pax_global_header00006660000000000000000000000064130424622030014506gustar00rootroot0000000000000052 comment=688b487ad0a78c8707c5aded50e1d85551270034 faceup-0.0.4/000077500000000000000000000000001304246220300127525ustar00rootroot00000000000000faceup-0.0.4/COPYING000066400000000000000000001045131304246220300140110ustar00rootroot00000000000000 GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: Copyright (C) This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read . faceup-0.0.4/README.md000066400000000000000000000265131304246220300142400ustar00rootroot00000000000000# faceup - Regression test system for font-lock *Author:* Anders Lindgren
*Version:* 0.0.4
*URL:* [https://github.com/Lindydancer/faceup](https://github.com/Lindydancer/faceup)
Emacs is capable of highlighting buffers based on language-specific `font-lock` rules. This package makes it possible to perform regression test for packages that provide font-lock rules. The underlying idea is to convert text with highlights ("faces") into a plain text representation using the Faceup markup language. This language is semi-human readable, for example: «k:this» is a keyword By comparing the current highlight with a highlight performed with stable versions of a package, it's possible to automatically find problems that otherwise would have been hard to spot. This package is designed to be used in conjunction with Ert, the standard Emacs regression test system. The Faceup markup language is a generic markup language, regression testing is merely one way to use it. ## Regression test examples This section describes the two typical ways regression testing with this package is performed. ### Full source file highlighting The most straight-forward way to perform regression testing is to collect a number of representative source files. From each source file, say `alpha.mylang`, you can use M-x faceup-write-file RET to generate a Faceup file named `alpha.mylang.faceup`, this file use the Faceup markup language to represent the text with highlights and is used as a reference in future tests. An Ert test case can be defined as follows: (require 'faceup) (defvar mylang-font-lock-test-dir (faceup-this-file-directory)) (defun mylang-font-lock-test-apps (file) "Test that the mylang FILE is fontifies as the .faceup file describes." (faceup-test-font-lock-file 'mylang-mode (concat mylang-font-lock-test-dir file))) (faceup-defexplainer mylang-font-lock-test-apps) (ert-deftest mylang-font-lock-file-test () (should (mylang-font-lock-test-apps "apps/FirstApp/alpha.mylang")) ;; ... Add more test files here ... ) To execute the tests, run something like M-x ert RET t RET. ### Source snippets To test smaller snippets of code, you can use the `faceup-test-font-lock-string`. It takes a major mode and a string written using the Faceup markup language. The functions strips away the Faceup markup, inserts the plain text into a temporary buffer, highlights it, converts the result back into the Faceup markup language, and finally compares the result with the original Faceup string. For example: (defun mylang-font-lock-test (faceup) (faceup-test-font-lock-string 'mylang-mode faceup)) (faceup-defexplainer mylang-font-lock-test) (ert-deftest mylang-font-lock-test-simple () "Simple MyLang font-lock tests." (should (mylang-font-lock-test "«k:this» is a keyword")) (should (mylang-font-lock-test "«k:function» «f:myfunc» («v:var»)"))) ## Executing the tests Once the tests have been defined, you can use M-x ert RET t RET to execute them. Hopefully, you will be given the "all clear". However, if there is a problem, you will be presented with something like: F mylang-font-lock-file-test (ert-test-failed ((should (mylang-font-lock-test-apps "apps/FirstApp/alpha.mylang")) :form (mylang-font-lock-test-apps "apps/FirstApp/alpha.mylang") :value nil :explanation ((on-line 2 ("but_«k:this»_is_not_a_keyword") ("but_this_is_not_a_keyword"))))) You should read this that on line 2, the old font-lock rules highlighted `this` inside `but_this_is_not_a_keyword` (which is clearly wrong), whereas the new doesn't. Of course, if this is the desired result (for example, the result of a recent change) you can simply regenerate the .faceup file and store it as the reference file for the future. ## The Faceup markup language The Faceup markup language is designed to be human-readable and minimalistic. The two special characters `«` and `»` marks the start and end of a range of a face. ### Compact format for special faces The compact format `«:text»` is used for a number of common faces. For example, `«U:abc»` means that the text `abc` is underlined. See `faceup-face-short-alist` for the known faces and the corresponding letter. ### Full format The format `«::text»` is used use to encode other faces. For example `«:my-special-face:abc»` meanst that `abc` has the face `my-special-face`. ### Anonymous faces An "anonymous face" is when the `face` property contains a property list (plist) on the form `(:key value)`. This is represented using a variant of the full format: `«:(:key value):text»`. For example, `«:(:background "red"):abc»` represent the text `abc` with a red background. ### Multiple properties In case a text contains more than one face property, they are represented using nested sections. For example: * `«B:abc«U:def»»` represent the text `abcdef` that is both *bold* and *underlined*. * `«W:abc«U:def»ghi»` represent the text `abcdefghi` where the entire text is in *warning* face and `def` is *underlined*. In case two faces partially overlap, the ranges will be split when represented in Faceup. For example: * `«B:abc«U:def»»«U:ghi»` represent the text `abcdefghi` where `abcdef` is bold and `defghi` is underlined. ### Escaping start and end markers Any occurrence of the start or end markers in the original text will be escaped using the start marker in the Faceup representation. In other words, the sequences `««` and `«»` represent a start and end marker, respectively. ### Other properties In addition to representing the `face` property (or, more correctly, the value of `faceup-default-property`) other properties can be encoded. The variable `faceup-properties` contains a list of properties to track. If a property behaves like the `face` property, it is encoded as described above, with the addition of the property name placed in parentheses, for example: `«(my-face)U:abd»`. The variable `faceup-face-like-properties` contains a list of properties considered face-like. Properties that are not considered face-like are always encoded using the full format and the don't nest. For example: `«(my-fibonacci-property):(1 1 2 3 5 8):abd»`. Examples of properties that could be tracked are: * `font-lock-face` -- an alias to `face` when `font-lock-mode` is enabled. * `syntax-table` -- used by a custom `syntax-propertize` to override the default syntax table. * `help-echo` -- provides tooltip text displayed when the mouse is held over a text. ## Reference section ### Faceup commands and functions M-x faceup-write-file RET - generate a Faceup file based on the current buffer. M-x faceup-view-file RET - view the current buffer converted to Faceup. `faceup-markup-{string,buffer}` - convert text with properties to the Faceup markup language. `faceup-render-view-buffer` - convert buffer with Faceup markup to a buffer with real text properties and display it. `faceup-render-string` - return string with real text properties from a string with Faceup markup. `faceup-render-to-{buffer,string}` - convert buffer with Faceup markup to a buffer/string with real text properties. `faceup-clean-{buffer,string}` - remove Faceup markup from buffer or string. ### Regression test support The following functions can be used as Ert test functions, or can be used to implement new Ert test functions. `faceup-test-equal` - Test function, work like Ert:s `equal`, but more ergonomically when reporting multi-line string errors. Concretely, it breaks down multi-line strings into lines and reports which line number the error occurred on and the content of that line. `faceup-test-font-lock-buffer` - Test that a buffer is highlighted according to a reference Faceup text, for a specific major mode. `faceup-test-font-lock-string` - Test that a text with Faceup markup is refontified to match the original Faceup markup. `faceup-test-font-lock-file` - Test that a file is highlighted according to a reference .faceup file. `faceup-defexplainer` - Macro, define an explainer function and set the `ert-explainer` property on the original function, for functions based on the above test functions. `faceup-this-file-directory` - Macro, the directory of the current file. ## Real-world examples The following are examples of real-world package that use faceup to test their font-lock keywords. * [cmake-font-lock](https://github.com/Lindydancer/cmake-font-lock) an advanced set of font-lock keywords for the CMake language * [objc-font-lock](https://github.com/Lindydancer/objc-font-lock) highlight Objective-C function calls. ## Other Font Lock Tools This package is part of a suite of font-lock tools. The other tools in the suite are: ### [Font Lock Studio](https://github.com/Lindydancer/font-lock-studio) Interactive debugger for font-lock keywords (Emacs syntax highlighting rules). Font Lock Studio lets you *single-step* Font Lock keywords -- matchers, highlights, and anchored rules, so that you can see what happens when a buffer is fontified. You can set *breakpoints* on or inside rules and *run* until one has been hit. When inside a rule, matches are *visualized* using a palette of background colors. The *explainer* can describe a rule in plain-text English. Tight integration with *Edebug* allows you to step into Lisp expressions that are part of the Font Lock keywords. ### [Font Lock Profiler](https://github.com/Lindydancer/font-lock-profiler) A profiler for font-lock keywords. This package measures time and counts the number of times each part of a font-lock keyword is used. For matchers, it counts the total number and the number of successful matches. The result is presented in table that can be sorted by count or time. The table can be expanded to include each part of the font-lock keyword. In addition, this package can generate a log of all font-lock events. This can be used to verify font-lock implementations, concretely, this is used for back-to-back tests of the real font-lock engine and Font Lock Studio, an interactive debugger for font-lock keywords. ### [Highlight Refontification](https://github.com/Lindydancer/highlight-refontification) Minor mode that visualizes how font-lock refontifies a buffer. This is useful when developing or debugging font-lock keywords, especially for keywords that span multiple lines. The background of the buffer is painted in a rainbow of colors, where each band in the rainbow represent a region of the buffer that has been refontified. When the buffer is modified, the rainbow is updated. ### [Font Lock Regression Suite](https://github.com/Lindydancer/font-lock-regression-suite) A collection of example source files for a large number of programming languages, with ERT tests to ensure that syntax highlighting does not accidentally change. For each source file, font-lock reference files are provided for various Emacs versions. The reference files contains a plain-text representation of source file with syntax highlighting, using the format "faceup". Of course, the collection source file can be used for other kinds of testing, not limited to font-lock regression testing. --- Converted from `faceup.el` by [*el2markdown*](https://github.com/Lindydancer/el2markdown). faceup-0.0.4/admin/000077500000000000000000000000001304246220300140425ustar00rootroot00000000000000faceup-0.0.4/admin/Rakefile000066400000000000000000000011151304246220300155050ustar00rootroot00000000000000################################ -*- Ruby -*- ################################# # Common tasks # desc "Generate README.md" task "readme" do sh "emacs", "-batch", "-l", "../../font-lock-tools-admin/font-lock-tools-admin.el", "-L", "../../el2markdown", "../faceup.el", "-f", "font-lock-tools-admin-write-readme" end desc "Generating html" task "html" => ["readme"] do File.open(File.join("..", "README.html"), "w") do |fh| fh.puts("") fh.puts(" ") fh.puts("") end sh "Markdown.pl ../README.md >> ../README.html" end faceup-0.0.4/doc/000077500000000000000000000000001304246220300135175ustar00rootroot00000000000000faceup-0.0.4/doc/apps/000077500000000000000000000000001304246220300144625ustar00rootroot00000000000000faceup-0.0.4/doc/apps/FirstApp/000077500000000000000000000000001304246220300162125ustar00rootroot00000000000000faceup-0.0.4/doc/apps/FirstApp/alpha.mylang000066400000000000000000000000541304246220300205070ustar00rootroot00000000000000this is a keyword but_this_is_not_a_keyword faceup-0.0.4/doc/apps/FirstApp/alpha.mylang.faceup000066400000000000000000000000701304246220300217470ustar00rootroot00000000000000«k:this» is a keyword but_«k:this»_is_not_a_keyword faceup-0.0.4/doc/mylang-font-lock-test-apps.el000066400000000000000000000011641304246220300211420ustar00rootroot00000000000000;;; mylang-font-lock-test-apps.el --- Faceup example for MyLang ;;; Code: (require 'faceup) (defvar mylang-font-lock-test-dir (faceup-this-file-directory)) (defun mylang-font-lock-test-apps (file) "Test that FILE is fontifies as the .faceup file describes." (faceup-test-font-lock-file 'mylang-mode (concat mylang-font-lock-test-dir file))) (faceup-defexplainer mylang-font-lock-test-apps) (ert-deftest mylang-font-lock-file-test () (should (mylang-font-lock-test-apps "apps/FirstApp/alpha.mylang")) ;; ... Add more test files here ... ) ;;; mylang-font-lock-test-apps.el ends here faceup-0.0.4/doc/mylang-font-lock-test-simple.el000066400000000000000000000007341304246220300214720ustar00rootroot00000000000000;;; mylang-font-lock-test-simple.el --- Example of inlined faceup tests (defun mylang-font-lock-test (faceup) (faceup-test-font-lock-string 'mylang-mode faceup)) (faceup-defexplainer 'mylang-font-lock-test) (ert-deftest mylang-font-lock-test-simple () "Simple MyLang font-lock tests." (should (mylang-font-lock-test "«k:this» is a keyword")) (should (mylang-font-lock-test "«k:function» «f:myfunc» («v:var»)")) ;;; mylang-font-lock-test-simple.el ends here faceup-0.0.4/doc/mylang.el000066400000000000000000000017541304246220300153370ustar00rootroot00000000000000;;; mylang.el --- example major mode with font-lock support. ;;; Code: ;; The .faceup file was generated with the following "old" set of ;; rules. The new rules, below, 1) define "is" to be a keyword and 2) ;; ensure that "this" oesn't match in a context like ;; "and_this_should_not_be_a_keyword". ;; ;; When running `ert' two (expected) errors are triggers. You as a ;; user can inspect both of then and, when satisifed, regenerate the ;; .faceup file. ;; Old rules used when generating the .faceup file: ;; ;;(defvar mylang-font-lock-keywords ;; '(("\\" (0 font-lock-keyword-face)))) (defvar mylang-font-lock-keywords '(("\\_" (0 font-lock-keyword-face)))) (defun mylang-mode () "Example major mode with font-lock support." (interactive) (kill-all-local-variables) (setq major-mode 'mylang-mode) (setq mode-name "MyLang") (set (make-local-variable 'font-lock-defaults) '(mylang-font-lock-keywords)) (run-hooks 'mylang-mode-hook)) ;;; mylang.el ends here faceup-0.0.4/doc/result.txt000066400000000000000000000011211304246220300155710ustar00rootroot00000000000000Selector: t Passed: 0 Failed: 1 (1 unexpected) Skipped: 0 Total: 1/1 Started at: 2014-09-19 15:17:07+0200 Finished. Finished at: 2014-09-19 15:17:07+0200 F F mylang-font-lock-file-test (ert-test-failed ((should (mylang-font-lock-test-apps "apps/FirstApp/alpha.mylang")) :form (mylang-font-lock-test-apps "apps/FirstApp/alpha.mylang") :value nil :explanation ((on-line 1 ("«k:this» is a keyword") ("«k:this» «k:is» a keyword")) (on-line 2 ("and_«k:this»_should_not_be_a_keyword") ("and_this_should_not_be_a_keyword"))))) faceup-0.0.4/faceup.el000066400000000000000000001152451304246220300145470ustar00rootroot00000000000000;;; faceup.el --- Regression test system for font-lock ;; Copyright (C) 2013-2017 Anders Lindgren ;; Author: Anders Lindgren ;; Version: 0.0.4 ;; Created: 2013-01-21 ;; Keywords: faces languages ;; URL: https://github.com/Lindydancer/faceup ;; This program is free software: you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation, either version 3 of the License, or ;; (at your option) any later version. ;; ;; This program is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with this program. If not, see . ;;; Commentary: ;; Emacs is capable of highlighting buffers based on language-specific ;; `font-lock' rules. This package makes it possible to perform ;; regression test for packages that provide font-lock rules. ;; ;; The underlying idea is to convert text with highlights ("faces") ;; into a plain text representation using the Faceup markup ;; language. This language is semi-human readable, for example: ;; ;; «k:this» is a keyword ;; ;; By comparing the current highlight with a highlight performed with ;; stable versions of a package, it's possible to automatically find ;; problems that otherwise would have been hard to spot. ;; ;; This package is designed to be used in conjunction with Ert, the ;; standard Emacs regression test system. ;; ;; The Faceup markup language is a generic markup language, regression ;; testing is merely one way to use it. ;; Regression test examples: ;; ;; This section describes the two typical ways regression testing with ;; this package is performed. ;; ;; ;; Full source file highlighting: ;; ;; The most straight-forward way to perform regression testing is to ;; collect a number of representative source files. From each source ;; file, say `alpha.mylang', you can use `M-x faceup-write-file RET' ;; to generate a Faceup file named `alpha.mylang.faceup', this file ;; use the Faceup markup language to represent the text with ;; highlights and is used as a reference in future tests. ;; ;; An Ert test case can be defined as follows: ;; ;; (require 'faceup) ;; ;; (defvar mylang-font-lock-test-dir (faceup-this-file-directory)) ;; ;; (defun mylang-font-lock-test-apps (file) ;; "Test that the mylang FILE is fontifies as the .faceup file describes." ;; (faceup-test-font-lock-file 'mylang-mode ;; (concat mylang-font-lock-test-dir file))) ;; (faceup-defexplainer mylang-font-lock-test-apps) ;; ;; (ert-deftest mylang-font-lock-file-test () ;; (should (mylang-font-lock-test-apps "apps/FirstApp/alpha.mylang")) ;; ;; ... Add more test files here ... ;; ) ;; ;; To execute the tests, run something like `M-x ert RET t RET'. ;; ;; ;; Source snippets: ;; ;; To test smaller snippets of code, you can use the ;; `faceup-test-font-lock-string'. It takes a major mode and a string ;; written using the Faceup markup language. The functions strips away ;; the Faceup markup, inserts the plain text into a temporary buffer, ;; highlights it, converts the result back into the Faceup markup ;; language, and finally compares the result with the original Faceup ;; string. ;; ;; For example: ;; ;; (defun mylang-font-lock-test (faceup) ;; (faceup-test-font-lock-string 'mylang-mode faceup)) ;; (faceup-defexplainer mylang-font-lock-test) ;; ;; (ert-deftest mylang-font-lock-test-simple () ;; "Simple MyLang font-lock tests." ;; (should (mylang-font-lock-test "«k:this» is a keyword")) ;; (should (mylang-font-lock-test "«k:function» «f:myfunc» («v:var»)"))) ;; ;; Executing the tests: ;; ;; Once the tests have been defined, you can use `M-x ert RET t RET' ;; to execute them. Hopefully, you will be given the "all clear". ;; However, if there is a problem, you will be presented with ;; something like: ;; ;; F mylang-font-lock-file-test ;; (ert-test-failed ;; ((should ;; (mylang-font-lock-test-apps "apps/FirstApp/alpha.mylang")) ;; :form ;; (mylang-font-lock-test-apps "apps/FirstApp/alpha.mylang") ;; :value nil :explanation ;; ((on-line 2 ;; ("but_«k:this»_is_not_a_keyword") ;; ("but_this_is_not_a_keyword"))))) ;; ;; You should read this that on line 2, the old font-lock rules ;; highlighted `this' inside `but_this_is_not_a_keyword' (which is ;; clearly wrong), whereas the new doesn't. Of course, if this is the ;; desired result (for example, the result of a recent change) you can ;; simply regenerate the .faceup file and store it as the reference ;; file for the future. ;; The Faceup markup language: ;; ;; The Faceup markup language is designed to be human-readable and ;; minimalistic. ;; ;; The two special characters `«' and `»' marks the start and end of a ;; range of a face. ;; ;; ;; Compact format for special faces: ;; ;; The compact format `«:text»' is used for a number of common ;; faces. For example, `«U:abc»' means that the text `abc' is ;; underlined. ;; ;; See `faceup-face-short-alist' for the known faces and the ;; corresponding letter. ;; ;; ;; Full format: ;; ;; The format `«::text»' is used use to encode other ;; faces. ;; ;; For example `«:my-special-face:abc»' meanst that `abc' has the face ;; `my-special-face'. ;; ;; ;; Anonymous faces: ;; ;; An "anonymous face" is when the `face' property contains a property ;; list (plist) on the form `(:key value)'. This is represented using ;; a variant of the full format: `«:(:key value):text»'. ;; ;; For example, `«:(:background "red"):abc»' represent the text `abc' ;; with a red background. ;; ;; ;; Multiple properties: ;; ;; In case a text contains more than one face property, they are ;; represented using nested sections. ;; ;; For example: ;; ;; * `«B:abc«U:def»»' represent the text `abcdef' that is both *bold* ;; and *underlined*. ;; ;; * `«W:abc«U:def»ghi»' represent the text `abcdefghi' where the ;; entire text is in *warning* face and `def' is *underlined*. ;; ;; In case two faces partially overlap, the ranges will be split when ;; represented in Faceup. For example: ;; ;; * `«B:abc«U:def»»«U:ghi»' represent the text `abcdefghi' where ;; `abcdef' is bold and `defghi' is underlined. ;; ;; ;; Escaping start and end markers: ;; ;; Any occurrence of the start or end markers in the original text ;; will be escaped using the start marker in the Faceup ;; representation. In other words, the sequences `««' and `«»' ;; represent a start and end marker, respectively. ;; ;; ;; Other properties: ;; ;; In addition to representing the `face' property (or, more ;; correctly, the value of `faceup-default-property') other properties ;; can be encoded. The variable `faceup-properties' contains a list of ;; properties to track. If a property behaves like the `face' ;; property, it is encoded as described above, with the addition of ;; the property name placed in parentheses, for example: ;; `«(my-face)U:abd»'. ;; ;; The variable `faceup-face-like-properties' contains a list of ;; properties considered face-like. ;; ;; Properties that are not considered face-like are always encoded ;; using the full format and the don't nest. For example: ;; `«(my-fibonacci-property):(1 1 2 3 5 8):abd»'. ;; ;; Examples of properties that could be tracked are: ;; ;; * `font-lock-face' -- an alias to `face' when `font-lock-mode' is ;; enabled. ;; ;; * `syntax-table' -- used by a custom `syntax-propertize' to ;; override the default syntax table. ;; ;; * `help-echo' -- provides tooltip text displayed when the mouse is ;; held over a text. ;; Reference section: ;; ;; Faceup commands and functions: ;; ;; `M-x faceup-write-file RET' - generate a Faceup file based on the ;; current buffer. ;; ;; `M-x faceup-view-file RET' - view the current buffer converted to ;; Faceup. ;; ;; `faceup-markup-{string,buffer}' - convert text with properties to ;; the Faceup markup language. ;; ;; `faceup-render-view-buffer' - convert buffer with Faceup markup to ;; a buffer with real text properties and display it. ;; ;; `faceup-render-string' - return string with real text properties ;; from a string with Faceup markup. ;; ;; `faceup-render-to-{buffer,string}' - convert buffer with Faceup ;; markup to a buffer/string with real text properties. ;; ;; `faceup-clean-{buffer,string}' - remove Faceup markup from buffer ;; or string. ;; ;; ;; Regression test support: ;; ;; The following functions can be used as Ert test functions, or can ;; be used to implement new Ert test functions. ;; ;; `faceup-test-equal' - Test function, work like Ert:s `equal', but ;; more ergonomically when reporting multi-line string errors. ;; Concretely, it breaks down multi-line strings into lines and ;; reports which line number the error occurred on and the content of ;; that line. ;; ;; `faceup-test-font-lock-buffer' - Test that a buffer is highlighted ;; according to a reference Faceup text, for a specific major mode. ;; ;; `faceup-test-font-lock-string' - Test that a text with Faceup ;; markup is refontified to match the original Faceup markup. ;; ;; `faceup-test-font-lock-file' - Test that a file is highlighted ;; according to a reference .faceup file. ;; ;; `faceup-defexplainer' - Macro, define an explainer function and set ;; the `ert-explainer' property on the original function, for ;; functions based on the above test functions. ;; ;; `faceup-this-file-directory' - Macro, the directory of the current ;; file. ;; Real-world examples: ;; ;; The following are examples of real-world package that use faceup to ;; test their font-lock keywords. ;; ;; * [cmake-font-lock](https://github.com/Lindydancer/cmake-font-lock) ;; an advanced set of font-lock keywords for the CMake language ;; ;; * [objc-font-lock](https://github.com/Lindydancer/objc-font-lock) ;; highlight Objective-C function calls. ;; ;; Other Font Lock Tools: ;; ;; This package is part of a suite of font-lock tools. The other ;; tools in the suite are: ;; ;; ;; Font Lock Studio: ;; ;; Interactive debugger for font-lock keywords (Emacs syntax ;; highlighting rules). ;; ;; Font Lock Studio lets you *single-step* Font Lock keywords -- ;; matchers, highlights, and anchored rules, so that you can see what ;; happens when a buffer is fontified. You can set *breakpoints* on or ;; inside rules and *run* until one has been hit. When inside a rule, ;; matches are *visualized* using a palette of background colors. The ;; *explainer* can describe a rule in plain-text English. Tight ;; integration with *Edebug* allows you to step into Lisp expressions ;; that are part of the Font Lock keywords. ;; ;; ;; Font Lock Profiler: ;; ;; A profiler for font-lock keywords. This package measures time and ;; counts the number of times each part of a font-lock keyword is ;; used. For matchers, it counts the total number and the number of ;; successful matches. ;; ;; The result is presented in table that can be sorted by count or ;; time. The table can be expanded to include each part of the ;; font-lock keyword. ;; ;; In addition, this package can generate a log of all font-lock ;; events. This can be used to verify font-lock implementations, ;; concretely, this is used for back-to-back tests of the real ;; font-lock engine and Font Lock Studio, an interactive debugger for ;; font-lock keywords. ;; ;; ;; Highlight Refontification: ;; ;; Minor mode that visualizes how font-lock refontifies a buffer. ;; This is useful when developing or debugging font-lock keywords, ;; especially for keywords that span multiple lines. ;; ;; The background of the buffer is painted in a rainbow of colors, ;; where each band in the rainbow represent a region of the buffer ;; that has been refontified. When the buffer is modified, the ;; rainbow is updated. ;; ;; ;; Font Lock Regression Suite: ;; ;; A collection of example source files for a large number of ;; programming languages, with ERT tests to ensure that syntax ;; highlighting does not accidentally change. ;; ;; For each source file, font-lock reference files are provided for ;; various Emacs versions. The reference files contains a plain-text ;; representation of source file with syntax highlighting, using the ;; format "faceup". ;; ;; Of course, the collection source file can be used for other kinds ;; of testing, not limited to font-lock regression testing. ;;; Code: (eval-when-compile (require 'cl)) (defvar faceup-default-property 'face "The property that should be represented in Faceup without the (prop) part.") (defvar faceup-properties '(face) "List of properties that should be converted to the Faceup format. Only face-like property use the short format. All other use the non-nesting full format. (See `faceup-face-like-properties'.)" ) (defvar faceup-face-like-properties '(face font-lock-face) "List of properties that behave like `face'. The following properties are assumed about face-like properties: * Elements are either symbols or property lists, or lists thereof. * A plain element and a list containing the same element are treated as equal * Property lists and sequences of property lists are considered equal. For example: ((:underline t :foreground \"red\")) and ((:underline t) (:foreground \"red\")) Face-like properties are converted to faceup in a nesting fashion. For example, the string AAAXXXAAA (where the property `prop' has the value `(a)' on the A:s and `(a b)' on the X:s) is converted as follows, when treated as a face-like property: «(prop):a:AAA«(prop):b:XXX»AAAA» When treated as a non-face-like property: «(prop):(a):AAA»«(prop):(a b):XXX»«(prop):(a):AAA»") (defvar faceup-markup-start-char 171) ;; « (defvar faceup-markup-end-char 187) ;; » (defvar faceup-face-short-alist '(;; Generic faces (uppercase letters) (bold . "B") (bold-italic . "Q") (default . "D") (error . "E") (highlight . "H") (italic . "I") (underline . "U") (warning . "W") ;; font-lock-specific faces (lowercase letters) (font-lock-builtin-face . "b") (font-lock-comment-delimiter-face . "m") (font-lock-comment-face . "x") (font-lock-constant-face . "c") (font-lock-doc-face . "d") (font-lock-function-name-face . "f") (font-lock-keyword-face . "k") (font-lock-negation-char-face . "n") (font-lock-preprocessor-face . "p") (font-lock-regexp-grouping-backslash . "h") (font-lock-regexp-grouping-construct . "o") (font-lock-string-face . "s") (font-lock-type-face . "t") (font-lock-variable-name-face . "v") (font-lock-warning-face . "w")) "Alist from faces to one-character representation.") ;; Plain: «W....» ;; Nested: «W...«W...»» ;; Overlapping: xxxxxxxxxx ;; yyyyyyyyyyyy ;; «X..«Y..»»«Y...» (defun faceup-markup-string (s) "Return the faceup version of the string S." (with-temp-buffer (insert s) (faceup-markup-buffer))) ;;;###autoload (defun faceup-view-buffer () "Display the faceup representation of the selected buffer." (interactive) (let ((buffer (get-buffer-create "*FaceUp*"))) (with-current-buffer buffer (delete-region (point-min) (point-max))) (faceup-markup-to-buffer buffer) (display-buffer buffer))) ;;;###autoload (defun faceup-write-file (&optional file-name confirm) "Save the faceup representation of the current buffer to the file FILE-NAME. Unless a name is given, the file will be named xxx.faceup, where xxx is the file name associated with the buffer. If optional second arg CONFIRM is non-nil, this function asks for confirmation before overwriting an existing file. Interactively, confirmation is required unless you supply a prefix argument." (interactive (let ((suggested-name (and (buffer-file-name) (concat (buffer-file-name) ".faceup")))) (list (read-file-name "Write faceup file: " default-directory suggested-name nil (file-name-nondirectory suggested-name)) (not current-prefix-arg)))) (unless file-name (setq file-name (concat (buffer-file-name) ".faceup"))) (let ((buffer (current-buffer))) (with-temp-buffer (faceup-markup-to-buffer (current-buffer) buffer) ;; Note: Must set `require-final-newline' inside ;; `with-temp-buffer', otherwise the value will be overridden by ;; the buffers local value. ;; ;; Clear `window-size-change-functions' as a workaround for ;; Emacs bug#19576 (`write-file' saves the wrong buffer if a ;; function in the list change current buffer). (let ((require-final-newline nil) (window-size-change-functions '())) (write-file file-name confirm))))) (defun faceup-markup-buffer () "Return a string with the content of the buffer using faceup markup." (let ((buf (current-buffer))) (with-temp-buffer (faceup-markup-to-buffer (current-buffer) buf) (buffer-substring-no-properties (point-min) (point-max))))) ;; Idea: ;; ;; Typically, only one face is used. However, when two faces are used, ;; the one of top is typically shorter. Hence, the faceup variant ;; should treat the inner group of nested ranges the upper (i.e. the ;; one towards the front.) For example: ;; ;; «f:aaaaaaa«U:xxxx»aaaaaa» (defun faceup-copy-and-quote (start end to-buffer) "Quote and insert the text between START and END into TO-BUFFER" (let ((not-markup (concat "^" (make-string 1 faceup-markup-start-char) (make-string 1 faceup-markup-end-char)))) (save-excursion (goto-char start) (while (< (point) end) (let ((old (point))) (skip-chars-forward not-markup end) (let ((s (buffer-substring-no-properties old (point)))) (with-current-buffer to-buffer (insert s)))) ;; Quote stray markup characters. (unless (= (point) end) (let ((next-char (following-char))) (with-current-buffer to-buffer (insert faceup-markup-start-char) (insert next-char))) (forward-char)))))) (defun faceup-reverse-list-and-split-property-lists (values) "Reverse value, and pack :keyword value pairs in a list." (let ((res '())) (while values (let ((value (pop values))) (if (listp value) (while value (let ((key (pop value))) ;; Note, missing value issue error! (push (list key (pop value)) res))) (push value res)))) res)) (defun faceup-get-text-properties (pos) "Alist of properties and values at pos. Face-like properties are normalized (single elements are converted to lists and property lists are split into short (KEY VALUE) lists)." (let ((res '())) (dolist (prop faceup-properties) (let ((value (get-text-property pos prop))) (when value (when (memq prop faceup-face-like-properties) ;; Normalize face-like properties. (when (or (not (listp value)) (or (keywordp (car value)))) (setq value (list value))) (setq value (faceup-reverse-list-and-split-property-lists value))) (push (cons prop value) res)))) res)) (defun faceup-markup-to-buffer (to-buffer &optional buffer) "Convert content of BUFFER to faceup form and insert in TO-BUFFER." (save-excursion (if buffer (set-buffer buffer)) ;; Font-lock often only fontifies the visible sections. This ;; ensures that the entire buffer is fontified before converting ;; it. (if font-lock-mode (font-lock-fontify-region (point-min) (point-max))) (let ((last-pos (point-min)) (pos nil) ;; List of (prop . value), representing open faceup blocks. (state '())) (while (setq pos (faceup-next-property-change pos)) ;; Insert content. (faceup-copy-and-quote last-pos pos to-buffer) (setq last-pos pos) (let ((prop-values (faceup-get-text-properties pos))) (let ((next-state '())) (setq state (reverse state)) ;; Find all existing sequences that should continue. (let ((cont t)) (while (and state prop-values cont) (let* ((prop (car (car state))) (value (cdr (car state))) (pair (assq prop prop-values))) (if (memq prop faceup-face-like-properties) ;; Element by element. (if (equal value (car (cdr pair))) (setcdr pair (cdr (cdr pair))) (setq cont nil)) ;; Full value. (if (equal value (cdr pair)) (setq prop-values (delq pair prop-values)) (setq cont nil)))) (when cont (push (pop state) next-state)))) ;; End values that should not be included in the next state. (while state (with-current-buffer to-buffer (insert (make-string 1 faceup-markup-end-char))) (pop state)) ;; Start new ranges. (with-current-buffer to-buffer (while prop-values (let ((pair (pop prop-values))) (if (memq (car pair) faceup-face-like-properties) ;; Face-like. (dolist (element (cdr pair)) (insert (make-string 1 faceup-markup-start-char)) (unless (eq (car pair) faceup-default-property) (insert "(") (insert (symbol-name (car pair))) (insert "):")) (if (symbolp element) (let ((short (assq element faceup-face-short-alist))) (if short (insert (cdr short) ":") (insert ":" (symbol-name element) ":"))) (insert ":") (prin1 element (current-buffer)) (insert ":")) (push (cons (car pair) element) next-state)) ;; Not face-like. (insert (make-string 1 faceup-markup-start-char)) (insert "(") (insert (symbol-name (car pair))) (insert "):") (prin1 (cdr pair) (current-buffer)) (insert ":") (push pair next-state))))) ;; Insert content. (setq state next-state)))) ;; Insert whatever is left after the last face change. (faceup-copy-and-quote last-pos (point-max) to-buffer)))) ;; Some basic facts: ;; ;; (get-text-property (point-max) ...) always return nil. To check the ;; last character in the buffer, use (- (point-max) 1). ;; ;; If a text has more than one face, the first one in the list ;; takes precedence, when being viewed in Emacs. ;; ;; (let ((s "ABCDEF")) ;; (set-text-properties 1 4 ;; '(face (font-lock-warning-face font-lock-variable-name-face)) s) ;; (insert s)) ;; ;; => ABCDEF ;; ;; Where DEF is drawn in "warning" face. (defun faceup-has-any-text-property (pos) "True if any properties in `faceup-properties' are defined at POS." (let ((res nil)) (dolist (prop faceup-properties) (when (get-text-property pos prop) (setq res t))) res)) (defun faceup-next-single-property-change (pos) "Next position a property in `faceup-properties' changes, or nil." (let ((res nil)) (dolist (prop faceup-properties) (let ((next (next-single-property-change pos prop))) (when next (setq res (if res (min res next) next))))) res)) (defun faceup-next-property-change (pos) "Next position after POS where one of the tracked properties change. If POS is nil, also include `point-min' in the search. If last character contains a tracked property, return `point-max'. See `faceup-properties' for a list of tracked properties." (if (eq pos (point-max)) ;; Last search returned `point-max'. There is no more to search ;; for. nil (if (and (null pos) (faceup-has-any-text-property (point-min))) ;; `pos' is `nil' and the character at `point-min' contains a ;; tracked property, return `point-min'. (point-min) (unless pos ;; Start from the beginning. (setq pos (point-min))) ;; Do a normal search. Compensate for that ;; `next-single-property-change' does not include the end of the ;; buffer, even when a property reach it. (let ((res (faceup-next-single-property-change pos))) (if (and (not res) ; No more found. (not (eq pos (point-max))) ; Not already at the end. (not (eq (point-min) (point-max))) ; Not an empty buffer. (faceup-has-any-text-property (- (point-max) 1))) ;; If a property goes all the way to the end of the ;; buffer, return `point-max'. (point-max) res))))) ;; ---------------------------------------------------------------------- ;; Renderer ;; ;; Functions to convert from the faceup textual representation to text ;; with real properties. (defun faceup-render-string (faceup) "Return string with properties from FACEUP written with Faceup markup." (with-temp-buffer (insert faceup) (faceup-render-to-string))) ;;;###autoload (defun faceup-render-view-buffer (&optional buffer) "Convert BUFFER containing Faceup markup to a new buffer and display it." (interactive) (with-current-buffer (or buffer (current-buffer)) (let ((dest-buffer (get-buffer-create "*FaceUp rendering*"))) (with-current-buffer dest-buffer (delete-region (point-min) (point-max))) (faceup-render-to-buffer dest-buffer) (display-buffer dest-buffer)))) (defun faceup-render-to-string (&optional buffer) "Convert BUFFER containing faceup markup to a string with faces." (unless buffer (setq buffer (current-buffer))) (with-temp-buffer (faceup-render-to-buffer (current-buffer) buffer) (buffer-substring (point-min) (point-max)))) (defun faceup-render-to-buffer (to-buffer &optional buffer) "Convert BUFFER containing faceup markup into text with faces in TO-BUFFER." (with-current-buffer (or buffer (current-buffer)) (goto-char (point-min)) (let ((last-point (point)) (state '()) ; List of (prop . element) (not-markup (concat "^" (make-string 1 faceup-markup-start-char) (make-string 1 faceup-markup-end-char)))) (while (progn (skip-chars-forward not-markup) (if (not (eq last-point (point))) (let ((text (buffer-substring-no-properties last-point (point))) (prop-elements-alist '())) ;; Accumulate all values for each property. (dolist (prop-element state) (let ((property (car prop-element)) (element (cdr prop-element))) (let ((pair (assq property prop-elements-alist))) (unless pair (setq pair (cons property '())) (push pair prop-elements-alist)) (push element (cdr pair))))) ;; Apply all properties. (dolist (pair prop-elements-alist) (let ((property (car pair)) (elements (reverse (cdr pair)))) ;; Create one of: ;; (property element) or ;; (property (element element ...)) (when (eq (length elements) 1) ;; This ensures that non-face-like ;; properties are restored to their ;; original state. (setq elements (car elements))) (add-text-properties 0 (length text) (list property elements) text))) (with-current-buffer to-buffer (insert text)) (setq last-point (point)))) (not (eobp))) (if (eq (following-char) faceup-markup-start-char) ;; Start marker. (progn (forward-char) (if (or (eq (following-char) faceup-markup-start-char) (eq (following-char) faceup-markup-end-char)) ;; Escaped markup character. (progn (setq last-point (point)) (forward-char)) ;; Markup sequence. (let ((property faceup-default-property)) (when (eq (following-char) ?\( ) (forward-char) ; "(" (let ((p (point))) (forward-sexp) (setq property (intern (buffer-substring p (point))))) (forward-char)) ; ")" (let ((element (if (eq (following-char) ?:) ;; :element: (progn (forward-char) (prog1 (let ((p (point))) (forward-sexp) ;; Note: (read (current-buffer)) ;; doesn't work, as it reads more ;; than a sexp. (read (buffer-substring p (point)))) (forward-char))) ;; X: (prog1 (car (rassoc (buffer-substring-no-properties (point) (+ (point) 1)) faceup-face-short-alist)) (forward-char 2))))) (push (cons property element) state))) (setq last-point (point)))) ;; End marker. (pop state) (forward-char) (setq last-point (point))))))) ;; ---------------------------------------------------------------------- ;;;###autoload (defun faceup-clean-buffer () "Remove faceup markup from buffer." (interactive) (goto-char (point-min)) (let ((not-markup (concat "^" (make-string 1 faceup-markup-start-char) (make-string 1 faceup-markup-end-char)))) (while (progn (skip-chars-forward not-markup) (not (eobp))) (if (eq (following-char) faceup-markup-end-char) ;; End markers are always on their own. (delete-char 1) ;; Start marker. (delete-char 1) (if (or (eq (following-char) faceup-markup-start-char) (eq (following-char) faceup-markup-end-char)) ;; Escaped markup character, delete the escape and skip ;; the original character. (forward-char) ;; Property name (if present) (if (eq (following-char) ?\( ) (let ((p (point))) (forward-sexp) (delete-region p (point)))) ;; Markup sequence. (if (eq (following-char) ?:) ;; :value: (let ((p (point))) (forward-char) (forward-sexp) (unless (eobp) (forward-char)) (delete-region p (point))) ;; X: (delete-char 1) ; The one-letter form. (delete-char 1))))))) ; The colon. (defun faceup-clean-string (s) (with-temp-buffer (insert s) (faceup-clean-buffer) (buffer-substring (point-min) (point-max)))) ;; ---------------------------------------------------------------------- ;; Regression test support ;; (defvar faceup-test-explain nil "When non-nil, tester functions returns a text description on failure. Of course, this only work for test functions aware of this variable, like `faceup-test-equal' and functions based on this function. This is intended to be used to simplify `ert' explain functions, which could be defined as: (defun my-test (args...) ...) (defun my-test-explain (args...) (let ((faceup-test-explain t)) (the-test args...))) (put 'my-test 'ert-explainer 'my-test-explain) Alternative, you can use the macro `faceup-defexplainer' as follows: (defun my-test (args...) ...) (faceup-defexplainer my-test) Test functions, like `faceup-test-font-lock-buffer', built on top of `faceup-test-equal', and other functions that adhere to this variable, can easily define their own explainer functions.") ;;;###autoload (defmacro faceup-defexplainer (function) "Defines an Ert explainer function for FUNCTION. FUNCTION must return an explanation when the test fails and `faceup-test-explain' is set." (let ((name (intern (concat (symbol-name function) "-explainer")))) `(progn (defun ,name (&rest args) (let ((faceup-test-explain t)) (apply (quote ,function) args))) (put (quote ,function) 'ert-explainer (quote ,name))))) ;; ------------------------------ ;; Multi-line string support. ;; (defun faceup-test-equal (lhs rhs) "Compares two (multi-line) strings, LHS and RHS, for equality. This is intended to be used in Ert regression test rules. When `faceup-test-explain' is non-nil, instead of returning nil on inequality, a list is returned with a explanation what differs. Currently, this function reports 1) if the number of lines in the strings differ. 2) the lines and the line numbers on which the string differed. For example: (let ((a \"ABC\\nDEF\\nGHI\") (b \"ABC\\nXXX\\nGHI\\nZZZ\") (faceup-test-explain t)) (message \"%s\" (faceup-test-equal a b))) ==> (4 3 number-of-lines-differ (on-line 2 (DEF) (XXX))) When used in an `ert' rule, the output is as below: (ert-deftest faceup-test-equal-example () (let ((a \"ABC\\nDEF\\nGHI\") (b \"ABC\\nXXX\\nGHI\\nZZZ\")) (should (faceup-test-equal a b)))) F faceup-test-equal-example (ert-test-failed ((should (faceup-test-equal a b)) :form (faceup-test-equal \"ABC\\nDEF\\nGHI\" \"ABC\\nXXX\\nGHI\\nZZZ\") :value nil :explanation (4 3 number-of-lines-differ (on-line 2 (\"DEF\") (\"XXX\")))))" (if (equal lhs rhs) t (if faceup-test-explain (let ((lhs-lines (split-string lhs "\n")) (rhs-lines (split-string rhs "\n")) (explanation '()) (line 1)) (unless (= (length lhs-lines) (length rhs-lines)) (setq explanation (list 'number-of-lines-differ (length lhs-lines) (length rhs-lines)))) (while lhs-lines (let ((one (pop lhs-lines)) (two (pop rhs-lines))) (unless (equal one two) (setq explanation (cons (list 'on-line line (list one) (list two)) explanation))) (setq line (+ line 1)))) (nreverse explanation)) nil))) (faceup-defexplainer faceup-test-equal) ;; ------------------------------ ;; Font-lock regression test support. ;; (defun faceup-test-font-lock-buffer (mode faceup &optional buffer) "Verify that BUFFER is fontified as FACEUP for major mode MODE. If BUFFER is not specified the current buffer is used. Note that the major mode of the buffer is set to MODE and that the buffer is fontified. If MODE is a list, the first element is the major mode, the remaining are additional functions to call, e.g. minor modes." (save-excursion (if buffer (set-buffer buffer)) (if (listp mode) (dolist (m mode) (funcall m)) (funcall mode)) (font-lock-fontify-region (point-min) (point-max)) (let ((result (faceup-markup-buffer))) (faceup-test-equal faceup result)))) (faceup-defexplainer faceup-test-font-lock-buffer) (defun faceup-test-font-lock-string (mode faceup) "True if FACEUP is re-fontified as the faceup markup for major mode MODE. The string FACEUP is stripped from markup, inserted into a buffer, the requested major mode activated, the buffer is fontified, the result is again converted to the faceup form, and compared with the original string." (with-temp-buffer (insert faceup) (faceup-clean-buffer) (faceup-test-font-lock-buffer mode faceup))) (faceup-defexplainer faceup-test-font-lock-string) (defun faceup-test-font-lock-file (mode file &optional faceup-file) "Verify that FILE is fontified as FACEUP-FILE for major mode MODE. If FACEUP-FILE is omitted, FILE.faceup is used." (unless faceup-file (setq faceup-file (concat file ".faceup"))) (let ((faceup (with-temp-buffer (insert-file-contents faceup-file) (buffer-substring-no-properties (point-min) (point-max))))) (with-temp-buffer (insert-file-contents file) (faceup-test-font-lock-buffer mode faceup)))) (faceup-defexplainer faceup-test-font-lock-file) ;; ------------------------------ ;; Get current file directory. Test cases can use this to locate test ;; files. ;; (defun faceup-this-file-directory () "The directory of the file where the call to this function is located in. Intended to be called when a file is loaded." (expand-file-name (if load-file-name ;; File is being loaded. (file-name-directory load-file-name) ;; File is being evaluated using, for example, `eval-buffer'. default-directory))) ;; ---------------------------------------------------------------------- ;; The end ;; (provide 'faceup) ;;; faceup.el ends here faceup-0.0.4/test/000077500000000000000000000000001304246220300137315ustar00rootroot00000000000000faceup-0.0.4/test/faceup-test-basics.el000066400000000000000000000206341304246220300177420ustar00rootroot00000000000000;;; faceup-test-basics.el --- Tests for the `faceup' package. ;; Copyright (C) 2014 Anders Lindgren ;; Author: Anders Lindgren ;; Keywords: languages, faces ;; URL: https://github.com/Lindydancer/char-font-lock ;;; Commentary: ;;; Code: ;; Note: In the diagrams below, the face drawn over the other ;; represent a face earlier in the list, in other words, one that take ;; precedence. (add-to-list 'load-path (concat (if load-file-name (file-name-directory load-file-name) default-directory) "..")) (require 'faceup) (ert-deftest faceup-functions () "Test primitive functions." (should (equal (faceup-reverse-list-and-split-property-lists '()) '())) (should (equal (faceup-reverse-list-and-split-property-lists '(a)) '(a))) (should (equal (faceup-reverse-list-and-split-property-lists '(a b)) '(b a))) (should (equal (faceup-reverse-list-and-split-property-lists '((:foo t))) '((:foo t)))) (should (equal (faceup-reverse-list-and-split-property-lists '((:foo t) (:bar nil))) '((:bar nil) (:foo t)))) (should (equal (faceup-reverse-list-and-split-property-lists '((:foo t :bar nil))) '((:bar nil) (:foo t)))) (should (equal (faceup-reverse-list-and-split-property-lists '(alpha (:foo t :bar nil) gamma)) '(gamma (:bar nil) (:foo t) alpha))) ) (ert-deftest faceup-markup () "Test basic `faceup' features." ;; ---------- ;; Basics (should (equal (faceup-markup-string "") "")) (should (equal (faceup-markup-string "test") "test")) ;; ---------- ;; Escaping (should (equal (faceup-markup-string "«") "««")) (should (equal (faceup-markup-string "«A«B«C«") "««A««B««C««")) (should (equal (faceup-markup-string "»") "«»")) (should (equal (faceup-markup-string "»A»B»C»") "«»A«»B«»C«»")) ;; ---------- ;; Plain property. ;; ;; UU ;; ABCDEF (let ((s "ABCDEF")) (set-text-properties 2 4 '(face underline) s) (should (equal (faceup-markup-string s) "AB«U:CD»EF"))) ;; ---------- ;; Plain property, full text ;; ;; UUUUUU ;; ABCDEF (let ((s "ABCDEF")) (set-text-properties 0 6 '(face underline) s) (should (equal (faceup-markup-string s) "«U:ABCDEF»"))) ;; ---------- ;; Anonymous face. ;; ;; AA ;; ABCDEF (let ((s "ABCDEF")) (set-text-properties 2 4 '(face (:underline t)) s) (should (equal (faceup-markup-string s) "AB«:(:underline t):CD»EF"))) ;; ---------- ;; Anonymous face -- plist with two keys. ;; ;; AA ;; ABCDEF (let ((s "ABCDEF")) (set-text-properties 2 4 '(face (:foo t :bar nil)) s) (should (equal (faceup-markup-string s) "AB«:(:bar nil):«:(:foo t):CD»»EF"))) ;; Ditto, with plist in list. (let ((s "ABCDEF")) (set-text-properties 2 4 '(face ((:foo t :bar nil))) s) (should (equal (faceup-markup-string s) "AB«:(:bar nil):«:(:foo t):CD»»EF"))) ;; ---------- ;; Anonymous face -- Two plists. ;; ;; AA ;; ABCDEF (let ((s "ABCDEF")) (set-text-properties 2 4 '(face ((:foo t) (:bar nil))) s) (should (equal (faceup-markup-string s) "AB«:(:bar nil):«:(:foo t):CD»»EF"))) ;; ---------- ;; Nested properties. ;; ;; UU ;; IIII ;; ABCDEF (let ((s "ABCDEF")) (set-text-properties 1 2 '(face italic) s) (set-text-properties 2 4 '(face (underline italic)) s) (set-text-properties 4 5 '(face italic) s) (should (equal (faceup-markup-string s) "A«I:B«U:CD»E»F"))) ;; ---------- ;; Overlapping, but not nesting, properties. ;; ;; UUU ;; III ;; ABCDEF (let ((s "ABCDEF")) (set-text-properties 1 2 '(face italic) s) (set-text-properties 2 4 '(face (underline italic)) s) (set-text-properties 4 5 '(face underline) s) (should (equal (faceup-markup-string s) "A«I:B«U:CD»»«U:E»F"))) ;; ---------- ;; Overlapping, but not nesting, properties. ;; ;; III ;; UUU ;; ABCDEF (let ((s "ABCDEF")) (set-text-properties 1 2 '(face italic) s) (set-text-properties 2 4 '(face (italic underline)) s) (set-text-properties 4 5 '(face underline) s) (should (equal (faceup-markup-string s) "A«I:B»«U:«I:CD»E»F"))) ;; ---------- ;; More than one face at the same location. ;; ;; The property to the front takes precedence, it is rendered as the ;; innermost parenthesis pair. (let ((s "ABCDEF")) (set-text-properties 2 4 '(face (underline italic)) s) (should (equal (faceup-markup-string s) "AB«I:«U:CD»»EF"))) (let ((s "ABCDEF")) (set-text-properties 2 4 '(face (italic underline)) s) (should (equal (faceup-markup-string s) "AB«U:«I:CD»»EF"))) ;; ---------- ;; Equal ranges, full text. (let ((s "ABCDEF")) (set-text-properties 0 6 '(face (underline italic)) s) (should (equal (faceup-markup-string s) "«I:«U:ABCDEF»»"))) ;; Ditto, with stray markup characters. (let ((s "AB«CD»EF")) (set-text-properties 0 8 '(face (underline italic)) s) (should (equal (faceup-markup-string s) "«I:«U:AB««CD«»EF»»"))) ;; ---------- ;; Multiple properties (let ((faceup-properties '(alpha beta gamma))) ;; One property. (let ((s "ABCDEF")) (set-text-properties 2 4 '(alpha (a l p h a)) s) (should (equal (faceup-markup-string s) "AB«(alpha):(a l p h a):CD»EF"))) ;; Two properties, inner enclosed. (let ((s "ABCDEFGHIJ")) (set-text-properties 2 8 '(alpha (a l p h a)) s) (font-lock-append-text-property 4 6 'beta '(b e t a) s) (should (equal (faceup-markup-string s) "AB«(alpha):(a l p h a):CD«(beta):(b e t a):EF»GH»IJ"))) ;; Two properties, same end (let ((s "ABCDEFGH")) (set-text-properties 2 6 '(alpha (a)) s) (add-text-properties 4 6 '(beta (b)) s) (should (equal (faceup-markup-string s) "AB«(alpha):(a):CD«(beta):(b):EF»»GH"))) ;; Two properties, overlap. (let ((s "ABCDEFGHIJ")) (set-text-properties 2 6 '(alpha (a)) s) (add-text-properties 4 8 '(beta (b)) s) (should (equal (faceup-markup-string s) "AB«(alpha):(a):CD«(beta):(b):EF»»«(beta):(b):GH»IJ"))) )) (ert-deftest faceup-clean () "Test the clean features of `faceup'." (should (equal (faceup-clean-string "") "")) (should (equal (faceup-clean-string "test") "test")) (should (equal (faceup-clean-string "AB«U:CD»EF") "ABCDEF")) (should (equal (faceup-clean-string "«U:ABCDEF»") "ABCDEF")) (should (equal (faceup-clean-string "A«I:B«U:CD»E»F") "ABCDEF")) (should (equal (faceup-clean-string "A«I:B«U:CD»»«U:E»F") "ABCDEF")) (should (equal (faceup-clean-string "AB«I:«U:CD»»EF") "ABCDEF")) (should (equal (faceup-clean-string "«I:«U:ABCDEF»»") "ABCDEF")) (should (equal (faceup-clean-string "«(foo)I:ABC»DEF") "ABCDEF")) (should (equal (faceup-clean-string "«:(:foo t):ABC»DEF") "ABCDEF")) ;; Escaped markup characters. (should (equal (faceup-clean-string "««") "«")) (should (equal (faceup-clean-string "«»") "»")) (should (equal (faceup-clean-string "A«I:B«U:CD»«»»«U:E»F") "ABCD»EF"))) (ert-deftest faceup-render () "Test the render features of `faceup'." (should (equal (faceup-render-string "") "")) (should (equal (faceup-render-string "««") "«")) (should (equal (faceup-render-string "«»") "»")) (should (equal (faceup-render-string "A«I:B«U:CD»«»»«U:E»F") "ABCD»EF"))) (defvar faceup-test-dummy) (ert-deftest faceup-directory () "Test `faceup-this-file-directory'." (setq qqq default-directory) (let* ((dir (concat (file-name-directory (symbol-file 'faceup-this-file-directory)) "test/")) (file (concat dir "faceup-test-this-file-directory.el"))) ;; Test normal load. (makunbound 'faceup-test-this-file-directory) (load-file file) (should (equal faceup-test-this-file-directory dir)) ;; Test `eval-buffer'. (makunbound 'faceup-test-this-file-directory) (save-excursion (find-file file) (eval-buffer)) (should (equal faceup-test-this-file-directory dir)) ;; Test `eval-defun'. (makunbound 'faceup-test-this-file-directory) (save-excursion (find-file file) (eval-defun nil)) (should (equal faceup-test-this-file-directory dir)))) (provide 'faceup-test-basics) ;;; faceup-test-basics.el ends here faceup-0.0.4/test/faceup-test-files.el000066400000000000000000000033531304246220300175770ustar00rootroot00000000000000;;; faceup-test-files.el --- Self test of `faceup' using. ;; Copyright (C) 2015 Anders Lindgren ;; Author: Anders Lindgren ;; Keywords: faces languages ;; Created: 2015-02-14 ;; This program is free software: you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation, either version 3 of the License, or ;; (at your option) any later version. ;; This program is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with this program. If not, see . ;;; Commentary: ;; Self test of `faceup' with a major mode that sets both the ;; `syntax-table' and the `echo-help' property. ;; ;; This file can also be seen as a blueprint of test cases for real ;; major modes. ;;; Code: (require 'faceup) (require 'faceup-test-mode) (defvar faceup-test-files-dir (faceup-this-file-directory) "The directory of this file.") (defun faceup-test-file (file) "Test that FILE is fontified as the .faceup file describes. FILE is interpreted as relative to this source directory." (let ((faceup-properties '(face syntax-table help-echo))) (faceup-test-font-lock-file 'faceup-test-mode (concat faceup-test-files-dir file)))) (faceup-defexplainer faceup-test-file) (ert-deftest faceup-files () (should (faceup-test-file "files/test1.txt"))) (provide 'faceup-test-files) ;; faceup-test-files.el ends here. faceup-0.0.4/test/faceup-test-mode.el000066400000000000000000000050501304246220300174150ustar00rootroot00000000000000;;; faceup-test-mode.el --- Dummy major mode for testing `faceup'. ;; Copyright (C) 2015 Anders Lindgren ;; Author: Anders Lindgren ;; Created: 2015-02-14 ;; URL: https://github.com/Lindydancer/faceup ;; This program is free software: you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation, either version 3 of the License, or ;; (at your option) any later version. ;; ;; This program is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with this program. If not, see . ;;; Commentary: ;; Dummy major-mode for testing `faceup', a regression test system for ;; font-lock keywords (syntax highlighting rules for Emacs). ;; ;; This mode use `syntax-propertize' to set the `syntax-table' ;; property on "<" and ">" in "" to make them act like ;; parentheses. ;; ;; This mode also sets the `help-echo' property on the text WARNING, ;; the effect is that Emacs displays a tooltip when you move your ;; mouse on to the text. ;;; Code: (defvar faceup-test-mode-syntax-table (make-syntax-table) "Syntax table for `faceup-test-mode'.") (defvar faceup-test-font-lock-keywords '(("\\_" (0 (progn (add-text-properties (match-beginning 0) (match-end 0) '(help-echo "Baloon tip: Fly smoothly!")) font-lock-warning-face)))) "Highlight rules for `faceup-test-mode'.") (defun faceup-test-syntax-propertize (start end) (goto-char start) (funcall (syntax-propertize-rules ("\\(<\\)\\([^<>\n]*\\)\\(>\\)" (1 "() ") (3 ")( "))) start end)) (defmacro faceup-test-define-prog-mode (mode name &rest args) "Define a major mode for a programming language. If `prog-mode' is defined, inherit from it." (declare (indent defun)) `(define-derived-mode ,mode ,(and (fboundp 'prog-mode) 'prog-mode) ,name ,@args)) ;;;###autoload (faceup-test-define-prog-mode faceup-test-mode "faceup-test" "Dummy major mode for testing `faceup', a test system for font-lock." (set (make-local-variable 'syntax-propertize-function) #'faceup-test-syntax-propertize) (setq font-lock-defaults '(faceup-test-font-lock-keywords nil))) (provide 'faceup-test-mode) ;;; faceup-test-mode.el ends here faceup-0.0.4/test/faceup-test-setup.el000066400000000000000000000017011304246220300176300ustar00rootroot00000000000000;;; faceup-test-setup.el --- Setup and execute all tests. ;;; Commentary: ;; This package sets up a suitable enviroment for testing ;; faceup, and executes the tests. ;; ;; Usage: ;; ;; emacs -q -l faceup-test-setup.el ;; ;; Note that this package assumes that some packages are located in ;; specific locations. ;; ;; Note that different Emacs versions highlight Objective-C slightly ;; differently. The corresponding .faceup file was generated using ;; Emacs 24.3. ;;; Code: (setq inhibit-startup-screen t) (prefer-coding-system 'utf-8) (defvar faceup-test-setup-directory (if load-file-name (file-name-directory load-file-name) default-directory)) (dolist (dir '("." ".." "../../faceup")) (add-to-list 'load-path (concat faceup-test-setup-directory dir))) (require 'faceup) (require 'faceup-test-basics) (require 'faceup-test-files) (if noninteractive (ert-run-tests-batch-and-exit) (ert t)) ;;; faceup-test-setup.el ends here faceup-0.0.4/test/faceup-test-this-file-directory.el000066400000000000000000000001061304246220300223540ustar00rootroot00000000000000(defvar faceup-test-this-file-directory (faceup-this-file-directory)) faceup-0.0.4/test/files/000077500000000000000000000000001304246220300150335ustar00rootroot00000000000000faceup-0.0.4/test/files/test1.txt000066400000000000000000000006701304246220300166370ustar00rootroot00000000000000This is a test of `faceup', a regression test system for font-lock keywords. It should use major mode `faceup-test-mode'. WARNING: The first word on this line should use `font-lock-warning-face', and a tooltip should be displayed if the mouse is move over it. In this mode "<" and ">" are parentheses, but only when on the same line without any other "<" and ">" characters between them. > < NOT OK > test1.txt ends here. faceup-0.0.4/test/files/test1.txt.faceup000066400000000000000000000013421304246220300200760ustar00rootroot00000000000000This is a test of `faceup', a regression test system for font-lock keywords. It should use major mode `faceup-test-mode'. «(help-echo):"Baloon tip: Fly smoothly!":«w:WARNING»»: The first word on this line should use `font-lock-warning-face', and a tooltip should be displayed if the mouse is move over it. In this mode «s:"«(syntax-table):(4 . 41):<»"» and «s:"«(syntax-table):(5 . 40):>»"» are parentheses, but only when on the same line without any other «s:"«(syntax-table):(4 . 41):<»"» and «s:"«(syntax-table):(5 . 40):>»"» characters between them. «(syntax-table):(4 . 41):<»OK«(syntax-table):(5 . 40):>» » > < NOT OK > test1.txt ends here.