for example DOS plots) for crystals with non-symorphic symmetries; thanks to Vladimir Nazarov and Daniel Rohr for pointing this out -VM also fixed the graphene example, in which the atomic coordinates were (embarrassingly) incorrect; also included a high-precision DOS plot to demonstrate the Dirac-like band structure -SS, JKD, Antonio Sanna and Hardy Gross added a new TDDFT functional, called the 'bootstrap' kernel, which produces remarkably good linear optical response functions (article currently in preparation); see the example 'LiF-TDDFT' -Antonio Sanna added the Eliashberg equations for finding the superconducting gap as a function of temperature; see the example 'Al-Eliashberg' -improved the electron-phonon coupling calculation (task=240); this is faster, more accurate and now works for spin-spirals; now also parallelised with MPI -removed packed matrix format everwhere in the code, along with the variable 'tpmat'; the first-variational matrices are now stored in upper triangular format; this takes more memory, but is faster -Anton Kozhevnikov fixed a small problem with calculating the nuclear-nuclear energy -various optimisations, simplifications and minor bug fixes -this version of the code with be used in the CECAM Tutorial Notes for developers -the order of indeices for the q- and w-dependent inverse dielectric function, epsinv, have changed from (w,G,G') to (G,G',w) elk-1.3.2 -linear response time-dependent density functional theory (TDDFT) now available for calculating the q->0 dielectric response; see the example 'LiF-TDDFT' (experimental) -fixed a problem with the BSE calculation which made the response function too large -added the possibility of using arbitrary states in the BSE kernel thanks to discussions with Markus Meinert; this enables the calulation of core state BSE spectra; see the example 'CaO-BSE-core' (experimental) -MM also added an X-ray magnetic circular dichroism (XMCD) example: 'Fe-XMCD' -BSE calculations are now faster, thanks to discussions with MM -Alexey Baranov made several changes to the structure factor code, including adding an energy window, 'wsfac', for the calculations; see the example 'MnO-str-factors' -Tyrel McQueen suggested a way to speed up the Hartree-Fock calculation; this has been implemented and also considerably speeds up OEP and RDMFT -TMcQ also made some ongoing changes to the hybrid functional code -made the radial Dirac and Schrodinger integrators yet more stable; thanks to AB and Frank Wagner for discussions -fixed a problem with the ordinary RPA dielectric function; only affects calculations which have a scissor shift which made epsilon slightly too small -real symmetric diagonalisation now used for the first-variational eigenvalue problem for crystals with inversion symmetry; this can speed up the calculation by a factor of three; this is thanks to discussions with Lars Nordstrom; Important: the atomic basis may be shifted to a different position and old output files may need to be reconverged -fixed a stability problem which occurs when using GGA functionals by removing G-vector truncation of the effective potential introduced in version 1.0.16; thanks to Greg Walker for discovering this -LDA+U calculations are now faster thanks to fast evaluation of the atomic density matrix -Broyden mixing scheme now available: this seems to be both fast and stable (use 'mixtype=3') -removed Anderson mixing -improved starting guess for the density in ground-state calculations -upgraded to LAPACK 3.3.1 -various optimisations and simplifications Notes for developers -the arrays haa, halo, hlolo, oalo, ololo are now smaller and the indexing has been rearranged elk-1.2.20 -the Bethe-Salpeter equation (BSE) for linear optics now works beyond the Tamm-Dankoff approximation -RPA and BSE calculations now use full wavefunctions instead of plane waves -removed the Coulomb regulator from the calculation of RPA dielectric function, instead used the analytic results for the head and the wings of the matrix (thanks to Vladimir Nazarov for discussions) -improved the stability of radial Dirac and Schrodinger integrators (thanks to Alexei Baranov, Frank Wagner and Ondrej Certik for discussions) -added more block descriptions to the manual (thanks to various people for pointing out omissions) -various optimisations elk-1.2.15 -SS and JKD added the Bethe-Salpeter equation (BSE) for linear optics calculations. This feature works with LDA+U, magnetism and spin-orbit coupling. It is also parallelised with MPI and can be run across a cluster. See the 'LiF-BSE' and 'Si-BSE' examples. Currently an experimental feature -Alexey Baranov added density and magnetic structure factors: see the 'MnO-str-factors' example -AB also fixed a problem with output of the spacegroup code -full frequency and G vector dependent RPA inverse dielectric function now available with 'task=180'. Works with metals, insulators, magnetism and SOC, and can be calculated for arbitrary complex frequencies. Also parallelised with OpenMP and MPI. Thanks to Anton Kozhevnikov for discussions -added lots more MPI parallelism and made the code more MPI-friendly -many optimisations across the whole code -Simone Chiesa, Anton Kozhevnikov and Adolfo Eguiluz found a problem in the plotting of the partial DOS which has now been fixed -the first-variational eigenvalue matrices can now be stored and diagonalised in non-packed storage mode: use 'tpmat=.false.'. This can speed up calculations at the expense of memory -Tyrel McQueen found a bug in the 'findprim' routine, now fixed -TMcQ also suggested a change to how the code connects the points of the 'plot1d' vertices -Martin Stankovski suggested that 'ecvcut' be made into an input variable, allowing the core-valence cut-off to be adjusted -added the phonon calculation of Ni to the examples -Jerzy Goraus contributed a script for calculating VB-XPS spectra from PDOS* files; and also one for converting the Wien2K struct file to spacegroup.in -modified some species files thanks to tests done by J. Goraus -Henning Glawe suggested including the version number in the release directory -upgraded to LAPACK 3.3.0 -made tolerance for finding the linearisation energies (epsband) much smaller: this improves the overall stability of the self-consistent loop Notes for developers -arguments to 'genppts' have changed; also the non-reduced k-points are now stored in the remaining part of the reduced k-point arrays elk-1.1.4 -message passing interface (MPI) parallel runs now available; scalable to hundreds of cores across a cluster; can also be used as hybrid OpenMP+MPI parallelism for maximum efficiency; with thanks to Bhagawan Sahu for help with testing; see manual for compilation and running instructions -S. Sharma added susceptibility tensor for non-linear optical second-harmonic generation (SHG); see example 'GaAs-NLO' for details -added spin-orbit correction to momentum matrix elements; affects linear and non-linear optics -optical calculations now work in combination with spin-spirals -updated interface to version 1.0 of the ETSF exchange-correlation library, libxc; thanks to M. Marques and T. McQueen for assistance -fixed bug spotted by T. McQueen involving using multiple tasks in conjunction with 'primcell=.true.' -A. Kozhevnikov fixed bug in 'xc_pwca.f90' -A. Kozhevnikov also fixed serious bug in 'getevecfv.f90' -F. Cricchio changed the order of lattice vector angles in 'spacegroup' utility to 'bc, ac, ab' which corresponds to the convention alpha, beta, gamma -removed scissor correction from eigenvalue solver; now it is used, as before, only in optics calculations -T. McQueen suggested an improvement to the routine which generates the path in reciprocal space for bandstructure plots, 'connect.f90', which has been implemented -fixed problem with XCrysDen Fermi surface plots, spotted by FC -various optimisations and simplifications Notes for developers -arguments to 'zpotcoul' have changed in anticipation of linear-response phonons; should now be called in conjunction with 'genzvclmt' elk-1.0.17 -fixed problem with Fermi surface generation introduced in the last version -E. K. U. Gross added to list of main developers -no other changes elk-1.0.16 -fixed problem in linear optics calculations for metals - thanks to Antonio Sanna, Fabio Bernardini and Sandro Massida for pointing this out -FC and LN added option for automatic determination of APW linearisation energies (use 'autolinengy=.true.') -Marty Blaber made a script which allows for semi-automatic labeling of the vertex locations with gnuplot (found in the 'elk/utilities' directory) -FC and LN fixed problem with some compilers when writing FERMISURF.OUT -FC and LN fixed problem with writing XCrysDen Fermi surface plots -Anton Kozhevnikov found and fixed a problem with the generation of the irreducible representation file 'ELMIREP.OUT' -Torbjörn Björkman added a new routine which automatically determines the smearing width from the k-point density. See 'autoswidth' in the manual and the example 'Nb-autoswidth' for details -added a constant electric field E in the form of a saw-tooth potential: set the vector 'efieldc' (experimental) -added a constant vector potential A to the Hamiltonian to generate constant currents: set the variable 'afieldc' (experimental) -FC and LN fixed problem with a spin-polarised GGA routine -FC and LN pointed out that the energy term associated with the excess charge compensating background should be zero. This term has now been removed -code now more memory efficient thanks to smarter array allocation -the variable 'rgkmax' can now be made arbitrarily large without risk of instability -removed variable 'cfdamp' -Anton Kozhevnikov pointed out that the radial functions were being redundantly calculated for equivalent atoms -- now fixed -Anton Filanovich added several questions to the FAQ -scissors correction (given by the variable 'scissor') now applied consistently immediately after the generation of the eigenvalues -FC and LN removed the spherical harmonic transform matrices with rank lmmaxapw -added dielectric function calculation for arbitrary q-vector, see 'LiF-Yambo' example (experimental) -by setting 'gmaxvr=0', the G-vector cut-off for the potential and density is automatically determined from 'gmaxvr=2*gkmax+epslat' -various bug fixes, simplifications and optimisations elk-9.2.12/PaxHeaders/Makefile0000644000000000000000000000013214536061316013103 xustar0030 mtime=1702388430.010498391 30 atime=1702388430.010498391 30 ctime=1702388430.010498391 elk-9.2.12/Makefile0000644002504400250440000000101514536061316015622 0ustar00dewhurstdewhurst00000000000000 MAKE = make include make.inc all: cd src; $(MAKE) all cd src/eos; $(MAKE) cd src/spacegroup; $(MAKE) clean: cd src; $(MAKE) cleanall cd src/eos; $(MAKE) clean cd src/spacegroup; $(MAKE) clean rm -f *.o *.mod *~ fort.* ifc* *.gcno *.exe test: cd tests; ./test.sh test-mpi: cd tests; ./test-mpi.sh test-libxc: cd tests-libxc; ../tests/test.sh test-libxc-mpi: cd tests-libxc; ../tests/test-mpi.sh test-all: $(MAKE) test $(MAKE) test-libxc $(MAKE) test-mpi $(MAKE) test-libxc-mpi vim: cd src; ./vimelk elk-9.2.12/PaxHeaders/make.inc0000644000000000000000000000013214536061316013053 xustar0030 mtime=1702388430.023498372 30 atime=1702388430.022498374 30 ctime=1702388430.023498372 elk-9.2.12/make.inc0000644002504400250440000001214314536061316015576 0ustar00dewhurstdewhurst00000000000000 MAKE = make AR = ar # Elk requires BLAS/LAPACK and fast Fourier transform (FFT) libraries. # We recommend using optimised, mutithreaded BLAS/LAPACK libaries such as those # provided by the Intel Math Kernel Library (MKL), OpenBLAS or BLIS. # Elk can use either the Fastest Fourier Transform in the West (FFTW) or the # MKL FFT. Both single and double precision versions of the FFT are needed. #------------------------------------------------------------------------------# # Libraries # #------------------------------------------------------------------------------# #------------------------------------------------------------------------------- SRC_MKL = mkl_stub.f90 # To enable MKL multithreaded parallelism, uncomment the following line and link # with the MKL library. #SRC_MKL = #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # If your compiler does *not* support the Message Passing Interface (MPI) then # uncomment the line below. #SRC_MPI = mpi_stub.f90 #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # Elk supports two FFT libraries: # Fastest Fourier Transform in the West (FFTW) # Intel Math Kernel Library (MKL) Fast Fourier Transform # # FFTW is enabled by default with: SRC_FFT = zfftifc_fftw.f90 cfftifc_fftw.f90 # # To enable MKL FFT instead, copy mkl_dfti.f90 to the elk/src directory and # uncomment the line below. #SRC_FFT = mkl_dfti.f90 zfftifc_mkl.f90 cfftifc_mkl.f90 #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- SRC_LIBXC = libxcifc_stub.f90 # To enable Libxc first download and compile version 6.x of the library. Next # copy the files libxcf90.a and libxc.a to the elk/src directory and uncomment # the following lines. #LIB_LIBXC = libxcf90.a libxc.a #SRC_LIBXC = libxcf90.f90 libxcifc.f90 #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- SRC_W90S = w90_stub.f90 # To enable the Wannier90 library copy libwannier.a to the elk/src directory and # uncomment the following lines. #SRC_W90S = #LIB_W90 = libwannier.a #------------------------------------------------------------------------------- #------------------------------------------------------------------------------# # Compilers # #------------------------------------------------------------------------------# #------------------------------------------------------------------------------- # Intel MPI Fortran version 18 and later. F90 = mpiifort F90_OPTS = -O3 -xHost -ipo -qopenmp -mkl=parallel F90_LIB = -liomp5 -lpthread -lm -ldl SRC_MKL = AR = xiar #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # GNU Fortran compiler with MKL. #F90 = mpif90 #F90_OPTS = -Ofast -march=native -mtune=native -fomit-frame-pointer -fopenmp -ffpe-summary=none #F90_LIB = -lmkl_gf_lp64 -lmkl_gnu_thread -lmkl_core -lpthread #SRC_MKL = #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # GNU Fortran compiler with BLIS, libflame and FFTW #F90 = mpif90 #F90_OPTS = -Ofast -march=native -mtune=native -fomit-frame-pointer -fopenmp -ffpe-summary=none #F90_LIB = -lblis -lflame -lfftw3 -lfftw3f #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # GNU Fortran compiler with OpenBLAS, LAPACK and FFTW #F90 = mpif90 #F90_OPTS = -Ofast -march=native -mtune=native -fomit-frame-pointer -fopenmp -ffpe-summary=none #F90_LIB = -lopenblas -llapack -lfftw3 -lfftw3f #SRC_OBLAS = #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # Intel Fortran with debugging and profiling options. #F90 = mpiifort #F90_OPTS = -O3 -qopenmp -mkl=parallel -pg -xHost -init=snan,arrays -traceback #F90_LIB = -liomp5 -lpthread -lm -ldl #SRC_MKL = #AR = ar #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # GNU Fortran debugging and profiling options. #F90 = gfortran #F90_OPTS = -O3 -Wall -Wunused -Warray-temporaries -Waliasing -Wampersand -Wconversion -Winteger-division -Wintrinsics-std -Wsurprising -Wtabs -Wunused-parameter -Wfunction-elimination -Wrealloc-lhs-all -Wcompare-reals -fopenmp -fbounds-check -pg #F90_LIB = -lmkl_gf_lp64 -lmkl_gnu_thread -lmkl_core -lpthread #SRC_MKL = #SRC_MPI = mpi_stub.f90 #------------------------------------------------------------------------------- elk-9.2.12/PaxHeaders/elk.sh0000644000000000000000000000013214536061316012552 xustar0030 mtime=1702388430.036498353 30 atime=1702388430.036498353 30 ctime=1702388430.036498353 elk-9.2.12/elk.sh0000755002504400250440000000064114536061316015300 0ustar00dewhurstdewhurst00000000000000#!/bin/bash # set the number of OpenMP threads per node equal to the number of cores # (this environment variable does not normally need to be set) #export OMP_NUM_THREADS= # no binding of threads to cores export OMP_PROC_BIND=false # increase the OpenMP stack size export OMP_STACKSIZE=256M # set the soft limit of the stack size equal to the hard limit ulimit -Ss unlimited # Elk executable file ~/elk/src/elk elk-9.2.12/PaxHeaders/docs0000644000000000000000000000013214536061324012315 xustar0030 mtime=1702388436.561488692 30 atime=1702388436.538488726 30 ctime=1702388436.561488692 elk-9.2.12/docs/0000755002504400250440000000000014536061324015114 5ustar00dewhurstdewhurst00000000000000elk-9.2.12/docs/PaxHeaders/Brillouin_zones.pdf0000644000000000000000000000013214536061324016242 xustar0030 mtime=1702388436.543488718 30 atime=1702388436.539488724 30 ctime=1702388436.543488718 elk-9.2.12/docs/Brillouin_zones.pdf0000644002504400250440000057763414536061324021012 0ustar00dewhurstdewhurst00000000000000%PDF-1.4 % 6 0 obj << /Length 71 /Filter /FlateDecode >> stream x3T0BC]=seUeɁTA3000#5Vp Ct;N? ! endstream endobj 5 0 obj << /Type /Page /Contents 6 0 R /Resources 4 0 R /MediaBox [0 0 507.249 517.809] /Parent 7 0 R >> endobj 3 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/var/tmp/10089666731916source1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 8 0 R /BBox [0 0 507.25 517.81] /Resources << /XObject << /Im1 9 0 R >>/ProcSet [ /PDF /ImageB ] >> /Filter /FlateDecode /Length 10 0 R >> stream H*25032U0BSCs= C039K3P%+ n endstream endobj 8 0 obj << /ModDate (D:20020211151125+01'00') /CreationDate (D:20020211150909+01'00') /Creator (Acrobat 5.0 Image Conversion Plug-in for Windows) /Producer (Acrobat 5.0 Image Conversion Plug-in for Windows) >> endobj 9 0 obj << /Type /XObject /Subtype /Image /Name /Im1 /Width 4228 /Height 4316 /BitsPerComponent 1 /Decode [ 1 0] /Filter /CCITTFaxDecode /DecodeParms << /K -1 /Columns 4228 /Rows 4316 /BlackIs1 true >> /ColorSpace /DeviceGray /Length 11 0 R >> stream XR0G}5K4W QL/.܂D,D$l*r@醐A~UKE}uv8LÄת^t}._5UOIn1. nuW]m`UGi{9'/W7tȩ30q;_ v=K8  m.K]WUKaWnx_TگWL]uvPXwLX.-k__]|OzW_"ݏ__*o^u {]f+_$m F#o-.4Gk0 | f1030odcYt\\>YF̎ ܁ɅVgUF"xlyϺ,H.n4N}>Y荣/0hZ 1B!@] Ͱ`h!@h#:1-YUy0@#6DGoB\Dvn#E0R8˲>^0 kraC <J xLsR)D ._? xX(s. @9-CQovD  A{{ M>0oIo >aIl> ;ۆ{}&z]*}'}xo`ag&mJx7j0?6WHpaA0Pn"}&M tA 0m0 >aa0} q}& `aA0MȭuH7úL1 >PML60aanao ; ke~ݜL aoޓoxk <0L>z7°eoOOA-29xH0ܮx!iNqC.&@U p/ 6lS28dc$'3 sHd'J\h6 Ze~"8-ِ0F٘-Ve٠00#p[r8|#| 2a&G[#n6 ]F# `G/ i""""pH}40"1`*B:L6{)|a RR P'H2!ܛAd2aW;q6Zt Xn8I QY P6h<&@R6TidptHc9: Ae7Zh:HK2id6aLNn !&$PVd<A(m' aaI#"I[tm+ .A;t,7Ki6ү-KIwKl4 {ẮJ۠m' ?$zN Imt+ tItu^ MRvVj$[I#'[i8nǴ7Iv ҭvVVÄa^J:++l0{I+kᇯ _e47A%!ޫtn I,67IxinÄN7ivk/na]^aM۠maU^Wm-AvJ}aKt%m/mҭ7Ivݺ[`ä vo /m[ ქT-,EZV/ X0*tI0wIml ^T짥väuTvD A$إtL$t$-I]-[ +/IۥMl:J tl%aXt7I+Kn Km+oJW :UiXnv,: ?Eb .Hʵl=fFnM <7 ]\7I0t[aa!n]VpKp\47Iw m%Kۥ::]Km^/l anpKzl%]U:I턖ݺIz 0V/zuKl% : -pV{iv%[h.wnWIv[aJҬ7Iv}aKtOa]i;aImiTaҧm/aZm+^-W Tqmp;i{MnI6l:^^ޒ m ^퇪iS-I0taUN/m!]vA*K :^M~XnA;i6aKh-I}+ ={i;m`[i6tÄm"%}oKڧl:UN^鴷 :I4Im\m-OU; V ۥVn/a[Am%m't0MKlKm[xnl8*V!!-t@>ᇥr{a+ alF :Ka|7+8]I&P[eTKa[l?t7ZmtoJW- xa[KzI6 A^?VKm/ixn]T%i n i]m~]/taa >ix[vհa!i8n]¶NAX`VNWt* l?Kh-m' >a&tm+ Mv^a%l%íw[mm/a_ mҼ7I-mޗx7Zav^tmI0[i]%XaK:[꽄m/ Kp އKmUmiv޽0m tm+p%7I-֜7m/amvݾ/ a[a+xNh mqt鰗am;l$Wl$t]֛Kw_}' ]Z[~ V^AWj 5nv[zIV]Ynm ;V I]Jޗ碌l%~^4h&mK&SJ^I~[Wl%WKUn}wJ_l%umt~m~/ISޒi}w[kin}aԉ&^h*_uKմ}}ui'wU^5@˙ϯoTB)0,&@ڂr zT9r(h&ީb""Mx'S *.JJ#\ӯ, (OwDG !w,L).f uQ,He[!,ڲxjCf%`x6Ckw2:H6#mŔkO]nfG[d !YdEz# u) oe@d ܎ckWLlG* ":WzR<a%\\[Eu0<3Kx߬RQ"-OT $zR#y )No\ȐB8 ᰸rzFF3x4MuHʨQ#u{{jxfB"=]Sato[_mv%ˁE?28$uZZ=.G~+B$9&a7O[W}l Rumu{s#\OWݿ@ˁGCM_iޢ@9F; T@jAFJfiOzDn$[_7R~@nV"Q {6k#DKTo]'K-_6>ti7Jմi'O M+Ioi7M' 'VrRoI=:[n Sk}P!;ImuIIMoo! mo:t[z7\7NڒMK{VtVuK|+nҭ"Nm-, aS}л m$]:oA}%A}o[zMXNB?>m>:Z _k{adj:XL! [~}I-(wAm=h  ]u! M]յn AagxI]z M꭫i;n=Roo-{vwzZOI~mA-鄶ޝ'M+ >%t}麒jvޔ- $^ޕl0=iv b޺H%ImIl>K}{}a%I6^5BN/n{@~Xt08Kt!~}$ >t=ݥ[uPXa'uo,7 -۪MںA'n@Gm{ka.xRBޒ[}U:i'L>[t{t <6PXouA-&{zKRۦռ$t!tWnmI*ޡwo[]zK{atJ.viu%o^JwTUXo[}KaKopo| CXztj^v%oknn[Iw 4PJ҅~&ީ{v,1 _o)-;I &mzIm}}U7IK 4JvO=ޭ-ַuwKonH&۵aS%iST菆PA8ڇXNeIߡ MuI[&]_UNޓi]: ,l ^}mz[~i%}Mի^=W$TOKku _q &$^ZZU}/m&Uom_$-m&aOMv*mJ @ ^l t*%jpkzA:JVߥ 7h! =ҴE7tI zH ii½0պtnOV%a &I?eN V.[zI{i-0MwM[ W ެ ;o\26W[J$m-t%Ň[޴Xa$mzմ 7XIp%OMT}%Ma| B#@#oI&uuItf@сt%Irh(fCV0}%"]o $a$}_IGAVL?ҴDbHR7n KPl?K[A*0ޒ -l˙9V烙2m\$'"Uj0KA%*l\;%uik Kw;H*v 6A%zm/!pwҭI75J mI-}-_r03zH%ڻһէiI^P +E ooU@mKnKa$WAp~ T}+Ja[u&ݯ[~kJm[oЫoh& RKn}w[m$wK@p~K~ot-:~ۆXI7sAm#i& %a۶{m) 0gq .Imkt1[ak^۵IMxa]h*A~$ZnᥰT[NޚInJ6굷$l oK&ƨ A*x0WawJnې`s⧇kjWKo"ᾡIw{aʒҢN0۪. I'^Ka%~T ;$JH_ީ{}om٨ha/ڤÿHuoUAI. 0{OWv~_8T[{*}ݷmH=vI;z!^3L5I K`C a* {*x۠H }7{JU 0oi%m%ZoKnam]IKv~$?wm$Vވ_0[ޚA Ww@O=ݾ*i(.XNe5D1An .u w+Z!aKӽ miGmrô o҅ Ӄ &_ ݰp rS~BE0B"+hOib~~ v׵}IA0aȮݥm7IK^Eontnjڽv7$} | K dRPo_[jK;)VvmJd)m Md/ IeK5Pص{D6waT,5B# oKl$m zn~a& q_ "/[ AvD0 ǧ`{t |D0LJN31m pv Nޕ`\-[ 4<*&%;^vRp0'V[ {Ah7n!dT6"GMۤyr 6ݶ[iG %\am-g'0;Jm۶[ @aH Bu5r7IL70[ g 6&b!#rb@o ^Xc![[a! ׳Pam-mX {h-RamW muV܂[ -߆. X. Am%}D߳GdY¾cûa dMt@>MKlNv 4kAmA}@6ނmoA{ݴ i;3W ;;rBsw}^"h2z XU_ KlL0D.­_JZa4۶K ;$~^0 l ֢87M5-$½mI 7 eZ{Z} (,!FkR0۶TAaa.-gCtAjItvujAc>-&:Nwa6܁݄X@Zml%TݢIЈݰ]iB`mmi(pm=oi$a-"\ ۤIm[uڐ 'mu۷P}pa"(VIuvmDFյ_^0l%l;ء>l:7[E(5[0K "ỻiS~ۢj Y$m]ePC=M$aݶXoN"8$7V(Op`m+~MVi(C*}paK't{vwqI -բz[omM6j ڷ(oݤaK/*op[l0[D3$:]nK!l+Xaݶ[l3 WOAq'}؈e4ˢ>a/O2Vl]"!$?onJ(vtX d^G Mz Qp72d?if@a0J9KH CX m 0CW'oۥMHA֞X% Xm/m}' DwiPW 7 ~ Hj'5QevU$m$GպA &(Q$/iZl7L^ֱ4V @dV$]a8} 6l+a (DrmAr;;G:޷ D %8e>{I;@evWb$gCJ߽B6w.ջga@At퍙 A@&aߦa\'D0jA}M 0c 0!G P9[]D!\){fnH}>A.v #iAsOkA[mPiJAiþ Nvep ӻXC\-z8ې^ i5!ǐYAPrHgm&PBBhepBAAV݄" 셺!M a6<tA >!Σ gfWVuX oݶt@Rݺ*;2 CovwaT5t>AM m 7nߒhkުBQaX wI5[ m4yv!rrrd %9H0GV۰Nsu:i6; 7M{n! ЏB|A Cun@oC+mmmo l5149ۜ>#NS+ ďedMM .[tvv  ;t@t)m@6nLaj7& aAPôkm  Xy* v]vאT7xH$v#P5ǻcfŶQs-A'peC/ i6m$cSM;Z"DH$Px"nm$l^!ݱaWvA7JAq\Uo 0@6m[`@"f,Nƒ%xnci~u@$5ăQ-{ nt%aq$\T$O+~Anφ m$6)1]TP璖a& l .k"lmtCInH$<;P`'}4FH_D,"lk Aj+Kl5Aa"\a[`u<4n+x.]M adq$ nTfT!=8u54nĨD ë [gv.Dxt'܆ njxg0 Ȝ` [qxADGDua˄0BWTFW0Bf[J[Eˇv頁w]H 9HO\vm(\EC0\ -@XעRZ x)AoV+!00-J"P<!-ӆ Oٶ _cVj'CFIhRmP v ah5 ㄼ#  J@ "l ZG|A "la6J Gj̸ |ڰDBh~i.v+Dp<KVD)XvDu9yڄ\aIa5 ;n0<H莸 چT=A - lQ!3{m-9" } $M _ ha- vGctADCvL$`n+aNү'HK I 3*_mrkh m d .I_d㔹L.'A/I0h@G" k[r\uB$Y,$n `re_dFH $a"8.2 x4WI%0d#{~W x.ܧJT[ Sq] xn7%I$uF !-++nhaiR!/t!aq6U pm$YRdDص`ߪLsd;C #2= x*lAF)yP3wI -<3G5AUJÎS%RK .AI_k'VKlP-,K}IV'Aq<0^> Pݴh"lfV'ߥV ӻ$.IB Wa?$M{wIVua}%ʤ\ nNZ +i*me=qmnKtګz!ޙ{_N aCT-kmշIu8Mv nr xۦ$]_V/n${ih-%E:H7m4M]t ЂߴQ >nN$7[,$6I۶A@D.ڨI]T{^]%g;rpނzO*aIvA$.:^n fDtn{ a@V}$"=_MבMWOWi%nK-=ڨi 0wT7HP9!n޶m~ս-iǷ I .WJEu axA%oI}iZL7 {i$7oޜ.𰂠wIU=.v;0GI0a .ɖj6h$4m솉l5vp c}v4,0wIm=߻$nd2)d$$mЄtKXanW%z^k,0PImj)&A^}[TnAw}+ۦ MIn~" Mֶҵ,($l n[op GTm=$vj!VP .ޕm*mtނw}5L7a4TA!R iA6 Xa-Rl(A$tWnn *VV[+h3L: UNh285I[oI!P0H*vaI0 V۴ VIHH$JH&_oA4j@ڦ %ah[Ϊ$IPI[oA j"mJKޕ Ca%*mU &wI R}$it}njm+PZA-ޓMvUU %NiI+V6*vhFV۴҆KT:K"i&I%m+A%oto^[mBOZLjI[oۦATpa$_!mmI%* *փlJ %oH0DR[n=Sa$PJ֛Im4W}ꡆ]$YrAA^KWt 4W+AUMxa[oAu $ޓk K[J -Pm$ސo醕[{.Xa$N@KmJh$aA7 $־ %n$t -%ua.ӮVVmIu +m8Mv~m$uaoA{xaޗNiUL54Ju %V۠i%m'In~ՆVozmVZA [oP@m'pwPI[ ]7MI[Ai%o +6m+􁴒z *ߤa 4IҴނҼA-W&I[oI|0J7L0]'0;TmմI+m7^ 4wA76[%jڰ ?ᆒWoKIAP հ[4Vtt6K'H-a+0z uMlIm' %턟umJצI[oIPI[oI KKJI+m+ރh ]E-6 Xm!H6JL4K &i%;2M 0\;++Ii{{ $A $+Xh$ۥm.m$I)]"mA6A(}H TI)]"ool$[zWN $zMm xA_ᴼ6H Mm=>H-ޗAJo&WI/ҿd $'IJ nҿH6KޓӤA VI[oA?j 5醒V_mKiH+wkJdIQnn 4VxA_ja$zNA o0I]}I[o :ᴂVuA7 𕥰i%InI[}kAA{}JxJAI+ovI] @H M[ $ݥuH+h$[l$ýAv+ 4V}%mJ`үxIҰImA7H-[aWmLPmVxK 6A[' H+m* 0A- +a$M0ۄj 4WmpaVI NpKmM ܎aBv`XmMa ]h$A% %n 6Wk,h;a$ 0an Ia$ CmIA%m`A[unI[a$ [a(aJ+ 0I[mA&a$H0i M mA V&i iH7a%$I[ta[aV& $ i%m`a+l0H-0i%m WAH.i $a  +AIn° &a ރ WaH6I[ a m*m&i0 ۦZ W6$چj7h& I+mKndtt [a$l0˃b l1H+ l A[ PMKmmM`I[na&I^ 6V MKmm  [aVH0KA n %AA[mÄ7 4M wH0Jݤޕ6Jݫ 6[ti$IvAA]Mt Rِ*H7HiiKn[V m$6MW[ti%v Vi%@ޕJH+majI,=#+JP LI[a[tI+mi%m:A+0WtiaH0%o-A[$ AmVۤI+v B nni6W0i@ޕ _IH+mJ&IXv n ۤjmPVA0Jޡ6j 5 wI[TA+zL4 T% H6Am Rh(t@IwHP l0I+vA[za$ [t&H%i0Ji JmA+n =wjHo[v`A+A T'H-H+ ioi [JmH-Ai%va m Aޭ I-0%m Vi%vAnP [xAچJh& [AKaX5 [i%atimH- Vi A6VPA MiCҀ aL:JI [l AjI 6 $L5AC m RL: m6oIV 0%n6 na A+nA[ $A-Ai0attm Ti7 nanW+I7A+wICn!I m$ %X4H:I[p 4 Ҷ0JݤP۠Ia J5Jth&aH @ #~Jm[tiCz &[pA6AC -Ai60 í H0V& ݤ mMջA6& +nm(mia Ci0ұh \$A[I +h JAWI UդjK +e0Ũl`+MÑ5ĺᱫd \Dp< M:# 7 \:1[-C C n  征P]`2ChvW2AN+ˈ6 `s!L-X2@0G#vFÑGCs``6v<|JGc10Dp[ 9`> 2 `9f[¶C$f 3"9Cr0fe4ɐ ˑ@>Ν0H2YluhF@MQUچi>.BeQHUT^?BJ28##fS̉!"@|ؑ3aHk r;&  A"893JVc"0aj CA 4RdB>EC,$3!AC0@hM=i U i u4AڄN Oaa4;[MVAݪ}[tO~4z}ޖӽW׾~_{NۥiKWiXIoOmVK ѥ^Wo!) ʬ.9}dMDt]]iTpo:y 0CA5 J&_6x )QN:./i"q„2 v7> YPʅ Hs0q"es!&@рB""ErD3R 1͆WX~ " P "d0H!i$@±; Zzaa4+AhsP0M4 49;!M ^_4Pfvp;Nx_}ڮ}ڠ۴׻ =%_'Tz~}mOJzzM]]5׻uMwkޱJ{kOTo "6H5"]SZ^ {\;~! {w괷k d3C!^Wjqi& q:)?y->LQCfHCC@4CfmH1ohp U Pt~ ڮk'i}JD_KH{-{j}oL_.u^~__v_KKm.+`uMV~.]ԁqJ5_!^CCp_wwi{(/~@("#wzwWe֛ή ַy ^# \rHfJC,sDッ_ 3H.A!=i\&߮ ú;tzW{uOwK}VvW}=Pvt ~kkMkvoK[ P(` 3z}{V+ bm0]] Ko[UPf8(SOMfD]IP_²&+j=n]oO>ۇNޓ 2 9Yj  qo ࡊAD>ߤ!{. BO @MO_wӆmS]R[};?zi}=SN~߿ ¬5_aVo&nio?@ SAߥ~UӾN Ѱa4L/l= 7k0P5M{MB;7 ",}~auv i;Aa0DAE3Jo} 0fJa0PՇ"B%&qB""#SaJt! Aa `221s Ʊ(CaE ܧ>ˢ:.)xeyD:`^9 Iۈi~Dz [5`m{Am{ݻN7owu[[uڅpӺXkյUn4a8M5 UL/Xk۴``զ5ij&a4 XT @a4v C83p\AQH ˜rAwLdCk;CVƊ"BНЈDr(@}Gw(&]/KVڏS`?@}u_2^>[!j?ٺCU,HkЧ 2EN}ym-5-] 5[n.?j/h-.SKz^Z Մ(^};I\Ah[Wh:a-zPao"w!z"r)?Am܉ea /a"]ȓu-K }tnKJi! ]ikNkVzm-jh0J"R5TWQJIS I[]nAtjt"? BNυ^ ;B.D~?,i5uOoٜ|>k}޿u߯C/k.w2?_vPhܳFmp6Ii+HT@@YDn z!(疞 g.P$cR4\&x. ʂxAg1n@ D+2}!<^Y@ڐ + ., ܏hH*@1rgtex(RG"8HL@@ d3\2Vxc 2C/O"x NLs=!<T""CVfe0GFK`W"@9Hr).j#0(H!DDDDH$°Et& &9 Ar43P` ג+@q rN&9٥ DM r].9,炠bHdvG-.B""$>Gp<1DDa7cCfڕe'0Y8[ S:aBss!&R&,.APs4tlpɎ"$3\1~$FHm.Rg|#8\c*ك7:8dܡ` Q)# [ aArIX."$fa7#6Xb$9!QdppH [ x(rFB"@:# Pr6R!5  ),a :e9N$cVA] DE46h!L";#MFrˁDIYuDGDp<D5ۧMInS%(Nns <BCQI v&PA*MGex4ih& Yږ\ nGALkaC< 6+I \D867Rh&,"6ˁ᜺ ICЈ1#rj`dZimp%@<KmXmn,o.XK 0 Eᵤ"8Y\<iT6a9\` %XXIK+Gp@@Za++8 BCX% Ä'pQ])Cl n &xin[H I,Vlq < J(MX@²f![fj,$;#5]&,hRaɰ0<4\6 "o\TW K&€xi ۄM28D|"fPL8"7QxjJ $M BSGI 3h0r#m @n x4`p@lr` ܲ7EAP]Ä  P૫p`ܲM$5Ԩ&,GH-A/୤ @a@`xk $x6*&FK!X 胛K X f L8I"P X ԐnY^#]AQc&FI zaYe\ Ae&  $pAeXdp<5H(4pE Ő<B ,YRH M'x*`tB+S@<" ́TpAe<5ˑf ) lVEMYhVfh&de  *nYh)fA%P<4h+P,"8t,e & % ; CYg = %uY{t:Öo*;AYo^YzL:ZAY_Y AC3 pa%Y`}RUdT&%,°WUI@F]e0xA7X KàV+,zA X ÂE0MX@4I'ጴf*}&WeH0X [+ ^ `9+ a, IzM p oAÓuY\{PhL"MP',堯iu@K!8,HzMQ,YՇ tnux W A I Z ,C  Ϩ)H7 ^8Gt7a&A aUhnEP , A (X*4 &APXDZ J7) aH Dt$@ݕT, CA Aah,.ڤ*%7 qG8H@Av7AYh%} Óx :`A7aB@7[nATZ$AQ> %a FppE`IppA`)%S TZ&*uK-& AI<$p epA)U:z e4JMp@ XB p,A+74nYALy'$'I6 a-Ma *,@H6n,  df,4*aɰ| -mf a A:ICX%ID [Aq!ʃNS0D7K*kr;-N+- D5) h \DDD˂'L$r 9.&E Bp8nXKkDDh(c9 `Y ԃG9Fi!p@"ٌ#"IۖB$)` Pr9D|]%mCJBDFG Gpp3#fG5 %"""BeK9--R#$#q7E8lmOAn""$#v\ nCM§ *2DDzfM`(x4Elp00tC] )DDJf)/  .|5 ЇD!""CTr942t@k2 '"2 r(Pe2sC6":3DDDHe&9Uo".DD283 OXSu<6AM t$P3d0糄+YvQq Þ 9MӼ[@R [ˢ|\ = PkT,@#.2:#p3qA$-450;*ьꋌ!p3"_#ĝX]DDD8!|#AT nDIb#p#dp< U"""B# ! KNY =S݄r@,! R jH]:2T o` VLj2!5[m2pB, p`{mS" +yg m2@ޕd2RV 倵\@m׆nP V@2_ Au,a | ܳ2%n]YCϿ bG)>׼6[q!8/otѢ#L`'' o@O~b""$8炸GbmwDDHA%"z؈i!lb"C4r)H0dFGD E""A +vuK+㧷$C8A~߶9!ðA x}a HA [EBio4ie _ 9 "P_zNHfyR/ӱncx_׿鈐ʂ 0sH4 R/__L/fCd.=C_""F28.^#f{ ?"g#<$~Ј#;. G67 u""$4Pd|d"!u؈ -Џ>GDvGU5Ou""RDpv(=f!-wOzU~ֻw}u?{>_m} e}m-z/UNx{ ^Oi_z;64M'Kl7WI0 7cH/a^G׆U m}'D,wo' ?Ov8oOV`Okaw[[a?ݶ+{oM?{h4E 4OVKSNwD"~o߼: Xm[_wM[߿ëoXpuoީ _  _|GihÃK}kDY @WM."45B"a +_߿q;P/pZOiDr{{i-Ak醒ZIW_u5k[ S $CcXK$EKVWM2i¯䌊؋.]oK\bB[`h=I߾'M_-F97 ¯XoDi:YL>.ootoAv{e{HzkGEpjAnI]&UprWZA9" ^}ݯ]6L?Sl7v'6_X&cӆr&R!ȼ]$zvtP̮֕?J{~VokWWjJBR?҄0ֿmF{4(* =7V{V4.87K_/W؄_WװL_xi7 /u}5 _U+{UŦJ~0/u}u ?AWtM"AP?{k _M_]6 aX~}; ~]?i&+_l-\mc MQ}}?]]u޽{W[w[oO__o}g"6{'WK}q^ݯSM_?u} VmzlGIށ=p+~(wo-]_A[^oUuooL%oz_;_߮7~聉u[AA!'6 9 'hԃu8h$'h_5Ml` ~M#//@ki=Ճ! um55yő0ͼ/[Q dX2+Љ`hzKVވ_5L8:+oK.' ~7N(?.O? 6nCakm,}+N%u 4 zCUW8Q參wFCpiB z kz {&AOa;_vɰe v!;&A+vD2 mmeto򾁳]^3IxhUE?1mwgai:.դ^߂Oims$N ̍Gi>+ \'kJ)Hx%l zAh4wC>nu[oiC .AvmdS!+ r5i .[C>v~Tވa_zng"&C;q( _TC^I{*hJ^VM]ê @lKh2r0w % @,ȯGv^ o_ ?ې/bk0z"lտ/13$`5-]}AQo" mWiK[m/ 뒳*DY9[KD1'_{ <%r CWj!d" A^_h2 +A/  w*vpdw\[%wgxт "w@ۡa2 K@#;56{\Pk w،띗ah5`%l3a3gecBET_C+W(b>Yv ay 0>o2N{{ o?o;%X$?mWHD${HYOU\+%!8 Vwt-~Cdt"eck-&od2wXc@?Mz [ $#N"8>v{Rd\| H1'xNK P2R/]+/L$eA_!+۫~B`BӄGMBvi[nM-胫 &U%aPV( aw!9GOuZW**&ğ'l+~%A}ow[UI:+"n׿˶D]?T < mߤxahi*} P{TU.ͮ[r Z:Tl{`̊}K}K A!q}B#aVHiB {I쥈eG"?;+Zߦ`r+cQXTrkLl[&)̺o+ $\7!l@>o"@4;I=CB_kI;jWY A2 Ws0P }KOLu/ôPppִἷ0[쇚%0"}W$v#V >&]sBd<&˥> 82;Wx" -m^ 2sUoL$Sȫ 'w0p+MC@@6gzaH#GvM l쪂rʭAHLe[NA݄ ݠ&ݠdp\7oV L"fW ۄ(dpftATwPi_ ׭t';H7H e9/ ] Dxsjo giXc;A(G_֑x*#vvo$t !;VXd$Fߠ3Mcgo D3@]RYذm HC8Zz4yXm= a'x2 [W},»
O\" lU82 ay81 DMLUz[EW aPAy2pgEv0^F2 en[ [I`ʗaA84-lȬj m'<" 쓕@nfZx U ko 6< </+ UkWi 0<K&D0E td ]oIh3VL=M>dA COE֒l.&`~7W] 􁆷{MUX2 vb̰%0Kao Dt _qJ) y H.n@ 17W Z%dь03LaW[). s@Ui OB莒(B|>vZ徠&JAܳ`1RrMx RLOaL-RnsF5t & y\4W(tA\;&; } o" PM7?I;, Z帘|U nK(Ѭ\_ D1 )+;"'n}5A@C<% `,ʠ$K , WP,A@0'wL% ,"l4h;{wh5rCm8{L ieW taB-7 \&O;XSCoi~JMEnom7@-*oԛ" $t& ]֭-u&@W| d/> 8L< &€WDްa B]#olPWa}@Y~ 0 >a|4A(6t /m6+M V`;A~@sU4@܅mv !^"$@7Ll!!d%t0$"C0rDB2=zXuib >-ߐD'DMhu"""CP{ X%kPYU;T.83s(+%5D(† Ao{$D _""UtHDpK Ih  iL&_*%^Zփ"S K3M= q%UXA0% _4K__* t" +./aUvOz"]BIn-&H/Vw}/׿[0Z-JKR-(%Ke AH4SJ+;)@i+/L( AXM_o $+nW[AI/w]JzA9ܡwn: >z\|`5ZB:\&v /A@'{մ7OZuA_# z kն"#Aк,_%_o k׆a+[넛_ow߂ oZoRCMǫt+k*~? mz{-{_O| ]{wA􂾿U5-ȡW ;$Ͼ w_k [k AiKKKnzZo I{*/ xSE/__;{O ,2 +~ _~_%oH%-^^~lgot}ҺAA 4 tWZG2Dk//߂ AW_/  ._h/IPAn3]_ /A?A{^/\$w_.A{- [vV;{ߥ[O  %i/+ _%| _/%]HҫO;x@@_+~~]z^]W_/ w_ 넟_j ~/A}(KK/E eOAuKT_Mނ wI=BoKK%W[H"`^Ho_/I% Wݯ4AA/!H"Xo _۠i}>  ۴6%u mW7":/a$>ޗC| ݄[ذ@{KH/ mM ?azu*_%}[@+/%߰_i?Bw ^A-o%][4/oKA{/.Anޖִ %!$foA~%KZ$֒k ko-p\%nA_7T4%턡  -CJ"]~ ._ݠwT%z jWJ B %\a) ].Cmi,K| Pvl }/W[jW.  D6͍B`~ޗnk+\%@ˠm%Ab Zm4z%AWOx /ٰįKk/KD6͕{*׽/oA~dZ ~uKChةBK/-nޒbEOJKՇA/Pj̫Z Z?oA_APս/*| 2TKѹ Ii7]!nJ*J %vJtATs}A= d56iWX*2<T7 yi u w R[G]?MzZT/ n }U 'Z72I%~p|%ҠD6& A7 K{ W$ݥVAi+5'&| % _ 7 ^/i?U _& V+UۅZ}/ *[ۥw_ ! @^^ NK_ z^lK ޫVQ $ Oo yn 7z/ k'DEo+^ |$%+ A}oKrnA}ޖB = ZzMO`PA|mDLސZOI%| JD?L>-aUKZM+sPdނo_+/[@@] x@oKp| ].pPeA7Iz +T WWu^*&$" Mn~)4)jWA/.7p`'Aw&#A/K'7Iv/ $g+i 7}&Ip@_, 0$^X2?i>6r#itY F+J 8mNfEqaZ^,^i^4d* J:WěL i W@4& +]EAi (tGQ:Є.6%Ix بZ^)6Ti/@jM&Rn8AU&]+)Ai ~]h%d i a z M8L%bEf$Yf+w zfW(֒~v* 0e94z }(I33~v4qd_h {I| q" $OA)dA ~v %R#a< I `W,@z63>D #ajYE6F7R+fC<"Ersj'sPhN"C8uhhDV_)@Y,KYyXx3@g"@gH(ǂXB$Yʘ3(=# ͥ,yB聝AYeDŽ9 LA8D1eA[~hBJ R Dq $33Lă܃tx|Z jrd$63RQ426Q>PGÐfLD|;ppD٠LH@( G H53}- .qĂz(v] !8A,x}"F8C4ԪYaia!GPe Ip%?x9I(: 6]$M.זu<¡".<3)!!#.Vc%$ij'T7 @ 2 #4B,FGQAF|6K0  Q Dp4  `HDFeT%kBA8@GXHΕMy3 ,@<3!J]l6嘶 L -,P<+qHD1F$HYA]"%@dj`8J"I E7I HGzMYxdLф!Pd0 Tޥ6<6&}MH0 [zDԍ`!tH}ȸR:[z4KoJY`xVӅ-!фz JݤOA~Ue\[)i$)NՆMiK*>q`< B|D+xCA)eKB nRʨ$H.MJRʪ2rt6$ěVf<3-tk)iS)b&hB HFJI, d ҉\H (2`, Zk( *"0(JZf!ҖjZՄ&yh/hZxf`҉hKJZxfNd], % @h]ӨфRՀ<pN҃ x5[A@RHԀiIbvJNMB٠L("&  {3i RK rK-U<QaQ8Z0xAT ^-ii%xjvpy868ᩄXA\a*T+XE䓖(pd5 2=W-qmArטdtXb ׬2L*@ -p R r!BHd P(eNW!"# 'UAA8*<d4">GD.)( K`lC V U-@j[ A24 feuk >X-GQ@L >)LJM9t >-4jpT-}0Of B hP4a;!A 4RF8iOׂ ;M4M4ト>᪅_^iv^MJiwzګ(!P@wx nr SZMW~AU'm0oA{ЯUYzuU} )">Gz#َi~KHȼRȰ.wr>K`_mZT}GA2 !&C3c8GA&24DH1R28_aAVB0palM>Ȁ1܃iv!4AOY%?:0݄0;}zݠ8 o:_>;ROSwҾ{ߊWu޷U'vC_~v?K4ޯڿ Ý}Dto!= zo8@"xm]B"_肀x =կCyx{K8NC-GHr_mZXz] vawNk Xaw~4^.=3|zoS[ g[] ~xz}h?_9{_A>.v kz{a^umU4i nӆ *zv0T_B0&oÐj=]U8h!着 sCvjޓi"a@LuWM0#Ä7yԆ>۴B#uAth2sJWl!wwlUe_}?=k޻vp h0׺? Qpd> z:09D3G)lu _m]{z֟{tzkkD}Uj׽?vjk{]up§ Zij5  a K4b!e8&gh""BdàaiX2ЃDD|j?@}@94A  a.S0*IU; .WUu5 `pVpO yR\ = IJ0*ݭ5OzZ5J6]Y2DGoD{1m/~@r)@0BGxsJC@&A#b`flr dF>FG ~ 4FN y;aU~M4&h; '_@tUO;Oa>ݧWy*InW~[*{ֻֻj(wo[8ӽWs{]פ'W!_O^w[C8dC/pZ_@kPo'Z Oigie/)VkKOҐ!?N{ .ޗMa .֓O0:]XeǼs@"ӏ[kt!^ Wzk_{AoOt4vTVkZr?xzޟk<>NamoWֶ{ovv5߮ 5a_MӴpa0E\]þZON B#o4 hF0C r Q귧 @?}UAhaV~ӽ]m5$P8? .C`dzp @г^gvhDn. Cw)X_t""?n꿽}،ckﻧ'{nWn:d_ . ^'B(h!^ `w^mq{oZ~ݮOM[ v~VSSMokzTT4V54;Ad :aafLD0   ЭQDHR# t 4"""w> /ProcSet [ /PDF ] >> endobj 17 0 obj << /Length 73 /Filter /FlateDecode >> stream x3T0BC]=ccseblUeɁTA300FbcSk @)w4D! endstream endobj 16 0 obj << /Type /Page /Contents 17 0 R /Resources 15 0 R /MediaBox [0 0 486.019 632.508] /Parent 7 0 R >> endobj 14 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/var/tmp/10089666731916source2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 18 0 R /BBox [0 0 486.02 632.50999] /Resources << /XObject << /Im1 19 0 R >>/ProcSet [ /PDF /ImageB ] >> /Filter /FlateDecode /Length 20 0 R >> stream H*2030R0B3c#=SC039K3P%+ 2 endstream endobj 18 0 obj << /ModDate (D:20020211151431+01'00') /CreationDate (D:20020211151405+01'00') /Creator (Acrobat 5.0 Image Conversion Plug-in for Windows) /Producer (Acrobat 5.0 Image Conversion Plug-in for Windows) >> endobj 19 0 obj << /Type /XObject /Subtype /Image /Name /Im1 /Width 4051 /Height 5272 /BitsPerComponent 1 /Decode [ 1 0] /Filter /CCITTFaxDecode /DecodeParms << /K -1 /Columns 4051 /Rows 5272 /BlackIs1 true >> /ColorSpace /DeviceGray /Length 21 0 R >> stream ڒZ6D~@`"Z!&ڣ%E`-G 8H-1' ӯޯkz@TuE0]q娑AfEsU]{CTv 8 J>4EA/ wrRaq=!V8p իj [)Z?~Z c-BA4Ur>˅Έ;H ,ڑp<2бixi >JYH >Ȧ'SD  e2qb"07`.G(6DfR*< 2e* IH RĠ$ .A0} yö, Yby\2pl6Z`%-hBOZ*Sh8,% `[2p(#/ 13eS];Y YA )@%YF-YUZ^0nYD9}-a-RYoK`C@Z#pmD 2 n27;ZuD5;XlA &4vp`2 TC)4TTCCs0إDn7p҄ v 2d$aH%a,0aI6`*%a «a aa'aK aA` : aSJ' 2@>ޢl}7IÄ; $a :ypà$[Zt2 t݆ : 0,$ 0H%A$mj XK 7ZM1 Ul6z^v ! > 0H%`I/`ۤ 0t^It 2zKpKl2{YT tK`:EKvlŵHR6$d i I/d2aK :桔:Ja W0$a n aAxl0eP%m1,Ԯ[ 0li/n]L pb3/Pk`%0aK 0I8nV;YX`I&:Iav Ia4N4l%axI#*$p :$aI/l:Ixa$ I*pJ l6= ^  p$ :In;%`$$0Ka { 0n[ :Iw(vtdvJ%aKp0 2c^[n AjK :Kn na` I8I*0%t : wg 0tb C3caH&.3 /I!aA n,28.,Id+ ۰ t0 dB#; 9PtQRf >TZ; DAR .[ 90uJ6v$]àI)3`x4Ⱦ`nVDD&@Q:I'Ex7#xJtDn|y)h:H$Lrא<IKI> 0e9N@u@ mdϵ7EC9)HLp`$#3 9UHI0ˣ 9vT( ʐ"Z1tK@I tHV&)`x@`$w!Xt@}!0+ZC^$]\l $4 RH"#G:I:A!8G lAp<4\RS!d]x2$2 HHC.I.:>X LgS ٘Tp<zb x!$#D6I4e i#ˁc<[ 4G~YS#T'h#X#A,l$JG٠Adk9#@>n\5HҗA%;! א4#%<e/ߤd4@nf]8PHD5a52+, 7A:_d*a߄K A8Vit"iFA` 6L 0̕&u##P<Nڵ_]#GVJzGa@x;KҨAһKv*Z] DҨ2GSp< /4H>)qu=RzzpzGb 7KTC ooא (MR%xlAB28{CXCR&a".ߥ)pMiu'@`7,jH[҄@T6K* xiTK`\z x76~<0A{@s,N, oaw'7CR肸!WSTAr[d ~ /`oH%dw{~0XO?m-老A}T`߆ ? /Zd u $ai%$c^<0{aK=$ 7p =aU01 /itTIma.T5iI}>iL:_k4 ݊dS $tRc6Y?cDv 0g5D[a7m/a 6  =a^d5$%mm4d2|mi`=_å v_v_Aopat\pua_pW첋 l%3K7K|6kK6GMbd5Z,5].]; k/~vSX6wᇥ0%a .6GZ. vX_n뷯 aAK\m}iPtôj[K 7K`úK;DE1duDGVЇ m#֋h".`oClU׆ % 07$õ_0nV_aJݿnT J6?`ۯtoe`Nuo=w 7Im`ݤgU0v 0xJBjvMiԗU>CT}nS1I6O[_zVuK]{O/_ }/^k- & |WOguAvu[K,ի{.֗]bC +Vҵĺ)Նv (k5?_!2ݮ^M{ׇj' h/aoK Oa5iK*dkkkNO][K;M9[*)ַ_IzdӑL-Z׻K_Z_m?[Ri5KW~CuaJkUna_⿿_]}}鯻Y^_["MZO~C_ń=:k/ZbJ?Ћ oWvU___mV _]WZ~AxdB?t7TOn)uz~K{ۥW_ Z ڿ/ݫPxmmSaVW`,׈Bmt^Jַ~,U~/߾׿oZWm?_yoׯ!murﶓ{\'{K-qIʆ{F`ƾjd-c8߆̎Hз;[G" uh&vR 6428.G 7m#0 J sGUwAX" D'~tJirfrvk9~dw>CkZH#9_R_rq{WKH௯ yPsRu-b0) A^ .ikeF#d rm*ܵu#aH"?Ȓ`p­&ZYs'p .8Oyj~qaH n26 saRaRWϢdaa28diaQs%\!2@6v,AvAL`2AaÊaL@%N0>r p9 r ų [Dv""IL&3]F$b G. c 0 ff7"*~lhp[a)L4A˭9C[9RP$"W )!cAD]h"AlL0+0[ [a+/PH,[A@l~˂i;Yj?dP4#`I:ޙs#BiT1Z#+31oL2˲qr#wA""Al(_l-[PĂj9Wo 8S( HA<_jH+9RXmud2@}d2rܧ2w! #Iu?Pd';sQ2ݜs7 u@6{8F{ֿA,Lt[wN}={Z֭O-&Yom]jd_IORvrWvk_{~-w_ 鷺__w[Ӵ}}BKK?o2#֫L ( `Gדe6ii.}"UOֵ!m݅Ua~KVudo=?^1>] i{=V7{"^!D6*~Adv5LZ֭"j (p{WKPQ9Z߅Q>]oAOZ,ȸ0[#0w@J0Dvo62_ܯ,I];M4vʢ4͏@솠n:ֶ]"MA(|[;lqrح(;G,L3>6?w|e;_A w0Ġ4}&2G¶v`1z~!%V?u!Iv)}v5#H ܁uRo}xgsIn喀vA7o&+Iw^ R+M7(C j¶'AޕۿԃwH U-D?JC![Sumj⠄}[}yr!8@GH[_[l8ه JBKbWo| .Ks/O\?OqҐP0޶=}}tTcmW׷+ l"ܷZ6iᪿK*v}W3 " *k}\KrPFo n$0_u ?pԋ">GCz.&:">.7ۮO -{$Vn(SA{]C&i[K'I<{v@$`$R YpA}Hf >^J= 4A(_V&w߂oh :{ozل 0{{}Iw\ ?L?[lǭݫy5_w鿶l_}{۾[+;:k+c[ֽm' tU֗w&KyϯjLM./nAh:i/kkVAh'! _Er^ R)ջx`vʒXPN@Bט[؄5@v\5W|>!aVa}?mX';,B AG$֠ "a` <"eֿoW {RZkN $[ۦkEqmx L"+[Rӽ݄ev c T-v^ؐ¥[o {l;J M]Kح L#Dpm0H3/ۆtB":HA){]}22{ Zz^]*: #*Znp܂PDUWak\X+WT:n#tD1!" Whpöս7FE ݿn^վAZk`o V~ a}/0om?E|DpWuZHo_V- $WNd!Aiؚ A,-zuAā 믄wNS\׮oqAS nO?mEuV\+ &[akEs@U۴2G˃Ww0n wa+\;z[ Zȴi [-vY/ê#.7Xe [l6""A}h+2p7'^NX$[dpT?:l27]$`C -0W;B<ˆ@m+u ~w\"L6U}Օ]8d7p%[i]l& 2aoׄ _; GA ÔRbC 3kOh!gLD@enK넒z `Ѓ6 `9[kPUj 6. a tCVL#TV9nT- 頁i.m;G8+Hy+ڶ% ;&8 aPdޡE@Q IXD3V 76,b=mD5` $12tn x6H6C]i[B&Yd#9cr|A>C ȹoS EEtt$Ҷ zU [pm&KdsC aAW0V@sZJC;u%ޓ F %OM__Sr@ %hU5CIMp@ATsE ^T -ɺ+_ȒV!Z_%W~tPM5 w&怦TT AO u@eHޝCTreA=0+/~ t| 48?Q A{ B }Ip7 KtA/z p_[ %hn%m0d C[I%QVCaҪ&@a-~.Wpd Mv VV'Wxkt@`Lʠ(M+X~.kSm)0'@a ? rd~BAY0Y.pO!B(4¶҅Al$7uznKAI3!`<KdZQWtxA 2TͿ & ݻ\6 3&*aKZd A Wtiei  T%A0a߃K@`ӃD.WNn5SO+)n;o\" G t?I&m֗&@L!M޿PHh@>odO׭; ]E}*kd;CG:}t O : U M_렶uۥ̉AG_ᴟ}/]?Ot!t_Kr1 { * v[NA_j#m?] OOOoZ]W߯!tE"0`.B,Pm+[T a[K s?m'[ 8\ M Mԃmz| Abol /.aih?I>+ ӧ(dRk톯 [kWm&ҴU!!@kպt&?+ +[ok׭7kIH6 ~çN^k7rǯ-p݆hFA_Iwov鵤VS u&qnK$_|C#m Ao_tA]_J7 mm/364h,Ww%F w{ D2I߻[d#sACdB:n/ 4Uy H5 ۥA/}$.NA^ 08HfNjvPPl4;. o\7 l \h*ۤ"]pI !a ; 4Gcg ɰ/o'!y\=7m%E]*#b߿(x3`o;mm&ua;(B/ۭ9N _ڦAj{},;qg`hB O y I ޱ @[ 5JA.ᆂ੻bDP؄VڶۘM 7? On a6幐+kM0j [i>6ڤC3HJȫlpxqnAmP4*M+[ Al Tu}l4 D1`קpXKl.J"wO%j:a~ akp@T%j: zzvv=t@IV/Ww '`R!զnCL>vA}ت^C 1; 6IktP9mT Ċo2 Hᴛ=A Vv\"{kaPKBA5BAۑ-m& |AKaf{aӠ`g\Kݵ/ K p҂MA8,P_!@%G./mi7H4,.aA`2І;4K 5a0Ӵ,q"m`>ؠM mVG !4DpY ZۅlKņpLi{mm,Fd0(}te0<h`} 焂~MWUe H@@y'b  5 ņ+I|gё ;0A_W #M NK~]]C̅$3pj{4 [8h qNvk 0Tڱo;Koِ,T @8-zs!x4T_oP8)%xpka.{ Wga]6VLdM>DvV^P`P$S`_wM.Ҳ'L_z;D -2 GdvG@l# ۆ\0a D6LջjzvP6#KA2= 黄CKe$ 4Ta)07GUox% f ~CMk{C-HqdKr~D! o=@s mU-WU@ãN}Av( Hqexf~Wm 7&e v-eO!%9{vB^áh2r+bͻn is[Kl.C I+@@(_ZA<ʙK׾KZKY ˑ5 RO-IAsKw_d =aG;@"lIHe^/"jivׯ5aZzMa"Zi2̪D2vXARWڂwMsPhJMՂ!%zI%zh%ae![A6v( -ҰnIfPg#NK04+h$MX%m\fi+m0_a _D6~ mw0jH/Vɀ41_ 7K]XA$BV޽ډ zmBk됣 {6A ǤiXTkaނ :Cۥa" upzVOiԧ d 6p^ t [`@oHbl`wKmHi0v_}S?mjۥ 2(%s!`km&ׄAbM&S;} M ѲƻJ́KխtWPAZ_A:MҪ䡡!I6_zpD%]+Wl M2kh&҄a"84U_M] mt_n[~H5t$ڤ NDMpBqi@koI4I^R~WAtJ @6MSz j5mBt|}&-I6zTW [i$.St`@+-I]$'^NvBiki$-΂խ B6&ת [` K 7#@%3nf zQ %nj[:I= ^&J$U;~I&gzMFT R`%0@C!ɛ*oj". t$ ,vm @I`֒~'zmnWzB X/K6JpM_n-먪޶ o ^:J6mz[ O]m߮K]6k a@zOl: /k9R%n!摠wAWhn^ 9OAKO}/Kwm/]vݥ_oqu_6ޗA~/iB6KKav_-ttat/ắᶒ/7A_^n뾘z_K]imz_må ޗݥa/ ~Maz_m{o_۴nmo[k^na߮Kutu kWu ;lnC݄ Gn]0KC}_I.7ua_IOu ۥLת ]+/i^Aޯn Kz^JVzQ6tnWU tM 0޾oݥWH0߾z mVtI$z_Imu$ޕ]'ta}CmvYy/ۖhl7e e82H0͢WMfh^a n9( H6g(ˁ೭&쳃@I- f\9 2҆ .t[m@DBV첬=a唣/ fTyeHH2ﴃvYMr9$ tY"8Hd+9T=&L2@ค|aXzA, "6B2< pGۉ$ #xz da t^zMؕ U.pXmbyta T3C 2l#Hj̺9uGf2eD"6%n$d|d!arHdÙZ+2 c =\. \6W<\2CLF̒dA &̀di0ސs"tfe֓d|d?li 8 $6NAD6!GD|Ճ! qzL2 p6!9\(7! 8aLHl S`jd d2]d6EYsUA2Y;g)dK`ޓ 6~m <$ ػ} 0𕾡҆=(aH l70% =+z u+JPPdgWUAz7Շ0ޕ҆ҰCxJEaV R(aXnVxJ &K pV(oJX=vA(aPaXj(6V"-ŷ 2]i' 1tz],z]H' UKpm"=l a%-u@QTzMXxIaIAXt+JaC֡°ҨmR`)P\i=*naXv H[xI+t` +-[I I&؛z ჰ oUIpT0ֻKVôH&Drn~+^iȜex5. 74Gj7YAK8Ht7)@DmQT0yp Gj7 /W 2n#B$fa¶Ml HO G †6S0jljX2l'5M"f 6 &0YɳX]#H+[-< e)An* +9!GP x+YR(Vn-LQ "-ڹ3YXeh^0H' 0ᮿJ;eW@ Wh8l+t"&K`x 2Pb&Kx5U/+W<kaՁW< ;`xkrx,n j%Fvx5tdhmXKYb2KTDh2GBZ` :Aݦ;U*#࠮8 s/G"9P.4&]gbACnrU+} 5l5i[ېakק`: kw;]u{aam]_{m]_Jo﴿@> _O]GAXin"{_3!Uנۤ]>6+]pe+P9i2 {vAޡ;09DojCETZ WI7'5 }"[nO}7 A{>}XauDE& %f`_~޷I^ ^ݵڻAwV_Նz)4h52{׻Na{T꾿ޚ 4T]v{Mv0AAT&}L&v8 r8)e-BjC7d0a hڭꚦ!sm0Aϲ9=ai`LDL&4i&6 \@ETU,a5 2]a0&0A}0h4qaA2MpBL9Ma!Ʌ /hF2׏RکJ?,UV:+)c@F~XYQ QpəAӺ[Ȼr ^[!%#"b DZ`0OnZ@܅t^Zhyv{#00GGH;^Za`H.HH(X ^hdG !  4ȗwk-H"kE˙udpu荆hB!8䦄@DAdf (IRhUizMC&D4` i!Ӿ ޾LG/n4h;AxM;醙"H`4N[M;pT^Oރ;Ukީz {U4_ڪꛧTߤN?߾ުS?^Ҷ4iޗjj0@ (nN%n!:nAFA"42_yU 5!6M! XW C1r(A jӬ 7jwt%Hl mR|7u~߰j!j @cI=N ЧU\P@:D60U{4@=;ЎWM+w~Cc8iջuu޾{}[~xzۭr RqH7}O# _m=Æ@_P?T׾f `rĒ?o܁{U-gֽSZnOwgk!]]}_߿]U?~j߻_m'u޿W֟Z{y {@Uk~zk__?WNa*ޟp_l^P# w'TkabpaZ7=uv UC,J_[W7}/~WPt}[\'}׺+!Pv[l#\SA@~K)p{׿׾^@<Uvkn\.^8kI M[ XK.@p` D9 =jMv Xx!m_cb"~}nw{wINmziwo}:o­ Wiキt;NkiӃOtvZ۬0Mc7 Wnp0Dt2IMV}4""=zaS9Zj~ i gKߴM>M0a09n1ߠ…NSiih5R6JqQFϰPXj P`pDb6"""&4@aH\B"?a!m!G8B(rf \%5"/V (`GJ4QXQfc E;BzQ_ ZaKP8nOҮ.! fهx)o[KTV[]-PnU9Nu~u_(Z-_1׋L!^ .Gf,[SUi.?޷жZKaKZD6 ղ}8ڼ"VpBHs$"^ZBxiax"g xQ,RH "P0~"V@OC0HYC< ͗"iԴ i'BPPD3vT,LpHO2 xXDZ@7N6|F*C.Jy6%,Ph@r"[>l6Yղ xhee6 X`Td@YJDp<6K44xf`xf7TE ՁAq <29ظ G@ʂ Ҹ3@\ 2<3aFA8 CJ#]B Թ\OGQ#,,Ad\! t ̖iaH5Q_- @gSB03e6 Y]@" -WDp<!'eAC<3@~X,@i @xeRx7 'xfp[ב , ,C) L8@47`ᥖxipe [@xirJY6p<4VM b:d\G, x x5'在4l._,b<5xAeqpP]%̽dp<2x2eK X|̄k6F@x4rΜ56QjxDͪ0f9dh-+ l$O}@=qx6kK<>Z SG@\ R:ZCWLP_m#A-<`͢[K@XjG OyBnB#۠3xi(D5f !;҂ Cང(*&L ~[PD5[*8RRV_ Mki 5NZ pkK- 2nQ[!k+Ie[ dm"X@IjD5'۩eS u +H  :pr,IAקD5͋Z6W5+Jc$!t~V#AU7CXpIS e0*PP<$!W/ Ac,QnoA$ڄ64@W P]A*xv  K!B`莎 JY.b"I-͐AW " 'YdS W*Z *P$R Ă $AnSq`BTJ‡ n P*"w nTCOz  I7HITdԤ˂]sI+ (Pil%6g,UL WD)` ʘ6 a$h[D6Ҷ (P-Yn6B06‚*(Yܷ) ʄ ۃa.DL/lhAH3PAF( PF9[P:Ax  (I db B;5ٹ\NA<2VA  ;'D6*q6v6 8/A #De[;(P%BC7ZQY0xHȀeg`epW 0pA6'=.F@Rn 2G@jB|Vhgi`Av22lpD*fSZ`EV ^ [۰Av d3\ ́!"8H PXlX56d h!Ȗnd64(Pd3Y{d,H<+lȥ G0{..@\3(I2<ڄ]P2lREu^6(Yp GT@Xo ɲaY ܁  c"Bn HK@p 8[m# Ll")h/HRp!Z  !nMM"lZ{xkmOq oɼ"c#@f׉fJBR AdhО2- 5Dd"njL0at ş6̅oD܀1Ćw}ۄ2fƙ@<5[a ̌4߄B`x6۰?7 dVDpN lGMr"nTȗ# -wpPfm |0|xj Չt0{+ c æ_!l5Pa߂XfrD\ F R& `,l*GM {+28tC >k d 2vQ@h_"8Gܕ('TL7XNA幨p<˦;2 WEX3v1&mlOd,[u agt a4BnB El3yn4Å_ `n(;KIr<a[&96.,@VnvK,GS2X5 'jp u ^ ɴp<J14Ve( MyD' E#` <H$YUa`<!Q~&ŀx+ H:"8f x)IX[ ^ߠ@4i B:aA$Z MR>]ZP„AKf='MЈxw@SA !t}E4n2B;RAn6i 0|p. Avh i./r< thMR#]]H*O&x,XA}mYlH .7*Mg1%Y q _~2 pe@+( a%@ͨ xPFqP$x, F#˸{,h0%@Ix,ӇN ,A W,x38Ko,aAL/^YցS\1A/ud0D 9*? >YSGm B9TA:"*4H,g/T-j2P0  k0| J|RA$ۯyfj`aL.ʪg\lAS,dgZA@d2t `5Jxd1_B2 e& O@R/X7B@dTY`_,uA+7z[2~$BG 0 CAEd*YA@x!X7L\Ʒ {Je ->h*g(vh%圴 O+Ou@=ז@Z0Xaz[c}cUU JGaHdpjպX@6cma-;J Oܺ2^`BIOpAh&-_Iu Z~| OKl/𖂿w-'}߄w Ah&RVtP_O N~?(Ka&bh+AwGM% A?XA?ְW IM`wh/"#@&p,I~-{NOr[, ii_]I n I} IWO_Z_ ć zp߄-,$߽Ai_ A 'ziN_Qa$MM%^!-d* ?Dw+K~' 3JAR L-ߥA'ނҿINXAh' i^%A', ,%A, O-/xAh+'IZ ߄}렟m;-/ -/ [tPW Z nZ i%o],-$/ hPMp_K ~ ,$Z ". ?/胷ZAo *_ a A%A~I%/,IG z2ux@_/-$~_ץ  k& KI*^ i%u* ZA/D1 Uaު  @i._K (UKXH% a-$-AWKI, %IWMKIw UxAa$?Z H$PB -q* $- +I@Iu] h$ IvZH$4 h$_"K Ð7N_ hZ*[xI@]%]nI%1zI_2NKD K㵄$A tA.*I]^A$t*] KA% IA] U *A ] I/&$$xIH$WtP $II R_$CUD= _WZATUI}h7ڤ_ $AV}-I%􂤾UI/ u A~Kid$_% IUp} tA$/AK_VK$ ZA}A:T /.PI y.l L5I$x!tI1HA*zT *R$JvU޼ I$@I(H 4I$o %A$O a$WUzK R *M-Jp.KoH6& JA%*]m $}aI%;ׂ ڭlI]osbKu,B KmAi%I%KijA/I{-au_]| XPVI.|% Z $nz I.٘0' UW^N /}&I)%ݫJI% k A%v JA$pI%׶Ix@%]vA%I%J$V+ PI~]w-$wA%^IW߭, IkVH*^%I%?AW NJ -Iuh H$kKA^XIWK $ %I𒠒H%A'A$ U:I%l%zTA.X%UM ڦ*A$I_~A+I$! J H$I/ *^A𑖈$ H$v $I-0A%XI*K@:J +A%Jv _WKI$,$W%ۮ %,$_JI%ҤZ$AaBA/N$~KH$ $XT-KH/߂XH$z @I_~J }| I AՠI_ dpH8mIO A[K I{ ZI נK]d3bH%% I A$8pI$AnI/Aڄ"4I[] U[ w /BF@J~H%@~*A/ |_ABA{ ֒IT$'IWH%i_m/A w^I./$K$J_e]$K  $֖$[/H  KV zI .K\ $,* ~  Z_AhH$K4H*YI 4 /IP_aK]a.tI_iA%i6  kI$ Irfih KII%W_ _۰ I{P~K I%´H$[f+$(px$KhPݤH }JA$JA%Z(iK&I r}$ MAt!i$%H*A"A}A%$aI/" AA $i$C$PA $$i$J a t 8PK&_ߺB!TSO@ %AI" RH+M$ KBI$K0A$Ii /Cm 4 Ay A~{tUzo i7$$[޿HeK I/MAA$%Ko B $I%@ }uT  A T ֐I!A/I׽$I M]`H KKI xABI,[ H$"QH%^#@ AH^AmZ, /*&V _vS@6Au׮8T8AWA4o :IA%5 Iin ImPyB$Apx׫ AUpނAI_$0Atz a$i%.AewJ;X i֒ /iwU@*I- D ,S p$0Ir,g5@ \G׹4^ 6WkkPIUatI a_4 ?m=t _հ2Q| m%w0}@ ޽Fj~ H/^q]H0K2>Z,B z [ -0h+A$ݿI$[/l*oa Kkamʂ [ ^2P_N,A I/Vn1aKPa /+Tۦ64K%6M^k+A%}ai }=V5lA6[nP ҽ$ H ;a˪mRH0IzAA.-&ʘfIA]H65oըI mZl0H I.բ;׶ 8ZpUP|+ Y+ſ_lPH$($맯pJ$A}֭kdzH/u׶#a$_ﶺj1IEqF[taBA%K^׺ 2AZA#V> I%Ib) VKLo H$A/`a5:A ĂAA(l0PA ml%M4 I&֡MQl _iޕK$@$jl6 I/W; $0_aA$_`$K߻h>=C` J?M%Ik,$M*%ia AizmM0I kM)7 OZڄI%Iݠ@-$t JBZ׮C4ܱ$H i҆I+AH @(zAn4A ޗ,7CT"A$7APA%I*7@ ) A-Bzai TaA$4ªJm솱@TmCh AuA Jצ$y( E$uJ0I%ސ|2‰ /5!aAB %o 9r* e$_@A=매 $0i{ $az}A(a[ iz[ $0$nI%d3vX dI% 0iGx0e$T}ս[ Xa $N ~ J6H$WI&ᆂH$4?oP vA$B;m^`,M  ;_i $ðl IC PA a_ I$ma AU ڹ`A7I$d3 =WҷH =aAl?߫a ZMIḂP ?t $ ?`$I7$=ArA$aaUI) MPe@CռȸkI0|Ma |-oxaJo 4H nI$ko2A$ 2 4I 4^7H A.{n A$ gc+ռh*I-> ?nw d.D njʃpd%:H(L7o{ $  Ĕo۠@H0ַ0i%TorR nI j?j 0Anö$256IA amPH$A59K[i ׾$H0d6$I , 4H(H$Ki1q"%yhA Pm a[XaH$ #]#aI$ Q NH`Aa,e $ )8eٌaa 0i$A Fa+$$aHh.#dv%ID"1fI H&E#\.9PT $j}DPP1 M!`H$@kD0l!$\"H(A0}_oDB$vA\ I'SbP@ZsA[0@YICDk 5!7n@l$I29N"C4rxQ2SAү.\s"D9@ނ߷Јр AAJKZS Y#0vwH$DPMD  ( }L2$ }Nk DՑ#N$COdB'p< $0xO{wo &Mk WRT$ ?[`j [AwְdN90$@}`yRP/z_ БG,$a ?~r^wd$0_vmA<IiIA$CA~q H a}m]>0d1o |$Ar5CĜdAP JPlbT 4 =i#݃ Y 2Bm4# .L T ]1V}Y٪0b@a*aN!tAAr 9r,'d 5պ 0ߝ]v 6ճxi$@M~oƑp<$ϺWAi" i8ᄂ2 _M0^ 6B$a[l[L-n >(L3>~mAi m.·`ᥝJîdpo!8*  P\*YvnO`I&' vmj i M[ fYA$ @j-tm@ 0&87_iX8H$p~ (m 0C ſR ;hm-aPþ@iv6Hi9V îAZ 7𛤐a NIOņi7nMDu jl0mmH \Qi&0׃ Wd7qH\pnk/; Au@ ׆7]-AMx0K @ߵaI&"< &=`Kl$0G;{ Vio$ ;PnSzvA['ͨkz &;Um Ci^@NzL'oA0Zram-JN D8ql0aA wD&l:/qT zȠ0mH&)mSzl;I 7 z,]ioE?V"5{A; nA${A.{m$"aa$| ^adWxA+15M6GA$|6Ak[I*o{wa&lmo? zAIa* oyV [I_A7M`ۄoo]ҧWpotBna4հKzI_\}d3wiSH(|[&Ac2[(pId5CVvvJ,co`[ 7%OaOWtASl0l6> $]40mVI$a8pl7 &P5ޯA vG|"h'ʍoJA^ ۄ $l:{A$ >4ߥa뺠XANm4B$cAEiӦ cX0a{H- û; {H%I#@"J ޒ >W ][A>K2TH Mh%a{фKn2i$AW%\& 9*c&0aJ1\% WzXhBqݤAl&b lN"85vAt6,O287$]XenŠT%G }>Ip(6\&Dʵ3V!һL/nI;.ԪBZ}CKe JkohCIz 9沠&D` 2M}vgHBKC}nArK n#T/d|@T0- ".E[&-Mh t)\m}G -Љ86ּ%Arh .dH ]\4v $DںeC0<:\abe yA0g>[s@fA\L[j흩@Ki^v p@Mw;4I/J! 2@e%W&zmp=/wD1/. zApK] =\ { a_AD 2)!}A\$'-h.5m.\ WHM2ZZBtʖu z\Adsi}8K l oeKi>-.a'zuᆕ _Yˁt._`M+fk Ip_ z =/i=֗-.-|Ci7k àK tQK_& _An-R7~]0YQY +~YIKa.Az֐* .K nA7t mK[j}Rt IpAmA~xIH A;iu& K*zKH6$-pD2 R ۴V.^ @Pn]AޒZ'ն%  ԛV+ۤy wA &ڥV- ۪THA.! _o0mIs%DMﴃ%.ׄ{t o@6+5)$$7t kwjPB{I. *^A\#oApe*6- 2.C7 R{ wa& b]a40{.$oIp@$ Al@\& aEPPK ^ A/A/@At%Vt_I?ڠH,5^ zJ  ÷Z XAP@  m$!zI  C 6[  %IImx@tmL6$+c+ph*a eȱVj/ ?ҭoH6 H+~ H0%A  w+oA%0iA 7uKmzL7 d;m2n AAD6m% v  op nBרd2^vL 6T(#oUm/A0R/ 6%] t˒-a(A0҆/* ;Xa/o֪%, $,}a @,A6IS/H;|%D[aIRl _pmJa+`~aҬ, A*K0v…~ W,-AwIU  A.#zXL F$ [z A aID _ސZ öSeXm @~M8M00 A_jAzpmJ Є~*[ nZwj{@LwH-AtP ÇxK36P'A!^Ad6+J?@ÐeւUIz &JڮPBC=$ 'J^hr(Ωi?P5ՃDH*u鶈 ÔT_&⡚>aC3 jVL0h# :TaHA }l0Dl:T ""T4[7 ԝ-w 3XeHaTAGL4HK!*k*0dt B %ʒMW ,$dLSBkU߿ok)P_YAK[̺ A]mm&'@H8" iiAM;?d0NfaK &`G D'>H`i§ ݧ}@]Q zozU/!]~hw~+oN2Uc^ڽ_h)hW޿S^w^eT^5Ax?}M߿mw_Mο}clf 3ߐiwoغ~ov@ ЎkGӿ;~opIBڠ ޝ QDq /M !U!ҽL ɴpd }!!9ChLPS] !s'B#F|o&_m].'ޟߺU`~7Zw׿}O^ӽ.{[OɸR߯MW}?[KM:~/]RZ}vVK-a޿A{KA| .)_ _,!rQ /H[_A{ / _ | UB@\-.*{KTZ(__ }Ek@vTHo_ i^ iۄ@043h,0nĐAQ V =@P-3҉#a(č(0v3Q5A_ҖRjPd Dp,t R6 %,YAr Z m pYHAK) Pe8e( )h"9h@ݢA m(2   d LRGH<7.g,j ^0z (E]D0A C ~\%grPs}IҖq>Pa@hE@R | K:Zw {dQd ,Pĵ gCkZq ZQ kD[5% K]l -s0< Q ҆S1–°k Q8 A-BGf?hKe:*QemGYHYG`)QrE)tZ@;fX9(i-h0O RܵCDDG˲AMe8q33j+EDZi#ICH AGH0=5 ai@?j#0H0V-aOYtamFفӾ0;[#">T ޚwB 4N#m5;MnM4Wj>OUڿw jD LH}~|{^!9 xMޟLOP9I5Oһ^!kz{|I7} S_h7{~Cezw:Mv@np]S~B|X?3z25_~/hXj}'mD4>_MG^%wmzO_"Ճju]_[ݝ~u# w]ӻJӷ{nawK 1ao xUrCxCw;zpC`k0^ <`? H> ?.X30WyG: w={PX/vy ٵpڭ4'uw{ #L-}{wפ/{ ò rh==?HH/ 5U, n;xq}i;Ag ^~NOkީ @#Rzva4#u "GNTLhFVӴӴ7Uu4a4Vwh4 uQvi"%~wh0@ek }4 dviAw)((aSAK.P!PM ""04"#Y#jzu5Q`KĀ;"Q"V N B*0@12JA 2:A鬴 SM4iVY9TBAk 0u"ˠ5Xwko,0 DTU>ӽx `Azwo'kikviT}{}Uo_}[}ukT֚ be:DO  Q4 `=nd|Hi~  endstream endobj 20 0 obj 46 endobj 21 0 obj 39698 endobj 15 0 obj << /XObject << /Im6 14 0 R >> /ProcSet [ /PDF ] >> endobj 27 0 obj << /Length 71 /Filter /FlateDecode >> stream x3T0BC]=#s0efUeɁTA300 #̵Tp Ct;N> endobj 24 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/var/tmp/10089666731916source3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 28 0 R /BBox [0 0 512.77 648.10001] /Resources << /XObject << /Im1 29 0 R >>/ProcSet [ /PDF /ImageB ] >> /Filter /FlateDecode /Length 30 0 R >> stream H*25437W0B3 =C039K3P%+  endstream endobj 28 0 obj << /ModDate (D:20020211151608+01'00') /CreationDate (D:20020211151555+01'00') /Creator (Acrobat 5.0 Image Conversion Plug-in for Windows) /Producer (Acrobat 5.0 Image Conversion Plug-in for Windows) >> endobj 29 0 obj << /Type /XObject /Subtype /Image /Name /Im1 /Width 4274 /Height 5402 /BitsPerComponent 1 /Decode [ 1 0] /Filter /CCITTFaxDecode /DecodeParms << /K -1 /Columns 4274 /Rows 5402 /BlackIs1 true >> /ColorSpace /DeviceGray /Length 31 0 R >> stream TM8iG䞢S!AT<ȇ}z+c Yjș'Zfjph~Aߐ 5}ƻivipî_KZKH)KiRijSZ tipQeӧ帚ln"^7]___舯Ou_PKǪ{@{N{_쁿pf_M) 2;BuM4*OVZҽ}aUv #IRէ]4az״vUGY[Az K3g+ b"?SdtW7ZbiV;_1?׮]{\ YKU}^{!|k?BMT#A#DH.ڃ~H(jijv6b!fY|@dphpvP@Y CHqdqj" !Jf*f !DrE_ DY28fr<)$QP؈9b3#$PN\P$rr ֳ <3ch.! xfU:^28#jt]`t`0\2 9i$E XdcqA<ʰda*A"$4GGxjH]fTA"hD2͎x+ #%a"Sp?hH5 kA0<7&3 v byk_Ap 5C0PAiD YL>@(s ACPhP53 aEAD3+ |#!pZ#0ierLCAv4S|" K!ᙐ;"8,:UAu dZ+>Yt v+0d 1d2hZYKgD4"hj k@Ky#YLG&A[l>VL`AS%R. * dQ Zb;)YAC3S3 ք6 ee% \5 4GL2 ML52`e3y 2lR|G@O "lSBα4ɺ#8@Ѐ"nL`ց4 C('"ĈR!+Mw`IQ0Pp4DeAZ gy aRZ3@ adXh !A, -!XT=0>ܴ_d|Xo#jell XbM([*cA{,@y _e3%Y3%&YV- e4 cP`r3]ZE-H}- /,D -+A]hYLBP<`ڔ0pe0e eP4("57`,V C BԘ5e(2 ,GkV" C0YCd"aR_.kZd48(8ibYQ!S,9@Z`"LN ,jZei,KZ!xB ,@xᗖp`D375E$ )4@ " $QkyiF!Z mj2X-UP}WL.KArP^݄ACRY 6A, \ /|, IH VfN u /+2 gr y G]0iZVq0p7ְDW*̮md)S;Z +gJJM:ZwX" kh\]}m/% p4Zk\J%RYX4rd?eH*)qXAp_ T!xM9ge`:WS-%aN.غhfSӠ \%.pܺQ%ߕՂZZ]7 @H2UH]6$/A^%jB "Bre?cAu\ ]_W,.+A%|Z.A/" H \ [k! TX$fZ}K9%| $V4,3?X3GfMDRT@Y+a 6End4, KX@/TBA+wa4%=ٓ[ -4 Hk,PIi @3Gkp"m,ȱB4j w B 4h2C1IP3HDpts!pVj֑ r>`՝b8(Aِ)f L&XDp?L 6 ⡜ 0D3 4 r !z bc; 2堨3)|y@Vo{h:#h""mŴAaB$Gh8S0H!>y@Epz; #`gE)AYpAʂ@hL&@Z Xtd@2e;Pn0!M` m@-An,!S.A"n` d@#N'l!yi A \ Ih=03ѐ. 4*:h<,pH<L0!D2xDۉQ q l0)\5Z0A." NQGCL ptC8!7 ,” AesTG !D0p@!+9MʨAb] 2!QAr l*AAFW Y]S*4k+A,4"ň!Lq 6A` S!S:|H @AӦ7oD[K0f&&`e, M& ֈ_l, !] \vjJP$jAt@d9ށqJTA 3A0"7)HD3uA`f,0 HYeV  )  PWc7 bm"V2 %MrʜA.,,U2ͦC n(O A" 5@eM\W@f DACg- ArPDui `_AAr QC4&.YGn&m7 sa)g+ kq`L+D  zak"P5  D qPiz;4AܴׄjA]C0'L*^F%JI!4 o%`}1@G a"/)0l0s!pS8@hOm^B nJ2Hg F` 2ܘ$;@M, \ RA @8 Y_ClpU0hYKHZGP n<4q K+ @p o@5pm+ -e4`$YA&5 jL" v1 7A- @M\)yLbvVAaC/w*MA~Y@4EPHpJỈ*B@D!@d)I7 .aɈ" 2&< 20H&`*[ +4`D$IE$+"> nAP ɺX5W Ƒ q)h "n& &@*Rn ~J'݅"M 4ASv7TAaep@Udh 0Ddž/q`eu0` #q@C /%H 6WX+-P"$!@aD$Hv_+e`QZ2 pD3d&e Pj8+ kܠ<"&M"F SA0q@i\\ :m0n@BӲ{' AƫAAa|H=ZuA +`r \'Iܸi`hGpZ ZMM %+h­B&d_+7 4 +W6 Az W+] dZd\) 4E~  ioCiwaM| U)mg):.M%z 6AII"f+`K6ࢶMCQ&̊gz |?Ap_t&AD3cv+amuFV / W B.uwش 6=ڂ]fa\V!WI8\p{_MR `a"XZ  [D4J @p ív_Ut0^L ¯\" k,Ȁo#xh@,?o $'( %Sd&26 -t[ $v y6I@8( P/Dܛj`!d`,{v)M٠lI xamAPbMj/ &hcabGaql /o0M5ԃbP/HH}U0幠k^  >BlP Ao"臡s/*D6.Bh57N!Awz7Gc` h0AU_AKAv6elQXa~vD5%z})]A î .Z(pw nI󱀯MpL"/ ]On->["v6+ ״nqkY/-ăWPD4/ 'JADm*@+d m_+=oAUs["RT$ ]`6B q~[ oՐ#cWx" 琠~y] (۠XOW,@o+H gx߂!"uӯ`Mw-ڕs$ 0@@]" nl\%a.bT_ %^ V&P.()mj}0"龍 QGk+̵d ۧKad*̐%̆"8kt`*U ɰ pjHA q]k c#.:pA;]jxA)d@2% rD@v UFBSt@B6z  (] `UPj @dd0[#a]xaV651 S\X54AF`-D @"`j3Y( Uwa[`OށB u6uؐ?h-Z_0 \<"uPِH 0տ+ި1Ii4@ofADvej'AaC]qJԆbx m?Ae)[-gz1^i.U Ž9'X@70̰ --i" @A!pA'a.@- Ip@𿂣?6v--Uz_ >0 @6&qɎKtN+@wG S!׺`ANFxrkuʨ3"!gi@ PfhkYXN  @5 ~.p3 # } &D3 NNh Bh0 A( PNZ0 ̺NH2@:D6<:M'-7jvVQ} 0ELG ! !*[Ua6YzD6@P( >.A0@ p@  v(H.rRD~"$&C@ޟTC@0P. d1@`! C/z(f $Aeu0<7j +ǪJ D D$\0Bep0'NlK!.{A@w4:).0g`qp xo'  G;Zm[kO 3Dh'w@+ pDR9N"$C+BFUA@Wu@g#"etK؈:atG!|<^; EHZp}KDDDw,r_ڀg/B& ä . "N+7M W^~\e{ 0pjDX0%dD{ O@,5qGk@x̄a׺ oם ^  /2:2-Cþdu!|`(Ȕ4w""UD4.z }%4 x]*_kA6@Cotd}uTADs Ȱ4/@@xR("!q9ʃS)Ȯ(O'AH hDDDFtD!p!C!t*2bf<_L! ppD5z'DHۿ 6 E ڈ:#h9E8,z*p<3^ 46Z\ApAu0%8hlt|(0R&D"?ע! $*Fle{3A {\ iiMQXY)my]@B; eh&p[I} fP!a\ _Te/mSԈ{ZwO8!"Il ^KDs| 57lHl/!$ <a_"\TbE6 7Azv*<(#2 <4']TZ!`]Z_0P*awڴ ÷aFK} p EhGfyܩ*Xa?WW! '*Ad(omH^(j a xk> a fEX6[@l0 EP'zR\DEXDrVWa0CD P`xp;< X7at  ̨gC#7NC2<deuGbf@bL2ݠ; Cm;&p( I -BF .C`;Nm HP`bETذga@x`L?{C!   v@6Ak0b(FιR2Ch2+> F&Hr#|AhZk@!b(`X;ޱf" 솢QSA#" -*ʐ {2#LN &@d71d*A?x!ި( @7" @80! @$@LtiHn  &@ПA{7L#qكfHdΨMAn^̅NBH9^հ}>E@.P\0hw_!$C6AnW ?sHi7r+]BC< ;**K`¿O\bm(pbdf 0@| 6Ptd64; C;p2u =Bv  gaa`Md2͵0Pv&  DzD$̠9|aAﶩ~ Q_ lo`ODUJ̖C) u$<40H`zAbF CҲ _Wi2 Dߪ7l M d}H]ua?z/ P!8oAP[tlȰ[uAq@uiY$߿WwR0]FmV~D(6Ȏo}6 phrKh/GA6 $xQ';}ka_Vd& =?xke= _H_ =~CCF(fIP+W 7M } I ӻ/ $ fBA mR 7j'Xh*`A]tq:ᠿJAEz/̽V@2@~"PCms]!gRm,s#OI* AP8M=ʘKDWa%h!wi5"uh"$G25i_A)t o0_X7+|?{7,` W4{ˢȶG!+tCTNJ @lo^j7KE]&  S a{ KnzazވsAd& |5X A7ra4CNCl?çD1!&{$ Dp ּ o4#VX@!z A^FkiZ AH& B ikȒبl X u*A&dwºОNzZZ $h5a"ޡd `) 0 !wam}D,5"jeJ )-cD6b+">  + I , @2QxEp wk -". ~  !dOKm{R{JmkX$!6Z Im6.&gb`J_iԁxol~;00 ʤݘxd㙼teR +9x%h]<  IDDu(6 H]A@)ـf_La@ݴt:p%A`ށ3 +XD4lד AZiD";tZY\6= pl#nR xJN~kW{T {.θ6,.6^ T}52S6+K̄bmQ\l60ҧV^X t*U+ڰV({_h\na2@.dGf2GR,7@7PAk}" qbM&xAh-~!qD~"){ '"6/6)^Ⴞۯj 2X433U"C"*M@AS_2ZMJ 2 +HdW"_}&2L6KM2# @!Vba*ARCvL r ѢN[dplz3y }<o ^ng Fa޺@ / -p;wu胻gDoDn ӣM<pko@JW]UfBh"l sqK kX2 A AB "̌I+ Y660P^ h&4Md}00D67 D3-Ad2mo2(pDtK@~RlY6X]) t"" ֊\dՑV B |8gXR( \}-mpDtB*Z 0RX _ D62[-9Rt@=`QC_A '*w+r?+9^aaa߱ }s-ʃ0#Ґe6uq`ijI Pd A($wGV5 [ !_ h[u MY\1@ب骺V[)A닰D _H/^@ڨ3kx"" - WH[tajٓA;/ m^`m/I_j/@1 -0)2p)o4`~_aDR2F< v00l]jW3A+ H^ Z~0rVvOA; צBrÂKH@#Mf" N^ e@B/r0"V ^ B %༅, |A/@C͞eje/2N9 9U!A'@ZH a 4"Ay$[ COu_ HfETKh4dp$I[ 2N}\j@pH v&A29[^ (El4½v&Flp!G< ld1kAZ'P,6lKGe" SCȅ}&xh2;.OB&<# @A$ek$e$wxg#Ct,%\T3-H@<"AkH4R ZpGb`x) p^vHH ULIuG酠턗  xm VA'EMVG"TA . p  @@ 86^B $Aph+`2 n D @gz @8p@L.Gk@A0P2sAxL4+k0A:-$ 4| v u ;X E 8 o`{ $YNYޡ=*` V[~ l 6bO{1Ao8 6& itaf ~چظAtT' zl"[Gx[h ]^A@i4- t;V* V$2ǡ }a FQ $ ipʀQ n. "Si-h Saeaos /!u  B (K"n 58Ma[a lȘJ) ,r AذCFcr][H*x&a$"E7a@ \Ѓh6AC@"*}{ԛ5~HpUa @ !2ݤ~/Er \U9) 0@| xDoD2 "n 75Aj_@N r 2Z K*gdCFĈ=Lk.T I'ԛ J#` [ (ښKk/ 4 :D4l]8 ^BN.raD@ALA־: *ׄ &ɲku ZD\d r&Vhȴ i'^/ӆP2I p(CQ/(036CH'A|$!i5 AYek/!;H CUɱ@6| e9 ՐVd2" $*CHrv ("Z @1 $a~]Ljlْ&@Ć4-`4| TMl4^ؘk"A) /piI%40̬2x}!Y%0+OaZd<+~CEuM$AC*BP͇V\́(DlRl% tА%`0ق,0AZLc膛H~ vf]C[_ <+D !H<7s6rl 6!P XErEii @XaCLH0@kL`$ǸiZ4&!`h&`]`6@)ZL8#Pk+ ԹP!솁]T6 t + A0A_MS ^_V( B-XDZi@:n !9A96@ ;5 z(a VaYn d3HDgebՄAAA"Ө`MA4IAgklU-?Vv*@ X ENFi`{ ̉r>w`u T [(nW;xcaЉ+ %W/ٚf  ;DAX" ?Z'-`R.N=[ xA&%۬%@ā!鰐 JX@avWXu&%Ci]P@@ O8 mgdfڰ‚IU.@eiL0\,fLV Lm#MH6 *A| AZaX GjvJ5d j[ #$SA $ != hH]Cap A@.$;`ئC5p@P@eX46D6 Xڛ-ˆBA(ga "uA70@[Bm J e"km0A$AUBoDx agfAo@@AANF &UIp@eA7` Mz f D6iK [þ  gaAAmxAWZ7PMPvR кDwMI& BB Ӣ \}47oz CAI^A+JMM+ *5 P\CIrXl" @t}AY:`ܛ v 2.\߷a-1h;@웄!SoW Ӿ@CD0#:Nv D2Üp`-O28F !a2L5 X~*7zSɲ2aA 3kH[JA?a`V ]mbR;/6A ? ~h")~* Xn\6Vm T &CJV@ Ү7u aAP!oÓmݽVjւ`@+t A*`hkM ج肻U"!-&% :[ao̔.0~-e 0~t@~Uoej&*/n; RM0uT$KdU ڂP-vɨ;2K i H/ o25ᩳAivH # 5 #h"" V›&`_bA|8A7XA}pNW(L?A]30E0X Є0~-KzM+nZ."L:˂@UQN,vU:aYRA" S)X,(5E( ԣI2!- W6!a% eA+L" }h DZƁeevk)`, !`" |+o()C ȧ-τ +.&(2 Lp l s Swcz n S) \ڎT$C nDo)nAAL7 RbC l5, H69c$k@]a D Cv$7%DD=]  Ć% V-A؂OH+쐰R( A"!I ԛ`, A5e8x" I(D,aC `  2 &A5&`QPdMewA,L6(B)6,`,aP A$T kD $)9&@DDf#+I\ 0@DI26bEZ62 #hj mTC#hGG ړs=+7#f]ˣy\26!<7niL`fo.n`X B$ ?n\t&.X Ab"0d6A 8u ?̆47WiADo)d?.6;AJTA(2@X@ xnL;UR.a)d,iU,`yg`z5edS>C <\ Rx \ <Ftgd,f*Ux=5d#>m2@B xy Nex U<@l x1#D}h5u+ yC x.9[K\kcLC xhc +㖀0<@!"E7Ң|$ZԴ*FUhYa)e Pʀx%x( x>[,_)gNU P!K9<2 i``K8ZRPbb x.-A<4)gU ږudLC よaYPC!}*Y(ӆ@XaK0)r%,Ű+f$l!iYYL 42bf?Ԇvf%bH"ﵿ;jW?Vׄo_ikW}WwmWק޻ Ӱ}']jP Blw=dY.'A;D!nֹ@(FA9t2r gBb)<BBFIh' A@0fPz}{~d H AaZ^I~k֞%ߦAKTNW޶}u֒=kOk{}n>W{ҿ^ {n!ʯj㧵Em/k?_ k,u#Xp"E!uulPzꗿËC;Uk{{K[_鿺Ck}uÿx kO}_O[7qW_ uNkuUtC@5\4Vzڨ<.C. {ipBt kMJy0zZWOy&qn.wڿo~ uZ]v_ztޯ[o4}mozVWm߽ _[Y~K ^.L4ž.lw 8(af03\ f?߽09N`t5p}!#r tVJ{ȵXUA ѥ!qtmK_d4B* föko߭Ao[~^ }XNA޷'>߽56TVư ]Umjv ?kv¦߻AO[ aPkImm{M4 NiN@4 0AXkiC+avT0v0F!q$ M8aSA ,p.e`J"EaSL *HM4TL W33DtC`DD[%BLDl4LDv :d(Dds! rQ;1j)-,$O@A|̘Dq@ r@B V %""P̲# c aw!a!0. BB!00D !(9! pfD h4 [4h@EϫD(v 4 T  o: ~Ni[Ӈo v7ߦm\~>;Qk~z޾NIU֞µ_-U܃4r <+D 9C;_ @p:h]!n7 w@kO#PhC8 V@޴Iwp a?O}zV~7U^KI [K}}:Uw:}+T\4[{I Wn=l?_CD}b#%pˉd|o!C>5+:~vﺻW~UA~q;!?֓jI[U_տ.+8u+Z ouַm*D2~ J Bukr Mr ׺?_!%wy WKMUuku]_jvһOmߪuۭvk?m/ok~ZJ׿_%jv: K SK ml2 i}m oخ>@W!5)ؼo|;jzk/k krko߰|5K{]4-`nm;ߪ& - xNv_MPaS wլ4MQ4 ;M;LA&A40&i0@І(!! ζT d9c  en~+ H}DDb"""""$]DDDDDF#0G oj?`GJ)]/ t ( m.( \Hzo="` ]VƩ][Kt^y.DPU]/TKuUphWjx?\i6TU~~! MQqkzZKF4B@mHcC<f:A[kZ]p2=БvS؞#3mBAt_D,-\ D 0,#HB`&XGwH@<7Aף0g##=];E𐐟;4~e@pU 6-2->4j2JArP TB CW fiɁ"P\WT@ ä[["@8H&$[EryxJIPv`Vv6GP I4 @$0 Ô^(';Ses<BY٘PYx fDW2N!G s$K2 ,+p̖j̒^W5 \ppZ 2IXw K. k t pi'aHiۤn0tA 7 U%pàtnI8`vpÔژ.[ÚWm E'}kul8A{i8dA-'a_ tiXa^aZa.-'-[ t%u-l07Kàna_-[aOXnnZM-{0pNàV)p`7 hD{aKAäжnP,0'P6ND tul8Ip7tm' H7[H!j҇ va2 j\7 0Dmv%M=67zn[{Ao&[ 8K~kVT lH1A;l8ISm]wNä.:ÄKTI`-/UNpK V_aJ_Imzl0V% I ZnmAW-%-p/.8%$Am]/Xn oꓷIﰗl7KJx[0Ant bhJ$ !8Mv]7 6wakat&޻t]}[}!l<0鴃M^v-jh7 ӤWZB|CݍS-V0)7ZWQoMn] 7E_l>ⶕ o#]ČUz N߄CD MApoImTB_Bѷ(Bߺ6Az[&֛A87V6T~Zlu)btmXpAoOUUf rx޶Wz$SIk4Aqa:hed!ޮv(_+ 4wҴ!Mzޭ ʾ{Aڦ 5hpt$ [V[t"(ʢAa(a% <VHeT (a*!Aq X51LB5 i]'*`4 & .9M)%q%+ P"¯Y8\R f аoF!9D.IVH[=DLH\}C.Ż[t ! 2 }m )}TҷM汑YV@ީCHC*L V !3 . GOTI\E\h_߭ }zh}CGz& փv\Z Gf*[;R):}$"f84-7TťޔaHKG[z"J[1__n FAaSҧ l=GL/v6t % { AߤB:zA$o$ *a &8M '$n&6vDCߤ}ZmP{7[MjOo]R zJD/$CQվS*H% 5oI?.-O l7߯UaU.}%%k}-\ )[4~B[ תOa mFDKa/ v oKaz lt`KT% l6 6G:/WInk]&Z xa|. |K8ġ'H 5Q%j7&ү6K CU(^M^ ֛  ~i$M00aAmThb)aA-ۮL[a $[$I[]\%V 6I ] / ?6Kl?M$ t 5^ -&K0 l0]@ z7 b-WAnj[v $ m_^0ר!0]$6RAn=H.uҤ H$tJ5(%j-k O`P} ~-A,0u$_JîOa mz 0JA.^AR|%aTKK$^4 p %]{ ڰֺ }|uU~:'Zii a:TU  |L Px4mB_wt{: }dtڇ%: ?>/{^@v_}?b,A[)PV8,;ZGPYHP_ZwZ 5ڨxoItAJ}^ 3AnbF w{Iok@]٨i W$tP#}W;#GA=kNpֽ>" OV(?kzO!\U(_j7?_A7vK.i?a/2=j¿HG`r:v,Gk_Zǰ|/}_^;wkizסnzkN~_]t/Vbzm+qB;Uma8atq(炇 }}~K?-I u/aa/Cޛ@eeAm~"?:!_wJֿ_F?ۖ/#}ܵ=ǻmw;SNUoֿ߯{__̆{~_z}geoqkK__k~}. _zwY ~t!+z_. "{`7?`oAww#~{_#lE0uޟuon`~ZIx(>+Bh?W^{oM_.;q;Na?i޿Ao~u:{k-="OO2R_ 'OҿkuW%] *#Dt?iT z&D O]?44B>IaUZ$}~4^^ (6cXiҷ7VֵD~~fP?Mu\A$O=P ‹"*:5Jv D)~h`˯\TL+d! ?W "?d)i[ Bw`0Ay:oȔe? Y?:*?kkDF`ar6C`Lya-zY)A},t@iv ,Kס?L]迶ձ `˲ 9̵y3W+""?_M,g%zk@0Gq]l(#1R gdEAuװA>ikDrװZ!?ugٟ<{A" } aO#;ї25! ?$?Y ;4?A6Oo൵۝~|;'C3̀yXf{聁_:rV·(U`G#To;#:j+ۻx/":צ#@ }#٨ej,.4 aA0 h&@!}: `elGiݦ 6@ 1p‡t%`)NvDX^ $@֓R (yگAy6Dh|`C- lugABv07XU0e:1Kr?zڤ1A% \24dtk :)4cD0Bfz^T JoA55$mu<v]z GPʷo2TAp[o5T 4e0/ >%H3vʑWpd j@h]a4CMh*S3v Ҙ`7nxD. A[@4IfנAH% v;+  ' Mr1X" z Na.\D4"l ) =v4 M0hAy\ZO`뵿@4dH .;  A zS@aNS ^X2 kguX(7dp7Z;3;i%@> iȴ eGY߃Y2r:gn &U UyK2!#\N[AF>vd1 d4h?嶪 "{; +'" _-H  @UD6"R$ ]B Sk+0@" 2pdZeiP9N!>ٓ=Hu_/ /AfHu_}ANE{UkU*_/]Uz! ޕi~omҀj-_hY#}C Dc S? A6}Zv?__v}_[k}uo_(޿ߥ?wN ~_uz_[^u{_Ԧ q_u_ok_[^UU'k}_}}ƫ㿮}t_ׯ_Wu~w~IoUwk_/a?~O_`Ư_?4}_Z=}WWÿg6St䫬o +($n'Y?Zn=7O yՃl ߿f l dUr [eX+uAr쁃)uwdHH5mnJM~+?@$ : Y`kܒǮCe,?Y흚ǥ,H9݁Go[ \;8,?J; }xl`u,v a>fZ0jv& }aN AkN@&@O {L*W@تPvQ:;X+@po:1z 2hu 8dua`&~ٔZV 6bBH $L2) 0l%C.Bp0dtiAtheXJ tRDAC hC,6Al iH e6 ᴤӁvZJ T^22 @M e &6PRbaC `)0.2{,a(0mRfA @#(1' ҆C7i)H Ґ C!ҐPbAH  l`2, (d3vf6 BP02 K.7J@P[JCj a(R:m CR2 &҈d4RH6P`AH iANPk * DtGJ@UL5AH a(b҆Ґ50AKoTY1PaH + @YXmAakPepa‹QhZ6QR? |A]N OwW_ G芣c*kpD& $3" hip " e$"BTIH(#~0A".GGc=Ȅs 4j 4 ܬ¤Ud3TC-@]`!@x34B DH:D!!ƄHR4m;N A(h" HA4MD2ɴAު@id AӰ4ᬆvwa:ڄw~M4 l#?mߠxv[AKӵ/{oNWoM^oNNwj{M_ig'޾ݯ*"p9 [}W Z!>6u_RovO3 ki~W '}oo aMGpA[{W{pp`uT /x2=zMk_HH@R믿^j҃=o]]nmvۭ!{ZzZi޽kz_![_Ć / յ[k ~פAֶ~r }ra4mS꾠jr8%/ 9dW{^4kC[{K}tz{_׮zߵtmu]Z7" ~V.;w-rU]~o o%kuýJaߵk`턩]:YBo߬[(?o0wk°amqa o΁j^ְղ: C xpa}Z+`z*$![ _t]Sf#|S[oj}5#E_[w{߇pޫkxku׵_to-5 o ~èNan[[[!-[Ojݯ ou1i[LM00zھ׾}ڦ 5[ X4B;P 0 8a4 z (T Uu[ d`C .&8A&\' v``MziDNs .$&KdAʁdsq% VE":"Ӳz& gr#|QQ[ r , !G""""""$Uq噢Xߧk_NSU.7BX%3aqUjb/}Od"[O׿.w&VDs-~@R`k5bȯ-v!,"*|E;Kw^+*ܑ ]ȏaz 8UO Z_o}Z ֖iRtx~[Jүu ª~AiqI$*iu^M-.U-浥UOKo\%U Z]*]E:I2 T#_^Dpٽu#_![t{լ7 W[A,>w̕J.9njobJiۦ.ݥKM-=Z#fƊ"$r 죖9K_!<΂Jj-14DDK-.(D3\90 kЈqʲ ԈZ]h̓E קrT3)YK&9 a.Q? 4qr&Acr ҃B""""U"1dp[ ?f""vjG2|o<ՠwGb""Lppp<^w> 2̼`1H8 nk8nS釨 4yF:.Ȅ AЈ = aIH0<7 ay`+°kLIa0&l 0_m@~z  L=Xa/0h*H7`]zoH0ait 4IH0_]azچ0i*Z&CJŁ R 0&@ $Kw`PgMa{0AzATi"A 4\$C9bMAo 50rCP@L:p AtII Qn3L?V]&6 0dKia l! uMj\$keDM ] l~]]i7!]l5} Î6_ &kwoۉZ$ f3H֛ >)'Y=WACmͽ&d3A&kH6']a0,:H7['!b mlȥ `  NA"O 54). 20 2 >oi$i6d$I@gu$uC6J$4ʈ ds;$H0=̱! G HM:&2 u!U;pVI,0"ଘ0} (q>7 v !.`m481 Ca􁆶 VGD:L?; C ˰pK|I!F0V2&CH7td, 6} ؈ Vd f `0aD32Xl0A1dtm$lJWTW 4W2S ;:n (sCh¶D" ' paf(lEzA ,'X- I{LVҥu0T`e? x46!_-2H0 0}&[ &v`4tZu V7Uaam I{mށa2n06-@X6v$ {Pt"$9VTʐ]" 3` 99jp Dps.F:1MZB;im pB""""Ar$gzWL"# 'P#sc1A;B|0r[#B""AWrq&\(5f0K W/"""Awcg! i\A@0pW 4 "0 Ki)iqȃ9Vچ"QADDDHyB.ͣhE̫I0ek#DJ9VTr8!pkLh&Ƞ4Bx!/&9s9=r5@9pL0 MT9iN""""F!5|$gg DDDDDH(G8`ԓa =DM`aCd-D3[Il 0ѠLf4`ApXH6]S h!+4e2ĂG;r+PfA+r8Zx f #KC<7! Ñ\G3QryVTr09PUXY(ra9 t$2b""""""""""""""""""""""d=7-# jܴAn  ^ an-#ɸaH 5n epaw))sF9幬(s9܂9x;9iHVG/r703'6@hiDDDDNHHD|5`Ag#8d̴3`DDDDDdGeˆvpYi$ &AU&Go#:> C0pIDDDD[>ZZ a7B ea-. %c<3gnZNDH9WۄC( $&G߆b a W"Fd!4嚦&4 `ܾXYaؤyf$  h"ۄ$R V7nY J 2]f CJZL[rͨ2r 2-&@6W, ΁0!+pitih?nY@b&[pKHt1P3u D ahfiAr) "nT A4[adph1[`e H#0j0 35#i[֭f (aވe2PLeq/pD 2* k%m3@1om2iPa }>vXTWljNUVe=M/d34(ۖuPpD 2pKK]ve2k{P0t,⡔0^r64Rl[s_^ ]RxnY[H%Pm-{@*HՆGUA5ygNVOH1PrJIe[j*iW{r+uh g0'n ԓECtBfaeB n# xD3+AZC3lm^#t`oZ "m*lB!n@9Ii;ЂȤ@mKۖD QL'B{h4@f{rhnۖiN&A_pBCC@ {ӃC){rTAhBA@XXv $]pA! ]Q4 :Aa!{pD&>d 4 ҾH5H/h[a%P n"lC)Zi-۠ޖLOoTD3Mْu ,0}`[tA%/a%vDuzOifUrW Pal:XhIBk}6VvX`MAIk Ap!M? !uȒZma0ɈX :a6݉H(j73l5]0nHN F% 5lMa߾í4m=8D @ho57Q X< lH#b &B%^"o0ql. !St8OJma `Kێat~WAjW"L!pVS4B,ad X.7_olR:. ga@ 4W҂M 82Z)-شy} 4!vX r@KoACK;TD?] hݣ KH8Df ;_}2>B׷H d vZIw۫2K + ,!pd}o{6d 7 Xۨ02U KP߰D47PT !5Ngiaz~&ֻ!p O# U.W SC@":a XC[u >̌l ALs%\ BInZ > [跨5GolYr%čҮ`2CYκZuӸGEu@mzw#(|0o'ĒD5vO_|0%ok`B zA3Q5XAZ^ >Tۢ/Zh",Aa0A: N';El2P ގ7 ݴMU;(-w B )+l0t~77ӡpV# }0x04`7eh |6Mgq& WI7V j"z#! a} O)H' yeUab/jM a=UIڤ\L YG3HAI 6pIՕmva $ l(Y]+za̭t?8+2 Q]eʠZau_ " $t&A Cu 4)A$ɱ4Hlުa KOY7Q47 kiAB [``[$+MՔY W0h lӄ)6A }j{ ag+V!^i뾃+ɲ5oPit^ o|RM-lAA0|0 % ¦[u bPpD__tSLUhU/ޛQa-MZf3MVM#_>[dXEE7t\aual  -xaMmAӮi4խ@W]C ] + @aVfJXN2 w> Bh30E|a0/|0 &n0̆04zpU|k/Aꖟ 3$ m: wU0` BT!#a %[I>ٔh0 udWO@ݞ[[@d4WK 5¯K^ 3P1 o 2d G`ևKᆁ`6*&[u|0gh ߯ } jK}* +HEaz^} va%:z, QK%o 4g)A0 q0fRk a=޶2 D} TWb$ 䰩֫~;\G)9"\W9()+|לD4}Idtyѩh y GE̎!9v\ PDDDDDDDDDDDD~4B}k$?_! 'aIn_ {~h"Diujުm U턿KK UXaW 3~$r]l b_k 21_]@[EBD4-zI5uak^k/[n d- 0_@ZQi{_0!Ҡ&aO}=kC$o`ch.$_/_ӻ̊Az_0A}okگ^[iP@ %C A] !ڬvo/_^rDخv[itGJڙ3B:vb-궺 KK" UlT>~a 23#?.T0!> TNҺa֯K0[ioVI6 cTG[ҷGe m^WcfV['IX`-ƋҧK~8#-@oKҠìaV&ۤ2%oDG)/lT ȻUZSظ1kýoշa ԛߪ~*=wW{~~_0Gu"tGdp]Iޡwu ~6}]{A'WֽW-{{`$N/ m}Zlk^[a#0]*+oOrf MA'+i}&~$ҕ[v~v-vBtpAo0TXaAUdO]oO"FoA]+ᯨ0։`1υCIm}W%mtW [*۾O\8A CUu0 h6[8M~a &̖( WH a.H52o ]H1ZݴMl |7 &톓A"P2[n[aPB >xnn`ԓIm*pD6&K_l7 `ۀ$b7]mL07hI쁅'm-aS4GoA]1հ{l u ꝴ1 <ACm,7!! &^Jy](6tbiv 2Ђlw :CAPA|3/m-0R{k^EB"a[u]WxAnCmKlm:d25 Omi;edx5{`ah~~"!0L3mݶ`}.:B7BN'@h5ޡKH n@-vۮA ,uPyy). vJAAfXI=y̖`D6.Z1ʑ_{vC`lf@^$ZĜl4Z|7F^!!*!!+LÅ V  5XA a턷! ̓ 1P ZH 0DSr GvbSL,<\6$&`G^imٱ{ 5mHPߥx$pa4*[pD a*PZa2 a"X KnCJR}v W@:*`{a(AXK'bC?X2{U  xo ݂հh'a) ADݐj,Șg"eoODLZb D.5a_AﵶD!uD: [dhʰ\A'ZD ZkpaA6>$tePl`\X+,Wվ ޵z Aԛ A 3Hmz 'fGfmjL`2 Ujk PN+JڶKAQa;AD08@xmD#] {a;xoJF !k aHIA;5}gW&[D݇[Ӄ.PV;8/t :'`\4xxn<(&avLv < -ac p!mӂm^@rmAaϴpA0 7h(HnrR4CI^ N  B'!7ᆡp(0i p@¶ vg#X3t=vJvXoNpP?H6Un@3|A9[nm#Q+ @B B mFd*ᆠ  $F WH+R@Y 6A0H&~i``^"̨ SM&p 7 |8pCMW zc&n̬vv@ٳV(CP2 o;V 4wX(JIwmME&"+df;H`0z i 0DP+V 0M+&DPZ_l50I(`d 80;5z0t0DC,s2zPmg8h` a&LAha^' YA$7vAv 2:; 5 )[F; V҄ä0NaB tSh(a<6&L@Wt j\Z'8 7 B{u Td(G]̂تmI&`@J>'EI(FJW ںV_2[Ot6&۾kTW '_6 gePDW00aLD*nW@A0xD5mX`]\0 sâ  nNuz+X%n v0# dp8\&$? C r4\ q> p Wol,YKl%3L/̸d0U v<sT0D4ƈ8;lepp L L,7߶ਃi07e/E>\  +`nG`(:i ݳֈ2 l#c*{3@ tTvAb%" h#@2-Ho~,DHgG Bo]b"$|#am5}M)DD2@I]GX +iOZj@@~L'᚞vԌ +ߴHhd0ҿA>- faI_1m#jNՂ[+v^9Ab]{Tút Mtێ}ZtAjm`M $[oI6^d}E2m3w /~emWM `"]Wz;5 Rom> 5V Pf; UV)z[kQ% sЦ ِ0~o]J] 0237Nѷ^aA_)~ KfSAݱJm8l2 'n c.{[/ݽV'"P _a}0y7)OwW޴Ρci7uA>ӻ. {m,Bm&7mn6NT޶mh'\ȶA+!]INMn#۴OTwVK_i{iRW}];ޕMh.Aj[m}w^vW_v麃<O)}oZZDDCiZMmw}]ZmՆ߻a[XoI~݄Wn ?۰Ka=CIGH4aސm[a0N? ~ M =Im0=ɽcWPatm bW ߶V[0wXm waMC-6[{ y64o!M} Xa 6 nx${ z݂aA6۬0V|Xio~`ۭ7@{ nJaۅmC A6ݭ;f6@ z-CQn ۨ0f6;m anޡ-{ [Z 8 aok ެ;Mkow f`n0mWY¹V-k ?Vꡮ|2 65BGmۻ+m vݭl&o0&&o8of[ nIޕli|0 i6 vvV63AüoA7o栨aՇ& mom&Mh'~"Vnچ+߆&{D6ڄ7aݼ-Ș+6E& 7u `+ ~M MC~M/V`t&iCJJv'`7i[ɽMAf 0 o ޔ0'maHݥ =mRjn$݄m0˫p@t~&7A6Vގ;n{a&(aݠA a@I op@ ݂ ۩f- ڕҖL6ҋKT=@U^a+x {X|$ݠ JA҃X VA6(0A g ZoJĂ9l!m(bAEY6Y ұ 炇+4[D ҆""$ rȜWʞMX`aφ9PTj&|1 o àDDPFBJ (3,zPH5Px4Km҆"""Aw0Izv1j"a[b$4;Vl4G #FB A6+e2.V+v҆ vՐ&9 BAXBh++B8pD2M "Kt^#p%mDDN#((ˣlm DDp6#nD|# mDD#݄P##4 v428p3{n"jD|]DpG7nQ>a8&R0"GX$3De#@A҈hD|G -ADDD#ݥ֋6ޢ"&Qm)LdvGamҷށ[a ݭJaaJۥwA[aaWuނ +vKiCҺVRܚ|Ca(PW [J[t0l%lPf .Yd| tb'#<ˆ@)J%t\.Wl)ql!&ɹa#_#lRl f.[fhN-"^[ aF$3  l B!f0UX!p4L4izAvh48 4 kގT k&wzzޗ^`L ;AD =tv_Kէ?4_޶4v5 [Ӵ_;%XAiv;kW}T]>A4;׻M.:d4(Du{ ~{)}ui}~o]D6A" )106=;5ܡ@zD{>n= ߧUL!o52 x r 0^7*ӿWt- T/ 3lA#h1*? _׭h!Z Fѻ_kX{Az{iwH7A;௤]tC)gg᯿Z 7H/]*Ui٨6|rG(}B='{'$oX; d4O ! \fx0HA]?MnҴ ` aԂS 0L r*/OOzO~m -{}֟Xh)A"Wo CAPBP17]5~k_!~ wޒuW|`2 azZ_K @An/Vdmm) ;TCBV({ F益+}5P)|Hfh@) 0qw׭Rnzo{_^@jq4z~Z]{{]wO_|>ץ_]~ӪVy_}#`~R[oᄊ7r}{t;_~UXAf?/3 ֓/ZҧO !R|H±">5I?_Z?mazOGKӿ]o Zީ^G+^kZt cu!?k׿_[޵ A/__HlrW@տ0γ~C7_l$>D;]o^ZDOe9Z'sR8/ִA^WJnB;C.b_OuSK[T}_կNM[k_ {_{]Z>-o__ At}6봯{`Uֿ\w)Za;ޛ;_y EҿMB_߂nݷk{u0~? ܃r\-h^n}?VO ZC_jQӮJhpΒ0ON__M{{Ja o pKW;ֶokkozfp)mdfǰdn۫fx`*9.9CL4PY/Oo|+i7vW{Ov]Pdq/~^-˿~]uO&4}  B ,88@W^ݺI7 + kl*74jC7\Sm6o JC`5AB}5>ӇzkiH.Ҧ _o{Mm%ppN $@7 #6I{o}! ܠJ:5ӽnC:G870w o];TpUN~eβC.Ã#j߆N"6+t酷a0 r&FB)" .Aߦ {ﻴ^ ;ONP5._w(߇mU7ڠӆ5ib=`E߷oIE45_ ݦ!MmSZ]AnZ[DA99E 0 /w nNX0a4e0N5MWSa0M4 8w 4 4 0B$ ^.>;=o۽5Xamt˂ɕl@M8iOL^˂i3EnޝhwkDD23P d30Ad8@dng6Ɓ0@iܱɧmo} [^NAP0Ո@A Mߠ4Ac/=WNjߠh (4@@r+M4nm2 #TM q 0(VӜ*Zƶ:d *h4a4OM5P0M0"$HT""D͡5fy[Ad Ӵ A0C *Јڸj""$I dta 9D+" M@!"3'by#C|5zҾ.ըQj?,( `a5`+VAk:Y86kaH S@9 j@r06ʀ`j5 wI&U( h `GDܗ'@h5@4X).0i3* @Hj r@9uB04 @r7/EJ aVxTӾAݷuFЁa@ _P E"=MpVtF*&c7AC#s>ӂ}!z^Mo`^a' O.3r ^$x@Aﮟ__Z7}Z|]NC0t0Auo) d&Aqn9\''~vi}OW{CFr!Md!( I{@ւ@Mх^m;I:C0}tֽaZTi I_ӿo^6A6XZ!GU I=I]wSt_>(uҔ34 ^P`]vW~֩7W7=B~?иCqu.==_v__}`w>k﮿Wai+<ׯ־tWU a{X~y^[uiPDC[{ GO}_߬ ߿3 g|UkI׭]{S_[ @\}t~)>$aXr AխuST0Wu#?kiT^#Wn{}uұ_ Oϟk ZG G ֤69pq o]{t]gYտU!CG"z7_U]? Si'`g9) Z ů ߥ]}_P\!!1[~֥~_}N}|ZWN?ԆhJ뮭}_kPu~ >W 0Ezz۪_C;H0MOt[]Zn⿼"_/7 ﵽ^XnA.4^Ou}o !~I/vr %4C8?gID'_[=aᅸ}% k[^d 3N@Wa O3 z2szWwi{Un3 <0N ~a&[(B,؃_]ބ=eػ.˨g28t/ve߿brN i~[z`g\!|S ^i+Uuno $_M6izx5O!)noi~7{M%!0J OmzПozý[ﵴiS~ {q`w{kmv[WU8}`ˠVyF ]q$UU_AP%a7!C#Kn{.8* ?d2C`Y!aѵoV ~W[UNtA #}lq! ҋUO /~N߆|@/g۶ޛP}wziM?M oS  0"۷mo^siݯ߄{[A&.| {{[}mw-h-qd" EMMki ,M0d2_k{ߦvބDDDC)0@iwwa; !|/BEYz֝kmޚ۬0pXedʂ &4 C/e4A VC"VoNO@[׻N""Ng(H2cs 2r 273c@ elXdpi 'jXjDDDDDDDDD ] P~iaojj Xd1𞫧Nan4 SAdih ` a9Bզvaazj *z8V d+iAC-c[VYQch2•4h0iB&A B$*}"TfК< 2 Tii L!hDm\5$2:0Dgrّ&_<顈?Jhi_Kj(J  endstream endobj 30 0 obj 46 endobj 31 0 obj 53463 endobj 25 0 obj << /XObject << /Im9 24 0 R >> /ProcSet [ /PDF ] >> endobj 37 0 obj << /Length 74 /Filter /FlateDecode >> stream x3T0BC]=Cc ed`UeɁTA3000#54Rp Ct;Na!8 endstream endobj 36 0 obj << /Type /Page /Contents 37 0 R /Resources 35 0 R /MediaBox [0 0 474.499 716.248] /Parent 7 0 R >> endobj 34 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/var/tmp/10089666731916source4.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 38 0 R /BBox [0 0 474.5 716.25] /Resources << /XObject << /Im1 39 0 R >>/ProcSet [ /PDF /ImageB ] >> /Filter /FlateDecode /Length 40 0 R >> stream H*21735PAsC3=#S039K3P%+  endstream endobj 38 0 obj << /ModDate (D:20020211151805+01'00') /CreationDate (D:20020211151748+01'00') /Creator (Acrobat 5.0 Image Conversion Plug-in for Windows) /Producer (Acrobat 5.0 Image Conversion Plug-in for Windows) >> endobj 39 0 obj << /Type /XObject /Subtype /Image /Name /Im1 /Width 3955 /Height 5970 /BitsPerComponent 1 /Decode [ 1 0] /Filter /CCITTFaxDecode /DecodeParms << /K -1 /Columns 3955 /Rows 5970 /BlackIs1 true >> /ColorSpace /DeviceGray /Length 41 0 R >> stream RTP*i i}mESZ vfcW \~˙xi}}";M]{iK1Ml4om"CK}-:څPDfDTʕ!KAGK%B]a[fr}a"1,J?-+]ZZ; aݐN2-œW{cO+;U\Su]-_]ѥWV!փ(!wlVQ){i{v_[fkm.8aҿ *o +WJwKKE.6H]B j yN!{wXW}}|ɯjU≮2x@a}Zb{,%W-׺gZ,x']qZrSrʪK9j㏮Yǯ̊A Z }]o][J~©m'z4=o+=+~;~u{ Sv@P = !<@;E@$kCQH2pwP(w\q`aW'. ՝*!b٬ ?ImZ  $4D =: -[a$7NKp 1VaIv jT``fpACgD6$_pA%퐰oI{r>$qaAVaI%w+!WKqP`Z[l5 A/f>[U Sv":K 7 ] $p`Y {`la,DmK,)frX.[  |9[ !Q/`l``ȣ %TX sI]24 _A%[`M,B$8N*]SAHd x `h2AJ; 4`r!r  + 2N#x,FQ̹Д[M B"O_D V):B'*1#, JCBeTeАĔ.$ ɎTSáṐGDHa9NT(0LaL$"8Mm@@*e3#GbBYRB ! O.) H JL8d BL*9.Dur0P,rJ3 drD6n1,}8daJ5&5|7IWk ^ <'p@+l0hn) 8I.2 D $p p9#p_KC:pa@,4AT: U(v &UCpAk%:pAU`3+aA- vB I.aemჄ(`hkp$0 U2ÂI{a+U d K$  ^axn %VmXo$m *:M ݔTI$a4!Cp%aP;mæJrР6.06:n 8@TM= * ưՇIV <0 e$$6H0BpKaAnt+nۄ07t I+aa6@*an7Amwà&mIVC$a]l2<8 Aau(rpհomx 0%EbpaA/@pIx` aRUa Ij0i0iAl:IV0$49TaZkxe܂s"$R4 B.j!tU`\ 6dSK0{ 2 B}ᘓl8 ^6":l.ۄUPNŲ莌᠏$l0tp!3< Ua /l2hdqpܲ -=0 B %ܷhQ^Gxhۄ_mB':#n TT !B&R8)U,phji'Yb]àJ`à R#t`3ąsTC *-0D]h I( `m&bA%*Äa]]ajz^i|0E%qnzL4%KvA7ij޿+ 1ҒKoKO +W5m؄WnT^Pz Ն]۰l-=("kem/I;[kJ4 ҄_%wv2B* _aK_M;dGJ=0BM׷EKZ~0B۱]ÿnSZnvzo&2r]~!]KZ|7҄n}Z*ZU O[c~p]۰`]Ziߪ:d_ Rַ2z&MmBu/U_վ[֭*%w[0?ޚU"莍 t:DGUT/Ȩd75]kc!/W[[H6t :PzV~zpvCVSmk 'K ⶾzLGTkn5ajQ/4ᄕ[ut>0`z W kXi]~(2: 2>G29d7Wkn Au|/CKPMvC}A(i{x/CkvAx C=.uِ۝MC_2i`4rNPsQ%eK+\5)Ii}WUH+0Wgfz|WIz\>v 3*=q[;4ޒL?-K{h; _Ie=3ZI0uRn4 +Zk+` J&ƺ0A4mc+ .h6J/0s'#Z 'dP 7I Y٘` CUAbO a ҭ0}$ADgHK:ev( &a5z "z$k!]%AI"$%Ђ#t|GbARAՅik@uIy v7!y $MW2K$b1]Wo=RoU$Wo^ ! $ n%M͑ӷIՐ_u{>Z&k;% IuAZOI[Ѓu} ZU;NaGeFߥUM`>I&s պЄ=__Rh5$t7I&. ߯i~Z/w` ƃ4"ֿd{I+RKoRpk 4ں[ukMW8it'Kk~0I_H&+4V{_ - A/򴋊sUTz"C2% Ӊ/Siђe &jߤߙ` H0i P0M}&̀j;1AА]I45H+KAߙ 7lrB 7z 4dpjm.cApi70jCr̆+Ki|?m7idp# /!d(6ڐ4=7G )lFICaãPms$mᴯmn9M5~jv`*om.~`J{NgI;4kbC*ߝi#WUTH&]dun&_ Ji[ <XH HaVVG~ҠPkmH0Ԋ^MFz~_}$X5;uie-[ %N~?nMo;&ۭ&Aܧ*.oh!m|6MZ D/nH(&AfZIAYnao%ao]K a2%\Z x~IA^Uhy]`1+A$iVڻ_oo@b<]{iV Iޒ ݶw *t٢_zJ {A 몶 6.PivhޝI;I [Am@iKMT=ۯowkI7A?o$H! y[@VZO-[OނA @ˀvEsT@ݻB Aj{E2&A@p\$<7^KTN h/nAYA P AV >6dkWmoH0j"Y޿z  Sa :oW\Wt׺OwI A%LA 7 mUWThֻi8"a4z㯄J>mm %)ʂ^k^[~@"p`vݺ@:]ۤ`~] n}DŹuT,0ݵv뤂 HS_v-R ; 5m{+hҤ l^_ 2Ȕ `^Kdj@T4*lV4co2 ʨA%حl\tـ'o-yV ,0_۰#"SI {(~I,0mȸ$2,7Km@X0>d@H" i{ep>%€_܏Hg  I! `v =$*.o;$;[{ު;* ,60Z ,2?mw,=R%FVǤX2V +d ʹ~h^ 6菑g K2 :&@xouI M" ۯ@2 ܪ7I %  @86?DMai{׹|ȕh A,0߿۲`Z\U ԿnB2@2+ p-jDp>uAVX0o[! ͵ p޾h"Km#.d`K .x}$Aa'nMA<' yʍA0S>fDxߪ@YXa/҄akOaSVd K`7-% ̅>aWH HCkaK2[K^N"`x_HBJ{gbA*2`@X@عx_lBƞ̼ ]P%anH$K ?ۺm$d@K 6뮟;XGj7\MIK+ m'; AV;K_\ #[~ | fv$ MEE} D68Xa9;@ <-* ̅"pĊ9r"VrH [ŵ$DP$ }?!*%m< ZmםMHARv귅I#@TKگ""F9M. ]$^vA>rW5D59A;)7 )r.<`<2@AoB'h# xe7EU$vtH  WwAl $"uk #&GTIp<A $t` " &pow&ۡ?$}fN ߥz7꒝W kAV6-v@v2R_o| @ll aT?nxi"c~ҤA$0ocӰR m'^@zA}iӷm{GI^ji"T$Bj2*CQs[zaR_@ [9'I 'onId2c*OI,C [- ִ WUNd3Q0J6a$!C˰9r$]Pj%ZN!jE|P A%X`¬@Iu$kI?o~e9Q=}RZw띈6[HD^Ak*0o_W[tgE26R ,IuT!:AAѬd4 ͭ.Eq;M8aNC" *BiT n vjPa!y pɸ]$ B )hG Lub2"KAD]Ǥ4BC`AIP^eຐdac]Aw$I,EĈ9Tk AJD 5RH%:BAoos/I/;2  I굴-HG Ad uH$Wlõ_z\׎Q[H$Uԁ'D3߫M%U /@I$&- &8K/AqRDڽR@%^vX gH#hh Cᾖ")v"\5H&ظ4 ( vD28)7MͷUI+hlJGAx! ]gu\AU 6A =0L` ת {U ,Nt $p4(u! *U^-蔊t,!( %R<T-Y] * lB`Zpa_Ww!G%A $9FJ@tF"ZwC$-&kzAKĬFH. 20'A-Ma _4%Q!paGd}AvB#CĚP^RB,DثS!@_H%Kp@ ߂I)(o@4 ̒ґI>`W; oJ/Ew "dLD$IQ*V}V\<{{>PzTp)A9:B-Ė`a 6L `Wv9Vvar Y$ e p6b:OvR]fD @- J . *-UDL-i ` .SG0>_m$Huhy 2' ^ +$+p/8t +@؋O HRzBARHU Z AD;j%N2oz DqDpHg>Ğ  !;BA6 a=rrdh<rn$"M DQkaY-A&,DH<U!RdpQ|LM@0a nĝ#dQu3;4DJ.afAIT,FC3>a*b^e6@q @޺&TI\s$`*Dׄ 1_ Z;$8Ĉ[k!apި@757Ze` G4C ;[r#σ!eNl[<i%0mHX+`l$ b B yEUl rVC&6B"8y,ANAԇ"DJ-MᣅHx| d3Tv@|paвp( uZݰ`ߡdM 5QtH0j,2Ѵ?jK^-aTM3Pw!l2< ;5 mS@)&q/G "’ ". G2 {Gi|2,[~t\l 7"C p{  ?}ʐ@ʥh/dvN&-䕭7 ,  f2 2{׿!@J A`B2<5z ҧ }Ҿ޿Bp C [nFJA"ȫf҂ _`ޢ ,6sXJ`ʐ*H2 㕸mDwD%Oҥ~wa*l n\tmpusIlރ R m߶^vjT0uAGN ;&fIanOk/UWJ?a0nl{ ㅶ'A0v#.Ҧ' Ud5[x'If et_}PVIQd\5 09icW; .A`*X[n7"XXAiAB\+鬆cu+ul+$X@! hwݽ .5eh)d{$Lav 7^ md@7 PӴ-2 oo k ^P/ok 2_e9צ0 V0m֔-d(x#L-/vdM5c#uܺU|0  [/`: { Pakrm=s$s VKntO,ĭW|0nU^ f.g 1X FHrwڮ`5X #P8a 6TJE-˧FD1"gb 6tl Yfi"pPOa֓yذa=?) P_(t  ށoTo;(O%pd!tAAw֗gik i ! U6Hu;uin4Bށ$ހ׆w!<%;Mm5CT޸d5UVKA~Ydž+6SX"o iGx ǧYd(QX`E WA^6Y^g`VAA2G%o0XmhkjB5&b- z[pm$ߴF:~ٴ ɺjGZL K/"` vs%jAl4SmE'!tp";n Pې$҆ x^ ƛu}HL ɺkZj J}64IUpE, T/mC@b-TՂnտCZ!dCK;+D|:3$0lPL@ں_d~d5aC փH*oaC2B[U}T b: 00Th - VCh8_~djF 5Ԫ꿾d5C kRWYi-}D5BC6U6R. ^ ʀ; DpA@.dluKՈgeAHLOP%A\Iuبk2:. 4R n7ـHDA1.7h:. AitCXrC.C D$@6 Gc`\!Ҽ;5HL[XXuDX4AI aHC!l.)Ko; ށ2% I06`xs`-۠oHx}v`{$ma!$70`mTx8Rbl0tIXa!( }Ijm+أt!$öeA ?nohLzRn E ;R=j4mGfޔ0AFZ/Pᖒ6uM d:ޢl:,mBN% P!-dZ 7Rmep =+@AA-%lF`:0lX0acowD"5 i MHl$ 40m!!K @a+ V(d5J{Gp 0no] 0l i&@JkX0dk߰%N&BI@P ½ںhE iCH?!(5: ~Y4$}bi YiA aPh|2m$BO Fzi0u_ "taQ4 ʤ &aX5gPa'B Xaj)Da`s4+HH&BRI҆ Wi&loрe2$ýfI6 aA]\b2aUi%C}6U 8a`X+{6e% 2(@*aMn 0BߓaPWS kDZ}ol5 $oBYYd@ V÷ɲp'PٜAUSw be߹6Y`l5lY-A%oynd R TiR' VȜ0`mkinI@@08* wH)2@ hA4۰D 0De n*r* A7jgM5" |H72f u-Ӂ`mB{ ȴ2Ф %83 ~[KB5 E\\PL.@hH Cr˕Z BĂ.7X4T2y\P+9\UkaN \~W[)A'*KW+lAp`xa V$,Aje,! x+RL`,C$IŃ !mb L@˙!,i6̖2\s9[JxIgA1b(  L@+ldpXdXÉ (p<3%X 2$9 ڬ  DՐ d,0&0)$50AA$CGެ ")1C$;w:  B&x4AA<2A"@.A-"5R#H*B B'!G$@7f  R A@ 8 0`,lj4 E73+  13`ua[Ahey R!3El!hnhAl;0гU`" #H-C Dp a̴0 ArA `% ځW B&' D Dpx0H B,"r8d CL@Xfi fRi`Pl!!8"Tb- 5l)iFD@IQC.E  xa!@ 7X)49Ci i$#@JZI,P>e0b PÄ́v`!%,b`Aeƒgukƒ Z HP !-# h%aAP 0Ԇ P`a R j7d|\ˁŅ ׆  7YsB,|B ?QZ(,ĵ)GMdiG6Mxɶ(4)+: 4';rTn5n@}#苄WZ3 WeDpB$(#O@}<4Dhaj+׹`!IXpO+6 Mp~$ T+#bX4/޷]  @hwԀEi׾܀#"`f 5P#U =;NO4?iz [`sk~` v{|'i :zD9Vָ¼ʕz1A7Oÿz{ .9~zW]AnQwշ{]$\v{=Hq'ZwOO僚UwKwߖz=DsAKzIJ[N^z }Wĵw{_Q4Zk&GD$GDPEow{NV 0Hd Oاy +wwkL84!hS #aah8}ӕUzvuk"$d!RD(BAicU_4 wuj7 \  wA޻vmo⃇k >[z{o`v_AqҐG t[Nֻo[4K$:B?itW'[kf`_n@hwDl'k{A=+ i-j04ޛcW릯!" V:< wTL0-OoK}~ 8hOK^YA/!z}ߍ۫zbt7w/6D69S޽drkId;cO "GP}6KI$o&#چ~_wi3+mOޫDCꞘLN?ww߂oS hDo޺L'K}Oڢ z oNC@ !Wm@4(;q~xT B"_֯~4: e)~d<-?~T@ !m+kk+ᦃ`ʹn-Jv ""_v 5" ~RIX*Ug0ZxڽZN{Յ ]  F n a ~^:~] _Jԃ {O5wۯ]z{^KVC [}Ҡ0ko׵Q-mZaJ*%N܃P!~KjC4r.] P S0Cvo30QWoOvwn_uMUS[]0ݥV|-vvC= OSMdp`~Pkj!64drrJFka4vA@)1׷MiC0"O6">RB/A ܔDDDoih "!a""0PDn"b?e*Q"’L!)G*J?Z@}E) >P/)-b1w_Oת":?Oײ9"hwh?r3*K"]8]װ׷]kK[Dj*ZuTz0QUO{XqlqO~_]͊!#Մ7@AuW%\WR?ߨzjSbI}'\WJtt.:X!!(ٚTHaXBAp!l `=aj;I.Se+@* tB % 87P 0 ԰D2C9L%D,[ x,9 P2GAa vv RDOJ\3 S#ٚH rH.V2pBpLmB\2)0 CCHa2+M␚р<ΥP>@jddD]o!P ##mh7C,$0B@#\uP;@. a$xR ߃މ2HC lL@פ&`ݠd"+0t*PlXA 4AaVp+ X g=U #ADc.#AXdhƁEP2Ðaނ-AL7C3j"Pt "HrK E`2ނ-ʁ\06J$[fT7 FemM tD68 QnHkl pn6ذ4^Ep 8"E s"PV\Wa[2 o DS`,>AU" +Ä$ț˜A i  bCOHJA R*0Mna"h+>"@+0pD2P, aۄ@ *`6hm!%W& 3le+O`o D6)q7 ,d*+.  n O!!'hX"+'A7W \`pd%pHȔnנ@jV^!8xHlD " FEkFE ِ^zm幘4C-]d4 p?- ##jAK2@D5SXN2N  e> DnZ $. D[)z`[DACo!] F^ejr:q k0x 6ˠqjؑ 0S0V@ dEJP!* /C7jD4H@AT `)h 0M 2~ " +I;v v t[OwtAB鲸X4xAne AedpUH4l r2 ch p2U Gah|;BMAp f9 @ W8(c 6 ״y]P݆ J6 @m+ Ӵ\H2$vj60a 0@r@4d20Vi|fv* 5 Hi*B AWkre,H)W& E˂b@A4"ʤW&K˃Yn4 0% Sr #I+Ai0IZgKD:6[ N4=@*\!@i&ދY#D42 tA,jea np\ Յ2 V7@&や( Di I^Aa#D37F Pk0^AA@!&C9aDdpi":CJE2j&, :D߁+Xfn' \IiApU-tf6J|iD-DB e" e`' !q2TlHp\DL4l4 Tj&L !4EA68jM@ H4HAT(Z NZHh D C@f7T;@eP@[r `3.AО P5;$PK;>G" f @8z[ڀi&l"ge,]wHQHw;0Cijl2 l0 ; B h , & PCYu~I*-Gj/gc6pT,d3Wj6r 5 ,'Im̜\[pAAGHe w*xD6`mU He7Z!Qp2OnH| 2 r&Cip_%@d`KC]u5Ȫ"P4L![ب9\,_ A[gfA|" mʊ j `U",$%Ek E57 ۵p`p@p( }" 5pk-A!9 OAR5E@j"!ܙ y@E(i`5-A2T":HfR ",5AjmoXjH'oQ i'v7Ch跠j #yiI VWR }[HeykւWK@X, ŰPh X4\ ՑH,;!T!" 6T¶87LH}.K- pP0 㲹H6AtrX+@lW&H,,-X e}C\Y\, U u!R+#AepPʮfFm A!dZ[ A%i@oY(kCYIPfYXirm>s!@a awkA`HBXBX „tiH )D ȀP̸Y^R.'FFN&A;Y Es 4Px!H:^AadUlDmC]P~nL:M_o;k^ N pH ^ -~(w_@ ȫ2!BCM( Kd5X TG pHАn a KrCh D2CF H Si@ m̫Zj9FT H5 `/l6H.O2l6CD Ca%H/a," R$/A# eɿ۰DgvAa_0h4  'TMž,-ȭ"". Z';":L[A maW0Az0k9 FI 2H_`,Eb2CNRFD1" +$8d4B@s5 ,1Wؑ`BA$Ue$㔸T,"C!C Qͳ2NHAϰbd۟c VBC rD(2lWprZ B|2Cr8Rdp3kD,2AJ+ BP!J ]?Gj%L2b Tʂn x ɲ  Krp||}B#Mk7 |H,2/݉8,urn*w웕n ?[e?޵s%$fE }CYq}Ciq>? P_7zk_Pv-7onuսߺ7!}~ܓ_ԿHm.~WotZ{__?n_yo|:v-_]vJo߿_U%Ҫ ~0 {I@#;Mh!x*Lo}WzW]zv? _Io?w]__}w}k)._zk幧׿K]}WMZ?ݥZ޿/{w}O_[z?_K_޺~u}?[nvuU j_Ok__K~u_OU}z߿m|>z i]_^ ~>)o___ڿ__WK$?uiNhUV޽v[o}ҥk޿_ۯt~޽_{5Niֿ]5 'sM?\L& t__H7^vg.nq\KվG_^_K}wV믿/_o5]l->j _zh0o~kuƗuU{}]w{v__k޿_}m__oo׮o~]u__^M{_^WZ?_ޫ޽ݷ_nWTwUUu___[կ_[V_u{-޶?&]{߾T믷]W~u߭?1˅7"I?[jz}"{_nouw k_ߥ/"r!{'u@NW~ܴ1T{ AVߦp@_pD9C>[ __/ڽ/~-awoD>w{I귕փ?/ z^ _+n_~w ׿  . n|K*/&@^~֮pW9xH{wZj]~.<@B0%.x@~ߤdtCʯI d[Aq'_D<]n @u"p% ^!![ N !̘ @%̆Ud~_ A{Q-++!B̦O 4pK~$ RAz$!/iY/"9XP!Httx _.G ց de AGYPczvX 0v ڐh\(7 qv` >}~`AV2G,GAm!%\ _oX2[9| Q )("ZjddXAcߧS $G^,A Ș\$W3p @X e )`Vb!tvGXKHC#o 2I(@Ȩ3mʢ꽮, NdUPXB +T#"@ͫ7-zZ A$&n%\CQ-TY\P0k!"m9m4tWA$JEqղ-0O},&d41xI{iAE`n"ǂ ]Aa/ [q ݷJ0ߦAEQd WAmA߄bWK:Yl, !d7MEa4PMR練 7N[Tڂ]ak.z,DI 25kƂ|`⡥WVdJ 2KdP#+& 2kaWDktD(X@ aZYP' 7}KD:A'wA50k vMe9 6/ V ``[d$ n _HXZ M D@$9.'d6 y!bB'Ia ~_ nAxA`\!7-C]qN. eX>MZHՑH, l,-m~'h@lT 9ڠa^ *i0DprlB?Ƞm %&ʀVIXm \ X0} 6OUƤ,5˪Ib &f#&YOr eW@<QOMzpj Xgaxd 7S gjlN?>ɱmSYNDH-DpOCAA`T2 7߄@D;a[;. Az4 \8OAYl=7"Ȏh kiXuɠh0As0Td` MXd Ch;.ah ʁU>zGh ڵ" mg`z@+U21U;wWһ!z ÉA" OXT;2FGX2 @=pbA#-A K2 z@ 6Y@xOn 2_ Ne&`=L$h%FC@xo[6 ,T?|nA^EtOr'ԐfEQM}@A\ X7Na᷂ 2SO_3"Ö?a{A$BC ax@\8bUQp0vDp.$]Q V!DjD]`A"UGip#Ea$d Cl%y,Bh ]s $Bwge`ل Vk#A v ƲwA 0r mejL ua"dG" +KlˁZ AqrJVemK'Y &u;;$rGRb< H-#A]2 *s"wu p-' l KuҫGjCA2VTD -  U #v j} N '-R/ RoX JKXAZT 7YnB  (^` uAUO ktT%kvMe ZW8I^W-B@ˤ+'j@@_h _ԋ/J Of_WA w_6B8f zf$_MA6 >!`_ .ҿIߠ/ A $_ A֒[ԷXAB] OޠAO$ A/Ph+ a/V_u/ ),Bs`_M!MJ׾% __A| _@{L]qpO_% _o^% I {[An?_-u _  AuP֚__6uD/Z@i}F_K' O_zNo7o_?/N~UӿCoj_!7_ B[oY _[_G׾-4/7ߵT¿ot]5,~ҷ"?~}zK?_/!o[KD ?9'r('w~4H4}}n=Mo~׮oV5#~~M׿߮}|OƩ/Ok_[Kw~@[ׯ}mOw[w_]}On+/]%z};{I몾z|/.ִ}> ~ڭc{z^ ]In u%_ ] x Ac__鶂W}/ @ҷ}+ A A%/}yh@A{ Z*A Z@n^@֡ռ J?ׄ _pEmB_ ށWW޷,a^ ]T5_IJ @KB`RΔ ^>x%|TmT_Uo ^*|%+M}/,/ݬ_"A/ }-R[_Z|%zJ\37][}nKV&恙 x%oA}|_/ ^Zd_ zK^Kނ^ ʗ Fބɽ@Ӿ ӷ vM [+zW6 ݯV| _-o[P@&" )KJޓxA]۫z Қo M;W | [A[tA[_ax%[Vm z[AQ Jn[䁦ZյJA A 7l _A[u {w+}]VA-J`W @Ja)[5=> [(oڽo|[D5 !ȒnQ(nVrjpa -7^jk \b₽~+ D#W [vFm@GAX`0THd AHޯ AF7a@l̊JęЅd͂ۙ m<4pY([A-M xf m(\l ˯h^eXmmH$$@A*Pw SYJ  ´O"8 0@Tn$%`x67 !ruA 0 x6(@oN6al b;۔ 3`x*;EW)e e8v!0<6 S @x6pAC*@2Pxk@p PN@m_NC x+RJ_SZSCv x2ȗVSIۼ%)xmꂔ n lDbPbG b)TGRQ "!)<\R2Dp<,Q4S<6X JXPd ௠IDD fC,IarM28 Dhn Jl\ xPPe@(T '(R[Sap< 4A9 Q8AMESe`xD)Mp<P* ”٠dD@ j@Ea @(`29`xH@B ڐe!<2HH  <0d&R R@ahfD1DdID”܅7T^9J?CU-t(夕rEƝ}H赀Klqo ^lOh> AWxiAGȓZn*vbtj^6 ZE,fk*Z-VtYJe*,%./VLt1 .$@XAΚrc#fGB rqH9T@hXAa9M" " l}Zjr$DxF(` %e[9i- #1"@aA4¿ZYNAcNA݄wBM;\ P5iiz}zvj}S;O׻k=W(uUOM?O~!?ׯ} 1}C[y o[i8";]/Aw;CΈeD6 ?muY-k!Gn-аz@/ ^M4v&=o|6U'NW}k}zv.w߻vu~w_.9v}7>ˮS~_?1Z_ w|5گoowv'd^Uozj jicfվ=zwPo?u^i\>mvoJ_a6Sm~ #[ڶF8~}0iC! sw_43&@HgK)!jy ߾^* ]]]eAB;.o:i-{w50_ﵼ'w{[X0^4Wk -ڦ&wAa`"JM#kKiIh clikjaP4:"g8'MSMm0MDB" ÔKu%*h0  2 t@TqZ>ZBY ?!eRXS\o\%i.?`\)E-!@.;:\dtz!"!DDG0Qpr>\=?$& ܂eKH)pxuᖄ avZGA9C`r(r2,:B""#hH8F3L}gHmFȜGGͳQD""""N!`P طa! A(0DuA6[f̓ "6]C08 Ä X0d)f0c@CACFdѰH0tMM* c, d3bHYm4p!C(pp,[jY@Őn,d%ePʂ,2`? `dzX0` ܳP NkR @np,2 I X0,A0'!EqA0aBan$ %)pA`5&a( + Z`@a@ X7Xa 0D4.#2:rw!/HDyk2  A>l@ (D6H]dܰ6D6Hk U ܷ*D\kN!52 DhBKz d(hqi ,a L Im,M J!iа @(Jt nnhP]7_GX$Pqᴠ^+`oujCdhB { (A>O+MݥЂֈ(\6+ o~_B^Z@߯5޷^(& !k^W 7ov_ O@t%~mw2l }x+AOAD} d61 {>D5kP wVi.M"jk_,~<0fG{0&G@ڠ@CO(lmi6aOd5" n0j0R j*'T 4guA@4$) 1=A{./-d!A;ɰ{Pvyِ*;J͕mނ`{h/->" FR k|'Wuw 6B Cx ]a}gjO ~&C8`dok{vaǃ YD4@Ohߦ<" ѿ+ m { 6 n_*A' % 6v$&9X|)iY ܶmV""D n0"Aܡʃ̥oaaK Dr ND75wE.!(r Sœ4 a_.D !G 9Cq ilDD&d y7ߤ- f 0v»Z[ fKC) !T)^$!p\!EO{4#@4[D ;P*v~*eGD׻dfou&Cy,_}w۾קӶ[eq$b=I '{}-êo& { A[۠鿻jIݽW׻}u~vu_~m;wҧoVmov׿~%{[l5 XuokvTM~%6MA/mAMr86ԛm߸ tn0 t60z톻">M87z{~o=MKz^]oBC\m6n" vl6ߵN/m_u@lanKpYnww-ʃ\0jO"v[kـ x"(u{@k{_wzYKp_"{3]-4z鷻 mq|4KA{d&Uߕm{\4uV@j!J5 n\H4l ri4kՃS@iequ @mWFGaڪk<66AJNM%heXlDG  I ݶlU~mpa&+WdZ A'M^۳!``mHs󲸏f@a2@?m{ojpڤݷߙ 1 ɲeR#z[m̐c}CLMuZd" cS4vd|C֫ owޓtvWDMuo_^ؠj7K-eWb0oiXgbKi- mӋ~v4!O  f[~f?6{xVvv8ikۼumY Fa>Bxa="Oշ& B[}ׂ[ڷvK^Lc@vB7AvR.uZow !&m!#唳6[owF"z^ޤYVTCm֖ۢ+B kMkPmo崀omuo [)imm)JPn;k o% aoNmym VVۖoom8*6+om3 ۙ*׶Y ۏ{NaJBmջhmޓimv["oL% m}m40,@mgm awBݿpOd@66 /ovkt ݷ-CTM{ vX}I{tvime{ {}(*n7`mD6mrMۯç-T0i۽6[7wT6u{k0T^ -Sa[m _nlIa.npD6okZ\6v!m}a! mh+{uW-rWo 'E @*@-y[-u`/wm{\@2]w-}Ami9kw zꝶ-q÷_mG@Wmk8);m['$W!6y}h on+&-aPRm5սXlh;K-dz~X@)i9kTt ;RnPDimf"n8)w{NqA`NZH+6޽[VMu퇊6n{"o]]H*j#m۵N-Q$#tZo B{eP6|Zv~8"mp7ߵe .6-ۤ)ZK-BYRv\ Abն/naj"m  K ~p ݐLD='vⰈwiڰ))m|4oYjP $mJݼw ܒ6({eAZ=|P%A-&.+NշvL5B{mtڿfAnT oVnm턕'm{'W;k%vjx-?n-} movDO^t[+wB[mUw۰no^ N{m[~MFM]oMۄi[moWm֖/o^}]o ]֓k}b~@I4nmS@;$Vߣ'a6,v Z[M &ۯھ vڸa6|[#nACCl-eO[A>'_n ㏾Mcj =[m׶ok߰}?ANmmB+z&m0z A@նaMM@܄i6L$mw8 r] ݄m_Wۯߖ47mݷAZO@vۯnIoz /ooA{g`ɿ뿊 u{i{þkn}7_}{o^oT -;}-mmMݾ[{mowtWz/Vo`}i4cM_XuD4;o &݋z۷҆-m+ B}-۶fZ/[AHt߱mK{^ޝ7Ӷҫl6[{tmUW^[vm۰{z o 28nl%no[hFnvݶۯU}mpM֕fr>60ݺ̖6v5wZ)doU oKmXaa; ߶Km<:]]2n2?{ sE~h`? ߄)O8@ ýMӹ7ڴf Zṅ[0Kmw&ƀm.wa.l oowp^÷h*aa*oD60{7Do}AQ;0u{nf/ 6P}6( o [Гa0~ 6RmMAWNmk|0I6m w"{[vKmɱ(6wnnH _ ;K߅&`ڗ`PG{KaH/j6Iݾ}<>[{ b~kn{6 n o{a a~-Â!oֶdXja_ӷt&]x0}l=%AC[f<%[macl0w'6md_6"- jD lZ _],-ܷU _[ -ƒWb0ʶ-0Sn nqPl􎡧mz^hT5o-lI!/wz!! tݶj=MmA|0 9E0%[ݰaM [ an7nս4\MA}, BㆿpaX 6,nՐPȃu"46MZ[}xKo+gl>i7p{erlـû[}\T>[ 6=mᲸ6m޶0^ ,6GN[ 7Ta  n鲽A)= .`6 ?".EFc6 ;lA®ۂ AP']h$dN#;uKn鴅{~A:DQ@Pmd` qnRGKfD݇ !&AIc2  VC(v6۴a- Gݾ" 0} $ lT=E&+`ejI 2OP4 6Ol:qlI6! x* ٖum ;v@l;w;;TWv;`mV&RO@UCmfP >]ݻTnjH$ogk` =ۼ% 7̼&d%%{oZ @}*ݳdy@AETVo2%PvW  y8Apwal>e0rt NIWl5흨o `tv(\inۊv |*v2m I7 vh\ ~۽݂x2 T{4\0o!`poM@aLK .l7$Nlۇ[y 0K;ڷ{`|7lV[]-^J`A. AX<"8nEpW |2p[h^>vAf!b2: v)pd ņsReM;W֭@am" YB^v " Jio%m8 d^ 4A>;d)6XfVv a6:t@d1Y6G{aG[va* 4 &?*]@ m.w" F10 F۶%)zɢ8)dW|~d%z Q_+:A" vS60AuR-u6 `ˆUvR$S68/۱!BZy E v hv }AKT6@yn6*+ࣵaAy):x7J} K%~dGW/N0*2X@6/Z;S +\Dl=1m _u6h& /m@P(_gif ("r`2m8I[Ja$J*`@zh7K׶ޙ7r~̊@i} ~57޾Bڍ}KeX常(X&6Qh*tCFj0lO mnd(qPm`2a_}LA7+g2N a?o200^׷A>}}6df0720n" Rܸ7_ 24.n$fB`!e;°D ʒ[tNfFD ef`G oE*Xm= IRXAȰL-/ ̋>6.Xa 6%v22g 0mێ_mȀX!i^e3XMvWI{Lp = n(}+{m Ѽ(m불.i8BP;; :N &.WoYajEtdp@FW y; AE.a)V܆b@nVamP VMƕ:kW)8akup mG A{ bR; d>`$@0n* ̔8y6L>ʠ/!fI#u;m3 @؃;]Xgnf 0dKl d369XS8ڔ.-aW װA BbH)lW6zS ̕K" V %@a( >_:L 1%U{0i`׺eH z `;lm0eBHFW5 V_] p# B۴T@q1`Y̖G܌úaf;@#C:Th^21j Y 8rJa Ylۄ! a HA@؃!}7z H4H~@5l 38".d l ׵ vNH4+\Z̆ _l%a+d*9}74WKl a W!il 6AeWn 0gaq?AIv" h4q (a -̠4mELk؜`8lA@g=+aK`>@FDpD\SLp![F,x1fZ"o 2!)K Dpye,5pa-! _X0 8H4uCMzڻ Gum~z H00ϝl dW[l-H3y٠hXjXamm 2 P$ bt z2aP/b+,h4t‚ JFIo!ʽa8DojACU|0[vZ@ldE޾v៦p v@_ bfB!vA}H#6ۂv uDvl5ݔ;;4  §b᠎ uJŇtaL3J]`I0z C%d^D5U$L 0ݐٲDnc &j0o @#Q A[#!GY~ d X!9ڰWiޛ IA`Xah4ֿh\0`;@g?o1쉆 ;e; (޻;+u $dX =^h0@0DnPxA Dpa6 rPm)vv5i{u}BʰA)\(հ`ᇲ">M^6I!! 5flܓDڠl ! =Eq"v iMzvH<0D4oX2m ]4wi(j$G DyڨdSR A|2,o%;:EنK0lZְoCT!im$v.C]mjn(X?o, 0 hhn` Nv@ [ !F@ Brl6 / Ej"j7!~T_` D0k+Eô,6e8?h2 80`vm*7 _QD$G Ҹ(m? 7lk˅-) " axJA <&hI\5P\0oA-:}gDAmKmóo[ 5.p*tڨ-C@`(f\7o`2!0Ba`/ l" CF4H̃Yu`T^ qWJ k 6JAJx0|-Ճi .n$ذ{xAUHpKxA!< l;-Tp;ˊ###d5Wv0R2_zpa `.@=n#"#*K`*d6E<0f+%UlT;%^!2X@\pHG,@e?A`k e9UӰA~W4į0;- b>]rC 7WvH >W@9 [ DD̹`K10`AB e`ŎDH9r<(r %vqr$4R|ʑPKTŕ4v~WR 2  $b$r(Lr(s  ADDDHG*9pw<)Aʨ%dK""""",Xa PDRi)w \L0vU e h/#„̅$OnC @cyL\$ MV[ANV̊5U 0_ PdJ/`2 ^25 $ ^L@050 %h@!p]Uo$- ]Ū@0mdgEd[ ?̒6Awʠmw&̖CTma-5A`6 I*Y B/HiRaA@#X`s*%!Vd|h"GMBy"mAI;ܫ@@@pL3!0;גGAa&̀T 5 B as%`jH=K 0"I*BfKh*0Y;!Pv;iRJu'2CS?aPiC[UP"RYGKyڐ&emr#T%`ؚuPCoc9@4J싄k ; ߭SfDlLagk`vD,4o[LETXvZUWj̈A uŁEpX"{ l YDKAY$9ڐ* ۑ]1""kH ;-A 0ԇT/BCYuHB 5`qw Dw@ӻ RS$G*meaM["!!_,hP@jL=ޕavj t` PbT[ 9@Lu14IlZIAP2/ D"PH$v*{io-W LԾVUِL5 H}H(mJ #P(ޒAIH+`g`ڠvKԉAJw!/Gk S)_Pa< XB25~G|dV aVfeT BBRX :TA'Șr>%paA_z5 yh!xd'D(K@}j9[/L,1E). &z @- &D'V@7"J\+" ;(vdV8aTk(f\6K`P{ISڛN&  tAVp_TBa$0Wվ̎&v聣X2:7ppD" 6 cCd+` """@@FID It1&M) ݗWǥmp Dd]2 izMՇmX22VQTn@2IA ޘ6,CW:]$`200S}&@@ 9pw0„S"!p@VCft: iݴ@է[4Xw ARА2AZvRDܩ%$uA W[A72 [p@d zrcA` G !R}VV[]zz @zI&02H\-ᐻ2`+hbo e| +(^vd Am/-[DXEGA/Yo!Ы֮廂 t{꭯D }WWYP [ Vu<H.OpPS2TV7U ?*}({zƛ_r*VV FJa~ *J4W&/^؈}Td)Ղ I%E^%bzLwk %B ,,W@UMZB qGT" r$ uX 7yR#5mi'rP,^mFu/U\ @4iU7FJ@n+ANJdYj̋HPZ`-m ]t! RAGݻ#nt2t[74K}cA! ꮻt`p_2*OL] Az\^̠ ̔ڤ?tPD A.tvvf 5o4R[$-9Zk1WuO@J %MFJ`|v@K@)&"UQ0( K;߽y,)mHD$C-Fۥ`dP3w[zXf|*}j݈nވ,IH]"gv`S4i\9h~V+uK֔^ܪ`̔n~ kfׄ" L^nYi_T,ILS4I.DCx @5UIP FJaNҫ}aCI%}_]D $ i{n«%'2]$`d$CM ji$Rd JdB+y\uA-W/Z)r "ZJh [ZJ*ii7KAa J}%A@JJ0@" m;ո0)IHBM  Dzt˗(pF@BCjJkUEհKM^=Px`) _AJaג[IRi !"B m10@JRMA)J$ SPi^lCZ`̅T[I{e 4An( YFE?l SeU65#VTa2,aD6% tl YrAS$* "[[0 +i!WuaFBAB`iHT"a`" MAMR%L4֓id5FCAl T3 k i$t W -QO 6iF@a';RH  zA+J }.m-5W, P;5 A o*M@;MTDzX@0d4$ : h(@]P*D4ڵz  #!n&` ڨf(0aU[n@%2#DڠWJa- ]pA& @i5E!m,!D CnU ab kWM@ "mUW𓥰 ZTep$5Ҡa% @I Jv$ 5#MJ$ve!-`٘j* &w8@j5:+ &v8 @L PQmd ]T+$A)˃! }BL$H ^A$ $CZ (M\ M] ީaJCQL0I! J$*%@zPp DG`D46AZK! B ޒ d3ThT_a%}@ `5}PA6 `@[\ ZAh# $ 6a+ ; ?A8Atk]%A6&`ڡ5_H&VBCAl*HkANɆ* =mP@uMk i-i Z[&2:"!8B8:4G MI30b4"$ZI M$2 9:. E.h$wXkn ]e֐E2٭o wkKuߤ,l@l>AH)m>B&AQ A Gg [kmB߆ւ k5":d36aRGp H  k66A8Jpl %k@ .D5wH0p+ziڤE(5  ^ @í+AG]T$Z@b!P A@PlL5 f¦IJU6mpA$qH[$8a~BÄ"M%A#iml4H4g,XAXB " [oiaBA[҄5C Amp-d"5DP5RAo~gARHd A%PVX kɹ-`QTY)/! 2 p͠ì$#E g6XA6ЄP!!-Jva+ XiPH7 M@* #hu %,= GBl$AlA80 VA!6f ,PHM C_@\Qv ڨAk3@D5\ka$CPAI A,].-BJRAuaZ\0P U5]Xj B xmR@a\0zA]J4 :P4]KB-*.UK}@hduJ Z@ETF-.$#J\0A i~4UnavR:A,2 OT / wOAT7h45 /hwbCB9ժ!|) q̸]09+2$0瑅؉ h(̭N"CDsYRvE.'l b"$v!)Yӆ!L,0Ba j ">G28DA#;#GDp[(BOF8-x)eaè'2(Ȅ .dJ""P#2b"yDs#@eDDDN"Apm!Dr>,DJ Re(9`UG(jlZ >GS`96ZE,? -%. > IMDS$"2HiD|)Z--mPǖƔM U^ڄp#ՆrёWGMn@~DDx#Y%r2"%qX`AdXq$] =>@M.£K29 pPLXLBn6DQ0hC 0 $ 'If6 Țhh4 ;"j4M;L'! 4!@``a0Aj SN 'kk4аB *iik SAڦ q4vh=S ;0ZAt o 5Aam?5~WϘwkj,O&f'ETJC9b" .aA"_oxd#!2J|ȏAؤ4DHR a٨M 0V%}:TM{ҥr28<ˣKD @e3"!,!h04aBP_!tADrVF$8@`f kL 0M?OV'WAsڢ~75Z_cg|" a0MVMwP0iwR|RD3نpdhAp"¡  Czwq#C#r8T2@A ݦi}a>]mӾAw+HԆc ) O@ W 4APhZ!U[Ʉ5h~rD6!Banm~t 0A4մ]TCFM+A7zMׯ &j[]z}z:jn֛~w<&uWIk%oTmt ߭ZO.[t]io7\?Mn֯J->uzt_kڽ}p͏J!N_~w^R{߽ a?a,+ +.] ; gr[wwP˭﫿o[d4i+Ino:q`q Q2`7ai~1=_9A7*}{H(n"';|"03;])`HLHq?ׇ{ДAq|:@3ԻڪnA[^$Ǥez\\qktAm;{nT*Pm,]I)iwi6 Vވ7@}kzz(R;D0:4 ozBդ`7x}_{@x"{*[_]]zon]zm^xAROU{rBcޫn=w{!0r ]ﮟ]s! ֻW^M~|4EF{Z!]Mr&̧au]çJT0b]omkOqU@H]޷(V]o ]Nh \ G^5Owi !5oޟm? :! ZpwxOBio{ol ߻i_鴯 I_:/zc]_~ߵ/n!O Gwwa~ 쎿Xҧ_o}~V~t}kukmwm.;o^[na=m(un{aot_}N׭vi|3[K1 (F_B G ݈.C*wJ6X^CC肇R$k8N7PNPݴC(bcۆ+;S\ Ӆ[_ws{ir a.gr1!^TPݪ2{l#>a׻ޯxB5kj{vv_v[wkw0! a?M9䗯nۦwӶvm7Vv~ݯi]/}o_턘i ߃yCA{]mnkz|=ݥO0 :CvеXo$~;w|z{3A-²8 r|#O_];O]mn nmt-VÐn?lCa8k4 0A᫯aUn Gy zt]24& ClY 3ېh}wnk}ij! pAh0VA d2(zv_tk OOT T 4jSLudcI@\T l~l[!~׶p@nM5M4/!`Ah *'l&bh IW{~O_OON&:d 0L h&@3w)SRqwZې9=}|?*(T9NSX#{/5WMn?ij?~T[}[B.&>} m8zk{-0M4&j lwJZ'kO5ACeja jiA`J* q0"EGN@]Shki&@PqH!zM0A02B(P^i f]gV).iC@Aj kr Pa0D]h#DavحbYWWڴ dI@Tx<jjME|DpDDG5Z!(*WL .EEЃ2*>t##>`e(D!aaE0 hC k܀BHPNRq$acm`HHl@Ӳ, M4ӴaB!!Tp4 vMnN , ¦4`iAh=>> < Ӱ 4NM0aV=nT [[%y\'v_ZvH~Rtn btUA0 *J "*߻Mu>|W6B;!.1D.荊AAtD b 4` a?R^ӫN׻*Qyg##>dHȀ$Z#0""BXN0XiMj ?. rξDO,dipBCh4 ah@4Ȣ AUjuxaHl0A|)ݪ!wzP#[ 6:;FqR+ A4m4wq U viw|'e*C=gAF!*/ ?w~W2>J20#UC,0j5;r:>Hf> B!  ނ .rAa5UH;_ !*hOCb+[@4MSOOnM[O J4j! pNߴw zkvUwwAzCi?Wx^n^?UznT'n_;O^NդoOzZoM>5֛ڦn~w{j{W}Ouv{ݫ m{Zr聏Ii7zJ'. »B 㿐w!E!?{z{!\% CH&}BJ@&7g !*;N{!Ke#Xr׿}~:H*zj#:Cllċ[CM^Aq;x}7 D(C C=KAtx^h.յMPHː\zHP^߾_7NgIoVwO4ӿoI¨/Q^5ߤHwvnrkMz Iְ}GQXmw Cm~B~/}ZOi?L?_1MWZ_)wүiMޕצ_ۿG+P?KOW?$.={@8_ wC ѯU2a:k}^wJ$Z4kx߱2IߴI!iHlx6WWuO:]z߅H*EַQ$Ċ .;}e&膁YDuT{֚[0r_9cAGw* 01׿ lpVV ?_mۻ^JАi??ӯ_뾷_]~0Z^v?_mt߯ڢwz[K~vW? Տz]*uKwwJoA}/ַ_kVa|m}zc߿nk}~"[v7_xka&>gEWzio߿qv78Q h-[}oT.ڿ` -쎗p}؊b2lAWt>C`49@(pU BJvzÏ{Ȅzu D2-=maR \C %9r 8_޿!qw=ww Ѫ_kzx>߆w(s\]uO ڮC-Whɒ8カMm{_#_߾mmmAo/wi}Z_invw|kvӞIzza;kkmxzo|'m7ZkU nI>ה:_T } SOpd7m _uGS[L'zw޻ w|?w/34+ c8r *g<_TӴKn۽Aq9؏؈Q?~/mn]A`k[ $w+~N_0j!Aia0ih0 }nd6υO~C1=W{ﻆwݦ2ܭ0&0E`4 hA ,.!eN AK?kkv 4@u@L&47VF9 eA!뼆ſr{m^{|4TB &"x^Јav+y}׽Q`2cBd o 8r5'gpU S[[Xiw["eAC5b=Ar_OtoC?[uNžߵ-Nkq_}~Ӈkk^Ai6gtRvSXa4 d6V8aaIpi馚i hT  CB$PdtIM58vid gBwamm4 d A3$(rّMj aHeqeoR&d4'-@iEV:Fm%~OF@TL@ endstream endobj 40 0 obj 45 endobj 41 0 obj 57648 endobj 35 0 obj << /XObject << /Im12 34 0 R >> /ProcSet [ /PDF ] >> endobj 7 0 obj << /Type /Pages /Count 4 /Kids [5 0 R 16 0 R 26 0 R 36 0 R] >> endobj 42 0 obj << /Type /Catalog /Pages 7 0 R >> endobj 43 0 obj << /Producer (pdfTeX-1.40.3) /Creator (TeX) /CreationDate (D:20100419154306+02'00') /ModDate (D:20100419154306+02'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX using libpoppler, Version 3.141592-1.40.3-2.2 (Web2C 7.5.6) kpathsea version 3.5.6) >> endobj xref 0 44 0000000001 65535 f 0000000002 00000 f 0000000012 00000 f 0000000277 00000 n 0000040545 00000 n 0000000165 00000 n 0000000015 00000 n 0000195071 00000 n 0000000626 00000 n 0000000843 00000 n 0000040504 00000 n 0000040523 00000 n 0000000013 00000 f 0000000022 00000 f 0000040878 00000 n 0000081460 00000 n 0000040763 00000 n 0000040610 00000 n 0000041233 00000 n 0000041451 00000 n 0000081419 00000 n 0000081438 00000 n 0000000023 00000 f 0000000032 00000 f 0000081793 00000 n 0000136140 00000 n 0000081678 00000 n 0000081527 00000 n 0000082148 00000 n 0000082366 00000 n 0000136099 00000 n 0000136118 00000 n 0000000033 00000 f 0000000000 00000 f 0000136476 00000 n 0000195003 00000 n 0000136361 00000 n 0000136207 00000 n 0000136826 00000 n 0000137044 00000 n 0000194962 00000 n 0000194981 00000 n 0000195149 00000 n 0000195199 00000 n trailer << /Size 44 /Root 42 0 R /Info 43 0 R /ID [<4A3080B10C54D3BD1FA4655ABE4E7C9C> <4A3080B10C54D3BD1FA4655ABE4E7C9C>] >> startxref 195470 %%EOF elk-9.2.12/docs/PaxHeaders/elk.pdf0000644000000000000000000000013214536061324013640 xustar0030 mtime=1702388436.559488695 30 atime=1702388436.545488715 30 ctime=1702388436.559488695 elk-9.2.12/docs/elk.pdf0000644002504400250440000253002114536061324016365 0ustar00dewhurstdewhurst00000000000000%PDF-1.5 % 2 0 obj << /Type /ObjStm /N 100 /First 828 /Length 1167 /Filter /FlateDecode >> stream xڭ[o6W1A 6( @4o~׻{NC3+Zdip 5J+H6*+CgʚSeND WLR'W.Z4 "YdQD*IX0eRƆ#mf qAǜkeNCB}^4VID %f ड़2,눐HY8dop5BO2Zdm*ye )IK1{sXLU#Y<@Y β 6̌1D@F,h0#/L9HE`v#sD;c 2 sb,[ E4T2sY'p0"pB?&%r 1>g2"d8EX N@DQ#OR`EpGɁkp2P 3``ӱwdzTkpB 9gW89Bm0s\;v`b缅 輇 .ξ {.>_w/MVz~b_DÖwrE񐝯dxy^bXM%hHҟ{9[׾qH?(O@)!ndyĸU}cj~";B;娧3KN 5ЯyxǀeJ]"'5.F&zu~/YUVutShUY/GsB5޽JڕVCͺ%@n]EԘM[mG_JE6p-=M70qf#g `.[KZ #$6֧Ĺl6"qRXXO蓛:[ōŤe5 b7!.Cv-Nmu~wG8y+U F`iinV+^XHuuҹϾ[D$>35kw> obu܂&|bR?˷Yً޹˜4v/yق ̲֞_2-! oz$!^Mt#e]zMعzi/s^^ endstream endobj 203 0 obj << /Type /ObjStm /N 100 /First 870 /Length 1001 /Filter /FlateDecode >> stream xڝr6z ח5o֞RH{F*u><,x=$ᇙAod$M;k-8:B1W{1X_7ދ8LlBO ψ3< &'$z)&%U9o&AL ƅl TEgjʸ7c " IpQHJƱB2NXRws=u (\)p r 9 1rd乮rb͕Usl 4*ȅ#K7WWA qdZFl8n! ]@O1/(Nfyxik| Nǖ* rt( zAudpdsFҀLk@p"pPc0n[^[sb Nsmfc 8(Dfg"K C0PsaN Ōbb p~|Hd(!tSn|1ߧ?'stx~wYʕu_p;©ΎÏv yp+g :ˊ q[wL.qՈ=q~ño7m{4bzOo9ۇ,GZ>.t']xӈ?5b#޵D 11N1ΤqG]ljo91r9b`wnn3*}`5ر#XUaٖXٶZ_4; {l:^yM]`;9>b+3㩹9,u:Qlj/BǙ{0,ljMffEaMGmKo;5O,8yUs=<z}gͲMj3+`Zwf^ln67AQL`ҁ-r=.k͢m%t:̪8ZR/#PAlI-g/W endstream endobj 404 0 obj << /Type /ObjStm /N 100 /First 871 /Length 1149 /Filter /FlateDecode >> stream xŗ=s7{ v#aX|d8 ::"xLʋJg` (TxAVcYW x a%I,r",Gn(rX^A{:(>W\AYP{eN@+&b1;QRȑ^ 8,Cq$G5 Xy qR2dHY,g%Ck6_.Yn`c[D:Emn9[ F`mvy0.[_bga7{X#39ڐ6ڰB@2ES}ZnV=ưvu %q{EI[4<v?GM~ltv\lƶޏ Vwl߁-ҟ2`]T@#sm"<͐⒟qt\YBo4-e# #p_Ϊg>z> stream xŚv6~ ,zri ]zKGl5qwS0TB Ds7CB*\&+덊*K[|F aK/Z'lcU,ڠId2GxxqsĀ\D'Cܑ2)Ake`xG'胲.a0da+fyw N":)F08l`v!r @Pr'8JLN /Iqm)o3x˞Qqa0BypF>Fg$=f1sF&F[t ?#THE@Cdgd9䙸\JhH\wdفEdTYxpVp*H`F) Yb@B)qd$R*3*l~$gypV8! 9Dp"`T0eb٠V f̞m`oFɸ.9xeN9#X9MTh(!z<54ڱ訢Q3X^wjqq QIcR%4YG/4iREީ_uzzZ-כs:ogo.ERko 7[n6^:ȩ%y)qF|W$e7#a~Θq#,iYxpC̘2}Z,˔i|fae)R1F/إAϧ3"Bm5`=Vsc{)o-tk BbEħrXݔY~IL/OĮBhqOEWf?%yi´,<;ÝR*q]4_fSrW9Ig\TJ F L3bW=Hͫ7|NM#>vmy`u jf endstream endobj 806 0 obj << /Type /ObjStm /N 100 /First 910 /Length 1280 /Filter /FlateDecode >> stream x͚rH E^&oLvlϲ&_?Jr"IM-҄M/M:FcMl|2qam0D4*&;92Y3!kì`'9LdJF#{샡1φ2$/ADrpƑ$hC2.8$F،jEr (ӗd$b<1 K2fN x83J0GA0}$b0 $8*%"LV GdI`@ao1 &Ö 3 f2W"'A c Hd. y8:!>ɮb?92;X`v!Yet0Q)g t0aqf`$$9u8Hc4F7 b$l3a1; {+A "4FX,?̌/|yuZ<>?ϟg|NϬ2\ 7'ea% /2z:IWjgB.]Ņ2΅:\V]ZbG>Ek{ JlDZ/k׍)k9Wn?+.e-zp~v)k9rLƹS?V5z'^T6#jвAcX*iG˪$ͮqe|nAq-mQкo* ܬO=߁XQ=h825&7n̏Л$?͛M6(h[_*rG-|r91#y/LM9QJ[i>OZ{!m!$5sո>W6_9֠eqc؍#9-=mċjQůoV2WTKױƻa> stream x՚r7E ,퍄Wryr>Yj#(j*H͋LT%ރC))BI%xTB;B`  ȤT(!"pi x60F/x* ?.eyF "ɫBE "GB$YM%,8 )/@1lt#6iQD+^ mNY^&GQX$AsD# #^&'."NYF$Hi8傐JuX%92YDNfS%s`9)Ki^l%q:lr6Rqɝ kP.9U\d YWYB7Gqi=/"n**Pr+6S^ -\5r̓%Sy>e΀;S\rCG_FkMsK,HiyNl1(p!1u (L Iy=9̦^2ܰzB:R;p:Iq09-jI\}WX/_-/%|?_|6񯿖R>`V&=i0axu7 + [  3 oc'_WB -sBŠt&Y@J%sS2/FV7ye[e3۩iWYH1~ Yg@;{J9?nܶ ޵&ZG}x+\mVTu7)i;EZvK<]֬s\ :@W9:ؔeߴʆgb=_O<}B4SoG(Ah1^i?PmR(e0Rxv>>s8yt+w d7SW; ϼX#;-Ƌ}x/;U;KA}Ȼ:x;b(5UbP=vuڦ\ jA_ةW e;nE<>Dx#An?&Z ^h15xw ZNڵ8sRY9T.Rsr\3A-¼^;A˳ G|}ڶy(I'9l~5U&5ɟJR6bd=|*)ybxsNr{(G7eg+e 6 endstream endobj 1208 0 obj << /Type /ObjStm /N 100 /First 1003 /Length 1351 /Filter /FlateDecode >> stream xՙrFEYiޏ˫TR,ER)< aeQK ν{@6aeR(0~j r k=IH)-#"H6] B)'%J,&E&grE1(Z&o)2BKIYk֊ڀYh(ytJh')?hr:y0RR 27LIc59#l0)sTIƦHd4a!QXI! EDNNINSB(l "+\E #RéAEǼv uym*ir~!gq(=Gi"Pi1(Sp:g<!9VHyTy8heDȉȋ l| z&5'\OGkhy;tР'ʢ)Q zYDa0P]WP qK]I/UMz+szt^ Y? ;Hf~YQ9:dε(tW({ჸ$~W?wχ.%nNjwנ¿p-|喖--kZ^h偖ki??]=-eUyeS6ɹ}KZhI|wޏQм^dž PbjW\RfƹFA"'l֪<KoWmĺ\E 04_uQRt YbTJ.l.iZLvl _wE W=)UX޴kiy6rm8^K2鱡4c5<9BU%8iy.rӐ[26=5y'>գ]I7MzO+A(趼qk;!e6 z(ٳvld73vClP? M*w26#u_Ö FПc Wihr)o|cmnꠞݲ 1fuf)Ak#ӡx[$,#2P9$Nwmz)>eI l䁩*oDҷ,lxς?24@7}+ȷ}n[*c_ >*ـk]-vssmK%W~t6%0%O+A4WO&Rff?'ȳk׾?oMmilX*=ig<9NC~j\eSx/&xCL<-ksֱrnlc hn ڌ3lK`%h3Fΰ.Amz?~_KRV F endstream endobj 1409 0 obj << /Type /ObjStm /N 100 /First 1005 /Length 1342 /Filter /FlateDecode >> stream x՚vHy^&o՗99Y͙y_ v&$_L0RIM_UK뤴2X":e (K%'NYBxuI8 o<_7;8LB4C,xzMs!%eu`ᳲNG lT6K⭍(#C6%KYNCBDN#;P+Nc@D%ˑ&Ik¸9GiJ #e#lE¤ϥ9(Ҷd"+"[($Ya=g`(٨q?sUH,QBD <~zK?=1ؒ*&3:&byҙ5dkɅ%D9A=O+!;r pOE‹x 15øOt*k&ǟVb勜^x_m!_둧VV7o_'2LQ-䫑MW|܎ƽvnOl2tTu()cF`qϻj.k|\ (׿F#ep]˰y7 F o4ۡRuihq^i^7kl 1.x&N7V[f|Hǭ\eY|R,䜾|E(E9/6tRYӦ2mHwt!mk^x5k4&ӑp}ܕLAIwt! ' mT`QD6?3+âx+h9߳X{ۀ^h5^~oGnZ<F1 (z&ӫ P;-;\ ؽ1A-y^3Կ endstream endobj 1630 0 obj << /Length 549 /Filter /FlateDecode >> stream xڝTMo@Wx6!K n/iH@,D9w]C*ޙy;ofd59 Pnl 2^"t9<&lybMVt?d0_"i Jy$gx1wÑ-zad ;1jFݺYv0sJfآDmf-hYz1z5chwzw"sF{1BCdJ0ΠSżJzկ*ԛS52ټLV| BEHɢ"ղ,/Q&|RXRz0Ѩ3Mqx56*\~\\LvgJ[ĴVM *yv7!\?zXx)Pqr=A*k)(/+>GE98\Vw*X1qtX1oxB̄ F)]&4t$u/ bAf>2/gpPRԄUնnj 2=:;]2> >>>> /Length 5438 /Filter /FlateDecode >> stream xm[8rߵZ,ex <~yERӃF?̒(2/Iq\Qy1^i̳׫l%RgkIzY_:7uޯu^Y<ǫ|V^IS*:1_kVPzTt]gZ #s*3EIisjB,SsqT^LCsz֕_*JS ԫCTXx׼^ZS3KΖ<oX9Zgk'<)mι?{z$Eje{7j },Mmi1lX9,QfA#C4KosI9ize ߶KxKyR Y2w ))/9*W?̹e#KªD\3l;jz˓HZJҔ#4W}MyQGk_/$Xx Wsz2JQnEM6UqWWWG+z42ϢHP(02p+MHSkoĎ|3kr9"ٌ֬_9X"}NVɝ=M~yձ5R&|y/u`6cg &?WP(耟7ސ~M b[rj#[DԔ<l4Tܡyj?9uKh}17~!ǫ6R !_mٱIM_$uu/*xdKaao<~_Szl"$[~|nTcIM^QSr@:Vބe!vw4=>婸RܫLxD> cK]!Rf$] P@uHa=|nݱ>єY9#0$lvxC 4ȒA\N&,Rgİ\ `@ yI3ILU'1m}Nv|I+q;`H ~ 8Wd3I`p;A+7ac1^VHZ!L)ĭ 5+87ѼL<#ä IzEA%E"O硰wa(8[,Yk{}غ x43:Ү֬ܔ1c8hdRP0jx+B7z; c7,(48]v4ALCN=Gҝ%nDD2"#{tvV3"Z0w_s  Ylk?rnVHb+>O='r%z[BN+PF~}2JVOldӕZ 6Ӱ: Zwܜ_$I5/>c0:n=łH].T1;dXx @;L{D JƋ?n(+q3< b٫1vN;j4{"(Q3n(?'a3'!aϷdWGJ2~{7e :2U[-zT(xy@.p\?bRT-FZ 3U-=j2wрi ^47ܗ*kh{g6i_~)_`Q0IwhjoXeV2Dܮ])m8ptPBՄ}4hfS7F=j.P=$9(܏ ߱w 4uYn Ո}IN5ZTd䎧!xܮ]cv515f,|}4BٍNTYt^ڌ!5{]L&.E $Q?mG5nB!{oEOT6~Q洒`ޤ" 2L?|BB낫K{~SLE/VsCtwU+›ZGiҮk+,9F۶\fYl=AHA&!mmY`&lEN2_}h'0Yg's4+8!;-&5m \vVSsT>|#q}{46)NfD%ѰvNZIsN2B$EQQ &C\'oT希HZry1L^@_B^;A)$F0VSs^.P.F,/LRH%M/4@$wiOMH]TVt8.XЖZC Cu*~ ɯ@%o:ScRqN:腱ܚ= R40n&ViZm(q#=au勜>ؤ|QqYo)(ݔBHNvN x^8*;SЖ%d;IŐˉLwv!rw$#tFg2s)/0PYNDU[$S8';.tAnz L%9~t{%ĤrEN8wc>q-"H(뮾8R9C8@eyiseo3dP*Ã1G%z G22)n TkQ)Dv"E&sdKR,ɂj[AL{8ōj*+jU ^q$ZP3 .}UL&K&њ& :1`1%~fuƋF?o&r /Z.C|!ʗ?$?]o+A@t9{B4:8;1`qOhm1L@s&1nAMQ)>ǩ]`AYT}e펲3nwa/(uAh*bI:)P$Hϵ bƒs]{ zhS*"p%sRthbÇ.8nagX3tY*9p|om fO(9#=WݥOUiKn'|ܟ:\?2-wnle{1PUuBNQck24ɵf.ֻK6NeHt.fǞ)m%lIW ɩgy[Uh ڳVTxgZc5s8֭ FnmLƚj6i`W:jSIt765YhZظ[ןѴu63=>(ЁG%v"VLQD~py3l g$hkƍ>,~vexU@//,4J ֨Hi+A ;PE¿G׬-7O^74|aaTeƵɛ-"ƼbgnRt?OvM>xӰ[qزGp Ao?1+&`z8"e}qp7'˓Ywk#ngD}"e$QoyV{=~;paFʰS E9Ka{at3%Tcri(dV3oeD/tyd7FC8JCd18+;ǝE)&cM~7B5ƪO 3nW[E-oYh356V#o!2=&f~LJeo y2缻Ṝ*x =L?WS0ע I̶?3#7wXEnyL̨+=>y_^@҈:6[e r~¹88 7ZQOB04ǠQ|CMy-}njIwu0jƾ)(B?t-C0]*Q?]Hd)I6c\t=0}k#:b/Dw1׽_t)z] c>PL9Y5+M+?#iz퉜lQ%H2h,ƮK؁1Gݥ|aO>nײk<U"}/Gq>%RӧpW}As4tz˴$K kطFPBߨw* K[6q|Z}>}%Qs ;b~,h$fՕ[2aueҬt|wquQWʵ.w69Br\ }Qnp^U>qcwbyH)OH:Μ endstream endobj 1682 0 obj << /Length 1090 /Filter /FlateDecode >> stream xs6+tAciii3浀}"$!dV? dy >.,<&>E0`CIԽƟVwBB9 1Y@*e$i?_'P.@oAKW`v`˥x:%GPwt';LI.ažb_DHsp.?p7/*"Q',nBz_USoB3}}IS"ގB 0~8VvDJ+8qwɹ.%hೋ%1S {K;afKdJ25UӦZٴcK|esuÃ&V+z,e_Ke$f#OSFe5U)Ѹ29F vkZƈw[mC#3C/7Oʻt]tVWHMŠQugmYг5*zU3eFhvSO}sҜ|wu*=\.`yZߪz^8hnjpRWWM_r<nR 2t 2oN$>d,ub8#rr }̧@}[v  m'(|1BS jdP2~<rΦS34Vu݌@/yl2hNx, 9H&LUKQ<_m\}4(Wf@`sP&YYgF! PM\YPiy_GmyݥR2h> stream xn0}v6HJ)jHʭO:$B<謈J$>8NF#FQ"$F119~n̷&[hbN&3E4В*d+EvkVcϟQy׿Tqzq޻ٞs+!^=ւB1񎄟'$-je"5Ikr*8? [M¡ XI/kl|Iv" $D:y.t0A_$yE69"|"~^H@;_Q)2$E@IR,#Yt EL2M΄(I50!sՑv瘉A2_VueaR }y2q˦E[(SҮbhf5-P fQ`]0A9&o ݵ'B&Y4ȟZṃGKdֵA"rMD`v$'6W1fSxh@2O7n|kQfѻȉ`IN`0>@L%&W2.x$:)>Hיm I|yW /@CIȀ$7@]<oy$[̅\zV z?/D]v5tzУLdXdtuէv9r_NWkOF endstream endobj 1610 0 obj << /Type /ObjStm /N 100 /First 1014 /Length 2639 /Filter /FlateDecode >> stream x[[[~_Gpx i-lpY UflT0;STa5v ٘`6O/9i"fTٸKd;%ܼ( avKeS.͑ڪD0.=s7;=f{y]Y'/%'!_]ek]^^.v<]|_xp>oڥڥMO[Tz`Q΀goϳƁ?xw,yYǒ5/lڇ_߿|75: 377 O>r!lsX}c}з?ܫo o6OwPX^V]zbu ]]..tͱk]v5k׬]v5k׬]v59uͩkN]sSל59u͹k]ssל59wWv~|ݡ/6oj͗No^/2y+JPx+*xE£·>qI-8y+KEe9Ǡ{Q߾G[td(q(<VM9dQ#acؑ%sƙG8,xE3X d-Wh#}AJHѬ>"գ aQR#"fmd>X|k;k)q(qmf XkcC۴ʙR&o =*U&Xf_5XWK,=Ї^ (QSP|$X89F!{Qq(c$${o< dXځCA 8g%4%O"(5,P q(e> CAERCAdiP4d-Md[AQ`kE(ZJ2? cұ ̏.H:peug \sng',\ d )|>ӌ,e˨'ᄄ0^G]FR?@.a8Wc\!8x~e"̽d#fRTѝմaJ܋#X]+o|#nrHG> stream xn@=O1d0gcl+5., }E%lge[Dӹ[0``iBfƲ6cb{i>H@p+,yΌ* X&`]io/?WՍOy!:~=Bsi!p ¾m,gdq( #e!P&IB#D^?Q%GH$Dɰ$z'"mQ%YYv耇"&DVF`X.8[pJ-D2I!r 3Y^o`4NCz؏!/`(u4OPin K,:XY mXŪ~;I~kY}*AcHYDwI\R84RfrXBŅr)091suKݩ7#;XM)` nܮN\Ӭ蝤; ߮)'u 2/ 9=ua4uIcHkB:rաE]&fv$o6$2~`͐H0aHqh>v+G$gh$Ei1BugQ~C; ns˪Phhnrdh"jVD2 "n Ús0Uo z>z28H&1HDP zj<LP.wk6 ]0dt,rv=KbEEhDbR㱖E&2HDj,:x$ CR,d2 "oVeF%%Rh$ӠFO|km endstream endobj 1842 0 obj << /Length 1304 /Filter /FlateDecode >> stream xRH>KXwrv,⮻H%HE2O?ɭL& 7RU`'9NQć:!~ȝZ8rO*}y|p&Nb'!vNWR'bHS0ȮdḐL2[ x Ms7 \w^Q3H@>|-)Ó\UaɛY ,i(^%Kwg,Aޒ۸''0WK b!8$t:;۴Yz+"-v? RNC}67;Sx+@ŢlrML/J}PӾMx{/'L:ٛW]UR \Lc[omZq)O- զE'Y.~Ox <19 yVE3\|#;7*<ð &P]g͌qZPM7^:g y,ys\&cIE﵇CD3cO-+Jmg)YTeV${ks`ɵ$ܾ⯛@PBLѲ$ ưJ#N֢ήz̐wRBM)r7\[ pGdjdS &"lo-֑6$Ƕ]nJ^ѭ!A1a ΊX!It@ޛz,lݞRĚx9y<"SZ uQ0' ѓ!QkGg/ KS#[m V/T_`流wS]P+nBF6io*R)O?vo: ӣ endstream endobj 1741 0 obj << /Type /ObjStm /N 100 /First 1021 /Length 2460 /Filter /FlateDecode >> stream x[]}_EWU*,N ,~z`j˒I\^w:]JGU=RIԸ%>*!% R+bR՚P+-%N,qQU91aIbaĵ K w;8v<ѓP%EIh$t$ކJ:pY+Ba!Ѱ(UaqK &&ÇYR>!]<#$z>d4Q2ֈ[cP`X54sm[TRl\o멉G40xM_ïKj_KY›[r\=i<>`s^71 -`xz JKo17`>I̩2Rc Sx>/^(3 ´z/N\1[i<`>0K&b<%1"40-VG,6'|pL/)5~ B>Lbx0Mm&pŢOlͳg7Wm|yww??ܾDx}_n.޾T83xpfXָYLݿOoo>|}w56} mL#iՁsD&D :: ch$\lA J&>@#8"<+sqVX_ Xcn.ioLTWVk0ﴠ|09D̷@e0_A E+L bio v.!1'n eUs5.+C?YIY.9Wՠ 9Wzj;4N?¾\e(c@طOJGruya+SnNp`IZ0T+#?Vr<QEZ?V9ҏ\24I*m9j^հ!BnMNը,lF}ܱ֭|͈[Igdnz["?B|9F 瓕b yW_g5@+dg^i1 ("Bf#8 N(8Xٟ|EC1L8,ٟ}HcBf.9 `secd]!?Jȵce )Bf.Y=R" k5c:Kd_ycrkБBff VD0GY* #,-lڟk0N+6+d_&h&d^lZW2˭M"?9CM~bsJfI\Nn^ɬv7Oh /_$>K-r{XNo^$ޟ;n읅'gv8}gg^/-] OCQӰii4&2Md4i"DL&2MdMEOԍ(`"ETB(}ЩQj4VrQ@TVf5 e M Q6OwޱOgFF/[V|!QcV/p9TGFU4&Kx%϶UF8{SP 1Yb Q$v/c+жPy>X,ǟ5M£Q/Q"]脺؈Ãt2ܘV[b=)8-l'TEFophaEPtqH}ςCVtBQh?p+Pr># V"ria_n%N(E5l Tg]݈`^u endstream endobj 1895 0 obj << /Length 1679 /Filter /FlateDecode >> stream xݛMs99ZVmR[*%9|k `{5`(HLK#?myޯ-h!$L i1}o_7?>0S%Z(nf1+QhN4_p;J燻TрӀ7*x/n?C!D 2g臰6r7CJUL!p"}%QPo1I {6Z5=tvǤʈ' >Zq.VDžBy^N1< Pi!Y'4\S0OB\Bb&1]Lф&xyIOd6le`L3Cw(u`3a^I8֝KϚƨhO~=ũ `Al1 |́l" h1]"׆dvy&,H0\ dֳ` 竤C%bHd>^JB1d|stPCDcy]?<Ƈ{>'y8`1B N[ܧ$2(jliqTZq0*}q+ww61 m(iVŅ8XWl;Pw)t^vЯXzQǔ#2VXѽ;Q͏ ];Qn&镧=&mS`xS%K);[MEy@&@"J] 0|Ju@cG-M)9!R:QoLEy6x ` rrKA#XXo4LGGAywLpE* LCTBy^ƛ&zմ cs;OA@#WT4T =6\ySy^,%bç#{ډh^S\0ҩR:tW xeFwR+I{ \m>{J$t$7BuMW )]*HbAewZLO%ܚ ]0_Ks PK^WƸ%ڊ,+ctmeAV v?xC&Md\nlf!I~. C$>ހ{% uC6I` 1Hͥ@9sT +DEp?0lo$)A+Qs AìE8 6JVd5^0R#,IM4qL3-GW]Ko i[:LƹKv^UZeaL14pb8乨p/Jq-MUm (GBls\t > stream xw8>Z~}{knm!)XlҴʖ2v"'`gO0͌>N\sDt[/w淏Ͽo&} *4J!*X )F\f| %Rr:㄄wwQ2%*̦n>Mߘ^!EӢ4-dOFTWa fp-&4"ݶt%өwJR~w"? ?,Wwc)&D4<""kcBtj:en56D`:hLȧ~redIY}2}ThОm)>:=(|?OрD/$L^:U`D*= ^EY5ԬK5ie ̵i~?2TTik| D.m)x:qUTi? K4ha|is)e;1k Lptr.,.fΏxҶ `Yd#|lX&%+'~d`r {%[ʰ>6ܲ%ˬlJS|h`D &YELr.tgf.r;g7]ѕ8QG8ƘUhfw4/<µM/i\KS#*cBF@Sn10"ƹtD^ ,2 WX9كC9^ 9N-ェ:&)!nh-ϫ QEGx"uj!R: C[2|3 90f]ü:1֏̣Ssd`')ex c_ <'44A45}`J eQBkG-q^,O/2eLtt=0haz- V{VĨ<47=CTҬ{Cڢj^~{W`L\^UML:\ƞ FIKhOpjE+%拜T(Ҵʛ$Y4pcE%,Ïgq>Wp|6n(REa]o Q1-U8MJ6ebهxyw`H av'Uw!GYt'FW76K6b68.xDK@i=/v5>F6)_ †¶;~ܴv,PkҬOGK4s3UdK9Ɔ6]<Ծo*6:qftZڝ:АdM  u|fn:NǞOu@dm49ݶ7|v/'k֨AB醈1D GD"C$]ڶz /尿bmlVѮup ԐjU{t&fl_͙[.#ڥścI\ {' 0^=yQQ\C3}+Mjtay8i~ o]Bh~^+?ۺ¸j$RZC?wO>n>fF;6iڥ[:ң=I{_fuW?z endstream endobj 1844 0 obj << /Type /ObjStm /N 100 /First 1021 /Length 2398 /Filter /FlateDecode >> stream xڵ[] }_eHIZH,nᵁc:5P&.љ3I͙Zj{@\:{zՃQy=.[.ne: .t.Uv E\E,iCgKϥ(-s3\+iGmH .c?v 9_&~.u@#@|a:RTU@D/0Dk뿙|S^շZ-(@E}O%uA3[1wAO8A^|^\oqw, ;.ûOgrÏoz$0&).q/޼-..hy1f+8x(E##G @@@@@@@@@@@<y 3g @<y +W @^y d d=_o]*0 MlzLbLj(zBƔX}W j:Kՠ !Pyt.P]Lol~8$+:`NƭR+鮃myO.7]2\wmP].r miJHuСc :ەHu}m2eFuiwL3Z>(AeϺC\̖qX7bh&n؟upKE#pk؛%؟uGs|E[52nu&؟u hO\l9u}O]]"D;& ؟trԗQnku2:qk(Fcuej1gYw]tF3;wٟu; ^lбiI*"5jb$n&w :dۖˀD j%jOmu6mY?6q} R,ۺkXR$Snk.EiiD))P?&1nHV]~P_fE%9uD۸J$ݹ?pnFQ[Iu Ire'jܟt 5{(E_2L\fW}OTŹ?2 #g`FJ4.p>z9kyFhEMٖۖr@ڶvm~kB|'0ZеDzkrkܬk2k:Rԟ]K\K$~kI^g[pOۖT:2dKڗ9`SڹĞ:R{ѼsI_g];H1iλD|.ʅFڼ:s/voHۗTuό%UID*bcv02 ӊIzZJ{D23^{MDBN\gdsΤL"dL;D:+SV&vzhj{DzbݻI\s3est3:;r3?%pc endstream endobj 2001 0 obj << /Length 1230 /Filter /FlateDecode >> stream xݛKs8,4BYNtWk C`&d~HA'}uaF} ⬷w{*&\00?s~[!̋Dh\%PߟkKB>. }gGQ FDEJZQO->w:>>Zʕ&}lw+&`J @ E< Mx^dGH=oaTȘjR  @%P'Ѐ #lM#$0( LP֜ӄhf[pOL\e'pt0,R&V+]0{?SPsC]bU0f"s2 TJ[;T %l*ۏ9x0xʎ  S%0٣YSG|S}GK <`tV.Z ZhO<A"ʢ|jâVе#>&;חЎVY A P&pW`C\05J'_F b!> -%f?>J˔j:*Ѹ;qaz0 m@M̪h ̒G6R`KۨZ5t_CRS`倳saZ4yz9"_L2I5nV [=Nղzݺ&6 (keK,Lmq \Of0 HSaTt;= q*6Eduڈ\c#Pwթ5 ~cJ 2~=۩N?|D#ҽu:>0;(?ZXF#4z|u][λqu ^ ZXl7GX~DF1J2;?uw)Wヂunx#dbs͸:ypJAu3tpC'mhr`qzrzq(0 쐧6$nln 68kxBuxgcFuv>MB~VHr" S&  &GBa5:ܦ lcNBiM~/` dQ'SW{sz8Wu b{*dPz!VG?֋ F endstream endobj 2053 0 obj << /Length 1480 /Filter /FlateDecode >> stream xKs8| Vjf5ܒ9x&`HCvW,^#8{r?NV- σp!(ҠHA6|27}>~ Dj1d@)H"J aFcJquXL5~Z,?GcX-Qf%%C8s yՇ˷ɗp3!f|}ƘBtKY:lZ7ˢf33xmF¯i6ˆl6E &]ro[Hq"(Np޳Ut'$8-.hIkIx JYPtY&!*82Y1$uN4O,w=KAD Jqbj DF.(j07V੖怚B)ANfc^)5q1pbc7"10^1u8v>s>!+ߛ[ʂ +4"0H$c[9:$P3~uui+q`Ěyjk&:p V~3,zaݠmgɒi̝ qhb:aj:8Oco;d;:V`:ڒ3N%U~X֥ n7892juQ.f#꜑ i ӴwwuA:2S({_0qW8O8uZq-ka`dp:8ƍY.ViJ!q NBH1)KZNn1%R:Q "R`ʔUrJ{ û3ΠDPKqhWo;?5_RH^/dFZW}\4^+A4\Îo|.\oV58,gd.tDO89gG+iqP9X; ە~EReuqEAj;>gKHmBiRgZ6=4v ¦L8`WJ2@¶+yIޙUܩFDVI:q's>! z  c{x!UCs jQ&/o蔩oG;`;tnv7)7:Eoꯟ~.CYUZw (, 9Cmj{NƼl1҂fsMшZ/}Zɂ$1ea[BlT,4![1fc?َ,N-=c*sBZ6YZǭI0R΁C0sPIy٩ܳתi;"Hfa P4I^0ցd򢭧O DL~ޗ0&ͪ$IQ-*F-}'}a0*'hc:LsE)7ϨSyB endstream endobj 1950 0 obj << /Type /ObjStm /N 100 /First 1022 /Length 2324 /Filter /FlateDecode >> stream xڽ[n }W}+H-&m,XMd#t(؎u,8Tэ1z/T(bcG.K6,4]ĨyDl4H4C?[k6u4c&ãYzctƀtƀf*O;{Jgh:^jn X՞0dWR1YFRGEgki E2O^ 3:e\ )^WC5"Pm\A9\VS1 q("`M.W+Y] ;AV 锢ڰ}tYEkj_&ʨ¨7*JrRURVuF'Ρ d @dKW } p5b޵Pq]2oˋ\p\^=~QOtwH/|s?븠/dH] 2m=p%vȤ .o"VrZXOF\ ]+3dx=v%YVrRdd=JX;r=2s=J4)f#d'Cėijt)2 Jmfz2ՕiUhȬӅPaTrl).o.=MqNۻ+QY:f*S[;t\Ir2+ӄ48:f*S_;udP{NYt%tÞSש7UJ鷉 \Yj?>J~a0uWBY5#3ϿU6o!ȬO ]t/9R>6p!F`܀2ϿʥO$.d*e X~]BZ5##$Ef}J(3S*9_jNƓ$SKBxp>~c'gKՕgSӕ(k@2wϿȮĹ} NנLa/W8ɰ9|./vyɜfZ0VgLRdhugdguj4:ou2:miU}y]V'}Vuc:Y_aul:w)y>S=X[RYW#ou :IwzG/_?[kSluӔ׸AG0"ϚjF-[ @nr -ϙeuJ}{huIꔶg[7Z3)cթݼ)ViSdymV}V=pVN9aթ;{A;tNt^o霴d{FlN8]״96zw*FیNۜW=F}F%kF}FHsщVu:Pos:ݵ;ڃs:ufߐH;ڶs:5ߴө>SzYS7Natu:uK\N'ֱg+Ӊ9B'ӉU9F͙Ӊuns:Yn4:ћӉ+ӉㇴөN',-t"}NȴөUlyӉU endstream endobj 2085 0 obj << /Length 1276 /Filter /FlateDecode >> stream xݚMs: -]};vN٥]>؁I# NLWNt+@~ 0hb%PzNx'-Fs@ b-Z#UV$r>?dÑ2=d=W?}O#)6.Hl@Ip;x΅BÏ&f 32At(%͖U*w3tADKL@4 VE8F?Cni ȩ2x/hRs0u *.Ĺ*+TA5"RiqHQԀ"Z ʄ%lpBΒ24# R KzGnb[e`Y G5aP3k+ݧi JmqZ*I3qU o&b]ƻ&i(bVp+h$@evS&)3>e6LPԉHa[FY^kZچ# 9VID hEiS0SfX0fXaSPtfz)kw*Tu$`OSҪcmȲpEYb6Zؖ$bt[5ܖ|Wɪ!KFSצ!"`疵Sc3|(GhZUf-ksSxО/gT冇qӹogۦԪ82b3,|Ԅj6B,ơ |0D mqƣMjSq,q$ Jf\pj{Za"$h<dtZ8 `[8Thqu\bW%^׻7Ga @p* CqSq`9:]uWaYPj_nóiy +vZڸWmO&+hh|V]eKj'ίa wJբ~sx}p2$/+<=j^\Efj?‚VvB\!P7J Jhݗy=lWJֲE#QB U&S>*ie jTM29R]$E@FJ,uǃx endstream endobj 2091 0 obj << /Length 2957 /Filter /FlateDecode >> stream xڍK{6_=-}˧(GXNn$B"Vd}EYr^Lhf0p?΂A0Hԏ`$X=X}p?>Ma8<Y4O'QFơf8o-[o~xMaA"`0]Ijl5LEq /.e^1%aU[UUt M͘UlxM!|[*FV3V88.z+*U^o~|'$QQyi~4e[6$B!42Э[Szl4g6-~vja*QHBoZUc=Egf B9].\Z[%w,y=7K }Jd >+$g>RavN[G!? Q@#yWߟJq *qMfvƞJúsK eaf} @~AB=]vY/xw ] AkH8C_$ ZBv"k!~cf tt8 Ld$\{N$h: K&hzWUJuVrſ[tm_wti)籠FJH;P oš w]nz 8!@g:BQ`S},MtZc).JNw#, JSqNor 'xk[<} Ժk!s҉ju,fRpӲl=,X< :V+D.qoZ'8H =Z;WmiVmTQBqYrνrߕJAA [HB)b]-l`g\X#'E%SD0"O/slue/f0Ȑ_ Xô/qsحk:w -'=`^0k^J6 zI^RgNXP ZfWiF uJ/]~괮OJhجzU^il$Wj95807UR7emEuu6=n}b4\3ʈզZ0ATA MiS 5wEٽ?ߨ5-{fM+\ۧ-,8%q9I K$W90=ƟGCa̴J| 7jK>"RA0tI ""nՋ!(T;DR *xFWK$b)`#[j&q1O] i[JCzԌ* $>PL2vД SNRVUR}Òu8!KOƜ(Y\[hԠY@5HŪfL1Lt ך \<^}?I);?r#7޶+9pRCAxd"0)D?=N<,&~y !d[n}Z>2#_jc VG io\'<b#q}POP$d|1z 4T۬)@@)l;~*%PG%RNX $wЛ~t[![#k5$FRE^D~CO&׶TV hGeOz{2*'Wg8A?ă߃ApϏ0,`] >(>R ٘B>8^фrABabjUk=g?`iQh,{ۅ`1r:`4Nr a@3Pxt|y'e짓 |GS:V-1&蟘pnt8rA 3I #R({xr/}Lw#_)ߴ5 Nq Qƹʽ]q?k c0q ^l,r[*'OF#YpVubv`y#a+!R. u9HLcy?~ENx) d endstream endobj 2101 0 obj << /Length 2503 /Filter /FlateDecode >> stream xڕXKܶW- @ ?Le&*gʒ8sfIZf$Y0X;9SD$8J'ni@,̳H0K3.2U$I2´%u-ϊu{vvQLŴ2T 3%Q a04š d^ƍu+*aO:-[glPXu˾HY Z3p A<aLc \3mw֍""E"#&M\ :f8m^b@2b$&01̶OE_6bbZ~_ʓt劳0B4VI5/t?x?Cc+^DX"ae`]kjn̮ >EBٺynȾD`ksMڒ^[ΜGæ?'USС3`s8;3 +L@RJD c*}mBgh#Z'4PUVYnlyS,IcYb) ƶ;wnwH$^tk$P%7ouu sUT}ULl?pWB2ż]8kzDL,}*hGW@oB;sN ?at)zVrr%'-|i1dS[*zlh[57ʂHF'ff(Os4?` ( W<ڙZFp s yZoEmbpK6(Û}߉b8-byļ]2dE|5]`8QMPr7xxcpy|.]xIZ U>Uo|Ql"} <(?9.Pǁ9ԶOlp4CE%7&:v'c f*e*?NʶږJc򠟨6o>at7xENj {{*jt롚RDasTqPX"%X%V*n\5_tPqo :ׅWh`SN*n:7PIcSmIɮ>93:32U {_,^h ܸ@3Wj[Xl 1/Ua`;ضY*c}&(7QY(*} +3O{J5X egt]pLOxdE[cn#umS瀚-JkoGás>wlC͚[.ނS?ybJ{$`A*[Uh OOqN*up\-r~Az:ôJվaX'C8lGw k_87BΝ5;us5 '|Ágw%En\k@Qeg1]">#z}x endstream endobj 2108 0 obj << /Length 2438 /Filter /FlateDecode >> stream xڭXKs6Wȩ@!l%*?R[N+>' 93l*:hh6"D׋8H# OD``~o.^]e"qTąnHe**< nsؚqWכiBEiR0A3WW2?MH"-"o4ÛlUuD{\Nmdv3%N4npИywGsSC'݈y)97\HNݢ(f1 ~:wk' @6wJpw:<0]51~t:sOܓ t ׌6Lf&Wj-]'>WJ"C%ʾm-;O R,OUfn&%ktm^FuW2e9\6QåM`C WM%n`$MY3)w7M:xt--NWOՑSW4NB22=>q+" )AD Ȃ[r^//!tժ J9j:i] yoKR$AKrޭLEeBРn-o7 /{ vj$UȤ7FPnσ'z`q"|[I^Dݺ"f#(KȂ4j?A! k:w.w/D]aXy3VH٩v%&ħ}oG*P1fSɊ=/R}PopMZ^Fcv?ႦS<Őd듌/3[h}DWtnQm"⬩=ôT`4⁓ZVB'>e?d)š r}"THBؕ_㠂MP!x$6PQ555%pAG^1%:WNUy@H#"n7?7߭&4D>UvkHnI kF0D2=14IeQf)I_Ieh)FpR 5Uv=C( q,:|t)o%l)=+OAl C]϶m sa 3"mu896i*PKH9N}}f.I]=C<ف$q,)m+<\kx*Rzƒ ya`) gĿD--Xq? K`Sf}e_XQ"_IsPmzo5$KRKv}ד5V#)s-sWԨHn}Z^eo:y1U 2'֬i>T}poLc?*Ǹkx|:E0@6g7vZOWrɻ5zGe>OJzB |V g%YS㷃hcA#!TxMg8rh\.ׄ]g8b#l7[w̟9\l<D}ݡ/K0FEJqмQCA{۲Kt&5bdL D1 H mz>Pf \83ؠfN}1*a-/QsLbDqo;i-Q>:dwv=%,=8r*&%xb&&+;LhՌ[$w 0b^9TZmThaߑ;Չ\SF;P+-Σ V:ET1?)`pC. 0ɩTC k~4}*5ћůCQ/ WԖ`a5fٻP'DС endstream endobj 2116 0 obj << /Length 2551 /Filter /FlateDecode >> stream xڍYYs8~ϯ>⑪}dlf'eڢ)b"55oHʴ.FXnWboU2er-Xv{ G?l^dJ$qb٭2T\6տ#X\0It=ՕZ:rDzW̧2Z‹-,yԔuYd{WwcJߏNίsi_]}is8m\EZZ{j\Uy\VnoNDe_7uhZ"TltTG DZiY D/=s-QyUپQ&}bπͧf`RjՑٗn&W9˰Yþ2}jyН(:$uÉA'~U7xC' v`,$h^x(_]'v"Cۑϵҙq`RzHGILo{_@!2TLC\X \Fx7c׃ό4ѷ?z?_Su)OAJ$R|i*L),qa XR SnXXf;<\)W;)Z67}?< v :kBSGpaiA:qRS4@u2Rc.!רS \X)~sɣkk/SVs4LYe)aD@~>g)eC+'ѵOO /m؈}X pϏ=VmXܩ. i{7]:U{jA z6zBS_&rEgf2Ng{cˌ@B_B厎Y`\2Aǂ?D_YJ~dI ;IoB:B}P9Ec_ɶGB9 .o;ϰ1)[{B> stream xڵVr0+8ŒQę3큀0E8I'/ڕVus! (NB'N͜Z٪zqЁH:2);Cg;]I#E C"z>Aĕ.}  N(A"b *AJ:6#w:Mo4WSҰɸld5ۤo2)=? M쭧Y۲DͦL#("|Xtcxw =jt:W# XBO/C7 zQLdi"|`Aҟ"=Ds* ,Xv;l>/_4].ߕiXa:7E0IV*\QNjJW.5tEK)޸@>ArQ' BѐG 4Y?G1:>Vw֏1n}ЭC}P'&rEi,66lǸl,.,h?Y?|}VVfl7h>AG/sP2pMٳ3ԕϺE2TYS ~,b_.<}jy!jĄ^:Bk* ѩD٧3f)ﺬLtimºk}]NL+Uþ#a} i۪iĮȌE#h收zp`S\Pو=:1HC4//ZJ]u=^d[/e endstream endobj 2124 0 obj << /Length 2302 /Filter /FlateDecode >> stream xڭY[o6~ϯ[el mӃnn7@tLD\]N IK6{bQhH|3X}&ZE+Y0γU(WZn#0͗?JDabu[*OPnOM\56uM`ܫ&)[}EW[= <صlP jZE<~DnFm>fFB`@ ,a-\Z;ۈ$i;-qq/*I]c# @[ ZHr_kvlK+8p'lFB!|C&s[;[|ks c5+N,P1ЭOQfYf%R[7ԈtuWad+u+H ,92 nk}Dť~*FvxAQihu_Tr"usNe50u6cs1iƜf__^DD&'[$#4Aԧp꼫idZPfJ m%"ȼu=~a[#8sa}̓<;bl/;p5:jx", Sޅޘ;+%_\VMy<[~rˀ8Xv1cOPF bl:* [3F[3hjQܳ' ̀ 䉅錝dQڀ6=VUJ+J/*zH$J8%^j`M|CY"tرb7]cɎ4=-m-ƯԔT@6%%T\[s<8/1ws>.زaf _Ň%xJ@ ;+0!?3*\/+*v9pPsO7Fo&X3:k :~I8gL2 \^Y>A~2SGreE % c6:sR`A, -d|B9qΕrF8™;JKfiW ]vMyoHz_hϘBrC)>m`$o:AR9Vtx{$=Љ4xm|u%"C=>qjhCzRt1=g׿GYČ \j[`:cu=j]$rFY%g2aw gy ^`=N \:QFI[igS]/ f2TdV;a˔I'U%b?y 1W$5< R&6F1b3ƛn6@wqh>V 3a| -|h9'ۼx`a 3+N,+fXQ.`)] mV`Rd6oTȰf)8p_uDŎ/1c gSVT۪'~J(wι" ;1rp:Sgkv^z"!^]21aҸ 8+0J Ū?TR@B E $6Ѓѿo2@X&&EJ endstream endobj 2130 0 obj << /Length 3105 /Filter /FlateDecode >> stream xڭZK6ϯQ &&ٸK*ݪMrHLL.׷_Ⱥ t7n.ۇ?(d" *2D|{{F؋FEp!uqD]"3ރq_BD]9" "{|GE#$Nh!לMlvfO|)4JvffƚDdzPr^8jOhz>F>଱}3;T$I'0jT911AН_~ Z s(RM@rߖiaeL8ɩ #94S[4̣r[`1p{ Gh8m 愓XZ {3~U}€Ҷ*+{3Н:}+@ aX= u Cy (~ !7cƭ% I8mU#?y Ƿ0##"[{z|VMfU髲9O6[[_|zJ8Gsf $:x{nk:yw.JO* QR\)I /BU+”f?mE{Ro3 R68=@UpںLs|"ݕupoM|?uOk@l000pl!]{89.tp دV:o.g F!AQ"q1 byqh|Z B'4>#&ezUnV H HTt±pr%tx` lz=mOOJsQض~pl3f7`Z-(2)e[1+ݜex tV CzMer ^gOK8N<[l2xA6۪U*[z4|A}YiSd8Y|}i+! 벭I0 $k|0إ̐g$~;L]&MGD.Wƹzㆿ`NcԈڴ XIՇ: mf[[Ոɺ~n =>amD[wwAc@eUݧ:Lh ,D2zcqIܹae= p\A:qڌYzѝ%11Lv6Unvx*:쩛9qE`ɜO4Q\O vp0 cy48в Mm :_3&\~>4{ Λjn<D}ol17sVi׳YQ'LǛȋ+!0ܹn _o!BiN0C)f h G0BO&[zhO6(''ݼ[ yXf?| BhTU UүP 0]f@ϧ9yĬjʵ^'s(Pd|#,_6Җƿ +; oTq쀀 Q4o lo쑯 FkjŒ.}&UHq~4[?iUOv fa&ȍs! =&B쩦PN,o#1g"XTه' @܇}՚.ڻD  4I1Ks #gM3>v,vwW6 =zrQ/]'D(W=Y]/n0W&34rJk@(u"sYFᐴqu 5 `GB&.ʩ0$TŜF)3it5BS }n2}!P8S0E;@5]rH0ACw&}1 MgEz邢mx% 9g7]dkj5xqmB۹8İm~>[ן~!&t/߾$:jp3wd$B}[qf$2Xi/NJh .]-סɟt-tntghwMXNφ-*!J4m R`>Mw'b' 邩{'U"`/-A?UsJX GSlV 'iT8uiLuĄ'p4rKH vݳf@4ZCT,/.MC'l<^qn PsNt=$ů$38 \饉" fl29S+f"|~ g|fh$ ò3JaђH=|(AU8PݙZ6?ɯCy9%QXr*Ua>VEm*w/TWjap wZߩ1:`rf]-7~oMFdCOh.q/ºp+>g.RK# ZW~@ M\3Bu>?R*?* $us鮍(FkBP%<GX՜@c ?GlwqOCX,}&-,rWL/SڄsfsweҾ *~(hC!UˁV 74vOq5xbYVAp4SOq]_ʹ̥u i珌.ߞ!dI^q]Oh!m>>? endstream endobj 2137 0 obj << /Length 2662 /Filter /FlateDecode >> stream xZKsW(%^$f+3$[:=, I=䷧)RdYMM*X$@7LM@w d" @ JT4:x;|'hh .\ +~% CH ~'sܗ$$9"qC}D$LhpĊp0?DQp~^_t)!?twiLH[35VOyHRѴr9_idjnN jxIĬF Q!y eA߽X8!QàFVh:$@B!e/G(Xܫ1ÿD͜8t痻_p:4&04+~~:>UCͺ60`<6bwsI[c{V!CjO{“mmA=_4i,$!K$QtȮצ?uMl.`WO@%H S㽥񍚽D3hKt}i(D  l`{P@ TD˴Ui@ .gk vs7B< {~OpW'F;FrF;h&ky:Hb.;6&Ս !'C lm `eXA ƴT zF R&I(Ut'YeJ^pFĿ}]Ƀ;CPٯEp1MQ7*BBe!!񫻕Mòw1+?EFnb9$ە<[@A`9)9ir'mIY ӽ29;zAɒS㽜F^N: c18 #z(yγ`3pɊ9w@6ZC> stream xڽZnd }W}шHJ"@-C>l6nh)l/}9g(kὗCR$;jaKBvraV]m%+BM58..DT%I`\p':}w=Kruu{>R,YF>8ZW1$>E)a2ϭ$,%IÄ0$fUAD`QPҊKӂDiwVSv$D$IG),0c $KCBe8^Vv]9IbnI54 J8# V¯ ր4pJIViTquG׊\582>104DہC {m%$넑 .!v5B2&K$;a^xR1_*B%cglgmE̹GQO]y60wLԟ–.6|0'8y8J@2* F/0eL%D`' !ֆ|3>/+uhi D耕xq{\O?_>^bǫ+ywmLFY6r:xvO7{p[|:[dL_}uuXf8JF3`z0D \ګPc X d<=V'Բ `yu1L$.:f`z0fhQ˲ X0f8m L[F p͂HV2j Y32Vyf3`t=&3|C>f}F%s&}B J0k6#bbe#L-l>ʿ/[|v?)@+?ӻMr}/w( <ܽx}\ieڽ.;} Ww‰gtt*ƽ^7S]fJ{#^d2L>[Êv^M0ݔщ ux&&lue,f6˶YͲmmle,f6}7`ز+E@zdә g&/ -C{:f}AL Tw^_PG2v$3`T`W0hEg */* j T^_Prݸ :D*XM`U34Sy}AU &3 )Cԙ ``Z,hdov==a?<f}s" ذSX_ "%ȭMyi} &%/ ]g S[~& dž&c+5=f3OBBLElS`֧687sCAnuJ`0 v֧ߦb(&YѳL]鷵 kslP΀Y[ &"%ltIo XPLa'ُ,S݃O܃g[La-#t?ao} LD#UlTI'&M=rl2}lҷW&X'Zq+x iEL) 5gprz5\!+3/Bǝ&1S1/p4Y.-<+ϊt*DH0qݱosE+&j`~V?chjq7G뛦>vwmv>=W[%jWS~9f/ǞxH۳bIOlI?5 lz^U2be*&O-~x [2~Gt\~j}*EۑwMeByEu; ۝}$~-~9L#VnuLe/nz?b*z?zv~I'mԑ4u?,&Gai00`yv΅ 1<(j=؆S( O! endstream endobj 2142 0 obj << /Length 2795 /Filter /FlateDecode >> stream xڵZKϯPn Щn$lFìDjIj_>!%H32' n4~tAllc 4}.)^XɈ[<̢ |y򷇻(`dJ(+oKEޘ8aаTW5d23(vwAkyA[H]%,*I~i>D,.قQQ{D tQjY`-fo. }DtrY>+=&!ӕQj? ,z-+7*ue _Q]>_qtUuSL$#$L%7eo#By@ ! :=|iVTK F?!1XD[zOQ{plYx- _l2 9P~jҟ\⌧c ^{.[׻n%t+\#H[ 'Pj.Wte]}%r>}X蚦{ )}Y]aؠNlGUzbƒ[>5 8ls٪-׮CĖ(ZMwQQmwytj1<ἊIuE>vΎg31{XmE9Xov*rC(t 4CgOXNHEL(åtٖ_}ӣt*jh9TGky ueyU_-Pj:*a@o w&C^Օ藂‚ vS&P?Z;2w$l#ˎѸҚl.pcԔ.MYJE$!폩vru]DqH=/."~YeRnAUO6n1yN-A1>ߦ5 |8ustv*H0N(SJ2QN `2%dl)G[-o11uرR>\=hvyv٩e#B6.p3 NQs1%{(`f|!p:V~9`2_OuWzɵ'Ǩ1jG;C}Sa EZ8 .qm诫0}t%2ԤB#~8#tYo@}3ijwGS֞5 ika!v+ewX$X 6&OIr|ۆ&xV'r7 yq>Q.3(Vۘ2 >lס]Ց!W×]v{$X78׍̆g'ؗWOy+1\`m@TL="mܴE~jK6]95vY9Ȑ\ }C9xfD|ϻz|C&c}(\݇>L]3:ov.a20ud2"u7rO(Golu ؚegW8{ V,vFguӆQÈਭ>rԑR*`vsK,"3.gЍĄI\D يo$$35 GQ fr?t>bp۾Ty.}wdu.|ġ"u.ה.Y62c?5]ktW@%9Zr)IUL ߩHm9_~a2πt )C?BkM `%>R HȘ';G3= ,&$`УBr>f훼z&s_Stjp2ѹAp=uPP1eDSLep+q 4. XRFA RUĊO|?)IukP _2&-LmG& ;{ b Vg*l&BӱRJ) Fpfr<ނl|YUdœLOk'hp1V2#@}kƅ"Zr+EF WqmTaڄj~| o^[b`Y~= ve|푈8l Jñ\cf6.},-7S|t5S(f̓E g8F91 x,\s@xcWmMBژRD&eZ´h[Œhc犲E c=97ƫ7 y]MC B,b%i{B7LBhBH_ a틔9` q{p4 w=& H`h6%`ɮz$ Q b/oFҘPXCvٸdV>"`{ ؐ~eEBb.t(]@|W;aDE d#c$f)αv^,D{Ȏ{5ۓ_.2`;vln5WeeGh&߹5C><[DZsY/ka VT%i=f8an[]hՏJųPM;=Ș.u6Lq U+YBbǻm^mY1*2Ӭ [Tl!$TϢb Gd1TksHñ9V~humcEɼq?NIhJ1gqD endstream endobj 2147 0 obj << /Length 2618 /Filter /FlateDecode >> stream xZY8~ϯvFޤf f;cն6ԑ!Y>ȓ)dINH8J&-/kՋWT' g$IB҉ba%W_,dbKoW?rVJ$`_g7!ܜP`SyUy_6,F >/C{ӾwyFI .P+r'(ӔQI XIL`4sg's:>Ωq Y[VFS&P*O(PjLAftG f3*n Oƅ^A')̒/dtrggmΌ~=DZ2OxF}X&!C@fL[eFtg arNh K@@Wc${仾1W;c){+~FQ ͯL~ u g0ػ<8ig'Hfvfa! "8RZ1GqQP`{}2Nk <zz?Ӝg4CzЦ4iJ>j2"O%<  )wۼ4z(ɸ7nƧ}ns_^,٨{Q9)X q0: G@t s|gb2Jz=:~-Ѝ`9'󰙙@Pږ=f{{e,V{W4$h]:Lmڕ+%3gv1l|%;jjuW6_:>|, Yeqw]7{ri{L3ld]jG2D;&9tWnmof].]|k+~{*U,ٺ *U!/w.Y a,;Mp!dsy#F 'fo!^L#Vp`-HG(T/уhOfMɆGb%g|Q gcZXX_ G(fH(%Kr(mᏟo ϗb *" A؛2?D 1/ޥ簔)Ǣ'Kϱm _ `x[DbT}"X@0Z\ $ K_Gdg&# 98cq/5T @ :1Tz^"oaݦUv6lQG~RaZmW;iݖw3tjz0 3_nM^m| jyO@oG NÜo?`"D8&cw8CwC}+O'($0%Y w7T^7M](2thgD9ԷA+{J ZD)D135E!Wiјu>fඬE%LLgB?O:wX>}I#!2y8!i 4 NRlnP᪻b@ QSi`{*9P88`(8:i20L!@Σ/߽Lދ[K9K?bSMkw1h0g GXP I_\mk'_+>Nݿt7> stream xZKϯQShA8T[q*Uwr}H 9!l~(FK"@ )aɻeI&O*-YMdwoyw'{&3,y%'JdieM~^~-Xu?l:q%`:G>CDO,d*.Ebt,˄9Qk(57)gPP"p/cl= &N Rd,BI jHNރcSfLR"_"ͥ38S:p`Reڣ53.B5o=[5lWmW6_ݵvpݾ!Urv(lsV?ݗdEʅZd_T2oe=Vp 9[N<5%P1Ph$^jT6%f|BX9vLh,ؚ`t.5y),eKPiVAy5榬mX p[vU_h#f,5-uvO=ó'Ӥkir X{IBZ26K|6Zɘ*=tsٙ6^#ݶ {=WtsUMUjmUF[ZݡِdlG,hs*əqvkA8*$Xy"bqO;zQb7P/M;ح7"Zt*34ifp(K LP;Z߶uLO l-@o9BI3jvRʋhQ)V3e0& lH6:Q+\;,5*"wXNO{'CUwcN,W)P$s^6NdA uz5bͬC׉O)/9dBJIg~}[\ 4Y"X55{T`g-1@U7 L`@.^o|#_OdT|`v9 ù0)8ƸJe.S#k6GpL@ފlVbĦ o C͘tG0F.2lO~.ϛ[ g,?WЙ'30K;,̅[o#1 ۽YĻB̬>F`{+cu*d N&9P=@&zj:rF0BMOۡD%J!Mhlun<~0 Ǿуc.Cˡ݃; t3'#̪G;,9䆃f$$RV>.j4!ʿIgvK/s6~r ls.y)q6.g!OCΉ,{D}&U?x!)tt\ GF[^E}Ϻ72uQ#tilC9<5}وQ+K WQ_mmg&;g@Xf]I SKU# y~#+_0\sĻWO۝< lv4BR=WAm,=kXv)Bݍ [cl6>KӌX'1ImƸ2G[3LMҍπD޿9zbgk@l.$g'N@ |g`yq ⍌3~_րsJۿ :e?J)Laݎ0- 9\HhR3깵iYz:ez޽~I}.q8buÍ]]>Mp6u;l|2VL?'kF8=}n= o^. %PdhEz ~@pe{bYe{D2< ſg5 фaP,H5ը' ؗO\]3vaI10}:P_e .!_4dK"(*ffTf#1\lB*a\z[.4D EaJPu (G endstream endobj 2155 0 obj << /Length 3314 /Filter /FlateDecode >> stream x˒۸`rZX CRc*9j%jDG"'>H@haCƲ^h"<יezx~8or1J,,_e9rA22_f6ݜYx7BΪ٢wղl|`O>E+nK3{{gĬiٖ]oj[튮}nY[.LWݯ̙ JZw.B٪iΏ?Uf4-_㼅 ]~es'Ev_n <~W^ٻ5oj6ޔ]Y?|IAr9Ip{myؤ I=Ad,kQpAJfǯAy61h$X@u ]{mzj-_l_+͖0O5ٓڂpu[¬ʹЄ490Q83EǃVhSGl3 ^H;&9ظO ^NϺfSBsk7f3*?ힻ@}DžyCBL YтMsp`}]pE-7gHS"Qn!R5"mb`7.PT)1 =9@; B5Āc9(*/ClB]i鈥A(gWMA{NyS<#BDқZ"=Ǜ>Ob&)SfܩN) üs8?}Ct>8v@ a&x'dco&s@S=CCLר TH&2O/-$^mHǦ3b zݷFQY@Bw݅iNfp6f*]`MMyB)aAڥ F~UA&J HF=.Sv |nc۴fzQo8QQHh "InU6]wɜACfX:ēi„Xtdv&NGxO˖_m~N;` ;g+@ o>&PhE>A68(x6rA:4멖&J,@$ $ߜtLXtԘ(:ܧl:~ا;~?'*ls"M s(yX%ڊK N+Z$0XUh|V*Pīāa.Wy:Fr8txw:m`x0eL @CZ^SK.[#}>;:4bN'.69P[N6pؕ7PLYB.Ŭq;N{.}1_*v2>g݂}a]G!k.#!zg)<ŀ^TNBa[Iatk úwK8G;ŵRJEFIGE{K6CJq%-HsIn}y,&-0Qzm=JߝD nW6*~0?vh*ay[\@P&rWiT i;U)ȳiF& a%=MԾ\87Npj_VAtTk<T;^bv`,Ы7xwS˪-yi0u⡮2} d)sAT D ٳP*q |A/%],ٮϗu *av'p5C#2؃GOreu)=cݥ`(HQxkw9m; c6Q<"?f=]_F7]t12)9+^+cF^IB(:@?NC9(]4Hve S+OG[Hlc1\nB<13q$#]@W/9TD K endstream endobj 2161 0 obj << /Length 2571 /Filter /FlateDecode >> stream xڵZKsFW`O+dr׶^oUbiOI"AkЖ`pHI4"1hŗ8‘0Q%# &*hwxwWܼ=`CUhFBfc5O%KM9hƬ]p8ΐUnPSaZtc$ićAd6gTfFt6'qnx7n{(2fs"_f^tr4ҽ4{7oAgY|Q};&/\1!Ϳ`c".ۤ 9N2p(w:Md[0qѻޱUv I֍CvHBd9i JZ Ɲf t_lE! kR%<aČ5v!mt @1QqDh0{Pi f43vfB42D_B `滤Li J+ H{Ѡ^,r`ja/}mer؇X찿%qlp.n޾}ޥ ;zc̛ϳy=1v!qB iT Q&.d &xAҨ.8^C>@"8_3.\?]f(08Lp9,$T9{o6iDI\e>V1jVrDfvT/C('GQT>_HE,lPqQK(<<~ mIϮӧ ;h. M2]Wob@b%ʌ4 ,Ǡi0#L]@>",;Xx_2H~|ecq.1ڼQ Đ:R0( F è4' ,;=lEȥ>R@Hͫ^9F˞ޮ:J{f*CN6>z<ݧCidj$fG_sXjNKG1 qKt]fiDk;mܣb|fzuRU0|j3ᘌ3$ 5vסz\~Zx x'6GY->~kf=kl"mu&HniS C*mF>#;`9zzڰNжsEne Ss4@p@o3_43z Ct<ۘh$03``0628ꟙasc6MvQ.XFu|܋7E]g!N%\{9-[=(49z`/CSOŘ][lx-lD4  N1.!?o WWu`@G}+ձ/7IKڇڇlmmc?ܗU.]&n>_3K)jߗBr]]Ђ XC6*VԮђv-!CK$~i z& :Qu2^ұ6Bɘ|w}:`$X$cfӃ;g @l`~ MuyVh0eBxO*(Zb>kHoN/vw;nȫ¢ P%Lb"䂁Ly]Fmj6ӷG|΅|jGSbw<P'e"<;;PGVp#aD UF(K3?05n :'2ͫn| |dK=Sۓ,6NȊpB r R 6dE%$R Vͦ;P@+u}"7I*ikfaqNmed9@w45hIqe[:իb۪\oM$i1 !V刞XٹC34dBZ \֟(_zWmz Kh]pg=9f^:;d&<=c׏:Hh@f] Dިf/uŨ.iÆ0C VHwbn] 7ۗl^~.;O"\sO~Mvv6~ E%y 835 C澷:[ q`EK֜Ypxf?2sy(j ֛/J( & "v]A| }bQ`f'[TW\tTr\"G߷hΝ-P}" R ma=mu2Ǹ=|6xG٭/)d:S endstream endobj 2165 0 obj << /Length 2363 /Filter /FlateDecode >> stream xڵZIsW(Ub&5LerJJs%Hb"e}RɲFX -xh-3}~WdE5GDL1:-ow?}"*҅"$@\~>fjӜj=W&f(pۊnk_ufpn_xēvm,JXˮ\ta4'jbF&gS"')̧9+ ˮ{gͶ .[[6cda@g38k),yL4Scdn7m~[Ul4OWfc?aV##mk/]}kgceٹdE,RJVmf5Wk zjl{)I%PqY 9#]9fLf9ш`ws OCFպ|{o:p.ETeAAjEQu a34gPQ NeX\K8L8*4)jmf&iʛ@J|-|IݽF aE zַ# D"vt%-nEW=p]'W%6f~N#jcyA*|H/B:^ ̲Qpx)k!֫o'ۍuvjv~jVֳm]@e'wel~.髙߿5ґ:= b$}jK(jL9r>46 ةU۴a(op00o%d`ꭦ~ /(h!@T`{l~d^W GNcC<`'Ѥ';:*r,/AD|;3d:RG XJR6ٻHH x\zM/q( IƸߏoQ \pDVϷ 9; jRmbAUtOZ$ ys)&~dl711t/Y;7#}KmI<.QQzaI:t0 l.4c8)bSႭmx!cW;`WY,3r^Q.& 8b=gބgFipEC E g63)mP|QCv>,4~AmP/Z">{ΘTQW(J_=x/h'`VH,Vf.Y2 =qy9 Sc3(TZ \qŇ6;,,i dg odziu\ .QuL/Znr- .M<͏ya`mJ1-"]P '^Wo$Ρ̷aCŬZ4'K[p=T+ޛ oD_ 6k*쁽ê1xHW#:\@P2TnA3[P[#;!l׵:aPy CwQu4ؿs]_ Gy6 Z8xQ@lș].b+S1 o@RwNdQ.or6+ܦK$ Fkv{c#x,J4 PWHȍN4Rc擁JQ=3aԢN2UG(6M޻I0ٕjNxj%w(rI>OtB1Q7`i-"q }xcיNgWwH"EQ<Ӡ8g;]>pWb!&Bv-ks]r]5&a]N~=RNBQbt"?!Gv{GX\j5EL\+GrFN)j$Jxji=J5l⩲WѮi 6m7٬˺>sJp99wT6ЛEuSo qV`_V> stream xZKϯ [DC&0L`nkGICv=>bSTU$+~E&O M>4Ii$aZ%$3I[$ oǣ~e MI MS"3ܯ_[r?wh?)uvuU o\.^\q7yS7ltibi}Ue%K*6EEW}Ԩ7MPxn̅Da. exE>>"*enXJ2IO~ j(^+X;y/`-Ouͽ7+ϴSRjU~@'w-Hƈf 9^-A֖/wt1%xu{bm}[=.v[iKx5}U_BuAP G4,#`MRbd8id0$ͼqMUmv`{@?zJqp ~-MPSl 3Di[BI[i&)T.l nfmPeر3)D ~..+3)(FW~s^ r[vYf}_ DC^5 4x 1.Ըpe[v^Q<"xB38MŴ'XK@v!áG?Hs1^pbvmcޯ,Zd4*.4Gt!E|l[n^rWl}dLO8d" E RnH]uGE:" ֭-DVg+HLB܁XJ| >2UDG!9rS "8ZZP;1u’y;u=%dDQs5Iȯk$]d(IRs4Ӿ[CƦs;Űgվ_6>r'Rv\>'jO雌#@."ҷQL}vH]i dvsaY,nu@F$F g*رq]9 l}տ~ xfviπ.CMM3H{ҹq#-&<OyiYLæ(W)xqךd1sN`b1P/+ JY8&= 5%z CN{V0Il":sY. uD+Y>-I' ExrrvoW97w@Ņ_*{ 'U Ib߽Gzo+j-u|p6li gK ym0Cn) RC7-~x<&oMmGe$_ 3@#V\ŷ_p /tWeFLߜp#G䄗lg&%B_™VQR͡~x ? {ч;EA6}jWuνKnͩ]G@ Y<"9 ;(̬fTA RuRLp7~I@b$H>L գP=^_xh1><م]kv">90wvWE:x 5~ 착 GO!є:~o3>9ljs},bz>\u> stream xڵZK6Q]3|RnT2SmbK$ )inG9I&A)ӈF,jW||` ^>>M*S$J%#i&Z>8÷?)1F2x4D2z*_bExӷ?@Nh" mKf2 g)bo4*SDJm#)8<7gXX²,J`T&ӈkBMaWQьեD4$Imlf\ E1Kf~(˪^n !@uZֽڴ j( -y?M^e](vZc :\$8/}qHތb\ 7fvv .K ̠A[盖@BJ6fY3R":ƾ-DV$ez$OQ'm @ͭ{Wt0Qy6?̪vWa/gx)2)Шc4rmZ7{ٚ$TS'ԡ"%tW=x9ٸ9Gr=uq\np??}xOSv* @ h7N:$CБZ8#Z^/^`SzI;A;wUsp.CT8ZTݴPE"]xu+}nU_\-\<$ce'yOs'f5r!Ѩ2Yx2F?<..^̲x-7ݰ̣߰kg uQ+P<m!q0Xmw7ltޚ,4}Y( Pr>b&|W&:xyew_ynr-pNو~Jb\Bakd #3=yZapBf? mn{& nHo-R4( endstream endobj 2178 0 obj << /Length 2756 /Filter /FlateDecode >> stream xZI۸`nꊅ$؉]*qs%v7˔bOa!ERڬT* <{[H$|Hw.aJ&MReݿ,"} !ADD1:e!>{5bq6e"{q{} .K $/d ?%1n&w|s "bL@Sa4C;$ `l)XEv?5M0EMj,5U!`ÙAN1h3nkny]i}qpr‘VSJ`Ajr`lǴbǢfH[t f8"RPC0?zL@4fg7k>c87ƽQcgEu!4Ҧ+/ᳬ&/c H~iLDt8;`CJ8\Z'XGHD7KQtUw̺n7`NJd#cX pӛH2㻴j:+/F5dFc *nl,8P,[*Ϣn& (Z*zckMAi-g93 )*稲D85|[!tr8چ= )j]B .zs5gΫ]}c*JW:5LR 6pI⋴(* M`ZcsOբW3UnZeyz!Eoj/5X,U'zӼ~w`1ߤ-,7v[nk!ֻ|+[, c&x{z4dd#K%S<M4`$t, ZzȪ,13˾H21fO1C:*DwCP\M*M 8Gr_B3REЙC|SعZx1Hvz +:΂@ T:Q e|\.p"]|$. }Œ0aޓE.]5v"dYNlCd:9,y-v,pg`o J.s}Y_a%lZ *7ϾaBUWXG8`}tظk%q0ӥvK \pD%3S̩ dY `p8?+@f\̒,(d5a Wg 10vPb3jӤN I·?>yp @ޣ+U#eBə2dŶx>ۧP튼{ |_:$Jyq,9xWtਅ#V"Xzct%^:lPdxfzdTi+AϹ{ޣ@y/~{JY\YW i[U?1nuj̞W.ʴ>Kb7vfW)QK0]lnl,60nu{ՁVr_]2BCu@{FXy7^=!S!( 6`!92sHѧ9|L)~k`L/!lqG1ò~0hQW}P\\u_1߹Iڷviny< ,,p+]uB֣ӻ(5k`ԈG5Ϣ8εMSGzijD,P(%\7 NWWyS*!Gy eg6 %ۣWQ^ 5{rWGq*a:Vuyte$b}{pl|WaaዾШP1VbU7=.?! B; 3\ܲX|~]p?o[k zA_2X[!Fwhb;6cPJƂ$ * \G%*K,t?b$\,HTj!(0_:@"](XERZ%Ftk@OocI "*u.Ԉk=' ^P/5¸fx(]1 ~E_sb ,h.pvxƻg5RZ7/"O"yɬ}EA_q^tƦ62 Iqf9#r`? -mX3ʎ_7=F^$^ V> eۀ)gl¨ lz c.ru\[eU]˭Mmlw: @ Ǣ.@8<Qud> endstream endobj 2182 0 obj << /Length 2732 /Filter /FlateDecode >> stream xZv8+tδ|ǦgjNz*̢*qԱD+],t.b6$ьe?XWWxI\gF2b/W)ɇĝn~|d)m,(#uBy4NDh W;FYn@I$ᜬ `jwo4[3JDa'7jI}EL%(*RH0Z%0[f f{p|z29[.7S /\57?_/׶K!ĢX5zꫦ׻mƏ''ή&waroK;^bY,^m XZ7v؍ax.x>/7DBC<%/gbeXwv, h Jy6 h \DK" hQT!ʝWOwR4H ᕊ al}j5|3Uߴ^޺_0uRm`g몵pP6z̥a7prk(8B*>Y:vTa$C3`&VhN\+p ӧ'˵CM)[-"we7=1*S4^]f 8߄ TL"bte 9χeڱ9@.à}&2I1׼v}s1…8s0"KIN'1Li̝ pPfJ/y&$Wy"VΏ)aq<,_fR1&Zbk9Xbe,VTp?_yx@OՎF#p,H  ix m\ /a_`|eZ+~WAm ,Ri_wV%?:K{ kfy݄ 8AT|q\E2:p9X$GqckA;H NmG.0r!P߄1>Ky8U@-RHvl g9`GMl J?(`rS۾Z"]Ow`H]Wi`U9 oFa2E98¶b~,U۾:p'\&R h.^ 9r׶GAW{8 qB p^,ZqNy7Q [ۅL.4m^N>oA]߮J;6~-ݢgg/M[YIk[I)ᅾE?oq d=,SzPݤGr/lCF[֞+ $P Jf.B Ht@hqw\bm?w[@0rC"#? $Cs3u endstream endobj 2186 0 obj << /Length 2582 /Filter /FlateDecode >> stream xڽZݓ۶_GBM0>Le'NL(R!)}X(ռ >vow!aɇW MTOub$#&K"oyW߼&ad4c}$(#evUv7s]̹-nwl+hG?f\UQX95~M_P|LVͯ}^}9D$?|C%IE 3a$AʷԲUwɐD̙ JfH/uY}ag1{,Y wU^ժX%]P/,nlVb]mݞ3X贀%=`[ c$Sɜg3+ ܶ4&R"tصz Ou-\@ktIƳd~˯4YBw %"3ɣNPVGPeY pJG`u7VzATc#3$cB1Ĉ=zj}Yv}[m}=˲-07b[8`mD_#nq}k:䞦DQs!wF܍ (R:eƙWXv(^.X皓̰s|bDeE}5%ع`ET a?0#ˮfcO ۊhp'( ;-X=A.άce!Tڎb&wh{ۀ]uRլ =q-wOҳ-;tc NlCk\|”`r0X+ƶ JY Og~ݷѱ+NGe_嗞I5_Ib'ϲ2g1#F3={.A bD=_FAeĶiuٗx޾ He7m7@NJ18a#TbP7pDZ!7"PfVcZ#"J}Zb YyKW\^ҞXVO~W]LFcZ>|\36i btg |$ SLlV9 Eb:soS<@Wc8~oS4>D+TRkאny=zP !F~ g]0d4k]\RFR -@\ip1)"(ziE7Hulr6cHA\n: 5` tPw;"8w„gBLh~ bz:#s+A`C'O~} R~2*ɟ4E%©ޅ|GlcƓ>aGo]$f2yu$Ns:C7pF'l/i el2͈`|RLg3\gC9:[- +(\eyמ3~Wy# V kZ>p}]z *%ˢ;xGw'x9| 5G2^Xi4ČOUQ/pi|x2J~<2 |u+ /rvdJ3 =?\/fk5OS[Ÿg^uT0e cq~u>m b#NO S0 0>y}!+H"ʮ 0[Uv7fw~߇&_eRon=,l< -='>]M rVg*'س:=D쏄J/gLB}%@.B~diyU=ao*p G3MP2wnD[p*m(y7LS¸8OC%z`-*\+cMun7{A"6=1+{Ŕ[&N@.A JV^)S;Ku7·vQpry(aoӘuoskIrִK4*|Ve/K{ϵ݃lpo[.NrY,=(H`fM}iJ ys 'ڨ@ä¥ϖFpz*V_dJׇ,[z0gR| Q'31nڿͷmxt q-_h63(F3gnK/@c٠?j,] F`n [U.Sz %1#\wÝ\x2ޚ=G`!ܟ:=$WWC ialk ‹ބ^ }tEϾ>>Jn{Ax6J endstream endobj 2139 0 obj << /Type /ObjStm /N 100 /First 913 /Length 1373 /Filter /FlateDecode >> stream xXM7/iK+  I(b#X$aޱYfz\Uz.*k*TS?=JZ< [&q xIZW5Y QԼJІi)UN132V @ 0ܫT*pS8>_ _VP1ZP m arh5Vjq X=ܡ:Xp1DUٵCU[*F$-,D{Xb>"ܤ,,pk0q',8FL( H$L95UPֈr,[$757uUhf|0! &FZCU#H0`N˚CֺrFWȩ?0bT0 dXх*09kZH4ipLdВUfւk mM/kry\|{LrxכWvA&5|14Z+o:9_ߏЍ&Mh CP] ?wc-x|$l1P6@Tbƹ;(  7#nIQ?kO *m)!QԘv(dЅ1P=[17NFkNmն930ǿ9^2M21r41Pr R81+2Ζ;->ehV%!Px<2EHa?5il+q(GVySټjo #/eF: ]ǕN+ӕK]N5[,,I P418R{ϼ9 endstream endobj 2191 0 obj << /Length 2890 /Filter /FlateDecode >> stream x\KܶW0*/7ɤrKR9xxs}f8;8Z@Ἰ"uxuE޼zF4R"d" "2CS yc;i18]tq׀J{ 04(㱜5A_Sadg=4yK/7lB7'p|~ 2bˈy,jz;^ƽЯocZ" ?`z[ Ĕf& &_՗K[(cmyVָcrdmtUmk ^fw[+2 ~^KTvq_ĀWv~ ~gqÍb')FN ⧝ UbUޜ*Y@.Gnz,`Ǽ˺zBx(0])&9!QPɰ\NAGJ~Q@ (O%>)'[L5Ә YcمfG15<Ӄ96rq909r&: /K#P)u63'bMݣIn_wf]*z)uK)_E=qLnkA5n$Z.jEm _[Ght_a4vMaPj ڢoNy36ΠI7`n:[0w\l?3r@HUWMatՠ.wb0lV[z\ endstream endobj 2195 0 obj << /Length 3397 /Filter /FlateDecode >> stream x[ے}ࣦւqV.{cVRe+qf2|}RRev+y) i4pF.nH7qc\ d9A:2 3/_|J ALL12e&淿}+c 1 FOծ4:o@HL$GRl7-F,ٳm8p]e? wLarއ .$F9ΉF ̉bGQN䵘T sv Jl6onYַsl{o)tsiDVH2|Pu ? ̐׀ ˯f́  DX7 sJ4#'K]Tۍc[CrlkH+s2[~Ym܏iU5eDIaX+QHFH^󉸧)X:ϡu }Y\H$1 eF2 n˔w)"9tH PLyAi#X{u-u f/{'ǟhL!FGH 㤙%M;FAH@|ҘHFN,:҄/*ij=F)Hq4ඤ qHs1h4#4p%N9{2~?WQhXŻ >e¾aM!ZG@,eQ;F1hμ<7Kk: M?MuٔvsߕKsf]Mi{0_blݏ>2Q 3s5a&WM29W!WM<q-#M hT70u!Nκ|˝ D{ 2{F,  Aa4ǠjoߚN}i'tbW;jΨr|'6,r߾P}Yƽ=T㾾1["5= $#'#ktPmj 9F]΅Ys/LF*S Df|/IJeF )ki,t 3a8 ScRZ}i[e طT$ 9etϙsv41DLC78ٍ%GDtp}r m7ڣܸ<m4{GVt'ّi蚱H%R)l $C"@2s.릆$wJD"%4 lqC1;cX2ȱIa,huu3T,Uًd H3i pod5Q'4,Rb`drDg=Oluƌg)"S qΤjsccY^ g6nyLB?kL*Fmg)cx&ࠞp:H݌ωncrFIQo\Rj4$= qFrNqgI d^.?5IB\Or%jWU {Lp^>"cj'33m{ !Ӻ$:4IL;7g# Tq^z"|6D%kpTXL ,gl_uܩ /x Cu̢ +}o뢩M:4l(W%4G.|]]W/IcBHro M]'M-P[uޗ(ry ˍ91z'ļipTg5{V+wܗn/oQ,z[q+5]IMZ'ŦyRJEl8ޕ-Z_s`})O -:81رc+eѾmZ $I(LMXړ3HBfu~ETo-}Θv )Nu8_& .,?N۹΀*ǜs bƁJri8y[m݊Ƭ)e͉map,SU"}}xy ?SWX\ k^XDVC! '6b87m*%9%>Qge,cj,Wr)!Q< J @llvlilRq: }>B`ҝ;]H[]0}.m`0.T>%Eaղu|fv}$Weҟڤke(V=\&' 4s U[mE2n3[jrA/FoCKfω{+MP2.ڜ̦sp UFQƻ5fLJS[mnni`N0O-0[?O`uw o#^0rSVð#8}Xp=\sn"}A:uf[  a B+ܮQ}}. b|}o|O6i@fXIk>4qBӮF{!C8ÏoN1J,ݣ܁nvw3ޥ BN".y}etӁ)nWG$QeV|f{?sǮdV ae_] MRioEjעT$"<=H <=, 2\zR;jhⲲW,74rͶiOO{X.Abe|6R->Y67{2n:(#dȨu endstream endobj 2200 0 obj << /Length 2424 /Filter /FlateDecode >> stream xZKsWo 9mڪV c_ƃ(B$kn9 n@i&8c ~ *9"R$atRdut+MǧH?~c9'*$4E\a6H?~g9Q8,w 󸲂>8(bb{i_QoNj0JH><"u"S4#SA"tMOHNO! K&*MeVJ|jUc*@@FtyU)Uhږl tn/eVm.M/)fX6I0&A$H~< iWVzE|r{P#yñ(Ji')E*fӇ%{d0PQO+~m.f&[9*iMyOԬ Eu?$x?dz{Xl#+DܟKWl=r4.=ڱ<6>D`'y:[o]ž@$7(PDS~mcp:_DD+ȍT[ǧzzq\Q=@CyO"DTΡ6:_@ 1@$x9 ڥH;D陈4Ajr="b4cp:QDhn<=G)E$vX@S)JIsB0dlJCaGl0kSGCDip%\tФ0-]bCi&=GPX`>mvQi]Wg߰kbi#K1 qwpyOwEEf٤y(vKk_[VG }p22iK˜oB c: h1"Y|=€Zs(婨Vє28r~I3I$IP I<" } /tl|$%E_cNz"t$1XH6I OJ>FT$ =zn;zKe(~zd >v)o2buG1VCcq# !:_WXU+S\R8sVm^M C!^4%1/n G`i/^Aڋ|">kl5O1[II e}-_e6z@=<]LwM 0};/+WԻ(L- s3 f:Zio]E^:r|"X{&\1F.R32ɗ$sz[1 3+ u#o`(m:[J'Mysxk.N!#Uf/f1IW*6UۼC3^[⫫.-b8o栻0]\ƾ؀_e〸6r+eZ궠ZB!7̃JBMeYa9~o bE*Ocx3|=l.<{qqrM{_ 5ҽ KS^lmf/|úFʞ3:1xu_=t]*Rt!nZnj6exkn|CrEzzYf/[kmE뻾݅`W3A0 WUp{9g幜ȖK 쒙Z0Jj1}߄j!ihbxX'œikMl2әmLhr 1h F|vhm@yƾb[p]!GugzW{`pkᅦ:(@ɗ]9m+Q5wF"'n~Oܕf6Z7(άðK)DJNt_C endstream endobj 2204 0 obj << /Length 2327 /Filter /FlateDecode >> stream xڽZKs6WHUE0sT&fdrP EjHʎ6"$ȲeN."F#iDx D d9A:n3'`k0Ŭn<늺:ok5ؚ6]gk]Mm|58لQĥenS"V1lugn qYH2c_F_)9~C.E#F,JUpCh~^cao@zLl8''<~l aY-}/h 3oȓgey+{(R`qjUy>sܾ |ģq89#<@RV6L(/lbnxA1`mUWBn`,+ $LPGsbх(h@X!_: z_G՝M˴)BH#  >FYY#A!G8d14Zekƹד+.l2C5dUC +bjX+^_45Vf3=o36j|X IiWDMlލZ|ۧ MECu=8qgс=}_e@o} 8dg[qBoJD97TؘD%@fa]jnbS: }Q.ˁ> stream xYMsW82'T-;b4pYZ@ΐCZ&~J4bQwE|tCQ tK&lMzUʛn޽W2b,1Jnedhpt?"jd[n TZXJ$*xDfF9`V(N[m>NM,sb뽟yCM<zK_۾eyJ]Ǎ}(R'\Z b ɂ Id0qQgJ`\%N$ rH<΃͓T(z)fMq\nt+ 6, UMLMV/S)')l\Xȅ_Х:p1U`v<98ƳRi*`a6Zg26j;ȽϻW-;gd!ؼb fE28^/ksA #pg@bxt;Y$4IO{}Z[/B,$]0˘%ت٫Dpfޤ!D;體z)LqZ·M+7^VeWAwE.(7٩D p;Vx#Ѣ\x~yPyJo NTуxD<_C|C.BhPg뇥Gg㷱$\t : v*ٓmӱ 0V~1{]߸@ůf 8) v=PP |B(N E*qQ$;*joܗ`vݡjl0eGėbQTQw0!ӂ)/G;x|C!~p%i lbl1K|(N}_(/‚ȿپuN c jrAL/s06eSpxk|^oJ ~YH ?_Rx ND{f;ի ' tuڧC:+D/@ f0R3J &u=D?pq5# ]/ ƞ Mx-_9o8jƆ W*^iKu^V 3dx"kr4ˋ~ī0og)zi"b2tW3m/05j -e}N74> stream xڭZIs6Wpn*7Ll9xJqTŦ6ɶyXm)/j=<GG.(xi$F22ovA ^_<\<,ehs  .YFD~J2a'l^-.7$Ԯ8CipILFz!bo!"eH8"2.NPe%D%`*I'ZAVDNc``_tV"!Spe̷H̛`ZSJ<_gG F%K=V͊x(we /V\KRpIt$4`_P$oܽsc;T$F30H5q{kfLmۙwʇLѮ`}Z".;`fé4&4F5<޸F=[3{)8ew|(f}J *M uS͝ӺjJ /B12u`=JN1yʒVkwnmU4C`e!) gxZcŅ+JC= !|\i%UkєOjŒ׶=.(8X]{jX;NS纡jvV=8E *lj>H[ot8^$N\БSY04Z>{c .(ʈwgKߛPr L5en$ Nie{(N1B,ϭD0cD{d^J ڡjtsH:o?&Qף~65Ն5L 6\  NS7h Q;QF{Q5dL=2RHOHQ2s}!u9[K&Cֶ19!҅f,9#x`W+5ʔ|Um7 !XaG$I߅Ph_T؆`D3`}5D>FMd?&jJ(~HMK*lj/UCd2Qz3?c?ȈQwAv\[eMaHͅ:K`]2]DݩN#Ij >U,߃F!Cͻ)V<9煡,ovy8@3y:cK)cpW2Ve(6kj)fs1!юմPlP x'$;!Қw8}*6Ukݗ""4[n; s'gܱ3 wKws=0|` Q]93em8ص`|!p1!e+q-|=~ˠ[֐P"\Y'8$1~JҗfeW91 ~0G,fWz|MK:q#?#w q2Ttږy=JTغf,._]X[""dh!u0o,\˹BSt S%q XA8mQvyC-z OE=* -;pʦ3@Ԛ9f5T 5!DqH,R3jDe_mXxb\&-Nm^|QDMZv!'َOB ,V$CAs GE癚'%x^}!LN wƄsvK BQ2Ĉ6wb8tޒ SfJusք[5XAP*ļy}yܵ\n4t= /՝2GFM>M%Op8Zm$c _f]+-%1._/d&[$۾O$&p8,r ̣id4lJr^|<utAKiƣ<$lz.Z>EFIWWjzeςuKY6<[5-i[ 8(>[Շ}Ź+5. A,E4e{Ta.iL񏀈DdNV_t?0qPj{%R_d1x+{{^mLVCOrQmoFaV?wGդUet?U \CǕ]ux䨩H2 :E01P $) [Mkk=j ]usZIygq絆M{ sٹ&ϗ@jvulu\hI/AHmq&NDx C E ×- endstream endobj 2218 0 obj << /Length 3072 /Filter /FlateDecode >> stream xڭZYw6~I'Bl؜>$iLtN&4EL(R!:_?Bl $/|wqtIO9""$HQ[D''7s"#4Nq@<֛xo~+JbmU٢mQ/\~\'/ 3V _s/NXboúf CKcMDg<h$bG+T{TIIL4>G;ĥ_B;(8ޓdS|}0S%>NQ< .GtM "R6>Dg[Β`%Hb1aZĉch!bOaٍGէQP0+63'sO"*=S^-XF;-7F_o =UY]Hݫ+TyQj2DJ=H;Պ WNh$x"9qno>oAe" '1WFt"Y]7z:Xu^)}[j~R^)[ )_%=wwUI 怷UT"spoX9hE0v)%9R @,򨎂ƒLM["i3Esh͟Tt^TjA:Td9Lc›$J GM5[(G *\*L 1ppgu]7~_E#ytyrv@Tn" E Di6.^닲 @Y8OJHU3YyVY[^- a-{zeoRfqkUژ/q"ht2L>A/{H3'+7g|ʶe7ufRbV^P@b:-ΪR & LׁJXJ(o OaoZGЀ{{\KKU;RD Ow!D &ۢJ0ڱVb?T.f lMl7$כk0P-y_Y&NPd3Z aF8C -j:L[,Y0gghꡕW\*jb}AټCSA!E0X'MyӶ }k;1ыOf[8OY۷E:W ?~Ģ ^OۂB[OFU=U~XUgipX=֬|$F5q[tj&hVo?/kݯ‹~_Jt%~ 3ezuXSr F=JU ɦhg (\3e)؃fH>%a>ݞ.O{c=/N`ja PSH1o 1j܁Cr"݄́1Rg}~g N8~(q%]4°@U !ACK2?a* ￸ THf+ߺ1CKo[c|gp_>X Kc&I@oQNq; uJŋGs`uC:(Jp9l Y305Äp!H&$;83C\\Je4^7οrGA8NRCW;r"W!y,H$$'~vw[{-> stream xڭZr8+k"4Nj&5=2Y0%WHʎAJ VH=4g4{&L02#(1ETx2dzGon~zLFsRff9FdwӨno\C^zۻ_uSMz,܎ѳlG“6-5;o :=ռj?~z'  oMIsg%VE6DqR )43wZ,M[s#a n8ݻr&J$/k)_¤(%yƬ rWރ ;E=OJ4V`E6Y|gSa =:e&8"%(28\w#8P; R0!&M_酞WB>p0ʹ; ^*m<[7sIxbכ^m@!^90 x}MU.^Bsy%x^T4K"ןSAIioeΉ/CЗAY zwDѦl@][lzРŃ;& #иII4kœjm 46 }c_n'7򺭃[rRLIxI}^:Eh5ij8FA7$\p*RK1ڜ%\\_LRuWNǓ !HzX9xFVWrzp cI uV#s_7_Spߓ +e ~1?F,zz,爞, GzVY.?^]υkb|jyY 6;!l`FP {OaZ>t0oe'q ?㟲'.rAje9_UwtIRkC }7/g]8Ҟ }Q2,z/.irh^0Dâi(<׾o{w8 %X6pӎq8ִv0g(:Z&llEOT@JC*9I ԗ o"rQ:ZOm' uGe `52&LsMRA"JinD(`dLq3PqY()Ů8d[3yɹ\4a3SRJl\]}<`e ׽a(f V }Bar)3;_+xL$ a[75jIHI8W1J![dqDqyAƗ TI%Q UB\nrCwOdd0|K;`VONԼcfx~N/>1p Q?:2%~/=1p@OC]Ùf1S?81~N 0اAP᝚%|gIZ@4U_l֖)T xSuA(\ej)ڇrnV&H m*()<w: 5'=%ڿm!m sGCg"]e{g * o|zq@ ً3c8Q}͏L4& endstream endobj 2227 0 obj << /Length 2909 /Filter /FlateDecode >> stream xڭZKwW;BخΤɢ{HH%:$5^_‰|򷧇>2!hMMHh>Y)ϾCRW/G㿵u~h z\iB]1\+{R_šiMnijRE ݉oىhDn-trU '۸?OQۄձb&ػ@lsXd9p HdAٶ:$HkuzZ!²vzA~hﱂSq~'3$LQ~#?=E8*]ǀKԤ= *V(|s)׸sX:/ZlF9"e[giF@ZߏcvBT}X4N9@L>`o^<օ L^3ga:. dD6%c8ӛ0 !j&zD!2HMav-Q@|V*=i3"0-Wh[n";0 ρD/%Xl0 K?7"c.%,;u5K~}M`jmZ|!9Lhea[,_.#`܆o*җ[֢ۄ0W6Ic ޝγ%1x \u@}g4kG+A+` S/Eм h9 6<˓< %ႢLv! Fӝ້$ eï&HCY.:9;DE,_Ckcucoyڙj4|ȉ-1h_Qf, =(|(s&Ϗ+y m]`(i$;i~{)Иo6hPs5)Eu5."J'!uKx.Z3`W[r 6"9;zC?%̤fcR> HҘπ5ge@2 vN"[@8 auѺh97*Uz)tms}lsh8 `6['!N̆.`7?#$G,.d:HXq&d^|5e\Ɣ\hdm]i=ZN64!2w&~c1if.[~ұ|~u2TG/Ru*o_2K¯S*ݙ^Sf]<G"~6us9И1,6:_Xy9?a_h(l^ \ ?EWvmWTL"~t6 mJ&g+]`%w]JN/ۙU1uhKIR,τ8'^}vk#O93v8oӷTj[ "*rTybuA+|7B[۳bIKпٱ^>q?<T)ig:W^a7JRFuyɠu" ?-F \D?L(/DCr;ֆg ݹV2$E5 5\ubUkO|[֫yyKQ'R3 4^s'19#y:2fp>9֦]|6ݑueŵ}%- e3Fw{שuG\nXWc~a7d bΚ s4k7Ud ,~g/6Ay//\z'ʧd, 3i+փ}wmwy{6Kw ꙽_ViY[sqo|ȃx@1i,r0!UCd0vHD!~-}sބ D݋ oݬp^0 8LED3rȸȈ(Wmj LEf2B w9cۿc7 \ba:8S݈1O@/EW]zF`'lMzϣbv`<{?1aX]}jXp_ƿۮ.]YhoLO ?ݕz endstream endobj 2231 0 obj << /Length 3006 /Filter /FlateDecode >> stream x[K﯀ bH'*+ֺ|p|H.J$AVʯO rd+.$鞞_pF7W$7W0Q%3 &W)ٓĝ^}Bd]hFBv2Prw_P@freq=$Vb}˯8[2٣8^:"bL& E yyQ0\SI 6-O#"Sp cv{3!"/%L0rSsFcfa$Q[ s3ݸ.PfQŦXrsM-|і_\m] ïdpMfnyu=g K;K3ٜ0$ "u3+j%˱Fjr‘V*몺/I‚ &4ąBoSLZ`4&>N̹FC $( PPJAabejU+p' zr$} s򠠔:Rcwmw%tRvn~N1C) 0d[TbFt/,pGDʂ(ud=\(<8.qEʈl>vZ/7$9f_$EDf $cl!D<7݌dêB4qIfmo^ &(}2ov*mq?gS94$I`g&Z#5m[•#)dZ8Ovv`l_0^/_|mK.AJHm2/3~)2J?nV.e'%fgs}{hqSj[qMѶˌBpHfvEs&~ә³eYޮއ[Mz!q5rD'yQ"uR *>1K@vZذJ(ށruemծ ;8離6 T^JhI>%lwK4pPu4(2 {5Bw@N 8wo$Zf|SݢxxB9aS<)ޜp_r!j$AWlLBkDOԨ. Ud?Ě=5~6u?uw;)ɾ|ioȅH7G" <D]s$S͑瓎'p!"x2Gu (fBJ['Z@օ,r/o*uY= 5NY~̾^(%c,|4Nf2We\=Dp%NGxϷN1W9SBzYn0?2O>>$ ZCZ0ufR 0 }t*GssM|4[h>?|>$ t||/=7#+>s5>LO`zLJ\LӇ |ӟ1`_ L0g`.'Daq$tgUӜ` SuyBh$x!c֓t{Dx{LaEFoAx6|\@@|}1mOJBឫ<@8^'\ёI0:b3F݌W? W@sPU-w!l+@pE%s!&1ppZF ר6֥w1)f ۤUk_g̿/`ݗg̻T{z*h˦at,6M3N;SvLfa$8ynkd{<=A Oދ>?5W^؇YʃAh4'SaԩN-=/~ҲcsRnɨ06cR>1rR%q"پOGӐ8)ge h0m9*Zqh*El|}*}N_==:YVw/ yf{> stream xڽZKϯo7@rVJ\NU+a$f)R&4|I4Ur@_?A$l_HƻlJ&1?[8"#o|/xBʄchFBa D7߫!k39medv}uNK2$3,w`2<9m2yH% qz}fH,L'IB00pӈta>[3!eD^˘)cBst_0ӿ]xOҼ}cc~ۛjlYX70ͮ`Ti+p`Nf}wE][,CXls)1ya+-P3 ι~DɈb9H'[![+8{EN&:CLŖNW&2XE C?֏z@lOTW/|]TyA Eg٣Z[Q~A&nvdS~Q =MkDžLkhW+ i[-wW[ M:A Io= ~of 3|fSftɁp"|?*վ;0 Ezi-ף_#zBhIpպxpvՇ1;JAPdbFT.P,@,]7ʷw[ք>@cL?>iEU2u48ĿmN}^PL_?M΂L1$Oq`%}L9GiG>Hwp؅o]osa}۟N^pWwq=NLg} z}A%R 9Au|㐝ħZ>>p8b4+b/Bfl9ۛ eT[ޱ,%n$&\C&ΏBfHLJQ}ȆMtr,y~ģO'yDLL$E ܏cOHHd?GhWQQT0 <Ɨ/H $$Nc)#kb̈cJk0: cGf׍KH_'SU@Rf9f̢x-ĸ빦&,Ҽ jRцϾmƕE,h9W,#Tt*_ﺊaf!Uj[Sm$A&ZT&o|ʘjVܚn tE?룥uQ^ԴaiS[lC  =+羅F$0Q5ޡ(qdϵ@BH38Q Q5M zxjeB]SeL6l`8Γ$ I v̕~?_.}nP%}5T&Sɾlȶp E)хlе{8GjwU]t0-2M4S#.#C m7\ x %D㭃wQlhPzXֆ^7Y!['K@e5ܓB?@nN6  se"ư9 fg|YeV]lt.ŷia*yteR8N"NJij}h 3 ԏAM(~P,k˥iv \v\D򵻈hՏQ(s8gӈr"j/%/A\%_]`D#M "Ǖ|Aee&|zdV;K c;}-ؑ;sg[ bG->U:|]BknM:P^\ -3!x$)~uV*,4}A}t#ȡbTJ&(f^u4 #fDc/CvpDa%K HQu``,9a(浼m%+yuW2X76ySTcۉ^(lCg?]ޘog>[ˎCɖCs_ᥕ] endstream endobj 2239 0 obj << /Length 2882 /Filter /FlateDecode >> stream xڽY[~S U-$O3-;qٲq##Ϲ@^ov|VەZ=ӓplfī4RAZ{xw?y^8SY8M4Ʈ_Bq*MTo5s1$֫ PEQUv83$|U` 3t ڍ<.ڧW=Ƶ቙BEf9 ~U(KN?@+5|͢t7/0J8h j"uih7o;vF[Q@u P" PFGTk I4-W];CۇrO/D D紁̗rm^]^J/= ?+==™4 JS3$ut&̈́* |VrLp5xF;Da0(m+`(oc_[ouaIaU ⏕;LJQ*oyZ@aۂ{N58j˞ly^H{C]#ې~p +>>x@ ^n͌/r{pmQ*sC ?veB.nzt]tW]-kZ+FhfWI v`_es| s\X ݱ&Ix+o+ QoDE@Rst⑿aC⦔,񧩅 )I+wMU5^b73dg#M۷h^iĊ 21IE m%OxwQuAub-/dg9_G(%2;$ ۲Nμ'rb/A_o OB KeLj?E*<2A 7@S8 <='*h3[z9tJ ~_RL`?2<[P+bYDQ20WN !=ڤ)7$CuBPEu Qۚ8!sXd\Q%^KWn1|7_qhԁ`mCIFgr^+y)YXax41(g21>U^y u$*H>k%6@m‚9!XCI9pT֊OjwoùED3p!i7q2+EĀ8`b+9f ~׺a S|jcݱ ~:k , 3$As_ +(tg cr"x|H4DQB7s",慨D]a=D4;vdc?|F$UK }E%q%Xk$䚫*(,vG¨ G6ki(8dwC1(S1kXRBiY\Z e9gJn.[lcdY6m5-m ;] KFEmKF MJiaْ("%kKN: %z#eWtdlkϸ€YFH>{*}˖_ɦN !r!o `^ϴ}a U,>.U@x y Bx ͤ,~Xx gңbӥb@PFv{ z}z!UJyW{ڶ9r<'"lL78ٸD`PJw KڦwrDsl S4_2xpc{yM]elX`<6H۞W^,;*Yw'Hr"! qDJj5Y~lB$92V[hݾ;2 u(:ЎlCNx> stream xڵr6_Ae@ܦv)kfvJ%y g}8`d[-w!OxG> K$˥3ʻ?'<ŋۣwDa!{(`}eq$nkWt[uGgp,X' L9jwW^E=΋5 ȳrg˃ 7s0Q[Ttƞ'f l=>4OǹĀ0 د ;{U7c *14Z-nWR +9[]>[FAOm0]VhX6E,aM\^1 ٸq,'An0o0K|Q;rv P_zf fQ?t/c B%s^+|e/nߨ Q"/ " ߞA̍`ywgx5 |zwC,w'9.xCᖺ.sbRGƮo_; |ՁSp Pp"?@?oQhZ.!]eóiv10 U:DKK>pIJvWv"]k54Nez3pǩPon)?Nx0aUm]rBg"4疂2iExh\crKSQ:{* "O$Hl0Q_t?'kFL^NEi_C_ORCsx`r:0h}4'(@Gkr3R)fs:oV`ʝ:qc<2 weФ(iKE4FI!tjl?Hs[ԅ6&{"ĤD^Y2&8eJƚN֒c?+JI  裣_odLrK)aEvv9*IF厌I\Pcarwel&!˱!JnLP_-5!t7ݮ n-S:8:?[BiR,"91.;_q¤.J88}(,8!6)N8bu`4.*bq5'#QvaE F5l~ޘVSr.|ˏkE'1K,kr䘎mw}1q{ݏ!ʨ+MG&ޏp4JcFX}oә5oD+aJFD+k!jSgO4a'21npfސߐH-]g7)6gDU3֤XJb+VDS`T\)e;{vӶqnm@o ʪR Ŷ'K`mWHs# 2Zp endstream endobj 2248 0 obj << /Length 1877 /Filter /FlateDecode >> stream xڽXKs6WHM#Ot'4S;ĵtL&!3|($ۧ.( Cs"bߒˀξ"(9Aq*X;K{we~RpxD"4 #`B9BExlV//' 7uM=2)›)Fu/kˎDSʑ"]^}׫e '>g7W7]"8!7Ԫ]4mC(L/*eGa,mUi6]֬.>O UYu:Ӽ6WOxM78aM볒fMjMiZo#ݰ=gq"G38Ga(aɈ A)<&`<\)c^)3ֆOմ/UڴyZ{gȼ0+:ˣkJkwX"1$ !DεyQ"KEA@Io O/;HNӈd%ſ}jO:v(+N}"$y<a"NМ"tNW&z` \"r}@[!v>̠ (L>Cґ1*@0%IUg MT -L`%Δȁb8 A:>'.]n&?iH3/X+q~tZ sFr[x YW^0e"(=B$|e Hsť膢+F U;W]WZqJ_UK=2 WDB:m sR-Mɷ WjjCa8A!Pqؘ#mSG=8  +i f(|N)f?=^N@)WI ;\5Qb4W8Ej{?n!nljwAJ/6NGn_BHPȓ͑=a,06~pwpÿ~ endstream endobj 2188 0 obj << /Type /ObjStm /N 100 /First 922 /Length 1421 /Filter /FlateDecode >> stream xڽYMo7WP/~Fm[ ͡mC E .H}߬T%,}3kR`l B$ gA 9_Sbxj0nH ȡT ǿxd axJ4h@T40' ĥdFI0@J bJeai0YeI+ּX[ԒnT` 5É  ^4 yrK5 l6a8 Le7^`*8ơUyg%4|9L.˴^p N^@fA5ZP(%.6rI kh1_piK6٩ނ E1r abuQ a0Ӝ2\wYT˞F .Q"LDS.Qbs'|<ő{i}5[:'.?+. ~w_k YN⼋28, #U ` R AP6WW˰C_o Z@w/&ͧpu!X.z}ޝk{5~'wVV=8}ï6l_7oởogm?ݧ/=ݗ?ϓ_vom ETbm00|۸hb(0fN1j31ɀ=Xv(lQ8(cQ0k/caD<]Y;VvIʶr*3 l6k"Z>PSHi9w`k-}9RnRQ, XTo(j8A8\)K,]<@ң@@o$渕@ZeEOb;u/RdLX0z"r6BL$r,SF/D` 9clȡn]0.D{i]S0*T˰{2LtTzrЉs?hsg XiE'].jl 3FZYc;AOւX NULcZp8P>F%V>P2\KAz8`Ze`,V2Gk)D'ޟ `f>P1E @HL} FIϜ/nyrHvvH9n-$K>Ј8&@eC}i `?[$b|~-:JG9"燙.A !>Nr|[QdȁrFr҃5,+L>V@tzQ>a,tAs'ﵨ=dcӹ9QJ6:fT2x,rltܰ endstream endobj 2255 0 obj << /Length 1293 /Filter /FlateDecode >> stream xڵWMs6WHMI}su2SKL'́ 0 .Pe)V2E@p݇;+;Wg_'p~ 0 ̹wN+g#c1k#I 54SN|PajXD'Kj_ 7e _\fnadę~)DF$E>&>ZAbiƊLfqڭpTIn!Eb M;kٱ0C#ĚB*;G<*bq*lyP=庐+z[qyC [ź]ݫ+*!&| ^#Yɚ!_>NzǼVˉ_ߌ_@*X5/OFB7H94SF>Vbž֧^PDW~zٕYp=k)Bߜ-N¦z@?%Ǣ:lv\.}԰(3d[D*.Z˚r*W{a>* \c-SG ݻdZ kݔkОau7y];DV5npH24>m(q<(YpǷͻs+ 3At_oq_1Yl]):z͂iJ2ڳ eBR@qOuC03nKNVwKA83 I4g'ӄn:l1(UjǠ}\~h bؠk'2.u$Tb ,[h(ro!iL/>١Lmg\}a%!QmiN9-݆J:L3όQXMN ?gۿmoK0hQjR^ҡ+Z{Tb).e{XlR=oӾ1tx?ߤ/tI( M1 endstream endobj 2259 0 obj << /Length 1529 /Filter /FlateDecode >> stream xڽXYs6~[ $@wڙ4SҙN2$H줿:![i2}"..V$F$zqp$2L# RYThr+|·ϟgWGL 'd ţ8zK{ !TylZ%L tՏ&>(dcٟ҇)Fʺ . I<mюl?shjX',(ͼOd)˜D/b?0ig& Z@+_E%w8-8;Z RyB pIr8cu Í*jC{?ӵ#b'ɔ,Lj9 mGz-d'A&#ډDB~@`1W{ѥc]|S1 J7p"?д)h KƷh:Z9ulZoJڋ#SP򼍛o;?_on~?eh ,ێk/WAfFf(7Um${U/yaK9qFLI{!9Ùtu&XtEX|",EJWbO+(NO-;1K%:iW/؉ v endstream endobj 2263 0 obj << /Length 1778 /Filter /FlateDecode >> stream xڭXKs6WHX0 MiNp"Uۻ 2iéIH,bYIXџG4pL2٤-_`g{?nytrdJdyAd\'ٜ1.7ݞ¨#UtU˪x1+JRcߗOy0J, d VvveehtAcpb v:/޼{0X%0RH(?@%|^n`)"Di?Rc\l.L[!nWXxm޷块r(Mq"ݮ*We_}bW90ȌC-Bx_.PL`FIU^(TFBpqۈ@IwF\n%dVeO2; \c7P<(XrqVɆ egvX5]T |ȦUtt)3,… U*!iMAD©u[,7W:S$ $Iʌ%V0218Gi4 B-c`bas͢~/&( {{& V15ɌOW1re&5BD5xC8/:4˳ pXy|2! óǎtw_sJ{aM$w`C} 6@'uI)e|`]&+h]+ rS5檀@2b~y<1LS65r9x8[o.6m""@Yʻ֜pl"98 @ٯzGu~ .v3Ho[ʝo] ~*W骩k&ݠA?۾ ~:3QTK4o 4#ҐLMchňq(600!'!En?8z~3S@q rS8w}^284 _r~H9Ò- Vqdq`cS\1rwo^Dx}%&bΨmKXE]я]3_EZgŵj?e[]_!(]XO@\Z1!5R%\X"phBvi>] 9:V 33zÿ' Sܲkd:~¬=cJaqu8xǑ=##Łyu]2|Ԇ^c׸BVRY ll87W}v~׃E~1{΁V1ȁXԾ ކ2o\ ;lɦo 9%_B[]w$'0tY ؚD͸,4>t(H̗Aa$Ftvn`uxFʏp=jbMo4r2j7tlԑ1r\$:̜+ɯu)txxOdq\8+~AxtQId`-i endstream endobj 2267 0 obj << /Length 1397 /Filter /FlateDecode >> stream xڵWYsH~x9䬳$k)[DJ@ 'q*y>!#ދ'O8"dDLZy˓ 8ONyΩ7_zzae3/P_$REl6 ϪmPv}lrg2pL>_#%8!ZBF|zu>26=ӗPǤ/#ARDb+^նK5e#Φkqj7UIr1ϧgWo_;Tޣ 0NB)K[Հ۵3h ܤR®"""l=gJ6G$Jhy|v9HI`p0jq*+/S^Y֌jJmVTvL6K_ց0fH!&`/F 9#›A76uE8+麮 DFLFeB?ri4[6\yvM0; *X_՞Y=UoO_s鿙?zr9g?)Y`SVK;6j&gҴKݶns[.3~ڼ dRuǮ!7[v?;d̴U47C n.oFb@pӹIoIu %ANH9d4q]P1:|fys2$A17+sqXrV0ZTg;m;c:b/R_b hX!aR? *Ts(ˡok/jh@Zs8k(Pԅv*__ch5_]_lrmR :H ?:E endstream endobj 2271 0 obj << /Length 2227 /Filter /FlateDecode >> stream xvu@v`*8' ّ]MJLO8 RhA@@@DF.-#> G8@T&4jt:|Y÷gTRh$$H(-o7/-|ͳWTq4T9ŇUfs*䔖eN|iR!>Gyz|L 2DLD=bSb߅ؙ3̍\>} &Hdryڬe۪)eNL^-伍Mh6Ƌsi39ݚ#Ǜ֣ӢA{x{:$.#~ڊA);V b">2U0 B@ 5$pqA0182{U11=)x릀J$޶F=lePvJgntwW[Kc f dmU{ ]PC"&x#XjO^2hcHmWH&X!`q[`]jv .'38挩w^_Uӌ0>DVўm-^o eH _ 'sV͝W *aqU;vcc\tx|HȴfQAKŐڻz[.[`x/R 8&2 I wz>  KgE馂L솖a%:D!<[dMW0΋,ܻvU X}Hhҽ=uZ]Ksua T?c ̴ jHNO!Pл)WMŦ&rɵ*J8We*C8uY%OW&8/<`~'.p5=Y}U0엛yu^.kbҁY&;#zx<@ BfR?^,7_Ć5<0?wËbݸKVy]u'#XQyly,0sqWAyu!gJ%x'LeYͷcs?x3jN%)*ԟsC+t׻Ut9 u.\(ͭw?Ioi?4Y;QN}-a ,aFQiYݶ1.)qvr tv {?4 F?晹P͊_lHq+)'gCp?_w4)ORc#?{kE!(auH[, endstream endobj 2275 0 obj << /Length 883 /Filter /FlateDecode >> stream xVKo8W(ÇGn6m.P=z8L,)+Q ;Ȯzz'g`N6W&0REE$4IIWj4нjr6W!ᜦJ H,H,UIHVŔs?\(/%nS)l.s-@1fM*e`/g$"єb$0TOw1;N?}6aEc@@$a~Xw`t)[9VJspr ~YEƱCmLٛS9Ujn|{>"yOS&h~wćHk;&zm ESTCpmʮ7lYSޭ; C8̦  +ʦa_B(ϫߋ%<X.>>o:"sѕ) lNoQIVng'@ .nMF S ]wV5 ,z!F1Uq8Xs w0,s6qﶶ7^D^}2uN;-hQyUۡ95YW`Z?OM enI LưN~85֍pEH[VBZ[QxmŬIFK~'wN]f\<3JuA(to&IkmI#ڲ];F,[Yd%T4$O%P2t7doBW,h}vmW?a\4#qWw[7O0,=Uկ&UVĮe~fdY鍘iͧr WMZ 9ǔazo" endstream endobj 2280 0 obj << /Length 1435 /Filter /FlateDecode >> stream xڭX[wF~^Y9}p\9$QӓIkT }gYXy%9yof͌ 'b ^?R2`x;ORO2DĽ_89qQDߌoߍ' eH4B! R$0_(T_iyŢY9e[nEOU6X8͊Z-T' ѝ^wnElc.pxhlu\^L>m>#0JȈߪ P{_TlD#>x[V0rJ}pBKkMΊ3oe~g QH XeX Bd/suR..Ԁ2^93^#$dԃk8 ] &ܼF_O`2Xw֨bj8ٟRsl҇OܒVyZNu;]U :\ÕS&*[iG_R"A7_N]_ Sc lS¹=##$øsG8}ݦ$NxG} :G\A|ul66U:!i PzgݨG5UFu.UݕGVDN:_!\k&ުyVuw7tC^͸ItTlnl4 `h'#ft,T@*Z endstream endobj 2284 0 obj << /Length 1264 /Filter /FlateDecode >> stream xWMs6WHuHHzזSMZJg:I4 YIBA],*Tg2CX}}X#ޫOGO9K"S[+w/ ys-^Laē[{?FOBB(zˆ$d1?`Se%N&!Ǹ-ab&#8%#Bf;oI Mى)E(Rݭ.`{=C u:x_gr1ۅ wqɆջ< pד8OoǸMt\Mwbg]WeʾԲjf(l[&!~wM!\ڧM+>C`zP?CU@}r(_YQ6whJkKټX̴*pוx+)KjᛂJ^ UYu(9s@2ê8]l~vsyz{b7dip긟 -T M ,c^`s N 1eTYM1l?3=!{ϐ‚͈ L-ñ(Ei5y,j )$16bhJ=ZSx12AG Z ϭpChy!Xn]x:E=d nHzCc]t*MKOJ}Ԗ,^F:_)H\t -䪗\s8lɸ˯pˇD`WϺZj8 QfM1Bt(P=kա.moCJԠ:++nLFŸy9 @^W7}M|EatJY>/}GJݾ[V+Y7((k:kL}x$ѳ׿9[#\䢾j㏒QG f0 ,Ww XxU l40p49 )[/Kr`aO:2k/)gӵbsEXu5-Z&Qj d# #YT~>? ekkҍw(3ϻui6nKUnjWJ.Na[nί=1NsTLB1[[qmv4y;[!SeoQmHfvlZ>Z{n3MẠ)JBٺ endstream endobj 2288 0 obj << /Length 2642 /Filter /FlateDecode >> stream xYKsFW՚pʇ%edmlmDBl>̀$rE~~=U“$KD k\qIS%O/WߧO;M3VdOӹJ]z|rٛWώO_~w*!}LeY{7h"tU-ފ<-anݕ~u^ں;/~a}mWv=f:;~}l/MXw]bG%e:VMѯՁmSw]sAdZ !sl'>2/ EM`3 0p^2Kg,Ӻ՞EhK/-ŨG<+)p8aZ! {r2Eb' 7)2ƥIf'ga &[GL$S ȒErs4 0"1y iHYGԌk;C>[P8Q4LE٭QZ$y$@"o\Tjc1Ӷ1Μ3UOC Lz\|kфe~a2ZzO=]UΎMrYuMM\x:^-=%BĚz,IsX-SOnh~@d;^Hi(UWm5t'*/⋧qu^ G{PŢ\}ˋzU0nKGtW?iM]^,\hnCf&fY0m!w+f+MŢ<f+~\IV(3Xpg~ Yzo\ΰ0_e4X_t%܇ɦ| 3tͺ pͤi4z\}*8ᾦj+O[ue[0&1 ¶<NjΔy]^WE*B^jfR_WI"NRrz'6s$IIcڭ+8Ct"=|,6UcӃ64i|ۃ}_k*V -$5e,z]w{Eۺ }  |}.q RԱڤ2&m9goOF(¦;#wdj.8-yYNyȠtH\ ·+,2Vo-ZrvZ:;mf ltHD]Ŭɀ;]d@+;N"bBnUHBTP({CJr^!mt}"[H`ûM1gH iMlnCR}SH{.4|bs>H>&UuU H5߼nR#=ۂlZJ-@-(z3_nӏ93Sga{{s t8;~Lwt]dL`yT[jӗjSRס"˔#,c7EŢF8lF/jv/OUߖO*D;ѧ̿@]^ ;0Hy ~5@PBc4\Le"N9WKq^LO1 >Yӱ"w,'Ŷ==eEs&&aǾl7!Խz q5޴ArWр+k7ͦA5ټu uZAЄhr_B/X"_)* @|'57{^BQC Cf+.nYFJsxvaDzY42_fߙ : 67ҽK{`(Vq/h/JtIL"b`BZ g܃jK3mldrɱL@5èIpTW jG+ǡ}}|o0"U8M~(V"8JDF8k@xdyPCs<;-P(s=dCd!zINWŽ~<@UVnE Ю=[@K>b@W W_p;`z'*%ns`:!ƣ8*[=iDc ;ی>7l z\}zzfeH w܁Yh7eAi|SКI򊂩`M-wa7˳YDȟnWQ0Dh??1CvR/N,Fq67=sXAjw[{?\-7j_ cDdL܋/XB$Iir@sׁ\ӝK)FPT5mP ] endstream endobj 2292 0 obj << /Length 1398 /Filter /FlateDecode >> stream xWIw6WHFCH(pqy$ 0Ç 6 ^|< d" Wq#FtY> v6l~xu(Ih‚:PP-9*ָ2G g3,0Lw[Јe>Mht6?L%k+-D~4_d^:n|QU[G\WUmdLOQVG8aTR>S*adgx~ mHstdl'ୂ>Ƭk1…Bue)lJά/['}NŢd]4yvG;_h>,e~0Q+XD$:JHp bXFc$; T)]Ċ0 a`<ۚ: fY ^͊\f=5 8L Y' S=ћd:;*'!jXYES,my;}bp|2;<9z7 EheWhe&;d\4KH&䓩!@G1NaQ^te pqƌ]ccv%TE]{MNָ-%RQ6npK) nW!`ȴ\y€ɗmr BJ"[ bB$A ">]Qp=!!-2ؘl6c)f5un}S##ku[);[:@7?ϖ*f0u‘vbe&[=Bc G'$R􆀓\͹(TB]4~<ͮusߋec]Ɩ/)8z+ڝ0]Up ,{'+;@Mj˔值# h)rM7r\ YH]i{_GqGq1BۻXIzR8C2iWD?6#a$H$kcp`@+gUgQ W~@ʣbSCk*(&,"hy&rH~dgW%Nkaa>ԅ畄h[OVw|b6a:~g@ ~Y;?7 kֳY41}n,=.}/; O&e~Mu*$<'T} .oa=~Xe '^%a"-yе|ט2؆bp4/iU endstream endobj 2296 0 obj << /Length 2730 /Filter /FlateDecode >> stream xڭZs_ASoK\;q:ii"! cT ЖwlE8{{u“{Bg"7UHo9Lja%S3һp|N/'*ts̛u3aoʍI>9T=i☰Z5溦%ڕR![7¿{Bl1q_FȌC3LmozaZz-n(Ui{3x䄙k[>{%p>6Qf7j$S,@)8ힽ@Bp2-yb$ʓ?YKX]9_ QOi2B%R Pr"vzM)b ky:8iQ_6NXZ PO XuH!X}{{utevٕa؝kTXn? `, W 6X, G[V9;:]u#FD#۰Lꮜwr nnz4Cb6~= 3e]:ѝ]^mPc_akti_KKֿ ]*7çDx>D˫*z#K‘ :mt6jo~7aN,~ukdi8k{ZU7D4LSGDm7|U[ȅ# ~EV4LJ }(h郵 ;w)\jz_mBOK #z@=w\_UN Ȥz 1X͓DmPÚMGʐDFtJ*v~BAHQIHw/vե0Tn/78ێ"GX3h r_|?<o"|I;y?d;4l/cүi#޸*2zYءW)aiPjz3jr0?mVZ endstream endobj 2300 0 obj << /Length 930 /Filter /FlateDecode >> stream xڽVKs8 W(MkF$E=rKuwd-e;Eᥥn8ji%DEvC14 PH TlooɊsNQZyG>J 19!;ޗEYȝ/W0d%N9^?YE",3$tYs\9婾* p)D"oTwXYaqH2y\6u&GMء>E?wWu <+7 ه%tu,F5SsWc;uoġktb+sC0$;_&*]_^K4nrh6hUy_eCq[=BrTѪYetel1uQ߸˱Q Mؤ.1~ih,ʸ³C$hʪ=֝ 7Ǟ9oo1t40nhQMw2eչcP mΤw8wn4{86˿ nO}J@g 3_g;%+#RϋCF^(緲GoL I4Q^>Pzx3xg %@lj~@d$JU$U?H5,jfM4h1ƵKJmus7 H ~lD׫=X4R2⡓CF:O ?~IlG2>zӑlF̡2w '8Nzd=> stream xWYoF~ׯطރ}rٕ؎E(LER;{Pe&}1wÙoodVzDA"|-Gfwo% #Jq,C `(YNs=Jp&u]C|!̪M=Fryz"^Ԩ5:D IL<ΰcfzL.܈;g.ɩ [8d!X桮6mVZjl]z׷}YDέه E8,ecD5Gecw J"4r\4WGnPU)ͼ.s6J#i[g/V!f=Çz$醴|Ģ`!&qd/j hT=byڄi0H )ƋAc/_;B}9TbB\;#j>fAZZP ʺ1hGie DU.2=Þc_Wτ pEč]uU'x<>~!L1$1'! M< %Ο߼9X] 1:l'u ⲪnW:xgJgϤUͲ?T< 0X+g}()^caqU}, Ìtml>}:Kn qSժIJMZ33hnFX"TĊWsR|,a}0ڑ?ruiÖmZSZɞ |۫ޱ~i¤D]c&GҴGc />|i&)Ef9'5=WYi JևZ[6Xfuz۴4m]JMlGkGnU %mU8Ws._?`"}m$Pg7m2Uix@1̨zaQGeϼH˅9tu/צɄU ^a[*G`D84lA\/~-2e=vz[ţD`,.1\>5ƮrjE ıa~薎xD I7 endstream endobj 2309 0 obj << /Length 1071 /Filter /FlateDecode >> stream xVKs6WH"MA:ӃHIJr3$XiL2E*]$Jtb^@\~Q0= Re> ,&t|r.>x_ ːCkMJf6, qgq1q!X71+Oұ$"ͅ8#&}TۼO\[iJ̔E&6c<-X]\.`@13fg'31qC%djjhyeu#ʄ\T&UINK')eVX](N_XX*/_Ɏs2[G<}B}c?RbhYXo\RDmɐkU 4r>}¿ך?og]ޚ?͏Κ""֍&A k,X\:U$_8xZU5THRJOڦ#ctt-%ٺ-|Sl;*ekN糫S} {90<٨&|'3{J/B?Hj -#ƫqf͈cDbpl%ؾvmN ۝fC";olI': a\[\otY"؎>jOzdU6 *<7֕.j%.l2+jKԍ.`S NR<0r$He'6m&]!55˫z_s(JO{^.uoW_~y~4Y°$(o@}|mR È6<bx+_2Ƽm4q+zE_} &8ڲ\. ̳Nx{`h?9UVj)݁n' endstream endobj 2313 0 obj << /Length 1339 /Filter /FlateDecode >> stream xWs6_93˒@!xٺ۳}> }W1SvEODf2E*Xeh:Np\ I$'X-J&zrvŃwgL $S}qSuqBed]_5nҨk7t8o'?4MUn5مKݪ5^^h=ҨȻpF{U[cdt^>ϢuonNEq d=Bv-Sc#I}2Akc4xu5tD6^\/.^{ŞtK <q zqF &'S6~{2lݞ"mB*+GE}A%|94収F ۠k\ `j>*(W#U[zndF?x.!Kzپ_X]۪g_> stream xڵYs6_GzNBI!Mi5}%JE4o$Rc&br?إYIX Dp%F2b+?dgo~xqmQӜ%uy%dJ~M{}{~q?fLO9ׄT/Ir.OC쫶7T F)`^\ǘ$`U~L6 9^B?mXuCL9thk(2…Jd"C*fFu≪Td!0GwDO#5*&1ؑE:kjJ,~C *>՘k2s 76L7DPt|# p*Й8LM0$sDh6Ÿ1.bQ6_t6qgq8gcy7fGP|\2~4<]r\ wmţ9).|nCnt]IWzΞޖvmR{t즇R-%,>nW-bI^} u@%2ln~~q !qe* ^weW\?q)帲0C/HRh*PC rwo4Ys?9]"SA %mI̕⾡Pp+i 7ÅǰjTe._H:'T>}uvqu{}iDt0RuXm=gM7fY?VcV֎k$9"Bn޾y (:}u+0G.Wҗa_P؆f}롩:bjf:w g(h6nvla߇i}MTM_n\ sxA0+VUQ{a=4g="*Mm6c?io{̑k|5I)ʦ6ʢ[z}[],gځ=oWҢOk- !PzWmwР&l-ئW>㏻afj̚УFZ^쇮 Q4/rm_iه/GEWvVKnIr:Ւ8^Cw 4^OY6~hhpR&s6cm7r.pHj2Rb| ױ "ô[|'@W5xc =a>1u%1B-('p >;a mk$`6j/T0@zdͼG*Kmʮő`d4h8v3}PAif} VMkh-9zWaWdF3ň&,Ѕ8VCI㱢-VPQ)eao4n|٭!fmsMa(b)ȜfLOI6HP^Q<3E00 (͗g<>Tc/:p2A$7ς:̩bSvgAŮeq ҃;K/2K9\c$0Š_UFXT{d6pC=/dDؘ;}᧯M +E_sH=vz \>8Q-JG1aOzI6Y+XSxp . ύw!aǻR> stream xWKs8Wpd* KpUYu6 &qU~00.;\Hug v8rxHOZ8ae k?,NN,tA cX9q#Cgt1 OH0 6-fw3X-1|Su&<ߊ0ޅV =dut#`(|ƩnpLmɔyDZHL&U%d`*׸Ko뵫gׯi J.7Q Dؙvqv8q,wCo^f]QDyTe=3NdyYFEu[A \۴ .DٴK1, Ly}0Ik|mEeV Q"[Q 5iυjn?n9{VzϪrW~[BnէgfSR#p#>! f# ;Ի5]cF^L kAje5( v;OCމܩhkp I+?/`#jCҧ$ !-Dy&  EwԄ2]"F 5[J3e\ SEU[50+hy)2̏B(E3:[F2'FIG:uV(4>zBA!qGQ<OD#V&$;"QN`L;S2vc(llT!i6:4tw:DY3押3iS3ܥ^LAJgߚ*Ud&0R8D\@5jY|Z9|h-89tym'ue2b\8 EBjmV|%Aƒ*0nӜB ' 9a77%Tkk g^)wjeRz֙ż^~B@؁mq',{Wm1m:,ӂVVj: eG\u0xuS`D[Щ}ZC,8ǀJXeU]tY*g/݁B*PPXx np:bǚ^ن+Q hiok58SnGQYHɯz\ت4t,LEDz> stream xXKs6WHD&!v4n,56Ɂ!  LN$7]zz/N>^H Jȫ>y ^|lyRQ$ "-װ < 22畉IzՔ,]dCg/Ar"EdET&:5#ݴuˠ(7&/feia?I3զMN,֓%z^iPO}4£лrOpwA£DR2 * (#p:S)HvUL\[e[L3s ;YGAoP  2Rxjyqs9 lB"A FiDd䌯۪l06|t`gC eeX}6~>a˫W "4 rֳ߻+rpfk,3XȃH F1"n]U+3:׺UV3 'I r8dUYRk,ߤey:5bmL,ݹ_nm>fk̉oz+zQ'jx!Tu+}^$]lK,\1З6bvh T5ilc z!뽬&gͶ2*eteĹV bwbWwTl+(9WfmSoㄪ/\-س?\-7wYصEgpi}SAh4iGeqj3:dEY$>g\We~i#(P""4|Bc@c'8|4I3RX.=M"85\ QqgM J{.<GyZp=A4y*3mvhPa8S?! B&[4>N8Țc}qA5>i 01 qlnGZݘ@IJ$v|kLft *Y4{qz;\~/v|fPv{Xzuޫ.==\i]Eݳ#nlw(8vgvU/6v8N3dp,Oy\L\l#5}Kgb/͠0440G*_Txw59ĩ 욗<6& &sJ_zY,ۏe:?;衷C.O_f@ /x׬;q#- endstream endobj 2330 0 obj << /Length 1710 /Filter /FlateDecode >> stream xr6`LnbNcǵt(PR}wP"urL/bX,ƣ볿/4",=R"RWoZZ_GG)Iy0/D-r'3JYаr<Oz߬_B^LfQ : N>.ޜ_أI⍁7㌄qd/[\=\O/'L/.W_Ǵ%" KN2j˦kUlVG 398W~ߺ{:/3U!|+$ /-[=1_]_>/n]3Lh%$H%F )VZ`UBjk@vDzQҝU+n 3S`n+o7t)U}:hmfczg,"o&K@(Feʤd2^fDBzGIvŇW# "uSZFI_,D4M&2ӾOd2ozىT5"2S֮m;HZ0(lݘŕe/4Z1y$|UW jtf2QEȥ^mumץi!95ui7lMR(Z"MfuQx|,-#   X%`U5R@,-OD =H; hz7(O-?bS__Xԭc?t3Q0A4- h^6VZli*bg+doĊ?6t;7GZ3 լhxͿWaPow?odx0xldfNMFdAX5W@zWu֪euϛΙyWR6^qv536VهFx_ U_xsuDТƇA=<ԟ? vVjdv Z X0K 7I_>\^v7+ESS49,̸v}»UU-V:\ \QD 6)` ߦ"JI3o6-?xF+WuoB21{F?&N(]ꀨJˍl)'U@b &`׬lp?F endstream endobj 2334 0 obj << /Length 1775 /Filter /FlateDecode >> stream xXKs6WHHA$NfR;Ir%Hfw R gC=c],v &1iM]/eIE.LJ ea\C`O"UKeW(rĜ>SO k}pF0V09]5>Cd($gqhLM* ޭR0~('G9pIw8l w) ðB&Nޡ/N&? p9%T@ќ~*g VL3|h?*tvٶt$ ZNJh(3T$0ڝz"dBIzܴIYnfƆ}QBfϔuCO>dՄ8۵.~g3O%O'OHGw~"'yBXgxt jO3 endstream endobj 2338 0 obj << /Length 2940 /Filter /FlateDecode >> stream x[KwܶWp9: a ڧؕlq'=Mf( );^P3vMр>?\@4hI%L%aZEFPbҨΣڞ>)'R4ju$ʛ4I I!lgϾWu42[|/ۺjڬZ?Mё^f7X@@AnWʕ+uPM\Yaj-.Y\Zv@emYvݺnlxכ,c0j>z7$8K!ŕeJ̬bcfq58kuq3/W԰4b8F^;ĮyY9ԫ̬c*tfQVmGʓ:>%=bz6AClj;r;BaY5қTXJ@[OY.uf[Vl}O uӎ1*r:ApJ{j,\ BQXz.Ek}G`EȽ(pT:+gnr(Մ NސpXh!`I2 t{:9ÈX'5jL#FT_TH t$c&~޿_zjG8'2D11/FR!a % Ua- 3^JYps- ` X@X0ڠO Mމ"8*)FBi܂BiPѴ#B9{TMVw LQ |έܚV]q>@bH, _>,;w'꺬~W.2$MmXgz'=sDӇؠk=9 zM ܘ'h]n]RFH{sI`0zA4텅Y0 UE5 mi1{]7RK@V+LXG=%JNN-ȋl.ԭR`u㪮3jfDlUW1ʉ5-&% lF {觌[*[>ls8, J!6;Nzf\|S'4m":DajrCAKEB1Dt]P L%0GÐ92^l8BQ8C)a((tC$0 LIzLQ:p`aag?q=O/ C mp{>쮁&&Tazt D>ˏLzB}{ʽ<m?]z5䗦[`GHGvXņL/+$D~ f^AǏW?1*'5 jnO'---`1Z7zH(1 bei'8c(@Es؜VaƧQSO~+k?*g-'H.St& `=ޠ ¥m%F}.O" endstream endobj 2342 0 obj << /Length 1681 /Filter /FlateDecode >> stream xڽX[wF~^ CXӓK-mM, N}g/H 8u"2~sv\$#'Q)΃5ce̫NROoQ'|æ0f>b >HR|R଄'_jB#{IyR[2 1ROf >R%:p]!"P c01z e*J0o3JlI}{yZMk*H`! ̉S#Չ/*Q?mqcBJ{Kq`N4ǞJYy;0 sV`T;[ 6]!HqXw?O=2 j](uKkw)[|3o)o֏@oRH>a=nKJAomeUamLoX\t="ɦOM|u*,ڕmTig6]>(d UugO߾Z~9L^iܽd JQ# N\IyjqNy*-۴jo(ƱҜחK`UW3I]ث.٬M>7ʻaMbeyL1[9:e3E0A b%Ciu Nj=ƘB*~1Z4-@ 0șH ِy߄HX3E[a;_>Srcxq[yds#*@HTV endstream endobj 2252 0 obj << /Type /ObjStm /N 100 /First 953 /Length 1435 /Filter /FlateDecode >> stream xZn7 W f%"%ȡ |+95|EQ ҿnٱ! ԧ֢u &ahDkps1T.Z%ZZ[um4E'tIuN]WQPr1 YL'IÄLeLdjp`_izt+kq:ܖ4Z$8F7ZLTj}eV=ԢR+w.3_ ϸsy=RZ@(S%`vC)jj4|+ÇZL}4U1(3 3bu^|DmQeq+!hzAXOq&22NJj*Y4'#r)j)^?RIo!̖~]:(O0,Nd s[[EƐƳ~=ɯćF~j<i: endstream endobj 2347 0 obj << /Length 1066 /Filter /FlateDecode >> stream xUMs6WH0>ͱicݙNLB P)Ҏ}).];N= boRgP q#B8J;g >}MN.|PCR'Z`srwF ;Lte~lSEm)X[C=JZui]*Sk]EݯG8 /(Qax]0):-yUqV {rY1,o:/7;Ăc'$&a`/t^,@.Ȥh`ʥ(Je2jѪ*sRifD4F),~-H1xvyɯGM6}07v,P-[=k \>} JC^Y9Gon$V؝y"!]$ZiU9ݷB]'xT "R\BY/zg[~ wubwc} :#D󞁓y@# ԑ~@:q>8 14>r h@x8h&* ;Xɮw}U =(HZMkk_6EȨ^&$sJwU4_\GgW`ڋGUMfD}~z/ߌ1k0e+fIVu"0mtr}#tJN vީvt/EΆz-.M.Uӣx? [Vٱ̠麽T .D{PXAcGg6C@!+ #%ڈ"R1ڰ`e7vVEpEwA;H{_Fg)АpD=F-Bhb_D,ƇQE2bFS>987 jO0>(th voLJ?2>N7UgGpoWu2IWi6~lx'Ng(F$܀2-<i.Q?7ڰ)>PҿG endstream endobj 2351 0 obj << /Length 1552 /Filter /FlateDecode >> stream xXKs6WHN%oqi㸒O-Q2Rr(2.e(] ~&" /G8JLezrt|.I@0qL

yR2)ny %Dil<].s͝_U`X=es-{䗳jr=D!M±O|ZG8RG"hH~83ݘH cDuI{ <+֣hș i#7`2,EWzm }X*h sWr4rptl]FN XX(ǢיHb ]mC׈ڞx/tޠLp E^BI ("0_/ƓWSteaX~r_fLo{R"r 麮U/ޭf$/1N |Lu^pbS/%=YibJ_;p`G;WNa( kN 5ӌ" c*r3᭥ѷ1`Uq Ù;K`ַFyFCr89{ ˆ?#ԡXlsIt~a^r„6Jq !9S$)1T ,\ CjSjB5{!afj|R0jI %FW7bh[(P9$',~CƼTA .W&[;x;nں@L;yG]HJ WuV%yjzkw/$]wv34T]x/c{~KHw~{o c:N#?Ҕr:Y6b endstream endobj 2356 0 obj << /Length 1183 /Filter /FlateDecode >> stream xVKSHWr5{$nZ`mU$!v zۣ " 8Ezo{qs::vD U9A~Y?wrtp"C r((\9\8{Pn:3VcF-|t x2%XE^Iñ'06w {uaY~88C0 p@ x"`vO>swf7\N$ylE EQDM Zq Jd RB& $lIJ'){@c_ހr /8cܣџS ؏d,eevоlS'aa4OuVթა.J+q6Jot15 !i;|}itGs4dOrv~vh7QIPp["pf!\_OMfSV^kLQ>:3*6hEP‪AshrD94>Z ;  7 >R`AqHZ% y((x 8 "<VIهЀmXG0gCxGo>HIzѣHУoC{Ǩ_Sol7[,v fQ0*::,<R0Ё}lMC春*JZg>N[3D0%SDZBi%,;afWwtЬTQy]Y#Xvx7:+ 0.`P0HmO-9^g1+۶[m(}}F% d1#13Ǣt vVZ+bУ;q0 e+7n.V/ajKZj 1UƘu\]8]?+۸ cލrnmdIn?vH2J.lcN(W8dqudSmZBTU5>& jYwUNUry?Ru^W݅o}>)ާ9Ma-81&emZH endstream endobj 2360 0 obj << /Length 2157 /Filter /FlateDecode >> stream xڽYKs6Wpot j$29"$B>^oA ImńFwu7LM@ۋ8H2NP ?n771 F)NI\R"Ie F"2~ V]FpW绬.[~aHuI)HHa7^|L*N[U&T{1~b\/#Uu .>Zuuc[sDEV $E1e|S.E<,c4;5GӁa(e ye5mԾQgZ5/bA T`H&7ݜc? 03wK駥O .Z%a/G 톢U]]ӯ: ٥~זCu|`dBPe+{k#xn]mT20>֎=f}Ye'vi נS_^Ō'S]e ȣP`"(xSDRy)Q)KɄ@XZ= aDS;dBMّf J rLX#{G&pzgrDفXMLQB,hB+l&_0c}"4>z IHCD9$ W-p $ āۣB"eW>C?zn5~ѵ:W6rhY%m Ŝ7^r/TU3r}YFE>wW?nr;w>q:FM tPͶPq .xi@#y(sqFf8f n˰7Q5[Q_{UW#=z`ќe~ e% K!KP@viw _Oi:.!lG-@)7u;]djG?";j㎻X*e?dU5p.Y^F7~<J7ngU"ʼ+MAƵS}4E} r+xqla=L8P j+0SbO!!CdQUd$|\kΤu߬}S5(@LX|)>䨹a *}|s0f@/1OMCKvV ٦ݹO_{Nx s/K.!tYnzO=vY %y]9O;;IAדvYcǍ&x(ڮXbazK$gFCOϴr7Uk udǹj -lItN_" V}ӌ%} NA4B9Q}:9V˒[`eL ?YY3lu=3R~Us'6 RS)ցx0̜Ӯ8IIo F"7Y)죇6 UxK0pU\1#1tfa_ endstream endobj 2364 0 obj << /Length 1984 /Filter /FlateDecode >> stream xXKs6WHUNU3דڙlm*G-$R!8onHx*Ehthth%,<&4Q"JFler{/^\(0FrxM ODY,ɏ!R/2ƸJzu׋L4}*E-_.2E0fO7/.N%9BLp"\]__,H6}u=PŅfS)n$/?MjPJM4v1]MSs~;.lkֻcf6}}~_˫wo_5ܞ@ y견˶8"TM vfvaGVhաlP|?:TMM4]nK"3$plFæ Ѐ%ڂ3AP=e@4-54X2b:`XUѶs/:Q)X5uwh{#Ç-~< qWF0La pZ Bvg?D5eD¶n.4r˶ $\ffr%"Q\p a1?`|]F Ό&B4f YE5`K .YNp)o6Y_8Q{tس-&Lu0ơqC,&aI8A yߘNU ϐDދ<@ZiXc+4(3p~t^.c:C<6& R@mFhGϋ ,ĕMٖ15@,Ah&V|ub6z@VL?Fs̑LiJ`Z=}>f9LTƠ 3{~|4}4) +@ .8Ȓ9Unn޽Bqu|w$8+xj=̱XpJoKuKJ~^L'tNvsR9{P&Ki&e-Uyik0Vj(tVJsOѽ+ 1ԋNb#r_hG/+G~](~Ky.k xwB%=Ag;E(Dw+a|$f8g1ZOE{-08@fS J(vaMz[zl/Y,bpr-0N#9 ˏo|Lԕ؇HT,2L1 Iτl:uaGQ2%;%Bp*(MƪB ݾL,-m1` RZ[1KpZ-M&z+@ЅӮ<`aFv@J͘6ȡKȵU&:ewTd]AѶ^f}UYJЀ5p0l@ endstream endobj 2368 0 obj << /Length 1353 /Filter /FlateDecode >> stream xڽVYS6~WS1:,0 s*Ɩ1+}ZIڭu7v6v.!9,f 'ŎN~lDF^br'$NH"Yeg7/Dgt2+@W#E7Dn57c~l&un&D'+ hZ[JIko2Iழ3[ le%b]!1+4D}HnL{l[R%k+-Ot͖_Ȧ "Dȋ,ȢIi%GF^z eH:E116?هOE@+aCh]Z^ޘ?^-W?Nԏ?<4ucت;;#=JQ D 1tzv\I.$ؼMu&EyDFz! v<>h|g+̃y.m;W#g5yKVeBB/ endstream endobj 2372 0 obj << /Length 882 /Filter /FlateDecode >> stream xU]s8}#Lч oNNԐt>PY R;۴;+qu8{ρt5:#qSRwgW?]H& G%T )Jr:zrgj54zsNb{|(9>9O`q=C9_%e|ʚ~* 3\ΓW&M6'q՜TM/K`G 0cKr_,w\%>ld#U"rlbGy@Qsݚ,]b}L ]C Љ~ڡ\,ܐ9ß.΃ƅJ8m/oPsc;?E U2^7BI|ڄDj&*en JLvYk.Te,iEl=Ρ,>B0fєQXkFI)"ď8G0!'LXPY& øT&~^R/ƻ~c gP@Dssݱʾ+T[͠» P_5r[дF-u'&;}<!FG62_=ūeS+Y^mdַ:mp-k{YJ # 380QG[1 SLrmw[V bY प,g:<تydpM8VU!fZAk`N!epmR|fD0&y22ujIfL17|:;` \> Xн;Дo: endstream endobj 2376 0 obj << /Length 2304 /Filter /FlateDecode >> stream xڭYYwH~ϯӌ|.jQ-bt3!nLeGD- [dS8NRݺwתh pSJRiT?7>_O$"8%|I$dqDe[5d)7&+FI͛V<{Ę3JvU= JS'f~bcbv2*^LkyuEN7yƲ:*Erhɘ$J%6T1V$*>[2=2)hk(8CB;>ǔ8BdB'\ђ Q$eZ2QXB#7@ ȨpRhDarrDJ.pę^ %_1,-׀}ZoX#D*e> D:̊Sr@B&aN yk<؏pQ %L>{%1F@(Tu\?>C&}:aH~HX{Gd"JJl)s*;*h4bzNI[!(S h q9w-aĶ &"I.cNNU$f`C|fdL3`,t%* 5}u?AHlB{"  V LjHY'gJW0f,cJ bk=>ŝk==ȸۼ_=}k7[v70Ă4xÄѴ:Ua+'3WNFqX B>P 6C$j i|8"ZWySI!F$ w LGp %0=8A$crrWUD Y+P'uڗWu1!qYn;m#dVMWE֯wptE{eI`ǍnݳgjUۅX͢<W{'pkb(3ζpC4Ug4EIa)7`@6X)3pp}oMir`OUOVo;@=/ksd`ɗvtە,~SywoUV! r}RZh.{cC:`iiJIH0OR8I0`\gMB&BM_Bsl&CM",ɣpe8 =UO|$0q ƨwC C8(B3M J~Tec-ð%<A8^c8ncNACޔc~q Pࡔ+(I?Aʫ鷺A \KdP."+_/nMV: 6y.++۲ (VBX0ظ}@5XdBhDbEB^l-yȟUV94n,}d7B9%`AZZX#,P]رN瞋}sbECDPfh 5@<7EV 9\'^n#MOf%#xZH~H|0ǵEζUǒhYjjދM9'':"yU_$f >NE̿tFbpz8%\jZ8A8R1z]]]BuׇGh,衘Q;(bn]UmO b}W endstream endobj 2382 0 obj << /Length 1300 /Filter /FlateDecode >> stream xWKs6W(M# >rsQ:[KL'Ɂ!>TweIt:b-Ȃ"` h SI8 HZ0SY,X8 bNLD̃OՇ7gaOi&~3ɔs>K;e] )m$)B I$wCVpث|L&a2V+\4 es_ANcL-4]M0ٸA=Ĉ؁\$RgC xԫT9ܑONuأo.%ӱkrR"7w$G>P6pRqJbD7mn.W7j[ wX+=p~;\usYY .jLjcT}5D],|mbR(e 4AUv@Uve,EI }DD3RM8 7vW geހuJ{SN 81M>>~~񲄑$|7ݚy iq~;w`/ŷcǸx۩øK3}Ƙ"qi_1E`4"L9c$0Y]#zʱABJh`@F 3 ߹jX#Zc+l(#(ִ)t6YϮV 4-+sK&D-:r->::ڀ K޼[ف1WT1!!C=!مP?𫗢0 ZYu~U yyu%˶ ~^߉㮿:ǭ omG;\tlLg[ove/*;gU)QNrqFAmACЍ`>o\lp3 _: %ÎhJͽ+x @v;=H,\k ą#7q7+8vL_؎31Cվ;JFGЈ|;BC~95pC4@#8Qz*۷ǏBz`(m>ZWmdm~b CZr1λ.+6/P^SqYs(MvMklŎbGmV^B-i8ȉ4Ao> R`OYAI 6 endstream endobj 2386 0 obj << /Length 1303 /Filter /FlateDecode >> stream xWr6}WQ0./ȮݙNd6 @IXL'rbXkXF8kA~`UZ~7kxw}8:9E 8V=&Z&f/ޟ'8s 0ɗw-Qbb˦u˛p~>lBl~>z%^8gG>1*䀎g 4x.Wś5,Jc^='!Mc6mVUNpN_#>7)HBÆY;֏"YdI׵j*-h.ƶ R/p_/o33R,u9+t%153LR@\8!p+F`k ϡ%"ַ*Euj-@ +; V; (i$IV6SӸpBl5"+*BɪH#vТd> stream xWKs6WHM%>!um4I-3mMA>Tڿ]HNgڋo.Vz̻:{F=iHxyIHzZz`g {WƯWgO.caȽƋ J$Vk0-㡿UQol!п!]֝ΥT|:[rdRb\&(Ii 8`,Ox'j Ico ih55ݝVU+`6b1<8zyǶ-uj)\,o__xj$X<&4MZ~8 1XNYatV|Uy!E@S=u]I;d n j{bvd"մ*Gg=$ R~}TנM0.Cp V6N\~ g? RE^Q2{šPS6P#,B3ƮU.+^J&u Uy^xNU;0lLfckbIFWye?sXiurmڝ(<кCx:c u{w#z/P[t±09F R:"% ,3̩Ե[jJùZ@*YA39PG՞WZYR{3f*ںRY5l/$nנ Z6]ׄYXmZǍ7e.lyu';8㴗"'ZDidEo.~^Bi0^^y5'$ѸXk:c>N9ΰp};yWy 8P!+dשּׂfnNwԛah;yԻT aDDR.<{zkXDCH a,%4B@cS~,$fa_f]0`ovv?l~`%Hq/^^=yz5cͳ/ znEVu8Gǫ/̡:4Gj*h"6m态T1ѷǝ)UG;hxߦmiu(28 2#=Fx lܚϼ`9Fe?  8Pvr~f A e'!o $ K;C je[X[cیq/4bEh[sE( ]֨}pL%rĭUCuA@\ mO$/bJ[@bx| ı}dJ:LHC2<\bLC\"$I 8:s/Ǐ* 㞬㻉w#$"$S}vBI L( c]+8HW NAsSh |ca  hd$tNY KK`*e,tbD +)coz[*TSH)Z 8A툈h\$` }};_7SRSTNܧW_5~e|F.xK|AW@MAb>- endstream endobj 2394 0 obj << /Length 1410 /Filter /FlateDecode >> stream xXQo6~ϯ BJ%-- v[`h ˴ML&5JrE6M I>/g!ydD8zy|I~7 x˳u{E#4de%("yMf'aI%|=&]$R6Ir/F-Q2LGdmF̣ka3]Ru3oŒe3 -[ĹolA\-A8D{όk*Wz{(?1jcfrzT 0͢,#/H:ҙEUvUR a\]ԌBNYK ch+ʋiEg7IcL~}_m n\mifAM{/V ؞gn X5{hFg`Cl'3nR3"(F(+aQh12x3ywz3Bm!v{qlFRNjJ~}2Ur[ \ɴ[蛹]{׷}øfmQQGZn6۟l]*RHfAį{^n+.Va+6nz0d {JR26+Wg o\rZyiõ c\$F0Ad B!6&dI5䈐#d') qs7t˘I, 1JѵS].JO<@2uL״ kկ^ڴ㧾&n{#pu++w-&PQ&>LU%~eoWPr;PʎF^BD4fH,{MqWE][\ kɪJtLTW35v˩:xPߌWxV5ŻDy\h+msX$saH:veo7ŞJH.> stream xZs6&B&Gɹ7yVn-Q2Pc]Cdʹs3@pwZ,G,z}F4R"<֑$hv3û/'O^1Jhn | d% x\`/pѪE _b^IF_V͞۹.2jjnt&VNJw4/֎GL $B:ؽJXs[dBrTYn#n'Ω$~[ߓ~]38?/.~}{]qcaU,vŨcN)w#Nӿ~NMG V@|@ȧөoHf6 y8Ő /&[^Ej!QxNk6`lfJWN95WUM;χ r1l=I'M'A]H ,˓] "ExݿjdCMÀ<+r(Nr[ن _)Jiw/% r?@ū!StΎs=EbyUݔqsܠċez1L[?0V!@Ӌ7g $u8!zG͗ۥ|H+$Kp 6H=j[M :.p(>h]&һ;#!7Z'~zV˲'/ةa r;d{F!u~eb8XP3XgmD" Wݡps(|9uݸ`΅g FP ܦgta.tkǼ >r]bdW]1Ø*Y$6}^CH<7O@roRjAu#d&Lv_8@ Ml-y +=PG^6;FmE nv0 i\-[I8m>@׾IͶdӆEYmˢ= 8?Q .~! uN\Ma  >-b0jJӲpO׽ 2-d Hֲ聂 wq(mht:\"7"s`2bf gXhhiIWU69ʌYG!P9ٿ-5{Cw)*atpeX}k'7MR(ӓ&L_U7i5n:LO"~c?0{`h x endstream endobj 2402 0 obj << /Length 888 /Filter /FlateDecode >> stream xVn8+x!ERr˦v.6ZEۃ*ѱKr):E)p{ )z@]Ͼ"H$q$X&H+ _lvQ!BQ,$GY>y1P A5VX,DBڪ ?<uB _ !JpBjq XO&dޥJj~a)|,a2e_u7Uuê"bvx<8ӟP붬yU){ac)v {7OV˻ly{s΄aI"]j΍S0sMτfyY[č>ZlM!ipv OzQ\j U13A$#r۵S(]CG! onb g\+gXL8.9۵[ƕl5QF@m/sW.1;t<0LJ,_kjT/9PΈ La@ Ƽ4]}QML:Uգ*dzqO7:tyswgBzw~{˿@[ChpE] mԲM6V_UdyhVkwMg%u$vԘt! Aw[&Ui)7*e}%Opy^wZprwse hXU"m?[#r(F:vߌzWJ&U4*TGJFh89@l; endstream endobj 2407 0 obj << /Length 1366 /Filter /FlateDecode >> stream xXKs6WH5&'ӃȎiZJg:I4EIJ NHTd2r߾듿O"H3!-(12_rzrv%R24#ŐK-t> G|RdȊI&em̿Uv> %!{N< ѧٕ%8&1 9ő^͛jyp1b:=2*])+P(,6$XMYWyѼwvYۋaIOWT񮎰Dy%'ɳ-ArN_F޽}?.unTpqwwALCLFQݹr!Kl=1/Nig#K9ҋ> "O21U͓晖E>%+{?YzEf)b;,i kH,AJl_n+S.a~w,߼44Y?\61XYHfZ,/k˲὚6)I%&p?xVa>ʇKsz a 2 @CZ|ٌh̞x w! +;*_p牢C$0&3SܜC9!Q! XyA*>(b,*(yZj|2R/|[7t.;l48#@"w?n&o&ӷw>@^Щ߷IQ'0B x [Ev/vZ O>|"ht1}v\k$M6qcEn;l94IuԆ>fK6-G.CԷ6PzՏfp" l%V4$r`JdĬk'$ٖ\_O};Zu.]LKkUf톿lLZNmXҽz a1,]i!7 5*E26ZvP+2*S_ `n,b:S"mg_,k@%.f>t(XNHEf_6Ir}4Js 0y{0t+Zg-Sՠ_6b`Bԛ_ cIG"{+ 'MP8!'h}Ѽ,'=\u?4e+4!z{~OvJ zQN#g* v6.\Al}GMWuvŰ ~C?bqG2K?B endstream endobj 2411 0 obj << /Length 2816 /Filter /FlateDecode >> stream xv6_ݗ'Bąه6un7usXiKLQv; @@JvH8}.<ﱐ!"'d7;;ԇF8/yrt8axB^QX=D0O_}q(C"GϏK[x6ބb*LE. 8dJbF^y|=YWbafQ _p,hAك9] |LQr ܆}:} T͡~'D"N5pB80t,4+ͬ*˳ILq2?S!;ER[i Le|ӕ!5fd}f佾g;Ƀ3KQbf˵YM[FbTily1MLVE%uEQ)jyij:4 6Bn+/΢6"5EXq0l֢f(zqQf<&qegW"z?좣h尃򸌊E>by^YQG7:lh$5/euahN (cEmmeM x42]F9d IldZF`}WnL61vqI܈Heġe A12p qOC=UlxC8Ƌ_~)<ý t1P{gP֞A(A޺ؖ79M>1aݦj (**TOR= pj2` T@1@֐1x+$Ytm l DRS`3Vlw@Jc + Fѵ3@vCAViehfN)^[.Z8f*ɑ܋]T%{3'h5Ny.#c(!\C\*>831F$DTGJ l\VJꓺʵR jW.N]CS*yCdٜ4K QP/Pdzo!v ]/x{?Z )a{%hi$JДQ;A9#Ti'YқՍj4?_/X1M4U }hKDSiur^ ՙXwI8DMIpP!WA nը=XFϑPu纉lcrZW)-ٜWJW=LM {YR̙=@Ӹk6M|@L"mĵ B/,htC'˨5U- iͳrs/bEnl  šКhhVP{5 `#r$.'|SlqbU*-|iy%hZq|$CHQj&*qF w찖Zh"ev %z=tm ݢ0pHpNWLn ұ+qA-Mv&Ev: i7,$pSź&:Lwt m:k^̾tp˗utV[#WڱPN*Tځk'e񹤼#iXT"< :sžÝY:;mѝ|g wuSaPw@naToIF j_/:M d!U#H3ΰ}q_o9S0F n*~2hKfuWpDH+Ό9h )T!d_zrߙ{Ȗn辙  5a}\æx1oJ$TpxlNmQe\;X߲'=#1zuVHAf?NN_ҕ_O_c=/_H^FElBT1~7nt;@C8@PuozTNnRɵF endstream endobj 2415 0 obj << /Length 1218 /Filter /FlateDecode >> stream xXs6~3"$KӇ•ir390ʒM;tޟvp#*QtL$di7|s>i:)I8R@Sh2 'Ci砂t <؏0Z2f5NlH1TB C~;환pFp뛑HʻWЈ,tm$^̫VՠI@pgiYe|ccݟlȴڌFt/h,b4[~y=<Lpj]E  E\Q#1.f[-eJ'q:q֩)\NzJ(rALtU'̳ōGdf_:tpOVhnu~8wu\mE=?wqvJ`v 4eq| E;$6!0tp㞗صKr^ ۿ6 uZ %KyژR¢ě,%4Nt)CI n&JlWQl/ #t0HS#~eVo*@f_4y!ju;VpB4kE9:WS?^\˶{)0f 24Z-FeCd[1 Y',##|-J_ԂH='df!s !g aQgCc^Jgy G)La[>(s4 Y}Y ba r`8BhAcנ ~LB)H )*4Z*8qBM|x6b|E5I5˨"dhp ;6 1k- a6 (Sr@"Ha>2a*r Gfbhp$JyO* <Τ]#(%}wVCju/x3 o(69#0) [ 4qRzr!RW vzRN$6CiO eF8ձ婵><őZq-~S#ƣ-=u휈%R9޻;b]+ Hpͨ~}nJSPeݔj{æh-)-{گM~݈֣禺K xtE0{Q̿{ >+lϫOO3CEbZFƏ) endstream endobj 2419 0 obj << /Length 1123 /Filter /FlateDecode >> stream xW]s6}#LA#3}H{6LgwYvp1ɿqptg$нDч_#sPJz;|yo^AeS5YrnڂxXN/w%8 u m8MM&\ԥYlF0 i, #qqc57 ^qy0=r1̿q#wO9x]7o;"{ N.w;NiKDq5 ZaRՓVZCRuvst.DjUQI}*85J8f۫ynmn\6Y/Du>fI&vGq~Ѵ-,IU5LB>uclٚWxv}^ݞ ]31([5YT''*o4&z W)佬utlACotJIb%wܘM]Axw]Ϲ133]XhC:tp\H V(!p\O`P!ǃ6TM*/n翿qchZ*[%kmFoغʚ^Zݞe.M==g 3uI~Bt*- rG{(993Csa_.}%8h\bR[ P1vm'NĴ•ȁ}c{%)nwWc½nƴZOeB'NmR=Z eI!&)Ui+Um*cldFE|VV-л>J@ʉQXUޮ!i3Σz+ ުWv~ )U{u{RbAi#X4X׃&B_VP[)Uڒ$bO=#?[@v!0:8t C1et R3_q.Xڂ4?ciHJ endstream endobj 2423 0 obj << /Length 1261 /Filter /FlateDecode >> stream xVs6~_S@? Niv&iӹ_9:C_,!jI d>s 'Ec#O 7'ƟWg00r&ä<#]'c6>#!/4sLG>2#ۏB˪a)V3RM\D/Y<6L \='*f5b߼yy5N`hЉȰ= xȪF BB}g{[?,nYV2!t(mۇ~qZ\(/>9dbGvLLrm%3 XByVRVفjC&.q*V6zJ@Oa$)/$ K`i Nh 礢t+A"!bB.GU-Ҧ) jQ=vM&aI JzPHk!P}~Ŭ:HB!7HIcjx\h.1Vn۶Ap\4pC\~g c <`JZO_,T /Ϸqۋ?a Z:MžՇ纁IU;gh2:!)/AJ#->}q5,CA֨4_0 ]ыDD2}DIDI(KEɢ:H&Ի(-imFߵ%M5]V X[o!j_ٷ{X>`ކy7")hnCA0Brk$S,MDPU^҇d'! G026]D!4׬p`*di *YQ/|Z4A*kd {0ȗ[GzL~B ;U"wB۴㴢w˰Qԅ>(w0' -޴G Ȧ{sڿ-ߞ(Frĉc슃<$Ե endstream endobj 2427 0 obj << /Length 1282 /Filter /FlateDecode >> stream xŗ[S8~tXbYrXX,$LG P]b0S;;sBU@prDEȘ Z˃? ޝ&$ 8%|N$ #.`>yEQgj'<9n0oueΫʾX5aݮ0v𞘿Eqx̃0Sg\L"@20rEQ--~rS+Kx߆'\ VvEWd{toW\Q˾;pćaxFG7m;5?vΑBut*DD"Ntvrs~=?|6Q @©t'Y$eLZ7"Lxf1MT;랛?L vCb^633$ 0nx4jeLd,]$Ҍ LD`֚6a:HDkwV*v>v>_|%[}6]_Ph%pMylTu|R'p3]eϡܮOZv7?{tj'?ƣ,U]ea;bxrИj<΁$0dS@G" W,1XE UALݖ > <A)HX&PW $`{UHXVe&|^ʭORb+)~ hFX_Χ7ɠw}&۔;m`{}tӶEA5ѷrϙO[j ޙIg.rKXRo""#` ''d P*4'1Bx@yPӈ0MIؔmű(_! D17 w6f(E26=p!h4Rk'5S?"+p_},c W*N!`3f~(@}s ]q1"&##fo&qR0^` ֽ!^#{s'~8:D)?"08'eEef1#%c}<$Hp_⾱տ 4SCFሀVguc`f9_Eb;{Gw=؉3pJb殜sO-2 endstream endobj 2432 0 obj << /Length 1509 /Filter /FlateDecode >> stream xڵWKs6WH5Li{p;u2SKL' 5 2 ]`IL/ƒ}~֡/G9,eď#' )IRG gs|·׏_VGIP^JƉ}'<’YOŇ?Wodxs~L4㯅kF|iM[3^rUY?܋@o[qJ`ib>sqp{^3Zo޾!1lVվ`Dy-A&>NwP{V 2diPM'1QǴ&jz YyOY>(%T鄁ɓYB *)e WR!$P ʷBC #e*{> stream xYM6Wp839 im( "7]ʒ\8$eblS1L P X[B%V%^vEj0>RBKR2 Z8$" ԠB!{X.nN!T!I Iw*A1ScRMUP/ (&n)1&YNQT aK IZQMc.7VK'eՐN͔d!-}YK 6e$=9!6K8Bѝ*d s5*F9K0Ŭ.`$Gp).ԬCpX#<$;<+ª$j(DGC[)@R"`Kvn$,EsALs,c ~N#@% 10GK Ly " $ dp2IfHՄ v"8]%o8 }pgbxg2w1q_brgCAGku=<fFexJa˯,ǽˇ^TDt 뛏*aM\/>!\`.M쑈|^_Ž9tGMpH)k0#$_}7GM_@HWn| osz?0n#N~x3V͗O]kxZ:YEOwk49cpnYgPlјŴ B )ģ0s!\EYEi@ rYEFx&='= v[^NU|LgR+eYŦ \Ĵ\tr! ˸hga1CaK 5 )Gb#v u!V.f;L;zv[nִ nvϹ8hט/%<~=#5\Yõ"?(-3ڞD{ KB+,(6Zg.:$u:c#Qcq3Ƕ0jl5N_Ŝ\/ѻxm)[R-(ձ>kYo dy}fۉYZ]J̠II^n!aΛ~ճfŽ֪bIZH [e; [v̥ZV%~sk[oyb6kǠwg~?_~7,:G%zHuҲRY,U̚:Ͻ'ƫHimm7Asv8 bp_gurSy<(2i9>#۟Ws "aXGBzm)6ȈڙWMnJ&Zw7@}tȚN҅5e*w9s:uqQs\ lr endstream endobj 2437 0 obj << /Length 757 /Filter /FlateDecode >> stream xVMs0+tgЇeKRhIt8q$M? Y^>=})mk >R\I»q>+!'(d( x.(e™bru= $VH,m E VO&AgXʖAϕ9rt:ݶ|лYY<h`3-WWy*fs@'X8f?B~7W,FG$ղft8Z|zNbi!S7 .u &q*"`Xٍf>L,y6r=^.,urބ=z-V)z+/VI^ |vk:ѩ}fϗr,o)3my3lFA4&& (iH%rrezhN`]&v,Q 쌩q^UPm!eR8PX_aouÚ6R?)<:Rx|8tO]ŀav%q|0d! e $dѼG.Q{G<n%ư}a;DqqI֡0~D E5w}`:s}~g3} U/L_|;?Eo_<ՋSh̟+*5_*L/@q`V5db endstream endobj 2441 0 obj << /Length 795 /Filter /FlateDecode >> stream xRAyd9{(LE#IUX)ΡJB|a 7ft|`#&QG3δ׀08VɈ=8M*{MF Ef%Kjڨ.hEr\i$TNPP0!=HZ,{g}zx8Hl)R%IՆBIP%.~dzy`?kSFS6[24CI0s/BD]xу:i$v3r&BW=hgOfiz2 -tiBYy7oS^mJjQL+ 277yz)h2O:l(z؈ڭId?Aé8 -[_*Sg45Y:A.Bx6? W5>%%s%4E/+`\[jCQ QNQ--flmghp&`l܊ixyߵe7C 6:H0`b09U0Õ#ci2fΧn! wyCCG, y6mih5ʶ !9;w@YX_X 52rXJ%kgr"o'G\"Ӊtɇ٣B VAؔȂ>Hߏ eC0+#U>rq[[j(ZN,B+ږːKhg^RtBQg0䮼,. V F/ :Wx_ ꐝ endstream endobj 2445 0 obj << /Length 1615 /Filter /FlateDecode >> stream xYmo6_!,_dfH)ReNm0]Z\Y (ȖcQKDǻg= sFsO>P:җ+т;Y O^箷Oήp#H-~qѴaKw4 Gs1'f`ruB|Pv>G Gcj3D0 a61*11U%ݷT^:}y#)y Tl8RIوQx[Ч fL]iagfA7+:>+n^wW- Ek{^+Dq,q[ i~6}d|ƿa=בyf`!LVn(n[,xvLݗ-܋]wS\3U:tnit(Wbvc3LFy/"&ۺs*7A%ʿ CҊv8qֲ^|zb݊hż ohݚ{A{kaVUaV׍ .tll|“0lw =$Āi GP6u{w7/7/"e:hfEppE!OVT00Ng x&≥:T-u<"8G|EWHTDJ E fOXگ?hxc T} 6@8wLfỲݡT7u~[$aN5>=1|6U<]FG`qVRWǎGv'Q6<v}J)ۡ_ jWW΢s, Vji%Q㙕REG־]LQ4K[8%y&u=p \0FCʯPdsƙs3(n:2 LXhFn/DIfKe܏242$NZf򗱡:42$-ڞ,;\W!y u^#Xc"^bGez;Qf_8bՌ>]o/L0^h1)=K?Ea^_z 70J8'By\@U|͕7[׽nhYI'1z(7x(qVΙe :U\DyO$O#1 lcoE$u@Н*gkuT˶ԇ]$  C5Rl^e&ԼV%Yb>2%(m#2ON Ys "\p CT,(5BRDyAľVPӺ3[LJ,ɓ|/V9YOy5&WmLm_JnH1 ˡްfk1I>g;!3vP͈߃@ eycUl0D[S6xW5ǔſP گ`4 endstream endobj 2449 0 obj << /Length 1069 /Filter /FlateDecode >> stream xXo6~_Alw$E2o]dдEW%keFdu/Ixw}GXƀu&vUcM;KFξy<jh 2#VQ>E[PGY6ϣ`Dy@:.i3;> &tYm3Ņ4!Yբ \ӄbբT.<hm*śn_..7I,=၎ S\+4RXhTr!|^ѩ/G%*>Zn 2痣iUmt28 G1?LsCRO\ܬ2_P.5eY2LlG[moiMh&WpOަ;஭6'dd&L5K`dBQvm8skMQ{<_&qhE`xrunt8Ƞ/#(RTAϲ()U]]e4I"_da(ӕh9 o2MT|< zŸYai\3^kUiIn_Yiy@+5QO0/ cnM% joUȸYM*g0mwjO%*-FЂm*q[@xaۧu_NffO73))$-miSګ!S|8z{yyM=Y2MBr_.&] ůdwL*=5/ O(vF5@λLs%|Y;Ңfmh6ڌlڶ1üTY|Eoꭿ,{Y)(6lE|=D"%PSEX o!VO0+JőHƒýPǮ:+ìѩ%Ge: V샍3K(E"nDc[}G䈆.FfPK| ?ZcbRcxhi*"RcHPd`.HHʃpOkAQZdC#g?O:8|kJ'Q ZfhK  endstream endobj 2453 0 obj << /Length 1580 /Filter /FlateDecode >> stream xYn8}W^E)o馋6m,h#Ɋ [RuISCR-Gv}Ei8sxf8CNYz}[@T: r=+O~\n~VX1ϵiѹffu # Z0]ooЌ/YxstTXGlD>p`a)J\=g@]R̹|7^_\fkO5u\8dU@Jk@/Ak*<8ND3S\E?~><~D9Yh8iUi0I'[j8:|?zwjPwuj%G->dP%Y$;. 0a~PyyNk؎bQF-3ëm2Ӻ(C.!1*m:aCԄN"{n믇]?.Gw $5,Iy8)7U4K]3OjLZzD|S} RzKPJ)r@* "`tqr{,G(9F 0}l@M1BJQdɲV@ Gl0Rzb=Sc$sb6\݌"P!P;? B Vd$2)i~~a cp:]Vԭj e^MPfxa3a[]&E\~7J݇yOffi e3dA@~K: 줺.Z*`!قXGO~,U>n!BnUVEfAVCWVݬnjo18PSZ4vͣZ>KbL=1^eϚ`'Ln dWOMGF]/> stream x[mo_AB+Spל:E^&遖hY8ITIq}gDR+qh7$gggf%Y0X?'4%#1qd^K)H,%W7@sJ(xjb b d8'gr;( PX\vu8;y#|:&TA(ؚ(G&)XxUnTYEysPH2@%V0u/'  ǩ&`%F~&!71E0;Fv@B'@]7W^  _?/oK$Ѡ%rbRyugd!+D.-BbhRgm*G1`s ug[wZx4ͷu/^Ϋzfd5gП/_7]DBErM(NmI"-V˴@J.o-f gytOy2pY8Ry3eH ;č&%IL,-GT bh-+Jj$Q;λ|++׹,{S,'<"ZwH.iW"X銽@e ?MI %f >MN|F)$&o8,Lpgs2tAٱæRy!r1 hE_h a>YYͳ3h9[9,o%n2{ΖilT YBn| 07Rusj[1:^مU8Ϫh#ݕx)-+ Mib&MϮ;Y ~8LORa;^/q Mm?Ke֚BKBݒFJo}E0g^$_7b`2k1b$M8!FF߆?gLɷ\"'U%:^$ĦgAl}k zЏ:-o9`oۈot;oJfh틏e\LfiX7f^}F9 *B|ǘ!EPa/o8rqy?5 Ϳdi7]:{ (]ˮ]Ƶ ^4`V!ʗ}" (l>1?] ^>iqS^>i _ LcN ڷM80~lqc#ϓ+sV}=mkh[ClG9N(4{,fFGgajc_7P[lAb};i endstream endobj 2462 0 obj << /Length 1200 /Filter /FlateDecode >> stream xڽVn8}WQ,QumjEŢa-ɫKIkJҠ X΍3CQt1{DAB šDBGo"%XIQEC'Xy7_nruv5|`>A. 0U)zr: بJԩQ`ZdھBu[ᮌTzh[bj%v01\pm%yãQkp~DOH,5˃K0q@ЀaJ_4X~L],Z<4ޠ\Xr\ʱd0N8WzSKSok5}V7SpN1ȑYwRŵJ xPٝ*""wvvav9p=>,g}̅(R>)!j e)DIUCڀA`[Mi׋tBV.|9ÞmU4YCLӘ [Y$~jZׯNqSQ"b( ϿSd[7:\ٗ/yK*EvxI!.t8Kꯡ xY64S+QyV.O58ŷh`'%ؕ:*WeFi![ALk:jh :#CY0@7"+ 8AmEZVk'XN\&u}ҝ5 EboiZP(hM]-mobM %> ,`<`qטwg;v )ai>kӂSY 9{7}CR#Vg +9\\AÄGhg]b\B]wiw=I۹( hG}+j͸@(#;:Faр+9!sVxOF}&IrbͮsDɠAj?7]P1崛.$ Y\/Gm/x 9k'f6ZgL'&rw&N {z"9ӞR$ÖҒlZ endstream endobj 2466 0 obj << /Length 1492 /Filter /FlateDecode >> stream xXko6_f1|RRKT[vr&w(JdӉ[4[-]"/yF=XC/DWW|۳K-wY_Fa;ւNbxj|#;GI5qd/|ɓu Zfn -׉}Xh㑿yKYXi^6"@ _կX[3mYNW}g̟g7ichuɁ٤¿NŲ&ӿobUqk>NO0X}#!iAtAOʈ$ִQDHDI@`t880dH;ac[fIҵ>WD*`ω* los]%aVU܃akߢ^eLכp$`aLP*KY^EYW8'jU8 ƨu TEdq'a~[I.J**FUe5Ki&<%i6B6cD,!@"HR) xpV c$İẃ1rxL<,gؘb6ӺpD"l2Y_w96limu'ɻ{> C帹 R;==Fl$8{3"i| e.C!J`:cr.ax#ɪ ag}FE$\T ++c1H4?NfL Qy){AK_-V j09t~wؙhq&{*a2PQ[fwm8wYQV؉?}ZbyGiYFI2uleVI}Jcru>vjmuP^dv9v5•.hrgt zttjD7G;ƻ{󟞺2"/ XӔ)4GX)^GDhN5 2cP>W`>.qB[8妜e*Vk233.t\HOLƧ";t6'm^q7o??0z4}6ͪ,$+NU-ղE[V&ũ-;;U֠5zF1joN0ʧ]؋3iݴ8l qҞnMy܊213vcٙlt{ endstream endobj 2470 0 obj << /Length 2115 /Filter /FlateDecode >> stream xYko_r!T~$l1M<.vǖɴ璒,9#v }{|wxͤ fHx3û<:<{yi@pDi`d`gFpy}}axy//m` Gf>Z@&\ߦ4Y1diޓ6\W˩3"‚6puM>^g˜UePPx{lYLV}-ggZIKҒ>Ƙ1D({r;*<J0r7WO(/ S2r܂+݊Њkue K w"H@93x)'$o c!/\.]{!U$#?"ߥH&q$fZ4T][[E7m{ܱrdIj7ER%f6_vQ'nrJK-JO4?:,J y2aǥl:Vmٞm02i͇"B+΄?bۛ}_-M& $0;j!a48vSذש>Kbޙ*b*V[N @$|^xuW] _z}ҮiҲX(SyNm-uj3PnXrS]!6/$/~-a puA.2B娨_)#o=FkbՀ*-X+Rz<C<|DxVɶyf!5iOp|gm:+(ߖ#Ug2cq\BWgjk1w u*G*/C sUO,,,zTYjowrFen*0 )U^TʰȣN|,uh/!mf2$+4t]g)ĺ:.٩U!QG8%"nU ȤLit$] +!l#~;>Ș(u'8Q}j:QtEPvBubyR_Ai~T0$ִ]VzcΛؠeՏGa\2Xꊲ0غnDTGں1&8I:]:*1 ,AEDp 9f͈L=/.>*J䤳i0pjiyډpn'RS:l(\jzؠ\[z"F{5O{;D"WxI:ѭp  Y endstream endobj 2474 0 obj << /Length 1896 /Filter /FlateDecode >> stream xڵX[sF~#LWr5IڤN : Bिg/BZXͤ/hw.{Βh3HQ%QG_`g{{gG4F)NI4EFa$чC^Ø%tiZgÐ ` jX!UUnwWv3kyO&EOY]-r߯&ZC|]Ӭ'0j|DNMv5cL C֔YXTiuNA H~dIP!LJ#H Ki$"$efpSLQ$He j9S#Cm029Y# kEZ%ST&,ňr2A x"*àfQ}TtS`(hrG( Fqq.%= q?)+#"Qܣ#!$Ed#.!kS*m %PćiG  PqJXNjJD(Eu_s*hE;*c@^Ww8)K4ox"7BILuzLY 2*.Iek\f($!U SM 8e]]m4)+_X [um.{ⳁ`!hul#0>ʫ0->b ɜH0 'Pztm RAΡ.*\F[B }le> Y$E G~j.Ըj .!: $SMg6$D'C"t> N* Jb ejpq!|>[^T7w Bіj/BB5K Yy+$zT/mS.OPKOa{͞]yIH^>,C4IOM^nv~Uzt&HE<ɤ07OIp6V[iI#Շ_j:כ?CǛ{$K?W1/=ԣ^g A.*Πi=\T2DJ ҎqM@.}+]'X%[B4Kq[v̶y|u;”JW*r}],b.ZlOӦ>/M՜e3tB/E{?~`HJ ^ݾzs}}$io^X YgΦh(:zΙPY헎uq7Y7q5x{ #]ithy^im]+^S/>w⪙AA9&|9]cz-YknMjZԠAQMj.~y7u:F cGE9yM8Q5uM3fQP1v;TdEf[OT4rO(h;t 3T v14 f4+71cm@?bYS/pc7`4ۅ+Ir1cS,%f70}7,k;:(hAQGZ8ho \+0` zagTxS_e01A ˀ; (M2EBBɑ-fZ Ƅ0}Kޏ>B)x$b]_hzm} ޕka"*wpL>Ūpex :*3s(l)*AD$ݽ7n/lrwZ^/^ڴ/cʒYL-AV˼lVs;)&֑ %:ܧ ֨Tzpo endstream endobj 2478 0 obj << /Length 1728 /Filter /FlateDecode >> stream xڵXKs6WP&ޠ393SK鴓HV"򣿾%e9H48pDH%AW{ß);}uwpY1J8'*$4F\`4 %laLx8|QÿcU5I>(JbăNp8z8(A%v@h@TPOz`m-I"&,Ū8<.YvMU 3z*u^kZkCj:X+i{ȳVr;ytF< GcvW?}\|bUi exty0dkʚs̫em_e^ *ˊWK ahVuV?e>=#.>.$z&ʼnp5_8Kܘat3EoaV շJ*ʊq9]{.ҪfE"/Sg av&E F'»zȿ>% 7/VR[AH>˹ߒ)Lr:t "M ZV4j8RK'h A>9Hh0+R|K@H4c v=0w.#}vbRy w9́,P1D)l =ҀH)2wpG6 ·3B(%UͰɥ{#H^:!DgT",`<5&R b[#:vCq0 P]DDp˩ FxQCi%|=HUDa,UO$uQ%Rp2%#[RJ

[^4ͽ 묡aoi5]ͳt9qǣ x"CvDv;|i endstream endobj 2483 0 obj << /Length 1265 /Filter /FlateDecode >> stream xڵW]w6}#nm =}HN4Im==@@|$䬳}1;w 6ѧL<)wkz(h=V AĞZ#NL\Bx7[/w䂺]{M)Ǧj(<)S˲r++cbjSx~#`f{EDRưF4~Sfj+m.*E#i271xcTa1Na|EU)#Q|"I&~G$ '}ꕻcAi29v~ݘslq p[~;{;Ց2kWuae.\B_ Ojp$J7jv8wA0ob(2h}8NA=w2)F/~N^e7$|݀Kݺ.˟4/^[sTx?{WFX%䑔4"ZE1­~i"ᇻMCDnפ0U[W~,2MRN{fS7o&s? *8GPPi]4Hk`rZi~@ҧ/!3΀5w @[]BCCZd'4|/4(cF#6Ħ1K9l"7L7YpKRGf Ofי endstream endobj 2487 0 obj << /Length 2201 /Filter /FlateDecode >> stream xZKsWHf1rY[vDzS "QK2%f 1rEģӏ{DY@wgϢ d* SqJ4x3ûwe|*H4JTxDd"4mYP29XeV|yxPB%/?|gr >ߜ|9Ҍk弚C*6ۼ}}%eɨX(Vu>+Q)R˻3AüXMo*ej2R~UaOv^dUe5-V9<[Kƶ0d4ڊ^86|.ʕkc b>[\mװXnryȵџڿJb}rtqsq|W#t?L(M,dm 9K|HY2j]u-IiW6l~Jv]Y?>^mVгiZ C!`lpѓp4nZHǠRH3+%2P$UKI*E q0m. Lp,񢌰D$?KR[^LbxW$ʮ":+ObgO[$j:+?qTv99*8&7/)"qf%gcT Q88(Nߣ`p,">_ Z `b ̖$M3 "Nw:ypm7Gb#/|=z ?o3$mo/2CJ$ Z+6H~u̢h>(m j$#8&b>ɂ*cc?d[9 bfI*1DI|_1~BP9)y2mVp<<[[Kundjjr!LبCavaӈ2YMO& `9XP.UcV:sEhӳ|5gF$IU 7Ni(o.TY z4p'&R.S|j}U,%"Ã?uL)իhȮh3!S "iE:$QrQeЎ+ȨT_\ZfKFFvCI膮 k<͂kmrڧɢ}MbvI^X-&xBh,a9z/۴0Ennk̓Ei$[eu[Ԗ=lu_k늮 ^B\eW ʶjt(\S3E]Vd=XUV^eBa`P~o{?_jg c&mgȋ7'L*dԩoNH \v^{a-nRʄWbғ(>VBkXOdνiܶQ6[$*I6Ί0$H*WCUxv/LT0ᚼ\3Fpd!mX\cIqI1gt Yա@x:lC"M(,|(8w.{.I-NlY(&'}@I4{*|Q[M{5;>Ewv/;2pM/;l㟽#H # I n8:ĢF"V_83L:NO9P>LY~s* 疝iE붥wDkI_gʒ-e3x[b.L;H`StmOUT?Ce25z-csR3 âɐP"iQOe)ϛLۙyrOi۳Ezi݇IQ6Kps\q%f9sLg6#Dt/|n_,7wwEļ?gd iƔc%A{"2NSǪ~? endstream endobj 2491 0 obj << /Length 777 /Filter /FlateDecode >> stream xݖ[o0~L$0ıJSi餩@ocp kwB.sGDY[ I)bQa3<$(U[Cb-CI$'X(ƑXkB)NQr, ¹%&>ϭh܊ dCwy|D DS3Aΰ𴝪 ݖSwr͚h/j˧.K&Ql>H&4!2G0˃u4oT ڝzy)sJԻ&;.BYX羍O穽$z&(.Gq>yen`RH:-WHlw UZAfm_N~NuD++oLL84rOi+7^0e/'Cۋ,'|Zعn aE!\ŭLnOaEU?)}&x.PSLR"Z, SMW Vņ·}F(K`[pqAp# YOv_=(v/~}{7:E8'F_ӼJHFa50򴏵R~\#CcmTMG+&K,BrWH3J"UMI^ʯ3^.ttA^A?ˋ(hiRϦ.LL35nZ(}BI=S&hy|#}bB>4O1##~sā?QpuݞbD.׊T<;챷 Qq endstream endobj 2495 0 obj << /Length 741 /Filter /FlateDecode >> stream xVMs0W}rk;u:6L'l3NaM3=IHOzϦh(|DfJ"ST4|]HRD H@Q8GJaR`}&TΪHVQw%(^b~<%zӇTh,&dUfN j@NFZs{1,·ӳ&__3L,Lah qvL9/UzkgUilqWiU<~uc)W,+\vNE'D9iink DeR'euɛR4S/!R*ƹ4 c[g~ K{hd~O׶[/\nLce.Yi$\F&*#ķoDˏ060CC ūA Ř;ylQ+ M0Z#>B ۢi3*[Ǵؔߣ43P"!K8g;djkp6<}tͬ,6<;r6=z<NߜwF)f1.'|䦄W݈^JPUHbtڒ͖wKg9ضrg`۝K65/Xz\Ci\{JbCƭ_q9x}E}s3\1`M5˭)?L endstream endobj 2499 0 obj << /Length 1345 /Filter /FlateDecode >> stream xXmo6_21|haMTv8r&:HZd+ E$ssh(zuAI#1 %Ġ¢Oe^mݿJ(FJcҜ`4ƔNL)M7[9kQƱ1^D;FM>H`%> jLY MGډoDlQ mx>ͦۉ%!mR̰dxli%CTLbΰ*N; ;,Nz]}sgN+X3bưKvjom^Sl|-,ENGpIְ5o77Ae]v;j::1ݥwY/4-봘,|ƒs/ N+vL9s`XY<)ҥfw2t* T5*ȻQ] (?ohq[м{uo%]#{\].^wKBiH%t:\L;,*m1E#Up^l`pY@ "Aݷ^x.\ yY.0OVi>j3dtCF`( ̟E;tL֬!65Iz( M PPb2~̠ŵeq#4rټtT7[7pl.fl4S涘/ϑS--Y h*Y!u6w&DbdG~ g> stream xYmo6_!_dfN1Cei&ے,v YV⨵eOQ#ɦmu/%;$#=Jz'(^{?!H A޽F"^/n}!T[w"F<Fkbft(UfJQ$S/{7g-'Gwx&IK EADȂ}6ϒv@|gn:1[|b~=Oh{͢lFw0? "Z.B"//|s)lI`ԒYX]R:3;gdd_&$M,;I!b=CX\-൸2$i|4/0V|\&Q`=)evɗAFv?7v 6Jw-hèؓ"ush2Js( |N\u(8GjHlcD_k! pWݓ呝D$BօRNa> g1x'̟=frSKH?™๳V(߉?iH0Kqd'|gI߾i \ +j+d"9 3(I Iԃ,H1 q${ K] $`غZWa. )츜{[ vu9lr:LPm_iKlyYNU  ~\XPY$wI6KAyQB1(7Pԥ`PCi䒞ln2d7Y[tbni#ݒ]B=$X3ˌ(SYc(5uf*qjY\9s&AtHjr?O-~˟ܿ7ߍ\|u+8'Ƕޣ*alKOS%oZQ ϞFKbAӶB3t&IgwhBFLh+0='eϭ3s'l`ߞ.*d?Ajm|ňh,BvSKѓ)P9G?"xzS !uBQP3$ hkV׎@jеf9qPmykI?f[ʠXCPM'66< Za J⠈6ZB?0vIP Iwa"ꢛ8vuZ "; g x ,ڥBC9m`/s¶ů @8) ?+-bkj'FjtPtXX۟U [ωީ ٥!,7<~?OBhPmG΀=O{^%F}yq?ؒ Lך1F֕=nP Iql7&V." TgSZ?ړjq(6ʲܥkN\gD&a((OkAKr#) 0$fſYt cI;7~IZP盅 i+d<ܷ^rJ+n-Bt 3ɶb"6D_nN<_]Z)ޜw{W7p]d,gqq*a7ŴrwEho+T¦Wn0 >A{-Yk <mYih37܈`{"v"W! qgvw 2Q!}F2I\UhRf%a̰qQ-aVvf{v endstream endobj 2508 0 obj << /Length 1457 /Filter /FlateDecode >> stream xX[WF~WQx٫vEOh)i(vړs,Nuqe;]Bv|3jw1[ԣ :dĄ^xӭ`^z4=4( iȼӂe7xWG'w{O7ܴ7XQ/hCaL`CH>7YZ$QΣEZv D_ T0HܮO~{>c~l+V2*&JYƨ%ʆeuZE*x"btDІ>`(G Zҙ¯ ʀZ4-&\Rt#IH7)C8QZ֐9wzbh4>>P'Vo D8᜻U S\o/v)vtF}+xjyXu &H.8zxx=)8<3o5Yמc$TS!#4#MՐAֳrv}F1֙Q,?)]KiHoo" yp`?yp?\wQ-5_7RѯiY]d'\gSN&X1< zec%~ࡿgi$*.`oWn̓b,aTi"hnn' ?.4SP5oʩ}lpH.*q2Hc;KfQ1G.Af2]ηgYr& =}cOI3r> stream xYYsF~ׯ#Xsb ɒ#,{E:Y_[ 0#/׷{f@P],xq hEX2'A7'Žy&,ZPbLswi0$rnz4iGU5ba9:/&ϋlvTҞ5w)ro/z4ފ hj4|[EL8pd4։ V&h`,$\`Q2{:)&9j#دYKq8y"k<#e{3c׹\yq듩ᔃ8L= 1oE?u8>,"n 1"-c{Lb->RʽJӖQK#YA%DQaF?D 0U{ ݕ\a!{&弥gR6D~6v$Rcwd)"zt(ޯO>.cA%^/?<żJ1o2Т I(Xj -&C aeIhxP> 'M5ks7X%fIHGẘˬhEV@FXob19S!.#UC}"&E .5 ,li0GṢY]ɪe^E׍ =DP_n♗#m56a0&V VM"YՎL ['^D؄(!zb _ńF+vkЃpΦ1j)4{!8a," ¡jΖ>`_HŐ.&LtGK% ɜyTC^-@sM;/wYy;8#n `=]'^UU6ea!@gbN/0:%}v 4qfux|u 6s(1g#Y^^#_Ra'F"oN5X+\unix.fؾkܦe~3 @!;آ[ &˄R l@f@6l66ۡfA"1~ fXPVo݅[p&{DQ2 s"Fn񀓶 U;8NzAf=m/ AL# 7AD %BVxO~F}]qt3*S#c d2`zsɾbKv~{ 񮝂tmW'Qxz3[Pʈ0e ߇DMRŒ,5 B㸿a?<_[%ƀh3/2QL:ڟMm|wN6 W`xo{ λ$a{+t!nA8/๔&GV}\?A$dzox_ endstream endobj 2516 0 obj << /Length 2631 /Filter /FlateDecode >> stream xZYs8~T =5:[9<0e3%Q %mʋţh2bѻ?hD#(bHDe o.ݻ;|QЄEUdxd%*|6l˷J #Rs`c^9G$ZG$*qDS&>ڧ_3O㓍c$FLO) {yqX7H^ˎda¦3$WM=ؤbU^\'t2Є^YozQ[C@cDP3FXW: Jt׫ہv&rv5xݓXw 4K=C[PʌBREDv2])[5ŢηΤ0v>wfʪWev N'=-ʱLn-)5,?=lr;e]%hWuCAqOGcF<3cƱ1> =) 5Y7B.!vm@6^R[pbc5{D!#| IBe1y&ܭGSH2D B+8}_ܩ1x9#ޘP \oɖE&^H"X ćhܛ`$_o'`" р8︲5FRv/kt)O\"n!Zܗk$[_"pq &N4kQkY?ju=Nf8Dr ?VC=ر>@LF̠~82%8dMd$Ѿ  ˁLZ@0~((7\ @ewk_Ƞ()[gdB{LWԉ~?%D'V-pB.wU{^.cb6P% xՂIv($53 F:ѽVa5D<^;e>[JXQ AMn= lȡ;YŌf9]QO`qA}0CB@Oa"+6w'Ѐ%F졂T' t <.UN B*: *Bá ~3<>+Pưp[8) @?#v!61!m@U%;B?$D}Zo758N1mc;*7cT(cǸ9 8+m*I9Gm@n j0^+ԬfWAP8XY5fLG'.=c(]e )2Kl Mwev^a Ǜ)OdEnB78m9 G2~e/su@yj'Y\ zn+[fmQU >۝*<%/.rmg&V`ēwinz=حB}179#胬٢޶_}ϬW)˽RyvM}wr7vRbqZ!m?̋ <@dk3?`iCS-p<[comPQe=`tO7]|?\hVx%l&ˊnvq̻oܥ:Փ*P9x}~yY$ )N: M kO$0Bd&ii:k Em7y:<120Vc(D(I<&PBX Ccq4HF`g}w]ebP@%jl 7 c{ HfC\ѕ=7]޲a̵"Iy/"+\em |Z/{JDx*J$qMe/?;o:=e@曇Ae_G`)CTb9Z< nwoxQq^ڪ^gU|} ]=Fu eA`*Eg (8\؛xS,L"X`7\{< Xo^#kbꉎ_e|Sv{0{#Ndha%z˼sn>8yia$6PPq~_~fdP"}~;: Kxٶ'j#h e+ endstream endobj 2520 0 obj << /Length 2049 /Filter /FlateDecode >> stream xX[s۶~S5\LkNO.V;I@V"^lߟ]Hr˴36 ŷػ'cI (`$:g/KًKy̛/<=%(Q3|iť !"`~,0TH& B/v+,qEg5s ؛)ol  ꀍPzTb&tߌr_J6‘U j p寒ryS,K35 AS`,rM^M"EUqƪ]iQn; EIkaZ1jq%& B-|z߸KQ*m޿.6!tOq$UOe?! .tNJ*ګ0][bps(oe^?[0WHfUuk;w`!X2wԤp<+}5pna>Ecڮx+usZ-%`&Yݮhm%Г6]_|usA//q G:R8yO;)[\rMteRaF}*+EM Mmm^Dͫn5mσ1'94(4PC%ts2X yF޽x8nQ D$62P$a)pL r 47b K?3{"02܃{z7ɿB;8MXh0[teUifZ4ǰ͆|-/nί>_ᐧcy`a9wݻ i}Tڿ(1, }YѴuqQpo\ w)}ưYr/ܚo܉> و}`,'jf >Hc )O6H .s^x=`[ }HlιC k&JUt,bIDo*%ꛤa_oBڢ,k4-m]i5'ڰ6/՜\ *kNnk]Z,ғMMS[IF}r M6֫ ->rą%L8zqʳ*+O{PK ˋ#3Vۤ '4Ow>an(:RI&e˚Wg^e,5R-5R Hx:DStz+#paY~fSؚZsec\2݇RWo/nw?C{+!DQ˒Q5Ag endstream endobj 2434 0 obj << /Type /ObjStm /N 100 /First 951 /Length 1460 /Filter /FlateDecode >> stream xZMo7 /E0rh imdQvq6.Zyfmx9;O%Q\ǜN$] vς?jDvID\fC]ьNgT8IkNu~\\RaB.Bⲋ -5 P%: 8*9))GT#a 7%ɺǸ1- |9f&6 FEO2/L&%6d.ԥ/R 0A}o$'up;IGXjBS#Sx#w+>$; :;^t "d/kO&o$5dSճ_~Q:"#w袒l.JJblf@ MFֿ&_WFOpR%AeXp !.`eW N! ے KaEC }1ò1wy$̗Vrla= [pfi, X,֝6.H$]\oT}t̾s7_|{fv]\i\‘P ɢ&||5}zR;[,$Bޕ ~Kp?n3|><{ۿ?~t?nRw>u7weBu/9W̕FK0ofpxFZyVpKc}$`'^PӘSϭ^f6SmOvA4ެKRv)Q i*d ( Q!<{X> e;ȾMd;gT-0ikuz "Y NmZTcu W[(LxuZ:X^`≣yT+xTsQ=dž.T/&c;l :dΒ{D,aҘ I> r}ٽB v]+P2,,0{XZ#kzkbi˵*|ܪND7뤍,m-d X|Yk꾩0M5ki]ʤjj_M/'DJy;o*m-W ΄Bz/\۟nWk ?>ǥHA~!X-RԸ)@2,zQdB]n5|K%K"uRz&q~KݪYhc8:/> stream xŘ]o0+|Hb(夵&n_bCR9xMٸlHB0h @83 @uXC싼{70V"Zel0zs@+#s/poSBS⡜sK,VPFNqی$%\"g}Yȏך.U"_lL>+^RyI(3K u==ȟ3,'6g:S8ϽP:],,%<J;yJ:l)U>P5Ik0)KKKa-ɻޛrY-SZ0'qeiqLCmK JGXppܒj`eVE=j6WUJu l[1v1 }qVbQ]*YU!}$՗ fOڥ.H9I()EPױfr:LMk5k´A:8nTV.kaȄ6l#Zuow̔Y^Zd-0nĎh)=վ|6q=B/$: pC%;$ZK9^> &ʥk(+1x]9ǂ F.l&ќ*qn¢¢SXd!?d (,яv~4{7mѨ>6ڵm#Fe#k+Vn]DmWZ}u_Pt ?wr*^.4+O?$T endstream endobj 2529 0 obj << /Length 1589 /Filter /FlateDecode >> stream xXKs6Wp 5`<L7]8N$$$3)j{&? mi/-}pw$$8}<ሊ8A2 JLzo)w8$ %8!h[bae}x.ႇNyҽ/xvK5~l^œ+: (iX9pVe`ٶK\ og cg|=-eZ3{A:+Ku1֒K8 @pa$B?ڄ% 3p \x2.թ'QW ұ:5,aiD #0Cڤ{'#x)>ESIOkɄO}VSGuU} k+NYf<1̱Џ. ܉:/'$HS:||쩓}dyfG$5/ lVJeo躪<M^ `LC%:>Eq VfJZ͘ab'w9|chJ.KUqP[[]pV'_N-?O~7=XLkk^@nnjve# y)d. 7d^A"qte.sa#B BnK@xv!|4WcPXXYNgҴ|_(=Zt8"avM5qBmzףA_p_Ç hXckZ봺]8PU,z{~sV͒ -E\q#ww#X@}.7}!_aDfB8L1?eϭyQ*ӊvMjCs(}oy4Rғ(ÎTkO:N.UQ nGS+p* }a]]ivk̾Gا:/vdPg9~fX@ i!N 3K endstream endobj 2534 0 obj << /Length 1255 /Filter /FlateDecode >> stream xVK6 Q>E)lMv;ͦә6AiZYdOjcgidrHBDHD/8LfIj,j]; 8{x?_=i$8x&.23hKmRx9dDo-ܧb&m|{7/uUޗn |4vefW/q,$'>ݭ#Sוf*ѣ͵ztK6/z%͑:iv`:\(ft6Zߺhk͒T :R9iU=fh(Z*uQ ۲4Zs [x̓'W03 @QMm'OPr%Z$\O~q>9*oƨ kKQn>(eT;8pk# xt$P0?|R y⑱"=Eb*2(Q wDxSRNѶu eh}oKGQOdoQZô> eV''א}@e4@#vy@ !2s)S)sFɱ'zCFit$ cdhƦLiA^AKCs+(Z%oVPEY'(磨{J2!._KO1u-Pì$uشЗ#K=`IO8fXgCwos{ȩE1Cu4S~=_-/_!LU 8ӐTv!}mB~I=vmח}mez;GO4;V?mO`ĆrАkחMe%vCWjS:7DjS"c6W[m?[dFR;ܖcr}j*C! u pzI\2*p'F0P޺v5T* .\>^w l8qP|f,0͋iz:fdoShZʹ9Q3+Fv+?gU2'ғm z~uU@X!Ae?w[׆! f,')N:rf tG:&79^V)@f ]le,&[<~H;R3e4$tϿjO endstream endobj 2538 0 obj << /Length 1153 /Filter /FlateDecode >> stream xڽWMs6WHX4o:R*wbݙND22 @q}(]i,woA[DFIQb8qCWxw|N!A; NJ b'By b9h]F; I\}=|;xsz s?1MѬӾO-&1{e_޸}V2*DМrim[aoM%+[HN$GU|c#ژ-$mSܭZ>l RD (rQ&N(f?c9^B³Dkɰq p$>0u!CHh +#VW/hM/2K^3ruS@2%.뭮Ҏ=vcbq6Y8o{a*hnǸjsyEAyyM|^T/G M^QqKn n(o?,]Gq`&#پt6reU&䞁^wlk$!AK ^y:3ذ1sHqw㡑(hƞ-zTƨ [/nW7L,t#'}V1&5]SLekCu|LrЦ{*ߛ|c}2 IhڣQ.<a^RWӺ(nOoV1en\eIG$/42c-ՠ<g8l&P%(#sGw+X׋ڼ1.~b`C@<$V\FM& [e-?ZL{&ޱZ:2s7J(Im[|O endstream endobj 2542 0 obj << /Length 1591 /Filter /FlateDecode >> stream xXYs6~`ߨA@8tzMJ,"GcB(.Y1<943~}^h1Q@GFo4")1#I%]]$_OϞKt~z}. *1%sZofٴE N 49|:ʊ8 YOTHZn|ޣ}фbDyVE(ef.~ZdVP6 Kԓ)ҫ_,ihʲxAx4}3 ӉqgI+0\pli* tH6/W#oe0@b[We5W5Y'gSm:`虡O/(QIRѼ: G9B#x9[GZE i˧&N=y[VLz |=|lEbC)R-V6X)GS~Vȯ:W/>7uQY pnMBzK;6z%IJ94AS^|92L]iJBV+}k6L:3eaqf z! _nKhe2͍m,GYXW׬dcL_!},u}>pkY:|7wޘ T ᢩXrݩW}and 763<#vc c-x~U?fznJw oA94cLYhS; ێ&41XaNBpc ;oS~xd_559ߌ`\hI,EAɆuLYP:̑spvDC D7SZzfA 'pyqV_mQ9Gy X:j@Sˢ9 ˛ ʮn]/V(|D1w> stream xXKwFWDσy,\NƮM9E 䤛a&iOڍ;w-<:x=#*BT䕉ww3YW{\#ESozIIW7{|ţ"[*Lr=xRlYb~_Yr: 8ƍ0HчK%ӓSʿIݜtqhUH0 rHߩ,,ol<$(fA0͏ӼJIلO0C:fUy+Ua_ (dI|`Ow+2+d P" 6vPPNJ1t^ jcmж0,tSe< Ό@ӿh!'@omAqk3r.Ĩ7:0&!Rx"m8o.~O`HK~OW7}=HI\%s3VeG1k_6i<u c3`|P}OaH 'j8Za"q ؓ5w0~٨ݛ"]=6%܌בz,L6;=! )Fi1 #=X] 2PɀGn$cx +Nhp$xFmhj6UMr'ި3˖h~iި|!{Y,\sjpnQ{dn*C`"ʙz @i$c %(/PEg?:ffD^"4 (> stream xWKs6WHH0$Arbq\KI@KT)RI #8oGr :F$BE$8Ri2?$ zrert|qMXdSF#% LfwV3л.׺ӕ[ Ƥ}d!\&DɉDqIdZ} 2gU@ s2,0 $ b#QPHKQ.?/әR9㲩" @d*y:q<#CCٿn/Xzщ l?)  a"]5wUԙ.Wql l`C9h 2%mͻw 0n|7#>~ZdLw9wcfMSf^m 3 ]u`ba85-etCVV獙Yij~S> Rٵm壩9l܀a/gKmg7˷'%9EY"=Kim ^_(/1Ȅ%="eUKV'{ e t8uq^調^aAR:Qkv-ѾŲPV}0`9IbXFaM: ,\e+7Vn*ȬNYI ';7]XOEYe}/Aªθv|ܛYۺZ̜vG;u |Qr+?W%Ȃ nB=~QI_OrF6L"<O@I3{2u(8nD r{-:)f>E 7_ a*Y?lJv {|MݵjptC`? c?-i8y[f>̰LQﲨuQ54^뇝׬:Wκ.woȑ,f_ T&\n w c97\pU#LKGkpFvD L6ҪJQuxByр-bO "FHo}8e7Ŷ*󴩼4 s}R e$)gN!T!vl?0 > stream xWKs6WH͈0"AR*]IL'ɁI-*Dɿ %J+%SwrEO"hz7s  _`HrTf=[.g!E<<`!9ZaB& k% 6μ22ϓ$·pF ǾBdyq}6."h%:1YgdŐJr|?zf%]=!H,IczPEU&9X%k[˵*~yx⬄D,XmYiLʊ0 Tӛ1DD.s͂KUEجy]fS>6> stream xڵWKsHWpUIy0<|:WފX8U[I2UX@8f@ ?ٽh랞33'LA Ip-F\(q? _?9:o8p%ҵ ?2aܞ̓+M‘7**gqsIN{qtģCGԘ Ni?Kqs6uy2y8MOlhE;Ɯ%fkKȶU.9@xZY'EyC[և"y=ubX 8w-ֲԖ|MP(TEI'AUa3/%Z/qZ*v֩2毛 4pt;orҁR7ڹAq:BveEAuZO`Z1x>?p?o0':Hel"[Q\VA2 |xޡ󗙈tsOp؝{=ӛ嵿<֛{ҸCjsBA؞`f*;&žLJ8RE (x&>=nĭTy>2u-MbSfjQ Dhڐ#<N:RF&.tՊp= @41ܒ g g C‡r=Am8>vZ/GHsKGWTGsa]uɕ%j@!ҿ]`оe0>9y#>oIy4Vm㦾4XMPܢ0iPҤuFX+$k`&tdG5 KdY=GIV?t1l<9Qن>9fK 4;B l'^AK"i{o_+p(0\?B?b mR틿>>we,70՝+Տ`y`AjZc|?Mm6] ‡ٜ83OpGԈ@xc1,g&1V0Zs~Fw°O;7?3c:AyqvXĶlohITxz*&H8G4%\ Y:#wI;J}ߘgî5mn ,6 endstream endobj 2563 0 obj << /Length 1778 /Filter /FlateDecode >> stream xXKs6WHO-OLCvdi'Ɂ( E*$XEAMi/&bHt/G8‘H2'HQG?5|љJ"QSMd ţ8}茪]yD8UVyVeQw7^xu<*ˬ)ڬ+~=|Ս}_Fn~LuY=j O%JH=X*Up+fγ5Y7_Eum\ $^R ڍzacmD! xCABů@h,㬂 v"zo}w|UQvv卖ٴs[32/E/sbDX1!;JҔ靏Nʖy e HajLE:o˜`LZ dW?ZV xq%̏0"!);C /OY t|PL 2)шqĊ~h!CWnw{o} v  )EF 1m85ǚ *R~P,5-3 '-Z>|V;NfY70k;iD%&b6(AnGS)$jl"w [vqQH_:Zh ë:cfb(|&m%Xq6Ƒ5uݘA yq(DF:?zd"vܡ+Veϭ'Wf[% RJn+MK EPX"$]pXV6-0zUކ|Q@a TiQ(ٶګ!G6*9A4w`6?'Ӌ߆ޣSG3tCɁBlcSlW|owGS`$|hB-LGae<HW#8%]F`놕 M*u\` AG*L `N*Zn*'LZw&1ϊ2 bhAg t|)S]OCR Ij砆 -ʲLXW귕qR,O]vN57)]cI飋Sx@B2~:~|=hŏps, -\snBꤨ:o(4T: ;zywzYVkp+CG.dWh[5M_N[j>t+R?·9u6T﹯9X#/wo ?Kk7U,LܽP?MeaZlOOJl R0qBC!Hf\F_ Ӿ/ y.Q=`q6j.O> stream xVMs6WVrƄ A\GNLcג;IrHX~}-Yv }x}KG_b#sL`V_`g{o_\qNeh2c.4`dqʃVEϳwp>" $nWkcrr!ҧ#n]G4$f؛zvyԝB3>yєCS #_J3 i:t/Uc_;ܾ?ɂV[\^rGZ4z>:ۄ< . 7&zvW>"`n UsF 7#U/4t}\;sKPV8Ҙ4DsQk\MJmBl;:XZ7fS$2@ms"-q/hÛ,EYό9lL lJ,&&l$ahm ǂd%ޛ44Maw7_/Oo6͟U3t,ݮsHUK)u[7nJ㘹٧޿(AF((Y g\} ֡1ZP( Xy "S+yOEY7İ /d%N;, 4\Nng0\@fYpvs;Dn};Hme/ZȨm+[~Gv͝]#RIˆXYʶK[B-zY_=f{aPE)9-_v> stream xW[o6~ϯ ˫(C83bzAز-Mo_ܰ'(d ;Uo:B^nS X4uT@Yl!@::KfY5qK5A2?| B Wd_vZ+g#eXymBA $ )Rh˓:`Q#pfZ}jRIz !^)թe|H w`>eBHG]J1VG}$ U}l lƒ8ܺ^p2a` oD~ï1HWm#x34Av)H! <թ?L l>ҫ۞#ѹ\b<g' e<0=7my=HЎ֦HlrC9( 4l|?2|{J(VLdK*> stream xڽWKs6WH͘0A&Ӄ؉iJJg:N4YH R_]DkکOZ.o_V, X@fpiHF?{ӓ4 %X0JP"8΂釳K ,uozfRB4\՝۲z˺et91'㙮F(Ji^UEqnPTQ[VMk c`8s1$ &ymVzsSԬڔEܬ,SkR1%F¶q ,&LE D()j$IbMRNfDfoփU**bv"ߧ<' t}Lx9_Da, Wvs LܷX̜0 ɇ.)bW?y?ų ށb g(R]Dʤ˄thnm!bQk޶ڕ6(wBȍvBP2c=9'q8,:_y5vLI-.kԔ$"o4 ex6҉R$!S`. w1$rbur3ÀZX`- 0e0LJL0!&b t# S70B9(zc|Y.+@IigG1#2#9:eOgן44R*<~'+SVNꢭپ@#KёcvslsM=1 {~@r<=n7j/cA,:Y@I"K%) pD[f 8^R-u҂<+˒{t{)oޜظv`?+] k륆C<8[(T1s{YV3R&8*`'^s:Ɏ-Xh,&-`̏6(h5z0d8*T~)Amv=ŁLnJ@B;Wiː(^-[M2ۻrV>FwCY þ;w8qu;TIJ?z>z+=W˲ԍ{\Yx܉lGjg L0Nhº0v6SC!g?bt21vJD$q8CUފς`_oQ.y3kcVU\'.;Ǝ2AT,z9*#)KDTqKw endstream endobj 2579 0 obj << /Length 711 /Filter /FlateDecode >> stream xUMs0+tgЮ,KF әN& 6cd iKVoꭀ -F(|*$EBzF>?DPB D"Q|ȅ#)P8fIz\ 6YV4tt]O0֘yȴWQg,#}>F'`> stream xV]o0}ϯ#Hv߲6imIS)]cX’NiIӽ{#St(:|D3 S4c4|/t'~; %XMQ8G! GrN"77dj ILEIv=ιSL9.Ҿha3n܆duM۷M*nҨȓYvOc>Ědu4,4<|zܙSom@pXCgE|z ʓM!fDZeh]qfiꆠ;x?FscU"3 4Q+LoBZi9ILv}X=ir x\Z2ebj/}o(O|cHj};ͱӺMƤƊ*kVoO^ endstream endobj 2588 0 obj << /Length 737 /Filter /FlateDecode >> stream xr0< X.M %\ Ng:I3`{d!N6$[utE7ַA -0R>J,FgXㇰ Q S$`|NЅ#1Qʄ˩]K\AF" Bl$+#@,u£N_&Al7컊;{.S~k>zS%cZe-Wu($[6ޣ}akL^<윞0r\)q|v3xPWtYv:,s9IY̔1ـ)%XJ޿&"kCM*"5K>?}Vz,tGL=k&1ʆFۛn{nGQZDYuƌ=ΣOlB)+|uqEC`sWF͑345`Lnٙ7;U; 5fD~o(›)Wb7%o 170a`߃ „o`MRCb<9OXfbɿx47MU2joU)_Mt' <XQ'c;OuHZzH)WGRW endstream endobj 2592 0 obj << /Length 2187 /Filter /FlateDecode >> stream xڽYKs8WHU$OV؞uښdr`$H Eڛ HMj.6&6 /g"Q 9A2 jlo'_Q@0JpB&i3r| /.^_^y5|!=4F8MUFg 0-ݮ8oVʰ]*Joܧ#5|M]vwiSjȮ?WVe1:"1JՍ|ǒQB0.=j÷lFH,C'"kDO(#'ܯQ-̈7ƶkr# QD0B%I{ 2>$BIo.o0#Q1GL$tDcLJ"pSc<$H`3Fk+3-"1"p!`RJ=k>HĞgkw"Av''K ~HgDe0G&xy0˵6YiylkIqoۙ &{ t=L@Qjj*]S5nڠi9 vjCPeb > ZBiQH1G L!_|^+Ntũ-}ikH́v}= c(7+SaiaUY骐)>7sYP(*f}ujZN\S쭰@ B'9J(2R =z=) fH %4vL K`U}5|`GCZ8jyp4ZH|&MHg?eS/MHکT!(q39}jM]Dt)tN&Z&Κbڸ'ВJ9`w6ʉ%F-v\@%{@V^Gr^" Q:z-`B/0P1}N{OiO<ړ@nhL"`Yj~Ε0xd RX(nߏ XPB:^Kww1~2$#FU֍Ï"|j0TVZϧ HL2B2|sy J<2\Wm͚jUW/z|@qt/ yߖ2|Cp _Y;b<7v 3uzݖY?IV!rw8maJJp/nWg*ۥ}M&~PElVǘcGˉLv+'1̿Ch HNP* ,Z)k(=KwUc\ϵ*$LNʶͶǬ}KTP*P~3xx|"xUc}daiU9ShϜz3U4 xқ<;=r \ZJRkUt_v' RA^[ڮSKtW}ܙ[5郿BKڃHsMP*l`uǨ(=7{:>}`\=Nr+>ܾ"@/c2S(psֵȌ|?|P)vq)vZg@! vOh֟z7G(^0,zhvq[VgXx ] SmG53m*~{CmAS,03y+11 F$p'\˒!$\yn@?NS]]dCsgnO3}4f5Bݽ>> stream xڭY[~_GQGZW|lg:Sa`DXhFH#}AחhտW8‘HJF '(IRG=grF A"R4R #h2"\ FPβ|H\ FLؕ3md+}= ;4"@KM~yqȈ`81Ow aMkҁ/n$rHQ(p"rJPKUY7UFm0/pK2\Ⴔz+֕8 }""? _ݽ̺? ɤ,,gΦs,ʖ]uZlf׻g&%R8AeBT@u"dV#ƴ a(< `8$ x`KzIFlH>aO3=(KIo#GHR5BB HC0 I rQ41BOxqF-Q(!CΨ%PMtxbB. sI u>/(ɩ螮?)xM{tu4lW'}}VLy~rt;aÒB. P%9PA3n1J3Reit-#)G([֢s0`\ISoj{;0 V*%*ЈN>GCe&V#CڒN1g]hnu+m3~QA6tu Wu=]J@8|bv|{Oܞ7%A:%>Ff%"N/?A4EQ>l-%KONF r)RaӲ:7snؠ}woo߿俷w\]uUsdy7n)ƴ=97G> |(Vbݞ107'[ʆGKFIa{b=he# W&_s=};˚xkͷi*FYw=qX?T)6Cj>4{<7 endstream endobj 2600 0 obj << /Length 747 /Filter /FlateDecode >> stream xUMS0Wh`OKFiBәtilS w i;0=ؒվgѷA@b|:@A'Yh?)$(#b )NE):w֕q=ɤi/s2zX1L Evc!ŷOds(~<=O"\K휺J9h< GqjҤLnvr HR_;Wu_ojXi ';fhzaz&AWxWqm*c9i'M e֋ȝU֧j緸5v=A2I\"F8P?YܞYWm êsNҤ`6&6O>q `ATE`g}nF'/G3BՇqϦE!) ~P/ Ja@!+=I(Ł8SQNa*Q WsHRu21d2 qxzS ;ƻ1IU X]PlHwY8= U>yi]ҫTp.,4nY;b;fmf_zfJM_-J9ju3\y}J80AnmKqW66No7/ˍ|Vm҈ԃP!~G&up endstream endobj 2604 0 obj << /Length 789 /Filter /FlateDecode >> stream xŖR0y -bY6;&4hl:ӡ,@Ħ=IJhS",:/ Qt#  dB0BB'ع'㻤I((JH2$9"Qsg||zO\9ut&pQ@׽<@cXPa<*\O0An湪f˴-yJeevBQ7r~6FGK`]!!0d|O!"`.1Bc>HY;OU|VzZWG+vY(cPN;5u봸Rܞ:eRRuVAplmӀNZ^nqvii+upy<1#Q݁Js,h/nt[N`Al'l}kgP)HCnj$NEPaA [H B٢w~APG`9 9s>GB0! iH3H%U!9dKlLltӈ2mLے)x-`j:21;=I52v;PIPҒ7ijoʆ;TRR2qj=n endstream endobj 2522 0 obj << /Type /ObjStm /N 100 /First 984 /Length 1434 /Filter /FlateDecode >> stream xYMo7WP!9CFm[ ͡CE .bH}PvjZZ+=XgI{E3 Bdqg*!pr%&D hB N"^Bl0NPtmdJM;DFR [9VG1d&n@[lD$,):fCKPa3 ʶ HR5=H$ ǀ5Lk 2 خdKm;,͎ `e T`B dvhLV1SRi30j0Ab&R$?,7 M3DpҦA6j\l.)O֨ j6OB /JEjC^#v9%G$jA8 Ɉ%:pҤ`)% RXօK@; dk$d g6yz%'4)͹+H\ Ш0w$/%8(2;@:5ge#f9=Eac9aMNs0tA 7kw8n`Vt] އ~rZ?P{8B|Yu,}Y*c!T5dic1;cFk>~'sE~2AexYV1zE1.3zu`pC R.*ƌ@1===G'>8'cI.*6| Q)iZ0%Nɣ􊱪WF^#`R9:&U}#XA”:Bs!'tkL}3N zEXgNey',b`Lq]x_?)G2mPe>WKHgEgAerOfb*g8RHjH5A鵻,YsJgc'#+ḀTA*ROE)>ZV)x=}Jtg>ޖQ뭎ۉbuY#>?\f:«y)eFfN1Ix٬SfyxO&eEFH_Ofհ:xTk%v :=X*Nb \ ^+"J/ytǏ#a* ^\}^VdRiX O+Nu^fT 2 endstream endobj 2610 0 obj << /Length 893 /Filter /FlateDecode >> stream xVMo8W(u&(NڒWߡ(%t-93ofE A%:L bFA'xs?Yߦ(]!ɐ'*Fi"W釣S D+~nYӆ*ߍ7 Ӕa`دW~QVƖ{ЁLsqlqŜtК kJYWkX!7BE^%.c\Xw豛[.cE4ȵu1Dqo&_*`"C z a]%4O$I(:I$'CHL!UD)oMaۢ+M5ϳrm(!xuT\K|Y:]BŃW˨LdrɶnByF0oau$Nĺ\N kdekS |)ezt~'* N'@eWgsf'w%ƴ[/[ݏb4׸<ِmָ8Ȫ»dEz~'߰?7 l]YYQ5KjA6x8x-6 -*\`~A8 (4Y:̃{_z]aoVu3и*bGٸ0`]_)lmpjoL@XWs,|IUHp,F䔩  endstream endobj 2614 0 obj << /Length 876 /Filter /FlateDecode >> stream xVr0}W]YhI pK 3 $nige;N\neKثݳ#` @0UuLXVt,ӽQ<8pidZ L9iJ*gi\@j%źrƒZAvL@p+,PP#_7{񎇇nQm/k,@SY/9S -ooG_7ab%q*6:} ǓxaNEQsa(j^%95HJo(vKT$_(˔E^yZ.6aȍuxJϕ dML  aU5mgI%y cz`n K l >|lN\Zî*bSbE:mK6n}0f.z懼fa ^Q^ѳ)8 9MRRNɣƍW&'Bjϑpum& jEsC$N$Gl;Q7 "bꎧn3-U zfr/E:"S-ZVT$ȅ,UQuRX=_}{Fw3ag4(DoP[Eܹ4DI0],`!c,->Ξ>O=>K4ZF/Zi2sg:$U_='e{s6;>h>3tiJzC{(Yϗi*(" qs#%~TP {#͎{旄__qխJފХ b.-$>;+q> endstream endobj 2618 0 obj << /Length 910 /Filter /FlateDecode >> stream xVK8WhÒlC*^U[c+Uï%9CMJRƛaf;`oֵnw另7)"N=Vwa ts0`,ԝAbkK|7v?jwr]z{"g$+8pNq 7KXrQp-*1):5Bd@bƏu1&cQgzd.uMH$=%,y`"`~f*e*ЖL&>Tw!|?:Tb`ܣ CĈR F}Tℍ\B@-}p5ri#IGmJ,Ԩly *uWd|>5yy&HԜ0Pf*u5\r,M9\ <L endstream endobj 2622 0 obj << /Length 750 /Filter /FlateDecode >> stream xUn0+xb[ک 4i-@H#@Arl'Ng'A@`&=Z>ΟTRP@! ]YSLXuZYYB N?ruj;^}=$: AgX2&sf5j'L=E`$rDt7uյY e$v 's 5CҢJ8N)vk̤XewדpB z3 6|qoZŭJ~!z0uoh$)ҠUhD&ꚠ氎ި@.gp(FJ`LSkm{܊w8AU< u_ƪcP/eIûXe*՝R8J\b_E]&jZ_QvMV.0RUgk[xm@",66 z::@'`>|<sh3}I&5V?В$S\g98UG1%ޡ> stream xڭX[S6~ϯУ3f)e; 4 CH x8@(I8оIJsw>E[?Z$L+dƢ2Cw?=|:<Q-fHs?B_^w%|x躤Ěi2%^x1کd2LGA^8= Rkd}ILcVn;?N#/̺ akx٬re"{vL)3pxian1qY$G~-'FY?L[[0B/+`Y?Τ|_%j\82D/3k@ DC*1&R;yD)E=r5[3Zs!$rXypN)02b6$lj$s'c"yYRV#b%5̫Nσ{6m 9_H+°"jegnOaAk(fdO4C-0\72)pr3]fpzG2vD IIQѤ5XgbRQ}=FD{\ջ¡lxxll0|6]..iԢTkź"ԬeyjLۣL'\7Z% T+{bz'b+jh !adᘿʷAȦ(fߢf.jtW'%>*~w][1i(j'Zl{˭ւ++‘8Q?jB㗴 ;Sk80&T`T4 ziρi\J(rуrEk⛙e_N ّ!֏0(' [>m ' <C\5AЎQZe+wn%TI@u8*}N2K]M08; l%,Y٬9{/.yeiLt-y^~|zǹz_P[[KU]n@H'M{Xޑa>Σ#X> =}wJؼ8la1Ϟr 7qb6 BæBæ0_.mVqch()u9Llhd8Mϕز{`czPw>o|!6"(Um p; %Ԋ/6/ʼnS:NO%N'NҤ@n=I?L kACK- endstream endobj 2630 0 obj << /Length 710 /Filter /FlateDecode >> stream xV]o0}ϯ#HƐ%v@7MmhbR!w棉nSdck{|M("{?{$RQ(})읿?PRP#ɐ EZSLXͤ9U.uGIE3V{Xv!&m$y@ E{ r8 ( sfutҋ*Cn"d9 N9ixhE[TQJAiy(נ$EIz8mT֪MVZE9PnWhK4.{M`ԇ9E JuouIx7"hq<_ \FP|KϮ쁒h:or'\]f.+a_F>\Bo[~^Gл2kƏk\|>;hFvC%ėk)Sa.]6y!*}C7FPF9J #) endstream endobj 2635 0 obj << /Length 791 /Filter /FlateDecode >> stream xVMsHWLars9lmU$dF2eʿOVri5Eo-"HjQ"(N4mfwofWUL%XMQEJaR`sз&$Au^ï[(R觘bs[smofuN1L|_4fC@}e mgR&ivsM 4ay]흃Jy0OcXػ^luaɩDb xEF\fo8[s4?r È3vt:+tPQ|BII Mu?K.0H(\Tm#3(61PA^^cϖl2%Pf^s|;$d\U <ç9Z@1xBDcO;wiMޙ7>5c+#/DEN(R qq"T shÀ fJI(2 RX`GRSnݸt&Ԭ|2iۛKȓHB9{d.[„!K<]KmMߕq~=$}LGO[O[%~w 7(̾-7{d>۬ Ky2Tik]1.piv-\D\[3s?b!Քs/j9jC1X7ހZ])+GS4i'(yAL?W!&3V0qBsr1) -`O endstream endobj 2639 0 obj << /Length 1354 /Filter /FlateDecode >> stream xXKs6WH͘0=ȩiZrg8JvDR_@J$E5q K=x{7k=P 9A:[ ~7Jp ASS #7{|À*"%eTbUφx+!12*4ϛǻ AB7Cۋ_F8FɶƷa@ w<dVo˼X%N8Z!;a&: -aHJtOŤgK汦,@lmtY}͗4pX-)2$>u¿Ġ*oGgn Rp84Ƙ_~1{g_lv |5l7!>>$ڭ\yR|C6+JѺ/D}9i$ C!%am Ex*hla5;{̬h%x i,Y:{sx \A͊&FCs%e#Ұ U +DJ4fw!pc jH̃=ƴ7v4/Dcm.i[ TBH#[bZ"J{#[;wO`~Jae! 1FPk^ƐW1I5p!C{ Q!ea 9³M9hBaFBaFp):ԌcI鑊ԱG`}J"wTo8wp%.>s#UqK$ɻ$Q[VzcbS=+zW%KݰSv]-Ml\I^I-\/Vq\,g=v 몮VWS˝SiުH v~%idh wʺa` >{.ޭAtﭝ`cwlocOߟߓ]算ǫ2NqpodmMXN=QP>Q8ە3+WuWnM{՞4uab$bd+#Q,Ғ0iIӠ9xYWc6rO3ڔձ~]Y5eulFHCH,U"՝{Y@2e& PDJ4$ʴ烠oMv'YL' ֫h~<N;Ö;xgb~< rwN0#HLh-WG endstream endobj 2643 0 obj << /Length 1303 /Filter /FlateDecode >> stream xڽWKs6WHH:&t@SPAv.%@,;NcYX @f$҈4 ʋf w|Z^JQь2HxJdU1yxus~yW<='fWE_j'3(\P7lk ,p41roNfBڠN1P5xi}BU"QZ7_רDY[t "̹f21iݶݘZ&PYCLԦڝ}73`S0\$e :7Sx%xrNٶӝUkpedE!CDQr7bҰ:ww۸["6/;#:$"G'L,F$nRJ"aXd =9IX= Qv>(#o w~(O ^.ti.| ,"1WmPYXQ.sLeV֠c{H b#Qh2rV%U rDf-t$a gr~s5IExjʡ"\,4|?I982h4D /즯op_q5U/L͵;=-t~gmH3җ *ꡁz阏¨ԅVSz9ei^=jsIg'<',wa}M';C LUZy>?pRCXUc~.øf<8(Dē?j9PoU{)@ 38Rg.b; )l)pdIU: ;9KY?;:xyG Na`KG~/L EDD=ͣBt5hS> stream xXmsF_G1{ȩiZrm PO(j}wCJd},xy hE#1I``q#S*m5Х,>ehJ+8'o`!5`F, tqӭHH C t1(FP|UI]_ [Ү,Y$RȈb|\4.`66s4 GM[{7Yy-0{7O>3w7kE t/G% gMϧeoW wcWl̶> stream x͖[o6)(CRe9C mVro?E +$^CMQveBAabG( (NR |;[bR!C }$@}tbLcziwVA:HHVufv>t'xmJ뛋y!JpJR ||r&sĹ]3G qb1)Mk^Jk A!cw{?VՏ}gu^rY;wFz}}i|XrR,c*; uNٻ\TTPGū|[ %;d]Y8OFkhv7}O]/ 1mJA.qX *2|ߩ7 B{7flCbg[:ѦK9A VǢakve0ыNQYT;/NX2~]ַ˿^bX#\u+y6WM+ 3dfvۛN;_GwS7JQ)3e+뛚m;юi(;yӪ1d֜HCA&(+'?u i>4&NaJא~.dBfd2F ~C5 :ih,=NNlo1]7Ld.NtM3<y'ڀ:f̌.evnϥEHE#%#n@|0ZFxDb Xd` nTՉU14ŶϜS0>psXd6\ں ۦRrC޽k1lGf}Y_~&q3ĽU 4M4&F@@@[}Vf*N:>4Y)oxQN^d)q<$~I_߭c endstream endobj 2655 0 obj << /Length 1637 /Filter /FlateDecode >> stream xڽXKs6Wԡ"M8㴉]KnS1 2$(; ,(H:ӃE<o0VxgEYIl!qj<vVw4&ˈ5_ZI&~b%Fihgkĉ.EI| (iV$Iډ4k$nxzD}9IjF1~A<,VoP1ѕ7qٯaxŔ VQ3bQcW竚&^ veSOxQmIO&E߂"Q\L|1j*GTj|Cwr7ugj@@dh*MF,u5a+dcIJ}´E9~tw*5+[.yΙ` 9Iw rfFE 0l6K޴Іkha+&nW-:\n/G,'+Lsxƃ2NfWOoϘ` ̖k6+f6-n>S{MC-j;P501(*Ku|~zp4#9u̻6xhNL xxv pTLmNt'N@Y* J}H,nVp)L oI)}ֲvyFBia cM,cr>JmN&ډP=1w{AŠc$JiW(Dh ؾ} ZBhP+EIsZ8Usår1ͫ~[rU ^d_:ɨio[ķY <CxzPylY TVKb@[OIlR@?4- Uuښ憩ATYl, #]w%iOPRaPNEWtfц-IjE^r=zR749k!n*CmB׷MT ;ݚc&)w'`?8Ɯx[&P` QNUpU9tL^ v[0gFSuXA6lH@TAv,!яcAt1Vp$ڮp1fQI데-ob)<}8ePf z#_3L꟟ou:tcR7XwOW6yݍ⾫ԝ}i8@DY}H\by-̹s5m{Ut t5POCv-yv=e7S+/N򢖐FP-(]AQDN#z+=NS+/>lnʝ*0PYX3x'\ZDy_?ဉ$0M$A@zVe$z~3`~ 6x42j> stream xڽVKo6W(6Ç(J)6Ic@ك"Ӷ[r)%9Q{EkDѧLF()Z 5}zqf"DD INC.@b*pL)Tew1"x ,FgVǂ\t%:'$ Acΰge~NfØCs+߳YDjX2 4iG]5(-ɟJO/-pS{jˊTৌN˻m:>w2,~,&1Ib[Uאʝ{.O6>l7̨LOC&MVD8FS5k1d c_u`(?V>v9EF sZO_9m:!*%1攃Va \(;N%FXBW[s6 Bާ; q{7zoE]U Vrܦe $@U1ttSXW ΁-rG^2BQZ@U <&d<4l%f{Qw5t~WO q(+2ж : ٳ,[T!}.u琹dSO:UCqګ==6r{T`2:ir0MaPdW ;!!En AK_LrP-h b YKt\,me޳X,;Һ^?WW_(@h!Fu>l `"]ܧ^tԪt)lN>q @PI f!8_5] c$q~ wTJ#d;߲v0;bUzR?#9>=ƃqp;mwqw|Ɉ1!3'Nݜ endstream endobj 2664 0 obj << /Length 2129 /Filter /FlateDecode >> stream xZ[s6~ׯ[J̦uwҙlwȴũ$= b/&A"u@WG8Qt''xs ^~?=y`& n1XHP<^$TIٻOɬr{_d$WNW'y/L~!՛gEG/"Vv<)}z/޶&xtFuvS4$$BVY:6]ocC1ir1)@xuH}RE TA )ETQ;ËӋgogo^?Q aӄq0DZYfZ* H BƑUxT!I0K+}Ñ&,gJTib|DHjQMx90>sJֲL)j+T2i꜆j靉!Bu@HY,[S\"U%WOy[1_j(%w&)F塐)),4ca! OվAuP'f IZIӕW 0v 5'[F Q*vѝ߭Bj#d'7ɽ| Rj4Gcuǘb/+R!d?f{9؂7DX!CI9$ێT]p6%QzP2?dt# d]A|3Z6"1*!K ^bneFL{S 儌ᖌmk^h1OmUŵz녀7N߸ ړcMTϜ-8KUhrgW=;WX6i#@g˵4$4 glDR5+ˏyfLraD~foyaeL@͓KS^ڥty)H6E]"!3\}b3GQnFXLF}eWup%iN2LQg3KpaEG.*[,2><7E8ihE ?O>8{~6JyE{HfC.qpT?E>AN. w1f_pp |\J-α.F?YR*PseNa&:K;`viEvZҌ_plׂJ>* c c^OO_NpIQ^el{ )9!C00 !Gc M]Z#,!$ IH}C }FO"->[GpmHC5q&c51߆ow,wc-*q5\\v-[^'.G!y a Ȇq>aa+.aV ѫBq e'z1 vpd`^χ 6R]xN5B;Slub$r*&adrpL$LL-&]L-[Zy}؇#=kAG\h%DęHg %x0yزәy3ô(edYh8tcf6KkXqlW[,ʍU\u,NJPW}ٞbP!&CH',nK*<ጩ>r>cV)I]MUhN}NIq(y- WxP_,a*b4F l*M^q1vQI1wr}XN]c3М 0=BS)ۓb#@f;̠Sw0QȪKԌj{S3LCk[3[V۳{ DT n}t,reiiˆV٘[6ERkk4R͏I:UclK/*XS: L]ߔp; endstream endobj 2668 0 obj << /Length 1421 /Filter /FlateDecode >> stream xWIs6WHH0v:RdTVL$sE}X(65uz!#&"ѫ/g8‘HJF6'?,gTG'$Z#E#0GU)~W5f4a]YؚsSiZnr:/&LviȾF$7~Z2~dMuդMVU6uvFgZvhB8Ozz~ۅD3IFI G ғMژh"ߦ~B1f~v~% ľaOYv^mn ¼㬆=?%ݔ}igg9O%I-Oq}Xܩ"˜G`,(A4$ Q<' &렛0\WzizpbN#q n萁Ѕb:4_/S@@i}tp8/q9WcKܗ1*%?җ-?.`ޅ?__nwu#"@r )3)<e8RiT)Wx'+1)Jz][Uk?Ҳk(Nrr {EgBz-3Įφ 8Hv;SgvyEUfK2۴?..& ܊jP`eOՓ..K,yd__/b!zҳbF6+ :;r풅Ӏ*Ў!D1vA$ӑB!0N@; Aei)+ry Hٞp)@wha2d_HS2H $BbP6)xdS$?[ 㟟H rB#uζ֔0"6?)s9vRK%< QHoHGZ})|8a,}]AȾ(j!/KP3%q`㴖WhJ _ KQ*Hc?4R `-k|MH]HUUqZAd5~aꕚ(İSl=FU>VźS'x%ђl]@R:}Їgɰ68]RLV[B%t"No\{geA9enҜR= wR,nPSϝvٚoLҜd&ay;/l88( }(2*A> stream x[[s6~ࣴӝIlZlΈJI_)(m'ۼˇs[{?v{5GD O1Л·?^\ai_co4>y |9hjؖw|[d"{$ϺgL0_}GA4_a54z 0"δEoC Ms,Y>|ly l&\ ҄IL)릝Ae(ۉ7 C/p?[lr;, &YL"pd'eEjy&8IG&YZoEP(FCR1ZPoί__]~]v" @$upI ,k+WF:hܶȚM}&}܃g`aȺF ]fXt*#~vɼD'P[8tM =a,2 ?uiE7b7٬Q7eD>}z$f*m隐#&ke(\*g%}-ˀ j8dOu\3`­Kq S[5/b T%,@{ChN߮1 K?tJ1uTgXYNstK3uR*- ;G#ܚFh'qS@i1M:[,51T': 0,QgYFgzV(nzK^4])8H\QVQE:ާ`VSwrW Hdvi;'̫G3;.q)z>pI$:8;֮s{`CWM27 FhENs{ABM)[?[k,3QAx =nx֎4JUE#̕:hRvh%><4) PZEՓo!t C"U}!mUymUJ~čZslڄѶ0UR4?0qGve>`p rv=V96ݏn݅V\bV:/cj2yHh W$feَ(iQ(Vo]JXsvKRV<Utz֯9O;uk-Y28(UQ*tdps!!j8  ԣ}!q~RaDȧqQAthG=x=N|ROU[f7=ܗOWwQnHwmGTo{渎w{\'oUT5C.exqm]0҄wP4nݍ"A$/- fͷkyYm.8ibWEe)2.#BWr4Ei/!m 4m`YﺸhgN\n {^ngF 'h"^{;PY`-]Y.B@aYu4WN9k m8Of 7exq DKl =lYAϳFtRi5DΤ*)>"|RףWI 9^'a6)%&M8<ڥN@PIӋqzo0Jw|&M05 d*a HbX`dE4 MޛZrdE_Qp,4ȌgVLhuNg ,Y?*i_[NP9?^y/eիr@ZNN<$X̨4Tb.'22,If~?9愦yt%"}X+PNYt3^dEEC3P g\xN8J& o=Dcjx 9`|a2r֑͙eK";,w #-f1q2+O=0AQ+`#2Å-u?FZ endstream endobj 2676 0 obj << /Length 1935 /Filter /FlateDecode >> stream xڭXK6ϯH0^{l9(M*Y$VQ&i6HM{"@C$ZG$ G8@T&42:Z] _퇓?W>$"8%|IIPcb] t̘(H+@ &*~roX )JW$~YHx; GROG&AG`BE$fQuYF  6nJ9f|='FⰸjX;meg${QrӄŽ^1,XUf2ċCq)KBÊd&p U.p7,+` I3L]@(3oDy|a-, m7v^/Prwc셃Kh2S"盼YUL1@M5fHݾ˵6ʣoB?\g2=20h&\ڹ󙦰IZPtR8N B;FbQq0>;A-'JZLe1OH"6UVvȎ)Nw, )ëݮ 0Dj{/nM\<,̶*?cxKmܦ)E89؂є!HHtM9,B؛ϛq|r 7ԥ'[AEvg)̏lC}?VYu6~{(HQRPX0T,Ph1g5۫QAbtgv=T1ZjTaB◈( vS/'Y^ک-E7ڛy_$V)n=F ۸A^F40Q,~kE R.?@F{(nF`[6gULfjfZOjz\jLZoPDۏI6z_v כt\4n`;ޗ9fx\=݄<̾/jf8)G&-^k3T}=6>TXUbYmu]v1eیK'ǁ;HesZ7Meyt.B}4+p|<۾9#}]|)}M/Ɂ5ɋ_p+wi?yÎ.y؜;Ҋ٘N1bZ5P-leF+`fC$2c/`˟֎j% Cʺ^rL p%͸/Z<`gt/̖1ڎvv}3bݓ@=?^dc(g\MnWش1ۣ–H8RfPXzP8V(:M: AtmℳAA.(WwꀮxRp#KwtJɁkMaFآL^%+]ߵ0Z2;`S Cwl OamE).{X{qːkADS$`VaP/h,,h!ޕwxpU.Ğ).s Um3ƙ~r6)ڢD`+ `'Ba^PUA4&mz@{Kɠ]\z(`ƹuMakW> $ k;K$~=~J)OKKbrH% =`[w4.9@2p Y% endstream endobj 2680 0 obj << /Length 1910 /Filter /FlateDecode >> stream xYIsWqX!a@Y[NTbGbR*΁&GfQFdt]YznXMX'4p%F2blɯf ~ nF%˫DD Jr'/T6!Mqb{Pcg)nf t.]֫]ÏI]^wWy,c^"pjr`i=cG|U({?GKbƸ| Il+7Th@aZ,M驈%^ Q=pC1bj$ᒏˈQD$^BDig&U6!!Dȴ)=%dQ OaA핗q˲j`Eˉ͆gwoyigeSrSARK1„(9x0>QF25n}& 1FQk M(xml2 ~;2tF4}:d1hH?`"o(u"d1Di,$/}g@as[m&|"A}ho!  1V0:@l u%XX ''d]'M6e+YU T1#]{K|2h=HaIP,Jdx <jzɤ|:U[E2`d(RU|6eX xhgS`ƼsWf ҿ߯  DӝYzHjޯ< 伛n;=~9VvE‰)H *6Si5ʺ0nʝ1%_yA m3b h˕ęP(dŸݮ },`Ы35Ο%i=&`AN&tx\H8u07ai"20$D endstream endobj 2685 0 obj << /Length 1599 /Filter /FlateDecode >> stream xXKsHW(dz) 6٪-rGVHCZ.ͨկspyu#I_ޟ߽XK@J,֎bH_8U|10Wedƕt?PIy],#?`2n:(Ǿ% @ΌaA`윜.Ύ'>wOxP$)gDrϋ V0%.%1f{ڛ 2chef0v5zrbͻ.o'JϞq!{cLSfy˺}L:fN*JVQ:ΦE&1L4faVy5mۥXWp"E8"<8LbX #e̳O |'Sr85Z}D> oϛ٨.zy4?<;y8ysz`>b!ݐz_a&n7_hwwܲ ޗScS?.5VFKG@Fs_B#6R!V"?hO1=AgC{S U΢>0)iQ}L0x\Ed^Y\7(I:EQ:[I{#X1Q 'Ss7ѷK}GzaeaޭjDû]PXnwʞ.e]Au6UoDR!oXc"A~]mc#P2ktu wY98D;;dTo'śÅvGE7f(Up~.Sp4=/O Y{?RgH gNRB$U$_wig[#S}PY't4,r5+S2ϛ7X[zcZu&hG/c/T,ɾA6 ’$~OW\k%q_dWm6%4Na?_ar=mU+Տw~D|tK* Ge#ܜ++ endstream endobj 2689 0 obj << /Length 1924 /Filter /FlateDecode >> stream xY[WF~W(o ^+N@h'!AeP*T}gw%Y2+chҾj<;;\$q=@DQ% Q'|r~|9;8: E8"d((<̂oiƌpG'g'Bv5D?K;Se7H醐8"ӤpM,ҽ掤eˤ(mG$ӲaZ3d擗PĹ Ɣ#-&d:P(R $AZ"9!;I`M"0Aއ8dz#dՒ.Yp &f&#dA #&-#곇G< |h! E$e-\ qyh9FT eH2c9.̃*~ a qQk$DTu{w%&ˎB 2R ԯ>vِ VG+ wPBH] :Ո 2;O}bibI2%Z>4  E }Z}-m !&Q$ǀsL) x1ɷbwÚ>qi z.p$p7Q79=$Dq~o7f-q:>M HSAC jrmMp̪dM"riewcQƟlx9stZqYo+L,鈪RpOɓiZn ( @YkuRS$Np-1b|@}Qj%'DFJ@^S񯧗o]k{U$=АMC:MP[R[p&ެfwulq2jQ#5@hҔf=o r?]Ult4X^AL[=fCsZ=vo¡|,ф9j,c۾>|uqnAdH|yjqSFk8sߨج\S z/GbPN!1q+M-jE*&:#&BTNY/1bષ׸[ܔ2wc3j@ 7]qHMCy:C FFvB쭷6u&'x0C b'@F]5/1㾧LALRш/_!h=c >\"Z@&17G f֌Le/mY;C8r;pv`Ljف8tFVUP(Zp5h_ck O/8q f;v@}i7HyUWUQ,n3Bǎ3- с 'W={Uk^ endstream endobj 2693 0 obj << /Length 2067 /Filter /FlateDecode >> stream xYKs8WpnTB2=LMH͔HiH*/۷)+)f/A4~|&M@_<D$U2М E\ fn`ߟgG/A4]a$4fSj2%22&e,SxT"Zmy29LNzita%?fo_k"%4B ̎fgӳю/%i"*4nrXm4)c^febUڇ?:0Q*|}3P0MFɮFqm27Xgk{*]ndK43^&  a7J J~"bqqɒ,fV E?t-jSMR6C 0>10[e:7gWfߝCL!yUTF+׷I΍[ϚڳK[7fMŃNPV[?1f:G@9Dlľ:1VHa+aH3C2Dh2Nڔ#)Ńa`%(D B`!J"10K1]FiKlQiŶz*BQڞ:Th@Ϫphk`mdoB"9$|1%mPA݆dAl)kI8D*#_ Ҹ(_6llZh2圇[SG7E䶮0elS9Xʕ=dq]6$4 FA=}sl^Y@hec% |/ ؂Кvt6Fa]P,# ̳O`P(Y,4,00(U1pg{|(|c,y$((g Bs[Y CxzAs:h.H(RS9 7a)ZlHy^L _3b?09x(q(n@<ǐesnǯ 8$3R g̸6n;1Ww~pGIh'1/ . `7nm"l:*iq81VLCK2yÌˇl]t& K<_u~Nhh;%3fdIԨR P{4@7{|(#:xB4ECW{>k&,j0X #1<k.S5,a[F+pi姲d8mA7SӸ/ٗgxΩϋ@[S9WuH}b}Xe8~&\Ņo9[}~C_zxxYiYnهmy%*YWIQ7]‰d rV}20[̲:MWE[Vo֍@*n{fDa4p2n%qa٪5Ӈgewgazi& IHP0e2.HHz] 5owMWË7)1'<^GȔ2۾5}gLx^gr37ܺ6|v("Sxߑ I]XH`tj$r6PIZ8X 'k ^"5¡>&HrAccD&T,~31/B.:l mBkGݪzod3bǃ|ӽR_; @g oHeM.q^N]'X",Y7BeKl)>j^К>z':|E"9[#;t>6TY՗T0\FhI'0~VOmZ>feZ%VxM7([j Gg=uG ?]7 endstream endobj 2607 0 obj << /Type /ObjStm /N 100 /First 983 /Length 1437 /Filter /FlateDecode >> stream xXMo7 /%~HCV Hsh$@r\XqMx)bHS`5d@TSH rSB.nD9V fAV܊R0mV*7+0$TBRL(&A1°HKmzKbfn1KaXL\J88i`(94KPNb9OŹbqfQ>?ew npu0AM΁OUm1U]SS*A& !?/s=$.%)kܶ}ֆDphM8.:cjAR_"5*$5;'i8Q$0G'bv*,'žYM}>fNm3q9l}fuR$ʑ9GH$]X8 `~ٜF |\gy'` %Ilx;!b*m8 1S-V1Q4ca¾SgDhZnØ$?Ť!v5B5#_o m=k7oU_D8^3ƌz6PF&܍<#Lݯ:_<W^yڇ=ܻ/>4_zڕ@АMi( { 6o !P @*¦X/2b36 s?rHR\k! R0*r)CC:l1T {D{&z{97쐦GeDmGXJA[ȠAAq0?qX/  ~IWÝhܝ\Q$fޖM4[,6[owA2Bb-w$uDx= /7_d(eU&=2fqspDҲKiUc:ks7zKdr.&*ђWsQVVT#Ŭ> stream xX[S6~ϯУbdf@!l݅lg:NM ӥ}o81kM//X;2Eoz=L+d&AEޏ37>/A$H9G,@ ]5], ޤҼGPL GiѷڲL>V˼s.e1c h /7.GXdyVD:-lgrj=/^SN]G uNcj0y`X,x ҧa Hrn4uAX3ݎa5ЉC[V+D܀y?:~?*Mt::=};ÿ -@Nˏ3ۀc)N}.Z6[UJ} Ӥwt>^ތ+Nz%^_AZy(ӱ̽_NKlr˱MexRF.n]Sld֫a0 o<,X/Y7,-{C!E,P $$sO%LzZSr/ LgJ@ قu1UƂKh=1ehRΡq* U3w125t4t[ .<(yWi1[;ZW!,Ȕؽ{ZcHlfpsGBe7f(S +.79lt(.[ ^:bإ._\bDtip}hRhM.9T VNǣnA{ *@]:j=k SoCe,YG I%{O7.0rZ6 ٪ܑc]!Ix迓^@pjTQpWN=p` aS<jD endstream endobj 2702 0 obj << /Length 1826 /Filter /FlateDecode >> stream xY[s6~`ߨBΤ8;Mݦa%VFRo$ (ӾX sppn9,Xh&$\̔.:\ۋ~=:eRlxiiA4e6g?0c\MW᫣!d?eL2"XKA7 *DX}lwβP!f+qz?P4@Npä(bGE=vuXz)'|]| &,m {UU_gn*< ស\>8;y8q%0\j0n T|u¢-/V7E\X^/\緓YL,o}>QXn;UmuJ){WGVש@͖.?MZn`o+4FB|% b~8xͧ Rb Y>ħdVЖ4y9fqN(t;5ֻqBU0:Òe88NU Y-?iS endstream endobj 2706 0 obj << /Length 1583 /Filter /FlateDecode >> stream xڽsFWQ!MH)ici <R!Gvǡ'ݽݽ_'/>dIp"Q #$?%|{y g HsN,$4C\dY旃!<}lT'< yurh3ƒWOOHpt5%C"2_ MDG;>=#Id2$r/fVmQ[Aaftiդ]U<9i (O۹.iPfVK}R tjeXL Sࡳ\ͼ'6sira$HU 68ɏ`($惄󁮣5o .@۶)%k1D=5I줘!$V A쉗*H̉A1!A厠0DIzR{SºͤJ 6CPҝ'!Poɕ w1E!FAS/8HHGYhs4 AƇ=1qY8c_AغlMq2(B V!2ʷO,ߊ=ơ j71a x [[!×aڃd0UL&L+DNog>BOB]&Nj`iKytaj#:3((9y êEo{U5`b<-d/tAE#)^BQv` I mG7nx0@C6N6])E`&cv=wVfatXu :Dco(_4$ZCoT|,fu\&|9CE YiuZբmauU`k1}>;l@,7wpJ8ѷ8z8^ϫpqh4mHǏA1z1Ny׭0qq,3*CSM}}}\yw L6_wf7)Zxlp&t)~C?]P!T?2ǀPw%ѿBwWt)~]'%A!.~tpIHG#1$Kчˋo HkGҁ==`KVMܒ|1Y3;]`>g>.=惵fz7rpg3ނ[ԗMQN+̍gibml3rp"/7By!{O|(r+s O*-U;(˦gM᪡(c(v͞[LTK'bjONkE[Sj7_}>_k nCNR0Z*UvKNL endstream endobj 2711 0 obj << /Length 1660 /Filter /FlateDecode >> stream xXIsHW47ޗTq!03 Vb쑥\kd-).Vzz=Eo# i%fZ!#(6e\ó7^_M^((X&Wp$Xq4'X&318ʢ0fd2xW$J06Q0 <ϓw tL9zYuQ$yJiW<8}?9=?;/1CӘ@*\,iɬ֫yS sC`T7nvw6R6Sֹ3󹧌uو?|- H@7Hv@0#X=7HcII03…9rE"1$U`&88B'EMQo6 u~+JIC$OsxZf | 6s-ğ!`n -Q26Y?#6h,5X]SBSEw{.[.8݀!t=!D0qY}5-,JvN̢$,e$Vz(}Os?VNJxcÊmE1݇'`)(pPWrؐB ``` D*C@.N5ǂ)O/L!3eO=JG@IOCsC >5'. " D0ɓOp0g:Uu\X`ka6["ª"yXxnFRLga'1}d[mYՕm#sK4E;UCWl9Ftzv U*ӽ_r*5CSZ@%i>r.TLyP3ͱ(  ,Wf}B?Cg cwCV ~mg9ܺ2UM2P!gpmʗy< v&9gwLz0GքԕNrBFB]5:.a3ٳyPw^kћ2]/dB#rq'&zgLUӿ'p4`;;ǡ k 3L&= `~qϜ|?8uTKlYmk_tP.8Y8[hk6+G0"օ*_#6zn sA&4AU0S6o=/8e;?QK&J-J"wvo^%׀}N.moJ֘([yl'tmF.zV[L 50?5t^S endstream endobj 2715 0 obj << /Length 1492 /Filter /FlateDecode >> stream xW[o6~ϯdfy}ڤK%Ys%*K*%iEіH{H<;O$X$xy8@4 IUp{^{:?zr&` A0,x8y~}~5?8zrF<f4F8Y^fdi+eJ'ش.ڼ*p^Y &\ L(ٝO=3#w*O'T++t{EEaV2\h0x3(NW5,9KE2˥V:SMf1#Ee3%aHJ1[5OnCN"D &*n༱\n+V\oc=Ԣ6P{X֫|qBH@JΨ@z} 䔕.%顡TqVskLP^mAiSz~j޻U.mQ> eE՛7sxBW8OO~?7?XХ qxlA.LyV6vSWyiK &^[KPhOzw7MZA+K 5Ҝ~(3449}I ND06{pM'GK?u8qGNOշ^װٚ6{Xlʼ+ZKn-d4Hp{îk3.}qtZLL<|~ nÔvBEYuMb-FKj1 ;*VT%47f7^v\E}7{Y*Qտ؃0`x1^,1f(1CB X؝e2Q'jfgD@ewVMatS$DE>jap/(Yا.z/F?4ʮ8idb>Bl7{f¥eCGpq@@2>A#}{Q8{<3`y#oF*|, ?1I `1w]i1B'0Įƿ'ԗVA_KP dN4>I9`#wHt Â{zEc~Vz @~Qf>9 0 #1o$Kd'(BÔ)avqM {KIIBUPsBCb0|ɧX{Ļk?G>qu1fy6$c`2t1uJ!8Q.L]g:_Xyю{ T??sh;yYoZu;̆Bv5f[/C/&42Y6i W endstream endobj 2719 0 obj << /Length 1542 /Filter /FlateDecode >> stream xXKs6WHM$Ot&ԱS9S;th(bwA/夏z".b$ލG`{"S zy-~/7OSxě-OcoB%¡2Iͳb4am__ln<ُף U:YT&, z@{>c/GH bSX 5A¨9unU]EL^/.i!R46L ):9E (`Ak%@&߅B#!`/GH:n!փN[M _Pʿd WAR\=!⪱^~20@H/q.O~^A>07sx 1b $h"/ ^'YPyӈ{S[rp2|C%B` >~<jq!^zW'F>ڼ'n; ieT&&WmiL@I-ZE'$KS#cz>;<)d?!mPǰ^mYi)~NjV%z.vp0;0X)~$/'շ:DA)ȨmWuB:ʢu{a#I #aH038-ȮSۧ$/kkkq[g4Brz7R7#Xa&5Q:(Q# ;s!" KP=-!*tFWR@UJrی@f7h2]gv#F tD 6x5GgK0&gq],a`ÊxFRM PwcNθ?1jMe^e4S)Sѯݦ6NffhnuWu0> stream xڵWMs6WHMC\GNNcGb2ƙFHJѭO]Dt:IX}xOh(z3c@AHTXTZ|7+xOF'l(]"ŐK-P@ףd|o_.nn3!|b2 c!MT}aΆLGflQ?UvVˇ|H0QyQvAY:mT} ofmYͬ:$lnJtʱ4+gs-캚hshi@TaKbI+YrO'eq q) }$'q<U:N׊+[)l a~9R4j@(bDa(2<BU_9b#$bX+ .:{B 6%Z`&>\-%b& NSJȩA[ W 0e:vA}8rY^,[potL  IjNFShxN~=]L1t.d2ږ:,!<ܽ(%0`H oФlGm5PK &)Y=Иt(5NA6S NFa=߆ϞOe57mKPx(6|!Yl8gƌ.44lܯszHߧPMiF`-WZ' HZ $\#h['0}L/n?܃e &WE]KYzp ẙ]75uܕl>qwX#LИ0yb2:Ջq)\R=ci% fi0o0HiwXK fxXCouΧsxD#=Nxgn>*,0e[] $~9:\B%pLJD`0Rgq;\BaR:6NGbM6Qg:6[:jyra˖dyeW܃y4@v~t+f(o~6qU endstream endobj 2727 0 obj << /Length 1757 /Filter /FlateDecode >> stream xڽXYs6~@ߤ >IqmN0m˔/]DRbnx{| nEon"HZVEE~{|;86 Q-fHs7@;o^_^Nߟ?~3SOP4&bYLD(Y 32O 3bY1Ÿ|.$,d5jE6oIvz +kKEc`DU3nNv>*p (Kawbx٨p;d^D-LɾyC&LTR/s$eWN5| d}2QV$ *'" “{xbEԒu!%0|"=b& b) EKaW]_VJאup4 B v0fmC+0`eX+gV% mY3L݉C; 11 f=$γiA+c" 3B q=ńi8}Eny :4`UHH`=V{¬LB+mo4J[S~5"W(b` Re㽏 mʩc!:+(]ejj/B1Sa*$";𓘭$vFi6r(b1;g][~"ܧ qn8-<,^5PЖljMi4Iu'НE`A7ȥZlC& H7VGY&sBPK-'WM!K-LQ-x1Co;0=!LjW0 MeV{`akQ@]vMʐ(Vr!(XXgqƈ$4b@f2"cef`U(E[ OMOb/21 ~2HV~geTcǠht~Z/01 `XHI8$C"C 7~=-F|ze"vTW)`?̱ٗu< Z3UeCiT \4"CA"Ί|_!ܿ`8Mͨ#ʞe٪ўB7{a[kKŰ7@+ݚʄyz;<9ta.#cN(gEgld|p]\[7nt'NTŇ=x!/Zw/;57Knd? bq(u‰ u~{OK$3wYWwA> [N[[oi%[RHyg> stream xXYs6~`ߨApn"N'G-NZ$%$"(SwqP&er46Ap=DC''9aD>AQT_Ž)BP9uR'dw #rwUF s<+jaߧb3h7"G|Y [T(Ml-ʪP*h<ڐ3Qa]g'ђ529"AzH;XcI~~XQ:O|cx!6ڒZl?`kYDwElk0fW]ܽs *-t;1d](n6#p&uZ^YM8CAQDV2p'Dq5a@m[ =[Ca"4C[v? c([bmc˰+(Bd_? W|8Qϲ< G%0$(CqֳkSHDb>p|̀@% gZ6t!`? ȯLUc] JjΜٍ4x0ݠy'4\"~Xd)"-F~n#gn* #bZ H]&T ͈s0e2) r?R:uKGL$m׶Xiwt8a.QQKE-ۻh}C>!Vy񜩾ФtM,L+*tyzk?G pHw tdسvxC/B[_FiWMK_U\TB\L\jpid2}(u3m̾ǬcՇU>ĪOU`ۍUx*W[V}`Dۺ`̸θoFږfv4=Edܚb(Ƶf'mBppDVMھe_ 6'O]'WJB|9b9l'?F^+zWɭYP]mS2|a !4JY'?b'}3ESTZ;3 '@hi5v-~O!cQ5X.%f,x៨5.l2{2fkeZ$AFol% U6ŕ[gcjXE,V9l!!׎p [fvޝaM>H@H\Z)۳MTuY va os!}%SqwKySκE|;˺#ZI; 85ޢ2ϿG$d"بbȚB9B5yV,̈́I+R~n*B4v9z=$OOHeRPej+e=&/:0Gal+ R2N endstream endobj 2736 0 obj << /Length 1297 /Filter /FlateDecode >> stream xڽVnH}W$pܶۗe3%IǴ%l3v뷪 *H#t.Y Y/˱xm7 gv[?ag{'oqX̱c'f,B =o֗ާi8<_.ntxޱnh;qDǧ<CgJ$+4Y%YSJBiZݨWKA(pY̛B*R2vZ{Y\(3s |1&܏)$j? 7}'$(NPIi͸аN*%Fǎۉ*#5z)*"Rxb GH2JEM*qzYČ7 T*Q Z$ 1H|o4 zBU b$!*P5״*˸yt dJ:+}=P]RNa3m!59y':Itʗ  ZV-$f4{#ku ~\ώ!v@LM&prpS+%׫6`('u儆2Y"9-Jk0 WʝNvў)JU)NŇM#z5BŞ}2=<[I[Pف:̨9ْ:NHW;w|itXfae$y^Xi~ca"=h?܂¸Ёu>TsN˽v jQhNJ?6$gT|,W tI;3Pz`82Og']Bט`v]*ZA7b1_ f lCPPyMm1NDS=7Tn-s 4S!kppY{!kdsd %'kX9 ku@ְ#k1d -h>T^\cYY}ٺͫ[;a#l8'hO؄~.#eS4?Cw}c͂f7ٛzZv毳&C_UƧtPT'zpBث9\Q>~%ZlGiZGKz endstream endobj 2740 0 obj << /Length 1537 /Filter /FlateDecode >> stream xXKs6WHu$߹aN'th0%Ae;(6̵\+HFĉK2kslaW/gːXu7!zcEȊ< bZGml.L}^OTe,;V: JZk^gQd?~b}qzi;֬͡<\z?-sow`JDc6vU[z}cB \̋j˳_d*'Jd '=P;}2UIp!QEV,sM@X>\D?pb]:hМiQ?,һ8Su`E[0c24iuŅ2v6},vɰ L/aѧz8Q% ֩T?!S8S WvحCvbtipN^r+cÿ>ij|_F_?oZ6o1i`Ʒ2 eUN%)rmnɓJp't<% S7UQ3{B9\sП 'AQ([8Ηq8j{S廫gZB875,P~D?feU}r9| kFZ\jJWpL+l6XQZӝđkoZK)M ӘX}ѧ} "0`Z˳Ea20z FdW;(*H'uvdS40()]xi \%'$:'pdKa=䴮 Ό:OK.RK}8kҦhpE”Ւ58L~H&0V`G*w,+3͓a `:"#Hv8JQyޡ&i a/ M!H$׻^u^tVk/Sh)1\ Cc ppsܭYЂ84U #zQᜁBqLt1ya!Xp,ݩ;ԧǚIg1&aٲO^Wb~vA7Jnaܽ"Iv`PqgC1$BpFWU+3/yp~`u6; {=j7jw1 A ZꞵsxYqda\gNCq`?. 4 OǣA) / endstream endobj 2744 0 obj << /Length 1065 /Filter /FlateDecode >> stream xWs6~_GE?{KsvttsbÌ_w 1uM_Jv SF]̾"(DOPP>Vְvb1.B((Jr y'8>J2ɩh ,ptӍW܎Vtݴv HQVkK@Q?lNEeU:XSeh˩G;+L9Ebi+ DgPd܏@6*͊jm'YQ--5ۼ@65ޙ9ڴŨُ1歹[s6.d_B} yTb"q.o{C L}+KUp, c FΤnrXT:RV@@E{(`bJ!\`q_ZeCߘ|cKL nZ#i 8 Bkv2i'׷7 ^5hҸ6C3Bs\q<fpE@p"*g>*Hܤtb QPI`F"H ]S(Q+(.,EQ#i?#ZQ0!z]^%ۅ+sf*|~\J,fb LЌA>`.oavྫྷ2:.9K`ҹqpn~C_i[s{5FH'Ma_>rZ.u9}FZ'pݸM-&e]Qey3BrOGx`u=ث1g5h6YSKWl]ÿUŇޝʐ!`:NZ6G2+7݌љ٪ٵzTZ( ֤)ྱa㸏 ~1IRD~ +U$a,nu;ְn'B1~z]e{tnFם~tm @{eHhjm|X=ȧzFL964LDXRB`h"Ix/O endstream endobj 2748 0 obj << /Length 2405 /Filter /FlateDecode >> stream xڵZKsFWHU+GnllV$|$m3PCQE V&ɯ'&3L:Z4K"zo_\93:ed5q2q3d4N8&8 !`5Px3/.Y9)1q?Gޜ6e<$'C%YwqtzqvCNNh̊.ÜtPr}U׫rLxJ*O-&GQS]XgC.v /LUl ln>YO*LbZO_뼽WEMFr*n1\,ToO*fyM=ɯsD."rJ!IM`,稌5G9,gnb>'* NLj8$vhʮ1%d`HI.rSo :ߟ^\xI[*YO5gUb`uKPt4= JS6߇W➹i$d\#fJ")k'9?9= ` 3rB$K t{U@w_әfډ-Xkp#ˆ64^DeL7yXot\ŜEqֽ5bnFRLI 7@&]!g2S= HfUܩu*]$ >P&cZͧ;Se2ts)pabF`|Q&w;ضwvDT#5V5|8qxҠ%ytA;y@ë(`\!dhҙK'ٙ1\?F yei$0.h=qC+aWޢXPUQ\a*eJ35O@brSMBt*`/N28DQ mEe8L(M( |D-#* DcWeRl#0N:8a 21HN Jr==O4YYl\bpJa78a^'=AV_zPȓrtgqTSxZӘQhT6Ȩh`\ ?SC ^Dp?cpU&^BqXu e ^u1\5-M9T]>oN]%M#STE[>sL>{.,>64͙v=McU'FJgwɛ鶨hրlptϚTl(Jj +c3MFЬJOh(<7{(0öhJn!CfE [aUTQ>>Xz(ؓa(:ݞ2NIshغ-˫I*U,fyL"xz*_a r,1Aӗ׾=l{.hۃSI-aWhkYCMSô Eņk.xVDcצD̵6z{8>j,(XwK˝1{8ҏePgyZyz/hWGWU&-"ІaLo^"8=(֡$˭Wl^M-r5ȗEB 3XUv( `Z:@ni9„${ y*T/Zۇh `[je%QXa5='ڔ6wQnۆFf}Ȗ>J;a_fc0;l*cW9^F6b@(XS[܈v EX'^VJ}TTYO]VFKʲ8I@E%XցhPkTp v1G`TQ⛁o3(bgtB% -Ѐӛ7Pv,;,4GřWFHgaT-M92h¢y8謄W 6[}ܟ=p,&_;v)3t>6@i? Os> P4ڗfחe@UP<¹mQV 0 endstream endobj 2752 0 obj << /Length 3267 /Filter /FlateDecode >> stream xڽZYw6~ϯУ|jX 9}hӦMvv>0mD긿~B4()ϼ ]]7~{FtrEF2bES.n ·oN٧/3`4gx$B Jb򳋕jYnqm-waFa;lߕ~TjwYl`.~z R JU[ܠqrᰏ9쟞Cshf}bJbSjw ȵU;r0 ='u;,6ڬ?۬mߖͶF/E5Շk}.qY_K3fK}ōutX,B%s}o^x?s?f#PkBs_ݕ+!`/!$qIK0>[]pո.[7*%LڏQC+ΐgJU&VҌfj~! aA.*ˈGX>wx#ENag__@B[p.|4]o ]#B$½]jx,Ye` E aS&T$W3>pd [’3()at[)R${k+AKFĹlYozlJh=Jҋ=E qih_"#/AF²Z$}jQ<(yWq.WqōON][2 Ɇc)a}CU 5vbDnPusC|g4GZHH6ú9LG23e҃ܖ,\?0"!Y $Fq,Sᰥ6бDƮM1*f!Mp\kj0(?!hyCɴNubs!șγ̵f+rZebwhwQ}2@.HGHb e IJ"Xő$|a?O4;;o'al|uhDA%β(MCU{k2z4qQV>Id)1ɱ҂" ]!*Ԩ(GBIZM`D5G!գ00" mT.g#G"4믥}֣ϟߜ&;.1= E,[ڀuޖx,#ǖMņ0Z8a0tV8;Ll8`#8~(PX5cѢa\ا'ƨ>@'L Vi9ĸs\K 1- {k Q.ڇ77Y*L2%VoBeʘKH]y~2Vurb]7-,)ρβqʋvV2# aPtQ(+vӬnd5epYE_vrUxy6O❉ٱ  S]1}%Y2OWġQϦ0muiFx[31r" UG" 3X%!UOpWyLqr_4P:9'2"j̞>[6 -|,q25?@r2Ljr_uw6,c 윶ؖt*N:P [wm<\蕏!0K*xp$p|6{1Wvb龩M3 RE k IC\&39-rW7ϻth"&*!lNDds1"[v/O])9m&*:O$cOQ{ԝۙEYsiկҭe="2[Fku; ̍/txp,1Ytt`zV]9F02Cwe<8COt,j?hGȵ{ކD60lA+ `ߞ*ˠ6b|peWTY ,6wmoL#$}݃+ }Mͧ ά &Q^ '{@Ge- 6)}lរN|\sQ/juay˷e龹3>5f~nmyW9k'>PMW{N(nmN}?^}.w۫v]~$[~ ؛3<ԗX^ 뻪7o+[Y w6rUke. ݻr|=sp8&n Z$u;CPA*(_dUL{ pgt)}rI @M,2֬/V endstream endobj 2756 0 obj << /Length 1155 /Filter /FlateDecode >> stream xVr6}Wa\IoHv-:34ٜH9wA@dӍf2}ng"ΝC`GD0p$'HFNO8xp4!EBP'^8!uB܉g7D0' .߯VBM*gKuck#}/2pFvQ$xd|L.ؓ=tF3G) Zd9ʖChΊܬ Kmᬣ}'~m|tu ^{aܜ1HO% X`AndžcQUi 3̾&,՝*e79UVgI6-Vf2k<^,Gӳu<<6|Re4D8,Y2UHWvR&,I'&TOa66TUCX0 Mq*-͓ӾXw6:MHW fn9CV l$t@y1uR֕B=,#Xw${9"&I>áncGhͫT UMP d_iK dVsS*URLIWoky0Ah}A9] >E!ut_9Ljhn5ɳ:)([Pjӄ"Uͬ,:˭\[:V7b -;)Cg&縐wxZZMg\ ZX$]jh!^걸%zE7mmůk$c0z=v1t16ۙ.wMDUj8p^! 1$`<" endstream endobj 2761 0 obj << /Length 1568 /Filter /FlateDecode >> stream xXKs6WHM%xd:=8:ĩd@QTIN )c7M',}|X ^ux'cI HP^WƗK=87_yyDF›/Oջ0&\FR|z3{12@eHZYDBzjz4 dRiٖ.ٔ"3dŸI$E`tB9Ҫ^:ՕNmUIniV07eU)c;"yY5]ݴ,eV$.w|ev:y[DVE]!S$#6S`"xߍrF丼G)ulSV[UٗU胵pd4T۬vƜ%,Zj1bҨnDJoJ\ˊd l ZWvc @3;)} XdDfv[ePD)]F 1<8 Xnf&ܮ[|}[Vf0J 0rW,PaC=]ZL?^ 0W͟?^؝m7 Ato. >ΡTQj#$4^9%0;'"pm<7RfJ$Ĕ,H1jq)hgM1 G϶y AÕ3+w ~_f ./YciN}}*x9s>}?%QL3-*8%{(a_TA"0q`vÑx8XЯ!0v/ӤdiZM.tIS9 B#r˯3 z}5EsI֓*[`Z@(4i*TkS$VaHlNY.=8"C`;u^ c:O[0.rxe1A |oHx~#wC IH2eϛOꇆ @,t r$pKWHrcכ[h46+RuָK\u"  JiPbe|7Β*̔tﭦz =?R qR(ۏ Q6xSF[VWőDԎ*Wv xR~`?0ջDbM"Pep;mc[]4D]`I;$MFpAvmgնe'gnw1x?zi_i[ Ze暇d{Bf=L@)LPpY=J8>psb'$ߌ5Vwc\?zF|Mg? nW;TrUOσ0s+H<=! endstream endobj 2765 0 obj << /Length 2191 /Filter /FlateDecode >> stream xY[w8~ZDC&d3s:$˞y 6v18B=b\T>UJY;9|8">)g5YϞ?'$w(#Qgr$s$'P3_:׿?\2BS)ϧӛۏ??>c,]L!1_P9n1Jq &"+="3|mH~]R i>ouRE@ r_}i]J?Ͽzɢ*[xxc5̏Ӄ,_|EZ Xv<[+f(8d (}lu hz詰J]=eWi=$k/{\e)*d+|oVe^1~HV|m%Ƴ UllR&qY E_ ԵW313v1)SE CGn&})M~oM\!"n%]hP{*Bksz2SM 14&Q%etZfRKR -^ҳy0+t;BR7y^l;6Yr3ƀ6E~$eCT嚩~lJўMĘ|yRx 1WKϩ[;˨Uw  4iV1D+ĨYk |<ʈ{nC7I~xޢNxjQŹ#j@B ҏ$ RܗB5`mYe֩V!w' RkP1+W ,_<É)%EJTz\l9L ۦ `6wx#~o*_*3<4ݲ(0& Nw~mܱl=JU&lгsB$S~ZKaNl/нD8= kj{C]0͂#xpZMxl 1 b2|j%T~ Qm*m<򂔠ڍ9r겷'XO 3̛+cȎ|_Z-}!k`a9%OaO,"(yG=y"=CR?,L@^ ,p?jEUZ1чc ֳp+pH~{O VՁ¾SX 껷 9XȶL $>izH3Bx'G\TT~DDM醥>(j_XN۪ڙ-:JsC RBm73ԏ_s"p'=Uka,~_)멊7OUCs . ,FԭDO?GRjlGCQ;%ԌGzU8(%OWu73Ms+Z$zQ=2J'h!Q_.-C&SPl10kFF@`HF#j(*;VA2h0dd. 4x!uE7C@x׻/Ő0Je/(kgq|,*݆lJeamxASyK{P[q5~ DqaF4_&O KAm^3"9NftLi> 4 Fu?Z!1)eg)!>^qe=€:4Z,d6+,鋬@sά}$,,i;ӧooK22lKI׋ۋK_~R&qմ[ej~ӧ~Y|Lv2"fz Ҷҁep`yh&Ɋ\Y\H+&|'_|=-,%K#SɢUt>:A n"'q0 ATcM9Ghma!u0s¢N Uk(vuZb_.~nu ӛpr6 _2هZӌW:7=YFgemVJ g7S3enX3ཻTݵ֗Bjo.Ëcڽ*kdg/;~g." up:_C6 endstream endobj 2769 0 obj << /Length 1868 /Filter /FlateDecode >> stream xVFPBORiId"KpjWǁ>vWٹώwH0 Hjp @T@s (oFϟ{T# @@1A"x9"KgǺ#73QƬzp,"%B.%KJ BTћ&];=?nOJ鏣V$L-䭛E+D'DzևӬDXL¨^Ybt0?پ$1c,7Vdj?ӑ]❫\/ǣntE%~|[Z`8&B-hDx?6V AԊ#j(ֈIrd1v@BX4Aq 7VvH2H;H-spѕ&hY/d҂π4r$X$n2Dڴϑ+ )%jͳ% dJПhZ+֦QNfqVq][-T^L7F>j}3u ȳ4ˮ]hSXp 6`{G}HS >f@ {4)Aa`8 !d "ȔB#%ԛ\{RB"C=[e`N+ueRd"!iW+-ڌa_:cO]sv8nK6Guÿ3$ ΰm w +S#]{Wyt Ȕ(\Sc4nCC_Rz@ P=[zÈnZ+e=5$#DD7.=ڒ,}PI7KDL?-b%p]w;WȰ%zwb2Gx+3[D.$?v-mMfU 6,(1v)%XVi "7?'!Љ WMbpA=y?:;jyn5h3Q jJ9rRn"4u: uI%?F'0NX&|aÚoTߎ%lI#=tTLBo*4:}.$-E$L+Nt܊}Ŏ&( JJBo%p6I<:qvyP N } N fVu)$Fjqŝ̏|$olT$!Ӝ]ʶ!t=0 K['.e'F. 4XmS(&Q%:aKQMPp>Xab&|m ([iW3*dsH',=JVv+N^r7 0 <8+h1Z T戴\[ăqg /‰Ӄ+b뮐ChffOv&;!%:,4ď"f>AKB?[(f6_\<'٭NHcWYm[`%I=z0-Joz),K%μW7(NpyciilE]ikR\6 lH/ endstream endobj 2773 0 obj << /Length 1416 /Filter /FlateDecode >> stream xXr6}W aәʭRy%HfGBYiN/ @,=gW2ѨFi5GDH1J-zFid(pSS"I"#IS]\oM?bM '"Le9*;Nw%Ҝ{ӫK;`HjOm "n_Ue>Sj72f'2c},qPe6ۢE0̊]VGފ>B}+FE?)MpwaѪ82^w I%e07.guoVf QՍ]1pc?|i> [q x c,ZMG~scޘ^[1ڕ1kUEg,铡ܯ [.aJabC RG; !- @ 0" oLixp8`=|9س6YX['2.Еl]T$UnՍ;Ё;ugL~*Hq >PyK.|Gܥ>jTPbfbyU^t2d[q mAV4Ah5*ۼisUӲʢKMhCH$źl)#9P\%5x;a<^^&i=!Ʃ@\v;)+Kg?nȻ -~s[+Ï]wf}mʝnѩ$8ͅ>l L(9v\\X%LS@g'u7@ ÓMܒKp7MBgGPu tp5+%x:xku̾>Qp-7/[?9// i'[$ y\bc͞n.4 Q8[wtWg-9s4е` Appu>γrv-IF `)8sdfAJ endstream endobj 2777 0 obj << /Length 1007 /Filter /FlateDecode >> stream xŖKo6UV ߢzidm@ك"ӎP==w(񪫶n@O|83!E;DyFA2 iAPmvVvvE]<;Q#)(d(K-PA3R&:k.͟{ N_f9Io#v_]j(uEP"r7buk]L{Ź苘.|CNT6+!09"Llp^w>mQm$+Rr~w}b!&v] ɸoV* $>ƦNvf 9$w3ֶΩHw@8b+AK.Q4Ĝ)0 5eSDXj4i4E47g{? $Pr$>Yw WXEdMZLe E)uHy*hV,I5 1T=$|7>5Zc>*$4~"h׈`*VR`yqY8`yWø+C06mǀ}|wVj·yi* 黐]> stream xVr0Z"l]#N әN6 ď^!S @Ct%Y\E׵A W`HZKe!jag{G Q]!"0p; N):0aAiBݍaӬ B~%FJQ]RU:gK^g5%7L&V!ntmE`9 qufiY {();@OU%uɸ3~=pWiҢk ' @ƭ8$]Ils0C=3ؙYf;d?UY2NI\;֨w>wL pS587GָeH0tn煟mpc !>WF/1?p lW7me_f'#e@)SCv<̖X#9,7QKdqAlqA;1bNB5C%r h^g/Yݛr,,8&,XmG q*ݥL/U 7P9t=S?Wf^p."NOM(Por#+9{;2SR1q%ruvBVf4Ϣ?0%8Zς_:<}?)l[>WdRQ]DOJ?)L1S.vE]n#;Ԑev96 v?$gB endstream endobj 2695 0 obj << /Type /ObjStm /N 100 /First 983 /Length 1498 /Filter /FlateDecode >> stream xYMo7 W%R$%ȡ |+9 rR(EIYyg@pFO_"G-Đ85@fn!!S3jޤAb.Fnp0 E7Pj3$D 4fc\d iW͘@kH;1,,=]Qǡ¾ &R 1r!Q mْs6ݶf#<RY '2'7*Eʠ(K}KuS`86жRn m"5ˠ#2,cHkfs\Us3\,l0z2Cl]+>2 JshEo6xdO\i2,mV BʾIA0[DDYa, ZCr֢xG702 kJ3K!l_!ek.%;kp.x[=[ b˽ ӶRK_ƫ\ׂMRXj+Xj|^#D 2\o- MI?|~ųg)Rp5I i=}*vOZytE? %l~ _~tk~Ϸ?~ }ReR`1𥭨' Y-֑ΎqrLz{azzA{zz{tiO 5"E[ 9NZgb<y5ӳeXAeTd> [dv띉V7hۉQ fMSjjzi #$.L&*)v9 LOZOMks8] m Sza O^)"5.Z%bY1a99 Du7U:0}QNR1s)YsNÅؚN'+ w|qHO[wG9>SgO4E/E7ݓW9.[[ڶUNq|TLecù'If,Q:J⹜,P)AJmDR)Uʇy\/ dAe&KfAM)V{RWMS QKL2z4fc=L'NZ,IP]JݬV?RISObvr7{;]$ &iI)NL'=|W󳃭bo-zQCv-/tv15Z{^ *1[@Y@rH@g(nl݉=")]2.5`0f7>xY_ -)t endstream endobj 2787 0 obj << /Length 768 /Filter /FlateDecode >> stream xUMs0WӢH+DnibN:vjH3$lc C3?2q'N'jߚ" s CҥXѴU}oOa]D)9N$\([K`a;v$ȫbߝ$mEOQGzR9 0w}SÎ-ubN:棎GwY8 ziY*L {k; WA;$WUy>GItgtػ {] 0_N`*b*q]O:鱉`p+QկFeը9rjA5/"5 o"J6Q wVQ"0Ё>iT$˨L̼%ɬya(M y̪GVi5nd0FݛUn'|mKke'UTX=̚*W9Ĕʭ3]g.Qy15_bZ[q+Qw'0dfYKPAo, endstream endobj 2791 0 obj << /Length 1097 /Filter /FlateDecode >> stream xڽWMs6WHD8r*iǓ@KRtaW )j5$ \,oEO~D %fZ!#(6!Rt{vVQi4'X%|Dgx:z7_=gOИiLBϒ|I֣1S*hRAQzLд$Mv^o" jGH)8yBPa<2'1UpmmY\mHx ړzO#ÃSͳq PϺҸK]yC DMWܢ\I(MY6 ի/NuCAXňeLuXfdDМ:(+еYνjVܲiyI WYrpnقzX}Fi<9ϒB^?1KUt ,Ҽ7EU6O^9Ox"xni^a"f6_༊*[Oϳ^ (3K/|~]&!AcBS;&=SMqmc?UaW ҰYܷݤbq`5XVZPjϝ;`߂iSmS7-m:)H,i tlf(T^ut(ܘE}6F56j*;O@\PH sY`=ͻo) Ipץw}6s_܏Ξ4e}Y|9X뮊vJ6vBn\ꙐjfVˡ\)i<Ű6R* OG5 ES'Bv@Ocqߔ0&jű{GZ3 endstream endobj 2795 0 obj << /Length 1491 /Filter /FlateDecode >> stream xX[wF~}):'l~IN[J6vj)=m<GBw R}6O\v> >$xqp @T@s $:N>ً!AUhFB`oC(*"*r1%wXi){(Hѕ@HFg/O Fb Yk'l64 OG;O$sHQD N7UdbXA`77e#7l-,aHpKȮ}DM곡xz|qzvz~}CݩB4pf5WjixXY(w$xDB8!ںrq.ʾ>ʯAYqrr>ql =e&|q^{ Kq %bU憝vb`PPJք/>RD Z:T::N5Z  rΊMJfnjtˤH꠴+~{/d/?S"ӐhQC(yx<[yxe 6،͞]/}`,RptzIoS\kO q(j%۴Zڀan/@ L0*6.k("uԗ =zd'9~xG(V\|5 TN¬%Lf߾Iq fGaM! )wKTS&#r: ?Ngءvho9.ح#ntn)vwg|IJ0 Ў3V%&^(/݈ '.] w\2SZ,/*-ۅMl=rP hdЇlK[mXBNBk(:0& endstream endobj 2799 0 obj << /Length 816 /Filter /FlateDecode >> stream xW[o0~W1{tLSAZij)@#%hٿZJ֮;Ǎ C"P CAQ9m8p0sH W CpIH( nd{J]"w'IC?m9FWᇃ#61%3vOv+DyuںAGQ8DHXHŷ"_̓׷nP~&Y:*s(8]wf3ɳi] 렿k[{zr|zPw"!ʙǓ~LEg>7"Et8xb?ϼ4W^>r'S?0K Ȅ (60uJ,,p]$ +7uqTlqgc!bENZfU1սDUY7ihm1ycلga*Az U kw]n?<}y\|mQ ܮTȢ4ڡ=dj k\\!04MAj}[eQb&kc2k}Gh6{S>4U䤏>VJ%;Jg6+emfC`6FRwq#BiyI{f- T|6ullG/aXj 1̍YCLTCl9NMuPxgf(ߕSc2N:dD0H)~dD(ebٮ`-Jgοc|l&:o)>e34o͛Aw 7 6 ^t'{X endstream endobj 2803 0 obj << /Length 1159 /Filter /FlateDecode >> stream xڵWrF}W*υy:FZۑJm6[dj1($!!8Osa0 l`QOK4|x~^\=fc:7L9 RU4W15DeA#Sa)V0j|F*3Iq?kl Q2`Tk~ ˲( ٻ4$sVzAڱ>4J8⸢Yckf3ŘWgD`R*>>@5/v7pװfy\Hl77Oѷ彬X `xir@Wl`*XT Qhc^q }s@S!~0̠̐y]TV;{tdhS~=8m;sQ}hͶTU:D HWږOlׄoJ쨟 ys^?oSVRJ(EZZ}E5a۟9BBIǎmBIL(Wqh{?tӮ> stream xW]s6}WўE%卥egmq0ck {e ޸~-{WE{"Hh (V~'뻨w1k!dHr P@=WR&}>Qd(Lc*HBP}B~@sЮںB&\]rB~ h C*.?RxA"1n=YBZ` ѢxQ 1Q!k 0VQΰ^EWLyeEdž8I LbX.3CTMRjZe}o$okI9]\" Rz1О+S8aYt.p.W,֙[-LYOna/~a@P?khn!>yZΕ Br'10uire7Rx>Moե b881 jڇ4^bq9nyrKv?V/Y56't]x{GKiNa^,kƳ] gS'&pΡ㿻~ A]ii7ֹi!9v>g^&_DcN(r8q8COQv5g?ώj* QWj$$dT7՝Q@M[(*{Qa h IN%0^hsfX*a}?P| Zq0loAq S)A 5 endstream endobj 2812 0 obj << /Length 1489 /Filter /FlateDecode >> stream xڵX[s8~ϯӎ%Y-͒46N1F`{MI?~ϑ䀁$ m_.Gӹ@E˓N\˵D$ |+( #Oؙ"uIFNYw=k8>W׷78\m'ް|c|zm,$>-Q"՜v*a8 {RgI晞^ȬҳpӬ[xCPNV\n0Nj, @ʯԼZ-sH{>Cpu74xa=3oػC\)X  j4a58`BV\ʏ岋3߾̳LVf*.]KyřGa]Weۿ4<(: 7҆vEA: m\͈юfGDCTY MG##TR(si諓@I\]C9@O;C;}6zTBO3S@ɿHgqwQwG, g)|SNqppq]3MA)GrrݕIwj UdmΧIŶ$EpMj92ӬZ8,ȩ,w y V-/2Z$ z9δKa.ҧ ֢q(Aj"QA$My4%@ ,i֒jeڬ]`6rf~fUuq x#MtCcPx;зyoA?o9ȴ endstream endobj 2816 0 obj << /Length 1372 /Filter /FlateDecode >> stream xڽWs8~_#E%Kzmr{\۹!9;o%Ablf^ioWqq{H H'S*x3wowƓ Q#Ln:HܙgRx>\/X`EFgurqx&Ħ"FAhtaEvEKq[G@ ϗqߩZ E(KT¸QiO.X {p,z_4㹝:KK\5%\"&n|KuU**DqkkdǿfʸIf3yw fmFb8m fl#OW7OF鄞W(@-%Fhkl;3<@7E=y>>`v>\iﴈ3I:H2 "n3tA[:UeVeVPO?j`/B6twËwoL;tѽf%Cl_Bge9ϝ14BwAix3Wr:$4Bd`/2؇M,[#J_(1K}] t>#=\g5nF {Rn5G$Ƃ w5pa2J;֝t,(A7 My6qߋUrV,dp5<'.I'Z7y_}^~R^yA p*tc*ZZY^WOŒPSUtE` HrKf{փX/U<7Q`.FZWDQ@4jޘU*߁TُJK7kIy9JNG(X{&]t:_ɟt0i'/[/Bie}f8>_M+1 @6s5 d#ZxHO}~~wnxG}oV^qݤ,S?51 o**?_jlMRjKH L7~:PRv+h駎~4(ch<j4#8GhRDHJi!{5 (xLJm (Ԁ!ޣu/P7u/|?r96R_<9HAQAzSgAX|ۖV lC?!* Kvx۽r]!eH_'+~I=IcAgƸTe endstream endobj 2820 0 obj << /Length 1234 /Filter /FlateDecode >> stream xڽW[s6~W`E˲-an$3vַ3ô'ĂUB"ylŰ ]X[inL F!]@pNu?P=E0N D]npl@Z e6a8~A~ }H$j2apQ'ǎIO8 -Sa7RonǃugjJEYmUs~ ۃsPq֓z l7%uܾ66}~Bؗ˯h{F;Çբ XMTۈ̘{orh̘FClѨ#=6Ru92/MES a#TjFhqDDДFhZjG-!/~#X/n) endstream endobj 2824 0 obj << /Length 1806 /Filter /FlateDecode >> stream xYs4޿|s iB܃&00 &jNk{v-)S P"۫վ~ #}{h2ExDZ21}{ũc$SG(Q*(QZFYk.`Wtir~t2a,Bq,b<#YM)lG~ >GLG[2 E4mXH*Hכfji0/#EiP7osF%ːn*C^$bd4cmĩl# ;{798hp9y* 2S$)8NeSoEQ~Ja3v:4LEO.ɋ?N,taWoO@arM xUڔL*waYzex sm=b(e-0͵ pv/Z[!}Lc 6i4fr_*\= u-뵩E8@:ȉ>>809{ݤz@S9li% 4eR}LXB 80_.S()VvsuPd-F ϫ]x/!+%$h(r26N9[ސQh+辻 4PvAESP%0[!bsCU/ϓ6%&͂ _y!d YדDK8Z6'?wg_B;gUaf66s^;ص]C46˵Ni } < L2"/cHءw8Ի[M~,cX@0XUP2d(b6?0ӓ\q+\_~3bvi^mW>P֝)nvE ccq 'd¬v.J//̃p"+^}ܔ[E(t.f}]|VA[L*Jwސiwش. NZMSL=ږuUL* !@<Cp/I.zT1%MXWM|/EGz |ge1cno2H-_z'<.4rIkP'yhx$cg&&>B>eɎbNj K8.yQC*iN2$P ݡBCDy!B,M{9\cg|4󻪛 Bj*HDN8"OE3PT`i?nwRh&FSK"CXZ$B@ֿP# moBn3s$ojz,:V!nʾG{H) X!Iw#PgQY³-niCd^WOxIuT@IOKC㏯C摂nC3 r6ˡ>GHI2,"e*wP_ڊXnK(UÏ~G0.#f׍o[VqrB 1nz^%&tqXjXσp ӵڗ,Jx;GB@шy$dG*ya}ViL@R~3G=ocݑHԱNHBol}+˸?6jJp, g7Lj[B08dzێr${r9?wsƚ70GɱoEa" t^ҌhD⏥Yt Ne endstream endobj 2828 0 obj << /Length 1737 /Filter /FlateDecode >> stream xYKs6W7< НNNV:$9P-H⸿ qrA.>{+{8@TF8b72on<{z$x@"4 #x0C(!!T*#`Ȥ?`U5I(ӃP`   _M7xz>@`H b<6Hո*WuV{Zs=Nd?_$_z͚d}Сw#  =s.U(b260Vd rYɗlidY_IJKZf Xgբ;b'R.Ңn?Y쬨YZm١i2͊YL3\v8v],ʬ@e|R..Ծ]^*$YΓjQ٤1Pe2 d}v{yxljD8V,WU!zj@N4M?gC-q,Bya~;'&I6=wԀ=;ôqF8m82Wp )R%(2l|1ֈaLM>\OM$sBhp:mZpyBmu5)Yy@ef9֩zm Ը!d|9FQD l?5L[!"[@$n UZ߬:̳& Ć{TAUR,/pi5O - b=PNJTvD8*mRsC'uc!aػKk9倄_r  'u؀M%ӏO!ms-7 IvMZ-"*ڈ ;-]g endstream endobj 2832 0 obj << /Length 825 /Filter /FlateDecode >> stream xV]o0}ϯ#H8o]t鴤K褩aJ #VƐ6۲n_{}E֗A %0]}Z`_oV/\D)VB0̐dHr][3WLXOl RX7DIVQldwmGR"D=D VDQ}AgXʜ1qub3:uu GwQL" Ҫ́rgeܐҬmI /*.+|Җ:ql= [ I* c."OM͠'i;ʖEg5RpJh}]wpwgxp Fî bvbHV$^C|fB <U !>6^5CR̍Ucc@6>aQrC֛+h[ٺf%L3V}r Tfͤ 6Еr| > stream xWKs6W(uLuDv-L0)s* ' ~4E ŷg;GTSN2v6jr|.C0 p@UZ;7dis Or$p\J'\nxrʧY4Wz s>Y_ެ`LOD>mDy9s)xzM9.w i5V4+sGofD.a{Ag+ "c}kܖy' >KeM[KG|Mhخ1&"mqIGuaVm\Q۰̊<ִǑ$AiLw j;PS u (uu4p(s[g3|yvZ-./N!*౨@8ZjF4.̀+b!T~# ˵J u72+IOU]P.X蝪2eo<{ώ@|+㪊ǼjT=[i]\ShPy?%ep[v°#dmp$p >J%1]&O14!94Vpı_K`HruyrY:.ńs˻_w\WPx0!'eub@V*s<\uPA 8yD"ɈF%u#S`,4eєQ6V@%~,:|q|&T1lͥoהTa:Ry * TNLMTŷVZ尶3(BY5InUAW5ˆ gk:&]rU<Z=$6SPcݟj\Zq^Jxy!o'c.{Bu|(U"?PCtJ2I$>5b> aSq0ႉ,7,D. })Df@"M+Xbx % zƙK G L ;%m>}em/< H2 (ɞS~ E>R m,t`\^?\P+ +^y@72:IN~ endstream endobj 2841 0 obj << /Length 1259 /Filter /FlateDecode >> stream xWQs6~# I!9wN4v:mؐ05 eB@LM/շVv!NxC<IF Q2Ox8BV ( |sj>8}H0t{f F(fgp_^f᳨2d|1F6fJ%5f@aX2dhNZ*0g̃` >w mC5 <  ,6\@;v|UcI`lr=,qؘK1ݒ4]F&r=u\\^n\]^ެ?ȊGgAKis& ܩ*L]NsQJ9R_w**mTlfJgOIVv هf9_~3dbEiZ 24snEAYbyݩH̨Mm-hH3x%CAB<_rև-F?y﯌+VY$iv̂ۮ>EƏ]eV*][ڤ9CcI䐂%jힱ;Q7;Y!mޱ/>t" oƛzq> stream x[sݿG?9b~qs05)[` n81<xQ͊($ a=DlGV͢6 Ih|#1"1a$Q"6rn!1:t?vEݍe# m36%F e?Ч$1@TuEݥM`aZ`k-e~u0'$tqWB%F:R:| T= \8l7?;̹\%zZ!)T=p w$97Y ]nBWN~qgy@ )0 G?(oB5-ʎz! Mt4p).rݾ'jc1ZqJ>ceT@9:e|k{#@\ Ǫb!ot8;5ե}2*6ű؇03o6@W7HM~WpH=ft #3;ҩWqPNs/(FC <(U msE0bw-̲noo~7B6d 3ڮ7p58/'W?:;{/Ff1^2i0vޔPv+c6hV=?rD3MYTɰUIVצ&{&=bn7Euoǁ?iпsgÿȑuS6ݏO%S 0lick,jHcburf$ߵ/&3ȲN Ke]?蚀L]+,gɮ:1Mmν=&XW mQ6ϦZ.BcjW3|~H|33 x\M#D dx?btl<9oo$S} t0څDW ss=ѩ G3)iF/%FjVa3xu,tbą~6K@hrM0! @C|z |rN-7Q\{ jz~ n4wCDOHԾvt?::QYߣrrT7uwўxoSMb"ߴ&|A2EjU/Zwc+`XMnk+$J{ KP %z endstream endobj 2849 0 obj << /Length 1647 /Filter /FlateDecode >> stream xXr6}W੥j @u4q-%3m%[ )]L-Nv-Ev>Df2B*XHhYW~8($h2&  t(Lx'IN0ˆmAN~{ :099%) I0;?4D0j&( 9f"DXf4="cqLDR~SNj5͋4VЕVq<u c)HE}P 8kpn$GLy{nC+da*[`N-|֫l7uʘPjԙ|WoeUOVi₾+^լHB_xv](t$!Djx9ШԣEўU\jn:eI*./mrenV0.RiN9a@CVfeM.(yVφv)Y.lgi̪g|h2}V 4A^$5]f$'8=*FvcNVC !\ 0re-&3z iZu~6u^Viy ƽSY06B_ΎO'o^ELm?&1[U$ĉ0S3Ze0LL?[/|IW)ojֵxO3xmz+:2CYa~eCdj E^/M8ѨRiZZL/k]%Vg< x kۼjг}aN654]0lj{:ionfC[K #yv4pK|O1  !P])\!cIpK)ۜ(2AhFdߨ=Vu5ܴ,` vnj蓍)\۩`XA)vF _mӅC eP,H5AR ,ڵ~n!Qtm&.!:}UP)OaSLIʾ-Bigf|uK]1͒b(4:1{"LE„0; CH@6Jx`f6c*.zۀ#@FJC]bU_`b |aQ3!w ‰mSHb('V 2,caL=V@ם;݃>qSwH\J5K0f޴]T!{.ʆ8Ìž5EQT7RH?([t8G{x<25Obb/_ ]뼀M2my2I斝iXۧ{_OZ'*r N&%RLaPT"`俛:Z endstream endobj 2853 0 obj << /Length 3135 /Filter /FlateDecode >> stream xZY6~_<&8 Щ<$Y{ʩ8#G-q$fy$eק)J탇a:[LdT<ӂF:5Gooo.?S|FInng'bv27 .եRo^?=?xWdz\5dr!WM>t}yյvto6[+$`AUN .( /,@Q]g^UmtBH=[_@]'(S;jm^-j %Ŋ)2C?VyUmKM3^ Y!R3$GO/WL}bUPnzl3Jʯeӵn+p ;׷to2th^Hٳ6Mz/Oz{m)Ǩ]{-Zw^@))R W|jGIvղ޻ݦS/Vsy?tIoɗ|mV<wY;VӐqԣ5waՐ'EmWW pjl&mʺʗo}&;m˺ٝqtih!vnw؟IpҮ~ͦnKڝB剠S- 41#:tmerveϻD˺nlEe0ܶMf܍αMVC0mES:_<3Ϋ=,z&xLctdO߽~/ELLE$vwrK%7v#8hq$|w?p3tmvݿ;cMǡ.5s,TY̺Mmh^$/"ץ,]YIqD 2./nqB6md%E JB lgs9[P4Fx,[rlvE;֙ &HCu2\pvRBvΧ1tzUi <fG^ %#JU?#91e!p@8xZyzL߇X0G\SF+[;U(XD$+^ܸYz4kA"/ 8/lG*U`4 o DłtҟEE{{oTb󵛖sRϕKO7 81q dHB: j+Tqˑ, G,x8&G; rX JK]KqGBbMa;at Usļ8{7CP3<9N< 6x!GRZw3Q:t i٪0*fc~+$bPQ|=`4?u f"бqDd2IYA.#Tï}͒H&Ӭ'20B*0@`rfn­MDfZ/yvŽMTbm,-7v`OĠ܎ ʾ6w;upZVٟi( "*C5wͳDRh!h]X02Ď[, nV$` C`Xm9 hLЋ̍{ԉ U9A`.Gt4> `4ᨫ-c ~u Ԯr`U!A( #=?8=??#y>zh[x S$4F@Ǚ<9p ~(p!$FjÞ   DQ\BN&ݴD DZ$ TqI*0d:$yP6Lb-dxzsK23a2b/ >BU XL-g Sf1G{2 W39&B6 x!: „6J'yr$&Ʊe/{B(҇C ϙ ;lQB@ ~aJ WҘ֍M〮 >2X B 6dE48pr31DRm}plzbfsaBo5/@O%BHxiJ~En -VFOUb/gJԎ=82'?-XSemÔefE>0]l$9TfkX̿ol;72q v=kގC bo,«FG]8vjW HZξ3`JsЏuEhm"x7~SnauM1>gɪq4Խ7eE[HڳoIC?àG+65IÜ-2F9lkJ PU~mzҵDMa#ܓhM2ap0nVnu֔2+NOEwn}uüP񮄉4FlwFkzc玨, ~ꃨA. wݽ ޤ6i;uP0^M}p *Bσ=fYptJi|pG Cڿ O96DpvpKIp0Чb[ t4cVTaQ 6iLo<˸2>mW5GQ' > fp?mrGol^ Td|A "(#GoHλ^N0+0=<x .B/eY{Mq(f#s;!Z%OpMM›c 3I=q:]=YSMEO)Ӎ;& 6QTX6Ybt~lru+a{s L] .m$;huNuMWl endstream endobj 2857 0 obj << /Length 3271 /Filter /FlateDecode >> stream x[ms6_|:yb!xNo&K6 k;RR.@RRӴw_,,}̒ۄ%~}@Tntb%#6MԚv=!$X\Jխ-XƏi񠡤<~r7PO)/A #BŜ0)FR:;jkP-WnP 0Ԩ'k & n~0c:Bq!t9>M^L2$-@t\=oN;dG %%$ZJBGa^(%)$-` kƢ,@mԋ#ƥ8J(FSᴍ^$\$c8';nr"k1|vqzP0 ;Ʀq)f$w뙓I 3r=iqsYHgN֞8={ #qh3h QU~˾?4f)1;^ w!pArpt qфhw%4L>lQU41rF: 4*>: 5Bb +NZڑ4&HƁH)(⪩1zB<#9no|enج\Vo ,rvEn% @!QwL_$#^!Qa^rD6.l'0DO#HwP 6i(hr;B,K #^ԋQX )<ZW Q0π hLpX:*E&Gkִi-ߣY)ڈw5HM5AtVDPX7`i'ѲBVk4o߻./zE 4OpET<[hX0:i hȩ}dpG9H9sޝS:se'2J005 V庬e(/MUOˇ̬~va%r|2Uʊ;YO'wjv(Ţ)Wm.:*CMi?&(sx0)C:|<lwG"d1l&pQ "B7uDduwh`U zaLJIP3z0b@ ;=bZƦ1 DL;d9~q Z>E=He]!}·vŤKyHWL-O{`ؠZi2?}8m^Wɱ/k" xXè++gl%|mp O`˺~y;ݵk~ȪϬhk*V7e0b}<6z]U1WيbS_tx{o&}5U9BADcp. OuEdMu`ŠtRZiXՔ0C*+,3iߎа}j@ɖ)` M(, #ܰ b}Zuj?O# : Z7@T 9:kwϕsEHMSN9O w-e16AgOF:owЎNkVf.W {r܇]Ym}l6]/eoT%$wz4ٺ~o|7y'>:jm{_e\UY6 M LFlyX\"=+k!-'g hGDQ$EMs&:[^R>6>/Ÿ*UŻ2_5\ِh`iCup̗O|u׾痯y=~Yx˕q䙟Wyù(fO6U]}?IR\/=%Eo W P*f/ʞ{040Bgh^ ]bԉެMJjCS̻gOp%>:MJ*jlu'UfZؗ|8aFoa'_= G|8h?w endstream endobj 2862 0 obj << /Length 1096 /Filter /FlateDecode >> stream xWێ6}WF-W\$&hڵ Hڲ#@W_ߡHɢ#zE3g\4h(z={BAHTXTh3vɳW1E`C E %81R`Zчi^$_gdrzΊCI=Iw"-nO"IVγIi +:|#ʱƩ/gPzu=7rdUw˦rUU~N1,Riʭ[3@;&/vVUd ؇nbSZg$wOI]Ter.qHEAO`փ**_K  Iwmv.ړV==+3.b͸1,Gfq}woWC75gz@>̈ibܻa_@`i)"f_'5R(ҊHL^Rheb ,Ev"N#ntp. ƾXt~Yˇ-JhKDKlb&@1|d t:NPJ֑V&aQ]$"֐ -7Μqqc{x(Fی7NNw`Mwz5?y]L[:r3Xl"<5m Nn~A(bL` 5)U%Gb#AkX/dae>3h:< ݈Io8W64M^U1,5 V dـ+rv'h +cC#rK SrB<3 qlOb_"s8Jcƾh4"0YDSGB _ T\|2RM06L$ڦɻ,=MAI%rOSNm:e1'H|i=qѱ\t E $ѼRΒBk(;8r*՘,B֔mZ04u3^ zVdx}ܦe me"&$>ywvb}+)?06v׏vu)~e(ً]j/ endstream endobj 2784 0 obj << /Type /ObjStm /N 100 /First 980 /Length 2018 /Filter /FlateDecode >> stream xZ#+=,U, bcn LJ$=,A` v׀yGNSn{bT=J,%Z[ 97@aJT,c/׀T jw#$q nT0fHłDD 1ckƔbw!y&UbVNadg􀉋PCkvN5XSsL(WkD%3Gύ^O1 Kc'T8[gh},&ZU!-Dt89+]I3p1["pͺrL-1`v!C¤"c"  F9NPPc@Hb v hVK15]P Kf*1E`bX" C|h%[k{@3ɾBâ`IREb_NAkdֱ֙>гPr[Jʭ`ZwNlUW/wvw?lS?Xk>ow}wŽU&P/MSǯݻpwe %C'.D@xV3 >ݏ?ǯ!}yG4|{&wON_뇿|# s_ `!. 0 So=0bO ydv5/mceĩFauBb=%Kc9zh#Z6"Z6FavMo<[ m',q=YVZnBZ4Ho%2~J QvMY۱{)de&v INK4HKB1Dr n;`=cl#nCbHU_6|A.qILH)Ž,7ȍYlr=E=(L%hM'i`钘s}S\ۯm-6)(n% LS9-qKyn siCN[pB?+~N/9W{ iv=iu#iu+iKìm5[ 4&氘'bʱ_y-0,I;0W#_j;& j.ʶ]]dECiqJ-o,6po/ns)RwWT6txSַW W|'̹DvJV#\i+/- yӕ[!yїon~s ,?w!zWx}%n<וXrqʇ/%cVjdWfmre5%Cu?8PԞ B4YT2lV)}Gk>졡huǰ&y5裪]Ig1|{(=r69%>? +}2)gGy=l[X#f%Ʒ87ol+ԫՉ2jz_9ƃD8kAq"XGf8rgJ,bi?>B݌ endstream endobj 2889 0 obj << /Length1 2172 /Length2 17785 /Length3 0 /Length 19080 /Filter /FlateDecode >> stream xڌeP][ր l]Ɲ$%8 ,{p rtwNWuoQcP3Y8ALl̬ %q6V++3++; s*-#?4$\3ISл#@`ggeGɕ iacPb;9$]mAq50 t17u(MN6@YX<==Mܘ\6 k U2@Ҙ6n ԝ,A@9 xPS|p:#1ݿrd/cSss'gSGoG+=AZb:ZhjnoajcojMb ]3ȍYrf)G '# $m\}f9:y:,m-,*ݙE('o#?gV@ṱY }em,|L=;%669`qDh7߿@}},Ye5]N^_&.n;+~TLm?l-|ާח݀q)ߌ%[Gn`couo.8_Um߫+doer ]somܤm*6 ssͿf׫denp{!͝,26uu5Fxw_S `avtދX:"u\&1C<?`/XEXdEqX{лO?^zZXл鯻`W/1lsp*V*l3߷OwSY"绱ss#~/}Oь?=u?" =A7{S7xo +{wxKݼ[{{ܻ'ߡg]]߿?z7_; hd.f[q_+Fɴ;!4KN6&+dV,emuGFt6-I8Amzaq g`XICtO+K*ŝE޳Oƫ|e,baWu[|)N3 d*,{D Gq:ws;;F*Q䫷agRݭ_clW UoiqT\ʘ20)s=3]'4 pT2IåD6/: {HO4?O8 anwfp??TN(BXS,+WRvk,g.c+9!zL<4$u[7b`NwEL_9y.qQN+y7X܈4!T-tNȈEPf_;OEVT0N8Oj1q΁SD"Yxr[4 %2XLfW89qvAԤ_+=M0Tz\TLtzTOӅչL S<Ϻ[R^Ud/\3 ꟾnN3+iֺ)3O6n#^u= H 2/T]> j%ʉ-=vPIKPh=zE1KTtd (!}P e}'F+[\& :IލBBFNBQNtB37nB˯^[\g9<޾I tYnz-,P8Tߜfa ZH1TzgKTXXCxSSI#t/ϊd펣[~1oIS:%&o2)͕VTŏV=캥ks+K,m>YPۓ3pTZA}}AX?;MßFdTW^^TIMSXo`Romj`qqx̲\ZdKM)M1-V) -d=bv9 MI1T wq{*Lt4m z<ɍW!;ZOќkP@&F?# dt1oF_0ͩQhȖ=~,xMmqG`TOM$+eS2p٧HD]ӈފ x2p%JQ*EBYE||$X;")]Җ!9d{(qp6k5dņB(°\=<#kp߃ ]h'գk_PSoGoO ,"-SiDu#҉$DZlȏqc'|`ѻtU{l+BX1]8`8juNy3GlG!E*4/8l&QmS+Nw@N [A|K4ԥ[r]9ok7HLжTDdy8'mJ`+2I{lMPeyي#[#Snv>Z"xi?}-"GҚOq㖈Eޣկ(-y1k:jM,^(R szr%|>o99y%6 r`5ivoi M>Ŵq@ 0ihv˞Ew1>?s*_~u?F w sK8TаzOo~mET)xa=dtt<|IMS^q6MoKnJwj -چo8Cj^-{ s!{/[]Z]%o!Z׼9fAS: Jec0K1l?m !ZcXA@ Y]lFnRj56ka(: +!+[yH ۤF_\:sQjA(QAOYKš@Ң/} O|WmJ| kHj$JpZ_E&"$XT־J; `9hUZPjO**q@6hTp(E5|Oa:7 +S꓁6RtSr&%: NeIyRr5/6j״dn33N)ߪL =Fc&e.!x9AHPV3fQm}. ]m ˕մQx؛N&k1uR܇@ $+PQbv]ȵAbІ_BZ {z{bEhw*]C#ul]D5{KHTE}E'H|Ʀ1( hGL Ic$0+fdCwxϘ/qQ6hHbKʰ4T`ʅ1kD.vY*L 5<.Apaˏ(^tMd>jѬ>EǦCLį R^XD1^3K!])KrQ##VH[{+"xe#DX=̩'\q:jH&,+K}aLy7Q?l-KcHR+Ͽ2W%zm hR @(" zwQ dՐɥ3Nuj#V'vUѭ+<8`g 1&y/K{90??>-&0*/#'1_%hT`΄ {UeArVΚΕƅQJYd&+H>Q;63L!a?Jtr!芚odC}_pE*\YzaEދh\j Vid~ؓ ^z}e w[8LU^xA$*/{`*qmMƂ rvVC_u@R{}h]祸EB:guo6~1 ?0};3B%\)&)rOvu,fgt5V%/k2`,ʡT)KU=d4~X<##^O/,`EA_Yvlv> !ܾx/ѽV.n1'wB4f2 !邲w}6oV¤Hz/Cr~(zh,Z9~v Xࠋ%azDc~+Bh"OQ7Xi5K.x6,NFj3M rVԣ ؊tqNoOkP ּ̑Xd%" o cc $2}_ (gЀ.R¨]j!A ~KU1,* 0FS) 7^VZg!g(y/;*$%xsQsD&'&R8בQV({*R[[pHu̳U>™eT=MF=?w?7GLLj>I2/-udXrݲimC A5V!ss =lEʼn /| sB1JY᛹V8mi󳔂 Uc7Wf\j?HyM3.rim`]'Qt}y<< Ps[lRx#x&NTn$j"T8=Q:iJZKeV]eԌC W,}'A+:U"܉Ng?d_׃.oOhgS՞$;r "~\Yќx5Jk~<|hP?7ĖhxEUՏGϓ'u|^s8~^Q rsJiXrœM Զ^[Go>[=f=GTokV_ShG :$c9ǔ&of[nr&u9zjuHaqڪ%Y(ן؞()CQG/"Vz\"Ҡ8y>kucN*q~ZUK_L]9iyC.Vov&+¹8m<d\/osZӒ.Sgs3.ħ5`թ< #rM|$Ȏmton=DFtN}EtaL褾_CPBr-`N|@?K|jFN6sg]4_/:RO hC1%oZLy$CFR;-LJsQھ:6{0P{JH؋4Udh/H66 QiI0Oop1bp%pOuBn`"xQkQ>0]bh"%!)fYẠBLFU 桱\9P2O>z9[-;51 E p Խf$嶱z *DlHxxH6:,MWvG9R21\/ݮ,+WnG!ѐ(eRyL7JBmbq|`ni)-;c oBU L捍SkHXsF/~9kmyP"5oZb҄~f Q5+K1Vo ?,.5 .M>wCe) XgǰVB4 9Jʕ:d_ CMm T7I9w=KMiD2mғ?(F]n}Ӏ E?bQАHۥ/x45"ِ+ xE qV-/511qMi|jEp[lS%b+հ7IGOj?Kh4YOF뜰 }S.E{>O#JkAHImfdj-$[:`̐] 2r%tP ZΫU7KA"3{i8m-BꢓJt4<@RRJP8:$߱Ρe #צ|IJ~GQL<KGtt@ƪ:]qUhHvo?&Yj8jdHW7~7OTdlX%^pE] ]_Bd"A$dєJ}fc<%mZAFN1> /z*]0@XLRd̔3 p#9Qr1F1s$cIQW~3|'pq5״58 .BEu7Gnit8b-`O[|agܠ+^8ZgSv̖p|Ve\7_]jZ&mB{Udk&GQwO>d(<үo˅z.`UIfĆtnpsnil.H:o`︔RNs~,9 $nPL)'8yDڕÕ3i:R`RW4 }O8PPe|$39D _EЌV[ Qze-lMO"wWҧO<)Qv[{ jdeoz C@/;J0c34zPOus&˒P1̣؋E洚3񣂱ojwC>j4\NmzS~e]QQ:g13j3UU@n)]W-#fDiԢhJj $Þ>㨂t WkSG eaa_-rk4f}W9ҶurtcuyOE`|]O_\a\Zi0XUm-k+saSg;֠^amaE۸U Y~V}2_gb_cOs _IY@[x`tZ\_y&kT5!Gf#5S20\!"HJRsJ"#zFqO+X$#5c&H6 YY$Yv%q\W MqSY0&$A_t` 6 GՍr0*Z^OÞ8RD /-V_gէhr9tۚJ0n֏ QEnXIA*.4nr,C6py=c$sG2ɉD^Q&ɼfBͤIٿ.B0Mi,1[kU)pn`%E`dͬ6;DO62#TQFk+\ګCc 8)"֙PZgCu[I~*+yɍY@aa2gI1)~4P M@yś)o;D-9nkvEC)ok@(*BdM 3HӦvFy<⳨E@1a)$ q LkhPb&׵'__? pC7=i/ʈC@ݬh*3v-ك {P}ƈ>^jr(; Q㸳Wpqki/P$q5E7IÐ5N2:@`J}Hw!],F=, ȽS+@tzw(ʣ2-iWjaV,6+I;egԢfCw=I(cT_>t >V =\9ĥdMP*@~;B+6xsٲoNz,/n[9[hq= *#2 z h^ޡx3]|G6?DkPۇ/hPK&ݎؑ3O VĬako*U+ga2cw\T)*>#;]TTfUhnȐ|0_%^lUҬ4)Kȥ}k/)XB2i8/^y?C1sǑnKk$DU#P)٥:j~_5UY7U E,q)3'Q[ Q!3"qOkgOk x:&!a˃Y!zxRb gd-tNj[:E3jR0,H~[ 6&}ǔaQ6k_q0`)B{H{t{JՈKWM3'hǡ~iTJF7"R 8l5oxcNɽXp.r%=\|V{; ~pb4rG˛d%}2eU8,I@ݸZҊБ;Υ˗_L5*m-@(ΨKh_XD*hPZ 6N5|z  a?+Bfb%^{LBI ՆƏ#R;CwYYavMmuo*]segM H|靨1Rv_ʂ)Ȼd΢e<⩁P %vskQWp>&ƾZ_(8sm\ ax +%)~_O@ J`ԙc6iK#H;v@)S{ȝ]3`ξ'+_)[ L|#G7f`J ~VwE>e!Rד"}up9H(Y(NvoКo~)OJV@ Gyfs(dTa^6p?W_J &~AdIDFFıjX|g7tka~*hT<8/+WN|py-.r,c)~X>HQ5.}Pm/} 䥍kz4,~Gp=2n9)HGufͣ쑁n(.`%+#x)QǺ}N{5!&?ts\@n>]Ṕc uj樽b]1 1᭕|Wz H|&I u!ٶX չXާ^/Q,NΟn;Uri>yFK@Yz^'9g9NK:\$Mo8qN0n'YO{4gVa!h#f!r0.KêXKh0+reRe7Yx=)0U2R?K`A % ؃g2!@_=c/$RKw}|CY,* i?Z`k VX+Q@SP-7hػ JUs|( ˺br Ķi哠=nc6<:ejtVQhŵ0 w5א!SIl-Um;9dNʮb=p)gٔM ~.<&sF@Z\4$V?wqlNzݶC#DOI5%F7 -̖84bSjᶉ,(jki8%Y&a"~uz5 Jj/@{liguWDɘ~a€M̴h\_2Ԁ7Fţ9aw" i'F[,xg,?D'[ݒ> Ӱ/!bG|>&L~ɜi϶)I!`I-p inY@E8>/-Gzv7)O? ?i<[uB cbp\+C{a=R44$>=o#!$ԌיGq> ý25Sb~\?Q!|<fFzjsknqU;^l:sޔ8zsߕz\ NZ3> A.fu]P&8KSx7J#9ܩs*( ִH_?=F#ێN`N̄1`^$YAMdroR$P:ZJ[v*4;OTX8}?d5dYER!B̉hwRIqKLK,m%dYQK_>b^3-@b GS]H%K&l S.1@ ?O"*2WϦ\$4:S,E箹W&[9s5ڗ( 냂dd?p~1C`v~NsRw7NL3%`[0 Mj a[I:=4YHxz$m牖NxV#Y U6f*2eQǭtPLX" Bt"Un7ͪ]Ji07Py$Ht qcfK|6( WջKb4|Dr~Kg}][PiP.M8[N+VS^gU[ۃhH !9M⿞Vru-Qܰo`vO))|_V1 wW yz&,p57@@y~ [H& cG0ʛ aړS)y܇'a8夸{C]cghEhS(sQdq~ħmFPhD-|e:ch+OY҉16:\d'jYhg1cypv-HD}مRVTj+|/)P^cOB&)[,aE?+ٯMq콉8ex˽?rHٴW+yyW멋;ueA A,[p_ɹ!)@ G Xy'h umc[TaZ6野(JMb=HmhI/f`q1_Nm)S?b`UsBy,bW?&Xd9}.$ 4CD ɰLfx؎`%L<οc'M@K4NVtZt} e2opxz,W)_C{}bLD'U_Bk %ƻSd !t`[b"ʌvG!r39gyTc&U4 >'? vh4vD@p}+]o'E^p] &)hؚJ 8|QO o厢x~/ XC]JOM4՜@z(@Gp,Qz~X f80bo O[n%6R(1fy +6E~,U4"6}tcf-q*\ @;Vhmxx!ClIIAܿX"c.6rEa,LˬϢJ#;ri.IB[st?51Qn")a,HZ83Og. n}gǫGh>m!-%[ɮKtE'_??bkPfIH1P/ʊr{ln~D#Yg0LVb]7G(yG 婯Md/Q!TRJWoOʘIsj7,);|*VTW]o_4yw.Ƚȥ|5EVwY8]m64 n)g$<)uU~ǿ$hU<':h|BF1+JMH^"9Q]~[>A\״yMa~];b!қ~MR1Hed]TH֛fZkؕyLlTRJ9ܭ^PՉ==reE|M LF0jOhqE @zVrN1Dڣa qc_Kqq~YMjTy }P%u\2ܫ=dx%1,/X.Ш++Er*[ȧ8^QghNp :>jrAJ;Bp^˫ׁ2@0 @Aٿ a:`O('*q,bJ>(?2RvtQ%4y7cwc%҄rÓy Ç`w%3%&Tpu3^iۂ-hΝhetЛSwH LI+C>Xcb3RmCjAjG> stream xڌPZ !8Bowww'w';'Ν꽢ާɈU脌m A6֎tL9aM&f## =##3%?v2u5?"DA@w(=P d `b0s3qp32hc :6 2[7{sS3s@iD`W:@ don@V'-*6F G)AkhBr7姢;A {g1/yf;TlL] ddm P(؂;oqLL- [+hddce v36[ 􎮎_@K|3hցq!%9ٛ::;[ő22YXYOdÿ/?/N jvN )ǼLA6FFFv.r52cU7[пL9xyLiM@< 㟎ELLcs#G!Ow3o~mc0oflcm'_W̠,*Aou ۸rޗ61k˘@{{(1<)0[8yLlQv6_A0q0 `ޫq)A?轊ދ{ `0;3/b{XK_J22@߻e4tS/_6N` `0|mw,߹Z aiQ=}'f_l?mߋپ>X[LHo(޵:Ct|Qi;/rpG'q:C9C08كq ]l^]Lw=\qٮߵr{%wGς9ٿ'}{lxv<}rۛ%HXtDUa'4܇#Fy+BqҖ<׎4cD~NUpS[,ΉE1廄k@ϱ=jv(H9\ybG:8jKswhٓoq4^Q,Zяk=Z8hc‡؋%E1E&z vD˼e[8G~"evcɄ,Upr9g^^#*2~X8)2[~: 9L^d_1=C#ltE>x59)a }_u 8dFcp1 ͂Si4ױ nw~=GA$E;=%2mttWn^kQpfēLaC4 9p: 9,%^{at&ȸZ8sZlK( ٩>e;恐5\0mѿNgy2X;t<ۘ{s!ȓ}l5w>n}ʮqWE90t".}~j/8һJ~=8քNw4#G\$^~ZI*!p5jhTP\t4s!0ߘ:b'2kJOo&9caH@7i%mz5)?Rr`-kA\"iԈ}.jFYiKPlI27 ~#?0]RlSV֠wmE8Zq*S87o)- BWT.%,+I)rDi͎fktC 4 W-ET*[MPGo[v)YȺKJ''VE!D3nGs1@FVIʘϐb9Amݕ4PJR Vf e +mb8F'|{N򲽟B.t43)|$U Aj jG(a:ADCk-Rغgy;1E fٳ6Q7'9%x=`+<4:VҸO8#} V~\0Hљ^K#^*g`"p3BNMd~T2UF'X? xD%j1$|7ML:sBݨUQ%][VuμZJd叕~Rs ;*tL{?IÿK *FTErw(n8r5H[-"ȒEP,6h:1'YE>vԽuNXOTfHg-89<]5(3tbֽiQl;Td_-0 0!@AiacY=W*8EJnuɐ?DLE]z Cjltʨҧ߽O~]7UqU3OW|ȄV"~/n]g]|[!̜Fh)gF-Q砐lh'L4bRZݺQ:,N5DݐyVw]J9Ǡ -*wjd<JQe2Md|i&|A}7v!ƣ> eql$X@hmys9-gj.)2svUکb9+iYWvB49Ux= K mdTSdM `rn>sZvg+RyA~E"ԮeOeT7Z`sV{a~`q+ O ~UT`毭Wdtj?rMjT59B"ԠBi8.8X'w귾Z;ߦ+D ^߷|Ft+.Kd0,ar$˫xnh{iǾ%{:=D1ߦ̷[nF6]ᧆ0Ct׃z3wi𭅯%vB:`3fT*Ҳkn_'4L5:=%)[:FZ˛ߛkpݹw[.3D?Pu, z{iYO.Qk޶+AI'r^Akc~/ k%mp<-Aċ+kڍrb&RHV%jP _P9䃰K2ePù?~/&* 8XU&G`CfeAEs˅N*I_58 T G^$yHXHȍk{YY^r@,C0uyu'0ô6q+#ǝ[-uB@3A&-q} 1wOΡ\Z{]^Ĉ|fp` tna|PeM`)3tO%an3~)ӧNk CSTሯC!+z2%#L!@X󕧙Ժx$b|\F )6a 8nU_#68ӂ1 3PL eWx ×l-ׂY"ҐwL8 svbUeR-]~!:- ~`VHD9- ;a6`C޾Ǎ~=~p[fvhPަUf73:QUƢ\]s$D[N[ɹif z#w?\0p{Nu.J>Y .\VmHۧZ5%H9e_7!(AH&~J2ĮwGpuc"Fmj? 75)5NLɇd7]O] i.)t\ޜӘ`[yGq>{Lt꫼/?ћ K '}~2kAm˓a+LD{UFrY>}/\R,Y=^m"SjnZ9wjl β^:@PΧ+iޱo=qH^ [y*ޫ(}%j4{hKbYq2)RܞL{h<snrV=s؊' &1:bP&ˡ{dA.-T$q+pH-BM԰핃 %'S(Ԭ}Ջg1V%Ьh5o^Yrwx)5Q!:Mwj{")xQ>L&'4߁JoMt[6w g;_ 2n}&ƺ:Q|[%~ܦ$d9Εy~5;@*_$7QHNQq65娛.}\7+RyQtdWCGBX fȾ:W Aڂ G7l͛Ν1N6/ؿ$HȝlFpدƪ еoFC|ZZ(7-w͏蜐^,F U3њ>4ސn{t+vN[ Wf)R\u;Ҕ5,2ۖp8짾E`KU5Af(T?3]l c؍\r7YC _ u$(~~-b.L4o;D(yn UHc aJakzrۙnD棆KREEWXXO4_؛Jh$8τYAI3تtWA >Z +#JBl vtu/s[n]c}?eެVZde?m !r3v-H|y|VGy6ۧb;"0&_/1 q@GUP^`7r+W@XAZ3~Vgc>VT;N)1y%דNoV* ھ" b+j{Ƣ~8Q愂PQ+@cτ6*kT0ǑaaJx{RWW֫`LE. rSxn@"$s|\ۖy(Kp0{͆#jƍ(G3mF=@C 6`]uWLCopToah,_>AV6U.3HOE/m/cMvHWS-jI@@uckNJ?Cyf䩇h(}\O9خA_f f$H$Xr19c2Bbo(y]:;C 35A$(ZscGv F~cO*@y2ꖦ^U#30ǟ'9(>Y,$͹>@,~2 Vٞ=yAAe0HKiQUeohq)lgtupz&ܽ^V1Ec-?G^d Cݲ|;oT)9;,L_EfX$~<Ӡ Q;-&ٶ:gn  <]˯DB[S7 UnP:dp]#GB%^/] )У,8 [=O&>584 {s}sc4ꈙdž|!BQ-뭱%s%z{a8%4&{nYmJ"~ دNEh=-c]?=Yf YD.KfxAp؉OI41ҎlI1{<kʚ9*qt6Z8B 45I:FfMV9 EuڬШ,W[cי)ə _Вov!S}.= DunNn=ݪIL85 ap|vQn3`PXqNvl|Ȝ#8⮃3N^Dp3n}Y័oZ Ԙtv9]?:BwN` BlBڐ2>!ZQ?? spv §ᥡQGBo*o;jqZc{@}1N5biu?Npwmp쒂KA5|W ;!VOʰ*V4n>ɗҤk;ɋ"Cz6p,ta,wLDVKŜk #/j袛淜8Կ!i7Bv;Х.+JD:/FSuyτ +Sΰ ']b"c:bmt1ުQA.+.p-( n0b BvgDs2B6O cVrkmArZ1B$U>0=往8.8ζJ'>7)N<ߩ͊՗4Q/oQ2?VɖHs`dԆRviQ7'I/ Ȟ&~|+'n0B ;?F0yW; l_.KS$8ߑfc.|!NM  OGѯ!Gf0b&V("}Gxm97~П;pPp qAܿ}7, K%2f nb+MWs1vxIrwŰ: <+b4:v2|˿Zu4<}9Y٘cMHp}h;sCS݄ ),mty{Fǟ_6y3I\EC| 7`2 p^9PĤNY)]ͅ>]5H@P }O껑\'0;xfHXYݕU)wРƩ*0 l3qܳͧ8)τ=ESF9s.C7N^TV9HIn|oYY)w٘!-'\W)5 8X:+FA|e̲DmiJ}ТYE8HKW<T*S<_>t>?¤Xf4Ĩ\$!:L&MժAC5SK1Q-'*ɒ/]ty,t m̧E[sCv {MlO x֜EK4Ntw/6sыq^Ե'fپf5g%&Koq%|PX5XC632]ku ZDTE˲K6{^ 'Y񢈒 ] d( EةR*6vT+掤y/ Lsζ sY4S?Qޒb|2)0ϜשqihV68^L Ԓ|wa%t{ԗe[Vl,xpa\#]x`/r2LOۄR+]vl"aIC5|{=:6 | Zp_~-PB0\PS {>i4H+ԫcGRǃ~/p4 \jOhp:-%l9-Er<a(I3wѿvmPґ?TQx>(ah1~1vȜFx3Vz.MṶc =]y`.|جPD}}n3[CI6TYU]}dbT iv1Oz"6\ \WQ;Ig1&|]VSwz"q=-_~ z3@֤'pFV}x(NSz%f! )Xg>S&~As^]wu) si#:1,)\TB2gl{_=" z ;J39ilMF#VCY MJZw4 G8v '鑽V܎b/e왵Օ<^jej$%iX oH|c̣V/Hs昮K9qx& ;~V&QgӺDeM(apK.H`۩15N5CArr*C dnIlPl"á.J/L[4AM*ɭZ24|K5<ey?‚@aӣ5&3 g^jBA!02vFw7!WL[\4e$cp?&WS1j⡆@@034V':6n)G_ϏݒתX5@AU]Z G 90_똇! %>ylooH҇9єӇTB"tXۄ>QŀQ, n%/V]݇UZ{Z5=ɔۃ[f5}9ྫ*FDwR s4dSDNTb7ȇrwD(8;8JDUJ_2}9fi+J S@lrN2l*"y||/Z{9%V||&1X)$ѡ/28Bl B.Od5rV֘F8%Ӡ6vO߂*Q0{1NIItfQumYE* ЈC01IKӻ84+ Ճh+7ct"^a4&kTk5(R9Z(CvȇyO3+=DQUP%OÉȳ1yV.B{~A@)kϷHGRqY˙$ͤ_-HL _M1y{ Wb_Wjb5.Fyq3"G)%i=Yd+haDrr{ws$?φ}jP4pI3fpNBo<#~| Ϥ8d5:K#KNޱdPB}ꄷUqj&乍#ͱrF#Śt!e&+R!Ou0|yٓݙTEp= X8+ehha:{w~y\\r$‰Č ύZB3aбOVk@kKi7Jf`" 6vdz)|8 45ΎsiT|kv8q9٘ۄzfɎG6bn:]qBVi7. 9lq[5qEU)hd(:='l&֋΅vo~ n<DZhE$R㯟ɔ=SʙSi<)".Pf p4n'F b9'bI0P}!};3oqn!>KZ/"u 8 \xk\#af?S@x2Df, yx\U那۬ AUKʥeyZw$p`ɞGM jt;4R:)jZu0Swkgn>j'v8,vwWڬ' پL5roo]N7Lu,VJzHRcn.j6X>ѧQ}rQJ ~A!O% /n.d5>,W|i_#΋$| ;G@'Q{fXu@sBVASHeܵ ҹpchp@_"TКRnsd"K55wYTw b|`O+XUgzU>Qk}\ ܫ2E#oĊ{c7Pil1/{ Dz='i>߂f۾(i@vO%AU| :]<8Y]$Cu+t<][Љ8 NfZuF/| ySB&+g@Yn_XK^d6r8JGDcm6yClJVhӡ#8B!]2onP13c7k&reJy%Q;#KbiJdW2iv!?8+[\,ؔW|Ko,T(ެ, 4m\WAl>S2dp{7[+~*,GOqb(w`ˢxexҤ%9p-6IS7;4GiGW!%*ABDm`G^tS3bE_x φX;V8_8Q Y$\.%ۑrD7hL'L*ZēH{Ek$t(O{M+սqdCwVD#] >bGY灇Q^쀅Jш 0fޢ:8bô[1QXjcy`~y>UfW"B|̚^6uW $9K; ^㜵]Nh_IFEe)~T>qM7F^'<Bpx3UӘOYH&]UdY:ϺnUZÂܤŨ/a}2%.f0JR͆ha2 .ɯ:S;=]GYBAb =(:7WYaR$^%#W>.p/BK>5j(o'*:TAnBjBk?ʺpք@T}$-}9 dzKx$;ZCMo*mj=Fy=i-͗$,; 6;ydA!cS^ĸkqodtoҔtS#ܷlM"ZUYx?6 `2|wRAJ!X7Oi}S2e]8GgYJuOG(kڰz᳹3R1䃁&442KNW[%52hý0Z.F8v/z:J#M##K_ USAE :k9[(7)~kՃw0Vq3p n|6X;[_b;@>hA wV{0M۶8 U%s6h[7S <4oȘĄ߶<hqj֬>C1NF٠P*:VP> 7c!l(6vMDl_{O)) BV`֥+]ktT1g4:z?#ז!Qg1a endstream endobj 2893 0 obj << /Length1 1496 /Length2 7939 /Length3 0 /Length 8944 /Filter /FlateDecode >> stream xڍT6tt 04HK( ) 0 ]  Rҡ"H|soZ3ykϻ&: m.K9Xu>Ȫ>}!@>L&&=/3& AW, ryɁ\TaP=+W E?ȁ Un vd9z!6.g `` sN8  r;Le {~ydt90)%( x AjO" 1cp]K Z0_R_Uo"߆\Y?nѺ< *a 3OaSt= C8+@< ?Zc5c(X x= .{Ky׀ @p8 a-% \R|V087/㵦v:0'I' d1tw}n|(1:j]?h(82[#uS>eP2˔g=GFENob0gV)s4_՜j[rFrC2js)f)J ޥys%=;OwOYKR:䖎S.1|L{x'@ "*HiHi M-^%$fm¸U7}z팛Q08 (0bQ̻=E}(!q4j# 1U~L^=tȻ gՊ)*Hü`hmm=IU8O&2*eB*Jv ecF>FۆgTq{ur!{=3]E:&~+%Q5hIq o()bhlUIߕ+k9 ٠`UKKܸބj  FAyH'N+Nm݌U8ԗ#0lZžn[%>KfDs*3aẙ]y{¥ KfqHkrXX[{Zш0K[&hŞrG(ME)3H{0ZPU nwa+2hnvw'ce/'K KW}kpbg %QşUa\ͪodiń I|dtU\Z d&/s%P^kY%*}l>H{_B91lqrO6+fCб;PF1`sqK Q9AAn!9p0=5VvuC13Da)v;9հz$v6{kĒUo5EJl4SB Kڝ$)u0St@vHC~&Q3,=R7!#T ̾ܶYu;K+uqIo . jn?}rK(Œyf +ѪY폛މ9l˹<}1/`:s&g%mdI9q׀EAR-S Kvn22}"Rpw[k f*#nYrDrCЮ(j/|1SNXFý6dTAWjP~,K K-&A0qD q7&%=5q!ZwK_I1}^ 8h)m3F,=w9ǻϱO;wjdh3r!:Fbbe kMis$4wp,du|U.ǚ|Nӧ>d}>WC0Ͷw4kIdlvCPsEh!Wâv:?sv}&x#9SMZҍBLoXXk|HPzL 9E4[ք cG'"AV˜zϘ)^rWUM1'Ԭ~&UsU.9V(~4S g "6ü(jN7S=XN{R<tfyd*NHܥ2IVSp6i"Ls(K>UPT} o:/=,V46\z[ɖgǬnt1s~F^c'9άfq}dPBSM՛5W!ꔓE| 2 էYzq:qk;H3ip"C y_fd~>T,BR~ I9u]ߧUm;=FZO.R Hj^Ri5c*Xoϥ ĵr8xk}e$DۈxX*QዬPsGW";1tEḫk1_^V7nc >T%Ş!_v/sy{r&)$%nj,s ԓ(qܚ bw?{5ӇЪvv'}ҭNP̖w碖gcJ]](tDhSS])QtG?,==' A/EyjA;c 4;A"_Ec գ{TrBM|l hnvc]9{~r9eMU|V3?1wd t4)y BmlAD0'afx ⩞FΌDf*`*bPIvA_.~Ӡg;,1c}>ջB,ukHI@GK#U[['f2ЅN"jlYϞny0ĘY:WSJD<-}h ۬$fl-uB^I|Fa'4Wȗf{#J֥$?Ghn,Ϣ[j:t=zf{C]WꛡY$qM>h/JZ2@|$$_0FjK ZpTavr~^kgY>f~f9@X0.x\j."ϻVЕUݔQ\xF#aW)5#w< Biahi`ʪzjQΛ/ec_Ӌ}< ?զ--R7 ufaFJl kY>  z}k.f7*[s@OhD{L:@c=)>|>p?dIXȠa5IJi\F<2aQ._OyK%-`c!'#-g\Xޛt= Q mJϛ3_q"yhjW<+B1 w&*nL .faG" 630l [i <+b]_L$?=*{HlԟrzdɍKZ`,iHNo2zIhթ!HU6D@osTT$zu`qt~nMw׭m8Wϳ)clb #uqھwxB*psAF@r1[Eg*X{BI/GOM:7|d?d֯(hUҩ%v=K'IKW19rV]b<_܍@Svfi?όnyQ,XBoiodݤDBG2 TLJl78>RgCݞaU0LK q)+{sC;-15tֱI\It@i'aĈN9@CWl[{CXb Jdr1Q zηwGGW{܉}C/2y"yN"(8RLbQ3[VDHK9u1Q&{eo;%!5fM!)ҋ<ԋ~cJ "@ 2z v) "s7~7.ghf*K^h`XSJ1V-E^EÒ=xY#Xtʔ[UO0TtUu_t -CmtU025~+$v$ I/URu0J(^͹9*z.W&>Rvu+%OҡF) ?ӊ9KTml$v^hv{ 74W7ԕh"'i06ǎLp*"#+<\X̶D\)|h~rbzNf`NFlrc@K<],JgJtbWJ2H1P!*{2d3YLE}%&hʼnך,`#do. HT;Mۥ5kEkFDz_nMk~;J(kYK› VTMDJ[îrITݮ%>&=W_ nSjX& *Ҋ|S8\,<6{ Ðʶ8gӵ5E><]\'wJW/ 9{gG|n""da"F/}2ui̺$iQC+:DbAM7I0ZxcP(ڋˬjK>[-QtD3nGRzXҧȳd:ɛ#@^[e{]ɏIj*FmjF.{̞Tv6qSEïu 3%T!x b>J=@z[t޶k^wvȡH]t:ꙴi;)],ɞXLQZ\W X3mN|:tRzxA1Y6N#c5E*(bxC򁅬"/Ħ{2 yC7jH,yz"AbM [,:C=59;Y!ZR*o|n5&mu%b/Aq1sund`/JTދh쁊ǥ-]l;TbaaSS؏M0u1^*\9$Ƨ([l(>%%.fġ;6ܳpx!xL:N[pa0]T_F2xݗQBwҲOYG]^4՜VT->-P;cȶ٣!"^id_݅k=ҶlNsSBPGڨS4#TRU)%SW &P<@49O`u1z 6Q%NؔS\A7Qߒ?g~%S]6 b͔ 77XUvW]pyo[j҃^?(nh!!> ?ҡ ʈmW)j5.ʢ9O@AI -6`.< hRuZ<ݕ[3oI8gaU;gvKb=,Fm*魟IlQ>Rq̱w,Z}9eݡϩ_nXcEQ,B+)WL]+j6FŒ>LzIkHAUtMpEz8w2 M+-F跍AEpxI,Źumn*l:KDc]L8P\q /,>}xNpKkĬ8 KKDOD=T;48} uUQ] `B:LT 6H%)C$ ivnƣ?1R|5s',.JAxљ.=xLx*,@ձ Lu0c0(Ȃ:>[j%ȓG?y3B{ƫv%ps`kk-;KڻvyTMIO endstream endobj 2895 0 obj << /Length1 1954 /Length2 12902 /Length3 0 /Length 14105 /Filter /FlateDecode >> stream xڍT\[-]wN. nK{ K}sQc:s/k&WQg37Iۃ]YJl66N66$jj +[$j-=X.N $S wsyyllqwHݬJ,y{0Z^tv~~^bv '+S tٽV4M@.NAݝhbd!LprANn 3@;zcAhXZ9ˢnot^lLA`W Z.xY_Lt W0[̭lAwҊ,..L #5:S_[wΦNV.,Vdufvv 3o~VN ׍dڀCs+F\X5V 9;.!Yx8 GԒw O_F˯]z;;_Z^n +FH3+S '2_UNV}W~~3|=_̪"{ٹlv6^^QZ?B߹~}ݨpv =$Nl^ ظL_ϒ+O鿳]mmrhgeoW@UVYU:b` ۿYdbbj/k]ZA*V3;^q~L@׉scL7)H'_:f `eۻ^;!>e^!>`X v` UzS^qzV^+h_+ל#,3`59^ͬ@N ׫k4l_ShJ|8Vߐ5_+l3ke^oNpC?̯\_ KNN2x_d8go*l]rW#Fμ;&{z :r쾼3 ~7zs> a)Xl&j)el& ‹gy8x*}յ&+c82V``> [zWBBZ洯l;KgE _ء`IRPX8%onn u ߹KycsWo\[ꬦ.Q+fy&Ll\3KI{ ka :ʵj/車M܌"M<\*OQ(C3ڱ[CЇ0D# Reϻca^.:F6; ) rJq8:վd1aKFFL6v'^fڱU Y`]VE ܢ+h`y1p+&v2Oz&MoRo_CQX-d'~}{bm#bкHY2&uX/uq|6t.9~3P|4jMS7Ҹzk7TX_V[>$qr7` )^&dD_}#t(πLSiEkۉ.|+$-7Tn"',ݝa-3Edp/EYc$Me[QЙ X#̓V^a\š0"$!B͓4Rv_V \diS(yͮ7?Ep4f?EIW`Z8=d:vbxtmύ*"iJmNwmB«C?׍O 6L'ΰl[Tåփ%<̅wCbsyQu<=C67-7فKF' wԔJxܖtϝ`Gn2aÅHO be+ HN [5YV00_%t%͂jB+p&,rCJ8?Q֋l+ Ǽs[GS@Bni!PװEL2MTJd?)\EsLGF*1qlx 3tY`KzJu;w%*+/ܐi>W[Kc%@}fɭ ET-ǵm⃥a\oZH>Х+~(Sw/vA!#!+wgŵ35к`HI/7+kMk6SokZPHZ=yḍ"@[Vc ԁe\-b1mR=|_D c#UYތ@ESstIQ hX~1$yW0b{A'@Eg"זh(kp)`.4А!xq<#uWb=.jG-͍,U" 5YkoNxBW]x_D0r"*ڇ̟Xϣ9w'MyR{Z|T$IQRg7 #(FKؓS[0]HF0o` ~OĦO]å^gd;ڄ&b\I{kiq{z H;vC(F/v2Hպn-i@!] urL ]>cl;uX`eC8OAyY4Kb {X#)_Cu\yľ@ABd]p<=m[ @*w~wnko]LP ҇{' ENfӜjRIw^ѽP#3Xae VdYcXnSj*8*dOpFsyօG9^Vа``km^KufKV8EVVnMՊ|b34H%$C8"p4רE; k2Yi ltд,USSM//NC*eˀw2AR B0Tٴ{fq{)7u|ڞ mwϱ%R( M mόe d;\FZcO?5``Y Ua0Vc*W .>uhn(ӛFdxJDppwB:֢,nR[A҉1~t{xͤJ;`o}'&\ 60f{ k ymXKC1^[K+݉/ x/!ʸWϬ{mmM5P;JDH }pe|}٤]q> poq0=`x7ٷ[:ԾՉGwM8AH廽xذ+ơRDa%KSkRFJLo.;(rݾW؝([q;"',gZ%GQ<#B΁I}S[M#!PD"6VV1zznȭ~Îv̞򰔿mDP2$69!S"_!8ѳ8,v1 [V.cj(pU--˄?^Wr|#txdql,p8 o أQv#%G,Z T_ &g$vp)KĝՍ!v(k(ŢXV ,|ȣ8 TB t||Hq/b>Bj4М% SM[A- e/+HÈ[ftZg2mnqߕ8qM.z9-'7ZsqH1Sw+>r?5qsϦ>6(նp$}.bDE'wv˽xLPU =C+pVs|ՙ+5 ߛzE0~րJ<|+E:W7'kWAkCY ĘU?XIOR/i"K)Fna~FJblg$m㩅ը\˚mЭ.ss T|@W(tؗ{kK n( J {ǒ(rw :oBrSf)7%[aݟޯLY+ |5(6hP J7{ex?u#ySHɪHQ 9a-YIg\WtQX;IQr߷D3K?[.Bͽy3ߍ*,>ҟ0wɤ<ANu ڰ ә1$!;eV6łM.P9 ?IJiR+Z1#ie$}IZ/.0md7†_fW [1RKWmA?t$L5l,ʄnP:5qŏˁS+ @c~k@%@ӯ0e߁Ʀ+s2$!_c8](n/д`X`˜A\\0kGW'qz55]O)2P|Gt<-VP֕-s>/z8TlJf0T;m[T(S 5~ 6EN[l"Esݒ 绀k_M'j~!ㆱ`a\;Ձd݅/٥*w  s(xR<$;~韟dȮ%\|H3.Kv& eYIU]\QUM3:= R^Dh2^?+HppIQXbAdK~ g4v{(YS3efH@kMw}/nV@ト+BjS֍?௔ 薶nrR[*(̮?hy-]4$"φu2>C\8=Jn717%a0ٳzL4Tz lMuNX޸WCp}+`vV14 V]0~_ZąN$AǢR ]TزN2d '[i9KuD5)#=T~y&tOmf"'dCo!\NPJL ;Z"jΞ3peT)jytitIL#g$:"P/*XI.p]_nIޓT+(8c5jy70PQ7שimiM2t?C5g m֗,<7O$ uL1C7*ȥt^ TgciY0IIKˡ619] eKwBΆ!=r 6ȸ -`• ̀!@4`$o@k`!ͥwf@^0Xl* 8⧺ki*}'H꒷-;ddPτnqRF&˜:n7IK ]Xbd0~ԔbڄQyݱ}QlŁQ1:bP2b\'\:vgTZ˔>$Ag+n9si#_{-Ǩʰ.^buD+a[~鞤tMàD" eG_/(nP7"ݵvrIH0dl~ADE KűZ6ŞB&GQ膔&^5IzI nŌLE$lJ!DBڨ AwzonUG_T8Ῐi13 Tj'hZ +;q0(EHgk腠f/ q<j-k4VKcD!X}ᚓ\< idu{cͭv jpBfRsN[a"Ԩ@e35+bՋxN:  ϰF"n7=:\.r/dJ^taBdan}E2,yN{i@؂ENRDsnx 9h6~n$Bji߉\ܗsT/d|8K̟XS qk-Xݷ1[ANX?\c2SiH;i%/t67Cj[*~F*Ϫ;:u&jz/82SWmkqӡ74E"_X|C CCY~ncY˳+r5/7T 4>Uј FU0'2gXd`i<\ǸCy>v5wr+gفwskˮq4Hyzǖpʋl,CސMPmy%=4; #b[g/~z*rPFW JL|&< MP#h2 s\oov}BYdO}p%P|+~~&:fbZ "y<%=IԄgt2Kx9*(|NFeܧ9Xg+ӒO!cѐc D_ [7:Qԋ#_F,Jc۟퐧cLG ]+%/ti;jO\4cm6T?nvY]E'4t+ymk[}:l..[47D ~h~툱/"b5#Qn M,'qtk}N:u/%ᓟSV$O.8Vq7(*8I/t2}EC|PT+Թ4G\c@̖*N`ʼP X3K:Nnrdo (v3؜ԭVX-|SY(5 iWc^[ty߉MJ;bUjt?~/t|+Pږh`|]r bZD*yzfiLXI>Exlb %ǽIgJ ?Q4|/4~vvzl8-0TgΨlQcC Si۹u6ft5\u~m]e!dOcLR rЗ4"eZ/IXs43[DE-)a1&h*t:C~{,i#3Va":z q(z*JN`<+0:J[J"8sۅa\T)DE !k Ly*}>@zGsn.XKr)^_8MHΆT[o`^E8ΑpO| *y<(Iڱ6OR[<{?ᤘ\6U?VP 6P:m|wWRv!a2}7<zEZ%(o6^RJOܷn!9G\&N0l/«>nA𰚴)B8zcŐs`l+i F'zSƻ͐0+ag 7 IaC;&ɍ!]\gvݬUH ~8=s1C8xu0:oun3.آ6=&~})@:Sh&aI2~Xqi\_Yw NJhbKsVAi4H$8ji$y`1[ѣTX4 g򎠄:i;KL$T^ Ǻ;JX513j[>CHu3}iP$EO xRDIGBÍ?! kp$,Zόy z)?i&]S\#0qҵ{w8썚y(+8ܠ> &_y0yL4c6C$![ bROcpQi;8J2%]yɁ!|s$ XfXT~mI:QAt(lkg@X;H!p#4H&!JT1z'b{]e}*["> AI %\Xܖ_ %J. /Ce_WMZ>nFҘ]=Þ* Q;d0Q)|s( 7˟]8E! -T 38SE=nl\WB~4.@ my)RǡR6aň ϝA'fm.,1 2T/>^R&KgV`4qyc0\ tbs Rw u%n; *ψ)"[39iZl%{#|k$/?AgHme*#mfِ"Y,-[.w9﷌ Khr HDرG[}ڡT~1}(cv5KiVqV,NML2`՝sa2E6Pki^0VqVčPd`-rҁ2B;9>hs[`8̢QuCH2H%S:QyՌd/HO#u>~K5/ }!Cìϖ!uoz}4wP,ߎ$)r lwS,˚^kt[&ƌ(%/Hzxu Ro_ )Q4tD*wM`v*( |懢S]4 Y`Py ?X@ ~QBo# H87c"l6$J0+KC|,c۞-):=ePoB>΂;˩?_p><>a[y< 2o^(aYdU"1Rr$l4ax :WP?|M03X*MH˭ <jF{*ʮ"K{!V| znpLD4k%)BA U9K4K~'}o񡗟FJ((0bu<8eer ɦrs9Y `MlMUro=WױpFȂ4`![ԫ4y2d/B uhs}g3 tgi&UwˋI@?[5Ŋ3 mg+8T\c40񼷉 "Cں-{ PAȠˇNbutny%ܜxY|Xܭ5odrw醣7nOt7r*.6~;!gUz8u| }i}vo;G4Q뽤ONWսR : A0/ aq"bԓT#(X-m4=/?ph x}mp놙~wt?5Pc@^ڔ6l\je\NOK/c؎>LҹqSX߸ 澅3ȠIaأI a}9iTH1 m$LV$kn:_p3Q&SQvé{/2ކT.xZ떲LXϐk7" l>zY]-E'o6i i$24=<>uFbx>p^rU} l< Mj>{X񈻜n"-~ob5 4ml* ;Y]59&ᤃs_ubJCohr?7B~h*? aT endstream endobj 2897 0 obj << /Length1 2232 /Length2 10430 /Length3 0 /Length 11667 /Filter /FlateDecode >> stream xڍT HK7J Cwtw3C 544HHIR"- )ݍtw8{?~@G*ahuXl)e= N ONrq8BӐreGEeG(ज़= 98SttHClP+: L   P6ـ#Z4-! ׿\0 `Nll.֢L,rJ;* eqh:a. b >A@.M%ҟ ,v/G斖NP/؃Jl0O jKbonGY ucjqBceVR (W~c߽\;'0jU6RKQpp@ Z^N? W>NNcW0;sq 0Ex.O!~d8aVP{bveYm9iJJJ:z|X9 77ߎ!%3F/g aۗL/ymyf$fogSps_{\eeWU* n 0uZH,dY91ʵ= Rstz]@{|A\zܟZ:ZZ4N^5?x>Ǎy1v6#X+םr-\-Aj7_2{& pF,~'<r}9<> 'O oy.?P1ʀ] N^3~ O35;=>o ;'87/ o'K?x~_6 8ZYc ћկGߙ9J W7?Ur}/2; boX?Fw{\TW/򯕵tsydz_kDt nx1$nC7gƥ'J"SEz˅Db_ ,nc-JX;[8эf]nr42V-M;g_'m/鲝r<-c֎2 8Nc1AB c%G}w=~~/ke3heη Z_HiI Hȟ}xʧ`1o-ANB+fC KI&I:r$ b~qD= ;}~^*lB$H_ˇƽӡЂ,$緔e]՝A$H漣c,4o5%*;w%_蹹{vaF} ,վ= `.ӕ(^^'_Pʣ3v_Gyx#Xz%w.{Yju_RG{jx=!nkWᥞ34;ķ<@BE]G'5C!1a;UyB"`9"ީwO,G~z5Tu3-)J$X;ѡC6bhnI*9?Y|4#1N갌' j5' Q/THn2^Y[ __ F/{k~d觴2E<P)MΥuA¨}>^i;ϕr>w"-l[Re4ݝu=oVK+Oyҫzg9 ) r7WۂC"{GjveEA>H$ ]`&coh }=؎Je.Q|.&E5(*dmyCμM^DE8Px(4Rx><:/s(ӫ 0N*+$g%5, pD`J7_Kp{47GMǮjBpD A9GMgZ{&VH": )7 "J?P,Uw>9nV9SI|!`Ӯnm.8RmRHݥe;khց )X _ig.яw *!SWx(/ Ӛl1-_#W.?s,t@1<(HiձǦ׸)oKWcmoD2[4]yOE.pR` W֑BkӋә.96'o9 %}s0&7Z9_^$4F )E LĢNk}Wl+y, ՙO/F$DW A~+ptPicȄ'VI[_$K\&zB$$"oݗ4|bE7 g s3]ũ)$P#ЛOBE wG h̜ǽ!Yy Vx*]wH2ֵ ԁ*TBOg .aah8*<Id'{F-0x˟=b}|GxWvWZg<<62TiODR Y8[jAi}a!&t5b*tn 7M\P0N))fȍ : DR{x" WaZzz"HL8Z":L/|xdb,svA0qrVN #G?gT׏3Bb3y˸uwt'TkojĤ JuߣF D7\ԁ(;)8DLhSTaf3gú*=GJc3Q_ioO5˦}n +ؾp:,ݫlkt3cLZRm[Ivyq\k/4XN ?F59wQ(%{l-fIIg&2(r#HtW (1}`Y w0y$~W Mq~sKxoEQ$XG 'S9e$:U*'ݸ^E&ѯק~>pThy}po`gG~tcF*tG~X%>c3`au@`w]?g d ПPx2bINuMf| qrY= 4^5gPi\kaio zȜYw5I޹׃1 !ESQQ$,OdO/+s'1e5!d_㞽B*(Gvvt"Wk 4\Gӣ. ֚')h Ԩ8__ᮄ)^bXR/vIG]oU?WT?k55֨ԡx>vwume ;1,:LXxT@Q:[ W, U#-Yx` R~~R(1B-e#!m dƎ3!].c/}ZlR0 ̌^ei8 #Ƥ&#f +8WB0xX y"/h&G c,ؽ{|%{vơ i2;8ϡ_ |d@ֻ*ٺ/b|yɷ;I}-nn_E}vV|]OC!9F,ĘN me2o|z-@zj{U{G=NY>ދ.A*].V_ChV~&{b+d[q!԰QE !B 6LJ&ƫEKND#p&Hc![»eKnkf9ɝk]6IB PlR`B+n73@9' XiQ_h{#%),HN 4*XT/ZUhZR~a/qu,J.vP5C>,z qrjygb:/87Uk-ep.UsWuc4P᪍ ,}KP³icE\(&/l%tvʗ$V{φhpm6k|&_2bNR-TKr530: i&=4WyA|33Z0Jړo^ɘb)j`e07,,4;.7˫!;E⾴A^󹦎BPA=FYxy8;Ͷ}|lyR ߽*M!C9WvHVɊ9-eA= L*wM`q9mHZXp PWdrl~D7i\2!X^㈸u|>E+4 s`Vp"> k7˭vL6 (V]8@ZvWJDҺsxO$Uddg.Tox DDvXd&Q D'G܊ Qiiw>3RVrQ$& *&3O>?pغyټ#nH(o\J~#u7bA;m)6rt?TC>0{K`Sk$̍퓎*)c1\D--/г jk'u K49.;zhs8g,hSHw'}p/g׍Mؕm HyU=_FeDZ{5M YJvsˋ2̴ ׋mF2(bJvoU!o<#+ׄVA?=P2YNSD5t K^ZG qv錓JH9Ul\#b@@sB$NeNLjq"Sq\֞0-VaX޺vП|ΆkIz<@v6LWRXD:󭑣sa[[$u. z~zN@)%C]WG5[aYMe7Zn#(Y.(i(<ܐ=1(H>y7U~rw$]쒝 T37 [ѽl" l^rO۟79zD1X>_ɉN ;"iwfhM<~a|V6_&Ku怵{霹#ҌC09t]@cwvbdvb.HrѳJ#ṯd? zr,[ HLWµ h1Zv4AzX>?ibVх*oWQl!1Ra[ZBĞ*&GP=?U}k^27=n{kLO%cX$-H~aF_ Xi8X6>6yb]WG '9Ĕ(u,վ)+j?.ꠁOohG-+]Xh>_m7>A\K"͍h2šb[aaFD*q:4L)_My#%)-oB귐zHx\>%i|VS6x gz nIjşߌaGuκHsoQ=e>\fBeuˉ21cٕ%ؒץ;l޼Ex֍V̫JE>{eR ruX.r>AQ6_YDYcLxp |bwN}Iě"b_ Q)QC?I !uYn*҈~R}o:g_R6nYtj嗠Šqvp+U:v' 5(*~گihzI 2dt/DDEtQvo@omJfާ=Yn61@_Dٓa]'5\-_| k56`qs妊q."U=p~dxM3|5 AJ^E& Pڙg:#~Q: |c.sO4FXIxJ1I.ٚ!awW7VlܬgTY#`4~aMT9aIe38{&w]S4솆a0T *|M:[^4H ݝmCȒo-&Y"ֻގXxkir&$\t,ٖj$e=ZM!15)s]le(<*-8]χRVK0W[Eхgl(c,n0+,G`9⇾9y9tUg,*6PG"D:%s+DQG琕)1m@ ]zHT:&4dU'u}cf(ЫZROvGcAj^7Co͖PkOل[kB;W^  %qZh0C4Lgn&1xמOkp;ZeSEfj@Z-Cӄ)l'ۣD0,,飠ZI Z\!)b U!`ĺOICq-ߣNӫ]f7mL:M񥊙|$LCȶk;śU;a3о txo`~NИ&AXjKlP@GCVپ@Ƶ{djw<qHIz`:RkCA\ #}gJix%OC ~H1[W*9u!yq (xwp3 8@6OUT-ߊi_BG|ڦJx4[xWzP6T7hW9QYo8B}2?*ui+pgf۾ ̌٨#*_¯O>cM,tnftYjۧ\-ۓpCm'K"_~2Xg^@Ͳig!7i6q pzDV8>R vݣ|_7 Vۮr] ;- Z߱'PXtV+eR/=dHJtOiM L=es 6j~E8$ Ly#;<*)~E甈-\Wv:6Av˖ҍ^ٸ {#CXwvY{^tƋwݽ峈) ϓC6)xp&Kkrx|Eq&GlevYQUPI *q PO~==_NEs q] upb5"e dX0#gô<ˎGm1Vg:H ?Lɂ 11Ųv&7ZёFEEý*i"QQݬ(ۥ~jf !'G&j8Fcofik} ˸ӪA$xUUo‰3NV҄uѪx|CNt_PTh'?MvYL.;Q>S#,#ytpBi(x44z8PVDG7nx=doz܇ 3ڋLEݺG_fBm}.(Iunfں.fHwzb-ߐ.HP`a.E` 9ǮTTO2RΖ]e{|ƹOR IeEK|Aqg&·=8]Ak7ݫ)bo *SoBPBJf.ԿxOE3,jGo6(_%D]_/1r y w;* p˗ޛ9J W|T_&T́$&8hq>Bk櫚M(a.|b!|^>I(M'GVtI] [xMYLk05>Ak+aġR^#:]8Xrg֙+)zj  - =?⤌3-^O%,ɟ.-2T|"VlSo04}_#K($%ۍV4HjNl 4 9pkl Z3.-hm==RՍ]4ZgÈT@Wֹќ|'?h4R})17K:aN?R].PI=[s`{ɌY17dGl]s8C_ȖW+/Ll{#9P>AZ3LE& ]`Hmg|R=yoྣ Vޥ}"nм'Ț!;ؗ2ì'V#t튚{;Jc~>K=l8N׻?Q=h&^>ʰŰ :vUw5n ߊbu^ % -n|{ΜmtlgQYsW}rL[uf^]"i'ԟQy ́(۶C<V/dx]oheW [o&,WF%ʢl?ıSW:JYzfÔ2 (R/(϶kt'$կ{N}=:)ZJl9{Q<܄i9pä.llw|)kv$V!AN\{wDƾ"OyyJ* p[4c"Mvj6뀥=d}pn ᬲ4TxC^/lْCtm}GTsu"d.Y/١t`gia/S]Rg_ O*OL/UX5M!D oC? ҕ0YNP"T7/b/VFO9-[P$wIݑpYn ,5wj75T>>{c]e J̩a~U͝ :){e6|=9#ɳv4cV>U7֎5g܂83^ԧhm?zޣ]lˋ<i-t.H'lESk3wLm;JHŞ;syt<`ə⬲f|CJ?Swt߀Yy@( tzIz-}跍gUHhJ - fJYLt4."=Lc}d ~]Y9}YJ) endstream endobj 2899 0 obj << /Length1 2613 /Length2 21999 /Length3 0 /Length 23484 /Filter /FlateDecode >> stream xڌP t4+HIwH.ttwHwIHwIw#) )gfΙa~wJ"ƶ [0#+ @T^^†DIfDrp4KBChb@0DP d`errXXx#h:26 G$JQ[;7sS304FV^^n" s# @6YC<F yo130lLi.`3  2N;5&$J&`!Xl!*N6 ;@UZhܿ.ې?@##[k;) Pc@߂@+G[>hn4: ! B2w~Fv`G&Gs926)5;>1snn4m@bLA`' 7;'d1vf `Ien|!y8Ao"$VV`25AcB C` f+O 3r#O>غ<l,V7(_6&~ )bv{ChkL2 ͟Iad1a<V_'F$de_?|ۿ% -dl&_+26w\i0"6fd`bQdd62{m@JO D [fd 9# Y9?A8mlo'tC48553f& `b\fߤ!.?,@F0q% V`Yx w?]]xW U w?]TBĢAb | hBbAE 3CX2Çjņ6/bsB_ lB3YAN.d+_"$؁j7Ƅ,%w ı_ $B6H@;#$O+_1@t~H@bvY?ead7O!!\[k߽l267S9NHvhkvlB._O eu0 &l2;:HV@ǿ: I 4Lv 翦b_"]//?NvN~@ #Y[#@*BƝp)}q_2eK$zY%,:>fخ%qH*oJj3r =qCD6􁄯СJ3F'i*%'uM| NLPB{gUQ.Mp%u֦utVNXB;8Je^~2;g`LqA"1ו_ Ұ< %Jhnk.̶/t$tr$Dt#ƴ[␝nB 0 ѓj.սZIl)$83$,=H '\ӫ-$* s[7$k?՗kiM6mV5efߏ)hu{=9jo@h_&+}v3-/7QwkJ ]k|rVk9̨[>ifaGx`$SsYVoIL1TBvhm+;s_L@;\~S}0 /Ɋ2",#O*Mt8_qx17̝vͼhPq#ZE/>NUN !0e]@#n'}1|sH#ou&1>vuŁ' GXUw7eȔ= " }h\NX,j>Bqݚ"a6}²{f<4f85~ۨZ ֏ W{&&j35F VZsdfЋ0K;snB"q:ĆZ~g=XĜFYW6dg!Q*8d2'U{M&~e2L{HKXvgWsEͲqz_~cj | [8Ft˳o^rGSZsrFJ7bP ~ 4տ?}l^ԿHb yk !XKQWbMc5)a6jy]&7yDى4 PIݚ7A >tP)bX>1Qq#W`vxw׀f2n {pɽW'DmU0+Unog8~cHTkhƠDV!8ɜ]VY,jm2FYcx C0+X0Hhn5.Q'`bOTI@2py;AV.ktt)QvB [6/ $'jxr^̂cX?n]*>sr>%1|UǕSz Z*=c~:(?~sN7gAEg3ŔE𵡑gEx~}$c$iAy<\k}\m8oY X^RͷS.䖣b"U8!h_"}knV4[rMlRS“t1j81KM0I]URvxh@)x2n )@q 8/aXGԪ5&94e=}'m%y.փ_Y|0>p_`_Tnծi{a7xr~qPG,Ifb罹Tװ9 ̇ Azf]1h1L j> ֧)״>CMnsTtCm'ƀhHJxSB ~]61$ٌ%ȒGԞȀ{&U*X_ŌeO ?ےv*')? 05~̮QJfN:q:!]&z5Trd}ybĴlmiO߸|h%"'B;y Bh=- [i=|Vq q9^Z}j/q?v7D\QZuF|Q4xYUQk'\"k7|0o>F<Ps~pG)֢ܷDo^j^'S28 hS>sjbI,%zt$Ilc2aBI-{SI~8lTbuJS#B2JHَ@u,DF!^'!i Ev5 cnEBjI4ϗ`O[nBx︬uXRWlֲ2p*VQ Sl0Mpڧ'[8j˭?P(*KU& ru},Ymw}BFv^v~fCH:7:CR}sF[;&3coોg4킧Y &ŠYЕƟDG^+QLZ&@tY)N?lt2ln&rcVj'3liDRlj_M@ { ˖0w):r@d]0OtJju`F x5͕ʆ6vҟ=1?<'4(CYrGvc+Njh@J#+7s9^֚u"c^1 O=80ə[qݥV'Wt$ $=3G3nQ9TS7!绒fEwIbS<(>9^~9";0=oEnh5n|7 _ ~D%Z-iՔr/#"cg1DUaHWp{ؑ҄rY=<h7ݵYeG6{gL|k~+&άBG]fqN/it rWχ}ڈUH3qFNOnM*~1_$uCa~5hW'=ۢztY#iFPb#q`U/ĔpEw(+5а"Y4M)iĖبR‘eO . 8R>HHF9{_kQ;p sC~Aid@Q?cShU8+1I8V4l+ / ,? 'XnΑ"S.p`(y ȮS uС`CО`vco:R)1v߈ ǫ9ݡ_[Y (WɌ cs \"iٗ=P /!؈Lkw9+nS# }uV(3`p=#jA l+"ӢY9Ba QwWL>Vp_>+A37ٕo^~=zx^6!Ncb_1;t<V~{ض*rdIz;ŋ)*pԯ\ L$nXd] f{ Ӿ\J"bHtV{O;twrWz c+!Mb_Zz3T.{ûČ&h,Pz~WK>><ܪvT5aWۣ[u)Ioqȇj@)$(`jPvE5;`$,\ך>ϋ}/Oɕ;"^#x9:nz ]p-ѝk9\!xvZ"b.:^[k~$ybJ~6F&/jvd"TnmǸSA0I dW_W#tR/X}Ԡk,g8?:'IEU[jqػL pEdp}(9Utn:}Y9Hksn1FS&iaLUBK\=gPJ-2WK4/n Ql.M<61WkJ!=<>Zh7us%񃐲zЏ̼.O*#9W^af{bbdsOKQq(Ј@G5]C2aCL桡++E'8h2Ūۨ{fɄR:h dƢ;Lw[΀Z2X q!y¼[&&!o+3[(P  YypKZiR8C_vS(Sl(SЊzp8 کN*U/c64{homHcP2 2¦HQl6aBց\UQDqxCAy9G8/)mG&;iÓf.+hQ>YJ0OxՊ^k5B[ Nz>;T9ׄRjva4;:u^t?-E [JאhxWbVސs`n6embT6zNFUX'F{ `}<"-Kvnh5Ee3 գ5Ԣwٜekۮ/HWrG YlwE`ބ=:iDaQź-nBUOQٴƥX*aSi;攝5d^42GrH;yk:wLK?KZS"36Gbn@˖c=/ yt23oZ.ܠ FC%,!1_.EwTIB[97x+Hh{eJ/7j ߛ|Ag$dٗ]+ &E1ǰ?PyMDZa5|پ|!IS}9 v櫦ʟJSºH;Z:Z$(6 V$xSq jvq xzv&dX$~'?$KHxahB4oyj^ *pĀcp_"zC|Z[})qL$S9C[baF1mm eQA^Ȣ9S'KOFeΟ#G P=ȹ擘k[U®]Xݮ`[ ; ' pF;z5[2mfUߚTmojT زy;N4}ނ{}|kA=0e-Zה$.X]16t~n u=_1L?}Kipv0c<UĎ`a8j 띇^ C 2G" 3Jz$XwR _fRlŝZP!y9?_vIbTgċw@Z M]>!?ԾSDZ^:WuΐkI9H31yrBM/0́K6wdQ7c%@?"Q d$VX: b3 @.˻pcS,c2A<@pL⮼}R3 4gGAz*v~\8bh6`/^>SǜElhG6=F؟,f]wWs3 / ] =6׽弥_I@;X/:N?3\Aؽ-5mttj%j EZ_/"Mf$ІM"Cf[ޢܑ@G%vnYv;K.hbbZ)gEc zc[R - cF8$x%ӎE 60^/;2J2F&\{Q?}]WNIPhٛ>U~S ml.}zPJMhMl[/-k#G%kzG2\o̍.zg}uex扳hO`c4&q>8bk! \=uk #idex\t ꯦVh%]Fks2uf/V}Ӱm$ʨq &cnuċ{>q6[Nu9V [E8u/Qʱ\@du Ȫp,GkYڋ[9p4"?/|Q#=qOVqH\=Jwؐ'nh(ñth&GCV]#[(FC6×3}TƠO.8KLMfzLxV,r?2#4gN#0~age?$=(%*o6ospFF-0T4%.}ojf鈧gHZ2j=^i +I9McuȪM\U)̜RcYF5‚jRPnUc94߭[CLwZVXBEЛ |<>Fc)a+K/98E>>=ASr+ZvT8ضWJCT ƳðB/'vP1lc>6K%?]/Y klr$ҍ:MwΑ%Dj?b~Uy rKӣK?O~,sFB'WŸ*M \&dp {%3RŲQz5@7Vmؕ9k4pn-H>ccJM#HluI|^h61I 7GeZ m ͉Hʂ'6(xoZ"DZ>"?R29K(32bDY̒nZ PF&-CJP'ѳwm/0aRG*\Z'WB5F/(\oNBj0B;wnVBK1vy4Xus(m 5ЍmB`"TG^;''bK»~F|hhoV)AϮ5ՕzI j,?n;p30u~lH[| Jeuɮ߰}}T~rdWtğnEezjOxl+;~*:jsZYESR,Qk9<-7b⼯M<}G)=fIZ)#W^Eg&y.gmkC-59 H/Hl5vG/+_QM5E33Vkb߯>bV<]CO^\%K*iaaquY;tX1gAwNr05[Ou׌fa?ph̜)+-뇭yK_6,i 񉩟yɈ((E|Y[Յ=0s(SHa,`C ,.61QoF_o&#N!}IҗR4Mi·o)jGiݶӝ"T'o 1 5GI;\1:}D1BW +5K$R)WL޿DV2!G'__Q@E-&jk'WZb'LNǵhs֦| eChS^†^9이$^tT>XßpY5)1\l+Q#ny$iǹSJJ MOKt.*V/tJ]xXŨZ$=-TvЛdcxUen.;~!ga/̻B˻^|3Vz!˩xG^9Dyuv0fr^ ڟKuaMgᫌ\7eˉW/nX}Z@*ݢГፌsTلNØ-sQ2vZ(V珚Z~LKt͟ܫcyiBȊ4fe]ug|)Ƴtxyn~BT>M{>̝> M-"\ݘ}Y+ 9lbkIt]G>bBH)۸bke'I0{Ӓu+6_Hp&;%te bپ5Έ^ Ez؎s޴vx~J4 Jt#j6O (ꖱ:G@*KYCqX3};3oϨŧ*$$Js!irFwy#V䩺s.{CbM֚Y,; eO`eJgDpmDXeEleI%P6њ8]uZF0IH.d[>PF;-U@ 3}%*9u]Q6V[.9 ,}WWbc8.<}ViHHA3:zk˗swZ>FY+?"ng> JY6c/}4tbp2TEv~dnU(5( nZlrag{a~ŌcW0zQƮ"<_Ῡ!OW9McE'=pO4h׈7\d]QDGu68.O\ `64)pꊶg&j1ј0Cy4\BSlEIzgqSjL/nn6)n}#b 邞/הϵӹƃ})?6988i`N uszhWܰMIh~zlz07)b1ۼVΥ|0b .ɃOc|nhp>K:شv?a}53 c-|vq+rX4$ m1&;oP8۹n??/jU3Sh\E(8ӂG[NwKaT nԛV<W!=noTSn!=Ϗ~[VScn/?17=PJcnuubS[&¡%y?<.8 Ĵ`>{t9%GJuQr#}* *sYO/CS֓kWfT1.ݏUWU*}P?'M$5wBƂAAt /3O zK%N~h\ ;~Keb gm0G%g8W]*f.9g>+eIxA8.`\y Ǘ!:.W?ި%)1#[i̖YS0hW|z k(yצw\e{#ܠA~`֩ Y5azsyrSQ8uAsyyռ篧2i~2S60{[tu=&c(n$ej5q!-E$psxvvcً䕮GG%2p)11nh$V[G7@Os1X 6D:W;0:>K~4H:~^n oDki2 4Џ4ݼۅ=1 MbeztKBiNݒEP& ^ H)Ź`P @ Զyy7!4v;Eia*[{@m{T_TBp鵞;d u5MI 'I>G$xx@LL>꡺3J?7BSy&$FÏVhs ~53Ք#6DLx00;An x/N,ܘ6Czޛ7S=5Zj'ʩO{%Pbl>!3)@K.9ޚMM؜Q&Biv}dBRFO>Bd])hA7]d>|&&>Ps8bdRry2G%.+P x#HhoYQfz>0 =ǐQjg^vGc&U:ǧ#FWX+?iTF\5x|KK ;xISWQk ϱ#?꽧7ⶌm;ʴoq5 &sۿ"?[0'HjK77dcw+(Wus/{(c_ $N *VL3A\#_1;+d&hiܨLZP&֜Ye\[}{; ^b`5q+cct%Yw̢}{bjjwq܀cSpHՊ( W Is:c^/}N6əeLhC'nDsB u_o y - g[eRr6>ii1ISgF$v@O֓a%# iؐ Mz>m3&E0vp9:p~bZ1)]r+;#l?ә6uA37ڈ^N_nF\;5n$4 tJmogz*rAM{ؼ'ddթ$R5iAuIF 5pK;$\U2F!o++_WJ[5n`lG_M9$G!ڝ1yM/CK(4X̹`$J_ >^ԵeԱ篳ƼЇB<DE0ۋ&;!pY2I1cZR,2b<*!IBٱRe,U K;f+|e>'"6{}V$ɘ3苮I"z YΏᦙU$?xϊ 8þ֒TxO$ Y b@{ԛb`XEg/D`Bv9{ \R$;vZvClЭTL ̖vE4&@!;jTI @t헡y{O(_Z}g5O} s@~Ѫ ?6о'&fp5U3${WM1~'?Jr Ҕj{pIPSW,3` cGh]`t,`_23\[UzIM_Bp*xٴb+xAu߳~]/wVP3,A\WdP_C9U|4f$ EQTc6[xv-j iԊj; -٭f:⠛9lt<_qNӓX]X_|fnU.AG#:YO Ba-Q).xiŌԭ,'Zu൶+!'?J cE{GѨ,D3]%n\Fz0cEis* y@ˉ wE |-]ߴ`vet=G} ޽ԙɉsAGsy͆E܈9zCa<H~i|%vx5O\*+{X(}z0'u m$I7R 2p!A-#{ȂxS%J@OS"s#RKdxV%yb~4<}w0*g^ O;\XCCa&jDKk@ZO`O| ?xWc~gOR 4H =$^,p]e۞wMXju|GYV\#{P[F~9UD>K"ow_^Ekfs3&fZTA¤NlݨfY]<9SÜ't{glsYP/tս"#AQgpr(ekGoxqn+~3VK`xw6vHK2Z0/eoX"MycJ5>e9@h<ArkDi)&z:3BlTxEksxWuK+oPK m-Ȣ!jS&XH \wtaǜx- ՚62 Rxw%kCtyO|200-_Tfe;(^~̿>ML ic+{S@ jMئ"sDTwwyww H8-ƒ_" dN?))*\9ڙJ*"xa5wz3r7̬ⴷo73O`?󶃪Q?6 G4}e7<ǂ8]"D$y91u pmg?;ͩxL+ŴdZAA`:-}>1hP4Kꦘ*8PTͤ> */o|?̵y]4w\eKL.+Le\,m"Pᚲ"+jr=ez' mx"eqGucE7(<% UQ me6|R}{(gOF2Y\%!mG6y?g4+ZC=\^S,uѧ?py]iPu>TQ9# &K_|OC~8+ /%\}=#8%&liMdXBRتȩO̫|B.Re1 &W^ъ;%Sj ds)pCdUc+*Yy eک{E&6 ?Od!]}Iht9Hߥაi }}Lkԅ40=Bh ;(|Z.hzr3BÖG}W~ND #AFLjp-b ?Ŀv}xRh:S1nJv6ZRb ތ ~-4KB~ZI l()qXF!L Dk'IX6_YA꜄7.w3Gl $bhmҶ/_ Tm[Iv®Yw`dgL33fpYy#mSUY nudj0~'/Aĭ:L R7P8J'Pٸ)3x[Ԁ26Qz\7z%6pZ_C)g[G~rVUGl mhDP2tnS&{v{h%UK=ѰwU.ΉIS3*㑝xSj 2 Q"sX\V)qN\p! XR`2)~CCAq:_dI\hf@.`rʯÆtpNauAʼQ Ӥmcʙp'$?*9!1Lh9dbt ?+[T/Ԉ!F(yyV 1G$ǃ`qA)'FICeE#2J[%y.$u?F~3\Wcj 1 =iCb3㝩+)G+@VLR+}yizִvҲtUCV~I[u(̽NaqsjꛀX '( l+Y4TxC g{Hg %#5.#Ю,sr\ SΔB=$BIĻ/O b Q87*׳ `YxuGتepa=))ßmqq^}\v%d ?n<+w=szO?_@%H_7d,+hETdu:o'25@W42~NeH 6Gv KCfNSb(C_Ȯ^x*!<6/p.2ew vu"0+AhDyઌ&G40g0yͮ1/&R_X %K'Yi@q vD2,<#$¬p%0( |*{l4lbNwQDMsV)I.=c02܆\[M@TnFbYIB]l\2gnuĜ/̴#h5 3tkU9`cpg}C)ki!*)/mD:J-@s[{@# sbT)82]#}G+E YGꈀѓM:;.г~S?Hf*2V9zC e^OQ?up N$Ü6)zg׆u \C"H9Oti>_¬JccDZ"+-ir$oT=~(*Y[ ]0(h0}TI!FO1yrW *A@#^3݈9:VFŪT:zE"淘Z͂s^Ĩ3O]XE< rmG6YT;x!*.X b$Aҩ_EVTJDA|?7kCo\uN[*9CE4RgS1e5a^Oum݈9􁨠P5V(OH3`f417G#BgZՑT7I`u‹Y2Uw'>^/P/|1/frHec.'( s?XW}JVі& @qW7-F1ց&9G(Y>Ea~rXT3\F3>\֎C!_֊˅h*}v8>x!ϭ2׳908EI'Brh5Bqo04^V =\0_>ݺSH$>EpRE,ٳjYO]5%nU䦮d2 ;'N8 v-+,u dP_Ø!v$8 έѴb=: c[S)&u/k3 ({;dDWt΀:E ͹Qy!98nˆPO(d8|P.|sat4-~=t2A˄4Ra8{wވň[  D.'f&p6 .뚄gA8TA.NPiռ@$,!D[ˣ2!g?#]Ab0[ΑKDj!p}U;uce5U; ȯw6`hS̱`ҲBjfSۧ7n$mdgٯ/fbN߅'DKY ޯ2?6W,7tZ r [ʹ ~k0A g>ѰnmΒMW: 5Yh֣<=iΖ:V5szw8A-kՏ endstream endobj 2901 0 obj << /Length1 1448 /Length2 6925 /Length3 0 /Length 7908 /Filter /FlateDecode >> stream xڍt4ֶ=Am݈ a Fa&z=1D'D^ D!zo=Y{_ܻ\7T"ma $-("jJ@1! PvrPp$B? TQ00X;]$ HʊHQ P_H,@ tZH̝[ꃂ;Ddd~]`(803 >+F {yy ]܅({>0P0(W= OeBci`, X`/iu @DH @.`a;A:Bho2;#`O0l59R6U;wE Ý(+ *@O Am3Y' `G@~p6A<`j`!ҿ1{ 0o>0?W+[n=a4J""(ҿca;|` rO!^P$o6z`h Su**HoNAQ @DT\ =3>W]5vHO6+cϿrLe- 7ɭ@#oEH <y5h"koS3؟ՅA.DǒYPD\(0> qC?ɯUs#`Hw_'lc%ð<$މJH(؇;z$evA0 !h [?"5f,Yή_(( vQ (" v-#- 79K6`0 "XrZ%>"O~j.*81G}z%('{^=rlSq;ߧZ:cAvЖ=mcܩ$[38RUdKP=8Q7ޒ(B{)t&yݦy kk{[2[Etwdo.qmyK[4ѫr`n֎ -o\O7Yĉ*M _xdRjP>0d W-Hnc$2w̎pH"al-,r@ItHMzf_568A2G<əX3o6cO)E9W@,a3ϻxAd'M"i޹=/dMx~a؛h ᬬH[iK]YQ+~PƴXڴem\tx=㠑͉ _^UwTknydc[x^TOP;j|!w F?/p3|-Z,zzx.J!El8 iI^3h)\<ۍex.5TySFM"}~SϿ-L|o"R%ӤUZvFS7e:NCB{JZ()Cb,)?@q,"T˧.146E E?cA-^쯿Le^ؽ[(#E-/eo8-d8b͑:rLB3%сf \%yy[Nɝח99·K7[bbSLI`ӮLw ƈX"P~z~)./*vO}:J16$&)SKGq׉=w󩉯`,П*G }AްP`&JM܉^r=t0d6B&注ۻuLjGzHw()[Ҳ֧4rACo碿VѾV&uw+iU7W+xJg+w DMkNi ^_ q-% n}l1lNBd—~n> Si27qK {qîY?hu&O}/caQ;;S'Z z{#zVmJ+cLˬ.]q9,ƟYo \x@ ({Q+A$6(ސ [vmZփVu{>:/4^|Rh0@9n?1N7,AޝI+-coAZlǞ)_XE]Ͻ-`*31B>n!!u}wm&$ ,J铬nڬNh±(D#6kVCNVt* ;{xk8@1dyz(w]Tp=C'KǓ:լs'ibmwx[Rz=-mH>;T4aV}kFC Y'@XCt D.ӑ%GHas'rz?ƣgyNodH hUrF cTۧӅU@~/N.O߆O>6} y~)vIA后7z#x2g3ɝK@=sqmXnMWvN7VYb.Knz%?sމ)ر[ ZfF{9-˼~>2: ~~oUL_*nOpӏ3.߶qTIyf w r'JWxVsq:mloKT`Ϲ΁˸X=AMɖۗ/-a%oK߯p!;8iMڟ1O8t0x#MhD]Ahyfsco_# ggJGP[6}\V(h&+bXR;|\A#c4P_Fo\x?agH ;O+E,%DX&rʝ~1BG#JjoUNї=TWHӳNũIVW@DVZw9i\JZ `jh̶.Ŵ@D`Wu/Cia Ho1c?ULPTLPaLU4%w N[~?IYt #AgPϒs)xZ̪떿j.gӡTg]zGSv{$d*NcI>fi~W8ߒ_֦ibNln&xoD4T˂1)Ĕl쒉;> g#2!v+ʭw;V4uK(B"Do6;iڟҦ wIM̩ DZ˰W ugg4OUr{[~/N' &v<}9"29rGn]w)oSg _CeS]Tlc??=I%߶m-b2+K(2a.81q}QEn{,!LOl&˞{7i$<%"Fmzl= "]G㹑<ZxgQ|1R0h}ȋd%gA.@!.c1 9:󬽇zxvfѴmIhc> P enZyÚ9Rr%M!{fpr][j%1}I'(Nz$\٧m?9{!gϘqs+fۨtkEU=mƶCn?_H)=a*{cI!^:+bCPW-bWqU<<_6:1EL$(kBZ9=kNV?'jm^׵?2{B3Stb-Y燿^U$VE ) WEcHGxyՅT*4;usI6ZڐѼS h Zݫ! ui¥0ɀQ!"̩ޞ[@XtjуrR2mE;mR3זppO[̚6u]65 ^>aD{m y`1ܭl*vmE2u)V6n%eI@0U4C~~!Ϯ&=fށ\9+'; u]LjE7XKz[^-E{]Em'KVg)\{EmnB22y63[Ep+b2TmRvYTTu >tgwnZ ^}qE:4h`P=<4j]Н|? {0IlS{e޿6)g'4_7cG^'7ŏ54Yó16d)QҍQc"'q9)BC7OWzC^$6h5PIPlF j[y8X Dt\di_\(}' W#FzC'D+WvP)w<5UybxH,,oopѓwx_9sG;=uhD&HJ.h Z1IƼ&w_pQ_~cChS6x5) zԁe([lOX^5 k*ܺCQlrDǥYS} ` VkK$0륖[=hGFe2ďKU>igX*axuw1ӠF̩q 0 IyKWz8_x6_† ›ghۘs?Ǹv@%T#,zA M YaC]qKʢ/4=O7K;yd(&'KǨly|;~{"Sf7U?ћƩ +ODM nϮ{!t |F%Hm1po3dg2wە31&N4 l]D*V64:)o؅|z^y)'=[grÀo|رQ fkobU5<oj"&ez%:&},P̍2ma3 XA\VPeXj6j^v!]%NVt(:P zVçq۪N׫=kfu£ב/3CrA+u+7hr|!ƍogTKg2Z w +-PSjyͅfMj~FALk)n lmFn\0?gVuv>U{=Km4u5 f 2-'@Dz ff>HMP~oWr+hY)e͐NHks)nq8[_3jC98ԻϜEN^5*R|[L,h̹8lWR<#g(I|l|V6 /;yg_޳ m('"TuhEFy,G: ꜰJS_>ٗt<նعĩ7pW] ~.^Aې3_|ae䝝WyX9% E2ԞSxYy1,ﶿ5g̚Z洂me|==7rr #unT/|H /&Rm84 @ (*~T͘ Tq/ƐJb-xb^@i/f(o|TCB?7"y!m} 1}"4 _tqҌfb;8eU+3 EYD_*4'} -h?BJGSX_6$AP0LΓbR 󏋌{үQЊp2)}BWWim{WhE)m/3 PKeX'^[ݜ&i#`PsxdyqiKcc6sF5kǂvKUz nU\U0MuLַo%cc>&cOVm1 O-RxYbqrn=$TI߶8Ʒm<ַ.>ڪQ%}&>nu.kj+Ԉ)ch*r {e&v[wfd5i%)O^!՟y(R[nh*Y^ w6Z.uRͬ:eN!BP[I$V7yHaun8i63qDA endstream endobj 2903 0 obj << /Length1 2011 /Length2 14434 /Length3 0 /Length 15673 /Filter /FlateDecode >> stream xڍP[-L`!hpep 0Cpw w #{ս5U3{{RB9EZ~##- (--```c``#%U2sm#U;Xs+@nw|H8YL +'?6!}g3#4@G*hcfofb<( )@6?~+5@Zd%@ _)(Mm9]\\lMx(i.fd`HJfm]Aw!dm/Pڂ +tG"3?6Vnf&c3K@VDՑomG;_YR=O~y{`hof@`fGyeak#A++AFZX۸X{ ͬ(ɖ^ $.wȻ  @Wra~`^ 8;d;w2(r-/sIk?ߺ qMַ2t;k'@}w*诩9Yo$[w3-/+HˮǬYYl\Y >`{cwx6? z!lmhc1ޏ<jrt6{^c{?@/ ؀z^ Az vF?=?}u ,ADoik=? 9A,;_ g/.2|k/?._]?ꭜU;?]߻N._Po/~: 73UQp|/_G_/.O_ldo?]?Ͽd8gch^z_ÏB3 uzH;V'<$Y& 1Zخ'hpc%7!0{0qK4 ,Yl& kdҧHI^׳BV"&*YS!ˡr`Pi<{*&`+R+,E&H.ޥi}`hp+O$YkWZe9svQ( t.&ܠ`^3Lgbh50#LĶBSߔ&p#!CSwPCۖ-Ğ%>Ut99^*Cn׬ NeSW'VK7=|ܒ18N]QNQfr%0*_BP涰8Ʉ)CؗJ@Tq8|*egaG 6BlZO' riYE&.⑙s%?#RcjCƼ~ ^Sw375CV9ZŒhw lC$'b.dQvtc뾕&u.=j|0۠ݓx ׽4UћHn.Qqf{8}mHѾ?8b9+bT-=Eis@7f}F}qכ4_#lh&dnĥ3cuUlvHMs>~qUX&0I"\=Gۄ֏$ǙdnE F~ul<QIھa!4DMƖ8gr!AZ{,{Գ:k27tY$c:oZ0K5­8ƗrȰCvMN< $Cٜ'#L Ԧ>0Vl23J64ZGCbzN;Gs!nWD4S-̓nw2vqc(ͧ9@X$3֕MB*vH{hJeT^puQ}~荤y jψW yZJŪ?t ߙT>դ{UoeԘ`풤(Ѣs芨sZmߍ=uhfbq6y}*ݾ.7B>Z,pZiv}!Fa\GႭ% *@|)o,fXFA U,Zi'# w"cGe E@em}P+?u5'oB 6p%fKsW{E{1aˋ2H,׈C|vfrRሠ>37$u'I$gClpx=_<K⭧UbU2"ۥj/. ͽ=~-b^'s''38nTyR._z}j n/鼺= b,1a1&I䝅UpճOpI9_.Vߤ a{6{[ۀ:/՟gq1=ʹՑхd iI bDv!j< BnxDo+Ow\( d{@F3+ʖc5] hƫ oό0*ࣖVJ:u30LrVTL+N6I q5F0Xȓu.y"n;T]/3xܬ"~Υq1,"*6-'⡱mUlI7h!lC8JR,jByЄ7~9֨M9O|_Brve)| 'pqrz(yRv? YZeV%3(RۼR.6@ɒz>@W$Q\_uT* 0N2kǰI$\ k\A3+T`.e# |+>ËoP ,5xY^, tAL{ ʨNEF+'("K3t0>5JB<D'{1fQGj7mQxpM^#Ctc1]Xy7a[I0Ks 1 ygQSeXkwe>̭af~IÁ&F,'VE`K}+nFu))D2!~GKXFqkA/e\W`}ü?Yvd'(0?Oآ||չm'+5rNd"^0d 8o# 'vXn%t{ȶ@XAi^+5ܸgT;+*ZK>apE|dt>lS.sSǤt E+J~o%EK`XwQنI>RsRΟ4!F%`6Pֿ؉`&p&[g?cE'?fe$yɟP[ep Wm"DYBu.+ֿ[@nGn&]HX]ӑ!F |G8~-L~m=$G?96Rҵa\sI2D]vNu[yW!D-3H!ONhqYGSk*@VtA\840+gǃt6V{]WS7'$j1ıε [@YZ ]u°_R>?$W!:v?|.X/q"9fUa\W43FdqPh82Ӆw~&M]i23iǝ >[™J Evǩ$F^5iڹ poNoiQ&f|2='3xIXH눦YAqqT܉ eA;H-A'rkՂK-'}b0,ЎpS/mgg&J||A(]U>lfCjŋ뉎dоfSy--*]v#9jX16'.ϺrITI 朐){EO`U4QG9*T_EꈂCF̖w5gR` No]cQIu\{= 4~Ќ^?*T/5B#"V2I O6ZDv閦w~;M!vOEqSlL7)ѯ wsnui]ҡLi93}q^BIR߇q+"Sh 3cy>R`5ǽ/>t-UǬ9%;dsRΓmt̅5dZ2݇] ;Yp9116/lKOG:hQk>Ls*^'_ sǧIQ?0ӷtj_o*l3YEP{,Z-x t\i[N5&TVI@jƷh=PQ5Fڗef<uh\~!y禊z'TñmAV䙇YNazS2CDLdgk)D3ՕD9{m#0ˑe3{Tg^x6xTKXxE@eFf|t[Z„kTu]:a3^L*撉;W:ǙJt+1uA 1Jj(TI#:GoQ(uA”e I:SX!\/r6/pgY~[}e0$5p} 0>Ljc0 Bʓa|!F~M lpVz1y ռ;#LӒbKF{\z 3.FdEuK PHzҖK4b7ʦʼnGw^ RGj?>TCY˄;xu((ws{F<[߉>O/A bt\۠l.jne=+AR7̣>HRkªMEBsMLSB5-d,*0poĥ#S_nzմYt_lX%tic3MIjNXyѫ[yY( bSDZYDaΘEذVl`:V$߽uj'EnC8U`#cxC= Wh}e+r#_,OV-gue` %4q~Ջ=ˈbz^SǏ[gr2Bo4<]Z27f3pm$ W~?f 'wQGwιRPO#HX,Fr_(pCcw|h,Dð&u"MF~Lj$(W|5g=qF2j]in-X-|RhmHpXk*[f1˷j.hROʙ8N8YJTmcgGB#n)ݛiy&ITMy6gSuIPf'xEj*LJF.K-ݥzSjp"ѳ]ɽ/* /Č9Jo"BY\ I<:T&fcf]}0J8;bxN | n++{._fPSMɓѯ%>/Dƶ(4c+jFi$&Uii&|H P%SQКU'5dF&3X'dŧ0,J'b$OjZ#H~~I/7զt<Iƿ}Y\s֦:Δ'b@I8ЧcckW_WӖF׹!蓼r?=@<87DzӳXu&-n8A3ZM\3 ?0k>j V< rboWYy|u3g.X4ic NrO/ż3C<7xFm@RAra0{{!>RNl;uhVcQDQ#^7J3ï]AΈr&2 =bo%iUJa 1ޮg#N;?N“z~,^DL#ypn?HLHVl(%cBaғ1蛛ˎ{(O_C*9Nd:Pgl=ӌVQ,-ˢY+uS%l֛"2gZMx0`>%e%"χQx\?%_YIOyubG-aߝ6EL\P38sUz0#:zqW (#&Vc /R0N x.*٤ܜhЮ;>V/x^jD䪐9f')@~ΰ| uw"1NlA&pG3( 16VlM()Ma!䕵&1NP{N^c1պF5w0ۄmzU .͞1e C|_ek:KN4i(C:z~J[VY~\vgږ_-?y'[}dhٛEɬ(:%(A˽ڝҭo`A/~J&}=Jy~If72c ghYTz*YM0S#Wv+Cٶ(?FLߩd!XY3K;*~m>RW/5׳gnc1&֨%3q̥WNm !@e- |{œj p[lFR!Ú&mz/9kGa]֯Juh Ŏ}K (ۑ> +D3BQ_"OV5z ,Z)BlPpIݔqM#ԃaCш2se#XYAc,U4#/:v-ŚGcѣyg{aeK+-CӞdLb#LC*=XYˢCoOfG|#ph]4UsQ:2O]!& vM 폣G@H L8y׼?,ְ. CƲw# ift›]Fp6n Mr'M L)#xϵUjyMA혐l.aױM= /{.hU+%=-P$_!c s26rd-PL_`f7^|¦yh8MbC3ZJ,`crWBl$kkl52tk܎f(:أ5Q ʧ2-Vv/-KԒg4`57@~@X"XoHt B|ŖзZ6ۜ1zz&SI$ 1\D.ܧY(<so!L1DP>KA(еC6~'Aׂdm6Hkh& zZC#UZZsJ?:,N@aVfv.c)W+i4;Z$:j,%8{ŗra zVK51ucmeSՔHMDp⟫xF[Z=z^㐅{ q:ʶ?{rKY-DPD |u^hI@+v֘mCSx"Nx7v􋐯]X uROMxhM Ƴg-$d@0YlUY1g/WZ,/:pDApk[}U 1񋔖a9e)MͰM,ff F9nGB 1nhyBJƓK}ƄMy8-]qc'LoԖxJʆ޾ہGm6%0UB'DK),}ce٭HY_9xߺsǗRTSMhG!ZrX͕ަZc8`np76ɶЄJ,qVv#?/6o7ҫ,8pk fa~%v~POsI#-BUR) 0L]Q1x$` \|C>WDx<9-95h3;uWjI6v4.*K16_\5BF+nei4zO r;\Kc43!ho u`jw~̗0}:C3mP5q2Co]?9l2~D[Г=Elmdֆ՜N/m0NM*RDt ݹ06n8gV>p%C]D+cU- a-"1gMKBceޑʼpa9Ox&'C" W+Z7bS 7:H*lF }}t7 Qfpx2`sAȢ:<ݡSe:ؓC)}GxAF2u+䕣F^jS@ԇmB9xڱAhyY%pqv2d.G& *&eΞ/ISY.p'`F<>dX zk xwSkR (I  Kttv` BϚZ+u+EBsbxaBw_B]/&QԘC&t |}xhBvgj`MVi -!$[p;]Xr ª~%41=j1UJ~w+L.Ͳ堂)ݢ@h߄ɤ~OLK\NUe&vW@ Lzk}a-yE5qs\7->#m_q\  K' AZDHvGbzDyH'|Cv vk;ʖ(WFb*$(N/lǯ>EI^n-W=uqI-uޗg-AwOᘰ4RVɄj,= \~{ߴʿ#EO2Hтkp0ȍY[li␗ҶW%k\z[߁,CD>۳|)Yv:]8K"B,v9\# w\G^Mt9]+3+ <x/h5E$B]L IyJC{ g2 Bq\hw!U;͂Q+`~%kOLNa1Ed&ørԬޱwg<]m 31;zzM3)zpΐѵ|V+;Mu XP9DG^l[e[xTf~pMz蝲; *W-gGZb~tp硱}dy݊GGu9Bi=@c`2~&F I+㼰D=cIlk5B(@^\)&:tҪZ#ҐqYXw,Pge&NfV++2b*c'nfmv=Vg6G|q'{k{12G፸o1f{9t9],G@ې|PX3zfllY L D*4jGd(SC:_oz0{}J ]-6q5Hvxgj2F ?37'!K=Z'@tqjIb gxfJDV1eR:,qltRZ͂ʙ[$i94Uo3VUʜ wgH3$,;7#֊N\Ԗ̌j=O~e%bToc&U\f1iխHzor8oEM/D}3~E8mF;gnK'_Ž~yeo'3URQ7,غ^$.o0Ƣ `IYSeFPL5$mhⵍt{Wv=M68ket,Ðh>yQ5TIG/=Bq&VtF`[<#Tsv.~>3"i[|"rGƫwu잒~3wAC6;u[ZɘIHW]8},33̟zYҒtp 1yokj8壆U=mk쿤u/Ft~#S g"IlX5 s Kͤ5%Oh+׉(9gb5qi<7EDE:ܳ`'cyPKLD4G.3jq."`*bfh XqǞofrnE;A6;ވ2F&+MӘv',PUԶ$+7GAtx!6k%e"MV <!n}" {-y"Fu3v=(MUh rvy&{gg7[č.{ /BZ ub4ԫN&Zگ' 64%D'/X͘7'e _bT_[t#f1hw}9H"l* mqBlT{ '/>4أN舼iȆ?=;jdNw Jj@Yz0 7[oLi"m( de|XWf oFAr^ .R/Hha\rT}"X6lH*!M؟u8\(b|ijRL=lف^H#9W6un&*璙dcWP-k^`~^!8#8)e%c`#mԺ 鞺#OkmkB#ܢ0+0wE#O2%ޙ }Le:TPx(l1l tD~ BE&%#s :< 9e_))s5<\`T›|WqeS>svpyg!_ULbVJ% y}$]tv E2%LyWyH\7K( t͜tnϳ^9j"޹lhO( :^dDis]5e( ȺtU8.o4Qx3Q#: W唄H`5oTG,\LEgPJf_c!2jx IBN!m)$,Qyշ_ancY:G2zA|%k (dI~#\vOa<7xӑ_tfE 5!+0*!tdT @F:#C:R&y)0~#j33ę gkԶیzjm2l~{7L.w:~U@a! endstream endobj 2905 0 obj << /Length1 1347 /Length2 5921 /Length3 0 /Length 6837 /Filter /FlateDecode >> stream xڍwuTTm> " ͡Cb f`h)PTFiiTRBABѧu:{_}?72 c= Y@UWWK @ 1aH遂m 6cݑ@TpN!u1h' `IY,@21XY@ ⅄ Nέq"=p:|P~,##%PvcPЅx8]p`" '*+"- qq`o#`wc0WӀWo܀#1 8O4 pc-@@v0pz Dv@WvH h/ C H];P6 lEz #Qwh*p'U .W:1hE Cj*rtk ©9= (w>PG_)L|]῍_j\~WkDqr?wzo `H`w@S8 `>@0} A|Ϳz۪%)!߁ ? _-4HQ/O$cap|$^3+N.I  .H}==p-f?XM[eB`qaz3@z@z;n{<~ ǿدE X,ė7D$q) "x\\%51Q)@&Wh'{ɿC'>aœQfZڱs@fb*ثͣQo_8ӁmgMT6# Rp]nj'9uy(t[\Ӕ-=.q!B^ZZ AXrfc[Z\J[,k?{D%:& iLW]2H2jF[OB‚{ KWO:}hWP9BX=oPޭN$ɊEoؒ_茙Ϊ`u,S= v6 dmV[vMx-:&za5>}$ٞtG$brr%< 1ZS14Ѝܯ"Lte{;I߷6fn,=Hu#Ց)c+}fw-`;@$b g~!̆g]@ Z5%u'=|mƊxvfPWbN] oݠn.ڡU 6%u13V}ze6wdg }/ 4g0l}No޹HliL Sjbq{#$o꘥ζΞqWS} {*v??+?XZKZRg^i\<]ΞYx..9Wng60ϰeŠAX@K3f*n3, ^Uus4hYNa}נ7p hj4z[6_ ^/f6+7 gW9nҊWqvsjW崛"~56RX+=q㜏nUϻxŮ%">Hدö"M7Hߢ}ю6z0}3oS,I +)"t8h>V6R7rYb {hĵ45lSӿ4-K4>cBQ},a`Bx *d_˔@VVd>+&sJ Js Q7%M9nw߰eΙ/t mpLv}CnDqo̧8,$HM|ȴG3@!x&~>@+d;3LX~oDX[ޝ<oмQe9~[F ɴjG--M'βK>wnKZ[>\- /YNw5xfN^^f4v#HtKϙJoL]j=чeRwt>ߚG$ %` ?>0:zDWOyhPGU_Fu% <6 "}aG E /}4DξVmU7/{z~j>s9{YeYp,[(W4Y/ '=ֶӊf5p&tq$`^K "`&byrv=5oSc\zf|B2,럤mЪgi0>շmO)8/ۿ|uC46͖ (c>+$a2-Tf= \xsF Lj~ju8Uk5=$[x9>DN~~gy AE`z9' =3-8iTAubwtj ]+c.O'e;tC6-7+96b5'=wm*+;g/{y҄&;#G*hs♹%vx9 ^Zb~ZﷷL"eNԄܝskሃ#Rϴ@~?;>~ڡ;{ܴiu巼J='c j-f?#őu~T=%H Ex6xvꅌ}4)*BoU' 7PjO!nYQ[sF<(κt{/^| /xCq6, ٵcx_MlX>C+OogzSgĬ7ҡ̫e<{j4UW"/~AZp-At*z۳(-Q܃ZZ z)b,2 L_*˽۝kj\^ \4UOsupy 'g=\F)˱ĞÆ}2 [b#]BLr?W Ngd?uO%Vo[di_p.q}"b,xbŵxa/=j܆Q|;S/|\K"v|5ȺN.? ?.ݢIsپM Onm )W>q䳹$,r0xV]F8ˣOjf7#9i7^dM=Mh68~p;][ ݵ ] M(#sM(7#xdlQ#wI§$+(^Bim[|>jGBrKmH8;vdnٔœ_-~>FyJN'Շu\{ER YxȲ7qw>'>W"Ђr`@[у/L I[Q@תDstiza۫ic!R(UએHqPqwуI$EV*8|H=9y2w ZD^9ϐ#8*D/I|dwphɔiIhlḵ` ߳ f[ k\3V/NW;y,a!SrfdƲJX9clݞh!|T=LϞ]%(TțP8}nh3G#f)~NB1!;+tId?ɸ8u]0R5ߘPV`\4E ԑvRTfH=+()^kmb&/TXƆϟvB:RNJTnA7DMyB9V ob {t/ O3S٧(7KOlЂya6s+&l40T~x]XݱҐx& @6GBC~CdVWsv"ut_@c> 6[GҖ{+fAZL$w>'XH0HHU^< a|Ĺ#csgȥZi!pI۵D2<~EgP4l L叐g™2zdg|%&L~Vc$lT fz˾paM|3;Y[M &K=ՔKxk$I̵FkFm۲AG8/%=q0b?4\6 yv>[Io|6*:|UbZk/deKrKUWE Ҧ`o|Vw@f־m@YȰBʜoXkOɼt ^e!I]-H~/\Umn^mETlY#<84jd+\֌;MPNe;/$W{2}|8UbBÿݵR̺|csQ/Du<)T#hɋ4)ne pJr"#ӈ.ˁ=VG/ݽq8$ya/%w-p+H'Ӧ{؋]i&@; ]E ]vԋb:5"8HH0k=k'!gj!t\Cg1,'EBNScݕ O s(Qщ-_)cT+lozR_S%*8:dkq2?KcHӇ_@LaٙzRĸ𓫫|Zi>it1&uK/s+S -M+' !fROFAĖ^ڛ{9UV?$cǢcPt h,vXÇiX>J n6NU J`c?GSic;ZEq/+=/X>o 6Ҵ bc~HU4=ZQ:;0RL;4џ*6z?G,3w~DVWj[w]; 2Eq>#E2v%ʷV^7 K/>~ Uҗ[s?bħE:w5tR O'Dڕ v{-3sh3"\DN P&{E=/]aWxM1 ѹ#Srʽ޻ч'G.ߒ] \"q:ݫg ֡`j7yW^VCgPsSv2Ҧ4t+}GTtR 8>Cmo_I IJWYQӱQTP/k7n\RnZ5> O\Yd'Z%^1> stream xڌP\i.: @A!Cp 58UUyZBUE(mvf`eH(sٹX9hh4AH4@G'+;@cgLbdȻ\^>vv';;9 $]Jy;0 F ~~>b@G+Sc0@h hj hؙZ=^^͍։Bfl P:]fmWƊDдr[agf@ +S 6: r{ ocſ olljjgko [̭@@"33ld7v5@ bn SC <'SG+{g'V'+~tY l&agk ;;!'i4݃۹V`3Eسi\r@DH2 3 tM-~-Teog02B!y9Ύ.@?EH3+Sg "!hc߿O efyȃè[C_9o6c`7dj!ga7p?_.;m7!i/5_ dh]! dY6J@3+s6,o܁fVΦOr[U휬~V,_:j@^NKlSJM~'/ r!!.Hy>s;G'`-ğMI8 r6~VؤE|6gAT2ƶϮ|}F\6g `F VA*=#[g!@hD _ɩ T+HijR3T W4EOMK }ɫ R3~ uB*{ ~8 ƦaWdlkY߯ Rg/͝\4R926Yp6sN~3-NH5fV@G27>mfvΐr3 a\'dU؀![y H=rJc oL9os;?A ,!C`d|nrK{K  F쐺!@@ȹQyqCP!ݰ{&qRqs#qCXCf!8"qx3?7>{;'$7T<(N@[+oDuzqnH˜@N|ٜ-tхt.@!!dvB2z!gw\:.Crr##t"ؙ yzI؍ek$͖N*׼c$+KR ^Mu/CZ~yƫo ͍v"hn{?8xk6A M5ƭKƽlq(dfKmWl%Z+J?x&$kޙ}j+g\> 0*gr&S;!5[RKqZ/dyY¥9&BT% ]Όj+HpCgס{7?6:RVFb;~5_n0N!Y}LZ7vxsXaIio)!p`ԋXZ MyQ< Ӯ`^pMzu8X+z;W/:Hy>z?U:9 rzīd-ВK(3>7C#vVKOa$n}@xPpUyi[x̚&9N*i2b0Eӝ&TG :6ۋݘ$i 畺BIv~ liSBX^2loH$NyG 9;1A18A/jDi)f7W^GE3UXX4qy$[4χXaOvjB#;#)F_8KҞZlOn2[~rӧ ~B#sT{^1*UpvxpIH:˘X|HɊHW6ޏc]Y ADre7WX_ a. σ:}T="G̍`SuM >>MV{K建M,Z*- v>J}.JJ%wF/rW/;@m4Rdb lBexlvmM q˖%.2 St%1zO͞Q~XrU@9mXqm8%E+Bܓ'Xxxm-ѽemYmp7pEz#o0{/>Vj>]}E0'?.9Y&5&{e"B]rɮ{j ~y[AXUkb"\6Pƅ-8:6UªjU YagHEk׫ҫw 7&RjĀAUY &eӃkj|څC'<' 0g|lOw1eyeAʒ_#di, ^PyXi3!ĭ11אD<ڝݭ:( <#!n: I6w W]b9\Hgzݛ֗9\*˲PFY58M>0K D$C5ݔidL|nX2HAoߟJH#E)GA =V|uPq!Sэ ֩_^&UB(X{/rW-qDNk}3ȏ,rZm(4F%έ> A(:nX Om)NC~-JaNFiwlEFeQj?%}'f,[k 23W2 *ѠѬUnVF`RO9s,̸ӽ>u~#A) U@֒;<:TjF~&:.7LٮWE8 3.Ԣ/?8M IxɢH5;ґ*IWO l2L~|)VCX4.ʅnr]?Q\YjNHv{:vJs~~˘z.D+cBB< Umv|0}j5˸UT78Ft6woFݫ;/L#%Ak5U9!"S0筗o)^N"%/XSDBےFx38&d'>WHJ~!!eyTjX/,F՝_6#K:E ]lJ. 5Y}r=䑴#S2{aN>z'6/jhzU믆eթІzT1XFY)TR7 U7};p58%PãT\ }s;دuAj|.:$}e3joeWwЇ *[YuI~΁q1 /KPo8)`QD'G0g`hP+mDiDA<)/Kyu|#]75W ]S4ý_O"Udc oD ֌ů7[BYH'a)&^hSOJ,t:41?ӈ=tY,#TC1բXzшJZeL'b>rRׇ`ӨzqJkˊE7]ehqON{9#Q[mWoZƅP&MLeԤw%DOn &dy zZ6NJWt1\*/ovN`:bJ^^ F/T/]$9c1077[MGLݴے:Sr[k{[n4SC[тLog y`;q/ˍ( 7\!9Rn]z/1[/#\> CR݈:^zn[)/+?b˧}Dˋi[PTv0#Z5HmydVpΫ#r{qھ_' FFyD][z pgJM̃[xmG=_9~no1lR'q=/u!6Nދ["_6ro.K3aןF~1a:,Nc_hd_Ck_%F }qbJJ;1/+Tker5k.f8"AbHH(u筟4 3nc[cC]'\eT7z[ ΢(\@]9Qak!KM0ټ'5ꑶwJstb Lj>>]ds>/"('[&F5?6I_=\L%’" !{$Qe]xԺRԸLݩcȹ5ʬM0i_ <g:jNS|0ING;P-,W 1iA fe:ljrgSc"Gs';O/5t,`h\ՙh6ol]dՄa0x1B vy`F{(;&}Q}X}ꔫuB˜Q,a{GtVw$ݛ2Z3riw  O3ʱMSz"pi-xwٔ4/T])` {xUyPuj10%jfMUTfҡ0I4IV/v[m,fn ;8'KqN;P߼lڶI̩2gkZ{LZcWH޶<^PӺa6Fŷ.B7\z|U0H9PjA.\?u>h2B GM6\:33nE%>y5=c''wU"7OEnBsF%| h冝(qƠRy9jFh]"Yxхp7s_=HXAjEuU,Om\_Qhwx`A_ f4I]C1w4w^m1hzF4|{ztJ^mt N, 9p>Kf [C!F%:wZa:)yV!//7l+L3Bqp<(yd\ũmҀcϷx5ySk 1@9(ӿ~n-Tt'@>U*w|\M)ˬƃ}Rz1P^f]SimqVEKAU9j ȋ/bbJzh8?&xᒚ;b^EZ~mR#'^29c*4JR= P9JYsxdieb}/|p1FBv:4WbZN!H&'1pZKC%L%U*pi3 aYV?#?i`)%Ng2Ůz9)}p8ճRt Peq=C=[)CB@;BN mޙtP^#.,hV|YXwmb&)lV[4pڜgj>1m3CjffY{"nk[^GSm˕}(srВO7JZl*a4S~ NTQ|a|xWrdQ.Ɗ.#\䲲u)‹EC}"윶Sp[Znd1. xOK:=71I*-yu][ÚejEt[XFz+E!g8/mXOS}+vN3V+L~]vk9&[sR ztKD{˳G-;l$Ea_}ITɈ@YI̩6ߥғ.[Q$6L*P~hi!Lp|#/ԯ%N\}T0CV\le٢aw^h GtMMsE&-~OጻK{"&9.;kPg k೵ʃehm\^Q&ocxG>/nȨpQ`[U`H9TMDhcy} /ObnR)ewpDdѴ n#/j>4UN0H1M.g2E]WOkd<&"IqE-Hs{DzCR 9^Gnmvm_e=с'`3Pu]mYQ'"ۤKٝ+H/)ªۋx80r(\q6ӏޖ.B(n&3"fU*~V8wWvEIcVNd&B#}&IKΛUhaeo2ezZzE2x? S XX]vjYF79a@ƯA讵X>cTBܫnMv<8sCߖdƀ;Ѹ0X1hŸa%K桑29hA{E?h+KZKEWdPTwvþY¸-(!bu踤WѸg:33_<?vGVgwtq5weO(ÿMQ'"C[:Uwc}PKcOQYt b(ͲuʂFlm#'9zZX37U [[BјKkĺ7-fQ[kCA*ݟÕ'x^&(snmg$Y,ק#B6'ZzF1k‡mQ#g=d"#K#-G`SWgiT}"EhWA xV Jjlmx.Q&Z7 aZ! lۍM;nLqQM֧\o&X0׷3aAq)DI_ J6}#~*cV*qW@PEP{kP7ѫJYP_Džkt]ַ정6scaE ߹ө9J'tש1?5Ap6FgF-`';zm 3kM{&vaAe{wgYh pUKh(aPPc{&$F2F: ѱG8ywI}йA/Q[dh^C)S- ʳz~*g*tF/m8ErgL[uy$aQoiRMֆN|Z *Be>fșʇ<-vwz,0oC%jTfL0{O2eM//,p;" ] C^UL~pWS> ˭x W+~ߴ g DfW /YL`SܩHʭ920>,[S{L%D$t-8Je*Tv+M =\di nҵN1 0zCJPȭ '3:qW憴b1(|iFnVKXTۤO'>TkX?X)~dgV|eMzR,&yly}}ɱP`aF|U[08꫁.vm؋y`[Ê"0^=|>= @DzY֜ oB`UيXl۔1Ӎ`NwF4W>\/ңw&!>⠲;!058uEGI'yQ 6 !4?Q5]C%O|C l!MB$XJBY4o!=4KFd mR甄U>y*LhL^X86}L_} nlH,?B esu.'gkxTZ✆e]3ktN]PFP:hk'R,~(*h*u"d3Mp6wsbօ ;ߩtQ|R]ʃL?'a1{FHlkqK\ѕ׾Z 9H2l~ܼfD2d-l]$ge JAf9ǩMG.F.ЄabIoGo ]J ߷ݨKYEAt.ޘ+m]heEjI{nfB-  [rlzCV'&*L/^ m .KYGC~pZroj'cIWz;cu$ A ӂW q0Ε9x%~cZakid ~A'M1on㔷.Zn7=k$'64LqD74R_Ůc2>Z n|ƍ[_-ǭ~ =/"$VUUw]J^Rt2q-n[?ڠ8}Ф?ubߞ/fɾHx˸ʿ_JG]*cΘ w{z&-9ŮtdpI LimrBZ|pϬ7PXX@<*{M[Kv^I0BYl+:Oct(rЫ"^!VKV!Y_hK*z_Y=.s)mQ+@Ԙ*IH9-ӕV| Vc &%LcV v G'X'x@RIWT{k r+P(0i|lT${ 3bdX9Vg 1{U_Kkax&v^;r@!ZPD+jZ7F->rBz26o$/.^ϗdFIEYU-T~`kג*keC%A0G~)M#4i~=8aO8Xm?Lf%(-wq0-\q2.X\ex Ztbp~Df?ϛ=N$U|7ݠK.pכfj^f.ʷܣk b+9x?-ve(L$oh2DvԘ[cK#cWbDny^*p|3^9҄Z)nN{lzL3 6_s$6unԹsG2G}`I6%Aځ`\n,8Ѡd"IK+)jwv}(E>严",,-Ce|y+N$'ƿwGE Gfz3Q?ؽ%,vEGfCR@`[:-2˽[Z>6b_M,؀ HxhZwӦ`yԅƯXG5*GdH :twLTX-Vޝ(@/^:0!k%xN5nX)׳WoIM*YNTҋdmpoPA4:gUҪ# ~^IQj\o/{qo Uh^Wchfn.me k`vBۼ^/EQ !S5sև!}>\NmG ^ c9Qx6OpA2%g7l#&M.Sz4ATš zK{Ef!'sRicMO/ H[etDŮuBDN"WIq|ir-wAs/g7rFHEso6CENd~ r^4^ädTRVIqe!2:x)˹. ~rLL 'l&X@VѾu]<_F$k(>X}ż鉽}vGu޿u݃t,'\]e9\ \DhT1>)ź 䋯._VwY30)S]?&xTl}K (Lfm); Go`x3bCM; w+t5|PrZ\#8^]m7YxϏũь 0ޟmC&9M=cȘ#օ. ,-O!5^|\wT͇ Ua ?}nyN1КPPFѪY\Y~ױ6"btHT*@gYMϽnh/-?5EDX>"]ye؊oJ0WqILy~~XY^j9UJVوzwk|9q %lV8$_7K #r[9Ō?B=Ue~_(SuNV{@7:}WzSb~J[Zr 0Rc|6ɞaÿ* QupdeΣ|5&OC' t8c-0wn B3֜}44o[Gt}W:C?6/w[q.˻G9| ϓOm><+Bi%*hf5&%V`p@L[U]:/0ϝX*ư,'lk\Y`ޡir6 Q{2.0 .|mMH`2k}M@]CYd:2)='>ҽI̞LSvu4^fO*͒QN]\$+4VG<2 EUs 'J*t9Q iA AʌDEf9#X+՟")_|<6/LCfR.܋G5X^ȩa4nû`X73x$n|sX C*OʑRKM¯_!O/>u>" ՟Zl R ': IAm%2{\b|F1d%5r^8>s"G+_﹄3,j8k+ŠD۱V|L[bxDtDIaW#\vOE:Wg9t_ϸU k LqB],Ib(q2OIم_8{գBzOC.Vj%'6j>XUy>M.B5><|#1rO!H5SY܏ir3%4hAWIK9H Oآ#{.~p6h^!葹5K/ _(3rRY8F2$TuѪͪ5ʾwc^(@Q }|Ph xmѧ5#NЋǒcdWzYRVmZ셥?I,ZESr2BVczOF&}2ɿ f8^8xRͦG:5,kJcC\%7>GGJ09T#b١ɰw7UKe\!glS<1p#)|SD|݃pݏ8Ek"!LHصA%M^Pp@'b3%M*0/)IO#xV/#hL m ))x,+D]=жx rGMG΋KpK oi}vܠI)N& PҞ oG'9~U!-- Q2/!qU˨K3zn+$].:Vf4מ^s>/'ه-$RY Z?-Bx~?`u[kUcJA*Bp]'pp!9X9M!ɡwBKYU/^7w¸k$e!Q4(4m nf8[+͒C#ת,qŸJM6ے%Uu!kq4[@]Bq5>@CA L wE%\C Bb!G!8US6@{*; cӍDŽTľ Uo\B{A͔0߄1/#ZZNV =dW7%f1nמ}D*E;t\xw%`=\'`)G8h-nEI~Lcz#@-frkƅ :^j",olN,UWJ\|Е́yDq¡\QwK6&ܦ7q:e`F/5ݚ"d柴qxցiuST?d$(UM JSpW&)9ڡ} Gy7``oR/ӻ(ot6:f68S,"2d0W`xi.pa#?E N/"cjLsޫ sSTVN* V\rWJ9Qd}HRh h"d;RLwL|>X|ߎ&a # 155ro1d''cV_ kXm$DR.g*v0)iڣ 'BO}(uDXho^ufr "M{R 65~̡TXaABrc`[{U"wRpui?矆ߺR Ҳy r";+eװ4 5z4{j{{z$Q"(ԩaD̰/;&GLܫ*I4 q9 adf**/mF_ދbܝj U΋;ew kh)6z*:W\N֬G]<2A˘hY PP ?Dj.iGxe~7L=KO3+sIF<Źc}#( #beּ~n}t %?F*@+3ۮD2pq`4t/8U>Tz]co<x$XhcU#~쾍D'AFCʾ}X_$_%zR0 ԤoH$WXLd2p/*ن蒙5E^xn}+p KN z:<~Rc;}eAߪY8$-HCdQ셄# DN4סRw8 A jF)cLB$TW `{o9 ?K`O~u jzFخ&<xQ62L!w3)ŠtJ,7_kRmZ w< ;mmC^Pz!]n٥D;轌#rJ~ IVh:V)&[+ǚi9* 4z#qhWk OjjIGm@X11 s6a\VQVdfh1Œ7t>Z6[MA*]Ąc(_XS`61s1aT4$kZ]ZbH%q;b*TڧO-8Vsxb૖*GNt <ZMÞq*Y1w:h:ō5i:䁏Rg q4T%7Zq 8t3k>S/j5T6ٛ(`PYWw"MD[eܨ`-)AܧbMFlݎCDcvRoBergkʝ۸N=D(|m۳.á@X#շ75)G9")~QJ^C)5qܖji+7̛|(S*(¥s;NݨM{pKGԟZbX?l^y^(YtV?ҜST ;ޓ_:~afQcBDA\`Iܷx~T f]io&QϽhpp]7u^66Uo0֔np ~:~u+xŜW~-PO +(ැ.7kmP~ф)cMص4Ӱ^V}twɓ I1TY1}ڲAp$G%ģp(!x&_2| #{5瞥۪cҌMn@E8Wv_1(gd萘Wwe q7)銙ǸPZj-9+'ZǪ{,֩+vZ'ԋ9 alzzȃ q[ai}sv*K>"MW8m)^s+~pD2~%!-E1 e9OŠӠZ )F j >R g#="4 2lC||F{CgI͠TyIx @f7 NJ[qY^m-Pzd +cUz=CHiATAf'N̴t6VWD38U1KUQ45׉J a]Ӡs;+հi֛O);˻x[}d-[b(gQ?~\Lib?O׊&qidW}xutK'.F #SYT%|庙,x=Op[z)PXq{3h5F)+i@Ɇor(zRZag+ޖ\6N03Mƺ?FI<w31Ǎ0{2c½y@P Up[?V$b@^g@\7fH{@GYzL"Sށb+y페Ȧ/ZֈL8pS铲{S9n/|E+Ʌ!w7d[[lD-v^$GnىUJZ^ub>},Ɲtꭅh#v̾֎Ï:R8 ~'^NٖSN+~O ᚟y՗8 &/6or9)3}g]Z;_,t" 5W]wR,jgVZL:RIsy*.bCՔ_oXb7D;trwo!!=  Z#_o?+ u)CYGGɪ.i S"! Opg!e vuEn`dxF][sYzvjJ3iK)W=SrLjIhx[ MzFz{ F Cġ p*)& \*lo!_ {"K`*rIE |e^ui-Wk0;- TKܼ}ENM[¬ԟ3M `veN {Y @~`JABDwJ&;l Hה}""Ťٰ.֠K؀U#4PEHG6*~ɓlh>'FpEZt1`hIިkF0||p3!0^OGZNR^%X(&i&Z0z+r0Ofz[1@|H2dGD|\/lH40|F@XW$i, K I7{50(DI* .],?Vc`eUD1 UҦV)\-rwک[^+//=ܒLty32" #xM, H0BD5` mve)rIm(vT}<9ω3 cC.6IHM *?rs%@!`k\DM 4mMVS,ߘ '@yWrח14^9OGM^"yB3գ~4vDP;lt%Q pM"i[M@Y 0Kov mc[aOpQM@=J#~# \Zw?:*mWc64Viͼ3+|N(Y<0YN0R8oQOD4_ &*ϖYwO0&ØSaaapřA8d m!8kw]t~ ,x2cڪYhyLc!Kb:qW$/j|N$ r(˯))R[>0 N_wT] 5:K^'~Xи :Ȩ+jX' ٘s+6FcPv*+Gͺm{5Rg_/K כS9'iEAH+VT>ׁr,~'G'oj( \]x](MGT-)#"Jl5 Zfk({Vff:)^+ըdo kƌ՞#$mr*]’_f^ D ̈L11,My'Jv]/9RY c3[tYoa_,kmںnT2LxA^;fK#+LtUO(.Z1%+򃓼T2onYn;ϟ7ҎFxhnJ鐝9Y%:)jK煯g{Efpk&6LI8]j_ơjXC 5*|?,TjLΰf> A:+%V0v?6G۠J5:"^DH{9ŚIP`Ê>E(HeYłDǫg} g'fE'ZZHaAXGY;S9|{0B$B ,,O([\& H1 !ܲ$@3Zq3DAR.Cぞ08TvcƜ04ؼrY2l:'` 4[4ʸǬ rSſPW}.zQ7.D?^~ adnHvE'Ӭa>Ҫkb8I.cBrh4E]Fr*.F#|G #|Hk02>7>1N}03*8TDt:O*R6e7tA}(@!cKBAEt宊1t:f^i&p['{;u$w[vKU^WL9hwj084 Y!ZTѣG: P ̐׻f3H=oԓadN&n'y0:k[}t/lي4O)0aQѐC8%5jȂgV_)O˰괭9Ls:N7T5-=D,2?M;g0^^ٞ{5_YE ͊_wۉlɠOy51#$O &%*QnPj5).+Cٙ[/uaۋZAcM'z`԰ZSp2"Vۨ^% zuyz ѲjQvV Έ]>~g̣)\[Lm!¸ hlljGnezMtD/nIʙ nj 6=Jn?sLk_J_N:o]j@:lW&[OHcG%'jr>! .Tkxn'\:|%,z]M"csOH7ٯ-Q4FGw;삵Qi}AH 7(ۨ5c} 7:ĄpSdnŶa-cC^ϝmt\!uCx%x3Z-,LS냷9bR:+n?9͎y0kHwfp>@'^gDz,2U( :18|M­-]\^dh}8: qe.|&E@&ǚfI^hNF nZH@R;ǔzj;SQ! $ ݀q'7J]VmEAPJ@J9B(M)bNa6HH~3qR20-928~EKQ4+R'8(̃op/ xJ/KF"ӍstD _K 7Q' D|7})uO3ڑ 2sIWz$@1hZ!;EzS ȄLNQ?pF@yU{XeU1mrgZɔnJ K$P Ȭ0itwky`|>S*I}m0 8yq_A5'79啔AtÖ;Yć1]B/KwAw;xmw-X^wxRLhՌF[sx\e+$П5_z0%YȹUH>u8x5, _T-/_{ _ǗaUàAV&~vhe}4\,vcW8DONaںݼJG1z>;7yuuUۉL뫝p /3( "8ԥM4p{5]%tB; fZwʇw 'W V1c@ԍ%{"ɗ*8 .tci%.-}qw2~ysA=]j07x W AeWN_ wѡ$uwa(0 slb(p.[*yݱƱwGܱwޗً\`ڸ GBjysqz7ϡ3C剻}o]!x;'y)C H(z5[M<>}W⭘'gCnBMFUyu ܲ:EO#U%]u} )c޵./S?EAWN\>{ P VNiS0czaSGNJvl|MЊIR&iYtyW&9-98% ZrCݨq*ɕtOrPx/@ux^wDXZidbyoGN?zYz^yOV-vvQEvkhp;[3~\', r;= 22Yp<|znR|ɐg'rz6kY# BdySqi>+-;-@Ӻ#)oZ'9m1ĀB(Yt&.F"s@^JX3 3 9!!rAđMYWXY(Vl,78io$d4Q%`]efzy>\`CNQáR{7)*; l=hCzMRno}ߡ=y8)ڥ5Bұթ)&N*wAXޓE# PqW˄PPABa^Ƅ!jkJqZLmЭsJA׻$J$'>4;PP \GP{t#!K~N ?H<>3`T,-=bcY-;~hloR}(eBG߉b`#i [fUapB6x!8yDuA6㗮Iڠv4Ez  v9jfxkz"):١;~5CG0UyH+]Zzi'f 8nc#y`Zuj\UKMvAF?.9oS>> &ݰ& q)O:=kigU$w$i ^jug[ .$lG,1Úb1aIl9zFƟT$3Dl?=sƼ/tΖ CL/C7-]}?z䪍{_-`:r&RGΆ,n0VnD@h-vTW% gk:md?_巉~鞜hels s8bRL6t~5cHcUc~ֳ QP6?ufu%30C30]]lgIڟ o4m=plPH8 D f0.HOm(iƉ` +E}p/:4{ݒ+wN _*YQK_?87w Vxv># ٤KԪzkчrVoVdgRUaY@yIE&ҔV) sZJ ^B陙54;܋T2紫vEu¼n]p_/7B6֤a[9Ɏ)]h x"X1X:}D4M/Vfz,uuiQ)y!, b#_ ;?$#BB6tWʝ$A}_Ijdv2͋ͽciG-x,Jd|<Ӄ_C>+JP)IrMx{G;^a s1 e4[#` <1s+!|RIs(Q-:B;1@q鱒YMDސ;_V*ˊ g7-yTZxumap endstream endobj 2909 0 obj << /Length1 1466 /Length2 7411 /Length3 0 /Length 8407 /Filter /FlateDecode >> stream xڍwTZ.݂HH 0tw7R 3tIwI !R"%etHH;?߽kݻfֳx޽0s¬0((P<@ ?3c6 0+ ĝNsӂAH'OXODbq w-@`.^pl6>119g0b@ݍ6 '>Fx Mp9\v_A߅1  n0;) 6`]j it\?Κ7_ѿ   N`&Am9`w w d};q@Y1tW_չ!.77ӯ y5Y jsvCnxS6w]=VG(l*k"jyܩك! ("*6 \|w\vw% v<7;#~>o ` A(?wjnp' xG<>laP'W[Q[QMwan~ _ X5 'ٻ.'ab c,́B@/o2鷕!N^Dq_ vv5YW--V5nN7 B6Gok P. Ape*ǻG펏M໥JPp݈$!ڂ=3!Bw`p_xu~Kb"^݄x碌on8i(( cW6H8nȿ 0l7?yVr^-ȃ{}Djy8gyI^ ?K_ETvg;?},͍Ƚ6v5zބڦΜ%'9R|]86xJXt;0ysu4'䃜[:DNg}‡Ҧ? rNsd^;o}<*FINڬ\L%}]ڍK' r$RQ>YDaMJOtgucn{[IP!#.t$PG?~'}b-NЍSs߄c,:xSh f]U]҃ᄽx\kۋQMD aĦ"M:*ITN5_\'g%hS^ڿ'mnnNϩD'] VqHe#8D %B3ݦ5 ))U] L6O+&|36<*u‘I*X,ЀC&~^WVoK\X >,,^MR=22l Gnd[K(*Β*3'yI݄C?7M KU]yvQ&A+H45vT>ȴzgxA]i:k5'' `:'5%2~{>B󌴖hD56!܈ؑ~7d[OvnE9o˨wPF%Fi%uoQJM瓥4bLIm,qR91$C|D_yh"9f$fnz(@O~x /:4yո_}>Z-Tn!Vah8ݠ\K[P}G3(8^h'yZp0Gs4*8E&+\4=?x'ȜziaXMb:EzsQbs>Pg^wiϞخAՠK?h?ۥh}DJvH9F H]v«9P̙)pZ0%bBzr6 v*"ڜJ&B*u[lQv\%'ІADE3{X~w]n]!OX[{m0$N5K(5)d|ӸF;}r=!o|v {%ƍs!wV*y5u- 3"4|R|ԅ6 iDe]|>,ͶDK% ?E(`#0U{c3_quFKM?c|:FNj<(ߪa2-iF^$UgkAmR/܂Wܽū _,EϋF o 5G ͵9{nHLd_U>74?guae C49?;1lϝ`Uɰ,$7%\.SINNNϗ&0j27n3}. ÄUJGedh (hiƴ2_F/7Rj@:HVur6q1K.:&ڷsQ@VzjRӯlܓ-iK~ȯ5X|/e|7ܾ89?tfaf2\A-kÝ0 +% kTVjc%$;0 T=s\/*׳>;wy&hܻ;uWuAj|{<)aZTdqXi|4=MhPq (uV,D\4zPd+N"Il5՞*vs^Z.. ߻.ŠޕZTߺE6LC>G`:HͨTh'BP٬8.xx Bu@ ?obIr֚}9.D?J|5 8E{3ؘb^5q ݽul>@׋ңxl5'ɥC8ku|P-_+9AO/te@]KV8XnEA ƣ" _xxR.;GG ?YD#)K6kbW)k b{jWB8U_sp]gF.9t0wj۪"T=j30y3w|R FmXu0G|=DE%~"偎4mOEIڇ&9ϑ mp3S⯡.2 b (P?02YJ׉qn#OnFmT½Frv+.<`q\f敃-HiY il$"ebLj3Pj&oIǟjK( EhNp)Ly6PJ!RSi&=x>|l7~'htka \VA֘׏tEJfZ#]i f 8EPpj#k(딉*+k(ٺ2$_nwY=J:&꘷Iq/JnUQZ&(]&QDT#.\(X{FXFBy}ãROtAA'I?h* $?L Fڗ#Fn擮{)L,Daa/%?.gHl \{bdiŰ=wQDi_=fl~Y|߾հ凃2=%~%1é5~rEj|Y,ݽwlȦރ!: q돢S@ػ nRM2$B)䍭 ob\k ! LhQB j_ Sa ϟZo<2wLrA۹%,s6ʼYQE 3r.nQ1;!o{ 9G7i70B8^L0K=fuaˏ^Xlz8kޑrw7* 7>mR.=NVs^,`(s3?t^;LB 1;|$ HxgBB &\ 9YYXtbdM鹬Gg NAuBlֆ(.wQEse˕B *!5+S!F'~qQl; %:Fnqq&Qt\9{דd'2qH|NPa*=1rz=ZѧYK52udgƇrzZ< q.59<ԕ U]i{W %dkaV|ykĊT6V})6jc3 ΄ f| hq\Ny@2VpĻdSYXBLpdN O52#G<f\YRVƼ͍MZWEžG` .( Yf0 NoQ( [Wlس]l\E:=$6|rMޏ]ueߞ4pl=L_'Z76pO๏('DiB0mREzxh{Iq̈}boi%=IM8lUa,uO3HNF7k_sdAgOs kh(o r=e,nkg"5ǥAthaO;uF E >ׇϚzރ`OrƻAG+ 8OrRq|Dd^ g$QeQ"}PwSAs1˕.tEQe%lBѸq.LIh?ީ0foY7S_bq+TY>alJ.3 F% oU A?ky(kԥgj:s=%{VDSu5|5X(ýe+SwM2l8ɝI]N[ZZ OCU*~E EReelGmc/,XT%?'~$@%?g[<[߿x)]p߈ER\(!|6 Lݚ?ū zn-/sD gP4Σʊ<9<>YKO"7 j־L0 ?Vh)gN U'ha̞qx^V"L@rTPKޠ԰`V ] $4_,@۬ 4}T.Ǐ}x(4ڍm[ lNK`u[yY?6:ߍQel8pBg}ҏXiLn5ZE{߳%m5d  58 PWsb5 b٩#'"{hurXQ$~Ylwe6-f(EpDP c/=~U)I[=&F+$aFu9Y21cq*i"<<*ڻ[%tԔ9byjdd-0l=xB6skT8wDO97`?Ob#'mODY>بOm9xxv uˁGu4أ'V{jFĊBR5GSd>nX8%,V|mHgƺ)Ӳo5p! zݟ(XC4lked:W50(ٟ?ԇ&~I]̒L>[P3?&ά%Μ+!WQ< `y>q<Ѿ~*ZHg~ F58ǘ.8b-e86H4p4"=23Ye!9<8X1N|P RR1͔5Op %K8Os@Hg~_+:tUrq3yl?JVn"})}jΊNWC+\3ƨYߛK75HgTgV]7;n#s::$REk81= 0o̲82$ < ?ɗ\ЮEjDԵiĵ;Q?yj# cF'mu);|SJym&بh\9L95&+YF93ۛQؾf,[Ds|,j@F!b'fM>! :8Pr ֻ Z/G`AeǹsY |T&D=LP{;+)e:|R߼so~FhsHZwoHn0۫ '&WH=L5sĒxD# v*\5՞;~[T>I)$J2KO&ũz)tLS&s! S"ְa C}iz$&g1,$˝@6s4>&s#}7A3K/i7jJ+GX ~H8x$!Ϝ=-.3 !) 9qVJ/}3G`?1&Gi?oʧ?eS"==$]c2dw ~ .G#IzG endstream endobj 2911 0 obj << /Length1 2062 /Length2 14075 /Length3 0 /Length 15339 /Filter /FlateDecode >> stream xڍP[ tpwܝN @[e/j}ZսJRuFQ G3#+ @\Q†@Ia#E8:K/4u{I)::AVv++7  ]6E&R=<hi D.6ES7k{FsS@BX913{zz2ڻ29X 2KSJ:;Z]l\SSo#~G_5z=f&Gw{yKGΓ,`Ef ,_>SRYb0AI$GQZ.Q#Af"wK?=(<f?蝹r;Z W /|*?gߺ;mYYx|KGw}7|gn/~ 6lAtz/N5;_ 8X#u_qt+;U=+绋齃r_n.5띢zlc{{|.x0wwy/}mKu{3{K.(97\nESH܈,4F&=='M!,N L62j8iAwQ;b{I{5Wr#>WN3jR1a\x`|x#KG?e/d{Y`sƣ%;L[^2>1e :SRw9mDE9G %*d_FÑ{*%̕A9M]bwe5ՐſC%=(7 ë[C{.X*COI2re]@2|4^**O)o be] ڊ `T Rq̕Ԉ|%հN,0GGHåQNevو߱AA@H&,bR)jN3V7;lb愢: xԷ"E '~eAHF&R,V\0]`2uG})γ`a4haɽ;T:ma ?q_z0\+rO免EрckeI48I%rknuG"WlGlJ@HtZŧ_ૂ呷Zyf#hkbw 7bG Pk-X DZUB,8f[i2UJ&AVR7GY(NZ`Mc| cr)V qBb|$ 8]gL: h= XN8-E-f 虲`o<;y,j.BW["~q@(3aUx~sm; YHQɊF6 BxU]DsTLiZS&^#2ʗ%:+vǷ1Vgn9=W_5/~OY}j侻":;o1-1kpkQZ d#yي6W0Y}.׌pu^Wb䇑޶=ZN<ٙ#tJǶ窸,ejVii#yhl4r!#W~KS=p9es9Xv!XW@B|r!^zF3v^{n܅_+cױ |M n渨KT6SiRYlB z蕓 E'gJ(2?RׁսBldM R;c~hLL,w'_bySОNyf\%l )X x:;.nّAɸՠ&ԾIbMzdO%Bܥw̧h7Yb*,_NrLX2( Ig얅,lYCP Kt4~fOq,F1.5̱䳗Bkgtt0aH28$pLqA =@,~.L'~e!%$֊/J|bJp`un>܊K*{Ʌ?"JٗZ w@MFD|$^>JqE3// /m _E mE-yuj=]4c@hy1JáY NaϚIbrGQ} HW_uh\/@D+)#B0Nǭm&.[ev֯%NaF X}}$1Y+^N-A׻^Ix=x\B.؏> 710U_=lxƮoF;/@gC؞Ǜ2hvp3K^?ii\u ǫdp k*-b[^aO0 T/b1Mzv\ d#>)#T*jE%W@qFR4;°9bnMDyrnʰN]\M%(ⷺR f!|-5ԽLO? ~mEC7o֛?5P c-GW\"jJ7 V!cAį4CvZ ySۭP۳$HɄؙ.DSqW=ZQ0%sM ?XY /h %K*Qr;Ns[lzO'4id܂( `*c)mB ]#ɯjg4aǩj;AWveKW]'=m}Ɓ91v˭v쁕+Hs'`9Q0=6Hً̺ @6#3UE_tqFs7HXY_/)*¦EW{疀Z.h=nrz6oʁZa!{3޾QJMCf3^0$ 6#3bOrt\><>[QCۃ늄|*58X2|yPLS9L\~>8b~߸!Q&(⡛Vwz=|UE *Zeeb a%Prߚ9h"F v4uI`]7zZ7?!"Q4ΘAe/nEt_6xO]TiÏx/Sn"χ%Y&8Cm?E߶HsO0TCHjJy. MN]L~ɏ֚Q*bpRH^F}I.$\GR8QB\c0/;BODD|<>m&|hHJSTjLRnԒ\ 6{}qAB u6K ¯5B33 nU*U,ۡd/b ,} AjT;O1C5$ /dtBcb&ūkp'=<^{LFmV\u~y1xghVzL:oP+OfS`#+eqWT׭) (%JV8}[$o'++! `"G=;AЧ_FYzT-Y6ۢSy Rh> Xޣ$nE(I5BR'jtLj1: Y 6nڎ3Rx2\pG23ef ;üWp=5ѡaFOa]&Ț9. 5x EVVA.1-߆)UnPm)|Ie݈8)$m[l^;D* q%<9v1"<'fLjDlUk X8Xm^:qHCraӍAi};uX.AZLQsOd;~:(:oxa'v!E]rAW΀~Ǘ 6+t$tܳRMgC8|3`c ָC}V7LEn,,h|<>W4^ԁ6$#\76E]NE%oJ) JmZ=+X4rӘvY>45=<';pͦ#qx'xgk9MxS%dY :L[mtV: Y8,3'[tm; a}Yg"]ϳ[UlցzizlIgVWz'pɚ!VpӀ:=jǪQ&$diJF0^|,-f?-~8j3s̗3[P;VJ7ac<8U:Oۼ. 4!OlT:U|em7:Y%h͐,$6˕.m沿064' Uwz򆍧 3+UŜ\]ڱrѸ}C' SarVU{{@5dꇷFlKC{! }+!K' iT‰!#nH/9L05vE.!taW~CMǡ ЮϒCboQldR95 otbGk u -ۼ(_789Sbү]'am+);{]>w%C Ey{'s%d]/[v^*IC77`Z2htcA'uT*Q)lNV6a "e:IJ1`U(L&@0=kxOq HO0ŪdWZWQq-ާ,8e&L$MhxW-IRXӘȝ- sa}iު[ݗZi/w%e @o(ӡI#X-[{ O;\3/bM?GrbkyA3ǽZ֎jޡk}z"ԍg"|NyGpm&clpxT"cJn!1u7=]+z|| }@?␪b߼  "=O4ĵ/9n|vxx=*oHU_?^GXLeE>őZ^4)_Ir- ӯxg1(]k+uk q lZD9 >( ־ ?pXsJUxϧeֽ,q2L=UHe.aov OjF+w VS=d8j8՗a&NtLbGV:ttCWW>:Vuf͓M]H7/c8G7|˶CnH/oƊH_WW+ܥ&/ kbR8L|aGi]6N:֗t N 3;Ksꛈ~0RŶ p iVK(X42fP]dkEO-ֹ,6MXBmIo?L[ah_z8(v%Rb/B}0r4ӹb}o꽗q<"\|VEJ.ݨk ڒt.PVG~y5C(0wd=1k`` @xCe<4$enל՗-NE:$`28w=x|rcS4߼7'\%L'+b~~&cײ \lQJ5la3CVtOS׍rMןbCxSXBo?,N#s.`"~a辘 R'DNwDxSX=_cx˛i*czү㝄S*xv3@VQh 8"Mw] f~ g00ݛ gvǂVì,)y;BH`o^ Pi}pe:\̬<3D*_jE G3Bm#U"_ӆ-  h;DZߦtUT ̽`{{n)\ܤL((0nfۋ mvk0("PI.[jcόe I6#C'9lr q?G$탗+N~0` ӘDqd )hc@F0U ӭBfœU3Lr/eFLjV\ёrwU&?(#%s$ C~L$#ȶLZ1?vUq*wZ(Z'_Hݳ~s@fKjHfь1> I*&1O#'kRd_>]imN!@%E iR F M+)v=?=&ZAq 1 PeVjc7XЮfk#Z hK{Y+: Ҥ|z|.lAysWþ=!J6+n[[me5"D0k=ws/WfsrL9xXxsglhU֖'`y 2ߙɥ~6;C&ɧaV { n,%ЙHtMIh$cH<7|ĉF9u.Uy3CcnAK\%\!i]D)L'.`GU " \EiPiܻ/%w_#i qr3':1$40@hhgr©M)8BvuZ*IbpOoMDGh|P\_*w@{C,y&k/V5Ԧ'Mbټ q.)StZVH,V@ȂuVHl(Ґ׏LuOU8, [ʬ.r %Y^^BKaó&Rf8D\0UA7s˧S.'=%.zv %5[s+WŲ ]-1d oR l>}H#]e|O–l̮ nӗD>=\f?ʬjӎ*`$]x(9s<Ӹ)/ڋ|${S0BZ0X hRX85{maZѦNKS2$6^;mDe++e)JS4'-Oq4ki.~U!jL s_B#Fh"L7˷Rߋ,Pˏo GCmkW1Z%1v;.9M]bR͌Vu׆뉙Zy\]7cemxZ0z砀j :L<*nꍨgH$!9EDf@F&v;.K$ES^:&r҇XH}\έrjwH}rhvCBRISkv7WM]" kRSE£ǖG(! oGՒY‚Y`.&cLF} 5{c${3i: Y0.7p _+R1NC|%V5EjA;՜oҝ`Z< &L #Y=qU{tjG{mtLb;)Ϛmt>[?Mhi2~md;Wk"<,1j `AAز(xWq1&Ͼ* *d_[H⁜nFDع2ⲱK_aF_ jG!X`U]M; FZ' -%`G(ݡ7M\aXӑun-7fodJ φ'o>ߊW}=r0VΣ,ͦʤ fv@lx*b/%cmduҥgTrf/#I /.UMvhUz.x 3~d='p1p)̠hZ!54B^ ˘U/^.N(j0пޢD"$\ZD^pU"[7fd . /d ><6?5< WjpNP-I!H P*f>4jr-f0LmP#~jƢI7OF9`|}(7Qذy6e!ȝNR/:1 ^RFgo~Vh|}PtS_Kr,ZzJ-tqqPZdO5_G+x íދԏj~ReHi{|M]bO5/we3 =?{5&CBd cfPb<#p5nZ|A g-^v_MQ5_F"D o-{5z wo!ܣ-wy#[l4&IXC*k|Ô4UmQ[VHؑQC`{:]lλXUvaFu; Jbh_%>4O*U<׬鱮PZ,9Fx8 Vuk芷LOϲ1uyM5\wΕ'2/#9ᾥI9 C]oֽ'q<{ocքhxE_|c5/k X$fKǧ\JoA2w\(WIYLƯ,'PU>uo3y)Uo47ԫ5e$cؖI@,2D#,Vϱ+ 6 oes1SYсJlV߈])IS۽_h3Yڽu,#2J5w@D?8=(;tSv=M'O=޸odhG+!{88QPnO+-T#?y0 Z^aM*Rۀ?aiô`#[;_]]s3}i[f{Db+03s>ͥŸXmXFJ5>\bܼJ!QqjEMM5'K<\ЂGw~Z&u0[8-3՝?}iV]ʆS6\\A`}f $/KY[0gX4BBs;x/Wk2=em O][fv>rDd†{XY̍I@{xCzW78O6R'z98o/kdTՅOp)^!Ғg浩 DŽv/$cXĺgpV$yR ޙ^0ofl:9>u\cc\x!<0=6d$'Mmv|kQuqa, !0jbB L TiPޞVoO4mXj׋'8sɮ3oxHҟpfL){)x `O5XqdS8DŽftŊ!2ڔC8R|."sY;ٍ(^#8w6Й "yhl1no_f*FXGzX{ ޏ23EIϼYkP#B>>/9tդzxʶ|EN5Ԑ!kbh6}!ܰ}4caEM_:UgvױF9uD÷ՇC؟^-s䃳fF^P2?(nSK*%Goj}<-2; -#j~Nj=p@biHI=] jI2iGEH1pit5T[Uѝw̛> ~޳2/kwoL$Vc}b` r'>ZxϯN:+Tݺ9Q|?3{c|S{~_AENLvQ-nkCN1_  |i$>οˢ0ǽ3k,ot̂}C/IPlN4c V.ө èe ]&U $2GRrm{}d`EzV="08 '8^TEy;]В1ʇ,!*WdѳF[`|BV}Ô+ek¢Շi10B2P NTv4V0@eǮZdO\I^ݍgz,V#= (ppبjwή[㒑[6㋳b2JL oDP9^"(xBtxy9wmL7rZ'5qiW[a^f.?'eӲ3ctvyM^1PgsQ j of06UZS/-Oʻ_CBt᪖"7ǻn6Jbi`:BWf=›u-H~C9&&X_ТeTVz#􎺞sˣ~9(^tQj?oVP2HZo5!&TY"3:r~f; k'9&D׾'K`ѺlF0&w.[Q^2 w eAp|KѱCtbJO 櫴BfW_@$}](BJ'|8+}!elB[&#e1 \%B Xn𶢵$ l$NqY ~궍$(j"R3~DDI@(=I%?$U,#x?j A'ГdsPޚӪ!Rnf96mZePprly򧞚b\da sY4I_ӥJDÛ{PkWoy\I1A~ "H{ };{;PBTc2E@X}ePAC^9MQ9kY|N3biB=q^A!U0rCT68&"> G-#O^r  )EV˪֥\ntZ&?:\ΊS);>Cы?8=v. ovmR8!"uOwc+(/cjDŽgV;@>mP}vϹe1:~H2c Uv^u0H>oBc&eY4C"ajg׷=z%xDtPnQ-lOkR-;u~;IR&ȯdHMۡaZgp)RTVgO'Z{}`jg%H.𴐓TT+chץ\mQ~_-CJUB 7"VvZP3*D>[L'+uj%5ܘL([ժ.q"=mk;MEdPT֥"xX)nxd95NWk48qCwc%'W}+.iBb#epq9@;OBM'Ƨ8|y_ߛYDPY]+"GQ"?g_qRp' Z(Ⱥi88{6P~ AckMBG> stream xڌPJ upwwwww5n! .-hp`sw{꽚^[Vݽw%:P `aagbaaC"Pj]\A|Mmna9w;+;?.| S@ tEwtvYY?K9-t=dnP4uڿhnjPw4ݼ3'+-f P]<(. a rǬhi@@w }o@ O?  tw7 ` ܼڹ:zLn U\]@NnL *d%,nOݛkuptgm r w'fM;PV?&?6+ ṱ"vd `^d |Au5\܁vo ̀V ?f?]@^}c,}zjj_`eap/7)?*X:X:x~J#?Oo.%h4 '6;_wW^?^S{C"nn3 `eCJ* 7sZ_fr8zP,,>U{?Rbz#_;0398X: u\fѿL . `x/Y򿈛,e v`wwP/a0Aj;ΩsjA:EA>?""wO_l/^3_]!__wVv{ldxߥ k|oKCMkw{rw~'szpZxANCb}_'^q!ǿ+g}b0Y{f7O%/~6yl|]!_e^/O #,/84u<ԋx2MRig2.tFM tME]ۑY!y=nkl6׎4=8Yr,4@OȨ!l ]ٝYƃgWձ=:.y3qsEfyd0nDpt^(swo$rI'q쥾z[l>lxxzDcTbr8kK^m$2Qr@j1} c]i0jAݔVLc2ev v[ azǝVM L`4C~_7{QAxiR<%3΋, 蘶:gC\ժms!^JaNKN.tOUg{h_>A v7*oAcϒT/o2\Pح}'}QIM0=JoZi+ lF&\A׭)GY͇ߞaܿ(^.3E> (`FAφ,ǗW{N1*_W.NKWlY4I{ZBhKv5N,.dx hɉHJP`CcQa)hKizXF;drʰuahe `Ez wwI3|E(=@DQ/-ǰ128z&rL&eXkYgNuh%d\ LjtJAoq@4<5[-@X @3Vp$BYShaO2>q|*!z=6D{ga"K]OpUGCm0cC Zx8^-:^i;gŗe#~w+HA.OGu0זOY=#[8jrjNw{4[>Ģq(GfƟ|EfN[,h5:yU9 7_Nϖ^zVkIWʽf8_Լ]3R)̘ODY?CaZV,odrΒ?m T,!bGuqIM~ǵ*8U ,?9daqo 鎔 kZ!\%/,LCyC;`ݏmּQdBsxD"c6_ѭ֜{h+@_9 ]7ȪFvװ?dwiZ۵<AKWLzKiTkuzQehj6Vk ge s.OdO;Dʤ'n.ZZM2v y#1I,A3ma;@(?1$]h9M/y-:;*VC|5r]G 2Mh..8?0H) ybڇ+mאּ#`J |B}/}_4G`iFV JmXTkҊI40 q.M|ZiLl1x4 #![3,9%qRօ]+ Jx(D/>Fԙ/qhΟQ"21}򋉡 %iWVwG #S߈}S\csTU ^IxD y7N璯3.6 5"aZ4Loȫx8dh5d'|mMW{㿙 ,'Ƹ  2 Yc=ȇ'0˔?ΎVw>-D~,Vن&b Ptr[A?-[UcXՙ?ɡ23:s3qg jSbg3둩`P7F>gCwmlYeaat\%|L=py-f,CV--nm?02*{(9JҺg}!D2/'>gSO!%6*ʷ6bqOG'_j=gʥCYzts~PZE~z\fhe f 4 D]{φX9b?.kxj|5,~R6΅'_:h,%k|u]`lhe0 uFӾHxrMȮ< =v^tX O(+ H#= U(Q#27iz\릉#0,cmTT-kq#*tKb!{ \_YYPrMOMvb " ].K{B'ڕObnבlc_knr~,J_5/Y`]0[ 벊Z h>.Y|q҈Qі>zbl)n5ɓ {)F'\mIU1z!i5/|#7@7rA>ɨsHҚ7!6Pw@jvޡĤ|}%7D!H?Q޾f8yK~Q_z6+6dmjn>lVbM#L }L>^}=!1o@uzdDGp W$<%6|1CYh7d;Z\m/‰؀EZAG5xhy kq2nBٰa(W3v7}Bgnj?%ɈU~#nef] _xVǑzT&@q8܌L9\^!2Rc_2g].QfzL3A7/c3m%dplhױnȤkMɸtjF1Z虱HZ(i"-X~%2 A6-J|@眠 _ S+sӕMvEg E 9dH9C 3 (!òclN]k.er9S7P̄75c6ۃ%aúǻ=obC؍}׀ܮvz/zaI-N;3pztN̲NT_}5' 0H@ ~}DƞTDo{.KFU!ݻN3ߴT{a! jv2|Z;?!{0y"Uխ\Da|^ 1͹IoqV8Sܾ9!ZtuOv;45@S(e\6 .@<!gdA"zb=r{s(9cm#W%mu|I}5"OHt9R=, 8 a526FOH 'i8f&"}$hyڷ$*aNhdxOJe&n؜G>a;l6wzxYim|TDnft֭OetzTѕhPz{%ZGrxGQuU-+?*V4|bzU.3$C^u#@-L[zOk'qPIZ(SwK ;E4 ERm$)`V1%Y<ٷ vY / b9$7sIP[ؚS|:Ք:l\j2w맹%nQOko ߎ [' :C2 mjy`RcOTߣ뒤V7 S{Qy=Y=HNCc/|.H$J1! }0O?2$V"X*N8,జ2Yfdz9ܚ;2ZsֹG|f_¹;7(w/{)xJ^ꏽ¥`V1tnjdF¶|D8P Q/ Q'=NG+I+>ʐy2!9Eo**Gk K'^W ntJ*ۉ^[nͶ2Q2?'YRj.-&A%C(JT`{D+2T7k0"k>QiZg% 9п\w}ŜuॵXꊭG^pG9cazě B yy0j> ߄/0oi<5U*/!26vHIue(K vT04huhLCJD>~\Rkui0S,u^0,F'[75pVLLH&2UnHBT6D@.C7wpX&)זM4Gh0ԨqOgZ-W:탕z W@NL<,)J_iR@mz#p/oQ6zPc`R\L(EzJJ!D;$ָX~$B31L4ۿfa#B9ڽE*6uIvW1<ŦE&]'3Uުi)p[PWy ĝP20]}pNA0xלg @q^m;ԲAtSf`U`soV~%rS &o|RaIaKT m^uG.ydn6TAVf6B)-*cӀjT:6|+JB+5d:ck>P}O2֠݌WKSn8E62љ?LPm'G(P% ll>U6{y}X 1#_kﺠFzhn Q h_h$(MY fcnꞗS*SEަǢN\Y~BtV9ܦP1|Ƭ'"({EZ_ YOH:J+:@[W0%-lo,_`=Gp%'o#@#Xu :R!{rplwsz~95܎m:MUY&ojٛ;{x8S ^2 y+cRRž.ծBTrٕNI27ztI[dQƟžyrDPx~\#)j_ʧPq%;p/O JL:sM}-Z8o_ ^;qID#<SL-?vMYp~*MwR%E5-5bB؞4e*sɰ)p6Ї&859P')8߸:ŖNRUAx9w.TxBEl)kcCG"Yʪ[:r^6jҫ*OƜb=y }_(w*+L-Y -_b$ >hgyY%lGsfa䢌M'jķF2hٟǑ#{$A%0_ch}$4ﺝROWdXSπۮA(f,IxZn]i3t-mG4c`ll- ?tC&'0VCYh V׈[xjR24uS ?6}Ț)CT'-QtMZAyh뼽O9$v)mEdOt@9J}ܢPsbH'`0W~f"zn ;Ydj=fJ>fMI)"RՓѯjQ)m%?]0R݄g#}|K! l$YvJ j$`ټT"TQVn3Γ e$M[׳Ǎ6lY~pcկ?LA,߲ێ?Ԫ,d93،e4g4"dۊ!|l%2Ŗ4J-c+viӃ ۂHF 4$Ƕ{$5CΌH|w}hbt?0Hl}v,um 0K*NefFj)Nghh-ؠG]@yTzRzCK[m$̧Q)lj-vO!#Ie$ju AN i:uWHY|N9N-q'Hm8;/1I+ωdj@PNJ^i{hʦE2r%sj8oLgJƬpɵ@~.3 ƞuG y˜優7`atp>l6J-4=^xEa'KڮP`aS.Tjy|AILWbQp߱}cWʫ{?}^%lf%$f3uZ/DDWk?'+.KKz1p(eJu?iI6(m\zY#Ӭ8VԚBiksk>xajYm6Q5 xJ0ǡE"ax[$Tzo`T,.+2!s cLunX`$ Q9c#,<7z/n3dė7G±!'8 KI=JWŰ ltCˢXB"$XqIҥjR~1A;^8kHY_c}>[^%] TB7Fy\ V̐N.+ȵ򖥮2tO 2hUr-u 0uo|S"gM:whAX\ Їa^ef60ʉD %2RK^*6P57=ABWwZOϚϯPwe%n04ΡY{(%r.3eq(`Y!g?j/uY]7 ~@;,TSRG@C^3 tJ[e@US;mB L!gf$sfq10%}_Q|ȁ2+oƬ8,]a4R)3DH5LԎ:<rYb:zÒtՐ*䈀 $U;Y_UiQ~;TeJmt5-iV+B>5b\2|t&ĴFz 4gqOv|fIjFϷ Vs1p`v j;j SvjfR0x2gtdVKrX'yR{lgjDީ݋ <(1%*i.woKxUZ!l0(oφ4jϺ`*' R%jV7H }YuǺzׂ6 805?er9tFFU8OZ{$gC6r :c7$XiQUid;׸ uJo"_c x1eJQ70'q@ļl+!u|E)BoGxơy-uaŁY"|tA暷YN÷#l$\-(s;|RԼX0O*<-0g!qfkTyFu&:2 [,}ZAi.9gK[u4mn!XLCQʇoW n??~7S$6E%^(n JBcT -qe>lLKJT4vHWbJ~[Z |# >k]z˕.*H51ͣcg[Ρ6ZvQ]ׄ]{k}j*sdӖRے,¿c7-Ӣc6{dg~K<2a:5GN~m2f͖O$ҡ0^9%uuT\KRioA"XlL۵4!nDvcc_lakV" Q>(/\P(QXO ^ʼnBL,|63C3)oࣃQ3(dgkڪu%R0"4;4s3Ɛ!LF@XTDγѮ33A Ow]41[fl_?ST۾PK|IUaؑY$rJ[}Kp+VB5̚t J4n9#e0l}ƮGPŐ\]˹=P|SX_yh 2\X hFNZ!ngCٛ@0lm Z>Ln*׎<"ÍdG\iHc: !hjZqKj˃Wp%9X',۩gi< &@1GZ~(35!/@+D9-Tg 咬sets:FOcw1)fŚKy?]|?FzH~(h/xg@jޮusu^zd*FSuƴ3{s<0uq`/1e xgYW[."xU3 %xUG|К?KN|׾<;_ѣY e2Gya[od}:; )dBy`S'l_58`yUCְ zYۘzŏ+W8-XB;~G=*u2餛'AU &ŭT@( TPq$ w osA9PZY`[K:J~ɵtVHP6z!ybO `=Wr4MViȖӲx5ߐ3`k`UZdCV"IehxI{i/o{ ɣ)GgԴ–:yԅ:'gV4Db_?^,Z88Xnt6b*WoU#̭4ŸZ%2S>NJu2 b@rަ&Ťe7UW3ߊ[YUkKrP:ˇx"2c>S+ _jx1)0^H }rȫ]EsuIwB`KȊf7[uV:B:sPû~rYChb f)19\~m$zm> O?᜘OHg5;!F M0yg)8Ѓ~D1gr&6BwZ[Ozsef~V$'R͔閅lm47KRE]H7L2NŦ2<"k2YnD)R_1FJby%j &|@or%iX#? Ě~Ыdv{xI`@xa"xw˷:6é(>I@wTSlv4c:@ǰa&EgTq5!v<}~uO+J8(T6p!ﻃ:LzNϏ`DBs |TQ*4P>=嗞'g~}kmX"`)S'zT{KCuO~&3LZXTƅ[ʸH̴ |7YCvq[x*~nxơt,/K xchqpG:\? f][%KIB+QXZ/KiS YPD %pyl:`d2Y'&qkWJNo v=POL]7Rǽb υ|{ojUaG/]=^COx:S$X'7;i4U+! nZ}6ptȼ^z4k7oNt ~bհFэ<~`p/ۙNi]˺~h+[ ~+ ?!&C)Jo$qrYq(d0}p8ϴ2``2`,2qPQQnj4K^tܵiyc궐 S3H.$AÖhJ p ?6U} ُi3HGh)v{ܞc,C)UJW8$/yx4|>> vY Mr$>m"ucl]P/^b}p ?O%ԏvR{7 ^,LQ{f<ԽLZE_|,T_6+ae̙#@˲ԭһ~:?Mp_PB"x'JyCY&5=E|.UN#MQu"9 'KG lYF2}YXL|s1֩ WLze'uӫ)(ѓD&LsklnN-m۹M, )Wa8K#= $"aTa?mļa8=KžQ׷NkF"f *oT9!F$Lo4MlTQc*J-JOJ>-ͻb:åteFO q|vݖHhOtP`qM'wU2Q:%U];io ۏ|^Γ3Afksz4lv*tW|q80hφ~ An vĥפ-lK40aLFX=,aT YL?+y~zfzM/Мdfi(.N^UwX%#LMިp'UU+ q>Ŀ] ,O ӷ)R%ÄaڣJC m+<[d+sZl9NA*xcޜ鳘]`yDϘ1:X,  Ѽ1hU|*V1LrGT;=JuƓɂ|0+hތllvz|(au`1 ލͩhWB6Q;};@K$BXXDn8!,"^71Q92 Tޠ:=>d82x.-!Yr=wO+r[@;->xP0\\mD9哐ykq7^OIc_V ~RPVNoVHΙxs.ɻWrP4?HnV)Pr-e@a[;&-lrh@D?Vi%~a?!>8yB1 I.JegTYE#Ѭnq^=nvpldA9 ]S|e=1h9sV޴co$A >I9{sism>nE.иB(?L>ׅG7 Cڦ$h?}ObZ`V-m#p4C6R {EVa6|UXhAQQ6ÏLE0{X@8 endstream endobj 2915 0 obj << /Length1 1584 /Length2 7387 /Length3 0 /Length 8418 /Filter /FlateDecode >> stream xڍwT].]"C7 ) 0 0CII7 RJI H![wZgyk׽fzm=nY; X Epzz|@(c33C.̆`8_`B<jUOOXODb< /@ 07_#a>l>11?`- !+ڂ\z0[l8/7pfxC]0* r]63@ˡGx<  ?xBz*-70`7/ٿ ?A0W7uC\-%u a /dA%Y¿z@p8Whڬ8)@<}p0o?U VQ;F@(Pv}ly-PC `P8b~xaA^`v[bf0zxP ;#SW65rr00_F{+Ujۇ6c%|K \0́B@ۇo/{GJ.. ? WD< ajkr5vO @ upl A:&k_w /x:?Q?L.3~!a |a>!RaؿTX+F^H /x~#~o$UX4o=F^Hk=pֳ<4?epg)N`-V"̩&Zʛ{u}a5:Ѥ'J#Q#7w9k 4ɲ *aʹ$Şe0aD$-zh?I Ռ5h&\S`rn* pҧR!esZcM虖_L ==U Fnc! r-qf _^ QxLA\>gO^6X˒Ǻ :NBFhkBm!eN1RT-esGhF-jJI%욤em+,!;GS2E. Ϯ'Er 1T^}GWHZ̟O_dyN'x×uLJtT!ZⰐЩτF,bFCE <|E@Խg45p7D}ƂO(~؞n4|M.R&[RmCZ]߿]jis,p)c4 ͣYL'PKPg[;fiu %J?V䌠Pt9Ȫz=;1Y+[ o 'Pg?um[+,toB pۓMag Kyc6lۧ|jUSG] *Ŵ9И˫sҚf_rnqϟ_>m`siD)\6mpc^ ֶr27gϩ '=vf:PDO zз QNuλo9]rۯ!!T^_fX6 gMDi2z{˜l;fOdaw̙in:Fja"g$uN2 188q ƔHH_*TwR>$,M)`%> J Cf0 OD8>|Bs~Sۣdl?2(b,~M{5}ʾyٶ;Jg ,;r\B% ̇3ygkӵ7Aӄ(Da9s4XEy $IqZí^T@ړƀTl?;|GR9!ptѩ(cQ?w(;܃yX^#4;L {fBp=۽AoT\9t7B3i1G_JS*ū.[9Spo2v}A ѵ|=Jssߢbb=-b7?+J;*CfO)Gl; +VH`[Wȉ ڨ)LD }x2Bs$YMSjL" 2oWWoT_;} #-έ}Nt\4WLX(qfcOpF74+Ǚr닃Ӂ_</f>ȃd%{F ;lf?bS10\8fOdgd1U#y9ӂQFU6Ҋ{ĈtXp}FǞ~BdCi$NbVP*Rοy +(NP8;ţ,ʴq%/VG8 *Bo\̛u&6&8B@ㅚ:m-0tT@Խd^%]shxУ@N⏉wxb^_X6/]OTڮO3Wm6%o-lfZGßcmהV؜%Xix eT,\5}ĭw'nWP‹61u&鲴֤ h{`N@jՍ%#E)}kq_`t<)T!C~>T% 0Jx%9{, `Tdf8V@/eڋpmnR&ـ\vPUEKU2Y}l0n2( ^:H%[-UμEHIdt؝hTo*Y@b9CIw㸛Dz T(''M\i/ނHTE ך^\`\4㴰A_*ݾlSMZ%sN0xc=YR%\Aݢ>N`'*PU}׮oD$Rȥ;1@hr4!A4)cx<@ޗ>B2aWq ! I>a]6iV:w0wMuz RPOK/w >̌Lr%m/xlrz4p摎=$S-p6#PrzrS8]{}xw[h _g{r`F6a~=,M&OFY0a}Vʳw{N)Hɻd ɠuHzm],i|DO9Ṳ('R~_{&9?Qy, ) T=SՂK[E &ۘ_ )&91uc#7>  ,5R+J)[oeϫ;ԦY%?[r`0ߕUϏw3(ӹOxI#'2LI%V6%Z^D}VqqJ|*̀d 0qt=} nS?  I5^GAɁ%wYݹޡָ q)7ےNSQeSU)Զ2;IڎCoWbn7:P$eI2c\G$"aʼnƆ]&wըWJ8墁~[5׌g*$^w)q犧/٪Zvx;&ۇ?\9*tFaubs[+Oyul$ 2#R8k޴VMڙk8qre(ttLJftX``8V,fc:cP6nbX1ѓҖanX_֡o Rqrp"*#;?zS]r̷pNznKލ%ɑQ:\QڋꖱXzG,LG/L7 E*U xK&_ bl/¼/7=pT#CPh_1{ 2iwJ*Vy'MEǎb݊]آ\TM+(a(n߬M^s[VWngP7 _!nyjAH`HM<'f @Qk(؟6.f<,|Q\B$1dtUG)_j1}HըBW2`v8F=2 i&6a*pE4rCT߲C-nݞ dT",#<bU4m Ut!hNq_"l>~tfVA!qyojXc"(F`W r{C=@5|@<g#xDPe>t.FݐзW&+[/CU4H d?]MY4/_=fn`9Ĵ0VN\%.;J~{."IӲoLSqH"Y.ޠU ԬW]6csUU2dxiAGMtY?Ú`{ A/HͳuxspRE35tB׹PQxy;e8V" `U%k[^St=SU7`޷y*{#.Jiw{06`^r~*>\9[#!v) tWb'룫vИ2J5ٸk _EM} ?:+!j:qj9CGxjLV1=vF0Mk3W^bGu!)e9?+3p4|pYe`ܝl|yRS{!}([f¢jAw\͍XbY#(ٙq${9z9PȒ 9 ^ˌe\}ۑAae]/QX8 >6>#?DqA)h^&Ul`꠩ E`S'8 ɱ6,^aX>C1wW3l|ґny̐NN-w$Zx MXХ@2u3)P6uEK4`S]w@3L0w}h,SXOzGD,tvÐ?dml%,6{ǟ[p<}lw5?ttMox9%h / #"{^՘޺̒i/ĀyyK<.v8_OyqkGiH& 8[u:EěL(;pN8+v/btJhj}@Y򛧒uu8q;Dt,hE| ^yaP& zM4_ѯgHdM;]?cc -\ɿJДߓ߫`S@*~^F}zeŷA#\Z`ƀˎp}Pu\r)8,•92ԮG)~\nnЕk4UԲ=]}T:>BǗ^ΑNE]lcZ)=޴BF px<&}^?&nLC]u#&T9aZY9ej(sQV5e%%eQy)aɭb͇Cs VicAU{T`%ĢI27y꺱lSNܦz%MCkZ87ݍ#. YYk I%uA]nDKh(d mO|uJSTϵJ2m/Z] N#eNA<?ixU|lYҹٮ;BeHC@,j"G4γ; HWrEJ!<K ;?6֘(.^^5")1 sKЗn? ,ܾUYHkY7A.VK|"!h`ִ8qӈʵ~RӱH!gs{;x{& n4Iȟl?rRocezF,?f^k5pkٶ}~ǚb endstream endobj 2917 0 obj << /Length1 1921 /Length2 9670 /Length3 0 /Length 10882 /Filter /FlateDecode >> stream xڍT}7tt89rlF4%HҭtI ݾ~?}\WvD%c)B!p.^nQ /Ic3A _,N,CDU ׷QΘ$h8'ul)Ykw?|?冮+6e O?9TB1DG:ff,Fw/wowvLEn BtjxL~>Kzu9aY=KK8kMϹ}'Ej=Ղ"I( P&6e.*Ғ(K"WQVoے5Bq4zAf%WOhrx)1N5LHCGT2:z]/ihY:bcp~ +d^>4 7`:a;4  &˺SN7}UOR!g͟ۇ?hIB;{T.+k]VlmJb" Ds;HX&/dB I\Tо_|+8Z"Y"M8#yDMk4$[c ZAu&*Ys~ݮTjAIsۄ󝳆chSp̫M7# 4'z:Xv|n.PIlD"JUr+1f6g͘#g׸fb϶B-w4o+=d,/D7i0F L4BRjdEf/cn܏/zhVHZkiv(%a·_Zd]?XyPˇiG<[+;l&*2I)2V8V۴kyRUN %|m$53sKi%}dun@N 7r0JZ穰/[j)xLy :EՉ<֡к%WO^J /KrFoUu3T]7eOyʥ͗;aSOK[q t:wdT-+|IJU]Y.}obC U*FaT/pT?%53iJg)Gj$^ Nggp2(Ӑ:ۗZOugƟ#Xm*JkXvhPFhEޞb[|{@Ԅ%VQ@Vֆll|ܩFvt©*!pGjw\$g )`mUmW/YB(f7Mcж09&o'Dĭ&X sD'`Ɔ%[6S?&B; w,beNe%!KYk^L^VXG' 9^d;?s .mO ӬC:rb]W~? ̭km}{k56eSmq+5É|xb /f: &Ҋ*C>R'D>qD})xI4}{N׏(A9]J~pnByț;!zav%_IN),RC[>*?\˸" `G{=ߺZq?!L?q݆_TQ <[>m>^@~\Um1-#cn/o 6Hܽ5t!=5YxE\|^j֘5$E參QCy]٠uK=k3|L<2wnmHqcn(u(# LM\~B|QtWʼlB =Ga<U=R]1;}]%\C{ 3)=F(O?f?Gk- ?oMˌD+Ҳf{Ϩ,T]rcq^q~ۣW?1El@O:X'L:A\+8vQ? r(XoHh._4oCGKFAO|tWsy-Iøgcƺkq c}uwl3g:N3M0ՖNj! X qx" {4EHjEUU#.+UEJOr^ݐ1OCXNM=2S]oEf:QQvkmͺPKn:ޓ /!%KgxXD,Ej7/ڊ@DtWݳ<٬ݭ*O>N>k*N^ہ SYv4מef+7Ɠu^*1*(*lyTN<ީ8ʮ6;9L'zGO؇;*с;>1­ /;{4U2WHvKb2S޽J>&wg cY_ @*bFqEܨW$}@8\n@;rg'DAq4(6WqI7IuXCkoF~,n0,"Ve:[,9JGh}],!ƒR !W/uBh-W!IRHJz^.Pgq38Qs/]]]-W94TɡK ]d?TNΊA]/'>j8}Mѩ8)j0#C'M-!_L|+=dYhd~?Ov{G8L Sύ-xᬥ0m})f5b@%5a}].r#[vڑ|rQK&^ T_r-+fhf5izٿYDt}r_HDEmF O;Tbܐ3OougC}vk$v&GC.ϣߛzRn&R)G_+ :^s+]EˌZs+m6H)NOk=5uz+'bV8b3;2ʢ_(6l)4ZLfSsbfT,,pbH%~7X{IQ-{_6 bPIm^۩fY3ʐ^t>tGOeYUF ],t0` M>W"S^0^^YڒQ@*\b|Ɖŵc"'I/3ь7"d`Ŕ$rkIGq`d([S$&cpS?Ɔxh%$#7CmP:[ue#ZTnqocuOdB5]nc>#(Fp,<(VE&i3:h(Ԋ\3,6 Lj:jA_>oxG2 pϖRyq+tqH F3EΌ[%' gX*;RWIzZcv.|rnf%_$C]n\K*:Y?-%% 7(0$wYFIf=> g1N'P=B̲8skFQ$oK -|in~Nr=>KW;OHQ J1M q!cll^X߂31YKDT.vYp/H cӚJ?ޯ+-tЃ'׬ÂDHu%4@!Rj8mXĖwao۫M@%ThI3i$~ǃ6{GΘSm7'{N4 Ix~q|3tHhN\6ã~TF2oH.4#Vu*@N0!&c =>e PN1G|;x(+mnEͣ:ᴘ NP@r\t22%NGS`i(ZWgaXފ鱚QW[叙f6y S* 0`7ǝ;݌ҺoMWl3Y\MZ-5Z7|w1Da:N$oݷ0Usl/Zj3Uf> Ÿ{j6IKw?O .{hCvW +(3@)W 52*ǵ-e_wlu>P聉 \.ITޔH!ϙI5Fm^)apn $4ȡ$lBU NQ,M6KF}Ne 1j}u>]ۮU 8Iľ+{2!54`Hl: ^x@1%={PGMUGx /Y \Հ,SE^&Q)*C]"N׏nPeS1cq2??/f*'mM ILһnx̎ E^Mk[h;E*-an>eU~Ӛ7)8ڍY{0Nn47NLD}UuÄ )?/69TF̻4 }Qpպ^fEԡ:-~~tkvᩭrqDܯeç8j]4qYgs1MT`.ٗ){u|Q`t|:kp5y-MWJViX\=66"G?&6A ~O#S]aWN#Ȏ +1gV,Hj*R:4i5?pXgwz#l9ZWx(OodpljHlZGZ Agr7J!nkVJvl©ɜeW8ٛ9PNPRdwU-J..{qfx3)S݋{/LK'=ԘKE\goXG0bS#ı>/u$,~W] 6[fԽk;w l yN]/ǁC.s ǔmT +y;xΈG8C!Ut'O+䅢︱ -";![,[RMBin?ie)-l3<9#{DLEP&cV<#Zţ~wq`1#tLY.V𽙱Zfm㗪)H473 Zǽz2ڑ~SGF߉*s(Z)6Ga\ ?9N*ZҮ S¨I>w /H4pz?r0kf}YXذH4uisy36q}0$E~CH#|[Y]7-IyY:J;!~9dvd>2k 4}$#$G2p W%89l5Z&2>Wkt\3ǹ;LӲ >_yuERyKakDIB"탂r43ƙ~ioɾG7rMֶU4幈 O{o jd.>ݡ=W#Es𿧇^`;VE/tqeZK}]EBLnZ~œYcYozc:82ѐ8\Dl[! {nEdO07rkf.':!%(,9}pmAfĸEw|_R}x+|ĭ0Wɛ9*9+ArtYv$XƠ i@*0ʣ=U]x "u4^g ӶqO!~~ؕBr)ZG))3YkaNe|c{)_a?o;8j!اm]ͥʒ:i9KbC*p 8sK> stream xڍvP-ҫ4Ԑ{E!$"$:JҋtPRW JSH)_,ߛyo2k9k&\"p=B Ɖ Y$@b&H /Lkp"1hEPvG@qxLt1h ,KʂdA $/"]D@R*c\}ܑN86z`)E Puc`H%p8WYQQ/// bo 8'pD(e@ ^78༠pAh,> G5u0@U 0(W(v8 ]}5 ' ῈP,"]xΡ5EC/<,H_E*AhW*Hw >nB]8 p_"hBS/QsD@xÜD7qEx~W^"Pa\Q8#hT?k# ЯϿǠ]|C}ZƦB;HDd$vHIKY?h @OSWÞlYK7-ۀ  )77;;(_޳8u1)@7gfup꿣8(~юx/% ?8F 8MM 0`^-,b9_X-羪hk ;ԇwmd(Sx;ůkB)QqF 0i L.~uHq"0R[dew.I`acl_Gm:ΧjT?+tD\c9JL-ΚfiTjӳ6쪕&(>Je*mF[rX X]qN04}{F;Rja:.c`n/;M|@udy+W`b/+SBV=O r<%7O߈{ BJ*"#.%k)\ߺ_"0~>z6# vVwAzpqۚ,}ɬVط< sb/7sO?'h $!Zu];4ؿ4F̗L]zS1}%aSBI -Fy+cv`>T:%ɿf| <7|pdO%fDP2'Kڕ4Xk>->al8|j{)ԔƼ֒mǴՈ~Ϡn9miI^Y˯Ez_6fJq_ZoK0s:ptl캣6wwWZd~%Z/JTT F\/SmWZdpOxl%>xx {ꥌpqB"Xl"cd5 M+E^?t ]XKUM0{`QA~Nӻ/M\/E%ڧ- Փ4Gl3X:1_bxmtCeŬfI|1ʯ2}`().Y2Cw^籐Nsfm Bonc.8 wƚ5m?Q?rNQ[;ٔrIa] XOͯ*ٹ!\c]YeF}:U4N+QBJgējviEli(!n-&Js+x Y5ZKl '!ڠܩ-*0Gc*YdA![Xތt|e oƓ9 _snHtI=փi?WѐCtL)Xj_#ؑF^毮jLzN6vbi;Xۀ˩E}4%JedkdپOO Qܸ]ݑ1%8!{V:{8y#$c)$E6EY.\f'yT0S*UfZuIl*A"/Mn'{=yP]_Pt}kp|ͣB2{C]=%ʗI _Ωv nEkO:\W#+:;!1Pv14BYbq3%zjXbLjk^7{ysB@x-_ޠoFFWVVXs:"/Z| /PU%DvB1"^Ʊc]Ǟ:Vـ;7roY|zuT܁iYg'/XF9kCdဥ8xջ6v1N/?sf$pئjcL1-(9FR1gQdz4C°F~Αj^^n=q5޳ks v*s g ,#L=.j zu2n"bF(QEF]yY`en*};8yH\S/bYSj¬Rߊm=rŗ@E'mhV*ҍ[b@5)Out`@xZFwUN.h`T+#64Bv=oS(=uyr^{R9 oTl>Br\}VSi_Q.).HeiZc2 -Uذċt#%и6)|QtH(9۪ $3%q Tx _Sq/Ԍexn,4MZ6A>^7p/#E-{ށ^T_ԟMf2#eЎy "VB1Y}ą>2,og3DcN-mơf YCm:ߨ< <%5gaSImmFGQߕT&fVS2Agg_S'"[N.%80 Z߻fϨ+-UA>er#ė쓇'rϒ[H$)#EJOZC">%Q<-'z#;f>8IӋ q̕uĀ(sS Jrc}#몑VnLIdu |bm1zʟ>g.(M5(`/>?aq|U%'5krMɛɫޭL$oy?s %k784PGm}CQH1՜t)-eȖBjA#O[WJ鋳/)Gf/]7n.DY͇{w"%rOT"e|kQK8i/P% 8W !ϦR+׿sxg31M*ȜD\Y%:2q9[!~ I[Q?5_>T|w{])M{v2e~(fŧqeOT廏r⑧l^c* ,oEțE׸@V˵zw{erlae생&K>,ъ"4*%~o_tZ2 >]wE.47M.yE[sM,v5/i(yrC/zvd*H6:f\m Dx~)=>mR }Ȕ6at=Hp6 b,;H-i/W(mdUa+e+}j0)=O6OImtc,MSZy9m^ڎ7o=<&4y[Km~RZ]`@וIbB6'>#ĨIpټ jKZ6-sdڒVioa:|GrCJ&x]v#zU\4'0D/3yuGbg\&$n\32~RkqOXE~KvͪFI$h[+qzE!s!c+] .PD=BrGM fIw=/:O ZE!G%&Oɒ"b<q #&4>ܓ7̴o#1 g'VaFUw$q4~vp-b<"{pJ1zL#oBZI 3<1T In_O3f7Pm:>t%3ۙ }0 :j3$eDHݴ|@3bC(H_H M /CӘ~A.:QT3fyLف&^Qհ}2Ytk+[Ajո NǓDm~>󣇨X۟nFf1N LNW950at FR7#LG|O2] Z-QڮGܵe}0(D2ax)@4EE+U rfNS,`stc}[ZZ}G_ec?Ky ȡ+aQdF2XjƽT}yKFLS5.}Jd ^^Y¦bF;f݆eqY_ |Fj'=|]HbKnu1B!+s ubIv7Hel$GM)OjtEP!#}J2Y{u4K tQkbOI;%__:.!j(Yb/KK o]c Bkʍ9.dKW~|4G(R/wd|84GjǵL0JkB{1A9_sLǵw%&J{&ZFfG9+^ $^lT/kAk) VcƋ:y¸@w=ʨ϶IQޔ.Sal6ૅ:ovn׍~Z\|ͣb2v'OX3d?.{kDC {βڎb$CjpO];6Xw^-3͕Vo_H۱s^.O"8ưx/3d]fޯ#g?]^БtMۊi~h_ 3œ sr<0bxG3M2Ts_St8YaoCq>t=Dk+v[֏]e**Ƚpp=*'/.;n({].wC7ڧ4G}NxcDSYXG=[杦U\?7K7LܔN ~"ܱ='((rJ 3B;W|yYº$9X}'lEp`T壊cNtޞU O۝bwugdrBlRi019>xҙV?&;P =Vq> stream xڍvXm6-N a4(nۀlQ)QB$;EB$$DBO}?;wW}'"iSC"0B Ai$PPP$(( 4c\aNS G"2 `10맋D<]B"@!qi! iAA(i ꂀZH TFNl<y @!)) @E7 #` [v!!p_)xd0wiooo Byp`Pெn?@c'8ntxQ0 pC`46@#M; Y NWDp`0ts#|GSa|0|@0Fb^`+{`mᮿZ{ʪ2 G c3Y:j.`{x4UrB0G(&(%..*ya>'_}aB`lHw X ^0  ߆BB@(?ٱ0;|h%P',H?+`aauO۔>@~A PHHR (!! w}0mp@{Lٱ_K纏IJւb7+!5OWf v%'+]$Vv5. to&"Kf~!QVp e& Gh%(_6 .o +UE@_:Q(/@K'a|~3(B 1 @5V16 *gâ1,߸8P @0Bة "H(V?l wWOE%( (07~:B' M )$D&MDI"7aϭ-c0\/teOx(=Lӟ) `}2cݞڽ˟c"G%.S<1MEDZje+zRj,<"gMe)n=`&DY{k^=+5ҟ.[g etiwVEQSi &<֪Gp))$ѿtZwwZI5鳯<9PWc%P`jv׻J)Լ I:%h-o_u0ez"߫LFL qѧٰE\"S|C&?c/C"J aQy\MimUCD7}e-A|j_SFȺ{1Bc;al_vlα!؍B;hw]UJۓz[^|)mwz_2==x#UG{6޼4ZtK)u܈xɒ6N]xK6lRxQoä!7رC5G(>/͓qߗ<aN1=Üe%ʄ'jWZc>`Z 0K0(zɞ=]ISݤ,EE왎9iIf^Fe'q%|w{*=Khj++ y` c{OH̚==mP; 6pv/@Vі MM”ܟ+)[Fɩ*w)Я(E@Ts2őh!8lGI`2~b T3S;#cnoB\%|9hN])p NVt!}0I2F2@q7@?Kʉ,-3T.S`ExAꖳU)yj ?(idJ@]iF {?ft+vPGCj؍@O SךL՗{p)>RTz@Heq AX޼u5<X8(t5k%Db&Þ|8᝸V& NCb0u)A8G~=gƝw|imfr|_37{pX@^$|.)t'=2z!;3mԨH[  {/}2YՁbP$sS?kXkI3m.Bڂqt3o@r]# -#:] u]~^⡤$yx2G0LatRPC`ң_KQ46eq<yC:kڹzGsX|5}bLQq"~;Ɓ -3 ; _tTQ.{a+^ݸ(ǙMӔ-+)C 56_9o;RJxN!,?,awqOE4'֞⇱3c [?mUZsR嗄AݩJ)>a*L+ ȌX 6e ~f7NS2u{e(в$XQ}1]Е+KQiG, n\ olF"nBW^q5g9dHe\xfsJ=ZyYËhꯒ]WsҼ'l/TŇ;^96pΉ_h_uKӎ MZ繺aKUɪ$:{TAI=$ Zİa,Gd4Ņ0|{+*29ΊK):j 74l Wz%v;H_B_gku/d-ɒ2Ւ `QG䷜;=?x>vrNdZg*f)Hx ;9,~~de>p$MʼSYcf_; i^#.Xm-tdM|~hW,EP &o㤶k#?JT! i䥋O)6gits%2FQ5mN=i=UXvQh|V2;Ą|2)Qͥ9 HtqYw;I6^ &_#I){%x' <[zï2/w:1W5}ԃSݴh|IFD@UrkLbUAHn<)e'̂#+D&|^ 2h"C䬹JׅjGի88˹hW~HzqY/te̤y& |T[6y?-mjL0+ oBEɊ7mfVՙhƵd# ,}-EK忹>o* >ݱȭ\I [HMak҉@RŏBiZp࡞}zV37:Oxt0n<{qyd6 7O yY9G!L >lDoB,BFx)R`-@~wG[γq52y"r3;ԿSTx9*qIoKHHvߣݴ҄@{=Hulx$J,S7HDq&O׋.<+p(ƅ9羘.zd6,ATf!l7N+k۱fO[̐`;jK&¥Rm^(NktDrWݖX"_KCι]VzbQN#QmSC[wAs6 @UKbjD(`NJ'=!i?xCc) h/[Wd}'bmYDq_8|w ` }qdfRPKzַvfrl.*f*SjV2d}!Kͪ{ {] zqgH fK{*?dሳՇ[..A4lI'B1$rQNN jQyB`$NNv367X̮|_AH>RYU)!8Lx' )`,m&gjAraRw۠ܣE(P%$c=f.gųWΗ&)M |ldm4|.=:M5;ZGf„Z+  5(hܚ!TDҫLXBU^TXuQѧB81޽s5 Cl|W;/wB&{sL |:0g>a^;]!`s40mު F&fmC^OG5{óūCD$tljx Desu,rzv1i>Ē9H1C(8-Vg2&y|mOiF+*C>€ī#okityHL]QuJnٕ"~L?q^y'By ҿͻ#}C)Syr%j`;Χq7 oIRk8#˼d|&=B>Ym5o^RQ{eˮkٺszv?ܙlll~~HCHP~S%) u_Vd,JR1{A^j6G9btl4v|2yW C\XqL3+fiK [-)<{l|auP Ui)Bz 4B1a*k~9RBNc{4|/v4Sq !kE2׻IJ2֑Y~вJ2uJ^9ObM:h|E3r[u6UW,F! |D%[)>[#ٓ7v:n>MW#,'2`O̹1n[N!Ui)k ۉ5EiWΖnO[y7ȩ՚ խ Ep=ꮨE8~)G9}mQcjh> &I {-q+޹b7oI=Ş8G& &r/I]&5GT{ ?Xx\r-~Ǡϟ53${$mzt7HKFU9F"o^dfY%@߃g{">H \=+hPOJ浴̫-5]C7-:*٥s}z#S#H$WgLS뤫qR=/!!t>Ǔֱ2 SG=u=p]},L>/%_8R\ΣD$.GǹŰig1[TbÏDٺ);OTD\R?}1KX^n u7fUAOW:/"ČN f־Ņ9"j/j d%Ä-2~Luy'-N[.p||m +❺Mqf撧9=3j J"GFiڋi-'e\q0r+J&Cd@K/p{5J/ rbroW޼%DUV8oO1U)ժCG0Z&.CS8ٍLѲ5VY#nE^  t,i1C֟jqƮY|xuNu~?"6u@O޶|? 5k]vN|ps"QtO!V'BVxJQ,5J<0ЪT4|pQatK6i>~N-]Z S{j>,޹#qnrڽԦYt[74X2x4uUؼ\z)Up } u'M^ }ʦxF#f*P5'pk)_CXm-ooUK W˨4MY՚{ J~摧m`d->WM&ŒS[sQPz6lƛ}Hch G"7:-uT/Fg*M/.[ߒz7<ټ蛶mzZY ^ތf endstream endobj 2923 0 obj << /Length1 2193 /Length2 17494 /Length3 0 /Length 18806 /Filter /FlateDecode >> stream xڌP Awwww2';] ~gsUTͼOӽ{5*ꌢ@){WFV&>,+ Rj R r3]&an`sXXXXl,,1tpHL9{ 3?3Z+//7ÿv@g=@ hhfb Pw0]'#3 -jP݁怿J(]%@ Bx؂̀..n@g;;@]VXop+_&ffv&^ {KPR`rte؛ehbon51}7W&)QU{F¼$@@sbwsm<},@aȬirrJ]Gf tpN_^)Yx/ n@?*!AfS%Ow1og'@}X,}d>a^bfM  IQ_'`eep?oпt?){h >@͟Agd1{bi4, |4s:tڱ.q*PKV:L&$:?9!|aӽe4PSnRq")XUT=ɺaw:DUQn+y yv-ТU=b7*)YΌ#$*~mG|r:XGO`i-TkCh^ b?ъI#CeJV;d(W9HB8ȍD G'xM M]JXM$W?͙! -Fo(7'iB8dq6~/Юnw-7H{0J6~9q%ۡGMO#:mxk͍QiEB!Vcr2: JA2kUM=Oϸ25%(]Jj`޳< k0Oۇy5T8 A\})z$`);,y[7ϻ=y\i+Tjѥ,E"ϵV~ɬ0XKӱ`ʨ,j 1a[ =7?P[W uAP4 Jj\mR([9<IWn|$x' ˧C]y4>%^f%6%[oR^](%^@ j53+@믶#fôs-1$8=a9fdx])Xf]cXjKZNC>`+dgҔ/o͜sYAIwY H9j*V}`Rhزy]+u{ d~b{,TWa|n_<:gݻn]LIauxN;.jONV㚏vc'8 ڏH\ % uNE/y)q>Gc b`c&;Cź(#U1]Y. M$;hpTe'AwIo}l,Ǝ;h.D2阷M1Rf"YkμnnUlA*D,xP1Kӊˠ ]{]ӦDm^WMEeb Ե7as <Փ1{ ~#b*ՔΌiQEl9=FOP}޹YP*H tp~H8 SG$Ȳ{c`@.9}UGI.m6?&=XG9.Uٺpx(2:ޏ@M-( ;*=c6!*|xce^Sh45Fndq$u6ʹ YoT8rli>_m5[6ұ .<LS7w|^ߐU䴸>m 9>sR]\7}ԞxRTSl?(mcrnx4RH /+U 'jג0}3w6AjXb֛p̜JxajJ O^na)14st8G>"wC:mdڒ(Ƌ-"dTS6|z* #vb}]뷌HėУNZz@j^a:(ׅLsOw7T `/ۺ_<{LuAUQ 6Vׅk9M>MԜYK6v1E#h ] Yc]1|P-6$,I77}cKU w/h{K\܉GlU- waQn?h6H>"IB8c*E?]pFɹݹT:74VySlvԧ ޷XE w]\b3ϋWXul(**O}DyI]X8&-9wmb%AEt}8ϰoP~ϒ:!**oBYX̛jGGhܙ75D! D,/v-&PpU=c)Y|{K[w.E?tkÀΨ_|BKT:of V4>1h{#ޕVyoLy loLvd)pSo9Q&c61d 3]ߴ_G'9L!ax!fȳV#} u2gGqI=D~PQQ/o.?c gnG H]^Xw}61_|jw_滿;}+6=QqcZzbU@̙2@#zz|jLѡLڏݛwr9!櫤㺒^0n%Ъ3,ZXz8h5-&ZSc_pwӷ [ F2G{Byqb~O,y6GOn4ϋt~ƒmp{u+/ C~%/Dh5r2Z7f3n Ggv2>OoT'^"ZS[:N 7͏ݬ7cuˎ/r& k.F'%td12W;h=W)_m`ŏUvjXk leN)Kzޗ慦$:(稪ajTឤU㨖C%27/W)o-CdR{fWmWlר20=H]'= rzȸcvk ~!ٌU rq>Fw#1&WK= }8ͯɥ:AuZJXS$~I+[ 4sBWs6]j*#W%pp^n TcNTi=PazŠEQw$ZnpH60 v+jqxej)|S:Q{=pxnYM%qtd9Yu2g쌐ppD0meۺ8 (AbW6ĒdÖG$iOd^dg=C/qx.n0Rp٦4u:zϰY*mٗW sh=?'\Mj2/=]? Mw6 թXH~_e29I']0qG8#YIdMy<{s&zǬk*ҙy!Ы Cd4S }McCr43+'qLN&]{7I'Y  =~rٗkXipw;`fHAs݀mtclH5`r׭ $t*bf2Oc֠a ޿pDc ="}*\w4(S ٦39bz1 @%}bە-ߠ9E`h >#D}帰g_yq݇w>l'p,_eݤD|?TO|*0]z*AI =k8 :N4xeŀ~݂,8q;nFsy1`4Fq/':c8W>;ד\ICBjs9 ˂ "|4ݘߺU?!^J4 ;N~#Η "B: 9]ü˅ňݯ3{?kLNu핶:h ˭c^  7϶[;b];@wm=Icir90;n΁?Se@QDp _VZZٱ*ϞoȚZ6y W@rFdZFfI(G|cXH/ {pl2I&VO}*rQKܦ_EV`En0~\bc̐HC1WLڑ2ndl‰7}W\/嗾Yw|Q ]yظ#~N?} blҒ~hn'ax]P-D>t*vNi_ZI-|ur q Wnb]8=<^I "rW RityLlS> 6BIJH;SIOq!՛y0m[SKJ{ƾyZgix<3zpq|Y}Sx x_OI8.[p[Ȭg}Xl5d?W}9CU<<2)bn/41K/61r:c&t@e-HE=uM}Y+9sjk3zkY[im9nhs(/Qǁ`sR8m]ԣ>!JͫɨJ&a:Rꯄj'l =q*!Lp̱:~wVs>͒w ~!Ϋ4J]͈6Z 锫;p'vr59e$F[1|WeG3|Ֆ]m"Yg< ؠ.r8~ /_ *&70dn-?wD )9Vj)`X% *pdw%\Ig#a>PL2*;.-4Vb(ıaJ4ƺϦnZlB=fBqo^o nS%H]tj--]Yf8ph:T[Lf7l*xetYͪ9̔a*2Ċ0fp8K?~0 f*dܩeFkMX o(Y7Xܦ?UD`s^YKj/rX}t ݂y dzW颭OquFWY|)Z4ؗBw>fHVpօ-B֯\%^ۋr'8'_gTHR/);> Ib R0g@Iް-gX>2Y'>Yr~?aOj0 \ô&/-m[wLKd4Z4-{yR5n.NZS9F'dG҆1FYEJw;r:8n1M{щAnwNQ(?q) 7˺&^ּ=e3> PFȰ(c6} -}EzTXw-hNub-BDn^)<ijN,ف,(&zj+½_O(;+ۊH0MܡЂ\f i`|.i/ي [gQ#+aprdtO*2ĭCXL(# Kz%Lt8ɩPC.3O BE^nhӼ&c & DmEi &.ب՗'xQ-hO0n՗yB`稡Xღ^ IBfw燎-՚ʣ'h@C~4{!2m;|}[zrc&݆ҏ#'+_2~W,~G =n$w-:[/ l=쏩a oBɅ?e0? hLx`Xd}O E@Mر'ŗIEmfx> qpD(2Loڢ0W5 R 3z޴-3&$%7e DʁWܣ9o9ӑ"zB=qC7VoG(M:.`oxm q|r7kWddRi-uJP'Je^f[e7Rqr-w)#NN;F @W "O=rӖF;c1-H촙Pn.Mu)\j J:iX,&ݵ1ج5P4T\kw~hn 9+pfkVRl&q*+ڂ|lB.K? MLMN$;ARgKe>n+;h,=3ƼV) =\?epoMDž6Qk(S &j= S3K*h18=x ZI#M>zU>ԛC)K+9<V{̛*POnh;t?9bcFQ00q1zalqP=W%vn* 丼pSD!(HH^,a:##͝V]7bTqgwA^ TS$LԄ5t1ߥʝc LQt >[.U88y2ѽyCgrVhV*mK[0Go\P>)Ţ=#!ymċ?bФUkND 0,!ӄ:_V9Y<$k9}E ]sZkz0"_00NR~UVj[h?ʺc+3jޞ1{|ٔ"M>WK=ii=Cub^>0[b Q2GCІ>ѵOlOfhec^Gl;LG\Z;@^/? aQ ]w֝I*)1g.K-qgrYJcIy94Gj%tg2֤Vvɵďç: _p!! \Y͸`㥁tȥ?Ǩ&X_Ymh,(e2s{*{fHB-h QaYQ8}-Hhkgŏ^ b@e-tw[GFSz [LJpMPQXtPKr [ EmZ7Dq.zI1G֬2%gBjfPD:Wi=4AHj 5Dp<:jDj9CX_)k!զ [XD.鄱:@֮uml8p d&*9ՂlVl*W{v+k'6Uxo36\CC]p~aw 8(FړdX$Ce-WœTضlhz;Ȩ7]X5z(?|i'Ni7;j+Y"]&aX :ϱDu$HvږBB6|xz¤΃R]fzGyZ?!EGQ'lW~#BJ;͓R}ї.leϗ _ u<S8C)a(| OvgMғ@Atpv60Mndr/X h;Qш#岗ҳ!w!ca$ۇK'[mxV TF\-zhccf"_3j(oFqw`]_-([Rс_ǛW(JS Vk\.ҕ{x\$cR9\rV v.!Ge2$3M;p˧dl6n!?,R]L>P% 2)sʑLuQ0qϔ|UG/ge:%BCuM͒Lq84vLz]0jI凵Kj^ 50TAȆ~^+Xp/墆KfP gXwAMSSٰq{&#8d^%D~ƃ }ߋf@x%3&LI3Aoߍ4ˍvQQtG) @nLuxzgJ/HQ4׭خ| }.a7Xz&5a3j}7~9lѠB_ES}48~1hMRWQb[M@qR;2ho:žl~2n~w!eeo|[(|F~$}*R5DJJ2)do3pji (ǥy\E3fhw#uILP#!,=naD〜E_ˌLymI/hF<>+x?O[~|l4HW[|`._1@ 7dìV>á.5~_c6ɭ`_qDM=ǧSTIVKLѥ:v'?S= Űb|l ؝ʴA񵋰Z{-Z=^1 |.sWdM-¶bF,1Šſt>wy.#HWRZ=Uv$Z;cHA'V΃TRgbH6#)ԜsX(e~nҤAU>s/=-rKr9ܭ:q1^=J$W2 =K???| 76`v< W+[gD*~\9U˂,byRl4țt,᙮C4XtuW\sKƣl8<@Eٶ+@g=EF3u` шT'ܦI5p(ƥcAOV.V5='cLq2(;tkkPKEގ=}^/ٻ֠n!!ː%@nԹ`MjK{|^'y&ėֽ!sӝ%,HhVP.eeOgs|y?ƾZKI5mX[0yxjɑkX*@98bhs%>)\e/ <+Y jlܹ| 2>s0Œ Wz=tN}a3Q3 \IP{UFr Okq:̙:ZɏQG[XJ5y%ZTMCE 2C~I^Z VDwa?l,G;$f*s+_>C7B"ccpE8=ۿkfXH5du[}ypNxm&yU>D$ĜH*pbV&QK\:\R"#/ 1xj Ȅ{{G9ko=YtoK[`[ w3b")1 ||HL2 ez*U^ЌȲaL%z-t"x~@h ?idQUrN(\KwD-h0E_wh O~/ILE0t> QC.{eC3bhfDjϊ(MG]<#وji(hh)3/ %SٲEmw͵Y _rA/C_KdF)яpΒfjAwba6(鐬#ozB T؊i3DLД}{;3Oc =)6 :Fr M-d"̒ rу̵uhn.Crvu \3P#{MÆvHY-Ϋ2m-mțMmPz-GeZ!lQvIیxɠ((/ ˻*ȱ%AM'ՉEۅih=8[GOuTir{d4V]нhLcu?M8MO'ɧRb9RJDiyOID ~㸤{E1ُY:.s|b#P 3x*>YVHRgx=:_;/ K>/GëG3JWw]<]o]KhitNki䁿WY-s**34\ { N7jG/h^e8Q=C&n֞&%J .aGx63S3جsɤwLY3C&\zϧ[O&i2xauOp!yS}m*G\n h"-׾0CrRHl-//!2,$#>UzkC~IlF[VCEf{=S\Ȝ |0(KU!1Gu> q &K⿋x%=r-c,1*NZ9UL>Nr!bjPbgКE:㏅mBv xҠXT`؈xَ !7ك0ؼ(lTo5R?xޅE|Vo&wZ [oUlrwbbMˣ-/gkI|s6|UvFD{b")ga%ܧxnjgbȯl8dN& j0a׹N/}77xZ8\yپ(q$&Zg?#j.pn]fN/ KQc+!~?l~?ɚWӋ8}YŷNQ,[ =6`ˣv uM$:;IśARGet5Ȭ!ހhH, =LlޱdE YhNn`֋e T{cC> Ӱl|xWY͝/k1'.|2j]>)gE#*رO\J¼EB݄a&Z !T'"4ii٬w2*" =0"x򈴂#" O Uf%RZ-'i/bح@%| ?lݶPʏ/m~lHJՖߊdWy\q9K ΃BC u>O&VΎIuvUeGW1|XY[WÅ~+Sآ,}33Ņ=:;`"f C~ *4^Vc —&*XHy+%|9 oFh-s|HY49JR!X׍u/QE9=k<|hTy aUSXu=-\K>^Ƨ8)BA훣ݞīc"ȫ6;qP v 7]# HT=;&"|{LXo#gfNȠBjQ{6!m`w؜uM!iɈRj 7LvZc&"a\>Up" ? (o)wN+]kTF_Vml~1]OJh5j8=(V>>S0qxRa:(|t!ca~HP &28ɭp0[Va)\C*wgkYM/V,9-B]5'Q~\J_t7WTz{%Θ(q<%P&i'`q4/j\qb8c؛5A<wZɱkR6݈Np)^hs~bd՛#/:ڸM9ksFDQ+ttc EKs[S~ްntˆ6+t ~c"da~~?bQߪ v위oL*1+7tbEzZ$d#J f;J]&:VDT'y!<ʧq>\"Jm=H)4!PH6H@}s*-i#0'SnNV*]jVc$(Bpڐ͆VtY R.nR*S; ;wyư$'[TLp-Ob72}}Դ $oz7mNѶ3=!iFXd^iL@wE| W^<+ؗųd\OVZHlyVG$Tz7sp‘0/:7vxM /DI7z8Y2CDATC %v{cq{on 邰.4yVbь,-9a! VMpcvۡY~~q ϻdza@Gh -k9 W*_IA CJF쳷p WMd!)&ߠ*|@%VPGY{GFErAK.]%ە!dG ,a39 `ύ#v(pgY, ٸGW oN:$6u.a K<iFyF+¤Sec4N^ 4}A9*kW=1ȧ4KNฬ6o9Ȗf{{$16Gpf_R=lFtPhZTf +1BS1*7­*`4V".ʔ޾Y1d[L+]„#n*]`.}e?MB.BHȺ@IZ+O%.FT R4kDѹQ}^(OgXBFnTg{L2OaqvXoW3 ?4jأk-"ϤYPq}汘K$ Dx+Wú:d5qf01puu10KʶhǂRsL'gPk-~1)/UKTI*`EDM1Za~(Źpn%{͖cg,Cs@9<r2#$*>Eߡ'ϒ endstream endobj 2925 0 obj << /Length1 1651 /Length2 10035 /Length3 0 /Length 11108 /Filter /FlateDecode >> stream xڍT- q54@-C܃`xdfkzkuN>EM,j` rwe5dll,llW[_fdj- _`M`s9@n~ ?? ;s S;8z9C,\_@gF0;C@EeG3-@ v/ :A+WWG~VV [z& v;(vƂL аiWwp9/[% x.Pvg௳YbG2dX@le)WOW&w %؂L_U^=3g wi^NY\l> 3ؽXY{{wn'7_!/&l`W/;{Yr6txi!Wg7Ͽ@9` #b[_. g{E^^qbz⢌vOL`fbӨ Oj_?%\J/,?R&-H7d+En/2 sh7ʺ^AE@N6?)'\jfdk5[=Xmybc|ټ./~Wsq@ /䗛~A\@=P2%ңrsXE@<VUo`UF|/7<vX~wj/__j Xm**Av ˿K/e l/`׉9;< ú`3%3PΟDߦ9цnw% U9 E{6K[ltް}͈ oa;%tƾ'ӣgaonUmFdb Mkm+TW0]]bu ݲT.W"SI$RwC\ëLА #4G죷܄&3y~I :S uaJݙ+XY5sH\ګ6/̭|>/< "<x Mel߰>\b=S7F_S4I2.Tf{rtr>lEHotPn͘dq@0)pNOp?v`Uj4AZ{ œ*ruJrߕh8Ib,̕w7:s ?-#l ⷼ;;\%M}$bN#);W@̹~7US)Z;q3,}>w#<#As_L2öϟDG1W f烿x<0=ɮ.N,f,#GmϹ)MM.W0%hW_.4D6#q|瘞stjt{esw\Azλ˕tPqfkh7bG 6wq"A(,0 7}fqٯJ(#-+[ԯœGeQ^VXSErOR'zkKX~j)2f`4\] ~Wh\şm e6-9?[=iuO]8UpoV`$XȪ 3^n0:6>!U|9YZC(5n2l `t [ c_̝m%T7UgZ\'v&JN ;?~ |qH6-H. jGΡfOكm_dMw&ν{W;ё}%i?̵kFO?0L8x XDL@iƨMyExW1Ai54h(덹ǔZ GSaBRh(sqCQ+kǓ.,l"4'dy% c.X O~M)nH+P)h*#N(]A8k:K璝oSH8jSgfQu =E)T穛 2X:Mb%|L0{ٯVÍLP,=f{tVҺf&adcGKXAlu{W7[ dE;ڔ~jL+i"Eͤ$5jj`c&~TNzo:ma֥l pkeo ?;V~ۓ}̀aN$E6!sT;B. *T ;1n8˞:%ffq;:(dӬ2ŴE]فt;ǩUwnPW׿l;{q5BYaZY$K20CCq < (=L- _^җp:tܙ6S>q%wۡf̫z3ǍQʣ>M)^wJ u/~GA&X|ˍi&f=LgQ+W_dr 6a2dßk=3b 8z*f'< R(oմ/ؼ )JXCy52Ҵ9 'W i6pRt"7]ZP/* ~ŕa%ا-/K~?Xr̃ wTXlT4sچ\;\g_J._ϟG#>zts . $r!891, <~ $>4GLvt֔8VڹD~+kwh^Р eۘo $?ygpl\X4 ~3?s0V*Ri,Ws A2<+q#1>:}vjoYXX(Wg79M\Ijrx{؏xC%HTՓr-xv\S)[ hC BhZ<ؿcskai翭V.}҂6KC̀3֟)CPmƲ@AwJbTqfѯq FmomnX !hxXZr{.!@w(Y2j^b>iBеgm3΀sn(MIU\E0wc-T"QM~l!&0ko G sA3=SLJUQgoyDi"cXqo R:i tֱ&\a ̉~6䭀TqW #PkAhFSĚA5 :XH{Z/ Svԥb= 0 ҄;!mւbq0aRw:HÙt>Ky>!kh~]=Z><1R\#[dk5P$ק`ew&,N ۜ2ﺡ]DT%,Oè8ѰCAl~e[Qԏ5gd<9:g1)mYa4v|{ HWGݦLZ]C3UVrID,sd'S5]Bޝ5ߴF$Z3Oև[JԴ փqt3s`p#u]eD˚:Whm}oo {&bռԌ휷bf YY^Mt32ecޓ~x2gז8sW]_gi/vwWѓ/\a]@!+}1=WմQ-i> 5+"Uq>ؠB6]&™ɬ TNfe'*$8}lf5_]QוWO:?karгZ Gn`ǟ6{ ;()A skN娅ڡW2JXBf ݸȟK6n `<=60@p3ԧyBh|5Zt"WdVP^SI4YK6r*.9CQ;M]lY4W!д]ݞ%sR i"ʊ#E^1 F"|vއ'pBmei d7.CP-2 JE[Vb*Ď׉3T#acQOiWںMipD1g>#_2Ԗ[qƳCf-%f 1(݌泠iD3%&>'1F!/2fړoWHٻ?IYҿҙVLzT{YDMjbs\u?cQ74VO7iU ;{d*AA{rnQ6uV0{Ngo~jP Ғە/A:EH㠐Q/ᐋ0%IuAѼ׉g*xKhypQ사[bty%i! 3aĭНe5O;j<`YOfě$ev2 @];_TJQ3 K7L<{DƸd3*%icp F]_!W6Džiq'kj:x),~g<[|_*pY!)]@MKb*ڇx*-H*q=oqk Rñz>+Iͷw)M&~""fPxRo)r<-ܝO`Y(AJKsI*15rTIkʲ !kl(Y+S |iVRonЛljBNIoko<4]PwNLKWC>6YQW nџ+ fϩC9 DN>Z@}Qs.}{Hʳk^K 7,Dܠ} `(PZ#_a[3CC2u4j.~EczA6D&7rg>|Oh,é, IKYA2 sB&?M,jL`d%ẖÆI?Inzc WOBr *D,΅džW jeweo v v[؜\Px7yqEd&fkZ-Y*" Eu >&OM:VZU+?8sJAOAn=u1m5}}fzR܁'%L`qӰy:d`UOQE֠@X7V L<M}Ň7gkp?~=Ҭ4!Oefi*YݒGMv^6!`Bw\2N2M79xفˀ}ۭR…Z7d(Q^QZi;c.Tojf4SwQL17ih&.'Avbnv UƄY_AovJ5@:;PrmCaX~{+wvSn"w6wis% YhaK0xL0N=愒Puc53]|eT8N}ӯJl $ 8Z(j/1~YQ38>+=|1Ўuh9Ȍ.W1ZXS1T_l*[sBayZY?$DTwcgUD&%`_1kK| L G 0r3żV zmϣG:j]mhC[4# +d4z@(S/r3Uwͦ/ԏXuoDv::?}PG:{ai" ?Ḵ;s>/_|+g*;>,^^, 6ȧڒ]"**bx-' / i!|OʺpG=7{ #tX 1_\nrs"C.unW0+rႁ[%S2b3 *6؊?Ɏ(/SJxRf*V,5{8ͤ4};Uea'a NcU]3n}.4neўaY[B_j%S|Co`uM.H0>:3saep}C_lQ\4{gI5~x3 uJ&5>$gSo{jAܝ-Q\?Z;#0"uFxJfD6i!fz^lD0}.u7U*jإaߜ8hnLڏF? +(#(gBT$F,Z@͂v!t=CK6O0cϗ@2M}I<ўrJ ٟsPY:@;/7Ug B2i ^oRgs70"s%m<7R^U}i1_YlPCh4]gQG_<Ǐ`"L4@?CZHHn"`C$c{ج~+犽<g+ppu}d5$s[66?դFguMt',qgp7FH<7aA露/`K CNknp1ȕ;Ico>(iǖuzױ{x|7 R4K˙jP+Ay_XwXc!GA[&p*ao(Fː[_p4]ؑJ]C Ҝ[ pḛkr)8x*lzGZBtfkz%KӰm!Xd{V Џъ6c+IXsU珧|ma$uε|6&?:tTc;s2p'i+vBV WFj|;O)铼1^nv"&p7Fbů9lQR0J i\"\{lBDUj-wqʎ/HvN)B{ s6A +Y;2HN M=rC=o^4e̷TpfwT߉ѩB>JWlVFV|DN*6QIie!9SޫoS f VWGfS5o{Bciꪠ$[(ZƖ :ixMcEV@8.`/᪎ }􍼘t_&`.5W)9+μFdY*H%oTjvoDM)Ql{,C9fBk-IU8\ײX2{7cF6D.] Qٗ%3ل(=Bc tf;18PEms~hPZHE{_6g [h#W^+,V+; kՑpnWIʨ7>gPppZ]Ŧ|W3:$Hsن k: Əv@%YBA%d.J/T` H?Tq#s$MnÔlL2#y(Wm ` Y\uΕ-M`XvO %2FQON'IqmW+B!{>! –5R${^8)job==ݚyje-Ae1 Fq95"Z5oOB> =#UJ@8 n%AnΕر(Ӵ1EvRPt7;P o/>+kVsƙG":JGG!7=-pJ;% , ^BԤgE=J^ ɧ0uM?<@!;Ec}]Z{z9*< FS)ѦOkꞭ~]$<^'2A$)ťo3F3$PH ?;1|2~XE(f2X +v 'ChIVGe~㜉 dy ˾K@`7ڥv_:|;= QX5s1_D<Ѳ}/t=MK&M-)^cc=q|d@!Bӆf+;|38 =A- NۄVhHa3AC ]ATv..u3m /1TJX|DGS){VeJo\ &4vF{% J''3}44L[ğ]wMfFB E<;pZI d"7Vڮ' UV,:t ?p1"}XTr4~MT}@Ɩ endstream endobj 2927 0 obj << /Length1 2697 /Length2 19507 /Length3 0 /Length 21058 /Filter /FlateDecode >> stream xڌP  $@p -Xp}{a֧{u*rU &1 G33+?@BISʎLE vWL rq;:Bt$nC%G `ge ?@(1@TN.`+k7H~Кxrك\@dhh8AnV͉ӓhb%LYA we=Ҙ`(4-<. D`69B\,@.Hv"@ c0np{vhnht;X,v "#`hzv@3_ԁi15R\]vkdf) G{{+o~`9,%wN,Z`gw6 9@^,hz;RCjurtXB-AȾ@o"d66 `; ,!BƏ oF ptcj1]?JqqG//'oU ost,K%t[ϘrC>?_.fw1Gym[w7(9B6J ʹ! `eO#`/*Xف@7 en =\!# ٝ(`h{ع@72+dعlmy5fG7 R?rsA?"X$ ^`X 6`8,r'EpQ \ ?EpQBA.jAhA.ZAA.z >?q@N]}!cat5.9!c vc aAL̀涮v@Wl윿. A\v'oEH3, r5XgMzgw~|\R( KǿV;;-_BO圐#v9" B B_қ?!MN=e CzԐ! f;6r-urBʀ !qB:d/w?퇴 da3[ :sA\A"6  L!AgT uI yZY5y:dCrjB_B_ //9?!|@.a? XzTB.|@ /9ʢ@MmX]'ޤ՞N:K:b ]UvȦO^̵)U_'-Ijm~O&3{mxS'bu$HL~ma[yU?(:_ŭT:k\4Ooq=9ܩ2Dd8/[|5] ) H`og}S| c7rX阡6ƺ Y\Vd)XuP4LkNЗ,==e>4G"F0X(y#*{[;Q8925FB]k_쏣@|W`UBYg3u41X&uX j$5!R_a᪴Wfgγqt^GOOoB9.3&23}rh$܂őR_-*EgڤO'"n{LJ-Z1>5 D67G+Dr鱬G$AIM|1΋C<\A`dklPM'42zU%+bPRgn"APcN5#M8q_ҊQۀqeQȚ`jIĹ#,j솽 >pU{ͮ͢ ɯɸ1Yu8A99z/}4q54f N~ܢeGY:6Fa~QǬ6}e/f{.Յi9/[:#,3 ehJj8jx;`L%~Z3KNb-^K6a[ gesMhd j,8:mƢ#dvz6-}Ts–&52۴ImS>aZicuT)z ca٬C9Y$)&:r2ꝞD[uR/pU\^}c? SJa\3?"eO&h3pL"mEo0֌))T=mJ }  p.VԖ2#ҡo :(ał1nMÛ@i[=ܫG`irDiEv_ ® լ'vxkl2Td7Y3Q x0߳-尠1ftUS3^AnVć}y?wӃ~.hI6iZ)/f9UyD2>% %Pg8O(}`z-4eExSdmEc6f̘*T}; IYV_ }ifQ)hނ,#[k'hn#H6؛iWSjNØ?!U66vj*[GӲM6܏P[.A,S0珈1?bU1 i#SmyDgRtŲL&W_UV=V+',P䈭HYaσZk”q8Ɇx0T 8.\Xa8 .??."n;K*t];3IL&[ Cai>ԧ {4YW>~Ps<=t+AM*E [m:mG8BN34 $9_\}\{_Jse*'r o::wN| 8BN˶#[*ֽdv1zbx pdF"hkgȯ(h]iHy;.k§*&~>MAbd[ ="3aIDً4 ^i>6p2EYu]ɛP|4ѩ!RO#PyB5vGɏo6S/ml)>I(N mII7eJU٨2UAıp"۴g"RC'(FAPp"t,@LПIQ nMJ1>lܔM:l6{m_5 :Adڡc Х?ITX1+sRW{ :Gз?F&ڂT;F.[ԡSSZ`)E>&1ϝ~Z[*3PUa9{f$N7=L<}[x"T-3)Va] \T?`tӚ.Aֆ!UXJǍ{AY(Rث|p+6K11v4]{S@ aN_0\BWIQмzߚ_OO>0c=q{W}:MvT$U»4L.^hDd<3waKsݷKvhr5|3U5{0 ̚_wW8C#7WA^J94%Pt;Z*.cI S63my1{ \gBZ6csVJ,oJ*/1-9(WҨulc$Y>BK@& Gs9D*s]=H)Hӽm 1 wIq{ThxqGK+*HG<"w"Givs?y)'͂4gES)Ԉ=&mpunhn 1h|F b$'QL,4)|I&.*_>ENDH= )ݴbj˯V9b8Q .y'`r?9w+]]u Q,x Tub6Au0n_7{m3Yn2PK@̺IŤ˾Op3Pz%2ܧm6tȣO2jrŰfH]>mpSN'K-ڻb⏼wynܠ-1 R=B0Rޘ'{ KkNl!M[j;xuM͠ 0HqG ye ̧EH!/l:+l؃O)1l0C ^]RB=nu KSqYXv4][Q] UvAHngfːTg= J98d]CCkWXB_51:7n[q0Y\f~'yÃs3|QԝW>xd1'쀩O,&mƽ䵊aLyW29.3#5 9h{;5T)(d0 V}R+%G)oߓu, 4〡 $r-A{8o+V>z R3 d\#+ֈfS¼ ! IÎү|{tс5#Usy5zZ7-ݦiT.pIQ{M! C(IH\zW|:KI5!Q#;=h08o,HTFYͥ%$,wi6[:C.6m `jf9}84CqE{*lSHG恹-c:.qqn]e^lLrDc.f^y&eS`2B;;m Š_tO@p½{. ;=Sy-Ryˣ׼#WSCD]]JC̺ Ӏf Yr3ZaD V$Wz;ID.hJ05 5c L6LNm"+??'sT(zb(EQ!2H{"GR6ϕ~/ ,C}oZgz[39u ,Fa8c74=Njp Dy~V_K-onSQbɎCB"A@sԃB0oNLOk>a`Ai-'⾃@/_s Ʒ?S,K`;fnY1y-8]kY|@L7ALm֘1N}4]} 0I%] uHZ ID_bd0+Z%X#8鄵(h2݊V5r. SO=~De/pKXt@.b%J"+7;d8;\fXokHi<{Рkm(Rt<꼕&,=Z "d+#B1ge B,qJT 23^N Bciy>!LE9;Jo'9R7V]k(/|UGؾ>s⺶\P0de ۴QWGQI#q"9)~_ig?qՍtXRB./~"An<u \4%>>&bqޙu7U'u:_8>bM) ~Qeffy j*pհ &Mؔגc^Bd41yB)aW}8(MoaEebX7j cgp`Ge5F+;Z_`鱡wWg+;;\/MA #jG+6iS)LelgMMUm5z䭘a_U)tP 87S@%+fԨβ2lĒrQW^9[bKU-phvw?:x\dh^`^9/WN"ȬkօU ^Q'(sM = d4<5;(mX4hftٛI9SYMyh 22[$r&DaK,o=YL&Qd{YenW&ަm- ,TK*̸Xg% ~v=_r'TyO _{ @f+6׋6+(ŦkldvKRH+x[3IGl c( OOQ)ď/qgă7+rd%[[YM88U%ڱw'vƎ71q.h3P7sO:/x"W2u,JGU'%'ml<"3j׉X03bOn נ44uqPۭ gWlE.B4Y;@ܺڞ -2MUV142,4 &rM)·sT˒w? qYX}aFYT{jygo: 瞋P|*sRnCϤ},N4KPHEh b=KRV70 ' a9Ytu֚\*-^VxGɣq0> U "]38~?S?z$",E=X&Eb#'h\і"-xwm#!:-Mܪ ݵ_꠺Uh"9^!Hz=&LuZU=ɥd0$$"i.o<#նYItK AemUo3%zuqҷBjAk_IZ17O\ɚFp]y9#biUQңT1 (TB=0$\~*S-/"X7V} * vESzΞAv&IJo&xg 6YarC*L!Bf7+.gG9͕2vw{e,FҢXb6L!g%`f>zж$7 r{ZB<7\3L[yUfQEdZZe_C,.ie eE|zY!/o)5[>y9oeŃ3 Ad3s,Q"mJ9Bjyd@ IWOP\uZy[ϔ.G4}-ی,aC n\ oG6c6R]/2R4X~a!呭1.TmQ-/~h`G@z]MXl^L̈́wO#11U^+gVPUrIFD֍OPz:/1<,|€ih$_`7ǑG+L/Bz'P"% fJd7$DV2$='YOn[rlGr?›M)e.njy[-@$9& ;'jph[.f+:;31ί{u'NMZ,lOq)d>Kr0~̨ r#w-$wcZ|mrAm~yWNcp:xeL{crjEXA#2h$nZ=DOo3L-5CWsƘx2_LLmħ,pS#IZZ(`Fa΂-R˒y=ANBmiVӮ'!Ch¬àJ҃VX-wo Rh"qhlc)3mO?4X33;X][%to_m0Nkx v+Bwp&YC1h ;R`F(s[AT$&;LU`asn^2?|b۹}snYLF7}8)35{ [cOl $'=k̽pJ/cK #Ԫd̅Ǫlf'DQW5q }6ÙH0uˢa5njP ͽ>=dc%\5}D_tse&)i;Z7=܃HI$O9%veZeŽ27VWz.`d;r?Po|^@?,^)g m&;"U{hK;䎜A;cYY) uc%bM+l#^5z lw=^Ró=EmOvh/ޛlтlՆ$?#<ѣrq*_l'@s-K6 E -:t6A,[#`!rE LK@-OzLFh:Rs,Ďe-*0p =|3B]o40ެT q졪Z 0<7gLjCgO-]?Wq%=t38+"v4J 1 q<؆8 WKTz{vCf>tQx͑ (Vɑ| AK*^l>,Zv1$TbV~h5aص$ɯlv:Җu*: հrOai@Ӹz(nՉG42P60(^ճX|4ҘZ|C8֏rf )3u;{M-KZ;a,t-;\Lﴈj[\C 9zWUv)֟i3yimwOsb;J񄣟-Zo vT$|q蓯9/{[|%?Ua+m{a@C gzZRn%8 { 5T\|~I$g{ oPDaHoޜ"(wd=+WrPNxfα&/m{H :DeN)Ѫ}1a4P _~<>9KJ%v<\F¤])̖lȳV_&:|p 91w?2vq S Z{=M+cFa͋QN1g xa3E51^r6Q+ksd>ȖJr.k Wʪ aUg>4!.avQrz340DF 5GD_VFѶFqRaWKG /s1\^;p8FUc~ߝ`g5uI|v4CzԒ2DM!*X?W0D*䢓T G6aH /鉇+Ҭ#ŇO ,:5"1N߄Z1 ;$2mKNͿS^I¿] yܒ`kD\Fpr]@c0z2X#o5!ASBU5Z?k*ۭ{>Һm/sX_?Irqn}xc4yi3t e^c$'oIh!R"W!I*;t5Ǖ,k#BP D֗&]$hM#Ss0P/5 !N7lWO(PMNTT~b}VWKĥ\ikxj| +hnpÑ0Lii*NIH5xpA||ȢE3ۤ);O㓑܂yD ńNN- .6b,|]vl:jk}N~ڔ7u1EŷK?ޮqVf2h䞋KZx= ׼ʔq=z_WscL*٭*D,L3qLS&[}fՖ17 *3BL `--5Oge֮e[" Kвl;'i߄p 8 DBiT-20 ؏nf@qhȕy ˉ}Цcol+Q~*P2Zx_>=@y%?< Rg&^nށS?4nt¯k9ü섈Qߌ|a} K󎅏o=3|D0R5[32摒X6KEYc2m#~OH` HoRXE6<Y%JP]fzT}I̬MTHя]vD"aaԧKމ|k!yֆ%=\n|CePM/;iDeәVCzI.>T R:K gn -WYܝ% jێ[f]a{ ~}m?v`Ae\!#WGQ<72ju1G޹DZ93h$e)whZͺ+W^{4TrU( O\Ҥ_) ~q%–u͔?v|P 'ĥWLMrD|+Zxԧx9nPmNE(}tpA \-PvQ?*TT#e2u=l]7><EFC`%Cѧi7 X 6΃/s&l 7|~>oPrWୠqPH%kDe}C/"&C~dpڤm#;SF Z971iNď{qx8^.Xo'ڄh4E-/=z8I(id)Y,`~lӎIF?kukX͹mN^4+|a'f:%ѣPV#ø*O #M1?ZYdĸۮVt?`k~ȵ@uPwc>TU 6$;IlXrH7z]ƒz42 10-n)#kYAv|EE|n^q"!4h&=>򥃈nA]H岳Erf!o\[a\L!ki/ PqUD$]_/"T(>W,^"<$M:DPz,{*-l-EpR3KS Ip>;QR|Ô< 3bmEc1+/H_t嵹` H\FHPDVɢw %:U1F&}ZlFW{6">nwxHMi Xe+pQM'F^5/$ޒK _1*hyh8{yBQ)^%[22z|uJxjԡpudA"ZȆm*gW(^ yHfq6ɋoGvڟ`GT.McqsM^3d 2;T-i FCsD{zk J_6;f&BWXk;:nJtl/xڪE8BAd SO&)F%Om3!&hluhOn.̵puժf+7xC5QƐuLThF,3רSآ*'hO^18}o[$^2S:, ׵L\=65'̀|Kl`:/sk]k2篞k)L\.HpzK oCrA*ԻMf|0؇m Boɺ,WE${ͪ|ͯ%DJ-7ۮ/b2ͻ#"h?c8K:>ICٜrh6!cK'-"uJ'8\Xy62>V J蠎(mih|+.S"td=Cmn*!W P9{Mn4'b~€_غ>] QaoYem>˷pJ-:s[>6cޕqfjH-s,EHr&D~v}MwA飀O7(&x;1zAeʵ;:j{hy?P 0kJ@_.H6tͨJYxqF—{EX* c qt(<.]"`ڪ2j1c H_WVjtsՍW/*qVseiUr6gL wvv!XGI@X\G̫?N8o!Ys&{@j~ćʊ.S޶1jy.pI>z= oV={4EM;:4&'# ?V@.񛣡|L3yMrN[>!V,2!Њn 4`6+Vp77l1[Ba}vB7r*W#_4"ЈPz3I*(CDz Tz[jZ\#l£yc's 8\(ydy+1 [&#=R{[3P5HzFҬ3"SY ȣd}_ͅTm4 =hCEf_r'ޟaGIdFT<@m1l|"hr@a}y>w݌iy(&a Owئmͷ(EqC؊f.,(- L=[HX@ wjk/Xs"ˇ+e9thL0zX!avdz@C:4̡nN栌D~၊ 1o(IV)!ʶğS@^tp0L¬(GX#x'!~. ȳ;+Icϙ%J}N;n$Wδq3z:IjI).%5XpIa4$K@ 94?*kIG2#8Չ)Tᨬϳvn^"ZnrO1$8oU{Vʥ$ 5ӱ$!,~oF,r9qo4sĖ4A]<nD#y/Ǔ~\1|C"1_6.y4Gԓ>b1&wALS>^l#Z|¯(0HLG.:aLd>Pέ0k5R;DZ QBSD?z{EEu<FF;#|(6=r zUfsiWBC+%" s4^֮bL ,O&Y6#xB`#ݜmbu'ֺ ψ*8G !)4Uu_*6W JĈZsch@|6!: Hb=zLIoy&T呼DW{s~;PՒן N]EߕE:U!ydr '_DpzC('%v.LOlR T-74:/n{S xi RAޅXKe7{._NEMA0_ǺSne >w |f?j([A ;qdI55.\ =7B܍OuLÒX= 9ֱn6y!(bSe$[:P?]h< iA4wdr]>-eX)q5;oM]>#E!{,qQ͏ڑ{JB<㬚Rg#& xu GͦyMW?{ hr1X4$-4CJOCtO 0PDr8T"zLZT>T8\3%dD5̙Kކr w g#SA94\1b}1<$l;;~l2*1ܸg@Z:LqVfkSy~x@{knJ f%%. VXD(jH[ ]j;5N9j`GԯElB`MON{eGTɾ lt S5نО yg  -dr%I'4,sMoCm<-o@%g":>n푻@Jĺi0!Q`1\bҁ60;죯faHS'?#]Z:aj,m*2qBkd fo{Nl*n7}TCaW*b.b{L":='Pn1$3^(lĒqZy]UшHG RRZ&_[VkY;Ly|(],LU &#_O'wW)%)0;LuP.'1 . c"V`2]chjW>[JDSK GQ]˩-elL)`aH񓹓¸ӄ4`Z≧6 (!q(v0c .LLF+ c u0gC}0|2<$`U,POCV_>6yS1Z rExejTq "IN(+0aČ,Y^ 7HnP{G zv)v"i}npLf[7B6}@-U+NmzdFJhHLv(^h8ի-x$eb4Qi,Iv߼mLFbȨݘËgDV!ǽ0&s?jP.T͎-ñpA#Tqu,7.lE7as5~u&}7pM&ܖ+NROmOXoI֧,ўXf{C_Ab^3jpFA('4\gbi2q>3ΔUe{5R)ػP5`3n endstream endobj 2929 0 obj << /Length1 1828 /Length2 5623 /Length3 0 /Length 6737 /Filter /FlateDecode >> stream xڍ4?N0Bx۽ޛerVvdGvFIȖ7QP m|>|s~sϹ>|'A!B`i@E" "B`0'c4cqH ZX mP<1P4 ("@ĥ!`0 KJP7#hbp w)) _递3Aрw&vAQ!=SGw݅8! ^WpG8u?Gt? QqFHo!wbрBh1cbwPCsk[OBHd( qv=h{D=um!^~BQ8 1EĀ_ԡMJ|8 ᐨ3~!N GqT?"p=A. qG!h;1. c4ҕPC4Q  i&s c}8Xq!axnDSN41HLQav4o++3NeepG b¢*P࿙hMxJv? .[8WV`10?2R'P<?~3'[:&7{quvHz5P.(Q$#0_m6g($!,  q`NG/;a~.8bT`Ā;6=~ 1xb @@`T?TJA~#IdI ؿ';1@cP!Ad  cP !A" cu i8" 1Hc17_7 ;'Z\A"O1H7XH @!Q ?@xw̱b 1H$w  1H/9b%/8wHFb-&Q=0q L&ȱa<+ s4] Efn|*#\>>tQL׼mwj{web<ϰr[d0hL_S `Yp7]Ul|zrֲ m7>,('$;{F8x&=ǿX=妯v֝&3ӗhߡi HƪM[y,լ%diאD/W VU%'_sa@wdglW>$/cWЂb?!R\'`YR-p䎜p]ʋ;&e%R"\U;n2T@FT$YCxAfn|PPgngKX 9kTõ#i@3V rwڨV)Ppi`usY=cҥ؞:kim'W6իTZ߷dr&.||Y+.m4;(ݔQqreSZOiKxF}ݦlYh%cE9vry`us.U%qAk'Q9TUEMpks'އ4ʀ& ؕ7-|B'wi8(/z*;"W:iq浓'*[O:v{'_Zm_UD t%e,.}Hj02FegC;Wy0R*\)Te6̜A_\'I,tSsBuK FL߮}bnq"ݦsR j.+Pzr+aDWG?,P3!g"p6;H|mKkL\fkc&ƼuV~$ xIn9d ތWgYؚFk) ϶N ~X1-HnyGaA RI)(JT_MC,O7=jśLԜQQ/VuRfڨ=m~;dqcTJT{k#-'n`Ԧӗ;ʣhz'=\ȃz umXܪ5\7%[WW|JI'H&̜Ek>]^x7 ٕW?q̕?)z3nE>OL&w]yK|zAިҝ:er,8X> wZPեb]C۬XvR{dȒg}4e%<_ HfX~;^޸LRaxs \;pE鐹gJl( @:lhŃ}V٫olڇPCEsڢ>]%aQS` `o1x➑:ܭXfS૮ݾ):*ƋkX}s^WLן*̵C5ݎ-[887ӄ䞮T%it\5N)yw9\濝 ֝`ʺ_eݤS`ܥkm㊔@tkеxa!klcM3#W[ۤJӪ#.Yqهv/-סf$$9Qv.eđ91[M'^VGy8dpWgC%S:\shJ/A]syŭaCJ cL삘/stS:r4קg׏_xGzE=YV:B[i˲(tSp˕r;:dSFM1}pB ϜsveY_u,{w/Ǝ|v 8ޱ&5^S5-քF^(y20Gŵ cW".N{bBf=i&muNh&~\bHT(WBc'fST$̈femmŗB)64 "Qo1'd5Ŧ}njy?8c@c6@N U@g,\hr9Y򻨅72 4eQ.HM2ɏ'RԀn䘸u3XNEd7S1z=*U.PBfh;3T\ǖbVH^T-:WU !PN^ j0[]XE{}$%W r7 &*L˵I3<͏.7s%_ C}zKGKQZg޹wȾr-"d0:0)r5HЉ0%;x{ \_MGS= #QyoD@"V*1Q~y_S6FϹ<•{) E!x1:h::Ljd_A=sV#4'>:'n;+zi%-LtO8?栨Z.L{BvQ 2GQg]YLRSaFI ,+\n,sskzid|v4ބ }'/08#sĭ4VH9ezzIAE5~?.0uȻ͜.W|m[)A7z^KpA}bq}i?FjY箙}#r;Uڲ)Ybh]ܕ34 'KfvuMi>*m8"eiH;'r甦woJ:ig<7]dLhWUn&J-afܧqNDtx#e#*KI'չw} ;e>_m{I$J5λf<ƒN#ȥ`HMܙYҩ,Œ'njߌbC{TsGo {҅A|+"~a$5uJɩUuwe<ד\#3jBbʲ U#왩L*:/ioQ-}28sswOJmQ;+ >H4Ƿ3pKv鶐۾/3+dr* {iĮR%cnOpsa>_ ῾LZSa>_d#ԙ*P'Q9Lj5١QW/rO9UN[T^[znš7 HQR$ƽ,.b?4>xJ l zPrP\S |[*M|C UַK^䢴0"0Nw:C!e5o .}>۫,P6urD,V`(/8[geUB6kBD/$_Ҡh֕x:`e2{y"m*Wa{;ԚT!҈c, Hߍ`V\0=/g\mOve|*\FD_#3~LsecFڰGTW2!`ɥ9#gM[q9a2nXGے'm /sx_MU@_:DsѥS\XXfj8 \ؚ!-mPd岳QH/yݥ뼬3͔)o2L%-0{SaP~ul1#[Lz[{_ͪ4./Ty`'υ- A1_2H}ǔ1ݓsQfS zjc_䇣(#QNk B|xmEӲ]شuYjpwDu5fTkGQԑK}6?Yi]ekHUW"~,h[g&7h]Aj' {5鄌Uoa.w鿸eN +iFI .Ɣ YdU+$OXL[\l!6p0 K*7IE<\3Z/4R+ٓΩ[%ß5E^48mXؓj,R>wfEH)<:=TwjS.dm (~bػDS%y[_XZ-ZmjקʉGn e@QխܤX>9b۽cQ$J`,M^Ksa"5CkG9#IMqA{YՊ1T\vY测>u0(_2Yw%UDў|4jUgwbBg}YlNͿe3}4b2hzs,͔"mb٫R4:]ŷ^3m|t \#m<1WyyQ 40ܹ觼yמt %u{Ta0곧p9!ƭn TEr b3gkyp1ϋ&um>vKՑ=;P1s^yWe)~t/$t;4e6/Qsׇ@9RpckZl+,ոW3oD\LsLSa>.SCYLa$ŚҭGSՁiVީ<[ mOnuڶ ^*T{\JԌb&z<qƹ΅yJxu*AIaxk0|}+ 9u9yXS3ZG-W֭ӖO%=2m2 k6o,)we#4V}r%_ M)N2+[QVw\-}l[()|wO ִ3޹G6z-F9M6'h9X.X, endstream endobj 2931 0 obj << /Length1 1341 /Length2 1434 /Length3 0 /Length 2301 /Filter /FlateDecode >> stream xڍS 8TmNZ4(/!|jȐMi(K9fΘ̜3fPHӯWZiQQҢ&-T>DBP;3u5u}羟Y24ɋl ŝhd* yӨJeT:&W;f.,##!B P!4h,*ЩT@LPddIU2$N#$ A(p!,!^AbWCRT*ɐDNdq@B,M I6 \aWB21ƒQ9AQ|XAX@%~pP? 4ȴoؚ@%C<&B A`;'B $cJ1KC5@Dy2DrD C` r&?_D󈾫(U /ДWH)sP$^`-ʠM8P77NL&pr:e83qH9N( 7`?]O_SNЀ؃c`ra`]1T&G|hܵrM)_3b+b߮~HU? 6# ɯ"v k"g#0?y~h0~(kքtLHTB tb`jO|8Q+C@!NPT'&#iFF!+FwBy"]д^)d2b%zn+ '糖4晶HgvmmZb2{4WeۥuJOWM*LZޚ]vwGb2ȓ_#`ȥr߿=hu3 `d}ZIlޖ[{ s^9z2a.hyl7حuϩ&.A.KצU,xR+9'J2kw\]pC;9n]]__-%m-9qdgf߁Rc%+v' RY9[*YHMRnyEcY3kyxfkčeYx!Y.7%%{6߭hpr}AFۓ=[n̵m&ݰtoXel .7%&C-'??0U4MQذ/˯#icEو*3:̓ |zչ"COڗ fGU:h _SJX)@.nh#3?O$; %7O<aO"{XLSlԫEizSs8dx7emGzUpMWZ3,aH\xU9:]r!i=nP_-FYHvm%ݱNqO;g7ej endstream endobj 2933 0 obj << /Length1 721 /Length2 6909 /Length3 0 /Length 7498 /Filter /FlateDecode >> stream xmwuTk5R5t 30 2tJ ]t4 HJIy}}׻ַ~>g?g=k8X5'TD@DPX`a/",##PCAAh,  " !!=Q0W4ۉo`A`0 G>9>}G( ]g P3Zih5 P>`8 s"<g$ '8!_x EsF!=*u5!S5iiGeN("U? sBPH/ߴH?0Ax@}pACQ}$B Ŀ, C s@0o X oϽC!0s$?G􍍁f|-euCL  ? >lZ῾#e"Dbqq hBA 3˿ߋAfNrn!E|㣎f|"s#G6^WS|_0I(Jy85nᲘ%jڨ6Ϝ(ݭ*Us,k'_y5?u̴M{G>tFrAZX5TIfuYx*h6h'gg~ʧd(MK~ 2@4KZ*,bfIvjA:7"I쮿eW3}ݔ0`o~ϔiRm.*2ua-ɗ!FYicD'jz>+dDBKx|'V6_x_w'ȽiB&Jw'M* {b#"߼p7)T)M¹hkXw6=Y,* ׷]ٌq or>+'~\"&3P"><_{3z `<,G/oM >+f4h,h3Ʈ V=6dEMo1dnhe>/ȍrf SN`f]ȃ)%IFڪڕEi,n]t!T>sffVx]ͭ](pxu8^\Efa }0iOO nMl: 9]%iL #ǥdOxԓ4Vu|K* eOtn>ʿ1ډ6fWqiڄ︯OBٛn0?tZUc7$GdXP*=kDɠyBe/r-r8wlt9*[ /{#NI53~rݡ0&xͮ >،}*6qDg%ҿG@j3KC 'eԩ 6짹3 '0wτ-}0|KH)'QAɸ nGCK=vrȐ޷?6j `#i9Iݝ“0u ^iV)g=qAp-`j*ǔAoS5ѝۆ>F:!jkTOTwq7OS7KD]a =Hh"xS#%o~+#+R:иa T<.l3_|V{{4.9jV Q^C)}RWG͖ P$a6]mM_42TUjj͆m~KNT]16RR q->hlsFcs~ ~OAɳ<z*}oLsGKa[@h;U1o9Uxqeb~gf/^$@:W=CZ J";K 8 EAgzE.M/1!ݑmН=<2+gեrPɛQh4c|& Ͼ'|aׇeޤ/ZEԌYk>!wn?Zʡ9l e/2@g;?z2$铵ЦO4~C.iJؔrIkRDP4*PWw+TO8!CՓ$S&O,o]ULUh2v͐N9Ռs&вĭMhc&WwڌRlu'~p晻 1g2p˒>(+4v$ pie`"!\3okWɥUT|NS?j K&?Rf ߠIeS[b[}{\w_SG'!Q31~XWΪwqjV cOtg[}i*`Aw9nd!.b :pr3oX!S1Qyez1H1;ۗ3>NN+ᭆld 6Ufi YB3VMZⷀga%ڵwL^O88 xP̷w-7;kKj},cv&ub:qD{qӦ95"  \YH${#)s`AXKn6Kݝ;c804rdYA74MAѡQ]$AJ'ݸ!􄕝M[KXeI͉tE"Tr}~is :u<1x=CmVyn25:A7|%55@x=dǍH>`ϱvBA}csoTur>KmY0s0G\ K-o9evVb*>䢻pKrZAf,LF ݄IՖ4;S)!Q޼񣮍@X=ah>c`"](umX^A"1Y2%L@ z߯wMK'ԎP&+b QLK /pb1Kk^1aaO145gZS瞍Q:Lc7slT6 Ҁ,1k3;KY6PvŷJY,L] D^\}K*̍bWQp [GCYgm9U2sd% FO;P/w wo"6{^Bgʨ$e%XP<֦mx4;5 ɱJռHg?:S0k.O=Œ7&I} +1{]o}yHwwK: wlyzMtg؏jx6[݆)Qƾ5-JzVansf8Gfϥaos/Q=e}ւc1T1˨ ߏ1`hWg@FLuyn %T]|,J9? -fZY0$atӫMG7<MNX2 +t0jАUU@5%)r`%6.tY29=E/wlaE ӤY&(Zuj>Y"l_я 1b}Tϓ)Ks,И nUoDnJTl~H 7z2UaӬm'a^kn~Yz?#4n.E/zMGR^Od,JJZΊ؉C-ا H5wk?\sutVrlm ;gפj 8߅}@9 (]jG2Ucًq|*1YݾfdE5läkFZ{1mDɝWjs3Ud4f5rv_JJi ď/<7ewt$|x >n{Ł#٥ 2?Z_iy\q^(P'6Х{+a8sY|:0Lx@ p}l^4)dh>`6A<3]oVŊ}%+ӟ=y[0 ." 3M-IY)^߫G{|+q"IbYLpp @Z-^: %4d L߉mcדm*}r<KwZ*_{f=uF\e&G'WfE ;R(nkK=$J0}]BuU~ ἅuֵiU;r .COvIM=*GE+ xOW-n"~_{z ?7 :Oԍ>~ZMMف9H~+yo* ƒ0n;)o.B춬u^# 8P˶8':wDO*3~6U'gs)>hN.{4|~Nc0FVhՎh&NB MٻȚl.cg+U1C,44#'`Lk)u*T/MFeIu:i8HQV$ 'ށOI@eBEwK2G?Z}N!V5W{ٟrf(Cm%ɧ Q v o%5akeO(kR![{Ma`s4s~L鲲>YQmyq3F6˒>v?eoJ]kfdU5  `7&b]rBYOm_Kv_Y}~7fŖ'‘Y S69v2~hu"^nRSm]7ٔ|޵ *Օ?ڱyg&mb|u_&> ӣfDt6rW\{t9Iܐt̺u_Uo nbVsnG թ9 C0]_ !<=ۼ a:q1aa7 T{Ү(kF3 2J,B*Kn> 3䑆Z-ZSGFJS endstream endobj 2873 0 obj << /Type /ObjStm /N 100 /First 1076 /Length 6187 /Filter /FlateDecode >> stream xg߲0*x5#9##An$"FZHzGY|H#hoP#H F#' F.zGFPbp/J ьэbp0B 3RH]@PTf +kaHئ, l&pmZ: lVaHF(I l3Fa0H mV Ħ`M԰A6'-AHfp[#$ cuIoE"9*As`>%"n "% d(Њppy"o $1X YP-mH#U2jR`2hqse⹸6*cxBP8f6eqsB;;p֡h4lQ ] 4h8+0a Q"M 4  ,Qj$y)h5LX5`sgN#Wuj#* DyKChʂ"Uhh0VV>b@ۢ( 2Z$Okr ۴aOa nׅ3Jmsm8g3Lx|"xRV:ħדFYk4 bU'*"u(O^>h xJ4xkit|S#"D < :d&"HIyp,`Q'0ze&Bd47YDģjL6GF* 0Οjacg)"mtN )qߴ眉o ,MA@Ylx$SW0Ay8ǒ ihp})I@ x<@  :W 2Vdp7vH%Popdh#țE Knq?3]?1 *l{[>d+RUʳ 6n%ф-DcB -dq`A~= &#S vwc, $1xVN,VYga^+X՜EՋ;X9-qK`zx>P"^wỹ!y0Cq+Mp$h4>@" 0b ,%)@_PF r3PYGyҷ ;pgA@Jһv`L-=j3$P \P r|OQj:hqI딀)Kf(„4Z mtf12r pZEtMЁ9Ǒ=+ $\h5T+i)gUIY(R*%O<?'~+ଲ\QDtr(粮̕w;23(=lȑt$T*b%J"A&#ׂ^m=RgRsh\QP]ЕŷN^$%:%vC/U|آuGb5VXib6#ѣ8~@FA@%C$>/\Qs'Dۘr\d#i%b)R9zZ3kXӉTҳ H>QSgxv"J!(BS=O5 FWF3O-,R^dG (4X ȬV)=~?''2< *zHz6؜q&-Hیb%ai*|=Th(\]T:X1p4 tf=:o:8l0uRf7VM]ra :R3HKo$,b$%Fj+a~#3 :e"UB*4PIb:%ݨPE1Csx̣%}t^G#NjM9:Cn 6|WAgoxqΨFܡ!k( 30ʊKMGm1cTQ#@Fo:L݂!UP.\P60'0|uCD-5< sŐ|Av?P߰HT>"2X.݄pCB,%c*h$/p+k6Y7 V>U`gK;31}(j^aBXI7[<hgTۣ'75 ZRKnthcGC1ډ?%bm&URo}6U A&tT(Nh)ϘN,(#Lg~Rd$CK])H76JR $C>O)##JOwf_mi=jjZ}Z~o,]ӝYw,!H-P0|})*JGU!&)r.W `o5Gmƒ6RSI jC;t)*{6)r$$Aosy|!OxyDQL9lNlAWzW\GI w|MBS9oy:aǻ̸>k+(fvU=^<]LV=_›ݗ_G)t|^;1WF7I&`i=[aES=_'Nhݯ_Zӧi=V ;Ǵ *8b8WVճy_^Vo:}W'iuVP}Loue~ΫIVլMfu50^UWb2?ղZYZUE]WV}~T?WfiO޿WxՀx5WTt|xxY O"=O糶` Nx/@3 M/+t# 60 Zi8bWjPh( ${z|8=p]i6VvxkO˒g^2wc?yq]^&^N`e9*&z=0PXOZ|VkiQ KĐb|Z?otZ×*Q>gb9=!Vb<=,Z:U>O'CT*Es\~*O&cvt_&)`9oXΖy.&vw]}5dZe'6@o TɜzW?TT!O.0+r)AFZN0eK@69E=^Ջ&|_]!4LǗ'g%k'.1' 2UW ^N(..{&瀪;k=Ho)h&F7G??'̉GgdݠTU(6ʨ:|t Px,C w 2P4O47#bXZ۾M54l.7YF%7{?FrviqHMURxQ^}yt8đ9|U4;Ea/H֥ci:Љs׫_BYgghdJhx)y.{|5>Enz<RMw$ 맋WPN?^/`4ײ0;Ļ(6J`sbM*XUЃVu${7Q8 ©vM.Erm^1 ϽΛ͵l1&m*[dG=ˍR{/Qq@Ĺ== M4zW\l|lp5,7vuoof)@GGCߥr'F qXx[/7劕"8YZٍrO߽Cf? `PBJI?~J =LH9+0 geJZ?M@ճ`/ !^p2^LL\RzmػQ7A_Pв@t{o7ѷ5إ=(QWo9]q='?wU=zgKcQ6=9QΕGa~}熢^ym{71?}{{ևwK &G@t;n%@ P'n#gQ g@ Oڕ4l& zd%k"wy3frVd 1.Wzhtt"V%m \z%yPn~b <6pHIy+3۠~S^2!S2q+LzLRRBg Qdk{r-TJ%ҕJTZdd 4zT&Ke(v* /A3B"f*H ĕ*+J!;:+B E d.t'7Fۨ|ƐHf&g[2"a0")H=CQew2:yd&4aT9b\l$۠τ3dr09x WV$ 6g+elWVmCJ*ٝlv'ɚmPٌ!>C͡zC}6>C W.g''B\NN&.'6rs9;% IY \}.>C+W*)K12W1sN/H*9|}^ mPJS'>\٭ibϻUۼ\ C}>>C gj T!C_ȡ/rEFш6BNS!T0+{'WT6cpw\H)YBf<,ʻ [p/N%ks*9QigglVmp٬vbs9#J. >>[Ϲ*uB_j endstream endobj 2942 0 obj << /Type /ObjStm /N 100 /First 984 /Length 1609 /Filter /FlateDecode >> stream x}jGEu{򒐘CD;rH>5Zjԃ֝:{`qpk[V?l@?}x:dڀFöڀ 86yhkoz'}6hf^NMnSt\mm ݠ`yJ۠n,8k!=D7mVC ~d*yhgX顥a1wtzS{ÊSÚS56XsjsbͩŚS \9Xsjsbͩe{hs41h͹ ˱tC6Zs9Fk.Ek.;ڰvv؆56rXsae1\nXsÚ uÚ1 k.K6Ӛ Ц5dlӚK k.iEOkm>gڴӚi͗͡56_|Yshe͡˚C/km9˚k˚C/kmNo_?ۧ_xk Z_Jo/FP/{lyuد<اmߞ>>~:r?>}|8?w\e/dm@ {П/z X!e޶Bqo:Ob<^ryǽ^Ʊ$w˓:qo𚷗gH}>Y#9YL}Ns>g9S}t>gsF39YL}Ns>g9S}t>gsF39YL}Ns>g9S}t>gsF39YL}Ns>g9S}t>gsF39YL}Ns>g9S}t>gsF39YL}Nsnw:!/-:1/屉۪9j#|>Gs89ϑ}s>9j#|>Gs89ϑ}s>9j#|>Gs89ϑ}s>9j#|>ǫ V endstream endobj 2944 0 obj << /Type /ObjStm /N 100 /First 943 /Length 1589 /Filter /FlateDecode >> stream x}A^G sKRZ Ɛ r,, 9~[c^W?|74bAFnܟ =^5}i6o>=0=P#9Ig>'>1\]Ot?1'l?3D?xOh۰_g<<؞=6Mnkk'?}}679ܹlpB3e;;\ssegse;;\ssYop};;9yop};Ia3nLW> 5Շ|6h>_k/koCx/ˮ//r _i,lÕŗ2[S/s|m)/6eqez _P+UɿnP  d]nܠ } Nr'AsSܠ)ӕnnܠwnp478Xo?}}bgo~wC~_|˗GGcz=sGzɥR,=o]QS}f>z>zVPyݨG.QIԣT_zTٺ^gQO2=KOj>fǜQ/c^}̺)Q/c^}̺}̴yuizuдu#ic}؇}Qc#c\}i}GOWR!!WR!!WRI؇}}p>>(itAu>(탮>jS.Ss<]5yN)q5yN)q5yxs=9˞OTfO!{β=SȞdOeS=N%tW`N%pW޳h2ځەkdZZ;XkkJZ`eZ+YkkdZZ;XkkJZ`eZ+YkkdZZ;XkkJZ`eZ+YkkdZZ;XkkJZ`Y endstream endobj 2945 0 obj << /Type /ObjStm /N 100 /First 883 /Length 1598 /Filter /FlateDecode >> stream x}݊W)OuU!| CHqB?u+Z*u}gs8Emg;.lqSc<`k0p]A][<񲮮vs~k׺ܲ7B;4uYzpi֮Oj4 (Jа]4<5/Zc1nM{=51-5P50u ;QR=l~TAจiXgWA*HCsB*8T  NSA RJVAUp*H RT* UCƁv,vAtzv}84sjx}z4|jЖ/-nam/)k136} = cL Ιk'kϼg^w_֚kwwԔ\F w+3`G}3>}f؇c {waW{3ݱ { {9Va[AC\XEc5G W,;o[FjY z~1Fl* !*E%Q='\TdJ+RLpR*R)TTJEP*2•JJETRQ)AȔ W**"(RJET"S*\TdJ+R Wj~u endstream endobj 2946 0 obj << /Type /ObjStm /N 100 /First 866 /Length 1554 /Filter /FlateDecode >> stream x}͊Vo?CdBy/fa 8ϩi)j$'?4VۓdrWp_Fn}Wy6-~'kv燴>߻<_6XgĚM`%ܰM2V#i2G>,𨜖4tnˈrOGl3a0p6Lfᰘö ö Q8fp@ejpTaYTC P 2[aLvIx 83]]4rZg9цq㰫#el3aae1le1le6զq np2_xd6߯`82lE6a36@2Μo8I]q5qq57o\xMkm;c)֩\ƌ}! ~8ж[l=?^[]mO_^|߿{ƳǏU^5*UWJǪkUrޫdUU#T!^?V}]ScK;U {U*7'T]k|cWU3TiRu,ҪƧ*Ǿ+{TmǾ+[CU};]a_ΰoǾ*+`W}+þπ}eاc t>a}TG>3ñ G}8vk>2ص®Ȱc ;vͰcGfQaG ;T%`G]T%`G]T{.vqvɰw^)UR5>UݱR*R5*RQ)A)TTJEP*2•JJETRQ)AȔ W**"(RJET"S*\TdJ+RLpR*R)TTJEP*2•JJETRQ)AȔ W**"(RJET"S*\TdJ+RLpR*R)TTJEP*2•JJETRQ)AȔ W**"(RJET"S*\TdJ+UogdJEvlOrnUBUϪԫGD˫5ƪBUUPjzGGo v¾a_}UW3˱ W}9YaʰO>+3`_g}3>}f؇c pZa׀}dձk]aWǮvacGfQaG ;T%`G]T%`G]T{.{aR^k|cz0O+JfSiҠ̤.ʣAE]CB3@+}ftyV ⬼YӥY93(33 eefKeʠ̔.oxvfBսEy7?~\ǿaww饍ߊO_g!=N&}}>™7lgS]~oס6>8.ɕnXTj endstream endobj 2947 0 obj << /Type /ObjStm /N 100 /First 1013 /Length 4168 /Filter /FlateDecode >> stream xڅ[]%I}_Q{w+22aYEDD}Fie^qvEשTg{VږJڲ-wk[.[մM.17ieJ#"zSeVg/Bz/ٲ-d03k?Y"Y{VOm콲: `nU[VG-1ǡ7_E$}Z}˩mk*[h$WYuDjj׆p1&ț권Yu5m]f>}sCa?jþâſ ͶHan8̴!~mhݦXajUtu`,97ES*}zKkjQO"dՏ>q(Y?jSS,i.iGȶOsl7ho3ٷȶHOۭfllj^jYj4jZ@[ݚ9[m7%v_i0NXMfq#mܳv*rVY6l7; YvӚ|lT*Zm7U?٩Cd~Xm챨۰䟶;ۇo͟?=jff<$N O{Kϯ?}~*Oxᗟ%~?|q/U^/up0RǛ-?p[˷hlzko_??|3Ly\Ь{ocW?=3u_ߛ>>׊}'~5- =4y[%eqnwfFl}XfhoӽMCz[({S,xxe%j:.=8 *--p^ h2T E[P)vBPBQjٿ vgJ q 5F 5 #~yrOurP!|*V!.5tѧlm"j(}fd+ӕFߒ.5tu5%]k1S5WE|";D("1YūN{\"A]q2j$՜^ݩBIWKT9Rw&E^=O\GK"iKwpeYŜ r*9q# w)qsA"^CACAdSOaz#W0NA: )w|R /4V ϷHHip(Pɡ ^CxDLI@$y g oY\ 絶%FHj)dP rH.~+ů?[Y`ycC84DSHC84DS /W0.N D \(pX72qR/N!xq qI.B.2X[вN=Z0] 2tH .6dGA"^CA} ˻,:9īS(RNA*y.tY)x OE&xMzv\U/u SR42<^4 ~ox29k1Xn^U+P/~by;M$$2Q r"^& ϡg"\)&řb"\ʑ \O^usF橺[zg)$DRKI"_*ïGS}izr| GDwkO7hGB&W]tдx(,3 $FEϴ1߲@ϡ̲p p pu5AshPS !Ym/ ?>D&=;|t+P<^8> 5hIS !YH9p Ct~!:H}+ h©5 ~`:}pY H -D $BCA] 8CuX+ -.z/N"PdRPTV OO\h9@V)-]VLPz+ sHT _.7_*]+LZ9*uӪ.9 Ji愪kN2Ru*UʲNZ3.YIIi)]@i=t=s׉9,.sTJΙJS):_*RgKOVf-yXhrwiR):I*OH R׉d3( 85hqPtZ1KbGy=SD gZZ;  2\p/> endobj 3042 0 obj << /Type /ObjStm /N 30 /First 293 /Length 995 /Filter /FlateDecode >> stream xڍWˎG +=Dj$`[HSE$iΨGCN*r1%WJ9\Kbj=ԪzВ ꉲGm-&9Q2»q"-^_J"cϐ8sHg)9Gˉ{Qb28Əي2QMp(Uh?n)w䑧iAv/^?<ҟߜ>u:=?<=]ѕ~KWHPtG$BpDFFՁ7ÏΡ7/o"[#[lHdׁhh}՗\dmX(ߧb|T,Gէ=eW[f1ȗ#/-Dt8%D/Vh՘\dm^6},5?>pwV6|eֺ/󱄛XM|,&`>p%\杝Mcra.v||d `u[pPח+?b]q]B5뫧~<uI"AC@|Ir),9/9d7n}yFMbQpjܠAsC:Tt 8@;wtCE!0 PܡXX7 -!^岧ܖT *䨭NЯ9///dR2_3Jf,,,]גsF@"׌xGF" A_eT 4T%<Ȣ3قS```:"[!=.KN+++Fx!p 8]w-k|,9 \*pU]eẘgH S*LU4BM]/5x*T8|m_6;q(0#0#Եsk?/`H`H]4Ɗh`N+Ӿv!lX[=Y4oQOߟ?<~/?O2?oxx}:#ݤ#Q״S V@ endstream endobj 3073 0 obj << /Type /XRef /Index [0 3074] /Size 3074 /W [1 3 1] /Root 3071 0 R /Info 3072 0 R /ID [<496DBA45A0009CFB59BBBD784F1DA570> <496DBA45A0009CFB59BBBD784F1DA570>] /Length 7361 /Filter /FlateDecode >> stream x%{l{}vl'vv$q'$vbqlDZgc;J/>G{UCHWW@ BP Bm⊂tBR*Nq;9|bcxb?x,סG;&$Y$T'ΡG@=y8446h1h#mm>6hA[h7B[6v`'m .mm FEv؏݃vrhm.p Їm =B[=F״\m:@K݆'Rh Zt@؋̢@؋̢{n@@w^dͯ@$_xm z 1;A!a/2 #a/2 硣a/^D{q{I0? ="`&t E& @؋LIYC/j.? "5W^d"`2T_Y +u ;+Tjv&E 3u*¾6Av&IRؙ2dԄ=d5? U {ȄWyj#V %2 !J 4Y%{؂6 M=܁v {ȤfF; m{mp/ h @C{ P<m{xm y p(t@h}aYeFv=T@{*`^@PP!GKP!9P!PFj` {(T*(aet]@CP !w켆@ha5ڥfs;dh9;Wh9*5` z//7Ѹw@g[hh0ƍ/ ]nqˢ4n^%`M7/{6*pM7 E#G fXmЎCgEZc`ٝC3 Ʋ;&$LD84P&SǡMgmhcF`;f4#h  S{@@ہh,C . S{N`7Po ؋}~4^zB=h7p S{ۻ =žaVG>4L-C4L-A0w:Gy['Иa$#)4&no: Fc5AchL-Ec5Bјq`ۛ^;OYt A;I"vz2&aFԄ'Y,T fz*a9Yo 4V ;}*aR; %U;7JyϕNA {oJث,*a/dW {9vJث*U^%efo8W {UGJ(aJ~Ja(a*&e^xP"^GK23w $eޡx^f2X^fT^CUP^fe^BqS= N,kI@e(*a/;J,=W {YFo*a/>“U{u#%U^f)fJx3W {w ,JثJث;O&U^f)mjXxaG㽀%u4+^}|C {nd%?] 't7C3 KA@Mw$T'Xx4PAt7gmh,؎kx>wA[h ܇V eDcn@wh,uh'eEnއq7ps@!qAh UhЋ3{z8] xNvGch<'wq4B.BhĽ Nw:B#$`?p@ G>ǀA80p Ng1E`Yusq`.+U0 \n3M`pXK2V{@x<@@,` X @d*53>Ոsbo{U >A| >A| >A| >A| >A| >A@|P[ۧ.| >A| >A| >A| >A_ڹg%Kڛ#/h^F-&-?Ck×tv׵U ^N@;7nuh?!@hQ@舥-GV0p؇^Y 4bi\ >N։ CGL+}ſЏL<;GitW-~0Z_F9[gsX:tzAgyqX:k_h/h?6a~!ÊM5MU["Z6fiSYis1k4/5Zg)YN{+M[]/qthv^1j9av@;ƥ펽skfI[}JZs1nb64y4|@@jGuBLb4]vTha~['xh.:!M{+jA_fVy n*jSÄ߭ X}4qy@ V̾Ei< 8tN06~9ȣ\GU@Ojc,޸M`iL!Ad>Af.%4dk+R|L~ PM锆'C5̏X|LSZ|7?W#ŧ$I!Ļ GF qd8nZ&a&5]yT0럌$Awyɾ ߪY p-<jn7K۠=J{lתᴨYI[mTN4 ]`ſ-ijGen8dhT]>h# }VAg#_4z"}42jk-KhZ9GփZ7w4IĭZ ~h%yiE`ߐ߱ĎH[րUKsi%*3KM=ZħUve68AQf%+-WnћҚe8c#dNK\|Z/=5Ji|mejfw3DͰ56g ((o3,q m%^+iÀͧ,+4q48 u' KQFlNY"si9mg]iH5esƛEG?~%XԛYî4oՇݰG|IZGVYj9i~[4K--is8Z% PUMfKD!p;vKJSTݖQ,Qis9kW{w Z~KPR]㖨~S-F,ij:S8f4nqKZ45[yʒu#Mk$rTV+oڒ+[Zrl[VgOEK6wIS.X;ܷdפ0ZQ;!My-9<'MђO{K t{-9i%-y:tؒӭҎCQK4F\6 8)K>Fq%F@.|_:q\S]x);T+: ءZYieЂ%>vCK|xupʬZ]:6C`ݒ ^īȒ=7;)QuBԾKOIԭP48Q+t(^a%tT%Ԋ-HPB%Zju9iԭ€%;xrD C P8ԊQ/ cϥQ$P /nSFi ]T/DQkԎfPmTǦ@tRݏu+ZߤZWQ 9*Ԫ5Wi:9K<+Je*IKh QK]l(JR m Y7RQ a4vSJV>ԲM>#ZVԤIST-ۥgFiK=YB+jKw0tuL&- 5UHTV?45PfzO -KcZePʢޟ,[I#{:hH#*[5L2s,d _ƗCѭM+K:2IeVA~)O#ܧ!ii|z>n޶}V>Χ١VgOu?0_y&ْ-G4|:q>iM>kyegϬӉi}vYl}>*|n>e>KDm>|v|g;O٧(D>)O} SZi.m-´Ea"L[~oQ- E(ߢ[~oQ- E(ߢ[~oQ- E(>k(Pj?FЌ endstream endobj startxref 692811 %%EOF elk-9.2.12/docs/PaxHeaders/spacegroup.pdf0000644000000000000000000000013214536061324015235 xustar0030 mtime=1702388436.564488687 30 atime=1702388436.561488692 30 ctime=1702388436.564488687 elk-9.2.12/docs/spacegroup.pdf0000644002504400250440000056065514536061324020000 0ustar00dewhurstdewhurst00000000000000%PDF-1.5 % 53 0 obj << /Length 425 /Filter /FlateDecode >> stream xڕSN@ +|L$b+*T6mh )G~o  "ś8 _@=}D JgkB`02gl7>'LC0Y&{Sr<6u@׏0b~:R`GMqiˎ |ʘףZ{T,#t~dq:87q sXQIB}"-z8-U+Sf]ZfRj^Ǹ>E̥Wj唖}1lxIVF^O,8@N-]Uo֫/+SAXuCl.xZf.bmy9jiԡEY/v]tR -Î@&{zư<HP23rD̤-}s endstream endobj 72 0 obj << /Length 600 /Filter /FlateDecode >> stream xݖn0~ K- tQNI- oߑ([JV@O#qf8dhQDrpX|ֳ/ـ6]͕DL!5GDY* o`{rb8XCQ%ʆŎ+28:vm{ł1hyCMn/"!)ޯ\uI4NE72 _(fl\tMEŜ<֠ Eֻm^eWخ z}]ԛ]m5L`܎1M(f( 19G[>DN-[f~t >&j4*_6UY; Ћ.H+J' > stream xڭn6=_@"Rvmk0}e&*K(%"Yr:<M]DwW_p#sDEe AY2^_v݃[D$A,IiFFaij$Zm1Y, <^0wmXºN5oirCGK 8uoE)wmXifIS4*vGPe]wE6;dgI,C ' Uo \Pun rlhM4c AK."fyc=+(K9ț#:DCN3ҒC.TN1:`c\PAsӡHxֵ_3"1* r H(2S*F`5]8 VZM"f'V/0g' (K*@}a N)#tj0#|lTF#|a)8#*ׯzr1 ӧ|Br9d ݦҒQ(>VCKvb{miNad2>/|Ecr/]s;F|pU 18N;sKNu斡d?YC,\jYkթ;,!][JtX?2(Pyl`l 2!xjW6RHZAtFE0{1!sKy:fAwP&(^O1aN/aA]gP3s:h!Bcf.J0#й^WpCھmJV9:s!'&ӀxhP=8 JOZ9gEP) CJ䗠j$`@34f)E1N3WòA <a)g~,6f> stream xڍVI6UF%,qr\q%8ݔՈ qģ}-{[  7oh@+$$#Y:7f+6ۗ %9YPAʃTP2ϰ}ꬋ*~ھsCL%s+:a4#! *5;U~L,ۖEikrЎ kPNOW.05 +$^a%1n,7yyBgF4вØKczOs$Qϊs>f9uX=U,(2 ݣE÷v?yNs.)_82-~9}{/cƈIRu-~lQ0kqkPD,I{xyXC2C0`On( cRgXKMcJ|| kqIrՑq OV:;sΠg%Nϸ;kUtIB K|$MUװ lEicE))'f{b4(1R)f!3:γ n-z|Wa_&.Jo6<Ƶ1V2`y& 331@RD9ÔTMv".Qz:FӚPuyGE"Ux ֿg~9 .{뜎[7ayT @AӟK0 7mU5<[onp3:ԙbF|2q]w3fvi>jJ簕߸hsfgA7;?/Yw|WD5rqsOws7yu9Gl{wQ;?J3CZN ' 0q~](_o endstream endobj 92 0 obj << /Length 2989 /Filter /FlateDecode >> stream xڽOo>AaI o׀WE\m}+w9ҳ{xϜ%\㠇~qW&!94|0v'pWzcbގun~e~0*;?J%y)11D m$*e﮾ޤAj'=m(V! ~~~?oMzu/oy՟STV ~"&<"!*"exׇ?>qIb?Sɩ% yV9$|-C~<9b~C JqĚR2_m[BڒQ^ . }{mmgwt8q@FtpO Z\PUb{QVը|A2Zb%fфvh;{OZm^%pΰAb=6LE[Ũı݈ Elik k1)AU>e.ج [ܳh%mU[3v'sC4!no o0FT턹[ܳx%oU[3S{NA7^ɷ7ԃ@Js)"p㹛Om-qښy8ۙ?Cr+C#}i} }6*?Jǣ>irE}<,;;H[W50ՓC4!nin nMp3IinEn<, m[Tē&č=Пk8N 7inm<,e [ŨTzN[^SsS6gB&̤܂-iښyTiBxR~4hե, :*$U-徘 ZT}ZsDg!Xyr-*o y[U*$/yAHw2ȻguֽQU=`;a˜7Ȟ -xk =[s݋s/٫z=iosF—7Gq[/Nx;5" ªO~KM -:k]*eXHlQb/RA6(Ct!ӟo$ W>gT {!ϽBHwRȻ QV]j Qں1fDq[yXҝ5|0 D4!U2(_))@v2#?a**{AL_}g†4YE ?"ԤQbRSş0 Cr?{wu^(F^QИG2 ^9H -y4BF=k|gBHXu)'h$ .=J| -y"?^}l6~<ЅUU;bc 埠%ak6Ҥ- yI0݉!>3|6)D&*RJ̘ bZ~$5(~L'Mȏ^;W#M_=u7iAТ!M[Is/"N J2?DNjm槧bKLgHns7sN҄Ճ:Ӥ ?aEĒ*vӁ{́[|.FYU=n6_ݠ/jhWG;_Hns_ ҝVweѐ&dzYtA%`S $.y&aHwBXuF UH!orYawBG]]RţBi.F< !Ia}w8#zI;4<z5NP!CHwrXuFcDrțm:&NoQZF^V! Ͻ@HwXu5V۔ M/r6N,Dzք!ޘ.v0 M>o,ܚiA>Snwݔ_@+Sǃ`iJXv:^|XABXرwn@Nn<1dAt'MX2cϏ|AW5FVP(n70n=yHQS֛#C#=ygcҼ<ˏ5FGD/Rwq'>3]*ZW[F{'~c7QÃ4ow{6J_(B_Jzm3&z NϺouO)Dnb endstream endobj 96 0 obj << /Length 3103 /Filter /FlateDecode >> stream xŝݏܶahC$eYq7@-4 `oA4w1fg#+Cw;ݽne*ݧw7OyfۍoNv]H߳uǏ7?w??~ʎя5Z a司G0zGǭx7/5ӽQwoNOH V+ﻷ?u?/L}zqHǷ-w2тD0?N~~}Lڞcĸl,ݧχ>_C8pSѺ[Yӫ w*WZ@亯'їڡ j b;C>w8?Zw~6Z{=i-ЋpBr'wIY`߫~A(;Bt3\W0^p ;Xx?NY, TM&U +W )Ȟ ,d zf~6g(10,|;HE3v\+`qZ'C6r]C\taL;NU9b3v\+`NޏV+Ě Bq+wvݐnT+RՅgW@,V^qB r+>+Z*֧=Փ@ D7u};ub.$7[S&~/4$O`^~Lۑ3{3D%7sxXP6WQށ4FEByf(U"JD LBt3\w&iIffdr'af?(շP&TAPNp:Z*\*$ IH$`tvkxCd&v G&$zuvP1J 4D%O`Z*;%C\ sv )>m`K~ct3\K q.+K8q%QYU?0(mN-Lm^= L&j n&" Ygk7%wsx}yޮ^50"9F8cɅ0X"ErKX"+lV`i}Db),c3\x,i"͌*%,nKp,(:A(pn% 1Y+P)/X" [ U("+Bg$p;$AYę<{/Po;R=”;]Ĵ]ijP Š,-a&Nz>qZ1ɘifLзC&7N4QCި^fT (rDఉHC|4 v' ݜ)la˦Q9ѨlJ%&Yh7 >qS|Bd>4'>͖ KҊl{P$VW8pr]D!8yv Cdr?gk„CO`@tz5tJkL'm0K!:Yڻ!vNfg]Jzzj!KC3\:zD!.yC`r?DTΛ+`Q9jgR9g0.iN` ZZ8$TCarҾDkF5:CJ ,XDYݬky)~cf (k@v}]єuzֺ)FƧT!ʙO'bCq@]!Z%4+hiwYP[])1>8=G$! {>Z'!NʸTE'.V Q=aT(݈(Cr݅KV2 bn6Py(O ^5D$݃HDLdrr矒 ^LKhnծ=$-푀zDY: ѥ{Ȳ>eϊ*;P;6h OLkԮUzU Pf|W,tc/7CuefJF2%f!rbN0}o{USCz:K)X endstream endobj 100 0 obj << /Length 3018 /Filter /FlateDecode >> stream xŝKF+ji/DM,Nx wY5VPI]Jb3qmwK|iR$'7;U"ӗ/wH)ߩi.5)E4~ }i'9I 3鿇&0zN<N4n :7{ F8;c{NII1YMLQ{㋇///4,&VȨ?l~1?r}e7G!ey|\m/E&h16KQ1b:Ᏹ@6TTAOrW[( W)ݾ:1yxa1ɈaN8N7FF+t: 6+GjrpQZlc|K.3Z5EA if4 q-uqvBQ*Ia߲Nl1.pOhGz)t(J W(y\&$m -5Œ 'Hf%MFU=&_Mob$m6}ÛbӆtLӳP i\Vt^aP/Hج A-vQbtRN8մjޔ sEZEzA i^4/` 6#ԩnV>}`jRM(>$mpmB.5A2f<åe&Fa=h/Z8S,sO[뾟?Ok)aSzc96;bvn4t: +fR0`Y'\5q 5@CH9YCZZvlѰ5\]o#t4LgxоNXc|uo""fӜlq.mpg*>X6G @ ]dF& HY-6vp4B?NsmSa2"UC^+Bj![Dl"23ABmE'!\Ma"l"fՎ[LlO^?c B"aJ[&*RmfH9YEZMRq ܢb=p&g4QFx 2Q'|\/66؈)hcS!Of0ey`W)~ID)'HI#DWF` WF)::j>#zN^6Z-EZt )'[HY6\ό YL3tT|e9^Yӆ}!di5z`D "9@;Zj"cDzH7SNVOAY̌3t\NU]U_F ytłGj&6ŬYADP-Hx:%|m6D' U j"ŏ7!di5-w [\lg.K8)::(m8+}Ց_͆}RNVVif -*6س5v2¡S6 oˎ3s/ZH,th !d i5톻-6+p[hhT%'\+3gHѷqRNvVVHυd&!:> l7+/,>hHɷRN֑V=#Ć{>{:et hYSxeV C z)%+(Ֆ "E?y~j{ .ݛ#hyΙsfG @H-GI)i]pf)43 P 1t.RMbH1G i-kgÆz9S:9 c@=O?Q#=yz߉9*~b#N8?[>j4G"=̐zIb(I-#{/C˭()V.t> stream xŝMs{Fb\ReURVJπ4zacGzb$ţi0LӓMqިutlLbJJ@*niQ[ Ǯ7G(}V&0}P9 ì|0 c9]);#8Älk`HW<^Eu䡟SrFdDIF^GFH*#9E`d>9WӕtRrXM&1VB&/9yQ &NX.`_/%pMVY{֪64M:ri#$NՑ):0؀UF8\EGFzV5v?κ SqJCc$!`BI\k2F% 8YJ+I4'!yMkpx^7q)+@#myZN+*Yȩ4h !q TSihBT <>#a{Yp4:*]Un,2ɋZDDSMy^xK&6܋4 &pm˥L٪&^!c#@GLMǽtp-8^DlP>\QA% 9u>cT <4 @^Lxr4v ^7r:)zgLy)Ϣ!hWZ!yR`InQICEyNx+AϟH{z멒C!SY;ֻz~;ԓ'O#n 1\M3\BuGNzX=ǑNr1tq1 endstream endobj 109 0 obj << /Length 2984 /Filter /FlateDecode >> stream xŝ]o#+r ٻh"{B7HKY$u(gw9g8Ҩo~~V8O|~gzNMǿRN馐X;w?$OR9N{t?6M-ߦқoop$mns~o>}㤤嬦?O)ᣚI~<}> f/L ¹vG/>pTOCTƦ>_Ap=mkv:*0{P1A|yU O;'w[CxH92z0be b'#f76RU"{>R翌/Ʀ^6/3$Nֹ{FbJ{c̻{;`_~x]2:>J)<|V(o"]\dsQ\.8_q.6ⶸe\.EXBT^"Y†n@ `맭~A(bO * 30}!]S ߊ-Q{s, /[ռya**㞛u O*_myB. R8L*62QquC12= ]|}l>"v7^hXKhR,Mڛ*ž/NR^%{Ldg*luݍ='߫w+:~( ?џhI_0^"܄n8_n"͆[ݪ>f k,ʇjFDHD'H<\?VEO88\õnV"HePN 5@YCʽ4' igpCE[.f! @ .j.5BDJ8YEaϭ@ņȍEtlVx@6@>j #!Z$uh !q433+CU†{1+?3ё0#h9'. fa^F} &Nyόlyyn.# .E\17#FJѰmq5g#[ml6p`|QH]-!Z4Uj'kH<=3[5l{:r,h )+l(kvan{# i4#3g-ZALӾ:<-CDJ8YEm!b]2ѱ1ahƐ+W#!%l: &I&#{c[$l22^DGB?Ak6u!"" "BdiGVp/nF":":/-2tPtUs3_l/17CdiGv66\rDkuh" Ԣ!P58{vvF` mF":Y(Zgƈzc_oB."<4OܕjHW7pnp  Uzff፪ro!$N֐y@W̝'ё1M@ Vz!ˑM27oCFJ^:ktmqR]A` E\hbփV͜0g;>п`l؈s~-6ܑ;1X1+!9#6]\Ә8E3[]l#w/WxЂNXS!Z4пv4"澇ba:FBH,! s+}lr7M5t i-cYn#@J]e*0@fs8z;:VQQGKhUgcGW@E]*Bdi8px-Ƌ訥52j+B,:ΌjBW ,#$L*R)8\DGAB}Q*<!!DCH! o6RyD\>E.ZC=5HC=p bC0'0KtaWBW2J!hYG+GIipD 6&HllWrmr:1A:H62} [l$q-4&Lyi[ *#-ciV BZuٳEHɫ:h Ma6;."Uņ伮pE-,CkkRag-5%]Lא0YKEKnD9m\3^KGHD (!,fv/VRMV0ap!ri9\LGKiЪVɵٜZ"EK0YKEKnD|u͇qkEMtjBWYM &M֐̅GJHW2GWё0:,슃 u#qda%YpA."6SG:B=d[xH!CH," yԁ`{\/BЊJ{'YV5o醠|!a4fzV)z[>7#¡nS6 oy^^lU "#DFH,# sH@UFʽqqF iP 9"77] >H|$<,hu yрԋ_#Y>ʽ}('h͎-Q=8ܓtG=*z|0Nz;>D̾(!(=c$k c}yFDi|;o$ܛt",+;Ia{ྱڙJZ ICg?ӖqN?CNvwq ' 哋Ӈa endstream endobj 113 0 obj << /Length 2964 /Filter /FlateDecode >> stream xŝMF+xnn-aqؿuh 3z'lE`wAa ʦ8doTO]~Ͽpz*D7>0~U_8h<饇Y??_~HvH60FC˝ ~<}̓jԣ>!9b6_m~׿xyTPe[f4 ?&Bl(A0Ң:<|u.=hgXt2MǏkwIY_mX>ɟC>d4I| BU@N . II?0+Ӌ lfo썾{zƈ813.˹^هy]ECCG+}LJYp.rbnPTiyv#M:r6<_뺚Ռ90fQh.fń^.c{S\V#x [z]FC@t Hj MB$\}-Lr'}4+}0 byyૂiHCf:Β.ȹ_xڣIKi8Cʂc"'˱4'CGqDpIH]˂U4\tV]Tޜ !Ԫ!ZdHC4< g,܋{2\ihʑ4X?cE5$]D!y⢰vpEk'%h3#(/!j"'DD2Q%9w5*J+*&ѨA&ZG)C>ɷL![=maD쯢aP/d5ys W9&6"Ґ^dP\Y^`DN8d"3BO%9L jǸPڦ5lՐciDҐǙck;0y&{14|te'PڹӮ$po #"<i#dRO*vpj,jp^|qȇtՑ_0@tD!y2OA&UOfޛ[T'eP;qƔe}AqHPIPiDIPNn7.e9_s8UEGN$7ŭG5Zjeqea'_؉Cv8Ov &Lvr A*JƨumҪ!!Ѓߐ8!S/:Ad"cNIK*&[ӣW!ܳ{{IDzLG^(hAWӱ^.ըO? iY=0=A)Z7_'<^.H'[*j z뱿0=0[^¼c./ԕó:khMFv!)q/QJq_` N_n$|wsmD/r">!G'6UNzP-p_#oI*9 endstream endobj 117 0 obj << /Length 2967 /Filter /FlateDecode >> stream xŝMs7sB ov0UT|@Ҏ*[񖓿 E4{Dg@UXDq̇> fxwƠlCFqqOgξycoC*_~Çܘ/ 6{5j_yl|ӐlRaF]mܿ̓eӣ6`hQ1? k_m^ߖ??~}nW0&ǀjb ~ |6Ꮟ;/FzH!1ͤ?~ݭ|ۧo|9ŲU .*~9;lp`2m8y d,X6$U6{sݬ h~>0+UA&ey=ffu]xx̐^6.\04HR!*BUE]f5h"O󰓎2BUD9ͬ%4LYZ *kM5P@d!'_GCH!s'{c bw /HĘZT?4Bd#_`#`NSuye\ґs~`t쮡c1IвtA[`!JrꢩS%qҬ% 9,WhXR Zި™A&9yQ?SMqvk#K&r|?.a}|w0&ڬd'9::BTyj MJrٚp~D 'KA8W>Յ$LDzӔɳXRc\W\@?F#@]gtYCC|<̞a}hr&sR'&"\}\}$Νx"[Upv~_ECRDi A}1mE\rsYT.bzO'9::BTytP%9EI":zbDJv$EhTSUq ^ \RsI"*QZ~):i,1,iȰ,` !i,vnF& 9J_54AZs.9ɹHPCT+yVA&-919i*m@+^G=uə<6Y˦V SqW"$|i\MJF;ie5!}Q$AM_BU _ :W1y5)1S?Bd#G_FHj#sY*!dqBn7JjbR]ZIΟz,%MRruĩR8) |vdcw }R@לéCʇh3ĩ28wۙ  ZvnSQ&'9*L$spRj2I痲J:vj,EZRl=\ᓓA:y7ObNλ+j82{8c{ؼ{Q8 SqNJ'G9k k9ӎ卵 ;mQ.f#0B *fb͜Ĺ߬ !W) gE 5V:־74n<55lR&$NU9)K3 <4Q ZIQ%t<ĩ68o !XRao.ڰ=Z!)i҉.Iȹ!q<>5LN dw- !X(hzWl; )ᒐ-ĩB8!1A&!9:㷿N cw mP9dq4IA%9u"$NUY#4K"rj]CCBcmkbh!Jr2 #XBH*!H'B$!>PtqnJ mUj|L&r&&,)s&9:*BTyMR lґϺ*>"GAk/>sht tD̡!y%u:=:X;@C҇3hyfKс`W*2$?e% 2SVd`ː`pՏ$?f%?@r,g_u[wUɡTu8J}9ʘ}BAjwd{?t{O=tSNT~KuShG+O.۲yuJ$ek} endstream endobj 121 0 obj << /Length 3011 /Filter /FlateDecode >> stream xŝKoGF, B6Kyڃ,a_s 4|ֵrK{e_ʂ[*ũ[y2݂mnXr6䚦sT!`܊Eh[yЦV4la v5 ϋ6zVMRU*ƨ_ѳz)tM:I^ēdz)LꐫI7mz%RsLu`@BźYB!$Hn5\*3)$m=Q %:\;i |G iu n!nrNIi[,a75 rEfg'[iNV|&__rn{j{s'ȇ|;\M򙬲 U96 Jqꦙǫ9x+ڇ}۰d1O觃J]3gwҬ %9wnA $ & ~IG 2ؑWoW;S{.RK\R"IT?DL1[4^?o<|`_P*d]WCsFBMyjW8Bd`^ o#ὠtѫHŘULTFBTy EH9E^Σh@Mc[gj=- J-PCNthC"!f/C .&\RAکR/.ǹsm ~j~7ood }KqOyRǏ #J[ORJ.IɹjG)fh?N$g +ZV8%8o a^3IdT<먲gyp&0iWϺo nճ?V̈́#bQ)>9mLAdn&ĤmG A&:ppP(#<B?A]um8m^WU#,BS B%8uӁg<$m{q %:%犹+VPbus wu7 &Y1m>@U1(RV%" TS75m H] BBiBrNCc0gHXquu?z" XcNfGY)Y9B,'J}@LXCP, d!j!&!d!Kv~}n'N8:wl&x`B} BH9MC^N^&;|VdQ5(# XcoRNs𷷂.yqOp:@CAm™KMCc[N|r4DpIÎ{4N8ihKR1 Ҁ`v !Uî|'x7{yC ""$b]s&I6P?*mą K6r6-L=F^OV&;Fip2X,lM?]Q@#]{t$AFH5MF^aW`Ӎ.\3BSJ fڪ[,ع+1^!!/稡p DCa410ZJ4([ZYQ_ÌbVba,D=Aif:dT̠6IA%O m,ع@Bij4B<' }CVƁ&ں+[}<ع@Bijw 0i؁{  π:o]f#U XҐc箋iiȫJ"a>PNxXK;UJ[16BC%9v9j!LvSt&)A}fcÆB[%9v:Ա2f"/x/Di8b uP@$rh$Tk/L Prڕ}uWtpl ٴck0AjYc ԉYt ^>5+A@|>pRj/f/7Jئ_&N0zQ~ʅ8Ч=AgAg>sHcȰ'],y:V*9Ýʺut',n$ɠb=!ŴLbOՒ*Dp6|' o\y^^>b0*CuӚt endstream endobj 125 0 obj << /Length 3140 /Filter /FlateDecode >> stream xŝ˓6Who0x?r܇ڭYǷ$8oy/(PS´/5P !qR˛?n$'O*ͿO>柽xFMԤF)k_>I nʛ -Oy˝y':<Φ}㤤H2oʑ`޾~~:>{|o[A i"3"ῗqha` qewoyOKp~Uk6}> *f "xlR>3o_HA;\:n2`a޳僑| ?(XȦZL햱nRK~qy8R HCij~Ppryq#CExHzHˮw,|q_xFݿcJ%+DJH=:*`'%%J"$piU =W-R*-&R\=|4ko(|. H@7T$ W!"!>d4""W&#ewFglq<4HHD !آ#с-l4yr#f$/\9xMȡFgȸ)uպŃK#""MfVqϬ!!%k At,TQDiAj-o&v)wUM `Ti2ct3q#SE\~ctB2 Jn+)ID$S+#ݬ싉=p*D &R3F#MU"F\4- yqܯt Q(d$S1b$>d4$S!$e_Ff==FEo䢏]]j#[LU&&zMUfsgnǬb f"E7l)!Jf*"[!X9JHDhS"Ƕ-nbE4l4[fMW2Jhl?Mm̬? ULJ9|$$j(ͦUL)JTLn9KGI-EШ)i!!"$#db>\!y!` #D[PfFavG,B(kCmN[dlRWXX`X4; j3k-f)FaZ:5H-B~,s){TkA]S lQkaFG8VBPXG+i׭^1rAE.]% lQ mv-WqvG.ӠR8-EZXZ$l,El1k1+]^en(7+̵e'F=D6U=݆CM=\;$m59^dLGcS}}l}47~PEpY1;i:d?nX4!lfmQf;Lr&ԫ*˕Zp-Q.l{gE`\ nm.J0iRhk1`0J: VhwF3' f؂{i<;\IvDNNN*zp^"b"\BV vJwq_ˮ*?Q-pQ}`}L-QحWGY "MLN4JȹQ1G k*ծclQRncr@F[U2W ܦzWjZ1¡.v+]m:)u~PADUAlVnSp>Sp8Ԏ3Ҡy2Sqg1"#,x`47Fs' &|}2^pUSÆEl \\?EDE"sm.R\ߵ21t,P'WV혻n`/v4IORv܀@6d읡t `^J[M&[üT3#8->0yT ǯȉHIRɫg*'v{7@1vq~(e>zKrgs?jނ:TSM=mvmG=JPlHWL(>|Z)2"S.zK%qklbW8_n=.I#ϮC6;Go:>?> / endstream endobj 131 0 obj << /Length 3118 /Filter /FlateDecode >> stream xŝr7EZJPrz8b&2w2%ˎ5aMHA?2`BUxcda˫?ii*LO^}_~?);YM~|Տ?ӻLcC}EwSv%i/R&z•f;]:ٚ~>eoMJ'rԕ'(=|"XqrbJ}]qZpXFtFwX=\ѩթJ#FL =:pW ;"!bvJ+c+KF7ܓH=͜".F|ώ|S)$_6r]Z' nUĻIf |..&D .m""KI*V/NWmW(uuf2*ɛ{um4TĸZ=H]+mkֆM 0A5BZ2(LJcr'=",{&nʎ5ԃbI1k1+Z3GP#=hFY{:K,DX6K&ezZ UwcV XrKbWZ~lBedmoB`٭{t+*n ;n)Ǹ劙U܂`-]Vs ݒa&*[ 2wܪ9 m0!S9+g̒Գ7)fX2עbT WSRmBy5ׯ9j/gX{łedmOfAV=,U;no5C[Vѭ6~` aŐ{M1ۍ2`ɽ{poL!brC8vOcĎ-Nܹ.pQ '٦gʖ-|fgAڐjLKN|,'sXŰ|zUC> ެ;ZIB)t4~;Wu=",%i2pٮKCc}bUwXeeC%ulO:YY0u*˂I.OsY>;m;&&P4$OMЬ40XObǶa)"l`e\] 1pvfg7jF`@cE ʰkf 6`^mg*8TA_ %ՉYAۀlc[V) K 6a)h B` uG|B<`f(s1KnjQ,9(c{V]!aAdU`vDѿ>ѱ,YS4S_(M ,vjXCY6*).[pP  C >;lQ*)(cKz ŰmQ e=ap4CG@_Osj]ըU[K Jv~Lհz1цA-lXCt4t5P b KJ&'jXCYMV `ְP St":'o?msyt2אYVyx߿ F¹ 0Pp.3=DjvRS@|{K'[:ms*R/ Mwܬ8aSC&D%t31Rd5]b!أm~2znܤ~uEpɸ^[)#9@gԛz7~k޷.^=ܻhѾ>: =h~@=ڛ2{N{JOYK$gN("ku3;KD<}*,Ḧ́wSj{ endstream endobj 135 0 obj << /Length 1962 /Filter /FlateDecode >> stream xڵn7ཟbbX/]h"ޥY8sbI T)lb%[¹> jxqBrp 1 _|{˅R2Q(X;l/޼6 IqS!:|3Dᒧv77ٴ㗻uI&5ܽF;vxs+/]χWo^]z$TL siY5x |{nK*"ڙ|z"%ˇ>焊LO_/?ޏ& yGmd¨;-!%ıwSO A 6 "4\7Fm$1dGj#;o=!rdW=^ƘK}/`]"PJ!Sb(PW[zB Klciq(x Gu8ro|{ x$W /ǒ[Qs9>uGjU}GlQQRE*aNtvd#,iҹnuk5)P` ]uը ʿu *_ %Klc0G3]#G.ZMM*˥4+Daa$%±M,ͮ"]qUj JO/,UR, Ұn#\r{ǫ&V*(-+EJXb +4^yG3`tG0Z/7u*O&aT9)V[p&\ pfGkoo>0 4odœ©Ma^, /\Œ[tr6Gm Q(4Zi[pئ--:oGk o<Ty+ L|>"Y[&ytE;ݯznzU*1T9eRwyb =4Od8<\<` ]"/IJgp7yb<4sqTyt%sUp< ߥBOϯ=eRS<mΡQvCzBoLK^e&_ClKjS]tCspO-!حr KFl"z.}2.SR-plڌStH@> stream xWKs6WHXA|&rdL'Ɂ St@ҙw ʒ3E\}|S8yus]! w;'8HBgu>dʹ/e;IUi Fu[ |Y!qBq3C +q+Έiu3u1 sߵ ۡ$w&ej,OUVgOxv#UUK+0vL{,R>=@@Y=nMt_ pd5w!LW٦miuj?݂_n[Z`/m%#+#J@ڰ,-Vtb^~$CI~¢ rF6JP3lR7Ź./yqѡ 7ֳk"qo&q^./O>&hzAR7RwP Xh3Ry,ŵo=B|y) \ D @y2( m#GVyJ+SN1R0|bYC_]㊙Z=u$,HWA\ ~>olY"HR}0 Lm 8`6[Tw(H*ZMz_By,M!Hcw_a~UG<䴃MqC+ +c՗t!3~ZTB6ٷo;J{;%)8 [maJMN;,2IC N˜6[)LtQZl75+ڻYWTjNe 2;1#gN,6sKǙؙI\b?1wٟ=ɿ6yӓgWX)a5_:iv*N>g#.Pܷ*'ڐhRဖpH[-~+J:=6XjvY3^߻>^94aSާ;D|)~hڼ,XGu7++f*I;%v2G}VQm׏VzAmu8ȎV)8>T6 P-B:ڣq X5vN_2HA_mcvx{q1n* ̛0zIx)=Z_j9>KbAaVMxzԧƻ%TMos8 ۗ?dD8Q9ɣ#@_) endstream endobj 145 0 obj << /Length 993 /Filter /FlateDecode >> stream xVn8+SȤvm2Zd8t"-&)rd4A#nCzzQbExH2Ũh ·wO?PI(PP"t%W2z*:)T0cW:32)1*9; 1Jb3sE0 C/>CO EQ$!9' Z_źr` W\7;|]$J6.>'GE / NǑG$7[@Ų;]v6-"yeU1eO3ƍ,:7H2A-2-r/kUQA,* l-'\&E2:tlh/<$4vĆY~^ ^ݙaTYsa3kxD2؄JZԚ7ynv֫,mPxk&n.rusU/Fd}WoXԡD.<_20L]SHa)Xu,V,p-.?$BRJx"VvLt3.llN;yW;w07r)yٙ082on躈 L!d+9]YV,|StLS"2OSfxe4wiYM+OAUƶ4_]pJcG9v-)GH/Mmv2J/uـ1 $ m&wdIDAE77G{m@Rph-qR?S[[x>SC^7\kN7:BdnGiUf]FEEwu>C zz)^Fz^e˦ZV`CtCLdvﺪ݀kR۝kv2jj݄*oF+Ӎ䋻ѓ o5`@eZ=vI먹;?^7y9̕T(roEy{/4 endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 810 /Length 1642 /Filter /FlateDecode >> stream xZMo8W^(C"(x(,I&va;9-_‡DμfDqXeTPd+kʒőqlF1DE]RrV΅s* *SVF,XLY +!<v`)J0% 3!+&{Y90M6` -<]gNg\ )S LIp^ 4i3")EŬ)h-d> zO*&@uFE@e8AP}"G1:J`X&Fj ET ~p!DQ!4! |a'1@NpbD(XIr [,ZOF΀7Dx ` $ ADӣ9 儀X h FjeLtDMȡ$!fq="" Q\lLbʩ\#璱bC[@-H$qI%89Q*T^ PۗE_0|f(T4#iy___uNf"͕47 [zi* \ojT_T)7MמGzMs\aW~&64XK xUjj[f~\(^-B"wځZJAmP7MCo[\PMǫ j#sY4?Q-O&uV31tOr+nMծm\_oRgҞ¬X*gT7g&rJsW{MD%wR7k=iƭ0rKN$uDUQUٻ^ 6$RNFmGx#-gAÃ^r9 2cQQ bT:ZáHQm^rD&d4ɊHL_^^h;v(PBPGQ 2v$tx$A96ڙ dD;@9|T]Czh6v(P|R L~;><TfR%TrRHP"@ĎOl6{by 㱓X]ɴ~%0ّwi.L>"=cJqP-𾢦eQw5]DmrbW;<רʢZsd[l:o9E*A{_Zܢ @˚ X㖉 ɧNkQPmj+tlOGݨYwbZJmj#5gZ{qO[F\jQ;2R+o-#O2GȳOO: RKl=o[,kжqlQ5~7~rvE SP|;||~4m8q=:GػT,jտir܅ endstream endobj 150 0 obj << /Length 747 /Filter /FlateDecode >> stream xV]S@}Wc2Cf(Ŏؙa!&wD~{r(A~"H3!ߥPдVn`㧰wQD H@Q8`{Hrp.;LXfea•4315$35:<Xo^.(KYdde;2Gla<2Iwvvo1cd7P29Jaf怞 ,QϤrͤukZj&4iqgׅ6 Ko!P6?3<IuJ&C(T2Vq_z!"-e$=k(JZM`nG] r9q (ŁLs Z.C)xmN<4T2}ϔV !VR OKPSN1QaophKS`dr*2[SZiΣxWS&WQ:.BAoRZAdoy˽ɨmhN6|ٲu-UM`zD_*ʫg5[!1ZDW)[ V;1;4-,x`weBwٝ(G'M|NJwo |2{ rԸ^?YΊx1zϭ~cowt $8a uG'l_x@  endstream endobj 165 0 obj << /Length1 1835 /Length2 13332 /Length3 0 /Length 14484 /Filter /FlateDecode >> stream xڍP4Npww @;݂w Np$Kp -}-oLs5梡Pdp48:p $%8\H44Z`7;H4: W"$]@@7-Pnpp 8"z-ʬG+ ?zs??/q{ PÝvMGs0J Y9 yzz]Y]D`7k12@h{4V$5/'x3؁Ao) ;@S^ r+Xf߇`o(v3hnht;X,v 3`G -lW&{>Ws++(v 7W?ݛ˵upt;XX1$/w̛  r̭ v6m ?}_@V`Aw{ `_Fo pt'+fWVӓe{:%$,x,<޷ǿr,vNio \c7,?S*Bɸ+y\w-Pv| ku%,O Vv=F dv3K.ٵX4;H``g?2}{>\4 ]U?:>i!Gf:L~ ;p<M^,o`i6 l_lw=oMI(\7+S ol5ky!ȵYyv$)tK%V_1PMgLЭBac ,JIE|3,|{B.;BOux!dy0{~`'~Y*{11VVi?Bp`J="9!OY 9Qʪܢ|ӏcv{edP%t84(^9OM %Ӯ"o _x%jYE3aH`ZF8[׽Qj!)Mketq:7eMUb?Lhdox~{FԘ6ƤzR·JaAe/uV L >5hƷJ{U6zoOSjmL].2rJu`(U%iiԏkLtYdlfM=4ҎjZrBC#h;mC鷥 SjxwWWțJ/[k*MweʅP1 $iFDfMC}n^mɶ} kK-"XY@ #גixR68z(kR-~w׶"S l6~QQsNkOoӾ9j`,Hc'USK>xMLz}vtjb\t.+cįGVS=I )b]" rA}',PgC(n6\C;>~0o"AGM,{ot#RG满mcFg-O|0pP0p=äQ*DeP>Q܋>RM3\WImz bSUbU3.X],Z:uw&r1 l;x'X0^C$^H0(K=e%{v /ZAIk5BTaN¥vr?zwq*s\\xaXص97BNzrx2|!3|&eXj r5ٴN~И gAn鸱JACMiURѱF-y}ضSZX nR%0L21u*4&LC~s^6 lxCQ]dԒl݅e蟆b+VG igW| ;=Ry-$'~^ߚl*}&SƋgȐl=7%IH9$3AwƃЕ*: 5 ܭ_ 4uG?Ds 9SI =5\[yz{k L_/Ia3P 0]WۖMf;L G{$G٠`A%?|5* hNDN5A\5 AvGu5Sy7y&26 J,IN6d&~ eZVCUi\>t9z-z>e\xHѺc5>+q ؼ*.r lh1Mj`K_ރrVIr#mt*#ɽw pmHvy>Q y81JNU)Qq@2<}/">֏4PLV}M?m' `I*L|aOoi jL B*HH#J7FiORdaEyO_cZWxpCa)O]saC>b~drLA=w. X4w5BcRKpm , 9[tYQ ^fs8tꈣ3`Oi<(J }_P~!TD6wb\.lNͳ؏b'uKus7hWx !jH)vJw19[Qˎ6 i<@zGxKpӰ͈y/p^D_f's8i9neɴIS5L螘WY/،C3Q Fl''bXٹTC=wY,-Jh? z`M[TtXcc~O,\L6_Ē"vV] x1!7/> v^)? wC{׵29!̡rv|R0o/W?ܓ#; Ũ;UBZ%$z TxohՂk&vO—/{SP"?<Cf@t3BiNiVWgVehLZu?Fg0YFP5&r2 M]d\XHN,ޜvS7%T4^aDСz4*C^Ĩtk2cTgҸ׆0CV8R~wimU%)ˬ=Wacj!GZ$dc{Ƕ/z9jKQ_8EG_!{%Cϸc< 6+@\ 98j{3=`GHs\V4u zFZ͏/H4՟Qy`IԦ,󷹓Q`@&Pnb_WKM>gNDM$?OjDh({%][﨓>Spn\AUtrb3֒[ㆳ"~Vm DÇAy{}vey})5>0:B޿n$qpr&&`2[Sj) Rcs}Bz#93rGm\rx#a jwiT_4Z͵H!s[-Viz)hư*U:Gx~}&\~ȥ҉U)^zq4Jm_9-r1 "#C*6|_Pla$ؼ$4uq%ÏMWY󗬘'csXaI߰*᯸`LZR -zn9DaTÏa!0J&!z344ۦ'Nl~i"|_z<,t6Ipthz|'&X҈[wQG5LmeY Qs>{Xcqw>L~&.FҲI@OVeߍ^<ؚV̪0b-v.5jWeEE :Z/Ƈ5_L9cg"b`g|5Q,7W?ygr(5iU [.Gv52O\x55IR%6EiJ !}Z4"u|VaPh{g54]: 롬tF37[Y׽<ȸHrr{|Y@ JjؚOlZ55Rg3Fd3R<'f b&&p Hd7]/]e 2m8v@\X;i}:He:2/JC !x{O_ X R2jza(_q[aly|EȽ#)!\t5jRQMHo9׭:$+zC| "ʉmroi;BErć)̜2M{nr 7=]ת"xp؂.)j$%Uξ_X@'eDQQR96"5tjGAQDnDWR=2ݗ9ẓ]v&Z*Z#Wū*/6>QwB?vwu *B9T3[GUfP2ͤ{O0X-yN q&6* EFϿʃ9) %wM"wef'8}zJ 109BcqG-!Ƣ Ұ }{jW°d Ges>Fnի }o,Cȵ[kBϗ+ `季OMm%`-;LNݠg쒢1h= Wp:̪tH YeMǛgRFp.C,_!FCP TIj> (ሖӣ:(]57]3퟈h*&U\S\lsCq$qTd(^IUW=tTʔBxH;kZ|~D/"ڪ ŷQnVVY,)u蔱5gNʧTܫ<;*.t<6ġ> ^) cc>zlQCX"p{D4jT 8.h^J߽EL%4.1gLډzfD7iiQ޷3Zgy QD($![[/ə؇n",ͥy@dFMz SDPַqP,],9Rf ^Fm-H$ C& i),5KUgx6Ζ7Dһoʃ[ΉKr֎:afm*v0H(~n=K!u)e8 ,%Ldt!-"||/GVPZĔS^'凈TGI/XE =se?>4>ųwr3Ca1F|죛#u@Wz#`>֠-OYY+mV)^˲-Oi,'Y 22׃g߼-w,)ӑǰRqX;ϡq՜h\jO=}swx#hA76{8tž,?L̐h:dޱIu߿ G짩m1~vʁj4$ib>5#VJC&4RFf~K#NlvNZ紬ʶ8S"7黛Om$D<_+AD$宩i:SI./Kug2MYER R`ZV,3vCA⾰V/ R1_]RʹZttFqG/;d1[qĕi*{y$/Y{pX xض[~|C'|DW..Jm=IֆFh[1Qu8򭓪{YdVw [1_a=S/7 ]:Iԇ7dVJuMrm>JPYRsa '˄)  NM+q(@}܎>+_& >n^ùRrV˙e7h"SiTJo?qDl<˖ݧ$SP(hzdI\MR[Kf-T2;43Pe2׶!c͇kuW-ZeѼ*¤},ԏ *93qdG= sb<`TZm]n]:r!(zꖓG2҂O( 2!PI2;GI* 8򺉵4Ƽ#4b<0:`/mȶr NiI_'L_ij47Uh3o$94Ŝ Y-IO#Ӯ{@[ ،Ya|tM?i([cI1M)V0x`Ϯ3ݬqn ɠ&S8x6w=~ocD%*H9!o7?LB ʻI<2=Ox~@7L+h ZP(&Fs{Հ&DȯnJ.-{Ƚm,Gx7[[_%LRK鸄r*vE2&2Jq8=ȡ`wD_;9Wܗyv@4DlV&TLg$Ψ*WՍӂ3NإiObo@%_OȮCpu ۫ iJƠT5%1y[㳴7Cl͵cM'zEvsop/d쌓oJ1BI FR tTqB<ɂ>A `K2U Px s车YOXՙQp\ZU>jSg0>p0y2~kIVb]mDvW;;f3:F'O҆Q&bq4\Sڌ=h,% $-Lx٪>o*4lFZ*bi$D#EI0&BF۫C}Q^Iz) aub}[ S&? trԯ2#H o-kΗZ1O &Z :8ڮsOӚTN>?Rk-\PwqP~iΞj ÉXo @E5T=4=dzC"b7$PY\To]; aAqs~dŢeSᔜtf ms ZC*l@3=mه ]x|1ʲbFULfxפ/?Z}:` ͐-Նb*N #Vc@І ]!#3aؼ|dKFB^eF2_E5a.=ڕ&Eed7_~* fEY@RG>3*ك/QqB_%ϵ0H >]3$#ݔ`6pRLҪ9v8Q7,#Q=[>k#4{/,Q-0^ꟌǬR!L? ;*@EO&͇\21VcUd9DP)˩h.3$CUhwq.F BQ%'Jy\}]iǬj~}qmf+,Qݲ0I [}HZVC!>k'*:&wUH gEe>P.宸K6Ծv\+#lU&o]5ъ&u`H G[ǝf$)l%K ֦nig<HiQbO>7- [y Bc5Z`tRlyT{ -x6$ʇ2`t>\*!^+N.pKL$q2'ͽ<9m` alE|ޗYE@yf&.8h ~8Tju_%Euf3p}\ԧ ZVJ )$J!A&"54uZvD=E0 6/'2VMz/h"Ui̚\_§/{}N֮ Olfd;i[_!JF`b5q~t1%s}MLDSgU)p_57@nBCU#8<u`:&/#jGiqvUڤJ"cn a2itΧH}kȩ'W4qs}|p:?^m\jbu45Bh43P)[ju]G:v&!E}c˕!QF+F(A``&Uȥ̜%"'GG;5JT;ou~{./wႲN\ģ7 )XqXO`xCjU4kQ$O}{_& 7&:ĚaIxHLqT9) e!jÚjZ} 6*>UϳЮ+d( xdPf2#^M=bMsVEW0/ \zG!zpJ,$$ǵtK!>8Kʼ4(Bwf,}CsJw57b! %iTs\ضa?Ef64DpHLEoE!J.ER%ë+ mM+$qhUtE("iv[)`IfAbقkgzyH`TrCm@ R;*3H;X<9_%]om^"q4߯#|f!ͲzKk_ANŎPqy I+)ɞ:;Z6LF3Zw&B6F b=鮜#Z3G~~"&>WR1("X;Sf@ E+9heW> stream xڍP n5 2-$x܂wwd}Nޚ*fuuLEI$`fbcfH(백XY9YYّ4ȑ@.VbH8W$JTtȹ8ll<vVV@7+3"3@D%lea ~ZS:_1;)[^#mV YXݙv.tw+%@ rv~ Pځ) aiBt^V {WW{335:@]V7OslluoGVMMVs+[@YZf~.@7-W@*Z?:[9]]lk$@`IZ9L_;{[ٛ.ՑE$+UGfXYYy 'Ԓw OG_J|e|A_H.@7  0YX#*_:~lߟ2|03{[?EZBRM[្wx3qqعll|.VQZ[Y{s?)3,})9N.@g XXM_LMo/3vKO7G:-PtxKfW' h"m2SZ=.5/=H`bce?2y>\^g/uy7-cHf{]G3_S `aw^;8#>Qno_u T/}eA?NhA\"W?bXL^umwX,?|WA!&iFVۿ;:b/ZտklIl5yBWcQ&G⶷=sW^_V'Wt._wXk?1_לl W7_S;Շku6<{Uz7uu~-=p@ )¬@uMHm;֘Ֆv*s=|2]UkoKRWOu-I> j[H}? 3in<9h@7CvQ8aݺx RݮG~,dь6,5ɜ'3 czO_]Oafx!K`@=([cZ.`w"$'MÛ.'՜hQYMֹ X20qD DX:zv>fN-Oq>jWTg`> {xD۷!W"p)sy}|~4u/ &`noQ2YGă!6KlGY}/6D1P#իr^h/ߕLEDQ4\CJAr0yUz3M0EF!Bjx*/)y4M7*$cuœ*}&dKƏCPD(nK[YVkDi{8[4i1s[c b0ƛXOsuϢ_&koFs%qVYRruSr, [mV2*ol"Fd*Ҥlz];^ז*? |+)Q8-%nJiӃ0#ӹNBN1x=iew-K䟫4̓G-՚ |~iP3DAbc^8$k`gq:Հ\%f~&-Paqy(6 Z2vfq4Syu0#K`'"^{>Z19XD|AQG)h#Nz"ҤoHP>zݡM-%#T7Vhbk`Xv>2d~NX9+JwCrN]Qlѝr@xKEHT^M* c<$لd,?r8%{nS%Jo D*$}ܧCs>r6$u/~1o I NpF>9 k9< |#d݁x(j1TfvX՜ү~ *( ?/!>IɊr"kx*OQ( ɒB>i= [TDyq{Od11Gveܝ1h *:ë^&h_L'o|_͕ї+JuLuvgsWfh [\wGS(+|AL:\\m̮69M\“po5aCE#nq[P`N/̥Y E!F>:`GrPW^Axe+XҜ9*@dIhb TF:@5|uP )$0A"0ySt![ICgE1`$ 73KÔ$}ᮨ_)":JRw خx^EP:pA%h}xׅpv8ÞEw?*ѦsMcE<4rմ '$l*nmsT!T؎[L+VCɗX8{*SxXx˅vԨ"SE!_XYvaIUek̢xQR_Zv޼\)XweRKCi,~Ypk yοv/rTiD_(^ԽѷP~ٿ{=k6w򾓂0.9cCLrfb=\YTN$UWxR5dQ0l 3Tea#.!9>CXD!(F̮ 3n  EЇ 'A(&U% ;b&6f(:FEY f8`kb,T0po7lj ZdX$o, ʜRmRzlma1mO*7-nV{ ;Of/P߆O0\V2 AwS'H[@/"XKKޡ9[2ٳY5}e.m݅IHK7mK#cD .pd|)}Pn~95ظҜg`]ZeCB92R " *, Ω4rͫ4txY CMq4a>0X*q'FelvrK*`q޺a|uX{SO6giXIRp. 5QoU3R.k =Jh֧hs|ƣN)#Tcncޖ',#;꾓Gr^.a3 fVj2 &-)=z>'C׃ùWa S[^ֽnB AõC$d 4T˜)a]uc[p |w{@|QtmIRԎa9+}y]uuF}}᮪Ϡ)ԄKdΞqZ^\HMRN[R(^QKO f 9J;( )s>p?Mb]1 կ?dcW^{@3+:/jH)3,Q0:B܁nx)eb+3 zôܡYK۴9nk/4/ZY20Z"oӸBwd'm7ZҾl(ftT^ %1i 8zX $۬#PJ m`/,O|KN lMMy;x2OzrEm| #>$,F`|=''ѪQUnjh>5޷M#[ޗƵđm٦E{$UNGWVa~z53} k;a辥#g6tugx{%w]UlTlY[yD 7t_k x]4 x$tS;(d6Ŵz+fud􁮫?.M6RJu'(EVe7P]LX @jP[~Wع_c6ZĿD=y/?0[&Az8O~8`s_}۬# Q(4tjmkZgP(-XO1D g>;ZpIYX|+*+a1|6$k|0Sb3pH5ܫWxTؚ¸k6npzT9=ߵL(BfFc ͼS4GG?# ~ SUNAJO$n7u#FQYQ:5!{BZ5w?J=7QRwl{ѭ)]3ߪ`WPt5~f[򇰅z ď DJ|2~B v`.\X+m R'ԋ3_eӏm|I*dy?auWOř)eנo-a݊f;Gi+uhԆ- WF&=d̚ jʯ8%0o;vUӖdq2Ӗᮨd7)ņᄕ)9arH$GKX$KE#')?9u\ 716]>ORkml\l <7C$(řS#7Yduk M_=,K+ka>T9 ⊸^o'jS\l6~DˠLŽ\t6wIwaႚŕ N`bho0C ˲S~v\<cx;HK̮dEUqbXd:={hN!`"`}Q6&MDcL͝?Sj54rhm ҳBW'xrJ1I/gI˅=-(å\RJ(0trZXPbW@\Y|Hݣ8_,/l ts*̨Šv0mg7w!Ta530$Hm8\~9؄WfcikrUҼVF| Iѐ! \Bv\nX'›쎿^[*Sk\l9YE/9dcN$(̀"ބ!+/+-v6U/d]m/>x} zѳR$zg 'dH< C+vrJ.\M 䳂]%>Y;yr[ }M2-&1 qIAT!S.sL/Ls@˶yKwrB۽Sb\BZTՒR"OhL(JV@;)l]a{Qui8 ջ]+ll6^U#LYQй u4{m_-2P8YD"G>?G"+t]:J:gZf HEJrVncv;#>"h;;y'Yq\QtWF&>h߹7,M-3idfTRi,+Ɓ'>ɞpznZU22ymdg>-NgzXtL+.#|bjnO#ڹ^#Hq)#=W@|gN!4gxͣ{)zkD_;}R;A]j aapGep\gPTOJh'`" ))![f<\KBby_6PjXG}4g ;뮋_RJ To}<9y.e&&hV}":U$QCsQ]$J!ߠ3*dYĨՎ,G^f~nܨ<dϏjG!R^2#ۢ6zC_ аŕ["iã{G% nC[TYfjx mo$PRTokP;wO// tQJXO$ 8m"~@@.9)߬dK HTpEܙ9+P B.:@MRѨ 4Fx 4Kf1)򇬸@X{ľZJk&0~ d_oZ~GoO?2Q5MȦwYly(Tr_uvqGN.}U!sh`a.{rj6ɱ<[̑(eMlQV Ҁ81W=w[_iJ}dxFժqz㬅 4Nkv:+DȲ]35ZZ9uԢ, 2`%\ojIas?mUG9ƓIM/FPs9bq"LӍ7@r4JqS͋@MzP#~;BxE嚌=z>?Wت/a-XV[(knFŅ@2 o눉Z@€9z Sbb=-k @T Ǿ#M3*&+ t "شI-Pϲ(ީ?T-Garw"N LwfQ8Nxۣ/'0;h4xBaoҳzD7L[safZN>4)g;W8Ҫ]6S],}pl :Z[C?hO]{~Wd\7)50ŞH{;q9m",?$oz#.?4e7y^׎VDHc1|rP40]tW9[ddD׺mfiX|3&k<SS>vʔ`@צހܡwڍDeK|<0#qǫ2PÎ:Bؕ#)^-yj T[v;}7sD0Ms[ۑcUt!!N\o8xDYPUY k/;1W5Jt˨ޖ1.S:~PIXKyBBu\v';~:ߦ0 <- ց6JM<&x{[?V$b4~:\&:!LTE( qɯ|soD$ʹHw]<9T%'w,M&z9>d*2e_د, L[*MOcKYA2eg!fA8@$8|_-5Pz麢/ b*nxmW϶:L8I,Ie"g܉0j84.ARXmr{tv_WrArI^7olH5^B[wiRctQh_[2rtt|9np0y0wUƜifg< cB3(I>{JeBQq _ Gmn+ O9/ =nGA:hcg"zp}7`qp[ $.YuēȘh u Dz僱]M2s7|f܈QTK؅ms vRNVnBXT <$.˴߃+1m'O-Gp|ɐbI;\:*rzlⳡ/Gc^˦^; <`KG|k/sH LM"A:O - «l3b)[jԆ̟m( aՆCw7|aؒMt蝺%qz ĄOhR`( i.Go1cT͏ :끂Ϻ0۝prƕٷdZf)Jl[2k5 wp#c$FG}Q[o;yڑ_Gd1EG8ޯ?߭*T>eZ>BIpk-'sYB^U jLVnة[!!Yi%&6`:Ul3]\|T5IM7a)d$sJ$R}xM7~B%HnQa(%~)bf\\K~QMvV/Qྔ%)L%sxYSjH7q`[^܍OV;A줱\w_̇| Nnb/F44-Z4ԡ)H=XpSqM]۶"xՎf3ƤjcʤHЌIꇊ#"5ͮ"%&X <,=o tjfS/z |7aӹNR@zbtں4cA!|s؞q\;QW ["h='UxM[gq6m[3d6cq D{A^xxx G[K˘A")0 ;HƐ[odyj~Wf jdTZ@'>7D-Q'-]E|qa^֮}ӣ&,wѲ[B}9;7J0\ϕXy F7MĘE4βPG< j=0?5>@x$kٜMClC7Btem*+ bEmj*ws‡{7 N@'*}WاMG<5YrҸ0g9æc,c. g@뺫iJIe/Ρ{m34*:њd"\A:Q\!h`<@59E^ϐIvpCn[R f(H10=_uc1Y"İm EoM7w*&*'((] mpcNenbhV5'ɱ7ӟĄ/FoV*I~jji 2h\e2ҍ-lَBAԟ>>##F<с>e (~@kw,"5E#Ob+0~%Kt!7 ?y7o/\n9xۏ8= ֌[cVI[ z٣bͳ":C%{}oG8;xE)^MKRh~2p8́r¯lgkKB7QוIS243з ^,eSUc?\zJ>[x1`%*@@8Cia }iȓ;'uP8:!d-!S# HH8S~IU8Me{b__)A:@.(FR*棴EšnBe2OEx=LD刁S'Dq~!gRIַYp%:%y'^04UD.+^٬W+9~@a O[ϲ} MݧuBmx`yyt[GPG^xH}I~LIy('`7l)>ǚ%%o,?I4hh!jG B;Y˅HUKU% |,z>㗌DE7)ApFmO9U\NzJڹ!L9'0 oj_][@fHήՄ>8sh$U8c "4se^1tmTU?&1}7͈VC|C(h84Vi<\>:dUQG2 m_ t}XqG}zh@2jn댇Sb0x[sk?F+IbcQNP%R!@"S,ZI0`߃6ztD#+5WI;ke`UŸ.qza$( Bܻ,H^X8֬a5FK45޼`*Ů" s)B¦d()UI%S\AJ㭲'c JUlƱBȸ3T!չ̰ih?z 0]JFHzYKu # :%o:'GcW*UdHk$O"k/… ؟*U8-pT"%XH,g6;?)=km#~-2 ԱlĞT E._>o1O7>݂$ endstream endobj 169 0 obj << /Length1 1851 /Length2 11690 /Length3 0 /Length 12853 /Filter /FlateDecode >> stream xڍP[  0hpw 083Cpww]r^9ޚguݽ  $ ;2 $%$ll,ll(44֠:Ph>, `P$A@W$䝬vv^66{$A(4[7{ 3sׅ32[E9uEc5@ blrttB掎...,@0= r;L(m@nn/h-A`' <@MNY_&wtW0bc Y GiGWG&lv@W_b*knсOҼDbc;:Odn9_+0_hj61ӈ- $'oҫ o@Pwdc~b 0}mea zAp:N /:L,F 3 0_ W [t^`L `k2:zW\ `0spxy^Gh:*6SFfˀCBdJWt] ?YKv@ohcaoʫ|_GA:KkA&N6+| 1Adlhl/ˮgެ- eş+|Cflz8 _.9u0u)1qp@7דEܯBxR_!!v{??/Uo `7*x,JE|VkNkOEY#~kb~ 9^M,@ ko;Z?kV-_|-o:ׅ }}`ڷ@Q뜲>_# _ϟkN˻GNk_E Qf!Ƃ5mUb$.ۣB'ɷẒy{& 6b?H/tKlWXUK^uL.gFn=r =qr *[3QLоJ4 'Y 绚8Z"i^6?:Tul6W$|iBAJK%z`2V7iG)u#`[I.O9菙·)F28&=%L8۞ :çOz"Rߎ.AkɃup1I wR8#UDl)X]@i]&̅0mulw-.:A0pI,X w?‚HBw']z-ʜVpqM߁t~+"^(r/ e?#ؗ3R]n,D}-@d-\lت:oZ~ Y$o5*R_D?e3 c$pz6 /Rp?a}ce3$O~;sb}kmm\6y3%8hcL0?|(uJ.7'S-t\7|)D˶nNNUCAQzL4U(e,eNzKN1O{~4}R02^Y|M Kr ,Bxc.-kIdμSeΚZ;[-w؛ʹ6XS3Lrnؐ-~N,&LJ 0kj*p ,>I| 0Rt635S~F$֎ۆTʇ1):[Ӊ*M+9rd M4?qILqk&"iϞ/q(¨Mk9"]zo+HkI:TCAX{DXF( dx"b Jg@J~c8^lm8$HupS0pG6z][b* ʕD]C=y%F.A}EF߮*fM(_#Y" BE1Or /L i_Ta4ED&\' 6 xT긖Bq_IRUZJ/>9߈UP}( ZvيF@IqD~iT ,*j̷̄2젷ǀGKQ2hFk,8/Md7FÞyF36⿄d'z3 3X5t+ZQ)Yh ]T>y|_YdH$}wgi̾i7Q|/~#$wOcJGL*{UW(.}j8d%"VLh{_BuXsJ13V;a<OiV $So1Q~~f䭶y*á[AT37vnJgyT+061婾=%gjOC?CF}cn`=38,ITp{UFMj1򑼻HqmKn9}=7%)~WޙH$Y>Ws"lTd{vߚd/#/Swbm[me Y[*a%O|qO)' .) ā~MA>_UQ. ;Y6xZQ|9NnW8 #Slp!V?4+L̏ jF6LwOL&#}J:9j\)*Tmo֗#a:M>>s?{v( \^;vm~58Mlڧ5p㦎 ~fs ۱NOBT9bP-Q@\e^4k?lcfZKdp;eCd*S5">~imSpKO$sFR! sf6_HB ).8rk T=@Qf4i)XȲV;kU]> H˧l[]n{aI|rV w 8M7. #*rzlaևT;'Igtt&9Kw-wJӺ<2?9`f8>r͇w 9-R2K~ y*'m vI{ck™ȳ= %8ܿCiP0{L:C&۰$T: ym./ApDežԌTc9e30/wXJ 9(_'q{8!] ^.19cm+m[\zT ]shW/ASVy 'rϟMRlJa55>/GY !ӻnh |NcEX⒛䷫Uuav윝X!}RKah,F͹yjuw:cM}}A{-0l>!}5@jYWj lb7e Z97m)ݴd{bLAwOԵ}upӐwB]0=/@LX|TxŻj"Ff=mf]!{]"*ѕ( .cs$ 䧬J+]sQ_7fٸSitkI Yu|bԙtdu3#u?jGz7I8-תh[_"tMrc<13ѵv-~^?g.qwf.6=x䐊ϭJD=Ai,jB9)t+ W.Eبg-&"7itPY$yyBR)O&k@/ _PQ׌$N^RpZ&=̫ݘ0,h49۾!;jU$#ߧB]0ƽQH {L.aH;L'xL4[$0ӟ1u|v&jC5]>&h6+hJgj^҂ 0N 0yQPnĜRŦ!J-`|9-x9q:a08q!Եl)*76f@ǖ>d4ƈfX:9nћ˖SFZֳOiM[,ePJʊqZ7_:"زg͜ 5o`l'V(wqm [ܤI xO(%IW8nSwXoïUAb/Ccz[hP'EϜ87Wћy7R}@2qnY^rh)Hlyݳm˅fTw`&~xܘ~yXX-([3PF?Q{:XVQ,%A{zoԔGY+ItG[KEv=$8[ܴqo=+#jbV2KJ&XbB޴%jZTkK7$OW$D;"jї+wH7 ɘq3ɧ \C1bߞh/ uP%)q N ҃45ٴ;(DU/amRTO3diu x?M4? 7Qvٓqe,F-qƖ`Ve ߒD2jqsN%^UGÖXfoTP5 bF)E GIA< Yͮ Y Cz)йYf ^8G+ + f5k^ SyrY,Sv:+IJo]?sTH<]#z3,읬 &uAcd#rDN/ uIFTIxmo5"}[H;$~$&+3B ):Q~ݮM=x}WnYH&:+%Xl/htoG/ qU]#Q3̩&W: 46?бʜ+%5~Rk8CIMSѧf4uo41YVݯg+ vt6 F ^8.C# ÷_CЎB'J|ij ?'lqz| Gcjq14(h[|22 7Eֻ}N5< Aӄ8̚n/- R/<*cz[$IMf- ?6QHDZ95MQ{_` ۍRb0H"'sFvLBVE}G\S&bU =5jwì@i;tojRG0Pi0<sQ͠2F4ZïE1_o`ULkb;MlBQC>jYiL~ @bbrx=j t+ȋjhh3.Sm-o⑱gwgeV Q}* s}|V.jN*-BLId\v3-ΛOHtK$3s4d!J[@:CxG>Xk̎l°$۪D9Rsp.6ni4*,YvZ!M~bo$C"rrK>Ɯ%}7z\0m^JN~Lf1Z'_IK`Лx")F M` bimΧl,U}Xfp~ɤ筷aT0.FPdi̚KZ,PHSd.ԉRLnt Kuarj~~Xmj{jIDcAg#y"D۾{o g|HywZo"ێ3䕩`K9EF^9%_Qu=.vͨA&e '? ժȱj$V ʬ Î$Q–ڲ!*ՙ_R_M+fp>q-kwm0/c6 }P#KRk|%!u;:Ե1[E.\߻lO}݄@?G=x=y6AiVR l Ѳ2O3{ "`w/\,C*1wKсD ԯyJ>t:MmIшFM HxI=Å o,qWͲznԨ"VJ*0 4[lQx>A2 :N9x&&\0,\~kŭ%[Agj֨lk ~܀̌T~qB^.KU1XE3r!-sh I/\ ZpB[Ie2çr>qQ,Yx?5@ޞ\EwVsʛKAu^qZJ޴b򏆚>2ϫQ4?;FtjW K>4<1[&("r_tvPfGNh qwig%ʈmK~0^; 0flo%nY/yIC?[ڧxMpc,7XB-Kא% 2VRw ڢkA 1pXW"sIXFf F@^Ͱ -ߚE*t&L%dXx*}P4ܬQɒ?SأV/E,2a0vhb!0x׎jݭI/֬/w49Om;ʵi2,e#_Z쥈A~,GZeꏠ*/6}ʏζ0E1cM}5h5;C{7ڔY3lrTľ`듧hFxҽ'j}})~A0TҊ\QɊoؼYD~q.@qc4߾ai滃P4qU]39Kk|;J U}#a*:+YTUWg DÖH>Ӱ\bn5VZmȐXٷ#: k2' "+&!7Z^%K>JP, XQ5D} 29?Kӫ Imձ.}PQ6u4^4}ٮᨹ&Wj͗ Fݧʪ^hDY[ Cg4L{ XhE!Q1V@-tsn)kʸ =1T 1̵wŪ3 K_5Mzi<5pa}e /J]oVNZJdw-.Q(6͡ Z=R!Qeb wӖC [|̮q rBJ<F|_Vcf_ʠ/tcЀ83.sJE~'wtO?#bʜlcUPFp#psLrJ5܁UUf7Dywg`%;"x'ۭws ƽ0fHn*G35L]dJRPԩV3S!hNmmr%sKIEtBld0ȑjt>Nv߉ Nk̺Т,p$T:(>o~:͂wRmw9jy>~+hQ! щ3_g> A%. ~r}C1Иɝljh\ s)q96ֺÄП^ $Y@t ;\n8~wNe.󚔻c㴾Kd"D컄[D;0<sޜq3$y;j-:rS[vokqov/lH @b^~zeXkX6r}?;OCˋpU^@2 /Sf8ޖn@h*㣥}=h/ 8GKe>5ΰ^`bjOYR_kcTT"K{iVR*UwF֙pm5F7 ;rZV qxs6aR냳MT$vTN>1 \Y4ˌ9r[Fk~pKy?8ߨiҬ#8!$4\59NôtYx(| JT`CyR1?R΍M5=X3ˌ~zGzb_4ٍ;Tb'\,tw@?rEi@@(Hd nY͠oX<T}B%M T3s*3Rt¦ea~ Qlo~>?g&qDdh?Q 5XF=8&.⯴cjom'*;^WTBeꀳy-CіH}-KQIݩہU%oqzHwMQsOs>Q{mhśP՛Fý)ɽPh2ILGݒ1|u/ 0 |Bdzm]%8;z˥zFr4;V4qJhu8!Y}$ё "U9rX\i|x!IvXgIoM0!f@،E endstream endobj 171 0 obj << /Length1 1500 /Length2 7172 /Length3 0 /Length 8184 /Filter /FlateDecode >> stream xڍwT[.ҋ(M&*DJ$! H 7RETQ HQQ?z% F.,*/A @ h 4p(CF1}^l`q|PhC0PW쎶x#=== hA 8h(j52@ 3)+`xBPPw0P"Zo?ٿ ࿓!W$ ;a.P ~!.h6@l߭C*zv?mQ0$- vWW(&՟ Ş7:p߿-{vHUWH9@1}!1 u rcgE"{P=Cꋆx@;?H`:TǺG ,Я, C]bCu%]C?#oPA `>v: ?}G:UW؃g?$n ԅa#U2;Rqwq !0?,u1Xh#b7vv0wc X9 *0//7%8z`@aUf}+Ac%}l(VTCn>AQxb/k|XA~#0vf=Eń@_@ GbqXͻD"E8@ȿ` lQ(숿o ڒL!l%CC3zJf4-$)[$jVU,:u~-N5>gUt`I:6{tgf S4RT.Y;>~{>&{rҔk-Ѣe7Ij3h.r@w/듐GQ:Yw4:NH焙9O*(܈ˋ`kI>Fd^/>=;3|n?O;Ij#ǫ8pܶ{ikʼ9!]r珸&M2 eJCM)=`F7͎|}/wt(pκb}o^f*xxXh "|]EHXʷ;Cڢ<[[:8NuT3Lqt}kw' vEWv LUސ '}Q3 ?i' ogdWiP% ٵ=&V$H#X=Mfn:Zﳯ-7C "0BsÄ.۟wQmp׆OzߦAtJյl_ i(-lWf2XPUSXZrT?EݶH+,MMdT]w`wo3\l%F^ I2)3CXyiaEJz s1&]DfԻ(p.=h RX+'PH.qPLuXO }g&.00dBg'\Y9޿e~|=Whӭ9SY'u#NOco@Ex;7f[Y x!oVƵ/cF]Q=gKo2IRj<^QgɶajqVӷH6 r*ju&[ӡ?~>A(|y0$ϓm0WQWOUYr8V܈5TiVNg"8tSŜ+yII(] 'kF{Au帽.{ղ2qb30FǏV|638(O:ֳui%t4|:h^{ Ўp95Tc_zgBa9ш0!Q? V@EOkЂN5g*C#\cPWr`L;@@M\#uT< ҸTB?ʫ)*t:?dg!UfB%42>6ʌ8S};|{yV<.D43#+ZCu7 >v?ʤޠw~}ϴ]\m ݶNx^3ȂȆOO-ypj]k}yYk@&I}8Y!xœr+nlTwZ- !G>E),N}Ha]ŸOjw& QVtόlF@y}G! K$bt]ؤ"H3?f33cyO8RpKKh61f+܇VP b#[/oWb}"^ZJo;3_0'h|ͱTJ N*ލǢ{fB> kX. ) yUMps{yXL YE08ʘ7> vYHRڒhJ+_S:lOs.^98{R hU$ocaD1>uRy\W2`{(2Bd 1Wy9v:w2ǒ:KGZUKn&ϯ]h}_:^py$ҨT&DH<][=0^X"Hb2|ʨo;zӬ-)5mݡL :/ ڻz=Ji c 鶵.?A\3xejayrdp|\ýt{H vaqx9](fJo}5&kkaU^JǏ5٭01ğrh?TÉog=TBc8 ?W{OyQXk3Qǻ8bdc ?[y;f7Om3”zG02\7Wk6mw59Go֕O!' RpXhOS$9O z>A7e{oi2K zaۯaghWqKQhWo/c[GT'97eo SsWc2䴒!/7}:k1tI+1%#^|ZYi<%!SEMxyV{1iHPr\M[2X"YM 9`daRPW-+>hkB^EE*M[U 2[̢#UkkGfvŽAK#!w*<:cZ.)qd3O'7Djae]:_P]<(>>`mc D 3X "{:~/bQ7;?$&ROm wE*@џfҚ֔H&I^t>9rVAA ';>DqV[ZrMsNֳ)X~_!5 iqC;t<͢l!$*&}evǪ 匕QE9ZSq6ڸzHKMes)g"kKSrтn.e>k6I Sw~Rlwbygn٫[QYz 4"0L'o|5[p.yq~v9Im:$[ V# e?ơ(ʷA~& _qm,mzȲQʬaH"8O.gn 3s6f_n>Wu8}rTiN 'A?2Ls76f@M]y_o+%kGIJwtiF}DMiLCj[h~i@ +14 1=\ :P\Pq$8e\ [ X5dO649x QIͧc^SHOfFOByp PcyFb}$: rs\wDR?1%.6tɟGMcÐb +yHeϡܼ1Ze[*iíRoRLvzHDf)oπqm[i5K:zk.T2vWټD2II}`Du^l8[sp9eAП(k>jZېUC>~zg{BAAՁ#|FBq#Y%)]싢o/'U}ZR}?@ٝLӜeȾ}%F+ fm/m-OK!sb=$9IoFO")M:}3=p*qcIF D;0umCPO,d1ZbcuHw,Kn)TR1$i^m}1K6).xkuG>"['e]iDISQ]'U10J/pRf:\MJ&@<)խo>A ~~+~\CAy9 oW_i?M p'12/CZMj~IЁ=к!?ۙOBMݼǥXVȤs<"Uך~͜d/gB$dx BqgMGҢZdA/?X+^ 5*-)&C"1͋C]p^^I^)4m/vTj` B|I k6wO{~.GEVu8f9%L̢{3EZv2QDrgB}3Б{ZH{dHv{mR߆cl)-J;ADZY>`)xgx9 J[ԨP%kYNf8ci":" 8z֯p󌞒}tlmSq{Px<m<]OoiX8Y.4d14F{L,c-V_E|'Èj6~v w!iWUԚUw\ԻōBW{=!-6eфS[Mꭻ? #.Gg"%_SKCZ7m,\8疞,H-b;M̦$QCKD[Jc~*ڎT"b +hqߋK0X;szF0BK/Ik4o TQ1dR&~@!G=ziJřKėA'럕tMݑjjǟ!3?̓8K8#6&c~2w./;Z3b%th[qCƇgB"+x@mg1 ϳ9#wԹ6|&I߿T#al}y+9,>0^ gkV}swnWM''$Z'-7V9|(XQ=V0 í=p:ږM-UivIaaS'|⇾ǯW!Dv_]޾{pb&gC|eJE(>7Zˮ.Knԙi+[Pwɵ>vq;ގp_ gYoNT?oWJ3f/{ZYs*u]{|j&x MD;Aq8(\y^d[)[Lzp!H dI7)QFgqecn$MHPuElv/vU%M ?ͱqK󃼛k"-ZDsRfP(߳h˿}GB|(t/JyA TK9rG,: 91n C0J/](-vZI!\&1L@]&u&|qhI%K\^ՄwE:?]f=Ko\w?_3IPӓیE!Lᴙ\iYfxȅ.IO/ocfoRvCw w`FIHu2OSQ_#G`<1Y (T5&,\~&3;0niԪAEj GI˅H o_i[:f0l-'YtX70s8_Vk*ƥ5nWKzL3<ƾa4VjL!6$bͲh{Uj~@ڗq5]|G$/#5@7𫔶3%Ě:y컀l6|V'roMτ_> stream xڍtT>!RJ4  %]R 0 0CKHK7H7 *t"-] %Z߷fߜgg9>,z<2Hk"恀9 aXXhg_fC; DAEPp@!QCQ0tC= @X䐮>p{6Zm8ܿ2.0w Ѐ`.7;@zH8 h(/!%9^p@{lhB]`:?v= 60&a slSQh܀A_P+G0:@Pg& ;Co+etЛjewE@(y9e@~'wuB ~;8WLE/ʍo=  ?0o_}\a_\&`p; =`~'"@p4fG o. xF^Hkcjhde?> @7 ц*w  .U_ `k:8L- `!? RpvfP_zo&@y3L^4fd7jp"f G8Ys#`Hrflnԍ0iC_v3OCa5x|B;ԇo r30HMgҝ5xm~~_:( QM uSwL"mBkCjdhx?e|(Cw+Y.'dϪU(tA-4er}Nx7&O0ǓNi&`ҋwchEKw?f}?z\jXfk{MyZï+}Gly+.!1fO53[ IzH:zgG* V+$V"{QKI'Wv1C2%qKadP9`gpz8S}nP۩15g&lc2zюU6< |$yA $]; 5Lp*,s)~cEE[~;CiT3##V/fy^ ]NgM{5⨂*(ۤ {Yl_fTb@qDPDʹtn~+ d&AyC@wR^3/biwTRs*,g)*m +a)яX5' 2Y#Mxd44prnS1A ӦVk5 wع<.w]TR 4XhnvyDc`|})$jJMdjxS5SmR[V< =LhP 'cxEm*\kNB k!rPFA[9ΒWq}~ *Wb)bf}#1D}X8YoB鸪Eޭg^b|ȳ#˷QZm5t{4DžRLUQd0l }^&]R$TzD6Aԓ$`q/AtB @AV&jҰ| z\״MSo4>=>VAJk'y ^?jIgʪ|eLu<>.I~O"rʀ|@ճpa~)bqU}gtܶք1[HyH#Ҽ $Z2<̷jc:HʪZ y#\g=XW4H6ϿVIPaȓ`"P4Tw7 5{eXUƇt!ӄyTLS_,)=Bz^۸ТeQ6FMO~bK8JUDv}v-J{5sqWoR,Nccs @+]^S8W 'rfkٰESv(Kq==WP/`/nz$ a^s>l8 PaJ9n]-ԁCMe4u7:L5ʋ#`Dk2KLƒU)9*uy!PA0T ȌßeƇҀ", GQՋЦo('֣WK,,䖊eo+#,P&r-> +;z+qDkLsGg]u%) q6C~a!"{tA%}pcW _\_ξ,PR_xu1Mny!;wp7~vOLf䟹&3F{[EJT^-:ȳIYDasGJc y2pT >L&nIkѳFԳ& GJGP\Etvj\.y "ϿWߍu)l{|vD*]x1UHD?>hfyk $S "zfV8Q9'6NhTv4xxn0s!kFT&ݯrp,ɠ' 8z_?eQKgfvM&_ 哕@vV$ubfi!jB1<dPXc2Wju>{BM'xG-J :o+Uen?ݸSLTFTvK%=I=-hˣHړ4k@Rݙ֜a@Q ڭx7M5Ngko4+K `aX*K=t2VCʳs0y`t+XTzQ&K$K~Sa#,mމ!)097֭U9%¨8PҌ bލl7kȁ.")B,CZI6_F{&V ZxwlaYE]07~^޿ҹ[rdVݧAU'z}6MJOb%NwSkOP>;m l$2u^ێ4JsTzFr #7N/s.eAYYɨRIUZ%zx! &k-g65k#eR'[GC1&Uw(};枞iwWUTEߟD9W-= z1SEȦ;~TRV1Vf19w]aʱL=Z5yzM29"T. qOpۺm8[js! K A3 ׺-)(LDB埂};Q\ }7oIV^CV}4 jVٳ_a}G;[cs0_uQlz(ʾS'RJlB ̆jKgs3'OI~[{0E9]4:n-rLcjy~^ 0O-^,avyVsOb3tZGҷebEI82Smz݊^E;  ᤴ7 !ض/8Ē6QiukH~׵K[]\Z\eq?ɥq$-DHmKw|~ܧ PܝJ޾7UH6tW˴I &v֛9^YvTi"30jbOca~8Zd1=fA{04*tgϭ+CQ\Nw.DS}$7x}S.0s_upzԻr:SuXv}.u _x{i5krkBit?ͶT3su={Lb7JV|C]^H̀̍ Rf,%}ݹdC]nHS8zup=#ح'D4LE{dF`Dl'4| z/0bw`z@qduSY2Bg=^|ԐHboMʽט.!7l;L)S#loV߹r_̝&%| tnKkçj3O(${sd3Owvϗ/~*,{XI6_ġ8kk% WOJڴ(FQs.nA{v E_RTjPג\䧯.ScqK:NEF"3 bR[ƲY=|]KԶ W _u,T`,+Ng&u'o( !;m.;ԌWPTxjoeqy% l؈,HJaX̱}MTa_D 82InI"X63]Rɜ DY8A:f{ސ]ê}UbLvPr6ZoHuijaC?uC%Cq3xhv)}kQ,cioqj֑JhP2Q3Aw2G1C%(n#J*MBv7w:-hɷE^J->'8rdjIZ sWuj7 zZ^k4xn.^oޓswvEoD2QEh71XFŲ`0, Z^q\J":z3ZJe\ך [Ry"n`Uf]G+N Zyfwj}5mh[O{Մ))/WF/#UZDa\"KrbCE ؼpgEhKVRvִ`zud;eB[>{OPp$$xӤlUKE0kSw!ƨr]}>Sv&X,CZ>*'9uGC|J˹㽙`﬽&+qG6-bwL_3 Mً L 댹afN$:r/K0~R RrcK9ͦq[e\rĐOΠoɈDF/hI-Hv]JKNg㊡R :q< "gBZrm}2ր5Db9Cmpl-Ur~{MOq1L2upo=V:.֟%]*Ρ|J9Y[57=O nGԒՖaRQ{E kL%9a]I-[;<☋/^##U9Bo´LS5ZJظW)ڹ9wK)KC"\ 4_4v+jFjJz٣bBT|1UXSe%fB5KLtp[Fx"SЃE GP->(vi,f2UyR2%zZw_{oṞjA hnۖXR6q ܻI!F ܊Y ݕv;aɔGӺEhh~h粚eQڹ(ZxW5%юI!1N> stream xڌP\k-nAwwwwwn% n nw^սE1}oouCNJ/lfosgf`ʫ03XXլ\lÓkxe 4vČ]@vvW3+ ?N<1c7+3<@ O.jdeaJ?*Sj377'_a[@h hjlP7xW*>KFFwwwc[g{' j:%@ tr~7 P0<9@oXAvf@'(9@UZXo:f`f`'`ne(J1x~8ۃ݌lM@Un VO{ΦNV. V6[d4eq;3Q{[[3Ĭ{2}̭7ang  HGft311qr%j̿Š|&V@xogc7 o#xff hae':H 43?O zx1|Eh @`M2NЃQ2O3p]-hLS@w,{k?$cbg2b_. F]_j @uu-=h &凌Yo1h,lLo-We6Vv@%{g t4KZ-ӏDɿT@wJq;S{+0vr22AhF;{ Ԟ/ rF AF? (qALF?( V.A(ʮeW@T P>? iA|(?32;8b #R1w#gGbudb3⟜l%F?T Z  _y9~]A{Ԟ207tO0N2eK,=,vɬAm~MߵhA#jڪAr/5z?jP0N?>O6Ф@ ?a)~=?'*hkߴ`mt׼AQA 5lclT ],b Qw9b f/_y{ { F8P$/ߩ^3uu7 h 4oob5V;8 f*5S#d̠u[mqeֆwmIO>φ *SXpjB{>/>![ː:r!+߻Iz UޫEx.Q ,%3ɚ!q'A;x?{s;3F$@ {Z䭳0Z܅KCy6:E-r"]Z2WDDe%J%ʮmtNn2 NR]Y3"fMaKG 7sՎ[ns/oY$m〖n/m#ݾ%4►+?y2@Ati1PݒC.D t{GOs}.b}m̢.ظs(|r~^k*nF!)o-R+q6| A̓H.q}bMZwwz8R/TJ=@x$~1pH$8`붢B^=Bd8vS3$7.g4I(^8_j"nĶq5Ǻʥ)e}Ŋzqk>4|TCDY% Ij9ܬq'AU>kwazl6M^ [_ =: &xa; j*:^.W ˔ݦ޹EK`vDڱ{g^YhKFP&#tcf !~_Ly^d&O comۗ _-w==idF]L1- Z^H ٱ^SdKzݗrQ&PtH?[*<6{(S!Ll1(HOl5ªp lWLșRiҏ%'1ft+jS1cf eV{B"m[ԂI$K VYODSæ1<0~G0DЉ#P[gygM+|ǘ&qAՓ4m¤d˪.m[D? MCI@5jQC$NSw_:jEu.]YZə V VQgD dyRAT=T1F*յrn ۍ[p$ڈ|7o(d'd6八>iX31SLHS3V'O;hZ> X̊u11VȠaEU1O|jïǿ!D"(+qgM#0ֆƢ;kd*f|.e˃123v{QdlWYlWB7컪By|l/\Xr'Ȣ`7oQdrVI‹6l87$@F'af_z޻ߔ#ЅgNOeʮp] ).rydAu]恩L"[5$CBƭρAhYMmՈ6|hsY%ק"b@"blأ0wA;+|I OwU?>1Zn/}>=*ߙWj%Z/?"]X?4ǰ!hYᔂbx}bMyEX^.% aO Fl8#_"kx6ߕ*gš.cxߩR"@Y axTS1IaTv-Q<7/k(sV} cBtQNԤ*m~s!pBe B&E~y$$نb 8h. f)R:SoC0E#E;x\vV{t&WH)_diTZC* j yTW9Lβ\~7OӘ -Y67K U6 *>E <,&e䱒#<9_S7KM/EJ )rz%0|jG+èyY0[LHU" # fƅ%QWe\%Lٱs1CmJ\qd2!:iܗu=%G6dY j>ԻY"-MrAbogQRocDMQ_/dZꯐ“-+RR0=/D煠׏ *,tʆz4aȰC{My8'ҟF v?X}l (mr_7wnfzFN?Èפ; .Z+~4j>vDr\!sLYJv75ue#~Y՟zpuNW%zϊG2bhOjCb!ƷWI,J׃>zI͋> )=8_n]`H^8?Db<ԶZXq7;l1dgXCV'_>0gܼQ 2Qn.x>p&a#j̋W64HJfo\b.~z=3u.ILvϼ܂ے౴\_Lh`UR}jGL\8h]ʵ2gusdM @'.fٌJ* I<z͸prk[w Vu[67OMXlb8I1Xw #`p'4U[5 \Iti%aYDO{v mK~Da&F%`ׇAp#{!<"eٞSOFyhCH5(FFų zO ? yY]`Z =D{;l~kdG\c#Su<%вȁ^nb LH`PJc}ع\G'DRPڟBIbJ:,,ƌwb]$rzѵ=W[+'!i: ,nX{J3. '_3S]!%&Nr P^IgCV sz1^?8<}ֺN4/(˜zxyE_*?)IAb8$%ʉܵMX}fbzI@b/{k;,2MB.WU<5mO?q徼 fMPޞ>K`iHc9cVJn096B ߂[F|x! +sBdg/ XSiZwD-m7~i|ikz;U"9=6$!Gr+3a1,0WM#5ӨG⽈ {ƪ5p1#i9Tz^:B->Y(ѝ=,φ5iQk f;Ag{$VDxYHIθm*p]ΥOhoA\*zdOymGI0Y*K?n¼nYbҳLJ=a%2N{.߬2^#1_qGezd|.B'53S3CtWԻx𡂖 ޒoRh_Qe)&ˬ8P;X10)쇅I Sy@j@TիUWFWLZcD/<5KїLY6<@Yz܅U"]jrI>GQ3I)%n_;_%ӇD>m吡_)mAZln .z;OY=Zr;%{yPտW2Q С\[yh_Q`6Y'D@{_zEeet>zOEI=tq\Jd OA7p( J˴Dfeآ'h.h(.(\SUe=)}iu&aMVHiL{RAJ4Yi^QjB-F6J\ `ݢS!tS99mMpvnek{is.6I =G̾a c(_t  9 aV"Py,ɴ-1s;XWjR0 pD–-#wy =˗9Gcpm+[Tj"A~D6_TZ68vw#6 Rt`]IE{r9l-# i}E^?~m-iv2Vl`8+C,)GuJB]m$ 2:VZsyc PxtŸZ%A}AUqJAv'̂R:Td<|,i.> >;3M+(ێ@..g'ò<5+fcf99,T^@'K>'n\~$DANuODmYXnMnGV7h[㰽ɂiM}{Dim|x>rEŌ>Ȕ;,}T7o$Q:z h2W)ءs+ fh)ryaL0:ͩ+:v2v\]94U]p1^\m2B ! |Dv`l˙hR@8ۍv 2M阻ݓ֠or]fG>AiWpji*}:qpTvk%L3|,u}ϔvۅ1vGHAG[#O3]:Ըԛl/6(T ԇrd}8+=4OsҬJ!G}<uU!!J=tLTRݑ}͛HQ-3˓bHFxRG?+~z>}6wae^ϵc4KB,ql^/tlSX\Zׇ# $z5h?cd?\YЀ*4P)l`358! ӧ1: [UF;t\OAc2Nb_ClLQ"u =/9,+y_0ۢaM^BF_óo{q*'+ݓU&To,*D*)% Ý-AB53zDo^RBlNbo%2= BH>rEcb};`#tO8G?{to6K`R{x!^YQk?"]:YMuqYDLb Y1ڠv.Er='6; !ii+*҈-A/J'|JƘiT K43 ֞ΗbL`]ܭ!8pgJ<]f$Qڮ}# D]% eCqjREڶMKcqqD2G.Ft XU&DM!C3f7qⵚc2 )o8L~a̬O,*Vߤ{%SA4qB@l'U2O\/ .5{f2PuD3*a2: i2:لȯ >+~,ew 'K~JQw(bWO56msKUkE8qfu3mZ_ǎoP"Rz|\16SzlFDZ_uGh() 'CNREmS77{!MR;WosMPWȷ؜1CD~׳fidfW/ ?/zQK|;h$Gݸ%6Wg>ǬDq˒aclw$f0S)Yy>/so#s@5nK:{@+lHB@! AmGF1kڭ$If]^9SD%4s;s}  1mc& R0}5xw&iee7O@F~L1m{Mu.L Gj%,֝]g}:1.Y؛8޽7!f;`'垒 U~#ЈIIΜWg=TR"p ~㎴hŷV,go䶱d¡ц'O%:E T qPHDU>rv076Jjfw鷡mmIJw!)JāCjws:ˣTme╔sXINЉ΂C5aĚXoxOvN:9Ri7p~NR}+b'³[ ^c ȩI(ȣt;P]*n8T$& PY1`Un@\07|sI=(&4mqq uu Fs5d-̝ 9BH4ƓMH UA5ަBVz4C ة|Ҿun$kۆai FUC}:oJ`w G!{;,Vw|7{kl-Q_|1M3Ρjv)7#>WujT}&O< !ӑ5Hi#/ƷglHMm~k? 2LY~oJ񫡥h9fh5CNTY}asɟmPaݴ--.28G[}ntCkWLYx ~Wgߵf;@t0ы2W_ih~^j3}<΄]2]Uh>[Lx1Cl2;0m҂k$44ܓBzpSL "X$=^k3g?4$|˔ -ܧR /qD A} Ftnc3ut^uw5JsP PY5Q_t-Ica4NTnHRb+#Vcb(7i7F#N8,a-5pSe3?T=v38I> Y' [ ?W=Mڟ}4bvͭ. ,)IԛX#\_WM y_2>Y!dN"4ec@_zΒUs}HTfw!oCn Mz7 ,m!EN>Ji4Kئ~-%v{.T 3EJq2DTG2YH{d` G̓NVe&<+{g#4]D"S !S}i"b $CH_r8>\/4HC($`AyXB{L|Ǖ3mL~eK\ B`3Koy-d8>񔄓DĨ45 *#Π5eoS3*6jٗzʹЍVH;>Q>-e/_)jI2w4п'0$;͢6~៚*/ HoE|HW}O,|^$1)% 0!4xEi[{G>΀c"HL KS˂O ᳇UHL&= wV]kM.C=hlW0cTLA(sL统jLH &DoBj{#/1xL 5\tSMJ̪mEu՞-X#\%` JĊv>A?TZ؋Oj;ʚh"qLJUW<((/9%G@g7|+z42EZexC12BY24\ 0LվޣMa'iK'//.|uݜI/#5I|hg|rczƼm?oQNAd! 1@BJ LQט0^̓V'`IaTiQw#nMbrD3qO(WIh~勋k(NY ܀<(im9f4DG!;)%$k]^h̫|\7CxX7d[ms0۵bh}Gs piD!WW p+FeJ-l:`cUFâ:v_r&z|q~^N#i⾖ĄϛeAЦxidVܽɐ6j:bZ_H9 l LyF W4AaƒCPIY3A6.]x2K+b~Ϝe c Pkevxv]G)B c3d6+E`:|%TluE.MdC{pd'<9C4֯. =ׯh@vHXc<ǃ%W,: 3C@sDLRqO_'mؾB& *8p|-UfjNH%tFvmgQi*x09a4d) N~wpน3h=]htێ`eᒋlVa/zTSd^Lq0x=u+aG|z[x>i ĂY5vbL۔c`a+O=bb'Q 큈o#jي! Ia$4'(~R|PtN+w5Κ1JwvOУ+:i)jʳ]a'K-+Xup!N;W37sBhC.>]I*pD7QH:}$xHۈ]|"efHPfꤰ$23BgE[ɑݍ]3Wٷ]lLz Njp»+A+زsI n;X ebe.~Z? |rpٯit1 ,rPR+a-麡~;Lq˱T`v cAbH`RNx5[;VCtxu( *xOKa W' )XvUby@>!l.Iv8H h Y|HRCf&@j.G~·?Eeu/Ws/#{ڂMYG=X3DJ_q>ߤm^n 0FxqcD8^Q5n?k@TWMX6(gE T%0,<Φ+t2$2ql tX#K1w=̘ i'eYlΠ3$7}1xfH_Ʉ |Y&{X_EɆu9SYeNلBӦ&SdC#˙.L>~/nni괺9+O $y.J-'݋pa.SљVLq婆(DLNN52\ 7Hӎ͌|׋dž 9r*Ŕ3J|Oiz$ȆVb$!xz_2sp,,uDJYVT_ǒ3=꒑\z2 ^qJN^ޒj>X3)>ߪ-F\:I9XbJoN[F/6c5 @PړTQh =x'bܗ>5թat67XyYt.'5gc.mXp%cmJN"-3[JaY_{Kvb7R^0NV<: Vܯ/y _=Kܖ .4bq]zzF;횘%KmI6 G3A}*(Y&㯲BP˵#Ɠj[C21$^Sq6  Blʀ͸|f|``~wba]q5ʦ):{mIUt}/N!1 r( [+zPgUn"}yb:/PHF=n^N\YAV.AݦfL}0ulSȤEV& Ïi7IHS)AvhBD`Wda3aZ˻HC3mw;hٙoe[ |DG_qF`gǴۏI*{T>! hs!wQ ۑ2{k2ބ_lzf^w.nT’4D l:v&J{ɟs[xFxȘj+2(017wdi&׬x-ҟV2A}G1ՃQpr.f*<lM߸(Q(+b@ Rrs#X2KG_nZtC!wVE٫m^!ie3ǃ.\huۭ$m5lSh}9HY^Vt+&h/qF_Cjr)?TIJXcp:w+)6j9ߜ zȌ|tBL{v~ʏE*ov; LsAGXm1#Į˛zJJ2ˏbmN XkH>qb͹$$Mf:r0p .i/۱.X mX ]b.uKTt&+vrwuH~M0~~b^u Q7ƾ7 !ό7#E:ЙdH)ecvDN Y-R^dbצZSlOjulzڒSpm{j/ N[:Q Vfb\?` 9YAM]wUV8H)l* Q`F̅rϙ$N$bBSe7 Avë0Y*Np~)2RFq*ǂ-IdZ7k|*Y7iz.=*U k_$~Ğ8)jx"WkrS.GEMC }&qs23V50suv#\DTd>f[l&iyNݾ!*2"@?%Ry]!YcR%-o0ȡb{~u?"9#rnPkqj>kM?09 $V M{DdYg6 0aIQs aĶҬǼ\Xb2nEt(;!6fbTI`F8G^xD$ul<ߞhXhm ahq+76OM .Y H[ "^aQ,sc7 ]o|PJ WOΤt.S+urh{iT^F[6s6L 0eOWTu&B^ē$ء\@KtiSƒuۃkI ,C;% ٵ& +eU霧4ozx^ڃ'p`s jޘP>Ԍv02`\h Dk$ZH0ְ]Z^s Xqr`H#C`ChxyHP:UK'3HRqZ@Ѐyqn,G@wUYJW[N\Kj4 Ԫ&RD8}HI}ÌՎeIby|ƒEu8dSV_3.e,f|?$kE ;YEyg%z8fi0)Z'W;a o߀4 8et)+Mż5-F˼~ZĢ̠#1BOqǼ]y7!,s6QB1 7oObzJ;q\g(D߂Б7`tDY2YcXyJCHd #fe`5-"ck,6wI5x= 27}L6I|SVثsrIHWel}VڭQڑ!^p(V-2vDbn*̠.NH!uEg6ToxIbZl_F;_q pgr(/P6^xfxӟ2B!qMRP (biy"_w (b3z HRN }!q-MwYbF mޗ7Xo8k(n3u<7 o8(z/ 23um] }AHicVu35h|zna1%_@Gk:c:w˴4܄I k?bY:wWP*ch'Vn%ڃ|,:Տ$*(fs6>~.ݚ8PJ( h*jg&܋4Z#Z)n?kϷoתs)FheklԳ\CGYqt=ʋUͿq0,4HJ\e?]&v4xxZuxӱO!9鯫VvdoQbpHD`=;r/[*TWA .^O/L*reDXc>H, ݞ2GѥA\+ ̴Jmb:d;r~@Vd͛ 7v .$$v'/i WuJg":Nnw`rO9[EzgJI;MNˌϝɱ]WkJ2Q^=RO=/H!AYv#ћV$ i Ёti`A&ғ,.a&ŕH>HmM֔HCmVڅŸ4P;~ spp>@hw!ߨ3g?XgADwHXoڧͥ`&Bn5 ユ}S0EwF I H'Ŗ]Y,V 1dzAʽupxIwBG (^%!"2q< %6_)4Sl#Ķwj-mݫt\yb"T {o얱+N.$mmoRiWl9Խ%LF`>8hxZIRC:Y3Ŗ?^E2x&X.^؉ [L= !nXhq N7Iψ M޶?oe{PN*Kkϗ IAuiMyU85)V/lG~be$YqC3 "k!/8oLX TJ Y$Yn ]O۾tCSm USx9Z:L}ƮX΀ު{^9mfV "MkυxZA>/.?y'٩w[Wpv58IOrѰrRwek؎8оUV؇tzvOQYFGΝ'-lKWZ xMlۚ'f= ŏywoq@ ;g%㤹RnkBvnvs , fu! `4@mGVT Md* ]p(-=H 0ɝ7cQuيT]#1 3Po`{\V@;$G9%y`¡C^[hΰ[0pE6`& r/E#^fKw«U47.E_ՕqKU.?FBlsZ g!8|A ֨ɪ.ۈR9Ys/o"@-0Lx ͶO;ɭ}`y=[1AAjVqn?ݕ}Y-=6t?I'aeyH PS7q#։fikFbK{+1 NHمI<6s:8E[KM/ўYu,]s ffAC0Or赿9ʹ+Cur%wha VhR4^)=F \U haVB@Vњ8ӷ% *0}q:-súݞ]}v*T[w&`}L^ѓ c6G\nIqdkX8f=~a=ڕ"eO 2KUpmyYMˎ.N̺ pɑ6=22 ʘAy_gaL3oeSZf9z s$&J׃Ľ O [W$$ޘOY.{m>AN !c\\~7-Ύeaa7)Νƶ˶sZWm|D8vң3eB2`sUO@IShyظS;ݧطQw1R:ޓ:#Aje|NXǟAJs!/GI]~8I|PF}7u %檧`/jr F1_7zw7uvKlkBr'{6 57:'H]qSiƮ&A05/dPU,B"8\ݤ+w??H+X ٔjUvu((%)/s?3uZa4U _92W򚖲nԼ 0x8<%WzwGPTS(J]2>vͫᗩ7::b#qYu{P]tXfFFv݌E4r(H4ay0M#IqK{ˉZnC:$ډ}T|v"HT*vvq+Mq"}jE]/SOxLd?ĬͲ=(/xHS4e#7~ʸA4K6-ogCʼ8ub!|XfaX]؁PzmX=;m?4nΛƛգ MAlF+Ya‰}mbb̗` [6"1XIDOq>e4 μVqO~~#Pwe4.pŸSCkFsy`ӷ.8E@L"AwyfC[HũS~]lӫ^:3xD#'9&TңC]X0*`0 GޮYY!e"T\}Y ٥NFe>1SY,Q#it녁*hsPec;+w$$ 1kOǑi=rKܘ s=k'X^!>̗DGZpF{aP'Bed\zVHenq9B6?* arDHk F=5v31q-iSBxL-\^& bu2EUW>ݬ .L~MZQ> stream xڍTk6Lw Ctw4 1-]ҍ ! 7yyk}ߚ, :ܲPk5D||<||8,,`3b@Vp`GiB!5gPc<Mrap-9m8@11Y lchZ@.mP0p8/;f ;@ '\ wa<8,Xjl#< q7@_U 1ci@ lecuq!;3s ݡ+O+5wV%Y]s]<`_ xdE<O  ^݇w[ P/ߟbk[W'HU/ fDĀm++7? C ہ8~V  oſ% ` A`?0< 0Cd-j)iip.o- D"CXʂ_U 'Y+'aϿ`pK `, >gvc(o>Jο /=p5 SПqق=\W B̀,G+A:`0g0uZ(n SeX>VC+!6P_/$ |p-FHB? b mA޿ @'?%!? ?zDDvb^ɈyA7"@l[x0!/?1E _%x`MI{G]@ o +,}mnhImHқn8I?QU@f0 S%C@ҫWٻby4|~[wFXb;I쳐Y|9JF 87#coٳjI8q~&?|W ݻL(PHFXv_=X++^Qmw}.a{?YY&٩(yQTcbZT]J1s?yivNk;XOg K}IIohx7puzE # WatXHI%Ge,->ë3tzIc`,NRzp!0(_5BFMX[Z=I%Ą(/)>quspH|vA*,Zql'KXq&=i])D0<=}Fx-#$t|:MK2e㎅\%QPЉDXn3U6[v"[%?ƨ  w_{dNY(IDp^/[5ѮiyIi7jP_lL{4y% mv:Qh UD}CudpوVIꮰϒX(.khqe_^&&VhLɾG_c)19XM۸؜*Q4Im0*P(z`3%I. mRa a0)ilX?"; 7H &8io]s}ЪLxzhP\v?tLPGa7)ijٳ#Go"g9Z%d4IG ֪;P|TΛEF N_cL='oSI'MG7|8b >|~fXl3!ބWA V򤅨u.Af1یpD*"#=I-85T3{,֙,m(={ m/Ghr'8CGNSJw;-͇| ox8Ş&^,/m66ߍ͔S?5p/\7G}I,b%<^cVi˼Zl]Ɯ%Zp92/(r5=9tvFgp;#kFҶk5Fmz5Y~[rˑE]9n TR.Yl`|]{ zmѺ(pӑ^yX oVTX;9(f_KqIZ18̞O{i1l@LYp˩*^ͱ30h%ko@fSSK_&y*df?̢^"2Ә|2R &)S]z̟5殮̓↾@XΒ 0 Ls%syEmo+G%TFCs1t1K{/>{`DŽ>ږ(I/Yo 9V_Nq:~{axc}_M"bpl[H)Ȱg֒;ExΚp KѤpLPV)a_vn ;_5iDa{8oWZknvDcj%|IY |X?r-85=.LA\{e8Wa7lG} Kk~wwhz/I E= 123 ̏Ϲ c}˚IِpŒsx)XQ].ʆKJ$ 8śCF8]Y3ɷϵۀo \=z{1cO3r9ny''QtHmRȯ4i"|k|fcFa%#I[,<̯ؤ?a:(.w1JjI`IYUcˆ,n s3v@6TXE,rK)+Knv>7g=䛮? B Qß,l%O' UNtB ';ijGd#\ˎf%G'+#~ibװ ۢ]Bn{N  IJ@x"2&Oz;xemZM"v?Кk?̿A:Ҩ^b0 !o\Q=D}Ħw%K,1WB6< ^$RJO'uk܋h"eh,G1~AK0q1sњ>M=YXbj&SXrPTփsv7݁H随OVv L6^S`Xr*21NsS<|8+jˁ*V_5QYC϶qZךq/8A0F\Bՙ?ŞsEIݢ*>}'NM-x5br x:tLp+p-Mpo9 Q\)áH"$@ߖRK8Mn~s}m}d퉬o@9ӑڨ)Y l*+K'bYhϲv>I.PEů nTMH^^H D'%-qOM 0L&: ݊XqTaa7@JG@(@v^˒ qdDFEMn `I. ?MJOE 9ՓfRn\ TEӲb)찜&#-;XX[l?Xƨ$ jwF?ܩz;TֵƤ=K/zmHF,ZE:[xvjQj`KB9~hKzF1ZpdLB0nҔzkB:3efۃDlD +5ū*0)`/./Jc]cI^QR\̓焋L ߡ kV+!5}g#їW^V63CpJ܍f؛0Ǐّl@z܄q<$04lj']^M?F<6>?48:J*Cn6ff1a&%n1uwB tRk=}]11V{2H}̯GK}w=RFh1%O:bEqhW"^16=nV-M<yʀ<>SErOQIs; X VpMˮgXc])\8VKdiX3PYS1i6ٯVh#FGgwedZ=GYӎ/Ge$bYïa(6O:.Ҧ`zI7ۍBcsOPNPˀiSo3+IwNkdA gfa`-62aǯ_/4B5x}Ǔ-EGT%D;j4lSo~OGnZiX'bP<(tD%sjt,sJEiR_xٝb^<޸[ ]RUaKucvTP֖C~^&d`*f)k&Cظoe*#f%miFLm!=|.^ՑL~oiN~(X-EWCKbױocRSI YbD-6z+ MפH{fdoҥ#^?oZK.8fy/ r0mC&acB)Pڋ6l{r*m^"UN G'>YjoD"~/p'iR0!ٟt${ OcwԽ",WpO/8MhU=Z^ܞK9'/܂ZגLv,w4|:Oݛ8'1O+X7v{`nۯjsB:vl _Pmc^ AvfE bz>o#.*8Væydm姜h>!kᨒ+!0h7UZbBefNG ZO) ؎z<r&16L?Y]QjF_.,!IyTUL|+fCH >RGKri?>mb3I$$5E9yݴ7~܅!Qy_hKwYb1WRgl4/GȚ7N,TwtF>ჺhT΍6ulf=7x&$kTOJg^oɝ [gOЖCqi=,'>c8XwT2c ZpؼK)Zㄥ3Nc W! J=}0^zNA?|r{>6U\6U=ɏh,4'm!&#)}hf%#n[yn^;jn(Ty7+Xq!ś26x%LO.=~2A&IkHn=]& (^ Aug *w߾v،X_Z֟dE3?-U.\ \앝kRiun8e*m:ų2Cg#h Ջd1m Zvay5[A|L)gbkoFgI>)~r_c*V˖ŪtdbC0ű /6%:Dވ;ہ_ڐgӶ5P;!uex)Cu($nq){C"[rXgzD┆ M4oTqu*c\3PokK3ԁC\g7;@t`L@_޺c]/o!AY.CQf|(K|6?d<P i٨T($/k'{jm~(UJ[cu)N19 FvH&nE-h/ J(-jek:>%OW$ПYDGT<$!lu5CaL%.([t}Q}?[) w/Ǜ[F~i̕<)b֙k$zpL}Ќ'QS (r kAUvswj|+E^8AjO}|/ t@őŗdrw]x455ӇLˉ0Xj@;dXsO· Uۖ7՗;ѓ2 _>kxz4ZT@\bǏ}3t[~"9RƑRCUdxEpAqi gi}jecn˒ =&ò;IL~LrMJ7I@[C 2vzstdVqḯ:g'jE*w)&-9Ѕ{hO"f /S Jm(C\GEmJ;\csH=Ϥ, &p'‹ ~p&SiQwv8d@Rן/O.=ڟ9M~'-Q̴+`:RaI?f4Ƭ[P]h\g4ILiKxݍTd(E&S:QCJ\[F`pㆷ}fFF+M1N8drPH91^twk.1P><;~YO:HﶖtOSw%{Ǭ OQLϾ]e^:":NPbU+QѻSHGglbW-UFIIy*Bi4&x+sykG^= a75a]o׃C;p< x{[HucF=,MK v ՕW .OB}`/ |sXeZ4D#E@tZk鹢pwfda>pAҎ'MRe[Ikc&Z$XkŪemOSGhW ;Sij_9|Q a Lj a1IJ|F_ruqT=+߸Ś6lfL'0$9fD'&Z7DTɥɜ9'VkCJj䆀ZI7~IrA&huhr_|yzӵ6: endstream endobj 179 0 obj << /Length1 1584 /Length2 7387 /Length3 0 /Length 8418 /Filter /FlateDecode >> stream xڍwT].]"C7 ) 0 0CII7 RJI H![wZgyk׽fzm=nY; X Epzz|@(c33C.̆`8_`B<jUOOXODb< /@ 07_#a>l>11?`- !+ڂ\z0[l8/7pfxC]0* r]63@ˡGx<  ?xBz*-70`7/ٿ ?A0W7uC\-%u a /dA%Y¿z@p8Whڬ8)@<}p0o?U VQ;F@(Pv}ly-PC `P8b~xaA^`v[bf0zxP ;#SW65rr00_F{+Ujۇ6c%|K \0́B@ۇo/{GJ.. ? WD< ajkr5vO @ upl A:&k_w /x:?Q?L.3~!a |a>!RaؿTX+F^H /x~#~o$UX4o=F^Hk=pֳ<4?epg)N`-V"̩&Zʛ{u}a5:Ѥ'J#Q#7w9k 4ɲ *aʹ$Şe0aD$-zh?I Ռ5h&\S`rn* pҧR!esZcM虖_L ==U Fnc! r-qf _^ QxLA\>gO^6X˒Ǻ :NBFhkBm!eN1RT-esGhF-jJI%욤em+,!;GS2E. Ϯ'Er 1T^}GWHZ̟O_dyN'x×uLJtT!ZⰐЩτF,bFCE <|E@Խg45p7D}ƂO(~؞n4|M.R&[RmCZ]߿]jis,p)c4 ͣYL'PKPg[;fiu %J?V䌠Pt9Ȫz=;1Y+[ o 'Pg?um[+,toB pۓMag Kyc6lۧ|jUSG] *Ŵ9И˫sҚf_rnqϟ_>m`siD)\6mpc^ ֶr27gϩ '=vf:PDO zз QNuλo9]rۯ!!T^_fX6 gMDi2z{˜l;fOdaw̙in:Fja"g$uN2 188q ƔHH_*TwR>$,M)`%> J Cf0 OD8>|Bs~Sۣdl?2(b,~M{5}ʾyٶ;Jg ,;r\B% ̇3ygkӵ7Aӄ(Da9s4XEy $IqZí^T@ړƀTl?;|GR9!ptѩ(cQ?w(;܃yX^#4;L {fBp=۽AoT\9t7B3i1G_JS*ū.[9Spo2v}A ѵ|=Jssߢbb=-b7?+J;*CfO)Gl; +VH`[Wȉ ڨ)LD }x2Bs$YMSjL" 2oWWoT_;} #-έ}Nt\4WLX(qfcOpF74+Ǚr닃Ӂ_</f>ȃd%{F ;lf?bS10\8fOdgd1U#y9ӂQFU6Ҋ{ĈtXp}FǞ~BdCi$NbVP*Rοy +(NP8;ţ,ʴq%/VG8 *Bo\̛u&6&8B@ㅚ:m-0tT@Խd^%]shxУ@N⏉wxb^_X6/]OTڮO3Wm6%o-lfZGßcmהV؜%Xix eT,\5}ĭw'nWP‹61u&鲴֤ h{`N@jՍ%#E)}kq_`t<)T!C~>T% 0Jx%9{, `Tdf8V@/eڋpmnR&ـ\vPUEKU2Y}l0n2( ^:H%[-UμEHIdt؝hTo*Y@b9CIw㸛Dz T(''M\i/ނHTE ך^\`\4㴰A_*ݾlSMZ%sN0xc=YR%\Aݢ>N`'*PU}׮oD$Rȥ;1@hr4!A4)cx<@ޗ>B2aWq ! I>a]6iV:w0wMuz RPOK/w >̌Lr%m/xlrz4p摎=$S-p6#PrzrS8]{}xw[h _g{r`F6a~=,M&OFY0a}Vʳw{N)Hɻd ɠuHzm],i|DO9Ṳ('R~_{&9?Qy, ) T=SՂK[E &ۘ_ )&91uc#7>  ,5R+J)[oeϫ;ԦY%?[r`0ߕUϏw3(ӹOxI#'2LI%V6%Z^D}VqqJ|*̀d 0qt=} nS?  I5^GAɁ%wYݹޡָ q)7ےNSQeSU)Զ2;IڎCoWbn7:P$eI2c\G$"aʼnƆ]&wըWJ8墁~[5׌g*$^w)q犧/٪Zvx;&ۇ?\9*tFaubs[+Oyul$ 2#R8k޴VMڙk8qre(ttLJftX``8V,fc:cP6nbX1ѓҖanX_֡o Rqrp"*#;?zS]r̷pNznKލ%ɑQ:\QڋꖱXzG,LG/L7 E*U xK&_ bl/¼/7=pT#CPh_1{ 2iwJ*Vy'MEǎb݊]آ\TM+(a(n߬M^s[VWngP7 _!nyjAH`HM<'f @Qk(؟6.f<,|Q\B$1dtUG)_j1}HըBW2`v8F=2 i&6a*pE4rCT߲C-nݞ dT",#<bU4m Ut!hNq_"l>~tfVA!qyojXc"(F`W r{C=@5|@<g#xDPe>t.FݐзW&+[/CU4H d?]MY4/_=fn`9Ĵ0VN\%.;J~{."IӲoLSqH"Y.ޠU ԬW]6csUU2dxiAGMtY?Ú`{ A/HͳuxspRE35tB׹PQxy;e8V" `U%k[^St=SU7`޷y*{#.Jiw{06`^r~*>\9[#!v) tWb'룫vИ2J5ٸk _EM} ?:+!j:qj9CGxjLV1=vF0Mk3W^bGu!)e9?+3p4|pYe`ܝl|yRS{!}([f¢jAw\͍XbY#(ٙq${9z9PȒ 9 ^ˌe\}ۑAae]/QX8 >6>#?DqA)h^&Ul`꠩ E`S'8 ɱ6,^aX>C1wW3l|ґny̐NN-w$Zx MXХ@2u3)P6uEK4`S]w@3L0w}h,SXOzGD,tvÐ?dml%,6{ǟ[p<}lw5?ttMox9%h / #"{^՘޺̒i/ĀyyK<.v8_OyqkGiH& 8[u:EěL(;pN8+v/btJhj}@Y򛧒uu8q;Dt,hE| ^yaP& zM4_ѯgHdM;]?cc -\ɿJДߓ߫`S@*~^F}zeŷA#\Z`ƀˎp}Pu\r)8,•92ԮG)~\nnЕk4UԲ=]}T:>BǗ^ΑNE]lcZ)=޴BF px<&}^?&nLC]u#&T9aZY9ej(sQV5e%%eQy)aɭb͇Cs VicAU{T`%ĢI27y꺱lSNܦz%MCkZ87ݍ#. YYk I%uA]nDKh(d mO|uJSTϵJ2m/Z] N#eNA<?ixU|lYҹٮ;BeHC@,j"G4γ; HWrEJ!<K ;?6֘(.^^5")1 sKЗn? ,ܾUYHkY7A.VK|"!h`ִ8qӈʵ~RӱH!gs{;x{& n4Iȟl?rRocezF,?f^k5pkٶ}~ǚb endstream endobj 181 0 obj << /Length1 1444 /Length2 6237 /Length3 0 /Length 7221 /Filter /FlateDecode >> stream xڍx4ֶDd^{uf01F{ѣE%z N[֬5;~>{3_p!(~!@YRE@aBvv( 'd7x"b({BPhL&"-/@H $&%$.@O)7 h!$!2B# PtxBAp#@P?BpɸPR>>>H7rAOod;oi(q h/8 @0{@:|W޿A῝@  w8Aap`H spD~PS48+[ @!PدA*pwQH_@=! mg~4CzA4Ur1g @ _y@~<'t AtP^m g(0O/'8-TTWR[JJ_@$_R 3oWHI}NW\hB\(~oE 3R~۹;V =,j30(4(ъ/"ՠr?yAA{eC } mg?U_&,*pt#D -fB5+)t!0*` @ B F^0/?Ryyzy})@  $:FJgle_(cy^C%{KsQ3 <.eh0T֔ u0cOcS H9g"ŻE6_m]w"7$w32 Tb^.cKԐD OL/Mӱksx~k։YCrjTŒ7:@GՄP=S.OOf+vX²_1Uߖ2 ଧz[F:l^1zwAbXlJ`jX~653sFw QZvn1Q8}BvM,Lb %1ǰ+t%=;&=>o/w[ڇlLTٻ;)MgxTPڳ.;`Z?bDVv۰;m瑠0v~}~2q7jKr2H|f)_ie٣N ?m6[(XbtMٽxa՟Șf|3}W qH]j5V٘$ڪOkj~ڌީ;PۭCTs"k/uC8$b̂UIP;7 0\ a w7Ǒ]{0.R2 j α$~x|,h/OU{hw!Jn nғfBˤG:kv-_#4h|' pv{!/.2e>9.jI[Zx5J,V NqK;꾛,JS@j'ߢB͆,qXYp/F綦 lgٚ8⿜ېKғ֛-oWWmYL8`T̏׭PvH'm_yb*g)ɒ/zL_f%ՎFNSL*Oe>f̆ܺ.9z>OT땇a#Wl0ZfWֿT}\r(϶9ݒ#?vD2]RncJqI&l Y = &3x._ct##OnHW] KET-8+˳B}Xj3F 6Zn:>pv$ޛ*sV|boi$z'!`=?}8ꊾPDb|ha qg*.GGCӓsPX/ϘwQsXWymoMVu =<E7Ox7k[̦.ǩUô/yPg ସ?e (I:T8?cr>?GceJt~Lݻf'-o;PQk P_n!SA,Os<ĩc4-8~Y5a0 43LEA)U,q3Ni0sxB]Iܛ[8m_Lb{QZS2pJL)y8H1t^L$ y6ڽ[KcՅ;( =rWMP`u7g}CxxTLQ?$,ɑW_7 M 1JBn\+ @ WL+w6%:nGLjn(/Ai{;_`O݋NWrOCXGOeٷڥLCO)(\~|I2aB[@{ȒHUd*C4/SU0{bsO6Nv7Y#{Eu&O{tFIvmUe%GRHgYY2 ȸ],bi4nAhdM|6L~A2[k)sb4B&^g¢ʃa9ߦR31 l 10  3PF+q>"z.whDBMjFюdH!v##IVdWY6ʭg>8v"jS]u)em)URt<|=v4Lzw8WNNfNq{Z,LP#+\&!xgL e'Me4:FjjSdi_ubugBWp7HKa~q?1CGCi 9 w鐯C 0jI3eghSpd.ru b{c`¯ɚ5mit/H 7n,3 a YIegS+2lF/q7l[X@R4YK#zfl!e#jI'M'WUf8ۯW샌pI>?( !_vs*t8Axi< &۩?^: ^0՝ZMJ(=.eN'}nr$Y&Ū4NTR $Mi|&$֙T SEąxdxB:w=k `}%W'2bqPg^?L$0K7yqnI_~2N>NK+M0UUT(yIp*H:4U9!вY`ys%(8/;,J~Th:\^[E^Tx\)2,Ly旡4 ~ᒚ$ʟEFQZeg֎q.*.$T5zt8ce7\nK%*7-$#WBRzmӑ[ +O4(Z`*%1-}= . gIDȢ刲1͘@qZ$yUkq}6-n%kM*{=ȵ8yAyŒkL\MA;j@*z5sRܳѾySi%[$4]$[G˳:XT,ۅzOx*0E{I$v|w?%N\?@9niе8_w)K=R34h3}j4d e“fjLϝ%LjK98ďX#UFI_Xmb9 `Ʊ?5wMXč;ByNKy S6Up|e3)s&fZKEYmSSYpNx!̶"U9ޓՌ·/4/]8;˹e7:͆ Zp} 6RܳTH3:YLSi1]B( HOQzP0\ᵾ{s53`(EnA>'YMI-53dFev(9__Vr[j35މ,s%jRUpy. Eo3so z \,Ϳ`n"T^ K9Զ~cFwH [ Y}.@@NA\9Lx\VA}?T 4`Hjt^xYnP(f]+iypo)y O\AO*-9?͍Q&S<ͪ?xwç( \VK̕zBl|mZLi5a̺ `rܳ]rSYzsۮ{˛p+#J=<,R#]3{7ڋSoAx_hWoB %V߳D8tV߷S=je䉿:ITOEѻ0J>ݺV)]P0n9s'MZڈx嶛{p1Q)\~!k$6 D-YD}o~EK\cͿ飋4 gg6d4:[r!G/սɰwTݽne}w-&{$ 4E!~5M?Mys6ڕa!*:#iTwgle. ^#"p[-\v0[ܧ|j# 1tLZPqDٜkOWt6X;oWBDɌܪ[kجA%EUQDdՍji}L6{_JnvUS*i}1?EԃfN3 n戴 mb’TO#?,[y rcj 0PҸsCy>(\~d9ٽټcSϯOڭG?% endstream endobj 183 0 obj << /Length1 1372 /Length2 5935 /Length3 0 /Length 6880 /Filter /FlateDecode >> stream xڍuTݶ-A@%Bґ.А%$A JEDtKA91#\ss~b30Rw(, T3b 0XeĹ .3DdAQ@mPDRVDJ 2"1@5'(v qmEdd]$ AqW0  C"p>(+ù {yyX'BF,㉀ uE 8"pc= A @a(8o4!PȺg_P E Q@{ G (/"C=Hs(!xXÂH_# *?eu\@ᰀ_!1}ܬ3 G{ -<%22@; sU ;( Ov@ 0 "#a8:FY/Bx>~ F~Z 17OH HKd,cEm\-=([1cϿk>?kEUG` 0 %-)77twwC].> xzCmo9ipGpPQx1 p$7@`$7e5$ a"[Y`9X.xs_u 3Q I x9OoH8 Og ڣ1_*. v a?J<0~+ֿ@x#` 4L.ܩ:RK{_Zb-%pܓu/gj܇]O3z92¿q8mݖ2G޵%w怸G3; I,Po>2IyB yl>q!.\Tpւ]Y RYpsZc-8YZS` &ZCg8#H|ƻ4< ɲHZ&:_m&GXn})L]#爠]8(S凛va#VbLj 춺g8Ј4G’g7WyH)Z$ vn+憯rǁw)e%md$"t2tթjܞwKT(]y7w{0!ט>Vxb quC 5~fҶfgwYߎkuz_<ٿ5v1vZ4[:mϧ)~x[~鞰0lFaP`y{s%I:|ڕiZxUH|V?*/}i;`R$1QKA^zCLtog;UD~+3 DEpd㧏h^@idJrM\UC4 e5k6AeLWwK`9w)B |E r!n+uw7NJUԀ4t/X 6L6 ^xV٩"j@ټ0;ŸkjXGLJ3=(N\G&7inzha?7r[:ikz|c| d#q2|PPgmKqS%PDYٯ{>o={1)]="&njyXE`9P^xN(e?>ޕ}@:G&*9rd٧Z6'b-*]m(GʱCИa `rv* RYelptcq>2h?|wBuuZT!<,z,w5IGj'ƒ*˟Oi8fsNCzorIw.`gd؟Kx^x0#ye)p6yIʗ4?{~rKkG#4 Gdn>y,ȼa<AҾ4PN""1 7/JI딖a f&l^- &v^^ao@ug(3$#5#x ;X{O>}:Ktxqqc Ng)6gAKig/+޾~c9ψw7A`P "E] nS̴SPTb)sc,RG0ϟGd6M~䗆(o:0X BEO>ȯ fMtCdh킻 `"y'*f:DflYd&eK.a Ob]^}2jD;"޴&:<ǛTnupEWf5³ &N9)+yi+Jn+d~= .-1桽έhetn~Z^ƒcXi_x-0=آKCIQ秛ȟĂmHnEOZd08vwvxg "Y;#6>ݲ&8a_bEvYi:,$#IzCmַ  acx9R]4naK %nS nQ'}o{uyKCiqő($I_c gng^ËՏ-'8Pzf&I.1 LRV,xF( ܋^R;}OX5s#(|ijCf&{=ɅĪx bO 5[2 !PǍD5=3eXUhRqS3g;j T PV3Q֟}+mфC#-_GFoQ;e:GuҢW!{YɶZ8n6#gَVe[<5߼S.%gpg'sPpH)TR{ )h/|/xEY'Q2n?իo#|$%um%=K_'S_v4ײyE8+m~!q(O4Uԍ~a a{ RYd]~S.(@d Of.AblMJ]fԗo7Ǐ]b5?i,/HH|ꄻ^ Xtl0ZЖQ$KC{kĨUqfb7Iv7}|j3VY9>#rUw{bmYˢ\8Lo-Y#yH Ѽtӿlx8cXl MN~e˛{r]^UҤb6`Lg.Okx1^|? Hm!UJtkѠu@RdavK"n,qqg1O̸.mSM#]ܛk="Z$IAua ( nl: ˯|b~(v:S4JigS 0b,ktm73%`SPF~F$ImtV:"3I˔ {0kHmťQ1QMsɬvEaRTE|!v//ˆvGEZ]U(*b P[9ZTu EݥTdU{$/Ȗ~!۞WLv}J&hݺ}N`+<`vsrN])AU0fv_Umۓn1c=3Y*ȼ [G^#Җ~|[,ּďpԖwZku>yIEmvc*|7tAZ#6qrxYh%Y ǜGqAzؐrHɢkWL%Qg (?"XۤY}՛y۷%M\ ٍizGTok95<[پԚSLB8*%yy#vm2,]Ֆޫ`Ik7,/*d~`N~D9IP|›<x'k"U q^C%t7J Wܠ/\hѩmn>ҋe{ŕOL>}7ڄ 1b!O7I0i.*'?2\E5ʰPi/U:Sv`nɋ5@OWg.4kfqqzqaEDBQR3}uPO{.pAOUћl֊J$v=g;`kՁ[p)\2'e WzVt<T' Ru endstream endobj 185 0 obj << /Length1 1552 /Length2 9715 /Length3 0 /Length 10751 /Filter /FlateDecode >> stream xڍtT/€t -)%1  14"! t#)Jw~qsZY?oo? zܲ6pkkxyxxyqȿ8̆W(&,] ģLx4Ԁ/|>a1b~^^] w @0Ý\v<:>Q\d!.P0!!  #=$zxx]y.vR\( qCl 9BnouKEx\ G >l .=Uu_\w N f:@ZJ<O  G?KduuBBG1+lᎎ.ܽ_k/d цuv*m(GfAxyyEEgl#O%|N6 ~P[+@A|? F!vP?ۿ@=fa6p?^1P]KP{|B>>~AǃAlѿ}ӿJvl/;?ci CB7t(OwEJn2? GuCI?[@TTR w[iWp5'b5_x }פ|4zmYq0pdK K醿nRf4Y1DA^k .3a ޳@%;d<<5-vs|NyW3,t 3ĚSh #QVNGO:q{H?K? ! ZTɭnEZ+M=zUCӖǚxK|eI_osiH?@/5k8d-@%U|ADFBk43m(5zO~Vmo|o $Dx`B FJ?na٫$ޛk1,p nT~DO!d,\g4$k߶Ex2%Ѵ/`=ZS(Z q?Z΍벊5NRn,+M*XD6M].cYWN gOg}w6U%~b>Y# 9J/[է^\sokŹ&ERQi(Vbv4:vA/M8JZIֽ^fD|gz YOfR?" H }h/p(OnJy -fDۑ(>yaVf-:Ըr[܂̫d`g5旵H~NO6oQ\4fF4>sħjĪME7m֪]):XS,C ƱgTF/:Pݧ&qSChXǃM!WMU^9ߵZjS.D~y7~B#u2^ ǬJB,GG{9 FcL:bc#/;G= ['2%GV-ՓdB/J?5{- 7Cn;C]-~msGK8b6]-tqqƂ>% }>o? *+kBn ].2al ] ނȯjB; %}#ufqP7n:"z)GӽOJx]kG<Ę!<9oinDUߕKdX<.JB :#S'_G}2} uPԑpRd'dٓ _T| '.-ee)𵫤X.2Ƞom>E5R,,޴gF׆mzP\ex/ ~xgg?3 꾄p E󆒆%UxMj5- YG}E];[bR0k}|#C`r~ ~PG)E/cސ ,`I3敊մe`/5!X*ʼE:e`t7>t=F+a݇I%z>]2U,k guvN>ߘ?=`j؈C6/2zmElKKԀukj/?fJ]/ԭ$lV;85aʮ* R|FlIIvQF!zzKێt KʡC5`qQ!o=ArŻٹ*=c5pFxkx2j+eEͮ!0lIYe 6<ߒ1d yF= ~^̑/?kcBkI'/'$$eVk-:Pۧ a("d! $f̲ ]1ʒg71~[<o?v9o܁»0z">*_hz?PZ|"nΎIj(PvR.[unmڛ,:Y}`a{A۱-q=b ˿Vpk!XfZ]N15V ƒv[omHA{-"Cp^1r^E,;؝޴#)Wuܹ mKa"c~L2tHxpaa%} IX#9y;RuӠ(Mj%tCбee3Iӌ_±pNu˒wL b7Rg".J iveGP:ztVu7[JF:y2KŝfNU$!-G~HkFɸQAޅ׋: 총ȨHLZthߨ j(dafbqyHa?`t{)Jqj,^5,zFMJYKV~ 㭜k(:;ߎvIT@  {t/FuS`t\#ťbRK_|ꍳ(˳˂R08y&F} Ϛ?y8}anًǔr R<<+Al J ΙIeYQtL9QE*o<| T# =QO,Kza"ω*{:%^q17G`!ߞ_}nAZv=/N^L#;Q%5tvr~UɶS~h.dJ1lF6d 7jLKXᰪ]|!+ܒy|®>@Խ4qDOo e]#$p&xY_'}y=TZFV0w2P3;N^IFȴg _yHpz~xHn#ޞ2g*]'vURZ>t;&<ݠO).TQG'"PUj.h*̠@w\7듨ߡU '&j$;*^(;gNeodY#d}uԺGBvVǗ"sL-R:+$i؆eӴ^ukl3PVGgfE59ٍ;d)m4ʄ>{Q->;u׎:,6uۖR$Wt~0^_+ZDQKw`m~$hP׽'zʖ9nFQ /׆BB S]rxtAܜ\ >rcI j\34L̍ĨNS }6M;nώ#uAK)Sv(BK/6"NNjtv[,%w[ay^}>;VVl^q#cUOdudӪF}MLz֎b ogx!)Nu7J73 D U %ӺU6-6^I0>ŕtct~!&\6(NmhdȅηZ*<ԾJ)׫lAdQi GqYe 审+kdS!u1Z:ހ"^_lTf@uKW4 JV}zƟ<:oĐ$qºwtp#nQW8aH`Ǽb!Y9v1e)F6]]u}r,+hgqx_ \$j}^ [,O?{Ձ.]r ^0gOߏkiyTybOh@3لAeo&L V1 bbFw_$pd7g߰3'amxDW]0O1(}>< x v2E/t ,U!܉_~0j7<:= ]+e9XZ+ZKvI&C|/a??>špRNlgqUz=5%Ytq4S_Y_xnYn9Whz~VOjp/Eelxzy96XL>A\ɂ} [pQh鈗L{iPnJ]k`2Ro7絷xa+F+1ACav6\(D([)kD[,&ST1?.tڜ94"N>'$v6~ ̵w"_CO5ș*<z*X2dyh(V9X,ɒ`vRYV=Sܯ,P5~'~uKo FQ1:9T{"J $u~[-s1SK{$ 'P :O!T*+)z|V9NlуlSnBVX}컺V eѼsL@m\GU{F-$"=mB}~ |ڭ>EVE3F̿MJ2X̱ίhz9]D0+adWEӯ|?]$Pkrm3?ӓ'< o}=0RWymFFT1Y̿(,SSkbdr??s#ϱ\Bp}kD~0n<#nq#i>UM*򲓛cFxGW\vB#ϹgEHkYGqߨkz !2Ǭ^<+#q:xēN^[nϱcP4Jm J0$.\MzP9'4̑E)S >O6{hfu/0XR,oнbArڑ<ۇO8& Tg.h{C&չ?%-6?P}O%6(qE# UȻv92gO#-p_'JŇԚ;o*7q%`a֌u ) =2VE9 TU O ;C>G {" u[0a 6h!xS[qu"D:zN՚#9YJ%ԇv ݦ'{%VE#qe6 * \CzK#G:veu7^RY3ai-Ml6/z@؞Wیr\dEAI6ff|Qvm?fLro47ͣ3-X0AN7t{B鲟Xw?驾(F@_- g肟N.Լz")f,9##5ȃ3h:z0~lR~cB]M/i=xT)ޢ0q;`#;2M7o_I_PJ QEqM*;> stream xڌP\ cwwwơqwww +9>s&'VR6%@N L<QyUUf&+ 95?r8ruȖ@Cwӻ< l `f0s0s01XcrX2 [#(=TfnnN6@ cC[9=5@dltrT|NNv< 6 3j:9@tp P09@_ .0:8ۚ*rE;e@ws oYlhl 3u5ZXr NnNtC[ A.ֆFn 0|go~vN qd+{mMDA66@['Gpݝ߇ke r2513PZ6"?23݌Jn[`Nma |t4tޞT/cfX;fp`az?f_>O G("BoUlzVV;+'Q -]?Ҡ]!ΠLyFyjoˉS}7 sg$8tdŒfN:t/5ߌ`P ,K0_jq>y7['MKYǟicVB G%rܓ ɬT M}8=/{2A%5V32N- v8ww ʴ%LA*KyhFWL9]A7|,OeF) 9|[g/qI'mT{G{}m&>NX&Z^/ 7`%)ÛyK)5hء79}TQUD=8;SO&n/l^cƚNsIeaZYH,[U U?ȵ-/6k*S҇X$d}B8T9W"xc⢤i-B4z'طy#\A78[y*\NlLRsl:Z})_Y8MN ,D5f _Gem,@ D3yQHr/˨cʼԦ~ DbC?T5:ݣ̚WffK\xnC~b!>J>66i:)qTwƜ$>0ݲ/8͌WP/,B}[lEAlzwҝX%Tcx:a3[e`1{/e'v1a+3B!QnhVD{k=O.|^qdeS)y]%"!gY\kūʾ 0Krd oeb{ߛNOd4ؓz] FW9%g1t?˾Ud#<;H06\iEɀUO .Gv2^NY9\HJZlV Ocz* }:PW8 y!sXZ~PA"tVِ($Ηߖ6 ~ N5R%WPBۤ?R"n R fo*)zFJ(# q|Ҍ[9b7Opsd`X^:Pf7VbPUu!]!c6mJ0ݱXu: J(`GÞXb [aaL^t/jtT8z9c,*/mv~?va @YJhDUܶ[5UYxA܀3S1Y.7.ϳlna{Kt_KL)FRn\?`l%>;O1{:5a`wmw"w1GA~`T)2ܖQ$xW @U d@::^:NX]aO[eHS=frC$onFHk^W#pS `&'rSW6קE.d4|{1cklmU@Lg8(Xx)]zS_E(KSp~[FfDtD}@,G F)'yUk{ h u>l RH1߆`gc4ZC/EsH/7ZN( QK;X l{H~!䭾yx#L "[ 6i3'QСW9c#Ίr3ozXs6,^$L:`JbE%K},HPy["wp)hNE1(bbxHt"#R ܣy _orb^8(ۣsSu|jY&ho)QcbH쪉a^7yŠ $=, =OIc K50].dP03;vH$gb|ykuErگ/Rp[,a5nDĂ<[m){(XN}XmSwfA*]@X7`xÜ:QҒ1cPbˍsaQ lX F54 |D$chX6}ԏ**&>iPVLZuޕ ;)!]jviifU*#\,|ITB;k,J#7eO1c]mPuKHSMzT Yw~_ ýE$ $o\IF MsH@Xd☏) a-)]gw+pI0kRkA5ȳ7a!X.y_P*Q* Tk˶}rǯNoJϧIN%2n \ 3+[ _< t0JɏX{b9{9(5FN\JTYU7|TJXާmM:ϩFRߧل)Rjúe..emZjluh iZ}=VE'BR BrtG6lC9pTQ|2PY#qrؔHb '/@!21=]m^TAǓRrCB&}A!W85U_ya\iHF ܏-|H`6[C+Gh4CWchKɅ9BǨ m=>/| 7SJ!j7n8g|KyS:Qoovn ~<>I*u*'G V~G8S蔃r 3toy Sg3j,Wf+0H༵adu~u RV%QPK,C<1sW KPȰU¤ ?FH>(P/))U1IqyA,PzO;B΃IgyjOҁK ;Fq{;_TŘ_ͱbE35cv&/cWF_7KʫJ%.@z3Urq?BXwPm!}0xWz,<"f(j ]獥j6S1a9kSmBX)9Zxs׎qBmn|E瑲T=k3X#tˡ2 g%6>wC2n~np6·U-8noY~N 7s1SO9OC2 $Qy^}h%yBd^֩*$z|jܔdgq{6FI[0M[8 S36Q4GvAaY۴@/{n΄yD@23说$`p N8 ߜ-ve\ጵ{0>LZD,/I7;xqY=$n5`UdJQagt* ]Qv h)^^ HUcˏwZ<"IIġõ7KgajW\c'L V(e4VL{x#/B#nN#a`t"9YE'FJƮRvpK.(ipIQywo,aAjS28dቹD;bV @7XMsa.p-A*cL|߯!%!ie|~n#unHD1q 42}WJ7#8HDͺ\-`YXyUYܝ2]t}vrH=~kHw<x [d5(9 ,3KkP1t$DÂ'R~OT:?:i!1s\Ezw}IgiV].i]U^k.I9Ԅ4 M"]:20,f٘*8mi檄IsdK@KƁ6_8m都q&+0t2F[cf5 !΅"h`h`]|0}bY4KŨ/+Zk3yJ]42 L6iA遁H&yɬ:1O..9ʟ2eqR =@SjAV<93+քhxN{Aԋ 2}py~]yUh &S$šRJ.Wd0rZq(a ֙_e[nXZ1 6wu_H7-qm J3Y{TEufb~S凖592<Ɩ,p Mfh9c<\[Ǘrzں51?v28Y=ɟ$(9}8h|>Ow~zV`m +/RHB @fc?#9Xv=:;zoXK=4حҢձ̃m!i?vaq$?ڦqa|a0B{Q'"tEDߣC$I>pip72ul+|  Dj.`|֏IXH!)#0ւ y$5Ѓ'@Av(05ۘw mRtl5C1;ef\ĝRsu4U)fvAI@IDaC)1yqG3֯?dwX|3 CX7S@x 6r-m'~͍%Mf$B9qe1TkF?|<<6nM/ݱ}'G/U޳[(ԚȎ߲I ,kw/˔q1™itzZ%|DӰŮ;Q}ߊ*X[g,Ƕ]>0#sY< w'90p_%acjӝĠ)(Hs{Vp_"]>b8_WgG9I?0/&=gt ѤTqPrdt'\:_AH͆  g1Xg""Hh+v 3)_(_)ac`?ĕ!+T okNO2DT"?\q%J?cW?6D<6! *KkÓIIR3HS{c>0%Y= 7ByF` /H]Ax/,n|-+Ѫ`v'~j]2zN9= G>7ȆXlfzZS.u >7$& |:d_ xZϚ <Q Ljׁ"Һrх{gL?[,F^Lv,FfBXQ,$'sQ/qlB1LD Ų\e?2{W: zCX=ڑq.}EҦ̭8f|ZSвeoU sl,"}n, @4Ttr͸`5{^\l&<*!Bd$ Z%Hrt7K]Q̐ ޽{3c#h}v/ku c>CiOe^O mvcE^&,]-Sy.hݞpHheyx$óc !`XW7Ξ]^({$  "`-885c: ^g78 LN(\}Q}´,]G3Nξzs=IXC#!yWRF2q_B])^"4a38M*\ѧ7ȟd$J2x@~gQIU%pՁ8ḏS#]M0OI`5H RXZg'-x7%9#&\'ڥ˂֯n\Fٿ)ʊvvv~G$!cqM!{$'4' 3]Y[,8`4h{YԞU&T).ti v[α}vL5|A Hm/?NNĠwGsĦ? o^gY^8ѝF)@=rFBbzCGd]YDs.YѕJw1ReoQX?'uc0R* d:c(Xh% Ic+ ]QrN8Ok-F=|Sݩ>}0C{%ꎢ LO܆kb};.TtcV1;*Kn˹CtX94L5E~ Tن#9(E}-ф .]ڪZ`1AVeUq;]ѿ,KnvB:bD{k)9N8ό; ^)6 "鐜zXA X"6 !ĒO@J~G+$%/EfPoӢۅ`$|c> ,O׍?{1>E}m^p2GfaROv"LV*|>6U^A"50{[2'tRlc 3g~P=qF7WQ2W<ø,B`PwN5@9c8ݧ,gݭp GK pcs&@FhR+$5u=oê~U[(<>)jۖCrB ~)A`; G Sdp0a?JȢkz=&쌻Y|z_72TH'=qRj "B&6)*R_D#{Yƴ.٬;֪Yov! YP*6Qgj(Vn=]c%% oG#3Ny)(6q%$忷=Ik[o2Z \DelUuRQh G!$" hz9gZOq8pVbKyc 6`݇GŋRZ}`/8E\D614 tuyxEZ[׎#XᝮdsiU;Cޭ7>H-LFƭ` h4]g%M+%^2+]9%BƣkZ)%f.~dOH-0.%&#\`BxH[lC9ᡕ%cdq 'R.G؃ѝ)&\q/>zx1iQPRW}#m@ T$MXMP{R<^}gCwB#xM*rBJ1Yz8!=rhN^)}E.^?׿Ǝ#:T ,]#uϯ2H!Ňkם1rTf/v~p<KL%1 & Qwe2uBLRq6X&O42|-j[ Zk򫴣Q΂SɇYb|*&f׆͋a\pGvJcB:2GD )P|&G zʭ*×2}1PTNRgk_*,!ﲵj4ËqEI?|.٢T\tAGtt@powiE<\`Rtw]Sc,uRY Gi0E헙+c VlKðd*1U:7VGyIwZV(nM,xKA&J?z<\t`#i7@MˆM'rPjWo`+U{Q]&`ˆcJ p漫 қrJ@y)xng0KFCc5p_5%J~Cq#֌G8Kl`Ժէq')5C +ȏvg޺p'MEXG؍0J3 OWP~{9Jazmܨh)ۉ^Ռz5B ge9OqlĵHum9iG; U_fqXLR~r5=e, Nh##øX')=D\E`P ^XrzPHOy˃n,rEq/lCuV3ɗ]Kd2lA*H1B#\ \qe1֡|M70]y9m&Oނ1a{՟heG;\_:yit: IThO&w>`騺XC@΄iӡ2p+3k1ߣTj.^4['!:{ٻvG^F[zbQ%869S|Lk&9Q҉#Y̆A3L;fSl u$6k*TN6Xb$:u^Wƫн4QZ}M&ز @܌HNݾibxe+^j ~EEJq;Y$pZ=oMua: ZrF?0YsM![.~ZJBIkPv] =8g^) 'omNS]?%#鉋pa WCjY_Ӷ3y_OZ'MF"<=qԊYJ7;BZ$L{Ljl9vںw$Ib3 TLXQG>A5l}0B䑕h' i6%_.ъe鿘\#p`2ʾ=c &&1Y5箠0&j^];:76_Цվϼ3' DS< #)nQ b«ni +MLi_XL܏e>&~c|0v.tmN!0x^_K>!2WLg^3r-.EC;)U"喚3a%p|&zoƞiOA S+:n{al&ur oZ-܎l7 zLίgyg` jh-I0B>d皩 8x[i1GӔ͎.HxQKWz[_@T稻!49E*Pj5{5 uMȨP 8PS.od^֠sډn_^}[zʦgC{t"ѐӃW,u wGʫ:t-fqQZ6eu/ ^df!R^3m=@H\ _Iந&xX8ףKtBhhϲ vظzR(Y0%tm l'#WsqU~MO4So2¨MLex+]eqY`E\MDּɻG2ʊw1v$Q!ؿ`)N ;pbF֑EAiYv*oȩJ Cj9cʦ&{O,Xuy-ji>]$)Ra""S3F/OnyfТ!cޏ)QUaХ{*&pp.Hl~DL? |n@\' &oEζMAzdk@m"Mj<)xDxɕp* ϸPQm$S7m0 1ArJ]YaoF4)l cHW[4 >XrbCQy"vT,!sG ¢CL,nQHX!J@p2T)~KG1Va5nP(u^+C4]jԏGV|h-mʌ5, >j߁h?%;΂䶗q~|4_zE4n޴]Px(}HU_7PzʘqwCQސc^)adQOHVgm@*_P5s$-9da`V^^dTQϩ>ev}TMcr)3#dMQKWVqEa\*haǧqYsJ<ڔBJijtiwzڃb9f**:k˒!yk׿>a%eQq]idvRL@D+ j A 0 |+$[`qj9jΥe9m@F>nEcGdWZm./ޚw`k'W M OB: '덤Rӥ5YSO'XzǗ`mMHi IP50Iu"ճK:Q4vJo>Z{oHrmVa|MD$mM`C #ԡT]:F& |thrlW5uI!/Hb~,Tz3nǬ:YϾ/ LY27GEoe2a{j\gۍA>E'U%PU2x\ӣZBm3j5+0pn9&K+/T KXCU:1/XgUCMλtHѢjjQb6*p~[J3]wBB-bjq>aL~EAVq0GP!iɝJ U<[d\ JQjxD'+=ȸ-ߝwhi\}hg# o0Bǻ+=0ܼ.J1.Ֆ=6o߾pCq? wfJVFity$&608, :ju`lAHʪ([&sDQu P 󲲪V TOU,?S?( +`yS `|l>O@ ٿ< j0z!^E4} a~eAQ; @~ܝBZ8j}7=<u(E|gV>UW[ޡ֪ȵ?vяQjfrUG.:9C@œV+XN/8 D>Ks{ݪ! dtC?Fa왟"9CEO44濨͞J7<ݥ H~E.h?-R[2`X1Ł60EbVUf.[l5r_>BI(=0!'NV¯onR~];I]ZPO~*<4G*H;,,86WLtӠD%_v[`ϯtda;P19;aEr*Fgy͚w DC pk'`$t DoL;:EFܸM2FpFjd Ń_xQ)eGS"3$Q39k -[T˓F/f7v+˨ewabJ*>=t47(Ζ0 CkLOGW~&|( aklDiÇfHoŏ9u/79Fhrt= l$8sUeɭrO5|}Ԫ16.&տQ=+bƒ&1' a5a2LJ[#Ku3r3k?tBrٶHl3|(1%!&; Ԧr¿ e$ˋE"m?`G p]D4$mD[n8&3Ys1];J)6|cNxڣe8/hUX$!' Mgw-=3/aj,w no ]4Gmx;lR!1 &kaxI4T/Fd7ŎO'5;@w)ɎW26 |o.0.n(,JAw~˸J(&読nda%s|{kaa^O䕽 3̞ޑHx˓*lnE=e,` v<ƴۋ)~eMٹ.f:YL8+/=_N/7 endstream endobj 200 0 obj << /Producer (pdfTeX-1.40.22) /Author()/Title()/Subject()/Creator(LaTeX with hyperref)/Keywords() /CreationDate (D:20231212144036+01'00') /ModDate (D:20231212144036+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.22 (TeX Live 2021/TeX Live for SUSE Linux) kpathsea version 6.3.3) >> endobj 152 0 obj << /Type /ObjStm /N 67 /First 589 /Length 3529 /Filter /FlateDecode >> stream xZYsI~ׯnb#|`ilȖG_yZdq#puuuV_fef. %B+#i V\[amYZ[AhkkmO{ W2r堄\1ª`| -Np$>Q oBhF'|L(3pI✔QM2"d|Qg9-$bpDRV [Ɋ wJ(RQ̆JLY9X10(nɦx ,H7IX,rIV0`.<ɀ`@6L@ PV+(c.0 ;i$ k@kFs70ŧ@1:S(c _8 =~ܓ_o! .̚"AA=t|7h\t|_; ~{i,8$Hʁx)r [1Iqs7H1}oY*vAc!!ɴ0x 1<UGy)z8gY3C!ϛ/3AB]yZ}hv۾) W+>he\Kj/!cSJ\FLA7RŜ^O`C1Dr8O=@" ))$F!Иj$M @=IcN,-`ƵFn+t<#U(#YJtuTA+7U:-iʼnmE@c H vhXTX5Y3ӨPzHGGB|̼xУ%N|3y5/FBrvـ>PQQc60=`zo:g1 #Z ora0yRy{1Π@>8C#(1 DѮ ѸBCZLN hi0ħ՛b6`Nh#WY{7 "1D&t '!| u2"CiR%$fE%4)R0oZh)YG j#a`;H)9KR:tZH [2ES+F&,/xx6 W!uLWx,ٔ+՚ǸS^62T5,Yj:,}UYCk}h"Q<٬VTΥJVvBjw^{VB C bVQ+O͂Gq_f tR+Is1\}\pR~1}+JJҘESҔx=&KMSO; %o]j J؊9ujt"=J)'M~tؖQsg(//2"hZazBSReQ1™n;!VQ#`Go^'<y7T+Yb܊W (b2'?{ Sb~zxdbP+>iWpBO|Hã`4ؽ5؟͚뗘zu% x\ &K/Py*\A^ȏD^ʡky#r|[9S9~`z%grv5i9g,6p W24f4{ρF8Yx4!h5.`7Ck-7j>x6d8Ȉ6~_x޸ ogBOy*exk FSAku ]!'KͤZ Ye\6=:;E\6Hk游􍰳#D b &tAo,67ܴZ3t?ڴZL6lƪ7GvO|܇*UmxѦ]@ 76Jưѥ%շY V *S~K0lS4ͦ F7[cyXwP~R o80m*GhM,@f cGNmtx<@3> Û͆'m}O~Ԑ2s?a};^7lw}y o.~^NI${RԴqOVn^|;?XeVk9Tjd*޶c~`Soy{ECn WX҆ P}-.{iCC29ʂp89bO>m٫Ք>Z|+>u#v{+ }G~T+%ﶗm͊zIZy{F+u\Kשi87lK_nWΥJdnwґVSwS\ Tlw/nJ?%_Ia־K +\jU<~H5/X.>JÏSG\K&."bzK~&jSF=X@êrYWZVPEߢ'B{z7AI!K0cn«pŀ]h#y67m~;i> Rӷ;=;K8\ZFش 55زq15m٨lW|ƆU6E܃q5M bSCl@lZzyTuUrHGÿ[{p5ph{`5`XLhţ`2\/p]}vzEJWzJC/Ж}W3~v暥ǕPX1_Dv ʿՊ24R 6p2-b=(cu꩚jZmNK^n(Op|/t_tKkdWt^^BjE݇) uP5레kA׬֯Ymjլ~SynCxUpipr-ŗ{3IE)x^Z%|JhŹ% ~|^Res<fQOo]@Tt endstream endobj 201 0 obj << /Type /XRef /Index [0 202] /Size 202 /W [1 3 1] /Root 199 0 R /Info 200 0 R /ID [ ] /Length 520 /Filter /FlateDecode >> stream xOQg幰,[@">ߊT$&Z"; X,F-lp|9o3l5%s{PK>Eej-(zQzp0jQ UM`j3QPDUKZPǒI ˒> @e&-e+`m`;v]`7h@-^jThҋ>;.T NvUwj&,OC}nO`CqB@ ΂ wyCv"" .=& ӰlJ-pm揼p%o Ipmv'`2Abl{X $6i A:L UnsK*PcE=N}hL}jYGR G=-H<ǥ